luajit-2.1.0~beta3+dfsg.orig/0000755000175100017510000000000013104062440015315 5ustar ondrejondrejluajit-2.1.0~beta3+dfsg.orig/dynasm/0000755000175100017510000000000013101703334016611 5ustar ondrejondrejluajit-2.1.0~beta3+dfsg.orig/dynasm/dasm_mips.h0000644000175100017510000003004713101703334020742 0ustar ondrejondrej/* ** DynASM MIPS encoding engine. ** Copyright (C) 2005-2017 Mike Pall. All rights reserved. ** Released under the MIT license. See dynasm.lua for full copyright notice. */ #include #include #include #include #define DASM_ARCH "mips" #ifndef DASM_EXTERN #define DASM_EXTERN(a,b,c,d) 0 #endif /* Action definitions. */ enum { DASM_STOP, DASM_SECTION, DASM_ESC, DASM_REL_EXT, /* The following actions need a buffer position. */ DASM_ALIGN, DASM_REL_LG, DASM_LABEL_LG, /* The following actions also have an argument. */ DASM_REL_PC, DASM_LABEL_PC, DASM_IMM, DASM_IMMS, DASM__MAX }; /* Maximum number of section buffer positions for a single dasm_put() call. */ #define DASM_MAXSECPOS 25 /* DynASM encoder status codes. Action list offset or number are or'ed in. */ #define DASM_S_OK 0x00000000 #define DASM_S_NOMEM 0x01000000 #define DASM_S_PHASE 0x02000000 #define DASM_S_MATCH_SEC 0x03000000 #define DASM_S_RANGE_I 0x11000000 #define DASM_S_RANGE_SEC 0x12000000 #define DASM_S_RANGE_LG 0x13000000 #define DASM_S_RANGE_PC 0x14000000 #define DASM_S_RANGE_REL 0x15000000 #define DASM_S_UNDEF_LG 0x21000000 #define DASM_S_UNDEF_PC 0x22000000 /* Macros to convert positions (8 bit section + 24 bit index). */ #define DASM_POS2IDX(pos) ((pos)&0x00ffffff) #define DASM_POS2BIAS(pos) ((pos)&0xff000000) #define DASM_SEC2POS(sec) ((sec)<<24) #define DASM_POS2SEC(pos) ((pos)>>24) #define DASM_POS2PTR(D, pos) (D->sections[DASM_POS2SEC(pos)].rbuf + (pos)) /* Action list type. */ typedef const unsigned int *dasm_ActList; /* Per-section structure. */ typedef struct dasm_Section { int *rbuf; /* Biased buffer pointer (negative section bias). */ int *buf; /* True buffer pointer. */ size_t bsize; /* Buffer size in bytes. */ int pos; /* Biased buffer position. */ int epos; /* End of biased buffer position - max single put. */ int ofs; /* Byte offset into section. */ } dasm_Section; /* Core structure holding the DynASM encoding state. */ struct dasm_State { size_t psize; /* Allocated size of this structure. */ dasm_ActList actionlist; /* Current actionlist pointer. */ int *lglabels; /* Local/global chain/pos ptrs. */ size_t lgsize; int *pclabels; /* PC label chains/pos ptrs. */ size_t pcsize; void **globals; /* Array of globals (bias -10). */ dasm_Section *section; /* Pointer to active section. */ size_t codesize; /* Total size of all code sections. */ int maxsection; /* 0 <= sectionidx < maxsection. */ int status; /* Status code. */ dasm_Section sections[1]; /* All sections. Alloc-extended. */ }; /* The size of the core structure depends on the max. number of sections. */ #define DASM_PSZ(ms) (sizeof(dasm_State)+(ms-1)*sizeof(dasm_Section)) /* Initialize DynASM state. */ void dasm_init(Dst_DECL, int maxsection) { dasm_State *D; size_t psz = 0; int i; Dst_REF = NULL; DASM_M_GROW(Dst, struct dasm_State, Dst_REF, psz, DASM_PSZ(maxsection)); D = Dst_REF; D->psize = psz; D->lglabels = NULL; D->lgsize = 0; D->pclabels = NULL; D->pcsize = 0; D->globals = NULL; D->maxsection = maxsection; for (i = 0; i < maxsection; i++) { D->sections[i].buf = NULL; /* Need this for pass3. */ D->sections[i].rbuf = D->sections[i].buf - DASM_SEC2POS(i); D->sections[i].bsize = 0; D->sections[i].epos = 0; /* Wrong, but is recalculated after resize. */ } } /* Free DynASM state. */ void dasm_free(Dst_DECL) { dasm_State *D = Dst_REF; int i; for (i = 0; i < D->maxsection; i++) if (D->sections[i].buf) DASM_M_FREE(Dst, D->sections[i].buf, D->sections[i].bsize); if (D->pclabels) DASM_M_FREE(Dst, D->pclabels, D->pcsize); if (D->lglabels) DASM_M_FREE(Dst, D->lglabels, D->lgsize); DASM_M_FREE(Dst, D, D->psize); } /* Setup global label array. Must be called before dasm_setup(). */ void dasm_setupglobal(Dst_DECL, void **gl, unsigned int maxgl) { dasm_State *D = Dst_REF; D->globals = gl - 10; /* Negative bias to compensate for locals. */ DASM_M_GROW(Dst, int, D->lglabels, D->lgsize, (10+maxgl)*sizeof(int)); } /* Grow PC label array. Can be called after dasm_setup(), too. */ void dasm_growpc(Dst_DECL, unsigned int maxpc) { dasm_State *D = Dst_REF; size_t osz = D->pcsize; DASM_M_GROW(Dst, int, D->pclabels, D->pcsize, maxpc*sizeof(int)); memset((void *)(((unsigned char *)D->pclabels)+osz), 0, D->pcsize-osz); } /* Setup encoder. */ void dasm_setup(Dst_DECL, const void *actionlist) { dasm_State *D = Dst_REF; int i; D->actionlist = (dasm_ActList)actionlist; D->status = DASM_S_OK; D->section = &D->sections[0]; memset((void *)D->lglabels, 0, D->lgsize); if (D->pclabels) memset((void *)D->pclabels, 0, D->pcsize); for (i = 0; i < D->maxsection; i++) { D->sections[i].pos = DASM_SEC2POS(i); D->sections[i].ofs = 0; } } #ifdef DASM_CHECKS #define CK(x, st) \ do { if (!(x)) { \ D->status = DASM_S_##st|(p-D->actionlist-1); return; } } while (0) #define CKPL(kind, st) \ do { if ((size_t)((char *)pl-(char *)D->kind##labels) >= D->kind##size) { \ D->status = DASM_S_RANGE_##st|(p-D->actionlist-1); return; } } while (0) #else #define CK(x, st) ((void)0) #define CKPL(kind, st) ((void)0) #endif /* Pass 1: Store actions and args, link branches/labels, estimate offsets. */ void dasm_put(Dst_DECL, int start, ...) { va_list ap; dasm_State *D = Dst_REF; dasm_ActList p = D->actionlist + start; dasm_Section *sec = D->section; int pos = sec->pos, ofs = sec->ofs; int *b; if (pos >= sec->epos) { DASM_M_GROW(Dst, int, sec->buf, sec->bsize, sec->bsize + 2*DASM_MAXSECPOS*sizeof(int)); sec->rbuf = sec->buf - DASM_POS2BIAS(pos); sec->epos = (int)sec->bsize/sizeof(int) - DASM_MAXSECPOS+DASM_POS2BIAS(pos); } b = sec->rbuf; b[pos++] = start; va_start(ap, start); while (1) { unsigned int ins = *p++; unsigned int action = (ins >> 16) - 0xff00; if (action >= DASM__MAX) { ofs += 4; } else { int *pl, n = action >= DASM_REL_PC ? va_arg(ap, int) : 0; switch (action) { case DASM_STOP: goto stop; case DASM_SECTION: n = (ins & 255); CK(n < D->maxsection, RANGE_SEC); D->section = &D->sections[n]; goto stop; case DASM_ESC: p++; ofs += 4; break; case DASM_REL_EXT: break; case DASM_ALIGN: ofs += (ins & 255); b[pos++] = ofs; break; case DASM_REL_LG: n = (ins & 2047) - 10; pl = D->lglabels + n; /* Bkwd rel or global. */ if (n >= 0) { CK(n>=10||*pl<0, RANGE_LG); CKPL(lg, LG); goto putrel; } pl += 10; n = *pl; if (n < 0) n = 0; /* Start new chain for fwd rel if label exists. */ goto linkrel; case DASM_REL_PC: pl = D->pclabels + n; CKPL(pc, PC); putrel: n = *pl; if (n < 0) { /* Label exists. Get label pos and store it. */ b[pos] = -n; } else { linkrel: b[pos] = n; /* Else link to rel chain, anchored at label. */ *pl = pos; } pos++; break; case DASM_LABEL_LG: pl = D->lglabels + (ins & 2047) - 10; CKPL(lg, LG); goto putlabel; case DASM_LABEL_PC: pl = D->pclabels + n; CKPL(pc, PC); putlabel: n = *pl; /* n > 0: Collapse rel chain and replace with label pos. */ while (n > 0) { int *pb = DASM_POS2PTR(D, n); n = *pb; *pb = pos; } *pl = -pos; /* Label exists now. */ b[pos++] = ofs; /* Store pass1 offset estimate. */ break; case DASM_IMM: case DASM_IMMS: #ifdef DASM_CHECKS CK((n & ((1<<((ins>>10)&31))-1)) == 0, RANGE_I); #endif n >>= ((ins>>10)&31); #ifdef DASM_CHECKS if (ins & 0x8000) CK(((n + (1<<(((ins>>5)&31)-1)))>>((ins>>5)&31)) == 0, RANGE_I); else CK((n>>((ins>>5)&31)) == 0, RANGE_I); #endif b[pos++] = n; break; } } } stop: va_end(ap); sec->pos = pos; sec->ofs = ofs; } #undef CK /* Pass 2: Link sections, shrink aligns, fix label offsets. */ int dasm_link(Dst_DECL, size_t *szp) { dasm_State *D = Dst_REF; int secnum; int ofs = 0; #ifdef DASM_CHECKS *szp = 0; if (D->status != DASM_S_OK) return D->status; { int pc; for (pc = 0; pc*sizeof(int) < D->pcsize; pc++) if (D->pclabels[pc] > 0) return DASM_S_UNDEF_PC|pc; } #endif { /* Handle globals not defined in this translation unit. */ int idx; for (idx = 20; idx*sizeof(int) < D->lgsize; idx++) { int n = D->lglabels[idx]; /* Undefined label: Collapse rel chain and replace with marker (< 0). */ while (n > 0) { int *pb = DASM_POS2PTR(D, n); n = *pb; *pb = -idx; } } } /* Combine all code sections. No support for data sections (yet). */ for (secnum = 0; secnum < D->maxsection; secnum++) { dasm_Section *sec = D->sections + secnum; int *b = sec->rbuf; int pos = DASM_SEC2POS(secnum); int lastpos = sec->pos; while (pos != lastpos) { dasm_ActList p = D->actionlist + b[pos++]; while (1) { unsigned int ins = *p++; unsigned int action = (ins >> 16) - 0xff00; switch (action) { case DASM_STOP: case DASM_SECTION: goto stop; case DASM_ESC: p++; break; case DASM_REL_EXT: break; case DASM_ALIGN: ofs -= (b[pos++] + ofs) & (ins & 255); break; case DASM_REL_LG: case DASM_REL_PC: pos++; break; case DASM_LABEL_LG: case DASM_LABEL_PC: b[pos++] += ofs; break; case DASM_IMM: case DASM_IMMS: pos++; break; } } stop: (void)0; } ofs += sec->ofs; /* Next section starts right after current section. */ } D->codesize = ofs; /* Total size of all code sections */ *szp = ofs; return DASM_S_OK; } #ifdef DASM_CHECKS #define CK(x, st) \ do { if (!(x)) return DASM_S_##st|(p-D->actionlist-1); } while (0) #else #define CK(x, st) ((void)0) #endif /* Pass 3: Encode sections. */ int dasm_encode(Dst_DECL, void *buffer) { dasm_State *D = Dst_REF; char *base = (char *)buffer; unsigned int *cp = (unsigned int *)buffer; int secnum; /* Encode all code sections. No support for data sections (yet). */ for (secnum = 0; secnum < D->maxsection; secnum++) { dasm_Section *sec = D->sections + secnum; int *b = sec->buf; int *endb = sec->rbuf + sec->pos; while (b != endb) { dasm_ActList p = D->actionlist + *b++; while (1) { unsigned int ins = *p++; unsigned int action = (ins >> 16) - 0xff00; int n = (action >= DASM_ALIGN && action < DASM__MAX) ? *b++ : 0; switch (action) { case DASM_STOP: case DASM_SECTION: goto stop; case DASM_ESC: *cp++ = *p++; break; case DASM_REL_EXT: n = DASM_EXTERN(Dst, (unsigned char *)cp, (ins & 2047), 1); goto patchrel; case DASM_ALIGN: ins &= 255; while ((((char *)cp - base) & ins)) *cp++ = 0x60000000; break; case DASM_REL_LG: CK(n >= 0, UNDEF_LG); case DASM_REL_PC: CK(n >= 0, UNDEF_PC); n = *DASM_POS2PTR(D, n); if (ins & 2048) n = n - (int)((char *)cp - base); else n = (n + (int)(size_t)base) & 0x0fffffff; patchrel: CK((n & 3) == 0 && ((n + ((ins & 2048) ? 0x00020000 : 0)) >> ((ins & 2048) ? 18 : 28)) == 0, RANGE_REL); cp[-1] |= ((n>>2) & ((ins & 2048) ? 0x0000ffff: 0x03ffffff)); break; case DASM_LABEL_LG: ins &= 2047; if (ins >= 20) D->globals[ins-10] = (void *)(base + n); break; case DASM_LABEL_PC: break; case DASM_IMMS: cp[-1] |= ((n>>3) & 4); n &= 0x1f; /* fallthrough */ case DASM_IMM: cp[-1] |= (n & ((1<<((ins>>5)&31))-1)) << (ins&31); break; default: *cp++ = ins; break; } } stop: (void)0; } } if (base + D->codesize != (char *)cp) /* Check for phase errors. */ return DASM_S_PHASE; return DASM_S_OK; } #undef CK /* Get PC label offset. */ int dasm_getpclabel(Dst_DECL, unsigned int pc) { dasm_State *D = Dst_REF; if (pc*sizeof(int) < D->pcsize) { int pos = D->pclabels[pc]; if (pos < 0) return *DASM_POS2PTR(D, -pos); if (pos > 0) return -1; /* Undefined. */ } return -2; /* Unused or out of range. */ } #ifdef DASM_CHECKS /* Optional sanity checker to call between isolated encoding steps. */ int dasm_checkstep(Dst_DECL, int secmatch) { dasm_State *D = Dst_REF; if (D->status == DASM_S_OK) { int i; for (i = 1; i <= 9; i++) { if (D->lglabels[i] > 0) { D->status = DASM_S_UNDEF_LG|i; break; } D->lglabels[i] = 0; } } if (D->status == DASM_S_OK && secmatch >= 0 && D->section != &D->sections[secmatch]) D->status = DASM_S_MATCH_SEC|(D->section-D->sections); return D->status; } #endif luajit-2.1.0~beta3+dfsg.orig/dynasm/dynasm.lua0000644000175100017510000007441513101703334020622 0ustar ondrejondrej------------------------------------------------------------------------------ -- DynASM. A dynamic assembler for code generation engines. -- Originally designed and implemented for LuaJIT. -- -- Copyright (C) 2005-2017 Mike Pall. All rights reserved. -- See below for full copyright notice. ------------------------------------------------------------------------------ -- Application information. local _info = { name = "DynASM", description = "A dynamic assembler for code generation engines", version = "1.4.0", vernum = 10400, release = "2015-10-18", author = "Mike Pall", url = "http://luajit.org/dynasm.html", license = "MIT", copyright = [[ Copyright (C) 2005-2017 Mike Pall. All rights reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. [ MIT license: http://www.opensource.org/licenses/mit-license.php ] ]], } -- Cache library functions. local type, pairs, ipairs = type, pairs, ipairs local pcall, error, assert = pcall, error, assert local _s = string local sub, match, gmatch, gsub = _s.sub, _s.match, _s.gmatch, _s.gsub local format, rep, upper = _s.format, _s.rep, _s.upper local _t = table local insert, remove, concat, sort = _t.insert, _t.remove, _t.concat, _t.sort local exit = os.exit local io = io local stdin, stdout, stderr = io.stdin, io.stdout, io.stderr ------------------------------------------------------------------------------ -- Program options. local g_opt = {} -- Global state for current file. local g_fname, g_curline, g_indent, g_lineno, g_synclineno, g_arch local g_errcount = 0 -- Write buffer for output file. local g_wbuffer, g_capbuffer ------------------------------------------------------------------------------ -- Write an output line (or callback function) to the buffer. local function wline(line, needindent) local buf = g_capbuffer or g_wbuffer buf[#buf+1] = needindent and g_indent..line or line g_synclineno = g_synclineno + 1 end -- Write assembler line as a comment, if requestd. local function wcomment(aline) if g_opt.comment then wline(g_opt.comment..aline..g_opt.endcomment, true) end end -- Resync CPP line numbers. local function wsync() if g_synclineno ~= g_lineno and g_opt.cpp then wline("#line "..g_lineno..' "'..g_fname..'"') g_synclineno = g_lineno end end -- Dummy action flush function. Replaced with arch-specific function later. local function wflush(term) end -- Dump all buffered output lines. local function wdumplines(out, buf) for _,line in ipairs(buf) do if type(line) == "string" then assert(out:write(line, "\n")) else -- Special callback to dynamically insert lines after end of processing. line(out) end end end ------------------------------------------------------------------------------ -- Emit an error. Processing continues with next statement. local function werror(msg) error(format("%s:%s: error: %s:\n%s", g_fname, g_lineno, msg, g_curline), 0) end -- Emit a fatal error. Processing stops. local function wfatal(msg) g_errcount = "fatal" werror(msg) end -- Print a warning. Processing continues. local function wwarn(msg) stderr:write(format("%s:%s: warning: %s:\n%s\n", g_fname, g_lineno, msg, g_curline)) end -- Print caught error message. But suppress excessive errors. local function wprinterr(...) if type(g_errcount) == "number" then -- Regular error. g_errcount = g_errcount + 1 if g_errcount < 21 then -- Seems to be a reasonable limit. stderr:write(...) elseif g_errcount == 21 then stderr:write(g_fname, ":*: warning: too many errors (suppressed further messages).\n") end else -- Fatal error. stderr:write(...) return true -- Stop processing. end end ------------------------------------------------------------------------------ -- Map holding all option handlers. local opt_map = {} local opt_current -- Print error and exit with error status. local function opterror(...) stderr:write("dynasm.lua: ERROR: ", ...) stderr:write("\n") exit(1) end -- Get option parameter. local function optparam(args) local argn = args.argn local p = args[argn] if not p then opterror("missing parameter for option `", opt_current, "'.") end args.argn = argn + 1 return p end ------------------------------------------------------------------------------ -- Core pseudo-opcodes. local map_coreop = {} -- Dummy opcode map. Replaced by arch-specific map. local map_op = {} -- Forward declarations. local dostmt local readfile ------------------------------------------------------------------------------ -- Map for defines (initially empty, chains to arch-specific map). local map_def = {} -- Pseudo-opcode to define a substitution. map_coreop[".define_2"] = function(params, nparams) if not params then return nparams == 1 and "name" or "name, subst" end local name, def = params[1], params[2] or "1" if not match(name, "^[%a_][%w_]*$") then werror("bad or duplicate define") end map_def[name] = def end map_coreop[".define_1"] = map_coreop[".define_2"] -- Define a substitution on the command line. function opt_map.D(args) local namesubst = optparam(args) local name, subst = match(namesubst, "^([%a_][%w_]*)=(.*)$") if name then map_def[name] = subst elseif match(namesubst, "^[%a_][%w_]*$") then map_def[namesubst] = "1" else opterror("bad define") end end -- Undefine a substitution on the command line. function opt_map.U(args) local name = optparam(args) if match(name, "^[%a_][%w_]*$") then map_def[name] = nil else opterror("bad define") end end -- Helper for definesubst. local gotsubst local function definesubst_one(word) local subst = map_def[word] if subst then gotsubst = word; return subst else return word end end -- Iteratively substitute defines. local function definesubst(stmt) -- Limit number of iterations. for i=1,100 do gotsubst = false stmt = gsub(stmt, "#?[%w_]+", definesubst_one) if not gotsubst then break end end if gotsubst then wfatal("recursive define involving `"..gotsubst.."'") end return stmt end -- Dump all defines. local function dumpdefines(out, lvl) local t = {} for name in pairs(map_def) do t[#t+1] = name end sort(t) out:write("Defines:\n") for _,name in ipairs(t) do local subst = map_def[name] if g_arch then subst = g_arch.revdef(subst) end out:write(format(" %-20s %s\n", name, subst)) end out:write("\n") end ------------------------------------------------------------------------------ -- Support variables for conditional assembly. local condlevel = 0 local condstack = {} -- Evaluate condition with a Lua expression. Substitutions already performed. local function cond_eval(cond) local func, err if setfenv then func, err = loadstring("return "..cond, "=expr") else -- No globals. All unknown identifiers evaluate to nil. func, err = load("return "..cond, "=expr", "t", {}) end if func then if setfenv then setfenv(func, {}) -- No globals. All unknown identifiers evaluate to nil. end local ok, res = pcall(func) if ok then if res == 0 then return false end -- Oh well. return not not res end err = res end wfatal("bad condition: "..err) end -- Skip statements until next conditional pseudo-opcode at the same level. local function stmtskip() local dostmt_save = dostmt local lvl = 0 dostmt = function(stmt) local op = match(stmt, "^%s*(%S+)") if op == ".if" then lvl = lvl + 1 elseif lvl ~= 0 then if op == ".endif" then lvl = lvl - 1 end elseif op == ".elif" or op == ".else" or op == ".endif" then dostmt = dostmt_save dostmt(stmt) end end end -- Pseudo-opcodes for conditional assembly. map_coreop[".if_1"] = function(params) if not params then return "condition" end local lvl = condlevel + 1 local res = cond_eval(params[1]) condlevel = lvl condstack[lvl] = res if not res then stmtskip() end end map_coreop[".elif_1"] = function(params) if not params then return "condition" end if condlevel == 0 then wfatal(".elif without .if") end local lvl = condlevel local res = condstack[lvl] if res then if res == "else" then wfatal(".elif after .else") end else res = cond_eval(params[1]) if res then condstack[lvl] = res return end end stmtskip() end map_coreop[".else_0"] = function(params) if condlevel == 0 then wfatal(".else without .if") end local lvl = condlevel local res = condstack[lvl] condstack[lvl] = "else" if res then if res == "else" then wfatal(".else after .else") end stmtskip() end end map_coreop[".endif_0"] = function(params) local lvl = condlevel if lvl == 0 then wfatal(".endif without .if") end condlevel = lvl - 1 end -- Check for unfinished conditionals. local function checkconds() if g_errcount ~= "fatal" and condlevel ~= 0 then wprinterr(g_fname, ":*: error: unbalanced conditional\n") end end ------------------------------------------------------------------------------ -- Search for a file in the given path and open it for reading. local function pathopen(path, name) local dirsep = package and match(package.path, "\\") and "\\" or "/" for _,p in ipairs(path) do local fullname = p == "" and name or p..dirsep..name local fin = io.open(fullname, "r") if fin then g_fname = fullname return fin end end end -- Include a file. map_coreop[".include_1"] = function(params) if not params then return "filename" end local name = params[1] -- Save state. Ugly, I know. but upvalues are fast. local gf, gl, gcl, gi = g_fname, g_lineno, g_curline, g_indent -- Read the included file. local fatal = readfile(pathopen(g_opt.include, name) or wfatal("include file `"..name.."' not found")) -- Restore state. g_synclineno = -1 g_fname, g_lineno, g_curline, g_indent = gf, gl, gcl, gi if fatal then wfatal("in include file") end end -- Make .include and conditionals initially available, too. map_op[".include_1"] = map_coreop[".include_1"] map_op[".if_1"] = map_coreop[".if_1"] map_op[".elif_1"] = map_coreop[".elif_1"] map_op[".else_0"] = map_coreop[".else_0"] map_op[".endif_0"] = map_coreop[".endif_0"] ------------------------------------------------------------------------------ -- Support variables for macros. local mac_capture, mac_lineno, mac_name local mac_active = {} local mac_list = {} -- Pseudo-opcode to define a macro. map_coreop[".macro_*"] = function(mparams) if not mparams then return "name [, params...]" end -- Split off and validate macro name. local name = remove(mparams, 1) if not name then werror("missing macro name") end if not (match(name, "^[%a_][%w_%.]*$") or match(name, "^%.[%w_%.]*$")) then wfatal("bad macro name `"..name.."'") end -- Validate macro parameter names. local mdup = {} for _,mp in ipairs(mparams) do if not match(mp, "^[%a_][%w_]*$") then wfatal("bad macro parameter name `"..mp.."'") end if mdup[mp] then wfatal("duplicate macro parameter name `"..mp.."'") end mdup[mp] = true end -- Check for duplicate or recursive macro definitions. local opname = name.."_"..#mparams if map_op[opname] or map_op[name.."_*"] then wfatal("duplicate macro `"..name.."' ("..#mparams.." parameters)") end if mac_capture then wfatal("recursive macro definition") end -- Enable statement capture. local lines = {} mac_lineno = g_lineno mac_name = name mac_capture = function(stmt) -- Statement capture function. -- Stop macro definition with .endmacro pseudo-opcode. if not match(stmt, "^%s*.endmacro%s*$") then lines[#lines+1] = stmt return end mac_capture = nil mac_lineno = nil mac_name = nil mac_list[#mac_list+1] = opname -- Add macro-op definition. map_op[opname] = function(params) if not params then return mparams, lines end -- Protect against recursive macro invocation. if mac_active[opname] then wfatal("recursive macro invocation") end mac_active[opname] = true -- Setup substitution map. local subst = {} for i,mp in ipairs(mparams) do subst[mp] = params[i] end local mcom if g_opt.maccomment and g_opt.comment then mcom = " MACRO "..name.." ("..#mparams..")" wcomment("{"..mcom) end -- Loop through all captured statements for _,stmt in ipairs(lines) do -- Substitute macro parameters. local st = gsub(stmt, "[%w_]+", subst) st = definesubst(st) st = gsub(st, "%s*%.%.%s*", "") -- Token paste a..b. if mcom and sub(st, 1, 1) ~= "|" then wcomment(st) end -- Emit statement. Use a protected call for better diagnostics. local ok, err = pcall(dostmt, st) if not ok then -- Add the captured statement to the error. wprinterr(err, "\n", g_indent, "| ", stmt, "\t[MACRO ", name, " (", #mparams, ")]\n") end end if mcom then wcomment("}"..mcom) end mac_active[opname] = nil end end end -- An .endmacro pseudo-opcode outside of a macro definition is an error. map_coreop[".endmacro_0"] = function(params) wfatal(".endmacro without .macro") end -- Dump all macros and their contents (with -PP only). local function dumpmacros(out, lvl) sort(mac_list) out:write("Macros:\n") for _,opname in ipairs(mac_list) do local name = sub(opname, 1, -3) local params, lines = map_op[opname]() out:write(format(" %-20s %s\n", name, concat(params, ", "))) if lvl > 1 then for _,line in ipairs(lines) do out:write(" |", line, "\n") end out:write("\n") end end out:write("\n") end -- Check for unfinished macro definitions. local function checkmacros() if mac_capture then wprinterr(g_fname, ":", mac_lineno, ": error: unfinished .macro `", mac_name ,"'\n") end end ------------------------------------------------------------------------------ -- Support variables for captures. local cap_lineno, cap_name local cap_buffers = {} local cap_used = {} -- Start a capture. map_coreop[".capture_1"] = function(params) if not params then return "name" end wflush() local name = params[1] if not match(name, "^[%a_][%w_]*$") then wfatal("bad capture name `"..name.."'") end if cap_name then wfatal("already capturing to `"..cap_name.."' since line "..cap_lineno) end cap_name = name cap_lineno = g_lineno -- Create or continue a capture buffer and start the output line capture. local buf = cap_buffers[name] if not buf then buf = {}; cap_buffers[name] = buf end g_capbuffer = buf g_synclineno = 0 end -- Stop a capture. map_coreop[".endcapture_0"] = function(params) wflush() if not cap_name then wfatal(".endcapture without a valid .capture") end cap_name = nil cap_lineno = nil g_capbuffer = nil g_synclineno = 0 end -- Dump a capture buffer. map_coreop[".dumpcapture_1"] = function(params) if not params then return "name" end wflush() local name = params[1] if not match(name, "^[%a_][%w_]*$") then wfatal("bad capture name `"..name.."'") end cap_used[name] = true wline(function(out) local buf = cap_buffers[name] if buf then wdumplines(out, buf) end end) g_synclineno = 0 end -- Dump all captures and their buffers (with -PP only). local function dumpcaptures(out, lvl) out:write("Captures:\n") for name,buf in pairs(cap_buffers) do out:write(format(" %-20s %4s)\n", name, "("..#buf)) if lvl > 1 then local bar = rep("=", 76) out:write(" ", bar, "\n") for _,line in ipairs(buf) do out:write(" ", line, "\n") end out:write(" ", bar, "\n\n") end end out:write("\n") end -- Check for unfinished or unused captures. local function checkcaptures() if cap_name then wprinterr(g_fname, ":", cap_lineno, ": error: unfinished .capture `", cap_name,"'\n") return end for name in pairs(cap_buffers) do if not cap_used[name] then wprinterr(g_fname, ":*: error: missing .dumpcapture ", name ,"\n") end end end ------------------------------------------------------------------------------ -- Sections names. local map_sections = {} -- Pseudo-opcode to define code sections. -- TODO: Data sections, BSS sections. Needs extra C code and API. map_coreop[".section_*"] = function(params) if not params then return "name..." end if #map_sections > 0 then werror("duplicate section definition") end wflush() for sn,name in ipairs(params) do local opname = "."..name.."_0" if not match(name, "^[%a][%w_]*$") or map_op[opname] or map_op["."..name.."_*"] then werror("bad section name `"..name.."'") end map_sections[#map_sections+1] = name wline(format("#define DASM_SECTION_%s\t%d", upper(name), sn-1)) map_op[opname] = function(params) g_arch.section(sn-1) end end wline(format("#define DASM_MAXSECTION\t\t%d", #map_sections)) end -- Dump all sections. local function dumpsections(out, lvl) out:write("Sections:\n") for _,name in ipairs(map_sections) do out:write(format(" %s\n", name)) end out:write("\n") end ------------------------------------------------------------------------------ -- Replacement for customized Lua, which lacks the package library. local prefix = "" if not require then function require(name) local fp = assert(io.open(prefix..name..".lua")) local s = fp:read("*a") assert(fp:close()) return assert(loadstring(s, "@"..name..".lua"))() end end -- Load architecture-specific module. local function loadarch(arch) if not match(arch, "^[%w_]+$") then return "bad arch name" end local ok, m_arch = pcall(require, "dasm_"..arch) if not ok then return "cannot load module: "..m_arch end g_arch = m_arch wflush = m_arch.passcb(wline, werror, wfatal, wwarn) m_arch.setup(arch, g_opt) map_op, map_def = m_arch.mergemaps(map_coreop, map_def) end -- Dump architecture description. function opt_map.dumparch(args) local name = optparam(args) if not g_arch then local err = loadarch(name) if err then opterror(err) end end local t = {} for name in pairs(map_coreop) do t[#t+1] = name end for name in pairs(map_op) do t[#t+1] = name end sort(t) local out = stdout local _arch = g_arch._info out:write(format("%s version %s, released %s, %s\n", _info.name, _info.version, _info.release, _info.url)) g_arch.dumparch(out) local pseudo = true out:write("Pseudo-Opcodes:\n") for _,sname in ipairs(t) do local name, nparam = match(sname, "^(.+)_([0-9%*])$") if name then if pseudo and sub(name, 1, 1) ~= "." then out:write("\nOpcodes:\n") pseudo = false end local f = map_op[sname] local s if nparam ~= "*" then nparam = nparam + 0 end if nparam == 0 then s = "" elseif type(f) == "string" then s = map_op[".template__"](nil, f, nparam) else s = f(nil, nparam) end if type(s) == "table" then for _,s2 in ipairs(s) do out:write(format(" %-12s %s\n", name, s2)) end else out:write(format(" %-12s %s\n", name, s)) end end end out:write("\n") exit(0) end -- Pseudo-opcode to set the architecture. -- Only initially available (map_op is replaced when called). map_op[".arch_1"] = function(params) if not params then return "name" end local err = loadarch(params[1]) if err then wfatal(err) end wline(format("#if DASM_VERSION != %d", _info.vernum)) wline('#error "Version mismatch between DynASM and included encoding engine"') wline("#endif") end -- Dummy .arch pseudo-opcode to improve the error report. map_coreop[".arch_1"] = function(params) if not params then return "name" end wfatal("duplicate .arch statement") end ------------------------------------------------------------------------------ -- Dummy pseudo-opcode. Don't confuse '.nop' with 'nop'. map_coreop[".nop_*"] = function(params) if not params then return "[ignored...]" end end -- Pseudo-opcodes to raise errors. map_coreop[".error_1"] = function(params) if not params then return "message" end werror(params[1]) end map_coreop[".fatal_1"] = function(params) if not params then return "message" end wfatal(params[1]) end -- Dump all user defined elements. local function dumpdef(out) local lvl = g_opt.dumpdef if lvl == 0 then return end dumpsections(out, lvl) dumpdefines(out, lvl) if g_arch then g_arch.dumpdef(out, lvl) end dumpmacros(out, lvl) dumpcaptures(out, lvl) end ------------------------------------------------------------------------------ -- Helper for splitstmt. local splitlvl local function splitstmt_one(c) if c == "(" then splitlvl = ")"..splitlvl elseif c == "[" then splitlvl = "]"..splitlvl elseif c == "{" then splitlvl = "}"..splitlvl elseif c == ")" or c == "]" or c == "}" then if sub(splitlvl, 1, 1) ~= c then werror("unbalanced (), [] or {}") end splitlvl = sub(splitlvl, 2) elseif splitlvl == "" then return " \0 " end return c end -- Split statement into (pseudo-)opcode and params. local function splitstmt(stmt) -- Convert label with trailing-colon into .label statement. local label = match(stmt, "^%s*(.+):%s*$") if label then return ".label", {label} end -- Split at commas and equal signs, but obey parentheses and brackets. splitlvl = "" stmt = gsub(stmt, "[,%(%)%[%]{}]", splitstmt_one) if splitlvl ~= "" then werror("unbalanced () or []") end -- Split off opcode. local op, other = match(stmt, "^%s*([^%s%z]+)%s*(.*)$") if not op then werror("bad statement syntax") end -- Split parameters. local params = {} for p in gmatch(other, "%s*(%Z+)%z?") do params[#params+1] = gsub(p, "%s+$", "") end if #params > 16 then werror("too many parameters") end params.op = op return op, params end -- Process a single statement. dostmt = function(stmt) -- Ignore empty statements. if match(stmt, "^%s*$") then return end -- Capture macro defs before substitution. if mac_capture then return mac_capture(stmt) end stmt = definesubst(stmt) -- Emit C code without parsing the line. if sub(stmt, 1, 1) == "|" then local tail = sub(stmt, 2) wflush() if sub(tail, 1, 2) == "//" then wcomment(tail) else wline(tail, true) end return end -- Split into (pseudo-)opcode and params. local op, params = splitstmt(stmt) -- Get opcode handler (matching # of parameters or generic handler). local f = map_op[op.."_"..#params] or map_op[op.."_*"] if not f then if not g_arch then wfatal("first statement must be .arch") end -- Improve error report. for i=0,9 do if map_op[op.."_"..i] then werror("wrong number of parameters for `"..op.."'") end end werror("unknown statement `"..op.."'") end -- Call opcode handler or special handler for template strings. if type(f) == "string" then map_op[".template__"](params, f) else f(params) end end -- Process a single line. local function doline(line) if g_opt.flushline then wflush() end -- Assembler line? local indent, aline = match(line, "^(%s*)%|(.*)$") if not aline then -- No, plain C code line, need to flush first. wflush() wsync() wline(line, false) return end g_indent = indent -- Remember current line indentation. -- Emit C code (even from macros). Avoids echo and line parsing. if sub(aline, 1, 1) == "|" then if not mac_capture then wsync() elseif g_opt.comment then wsync() wcomment(aline) end dostmt(aline) return end -- Echo assembler line as a comment. if g_opt.comment then wsync() wcomment(aline) end -- Strip assembler comments. aline = gsub(aline, "//.*$", "") -- Split line into statements at semicolons. if match(aline, ";") then for stmt in gmatch(aline, "[^;]+") do dostmt(stmt) end else dostmt(aline) end end ------------------------------------------------------------------------------ -- Write DynASM header. local function dasmhead(out) out:write(format([[ /* ** This file has been pre-processed with DynASM. ** %s ** DynASM version %s, DynASM %s version %s ** DO NOT EDIT! The original file is in "%s". */ ]], _info.url, _info.version, g_arch._info.arch, g_arch._info.version, g_fname)) end -- Read input file. readfile = function(fin) g_indent = "" g_lineno = 0 g_synclineno = -1 -- Process all lines. for line in fin:lines() do g_lineno = g_lineno + 1 g_curline = line local ok, err = pcall(doline, line) if not ok and wprinterr(err, "\n") then return true end end wflush() -- Close input file. assert(fin == stdin or fin:close()) end -- Write output file. local function writefile(outfile) local fout -- Open output file. if outfile == nil or outfile == "-" then fout = stdout else fout = assert(io.open(outfile, "w")) end -- Write all buffered lines wdumplines(fout, g_wbuffer) -- Close output file. assert(fout == stdout or fout:close()) -- Optionally dump definitions. dumpdef(fout == stdout and stderr or stdout) end -- Translate an input file to an output file. local function translate(infile, outfile) g_wbuffer = {} g_indent = "" g_lineno = 0 g_synclineno = -1 -- Put header. wline(dasmhead) -- Read input file. local fin if infile == "-" then g_fname = "(stdin)" fin = stdin else g_fname = infile fin = assert(io.open(infile, "r")) end readfile(fin) -- Check for errors. if not g_arch then wprinterr(g_fname, ":*: error: missing .arch directive\n") end checkconds() checkmacros() checkcaptures() if g_errcount ~= 0 then stderr:write(g_fname, ":*: info: ", g_errcount, " error", (type(g_errcount) == "number" and g_errcount > 1) and "s" or "", " in input file -- no output file generated.\n") dumpdef(stderr) exit(1) end -- Write output file. writefile(outfile) end ------------------------------------------------------------------------------ -- Print help text. function opt_map.help() stdout:write("DynASM -- ", _info.description, ".\n") stdout:write("DynASM ", _info.version, " ", _info.release, " ", _info.url, "\n") stdout:write[[ Usage: dynasm [OPTION]... INFILE.dasc|- -h, --help Display this help text. -V, --version Display version and copyright information. -o, --outfile FILE Output file name (default is stdout). -I, --include DIR Add directory to the include search path. -c, --ccomment Use /* */ comments for assembler lines. -C, --cppcomment Use // comments for assembler lines (default). -N, --nocomment Suppress assembler lines in output. -M, --maccomment Show macro expansions as comments (default off). -L, --nolineno Suppress CPP line number information in output. -F, --flushline Flush action list for every line. -D NAME[=SUBST] Define a substitution. -U NAME Undefine a substitution. -P, --dumpdef Dump defines, macros, etc. Repeat for more output. -A, --dumparch ARCH Load architecture ARCH and dump description. ]] exit(0) end -- Print version information. function opt_map.version() stdout:write(format("%s version %s, released %s\n%s\n\n%s", _info.name, _info.version, _info.release, _info.url, _info.copyright)) exit(0) end -- Misc. options. function opt_map.outfile(args) g_opt.outfile = optparam(args) end function opt_map.include(args) insert(g_opt.include, 1, optparam(args)) end function opt_map.ccomment() g_opt.comment = "/*|"; g_opt.endcomment = " */" end function opt_map.cppcomment() g_opt.comment = "//|"; g_opt.endcomment = "" end function opt_map.nocomment() g_opt.comment = false end function opt_map.maccomment() g_opt.maccomment = true end function opt_map.nolineno() g_opt.cpp = false end function opt_map.flushline() g_opt.flushline = true end function opt_map.dumpdef() g_opt.dumpdef = g_opt.dumpdef + 1 end ------------------------------------------------------------------------------ -- Short aliases for long options. local opt_alias = { h = "help", ["?"] = "help", V = "version", o = "outfile", I = "include", c = "ccomment", C = "cppcomment", N = "nocomment", M = "maccomment", L = "nolineno", F = "flushline", P = "dumpdef", A = "dumparch", } -- Parse single option. local function parseopt(opt, args) opt_current = #opt == 1 and "-"..opt or "--"..opt local f = opt_map[opt] or opt_map[opt_alias[opt]] if not f then opterror("unrecognized option `", opt_current, "'. Try `--help'.\n") end f(args) end -- Parse arguments. local function parseargs(args) -- Default options. g_opt.comment = "//|" g_opt.endcomment = "" g_opt.cpp = true g_opt.dumpdef = 0 g_opt.include = { "" } -- Process all option arguments. args.argn = 1 repeat local a = args[args.argn] if not a then break end local lopt, opt = match(a, "^%-(%-?)(.+)") if not opt then break end args.argn = args.argn + 1 if lopt == "" then -- Loop through short options. for o in gmatch(opt, ".") do parseopt(o, args) end else -- Long option. parseopt(opt, args) end until false -- Check for proper number of arguments. local nargs = #args - args.argn + 1 if nargs ~= 1 then if nargs == 0 then if g_opt.dumpdef > 0 then return dumpdef(stdout) end end opt_map.help() end -- Translate a single input file to a single output file -- TODO: Handle multiple files? translate(args[args.argn], g_opt.outfile) end ------------------------------------------------------------------------------ -- Add the directory dynasm.lua resides in to the Lua module search path. local arg = arg if arg and arg[0] then prefix = match(arg[0], "^(.*[/\\])") if package and prefix then package.path = prefix.."?.lua;"..package.path end end -- Start DynASM. parseargs{...} ------------------------------------------------------------------------------ luajit-2.1.0~beta3+dfsg.orig/dynasm/dasm_mips.lua0000644000175100017510000007322213101703334021276 0ustar ondrejondrej------------------------------------------------------------------------------ -- DynASM MIPS32/MIPS64 module. -- -- Copyright (C) 2005-2017 Mike Pall. All rights reserved. -- See dynasm.lua for full copyright notice. ------------------------------------------------------------------------------ local mips64 = mips64 -- Module information: local _info = { arch = mips64 and "mips64" or "mips", description = "DynASM MIPS32/MIPS64 module", version = "1.4.0", vernum = 10400, release = "2016-05-24", author = "Mike Pall", license = "MIT", } -- Exported glue functions for the arch-specific module. local _M = { _info = _info } -- Cache library functions. local type, tonumber, pairs, ipairs = type, tonumber, pairs, ipairs local assert, setmetatable = assert, setmetatable local _s = string local sub, format, byte, char = _s.sub, _s.format, _s.byte, _s.char local match, gmatch = _s.match, _s.gmatch local concat, sort = table.concat, table.sort local bit = bit or require("bit") local band, shl, shr, sar = bit.band, bit.lshift, bit.rshift, bit.arshift local tohex = bit.tohex -- Inherited tables and callbacks. local g_opt, g_arch local wline, werror, wfatal, wwarn -- Action name list. -- CHECK: Keep this in sync with the C code! local action_names = { "STOP", "SECTION", "ESC", "REL_EXT", "ALIGN", "REL_LG", "LABEL_LG", "REL_PC", "LABEL_PC", "IMM", "IMMS", } -- Maximum number of section buffer positions for dasm_put(). -- CHECK: Keep this in sync with the C code! local maxsecpos = 25 -- Keep this low, to avoid excessively long C lines. -- Action name -> action number. local map_action = {} for n,name in ipairs(action_names) do map_action[name] = n-1 end -- Action list buffer. local actlist = {} -- Argument list for next dasm_put(). Start with offset 0 into action list. local actargs = { 0 } -- Current number of section buffer positions for dasm_put(). local secpos = 1 ------------------------------------------------------------------------------ -- Dump action names and numbers. local function dumpactions(out) out:write("DynASM encoding engine action codes:\n") for n,name in ipairs(action_names) do local num = map_action[name] out:write(format(" %-10s %02X %d\n", name, num, num)) end out:write("\n") end -- Write action list buffer as a huge static C array. local function writeactions(out, name) local nn = #actlist if nn == 0 then nn = 1; actlist[0] = map_action.STOP end out:write("static const unsigned int ", name, "[", nn, "] = {\n") for i = 1,nn-1 do assert(out:write("0x", tohex(actlist[i]), ",\n")) end assert(out:write("0x", tohex(actlist[nn]), "\n};\n\n")) end ------------------------------------------------------------------------------ -- Add word to action list. local function wputxw(n) assert(n >= 0 and n <= 0xffffffff and n % 1 == 0, "word out of range") actlist[#actlist+1] = n end -- Add action to list with optional arg. Advance buffer pos, too. local function waction(action, val, a, num) local w = assert(map_action[action], "bad action name `"..action.."'") wputxw(0xff000000 + w * 0x10000 + (val or 0)) if a then actargs[#actargs+1] = a end if a or num then secpos = secpos + (num or 1) end end -- Flush action list (intervening C code or buffer pos overflow). local function wflush(term) if #actlist == actargs[1] then return end -- Nothing to flush. if not term then waction("STOP") end -- Terminate action list. wline(format("dasm_put(Dst, %s);", concat(actargs, ", ")), true) actargs = { #actlist } -- Actionlist offset is 1st arg to next dasm_put(). secpos = 1 -- The actionlist offset occupies a buffer position, too. end -- Put escaped word. local function wputw(n) if n >= 0xff000000 then waction("ESC") end wputxw(n) end -- Reserve position for word. local function wpos() local pos = #actlist+1 actlist[pos] = "" return pos end -- Store word to reserved position. local function wputpos(pos, n) assert(n >= 0 and n <= 0xffffffff and n % 1 == 0, "word out of range") actlist[pos] = n end ------------------------------------------------------------------------------ -- Global label name -> global label number. With auto assignment on 1st use. local next_global = 20 local map_global = setmetatable({}, { __index = function(t, name) if not match(name, "^[%a_][%w_]*$") then werror("bad global label") end local n = next_global if n > 2047 then werror("too many global labels") end next_global = n + 1 t[name] = n return n end}) -- Dump global labels. local function dumpglobals(out, lvl) local t = {} for name, n in pairs(map_global) do t[n] = name end out:write("Global labels:\n") for i=20,next_global-1 do out:write(format(" %s\n", t[i])) end out:write("\n") end -- Write global label enum. local function writeglobals(out, prefix) local t = {} for name, n in pairs(map_global) do t[n] = name end out:write("enum {\n") for i=20,next_global-1 do out:write(" ", prefix, t[i], ",\n") end out:write(" ", prefix, "_MAX\n};\n") end -- Write global label names. local function writeglobalnames(out, name) local t = {} for name, n in pairs(map_global) do t[n] = name end out:write("static const char *const ", name, "[] = {\n") for i=20,next_global-1 do out:write(" \"", t[i], "\",\n") end out:write(" (const char *)0\n};\n") end ------------------------------------------------------------------------------ -- Extern label name -> extern label number. With auto assignment on 1st use. local next_extern = 0 local map_extern_ = {} local map_extern = setmetatable({}, { __index = function(t, name) -- No restrictions on the name for now. local n = next_extern if n > 2047 then werror("too many extern labels") end next_extern = n + 1 t[name] = n map_extern_[n] = name return n end}) -- Dump extern labels. local function dumpexterns(out, lvl) out:write("Extern labels:\n") for i=0,next_extern-1 do out:write(format(" %s\n", map_extern_[i])) end out:write("\n") end -- Write extern label names. local function writeexternnames(out, name) out:write("static const char *const ", name, "[] = {\n") for i=0,next_extern-1 do out:write(" \"", map_extern_[i], "\",\n") end out:write(" (const char *)0\n};\n") end ------------------------------------------------------------------------------ -- Arch-specific maps. local map_archdef = { sp="r29", ra="r31" } -- Ext. register name -> int. name. local map_type = {} -- Type name -> { ctype, reg } local ctypenum = 0 -- Type number (for Dt... macros). -- Reverse defines for registers. function _M.revdef(s) if s == "r29" then return "sp" elseif s == "r31" then return "ra" end return s end ------------------------------------------------------------------------------ -- Template strings for MIPS instructions. local map_op = { -- First-level opcodes. j_1 = "08000000J", jal_1 = "0c000000J", b_1 = "10000000B", beqz_2 = "10000000SB", beq_3 = "10000000STB", bnez_2 = "14000000SB", bne_3 = "14000000STB", blez_2 = "18000000SB", bgtz_2 = "1c000000SB", addi_3 = "20000000TSI", li_2 = "24000000TI", addiu_3 = "24000000TSI", slti_3 = "28000000TSI", sltiu_3 = "2c000000TSI", andi_3 = "30000000TSU", lu_2 = "34000000TU", ori_3 = "34000000TSU", xori_3 = "38000000TSU", lui_2 = "3c000000TU", beqzl_2 = "50000000SB", beql_3 = "50000000STB", bnezl_2 = "54000000SB", bnel_3 = "54000000STB", blezl_2 = "58000000SB", bgtzl_2 = "5c000000SB", daddi_3 = mips64 and "60000000TSI", daddiu_3 = mips64 and "64000000TSI", ldl_2 = mips64 and "68000000TO", ldr_2 = mips64 and "6c000000TO", lb_2 = "80000000TO", lh_2 = "84000000TO", lwl_2 = "88000000TO", lw_2 = "8c000000TO", lbu_2 = "90000000TO", lhu_2 = "94000000TO", lwr_2 = "98000000TO", lwu_2 = mips64 and "9c000000TO", sb_2 = "a0000000TO", sh_2 = "a4000000TO", swl_2 = "a8000000TO", sw_2 = "ac000000TO", sdl_2 = mips64 and "b0000000TO", sdr_2 = mips64 and "b1000000TO", swr_2 = "b8000000TO", cache_2 = "bc000000NO", ll_2 = "c0000000TO", lwc1_2 = "c4000000HO", pref_2 = "cc000000NO", ldc1_2 = "d4000000HO", ld_2 = mips64 and "dc000000TO", sc_2 = "e0000000TO", swc1_2 = "e4000000HO", scd_2 = mips64 and "f0000000TO", sdc1_2 = "f4000000HO", sd_2 = mips64 and "fc000000TO", -- Opcode SPECIAL. nop_0 = "00000000", sll_3 = "00000000DTA", sextw_2 = "00000000DT", movf_2 = "00000001DS", movf_3 = "00000001DSC", movt_2 = "00010001DS", movt_3 = "00010001DSC", srl_3 = "00000002DTA", rotr_3 = "00200002DTA", sra_3 = "00000003DTA", sllv_3 = "00000004DTS", srlv_3 = "00000006DTS", rotrv_3 = "00000046DTS", drotrv_3 = mips64 and "00000056DTS", srav_3 = "00000007DTS", jr_1 = "00000008S", jalr_1 = "0000f809S", jalr_2 = "00000009DS", movz_3 = "0000000aDST", movn_3 = "0000000bDST", syscall_0 = "0000000c", syscall_1 = "0000000cY", break_0 = "0000000d", break_1 = "0000000dY", sync_0 = "0000000f", mfhi_1 = "00000010D", mthi_1 = "00000011S", mflo_1 = "00000012D", mtlo_1 = "00000013S", dsllv_3 = mips64 and "00000014DTS", dsrlv_3 = mips64 and "00000016DTS", dsrav_3 = mips64 and "00000017DTS", mult_2 = "00000018ST", multu_2 = "00000019ST", div_2 = "0000001aST", divu_2 = "0000001bST", dmult_2 = mips64 and "0000001cST", dmultu_2 = mips64 and "0000001dST", ddiv_2 = mips64 and "0000001eST", ddivu_2 = mips64 and "0000001fST", add_3 = "00000020DST", move_2 = mips64 and "00000025DS" or "00000021DS", addu_3 = "00000021DST", sub_3 = "00000022DST", negu_2 = mips64 and "0000002fDT" or "00000023DT", subu_3 = "00000023DST", and_3 = "00000024DST", or_3 = "00000025DST", xor_3 = "00000026DST", not_2 = "00000027DS", nor_3 = "00000027DST", slt_3 = "0000002aDST", sltu_3 = "0000002bDST", dadd_3 = mips64 and "0000002cDST", daddu_3 = mips64 and "0000002dDST", dsub_3 = mips64 and "0000002eDST", dsubu_3 = mips64 and "0000002fDST", tge_2 = "00000030ST", tge_3 = "00000030STZ", tgeu_2 = "00000031ST", tgeu_3 = "00000031STZ", tlt_2 = "00000032ST", tlt_3 = "00000032STZ", tltu_2 = "00000033ST", tltu_3 = "00000033STZ", teq_2 = "00000034ST", teq_3 = "00000034STZ", tne_2 = "00000036ST", tne_3 = "00000036STZ", dsll_3 = mips64 and "00000038DTa", dsrl_3 = mips64 and "0000003aDTa", drotr_3 = mips64 and "0020003aDTa", dsra_3 = mips64 and "0000003bDTa", dsll32_3 = mips64 and "0000003cDTA", dsrl32_3 = mips64 and "0000003eDTA", drotr32_3 = mips64 and "0020003eDTA", dsra32_3 = mips64 and "0000003fDTA", -- Opcode REGIMM. bltz_2 = "04000000SB", bgez_2 = "04010000SB", bltzl_2 = "04020000SB", bgezl_2 = "04030000SB", tgei_2 = "04080000SI", tgeiu_2 = "04090000SI", tlti_2 = "040a0000SI", tltiu_2 = "040b0000SI", teqi_2 = "040c0000SI", tnei_2 = "040e0000SI", bltzal_2 = "04100000SB", bal_1 = "04110000B", bgezal_2 = "04110000SB", bltzall_2 = "04120000SB", bgezall_2 = "04130000SB", synci_1 = "041f0000O", -- Opcode SPECIAL2. madd_2 = "70000000ST", maddu_2 = "70000001ST", mul_3 = "70000002DST", msub_2 = "70000004ST", msubu_2 = "70000005ST", clz_2 = "70000020DS=", clo_2 = "70000021DS=", dclz_2 = mips64 and "70000024DS=", dclo_2 = mips64 and "70000025DS=", sdbbp_0 = "7000003f", sdbbp_1 = "7000003fY", -- Opcode SPECIAL3. ext_4 = "7c000000TSAM", -- Note: last arg is msbd = size-1 dextm_4 = mips64 and "7c000001TSAM", -- Args: pos | size-1-32 dextu_4 = mips64 and "7c000002TSAM", -- Args: pos-32 | size-1 dext_4 = mips64 and "7c000003TSAM", -- Args: pos | size-1 zextw_2 = mips64 and "7c00f803TS", ins_4 = "7c000004TSAM", -- Note: last arg is msb = pos+size-1 dinsm_4 = mips64 and "7c000005TSAM", -- Args: pos | pos+size-33 dinsu_4 = mips64 and "7c000006TSAM", -- Args: pos-32 | pos+size-33 dins_4 = mips64 and "7c000007TSAM", -- Args: pos | pos+size-1 wsbh_2 = "7c0000a0DT", dsbh_2 = mips64 and "7c0000a4DT", dshd_2 = mips64 and "7c000164DT", seb_2 = "7c000420DT", seh_2 = "7c000620DT", rdhwr_2 = "7c00003bTD", -- Opcode COP0. mfc0_2 = "40000000TD", mfc0_3 = "40000000TDW", dmfc0_2 = mips64 and "40200000TD", dmfc0_3 = mips64 and "40200000TDW", mtc0_2 = "40800000TD", mtc0_3 = "40800000TDW", dmtc0_2 = mips64 and "40a00000TD", dmtc0_3 = mips64 and "40a00000TDW", rdpgpr_2 = "41400000DT", di_0 = "41606000", di_1 = "41606000T", ei_0 = "41606020", ei_1 = "41606020T", wrpgpr_2 = "41c00000DT", tlbr_0 = "42000001", tlbwi_0 = "42000002", tlbwr_0 = "42000006", tlbp_0 = "42000008", eret_0 = "42000018", deret_0 = "4200001f", wait_0 = "42000020", -- Opcode COP1. mfc1_2 = "44000000TG", dmfc1_2 = mips64 and "44200000TG", cfc1_2 = "44400000TG", mfhc1_2 = "44600000TG", mtc1_2 = "44800000TG", dmtc1_2 = mips64 and "44a00000TG", ctc1_2 = "44c00000TG", mthc1_2 = "44e00000TG", bc1f_1 = "45000000B", bc1f_2 = "45000000CB", bc1t_1 = "45010000B", bc1t_2 = "45010000CB", bc1fl_1 = "45020000B", bc1fl_2 = "45020000CB", bc1tl_1 = "45030000B", bc1tl_2 = "45030000CB", ["add.s_3"] = "46000000FGH", ["sub.s_3"] = "46000001FGH", ["mul.s_3"] = "46000002FGH", ["div.s_3"] = "46000003FGH", ["sqrt.s_2"] = "46000004FG", ["abs.s_2"] = "46000005FG", ["mov.s_2"] = "46000006FG", ["neg.s_2"] = "46000007FG", ["round.l.s_2"] = "46000008FG", ["trunc.l.s_2"] = "46000009FG", ["ceil.l.s_2"] = "4600000aFG", ["floor.l.s_2"] = "4600000bFG", ["round.w.s_2"] = "4600000cFG", ["trunc.w.s_2"] = "4600000dFG", ["ceil.w.s_2"] = "4600000eFG", ["floor.w.s_2"] = "4600000fFG", ["movf.s_2"] = "46000011FG", ["movf.s_3"] = "46000011FGC", ["movt.s_2"] = "46010011FG", ["movt.s_3"] = "46010011FGC", ["movz.s_3"] = "46000012FGT", ["movn.s_3"] = "46000013FGT", ["recip.s_2"] = "46000015FG", ["rsqrt.s_2"] = "46000016FG", ["cvt.d.s_2"] = "46000021FG", ["cvt.w.s_2"] = "46000024FG", ["cvt.l.s_2"] = "46000025FG", ["cvt.ps.s_3"] = "46000026FGH", ["c.f.s_2"] = "46000030GH", ["c.f.s_3"] = "46000030VGH", ["c.un.s_2"] = "46000031GH", ["c.un.s_3"] = "46000031VGH", ["c.eq.s_2"] = "46000032GH", ["c.eq.s_3"] = "46000032VGH", ["c.ueq.s_2"] = "46000033GH", ["c.ueq.s_3"] = "46000033VGH", ["c.olt.s_2"] = "46000034GH", ["c.olt.s_3"] = "46000034VGH", ["c.ult.s_2"] = "46000035GH", ["c.ult.s_3"] = "46000035VGH", ["c.ole.s_2"] = "46000036GH", ["c.ole.s_3"] = "46000036VGH", ["c.ule.s_2"] = "46000037GH", ["c.ule.s_3"] = "46000037VGH", ["c.sf.s_2"] = "46000038GH", ["c.sf.s_3"] = "46000038VGH", ["c.ngle.s_2"] = "46000039GH", ["c.ngle.s_3"] = "46000039VGH", ["c.seq.s_2"] = "4600003aGH", ["c.seq.s_3"] = "4600003aVGH", ["c.ngl.s_2"] = "4600003bGH", ["c.ngl.s_3"] = "4600003bVGH", ["c.lt.s_2"] = "4600003cGH", ["c.lt.s_3"] = "4600003cVGH", ["c.nge.s_2"] = "4600003dGH", ["c.nge.s_3"] = "4600003dVGH", ["c.le.s_2"] = "4600003eGH", ["c.le.s_3"] = "4600003eVGH", ["c.ngt.s_2"] = "4600003fGH", ["c.ngt.s_3"] = "4600003fVGH", ["add.d_3"] = "46200000FGH", ["sub.d_3"] = "46200001FGH", ["mul.d_3"] = "46200002FGH", ["div.d_3"] = "46200003FGH", ["sqrt.d_2"] = "46200004FG", ["abs.d_2"] = "46200005FG", ["mov.d_2"] = "46200006FG", ["neg.d_2"] = "46200007FG", ["round.l.d_2"] = "46200008FG", ["trunc.l.d_2"] = "46200009FG", ["ceil.l.d_2"] = "4620000aFG", ["floor.l.d_2"] = "4620000bFG", ["round.w.d_2"] = "4620000cFG", ["trunc.w.d_2"] = "4620000dFG", ["ceil.w.d_2"] = "4620000eFG", ["floor.w.d_2"] = "4620000fFG", ["movf.d_2"] = "46200011FG", ["movf.d_3"] = "46200011FGC", ["movt.d_2"] = "46210011FG", ["movt.d_3"] = "46210011FGC", ["movz.d_3"] = "46200012FGT", ["movn.d_3"] = "46200013FGT", ["recip.d_2"] = "46200015FG", ["rsqrt.d_2"] = "46200016FG", ["cvt.s.d_2"] = "46200020FG", ["cvt.w.d_2"] = "46200024FG", ["cvt.l.d_2"] = "46200025FG", ["c.f.d_2"] = "46200030GH", ["c.f.d_3"] = "46200030VGH", ["c.un.d_2"] = "46200031GH", ["c.un.d_3"] = "46200031VGH", ["c.eq.d_2"] = "46200032GH", ["c.eq.d_3"] = "46200032VGH", ["c.ueq.d_2"] = "46200033GH", ["c.ueq.d_3"] = "46200033VGH", ["c.olt.d_2"] = "46200034GH", ["c.olt.d_3"] = "46200034VGH", ["c.ult.d_2"] = "46200035GH", ["c.ult.d_3"] = "46200035VGH", ["c.ole.d_2"] = "46200036GH", ["c.ole.d_3"] = "46200036VGH", ["c.ule.d_2"] = "46200037GH", ["c.ule.d_3"] = "46200037VGH", ["c.sf.d_2"] = "46200038GH", ["c.sf.d_3"] = "46200038VGH", ["c.ngle.d_2"] = "46200039GH", ["c.ngle.d_3"] = "46200039VGH", ["c.seq.d_2"] = "4620003aGH", ["c.seq.d_3"] = "4620003aVGH", ["c.ngl.d_2"] = "4620003bGH", ["c.ngl.d_3"] = "4620003bVGH", ["c.lt.d_2"] = "4620003cGH", ["c.lt.d_3"] = "4620003cVGH", ["c.nge.d_2"] = "4620003dGH", ["c.nge.d_3"] = "4620003dVGH", ["c.le.d_2"] = "4620003eGH", ["c.le.d_3"] = "4620003eVGH", ["c.ngt.d_2"] = "4620003fGH", ["c.ngt.d_3"] = "4620003fVGH", ["add.ps_3"] = "46c00000FGH", ["sub.ps_3"] = "46c00001FGH", ["mul.ps_3"] = "46c00002FGH", ["abs.ps_2"] = "46c00005FG", ["mov.ps_2"] = "46c00006FG", ["neg.ps_2"] = "46c00007FG", ["movf.ps_2"] = "46c00011FG", ["movf.ps_3"] = "46c00011FGC", ["movt.ps_2"] = "46c10011FG", ["movt.ps_3"] = "46c10011FGC", ["movz.ps_3"] = "46c00012FGT", ["movn.ps_3"] = "46c00013FGT", ["cvt.s.pu_2"] = "46c00020FG", ["cvt.s.pl_2"] = "46c00028FG", ["pll.ps_3"] = "46c0002cFGH", ["plu.ps_3"] = "46c0002dFGH", ["pul.ps_3"] = "46c0002eFGH", ["puu.ps_3"] = "46c0002fFGH", ["c.f.ps_2"] = "46c00030GH", ["c.f.ps_3"] = "46c00030VGH", ["c.un.ps_2"] = "46c00031GH", ["c.un.ps_3"] = "46c00031VGH", ["c.eq.ps_2"] = "46c00032GH", ["c.eq.ps_3"] = "46c00032VGH", ["c.ueq.ps_2"] = "46c00033GH", ["c.ueq.ps_3"] = "46c00033VGH", ["c.olt.ps_2"] = "46c00034GH", ["c.olt.ps_3"] = "46c00034VGH", ["c.ult.ps_2"] = "46c00035GH", ["c.ult.ps_3"] = "46c00035VGH", ["c.ole.ps_2"] = "46c00036GH", ["c.ole.ps_3"] = "46c00036VGH", ["c.ule.ps_2"] = "46c00037GH", ["c.ule.ps_3"] = "46c00037VGH", ["c.sf.ps_2"] = "46c00038GH", ["c.sf.ps_3"] = "46c00038VGH", ["c.ngle.ps_2"] = "46c00039GH", ["c.ngle.ps_3"] = "46c00039VGH", ["c.seq.ps_2"] = "46c0003aGH", ["c.seq.ps_3"] = "46c0003aVGH", ["c.ngl.ps_2"] = "46c0003bGH", ["c.ngl.ps_3"] = "46c0003bVGH", ["c.lt.ps_2"] = "46c0003cGH", ["c.lt.ps_3"] = "46c0003cVGH", ["c.nge.ps_2"] = "46c0003dGH", ["c.nge.ps_3"] = "46c0003dVGH", ["c.le.ps_2"] = "46c0003eGH", ["c.le.ps_3"] = "46c0003eVGH", ["c.ngt.ps_2"] = "46c0003fGH", ["c.ngt.ps_3"] = "46c0003fVGH", ["cvt.s.w_2"] = "46800020FG", ["cvt.d.w_2"] = "46800021FG", ["cvt.s.l_2"] = "46a00020FG", ["cvt.d.l_2"] = "46a00021FG", -- Opcode COP1X. lwxc1_2 = "4c000000FX", ldxc1_2 = "4c000001FX", luxc1_2 = "4c000005FX", swxc1_2 = "4c000008FX", sdxc1_2 = "4c000009FX", suxc1_2 = "4c00000dFX", prefx_2 = "4c00000fMX", ["alnv.ps_4"] = "4c00001eFGHS", ["madd.s_4"] = "4c000020FRGH", ["madd.d_4"] = "4c000021FRGH", ["madd.ps_4"] = "4c000026FRGH", ["msub.s_4"] = "4c000028FRGH", ["msub.d_4"] = "4c000029FRGH", ["msub.ps_4"] = "4c00002eFRGH", ["nmadd.s_4"] = "4c000030FRGH", ["nmadd.d_4"] = "4c000031FRGH", ["nmadd.ps_4"] = "4c000036FRGH", ["nmsub.s_4"] = "4c000038FRGH", ["nmsub.d_4"] = "4c000039FRGH", ["nmsub.ps_4"] = "4c00003eFRGH", } ------------------------------------------------------------------------------ local function parse_gpr(expr) local tname, ovreg = match(expr, "^([%w_]+):(r[1-3]?[0-9])$") local tp = map_type[tname or expr] if tp then local reg = ovreg or tp.reg if not reg then werror("type `"..(tname or expr).."' needs a register override") end expr = reg end local r = match(expr, "^r([1-3]?[0-9])$") if r then r = tonumber(r) if r <= 31 then return r, tp end end werror("bad register name `"..expr.."'") end local function parse_fpr(expr) local r = match(expr, "^f([1-3]?[0-9])$") if r then r = tonumber(r) if r <= 31 then return r end end werror("bad register name `"..expr.."'") end local function parse_imm(imm, bits, shift, scale, signed, action) local n = tonumber(imm) if n then local m = sar(n, scale) if shl(m, scale) == n then if signed then local s = sar(m, bits-1) if s == 0 then return shl(m, shift) elseif s == -1 then return shl(m + shl(1, bits), shift) end else if sar(m, bits) == 0 then return shl(m, shift) end end end werror("out of range immediate `"..imm.."'") elseif match(imm, "^[rf]([1-3]?[0-9])$") or match(imm, "^([%w_]+):([rf][1-3]?[0-9])$") then werror("expected immediate operand, got register") else waction(action or "IMM", (signed and 32768 or 0)+shl(scale, 10)+shl(bits, 5)+shift, imm) return 0 end end local function parse_disp(disp) local imm, reg = match(disp, "^(.*)%(([%w_:]+)%)$") if imm then local r = shl(parse_gpr(reg), 21) local extname = match(imm, "^extern%s+(%S+)$") if extname then waction("REL_EXT", map_extern[extname], nil, 1) return r else return r + parse_imm(imm, 16, 0, 0, true) end end local reg, tailr = match(disp, "^([%w_:]+)%s*(.*)$") if reg and tailr ~= "" then local r, tp = parse_gpr(reg) if tp then waction("IMM", 32768+16*32, format(tp.ctypefmt, tailr)) return shl(r, 21) end end werror("bad displacement `"..disp.."'") end local function parse_index(idx) local rt, rs = match(idx, "^(.*)%(([%w_:]+)%)$") if rt then rt = parse_gpr(rt) rs = parse_gpr(rs) return shl(rt, 16) + shl(rs, 21) end werror("bad index `"..idx.."'") end local function parse_label(label, def) local prefix = sub(label, 1, 2) -- =>label (pc label reference) if prefix == "=>" then return "PC", 0, sub(label, 3) end -- ->name (global label reference) if prefix == "->" then return "LG", map_global[sub(label, 3)] end if def then -- [1-9] (local label definition) if match(label, "^[1-9]$") then return "LG", 10+tonumber(label) end else -- [<>][1-9] (local label reference) local dir, lnum = match(label, "^([<>])([1-9])$") if dir then -- Fwd: 1-9, Bkwd: 11-19. return "LG", lnum + (dir == ">" and 0 or 10) end -- extern label (extern label reference) local extname = match(label, "^extern%s+(%S+)$") if extname then return "EXT", map_extern[extname] end end werror("bad label `"..label.."'") end ------------------------------------------------------------------------------ -- Handle opcodes defined with template strings. map_op[".template__"] = function(params, template, nparams) if not params then return sub(template, 9) end local op = tonumber(sub(template, 1, 8), 16) local n = 1 -- Limit number of section buffer positions used by a single dasm_put(). -- A single opcode needs a maximum of 2 positions (ins/ext). if secpos+2 > maxsecpos then wflush() end local pos = wpos() -- Process each character. for p in gmatch(sub(template, 9), ".") do if p == "D" then op = op + shl(parse_gpr(params[n]), 11); n = n + 1 elseif p == "T" then op = op + shl(parse_gpr(params[n]), 16); n = n + 1 elseif p == "S" then op = op + shl(parse_gpr(params[n]), 21); n = n + 1 elseif p == "F" then op = op + shl(parse_fpr(params[n]), 6); n = n + 1 elseif p == "G" then op = op + shl(parse_fpr(params[n]), 11); n = n + 1 elseif p == "H" then op = op + shl(parse_fpr(params[n]), 16); n = n + 1 elseif p == "R" then op = op + shl(parse_fpr(params[n]), 21); n = n + 1 elseif p == "I" then op = op + parse_imm(params[n], 16, 0, 0, true); n = n + 1 elseif p == "U" then op = op + parse_imm(params[n], 16, 0, 0, false); n = n + 1 elseif p == "O" then op = op + parse_disp(params[n]); n = n + 1 elseif p == "X" then op = op + parse_index(params[n]); n = n + 1 elseif p == "B" or p == "J" then local mode, n, s = parse_label(params[n], false) if p == "B" then n = n + 2048 end waction("REL_"..mode, n, s, 1) n = n + 1 elseif p == "A" then op = op + parse_imm(params[n], 5, 6, 0, false); n = n + 1 elseif p == "a" then local m = parse_imm(params[n], 6, 6, 0, false, "IMMS"); n = n + 1 op = op + band(m, 0x7c0) + band(shr(m, 9), 4) elseif p == "M" then op = op + parse_imm(params[n], 5, 11, 0, false); n = n + 1 elseif p == "N" then op = op + parse_imm(params[n], 5, 16, 0, false); n = n + 1 elseif p == "C" then op = op + parse_imm(params[n], 3, 18, 0, false); n = n + 1 elseif p == "V" then op = op + parse_imm(params[n], 3, 8, 0, false); n = n + 1 elseif p == "W" then op = op + parse_imm(params[n], 3, 0, 0, false); n = n + 1 elseif p == "Y" then op = op + parse_imm(params[n], 20, 6, 0, false); n = n + 1 elseif p == "Z" then op = op + parse_imm(params[n], 10, 6, 0, false); n = n + 1 elseif p == "=" then op = op + shl(band(op, 0xf800), 5) -- Copy D to T for clz, clo. else assert(false) end end wputpos(pos, op) end ------------------------------------------------------------------------------ -- Pseudo-opcode to mark the position where the action list is to be emitted. map_op[".actionlist_1"] = function(params) if not params then return "cvar" end local name = params[1] -- No syntax check. You get to keep the pieces. wline(function(out) writeactions(out, name) end) end -- Pseudo-opcode to mark the position where the global enum is to be emitted. map_op[".globals_1"] = function(params) if not params then return "prefix" end local prefix = params[1] -- No syntax check. You get to keep the pieces. wline(function(out) writeglobals(out, prefix) end) end -- Pseudo-opcode to mark the position where the global names are to be emitted. map_op[".globalnames_1"] = function(params) if not params then return "cvar" end local name = params[1] -- No syntax check. You get to keep the pieces. wline(function(out) writeglobalnames(out, name) end) end -- Pseudo-opcode to mark the position where the extern names are to be emitted. map_op[".externnames_1"] = function(params) if not params then return "cvar" end local name = params[1] -- No syntax check. You get to keep the pieces. wline(function(out) writeexternnames(out, name) end) end ------------------------------------------------------------------------------ -- Label pseudo-opcode (converted from trailing colon form). map_op[".label_1"] = function(params) if not params then return "[1-9] | ->global | =>pcexpr" end if secpos+1 > maxsecpos then wflush() end local mode, n, s = parse_label(params[1], true) if mode == "EXT" then werror("bad label definition") end waction("LABEL_"..mode, n, s, 1) end ------------------------------------------------------------------------------ -- Pseudo-opcodes for data storage. map_op[".long_*"] = function(params) if not params then return "imm..." end for _,p in ipairs(params) do local n = tonumber(p) if not n then werror("bad immediate `"..p.."'") end if n < 0 then n = n + 2^32 end wputw(n) if secpos+2 > maxsecpos then wflush() end end end -- Alignment pseudo-opcode. map_op[".align_1"] = function(params) if not params then return "numpow2" end if secpos+1 > maxsecpos then wflush() end local align = tonumber(params[1]) if align then local x = align -- Must be a power of 2 in the range (2 ... 256). for i=1,8 do x = x / 2 if x == 1 then waction("ALIGN", align-1, nil, 1) -- Action byte is 2**n-1. return end end end werror("bad alignment") end ------------------------------------------------------------------------------ -- Pseudo-opcode for (primitive) type definitions (map to C types). map_op[".type_3"] = function(params, nparams) if not params then return nparams == 2 and "name, ctype" or "name, ctype, reg" end local name, ctype, reg = params[1], params[2], params[3] if not match(name, "^[%a_][%w_]*$") then werror("bad type name `"..name.."'") end local tp = map_type[name] if tp then werror("duplicate type `"..name.."'") end -- Add #type to defines. A bit unclean to put it in map_archdef. map_archdef["#"..name] = "sizeof("..ctype..")" -- Add new type and emit shortcut define. local num = ctypenum + 1 map_type[name] = { ctype = ctype, ctypefmt = format("Dt%X(%%s)", num), reg = reg, } wline(format("#define Dt%X(_V) (int)(ptrdiff_t)&(((%s *)0)_V)", num, ctype)) ctypenum = num end map_op[".type_2"] = map_op[".type_3"] -- Dump type definitions. local function dumptypes(out, lvl) local t = {} for name in pairs(map_type) do t[#t+1] = name end sort(t) out:write("Type definitions:\n") for _,name in ipairs(t) do local tp = map_type[name] local reg = tp.reg or "" out:write(format(" %-20s %-20s %s\n", name, tp.ctype, reg)) end out:write("\n") end ------------------------------------------------------------------------------ -- Set the current section. function _M.section(num) waction("SECTION", num) wflush(true) -- SECTION is a terminal action. end ------------------------------------------------------------------------------ -- Dump architecture description. function _M.dumparch(out) out:write(format("DynASM %s version %s, released %s\n\n", _info.arch, _info.version, _info.release)) dumpactions(out) end -- Dump all user defined elements. function _M.dumpdef(out, lvl) dumptypes(out, lvl) dumpglobals(out, lvl) dumpexterns(out, lvl) end ------------------------------------------------------------------------------ -- Pass callbacks from/to the DynASM core. function _M.passcb(wl, we, wf, ww) wline, werror, wfatal, wwarn = wl, we, wf, ww return wflush end -- Setup the arch-specific module. function _M.setup(arch, opt) g_arch, g_opt = arch, opt end -- Merge the core maps and the arch-specific maps. function _M.mergemaps(map_coreop, map_def) setmetatable(map_op, { __index = map_coreop }) setmetatable(map_def, { __index = map_archdef }) return map_op, map_def end return _M ------------------------------------------------------------------------------ luajit-2.1.0~beta3+dfsg.orig/dynasm/dasm_arm64.lua0000644000175100017510000010376713101703334021267 0ustar ondrejondrej------------------------------------------------------------------------------ -- DynASM ARM64 module. -- -- Copyright (C) 2005-2017 Mike Pall. All rights reserved. -- See dynasm.lua for full copyright notice. ------------------------------------------------------------------------------ -- Module information: local _info = { arch = "arm", description = "DynASM ARM64 module", version = "1.4.0", vernum = 10400, release = "2015-10-18", author = "Mike Pall", license = "MIT", } -- Exported glue functions for the arch-specific module. local _M = { _info = _info } -- Cache library functions. local type, tonumber, pairs, ipairs = type, tonumber, pairs, ipairs local assert, setmetatable, rawget = assert, setmetatable, rawget local _s = string local sub, format, byte, char = _s.sub, _s.format, _s.byte, _s.char local match, gmatch, gsub = _s.match, _s.gmatch, _s.gsub local concat, sort, insert = table.concat, table.sort, table.insert local bit = bit or require("bit") local band, shl, shr, sar = bit.band, bit.lshift, bit.rshift, bit.arshift local ror, tohex = bit.ror, bit.tohex -- Inherited tables and callbacks. local g_opt, g_arch local wline, werror, wfatal, wwarn -- Action name list. -- CHECK: Keep this in sync with the C code! local action_names = { "STOP", "SECTION", "ESC", "REL_EXT", "ALIGN", "REL_LG", "LABEL_LG", "REL_PC", "LABEL_PC", "IMM", "IMM6", "IMM12", "IMM13W", "IMM13X", "IMML", } -- Maximum number of section buffer positions for dasm_put(). -- CHECK: Keep this in sync with the C code! local maxsecpos = 25 -- Keep this low, to avoid excessively long C lines. -- Action name -> action number. local map_action = {} for n,name in ipairs(action_names) do map_action[name] = n-1 end -- Action list buffer. local actlist = {} -- Argument list for next dasm_put(). Start with offset 0 into action list. local actargs = { 0 } -- Current number of section buffer positions for dasm_put(). local secpos = 1 ------------------------------------------------------------------------------ -- Dump action names and numbers. local function dumpactions(out) out:write("DynASM encoding engine action codes:\n") for n,name in ipairs(action_names) do local num = map_action[name] out:write(format(" %-10s %02X %d\n", name, num, num)) end out:write("\n") end -- Write action list buffer as a huge static C array. local function writeactions(out, name) local nn = #actlist if nn == 0 then nn = 1; actlist[0] = map_action.STOP end out:write("static const unsigned int ", name, "[", nn, "] = {\n") for i = 1,nn-1 do assert(out:write("0x", tohex(actlist[i]), ",\n")) end assert(out:write("0x", tohex(actlist[nn]), "\n};\n\n")) end ------------------------------------------------------------------------------ -- Add word to action list. local function wputxw(n) assert(n >= 0 and n <= 0xffffffff and n % 1 == 0, "word out of range") actlist[#actlist+1] = n end -- Add action to list with optional arg. Advance buffer pos, too. local function waction(action, val, a, num) local w = assert(map_action[action], "bad action name `"..action.."'") wputxw(w * 0x10000 + (val or 0)) if a then actargs[#actargs+1] = a end if a or num then secpos = secpos + (num or 1) end end -- Flush action list (intervening C code or buffer pos overflow). local function wflush(term) if #actlist == actargs[1] then return end -- Nothing to flush. if not term then waction("STOP") end -- Terminate action list. wline(format("dasm_put(Dst, %s);", concat(actargs, ", ")), true) actargs = { #actlist } -- Actionlist offset is 1st arg to next dasm_put(). secpos = 1 -- The actionlist offset occupies a buffer position, too. end -- Put escaped word. local function wputw(n) if n <= 0x000fffff then waction("ESC") end wputxw(n) end -- Reserve position for word. local function wpos() local pos = #actlist+1 actlist[pos] = "" return pos end -- Store word to reserved position. local function wputpos(pos, n) assert(n >= 0 and n <= 0xffffffff and n % 1 == 0, "word out of range") if n <= 0x000fffff then insert(actlist, pos+1, n) n = map_action.ESC * 0x10000 end actlist[pos] = n end ------------------------------------------------------------------------------ -- Global label name -> global label number. With auto assignment on 1st use. local next_global = 20 local map_global = setmetatable({}, { __index = function(t, name) if not match(name, "^[%a_][%w_]*$") then werror("bad global label") end local n = next_global if n > 2047 then werror("too many global labels") end next_global = n + 1 t[name] = n return n end}) -- Dump global labels. local function dumpglobals(out, lvl) local t = {} for name, n in pairs(map_global) do t[n] = name end out:write("Global labels:\n") for i=20,next_global-1 do out:write(format(" %s\n", t[i])) end out:write("\n") end -- Write global label enum. local function writeglobals(out, prefix) local t = {} for name, n in pairs(map_global) do t[n] = name end out:write("enum {\n") for i=20,next_global-1 do out:write(" ", prefix, t[i], ",\n") end out:write(" ", prefix, "_MAX\n};\n") end -- Write global label names. local function writeglobalnames(out, name) local t = {} for name, n in pairs(map_global) do t[n] = name end out:write("static const char *const ", name, "[] = {\n") for i=20,next_global-1 do out:write(" \"", t[i], "\",\n") end out:write(" (const char *)0\n};\n") end ------------------------------------------------------------------------------ -- Extern label name -> extern label number. With auto assignment on 1st use. local next_extern = 0 local map_extern_ = {} local map_extern = setmetatable({}, { __index = function(t, name) -- No restrictions on the name for now. local n = next_extern if n > 2047 then werror("too many extern labels") end next_extern = n + 1 t[name] = n map_extern_[n] = name return n end}) -- Dump extern labels. local function dumpexterns(out, lvl) out:write("Extern labels:\n") for i=0,next_extern-1 do out:write(format(" %s\n", map_extern_[i])) end out:write("\n") end -- Write extern label names. local function writeexternnames(out, name) out:write("static const char *const ", name, "[] = {\n") for i=0,next_extern-1 do out:write(" \"", map_extern_[i], "\",\n") end out:write(" (const char *)0\n};\n") end ------------------------------------------------------------------------------ -- Arch-specific maps. -- Ext. register name -> int. name. local map_archdef = { xzr = "@x31", wzr = "@w31", lr = "x30", } -- Int. register name -> ext. name. local map_reg_rev = { ["@x31"] = "xzr", ["@w31"] = "wzr", x30 = "lr", } local map_type = {} -- Type name -> { ctype, reg } local ctypenum = 0 -- Type number (for Dt... macros). -- Reverse defines for registers. function _M.revdef(s) return map_reg_rev[s] or s end local map_shift = { lsl = 0, lsr = 1, asr = 2, } local map_extend = { uxtb = 0, uxth = 1, uxtw = 2, uxtx = 3, sxtb = 4, sxth = 5, sxtw = 6, sxtx = 7, } local map_cond = { eq = 0, ne = 1, cs = 2, cc = 3, mi = 4, pl = 5, vs = 6, vc = 7, hi = 8, ls = 9, ge = 10, lt = 11, gt = 12, le = 13, al = 14, hs = 2, lo = 3, } ------------------------------------------------------------------------------ local parse_reg_type local function parse_reg(expr) if not expr then werror("expected register name") end local tname, ovreg = match(expr, "^([%w_]+):(@?%l%d+)$") local tp = map_type[tname or expr] if tp then local reg = ovreg or tp.reg if not reg then werror("type `"..(tname or expr).."' needs a register override") end expr = reg end local ok31, rt, r = match(expr, "^(@?)([xwqdshb])([123]?[0-9])$") if r then r = tonumber(r) if r <= 30 or (r == 31 and ok31 ~= "" or (rt ~= "w" and rt ~= "x")) then if not parse_reg_type then parse_reg_type = rt elseif parse_reg_type ~= rt then werror("register size mismatch") end return r, tp end end werror("bad register name `"..expr.."'") end local function parse_reg_base(expr) if expr == "sp" then return 0x3e0 end local base, tp = parse_reg(expr) if parse_reg_type ~= "x" then werror("bad register type") end parse_reg_type = false return shl(base, 5), tp end local parse_ctx = {} local loadenv = setfenv and function(s) local code = loadstring(s, "") if code then setfenv(code, parse_ctx) end return code end or function(s) return load(s, "", nil, parse_ctx) end -- Try to parse simple arithmetic, too, since some basic ops are aliases. local function parse_number(n) local x = tonumber(n) if x then return x end local code = loadenv("return "..n) if code then local ok, y = pcall(code) if ok then return y end end return nil end local function parse_imm(imm, bits, shift, scale, signed) imm = match(imm, "^#(.*)$") if not imm then werror("expected immediate operand") end local n = parse_number(imm) if n then local m = sar(n, scale) if shl(m, scale) == n then if signed then local s = sar(m, bits-1) if s == 0 then return shl(m, shift) elseif s == -1 then return shl(m + shl(1, bits), shift) end else if sar(m, bits) == 0 then return shl(m, shift) end end end werror("out of range immediate `"..imm.."'") else waction("IMM", (signed and 32768 or 0)+scale*1024+bits*32+shift, imm) return 0 end end local function parse_imm12(imm) imm = match(imm, "^#(.*)$") if not imm then werror("expected immediate operand") end local n = parse_number(imm) if n then if shr(n, 12) == 0 then return shl(n, 10) elseif band(n, 0xff000fff) == 0 then return shr(n, 2) + 0x00400000 end werror("out of range immediate `"..imm.."'") else waction("IMM12", 0, imm) return 0 end end local function parse_imm13(imm) imm = match(imm, "^#(.*)$") if not imm then werror("expected immediate operand") end local n = parse_number(imm) local r64 = parse_reg_type == "x" if n and n % 1 == 0 and n >= 0 and n <= 0xffffffff then local inv = false if band(n, 1) == 1 then n = bit.bnot(n); inv = true end local t = {} for i=1,32 do t[i] = band(n, 1); n = shr(n, 1) end local b = table.concat(t) b = b..(r64 and (inv and "1" or "0"):rep(32) or b) local p0, p1, p0a, p1a = b:match("^(0+)(1+)(0*)(1*)") if p0 then local w = p1a == "" and (r64 and 64 or 32) or #p1+#p0a if band(w, w-1) == 0 and b == b:sub(1, w):rep(64/w) then local s = band(-2*w, 0x3f) - 1 if w == 64 then s = s + 0x1000 end if inv then return shl(w-#p1-#p0, 16) + shl(s+w-#p1, 10) else return shl(w-#p0, 16) + shl(s+#p1, 10) end end end werror("out of range immediate `"..imm.."'") elseif r64 then waction("IMM13X", 0, format("(unsigned int)(%s)", imm)) actargs[#actargs+1] = format("(unsigned int)((unsigned long long)(%s)>>32)", imm) return 0 else waction("IMM13W", 0, imm) return 0 end end local function parse_imm6(imm) imm = match(imm, "^#(.*)$") if not imm then werror("expected immediate operand") end local n = parse_number(imm) if n then if n >= 0 and n <= 63 then return shl(band(n, 0x1f), 19) + (n >= 32 and 0x80000000 or 0) end werror("out of range immediate `"..imm.."'") else waction("IMM6", 0, imm) return 0 end end local function parse_imm_load(imm, scale) local n = parse_number(imm) if n then local m = sar(n, scale) if shl(m, scale) == n and m >= 0 and m < 0x1000 then return shl(m, 10) + 0x01000000 -- Scaled, unsigned 12 bit offset. elseif n >= -256 and n < 256 then return shl(band(n, 511), 12) -- Unscaled, signed 9 bit offset. end werror("out of range immediate `"..imm.."'") else waction("IMML", 0, imm) return 0 end end local function parse_fpimm(imm) imm = match(imm, "^#(.*)$") if not imm then werror("expected immediate operand") end local n = parse_number(imm) if n then local m, e = math.frexp(n) local s, e2 = 0, band(e-2, 7) if m < 0 then m = -m; s = 0x00100000 end m = m*32-16 if m % 1 == 0 and m >= 0 and m <= 15 and sar(shl(e2, 29), 29)+2 == e then return s + shl(e2, 17) + shl(m, 13) end werror("out of range immediate `"..imm.."'") else werror("NYI fpimm action") end end local function parse_shift(expr) local s, s2 = match(expr, "^(%S+)%s*(.*)$") s = map_shift[s] if not s then werror("expected shift operand") end return parse_imm(s2, 6, 10, 0, false) + shl(s, 22) end local function parse_lslx16(expr) local n = match(expr, "^lsl%s*#(%d+)$") n = tonumber(n) if not n then werror("expected shift operand") end if band(n, parse_reg_type == "x" and 0xffffffcf or 0xffffffef) ~= 0 then werror("bad shift amount") end return shl(n, 17) end local function parse_extend(expr) local s, s2 = match(expr, "^(%S+)%s*(.*)$") if s == "lsl" then s = parse_reg_type == "x" and 3 or 2 else s = map_extend[s] end if not s then werror("expected extend operand") end return (s2 == "" and 0 or parse_imm(s2, 3, 10, 0, false)) + shl(s, 13) end local function parse_cond(expr, inv) local c = map_cond[expr] if not c then werror("expected condition operand") end return shl(bit.bxor(c, inv), 12) end local function parse_load(params, nparams, n, op) if params[n+2] then werror("too many operands") end local pn, p2 = params[n], params[n+1] local p1, wb = match(pn, "^%[%s*(.-)%s*%](!?)$") if not p1 then if not p2 then local reg, tailr = match(pn, "^([%w_:]+)%s*(.*)$") if reg and tailr ~= "" then local base, tp = parse_reg_base(reg) if tp then waction("IMML", 0, format(tp.ctypefmt, tailr)) return op + base end end end werror("expected address operand") end local scale = shr(op, 30) if p2 then if wb == "!" then werror("bad use of '!'") end op = op + parse_reg_base(p1) + parse_imm(p2, 9, 12, 0, true) + 0x400 elseif wb == "!" then local p1a, p2a = match(p1, "^([^,%s]*)%s*,%s*(.*)$") if not p1a then werror("bad use of '!'") end op = op + parse_reg_base(p1a) + parse_imm(p2a, 9, 12, 0, true) + 0xc00 else local p1a, p2a = match(p1, "^([^,%s]*)%s*(.*)$") op = op + parse_reg_base(p1a) if p2a ~= "" then local imm = match(p2a, "^,%s*#(.*)$") if imm then op = op + parse_imm_load(imm, scale) else local p2b, p3b, p3s = match(p2a, "^,%s*([^,%s]*)%s*,?%s*(%S*)%s*(.*)$") op = op + shl(parse_reg(p2b), 16) + 0x00200800 if parse_reg_type ~= "x" and parse_reg_type ~= "w" then werror("bad index register type") end if p3b == "" then if parse_reg_type ~= "x" then werror("bad index register type") end op = op + 0x6000 else if p3s == "" or p3s == "#0" then elseif p3s == "#"..scale then op = op + 0x1000 else werror("bad scale") end if parse_reg_type == "x" then if p3b == "lsl" and p3s ~= "" then op = op + 0x6000 elseif p3b == "sxtx" then op = op + 0xe000 else werror("bad extend/shift specifier") end else if p3b == "uxtw" then op = op + 0x4000 elseif p3b == "sxtw" then op = op + 0xc000 else werror("bad extend/shift specifier") end end end end else if wb == "!" then werror("bad use of '!'") end op = op + 0x01000000 end end return op end local function parse_load_pair(params, nparams, n, op) if params[n+2] then werror("too many operands") end local pn, p2 = params[n], params[n+1] local scale = shr(op, 30) == 0 and 2 or 3 local p1, wb = match(pn, "^%[%s*(.-)%s*%](!?)$") if not p1 then if not p2 then local reg, tailr = match(pn, "^([%w_:]+)%s*(.*)$") if reg and tailr ~= "" then local base, tp = parse_reg_base(reg) if tp then waction("IMM", 32768+7*32+15+scale*1024, format(tp.ctypefmt, tailr)) return op + base + 0x01000000 end end end werror("expected address operand") end if p2 then if wb == "!" then werror("bad use of '!'") end op = op + 0x00800000 else local p1a, p2a = match(p1, "^([^,%s]*)%s*,%s*(.*)$") if p1a then p1, p2 = p1a, p2a else p2 = "#0" end op = op + (wb == "!" and 0x01800000 or 0x01000000) end return op + parse_reg_base(p1) + parse_imm(p2, 7, 15, scale, true) end local function parse_label(label, def) local prefix = sub(label, 1, 2) -- =>label (pc label reference) if prefix == "=>" then return "PC", 0, sub(label, 3) end -- ->name (global label reference) if prefix == "->" then return "LG", map_global[sub(label, 3)] end if def then -- [1-9] (local label definition) if match(label, "^[1-9]$") then return "LG", 10+tonumber(label) end else -- [<>][1-9] (local label reference) local dir, lnum = match(label, "^([<>])([1-9])$") if dir then -- Fwd: 1-9, Bkwd: 11-19. return "LG", lnum + (dir == ">" and 0 or 10) end -- extern label (extern label reference) local extname = match(label, "^extern%s+(%S+)$") if extname then return "EXT", map_extern[extname] end end werror("bad label `"..label.."'") end local function branch_type(op) if band(op, 0x7c000000) == 0x14000000 then return 0 -- B, BL elseif shr(op, 24) == 0x54 or band(op, 0x7e000000) == 0x34000000 or band(op, 0x3b000000) == 0x18000000 then return 0x800 -- B.cond, CBZ, CBNZ, LDR* literal elseif band(op, 0x7e000000) == 0x36000000 then return 0x1000 -- TBZ, TBNZ elseif band(op, 0x9f000000) == 0x10000000 then return 0x2000 -- ADR elseif band(op, 0x9f000000) == band(0x90000000) then return 0x3000 -- ADRP else assert(false, "unknown branch type") end end ------------------------------------------------------------------------------ local map_op, op_template local function op_alias(opname, f) return function(params, nparams) if not params then return "-> "..opname:sub(1, -3) end f(params, nparams) op_template(params, map_op[opname], nparams) end end local function alias_bfx(p) p[4] = "#("..p[3]:sub(2)..")+("..p[4]:sub(2)..")-1" end local function alias_bfiz(p) parse_reg(p[1]) if parse_reg_type == "w" then p[3] = "#-("..p[3]:sub(2)..")%32" p[4] = "#("..p[4]:sub(2)..")-1" else p[3] = "#-("..p[3]:sub(2)..")%64" p[4] = "#("..p[4]:sub(2)..")-1" end end local alias_lslimm = op_alias("ubfm_4", function(p) parse_reg(p[1]) local sh = p[3]:sub(2) if parse_reg_type == "w" then p[3] = "#-("..sh..")%32" p[4] = "#31-("..sh..")" else p[3] = "#-("..sh..")%64" p[4] = "#63-("..sh..")" end end) -- Template strings for ARM instructions. map_op = { -- Basic data processing instructions. add_3 = "0b000000DNMg|11000000pDpNIg|8b206000pDpNMx", add_4 = "0b000000DNMSg|0b200000DNMXg|8b200000pDpNMXx|8b200000pDpNxMwX", adds_3 = "2b000000DNMg|31000000DpNIg|ab206000DpNMx", adds_4 = "2b000000DNMSg|2b200000DNMXg|ab200000DpNMXx|ab200000DpNxMwX", cmn_2 = "2b00001fNMg|3100001fpNIg|ab20601fpNMx", cmn_3 = "2b00001fNMSg|2b20001fNMXg|ab20001fpNMXx|ab20001fpNxMwX", sub_3 = "4b000000DNMg|51000000pDpNIg|cb206000pDpNMx", sub_4 = "4b000000DNMSg|4b200000DNMXg|cb200000pDpNMXx|cb200000pDpNxMwX", subs_3 = "6b000000DNMg|71000000DpNIg|eb206000DpNMx", subs_4 = "6b000000DNMSg|6b200000DNMXg|eb200000DpNMXx|eb200000DpNxMwX", cmp_2 = "6b00001fNMg|7100001fpNIg|eb20601fpNMx", cmp_3 = "6b00001fNMSg|6b20001fNMXg|eb20001fpNMXx|eb20001fpNxMwX", neg_2 = "4b0003e0DMg", neg_3 = "4b0003e0DMSg", negs_2 = "6b0003e0DMg", negs_3 = "6b0003e0DMSg", adc_3 = "1a000000DNMg", adcs_3 = "3a000000DNMg", sbc_3 = "5a000000DNMg", sbcs_3 = "7a000000DNMg", ngc_2 = "5a0003e0DMg", ngcs_2 = "7a0003e0DMg", and_3 = "0a000000DNMg|12000000pDNig", and_4 = "0a000000DNMSg", orr_3 = "2a000000DNMg|32000000pDNig", orr_4 = "2a000000DNMSg", eor_3 = "4a000000DNMg|52000000pDNig", eor_4 = "4a000000DNMSg", ands_3 = "6a000000DNMg|72000000DNig", ands_4 = "6a000000DNMSg", tst_2 = "6a00001fNMg|7200001fNig", tst_3 = "6a00001fNMSg", bic_3 = "0a200000DNMg", bic_4 = "0a200000DNMSg", orn_3 = "2a200000DNMg", orn_4 = "2a200000DNMSg", eon_3 = "4a200000DNMg", eon_4 = "4a200000DNMSg", bics_3 = "6a200000DNMg", bics_4 = "6a200000DNMSg", movn_2 = "12800000DWg", movn_3 = "12800000DWRg", movz_2 = "52800000DWg", movz_3 = "52800000DWRg", movk_2 = "72800000DWg", movk_3 = "72800000DWRg", -- TODO: this doesn't cover all valid immediates for mov reg, #imm. mov_2 = "2a0003e0DMg|52800000DW|320003e0pDig|11000000pDpNg", mov_3 = "2a0003e0DMSg", mvn_2 = "2a2003e0DMg", mvn_3 = "2a2003e0DMSg", adr_2 = "10000000DBx", adrp_2 = "90000000DBx", csel_4 = "1a800000DNMCg", csinc_4 = "1a800400DNMCg", csinv_4 = "5a800000DNMCg", csneg_4 = "5a800400DNMCg", cset_2 = "1a9f07e0Dcg", csetm_2 = "5a9f03e0Dcg", cinc_3 = "1a800400DNmcg", cinv_3 = "5a800000DNmcg", cneg_3 = "5a800400DNmcg", ccmn_4 = "3a400000NMVCg|3a400800N5VCg", ccmp_4 = "7a400000NMVCg|7a400800N5VCg", madd_4 = "1b000000DNMAg", msub_4 = "1b008000DNMAg", mul_3 = "1b007c00DNMg", mneg_3 = "1b00fc00DNMg", smaddl_4 = "9b200000DxNMwAx", smsubl_4 = "9b208000DxNMwAx", smull_3 = "9b207c00DxNMw", smnegl_3 = "9b20fc00DxNMw", smulh_3 = "9b407c00DNMx", umaddl_4 = "9ba00000DxNMwAx", umsubl_4 = "9ba08000DxNMwAx", umull_3 = "9ba07c00DxNMw", umnegl_3 = "9ba0fc00DxNMw", umulh_3 = "9bc07c00DNMx", udiv_3 = "1ac00800DNMg", sdiv_3 = "1ac00c00DNMg", -- Bit operations. sbfm_4 = "13000000DN12w|93400000DN12x", bfm_4 = "33000000DN12w|b3400000DN12x", ubfm_4 = "53000000DN12w|d3400000DN12x", extr_4 = "13800000DNM2w|93c00000DNM2x", sxtb_2 = "13001c00DNw|93401c00DNx", sxth_2 = "13003c00DNw|93403c00DNx", sxtw_2 = "93407c00DxNw", uxtb_2 = "53001c00DNw", uxth_2 = "53003c00DNw", sbfx_4 = op_alias("sbfm_4", alias_bfx), bfxil_4 = op_alias("bfm_4", alias_bfx), ubfx_4 = op_alias("ubfm_4", alias_bfx), sbfiz_4 = op_alias("sbfm_4", alias_bfiz), bfi_4 = op_alias("bfm_4", alias_bfiz), ubfiz_4 = op_alias("ubfm_4", alias_bfiz), lsl_3 = function(params, nparams) if params and params[3]:byte() == 35 then return alias_lslimm(params, nparams) else return op_template(params, "1ac02000DNMg", nparams) end end, lsr_3 = "1ac02400DNMg|53007c00DN1w|d340fc00DN1x", asr_3 = "1ac02800DNMg|13007c00DN1w|9340fc00DN1x", ror_3 = "1ac02c00DNMg|13800000DNm2w|93c00000DNm2x", clz_2 = "5ac01000DNg", cls_2 = "5ac01400DNg", rbit_2 = "5ac00000DNg", rev_2 = "5ac00800DNw|dac00c00DNx", rev16_2 = "5ac00400DNg", rev32_2 = "dac00800DNx", -- Loads and stores. ["strb_*"] = "38000000DwL", ["ldrb_*"] = "38400000DwL", ["ldrsb_*"] = "38c00000DwL|38800000DxL", ["strh_*"] = "78000000DwL", ["ldrh_*"] = "78400000DwL", ["ldrsh_*"] = "78c00000DwL|78800000DxL", ["str_*"] = "b8000000DwL|f8000000DxL|bc000000DsL|fc000000DdL", ["ldr_*"] = "18000000DwB|58000000DxB|1c000000DsB|5c000000DdB|b8400000DwL|f8400000DxL|bc400000DsL|fc400000DdL", ["ldrsw_*"] = "98000000DxB|b8800000DxL", -- NOTE: ldur etc. are handled by ldr et al. ["stp_*"] = "28000000DAwP|a8000000DAxP|2c000000DAsP|6c000000DAdP", ["ldp_*"] = "28400000DAwP|a8400000DAxP|2c400000DAsP|6c400000DAdP", ["ldpsw_*"] = "68400000DAxP", -- Branches. b_1 = "14000000B", bl_1 = "94000000B", blr_1 = "d63f0000Nx", br_1 = "d61f0000Nx", ret_0 = "d65f03c0", ret_1 = "d65f0000Nx", -- b.cond is added below. cbz_2 = "34000000DBg", cbnz_2 = "35000000DBg", tbz_3 = "36000000DTBw|36000000DTBx", tbnz_3 = "37000000DTBw|37000000DTBx", -- Miscellaneous instructions. -- TODO: hlt, hvc, smc, svc, eret, dcps[123], drps, mrs, msr -- TODO: sys, sysl, ic, dc, at, tlbi -- TODO: hint, yield, wfe, wfi, sev, sevl -- TODO: clrex, dsb, dmb, isb nop_0 = "d503201f", brk_0 = "d4200000", brk_1 = "d4200000W", -- Floating point instructions. fmov_2 = "1e204000DNf|1e260000DwNs|1e270000DsNw|9e660000DxNd|9e670000DdNx|1e201000DFf", fabs_2 = "1e20c000DNf", fneg_2 = "1e214000DNf", fsqrt_2 = "1e21c000DNf", fcvt_2 = "1e22c000DdNs|1e624000DsNd", -- TODO: half-precision and fixed-point conversions. fcvtas_2 = "1e240000DwNs|9e240000DxNs|1e640000DwNd|9e640000DxNd", fcvtau_2 = "1e250000DwNs|9e250000DxNs|1e650000DwNd|9e650000DxNd", fcvtms_2 = "1e300000DwNs|9e300000DxNs|1e700000DwNd|9e700000DxNd", fcvtmu_2 = "1e310000DwNs|9e310000DxNs|1e710000DwNd|9e710000DxNd", fcvtns_2 = "1e200000DwNs|9e200000DxNs|1e600000DwNd|9e600000DxNd", fcvtnu_2 = "1e210000DwNs|9e210000DxNs|1e610000DwNd|9e610000DxNd", fcvtps_2 = "1e280000DwNs|9e280000DxNs|1e680000DwNd|9e680000DxNd", fcvtpu_2 = "1e290000DwNs|9e290000DxNs|1e690000DwNd|9e690000DxNd", fcvtzs_2 = "1e380000DwNs|9e380000DxNs|1e780000DwNd|9e780000DxNd", fcvtzu_2 = "1e390000DwNs|9e390000DxNs|1e790000DwNd|9e790000DxNd", scvtf_2 = "1e220000DsNw|9e220000DsNx|1e620000DdNw|9e620000DdNx", ucvtf_2 = "1e230000DsNw|9e230000DsNx|1e630000DdNw|9e630000DdNx", frintn_2 = "1e244000DNf", frintp_2 = "1e24c000DNf", frintm_2 = "1e254000DNf", frintz_2 = "1e25c000DNf", frinta_2 = "1e264000DNf", frintx_2 = "1e274000DNf", frinti_2 = "1e27c000DNf", fadd_3 = "1e202800DNMf", fsub_3 = "1e203800DNMf", fmul_3 = "1e200800DNMf", fnmul_3 = "1e208800DNMf", fdiv_3 = "1e201800DNMf", fmadd_4 = "1f000000DNMAf", fmsub_4 = "1f008000DNMAf", fnmadd_4 = "1f200000DNMAf", fnmsub_4 = "1f208000DNMAf", fmax_3 = "1e204800DNMf", fmaxnm_3 = "1e206800DNMf", fmin_3 = "1e205800DNMf", fminnm_3 = "1e207800DNMf", fcmp_2 = "1e202000NMf|1e202008NZf", fcmpe_2 = "1e202010NMf|1e202018NZf", fccmp_4 = "1e200400NMVCf", fccmpe_4 = "1e200410NMVCf", fcsel_4 = "1e200c00DNMCf", -- TODO: crc32*, aes*, sha*, pmull -- TODO: SIMD instructions. } for cond,c in pairs(map_cond) do map_op["b"..cond.."_1"] = tohex(0x54000000+c).."B" end ------------------------------------------------------------------------------ -- Handle opcodes defined with template strings. local function parse_template(params, template, nparams, pos) local op = tonumber(sub(template, 1, 8), 16) local n = 1 local rtt = {} parse_reg_type = false -- Process each character. for p in gmatch(sub(template, 9), ".") do local q = params[n] if p == "D" then op = op + parse_reg(q); n = n + 1 elseif p == "N" then op = op + shl(parse_reg(q), 5); n = n + 1 elseif p == "M" then op = op + shl(parse_reg(q), 16); n = n + 1 elseif p == "A" then op = op + shl(parse_reg(q), 10); n = n + 1 elseif p == "m" then op = op + shl(parse_reg(params[n-1]), 16) elseif p == "p" then if q == "sp" then params[n] = "@x31" end elseif p == "g" then if parse_reg_type == "x" then op = op + 0x80000000 elseif parse_reg_type ~= "w" then werror("bad register type") end parse_reg_type = false elseif p == "f" then if parse_reg_type == "d" then op = op + 0x00400000 elseif parse_reg_type ~= "s" then werror("bad register type") end parse_reg_type = false elseif p == "x" or p == "w" or p == "d" or p == "s" then if parse_reg_type ~= p then werror("register size mismatch") end parse_reg_type = false elseif p == "L" then op = parse_load(params, nparams, n, op) elseif p == "P" then op = parse_load_pair(params, nparams, n, op) elseif p == "B" then local mode, v, s = parse_label(q, false); n = n + 1 local m = branch_type(op) waction("REL_"..mode, v+m, s, 1) elseif p == "I" then op = op + parse_imm12(q); n = n + 1 elseif p == "i" then op = op + parse_imm13(q); n = n + 1 elseif p == "W" then op = op + parse_imm(q, 16, 5, 0, false); n = n + 1 elseif p == "T" then op = op + parse_imm6(q); n = n + 1 elseif p == "1" then op = op + parse_imm(q, 6, 16, 0, false); n = n + 1 elseif p == "2" then op = op + parse_imm(q, 6, 10, 0, false); n = n + 1 elseif p == "5" then op = op + parse_imm(q, 5, 16, 0, false); n = n + 1 elseif p == "V" then op = op + parse_imm(q, 4, 0, 0, false); n = n + 1 elseif p == "F" then op = op + parse_fpimm(q); n = n + 1 elseif p == "Z" then if q ~= "#0" and q ~= "#0.0" then werror("expected zero immediate") end n = n + 1 elseif p == "S" then op = op + parse_shift(q); n = n + 1 elseif p == "X" then op = op + parse_extend(q); n = n + 1 elseif p == "R" then op = op + parse_lslx16(q); n = n + 1 elseif p == "C" then op = op + parse_cond(q, 0); n = n + 1 elseif p == "c" then op = op + parse_cond(q, 1); n = n + 1 else assert(false) end end wputpos(pos, op) end function op_template(params, template, nparams) if not params then return template:gsub("%x%x%x%x%x%x%x%x", "") end -- Limit number of section buffer positions used by a single dasm_put(). -- A single opcode needs a maximum of 3 positions. if secpos+3 > maxsecpos then wflush() end local pos = wpos() local lpos, apos, spos = #actlist, #actargs, secpos local ok, err for t in gmatch(template, "[^|]+") do ok, err = pcall(parse_template, params, t, nparams, pos) if ok then return end secpos = spos actlist[lpos+1] = nil actlist[lpos+2] = nil actlist[lpos+3] = nil actargs[apos+1] = nil actargs[apos+2] = nil actargs[apos+3] = nil end error(err, 0) end map_op[".template__"] = op_template ------------------------------------------------------------------------------ -- Pseudo-opcode to mark the position where the action list is to be emitted. map_op[".actionlist_1"] = function(params) if not params then return "cvar" end local name = params[1] -- No syntax check. You get to keep the pieces. wline(function(out) writeactions(out, name) end) end -- Pseudo-opcode to mark the position where the global enum is to be emitted. map_op[".globals_1"] = function(params) if not params then return "prefix" end local prefix = params[1] -- No syntax check. You get to keep the pieces. wline(function(out) writeglobals(out, prefix) end) end -- Pseudo-opcode to mark the position where the global names are to be emitted. map_op[".globalnames_1"] = function(params) if not params then return "cvar" end local name = params[1] -- No syntax check. You get to keep the pieces. wline(function(out) writeglobalnames(out, name) end) end -- Pseudo-opcode to mark the position where the extern names are to be emitted. map_op[".externnames_1"] = function(params) if not params then return "cvar" end local name = params[1] -- No syntax check. You get to keep the pieces. wline(function(out) writeexternnames(out, name) end) end ------------------------------------------------------------------------------ -- Label pseudo-opcode (converted from trailing colon form). map_op[".label_1"] = function(params) if not params then return "[1-9] | ->global | =>pcexpr" end if secpos+1 > maxsecpos then wflush() end local mode, n, s = parse_label(params[1], true) if mode == "EXT" then werror("bad label definition") end waction("LABEL_"..mode, n, s, 1) end ------------------------------------------------------------------------------ -- Pseudo-opcodes for data storage. map_op[".long_*"] = function(params) if not params then return "imm..." end for _,p in ipairs(params) do local n = tonumber(p) if not n then werror("bad immediate `"..p.."'") end if n < 0 then n = n + 2^32 end wputw(n) if secpos+2 > maxsecpos then wflush() end end end -- Alignment pseudo-opcode. map_op[".align_1"] = function(params) if not params then return "numpow2" end if secpos+1 > maxsecpos then wflush() end local align = tonumber(params[1]) if align then local x = align -- Must be a power of 2 in the range (2 ... 256). for i=1,8 do x = x / 2 if x == 1 then waction("ALIGN", align-1, nil, 1) -- Action byte is 2**n-1. return end end end werror("bad alignment") end ------------------------------------------------------------------------------ -- Pseudo-opcode for (primitive) type definitions (map to C types). map_op[".type_3"] = function(params, nparams) if not params then return nparams == 2 and "name, ctype" or "name, ctype, reg" end local name, ctype, reg = params[1], params[2], params[3] if not match(name, "^[%a_][%w_]*$") then werror("bad type name `"..name.."'") end local tp = map_type[name] if tp then werror("duplicate type `"..name.."'") end -- Add #type to defines. A bit unclean to put it in map_archdef. map_archdef["#"..name] = "sizeof("..ctype..")" -- Add new type and emit shortcut define. local num = ctypenum + 1 map_type[name] = { ctype = ctype, ctypefmt = format("Dt%X(%%s)", num), reg = reg, } wline(format("#define Dt%X(_V) (int)(ptrdiff_t)&(((%s *)0)_V)", num, ctype)) ctypenum = num end map_op[".type_2"] = map_op[".type_3"] -- Dump type definitions. local function dumptypes(out, lvl) local t = {} for name in pairs(map_type) do t[#t+1] = name end sort(t) out:write("Type definitions:\n") for _,name in ipairs(t) do local tp = map_type[name] local reg = tp.reg or "" out:write(format(" %-20s %-20s %s\n", name, tp.ctype, reg)) end out:write("\n") end ------------------------------------------------------------------------------ -- Set the current section. function _M.section(num) waction("SECTION", num) wflush(true) -- SECTION is a terminal action. end ------------------------------------------------------------------------------ -- Dump architecture description. function _M.dumparch(out) out:write(format("DynASM %s version %s, released %s\n\n", _info.arch, _info.version, _info.release)) dumpactions(out) end -- Dump all user defined elements. function _M.dumpdef(out, lvl) dumptypes(out, lvl) dumpglobals(out, lvl) dumpexterns(out, lvl) end ------------------------------------------------------------------------------ -- Pass callbacks from/to the DynASM core. function _M.passcb(wl, we, wf, ww) wline, werror, wfatal, wwarn = wl, we, wf, ww return wflush end -- Setup the arch-specific module. function _M.setup(arch, opt) g_arch, g_opt = arch, opt end -- Merge the core maps and the arch-specific maps. function _M.mergemaps(map_coreop, map_def) setmetatable(map_op, { __index = map_coreop }) setmetatable(map_def, { __index = map_archdef }) return map_op, map_def end return _M ------------------------------------------------------------------------------ luajit-2.1.0~beta3+dfsg.orig/dynasm/dasm_x86.h0000644000175100017510000003711013101703334020415 0ustar ondrejondrej/* ** DynASM x86 encoding engine. ** Copyright (C) 2005-2017 Mike Pall. All rights reserved. ** Released under the MIT license. See dynasm.lua for full copyright notice. */ #include #include #include #include #define DASM_ARCH "x86" #ifndef DASM_EXTERN #define DASM_EXTERN(a,b,c,d) 0 #endif /* Action definitions. DASM_STOP must be 255. */ enum { DASM_DISP = 233, DASM_IMM_S, DASM_IMM_B, DASM_IMM_W, DASM_IMM_D, DASM_IMM_WB, DASM_IMM_DB, DASM_VREG, DASM_SPACE, DASM_SETLABEL, DASM_REL_A, DASM_REL_LG, DASM_REL_PC, DASM_IMM_LG, DASM_IMM_PC, DASM_LABEL_LG, DASM_LABEL_PC, DASM_ALIGN, DASM_EXTERN, DASM_ESC, DASM_MARK, DASM_SECTION, DASM_STOP }; /* Maximum number of section buffer positions for a single dasm_put() call. */ #define DASM_MAXSECPOS 25 /* DynASM encoder status codes. Action list offset or number are or'ed in. */ #define DASM_S_OK 0x00000000 #define DASM_S_NOMEM 0x01000000 #define DASM_S_PHASE 0x02000000 #define DASM_S_MATCH_SEC 0x03000000 #define DASM_S_RANGE_I 0x11000000 #define DASM_S_RANGE_SEC 0x12000000 #define DASM_S_RANGE_LG 0x13000000 #define DASM_S_RANGE_PC 0x14000000 #define DASM_S_RANGE_VREG 0x15000000 #define DASM_S_UNDEF_L 0x21000000 #define DASM_S_UNDEF_PC 0x22000000 /* Macros to convert positions (8 bit section + 24 bit index). */ #define DASM_POS2IDX(pos) ((pos)&0x00ffffff) #define DASM_POS2BIAS(pos) ((pos)&0xff000000) #define DASM_SEC2POS(sec) ((sec)<<24) #define DASM_POS2SEC(pos) ((pos)>>24) #define DASM_POS2PTR(D, pos) (D->sections[DASM_POS2SEC(pos)].rbuf + (pos)) /* Action list type. */ typedef const unsigned char *dasm_ActList; /* Per-section structure. */ typedef struct dasm_Section { int *rbuf; /* Biased buffer pointer (negative section bias). */ int *buf; /* True buffer pointer. */ size_t bsize; /* Buffer size in bytes. */ int pos; /* Biased buffer position. */ int epos; /* End of biased buffer position - max single put. */ int ofs; /* Byte offset into section. */ } dasm_Section; /* Core structure holding the DynASM encoding state. */ struct dasm_State { size_t psize; /* Allocated size of this structure. */ dasm_ActList actionlist; /* Current actionlist pointer. */ int *lglabels; /* Local/global chain/pos ptrs. */ size_t lgsize; int *pclabels; /* PC label chains/pos ptrs. */ size_t pcsize; void **globals; /* Array of globals (bias -10). */ dasm_Section *section; /* Pointer to active section. */ size_t codesize; /* Total size of all code sections. */ int maxsection; /* 0 <= sectionidx < maxsection. */ int status; /* Status code. */ dasm_Section sections[1]; /* All sections. Alloc-extended. */ }; /* The size of the core structure depends on the max. number of sections. */ #define DASM_PSZ(ms) (sizeof(dasm_State)+(ms-1)*sizeof(dasm_Section)) /* Initialize DynASM state. */ void dasm_init(Dst_DECL, int maxsection) { dasm_State *D; size_t psz = 0; int i; Dst_REF = NULL; DASM_M_GROW(Dst, struct dasm_State, Dst_REF, psz, DASM_PSZ(maxsection)); D = Dst_REF; D->psize = psz; D->lglabels = NULL; D->lgsize = 0; D->pclabels = NULL; D->pcsize = 0; D->globals = NULL; D->maxsection = maxsection; for (i = 0; i < maxsection; i++) { D->sections[i].buf = NULL; /* Need this for pass3. */ D->sections[i].rbuf = D->sections[i].buf - DASM_SEC2POS(i); D->sections[i].bsize = 0; D->sections[i].epos = 0; /* Wrong, but is recalculated after resize. */ } } /* Free DynASM state. */ void dasm_free(Dst_DECL) { dasm_State *D = Dst_REF; int i; for (i = 0; i < D->maxsection; i++) if (D->sections[i].buf) DASM_M_FREE(Dst, D->sections[i].buf, D->sections[i].bsize); if (D->pclabels) DASM_M_FREE(Dst, D->pclabels, D->pcsize); if (D->lglabels) DASM_M_FREE(Dst, D->lglabels, D->lgsize); DASM_M_FREE(Dst, D, D->psize); } /* Setup global label array. Must be called before dasm_setup(). */ void dasm_setupglobal(Dst_DECL, void **gl, unsigned int maxgl) { dasm_State *D = Dst_REF; D->globals = gl - 10; /* Negative bias to compensate for locals. */ DASM_M_GROW(Dst, int, D->lglabels, D->lgsize, (10+maxgl)*sizeof(int)); } /* Grow PC label array. Can be called after dasm_setup(), too. */ void dasm_growpc(Dst_DECL, unsigned int maxpc) { dasm_State *D = Dst_REF; size_t osz = D->pcsize; DASM_M_GROW(Dst, int, D->pclabels, D->pcsize, maxpc*sizeof(int)); memset((void *)(((unsigned char *)D->pclabels)+osz), 0, D->pcsize-osz); } /* Setup encoder. */ void dasm_setup(Dst_DECL, const void *actionlist) { dasm_State *D = Dst_REF; int i; D->actionlist = (dasm_ActList)actionlist; D->status = DASM_S_OK; D->section = &D->sections[0]; memset((void *)D->lglabels, 0, D->lgsize); if (D->pclabels) memset((void *)D->pclabels, 0, D->pcsize); for (i = 0; i < D->maxsection; i++) { D->sections[i].pos = DASM_SEC2POS(i); D->sections[i].ofs = 0; } } #ifdef DASM_CHECKS #define CK(x, st) \ do { if (!(x)) { \ D->status = DASM_S_##st|(int)(p-D->actionlist-1); return; } } while (0) #define CKPL(kind, st) \ do { if ((size_t)((char *)pl-(char *)D->kind##labels) >= D->kind##size) { \ D->status=DASM_S_RANGE_##st|(int)(p-D->actionlist-1); return; } } while (0) #else #define CK(x, st) ((void)0) #define CKPL(kind, st) ((void)0) #endif /* Pass 1: Store actions and args, link branches/labels, estimate offsets. */ void dasm_put(Dst_DECL, int start, ...) { va_list ap; dasm_State *D = Dst_REF; dasm_ActList p = D->actionlist + start; dasm_Section *sec = D->section; int pos = sec->pos, ofs = sec->ofs, mrm = -1; int *b; if (pos >= sec->epos) { DASM_M_GROW(Dst, int, sec->buf, sec->bsize, sec->bsize + 2*DASM_MAXSECPOS*sizeof(int)); sec->rbuf = sec->buf - DASM_POS2BIAS(pos); sec->epos = (int)sec->bsize/sizeof(int) - DASM_MAXSECPOS+DASM_POS2BIAS(pos); } b = sec->rbuf; b[pos++] = start; va_start(ap, start); while (1) { int action = *p++; if (action < DASM_DISP) { ofs++; } else if (action <= DASM_REL_A) { int n = va_arg(ap, int); b[pos++] = n; switch (action) { case DASM_DISP: if (n == 0) { if (mrm < 0) mrm = p[-2]; if ((mrm&7) != 5) break; } case DASM_IMM_DB: if (((n+128)&-256) == 0) goto ob; case DASM_REL_A: /* Assumes ptrdiff_t is int. !x64 */ case DASM_IMM_D: ofs += 4; break; case DASM_IMM_S: CK(((n+128)&-256) == 0, RANGE_I); goto ob; case DASM_IMM_B: CK((n&-256) == 0, RANGE_I); ob: ofs++; break; case DASM_IMM_WB: if (((n+128)&-256) == 0) goto ob; case DASM_IMM_W: CK((n&-65536) == 0, RANGE_I); ofs += 2; break; case DASM_SPACE: p++; ofs += n; break; case DASM_SETLABEL: b[pos-2] = -0x40000000; break; /* Neg. label ofs. */ case DASM_VREG: CK((n&-16) == 0 && (n != 4 || (*p>>5) != 2), RANGE_VREG); if (*p < 0x40 && p[1] == DASM_DISP) mrm = n; if (*p < 0x20 && (n&7) == 4) ofs++; switch ((*p++ >> 3) & 3) { case 3: n |= b[pos-3]; case 2: n |= b[pos-2]; case 1: if (n <= 7) { b[pos-1] |= 0x10; ofs--; } } continue; } mrm = -1; } else { int *pl, n; switch (action) { case DASM_REL_LG: case DASM_IMM_LG: n = *p++; pl = D->lglabels + n; /* Bkwd rel or global. */ if (n <= 246) { CK(n>=10||*pl<0, RANGE_LG); CKPL(lg, LG); goto putrel; } pl -= 246; n = *pl; if (n < 0) n = 0; /* Start new chain for fwd rel if label exists. */ goto linkrel; case DASM_REL_PC: case DASM_IMM_PC: pl = D->pclabels + va_arg(ap, int); CKPL(pc, PC); putrel: n = *pl; if (n < 0) { /* Label exists. Get label pos and store it. */ b[pos] = -n; } else { linkrel: b[pos] = n; /* Else link to rel chain, anchored at label. */ *pl = pos; } pos++; ofs += 4; /* Maximum offset needed. */ if (action == DASM_REL_LG || action == DASM_REL_PC) b[pos++] = ofs; /* Store pass1 offset estimate. */ break; case DASM_LABEL_LG: pl = D->lglabels + *p++; CKPL(lg, LG); goto putlabel; case DASM_LABEL_PC: pl = D->pclabels + va_arg(ap, int); CKPL(pc, PC); putlabel: n = *pl; /* n > 0: Collapse rel chain and replace with label pos. */ while (n > 0) { int *pb = DASM_POS2PTR(D, n); n = *pb; *pb = pos; } *pl = -pos; /* Label exists now. */ b[pos++] = ofs; /* Store pass1 offset estimate. */ break; case DASM_ALIGN: ofs += *p++; /* Maximum alignment needed (arg is 2**n-1). */ b[pos++] = ofs; /* Store pass1 offset estimate. */ break; case DASM_EXTERN: p += 2; ofs += 4; break; case DASM_ESC: p++; ofs++; break; case DASM_MARK: mrm = p[-2]; break; case DASM_SECTION: n = *p; CK(n < D->maxsection, RANGE_SEC); D->section = &D->sections[n]; case DASM_STOP: goto stop; } } } stop: va_end(ap); sec->pos = pos; sec->ofs = ofs; } #undef CK /* Pass 2: Link sections, shrink branches/aligns, fix label offsets. */ int dasm_link(Dst_DECL, size_t *szp) { dasm_State *D = Dst_REF; int secnum; int ofs = 0; #ifdef DASM_CHECKS *szp = 0; if (D->status != DASM_S_OK) return D->status; { int pc; for (pc = 0; pc*sizeof(int) < D->pcsize; pc++) if (D->pclabels[pc] > 0) return DASM_S_UNDEF_PC|pc; } #endif { /* Handle globals not defined in this translation unit. */ int idx; for (idx = 10; idx*sizeof(int) < D->lgsize; idx++) { int n = D->lglabels[idx]; /* Undefined label: Collapse rel chain and replace with marker (< 0). */ while (n > 0) { int *pb = DASM_POS2PTR(D, n); n = *pb; *pb = -idx; } } } /* Combine all code sections. No support for data sections (yet). */ for (secnum = 0; secnum < D->maxsection; secnum++) { dasm_Section *sec = D->sections + secnum; int *b = sec->rbuf; int pos = DASM_SEC2POS(secnum); int lastpos = sec->pos; while (pos != lastpos) { dasm_ActList p = D->actionlist + b[pos++]; while (1) { int op, action = *p++; switch (action) { case DASM_REL_LG: p++; op = p[-3]; goto rel_pc; case DASM_REL_PC: op = p[-2]; rel_pc: { int shrink = op == 0xe9 ? 3 : ((op&0xf0) == 0x80 ? 4 : 0); if (shrink) { /* Shrinkable branch opcode? */ int lofs, lpos = b[pos]; if (lpos < 0) goto noshrink; /* Ext global? */ lofs = *DASM_POS2PTR(D, lpos); if (lpos > pos) { /* Fwd label: add cumulative section offsets. */ int i; for (i = secnum; i < DASM_POS2SEC(lpos); i++) lofs += D->sections[i].ofs; } else { lofs -= ofs; /* Bkwd label: unfix offset. */ } lofs -= b[pos+1]; /* Short branch ok? */ if (lofs >= -128-shrink && lofs <= 127) ofs -= shrink; /* Yes. */ else { noshrink: shrink = 0; } /* No, cannot shrink op. */ } b[pos+1] = shrink; pos += 2; break; } case DASM_SPACE: case DASM_IMM_LG: case DASM_VREG: p++; case DASM_DISP: case DASM_IMM_S: case DASM_IMM_B: case DASM_IMM_W: case DASM_IMM_D: case DASM_IMM_WB: case DASM_IMM_DB: case DASM_SETLABEL: case DASM_REL_A: case DASM_IMM_PC: pos++; break; case DASM_LABEL_LG: p++; case DASM_LABEL_PC: b[pos++] += ofs; break; /* Fix label offset. */ case DASM_ALIGN: ofs -= (b[pos++]+ofs)&*p++; break; /* Adjust ofs. */ case DASM_EXTERN: p += 2; break; case DASM_ESC: p++; break; case DASM_MARK: break; case DASM_SECTION: case DASM_STOP: goto stop; } } stop: (void)0; } ofs += sec->ofs; /* Next section starts right after current section. */ } D->codesize = ofs; /* Total size of all code sections */ *szp = ofs; return DASM_S_OK; } #define dasmb(x) *cp++ = (unsigned char)(x) #ifndef DASM_ALIGNED_WRITES #define dasmw(x) \ do { *((unsigned short *)cp) = (unsigned short)(x); cp+=2; } while (0) #define dasmd(x) \ do { *((unsigned int *)cp) = (unsigned int)(x); cp+=4; } while (0) #else #define dasmw(x) do { dasmb(x); dasmb((x)>>8); } while (0) #define dasmd(x) do { dasmw(x); dasmw((x)>>16); } while (0) #endif /* Pass 3: Encode sections. */ int dasm_encode(Dst_DECL, void *buffer) { dasm_State *D = Dst_REF; unsigned char *base = (unsigned char *)buffer; unsigned char *cp = base; int secnum; /* Encode all code sections. No support for data sections (yet). */ for (secnum = 0; secnum < D->maxsection; secnum++) { dasm_Section *sec = D->sections + secnum; int *b = sec->buf; int *endb = sec->rbuf + sec->pos; while (b != endb) { dasm_ActList p = D->actionlist + *b++; unsigned char *mark = NULL; while (1) { int action = *p++; int n = (action >= DASM_DISP && action <= DASM_ALIGN) ? *b++ : 0; switch (action) { case DASM_DISP: if (!mark) mark = cp; { unsigned char *mm = mark; if (*p != DASM_IMM_DB && *p != DASM_IMM_WB) mark = NULL; if (n == 0) { int mrm = mm[-1]&7; if (mrm == 4) mrm = mm[0]&7; if (mrm != 5) { mm[-1] -= 0x80; break; } } if (((n+128) & -256) != 0) goto wd; else mm[-1] -= 0x40; } case DASM_IMM_S: case DASM_IMM_B: wb: dasmb(n); break; case DASM_IMM_DB: if (((n+128)&-256) == 0) { db: if (!mark) mark = cp; mark[-2] += 2; mark = NULL; goto wb; } else mark = NULL; case DASM_IMM_D: wd: dasmd(n); break; case DASM_IMM_WB: if (((n+128)&-256) == 0) goto db; else mark = NULL; case DASM_IMM_W: dasmw(n); break; case DASM_VREG: { int t = *p++; unsigned char *ex = cp - (t&7); if ((n & 8) && t < 0xa0) { if (*ex & 0x80) ex[1] ^= 0x20 << (t>>6); else *ex ^= 1 << (t>>6); n &= 7; } else if (n & 0x10) { if (*ex & 0x80) { *ex = 0xc5; ex[1] = (ex[1] & 0x80) | ex[2]; ex += 2; } while (++ex < cp) ex[-1] = *ex; if (mark) mark--; cp--; n &= 7; } if (t >= 0xc0) n <<= 4; else if (t >= 0x40) n <<= 3; else if (n == 4 && t < 0x20) { cp[-1] ^= n; *cp++ = 0x20; } cp[-1] ^= n; break; } case DASM_REL_LG: p++; if (n >= 0) goto rel_pc; b++; n = (int)(ptrdiff_t)D->globals[-n]; case DASM_REL_A: rel_a: n -= (int)(ptrdiff_t)(cp+4); goto wd; /* !x64 */ case DASM_REL_PC: rel_pc: { int shrink = *b++; int *pb = DASM_POS2PTR(D, n); if (*pb < 0) { n = pb[1]; goto rel_a; } n = *pb - ((int)(cp-base) + 4-shrink); if (shrink == 0) goto wd; if (shrink == 4) { cp--; cp[-1] = *cp-0x10; } else cp[-1] = 0xeb; goto wb; } case DASM_IMM_LG: p++; if (n < 0) { n = (int)(ptrdiff_t)D->globals[-n]; goto wd; } case DASM_IMM_PC: { int *pb = DASM_POS2PTR(D, n); n = *pb < 0 ? pb[1] : (*pb + (int)(ptrdiff_t)base); goto wd; } case DASM_LABEL_LG: { int idx = *p++; if (idx >= 10) D->globals[idx] = (void *)(base + (*p == DASM_SETLABEL ? *b : n)); break; } case DASM_LABEL_PC: case DASM_SETLABEL: break; case DASM_SPACE: { int fill = *p++; while (n--) *cp++ = fill; break; } case DASM_ALIGN: n = *p++; while (((cp-base) & n)) *cp++ = 0x90; /* nop */ break; case DASM_EXTERN: n = DASM_EXTERN(Dst, cp, p[1], *p); p += 2; goto wd; case DASM_MARK: mark = cp; break; case DASM_ESC: action = *p++; default: *cp++ = action; break; case DASM_SECTION: case DASM_STOP: goto stop; } } stop: (void)0; } } if (base + D->codesize != cp) /* Check for phase errors. */ return DASM_S_PHASE; return DASM_S_OK; } /* Get PC label offset. */ int dasm_getpclabel(Dst_DECL, unsigned int pc) { dasm_State *D = Dst_REF; if (pc*sizeof(int) < D->pcsize) { int pos = D->pclabels[pc]; if (pos < 0) return *DASM_POS2PTR(D, -pos); if (pos > 0) return -1; /* Undefined. */ } return -2; /* Unused or out of range. */ } #ifdef DASM_CHECKS /* Optional sanity checker to call between isolated encoding steps. */ int dasm_checkstep(Dst_DECL, int secmatch) { dasm_State *D = Dst_REF; if (D->status == DASM_S_OK) { int i; for (i = 1; i <= 9; i++) { if (D->lglabels[i] > 0) { D->status = DASM_S_UNDEF_L|i; break; } D->lglabels[i] = 0; } } if (D->status == DASM_S_OK && secmatch >= 0 && D->section != &D->sections[secmatch]) D->status = DASM_S_MATCH_SEC|(int)(D->section-D->sections); return D->status; } #endif luajit-2.1.0~beta3+dfsg.orig/dynasm/dasm_x86.lua0000644000175100017510000021313013101703334020745 0ustar ondrejondrej------------------------------------------------------------------------------ -- DynASM x86/x64 module. -- -- Copyright (C) 2005-2017 Mike Pall. All rights reserved. -- See dynasm.lua for full copyright notice. ------------------------------------------------------------------------------ local x64 = x64 -- Module information: local _info = { arch = x64 and "x64" or "x86", description = "DynASM x86/x64 module", version = "1.4.0", vernum = 10400, release = "2015-10-18", author = "Mike Pall", license = "MIT", } -- Exported glue functions for the arch-specific module. local _M = { _info = _info } -- Cache library functions. local type, tonumber, pairs, ipairs = type, tonumber, pairs, ipairs local assert, unpack, setmetatable = assert, unpack or table.unpack, setmetatable local _s = string local sub, format, byte, char = _s.sub, _s.format, _s.byte, _s.char local find, match, gmatch, gsub = _s.find, _s.match, _s.gmatch, _s.gsub local concat, sort, remove = table.concat, table.sort, table.remove local bit = bit or require("bit") local band, bxor, shl, shr = bit.band, bit.bxor, bit.lshift, bit.rshift -- Inherited tables and callbacks. local g_opt, g_arch local wline, werror, wfatal, wwarn -- Action name list. -- CHECK: Keep this in sync with the C code! local action_names = { -- int arg, 1 buffer pos: "DISP", "IMM_S", "IMM_B", "IMM_W", "IMM_D", "IMM_WB", "IMM_DB", -- action arg (1 byte), int arg, 1 buffer pos (reg/num): "VREG", "SPACE", -- ptrdiff_t arg, 1 buffer pos (address): !x64 "SETLABEL", "REL_A", -- action arg (1 byte) or int arg, 2 buffer pos (link, offset): "REL_LG", "REL_PC", -- action arg (1 byte) or int arg, 1 buffer pos (link): "IMM_LG", "IMM_PC", -- action arg (1 byte) or int arg, 1 buffer pos (offset): "LABEL_LG", "LABEL_PC", -- action arg (1 byte), 1 buffer pos (offset): "ALIGN", -- action args (2 bytes), no buffer pos. "EXTERN", -- action arg (1 byte), no buffer pos. "ESC", -- no action arg, no buffer pos. "MARK", -- action arg (1 byte), no buffer pos, terminal action: "SECTION", -- no args, no buffer pos, terminal action: "STOP" } -- Maximum number of section buffer positions for dasm_put(). -- CHECK: Keep this in sync with the C code! local maxsecpos = 25 -- Keep this low, to avoid excessively long C lines. -- Action name -> action number (dynamically generated below). local map_action = {} -- First action number. Everything below does not need to be escaped. local actfirst = 256-#action_names -- Action list buffer and string (only used to remove dupes). local actlist = {} local actstr = "" -- Argument list for next dasm_put(). Start with offset 0 into action list. local actargs = { 0 } -- Current number of section buffer positions for dasm_put(). local secpos = 1 -- VREG kind encodings, pre-shifted by 5 bits. local map_vreg = { ["modrm.rm.m"] = 0x00, ["modrm.rm.r"] = 0x20, ["opcode"] = 0x20, ["sib.base"] = 0x20, ["sib.index"] = 0x40, ["modrm.reg"] = 0x80, ["vex.v"] = 0xa0, ["imm.hi"] = 0xc0, } -- Current number of VREG actions contributing to REX/VEX shrinkage. local vreg_shrink_count = 0 ------------------------------------------------------------------------------ -- Compute action numbers for action names. for n,name in ipairs(action_names) do local num = actfirst + n - 1 map_action[name] = num end -- Dump action names and numbers. local function dumpactions(out) out:write("DynASM encoding engine action codes:\n") for n,name in ipairs(action_names) do local num = map_action[name] out:write(format(" %-10s %02X %d\n", name, num, num)) end out:write("\n") end -- Write action list buffer as a huge static C array. local function writeactions(out, name) local nn = #actlist local last = actlist[nn] or 255 actlist[nn] = nil -- Remove last byte. if nn == 0 then nn = 1 end out:write("static const unsigned char ", name, "[", nn, "] = {\n") local s = " " for n,b in ipairs(actlist) do s = s..b.."," if #s >= 75 then assert(out:write(s, "\n")) s = " " end end out:write(s, last, "\n};\n\n") -- Add last byte back. end ------------------------------------------------------------------------------ -- Add byte to action list. local function wputxb(n) assert(n >= 0 and n <= 255 and n % 1 == 0, "byte out of range") actlist[#actlist+1] = n end -- Add action to list with optional arg. Advance buffer pos, too. local function waction(action, a, num) wputxb(assert(map_action[action], "bad action name `"..action.."'")) if a then actargs[#actargs+1] = a end if a or num then secpos = secpos + (num or 1) end end -- Optionally add a VREG action. local function wvreg(kind, vreg, psz, sk, defer) if not vreg then return end waction("VREG", vreg) local b = assert(map_vreg[kind], "bad vreg kind `"..vreg.."'") if b < (sk or 0) then vreg_shrink_count = vreg_shrink_count + 1 end if not defer then b = b + vreg_shrink_count * 8 vreg_shrink_count = 0 end wputxb(b + (psz or 0)) end -- Add call to embedded DynASM C code. local function wcall(func, args) wline(format("dasm_%s(Dst, %s);", func, concat(args, ", ")), true) end -- Delete duplicate action list chunks. A tad slow, but so what. local function dedupechunk(offset) local al, as = actlist, actstr local chunk = char(unpack(al, offset+1, #al)) local orig = find(as, chunk, 1, true) if orig then actargs[1] = orig-1 -- Replace with original offset. for i=offset+1,#al do al[i] = nil end -- Kill dupe. else actstr = as..chunk end end -- Flush action list (intervening C code or buffer pos overflow). local function wflush(term) local offset = actargs[1] if #actlist == offset then return end -- Nothing to flush. if not term then waction("STOP") end -- Terminate action list. dedupechunk(offset) wcall("put", actargs) -- Add call to dasm_put(). actargs = { #actlist } -- Actionlist offset is 1st arg to next dasm_put(). secpos = 1 -- The actionlist offset occupies a buffer position, too. end -- Put escaped byte. local function wputb(n) if n >= actfirst then waction("ESC") end -- Need to escape byte. wputxb(n) end ------------------------------------------------------------------------------ -- Global label name -> global label number. With auto assignment on 1st use. local next_global = 10 local map_global = setmetatable({}, { __index = function(t, name) if not match(name, "^[%a_][%w_@]*$") then werror("bad global label") end local n = next_global if n > 246 then werror("too many global labels") end next_global = n + 1 t[name] = n return n end}) -- Dump global labels. local function dumpglobals(out, lvl) local t = {} for name, n in pairs(map_global) do t[n] = name end out:write("Global labels:\n") for i=10,next_global-1 do out:write(format(" %s\n", t[i])) end out:write("\n") end -- Write global label enum. local function writeglobals(out, prefix) local t = {} for name, n in pairs(map_global) do t[n] = name end out:write("enum {\n") for i=10,next_global-1 do out:write(" ", prefix, gsub(t[i], "@.*", ""), ",\n") end out:write(" ", prefix, "_MAX\n};\n") end -- Write global label names. local function writeglobalnames(out, name) local t = {} for name, n in pairs(map_global) do t[n] = name end out:write("static const char *const ", name, "[] = {\n") for i=10,next_global-1 do out:write(" \"", t[i], "\",\n") end out:write(" (const char *)0\n};\n") end ------------------------------------------------------------------------------ -- Extern label name -> extern label number. With auto assignment on 1st use. local next_extern = -1 local map_extern = setmetatable({}, { __index = function(t, name) -- No restrictions on the name for now. local n = next_extern if n < -256 then werror("too many extern labels") end next_extern = n - 1 t[name] = n return n end}) -- Dump extern labels. local function dumpexterns(out, lvl) local t = {} for name, n in pairs(map_extern) do t[-n] = name end out:write("Extern labels:\n") for i=1,-next_extern-1 do out:write(format(" %s\n", t[i])) end out:write("\n") end -- Write extern label names. local function writeexternnames(out, name) local t = {} for name, n in pairs(map_extern) do t[-n] = name end out:write("static const char *const ", name, "[] = {\n") for i=1,-next_extern-1 do out:write(" \"", t[i], "\",\n") end out:write(" (const char *)0\n};\n") end ------------------------------------------------------------------------------ -- Arch-specific maps. local map_archdef = {} -- Ext. register name -> int. name. local map_reg_rev = {} -- Int. register name -> ext. name. local map_reg_num = {} -- Int. register name -> register number. local map_reg_opsize = {} -- Int. register name -> operand size. local map_reg_valid_base = {} -- Int. register name -> valid base register? local map_reg_valid_index = {} -- Int. register name -> valid index register? local map_reg_needrex = {} -- Int. register name -> need rex vs. no rex. local reg_list = {} -- Canonical list of int. register names. local map_type = {} -- Type name -> { ctype, reg } local ctypenum = 0 -- Type number (for _PTx macros). local addrsize = x64 and "q" or "d" -- Size for address operands. -- Helper functions to fill register maps. local function mkrmap(sz, cl, names) local cname = format("@%s", sz) reg_list[#reg_list+1] = cname map_archdef[cl] = cname map_reg_rev[cname] = cl map_reg_num[cname] = -1 map_reg_opsize[cname] = sz if sz == addrsize or sz == "d" then map_reg_valid_base[cname] = true map_reg_valid_index[cname] = true end if names then for n,name in ipairs(names) do local iname = format("@%s%x", sz, n-1) reg_list[#reg_list+1] = iname map_archdef[name] = iname map_reg_rev[iname] = name map_reg_num[iname] = n-1 map_reg_opsize[iname] = sz if sz == "b" and n > 4 then map_reg_needrex[iname] = false end if sz == addrsize or sz == "d" then map_reg_valid_base[iname] = true map_reg_valid_index[iname] = true end end end for i=0,(x64 and sz ~= "f") and 15 or 7 do local needrex = sz == "b" and i > 3 local iname = format("@%s%x%s", sz, i, needrex and "R" or "") if needrex then map_reg_needrex[iname] = true end local name if sz == "o" or sz == "y" then name = format("%s%d", cl, i) elseif sz == "f" then name = format("st%d", i) else name = format("r%d%s", i, sz == addrsize and "" or sz) end map_archdef[name] = iname if not map_reg_rev[iname] then reg_list[#reg_list+1] = iname map_reg_rev[iname] = name map_reg_num[iname] = i map_reg_opsize[iname] = sz if sz == addrsize or sz == "d" then map_reg_valid_base[iname] = true map_reg_valid_index[iname] = true end end end reg_list[#reg_list+1] = "" end -- Integer registers (qword, dword, word and byte sized). if x64 then mkrmap("q", "Rq", {"rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi"}) end mkrmap("d", "Rd", {"eax", "ecx", "edx", "ebx", "esp", "ebp", "esi", "edi"}) mkrmap("w", "Rw", {"ax", "cx", "dx", "bx", "sp", "bp", "si", "di"}) mkrmap("b", "Rb", {"al", "cl", "dl", "bl", "ah", "ch", "dh", "bh"}) map_reg_valid_index[map_archdef.esp] = false if x64 then map_reg_valid_index[map_archdef.rsp] = false end if x64 then map_reg_needrex[map_archdef.Rb] = true end map_archdef["Ra"] = "@"..addrsize -- FP registers (internally tword sized, but use "f" as operand size). mkrmap("f", "Rf") -- SSE registers (oword sized, but qword and dword accessible). mkrmap("o", "xmm") -- AVX registers (yword sized, but oword, qword and dword accessible). mkrmap("y", "ymm") -- Operand size prefixes to codes. local map_opsize = { byte = "b", word = "w", dword = "d", qword = "q", oword = "o", yword = "y", tword = "t", aword = addrsize, } -- Operand size code to number. local map_opsizenum = { b = 1, w = 2, d = 4, q = 8, o = 16, y = 32, t = 10, } -- Operand size code to name. local map_opsizename = { b = "byte", w = "word", d = "dword", q = "qword", o = "oword", y = "yword", t = "tword", f = "fpword", } -- Valid index register scale factors. local map_xsc = { ["1"] = 0, ["2"] = 1, ["4"] = 2, ["8"] = 3, } -- Condition codes. local map_cc = { o = 0, no = 1, b = 2, nb = 3, e = 4, ne = 5, be = 6, nbe = 7, s = 8, ns = 9, p = 10, np = 11, l = 12, nl = 13, le = 14, nle = 15, c = 2, nae = 2, nc = 3, ae = 3, z = 4, nz = 5, na = 6, a = 7, pe = 10, po = 11, nge = 12, ge = 13, ng = 14, g = 15, } -- Reverse defines for registers. function _M.revdef(s) return gsub(s, "@%w+", map_reg_rev) end -- Dump register names and numbers local function dumpregs(out) out:write("Register names, sizes and internal numbers:\n") for _,reg in ipairs(reg_list) do if reg == "" then out:write("\n") else local name = map_reg_rev[reg] local num = map_reg_num[reg] local opsize = map_opsizename[map_reg_opsize[reg]] out:write(format(" %-5s %-8s %s\n", name, opsize, num < 0 and "(variable)" or num)) end end end ------------------------------------------------------------------------------ -- Put action for label arg (IMM_LG, IMM_PC, REL_LG, REL_PC). local function wputlabel(aprefix, imm, num) if type(imm) == "number" then if imm < 0 then waction("EXTERN") wputxb(aprefix == "IMM_" and 0 or 1) imm = -imm-1 else waction(aprefix.."LG", nil, num); end wputxb(imm) else waction(aprefix.."PC", imm, num) end end -- Put signed byte or arg. local function wputsbarg(n) if type(n) == "number" then if n < -128 or n > 127 then werror("signed immediate byte out of range") end if n < 0 then n = n + 256 end wputb(n) else waction("IMM_S", n) end end -- Put unsigned byte or arg. local function wputbarg(n) if type(n) == "number" then if n < 0 or n > 255 then werror("unsigned immediate byte out of range") end wputb(n) else waction("IMM_B", n) end end -- Put unsigned word or arg. local function wputwarg(n) if type(n) == "number" then if shr(n, 16) ~= 0 then werror("unsigned immediate word out of range") end wputb(band(n, 255)); wputb(shr(n, 8)); else waction("IMM_W", n) end end -- Put signed or unsigned dword or arg. local function wputdarg(n) local tn = type(n) if tn == "number" then wputb(band(n, 255)) wputb(band(shr(n, 8), 255)) wputb(band(shr(n, 16), 255)) wputb(shr(n, 24)) elseif tn == "table" then wputlabel("IMM_", n[1], 1) else waction("IMM_D", n) end end -- Put operand-size dependent number or arg (defaults to dword). local function wputszarg(sz, n) if not sz or sz == "d" or sz == "q" then wputdarg(n) elseif sz == "w" then wputwarg(n) elseif sz == "b" then wputbarg(n) elseif sz == "s" then wputsbarg(n) else werror("bad operand size") end end -- Put multi-byte opcode with operand-size dependent modifications. local function wputop(sz, op, rex, vex, vregr, vregxb) local psz, sk = 0, nil if vex then local tail if vex.m == 1 and band(rex, 11) == 0 then if x64 and vregxb then sk = map_vreg["modrm.reg"] else wputb(0xc5) tail = shl(bxor(band(rex, 4), 4), 5) psz = 3 end end if not tail then wputb(0xc4) wputb(shl(bxor(band(rex, 7), 7), 5) + vex.m) tail = shl(band(rex, 8), 4) psz = 4 end local reg, vreg = 0, nil if vex.v then reg = vex.v.reg if not reg then werror("bad vex operand") end if reg < 0 then reg = 0; vreg = vex.v.vreg end end if sz == "y" or vex.l then tail = tail + 4 end wputb(tail + shl(bxor(reg, 15), 3) + vex.p) wvreg("vex.v", vreg) rex = 0 if op >= 256 then werror("bad vex opcode") end else if rex ~= 0 then if not x64 then werror("bad operand size") end elseif (vregr or vregxb) and x64 then rex = 0x10 sk = map_vreg["vex.v"] end end local r if sz == "w" then wputb(102) end -- Needs >32 bit numbers, but only for crc32 eax, word [ebx] if op >= 4294967296 then r = op%4294967296 wputb((op-r)/4294967296) op = r end if op >= 16777216 then wputb(shr(op, 24)); op = band(op, 0xffffff) end if op >= 65536 then if rex ~= 0 then local opc3 = band(op, 0xffff00) if opc3 == 0x0f3a00 or opc3 == 0x0f3800 then wputb(64 + band(rex, 15)); rex = 0; psz = 2 end end wputb(shr(op, 16)); op = band(op, 0xffff); psz = psz + 1 end if op >= 256 then local b = shr(op, 8) if b == 15 and rex ~= 0 then wputb(64 + band(rex, 15)); rex = 0; psz = 2 end wputb(b); op = band(op, 255); psz = psz + 1 end if rex ~= 0 then wputb(64 + band(rex, 15)); psz = 2 end if sz == "b" then op = op - 1 end wputb(op) return psz, sk end -- Put ModRM or SIB formatted byte. local function wputmodrm(m, s, rm, vs, vrm) assert(m < 4 and s < 16 and rm < 16, "bad modrm operands") wputb(shl(m, 6) + shl(band(s, 7), 3) + band(rm, 7)) end -- Put ModRM/SIB plus optional displacement. local function wputmrmsib(t, imark, s, vsreg, psz, sk) local vreg, vxreg local reg, xreg = t.reg, t.xreg if reg and reg < 0 then reg = 0; vreg = t.vreg end if xreg and xreg < 0 then xreg = 0; vxreg = t.vxreg end if s < 0 then s = 0 end -- Register mode. if sub(t.mode, 1, 1) == "r" then wputmodrm(3, s, reg) wvreg("modrm.reg", vsreg, psz+1, sk, vreg) wvreg("modrm.rm.r", vreg, psz+1, sk) return end local disp = t.disp local tdisp = type(disp) -- No base register? if not reg then local riprel = false if xreg then -- Indexed mode with index register only. -- [xreg*xsc+disp] -> (0, s, esp) (xsc, xreg, ebp) wputmodrm(0, s, 4) if imark == "I" then waction("MARK") end wvreg("modrm.reg", vsreg, psz+1, sk, vxreg) wputmodrm(t.xsc, xreg, 5) wvreg("sib.index", vxreg, psz+2, sk) else -- Pure 32 bit displacement. if x64 and tdisp ~= "table" then wputmodrm(0, s, 4) -- [disp] -> (0, s, esp) (0, esp, ebp) wvreg("modrm.reg", vsreg, psz+1, sk) if imark == "I" then waction("MARK") end wputmodrm(0, 4, 5) else riprel = x64 wputmodrm(0, s, 5) -- [disp|rip-label] -> (0, s, ebp) wvreg("modrm.reg", vsreg, psz+1, sk) if imark == "I" then waction("MARK") end end end if riprel then -- Emit rip-relative displacement. if match("UWSiI", imark) then werror("NYI: rip-relative displacement followed by immediate") end -- The previous byte in the action buffer cannot be 0xe9 or 0x80-0x8f. wputlabel("REL_", disp[1], 2) else wputdarg(disp) end return end local m if tdisp == "number" then -- Check displacement size at assembly time. if disp == 0 and band(reg, 7) ~= 5 then -- [ebp] -> [ebp+0] (in SIB, too) if not vreg then m = 0 end -- Force DISP to allow [Rd(5)] -> [ebp+0] elseif disp >= -128 and disp <= 127 then m = 1 else m = 2 end elseif tdisp == "table" then m = 2 end -- Index register present or esp as base register: need SIB encoding. if xreg or band(reg, 7) == 4 then wputmodrm(m or 2, s, 4) -- ModRM. if m == nil or imark == "I" then waction("MARK") end wvreg("modrm.reg", vsreg, psz+1, sk, vxreg or vreg) wputmodrm(t.xsc or 0, xreg or 4, reg) -- SIB. wvreg("sib.index", vxreg, psz+2, sk, vreg) wvreg("sib.base", vreg, psz+2, sk) else wputmodrm(m or 2, s, reg) -- ModRM. if (imark == "I" and (m == 1 or m == 2)) or (m == nil and (vsreg or vreg)) then waction("MARK") end wvreg("modrm.reg", vsreg, psz+1, sk, vreg) wvreg("modrm.rm.m", vreg, psz+1, sk) end -- Put displacement. if m == 1 then wputsbarg(disp) elseif m == 2 then wputdarg(disp) elseif m == nil then waction("DISP", disp) end end ------------------------------------------------------------------------------ -- Return human-readable operand mode string. local function opmodestr(op, args) local m = {} for i=1,#args do local a = args[i] m[#m+1] = sub(a.mode, 1, 1)..(a.opsize or "?") end return op.." "..concat(m, ",") end -- Convert number to valid integer or nil. local function toint(expr) local n = tonumber(expr) if n then if n % 1 ~= 0 or n < -2147483648 or n > 4294967295 then werror("bad integer number `"..expr.."'") end return n end end -- Parse immediate expression. local function immexpr(expr) -- &expr (pointer) if sub(expr, 1, 1) == "&" then return "iPJ", format("(ptrdiff_t)(%s)", sub(expr,2)) end local prefix = sub(expr, 1, 2) -- =>expr (pc label reference) if prefix == "=>" then return "iJ", sub(expr, 3) end -- ->name (global label reference) if prefix == "->" then return "iJ", map_global[sub(expr, 3)] end -- [<>][1-9] (local label reference) local dir, lnum = match(expr, "^([<>])([1-9])$") if dir then -- Fwd: 247-255, Bkwd: 1-9. return "iJ", lnum + (dir == ">" and 246 or 0) end local extname = match(expr, "^extern%s+(%S+)$") if extname then return "iJ", map_extern[extname] end -- expr (interpreted as immediate) return "iI", expr end -- Parse displacement expression: +-num, +-expr, +-opsize*num local function dispexpr(expr) local disp = expr == "" and 0 or toint(expr) if disp then return disp end local c, dispt = match(expr, "^([+-])%s*(.+)$") if c == "+" then expr = dispt elseif not c then werror("bad displacement expression `"..expr.."'") end local opsize, tailops = match(dispt, "^(%w+)%s*%*%s*(.+)$") local ops, imm = map_opsize[opsize], toint(tailops) if ops and imm then if c == "-" then imm = -imm end return imm*map_opsizenum[ops] end local mode, iexpr = immexpr(dispt) if mode == "iJ" then if c == "-" then werror("cannot invert label reference") end return { iexpr } end return expr -- Need to return original signed expression. end -- Parse register or type expression. local function rtexpr(expr) if not expr then return end local tname, ovreg = match(expr, "^([%w_]+):(@[%w_]+)$") local tp = map_type[tname or expr] if tp then local reg = ovreg or tp.reg local rnum = map_reg_num[reg] if not rnum then werror("type `"..(tname or expr).."' needs a register override") end if not map_reg_valid_base[reg] then werror("bad base register override `"..(map_reg_rev[reg] or reg).."'") end return reg, rnum, tp end return expr, map_reg_num[expr] end -- Parse operand and return { mode, opsize, reg, xreg, xsc, disp, imm }. local function parseoperand(param) local t = {} local expr = param local opsize, tailops = match(param, "^(%w+)%s*(.+)$") if opsize then t.opsize = map_opsize[opsize] if t.opsize then expr = tailops end end local br = match(expr, "^%[%s*(.-)%s*%]$") repeat if br then t.mode = "xm" -- [disp] t.disp = toint(br) if t.disp then t.mode = x64 and "xm" or "xmO" break end -- [reg...] local tp local reg, tailr = match(br, "^([@%w_:]+)%s*(.*)$") reg, t.reg, tp = rtexpr(reg) if not t.reg then -- [expr] t.mode = x64 and "xm" or "xmO" t.disp = dispexpr("+"..br) break end if t.reg == -1 then t.vreg, tailr = match(tailr, "^(%b())(.*)$") if not t.vreg then werror("bad variable register expression") end end -- [xreg*xsc] or [xreg*xsc+-disp] or [xreg*xsc+-expr] local xsc, tailsc = match(tailr, "^%*%s*([1248])%s*(.*)$") if xsc then if not map_reg_valid_index[reg] then werror("bad index register `"..map_reg_rev[reg].."'") end t.xsc = map_xsc[xsc] t.xreg = t.reg t.vxreg = t.vreg t.reg = nil t.vreg = nil t.disp = dispexpr(tailsc) break end if not map_reg_valid_base[reg] then werror("bad base register `"..map_reg_rev[reg].."'") end -- [reg] or [reg+-disp] t.disp = toint(tailr) or (tailr == "" and 0) if t.disp then break end -- [reg+xreg...] local xreg, tailx = match(tailr, "^+%s*([@%w_:]+)%s*(.*)$") xreg, t.xreg, tp = rtexpr(xreg) if not t.xreg then -- [reg+-expr] t.disp = dispexpr(tailr) break end if not map_reg_valid_index[xreg] then werror("bad index register `"..map_reg_rev[xreg].."'") end if t.xreg == -1 then t.vxreg, tailx = match(tailx, "^(%b())(.*)$") if not t.vxreg then werror("bad variable register expression") end end -- [reg+xreg*xsc...] local xsc, tailsc = match(tailx, "^%*%s*([1248])%s*(.*)$") if xsc then t.xsc = map_xsc[xsc] tailx = tailsc end -- [...] or [...+-disp] or [...+-expr] t.disp = dispexpr(tailx) else -- imm or opsize*imm local imm = toint(expr) if not imm and sub(expr, 1, 1) == "*" and t.opsize then imm = toint(sub(expr, 2)) if imm then imm = imm * map_opsizenum[t.opsize] t.opsize = nil end end if imm then if t.opsize then werror("bad operand size override") end local m = "i" if imm == 1 then m = m.."1" end if imm >= 4294967168 and imm <= 4294967295 then imm = imm-4294967296 end if imm >= -128 and imm <= 127 then m = m.."S" end t.imm = imm t.mode = m break end local tp local reg, tailr = match(expr, "^([@%w_:]+)%s*(.*)$") reg, t.reg, tp = rtexpr(reg) if t.reg then if t.reg == -1 then t.vreg, tailr = match(tailr, "^(%b())(.*)$") if not t.vreg then werror("bad variable register expression") end end -- reg if tailr == "" then if t.opsize then werror("bad operand size override") end t.opsize = map_reg_opsize[reg] if t.opsize == "f" then t.mode = t.reg == 0 and "fF" or "f" else if reg == "@w4" or (x64 and reg == "@d4") then wwarn("bad idea, try again with `"..(x64 and "rsp'" or "esp'")) end t.mode = t.reg == 0 and "rmR" or (reg == "@b1" and "rmC" or "rm") end t.needrex = map_reg_needrex[reg] break end -- type[idx], type[idx].field, type->field -> [reg+offset_expr] if not tp then werror("bad operand `"..param.."'") end t.mode = "xm" t.disp = format(tp.ctypefmt, tailr) else t.mode, t.imm = immexpr(expr) if sub(t.mode, -1) == "J" then if t.opsize and t.opsize ~= addrsize then werror("bad operand size override") end t.opsize = addrsize end end end until true return t end ------------------------------------------------------------------------------ -- x86 Template String Description -- =============================== -- -- Each template string is a list of [match:]pattern pairs, -- separated by "|". The first match wins. No match means a -- bad or unsupported combination of operand modes or sizes. -- -- The match part and the ":" is omitted if the operation has -- no operands. Otherwise the first N characters are matched -- against the mode strings of each of the N operands. -- -- The mode string for each operand type is (see parseoperand()): -- Integer register: "rm", +"R" for eax, ax, al, +"C" for cl -- FP register: "f", +"F" for st0 -- Index operand: "xm", +"O" for [disp] (pure offset) -- Immediate: "i", +"S" for signed 8 bit, +"1" for 1, -- +"I" for arg, +"P" for pointer -- Any: +"J" for valid jump targets -- -- So a match character "m" (mixed) matches both an integer register -- and an index operand (to be encoded with the ModRM/SIB scheme). -- But "r" matches only a register and "x" only an index operand -- (e.g. for FP memory access operations). -- -- The operand size match string starts right after the mode match -- characters and ends before the ":". "dwb" or "qdwb" is assumed, if empty. -- The effective data size of the operation is matched against this list. -- -- If only the regular "b", "w", "d", "q", "t" operand sizes are -- present, then all operands must be the same size. Unspecified sizes -- are ignored, but at least one operand must have a size or the pattern -- won't match (use the "byte", "word", "dword", "qword", "tword" -- operand size overrides. E.g.: mov dword [eax], 1). -- -- If the list has a "1" or "2" prefix, the operand size is taken -- from the respective operand and any other operand sizes are ignored. -- If the list contains only ".", all operand sizes are ignored. -- If the list has a "/" prefix, the concatenated (mixed) operand sizes -- are compared to the match. -- -- E.g. "rrdw" matches for either two dword registers or two word -- registers. "Fx2dq" matches an st0 operand plus an index operand -- pointing to a dword (float) or qword (double). -- -- Every character after the ":" is part of the pattern string: -- Hex chars are accumulated to form the opcode (left to right). -- "n" disables the standard opcode mods -- (otherwise: -1 for "b", o16 prefix for "w", rex.w for "q") -- "X" Force REX.W. -- "r"/"R" adds the reg. number from the 1st/2nd operand to the opcode. -- "m"/"M" generates ModRM/SIB from the 1st/2nd operand. -- The spare 3 bits are either filled with the last hex digit or -- the result from a previous "r"/"R". The opcode is restored. -- "u" Use VEX encoding, vvvv unused. -- "v"/"V" Use VEX encoding, vvvv from 1st/2nd operand (the operand is -- removed from the list used by future characters). -- "L" Force VEX.L -- -- All of the following characters force a flush of the opcode: -- "o"/"O" stores a pure 32 bit disp (offset) from the 1st/2nd operand. -- "s" stores a 4 bit immediate from the last register operand, -- followed by 4 zero bits. -- "S" stores a signed 8 bit immediate from the last operand. -- "U" stores an unsigned 8 bit immediate from the last operand. -- "W" stores an unsigned 16 bit immediate from the last operand. -- "i" stores an operand sized immediate from the last operand. -- "I" dito, but generates an action code to optionally modify -- the opcode (+2) for a signed 8 bit immediate. -- "J" generates one of the REL action codes from the last operand. -- ------------------------------------------------------------------------------ -- Template strings for x86 instructions. Ordered by first opcode byte. -- Unimplemented opcodes (deliberate omissions) are marked with *. local map_op = { -- 00-05: add... -- 06: *push es -- 07: *pop es -- 08-0D: or... -- 0E: *push cs -- 0F: two byte opcode prefix -- 10-15: adc... -- 16: *push ss -- 17: *pop ss -- 18-1D: sbb... -- 1E: *push ds -- 1F: *pop ds -- 20-25: and... es_0 = "26", -- 27: *daa -- 28-2D: sub... cs_0 = "2E", -- 2F: *das -- 30-35: xor... ss_0 = "36", -- 37: *aaa -- 38-3D: cmp... ds_0 = "3E", -- 3F: *aas inc_1 = x64 and "m:FF0m" or "rdw:40r|m:FF0m", dec_1 = x64 and "m:FF1m" or "rdw:48r|m:FF1m", push_1 = (x64 and "rq:n50r|rw:50r|mq:nFF6m|mw:FF6m" or "rdw:50r|mdw:FF6m").."|S.:6AS|ib:n6Ai|i.:68i", pop_1 = x64 and "rq:n58r|rw:58r|mq:n8F0m|mw:8F0m" or "rdw:58r|mdw:8F0m", -- 60: *pusha, *pushad, *pushaw -- 61: *popa, *popad, *popaw -- 62: *bound rdw,x -- 63: x86: *arpl mw,rw movsxd_2 = x64 and "rm/qd:63rM", fs_0 = "64", gs_0 = "65", o16_0 = "66", a16_0 = not x64 and "67" or nil, a32_0 = x64 and "67", -- 68: push idw -- 69: imul rdw,mdw,idw -- 6A: push ib -- 6B: imul rdw,mdw,S -- 6C: *insb -- 6D: *insd, *insw -- 6E: *outsb -- 6F: *outsd, *outsw -- 70-7F: jcc lb -- 80: add... mb,i -- 81: add... mdw,i -- 82: *undefined -- 83: add... mdw,S test_2 = "mr:85Rm|rm:85rM|Ri:A9ri|mi:F70mi", -- 86: xchg rb,mb -- 87: xchg rdw,mdw -- 88: mov mb,r -- 89: mov mdw,r -- 8A: mov r,mb -- 8B: mov r,mdw -- 8C: *mov mdw,seg lea_2 = "rx1dq:8DrM", -- 8E: *mov seg,mdw -- 8F: pop mdw nop_0 = "90", xchg_2 = "Rrqdw:90R|rRqdw:90r|rm:87rM|mr:87Rm", cbw_0 = "6698", cwde_0 = "98", cdqe_0 = "4898", cwd_0 = "6699", cdq_0 = "99", cqo_0 = "4899", -- 9A: *call iw:idw wait_0 = "9B", fwait_0 = "9B", pushf_0 = "9C", pushfd_0 = not x64 and "9C", pushfq_0 = x64 and "9C", popf_0 = "9D", popfd_0 = not x64 and "9D", popfq_0 = x64 and "9D", sahf_0 = "9E", lahf_0 = "9F", mov_2 = "OR:A3o|RO:A1O|mr:89Rm|rm:8BrM|rib:nB0ri|ridw:B8ri|mi:C70mi", movsb_0 = "A4", movsw_0 = "66A5", movsd_0 = "A5", cmpsb_0 = "A6", cmpsw_0 = "66A7", cmpsd_0 = "A7", -- A8: test Rb,i -- A9: test Rdw,i stosb_0 = "AA", stosw_0 = "66AB", stosd_0 = "AB", lodsb_0 = "AC", lodsw_0 = "66AD", lodsd_0 = "AD", scasb_0 = "AE", scasw_0 = "66AF", scasd_0 = "AF", -- B0-B7: mov rb,i -- B8-BF: mov rdw,i -- C0: rol... mb,i -- C1: rol... mdw,i ret_1 = "i.:nC2W", ret_0 = "C3", -- C4: *les rdw,mq -- C5: *lds rdw,mq -- C6: mov mb,i -- C7: mov mdw,i -- C8: *enter iw,ib leave_0 = "C9", -- CA: *retf iw -- CB: *retf int3_0 = "CC", int_1 = "i.:nCDU", into_0 = "CE", -- CF: *iret -- D0: rol... mb,1 -- D1: rol... mdw,1 -- D2: rol... mb,cl -- D3: rol... mb,cl -- D4: *aam ib -- D5: *aad ib -- D6: *salc -- D7: *xlat -- D8-DF: floating point ops -- E0: *loopne -- E1: *loope -- E2: *loop -- E3: *jcxz, *jecxz -- E4: *in Rb,ib -- E5: *in Rdw,ib -- E6: *out ib,Rb -- E7: *out ib,Rdw call_1 = x64 and "mq:nFF2m|J.:E8nJ" or "md:FF2m|J.:E8J", jmp_1 = x64 and "mq:nFF4m|J.:E9nJ" or "md:FF4m|J.:E9J", -- short: EB -- EA: *jmp iw:idw -- EB: jmp ib -- EC: *in Rb,dx -- ED: *in Rdw,dx -- EE: *out dx,Rb -- EF: *out dx,Rdw lock_0 = "F0", int1_0 = "F1", repne_0 = "F2", repnz_0 = "F2", rep_0 = "F3", repe_0 = "F3", repz_0 = "F3", -- F4: *hlt cmc_0 = "F5", -- F6: test... mb,i; div... mb -- F7: test... mdw,i; div... mdw clc_0 = "F8", stc_0 = "F9", -- FA: *cli cld_0 = "FC", std_0 = "FD", -- FE: inc... mb -- FF: inc... mdw -- misc ops not_1 = "m:F72m", neg_1 = "m:F73m", mul_1 = "m:F74m", imul_1 = "m:F75m", div_1 = "m:F76m", idiv_1 = "m:F77m", imul_2 = "rmqdw:0FAFrM|rIqdw:69rmI|rSqdw:6BrmS|riqdw:69rmi", imul_3 = "rmIqdw:69rMI|rmSqdw:6BrMS|rmiqdw:69rMi", movzx_2 = "rm/db:0FB6rM|rm/qb:|rm/wb:0FB6rM|rm/dw:0FB7rM|rm/qw:", movsx_2 = "rm/db:0FBErM|rm/qb:|rm/wb:0FBErM|rm/dw:0FBFrM|rm/qw:", bswap_1 = "rqd:0FC8r", bsf_2 = "rmqdw:0FBCrM", bsr_2 = "rmqdw:0FBDrM", bt_2 = "mrqdw:0FA3Rm|miqdw:0FBA4mU", btc_2 = "mrqdw:0FBBRm|miqdw:0FBA7mU", btr_2 = "mrqdw:0FB3Rm|miqdw:0FBA6mU", bts_2 = "mrqdw:0FABRm|miqdw:0FBA5mU", shld_3 = "mriqdw:0FA4RmU|mrC/qq:0FA5Rm|mrC/dd:|mrC/ww:", shrd_3 = "mriqdw:0FACRmU|mrC/qq:0FADRm|mrC/dd:|mrC/ww:", rdtsc_0 = "0F31", -- P1+ rdpmc_0 = "0F33", -- P6+ cpuid_0 = "0FA2", -- P1+ -- floating point ops fst_1 = "ff:DDD0r|xd:D92m|xq:nDD2m", fstp_1 = "ff:DDD8r|xd:D93m|xq:nDD3m|xt:DB7m", fld_1 = "ff:D9C0r|xd:D90m|xq:nDD0m|xt:DB5m", fpop_0 = "DDD8", -- Alias for fstp st0. fist_1 = "xw:nDF2m|xd:DB2m", fistp_1 = "xw:nDF3m|xd:DB3m|xq:nDF7m", fild_1 = "xw:nDF0m|xd:DB0m|xq:nDF5m", fxch_0 = "D9C9", fxch_1 = "ff:D9C8r", fxch_2 = "fFf:D9C8r|Fff:D9C8R", fucom_1 = "ff:DDE0r", fucom_2 = "Fff:DDE0R", fucomp_1 = "ff:DDE8r", fucomp_2 = "Fff:DDE8R", fucomi_1 = "ff:DBE8r", -- P6+ fucomi_2 = "Fff:DBE8R", -- P6+ fucomip_1 = "ff:DFE8r", -- P6+ fucomip_2 = "Fff:DFE8R", -- P6+ fcomi_1 = "ff:DBF0r", -- P6+ fcomi_2 = "Fff:DBF0R", -- P6+ fcomip_1 = "ff:DFF0r", -- P6+ fcomip_2 = "Fff:DFF0R", -- P6+ fucompp_0 = "DAE9", fcompp_0 = "DED9", fldenv_1 = "x.:D94m", fnstenv_1 = "x.:D96m", fstenv_1 = "x.:9BD96m", fldcw_1 = "xw:nD95m", fstcw_1 = "xw:n9BD97m", fnstcw_1 = "xw:nD97m", fstsw_1 = "Rw:n9BDFE0|xw:n9BDD7m", fnstsw_1 = "Rw:nDFE0|xw:nDD7m", fclex_0 = "9BDBE2", fnclex_0 = "DBE2", fnop_0 = "D9D0", -- D9D1-D9DF: unassigned fchs_0 = "D9E0", fabs_0 = "D9E1", -- D9E2: unassigned -- D9E3: unassigned ftst_0 = "D9E4", fxam_0 = "D9E5", -- D9E6: unassigned -- D9E7: unassigned fld1_0 = "D9E8", fldl2t_0 = "D9E9", fldl2e_0 = "D9EA", fldpi_0 = "D9EB", fldlg2_0 = "D9EC", fldln2_0 = "D9ED", fldz_0 = "D9EE", -- D9EF: unassigned f2xm1_0 = "D9F0", fyl2x_0 = "D9F1", fptan_0 = "D9F2", fpatan_0 = "D9F3", fxtract_0 = "D9F4", fprem1_0 = "D9F5", fdecstp_0 = "D9F6", fincstp_0 = "D9F7", fprem_0 = "D9F8", fyl2xp1_0 = "D9F9", fsqrt_0 = "D9FA", fsincos_0 = "D9FB", frndint_0 = "D9FC", fscale_0 = "D9FD", fsin_0 = "D9FE", fcos_0 = "D9FF", -- SSE, SSE2 andnpd_2 = "rmo:660F55rM", andnps_2 = "rmo:0F55rM", andpd_2 = "rmo:660F54rM", andps_2 = "rmo:0F54rM", clflush_1 = "x.:0FAE7m", cmppd_3 = "rmio:660FC2rMU", cmpps_3 = "rmio:0FC2rMU", cmpsd_3 = "rrio:F20FC2rMU|rxi/oq:", cmpss_3 = "rrio:F30FC2rMU|rxi/od:", comisd_2 = "rro:660F2FrM|rx/oq:", comiss_2 = "rro:0F2FrM|rx/od:", cvtdq2pd_2 = "rro:F30FE6rM|rx/oq:", cvtdq2ps_2 = "rmo:0F5BrM", cvtpd2dq_2 = "rmo:F20FE6rM", cvtpd2ps_2 = "rmo:660F5ArM", cvtpi2pd_2 = "rx/oq:660F2ArM", cvtpi2ps_2 = "rx/oq:0F2ArM", cvtps2dq_2 = "rmo:660F5BrM", cvtps2pd_2 = "rro:0F5ArM|rx/oq:", cvtsd2si_2 = "rr/do:F20F2DrM|rr/qo:|rx/dq:|rxq:", cvtsd2ss_2 = "rro:F20F5ArM|rx/oq:", cvtsi2sd_2 = "rm/od:F20F2ArM|rm/oq:F20F2ArXM", cvtsi2ss_2 = "rm/od:F30F2ArM|rm/oq:F30F2ArXM", cvtss2sd_2 = "rro:F30F5ArM|rx/od:", cvtss2si_2 = "rr/do:F30F2DrM|rr/qo:|rxd:|rx/qd:", cvttpd2dq_2 = "rmo:660FE6rM", cvttps2dq_2 = "rmo:F30F5BrM", cvttsd2si_2 = "rr/do:F20F2CrM|rr/qo:|rx/dq:|rxq:", cvttss2si_2 = "rr/do:F30F2CrM|rr/qo:|rxd:|rx/qd:", fxsave_1 = "x.:0FAE0m", fxrstor_1 = "x.:0FAE1m", ldmxcsr_1 = "xd:0FAE2m", lfence_0 = "0FAEE8", maskmovdqu_2 = "rro:660FF7rM", mfence_0 = "0FAEF0", movapd_2 = "rmo:660F28rM|mro:660F29Rm", movaps_2 = "rmo:0F28rM|mro:0F29Rm", movd_2 = "rm/od:660F6ErM|rm/oq:660F6ErXM|mr/do:660F7ERm|mr/qo:", movdqa_2 = "rmo:660F6FrM|mro:660F7FRm", movdqu_2 = "rmo:F30F6FrM|mro:F30F7FRm", movhlps_2 = "rro:0F12rM", movhpd_2 = "rx/oq:660F16rM|xr/qo:n660F17Rm", movhps_2 = "rx/oq:0F16rM|xr/qo:n0F17Rm", movlhps_2 = "rro:0F16rM", movlpd_2 = "rx/oq:660F12rM|xr/qo:n660F13Rm", movlps_2 = "rx/oq:0F12rM|xr/qo:n0F13Rm", movmskpd_2 = "rr/do:660F50rM", movmskps_2 = "rr/do:0F50rM", movntdq_2 = "xro:660FE7Rm", movnti_2 = "xrqd:0FC3Rm", movntpd_2 = "xro:660F2BRm", movntps_2 = "xro:0F2BRm", movq_2 = "rro:F30F7ErM|rx/oq:|xr/qo:n660FD6Rm", movsd_2 = "rro:F20F10rM|rx/oq:|xr/qo:nF20F11Rm", movss_2 = "rro:F30F10rM|rx/od:|xr/do:F30F11Rm", movupd_2 = "rmo:660F10rM|mro:660F11Rm", movups_2 = "rmo:0F10rM|mro:0F11Rm", orpd_2 = "rmo:660F56rM", orps_2 = "rmo:0F56rM", pause_0 = "F390", pextrw_3 = "rri/do:660FC5rMU|xri/wo:660F3A15nRmU", -- Mem op: SSE4.1 only. pinsrw_3 = "rri/od:660FC4rMU|rxi/ow:", pmovmskb_2 = "rr/do:660FD7rM", prefetchnta_1 = "xb:n0F180m", prefetcht0_1 = "xb:n0F181m", prefetcht1_1 = "xb:n0F182m", prefetcht2_1 = "xb:n0F183m", pshufd_3 = "rmio:660F70rMU", pshufhw_3 = "rmio:F30F70rMU", pshuflw_3 = "rmio:F20F70rMU", pslld_2 = "rmo:660FF2rM|rio:660F726mU", pslldq_2 = "rio:660F737mU", psllq_2 = "rmo:660FF3rM|rio:660F736mU", psllw_2 = "rmo:660FF1rM|rio:660F716mU", psrad_2 = "rmo:660FE2rM|rio:660F724mU", psraw_2 = "rmo:660FE1rM|rio:660F714mU", psrld_2 = "rmo:660FD2rM|rio:660F722mU", psrldq_2 = "rio:660F733mU", psrlq_2 = "rmo:660FD3rM|rio:660F732mU", psrlw_2 = "rmo:660FD1rM|rio:660F712mU", rcpps_2 = "rmo:0F53rM", rcpss_2 = "rro:F30F53rM|rx/od:", rsqrtps_2 = "rmo:0F52rM", rsqrtss_2 = "rmo:F30F52rM", sfence_0 = "0FAEF8", shufpd_3 = "rmio:660FC6rMU", shufps_3 = "rmio:0FC6rMU", stmxcsr_1 = "xd:0FAE3m", ucomisd_2 = "rro:660F2ErM|rx/oq:", ucomiss_2 = "rro:0F2ErM|rx/od:", unpckhpd_2 = "rmo:660F15rM", unpckhps_2 = "rmo:0F15rM", unpcklpd_2 = "rmo:660F14rM", unpcklps_2 = "rmo:0F14rM", xorpd_2 = "rmo:660F57rM", xorps_2 = "rmo:0F57rM", -- SSE3 ops fisttp_1 = "xw:nDF1m|xd:DB1m|xq:nDD1m", addsubpd_2 = "rmo:660FD0rM", addsubps_2 = "rmo:F20FD0rM", haddpd_2 = "rmo:660F7CrM", haddps_2 = "rmo:F20F7CrM", hsubpd_2 = "rmo:660F7DrM", hsubps_2 = "rmo:F20F7DrM", lddqu_2 = "rxo:F20FF0rM", movddup_2 = "rmo:F20F12rM", movshdup_2 = "rmo:F30F16rM", movsldup_2 = "rmo:F30F12rM", -- SSSE3 ops pabsb_2 = "rmo:660F381CrM", pabsd_2 = "rmo:660F381ErM", pabsw_2 = "rmo:660F381DrM", palignr_3 = "rmio:660F3A0FrMU", phaddd_2 = "rmo:660F3802rM", phaddsw_2 = "rmo:660F3803rM", phaddw_2 = "rmo:660F3801rM", phsubd_2 = "rmo:660F3806rM", phsubsw_2 = "rmo:660F3807rM", phsubw_2 = "rmo:660F3805rM", pmaddubsw_2 = "rmo:660F3804rM", pmulhrsw_2 = "rmo:660F380BrM", pshufb_2 = "rmo:660F3800rM", psignb_2 = "rmo:660F3808rM", psignd_2 = "rmo:660F380ArM", psignw_2 = "rmo:660F3809rM", -- SSE4.1 ops blendpd_3 = "rmio:660F3A0DrMU", blendps_3 = "rmio:660F3A0CrMU", blendvpd_3 = "rmRo:660F3815rM", blendvps_3 = "rmRo:660F3814rM", dppd_3 = "rmio:660F3A41rMU", dpps_3 = "rmio:660F3A40rMU", extractps_3 = "mri/do:660F3A17RmU|rri/qo:660F3A17RXmU", insertps_3 = "rrio:660F3A41rMU|rxi/od:", movntdqa_2 = "rxo:660F382ArM", mpsadbw_3 = "rmio:660F3A42rMU", packusdw_2 = "rmo:660F382BrM", pblendvb_3 = "rmRo:660F3810rM", pblendw_3 = "rmio:660F3A0ErMU", pcmpeqq_2 = "rmo:660F3829rM", pextrb_3 = "rri/do:660F3A14nRmU|rri/qo:|xri/bo:", pextrd_3 = "mri/do:660F3A16RmU", pextrq_3 = "mri/qo:660F3A16RmU", -- pextrw is SSE2, mem operand is SSE4.1 only phminposuw_2 = "rmo:660F3841rM", pinsrb_3 = "rri/od:660F3A20nrMU|rxi/ob:", pinsrd_3 = "rmi/od:660F3A22rMU", pinsrq_3 = "rmi/oq:660F3A22rXMU", pmaxsb_2 = "rmo:660F383CrM", pmaxsd_2 = "rmo:660F383DrM", pmaxud_2 = "rmo:660F383FrM", pmaxuw_2 = "rmo:660F383ErM", pminsb_2 = "rmo:660F3838rM", pminsd_2 = "rmo:660F3839rM", pminud_2 = "rmo:660F383BrM", pminuw_2 = "rmo:660F383ArM", pmovsxbd_2 = "rro:660F3821rM|rx/od:", pmovsxbq_2 = "rro:660F3822rM|rx/ow:", pmovsxbw_2 = "rro:660F3820rM|rx/oq:", pmovsxdq_2 = "rro:660F3825rM|rx/oq:", pmovsxwd_2 = "rro:660F3823rM|rx/oq:", pmovsxwq_2 = "rro:660F3824rM|rx/od:", pmovzxbd_2 = "rro:660F3831rM|rx/od:", pmovzxbq_2 = "rro:660F3832rM|rx/ow:", pmovzxbw_2 = "rro:660F3830rM|rx/oq:", pmovzxdq_2 = "rro:660F3835rM|rx/oq:", pmovzxwd_2 = "rro:660F3833rM|rx/oq:", pmovzxwq_2 = "rro:660F3834rM|rx/od:", pmuldq_2 = "rmo:660F3828rM", pmulld_2 = "rmo:660F3840rM", ptest_2 = "rmo:660F3817rM", roundpd_3 = "rmio:660F3A09rMU", roundps_3 = "rmio:660F3A08rMU", roundsd_3 = "rrio:660F3A0BrMU|rxi/oq:", roundss_3 = "rrio:660F3A0ArMU|rxi/od:", -- SSE4.2 ops crc32_2 = "rmqd:F20F38F1rM|rm/dw:66F20F38F1rM|rm/db:F20F38F0rM|rm/qb:", pcmpestri_3 = "rmio:660F3A61rMU", pcmpestrm_3 = "rmio:660F3A60rMU", pcmpgtq_2 = "rmo:660F3837rM", pcmpistri_3 = "rmio:660F3A63rMU", pcmpistrm_3 = "rmio:660F3A62rMU", popcnt_2 = "rmqdw:F30FB8rM", -- SSE4a extrq_2 = "rro:660F79rM", extrq_3 = "riio:660F780mUU", insertq_2 = "rro:F20F79rM", insertq_4 = "rriio:F20F78rMUU", lzcnt_2 = "rmqdw:F30FBDrM", movntsd_2 = "xr/qo:nF20F2BRm", movntss_2 = "xr/do:F30F2BRm", -- popcnt is also in SSE4.2 -- AES-NI aesdec_2 = "rmo:660F38DErM", aesdeclast_2 = "rmo:660F38DFrM", aesenc_2 = "rmo:660F38DCrM", aesenclast_2 = "rmo:660F38DDrM", aesimc_2 = "rmo:660F38DBrM", aeskeygenassist_3 = "rmio:660F3ADFrMU", pclmulqdq_3 = "rmio:660F3A44rMU", -- AVX FP ops vaddsubpd_3 = "rrmoy:660FVD0rM", vaddsubps_3 = "rrmoy:F20FVD0rM", vandpd_3 = "rrmoy:660FV54rM", vandps_3 = "rrmoy:0FV54rM", vandnpd_3 = "rrmoy:660FV55rM", vandnps_3 = "rrmoy:0FV55rM", vblendpd_4 = "rrmioy:660F3AV0DrMU", vblendps_4 = "rrmioy:660F3AV0CrMU", vblendvpd_4 = "rrmroy:660F3AV4BrMs", vblendvps_4 = "rrmroy:660F3AV4ArMs", vbroadcastf128_2 = "rx/yo:660F38u1ArM", vcmppd_4 = "rrmioy:660FVC2rMU", vcmpps_4 = "rrmioy:0FVC2rMU", vcmpsd_4 = "rrrio:F20FVC2rMU|rrxi/ooq:", vcmpss_4 = "rrrio:F30FVC2rMU|rrxi/ood:", vcomisd_2 = "rro:660Fu2FrM|rx/oq:", vcomiss_2 = "rro:0Fu2FrM|rx/od:", vcvtdq2pd_2 = "rro:F30FuE6rM|rx/oq:|rm/yo:", vcvtdq2ps_2 = "rmoy:0Fu5BrM", vcvtpd2dq_2 = "rmoy:F20FuE6rM", vcvtpd2ps_2 = "rmoy:660Fu5ArM", vcvtps2dq_2 = "rmoy:660Fu5BrM", vcvtps2pd_2 = "rro:0Fu5ArM|rx/oq:|rm/yo:", vcvtsd2si_2 = "rr/do:F20Fu2DrM|rx/dq:|rr/qo:|rxq:", vcvtsd2ss_3 = "rrro:F20FV5ArM|rrx/ooq:", vcvtsi2sd_3 = "rrm/ood:F20FV2ArM|rrm/ooq:F20FVX2ArM", vcvtsi2ss_3 = "rrm/ood:F30FV2ArM|rrm/ooq:F30FVX2ArM", vcvtss2sd_3 = "rrro:F30FV5ArM|rrx/ood:", vcvtss2si_2 = "rr/do:F30Fu2DrM|rxd:|rr/qo:|rx/qd:", vcvttpd2dq_2 = "rmo:660FuE6rM|rm/oy:660FuLE6rM", vcvttps2dq_2 = "rmoy:F30Fu5BrM", vcvttsd2si_2 = "rr/do:F20Fu2CrM|rx/dq:|rr/qo:|rxq:", vcvttss2si_2 = "rr/do:F30Fu2CrM|rxd:|rr/qo:|rx/qd:", vdppd_4 = "rrmio:660F3AV41rMU", vdpps_4 = "rrmioy:660F3AV40rMU", vextractf128_3 = "mri/oy:660F3AuL19RmU", vextractps_3 = "mri/do:660F3Au17RmU", vhaddpd_3 = "rrmoy:660FV7CrM", vhaddps_3 = "rrmoy:F20FV7CrM", vhsubpd_3 = "rrmoy:660FV7DrM", vhsubps_3 = "rrmoy:F20FV7DrM", vinsertf128_4 = "rrmi/yyo:660F3AV18rMU", vinsertps_4 = "rrrio:660F3AV21rMU|rrxi/ood:", vldmxcsr_1 = "xd:0FuAE2m", vmaskmovps_3 = "rrxoy:660F38V2CrM|xrroy:660F38V2ERm", vmaskmovpd_3 = "rrxoy:660F38V2DrM|xrroy:660F38V2FRm", vmovapd_2 = "rmoy:660Fu28rM|mroy:660Fu29Rm", vmovaps_2 = "rmoy:0Fu28rM|mroy:0Fu29Rm", vmovd_2 = "rm/od:660Fu6ErM|rm/oq:660FuX6ErM|mr/do:660Fu7ERm|mr/qo:", vmovq_2 = "rro:F30Fu7ErM|rx/oq:|xr/qo:660FuD6Rm", vmovddup_2 = "rmy:F20Fu12rM|rro:|rx/oq:", vmovhlps_3 = "rrro:0FV12rM", vmovhpd_2 = "xr/qo:660Fu17Rm", vmovhpd_3 = "rrx/ooq:660FV16rM", vmovhps_2 = "xr/qo:0Fu17Rm", vmovhps_3 = "rrx/ooq:0FV16rM", vmovlhps_3 = "rrro:0FV16rM", vmovlpd_2 = "xr/qo:660Fu13Rm", vmovlpd_3 = "rrx/ooq:660FV12rM", vmovlps_2 = "xr/qo:0Fu13Rm", vmovlps_3 = "rrx/ooq:0FV12rM", vmovmskpd_2 = "rr/do:660Fu50rM|rr/dy:660FuL50rM", vmovmskps_2 = "rr/do:0Fu50rM|rr/dy:0FuL50rM", vmovntpd_2 = "xroy:660Fu2BRm", vmovntps_2 = "xroy:0Fu2BRm", vmovsd_2 = "rx/oq:F20Fu10rM|xr/qo:F20Fu11Rm", vmovsd_3 = "rrro:F20FV10rM", vmovshdup_2 = "rmoy:F30Fu16rM", vmovsldup_2 = "rmoy:F30Fu12rM", vmovss_2 = "rx/od:F30Fu10rM|xr/do:F30Fu11Rm", vmovss_3 = "rrro:F30FV10rM", vmovupd_2 = "rmoy:660Fu10rM|mroy:660Fu11Rm", vmovups_2 = "rmoy:0Fu10rM|mroy:0Fu11Rm", vorpd_3 = "rrmoy:660FV56rM", vorps_3 = "rrmoy:0FV56rM", vpermilpd_3 = "rrmoy:660F38V0DrM|rmioy:660F3Au05rMU", vpermilps_3 = "rrmoy:660F38V0CrM|rmioy:660F3Au04rMU", vperm2f128_4 = "rrmiy:660F3AV06rMU", vptestpd_2 = "rmoy:660F38u0FrM", vptestps_2 = "rmoy:660F38u0ErM", vrcpps_2 = "rmoy:0Fu53rM", vrcpss_3 = "rrro:F30FV53rM|rrx/ood:", vrsqrtps_2 = "rmoy:0Fu52rM", vrsqrtss_3 = "rrro:F30FV52rM|rrx/ood:", vroundpd_3 = "rmioy:660F3AV09rMU", vroundps_3 = "rmioy:660F3AV08rMU", vroundsd_4 = "rrrio:660F3AV0BrMU|rrxi/ooq:", vroundss_4 = "rrrio:660F3AV0ArMU|rrxi/ood:", vshufpd_4 = "rrmioy:660FVC6rMU", vshufps_4 = "rrmioy:0FVC6rMU", vsqrtps_2 = "rmoy:0Fu51rM", vsqrtss_2 = "rro:F30Fu51rM|rx/od:", vsqrtpd_2 = "rmoy:660Fu51rM", vsqrtsd_2 = "rro:F20Fu51rM|rx/oq:", vstmxcsr_1 = "xd:0FuAE3m", vucomisd_2 = "rro:660Fu2ErM|rx/oq:", vucomiss_2 = "rro:0Fu2ErM|rx/od:", vunpckhpd_3 = "rrmoy:660FV15rM", vunpckhps_3 = "rrmoy:0FV15rM", vunpcklpd_3 = "rrmoy:660FV14rM", vunpcklps_3 = "rrmoy:0FV14rM", vxorpd_3 = "rrmoy:660FV57rM", vxorps_3 = "rrmoy:0FV57rM", vzeroall_0 = "0FuL77", vzeroupper_0 = "0Fu77", -- AVX2 FP ops vbroadcastss_2 = "rx/od:660F38u18rM|rx/yd:|rro:|rr/yo:", vbroadcastsd_2 = "rx/yq:660F38u19rM|rr/yo:", -- *vgather* (!vsib) vpermpd_3 = "rmiy:660F3AuX01rMU", vpermps_3 = "rrmy:660F38V16rM", -- AVX, AVX2 integer ops -- In general, xmm requires AVX, ymm requires AVX2. vaesdec_3 = "rrmo:660F38VDErM", vaesdeclast_3 = "rrmo:660F38VDFrM", vaesenc_3 = "rrmo:660F38VDCrM", vaesenclast_3 = "rrmo:660F38VDDrM", vaesimc_2 = "rmo:660F38uDBrM", vaeskeygenassist_3 = "rmio:660F3AuDFrMU", vlddqu_2 = "rxoy:F20FuF0rM", vmaskmovdqu_2 = "rro:660FuF7rM", vmovdqa_2 = "rmoy:660Fu6FrM|mroy:660Fu7FRm", vmovdqu_2 = "rmoy:F30Fu6FrM|mroy:F30Fu7FRm", vmovntdq_2 = "xroy:660FuE7Rm", vmovntdqa_2 = "rxoy:660F38u2ArM", vmpsadbw_4 = "rrmioy:660F3AV42rMU", vpabsb_2 = "rmoy:660F38u1CrM", vpabsd_2 = "rmoy:660F38u1ErM", vpabsw_2 = "rmoy:660F38u1DrM", vpackusdw_3 = "rrmoy:660F38V2BrM", vpalignr_4 = "rrmioy:660F3AV0FrMU", vpblendvb_4 = "rrmroy:660F3AV4CrMs", vpblendw_4 = "rrmioy:660F3AV0ErMU", vpclmulqdq_4 = "rrmio:660F3AV44rMU", vpcmpeqq_3 = "rrmoy:660F38V29rM", vpcmpestri_3 = "rmio:660F3Au61rMU", vpcmpestrm_3 = "rmio:660F3Au60rMU", vpcmpgtq_3 = "rrmoy:660F38V37rM", vpcmpistri_3 = "rmio:660F3Au63rMU", vpcmpistrm_3 = "rmio:660F3Au62rMU", vpextrb_3 = "rri/do:660F3Au14nRmU|rri/qo:|xri/bo:", vpextrw_3 = "rri/do:660FuC5rMU|xri/wo:660F3Au15nRmU", vpextrd_3 = "mri/do:660F3Au16RmU", vpextrq_3 = "mri/qo:660F3Au16RmU", vphaddw_3 = "rrmoy:660F38V01rM", vphaddd_3 = "rrmoy:660F38V02rM", vphaddsw_3 = "rrmoy:660F38V03rM", vphminposuw_2 = "rmo:660F38u41rM", vphsubw_3 = "rrmoy:660F38V05rM", vphsubd_3 = "rrmoy:660F38V06rM", vphsubsw_3 = "rrmoy:660F38V07rM", vpinsrb_4 = "rrri/ood:660F3AV20rMU|rrxi/oob:", vpinsrw_4 = "rrri/ood:660FVC4rMU|rrxi/oow:", vpinsrd_4 = "rrmi/ood:660F3AV22rMU", vpinsrq_4 = "rrmi/ooq:660F3AVX22rMU", vpmaddubsw_3 = "rrmoy:660F38V04rM", vpmaxsb_3 = "rrmoy:660F38V3CrM", vpmaxsd_3 = "rrmoy:660F38V3DrM", vpmaxuw_3 = "rrmoy:660F38V3ErM", vpmaxud_3 = "rrmoy:660F38V3FrM", vpminsb_3 = "rrmoy:660F38V38rM", vpminsd_3 = "rrmoy:660F38V39rM", vpminuw_3 = "rrmoy:660F38V3ArM", vpminud_3 = "rrmoy:660F38V3BrM", vpmovmskb_2 = "rr/do:660FuD7rM|rr/dy:660FuLD7rM", vpmovsxbw_2 = "rroy:660F38u20rM|rx/oq:|rx/yo:", vpmovsxbd_2 = "rroy:660F38u21rM|rx/od:|rx/yq:", vpmovsxbq_2 = "rroy:660F38u22rM|rx/ow:|rx/yd:", vpmovsxwd_2 = "rroy:660F38u23rM|rx/oq:|rx/yo:", vpmovsxwq_2 = "rroy:660F38u24rM|rx/od:|rx/yq:", vpmovsxdq_2 = "rroy:660F38u25rM|rx/oq:|rx/yo:", vpmovzxbw_2 = "rroy:660F38u30rM|rx/oq:|rx/yo:", vpmovzxbd_2 = "rroy:660F38u31rM|rx/od:|rx/yq:", vpmovzxbq_2 = "rroy:660F38u32rM|rx/ow:|rx/yd:", vpmovzxwd_2 = "rroy:660F38u33rM|rx/oq:|rx/yo:", vpmovzxwq_2 = "rroy:660F38u34rM|rx/od:|rx/yq:", vpmovzxdq_2 = "rroy:660F38u35rM|rx/oq:|rx/yo:", vpmuldq_3 = "rrmoy:660F38V28rM", vpmulhrsw_3 = "rrmoy:660F38V0BrM", vpmulld_3 = "rrmoy:660F38V40rM", vpshufb_3 = "rrmoy:660F38V00rM", vpshufd_3 = "rmioy:660Fu70rMU", vpshufhw_3 = "rmioy:F30Fu70rMU", vpshuflw_3 = "rmioy:F20Fu70rMU", vpsignb_3 = "rrmoy:660F38V08rM", vpsignw_3 = "rrmoy:660F38V09rM", vpsignd_3 = "rrmoy:660F38V0ArM", vpslldq_3 = "rrioy:660Fv737mU", vpsllw_3 = "rrmoy:660FVF1rM|rrioy:660Fv716mU", vpslld_3 = "rrmoy:660FVF2rM|rrioy:660Fv726mU", vpsllq_3 = "rrmoy:660FVF3rM|rrioy:660Fv736mU", vpsraw_3 = "rrmoy:660FVE1rM|rrioy:660Fv714mU", vpsrad_3 = "rrmoy:660FVE2rM|rrioy:660Fv724mU", vpsrldq_3 = "rrioy:660Fv733mU", vpsrlw_3 = "rrmoy:660FVD1rM|rrioy:660Fv712mU", vpsrld_3 = "rrmoy:660FVD2rM|rrioy:660Fv722mU", vpsrlq_3 = "rrmoy:660FVD3rM|rrioy:660Fv732mU", vptest_2 = "rmoy:660F38u17rM", -- AVX2 integer ops vbroadcasti128_2 = "rx/yo:660F38u5ArM", vinserti128_4 = "rrmi/yyo:660F3AV38rMU", vextracti128_3 = "mri/oy:660F3AuL39RmU", vpblendd_4 = "rrmioy:660F3AV02rMU", vpbroadcastb_2 = "rro:660F38u78rM|rx/ob:|rr/yo:|rx/yb:", vpbroadcastw_2 = "rro:660F38u79rM|rx/ow:|rr/yo:|rx/yw:", vpbroadcastd_2 = "rro:660F38u58rM|rx/od:|rr/yo:|rx/yd:", vpbroadcastq_2 = "rro:660F38u59rM|rx/oq:|rr/yo:|rx/yq:", vpermd_3 = "rrmy:660F38V36rM", vpermq_3 = "rmiy:660F3AuX00rMU", -- *vpgather* (!vsib) vperm2i128_4 = "rrmiy:660F3AV46rMU", vpmaskmovd_3 = "rrxoy:660F38V8CrM|xrroy:660F38V8ERm", vpmaskmovq_3 = "rrxoy:660F38VX8CrM|xrroy:660F38VX8ERm", vpsllvd_3 = "rrmoy:660F38V47rM", vpsllvq_3 = "rrmoy:660F38VX47rM", vpsravd_3 = "rrmoy:660F38V46rM", vpsrlvd_3 = "rrmoy:660F38V45rM", vpsrlvq_3 = "rrmoy:660F38VX45rM", -- Intel ADX adcx_2 = "rmqd:660F38F6rM", adox_2 = "rmqd:F30F38F6rM", } ------------------------------------------------------------------------------ -- Arithmetic ops. for name,n in pairs{ add = 0, ["or"] = 1, adc = 2, sbb = 3, ["and"] = 4, sub = 5, xor = 6, cmp = 7 } do local n8 = shl(n, 3) map_op[name.."_2"] = format( "mr:%02XRm|rm:%02XrM|mI1qdw:81%XmI|mS1qdw:83%XmS|Ri1qdwb:%02Xri|mi1qdwb:81%Xmi", 1+n8, 3+n8, n, n, 5+n8, n) end -- Shift ops. for name,n in pairs{ rol = 0, ror = 1, rcl = 2, rcr = 3, shl = 4, shr = 5, sar = 7, sal = 4 } do map_op[name.."_2"] = format("m1:D1%Xm|mC1qdwb:D3%Xm|mi:C1%XmU", n, n, n) end -- Conditional ops. for cc,n in pairs(map_cc) do map_op["j"..cc.."_1"] = format("J.:n0F8%XJ", n) -- short: 7%X map_op["set"..cc.."_1"] = format("mb:n0F9%X2m", n) map_op["cmov"..cc.."_2"] = format("rmqdw:0F4%XrM", n) -- P6+ end -- FP arithmetic ops. for name,n in pairs{ add = 0, mul = 1, com = 2, comp = 3, sub = 4, subr = 5, div = 6, divr = 7 } do local nc = 0xc0 + shl(n, 3) local nr = nc + (n < 4 and 0 or (n % 2 == 0 and 8 or -8)) local fn = "f"..name map_op[fn.."_1"] = format("ff:D8%02Xr|xd:D8%Xm|xq:nDC%Xm", nc, n, n) if n == 2 or n == 3 then map_op[fn.."_2"] = format("Fff:D8%02XR|Fx2d:D8%XM|Fx2q:nDC%XM", nc, n, n) else map_op[fn.."_2"] = format("Fff:D8%02XR|fFf:DC%02Xr|Fx2d:D8%XM|Fx2q:nDC%XM", nc, nr, n, n) map_op[fn.."p_1"] = format("ff:DE%02Xr", nr) map_op[fn.."p_2"] = format("fFf:DE%02Xr", nr) end map_op["fi"..name.."_1"] = format("xd:DA%Xm|xw:nDE%Xm", n, n) end -- FP conditional moves. for cc,n in pairs{ b=0, e=1, be=2, u=3, nb=4, ne=5, nbe=6, nu=7 } do local nc = 0xdac0 + shl(band(n, 3), 3) + shl(band(n, 4), 6) map_op["fcmov"..cc.."_1"] = format("ff:%04Xr", nc) -- P6+ map_op["fcmov"..cc.."_2"] = format("Fff:%04XR", nc) -- P6+ end -- SSE / AVX FP arithmetic ops. for name,n in pairs{ sqrt = 1, add = 8, mul = 9, sub = 12, min = 13, div = 14, max = 15 } do map_op[name.."ps_2"] = format("rmo:0F5%XrM", n) map_op[name.."ss_2"] = format("rro:F30F5%XrM|rx/od:", n) map_op[name.."pd_2"] = format("rmo:660F5%XrM", n) map_op[name.."sd_2"] = format("rro:F20F5%XrM|rx/oq:", n) if n ~= 1 then map_op["v"..name.."ps_3"] = format("rrmoy:0FV5%XrM", n) map_op["v"..name.."ss_3"] = format("rrro:F30FV5%XrM|rrx/ood:", n) map_op["v"..name.."pd_3"] = format("rrmoy:660FV5%XrM", n) map_op["v"..name.."sd_3"] = format("rrro:F20FV5%XrM|rrx/ooq:", n) end end -- SSE2 / AVX / AVX2 integer arithmetic ops (66 0F leaf). for name,n in pairs{ paddb = 0xFC, paddw = 0xFD, paddd = 0xFE, paddq = 0xD4, paddsb = 0xEC, paddsw = 0xED, packssdw = 0x6B, packsswb = 0x63, packuswb = 0x67, paddusb = 0xDC, paddusw = 0xDD, pand = 0xDB, pandn = 0xDF, pavgb = 0xE0, pavgw = 0xE3, pcmpeqb = 0x74, pcmpeqd = 0x76, pcmpeqw = 0x75, pcmpgtb = 0x64, pcmpgtd = 0x66, pcmpgtw = 0x65, pmaddwd = 0xF5, pmaxsw = 0xEE, pmaxub = 0xDE, pminsw = 0xEA, pminub = 0xDA, pmulhuw = 0xE4, pmulhw = 0xE5, pmullw = 0xD5, pmuludq = 0xF4, por = 0xEB, psadbw = 0xF6, psubb = 0xF8, psubw = 0xF9, psubd = 0xFA, psubq = 0xFB, psubsb = 0xE8, psubsw = 0xE9, psubusb = 0xD8, psubusw = 0xD9, punpckhbw = 0x68, punpckhwd = 0x69, punpckhdq = 0x6A, punpckhqdq = 0x6D, punpcklbw = 0x60, punpcklwd = 0x61, punpckldq = 0x62, punpcklqdq = 0x6C, pxor = 0xEF } do map_op[name.."_2"] = format("rmo:660F%02XrM", n) map_op["v"..name.."_3"] = format("rrmoy:660FV%02XrM", n) end ------------------------------------------------------------------------------ local map_vexarg = { u = false, v = 1, V = 2 } -- Process pattern string. local function dopattern(pat, args, sz, op, needrex) local digit, addin, vex local opcode = 0 local szov = sz local narg = 1 local rex = 0 -- Limit number of section buffer positions used by a single dasm_put(). -- A single opcode needs a maximum of 6 positions. if secpos+6 > maxsecpos then wflush() end -- Process each character. for c in gmatch(pat.."|", ".") do if match(c, "%x") then -- Hex digit. digit = byte(c) - 48 if digit > 48 then digit = digit - 39 elseif digit > 16 then digit = digit - 7 end opcode = opcode*16 + digit addin = nil elseif c == "n" then -- Disable operand size mods for opcode. szov = nil elseif c == "X" then -- Force REX.W. rex = 8 elseif c == "L" then -- Force VEX.L. vex.l = true elseif c == "r" then -- Merge 1st operand regno. into opcode. addin = args[1]; opcode = opcode + (addin.reg % 8) if narg < 2 then narg = 2 end elseif c == "R" then -- Merge 2nd operand regno. into opcode. addin = args[2]; opcode = opcode + (addin.reg % 8) narg = 3 elseif c == "m" or c == "M" then -- Encode ModRM/SIB. local s if addin then s = addin.reg opcode = opcode - band(s, 7) -- Undo regno opcode merge. else s = band(opcode, 15) -- Undo last digit. opcode = shr(opcode, 4) end local nn = c == "m" and 1 or 2 local t = args[nn] if narg <= nn then narg = nn + 1 end if szov == "q" and rex == 0 then rex = rex + 8 end if t.reg and t.reg > 7 then rex = rex + 1 end if t.xreg and t.xreg > 7 then rex = rex + 2 end if s > 7 then rex = rex + 4 end if needrex then rex = rex + 16 end local psz, sk = wputop(szov, opcode, rex, vex, s < 0, t.vreg or t.vxreg) opcode = nil local imark = sub(pat, -1) -- Force a mark (ugly). -- Put ModRM/SIB with regno/last digit as spare. wputmrmsib(t, imark, s, addin and addin.vreg, psz, sk) addin = nil elseif map_vexarg[c] ~= nil then -- Encode using VEX prefix local b = band(opcode, 255); opcode = shr(opcode, 8) local m = 1 if b == 0x38 then m = 2 elseif b == 0x3a then m = 3 end if m ~= 1 then b = band(opcode, 255); opcode = shr(opcode, 8) end if b ~= 0x0f then werror("expected `0F', `0F38', or `0F3A' to precede `"..c.. "' in pattern `"..pat.."' for `"..op.."'") end local v = map_vexarg[c] if v then v = remove(args, v) end b = band(opcode, 255) local p = 0 if b == 0x66 then p = 1 elseif b == 0xf3 then p = 2 elseif b == 0xf2 then p = 3 end if p ~= 0 then opcode = shr(opcode, 8) end if opcode ~= 0 then wputop(nil, opcode, 0); opcode = 0 end vex = { m = m, p = p, v = v } else if opcode then -- Flush opcode. if szov == "q" and rex == 0 then rex = rex + 8 end if needrex then rex = rex + 16 end if addin and addin.reg == -1 then local psz, sk = wputop(szov, opcode - 7, rex, vex, true) wvreg("opcode", addin.vreg, psz, sk) else if addin and addin.reg > 7 then rex = rex + 1 end wputop(szov, opcode, rex, vex) end opcode = nil end if c == "|" then break end if c == "o" then -- Offset (pure 32 bit displacement). wputdarg(args[1].disp); if narg < 2 then narg = 2 end elseif c == "O" then wputdarg(args[2].disp); narg = 3 else -- Anything else is an immediate operand. local a = args[narg] narg = narg + 1 local mode, imm = a.mode, a.imm if mode == "iJ" and not match("iIJ", c) then werror("bad operand size for label") end if c == "S" then wputsbarg(imm) elseif c == "U" then wputbarg(imm) elseif c == "W" then wputwarg(imm) elseif c == "i" or c == "I" then if mode == "iJ" then wputlabel("IMM_", imm, 1) elseif mode == "iI" and c == "I" then waction(sz == "w" and "IMM_WB" or "IMM_DB", imm) else wputszarg(sz, imm) end elseif c == "J" then if mode == "iPJ" then waction("REL_A", imm) -- !x64 (secpos) else wputlabel("REL_", imm, 2) end elseif c == "s" then local reg = a.reg if reg < 0 then wputb(0) wvreg("imm.hi", a.vreg) else wputb(shl(reg, 4)) end else werror("bad char `"..c.."' in pattern `"..pat.."' for `"..op.."'") end end end end end ------------------------------------------------------------------------------ -- Mapping of operand modes to short names. Suppress output with '#'. local map_modename = { r = "reg", R = "eax", C = "cl", x = "mem", m = "mrm", i = "imm", f = "stx", F = "st0", J = "lbl", ["1"] = "1", I = "#", S = "#", O = "#", } -- Return a table/string showing all possible operand modes. local function templatehelp(template, nparams) if nparams == 0 then return "" end local t = {} for tm in gmatch(template, "[^%|]+") do local s = map_modename[sub(tm, 1, 1)] s = s..gsub(sub(tm, 2, nparams), ".", function(c) return ", "..map_modename[c] end) if not match(s, "#") then t[#t+1] = s end end return t end -- Match operand modes against mode match part of template. local function matchtm(tm, args) for i=1,#args do if not match(args[i].mode, sub(tm, i, i)) then return end end return true end -- Handle opcodes defined with template strings. map_op[".template__"] = function(params, template, nparams) if not params then return templatehelp(template, nparams) end local args = {} -- Zero-operand opcodes have no match part. if #params == 0 then dopattern(template, args, "d", params.op, nil) return end -- Determine common operand size (coerce undefined size) or flag as mixed. local sz, szmix, needrex for i,p in ipairs(params) do args[i] = parseoperand(p) local nsz = args[i].opsize if nsz then if sz and sz ~= nsz then szmix = true else sz = nsz end end local nrex = args[i].needrex if nrex ~= nil then if needrex == nil then needrex = nrex elseif needrex ~= nrex then werror("bad mix of byte-addressable registers") end end end -- Try all match:pattern pairs (separated by '|'). local gotmatch, lastpat for tm in gmatch(template, "[^%|]+") do -- Split off size match (starts after mode match) and pattern string. local szm, pat = match(tm, "^(.-):(.*)$", #args+1) if pat == "" then pat = lastpat else lastpat = pat end if matchtm(tm, args) then local prefix = sub(szm, 1, 1) if prefix == "/" then -- Exactly match leading operand sizes. for i = #szm,1,-1 do if i == 1 then dopattern(pat, args, sz, params.op, needrex) -- Process pattern. return elseif args[i-1].opsize ~= sub(szm, i, i) then break end end else -- Match common operand size. local szp = sz if szm == "" then szm = x64 and "qdwb" or "dwb" end -- Default sizes. if prefix == "1" then szp = args[1].opsize; szmix = nil elseif prefix == "2" then szp = args[2].opsize; szmix = nil end if not szmix and (prefix == "." or match(szm, szp or "#")) then dopattern(pat, args, szp, params.op, needrex) -- Process pattern. return end end gotmatch = true end end local msg = "bad operand mode" if gotmatch then if szmix then msg = "mixed operand size" else msg = sz and "bad operand size" or "missing operand size" end end werror(msg.." in `"..opmodestr(params.op, args).."'") end ------------------------------------------------------------------------------ -- x64-specific opcode for 64 bit immediates and displacements. if x64 then function map_op.mov64_2(params) if not params then return { "reg, imm", "reg, [disp]", "[disp], reg" } end if secpos+2 > maxsecpos then wflush() end local opcode, op64, sz, rex, vreg local op64 = match(params[1], "^%[%s*(.-)%s*%]$") if op64 then local a = parseoperand(params[2]) if a.mode ~= "rmR" then werror("bad operand mode") end sz = a.opsize rex = sz == "q" and 8 or 0 opcode = 0xa3 else op64 = match(params[2], "^%[%s*(.-)%s*%]$") local a = parseoperand(params[1]) if op64 then if a.mode ~= "rmR" then werror("bad operand mode") end sz = a.opsize rex = sz == "q" and 8 or 0 opcode = 0xa1 else if sub(a.mode, 1, 1) ~= "r" or a.opsize ~= "q" then werror("bad operand mode") end op64 = params[2] if a.reg == -1 then vreg = a.vreg opcode = 0xb8 else opcode = 0xb8 + band(a.reg, 7) end rex = a.reg > 7 and 9 or 8 end end local psz, sk = wputop(sz, opcode, rex, nil, vreg) wvreg("opcode", vreg, psz, sk) waction("IMM_D", format("(unsigned int)(%s)", op64)) waction("IMM_D", format("(unsigned int)((%s)>>32)", op64)) end end ------------------------------------------------------------------------------ -- Pseudo-opcodes for data storage. local function op_data(params) if not params then return "imm..." end local sz = sub(params.op, 2, 2) if sz == "a" then sz = addrsize end for _,p in ipairs(params) do local a = parseoperand(p) if sub(a.mode, 1, 1) ~= "i" or (a.opsize and a.opsize ~= sz) then werror("bad mode or size in `"..p.."'") end if a.mode == "iJ" then wputlabel("IMM_", a.imm, 1) else wputszarg(sz, a.imm) end if secpos+2 > maxsecpos then wflush() end end end map_op[".byte_*"] = op_data map_op[".sbyte_*"] = op_data map_op[".word_*"] = op_data map_op[".dword_*"] = op_data map_op[".aword_*"] = op_data ------------------------------------------------------------------------------ -- Pseudo-opcode to mark the position where the action list is to be emitted. map_op[".actionlist_1"] = function(params) if not params then return "cvar" end local name = params[1] -- No syntax check. You get to keep the pieces. wline(function(out) writeactions(out, name) end) end -- Pseudo-opcode to mark the position where the global enum is to be emitted. map_op[".globals_1"] = function(params) if not params then return "prefix" end local prefix = params[1] -- No syntax check. You get to keep the pieces. wline(function(out) writeglobals(out, prefix) end) end -- Pseudo-opcode to mark the position where the global names are to be emitted. map_op[".globalnames_1"] = function(params) if not params then return "cvar" end local name = params[1] -- No syntax check. You get to keep the pieces. wline(function(out) writeglobalnames(out, name) end) end -- Pseudo-opcode to mark the position where the extern names are to be emitted. map_op[".externnames_1"] = function(params) if not params then return "cvar" end local name = params[1] -- No syntax check. You get to keep the pieces. wline(function(out) writeexternnames(out, name) end) end ------------------------------------------------------------------------------ -- Label pseudo-opcode (converted from trailing colon form). map_op[".label_2"] = function(params) if not params then return "[1-9] | ->global | =>pcexpr [, addr]" end if secpos+2 > maxsecpos then wflush() end local a = parseoperand(params[1]) local mode, imm = a.mode, a.imm if type(imm) == "number" and (mode == "iJ" or (imm >= 1 and imm <= 9)) then -- Local label (1: ... 9:) or global label (->global:). waction("LABEL_LG", nil, 1) wputxb(imm) elseif mode == "iJ" then -- PC label (=>pcexpr:). waction("LABEL_PC", imm) else werror("bad label definition") end -- SETLABEL must immediately follow LABEL_LG/LABEL_PC. local addr = params[2] if addr then local a = parseoperand(addr) if a.mode == "iPJ" then waction("SETLABEL", a.imm) else werror("bad label assignment") end end end map_op[".label_1"] = map_op[".label_2"] ------------------------------------------------------------------------------ -- Alignment pseudo-opcode. map_op[".align_1"] = function(params) if not params then return "numpow2" end if secpos+1 > maxsecpos then wflush() end local align = tonumber(params[1]) or map_opsizenum[map_opsize[params[1]]] if align then local x = align -- Must be a power of 2 in the range (2 ... 256). for i=1,8 do x = x / 2 if x == 1 then waction("ALIGN", nil, 1) wputxb(align-1) -- Action byte is 2**n-1. return end end end werror("bad alignment") end -- Spacing pseudo-opcode. map_op[".space_2"] = function(params) if not params then return "num [, filler]" end if secpos+1 > maxsecpos then wflush() end waction("SPACE", params[1]) local fill = params[2] if fill then fill = tonumber(fill) if not fill or fill < 0 or fill > 255 then werror("bad filler") end end wputxb(fill or 0) end map_op[".space_1"] = map_op[".space_2"] ------------------------------------------------------------------------------ -- Pseudo-opcode for (primitive) type definitions (map to C types). map_op[".type_3"] = function(params, nparams) if not params then return nparams == 2 and "name, ctype" or "name, ctype, reg" end local name, ctype, reg = params[1], params[2], params[3] if not match(name, "^[%a_][%w_]*$") then werror("bad type name `"..name.."'") end local tp = map_type[name] if tp then werror("duplicate type `"..name.."'") end if reg and not map_reg_valid_base[reg] then werror("bad base register `"..(map_reg_rev[reg] or reg).."'") end -- Add #type to defines. A bit unclean to put it in map_archdef. map_archdef["#"..name] = "sizeof("..ctype..")" -- Add new type and emit shortcut define. local num = ctypenum + 1 map_type[name] = { ctype = ctype, ctypefmt = format("Dt%X(%%s)", num), reg = reg, } wline(format("#define Dt%X(_V) (int)(ptrdiff_t)&(((%s *)0)_V)", num, ctype)) ctypenum = num end map_op[".type_2"] = map_op[".type_3"] -- Dump type definitions. local function dumptypes(out, lvl) local t = {} for name in pairs(map_type) do t[#t+1] = name end sort(t) out:write("Type definitions:\n") for _,name in ipairs(t) do local tp = map_type[name] local reg = tp.reg and map_reg_rev[tp.reg] or "" out:write(format(" %-20s %-20s %s\n", name, tp.ctype, reg)) end out:write("\n") end ------------------------------------------------------------------------------ -- Set the current section. function _M.section(num) waction("SECTION") wputxb(num) wflush(true) -- SECTION is a terminal action. end ------------------------------------------------------------------------------ -- Dump architecture description. function _M.dumparch(out) out:write(format("DynASM %s version %s, released %s\n\n", _info.arch, _info.version, _info.release)) dumpregs(out) dumpactions(out) end -- Dump all user defined elements. function _M.dumpdef(out, lvl) dumptypes(out, lvl) dumpglobals(out, lvl) dumpexterns(out, lvl) end ------------------------------------------------------------------------------ -- Pass callbacks from/to the DynASM core. function _M.passcb(wl, we, wf, ww) wline, werror, wfatal, wwarn = wl, we, wf, ww return wflush end -- Setup the arch-specific module. function _M.setup(arch, opt) g_arch, g_opt = arch, opt end -- Merge the core maps and the arch-specific maps. function _M.mergemaps(map_coreop, map_def) setmetatable(map_op, { __index = map_coreop }) setmetatable(map_def, { __index = map_archdef }) return map_op, map_def end return _M ------------------------------------------------------------------------------ luajit-2.1.0~beta3+dfsg.orig/dynasm/dasm_arm.lua0000644000175100017510000010344613101703334021107 0ustar ondrejondrej------------------------------------------------------------------------------ -- DynASM ARM module. -- -- Copyright (C) 2005-2017 Mike Pall. All rights reserved. -- See dynasm.lua for full copyright notice. ------------------------------------------------------------------------------ -- Module information: local _info = { arch = "arm", description = "DynASM ARM module", version = "1.4.0", vernum = 10400, release = "2015-10-18", author = "Mike Pall", license = "MIT", } -- Exported glue functions for the arch-specific module. local _M = { _info = _info } -- Cache library functions. local type, tonumber, pairs, ipairs = type, tonumber, pairs, ipairs local assert, setmetatable, rawget = assert, setmetatable, rawget local _s = string local sub, format, byte, char = _s.sub, _s.format, _s.byte, _s.char local match, gmatch, gsub = _s.match, _s.gmatch, _s.gsub local concat, sort, insert = table.concat, table.sort, table.insert local bit = bit or require("bit") local band, shl, shr, sar = bit.band, bit.lshift, bit.rshift, bit.arshift local ror, tohex = bit.ror, bit.tohex -- Inherited tables and callbacks. local g_opt, g_arch local wline, werror, wfatal, wwarn -- Action name list. -- CHECK: Keep this in sync with the C code! local action_names = { "STOP", "SECTION", "ESC", "REL_EXT", "ALIGN", "REL_LG", "LABEL_LG", "REL_PC", "LABEL_PC", "IMM", "IMM12", "IMM16", "IMML8", "IMML12", "IMMV8", } -- Maximum number of section buffer positions for dasm_put(). -- CHECK: Keep this in sync with the C code! local maxsecpos = 25 -- Keep this low, to avoid excessively long C lines. -- Action name -> action number. local map_action = {} for n,name in ipairs(action_names) do map_action[name] = n-1 end -- Action list buffer. local actlist = {} -- Argument list for next dasm_put(). Start with offset 0 into action list. local actargs = { 0 } -- Current number of section buffer positions for dasm_put(). local secpos = 1 ------------------------------------------------------------------------------ -- Dump action names and numbers. local function dumpactions(out) out:write("DynASM encoding engine action codes:\n") for n,name in ipairs(action_names) do local num = map_action[name] out:write(format(" %-10s %02X %d\n", name, num, num)) end out:write("\n") end -- Write action list buffer as a huge static C array. local function writeactions(out, name) local nn = #actlist if nn == 0 then nn = 1; actlist[0] = map_action.STOP end out:write("static const unsigned int ", name, "[", nn, "] = {\n") for i = 1,nn-1 do assert(out:write("0x", tohex(actlist[i]), ",\n")) end assert(out:write("0x", tohex(actlist[nn]), "\n};\n\n")) end ------------------------------------------------------------------------------ -- Add word to action list. local function wputxw(n) assert(n >= 0 and n <= 0xffffffff and n % 1 == 0, "word out of range") actlist[#actlist+1] = n end -- Add action to list with optional arg. Advance buffer pos, too. local function waction(action, val, a, num) local w = assert(map_action[action], "bad action name `"..action.."'") wputxw(w * 0x10000 + (val or 0)) if a then actargs[#actargs+1] = a end if a or num then secpos = secpos + (num or 1) end end -- Flush action list (intervening C code or buffer pos overflow). local function wflush(term) if #actlist == actargs[1] then return end -- Nothing to flush. if not term then waction("STOP") end -- Terminate action list. wline(format("dasm_put(Dst, %s);", concat(actargs, ", ")), true) actargs = { #actlist } -- Actionlist offset is 1st arg to next dasm_put(). secpos = 1 -- The actionlist offset occupies a buffer position, too. end -- Put escaped word. local function wputw(n) if n <= 0x000fffff then waction("ESC") end wputxw(n) end -- Reserve position for word. local function wpos() local pos = #actlist+1 actlist[pos] = "" return pos end -- Store word to reserved position. local function wputpos(pos, n) assert(n >= 0 and n <= 0xffffffff and n % 1 == 0, "word out of range") if n <= 0x000fffff then insert(actlist, pos+1, n) n = map_action.ESC * 0x10000 end actlist[pos] = n end ------------------------------------------------------------------------------ -- Global label name -> global label number. With auto assignment on 1st use. local next_global = 20 local map_global = setmetatable({}, { __index = function(t, name) if not match(name, "^[%a_][%w_]*$") then werror("bad global label") end local n = next_global if n > 2047 then werror("too many global labels") end next_global = n + 1 t[name] = n return n end}) -- Dump global labels. local function dumpglobals(out, lvl) local t = {} for name, n in pairs(map_global) do t[n] = name end out:write("Global labels:\n") for i=20,next_global-1 do out:write(format(" %s\n", t[i])) end out:write("\n") end -- Write global label enum. local function writeglobals(out, prefix) local t = {} for name, n in pairs(map_global) do t[n] = name end out:write("enum {\n") for i=20,next_global-1 do out:write(" ", prefix, t[i], ",\n") end out:write(" ", prefix, "_MAX\n};\n") end -- Write global label names. local function writeglobalnames(out, name) local t = {} for name, n in pairs(map_global) do t[n] = name end out:write("static const char *const ", name, "[] = {\n") for i=20,next_global-1 do out:write(" \"", t[i], "\",\n") end out:write(" (const char *)0\n};\n") end ------------------------------------------------------------------------------ -- Extern label name -> extern label number. With auto assignment on 1st use. local next_extern = 0 local map_extern_ = {} local map_extern = setmetatable({}, { __index = function(t, name) -- No restrictions on the name for now. local n = next_extern if n > 2047 then werror("too many extern labels") end next_extern = n + 1 t[name] = n map_extern_[n] = name return n end}) -- Dump extern labels. local function dumpexterns(out, lvl) out:write("Extern labels:\n") for i=0,next_extern-1 do out:write(format(" %s\n", map_extern_[i])) end out:write("\n") end -- Write extern label names. local function writeexternnames(out, name) out:write("static const char *const ", name, "[] = {\n") for i=0,next_extern-1 do out:write(" \"", map_extern_[i], "\",\n") end out:write(" (const char *)0\n};\n") end ------------------------------------------------------------------------------ -- Arch-specific maps. -- Ext. register name -> int. name. local map_archdef = { sp = "r13", lr = "r14", pc = "r15", } -- Int. register name -> ext. name. local map_reg_rev = { r13 = "sp", r14 = "lr", r15 = "pc", } local map_type = {} -- Type name -> { ctype, reg } local ctypenum = 0 -- Type number (for Dt... macros). -- Reverse defines for registers. function _M.revdef(s) return map_reg_rev[s] or s end local map_shift = { lsl = 0, lsr = 1, asr = 2, ror = 3, } local map_cond = { eq = 0, ne = 1, cs = 2, cc = 3, mi = 4, pl = 5, vs = 6, vc = 7, hi = 8, ls = 9, ge = 10, lt = 11, gt = 12, le = 13, al = 14, hs = 2, lo = 3, } ------------------------------------------------------------------------------ -- Template strings for ARM instructions. local map_op = { -- Basic data processing instructions. and_3 = "e0000000DNPs", eor_3 = "e0200000DNPs", sub_3 = "e0400000DNPs", rsb_3 = "e0600000DNPs", add_3 = "e0800000DNPs", adc_3 = "e0a00000DNPs", sbc_3 = "e0c00000DNPs", rsc_3 = "e0e00000DNPs", tst_2 = "e1100000NP", teq_2 = "e1300000NP", cmp_2 = "e1500000NP", cmn_2 = "e1700000NP", orr_3 = "e1800000DNPs", mov_2 = "e1a00000DPs", bic_3 = "e1c00000DNPs", mvn_2 = "e1e00000DPs", and_4 = "e0000000DNMps", eor_4 = "e0200000DNMps", sub_4 = "e0400000DNMps", rsb_4 = "e0600000DNMps", add_4 = "e0800000DNMps", adc_4 = "e0a00000DNMps", sbc_4 = "e0c00000DNMps", rsc_4 = "e0e00000DNMps", tst_3 = "e1100000NMp", teq_3 = "e1300000NMp", cmp_3 = "e1500000NMp", cmn_3 = "e1700000NMp", orr_4 = "e1800000DNMps", mov_3 = "e1a00000DMps", bic_4 = "e1c00000DNMps", mvn_3 = "e1e00000DMps", lsl_3 = "e1a00000DMws", lsr_3 = "e1a00020DMws", asr_3 = "e1a00040DMws", ror_3 = "e1a00060DMws", rrx_2 = "e1a00060DMs", -- Multiply and multiply-accumulate. mul_3 = "e0000090NMSs", mla_4 = "e0200090NMSDs", umaal_4 = "e0400090DNMSs", -- v6 mls_4 = "e0600090DNMSs", -- v6T2 umull_4 = "e0800090DNMSs", umlal_4 = "e0a00090DNMSs", smull_4 = "e0c00090DNMSs", smlal_4 = "e0e00090DNMSs", -- Halfword multiply and multiply-accumulate. smlabb_4 = "e1000080NMSD", -- v5TE smlatb_4 = "e10000a0NMSD", -- v5TE smlabt_4 = "e10000c0NMSD", -- v5TE smlatt_4 = "e10000e0NMSD", -- v5TE smlawb_4 = "e1200080NMSD", -- v5TE smulwb_3 = "e12000a0NMS", -- v5TE smlawt_4 = "e12000c0NMSD", -- v5TE smulwt_3 = "e12000e0NMS", -- v5TE smlalbb_4 = "e1400080NMSD", -- v5TE smlaltb_4 = "e14000a0NMSD", -- v5TE smlalbt_4 = "e14000c0NMSD", -- v5TE smlaltt_4 = "e14000e0NMSD", -- v5TE smulbb_3 = "e1600080NMS", -- v5TE smultb_3 = "e16000a0NMS", -- v5TE smulbt_3 = "e16000c0NMS", -- v5TE smultt_3 = "e16000e0NMS", -- v5TE -- Miscellaneous data processing instructions. clz_2 = "e16f0f10DM", -- v5T rev_2 = "e6bf0f30DM", -- v6 rev16_2 = "e6bf0fb0DM", -- v6 revsh_2 = "e6ff0fb0DM", -- v6 sel_3 = "e6800fb0DNM", -- v6 usad8_3 = "e780f010NMS", -- v6 usada8_4 = "e7800010NMSD", -- v6 rbit_2 = "e6ff0f30DM", -- v6T2 movw_2 = "e3000000DW", -- v6T2 movt_2 = "e3400000DW", -- v6T2 -- Note: the X encodes width-1, not width. sbfx_4 = "e7a00050DMvX", -- v6T2 ubfx_4 = "e7e00050DMvX", -- v6T2 -- Note: the X encodes the msb field, not the width. bfc_3 = "e7c0001fDvX", -- v6T2 bfi_4 = "e7c00010DMvX", -- v6T2 -- Packing and unpacking instructions. pkhbt_3 = "e6800010DNM", pkhbt_4 = "e6800010DNMv", -- v6 pkhtb_3 = "e6800050DNM", pkhtb_4 = "e6800050DNMv", -- v6 sxtab_3 = "e6a00070DNM", sxtab_4 = "e6a00070DNMv", -- v6 sxtab16_3 = "e6800070DNM", sxtab16_4 = "e6800070DNMv", -- v6 sxtah_3 = "e6b00070DNM", sxtah_4 = "e6b00070DNMv", -- v6 sxtb_2 = "e6af0070DM", sxtb_3 = "e6af0070DMv", -- v6 sxtb16_2 = "e68f0070DM", sxtb16_3 = "e68f0070DMv", -- v6 sxth_2 = "e6bf0070DM", sxth_3 = "e6bf0070DMv", -- v6 uxtab_3 = "e6e00070DNM", uxtab_4 = "e6e00070DNMv", -- v6 uxtab16_3 = "e6c00070DNM", uxtab16_4 = "e6c00070DNMv", -- v6 uxtah_3 = "e6f00070DNM", uxtah_4 = "e6f00070DNMv", -- v6 uxtb_2 = "e6ef0070DM", uxtb_3 = "e6ef0070DMv", -- v6 uxtb16_2 = "e6cf0070DM", uxtb16_3 = "e6cf0070DMv", -- v6 uxth_2 = "e6ff0070DM", uxth_3 = "e6ff0070DMv", -- v6 -- Saturating instructions. qadd_3 = "e1000050DMN", -- v5TE qsub_3 = "e1200050DMN", -- v5TE qdadd_3 = "e1400050DMN", -- v5TE qdsub_3 = "e1600050DMN", -- v5TE -- Note: the X for ssat* encodes sat_imm-1, not sat_imm. ssat_3 = "e6a00010DXM", ssat_4 = "e6a00010DXMp", -- v6 usat_3 = "e6e00010DXM", usat_4 = "e6e00010DXMp", -- v6 ssat16_3 = "e6a00f30DXM", -- v6 usat16_3 = "e6e00f30DXM", -- v6 -- Parallel addition and subtraction. sadd16_3 = "e6100f10DNM", -- v6 sasx_3 = "e6100f30DNM", -- v6 ssax_3 = "e6100f50DNM", -- v6 ssub16_3 = "e6100f70DNM", -- v6 sadd8_3 = "e6100f90DNM", -- v6 ssub8_3 = "e6100ff0DNM", -- v6 qadd16_3 = "e6200f10DNM", -- v6 qasx_3 = "e6200f30DNM", -- v6 qsax_3 = "e6200f50DNM", -- v6 qsub16_3 = "e6200f70DNM", -- v6 qadd8_3 = "e6200f90DNM", -- v6 qsub8_3 = "e6200ff0DNM", -- v6 shadd16_3 = "e6300f10DNM", -- v6 shasx_3 = "e6300f30DNM", -- v6 shsax_3 = "e6300f50DNM", -- v6 shsub16_3 = "e6300f70DNM", -- v6 shadd8_3 = "e6300f90DNM", -- v6 shsub8_3 = "e6300ff0DNM", -- v6 uadd16_3 = "e6500f10DNM", -- v6 uasx_3 = "e6500f30DNM", -- v6 usax_3 = "e6500f50DNM", -- v6 usub16_3 = "e6500f70DNM", -- v6 uadd8_3 = "e6500f90DNM", -- v6 usub8_3 = "e6500ff0DNM", -- v6 uqadd16_3 = "e6600f10DNM", -- v6 uqasx_3 = "e6600f30DNM", -- v6 uqsax_3 = "e6600f50DNM", -- v6 uqsub16_3 = "e6600f70DNM", -- v6 uqadd8_3 = "e6600f90DNM", -- v6 uqsub8_3 = "e6600ff0DNM", -- v6 uhadd16_3 = "e6700f10DNM", -- v6 uhasx_3 = "e6700f30DNM", -- v6 uhsax_3 = "e6700f50DNM", -- v6 uhsub16_3 = "e6700f70DNM", -- v6 uhadd8_3 = "e6700f90DNM", -- v6 uhsub8_3 = "e6700ff0DNM", -- v6 -- Load/store instructions. str_2 = "e4000000DL", str_3 = "e4000000DL", str_4 = "e4000000DL", strb_2 = "e4400000DL", strb_3 = "e4400000DL", strb_4 = "e4400000DL", ldr_2 = "e4100000DL", ldr_3 = "e4100000DL", ldr_4 = "e4100000DL", ldrb_2 = "e4500000DL", ldrb_3 = "e4500000DL", ldrb_4 = "e4500000DL", strh_2 = "e00000b0DL", strh_3 = "e00000b0DL", ldrh_2 = "e01000b0DL", ldrh_3 = "e01000b0DL", ldrd_2 = "e00000d0DL", ldrd_3 = "e00000d0DL", -- v5TE ldrsb_2 = "e01000d0DL", ldrsb_3 = "e01000d0DL", strd_2 = "e00000f0DL", strd_3 = "e00000f0DL", -- v5TE ldrsh_2 = "e01000f0DL", ldrsh_3 = "e01000f0DL", ldm_2 = "e8900000oR", ldmia_2 = "e8900000oR", ldmfd_2 = "e8900000oR", ldmda_2 = "e8100000oR", ldmfa_2 = "e8100000oR", ldmdb_2 = "e9100000oR", ldmea_2 = "e9100000oR", ldmib_2 = "e9900000oR", ldmed_2 = "e9900000oR", stm_2 = "e8800000oR", stmia_2 = "e8800000oR", stmfd_2 = "e8800000oR", stmda_2 = "e8000000oR", stmfa_2 = "e8000000oR", stmdb_2 = "e9000000oR", stmea_2 = "e9000000oR", stmib_2 = "e9800000oR", stmed_2 = "e9800000oR", pop_1 = "e8bd0000R", push_1 = "e92d0000R", -- Branch instructions. b_1 = "ea000000B", bl_1 = "eb000000B", blx_1 = "e12fff30C", bx_1 = "e12fff10M", -- Miscellaneous instructions. nop_0 = "e1a00000", mrs_1 = "e10f0000D", bkpt_1 = "e1200070K", -- v5T svc_1 = "ef000000T", swi_1 = "ef000000T", ud_0 = "e7f001f0", -- VFP instructions. ["vadd.f32_3"] = "ee300a00dnm", ["vadd.f64_3"] = "ee300b00Gdnm", ["vsub.f32_3"] = "ee300a40dnm", ["vsub.f64_3"] = "ee300b40Gdnm", ["vmul.f32_3"] = "ee200a00dnm", ["vmul.f64_3"] = "ee200b00Gdnm", ["vnmul.f32_3"] = "ee200a40dnm", ["vnmul.f64_3"] = "ee200b40Gdnm", ["vmla.f32_3"] = "ee000a00dnm", ["vmla.f64_3"] = "ee000b00Gdnm", ["vmls.f32_3"] = "ee000a40dnm", ["vmls.f64_3"] = "ee000b40Gdnm", ["vnmla.f32_3"] = "ee100a40dnm", ["vnmla.f64_3"] = "ee100b40Gdnm", ["vnmls.f32_3"] = "ee100a00dnm", ["vnmls.f64_3"] = "ee100b00Gdnm", ["vdiv.f32_3"] = "ee800a00dnm", ["vdiv.f64_3"] = "ee800b00Gdnm", ["vabs.f32_2"] = "eeb00ac0dm", ["vabs.f64_2"] = "eeb00bc0Gdm", ["vneg.f32_2"] = "eeb10a40dm", ["vneg.f64_2"] = "eeb10b40Gdm", ["vsqrt.f32_2"] = "eeb10ac0dm", ["vsqrt.f64_2"] = "eeb10bc0Gdm", ["vcmp.f32_2"] = "eeb40a40dm", ["vcmp.f64_2"] = "eeb40b40Gdm", ["vcmpe.f32_2"] = "eeb40ac0dm", ["vcmpe.f64_2"] = "eeb40bc0Gdm", ["vcmpz.f32_1"] = "eeb50a40d", ["vcmpz.f64_1"] = "eeb50b40Gd", ["vcmpze.f32_1"] = "eeb50ac0d", ["vcmpze.f64_1"] = "eeb50bc0Gd", vldr_2 = "ed100a00dl|ed100b00Gdl", vstr_2 = "ed000a00dl|ed000b00Gdl", vldm_2 = "ec900a00or", vldmia_2 = "ec900a00or", vldmdb_2 = "ed100a00or", vpop_1 = "ecbd0a00r", vstm_2 = "ec800a00or", vstmia_2 = "ec800a00or", vstmdb_2 = "ed000a00or", vpush_1 = "ed2d0a00r", ["vmov.f32_2"] = "eeb00a40dm|eeb00a00dY", -- #imm is VFPv3 only ["vmov.f64_2"] = "eeb00b40Gdm|eeb00b00GdY", -- #imm is VFPv3 only vmov_2 = "ee100a10Dn|ee000a10nD", vmov_3 = "ec500a10DNm|ec400a10mDN|ec500b10GDNm|ec400b10GmDN", vmrs_0 = "eef1fa10", vmrs_1 = "eef10a10D", vmsr_1 = "eee10a10D", ["vcvt.s32.f32_2"] = "eebd0ac0dm", ["vcvt.s32.f64_2"] = "eebd0bc0dGm", ["vcvt.u32.f32_2"] = "eebc0ac0dm", ["vcvt.u32.f64_2"] = "eebc0bc0dGm", ["vcvtr.s32.f32_2"] = "eebd0a40dm", ["vcvtr.s32.f64_2"] = "eebd0b40dGm", ["vcvtr.u32.f32_2"] = "eebc0a40dm", ["vcvtr.u32.f64_2"] = "eebc0b40dGm", ["vcvt.f32.s32_2"] = "eeb80ac0dm", ["vcvt.f64.s32_2"] = "eeb80bc0GdFm", ["vcvt.f32.u32_2"] = "eeb80a40dm", ["vcvt.f64.u32_2"] = "eeb80b40GdFm", ["vcvt.f32.f64_2"] = "eeb70bc0dGm", ["vcvt.f64.f32_2"] = "eeb70ac0GdFm", -- VFPv4 only: ["vfma.f32_3"] = "eea00a00dnm", ["vfma.f64_3"] = "eea00b00Gdnm", ["vfms.f32_3"] = "eea00a40dnm", ["vfms.f64_3"] = "eea00b40Gdnm", ["vfnma.f32_3"] = "ee900a40dnm", ["vfnma.f64_3"] = "ee900b40Gdnm", ["vfnms.f32_3"] = "ee900a00dnm", ["vfnms.f64_3"] = "ee900b00Gdnm", -- NYI: Advanced SIMD instructions. -- NYI: I have no need for these instructions right now: -- swp, swpb, strex, ldrex, strexd, ldrexd, strexb, ldrexb, strexh, ldrexh -- msr, nopv6, yield, wfe, wfi, sev, dbg, bxj, smc, srs, rfe -- cps, setend, pli, pld, pldw, clrex, dsb, dmb, isb -- stc, ldc, mcr, mcr2, mrc, mrc2, mcrr, mcrr2, mrrc, mrrc2, cdp, cdp2 } -- Add mnemonics for "s" variants. do local t = {} for k,v in pairs(map_op) do if sub(v, -1) == "s" then local v2 = sub(v, 1, 2)..char(byte(v, 3)+1)..sub(v, 4, -2) t[sub(k, 1, -3).."s"..sub(k, -2)] = v2 end end for k,v in pairs(t) do map_op[k] = v end end ------------------------------------------------------------------------------ local function parse_gpr(expr) local tname, ovreg = match(expr, "^([%w_]+):(r1?[0-9])$") local tp = map_type[tname or expr] if tp then local reg = ovreg or tp.reg if not reg then werror("type `"..(tname or expr).."' needs a register override") end expr = reg end local r = match(expr, "^r(1?[0-9])$") if r then r = tonumber(r) if r <= 15 then return r, tp end end werror("bad register name `"..expr.."'") end local function parse_gpr_pm(expr) local pm, expr2 = match(expr, "^([+-]?)(.*)$") return parse_gpr(expr2), (pm == "-") end local function parse_vr(expr, tp) local t, r = match(expr, "^([sd])([0-9]+)$") if t == tp then r = tonumber(r) if r <= 31 then if t == "s" then return shr(r, 1), band(r, 1) end return band(r, 15), shr(r, 4) end end werror("bad register name `"..expr.."'") end local function parse_reglist(reglist) reglist = match(reglist, "^{%s*([^}]*)}$") if not reglist then werror("register list expected") end local rr = 0 for p in gmatch(reglist..",", "%s*([^,]*),") do local rbit = shl(1, parse_gpr(gsub(p, "%s+$", ""))) if band(rr, rbit) ~= 0 then werror("duplicate register `"..p.."'") end rr = rr + rbit end return rr end local function parse_vrlist(reglist) local ta, ra, tb, rb = match(reglist, "^{%s*([sd])([0-9]+)%s*%-%s*([sd])([0-9]+)%s*}$") ra, rb = tonumber(ra), tonumber(rb) if ta and ta == tb and ra and rb and ra <= 31 and rb <= 31 and ra <= rb then local nr = rb+1 - ra if ta == "s" then return shl(shr(ra,1),12)+shl(band(ra,1),22) + nr else return shl(band(ra,15),12)+shl(shr(ra,4),22) + nr*2 + 0x100 end end werror("register list expected") end local function parse_imm(imm, bits, shift, scale, signed) imm = match(imm, "^#(.*)$") if not imm then werror("expected immediate operand") end local n = tonumber(imm) if n then local m = sar(n, scale) if shl(m, scale) == n then if signed then local s = sar(m, bits-1) if s == 0 then return shl(m, shift) elseif s == -1 then return shl(m + shl(1, bits), shift) end else if sar(m, bits) == 0 then return shl(m, shift) end end end werror("out of range immediate `"..imm.."'") else waction("IMM", (signed and 32768 or 0)+scale*1024+bits*32+shift, imm) return 0 end end local function parse_imm12(imm) local n = tonumber(imm) if n then local m = band(n) for i=0,-15,-1 do if shr(m, 8) == 0 then return m + shl(band(i, 15), 8) end m = ror(m, 2) end werror("out of range immediate `"..imm.."'") else waction("IMM12", 0, imm) return 0 end end local function parse_imm16(imm) imm = match(imm, "^#(.*)$") if not imm then werror("expected immediate operand") end local n = tonumber(imm) if n then if shr(n, 16) == 0 then return band(n, 0x0fff) + shl(band(n, 0xf000), 4) end werror("out of range immediate `"..imm.."'") else waction("IMM16", 32*16, imm) return 0 end end local function parse_imm_load(imm, ext) local n = tonumber(imm) if n then if ext then if n >= -255 and n <= 255 then local up = 0x00800000 if n < 0 then n = -n; up = 0 end return shl(band(n, 0xf0), 4) + band(n, 0x0f) + up end else if n >= -4095 and n <= 4095 then if n >= 0 then return n+0x00800000 end return -n end end werror("out of range immediate `"..imm.."'") else waction(ext and "IMML8" or "IMML12", 32768 + shl(ext and 8 or 12, 5), imm) return 0 end end local function parse_shift(shift, gprok) if shift == "rrx" then return 3 * 32 else local s, s2 = match(shift, "^(%S+)%s*(.*)$") s = map_shift[s] if not s then werror("expected shift operand") end if sub(s2, 1, 1) == "#" then return parse_imm(s2, 5, 7, 0, false) + shl(s, 5) else if not gprok then werror("expected immediate shift operand") end return shl(parse_gpr(s2), 8) + shl(s, 5) + 16 end end end local function parse_label(label, def) local prefix = sub(label, 1, 2) -- =>label (pc label reference) if prefix == "=>" then return "PC", 0, sub(label, 3) end -- ->name (global label reference) if prefix == "->" then return "LG", map_global[sub(label, 3)] end if def then -- [1-9] (local label definition) if match(label, "^[1-9]$") then return "LG", 10+tonumber(label) end else -- [<>][1-9] (local label reference) local dir, lnum = match(label, "^([<>])([1-9])$") if dir then -- Fwd: 1-9, Bkwd: 11-19. return "LG", lnum + (dir == ">" and 0 or 10) end -- extern label (extern label reference) local extname = match(label, "^extern%s+(%S+)$") if extname then return "EXT", map_extern[extname] end end werror("bad label `"..label.."'") end local function parse_load(params, nparams, n, op) local oplo = band(op, 255) local ext, ldrd = (oplo ~= 0), (oplo == 208) local d if (ldrd or oplo == 240) then d = band(shr(op, 12), 15) if band(d, 1) ~= 0 then werror("odd destination register") end end local pn = params[n] local p1, wb = match(pn, "^%[%s*(.-)%s*%](!?)$") local p2 = params[n+1] if not p1 then if not p2 then if match(pn, "^[<>=%-]") or match(pn, "^extern%s+") then local mode, n, s = parse_label(pn, false) waction("REL_"..mode, n + (ext and 0x1800 or 0x0800), s, 1) return op + 15 * 65536 + 0x01000000 + (ext and 0x00400000 or 0) end local reg, tailr = match(pn, "^([%w_:]+)%s*(.*)$") if reg and tailr ~= "" then local d, tp = parse_gpr(reg) if tp then waction(ext and "IMML8" or "IMML12", 32768 + 32*(ext and 8 or 12), format(tp.ctypefmt, tailr)) return op + shl(d, 16) + 0x01000000 + (ext and 0x00400000 or 0) end end end werror("expected address operand") end if wb == "!" then op = op + 0x00200000 end if p2 then if wb == "!" then werror("bad use of '!'") end local p3 = params[n+2] op = op + shl(parse_gpr(p1), 16) local imm = match(p2, "^#(.*)$") if imm then local m = parse_imm_load(imm, ext) if p3 then werror("too many parameters") end op = op + m + (ext and 0x00400000 or 0) else local m, neg = parse_gpr_pm(p2) if ldrd and (m == d or m-1 == d) then werror("register conflict") end op = op + m + (neg and 0 or 0x00800000) + (ext and 0 or 0x02000000) if p3 then op = op + parse_shift(p3) end end else local p1a, p2 = match(p1, "^([^,%s]*)%s*(.*)$") op = op + shl(parse_gpr(p1a), 16) + 0x01000000 if p2 ~= "" then local imm = match(p2, "^,%s*#(.*)$") if imm then local m = parse_imm_load(imm, ext) op = op + m + (ext and 0x00400000 or 0) else local p2a, p3 = match(p2, "^,%s*([^,%s]*)%s*,?%s*(.*)$") local m, neg = parse_gpr_pm(p2a) if ldrd and (m == d or m-1 == d) then werror("register conflict") end op = op + m + (neg and 0 or 0x00800000) + (ext and 0 or 0x02000000) if p3 ~= "" then if ext then werror("too many parameters") end op = op + parse_shift(p3) end end else if wb == "!" then werror("bad use of '!'") end op = op + (ext and 0x00c00000 or 0x00800000) end end return op end local function parse_vload(q) local reg, imm = match(q, "^%[%s*([^,%s]*)%s*(.*)%]$") if reg then local d = shl(parse_gpr(reg), 16) if imm == "" then return d end imm = match(imm, "^,%s*#(.*)$") if imm then local n = tonumber(imm) if n then if n >= -1020 and n <= 1020 and n%4 == 0 then return d + (n >= 0 and n/4+0x00800000 or -n/4) end werror("out of range immediate `"..imm.."'") else waction("IMMV8", 32768 + 32*8, imm) return d end end else if match(q, "^[<>=%-]") or match(q, "^extern%s+") then local mode, n, s = parse_label(q, false) waction("REL_"..mode, n + 0x2800, s, 1) return 15 * 65536 end local reg, tailr = match(q, "^([%w_:]+)%s*(.*)$") if reg and tailr ~= "" then local d, tp = parse_gpr(reg) if tp then waction("IMMV8", 32768 + 32*8, format(tp.ctypefmt, tailr)) return shl(d, 16) end end end werror("expected address operand") end ------------------------------------------------------------------------------ -- Handle opcodes defined with template strings. local function parse_template(params, template, nparams, pos) local op = tonumber(sub(template, 1, 8), 16) local n = 1 local vr = "s" -- Process each character. for p in gmatch(sub(template, 9), ".") do local q = params[n] if p == "D" then op = op + shl(parse_gpr(q), 12); n = n + 1 elseif p == "N" then op = op + shl(parse_gpr(q), 16); n = n + 1 elseif p == "S" then op = op + shl(parse_gpr(q), 8); n = n + 1 elseif p == "M" then op = op + parse_gpr(q); n = n + 1 elseif p == "d" then local r,h = parse_vr(q, vr); op = op+shl(r,12)+shl(h,22); n = n + 1 elseif p == "n" then local r,h = parse_vr(q, vr); op = op+shl(r,16)+shl(h,7); n = n + 1 elseif p == "m" then local r,h = parse_vr(q, vr); op = op+r+shl(h,5); n = n + 1 elseif p == "P" then local imm = match(q, "^#(.*)$") if imm then op = op + parse_imm12(imm) + 0x02000000 else op = op + parse_gpr(q) end n = n + 1 elseif p == "p" then op = op + parse_shift(q, true); n = n + 1 elseif p == "L" then op = parse_load(params, nparams, n, op) elseif p == "l" then op = op + parse_vload(q) elseif p == "B" then local mode, n, s = parse_label(q, false) waction("REL_"..mode, n, s, 1) elseif p == "C" then -- blx gpr vs. blx label. if match(q, "^([%w_]+):(r1?[0-9])$") or match(q, "^r(1?[0-9])$") then op = op + parse_gpr(q) else if op < 0xe0000000 then werror("unconditional instruction") end local mode, n, s = parse_label(q, false) waction("REL_"..mode, n, s, 1) op = 0xfa000000 end elseif p == "F" then vr = "s" elseif p == "G" then vr = "d" elseif p == "o" then local r, wb = match(q, "^([^!]*)(!?)$") op = op + shl(parse_gpr(r), 16) + (wb == "!" and 0x00200000 or 0) n = n + 1 elseif p == "R" then op = op + parse_reglist(q); n = n + 1 elseif p == "r" then op = op + parse_vrlist(q); n = n + 1 elseif p == "W" then op = op + parse_imm16(q); n = n + 1 elseif p == "v" then op = op + parse_imm(q, 5, 7, 0, false); n = n + 1 elseif p == "w" then local imm = match(q, "^#(.*)$") if imm then op = op + parse_imm(q, 5, 7, 0, false); n = n + 1 else op = op + shl(parse_gpr(q), 8) + 16 end elseif p == "X" then op = op + parse_imm(q, 5, 16, 0, false); n = n + 1 elseif p == "Y" then local imm = tonumber(match(q, "^#(.*)$")); n = n + 1 if not imm or shr(imm, 8) ~= 0 then werror("bad immediate operand") end op = op + shl(band(imm, 0xf0), 12) + band(imm, 0x0f) elseif p == "K" then local imm = tonumber(match(q, "^#(.*)$")); n = n + 1 if not imm or shr(imm, 16) ~= 0 then werror("bad immediate operand") end op = op + shl(band(imm, 0xfff0), 4) + band(imm, 0x000f) elseif p == "T" then op = op + parse_imm(q, 24, 0, 0, false); n = n + 1 elseif p == "s" then -- Ignored. else assert(false) end end wputpos(pos, op) end map_op[".template__"] = function(params, template, nparams) if not params then return template:gsub("%x%x%x%x%x%x%x%x", "") end -- Limit number of section buffer positions used by a single dasm_put(). -- A single opcode needs a maximum of 3 positions. if secpos+3 > maxsecpos then wflush() end local pos = wpos() local lpos, apos, spos = #actlist, #actargs, secpos local ok, err for t in gmatch(template, "[^|]+") do ok, err = pcall(parse_template, params, t, nparams, pos) if ok then return end secpos = spos actlist[lpos+1] = nil actlist[lpos+2] = nil actlist[lpos+3] = nil actargs[apos+1] = nil actargs[apos+2] = nil actargs[apos+3] = nil end error(err, 0) end ------------------------------------------------------------------------------ -- Pseudo-opcode to mark the position where the action list is to be emitted. map_op[".actionlist_1"] = function(params) if not params then return "cvar" end local name = params[1] -- No syntax check. You get to keep the pieces. wline(function(out) writeactions(out, name) end) end -- Pseudo-opcode to mark the position where the global enum is to be emitted. map_op[".globals_1"] = function(params) if not params then return "prefix" end local prefix = params[1] -- No syntax check. You get to keep the pieces. wline(function(out) writeglobals(out, prefix) end) end -- Pseudo-opcode to mark the position where the global names are to be emitted. map_op[".globalnames_1"] = function(params) if not params then return "cvar" end local name = params[1] -- No syntax check. You get to keep the pieces. wline(function(out) writeglobalnames(out, name) end) end -- Pseudo-opcode to mark the position where the extern names are to be emitted. map_op[".externnames_1"] = function(params) if not params then return "cvar" end local name = params[1] -- No syntax check. You get to keep the pieces. wline(function(out) writeexternnames(out, name) end) end ------------------------------------------------------------------------------ -- Label pseudo-opcode (converted from trailing colon form). map_op[".label_1"] = function(params) if not params then return "[1-9] | ->global | =>pcexpr" end if secpos+1 > maxsecpos then wflush() end local mode, n, s = parse_label(params[1], true) if mode == "EXT" then werror("bad label definition") end waction("LABEL_"..mode, n, s, 1) end ------------------------------------------------------------------------------ -- Pseudo-opcodes for data storage. map_op[".long_*"] = function(params) if not params then return "imm..." end for _,p in ipairs(params) do local n = tonumber(p) if not n then werror("bad immediate `"..p.."'") end if n < 0 then n = n + 2^32 end wputw(n) if secpos+2 > maxsecpos then wflush() end end end -- Alignment pseudo-opcode. map_op[".align_1"] = function(params) if not params then return "numpow2" end if secpos+1 > maxsecpos then wflush() end local align = tonumber(params[1]) if align then local x = align -- Must be a power of 2 in the range (2 ... 256). for i=1,8 do x = x / 2 if x == 1 then waction("ALIGN", align-1, nil, 1) -- Action byte is 2**n-1. return end end end werror("bad alignment") end ------------------------------------------------------------------------------ -- Pseudo-opcode for (primitive) type definitions (map to C types). map_op[".type_3"] = function(params, nparams) if not params then return nparams == 2 and "name, ctype" or "name, ctype, reg" end local name, ctype, reg = params[1], params[2], params[3] if not match(name, "^[%a_][%w_]*$") then werror("bad type name `"..name.."'") end local tp = map_type[name] if tp then werror("duplicate type `"..name.."'") end -- Add #type to defines. A bit unclean to put it in map_archdef. map_archdef["#"..name] = "sizeof("..ctype..")" -- Add new type and emit shortcut define. local num = ctypenum + 1 map_type[name] = { ctype = ctype, ctypefmt = format("Dt%X(%%s)", num), reg = reg, } wline(format("#define Dt%X(_V) (int)(ptrdiff_t)&(((%s *)0)_V)", num, ctype)) ctypenum = num end map_op[".type_2"] = map_op[".type_3"] -- Dump type definitions. local function dumptypes(out, lvl) local t = {} for name in pairs(map_type) do t[#t+1] = name end sort(t) out:write("Type definitions:\n") for _,name in ipairs(t) do local tp = map_type[name] local reg = tp.reg or "" out:write(format(" %-20s %-20s %s\n", name, tp.ctype, reg)) end out:write("\n") end ------------------------------------------------------------------------------ -- Set the current section. function _M.section(num) waction("SECTION", num) wflush(true) -- SECTION is a terminal action. end ------------------------------------------------------------------------------ -- Dump architecture description. function _M.dumparch(out) out:write(format("DynASM %s version %s, released %s\n\n", _info.arch, _info.version, _info.release)) dumpactions(out) end -- Dump all user defined elements. function _M.dumpdef(out, lvl) dumptypes(out, lvl) dumpglobals(out, lvl) dumpexterns(out, lvl) end ------------------------------------------------------------------------------ -- Pass callbacks from/to the DynASM core. function _M.passcb(wl, we, wf, ww) wline, werror, wfatal, wwarn = wl, we, wf, ww return wflush end -- Setup the arch-specific module. function _M.setup(arch, opt) g_arch, g_opt = arch, opt end -- Merge the core maps and the arch-specific maps. function _M.mergemaps(map_coreop, map_def) setmetatable(map_op, { __index = function(t, k) local v = map_coreop[k] if v then return v end local k1, cc, k2 = match(k, "^(.-)(..)([._].*)$") local cv = map_cond[cc] if cv then local v = rawget(t, k1..k2) if type(v) == "string" then local scv = format("%x", cv) return gsub(scv..sub(v, 2), "|e", "|"..scv) end end end }) setmetatable(map_def, { __index = map_archdef }) return map_op, map_def end return _M ------------------------------------------------------------------------------ luajit-2.1.0~beta3+dfsg.orig/dynasm/dasm_proto.h0000644000175100017510000000401613101703334021132 0ustar ondrejondrej/* ** DynASM encoding engine prototypes. ** Copyright (C) 2005-2017 Mike Pall. All rights reserved. ** Released under the MIT license. See dynasm.lua for full copyright notice. */ #ifndef _DASM_PROTO_H #define _DASM_PROTO_H #include #include #define DASM_IDENT "DynASM 1.4.0" #define DASM_VERSION 10400 /* 1.4.0 */ #ifndef Dst_DECL #define Dst_DECL dasm_State **Dst #endif #ifndef Dst_REF #define Dst_REF (*Dst) #endif #ifndef DASM_FDEF #define DASM_FDEF extern #endif #ifndef DASM_M_GROW #define DASM_M_GROW(ctx, t, p, sz, need) \ do { \ size_t _sz = (sz), _need = (need); \ if (_sz < _need) { \ if (_sz < 16) _sz = 16; \ while (_sz < _need) _sz += _sz; \ (p) = (t *)realloc((p), _sz); \ if ((p) == NULL) exit(1); \ (sz) = _sz; \ } \ } while(0) #endif #ifndef DASM_M_FREE #define DASM_M_FREE(ctx, p, sz) free(p) #endif /* Internal DynASM encoder state. */ typedef struct dasm_State dasm_State; /* Initialize and free DynASM state. */ DASM_FDEF void dasm_init(Dst_DECL, int maxsection); DASM_FDEF void dasm_free(Dst_DECL); /* Setup global array. Must be called before dasm_setup(). */ DASM_FDEF void dasm_setupglobal(Dst_DECL, void **gl, unsigned int maxgl); /* Grow PC label array. Can be called after dasm_setup(), too. */ DASM_FDEF void dasm_growpc(Dst_DECL, unsigned int maxpc); /* Setup encoder. */ DASM_FDEF void dasm_setup(Dst_DECL, const void *actionlist); /* Feed encoder with actions. Calls are generated by pre-processor. */ DASM_FDEF void dasm_put(Dst_DECL, int start, ...); /* Link sections and return the resulting size. */ DASM_FDEF int dasm_link(Dst_DECL, size_t *szp); /* Encode sections into buffer. */ DASM_FDEF int dasm_encode(Dst_DECL, void *buffer); /* Get PC label offset. */ DASM_FDEF int dasm_getpclabel(Dst_DECL, unsigned int pc); #ifdef DASM_CHECKS /* Optional sanity checker to call between isolated encoding steps. */ DASM_FDEF int dasm_checkstep(Dst_DECL, int secmatch); #else #define dasm_checkstep(a, b) 0 #endif #endif /* _DASM_PROTO_H */ luajit-2.1.0~beta3+dfsg.orig/dynasm/dasm_ppc.lua0000644000175100017510000016022113101703334021104 0ustar ondrejondrej------------------------------------------------------------------------------ -- DynASM PPC/PPC64 module. -- -- Copyright (C) 2005-2017 Mike Pall. All rights reserved. -- See dynasm.lua for full copyright notice. -- -- Support for various extensions contributed by Caio Souza Oliveira. ------------------------------------------------------------------------------ -- Module information: local _info = { arch = "ppc", description = "DynASM PPC module", version = "1.4.0", vernum = 10400, release = "2015-10-18", author = "Mike Pall", license = "MIT", } -- Exported glue functions for the arch-specific module. local _M = { _info = _info } -- Cache library functions. local type, tonumber, pairs, ipairs = type, tonumber, pairs, ipairs local assert, setmetatable = assert, setmetatable local _s = string local sub, format, byte, char = _s.sub, _s.format, _s.byte, _s.char local match, gmatch = _s.match, _s.gmatch local concat, sort = table.concat, table.sort local bit = bit or require("bit") local band, shl, shr, sar = bit.band, bit.lshift, bit.rshift, bit.arshift local tohex = bit.tohex -- Inherited tables and callbacks. local g_opt, g_arch local wline, werror, wfatal, wwarn -- Action name list. -- CHECK: Keep this in sync with the C code! local action_names = { "STOP", "SECTION", "ESC", "REL_EXT", "ALIGN", "REL_LG", "LABEL_LG", "REL_PC", "LABEL_PC", "IMM", "IMMSH" } -- Maximum number of section buffer positions for dasm_put(). -- CHECK: Keep this in sync with the C code! local maxsecpos = 25 -- Keep this low, to avoid excessively long C lines. -- Action name -> action number. local map_action = {} for n,name in ipairs(action_names) do map_action[name] = n-1 end -- Action list buffer. local actlist = {} -- Argument list for next dasm_put(). Start with offset 0 into action list. local actargs = { 0 } -- Current number of section buffer positions for dasm_put(). local secpos = 1 ------------------------------------------------------------------------------ -- Dump action names and numbers. local function dumpactions(out) out:write("DynASM encoding engine action codes:\n") for n,name in ipairs(action_names) do local num = map_action[name] out:write(format(" %-10s %02X %d\n", name, num, num)) end out:write("\n") end -- Write action list buffer as a huge static C array. local function writeactions(out, name) local nn = #actlist if nn == 0 then nn = 1; actlist[0] = map_action.STOP end out:write("static const unsigned int ", name, "[", nn, "] = {\n") for i = 1,nn-1 do assert(out:write("0x", tohex(actlist[i]), ",\n")) end assert(out:write("0x", tohex(actlist[nn]), "\n};\n\n")) end ------------------------------------------------------------------------------ -- Add word to action list. local function wputxw(n) assert(n >= 0 and n <= 0xffffffff and n % 1 == 0, "word out of range") actlist[#actlist+1] = n end -- Add action to list with optional arg. Advance buffer pos, too. local function waction(action, val, a, num) local w = assert(map_action[action], "bad action name `"..action.."'") wputxw(w * 0x10000 + (val or 0)) if a then actargs[#actargs+1] = a end if a or num then secpos = secpos + (num or 1) end end -- Flush action list (intervening C code or buffer pos overflow). local function wflush(term) if #actlist == actargs[1] then return end -- Nothing to flush. if not term then waction("STOP") end -- Terminate action list. wline(format("dasm_put(Dst, %s);", concat(actargs, ", ")), true) actargs = { #actlist } -- Actionlist offset is 1st arg to next dasm_put(). secpos = 1 -- The actionlist offset occupies a buffer position, too. end -- Put escaped word. local function wputw(n) if n <= 0xffffff then waction("ESC") end wputxw(n) end -- Reserve position for word. local function wpos() local pos = #actlist+1 actlist[pos] = "" return pos end -- Store word to reserved position. local function wputpos(pos, n) assert(n >= 0 and n <= 0xffffffff and n % 1 == 0, "word out of range") actlist[pos] = n end ------------------------------------------------------------------------------ -- Global label name -> global label number. With auto assignment on 1st use. local next_global = 20 local map_global = setmetatable({}, { __index = function(t, name) if not match(name, "^[%a_][%w_]*$") then werror("bad global label") end local n = next_global if n > 2047 then werror("too many global labels") end next_global = n + 1 t[name] = n return n end}) -- Dump global labels. local function dumpglobals(out, lvl) local t = {} for name, n in pairs(map_global) do t[n] = name end out:write("Global labels:\n") for i=20,next_global-1 do out:write(format(" %s\n", t[i])) end out:write("\n") end -- Write global label enum. local function writeglobals(out, prefix) local t = {} for name, n in pairs(map_global) do t[n] = name end out:write("enum {\n") for i=20,next_global-1 do out:write(" ", prefix, t[i], ",\n") end out:write(" ", prefix, "_MAX\n};\n") end -- Write global label names. local function writeglobalnames(out, name) local t = {} for name, n in pairs(map_global) do t[n] = name end out:write("static const char *const ", name, "[] = {\n") for i=20,next_global-1 do out:write(" \"", t[i], "\",\n") end out:write(" (const char *)0\n};\n") end ------------------------------------------------------------------------------ -- Extern label name -> extern label number. With auto assignment on 1st use. local next_extern = 0 local map_extern_ = {} local map_extern = setmetatable({}, { __index = function(t, name) -- No restrictions on the name for now. local n = next_extern if n > 2047 then werror("too many extern labels") end next_extern = n + 1 t[name] = n map_extern_[n] = name return n end}) -- Dump extern labels. local function dumpexterns(out, lvl) out:write("Extern labels:\n") for i=0,next_extern-1 do out:write(format(" %s\n", map_extern_[i])) end out:write("\n") end -- Write extern label names. local function writeexternnames(out, name) out:write("static const char *const ", name, "[] = {\n") for i=0,next_extern-1 do out:write(" \"", map_extern_[i], "\",\n") end out:write(" (const char *)0\n};\n") end ------------------------------------------------------------------------------ -- Arch-specific maps. local map_archdef = { sp = "r1" } -- Ext. register name -> int. name. local map_type = {} -- Type name -> { ctype, reg } local ctypenum = 0 -- Type number (for Dt... macros). -- Reverse defines for registers. function _M.revdef(s) if s == "r1" then return "sp" end return s end local map_cond = { lt = 0, gt = 1, eq = 2, so = 3, ge = 4, le = 5, ne = 6, ns = 7, } ------------------------------------------------------------------------------ local map_op, op_template local function op_alias(opname, f) return function(params, nparams) if not params then return "-> "..opname:sub(1, -3) end f(params, nparams) op_template(params, map_op[opname], nparams) end end -- Template strings for PPC instructions. map_op = { tdi_3 = "08000000ARI", twi_3 = "0c000000ARI", mulli_3 = "1c000000RRI", subfic_3 = "20000000RRI", cmplwi_3 = "28000000XRU", cmplwi_2 = "28000000-RU", cmpldi_3 = "28200000XRU", cmpldi_2 = "28200000-RU", cmpwi_3 = "2c000000XRI", cmpwi_2 = "2c000000-RI", cmpdi_3 = "2c200000XRI", cmpdi_2 = "2c200000-RI", addic_3 = "30000000RRI", ["addic._3"] = "34000000RRI", addi_3 = "38000000RR0I", li_2 = "38000000RI", la_2 = "38000000RD", addis_3 = "3c000000RR0I", lis_2 = "3c000000RI", lus_2 = "3c000000RU", bc_3 = "40000000AAK", bcl_3 = "40000001AAK", bdnz_1 = "42000000K", bdz_1 = "42400000K", sc_0 = "44000000", b_1 = "48000000J", bl_1 = "48000001J", rlwimi_5 = "50000000RR~AAA.", rlwinm_5 = "54000000RR~AAA.", rlwnm_5 = "5c000000RR~RAA.", ori_3 = "60000000RR~U", nop_0 = "60000000", oris_3 = "64000000RR~U", xori_3 = "68000000RR~U", xoris_3 = "6c000000RR~U", ["andi._3"] = "70000000RR~U", ["andis._3"] = "74000000RR~U", lwz_2 = "80000000RD", lwzu_2 = "84000000RD", lbz_2 = "88000000RD", lbzu_2 = "8c000000RD", stw_2 = "90000000RD", stwu_2 = "94000000RD", stb_2 = "98000000RD", stbu_2 = "9c000000RD", lhz_2 = "a0000000RD", lhzu_2 = "a4000000RD", lha_2 = "a8000000RD", lhau_2 = "ac000000RD", sth_2 = "b0000000RD", sthu_2 = "b4000000RD", lmw_2 = "b8000000RD", stmw_2 = "bc000000RD", lfs_2 = "c0000000FD", lfsu_2 = "c4000000FD", lfd_2 = "c8000000FD", lfdu_2 = "cc000000FD", stfs_2 = "d0000000FD", stfsu_2 = "d4000000FD", stfd_2 = "d8000000FD", stfdu_2 = "dc000000FD", ld_2 = "e8000000RD", -- NYI: displacement must be divisible by 4. ldu_2 = "e8000001RD", lwa_2 = "e8000002RD", std_2 = "f8000000RD", stdu_2 = "f8000001RD", subi_3 = op_alias("addi_3", function(p) p[3] = "-("..p[3]..")" end), subis_3 = op_alias("addis_3", function(p) p[3] = "-("..p[3]..")" end), subic_3 = op_alias("addic_3", function(p) p[3] = "-("..p[3]..")" end), ["subic._3"] = op_alias("addic._3", function(p) p[3] = "-("..p[3]..")" end), rotlwi_3 = op_alias("rlwinm_5", function(p) p[4] = "0"; p[5] = "31" end), rotrwi_3 = op_alias("rlwinm_5", function(p) p[3] = "32-("..p[3]..")"; p[4] = "0"; p[5] = "31" end), rotlw_3 = op_alias("rlwnm_5", function(p) p[4] = "0"; p[5] = "31" end), slwi_3 = op_alias("rlwinm_5", function(p) p[5] = "31-("..p[3]..")"; p[4] = "0" end), srwi_3 = op_alias("rlwinm_5", function(p) p[4] = p[3]; p[3] = "32-("..p[3]..")"; p[5] = "31" end), clrlwi_3 = op_alias("rlwinm_5", function(p) p[4] = p[3]; p[3] = "0"; p[5] = "31" end), clrrwi_3 = op_alias("rlwinm_5", function(p) p[5] = "31-("..p[3]..")"; p[3] = "0"; p[4] = "0" end), -- Primary opcode 4: mulhhwu_3 = "10000010RRR.", machhwu_3 = "10000018RRR.", mulhhw_3 = "10000050RRR.", nmachhw_3 = "1000005cRRR.", machhwsu_3 = "10000098RRR.", machhws_3 = "100000d8RRR.", nmachhws_3 = "100000dcRRR.", mulchwu_3 = "10000110RRR.", macchwu_3 = "10000118RRR.", mulchw_3 = "10000150RRR.", macchw_3 = "10000158RRR.", nmacchw_3 = "1000015cRRR.", macchwsu_3 = "10000198RRR.", macchws_3 = "100001d8RRR.", nmacchws_3 = "100001dcRRR.", mullhw_3 = "10000350RRR.", maclhw_3 = "10000358RRR.", nmaclhw_3 = "1000035cRRR.", maclhwsu_3 = "10000398RRR.", maclhws_3 = "100003d8RRR.", nmaclhws_3 = "100003dcRRR.", machhwuo_3 = "10000418RRR.", nmachhwo_3 = "1000045cRRR.", machhwsuo_3 = "10000498RRR.", machhwso_3 = "100004d8RRR.", nmachhwso_3 = "100004dcRRR.", macchwuo_3 = "10000518RRR.", macchwo_3 = "10000558RRR.", nmacchwo_3 = "1000055cRRR.", macchwsuo_3 = "10000598RRR.", macchwso_3 = "100005d8RRR.", nmacchwso_3 = "100005dcRRR.", maclhwo_3 = "10000758RRR.", nmaclhwo_3 = "1000075cRRR.", maclhwsuo_3 = "10000798RRR.", maclhwso_3 = "100007d8RRR.", nmaclhwso_3 = "100007dcRRR.", vaddubm_3 = "10000000VVV", vmaxub_3 = "10000002VVV", vrlb_3 = "10000004VVV", vcmpequb_3 = "10000006VVV", vmuloub_3 = "10000008VVV", vaddfp_3 = "1000000aVVV", vmrghb_3 = "1000000cVVV", vpkuhum_3 = "1000000eVVV", vmhaddshs_4 = "10000020VVVV", vmhraddshs_4 = "10000021VVVV", vmladduhm_4 = "10000022VVVV", vmsumubm_4 = "10000024VVVV", vmsummbm_4 = "10000025VVVV", vmsumuhm_4 = "10000026VVVV", vmsumuhs_4 = "10000027VVVV", vmsumshm_4 = "10000028VVVV", vmsumshs_4 = "10000029VVVV", vsel_4 = "1000002aVVVV", vperm_4 = "1000002bVVVV", vsldoi_4 = "1000002cVVVP", vpermxor_4 = "1000002dVVVV", vmaddfp_4 = "1000002eVVVV~", vnmsubfp_4 = "1000002fVVVV~", vaddeuqm_4 = "1000003cVVVV", vaddecuq_4 = "1000003dVVVV", vsubeuqm_4 = "1000003eVVVV", vsubecuq_4 = "1000003fVVVV", vadduhm_3 = "10000040VVV", vmaxuh_3 = "10000042VVV", vrlh_3 = "10000044VVV", vcmpequh_3 = "10000046VVV", vmulouh_3 = "10000048VVV", vsubfp_3 = "1000004aVVV", vmrghh_3 = "1000004cVVV", vpkuwum_3 = "1000004eVVV", vadduwm_3 = "10000080VVV", vmaxuw_3 = "10000082VVV", vrlw_3 = "10000084VVV", vcmpequw_3 = "10000086VVV", vmulouw_3 = "10000088VVV", vmuluwm_3 = "10000089VVV", vmrghw_3 = "1000008cVVV", vpkuhus_3 = "1000008eVVV", vaddudm_3 = "100000c0VVV", vmaxud_3 = "100000c2VVV", vrld_3 = "100000c4VVV", vcmpeqfp_3 = "100000c6VVV", vcmpequd_3 = "100000c7VVV", vpkuwus_3 = "100000ceVVV", vadduqm_3 = "10000100VVV", vmaxsb_3 = "10000102VVV", vslb_3 = "10000104VVV", vmulosb_3 = "10000108VVV", vrefp_2 = "1000010aV-V", vmrglb_3 = "1000010cVVV", vpkshus_3 = "1000010eVVV", vaddcuq_3 = "10000140VVV", vmaxsh_3 = "10000142VVV", vslh_3 = "10000144VVV", vmulosh_3 = "10000148VVV", vrsqrtefp_2 = "1000014aV-V", vmrglh_3 = "1000014cVVV", vpkswus_3 = "1000014eVVV", vaddcuw_3 = "10000180VVV", vmaxsw_3 = "10000182VVV", vslw_3 = "10000184VVV", vmulosw_3 = "10000188VVV", vexptefp_2 = "1000018aV-V", vmrglw_3 = "1000018cVVV", vpkshss_3 = "1000018eVVV", vmaxsd_3 = "100001c2VVV", vsl_3 = "100001c4VVV", vcmpgefp_3 = "100001c6VVV", vlogefp_2 = "100001caV-V", vpkswss_3 = "100001ceVVV", vadduhs_3 = "10000240VVV", vminuh_3 = "10000242VVV", vsrh_3 = "10000244VVV", vcmpgtuh_3 = "10000246VVV", vmuleuh_3 = "10000248VVV", vrfiz_2 = "1000024aV-V", vsplth_3 = "1000024cVV3", vupkhsh_2 = "1000024eV-V", vminuw_3 = "10000282VVV", vminud_3 = "100002c2VVV", vcmpgtud_3 = "100002c7VVV", vrfim_2 = "100002caV-V", vcmpgtsb_3 = "10000306VVV", vcfux_3 = "1000030aVVA~", vaddshs_3 = "10000340VVV", vminsh_3 = "10000342VVV", vsrah_3 = "10000344VVV", vcmpgtsh_3 = "10000346VVV", vmulesh_3 = "10000348VVV", vcfsx_3 = "1000034aVVA~", vspltish_2 = "1000034cVS", vupkhpx_2 = "1000034eV-V", vaddsws_3 = "10000380VVV", vminsw_3 = "10000382VVV", vsraw_3 = "10000384VVV", vcmpgtsw_3 = "10000386VVV", vmulesw_3 = "10000388VVV", vctuxs_3 = "1000038aVVA~", vspltisw_2 = "1000038cVS", vminsd_3 = "100003c2VVV", vsrad_3 = "100003c4VVV", vcmpbfp_3 = "100003c6VVV", vcmpgtsd_3 = "100003c7VVV", vctsxs_3 = "100003caVVA~", vupklpx_2 = "100003ceV-V", vsububm_3 = "10000400VVV", ["bcdadd._4"] = "10000401VVVy.", vavgub_3 = "10000402VVV", vand_3 = "10000404VVV", ["vcmpequb._3"] = "10000406VVV", vmaxfp_3 = "1000040aVVV", vsubuhm_3 = "10000440VVV", ["bcdsub._4"] = "10000441VVVy.", vavguh_3 = "10000442VVV", vandc_3 = "10000444VVV", ["vcmpequh._3"] = "10000446VVV", vminfp_3 = "1000044aVVV", vpkudum_3 = "1000044eVVV", vsubuwm_3 = "10000480VVV", vavguw_3 = "10000482VVV", vor_3 = "10000484VVV", ["vcmpequw._3"] = "10000486VVV", vpmsumw_3 = "10000488VVV", ["vcmpeqfp._3"] = "100004c6VVV", ["vcmpequd._3"] = "100004c7VVV", vpkudus_3 = "100004ceVVV", vavgsb_3 = "10000502VVV", vavgsh_3 = "10000542VVV", vorc_3 = "10000544VVV", vbpermq_3 = "1000054cVVV", vpksdus_3 = "1000054eVVV", vavgsw_3 = "10000582VVV", vsld_3 = "100005c4VVV", ["vcmpgefp._3"] = "100005c6VVV", vpksdss_3 = "100005ceVVV", vsububs_3 = "10000600VVV", mfvscr_1 = "10000604V--", vsum4ubs_3 = "10000608VVV", vsubuhs_3 = "10000640VVV", mtvscr_1 = "10000644--V", ["vcmpgtuh._3"] = "10000646VVV", vsum4shs_3 = "10000648VVV", vupkhsw_2 = "1000064eV-V", vsubuws_3 = "10000680VVV", vshasigmaw_4 = "10000682VVYp", veqv_3 = "10000684VVV", vsum2sws_3 = "10000688VVV", vmrgow_3 = "1000068cVVV", vshasigmad_4 = "100006c2VVYp", vsrd_3 = "100006c4VVV", ["vcmpgtud._3"] = "100006c7VVV", vupklsw_2 = "100006ceV-V", vupkslw_2 = "100006ceV-V", vsubsbs_3 = "10000700VVV", vclzb_2 = "10000702V-V", vpopcntb_2 = "10000703V-V", ["vcmpgtsb._3"] = "10000706VVV", vsum4sbs_3 = "10000708VVV", vsubshs_3 = "10000740VVV", vclzh_2 = "10000742V-V", vpopcnth_2 = "10000743V-V", ["vcmpgtsh._3"] = "10000746VVV", vsubsws_3 = "10000780VVV", vclzw_2 = "10000782V-V", vpopcntw_2 = "10000783V-V", ["vcmpgtsw._3"] = "10000786VVV", vsumsws_3 = "10000788VVV", vmrgew_3 = "1000078cVVV", vclzd_2 = "100007c2V-V", vpopcntd_2 = "100007c3V-V", ["vcmpbfp._3"] = "100007c6VVV", ["vcmpgtsd._3"] = "100007c7VVV", -- Primary opcode 19: mcrf_2 = "4c000000XX", isync_0 = "4c00012c", crnor_3 = "4c000042CCC", crnot_2 = "4c000042CC=", crandc_3 = "4c000102CCC", crxor_3 = "4c000182CCC", crclr_1 = "4c000182C==", crnand_3 = "4c0001c2CCC", crand_3 = "4c000202CCC", creqv_3 = "4c000242CCC", crset_1 = "4c000242C==", crorc_3 = "4c000342CCC", cror_3 = "4c000382CCC", crmove_2 = "4c000382CC=", bclr_2 = "4c000020AA", bclrl_2 = "4c000021AA", bcctr_2 = "4c000420AA", bcctrl_2 = "4c000421AA", bctar_2 = "4c000460AA", bctarl_2 = "4c000461AA", blr_0 = "4e800020", blrl_0 = "4e800021", bctr_0 = "4e800420", bctrl_0 = "4e800421", -- Primary opcode 31: cmpw_3 = "7c000000XRR", cmpw_2 = "7c000000-RR", cmpd_3 = "7c200000XRR", cmpd_2 = "7c200000-RR", tw_3 = "7c000008ARR", lvsl_3 = "7c00000cVRR", subfc_3 = "7c000010RRR.", subc_3 = "7c000010RRR~.", mulhdu_3 = "7c000012RRR.", addc_3 = "7c000014RRR.", mulhwu_3 = "7c000016RRR.", isel_4 = "7c00001eRRRC", isellt_3 = "7c00001eRRR", iselgt_3 = "7c00005eRRR", iseleq_3 = "7c00009eRRR", mfcr_1 = "7c000026R", mfocrf_2 = "7c100026RG", mtcrf_2 = "7c000120GR", mtocrf_2 = "7c100120GR", lwarx_3 = "7c000028RR0R", ldx_3 = "7c00002aRR0R", lwzx_3 = "7c00002eRR0R", slw_3 = "7c000030RR~R.", cntlzw_2 = "7c000034RR~", sld_3 = "7c000036RR~R.", and_3 = "7c000038RR~R.", cmplw_3 = "7c000040XRR", cmplw_2 = "7c000040-RR", cmpld_3 = "7c200040XRR", cmpld_2 = "7c200040-RR", lvsr_3 = "7c00004cVRR", subf_3 = "7c000050RRR.", sub_3 = "7c000050RRR~.", lbarx_3 = "7c000068RR0R", ldux_3 = "7c00006aRR0R", dcbst_2 = "7c00006c-RR", lwzux_3 = "7c00006eRR0R", cntlzd_2 = "7c000074RR~", andc_3 = "7c000078RR~R.", td_3 = "7c000088ARR", lvewx_3 = "7c00008eVRR", mulhd_3 = "7c000092RRR.", addg6s_3 = "7c000094RRR", mulhw_3 = "7c000096RRR.", dlmzb_3 = "7c00009cRR~R.", ldarx_3 = "7c0000a8RR0R", dcbf_2 = "7c0000ac-RR", lbzx_3 = "7c0000aeRR0R", lvx_3 = "7c0000ceVRR", neg_2 = "7c0000d0RR.", lharx_3 = "7c0000e8RR0R", lbzux_3 = "7c0000eeRR0R", popcntb_2 = "7c0000f4RR~", not_2 = "7c0000f8RR~%.", nor_3 = "7c0000f8RR~R.", stvebx_3 = "7c00010eVRR", subfe_3 = "7c000110RRR.", sube_3 = "7c000110RRR~.", adde_3 = "7c000114RRR.", stdx_3 = "7c00012aRR0R", ["stwcx._3"] = "7c00012dRR0R.", stwx_3 = "7c00012eRR0R", prtyw_2 = "7c000134RR~", stvehx_3 = "7c00014eVRR", stdux_3 = "7c00016aRR0R", ["stqcx._3"] = "7c00016dR:R0R.", stwux_3 = "7c00016eRR0R", prtyd_2 = "7c000174RR~", stvewx_3 = "7c00018eVRR", subfze_2 = "7c000190RR.", addze_2 = "7c000194RR.", ["stdcx._3"] = "7c0001adRR0R.", stbx_3 = "7c0001aeRR0R", stvx_3 = "7c0001ceVRR", subfme_2 = "7c0001d0RR.", mulld_3 = "7c0001d2RRR.", addme_2 = "7c0001d4RR.", mullw_3 = "7c0001d6RRR.", dcbtst_2 = "7c0001ec-RR", stbux_3 = "7c0001eeRR0R", bpermd_3 = "7c0001f8RR~R", lvepxl_3 = "7c00020eVRR", add_3 = "7c000214RRR.", lqarx_3 = "7c000228R:R0R", dcbt_2 = "7c00022c-RR", lhzx_3 = "7c00022eRR0R", cdtbcd_2 = "7c000234RR~", eqv_3 = "7c000238RR~R.", lvepx_3 = "7c00024eVRR", eciwx_3 = "7c00026cRR0R", lhzux_3 = "7c00026eRR0R", cbcdtd_2 = "7c000274RR~", xor_3 = "7c000278RR~R.", mfspefscr_1 = "7c0082a6R", mfxer_1 = "7c0102a6R", mflr_1 = "7c0802a6R", mfctr_1 = "7c0902a6R", lwax_3 = "7c0002aaRR0R", lhax_3 = "7c0002aeRR0R", mftb_1 = "7c0c42e6R", mftbu_1 = "7c0d42e6R", lvxl_3 = "7c0002ceVRR", lwaux_3 = "7c0002eaRR0R", lhaux_3 = "7c0002eeRR0R", popcntw_2 = "7c0002f4RR~", divdeu_3 = "7c000312RRR.", divweu_3 = "7c000316RRR.", sthx_3 = "7c00032eRR0R", orc_3 = "7c000338RR~R.", ecowx_3 = "7c00036cRR0R", sthux_3 = "7c00036eRR0R", or_3 = "7c000378RR~R.", mr_2 = "7c000378RR~%.", divdu_3 = "7c000392RRR.", divwu_3 = "7c000396RRR.", mtspefscr_1 = "7c0083a6R", mtxer_1 = "7c0103a6R", mtlr_1 = "7c0803a6R", mtctr_1 = "7c0903a6R", dcbi_2 = "7c0003ac-RR", nand_3 = "7c0003b8RR~R.", dsn_2 = "7c0003c6-RR", stvxl_3 = "7c0003ceVRR", divd_3 = "7c0003d2RRR.", divw_3 = "7c0003d6RRR.", popcntd_2 = "7c0003f4RR~", cmpb_3 = "7c0003f8RR~R.", mcrxr_1 = "7c000400X", lbdx_3 = "7c000406RRR", subfco_3 = "7c000410RRR.", subco_3 = "7c000410RRR~.", addco_3 = "7c000414RRR.", ldbrx_3 = "7c000428RR0R", lswx_3 = "7c00042aRR0R", lwbrx_3 = "7c00042cRR0R", lfsx_3 = "7c00042eFR0R", srw_3 = "7c000430RR~R.", srd_3 = "7c000436RR~R.", lhdx_3 = "7c000446RRR", subfo_3 = "7c000450RRR.", subo_3 = "7c000450RRR~.", lfsux_3 = "7c00046eFR0R", lwdx_3 = "7c000486RRR", lswi_3 = "7c0004aaRR0A", sync_0 = "7c0004ac", lwsync_0 = "7c2004ac", ptesync_0 = "7c4004ac", lfdx_3 = "7c0004aeFR0R", lddx_3 = "7c0004c6RRR", nego_2 = "7c0004d0RR.", lfdux_3 = "7c0004eeFR0R", stbdx_3 = "7c000506RRR", subfeo_3 = "7c000510RRR.", subeo_3 = "7c000510RRR~.", addeo_3 = "7c000514RRR.", stdbrx_3 = "7c000528RR0R", stswx_3 = "7c00052aRR0R", stwbrx_3 = "7c00052cRR0R", stfsx_3 = "7c00052eFR0R", sthdx_3 = "7c000546RRR", ["stbcx._3"] = "7c00056dRRR", stfsux_3 = "7c00056eFR0R", stwdx_3 = "7c000586RRR", subfzeo_2 = "7c000590RR.", addzeo_2 = "7c000594RR.", stswi_3 = "7c0005aaRR0A", ["sthcx._3"] = "7c0005adRRR", stfdx_3 = "7c0005aeFR0R", stddx_3 = "7c0005c6RRR", subfmeo_2 = "7c0005d0RR.", mulldo_3 = "7c0005d2RRR.", addmeo_2 = "7c0005d4RR.", mullwo_3 = "7c0005d6RRR.", dcba_2 = "7c0005ec-RR", stfdux_3 = "7c0005eeFR0R", stvepxl_3 = "7c00060eVRR", addo_3 = "7c000614RRR.", lhbrx_3 = "7c00062cRR0R", lfdpx_3 = "7c00062eF:RR", sraw_3 = "7c000630RR~R.", srad_3 = "7c000634RR~R.", lfddx_3 = "7c000646FRR", stvepx_3 = "7c00064eVRR", srawi_3 = "7c000670RR~A.", sradi_3 = "7c000674RR~H.", eieio_0 = "7c0006ac", lfiwax_3 = "7c0006aeFR0R", divdeuo_3 = "7c000712RRR.", divweuo_3 = "7c000716RRR.", sthbrx_3 = "7c00072cRR0R", stfdpx_3 = "7c00072eF:RR", extsh_2 = "7c000734RR~.", stfddx_3 = "7c000746FRR", divdeo_3 = "7c000752RRR.", divweo_3 = "7c000756RRR.", extsb_2 = "7c000774RR~.", divduo_3 = "7c000792RRR.", divwou_3 = "7c000796RRR.", icbi_2 = "7c0007ac-RR", stfiwx_3 = "7c0007aeFR0R", extsw_2 = "7c0007b4RR~.", divdo_3 = "7c0007d2RRR.", divwo_3 = "7c0007d6RRR.", dcbz_2 = "7c0007ec-RR", ["tbegin._1"] = "7c00051d1", ["tbegin._0"] = "7c00051d", ["tend._1"] = "7c00055dY", ["tend._0"] = "7c00055d", ["tendall._0"] = "7e00055d", tcheck_1 = "7c00059cX", ["tsr._1"] = "7c0005dd1", ["tsuspend._0"] = "7c0005dd", ["tresume._0"] = "7c2005dd", ["tabortwc._3"] = "7c00061dARR", ["tabortdc._3"] = "7c00065dARR", ["tabortwci._3"] = "7c00069dARS", ["tabortdci._3"] = "7c0006ddARS", ["tabort._1"] = "7c00071d-R-", ["treclaim._1"] = "7c00075d-R", ["trechkpt._0"] = "7c0007dd", lxsiwzx_3 = "7c000018QRR", lxsiwax_3 = "7c000098QRR", mfvsrd_2 = "7c000066-Rq", mfvsrwz_2 = "7c0000e6-Rq", stxsiwx_3 = "7c000118QRR", mtvsrd_2 = "7c000166QR", mtvsrwa_2 = "7c0001a6QR", lxvdsx_3 = "7c000298QRR", lxsspx_3 = "7c000418QRR", lxsdx_3 = "7c000498QRR", stxsspx_3 = "7c000518QRR", stxsdx_3 = "7c000598QRR", lxvw4x_3 = "7c000618QRR", lxvd2x_3 = "7c000698QRR", stxvw4x_3 = "7c000718QRR", stxvd2x_3 = "7c000798QRR", -- Primary opcode 30: rldicl_4 = "78000000RR~HM.", rldicr_4 = "78000004RR~HM.", rldic_4 = "78000008RR~HM.", rldimi_4 = "7800000cRR~HM.", rldcl_4 = "78000010RR~RM.", rldcr_4 = "78000012RR~RM.", rotldi_3 = op_alias("rldicl_4", function(p) p[4] = "0" end), rotrdi_3 = op_alias("rldicl_4", function(p) p[3] = "64-("..p[3]..")"; p[4] = "0" end), rotld_3 = op_alias("rldcl_4", function(p) p[4] = "0" end), sldi_3 = op_alias("rldicr_4", function(p) p[4] = "63-("..p[3]..")" end), srdi_3 = op_alias("rldicl_4", function(p) p[4] = p[3]; p[3] = "64-("..p[3]..")" end), clrldi_3 = op_alias("rldicl_4", function(p) p[4] = p[3]; p[3] = "0" end), clrrdi_3 = op_alias("rldicr_4", function(p) p[4] = "63-("..p[3]..")"; p[3] = "0" end), -- Primary opcode 56: lq_2 = "e0000000R:D", -- NYI: displacement must be divisible by 8. -- Primary opcode 57: lfdp_2 = "e4000000F:D", -- NYI: displacement must be divisible by 4. -- Primary opcode 59: fdivs_3 = "ec000024FFF.", fsubs_3 = "ec000028FFF.", fadds_3 = "ec00002aFFF.", fsqrts_2 = "ec00002cF-F.", fres_2 = "ec000030F-F.", fmuls_3 = "ec000032FF-F.", frsqrtes_2 = "ec000034F-F.", fmsubs_4 = "ec000038FFFF~.", fmadds_4 = "ec00003aFFFF~.", fnmsubs_4 = "ec00003cFFFF~.", fnmadds_4 = "ec00003eFFFF~.", fcfids_2 = "ec00069cF-F.", fcfidus_2 = "ec00079cF-F.", dadd_3 = "ec000004FFF.", dqua_4 = "ec000006FFFZ.", dmul_3 = "ec000044FFF.", drrnd_4 = "ec000046FFFZ.", dscli_3 = "ec000084FF6.", dquai_4 = "ec000086SF~FZ.", dscri_3 = "ec0000c4FF6.", drintx_4 = "ec0000c61F~FZ.", dcmpo_3 = "ec000104XFF", dtstex_3 = "ec000144XFF", dtstdc_3 = "ec000184XF6", dtstdg_3 = "ec0001c4XF6", drintn_4 = "ec0001c61F~FZ.", dctdp_2 = "ec000204F-F.", dctfix_2 = "ec000244F-F.", ddedpd_3 = "ec000284ZF~F.", dxex_2 = "ec0002c4F-F.", dsub_3 = "ec000404FFF.", ddiv_3 = "ec000444FFF.", dcmpu_3 = "ec000504XFF", dtstsf_3 = "ec000544XFF", drsp_2 = "ec000604F-F.", dcffix_2 = "ec000644F-F.", denbcd_3 = "ec000684YF~F.", diex_3 = "ec0006c4FFF.", -- Primary opcode 60: xsaddsp_3 = "f0000000QQQ", xsmaddasp_3 = "f0000008QQQ", xxsldwi_4 = "f0000010QQQz", xsrsqrtesp_2 = "f0000028Q-Q", xssqrtsp_2 = "f000002cQ-Q", xxsel_4 = "f0000030QQQQ", xssubsp_3 = "f0000040QQQ", xsmaddmsp_3 = "f0000048QQQ", xxpermdi_4 = "f0000050QQQz", xsresp_2 = "f0000068Q-Q", xsmulsp_3 = "f0000080QQQ", xsmsubasp_3 = "f0000088QQQ", xxmrghw_3 = "f0000090QQQ", xsdivsp_3 = "f00000c0QQQ", xsmsubmsp_3 = "f00000c8QQQ", xsadddp_3 = "f0000100QQQ", xsmaddadp_3 = "f0000108QQQ", xscmpudp_3 = "f0000118XQQ", xscvdpuxws_2 = "f0000120Q-Q", xsrdpi_2 = "f0000124Q-Q", xsrsqrtedp_2 = "f0000128Q-Q", xssqrtdp_2 = "f000012cQ-Q", xssubdp_3 = "f0000140QQQ", xsmaddmdp_3 = "f0000148QQQ", xscmpodp_3 = "f0000158XQQ", xscvdpsxws_2 = "f0000160Q-Q", xsrdpiz_2 = "f0000164Q-Q", xsredp_2 = "f0000168Q-Q", xsmuldp_3 = "f0000180QQQ", xsmsubadp_3 = "f0000188QQQ", xxmrglw_3 = "f0000190QQQ", xsrdpip_2 = "f00001a4Q-Q", xstsqrtdp_2 = "f00001a8X-Q", xsrdpic_2 = "f00001acQ-Q", xsdivdp_3 = "f00001c0QQQ", xsmsubmdp_3 = "f00001c8QQQ", xsrdpim_2 = "f00001e4Q-Q", xstdivdp_3 = "f00001e8XQQ", xvaddsp_3 = "f0000200QQQ", xvmaddasp_3 = "f0000208QQQ", xvcmpeqsp_3 = "f0000218QQQ", xvcvspuxws_2 = "f0000220Q-Q", xvrspi_2 = "f0000224Q-Q", xvrsqrtesp_2 = "f0000228Q-Q", xvsqrtsp_2 = "f000022cQ-Q", xvsubsp_3 = "f0000240QQQ", xvmaddmsp_3 = "f0000248QQQ", xvcmpgtsp_3 = "f0000258QQQ", xvcvspsxws_2 = "f0000260Q-Q", xvrspiz_2 = "f0000264Q-Q", xvresp_2 = "f0000268Q-Q", xvmulsp_3 = "f0000280QQQ", xvmsubasp_3 = "f0000288QQQ", xxspltw_3 = "f0000290QQg~", xvcmpgesp_3 = "f0000298QQQ", xvcvuxwsp_2 = "f00002a0Q-Q", xvrspip_2 = "f00002a4Q-Q", xvtsqrtsp_2 = "f00002a8X-Q", xvrspic_2 = "f00002acQ-Q", xvdivsp_3 = "f00002c0QQQ", xvmsubmsp_3 = "f00002c8QQQ", xvcvsxwsp_2 = "f00002e0Q-Q", xvrspim_2 = "f00002e4Q-Q", xvtdivsp_3 = "f00002e8XQQ", xvadddp_3 = "f0000300QQQ", xvmaddadp_3 = "f0000308QQQ", xvcmpeqdp_3 = "f0000318QQQ", xvcvdpuxws_2 = "f0000320Q-Q", xvrdpi_2 = "f0000324Q-Q", xvrsqrtedp_2 = "f0000328Q-Q", xvsqrtdp_2 = "f000032cQ-Q", xvsubdp_3 = "f0000340QQQ", xvmaddmdp_3 = "f0000348QQQ", xvcmpgtdp_3 = "f0000358QQQ", xvcvdpsxws_2 = "f0000360Q-Q", xvrdpiz_2 = "f0000364Q-Q", xvredp_2 = "f0000368Q-Q", xvmuldp_3 = "f0000380QQQ", xvmsubadp_3 = "f0000388QQQ", xvcmpgedp_3 = "f0000398QQQ", xvcvuxwdp_2 = "f00003a0Q-Q", xvrdpip_2 = "f00003a4Q-Q", xvtsqrtdp_2 = "f00003a8X-Q", xvrdpic_2 = "f00003acQ-Q", xvdivdp_3 = "f00003c0QQQ", xvmsubmdp_3 = "f00003c8QQQ", xvcvsxwdp_2 = "f00003e0Q-Q", xvrdpim_2 = "f00003e4Q-Q", xvtdivdp_3 = "f00003e8XQQ", xsnmaddasp_3 = "f0000408QQQ", xxland_3 = "f0000410QQQ", xscvdpsp_2 = "f0000424Q-Q", xscvdpspn_2 = "f000042cQ-Q", xsnmaddmsp_3 = "f0000448QQQ", xxlandc_3 = "f0000450QQQ", xsrsp_2 = "f0000464Q-Q", xsnmsubasp_3 = "f0000488QQQ", xxlor_3 = "f0000490QQQ", xscvuxdsp_2 = "f00004a0Q-Q", xsnmsubmsp_3 = "f00004c8QQQ", xxlxor_3 = "f00004d0QQQ", xscvsxdsp_2 = "f00004e0Q-Q", xsmaxdp_3 = "f0000500QQQ", xsnmaddadp_3 = "f0000508QQQ", xxlnor_3 = "f0000510QQQ", xscvdpuxds_2 = "f0000520Q-Q", xscvspdp_2 = "f0000524Q-Q", xscvspdpn_2 = "f000052cQ-Q", xsmindp_3 = "f0000540QQQ", xsnmaddmdp_3 = "f0000548QQQ", xxlorc_3 = "f0000550QQQ", xscvdpsxds_2 = "f0000560Q-Q", xsabsdp_2 = "f0000564Q-Q", xscpsgndp_3 = "f0000580QQQ", xsnmsubadp_3 = "f0000588QQQ", xxlnand_3 = "f0000590QQQ", xscvuxddp_2 = "f00005a0Q-Q", xsnabsdp_2 = "f00005a4Q-Q", xsnmsubmdp_3 = "f00005c8QQQ", xxleqv_3 = "f00005d0QQQ", xscvsxddp_2 = "f00005e0Q-Q", xsnegdp_2 = "f00005e4Q-Q", xvmaxsp_3 = "f0000600QQQ", xvnmaddasp_3 = "f0000608QQQ", ["xvcmpeqsp._3"] = "f0000618QQQ", xvcvspuxds_2 = "f0000620Q-Q", xvcvdpsp_2 = "f0000624Q-Q", xvminsp_3 = "f0000640QQQ", xvnmaddmsp_3 = "f0000648QQQ", ["xvcmpgtsp._3"] = "f0000658QQQ", xvcvspsxds_2 = "f0000660Q-Q", xvabssp_2 = "f0000664Q-Q", xvcpsgnsp_3 = "f0000680QQQ", xvnmsubasp_3 = "f0000688QQQ", ["xvcmpgesp._3"] = "f0000698QQQ", xvcvuxdsp_2 = "f00006a0Q-Q", xvnabssp_2 = "f00006a4Q-Q", xvnmsubmsp_3 = "f00006c8QQQ", xvcvsxdsp_2 = "f00006e0Q-Q", xvnegsp_2 = "f00006e4Q-Q", xvmaxdp_3 = "f0000700QQQ", xvnmaddadp_3 = "f0000708QQQ", ["xvcmpeqdp._3"] = "f0000718QQQ", xvcvdpuxds_2 = "f0000720Q-Q", xvcvspdp_2 = "f0000724Q-Q", xvmindp_3 = "f0000740QQQ", xvnmaddmdp_3 = "f0000748QQQ", ["xvcmpgtdp._3"] = "f0000758QQQ", xvcvdpsxds_2 = "f0000760Q-Q", xvabsdp_2 = "f0000764Q-Q", xvcpsgndp_3 = "f0000780QQQ", xvnmsubadp_3 = "f0000788QQQ", ["xvcmpgedp._3"] = "f0000798QQQ", xvcvuxddp_2 = "f00007a0Q-Q", xvnabsdp_2 = "f00007a4Q-Q", xvnmsubmdp_3 = "f00007c8QQQ", xvcvsxddp_2 = "f00007e0Q-Q", xvnegdp_2 = "f00007e4Q-Q", -- Primary opcode 61: stfdp_2 = "f4000000F:D", -- NYI: displacement must be divisible by 4. -- Primary opcode 62: stq_2 = "f8000002R:D", -- NYI: displacement must be divisible by 8. -- Primary opcode 63: fdiv_3 = "fc000024FFF.", fsub_3 = "fc000028FFF.", fadd_3 = "fc00002aFFF.", fsqrt_2 = "fc00002cF-F.", fsel_4 = "fc00002eFFFF~.", fre_2 = "fc000030F-F.", fmul_3 = "fc000032FF-F.", frsqrte_2 = "fc000034F-F.", fmsub_4 = "fc000038FFFF~.", fmadd_4 = "fc00003aFFFF~.", fnmsub_4 = "fc00003cFFFF~.", fnmadd_4 = "fc00003eFFFF~.", fcmpu_3 = "fc000000XFF", fcpsgn_3 = "fc000010FFF.", fcmpo_3 = "fc000040XFF", mtfsb1_1 = "fc00004cA", fneg_2 = "fc000050F-F.", mcrfs_2 = "fc000080XX", mtfsb0_1 = "fc00008cA", fmr_2 = "fc000090F-F.", frsp_2 = "fc000018F-F.", fctiw_2 = "fc00001cF-F.", fctiwz_2 = "fc00001eF-F.", ftdiv_2 = "fc000100X-F.", fctiwu_2 = "fc00011cF-F.", fctiwuz_2 = "fc00011eF-F.", mtfsfi_2 = "fc00010cAA", -- NYI: upshift. fnabs_2 = "fc000110F-F.", ftsqrt_2 = "fc000140X-F.", fabs_2 = "fc000210F-F.", frin_2 = "fc000310F-F.", friz_2 = "fc000350F-F.", frip_2 = "fc000390F-F.", frim_2 = "fc0003d0F-F.", mffs_1 = "fc00048eF.", -- NYI: mtfsf, mtfsb0, mtfsb1. fctid_2 = "fc00065cF-F.", fctidz_2 = "fc00065eF-F.", fmrgow_3 = "fc00068cFFF", fcfid_2 = "fc00069cF-F.", fctidu_2 = "fc00075cF-F.", fctiduz_2 = "fc00075eF-F.", fmrgew_3 = "fc00078cFFF", fcfidu_2 = "fc00079cF-F.", daddq_3 = "fc000004F:F:F:.", dquaq_4 = "fc000006F:F:F:Z.", dmulq_3 = "fc000044F:F:F:.", drrndq_4 = "fc000046F:F:F:Z.", dscliq_3 = "fc000084F:F:6.", dquaiq_4 = "fc000086SF:~F:Z.", dscriq_3 = "fc0000c4F:F:6.", drintxq_4 = "fc0000c61F:~F:Z.", dcmpoq_3 = "fc000104XF:F:", dtstexq_3 = "fc000144XF:F:", dtstdcq_3 = "fc000184XF:6", dtstdgq_3 = "fc0001c4XF:6", drintnq_4 = "fc0001c61F:~F:Z.", dctqpq_2 = "fc000204F:-F:.", dctfixq_2 = "fc000244F:-F:.", ddedpdq_3 = "fc000284ZF:~F:.", dxexq_2 = "fc0002c4F:-F:.", dsubq_3 = "fc000404F:F:F:.", ddivq_3 = "fc000444F:F:F:.", dcmpuq_3 = "fc000504XF:F:", dtstsfq_3 = "fc000544XF:F:", drdpq_2 = "fc000604F:-F:.", dcffixq_2 = "fc000644F:-F:.", denbcdq_3 = "fc000684YF:~F:.", diexq_3 = "fc0006c4F:FF:.", -- Primary opcode 4, SPE APU extension: evaddw_3 = "10000200RRR", evaddiw_3 = "10000202RAR~", evsubw_3 = "10000204RRR~", evsubiw_3 = "10000206RAR~", evabs_2 = "10000208RR", evneg_2 = "10000209RR", evextsb_2 = "1000020aRR", evextsh_2 = "1000020bRR", evrndw_2 = "1000020cRR", evcntlzw_2 = "1000020dRR", evcntlsw_2 = "1000020eRR", brinc_3 = "1000020fRRR", evand_3 = "10000211RRR", evandc_3 = "10000212RRR", evxor_3 = "10000216RRR", evor_3 = "10000217RRR", evmr_2 = "10000217RR=", evnor_3 = "10000218RRR", evnot_2 = "10000218RR=", eveqv_3 = "10000219RRR", evorc_3 = "1000021bRRR", evnand_3 = "1000021eRRR", evsrwu_3 = "10000220RRR", evsrws_3 = "10000221RRR", evsrwiu_3 = "10000222RRA", evsrwis_3 = "10000223RRA", evslw_3 = "10000224RRR", evslwi_3 = "10000226RRA", evrlw_3 = "10000228RRR", evsplati_2 = "10000229RS", evrlwi_3 = "1000022aRRA", evsplatfi_2 = "1000022bRS", evmergehi_3 = "1000022cRRR", evmergelo_3 = "1000022dRRR", evcmpgtu_3 = "10000230XRR", evcmpgtu_2 = "10000230-RR", evcmpgts_3 = "10000231XRR", evcmpgts_2 = "10000231-RR", evcmpltu_3 = "10000232XRR", evcmpltu_2 = "10000232-RR", evcmplts_3 = "10000233XRR", evcmplts_2 = "10000233-RR", evcmpeq_3 = "10000234XRR", evcmpeq_2 = "10000234-RR", evsel_4 = "10000278RRRW", evsel_3 = "10000278RRR", evfsadd_3 = "10000280RRR", evfssub_3 = "10000281RRR", evfsabs_2 = "10000284RR", evfsnabs_2 = "10000285RR", evfsneg_2 = "10000286RR", evfsmul_3 = "10000288RRR", evfsdiv_3 = "10000289RRR", evfscmpgt_3 = "1000028cXRR", evfscmpgt_2 = "1000028c-RR", evfscmplt_3 = "1000028dXRR", evfscmplt_2 = "1000028d-RR", evfscmpeq_3 = "1000028eXRR", evfscmpeq_2 = "1000028e-RR", evfscfui_2 = "10000290R-R", evfscfsi_2 = "10000291R-R", evfscfuf_2 = "10000292R-R", evfscfsf_2 = "10000293R-R", evfsctui_2 = "10000294R-R", evfsctsi_2 = "10000295R-R", evfsctuf_2 = "10000296R-R", evfsctsf_2 = "10000297R-R", evfsctuiz_2 = "10000298R-R", evfsctsiz_2 = "1000029aR-R", evfststgt_3 = "1000029cXRR", evfststgt_2 = "1000029c-RR", evfststlt_3 = "1000029dXRR", evfststlt_2 = "1000029d-RR", evfststeq_3 = "1000029eXRR", evfststeq_2 = "1000029e-RR", efsadd_3 = "100002c0RRR", efssub_3 = "100002c1RRR", efsabs_2 = "100002c4RR", efsnabs_2 = "100002c5RR", efsneg_2 = "100002c6RR", efsmul_3 = "100002c8RRR", efsdiv_3 = "100002c9RRR", efscmpgt_3 = "100002ccXRR", efscmpgt_2 = "100002cc-RR", efscmplt_3 = "100002cdXRR", efscmplt_2 = "100002cd-RR", efscmpeq_3 = "100002ceXRR", efscmpeq_2 = "100002ce-RR", efscfd_2 = "100002cfR-R", efscfui_2 = "100002d0R-R", efscfsi_2 = "100002d1R-R", efscfuf_2 = "100002d2R-R", efscfsf_2 = "100002d3R-R", efsctui_2 = "100002d4R-R", efsctsi_2 = "100002d5R-R", efsctuf_2 = "100002d6R-R", efsctsf_2 = "100002d7R-R", efsctuiz_2 = "100002d8R-R", efsctsiz_2 = "100002daR-R", efststgt_3 = "100002dcXRR", efststgt_2 = "100002dc-RR", efststlt_3 = "100002ddXRR", efststlt_2 = "100002dd-RR", efststeq_3 = "100002deXRR", efststeq_2 = "100002de-RR", efdadd_3 = "100002e0RRR", efdsub_3 = "100002e1RRR", efdcfuid_2 = "100002e2R-R", efdcfsid_2 = "100002e3R-R", efdabs_2 = "100002e4RR", efdnabs_2 = "100002e5RR", efdneg_2 = "100002e6RR", efdmul_3 = "100002e8RRR", efddiv_3 = "100002e9RRR", efdctuidz_2 = "100002eaR-R", efdctsidz_2 = "100002ebR-R", efdcmpgt_3 = "100002ecXRR", efdcmpgt_2 = "100002ec-RR", efdcmplt_3 = "100002edXRR", efdcmplt_2 = "100002ed-RR", efdcmpeq_3 = "100002eeXRR", efdcmpeq_2 = "100002ee-RR", efdcfs_2 = "100002efR-R", efdcfui_2 = "100002f0R-R", efdcfsi_2 = "100002f1R-R", efdcfuf_2 = "100002f2R-R", efdcfsf_2 = "100002f3R-R", efdctui_2 = "100002f4R-R", efdctsi_2 = "100002f5R-R", efdctuf_2 = "100002f6R-R", efdctsf_2 = "100002f7R-R", efdctuiz_2 = "100002f8R-R", efdctsiz_2 = "100002faR-R", efdtstgt_3 = "100002fcXRR", efdtstgt_2 = "100002fc-RR", efdtstlt_3 = "100002fdXRR", efdtstlt_2 = "100002fd-RR", efdtsteq_3 = "100002feXRR", efdtsteq_2 = "100002fe-RR", evlddx_3 = "10000300RR0R", evldd_2 = "10000301R8", evldwx_3 = "10000302RR0R", evldw_2 = "10000303R8", evldhx_3 = "10000304RR0R", evldh_2 = "10000305R8", evlwhex_3 = "10000310RR0R", evlwhe_2 = "10000311R4", evlwhoux_3 = "10000314RR0R", evlwhou_2 = "10000315R4", evlwhosx_3 = "10000316RR0R", evlwhos_2 = "10000317R4", evstddx_3 = "10000320RR0R", evstdd_2 = "10000321R8", evstdwx_3 = "10000322RR0R", evstdw_2 = "10000323R8", evstdhx_3 = "10000324RR0R", evstdh_2 = "10000325R8", evstwhex_3 = "10000330RR0R", evstwhe_2 = "10000331R4", evstwhox_3 = "10000334RR0R", evstwho_2 = "10000335R4", evstwwex_3 = "10000338RR0R", evstwwe_2 = "10000339R4", evstwwox_3 = "1000033cRR0R", evstwwo_2 = "1000033dR4", evmhessf_3 = "10000403RRR", evmhossf_3 = "10000407RRR", evmheumi_3 = "10000408RRR", evmhesmi_3 = "10000409RRR", evmhesmf_3 = "1000040bRRR", evmhoumi_3 = "1000040cRRR", evmhosmi_3 = "1000040dRRR", evmhosmf_3 = "1000040fRRR", evmhessfa_3 = "10000423RRR", evmhossfa_3 = "10000427RRR", evmheumia_3 = "10000428RRR", evmhesmia_3 = "10000429RRR", evmhesmfa_3 = "1000042bRRR", evmhoumia_3 = "1000042cRRR", evmhosmia_3 = "1000042dRRR", evmhosmfa_3 = "1000042fRRR", evmwhssf_3 = "10000447RRR", evmwlumi_3 = "10000448RRR", evmwhumi_3 = "1000044cRRR", evmwhsmi_3 = "1000044dRRR", evmwhsmf_3 = "1000044fRRR", evmwssf_3 = "10000453RRR", evmwumi_3 = "10000458RRR", evmwsmi_3 = "10000459RRR", evmwsmf_3 = "1000045bRRR", evmwhssfa_3 = "10000467RRR", evmwlumia_3 = "10000468RRR", evmwhumia_3 = "1000046cRRR", evmwhsmia_3 = "1000046dRRR", evmwhsmfa_3 = "1000046fRRR", evmwssfa_3 = "10000473RRR", evmwumia_3 = "10000478RRR", evmwsmia_3 = "10000479RRR", evmwsmfa_3 = "1000047bRRR", evmra_2 = "100004c4RR", evdivws_3 = "100004c6RRR", evdivwu_3 = "100004c7RRR", evmwssfaa_3 = "10000553RRR", evmwumiaa_3 = "10000558RRR", evmwsmiaa_3 = "10000559RRR", evmwsmfaa_3 = "1000055bRRR", evmwssfan_3 = "100005d3RRR", evmwumian_3 = "100005d8RRR", evmwsmian_3 = "100005d9RRR", evmwsmfan_3 = "100005dbRRR", evmergehilo_3 = "1000022eRRR", evmergelohi_3 = "1000022fRRR", evlhhesplatx_3 = "10000308RR0R", evlhhesplat_2 = "10000309R2", evlhhousplatx_3 = "1000030cRR0R", evlhhousplat_2 = "1000030dR2", evlhhossplatx_3 = "1000030eRR0R", evlhhossplat_2 = "1000030fR2", evlwwsplatx_3 = "10000318RR0R", evlwwsplat_2 = "10000319R4", evlwhsplatx_3 = "1000031cRR0R", evlwhsplat_2 = "1000031dR4", evaddusiaaw_2 = "100004c0RR", evaddssiaaw_2 = "100004c1RR", evsubfusiaaw_2 = "100004c2RR", evsubfssiaaw_2 = "100004c3RR", evaddumiaaw_2 = "100004c8RR", evaddsmiaaw_2 = "100004c9RR", evsubfumiaaw_2 = "100004caRR", evsubfsmiaaw_2 = "100004cbRR", evmheusiaaw_3 = "10000500RRR", evmhessiaaw_3 = "10000501RRR", evmhessfaaw_3 = "10000503RRR", evmhousiaaw_3 = "10000504RRR", evmhossiaaw_3 = "10000505RRR", evmhossfaaw_3 = "10000507RRR", evmheumiaaw_3 = "10000508RRR", evmhesmiaaw_3 = "10000509RRR", evmhesmfaaw_3 = "1000050bRRR", evmhoumiaaw_3 = "1000050cRRR", evmhosmiaaw_3 = "1000050dRRR", evmhosmfaaw_3 = "1000050fRRR", evmhegumiaa_3 = "10000528RRR", evmhegsmiaa_3 = "10000529RRR", evmhegsmfaa_3 = "1000052bRRR", evmhogumiaa_3 = "1000052cRRR", evmhogsmiaa_3 = "1000052dRRR", evmhogsmfaa_3 = "1000052fRRR", evmwlusiaaw_3 = "10000540RRR", evmwlssiaaw_3 = "10000541RRR", evmwlumiaaw_3 = "10000548RRR", evmwlsmiaaw_3 = "10000549RRR", evmheusianw_3 = "10000580RRR", evmhessianw_3 = "10000581RRR", evmhessfanw_3 = "10000583RRR", evmhousianw_3 = "10000584RRR", evmhossianw_3 = "10000585RRR", evmhossfanw_3 = "10000587RRR", evmheumianw_3 = "10000588RRR", evmhesmianw_3 = "10000589RRR", evmhesmfanw_3 = "1000058bRRR", evmhoumianw_3 = "1000058cRRR", evmhosmianw_3 = "1000058dRRR", evmhosmfanw_3 = "1000058fRRR", evmhegumian_3 = "100005a8RRR", evmhegsmian_3 = "100005a9RRR", evmhegsmfan_3 = "100005abRRR", evmhogumian_3 = "100005acRRR", evmhogsmian_3 = "100005adRRR", evmhogsmfan_3 = "100005afRRR", evmwlusianw_3 = "100005c0RRR", evmwlssianw_3 = "100005c1RRR", evmwlumianw_3 = "100005c8RRR", evmwlsmianw_3 = "100005c9RRR", -- NYI: Book E instructions. } -- Add mnemonics for "." variants. do local t = {} for k,v in pairs(map_op) do if type(v) == "string" and sub(v, -1) == "." then local v2 = sub(v, 1, 7)..char(byte(v, 8)+1)..sub(v, 9, -2) t[sub(k, 1, -3).."."..sub(k, -2)] = v2 end end for k,v in pairs(t) do map_op[k] = v end end -- Add more branch mnemonics. for cond,c in pairs(map_cond) do local b1 = "b"..cond local c1 = shl(band(c, 3), 16) + (c < 4 and 0x01000000 or 0) -- bX[l] map_op[b1.."_1"] = tohex(0x40800000 + c1).."K" map_op[b1.."y_1"] = tohex(0x40a00000 + c1).."K" map_op[b1.."l_1"] = tohex(0x40800001 + c1).."K" map_op[b1.."_2"] = tohex(0x40800000 + c1).."-XK" map_op[b1.."y_2"] = tohex(0x40a00000 + c1).."-XK" map_op[b1.."l_2"] = tohex(0x40800001 + c1).."-XK" -- bXlr[l] map_op[b1.."lr_0"] = tohex(0x4c800020 + c1) map_op[b1.."lrl_0"] = tohex(0x4c800021 + c1) map_op[b1.."ctr_0"] = tohex(0x4c800420 + c1) map_op[b1.."ctrl_0"] = tohex(0x4c800421 + c1) -- bXctr[l] map_op[b1.."lr_1"] = tohex(0x4c800020 + c1).."-X" map_op[b1.."lrl_1"] = tohex(0x4c800021 + c1).."-X" map_op[b1.."ctr_1"] = tohex(0x4c800420 + c1).."-X" map_op[b1.."ctrl_1"] = tohex(0x4c800421 + c1).."-X" end ------------------------------------------------------------------------------ local function parse_gpr(expr) local tname, ovreg = match(expr, "^([%w_]+):(r[1-3]?[0-9])$") local tp = map_type[tname or expr] if tp then local reg = ovreg or tp.reg if not reg then werror("type `"..(tname or expr).."' needs a register override") end expr = reg end local r = match(expr, "^r([1-3]?[0-9])$") if r then r = tonumber(r) if r <= 31 then return r, tp end end werror("bad register name `"..expr.."'") end local function parse_fpr(expr) local r = match(expr, "^f([1-3]?[0-9])$") if r then r = tonumber(r) if r <= 31 then return r end end werror("bad register name `"..expr.."'") end local function parse_vr(expr) local r = match(expr, "^v([1-3]?[0-9])$") if r then r = tonumber(r) if r <= 31 then return r end end werror("bad register name `"..expr.."'") end local function parse_vs(expr) local r = match(expr, "^vs([1-6]?[0-9])$") if r then r = tonumber(r) if r <= 63 then return r end end werror("bad register name `"..expr.."'") end local function parse_cr(expr) local r = match(expr, "^cr([0-7])$") if r then return tonumber(r) end werror("bad condition register name `"..expr.."'") end local function parse_cond(expr) local r, cond = match(expr, "^4%*cr([0-7])%+(%w%w)$") if r then r = tonumber(r) local c = map_cond[cond] if c and c < 4 then return r*4+c end end werror("bad condition bit name `"..expr.."'") end local parse_ctx = {} local loadenv = setfenv and function(s) local code = loadstring(s, "") if code then setfenv(code, parse_ctx) end return code end or function(s) return load(s, "", nil, parse_ctx) end -- Try to parse simple arithmetic, too, since some basic ops are aliases. local function parse_number(n) local x = tonumber(n) if x then return x end local code = loadenv("return "..n) if code then local ok, y = pcall(code) if ok then return y end end return nil end local function parse_imm(imm, bits, shift, scale, signed) local n = parse_number(imm) if n then local m = sar(n, scale) if shl(m, scale) == n then if signed then local s = sar(m, bits-1) if s == 0 then return shl(m, shift) elseif s == -1 then return shl(m + shl(1, bits), shift) end else if sar(m, bits) == 0 then return shl(m, shift) end end end werror("out of range immediate `"..imm.."'") elseif match(imm, "^[rfv]([1-3]?[0-9])$") or match(imm, "^vs([1-6]?[0-9])$") or match(imm, "^([%w_]+):(r[1-3]?[0-9])$") then werror("expected immediate operand, got register") else waction("IMM", (signed and 32768 or 0)+scale*1024+bits*32+shift, imm) return 0 end end local function parse_shiftmask(imm, isshift) local n = parse_number(imm) if n then if shr(n, 6) == 0 then local lsb = band(n, 31) local msb = n - lsb return isshift and (shl(lsb, 11)+shr(msb, 4)) or (shl(lsb, 6)+msb) end werror("out of range immediate `"..imm.."'") elseif match(imm, "^r([1-3]?[0-9])$") or match(imm, "^([%w_]+):(r[1-3]?[0-9])$") then werror("expected immediate operand, got register") else waction("IMMSH", isshift and 1 or 0, imm) return 0; end end local function parse_disp(disp) local imm, reg = match(disp, "^(.*)%(([%w_:]+)%)$") if imm then local r = parse_gpr(reg) if r == 0 then werror("cannot use r0 in displacement") end return shl(r, 16) + parse_imm(imm, 16, 0, 0, true) end local reg, tailr = match(disp, "^([%w_:]+)%s*(.*)$") if reg and tailr ~= "" then local r, tp = parse_gpr(reg) if r == 0 then werror("cannot use r0 in displacement") end if tp then waction("IMM", 32768+16*32, format(tp.ctypefmt, tailr)) return shl(r, 16) end end werror("bad displacement `"..disp.."'") end local function parse_u5disp(disp, scale) local imm, reg = match(disp, "^(.*)%(([%w_:]+)%)$") if imm then local r = parse_gpr(reg) if r == 0 then werror("cannot use r0 in displacement") end return shl(r, 16) + parse_imm(imm, 5, 11, scale, false) end local reg, tailr = match(disp, "^([%w_:]+)%s*(.*)$") if reg and tailr ~= "" then local r, tp = parse_gpr(reg) if r == 0 then werror("cannot use r0 in displacement") end if tp then waction("IMM", scale*1024+5*32+11, format(tp.ctypefmt, tailr)) return shl(r, 16) end end werror("bad displacement `"..disp.."'") end local function parse_label(label, def) local prefix = sub(label, 1, 2) -- =>label (pc label reference) if prefix == "=>" then return "PC", 0, sub(label, 3) end -- ->name (global label reference) if prefix == "->" then return "LG", map_global[sub(label, 3)] end if def then -- [1-9] (local label definition) if match(label, "^[1-9]$") then return "LG", 10+tonumber(label) end else -- [<>][1-9] (local label reference) local dir, lnum = match(label, "^([<>])([1-9])$") if dir then -- Fwd: 1-9, Bkwd: 11-19. return "LG", lnum + (dir == ">" and 0 or 10) end -- extern label (extern label reference) local extname = match(label, "^extern%s+(%S+)$") if extname then return "EXT", map_extern[extname] end end werror("bad label `"..label.."'") end ------------------------------------------------------------------------------ -- Handle opcodes defined with template strings. op_template = function(params, template, nparams) if not params then return sub(template, 9) end local op = tonumber(sub(template, 1, 8), 16) local n, rs = 1, 26 -- Limit number of section buffer positions used by a single dasm_put(). -- A single opcode needs a maximum of 3 positions (rlwinm). if secpos+3 > maxsecpos then wflush() end local pos = wpos() -- Process each character. for p in gmatch(sub(template, 9), ".") do if p == "R" then rs = rs - 5; op = op + shl(parse_gpr(params[n]), rs); n = n + 1 elseif p == "F" then rs = rs - 5; op = op + shl(parse_fpr(params[n]), rs); n = n + 1 elseif p == "V" then rs = rs - 5; op = op + shl(parse_vr(params[n]), rs); n = n + 1 elseif p == "Q" then local vs = parse_vs(params[n]); n = n + 1; rs = rs - 5 local sh = rs == 6 and 2 or 3 + band(shr(rs, 1), 3) op = op + shl(band(vs, 31), rs) + shr(band(vs, 32), sh) elseif p == "q" then local vs = parse_vs(params[n]); n = n + 1 op = op + shl(band(vs, 31), 21) + shr(band(vs, 32), 5) elseif p == "A" then rs = rs - 5; op = op + parse_imm(params[n], 5, rs, 0, false); n = n + 1 elseif p == "S" then rs = rs - 5; op = op + parse_imm(params[n], 5, rs, 0, true); n = n + 1 elseif p == "I" then op = op + parse_imm(params[n], 16, 0, 0, true); n = n + 1 elseif p == "U" then op = op + parse_imm(params[n], 16, 0, 0, false); n = n + 1 elseif p == "D" then op = op + parse_disp(params[n]); n = n + 1 elseif p == "2" then op = op + parse_u5disp(params[n], 1); n = n + 1 elseif p == "4" then op = op + parse_u5disp(params[n], 2); n = n + 1 elseif p == "8" then op = op + parse_u5disp(params[n], 3); n = n + 1 elseif p == "C" then rs = rs - 5; op = op + shl(parse_cond(params[n]), rs); n = n + 1 elseif p == "X" then rs = rs - 5; op = op + shl(parse_cr(params[n]), rs+2); n = n + 1 elseif p == "1" then rs = rs - 5; op = op + parse_imm(params[n], 1, rs, 0, false); n = n + 1 elseif p == "g" then rs = rs - 5; op = op + parse_imm(params[n], 2, rs, 0, false); n = n + 1 elseif p == "3" then rs = rs - 5; op = op + parse_imm(params[n], 3, rs, 0, false); n = n + 1 elseif p == "P" then rs = rs - 5; op = op + parse_imm(params[n], 4, rs, 0, false); n = n + 1 elseif p == "p" then op = op + parse_imm(params[n], 4, rs, 0, false); n = n + 1 elseif p == "6" then rs = rs - 6; op = op + parse_imm(params[n], 6, rs, 0, false); n = n + 1 elseif p == "Y" then rs = rs - 5; op = op + parse_imm(params[n], 1, rs+4, 0, false); n = n + 1 elseif p == "y" then rs = rs - 5; op = op + parse_imm(params[n], 1, rs+3, 0, false); n = n + 1 elseif p == "Z" then rs = rs - 5; op = op + parse_imm(params[n], 2, rs+3, 0, false); n = n + 1 elseif p == "z" then rs = rs - 5; op = op + parse_imm(params[n], 2, rs+2, 0, false); n = n + 1 elseif p == "W" then op = op + parse_cr(params[n]); n = n + 1 elseif p == "G" then op = op + parse_imm(params[n], 8, 12, 0, false); n = n + 1 elseif p == "H" then op = op + parse_shiftmask(params[n], true); n = n + 1 elseif p == "M" then op = op + parse_shiftmask(params[n], false); n = n + 1 elseif p == "J" or p == "K" then local mode, n, s = parse_label(params[n], false) if p == "K" then n = n + 2048 end waction("REL_"..mode, n, s, 1) n = n + 1 elseif p == "0" then if band(shr(op, rs), 31) == 0 then werror("cannot use r0") end elseif p == "=" or p == "%" then local t = band(shr(op, p == "%" and rs+5 or rs), 31) rs = rs - 5 op = op + shl(t, rs) elseif p == "~" then local mm = shl(31, rs) local lo = band(op, mm) local hi = band(op, shl(mm, 5)) op = op - lo - hi + shl(lo, 5) + shr(hi, 5) elseif p == ":" then if band(shr(op, rs), 1) ~= 0 then werror("register pair expected") end elseif p == "-" then rs = rs - 5 elseif p == "." then -- Ignored. else assert(false) end end wputpos(pos, op) end map_op[".template__"] = op_template ------------------------------------------------------------------------------ -- Pseudo-opcode to mark the position where the action list is to be emitted. map_op[".actionlist_1"] = function(params) if not params then return "cvar" end local name = params[1] -- No syntax check. You get to keep the pieces. wline(function(out) writeactions(out, name) end) end -- Pseudo-opcode to mark the position where the global enum is to be emitted. map_op[".globals_1"] = function(params) if not params then return "prefix" end local prefix = params[1] -- No syntax check. You get to keep the pieces. wline(function(out) writeglobals(out, prefix) end) end -- Pseudo-opcode to mark the position where the global names are to be emitted. map_op[".globalnames_1"] = function(params) if not params then return "cvar" end local name = params[1] -- No syntax check. You get to keep the pieces. wline(function(out) writeglobalnames(out, name) end) end -- Pseudo-opcode to mark the position where the extern names are to be emitted. map_op[".externnames_1"] = function(params) if not params then return "cvar" end local name = params[1] -- No syntax check. You get to keep the pieces. wline(function(out) writeexternnames(out, name) end) end ------------------------------------------------------------------------------ -- Label pseudo-opcode (converted from trailing colon form). map_op[".label_1"] = function(params) if not params then return "[1-9] | ->global | =>pcexpr" end if secpos+1 > maxsecpos then wflush() end local mode, n, s = parse_label(params[1], true) if mode == "EXT" then werror("bad label definition") end waction("LABEL_"..mode, n, s, 1) end ------------------------------------------------------------------------------ -- Pseudo-opcodes for data storage. map_op[".long_*"] = function(params) if not params then return "imm..." end for _,p in ipairs(params) do local n = tonumber(p) if not n then werror("bad immediate `"..p.."'") end if n < 0 then n = n + 2^32 end wputw(n) if secpos+2 > maxsecpos then wflush() end end end -- Alignment pseudo-opcode. map_op[".align_1"] = function(params) if not params then return "numpow2" end if secpos+1 > maxsecpos then wflush() end local align = tonumber(params[1]) if align then local x = align -- Must be a power of 2 in the range (2 ... 256). for i=1,8 do x = x / 2 if x == 1 then waction("ALIGN", align-1, nil, 1) -- Action byte is 2**n-1. return end end end werror("bad alignment") end ------------------------------------------------------------------------------ -- Pseudo-opcode for (primitive) type definitions (map to C types). map_op[".type_3"] = function(params, nparams) if not params then return nparams == 2 and "name, ctype" or "name, ctype, reg" end local name, ctype, reg = params[1], params[2], params[3] if not match(name, "^[%a_][%w_]*$") then werror("bad type name `"..name.."'") end local tp = map_type[name] if tp then werror("duplicate type `"..name.."'") end -- Add #type to defines. A bit unclean to put it in map_archdef. map_archdef["#"..name] = "sizeof("..ctype..")" -- Add new type and emit shortcut define. local num = ctypenum + 1 map_type[name] = { ctype = ctype, ctypefmt = format("Dt%X(%%s)", num), reg = reg, } wline(format("#define Dt%X(_V) (int)(ptrdiff_t)&(((%s *)0)_V)", num, ctype)) ctypenum = num end map_op[".type_2"] = map_op[".type_3"] -- Dump type definitions. local function dumptypes(out, lvl) local t = {} for name in pairs(map_type) do t[#t+1] = name end sort(t) out:write("Type definitions:\n") for _,name in ipairs(t) do local tp = map_type[name] local reg = tp.reg or "" out:write(format(" %-20s %-20s %s\n", name, tp.ctype, reg)) end out:write("\n") end ------------------------------------------------------------------------------ -- Set the current section. function _M.section(num) waction("SECTION", num) wflush(true) -- SECTION is a terminal action. end ------------------------------------------------------------------------------ -- Dump architecture description. function _M.dumparch(out) out:write(format("DynASM %s version %s, released %s\n\n", _info.arch, _info.version, _info.release)) dumpactions(out) end -- Dump all user defined elements. function _M.dumpdef(out, lvl) dumptypes(out, lvl) dumpglobals(out, lvl) dumpexterns(out, lvl) end ------------------------------------------------------------------------------ -- Pass callbacks from/to the DynASM core. function _M.passcb(wl, we, wf, ww) wline, werror, wfatal, wwarn = wl, we, wf, ww return wflush end -- Setup the arch-specific module. function _M.setup(arch, opt) g_arch, g_opt = arch, opt end -- Merge the core maps and the arch-specific maps. function _M.mergemaps(map_coreop, map_def) setmetatable(map_op, { __index = map_coreop }) setmetatable(map_def, { __index = map_archdef }) return map_op, map_def end return _M ------------------------------------------------------------------------------ luajit-2.1.0~beta3+dfsg.orig/dynasm/dasm_arm.h0000644000175100017510000003215713101703334020555 0ustar ondrejondrej/* ** DynASM ARM encoding engine. ** Copyright (C) 2005-2017 Mike Pall. All rights reserved. ** Released under the MIT license. See dynasm.lua for full copyright notice. */ #include #include #include #include #define DASM_ARCH "arm" #ifndef DASM_EXTERN #define DASM_EXTERN(a,b,c,d) 0 #endif /* Action definitions. */ enum { DASM_STOP, DASM_SECTION, DASM_ESC, DASM_REL_EXT, /* The following actions need a buffer position. */ DASM_ALIGN, DASM_REL_LG, DASM_LABEL_LG, /* The following actions also have an argument. */ DASM_REL_PC, DASM_LABEL_PC, DASM_IMM, DASM_IMM12, DASM_IMM16, DASM_IMML8, DASM_IMML12, DASM_IMMV8, DASM__MAX }; /* Maximum number of section buffer positions for a single dasm_put() call. */ #define DASM_MAXSECPOS 25 /* DynASM encoder status codes. Action list offset or number are or'ed in. */ #define DASM_S_OK 0x00000000 #define DASM_S_NOMEM 0x01000000 #define DASM_S_PHASE 0x02000000 #define DASM_S_MATCH_SEC 0x03000000 #define DASM_S_RANGE_I 0x11000000 #define DASM_S_RANGE_SEC 0x12000000 #define DASM_S_RANGE_LG 0x13000000 #define DASM_S_RANGE_PC 0x14000000 #define DASM_S_RANGE_REL 0x15000000 #define DASM_S_UNDEF_LG 0x21000000 #define DASM_S_UNDEF_PC 0x22000000 /* Macros to convert positions (8 bit section + 24 bit index). */ #define DASM_POS2IDX(pos) ((pos)&0x00ffffff) #define DASM_POS2BIAS(pos) ((pos)&0xff000000) #define DASM_SEC2POS(sec) ((sec)<<24) #define DASM_POS2SEC(pos) ((pos)>>24) #define DASM_POS2PTR(D, pos) (D->sections[DASM_POS2SEC(pos)].rbuf + (pos)) /* Action list type. */ typedef const unsigned int *dasm_ActList; /* Per-section structure. */ typedef struct dasm_Section { int *rbuf; /* Biased buffer pointer (negative section bias). */ int *buf; /* True buffer pointer. */ size_t bsize; /* Buffer size in bytes. */ int pos; /* Biased buffer position. */ int epos; /* End of biased buffer position - max single put. */ int ofs; /* Byte offset into section. */ } dasm_Section; /* Core structure holding the DynASM encoding state. */ struct dasm_State { size_t psize; /* Allocated size of this structure. */ dasm_ActList actionlist; /* Current actionlist pointer. */ int *lglabels; /* Local/global chain/pos ptrs. */ size_t lgsize; int *pclabels; /* PC label chains/pos ptrs. */ size_t pcsize; void **globals; /* Array of globals (bias -10). */ dasm_Section *section; /* Pointer to active section. */ size_t codesize; /* Total size of all code sections. */ int maxsection; /* 0 <= sectionidx < maxsection. */ int status; /* Status code. */ dasm_Section sections[1]; /* All sections. Alloc-extended. */ }; /* The size of the core structure depends on the max. number of sections. */ #define DASM_PSZ(ms) (sizeof(dasm_State)+(ms-1)*sizeof(dasm_Section)) /* Initialize DynASM state. */ void dasm_init(Dst_DECL, int maxsection) { dasm_State *D; size_t psz = 0; int i; Dst_REF = NULL; DASM_M_GROW(Dst, struct dasm_State, Dst_REF, psz, DASM_PSZ(maxsection)); D = Dst_REF; D->psize = psz; D->lglabels = NULL; D->lgsize = 0; D->pclabels = NULL; D->pcsize = 0; D->globals = NULL; D->maxsection = maxsection; for (i = 0; i < maxsection; i++) { D->sections[i].buf = NULL; /* Need this for pass3. */ D->sections[i].rbuf = D->sections[i].buf - DASM_SEC2POS(i); D->sections[i].bsize = 0; D->sections[i].epos = 0; /* Wrong, but is recalculated after resize. */ } } /* Free DynASM state. */ void dasm_free(Dst_DECL) { dasm_State *D = Dst_REF; int i; for (i = 0; i < D->maxsection; i++) if (D->sections[i].buf) DASM_M_FREE(Dst, D->sections[i].buf, D->sections[i].bsize); if (D->pclabels) DASM_M_FREE(Dst, D->pclabels, D->pcsize); if (D->lglabels) DASM_M_FREE(Dst, D->lglabels, D->lgsize); DASM_M_FREE(Dst, D, D->psize); } /* Setup global label array. Must be called before dasm_setup(). */ void dasm_setupglobal(Dst_DECL, void **gl, unsigned int maxgl) { dasm_State *D = Dst_REF; D->globals = gl - 10; /* Negative bias to compensate for locals. */ DASM_M_GROW(Dst, int, D->lglabels, D->lgsize, (10+maxgl)*sizeof(int)); } /* Grow PC label array. Can be called after dasm_setup(), too. */ void dasm_growpc(Dst_DECL, unsigned int maxpc) { dasm_State *D = Dst_REF; size_t osz = D->pcsize; DASM_M_GROW(Dst, int, D->pclabels, D->pcsize, maxpc*sizeof(int)); memset((void *)(((unsigned char *)D->pclabels)+osz), 0, D->pcsize-osz); } /* Setup encoder. */ void dasm_setup(Dst_DECL, const void *actionlist) { dasm_State *D = Dst_REF; int i; D->actionlist = (dasm_ActList)actionlist; D->status = DASM_S_OK; D->section = &D->sections[0]; memset((void *)D->lglabels, 0, D->lgsize); if (D->pclabels) memset((void *)D->pclabels, 0, D->pcsize); for (i = 0; i < D->maxsection; i++) { D->sections[i].pos = DASM_SEC2POS(i); D->sections[i].ofs = 0; } } #ifdef DASM_CHECKS #define CK(x, st) \ do { if (!(x)) { \ D->status = DASM_S_##st|(p-D->actionlist-1); return; } } while (0) #define CKPL(kind, st) \ do { if ((size_t)((char *)pl-(char *)D->kind##labels) >= D->kind##size) { \ D->status = DASM_S_RANGE_##st|(p-D->actionlist-1); return; } } while (0) #else #define CK(x, st) ((void)0) #define CKPL(kind, st) ((void)0) #endif static int dasm_imm12(unsigned int n) { int i; for (i = 0; i < 16; i++, n = (n << 2) | (n >> 30)) if (n <= 255) return (int)(n + (i << 8)); return -1; } /* Pass 1: Store actions and args, link branches/labels, estimate offsets. */ void dasm_put(Dst_DECL, int start, ...) { va_list ap; dasm_State *D = Dst_REF; dasm_ActList p = D->actionlist + start; dasm_Section *sec = D->section; int pos = sec->pos, ofs = sec->ofs; int *b; if (pos >= sec->epos) { DASM_M_GROW(Dst, int, sec->buf, sec->bsize, sec->bsize + 2*DASM_MAXSECPOS*sizeof(int)); sec->rbuf = sec->buf - DASM_POS2BIAS(pos); sec->epos = (int)sec->bsize/sizeof(int) - DASM_MAXSECPOS+DASM_POS2BIAS(pos); } b = sec->rbuf; b[pos++] = start; va_start(ap, start); while (1) { unsigned int ins = *p++; unsigned int action = (ins >> 16); if (action >= DASM__MAX) { ofs += 4; } else { int *pl, n = action >= DASM_REL_PC ? va_arg(ap, int) : 0; switch (action) { case DASM_STOP: goto stop; case DASM_SECTION: n = (ins & 255); CK(n < D->maxsection, RANGE_SEC); D->section = &D->sections[n]; goto stop; case DASM_ESC: p++; ofs += 4; break; case DASM_REL_EXT: break; case DASM_ALIGN: ofs += (ins & 255); b[pos++] = ofs; break; case DASM_REL_LG: n = (ins & 2047) - 10; pl = D->lglabels + n; /* Bkwd rel or global. */ if (n >= 0) { CK(n>=10||*pl<0, RANGE_LG); CKPL(lg, LG); goto putrel; } pl += 10; n = *pl; if (n < 0) n = 0; /* Start new chain for fwd rel if label exists. */ goto linkrel; case DASM_REL_PC: pl = D->pclabels + n; CKPL(pc, PC); putrel: n = *pl; if (n < 0) { /* Label exists. Get label pos and store it. */ b[pos] = -n; } else { linkrel: b[pos] = n; /* Else link to rel chain, anchored at label. */ *pl = pos; } pos++; break; case DASM_LABEL_LG: pl = D->lglabels + (ins & 2047) - 10; CKPL(lg, LG); goto putlabel; case DASM_LABEL_PC: pl = D->pclabels + n; CKPL(pc, PC); putlabel: n = *pl; /* n > 0: Collapse rel chain and replace with label pos. */ while (n > 0) { int *pb = DASM_POS2PTR(D, n); n = *pb; *pb = pos; } *pl = -pos; /* Label exists now. */ b[pos++] = ofs; /* Store pass1 offset estimate. */ break; case DASM_IMM: case DASM_IMM16: #ifdef DASM_CHECKS CK((n & ((1<<((ins>>10)&31))-1)) == 0, RANGE_I); if ((ins & 0x8000)) CK(((n + (1<<(((ins>>5)&31)-1)))>>((ins>>5)&31)) == 0, RANGE_I); else CK((n>>((ins>>5)&31)) == 0, RANGE_I); #endif b[pos++] = n; break; case DASM_IMMV8: CK((n & 3) == 0, RANGE_I); n >>= 2; case DASM_IMML8: case DASM_IMML12: CK(n >= 0 ? ((n>>((ins>>5)&31)) == 0) : (((-n)>>((ins>>5)&31)) == 0), RANGE_I); b[pos++] = n; break; case DASM_IMM12: CK(dasm_imm12((unsigned int)n) != -1, RANGE_I); b[pos++] = n; break; } } } stop: va_end(ap); sec->pos = pos; sec->ofs = ofs; } #undef CK /* Pass 2: Link sections, shrink aligns, fix label offsets. */ int dasm_link(Dst_DECL, size_t *szp) { dasm_State *D = Dst_REF; int secnum; int ofs = 0; #ifdef DASM_CHECKS *szp = 0; if (D->status != DASM_S_OK) return D->status; { int pc; for (pc = 0; pc*sizeof(int) < D->pcsize; pc++) if (D->pclabels[pc] > 0) return DASM_S_UNDEF_PC|pc; } #endif { /* Handle globals not defined in this translation unit. */ int idx; for (idx = 20; idx*sizeof(int) < D->lgsize; idx++) { int n = D->lglabels[idx]; /* Undefined label: Collapse rel chain and replace with marker (< 0). */ while (n > 0) { int *pb = DASM_POS2PTR(D, n); n = *pb; *pb = -idx; } } } /* Combine all code sections. No support for data sections (yet). */ for (secnum = 0; secnum < D->maxsection; secnum++) { dasm_Section *sec = D->sections + secnum; int *b = sec->rbuf; int pos = DASM_SEC2POS(secnum); int lastpos = sec->pos; while (pos != lastpos) { dasm_ActList p = D->actionlist + b[pos++]; while (1) { unsigned int ins = *p++; unsigned int action = (ins >> 16); switch (action) { case DASM_STOP: case DASM_SECTION: goto stop; case DASM_ESC: p++; break; case DASM_REL_EXT: break; case DASM_ALIGN: ofs -= (b[pos++] + ofs) & (ins & 255); break; case DASM_REL_LG: case DASM_REL_PC: pos++; break; case DASM_LABEL_LG: case DASM_LABEL_PC: b[pos++] += ofs; break; case DASM_IMM: case DASM_IMM12: case DASM_IMM16: case DASM_IMML8: case DASM_IMML12: case DASM_IMMV8: pos++; break; } } stop: (void)0; } ofs += sec->ofs; /* Next section starts right after current section. */ } D->codesize = ofs; /* Total size of all code sections */ *szp = ofs; return DASM_S_OK; } #ifdef DASM_CHECKS #define CK(x, st) \ do { if (!(x)) return DASM_S_##st|(p-D->actionlist-1); } while (0) #else #define CK(x, st) ((void)0) #endif /* Pass 3: Encode sections. */ int dasm_encode(Dst_DECL, void *buffer) { dasm_State *D = Dst_REF; char *base = (char *)buffer; unsigned int *cp = (unsigned int *)buffer; int secnum; /* Encode all code sections. No support for data sections (yet). */ for (secnum = 0; secnum < D->maxsection; secnum++) { dasm_Section *sec = D->sections + secnum; int *b = sec->buf; int *endb = sec->rbuf + sec->pos; while (b != endb) { dasm_ActList p = D->actionlist + *b++; while (1) { unsigned int ins = *p++; unsigned int action = (ins >> 16); int n = (action >= DASM_ALIGN && action < DASM__MAX) ? *b++ : 0; switch (action) { case DASM_STOP: case DASM_SECTION: goto stop; case DASM_ESC: *cp++ = *p++; break; case DASM_REL_EXT: n = DASM_EXTERN(Dst, (unsigned char *)cp, (ins&2047), !(ins&2048)); goto patchrel; case DASM_ALIGN: ins &= 255; while ((((char *)cp - base) & ins)) *cp++ = 0xe1a00000; break; case DASM_REL_LG: CK(n >= 0, UNDEF_LG); case DASM_REL_PC: CK(n >= 0, UNDEF_PC); n = *DASM_POS2PTR(D, n) - (int)((char *)cp - base) - 4; patchrel: if ((ins & 0x800) == 0) { CK((n & 3) == 0 && ((n+0x02000000) >> 26) == 0, RANGE_REL); cp[-1] |= ((n >> 2) & 0x00ffffff); } else if ((ins & 0x1000)) { CK((n & 3) == 0 && -256 <= n && n <= 256, RANGE_REL); goto patchimml8; } else if ((ins & 0x2000) == 0) { CK((n & 3) == 0 && -4096 <= n && n <= 4096, RANGE_REL); goto patchimml; } else { CK((n & 3) == 0 && -1020 <= n && n <= 1020, RANGE_REL); n >>= 2; goto patchimml; } break; case DASM_LABEL_LG: ins &= 2047; if (ins >= 20) D->globals[ins-10] = (void *)(base + n); break; case DASM_LABEL_PC: break; case DASM_IMM: cp[-1] |= ((n>>((ins>>10)&31)) & ((1<<((ins>>5)&31))-1)) << (ins&31); break; case DASM_IMM12: cp[-1] |= dasm_imm12((unsigned int)n); break; case DASM_IMM16: cp[-1] |= ((n & 0xf000) << 4) | (n & 0x0fff); break; case DASM_IMML8: patchimml8: cp[-1] |= n >= 0 ? (0x00800000 | (n & 0x0f) | ((n & 0xf0) << 4)) : ((-n & 0x0f) | ((-n & 0xf0) << 4)); break; case DASM_IMML12: case DASM_IMMV8: patchimml: cp[-1] |= n >= 0 ? (0x00800000 | n) : (-n); break; default: *cp++ = ins; break; } } stop: (void)0; } } if (base + D->codesize != (char *)cp) /* Check for phase errors. */ return DASM_S_PHASE; return DASM_S_OK; } #undef CK /* Get PC label offset. */ int dasm_getpclabel(Dst_DECL, unsigned int pc) { dasm_State *D = Dst_REF; if (pc*sizeof(int) < D->pcsize) { int pos = D->pclabels[pc]; if (pos < 0) return *DASM_POS2PTR(D, -pos); if (pos > 0) return -1; /* Undefined. */ } return -2; /* Unused or out of range. */ } #ifdef DASM_CHECKS /* Optional sanity checker to call between isolated encoding steps. */ int dasm_checkstep(Dst_DECL, int secmatch) { dasm_State *D = Dst_REF; if (D->status == DASM_S_OK) { int i; for (i = 1; i <= 9; i++) { if (D->lglabels[i] > 0) { D->status = DASM_S_UNDEF_LG|i; break; } D->lglabels[i] = 0; } } if (D->status == DASM_S_OK && secmatch >= 0 && D->section != &D->sections[secmatch]) D->status = DASM_S_MATCH_SEC|(D->section-D->sections); return D->status; } #endif luajit-2.1.0~beta3+dfsg.orig/dynasm/dasm_arm64.h0000644000175100017510000003531513101703334020726 0ustar ondrejondrej/* ** DynASM ARM64 encoding engine. ** Copyright (C) 2005-2017 Mike Pall. All rights reserved. ** Released under the MIT license. See dynasm.lua for full copyright notice. */ #include #include #include #include #define DASM_ARCH "arm64" #ifndef DASM_EXTERN #define DASM_EXTERN(a,b,c,d) 0 #endif /* Action definitions. */ enum { DASM_STOP, DASM_SECTION, DASM_ESC, DASM_REL_EXT, /* The following actions need a buffer position. */ DASM_ALIGN, DASM_REL_LG, DASM_LABEL_LG, /* The following actions also have an argument. */ DASM_REL_PC, DASM_LABEL_PC, DASM_IMM, DASM_IMM6, DASM_IMM12, DASM_IMM13W, DASM_IMM13X, DASM_IMML, DASM__MAX }; /* Maximum number of section buffer positions for a single dasm_put() call. */ #define DASM_MAXSECPOS 25 /* DynASM encoder status codes. Action list offset or number are or'ed in. */ #define DASM_S_OK 0x00000000 #define DASM_S_NOMEM 0x01000000 #define DASM_S_PHASE 0x02000000 #define DASM_S_MATCH_SEC 0x03000000 #define DASM_S_RANGE_I 0x11000000 #define DASM_S_RANGE_SEC 0x12000000 #define DASM_S_RANGE_LG 0x13000000 #define DASM_S_RANGE_PC 0x14000000 #define DASM_S_RANGE_REL 0x15000000 #define DASM_S_UNDEF_LG 0x21000000 #define DASM_S_UNDEF_PC 0x22000000 /* Macros to convert positions (8 bit section + 24 bit index). */ #define DASM_POS2IDX(pos) ((pos)&0x00ffffff) #define DASM_POS2BIAS(pos) ((pos)&0xff000000) #define DASM_SEC2POS(sec) ((sec)<<24) #define DASM_POS2SEC(pos) ((pos)>>24) #define DASM_POS2PTR(D, pos) (D->sections[DASM_POS2SEC(pos)].rbuf + (pos)) /* Action list type. */ typedef const unsigned int *dasm_ActList; /* Per-section structure. */ typedef struct dasm_Section { int *rbuf; /* Biased buffer pointer (negative section bias). */ int *buf; /* True buffer pointer. */ size_t bsize; /* Buffer size in bytes. */ int pos; /* Biased buffer position. */ int epos; /* End of biased buffer position - max single put. */ int ofs; /* Byte offset into section. */ } dasm_Section; /* Core structure holding the DynASM encoding state. */ struct dasm_State { size_t psize; /* Allocated size of this structure. */ dasm_ActList actionlist; /* Current actionlist pointer. */ int *lglabels; /* Local/global chain/pos ptrs. */ size_t lgsize; int *pclabels; /* PC label chains/pos ptrs. */ size_t pcsize; void **globals; /* Array of globals (bias -10). */ dasm_Section *section; /* Pointer to active section. */ size_t codesize; /* Total size of all code sections. */ int maxsection; /* 0 <= sectionidx < maxsection. */ int status; /* Status code. */ dasm_Section sections[1]; /* All sections. Alloc-extended. */ }; /* The size of the core structure depends on the max. number of sections. */ #define DASM_PSZ(ms) (sizeof(dasm_State)+(ms-1)*sizeof(dasm_Section)) /* Initialize DynASM state. */ void dasm_init(Dst_DECL, int maxsection) { dasm_State *D; size_t psz = 0; int i; Dst_REF = NULL; DASM_M_GROW(Dst, struct dasm_State, Dst_REF, psz, DASM_PSZ(maxsection)); D = Dst_REF; D->psize = psz; D->lglabels = NULL; D->lgsize = 0; D->pclabels = NULL; D->pcsize = 0; D->globals = NULL; D->maxsection = maxsection; for (i = 0; i < maxsection; i++) { D->sections[i].buf = NULL; /* Need this for pass3. */ D->sections[i].rbuf = D->sections[i].buf - DASM_SEC2POS(i); D->sections[i].bsize = 0; D->sections[i].epos = 0; /* Wrong, but is recalculated after resize. */ } } /* Free DynASM state. */ void dasm_free(Dst_DECL) { dasm_State *D = Dst_REF; int i; for (i = 0; i < D->maxsection; i++) if (D->sections[i].buf) DASM_M_FREE(Dst, D->sections[i].buf, D->sections[i].bsize); if (D->pclabels) DASM_M_FREE(Dst, D->pclabels, D->pcsize); if (D->lglabels) DASM_M_FREE(Dst, D->lglabels, D->lgsize); DASM_M_FREE(Dst, D, D->psize); } /* Setup global label array. Must be called before dasm_setup(). */ void dasm_setupglobal(Dst_DECL, void **gl, unsigned int maxgl) { dasm_State *D = Dst_REF; D->globals = gl - 10; /* Negative bias to compensate for locals. */ DASM_M_GROW(Dst, int, D->lglabels, D->lgsize, (10+maxgl)*sizeof(int)); } /* Grow PC label array. Can be called after dasm_setup(), too. */ void dasm_growpc(Dst_DECL, unsigned int maxpc) { dasm_State *D = Dst_REF; size_t osz = D->pcsize; DASM_M_GROW(Dst, int, D->pclabels, D->pcsize, maxpc*sizeof(int)); memset((void *)(((unsigned char *)D->pclabels)+osz), 0, D->pcsize-osz); } /* Setup encoder. */ void dasm_setup(Dst_DECL, const void *actionlist) { dasm_State *D = Dst_REF; int i; D->actionlist = (dasm_ActList)actionlist; D->status = DASM_S_OK; D->section = &D->sections[0]; memset((void *)D->lglabels, 0, D->lgsize); if (D->pclabels) memset((void *)D->pclabels, 0, D->pcsize); for (i = 0; i < D->maxsection; i++) { D->sections[i].pos = DASM_SEC2POS(i); D->sections[i].ofs = 0; } } #ifdef DASM_CHECKS #define CK(x, st) \ do { if (!(x)) { \ D->status = DASM_S_##st|(p-D->actionlist-1); return; } } while (0) #define CKPL(kind, st) \ do { if ((size_t)((char *)pl-(char *)D->kind##labels) >= D->kind##size) { \ D->status = DASM_S_RANGE_##st|(p-D->actionlist-1); return; } } while (0) #else #define CK(x, st) ((void)0) #define CKPL(kind, st) ((void)0) #endif static int dasm_imm12(unsigned int n) { if ((n >> 12) == 0) return n; else if ((n & 0xff000fff) == 0) return (n >> 12) | 0x1000; else return -1; } static int dasm_ffs(unsigned long long x) { int n = -1; while (x) { x >>= 1; n++; } return n; } static int dasm_imm13(int lo, int hi) { int inv = 0, w = 64, s = 0xfff, xa, xb; unsigned long long n = (((unsigned long long)hi) << 32) | (unsigned int)lo; unsigned long long m = 1ULL, a, b, c; if (n & 1) { n = ~n; inv = 1; } a = n & -n; b = (n+a)&-(n+a); c = (n+a-b)&-(n+a-b); xa = dasm_ffs(a); xb = dasm_ffs(b); if (c) { w = dasm_ffs(c) - xa; if (w == 32) m = 0x0000000100000001UL; else if (w == 16) m = 0x0001000100010001UL; else if (w == 8) m = 0x0101010101010101UL; else if (w == 4) m = 0x1111111111111111UL; else if (w == 2) m = 0x5555555555555555UL; else return -1; s = (-2*w & 0x3f) - 1; } else if (!a) { return -1; } else if (xb == -1) { xb = 64; } if ((b-a) * m != n) return -1; if (inv) { return ((w - xb) << 6) | (s+w+xa-xb); } else { return ((w - xa) << 6) | (s+xb-xa); } return -1; } /* Pass 1: Store actions and args, link branches/labels, estimate offsets. */ void dasm_put(Dst_DECL, int start, ...) { va_list ap; dasm_State *D = Dst_REF; dasm_ActList p = D->actionlist + start; dasm_Section *sec = D->section; int pos = sec->pos, ofs = sec->ofs; int *b; if (pos >= sec->epos) { DASM_M_GROW(Dst, int, sec->buf, sec->bsize, sec->bsize + 2*DASM_MAXSECPOS*sizeof(int)); sec->rbuf = sec->buf - DASM_POS2BIAS(pos); sec->epos = (int)sec->bsize/sizeof(int) - DASM_MAXSECPOS+DASM_POS2BIAS(pos); } b = sec->rbuf; b[pos++] = start; va_start(ap, start); while (1) { unsigned int ins = *p++; unsigned int action = (ins >> 16); if (action >= DASM__MAX) { ofs += 4; } else { int *pl, n = action >= DASM_REL_PC ? va_arg(ap, int) : 0; switch (action) { case DASM_STOP: goto stop; case DASM_SECTION: n = (ins & 255); CK(n < D->maxsection, RANGE_SEC); D->section = &D->sections[n]; goto stop; case DASM_ESC: p++; ofs += 4; break; case DASM_REL_EXT: break; case DASM_ALIGN: ofs += (ins & 255); b[pos++] = ofs; break; case DASM_REL_LG: n = (ins & 2047) - 10; pl = D->lglabels + n; /* Bkwd rel or global. */ if (n >= 0) { CK(n>=10||*pl<0, RANGE_LG); CKPL(lg, LG); goto putrel; } pl += 10; n = *pl; if (n < 0) n = 0; /* Start new chain for fwd rel if label exists. */ goto linkrel; case DASM_REL_PC: pl = D->pclabels + n; CKPL(pc, PC); putrel: n = *pl; if (n < 0) { /* Label exists. Get label pos and store it. */ b[pos] = -n; } else { linkrel: b[pos] = n; /* Else link to rel chain, anchored at label. */ *pl = pos; } pos++; break; case DASM_LABEL_LG: pl = D->lglabels + (ins & 2047) - 10; CKPL(lg, LG); goto putlabel; case DASM_LABEL_PC: pl = D->pclabels + n; CKPL(pc, PC); putlabel: n = *pl; /* n > 0: Collapse rel chain and replace with label pos. */ while (n > 0) { int *pb = DASM_POS2PTR(D, n); n = *pb; *pb = pos; } *pl = -pos; /* Label exists now. */ b[pos++] = ofs; /* Store pass1 offset estimate. */ break; case DASM_IMM: CK((n & ((1<<((ins>>10)&31))-1)) == 0, RANGE_I); n >>= ((ins>>10)&31); #ifdef DASM_CHECKS if ((ins & 0x8000)) CK(((n + (1<<(((ins>>5)&31)-1)))>>((ins>>5)&31)) == 0, RANGE_I); else CK((n>>((ins>>5)&31)) == 0, RANGE_I); #endif b[pos++] = n; break; case DASM_IMM6: CK((n >> 6) == 0, RANGE_I); b[pos++] = n; break; case DASM_IMM12: CK(dasm_imm12((unsigned int)n) != -1, RANGE_I); b[pos++] = n; break; case DASM_IMM13W: CK(dasm_imm13(n, n) != -1, RANGE_I); b[pos++] = n; break; case DASM_IMM13X: { int m = va_arg(ap, int); CK(dasm_imm13(n, m) != -1, RANGE_I); b[pos++] = n; b[pos++] = m; break; } case DASM_IMML: { #ifdef DASM_CHECKS int scale = (p[-2] >> 30); CK((!(n & ((1<>scale) < 4096) || (unsigned int)(n+256) < 512, RANGE_I); #endif b[pos++] = n; break; } } } } stop: va_end(ap); sec->pos = pos; sec->ofs = ofs; } #undef CK /* Pass 2: Link sections, shrink aligns, fix label offsets. */ int dasm_link(Dst_DECL, size_t *szp) { dasm_State *D = Dst_REF; int secnum; int ofs = 0; #ifdef DASM_CHECKS *szp = 0; if (D->status != DASM_S_OK) return D->status; { int pc; for (pc = 0; pc*sizeof(int) < D->pcsize; pc++) if (D->pclabels[pc] > 0) return DASM_S_UNDEF_PC|pc; } #endif { /* Handle globals not defined in this translation unit. */ int idx; for (idx = 20; idx*sizeof(int) < D->lgsize; idx++) { int n = D->lglabels[idx]; /* Undefined label: Collapse rel chain and replace with marker (< 0). */ while (n > 0) { int *pb = DASM_POS2PTR(D, n); n = *pb; *pb = -idx; } } } /* Combine all code sections. No support for data sections (yet). */ for (secnum = 0; secnum < D->maxsection; secnum++) { dasm_Section *sec = D->sections + secnum; int *b = sec->rbuf; int pos = DASM_SEC2POS(secnum); int lastpos = sec->pos; while (pos != lastpos) { dasm_ActList p = D->actionlist + b[pos++]; while (1) { unsigned int ins = *p++; unsigned int action = (ins >> 16); switch (action) { case DASM_STOP: case DASM_SECTION: goto stop; case DASM_ESC: p++; break; case DASM_REL_EXT: break; case DASM_ALIGN: ofs -= (b[pos++] + ofs) & (ins & 255); break; case DASM_REL_LG: case DASM_REL_PC: pos++; break; case DASM_LABEL_LG: case DASM_LABEL_PC: b[pos++] += ofs; break; case DASM_IMM: case DASM_IMM6: case DASM_IMM12: case DASM_IMM13W: case DASM_IMML: pos++; break; case DASM_IMM13X: pos += 2; break; } } stop: (void)0; } ofs += sec->ofs; /* Next section starts right after current section. */ } D->codesize = ofs; /* Total size of all code sections */ *szp = ofs; return DASM_S_OK; } #ifdef DASM_CHECKS #define CK(x, st) \ do { if (!(x)) return DASM_S_##st|(p-D->actionlist-1); } while (0) #else #define CK(x, st) ((void)0) #endif /* Pass 3: Encode sections. */ int dasm_encode(Dst_DECL, void *buffer) { dasm_State *D = Dst_REF; char *base = (char *)buffer; unsigned int *cp = (unsigned int *)buffer; int secnum; /* Encode all code sections. No support for data sections (yet). */ for (secnum = 0; secnum < D->maxsection; secnum++) { dasm_Section *sec = D->sections + secnum; int *b = sec->buf; int *endb = sec->rbuf + sec->pos; while (b != endb) { dasm_ActList p = D->actionlist + *b++; while (1) { unsigned int ins = *p++; unsigned int action = (ins >> 16); int n = (action >= DASM_ALIGN && action < DASM__MAX) ? *b++ : 0; switch (action) { case DASM_STOP: case DASM_SECTION: goto stop; case DASM_ESC: *cp++ = *p++; break; case DASM_REL_EXT: n = DASM_EXTERN(Dst, (unsigned char *)cp, (ins&2047), !(ins&2048)); goto patchrel; case DASM_ALIGN: ins &= 255; while ((((char *)cp - base) & ins)) *cp++ = 0xe1a00000; break; case DASM_REL_LG: CK(n >= 0, UNDEF_LG); case DASM_REL_PC: CK(n >= 0, UNDEF_PC); n = *DASM_POS2PTR(D, n) - (int)((char *)cp - base) + 4; patchrel: if (!(ins & 0xf800)) { /* B, BL */ CK((n & 3) == 0 && ((n+0x08000000) >> 28) == 0, RANGE_REL); cp[-1] |= ((n >> 2) & 0x03ffffff); } else if ((ins & 0x800)) { /* B.cond, CBZ, CBNZ, LDR* literal */ CK((n & 3) == 0 && ((n+0x00100000) >> 21) == 0, RANGE_REL); cp[-1] |= ((n << 3) & 0x00ffffe0); } else if ((ins & 0x3000) == 0x2000) { /* ADR */ CK(((n+0x00100000) >> 21) == 0, RANGE_REL); cp[-1] |= ((n << 3) & 0x00ffffe0) | ((n & 3) << 29); } else if ((ins & 0x3000) == 0x3000) { /* ADRP */ cp[-1] |= ((n >> 9) & 0x00ffffe0) | (((n >> 12) & 3) << 29); } else if ((ins & 0x1000)) { /* TBZ, TBNZ */ CK((n & 3) == 0 && ((n+0x00008000) >> 16) == 0, RANGE_REL); cp[-1] |= ((n << 3) & 0x0007ffe0); } break; case DASM_LABEL_LG: ins &= 2047; if (ins >= 20) D->globals[ins-10] = (void *)(base + n); break; case DASM_LABEL_PC: break; case DASM_IMM: cp[-1] |= (n & ((1<<((ins>>5)&31))-1)) << (ins&31); break; case DASM_IMM6: cp[-1] |= ((n&31) << 19) | ((n&32) << 26); break; case DASM_IMM12: cp[-1] |= (dasm_imm12((unsigned int)n) << 10); break; case DASM_IMM13W: cp[-1] |= (dasm_imm13(n, n) << 10); break; case DASM_IMM13X: cp[-1] |= (dasm_imm13(n, *b++) << 10); break; case DASM_IMML: { int scale = (p[-2] >> 30); cp[-1] |= (!(n & ((1<>scale) < 4096) ? ((n << (10-scale)) | 0x01000000) : ((n & 511) << 12); break; } default: *cp++ = ins; break; } } stop: (void)0; } } if (base + D->codesize != (char *)cp) /* Check for phase errors. */ return DASM_S_PHASE; return DASM_S_OK; } #undef CK /* Get PC label offset. */ int dasm_getpclabel(Dst_DECL, unsigned int pc) { dasm_State *D = Dst_REF; if (pc*sizeof(int) < D->pcsize) { int pos = D->pclabels[pc]; if (pos < 0) return *DASM_POS2PTR(D, -pos); if (pos > 0) return -1; /* Undefined. */ } return -2; /* Unused or out of range. */ } #ifdef DASM_CHECKS /* Optional sanity checker to call between isolated encoding steps. */ int dasm_checkstep(Dst_DECL, int secmatch) { dasm_State *D = Dst_REF; if (D->status == DASM_S_OK) { int i; for (i = 1; i <= 9; i++) { if (D->lglabels[i] > 0) { D->status = DASM_S_UNDEF_LG|i; break; } D->lglabels[i] = 0; } } if (D->status == DASM_S_OK && secmatch >= 0 && D->section != &D->sections[secmatch]) D->status = DASM_S_MATCH_SEC|(D->section-D->sections); return D->status; } #endif luajit-2.1.0~beta3+dfsg.orig/dynasm/dasm_mips64.lua0000644000175100017510000000110313101703334021435 0ustar ondrejondrej------------------------------------------------------------------------------ -- DynASM MIPS64 module. -- -- Copyright (C) 2005-2017 Mike Pall. All rights reserved. -- See dynasm.lua for full copyright notice. ------------------------------------------------------------------------------ -- This module just sets 64 bit mode for the combined MIPS/MIPS64 module. -- All the interesting stuff is there. ------------------------------------------------------------------------------ mips64 = true -- Using a global is an ugly, but effective solution. return require("dasm_mips") luajit-2.1.0~beta3+dfsg.orig/dynasm/dasm_x64.lua0000644000175100017510000000107013101703334020737 0ustar ondrejondrej------------------------------------------------------------------------------ -- DynASM x64 module. -- -- Copyright (C) 2005-2017 Mike Pall. All rights reserved. -- See dynasm.lua for full copyright notice. ------------------------------------------------------------------------------ -- This module just sets 64 bit mode for the combined x86/x64 module. -- All the interesting stuff is there. ------------------------------------------------------------------------------ x64 = true -- Using a global is an ugly, but effective solution. return require("dasm_x86") luajit-2.1.0~beta3+dfsg.orig/dynasm/dasm_ppc.h0000644000175100017510000003004013101703334020545 0ustar ondrejondrej/* ** DynASM PPC/PPC64 encoding engine. ** Copyright (C) 2005-2017 Mike Pall. All rights reserved. ** Released under the MIT license. See dynasm.lua for full copyright notice. */ #include #include #include #include #define DASM_ARCH "ppc" #ifndef DASM_EXTERN #define DASM_EXTERN(a,b,c,d) 0 #endif /* Action definitions. */ enum { DASM_STOP, DASM_SECTION, DASM_ESC, DASM_REL_EXT, /* The following actions need a buffer position. */ DASM_ALIGN, DASM_REL_LG, DASM_LABEL_LG, /* The following actions also have an argument. */ DASM_REL_PC, DASM_LABEL_PC, DASM_IMM, DASM_IMMSH, DASM__MAX }; /* Maximum number of section buffer positions for a single dasm_put() call. */ #define DASM_MAXSECPOS 25 /* DynASM encoder status codes. Action list offset or number are or'ed in. */ #define DASM_S_OK 0x00000000 #define DASM_S_NOMEM 0x01000000 #define DASM_S_PHASE 0x02000000 #define DASM_S_MATCH_SEC 0x03000000 #define DASM_S_RANGE_I 0x11000000 #define DASM_S_RANGE_SEC 0x12000000 #define DASM_S_RANGE_LG 0x13000000 #define DASM_S_RANGE_PC 0x14000000 #define DASM_S_RANGE_REL 0x15000000 #define DASM_S_UNDEF_LG 0x21000000 #define DASM_S_UNDEF_PC 0x22000000 /* Macros to convert positions (8 bit section + 24 bit index). */ #define DASM_POS2IDX(pos) ((pos)&0x00ffffff) #define DASM_POS2BIAS(pos) ((pos)&0xff000000) #define DASM_SEC2POS(sec) ((sec)<<24) #define DASM_POS2SEC(pos) ((pos)>>24) #define DASM_POS2PTR(D, pos) (D->sections[DASM_POS2SEC(pos)].rbuf + (pos)) /* Action list type. */ typedef const unsigned int *dasm_ActList; /* Per-section structure. */ typedef struct dasm_Section { int *rbuf; /* Biased buffer pointer (negative section bias). */ int *buf; /* True buffer pointer. */ size_t bsize; /* Buffer size in bytes. */ int pos; /* Biased buffer position. */ int epos; /* End of biased buffer position - max single put. */ int ofs; /* Byte offset into section. */ } dasm_Section; /* Core structure holding the DynASM encoding state. */ struct dasm_State { size_t psize; /* Allocated size of this structure. */ dasm_ActList actionlist; /* Current actionlist pointer. */ int *lglabels; /* Local/global chain/pos ptrs. */ size_t lgsize; int *pclabels; /* PC label chains/pos ptrs. */ size_t pcsize; void **globals; /* Array of globals (bias -10). */ dasm_Section *section; /* Pointer to active section. */ size_t codesize; /* Total size of all code sections. */ int maxsection; /* 0 <= sectionidx < maxsection. */ int status; /* Status code. */ dasm_Section sections[1]; /* All sections. Alloc-extended. */ }; /* The size of the core structure depends on the max. number of sections. */ #define DASM_PSZ(ms) (sizeof(dasm_State)+(ms-1)*sizeof(dasm_Section)) /* Initialize DynASM state. */ void dasm_init(Dst_DECL, int maxsection) { dasm_State *D; size_t psz = 0; int i; Dst_REF = NULL; DASM_M_GROW(Dst, struct dasm_State, Dst_REF, psz, DASM_PSZ(maxsection)); D = Dst_REF; D->psize = psz; D->lglabels = NULL; D->lgsize = 0; D->pclabels = NULL; D->pcsize = 0; D->globals = NULL; D->maxsection = maxsection; for (i = 0; i < maxsection; i++) { D->sections[i].buf = NULL; /* Need this for pass3. */ D->sections[i].rbuf = D->sections[i].buf - DASM_SEC2POS(i); D->sections[i].bsize = 0; D->sections[i].epos = 0; /* Wrong, but is recalculated after resize. */ } } /* Free DynASM state. */ void dasm_free(Dst_DECL) { dasm_State *D = Dst_REF; int i; for (i = 0; i < D->maxsection; i++) if (D->sections[i].buf) DASM_M_FREE(Dst, D->sections[i].buf, D->sections[i].bsize); if (D->pclabels) DASM_M_FREE(Dst, D->pclabels, D->pcsize); if (D->lglabels) DASM_M_FREE(Dst, D->lglabels, D->lgsize); DASM_M_FREE(Dst, D, D->psize); } /* Setup global label array. Must be called before dasm_setup(). */ void dasm_setupglobal(Dst_DECL, void **gl, unsigned int maxgl) { dasm_State *D = Dst_REF; D->globals = gl - 10; /* Negative bias to compensate for locals. */ DASM_M_GROW(Dst, int, D->lglabels, D->lgsize, (10+maxgl)*sizeof(int)); } /* Grow PC label array. Can be called after dasm_setup(), too. */ void dasm_growpc(Dst_DECL, unsigned int maxpc) { dasm_State *D = Dst_REF; size_t osz = D->pcsize; DASM_M_GROW(Dst, int, D->pclabels, D->pcsize, maxpc*sizeof(int)); memset((void *)(((unsigned char *)D->pclabels)+osz), 0, D->pcsize-osz); } /* Setup encoder. */ void dasm_setup(Dst_DECL, const void *actionlist) { dasm_State *D = Dst_REF; int i; D->actionlist = (dasm_ActList)actionlist; D->status = DASM_S_OK; D->section = &D->sections[0]; memset((void *)D->lglabels, 0, D->lgsize); if (D->pclabels) memset((void *)D->pclabels, 0, D->pcsize); for (i = 0; i < D->maxsection; i++) { D->sections[i].pos = DASM_SEC2POS(i); D->sections[i].ofs = 0; } } #ifdef DASM_CHECKS #define CK(x, st) \ do { if (!(x)) { \ D->status = DASM_S_##st|(p-D->actionlist-1); return; } } while (0) #define CKPL(kind, st) \ do { if ((size_t)((char *)pl-(char *)D->kind##labels) >= D->kind##size) { \ D->status = DASM_S_RANGE_##st|(p-D->actionlist-1); return; } } while (0) #else #define CK(x, st) ((void)0) #define CKPL(kind, st) ((void)0) #endif /* Pass 1: Store actions and args, link branches/labels, estimate offsets. */ void dasm_put(Dst_DECL, int start, ...) { va_list ap; dasm_State *D = Dst_REF; dasm_ActList p = D->actionlist + start; dasm_Section *sec = D->section; int pos = sec->pos, ofs = sec->ofs; int *b; if (pos >= sec->epos) { DASM_M_GROW(Dst, int, sec->buf, sec->bsize, sec->bsize + 2*DASM_MAXSECPOS*sizeof(int)); sec->rbuf = sec->buf - DASM_POS2BIAS(pos); sec->epos = (int)sec->bsize/sizeof(int) - DASM_MAXSECPOS+DASM_POS2BIAS(pos); } b = sec->rbuf; b[pos++] = start; va_start(ap, start); while (1) { unsigned int ins = *p++; unsigned int action = (ins >> 16); if (action >= DASM__MAX) { ofs += 4; } else { int *pl, n = action >= DASM_REL_PC ? va_arg(ap, int) : 0; switch (action) { case DASM_STOP: goto stop; case DASM_SECTION: n = (ins & 255); CK(n < D->maxsection, RANGE_SEC); D->section = &D->sections[n]; goto stop; case DASM_ESC: p++; ofs += 4; break; case DASM_REL_EXT: break; case DASM_ALIGN: ofs += (ins & 255); b[pos++] = ofs; break; case DASM_REL_LG: n = (ins & 2047) - 10; pl = D->lglabels + n; /* Bkwd rel or global. */ if (n >= 0) { CK(n>=10||*pl<0, RANGE_LG); CKPL(lg, LG); goto putrel; } pl += 10; n = *pl; if (n < 0) n = 0; /* Start new chain for fwd rel if label exists. */ goto linkrel; case DASM_REL_PC: pl = D->pclabels + n; CKPL(pc, PC); putrel: n = *pl; if (n < 0) { /* Label exists. Get label pos and store it. */ b[pos] = -n; } else { linkrel: b[pos] = n; /* Else link to rel chain, anchored at label. */ *pl = pos; } pos++; break; case DASM_LABEL_LG: pl = D->lglabels + (ins & 2047) - 10; CKPL(lg, LG); goto putlabel; case DASM_LABEL_PC: pl = D->pclabels + n; CKPL(pc, PC); putlabel: n = *pl; /* n > 0: Collapse rel chain and replace with label pos. */ while (n > 0) { int *pb = DASM_POS2PTR(D, n); n = *pb; *pb = pos; } *pl = -pos; /* Label exists now. */ b[pos++] = ofs; /* Store pass1 offset estimate. */ break; case DASM_IMM: #ifdef DASM_CHECKS CK((n & ((1<<((ins>>10)&31))-1)) == 0, RANGE_I); #endif n >>= ((ins>>10)&31); #ifdef DASM_CHECKS if (ins & 0x8000) CK(((n + (1<<(((ins>>5)&31)-1)))>>((ins>>5)&31)) == 0, RANGE_I); else CK((n>>((ins>>5)&31)) == 0, RANGE_I); #endif b[pos++] = n; break; case DASM_IMMSH: CK((n >> 6) == 0, RANGE_I); b[pos++] = n; break; } } } stop: va_end(ap); sec->pos = pos; sec->ofs = ofs; } #undef CK /* Pass 2: Link sections, shrink aligns, fix label offsets. */ int dasm_link(Dst_DECL, size_t *szp) { dasm_State *D = Dst_REF; int secnum; int ofs = 0; #ifdef DASM_CHECKS *szp = 0; if (D->status != DASM_S_OK) return D->status; { int pc; for (pc = 0; pc*sizeof(int) < D->pcsize; pc++) if (D->pclabels[pc] > 0) return DASM_S_UNDEF_PC|pc; } #endif { /* Handle globals not defined in this translation unit. */ int idx; for (idx = 20; idx*sizeof(int) < D->lgsize; idx++) { int n = D->lglabels[idx]; /* Undefined label: Collapse rel chain and replace with marker (< 0). */ while (n > 0) { int *pb = DASM_POS2PTR(D, n); n = *pb; *pb = -idx; } } } /* Combine all code sections. No support for data sections (yet). */ for (secnum = 0; secnum < D->maxsection; secnum++) { dasm_Section *sec = D->sections + secnum; int *b = sec->rbuf; int pos = DASM_SEC2POS(secnum); int lastpos = sec->pos; while (pos != lastpos) { dasm_ActList p = D->actionlist + b[pos++]; while (1) { unsigned int ins = *p++; unsigned int action = (ins >> 16); switch (action) { case DASM_STOP: case DASM_SECTION: goto stop; case DASM_ESC: p++; break; case DASM_REL_EXT: break; case DASM_ALIGN: ofs -= (b[pos++] + ofs) & (ins & 255); break; case DASM_REL_LG: case DASM_REL_PC: pos++; break; case DASM_LABEL_LG: case DASM_LABEL_PC: b[pos++] += ofs; break; case DASM_IMM: case DASM_IMMSH: pos++; break; } } stop: (void)0; } ofs += sec->ofs; /* Next section starts right after current section. */ } D->codesize = ofs; /* Total size of all code sections */ *szp = ofs; return DASM_S_OK; } #ifdef DASM_CHECKS #define CK(x, st) \ do { if (!(x)) return DASM_S_##st|(p-D->actionlist-1); } while (0) #else #define CK(x, st) ((void)0) #endif /* Pass 3: Encode sections. */ int dasm_encode(Dst_DECL, void *buffer) { dasm_State *D = Dst_REF; char *base = (char *)buffer; unsigned int *cp = (unsigned int *)buffer; int secnum; /* Encode all code sections. No support for data sections (yet). */ for (secnum = 0; secnum < D->maxsection; secnum++) { dasm_Section *sec = D->sections + secnum; int *b = sec->buf; int *endb = sec->rbuf + sec->pos; while (b != endb) { dasm_ActList p = D->actionlist + *b++; while (1) { unsigned int ins = *p++; unsigned int action = (ins >> 16); int n = (action >= DASM_ALIGN && action < DASM__MAX) ? *b++ : 0; switch (action) { case DASM_STOP: case DASM_SECTION: goto stop; case DASM_ESC: *cp++ = *p++; break; case DASM_REL_EXT: n = DASM_EXTERN(Dst, (unsigned char *)cp, (ins & 2047), 1) - 4; goto patchrel; case DASM_ALIGN: ins &= 255; while ((((char *)cp - base) & ins)) *cp++ = 0x60000000; break; case DASM_REL_LG: CK(n >= 0, UNDEF_LG); case DASM_REL_PC: CK(n >= 0, UNDEF_PC); n = *DASM_POS2PTR(D, n) - (int)((char *)cp - base); patchrel: CK((n & 3) == 0 && (((n+4) + ((ins & 2048) ? 0x00008000 : 0x02000000)) >> ((ins & 2048) ? 16 : 26)) == 0, RANGE_REL); cp[-1] |= ((n+4) & ((ins & 2048) ? 0x0000fffc: 0x03fffffc)); break; case DASM_LABEL_LG: ins &= 2047; if (ins >= 20) D->globals[ins-10] = (void *)(base + n); break; case DASM_LABEL_PC: break; case DASM_IMM: cp[-1] |= (n & ((1<<((ins>>5)&31))-1)) << (ins&31); break; case DASM_IMMSH: cp[-1] |= (ins & 1) ? ((n&31)<<11)|((n&32)>>4) : ((n&31)<<6)|(n&32); break; default: *cp++ = ins; break; } } stop: (void)0; } } if (base + D->codesize != (char *)cp) /* Check for phase errors. */ return DASM_S_PHASE; return DASM_S_OK; } #undef CK /* Get PC label offset. */ int dasm_getpclabel(Dst_DECL, unsigned int pc) { dasm_State *D = Dst_REF; if (pc*sizeof(int) < D->pcsize) { int pos = D->pclabels[pc]; if (pos < 0) return *DASM_POS2PTR(D, -pos); if (pos > 0) return -1; /* Undefined. */ } return -2; /* Unused or out of range. */ } #ifdef DASM_CHECKS /* Optional sanity checker to call between isolated encoding steps. */ int dasm_checkstep(Dst_DECL, int secmatch) { dasm_State *D = Dst_REF; if (D->status == DASM_S_OK) { int i; for (i = 1; i <= 9; i++) { if (D->lglabels[i] > 0) { D->status = DASM_S_UNDEF_LG|i; break; } D->lglabels[i] = 0; } } if (D->status == DASM_S_OK && secmatch >= 0 && D->section != &D->sections[secmatch]) D->status = DASM_S_MATCH_SEC|(D->section-D->sections); return D->status; } #endif luajit-2.1.0~beta3+dfsg.orig/README0000644000175100017510000000070513101703334016200 0ustar ondrejondrejREADME for LuaJIT 2.1.0-beta3 ----------------------------- LuaJIT is a Just-In-Time (JIT) compiler for the Lua programming language. Project Homepage: http://luajit.org/ LuaJIT is Copyright (C) 2005-2017 Mike Pall. LuaJIT is free software, released under the MIT license. See full Copyright Notice in the COPYRIGHT file or in luajit.h. Documentation for LuaJIT is available in HTML format. Please point your favorite browser to: doc/luajit.html luajit-2.1.0~beta3+dfsg.orig/COPYRIGHT0000644000175100017510000000556413101703334016623 0ustar ondrejondrej=============================================================================== LuaJIT -- a Just-In-Time Compiler for Lua. http://luajit.org/ Copyright (C) 2005-2017 Mike Pall. All rights reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. [ MIT license: http://www.opensource.org/licenses/mit-license.php ] =============================================================================== [ LuaJIT includes code from Lua 5.1/5.2, which has this license statement: ] Copyright (C) 1994-2012 Lua.org, PUC-Rio. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. =============================================================================== [ LuaJIT includes code from dlmalloc, which has this license statement: ] This is a version (aka dlmalloc) of malloc/free/realloc written by Doug Lea and released to the public domain, as explained at http://creativecommons.org/licenses/publicdomain =============================================================================== luajit-2.1.0~beta3+dfsg.orig/Makefile0000644000175100017510000001336713101703334016770 0ustar ondrejondrej############################################################################## # LuaJIT top level Makefile for installation. Requires GNU Make. # # Please read doc/install.html before changing any variables! # # Suitable for POSIX platforms (Linux, *BSD, OSX etc.). # Note: src/Makefile has many more configurable options. # # ##### This Makefile is NOT useful for Windows! ##### # For MSVC, please follow the instructions given in src/msvcbuild.bat. # For MinGW and Cygwin, cd to src and run make with the Makefile there. # # Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h ############################################################################## MAJVER= 2 MINVER= 1 RELVER= 0 PREREL= -beta3 VERSION= $(MAJVER).$(MINVER).$(RELVER)$(PREREL) ABIVER= 5.1 ############################################################################## # # Change the installation path as needed. This automatically adjusts # the paths in src/luaconf.h, too. Note: PREFIX must be an absolute path! # export PREFIX= /usr/local export MULTILIB= lib ############################################################################## DPREFIX= $(DESTDIR)$(PREFIX) INSTALL_BIN= $(DPREFIX)/bin INSTALL_LIB= $(DPREFIX)/$(MULTILIB) INSTALL_SHARE= $(DPREFIX)/share INSTALL_INC= $(DPREFIX)/include/luajit-$(MAJVER).$(MINVER) INSTALL_LJLIBD= $(INSTALL_SHARE)/luajit-$(VERSION) INSTALL_JITLIB= $(INSTALL_LJLIBD)/jit INSTALL_LMODD= $(INSTALL_SHARE)/lua INSTALL_LMOD= $(INSTALL_LMODD)/$(ABIVER) INSTALL_CMODD= $(INSTALL_LIB)/lua INSTALL_CMOD= $(INSTALL_CMODD)/$(ABIVER) INSTALL_MAN= $(INSTALL_SHARE)/man/man1 INSTALL_PKGCONFIG= $(INSTALL_LIB)/pkgconfig INSTALL_TNAME= luajit-$(VERSION) INSTALL_TSYMNAME= luajit INSTALL_ANAME= libluajit-$(ABIVER).a INSTALL_SOSHORT1= libluajit-$(ABIVER).so INSTALL_SOSHORT2= libluajit-$(ABIVER).so.$(MAJVER) INSTALL_SONAME= $(INSTALL_SOSHORT2).$(MINVER).$(RELVER) INSTALL_DYLIBSHORT1= libluajit-$(ABIVER).dylib INSTALL_DYLIBSHORT2= libluajit-$(ABIVER).$(MAJVER).dylib INSTALL_DYLIBNAME= libluajit-$(ABIVER).$(MAJVER).$(MINVER).$(RELVER).dylib INSTALL_PCNAME= luajit.pc INSTALL_STATIC= $(INSTALL_LIB)/$(INSTALL_ANAME) INSTALL_DYN= $(INSTALL_LIB)/$(INSTALL_SONAME) INSTALL_SHORT1= $(INSTALL_LIB)/$(INSTALL_SOSHORT1) INSTALL_SHORT2= $(INSTALL_LIB)/$(INSTALL_SOSHORT2) INSTALL_T= $(INSTALL_BIN)/$(INSTALL_TNAME) INSTALL_TSYM= $(INSTALL_BIN)/$(INSTALL_TSYMNAME) INSTALL_PC= $(INSTALL_PKGCONFIG)/$(INSTALL_PCNAME) INSTALL_DIRS= $(INSTALL_BIN) $(INSTALL_LIB) $(INSTALL_INC) $(INSTALL_MAN) \ $(INSTALL_PKGCONFIG) $(INSTALL_JITLIB) $(INSTALL_LMOD) $(INSTALL_CMOD) UNINSTALL_DIRS= $(INSTALL_JITLIB) $(INSTALL_LJLIBD) $(INSTALL_INC) \ $(INSTALL_LMOD) $(INSTALL_LMODD) $(INSTALL_CMOD) $(INSTALL_CMODD) RM= rm -f MKDIR= mkdir -p RMDIR= rmdir 2>/dev/null SYMLINK= ln -sf INSTALL_X= install -m 0755 INSTALL_F= install -m 0644 UNINSTALL= $(RM) LDCONFIG= ldconfig -n SED_PC= sed -e "s|^prefix=.*|prefix=$(PREFIX)|" \ -e "s|^multilib=.*|multilib=$(MULTILIB)|" FILE_T= luajit FILE_A= libluajit.a FILE_SO= libluajit.so FILE_MAN= luajit.1 FILE_PC= luajit.pc FILES_INC= lua.h lualib.h lauxlib.h luaconf.h lua.hpp luajit.h FILES_JITLIB= bc.lua bcsave.lua dump.lua p.lua v.lua zone.lua \ dis_x86.lua dis_x64.lua dis_arm.lua dis_arm64.lua \ dis_arm64be.lua dis_ppc.lua dis_mips.lua dis_mipsel.lua \ dis_mips64.lua dis_mips64el.lua vmdef.lua ifeq (,$(findstring Windows,$(OS))) HOST_SYS:= $(shell uname -s) else HOST_SYS= Windows endif TARGET_SYS?= $(HOST_SYS) ifeq (Darwin,$(TARGET_SYS)) INSTALL_SONAME= $(INSTALL_DYLIBNAME) INSTALL_SOSHORT1= $(INSTALL_DYLIBSHORT1) INSTALL_SOSHORT2= $(INSTALL_DYLIBSHORT2) LDCONFIG= : endif ############################################################################## INSTALL_DEP= src/luajit default all $(INSTALL_DEP): @echo "==== Building LuaJIT $(VERSION) ====" $(MAKE) -C src @echo "==== Successfully built LuaJIT $(VERSION) ====" install: $(INSTALL_DEP) @echo "==== Installing LuaJIT $(VERSION) to $(PREFIX) ====" $(MKDIR) $(INSTALL_DIRS) cd src && $(INSTALL_X) $(FILE_T) $(INSTALL_T) cd src && test -f $(FILE_A) && $(INSTALL_F) $(FILE_A) $(INSTALL_STATIC) || : $(RM) $(INSTALL_DYN) $(INSTALL_SHORT1) $(INSTALL_SHORT2) cd src && test -f $(FILE_SO) && \ $(INSTALL_X) $(FILE_SO) $(INSTALL_DYN) && \ $(LDCONFIG) $(INSTALL_LIB) && \ $(SYMLINK) $(INSTALL_SONAME) $(INSTALL_SHORT1) && \ $(SYMLINK) $(INSTALL_SONAME) $(INSTALL_SHORT2) || : cd etc && $(INSTALL_F) $(FILE_MAN) $(INSTALL_MAN) cd etc && $(SED_PC) $(FILE_PC) > $(FILE_PC).tmp && \ $(INSTALL_F) $(FILE_PC).tmp $(INSTALL_PC) && \ $(RM) $(FILE_PC).tmp cd src && $(INSTALL_F) $(FILES_INC) $(INSTALL_INC) cd src/jit && $(INSTALL_F) $(FILES_JITLIB) $(INSTALL_JITLIB) @echo "==== Successfully installed LuaJIT $(VERSION) to $(PREFIX) ====" @echo "" @echo "Note: the development releases deliberately do NOT install a symlink for luajit" @echo "You can do this now by running this command (with sudo):" @echo "" @echo " $(SYMLINK) $(INSTALL_TNAME) $(INSTALL_TSYM)" @echo "" uninstall: @echo "==== Uninstalling LuaJIT $(VERSION) from $(PREFIX) ====" $(UNINSTALL) $(INSTALL_T) $(INSTALL_STATIC) $(INSTALL_DYN) $(INSTALL_SHORT1) $(INSTALL_SHORT2) $(INSTALL_MAN)/$(FILE_MAN) $(INSTALL_PC) for file in $(FILES_JITLIB); do \ $(UNINSTALL) $(INSTALL_JITLIB)/$$file; \ done for file in $(FILES_INC); do \ $(UNINSTALL) $(INSTALL_INC)/$$file; \ done $(LDCONFIG) $(INSTALL_LIB) $(RMDIR) $(UNINSTALL_DIRS) || : @echo "==== Successfully uninstalled LuaJIT $(VERSION) from $(PREFIX) ====" ############################################################################## amalg: @echo "Building LuaJIT $(VERSION)" $(MAKE) -C src amalg clean: $(MAKE) -C src clean .PHONY: all install amalg clean ############################################################################## luajit-2.1.0~beta3+dfsg.orig/src/0000755000175100017510000000000013101703334016105 5ustar ondrejondrejluajit-2.1.0~beta3+dfsg.orig/src/lj_err.c0000644000175100017510000006147313101703334017541 0ustar ondrejondrej/* ** Error handling. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #define lj_err_c #define LUA_CORE #include "lj_obj.h" #include "lj_err.h" #include "lj_debug.h" #include "lj_str.h" #include "lj_func.h" #include "lj_state.h" #include "lj_frame.h" #include "lj_ff.h" #include "lj_trace.h" #include "lj_vm.h" #include "lj_strfmt.h" /* ** LuaJIT can either use internal or external frame unwinding: ** ** - Internal frame unwinding (INT) is free-standing and doesn't require ** any OS or library support. ** ** - External frame unwinding (EXT) uses the system-provided unwind handler. ** ** Pros and Cons: ** ** - EXT requires unwind tables for *all* functions on the C stack between ** the pcall/catch and the error/throw. This is the default on x64, ** but needs to be manually enabled on x86/PPC for non-C++ code. ** ** - INT is faster when actually throwing errors (but this happens rarely). ** Setting up error handlers is zero-cost in any case. ** ** - EXT provides full interoperability with C++ exceptions. You can throw ** Lua errors or C++ exceptions through a mix of Lua frames and C++ frames. ** C++ destructors are called as needed. C++ exceptions caught by pcall ** are converted to the string "C++ exception". Lua errors can be caught ** with catch (...) in C++. ** ** - INT has only limited support for automatically catching C++ exceptions ** on POSIX systems using DWARF2 stack unwinding. Other systems may use ** the wrapper function feature. Lua errors thrown through C++ frames ** cannot be caught by C++ code and C++ destructors are not run. ** ** EXT is the default on x64 systems and on Windows, INT is the default on all ** other systems. ** ** EXT can be manually enabled on POSIX systems using GCC and DWARF2 stack ** unwinding with -DLUAJIT_UNWIND_EXTERNAL. *All* C code must be compiled ** with -funwind-tables (or -fexceptions). This includes LuaJIT itself (set ** TARGET_CFLAGS), all of your C/Lua binding code, all loadable C modules ** and all C libraries that have callbacks which may be used to call back ** into Lua. C++ code must *not* be compiled with -fno-exceptions. ** ** EXT is mandatory on WIN64 since the calling convention has an abundance ** of callee-saved registers (rbx, rbp, rsi, rdi, r12-r15, xmm6-xmm15). ** The POSIX/x64 interpreter only saves r12/r13 for INT (e.g. PS4). */ #if defined(__GNUC__) && (LJ_TARGET_X64 || defined(LUAJIT_UNWIND_EXTERNAL)) && !LJ_NO_UNWIND #define LJ_UNWIND_EXT 1 #elif LJ_TARGET_WINDOWS #define LJ_UNWIND_EXT 1 #endif /* -- Error messages ------------------------------------------------------ */ /* Error message strings. */ LJ_DATADEF const char *lj_err_allmsg = #define ERRDEF(name, msg) msg "\0" #include "lj_errmsg.h" ; /* -- Internal frame unwinding -------------------------------------------- */ /* Unwind Lua stack and move error message to new top. */ LJ_NOINLINE static void unwindstack(lua_State *L, TValue *top) { lj_func_closeuv(L, top); if (top < L->top-1) { copyTV(L, top, L->top-1); L->top = top+1; } lj_state_relimitstack(L); } /* Unwind until stop frame. Optionally cleanup frames. */ static void *err_unwind(lua_State *L, void *stopcf, int errcode) { TValue *frame = L->base-1; void *cf = L->cframe; while (cf) { int32_t nres = cframe_nres(cframe_raw(cf)); if (nres < 0) { /* C frame without Lua frame? */ TValue *top = restorestack(L, -nres); if (frame < top) { /* Frame reached? */ if (errcode) { L->base = frame+1; L->cframe = cframe_prev(cf); unwindstack(L, top); } return cf; } } if (frame <= tvref(L->stack)+LJ_FR2) break; switch (frame_typep(frame)) { case FRAME_LUA: /* Lua frame. */ case FRAME_LUAP: frame = frame_prevl(frame); break; case FRAME_C: /* C frame. */ unwind_c: #if LJ_UNWIND_EXT if (errcode) { L->base = frame_prevd(frame) + 1; L->cframe = cframe_prev(cf); unwindstack(L, frame - LJ_FR2); } else if (cf != stopcf) { cf = cframe_prev(cf); frame = frame_prevd(frame); break; } return NULL; /* Continue unwinding. */ #else UNUSED(stopcf); cf = cframe_prev(cf); frame = frame_prevd(frame); break; #endif case FRAME_CP: /* Protected C frame. */ if (cframe_canyield(cf)) { /* Resume? */ if (errcode) { hook_leave(G(L)); /* Assumes nobody uses coroutines inside hooks. */ L->cframe = NULL; L->status = (uint8_t)errcode; } return cf; } if (errcode) { L->base = frame_prevd(frame) + 1; L->cframe = cframe_prev(cf); unwindstack(L, frame - LJ_FR2); } return cf; case FRAME_CONT: /* Continuation frame. */ if (frame_iscont_fficb(frame)) goto unwind_c; case FRAME_VARG: /* Vararg frame. */ frame = frame_prevd(frame); break; case FRAME_PCALL: /* FF pcall() frame. */ case FRAME_PCALLH: /* FF pcall() frame inside hook. */ if (errcode) { if (errcode == LUA_YIELD) { frame = frame_prevd(frame); break; } if (frame_typep(frame) == FRAME_PCALL) hook_leave(G(L)); L->base = frame_prevd(frame) + 1; L->cframe = cf; unwindstack(L, L->base); } return (void *)((intptr_t)cf | CFRAME_UNWIND_FF); } } /* No C frame. */ if (errcode) { L->base = tvref(L->stack)+1+LJ_FR2; L->cframe = NULL; unwindstack(L, L->base); if (G(L)->panic) G(L)->panic(L); exit(EXIT_FAILURE); } return L; /* Anything non-NULL will do. */ } /* -- External frame unwinding -------------------------------------------- */ #if defined(__GNUC__) && !LJ_NO_UNWIND && !LJ_ABI_WIN /* ** We have to use our own definitions instead of the mandatory (!) unwind.h, ** since various OS, distros and compilers mess up the header installation. */ typedef struct _Unwind_Context _Unwind_Context; #define _URC_OK 0 #define _URC_FATAL_PHASE1_ERROR 3 #define _URC_HANDLER_FOUND 6 #define _URC_INSTALL_CONTEXT 7 #define _URC_CONTINUE_UNWIND 8 #define _URC_FAILURE 9 #define LJ_UEXCLASS 0x4c55414a49543200ULL /* LUAJIT2\0 */ #define LJ_UEXCLASS_MAKE(c) (LJ_UEXCLASS | (uint64_t)(c)) #define LJ_UEXCLASS_CHECK(cl) (((cl) ^ LJ_UEXCLASS) <= 0xff) #define LJ_UEXCLASS_ERRCODE(cl) ((int)((cl) & 0xff)) #if !LJ_TARGET_ARM typedef struct _Unwind_Exception { uint64_t exclass; void (*excleanup)(int, struct _Unwind_Exception *); uintptr_t p1, p2; } __attribute__((__aligned__)) _Unwind_Exception; extern uintptr_t _Unwind_GetCFA(_Unwind_Context *); extern void _Unwind_SetGR(_Unwind_Context *, int, uintptr_t); extern void _Unwind_SetIP(_Unwind_Context *, uintptr_t); extern void _Unwind_DeleteException(_Unwind_Exception *); extern int _Unwind_RaiseException(_Unwind_Exception *); #define _UA_SEARCH_PHASE 1 #define _UA_CLEANUP_PHASE 2 #define _UA_HANDLER_FRAME 4 #define _UA_FORCE_UNWIND 8 /* DWARF2 personality handler referenced from interpreter .eh_frame. */ LJ_FUNCA int lj_err_unwind_dwarf(int version, int actions, uint64_t uexclass, _Unwind_Exception *uex, _Unwind_Context *ctx) { void *cf; lua_State *L; if (version != 1) return _URC_FATAL_PHASE1_ERROR; UNUSED(uexclass); cf = (void *)_Unwind_GetCFA(ctx); L = cframe_L(cf); if ((actions & _UA_SEARCH_PHASE)) { #if LJ_UNWIND_EXT if (err_unwind(L, cf, 0) == NULL) return _URC_CONTINUE_UNWIND; #endif if (!LJ_UEXCLASS_CHECK(uexclass)) { setstrV(L, L->top++, lj_err_str(L, LJ_ERR_ERRCPP)); } return _URC_HANDLER_FOUND; } if ((actions & _UA_CLEANUP_PHASE)) { int errcode; if (LJ_UEXCLASS_CHECK(uexclass)) { errcode = LJ_UEXCLASS_ERRCODE(uexclass); } else { if ((actions & _UA_HANDLER_FRAME)) _Unwind_DeleteException(uex); errcode = LUA_ERRRUN; } #if LJ_UNWIND_EXT cf = err_unwind(L, cf, errcode); if ((actions & _UA_FORCE_UNWIND)) { return _URC_CONTINUE_UNWIND; } else if (cf) { _Unwind_SetGR(ctx, LJ_TARGET_EHRETREG, errcode); _Unwind_SetIP(ctx, (uintptr_t)(cframe_unwind_ff(cf) ? lj_vm_unwind_ff_eh : lj_vm_unwind_c_eh)); return _URC_INSTALL_CONTEXT; } #if LJ_TARGET_X86ORX64 else if ((actions & _UA_HANDLER_FRAME)) { /* Workaround for ancient libgcc bug. Still present in RHEL 5.5. :-/ ** Real fix: http://gcc.gnu.org/viewcvs/trunk/gcc/unwind-dw2.c?r1=121165&r2=124837&pathrev=153877&diff_format=h */ _Unwind_SetGR(ctx, LJ_TARGET_EHRETREG, errcode); _Unwind_SetIP(ctx, (uintptr_t)lj_vm_unwind_rethrow); return _URC_INSTALL_CONTEXT; } #endif #else /* This is not the proper way to escape from the unwinder. We get away with ** it on non-x64 because the interpreter restores all callee-saved regs. */ lj_err_throw(L, errcode); #endif } return _URC_CONTINUE_UNWIND; } #if LJ_UNWIND_EXT #if LJ_TARGET_OSX || defined(__OpenBSD__) /* Sorry, no thread safety for OSX. Complain to Apple, not me. */ static _Unwind_Exception static_uex; #else static __thread _Unwind_Exception static_uex; #endif /* Raise DWARF2 exception. */ static void err_raise_ext(int errcode) { static_uex.exclass = LJ_UEXCLASS_MAKE(errcode); static_uex.excleanup = NULL; _Unwind_RaiseException(&static_uex); } #endif #else /* LJ_TARGET_ARM */ #define _US_VIRTUAL_UNWIND_FRAME 0 #define _US_UNWIND_FRAME_STARTING 1 #define _US_ACTION_MASK 3 #define _US_FORCE_UNWIND 8 typedef struct _Unwind_Control_Block _Unwind_Control_Block; struct _Unwind_Control_Block { uint64_t exclass; uint32_t misc[20]; }; extern int _Unwind_RaiseException(_Unwind_Control_Block *); extern int __gnu_unwind_frame(_Unwind_Control_Block *, _Unwind_Context *); extern int _Unwind_VRS_Set(_Unwind_Context *, int, uint32_t, int, void *); extern int _Unwind_VRS_Get(_Unwind_Context *, int, uint32_t, int, void *); static inline uint32_t _Unwind_GetGR(_Unwind_Context *ctx, int r) { uint32_t v; _Unwind_VRS_Get(ctx, 0, r, 0, &v); return v; } static inline void _Unwind_SetGR(_Unwind_Context *ctx, int r, uint32_t v) { _Unwind_VRS_Set(ctx, 0, r, 0, &v); } extern void lj_vm_unwind_ext(void); /* ARM unwinder personality handler referenced from interpreter .ARM.extab. */ LJ_FUNCA int lj_err_unwind_arm(int state, _Unwind_Control_Block *ucb, _Unwind_Context *ctx) { void *cf = (void *)_Unwind_GetGR(ctx, 13); lua_State *L = cframe_L(cf); int errcode; switch ((state & _US_ACTION_MASK)) { case _US_VIRTUAL_UNWIND_FRAME: if ((state & _US_FORCE_UNWIND)) break; return _URC_HANDLER_FOUND; case _US_UNWIND_FRAME_STARTING: if (LJ_UEXCLASS_CHECK(ucb->exclass)) { errcode = LJ_UEXCLASS_ERRCODE(ucb->exclass); } else { errcode = LUA_ERRRUN; setstrV(L, L->top++, lj_err_str(L, LJ_ERR_ERRCPP)); } cf = err_unwind(L, cf, errcode); if ((state & _US_FORCE_UNWIND) || cf == NULL) break; _Unwind_SetGR(ctx, 15, (uint32_t)lj_vm_unwind_ext); _Unwind_SetGR(ctx, 0, (uint32_t)ucb); _Unwind_SetGR(ctx, 1, (uint32_t)errcode); _Unwind_SetGR(ctx, 2, cframe_unwind_ff(cf) ? (uint32_t)lj_vm_unwind_ff_eh : (uint32_t)lj_vm_unwind_c_eh); return _URC_INSTALL_CONTEXT; default: return _URC_FAILURE; } if (__gnu_unwind_frame(ucb, ctx) != _URC_OK) return _URC_FAILURE; return _URC_CONTINUE_UNWIND; } #if LJ_UNWIND_EXT static __thread _Unwind_Control_Block static_uex; static void err_raise_ext(int errcode) { memset(&static_uex, 0, sizeof(static_uex)); static_uex.exclass = LJ_UEXCLASS_MAKE(errcode); _Unwind_RaiseException(&static_uex); } #endif #endif /* LJ_TARGET_ARM */ #elif LJ_ABI_WIN /* ** Someone in Redmond owes me several days of my life. A lot of this is ** undocumented or just plain wrong on MSDN. Some of it can be gathered ** from 3rd party docs or must be found by trial-and-error. They really ** don't want you to write your own language-specific exception handler ** or to interact gracefully with MSVC. :-( ** ** Apparently MSVC doesn't call C++ destructors for foreign exceptions ** unless you compile your C++ code with /EHa. Unfortunately this means ** catch (...) also catches things like access violations. The use of ** _set_se_translator doesn't really help, because it requires /EHa, too. */ #define WIN32_LEAN_AND_MEAN #include #if LJ_TARGET_X64 /* Taken from: http://www.nynaeve.net/?p=99 */ typedef struct UndocumentedDispatcherContext { ULONG64 ControlPc; ULONG64 ImageBase; PRUNTIME_FUNCTION FunctionEntry; ULONG64 EstablisherFrame; ULONG64 TargetIp; PCONTEXT ContextRecord; void (*LanguageHandler)(void); PVOID HandlerData; PUNWIND_HISTORY_TABLE HistoryTable; ULONG ScopeIndex; ULONG Fill0; } UndocumentedDispatcherContext; #else typedef void *UndocumentedDispatcherContext; #endif /* Another wild guess. */ extern void __DestructExceptionObject(EXCEPTION_RECORD *rec, int nothrow); #if LJ_TARGET_X64 && defined(MINGW_SDK_INIT) /* Workaround for broken MinGW64 declaration. */ VOID RtlUnwindEx_FIXED(PVOID,PVOID,PVOID,PVOID,PVOID,PVOID) asm("RtlUnwindEx"); #define RtlUnwindEx RtlUnwindEx_FIXED #endif #define LJ_MSVC_EXCODE ((DWORD)0xe06d7363) #define LJ_GCC_EXCODE ((DWORD)0x20474343) #define LJ_EXCODE ((DWORD)0xe24c4a00) #define LJ_EXCODE_MAKE(c) (LJ_EXCODE | (DWORD)(c)) #define LJ_EXCODE_CHECK(cl) (((cl) ^ LJ_EXCODE) <= 0xff) #define LJ_EXCODE_ERRCODE(cl) ((int)((cl) & 0xff)) /* Windows exception handler for interpreter frame. */ LJ_FUNCA int lj_err_unwind_win(EXCEPTION_RECORD *rec, void *f, CONTEXT *ctx, UndocumentedDispatcherContext *dispatch) { #if LJ_TARGET_X64 void *cf = f; #else void *cf = (char *)f - CFRAME_OFS_SEH; #endif lua_State *L = cframe_L(cf); int errcode = LJ_EXCODE_CHECK(rec->ExceptionCode) ? LJ_EXCODE_ERRCODE(rec->ExceptionCode) : LUA_ERRRUN; if ((rec->ExceptionFlags & 6)) { /* EH_UNWINDING|EH_EXIT_UNWIND */ /* Unwind internal frames. */ err_unwind(L, cf, errcode); } else { void *cf2 = err_unwind(L, cf, 0); if (cf2) { /* We catch it, so start unwinding the upper frames. */ if (rec->ExceptionCode == LJ_MSVC_EXCODE || rec->ExceptionCode == LJ_GCC_EXCODE) { #if LJ_TARGET_WINDOWS __DestructExceptionObject(rec, 1); #endif setstrV(L, L->top++, lj_err_str(L, LJ_ERR_ERRCPP)); } else if (!LJ_EXCODE_CHECK(rec->ExceptionCode)) { /* Don't catch access violations etc. */ return 1; /* ExceptionContinueSearch */ } #if LJ_TARGET_X64 /* Unwind the stack and call all handlers for all lower C frames ** (including ourselves) again with EH_UNWINDING set. Then set ** rsp = cf, rax = errcode and jump to the specified target. */ RtlUnwindEx(cf, (void *)((cframe_unwind_ff(cf2) && errcode != LUA_YIELD) ? lj_vm_unwind_ff_eh : lj_vm_unwind_c_eh), rec, (void *)(uintptr_t)errcode, ctx, dispatch->HistoryTable); /* RtlUnwindEx should never return. */ #else UNUSED(ctx); UNUSED(dispatch); /* Call all handlers for all lower C frames (including ourselves) again ** with EH_UNWINDING set. Then call the specified function, passing cf ** and errcode. */ lj_vm_rtlunwind(cf, (void *)rec, (cframe_unwind_ff(cf2) && errcode != LUA_YIELD) ? (void *)lj_vm_unwind_ff : (void *)lj_vm_unwind_c, errcode); /* lj_vm_rtlunwind does not return. */ #endif } } return 1; /* ExceptionContinueSearch */ } /* Raise Windows exception. */ static void err_raise_ext(int errcode) { RaiseException(LJ_EXCODE_MAKE(errcode), 1 /* EH_NONCONTINUABLE */, 0, NULL); } #endif /* -- Error handling ------------------------------------------------------ */ /* Throw error. Find catch frame, unwind stack and continue. */ LJ_NOINLINE void LJ_FASTCALL lj_err_throw(lua_State *L, int errcode) { global_State *g = G(L); lj_trace_abort(g); setmref(g->jit_base, NULL); L->status = LUA_OK; #if LJ_UNWIND_EXT err_raise_ext(errcode); /* ** A return from this function signals a corrupt C stack that cannot be ** unwound. We have no choice but to call the panic function and exit. ** ** Usually this is caused by a C function without unwind information. ** This should never happen on x64, but may happen if you've manually ** enabled LUAJIT_UNWIND_EXTERNAL and forgot to recompile *every* ** non-C++ file with -funwind-tables. */ if (G(L)->panic) G(L)->panic(L); #else { void *cf = err_unwind(L, NULL, errcode); if (cframe_unwind_ff(cf)) lj_vm_unwind_ff(cframe_raw(cf)); else lj_vm_unwind_c(cframe_raw(cf), errcode); } #endif exit(EXIT_FAILURE); } /* Return string object for error message. */ LJ_NOINLINE GCstr *lj_err_str(lua_State *L, ErrMsg em) { return lj_str_newz(L, err2msg(em)); } /* Out-of-memory error. */ LJ_NOINLINE void lj_err_mem(lua_State *L) { if (L->status == LUA_ERRERR+1) /* Don't touch the stack during lua_open. */ lj_vm_unwind_c(L->cframe, LUA_ERRMEM); setstrV(L, L->top++, lj_err_str(L, LJ_ERR_ERRMEM)); lj_err_throw(L, LUA_ERRMEM); } /* Find error function for runtime errors. Requires an extra stack traversal. */ static ptrdiff_t finderrfunc(lua_State *L) { cTValue *frame = L->base-1, *bot = tvref(L->stack)+LJ_FR2; void *cf = L->cframe; while (frame > bot && cf) { while (cframe_nres(cframe_raw(cf)) < 0) { /* cframe without frame? */ if (frame >= restorestack(L, -cframe_nres(cf))) break; if (cframe_errfunc(cf) >= 0) /* Error handler not inherited (-1)? */ return cframe_errfunc(cf); cf = cframe_prev(cf); /* Else unwind cframe and continue searching. */ if (cf == NULL) return 0; } switch (frame_typep(frame)) { case FRAME_LUA: case FRAME_LUAP: frame = frame_prevl(frame); break; case FRAME_C: cf = cframe_prev(cf); /* fallthrough */ case FRAME_VARG: frame = frame_prevd(frame); break; case FRAME_CONT: if (frame_iscont_fficb(frame)) cf = cframe_prev(cf); frame = frame_prevd(frame); break; case FRAME_CP: if (cframe_canyield(cf)) return 0; if (cframe_errfunc(cf) >= 0) return cframe_errfunc(cf); frame = frame_prevd(frame); break; case FRAME_PCALL: case FRAME_PCALLH: if (frame_func(frame_prevd(frame))->c.ffid == FF_xpcall) return savestack(L, frame_prevd(frame)+1); /* xpcall's errorfunc. */ return 0; default: lua_assert(0); return 0; } } return 0; } /* Runtime error. */ LJ_NOINLINE void lj_err_run(lua_State *L) { ptrdiff_t ef = finderrfunc(L); if (ef) { TValue *errfunc = restorestack(L, ef); TValue *top = L->top; lj_trace_abort(G(L)); if (!tvisfunc(errfunc) || L->status == LUA_ERRERR) { setstrV(L, top-1, lj_err_str(L, LJ_ERR_ERRERR)); lj_err_throw(L, LUA_ERRERR); } L->status = LUA_ERRERR; copyTV(L, top+LJ_FR2, top-1); copyTV(L, top-1, errfunc); if (LJ_FR2) setnilV(top++); L->top = top+1; lj_vm_call(L, top, 1+1); /* Stack: |errfunc|msg| -> |msg| */ } lj_err_throw(L, LUA_ERRRUN); } /* Formatted runtime error message. */ LJ_NORET LJ_NOINLINE static void err_msgv(lua_State *L, ErrMsg em, ...) { const char *msg; va_list argp; va_start(argp, em); if (curr_funcisL(L)) L->top = curr_topL(L); msg = lj_strfmt_pushvf(L, err2msg(em), argp); va_end(argp); lj_debug_addloc(L, msg, L->base-1, NULL); lj_err_run(L); } /* Non-vararg variant for better calling conventions. */ LJ_NOINLINE void lj_err_msg(lua_State *L, ErrMsg em) { err_msgv(L, em); } /* Lexer error. */ LJ_NOINLINE void lj_err_lex(lua_State *L, GCstr *src, const char *tok, BCLine line, ErrMsg em, va_list argp) { char buff[LUA_IDSIZE]; const char *msg; lj_debug_shortname(buff, src, line); msg = lj_strfmt_pushvf(L, err2msg(em), argp); msg = lj_strfmt_pushf(L, "%s:%d: %s", buff, line, msg); if (tok) lj_strfmt_pushf(L, err2msg(LJ_ERR_XNEAR), msg, tok); lj_err_throw(L, LUA_ERRSYNTAX); } /* Typecheck error for operands. */ LJ_NOINLINE void lj_err_optype(lua_State *L, cTValue *o, ErrMsg opm) { const char *tname = lj_typename(o); const char *opname = err2msg(opm); if (curr_funcisL(L)) { GCproto *pt = curr_proto(L); const BCIns *pc = cframe_Lpc(L) - 1; const char *oname = NULL; const char *kind = lj_debug_slotname(pt, pc, (BCReg)(o-L->base), &oname); if (kind) err_msgv(L, LJ_ERR_BADOPRT, opname, kind, oname, tname); } err_msgv(L, LJ_ERR_BADOPRV, opname, tname); } /* Typecheck error for ordered comparisons. */ LJ_NOINLINE void lj_err_comp(lua_State *L, cTValue *o1, cTValue *o2) { const char *t1 = lj_typename(o1); const char *t2 = lj_typename(o2); err_msgv(L, t1 == t2 ? LJ_ERR_BADCMPV : LJ_ERR_BADCMPT, t1, t2); /* This assumes the two "boolean" entries are commoned by the C compiler. */ } /* Typecheck error for __call. */ LJ_NOINLINE void lj_err_optype_call(lua_State *L, TValue *o) { /* Gross hack if lua_[p]call or pcall/xpcall fail for a non-callable object: ** L->base still points to the caller. So add a dummy frame with L instead ** of a function. See lua_getstack(). */ const BCIns *pc = cframe_Lpc(L); if (((ptrdiff_t)pc & FRAME_TYPE) != FRAME_LUA) { const char *tname = lj_typename(o); if (LJ_FR2) o++; setframe_pc(o, pc); setframe_gc(o, obj2gco(L), LJ_TTHREAD); L->top = L->base = o+1; err_msgv(L, LJ_ERR_BADCALL, tname); } lj_err_optype(L, o, LJ_ERR_OPCALL); } /* Error in context of caller. */ LJ_NOINLINE void lj_err_callermsg(lua_State *L, const char *msg) { TValue *frame = L->base-1; TValue *pframe = NULL; if (frame_islua(frame)) { pframe = frame_prevl(frame); } else if (frame_iscont(frame)) { if (frame_iscont_fficb(frame)) { pframe = frame; frame = NULL; } else { pframe = frame_prevd(frame); #if LJ_HASFFI /* Remove frame for FFI metamethods. */ if (frame_func(frame)->c.ffid >= FF_ffi_meta___index && frame_func(frame)->c.ffid <= FF_ffi_meta___tostring) { L->base = pframe+1; L->top = frame; setcframe_pc(cframe_raw(L->cframe), frame_contpc(frame)); } #endif } } lj_debug_addloc(L, msg, pframe, frame); lj_err_run(L); } /* Formatted error in context of caller. */ LJ_NOINLINE void lj_err_callerv(lua_State *L, ErrMsg em, ...) { const char *msg; va_list argp; va_start(argp, em); msg = lj_strfmt_pushvf(L, err2msg(em), argp); va_end(argp); lj_err_callermsg(L, msg); } /* Error in context of caller. */ LJ_NOINLINE void lj_err_caller(lua_State *L, ErrMsg em) { lj_err_callermsg(L, err2msg(em)); } /* Argument error message. */ LJ_NORET LJ_NOINLINE static void err_argmsg(lua_State *L, int narg, const char *msg) { const char *fname = "?"; const char *ftype = lj_debug_funcname(L, L->base - 1, &fname); if (narg < 0 && narg > LUA_REGISTRYINDEX) narg = (int)(L->top - L->base) + narg + 1; if (ftype && ftype[3] == 'h' && --narg == 0) /* Check for "method". */ msg = lj_strfmt_pushf(L, err2msg(LJ_ERR_BADSELF), fname, msg); else msg = lj_strfmt_pushf(L, err2msg(LJ_ERR_BADARG), narg, fname, msg); lj_err_callermsg(L, msg); } /* Formatted argument error. */ LJ_NOINLINE void lj_err_argv(lua_State *L, int narg, ErrMsg em, ...) { const char *msg; va_list argp; va_start(argp, em); msg = lj_strfmt_pushvf(L, err2msg(em), argp); va_end(argp); err_argmsg(L, narg, msg); } /* Argument error. */ LJ_NOINLINE void lj_err_arg(lua_State *L, int narg, ErrMsg em) { err_argmsg(L, narg, err2msg(em)); } /* Typecheck error for arguments. */ LJ_NOINLINE void lj_err_argtype(lua_State *L, int narg, const char *xname) { const char *tname, *msg; if (narg <= LUA_REGISTRYINDEX) { if (narg >= LUA_GLOBALSINDEX) { tname = lj_obj_itypename[~LJ_TTAB]; } else { GCfunc *fn = curr_func(L); int idx = LUA_GLOBALSINDEX - narg; if (idx <= fn->c.nupvalues) tname = lj_typename(&fn->c.upvalue[idx-1]); else tname = lj_obj_typename[0]; } } else { TValue *o = narg < 0 ? L->top + narg : L->base + narg-1; tname = o < L->top ? lj_typename(o) : lj_obj_typename[0]; } msg = lj_strfmt_pushf(L, err2msg(LJ_ERR_BADTYPE), xname, tname); err_argmsg(L, narg, msg); } /* Typecheck error for arguments. */ LJ_NOINLINE void lj_err_argt(lua_State *L, int narg, int tt) { lj_err_argtype(L, narg, lj_obj_typename[tt+1]); } /* -- Public error handling API ------------------------------------------- */ LUA_API lua_CFunction lua_atpanic(lua_State *L, lua_CFunction panicf) { lua_CFunction old = G(L)->panic; G(L)->panic = panicf; return old; } /* Forwarders for the public API (C calling convention and no LJ_NORET). */ LUA_API int lua_error(lua_State *L) { lj_err_run(L); return 0; /* unreachable */ } LUALIB_API int luaL_argerror(lua_State *L, int narg, const char *msg) { err_argmsg(L, narg, msg); return 0; /* unreachable */ } LUALIB_API int luaL_typerror(lua_State *L, int narg, const char *xname) { lj_err_argtype(L, narg, xname); return 0; /* unreachable */ } LUALIB_API void luaL_where(lua_State *L, int level) { int size; cTValue *frame = lj_debug_frame(L, level, &size); lj_debug_addloc(L, "", frame, size ? frame+size : NULL); } LUALIB_API int luaL_error(lua_State *L, const char *fmt, ...) { const char *msg; va_list argp; va_start(argp, fmt); msg = lj_strfmt_pushvf(L, fmt, argp); va_end(argp); lj_err_callermsg(L, msg); return 0; /* unreachable */ } luajit-2.1.0~beta3+dfsg.orig/src/lj_lex.c0000644000175100017510000003224113101703334017530 0ustar ondrejondrej/* ** Lexical analyzer. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h ** ** Major portions taken verbatim or adapted from the Lua interpreter. ** Copyright (C) 1994-2008 Lua.org, PUC-Rio. See Copyright Notice in lua.h */ #define lj_lex_c #define LUA_CORE #include "lj_obj.h" #include "lj_gc.h" #include "lj_err.h" #include "lj_buf.h" #include "lj_str.h" #if LJ_HASFFI #include "lj_tab.h" #include "lj_ctype.h" #include "lj_cdata.h" #include "lualib.h" #endif #include "lj_state.h" #include "lj_lex.h" #include "lj_parse.h" #include "lj_char.h" #include "lj_strscan.h" #include "lj_strfmt.h" /* Lua lexer token names. */ static const char *const tokennames[] = { #define TKSTR1(name) #name, #define TKSTR2(name, sym) #sym, TKDEF(TKSTR1, TKSTR2) #undef TKSTR1 #undef TKSTR2 NULL }; /* -- Buffer handling ----------------------------------------------------- */ #define LEX_EOF (-1) #define lex_iseol(ls) (ls->c == '\n' || ls->c == '\r') /* Get more input from reader. */ static LJ_NOINLINE LexChar lex_more(LexState *ls) { size_t sz; const char *p = ls->rfunc(ls->L, ls->rdata, &sz); if (p == NULL || sz == 0) return LEX_EOF; ls->pe = p + sz; ls->p = p + 1; return (LexChar)(uint8_t)p[0]; } /* Get next character. */ static LJ_AINLINE LexChar lex_next(LexState *ls) { return (ls->c = ls->p < ls->pe ? (LexChar)(uint8_t)*ls->p++ : lex_more(ls)); } /* Save character. */ static LJ_AINLINE void lex_save(LexState *ls, LexChar c) { lj_buf_putb(&ls->sb, c); } /* Save previous character and get next character. */ static LJ_AINLINE LexChar lex_savenext(LexState *ls) { lex_save(ls, ls->c); return lex_next(ls); } /* Skip line break. Handles "\n", "\r", "\r\n" or "\n\r". */ static void lex_newline(LexState *ls) { LexChar old = ls->c; lua_assert(lex_iseol(ls)); lex_next(ls); /* Skip "\n" or "\r". */ if (lex_iseol(ls) && ls->c != old) lex_next(ls); /* Skip "\n\r" or "\r\n". */ if (++ls->linenumber >= LJ_MAX_LINE) lj_lex_error(ls, ls->tok, LJ_ERR_XLINES); } /* -- Scanner for terminals ----------------------------------------------- */ /* Parse a number literal. */ static void lex_number(LexState *ls, TValue *tv) { StrScanFmt fmt; LexChar c, xp = 'e'; lua_assert(lj_char_isdigit(ls->c)); if ((c = ls->c) == '0' && (lex_savenext(ls) | 0x20) == 'x') xp = 'p'; while (lj_char_isident(ls->c) || ls->c == '.' || ((ls->c == '-' || ls->c == '+') && (c | 0x20) == xp)) { c = ls->c; lex_savenext(ls); } lex_save(ls, '\0'); fmt = lj_strscan_scan((const uint8_t *)sbufB(&ls->sb), tv, (LJ_DUALNUM ? STRSCAN_OPT_TOINT : STRSCAN_OPT_TONUM) | (LJ_HASFFI ? (STRSCAN_OPT_LL|STRSCAN_OPT_IMAG) : 0)); if (LJ_DUALNUM && fmt == STRSCAN_INT) { setitype(tv, LJ_TISNUM); } else if (fmt == STRSCAN_NUM) { /* Already in correct format. */ #if LJ_HASFFI } else if (fmt != STRSCAN_ERROR) { lua_State *L = ls->L; GCcdata *cd; lua_assert(fmt == STRSCAN_I64 || fmt == STRSCAN_U64 || fmt == STRSCAN_IMAG); if (!ctype_ctsG(G(L))) { ptrdiff_t oldtop = savestack(L, L->top); luaopen_ffi(L); /* Load FFI library on-demand. */ L->top = restorestack(L, oldtop); } if (fmt == STRSCAN_IMAG) { cd = lj_cdata_new_(L, CTID_COMPLEX_DOUBLE, 2*sizeof(double)); ((double *)cdataptr(cd))[0] = 0; ((double *)cdataptr(cd))[1] = numV(tv); } else { cd = lj_cdata_new_(L, fmt==STRSCAN_I64 ? CTID_INT64 : CTID_UINT64, 8); *(uint64_t *)cdataptr(cd) = tv->u64; } lj_parse_keepcdata(ls, tv, cd); #endif } else { lua_assert(fmt == STRSCAN_ERROR); lj_lex_error(ls, TK_number, LJ_ERR_XNUMBER); } } /* Skip equal signs for "[=...=[" and "]=...=]" and return their count. */ static int lex_skipeq(LexState *ls) { int count = 0; LexChar s = ls->c; lua_assert(s == '[' || s == ']'); while (lex_savenext(ls) == '=') count++; return (ls->c == s) ? count : (-count) - 1; } /* Parse a long string or long comment (tv set to NULL). */ static void lex_longstring(LexState *ls, TValue *tv, int sep) { lex_savenext(ls); /* Skip second '['. */ if (lex_iseol(ls)) /* Skip initial newline. */ lex_newline(ls); for (;;) { switch (ls->c) { case LEX_EOF: lj_lex_error(ls, TK_eof, tv ? LJ_ERR_XLSTR : LJ_ERR_XLCOM); break; case ']': if (lex_skipeq(ls) == sep) { lex_savenext(ls); /* Skip second ']'. */ goto endloop; } break; case '\n': case '\r': lex_save(ls, '\n'); lex_newline(ls); if (!tv) lj_buf_reset(&ls->sb); /* Don't waste space for comments. */ break; default: lex_savenext(ls); break; } } endloop: if (tv) { GCstr *str = lj_parse_keepstr(ls, sbufB(&ls->sb) + (2 + (MSize)sep), sbuflen(&ls->sb) - 2*(2 + (MSize)sep)); setstrV(ls->L, tv, str); } } /* Parse a string. */ static void lex_string(LexState *ls, TValue *tv) { LexChar delim = ls->c; /* Delimiter is '\'' or '"'. */ lex_savenext(ls); while (ls->c != delim) { switch (ls->c) { case LEX_EOF: lj_lex_error(ls, TK_eof, LJ_ERR_XSTR); continue; case '\n': case '\r': lj_lex_error(ls, TK_string, LJ_ERR_XSTR); continue; case '\\': { LexChar c = lex_next(ls); /* Skip the '\\'. */ switch (c) { case 'a': c = '\a'; break; case 'b': c = '\b'; break; case 'f': c = '\f'; break; case 'n': c = '\n'; break; case 'r': c = '\r'; break; case 't': c = '\t'; break; case 'v': c = '\v'; break; case 'x': /* Hexadecimal escape '\xXX'. */ c = (lex_next(ls) & 15u) << 4; if (!lj_char_isdigit(ls->c)) { if (!lj_char_isxdigit(ls->c)) goto err_xesc; c += 9 << 4; } c += (lex_next(ls) & 15u); if (!lj_char_isdigit(ls->c)) { if (!lj_char_isxdigit(ls->c)) goto err_xesc; c += 9; } break; case 'u': /* Unicode escape '\u{XX...}'. */ if (lex_next(ls) != '{') goto err_xesc; lex_next(ls); c = 0; do { c = (c << 4) | (ls->c & 15u); if (!lj_char_isdigit(ls->c)) { if (!lj_char_isxdigit(ls->c)) goto err_xesc; c += 9; } if (c >= 0x110000) goto err_xesc; /* Out of Unicode range. */ } while (lex_next(ls) != '}'); if (c < 0x800) { if (c < 0x80) break; lex_save(ls, 0xc0 | (c >> 6)); } else { if (c >= 0x10000) { lex_save(ls, 0xf0 | (c >> 18)); lex_save(ls, 0x80 | ((c >> 12) & 0x3f)); } else { if (c >= 0xd800 && c < 0xe000) goto err_xesc; /* No surrogates. */ lex_save(ls, 0xe0 | (c >> 12)); } lex_save(ls, 0x80 | ((c >> 6) & 0x3f)); } c = 0x80 | (c & 0x3f); break; case 'z': /* Skip whitespace. */ lex_next(ls); while (lj_char_isspace(ls->c)) if (lex_iseol(ls)) lex_newline(ls); else lex_next(ls); continue; case '\n': case '\r': lex_save(ls, '\n'); lex_newline(ls); continue; case '\\': case '\"': case '\'': break; case LEX_EOF: continue; default: if (!lj_char_isdigit(c)) goto err_xesc; c -= '0'; /* Decimal escape '\ddd'. */ if (lj_char_isdigit(lex_next(ls))) { c = c*10 + (ls->c - '0'); if (lj_char_isdigit(lex_next(ls))) { c = c*10 + (ls->c - '0'); if (c > 255) { err_xesc: lj_lex_error(ls, TK_string, LJ_ERR_XESC); } lex_next(ls); } } lex_save(ls, c); continue; } lex_save(ls, c); lex_next(ls); continue; } default: lex_savenext(ls); break; } } lex_savenext(ls); /* Skip trailing delimiter. */ setstrV(ls->L, tv, lj_parse_keepstr(ls, sbufB(&ls->sb)+1, sbuflen(&ls->sb)-2)); } /* -- Main lexical scanner ------------------------------------------------ */ /* Get next lexical token. */ static LexToken lex_scan(LexState *ls, TValue *tv) { lj_buf_reset(&ls->sb); for (;;) { if (lj_char_isident(ls->c)) { GCstr *s; if (lj_char_isdigit(ls->c)) { /* Numeric literal. */ lex_number(ls, tv); return TK_number; } /* Identifier or reserved word. */ do { lex_savenext(ls); } while (lj_char_isident(ls->c)); s = lj_parse_keepstr(ls, sbufB(&ls->sb), sbuflen(&ls->sb)); setstrV(ls->L, tv, s); if (s->reserved > 0) /* Reserved word? */ return TK_OFS + s->reserved; return TK_name; } switch (ls->c) { case '\n': case '\r': lex_newline(ls); continue; case ' ': case '\t': case '\v': case '\f': lex_next(ls); continue; case '-': lex_next(ls); if (ls->c != '-') return '-'; lex_next(ls); if (ls->c == '[') { /* Long comment "--[=*[...]=*]". */ int sep = lex_skipeq(ls); lj_buf_reset(&ls->sb); /* `lex_skipeq' may dirty the buffer */ if (sep >= 0) { lex_longstring(ls, NULL, sep); lj_buf_reset(&ls->sb); continue; } } /* Short comment "--.*\n". */ while (!lex_iseol(ls) && ls->c != LEX_EOF) lex_next(ls); continue; case '[': { int sep = lex_skipeq(ls); if (sep >= 0) { lex_longstring(ls, tv, sep); return TK_string; } else if (sep == -1) { return '['; } else { lj_lex_error(ls, TK_string, LJ_ERR_XLDELIM); continue; } } case '=': lex_next(ls); if (ls->c != '=') return '='; else { lex_next(ls); return TK_eq; } case '<': lex_next(ls); if (ls->c != '=') return '<'; else { lex_next(ls); return TK_le; } case '>': lex_next(ls); if (ls->c != '=') return '>'; else { lex_next(ls); return TK_ge; } case '~': lex_next(ls); if (ls->c != '=') return '~'; else { lex_next(ls); return TK_ne; } case ':': lex_next(ls); if (ls->c != ':') return ':'; else { lex_next(ls); return TK_label; } case '"': case '\'': lex_string(ls, tv); return TK_string; case '.': if (lex_savenext(ls) == '.') { lex_next(ls); if (ls->c == '.') { lex_next(ls); return TK_dots; /* ... */ } return TK_concat; /* .. */ } else if (!lj_char_isdigit(ls->c)) { return '.'; } else { lex_number(ls, tv); return TK_number; } case LEX_EOF: return TK_eof; default: { LexChar c = ls->c; lex_next(ls); return c; /* Single-char tokens (+ - / ...). */ } } } } /* -- Lexer API ----------------------------------------------------------- */ /* Setup lexer state. */ int lj_lex_setup(lua_State *L, LexState *ls) { int header = 0; ls->L = L; ls->fs = NULL; ls->pe = ls->p = NULL; ls->vstack = NULL; ls->sizevstack = 0; ls->vtop = 0; ls->bcstack = NULL; ls->sizebcstack = 0; ls->tok = 0; ls->lookahead = TK_eof; /* No look-ahead token. */ ls->linenumber = 1; ls->lastline = 1; lex_next(ls); /* Read-ahead first char. */ if (ls->c == 0xef && ls->p + 2 <= ls->pe && (uint8_t)ls->p[0] == 0xbb && (uint8_t)ls->p[1] == 0xbf) { /* Skip UTF-8 BOM (if buffered). */ ls->p += 2; lex_next(ls); header = 1; } if (ls->c == '#') { /* Skip POSIX #! header line. */ do { lex_next(ls); if (ls->c == LEX_EOF) return 0; } while (!lex_iseol(ls)); lex_newline(ls); header = 1; } if (ls->c == LUA_SIGNATURE[0]) { /* Bytecode dump. */ if (header) { /* ** Loading bytecode with an extra header is disabled for security ** reasons. This may circumvent the usual check for bytecode vs. ** Lua code by looking at the first char. Since this is a potential ** security violation no attempt is made to echo the chunkname either. */ setstrV(L, L->top++, lj_err_str(L, LJ_ERR_BCBAD)); lj_err_throw(L, LUA_ERRSYNTAX); } return 1; } return 0; } /* Cleanup lexer state. */ void lj_lex_cleanup(lua_State *L, LexState *ls) { global_State *g = G(L); lj_mem_freevec(g, ls->bcstack, ls->sizebcstack, BCInsLine); lj_mem_freevec(g, ls->vstack, ls->sizevstack, VarInfo); lj_buf_free(g, &ls->sb); } /* Return next lexical token. */ void lj_lex_next(LexState *ls) { ls->lastline = ls->linenumber; if (LJ_LIKELY(ls->lookahead == TK_eof)) { /* No lookahead token? */ ls->tok = lex_scan(ls, &ls->tokval); /* Get next token. */ } else { /* Otherwise return lookahead token. */ ls->tok = ls->lookahead; ls->lookahead = TK_eof; ls->tokval = ls->lookaheadval; } } /* Look ahead for the next token. */ LexToken lj_lex_lookahead(LexState *ls) { lua_assert(ls->lookahead == TK_eof); ls->lookahead = lex_scan(ls, &ls->lookaheadval); return ls->lookahead; } /* Convert token to string. */ const char *lj_lex_token2str(LexState *ls, LexToken tok) { if (tok > TK_OFS) return tokennames[tok-TK_OFS-1]; else if (!lj_char_iscntrl(tok)) return lj_strfmt_pushf(ls->L, "%c", tok); else return lj_strfmt_pushf(ls->L, "char(%d)", tok); } /* Lexer error. */ void lj_lex_error(LexState *ls, LexToken tok, ErrMsg em, ...) { const char *tokstr; va_list argp; if (tok == 0) { tokstr = NULL; } else if (tok == TK_name || tok == TK_string || tok == TK_number) { lex_save(ls, '\0'); tokstr = sbufB(&ls->sb); } else { tokstr = lj_lex_token2str(ls, tok); } va_start(argp, em); lj_err_lex(ls->L, ls->chunkname, tokstr, ls->linenumber, em, argp); va_end(argp); } /* Initialize strings for reserved words. */ void lj_lex_init(lua_State *L) { uint32_t i; for (i = 0; i < TK_RESERVED; i++) { GCstr *s = lj_str_newz(L, tokennames[i]); fixstring(s); /* Reserved words are never collected. */ s->reserved = (uint8_t)(i+1); } } luajit-2.1.0~beta3+dfsg.orig/src/lj_crecord.c0000644000175100017510000017037013101703334020367 0ustar ondrejondrej/* ** Trace recorder for C data operations. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #define lj_ffrecord_c #define LUA_CORE #include "lj_obj.h" #if LJ_HASJIT && LJ_HASFFI #include "lj_err.h" #include "lj_tab.h" #include "lj_frame.h" #include "lj_ctype.h" #include "lj_cdata.h" #include "lj_cparse.h" #include "lj_cconv.h" #include "lj_carith.h" #include "lj_clib.h" #include "lj_ccall.h" #include "lj_ff.h" #include "lj_ir.h" #include "lj_jit.h" #include "lj_ircall.h" #include "lj_iropt.h" #include "lj_trace.h" #include "lj_record.h" #include "lj_ffrecord.h" #include "lj_snap.h" #include "lj_crecord.h" #include "lj_dispatch.h" #include "lj_strfmt.h" /* Some local macros to save typing. Undef'd at the end. */ #define IR(ref) (&J->cur.ir[(ref)]) /* Pass IR on to next optimization in chain (FOLD). */ #define emitir(ot, a, b) (lj_ir_set(J, (ot), (a), (b)), lj_opt_fold(J)) #define emitconv(a, dt, st, flags) \ emitir(IRT(IR_CONV, (dt)), (a), (st)|((dt) << 5)|(flags)) /* -- C type checks ------------------------------------------------------- */ static GCcdata *argv2cdata(jit_State *J, TRef tr, cTValue *o) { GCcdata *cd; TRef trtypeid; if (!tref_iscdata(tr)) lj_trace_err(J, LJ_TRERR_BADTYPE); cd = cdataV(o); /* Specialize to the CTypeID. */ trtypeid = emitir(IRT(IR_FLOAD, IRT_U16), tr, IRFL_CDATA_CTYPEID); emitir(IRTG(IR_EQ, IRT_INT), trtypeid, lj_ir_kint(J, (int32_t)cd->ctypeid)); return cd; } /* Specialize to the CTypeID held by a cdata constructor. */ static CTypeID crec_constructor(jit_State *J, GCcdata *cd, TRef tr) { CTypeID id; lua_assert(tref_iscdata(tr) && cd->ctypeid == CTID_CTYPEID); id = *(CTypeID *)cdataptr(cd); tr = emitir(IRT(IR_FLOAD, IRT_INT), tr, IRFL_CDATA_INT); emitir(IRTG(IR_EQ, IRT_INT), tr, lj_ir_kint(J, (int32_t)id)); return id; } static CTypeID argv2ctype(jit_State *J, TRef tr, cTValue *o) { if (tref_isstr(tr)) { GCstr *s = strV(o); CPState cp; CTypeID oldtop; /* Specialize to the string containing the C type declaration. */ emitir(IRTG(IR_EQ, IRT_STR), tr, lj_ir_kstr(J, s)); cp.L = J->L; cp.cts = ctype_ctsG(J2G(J)); oldtop = cp.cts->top; cp.srcname = strdata(s); cp.p = strdata(s); cp.param = NULL; cp.mode = CPARSE_MODE_ABSTRACT|CPARSE_MODE_NOIMPLICIT; if (lj_cparse(&cp) || cp.cts->top > oldtop) /* Avoid new struct defs. */ lj_trace_err(J, LJ_TRERR_BADTYPE); return cp.val.id; } else { GCcdata *cd = argv2cdata(J, tr, o); return cd->ctypeid == CTID_CTYPEID ? crec_constructor(J, cd, tr) : cd->ctypeid; } } /* Convert CType to IRType (if possible). */ static IRType crec_ct2irt(CTState *cts, CType *ct) { if (ctype_isenum(ct->info)) ct = ctype_child(cts, ct); if (LJ_LIKELY(ctype_isnum(ct->info))) { if ((ct->info & CTF_FP)) { if (ct->size == sizeof(double)) return IRT_NUM; else if (ct->size == sizeof(float)) return IRT_FLOAT; } else { uint32_t b = lj_fls(ct->size); if (b <= 3) return IRT_I8 + 2*b + ((ct->info & CTF_UNSIGNED) ? 1 : 0); } } else if (ctype_isptr(ct->info)) { return (LJ_64 && ct->size == 8) ? IRT_P64 : IRT_P32; } else if (ctype_iscomplex(ct->info)) { if (ct->size == 2*sizeof(double)) return IRT_NUM; else if (ct->size == 2*sizeof(float)) return IRT_FLOAT; } return IRT_CDATA; } /* -- Optimized memory fill and copy -------------------------------------- */ /* Maximum length and unroll of inlined copy/fill. */ #define CREC_COPY_MAXUNROLL 16 #define CREC_COPY_MAXLEN 128 #define CREC_FILL_MAXUNROLL 16 /* Number of windowed registers used for optimized memory copy. */ #if LJ_TARGET_X86 #define CREC_COPY_REGWIN 2 #elif LJ_TARGET_PPC || LJ_TARGET_MIPS #define CREC_COPY_REGWIN 8 #else #define CREC_COPY_REGWIN 4 #endif /* List of memory offsets for copy/fill. */ typedef struct CRecMemList { CTSize ofs; /* Offset in bytes. */ IRType tp; /* Type of load/store. */ TRef trofs; /* TRef of interned offset. */ TRef trval; /* TRef of load value. */ } CRecMemList; /* Generate copy list for element-wise struct copy. */ static MSize crec_copy_struct(CRecMemList *ml, CTState *cts, CType *ct) { CTypeID fid = ct->sib; MSize mlp = 0; while (fid) { CType *df = ctype_get(cts, fid); fid = df->sib; if (ctype_isfield(df->info)) { CType *cct; IRType tp; if (!gcref(df->name)) continue; /* Ignore unnamed fields. */ cct = ctype_rawchild(cts, df); /* Field type. */ tp = crec_ct2irt(cts, cct); if (tp == IRT_CDATA) return 0; /* NYI: aggregates. */ if (mlp >= CREC_COPY_MAXUNROLL) return 0; ml[mlp].ofs = df->size; ml[mlp].tp = tp; mlp++; if (ctype_iscomplex(cct->info)) { if (mlp >= CREC_COPY_MAXUNROLL) return 0; ml[mlp].ofs = df->size + (cct->size >> 1); ml[mlp].tp = tp; mlp++; } } else if (!ctype_isconstval(df->info)) { /* NYI: bitfields and sub-structures. */ return 0; } } return mlp; } /* Generate unrolled copy list, from highest to lowest step size/alignment. */ static MSize crec_copy_unroll(CRecMemList *ml, CTSize len, CTSize step, IRType tp) { CTSize ofs = 0; MSize mlp = 0; if (tp == IRT_CDATA) tp = IRT_U8 + 2*lj_fls(step); do { while (ofs + step <= len) { if (mlp >= CREC_COPY_MAXUNROLL) return 0; ml[mlp].ofs = ofs; ml[mlp].tp = tp; mlp++; ofs += step; } step >>= 1; tp -= 2; } while (ofs < len); return mlp; } /* ** Emit copy list with windowed loads/stores. ** LJ_TARGET_UNALIGNED: may emit unaligned loads/stores (not marked as such). */ static void crec_copy_emit(jit_State *J, CRecMemList *ml, MSize mlp, TRef trdst, TRef trsrc) { MSize i, j, rwin = 0; for (i = 0, j = 0; i < mlp; ) { TRef trofs = lj_ir_kintp(J, ml[i].ofs); TRef trsptr = emitir(IRT(IR_ADD, IRT_PTR), trsrc, trofs); ml[i].trval = emitir(IRT(IR_XLOAD, ml[i].tp), trsptr, 0); ml[i].trofs = trofs; i++; rwin += (LJ_SOFTFP && ml[i].tp == IRT_NUM) ? 2 : 1; if (rwin >= CREC_COPY_REGWIN || i >= mlp) { /* Flush buffered stores. */ rwin = 0; for ( ; j < i; j++) { TRef trdptr = emitir(IRT(IR_ADD, IRT_PTR), trdst, ml[j].trofs); emitir(IRT(IR_XSTORE, ml[j].tp), trdptr, ml[j].trval); } } } } /* Optimized memory copy. */ static void crec_copy(jit_State *J, TRef trdst, TRef trsrc, TRef trlen, CType *ct) { if (tref_isk(trlen)) { /* Length must be constant. */ CRecMemList ml[CREC_COPY_MAXUNROLL]; MSize mlp = 0; CTSize step = 1, len = (CTSize)IR(tref_ref(trlen))->i; IRType tp = IRT_CDATA; int needxbar = 0; if (len == 0) return; /* Shortcut. */ if (len > CREC_COPY_MAXLEN) goto fallback; if (ct) { CTState *cts = ctype_ctsG(J2G(J)); lua_assert(ctype_isarray(ct->info) || ctype_isstruct(ct->info)); if (ctype_isarray(ct->info)) { CType *cct = ctype_rawchild(cts, ct); tp = crec_ct2irt(cts, cct); if (tp == IRT_CDATA) goto rawcopy; step = lj_ir_type_size[tp]; lua_assert((len & (step-1)) == 0); } else if ((ct->info & CTF_UNION)) { step = (1u << ctype_align(ct->info)); goto rawcopy; } else { mlp = crec_copy_struct(ml, cts, ct); goto emitcopy; } } else { rawcopy: needxbar = 1; if (LJ_TARGET_UNALIGNED || step >= CTSIZE_PTR) step = CTSIZE_PTR; } mlp = crec_copy_unroll(ml, len, step, tp); emitcopy: if (mlp) { crec_copy_emit(J, ml, mlp, trdst, trsrc); if (needxbar) emitir(IRT(IR_XBAR, IRT_NIL), 0, 0); return; } } fallback: /* Call memcpy. Always needs a barrier to disable alias analysis. */ lj_ir_call(J, IRCALL_memcpy, trdst, trsrc, trlen); emitir(IRT(IR_XBAR, IRT_NIL), 0, 0); } /* Generate unrolled fill list, from highest to lowest step size/alignment. */ static MSize crec_fill_unroll(CRecMemList *ml, CTSize len, CTSize step) { CTSize ofs = 0; MSize mlp = 0; IRType tp = IRT_U8 + 2*lj_fls(step); do { while (ofs + step <= len) { if (mlp >= CREC_COPY_MAXUNROLL) return 0; ml[mlp].ofs = ofs; ml[mlp].tp = tp; mlp++; ofs += step; } step >>= 1; tp -= 2; } while (ofs < len); return mlp; } /* ** Emit stores for fill list. ** LJ_TARGET_UNALIGNED: may emit unaligned stores (not marked as such). */ static void crec_fill_emit(jit_State *J, CRecMemList *ml, MSize mlp, TRef trdst, TRef trfill) { MSize i; for (i = 0; i < mlp; i++) { TRef trofs = lj_ir_kintp(J, ml[i].ofs); TRef trdptr = emitir(IRT(IR_ADD, IRT_PTR), trdst, trofs); emitir(IRT(IR_XSTORE, ml[i].tp), trdptr, trfill); } } /* Optimized memory fill. */ static void crec_fill(jit_State *J, TRef trdst, TRef trlen, TRef trfill, CTSize step) { if (tref_isk(trlen)) { /* Length must be constant. */ CRecMemList ml[CREC_FILL_MAXUNROLL]; MSize mlp; CTSize len = (CTSize)IR(tref_ref(trlen))->i; if (len == 0) return; /* Shortcut. */ if (LJ_TARGET_UNALIGNED || step >= CTSIZE_PTR) step = CTSIZE_PTR; if (step * CREC_FILL_MAXUNROLL < len) goto fallback; mlp = crec_fill_unroll(ml, len, step); if (!mlp) goto fallback; if (tref_isk(trfill) || ml[0].tp != IRT_U8) trfill = emitconv(trfill, IRT_INT, IRT_U8, 0); if (ml[0].tp != IRT_U8) { /* Scatter U8 to U16/U32/U64. */ if (CTSIZE_PTR == 8 && ml[0].tp == IRT_U64) { if (tref_isk(trfill)) /* Pointless on x64 with zero-extended regs. */ trfill = emitconv(trfill, IRT_U64, IRT_U32, 0); trfill = emitir(IRT(IR_MUL, IRT_U64), trfill, lj_ir_kint64(J, U64x(01010101,01010101))); } else { trfill = emitir(IRTI(IR_MUL), trfill, lj_ir_kint(J, ml[0].tp == IRT_U16 ? 0x0101 : 0x01010101)); } } crec_fill_emit(J, ml, mlp, trdst, trfill); } else { fallback: /* Call memset. Always needs a barrier to disable alias analysis. */ lj_ir_call(J, IRCALL_memset, trdst, trfill, trlen); /* Note: arg order! */ } emitir(IRT(IR_XBAR, IRT_NIL), 0, 0); } /* -- Convert C type to C type -------------------------------------------- */ /* ** This code mirrors the code in lj_cconv.c. It performs the same steps ** for the trace recorder that lj_cconv.c does for the interpreter. ** ** One major difference is that we can get away with much fewer checks ** here. E.g. checks for casts, constness or correct types can often be ** omitted, even if they might fail. The interpreter subsequently throws ** an error, which aborts the trace. ** ** All operations are specialized to their C types, so the on-trace ** outcome must be the same as the outcome in the interpreter. If the ** interpreter doesn't throw an error, then the trace is correct, too. ** Care must be taken not to generate invalid (temporary) IR or to ** trigger asserts. */ /* Determine whether a passed number or cdata number is non-zero. */ static int crec_isnonzero(CType *s, void *p) { if (p == (void *)0) return 0; if (p == (void *)1) return 1; if ((s->info & CTF_FP)) { if (s->size == sizeof(float)) return (*(float *)p != 0); else return (*(double *)p != 0); } else { if (s->size == 1) return (*(uint8_t *)p != 0); else if (s->size == 2) return (*(uint16_t *)p != 0); else if (s->size == 4) return (*(uint32_t *)p != 0); else return (*(uint64_t *)p != 0); } } static TRef crec_ct_ct(jit_State *J, CType *d, CType *s, TRef dp, TRef sp, void *svisnz) { IRType dt = crec_ct2irt(ctype_ctsG(J2G(J)), d); IRType st = crec_ct2irt(ctype_ctsG(J2G(J)), s); CTSize dsize = d->size, ssize = s->size; CTInfo dinfo = d->info, sinfo = s->info; if (ctype_type(dinfo) > CT_MAYCONVERT || ctype_type(sinfo) > CT_MAYCONVERT) goto err_conv; /* ** Note: Unlike lj_cconv_ct_ct(), sp holds the _value_ of pointers and ** numbers up to 8 bytes. Otherwise sp holds a pointer. */ switch (cconv_idx2(dinfo, sinfo)) { /* Destination is a bool. */ case CCX(B, B): goto xstore; /* Source operand is already normalized. */ case CCX(B, I): case CCX(B, F): if (st != IRT_CDATA) { /* Specialize to the result of a comparison against 0. */ TRef zero = (st == IRT_NUM || st == IRT_FLOAT) ? lj_ir_knum(J, 0) : (st == IRT_I64 || st == IRT_U64) ? lj_ir_kint64(J, 0) : lj_ir_kint(J, 0); int isnz = crec_isnonzero(s, svisnz); emitir(IRTG(isnz ? IR_NE : IR_EQ, st), sp, zero); sp = lj_ir_kint(J, isnz); goto xstore; } goto err_nyi; /* Destination is an integer. */ case CCX(I, B): case CCX(I, I): conv_I_I: if (dt == IRT_CDATA || st == IRT_CDATA) goto err_nyi; /* Extend 32 to 64 bit integer. */ if (dsize == 8 && ssize < 8 && !(LJ_64 && (sinfo & CTF_UNSIGNED))) sp = emitconv(sp, dt, ssize < 4 ? IRT_INT : st, (sinfo & CTF_UNSIGNED) ? 0 : IRCONV_SEXT); else if (dsize < 8 && ssize == 8) /* Truncate from 64 bit integer. */ sp = emitconv(sp, dsize < 4 ? IRT_INT : dt, st, 0); else if (st == IRT_INT) sp = lj_opt_narrow_toint(J, sp); xstore: if (dt == IRT_I64 || dt == IRT_U64) lj_needsplit(J); if (dp == 0) return sp; emitir(IRT(IR_XSTORE, dt), dp, sp); break; case CCX(I, C): sp = emitir(IRT(IR_XLOAD, st), sp, 0); /* Load re. */ /* fallthrough */ case CCX(I, F): if (dt == IRT_CDATA || st == IRT_CDATA) goto err_nyi; sp = emitconv(sp, dsize < 4 ? IRT_INT : dt, st, IRCONV_ANY); goto xstore; case CCX(I, P): case CCX(I, A): sinfo = CTINFO(CT_NUM, CTF_UNSIGNED); ssize = CTSIZE_PTR; st = IRT_UINTP; if (((dsize ^ ssize) & 8) == 0) { /* Must insert no-op type conversion. */ sp = emitconv(sp, dsize < 4 ? IRT_INT : dt, IRT_PTR, 0); goto xstore; } goto conv_I_I; /* Destination is a floating-point number. */ case CCX(F, B): case CCX(F, I): conv_F_I: if (dt == IRT_CDATA || st == IRT_CDATA) goto err_nyi; sp = emitconv(sp, dt, ssize < 4 ? IRT_INT : st, 0); goto xstore; case CCX(F, C): sp = emitir(IRT(IR_XLOAD, st), sp, 0); /* Load re. */ /* fallthrough */ case CCX(F, F): conv_F_F: if (dt == IRT_CDATA || st == IRT_CDATA) goto err_nyi; if (dt != st) sp = emitconv(sp, dt, st, 0); goto xstore; /* Destination is a complex number. */ case CCX(C, I): case CCX(C, F): { /* Clear im. */ TRef ptr = emitir(IRT(IR_ADD, IRT_PTR), dp, lj_ir_kintp(J, (dsize >> 1))); emitir(IRT(IR_XSTORE, dt), ptr, lj_ir_knum(J, 0)); } /* Convert to re. */ if ((sinfo & CTF_FP)) goto conv_F_F; else goto conv_F_I; case CCX(C, C): if (dt == IRT_CDATA || st == IRT_CDATA) goto err_nyi; { TRef re, im, ptr; re = emitir(IRT(IR_XLOAD, st), sp, 0); ptr = emitir(IRT(IR_ADD, IRT_PTR), sp, lj_ir_kintp(J, (ssize >> 1))); im = emitir(IRT(IR_XLOAD, st), ptr, 0); if (dt != st) { re = emitconv(re, dt, st, 0); im = emitconv(im, dt, st, 0); } emitir(IRT(IR_XSTORE, dt), dp, re); ptr = emitir(IRT(IR_ADD, IRT_PTR), dp, lj_ir_kintp(J, (dsize >> 1))); emitir(IRT(IR_XSTORE, dt), ptr, im); } break; /* Destination is a vector. */ case CCX(V, I): case CCX(V, F): case CCX(V, C): case CCX(V, V): goto err_nyi; /* Destination is a pointer. */ case CCX(P, P): case CCX(P, A): case CCX(P, S): /* There are only 32 bit pointers/addresses on 32 bit machines. ** Also ok on x64, since all 32 bit ops clear the upper part of the reg. */ goto xstore; case CCX(P, I): if (st == IRT_CDATA) goto err_nyi; if (!LJ_64 && ssize == 8) /* Truncate from 64 bit integer. */ sp = emitconv(sp, IRT_U32, st, 0); goto xstore; case CCX(P, F): if (st == IRT_CDATA) goto err_nyi; /* The signed conversion is cheaper. x64 really has 47 bit pointers. */ sp = emitconv(sp, (LJ_64 && dsize == 8) ? IRT_I64 : IRT_U32, st, IRCONV_ANY); goto xstore; /* Destination is an array. */ case CCX(A, A): /* Destination is a struct/union. */ case CCX(S, S): if (dp == 0) goto err_conv; crec_copy(J, dp, sp, lj_ir_kint(J, dsize), d); break; default: err_conv: err_nyi: lj_trace_err(J, LJ_TRERR_NYICONV); break; } return 0; } /* -- Convert C type to TValue (load) ------------------------------------- */ static TRef crec_tv_ct(jit_State *J, CType *s, CTypeID sid, TRef sp) { CTState *cts = ctype_ctsG(J2G(J)); IRType t = crec_ct2irt(cts, s); CTInfo sinfo = s->info; if (ctype_isnum(sinfo)) { TRef tr; if (t == IRT_CDATA) goto err_nyi; /* NYI: copyval of >64 bit integers. */ tr = emitir(IRT(IR_XLOAD, t), sp, 0); if (t == IRT_FLOAT || t == IRT_U32) { /* Keep uint32_t/float as numbers. */ return emitconv(tr, IRT_NUM, t, 0); } else if (t == IRT_I64 || t == IRT_U64) { /* Box 64 bit integer. */ sp = tr; lj_needsplit(J); } else if ((sinfo & CTF_BOOL)) { /* Assume not equal to zero. Fixup and emit pending guard later. */ lj_ir_set(J, IRTGI(IR_NE), tr, lj_ir_kint(J, 0)); J->postproc = LJ_POST_FIXGUARD; return TREF_TRUE; } else { return tr; } } else if (ctype_isptr(sinfo) || ctype_isenum(sinfo)) { sp = emitir(IRT(IR_XLOAD, t), sp, 0); /* Box pointers and enums. */ } else if (ctype_isrefarray(sinfo) || ctype_isstruct(sinfo)) { cts->L = J->L; sid = lj_ctype_intern(cts, CTINFO_REF(sid), CTSIZE_PTR); /* Create ref. */ } else if (ctype_iscomplex(sinfo)) { /* Unbox/box complex. */ ptrdiff_t esz = (ptrdiff_t)(s->size >> 1); TRef ptr, tr1, tr2, dp; dp = emitir(IRTG(IR_CNEW, IRT_CDATA), lj_ir_kint(J, sid), TREF_NIL); tr1 = emitir(IRT(IR_XLOAD, t), sp, 0); ptr = emitir(IRT(IR_ADD, IRT_PTR), sp, lj_ir_kintp(J, esz)); tr2 = emitir(IRT(IR_XLOAD, t), ptr, 0); ptr = emitir(IRT(IR_ADD, IRT_PTR), dp, lj_ir_kintp(J, sizeof(GCcdata))); emitir(IRT(IR_XSTORE, t), ptr, tr1); ptr = emitir(IRT(IR_ADD, IRT_PTR), dp, lj_ir_kintp(J, sizeof(GCcdata)+esz)); emitir(IRT(IR_XSTORE, t), ptr, tr2); return dp; } else { /* NYI: copyval of vectors. */ err_nyi: lj_trace_err(J, LJ_TRERR_NYICONV); } /* Box pointer, ref, enum or 64 bit integer. */ return emitir(IRTG(IR_CNEWI, IRT_CDATA), lj_ir_kint(J, sid), sp); } /* -- Convert TValue to C type (store) ------------------------------------ */ static TRef crec_ct_tv(jit_State *J, CType *d, TRef dp, TRef sp, cTValue *sval) { CTState *cts = ctype_ctsG(J2G(J)); CTypeID sid = CTID_P_VOID; void *svisnz = 0; CType *s; if (LJ_LIKELY(tref_isinteger(sp))) { sid = CTID_INT32; svisnz = (void *)(intptr_t)(tvisint(sval)?(intV(sval)!=0):!tviszero(sval)); } else if (tref_isnum(sp)) { sid = CTID_DOUBLE; svisnz = (void *)(intptr_t)(tvisint(sval)?(intV(sval)!=0):!tviszero(sval)); } else if (tref_isbool(sp)) { sp = lj_ir_kint(J, tref_istrue(sp) ? 1 : 0); sid = CTID_BOOL; } else if (tref_isnil(sp)) { sp = lj_ir_kptr(J, NULL); } else if (tref_isudata(sp)) { GCudata *ud = udataV(sval); if (ud->udtype == UDTYPE_IO_FILE) { TRef tr = emitir(IRT(IR_FLOAD, IRT_U8), sp, IRFL_UDATA_UDTYPE); emitir(IRTGI(IR_EQ), tr, lj_ir_kint(J, UDTYPE_IO_FILE)); sp = emitir(IRT(IR_FLOAD, IRT_PTR), sp, IRFL_UDATA_FILE); } else { sp = emitir(IRT(IR_ADD, IRT_PTR), sp, lj_ir_kintp(J, sizeof(GCudata))); } } else if (tref_isstr(sp)) { if (ctype_isenum(d->info)) { /* Match string against enum constant. */ GCstr *str = strV(sval); CTSize ofs; CType *cct = lj_ctype_getfield(cts, d, str, &ofs); /* Specialize to the name of the enum constant. */ emitir(IRTG(IR_EQ, IRT_STR), sp, lj_ir_kstr(J, str)); if (cct && ctype_isconstval(cct->info)) { lua_assert(ctype_child(cts, cct)->size == 4); svisnz = (void *)(intptr_t)(ofs != 0); sp = lj_ir_kint(J, (int32_t)ofs); sid = ctype_cid(cct->info); } /* else: interpreter will throw. */ } else if (ctype_isrefarray(d->info)) { /* Copy string to array. */ lj_trace_err(J, LJ_TRERR_BADTYPE); /* NYI */ } else { /* Otherwise pass the string data as a const char[]. */ /* Don't use STRREF. It folds with SNEW, which loses the trailing NUL. */ sp = emitir(IRT(IR_ADD, IRT_PTR), sp, lj_ir_kintp(J, sizeof(GCstr))); sid = CTID_A_CCHAR; } } else if (tref_islightud(sp)) { #if LJ_64 sp = emitir(IRT(IR_BAND, IRT_P64), sp, lj_ir_kint64(J, U64x(00007fff,ffffffff))); #endif } else { /* NYI: tref_istab(sp). */ IRType t; sid = argv2cdata(J, sp, sval)->ctypeid; s = ctype_raw(cts, sid); svisnz = cdataptr(cdataV(sval)); if (ctype_isfunc(s->info)) { sid = lj_ctype_intern(cts, CTINFO(CT_PTR, CTALIGN_PTR|sid), CTSIZE_PTR); s = ctype_get(cts, sid); t = IRT_PTR; } else { t = crec_ct2irt(cts, s); } if (ctype_isptr(s->info)) { sp = emitir(IRT(IR_FLOAD, t), sp, IRFL_CDATA_PTR); if (ctype_isref(s->info)) { svisnz = *(void **)svisnz; s = ctype_rawchild(cts, s); if (ctype_isenum(s->info)) s = ctype_child(cts, s); t = crec_ct2irt(cts, s); } else { goto doconv; } } else if (t == IRT_I64 || t == IRT_U64) { sp = emitir(IRT(IR_FLOAD, t), sp, IRFL_CDATA_INT64); lj_needsplit(J); goto doconv; } else if (t == IRT_INT || t == IRT_U32) { if (ctype_isenum(s->info)) s = ctype_child(cts, s); sp = emitir(IRT(IR_FLOAD, t), sp, IRFL_CDATA_INT); goto doconv; } else { sp = emitir(IRT(IR_ADD, IRT_PTR), sp, lj_ir_kintp(J, sizeof(GCcdata))); } if (ctype_isnum(s->info) && t != IRT_CDATA) sp = emitir(IRT(IR_XLOAD, t), sp, 0); /* Load number value. */ goto doconv; } s = ctype_get(cts, sid); doconv: if (ctype_isenum(d->info)) d = ctype_child(cts, d); return crec_ct_ct(J, d, s, dp, sp, svisnz); } /* -- C data metamethods -------------------------------------------------- */ /* This would be rather difficult in FOLD, so do it here: ** (base+k)+(idx*sz)+ofs ==> (base+idx*sz)+(ofs+k) ** (base+(idx+k)*sz)+ofs ==> (base+idx*sz)+(ofs+k*sz) */ static TRef crec_reassoc_ofs(jit_State *J, TRef tr, ptrdiff_t *ofsp, MSize sz) { IRIns *ir = IR(tref_ref(tr)); if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD) && irref_isk(ir->op2) && (ir->o == IR_ADD || ir->o == IR_ADDOV || ir->o == IR_SUBOV)) { IRIns *irk = IR(ir->op2); ptrdiff_t k; if (LJ_64 && irk->o == IR_KINT64) k = (ptrdiff_t)ir_kint64(irk)->u64 * sz; else k = (ptrdiff_t)irk->i * sz; if (ir->o == IR_SUBOV) *ofsp -= k; else *ofsp += k; tr = ir->op1; /* Not a TRef, but the caller doesn't care. */ } return tr; } /* Tailcall to function. */ static void crec_tailcall(jit_State *J, RecordFFData *rd, cTValue *tv) { TRef kfunc = lj_ir_kfunc(J, funcV(tv)); #if LJ_FR2 J->base[-2] = kfunc; J->base[-1] = TREF_FRAME; #else J->base[-1] = kfunc | TREF_FRAME; #endif rd->nres = -1; /* Pending tailcall. */ } /* Record ctype __index/__newindex metamethods. */ static void crec_index_meta(jit_State *J, CTState *cts, CType *ct, RecordFFData *rd) { CTypeID id = ctype_typeid(cts, ct); cTValue *tv = lj_ctype_meta(cts, id, rd->data ? MM_newindex : MM_index); if (!tv) lj_trace_err(J, LJ_TRERR_BADTYPE); if (tvisfunc(tv)) { crec_tailcall(J, rd, tv); } else if (rd->data == 0 && tvistab(tv) && tref_isstr(J->base[1])) { /* Specialize to result of __index lookup. */ cTValue *o = lj_tab_get(J->L, tabV(tv), &rd->argv[1]); J->base[0] = lj_record_constify(J, o); if (!J->base[0]) lj_trace_err(J, LJ_TRERR_BADTYPE); /* Always specialize to the key. */ emitir(IRTG(IR_EQ, IRT_STR), J->base[1], lj_ir_kstr(J, strV(&rd->argv[1]))); } else { /* NYI: resolving of non-function metamethods. */ /* NYI: non-string keys for __index table. */ /* NYI: stores to __newindex table. */ lj_trace_err(J, LJ_TRERR_BADTYPE); } } /* Record bitfield load/store. */ static void crec_index_bf(jit_State *J, RecordFFData *rd, TRef ptr, CTInfo info) { IRType t = IRT_I8 + 2*lj_fls(ctype_bitcsz(info)) + ((info&CTF_UNSIGNED)?1:0); TRef tr = emitir(IRT(IR_XLOAD, t), ptr, 0); CTSize pos = ctype_bitpos(info), bsz = ctype_bitbsz(info), shift = 32 - bsz; lua_assert(t <= IRT_U32); /* NYI: 64 bit bitfields. */ if (rd->data == 0) { /* __index metamethod. */ if ((info & CTF_BOOL)) { tr = emitir(IRTI(IR_BAND), tr, lj_ir_kint(J, (int32_t)((1u << pos)))); /* Assume not equal to zero. Fixup and emit pending guard later. */ lj_ir_set(J, IRTGI(IR_NE), tr, lj_ir_kint(J, 0)); J->postproc = LJ_POST_FIXGUARD; tr = TREF_TRUE; } else if (!(info & CTF_UNSIGNED)) { tr = emitir(IRTI(IR_BSHL), tr, lj_ir_kint(J, shift - pos)); tr = emitir(IRTI(IR_BSAR), tr, lj_ir_kint(J, shift)); } else { lua_assert(bsz < 32); /* Full-size fields cannot end up here. */ tr = emitir(IRTI(IR_BSHR), tr, lj_ir_kint(J, pos)); tr = emitir(IRTI(IR_BAND), tr, lj_ir_kint(J, (int32_t)((1u << bsz)-1))); /* We can omit the U32 to NUM conversion, since bsz < 32. */ } J->base[0] = tr; } else { /* __newindex metamethod. */ CTState *cts = ctype_ctsG(J2G(J)); CType *ct = ctype_get(cts, (info & CTF_BOOL) ? CTID_BOOL : (info & CTF_UNSIGNED) ? CTID_UINT32 : CTID_INT32); int32_t mask = (int32_t)(((1u << bsz)-1) << pos); TRef sp = crec_ct_tv(J, ct, 0, J->base[2], &rd->argv[2]); sp = emitir(IRTI(IR_BSHL), sp, lj_ir_kint(J, pos)); /* Use of the target type avoids forwarding conversions. */ sp = emitir(IRT(IR_BAND, t), sp, lj_ir_kint(J, mask)); tr = emitir(IRT(IR_BAND, t), tr, lj_ir_kint(J, (int32_t)~mask)); tr = emitir(IRT(IR_BOR, t), tr, sp); emitir(IRT(IR_XSTORE, t), ptr, tr); rd->nres = 0; J->needsnap = 1; } } void LJ_FASTCALL recff_cdata_index(jit_State *J, RecordFFData *rd) { TRef idx, ptr = J->base[0]; ptrdiff_t ofs = sizeof(GCcdata); GCcdata *cd = argv2cdata(J, ptr, &rd->argv[0]); CTState *cts = ctype_ctsG(J2G(J)); CType *ct = ctype_raw(cts, cd->ctypeid); CTypeID sid = 0; /* Resolve pointer or reference for cdata object. */ if (ctype_isptr(ct->info)) { IRType t = (LJ_64 && ct->size == 8) ? IRT_P64 : IRT_P32; if (ctype_isref(ct->info)) ct = ctype_rawchild(cts, ct); ptr = emitir(IRT(IR_FLOAD, t), ptr, IRFL_CDATA_PTR); ofs = 0; ptr = crec_reassoc_ofs(J, ptr, &ofs, 1); } again: idx = J->base[1]; if (tref_isnumber(idx)) { idx = lj_opt_narrow_cindex(J, idx); if (ctype_ispointer(ct->info)) { CTSize sz; integer_key: if ((ct->info & CTF_COMPLEX)) idx = emitir(IRT(IR_BAND, IRT_INTP), idx, lj_ir_kintp(J, 1)); sz = lj_ctype_size(cts, (sid = ctype_cid(ct->info))); idx = crec_reassoc_ofs(J, idx, &ofs, sz); #if LJ_TARGET_ARM || LJ_TARGET_PPC /* Hoist base add to allow fusion of index/shift into operands. */ if (LJ_LIKELY(J->flags & JIT_F_OPT_LOOP) && ofs #if LJ_TARGET_ARM && (sz == 1 || sz == 4) #endif ) { ptr = emitir(IRT(IR_ADD, IRT_PTR), ptr, lj_ir_kintp(J, ofs)); ofs = 0; } #endif idx = emitir(IRT(IR_MUL, IRT_INTP), idx, lj_ir_kintp(J, sz)); ptr = emitir(IRT(IR_ADD, IRT_PTR), idx, ptr); } } else if (tref_iscdata(idx)) { GCcdata *cdk = cdataV(&rd->argv[1]); CType *ctk = ctype_raw(cts, cdk->ctypeid); IRType t = crec_ct2irt(cts, ctk); if (ctype_ispointer(ct->info) && t >= IRT_I8 && t <= IRT_U64) { if (ctk->size == 8) { idx = emitir(IRT(IR_FLOAD, t), idx, IRFL_CDATA_INT64); } else if (ctk->size == 4) { idx = emitir(IRT(IR_FLOAD, t), idx, IRFL_CDATA_INT); } else { idx = emitir(IRT(IR_ADD, IRT_PTR), idx, lj_ir_kintp(J, sizeof(GCcdata))); idx = emitir(IRT(IR_XLOAD, t), idx, 0); } if (LJ_64 && ctk->size < sizeof(intptr_t) && !(ctk->info & CTF_UNSIGNED)) idx = emitconv(idx, IRT_INTP, IRT_INT, IRCONV_SEXT); if (!LJ_64 && ctk->size > sizeof(intptr_t)) { idx = emitconv(idx, IRT_INTP, t, 0); lj_needsplit(J); } goto integer_key; } } else if (tref_isstr(idx)) { GCstr *name = strV(&rd->argv[1]); if (cd && cd->ctypeid == CTID_CTYPEID) ct = ctype_raw(cts, crec_constructor(J, cd, ptr)); if (ctype_isstruct(ct->info)) { CTSize fofs; CType *fct; fct = lj_ctype_getfield(cts, ct, name, &fofs); if (fct) { ofs += (ptrdiff_t)fofs; /* Always specialize to the field name. */ emitir(IRTG(IR_EQ, IRT_STR), idx, lj_ir_kstr(J, name)); if (ctype_isconstval(fct->info)) { if (fct->size >= 0x80000000u && (ctype_child(cts, fct)->info & CTF_UNSIGNED)) { J->base[0] = lj_ir_knum(J, (lua_Number)(uint32_t)fct->size); return; } J->base[0] = lj_ir_kint(J, (int32_t)fct->size); return; /* Interpreter will throw for newindex. */ } else if (ctype_isbitfield(fct->info)) { if (ofs) ptr = emitir(IRT(IR_ADD, IRT_PTR), ptr, lj_ir_kintp(J, ofs)); crec_index_bf(J, rd, ptr, fct->info); return; } else { lua_assert(ctype_isfield(fct->info)); sid = ctype_cid(fct->info); } } } else if (ctype_iscomplex(ct->info)) { if (name->len == 2 && ((strdata(name)[0] == 'r' && strdata(name)[1] == 'e') || (strdata(name)[0] == 'i' && strdata(name)[1] == 'm'))) { /* Always specialize to the field name. */ emitir(IRTG(IR_EQ, IRT_STR), idx, lj_ir_kstr(J, name)); if (strdata(name)[0] == 'i') ofs += (ct->size >> 1); sid = ctype_cid(ct->info); } } } if (!sid) { if (ctype_isptr(ct->info)) { /* Automatically perform '->'. */ CType *cct = ctype_rawchild(cts, ct); if (ctype_isstruct(cct->info)) { ct = cct; cd = NULL; if (tref_isstr(idx)) goto again; } } crec_index_meta(J, cts, ct, rd); return; } if (ofs) ptr = emitir(IRT(IR_ADD, IRT_PTR), ptr, lj_ir_kintp(J, ofs)); /* Resolve reference for field. */ ct = ctype_get(cts, sid); if (ctype_isref(ct->info)) { ptr = emitir(IRT(IR_XLOAD, IRT_PTR), ptr, 0); sid = ctype_cid(ct->info); ct = ctype_get(cts, sid); } while (ctype_isattrib(ct->info)) ct = ctype_child(cts, ct); /* Skip attributes. */ if (rd->data == 0) { /* __index metamethod. */ J->base[0] = crec_tv_ct(J, ct, sid, ptr); } else { /* __newindex metamethod. */ rd->nres = 0; J->needsnap = 1; crec_ct_tv(J, ct, ptr, J->base[2], &rd->argv[2]); } } /* Record setting a finalizer. */ static void crec_finalizer(jit_State *J, TRef trcd, TRef trfin, cTValue *fin) { if (tvisgcv(fin)) { if (!trfin) trfin = lj_ir_kptr(J, gcval(fin)); } else if (tvisnil(fin)) { trfin = lj_ir_kptr(J, NULL); } else { lj_trace_err(J, LJ_TRERR_BADTYPE); } lj_ir_call(J, IRCALL_lj_cdata_setfin, trcd, trfin, lj_ir_kint(J, (int32_t)itype(fin))); J->needsnap = 1; } /* Record cdata allocation. */ static void crec_alloc(jit_State *J, RecordFFData *rd, CTypeID id) { CTState *cts = ctype_ctsG(J2G(J)); CTSize sz; CTInfo info = lj_ctype_info(cts, id, &sz); CType *d = ctype_raw(cts, id); TRef trcd, trid = lj_ir_kint(J, id); cTValue *fin; /* Use special instruction to box pointer or 32/64 bit integer. */ if (ctype_isptr(info) || (ctype_isinteger(info) && (sz == 4 || sz == 8))) { TRef sp = J->base[1] ? crec_ct_tv(J, d, 0, J->base[1], &rd->argv[1]) : ctype_isptr(info) ? lj_ir_kptr(J, NULL) : sz == 4 ? lj_ir_kint(J, 0) : (lj_needsplit(J), lj_ir_kint64(J, 0)); J->base[0] = emitir(IRTG(IR_CNEWI, IRT_CDATA), trid, sp); return; } else { TRef trsz = TREF_NIL; if ((info & CTF_VLA)) { /* Calculate VLA/VLS size at runtime. */ CTSize sz0, sz1; if (!J->base[1] || J->base[2]) lj_trace_err(J, LJ_TRERR_NYICONV); /* NYI: init VLA/VLS. */ trsz = crec_ct_tv(J, ctype_get(cts, CTID_INT32), 0, J->base[1], &rd->argv[1]); sz0 = lj_ctype_vlsize(cts, d, 0); sz1 = lj_ctype_vlsize(cts, d, 1); trsz = emitir(IRTGI(IR_MULOV), trsz, lj_ir_kint(J, (int32_t)(sz1-sz0))); trsz = emitir(IRTGI(IR_ADDOV), trsz, lj_ir_kint(J, (int32_t)sz0)); J->base[1] = 0; /* Simplify logic below. */ } else if (ctype_align(info) > CT_MEMALIGN) { trsz = lj_ir_kint(J, sz); } trcd = emitir(IRTG(IR_CNEW, IRT_CDATA), trid, trsz); if (sz > 128 || (info & CTF_VLA)) { TRef dp; CTSize align; special: /* Only handle bulk zero-fill for large/VLA/VLS types. */ if (J->base[1]) lj_trace_err(J, LJ_TRERR_NYICONV); /* NYI: init large/VLA/VLS types. */ dp = emitir(IRT(IR_ADD, IRT_PTR), trcd, lj_ir_kintp(J, sizeof(GCcdata))); if (trsz == TREF_NIL) trsz = lj_ir_kint(J, sz); align = ctype_align(info); if (align < CT_MEMALIGN) align = CT_MEMALIGN; crec_fill(J, dp, trsz, lj_ir_kint(J, 0), (1u << align)); } else if (J->base[1] && !J->base[2] && !lj_cconv_multi_init(cts, d, &rd->argv[1])) { goto single_init; } else if (ctype_isarray(d->info)) { CType *dc = ctype_rawchild(cts, d); /* Array element type. */ CTSize ofs, esize = dc->size; TRef sp = 0; TValue tv; TValue *sval = &tv; MSize i; tv.u64 = 0; if (!(ctype_isnum(dc->info) || ctype_isptr(dc->info)) || esize * CREC_FILL_MAXUNROLL < sz) goto special; for (i = 1, ofs = 0; ofs < sz; ofs += esize) { TRef dp = emitir(IRT(IR_ADD, IRT_PTR), trcd, lj_ir_kintp(J, ofs + sizeof(GCcdata))); if (J->base[i]) { sp = J->base[i]; sval = &rd->argv[i]; i++; } else if (i != 2) { sp = ctype_isnum(dc->info) ? lj_ir_kint(J, 0) : TREF_NIL; } crec_ct_tv(J, dc, dp, sp, sval); } } else if (ctype_isstruct(d->info)) { CTypeID fid = d->sib; MSize i = 1; while (fid) { CType *df = ctype_get(cts, fid); fid = df->sib; if (ctype_isfield(df->info)) { CType *dc; TRef sp, dp; TValue tv; TValue *sval = &tv; setintV(&tv, 0); if (!gcref(df->name)) continue; /* Ignore unnamed fields. */ dc = ctype_rawchild(cts, df); /* Field type. */ if (!(ctype_isnum(dc->info) || ctype_isptr(dc->info) || ctype_isenum(dc->info))) lj_trace_err(J, LJ_TRERR_NYICONV); /* NYI: init aggregates. */ if (J->base[i]) { sp = J->base[i]; sval = &rd->argv[i]; i++; } else { sp = ctype_isptr(dc->info) ? TREF_NIL : lj_ir_kint(J, 0); } dp = emitir(IRT(IR_ADD, IRT_PTR), trcd, lj_ir_kintp(J, df->size + sizeof(GCcdata))); crec_ct_tv(J, dc, dp, sp, sval); } else if (!ctype_isconstval(df->info)) { /* NYI: init bitfields and sub-structures. */ lj_trace_err(J, LJ_TRERR_NYICONV); } } } else { TRef dp; single_init: dp = emitir(IRT(IR_ADD, IRT_PTR), trcd, lj_ir_kintp(J, sizeof(GCcdata))); if (J->base[1]) { crec_ct_tv(J, d, dp, J->base[1], &rd->argv[1]); } else { TValue tv; tv.u64 = 0; crec_ct_tv(J, d, dp, lj_ir_kint(J, 0), &tv); } } } J->base[0] = trcd; /* Handle __gc metamethod. */ fin = lj_ctype_meta(cts, id, MM_gc); if (fin) crec_finalizer(J, trcd, 0, fin); } /* Record argument conversions. */ static TRef crec_call_args(jit_State *J, RecordFFData *rd, CTState *cts, CType *ct) { TRef args[CCI_NARGS_MAX]; CTypeID fid; MSize i, n; TRef tr, *base; cTValue *o; #if LJ_TARGET_X86 #if LJ_ABI_WIN TRef *arg0 = NULL, *arg1 = NULL; #endif int ngpr = 0; if (ctype_cconv(ct->info) == CTCC_THISCALL) ngpr = 1; else if (ctype_cconv(ct->info) == CTCC_FASTCALL) ngpr = 2; #endif /* Skip initial attributes. */ fid = ct->sib; while (fid) { CType *ctf = ctype_get(cts, fid); if (!ctype_isattrib(ctf->info)) break; fid = ctf->sib; } args[0] = TREF_NIL; for (n = 0, base = J->base+1, o = rd->argv+1; *base; n++, base++, o++) { CTypeID did; CType *d; if (n >= CCI_NARGS_MAX) lj_trace_err(J, LJ_TRERR_NYICALL); if (fid) { /* Get argument type from field. */ CType *ctf = ctype_get(cts, fid); fid = ctf->sib; lua_assert(ctype_isfield(ctf->info)); did = ctype_cid(ctf->info); } else { if (!(ct->info & CTF_VARARG)) lj_trace_err(J, LJ_TRERR_NYICALL); /* Too many arguments. */ did = lj_ccall_ctid_vararg(cts, o); /* Infer vararg type. */ } d = ctype_raw(cts, did); if (!(ctype_isnum(d->info) || ctype_isptr(d->info) || ctype_isenum(d->info))) lj_trace_err(J, LJ_TRERR_NYICALL); tr = crec_ct_tv(J, d, 0, *base, o); if (ctype_isinteger_or_bool(d->info)) { if (d->size < 4) { if ((d->info & CTF_UNSIGNED)) tr = emitconv(tr, IRT_INT, d->size==1 ? IRT_U8 : IRT_U16, 0); else tr = emitconv(tr, IRT_INT, d->size==1 ? IRT_I8 : IRT_I16,IRCONV_SEXT); } } else if (LJ_SOFTFP && ctype_isfp(d->info) && d->size > 4) { lj_needsplit(J); } #if LJ_TARGET_X86 /* 64 bit args must not end up in registers for fastcall/thiscall. */ #if LJ_ABI_WIN if (!ctype_isfp(d->info)) { /* Sigh, the Windows/x86 ABI allows reordering across 64 bit args. */ if (tref_typerange(tr, IRT_I64, IRT_U64)) { if (ngpr) { arg0 = &args[n]; args[n++] = TREF_NIL; ngpr--; if (ngpr) { arg1 = &args[n]; args[n++] = TREF_NIL; ngpr--; } } } else { if (arg0) { *arg0 = tr; arg0 = NULL; n--; continue; } if (arg1) { *arg1 = tr; arg1 = NULL; n--; continue; } if (ngpr) ngpr--; } } #else if (!ctype_isfp(d->info) && ngpr) { if (tref_typerange(tr, IRT_I64, IRT_U64)) { /* No reordering for other x86 ABIs. Simply add alignment args. */ do { args[n++] = TREF_NIL; } while (--ngpr); } else { ngpr--; } } #endif #endif args[n] = tr; } tr = args[0]; for (i = 1; i < n; i++) tr = emitir(IRT(IR_CARG, IRT_NIL), tr, args[i]); return tr; } /* Create a snapshot for the caller, simulating a 'false' return value. */ static void crec_snap_caller(jit_State *J) { lua_State *L = J->L; TValue *base = L->base, *top = L->top; const BCIns *pc = J->pc; TRef ftr = J->base[-1-LJ_FR2]; ptrdiff_t delta; if (!frame_islua(base-1) || J->framedepth <= 0) lj_trace_err(J, LJ_TRERR_NYICALL); J->pc = frame_pc(base-1); delta = 1+LJ_FR2+bc_a(J->pc[-1]); L->top = base; L->base = base - delta; J->base[-1-LJ_FR2] = TREF_FALSE; J->base -= delta; J->baseslot -= (BCReg)delta; J->maxslot = (BCReg)delta-LJ_FR2; J->framedepth--; lj_snap_add(J); L->base = base; L->top = top; J->framedepth++; J->maxslot = 1; J->base += delta; J->baseslot += (BCReg)delta; J->base[-1-LJ_FR2] = ftr; J->pc = pc; } /* Record function call. */ static int crec_call(jit_State *J, RecordFFData *rd, GCcdata *cd) { CTState *cts = ctype_ctsG(J2G(J)); CType *ct = ctype_raw(cts, cd->ctypeid); IRType tp = IRT_PTR; if (ctype_isptr(ct->info)) { tp = (LJ_64 && ct->size == 8) ? IRT_P64 : IRT_P32; ct = ctype_rawchild(cts, ct); } if (ctype_isfunc(ct->info)) { TRef func = emitir(IRT(IR_FLOAD, tp), J->base[0], IRFL_CDATA_PTR); CType *ctr = ctype_rawchild(cts, ct); IRType t = crec_ct2irt(cts, ctr); TRef tr; TValue tv; /* Check for blacklisted C functions that might call a callback. */ setlightudV(&tv, cdata_getptr(cdataptr(cd), (LJ_64 && tp == IRT_P64) ? 8 : 4)); if (tvistrue(lj_tab_get(J->L, cts->miscmap, &tv))) lj_trace_err(J, LJ_TRERR_BLACKL); if (ctype_isvoid(ctr->info)) { t = IRT_NIL; rd->nres = 0; } else if (!(ctype_isnum(ctr->info) || ctype_isptr(ctr->info) || ctype_isenum(ctr->info)) || t == IRT_CDATA) { lj_trace_err(J, LJ_TRERR_NYICALL); } if ((ct->info & CTF_VARARG) #if LJ_TARGET_X86 || ctype_cconv(ct->info) != CTCC_CDECL #endif ) func = emitir(IRT(IR_CARG, IRT_NIL), func, lj_ir_kint(J, ctype_typeid(cts, ct))); tr = emitir(IRT(IR_CALLXS, t), crec_call_args(J, rd, cts, ct), func); if (ctype_isbool(ctr->info)) { if (frame_islua(J->L->base-1) && bc_b(frame_pc(J->L->base-1)[-1]) == 1) { /* Don't check result if ignored. */ tr = TREF_NIL; } else { crec_snap_caller(J); #if LJ_TARGET_X86ORX64 /* Note: only the x86/x64 backend supports U8 and only for EQ(tr, 0). */ lj_ir_set(J, IRTG(IR_NE, IRT_U8), tr, lj_ir_kint(J, 0)); #else lj_ir_set(J, IRTGI(IR_NE), tr, lj_ir_kint(J, 0)); #endif J->postproc = LJ_POST_FIXGUARDSNAP; tr = TREF_TRUE; } } else if (t == IRT_PTR || (LJ_64 && t == IRT_P32) || t == IRT_I64 || t == IRT_U64 || ctype_isenum(ctr->info)) { TRef trid = lj_ir_kint(J, ctype_cid(ct->info)); tr = emitir(IRTG(IR_CNEWI, IRT_CDATA), trid, tr); if (t == IRT_I64 || t == IRT_U64) lj_needsplit(J); } else if (t == IRT_FLOAT || t == IRT_U32) { tr = emitconv(tr, IRT_NUM, t, 0); } else if (t == IRT_I8 || t == IRT_I16) { tr = emitconv(tr, IRT_INT, t, IRCONV_SEXT); } else if (t == IRT_U8 || t == IRT_U16) { tr = emitconv(tr, IRT_INT, t, 0); } J->base[0] = tr; J->needsnap = 1; return 1; } return 0; } void LJ_FASTCALL recff_cdata_call(jit_State *J, RecordFFData *rd) { CTState *cts = ctype_ctsG(J2G(J)); GCcdata *cd = argv2cdata(J, J->base[0], &rd->argv[0]); CTypeID id = cd->ctypeid; CType *ct; cTValue *tv; MMS mm = MM_call; if (id == CTID_CTYPEID) { id = crec_constructor(J, cd, J->base[0]); mm = MM_new; } else if (crec_call(J, rd, cd)) { return; } /* Record ctype __call/__new metamethod. */ ct = ctype_raw(cts, id); tv = lj_ctype_meta(cts, ctype_isptr(ct->info) ? ctype_cid(ct->info) : id, mm); if (tv) { if (tvisfunc(tv)) { crec_tailcall(J, rd, tv); return; } } else if (mm == MM_new) { crec_alloc(J, rd, id); return; } /* No metamethod or NYI: non-function metamethods. */ lj_trace_err(J, LJ_TRERR_BADTYPE); } static TRef crec_arith_int64(jit_State *J, TRef *sp, CType **s, MMS mm) { if (sp[0] && sp[1] && ctype_isnum(s[0]->info) && ctype_isnum(s[1]->info)) { IRType dt; CTypeID id; TRef tr; MSize i; IROp op; lj_needsplit(J); if (((s[0]->info & CTF_UNSIGNED) && s[0]->size == 8) || ((s[1]->info & CTF_UNSIGNED) && s[1]->size == 8)) { dt = IRT_U64; id = CTID_UINT64; } else { dt = IRT_I64; id = CTID_INT64; if (mm < MM_add && !((s[0]->info | s[1]->info) & CTF_FP) && s[0]->size == 4 && s[1]->size == 4) { /* Try to narrow comparison. */ if (!((s[0]->info ^ s[1]->info) & CTF_UNSIGNED) || (tref_isk(sp[1]) && IR(tref_ref(sp[1]))->i >= 0)) { dt = (s[0]->info & CTF_UNSIGNED) ? IRT_U32 : IRT_INT; goto comp; } else if (tref_isk(sp[0]) && IR(tref_ref(sp[0]))->i >= 0) { dt = (s[1]->info & CTF_UNSIGNED) ? IRT_U32 : IRT_INT; goto comp; } } } for (i = 0; i < 2; i++) { IRType st = tref_type(sp[i]); if (st == IRT_NUM || st == IRT_FLOAT) sp[i] = emitconv(sp[i], dt, st, IRCONV_ANY); else if (!(st == IRT_I64 || st == IRT_U64)) sp[i] = emitconv(sp[i], dt, IRT_INT, (s[i]->info & CTF_UNSIGNED) ? 0 : IRCONV_SEXT); } if (mm < MM_add) { comp: /* Assume true comparison. Fixup and emit pending guard later. */ if (mm == MM_eq) { op = IR_EQ; } else { op = mm == MM_lt ? IR_LT : IR_LE; if (dt == IRT_U32 || dt == IRT_U64) op += (IR_ULT-IR_LT); } lj_ir_set(J, IRTG(op, dt), sp[0], sp[1]); J->postproc = LJ_POST_FIXGUARD; return TREF_TRUE; } else { tr = emitir(IRT(mm+(int)IR_ADD-(int)MM_add, dt), sp[0], sp[1]); } return emitir(IRTG(IR_CNEWI, IRT_CDATA), lj_ir_kint(J, id), tr); } return 0; } static TRef crec_arith_ptr(jit_State *J, TRef *sp, CType **s, MMS mm) { CTState *cts = ctype_ctsG(J2G(J)); CType *ctp = s[0]; if (!(sp[0] && sp[1])) return 0; if (ctype_isptr(ctp->info) || ctype_isrefarray(ctp->info)) { if ((mm == MM_sub || mm == MM_eq || mm == MM_lt || mm == MM_le) && (ctype_isptr(s[1]->info) || ctype_isrefarray(s[1]->info))) { if (mm == MM_sub) { /* Pointer difference. */ TRef tr; CTSize sz = lj_ctype_size(cts, ctype_cid(ctp->info)); if (sz == 0 || (sz & (sz-1)) != 0) return 0; /* NYI: integer division. */ tr = emitir(IRT(IR_SUB, IRT_INTP), sp[0], sp[1]); tr = emitir(IRT(IR_BSAR, IRT_INTP), tr, lj_ir_kint(J, lj_fls(sz))); #if LJ_64 tr = emitconv(tr, IRT_NUM, IRT_INTP, 0); #endif return tr; } else { /* Pointer comparison (unsigned). */ /* Assume true comparison. Fixup and emit pending guard later. */ IROp op = mm == MM_eq ? IR_EQ : mm == MM_lt ? IR_ULT : IR_ULE; lj_ir_set(J, IRTG(op, IRT_PTR), sp[0], sp[1]); J->postproc = LJ_POST_FIXGUARD; return TREF_TRUE; } } if (!((mm == MM_add || mm == MM_sub) && ctype_isnum(s[1]->info))) return 0; } else if (mm == MM_add && ctype_isnum(ctp->info) && (ctype_isptr(s[1]->info) || ctype_isrefarray(s[1]->info))) { TRef tr = sp[0]; sp[0] = sp[1]; sp[1] = tr; /* Swap pointer and index. */ ctp = s[1]; } else { return 0; } { TRef tr = sp[1]; IRType t = tref_type(tr); CTSize sz = lj_ctype_size(cts, ctype_cid(ctp->info)); CTypeID id; #if LJ_64 if (t == IRT_NUM || t == IRT_FLOAT) tr = emitconv(tr, IRT_INTP, t, IRCONV_ANY); else if (!(t == IRT_I64 || t == IRT_U64)) tr = emitconv(tr, IRT_INTP, IRT_INT, ((t - IRT_I8) & 1) ? 0 : IRCONV_SEXT); #else if (!tref_typerange(sp[1], IRT_I8, IRT_U32)) { tr = emitconv(tr, IRT_INTP, t, (t == IRT_NUM || t == IRT_FLOAT) ? IRCONV_ANY : 0); } #endif tr = emitir(IRT(IR_MUL, IRT_INTP), tr, lj_ir_kintp(J, sz)); tr = emitir(IRT(mm+(int)IR_ADD-(int)MM_add, IRT_PTR), sp[0], tr); id = lj_ctype_intern(cts, CTINFO(CT_PTR, CTALIGN_PTR|ctype_cid(ctp->info)), CTSIZE_PTR); return emitir(IRTG(IR_CNEWI, IRT_CDATA), lj_ir_kint(J, id), tr); } } /* Record ctype arithmetic metamethods. */ static TRef crec_arith_meta(jit_State *J, TRef *sp, CType **s, CTState *cts, RecordFFData *rd) { cTValue *tv = NULL; if (J->base[0]) { if (tviscdata(&rd->argv[0])) { CTypeID id = argv2cdata(J, J->base[0], &rd->argv[0])->ctypeid; CType *ct = ctype_raw(cts, id); if (ctype_isptr(ct->info)) id = ctype_cid(ct->info); tv = lj_ctype_meta(cts, id, (MMS)rd->data); } if (!tv && J->base[1] && tviscdata(&rd->argv[1])) { CTypeID id = argv2cdata(J, J->base[1], &rd->argv[1])->ctypeid; CType *ct = ctype_raw(cts, id); if (ctype_isptr(ct->info)) id = ctype_cid(ct->info); tv = lj_ctype_meta(cts, id, (MMS)rd->data); } } if (tv) { if (tvisfunc(tv)) { crec_tailcall(J, rd, tv); return 0; } /* NYI: non-function metamethods. */ } else if ((MMS)rd->data == MM_eq) { /* Fallback cdata pointer comparison. */ if (sp[0] && sp[1] && ctype_isnum(s[0]->info) == ctype_isnum(s[1]->info)) { /* Assume true comparison. Fixup and emit pending guard later. */ lj_ir_set(J, IRTG(IR_EQ, IRT_PTR), sp[0], sp[1]); J->postproc = LJ_POST_FIXGUARD; return TREF_TRUE; } else { return TREF_FALSE; } } lj_trace_err(J, LJ_TRERR_BADTYPE); return 0; } void LJ_FASTCALL recff_cdata_arith(jit_State *J, RecordFFData *rd) { CTState *cts = ctype_ctsG(J2G(J)); TRef sp[2]; CType *s[2]; MSize i; for (i = 0; i < 2; i++) { TRef tr = J->base[i]; CType *ct = ctype_get(cts, CTID_DOUBLE); if (!tr) { lj_trace_err(J, LJ_TRERR_BADTYPE); } else if (tref_iscdata(tr)) { CTypeID id = argv2cdata(J, tr, &rd->argv[i])->ctypeid; IRType t; ct = ctype_raw(cts, id); t = crec_ct2irt(cts, ct); if (ctype_isptr(ct->info)) { /* Resolve pointer or reference. */ tr = emitir(IRT(IR_FLOAD, t), tr, IRFL_CDATA_PTR); if (ctype_isref(ct->info)) { ct = ctype_rawchild(cts, ct); t = crec_ct2irt(cts, ct); } } else if (t == IRT_I64 || t == IRT_U64) { tr = emitir(IRT(IR_FLOAD, t), tr, IRFL_CDATA_INT64); lj_needsplit(J); goto ok; } else if (t == IRT_INT || t == IRT_U32) { tr = emitir(IRT(IR_FLOAD, t), tr, IRFL_CDATA_INT); if (ctype_isenum(ct->info)) ct = ctype_child(cts, ct); goto ok; } else if (ctype_isfunc(ct->info)) { tr = emitir(IRT(IR_FLOAD, IRT_PTR), tr, IRFL_CDATA_PTR); ct = ctype_get(cts, lj_ctype_intern(cts, CTINFO(CT_PTR, CTALIGN_PTR|id), CTSIZE_PTR)); goto ok; } else { tr = emitir(IRT(IR_ADD, IRT_PTR), tr, lj_ir_kintp(J, sizeof(GCcdata))); } if (ctype_isenum(ct->info)) ct = ctype_child(cts, ct); if (ctype_isnum(ct->info)) { if (t == IRT_CDATA) { tr = 0; } else { if (t == IRT_I64 || t == IRT_U64) lj_needsplit(J); tr = emitir(IRT(IR_XLOAD, t), tr, 0); } } } else if (tref_isnil(tr)) { tr = lj_ir_kptr(J, NULL); ct = ctype_get(cts, CTID_P_VOID); } else if (tref_isinteger(tr)) { ct = ctype_get(cts, CTID_INT32); } else if (tref_isstr(tr)) { TRef tr2 = J->base[1-i]; CTypeID id = argv2cdata(J, tr2, &rd->argv[1-i])->ctypeid; ct = ctype_raw(cts, id); if (ctype_isenum(ct->info)) { /* Match string against enum constant. */ GCstr *str = strV(&rd->argv[i]); CTSize ofs; CType *cct = lj_ctype_getfield(cts, ct, str, &ofs); if (cct && ctype_isconstval(cct->info)) { /* Specialize to the name of the enum constant. */ emitir(IRTG(IR_EQ, IRT_STR), tr, lj_ir_kstr(J, str)); ct = ctype_child(cts, cct); tr = lj_ir_kint(J, (int32_t)ofs); } else { /* Interpreter will throw or return false. */ ct = ctype_get(cts, CTID_P_VOID); } } else if (ctype_isptr(ct->info)) { tr = emitir(IRT(IR_ADD, IRT_PTR), tr, lj_ir_kintp(J, sizeof(GCstr))); } else { ct = ctype_get(cts, CTID_P_VOID); } } else if (!tref_isnum(tr)) { tr = 0; ct = ctype_get(cts, CTID_P_VOID); } ok: s[i] = ct; sp[i] = tr; } { TRef tr; if (!(tr = crec_arith_int64(J, sp, s, (MMS)rd->data)) && !(tr = crec_arith_ptr(J, sp, s, (MMS)rd->data)) && !(tr = crec_arith_meta(J, sp, s, cts, rd))) return; J->base[0] = tr; /* Fixup cdata comparisons, too. Avoids some cdata escapes. */ if (J->postproc == LJ_POST_FIXGUARD && frame_iscont(J->L->base-1) && !irt_isguard(J->guardemit)) { const BCIns *pc = frame_contpc(J->L->base-1) - 1; if (bc_op(*pc) <= BC_ISNEP) { J2G(J)->tmptv.u64 = (uint64_t)(uintptr_t)pc; J->postproc = LJ_POST_FIXCOMP; } } } } /* -- C library namespace metamethods ------------------------------------- */ void LJ_FASTCALL recff_clib_index(jit_State *J, RecordFFData *rd) { CTState *cts = ctype_ctsG(J2G(J)); if (tref_isudata(J->base[0]) && tref_isstr(J->base[1]) && udataV(&rd->argv[0])->udtype == UDTYPE_FFI_CLIB) { CLibrary *cl = (CLibrary *)uddata(udataV(&rd->argv[0])); GCstr *name = strV(&rd->argv[1]); CType *ct; CTypeID id = lj_ctype_getname(cts, &ct, name, CLNS_INDEX); cTValue *tv = lj_tab_getstr(cl->cache, name); rd->nres = rd->data; if (id && tv && !tvisnil(tv)) { /* Specialize to the symbol name and make the result a constant. */ emitir(IRTG(IR_EQ, IRT_STR), J->base[1], lj_ir_kstr(J, name)); if (ctype_isconstval(ct->info)) { if (ct->size >= 0x80000000u && (ctype_child(cts, ct)->info & CTF_UNSIGNED)) J->base[0] = lj_ir_knum(J, (lua_Number)(uint32_t)ct->size); else J->base[0] = lj_ir_kint(J, (int32_t)ct->size); } else if (ctype_isextern(ct->info)) { CTypeID sid = ctype_cid(ct->info); void *sp = *(void **)cdataptr(cdataV(tv)); TRef ptr; ct = ctype_raw(cts, sid); if (LJ_64 && !checkptr32(sp)) ptr = lj_ir_kintp(J, (uintptr_t)sp); else ptr = lj_ir_kptr(J, sp); if (rd->data) { J->base[0] = crec_tv_ct(J, ct, sid, ptr); } else { J->needsnap = 1; crec_ct_tv(J, ct, ptr, J->base[2], &rd->argv[2]); } } else { J->base[0] = lj_ir_kgc(J, obj2gco(cdataV(tv)), IRT_CDATA); } } else { lj_trace_err(J, LJ_TRERR_NOCACHE); } } /* else: interpreter will throw. */ } /* -- FFI library functions ----------------------------------------------- */ static TRef crec_toint(jit_State *J, CTState *cts, TRef sp, TValue *sval) { return crec_ct_tv(J, ctype_get(cts, CTID_INT32), 0, sp, sval); } void LJ_FASTCALL recff_ffi_new(jit_State *J, RecordFFData *rd) { crec_alloc(J, rd, argv2ctype(J, J->base[0], &rd->argv[0])); } void LJ_FASTCALL recff_ffi_errno(jit_State *J, RecordFFData *rd) { UNUSED(rd); if (J->base[0]) lj_trace_err(J, LJ_TRERR_NYICALL); J->base[0] = lj_ir_call(J, IRCALL_lj_vm_errno); } void LJ_FASTCALL recff_ffi_string(jit_State *J, RecordFFData *rd) { CTState *cts = ctype_ctsG(J2G(J)); TRef tr = J->base[0]; if (tr) { TRef trlen = J->base[1]; if (!tref_isnil(trlen)) { trlen = crec_toint(J, cts, trlen, &rd->argv[1]); tr = crec_ct_tv(J, ctype_get(cts, CTID_P_CVOID), 0, tr, &rd->argv[0]); } else { tr = crec_ct_tv(J, ctype_get(cts, CTID_P_CCHAR), 0, tr, &rd->argv[0]); trlen = lj_ir_call(J, IRCALL_strlen, tr); } J->base[0] = emitir(IRT(IR_XSNEW, IRT_STR), tr, trlen); } /* else: interpreter will throw. */ } void LJ_FASTCALL recff_ffi_copy(jit_State *J, RecordFFData *rd) { CTState *cts = ctype_ctsG(J2G(J)); TRef trdst = J->base[0], trsrc = J->base[1], trlen = J->base[2]; if (trdst && trsrc && (trlen || tref_isstr(trsrc))) { trdst = crec_ct_tv(J, ctype_get(cts, CTID_P_VOID), 0, trdst, &rd->argv[0]); trsrc = crec_ct_tv(J, ctype_get(cts, CTID_P_CVOID), 0, trsrc, &rd->argv[1]); if (trlen) { trlen = crec_toint(J, cts, trlen, &rd->argv[2]); } else { trlen = emitir(IRTI(IR_FLOAD), J->base[1], IRFL_STR_LEN); trlen = emitir(IRTI(IR_ADD), trlen, lj_ir_kint(J, 1)); } rd->nres = 0; crec_copy(J, trdst, trsrc, trlen, NULL); } /* else: interpreter will throw. */ } void LJ_FASTCALL recff_ffi_fill(jit_State *J, RecordFFData *rd) { CTState *cts = ctype_ctsG(J2G(J)); TRef trdst = J->base[0], trlen = J->base[1], trfill = J->base[2]; if (trdst && trlen) { CTSize step = 1; if (tviscdata(&rd->argv[0])) { /* Get alignment of original destination. */ CTSize sz; CType *ct = ctype_raw(cts, cdataV(&rd->argv[0])->ctypeid); if (ctype_isptr(ct->info)) ct = ctype_rawchild(cts, ct); step = (1u<argv[0]); trlen = crec_toint(J, cts, trlen, &rd->argv[1]); if (trfill) trfill = crec_toint(J, cts, trfill, &rd->argv[2]); else trfill = lj_ir_kint(J, 0); rd->nres = 0; crec_fill(J, trdst, trlen, trfill, step); } /* else: interpreter will throw. */ } void LJ_FASTCALL recff_ffi_typeof(jit_State *J, RecordFFData *rd) { if (tref_iscdata(J->base[0])) { TRef trid = lj_ir_kint(J, argv2ctype(J, J->base[0], &rd->argv[0])); J->base[0] = emitir(IRTG(IR_CNEWI, IRT_CDATA), lj_ir_kint(J, CTID_CTYPEID), trid); } else { setfuncV(J->L, &J->errinfo, J->fn); lj_trace_err_info(J, LJ_TRERR_NYIFFU); } } void LJ_FASTCALL recff_ffi_istype(jit_State *J, RecordFFData *rd) { argv2ctype(J, J->base[0], &rd->argv[0]); if (tref_iscdata(J->base[1])) { argv2ctype(J, J->base[1], &rd->argv[1]); J->postproc = LJ_POST_FIXBOOL; J->base[0] = TREF_TRUE; } else { J->base[0] = TREF_FALSE; } } void LJ_FASTCALL recff_ffi_abi(jit_State *J, RecordFFData *rd) { if (tref_isstr(J->base[0])) { /* Specialize to the ABI string to make the boolean result a constant. */ emitir(IRTG(IR_EQ, IRT_STR), J->base[0], lj_ir_kstr(J, strV(&rd->argv[0]))); J->postproc = LJ_POST_FIXBOOL; J->base[0] = TREF_TRUE; } else { lj_trace_err(J, LJ_TRERR_BADTYPE); } } /* Record ffi.sizeof(), ffi.alignof(), ffi.offsetof(). */ void LJ_FASTCALL recff_ffi_xof(jit_State *J, RecordFFData *rd) { CTypeID id = argv2ctype(J, J->base[0], &rd->argv[0]); if (rd->data == FF_ffi_sizeof) { CType *ct = lj_ctype_rawref(ctype_ctsG(J2G(J)), id); if (ctype_isvltype(ct->info)) lj_trace_err(J, LJ_TRERR_BADTYPE); } else if (rd->data == FF_ffi_offsetof) { /* Specialize to the field name. */ if (!tref_isstr(J->base[1])) lj_trace_err(J, LJ_TRERR_BADTYPE); emitir(IRTG(IR_EQ, IRT_STR), J->base[1], lj_ir_kstr(J, strV(&rd->argv[1]))); rd->nres = 3; /* Just in case. */ } J->postproc = LJ_POST_FIXCONST; J->base[0] = J->base[1] = J->base[2] = TREF_NIL; } void LJ_FASTCALL recff_ffi_gc(jit_State *J, RecordFFData *rd) { argv2cdata(J, J->base[0], &rd->argv[0]); if (!J->base[1]) lj_trace_err(J, LJ_TRERR_BADTYPE); crec_finalizer(J, J->base[0], J->base[1], &rd->argv[1]); } /* -- 64 bit bit.* library functions -------------------------------------- */ /* Determine bit operation type from argument type. */ static CTypeID crec_bit64_type(CTState *cts, cTValue *tv) { if (tviscdata(tv)) { CType *ct = lj_ctype_rawref(cts, cdataV(tv)->ctypeid); if (ctype_isenum(ct->info)) ct = ctype_child(cts, ct); if ((ct->info & (CTMASK_NUM|CTF_BOOL|CTF_FP|CTF_UNSIGNED)) == CTINFO(CT_NUM, CTF_UNSIGNED) && ct->size == 8) return CTID_UINT64; /* Use uint64_t, since it has the highest rank. */ return CTID_INT64; /* Otherwise use int64_t. */ } return 0; /* Use regular 32 bit ops. */ } void LJ_FASTCALL recff_bit64_tobit(jit_State *J, RecordFFData *rd) { CTState *cts = ctype_ctsG(J2G(J)); TRef tr = crec_ct_tv(J, ctype_get(cts, CTID_INT64), 0, J->base[0], &rd->argv[0]); if (!tref_isinteger(tr)) tr = emitconv(tr, IRT_INT, tref_type(tr), 0); J->base[0] = tr; } int LJ_FASTCALL recff_bit64_unary(jit_State *J, RecordFFData *rd) { CTState *cts = ctype_ctsG(J2G(J)); CTypeID id = crec_bit64_type(cts, &rd->argv[0]); if (id) { TRef tr = crec_ct_tv(J, ctype_get(cts, id), 0, J->base[0], &rd->argv[0]); tr = emitir(IRT(rd->data, id-CTID_INT64+IRT_I64), tr, 0); J->base[0] = emitir(IRTG(IR_CNEWI, IRT_CDATA), lj_ir_kint(J, id), tr); return 1; } return 0; } int LJ_FASTCALL recff_bit64_nary(jit_State *J, RecordFFData *rd) { CTState *cts = ctype_ctsG(J2G(J)); CTypeID id = 0; MSize i; for (i = 0; J->base[i] != 0; i++) { CTypeID aid = crec_bit64_type(cts, &rd->argv[i]); if (id < aid) id = aid; /* Determine highest type rank of all arguments. */ } if (id) { CType *ct = ctype_get(cts, id); uint32_t ot = IRT(rd->data, id-CTID_INT64+IRT_I64); TRef tr = crec_ct_tv(J, ct, 0, J->base[0], &rd->argv[0]); for (i = 1; J->base[i] != 0; i++) { TRef tr2 = crec_ct_tv(J, ct, 0, J->base[i], &rd->argv[i]); tr = emitir(ot, tr, tr2); } J->base[0] = emitir(IRTG(IR_CNEWI, IRT_CDATA), lj_ir_kint(J, id), tr); return 1; } return 0; } int LJ_FASTCALL recff_bit64_shift(jit_State *J, RecordFFData *rd) { CTState *cts = ctype_ctsG(J2G(J)); CTypeID id; TRef tsh = 0; if (J->base[0] && tref_iscdata(J->base[1])) { tsh = crec_ct_tv(J, ctype_get(cts, CTID_INT64), 0, J->base[1], &rd->argv[1]); if (!tref_isinteger(tsh)) tsh = emitconv(tsh, IRT_INT, tref_type(tsh), 0); J->base[1] = tsh; } id = crec_bit64_type(cts, &rd->argv[0]); if (id) { TRef tr = crec_ct_tv(J, ctype_get(cts, id), 0, J->base[0], &rd->argv[0]); uint32_t op = rd->data; if (!tsh) tsh = lj_opt_narrow_tobit(J, J->base[1]); if (!(op < IR_BROL ? LJ_TARGET_MASKSHIFT : LJ_TARGET_MASKROT) && !tref_isk(tsh)) tsh = emitir(IRTI(IR_BAND), tsh, lj_ir_kint(J, 63)); #ifdef LJ_TARGET_UNIFYROT if (op == (LJ_TARGET_UNIFYROT == 1 ? IR_BROR : IR_BROL)) { op = LJ_TARGET_UNIFYROT == 1 ? IR_BROL : IR_BROR; tsh = emitir(IRTI(IR_NEG), tsh, tsh); } #endif tr = emitir(IRT(op, id-CTID_INT64+IRT_I64), tr, tsh); J->base[0] = emitir(IRTG(IR_CNEWI, IRT_CDATA), lj_ir_kint(J, id), tr); return 1; } return 0; } TRef recff_bit64_tohex(jit_State *J, RecordFFData *rd, TRef hdr) { CTState *cts = ctype_ctsG(J2G(J)); CTypeID id = crec_bit64_type(cts, &rd->argv[0]); TRef tr, trsf = J->base[1]; SFormat sf = (STRFMT_UINT|STRFMT_T_HEX); int32_t n; if (trsf) { CTypeID id2 = 0; n = (int32_t)lj_carith_check64(J->L, 2, &id2); if (id2) trsf = crec_ct_tv(J, ctype_get(cts, CTID_INT32), 0, trsf, &rd->argv[1]); else trsf = lj_opt_narrow_tobit(J, trsf); emitir(IRTGI(IR_EQ), trsf, lj_ir_kint(J, n)); /* Specialize to n. */ } else { n = id ? 16 : 8; } if (n < 0) { n = -n; sf |= STRFMT_F_UPPER; } sf |= ((SFormat)((n+1)&255) << STRFMT_SH_PREC); if (id) { tr = crec_ct_tv(J, ctype_get(cts, id), 0, J->base[0], &rd->argv[0]); if (n < 16) tr = emitir(IRT(IR_BAND, IRT_U64), tr, lj_ir_kint64(J, ((uint64_t)1 << 4*n)-1)); } else { tr = lj_opt_narrow_tobit(J, J->base[0]); if (n < 8) tr = emitir(IRTI(IR_BAND), tr, lj_ir_kint(J, (int32_t)((1u << 4*n)-1))); tr = emitconv(tr, IRT_U64, IRT_INT, 0); /* No sign-extension. */ lj_needsplit(J); } return lj_ir_call(J, IRCALL_lj_strfmt_putfxint, hdr, lj_ir_kint(J, sf), tr); } /* -- Miscellaneous library functions ------------------------------------- */ void LJ_FASTCALL lj_crecord_tonumber(jit_State *J, RecordFFData *rd) { CTState *cts = ctype_ctsG(J2G(J)); CType *d, *ct = lj_ctype_rawref(cts, cdataV(&rd->argv[0])->ctypeid); if (ctype_isenum(ct->info)) ct = ctype_child(cts, ct); if (ctype_isnum(ct->info) || ctype_iscomplex(ct->info)) { if (ctype_isinteger_or_bool(ct->info) && ct->size <= 4 && !(ct->size == 4 && (ct->info & CTF_UNSIGNED))) d = ctype_get(cts, CTID_INT32); else d = ctype_get(cts, CTID_DOUBLE); J->base[0] = crec_ct_tv(J, d, 0, J->base[0], &rd->argv[0]); } else { J->base[0] = TREF_NIL; } } #undef IR #undef emitir #undef emitconv #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_emit_arm64.h0000644000175100017510000003147513101703334020724 0ustar ondrejondrej/* ** ARM64 instruction emitter. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h ** ** Contributed by Djordje Kovacevic and Stefan Pejic from RT-RK.com. ** Sponsored by Cisco Systems, Inc. */ /* -- Constant encoding --------------------------------------------------- */ static uint64_t get_k64val(IRIns *ir) { if (ir->o == IR_KINT64) { return ir_kint64(ir)->u64; } else if (ir->o == IR_KGC) { return (uint64_t)ir_kgc(ir); } else if (ir->o == IR_KPTR || ir->o == IR_KKPTR) { return (uint64_t)ir_kptr(ir); } else { lua_assert(ir->o == IR_KINT || ir->o == IR_KNULL); return ir->i; /* Sign-extended. */ } } /* Encode constant in K12 format for data processing instructions. */ static uint32_t emit_isk12(int64_t n) { uint64_t k = (n < 0) ? -n : n; uint32_t m = (n < 0) ? 0x40000000 : 0; if (k < 0x1000) { return A64I_K12|m|A64F_U12(k); } else if ((k & 0xfff000) == k) { return A64I_K12|m|0x400000|A64F_U12(k>>12); } return 0; } #define emit_clz64(n) __builtin_clzll(n) #define emit_ctz64(n) __builtin_ctzll(n) /* Encode constant in K13 format for logical data processing instructions. */ static uint32_t emit_isk13(uint64_t n, int is64) { int inv = 0, w = 128, lz, tz; if (n & 1) { n = ~n; w = 64; inv = 1; } /* Avoid wrap-around of ones. */ if (!n) return 0; /* Neither all-zero nor all-ones are allowed. */ do { /* Find the repeat width. */ if (is64 && (uint32_t)(n^(n>>32))) break; n = (uint32_t)n; if (!n) return 0; /* Ditto when passing n=0xffffffff and is64=0. */ w = 32; if ((n^(n>>16)) & 0xffff) break; n = n & 0xffff; w = 16; if ((n^(n>>8)) & 0xff) break; n = n & 0xff; w = 8; if ((n^(n>>4)) & 0xf) break; n = n & 0xf; w = 4; if ((n^(n>>2)) & 0x3) break; n = n & 0x3; w = 2; } while (0); lz = emit_clz64(n); tz = emit_ctz64(n); if ((int64_t)(n << lz) >> (lz+tz) != -1ll) return 0; /* Non-contiguous? */ if (inv) return A64I_K13 | (((lz-w) & 127) << 16) | (((lz+tz-w-1) & 63) << 10); else return A64I_K13 | ((w-tz) << 16) | (((63-lz-tz-w-w) & 63) << 10); } static uint32_t emit_isfpk64(uint64_t n) { uint64_t etop9 = ((n >> 54) & 0x1ff); if ((n << 16) == 0 && (etop9 == 0x100 || etop9 == 0x0ff)) { return (uint32_t)(((n >> 48) & 0x7f) | ((n >> 56) & 0x80)); } return ~0u; } /* -- Emit basic instructions --------------------------------------------- */ static void emit_dnma(ASMState *as, A64Ins ai, Reg rd, Reg rn, Reg rm, Reg ra) { *--as->mcp = ai | A64F_D(rd) | A64F_N(rn) | A64F_M(rm) | A64F_A(ra); } static void emit_dnm(ASMState *as, A64Ins ai, Reg rd, Reg rn, Reg rm) { *--as->mcp = ai | A64F_D(rd) | A64F_N(rn) | A64F_M(rm); } static void emit_dm(ASMState *as, A64Ins ai, Reg rd, Reg rm) { *--as->mcp = ai | A64F_D(rd) | A64F_M(rm); } static void emit_dn(ASMState *as, A64Ins ai, Reg rd, Reg rn) { *--as->mcp = ai | A64F_D(rd) | A64F_N(rn); } static void emit_nm(ASMState *as, A64Ins ai, Reg rn, Reg rm) { *--as->mcp = ai | A64F_N(rn) | A64F_M(rm); } static void emit_d(ASMState *as, A64Ins ai, Reg rd) { *--as->mcp = ai | A64F_D(rd); } static void emit_n(ASMState *as, A64Ins ai, Reg rn) { *--as->mcp = ai | A64F_N(rn); } static int emit_checkofs(A64Ins ai, int64_t ofs) { int scale = (ai >> 30) & 3; if (ofs < 0 || (ofs & ((1<= -256 && ofs <= 255) ? -1 : 0; } else { return (ofs < (4096<> 30) & 3; lua_assert(ot); /* Combine LDR/STR pairs to LDP/STP. */ if ((sc == 2 || sc == 3) && (!(ai & 0x400000) || rd != rn) && as->mcp != as->mcloop) { uint32_t prev = *as->mcp & ~A64F_D(31); int ofsm = ofs - (1<>sc)) || prev == ((ai^A64I_LS_U) | A64F_N(rn) | A64F_S9(ofsm&0x1ff))) { aip = (A64F_A(rd) | A64F_D(*as->mcp & 31)); } else if (prev == (ai | A64F_N(rn) | A64F_U12(ofsp>>sc)) || prev == ((ai^A64I_LS_U) | A64F_N(rn) | A64F_S9(ofsp&0x1ff))) { aip = (A64F_D(rd) | A64F_A(*as->mcp & 31)); ofsm = ofs; } else { goto nopair; } if (ofsm >= (int)((unsigned int)-64<mcp = aip | A64F_N(rn) | ((ofsm >> sc) << 15) | (ai ^ ((ai == A64I_LDRx || ai == A64I_STRx) ? 0x50000000 : 0x90000000)); return; } } nopair: if (ot == 1) *--as->mcp = ai | A64F_D(rd) | A64F_N(rn) | A64F_U12(ofs >> sc); else *--as->mcp = (ai^A64I_LS_U) | A64F_D(rd) | A64F_N(rn) | A64F_S9(ofs & 0x1ff); } /* -- Emit loads/stores --------------------------------------------------- */ /* Prefer rematerialization of BASE/L from global_State over spills. */ #define emit_canremat(ref) ((ref) <= ASMREF_L) /* Try to find an N-step delta relative to other consts with N < lim. */ static int emit_kdelta(ASMState *as, Reg rd, uint64_t k, int lim) { RegSet work = ~as->freeset & RSET_GPR; if (lim <= 1) return 0; /* Can't beat that. */ while (work) { Reg r = rset_picktop(work); IRRef ref = regcost_ref(as->cost[r]); lua_assert(r != rd); if (ref < REF_TRUE) { uint64_t kx = ra_iskref(ref) ? (uint64_t)ra_krefk(as, ref) : get_k64val(IR(ref)); int64_t delta = (int64_t)(k - kx); if (delta == 0) { emit_dm(as, A64I_MOVx, rd, r); return 1; } else { uint32_t k12 = emit_isk12(delta < 0 ? -delta : delta); if (k12) { emit_dn(as, (delta < 0 ? A64I_SUBx : A64I_ADDx)^k12, rd, r); return 1; } /* Do other ops or multi-step deltas pay off? Probably not. ** E.g. XOR rarely helps with pointer consts. */ } } rset_clear(work, r); } return 0; /* Failed. */ } static void emit_loadk(ASMState *as, Reg rd, uint64_t u64, int is64) { uint32_t k13 = emit_isk13(u64, is64); if (k13) { /* Can the constant be represented as a bitmask immediate? */ emit_dn(as, (is64|A64I_ORRw)^k13, rd, RID_ZERO); } else { int i, zeros = 0, ones = 0, neg; if (!is64) u64 = (int64_t)(int32_t)u64; /* Sign-extend. */ /* Count homogeneous 16 bit fragments. */ for (i = 0; i < 4; i++) { uint64_t frag = (u64 >> i*16) & 0xffff; zeros += (frag == 0); ones += (frag == 0xffff); } neg = ones > zeros; /* Use MOVN if it pays off. */ if (!emit_kdelta(as, rd, u64, 4 - (neg ? ones : zeros))) { int shift = 0, lshift = 0; uint64_t n64 = neg ? ~u64 : u64; if (n64 != 0) { /* Find first/last fragment to be filled. */ shift = (63-emit_clz64(n64)) & ~15; lshift = emit_ctz64(n64) & ~15; } /* MOVK requires the original value (u64). */ while (shift > lshift) { uint32_t u16 = (u64 >> shift) & 0xffff; /* Skip fragments that are correctly filled by MOVN/MOVZ. */ if (u16 != (neg ? 0xffff : 0)) emit_d(as, is64 | A64I_MOVKw | A64F_U16(u16) | A64F_LSL16(shift), rd); shift -= 16; } /* But MOVN needs an inverted value (n64). */ emit_d(as, (neg ? A64I_MOVNx : A64I_MOVZx) | A64F_U16((n64 >> lshift) & 0xffff) | A64F_LSL16(lshift), rd); } } } /* Load a 32 bit constant into a GPR. */ #define emit_loadi(as, rd, i) emit_loadk(as, rd, i, 0) /* Load a 64 bit constant into a GPR. */ #define emit_loadu64(as, rd, i) emit_loadk(as, rd, i, A64I_X) #define emit_loada(as, r, addr) emit_loadu64(as, (r), (uintptr_t)(addr)) #define glofs(as, k) \ ((intptr_t)((uintptr_t)(k) - (uintptr_t)&J2GG(as->J)->g)) #define mcpofs(as, k) \ ((intptr_t)((uintptr_t)(k) - (uintptr_t)(as->mcp - 1))) #define checkmcpofs(as, k) \ ((((mcpofs(as, k)>>2) + 0x00040000) >> 19) == 0) static Reg ra_allock(ASMState *as, intptr_t k, RegSet allow); /* Get/set from constant pointer. */ static void emit_lsptr(ASMState *as, A64Ins ai, Reg r, void *p) { /* First, check if ip + offset is in range. */ if ((ai & 0x00400000) && checkmcpofs(as, p)) { emit_d(as, A64I_LDRLx | A64F_S19(mcpofs(as, p)>>2), r); } else { Reg base = RID_GL; /* Next, try GL + offset. */ int64_t ofs = glofs(as, p); if (!emit_checkofs(ai, ofs)) { /* Else split up into base reg + offset. */ int64_t i64 = i64ptr(p); base = ra_allock(as, (i64 & ~0x7fffull), rset_exclude(RSET_GPR, r)); ofs = i64 & 0x7fffull; } emit_lso(as, ai, r, base, ofs); } } /* Load 64 bit IR constant into register. */ static void emit_loadk64(ASMState *as, Reg r, IRIns *ir) { const uint64_t *k = &ir_k64(ir)->u64; int64_t ofs; if (r >= RID_MAX_GPR) { uint32_t fpk = emit_isfpk64(*k); if (fpk != ~0u) { emit_d(as, A64I_FMOV_DI | A64F_FP8(fpk), (r & 31)); return; } } ofs = glofs(as, k); if (emit_checkofs(A64I_LDRx, ofs)) { emit_lso(as, r >= RID_MAX_GPR ? A64I_LDRd : A64I_LDRx, (r & 31), RID_GL, ofs); } else { if (r >= RID_MAX_GPR) { emit_dn(as, A64I_FMOV_D_R, (r & 31), RID_TMP); r = RID_TMP; } if (checkmcpofs(as, k)) emit_d(as, A64I_LDRLx | A64F_S19(mcpofs(as, k)>>2), r); else emit_loadu64(as, r, *k); } } /* Get/set global_State fields. */ #define emit_getgl(as, r, field) \ emit_lsptr(as, A64I_LDRx, (r), (void *)&J2G(as->J)->field) #define emit_setgl(as, r, field) \ emit_lsptr(as, A64I_STRx, (r), (void *)&J2G(as->J)->field) /* Trace number is determined from pc of exit instruction. */ #define emit_setvmstate(as, i) UNUSED(i) /* -- Emit control-flow instructions -------------------------------------- */ /* Label for internal jumps. */ typedef MCode *MCLabel; /* Return label pointing to current PC. */ #define emit_label(as) ((as)->mcp) static void emit_cond_branch(ASMState *as, A64CC cond, MCode *target) { MCode *p = --as->mcp; ptrdiff_t delta = target - p; lua_assert(((delta + 0x40000) >> 19) == 0); *p = A64I_BCC | A64F_S19(delta) | cond; } static void emit_branch(ASMState *as, A64Ins ai, MCode *target) { MCode *p = --as->mcp; ptrdiff_t delta = target - p; lua_assert(((delta + 0x02000000) >> 26) == 0); *p = ai | ((uint32_t)delta & 0x03ffffffu); } static void emit_tnb(ASMState *as, A64Ins ai, Reg r, uint32_t bit, MCode *target) { MCode *p = --as->mcp; ptrdiff_t delta = target - p; lua_assert(bit < 63 && ((delta + 0x2000) >> 14) == 0); if (bit > 31) ai |= A64I_X; *p = ai | A64F_BIT(bit & 31) | A64F_S14((uint32_t)delta & 0x3fffu) | r; } static void emit_cnb(ASMState *as, A64Ins ai, Reg r, MCode *target) { MCode *p = --as->mcp; ptrdiff_t delta = target - p; lua_assert(((delta + 0x40000) >> 19) == 0); *p = ai | A64F_S19(delta) | r; } #define emit_jmp(as, target) emit_branch(as, A64I_B, (target)) static void emit_call(ASMState *as, void *target) { MCode *p = --as->mcp; ptrdiff_t delta = (char *)target - (char *)p; if ((((delta>>2) + 0x02000000) >> 26) == 0) { *p = A64I_BL | ((uint32_t)(delta>>2) & 0x03ffffffu); } else { /* Target out of range: need indirect call. But don't use R0-R7. */ Reg r = ra_allock(as, i64ptr(target), RSET_RANGE(RID_X8, RID_MAX_GPR)-RSET_FIXED); *p = A64I_BLR | A64F_N(r); } } /* -- Emit generic operations --------------------------------------------- */ /* Generic move between two regs. */ static void emit_movrr(ASMState *as, IRIns *ir, Reg dst, Reg src) { if (dst >= RID_MAX_GPR) { emit_dn(as, irt_isnum(ir->t) ? A64I_FMOV_D : A64I_FMOV_S, (dst & 31), (src & 31)); return; } if (as->mcp != as->mcloop) { /* Swap early registers for loads/stores. */ MCode ins = *as->mcp, swp = (src^dst); if ((ins & 0xbf800000) == 0xb9000000) { if (!((ins ^ (dst << 5)) & 0x000003e0)) *as->mcp = ins ^ (swp << 5); /* Swap N in load/store. */ if (!(ins & 0x00400000) && !((ins ^ dst) & 0x0000001f)) *as->mcp = ins ^ swp; /* Swap D in store. */ } } emit_dm(as, A64I_MOVx, dst, src); } /* Generic load of register with base and (small) offset address. */ static void emit_loadofs(ASMState *as, IRIns *ir, Reg r, Reg base, int32_t ofs) { if (r >= RID_MAX_GPR) emit_lso(as, irt_isnum(ir->t) ? A64I_LDRd : A64I_LDRs, (r & 31), base, ofs); else emit_lso(as, irt_is64(ir->t) ? A64I_LDRx : A64I_LDRw, r, base, ofs); } /* Generic store of register with base and (small) offset address. */ static void emit_storeofs(ASMState *as, IRIns *ir, Reg r, Reg base, int32_t ofs) { if (r >= RID_MAX_GPR) emit_lso(as, irt_isnum(ir->t) ? A64I_STRd : A64I_STRs, (r & 31), base, ofs); else emit_lso(as, irt_is64(ir->t) ? A64I_STRx : A64I_STRw, r, base, ofs); } /* Emit an arithmetic operation with a constant operand. */ static void emit_opk(ASMState *as, A64Ins ai, Reg dest, Reg src, int32_t i, RegSet allow) { uint32_t k = emit_isk12(i); if (k) emit_dn(as, ai^k, dest, src); else emit_dnm(as, ai, dest, src, ra_allock(as, i, allow)); } /* Add offset to pointer. */ static void emit_addptr(ASMState *as, Reg r, int32_t ofs) { if (ofs) emit_opk(as, ofs < 0 ? A64I_SUBx : A64I_ADDx, r, r, ofs < 0 ? -ofs : ofs, rset_exclude(RSET_GPR, r)); } #define emit_spsub(as, ofs) emit_addptr(as, RID_SP, -(ofs)) luajit-2.1.0~beta3+dfsg.orig/src/lib_package.c0000644000175100017510000004233413101703334020500 0ustar ondrejondrej/* ** Package library. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h ** ** Major portions taken verbatim or adapted from the Lua interpreter. ** Copyright (C) 1994-2012 Lua.org, PUC-Rio. See Copyright Notice in lua.h */ #define lib_package_c #define LUA_LIB #include "lua.h" #include "lauxlib.h" #include "lualib.h" #include "lj_obj.h" #include "lj_err.h" #include "lj_lib.h" /* ------------------------------------------------------------------------ */ /* Error codes for ll_loadfunc. */ #define PACKAGE_ERR_LIB 1 #define PACKAGE_ERR_FUNC 2 #define PACKAGE_ERR_LOAD 3 /* Redefined in platform specific part. */ #define PACKAGE_LIB_FAIL "open" #define setprogdir(L) ((void)0) /* Symbol name prefixes. */ #define SYMPREFIX_CF "luaopen_%s" #define SYMPREFIX_BC "luaJIT_BC_%s" #if LJ_TARGET_DLOPEN #include static void ll_unloadlib(void *lib) { dlclose(lib); } static void *ll_load(lua_State *L, const char *path, int gl) { void *lib = dlopen(path, RTLD_NOW | (gl ? RTLD_GLOBAL : RTLD_LOCAL)); if (lib == NULL) lua_pushstring(L, dlerror()); return lib; } static lua_CFunction ll_sym(lua_State *L, void *lib, const char *sym) { lua_CFunction f = (lua_CFunction)dlsym(lib, sym); if (f == NULL) lua_pushstring(L, dlerror()); return f; } static const char *ll_bcsym(void *lib, const char *sym) { #if defined(RTLD_DEFAULT) if (lib == NULL) lib = RTLD_DEFAULT; #elif LJ_TARGET_OSX || LJ_TARGET_BSD if (lib == NULL) lib = (void *)(intptr_t)-2; #endif return (const char *)dlsym(lib, sym); } #elif LJ_TARGET_WINDOWS #define WIN32_LEAN_AND_MEAN #include #ifndef GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS #define GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS 4 #define GET_MODULE_HANDLE_EX_FLAG_UNCHANGED_REFCOUNT 2 BOOL WINAPI GetModuleHandleExA(DWORD, LPCSTR, HMODULE*); #endif #undef setprogdir static void setprogdir(lua_State *L) { char buff[MAX_PATH + 1]; char *lb; DWORD nsize = sizeof(buff); DWORD n = GetModuleFileNameA(NULL, buff, nsize); if (n == 0 || n == nsize || (lb = strrchr(buff, '\\')) == NULL) { luaL_error(L, "unable to get ModuleFileName"); } else { *lb = '\0'; luaL_gsub(L, lua_tostring(L, -1), LUA_EXECDIR, buff); lua_remove(L, -2); /* remove original string */ } } static void pusherror(lua_State *L) { DWORD error = GetLastError(); #if LJ_TARGET_XBOXONE wchar_t wbuffer[128]; char buffer[128*2]; if (FormatMessageW(FORMAT_MESSAGE_IGNORE_INSERTS | FORMAT_MESSAGE_FROM_SYSTEM, NULL, error, 0, wbuffer, sizeof(wbuffer)/sizeof(wchar_t), NULL) && WideCharToMultiByte(CP_ACP, 0, wbuffer, 128, buffer, 128*2, NULL, NULL)) #else char buffer[128]; if (FormatMessageA(FORMAT_MESSAGE_IGNORE_INSERTS | FORMAT_MESSAGE_FROM_SYSTEM, NULL, error, 0, buffer, sizeof(buffer), NULL)) #endif lua_pushstring(L, buffer); else lua_pushfstring(L, "system error %d\n", error); } static void ll_unloadlib(void *lib) { FreeLibrary((HINSTANCE)lib); } static void *ll_load(lua_State *L, const char *path, int gl) { HINSTANCE lib = LoadLibraryExA(path, NULL, 0); if (lib == NULL) pusherror(L); UNUSED(gl); return lib; } static lua_CFunction ll_sym(lua_State *L, void *lib, const char *sym) { lua_CFunction f = (lua_CFunction)GetProcAddress((HINSTANCE)lib, sym); if (f == NULL) pusherror(L); return f; } static const char *ll_bcsym(void *lib, const char *sym) { if (lib) { return (const char *)GetProcAddress((HINSTANCE)lib, sym); } else { HINSTANCE h = GetModuleHandleA(NULL); const char *p = (const char *)GetProcAddress(h, sym); if (p == NULL && GetModuleHandleExA(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS|GET_MODULE_HANDLE_EX_FLAG_UNCHANGED_REFCOUNT, (const char *)ll_bcsym, &h)) p = (const char *)GetProcAddress(h, sym); return p; } } #else #undef PACKAGE_LIB_FAIL #define PACKAGE_LIB_FAIL "absent" #define DLMSG "dynamic libraries not enabled; no support for target OS" static void ll_unloadlib(void *lib) { UNUSED(lib); } static void *ll_load(lua_State *L, const char *path, int gl) { UNUSED(path); UNUSED(gl); lua_pushliteral(L, DLMSG); return NULL; } static lua_CFunction ll_sym(lua_State *L, void *lib, const char *sym) { UNUSED(lib); UNUSED(sym); lua_pushliteral(L, DLMSG); return NULL; } static const char *ll_bcsym(void *lib, const char *sym) { UNUSED(lib); UNUSED(sym); return NULL; } #endif /* ------------------------------------------------------------------------ */ static void **ll_register(lua_State *L, const char *path) { void **plib; lua_pushfstring(L, "LOADLIB: %s", path); lua_gettable(L, LUA_REGISTRYINDEX); /* check library in registry? */ if (!lua_isnil(L, -1)) { /* is there an entry? */ plib = (void **)lua_touserdata(L, -1); } else { /* no entry yet; create one */ lua_pop(L, 1); plib = (void **)lua_newuserdata(L, sizeof(void *)); *plib = NULL; luaL_setmetatable(L, "_LOADLIB"); lua_pushfstring(L, "LOADLIB: %s", path); lua_pushvalue(L, -2); lua_settable(L, LUA_REGISTRYINDEX); } return plib; } static const char *mksymname(lua_State *L, const char *modname, const char *prefix) { const char *funcname; const char *mark = strchr(modname, *LUA_IGMARK); if (mark) modname = mark + 1; funcname = luaL_gsub(L, modname, ".", "_"); funcname = lua_pushfstring(L, prefix, funcname); lua_remove(L, -2); /* remove 'gsub' result */ return funcname; } static int ll_loadfunc(lua_State *L, const char *path, const char *name, int r) { void **reg = ll_register(L, path); if (*reg == NULL) *reg = ll_load(L, path, (*name == '*')); if (*reg == NULL) { return PACKAGE_ERR_LIB; /* Unable to load library. */ } else if (*name == '*') { /* Only load library into global namespace. */ lua_pushboolean(L, 1); return 0; } else { const char *sym = r ? name : mksymname(L, name, SYMPREFIX_CF); lua_CFunction f = ll_sym(L, *reg, sym); if (f) { lua_pushcfunction(L, f); return 0; } if (!r) { const char *bcdata = ll_bcsym(*reg, mksymname(L, name, SYMPREFIX_BC)); lua_pop(L, 1); if (bcdata) { if (luaL_loadbuffer(L, bcdata, LJ_MAX_BUF, name) != 0) return PACKAGE_ERR_LOAD; return 0; } } return PACKAGE_ERR_FUNC; /* Unable to find function. */ } } static int lj_cf_package_loadlib(lua_State *L) { const char *path = luaL_checkstring(L, 1); const char *init = luaL_checkstring(L, 2); int st = ll_loadfunc(L, path, init, 1); if (st == 0) { /* no errors? */ return 1; /* return the loaded function */ } else { /* error; error message is on stack top */ lua_pushnil(L); lua_insert(L, -2); lua_pushstring(L, (st == PACKAGE_ERR_LIB) ? PACKAGE_LIB_FAIL : "init"); return 3; /* return nil, error message, and where */ } } static int lj_cf_package_unloadlib(lua_State *L) { void **lib = (void **)luaL_checkudata(L, 1, "_LOADLIB"); if (*lib) ll_unloadlib(*lib); *lib = NULL; /* mark library as closed */ return 0; } /* ------------------------------------------------------------------------ */ static int readable(const char *filename) { FILE *f = fopen(filename, "r"); /* try to open file */ if (f == NULL) return 0; /* open failed */ fclose(f); return 1; } static const char *pushnexttemplate(lua_State *L, const char *path) { const char *l; while (*path == *LUA_PATHSEP) path++; /* skip separators */ if (*path == '\0') return NULL; /* no more templates */ l = strchr(path, *LUA_PATHSEP); /* find next separator */ if (l == NULL) l = path + strlen(path); lua_pushlstring(L, path, (size_t)(l - path)); /* template */ return l; } static const char *searchpath (lua_State *L, const char *name, const char *path, const char *sep, const char *dirsep) { luaL_Buffer msg; /* to build error message */ luaL_buffinit(L, &msg); if (*sep != '\0') /* non-empty separator? */ name = luaL_gsub(L, name, sep, dirsep); /* replace it by 'dirsep' */ while ((path = pushnexttemplate(L, path)) != NULL) { const char *filename = luaL_gsub(L, lua_tostring(L, -1), LUA_PATH_MARK, name); lua_remove(L, -2); /* remove path template */ if (readable(filename)) /* does file exist and is readable? */ return filename; /* return that file name */ lua_pushfstring(L, "\n\tno file " LUA_QS, filename); lua_remove(L, -2); /* remove file name */ luaL_addvalue(&msg); /* concatenate error msg. entry */ } luaL_pushresult(&msg); /* create error message */ return NULL; /* not found */ } static int lj_cf_package_searchpath(lua_State *L) { const char *f = searchpath(L, luaL_checkstring(L, 1), luaL_checkstring(L, 2), luaL_optstring(L, 3, "."), luaL_optstring(L, 4, LUA_DIRSEP)); if (f != NULL) { return 1; } else { /* error message is on top of the stack */ lua_pushnil(L); lua_insert(L, -2); return 2; /* return nil + error message */ } } static const char *findfile(lua_State *L, const char *name, const char *pname) { const char *path; lua_getfield(L, LUA_ENVIRONINDEX, pname); path = lua_tostring(L, -1); if (path == NULL) luaL_error(L, LUA_QL("package.%s") " must be a string", pname); return searchpath(L, name, path, ".", LUA_DIRSEP); } static void loaderror(lua_State *L, const char *filename) { luaL_error(L, "error loading module " LUA_QS " from file " LUA_QS ":\n\t%s", lua_tostring(L, 1), filename, lua_tostring(L, -1)); } static int lj_cf_package_loader_lua(lua_State *L) { const char *filename; const char *name = luaL_checkstring(L, 1); filename = findfile(L, name, "path"); if (filename == NULL) return 1; /* library not found in this path */ if (luaL_loadfile(L, filename) != 0) loaderror(L, filename); return 1; /* library loaded successfully */ } static int lj_cf_package_loader_c(lua_State *L) { const char *name = luaL_checkstring(L, 1); const char *filename = findfile(L, name, "cpath"); if (filename == NULL) return 1; /* library not found in this path */ if (ll_loadfunc(L, filename, name, 0) != 0) loaderror(L, filename); return 1; /* library loaded successfully */ } static int lj_cf_package_loader_croot(lua_State *L) { const char *filename; const char *name = luaL_checkstring(L, 1); const char *p = strchr(name, '.'); int st; if (p == NULL) return 0; /* is root */ lua_pushlstring(L, name, (size_t)(p - name)); filename = findfile(L, lua_tostring(L, -1), "cpath"); if (filename == NULL) return 1; /* root not found */ if ((st = ll_loadfunc(L, filename, name, 0)) != 0) { if (st != PACKAGE_ERR_FUNC) loaderror(L, filename); /* real error */ lua_pushfstring(L, "\n\tno module " LUA_QS " in file " LUA_QS, name, filename); return 1; /* function not found */ } return 1; } static int lj_cf_package_loader_preload(lua_State *L) { const char *name = luaL_checkstring(L, 1); lua_getfield(L, LUA_ENVIRONINDEX, "preload"); if (!lua_istable(L, -1)) luaL_error(L, LUA_QL("package.preload") " must be a table"); lua_getfield(L, -1, name); if (lua_isnil(L, -1)) { /* Not found? */ const char *bcname = mksymname(L, name, SYMPREFIX_BC); const char *bcdata = ll_bcsym(NULL, bcname); if (bcdata == NULL || luaL_loadbuffer(L, bcdata, LJ_MAX_BUF, name) != 0) lua_pushfstring(L, "\n\tno field package.preload['%s']", name); } return 1; } /* ------------------------------------------------------------------------ */ #define sentinel ((void *)0x4004) static int lj_cf_package_require(lua_State *L) { const char *name = luaL_checkstring(L, 1); int i; lua_settop(L, 1); /* _LOADED table will be at index 2 */ lua_getfield(L, LUA_REGISTRYINDEX, "_LOADED"); lua_getfield(L, 2, name); if (lua_toboolean(L, -1)) { /* is it there? */ if (lua_touserdata(L, -1) == sentinel) /* check loops */ luaL_error(L, "loop or previous error loading module " LUA_QS, name); return 1; /* package is already loaded */ } /* else must load it; iterate over available loaders */ lua_getfield(L, LUA_ENVIRONINDEX, "loaders"); if (!lua_istable(L, -1)) luaL_error(L, LUA_QL("package.loaders") " must be a table"); lua_pushliteral(L, ""); /* error message accumulator */ for (i = 1; ; i++) { lua_rawgeti(L, -2, i); /* get a loader */ if (lua_isnil(L, -1)) luaL_error(L, "module " LUA_QS " not found:%s", name, lua_tostring(L, -2)); lua_pushstring(L, name); lua_call(L, 1, 1); /* call it */ if (lua_isfunction(L, -1)) /* did it find module? */ break; /* module loaded successfully */ else if (lua_isstring(L, -1)) /* loader returned error message? */ lua_concat(L, 2); /* accumulate it */ else lua_pop(L, 1); } lua_pushlightuserdata(L, sentinel); lua_setfield(L, 2, name); /* _LOADED[name] = sentinel */ lua_pushstring(L, name); /* pass name as argument to module */ lua_call(L, 1, 1); /* run loaded module */ if (!lua_isnil(L, -1)) /* non-nil return? */ lua_setfield(L, 2, name); /* _LOADED[name] = returned value */ lua_getfield(L, 2, name); if (lua_touserdata(L, -1) == sentinel) { /* module did not set a value? */ lua_pushboolean(L, 1); /* use true as result */ lua_pushvalue(L, -1); /* extra copy to be returned */ lua_setfield(L, 2, name); /* _LOADED[name] = true */ } lj_lib_checkfpu(L); return 1; } /* ------------------------------------------------------------------------ */ static void setfenv(lua_State *L) { lua_Debug ar; if (lua_getstack(L, 1, &ar) == 0 || lua_getinfo(L, "f", &ar) == 0 || /* get calling function */ lua_iscfunction(L, -1)) luaL_error(L, LUA_QL("module") " not called from a Lua function"); lua_pushvalue(L, -2); lua_setfenv(L, -2); lua_pop(L, 1); } static void dooptions(lua_State *L, int n) { int i; for (i = 2; i <= n; i++) { lua_pushvalue(L, i); /* get option (a function) */ lua_pushvalue(L, -2); /* module */ lua_call(L, 1, 0); } } static void modinit(lua_State *L, const char *modname) { const char *dot; lua_pushvalue(L, -1); lua_setfield(L, -2, "_M"); /* module._M = module */ lua_pushstring(L, modname); lua_setfield(L, -2, "_NAME"); dot = strrchr(modname, '.'); /* look for last dot in module name */ if (dot == NULL) dot = modname; else dot++; /* set _PACKAGE as package name (full module name minus last part) */ lua_pushlstring(L, modname, (size_t)(dot - modname)); lua_setfield(L, -2, "_PACKAGE"); } static int lj_cf_package_module(lua_State *L) { const char *modname = luaL_checkstring(L, 1); int lastarg = (int)(L->top - L->base); luaL_pushmodule(L, modname, 1); lua_getfield(L, -1, "_NAME"); if (!lua_isnil(L, -1)) { /* Module already initialized? */ lua_pop(L, 1); } else { lua_pop(L, 1); modinit(L, modname); } lua_pushvalue(L, -1); setfenv(L); dooptions(L, lastarg); return LJ_52; } static int lj_cf_package_seeall(lua_State *L) { luaL_checktype(L, 1, LUA_TTABLE); if (!lua_getmetatable(L, 1)) { lua_createtable(L, 0, 1); /* create new metatable */ lua_pushvalue(L, -1); lua_setmetatable(L, 1); } lua_pushvalue(L, LUA_GLOBALSINDEX); lua_setfield(L, -2, "__index"); /* mt.__index = _G */ return 0; } /* ------------------------------------------------------------------------ */ #define AUXMARK "\1" static void setpath(lua_State *L, const char *fieldname, const char *envname, const char *def, int noenv) { #if LJ_TARGET_CONSOLE const char *path = NULL; UNUSED(envname); #else const char *path = getenv(envname); #endif if (path == NULL || noenv) { lua_pushstring(L, def); } else { path = luaL_gsub(L, path, LUA_PATHSEP LUA_PATHSEP, LUA_PATHSEP AUXMARK LUA_PATHSEP); luaL_gsub(L, path, AUXMARK, def); lua_remove(L, -2); } setprogdir(L); lua_setfield(L, -2, fieldname); } static const luaL_Reg package_lib[] = { { "loadlib", lj_cf_package_loadlib }, { "searchpath", lj_cf_package_searchpath }, { "seeall", lj_cf_package_seeall }, { NULL, NULL } }; static const luaL_Reg package_global[] = { { "module", lj_cf_package_module }, { "require", lj_cf_package_require }, { NULL, NULL } }; static const lua_CFunction package_loaders[] = { lj_cf_package_loader_preload, lj_cf_package_loader_lua, lj_cf_package_loader_c, lj_cf_package_loader_croot, NULL }; LUALIB_API int luaopen_package(lua_State *L) { int i; int noenv; luaL_newmetatable(L, "_LOADLIB"); lj_lib_pushcf(L, lj_cf_package_unloadlib, 1); lua_setfield(L, -2, "__gc"); luaL_register(L, LUA_LOADLIBNAME, package_lib); lua_copy(L, -1, LUA_ENVIRONINDEX); lua_createtable(L, sizeof(package_loaders)/sizeof(package_loaders[0])-1, 0); for (i = 0; package_loaders[i] != NULL; i++) { lj_lib_pushcf(L, package_loaders[i], 1); lua_rawseti(L, -2, i+1); } #if LJ_52 lua_pushvalue(L, -1); lua_setfield(L, -3, "searchers"); #endif lua_setfield(L, -2, "loaders"); lua_getfield(L, LUA_REGISTRYINDEX, "LUA_NOENV"); noenv = lua_toboolean(L, -1); lua_pop(L, 1); setpath(L, "path", LUA_PATH, LUA_PATH_DEFAULT, noenv); setpath(L, "cpath", LUA_CPATH, LUA_CPATH_DEFAULT, noenv); lua_pushliteral(L, LUA_PATH_CONFIG); lua_setfield(L, -2, "config"); luaL_findtable(L, LUA_REGISTRYINDEX, "_LOADED", 16); lua_setfield(L, -2, "loaded"); luaL_findtable(L, LUA_REGISTRYINDEX, "_PRELOAD", 4); lua_setfield(L, -2, "preload"); lua_pushvalue(L, LUA_GLOBALSINDEX); luaL_register(L, NULL, package_global); lua_pop(L, 1); return 1; } luajit-2.1.0~beta3+dfsg.orig/src/lj_ctype.h0000644000175100017510000004101113101703334020064 0ustar ondrejondrej/* ** C type management. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_CTYPE_H #define _LJ_CTYPE_H #include "lj_obj.h" #include "lj_gc.h" #if LJ_HASFFI /* -- C type definitions -------------------------------------------------- */ /* C type numbers. Highest 4 bits of C type info. ORDER CT. */ enum { /* Externally visible types. */ CT_NUM, /* Integer or floating-point numbers. */ CT_STRUCT, /* Struct or union. */ CT_PTR, /* Pointer or reference. */ CT_ARRAY, /* Array or complex type. */ CT_MAYCONVERT = CT_ARRAY, CT_VOID, /* Void type. */ CT_ENUM, /* Enumeration. */ CT_HASSIZE = CT_ENUM, /* Last type where ct->size holds the actual size. */ CT_FUNC, /* Function. */ CT_TYPEDEF, /* Typedef. */ CT_ATTRIB, /* Miscellaneous attributes. */ /* Internal element types. */ CT_FIELD, /* Struct/union field or function parameter. */ CT_BITFIELD, /* Struct/union bitfield. */ CT_CONSTVAL, /* Constant value. */ CT_EXTERN, /* External reference. */ CT_KW /* Keyword. */ }; LJ_STATIC_ASSERT(((int)CT_PTR & (int)CT_ARRAY) == CT_PTR); LJ_STATIC_ASSERT(((int)CT_STRUCT & (int)CT_ARRAY) == CT_STRUCT); /* ** ---------- info ------------ ** |type flags... A cid | size | sib | next | name | ** +----------------------------+--------+-------+-------+-------+-- ** |NUM BFcvUL.. A | size | | type | | ** |STRUCT ..cvU..V A | size | field | name? | name? | ** |PTR ..cvR... A cid | size | | type | | ** |ARRAY VCcv...V A cid | size | | type | | ** |VOID ..cv.... A | size | | type | | ** |ENUM A cid | size | const | name? | name? | ** |FUNC ....VS.. cc cid | nargs | field | name? | name? | ** |TYPEDEF cid | | | name | name | ** |ATTRIB attrnum cid | attr | sib? | type? | | ** |FIELD cid | offset | field | | name? | ** |BITFIELD B.cvU csz bsz pos | offset | field | | name? | ** |CONSTVAL c cid | value | const | name | name | ** |EXTERN cid | | sib? | name | name | ** |KW tok | size | | name | name | ** +----------------------------+--------+-------+-------+-------+-- ** ^^ ^^--- bits used for C type conversion dispatch */ /* C type info flags. TFFArrrr */ #define CTF_BOOL 0x08000000u /* Boolean: NUM, BITFIELD. */ #define CTF_FP 0x04000000u /* Floating-point: NUM. */ #define CTF_CONST 0x02000000u /* Const qualifier. */ #define CTF_VOLATILE 0x01000000u /* Volatile qualifier. */ #define CTF_UNSIGNED 0x00800000u /* Unsigned: NUM, BITFIELD. */ #define CTF_LONG 0x00400000u /* Long: NUM. */ #define CTF_VLA 0x00100000u /* Variable-length: ARRAY, STRUCT. */ #define CTF_REF 0x00800000u /* Reference: PTR. */ #define CTF_VECTOR 0x08000000u /* Vector: ARRAY. */ #define CTF_COMPLEX 0x04000000u /* Complex: ARRAY. */ #define CTF_UNION 0x00800000u /* Union: STRUCT. */ #define CTF_VARARG 0x00800000u /* Vararg: FUNC. */ #define CTF_SSEREGPARM 0x00400000u /* SSE register parameters: FUNC. */ #define CTF_QUAL (CTF_CONST|CTF_VOLATILE) #define CTF_ALIGN (CTMASK_ALIGN< 0 ? CTF_UNSIGNED : 0) /* Flags used in parser. .F.Ammvf cp->attr */ #define CTFP_ALIGNED 0x00000001u /* cp->attr + ALIGN */ #define CTFP_PACKED 0x00000002u /* cp->attr */ /* ...C...f cp->fattr */ #define CTFP_CCONV 0x00000001u /* cp->fattr + CCONV/[SSE]REGPARM */ /* C type info bitfields. */ #define CTMASK_CID 0x0000ffffu /* Max. 65536 type IDs. */ #define CTMASK_NUM 0xf0000000u /* Max. 16 type numbers. */ #define CTSHIFT_NUM 28 #define CTMASK_ALIGN 15 /* Max. alignment is 2^15. */ #define CTSHIFT_ALIGN 16 #define CTMASK_ATTRIB 255 /* Max. 256 attributes. */ #define CTSHIFT_ATTRIB 16 #define CTMASK_CCONV 3 /* Max. 4 calling conventions. */ #define CTSHIFT_CCONV 16 #define CTMASK_REGPARM 3 /* Max. 0-3 regparms. */ #define CTSHIFT_REGPARM 18 /* Bitfields only used in parser. */ #define CTMASK_VSIZEP 15 /* Max. vector size is 2^15. */ #define CTSHIFT_VSIZEP 4 #define CTMASK_MSIZEP 255 /* Max. type size (via mode) is 128. */ #define CTSHIFT_MSIZEP 8 /* Info bits for BITFIELD. Max. size of bitfield is 64 bits. */ #define CTBSZ_MAX 32 /* Max. size of bitfield is 32 bit. */ #define CTBSZ_FIELD 127 /* Temp. marker for regular field. */ #define CTMASK_BITPOS 127 #define CTMASK_BITBSZ 127 #define CTMASK_BITCSZ 127 #define CTSHIFT_BITPOS 0 #define CTSHIFT_BITBSZ 8 #define CTSHIFT_BITCSZ 16 #define CTF_INSERT(info, field, val) \ info = (info & ~(CTMASK_##field<> CTSHIFT_NUM) #define ctype_cid(info) ((CTypeID)((info) & CTMASK_CID)) #define ctype_align(info) (((info) >> CTSHIFT_ALIGN) & CTMASK_ALIGN) #define ctype_attrib(info) (((info) >> CTSHIFT_ATTRIB) & CTMASK_ATTRIB) #define ctype_bitpos(info) (((info) >> CTSHIFT_BITPOS) & CTMASK_BITPOS) #define ctype_bitbsz(info) (((info) >> CTSHIFT_BITBSZ) & CTMASK_BITBSZ) #define ctype_bitcsz(info) (((info) >> CTSHIFT_BITCSZ) & CTMASK_BITCSZ) #define ctype_vsizeP(info) (((info) >> CTSHIFT_VSIZEP) & CTMASK_VSIZEP) #define ctype_msizeP(info) (((info) >> CTSHIFT_MSIZEP) & CTMASK_MSIZEP) #define ctype_cconv(info) (((info) >> CTSHIFT_CCONV) & CTMASK_CCONV) /* Simple type checks. */ #define ctype_isnum(info) (ctype_type((info)) == CT_NUM) #define ctype_isvoid(info) (ctype_type((info)) == CT_VOID) #define ctype_isptr(info) (ctype_type((info)) == CT_PTR) #define ctype_isarray(info) (ctype_type((info)) == CT_ARRAY) #define ctype_isstruct(info) (ctype_type((info)) == CT_STRUCT) #define ctype_isfunc(info) (ctype_type((info)) == CT_FUNC) #define ctype_isenum(info) (ctype_type((info)) == CT_ENUM) #define ctype_istypedef(info) (ctype_type((info)) == CT_TYPEDEF) #define ctype_isattrib(info) (ctype_type((info)) == CT_ATTRIB) #define ctype_isfield(info) (ctype_type((info)) == CT_FIELD) #define ctype_isbitfield(info) (ctype_type((info)) == CT_BITFIELD) #define ctype_isconstval(info) (ctype_type((info)) == CT_CONSTVAL) #define ctype_isextern(info) (ctype_type((info)) == CT_EXTERN) #define ctype_hassize(info) (ctype_type((info)) <= CT_HASSIZE) /* Combined type and flag checks. */ #define ctype_isinteger(info) \ (((info) & (CTMASK_NUM|CTF_BOOL|CTF_FP)) == CTINFO(CT_NUM, 0)) #define ctype_isinteger_or_bool(info) \ (((info) & (CTMASK_NUM|CTF_FP)) == CTINFO(CT_NUM, 0)) #define ctype_isbool(info) \ (((info) & (CTMASK_NUM|CTF_BOOL)) == CTINFO(CT_NUM, CTF_BOOL)) #define ctype_isfp(info) \ (((info) & (CTMASK_NUM|CTF_FP)) == CTINFO(CT_NUM, CTF_FP)) #define ctype_ispointer(info) \ ((ctype_type(info) >> 1) == (CT_PTR >> 1)) /* Pointer or array. */ #define ctype_isref(info) \ (((info) & (CTMASK_NUM|CTF_REF)) == CTINFO(CT_PTR, CTF_REF)) #define ctype_isrefarray(info) \ (((info) & (CTMASK_NUM|CTF_VECTOR|CTF_COMPLEX)) == CTINFO(CT_ARRAY, 0)) #define ctype_isvector(info) \ (((info) & (CTMASK_NUM|CTF_VECTOR)) == CTINFO(CT_ARRAY, CTF_VECTOR)) #define ctype_iscomplex(info) \ (((info) & (CTMASK_NUM|CTF_COMPLEX)) == CTINFO(CT_ARRAY, CTF_COMPLEX)) #define ctype_isvltype(info) \ (((info) & ((CTMASK_NUM|CTF_VLA) - (2u<") _(STRING, "") \ _(INTEGER, "") _(EOF, "") \ _(OROR, "||") _(ANDAND, "&&") _(EQ, "==") _(NE, "!=") \ _(LE, "<=") _(GE, ">=") _(SHL, "<<") _(SHR, ">>") _(DEREF, "->") /* Simple declaration specifiers. */ #define CDSDEF(_) \ _(VOID) _(BOOL) _(CHAR) _(INT) _(FP) \ _(LONG) _(LONGLONG) _(SHORT) _(COMPLEX) _(SIGNED) _(UNSIGNED) \ _(CONST) _(VOLATILE) _(RESTRICT) _(INLINE) \ _(TYPEDEF) _(EXTERN) _(STATIC) _(AUTO) _(REGISTER) /* C keywords. */ #define CKWDEF(_) \ CDSDEF(_) _(EXTENSION) _(ASM) _(ATTRIBUTE) \ _(DECLSPEC) _(CCDECL) _(PTRSZ) \ _(STRUCT) _(UNION) _(ENUM) \ _(SIZEOF) _(ALIGNOF) /* C token numbers. */ enum { CTOK_OFS = 255, #define CTOKNUM(name, sym) CTOK_##name, #define CKWNUM(name) CTOK_##name, CTOKDEF(CTOKNUM) CKWDEF(CKWNUM) #undef CTOKNUM #undef CKWNUM CTOK_FIRSTDECL = CTOK_VOID, CTOK_FIRSTSCL = CTOK_TYPEDEF, CTOK_LASTDECLFLAG = CTOK_REGISTER, CTOK_LASTDECL = CTOK_ENUM }; /* Declaration specifier flags. */ enum { #define CDSFLAG(name) CDF_##name = (1u << (CTOK_##name - CTOK_FIRSTDECL)), CDSDEF(CDSFLAG) #undef CDSFLAG CDF__END }; #define CDF_SCL (CDF_TYPEDEF|CDF_EXTERN|CDF_STATIC|CDF_AUTO|CDF_REGISTER) /* -- C type management --------------------------------------------------- */ #define ctype_ctsG(g) (mref((g)->ctype_state, CTState)) /* Get C type state. */ static LJ_AINLINE CTState *ctype_cts(lua_State *L) { CTState *cts = ctype_ctsG(G(L)); cts->L = L; /* Save L for errors and allocations. */ return cts; } /* Save and restore state of C type table. */ #define LJ_CTYPE_SAVE(cts) CTState savects_ = *(cts) #define LJ_CTYPE_RESTORE(cts) \ ((cts)->top = savects_.top, \ memcpy((cts)->hash, savects_.hash, sizeof(savects_.hash))) /* Check C type ID for validity when assertions are enabled. */ static LJ_AINLINE CTypeID ctype_check(CTState *cts, CTypeID id) { lua_assert(id > 0 && id < cts->top); UNUSED(cts); return id; } /* Get C type for C type ID. */ static LJ_AINLINE CType *ctype_get(CTState *cts, CTypeID id) { return &cts->tab[ctype_check(cts, id)]; } /* Get C type ID for a C type. */ #define ctype_typeid(cts, ct) ((CTypeID)((ct) - (cts)->tab)) /* Get child C type. */ static LJ_AINLINE CType *ctype_child(CTState *cts, CType *ct) { lua_assert(!(ctype_isvoid(ct->info) || ctype_isstruct(ct->info) || ctype_isbitfield(ct->info))); /* These don't have children. */ return ctype_get(cts, ctype_cid(ct->info)); } /* Get raw type for a C type ID. */ static LJ_AINLINE CType *ctype_raw(CTState *cts, CTypeID id) { CType *ct = ctype_get(cts, id); while (ctype_isattrib(ct->info)) ct = ctype_child(cts, ct); return ct; } /* Get raw type of the child of a C type. */ static LJ_AINLINE CType *ctype_rawchild(CTState *cts, CType *ct) { do { ct = ctype_child(cts, ct); } while (ctype_isattrib(ct->info)); return ct; } /* Set the name of a C type table element. */ static LJ_AINLINE void ctype_setname(CType *ct, GCstr *s) { /* NOBARRIER: mark string as fixed -- the C type table is never collected. */ fixstring(s); setgcref(ct->name, obj2gco(s)); } LJ_FUNC CTypeID lj_ctype_new(CTState *cts, CType **ctp); LJ_FUNC CTypeID lj_ctype_intern(CTState *cts, CTInfo info, CTSize size); LJ_FUNC void lj_ctype_addname(CTState *cts, CType *ct, CTypeID id); LJ_FUNC CTypeID lj_ctype_getname(CTState *cts, CType **ctp, GCstr *name, uint32_t tmask); LJ_FUNC CType *lj_ctype_getfieldq(CTState *cts, CType *ct, GCstr *name, CTSize *ofs, CTInfo *qual); #define lj_ctype_getfield(cts, ct, name, ofs) \ lj_ctype_getfieldq((cts), (ct), (name), (ofs), NULL) LJ_FUNC CType *lj_ctype_rawref(CTState *cts, CTypeID id); LJ_FUNC CTSize lj_ctype_size(CTState *cts, CTypeID id); LJ_FUNC CTSize lj_ctype_vlsize(CTState *cts, CType *ct, CTSize nelem); LJ_FUNC CTInfo lj_ctype_info(CTState *cts, CTypeID id, CTSize *szp); LJ_FUNC cTValue *lj_ctype_meta(CTState *cts, CTypeID id, MMS mm); LJ_FUNC GCstr *lj_ctype_repr(lua_State *L, CTypeID id, GCstr *name); LJ_FUNC GCstr *lj_ctype_repr_int64(lua_State *L, uint64_t n, int isunsigned); LJ_FUNC GCstr *lj_ctype_repr_complex(lua_State *L, void *sp, CTSize size); LJ_FUNC CTState *lj_ctype_init(lua_State *L); LJ_FUNC void lj_ctype_freestate(global_State *g); #endif #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_strfmt_num.c0000644000175100017510000004760213101703334021145 0ustar ondrejondrej/* ** String formatting for floating-point numbers. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h ** Contributed by Peter Cawley. */ #include #define lj_strfmt_num_c #define LUA_CORE #include "lj_obj.h" #include "lj_buf.h" #include "lj_str.h" #include "lj_strfmt.h" /* -- Precomputed tables -------------------------------------------------- */ /* Rescale factors to push the exponent of a number towards zero. */ #define RESCALE_EXPONENTS(P, N) \ P(308), P(289), P(270), P(250), P(231), P(212), P(193), P(173), P(154), \ P(135), P(115), P(96), P(77), P(58), P(38), P(0), P(0), P(0), N(39), N(58), \ N(77), N(96), N(116), N(135), N(154), N(174), N(193), N(212), N(231), \ N(251), N(270), N(289) #define ONE_E_P(X) 1e+0 ## X #define ONE_E_N(X) 1e-0 ## X static const int16_t rescale_e[] = { RESCALE_EXPONENTS(-, +) }; static const double rescale_n[] = { RESCALE_EXPONENTS(ONE_E_P, ONE_E_N) }; #undef ONE_E_N #undef ONE_E_P /* ** For p in range -70 through 57, this table encodes pairs (m, e) such that ** 4*2^p <= (uint8_t)m*10^e, and is the smallest value for which this holds. */ static const int8_t four_ulp_m_e[] = { 34, -21, 68, -21, 14, -20, 28, -20, 55, -20, 2, -19, 3, -19, 5, -19, 9, -19, -82, -18, 35, -18, 7, -17, -117, -17, 28, -17, 56, -17, 112, -16, -33, -16, 45, -16, 89, -16, -78, -15, 36, -15, 72, -15, -113, -14, 29, -14, 57, -14, 114, -13, -28, -13, 46, -13, 91, -12, -74, -12, 37, -12, 73, -12, 15, -11, 3, -11, 59, -11, 2, -10, 3, -10, 5, -10, 1, -9, -69, -9, 38, -9, 75, -9, 15, -7, 3, -7, 6, -7, 12, -6, -17, -7, 48, -7, 96, -7, -65, -6, 39, -6, 77, -6, -103, -5, 31, -5, 62, -5, 123, -4, -11, -4, 49, -4, 98, -4, -60, -3, 4, -2, 79, -3, 16, -2, 32, -2, 63, -2, 2, -1, 25, 0, 5, 1, 1, 2, 2, 2, 4, 2, 8, 2, 16, 2, 32, 2, 64, 2, -128, 2, 26, 2, 52, 2, 103, 3, -51, 3, 41, 4, 82, 4, -92, 4, 33, 4, 66, 4, -124, 5, 27, 5, 53, 5, 105, 6, 21, 6, 42, 6, 84, 6, 17, 7, 34, 7, 68, 7, 2, 8, 3, 8, 6, 8, 108, 9, -41, 9, 43, 10, 86, 9, -84, 10, 35, 10, 69, 10, -118, 11, 28, 11, 55, 12, 11, 13, 22, 13, 44, 13, 88, 13, -80, 13, 36, 13, 71, 13, -115, 14, 29, 14, 57, 14, 113, 15, -30, 15, 46, 15, 91, 15, 19, 16, 37, 16, 73, 16, 2, 17, 3, 17, 6, 17 }; /* min(2^32-1, 10^e-1) for e in range 0 through 10 */ static uint32_t ndigits_dec_threshold[] = { 0, 9U, 99U, 999U, 9999U, 99999U, 999999U, 9999999U, 99999999U, 999999999U, 0xffffffffU }; /* -- Helper functions ---------------------------------------------------- */ /* Compute the number of digits in the decimal representation of x. */ static MSize ndigits_dec(uint32_t x) { MSize t = ((lj_fls(x | 1) * 77) >> 8) + 1; /* 2^8/77 is roughly log2(10) */ return t + (x > ndigits_dec_threshold[t]); } #define WINT_R(x, sh, sc) \ { uint32_t d = (x*(((1<>sh; x -= d*sc; *p++ = (char)('0'+d); } /* Write 9-digit unsigned integer to buffer. */ static char *lj_strfmt_wuint9(char *p, uint32_t u) { uint32_t v = u / 10000, w; u -= v * 10000; w = v / 10000; v -= w * 10000; *p++ = (char)('0'+w); WINT_R(v, 23, 1000) WINT_R(v, 12, 100) WINT_R(v, 10, 10) *p++ = (char)('0'+v); WINT_R(u, 23, 1000) WINT_R(u, 12, 100) WINT_R(u, 10, 10) *p++ = (char)('0'+u); return p; } #undef WINT_R /* -- Extended precision arithmetic --------------------------------------- */ /* ** The "nd" format is a fixed-precision decimal representation for numbers. It ** consists of up to 64 uint32_t values, with each uint32_t storing a value ** in the range [0, 1e9). A number in "nd" format consists of three variables: ** ** uint32_t nd[64]; ** uint32_t ndlo; ** uint32_t ndhi; ** ** The integral part of the number is stored in nd[0 ... ndhi], the value of ** which is sum{i in [0, ndhi] | nd[i] * 10^(9*i)}. If the fractional part of ** the number is zero, ndlo is zero. Otherwise, the fractional part is stored ** in nd[ndlo ... 63], the value of which is taken to be ** sum{i in [ndlo, 63] | nd[i] * 10^(9*(i-64))}. ** ** If the array part had 128 elements rather than 64, then every double would ** have an exact representation in "nd" format. With 64 elements, all integral ** doubles have an exact representation, and all non-integral doubles have ** enough digits to make both %.99e and %.99f do the right thing. */ #if LJ_64 #define ND_MUL2K_MAX_SHIFT 29 #define ND_MUL2K_DIV1E9(val) ((uint32_t)((val) / 1000000000)) #else #define ND_MUL2K_MAX_SHIFT 11 #define ND_MUL2K_DIV1E9(val) ((uint32_t)((val) >> 9) / 1953125) #endif /* Multiply nd by 2^k and add carry_in (ndlo is assumed to be zero). */ static uint32_t nd_mul2k(uint32_t* nd, uint32_t ndhi, uint32_t k, uint32_t carry_in, SFormat sf) { uint32_t i, ndlo = 0, start = 1; /* Performance hacks. */ if (k > ND_MUL2K_MAX_SHIFT*2 && STRFMT_FP(sf) != STRFMT_FP(STRFMT_T_FP_F)) { start = ndhi - (STRFMT_PREC(sf) + 17) / 8; } /* Real logic. */ while (k >= ND_MUL2K_MAX_SHIFT) { for (i = ndlo; i <= ndhi; i++) { uint64_t val = ((uint64_t)nd[i] << ND_MUL2K_MAX_SHIFT) | carry_in; carry_in = ND_MUL2K_DIV1E9(val); nd[i] = (uint32_t)val - carry_in * 1000000000; } if (carry_in) { nd[++ndhi] = carry_in; carry_in = 0; if (start++ == ndlo) ++ndlo; } k -= ND_MUL2K_MAX_SHIFT; } if (k) { for (i = ndlo; i <= ndhi; i++) { uint64_t val = ((uint64_t)nd[i] << k) | carry_in; carry_in = ND_MUL2K_DIV1E9(val); nd[i] = (uint32_t)val - carry_in * 1000000000; } if (carry_in) nd[++ndhi] = carry_in; } return ndhi; } /* Divide nd by 2^k (ndlo is assumed to be zero). */ static uint32_t nd_div2k(uint32_t* nd, uint32_t ndhi, uint32_t k, SFormat sf) { uint32_t ndlo = 0, stop1 = ~0, stop2 = ~0; /* Performance hacks. */ if (!ndhi) { if (!nd[0]) { return 0; } else { uint32_t s = lj_ffs(nd[0]); if (s >= k) { nd[0] >>= k; return 0; } nd[0] >>= s; k -= s; } } if (k > 18) { if (STRFMT_FP(sf) == STRFMT_FP(STRFMT_T_FP_F)) { stop1 = 63 - (int32_t)STRFMT_PREC(sf) / 9; } else { int32_t floorlog2 = ndhi * 29 + lj_fls(nd[ndhi]) - k; int32_t floorlog10 = (int32_t)(floorlog2 * 0.30102999566398114); stop1 = 62 + (floorlog10 - (int32_t)STRFMT_PREC(sf)) / 9; stop2 = 61 + ndhi - (int32_t)STRFMT_PREC(sf) / 8; } } /* Real logic. */ while (k >= 9) { uint32_t i = ndhi, carry = 0; for (;;) { uint32_t val = nd[i]; nd[i] = (val >> 9) + carry; carry = (val & 0x1ff) * 1953125; if (i == ndlo) break; i = (i - 1) & 0x3f; } if (ndlo != stop1 && ndlo != stop2) { if (carry) { ndlo = (ndlo - 1) & 0x3f; nd[ndlo] = carry; } if (!nd[ndhi]) { ndhi = (ndhi - 1) & 0x3f; stop2--; } } else if (!nd[ndhi]) { if (ndhi != ndlo) { ndhi = (ndhi - 1) & 0x3f; stop2--; } else return ndlo; } k -= 9; } if (k) { uint32_t mask = (1U << k) - 1, mul = 1000000000 >> k, i = ndhi, carry = 0; for (;;) { uint32_t val = nd[i]; nd[i] = (val >> k) + carry; carry = (val & mask) * mul; if (i == ndlo) break; i = (i - 1) & 0x3f; } if (carry) { ndlo = (ndlo - 1) & 0x3f; nd[ndlo] = carry; } } return ndlo; } /* Add m*10^e to nd (assumes ndlo <= e/9 <= ndhi and 0 <= m <= 9). */ static uint32_t nd_add_m10e(uint32_t* nd, uint32_t ndhi, uint8_t m, int32_t e) { uint32_t i, carry; if (e >= 0) { i = (uint32_t)e/9; carry = m * (ndigits_dec_threshold[e - (int32_t)i*9] + 1); } else { int32_t f = (e-8)/9; i = (uint32_t)(64 + f); carry = m * (ndigits_dec_threshold[e - f*9] + 1); } for (;;) { uint32_t val = nd[i] + carry; if (LJ_UNLIKELY(val >= 1000000000)) { val -= 1000000000; nd[i] = val; if (LJ_UNLIKELY(i == ndhi)) { ndhi = (ndhi + 1) & 0x3f; nd[ndhi] = 1; break; } carry = 1; i = (i + 1) & 0x3f; } else { nd[i] = val; break; } } return ndhi; } /* Test whether two "nd" values are equal in their most significant digits. */ static int nd_similar(uint32_t* nd, uint32_t ndhi, uint32_t* ref, MSize hilen, MSize prec) { char nd9[9], ref9[9]; if (hilen <= prec) { if (LJ_UNLIKELY(nd[ndhi] != *ref)) return 0; prec -= hilen; ref--; ndhi = (ndhi - 1) & 0x3f; if (prec >= 9) { if (LJ_UNLIKELY(nd[ndhi] != *ref)) return 0; prec -= 9; ref--; ndhi = (ndhi - 1) & 0x3f; } } else { prec -= hilen - 9; } lua_assert(prec < 9); lj_strfmt_wuint9(nd9, nd[ndhi]); lj_strfmt_wuint9(ref9, *ref); return !memcmp(nd9, ref9, prec) && (nd9[prec] < '5') == (ref9[prec] < '5'); } /* -- Formatted conversions to buffer ------------------------------------- */ /* Write formatted floating-point number to either sb or p. */ static char *lj_strfmt_wfnum(SBuf *sb, SFormat sf, lua_Number n, char *p) { MSize width = STRFMT_WIDTH(sf), prec = STRFMT_PREC(sf), len; TValue t; t.n = n; if (LJ_UNLIKELY((t.u32.hi << 1) >= 0xffe00000)) { /* Handle non-finite values uniformly for %a, %e, %f, %g. */ int prefix = 0, ch = (sf & STRFMT_F_UPPER) ? 0x202020 : 0; if (((t.u32.hi & 0x000fffff) | t.u32.lo) != 0) { ch ^= ('n' << 16) | ('a' << 8) | 'n'; if ((sf & STRFMT_F_SPACE)) prefix = ' '; } else { ch ^= ('i' << 16) | ('n' << 8) | 'f'; if ((t.u32.hi & 0x80000000)) prefix = '-'; else if ((sf & STRFMT_F_PLUS)) prefix = '+'; else if ((sf & STRFMT_F_SPACE)) prefix = ' '; } len = 3 + (prefix != 0); if (!p) p = lj_buf_more(sb, width > len ? width : len); if (!(sf & STRFMT_F_LEFT)) while (width-- > len) *p++ = ' '; if (prefix) *p++ = prefix; *p++ = (char)(ch >> 16); *p++ = (char)(ch >> 8); *p++ = (char)ch; } else if (STRFMT_FP(sf) == STRFMT_FP(STRFMT_T_FP_A)) { /* %a */ const char *hexdig = (sf & STRFMT_F_UPPER) ? "0123456789ABCDEFPX" : "0123456789abcdefpx"; int32_t e = (t.u32.hi >> 20) & 0x7ff; char prefix = 0, eprefix = '+'; if (t.u32.hi & 0x80000000) prefix = '-'; else if ((sf & STRFMT_F_PLUS)) prefix = '+'; else if ((sf & STRFMT_F_SPACE)) prefix = ' '; t.u32.hi &= 0xfffff; if (e) { t.u32.hi |= 0x100000; e -= 1023; } else if (t.u32.lo | t.u32.hi) { /* Non-zero denormal - normalise it. */ uint32_t shift = t.u32.hi ? 20-lj_fls(t.u32.hi) : 52-lj_fls(t.u32.lo); e = -1022 - shift; t.u64 <<= shift; } /* abs(n) == t.u64 * 2^(e - 52) */ /* If n != 0, bit 52 of t.u64 is set, and is the highest set bit. */ if ((int32_t)prec < 0) { /* Default precision: use smallest precision giving exact result. */ prec = t.u32.lo ? 13-lj_ffs(t.u32.lo)/4 : 5-lj_ffs(t.u32.hi|0x100000)/4; } else if (prec < 13) { /* Precision is sufficiently low as to maybe require rounding. */ t.u64 += (((uint64_t)1) << (51 - prec*4)); } if (e < 0) { eprefix = '-'; e = -e; } len = 5 + ndigits_dec((uint32_t)e) + prec + (prefix != 0) + ((prec | (sf & STRFMT_F_ALT)) != 0); if (!p) p = lj_buf_more(sb, width > len ? width : len); if (!(sf & (STRFMT_F_LEFT | STRFMT_F_ZERO))) { while (width-- > len) *p++ = ' '; } if (prefix) *p++ = prefix; *p++ = '0'; *p++ = hexdig[17]; /* x or X */ if ((sf & (STRFMT_F_LEFT | STRFMT_F_ZERO)) == STRFMT_F_ZERO) { while (width-- > len) *p++ = '0'; } *p++ = '0' + (t.u32.hi >> 20); /* Usually '1', sometimes '0' or '2'. */ if ((prec | (sf & STRFMT_F_ALT))) { /* Emit fractional part. */ char *q = p + 1 + prec; *p = '.'; if (prec < 13) t.u64 >>= (52 - prec*4); else while (prec > 13) p[prec--] = '0'; while (prec) { p[prec--] = hexdig[t.u64 & 15]; t.u64 >>= 4; } p = q; } *p++ = hexdig[16]; /* p or P */ *p++ = eprefix; /* + or - */ p = lj_strfmt_wint(p, e); } else { /* %e or %f or %g - begin by converting n to "nd" format. */ uint32_t nd[64]; uint32_t ndhi = 0, ndlo, i; int32_t e = (t.u32.hi >> 20) & 0x7ff, ndebias = 0; char prefix = 0, *q; if (t.u32.hi & 0x80000000) prefix = '-'; else if ((sf & STRFMT_F_PLUS)) prefix = '+'; else if ((sf & STRFMT_F_SPACE)) prefix = ' '; prec += ((int32_t)prec >> 31) & 7; /* Default precision is 6. */ if (STRFMT_FP(sf) == STRFMT_FP(STRFMT_T_FP_G)) { /* %g - decrement precision if non-zero (to make it like %e). */ prec--; prec ^= (uint32_t)((int32_t)prec >> 31); } if ((sf & STRFMT_T_FP_E) && prec < 14 && n != 0) { /* Precision is sufficiently low that rescaling will probably work. */ if ((ndebias = rescale_e[e >> 6])) { t.n = n * rescale_n[e >> 6]; if (LJ_UNLIKELY(!e)) t.n *= 1e10, ndebias -= 10; t.u64 -= 2; /* Convert 2ulp below (later we convert 2ulp above). */ nd[0] = 0x100000 | (t.u32.hi & 0xfffff); e = ((t.u32.hi >> 20) & 0x7ff) - 1075 - (ND_MUL2K_MAX_SHIFT < 29); goto load_t_lo; rescale_failed: t.n = n; e = (t.u32.hi >> 20) & 0x7ff; ndebias = ndhi = 0; } } nd[0] = t.u32.hi & 0xfffff; if (e == 0) e++; else nd[0] |= 0x100000; e -= 1043; if (t.u32.lo) { e -= 32 + (ND_MUL2K_MAX_SHIFT < 29); load_t_lo: #if ND_MUL2K_MAX_SHIFT >= 29 nd[0] = (nd[0] << 3) | (t.u32.lo >> 29); ndhi = nd_mul2k(nd, ndhi, 29, t.u32.lo & 0x1fffffff, sf); #elif ND_MUL2K_MAX_SHIFT >= 11 ndhi = nd_mul2k(nd, ndhi, 11, t.u32.lo >> 21, sf); ndhi = nd_mul2k(nd, ndhi, 11, (t.u32.lo >> 10) & 0x7ff, sf); ndhi = nd_mul2k(nd, ndhi, 11, (t.u32.lo << 1) & 0x7ff, sf); #else #error "ND_MUL2K_MAX_SHIFT too small" #endif } if (e >= 0) { ndhi = nd_mul2k(nd, ndhi, (uint32_t)e, 0, sf); ndlo = 0; } else { ndlo = nd_div2k(nd, ndhi, (uint32_t)-e, sf); if (ndhi && !nd[ndhi]) ndhi--; } /* abs(n) == nd * 10^ndebias (for slightly loose interpretation of ==) */ if ((sf & STRFMT_T_FP_E)) { /* %e or %g - assume %e and start by calculating nd's exponent (nde). */ char eprefix = '+'; int32_t nde = -1; MSize hilen; if (ndlo && !nd[ndhi]) { ndhi = 64; do {} while (!nd[--ndhi]); nde -= 64 * 9; } hilen = ndigits_dec(nd[ndhi]); nde += ndhi * 9 + hilen; if (ndebias) { /* ** Rescaling was performed, but this introduced some error, and might ** have pushed us across a rounding boundary. We check whether this ** error affected the result by introducing even more error (2ulp in ** either direction), and seeing whether a roundary boundary was ** crossed. Having already converted the -2ulp case, we save off its ** most significant digits, convert the +2ulp case, and compare them. */ int32_t eidx = e + 70 + (ND_MUL2K_MAX_SHIFT < 29) + (t.u32.lo >= 0xfffffffe && !(~t.u32.hi << 12)); const int8_t *m_e = four_ulp_m_e + eidx * 2; lua_assert(0 <= eidx && eidx < 128); nd[33] = nd[ndhi]; nd[32] = nd[(ndhi - 1) & 0x3f]; nd[31] = nd[(ndhi - 2) & 0x3f]; nd_add_m10e(nd, ndhi, (uint8_t)*m_e, m_e[1]); if (LJ_UNLIKELY(!nd_similar(nd, ndhi, nd + 33, hilen, prec + 1))) { goto rescale_failed; } } if ((int32_t)(prec - nde) < (0x3f & -(int32_t)ndlo) * 9) { /* Precision is sufficiently low as to maybe require rounding. */ ndhi = nd_add_m10e(nd, ndhi, 5, nde - prec - 1); nde += (hilen != ndigits_dec(nd[ndhi])); } nde += ndebias; if ((sf & STRFMT_T_FP_F)) { /* %g */ if ((int32_t)prec >= nde && nde >= -4) { if (nde < 0) ndhi = 0; prec -= nde; goto g_format_like_f; } else if (!(sf & STRFMT_F_ALT) && prec && width > 5) { /* Decrease precision in order to strip trailing zeroes. */ char tail[9]; uint32_t maxprec = hilen - 1 + ((ndhi - ndlo) & 0x3f) * 9; if (prec >= maxprec) prec = maxprec; else ndlo = (ndhi - (((int32_t)(prec - hilen) + 9) / 9)) & 0x3f; i = prec - hilen - (((ndhi - ndlo) & 0x3f) * 9) + 10; lj_strfmt_wuint9(tail, nd[ndlo]); while (prec && tail[--i] == '0') { prec--; if (!i) { if (ndlo == ndhi) { prec = 0; break; } lj_strfmt_wuint9(tail, nd[++ndlo]); i = 9; } } } } if (nde < 0) { /* Make nde non-negative. */ eprefix = '-'; nde = -nde; } len = 3 + prec + (prefix != 0) + ndigits_dec((uint32_t)nde) + (nde < 10) + ((prec | (sf & STRFMT_F_ALT)) != 0); if (!p) p = lj_buf_more(sb, (width > len ? width : len) + 5); if (!(sf & (STRFMT_F_LEFT | STRFMT_F_ZERO))) { while (width-- > len) *p++ = ' '; } if (prefix) *p++ = prefix; if ((sf & (STRFMT_F_LEFT | STRFMT_F_ZERO)) == STRFMT_F_ZERO) { while (width-- > len) *p++ = '0'; } q = lj_strfmt_wint(p + 1, nd[ndhi]); p[0] = p[1]; /* Put leading digit in the correct place. */ if ((prec | (sf & STRFMT_F_ALT))) { /* Emit fractional part. */ p[1] = '.'; p += 2; prec -= (MSize)(q - p); p = q; /* Account for digits already emitted. */ /* Then emit chunks of 9 digits (this may emit 8 digits too many). */ for (i = ndhi; (int32_t)prec > 0 && i != ndlo; prec -= 9) { i = (i - 1) & 0x3f; p = lj_strfmt_wuint9(p, nd[i]); } if ((sf & STRFMT_T_FP_F) && !(sf & STRFMT_F_ALT)) { /* %g (and not %#g) - strip trailing zeroes. */ p += (int32_t)prec & ((int32_t)prec >> 31); while (p[-1] == '0') p--; if (p[-1] == '.') p--; } else { /* %e (or %#g) - emit trailing zeroes. */ while ((int32_t)prec > 0) { *p++ = '0'; prec--; } p += (int32_t)prec; } } else { p++; } *p++ = (sf & STRFMT_F_UPPER) ? 'E' : 'e'; *p++ = eprefix; /* + or - */ if (nde < 10) *p++ = '0'; /* Always at least two digits of exponent. */ p = lj_strfmt_wint(p, nde); } else { /* %f (or, shortly, %g in %f style) */ if (prec < (MSize)(0x3f & -(int32_t)ndlo) * 9) { /* Precision is sufficiently low as to maybe require rounding. */ ndhi = nd_add_m10e(nd, ndhi, 5, 0 - prec - 1); } g_format_like_f: if ((sf & STRFMT_T_FP_E) && !(sf & STRFMT_F_ALT) && prec && width) { /* Decrease precision in order to strip trailing zeroes. */ if (ndlo) { /* nd has a fractional part; we need to look at its digits. */ char tail[9]; uint32_t maxprec = (64 - ndlo) * 9; if (prec >= maxprec) prec = maxprec; else ndlo = 64 - (prec + 8) / 9; i = prec - ((63 - ndlo) * 9); lj_strfmt_wuint9(tail, nd[ndlo]); while (prec && tail[--i] == '0') { prec--; if (!i) { if (ndlo == 63) { prec = 0; break; } lj_strfmt_wuint9(tail, nd[++ndlo]); i = 9; } } } else { /* nd has no fractional part, so precision goes straight to zero. */ prec = 0; } } len = ndhi * 9 + ndigits_dec(nd[ndhi]) + prec + (prefix != 0) + ((prec | (sf & STRFMT_F_ALT)) != 0); if (!p) p = lj_buf_more(sb, (width > len ? width : len) + 8); if (!(sf & (STRFMT_F_LEFT | STRFMT_F_ZERO))) { while (width-- > len) *p++ = ' '; } if (prefix) *p++ = prefix; if ((sf & (STRFMT_F_LEFT | STRFMT_F_ZERO)) == STRFMT_F_ZERO) { while (width-- > len) *p++ = '0'; } /* Emit integer part. */ p = lj_strfmt_wint(p, nd[ndhi]); i = ndhi; while (i) p = lj_strfmt_wuint9(p, nd[--i]); if ((prec | (sf & STRFMT_F_ALT))) { /* Emit fractional part. */ *p++ = '.'; /* Emit chunks of 9 digits (this may emit 8 digits too many). */ while ((int32_t)prec > 0 && i != ndlo) { i = (i - 1) & 0x3f; p = lj_strfmt_wuint9(p, nd[i]); prec -= 9; } if ((sf & STRFMT_T_FP_E) && !(sf & STRFMT_F_ALT)) { /* %g (and not %#g) - strip trailing zeroes. */ p += (int32_t)prec & ((int32_t)prec >> 31); while (p[-1] == '0') p--; if (p[-1] == '.') p--; } else { /* %f (or %#g) - emit trailing zeroes. */ while ((int32_t)prec > 0) { *p++ = '0'; prec--; } p += (int32_t)prec; } } } } if ((sf & STRFMT_F_LEFT)) while (width-- > len) *p++ = ' '; return p; } /* Add formatted floating-point number to buffer. */ SBuf *lj_strfmt_putfnum(SBuf *sb, SFormat sf, lua_Number n) { setsbufP(sb, lj_strfmt_wfnum(sb, sf, n, NULL)); return sb; } /* -- Conversions to strings ---------------------------------------------- */ /* Convert number to string. */ GCstr * LJ_FASTCALL lj_strfmt_num(lua_State *L, cTValue *o) { char buf[STRFMT_MAXBUF_NUM]; MSize len = (MSize)(lj_strfmt_wfnum(NULL, STRFMT_G14, o->n, buf) - buf); return lj_str_new(L, buf, len); } luajit-2.1.0~beta3+dfsg.orig/src/lj_cparse.h0000644000175100017510000000421313101703334020220 0ustar ondrejondrej/* ** C declaration parser. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_CPARSE_H #define _LJ_CPARSE_H #include "lj_obj.h" #include "lj_ctype.h" #if LJ_HASFFI /* C parser limits. */ #define CPARSE_MAX_BUF 32768 /* Max. token buffer size. */ #define CPARSE_MAX_DECLSTACK 100 /* Max. declaration stack depth. */ #define CPARSE_MAX_DECLDEPTH 20 /* Max. recursive declaration depth. */ #define CPARSE_MAX_PACKSTACK 7 /* Max. pack pragma stack depth. */ /* Flags for C parser mode. */ #define CPARSE_MODE_MULTI 1 /* Process multiple declarations. */ #define CPARSE_MODE_ABSTRACT 2 /* Accept abstract declarators. */ #define CPARSE_MODE_DIRECT 4 /* Accept direct declarators. */ #define CPARSE_MODE_FIELD 8 /* Accept field width in bits, too. */ #define CPARSE_MODE_NOIMPLICIT 16 /* Reject implicit declarations. */ #define CPARSE_MODE_SKIP 32 /* Skip definitions, ignore errors. */ typedef int CPChar; /* C parser character. Unsigned ext. from char. */ typedef int CPToken; /* C parser token. */ /* C parser internal value representation. */ typedef struct CPValue { union { int32_t i32; /* Value for CTID_INT32. */ uint32_t u32; /* Value for CTID_UINT32. */ }; CTypeID id; /* C Type ID of the value. */ } CPValue; /* C parser state. */ typedef struct CPState { CPChar c; /* Current character. */ CPToken tok; /* Current token. */ CPValue val; /* Token value. */ GCstr *str; /* Interned string of identifier/keyword. */ CType *ct; /* C type table entry. */ const char *p; /* Current position in input buffer. */ SBuf sb; /* String buffer for tokens. */ lua_State *L; /* Lua state. */ CTState *cts; /* C type state. */ TValue *param; /* C type parameters. */ const char *srcname; /* Current source name. */ BCLine linenumber; /* Input line counter. */ int depth; /* Recursive declaration depth. */ uint32_t tmask; /* Type mask for next identifier. */ uint32_t mode; /* C parser mode. */ uint8_t packstack[CPARSE_MAX_PACKSTACK]; /* Stack for pack pragmas. */ uint8_t curpack; /* Current position in pack pragma stack. */ } CPState; LJ_FUNC int lj_cparse(CPState *cp); #endif #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_ff.h0000644000175100017510000000055413101703334017342 0ustar ondrejondrej/* ** Fast function IDs. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_FF_H #define _LJ_FF_H /* Fast function ID. */ typedef enum { FF_LUA_ = FF_LUA, /* Lua function (must be 0). */ FF_C_ = FF_C, /* Regular C function (must be 1). */ #define FFDEF(name) FF_##name, #include "lj_ffdef.h" FF__MAX } FastFunc; #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_str.h0000644000175100017510000000134113101703334017552 0ustar ondrejondrej/* ** String handling. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_STR_H #define _LJ_STR_H #include #include "lj_obj.h" /* String helpers. */ LJ_FUNC int32_t LJ_FASTCALL lj_str_cmp(GCstr *a, GCstr *b); LJ_FUNC const char *lj_str_find(const char *s, const char *f, MSize slen, MSize flen); LJ_FUNC int lj_str_haspattern(GCstr *s); /* String interning. */ LJ_FUNC void lj_str_resize(lua_State *L, MSize newmask); LJ_FUNCA GCstr *lj_str_new(lua_State *L, const char *str, size_t len); LJ_FUNC void LJ_FASTCALL lj_str_free(global_State *g, GCstr *s); #define lj_str_newz(L, s) (lj_str_new(L, s, strlen(s))) #define lj_str_newlit(L, s) (lj_str_new(L, "" s, sizeof(s)-1)) #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_iropt.h0000644000175100017510000001343213101703334020103 0ustar ondrejondrej/* ** Common header for IR emitter and optimizations. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_IROPT_H #define _LJ_IROPT_H #include #include "lj_obj.h" #include "lj_jit.h" #if LJ_HASJIT /* IR emitter. */ LJ_FUNC void LJ_FASTCALL lj_ir_growtop(jit_State *J); LJ_FUNC TRef LJ_FASTCALL lj_ir_emit(jit_State *J); /* Save current IR in J->fold.ins, but do not emit it (yet). */ static LJ_AINLINE void lj_ir_set_(jit_State *J, uint16_t ot, IRRef1 a, IRRef1 b) { J->fold.ins.ot = ot; J->fold.ins.op1 = a; J->fold.ins.op2 = b; } #define lj_ir_set(J, ot, a, b) \ lj_ir_set_(J, (uint16_t)(ot), (IRRef1)(a), (IRRef1)(b)) /* Get ref of next IR instruction and optionally grow IR. ** Note: this may invalidate all IRIns*! */ static LJ_AINLINE IRRef lj_ir_nextins(jit_State *J) { IRRef ref = J->cur.nins; if (LJ_UNLIKELY(ref >= J->irtoplim)) lj_ir_growtop(J); J->cur.nins = ref + 1; return ref; } LJ_FUNC TRef lj_ir_ggfload(jit_State *J, IRType t, uintptr_t ofs); /* Interning of constants. */ LJ_FUNC TRef LJ_FASTCALL lj_ir_kint(jit_State *J, int32_t k); LJ_FUNC TRef lj_ir_k64(jit_State *J, IROp op, uint64_t u64); LJ_FUNC TRef lj_ir_knum_u64(jit_State *J, uint64_t u64); LJ_FUNC TRef lj_ir_knumint(jit_State *J, lua_Number n); LJ_FUNC TRef lj_ir_kint64(jit_State *J, uint64_t u64); LJ_FUNC TRef lj_ir_kgc(jit_State *J, GCobj *o, IRType t); LJ_FUNC TRef lj_ir_kptr_(jit_State *J, IROp op, void *ptr); LJ_FUNC TRef lj_ir_knull(jit_State *J, IRType t); LJ_FUNC TRef lj_ir_kslot(jit_State *J, TRef key, IRRef slot); LJ_FUNC TRef lj_ir_ktrace(jit_State *J); #if LJ_64 #define lj_ir_kintp(J, k) lj_ir_kint64(J, (uint64_t)(k)) #else #define lj_ir_kintp(J, k) lj_ir_kint(J, (int32_t)(k)) #endif static LJ_AINLINE TRef lj_ir_knum(jit_State *J, lua_Number n) { TValue tv; tv.n = n; return lj_ir_knum_u64(J, tv.u64); } #define lj_ir_kstr(J, str) lj_ir_kgc(J, obj2gco((str)), IRT_STR) #define lj_ir_ktab(J, tab) lj_ir_kgc(J, obj2gco((tab)), IRT_TAB) #define lj_ir_kfunc(J, func) lj_ir_kgc(J, obj2gco((func)), IRT_FUNC) #define lj_ir_kptr(J, ptr) lj_ir_kptr_(J, IR_KPTR, (ptr)) #define lj_ir_kkptr(J, ptr) lj_ir_kptr_(J, IR_KKPTR, (ptr)) /* Special FP constants. */ #define lj_ir_knum_zero(J) lj_ir_knum_u64(J, U64x(00000000,00000000)) #define lj_ir_knum_one(J) lj_ir_knum_u64(J, U64x(3ff00000,00000000)) #define lj_ir_knum_tobit(J) lj_ir_knum_u64(J, U64x(43380000,00000000)) /* Special 128 bit SIMD constants. */ #define lj_ir_ksimd(J, idx) \ lj_ir_ggfload(J, IRT_NUM, (uintptr_t)LJ_KSIMD(J, idx) - (uintptr_t)J2GG(J)) /* Access to constants. */ LJ_FUNC void lj_ir_kvalue(lua_State *L, TValue *tv, const IRIns *ir); /* Convert IR operand types. */ LJ_FUNC TRef LJ_FASTCALL lj_ir_tonumber(jit_State *J, TRef tr); LJ_FUNC TRef LJ_FASTCALL lj_ir_tonum(jit_State *J, TRef tr); LJ_FUNC TRef LJ_FASTCALL lj_ir_tostr(jit_State *J, TRef tr); /* Miscellaneous IR ops. */ LJ_FUNC int lj_ir_numcmp(lua_Number a, lua_Number b, IROp op); LJ_FUNC int lj_ir_strcmp(GCstr *a, GCstr *b, IROp op); LJ_FUNC void lj_ir_rollback(jit_State *J, IRRef ref); /* Emit IR instructions with on-the-fly optimizations. */ LJ_FUNC TRef LJ_FASTCALL lj_opt_fold(jit_State *J); LJ_FUNC TRef LJ_FASTCALL lj_opt_cse(jit_State *J); LJ_FUNC TRef LJ_FASTCALL lj_opt_cselim(jit_State *J, IRRef lim); /* Special return values for the fold functions. */ enum { NEXTFOLD, /* Couldn't fold, pass on. */ RETRYFOLD, /* Retry fold with modified fins. */ KINTFOLD, /* Return ref for int constant in fins->i. */ FAILFOLD, /* Guard would always fail. */ DROPFOLD, /* Guard eliminated. */ MAX_FOLD }; #define INTFOLD(k) ((J->fold.ins.i = (k)), (TRef)KINTFOLD) #define INT64FOLD(k) (lj_ir_kint64(J, (k))) #define CONDFOLD(cond) ((TRef)FAILFOLD + (TRef)(cond)) #define LEFTFOLD (J->fold.ins.op1) #define RIGHTFOLD (J->fold.ins.op2) #define CSEFOLD (lj_opt_cse(J)) #define EMITFOLD (lj_ir_emit(J)) /* Load/store forwarding. */ LJ_FUNC TRef LJ_FASTCALL lj_opt_fwd_aload(jit_State *J); LJ_FUNC TRef LJ_FASTCALL lj_opt_fwd_hload(jit_State *J); LJ_FUNC TRef LJ_FASTCALL lj_opt_fwd_uload(jit_State *J); LJ_FUNC TRef LJ_FASTCALL lj_opt_fwd_fload(jit_State *J); LJ_FUNC TRef LJ_FASTCALL lj_opt_fwd_xload(jit_State *J); LJ_FUNC TRef LJ_FASTCALL lj_opt_fwd_tab_len(jit_State *J); LJ_FUNC TRef LJ_FASTCALL lj_opt_fwd_hrefk(jit_State *J); LJ_FUNC int LJ_FASTCALL lj_opt_fwd_href_nokey(jit_State *J); LJ_FUNC int LJ_FASTCALL lj_opt_fwd_tptr(jit_State *J, IRRef lim); LJ_FUNC int lj_opt_fwd_wasnonnil(jit_State *J, IROpT loadop, IRRef xref); /* Dead-store elimination. */ LJ_FUNC TRef LJ_FASTCALL lj_opt_dse_ahstore(jit_State *J); LJ_FUNC TRef LJ_FASTCALL lj_opt_dse_ustore(jit_State *J); LJ_FUNC TRef LJ_FASTCALL lj_opt_dse_fstore(jit_State *J); LJ_FUNC TRef LJ_FASTCALL lj_opt_dse_xstore(jit_State *J); /* Narrowing. */ LJ_FUNC TRef LJ_FASTCALL lj_opt_narrow_convert(jit_State *J); LJ_FUNC TRef LJ_FASTCALL lj_opt_narrow_index(jit_State *J, TRef key); LJ_FUNC TRef LJ_FASTCALL lj_opt_narrow_toint(jit_State *J, TRef tr); LJ_FUNC TRef LJ_FASTCALL lj_opt_narrow_tobit(jit_State *J, TRef tr); #if LJ_HASFFI LJ_FUNC TRef LJ_FASTCALL lj_opt_narrow_cindex(jit_State *J, TRef key); #endif LJ_FUNC TRef lj_opt_narrow_arith(jit_State *J, TRef rb, TRef rc, TValue *vb, TValue *vc, IROp op); LJ_FUNC TRef lj_opt_narrow_unm(jit_State *J, TRef rc, TValue *vc); LJ_FUNC TRef lj_opt_narrow_mod(jit_State *J, TRef rb, TRef rc, TValue *vb, TValue *vc); LJ_FUNC TRef lj_opt_narrow_pow(jit_State *J, TRef rb, TRef rc, TValue *vb, TValue *vc); LJ_FUNC IRType lj_opt_narrow_forl(jit_State *J, cTValue *forbase); /* Optimization passes. */ LJ_FUNC void lj_opt_dce(jit_State *J); LJ_FUNC int lj_opt_loop(jit_State *J); #if LJ_SOFTFP || (LJ_32 && LJ_HASFFI) LJ_FUNC void lj_opt_split(jit_State *J); #else #define lj_opt_split(J) UNUSED(J) #endif LJ_FUNC void lj_opt_sink(jit_State *J); #endif #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_libdef.h0000644000175100017510000003052013101703334020170 0ustar ondrejondrej/* This is a generated file. DO NOT EDIT! */ #ifdef LJLIB_MODULE_base #undef LJLIB_MODULE_base static const lua_CFunction lj_lib_cf_base[] = { lj_ffh_assert, lj_ffh_next, lj_ffh_pairs, lj_ffh_ipairs_aux, lj_ffh_ipairs, lj_ffh_setmetatable, lj_cf_getfenv, lj_cf_setfenv, lj_ffh_rawget, lj_cf_rawset, lj_cf_rawequal, lj_cf_unpack, lj_cf_select, lj_ffh_tonumber, lj_ffh_tostring, lj_cf_error, lj_ffh_pcall, lj_cf_loadfile, lj_cf_load, lj_cf_loadstring, lj_cf_dofile, lj_cf_gcinfo, lj_cf_collectgarbage, lj_cf_newproxy, lj_cf_print }; static const uint8_t lj_lib_init_base[] = { 2,0,28,70,97,115,115,101,114,116,195,110,105,108,199,98,111,111,108,101,97, 110,252,1,200,117,115,101,114,100,97,116,97,198,115,116,114,105,110,103,197, 117,112,118,97,108,198,116,104,114,101,97,100,197,112,114,111,116,111,200,102, 117,110,99,116,105,111,110,197,116,114,97,99,101,197,99,100,97,116,97,197,116, 97,98,108,101,252,9,198,110,117,109,98,101,114,132,116,121,112,101,68,110,101, 120,116,253,69,112,97,105,114,115,64,253,70,105,112,97,105,114,115,140,103, 101,116,109,101,116,97,116,97,98,108,101,76,115,101,116,109,101,116,97,116, 97,98,108,101,7,103,101,116,102,101,110,118,7,115,101,116,102,101,110,118,70, 114,97,119,103,101,116,6,114,97,119,115,101,116,8,114,97,119,101,113,117,97, 108,6,117,110,112,97,99,107,6,115,101,108,101,99,116,72,116,111,110,117,109, 98,101,114,195,110,105,108,197,102,97,108,115,101,196,116,114,117,101,72,116, 111,115,116,114,105,110,103,5,101,114,114,111,114,69,112,99,97,108,108,134, 120,112,99,97,108,108,8,108,111,97,100,102,105,108,101,4,108,111,97,100,10, 108,111,97,100,115,116,114,105,110,103,6,100,111,102,105,108,101,6,103,99,105, 110,102,111,14,99,111,108,108,101,99,116,103,97,114,98,97,103,101,252,2,8,110, 101,119,112,114,111,120,121,200,116,111,115,116,114,105,110,103,5,112,114,105, 110,116,252,3,200,95,86,69,82,83,73,79,78,250,255 }; #endif #ifdef LJLIB_MODULE_coroutine #undef LJLIB_MODULE_coroutine static const lua_CFunction lj_lib_cf_coroutine[] = { lj_cf_coroutine_status, lj_cf_coroutine_running, lj_cf_coroutine_create, lj_ffh_coroutine_yield, lj_ffh_coroutine_resume, lj_cf_coroutine_wrap }; static const uint8_t lj_lib_init_coroutine[] = { 30,13,6,6,115,116,97,116,117,115,7,114,117,110,110,105,110,103,6,99,114,101, 97,116,101,69,121,105,101,108,100,70,114,101,115,117,109,101,254,4,119,114, 97,112,255 }; #endif #ifdef LJLIB_MODULE_math #undef LJLIB_MODULE_math static const lua_CFunction lj_lib_cf_math[] = { lj_ffh_math_abs, lj_ffh_math_sqrt, lj_ffh_math_log, lj_ffh_math_atan2, lj_ffh_math_ldexp, lj_ffh_math_min, lj_cf_math_random, lj_cf_math_randomseed }; static const uint8_t lj_lib_init_math[] = { 37,16,30,67,97,98,115,133,102,108,111,111,114,132,99,101,105,108,68,115,113, 114,116,133,108,111,103,49,48,131,101,120,112,131,115,105,110,131,99,111,115, 131,116,97,110,132,97,115,105,110,132,97,99,111,115,132,97,116,97,110,132,115, 105,110,104,132,99,111,115,104,132,116,97,110,104,133,102,114,101,120,112,132, 109,111,100,102,251,248,193,99,26,220,165,76,64,131,100,101,103,251,57,157, 82,162,70,223,145,63,131,114,97,100,67,108,111,103,69,97,116,97,110,50,131, 112,111,119,132,102,109,111,100,69,108,100,101,120,112,67,109,105,110,131,109, 97,120,251,24,45,68,84,251,33,9,64,194,112,105,250,251,0,0,0,0,0,0,240,127, 196,104,117,103,101,250,252,2,6,114,97,110,100,111,109,252,2,10,114,97,110, 100,111,109,115,101,101,100,255 }; #endif #ifdef LJLIB_MODULE_bit #undef LJLIB_MODULE_bit static const lua_CFunction lj_lib_cf_bit[] = { lj_ffh_bit_tobit, lj_ffh_bit_lshift, lj_ffh_bit_band, lj_cf_bit_tohex }; static const uint8_t lj_lib_init_bit[] = { 65,42,12,69,116,111,98,105,116,132,98,110,111,116,133,98,115,119,97,112,70, 108,115,104,105,102,116,134,114,115,104,105,102,116,135,97,114,115,104,105, 102,116,131,114,111,108,131,114,111,114,68,98,97,110,100,131,98,111,114,132, 98,120,111,114,5,116,111,104,101,120,255 }; #endif #ifdef LJLIB_MODULE_string #undef LJLIB_MODULE_string static const lua_CFunction lj_lib_cf_string[] = { lj_ffh_string_len, lj_ffh_string_byte, lj_ffh_string_char, lj_ffh_string_sub, lj_ffh_string_rep, lj_ffh_string_reverse, lj_cf_string_dump, lj_cf_string_find, lj_cf_string_match, lj_cf_string_gmatch, lj_cf_string_gsub, lj_cf_string_format }; static const uint8_t lj_lib_init_string[] = { 77,53,14,67,108,101,110,68,98,121,116,101,68,99,104,97,114,67,115,117,98,67, 114,101,112,71,114,101,118,101,114,115,101,133,108,111,119,101,114,133,117, 112,112,101,114,4,100,117,109,112,4,102,105,110,100,5,109,97,116,99,104,254, 6,103,109,97,116,99,104,4,103,115,117,98,6,102,111,114,109,97,116,255 }; #endif #ifdef LJLIB_MODULE_table #undef LJLIB_MODULE_table static const lua_CFunction lj_lib_cf_table[] = { lj_cf_table_foreachi, lj_cf_table_foreach, lj_ffh_table_getn, lj_cf_table_maxn, lj_cf_table_insert, lj_cf_table_remove, lj_cf_table_concat, lj_cf_table_sort }; static const uint8_t lj_lib_init_table[] = { 92,61,8,8,102,111,114,101,97,99,104,105,7,102,111,114,101,97,99,104,68,103, 101,116,110,4,109,97,120,110,6,105,110,115,101,114,116,6,114,101,109,111,118, 101,6,99,111,110,99,97,116,4,115,111,114,116,255 }; #endif #ifdef LJLIB_MODULE_io_method #undef LJLIB_MODULE_io_method static const lua_CFunction lj_lib_cf_io_method[] = { lj_cf_io_method_close, lj_cf_io_method_read, lj_cf_io_method_write, lj_cf_io_method_flush, lj_cf_io_method_seek, lj_cf_io_method_setvbuf, lj_cf_io_method_lines, lj_cf_io_method___gc, lj_cf_io_method___tostring }; static const uint8_t lj_lib_init_io_method[] = { 100,62,10,5,99,108,111,115,101,4,114,101,97,100,5,119,114,105,116,101,5,102, 108,117,115,104,4,115,101,101,107,7,115,101,116,118,98,117,102,5,108,105,110, 101,115,4,95,95,103,99,10,95,95,116,111,115,116,114,105,110,103,252,1,199,95, 95,105,110,100,101,120,250,255 }; #endif #ifdef LJLIB_MODULE_io #undef LJLIB_MODULE_io static const lua_CFunction lj_lib_cf_io[] = { lj_cf_io_open, lj_cf_io_popen, lj_cf_io_tmpfile, lj_cf_io_close, lj_cf_io_read, lj_cf_io_write, lj_cf_io_flush, lj_cf_io_input, lj_cf_io_output, lj_cf_io_lines, lj_cf_io_type }; static const uint8_t lj_lib_init_io[] = { 109,62,12,252,2,192,250,4,111,112,101,110,5,112,111,112,101,110,7,116,109,112, 102,105,108,101,5,99,108,111,115,101,4,114,101,97,100,5,119,114,105,116,101, 5,102,108,117,115,104,5,105,110,112,117,116,6,111,117,116,112,117,116,5,108, 105,110,101,115,4,116,121,112,101,255 }; #endif #ifdef LJLIB_MODULE_os #undef LJLIB_MODULE_os static const lua_CFunction lj_lib_cf_os[] = { lj_cf_os_execute, lj_cf_os_remove, lj_cf_os_rename, lj_cf_os_tmpname, lj_cf_os_getenv, lj_cf_os_exit, lj_cf_os_clock, lj_cf_os_date, lj_cf_os_time, lj_cf_os_difftime, lj_cf_os_setlocale }; static const uint8_t lj_lib_init_os[] = { 120,62,11,7,101,120,101,99,117,116,101,6,114,101,109,111,118,101,6,114,101, 110,97,109,101,7,116,109,112,110,97,109,101,6,103,101,116,101,110,118,4,101, 120,105,116,5,99,108,111,99,107,4,100,97,116,101,4,116,105,109,101,8,100,105, 102,102,116,105,109,101,9,115,101,116,108,111,99,97,108,101,255 }; #endif #ifdef LJLIB_MODULE_debug #undef LJLIB_MODULE_debug static const lua_CFunction lj_lib_cf_debug[] = { lj_cf_debug_getregistry, lj_cf_debug_getmetatable, lj_cf_debug_setmetatable, lj_cf_debug_getfenv, lj_cf_debug_setfenv, lj_cf_debug_getinfo, lj_cf_debug_getlocal, lj_cf_debug_setlocal, lj_cf_debug_getupvalue, lj_cf_debug_setupvalue, lj_cf_debug_upvalueid, lj_cf_debug_upvaluejoin, lj_cf_debug_sethook, lj_cf_debug_gethook, lj_cf_debug_debug, lj_cf_debug_traceback }; static const uint8_t lj_lib_init_debug[] = { 131,62,16,11,103,101,116,114,101,103,105,115,116,114,121,12,103,101,116,109, 101,116,97,116,97,98,108,101,12,115,101,116,109,101,116,97,116,97,98,108,101, 7,103,101,116,102,101,110,118,7,115,101,116,102,101,110,118,7,103,101,116,105, 110,102,111,8,103,101,116,108,111,99,97,108,8,115,101,116,108,111,99,97,108, 10,103,101,116,117,112,118,97,108,117,101,10,115,101,116,117,112,118,97,108, 117,101,9,117,112,118,97,108,117,101,105,100,11,117,112,118,97,108,117,101, 106,111,105,110,7,115,101,116,104,111,111,107,7,103,101,116,104,111,111,107, 5,100,101,98,117,103,9,116,114,97,99,101,98,97,99,107,255 }; #endif #ifdef LJLIB_MODULE_jit #undef LJLIB_MODULE_jit static const lua_CFunction lj_lib_cf_jit[] = { lj_cf_jit_on, lj_cf_jit_off, lj_cf_jit_flush, lj_cf_jit_status, lj_cf_jit_attach }; static const uint8_t lj_lib_init_jit[] = { 147,62,9,2,111,110,3,111,102,102,5,102,108,117,115,104,6,115,116,97,116,117, 115,6,97,116,116,97,99,104,252,5,194,111,115,250,252,4,196,97,114,99,104,250, 252,3,203,118,101,114,115,105,111,110,95,110,117,109,250,252,2,199,118,101, 114,115,105,111,110,250,255 }; #endif #ifdef LJLIB_MODULE_jit_util #undef LJLIB_MODULE_jit_util static const lua_CFunction lj_lib_cf_jit_util[] = { lj_cf_jit_util_funcinfo, lj_cf_jit_util_funcbc, lj_cf_jit_util_funck, lj_cf_jit_util_funcuvname, lj_cf_jit_util_traceinfo, lj_cf_jit_util_traceir, lj_cf_jit_util_tracek, lj_cf_jit_util_tracesnap, lj_cf_jit_util_tracemc, lj_cf_jit_util_traceexitstub, lj_cf_jit_util_ircalladdr }; static const uint8_t lj_lib_init_jit_util[] = { 152,62,11,8,102,117,110,99,105,110,102,111,6,102,117,110,99,98,99,5,102,117, 110,99,107,10,102,117,110,99,117,118,110,97,109,101,9,116,114,97,99,101,105, 110,102,111,7,116,114,97,99,101,105,114,6,116,114,97,99,101,107,9,116,114,97, 99,101,115,110,97,112,7,116,114,97,99,101,109,99,13,116,114,97,99,101,101,120, 105,116,115,116,117,98,10,105,114,99,97,108,108,97,100,100,114,255 }; #endif #ifdef LJLIB_MODULE_jit_opt #undef LJLIB_MODULE_jit_opt static const lua_CFunction lj_lib_cf_jit_opt[] = { lj_cf_jit_opt_start }; static const uint8_t lj_lib_init_jit_opt[] = { 163,62,1,5,115,116,97,114,116,255 }; #endif #ifdef LJLIB_MODULE_ffi_meta #undef LJLIB_MODULE_ffi_meta static const lua_CFunction lj_lib_cf_ffi_meta[] = { lj_cf_ffi_meta___index, lj_cf_ffi_meta___newindex, lj_cf_ffi_meta___eq, lj_cf_ffi_meta___len, lj_cf_ffi_meta___lt, lj_cf_ffi_meta___le, lj_cf_ffi_meta___concat, lj_cf_ffi_meta___call, lj_cf_ffi_meta___add, lj_cf_ffi_meta___sub, lj_cf_ffi_meta___mul, lj_cf_ffi_meta___div, lj_cf_ffi_meta___mod, lj_cf_ffi_meta___pow, lj_cf_ffi_meta___unm, lj_cf_ffi_meta___tostring, lj_cf_ffi_meta___pairs, lj_cf_ffi_meta___ipairs }; static const uint8_t lj_lib_init_ffi_meta[] = { 164,62,19,7,95,95,105,110,100,101,120,10,95,95,110,101,119,105,110,100,101, 120,4,95,95,101,113,5,95,95,108,101,110,4,95,95,108,116,4,95,95,108,101,8,95, 95,99,111,110,99,97,116,6,95,95,99,97,108,108,5,95,95,97,100,100,5,95,95,115, 117,98,5,95,95,109,117,108,5,95,95,100,105,118,5,95,95,109,111,100,5,95,95, 112,111,119,5,95,95,117,110,109,10,95,95,116,111,115,116,114,105,110,103,7, 95,95,112,97,105,114,115,8,95,95,105,112,97,105,114,115,195,102,102,105,203, 95,95,109,101,116,97,116,97,98,108,101,250,255 }; #endif #ifdef LJLIB_MODULE_ffi_clib #undef LJLIB_MODULE_ffi_clib static const lua_CFunction lj_lib_cf_ffi_clib[] = { lj_cf_ffi_clib___index, lj_cf_ffi_clib___newindex, lj_cf_ffi_clib___gc }; static const uint8_t lj_lib_init_ffi_clib[] = { 182,62,3,7,95,95,105,110,100,101,120,10,95,95,110,101,119,105,110,100,101,120, 4,95,95,103,99,255 }; #endif #ifdef LJLIB_MODULE_ffi_callback #undef LJLIB_MODULE_ffi_callback static const lua_CFunction lj_lib_cf_ffi_callback[] = { lj_cf_ffi_callback_free, lj_cf_ffi_callback_set }; static const uint8_t lj_lib_init_ffi_callback[] = { 185,62,3,4,102,114,101,101,3,115,101,116,252,1,199,95,95,105,110,100,101,120, 250,255 }; #endif #ifdef LJLIB_MODULE_ffi #undef LJLIB_MODULE_ffi static const lua_CFunction lj_lib_cf_ffi[] = { lj_cf_ffi_cdef, lj_cf_ffi_new, lj_cf_ffi_cast, lj_cf_ffi_typeof, lj_cf_ffi_istype, lj_cf_ffi_sizeof, lj_cf_ffi_alignof, lj_cf_ffi_offsetof, lj_cf_ffi_errno, lj_cf_ffi_string, lj_cf_ffi_copy, lj_cf_ffi_fill, lj_cf_ffi_abi, lj_cf_ffi_metatype, lj_cf_ffi_gc, lj_cf_ffi_load }; static const uint8_t lj_lib_init_ffi[] = { 187,62,22,4,99,100,101,102,3,110,101,119,4,99,97,115,116,6,116,121,112,101, 111,102,6,105,115,116,121,112,101,6,115,105,122,101,111,102,7,97,108,105,103, 110,111,102,8,111,102,102,115,101,116,111,102,5,101,114,114,110,111,6,115,116, 114,105,110,103,4,99,111,112,121,4,102,105,108,108,3,97,98,105,252,8,192,250, 8,109,101,116,97,116,121,112,101,252,7,192,250,2,103,99,252,5,192,250,4,108, 111,97,100,252,4,193,67,250,252,3,194,111,115,250,252,2,196,97,114,99,104,250, 255 }; #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_bc.c0000644000175100017510000000040513101703334017321 0ustar ondrejondrej/* ** Bytecode instruction modes. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #define lj_bc_c #define LUA_CORE #include "lj_obj.h" #include "lj_bc.h" /* Bytecode offsets and bytecode instruction modes. */ #include "lj_bcdef.h" luajit-2.1.0~beta3+dfsg.orig/src/lj_asm_arm64.h0000644000175100017510000020026413101703334020540 0ustar ondrejondrej/* ** ARM64 IR assembler (SSA IR -> machine code). ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h ** ** Contributed by Djordje Kovacevic and Stefan Pejic from RT-RK.com. ** Sponsored by Cisco Systems, Inc. */ /* -- Register allocator extensions --------------------------------------- */ /* Allocate a register with a hint. */ static Reg ra_hintalloc(ASMState *as, IRRef ref, Reg hint, RegSet allow) { Reg r = IR(ref)->r; if (ra_noreg(r)) { if (!ra_hashint(r) && !iscrossref(as, ref)) ra_sethint(IR(ref)->r, hint); /* Propagate register hint. */ r = ra_allocref(as, ref, allow); } ra_noweak(as, r); return r; } /* Allocate two source registers for three-operand instructions. */ static Reg ra_alloc2(ASMState *as, IRIns *ir, RegSet allow) { IRIns *irl = IR(ir->op1), *irr = IR(ir->op2); Reg left = irl->r, right = irr->r; if (ra_hasreg(left)) { ra_noweak(as, left); if (ra_noreg(right)) right = ra_allocref(as, ir->op2, rset_exclude(allow, left)); else ra_noweak(as, right); } else if (ra_hasreg(right)) { ra_noweak(as, right); left = ra_allocref(as, ir->op1, rset_exclude(allow, right)); } else if (ra_hashint(right)) { right = ra_allocref(as, ir->op2, allow); left = ra_alloc1(as, ir->op1, rset_exclude(allow, right)); } else { left = ra_allocref(as, ir->op1, allow); right = ra_alloc1(as, ir->op2, rset_exclude(allow, left)); } return left | (right << 8); } /* -- Guard handling ------------------------------------------------------ */ /* Setup all needed exit stubs. */ static void asm_exitstub_setup(ASMState *as, ExitNo nexits) { ExitNo i; MCode *mxp = as->mctop; if (mxp - (nexits + 3 + MCLIM_REDZONE) < as->mclim) asm_mclimit(as); /* 1: str lr,[sp]; bl ->vm_exit_handler; movz w0,traceno; bl <1; bl <1; ... */ for (i = nexits-1; (int32_t)i >= 0; i--) *--mxp = A64I_LE(A64I_BL|((-3-i)&0x03ffffffu)); *--mxp = A64I_LE(A64I_MOVZw|A64F_U16(as->T->traceno)); mxp--; *mxp = A64I_LE(A64I_BL|(((MCode *)(void *)lj_vm_exit_handler-mxp)&0x03ffffffu)); *--mxp = A64I_LE(A64I_STRx|A64F_D(RID_LR)|A64F_N(RID_SP)); as->mctop = mxp; } static MCode *asm_exitstub_addr(ASMState *as, ExitNo exitno) { /* Keep this in-sync with exitstub_trace_addr(). */ return as->mctop + exitno + 3; } /* Emit conditional branch to exit for guard. */ static void asm_guardcc(ASMState *as, A64CC cc) { MCode *target = asm_exitstub_addr(as, as->snapno); MCode *p = as->mcp; if (LJ_UNLIKELY(p == as->invmcp)) { as->loopinv = 1; *p = A64I_B | ((target-p) & 0x03ffffffu); emit_cond_branch(as, cc^1, p-1); return; } emit_cond_branch(as, cc, target); } /* Emit test and branch instruction to exit for guard. */ static void asm_guardtnb(ASMState *as, A64Ins ai, Reg r, uint32_t bit) { MCode *target = asm_exitstub_addr(as, as->snapno); MCode *p = as->mcp; if (LJ_UNLIKELY(p == as->invmcp)) { as->loopinv = 1; *p = A64I_B | ((target-p) & 0x03ffffffu); emit_tnb(as, ai^0x01000000u, r, bit, p-1); return; } emit_tnb(as, ai, r, bit, target); } /* Emit compare and branch instruction to exit for guard. */ static void asm_guardcnb(ASMState *as, A64Ins ai, Reg r) { MCode *target = asm_exitstub_addr(as, as->snapno); MCode *p = as->mcp; if (LJ_UNLIKELY(p == as->invmcp)) { as->loopinv = 1; *p = A64I_B | ((target-p) & 0x03ffffffu); emit_cnb(as, ai^0x01000000u, r, p-1); return; } emit_cnb(as, ai, r, target); } /* -- Operand fusion ------------------------------------------------------ */ /* Limit linear search to this distance. Avoids O(n^2) behavior. */ #define CONFLICT_SEARCH_LIM 31 static int asm_isk32(ASMState *as, IRRef ref, int32_t *k) { if (irref_isk(ref)) { IRIns *ir = IR(ref); if (ir->o == IR_KNULL || !irt_is64(ir->t)) { *k = ir->i; return 1; } else if (checki32((int64_t)ir_k64(ir)->u64)) { *k = (int32_t)ir_k64(ir)->u64; return 1; } } return 0; } /* Check if there's no conflicting instruction between curins and ref. */ static int noconflict(ASMState *as, IRRef ref, IROp conflict) { IRIns *ir = as->ir; IRRef i = as->curins; if (i > ref + CONFLICT_SEARCH_LIM) return 0; /* Give up, ref is too far away. */ while (--i > ref) if (ir[i].o == conflict) return 0; /* Conflict found. */ return 1; /* Ok, no conflict. */ } /* Fuse the array base of colocated arrays. */ static int32_t asm_fuseabase(ASMState *as, IRRef ref) { IRIns *ir = IR(ref); if (ir->o == IR_TNEW && ir->op1 <= LJ_MAX_COLOSIZE && !neverfuse(as) && noconflict(as, ref, IR_NEWREF)) return (int32_t)sizeof(GCtab); return 0; } #define FUSE_REG 0x40000000 /* Fuse array/hash/upvalue reference into register+offset operand. */ static Reg asm_fuseahuref(ASMState *as, IRRef ref, int32_t *ofsp, RegSet allow, A64Ins ins) { IRIns *ir = IR(ref); if (ra_noreg(ir->r)) { if (ir->o == IR_AREF) { if (mayfuse(as, ref)) { if (irref_isk(ir->op2)) { IRRef tab = IR(ir->op1)->op1; int32_t ofs = asm_fuseabase(as, tab); IRRef refa = ofs ? tab : ir->op1; ofs += 8*IR(ir->op2)->i; if (emit_checkofs(ins, ofs)) { *ofsp = ofs; return ra_alloc1(as, refa, allow); } } else { Reg base = ra_alloc1(as, ir->op1, allow); *ofsp = FUSE_REG|ra_alloc1(as, ir->op2, rset_exclude(allow, base)); return base; } } } else if (ir->o == IR_HREFK) { if (mayfuse(as, ref)) { int32_t ofs = (int32_t)(IR(ir->op2)->op2 * sizeof(Node)); if (emit_checkofs(ins, ofs)) { *ofsp = ofs; return ra_alloc1(as, ir->op1, allow); } } } else if (ir->o == IR_UREFC) { if (irref_isk(ir->op1)) { GCfunc *fn = ir_kfunc(IR(ir->op1)); GCupval *uv = &gcref(fn->l.uvptr[(ir->op2 >> 8)])->uv; int64_t ofs = glofs(as, &uv->tv); if (emit_checkofs(ins, ofs)) { *ofsp = (int32_t)ofs; return RID_GL; } } } } *ofsp = 0; return ra_alloc1(as, ref, allow); } /* Fuse m operand into arithmetic/logic instructions. */ static uint32_t asm_fuseopm(ASMState *as, A64Ins ai, IRRef ref, RegSet allow) { IRIns *ir = IR(ref); if (ra_hasreg(ir->r)) { ra_noweak(as, ir->r); return A64F_M(ir->r); } else if (irref_isk(ref)) { uint32_t m; int64_t k = get_k64val(ir); if ((ai & 0x1f000000) == 0x0a000000) m = emit_isk13(k, irt_is64(ir->t)); else m = emit_isk12(k); if (m) return m; } else if (mayfuse(as, ref)) { if ((ir->o >= IR_BSHL && ir->o <= IR_BSAR && irref_isk(ir->op2)) || (ir->o == IR_ADD && ir->op1 == ir->op2)) { A64Shift sh = ir->o == IR_BSHR ? A64SH_LSR : ir->o == IR_BSAR ? A64SH_ASR : A64SH_LSL; int shift = ir->o == IR_ADD ? 1 : (IR(ir->op2)->i & (irt_is64(ir->t) ? 63 : 31)); IRIns *irl = IR(ir->op1); if (sh == A64SH_LSL && irl->o == IR_CONV && irl->op2 == ((IRT_I64<op1, allow); return A64F_M(m) | A64F_EXSH(A64EX_SXTW, shift); } else { Reg m = ra_alloc1(as, ir->op1, allow); return A64F_M(m) | A64F_SH(sh, shift); } } else if (ir->o == IR_CONV && ir->op2 == ((IRT_I64<op1, allow); return A64F_M(m) | A64F_EX(A64EX_SXTW); } } return A64F_M(ra_allocref(as, ref, allow)); } /* Fuse XLOAD/XSTORE reference into load/store operand. */ static void asm_fusexref(ASMState *as, A64Ins ai, Reg rd, IRRef ref, RegSet allow) { IRIns *ir = IR(ref); Reg base; int32_t ofs = 0; if (ra_noreg(ir->r) && canfuse(as, ir)) { if (ir->o == IR_ADD) { if (asm_isk32(as, ir->op2, &ofs) && emit_checkofs(ai, ofs)) { ref = ir->op1; } else { Reg rn, rm; IRRef lref = ir->op1, rref = ir->op2; IRIns *irl = IR(lref); if (mayfuse(as, irl->op1)) { unsigned int shift = 4; if (irl->o == IR_BSHL && irref_isk(irl->op2)) { shift = (IR(irl->op2)->i & 63); } else if (irl->o == IR_ADD && irl->op1 == irl->op2) { shift = 1; } if ((ai >> 30) == shift) { lref = irl->op1; irl = IR(lref); ai |= A64I_LS_SH; } } if (irl->o == IR_CONV && irl->op2 == ((IRT_I64<op1; ai |= A64I_LS_SXTWx; } else { ai |= A64I_LS_LSLx; } rm = ra_alloc1(as, lref, allow); rn = ra_alloc1(as, rref, rset_exclude(allow, rm)); emit_dnm(as, (ai^A64I_LS_R), (rd & 31), rn, rm); return; } } else if (ir->o == IR_STRREF) { if (asm_isk32(as, ir->op2, &ofs)) { ref = ir->op1; } else if (asm_isk32(as, ir->op1, &ofs)) { ref = ir->op2; } else { Reg rn = ra_alloc1(as, ir->op1, allow); IRIns *irr = IR(ir->op2); uint32_t m; if (irr+1 == ir && !ra_used(irr) && irr->o == IR_ADD && irref_isk(irr->op2)) { ofs = sizeof(GCstr) + IR(irr->op2)->i; if (emit_checkofs(ai, ofs)) { Reg rm = ra_alloc1(as, irr->op1, rset_exclude(allow, rn)); m = A64F_M(rm) | A64F_EX(A64EX_SXTW); goto skipopm; } } m = asm_fuseopm(as, 0, ir->op2, rset_exclude(allow, rn)); ofs = sizeof(GCstr); skipopm: emit_lso(as, ai, rd, rd, ofs); emit_dn(as, A64I_ADDx^m, rd, rn); return; } ofs += sizeof(GCstr); if (!emit_checkofs(ai, ofs)) { Reg rn = ra_alloc1(as, ref, allow); Reg rm = ra_allock(as, ofs, rset_exclude(allow, rn)); emit_dnm(as, (ai^A64I_LS_R)|A64I_LS_UXTWx, rd, rn, rm); return; } } } base = ra_alloc1(as, ref, allow); emit_lso(as, ai, (rd & 31), base, ofs); } /* Fuse FP multiply-add/sub. */ static int asm_fusemadd(ASMState *as, IRIns *ir, A64Ins ai, A64Ins air) { IRRef lref = ir->op1, rref = ir->op2; IRIns *irm; if (lref != rref && ((mayfuse(as, lref) && (irm = IR(lref), irm->o == IR_MUL) && ra_noreg(irm->r)) || (mayfuse(as, rref) && (irm = IR(rref), irm->o == IR_MUL) && (rref = lref, ai = air, ra_noreg(irm->r))))) { Reg dest = ra_dest(as, ir, RSET_FPR); Reg add = ra_hintalloc(as, rref, dest, RSET_FPR); Reg left = ra_alloc2(as, irm, rset_exclude(rset_exclude(RSET_FPR, dest), add)); Reg right = (left >> 8); left &= 255; emit_dnma(as, ai, (dest & 31), (left & 31), (right & 31), (add & 31)); return 1; } return 0; } /* Fuse BAND + BSHL/BSHR into UBFM. */ static int asm_fuseandshift(ASMState *as, IRIns *ir) { IRIns *irl = IR(ir->op1); lua_assert(ir->o == IR_BAND); if (canfuse(as, irl) && irref_isk(ir->op2)) { uint64_t mask = get_k64val(IR(ir->op2)); if (irref_isk(irl->op2) && (irl->o == IR_BSHR || irl->o == IR_BSHL)) { int32_t shmask = irt_is64(irl->t) ? 63 : 31; int32_t shift = (IR(irl->op2)->i & shmask); int32_t imms = shift; if (irl->o == IR_BSHL) { mask >>= shift; shift = (shmask-shift+1) & shmask; imms = 0; } if (mask && !((mask+1) & mask)) { /* Contiguous 1-bits at the bottom. */ Reg dest = ra_dest(as, ir, RSET_GPR); Reg left = ra_alloc1(as, irl->op1, RSET_GPR); A64Ins ai = shmask == 63 ? A64I_UBFMx : A64I_UBFMw; imms += 63 - emit_clz64(mask); if (imms > shmask) imms = shmask; emit_dn(as, ai | A64F_IMMS(imms) | A64F_IMMR(shift), dest, left); return 1; } } } return 0; } /* Fuse BOR(BSHL, BSHR) into EXTR/ROR. */ static int asm_fuseorshift(ASMState *as, IRIns *ir) { IRIns *irl = IR(ir->op1), *irr = IR(ir->op2); lua_assert(ir->o == IR_BOR); if (canfuse(as, irl) && canfuse(as, irr) && ((irl->o == IR_BSHR && irr->o == IR_BSHL) || (irl->o == IR_BSHL && irr->o == IR_BSHR))) { if (irref_isk(irl->op2) && irref_isk(irr->op2)) { IRRef lref = irl->op1, rref = irr->op1; uint32_t lshift = IR(irl->op2)->i, rshift = IR(irr->op2)->i; if (irl->o == IR_BSHR) { /* BSHR needs to be the right operand. */ uint32_t tmp2; IRRef tmp1 = lref; lref = rref; rref = tmp1; tmp2 = lshift; lshift = rshift; rshift = tmp2; } if (rshift + lshift == (irt_is64(ir->t) ? 64 : 32)) { A64Ins ai = irt_is64(ir->t) ? A64I_EXTRx : A64I_EXTRw; Reg dest = ra_dest(as, ir, RSET_GPR); Reg left = ra_alloc1(as, lref, RSET_GPR); Reg right = ra_alloc1(as, rref, rset_exclude(RSET_GPR, left)); emit_dnm(as, ai | A64F_IMMS(rshift), dest, left, right); return 1; } } } return 0; } /* -- Calls --------------------------------------------------------------- */ /* Generate a call to a C function. */ static void asm_gencall(ASMState *as, const CCallInfo *ci, IRRef *args) { uint32_t n, nargs = CCI_XNARGS(ci); int32_t ofs = 0; Reg gpr, fpr = REGARG_FIRSTFPR; if ((void *)ci->func) emit_call(as, (void *)ci->func); for (gpr = REGARG_FIRSTGPR; gpr <= REGARG_LASTGPR; gpr++) as->cost[gpr] = REGCOST(~0u, ASMREF_L); gpr = REGARG_FIRSTGPR; for (n = 0; n < nargs; n++) { /* Setup args. */ IRRef ref = args[n]; IRIns *ir = IR(ref); if (ref) { if (irt_isfp(ir->t)) { if (fpr <= REGARG_LASTFPR) { lua_assert(rset_test(as->freeset, fpr)); /* Must have been evicted. */ ra_leftov(as, fpr, ref); fpr++; } else { Reg r = ra_alloc1(as, ref, RSET_FPR); emit_spstore(as, ir, r, ofs + ((LJ_BE && !irt_isnum(ir->t)) ? 4 : 0)); ofs += 8; } } else { if (gpr <= REGARG_LASTGPR) { lua_assert(rset_test(as->freeset, gpr)); /* Must have been evicted. */ ra_leftov(as, gpr, ref); gpr++; } else { Reg r = ra_alloc1(as, ref, RSET_GPR); emit_spstore(as, ir, r, ofs + ((LJ_BE && !irt_is64(ir->t)) ? 4 : 0)); ofs += 8; } } } } } /* Setup result reg/sp for call. Evict scratch regs. */ static void asm_setupresult(ASMState *as, IRIns *ir, const CCallInfo *ci) { RegSet drop = RSET_SCRATCH; if (ra_hasreg(ir->r)) rset_clear(drop, ir->r); /* Dest reg handled below. */ ra_evictset(as, drop); /* Evictions must be performed first. */ if (ra_used(ir)) { lua_assert(!irt_ispri(ir->t)); if (irt_isfp(ir->t)) { if (ci->flags & CCI_CASTU64) { Reg dest = ra_dest(as, ir, RSET_FPR) & 31; emit_dn(as, irt_isnum(ir->t) ? A64I_FMOV_D_R : A64I_FMOV_S_R, dest, RID_RET); } else { ra_destreg(as, ir, RID_FPRET); } } else { ra_destreg(as, ir, RID_RET); } } UNUSED(ci); } static void asm_callx(ASMState *as, IRIns *ir) { IRRef args[CCI_NARGS_MAX*2]; CCallInfo ci; IRRef func; IRIns *irf; ci.flags = asm_callx_flags(as, ir); asm_collectargs(as, ir, &ci, args); asm_setupresult(as, ir, &ci); func = ir->op2; irf = IR(func); if (irf->o == IR_CARG) { func = irf->op1; irf = IR(func); } if (irref_isk(func)) { /* Call to constant address. */ ci.func = (ASMFunction)(ir_k64(irf)->u64); } else { /* Need a non-argument register for indirect calls. */ Reg freg = ra_alloc1(as, func, RSET_RANGE(RID_X8, RID_MAX_GPR)-RSET_FIXED); emit_n(as, A64I_BLR, freg); ci.func = (ASMFunction)(void *)0; } asm_gencall(as, &ci, args); } /* -- Returns ------------------------------------------------------------- */ /* Return to lower frame. Guard that it goes to the right spot. */ static void asm_retf(ASMState *as, IRIns *ir) { Reg base = ra_alloc1(as, REF_BASE, RSET_GPR); void *pc = ir_kptr(IR(ir->op2)); int32_t delta = 1+LJ_FR2+bc_a(*((const BCIns *)pc - 1)); as->topslot -= (BCReg)delta; if ((int32_t)as->topslot < 0) as->topslot = 0; irt_setmark(IR(REF_BASE)->t); /* Children must not coalesce with BASE reg. */ /* Need to force a spill on REF_BASE now to update the stack slot. */ emit_lso(as, A64I_STRx, base, RID_SP, ra_spill(as, IR(REF_BASE))); emit_setgl(as, base, jit_base); emit_addptr(as, base, -8*delta); asm_guardcc(as, CC_NE); emit_nm(as, A64I_CMPx, RID_TMP, ra_allock(as, i64ptr(pc), rset_exclude(RSET_GPR, base))); emit_lso(as, A64I_LDRx, RID_TMP, base, -8); } /* -- Type conversions ---------------------------------------------------- */ static void asm_tointg(ASMState *as, IRIns *ir, Reg left) { Reg tmp = ra_scratch(as, rset_exclude(RSET_FPR, left)); Reg dest = ra_dest(as, ir, RSET_GPR); asm_guardcc(as, CC_NE); emit_nm(as, A64I_FCMPd, (tmp & 31), (left & 31)); emit_dn(as, A64I_FCVT_F64_S32, (tmp & 31), dest); emit_dn(as, A64I_FCVT_S32_F64, dest, (left & 31)); } static void asm_tobit(ASMState *as, IRIns *ir) { RegSet allow = RSET_FPR; Reg left = ra_alloc1(as, ir->op1, allow); Reg right = ra_alloc1(as, ir->op2, rset_clear(allow, left)); Reg tmp = ra_scratch(as, rset_clear(allow, right)); Reg dest = ra_dest(as, ir, RSET_GPR); emit_dn(as, A64I_FMOV_R_S, dest, (tmp & 31)); emit_dnm(as, A64I_FADDd, (tmp & 31), (left & 31), (right & 31)); } static void asm_conv(ASMState *as, IRIns *ir) { IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK); int st64 = (st == IRT_I64 || st == IRT_U64 || st == IRT_P64); int stfp = (st == IRT_NUM || st == IRT_FLOAT); IRRef lref = ir->op1; lua_assert(irt_type(ir->t) != st); if (irt_isfp(ir->t)) { Reg dest = ra_dest(as, ir, RSET_FPR); if (stfp) { /* FP to FP conversion. */ emit_dn(as, st == IRT_NUM ? A64I_FCVT_F32_F64 : A64I_FCVT_F64_F32, (dest & 31), (ra_alloc1(as, lref, RSET_FPR) & 31)); } else { /* Integer to FP conversion. */ Reg left = ra_alloc1(as, lref, RSET_GPR); A64Ins ai = irt_isfloat(ir->t) ? (((IRT_IS64 >> st) & 1) ? (st == IRT_I64 ? A64I_FCVT_F32_S64 : A64I_FCVT_F32_U64) : (st == IRT_INT ? A64I_FCVT_F32_S32 : A64I_FCVT_F32_U32)) : (((IRT_IS64 >> st) & 1) ? (st == IRT_I64 ? A64I_FCVT_F64_S64 : A64I_FCVT_F64_U64) : (st == IRT_INT ? A64I_FCVT_F64_S32 : A64I_FCVT_F64_U32)); emit_dn(as, ai, (dest & 31), left); } } else if (stfp) { /* FP to integer conversion. */ if (irt_isguard(ir->t)) { /* Checked conversions are only supported from number to int. */ lua_assert(irt_isint(ir->t) && st == IRT_NUM); asm_tointg(as, ir, ra_alloc1(as, lref, RSET_FPR)); } else { Reg left = ra_alloc1(as, lref, RSET_FPR); Reg dest = ra_dest(as, ir, RSET_GPR); A64Ins ai = irt_is64(ir->t) ? (st == IRT_NUM ? (irt_isi64(ir->t) ? A64I_FCVT_S64_F64 : A64I_FCVT_U64_F64) : (irt_isi64(ir->t) ? A64I_FCVT_S64_F32 : A64I_FCVT_U64_F32)) : (st == IRT_NUM ? (irt_isint(ir->t) ? A64I_FCVT_S32_F64 : A64I_FCVT_U32_F64) : (irt_isint(ir->t) ? A64I_FCVT_S32_F32 : A64I_FCVT_U32_F32)); emit_dn(as, ai, dest, (left & 31)); } } else if (st >= IRT_I8 && st <= IRT_U16) { /* Extend to 32 bit integer. */ Reg dest = ra_dest(as, ir, RSET_GPR); Reg left = ra_alloc1(as, lref, RSET_GPR); A64Ins ai = st == IRT_I8 ? A64I_SXTBw : st == IRT_U8 ? A64I_UXTBw : st == IRT_I16 ? A64I_SXTHw : A64I_UXTHw; lua_assert(irt_isint(ir->t) || irt_isu32(ir->t)); emit_dn(as, ai, dest, left); } else { Reg dest = ra_dest(as, ir, RSET_GPR); if (irt_is64(ir->t)) { if (st64 || !(ir->op2 & IRCONV_SEXT)) { /* 64/64 bit no-op (cast) or 32 to 64 bit zero extension. */ ra_leftov(as, dest, lref); /* Do nothing, but may need to move regs. */ } else { /* 32 to 64 bit sign extension. */ Reg left = ra_alloc1(as, lref, RSET_GPR); emit_dn(as, A64I_SXTW, dest, left); } } else { if (st64) { /* This is either a 32 bit reg/reg mov which zeroes the hiword ** or a load of the loword from a 64 bit address. */ Reg left = ra_alloc1(as, lref, RSET_GPR); emit_dm(as, A64I_MOVw, dest, left); } else { /* 32/32 bit no-op (cast). */ ra_leftov(as, dest, lref); /* Do nothing, but may need to move regs. */ } } } } static void asm_strto(ASMState *as, IRIns *ir) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_strscan_num]; IRRef args[2]; Reg dest = 0, tmp; int destused = ra_used(ir); int32_t ofs = 0; ra_evictset(as, RSET_SCRATCH); if (destused) { if (ra_hasspill(ir->s)) { ofs = sps_scale(ir->s); destused = 0; if (ra_hasreg(ir->r)) { ra_free(as, ir->r); ra_modified(as, ir->r); emit_spload(as, ir, ir->r, ofs); } } else { dest = ra_dest(as, ir, RSET_FPR); } } if (destused) emit_lso(as, A64I_LDRd, (dest & 31), RID_SP, 0); asm_guardcnb(as, A64I_CBZ, RID_RET); args[0] = ir->op1; /* GCstr *str */ args[1] = ASMREF_TMP1; /* TValue *n */ asm_gencall(as, ci, args); tmp = ra_releasetmp(as, ASMREF_TMP1); emit_opk(as, A64I_ADDx, tmp, RID_SP, ofs, RSET_GPR); } /* -- Memory references --------------------------------------------------- */ /* Store tagged value for ref at base+ofs. */ static void asm_tvstore64(ASMState *as, Reg base, int32_t ofs, IRRef ref) { RegSet allow = rset_exclude(RSET_GPR, base); IRIns *ir = IR(ref); lua_assert(irt_ispri(ir->t) || irt_isaddr(ir->t) || irt_isinteger(ir->t)); if (irref_isk(ref)) { TValue k; lj_ir_kvalue(as->J->L, &k, ir); emit_lso(as, A64I_STRx, ra_allock(as, k.u64, allow), base, ofs); } else { Reg src = ra_alloc1(as, ref, allow); rset_clear(allow, src); if (irt_isinteger(ir->t)) { Reg type = ra_allock(as, (int64_t)irt_toitype(ir->t) << 47, allow); emit_lso(as, A64I_STRx, RID_TMP, base, ofs); emit_dnm(as, A64I_ADDx | A64F_EX(A64EX_UXTW), RID_TMP, type, src); } else { Reg type = ra_allock(as, (int32_t)irt_toitype(ir->t), allow); emit_lso(as, A64I_STRx, RID_TMP, base, ofs); emit_dnm(as, A64I_ADDx | A64F_SH(A64SH_LSL, 47), RID_TMP, src, type); } } } /* Get pointer to TValue. */ static void asm_tvptr(ASMState *as, Reg dest, IRRef ref) { IRIns *ir = IR(ref); if (irt_isnum(ir->t)) { if (irref_isk(ref)) { /* Use the number constant itself as a TValue. */ ra_allockreg(as, i64ptr(ir_knum(ir)), dest); } else { /* Otherwise force a spill and use the spill slot. */ emit_opk(as, A64I_ADDx, dest, RID_SP, ra_spill(as, ir), RSET_GPR); } } else { /* Otherwise use g->tmptv to hold the TValue. */ asm_tvstore64(as, dest, 0, ref); ra_allockreg(as, i64ptr(&J2G(as->J)->tmptv), dest); } } static void asm_aref(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg idx, base; if (irref_isk(ir->op2)) { IRRef tab = IR(ir->op1)->op1; int32_t ofs = asm_fuseabase(as, tab); IRRef refa = ofs ? tab : ir->op1; uint32_t k = emit_isk12(ofs + 8*IR(ir->op2)->i); if (k) { base = ra_alloc1(as, refa, RSET_GPR); emit_dn(as, A64I_ADDx^k, dest, base); return; } } base = ra_alloc1(as, ir->op1, RSET_GPR); idx = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, base)); emit_dnm(as, A64I_ADDx | A64F_EXSH(A64EX_UXTW, 3), dest, base, idx); } /* Inlined hash lookup. Specialized for key type and for const keys. ** The equivalent C code is: ** Node *n = hashkey(t, key); ** do { ** if (lj_obj_equal(&n->key, key)) return &n->val; ** } while ((n = nextnode(n))); ** return niltv(L); */ static void asm_href(ASMState *as, IRIns *ir, IROp merge) { RegSet allow = RSET_GPR; int destused = ra_used(ir); Reg dest = ra_dest(as, ir, allow); Reg tab = ra_alloc1(as, ir->op1, rset_clear(allow, dest)); Reg key = 0, tmp = RID_TMP; IRRef refkey = ir->op2; IRIns *irkey = IR(refkey); int isk = irref_isk(ir->op2); IRType1 kt = irkey->t; uint32_t k = 0; uint32_t khash; MCLabel l_end, l_loop, l_next; rset_clear(allow, tab); if (!isk) { key = ra_alloc1(as, ir->op2, irt_isnum(kt) ? RSET_FPR : allow); rset_clear(allow, key); if (!irt_isstr(kt)) { tmp = ra_scratch(as, allow); rset_clear(allow, tmp); } } else if (irt_isnum(kt)) { int64_t val = (int64_t)ir_knum(irkey)->u64; if (!(k = emit_isk12(val))) { key = ra_allock(as, val, allow); rset_clear(allow, key); } } else if (!irt_ispri(kt)) { if (!(k = emit_isk12(irkey->i))) { key = ra_alloc1(as, refkey, allow); rset_clear(allow, key); } } /* Key not found in chain: jump to exit (if merged) or load niltv. */ l_end = emit_label(as); as->invmcp = NULL; if (merge == IR_NE) asm_guardcc(as, CC_AL); else if (destused) emit_loada(as, dest, niltvg(J2G(as->J))); /* Follow hash chain until the end. */ l_loop = --as->mcp; emit_n(as, A64I_CMPx^A64I_K12^0, dest); emit_lso(as, A64I_LDRx, dest, dest, offsetof(Node, next)); l_next = emit_label(as); /* Type and value comparison. */ if (merge == IR_EQ) asm_guardcc(as, CC_EQ); else emit_cond_branch(as, CC_EQ, l_end); if (irt_isnum(kt)) { if (isk) { /* Assumes -0.0 is already canonicalized to +0.0. */ if (k) emit_n(as, A64I_CMPx^k, tmp); else emit_nm(as, A64I_CMPx, key, tmp); emit_lso(as, A64I_LDRx, tmp, dest, offsetof(Node, key.u64)); } else { Reg tisnum = ra_allock(as, LJ_TISNUM << 15, allow); Reg ftmp = ra_scratch(as, rset_exclude(RSET_FPR, key)); rset_clear(allow, tisnum); emit_nm(as, A64I_FCMPd, key, ftmp); emit_dn(as, A64I_FMOV_D_R, (ftmp & 31), (tmp & 31)); emit_cond_branch(as, CC_LO, l_next); emit_nm(as, A64I_CMPx | A64F_SH(A64SH_LSR, 32), tisnum, tmp); emit_lso(as, A64I_LDRx, tmp, dest, offsetof(Node, key.n)); } } else if (irt_isaddr(kt)) { Reg scr; if (isk) { int64_t kk = ((int64_t)irt_toitype(irkey->t) << 47) | irkey[1].tv.u64; scr = ra_allock(as, kk, allow); emit_nm(as, A64I_CMPx, scr, tmp); emit_lso(as, A64I_LDRx, tmp, dest, offsetof(Node, key.u64)); } else { scr = ra_scratch(as, allow); emit_nm(as, A64I_CMPx, tmp, scr); emit_lso(as, A64I_LDRx, scr, dest, offsetof(Node, key.u64)); } rset_clear(allow, scr); } else { Reg type, scr; lua_assert(irt_ispri(kt) && !irt_isnil(kt)); type = ra_allock(as, ~((int64_t)~irt_toitype(ir->t) << 47), allow); scr = ra_scratch(as, rset_clear(allow, type)); rset_clear(allow, scr); emit_nm(as, A64I_CMPw, scr, type); emit_lso(as, A64I_LDRx, scr, dest, offsetof(Node, key)); } *l_loop = A64I_BCC | A64F_S19(as->mcp - l_loop) | CC_NE; if (!isk && irt_isaddr(kt)) { Reg type = ra_allock(as, (int32_t)irt_toitype(kt), allow); emit_dnm(as, A64I_ADDx | A64F_SH(A64SH_LSL, 47), tmp, key, type); rset_clear(allow, type); } /* Load main position relative to tab->node into dest. */ khash = isk ? ir_khash(irkey) : 1; if (khash == 0) { emit_lso(as, A64I_LDRx, dest, tab, offsetof(GCtab, node)); } else { emit_dnm(as, A64I_ADDx | A64F_SH(A64SH_LSL, 3), dest, tmp, dest); emit_dnm(as, A64I_ADDx | A64F_SH(A64SH_LSL, 1), dest, dest, dest); emit_lso(as, A64I_LDRx, tmp, tab, offsetof(GCtab, node)); if (isk) { Reg tmphash = ra_allock(as, khash, allow); emit_dnm(as, A64I_ANDw, dest, dest, tmphash); emit_lso(as, A64I_LDRw, dest, tab, offsetof(GCtab, hmask)); } else if (irt_isstr(kt)) { /* Fetch of str->hash is cheaper than ra_allock. */ emit_dnm(as, A64I_ANDw, dest, dest, tmp); emit_lso(as, A64I_LDRw, tmp, key, offsetof(GCstr, hash)); emit_lso(as, A64I_LDRw, dest, tab, offsetof(GCtab, hmask)); } else { /* Must match with hash*() in lj_tab.c. */ emit_dnm(as, A64I_ANDw, dest, dest, tmp); emit_lso(as, A64I_LDRw, tmp, tab, offsetof(GCtab, hmask)); emit_dnm(as, A64I_SUBw, dest, dest, tmp); emit_dnm(as, A64I_EXTRw | (A64F_IMMS(32-HASH_ROT3)), tmp, tmp, tmp); emit_dnm(as, A64I_EORw, dest, dest, tmp); emit_dnm(as, A64I_EXTRw | (A64F_IMMS(32-HASH_ROT2)), dest, dest, dest); emit_dnm(as, A64I_SUBw, tmp, tmp, dest); emit_dnm(as, A64I_EXTRw | (A64F_IMMS(32-HASH_ROT1)), dest, dest, dest); emit_dnm(as, A64I_EORw, tmp, tmp, dest); if (irt_isnum(kt)) { emit_dnm(as, A64I_ADDw, dest, dest, dest); emit_dn(as, A64I_LSRx | A64F_IMMR(32)|A64F_IMMS(32), dest, dest); emit_dm(as, A64I_MOVw, tmp, dest); emit_dn(as, A64I_FMOV_R_D, dest, (key & 31)); } else { checkmclim(as); emit_dm(as, A64I_MOVw, tmp, key); emit_dnm(as, A64I_EORw, dest, dest, ra_allock(as, irt_toitype(kt) << 15, allow)); emit_dn(as, A64I_LSRx | A64F_IMMR(32)|A64F_IMMS(32), dest, dest); emit_dm(as, A64I_MOVx, dest, key); } } } } static void asm_hrefk(ASMState *as, IRIns *ir) { IRIns *kslot = IR(ir->op2); IRIns *irkey = IR(kslot->op1); int32_t ofs = (int32_t)(kslot->op2 * sizeof(Node)); int32_t kofs = ofs + (int32_t)offsetof(Node, key); int bigofs = !emit_checkofs(A64I_LDRx, ofs); RegSet allow = RSET_GPR; Reg dest = (ra_used(ir) || bigofs) ? ra_dest(as, ir, RSET_GPR) : RID_NONE; Reg node = ra_alloc1(as, ir->op1, allow); Reg key = ra_scratch(as, rset_clear(allow, node)); Reg idx = node; uint64_t k; lua_assert(ofs % sizeof(Node) == 0); rset_clear(allow, key); if (bigofs) { idx = dest; rset_clear(allow, dest); kofs = (int32_t)offsetof(Node, key); } else if (ra_hasreg(dest)) { emit_opk(as, A64I_ADDx, dest, node, ofs, allow); } asm_guardcc(as, CC_NE); if (irt_ispri(irkey->t)) { k = ~((int64_t)~irt_toitype(irkey->t) << 47); } else if (irt_isnum(irkey->t)) { k = ir_knum(irkey)->u64; } else { k = ((uint64_t)irt_toitype(irkey->t) << 47) | (uint64_t)ir_kgc(irkey); } emit_nm(as, A64I_CMPx, key, ra_allock(as, k, allow)); emit_lso(as, A64I_LDRx, key, idx, kofs); if (bigofs) emit_opk(as, A64I_ADDx, dest, node, ofs, RSET_GPR); } static void asm_uref(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); if (irref_isk(ir->op1)) { GCfunc *fn = ir_kfunc(IR(ir->op1)); MRef *v = &gcref(fn->l.uvptr[(ir->op2 >> 8)])->uv.v; emit_lsptr(as, A64I_LDRx, dest, v); } else { Reg uv = ra_scratch(as, RSET_GPR); Reg func = ra_alloc1(as, ir->op1, RSET_GPR); if (ir->o == IR_UREFC) { asm_guardcc(as, CC_NE); emit_n(as, (A64I_CMPx^A64I_K12) | A64F_U12(1), RID_TMP); emit_opk(as, A64I_ADDx, dest, uv, (int32_t)offsetof(GCupval, tv), RSET_GPR); emit_lso(as, A64I_LDRB, RID_TMP, uv, (int32_t)offsetof(GCupval, closed)); } else { emit_lso(as, A64I_LDRx, dest, uv, (int32_t)offsetof(GCupval, v)); } emit_lso(as, A64I_LDRx, uv, func, (int32_t)offsetof(GCfuncL, uvptr) + 8*(int32_t)(ir->op2 >> 8)); } } static void asm_fref(ASMState *as, IRIns *ir) { UNUSED(as); UNUSED(ir); lua_assert(!ra_used(ir)); } static void asm_strref(ASMState *as, IRIns *ir) { RegSet allow = RSET_GPR; Reg dest = ra_dest(as, ir, allow); Reg base = ra_alloc1(as, ir->op1, allow); IRIns *irr = IR(ir->op2); int32_t ofs = sizeof(GCstr); uint32_t m; rset_clear(allow, base); if (irref_isk(ir->op2) && (m = emit_isk12(ofs + irr->i))) { emit_dn(as, A64I_ADDx^m, dest, base); } else { emit_dn(as, (A64I_ADDx^A64I_K12) | A64F_U12(ofs), dest, dest); emit_dnm(as, A64I_ADDx, dest, base, ra_alloc1(as, ir->op2, allow)); } } /* -- Loads and stores ---------------------------------------------------- */ static A64Ins asm_fxloadins(IRIns *ir) { switch (irt_type(ir->t)) { case IRT_I8: return A64I_LDRB ^ A64I_LS_S; case IRT_U8: return A64I_LDRB; case IRT_I16: return A64I_LDRH ^ A64I_LS_S; case IRT_U16: return A64I_LDRH; case IRT_NUM: return A64I_LDRd; case IRT_FLOAT: return A64I_LDRs; default: return irt_is64(ir->t) ? A64I_LDRx : A64I_LDRw; } } static A64Ins asm_fxstoreins(IRIns *ir) { switch (irt_type(ir->t)) { case IRT_I8: case IRT_U8: return A64I_STRB; case IRT_I16: case IRT_U16: return A64I_STRH; case IRT_NUM: return A64I_STRd; case IRT_FLOAT: return A64I_STRs; default: return irt_is64(ir->t) ? A64I_STRx : A64I_STRw; } } static void asm_fload(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg idx; A64Ins ai = asm_fxloadins(ir); int32_t ofs; if (ir->op1 == REF_NIL) { idx = RID_GL; ofs = (ir->op2 << 2) - GG_OFS(g); } else { idx = ra_alloc1(as, ir->op1, RSET_GPR); if (ir->op2 == IRFL_TAB_ARRAY) { ofs = asm_fuseabase(as, ir->op1); if (ofs) { /* Turn the t->array load into an add for colocated arrays. */ emit_dn(as, (A64I_ADDx^A64I_K12) | A64F_U12(ofs), dest, idx); return; } } ofs = field_ofs[ir->op2]; } emit_lso(as, ai, (dest & 31), idx, ofs); } static void asm_fstore(ASMState *as, IRIns *ir) { if (ir->r != RID_SINK) { Reg src = ra_alloc1(as, ir->op2, RSET_GPR); IRIns *irf = IR(ir->op1); Reg idx = ra_alloc1(as, irf->op1, rset_exclude(RSET_GPR, src)); int32_t ofs = field_ofs[irf->op2]; emit_lso(as, asm_fxstoreins(ir), (src & 31), idx, ofs); } } static void asm_xload(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, irt_isfp(ir->t) ? RSET_FPR : RSET_GPR); lua_assert(!(ir->op2 & IRXLOAD_UNALIGNED)); asm_fusexref(as, asm_fxloadins(ir), dest, ir->op1, RSET_GPR); } static void asm_xstore(ASMState *as, IRIns *ir) { if (ir->r != RID_SINK) { Reg src = ra_alloc1(as, ir->op2, irt_isfp(ir->t) ? RSET_FPR : RSET_GPR); asm_fusexref(as, asm_fxstoreins(ir), src, ir->op1, rset_exclude(RSET_GPR, src)); } } static void asm_ahuvload(ASMState *as, IRIns *ir) { Reg idx, tmp, type; int32_t ofs = 0; RegSet gpr = RSET_GPR, allow = irt_isnum(ir->t) ? RSET_FPR : RSET_GPR; lua_assert(irt_isnum(ir->t) || irt_ispri(ir->t) || irt_isaddr(ir->t) || irt_isint(ir->t)); if (ra_used(ir)) { Reg dest = ra_dest(as, ir, allow); tmp = irt_isnum(ir->t) ? ra_scratch(as, rset_clear(gpr, dest)) : dest; if (irt_isaddr(ir->t)) { emit_dn(as, A64I_ANDx^emit_isk13(LJ_GCVMASK, 1), dest, dest); } else if (irt_isnum(ir->t)) { emit_dn(as, A64I_FMOV_D_R, (dest & 31), tmp); } else if (irt_isint(ir->t)) { emit_dm(as, A64I_MOVw, dest, dest); } } else { tmp = ra_scratch(as, gpr); } type = ra_scratch(as, rset_clear(gpr, tmp)); idx = asm_fuseahuref(as, ir->op1, &ofs, rset_clear(gpr, type), A64I_LDRx); /* Always do the type check, even if the load result is unused. */ asm_guardcc(as, irt_isnum(ir->t) ? CC_LS : CC_NE); if (irt_type(ir->t) >= IRT_NUM) { lua_assert(irt_isinteger(ir->t) || irt_isnum(ir->t)); emit_nm(as, A64I_CMPx | A64F_SH(A64SH_LSR, 32), ra_allock(as, LJ_TISNUM << 15, rset_exclude(gpr, idx)), tmp); } else if (irt_isaddr(ir->t)) { emit_n(as, (A64I_CMNx^A64I_K12) | A64F_U12(-irt_toitype(ir->t)), type); emit_dn(as, A64I_ASRx | A64F_IMMR(47), type, tmp); } else if (irt_isnil(ir->t)) { emit_n(as, (A64I_CMNx^A64I_K12) | A64F_U12(1), tmp); } else { emit_nm(as, A64I_CMPx | A64F_SH(A64SH_LSR, 32), ra_allock(as, (irt_toitype(ir->t) << 15) | 0x7fff, allow), tmp); } if (ofs & FUSE_REG) emit_dnm(as, (A64I_LDRx^A64I_LS_R)|A64I_LS_UXTWx|A64I_LS_SH, tmp, idx, (ofs & 31)); else emit_lso(as, A64I_LDRx, tmp, idx, ofs); } static void asm_ahustore(ASMState *as, IRIns *ir) { if (ir->r != RID_SINK) { RegSet allow = RSET_GPR; Reg idx, src = RID_NONE, tmp = RID_TMP, type = RID_NONE; int32_t ofs = 0; if (irt_isnum(ir->t)) { src = ra_alloc1(as, ir->op2, RSET_FPR); idx = asm_fuseahuref(as, ir->op1, &ofs, allow, A64I_STRd); if (ofs & FUSE_REG) emit_dnm(as, (A64I_STRd^A64I_LS_R)|A64I_LS_UXTWx|A64I_LS_SH, (src & 31), idx, (ofs &31)); else emit_lso(as, A64I_STRd, (src & 31), idx, ofs); } else { if (!irt_ispri(ir->t)) { src = ra_alloc1(as, ir->op2, allow); rset_clear(allow, src); if (irt_isinteger(ir->t)) type = ra_allock(as, (uint64_t)(int32_t)LJ_TISNUM << 47, allow); else type = ra_allock(as, irt_toitype(ir->t), allow); } else { tmp = type = ra_allock(as, ~((int64_t)~irt_toitype(ir->t)<<47), allow); } idx = asm_fuseahuref(as, ir->op1, &ofs, rset_exclude(allow, type), A64I_STRx); if (ofs & FUSE_REG) emit_dnm(as, (A64I_STRx^A64I_LS_R)|A64I_LS_UXTWx|A64I_LS_SH, tmp, idx, (ofs & 31)); else emit_lso(as, A64I_STRx, tmp, idx, ofs); if (ra_hasreg(src)) { if (irt_isinteger(ir->t)) { emit_dnm(as, A64I_ADDx | A64F_EX(A64EX_UXTW), tmp, type, src); } else { emit_dnm(as, A64I_ADDx | A64F_SH(A64SH_LSL, 47), tmp, src, type); } } } } } static void asm_sload(ASMState *as, IRIns *ir) { int32_t ofs = 8*((int32_t)ir->op1-2); IRType1 t = ir->t; Reg dest = RID_NONE, base; RegSet allow = RSET_GPR; lua_assert(!(ir->op2 & IRSLOAD_PARENT)); /* Handled by asm_head_side(). */ lua_assert(irt_isguard(t) || !(ir->op2 & IRSLOAD_TYPECHECK)); if ((ir->op2 & IRSLOAD_CONVERT) && irt_isguard(t) && irt_isint(t)) { dest = ra_scratch(as, RSET_FPR); asm_tointg(as, ir, dest); t.irt = IRT_NUM; /* Continue with a regular number type check. */ } else if (ra_used(ir)) { Reg tmp = RID_NONE; if ((ir->op2 & IRSLOAD_CONVERT)) tmp = ra_scratch(as, irt_isint(t) ? RSET_FPR : RSET_GPR); lua_assert((irt_isnum(t)) || irt_isint(t) || irt_isaddr(t)); dest = ra_dest(as, ir, irt_isnum(t) ? RSET_FPR : allow); base = ra_alloc1(as, REF_BASE, rset_clear(allow, dest)); if (irt_isaddr(t)) { emit_dn(as, A64I_ANDx^emit_isk13(LJ_GCVMASK, 1), dest, dest); } else if ((ir->op2 & IRSLOAD_CONVERT)) { if (irt_isint(t)) { emit_dn(as, A64I_FCVT_S32_F64, dest, (tmp & 31)); /* If value is already loaded for type check, move it to FPR. */ if ((ir->op2 & IRSLOAD_TYPECHECK)) emit_dn(as, A64I_FMOV_D_R, (tmp & 31), dest); else dest = tmp; t.irt = IRT_NUM; /* Check for original type. */ } else { emit_dn(as, A64I_FCVT_F64_S32, (dest & 31), tmp); dest = tmp; t.irt = IRT_INT; /* Check for original type. */ } } else if (irt_isint(t) && (ir->op2 & IRSLOAD_TYPECHECK)) { emit_dm(as, A64I_MOVw, dest, dest); } goto dotypecheck; } base = ra_alloc1(as, REF_BASE, allow); dotypecheck: rset_clear(allow, base); if ((ir->op2 & IRSLOAD_TYPECHECK)) { Reg tmp; if (ra_hasreg(dest) && rset_test(RSET_GPR, dest)) { tmp = dest; } else { tmp = ra_scratch(as, allow); rset_clear(allow, tmp); } if (irt_isnum(t) && !(ir->op2 & IRSLOAD_CONVERT)) emit_dn(as, A64I_FMOV_D_R, (dest & 31), tmp); /* Need type check, even if the load result is unused. */ asm_guardcc(as, irt_isnum(t) ? CC_LS : CC_NE); if (irt_type(t) >= IRT_NUM) { lua_assert(irt_isinteger(t) || irt_isnum(t)); emit_nm(as, A64I_CMPx | A64F_SH(A64SH_LSR, 32), ra_allock(as, LJ_TISNUM << 15, allow), tmp); } else if (irt_isnil(t)) { emit_n(as, (A64I_CMNx^A64I_K12) | A64F_U12(1), tmp); } else if (irt_ispri(t)) { emit_nm(as, A64I_CMPx, ra_allock(as, ~((int64_t)~irt_toitype(t) << 47) , allow), tmp); } else { Reg type = ra_scratch(as, allow); emit_n(as, (A64I_CMNx^A64I_K12) | A64F_U12(-irt_toitype(t)), type); emit_dn(as, A64I_ASRx | A64F_IMMR(47), type, tmp); } emit_lso(as, A64I_LDRx, tmp, base, ofs); return; } if (ra_hasreg(dest)) { emit_lso(as, irt_isnum(t) ? A64I_LDRd : (irt_isint(t) ? A64I_LDRw : A64I_LDRx), (dest & 31), base, ofs ^ ((LJ_BE && irt_isint(t) ? 4 : 0))); } } /* -- Allocations --------------------------------------------------------- */ #if LJ_HASFFI static void asm_cnew(ASMState *as, IRIns *ir) { CTState *cts = ctype_ctsG(J2G(as->J)); CTypeID id = (CTypeID)IR(ir->op1)->i; CTSize sz; CTInfo info = lj_ctype_info(cts, id, &sz); const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_mem_newgco]; IRRef args[4]; RegSet allow = (RSET_GPR & ~RSET_SCRATCH); lua_assert(sz != CTSIZE_INVALID || (ir->o == IR_CNEW && ir->op2 != REF_NIL)); as->gcsteps++; asm_setupresult(as, ir, ci); /* GCcdata * */ /* Initialize immutable cdata object. */ if (ir->o == IR_CNEWI) { int32_t ofs = sizeof(GCcdata); Reg r = ra_alloc1(as, ir->op2, allow); lua_assert(sz == 4 || sz == 8); emit_lso(as, sz == 8 ? A64I_STRx : A64I_STRw, r, RID_RET, ofs); } else if (ir->op2 != REF_NIL) { /* Create VLA/VLS/aligned cdata. */ ci = &lj_ir_callinfo[IRCALL_lj_cdata_newv]; args[0] = ASMREF_L; /* lua_State *L */ args[1] = ir->op1; /* CTypeID id */ args[2] = ir->op2; /* CTSize sz */ args[3] = ASMREF_TMP1; /* CTSize align */ asm_gencall(as, ci, args); emit_loadi(as, ra_releasetmp(as, ASMREF_TMP1), (int32_t)ctype_align(info)); return; } /* Initialize gct and ctypeid. lj_mem_newgco() already sets marked. */ { Reg r = (id < 65536) ? RID_X1 : ra_allock(as, id, allow); emit_lso(as, A64I_STRB, RID_TMP, RID_RET, offsetof(GCcdata, gct)); emit_lso(as, A64I_STRH, r, RID_RET, offsetof(GCcdata, ctypeid)); emit_d(as, A64I_MOVZw | A64F_U16(~LJ_TCDATA), RID_TMP); if (id < 65536) emit_d(as, A64I_MOVZw | A64F_U16(id), RID_X1); } args[0] = ASMREF_L; /* lua_State *L */ args[1] = ASMREF_TMP1; /* MSize size */ asm_gencall(as, ci, args); ra_allockreg(as, (int32_t)(sz+sizeof(GCcdata)), ra_releasetmp(as, ASMREF_TMP1)); } #else #define asm_cnew(as, ir) ((void)0) #endif /* -- Write barriers ------------------------------------------------------ */ static void asm_tbar(ASMState *as, IRIns *ir) { Reg tab = ra_alloc1(as, ir->op1, RSET_GPR); Reg link = ra_scratch(as, rset_exclude(RSET_GPR, tab)); Reg gr = ra_allock(as, i64ptr(J2G(as->J)), rset_exclude(rset_exclude(RSET_GPR, tab), link)); Reg mark = RID_TMP; MCLabel l_end = emit_label(as); emit_lso(as, A64I_STRx, link, tab, (int32_t)offsetof(GCtab, gclist)); emit_lso(as, A64I_STRB, mark, tab, (int32_t)offsetof(GCtab, marked)); emit_lso(as, A64I_STRx, tab, gr, (int32_t)offsetof(global_State, gc.grayagain)); emit_dn(as, A64I_ANDw^emit_isk13(~LJ_GC_BLACK, 0), mark, mark); emit_lso(as, A64I_LDRx, link, gr, (int32_t)offsetof(global_State, gc.grayagain)); emit_cond_branch(as, CC_EQ, l_end); emit_n(as, A64I_TSTw^emit_isk13(LJ_GC_BLACK, 0), mark); emit_lso(as, A64I_LDRB, mark, tab, (int32_t)offsetof(GCtab, marked)); } static void asm_obar(ASMState *as, IRIns *ir) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_gc_barrieruv]; IRRef args[2]; MCLabel l_end; RegSet allow = RSET_GPR; Reg obj, val, tmp; /* No need for other object barriers (yet). */ lua_assert(IR(ir->op1)->o == IR_UREFC); ra_evictset(as, RSET_SCRATCH); l_end = emit_label(as); args[0] = ASMREF_TMP1; /* global_State *g */ args[1] = ir->op1; /* TValue *tv */ asm_gencall(as, ci, args); ra_allockreg(as, i64ptr(J2G(as->J)), ra_releasetmp(as, ASMREF_TMP1) ); obj = IR(ir->op1)->r; tmp = ra_scratch(as, rset_exclude(allow, obj)); emit_cond_branch(as, CC_EQ, l_end); emit_n(as, A64I_TSTw^emit_isk13(LJ_GC_BLACK, 0), tmp); emit_cond_branch(as, CC_EQ, l_end); emit_n(as, A64I_TSTw^emit_isk13(LJ_GC_WHITES, 0), RID_TMP); val = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, obj)); emit_lso(as, A64I_LDRB, tmp, obj, (int32_t)offsetof(GCupval, marked)-(int32_t)offsetof(GCupval, tv)); emit_lso(as, A64I_LDRB, RID_TMP, val, (int32_t)offsetof(GChead, marked)); } /* -- Arithmetic and logic operations ------------------------------------- */ static void asm_fparith(ASMState *as, IRIns *ir, A64Ins ai) { Reg dest = ra_dest(as, ir, RSET_FPR); Reg right, left = ra_alloc2(as, ir, RSET_FPR); right = (left >> 8); left &= 255; emit_dnm(as, ai, (dest & 31), (left & 31), (right & 31)); } static void asm_fpunary(ASMState *as, IRIns *ir, A64Ins ai) { Reg dest = ra_dest(as, ir, RSET_FPR); Reg left = ra_hintalloc(as, ir->op1, dest, RSET_FPR); emit_dn(as, ai, (dest & 31), (left & 31)); } static void asm_fpmath(ASMState *as, IRIns *ir) { IRFPMathOp fpm = (IRFPMathOp)ir->op2; if (fpm == IRFPM_SQRT) { asm_fpunary(as, ir, A64I_FSQRTd); } else if (fpm <= IRFPM_TRUNC) { asm_fpunary(as, ir, fpm == IRFPM_FLOOR ? A64I_FRINTMd : fpm == IRFPM_CEIL ? A64I_FRINTPd : A64I_FRINTZd); } else if (fpm == IRFPM_EXP2 && asm_fpjoin_pow(as, ir)) { return; } else { asm_callid(as, ir, IRCALL_lj_vm_floor + fpm); } } static int asm_swapops(ASMState *as, IRRef lref, IRRef rref) { IRIns *ir; if (irref_isk(rref)) return 0; /* Don't swap constants to the left. */ if (irref_isk(lref)) return 1; /* But swap constants to the right. */ ir = IR(rref); if ((ir->o >= IR_BSHL && ir->o <= IR_BSAR) || (ir->o == IR_ADD && ir->op1 == ir->op2) || (ir->o == IR_CONV && ir->op2 == ((IRT_I64<o >= IR_BSHL && ir->o <= IR_BSAR) || (ir->o == IR_ADD && ir->op1 == ir->op2) || (ir->o == IR_CONV && ir->op2 == ((IRT_I64<op1, rref = ir->op2; Reg left, dest = ra_dest(as, ir, RSET_GPR); uint32_t m; if ((ai & ~A64I_S) != A64I_SUBw && asm_swapops(as, lref, rref)) { IRRef tmp = lref; lref = rref; rref = tmp; } left = ra_hintalloc(as, lref, dest, RSET_GPR); if (irt_is64(ir->t)) ai |= A64I_X; m = asm_fuseopm(as, ai, rref, rset_exclude(RSET_GPR, left)); if (irt_isguard(ir->t)) { /* For IR_ADDOV etc. */ asm_guardcc(as, CC_VS); ai |= A64I_S; } emit_dn(as, ai^m, dest, left); } static void asm_intop_s(ASMState *as, IRIns *ir, A64Ins ai) { if (as->flagmcp == as->mcp) { /* Drop cmp r, #0. */ as->flagmcp = NULL; as->mcp++; ai |= A64I_S; } asm_intop(as, ir, ai); } static void asm_intneg(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg left = ra_hintalloc(as, ir->op1, dest, RSET_GPR); emit_dm(as, irt_is64(ir->t) ? A64I_NEGx : A64I_NEGw, dest, left); } /* NYI: use add/shift for MUL(OV) with constants. FOLD only does 2^k. */ static void asm_intmul(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg left = ra_alloc1(as, ir->op1, rset_exclude(RSET_GPR, dest)); Reg right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left)); if (irt_isguard(ir->t)) { /* IR_MULOV */ asm_guardcc(as, CC_NE); emit_dm(as, A64I_MOVw, dest, dest); /* Zero-extend. */ emit_nm(as, A64I_CMPw | A64F_SH(A64SH_ASR, 31), RID_TMP, dest); emit_dn(as, A64I_ASRx | A64F_IMMR(32), RID_TMP, dest); emit_dnm(as, A64I_SMULL, dest, right, left); } else { emit_dnm(as, irt_is64(ir->t) ? A64I_MULx : A64I_MULw, dest, left, right); } } static void asm_add(ASMState *as, IRIns *ir) { if (irt_isnum(ir->t)) { if (!asm_fusemadd(as, ir, A64I_FMADDd, A64I_FMADDd)) asm_fparith(as, ir, A64I_FADDd); return; } asm_intop_s(as, ir, A64I_ADDw); } static void asm_sub(ASMState *as, IRIns *ir) { if (irt_isnum(ir->t)) { if (!asm_fusemadd(as, ir, A64I_FNMSUBd, A64I_FMSUBd)) asm_fparith(as, ir, A64I_FSUBd); return; } asm_intop_s(as, ir, A64I_SUBw); } static void asm_mul(ASMState *as, IRIns *ir) { if (irt_isnum(ir->t)) { asm_fparith(as, ir, A64I_FMULd); return; } asm_intmul(as, ir); } static void asm_div(ASMState *as, IRIns *ir) { #if LJ_HASFFI if (!irt_isnum(ir->t)) asm_callid(as, ir, irt_isi64(ir->t) ? IRCALL_lj_carith_divi64 : IRCALL_lj_carith_divu64); else #endif asm_fparith(as, ir, A64I_FDIVd); } static void asm_pow(ASMState *as, IRIns *ir) { #if LJ_HASFFI if (!irt_isnum(ir->t)) asm_callid(as, ir, irt_isi64(ir->t) ? IRCALL_lj_carith_powi64 : IRCALL_lj_carith_powu64); else #endif asm_callid(as, ir, IRCALL_lj_vm_powi); } #define asm_addov(as, ir) asm_add(as, ir) #define asm_subov(as, ir) asm_sub(as, ir) #define asm_mulov(as, ir) asm_mul(as, ir) #define asm_abs(as, ir) asm_fpunary(as, ir, A64I_FABS) #define asm_atan2(as, ir) asm_callid(as, ir, IRCALL_atan2) #define asm_ldexp(as, ir) asm_callid(as, ir, IRCALL_ldexp) static void asm_mod(ASMState *as, IRIns *ir) { #if LJ_HASFFI if (!irt_isint(ir->t)) asm_callid(as, ir, irt_isi64(ir->t) ? IRCALL_lj_carith_modi64 : IRCALL_lj_carith_modu64); else #endif asm_callid(as, ir, IRCALL_lj_vm_modi); } static void asm_neg(ASMState *as, IRIns *ir) { if (irt_isnum(ir->t)) { asm_fpunary(as, ir, A64I_FNEGd); return; } asm_intneg(as, ir); } static void asm_band(ASMState *as, IRIns *ir) { A64Ins ai = A64I_ANDw; if (asm_fuseandshift(as, ir)) return; if (as->flagmcp == as->mcp) { /* Try to drop cmp r, #0. */ as->flagmcp = NULL; as->mcp++; ai = A64I_ANDSw; } asm_intop(as, ir, ai); } static void asm_borbxor(ASMState *as, IRIns *ir, A64Ins ai) { IRRef lref = ir->op1, rref = ir->op2; IRIns *irl = IR(lref), *irr = IR(rref); if ((canfuse(as, irl) && irl->o == IR_BNOT && !irref_isk(rref)) || (canfuse(as, irr) && irr->o == IR_BNOT && !irref_isk(lref))) { Reg left, dest = ra_dest(as, ir, RSET_GPR); uint32_t m; if (irl->o == IR_BNOT) { IRRef tmp = lref; lref = rref; rref = tmp; } left = ra_alloc1(as, lref, RSET_GPR); ai |= A64I_ON; if (irt_is64(ir->t)) ai |= A64I_X; m = asm_fuseopm(as, ai, IR(rref)->op1, rset_exclude(RSET_GPR, left)); emit_dn(as, ai^m, dest, left); } else { asm_intop(as, ir, ai); } } static void asm_bor(ASMState *as, IRIns *ir) { if (asm_fuseorshift(as, ir)) return; asm_borbxor(as, ir, A64I_ORRw); } #define asm_bxor(as, ir) asm_borbxor(as, ir, A64I_EORw) static void asm_bnot(ASMState *as, IRIns *ir) { A64Ins ai = A64I_MVNw; Reg dest = ra_dest(as, ir, RSET_GPR); uint32_t m = asm_fuseopm(as, ai, ir->op1, RSET_GPR); if (irt_is64(ir->t)) ai |= A64I_X; emit_d(as, ai^m, dest); } static void asm_bswap(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg left = ra_alloc1(as, ir->op1, RSET_GPR); emit_dn(as, irt_is64(ir->t) ? A64I_REVx : A64I_REVw, dest, left); } static void asm_bitshift(ASMState *as, IRIns *ir, A64Ins ai, A64Shift sh) { int32_t shmask = irt_is64(ir->t) ? 63 : 31; if (irref_isk(ir->op2)) { /* Constant shifts. */ Reg left, dest = ra_dest(as, ir, RSET_GPR); int32_t shift = (IR(ir->op2)->i & shmask); IRIns *irl = IR(ir->op1); if (shmask == 63) ai += A64I_UBFMx - A64I_UBFMw; /* Fuse BSHL + BSHR/BSAR into UBFM/SBFM aka UBFX/SBFX/UBFIZ/SBFIZ. */ if ((sh == A64SH_LSR || sh == A64SH_ASR) && canfuse(as, irl)) { if (irl->o == IR_BSHL && irref_isk(irl->op2)) { int32_t shift2 = (IR(irl->op2)->i & shmask); shift = ((shift - shift2) & shmask); shmask -= shift2; ir = irl; } } left = ra_alloc1(as, ir->op1, RSET_GPR); switch (sh) { case A64SH_LSL: emit_dn(as, ai | A64F_IMMS(shmask-shift) | A64F_IMMR((shmask-shift+1)&shmask), dest, left); break; case A64SH_LSR: case A64SH_ASR: emit_dn(as, ai | A64F_IMMS(shmask) | A64F_IMMR(shift), dest, left); break; case A64SH_ROR: emit_dnm(as, ai | A64F_IMMS(shift), dest, left, left); break; } } else { /* Variable-length shifts. */ Reg dest = ra_dest(as, ir, RSET_GPR); Reg left = ra_alloc1(as, ir->op1, RSET_GPR); Reg right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left)); emit_dnm(as, (shmask == 63 ? A64I_SHRx : A64I_SHRw) | A64F_BSH(sh), dest, left, right); } } #define asm_bshl(as, ir) asm_bitshift(as, ir, A64I_UBFMw, A64SH_LSL) #define asm_bshr(as, ir) asm_bitshift(as, ir, A64I_UBFMw, A64SH_LSR) #define asm_bsar(as, ir) asm_bitshift(as, ir, A64I_SBFMw, A64SH_ASR) #define asm_bror(as, ir) asm_bitshift(as, ir, A64I_EXTRw, A64SH_ROR) #define asm_brol(as, ir) lua_assert(0) static void asm_intmin_max(ASMState *as, IRIns *ir, A64CC cc) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg left = ra_hintalloc(as, ir->op1, dest, RSET_GPR); Reg right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left)); emit_dnm(as, A64I_CSELw|A64F_CC(cc), dest, left, right); emit_nm(as, A64I_CMPw, left, right); } static void asm_fpmin_max(ASMState *as, IRIns *ir, A64CC fcc) { Reg dest = (ra_dest(as, ir, RSET_FPR) & 31); Reg right, left = ra_alloc2(as, ir, RSET_FPR); right = ((left >> 8) & 31); left &= 31; emit_dnm(as, A64I_FCSELd | A64F_CC(fcc), dest, left, right); emit_nm(as, A64I_FCMPd, left, right); } static void asm_min_max(ASMState *as, IRIns *ir, A64CC cc, A64CC fcc) { if (irt_isnum(ir->t)) asm_fpmin_max(as, ir, fcc); else asm_intmin_max(as, ir, cc); } #define asm_max(as, ir) asm_min_max(as, ir, CC_GT, CC_HI) #define asm_min(as, ir) asm_min_max(as, ir, CC_LT, CC_LO) /* -- Comparisons --------------------------------------------------------- */ /* Map of comparisons to flags. ORDER IR. */ static const uint8_t asm_compmap[IR_ABC+1] = { /* op FP swp int cc FP cc */ /* LT */ CC_GE + (CC_HS << 4), /* GE x */ CC_LT + (CC_HI << 4), /* LE */ CC_GT + (CC_HI << 4), /* GT x */ CC_LE + (CC_HS << 4), /* ULT x */ CC_HS + (CC_LS << 4), /* UGE */ CC_LO + (CC_LO << 4), /* ULE x */ CC_HI + (CC_LO << 4), /* UGT */ CC_LS + (CC_LS << 4), /* EQ */ CC_NE + (CC_NE << 4), /* NE */ CC_EQ + (CC_EQ << 4), /* ABC */ CC_LS + (CC_LS << 4) /* Same as UGT. */ }; /* FP comparisons. */ static void asm_fpcomp(ASMState *as, IRIns *ir) { Reg left, right; A64Ins ai; int swp = ((ir->o ^ (ir->o >> 2)) & ~(ir->o >> 3) & 1); if (!swp && irref_isk(ir->op2) && ir_knum(IR(ir->op2))->u64 == 0) { left = (ra_alloc1(as, ir->op1, RSET_FPR) & 31); right = 0; ai = A64I_FCMPZd; } else { left = ra_alloc2(as, ir, RSET_FPR); if (swp) { right = (left & 31); left = ((left >> 8) & 31); } else { right = ((left >> 8) & 31); left &= 31; } ai = A64I_FCMPd; } asm_guardcc(as, (asm_compmap[ir->o] >> 4)); emit_nm(as, ai, left, right); } /* Integer comparisons. */ static void asm_intcomp(ASMState *as, IRIns *ir) { A64CC oldcc, cc = (asm_compmap[ir->o] & 15); A64Ins ai = irt_is64(ir->t) ? A64I_CMPx : A64I_CMPw; IRRef lref = ir->op1, rref = ir->op2; Reg left; uint32_t m; int cmpprev0 = 0; lua_assert(irt_is64(ir->t) || irt_isint(ir->t) || irt_isu32(ir->t) || irt_isaddr(ir->t) || irt_isu8(ir->t)); if (asm_swapops(as, lref, rref)) { IRRef tmp = lref; lref = rref; rref = tmp; if (cc >= CC_GE) cc ^= 7; /* LT <-> GT, LE <-> GE */ else if (cc > CC_NE) cc ^= 11; /* LO <-> HI, LS <-> HS */ } oldcc = cc; if (irref_isk(rref) && get_k64val(IR(rref)) == 0) { IRIns *irl = IR(lref); if (cc == CC_GE) cc = CC_PL; else if (cc == CC_LT) cc = CC_MI; else if (cc > CC_NE) goto nocombine; /* Other conds don't work with tst. */ cmpprev0 = (irl+1 == ir); /* Combine and-cmp-bcc into tbz/tbnz or and-cmp into tst. */ if (cmpprev0 && irl->o == IR_BAND && !ra_used(irl)) { IRRef blref = irl->op1, brref = irl->op2; uint32_t m2 = 0; Reg bleft; if (asm_swapops(as, blref, brref)) { Reg tmp = blref; blref = brref; brref = tmp; } if (irref_isk(brref)) { uint64_t k = get_k64val(IR(brref)); if (k && !(k & (k-1)) && (cc == CC_EQ || cc == CC_NE)) { asm_guardtnb(as, cc == CC_EQ ? A64I_TBZ : A64I_TBNZ, ra_alloc1(as, blref, RSET_GPR), emit_ctz64(k)); return; } m2 = emit_isk13(k, irt_is64(irl->t)); } bleft = ra_alloc1(as, blref, RSET_GPR); ai = (irt_is64(irl->t) ? A64I_TSTx : A64I_TSTw); if (!m2) m2 = asm_fuseopm(as, ai, brref, rset_exclude(RSET_GPR, bleft)); asm_guardcc(as, cc); emit_n(as, ai^m2, bleft); return; } if (cc == CC_EQ || cc == CC_NE) { /* Combine cmp-bcc into cbz/cbnz. */ ai = cc == CC_EQ ? A64I_CBZ : A64I_CBNZ; if (irt_is64(ir->t)) ai |= A64I_X; asm_guardcnb(as, ai, ra_alloc1(as, lref, RSET_GPR)); return; } } nocombine: left = ra_alloc1(as, lref, RSET_GPR); m = asm_fuseopm(as, ai, rref, rset_exclude(RSET_GPR, left)); asm_guardcc(as, cc); emit_n(as, ai^m, left); /* Signed comparison with zero and referencing previous ins? */ if (cmpprev0 && (oldcc <= CC_NE || oldcc >= CC_GE)) as->flagmcp = as->mcp; /* Allow elimination of the compare. */ } static void asm_comp(ASMState *as, IRIns *ir) { if (irt_isnum(ir->t)) asm_fpcomp(as, ir); else asm_intcomp(as, ir); } #define asm_equal(as, ir) asm_comp(as, ir) /* -- Support for 64 bit ops in 32 bit mode ------------------------------- */ /* Hiword op of a split 64 bit op. Previous op must be the loword op. */ static void asm_hiop(ASMState *as, IRIns *ir) { UNUSED(as); UNUSED(ir); lua_assert(0); /* Unused on 64 bit. */ } /* -- Profiling ----------------------------------------------------------- */ static void asm_prof(ASMState *as, IRIns *ir) { uint32_t k = emit_isk13(HOOK_PROFILE, 0); lua_assert(k != 0); UNUSED(ir); asm_guardcc(as, CC_NE); emit_n(as, A64I_TSTw^k, RID_TMP); emit_lsptr(as, A64I_LDRB, RID_TMP, (void *)&J2G(as->J)->hookmask); } /* -- Stack handling ------------------------------------------------------ */ /* Check Lua stack size for overflow. Use exit handler as fallback. */ static void asm_stack_check(ASMState *as, BCReg topslot, IRIns *irp, RegSet allow, ExitNo exitno) { Reg pbase; uint32_t k; if (irp) { if (!ra_hasspill(irp->s)) { pbase = irp->r; lua_assert(ra_hasreg(pbase)); } else if (allow) { pbase = rset_pickbot(allow); } else { pbase = RID_RET; emit_lso(as, A64I_LDRx, RID_RET, RID_SP, 0); /* Restore temp register. */ } } else { pbase = RID_BASE; } emit_cond_branch(as, CC_LS, asm_exitstub_addr(as, exitno)); k = emit_isk12((8*topslot)); lua_assert(k); emit_n(as, A64I_CMPx^k, RID_TMP); emit_dnm(as, A64I_SUBx, RID_TMP, RID_TMP, pbase); emit_lso(as, A64I_LDRx, RID_TMP, RID_TMP, (int32_t)offsetof(lua_State, maxstack)); if (irp) { /* Must not spill arbitrary registers in head of side trace. */ if (ra_hasspill(irp->s)) emit_lso(as, A64I_LDRx, pbase, RID_SP, sps_scale(irp->s)); emit_lso(as, A64I_LDRx, RID_TMP, RID_GL, glofs(as, &J2G(as->J)->cur_L)); if (ra_hasspill(irp->s) && !allow) emit_lso(as, A64I_STRx, RID_RET, RID_SP, 0); /* Save temp register. */ } else { emit_getgl(as, RID_TMP, cur_L); } } /* Restore Lua stack from on-trace state. */ static void asm_stack_restore(ASMState *as, SnapShot *snap) { SnapEntry *map = &as->T->snapmap[snap->mapofs]; #ifdef LUA_USE_ASSERT SnapEntry *flinks = &as->T->snapmap[snap_nextofs(as->T, snap)-1-LJ_FR2]; #endif MSize n, nent = snap->nent; /* Store the value of all modified slots to the Lua stack. */ for (n = 0; n < nent; n++) { SnapEntry sn = map[n]; BCReg s = snap_slot(sn); int32_t ofs = 8*((int32_t)s-1-LJ_FR2); IRRef ref = snap_ref(sn); IRIns *ir = IR(ref); if ((sn & SNAP_NORESTORE)) continue; if (irt_isnum(ir->t)) { Reg src = ra_alloc1(as, ref, RSET_FPR); emit_lso(as, A64I_STRd, (src & 31), RID_BASE, ofs); } else { asm_tvstore64(as, RID_BASE, ofs, ref); } checkmclim(as); } lua_assert(map + nent == flinks); } /* -- GC handling --------------------------------------------------------- */ /* Check GC threshold and do one or more GC steps. */ static void asm_gc_check(ASMState *as) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_gc_step_jit]; IRRef args[2]; MCLabel l_end; Reg tmp1, tmp2; ra_evictset(as, RSET_SCRATCH); l_end = emit_label(as); /* Exit trace if in GCSatomic or GCSfinalize. Avoids syncing GC objects. */ asm_guardcnb(as, A64I_CBNZ, RID_RET); /* Assumes asm_snap_prep() is done. */ args[0] = ASMREF_TMP1; /* global_State *g */ args[1] = ASMREF_TMP2; /* MSize steps */ asm_gencall(as, ci, args); tmp1 = ra_releasetmp(as, ASMREF_TMP1); tmp2 = ra_releasetmp(as, ASMREF_TMP2); emit_loadi(as, tmp2, as->gcsteps); /* Jump around GC step if GC total < GC threshold. */ emit_cond_branch(as, CC_LS, l_end); emit_nm(as, A64I_CMPx, RID_TMP, tmp2); emit_lso(as, A64I_LDRx, tmp2, tmp1, (int32_t)offsetof(global_State, gc.threshold)); emit_lso(as, A64I_LDRx, RID_TMP, tmp1, (int32_t)offsetof(global_State, gc.total)); ra_allockreg(as, i64ptr(J2G(as->J)), tmp1); as->gcsteps = 0; checkmclim(as); } /* -- Loop handling ------------------------------------------------------- */ /* Fixup the loop branch. */ static void asm_loop_fixup(ASMState *as) { MCode *p = as->mctop; MCode *target = as->mcp; if (as->loopinv) { /* Inverted loop branch? */ uint32_t mask = (p[-2] & 0x7e000000) == 0x36000000 ? 0x3fffu : 0x7ffffu; ptrdiff_t delta = target - (p - 2); /* asm_guard* already inverted the bcc/tnb/cnb and patched the final b. */ p[-2] |= ((uint32_t)delta & mask) << 5; } else { ptrdiff_t delta = target - (p - 1); p[-1] = A64I_B | ((uint32_t)(delta) & 0x03ffffffu); } } /* -- Head of trace ------------------------------------------------------- */ /* Reload L register from g->cur_L. */ static void asm_head_lreg(ASMState *as) { IRIns *ir = IR(ASMREF_L); if (ra_used(ir)) { Reg r = ra_dest(as, ir, RSET_GPR); emit_getgl(as, r, cur_L); ra_evictk(as); } } /* Coalesce BASE register for a root trace. */ static void asm_head_root_base(ASMState *as) { IRIns *ir; asm_head_lreg(as); ir = IR(REF_BASE); if (ra_hasreg(ir->r) && (rset_test(as->modset, ir->r) || irt_ismarked(ir->t))) ra_spill(as, ir); ra_destreg(as, ir, RID_BASE); } /* Coalesce BASE register for a side trace. */ static RegSet asm_head_side_base(ASMState *as, IRIns *irp, RegSet allow) { IRIns *ir; asm_head_lreg(as); ir = IR(REF_BASE); if (ra_hasreg(ir->r) && (rset_test(as->modset, ir->r) || irt_ismarked(ir->t))) ra_spill(as, ir); if (ra_hasspill(irp->s)) { rset_clear(allow, ra_dest(as, ir, allow)); } else { Reg r = irp->r; lua_assert(ra_hasreg(r)); rset_clear(allow, r); if (r != ir->r && !rset_test(as->freeset, r)) ra_restore(as, regcost_ref(as->cost[r])); ra_destreg(as, ir, r); } return allow; } /* -- Tail of trace ------------------------------------------------------- */ /* Fixup the tail code. */ static void asm_tail_fixup(ASMState *as, TraceNo lnk) { MCode *p = as->mctop; MCode *target; /* Undo the sp adjustment in BC_JLOOP when exiting to the interpreter. */ int32_t spadj = as->T->spadjust + (lnk ? 0 : sps_scale(SPS_FIXED)); if (spadj == 0) { *--p = A64I_LE(A64I_NOP); as->mctop = p; } else { /* Patch stack adjustment. */ uint32_t k = emit_isk12(spadj); lua_assert(k); p[-2] = (A64I_ADDx^k) | A64F_D(RID_SP) | A64F_N(RID_SP); } /* Patch exit branch. */ target = lnk ? traceref(as->J, lnk)->mcode : (MCode *)lj_vm_exit_interp; p[-1] = A64I_B | (((target-p)+1)&0x03ffffffu); } /* Prepare tail of code. */ static void asm_tail_prep(ASMState *as) { MCode *p = as->mctop - 1; /* Leave room for exit branch. */ if (as->loopref) { as->invmcp = as->mcp = p; } else { as->mcp = p-1; /* Leave room for stack pointer adjustment. */ as->invmcp = NULL; } *p = 0; /* Prevent load/store merging. */ } /* -- Trace setup --------------------------------------------------------- */ /* Ensure there are enough stack slots for call arguments. */ static Reg asm_setup_call_slots(ASMState *as, IRIns *ir, const CCallInfo *ci) { IRRef args[CCI_NARGS_MAX*2]; uint32_t i, nargs = CCI_XNARGS(ci); int nslots = 0, ngpr = REGARG_NUMGPR, nfpr = REGARG_NUMFPR; asm_collectargs(as, ir, ci, args); for (i = 0; i < nargs; i++) { if (args[i] && irt_isfp(IR(args[i])->t)) { if (nfpr > 0) nfpr--; else nslots += 2; } else { if (ngpr > 0) ngpr--; else nslots += 2; } } if (nslots > as->evenspill) /* Leave room for args in stack slots. */ as->evenspill = nslots; return REGSP_HINT(RID_RET); } static void asm_setup_target(ASMState *as) { /* May need extra exit for asm_stack_check on side traces. */ asm_exitstub_setup(as, as->T->nsnap + (as->parent ? 1 : 0)); } #if LJ_BE /* ARM64 instructions are always little-endian. Swap for ARM64BE. */ static void asm_mcode_fixup(MCode *mcode, MSize size) { MCode *pe = (MCode *)((char *)mcode + size); while (mcode < pe) { MCode ins = *mcode; *mcode++ = lj_bswap(ins); } } #define LJ_TARGET_MCODE_FIXUP 1 #endif /* -- Trace patching ------------------------------------------------------ */ /* Patch exit jumps of existing machine code to a new target. */ void lj_asm_patchexit(jit_State *J, GCtrace *T, ExitNo exitno, MCode *target) { MCode *p = T->mcode; MCode *pe = (MCode *)((char *)p + T->szmcode); MCode *cstart = NULL, *cend = p; MCode *mcarea = lj_mcode_patch(J, p, 0); MCode *px = exitstub_trace_addr(T, exitno); for (; p < pe; p++) { /* Look for exitstub branch, replace with branch to target. */ MCode ins = A64I_LE(*p); if ((ins & 0xff000000u) == 0x54000000u && ((ins ^ ((px-p)<<5)) & 0x00ffffe0u) == 0) { /* Patch bcc exitstub. */ *p = A64I_LE((ins & 0xff00001fu) | (((target-p)<<5) & 0x00ffffe0u)); cend = p+1; if (!cstart) cstart = p; } else if ((ins & 0xfc000000u) == 0x14000000u && ((ins ^ (px-p)) & 0x03ffffffu) == 0) { /* Patch b exitstub. */ *p = A64I_LE((ins & 0xfc000000u) | ((target-p) & 0x03ffffffu)); cend = p+1; if (!cstart) cstart = p; } else if ((ins & 0x7e000000u) == 0x34000000u && ((ins ^ ((px-p)<<5)) & 0x00ffffe0u) == 0) { /* Patch cbz/cbnz exitstub. */ *p = A64I_LE((ins & 0xff00001f) | (((target-p)<<5) & 0x00ffffe0u)); cend = p+1; if (!cstart) cstart = p; } else if ((ins & 0x7e000000u) == 0x36000000u && ((ins ^ ((px-p)<<5)) & 0x0007ffe0u) == 0) { /* Patch tbz/tbnz exitstub. */ *p = A64I_LE((ins & 0xfff8001fu) | (((target-p)<<5) & 0x0007ffe0u)); cend = p+1; if (!cstart) cstart = p; } } lua_assert(cstart != NULL); lj_mcode_sync(cstart, cend); lj_mcode_patch(J, mcarea, 1); } luajit-2.1.0~beta3+dfsg.orig/src/lualib.h0000644000175100017510000000213113101703334017523 0ustar ondrejondrej/* ** Standard library header. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LUALIB_H #define _LUALIB_H #include "lua.h" #define LUA_FILEHANDLE "FILE*" #define LUA_COLIBNAME "coroutine" #define LUA_MATHLIBNAME "math" #define LUA_STRLIBNAME "string" #define LUA_TABLIBNAME "table" #define LUA_IOLIBNAME "io" #define LUA_OSLIBNAME "os" #define LUA_LOADLIBNAME "package" #define LUA_DBLIBNAME "debug" #define LUA_BITLIBNAME "bit" #define LUA_JITLIBNAME "jit" #define LUA_FFILIBNAME "ffi" LUALIB_API int luaopen_base(lua_State *L); LUALIB_API int luaopen_math(lua_State *L); LUALIB_API int luaopen_string(lua_State *L); LUALIB_API int luaopen_table(lua_State *L); LUALIB_API int luaopen_io(lua_State *L); LUALIB_API int luaopen_os(lua_State *L); LUALIB_API int luaopen_package(lua_State *L); LUALIB_API int luaopen_debug(lua_State *L); LUALIB_API int luaopen_bit(lua_State *L); LUALIB_API int luaopen_jit(lua_State *L); LUALIB_API int luaopen_ffi(lua_State *L); LUALIB_API void luaL_openlibs(lua_State *L); #ifndef lua_assert #define lua_assert(x) ((void)0) #endif #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_ffrecord.c0000644000175100017510000011354013101703334020534 0ustar ondrejondrej/* ** Fast function call recorder. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #define lj_ffrecord_c #define LUA_CORE #include "lj_obj.h" #if LJ_HASJIT #include "lj_err.h" #include "lj_str.h" #include "lj_tab.h" #include "lj_frame.h" #include "lj_bc.h" #include "lj_ff.h" #include "lj_ir.h" #include "lj_jit.h" #include "lj_ircall.h" #include "lj_iropt.h" #include "lj_trace.h" #include "lj_record.h" #include "lj_ffrecord.h" #include "lj_crecord.h" #include "lj_dispatch.h" #include "lj_vm.h" #include "lj_strscan.h" #include "lj_strfmt.h" /* Some local macros to save typing. Undef'd at the end. */ #define IR(ref) (&J->cur.ir[(ref)]) /* Pass IR on to next optimization in chain (FOLD). */ #define emitir(ot, a, b) (lj_ir_set(J, (ot), (a), (b)), lj_opt_fold(J)) /* -- Fast function recording handlers ------------------------------------ */ /* Conventions for fast function call handlers: ** ** The argument slots start at J->base[0]. All of them are guaranteed to be ** valid and type-specialized references. J->base[J->maxslot] is set to 0 ** as a sentinel. The runtime argument values start at rd->argv[0]. ** ** In general fast functions should check for presence of all of their ** arguments and for the correct argument types. Some simplifications ** are allowed if the interpreter throws instead. But even if recording ** is aborted, the generated IR must be consistent (no zero-refs). ** ** The number of results in rd->nres is set to 1. Handlers that return ** a different number of results need to override it. A negative value ** prevents return processing (e.g. for pending calls). ** ** Results need to be stored starting at J->base[0]. Return processing ** moves them to the right slots later. ** ** The per-ffid auxiliary data is the value of the 2nd part of the ** LJLIB_REC() annotation. This allows handling similar functionality ** in a common handler. */ /* Type of handler to record a fast function. */ typedef void (LJ_FASTCALL *RecordFunc)(jit_State *J, RecordFFData *rd); /* Get runtime value of int argument. */ static int32_t argv2int(jit_State *J, TValue *o) { if (!lj_strscan_numberobj(o)) lj_trace_err(J, LJ_TRERR_BADTYPE); return tvisint(o) ? intV(o) : lj_num2int(numV(o)); } /* Get runtime value of string argument. */ static GCstr *argv2str(jit_State *J, TValue *o) { if (LJ_LIKELY(tvisstr(o))) { return strV(o); } else { GCstr *s; if (!tvisnumber(o)) lj_trace_err(J, LJ_TRERR_BADTYPE); s = lj_strfmt_number(J->L, o); setstrV(J->L, o, s); return s; } } /* Return number of results wanted by caller. */ static ptrdiff_t results_wanted(jit_State *J) { TValue *frame = J->L->base-1; if (frame_islua(frame)) return (ptrdiff_t)bc_b(frame_pc(frame)[-1]) - 1; else return -1; } /* Trace stitching: add continuation below frame to start a new trace. */ static void recff_stitch(jit_State *J) { ASMFunction cont = lj_cont_stitch; lua_State *L = J->L; TValue *base = L->base; BCReg nslot = J->maxslot + 1 + LJ_FR2; TValue *nframe = base + 1 + LJ_FR2; const BCIns *pc = frame_pc(base-1); TValue *pframe = frame_prevl(base-1); /* Move func + args up in Lua stack and insert continuation. */ memmove(&base[1], &base[-1-LJ_FR2], sizeof(TValue)*nslot); setframe_ftsz(nframe, ((char *)nframe - (char *)pframe) + FRAME_CONT); setcont(base-LJ_FR2, cont); setframe_pc(base, pc); setnilV(base-1-LJ_FR2); /* Incorrect, but rec_check_slots() won't run anymore. */ L->base += 2 + LJ_FR2; L->top += 2 + LJ_FR2; /* Ditto for the IR. */ memmove(&J->base[1], &J->base[-1-LJ_FR2], sizeof(TRef)*nslot); #if LJ_FR2 J->base[2] = TREF_FRAME; J->base[-1] = lj_ir_k64(J, IR_KNUM, u64ptr(contptr(cont))); J->base[0] = lj_ir_k64(J, IR_KNUM, u64ptr(pc)) | TREF_CONT; #else J->base[0] = lj_ir_kptr(J, contptr(cont)) | TREF_CONT; #endif J->ktrace = tref_ref((J->base[-1-LJ_FR2] = lj_ir_ktrace(J))); J->base += 2 + LJ_FR2; J->baseslot += 2 + LJ_FR2; J->framedepth++; lj_record_stop(J, LJ_TRLINK_STITCH, 0); /* Undo Lua stack changes. */ memmove(&base[-1-LJ_FR2], &base[1], sizeof(TValue)*nslot); setframe_pc(base-1, pc); L->base -= 2 + LJ_FR2; L->top -= 2 + LJ_FR2; } /* Fallback handler for fast functions that are not recorded (yet). */ static void LJ_FASTCALL recff_nyi(jit_State *J, RecordFFData *rd) { if (J->cur.nins < (IRRef)J->param[JIT_P_minstitch] + REF_BASE) { lj_trace_err_info(J, LJ_TRERR_TRACEUV); } else { /* Can only stitch from Lua call. */ if (J->framedepth && frame_islua(J->L->base-1)) { BCOp op = bc_op(*frame_pc(J->L->base-1)); /* Stitched trace cannot start with *M op with variable # of args. */ if (!(op == BC_CALLM || op == BC_CALLMT || op == BC_RETM || op == BC_TSETM)) { switch (J->fn->c.ffid) { case FF_error: case FF_debug_sethook: case FF_jit_flush: break; /* Don't stitch across special builtins. */ default: recff_stitch(J); /* Use trace stitching. */ rd->nres = -1; return; } } } /* Otherwise stop trace and return to interpreter. */ lj_record_stop(J, LJ_TRLINK_RETURN, 0); rd->nres = -1; } } /* Fallback handler for unsupported variants of fast functions. */ #define recff_nyiu recff_nyi /* Must stop the trace for classic C functions with arbitrary side-effects. */ #define recff_c recff_nyi /* Emit BUFHDR for the global temporary buffer. */ static TRef recff_bufhdr(jit_State *J) { return emitir(IRT(IR_BUFHDR, IRT_PGC), lj_ir_kptr(J, &J2G(J)->tmpbuf), IRBUFHDR_RESET); } /* -- Base library fast functions ----------------------------------------- */ static void LJ_FASTCALL recff_assert(jit_State *J, RecordFFData *rd) { /* Arguments already specialized. The interpreter throws for nil/false. */ rd->nres = J->maxslot; /* Pass through all arguments. */ } static void LJ_FASTCALL recff_type(jit_State *J, RecordFFData *rd) { /* Arguments already specialized. Result is a constant string. Neat, huh? */ uint32_t t; if (tvisnumber(&rd->argv[0])) t = ~LJ_TNUMX; else if (LJ_64 && !LJ_GC64 && tvislightud(&rd->argv[0])) t = ~LJ_TLIGHTUD; else t = ~itype(&rd->argv[0]); J->base[0] = lj_ir_kstr(J, strV(&J->fn->c.upvalue[t])); UNUSED(rd); } static void LJ_FASTCALL recff_getmetatable(jit_State *J, RecordFFData *rd) { TRef tr = J->base[0]; if (tr) { RecordIndex ix; ix.tab = tr; copyTV(J->L, &ix.tabv, &rd->argv[0]); if (lj_record_mm_lookup(J, &ix, MM_metatable)) J->base[0] = ix.mobj; else J->base[0] = ix.mt; } /* else: Interpreter will throw. */ } static void LJ_FASTCALL recff_setmetatable(jit_State *J, RecordFFData *rd) { TRef tr = J->base[0]; TRef mt = J->base[1]; if (tref_istab(tr) && (tref_istab(mt) || (mt && tref_isnil(mt)))) { TRef fref, mtref; RecordIndex ix; ix.tab = tr; copyTV(J->L, &ix.tabv, &rd->argv[0]); lj_record_mm_lookup(J, &ix, MM_metatable); /* Guard for no __metatable. */ fref = emitir(IRT(IR_FREF, IRT_PGC), tr, IRFL_TAB_META); mtref = tref_isnil(mt) ? lj_ir_knull(J, IRT_TAB) : mt; emitir(IRT(IR_FSTORE, IRT_TAB), fref, mtref); if (!tref_isnil(mt)) emitir(IRT(IR_TBAR, IRT_TAB), tr, 0); J->base[0] = tr; J->needsnap = 1; } /* else: Interpreter will throw. */ } static void LJ_FASTCALL recff_rawget(jit_State *J, RecordFFData *rd) { RecordIndex ix; ix.tab = J->base[0]; ix.key = J->base[1]; if (tref_istab(ix.tab) && ix.key) { ix.val = 0; ix.idxchain = 0; settabV(J->L, &ix.tabv, tabV(&rd->argv[0])); copyTV(J->L, &ix.keyv, &rd->argv[1]); J->base[0] = lj_record_idx(J, &ix); } /* else: Interpreter will throw. */ } static void LJ_FASTCALL recff_rawset(jit_State *J, RecordFFData *rd) { RecordIndex ix; ix.tab = J->base[0]; ix.key = J->base[1]; ix.val = J->base[2]; if (tref_istab(ix.tab) && ix.key && ix.val) { ix.idxchain = 0; settabV(J->L, &ix.tabv, tabV(&rd->argv[0])); copyTV(J->L, &ix.keyv, &rd->argv[1]); copyTV(J->L, &ix.valv, &rd->argv[2]); lj_record_idx(J, &ix); /* Pass through table at J->base[0] as result. */ } /* else: Interpreter will throw. */ } static void LJ_FASTCALL recff_rawequal(jit_State *J, RecordFFData *rd) { TRef tra = J->base[0]; TRef trb = J->base[1]; if (tra && trb) { int diff = lj_record_objcmp(J, tra, trb, &rd->argv[0], &rd->argv[1]); J->base[0] = diff ? TREF_FALSE : TREF_TRUE; } /* else: Interpreter will throw. */ } #if LJ_52 static void LJ_FASTCALL recff_rawlen(jit_State *J, RecordFFData *rd) { TRef tr = J->base[0]; if (tref_isstr(tr)) J->base[0] = emitir(IRTI(IR_FLOAD), tr, IRFL_STR_LEN); else if (tref_istab(tr)) J->base[0] = lj_ir_call(J, IRCALL_lj_tab_len, tr); /* else: Interpreter will throw. */ UNUSED(rd); } #endif /* Determine mode of select() call. */ int32_t lj_ffrecord_select_mode(jit_State *J, TRef tr, TValue *tv) { if (tref_isstr(tr) && *strVdata(tv) == '#') { /* select('#', ...) */ if (strV(tv)->len == 1) { emitir(IRTG(IR_EQ, IRT_STR), tr, lj_ir_kstr(J, strV(tv))); } else { TRef trptr = emitir(IRT(IR_STRREF, IRT_PGC), tr, lj_ir_kint(J, 0)); TRef trchar = emitir(IRT(IR_XLOAD, IRT_U8), trptr, IRXLOAD_READONLY); emitir(IRTG(IR_EQ, IRT_INT), trchar, lj_ir_kint(J, '#')); } return 0; } else { /* select(n, ...) */ int32_t start = argv2int(J, tv); if (start == 0) lj_trace_err(J, LJ_TRERR_BADTYPE); /* A bit misleading. */ return start; } } static void LJ_FASTCALL recff_select(jit_State *J, RecordFFData *rd) { TRef tr = J->base[0]; if (tr) { ptrdiff_t start = lj_ffrecord_select_mode(J, tr, &rd->argv[0]); if (start == 0) { /* select('#', ...) */ J->base[0] = lj_ir_kint(J, J->maxslot - 1); } else if (tref_isk(tr)) { /* select(k, ...) */ ptrdiff_t n = (ptrdiff_t)J->maxslot; if (start < 0) start += n; else if (start > n) start = n; rd->nres = n - start; if (start >= 1) { ptrdiff_t i; for (i = 0; i < n - start; i++) J->base[i] = J->base[start+i]; } /* else: Interpreter will throw. */ } else { recff_nyiu(J, rd); return; } } /* else: Interpreter will throw. */ } static void LJ_FASTCALL recff_tonumber(jit_State *J, RecordFFData *rd) { TRef tr = J->base[0]; TRef base = J->base[1]; if (tr && !tref_isnil(base)) { base = lj_opt_narrow_toint(J, base); if (!tref_isk(base) || IR(tref_ref(base))->i != 10) { recff_nyiu(J, rd); return; } } if (tref_isnumber_str(tr)) { if (tref_isstr(tr)) { TValue tmp; if (!lj_strscan_num(strV(&rd->argv[0]), &tmp)) { recff_nyiu(J, rd); /* Would need an inverted STRTO for this case. */ return; } tr = emitir(IRTG(IR_STRTO, IRT_NUM), tr, 0); } #if LJ_HASFFI } else if (tref_iscdata(tr)) { lj_crecord_tonumber(J, rd); return; #endif } else { tr = TREF_NIL; } J->base[0] = tr; UNUSED(rd); } static TValue *recff_metacall_cp(lua_State *L, lua_CFunction dummy, void *ud) { jit_State *J = (jit_State *)ud; lj_record_tailcall(J, 0, 1); UNUSED(L); UNUSED(dummy); return NULL; } static int recff_metacall(jit_State *J, RecordFFData *rd, MMS mm) { RecordIndex ix; ix.tab = J->base[0]; copyTV(J->L, &ix.tabv, &rd->argv[0]); if (lj_record_mm_lookup(J, &ix, mm)) { /* Has metamethod? */ int errcode; TValue argv0; /* Temporarily insert metamethod below object. */ J->base[1+LJ_FR2] = J->base[0]; J->base[0] = ix.mobj; copyTV(J->L, &argv0, &rd->argv[0]); copyTV(J->L, &rd->argv[1+LJ_FR2], &rd->argv[0]); copyTV(J->L, &rd->argv[0], &ix.mobjv); /* Need to protect lj_record_tailcall because it may throw. */ errcode = lj_vm_cpcall(J->L, NULL, J, recff_metacall_cp); /* Always undo Lua stack changes to avoid confusing the interpreter. */ copyTV(J->L, &rd->argv[0], &argv0); if (errcode) lj_err_throw(J->L, errcode); /* Propagate errors. */ rd->nres = -1; /* Pending call. */ return 1; /* Tailcalled to metamethod. */ } return 0; } static void LJ_FASTCALL recff_tostring(jit_State *J, RecordFFData *rd) { TRef tr = J->base[0]; if (tref_isstr(tr)) { /* Ignore __tostring in the string base metatable. */ /* Pass on result in J->base[0]. */ } else if (tr && !recff_metacall(J, rd, MM_tostring)) { if (tref_isnumber(tr)) { J->base[0] = emitir(IRT(IR_TOSTR, IRT_STR), tr, tref_isnum(tr) ? IRTOSTR_NUM : IRTOSTR_INT); } else if (tref_ispri(tr)) { J->base[0] = lj_ir_kstr(J, lj_strfmt_obj(J->L, &rd->argv[0])); } else { recff_nyiu(J, rd); return; } } } static void LJ_FASTCALL recff_ipairs_aux(jit_State *J, RecordFFData *rd) { RecordIndex ix; ix.tab = J->base[0]; if (tref_istab(ix.tab)) { if (!tvisnumber(&rd->argv[1])) /* No support for string coercion. */ lj_trace_err(J, LJ_TRERR_BADTYPE); setintV(&ix.keyv, numberVint(&rd->argv[1])+1); settabV(J->L, &ix.tabv, tabV(&rd->argv[0])); ix.val = 0; ix.idxchain = 0; ix.key = lj_opt_narrow_toint(J, J->base[1]); J->base[0] = ix.key = emitir(IRTI(IR_ADD), ix.key, lj_ir_kint(J, 1)); J->base[1] = lj_record_idx(J, &ix); rd->nres = tref_isnil(J->base[1]) ? 0 : 2; } /* else: Interpreter will throw. */ } static void LJ_FASTCALL recff_xpairs(jit_State *J, RecordFFData *rd) { TRef tr = J->base[0]; if (!((LJ_52 || (LJ_HASFFI && tref_iscdata(tr))) && recff_metacall(J, rd, MM_pairs + rd->data))) { if (tref_istab(tr)) { J->base[0] = lj_ir_kfunc(J, funcV(&J->fn->c.upvalue[0])); J->base[1] = tr; J->base[2] = rd->data ? lj_ir_kint(J, 0) : TREF_NIL; rd->nres = 3; } /* else: Interpreter will throw. */ } } static void LJ_FASTCALL recff_pcall(jit_State *J, RecordFFData *rd) { if (J->maxslot >= 1) { #if LJ_FR2 /* Shift function arguments up. */ memmove(J->base + 1, J->base, sizeof(TRef) * J->maxslot); #endif lj_record_call(J, 0, J->maxslot - 1); rd->nres = -1; /* Pending call. */ } /* else: Interpreter will throw. */ } static TValue *recff_xpcall_cp(lua_State *L, lua_CFunction dummy, void *ud) { jit_State *J = (jit_State *)ud; lj_record_call(J, 1, J->maxslot - 2); UNUSED(L); UNUSED(dummy); return NULL; } static void LJ_FASTCALL recff_xpcall(jit_State *J, RecordFFData *rd) { if (J->maxslot >= 2) { TValue argv0, argv1; TRef tmp; int errcode; /* Swap function and traceback. */ tmp = J->base[0]; J->base[0] = J->base[1]; J->base[1] = tmp; copyTV(J->L, &argv0, &rd->argv[0]); copyTV(J->L, &argv1, &rd->argv[1]); copyTV(J->L, &rd->argv[0], &argv1); copyTV(J->L, &rd->argv[1], &argv0); #if LJ_FR2 /* Shift function arguments up. */ memmove(J->base + 2, J->base + 1, sizeof(TRef) * (J->maxslot-1)); #endif /* Need to protect lj_record_call because it may throw. */ errcode = lj_vm_cpcall(J->L, NULL, J, recff_xpcall_cp); /* Always undo Lua stack swap to avoid confusing the interpreter. */ copyTV(J->L, &rd->argv[0], &argv0); copyTV(J->L, &rd->argv[1], &argv1); if (errcode) lj_err_throw(J->L, errcode); /* Propagate errors. */ rd->nres = -1; /* Pending call. */ } /* else: Interpreter will throw. */ } static void LJ_FASTCALL recff_getfenv(jit_State *J, RecordFFData *rd) { TRef tr = J->base[0]; /* Only support getfenv(0) for now. */ if (tref_isint(tr) && tref_isk(tr) && IR(tref_ref(tr))->i == 0) { TRef trl = emitir(IRT(IR_LREF, IRT_THREAD), 0, 0); J->base[0] = emitir(IRT(IR_FLOAD, IRT_TAB), trl, IRFL_THREAD_ENV); return; } recff_nyiu(J, rd); } /* -- Math library fast functions ----------------------------------------- */ static void LJ_FASTCALL recff_math_abs(jit_State *J, RecordFFData *rd) { TRef tr = lj_ir_tonum(J, J->base[0]); J->base[0] = emitir(IRTN(IR_ABS), tr, lj_ir_ksimd(J, LJ_KSIMD_ABS)); UNUSED(rd); } /* Record rounding functions math.floor and math.ceil. */ static void LJ_FASTCALL recff_math_round(jit_State *J, RecordFFData *rd) { TRef tr = J->base[0]; if (!tref_isinteger(tr)) { /* Pass through integers unmodified. */ tr = emitir(IRTN(IR_FPMATH), lj_ir_tonum(J, tr), rd->data); /* Result is integral (or NaN/Inf), but may not fit an int32_t. */ if (LJ_DUALNUM) { /* Try to narrow using a guarded conversion to int. */ lua_Number n = lj_vm_foldfpm(numberVnum(&rd->argv[0]), rd->data); if (n == (lua_Number)lj_num2int(n)) tr = emitir(IRTGI(IR_CONV), tr, IRCONV_INT_NUM|IRCONV_CHECK); } J->base[0] = tr; } } /* Record unary math.* functions, mapped to IR_FPMATH opcode. */ static void LJ_FASTCALL recff_math_unary(jit_State *J, RecordFFData *rd) { J->base[0] = emitir(IRTN(IR_FPMATH), lj_ir_tonum(J, J->base[0]), rd->data); } /* Record math.log. */ static void LJ_FASTCALL recff_math_log(jit_State *J, RecordFFData *rd) { TRef tr = lj_ir_tonum(J, J->base[0]); if (J->base[1]) { #ifdef LUAJIT_NO_LOG2 uint32_t fpm = IRFPM_LOG; #else uint32_t fpm = IRFPM_LOG2; #endif TRef trb = lj_ir_tonum(J, J->base[1]); tr = emitir(IRTN(IR_FPMATH), tr, fpm); trb = emitir(IRTN(IR_FPMATH), trb, fpm); trb = emitir(IRTN(IR_DIV), lj_ir_knum_one(J), trb); tr = emitir(IRTN(IR_MUL), tr, trb); } else { tr = emitir(IRTN(IR_FPMATH), tr, IRFPM_LOG); } J->base[0] = tr; UNUSED(rd); } /* Record math.atan2. */ static void LJ_FASTCALL recff_math_atan2(jit_State *J, RecordFFData *rd) { TRef tr = lj_ir_tonum(J, J->base[0]); TRef tr2 = lj_ir_tonum(J, J->base[1]); J->base[0] = emitir(IRTN(IR_ATAN2), tr, tr2); UNUSED(rd); } /* Record math.ldexp. */ static void LJ_FASTCALL recff_math_ldexp(jit_State *J, RecordFFData *rd) { TRef tr = lj_ir_tonum(J, J->base[0]); #if LJ_TARGET_X86ORX64 TRef tr2 = lj_ir_tonum(J, J->base[1]); #else TRef tr2 = lj_opt_narrow_toint(J, J->base[1]); #endif J->base[0] = emitir(IRTN(IR_LDEXP), tr, tr2); UNUSED(rd); } /* Record math.asin, math.acos, math.atan. */ static void LJ_FASTCALL recff_math_atrig(jit_State *J, RecordFFData *rd) { TRef y = lj_ir_tonum(J, J->base[0]); TRef x = lj_ir_knum_one(J); uint32_t ffid = rd->data; if (ffid != FF_math_atan) { TRef tmp = emitir(IRTN(IR_MUL), y, y); tmp = emitir(IRTN(IR_SUB), x, tmp); tmp = emitir(IRTN(IR_FPMATH), tmp, IRFPM_SQRT); if (ffid == FF_math_asin) { x = tmp; } else { x = y; y = tmp; } } J->base[0] = emitir(IRTN(IR_ATAN2), y, x); } static void LJ_FASTCALL recff_math_htrig(jit_State *J, RecordFFData *rd) { TRef tr = lj_ir_tonum(J, J->base[0]); J->base[0] = emitir(IRTN(IR_CALLN), tr, rd->data); } static void LJ_FASTCALL recff_math_modf(jit_State *J, RecordFFData *rd) { TRef tr = J->base[0]; if (tref_isinteger(tr)) { J->base[0] = tr; J->base[1] = lj_ir_kint(J, 0); } else { TRef trt; tr = lj_ir_tonum(J, tr); trt = emitir(IRTN(IR_FPMATH), tr, IRFPM_TRUNC); J->base[0] = trt; J->base[1] = emitir(IRTN(IR_SUB), tr, trt); } rd->nres = 2; } static void LJ_FASTCALL recff_math_pow(jit_State *J, RecordFFData *rd) { J->base[0] = lj_opt_narrow_pow(J, J->base[0], J->base[1], &rd->argv[0], &rd->argv[1]); UNUSED(rd); } static void LJ_FASTCALL recff_math_minmax(jit_State *J, RecordFFData *rd) { TRef tr = lj_ir_tonumber(J, J->base[0]); uint32_t op = rd->data; BCReg i; for (i = 1; J->base[i] != 0; i++) { TRef tr2 = lj_ir_tonumber(J, J->base[i]); IRType t = IRT_INT; if (!(tref_isinteger(tr) && tref_isinteger(tr2))) { if (tref_isinteger(tr)) tr = emitir(IRTN(IR_CONV), tr, IRCONV_NUM_INT); if (tref_isinteger(tr2)) tr2 = emitir(IRTN(IR_CONV), tr2, IRCONV_NUM_INT); t = IRT_NUM; } tr = emitir(IRT(op, t), tr, tr2); } J->base[0] = tr; } static void LJ_FASTCALL recff_math_random(jit_State *J, RecordFFData *rd) { GCudata *ud = udataV(&J->fn->c.upvalue[0]); TRef tr, one; lj_ir_kgc(J, obj2gco(ud), IRT_UDATA); /* Prevent collection. */ tr = lj_ir_call(J, IRCALL_lj_math_random_step, lj_ir_kptr(J, uddata(ud))); one = lj_ir_knum_one(J); tr = emitir(IRTN(IR_SUB), tr, one); if (J->base[0]) { TRef tr1 = lj_ir_tonum(J, J->base[0]); if (J->base[1]) { /* d = floor(d*(r2-r1+1.0)) + r1 */ TRef tr2 = lj_ir_tonum(J, J->base[1]); tr2 = emitir(IRTN(IR_SUB), tr2, tr1); tr2 = emitir(IRTN(IR_ADD), tr2, one); tr = emitir(IRTN(IR_MUL), tr, tr2); tr = emitir(IRTN(IR_FPMATH), tr, IRFPM_FLOOR); tr = emitir(IRTN(IR_ADD), tr, tr1); } else { /* d = floor(d*r1) + 1.0 */ tr = emitir(IRTN(IR_MUL), tr, tr1); tr = emitir(IRTN(IR_FPMATH), tr, IRFPM_FLOOR); tr = emitir(IRTN(IR_ADD), tr, one); } } J->base[0] = tr; UNUSED(rd); } /* -- Bit library fast functions ------------------------------------------ */ /* Record bit.tobit. */ static void LJ_FASTCALL recff_bit_tobit(jit_State *J, RecordFFData *rd) { TRef tr = J->base[0]; #if LJ_HASFFI if (tref_iscdata(tr)) { recff_bit64_tobit(J, rd); return; } #endif J->base[0] = lj_opt_narrow_tobit(J, tr); UNUSED(rd); } /* Record unary bit.bnot, bit.bswap. */ static void LJ_FASTCALL recff_bit_unary(jit_State *J, RecordFFData *rd) { #if LJ_HASFFI if (recff_bit64_unary(J, rd)) return; #endif J->base[0] = emitir(IRTI(rd->data), lj_opt_narrow_tobit(J, J->base[0]), 0); } /* Record N-ary bit.band, bit.bor, bit.bxor. */ static void LJ_FASTCALL recff_bit_nary(jit_State *J, RecordFFData *rd) { #if LJ_HASFFI if (recff_bit64_nary(J, rd)) return; #endif { TRef tr = lj_opt_narrow_tobit(J, J->base[0]); uint32_t ot = IRTI(rd->data); BCReg i; for (i = 1; J->base[i] != 0; i++) tr = emitir(ot, tr, lj_opt_narrow_tobit(J, J->base[i])); J->base[0] = tr; } } /* Record bit shifts. */ static void LJ_FASTCALL recff_bit_shift(jit_State *J, RecordFFData *rd) { #if LJ_HASFFI if (recff_bit64_shift(J, rd)) return; #endif { TRef tr = lj_opt_narrow_tobit(J, J->base[0]); TRef tsh = lj_opt_narrow_tobit(J, J->base[1]); IROp op = (IROp)rd->data; if (!(op < IR_BROL ? LJ_TARGET_MASKSHIFT : LJ_TARGET_MASKROT) && !tref_isk(tsh)) tsh = emitir(IRTI(IR_BAND), tsh, lj_ir_kint(J, 31)); #ifdef LJ_TARGET_UNIFYROT if (op == (LJ_TARGET_UNIFYROT == 1 ? IR_BROR : IR_BROL)) { op = LJ_TARGET_UNIFYROT == 1 ? IR_BROL : IR_BROR; tsh = emitir(IRTI(IR_NEG), tsh, tsh); } #endif J->base[0] = emitir(IRTI(op), tr, tsh); } } static void LJ_FASTCALL recff_bit_tohex(jit_State *J, RecordFFData *rd) { #if LJ_HASFFI TRef hdr = recff_bufhdr(J); TRef tr = recff_bit64_tohex(J, rd, hdr); J->base[0] = emitir(IRT(IR_BUFSTR, IRT_STR), tr, hdr); #else recff_nyiu(J, rd); /* Don't bother working around this NYI. */ #endif } /* -- String library fast functions --------------------------------------- */ /* Specialize to relative starting position for string. */ static TRef recff_string_start(jit_State *J, GCstr *s, int32_t *st, TRef tr, TRef trlen, TRef tr0) { int32_t start = *st; if (start < 0) { emitir(IRTGI(IR_LT), tr, tr0); tr = emitir(IRTI(IR_ADD), trlen, tr); start = start + (int32_t)s->len; emitir(start < 0 ? IRTGI(IR_LT) : IRTGI(IR_GE), tr, tr0); if (start < 0) { tr = tr0; start = 0; } } else if (start == 0) { emitir(IRTGI(IR_EQ), tr, tr0); tr = tr0; } else { tr = emitir(IRTI(IR_ADD), tr, lj_ir_kint(J, -1)); emitir(IRTGI(IR_GE), tr, tr0); start--; } *st = start; return tr; } /* Handle string.byte (rd->data = 0) and string.sub (rd->data = 1). */ static void LJ_FASTCALL recff_string_range(jit_State *J, RecordFFData *rd) { TRef trstr = lj_ir_tostr(J, J->base[0]); TRef trlen = emitir(IRTI(IR_FLOAD), trstr, IRFL_STR_LEN); TRef tr0 = lj_ir_kint(J, 0); TRef trstart, trend; GCstr *str = argv2str(J, &rd->argv[0]); int32_t start, end; if (rd->data) { /* string.sub(str, start [,end]) */ start = argv2int(J, &rd->argv[1]); trstart = lj_opt_narrow_toint(J, J->base[1]); trend = J->base[2]; if (tref_isnil(trend)) { trend = lj_ir_kint(J, -1); end = -1; } else { trend = lj_opt_narrow_toint(J, trend); end = argv2int(J, &rd->argv[2]); } } else { /* string.byte(str, [,start [,end]]) */ if (tref_isnil(J->base[1])) { start = 1; trstart = lj_ir_kint(J, 1); } else { start = argv2int(J, &rd->argv[1]); trstart = lj_opt_narrow_toint(J, J->base[1]); } if (J->base[1] && !tref_isnil(J->base[2])) { trend = lj_opt_narrow_toint(J, J->base[2]); end = argv2int(J, &rd->argv[2]); } else { trend = trstart; end = start; } } if (end < 0) { emitir(IRTGI(IR_LT), trend, tr0); trend = emitir(IRTI(IR_ADD), emitir(IRTI(IR_ADD), trlen, trend), lj_ir_kint(J, 1)); end = end+(int32_t)str->len+1; } else if ((MSize)end <= str->len) { emitir(IRTGI(IR_ULE), trend, trlen); } else { emitir(IRTGI(IR_UGT), trend, trlen); end = (int32_t)str->len; trend = trlen; } trstart = recff_string_start(J, str, &start, trstart, trlen, tr0); if (rd->data) { /* Return string.sub result. */ if (end - start >= 0) { /* Also handle empty range here, to avoid extra traces. */ TRef trptr, trslen = emitir(IRTI(IR_SUB), trend, trstart); emitir(IRTGI(IR_GE), trslen, tr0); trptr = emitir(IRT(IR_STRREF, IRT_PGC), trstr, trstart); J->base[0] = emitir(IRT(IR_SNEW, IRT_STR), trptr, trslen); } else { /* Range underflow: return empty string. */ emitir(IRTGI(IR_LT), trend, trstart); J->base[0] = lj_ir_kstr(J, &J2G(J)->strempty); } } else { /* Return string.byte result(s). */ ptrdiff_t i, len = end - start; if (len > 0) { TRef trslen = emitir(IRTI(IR_SUB), trend, trstart); emitir(IRTGI(IR_EQ), trslen, lj_ir_kint(J, (int32_t)len)); if (J->baseslot + len > LJ_MAX_JSLOTS) lj_trace_err_info(J, LJ_TRERR_STACKOV); rd->nres = len; for (i = 0; i < len; i++) { TRef tmp = emitir(IRTI(IR_ADD), trstart, lj_ir_kint(J, (int32_t)i)); tmp = emitir(IRT(IR_STRREF, IRT_PGC), trstr, tmp); J->base[i] = emitir(IRT(IR_XLOAD, IRT_U8), tmp, IRXLOAD_READONLY); } } else { /* Empty range or range underflow: return no results. */ emitir(IRTGI(IR_LE), trend, trstart); rd->nres = 0; } } } static void LJ_FASTCALL recff_string_char(jit_State *J, RecordFFData *rd) { TRef k255 = lj_ir_kint(J, 255); BCReg i; for (i = 0; J->base[i] != 0; i++) { /* Convert char values to strings. */ TRef tr = lj_opt_narrow_toint(J, J->base[i]); emitir(IRTGI(IR_ULE), tr, k255); J->base[i] = emitir(IRT(IR_TOSTR, IRT_STR), tr, IRTOSTR_CHAR); } if (i > 1) { /* Concatenate the strings, if there's more than one. */ TRef hdr = recff_bufhdr(J), tr = hdr; for (i = 0; J->base[i] != 0; i++) tr = emitir(IRT(IR_BUFPUT, IRT_PGC), tr, J->base[i]); J->base[0] = emitir(IRT(IR_BUFSTR, IRT_STR), tr, hdr); } UNUSED(rd); } static void LJ_FASTCALL recff_string_rep(jit_State *J, RecordFFData *rd) { TRef str = lj_ir_tostr(J, J->base[0]); TRef rep = lj_opt_narrow_toint(J, J->base[1]); TRef hdr, tr, str2 = 0; if (!tref_isnil(J->base[2])) { TRef sep = lj_ir_tostr(J, J->base[2]); int32_t vrep = argv2int(J, &rd->argv[1]); emitir(IRTGI(vrep > 1 ? IR_GT : IR_LE), rep, lj_ir_kint(J, 1)); if (vrep > 1) { TRef hdr2 = recff_bufhdr(J); TRef tr2 = emitir(IRT(IR_BUFPUT, IRT_PGC), hdr2, sep); tr2 = emitir(IRT(IR_BUFPUT, IRT_PGC), tr2, str); str2 = emitir(IRT(IR_BUFSTR, IRT_STR), tr2, hdr2); } } tr = hdr = recff_bufhdr(J); if (str2) { tr = emitir(IRT(IR_BUFPUT, IRT_PGC), tr, str); str = str2; rep = emitir(IRTI(IR_ADD), rep, lj_ir_kint(J, -1)); } tr = lj_ir_call(J, IRCALL_lj_buf_putstr_rep, tr, str, rep); J->base[0] = emitir(IRT(IR_BUFSTR, IRT_STR), tr, hdr); } static void LJ_FASTCALL recff_string_op(jit_State *J, RecordFFData *rd) { TRef str = lj_ir_tostr(J, J->base[0]); TRef hdr = recff_bufhdr(J); TRef tr = lj_ir_call(J, rd->data, hdr, str); J->base[0] = emitir(IRT(IR_BUFSTR, IRT_STR), tr, hdr); } static void LJ_FASTCALL recff_string_find(jit_State *J, RecordFFData *rd) { TRef trstr = lj_ir_tostr(J, J->base[0]); TRef trpat = lj_ir_tostr(J, J->base[1]); TRef trlen = emitir(IRTI(IR_FLOAD), trstr, IRFL_STR_LEN); TRef tr0 = lj_ir_kint(J, 0); TRef trstart; GCstr *str = argv2str(J, &rd->argv[0]); GCstr *pat = argv2str(J, &rd->argv[1]); int32_t start; J->needsnap = 1; if (tref_isnil(J->base[2])) { trstart = lj_ir_kint(J, 1); start = 1; } else { trstart = lj_opt_narrow_toint(J, J->base[2]); start = argv2int(J, &rd->argv[2]); } trstart = recff_string_start(J, str, &start, trstart, trlen, tr0); if ((MSize)start <= str->len) { emitir(IRTGI(IR_ULE), trstart, trlen); } else { emitir(IRTGI(IR_UGT), trstart, trlen); #if LJ_52 J->base[0] = TREF_NIL; return; #else trstart = trlen; start = str->len; #endif } /* Fixed arg or no pattern matching chars? (Specialized to pattern string.) */ if ((J->base[2] && tref_istruecond(J->base[3])) || (emitir(IRTG(IR_EQ, IRT_STR), trpat, lj_ir_kstr(J, pat)), !lj_str_haspattern(pat))) { /* Search for fixed string. */ TRef trsptr = emitir(IRT(IR_STRREF, IRT_PGC), trstr, trstart); TRef trpptr = emitir(IRT(IR_STRREF, IRT_PGC), trpat, tr0); TRef trslen = emitir(IRTI(IR_SUB), trlen, trstart); TRef trplen = emitir(IRTI(IR_FLOAD), trpat, IRFL_STR_LEN); TRef tr = lj_ir_call(J, IRCALL_lj_str_find, trsptr, trpptr, trslen, trplen); TRef trp0 = lj_ir_kkptr(J, NULL); if (lj_str_find(strdata(str)+(MSize)start, strdata(pat), str->len-(MSize)start, pat->len)) { TRef pos; emitir(IRTG(IR_NE, IRT_PGC), tr, trp0); pos = emitir(IRTI(IR_SUB), tr, emitir(IRT(IR_STRREF, IRT_PGC), trstr, tr0)); J->base[0] = emitir(IRTI(IR_ADD), pos, lj_ir_kint(J, 1)); J->base[1] = emitir(IRTI(IR_ADD), pos, trplen); rd->nres = 2; } else { emitir(IRTG(IR_EQ, IRT_PGC), tr, trp0); J->base[0] = TREF_NIL; } } else { /* Search for pattern. */ recff_nyiu(J, rd); return; } } static void LJ_FASTCALL recff_string_format(jit_State *J, RecordFFData *rd) { TRef trfmt = lj_ir_tostr(J, J->base[0]); GCstr *fmt = argv2str(J, &rd->argv[0]); int arg = 1; TRef hdr, tr; FormatState fs; SFormat sf; /* Specialize to the format string. */ emitir(IRTG(IR_EQ, IRT_STR), trfmt, lj_ir_kstr(J, fmt)); tr = hdr = recff_bufhdr(J); lj_strfmt_init(&fs, strdata(fmt), fmt->len); while ((sf = lj_strfmt_parse(&fs)) != STRFMT_EOF) { /* Parse format. */ TRef tra = sf == STRFMT_LIT ? 0 : J->base[arg++]; TRef trsf = lj_ir_kint(J, (int32_t)sf); IRCallID id; switch (STRFMT_TYPE(sf)) { case STRFMT_LIT: tr = emitir(IRT(IR_BUFPUT, IRT_PGC), tr, lj_ir_kstr(J, lj_str_new(J->L, fs.str, fs.len))); break; case STRFMT_INT: id = IRCALL_lj_strfmt_putfnum_int; handle_int: if (!tref_isinteger(tra)) goto handle_num; if (sf == STRFMT_INT) { /* Shortcut for plain %d. */ tr = emitir(IRT(IR_BUFPUT, IRT_PGC), tr, emitir(IRT(IR_TOSTR, IRT_STR), tra, IRTOSTR_INT)); } else { #if LJ_HASFFI tra = emitir(IRT(IR_CONV, IRT_U64), tra, (IRT_INT|(IRT_U64<<5)|IRCONV_SEXT)); tr = lj_ir_call(J, IRCALL_lj_strfmt_putfxint, tr, trsf, tra); lj_needsplit(J); #else recff_nyiu(J, rd); /* Don't bother working around this NYI. */ return; #endif } break; case STRFMT_UINT: id = IRCALL_lj_strfmt_putfnum_uint; goto handle_int; case STRFMT_NUM: id = IRCALL_lj_strfmt_putfnum; handle_num: tra = lj_ir_tonum(J, tra); tr = lj_ir_call(J, id, tr, trsf, tra); if (LJ_SOFTFP) lj_needsplit(J); break; case STRFMT_STR: if (!tref_isstr(tra)) { recff_nyiu(J, rd); /* NYI: __tostring and non-string types for %s. */ return; } if (sf == STRFMT_STR) /* Shortcut for plain %s. */ tr = emitir(IRT(IR_BUFPUT, IRT_PGC), tr, tra); else if ((sf & STRFMT_T_QUOTED)) tr = lj_ir_call(J, IRCALL_lj_strfmt_putquoted, tr, tra); else tr = lj_ir_call(J, IRCALL_lj_strfmt_putfstr, tr, trsf, tra); break; case STRFMT_CHAR: tra = lj_opt_narrow_toint(J, tra); if (sf == STRFMT_CHAR) /* Shortcut for plain %c. */ tr = emitir(IRT(IR_BUFPUT, IRT_PGC), tr, emitir(IRT(IR_TOSTR, IRT_STR), tra, IRTOSTR_CHAR)); else tr = lj_ir_call(J, IRCALL_lj_strfmt_putfchar, tr, trsf, tra); break; case STRFMT_PTR: /* NYI */ case STRFMT_ERR: default: recff_nyiu(J, rd); return; } } J->base[0] = emitir(IRT(IR_BUFSTR, IRT_STR), tr, hdr); } /* -- Table library fast functions ---------------------------------------- */ static void LJ_FASTCALL recff_table_insert(jit_State *J, RecordFFData *rd) { RecordIndex ix; ix.tab = J->base[0]; ix.val = J->base[1]; rd->nres = 0; if (tref_istab(ix.tab) && ix.val) { if (!J->base[2]) { /* Simple push: t[#t+1] = v */ TRef trlen = lj_ir_call(J, IRCALL_lj_tab_len, ix.tab); GCtab *t = tabV(&rd->argv[0]); ix.key = emitir(IRTI(IR_ADD), trlen, lj_ir_kint(J, 1)); settabV(J->L, &ix.tabv, t); setintV(&ix.keyv, lj_tab_len(t) + 1); ix.idxchain = 0; lj_record_idx(J, &ix); /* Set new value. */ } else { /* Complex case: insert in the middle. */ recff_nyiu(J, rd); return; } } /* else: Interpreter will throw. */ } static void LJ_FASTCALL recff_table_concat(jit_State *J, RecordFFData *rd) { TRef tab = J->base[0]; if (tref_istab(tab)) { TRef sep = !tref_isnil(J->base[1]) ? lj_ir_tostr(J, J->base[1]) : lj_ir_knull(J, IRT_STR); TRef tri = (J->base[1] && !tref_isnil(J->base[2])) ? lj_opt_narrow_toint(J, J->base[2]) : lj_ir_kint(J, 1); TRef tre = (J->base[1] && J->base[2] && !tref_isnil(J->base[3])) ? lj_opt_narrow_toint(J, J->base[3]) : lj_ir_call(J, IRCALL_lj_tab_len, tab); TRef hdr = recff_bufhdr(J); TRef tr = lj_ir_call(J, IRCALL_lj_buf_puttab, hdr, tab, sep, tri, tre); emitir(IRTG(IR_NE, IRT_PTR), tr, lj_ir_kptr(J, NULL)); J->base[0] = emitir(IRT(IR_BUFSTR, IRT_STR), tr, hdr); } /* else: Interpreter will throw. */ UNUSED(rd); } static void LJ_FASTCALL recff_table_new(jit_State *J, RecordFFData *rd) { TRef tra = lj_opt_narrow_toint(J, J->base[0]); TRef trh = lj_opt_narrow_toint(J, J->base[1]); J->base[0] = lj_ir_call(J, IRCALL_lj_tab_new_ah, tra, trh); UNUSED(rd); } static void LJ_FASTCALL recff_table_clear(jit_State *J, RecordFFData *rd) { TRef tr = J->base[0]; if (tref_istab(tr)) { rd->nres = 0; lj_ir_call(J, IRCALL_lj_tab_clear, tr); J->needsnap = 1; } /* else: Interpreter will throw. */ } /* -- I/O library fast functions ------------------------------------------ */ /* Get FILE* for I/O function. Any I/O error aborts recording, so there's ** no need to encode the alternate cases for any of the guards. */ static TRef recff_io_fp(jit_State *J, TRef *udp, int32_t id) { TRef tr, ud, fp; if (id) { /* io.func() */ #if LJ_GC64 /* TODO: fix ARM32 asm_fload(), so we can use this for all archs. */ ud = lj_ir_ggfload(J, IRT_UDATA, GG_OFS(g.gcroot[id])); #else tr = lj_ir_kptr(J, &J2G(J)->gcroot[id]); ud = emitir(IRT(IR_XLOAD, IRT_UDATA), tr, 0); #endif } else { /* fp:method() */ ud = J->base[0]; if (!tref_isudata(ud)) lj_trace_err(J, LJ_TRERR_BADTYPE); tr = emitir(IRT(IR_FLOAD, IRT_U8), ud, IRFL_UDATA_UDTYPE); emitir(IRTGI(IR_EQ), tr, lj_ir_kint(J, UDTYPE_IO_FILE)); } *udp = ud; fp = emitir(IRT(IR_FLOAD, IRT_PTR), ud, IRFL_UDATA_FILE); emitir(IRTG(IR_NE, IRT_PTR), fp, lj_ir_knull(J, IRT_PTR)); return fp; } static void LJ_FASTCALL recff_io_write(jit_State *J, RecordFFData *rd) { TRef ud, fp = recff_io_fp(J, &ud, rd->data); TRef zero = lj_ir_kint(J, 0); TRef one = lj_ir_kint(J, 1); ptrdiff_t i = rd->data == 0 ? 1 : 0; for (; J->base[i]; i++) { TRef str = lj_ir_tostr(J, J->base[i]); TRef buf = emitir(IRT(IR_STRREF, IRT_PGC), str, zero); TRef len = emitir(IRTI(IR_FLOAD), str, IRFL_STR_LEN); if (tref_isk(len) && IR(tref_ref(len))->i == 1) { IRIns *irs = IR(tref_ref(str)); TRef tr = (irs->o == IR_TOSTR && irs->op2 == IRTOSTR_CHAR) ? irs->op1 : emitir(IRT(IR_XLOAD, IRT_U8), buf, IRXLOAD_READONLY); tr = lj_ir_call(J, IRCALL_fputc, tr, fp); if (results_wanted(J) != 0) /* Check result only if not ignored. */ emitir(IRTGI(IR_NE), tr, lj_ir_kint(J, -1)); } else { TRef tr = lj_ir_call(J, IRCALL_fwrite, buf, one, len, fp); if (results_wanted(J) != 0) /* Check result only if not ignored. */ emitir(IRTGI(IR_EQ), tr, len); } } J->base[0] = LJ_52 ? ud : TREF_TRUE; } static void LJ_FASTCALL recff_io_flush(jit_State *J, RecordFFData *rd) { TRef ud, fp = recff_io_fp(J, &ud, rd->data); TRef tr = lj_ir_call(J, IRCALL_fflush, fp); if (results_wanted(J) != 0) /* Check result only if not ignored. */ emitir(IRTGI(IR_EQ), tr, lj_ir_kint(J, 0)); J->base[0] = TREF_TRUE; } /* -- Debug library fast functions ---------------------------------------- */ static void LJ_FASTCALL recff_debug_getmetatable(jit_State *J, RecordFFData *rd) { GCtab *mt; TRef mtref; TRef tr = J->base[0]; if (tref_istab(tr)) { mt = tabref(tabV(&rd->argv[0])->metatable); mtref = emitir(IRT(IR_FLOAD, IRT_TAB), tr, IRFL_TAB_META); } else if (tref_isudata(tr)) { mt = tabref(udataV(&rd->argv[0])->metatable); mtref = emitir(IRT(IR_FLOAD, IRT_TAB), tr, IRFL_UDATA_META); } else { mt = tabref(basemt_obj(J2G(J), &rd->argv[0])); J->base[0] = mt ? lj_ir_ktab(J, mt) : TREF_NIL; return; } emitir(IRTG(mt ? IR_NE : IR_EQ, IRT_TAB), mtref, lj_ir_knull(J, IRT_TAB)); J->base[0] = mt ? mtref : TREF_NIL; } /* -- Record calls to fast functions -------------------------------------- */ #include "lj_recdef.h" static uint32_t recdef_lookup(GCfunc *fn) { if (fn->c.ffid < sizeof(recff_idmap)/sizeof(recff_idmap[0])) return recff_idmap[fn->c.ffid]; else return 0; } /* Record entry to a fast function or C function. */ void lj_ffrecord_func(jit_State *J) { RecordFFData rd; uint32_t m = recdef_lookup(J->fn); rd.data = m & 0xff; rd.nres = 1; /* Default is one result. */ rd.argv = J->L->base; J->base[J->maxslot] = 0; /* Mark end of arguments. */ (recff_func[m >> 8])(J, &rd); /* Call recff_* handler. */ if (rd.nres >= 0) { if (J->postproc == LJ_POST_NONE) J->postproc = LJ_POST_FFRETRY; lj_record_ret(J, 0, rd.nres); } } #undef IR #undef emitir #endif luajit-2.1.0~beta3+dfsg.orig/src/lib_debug.c0000644000175100017510000002242113101703334020166 0ustar ondrejondrej/* ** Debug library. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h ** ** Major portions taken verbatim or adapted from the Lua interpreter. ** Copyright (C) 1994-2008 Lua.org, PUC-Rio. See Copyright Notice in lua.h */ #define lib_debug_c #define LUA_LIB #include "lua.h" #include "lauxlib.h" #include "lualib.h" #include "lj_obj.h" #include "lj_gc.h" #include "lj_err.h" #include "lj_debug.h" #include "lj_lib.h" /* ------------------------------------------------------------------------ */ #define LJLIB_MODULE_debug LJLIB_CF(debug_getregistry) { copyTV(L, L->top++, registry(L)); return 1; } LJLIB_CF(debug_getmetatable) LJLIB_REC(.) { lj_lib_checkany(L, 1); if (!lua_getmetatable(L, 1)) { setnilV(L->top-1); } return 1; } LJLIB_CF(debug_setmetatable) { lj_lib_checktabornil(L, 2); L->top = L->base+2; lua_setmetatable(L, 1); #if !LJ_52 setboolV(L->top-1, 1); #endif return 1; } LJLIB_CF(debug_getfenv) { lj_lib_checkany(L, 1); lua_getfenv(L, 1); return 1; } LJLIB_CF(debug_setfenv) { lj_lib_checktab(L, 2); L->top = L->base+2; if (!lua_setfenv(L, 1)) lj_err_caller(L, LJ_ERR_SETFENV); return 1; } /* ------------------------------------------------------------------------ */ static void settabss(lua_State *L, const char *i, const char *v) { lua_pushstring(L, v); lua_setfield(L, -2, i); } static void settabsi(lua_State *L, const char *i, int v) { lua_pushinteger(L, v); lua_setfield(L, -2, i); } static void settabsb(lua_State *L, const char *i, int v) { lua_pushboolean(L, v); lua_setfield(L, -2, i); } static lua_State *getthread(lua_State *L, int *arg) { if (L->base < L->top && tvisthread(L->base)) { *arg = 1; return threadV(L->base); } else { *arg = 0; return L; } } static void treatstackoption(lua_State *L, lua_State *L1, const char *fname) { if (L == L1) { lua_pushvalue(L, -2); lua_remove(L, -3); } else lua_xmove(L1, L, 1); lua_setfield(L, -2, fname); } LJLIB_CF(debug_getinfo) { lj_Debug ar; int arg, opt_f = 0, opt_L = 0; lua_State *L1 = getthread(L, &arg); const char *options = luaL_optstring(L, arg+2, "flnSu"); if (lua_isnumber(L, arg+1)) { if (!lua_getstack(L1, (int)lua_tointeger(L, arg+1), (lua_Debug *)&ar)) { setnilV(L->top-1); return 1; } } else if (L->base+arg < L->top && tvisfunc(L->base+arg)) { options = lua_pushfstring(L, ">%s", options); setfuncV(L1, L1->top++, funcV(L->base+arg)); } else { lj_err_arg(L, arg+1, LJ_ERR_NOFUNCL); } if (!lj_debug_getinfo(L1, options, &ar, 1)) lj_err_arg(L, arg+2, LJ_ERR_INVOPT); lua_createtable(L, 0, 16); /* Create result table. */ for (; *options; options++) { switch (*options) { case 'S': settabss(L, "source", ar.source); settabss(L, "short_src", ar.short_src); settabsi(L, "linedefined", ar.linedefined); settabsi(L, "lastlinedefined", ar.lastlinedefined); settabss(L, "what", ar.what); break; case 'l': settabsi(L, "currentline", ar.currentline); break; case 'u': settabsi(L, "nups", ar.nups); settabsi(L, "nparams", ar.nparams); settabsb(L, "isvararg", ar.isvararg); break; case 'n': settabss(L, "name", ar.name); settabss(L, "namewhat", ar.namewhat); break; case 'f': opt_f = 1; break; case 'L': opt_L = 1; break; default: break; } } if (opt_L) treatstackoption(L, L1, "activelines"); if (opt_f) treatstackoption(L, L1, "func"); return 1; /* Return result table. */ } LJLIB_CF(debug_getlocal) { int arg; lua_State *L1 = getthread(L, &arg); lua_Debug ar; const char *name; int slot = lj_lib_checkint(L, arg+2); if (tvisfunc(L->base+arg)) { L->top = L->base+arg+1; lua_pushstring(L, lua_getlocal(L, NULL, slot)); return 1; } if (!lua_getstack(L1, lj_lib_checkint(L, arg+1), &ar)) lj_err_arg(L, arg+1, LJ_ERR_LVLRNG); name = lua_getlocal(L1, &ar, slot); if (name) { lua_xmove(L1, L, 1); lua_pushstring(L, name); lua_pushvalue(L, -2); return 2; } else { setnilV(L->top-1); return 1; } } LJLIB_CF(debug_setlocal) { int arg; lua_State *L1 = getthread(L, &arg); lua_Debug ar; TValue *tv; if (!lua_getstack(L1, lj_lib_checkint(L, arg+1), &ar)) lj_err_arg(L, arg+1, LJ_ERR_LVLRNG); tv = lj_lib_checkany(L, arg+3); copyTV(L1, L1->top++, tv); lua_pushstring(L, lua_setlocal(L1, &ar, lj_lib_checkint(L, arg+2))); return 1; } static int debug_getupvalue(lua_State *L, int get) { int32_t n = lj_lib_checkint(L, 2); const char *name; lj_lib_checkfunc(L, 1); name = get ? lua_getupvalue(L, 1, n) : lua_setupvalue(L, 1, n); if (name) { lua_pushstring(L, name); if (!get) return 1; copyTV(L, L->top, L->top-2); L->top++; return 2; } return 0; } LJLIB_CF(debug_getupvalue) { return debug_getupvalue(L, 1); } LJLIB_CF(debug_setupvalue) { lj_lib_checkany(L, 3); return debug_getupvalue(L, 0); } LJLIB_CF(debug_upvalueid) { GCfunc *fn = lj_lib_checkfunc(L, 1); int32_t n = lj_lib_checkint(L, 2) - 1; if ((uint32_t)n >= fn->l.nupvalues) lj_err_arg(L, 2, LJ_ERR_IDXRNG); setlightudV(L->top-1, isluafunc(fn) ? (void *)gcref(fn->l.uvptr[n]) : (void *)&fn->c.upvalue[n]); return 1; } LJLIB_CF(debug_upvaluejoin) { GCfunc *fn[2]; GCRef *p[2]; int i; for (i = 0; i < 2; i++) { int32_t n; fn[i] = lj_lib_checkfunc(L, 2*i+1); if (!isluafunc(fn[i])) lj_err_arg(L, 2*i+1, LJ_ERR_NOLFUNC); n = lj_lib_checkint(L, 2*i+2) - 1; if ((uint32_t)n >= fn[i]->l.nupvalues) lj_err_arg(L, 2*i+2, LJ_ERR_IDXRNG); p[i] = &fn[i]->l.uvptr[n]; } setgcrefr(*p[0], *p[1]); lj_gc_objbarrier(L, fn[0], gcref(*p[1])); return 0; } #if LJ_52 LJLIB_CF(debug_getuservalue) { TValue *o = L->base; if (o < L->top && tvisudata(o)) settabV(L, o, tabref(udataV(o)->env)); else setnilV(o); L->top = o+1; return 1; } LJLIB_CF(debug_setuservalue) { TValue *o = L->base; if (!(o < L->top && tvisudata(o))) lj_err_argt(L, 1, LUA_TUSERDATA); if (!(o+1 < L->top && tvistab(o+1))) lj_err_argt(L, 2, LUA_TTABLE); L->top = o+2; lua_setfenv(L, 1); return 1; } #endif /* ------------------------------------------------------------------------ */ #define KEY_HOOK ((void *)0x3004) static void hookf(lua_State *L, lua_Debug *ar) { static const char *const hooknames[] = {"call", "return", "line", "count", "tail return"}; lua_pushlightuserdata(L, KEY_HOOK); lua_rawget(L, LUA_REGISTRYINDEX); if (lua_isfunction(L, -1)) { lua_pushstring(L, hooknames[(int)ar->event]); if (ar->currentline >= 0) lua_pushinteger(L, ar->currentline); else lua_pushnil(L); lua_call(L, 2, 0); } } static int makemask(const char *smask, int count) { int mask = 0; if (strchr(smask, 'c')) mask |= LUA_MASKCALL; if (strchr(smask, 'r')) mask |= LUA_MASKRET; if (strchr(smask, 'l')) mask |= LUA_MASKLINE; if (count > 0) mask |= LUA_MASKCOUNT; return mask; } static char *unmakemask(int mask, char *smask) { int i = 0; if (mask & LUA_MASKCALL) smask[i++] = 'c'; if (mask & LUA_MASKRET) smask[i++] = 'r'; if (mask & LUA_MASKLINE) smask[i++] = 'l'; smask[i] = '\0'; return smask; } LJLIB_CF(debug_sethook) { int arg, mask, count; lua_Hook func; (void)getthread(L, &arg); if (lua_isnoneornil(L, arg+1)) { lua_settop(L, arg+1); func = NULL; mask = 0; count = 0; /* turn off hooks */ } else { const char *smask = luaL_checkstring(L, arg+2); luaL_checktype(L, arg+1, LUA_TFUNCTION); count = luaL_optint(L, arg+3, 0); func = hookf; mask = makemask(smask, count); } lua_pushlightuserdata(L, KEY_HOOK); lua_pushvalue(L, arg+1); lua_rawset(L, LUA_REGISTRYINDEX); lua_sethook(L, func, mask, count); return 0; } LJLIB_CF(debug_gethook) { char buff[5]; int mask = lua_gethookmask(L); lua_Hook hook = lua_gethook(L); if (hook != NULL && hook != hookf) { /* external hook? */ lua_pushliteral(L, "external hook"); } else { lua_pushlightuserdata(L, KEY_HOOK); lua_rawget(L, LUA_REGISTRYINDEX); /* get hook */ } lua_pushstring(L, unmakemask(mask, buff)); lua_pushinteger(L, lua_gethookcount(L)); return 3; } /* ------------------------------------------------------------------------ */ LJLIB_CF(debug_debug) { for (;;) { char buffer[250]; fputs("lua_debug> ", stderr); if (fgets(buffer, sizeof(buffer), stdin) == 0 || strcmp(buffer, "cont\n") == 0) return 0; if (luaL_loadbuffer(L, buffer, strlen(buffer), "=(debug command)") || lua_pcall(L, 0, 0, 0)) { fputs(lua_tostring(L, -1), stderr); fputs("\n", stderr); } lua_settop(L, 0); /* remove eventual returns */ } } /* ------------------------------------------------------------------------ */ #define LEVELS1 12 /* size of the first part of the stack */ #define LEVELS2 10 /* size of the second part of the stack */ LJLIB_CF(debug_traceback) { int arg; lua_State *L1 = getthread(L, &arg); const char *msg = lua_tostring(L, arg+1); if (msg == NULL && L->top > L->base+arg) L->top = L->base+arg+1; else luaL_traceback(L, L1, msg, lj_lib_optint(L, arg+2, (L == L1))); return 1; } /* ------------------------------------------------------------------------ */ #include "lj_libdef.h" LUALIB_API int luaopen_debug(lua_State *L) { LJ_LIB_REG(L, LUA_DBLIBNAME, debug); return 1; } luajit-2.1.0~beta3+dfsg.orig/src/lj_state.h0000644000175100017510000000214513101703334020065 0ustar ondrejondrej/* ** State and stack handling. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_STATE_H #define _LJ_STATE_H #include "lj_obj.h" #define incr_top(L) \ (++L->top >= tvref(L->maxstack) && (lj_state_growstack1(L), 0)) #define savestack(L, p) ((char *)(p) - mref(L->stack, char)) #define restorestack(L, n) ((TValue *)(mref(L->stack, char) + (n))) LJ_FUNC void lj_state_relimitstack(lua_State *L); LJ_FUNC void lj_state_shrinkstack(lua_State *L, MSize used); LJ_FUNCA void LJ_FASTCALL lj_state_growstack(lua_State *L, MSize need); LJ_FUNC void LJ_FASTCALL lj_state_growstack1(lua_State *L); static LJ_AINLINE void lj_state_checkstack(lua_State *L, MSize need) { if ((mref(L->maxstack, char) - (char *)L->top) <= (ptrdiff_t)need*(ptrdiff_t)sizeof(TValue)) lj_state_growstack(L, need); } LJ_FUNC lua_State *lj_state_new(lua_State *L); LJ_FUNC void LJ_FASTCALL lj_state_free(global_State *g, lua_State *L); #if LJ_64 && !LJ_GC64 && !(defined(LUAJIT_USE_VALGRIND) && defined(LUAJIT_USE_SYSMALLOC)) LJ_FUNC lua_State *lj_state_newstate(lua_Alloc f, void *ud); #endif #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_carith.c0000644000175100017510000003032213101703334020210 0ustar ondrejondrej/* ** C data arithmetic. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #include "lj_obj.h" #if LJ_HASFFI #include "lj_gc.h" #include "lj_err.h" #include "lj_tab.h" #include "lj_meta.h" #include "lj_ir.h" #include "lj_ctype.h" #include "lj_cconv.h" #include "lj_cdata.h" #include "lj_carith.h" #include "lj_strscan.h" /* -- C data arithmetic --------------------------------------------------- */ /* Binary operands of an operator converted to ctypes. */ typedef struct CDArith { uint8_t *p[2]; CType *ct[2]; } CDArith; /* Check arguments for arithmetic metamethods. */ static int carith_checkarg(lua_State *L, CTState *cts, CDArith *ca) { TValue *o = L->base; int ok = 1; MSize i; if (o+1 >= L->top) lj_err_argt(L, 1, LUA_TCDATA); for (i = 0; i < 2; i++, o++) { if (tviscdata(o)) { GCcdata *cd = cdataV(o); CTypeID id = (CTypeID)cd->ctypeid; CType *ct = ctype_raw(cts, id); uint8_t *p = (uint8_t *)cdataptr(cd); if (ctype_isptr(ct->info)) { p = (uint8_t *)cdata_getptr(p, ct->size); if (ctype_isref(ct->info)) ct = ctype_rawchild(cts, ct); } else if (ctype_isfunc(ct->info)) { p = (uint8_t *)*(void **)p; ct = ctype_get(cts, lj_ctype_intern(cts, CTINFO(CT_PTR, CTALIGN_PTR|id), CTSIZE_PTR)); } if (ctype_isenum(ct->info)) ct = ctype_child(cts, ct); ca->ct[i] = ct; ca->p[i] = p; } else if (tvisint(o)) { ca->ct[i] = ctype_get(cts, CTID_INT32); ca->p[i] = (uint8_t *)&o->i; } else if (tvisnum(o)) { ca->ct[i] = ctype_get(cts, CTID_DOUBLE); ca->p[i] = (uint8_t *)&o->n; } else if (tvisnil(o)) { ca->ct[i] = ctype_get(cts, CTID_P_VOID); ca->p[i] = (uint8_t *)0; } else if (tvisstr(o)) { TValue *o2 = i == 0 ? o+1 : o-1; CType *ct = ctype_raw(cts, cdataV(o2)->ctypeid); ca->ct[i] = NULL; ca->p[i] = (uint8_t *)strVdata(o); ok = 0; if (ctype_isenum(ct->info)) { CTSize ofs; CType *cct = lj_ctype_getfield(cts, ct, strV(o), &ofs); if (cct && ctype_isconstval(cct->info)) { ca->ct[i] = ctype_child(cts, cct); ca->p[i] = (uint8_t *)&cct->size; /* Assumes ct does not grow. */ ok = 1; } else { ca->ct[1-i] = ct; /* Use enum to improve error message. */ ca->p[1-i] = NULL; break; } } } else { ca->ct[i] = NULL; ca->p[i] = (void *)(intptr_t)1; /* To make it unequal. */ ok = 0; } } return ok; } /* Pointer arithmetic. */ static int carith_ptr(lua_State *L, CTState *cts, CDArith *ca, MMS mm) { CType *ctp = ca->ct[0]; uint8_t *pp = ca->p[0]; ptrdiff_t idx; CTSize sz; CTypeID id; GCcdata *cd; if (ctype_isptr(ctp->info) || ctype_isrefarray(ctp->info)) { if ((mm == MM_sub || mm == MM_eq || mm == MM_lt || mm == MM_le) && (ctype_isptr(ca->ct[1]->info) || ctype_isrefarray(ca->ct[1]->info))) { uint8_t *pp2 = ca->p[1]; if (mm == MM_eq) { /* Pointer equality. Incompatible pointers are ok. */ setboolV(L->top-1, (pp == pp2)); return 1; } if (!lj_cconv_compatptr(cts, ctp, ca->ct[1], CCF_IGNQUAL)) return 0; if (mm == MM_sub) { /* Pointer difference. */ intptr_t diff; sz = lj_ctype_size(cts, ctype_cid(ctp->info)); /* Element size. */ if (sz == 0 || sz == CTSIZE_INVALID) return 0; diff = ((intptr_t)pp - (intptr_t)pp2) / (int32_t)sz; /* All valid pointer differences on x64 are in (-2^47, +2^47), ** which fits into a double without loss of precision. */ setintptrV(L->top-1, (int32_t)diff); return 1; } else if (mm == MM_lt) { /* Pointer comparison (unsigned). */ setboolV(L->top-1, ((uintptr_t)pp < (uintptr_t)pp2)); return 1; } else { lua_assert(mm == MM_le); setboolV(L->top-1, ((uintptr_t)pp <= (uintptr_t)pp2)); return 1; } } if (!((mm == MM_add || mm == MM_sub) && ctype_isnum(ca->ct[1]->info))) return 0; lj_cconv_ct_ct(cts, ctype_get(cts, CTID_INT_PSZ), ca->ct[1], (uint8_t *)&idx, ca->p[1], 0); if (mm == MM_sub) idx = -idx; } else if (mm == MM_add && ctype_isnum(ctp->info) && (ctype_isptr(ca->ct[1]->info) || ctype_isrefarray(ca->ct[1]->info))) { /* Swap pointer and index. */ ctp = ca->ct[1]; pp = ca->p[1]; lj_cconv_ct_ct(cts, ctype_get(cts, CTID_INT_PSZ), ca->ct[0], (uint8_t *)&idx, ca->p[0], 0); } else { return 0; } sz = lj_ctype_size(cts, ctype_cid(ctp->info)); /* Element size. */ if (sz == CTSIZE_INVALID) return 0; pp += idx*(int32_t)sz; /* Compute pointer + index. */ id = lj_ctype_intern(cts, CTINFO(CT_PTR, CTALIGN_PTR|ctype_cid(ctp->info)), CTSIZE_PTR); cd = lj_cdata_new(cts, id, CTSIZE_PTR); *(uint8_t **)cdataptr(cd) = pp; setcdataV(L, L->top-1, cd); lj_gc_check(L); return 1; } /* 64 bit integer arithmetic. */ static int carith_int64(lua_State *L, CTState *cts, CDArith *ca, MMS mm) { if (ctype_isnum(ca->ct[0]->info) && ca->ct[0]->size <= 8 && ctype_isnum(ca->ct[1]->info) && ca->ct[1]->size <= 8) { CTypeID id = (((ca->ct[0]->info & CTF_UNSIGNED) && ca->ct[0]->size == 8) || ((ca->ct[1]->info & CTF_UNSIGNED) && ca->ct[1]->size == 8)) ? CTID_UINT64 : CTID_INT64; CType *ct = ctype_get(cts, id); GCcdata *cd; uint64_t u0, u1, *up; lj_cconv_ct_ct(cts, ct, ca->ct[0], (uint8_t *)&u0, ca->p[0], 0); if (mm != MM_unm) lj_cconv_ct_ct(cts, ct, ca->ct[1], (uint8_t *)&u1, ca->p[1], 0); switch (mm) { case MM_eq: setboolV(L->top-1, (u0 == u1)); return 1; case MM_lt: setboolV(L->top-1, id == CTID_INT64 ? ((int64_t)u0 < (int64_t)u1) : (u0 < u1)); return 1; case MM_le: setboolV(L->top-1, id == CTID_INT64 ? ((int64_t)u0 <= (int64_t)u1) : (u0 <= u1)); return 1; default: break; } cd = lj_cdata_new(cts, id, 8); up = (uint64_t *)cdataptr(cd); setcdataV(L, L->top-1, cd); switch (mm) { case MM_add: *up = u0 + u1; break; case MM_sub: *up = u0 - u1; break; case MM_mul: *up = u0 * u1; break; case MM_div: if (id == CTID_INT64) *up = (uint64_t)lj_carith_divi64((int64_t)u0, (int64_t)u1); else *up = lj_carith_divu64(u0, u1); break; case MM_mod: if (id == CTID_INT64) *up = (uint64_t)lj_carith_modi64((int64_t)u0, (int64_t)u1); else *up = lj_carith_modu64(u0, u1); break; case MM_pow: if (id == CTID_INT64) *up = (uint64_t)lj_carith_powi64((int64_t)u0, (int64_t)u1); else *up = lj_carith_powu64(u0, u1); break; case MM_unm: *up = (uint64_t)-(int64_t)u0; break; default: lua_assert(0); break; } lj_gc_check(L); return 1; } return 0; } /* Handle ctype arithmetic metamethods. */ static int lj_carith_meta(lua_State *L, CTState *cts, CDArith *ca, MMS mm) { cTValue *tv = NULL; if (tviscdata(L->base)) { CTypeID id = cdataV(L->base)->ctypeid; CType *ct = ctype_raw(cts, id); if (ctype_isptr(ct->info)) id = ctype_cid(ct->info); tv = lj_ctype_meta(cts, id, mm); } if (!tv && L->base+1 < L->top && tviscdata(L->base+1)) { CTypeID id = cdataV(L->base+1)->ctypeid; CType *ct = ctype_raw(cts, id); if (ctype_isptr(ct->info)) id = ctype_cid(ct->info); tv = lj_ctype_meta(cts, id, mm); } if (!tv) { const char *repr[2]; int i, isenum = -1, isstr = -1; if (mm == MM_eq) { /* Equality checks never raise an error. */ int eq = ca->p[0] == ca->p[1]; setboolV(L->top-1, eq); setboolV(&G(L)->tmptv2, eq); /* Remember for trace recorder. */ return 1; } for (i = 0; i < 2; i++) { if (ca->ct[i] && tviscdata(L->base+i)) { if (ctype_isenum(ca->ct[i]->info)) isenum = i; repr[i] = strdata(lj_ctype_repr(L, ctype_typeid(cts, ca->ct[i]), NULL)); } else { if (tvisstr(&L->base[i])) isstr = i; repr[i] = lj_typename(&L->base[i]); } } if ((isenum ^ isstr) == 1) lj_err_callerv(L, LJ_ERR_FFI_BADCONV, repr[isstr], repr[isenum]); lj_err_callerv(L, mm == MM_len ? LJ_ERR_FFI_BADLEN : mm == MM_concat ? LJ_ERR_FFI_BADCONCAT : mm < MM_add ? LJ_ERR_FFI_BADCOMP : LJ_ERR_FFI_BADARITH, repr[0], repr[1]); } return lj_meta_tailcall(L, tv); } /* Arithmetic operators for cdata. */ int lj_carith_op(lua_State *L, MMS mm) { CTState *cts = ctype_cts(L); CDArith ca; if (carith_checkarg(L, cts, &ca)) { if (carith_int64(L, cts, &ca, mm) || carith_ptr(L, cts, &ca, mm)) { copyTV(L, &G(L)->tmptv2, L->top-1); /* Remember for trace recorder. */ return 1; } } return lj_carith_meta(L, cts, &ca, mm); } /* -- 64 bit bit operations helpers --------------------------------------- */ #if LJ_64 #define B64DEF(name) \ static LJ_AINLINE uint64_t lj_carith_##name(uint64_t x, int32_t sh) #else /* Not inlined on 32 bit archs, since some of these are quite lengthy. */ #define B64DEF(name) \ uint64_t LJ_NOINLINE lj_carith_##name(uint64_t x, int32_t sh) #endif B64DEF(shl64) { return x << (sh&63); } B64DEF(shr64) { return x >> (sh&63); } B64DEF(sar64) { return (uint64_t)((int64_t)x >> (sh&63)); } B64DEF(rol64) { return lj_rol(x, (sh&63)); } B64DEF(ror64) { return lj_ror(x, (sh&63)); } #undef B64DEF uint64_t lj_carith_shift64(uint64_t x, int32_t sh, int op) { switch (op) { case IR_BSHL-IR_BSHL: x = lj_carith_shl64(x, sh); break; case IR_BSHR-IR_BSHL: x = lj_carith_shr64(x, sh); break; case IR_BSAR-IR_BSHL: x = lj_carith_sar64(x, sh); break; case IR_BROL-IR_BSHL: x = lj_carith_rol64(x, sh); break; case IR_BROR-IR_BSHL: x = lj_carith_ror64(x, sh); break; default: lua_assert(0); break; } return x; } /* Equivalent to lj_lib_checkbit(), but handles cdata. */ uint64_t lj_carith_check64(lua_State *L, int narg, CTypeID *id) { TValue *o = L->base + narg-1; if (o >= L->top) { err: lj_err_argt(L, narg, LUA_TNUMBER); } else if (LJ_LIKELY(tvisnumber(o))) { /* Handled below. */ } else if (tviscdata(o)) { CTState *cts = ctype_cts(L); uint8_t *sp = (uint8_t *)cdataptr(cdataV(o)); CTypeID sid = cdataV(o)->ctypeid; CType *s = ctype_get(cts, sid); uint64_t x; if (ctype_isref(s->info)) { sp = *(void **)sp; sid = ctype_cid(s->info); } s = ctype_raw(cts, sid); if (ctype_isenum(s->info)) s = ctype_child(cts, s); if ((s->info & (CTMASK_NUM|CTF_BOOL|CTF_FP|CTF_UNSIGNED)) == CTINFO(CT_NUM, CTF_UNSIGNED) && s->size == 8) *id = CTID_UINT64; /* Use uint64_t, since it has the highest rank. */ else if (!*id) *id = CTID_INT64; /* Use int64_t, unless already set. */ lj_cconv_ct_ct(cts, ctype_get(cts, *id), s, (uint8_t *)&x, sp, CCF_ARG(narg)); return x; } else if (!(tvisstr(o) && lj_strscan_number(strV(o), o))) { goto err; } if (LJ_LIKELY(tvisint(o))) { return (uint32_t)intV(o); } else { int32_t i = lj_num2bit(numV(o)); if (LJ_DUALNUM) setintV(o, i); return (uint32_t)i; } } /* -- 64 bit integer arithmetic helpers ----------------------------------- */ #if LJ_32 && LJ_HASJIT /* Signed/unsigned 64 bit multiplication. */ int64_t lj_carith_mul64(int64_t a, int64_t b) { return a * b; } #endif /* Unsigned 64 bit division. */ uint64_t lj_carith_divu64(uint64_t a, uint64_t b) { if (b == 0) return U64x(80000000,00000000); return a / b; } /* Signed 64 bit division. */ int64_t lj_carith_divi64(int64_t a, int64_t b) { if (b == 0 || (a == (int64_t)U64x(80000000,00000000) && b == -1)) return U64x(80000000,00000000); return a / b; } /* Unsigned 64 bit modulo. */ uint64_t lj_carith_modu64(uint64_t a, uint64_t b) { if (b == 0) return U64x(80000000,00000000); return a % b; } /* Signed 64 bit modulo. */ int64_t lj_carith_modi64(int64_t a, int64_t b) { if (b == 0) return U64x(80000000,00000000); if (a == (int64_t)U64x(80000000,00000000) && b == -1) return 0; return a % b; } /* Unsigned 64 bit x^k. */ uint64_t lj_carith_powu64(uint64_t x, uint64_t k) { uint64_t y; if (k == 0) return 1; for (; (k & 1) == 0; k >>= 1) x *= x; y = x; if ((k >>= 1) != 0) { for (;;) { x *= x; if (k == 1) break; if (k & 1) y *= x; k >>= 1; } y *= x; } return y; } /* Signed 64 bit x^k. */ int64_t lj_carith_powi64(int64_t x, int64_t k) { if (k == 0) return 1; if (k < 0) { if (x == 0) return U64x(7fffffff,ffffffff); else if (x == 1) return 1; else if (x == -1) return (k & 1) ? -1 : 1; else return 0; } return (int64_t)lj_carith_powu64((uint64_t)x, (uint64_t)k); } #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_emit_arm.h0000644000175100017510000002516313101703334020547 0ustar ondrejondrej/* ** ARM instruction emitter. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ /* -- Constant encoding --------------------------------------------------- */ static uint8_t emit_invai[16] = { /* AND */ (ARMI_AND^ARMI_BIC) >> 21, /* EOR */ 0, /* SUB */ (ARMI_SUB^ARMI_ADD) >> 21, /* RSB */ 0, /* ADD */ (ARMI_ADD^ARMI_SUB) >> 21, /* ADC */ (ARMI_ADC^ARMI_SBC) >> 21, /* SBC */ (ARMI_SBC^ARMI_ADC) >> 21, /* RSC */ 0, /* TST */ 0, /* TEQ */ 0, /* CMP */ (ARMI_CMP^ARMI_CMN) >> 21, /* CMN */ (ARMI_CMN^ARMI_CMP) >> 21, /* ORR */ 0, /* MOV */ (ARMI_MOV^ARMI_MVN) >> 21, /* BIC */ (ARMI_BIC^ARMI_AND) >> 21, /* MVN */ (ARMI_MVN^ARMI_MOV) >> 21 }; /* Encode constant in K12 format for data processing instructions. */ static uint32_t emit_isk12(ARMIns ai, int32_t n) { uint32_t invai, i, m = (uint32_t)n; /* K12: unsigned 8 bit value, rotated in steps of two bits. */ for (i = 0; i < 4096; i += 256, m = lj_rol(m, 2)) if (m <= 255) return ARMI_K12|m|i; /* Otherwise try negation/complement with the inverse instruction. */ invai = emit_invai[((ai >> 21) & 15)]; if (!invai) return 0; /* Failed. No inverse instruction. */ m = ~(uint32_t)n; if (invai == ((ARMI_SUB^ARMI_ADD) >> 21) || invai == (ARMI_CMP^ARMI_CMN) >> 21) m++; for (i = 0; i < 4096; i += 256, m = lj_rol(m, 2)) if (m <= 255) return ARMI_K12|(invai<<21)|m|i; return 0; /* Failed. */ } /* -- Emit basic instructions --------------------------------------------- */ static void emit_dnm(ASMState *as, ARMIns ai, Reg rd, Reg rn, Reg rm) { *--as->mcp = ai | ARMF_D(rd) | ARMF_N(rn) | ARMF_M(rm); } static void emit_dm(ASMState *as, ARMIns ai, Reg rd, Reg rm) { *--as->mcp = ai | ARMF_D(rd) | ARMF_M(rm); } static void emit_dn(ASMState *as, ARMIns ai, Reg rd, Reg rn) { *--as->mcp = ai | ARMF_D(rd) | ARMF_N(rn); } static void emit_nm(ASMState *as, ARMIns ai, Reg rn, Reg rm) { *--as->mcp = ai | ARMF_N(rn) | ARMF_M(rm); } static void emit_d(ASMState *as, ARMIns ai, Reg rd) { *--as->mcp = ai | ARMF_D(rd); } static void emit_n(ASMState *as, ARMIns ai, Reg rn) { *--as->mcp = ai | ARMF_N(rn); } static void emit_m(ASMState *as, ARMIns ai, Reg rm) { *--as->mcp = ai | ARMF_M(rm); } static void emit_lsox(ASMState *as, ARMIns ai, Reg rd, Reg rn, int32_t ofs) { lua_assert(ofs >= -255 && ofs <= 255); if (ofs < 0) ofs = -ofs; else ai |= ARMI_LS_U; *--as->mcp = ai | ARMI_LS_P | ARMI_LSX_I | ARMF_D(rd) | ARMF_N(rn) | ((ofs & 0xf0) << 4) | (ofs & 0x0f); } static void emit_lso(ASMState *as, ARMIns ai, Reg rd, Reg rn, int32_t ofs) { lua_assert(ofs >= -4095 && ofs <= 4095); /* Combine LDR/STR pairs to LDRD/STRD. */ if (*as->mcp == (ai|ARMI_LS_P|ARMI_LS_U|ARMF_D(rd^1)|ARMF_N(rn)|(ofs^4)) && (ai & ~(ARMI_LDR^ARMI_STR)) == ARMI_STR && rd != rn && (uint32_t)ofs <= 252 && !(ofs & 3) && !((rd ^ (ofs >>2)) & 1) && as->mcp != as->mcloop) { as->mcp++; emit_lsox(as, ai == ARMI_LDR ? ARMI_LDRD : ARMI_STRD, rd&~1, rn, ofs&~4); return; } if (ofs < 0) ofs = -ofs; else ai |= ARMI_LS_U; *--as->mcp = ai | ARMI_LS_P | ARMF_D(rd) | ARMF_N(rn) | ofs; } #if !LJ_SOFTFP static void emit_vlso(ASMState *as, ARMIns ai, Reg rd, Reg rn, int32_t ofs) { lua_assert(ofs >= -1020 && ofs <= 1020 && (ofs&3) == 0); if (ofs < 0) ofs = -ofs; else ai |= ARMI_LS_U; *--as->mcp = ai | ARMI_LS_P | ARMF_D(rd & 15) | ARMF_N(rn) | (ofs >> 2); } #endif /* -- Emit loads/stores --------------------------------------------------- */ /* Prefer spills of BASE/L. */ #define emit_canremat(ref) ((ref) < ASMREF_L) /* Try to find a one step delta relative to another constant. */ static int emit_kdelta1(ASMState *as, Reg d, int32_t i) { RegSet work = ~as->freeset & RSET_GPR; while (work) { Reg r = rset_picktop(work); IRRef ref = regcost_ref(as->cost[r]); lua_assert(r != d); if (emit_canremat(ref)) { int32_t delta = i - (ra_iskref(ref) ? ra_krefk(as, ref) : IR(ref)->i); uint32_t k = emit_isk12(ARMI_ADD, delta); if (k) { if (k == ARMI_K12) emit_dm(as, ARMI_MOV, d, r); else emit_dn(as, ARMI_ADD^k, d, r); return 1; } } rset_clear(work, r); } return 0; /* Failed. */ } /* Try to find a two step delta relative to another constant. */ static int emit_kdelta2(ASMState *as, Reg d, int32_t i) { RegSet work = ~as->freeset & RSET_GPR; while (work) { Reg r = rset_picktop(work); IRRef ref = regcost_ref(as->cost[r]); lua_assert(r != d); if (emit_canremat(ref)) { int32_t other = ra_iskref(ref) ? ra_krefk(as, ref) : IR(ref)->i; if (other) { int32_t delta = i - other; uint32_t sh, inv = 0, k2, k; if (delta < 0) { delta = -delta; inv = ARMI_ADD^ARMI_SUB; } sh = lj_ffs(delta) & ~1; k2 = emit_isk12(0, delta & (255 << sh)); k = emit_isk12(0, delta & ~(255 << sh)); if (k) { emit_dn(as, ARMI_ADD^k2^inv, d, d); emit_dn(as, ARMI_ADD^k^inv, d, r); return 1; } } } rset_clear(work, r); } return 0; /* Failed. */ } /* Load a 32 bit constant into a GPR. */ static void emit_loadi(ASMState *as, Reg r, int32_t i) { uint32_t k = emit_isk12(ARMI_MOV, i); lua_assert(rset_test(as->freeset, r) || r == RID_TMP); if (k) { /* Standard K12 constant. */ emit_d(as, ARMI_MOV^k, r); } else if ((as->flags & JIT_F_ARMV6T2) && (uint32_t)i < 0x00010000u) { /* 16 bit loword constant for ARMv6T2. */ emit_d(as, ARMI_MOVW|(i & 0x0fff)|((i & 0xf000)<<4), r); } else if (emit_kdelta1(as, r, i)) { /* One step delta relative to another constant. */ } else if ((as->flags & JIT_F_ARMV6T2)) { /* 32 bit hiword/loword constant for ARMv6T2. */ emit_d(as, ARMI_MOVT|((i>>16) & 0x0fff)|(((i>>16) & 0xf000)<<4), r); emit_d(as, ARMI_MOVW|(i & 0x0fff)|((i & 0xf000)<<4), r); } else if (emit_kdelta2(as, r, i)) { /* Two step delta relative to another constant. */ } else { /* Otherwise construct the constant with up to 4 instructions. */ /* NYI: use mvn+bic, use pc-relative loads. */ for (;;) { uint32_t sh = lj_ffs(i) & ~1; int32_t m = i & (255 << sh); i &= ~(255 << sh); if (i == 0) { emit_d(as, ARMI_MOV ^ emit_isk12(0, m), r); break; } emit_dn(as, ARMI_ORR ^ emit_isk12(0, m), r, r); } } } #define emit_loada(as, r, addr) emit_loadi(as, (r), i32ptr((addr))) static Reg ra_allock(ASMState *as, intptr_t k, RegSet allow); /* Get/set from constant pointer. */ static void emit_lsptr(ASMState *as, ARMIns ai, Reg r, void *p) { int32_t i = i32ptr(p); emit_lso(as, ai, r, ra_allock(as, (i & ~4095), rset_exclude(RSET_GPR, r)), (i & 4095)); } #if !LJ_SOFTFP /* Load a number constant into an FPR. */ static void emit_loadk64(ASMState *as, Reg r, IRIns *ir) { cTValue *tv = ir_knum(ir); int32_t i; if ((as->flags & JIT_F_VFPV3) && !tv->u32.lo) { uint32_t hi = tv->u32.hi; uint32_t b = ((hi >> 22) & 0x1ff); if (!(hi & 0xffff) && (b == 0x100 || b == 0x0ff)) { *--as->mcp = ARMI_VMOVI_D | ARMF_D(r & 15) | ((tv->u32.hi >> 12) & 0x00080000) | ((tv->u32.hi >> 4) & 0x00070000) | ((tv->u32.hi >> 16) & 0x0000000f); return; } } i = i32ptr(tv); emit_vlso(as, ARMI_VLDR_D, r, ra_allock(as, (i & ~1020), RSET_GPR), (i & 1020)); } #endif /* Get/set global_State fields. */ #define emit_getgl(as, r, field) \ emit_lsptr(as, ARMI_LDR, (r), (void *)&J2G(as->J)->field) #define emit_setgl(as, r, field) \ emit_lsptr(as, ARMI_STR, (r), (void *)&J2G(as->J)->field) /* Trace number is determined from pc of exit instruction. */ #define emit_setvmstate(as, i) UNUSED(i) /* -- Emit control-flow instructions -------------------------------------- */ /* Label for internal jumps. */ typedef MCode *MCLabel; /* Return label pointing to current PC. */ #define emit_label(as) ((as)->mcp) static void emit_branch(ASMState *as, ARMIns ai, MCode *target) { MCode *p = as->mcp; ptrdiff_t delta = (target - p) - 1; lua_assert(((delta + 0x00800000) >> 24) == 0); *--p = ai | ((uint32_t)delta & 0x00ffffffu); as->mcp = p; } #define emit_jmp(as, target) emit_branch(as, ARMI_B, (target)) static void emit_call(ASMState *as, void *target) { MCode *p = --as->mcp; ptrdiff_t delta = ((char *)target - (char *)p) - 8; if ((((delta>>2) + 0x00800000) >> 24) == 0) { if ((delta & 1)) *p = ARMI_BLX | ((uint32_t)(delta>>2) & 0x00ffffffu) | ((delta&2) << 23); else *p = ARMI_BL | ((uint32_t)(delta>>2) & 0x00ffffffu); } else { /* Target out of range: need indirect call. But don't use R0-R3. */ Reg r = ra_allock(as, i32ptr(target), RSET_RANGE(RID_R4, RID_R12+1)); *p = ARMI_BLXr | ARMF_M(r); } } /* -- Emit generic operations --------------------------------------------- */ /* Generic move between two regs. */ static void emit_movrr(ASMState *as, IRIns *ir, Reg dst, Reg src) { #if LJ_SOFTFP lua_assert(!irt_isnum(ir->t)); UNUSED(ir); #else if (dst >= RID_MAX_GPR) { emit_dm(as, irt_isnum(ir->t) ? ARMI_VMOV_D : ARMI_VMOV_S, (dst & 15), (src & 15)); return; } #endif if (as->mcp != as->mcloop) { /* Swap early registers for loads/stores. */ MCode ins = *as->mcp, swp = (src^dst); if ((ins & 0x0c000000) == 0x04000000 && (ins & 0x02000010) != 0x02000010) { if (!((ins ^ (dst << 16)) & 0x000f0000)) *as->mcp = ins ^ (swp << 16); /* Swap N in load/store. */ if (!(ins & 0x00100000) && !((ins ^ (dst << 12)) & 0x0000f000)) *as->mcp = ins ^ (swp << 12); /* Swap D in store. */ } } emit_dm(as, ARMI_MOV, dst, src); } /* Generic load of register with base and (small) offset address. */ static void emit_loadofs(ASMState *as, IRIns *ir, Reg r, Reg base, int32_t ofs) { #if LJ_SOFTFP lua_assert(!irt_isnum(ir->t)); UNUSED(ir); #else if (r >= RID_MAX_GPR) emit_vlso(as, irt_isnum(ir->t) ? ARMI_VLDR_D : ARMI_VLDR_S, r, base, ofs); else #endif emit_lso(as, ARMI_LDR, r, base, ofs); } /* Generic store of register with base and (small) offset address. */ static void emit_storeofs(ASMState *as, IRIns *ir, Reg r, Reg base, int32_t ofs) { #if LJ_SOFTFP lua_assert(!irt_isnum(ir->t)); UNUSED(ir); #else if (r >= RID_MAX_GPR) emit_vlso(as, irt_isnum(ir->t) ? ARMI_VSTR_D : ARMI_VSTR_S, r, base, ofs); else #endif emit_lso(as, ARMI_STR, r, base, ofs); } /* Emit an arithmetic/logic operation with a constant operand. */ static void emit_opk(ASMState *as, ARMIns ai, Reg dest, Reg src, int32_t i, RegSet allow) { uint32_t k = emit_isk12(ai, i); if (k) emit_dn(as, ai^k, dest, src); else emit_dnm(as, ai, dest, src, ra_allock(as, i, allow)); } /* Add offset to pointer. */ static void emit_addptr(ASMState *as, Reg r, int32_t ofs) { if (ofs) emit_opk(as, ARMI_ADD, r, r, ofs, rset_exclude(RSET_GPR, r)); } #define emit_spsub(as, ofs) emit_addptr(as, RID_SP, -(ofs)) luajit-2.1.0~beta3+dfsg.orig/src/lj_ffdef.h0000644000175100017510000000757513101703334020033 0ustar ondrejondrej/* This is a generated file. DO NOT EDIT! */ FFDEF(assert) FFDEF(type) FFDEF(next) FFDEF(pairs) FFDEF(ipairs_aux) FFDEF(ipairs) FFDEF(getmetatable) FFDEF(setmetatable) FFDEF(getfenv) FFDEF(setfenv) FFDEF(rawget) FFDEF(rawset) FFDEF(rawequal) FFDEF(unpack) FFDEF(select) FFDEF(tonumber) FFDEF(tostring) FFDEF(error) FFDEF(pcall) FFDEF(xpcall) FFDEF(loadfile) FFDEF(load) FFDEF(loadstring) FFDEF(dofile) FFDEF(gcinfo) FFDEF(collectgarbage) FFDEF(newproxy) FFDEF(print) FFDEF(coroutine_status) FFDEF(coroutine_running) FFDEF(coroutine_create) FFDEF(coroutine_yield) FFDEF(coroutine_resume) FFDEF(coroutine_wrap_aux) FFDEF(coroutine_wrap) FFDEF(math_abs) FFDEF(math_floor) FFDEF(math_ceil) FFDEF(math_sqrt) FFDEF(math_log10) FFDEF(math_exp) FFDEF(math_sin) FFDEF(math_cos) FFDEF(math_tan) FFDEF(math_asin) FFDEF(math_acos) FFDEF(math_atan) FFDEF(math_sinh) FFDEF(math_cosh) FFDEF(math_tanh) FFDEF(math_frexp) FFDEF(math_modf) FFDEF(math_deg) FFDEF(math_rad) FFDEF(math_log) FFDEF(math_atan2) FFDEF(math_pow) FFDEF(math_fmod) FFDEF(math_ldexp) FFDEF(math_min) FFDEF(math_max) FFDEF(math_random) FFDEF(math_randomseed) FFDEF(bit_tobit) FFDEF(bit_bnot) FFDEF(bit_bswap) FFDEF(bit_lshift) FFDEF(bit_rshift) FFDEF(bit_arshift) FFDEF(bit_rol) FFDEF(bit_ror) FFDEF(bit_band) FFDEF(bit_bor) FFDEF(bit_bxor) FFDEF(bit_tohex) FFDEF(string_len) FFDEF(string_byte) FFDEF(string_char) FFDEF(string_sub) FFDEF(string_rep) FFDEF(string_reverse) FFDEF(string_lower) FFDEF(string_upper) FFDEF(string_dump) FFDEF(string_find) FFDEF(string_match) FFDEF(string_gmatch_aux) FFDEF(string_gmatch) FFDEF(string_gsub) FFDEF(string_format) FFDEF(table_foreachi) FFDEF(table_foreach) FFDEF(table_getn) FFDEF(table_maxn) FFDEF(table_insert) FFDEF(table_remove) FFDEF(table_concat) FFDEF(table_sort) FFDEF(io_method_close) FFDEF(io_method_read) FFDEF(io_method_write) FFDEF(io_method_flush) FFDEF(io_method_seek) FFDEF(io_method_setvbuf) FFDEF(io_method_lines) FFDEF(io_method___gc) FFDEF(io_method___tostring) FFDEF(io_open) FFDEF(io_popen) FFDEF(io_tmpfile) FFDEF(io_close) FFDEF(io_read) FFDEF(io_write) FFDEF(io_flush) FFDEF(io_input) FFDEF(io_output) FFDEF(io_lines) FFDEF(io_type) FFDEF(os_execute) FFDEF(os_remove) FFDEF(os_rename) FFDEF(os_tmpname) FFDEF(os_getenv) FFDEF(os_exit) FFDEF(os_clock) FFDEF(os_date) FFDEF(os_time) FFDEF(os_difftime) FFDEF(os_setlocale) FFDEF(debug_getregistry) FFDEF(debug_getmetatable) FFDEF(debug_setmetatable) FFDEF(debug_getfenv) FFDEF(debug_setfenv) FFDEF(debug_getinfo) FFDEF(debug_getlocal) FFDEF(debug_setlocal) FFDEF(debug_getupvalue) FFDEF(debug_setupvalue) FFDEF(debug_upvalueid) FFDEF(debug_upvaluejoin) FFDEF(debug_sethook) FFDEF(debug_gethook) FFDEF(debug_debug) FFDEF(debug_traceback) FFDEF(jit_on) FFDEF(jit_off) FFDEF(jit_flush) FFDEF(jit_status) FFDEF(jit_attach) FFDEF(jit_util_funcinfo) FFDEF(jit_util_funcbc) FFDEF(jit_util_funck) FFDEF(jit_util_funcuvname) FFDEF(jit_util_traceinfo) FFDEF(jit_util_traceir) FFDEF(jit_util_tracek) FFDEF(jit_util_tracesnap) FFDEF(jit_util_tracemc) FFDEF(jit_util_traceexitstub) FFDEF(jit_util_ircalladdr) FFDEF(jit_opt_start) FFDEF(ffi_meta___index) FFDEF(ffi_meta___newindex) FFDEF(ffi_meta___eq) FFDEF(ffi_meta___len) FFDEF(ffi_meta___lt) FFDEF(ffi_meta___le) FFDEF(ffi_meta___concat) FFDEF(ffi_meta___call) FFDEF(ffi_meta___add) FFDEF(ffi_meta___sub) FFDEF(ffi_meta___mul) FFDEF(ffi_meta___div) FFDEF(ffi_meta___mod) FFDEF(ffi_meta___pow) FFDEF(ffi_meta___unm) FFDEF(ffi_meta___tostring) FFDEF(ffi_meta___pairs) FFDEF(ffi_meta___ipairs) FFDEF(ffi_clib___index) FFDEF(ffi_clib___newindex) FFDEF(ffi_clib___gc) FFDEF(ffi_callback_free) FFDEF(ffi_callback_set) FFDEF(ffi_cdef) FFDEF(ffi_new) FFDEF(ffi_cast) FFDEF(ffi_typeof) FFDEF(ffi_istype) FFDEF(ffi_sizeof) FFDEF(ffi_alignof) FFDEF(ffi_offsetof) FFDEF(ffi_errno) FFDEF(ffi_string) FFDEF(ffi_copy) FFDEF(ffi_fill) FFDEF(ffi_abi) FFDEF(ffi_metatype) FFDEF(ffi_gc) FFDEF(ffi_load) #undef FFDEF #ifndef FF_NUM_ASMFUNC #define FF_NUM_ASMFUNC 62 #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_obj.c0000644000175100017510000000243513101703334017514 0ustar ondrejondrej/* ** Miscellaneous object handling. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #define lj_obj_c #define LUA_CORE #include "lj_obj.h" /* Object type names. */ LJ_DATADEF const char *const lj_obj_typename[] = { /* ORDER LUA_T */ "no value", "nil", "boolean", "userdata", "number", "string", "table", "function", "userdata", "thread", "proto", "cdata" }; LJ_DATADEF const char *const lj_obj_itypename[] = { /* ORDER LJ_T */ "nil", "boolean", "boolean", "userdata", "string", "upval", "thread", "proto", "function", "trace", "cdata", "table", "userdata", "number" }; /* Compare two objects without calling metamethods. */ int LJ_FASTCALL lj_obj_equal(cTValue *o1, cTValue *o2) { if (itype(o1) == itype(o2)) { if (tvispri(o1)) return 1; if (!tvisnum(o1)) return gcrefeq(o1->gcr, o2->gcr); } else if (!tvisnumber(o1) || !tvisnumber(o2)) { return 0; } return numberVnum(o1) == numberVnum(o2); } /* Return pointer to object or its object data. */ const void * LJ_FASTCALL lj_obj_ptr(cTValue *o) { if (tvisudata(o)) return uddata(udataV(o)); else if (tvislightud(o)) return lightudV(o); else if (LJ_HASFFI && tviscdata(o)) return cdataptr(cdataV(o)); else if (tvisgcv(o)) return gcV(o); else return NULL; } luajit-2.1.0~beta3+dfsg.orig/src/lib_base.c0000644000175100017510000004050213101703334020012 0ustar ondrejondrej/* ** Base and coroutine library. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h ** ** Major portions taken verbatim or adapted from the Lua interpreter. ** Copyright (C) 1994-2011 Lua.org, PUC-Rio. See Copyright Notice in lua.h */ #include #define lib_base_c #define LUA_LIB #include "lua.h" #include "lauxlib.h" #include "lualib.h" #include "lj_obj.h" #include "lj_gc.h" #include "lj_err.h" #include "lj_debug.h" #include "lj_str.h" #include "lj_tab.h" #include "lj_meta.h" #include "lj_state.h" #include "lj_frame.h" #if LJ_HASFFI #include "lj_ctype.h" #include "lj_cconv.h" #endif #include "lj_bc.h" #include "lj_ff.h" #include "lj_dispatch.h" #include "lj_char.h" #include "lj_strscan.h" #include "lj_strfmt.h" #include "lj_lib.h" /* -- Base library: checks ------------------------------------------------ */ #define LJLIB_MODULE_base LJLIB_ASM(assert) LJLIB_REC(.) { GCstr *s; lj_lib_checkany(L, 1); s = lj_lib_optstr(L, 2); if (s) lj_err_callermsg(L, strdata(s)); else lj_err_caller(L, LJ_ERR_ASSERT); return FFH_UNREACHABLE; } /* ORDER LJ_T */ LJLIB_PUSH("nil") LJLIB_PUSH("boolean") LJLIB_PUSH(top-1) /* boolean */ LJLIB_PUSH("userdata") LJLIB_PUSH("string") LJLIB_PUSH("upval") LJLIB_PUSH("thread") LJLIB_PUSH("proto") LJLIB_PUSH("function") LJLIB_PUSH("trace") LJLIB_PUSH("cdata") LJLIB_PUSH("table") LJLIB_PUSH(top-9) /* userdata */ LJLIB_PUSH("number") LJLIB_ASM_(type) LJLIB_REC(.) /* Recycle the lj_lib_checkany(L, 1) from assert. */ /* -- Base library: iterators --------------------------------------------- */ /* This solves a circular dependency problem -- change FF_next_N as needed. */ LJ_STATIC_ASSERT((int)FF_next == FF_next_N); LJLIB_ASM(next) { lj_lib_checktab(L, 1); return FFH_UNREACHABLE; } #if LJ_52 || LJ_HASFFI static int ffh_pairs(lua_State *L, MMS mm) { TValue *o = lj_lib_checkany(L, 1); cTValue *mo = lj_meta_lookup(L, o, mm); if ((LJ_52 || tviscdata(o)) && !tvisnil(mo)) { L->top = o+1; /* Only keep one argument. */ copyTV(L, L->base-1-LJ_FR2, mo); /* Replace callable. */ return FFH_TAILCALL; } else { if (!tvistab(o)) lj_err_argt(L, 1, LUA_TTABLE); if (LJ_FR2) { copyTV(L, o-1, o); o--; } setfuncV(L, o-1, funcV(lj_lib_upvalue(L, 1))); if (mm == MM_pairs) setnilV(o+1); else setintV(o+1, 0); return FFH_RES(3); } } #else #define ffh_pairs(L, mm) (lj_lib_checktab(L, 1), FFH_UNREACHABLE) #endif LJLIB_PUSH(lastcl) LJLIB_ASM(pairs) LJLIB_REC(xpairs 0) { return ffh_pairs(L, MM_pairs); } LJLIB_NOREGUV LJLIB_ASM(ipairs_aux) LJLIB_REC(.) { lj_lib_checktab(L, 1); lj_lib_checkint(L, 2); return FFH_UNREACHABLE; } LJLIB_PUSH(lastcl) LJLIB_ASM(ipairs) LJLIB_REC(xpairs 1) { return ffh_pairs(L, MM_ipairs); } /* -- Base library: getters and setters ----------------------------------- */ LJLIB_ASM_(getmetatable) LJLIB_REC(.) /* Recycle the lj_lib_checkany(L, 1) from assert. */ LJLIB_ASM(setmetatable) LJLIB_REC(.) { GCtab *t = lj_lib_checktab(L, 1); GCtab *mt = lj_lib_checktabornil(L, 2); if (!tvisnil(lj_meta_lookup(L, L->base, MM_metatable))) lj_err_caller(L, LJ_ERR_PROTMT); setgcref(t->metatable, obj2gco(mt)); if (mt) { lj_gc_objbarriert(L, t, mt); } settabV(L, L->base-1-LJ_FR2, t); return FFH_RES(1); } LJLIB_CF(getfenv) LJLIB_REC(.) { GCfunc *fn; cTValue *o = L->base; if (!(o < L->top && tvisfunc(o))) { int level = lj_lib_optint(L, 1, 1); o = lj_debug_frame(L, level, &level); if (o == NULL) lj_err_arg(L, 1, LJ_ERR_INVLVL); if (LJ_FR2) o--; } fn = &gcval(o)->fn; settabV(L, L->top++, isluafunc(fn) ? tabref(fn->l.env) : tabref(L->env)); return 1; } LJLIB_CF(setfenv) { GCfunc *fn; GCtab *t = lj_lib_checktab(L, 2); cTValue *o = L->base; if (!(o < L->top && tvisfunc(o))) { int level = lj_lib_checkint(L, 1); if (level == 0) { /* NOBARRIER: A thread (i.e. L) is never black. */ setgcref(L->env, obj2gco(t)); return 0; } o = lj_debug_frame(L, level, &level); if (o == NULL) lj_err_arg(L, 1, LJ_ERR_INVLVL); if (LJ_FR2) o--; } fn = &gcval(o)->fn; if (!isluafunc(fn)) lj_err_caller(L, LJ_ERR_SETFENV); setgcref(fn->l.env, obj2gco(t)); lj_gc_objbarrier(L, obj2gco(fn), t); setfuncV(L, L->top++, fn); return 1; } LJLIB_ASM(rawget) LJLIB_REC(.) { lj_lib_checktab(L, 1); lj_lib_checkany(L, 2); return FFH_UNREACHABLE; } LJLIB_CF(rawset) LJLIB_REC(.) { lj_lib_checktab(L, 1); lj_lib_checkany(L, 2); L->top = 1+lj_lib_checkany(L, 3); lua_rawset(L, 1); return 1; } LJLIB_CF(rawequal) LJLIB_REC(.) { cTValue *o1 = lj_lib_checkany(L, 1); cTValue *o2 = lj_lib_checkany(L, 2); setboolV(L->top-1, lj_obj_equal(o1, o2)); return 1; } #if LJ_52 LJLIB_CF(rawlen) LJLIB_REC(.) { cTValue *o = L->base; int32_t len; if (L->top > o && tvisstr(o)) len = (int32_t)strV(o)->len; else len = (int32_t)lj_tab_len(lj_lib_checktab(L, 1)); setintV(L->top-1, len); return 1; } #endif LJLIB_CF(unpack) { GCtab *t = lj_lib_checktab(L, 1); int32_t n, i = lj_lib_optint(L, 2, 1); int32_t e = (L->base+3-1 < L->top && !tvisnil(L->base+3-1)) ? lj_lib_checkint(L, 3) : (int32_t)lj_tab_len(t); if (i > e) return 0; n = e - i + 1; if (n <= 0 || !lua_checkstack(L, n)) lj_err_caller(L, LJ_ERR_UNPACK); do { cTValue *tv = lj_tab_getint(t, i); if (tv) { copyTV(L, L->top++, tv); } else { setnilV(L->top++); } } while (i++ < e); return n; } LJLIB_CF(select) LJLIB_REC(.) { int32_t n = (int32_t)(L->top - L->base); if (n >= 1 && tvisstr(L->base) && *strVdata(L->base) == '#') { setintV(L->top-1, n-1); return 1; } else { int32_t i = lj_lib_checkint(L, 1); if (i < 0) i = n + i; else if (i > n) i = n; if (i < 1) lj_err_arg(L, 1, LJ_ERR_IDXRNG); return n - i; } } /* -- Base library: conversions ------------------------------------------- */ LJLIB_ASM(tonumber) LJLIB_REC(.) { int32_t base = lj_lib_optint(L, 2, 10); if (base == 10) { TValue *o = lj_lib_checkany(L, 1); if (lj_strscan_numberobj(o)) { copyTV(L, L->base-1-LJ_FR2, o); return FFH_RES(1); } #if LJ_HASFFI if (tviscdata(o)) { CTState *cts = ctype_cts(L); CType *ct = lj_ctype_rawref(cts, cdataV(o)->ctypeid); if (ctype_isenum(ct->info)) ct = ctype_child(cts, ct); if (ctype_isnum(ct->info) || ctype_iscomplex(ct->info)) { if (LJ_DUALNUM && ctype_isinteger_or_bool(ct->info) && ct->size <= 4 && !(ct->size == 4 && (ct->info & CTF_UNSIGNED))) { int32_t i; lj_cconv_ct_tv(cts, ctype_get(cts, CTID_INT32), (uint8_t *)&i, o, 0); setintV(L->base-1-LJ_FR2, i); return FFH_RES(1); } lj_cconv_ct_tv(cts, ctype_get(cts, CTID_DOUBLE), (uint8_t *)&(L->base-1-LJ_FR2)->n, o, 0); return FFH_RES(1); } } #endif } else { const char *p = strdata(lj_lib_checkstr(L, 1)); char *ep; unsigned long ul; if (base < 2 || base > 36) lj_err_arg(L, 2, LJ_ERR_BASERNG); ul = strtoul(p, &ep, base); if (p != ep) { while (lj_char_isspace((unsigned char)(*ep))) ep++; if (*ep == '\0') { if (LJ_DUALNUM && LJ_LIKELY(ul < 0x80000000u)) setintV(L->base-1-LJ_FR2, (int32_t)ul); else setnumV(L->base-1-LJ_FR2, (lua_Number)ul); return FFH_RES(1); } } } setnilV(L->base-1-LJ_FR2); return FFH_RES(1); } LJLIB_ASM(tostring) LJLIB_REC(.) { TValue *o = lj_lib_checkany(L, 1); cTValue *mo; L->top = o+1; /* Only keep one argument. */ if (!tvisnil(mo = lj_meta_lookup(L, o, MM_tostring))) { copyTV(L, L->base-1-LJ_FR2, mo); /* Replace callable. */ return FFH_TAILCALL; } lj_gc_check(L); setstrV(L, L->base-1-LJ_FR2, lj_strfmt_obj(L, L->base)); return FFH_RES(1); } /* -- Base library: throw and catch errors -------------------------------- */ LJLIB_CF(error) { int32_t level = lj_lib_optint(L, 2, 1); lua_settop(L, 1); if (lua_isstring(L, 1) && level > 0) { luaL_where(L, level); lua_pushvalue(L, 1); lua_concat(L, 2); } return lua_error(L); } LJLIB_ASM(pcall) LJLIB_REC(.) { lj_lib_checkany(L, 1); lj_lib_checkfunc(L, 2); /* For xpcall only. */ return FFH_UNREACHABLE; } LJLIB_ASM_(xpcall) LJLIB_REC(.) /* -- Base library: load Lua code ----------------------------------------- */ static int load_aux(lua_State *L, int status, int envarg) { if (status == LUA_OK) { if (tvistab(L->base+envarg-1)) { GCfunc *fn = funcV(L->top-1); GCtab *t = tabV(L->base+envarg-1); setgcref(fn->c.env, obj2gco(t)); lj_gc_objbarrier(L, fn, t); } return 1; } else { setnilV(L->top-2); return 2; } } LJLIB_CF(loadfile) { GCstr *fname = lj_lib_optstr(L, 1); GCstr *mode = lj_lib_optstr(L, 2); int status; lua_settop(L, 3); /* Ensure env arg exists. */ status = luaL_loadfilex(L, fname ? strdata(fname) : NULL, mode ? strdata(mode) : NULL); return load_aux(L, status, 3); } static const char *reader_func(lua_State *L, void *ud, size_t *size) { UNUSED(ud); luaL_checkstack(L, 2, "too many nested functions"); copyTV(L, L->top++, L->base); lua_call(L, 0, 1); /* Call user-supplied function. */ L->top--; if (tvisnil(L->top)) { *size = 0; return NULL; } else if (tvisstr(L->top) || tvisnumber(L->top)) { copyTV(L, L->base+4, L->top); /* Anchor string in reserved stack slot. */ return lua_tolstring(L, 5, size); } else { lj_err_caller(L, LJ_ERR_RDRSTR); return NULL; } } LJLIB_CF(load) { GCstr *name = lj_lib_optstr(L, 2); GCstr *mode = lj_lib_optstr(L, 3); int status; if (L->base < L->top && (tvisstr(L->base) || tvisnumber(L->base))) { GCstr *s = lj_lib_checkstr(L, 1); lua_settop(L, 4); /* Ensure env arg exists. */ status = luaL_loadbufferx(L, strdata(s), s->len, strdata(name ? name : s), mode ? strdata(mode) : NULL); } else { lj_lib_checkfunc(L, 1); lua_settop(L, 5); /* Reserve a slot for the string from the reader. */ status = lua_loadx(L, reader_func, NULL, name ? strdata(name) : "=(load)", mode ? strdata(mode) : NULL); } return load_aux(L, status, 4); } LJLIB_CF(loadstring) { return lj_cf_load(L); } LJLIB_CF(dofile) { GCstr *fname = lj_lib_optstr(L, 1); setnilV(L->top); L->top = L->base+1; if (luaL_loadfile(L, fname ? strdata(fname) : NULL) != LUA_OK) lua_error(L); lua_call(L, 0, LUA_MULTRET); return (int)(L->top - L->base) - 1; } /* -- Base library: GC control -------------------------------------------- */ LJLIB_CF(gcinfo) { setintV(L->top++, (int32_t)(G(L)->gc.total >> 10)); return 1; } LJLIB_CF(collectgarbage) { int opt = lj_lib_checkopt(L, 1, LUA_GCCOLLECT, /* ORDER LUA_GC* */ "\4stop\7restart\7collect\5count\1\377\4step\10setpause\12setstepmul\1\377\11isrunning"); int32_t data = lj_lib_optint(L, 2, 0); if (opt == LUA_GCCOUNT) { setnumV(L->top, (lua_Number)G(L)->gc.total/1024.0); } else { int res = lua_gc(L, opt, data); if (opt == LUA_GCSTEP || opt == LUA_GCISRUNNING) setboolV(L->top, res); else setintV(L->top, res); } L->top++; return 1; } /* -- Base library: miscellaneous functions ------------------------------- */ LJLIB_PUSH(top-2) /* Upvalue holds weak table. */ LJLIB_CF(newproxy) { lua_settop(L, 1); lua_newuserdata(L, 0); if (lua_toboolean(L, 1) == 0) { /* newproxy(): without metatable. */ return 1; } else if (lua_isboolean(L, 1)) { /* newproxy(true): with metatable. */ lua_newtable(L); lua_pushvalue(L, -1); lua_pushboolean(L, 1); lua_rawset(L, lua_upvalueindex(1)); /* Remember mt in weak table. */ } else { /* newproxy(proxy): inherit metatable. */ int validproxy = 0; if (lua_getmetatable(L, 1)) { lua_rawget(L, lua_upvalueindex(1)); validproxy = lua_toboolean(L, -1); lua_pop(L, 1); } if (!validproxy) lj_err_arg(L, 1, LJ_ERR_NOPROXY); lua_getmetatable(L, 1); } lua_setmetatable(L, 2); return 1; } LJLIB_PUSH("tostring") LJLIB_CF(print) { ptrdiff_t i, nargs = L->top - L->base; cTValue *tv = lj_tab_getstr(tabref(L->env), strV(lj_lib_upvalue(L, 1))); int shortcut; if (tv && !tvisnil(tv)) { copyTV(L, L->top++, tv); } else { setstrV(L, L->top++, strV(lj_lib_upvalue(L, 1))); lua_gettable(L, LUA_GLOBALSINDEX); tv = L->top-1; } shortcut = (tvisfunc(tv) && funcV(tv)->c.ffid == FF_tostring); for (i = 0; i < nargs; i++) { cTValue *o = &L->base[i]; const char *str; size_t size; MSize len; if (shortcut && (str = lj_strfmt_wstrnum(L, o, &len)) != NULL) { size = len; } else { copyTV(L, L->top+1, o); copyTV(L, L->top, L->top-1); L->top += 2; lua_call(L, 1, 1); str = lua_tolstring(L, -1, &size); if (!str) lj_err_caller(L, LJ_ERR_PRTOSTR); L->top--; } if (i) putchar('\t'); fwrite(str, 1, size, stdout); } putchar('\n'); return 0; } LJLIB_PUSH(top-3) LJLIB_SET(_VERSION) #include "lj_libdef.h" /* -- Coroutine library --------------------------------------------------- */ #define LJLIB_MODULE_coroutine LJLIB_CF(coroutine_status) { const char *s; lua_State *co; if (!(L->top > L->base && tvisthread(L->base))) lj_err_arg(L, 1, LJ_ERR_NOCORO); co = threadV(L->base); if (co == L) s = "running"; else if (co->status == LUA_YIELD) s = "suspended"; else if (co->status != LUA_OK) s = "dead"; else if (co->base > tvref(co->stack)+1+LJ_FR2) s = "normal"; else if (co->top == co->base) s = "dead"; else s = "suspended"; lua_pushstring(L, s); return 1; } LJLIB_CF(coroutine_running) { #if LJ_52 int ismain = lua_pushthread(L); setboolV(L->top++, ismain); return 2; #else if (lua_pushthread(L)) setnilV(L->top++); return 1; #endif } LJLIB_CF(coroutine_isyieldable) { setboolV(L->top++, cframe_canyield(L->cframe)); return 1; } LJLIB_CF(coroutine_create) { lua_State *L1; if (!(L->base < L->top && tvisfunc(L->base))) lj_err_argt(L, 1, LUA_TFUNCTION); L1 = lua_newthread(L); setfuncV(L, L1->top++, funcV(L->base)); return 1; } LJLIB_ASM(coroutine_yield) { lj_err_caller(L, LJ_ERR_CYIELD); return FFH_UNREACHABLE; } static int ffh_resume(lua_State *L, lua_State *co, int wrap) { if (co->cframe != NULL || co->status > LUA_YIELD || (co->status == LUA_OK && co->top == co->base)) { ErrMsg em = co->cframe ? LJ_ERR_CORUN : LJ_ERR_CODEAD; if (wrap) lj_err_caller(L, em); setboolV(L->base-1-LJ_FR2, 0); setstrV(L, L->base-LJ_FR2, lj_err_str(L, em)); return FFH_RES(2); } lj_state_growstack(co, (MSize)(L->top - L->base)); return FFH_RETRY; } LJLIB_ASM(coroutine_resume) { if (!(L->top > L->base && tvisthread(L->base))) lj_err_arg(L, 1, LJ_ERR_NOCORO); return ffh_resume(L, threadV(L->base), 0); } LJLIB_NOREG LJLIB_ASM(coroutine_wrap_aux) { return ffh_resume(L, threadV(lj_lib_upvalue(L, 1)), 1); } /* Inline declarations. */ LJ_ASMF void lj_ff_coroutine_wrap_aux(void); #if !(LJ_TARGET_MIPS && defined(ljamalg_c)) LJ_FUNCA_NORET void LJ_FASTCALL lj_ffh_coroutine_wrap_err(lua_State *L, lua_State *co); #endif /* Error handler, called from assembler VM. */ void LJ_FASTCALL lj_ffh_coroutine_wrap_err(lua_State *L, lua_State *co) { co->top--; copyTV(L, L->top, co->top); L->top++; if (tvisstr(L->top-1)) lj_err_callermsg(L, strVdata(L->top-1)); else lj_err_run(L); } /* Forward declaration. */ static void setpc_wrap_aux(lua_State *L, GCfunc *fn); LJLIB_CF(coroutine_wrap) { GCfunc *fn; lj_cf_coroutine_create(L); fn = lj_lib_pushcc(L, lj_ffh_coroutine_wrap_aux, FF_coroutine_wrap_aux, 1); setpc_wrap_aux(L, fn); return 1; } #include "lj_libdef.h" /* Fix the PC of wrap_aux. Really ugly workaround. */ static void setpc_wrap_aux(lua_State *L, GCfunc *fn) { setmref(fn->c.pc, &L2GG(L)->bcff[lj_lib_init_coroutine[1]+2]); } /* ------------------------------------------------------------------------ */ static void newproxy_weaktable(lua_State *L) { /* NOBARRIER: The table is new (marked white). */ GCtab *t = lj_tab_new(L, 0, 1); settabV(L, L->top++, t); setgcref(t->metatable, obj2gco(t)); setstrV(L, lj_tab_setstr(L, t, lj_str_newlit(L, "__mode")), lj_str_newlit(L, "kv")); t->nomm = (uint8_t)(~(1u<env); settabV(L, lj_tab_setstr(L, env, lj_str_newlit(L, "_G")), env); lua_pushliteral(L, LUA_VERSION); /* top-3. */ newproxy_weaktable(L); /* top-2. */ LJ_LIB_REG(L, "_G", base); LJ_LIB_REG(L, LUA_COLIBNAME, coroutine); return 2; } luajit-2.1.0~beta3+dfsg.orig/src/luajit.h0000644000175100017510000000565613101703334017562 0ustar ondrejondrej/* ** LuaJIT -- a Just-In-Time Compiler for Lua. http://luajit.org/ ** ** Copyright (C) 2005-2017 Mike Pall. All rights reserved. ** ** Permission is hereby granted, free of charge, to any person obtaining ** a copy of this software and associated documentation files (the ** "Software"), to deal in the Software without restriction, including ** without limitation the rights to use, copy, modify, merge, publish, ** distribute, sublicense, and/or sell copies of the Software, and to ** permit persons to whom the Software is furnished to do so, subject to ** the following conditions: ** ** The above copyright notice and this permission notice shall be ** included in all copies or substantial portions of the Software. ** ** THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, ** EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF ** MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. ** IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY ** CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, ** TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE ** SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ** ** [ MIT license: http://www.opensource.org/licenses/mit-license.php ] */ #ifndef _LUAJIT_H #define _LUAJIT_H #include "lua.h" #define LUAJIT_VERSION "LuaJIT 2.1.0-beta3" #define LUAJIT_VERSION_NUM 20100 /* Version 2.1.0 = 02.01.00. */ #define LUAJIT_VERSION_SYM luaJIT_version_2_1_0_beta3 #define LUAJIT_COPYRIGHT "Copyright (C) 2005-2017 Mike Pall" #define LUAJIT_URL "http://luajit.org/" /* Modes for luaJIT_setmode. */ #define LUAJIT_MODE_MASK 0x00ff enum { LUAJIT_MODE_ENGINE, /* Set mode for whole JIT engine. */ LUAJIT_MODE_DEBUG, /* Set debug mode (idx = level). */ LUAJIT_MODE_FUNC, /* Change mode for a function. */ LUAJIT_MODE_ALLFUNC, /* Recurse into subroutine protos. */ LUAJIT_MODE_ALLSUBFUNC, /* Change only the subroutines. */ LUAJIT_MODE_TRACE, /* Flush a compiled trace. */ LUAJIT_MODE_WRAPCFUNC = 0x10, /* Set wrapper mode for C function calls. */ LUAJIT_MODE_MAX }; /* Flags or'ed in to the mode. */ #define LUAJIT_MODE_OFF 0x0000 /* Turn feature off. */ #define LUAJIT_MODE_ON 0x0100 /* Turn feature on. */ #define LUAJIT_MODE_FLUSH 0x0200 /* Flush JIT-compiled code. */ /* LuaJIT public C API. */ /* Control the JIT engine. */ LUA_API int luaJIT_setmode(lua_State *L, int idx, int mode); /* Low-overhead profiling API. */ typedef void (*luaJIT_profile_callback)(void *data, lua_State *L, int samples, int vmstate); LUA_API void luaJIT_profile_start(lua_State *L, const char *mode, luaJIT_profile_callback cb, void *data); LUA_API void luaJIT_profile_stop(lua_State *L); LUA_API const char *luaJIT_profile_dumpstack(lua_State *L, const char *fmt, int depth, size_t *len); /* Enforce (dynamic) linker error for version mismatches. Call from main. */ LUA_API void LUAJIT_VERSION_SYM(void); #endif luajit-2.1.0~beta3+dfsg.orig/src/vm_ppc.dasc0000644000175100017510000042254513101703334020241 0ustar ondrejondrej|// Low-level VM code for PowerPC 32 bit or 32on64 bit mode. |// Bytecode interpreter, fast functions and helper functions. |// Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h | |.arch ppc |.section code_op, code_sub | |.actionlist build_actionlist |.globals GLOB_ |.globalnames globnames |.externnames extnames | |// Note: The ragged indentation of the instructions is intentional. |// The starting columns indicate data dependencies. | |//----------------------------------------------------------------------- | |// DynASM defines used by the PPC port: |// |// P64 64 bit pointers (only for GPR64 testing). |// Note: see vm_ppc64.dasc for a full PPC64 _LP64 port. |// GPR64 64 bit registers (but possibly 32 bit pointers, e.g. PS3). |// Affects reg saves, stack layout, carry/overflow/dot flags etc. |// FRAME32 Use 32 bit frame layout, even with GPR64 (Xbox 360). |// TOC Need table of contents (64 bit or 32 bit variant, e.g. PS3). |// Function pointers are really a struct: code, TOC, env (optional). |// TOCENV Function pointers have an environment pointer, too (not on PS3). |// PPE Power Processor Element of Cell (PS3) or Xenon (Xbox 360). |// Must avoid (slow) micro-coded instructions. | |.if P64 |.define TOC, 1 |.define TOCENV, 1 |.macro lpx, a, b, c; ldx a, b, c; .endmacro |.macro lp, a, b; ld a, b; .endmacro |.macro stp, a, b; std a, b; .endmacro |.define decode_OPP, decode_OP8 |.if FFI |// Missing: Calling conventions, 64 bit regs, TOC. |.error lib_ffi not yet implemented for PPC64 |.endif |.else |.macro lpx, a, b, c; lwzx a, b, c; .endmacro |.macro lp, a, b; lwz a, b; .endmacro |.macro stp, a, b; stw a, b; .endmacro |.define decode_OPP, decode_OP4 |.endif | |// Convenience macros for TOC handling. |.if TOC |// Linker needs a TOC patch area for every external call relocation. |.macro blex, target; bl extern target@plt; nop; .endmacro |.macro .toc, a, b; a, b; .endmacro |.if P64 |.define TOC_OFS, 8 |.define ENV_OFS, 16 |.else |.define TOC_OFS, 4 |.define ENV_OFS, 8 |.endif |.else // No TOC. |.macro blex, target; bl extern target@plt; .endmacro |.macro .toc, a, b; .endmacro |.endif |.macro .tocenv, a, b; .if TOCENV; a, b; .endif; .endmacro | |.macro .gpr64, a, b; .if GPR64; a, b; .endif; .endmacro | |.macro andix., y, a, i |.if PPE | rlwinm y, a, 0, 31-lj_fls(i), 31-lj_ffs(i) | cmpwi y, 0 |.else | andi. y, a, i |.endif |.endmacro | |.macro clrso, reg |.if PPE | li reg, 0 | mtxer reg |.else | mcrxr cr0 |.endif |.endmacro | |.macro checkov, reg, noov |.if PPE | mfxer reg | add reg, reg, reg | cmpwi reg, 0 | li reg, 0 | mtxer reg | bgey noov |.else | mcrxr cr0 | bley noov |.endif |.endmacro | |//----------------------------------------------------------------------- | |// Fixed register assignments for the interpreter. |// Don't use: r1 = sp, r2 and r13 = reserved (TOC, TLS or SDATA) | |// The following must be C callee-save (but BASE is often refetched). |.define BASE, r14 // Base of current Lua stack frame. |.define KBASE, r15 // Constants of current Lua function. |.define PC, r16 // Next PC. |.define DISPATCH, r17 // Opcode dispatch table. |.define LREG, r18 // Register holding lua_State (also in SAVE_L). |.define MULTRES, r19 // Size of multi-result: (nresults+1)*8. |.define JGL, r31 // On-trace: global_State + 32768. | |// Constants for type-comparisons, stores and conversions. C callee-save. |.define TISNUM, r22 |.define TISNIL, r23 |.define ZERO, r24 |.define TOBIT, f30 // 2^52 + 2^51. |.define TONUM, f31 // 2^52 + 2^51 + 2^31. | |// The following temporaries are not saved across C calls, except for RA. |.define RA, r20 // Callee-save. |.define RB, r10 |.define RC, r11 |.define RD, r12 |.define INS, r7 // Overlaps CARG5. | |.define TMP0, r0 |.define TMP1, r8 |.define TMP2, r9 |.define TMP3, r6 // Overlaps CARG4. | |// Saved temporaries. |.define SAVE0, r21 | |// Calling conventions. |.define CARG1, r3 |.define CARG2, r4 |.define CARG3, r5 |.define CARG4, r6 // Overlaps TMP3. |.define CARG5, r7 // Overlaps INS. | |.define FARG1, f1 |.define FARG2, f2 | |.define CRET1, r3 |.define CRET2, r4 | |.define TOCREG, r2 // TOC register (only used by C code). |.define ENVREG, r11 // Environment pointer (nested C functions). | |// Stack layout while in interpreter. Must match with lj_frame.h. |.if GPR64 |.if FRAME32 | |// 456(sp) // \ 32/64 bit C frame info |.define TONUM_LO, 452(sp) // | |.define TONUM_HI, 448(sp) // | |.define TMPD_LO, 444(sp) // | |.define TMPD_HI, 440(sp) // | |.define SAVE_CR, 432(sp) // | 64 bit CR save. |.define SAVE_ERRF, 424(sp) // > Parameter save area. |.define SAVE_NRES, 420(sp) // | |.define SAVE_L, 416(sp) // | |.define SAVE_PC, 412(sp) // | |.define SAVE_MULTRES, 408(sp) // | |.define SAVE_CFRAME, 400(sp) // / 64 bit C frame chain. |// 392(sp) // Reserved. |.define CFRAME_SPACE, 384 // Delta for sp. |// Back chain for sp: 384(sp) <-- sp entering interpreter |.define SAVE_LR, 376(sp) // 32 bit LR stored in hi-part. |.define SAVE_GPR_, 232 // .. 232+18*8: 64 bit GPR saves. |.define SAVE_FPR_, 88 // .. 88+18*8: 64 bit FPR saves. |// 80(sp) // Needed for 16 byte stack frame alignment. |// 16(sp) // Callee parameter save area (ABI mandated). |// 8(sp) // Reserved |// Back chain for sp: 0(sp) <-- sp while in interpreter |// 32 bit sp stored in hi-part of 0(sp). | |.define TMPD_BLO, 447(sp) |.define TMPD, TMPD_HI |.define TONUM_D, TONUM_HI | |.else | |// 508(sp) // \ 32 bit C frame info. |.define SAVE_ERRF, 472(sp) // | |.define SAVE_NRES, 468(sp) // | |.define SAVE_L, 464(sp) // > Parameter save area. |.define SAVE_PC, 460(sp) // | |.define SAVE_MULTRES, 456(sp) // | |.define SAVE_CFRAME, 448(sp) // / 64 bit C frame chain. |.define SAVE_LR, 416(sp) |.define CFRAME_SPACE, 400 // Delta for sp. |// Back chain for sp: 400(sp) <-- sp entering interpreter |.define SAVE_FPR_, 256 // .. 256+18*8: 64 bit FPR saves. |.define SAVE_GPR_, 112 // .. 112+18*8: 64 bit GPR saves. |// 48(sp) // Callee parameter save area (ABI mandated). |.define SAVE_TOC, 40(sp) // TOC save area. |.define TMPD_LO, 36(sp) // \ Link editor temp (ABI mandated). |.define TMPD_HI, 32(sp) // / |.define TONUM_LO, 28(sp) // \ Compiler temp (ABI mandated). |.define TONUM_HI, 24(sp) // / |// Next frame lr: 16(sp) |.define SAVE_CR, 8(sp) // 64 bit CR save. |// Back chain for sp: 0(sp) <-- sp while in interpreter | |.define TMPD_BLO, 39(sp) |.define TMPD, TMPD_HI |.define TONUM_D, TONUM_HI | |.endif |.else | |.define SAVE_LR, 276(sp) |.define CFRAME_SPACE, 272 // Delta for sp. |// Back chain for sp: 272(sp) <-- sp entering interpreter |.define SAVE_FPR_, 128 // .. 128+18*8: 64 bit FPR saves. |.define SAVE_GPR_, 56 // .. 56+18*4: 32 bit GPR saves. |.define SAVE_CR, 52(sp) // 32 bit CR save. |.define SAVE_ERRF, 48(sp) // 32 bit C frame info. |.define SAVE_NRES, 44(sp) |.define SAVE_CFRAME, 40(sp) |.define SAVE_L, 36(sp) |.define SAVE_PC, 32(sp) |.define SAVE_MULTRES, 28(sp) |.define UNUSED1, 24(sp) |.define TMPD_LO, 20(sp) |.define TMPD_HI, 16(sp) |.define TONUM_LO, 12(sp) |.define TONUM_HI, 8(sp) |// Next frame lr: 4(sp) |// Back chain for sp: 0(sp) <-- sp while in interpreter | |.define TMPD_BLO, 23(sp) |.define TMPD, TMPD_HI |.define TONUM_D, TONUM_HI | |.endif | |.macro save_, reg |.if GPR64 | std r..reg, SAVE_GPR_+(reg-14)*8(sp) |.else | stw r..reg, SAVE_GPR_+(reg-14)*4(sp) |.endif | stfd f..reg, SAVE_FPR_+(reg-14)*8(sp) |.endmacro |.macro rest_, reg |.if GPR64 | ld r..reg, SAVE_GPR_+(reg-14)*8(sp) |.else | lwz r..reg, SAVE_GPR_+(reg-14)*4(sp) |.endif | lfd f..reg, SAVE_FPR_+(reg-14)*8(sp) |.endmacro | |.macro saveregs |.if GPR64 and not FRAME32 | stdu sp, -CFRAME_SPACE(sp) |.else | stwu sp, -CFRAME_SPACE(sp) |.endif | save_ 14; save_ 15; save_ 16 | mflr r0 | save_ 17; save_ 18; save_ 19; save_ 20; save_ 21; save_ 22 |.if GPR64 and not FRAME32 | std r0, SAVE_LR |.else | stw r0, SAVE_LR |.endif | save_ 23; save_ 24; save_ 25 | mfcr r0 | save_ 26; save_ 27; save_ 28; save_ 29; save_ 30; save_ 31 |.if GPR64 | std r0, SAVE_CR |.else | stw r0, SAVE_CR |.endif | .toc std TOCREG, SAVE_TOC |.endmacro | |.macro restoreregs |.if GPR64 and not FRAME32 | ld r0, SAVE_LR |.else | lwz r0, SAVE_LR |.endif |.if GPR64 | ld r12, SAVE_CR |.else | lwz r12, SAVE_CR |.endif | rest_ 14; rest_ 15; rest_ 16; rest_ 17; rest_ 18; rest_ 19 | mtlr r0; |.if PPE; mtocrf 0x20, r12; .else; mtcrf 0x38, r12; .endif | rest_ 20; rest_ 21; rest_ 22; rest_ 23; rest_ 24; rest_ 25 |.if PPE; mtocrf 0x10, r12; .endif | rest_ 26; rest_ 27; rest_ 28; rest_ 29; rest_ 30; rest_ 31 |.if PPE; mtocrf 0x08, r12; .endif | addi sp, sp, CFRAME_SPACE |.endmacro | |// Type definitions. Some of these are only used for documentation. |.type L, lua_State, LREG |.type GL, global_State |.type TVALUE, TValue |.type GCOBJ, GCobj |.type STR, GCstr |.type TAB, GCtab |.type LFUNC, GCfuncL |.type CFUNC, GCfuncC |.type PROTO, GCproto |.type UPVAL, GCupval |.type NODE, Node |.type NARGS8, int |.type TRACE, GCtrace |.type SBUF, SBuf | |//----------------------------------------------------------------------- | |// Trap for not-yet-implemented parts. |.macro NYI; tw 4, sp, sp; .endmacro | |// int/FP conversions. |.macro tonum_i, freg, reg | xoris reg, reg, 0x8000 | stw reg, TONUM_LO | lfd freg, TONUM_D | fsub freg, freg, TONUM |.endmacro | |.macro tonum_u, freg, reg | stw reg, TONUM_LO | lfd freg, TONUM_D | fsub freg, freg, TOBIT |.endmacro | |.macro toint, reg, freg, tmpfreg | fctiwz tmpfreg, freg | stfd tmpfreg, TMPD | lwz reg, TMPD_LO |.endmacro | |.macro toint, reg, freg | toint reg, freg, freg |.endmacro | |//----------------------------------------------------------------------- | |// Access to frame relative to BASE. |.define FRAME_PC, -8 |.define FRAME_FUNC, -4 | |// Instruction decode. |.macro decode_OP4, dst, ins; rlwinm dst, ins, 2, 22, 29; .endmacro |.macro decode_OP8, dst, ins; rlwinm dst, ins, 3, 21, 28; .endmacro |.macro decode_RA8, dst, ins; rlwinm dst, ins, 27, 21, 28; .endmacro |.macro decode_RB8, dst, ins; rlwinm dst, ins, 11, 21, 28; .endmacro |.macro decode_RC8, dst, ins; rlwinm dst, ins, 19, 21, 28; .endmacro |.macro decode_RD8, dst, ins; rlwinm dst, ins, 19, 13, 28; .endmacro | |.macro decode_OP1, dst, ins; rlwinm dst, ins, 0, 24, 31; .endmacro |.macro decode_RD4, dst, ins; rlwinm dst, ins, 18, 14, 29; .endmacro | |// Instruction fetch. |.macro ins_NEXT1 | lwz INS, 0(PC) | addi PC, PC, 4 |.endmacro |// Instruction decode+dispatch. Note: optimized for e300! |.macro ins_NEXT2 | decode_OPP TMP1, INS | lpx TMP0, DISPATCH, TMP1 | mtctr TMP0 | decode_RB8 RB, INS | decode_RD8 RD, INS | decode_RA8 RA, INS | decode_RC8 RC, INS | bctr |.endmacro |.macro ins_NEXT | ins_NEXT1 | ins_NEXT2 |.endmacro | |// Instruction footer. |.if 1 | // Replicated dispatch. Less unpredictable branches, but higher I-Cache use. | .define ins_next, ins_NEXT | .define ins_next_, ins_NEXT | .define ins_next1, ins_NEXT1 | .define ins_next2, ins_NEXT2 |.else | // Common dispatch. Lower I-Cache use, only one (very) unpredictable branch. | // Affects only certain kinds of benchmarks (and only with -j off). | .macro ins_next | b ->ins_next | .endmacro | .macro ins_next1 | .endmacro | .macro ins_next2 | b ->ins_next | .endmacro | .macro ins_next_ | ->ins_next: | ins_NEXT | .endmacro |.endif | |// Call decode and dispatch. |.macro ins_callt | // BASE = new base, RB = LFUNC/CFUNC, RC = nargs*8, FRAME_PC(BASE) = PC | lwz PC, LFUNC:RB->pc | lwz INS, 0(PC) | addi PC, PC, 4 | decode_OPP TMP1, INS | decode_RA8 RA, INS | lpx TMP0, DISPATCH, TMP1 | add RA, RA, BASE | mtctr TMP0 | bctr |.endmacro | |.macro ins_call | // BASE = new base, RB = LFUNC/CFUNC, RC = nargs*8, PC = caller PC | stw PC, FRAME_PC(BASE) | ins_callt |.endmacro | |//----------------------------------------------------------------------- | |// Macros to test operand types. |.macro checknum, reg; cmplw reg, TISNUM; .endmacro |.macro checknum, cr, reg; cmplw cr, reg, TISNUM; .endmacro |.macro checkstr, reg; cmpwi reg, LJ_TSTR; .endmacro |.macro checktab, reg; cmpwi reg, LJ_TTAB; .endmacro |.macro checkfunc, reg; cmpwi reg, LJ_TFUNC; .endmacro |.macro checknil, reg; cmpwi reg, LJ_TNIL; .endmacro | |.macro branch_RD | srwi TMP0, RD, 1 | addis PC, PC, -(BCBIAS_J*4 >> 16) | add PC, PC, TMP0 |.endmacro | |// Assumes DISPATCH is relative to GL. #define DISPATCH_GL(field) (GG_DISP2G + (int)offsetof(global_State, field)) #define DISPATCH_J(field) (GG_DISP2J + (int)offsetof(jit_State, field)) | #define PC2PROTO(field) ((int)offsetof(GCproto, field)-(int)sizeof(GCproto)) | |.macro hotcheck, delta, target | rlwinm TMP1, PC, 31, 25, 30 | addi TMP1, TMP1, GG_DISP2HOT | lhzx TMP2, DISPATCH, TMP1 | addic. TMP2, TMP2, -delta | sthx TMP2, DISPATCH, TMP1 | blt target |.endmacro | |.macro hotloop | hotcheck HOTCOUNT_LOOP, ->vm_hotloop |.endmacro | |.macro hotcall | hotcheck HOTCOUNT_CALL, ->vm_hotcall |.endmacro | |// Set current VM state. Uses TMP0. |.macro li_vmstate, st; li TMP0, ~LJ_VMST_..st; .endmacro |.macro st_vmstate; stw TMP0, DISPATCH_GL(vmstate)(DISPATCH); .endmacro | |// Move table write barrier back. Overwrites mark and tmp. |.macro barrierback, tab, mark, tmp | lwz tmp, DISPATCH_GL(gc.grayagain)(DISPATCH) | // Assumes LJ_GC_BLACK is 0x04. | rlwinm mark, mark, 0, 30, 28 // black2gray(tab) | stw tab, DISPATCH_GL(gc.grayagain)(DISPATCH) | stb mark, tab->marked | stw tmp, tab->gclist |.endmacro | |//----------------------------------------------------------------------- /* Generate subroutines used by opcodes and other parts of the VM. */ /* The .code_sub section should be last to help static branch prediction. */ static void build_subroutines(BuildCtx *ctx) { |.code_sub | |//----------------------------------------------------------------------- |//-- Return handling ---------------------------------------------------- |//----------------------------------------------------------------------- | |->vm_returnp: | // See vm_return. Also: TMP2 = previous base. | andix. TMP0, PC, FRAME_P | li TMP1, LJ_TTRUE | beq ->cont_dispatch | | // Return from pcall or xpcall fast func. | lwz PC, FRAME_PC(TMP2) // Fetch PC of previous frame. | mr BASE, TMP2 // Restore caller base. | // Prepending may overwrite the pcall frame, so do it at the end. | stwu TMP1, FRAME_PC(RA) // Prepend true to results. | |->vm_returnc: | addi RD, RD, 8 // RD = (nresults+1)*8. | andix. TMP0, PC, FRAME_TYPE | cmpwi cr1, RD, 0 | li CRET1, LUA_YIELD | beq cr1, ->vm_unwind_c_eh | mr MULTRES, RD | beq ->BC_RET_Z // Handle regular return to Lua. | |->vm_return: | // BASE = base, RA = resultptr, RD/MULTRES = (nresults+1)*8, PC = return | // TMP0 = PC & FRAME_TYPE | cmpwi TMP0, FRAME_C | rlwinm TMP2, PC, 0, 0, 28 | li_vmstate C | sub TMP2, BASE, TMP2 // TMP2 = previous base. | bney ->vm_returnp | | addic. TMP1, RD, -8 | stp TMP2, L->base | lwz TMP2, SAVE_NRES | subi BASE, BASE, 8 | st_vmstate | slwi TMP2, TMP2, 3 | beq >2 |1: | addic. TMP1, TMP1, -8 | lfd f0, 0(RA) | addi RA, RA, 8 | stfd f0, 0(BASE) | addi BASE, BASE, 8 | bney <1 | |2: | cmpw TMP2, RD // More/less results wanted? | bne >6 |3: | stp BASE, L->top // Store new top. | |->vm_leave_cp: | lp TMP0, SAVE_CFRAME // Restore previous C frame. | li CRET1, 0 // Ok return status for vm_pcall. | stp TMP0, L->cframe | |->vm_leave_unw: | restoreregs | blr | |6: | ble >7 // Less results wanted? | // More results wanted. Check stack size and fill up results with nil. | lwz TMP1, L->maxstack | cmplw BASE, TMP1 | bge >8 | stw TISNIL, 0(BASE) | addi RD, RD, 8 | addi BASE, BASE, 8 | b <2 | |7: // Less results wanted. | subfic TMP3, TMP2, 0 // LUA_MULTRET+1 case? | sub TMP0, RD, TMP2 | subfe TMP1, TMP1, TMP1 // TMP1 = TMP2 == 0 ? 0 : -1 | and TMP0, TMP0, TMP1 | sub BASE, BASE, TMP0 // Either keep top or shrink it. | b <3 | |8: // Corner case: need to grow stack for filling up results. | // This can happen if: | // - A C function grows the stack (a lot). | // - The GC shrinks the stack in between. | // - A return back from a lua_call() with (high) nresults adjustment. | stp BASE, L->top // Save current top held in BASE (yes). | mr SAVE0, RD | srwi CARG2, TMP2, 3 | mr CARG1, L | bl extern lj_state_growstack // (lua_State *L, int n) | lwz TMP2, SAVE_NRES | mr RD, SAVE0 | slwi TMP2, TMP2, 3 | lp BASE, L->top // Need the (realloced) L->top in BASE. | b <2 | |->vm_unwind_c: // Unwind C stack, return from vm_pcall. | // (void *cframe, int errcode) | mr sp, CARG1 | mr CRET1, CARG2 |->vm_unwind_c_eh: // Landing pad for external unwinder. | lwz L, SAVE_L | .toc ld TOCREG, SAVE_TOC | li TMP0, ~LJ_VMST_C | lwz GL:TMP1, L->glref | stw TMP0, GL:TMP1->vmstate | b ->vm_leave_unw | |->vm_unwind_ff: // Unwind C stack, return from ff pcall. | // (void *cframe) |.if GPR64 | rldicr sp, CARG1, 0, 61 |.else | rlwinm sp, CARG1, 0, 0, 29 |.endif |->vm_unwind_ff_eh: // Landing pad for external unwinder. | lwz L, SAVE_L | .toc ld TOCREG, SAVE_TOC | li TISNUM, LJ_TISNUM // Setup type comparison constants. | lp BASE, L->base | lus TMP3, 0x59c0 // TOBIT = 2^52 + 2^51 (float). | lwz DISPATCH, L->glref // Setup pointer to dispatch table. | li ZERO, 0 | stw TMP3, TMPD | li TMP1, LJ_TFALSE | ori TMP3, TMP3, 0x0004 // TONUM = 2^52 + 2^51 + 2^31 (float). | li TISNIL, LJ_TNIL | li_vmstate INTERP | lfs TOBIT, TMPD | lwz PC, FRAME_PC(BASE) // Fetch PC of previous frame. | la RA, -8(BASE) // Results start at BASE-8. | stw TMP3, TMPD | addi DISPATCH, DISPATCH, GG_G2DISP | stw TMP1, 0(RA) // Prepend false to error message. | li RD, 16 // 2 results: false + error message. | st_vmstate | lfs TONUM, TMPD | b ->vm_returnc | |//----------------------------------------------------------------------- |//-- Grow stack for calls ----------------------------------------------- |//----------------------------------------------------------------------- | |->vm_growstack_c: // Grow stack for C function. | li CARG2, LUA_MINSTACK | b >2 | |->vm_growstack_l: // Grow stack for Lua function. | // BASE = new base, RA = BASE+framesize*8, RC = nargs*8, PC = first PC | add RC, BASE, RC | sub RA, RA, BASE | stp BASE, L->base | addi PC, PC, 4 // Must point after first instruction. | stp RC, L->top | srwi CARG2, RA, 3 |2: | // L->base = new base, L->top = top | stw PC, SAVE_PC | mr CARG1, L | bl extern lj_state_growstack // (lua_State *L, int n) | lp BASE, L->base | lp RC, L->top | lwz LFUNC:RB, FRAME_FUNC(BASE) | sub RC, RC, BASE | // BASE = new base, RB = LFUNC/CFUNC, RC = nargs*8, FRAME_PC(BASE) = PC | ins_callt // Just retry the call. | |//----------------------------------------------------------------------- |//-- Entry points into the assembler VM --------------------------------- |//----------------------------------------------------------------------- | |->vm_resume: // Setup C frame and resume thread. | // (lua_State *L, TValue *base, int nres1 = 0, ptrdiff_t ef = 0) | saveregs | mr L, CARG1 | lwz DISPATCH, L->glref // Setup pointer to dispatch table. | mr BASE, CARG2 | lbz TMP1, L->status | stw L, SAVE_L | li PC, FRAME_CP | addi TMP0, sp, CFRAME_RESUME | addi DISPATCH, DISPATCH, GG_G2DISP | stw CARG3, SAVE_NRES | cmplwi TMP1, 0 | stw CARG3, SAVE_ERRF | stp CARG3, SAVE_CFRAME | stw CARG1, SAVE_PC // Any value outside of bytecode is ok. | stp TMP0, L->cframe | beq >3 | | // Resume after yield (like a return). | stw L, DISPATCH_GL(cur_L)(DISPATCH) | mr RA, BASE | lp BASE, L->base | li TISNUM, LJ_TISNUM // Setup type comparison constants. | lp TMP1, L->top | lwz PC, FRAME_PC(BASE) | lus TMP3, 0x59c0 // TOBIT = 2^52 + 2^51 (float). | stb CARG3, L->status | stw TMP3, TMPD | ori TMP3, TMP3, 0x0004 // TONUM = 2^52 + 2^51 + 2^31 (float). | lfs TOBIT, TMPD | sub RD, TMP1, BASE | stw TMP3, TMPD | lus TMP0, 0x4338 // Hiword of 2^52 + 2^51 (double) | addi RD, RD, 8 | stw TMP0, TONUM_HI | li_vmstate INTERP | li ZERO, 0 | st_vmstate | andix. TMP0, PC, FRAME_TYPE | mr MULTRES, RD | lfs TONUM, TMPD | li TISNIL, LJ_TNIL | beq ->BC_RET_Z | b ->vm_return | |->vm_pcall: // Setup protected C frame and enter VM. | // (lua_State *L, TValue *base, int nres1, ptrdiff_t ef) | saveregs | li PC, FRAME_CP | stw CARG4, SAVE_ERRF | b >1 | |->vm_call: // Setup C frame and enter VM. | // (lua_State *L, TValue *base, int nres1) | saveregs | li PC, FRAME_C | |1: // Entry point for vm_pcall above (PC = ftype). | lp TMP1, L:CARG1->cframe | mr L, CARG1 | stw CARG3, SAVE_NRES | lwz DISPATCH, L->glref // Setup pointer to dispatch table. | stw CARG1, SAVE_L | mr BASE, CARG2 | addi DISPATCH, DISPATCH, GG_G2DISP | stw CARG1, SAVE_PC // Any value outside of bytecode is ok. | stp TMP1, SAVE_CFRAME | stp sp, L->cframe // Add our C frame to cframe chain. | |3: // Entry point for vm_cpcall/vm_resume (BASE = base, PC = ftype). | stw L, DISPATCH_GL(cur_L)(DISPATCH) | lp TMP2, L->base // TMP2 = old base (used in vmeta_call). | li TISNUM, LJ_TISNUM // Setup type comparison constants. | lp TMP1, L->top | lus TMP3, 0x59c0 // TOBIT = 2^52 + 2^51 (float). | add PC, PC, BASE | stw TMP3, TMPD | li ZERO, 0 | ori TMP3, TMP3, 0x0004 // TONUM = 2^52 + 2^51 + 2^31 (float). | lfs TOBIT, TMPD | sub PC, PC, TMP2 // PC = frame delta + frame type | stw TMP3, TMPD | lus TMP0, 0x4338 // Hiword of 2^52 + 2^51 (double) | sub NARGS8:RC, TMP1, BASE | stw TMP0, TONUM_HI | li_vmstate INTERP | lfs TONUM, TMPD | li TISNIL, LJ_TNIL | st_vmstate | |->vm_call_dispatch: | // TMP2 = old base, BASE = new base, RC = nargs*8, PC = caller PC | lwz TMP0, FRAME_PC(BASE) | lwz LFUNC:RB, FRAME_FUNC(BASE) | checkfunc TMP0; bne ->vmeta_call | |->vm_call_dispatch_f: | ins_call | // BASE = new base, RB = func, RC = nargs*8, PC = caller PC | |->vm_cpcall: // Setup protected C frame, call C. | // (lua_State *L, lua_CFunction func, void *ud, lua_CPFunction cp) | saveregs | mr L, CARG1 | lwz TMP0, L:CARG1->stack | stw CARG1, SAVE_L | lp TMP1, L->top | lwz DISPATCH, L->glref // Setup pointer to dispatch table. | stw CARG1, SAVE_PC // Any value outside of bytecode is ok. | sub TMP0, TMP0, TMP1 // Compute -savestack(L, L->top). | lp TMP1, L->cframe | addi DISPATCH, DISPATCH, GG_G2DISP | .toc lp CARG4, 0(CARG4) | li TMP2, 0 | stw TMP0, SAVE_NRES // Neg. delta means cframe w/o frame. | stw TMP2, SAVE_ERRF // No error function. | stp TMP1, SAVE_CFRAME | stp sp, L->cframe // Add our C frame to cframe chain. | stw L, DISPATCH_GL(cur_L)(DISPATCH) | mtctr CARG4 | bctrl // (lua_State *L, lua_CFunction func, void *ud) |.if PPE | mr BASE, CRET1 | cmpwi CRET1, 0 |.else | mr. BASE, CRET1 |.endif | li PC, FRAME_CP | bne <3 // Else continue with the call. | b ->vm_leave_cp // No base? Just remove C frame. | |//----------------------------------------------------------------------- |//-- Metamethod handling ------------------------------------------------ |//----------------------------------------------------------------------- | |// The lj_meta_* functions (except for lj_meta_cat) don't reallocate the |// stack, so BASE doesn't need to be reloaded across these calls. | |//-- Continuation dispatch ---------------------------------------------- | |->cont_dispatch: | // BASE = meta base, RA = resultptr, RD = (nresults+1)*8 | lwz TMP0, -12(BASE) // Continuation. | mr RB, BASE | mr BASE, TMP2 // Restore caller BASE. | lwz LFUNC:TMP1, FRAME_FUNC(TMP2) |.if FFI | cmplwi TMP0, 1 |.endif | lwz PC, -16(RB) // Restore PC from [cont|PC]. | subi TMP2, RD, 8 | lwz TMP1, LFUNC:TMP1->pc | stwx TISNIL, RA, TMP2 // Ensure one valid arg. |.if FFI | ble >1 |.endif | lwz KBASE, PC2PROTO(k)(TMP1) | // BASE = base, RA = resultptr, RB = meta base | mtctr TMP0 | bctr // Jump to continuation. | |.if FFI |1: | beq ->cont_ffi_callback // cont = 1: return from FFI callback. | // cont = 0: tailcall from C function. | subi TMP1, RB, 16 | sub RC, TMP1, BASE | b ->vm_call_tail |.endif | |->cont_cat: // RA = resultptr, RB = meta base | lwz INS, -4(PC) | subi CARG2, RB, 16 | decode_RB8 SAVE0, INS | lfd f0, 0(RA) | add TMP1, BASE, SAVE0 | stp BASE, L->base | cmplw TMP1, CARG2 | sub CARG3, CARG2, TMP1 | decode_RA8 RA, INS | stfd f0, 0(CARG2) | bney ->BC_CAT_Z | stfdx f0, BASE, RA | b ->cont_nop | |//-- Table indexing metamethods ----------------------------------------- | |->vmeta_tgets1: | la CARG3, DISPATCH_GL(tmptv)(DISPATCH) | li TMP0, LJ_TSTR | decode_RB8 RB, INS | stw STR:RC, 4(CARG3) | add CARG2, BASE, RB | stw TMP0, 0(CARG3) | b >1 | |->vmeta_tgets: | la CARG2, DISPATCH_GL(tmptv)(DISPATCH) | li TMP0, LJ_TTAB | stw TAB:RB, 4(CARG2) | la CARG3, DISPATCH_GL(tmptv2)(DISPATCH) | stw TMP0, 0(CARG2) | li TMP1, LJ_TSTR | stw STR:RC, 4(CARG3) | stw TMP1, 0(CARG3) | b >1 | |->vmeta_tgetb: // TMP0 = index |.if not DUALNUM | tonum_u f0, TMP0 |.endif | decode_RB8 RB, INS | la CARG3, DISPATCH_GL(tmptv)(DISPATCH) | add CARG2, BASE, RB |.if DUALNUM | stw TISNUM, 0(CARG3) | stw TMP0, 4(CARG3) |.else | stfd f0, 0(CARG3) |.endif | b >1 | |->vmeta_tgetv: | decode_RB8 RB, INS | decode_RC8 RC, INS | add CARG2, BASE, RB | add CARG3, BASE, RC |1: | stp BASE, L->base | mr CARG1, L | stw PC, SAVE_PC | bl extern lj_meta_tget // (lua_State *L, TValue *o, TValue *k) | // Returns TValue * (finished) or NULL (metamethod). | cmplwi CRET1, 0 | beq >3 | lfd f0, 0(CRET1) | ins_next1 | stfdx f0, BASE, RA | ins_next2 | |3: // Call __index metamethod. | // BASE = base, L->top = new base, stack = cont/func/t/k | subfic TMP1, BASE, FRAME_CONT | lp BASE, L->top | stw PC, -16(BASE) // [cont|PC] | add PC, TMP1, BASE | lwz LFUNC:RB, FRAME_FUNC(BASE) // Guaranteed to be a function here. | li NARGS8:RC, 16 // 2 args for func(t, k). | b ->vm_call_dispatch_f | |->vmeta_tgetr: | bl extern lj_tab_getinth // (GCtab *t, int32_t key) | // Returns cTValue * or NULL. | cmplwi CRET1, 0 | beq >1 | lfd f14, 0(CRET1) | b ->BC_TGETR_Z |1: | stwx TISNIL, BASE, RA | b ->cont_nop | |//----------------------------------------------------------------------- | |->vmeta_tsets1: | la CARG3, DISPATCH_GL(tmptv)(DISPATCH) | li TMP0, LJ_TSTR | decode_RB8 RB, INS | stw STR:RC, 4(CARG3) | add CARG2, BASE, RB | stw TMP0, 0(CARG3) | b >1 | |->vmeta_tsets: | la CARG2, DISPATCH_GL(tmptv)(DISPATCH) | li TMP0, LJ_TTAB | stw TAB:RB, 4(CARG2) | la CARG3, DISPATCH_GL(tmptv2)(DISPATCH) | stw TMP0, 0(CARG2) | li TMP1, LJ_TSTR | stw STR:RC, 4(CARG3) | stw TMP1, 0(CARG3) | b >1 | |->vmeta_tsetb: // TMP0 = index |.if not DUALNUM | tonum_u f0, TMP0 |.endif | decode_RB8 RB, INS | la CARG3, DISPATCH_GL(tmptv)(DISPATCH) | add CARG2, BASE, RB |.if DUALNUM | stw TISNUM, 0(CARG3) | stw TMP0, 4(CARG3) |.else | stfd f0, 0(CARG3) |.endif | b >1 | |->vmeta_tsetv: | decode_RB8 RB, INS | decode_RC8 RC, INS | add CARG2, BASE, RB | add CARG3, BASE, RC |1: | stp BASE, L->base | mr CARG1, L | stw PC, SAVE_PC | bl extern lj_meta_tset // (lua_State *L, TValue *o, TValue *k) | // Returns TValue * (finished) or NULL (metamethod). | cmplwi CRET1, 0 | lfdx f0, BASE, RA | beq >3 | // NOBARRIER: lj_meta_tset ensures the table is not black. | ins_next1 | stfd f0, 0(CRET1) | ins_next2 | |3: // Call __newindex metamethod. | // BASE = base, L->top = new base, stack = cont/func/t/k/(v) | subfic TMP1, BASE, FRAME_CONT | lp BASE, L->top | stw PC, -16(BASE) // [cont|PC] | add PC, TMP1, BASE | lwz LFUNC:RB, FRAME_FUNC(BASE) // Guaranteed to be a function here. | li NARGS8:RC, 24 // 3 args for func(t, k, v) | stfd f0, 16(BASE) // Copy value to third argument. | b ->vm_call_dispatch_f | |->vmeta_tsetr: | stp BASE, L->base | stw PC, SAVE_PC | bl extern lj_tab_setinth // (lua_State *L, GCtab *t, int32_t key) | // Returns TValue *. | stfd f14, 0(CRET1) | b ->cont_nop | |//-- Comparison metamethods --------------------------------------------- | |->vmeta_comp: | mr CARG1, L | subi PC, PC, 4 |.if DUALNUM | mr CARG2, RA |.else | add CARG2, BASE, RA |.endif | stw PC, SAVE_PC |.if DUALNUM | mr CARG3, RD |.else | add CARG3, BASE, RD |.endif | stp BASE, L->base | decode_OP1 CARG4, INS | bl extern lj_meta_comp // (lua_State *L, TValue *o1, *o2, int op) | // Returns 0/1 or TValue * (metamethod). |3: | cmplwi CRET1, 1 | bgt ->vmeta_binop | subfic CRET1, CRET1, 0 |4: | lwz INS, 0(PC) | addi PC, PC, 4 | decode_RD4 TMP2, INS | addis TMP2, TMP2, -(BCBIAS_J*4 >> 16) | and TMP2, TMP2, CRET1 | add PC, PC, TMP2 |->cont_nop: | ins_next | |->cont_ra: // RA = resultptr | lwz INS, -4(PC) | lfd f0, 0(RA) | decode_RA8 TMP1, INS | stfdx f0, BASE, TMP1 | b ->cont_nop | |->cont_condt: // RA = resultptr | lwz TMP0, 0(RA) | .gpr64 extsw TMP0, TMP0 | subfic TMP0, TMP0, LJ_TTRUE // Branch if result is true. | subfe CRET1, CRET1, CRET1 | not CRET1, CRET1 | b <4 | |->cont_condf: // RA = resultptr | lwz TMP0, 0(RA) | .gpr64 extsw TMP0, TMP0 | subfic TMP0, TMP0, LJ_TTRUE // Branch if result is false. | subfe CRET1, CRET1, CRET1 | b <4 | |->vmeta_equal: | // CARG2, CARG3, CARG4 are already set by BC_ISEQV/BC_ISNEV. | subi PC, PC, 4 | stp BASE, L->base | mr CARG1, L | stw PC, SAVE_PC | bl extern lj_meta_equal // (lua_State *L, GCobj *o1, *o2, int ne) | // Returns 0/1 or TValue * (metamethod). | b <3 | |->vmeta_equal_cd: |.if FFI | mr CARG2, INS | subi PC, PC, 4 | stp BASE, L->base | mr CARG1, L | stw PC, SAVE_PC | bl extern lj_meta_equal_cd // (lua_State *L, BCIns op) | // Returns 0/1 or TValue * (metamethod). | b <3 |.endif | |->vmeta_istype: | subi PC, PC, 4 | stp BASE, L->base | srwi CARG2, RA, 3 | mr CARG1, L | srwi CARG3, RD, 3 | stw PC, SAVE_PC | bl extern lj_meta_istype // (lua_State *L, BCReg ra, BCReg tp) | b ->cont_nop | |//-- Arithmetic metamethods --------------------------------------------- | |->vmeta_arith_nv: | add CARG3, KBASE, RC | add CARG4, BASE, RB | b >1 |->vmeta_arith_nv2: |.if DUALNUM | mr CARG3, RC | mr CARG4, RB | b >1 |.endif | |->vmeta_unm: | mr CARG3, RD | mr CARG4, RD | b >1 | |->vmeta_arith_vn: | add CARG3, BASE, RB | add CARG4, KBASE, RC | b >1 | |->vmeta_arith_vv: | add CARG3, BASE, RB | add CARG4, BASE, RC |.if DUALNUM | b >1 |.endif |->vmeta_arith_vn2: |->vmeta_arith_vv2: |.if DUALNUM | mr CARG3, RB | mr CARG4, RC |.endif |1: | add CARG2, BASE, RA | stp BASE, L->base | mr CARG1, L | stw PC, SAVE_PC | decode_OP1 CARG5, INS // Caveat: CARG5 overlaps INS. | bl extern lj_meta_arith // (lua_State *L, TValue *ra,*rb,*rc, BCReg op) | // Returns NULL (finished) or TValue * (metamethod). | cmplwi CRET1, 0 | beq ->cont_nop | | // Call metamethod for binary op. |->vmeta_binop: | // BASE = old base, CRET1 = new base, stack = cont/func/o1/o2 | sub TMP1, CRET1, BASE | stw PC, -16(CRET1) // [cont|PC] | mr TMP2, BASE | addi PC, TMP1, FRAME_CONT | mr BASE, CRET1 | li NARGS8:RC, 16 // 2 args for func(o1, o2). | b ->vm_call_dispatch | |->vmeta_len: #if LJ_52 | mr SAVE0, CARG1 #endif | mr CARG2, RD | stp BASE, L->base | mr CARG1, L | stw PC, SAVE_PC | bl extern lj_meta_len // (lua_State *L, TValue *o) | // Returns NULL (retry) or TValue * (metamethod base). #if LJ_52 | cmplwi CRET1, 0 | bne ->vmeta_binop // Binop call for compatibility. | mr CARG1, SAVE0 | b ->BC_LEN_Z #else | b ->vmeta_binop // Binop call for compatibility. #endif | |//-- Call metamethod ---------------------------------------------------- | |->vmeta_call: // Resolve and call __call metamethod. | // TMP2 = old base, BASE = new base, RC = nargs*8 | mr CARG1, L | stp TMP2, L->base // This is the callers base! | subi CARG2, BASE, 8 | stw PC, SAVE_PC | add CARG3, BASE, RC | mr SAVE0, NARGS8:RC | bl extern lj_meta_call // (lua_State *L, TValue *func, TValue *top) | lwz LFUNC:RB, FRAME_FUNC(BASE) // Guaranteed to be a function here. | addi NARGS8:RC, SAVE0, 8 // Got one more argument now. | ins_call | |->vmeta_callt: // Resolve __call for BC_CALLT. | // BASE = old base, RA = new base, RC = nargs*8 | mr CARG1, L | stp BASE, L->base | subi CARG2, RA, 8 | stw PC, SAVE_PC | add CARG3, RA, RC | mr SAVE0, NARGS8:RC | bl extern lj_meta_call // (lua_State *L, TValue *func, TValue *top) | lwz TMP1, FRAME_PC(BASE) | addi NARGS8:RC, SAVE0, 8 // Got one more argument now. | lwz LFUNC:RB, FRAME_FUNC(RA) // Guaranteed to be a function here. | b ->BC_CALLT_Z | |//-- Argument coercion for 'for' statement ------------------------------ | |->vmeta_for: | mr CARG1, L | stp BASE, L->base | mr CARG2, RA | stw PC, SAVE_PC | mr SAVE0, INS | bl extern lj_meta_for // (lua_State *L, TValue *base) |.if JIT | decode_OP1 TMP0, SAVE0 |.endif | decode_RA8 RA, SAVE0 |.if JIT | cmpwi TMP0, BC_JFORI |.endif | decode_RD8 RD, SAVE0 |.if JIT | beqy =>BC_JFORI |.endif | b =>BC_FORI | |//----------------------------------------------------------------------- |//-- Fast functions ----------------------------------------------------- |//----------------------------------------------------------------------- | |.macro .ffunc, name |->ff_ .. name: |.endmacro | |.macro .ffunc_1, name |->ff_ .. name: | cmplwi NARGS8:RC, 8 | lwz CARG3, 0(BASE) | lwz CARG1, 4(BASE) | blt ->fff_fallback |.endmacro | |.macro .ffunc_2, name |->ff_ .. name: | cmplwi NARGS8:RC, 16 | lwz CARG3, 0(BASE) | lwz CARG4, 8(BASE) | lwz CARG1, 4(BASE) | lwz CARG2, 12(BASE) | blt ->fff_fallback |.endmacro | |.macro .ffunc_n, name |->ff_ .. name: | cmplwi NARGS8:RC, 8 | lwz CARG3, 0(BASE) | lfd FARG1, 0(BASE) | blt ->fff_fallback | checknum CARG3; bge ->fff_fallback |.endmacro | |.macro .ffunc_nn, name |->ff_ .. name: | cmplwi NARGS8:RC, 16 | lwz CARG3, 0(BASE) | lfd FARG1, 0(BASE) | lwz CARG4, 8(BASE) | lfd FARG2, 8(BASE) | blt ->fff_fallback | checknum CARG3; bge ->fff_fallback | checknum CARG4; bge ->fff_fallback |.endmacro | |// Inlined GC threshold check. Caveat: uses TMP0 and TMP1. |.macro ffgccheck | lwz TMP0, DISPATCH_GL(gc.total)(DISPATCH) | lwz TMP1, DISPATCH_GL(gc.threshold)(DISPATCH) | cmplw TMP0, TMP1 | bgel ->fff_gcstep |.endmacro | |//-- Base library: checks ----------------------------------------------- | |.ffunc_1 assert | li TMP1, LJ_TFALSE | la RA, -8(BASE) | cmplw cr1, CARG3, TMP1 | lwz PC, FRAME_PC(BASE) | bge cr1, ->fff_fallback | stw CARG3, 0(RA) | addi RD, NARGS8:RC, 8 // Compute (nresults+1)*8. | stw CARG1, 4(RA) | beq ->fff_res // Done if exactly 1 argument. | li TMP1, 8 | subi RC, RC, 8 |1: | cmplw TMP1, RC | lfdx f0, BASE, TMP1 | stfdx f0, RA, TMP1 | addi TMP1, TMP1, 8 | bney <1 | b ->fff_res | |.ffunc type | cmplwi NARGS8:RC, 8 | lwz CARG1, 0(BASE) | blt ->fff_fallback | .gpr64 extsw CARG1, CARG1 | subfc TMP0, TISNUM, CARG1 | subfe TMP2, CARG1, CARG1 | orc TMP1, TMP2, TMP0 | addi TMP1, TMP1, ~LJ_TISNUM+1 | slwi TMP1, TMP1, 3 | la TMP2, CFUNC:RB->upvalue | lfdx FARG1, TMP2, TMP1 | b ->fff_resn | |//-- Base library: getters and setters --------------------------------- | |.ffunc_1 getmetatable | checktab CARG3; bne >6 |1: // Field metatable must be at same offset for GCtab and GCudata! | lwz TAB:CARG1, TAB:CARG1->metatable |2: | li CARG3, LJ_TNIL | cmplwi TAB:CARG1, 0 | lwz STR:RC, DISPATCH_GL(gcroot[GCROOT_MMNAME+MM_metatable])(DISPATCH) | beq ->fff_restv | lwz TMP0, TAB:CARG1->hmask | li CARG3, LJ_TTAB // Use metatable as default result. | lwz TMP1, STR:RC->hash | lwz NODE:TMP2, TAB:CARG1->node | and TMP1, TMP1, TMP0 // idx = str->hash & tab->hmask | slwi TMP0, TMP1, 5 | slwi TMP1, TMP1, 3 | sub TMP1, TMP0, TMP1 | add NODE:TMP2, NODE:TMP2, TMP1 // node = tab->node + (idx*32-idx*8) |3: // Rearranged logic, because we expect _not_ to find the key. | lwz CARG4, NODE:TMP2->key | lwz TMP0, 4+offsetof(Node, key)(NODE:TMP2) | lwz CARG2, NODE:TMP2->val | lwz TMP1, 4+offsetof(Node, val)(NODE:TMP2) | checkstr CARG4; bne >4 | cmpw TMP0, STR:RC; beq >5 |4: | lwz NODE:TMP2, NODE:TMP2->next | cmplwi NODE:TMP2, 0 | beq ->fff_restv // Not found, keep default result. | b <3 |5: | checknil CARG2 | beq ->fff_restv // Ditto for nil value. | mr CARG3, CARG2 // Return value of mt.__metatable. | mr CARG1, TMP1 | b ->fff_restv | |6: | cmpwi CARG3, LJ_TUDATA; beq <1 | .gpr64 extsw CARG3, CARG3 | subfc TMP0, TISNUM, CARG3 | subfe TMP2, CARG3, CARG3 | orc TMP1, TMP2, TMP0 | addi TMP1, TMP1, ~LJ_TISNUM+1 | slwi TMP1, TMP1, 2 | la TMP2, DISPATCH_GL(gcroot[GCROOT_BASEMT])(DISPATCH) | lwzx TAB:CARG1, TMP2, TMP1 | b <2 | |.ffunc_2 setmetatable | // Fast path: no mt for table yet and not clearing the mt. | checktab CARG3; bne ->fff_fallback | lwz TAB:TMP1, TAB:CARG1->metatable | checktab CARG4; bne ->fff_fallback | cmplwi TAB:TMP1, 0 | lbz TMP3, TAB:CARG1->marked | bne ->fff_fallback | andix. TMP0, TMP3, LJ_GC_BLACK // isblack(table) | stw TAB:CARG2, TAB:CARG1->metatable | beq ->fff_restv | barrierback TAB:CARG1, TMP3, TMP0 | b ->fff_restv | |.ffunc rawget | cmplwi NARGS8:RC, 16 | lwz CARG4, 0(BASE) | lwz TAB:CARG2, 4(BASE) | blt ->fff_fallback | checktab CARG4; bne ->fff_fallback | la CARG3, 8(BASE) | mr CARG1, L | bl extern lj_tab_get // (lua_State *L, GCtab *t, cTValue *key) | // Returns cTValue *. | lfd FARG1, 0(CRET1) | b ->fff_resn | |//-- Base library: conversions ------------------------------------------ | |.ffunc tonumber | // Only handles the number case inline (without a base argument). | cmplwi NARGS8:RC, 8 | lwz CARG1, 0(BASE) | lfd FARG1, 0(BASE) | bne ->fff_fallback // Exactly one argument. | checknum CARG1; bgt ->fff_fallback | b ->fff_resn | |.ffunc_1 tostring | // Only handles the string or number case inline. | checkstr CARG3 | // A __tostring method in the string base metatable is ignored. | beq ->fff_restv // String key? | // Handle numbers inline, unless a number base metatable is present. | lwz TMP0, DISPATCH_GL(gcroot[GCROOT_BASEMT_NUM])(DISPATCH) | checknum CARG3 | cmplwi cr1, TMP0, 0 | stp BASE, L->base // Add frame since C call can throw. | crorc 4*cr0+eq, 4*cr0+gt, 4*cr1+eq | stw PC, SAVE_PC // Redundant (but a defined value). | beq ->fff_fallback | ffgccheck | mr CARG1, L | mr CARG2, BASE |.if DUALNUM | bl extern lj_strfmt_number // (lua_State *L, cTValue *o) |.else | bl extern lj_strfmt_num // (lua_State *L, lua_Number *np) |.endif | // Returns GCstr *. | li CARG3, LJ_TSTR | b ->fff_restv | |//-- Base library: iterators ------------------------------------------- | |.ffunc next | cmplwi NARGS8:RC, 8 | lwz CARG1, 0(BASE) | lwz TAB:CARG2, 4(BASE) | blt ->fff_fallback | stwx TISNIL, BASE, NARGS8:RC // Set missing 2nd arg to nil. | checktab CARG1 | lwz PC, FRAME_PC(BASE) | bne ->fff_fallback | stp BASE, L->base // Add frame since C call can throw. | mr CARG1, L | stp BASE, L->top // Dummy frame length is ok. | la CARG3, 8(BASE) | stw PC, SAVE_PC | bl extern lj_tab_next // (lua_State *L, GCtab *t, TValue *key) | // Returns 0 at end of traversal. | cmplwi CRET1, 0 | li CARG3, LJ_TNIL | beq ->fff_restv // End of traversal: return nil. | lfd f0, 8(BASE) // Copy key and value to results. | la RA, -8(BASE) | lfd f1, 16(BASE) | stfd f0, 0(RA) | li RD, (2+1)*8 | stfd f1, 8(RA) | b ->fff_res | |.ffunc_1 pairs | checktab CARG3 | lwz PC, FRAME_PC(BASE) | bne ->fff_fallback #if LJ_52 | lwz TAB:TMP2, TAB:CARG1->metatable | lfd f0, CFUNC:RB->upvalue[0] | cmplwi TAB:TMP2, 0 | la RA, -8(BASE) | bne ->fff_fallback #else | lfd f0, CFUNC:RB->upvalue[0] | la RA, -8(BASE) #endif | stw TISNIL, 8(BASE) | li RD, (3+1)*8 | stfd f0, 0(RA) | b ->fff_res | |.ffunc ipairs_aux | cmplwi NARGS8:RC, 16 | lwz CARG3, 0(BASE) | lwz TAB:CARG1, 4(BASE) | lwz CARG4, 8(BASE) |.if DUALNUM | lwz TMP2, 12(BASE) |.else | lfd FARG2, 8(BASE) |.endif | blt ->fff_fallback | checktab CARG3 | checknum cr1, CARG4 | lwz PC, FRAME_PC(BASE) |.if DUALNUM | bne ->fff_fallback | bne cr1, ->fff_fallback |.else | lus TMP0, 0x3ff0 | stw ZERO, TMPD_LO | bne ->fff_fallback | stw TMP0, TMPD_HI | bge cr1, ->fff_fallback | lfd FARG1, TMPD | toint TMP2, FARG2, f0 |.endif | lwz TMP0, TAB:CARG1->asize | lwz TMP1, TAB:CARG1->array |.if not DUALNUM | fadd FARG2, FARG2, FARG1 |.endif | addi TMP2, TMP2, 1 | la RA, -8(BASE) | cmplw TMP0, TMP2 |.if DUALNUM | stw TISNUM, 0(RA) | slwi TMP3, TMP2, 3 | stw TMP2, 4(RA) |.else | slwi TMP3, TMP2, 3 | stfd FARG2, 0(RA) |.endif | ble >2 // Not in array part? | lwzx TMP2, TMP1, TMP3 | lfdx f0, TMP1, TMP3 |1: | checknil TMP2 | li RD, (0+1)*8 | beq ->fff_res // End of iteration, return 0 results. | li RD, (2+1)*8 | stfd f0, 8(RA) | b ->fff_res |2: // Check for empty hash part first. Otherwise call C function. | lwz TMP0, TAB:CARG1->hmask | cmplwi TMP0, 0 | li RD, (0+1)*8 | beq ->fff_res | mr CARG2, TMP2 | bl extern lj_tab_getinth // (GCtab *t, int32_t key) | // Returns cTValue * or NULL. | cmplwi CRET1, 0 | li RD, (0+1)*8 | beq ->fff_res | lwz TMP2, 0(CRET1) | lfd f0, 0(CRET1) | b <1 | |.ffunc_1 ipairs | checktab CARG3 | lwz PC, FRAME_PC(BASE) | bne ->fff_fallback #if LJ_52 | lwz TAB:TMP2, TAB:CARG1->metatable | lfd f0, CFUNC:RB->upvalue[0] | cmplwi TAB:TMP2, 0 | la RA, -8(BASE) | bne ->fff_fallback #else | lfd f0, CFUNC:RB->upvalue[0] | la RA, -8(BASE) #endif |.if DUALNUM | stw TISNUM, 8(BASE) |.else | stw ZERO, 8(BASE) |.endif | stw ZERO, 12(BASE) | li RD, (3+1)*8 | stfd f0, 0(RA) | b ->fff_res | |//-- Base library: catch errors ---------------------------------------- | |.ffunc pcall | cmplwi NARGS8:RC, 8 | lbz TMP3, DISPATCH_GL(hookmask)(DISPATCH) | blt ->fff_fallback | mr TMP2, BASE | la BASE, 8(BASE) | // Remember active hook before pcall. | rlwinm TMP3, TMP3, 32-HOOK_ACTIVE_SHIFT, 31, 31 | subi NARGS8:RC, NARGS8:RC, 8 | addi PC, TMP3, 8+FRAME_PCALL | b ->vm_call_dispatch | |.ffunc xpcall | cmplwi NARGS8:RC, 16 | lwz CARG4, 8(BASE) | lfd FARG2, 8(BASE) | lfd FARG1, 0(BASE) | blt ->fff_fallback | lbz TMP1, DISPATCH_GL(hookmask)(DISPATCH) | mr TMP2, BASE | checkfunc CARG4; bne ->fff_fallback // Traceback must be a function. | la BASE, 16(BASE) | // Remember active hook before pcall. | rlwinm TMP1, TMP1, 32-HOOK_ACTIVE_SHIFT, 31, 31 | stfd FARG2, 0(TMP2) // Swap function and traceback. | subi NARGS8:RC, NARGS8:RC, 16 | stfd FARG1, 8(TMP2) | addi PC, TMP1, 16+FRAME_PCALL | b ->vm_call_dispatch | |//-- Coroutine library -------------------------------------------------- | |.macro coroutine_resume_wrap, resume |.if resume |.ffunc_1 coroutine_resume | cmpwi CARG3, LJ_TTHREAD; bne ->fff_fallback |.else |.ffunc coroutine_wrap_aux | lwz L:CARG1, CFUNC:RB->upvalue[0].gcr |.endif | lbz TMP0, L:CARG1->status | lp TMP1, L:CARG1->cframe | lp CARG2, L:CARG1->top | cmplwi cr0, TMP0, LUA_YIELD | lp TMP2, L:CARG1->base | cmplwi cr1, TMP1, 0 | lwz TMP0, L:CARG1->maxstack | cmplw cr7, CARG2, TMP2 | lwz PC, FRAME_PC(BASE) | crorc 4*cr6+lt, 4*cr0+gt, 4*cr1+eq // st>LUA_YIELD || cframe!=0 | add TMP2, CARG2, NARGS8:RC | crandc 4*cr6+gt, 4*cr7+eq, 4*cr0+eq // base==top && st!=LUA_YIELD | cmplw cr1, TMP2, TMP0 | cror 4*cr6+lt, 4*cr6+lt, 4*cr6+gt | stw PC, SAVE_PC | cror 4*cr6+lt, 4*cr6+lt, 4*cr1+gt // cond1 || cond2 || stackov | stp BASE, L->base | blt cr6, ->fff_fallback |1: |.if resume | addi BASE, BASE, 8 // Keep resumed thread in stack for GC. | subi NARGS8:RC, NARGS8:RC, 8 | subi TMP2, TMP2, 8 |.endif | stp TMP2, L:CARG1->top | li TMP1, 0 | stp BASE, L->top |2: // Move args to coroutine. | cmpw TMP1, NARGS8:RC | lfdx f0, BASE, TMP1 | beq >3 | stfdx f0, CARG2, TMP1 | addi TMP1, TMP1, 8 | b <2 |3: | li CARG3, 0 | mr L:SAVE0, L:CARG1 | li CARG4, 0 | bl ->vm_resume // (lua_State *L, TValue *base, 0, 0) | // Returns thread status. |4: | lp TMP2, L:SAVE0->base | cmplwi CRET1, LUA_YIELD | lp TMP3, L:SAVE0->top | li_vmstate INTERP | lp BASE, L->base | stw L, DISPATCH_GL(cur_L)(DISPATCH) | st_vmstate | bgt >8 | sub RD, TMP3, TMP2 | lwz TMP0, L->maxstack | cmplwi RD, 0 | add TMP1, BASE, RD | beq >6 // No results? | cmplw TMP1, TMP0 | li TMP1, 0 | bgt >9 // Need to grow stack? | | subi TMP3, RD, 8 | stp TMP2, L:SAVE0->top // Clear coroutine stack. |5: // Move results from coroutine. | cmplw TMP1, TMP3 | lfdx f0, TMP2, TMP1 | stfdx f0, BASE, TMP1 | addi TMP1, TMP1, 8 | bne <5 |6: | andix. TMP0, PC, FRAME_TYPE |.if resume | li TMP1, LJ_TTRUE | la RA, -8(BASE) | stw TMP1, -8(BASE) // Prepend true to results. | addi RD, RD, 16 |.else | mr RA, BASE | addi RD, RD, 8 |.endif |7: | stw PC, SAVE_PC | mr MULTRES, RD | beq ->BC_RET_Z | b ->vm_return | |8: // Coroutine returned with error (at co->top-1). |.if resume | andix. TMP0, PC, FRAME_TYPE | la TMP3, -8(TMP3) | li TMP1, LJ_TFALSE | lfd f0, 0(TMP3) | stp TMP3, L:SAVE0->top // Remove error from coroutine stack. | li RD, (2+1)*8 | stw TMP1, -8(BASE) // Prepend false to results. | la RA, -8(BASE) | stfd f0, 0(BASE) // Copy error message. | b <7 |.else | mr CARG1, L | mr CARG2, L:SAVE0 | bl extern lj_ffh_coroutine_wrap_err // (lua_State *L, lua_State *co) |.endif | |9: // Handle stack expansion on return from yield. | mr CARG1, L | srwi CARG2, RD, 3 | bl extern lj_state_growstack // (lua_State *L, int n) | li CRET1, 0 | b <4 |.endmacro | | coroutine_resume_wrap 1 // coroutine.resume | coroutine_resume_wrap 0 // coroutine.wrap | |.ffunc coroutine_yield | lp TMP0, L->cframe | add TMP1, BASE, NARGS8:RC | stp BASE, L->base | andix. TMP0, TMP0, CFRAME_RESUME | stp TMP1, L->top | li CRET1, LUA_YIELD | beq ->fff_fallback | stp ZERO, L->cframe | stb CRET1, L->status | b ->vm_leave_unw | |//-- Math library ------------------------------------------------------- | |.ffunc_1 math_abs | checknum CARG3 |.if DUALNUM | bne >2 | srawi TMP1, CARG1, 31 | xor TMP2, TMP1, CARG1 |.if GPR64 | lus TMP0, 0x8000 | sub CARG1, TMP2, TMP1 | cmplw CARG1, TMP0 | beq >1 |.else | sub. CARG1, TMP2, TMP1 | blt >1 |.endif |->fff_resi: | lwz PC, FRAME_PC(BASE) | la RA, -8(BASE) | stw TISNUM, -8(BASE) | stw CRET1, -4(BASE) | b ->fff_res1 |1: | lus CARG3, 0x41e0 // 2^31. | li CARG1, 0 | b ->fff_restv |2: |.endif | bge ->fff_fallback | rlwinm CARG3, CARG3, 0, 1, 31 | // Fallthrough. | |->fff_restv: | // CARG3/CARG1 = TValue result. | lwz PC, FRAME_PC(BASE) | stw CARG3, -8(BASE) | la RA, -8(BASE) | stw CARG1, -4(BASE) |->fff_res1: | // RA = results, PC = return. | li RD, (1+1)*8 |->fff_res: | // RA = results, RD = (nresults+1)*8, PC = return. | andix. TMP0, PC, FRAME_TYPE | mr MULTRES, RD | bney ->vm_return | lwz INS, -4(PC) | decode_RB8 RB, INS |5: | cmplw RB, RD // More results expected? | decode_RA8 TMP0, INS | bgt >6 | ins_next1 | // Adjust BASE. KBASE is assumed to be set for the calling frame. | sub BASE, RA, TMP0 | ins_next2 | |6: // Fill up results with nil. | subi TMP1, RD, 8 | addi RD, RD, 8 | stwx TISNIL, RA, TMP1 | b <5 | |.macro math_extern, func | .ffunc_n math_ .. func | blex func | b ->fff_resn |.endmacro | |.macro math_extern2, func | .ffunc_nn math_ .. func | blex func | b ->fff_resn |.endmacro | |.macro math_round, func | .ffunc_1 math_ .. func | checknum CARG3; beqy ->fff_restv | rlwinm TMP2, CARG3, 12, 21, 31 | bge ->fff_fallback | addic. TMP2, TMP2, -1023 // exp = exponent(x) - 1023 | cmplwi cr1, TMP2, 31 // 0 <= exp < 31? | subfic TMP0, TMP2, 31 | blt >3 | slwi TMP1, CARG3, 11 | srwi TMP3, CARG1, 21 | oris TMP1, TMP1, 0x8000 | addi TMP2, TMP2, 1 | or TMP1, TMP1, TMP3 | slwi CARG2, CARG1, 11 | bge cr1, >4 | slw TMP3, TMP1, TMP2 | srw RD, TMP1, TMP0 | or TMP3, TMP3, CARG2 | srawi TMP2, CARG3, 31 |.if "func" == "floor" | and TMP1, TMP3, TMP2 | addic TMP0, TMP1, -1 | subfe TMP1, TMP0, TMP1 | add CARG1, RD, TMP1 | xor CARG1, CARG1, TMP2 | sub CARG1, CARG1, TMP2 | b ->fff_resi |.else | andc TMP1, TMP3, TMP2 | addic TMP0, TMP1, -1 | subfe TMP1, TMP0, TMP1 | add CARG1, RD, TMP1 | cmpw CARG1, RD | xor CARG1, CARG1, TMP2 | sub CARG1, CARG1, TMP2 | bge ->fff_resi | // Overflow to 2^31. | lus CARG3, 0x41e0 // 2^31. | li CARG1, 0 | b ->fff_restv |.endif |3: // |x| < 1 | slwi TMP2, CARG3, 1 | srawi TMP1, CARG3, 31 | or TMP2, CARG1, TMP2 // ztest = (hi+hi) | lo |.if "func" == "floor" | and TMP1, TMP2, TMP1 // (ztest & sign) == 0 ? 0 : -1 | subfic TMP2, TMP1, 0 | subfe CARG1, CARG1, CARG1 |.else | andc TMP1, TMP2, TMP1 // (ztest & ~sign) == 0 ? 0 : 1 | addic TMP2, TMP1, -1 | subfe CARG1, TMP2, TMP1 |.endif | b ->fff_resi |4: // exp >= 31. Check for -(2^31). | xoris TMP1, TMP1, 0x8000 | srawi TMP2, CARG3, 31 |.if "func" == "floor" | or TMP1, TMP1, CARG2 |.endif |.if PPE | orc TMP1, TMP1, TMP2 | cmpwi TMP1, 0 |.else | orc. TMP1, TMP1, TMP2 |.endif | crand 4*cr0+eq, 4*cr0+eq, 4*cr1+eq | lus CARG1, 0x8000 // -(2^31). | beqy ->fff_resi |5: | lfd FARG1, 0(BASE) | blex func | b ->fff_resn |.endmacro | |.if DUALNUM | math_round floor | math_round ceil |.else | // NYI: use internal implementation. | math_extern floor | math_extern ceil |.endif | |.if SQRT |.ffunc_n math_sqrt | fsqrt FARG1, FARG1 | b ->fff_resn |.else | math_extern sqrt |.endif | |.ffunc math_log | cmplwi NARGS8:RC, 8 | lwz CARG3, 0(BASE) | lfd FARG1, 0(BASE) | bne ->fff_fallback // Need exactly 1 argument. | checknum CARG3; bge ->fff_fallback | blex log | b ->fff_resn | | math_extern log10 | math_extern exp | math_extern sin | math_extern cos | math_extern tan | math_extern asin | math_extern acos | math_extern atan | math_extern sinh | math_extern cosh | math_extern tanh | math_extern2 pow | math_extern2 atan2 | math_extern2 fmod | |.if DUALNUM |.ffunc math_ldexp | cmplwi NARGS8:RC, 16 | lwz CARG3, 0(BASE) | lfd FARG1, 0(BASE) | lwz CARG4, 8(BASE) |.if GPR64 | lwz CARG2, 12(BASE) |.else | lwz CARG1, 12(BASE) |.endif | blt ->fff_fallback | checknum CARG3; bge ->fff_fallback | checknum CARG4; bne ->fff_fallback |.else |.ffunc_nn math_ldexp |.if GPR64 | toint CARG2, FARG2 |.else | toint CARG1, FARG2 |.endif |.endif | blex ldexp | b ->fff_resn | |.ffunc_n math_frexp |.if GPR64 | la CARG2, DISPATCH_GL(tmptv)(DISPATCH) |.else | la CARG1, DISPATCH_GL(tmptv)(DISPATCH) |.endif | lwz PC, FRAME_PC(BASE) | blex frexp | lwz TMP1, DISPATCH_GL(tmptv)(DISPATCH) | la RA, -8(BASE) |.if not DUALNUM | tonum_i FARG2, TMP1 |.endif | stfd FARG1, 0(RA) | li RD, (2+1)*8 |.if DUALNUM | stw TISNUM, 8(RA) | stw TMP1, 12(RA) |.else | stfd FARG2, 8(RA) |.endif | b ->fff_res | |.ffunc_n math_modf |.if GPR64 | la CARG2, -8(BASE) |.else | la CARG1, -8(BASE) |.endif | lwz PC, FRAME_PC(BASE) | blex modf | la RA, -8(BASE) | stfd FARG1, 0(BASE) | li RD, (2+1)*8 | b ->fff_res | |.macro math_minmax, name, ismax |.if DUALNUM | .ffunc_1 name | checknum CARG3 | addi TMP1, BASE, 8 | add TMP2, BASE, NARGS8:RC | bne >4 |1: // Handle integers. | lwz CARG4, 0(TMP1) | cmplw cr1, TMP1, TMP2 | lwz CARG2, 4(TMP1) | bge cr1, ->fff_resi | checknum CARG4 | xoris TMP0, CARG1, 0x8000 | xoris TMP3, CARG2, 0x8000 | bne >3 | subfc TMP3, TMP3, TMP0 | subfe TMP0, TMP0, TMP0 |.if ismax | andc TMP3, TMP3, TMP0 |.else | and TMP3, TMP3, TMP0 |.endif | add CARG1, TMP3, CARG2 |.if GPR64 | rldicl CARG1, CARG1, 0, 32 |.endif | addi TMP1, TMP1, 8 | b <1 |3: | bge ->fff_fallback | // Convert intermediate result to number and continue below. | tonum_i FARG1, CARG1 | lfd FARG2, 0(TMP1) | b >6 |4: | lfd FARG1, 0(BASE) | bge ->fff_fallback |5: // Handle numbers. | lwz CARG4, 0(TMP1) | cmplw cr1, TMP1, TMP2 | lfd FARG2, 0(TMP1) | bge cr1, ->fff_resn | checknum CARG4; bge >7 |6: | fsub f0, FARG1, FARG2 | addi TMP1, TMP1, 8 |.if ismax | fsel FARG1, f0, FARG1, FARG2 |.else | fsel FARG1, f0, FARG2, FARG1 |.endif | b <5 |7: // Convert integer to number and continue above. | lwz CARG2, 4(TMP1) | bne ->fff_fallback | tonum_i FARG2, CARG2 | b <6 |.else | .ffunc_n name | li TMP1, 8 |1: | lwzx CARG2, BASE, TMP1 | lfdx FARG2, BASE, TMP1 | cmplw cr1, TMP1, NARGS8:RC | checknum CARG2 | bge cr1, ->fff_resn | bge ->fff_fallback | fsub f0, FARG1, FARG2 | addi TMP1, TMP1, 8 |.if ismax | fsel FARG1, f0, FARG1, FARG2 |.else | fsel FARG1, f0, FARG2, FARG1 |.endif | b <1 |.endif |.endmacro | | math_minmax math_min, 0 | math_minmax math_max, 1 | |//-- String library ----------------------------------------------------- | |.ffunc string_byte // Only handle the 1-arg case here. | cmplwi NARGS8:RC, 8 | lwz CARG3, 0(BASE) | lwz STR:CARG1, 4(BASE) | bne ->fff_fallback // Need exactly 1 argument. | checkstr CARG3 | bne ->fff_fallback | lwz TMP0, STR:CARG1->len |.if DUALNUM | lbz CARG1, STR:CARG1[1] // Access is always ok (NUL at end). | li RD, (0+1)*8 | lwz PC, FRAME_PC(BASE) | cmplwi TMP0, 0 | la RA, -8(BASE) | beqy ->fff_res | b ->fff_resi |.else | lbz TMP1, STR:CARG1[1] // Access is always ok (NUL at end). | addic TMP3, TMP0, -1 // RD = ((str->len != 0)+1)*8 | subfe RD, TMP3, TMP0 | stw TMP1, TONUM_LO // Inlined tonum_u f0, TMP1. | addi RD, RD, 1 | lfd f0, TONUM_D | la RA, -8(BASE) | lwz PC, FRAME_PC(BASE) | fsub f0, f0, TOBIT | slwi RD, RD, 3 | stfd f0, 0(RA) | b ->fff_res |.endif | |.ffunc string_char // Only handle the 1-arg case here. | ffgccheck | cmplwi NARGS8:RC, 8 | lwz CARG3, 0(BASE) |.if DUALNUM | lwz TMP0, 4(BASE) | bne ->fff_fallback // Exactly 1 argument. | checknum CARG3; bne ->fff_fallback | la CARG2, 7(BASE) |.else | lfd FARG1, 0(BASE) | bne ->fff_fallback // Exactly 1 argument. | checknum CARG3; bge ->fff_fallback | toint TMP0, FARG1 | la CARG2, TMPD_BLO |.endif | li CARG3, 1 | cmplwi TMP0, 255; bgt ->fff_fallback |->fff_newstr: | mr CARG1, L | stp BASE, L->base | stw PC, SAVE_PC | bl extern lj_str_new // (lua_State *L, char *str, size_t l) |->fff_resstr: | // Returns GCstr *. | lp BASE, L->base | li CARG3, LJ_TSTR | b ->fff_restv | |.ffunc string_sub | ffgccheck | cmplwi NARGS8:RC, 16 | lwz CARG3, 16(BASE) |.if not DUALNUM | lfd f0, 16(BASE) |.endif | lwz TMP0, 0(BASE) | lwz STR:CARG1, 4(BASE) | blt ->fff_fallback | lwz CARG2, 8(BASE) |.if DUALNUM | lwz TMP1, 12(BASE) |.else | lfd f1, 8(BASE) |.endif | li TMP2, -1 | beq >1 |.if DUALNUM | checknum CARG3 | lwz TMP2, 20(BASE) | bne ->fff_fallback |1: | checknum CARG2; bne ->fff_fallback |.else | checknum CARG3; bge ->fff_fallback | toint TMP2, f0 |1: | checknum CARG2; bge ->fff_fallback |.endif | checkstr TMP0; bne ->fff_fallback |.if not DUALNUM | toint TMP1, f1 |.endif | lwz TMP0, STR:CARG1->len | cmplw TMP0, TMP2 // len < end? (unsigned compare) | addi TMP3, TMP2, 1 | blt >5 |2: | cmpwi TMP1, 0 // start <= 0? | add TMP3, TMP1, TMP0 | ble >7 |3: | sub CARG3, TMP2, TMP1 | addi CARG2, STR:CARG1, #STR-1 | srawi TMP0, CARG3, 31 | addi CARG3, CARG3, 1 | add CARG2, CARG2, TMP1 | andc CARG3, CARG3, TMP0 |.if GPR64 | rldicl CARG2, CARG2, 0, 32 | rldicl CARG3, CARG3, 0, 32 |.endif | b ->fff_newstr | |5: // Negative end or overflow. | cmpw TMP0, TMP2 // len >= end? (signed compare) | add TMP2, TMP0, TMP3 // Negative end: end = end+len+1. | bge <2 | mr TMP2, TMP0 // Overflow: end = len. | b <2 | |7: // Negative start or underflow. | .gpr64 extsw TMP1, TMP1 | addic CARG3, TMP1, -1 | subfe CARG3, CARG3, CARG3 | srawi CARG2, TMP3, 31 // Note: modifies carry. | andc TMP3, TMP3, CARG3 | andc TMP1, TMP3, CARG2 | addi TMP1, TMP1, 1 // start = 1 + (start ? start+len : 0) | b <3 | |.macro ffstring_op, name | .ffunc string_ .. name | ffgccheck | cmplwi NARGS8:RC, 8 | lwz CARG3, 0(BASE) | lwz STR:CARG2, 4(BASE) | blt ->fff_fallback | checkstr CARG3 | la SBUF:CARG1, DISPATCH_GL(tmpbuf)(DISPATCH) | bne ->fff_fallback | lwz TMP0, SBUF:CARG1->b | stw L, SBUF:CARG1->L | stp BASE, L->base | stw PC, SAVE_PC | stw TMP0, SBUF:CARG1->p | bl extern lj_buf_putstr_ .. name | bl extern lj_buf_tostr | b ->fff_resstr |.endmacro | |ffstring_op reverse |ffstring_op lower |ffstring_op upper | |//-- Bit library -------------------------------------------------------- | |.macro .ffunc_bit, name |.if DUALNUM | .ffunc_1 bit_..name | checknum CARG3; bnel ->fff_tobit_fb |.else | .ffunc_n bit_..name | fadd FARG1, FARG1, TOBIT | stfd FARG1, TMPD | lwz CARG1, TMPD_LO |.endif |.endmacro | |.macro .ffunc_bit_op, name, ins | .ffunc_bit name | addi TMP1, BASE, 8 | add TMP2, BASE, NARGS8:RC |1: | lwz CARG4, 0(TMP1) | cmplw cr1, TMP1, TMP2 |.if DUALNUM | lwz CARG2, 4(TMP1) |.else | lfd FARG1, 0(TMP1) |.endif | bgey cr1, ->fff_resi | checknum CARG4 |.if DUALNUM | bnel ->fff_bitop_fb |.else | fadd FARG1, FARG1, TOBIT | bge ->fff_fallback | stfd FARG1, TMPD | lwz CARG2, TMPD_LO |.endif | ins CARG1, CARG1, CARG2 | addi TMP1, TMP1, 8 | b <1 |.endmacro | |.ffunc_bit_op band, and |.ffunc_bit_op bor, or |.ffunc_bit_op bxor, xor | |.ffunc_bit bswap | rotlwi TMP0, CARG1, 8 | rlwimi TMP0, CARG1, 24, 0, 7 | rlwimi TMP0, CARG1, 24, 16, 23 | mr CRET1, TMP0 | b ->fff_resi | |.ffunc_bit bnot | not CRET1, CARG1 | b ->fff_resi | |.macro .ffunc_bit_sh, name, ins, shmod |.if DUALNUM | .ffunc_2 bit_..name | checknum CARG3; bnel ->fff_tobit_fb | // Note: no inline conversion from number for 2nd argument! | checknum CARG4; bne ->fff_fallback |.else | .ffunc_nn bit_..name | fadd FARG1, FARG1, TOBIT | fadd FARG2, FARG2, TOBIT | stfd FARG1, TMPD | lwz CARG1, TMPD_LO | stfd FARG2, TMPD | lwz CARG2, TMPD_LO |.endif |.if shmod == 1 | rlwinm CARG2, CARG2, 0, 27, 31 |.elif shmod == 2 | neg CARG2, CARG2 |.endif | ins CRET1, CARG1, CARG2 | b ->fff_resi |.endmacro | |.ffunc_bit_sh lshift, slw, 1 |.ffunc_bit_sh rshift, srw, 1 |.ffunc_bit_sh arshift, sraw, 1 |.ffunc_bit_sh rol, rotlw, 0 |.ffunc_bit_sh ror, rotlw, 2 | |.ffunc_bit tobit |.if DUALNUM | b ->fff_resi |.else |->fff_resi: | tonum_i FARG1, CRET1 |.endif |->fff_resn: | lwz PC, FRAME_PC(BASE) | la RA, -8(BASE) | stfd FARG1, -8(BASE) | b ->fff_res1 | |// Fallback FP number to bit conversion. |->fff_tobit_fb: |.if DUALNUM | lfd FARG1, 0(BASE) | bgt ->fff_fallback | fadd FARG1, FARG1, TOBIT | stfd FARG1, TMPD | lwz CARG1, TMPD_LO | blr |.endif |->fff_bitop_fb: |.if DUALNUM | lfd FARG1, 0(TMP1) | bgt ->fff_fallback | fadd FARG1, FARG1, TOBIT | stfd FARG1, TMPD | lwz CARG2, TMPD_LO | blr |.endif | |//----------------------------------------------------------------------- | |->fff_fallback: // Call fast function fallback handler. | // BASE = new base, RB = CFUNC, RC = nargs*8 | lp TMP3, CFUNC:RB->f | add TMP1, BASE, NARGS8:RC | lwz PC, FRAME_PC(BASE) // Fallback may overwrite PC. | addi TMP0, TMP1, 8*LUA_MINSTACK | lwz TMP2, L->maxstack | stw PC, SAVE_PC // Redundant (but a defined value). | .toc lp TMP3, 0(TMP3) | cmplw TMP0, TMP2 | stp BASE, L->base | stp TMP1, L->top | mr CARG1, L | bgt >5 // Need to grow stack. | mtctr TMP3 | bctrl // (lua_State *L) | // Either throws an error, or recovers and returns -1, 0 or nresults+1. | lp BASE, L->base | cmpwi CRET1, 0 | slwi RD, CRET1, 3 | la RA, -8(BASE) | bgt ->fff_res // Returned nresults+1? |1: // Returned 0 or -1: retry fast path. | lp TMP0, L->top | lwz LFUNC:RB, FRAME_FUNC(BASE) | sub NARGS8:RC, TMP0, BASE | bne ->vm_call_tail // Returned -1? | ins_callt // Returned 0: retry fast path. | |// Reconstruct previous base for vmeta_call during tailcall. |->vm_call_tail: | andix. TMP0, PC, FRAME_TYPE | rlwinm TMP1, PC, 0, 0, 28 | bne >3 | lwz INS, -4(PC) | decode_RA8 TMP1, INS | addi TMP1, TMP1, 8 |3: | sub TMP2, BASE, TMP1 | b ->vm_call_dispatch // Resolve again for tailcall. | |5: // Grow stack for fallback handler. | li CARG2, LUA_MINSTACK | bl extern lj_state_growstack // (lua_State *L, int n) | lp BASE, L->base | cmpw TMP0, TMP0 // Set 4*cr0+eq to force retry. | b <1 | |->fff_gcstep: // Call GC step function. | // BASE = new base, RC = nargs*8 | mflr SAVE0 | stp BASE, L->base | add TMP0, BASE, NARGS8:RC | stw PC, SAVE_PC // Redundant (but a defined value). | stp TMP0, L->top | mr CARG1, L | bl extern lj_gc_step // (lua_State *L) | lp BASE, L->base | mtlr SAVE0 | lp TMP0, L->top | sub NARGS8:RC, TMP0, BASE | lwz CFUNC:RB, FRAME_FUNC(BASE) | blr | |//----------------------------------------------------------------------- |//-- Special dispatch targets ------------------------------------------- |//----------------------------------------------------------------------- | |->vm_record: // Dispatch target for recording phase. |.if JIT | lbz TMP3, DISPATCH_GL(hookmask)(DISPATCH) | andix. TMP0, TMP3, HOOK_VMEVENT // No recording while in vmevent. | bne >5 | // Decrement the hookcount for consistency, but always do the call. | lwz TMP2, DISPATCH_GL(hookcount)(DISPATCH) | andix. TMP0, TMP3, HOOK_ACTIVE | bne >1 | subi TMP2, TMP2, 1 | andi. TMP0, TMP3, LUA_MASKLINE|LUA_MASKCOUNT | beqy >1 | stw TMP2, DISPATCH_GL(hookcount)(DISPATCH) | b >1 |.endif | |->vm_rethook: // Dispatch target for return hooks. | lbz TMP3, DISPATCH_GL(hookmask)(DISPATCH) | andix. TMP0, TMP3, HOOK_ACTIVE // Hook already active? | beq >1 |5: // Re-dispatch to static ins. | addi TMP1, TMP1, GG_DISP2STATIC // Assumes decode_OPP TMP1, INS. | lpx TMP0, DISPATCH, TMP1 | mtctr TMP0 | bctr | |->vm_inshook: // Dispatch target for instr/line hooks. | lbz TMP3, DISPATCH_GL(hookmask)(DISPATCH) | lwz TMP2, DISPATCH_GL(hookcount)(DISPATCH) | andix. TMP0, TMP3, HOOK_ACTIVE // Hook already active? | rlwinm TMP0, TMP3, 31-LUA_HOOKLINE, 31, 0 | bne <5 | | cmpwi cr1, TMP0, 0 | addic. TMP2, TMP2, -1 | beq cr1, <5 | stw TMP2, DISPATCH_GL(hookcount)(DISPATCH) | beq >1 | bge cr1, <5 |1: | mr CARG1, L | stw MULTRES, SAVE_MULTRES | mr CARG2, PC | stp BASE, L->base | // SAVE_PC must hold the _previous_ PC. The callee updates it with PC. | bl extern lj_dispatch_ins // (lua_State *L, const BCIns *pc) |3: | lp BASE, L->base |4: // Re-dispatch to static ins. | lwz INS, -4(PC) | decode_OPP TMP1, INS | decode_RB8 RB, INS | addi TMP1, TMP1, GG_DISP2STATIC | decode_RD8 RD, INS | lpx TMP0, DISPATCH, TMP1 | decode_RA8 RA, INS | decode_RC8 RC, INS | mtctr TMP0 | bctr | |->cont_hook: // Continue from hook yield. | addi PC, PC, 4 | lwz MULTRES, -20(RB) // Restore MULTRES for *M ins. | b <4 | |->vm_hotloop: // Hot loop counter underflow. |.if JIT | lwz LFUNC:TMP1, FRAME_FUNC(BASE) | addi CARG1, DISPATCH, GG_DISP2J | stw PC, SAVE_PC | lwz TMP1, LFUNC:TMP1->pc | mr CARG2, PC | stw L, DISPATCH_J(L)(DISPATCH) | lbz TMP1, PC2PROTO(framesize)(TMP1) | stp BASE, L->base | slwi TMP1, TMP1, 3 | add TMP1, BASE, TMP1 | stp TMP1, L->top | bl extern lj_trace_hot // (jit_State *J, const BCIns *pc) | b <3 |.endif | |->vm_callhook: // Dispatch target for call hooks. | mr CARG2, PC |.if JIT | b >1 |.endif | |->vm_hotcall: // Hot call counter underflow. |.if JIT | ori CARG2, PC, 1 |1: |.endif | add TMP0, BASE, RC | stw PC, SAVE_PC | mr CARG1, L | stp BASE, L->base | sub RA, RA, BASE | stp TMP0, L->top | bl extern lj_dispatch_call // (lua_State *L, const BCIns *pc) | // Returns ASMFunction. | lp BASE, L->base | lp TMP0, L->top | stw ZERO, SAVE_PC // Invalidate for subsequent line hook. | sub NARGS8:RC, TMP0, BASE | add RA, BASE, RA | lwz LFUNC:RB, FRAME_FUNC(BASE) | lwz INS, -4(PC) | mtctr CRET1 | bctr | |->cont_stitch: // Trace stitching. |.if JIT | // RA = resultptr, RB = meta base | lwz INS, -4(PC) | lwz TRACE:TMP2, -20(RB) // Save previous trace. | addic. TMP1, MULTRES, -8 | decode_RA8 RC, INS // Call base. | beq >2 |1: // Move results down. | lfd f0, 0(RA) | addic. TMP1, TMP1, -8 | addi RA, RA, 8 | stfdx f0, BASE, RC | addi RC, RC, 8 | bne <1 |2: | decode_RA8 RA, INS | decode_RB8 RB, INS | add RA, RA, RB |3: | cmplw RA, RC | bgt >9 // More results wanted? | | lhz TMP3, TRACE:TMP2->traceno | lhz RD, TRACE:TMP2->link | cmpw RD, TMP3 | cmpwi cr1, RD, 0 | beq ->cont_nop // Blacklisted. | slwi RD, RD, 3 | bne cr1, =>BC_JLOOP // Jump to stitched trace. | | // Stitch a new trace to the previous trace. | stw TMP3, DISPATCH_J(exitno)(DISPATCH) | stp L, DISPATCH_J(L)(DISPATCH) | stp BASE, L->base | addi CARG1, DISPATCH, GG_DISP2J | mr CARG2, PC | bl extern lj_dispatch_stitch // (jit_State *J, const BCIns *pc) | lp BASE, L->base | b ->cont_nop | |9: | stwx TISNIL, BASE, RC | addi RC, RC, 8 | b <3 |.endif | |->vm_profhook: // Dispatch target for profiler hook. #if LJ_HASPROFILE | mr CARG1, L | stw MULTRES, SAVE_MULTRES | mr CARG2, PC | stp BASE, L->base | bl extern lj_dispatch_profile // (lua_State *L, const BCIns *pc) | // HOOK_PROFILE is off again, so re-dispatch to dynamic instruction. | lp BASE, L->base | subi PC, PC, 4 | b ->cont_nop #endif | |//----------------------------------------------------------------------- |//-- Trace exit handler ------------------------------------------------- |//----------------------------------------------------------------------- | |.macro savex_, a, b, c, d | stfd f..a, 16+a*8(sp) | stfd f..b, 16+b*8(sp) | stfd f..c, 16+c*8(sp) | stfd f..d, 16+d*8(sp) |.endmacro | |->vm_exit_handler: |.if JIT | addi sp, sp, -(16+32*8+32*4) | stmw r2, 16+32*8+2*4(sp) | addi DISPATCH, JGL, -GG_DISP2G-32768 | li CARG2, ~LJ_VMST_EXIT | lwz CARG1, 16+32*8+32*4(sp) // Get stack chain. | stw CARG2, DISPATCH_GL(vmstate)(DISPATCH) | savex_ 0,1,2,3 | stw CARG1, 0(sp) // Store extended stack chain. | clrso TMP1 | savex_ 4,5,6,7 | addi CARG2, sp, 16+32*8+32*4 // Recompute original value of sp. | savex_ 8,9,10,11 | stw CARG2, 16+32*8+1*4(sp) // Store sp in RID_SP. | savex_ 12,13,14,15 | mflr CARG3 | li TMP1, 0 | savex_ 16,17,18,19 | stw TMP1, 16+32*8+0*4(sp) // Clear RID_TMP. | savex_ 20,21,22,23 | lhz CARG4, 2(CARG3) // Load trace number. | savex_ 24,25,26,27 | lwz L, DISPATCH_GL(cur_L)(DISPATCH) | savex_ 28,29,30,31 | sub CARG3, TMP0, CARG3 // Compute exit number. | lp BASE, DISPATCH_GL(jit_base)(DISPATCH) | srwi CARG3, CARG3, 2 | stp L, DISPATCH_J(L)(DISPATCH) | subi CARG3, CARG3, 2 | stp BASE, L->base | stw CARG4, DISPATCH_J(parent)(DISPATCH) | stw TMP1, DISPATCH_GL(jit_base)(DISPATCH) | addi CARG1, DISPATCH, GG_DISP2J | stw CARG3, DISPATCH_J(exitno)(DISPATCH) | addi CARG2, sp, 16 | bl extern lj_trace_exit // (jit_State *J, ExitState *ex) | // Returns MULTRES (unscaled) or negated error code. | lp TMP1, L->cframe | lwz TMP2, 0(sp) | lp BASE, L->base |.if GPR64 | rldicr sp, TMP1, 0, 61 |.else | rlwinm sp, TMP1, 0, 0, 29 |.endif | lwz PC, SAVE_PC // Get SAVE_PC. | stw TMP2, 0(sp) | stw L, SAVE_L // Set SAVE_L (on-trace resume/yield). | b >1 |.endif |->vm_exit_interp: |.if JIT | // CARG1 = MULTRES or negated error code, BASE, PC and JGL set. | lwz L, SAVE_L | addi DISPATCH, JGL, -GG_DISP2G-32768 | stp BASE, L->base |1: | cmpwi CARG1, 0 | blt >9 // Check for error from exit. | lwz LFUNC:RB, FRAME_FUNC(BASE) | slwi MULTRES, CARG1, 3 | li TMP2, 0 | stw MULTRES, SAVE_MULTRES | lwz TMP1, LFUNC:RB->pc | stw TMP2, DISPATCH_GL(jit_base)(DISPATCH) | lwz KBASE, PC2PROTO(k)(TMP1) | // Setup type comparison constants. | li TISNUM, LJ_TISNUM | lus TMP3, 0x59c0 // TOBIT = 2^52 + 2^51 (float). | stw TMP3, TMPD | li ZERO, 0 | ori TMP3, TMP3, 0x0004 // TONUM = 2^52 + 2^51 + 2^31 (float). | lfs TOBIT, TMPD | stw TMP3, TMPD | lus TMP0, 0x4338 // Hiword of 2^52 + 2^51 (double) | li TISNIL, LJ_TNIL | stw TMP0, TONUM_HI | lfs TONUM, TMPD | // Modified copy of ins_next which handles function header dispatch, too. | lwz INS, 0(PC) | addi PC, PC, 4 | // Assumes TISNIL == ~LJ_VMST_INTERP == -1. | stw TISNIL, DISPATCH_GL(vmstate)(DISPATCH) | decode_OPP TMP1, INS | decode_RA8 RA, INS | lpx TMP0, DISPATCH, TMP1 | mtctr TMP0 | cmplwi TMP1, BC_FUNCF*4 // Function header? | bge >2 | decode_RB8 RB, INS | decode_RD8 RD, INS | decode_RC8 RC, INS | bctr |2: | cmplwi TMP1, (BC_FUNCC+2)*4 // Fast function? | blt >3 | // Check frame below fast function. | lwz TMP1, FRAME_PC(BASE) | andix. TMP0, TMP1, FRAME_TYPE | bney >3 // Trace stitching continuation? | // Otherwise set KBASE for Lua function below fast function. | lwz TMP2, -4(TMP1) | decode_RA8 TMP0, TMP2 | sub TMP1, BASE, TMP0 | lwz LFUNC:TMP2, -12(TMP1) | lwz TMP1, LFUNC:TMP2->pc | lwz KBASE, PC2PROTO(k)(TMP1) |3: | subi RC, MULTRES, 8 | add RA, RA, BASE | bctr | |9: // Rethrow error from the right C frame. | neg CARG2, CARG1 | mr CARG1, L | bl extern lj_err_throw // (lua_State *L, int errcode) |.endif | |//----------------------------------------------------------------------- |//-- Math helper functions ---------------------------------------------- |//----------------------------------------------------------------------- | |// NYI: Use internal implementations of floor, ceil, trunc. | |->vm_modi: | divwo. TMP0, CARG1, CARG2 | bso >1 |.if GPR64 | xor CARG3, CARG1, CARG2 | cmpwi CARG3, 0 |.else | xor. CARG3, CARG1, CARG2 |.endif | mullw TMP0, TMP0, CARG2 | sub CARG1, CARG1, TMP0 | bgelr | cmpwi CARG1, 0; beqlr | add CARG1, CARG1, CARG2 | blr |1: | cmpwi CARG2, 0 | li CARG1, 0 | beqlr | clrso TMP0 // Clear SO for -2147483648 % -1 and return 0. | blr | |//----------------------------------------------------------------------- |//-- Miscellaneous functions -------------------------------------------- |//----------------------------------------------------------------------- | |// void lj_vm_cachesync(void *start, void *end) |// Flush D-Cache and invalidate I-Cache. Assumes 32 byte cache line size. |// This is a good lower bound, except for very ancient PPC models. |->vm_cachesync: |.if JIT or FFI | // Compute start of first cache line and number of cache lines. | rlwinm CARG1, CARG1, 0, 0, 26 | sub CARG2, CARG2, CARG1 | addi CARG2, CARG2, 31 | rlwinm. CARG2, CARG2, 27, 5, 31 | beqlr | mtctr CARG2 | mr CARG3, CARG1 |1: // Flush D-Cache. | dcbst r0, CARG1 | addi CARG1, CARG1, 32 | bdnz <1 | sync | mtctr CARG2 |1: // Invalidate I-Cache. | icbi r0, CARG3 | addi CARG3, CARG3, 32 | bdnz <1 | isync | blr |.endif | |//----------------------------------------------------------------------- |//-- FFI helper functions ----------------------------------------------- |//----------------------------------------------------------------------- | |// Handler for callback functions. Callback slot number in r11, g in r12. |->vm_ffi_callback: |.if FFI |.type CTSTATE, CTState, PC | saveregs | lwz CTSTATE, GL:r12->ctype_state | addi DISPATCH, r12, GG_G2DISP | stw r11, CTSTATE->cb.slot | stw r3, CTSTATE->cb.gpr[0] | stfd f1, CTSTATE->cb.fpr[0] | stw r4, CTSTATE->cb.gpr[1] | stfd f2, CTSTATE->cb.fpr[1] | stw r5, CTSTATE->cb.gpr[2] | stfd f3, CTSTATE->cb.fpr[2] | stw r6, CTSTATE->cb.gpr[3] | stfd f4, CTSTATE->cb.fpr[3] | stw r7, CTSTATE->cb.gpr[4] | stfd f5, CTSTATE->cb.fpr[4] | stw r8, CTSTATE->cb.gpr[5] | stfd f6, CTSTATE->cb.fpr[5] | stw r9, CTSTATE->cb.gpr[6] | stfd f7, CTSTATE->cb.fpr[6] | stw r10, CTSTATE->cb.gpr[7] | stfd f8, CTSTATE->cb.fpr[7] | addi TMP0, sp, CFRAME_SPACE+8 | stw TMP0, CTSTATE->cb.stack | mr CARG1, CTSTATE | stw CTSTATE, SAVE_PC // Any value outside of bytecode is ok. | mr CARG2, sp | bl extern lj_ccallback_enter // (CTState *cts, void *cf) | // Returns lua_State *. | lp BASE, L:CRET1->base | li TISNUM, LJ_TISNUM // Setup type comparison constants. | lp RC, L:CRET1->top | lus TMP3, 0x59c0 // TOBIT = 2^52 + 2^51 (float). | li ZERO, 0 | mr L, CRET1 | stw TMP3, TMPD | lus TMP0, 0x4338 // Hiword of 2^52 + 2^51 (double) | lwz LFUNC:RB, FRAME_FUNC(BASE) | ori TMP3, TMP3, 0x0004 // TONUM = 2^52 + 2^51 + 2^31 (float). | stw TMP0, TONUM_HI | li TISNIL, LJ_TNIL | li_vmstate INTERP | lfs TOBIT, TMPD | stw TMP3, TMPD | sub RC, RC, BASE | st_vmstate | lfs TONUM, TMPD | ins_callt |.endif | |->cont_ffi_callback: // Return from FFI callback. |.if FFI | lwz CTSTATE, DISPATCH_GL(ctype_state)(DISPATCH) | stp BASE, L->base | stp RB, L->top | stp L, CTSTATE->L | mr CARG1, CTSTATE | mr CARG2, RA | bl extern lj_ccallback_leave // (CTState *cts, TValue *o) | lwz CRET1, CTSTATE->cb.gpr[0] | lfd FARG1, CTSTATE->cb.fpr[0] | lwz CRET2, CTSTATE->cb.gpr[1] | b ->vm_leave_unw |.endif | |->vm_ffi_call: // Call C function via FFI. | // Caveat: needs special frame unwinding, see below. |.if FFI | .type CCSTATE, CCallState, CARG1 | lwz TMP1, CCSTATE->spadj | mflr TMP0 | lbz CARG2, CCSTATE->nsp | lbz CARG3, CCSTATE->nfpr | neg TMP1, TMP1 | stw TMP0, 4(sp) | cmpwi cr1, CARG3, 0 | mr TMP2, sp | addic. CARG2, CARG2, -1 | stwux sp, sp, TMP1 | crnot 4*cr1+eq, 4*cr1+eq // For vararg calls. | stw r14, -4(TMP2) | stw CCSTATE, -8(TMP2) | mr r14, TMP2 | la TMP1, CCSTATE->stack | slwi CARG2, CARG2, 2 | blty >2 | la TMP2, 8(sp) |1: | lwzx TMP0, TMP1, CARG2 | stwx TMP0, TMP2, CARG2 | addic. CARG2, CARG2, -4 | bge <1 |2: | bney cr1, >3 | lfd f1, CCSTATE->fpr[0] | lfd f2, CCSTATE->fpr[1] | lfd f3, CCSTATE->fpr[2] | lfd f4, CCSTATE->fpr[3] | lfd f5, CCSTATE->fpr[4] | lfd f6, CCSTATE->fpr[5] | lfd f7, CCSTATE->fpr[6] | lfd f8, CCSTATE->fpr[7] |3: | lp TMP0, CCSTATE->func | lwz CARG2, CCSTATE->gpr[1] | lwz CARG3, CCSTATE->gpr[2] | lwz CARG4, CCSTATE->gpr[3] | lwz CARG5, CCSTATE->gpr[4] | mtctr TMP0 | lwz r8, CCSTATE->gpr[5] | lwz r9, CCSTATE->gpr[6] | lwz r10, CCSTATE->gpr[7] | lwz CARG1, CCSTATE->gpr[0] // Do this last, since CCSTATE is CARG1. | bctrl | lwz CCSTATE:TMP1, -8(r14) | lwz TMP2, -4(r14) | lwz TMP0, 4(r14) | stw CARG1, CCSTATE:TMP1->gpr[0] | stfd FARG1, CCSTATE:TMP1->fpr[0] | stw CARG2, CCSTATE:TMP1->gpr[1] | mtlr TMP0 | stw CARG3, CCSTATE:TMP1->gpr[2] | mr sp, r14 | stw CARG4, CCSTATE:TMP1->gpr[3] | mr r14, TMP2 | blr |.endif |// Note: vm_ffi_call must be the last function in this object file! | |//----------------------------------------------------------------------- } /* Generate the code for a single instruction. */ static void build_ins(BuildCtx *ctx, BCOp op, int defop) { int vk = 0; |=>defop: switch (op) { /* -- Comparison ops ---------------------------------------------------- */ /* Remember: all ops branch for a true comparison, fall through otherwise. */ case BC_ISLT: case BC_ISGE: case BC_ISLE: case BC_ISGT: | // RA = src1*8, RD = src2*8, JMP with RD = target |.if DUALNUM | lwzux TMP0, RA, BASE | addi PC, PC, 4 | lwz CARG2, 4(RA) | lwzux TMP1, RD, BASE | lwz TMP2, -4(PC) | checknum cr0, TMP0 | lwz CARG3, 4(RD) | decode_RD4 TMP2, TMP2 | checknum cr1, TMP1 | addis TMP2, TMP2, -(BCBIAS_J*4 >> 16) | bne cr0, >7 | bne cr1, >8 | cmpw CARG2, CARG3 if (op == BC_ISLT) { | bge >2 } else if (op == BC_ISGE) { | blt >2 } else if (op == BC_ISLE) { | bgt >2 } else { | ble >2 } |1: | add PC, PC, TMP2 |2: | ins_next | |7: // RA is not an integer. | bgt cr0, ->vmeta_comp | // RA is a number. | lfd f0, 0(RA) | bgt cr1, ->vmeta_comp | blt cr1, >4 | // RA is a number, RD is an integer. | tonum_i f1, CARG3 | b >5 | |8: // RA is an integer, RD is not an integer. | bgt cr1, ->vmeta_comp | // RA is an integer, RD is a number. | tonum_i f0, CARG2 |4: | lfd f1, 0(RD) |5: | fcmpu cr0, f0, f1 if (op == BC_ISLT) { | bge <2 } else if (op == BC_ISGE) { | blt <2 } else if (op == BC_ISLE) { | cror 4*cr0+lt, 4*cr0+lt, 4*cr0+eq | bge <2 } else { | cror 4*cr0+lt, 4*cr0+lt, 4*cr0+eq | blt <2 } | b <1 |.else | lwzx TMP0, BASE, RA | addi PC, PC, 4 | lfdx f0, BASE, RA | lwzx TMP1, BASE, RD | checknum cr0, TMP0 | lwz TMP2, -4(PC) | lfdx f1, BASE, RD | checknum cr1, TMP1 | decode_RD4 TMP2, TMP2 | bge cr0, ->vmeta_comp | addis TMP2, TMP2, -(BCBIAS_J*4 >> 16) | bge cr1, ->vmeta_comp | fcmpu cr0, f0, f1 if (op == BC_ISLT) { | bge >1 } else if (op == BC_ISGE) { | blt >1 } else if (op == BC_ISLE) { | cror 4*cr0+lt, 4*cr0+lt, 4*cr0+eq | bge >1 } else { | cror 4*cr0+lt, 4*cr0+lt, 4*cr0+eq | blt >1 } | add PC, PC, TMP2 |1: | ins_next |.endif break; case BC_ISEQV: case BC_ISNEV: vk = op == BC_ISEQV; | // RA = src1*8, RD = src2*8, JMP with RD = target |.if DUALNUM | lwzux TMP0, RA, BASE | addi PC, PC, 4 | lwz CARG2, 4(RA) | lwzux TMP1, RD, BASE | checknum cr0, TMP0 | lwz TMP2, -4(PC) | checknum cr1, TMP1 | decode_RD4 TMP2, TMP2 | lwz CARG3, 4(RD) | cror 4*cr7+gt, 4*cr0+gt, 4*cr1+gt | addis TMP2, TMP2, -(BCBIAS_J*4 >> 16) if (vk) { | ble cr7, ->BC_ISEQN_Z } else { | ble cr7, ->BC_ISNEN_Z } |.else | lwzux TMP0, RA, BASE | lwz TMP2, 0(PC) | lfd f0, 0(RA) | addi PC, PC, 4 | lwzux TMP1, RD, BASE | checknum cr0, TMP0 | decode_RD4 TMP2, TMP2 | lfd f1, 0(RD) | checknum cr1, TMP1 | addis TMP2, TMP2, -(BCBIAS_J*4 >> 16) | bge cr0, >5 | bge cr1, >5 | fcmpu cr0, f0, f1 if (vk) { | bne >1 | add PC, PC, TMP2 } else { | beq >1 | add PC, PC, TMP2 } |1: | ins_next |.endif |5: // Either or both types are not numbers. |.if not DUALNUM | lwz CARG2, 4(RA) | lwz CARG3, 4(RD) |.endif |.if FFI | cmpwi cr7, TMP0, LJ_TCDATA | cmpwi cr5, TMP1, LJ_TCDATA |.endif | not TMP3, TMP0 | cmplw TMP0, TMP1 | cmplwi cr1, TMP3, ~LJ_TISPRI // Primitive? |.if FFI | cror 4*cr7+eq, 4*cr7+eq, 4*cr5+eq |.endif | cmplwi cr6, TMP3, ~LJ_TISTABUD // Table or userdata? |.if FFI | beq cr7, ->vmeta_equal_cd |.endif | cmplw cr5, CARG2, CARG3 | crandc 4*cr0+gt, 4*cr0+eq, 4*cr1+gt // 2: Same type and primitive. | crorc 4*cr0+lt, 4*cr5+eq, 4*cr0+eq // 1: Same tv or different type. | crand 4*cr0+eq, 4*cr0+eq, 4*cr5+eq // 0: Same type and same tv. | mr SAVE0, PC | cror 4*cr0+eq, 4*cr0+eq, 4*cr0+gt // 0 or 2. | cror 4*cr0+lt, 4*cr0+lt, 4*cr0+gt // 1 or 2. if (vk) { | bne cr0, >6 | add PC, PC, TMP2 |6: } else { | beq cr0, >6 | add PC, PC, TMP2 |6: } |.if DUALNUM | bge cr0, >2 // Done if 1 or 2. |1: | ins_next |2: |.else | blt cr0, <1 // Done if 1 or 2. |.endif | blt cr6, <1 // Done if not tab/ud. | | // Different tables or userdatas. Need to check __eq metamethod. | // Field metatable must be at same offset for GCtab and GCudata! | lwz TAB:TMP2, TAB:CARG2->metatable | li CARG4, 1-vk // ne = 0 or 1. | cmplwi TAB:TMP2, 0 | beq <1 // No metatable? | lbz TMP2, TAB:TMP2->nomm | andix. TMP2, TMP2, 1<vmeta_equal // Handle __eq metamethod. break; case BC_ISEQS: case BC_ISNES: vk = op == BC_ISEQS; | // RA = src*8, RD = str_const*8 (~), JMP with RD = target | lwzux TMP0, RA, BASE | srwi RD, RD, 1 | lwz STR:TMP3, 4(RA) | lwz TMP2, 0(PC) | subfic RD, RD, -4 | addi PC, PC, 4 |.if FFI | cmpwi TMP0, LJ_TCDATA |.endif | lwzx STR:TMP1, KBASE, RD // KBASE-4-str_const*4 | .gpr64 extsw TMP0, TMP0 | subfic TMP0, TMP0, LJ_TSTR |.if FFI | beq ->vmeta_equal_cd |.endif | sub TMP1, STR:TMP1, STR:TMP3 | or TMP0, TMP0, TMP1 | decode_RD4 TMP2, TMP2 | subfic TMP0, TMP0, 0 | addis TMP2, TMP2, -(BCBIAS_J*4 >> 16) | subfe TMP1, TMP1, TMP1 if (vk) { | andc TMP2, TMP2, TMP1 } else { | and TMP2, TMP2, TMP1 } | add PC, PC, TMP2 | ins_next break; case BC_ISEQN: case BC_ISNEN: vk = op == BC_ISEQN; | // RA = src*8, RD = num_const*8, JMP with RD = target |.if DUALNUM | lwzux TMP0, RA, BASE | addi PC, PC, 4 | lwz CARG2, 4(RA) | lwzux TMP1, RD, KBASE | checknum cr0, TMP0 | lwz TMP2, -4(PC) | checknum cr1, TMP1 | decode_RD4 TMP2, TMP2 | lwz CARG3, 4(RD) | addis TMP2, TMP2, -(BCBIAS_J*4 >> 16) if (vk) { |->BC_ISEQN_Z: } else { |->BC_ISNEN_Z: } | bne cr0, >7 | bne cr1, >8 | cmpw CARG2, CARG3 |4: |.else if (vk) { |->BC_ISEQN_Z: // Dummy label. } else { |->BC_ISNEN_Z: // Dummy label. } | lwzx TMP0, BASE, RA | addi PC, PC, 4 | lfdx f0, BASE, RA | lwz TMP2, -4(PC) | lfdx f1, KBASE, RD | decode_RD4 TMP2, TMP2 | checknum TMP0 | addis TMP2, TMP2, -(BCBIAS_J*4 >> 16) | bge >3 | fcmpu cr0, f0, f1 |.endif if (vk) { | bne >1 | add PC, PC, TMP2 |1: |.if not FFI |3: |.endif } else { | beq >2 |1: |.if not FFI |3: |.endif | add PC, PC, TMP2 |2: } | ins_next |.if FFI |3: | cmpwi TMP0, LJ_TCDATA | beq ->vmeta_equal_cd | b <1 |.endif |.if DUALNUM |7: // RA is not an integer. | bge cr0, <3 | // RA is a number. | lfd f0, 0(RA) | blt cr1, >1 | // RA is a number, RD is an integer. | tonum_i f1, CARG3 | b >2 | |8: // RA is an integer, RD is a number. | tonum_i f0, CARG2 |1: | lfd f1, 0(RD) |2: | fcmpu cr0, f0, f1 | b <4 |.endif break; case BC_ISEQP: case BC_ISNEP: vk = op == BC_ISEQP; | // RA = src*8, RD = primitive_type*8 (~), JMP with RD = target | lwzx TMP0, BASE, RA | srwi TMP1, RD, 3 | lwz TMP2, 0(PC) | not TMP1, TMP1 | addi PC, PC, 4 |.if FFI | cmpwi TMP0, LJ_TCDATA |.endif | sub TMP0, TMP0, TMP1 |.if FFI | beq ->vmeta_equal_cd |.endif | decode_RD4 TMP2, TMP2 | .gpr64 extsw TMP0, TMP0 | addic TMP0, TMP0, -1 | addis TMP2, TMP2, -(BCBIAS_J*4 >> 16) | subfe TMP1, TMP1, TMP1 if (vk) { | and TMP2, TMP2, TMP1 } else { | andc TMP2, TMP2, TMP1 } | add PC, PC, TMP2 | ins_next break; /* -- Unary test and copy ops ------------------------------------------- */ case BC_ISTC: case BC_ISFC: case BC_IST: case BC_ISF: | // RA = dst*8 or unused, RD = src*8, JMP with RD = target | lwzx TMP0, BASE, RD | lwz INS, 0(PC) | addi PC, PC, 4 if (op == BC_IST || op == BC_ISF) { | .gpr64 extsw TMP0, TMP0 | subfic TMP0, TMP0, LJ_TTRUE | decode_RD4 TMP2, INS | subfe TMP1, TMP1, TMP1 | addis TMP2, TMP2, -(BCBIAS_J*4 >> 16) if (op == BC_IST) { | andc TMP2, TMP2, TMP1 } else { | and TMP2, TMP2, TMP1 } | add PC, PC, TMP2 } else { | li TMP1, LJ_TFALSE | lfdx f0, BASE, RD | cmplw TMP0, TMP1 if (op == BC_ISTC) { | bge >1 } else { | blt >1 } | addis PC, PC, -(BCBIAS_J*4 >> 16) | decode_RD4 TMP2, INS | stfdx f0, BASE, RA | add PC, PC, TMP2 |1: } | ins_next break; case BC_ISTYPE: | // RA = src*8, RD = -type*8 | lwzx TMP0, BASE, RA | srwi TMP1, RD, 3 | ins_next1 |.if not PPE and not GPR64 | add. TMP0, TMP0, TMP1 |.else | neg TMP1, TMP1 | cmpw TMP0, TMP1 |.endif | bne ->vmeta_istype | ins_next2 break; case BC_ISNUM: | // RA = src*8, RD = -(TISNUM-1)*8 | lwzx TMP0, BASE, RA | ins_next1 | checknum TMP0 | bge ->vmeta_istype | ins_next2 break; /* -- Unary ops --------------------------------------------------------- */ case BC_MOV: | // RA = dst*8, RD = src*8 | ins_next1 | lfdx f0, BASE, RD | stfdx f0, BASE, RA | ins_next2 break; case BC_NOT: | // RA = dst*8, RD = src*8 | ins_next1 | lwzx TMP0, BASE, RD | .gpr64 extsw TMP0, TMP0 | subfic TMP1, TMP0, LJ_TTRUE | adde TMP0, TMP0, TMP1 | stwx TMP0, BASE, RA | ins_next2 break; case BC_UNM: | // RA = dst*8, RD = src*8 | lwzux TMP1, RD, BASE | lwz TMP0, 4(RD) | checknum TMP1 |.if DUALNUM | bne >5 |.if GPR64 | lus TMP2, 0x8000 | neg TMP0, TMP0 | cmplw TMP0, TMP2 | beq >4 |.else | nego. TMP0, TMP0 | bso >4 |1: |.endif | ins_next1 | stwux TISNUM, RA, BASE | stw TMP0, 4(RA) |3: | ins_next2 |4: |.if not GPR64 | // Potential overflow. | checkov TMP1, <1 // Ignore unrelated overflow. |.endif | lus TMP1, 0x41e0 // 2^31. | li TMP0, 0 | b >7 |.endif |5: | bge ->vmeta_unm | xoris TMP1, TMP1, 0x8000 |7: | ins_next1 | stwux TMP1, RA, BASE | stw TMP0, 4(RA) |.if DUALNUM | b <3 |.else | ins_next2 |.endif break; case BC_LEN: | // RA = dst*8, RD = src*8 | lwzux TMP0, RD, BASE | lwz CARG1, 4(RD) | checkstr TMP0; bne >2 | lwz CRET1, STR:CARG1->len |1: |.if DUALNUM | ins_next1 | stwux TISNUM, RA, BASE | stw CRET1, 4(RA) |.else | tonum_u f0, CRET1 // Result is a non-negative integer. | ins_next1 | stfdx f0, BASE, RA |.endif | ins_next2 |2: | checktab TMP0; bne ->vmeta_len #if LJ_52 | lwz TAB:TMP2, TAB:CARG1->metatable | cmplwi TAB:TMP2, 0 | bne >9 |3: #endif |->BC_LEN_Z: | bl extern lj_tab_len // (GCtab *t) | // Returns uint32_t (but less than 2^31). | b <1 #if LJ_52 |9: | lbz TMP0, TAB:TMP2->nomm | andix. TMP0, TMP0, 1<vmeta_len #endif break; /* -- Binary ops -------------------------------------------------------- */ |.macro ins_arithpre | // RA = dst*8, RB = src1*8, RC = src2*8 | num_const*8 ||vk = ((int)op - BC_ADDVN) / (BC_ADDNV-BC_ADDVN); ||switch (vk) { ||case 0: | lwzx TMP1, BASE, RB | .if DUALNUM | lwzx TMP2, KBASE, RC | .endif | lfdx f14, BASE, RB | lfdx f15, KBASE, RC | .if DUALNUM | checknum cr0, TMP1 | checknum cr1, TMP2 | crand 4*cr0+lt, 4*cr0+lt, 4*cr1+lt | bge ->vmeta_arith_vn | .else | checknum TMP1; bge ->vmeta_arith_vn | .endif || break; ||case 1: | lwzx TMP1, BASE, RB | .if DUALNUM | lwzx TMP2, KBASE, RC | .endif | lfdx f15, BASE, RB | lfdx f14, KBASE, RC | .if DUALNUM | checknum cr0, TMP1 | checknum cr1, TMP2 | crand 4*cr0+lt, 4*cr0+lt, 4*cr1+lt | bge ->vmeta_arith_nv | .else | checknum TMP1; bge ->vmeta_arith_nv | .endif || break; ||default: | lwzx TMP1, BASE, RB | lwzx TMP2, BASE, RC | lfdx f14, BASE, RB | lfdx f15, BASE, RC | checknum cr0, TMP1 | checknum cr1, TMP2 | crand 4*cr0+lt, 4*cr0+lt, 4*cr1+lt | bge ->vmeta_arith_vv || break; ||} |.endmacro | |.macro ins_arithfallback, ins ||switch (vk) { ||case 0: | ins ->vmeta_arith_vn2 || break; ||case 1: | ins ->vmeta_arith_nv2 || break; ||default: | ins ->vmeta_arith_vv2 || break; ||} |.endmacro | |.macro intmod, a, b, c | bl ->vm_modi |.endmacro | |.macro fpmod, a, b, c |->BC_MODVN_Z: | fdiv FARG1, b, c | // NYI: Use internal implementation of floor. | blex floor // floor(b/c) | fmul a, FARG1, c | fsub a, b, a // b - floor(b/c)*c |.endmacro | |.macro ins_arithfp, fpins | ins_arithpre |.if "fpins" == "fpmod_" | b ->BC_MODVN_Z // Avoid 3 copies. It's slow anyway. |.else | fpins f0, f14, f15 | ins_next1 | stfdx f0, BASE, RA | ins_next2 |.endif |.endmacro | |.macro ins_arithdn, intins, fpins | // RA = dst*8, RB = src1*8, RC = src2*8 | num_const*8 ||vk = ((int)op - BC_ADDVN) / (BC_ADDNV-BC_ADDVN); ||switch (vk) { ||case 0: | lwzux TMP1, RB, BASE | lwzux TMP2, RC, KBASE | lwz CARG1, 4(RB) | checknum cr0, TMP1 | lwz CARG2, 4(RC) || break; ||case 1: | lwzux TMP1, RB, BASE | lwzux TMP2, RC, KBASE | lwz CARG2, 4(RB) | checknum cr0, TMP1 | lwz CARG1, 4(RC) || break; ||default: | lwzux TMP1, RB, BASE | lwzux TMP2, RC, BASE | lwz CARG1, 4(RB) | checknum cr0, TMP1 | lwz CARG2, 4(RC) || break; ||} | checknum cr1, TMP2 | bne >5 | bne cr1, >5 | intins CARG1, CARG1, CARG2 | bso >4 |1: | ins_next1 | stwux TISNUM, RA, BASE | stw CARG1, 4(RA) |2: | ins_next2 |4: // Overflow. | checkov TMP0, <1 // Ignore unrelated overflow. | ins_arithfallback b |5: // FP variant. ||if (vk == 1) { | lfd f15, 0(RB) | crand 4*cr0+lt, 4*cr0+lt, 4*cr1+lt | lfd f14, 0(RC) ||} else { | lfd f14, 0(RB) | crand 4*cr0+lt, 4*cr0+lt, 4*cr1+lt | lfd f15, 0(RC) ||} | ins_arithfallback bge |.if "fpins" == "fpmod_" | b ->BC_MODVN_Z // Avoid 3 copies. It's slow anyway. |.else | fpins f0, f14, f15 | ins_next1 | stfdx f0, BASE, RA | b <2 |.endif |.endmacro | |.macro ins_arith, intins, fpins |.if DUALNUM | ins_arithdn intins, fpins |.else | ins_arithfp fpins |.endif |.endmacro case BC_ADDVN: case BC_ADDNV: case BC_ADDVV: |.if GPR64 |.macro addo32., y, a, b | // Need to check overflow for (a<<32) + (b<<32). | rldicr TMP0, a, 32, 31 | rldicr TMP3, b, 32, 31 | addo. TMP0, TMP0, TMP3 | add y, a, b |.endmacro | ins_arith addo32., fadd |.else | ins_arith addo., fadd |.endif break; case BC_SUBVN: case BC_SUBNV: case BC_SUBVV: |.if GPR64 |.macro subo32., y, a, b | // Need to check overflow for (a<<32) - (b<<32). | rldicr TMP0, a, 32, 31 | rldicr TMP3, b, 32, 31 | subo. TMP0, TMP0, TMP3 | sub y, a, b |.endmacro | ins_arith subo32., fsub |.else | ins_arith subo., fsub |.endif break; case BC_MULVN: case BC_MULNV: case BC_MULVV: | ins_arith mullwo., fmul break; case BC_DIVVN: case BC_DIVNV: case BC_DIVVV: | ins_arithfp fdiv break; case BC_MODVN: | ins_arith intmod, fpmod break; case BC_MODNV: case BC_MODVV: | ins_arith intmod, fpmod_ break; case BC_POW: | // NYI: (partial) integer arithmetic. | lwzx TMP1, BASE, RB | lfdx FARG1, BASE, RB | lwzx TMP2, BASE, RC | lfdx FARG2, BASE, RC | checknum cr0, TMP1 | checknum cr1, TMP2 | crand 4*cr0+lt, 4*cr0+lt, 4*cr1+lt | bge ->vmeta_arith_vv | blex pow | ins_next1 | stfdx FARG1, BASE, RA | ins_next2 break; case BC_CAT: | // RA = dst*8, RB = src_start*8, RC = src_end*8 | sub CARG3, RC, RB | stp BASE, L->base | add CARG2, BASE, RC | mr SAVE0, RB |->BC_CAT_Z: | stw PC, SAVE_PC | mr CARG1, L | srwi CARG3, CARG3, 3 | bl extern lj_meta_cat // (lua_State *L, TValue *top, int left) | // Returns NULL (finished) or TValue * (metamethod). | cmplwi CRET1, 0 | lp BASE, L->base | bne ->vmeta_binop | ins_next1 | lfdx f0, BASE, SAVE0 // Copy result from RB to RA. | stfdx f0, BASE, RA | ins_next2 break; /* -- Constant ops ------------------------------------------------------ */ case BC_KSTR: | // RA = dst*8, RD = str_const*8 (~) | srwi TMP1, RD, 1 | subfic TMP1, TMP1, -4 | ins_next1 | lwzx TMP0, KBASE, TMP1 // KBASE-4-str_const*4 | li TMP2, LJ_TSTR | stwux TMP2, RA, BASE | stw TMP0, 4(RA) | ins_next2 break; case BC_KCDATA: |.if FFI | // RA = dst*8, RD = cdata_const*8 (~) | srwi TMP1, RD, 1 | subfic TMP1, TMP1, -4 | ins_next1 | lwzx TMP0, KBASE, TMP1 // KBASE-4-cdata_const*4 | li TMP2, LJ_TCDATA | stwux TMP2, RA, BASE | stw TMP0, 4(RA) | ins_next2 |.endif break; case BC_KSHORT: | // RA = dst*8, RD = int16_literal*8 |.if DUALNUM | slwi RD, RD, 13 | srawi RD, RD, 16 | ins_next1 | stwux TISNUM, RA, BASE | stw RD, 4(RA) | ins_next2 |.else | // The soft-float approach is faster. | slwi RD, RD, 13 | srawi TMP1, RD, 31 | xor TMP2, TMP1, RD | sub TMP2, TMP2, TMP1 // TMP2 = abs(x) | cntlzw TMP3, TMP2 | subfic TMP1, TMP3, 0x40d // TMP1 = exponent-1 | slw TMP2, TMP2, TMP3 // TMP2 = left aligned mantissa | subfic TMP3, RD, 0 | slwi TMP1, TMP1, 20 | rlwimi RD, TMP2, 21, 1, 31 // hi = sign(x) | (mantissa>>11) | subfe TMP0, TMP0, TMP0 | add RD, RD, TMP1 // hi = hi + exponent-1 | and RD, RD, TMP0 // hi = x == 0 ? 0 : hi | ins_next1 | stwux RD, RA, BASE | stw ZERO, 4(RA) | ins_next2 |.endif break; case BC_KNUM: | // RA = dst*8, RD = num_const*8 | ins_next1 | lfdx f0, KBASE, RD | stfdx f0, BASE, RA | ins_next2 break; case BC_KPRI: | // RA = dst*8, RD = primitive_type*8 (~) | srwi TMP1, RD, 3 | not TMP0, TMP1 | ins_next1 | stwx TMP0, BASE, RA | ins_next2 break; case BC_KNIL: | // RA = base*8, RD = end*8 | stwx TISNIL, BASE, RA | addi RA, RA, 8 |1: | stwx TISNIL, BASE, RA | cmpw RA, RD | addi RA, RA, 8 | blt <1 | ins_next_ break; /* -- Upvalue and function ops ------------------------------------------ */ case BC_UGET: | // RA = dst*8, RD = uvnum*8 | lwz LFUNC:RB, FRAME_FUNC(BASE) | srwi RD, RD, 1 | addi RD, RD, offsetof(GCfuncL, uvptr) | lwzx UPVAL:RB, LFUNC:RB, RD | ins_next1 | lwz TMP1, UPVAL:RB->v | lfd f0, 0(TMP1) | stfdx f0, BASE, RA | ins_next2 break; case BC_USETV: | // RA = uvnum*8, RD = src*8 | lwz LFUNC:RB, FRAME_FUNC(BASE) | srwi RA, RA, 1 | addi RA, RA, offsetof(GCfuncL, uvptr) | lfdux f0, RD, BASE | lwzx UPVAL:RB, LFUNC:RB, RA | lbz TMP3, UPVAL:RB->marked | lwz CARG2, UPVAL:RB->v | andix. TMP3, TMP3, LJ_GC_BLACK // isblack(uv) | lbz TMP0, UPVAL:RB->closed | lwz TMP2, 0(RD) | stfd f0, 0(CARG2) | cmplwi cr1, TMP0, 0 | lwz TMP1, 4(RD) | cror 4*cr0+eq, 4*cr0+eq, 4*cr1+eq | subi TMP2, TMP2, (LJ_TNUMX+1) | bne >2 // Upvalue is closed and black? |1: | ins_next | |2: // Check if new value is collectable. | cmplwi TMP2, LJ_TISGCV - (LJ_TNUMX+1) | bge <1 // tvisgcv(v) | lbz TMP3, GCOBJ:TMP1->gch.marked | andix. TMP3, TMP3, LJ_GC_WHITES // iswhite(v) | la CARG1, GG_DISP2G(DISPATCH) | // Crossed a write barrier. Move the barrier forward. | beq <1 | bl extern lj_gc_barrieruv // (global_State *g, TValue *tv) | b <1 break; case BC_USETS: | // RA = uvnum*8, RD = str_const*8 (~) | lwz LFUNC:RB, FRAME_FUNC(BASE) | srwi TMP1, RD, 1 | srwi RA, RA, 1 | subfic TMP1, TMP1, -4 | addi RA, RA, offsetof(GCfuncL, uvptr) | lwzx STR:TMP1, KBASE, TMP1 // KBASE-4-str_const*4 | lwzx UPVAL:RB, LFUNC:RB, RA | lbz TMP3, UPVAL:RB->marked | lwz CARG2, UPVAL:RB->v | andix. TMP3, TMP3, LJ_GC_BLACK // isblack(uv) | lbz TMP3, STR:TMP1->marked | lbz TMP2, UPVAL:RB->closed | li TMP0, LJ_TSTR | stw STR:TMP1, 4(CARG2) | stw TMP0, 0(CARG2) | bne >2 |1: | ins_next | |2: // Check if string is white and ensure upvalue is closed. | andix. TMP3, TMP3, LJ_GC_WHITES // iswhite(str) | cmplwi cr1, TMP2, 0 | cror 4*cr0+eq, 4*cr0+eq, 4*cr1+eq | la CARG1, GG_DISP2G(DISPATCH) | // Crossed a write barrier. Move the barrier forward. | beq <1 | bl extern lj_gc_barrieruv // (global_State *g, TValue *tv) | b <1 break; case BC_USETN: | // RA = uvnum*8, RD = num_const*8 | lwz LFUNC:RB, FRAME_FUNC(BASE) | srwi RA, RA, 1 | addi RA, RA, offsetof(GCfuncL, uvptr) | lfdx f0, KBASE, RD | lwzx UPVAL:RB, LFUNC:RB, RA | ins_next1 | lwz TMP1, UPVAL:RB->v | stfd f0, 0(TMP1) | ins_next2 break; case BC_USETP: | // RA = uvnum*8, RD = primitive_type*8 (~) | lwz LFUNC:RB, FRAME_FUNC(BASE) | srwi RA, RA, 1 | srwi TMP0, RD, 3 | addi RA, RA, offsetof(GCfuncL, uvptr) | not TMP0, TMP0 | lwzx UPVAL:RB, LFUNC:RB, RA | ins_next1 | lwz TMP1, UPVAL:RB->v | stw TMP0, 0(TMP1) | ins_next2 break; case BC_UCLO: | // RA = level*8, RD = target | lwz TMP1, L->openupval | branch_RD // Do this first since RD is not saved. | stp BASE, L->base | cmplwi TMP1, 0 | mr CARG1, L | beq >1 | add CARG2, BASE, RA | bl extern lj_func_closeuv // (lua_State *L, TValue *level) | lp BASE, L->base |1: | ins_next break; case BC_FNEW: | // RA = dst*8, RD = proto_const*8 (~) (holding function prototype) | srwi TMP1, RD, 1 | stp BASE, L->base | subfic TMP1, TMP1, -4 | stw PC, SAVE_PC | lwzx CARG2, KBASE, TMP1 // KBASE-4-tab_const*4 | mr CARG1, L | lwz CARG3, FRAME_FUNC(BASE) | // (lua_State *L, GCproto *pt, GCfuncL *parent) | bl extern lj_func_newL_gc | // Returns GCfuncL *. | lp BASE, L->base | li TMP0, LJ_TFUNC | stwux TMP0, RA, BASE | stw LFUNC:CRET1, 4(RA) | ins_next break; /* -- Table ops --------------------------------------------------------- */ case BC_TNEW: case BC_TDUP: | // RA = dst*8, RD = (hbits|asize)*8 | tab_const*8 (~) | lwz TMP0, DISPATCH_GL(gc.total)(DISPATCH) | mr CARG1, L | lwz TMP1, DISPATCH_GL(gc.threshold)(DISPATCH) | stp BASE, L->base | cmplw TMP0, TMP1 | stw PC, SAVE_PC | bge >5 |1: if (op == BC_TNEW) { | rlwinm CARG2, RD, 29, 21, 31 | rlwinm CARG3, RD, 18, 27, 31 | cmpwi CARG2, 0x7ff; beq >3 |2: | bl extern lj_tab_new // (lua_State *L, int32_t asize, uint32_t hbits) | // Returns Table *. } else { | srwi TMP1, RD, 1 | subfic TMP1, TMP1, -4 | lwzx CARG2, KBASE, TMP1 // KBASE-4-tab_const*4 | bl extern lj_tab_dup // (lua_State *L, Table *kt) | // Returns Table *. } | lp BASE, L->base | li TMP0, LJ_TTAB | stwux TMP0, RA, BASE | stw TAB:CRET1, 4(RA) | ins_next if (op == BC_TNEW) { |3: | li CARG2, 0x801 | b <2 } |5: | mr SAVE0, RD | bl extern lj_gc_step_fixtop // (lua_State *L) | mr RD, SAVE0 | mr CARG1, L | b <1 break; case BC_GGET: | // RA = dst*8, RD = str_const*8 (~) case BC_GSET: | // RA = src*8, RD = str_const*8 (~) | lwz LFUNC:TMP2, FRAME_FUNC(BASE) | srwi TMP1, RD, 1 | lwz TAB:RB, LFUNC:TMP2->env | subfic TMP1, TMP1, -4 | lwzx STR:RC, KBASE, TMP1 // KBASE-4-str_const*4 if (op == BC_GGET) { | b ->BC_TGETS_Z } else { | b ->BC_TSETS_Z } break; case BC_TGETV: | // RA = dst*8, RB = table*8, RC = key*8 | lwzux CARG1, RB, BASE | lwzux CARG2, RC, BASE | lwz TAB:RB, 4(RB) |.if DUALNUM | lwz RC, 4(RC) |.else | lfd f0, 0(RC) |.endif | checktab CARG1 | checknum cr1, CARG2 | bne ->vmeta_tgetv |.if DUALNUM | lwz TMP0, TAB:RB->asize | bne cr1, >5 | lwz TMP1, TAB:RB->array | cmplw TMP0, RC | slwi TMP2, RC, 3 |.else | bge cr1, >5 | // Convert number key to integer, check for integerness and range. | fctiwz f1, f0 | fadd f2, f0, TOBIT | stfd f1, TMPD | lwz TMP0, TAB:RB->asize | fsub f2, f2, TOBIT | lwz TMP2, TMPD_LO | lwz TMP1, TAB:RB->array | fcmpu cr1, f0, f2 | cmplw cr0, TMP0, TMP2 | crand 4*cr0+gt, 4*cr0+gt, 4*cr1+eq | slwi TMP2, TMP2, 3 |.endif | ble ->vmeta_tgetv // Integer key and in array part? | lwzx TMP0, TMP1, TMP2 | lfdx f14, TMP1, TMP2 | checknil TMP0; beq >2 |1: | ins_next1 | stfdx f14, BASE, RA | ins_next2 | |2: // Check for __index if table value is nil. | lwz TAB:TMP2, TAB:RB->metatable | cmplwi TAB:TMP2, 0 | beq <1 // No metatable: done. | lbz TMP0, TAB:TMP2->nomm | andix. TMP0, TMP0, 1<vmeta_tgetv | |5: | checkstr CARG2; bne ->vmeta_tgetv |.if not DUALNUM | lwz STR:RC, 4(RC) |.endif | b ->BC_TGETS_Z // String key? break; case BC_TGETS: | // RA = dst*8, RB = table*8, RC = str_const*8 (~) | lwzux CARG1, RB, BASE | srwi TMP1, RC, 1 | lwz TAB:RB, 4(RB) | subfic TMP1, TMP1, -4 | checktab CARG1 | lwzx STR:RC, KBASE, TMP1 // KBASE-4-str_const*4 | bne ->vmeta_tgets1 |->BC_TGETS_Z: | // TAB:RB = GCtab *, STR:RC = GCstr *, RA = dst*8 | lwz TMP0, TAB:RB->hmask | lwz TMP1, STR:RC->hash | lwz NODE:TMP2, TAB:RB->node | and TMP1, TMP1, TMP0 // idx = str->hash & tab->hmask | slwi TMP0, TMP1, 5 | slwi TMP1, TMP1, 3 | sub TMP1, TMP0, TMP1 | add NODE:TMP2, NODE:TMP2, TMP1 // node = tab->node + (idx*32-idx*8) |1: | lwz CARG1, NODE:TMP2->key | lwz TMP0, 4+offsetof(Node, key)(NODE:TMP2) | lwz CARG2, NODE:TMP2->val | lwz TMP1, 4+offsetof(Node, val)(NODE:TMP2) | checkstr CARG1; bne >4 | cmpw TMP0, STR:RC; bne >4 | checknil CARG2; beq >5 // Key found, but nil value? |3: | stwux CARG2, RA, BASE | stw TMP1, 4(RA) | ins_next | |4: // Follow hash chain. | lwz NODE:TMP2, NODE:TMP2->next | cmplwi NODE:TMP2, 0 | bne <1 | // End of hash chain: key not found, nil result. | li CARG2, LJ_TNIL | |5: // Check for __index if table value is nil. | lwz TAB:TMP2, TAB:RB->metatable | cmplwi TAB:TMP2, 0 | beq <3 // No metatable: done. | lbz TMP0, TAB:TMP2->nomm | andix. TMP0, TMP0, 1<vmeta_tgets break; case BC_TGETB: | // RA = dst*8, RB = table*8, RC = index*8 | lwzux CARG1, RB, BASE | srwi TMP0, RC, 3 | lwz TAB:RB, 4(RB) | checktab CARG1; bne ->vmeta_tgetb | lwz TMP1, TAB:RB->asize | lwz TMP2, TAB:RB->array | cmplw TMP0, TMP1; bge ->vmeta_tgetb | lwzx TMP1, TMP2, RC | lfdx f0, TMP2, RC | checknil TMP1; beq >5 |1: | ins_next1 | stfdx f0, BASE, RA | ins_next2 | |5: // Check for __index if table value is nil. | lwz TAB:TMP2, TAB:RB->metatable | cmplwi TAB:TMP2, 0 | beq <1 // No metatable: done. | lbz TMP2, TAB:TMP2->nomm | andix. TMP2, TMP2, 1<vmeta_tgetb // Caveat: preserve TMP0! break; case BC_TGETR: | // RA = dst*8, RB = table*8, RC = key*8 | add RB, BASE, RB | lwz TAB:CARG1, 4(RB) |.if DUALNUM | add RC, BASE, RC | lwz TMP0, TAB:CARG1->asize | lwz CARG2, 4(RC) | lwz TMP1, TAB:CARG1->array |.else | lfdx f0, BASE, RC | lwz TMP0, TAB:CARG1->asize | toint CARG2, f0 | lwz TMP1, TAB:CARG1->array |.endif | cmplw TMP0, CARG2 | slwi TMP2, CARG2, 3 | ble ->vmeta_tgetr // In array part? | lfdx f14, TMP1, TMP2 |->BC_TGETR_Z: | ins_next1 | stfdx f14, BASE, RA | ins_next2 break; case BC_TSETV: | // RA = src*8, RB = table*8, RC = key*8 | lwzux CARG1, RB, BASE | lwzux CARG2, RC, BASE | lwz TAB:RB, 4(RB) |.if DUALNUM | lwz RC, 4(RC) |.else | lfd f0, 0(RC) |.endif | checktab CARG1 | checknum cr1, CARG2 | bne ->vmeta_tsetv |.if DUALNUM | lwz TMP0, TAB:RB->asize | bne cr1, >5 | lwz TMP1, TAB:RB->array | cmplw TMP0, RC | slwi TMP0, RC, 3 |.else | bge cr1, >5 | // Convert number key to integer, check for integerness and range. | fctiwz f1, f0 | fadd f2, f0, TOBIT | stfd f1, TMPD | lwz TMP0, TAB:RB->asize | fsub f2, f2, TOBIT | lwz TMP2, TMPD_LO | lwz TMP1, TAB:RB->array | fcmpu cr1, f0, f2 | cmplw cr0, TMP0, TMP2 | crand 4*cr0+gt, 4*cr0+gt, 4*cr1+eq | slwi TMP0, TMP2, 3 |.endif | ble ->vmeta_tsetv // Integer key and in array part? | lwzx TMP2, TMP1, TMP0 | lbz TMP3, TAB:RB->marked | lfdx f14, BASE, RA | checknil TMP2; beq >3 |1: | andix. TMP2, TMP3, LJ_GC_BLACK // isblack(table) | stfdx f14, TMP1, TMP0 | bne >7 |2: | ins_next | |3: // Check for __newindex if previous value is nil. | lwz TAB:TMP2, TAB:RB->metatable | cmplwi TAB:TMP2, 0 | beq <1 // No metatable: done. | lbz TMP2, TAB:TMP2->nomm | andix. TMP2, TMP2, 1<vmeta_tsetv | |5: | checkstr CARG2; bne ->vmeta_tsetv |.if not DUALNUM | lwz STR:RC, 4(RC) |.endif | b ->BC_TSETS_Z // String key? | |7: // Possible table write barrier for the value. Skip valiswhite check. | barrierback TAB:RB, TMP3, TMP0 | b <2 break; case BC_TSETS: | // RA = src*8, RB = table*8, RC = str_const*8 (~) | lwzux CARG1, RB, BASE | srwi TMP1, RC, 1 | lwz TAB:RB, 4(RB) | subfic TMP1, TMP1, -4 | checktab CARG1 | lwzx STR:RC, KBASE, TMP1 // KBASE-4-str_const*4 | bne ->vmeta_tsets1 |->BC_TSETS_Z: | // TAB:RB = GCtab *, STR:RC = GCstr *, RA = src*8 | lwz TMP0, TAB:RB->hmask | lwz TMP1, STR:RC->hash | lwz NODE:TMP2, TAB:RB->node | stb ZERO, TAB:RB->nomm // Clear metamethod cache. | and TMP1, TMP1, TMP0 // idx = str->hash & tab->hmask | lfdx f14, BASE, RA | slwi TMP0, TMP1, 5 | slwi TMP1, TMP1, 3 | sub TMP1, TMP0, TMP1 | lbz TMP3, TAB:RB->marked | add NODE:TMP2, NODE:TMP2, TMP1 // node = tab->node + (idx*32-idx*8) |1: | lwz CARG1, NODE:TMP2->key | lwz TMP0, 4+offsetof(Node, key)(NODE:TMP2) | lwz CARG2, NODE:TMP2->val | lwz NODE:TMP1, NODE:TMP2->next | checkstr CARG1; bne >5 | cmpw TMP0, STR:RC; bne >5 | checknil CARG2; beq >4 // Key found, but nil value? |2: | andix. TMP0, TMP3, LJ_GC_BLACK // isblack(table) | stfd f14, NODE:TMP2->val | bne >7 |3: | ins_next | |4: // Check for __newindex if previous value is nil. | lwz TAB:TMP1, TAB:RB->metatable | cmplwi TAB:TMP1, 0 | beq <2 // No metatable: done. | lbz TMP0, TAB:TMP1->nomm | andix. TMP0, TMP0, 1<vmeta_tsets | |5: // Follow hash chain. | cmplwi NODE:TMP1, 0 | mr NODE:TMP2, NODE:TMP1 | bne <1 | // End of hash chain: key not found, add a new one. | | // But check for __newindex first. | lwz TAB:TMP1, TAB:RB->metatable | la CARG3, DISPATCH_GL(tmptv)(DISPATCH) | stw PC, SAVE_PC | mr CARG1, L | cmplwi TAB:TMP1, 0 | stp BASE, L->base | beq >6 // No metatable: continue. | lbz TMP0, TAB:TMP1->nomm | andix. TMP0, TMP0, 1<vmeta_tsets // 'no __newindex' flag NOT set: check. |6: | li TMP0, LJ_TSTR | stw STR:RC, 4(CARG3) | mr CARG2, TAB:RB | stw TMP0, 0(CARG3) | bl extern lj_tab_newkey // (lua_State *L, GCtab *t, TValue *k) | // Returns TValue *. | lp BASE, L->base | stfd f14, 0(CRET1) | b <3 // No 2nd write barrier needed. | |7: // Possible table write barrier for the value. Skip valiswhite check. | barrierback TAB:RB, TMP3, TMP0 | b <3 break; case BC_TSETB: | // RA = src*8, RB = table*8, RC = index*8 | lwzux CARG1, RB, BASE | srwi TMP0, RC, 3 | lwz TAB:RB, 4(RB) | checktab CARG1; bne ->vmeta_tsetb | lwz TMP1, TAB:RB->asize | lwz TMP2, TAB:RB->array | lbz TMP3, TAB:RB->marked | cmplw TMP0, TMP1 | lfdx f14, BASE, RA | bge ->vmeta_tsetb | lwzx TMP1, TMP2, RC | checknil TMP1; beq >5 |1: | andix. TMP0, TMP3, LJ_GC_BLACK // isblack(table) | stfdx f14, TMP2, RC | bne >7 |2: | ins_next | |5: // Check for __newindex if previous value is nil. | lwz TAB:TMP1, TAB:RB->metatable | cmplwi TAB:TMP1, 0 | beq <1 // No metatable: done. | lbz TMP1, TAB:TMP1->nomm | andix. TMP1, TMP1, 1<vmeta_tsetb // Caveat: preserve TMP0! | |7: // Possible table write barrier for the value. Skip valiswhite check. | barrierback TAB:RB, TMP3, TMP0 | b <2 break; case BC_TSETR: | // RA = dst*8, RB = table*8, RC = key*8 | add RB, BASE, RB | lwz TAB:CARG2, 4(RB) |.if DUALNUM | add RC, BASE, RC | lbz TMP3, TAB:CARG2->marked | lwz TMP0, TAB:CARG2->asize | lwz CARG3, 4(RC) | lwz TMP1, TAB:CARG2->array |.else | lfdx f0, BASE, RC | lbz TMP3, TAB:CARG2->marked | lwz TMP0, TAB:CARG2->asize | toint CARG3, f0 | lwz TMP1, TAB:CARG2->array |.endif | andix. TMP2, TMP3, LJ_GC_BLACK // isblack(table) | bne >7 |2: | cmplw TMP0, CARG3 | slwi TMP2, CARG3, 3 | lfdx f14, BASE, RA | ble ->vmeta_tsetr // In array part? | ins_next1 | stfdx f14, TMP1, TMP2 | ins_next2 | |7: // Possible table write barrier for the value. Skip valiswhite check. | barrierback TAB:CARG2, TMP3, TMP2 | b <2 break; case BC_TSETM: | // RA = base*8 (table at base-1), RD = num_const*8 (start index) | add RA, BASE, RA |1: | add TMP3, KBASE, RD | lwz TAB:CARG2, -4(RA) // Guaranteed to be a table. | addic. TMP0, MULTRES, -8 | lwz TMP3, 4(TMP3) // Integer constant is in lo-word. | srwi CARG3, TMP0, 3 | beq >4 // Nothing to copy? | add CARG3, CARG3, TMP3 | lwz TMP2, TAB:CARG2->asize | slwi TMP1, TMP3, 3 | lbz TMP3, TAB:CARG2->marked | cmplw CARG3, TMP2 | add TMP2, RA, TMP0 | lwz TMP0, TAB:CARG2->array | bgt >5 | add TMP1, TMP1, TMP0 | andix. TMP0, TMP3, LJ_GC_BLACK // isblack(table) |3: // Copy result slots to table. | lfd f0, 0(RA) | addi RA, RA, 8 | cmpw cr1, RA, TMP2 | stfd f0, 0(TMP1) | addi TMP1, TMP1, 8 | blt cr1, <3 | bne >7 |4: | ins_next | |5: // Need to resize array part. | stp BASE, L->base | mr CARG1, L | stw PC, SAVE_PC | mr SAVE0, RD | bl extern lj_tab_reasize // (lua_State *L, GCtab *t, int nasize) | // Must not reallocate the stack. | mr RD, SAVE0 | b <1 | |7: // Possible table write barrier for any value. Skip valiswhite check. | barrierback TAB:CARG2, TMP3, TMP0 | b <4 break; /* -- Calls and vararg handling ----------------------------------------- */ case BC_CALLM: | // RA = base*8, (RB = (nresults+1)*8,) RC = extra_nargs*8 | add NARGS8:RC, NARGS8:RC, MULTRES | // Fall through. Assumes BC_CALL follows. break; case BC_CALL: | // RA = base*8, (RB = (nresults+1)*8,) RC = (nargs+1)*8 | mr TMP2, BASE | lwzux TMP0, BASE, RA | lwz LFUNC:RB, 4(BASE) | subi NARGS8:RC, NARGS8:RC, 8 | addi BASE, BASE, 8 | checkfunc TMP0; bne ->vmeta_call | ins_call break; case BC_CALLMT: | // RA = base*8, (RB = 0,) RC = extra_nargs*8 | add NARGS8:RC, NARGS8:RC, MULTRES | // Fall through. Assumes BC_CALLT follows. break; case BC_CALLT: | // RA = base*8, (RB = 0,) RC = (nargs+1)*8 | lwzux TMP0, RA, BASE | lwz LFUNC:RB, 4(RA) | subi NARGS8:RC, NARGS8:RC, 8 | lwz TMP1, FRAME_PC(BASE) | checkfunc TMP0 | addi RA, RA, 8 | bne ->vmeta_callt |->BC_CALLT_Z: | andix. TMP0, TMP1, FRAME_TYPE // Caveat: preserve cr0 until the crand. | lbz TMP3, LFUNC:RB->ffid | xori TMP2, TMP1, FRAME_VARG | cmplwi cr1, NARGS8:RC, 0 | bne >7 |1: | stw LFUNC:RB, FRAME_FUNC(BASE) // Copy function down, but keep PC. | li TMP2, 0 | cmplwi cr7, TMP3, 1 // (> FF_C) Calling a fast function? | beq cr1, >3 |2: | addi TMP3, TMP2, 8 | lfdx f0, RA, TMP2 | cmplw cr1, TMP3, NARGS8:RC | stfdx f0, BASE, TMP2 | mr TMP2, TMP3 | bne cr1, <2 |3: | crand 4*cr0+eq, 4*cr0+eq, 4*cr7+gt | beq >5 |4: | ins_callt | |5: // Tailcall to a fast function with a Lua frame below. | lwz INS, -4(TMP1) | decode_RA8 RA, INS | sub TMP1, BASE, RA | lwz LFUNC:TMP1, FRAME_FUNC-8(TMP1) | lwz TMP1, LFUNC:TMP1->pc | lwz KBASE, PC2PROTO(k)(TMP1) // Need to prepare KBASE. | b <4 | |7: // Tailcall from a vararg function. | andix. TMP0, TMP2, FRAME_TYPEP | bne <1 // Vararg frame below? | sub BASE, BASE, TMP2 // Relocate BASE down. | lwz TMP1, FRAME_PC(BASE) | andix. TMP0, TMP1, FRAME_TYPE | b <1 break; case BC_ITERC: | // RA = base*8, (RB = (nresults+1)*8, RC = (nargs+1)*8 ((2+1)*8)) | mr TMP2, BASE | add BASE, BASE, RA | lwz TMP1, -24(BASE) | lwz LFUNC:RB, -20(BASE) | lfd f1, -8(BASE) | lfd f0, -16(BASE) | stw TMP1, 0(BASE) // Copy callable. | stw LFUNC:RB, 4(BASE) | checkfunc TMP1 | stfd f1, 16(BASE) // Copy control var. | li NARGS8:RC, 16 // Iterators get 2 arguments. | stfdu f0, 8(BASE) // Copy state. | bne ->vmeta_call | ins_call break; case BC_ITERN: | // RA = base*8, (RB = (nresults+1)*8, RC = (nargs+1)*8 (2+1)*8) |.if JIT | // NYI: add hotloop, record BC_ITERN. |.endif | add RA, BASE, RA | lwz TAB:RB, -12(RA) | lwz RC, -4(RA) // Get index from control var. | lwz TMP0, TAB:RB->asize | lwz TMP1, TAB:RB->array | addi PC, PC, 4 |1: // Traverse array part. | cmplw RC, TMP0 | slwi TMP3, RC, 3 | bge >5 // Index points after array part? | lwzx TMP2, TMP1, TMP3 | lfdx f0, TMP1, TMP3 | checknil TMP2 | lwz INS, -4(PC) | beq >4 |.if DUALNUM | stw RC, 4(RA) | stw TISNUM, 0(RA) |.else | tonum_u f1, RC |.endif | addi RC, RC, 1 | addis TMP3, PC, -(BCBIAS_J*4 >> 16) | stfd f0, 8(RA) | decode_RD4 TMP1, INS | stw RC, -4(RA) // Update control var. | add PC, TMP1, TMP3 |.if not DUALNUM | stfd f1, 0(RA) |.endif |3: | ins_next | |4: // Skip holes in array part. | addi RC, RC, 1 | b <1 | |5: // Traverse hash part. | lwz TMP1, TAB:RB->hmask | sub RC, RC, TMP0 | lwz TMP2, TAB:RB->node |6: | cmplw RC, TMP1 // End of iteration? Branch to ITERL+1. | slwi TMP3, RC, 5 | bgty <3 | slwi RB, RC, 3 | sub TMP3, TMP3, RB | lwzx RB, TMP2, TMP3 | lfdx f0, TMP2, TMP3 | add NODE:TMP3, TMP2, TMP3 | checknil RB | lwz INS, -4(PC) | beq >7 | lfd f1, NODE:TMP3->key | addis TMP2, PC, -(BCBIAS_J*4 >> 16) | stfd f0, 8(RA) | add RC, RC, TMP0 | decode_RD4 TMP1, INS | stfd f1, 0(RA) | addi RC, RC, 1 | add PC, TMP1, TMP2 | stw RC, -4(RA) // Update control var. | b <3 | |7: // Skip holes in hash part. | addi RC, RC, 1 | b <6 break; case BC_ISNEXT: | // RA = base*8, RD = target (points to ITERN) | add RA, BASE, RA | lwz TMP0, -24(RA) | lwz CFUNC:TMP1, -20(RA) | lwz TMP2, -16(RA) | lwz TMP3, -8(RA) | cmpwi cr0, TMP2, LJ_TTAB | cmpwi cr1, TMP0, LJ_TFUNC | cmpwi cr6, TMP3, LJ_TNIL | bne cr1, >5 | lbz TMP1, CFUNC:TMP1->ffid | crand 4*cr0+eq, 4*cr0+eq, 4*cr6+eq | cmpwi cr7, TMP1, FF_next_N | srwi TMP0, RD, 1 | crand 4*cr0+eq, 4*cr0+eq, 4*cr7+eq | add TMP3, PC, TMP0 | bne cr0, >5 | lus TMP1, 0xfffe | ori TMP1, TMP1, 0x7fff | stw ZERO, -4(RA) // Initialize control var. | stw TMP1, -8(RA) | addis PC, TMP3, -(BCBIAS_J*4 >> 16) |1: | ins_next |5: // Despecialize bytecode if any of the checks fail. | li TMP0, BC_JMP | li TMP1, BC_ITERC | stb TMP0, -1(PC) | addis PC, TMP3, -(BCBIAS_J*4 >> 16) | stb TMP1, 3(PC) | b <1 break; case BC_VARG: | // RA = base*8, RB = (nresults+1)*8, RC = numparams*8 | lwz TMP0, FRAME_PC(BASE) | add RC, BASE, RC | add RA, BASE, RA | addi RC, RC, FRAME_VARG | add TMP2, RA, RB | subi TMP3, BASE, 8 // TMP3 = vtop | sub RC, RC, TMP0 // RC = vbase | // Note: RC may now be even _above_ BASE if nargs was < numparams. | cmplwi cr1, RB, 0 |.if PPE | sub TMP1, TMP3, RC | cmpwi TMP1, 0 |.else | sub. TMP1, TMP3, RC |.endif | beq cr1, >5 // Copy all varargs? | subi TMP2, TMP2, 16 | ble >2 // No vararg slots? |1: // Copy vararg slots to destination slots. | lfd f0, 0(RC) | addi RC, RC, 8 | stfd f0, 0(RA) | cmplw RA, TMP2 | cmplw cr1, RC, TMP3 | bge >3 // All destination slots filled? | addi RA, RA, 8 | blt cr1, <1 // More vararg slots? |2: // Fill up remainder with nil. | stw TISNIL, 0(RA) | cmplw RA, TMP2 | addi RA, RA, 8 | blt <2 |3: | ins_next | |5: // Copy all varargs. | lwz TMP0, L->maxstack | li MULTRES, 8 // MULTRES = (0+1)*8 | bley <3 // No vararg slots? | add TMP2, RA, TMP1 | cmplw TMP2, TMP0 | addi MULTRES, TMP1, 8 | bgt >7 |6: | lfd f0, 0(RC) | addi RC, RC, 8 | stfd f0, 0(RA) | cmplw RC, TMP3 | addi RA, RA, 8 | blt <6 // More vararg slots? | b <3 | |7: // Grow stack for varargs. | mr CARG1, L | stp RA, L->top | sub SAVE0, RC, BASE // Need delta, because BASE may change. | stp BASE, L->base | sub RA, RA, BASE | stw PC, SAVE_PC | srwi CARG2, TMP1, 3 | bl extern lj_state_growstack // (lua_State *L, int n) | lp BASE, L->base | add RA, BASE, RA | add RC, BASE, SAVE0 | subi TMP3, BASE, 8 | b <6 break; /* -- Returns ----------------------------------------------------------- */ case BC_RETM: | // RA = results*8, RD = extra_nresults*8 | add RD, RD, MULTRES // MULTRES >= 8, so RD >= 8. | // Fall through. Assumes BC_RET follows. break; case BC_RET: | // RA = results*8, RD = (nresults+1)*8 | lwz PC, FRAME_PC(BASE) | add RA, BASE, RA | mr MULTRES, RD |1: | andix. TMP0, PC, FRAME_TYPE | xori TMP1, PC, FRAME_VARG | bne ->BC_RETV_Z | |->BC_RET_Z: | // BASE = base, RA = resultptr, RD = (nresults+1)*8, PC = return | lwz INS, -4(PC) | cmpwi RD, 8 | subi TMP2, BASE, 8 | subi RC, RD, 8 | decode_RB8 RB, INS | beq >3 | li TMP1, 0 |2: | addi TMP3, TMP1, 8 | lfdx f0, RA, TMP1 | cmpw TMP3, RC | stfdx f0, TMP2, TMP1 | beq >3 | addi TMP1, TMP3, 8 | lfdx f1, RA, TMP3 | cmpw TMP1, RC | stfdx f1, TMP2, TMP3 | bne <2 |3: |5: | cmplw RB, RD | decode_RA8 RA, INS | bgt >6 | sub BASE, TMP2, RA | lwz LFUNC:TMP1, FRAME_FUNC(BASE) | ins_next1 | lwz TMP1, LFUNC:TMP1->pc | lwz KBASE, PC2PROTO(k)(TMP1) | ins_next2 | |6: // Fill up results with nil. | subi TMP1, RD, 8 | addi RD, RD, 8 | stwx TISNIL, TMP2, TMP1 | b <5 | |->BC_RETV_Z: // Non-standard return case. | andix. TMP2, TMP1, FRAME_TYPEP | bne ->vm_return | // Return from vararg function: relocate BASE down. | sub BASE, BASE, TMP1 | lwz PC, FRAME_PC(BASE) | b <1 break; case BC_RET0: case BC_RET1: | // RA = results*8, RD = (nresults+1)*8 | lwz PC, FRAME_PC(BASE) | add RA, BASE, RA | mr MULTRES, RD | andix. TMP0, PC, FRAME_TYPE | xori TMP1, PC, FRAME_VARG | bney ->BC_RETV_Z | | lwz INS, -4(PC) | subi TMP2, BASE, 8 | decode_RB8 RB, INS if (op == BC_RET1) { | lfd f0, 0(RA) | stfd f0, 0(TMP2) } |5: | cmplw RB, RD | decode_RA8 RA, INS | bgt >6 | sub BASE, TMP2, RA | lwz LFUNC:TMP1, FRAME_FUNC(BASE) | ins_next1 | lwz TMP1, LFUNC:TMP1->pc | lwz KBASE, PC2PROTO(k)(TMP1) | ins_next2 | |6: // Fill up results with nil. | subi TMP1, RD, 8 | addi RD, RD, 8 | stwx TISNIL, TMP2, TMP1 | b <5 break; /* -- Loops and branches ------------------------------------------------ */ case BC_FORL: |.if JIT | hotloop |.endif | // Fall through. Assumes BC_IFORL follows. break; case BC_JFORI: case BC_JFORL: #if !LJ_HASJIT break; #endif case BC_FORI: case BC_IFORL: | // RA = base*8, RD = target (after end of loop or start of loop) vk = (op == BC_IFORL || op == BC_JFORL); |.if DUALNUM | // Integer loop. | lwzux TMP1, RA, BASE | lwz CARG1, FORL_IDX*8+4(RA) | cmplw cr0, TMP1, TISNUM if (vk) { | lwz CARG3, FORL_STEP*8+4(RA) | bne >9 |.if GPR64 | // Need to check overflow for (a<<32) + (b<<32). | rldicr TMP0, CARG1, 32, 31 | rldicr TMP2, CARG3, 32, 31 | add CARG1, CARG1, CARG3 | addo. TMP0, TMP0, TMP2 |.else | addo. CARG1, CARG1, CARG3 |.endif | cmpwi cr6, CARG3, 0 | lwz CARG2, FORL_STOP*8+4(RA) | bso >6 |4: | stw CARG1, FORL_IDX*8+4(RA) } else { | lwz TMP3, FORL_STEP*8(RA) | lwz CARG3, FORL_STEP*8+4(RA) | lwz TMP2, FORL_STOP*8(RA) | lwz CARG2, FORL_STOP*8+4(RA) | cmplw cr7, TMP3, TISNUM | cmplw cr1, TMP2, TISNUM | crand 4*cr0+eq, 4*cr0+eq, 4*cr7+eq | crand 4*cr0+eq, 4*cr0+eq, 4*cr1+eq | cmpwi cr6, CARG3, 0 | bne >9 } | blt cr6, >5 | cmpw CARG1, CARG2 |1: | stw TISNUM, FORL_EXT*8(RA) if (op != BC_JFORL) { | srwi RD, RD, 1 } | stw CARG1, FORL_EXT*8+4(RA) if (op != BC_JFORL) { | add RD, PC, RD } if (op == BC_FORI) { | bgt >3 // See FP loop below. } else if (op == BC_JFORI) { | addis PC, RD, -(BCBIAS_J*4 >> 16) | bley >7 } else if (op == BC_IFORL) { | bgt >2 | addis PC, RD, -(BCBIAS_J*4 >> 16) } else { | bley =>BC_JLOOP } |2: | ins_next |5: // Invert check for negative step. | cmpw CARG2, CARG1 | b <1 if (vk) { |6: // Potential overflow. | checkov TMP0, <4 // Ignore unrelated overflow. | b <2 } |.endif if (vk) { |.if DUALNUM |9: // FP loop. | lfd f1, FORL_IDX*8(RA) |.else | lfdux f1, RA, BASE |.endif | lfd f3, FORL_STEP*8(RA) | lfd f2, FORL_STOP*8(RA) | lwz TMP3, FORL_STEP*8(RA) | fadd f1, f1, f3 | stfd f1, FORL_IDX*8(RA) } else { |.if DUALNUM |9: // FP loop. |.else | lwzux TMP1, RA, BASE | lwz TMP3, FORL_STEP*8(RA) | lwz TMP2, FORL_STOP*8(RA) | cmplw cr0, TMP1, TISNUM | cmplw cr7, TMP3, TISNUM | cmplw cr1, TMP2, TISNUM |.endif | lfd f1, FORL_IDX*8(RA) | crand 4*cr0+lt, 4*cr0+lt, 4*cr7+lt | crand 4*cr0+lt, 4*cr0+lt, 4*cr1+lt | lfd f2, FORL_STOP*8(RA) | bge ->vmeta_for } | cmpwi cr6, TMP3, 0 if (op != BC_JFORL) { | srwi RD, RD, 1 } | stfd f1, FORL_EXT*8(RA) if (op != BC_JFORL) { | add RD, PC, RD } | fcmpu cr0, f1, f2 if (op == BC_JFORI) { | addis PC, RD, -(BCBIAS_J*4 >> 16) } | blt cr6, >5 if (op == BC_FORI) { | bgt >3 } else if (op == BC_IFORL) { |.if DUALNUM | bgty <2 |.else | bgt >2 |.endif |1: | addis PC, RD, -(BCBIAS_J*4 >> 16) } else if (op == BC_JFORI) { | bley >7 } else { | bley =>BC_JLOOP } |.if DUALNUM | b <2 |.else |2: | ins_next |.endif |5: // Negative step. if (op == BC_FORI) { | bge <2 |3: // Used by integer loop, too. | addis PC, RD, -(BCBIAS_J*4 >> 16) } else if (op == BC_IFORL) { | bgey <1 } else if (op == BC_JFORI) { | bgey >7 } else { | bgey =>BC_JLOOP } | b <2 if (op == BC_JFORI) { |7: | lwz INS, -4(PC) | decode_RD8 RD, INS | b =>BC_JLOOP } break; case BC_ITERL: |.if JIT | hotloop |.endif | // Fall through. Assumes BC_IITERL follows. break; case BC_JITERL: #if !LJ_HASJIT break; #endif case BC_IITERL: | // RA = base*8, RD = target | lwzux TMP1, RA, BASE | lwz TMP2, 4(RA) | checknil TMP1; beq >1 // Stop if iterator returned nil. if (op == BC_JITERL) { | stw TMP1, -8(RA) | stw TMP2, -4(RA) | b =>BC_JLOOP } else { | branch_RD // Otherwise save control var + branch. | stw TMP1, -8(RA) | stw TMP2, -4(RA) } |1: | ins_next break; case BC_LOOP: | // RA = base*8, RD = target (loop extent) | // Note: RA/RD is only used by trace recorder to determine scope/extent | // This opcode does NOT jump, it's only purpose is to detect a hot loop. |.if JIT | hotloop |.endif | // Fall through. Assumes BC_ILOOP follows. break; case BC_ILOOP: | // RA = base*8, RD = target (loop extent) | ins_next break; case BC_JLOOP: |.if JIT | // RA = base*8 (ignored), RD = traceno*8 | lwz TMP1, DISPATCH_J(trace)(DISPATCH) | srwi RD, RD, 1 | // Traces on PPC don't store the trace number, so use 0. | stw ZERO, DISPATCH_GL(vmstate)(DISPATCH) | lwzx TRACE:TMP2, TMP1, RD | clrso TMP1 | lp TMP2, TRACE:TMP2->mcode | stw BASE, DISPATCH_GL(jit_base)(DISPATCH) | mtctr TMP2 | addi JGL, DISPATCH, GG_DISP2G+32768 | stw L, DISPATCH_GL(tmpbuf.L)(DISPATCH) | bctr |.endif break; case BC_JMP: | // RA = base*8 (only used by trace recorder), RD = target | branch_RD | ins_next break; /* -- Function headers -------------------------------------------------- */ case BC_FUNCF: |.if JIT | hotcall |.endif case BC_FUNCV: /* NYI: compiled vararg functions. */ | // Fall through. Assumes BC_IFUNCF/BC_IFUNCV follow. break; case BC_JFUNCF: #if !LJ_HASJIT break; #endif case BC_IFUNCF: | // BASE = new base, RA = BASE+framesize*8, RB = LFUNC, RC = nargs*8 | lwz TMP2, L->maxstack | lbz TMP1, -4+PC2PROTO(numparams)(PC) | lwz KBASE, -4+PC2PROTO(k)(PC) | cmplw RA, TMP2 | slwi TMP1, TMP1, 3 | bgt ->vm_growstack_l if (op != BC_JFUNCF) { | ins_next1 } |2: | cmplw NARGS8:RC, TMP1 // Check for missing parameters. | blt >3 if (op == BC_JFUNCF) { | decode_RD8 RD, INS | b =>BC_JLOOP } else { | ins_next2 } | |3: // Clear missing parameters. | stwx TISNIL, BASE, NARGS8:RC | addi NARGS8:RC, NARGS8:RC, 8 | b <2 break; case BC_JFUNCV: #if !LJ_HASJIT break; #endif | NYI // NYI: compiled vararg functions break; /* NYI: compiled vararg functions. */ case BC_IFUNCV: | // BASE = new base, RA = BASE+framesize*8, RB = LFUNC, RC = nargs*8 | lwz TMP2, L->maxstack | add TMP1, BASE, RC | add TMP0, RA, RC | stw LFUNC:RB, 4(TMP1) // Store copy of LFUNC. | addi TMP3, RC, 8+FRAME_VARG | lwz KBASE, -4+PC2PROTO(k)(PC) | cmplw TMP0, TMP2 | stw TMP3, 0(TMP1) // Store delta + FRAME_VARG. | bge ->vm_growstack_l | lbz TMP2, -4+PC2PROTO(numparams)(PC) | mr RA, BASE | mr RC, TMP1 | ins_next1 | cmpwi TMP2, 0 | addi BASE, TMP1, 8 | beq >3 |1: | cmplw RA, RC // Less args than parameters? | lwz TMP0, 0(RA) | lwz TMP3, 4(RA) | bge >4 | stw TISNIL, 0(RA) // Clear old fixarg slot (help the GC). | addi RA, RA, 8 |2: | addic. TMP2, TMP2, -1 | stw TMP0, 8(TMP1) | stw TMP3, 12(TMP1) | addi TMP1, TMP1, 8 | bne <1 |3: | ins_next2 | |4: // Clear missing parameters. | li TMP0, LJ_TNIL | b <2 break; case BC_FUNCC: case BC_FUNCCW: | // BASE = new base, RA = BASE+framesize*8, RB = CFUNC, RC = nargs*8 if (op == BC_FUNCC) { | lp RD, CFUNC:RB->f } else { | lp RD, DISPATCH_GL(wrapf)(DISPATCH) } | add TMP1, RA, NARGS8:RC | lwz TMP2, L->maxstack | .toc lp TMP3, 0(RD) | add RC, BASE, NARGS8:RC | stp BASE, L->base | cmplw TMP1, TMP2 | stp RC, L->top | li_vmstate C |.if TOC | mtctr TMP3 |.else | mtctr RD |.endif if (op == BC_FUNCCW) { | lp CARG2, CFUNC:RB->f } | mr CARG1, L | bgt ->vm_growstack_c // Need to grow stack. | .toc lp TOCREG, TOC_OFS(RD) | .tocenv lp ENVREG, ENV_OFS(RD) | st_vmstate | bctrl // (lua_State *L [, lua_CFunction f]) | // Returns nresults. | lp BASE, L->base | .toc ld TOCREG, SAVE_TOC | slwi RD, CRET1, 3 | lp TMP1, L->top | li_vmstate INTERP | lwz PC, FRAME_PC(BASE) // Fetch PC of caller. | stw L, DISPATCH_GL(cur_L)(DISPATCH) | sub RA, TMP1, RD // RA = L->top - nresults*8 | st_vmstate | b ->vm_returnc break; /* ---------------------------------------------------------------------- */ default: fprintf(stderr, "Error: undefined opcode BC_%s\n", bc_names[op]); exit(2); break; } } static int build_backend(BuildCtx *ctx) { int op; dasm_growpc(Dst, BC__MAX); build_subroutines(ctx); |.code_op for (op = 0; op < BC__MAX; op++) build_ins(ctx, (BCOp)op, op); return BC__MAX; } /* Emit pseudo frame-info for all assembler functions. */ static void emit_asm_debug(BuildCtx *ctx) { int fcofs = (int)((uint8_t *)ctx->glob[GLOB_vm_ffi_call] - ctx->code); int i; switch (ctx->mode) { case BUILD_elfasm: fprintf(ctx->fp, "\t.section .debug_frame,\"\",@progbits\n"); fprintf(ctx->fp, ".Lframe0:\n" "\t.long .LECIE0-.LSCIE0\n" ".LSCIE0:\n" "\t.long 0xffffffff\n" "\t.byte 0x1\n" "\t.string \"\"\n" "\t.uleb128 0x1\n" "\t.sleb128 -4\n" "\t.byte 65\n" "\t.byte 0xc\n\t.uleb128 1\n\t.uleb128 0\n" "\t.align 2\n" ".LECIE0:\n\n"); fprintf(ctx->fp, ".LSFDE0:\n" "\t.long .LEFDE0-.LASFDE0\n" ".LASFDE0:\n" "\t.long .Lframe0\n" "\t.long .Lbegin\n" "\t.long %d\n" "\t.byte 0xe\n\t.uleb128 %d\n" "\t.byte 0x11\n\t.uleb128 65\n\t.sleb128 -1\n" "\t.byte 0x5\n\t.uleb128 70\n\t.uleb128 55\n", fcofs, CFRAME_SIZE); for (i = 14; i <= 31; i++) fprintf(ctx->fp, "\t.byte %d\n\t.uleb128 %d\n" "\t.byte %d\n\t.uleb128 %d\n", 0x80+i, 37+(31-i), 0x80+32+i, 2+2*(31-i)); fprintf(ctx->fp, "\t.align 2\n" ".LEFDE0:\n\n"); #if LJ_HASFFI fprintf(ctx->fp, ".LSFDE1:\n" "\t.long .LEFDE1-.LASFDE1\n" ".LASFDE1:\n" "\t.long .Lframe0\n" #if LJ_TARGET_PS3 "\t.long .lj_vm_ffi_call\n" #else "\t.long lj_vm_ffi_call\n" #endif "\t.long %d\n" "\t.byte 0x11\n\t.uleb128 65\n\t.sleb128 -1\n" "\t.byte 0x8e\n\t.uleb128 2\n" "\t.byte 0xd\n\t.uleb128 0xe\n" "\t.align 2\n" ".LEFDE1:\n\n", (int)ctx->codesz - fcofs); #endif #if !LJ_NO_UNWIND fprintf(ctx->fp, "\t.section .eh_frame,\"a\",@progbits\n"); fprintf(ctx->fp, ".Lframe1:\n" "\t.long .LECIE1-.LSCIE1\n" ".LSCIE1:\n" "\t.long 0\n" "\t.byte 0x1\n" "\t.string \"zPR\"\n" "\t.uleb128 0x1\n" "\t.sleb128 -4\n" "\t.byte 65\n" "\t.uleb128 6\n" /* augmentation length */ "\t.byte 0x1b\n" /* pcrel|sdata4 */ "\t.long lj_err_unwind_dwarf-.\n" "\t.byte 0x1b\n" /* pcrel|sdata4 */ "\t.byte 0xc\n\t.uleb128 1\n\t.uleb128 0\n" "\t.align 2\n" ".LECIE1:\n\n"); fprintf(ctx->fp, ".LSFDE2:\n" "\t.long .LEFDE2-.LASFDE2\n" ".LASFDE2:\n" "\t.long .LASFDE2-.Lframe1\n" "\t.long .Lbegin-.\n" "\t.long %d\n" "\t.uleb128 0\n" /* augmentation length */ "\t.byte 0xe\n\t.uleb128 %d\n" "\t.byte 0x11\n\t.uleb128 65\n\t.sleb128 -1\n" "\t.byte 0x5\n\t.uleb128 70\n\t.uleb128 55\n", fcofs, CFRAME_SIZE); for (i = 14; i <= 31; i++) fprintf(ctx->fp, "\t.byte %d\n\t.uleb128 %d\n" "\t.byte %d\n\t.uleb128 %d\n", 0x80+i, 37+(31-i), 0x80+32+i, 2+2*(31-i)); fprintf(ctx->fp, "\t.align 2\n" ".LEFDE2:\n\n"); #if LJ_HASFFI fprintf(ctx->fp, ".Lframe2:\n" "\t.long .LECIE2-.LSCIE2\n" ".LSCIE2:\n" "\t.long 0\n" "\t.byte 0x1\n" "\t.string \"zR\"\n" "\t.uleb128 0x1\n" "\t.sleb128 -4\n" "\t.byte 65\n" "\t.uleb128 1\n" /* augmentation length */ "\t.byte 0x1b\n" /* pcrel|sdata4 */ "\t.byte 0xc\n\t.uleb128 1\n\t.uleb128 0\n" "\t.align 2\n" ".LECIE2:\n\n"); fprintf(ctx->fp, ".LSFDE3:\n" "\t.long .LEFDE3-.LASFDE3\n" ".LASFDE3:\n" "\t.long .LASFDE3-.Lframe2\n" "\t.long lj_vm_ffi_call-.\n" "\t.long %d\n" "\t.uleb128 0\n" /* augmentation length */ "\t.byte 0x11\n\t.uleb128 65\n\t.sleb128 -1\n" "\t.byte 0x8e\n\t.uleb128 2\n" "\t.byte 0xd\n\t.uleb128 0xe\n" "\t.align 2\n" ".LEFDE3:\n\n", (int)ctx->codesz - fcofs); #endif #endif break; default: break; } } luajit-2.1.0~beta3+dfsg.orig/src/lj_opt_split.c0000644000175100017510000006457313101703334020772 0ustar ondrejondrej/* ** SPLIT: Split 64 bit IR instructions into 32 bit IR instructions. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #define lj_opt_split_c #define LUA_CORE #include "lj_obj.h" #if LJ_HASJIT && (LJ_SOFTFP || (LJ_32 && LJ_HASFFI)) #include "lj_err.h" #include "lj_buf.h" #include "lj_ir.h" #include "lj_jit.h" #include "lj_ircall.h" #include "lj_iropt.h" #include "lj_dispatch.h" #include "lj_vm.h" /* SPLIT pass: ** ** This pass splits up 64 bit IR instructions into multiple 32 bit IR ** instructions. It's only active for soft-float targets or for 32 bit CPUs ** which lack native 64 bit integer operations (the FFI is currently the ** only emitter for 64 bit integer instructions). ** ** Splitting the IR in a separate pass keeps each 32 bit IR assembler ** backend simple. Only a small amount of extra functionality needs to be ** implemented. This is much easier than adding support for allocating ** register pairs to each backend (believe me, I tried). A few simple, but ** important optimizations can be performed by the SPLIT pass, which would ** be tedious to do in the backend. ** ** The basic idea is to replace each 64 bit IR instruction with its 32 bit ** equivalent plus an extra HIOP instruction. The splitted IR is not passed ** through FOLD or any other optimizations, so each HIOP is guaranteed to ** immediately follow it's counterpart. The actual functionality of HIOP is ** inferred from the previous instruction. ** ** The operands of HIOP hold the hiword input references. The output of HIOP ** is the hiword output reference, which is also used to hold the hiword ** register or spill slot information. The register allocator treats this ** instruction independently of any other instruction, which improves code ** quality compared to using fixed register pairs. ** ** It's easier to split up some instructions into two regular 32 bit ** instructions. E.g. XLOAD is split up into two XLOADs with two different ** addresses. Obviously 64 bit constants need to be split up into two 32 bit ** constants, too. Some hiword instructions can be entirely omitted, e.g. ** when zero-extending a 32 bit value to 64 bits. 64 bit arguments for calls ** are split up into two 32 bit arguments each. ** ** On soft-float targets, floating-point instructions are directly converted ** to soft-float calls by the SPLIT pass (except for comparisons and MIN/MAX). ** HIOP for number results has the type IRT_SOFTFP ("sfp" in -jdump). ** ** Here's the IR and x64 machine code for 'x.b = x.a + 1' for a struct with ** two int64_t fields: ** ** 0100 p32 ADD base +8 ** 0101 i64 XLOAD 0100 ** 0102 i64 ADD 0101 +1 ** 0103 p32 ADD base +16 ** 0104 i64 XSTORE 0103 0102 ** ** mov rax, [esi+0x8] ** add rax, +0x01 ** mov [esi+0x10], rax ** ** Here's the transformed IR and the x86 machine code after the SPLIT pass: ** ** 0100 p32 ADD base +8 ** 0101 int XLOAD 0100 ** 0102 p32 ADD base +12 ** 0103 int XLOAD 0102 ** 0104 int ADD 0101 +1 ** 0105 int HIOP 0103 +0 ** 0106 p32 ADD base +16 ** 0107 int XSTORE 0106 0104 ** 0108 int HIOP 0106 0105 ** ** mov eax, [esi+0x8] ** mov ecx, [esi+0xc] ** add eax, +0x01 ** adc ecx, +0x00 ** mov [esi+0x10], eax ** mov [esi+0x14], ecx ** ** You may notice the reassociated hiword address computation, which is ** later fused into the mov operands by the assembler. */ /* Some local macros to save typing. Undef'd at the end. */ #define IR(ref) (&J->cur.ir[(ref)]) /* Directly emit the transformed IR without updating chains etc. */ static IRRef split_emit(jit_State *J, uint16_t ot, IRRef1 op1, IRRef1 op2) { IRRef nref = lj_ir_nextins(J); IRIns *ir = IR(nref); ir->ot = ot; ir->op1 = op1; ir->op2 = op2; return nref; } #if LJ_SOFTFP /* Emit a (checked) number to integer conversion. */ static IRRef split_num2int(jit_State *J, IRRef lo, IRRef hi, int check) { IRRef tmp, res; #if LJ_LE tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), lo, hi); #else tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), hi, lo); #endif res = split_emit(J, IRTI(IR_CALLN), tmp, IRCALL_softfp_d2i); if (check) { tmp = split_emit(J, IRTI(IR_CALLN), res, IRCALL_softfp_i2d); split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), tmp, tmp); split_emit(J, IRTGI(IR_EQ), tmp, lo); split_emit(J, IRTG(IR_HIOP, IRT_SOFTFP), tmp+1, hi); } return res; } /* Emit a CALLN with one split 64 bit argument. */ static IRRef split_call_l(jit_State *J, IRRef1 *hisubst, IRIns *oir, IRIns *ir, IRCallID id) { IRRef tmp, op1 = ir->op1; J->cur.nins--; #if LJ_LE tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), oir[op1].prev, hisubst[op1]); #else tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), hisubst[op1], oir[op1].prev); #endif ir->prev = tmp = split_emit(J, IRTI(IR_CALLN), tmp, id); return split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), tmp, tmp); } #endif /* Emit a CALLN with one split 64 bit argument and a 32 bit argument. */ static IRRef split_call_li(jit_State *J, IRRef1 *hisubst, IRIns *oir, IRIns *ir, IRCallID id) { IRRef tmp, op1 = ir->op1, op2 = ir->op2; J->cur.nins--; #if LJ_LE tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), oir[op1].prev, hisubst[op1]); #else tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), hisubst[op1], oir[op1].prev); #endif tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, oir[op2].prev); ir->prev = tmp = split_emit(J, IRTI(IR_CALLN), tmp, id); return split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), tmp, tmp); } /* Emit a CALLN with two split 64 bit arguments. */ static IRRef split_call_ll(jit_State *J, IRRef1 *hisubst, IRIns *oir, IRIns *ir, IRCallID id) { IRRef tmp, op1 = ir->op1, op2 = ir->op2; J->cur.nins--; #if LJ_LE tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), oir[op1].prev, hisubst[op1]); tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, oir[op2].prev); tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, hisubst[op2]); #else tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), hisubst[op1], oir[op1].prev); tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, hisubst[op2]); tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, oir[op2].prev); #endif ir->prev = tmp = split_emit(J, IRTI(IR_CALLN), tmp, id); return split_emit(J, IRT(IR_HIOP, (LJ_SOFTFP && irt_isnum(ir->t)) ? IRT_SOFTFP : IRT_INT), tmp, tmp); } /* Get a pointer to the other 32 bit word (LE: hiword, BE: loword). */ static IRRef split_ptr(jit_State *J, IRIns *oir, IRRef ref) { IRRef nref = oir[ref].prev; IRIns *ir = IR(nref); int32_t ofs = 4; if (ir->o == IR_KPTR) return lj_ir_kptr(J, (char *)ir_kptr(ir) + ofs); if (ir->o == IR_ADD && irref_isk(ir->op2) && !irt_isphi(oir[ref].t)) { /* Reassociate address. */ ofs += IR(ir->op2)->i; nref = ir->op1; if (ofs == 0) return nref; } return split_emit(J, IRT(IR_ADD, IRT_PTR), nref, lj_ir_kint(J, ofs)); } #if LJ_HASFFI static IRRef split_bitshift(jit_State *J, IRRef1 *hisubst, IRIns *oir, IRIns *nir, IRIns *ir) { IROp op = ir->o; IRRef kref = nir->op2; if (irref_isk(kref)) { /* Optimize constant shifts. */ int32_t k = (IR(kref)->i & 63); IRRef lo = nir->op1, hi = hisubst[ir->op1]; if (op == IR_BROL || op == IR_BROR) { if (op == IR_BROR) k = (-k & 63); if (k >= 32) { IRRef t = lo; lo = hi; hi = t; k -= 32; } if (k == 0) { passthrough: J->cur.nins--; ir->prev = lo; return hi; } else { TRef k1, k2; IRRef t1, t2, t3, t4; J->cur.nins--; k1 = lj_ir_kint(J, k); k2 = lj_ir_kint(J, (-k & 31)); t1 = split_emit(J, IRTI(IR_BSHL), lo, k1); t2 = split_emit(J, IRTI(IR_BSHL), hi, k1); t3 = split_emit(J, IRTI(IR_BSHR), lo, k2); t4 = split_emit(J, IRTI(IR_BSHR), hi, k2); ir->prev = split_emit(J, IRTI(IR_BOR), t1, t4); return split_emit(J, IRTI(IR_BOR), t2, t3); } } else if (k == 0) { goto passthrough; } else if (k < 32) { if (op == IR_BSHL) { IRRef t1 = split_emit(J, IRTI(IR_BSHL), hi, kref); IRRef t2 = split_emit(J, IRTI(IR_BSHR), lo, lj_ir_kint(J, (-k&31))); return split_emit(J, IRTI(IR_BOR), t1, t2); } else { IRRef t1 = ir->prev, t2; lua_assert(op == IR_BSHR || op == IR_BSAR); nir->o = IR_BSHR; t2 = split_emit(J, IRTI(IR_BSHL), hi, lj_ir_kint(J, (-k&31))); ir->prev = split_emit(J, IRTI(IR_BOR), t1, t2); return split_emit(J, IRTI(op), hi, kref); } } else { if (op == IR_BSHL) { if (k == 32) J->cur.nins--; else lo = ir->prev; ir->prev = lj_ir_kint(J, 0); return lo; } else { lua_assert(op == IR_BSHR || op == IR_BSAR); if (k == 32) { J->cur.nins--; ir->prev = hi; } else { nir->op1 = hi; } if (op == IR_BSHR) return lj_ir_kint(J, 0); else return split_emit(J, IRTI(IR_BSAR), hi, lj_ir_kint(J, 31)); } } } return split_call_li(J, hisubst, oir, ir, op - IR_BSHL + IRCALL_lj_carith_shl64); } static IRRef split_bitop(jit_State *J, IRRef1 *hisubst, IRIns *nir, IRIns *ir) { IROp op = ir->o; IRRef hi, kref = nir->op2; if (irref_isk(kref)) { /* Optimize bit operations with lo constant. */ int32_t k = IR(kref)->i; if (k == 0 || k == -1) { if (op == IR_BAND) k = ~k; if (k == 0) { J->cur.nins--; ir->prev = nir->op1; } else if (op == IR_BXOR) { nir->o = IR_BNOT; nir->op2 = 0; } else { J->cur.nins--; ir->prev = kref; } } } hi = hisubst[ir->op1]; kref = hisubst[ir->op2]; if (irref_isk(kref)) { /* Optimize bit operations with hi constant. */ int32_t k = IR(kref)->i; if (k == 0 || k == -1) { if (op == IR_BAND) k = ~k; if (k == 0) { return hi; } else if (op == IR_BXOR) { return split_emit(J, IRTI(IR_BNOT), hi, 0); } else { return kref; } } } return split_emit(J, IRTI(op), hi, kref); } #endif /* Substitute references of a snapshot. */ static void split_subst_snap(jit_State *J, SnapShot *snap, IRIns *oir) { SnapEntry *map = &J->cur.snapmap[snap->mapofs]; MSize n, nent = snap->nent; for (n = 0; n < nent; n++) { SnapEntry sn = map[n]; IRIns *ir = &oir[snap_ref(sn)]; if (!(LJ_SOFTFP && (sn & SNAP_SOFTFPNUM) && irref_isk(snap_ref(sn)))) map[n] = ((sn & 0xffff0000) | ir->prev); } } /* Transform the old IR to the new IR. */ static void split_ir(jit_State *J) { IRRef nins = J->cur.nins, nk = J->cur.nk; MSize irlen = nins - nk; MSize need = (irlen+1)*(sizeof(IRIns) + sizeof(IRRef1)); IRIns *oir = (IRIns *)lj_buf_tmp(J->L, need); IRRef1 *hisubst; IRRef ref, snref; SnapShot *snap; /* Copy old IR to buffer. */ memcpy(oir, IR(nk), irlen*sizeof(IRIns)); /* Bias hiword substitution table and old IR. Loword kept in field prev. */ hisubst = (IRRef1 *)&oir[irlen] - nk; oir -= nk; /* Remove all IR instructions, but retain IR constants. */ J->cur.nins = REF_FIRST; J->loopref = 0; /* Process constants and fixed references. */ for (ref = nk; ref <= REF_BASE; ref++) { IRIns *ir = &oir[ref]; if ((LJ_SOFTFP && ir->o == IR_KNUM) || ir->o == IR_KINT64) { /* Split up 64 bit constant. */ TValue tv = *ir_k64(ir); ir->prev = lj_ir_kint(J, (int32_t)tv.u32.lo); hisubst[ref] = lj_ir_kint(J, (int32_t)tv.u32.hi); } else { ir->prev = ref; /* Identity substitution for loword. */ hisubst[ref] = 0; } if (irt_is64(ir->t) && ir->o != IR_KNULL) ref++; } /* Process old IR instructions. */ snap = J->cur.snap; snref = snap->ref; for (ref = REF_FIRST; ref < nins; ref++) { IRIns *ir = &oir[ref]; IRRef nref = lj_ir_nextins(J); IRIns *nir = IR(nref); IRRef hi = 0; if (ref >= snref) { snap->ref = nref; split_subst_snap(J, snap++, oir); snref = snap < &J->cur.snap[J->cur.nsnap] ? snap->ref : ~(IRRef)0; } /* Copy-substitute old instruction to new instruction. */ nir->op1 = ir->op1 < nk ? ir->op1 : oir[ir->op1].prev; nir->op2 = ir->op2 < nk ? ir->op2 : oir[ir->op2].prev; ir->prev = nref; /* Loword substitution. */ nir->o = ir->o; nir->t.irt = ir->t.irt & ~(IRT_MARK|IRT_ISPHI); hisubst[ref] = 0; /* Split 64 bit instructions. */ #if LJ_SOFTFP if (irt_isnum(ir->t)) { nir->t.irt = IRT_INT | (nir->t.irt & IRT_GUARD); /* Turn into INT op. */ /* Note: hi ref = lo ref + 1! Required for SNAP_SOFTFPNUM logic. */ switch (ir->o) { case IR_ADD: hi = split_call_ll(J, hisubst, oir, ir, IRCALL_softfp_add); break; case IR_SUB: hi = split_call_ll(J, hisubst, oir, ir, IRCALL_softfp_sub); break; case IR_MUL: hi = split_call_ll(J, hisubst, oir, ir, IRCALL_softfp_mul); break; case IR_DIV: hi = split_call_ll(J, hisubst, oir, ir, IRCALL_softfp_div); break; case IR_POW: hi = split_call_li(J, hisubst, oir, ir, IRCALL_lj_vm_powi); break; case IR_FPMATH: /* Try to rejoin pow from EXP2, MUL and LOG2. */ if (nir->op2 == IRFPM_EXP2 && nir->op1 > J->loopref) { IRIns *irp = IR(nir->op1); if (irp->o == IR_CALLN && irp->op2 == IRCALL_softfp_mul) { IRIns *irm4 = IR(irp->op1); IRIns *irm3 = IR(irm4->op1); IRIns *irm12 = IR(irm3->op1); IRIns *irl1 = IR(irm12->op1); if (irm12->op1 > J->loopref && irl1->o == IR_CALLN && irl1->op2 == IRCALL_lj_vm_log2) { IRRef tmp = irl1->op1; /* Recycle first two args from LOG2. */ IRRef arg3 = irm3->op2, arg4 = irm4->op2; J->cur.nins--; tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, arg3); tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, arg4); ir->prev = tmp = split_emit(J, IRTI(IR_CALLN), tmp, IRCALL_pow); hi = split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), tmp, tmp); break; } } } hi = split_call_l(J, hisubst, oir, ir, IRCALL_lj_vm_floor + ir->op2); break; case IR_ATAN2: hi = split_call_ll(J, hisubst, oir, ir, IRCALL_atan2); break; case IR_LDEXP: hi = split_call_li(J, hisubst, oir, ir, IRCALL_ldexp); break; case IR_NEG: case IR_ABS: nir->o = IR_CONV; /* Pass through loword. */ nir->op2 = (IRT_INT << 5) | IRT_INT; hi = split_emit(J, IRT(ir->o == IR_NEG ? IR_BXOR : IR_BAND, IRT_SOFTFP), hisubst[ir->op1], lj_ir_kint(J, (int32_t)(0x7fffffffu + (ir->o == IR_NEG)))); break; case IR_SLOAD: if ((nir->op2 & IRSLOAD_CONVERT)) { /* Convert from int to number. */ nir->op2 &= ~IRSLOAD_CONVERT; ir->prev = nref = split_emit(J, IRTI(IR_CALLN), nref, IRCALL_softfp_i2d); hi = split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), nref, nref); break; } /* fallthrough */ case IR_ALOAD: case IR_HLOAD: case IR_ULOAD: case IR_VLOAD: case IR_STRTO: hi = split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), nref, nref); break; case IR_FLOAD: lua_assert(ir->op1 == REF_NIL); hi = lj_ir_kint(J, *(int32_t*)((char*)J2GG(J) + ir->op2 + LJ_LE*4)); nir->op2 += LJ_BE*4; break; case IR_XLOAD: { IRIns inslo = *nir; /* Save/undo the emit of the lo XLOAD. */ J->cur.nins--; hi = split_ptr(J, oir, ir->op1); /* Insert the hiref ADD. */ #if LJ_BE hi = split_emit(J, IRT(IR_XLOAD, IRT_INT), hi, ir->op2); inslo.t.irt = IRT_SOFTFP | (inslo.t.irt & IRT_GUARD); #endif nref = lj_ir_nextins(J); nir = IR(nref); *nir = inslo; /* Re-emit lo XLOAD. */ #if LJ_LE hi = split_emit(J, IRT(IR_XLOAD, IRT_SOFTFP), hi, ir->op2); ir->prev = nref; #else ir->prev = hi; hi = nref; #endif break; } case IR_ASTORE: case IR_HSTORE: case IR_USTORE: case IR_XSTORE: split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), nir->op1, hisubst[ir->op2]); break; case IR_CONV: { /* Conversion to number. Others handled below. */ IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK); UNUSED(st); #if LJ_32 && LJ_HASFFI if (st == IRT_I64 || st == IRT_U64) { hi = split_call_l(J, hisubst, oir, ir, st == IRT_I64 ? IRCALL_fp64_l2d : IRCALL_fp64_ul2d); break; } #endif lua_assert(st == IRT_INT || (LJ_32 && LJ_HASFFI && (st == IRT_U32 || st == IRT_FLOAT))); nir->o = IR_CALLN; #if LJ_32 && LJ_HASFFI nir->op2 = st == IRT_INT ? IRCALL_softfp_i2d : st == IRT_FLOAT ? IRCALL_softfp_f2d : IRCALL_softfp_ui2d; #else nir->op2 = IRCALL_softfp_i2d; #endif hi = split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), nref, nref); break; } case IR_CALLN: case IR_CALLL: case IR_CALLS: case IR_CALLXS: goto split_call; case IR_PHI: if (nir->op1 == nir->op2) J->cur.nins--; /* Drop useless PHIs. */ if (hisubst[ir->op1] != hisubst[ir->op2]) split_emit(J, IRT(IR_PHI, IRT_SOFTFP), hisubst[ir->op1], hisubst[ir->op2]); break; case IR_HIOP: J->cur.nins--; /* Drop joining HIOP. */ ir->prev = nir->op1; hi = nir->op2; break; default: lua_assert(ir->o <= IR_NE || ir->o == IR_MIN || ir->o == IR_MAX); hi = split_emit(J, IRTG(IR_HIOP, IRT_SOFTFP), hisubst[ir->op1], hisubst[ir->op2]); break; } } else #endif #if LJ_32 && LJ_HASFFI if (irt_isint64(ir->t)) { IRRef hiref = hisubst[ir->op1]; nir->t.irt = IRT_INT | (nir->t.irt & IRT_GUARD); /* Turn into INT op. */ switch (ir->o) { case IR_ADD: case IR_SUB: /* Use plain op for hiword if loword cannot produce a carry/borrow. */ if (irref_isk(nir->op2) && IR(nir->op2)->i == 0) { ir->prev = nir->op1; /* Pass through loword. */ nir->op1 = hiref; nir->op2 = hisubst[ir->op2]; hi = nref; break; } /* fallthrough */ case IR_NEG: hi = split_emit(J, IRTI(IR_HIOP), hiref, hisubst[ir->op2]); break; case IR_MUL: hi = split_call_ll(J, hisubst, oir, ir, IRCALL_lj_carith_mul64); break; case IR_DIV: hi = split_call_ll(J, hisubst, oir, ir, irt_isi64(ir->t) ? IRCALL_lj_carith_divi64 : IRCALL_lj_carith_divu64); break; case IR_MOD: hi = split_call_ll(J, hisubst, oir, ir, irt_isi64(ir->t) ? IRCALL_lj_carith_modi64 : IRCALL_lj_carith_modu64); break; case IR_POW: hi = split_call_ll(J, hisubst, oir, ir, irt_isi64(ir->t) ? IRCALL_lj_carith_powi64 : IRCALL_lj_carith_powu64); break; case IR_BNOT: hi = split_emit(J, IRTI(IR_BNOT), hiref, 0); break; case IR_BSWAP: ir->prev = split_emit(J, IRTI(IR_BSWAP), hiref, 0); hi = nref; break; case IR_BAND: case IR_BOR: case IR_BXOR: hi = split_bitop(J, hisubst, nir, ir); break; case IR_BSHL: case IR_BSHR: case IR_BSAR: case IR_BROL: case IR_BROR: hi = split_bitshift(J, hisubst, oir, nir, ir); break; case IR_FLOAD: lua_assert(ir->op2 == IRFL_CDATA_INT64); hi = split_emit(J, IRTI(IR_FLOAD), nir->op1, IRFL_CDATA_INT64_4); #if LJ_BE ir->prev = hi; hi = nref; #endif break; case IR_XLOAD: hi = split_emit(J, IRTI(IR_XLOAD), split_ptr(J, oir, ir->op1), ir->op2); #if LJ_BE ir->prev = hi; hi = nref; #endif break; case IR_XSTORE: split_emit(J, IRTI(IR_HIOP), nir->op1, hisubst[ir->op2]); break; case IR_CONV: { /* Conversion to 64 bit integer. Others handled below. */ IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK); #if LJ_SOFTFP if (st == IRT_NUM) { /* NUM to 64 bit int conv. */ hi = split_call_l(J, hisubst, oir, ir, irt_isi64(ir->t) ? IRCALL_fp64_d2l : IRCALL_fp64_d2ul); } else if (st == IRT_FLOAT) { /* FLOAT to 64 bit int conv. */ nir->o = IR_CALLN; nir->op2 = irt_isi64(ir->t) ? IRCALL_fp64_f2l : IRCALL_fp64_f2ul; hi = split_emit(J, IRTI(IR_HIOP), nref, nref); } #else if (st == IRT_NUM || st == IRT_FLOAT) { /* FP to 64 bit int conv. */ hi = split_emit(J, IRTI(IR_HIOP), nir->op1, nref); } #endif else if (st == IRT_I64 || st == IRT_U64) { /* 64/64 bit cast. */ /* Drop cast, since assembler doesn't care. But fwd both parts. */ hi = hiref; goto fwdlo; } else if ((ir->op2 & IRCONV_SEXT)) { /* Sign-extend to 64 bit. */ IRRef k31 = lj_ir_kint(J, 31); nir = IR(nref); /* May have been reallocated. */ ir->prev = nir->op1; /* Pass through loword. */ nir->o = IR_BSAR; /* hi = bsar(lo, 31). */ nir->op2 = k31; hi = nref; } else { /* Zero-extend to 64 bit. */ hi = lj_ir_kint(J, 0); goto fwdlo; } break; } case IR_CALLXS: goto split_call; case IR_PHI: { IRRef hiref2; if ((irref_isk(nir->op1) && irref_isk(nir->op2)) || nir->op1 == nir->op2) J->cur.nins--; /* Drop useless PHIs. */ hiref2 = hisubst[ir->op2]; if (!((irref_isk(hiref) && irref_isk(hiref2)) || hiref == hiref2)) split_emit(J, IRTI(IR_PHI), hiref, hiref2); break; } case IR_HIOP: J->cur.nins--; /* Drop joining HIOP. */ ir->prev = nir->op1; hi = nir->op2; break; default: lua_assert(ir->o <= IR_NE); /* Comparisons. */ split_emit(J, IRTGI(IR_HIOP), hiref, hisubst[ir->op2]); break; } } else #endif #if LJ_SOFTFP if (ir->o == IR_SLOAD) { if ((nir->op2 & IRSLOAD_CONVERT)) { /* Convert from number to int. */ nir->op2 &= ~IRSLOAD_CONVERT; if (!(nir->op2 & IRSLOAD_TYPECHECK)) nir->t.irt = IRT_INT; /* Drop guard. */ split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), nref, nref); ir->prev = split_num2int(J, nref, nref+1, irt_isguard(ir->t)); } } else if (ir->o == IR_TOBIT) { IRRef tmp, op1 = ir->op1; J->cur.nins--; #if LJ_LE tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), oir[op1].prev, hisubst[op1]); #else tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), hisubst[op1], oir[op1].prev); #endif ir->prev = split_emit(J, IRTI(IR_CALLN), tmp, IRCALL_lj_vm_tobit); } else if (ir->o == IR_TOSTR) { if (hisubst[ir->op1]) { if (irref_isk(ir->op1)) nir->op1 = ir->op1; else split_emit(J, IRT(IR_HIOP, IRT_NIL), hisubst[ir->op1], nref); } } else if (ir->o == IR_HREF || ir->o == IR_NEWREF) { if (irref_isk(ir->op2) && hisubst[ir->op2]) nir->op2 = ir->op2; } else #endif if (ir->o == IR_CONV) { /* See above, too. */ IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK); #if LJ_32 && LJ_HASFFI if (st == IRT_I64 || st == IRT_U64) { /* Conversion from 64 bit int. */ #if LJ_SOFTFP if (irt_isfloat(ir->t)) { split_call_l(J, hisubst, oir, ir, st == IRT_I64 ? IRCALL_fp64_l2f : IRCALL_fp64_ul2f); J->cur.nins--; /* Drop unused HIOP. */ } #else if (irt_isfp(ir->t)) { /* 64 bit integer to FP conversion. */ ir->prev = split_emit(J, IRT(IR_HIOP, irt_type(ir->t)), hisubst[ir->op1], nref); } #endif else { /* Truncate to lower 32 bits. */ fwdlo: ir->prev = nir->op1; /* Forward loword. */ /* Replace with NOP to avoid messing up the snapshot logic. */ nir->ot = IRT(IR_NOP, IRT_NIL); nir->op1 = nir->op2 = 0; } } #endif #if LJ_SOFTFP && LJ_32 && LJ_HASFFI else if (irt_isfloat(ir->t)) { if (st == IRT_NUM) { split_call_l(J, hisubst, oir, ir, IRCALL_softfp_d2f); J->cur.nins--; /* Drop unused HIOP. */ } else { nir->o = IR_CALLN; nir->op2 = st == IRT_INT ? IRCALL_softfp_i2f : IRCALL_softfp_ui2f; } } else if (st == IRT_FLOAT) { nir->o = IR_CALLN; nir->op2 = irt_isint(ir->t) ? IRCALL_softfp_f2i : IRCALL_softfp_f2ui; } else #endif #if LJ_SOFTFP if (st == IRT_NUM || (LJ_32 && LJ_HASFFI && st == IRT_FLOAT)) { if (irt_isguard(ir->t)) { lua_assert(st == IRT_NUM && irt_isint(ir->t)); J->cur.nins--; ir->prev = split_num2int(J, nir->op1, hisubst[ir->op1], 1); } else { split_call_l(J, hisubst, oir, ir, #if LJ_32 && LJ_HASFFI st == IRT_NUM ? (irt_isint(ir->t) ? IRCALL_softfp_d2i : IRCALL_softfp_d2ui) : (irt_isint(ir->t) ? IRCALL_softfp_f2i : IRCALL_softfp_f2ui) #else IRCALL_softfp_d2i #endif ); J->cur.nins--; /* Drop unused HIOP. */ } } #endif } else if (ir->o == IR_CALLXS) { IRRef hiref; split_call: hiref = hisubst[ir->op1]; if (hiref) { IROpT ot = nir->ot; IRRef op2 = nir->op2; nir->ot = IRT(IR_CARG, IRT_NIL); #if LJ_LE nir->op2 = hiref; #else nir->op2 = nir->op1; nir->op1 = hiref; #endif ir->prev = nref = split_emit(J, ot, nref, op2); } if (LJ_SOFTFP ? irt_is64(ir->t) : irt_isint64(ir->t)) hi = split_emit(J, IRT(IR_HIOP, (LJ_SOFTFP && irt_isnum(ir->t)) ? IRT_SOFTFP : IRT_INT), nref, nref); } else if (ir->o == IR_CARG) { IRRef hiref = hisubst[ir->op1]; if (hiref) { IRRef op2 = nir->op2; #if LJ_LE nir->op2 = hiref; #else nir->op2 = nir->op1; nir->op1 = hiref; #endif ir->prev = nref = split_emit(J, IRT(IR_CARG, IRT_NIL), nref, op2); nir = IR(nref); } hiref = hisubst[ir->op2]; if (hiref) { #if !LJ_TARGET_X86 int carg = 0; IRIns *cir; for (cir = IR(nir->op1); cir->o == IR_CARG; cir = IR(cir->op1)) carg++; if ((carg & 1) == 0) { /* Align 64 bit arguments. */ IRRef op2 = nir->op2; nir->op2 = REF_NIL; nref = split_emit(J, IRT(IR_CARG, IRT_NIL), nref, op2); nir = IR(nref); } #endif #if LJ_BE { IRRef tmp = nir->op2; nir->op2 = hiref; hiref = tmp; } #endif ir->prev = split_emit(J, IRT(IR_CARG, IRT_NIL), nref, hiref); } } else if (ir->o == IR_CNEWI) { if (hisubst[ir->op2]) split_emit(J, IRT(IR_HIOP, IRT_NIL), nref, hisubst[ir->op2]); } else if (ir->o == IR_LOOP) { J->loopref = nref; /* Needed by assembler. */ } hisubst[ref] = hi; /* Store hiword substitution. */ } if (snref == nins) { /* Substitution for last snapshot. */ snap->ref = J->cur.nins; split_subst_snap(J, snap, oir); } /* Add PHI marks. */ for (ref = J->cur.nins-1; ref >= REF_FIRST; ref--) { IRIns *ir = IR(ref); if (ir->o != IR_PHI) break; if (!irref_isk(ir->op1)) irt_setphi(IR(ir->op1)->t); if (ir->op2 > J->loopref) irt_setphi(IR(ir->op2)->t); } } /* Protected callback for split pass. */ static TValue *cpsplit(lua_State *L, lua_CFunction dummy, void *ud) { jit_State *J = (jit_State *)ud; split_ir(J); UNUSED(L); UNUSED(dummy); return NULL; } #if defined(LUA_USE_ASSERT) || LJ_SOFTFP /* Slow, but sure way to check whether a SPLIT pass is needed. */ static int split_needsplit(jit_State *J) { IRIns *ir, *irend; IRRef ref; for (ir = IR(REF_FIRST), irend = IR(J->cur.nins); ir < irend; ir++) if (LJ_SOFTFP ? irt_is64orfp(ir->t) : irt_isint64(ir->t)) return 1; if (LJ_SOFTFP) { for (ref = J->chain[IR_SLOAD]; ref; ref = IR(ref)->prev) if ((IR(ref)->op2 & IRSLOAD_CONVERT)) return 1; if (J->chain[IR_TOBIT]) return 1; } for (ref = J->chain[IR_CONV]; ref; ref = IR(ref)->prev) { IRType st = (IR(ref)->op2 & IRCONV_SRCMASK); if ((LJ_SOFTFP && (st == IRT_NUM || st == IRT_FLOAT)) || st == IRT_I64 || st == IRT_U64) return 1; } return 0; /* Nope. */ } #endif /* SPLIT pass. */ void lj_opt_split(jit_State *J) { #if LJ_SOFTFP if (!J->needsplit) J->needsplit = split_needsplit(J); #else lua_assert(J->needsplit >= split_needsplit(J)); /* Verify flag. */ #endif if (J->needsplit) { int errcode = lj_vm_cpcall(J->L, NULL, J, cpsplit); if (errcode) { /* Completely reset the trace to avoid inconsistent dump on abort. */ J->cur.nins = J->cur.nk = REF_BASE; J->cur.nsnap = 0; lj_err_throw(J->L, errcode); /* Propagate errors. */ } } } #undef IR #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_vmevent.c0000644000175100017510000000302013101703334020415 0ustar ondrejondrej/* ** VM event handling. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #include #define lj_vmevent_c #define LUA_CORE #include "lj_obj.h" #include "lj_str.h" #include "lj_tab.h" #include "lj_state.h" #include "lj_dispatch.h" #include "lj_vm.h" #include "lj_vmevent.h" ptrdiff_t lj_vmevent_prepare(lua_State *L, VMEvent ev) { global_State *g = G(L); GCstr *s = lj_str_newlit(L, LJ_VMEVENTS_REGKEY); cTValue *tv = lj_tab_getstr(tabV(registry(L)), s); if (tvistab(tv)) { int hash = VMEVENT_HASH(ev); tv = lj_tab_getint(tabV(tv), hash); if (tv && tvisfunc(tv)) { lj_state_checkstack(L, LUA_MINSTACK); setfuncV(L, L->top++, funcV(tv)); if (LJ_FR2) setnilV(L->top++); return savestack(L, L->top); } } g->vmevmask &= ~VMEVENT_MASK(ev); /* No handler: cache this fact. */ return 0; } void lj_vmevent_call(lua_State *L, ptrdiff_t argbase) { global_State *g = G(L); uint8_t oldmask = g->vmevmask; uint8_t oldh = hook_save(g); int status; g->vmevmask = 0; /* Disable all events. */ hook_vmevent(g); status = lj_vm_pcall(L, restorestack(L, argbase), 0+1, 0); if (LJ_UNLIKELY(status)) { /* Really shouldn't use stderr here, but where else to complain? */ L->top--; fputs("VM handler failed: ", stderr); fputs(tvisstr(L->top) ? strVdata(L->top) : "?", stderr); fputc('\n', stderr); } hook_restore(g, oldh); if (g->vmevmask != VMEVENT_NOCACHE) g->vmevmask = oldmask; /* Restore event mask, but not if not modified. */ } luajit-2.1.0~beta3+dfsg.orig/src/lj_cdata.h0000644000175100017510000000421313101703334020017 0ustar ondrejondrej/* ** C data management. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_CDATA_H #define _LJ_CDATA_H #include "lj_obj.h" #include "lj_gc.h" #include "lj_ctype.h" #if LJ_HASFFI /* Get C data pointer. */ static LJ_AINLINE void *cdata_getptr(void *p, CTSize sz) { if (LJ_64 && sz == 4) { /* Support 32 bit pointers on 64 bit targets. */ return ((void *)(uintptr_t)*(uint32_t *)p); } else { lua_assert(sz == CTSIZE_PTR); return *(void **)p; } } /* Set C data pointer. */ static LJ_AINLINE void cdata_setptr(void *p, CTSize sz, const void *v) { if (LJ_64 && sz == 4) { /* Support 32 bit pointers on 64 bit targets. */ *(uint32_t *)p = (uint32_t)(uintptr_t)v; } else { lua_assert(sz == CTSIZE_PTR); *(void **)p = (void *)v; } } /* Allocate fixed-size C data object. */ static LJ_AINLINE GCcdata *lj_cdata_new(CTState *cts, CTypeID id, CTSize sz) { GCcdata *cd; #ifdef LUA_USE_ASSERT CType *ct = ctype_raw(cts, id); lua_assert((ctype_hassize(ct->info) ? ct->size : CTSIZE_PTR) == sz); #endif cd = (GCcdata *)lj_mem_newgco(cts->L, sizeof(GCcdata) + sz); cd->gct = ~LJ_TCDATA; cd->ctypeid = ctype_check(cts, id); return cd; } /* Variant which works without a valid CTState. */ static LJ_AINLINE GCcdata *lj_cdata_new_(lua_State *L, CTypeID id, CTSize sz) { GCcdata *cd = (GCcdata *)lj_mem_newgco(L, sizeof(GCcdata) + sz); cd->gct = ~LJ_TCDATA; cd->ctypeid = id; return cd; } LJ_FUNC GCcdata *lj_cdata_newref(CTState *cts, const void *pp, CTypeID id); LJ_FUNC GCcdata *lj_cdata_newv(lua_State *L, CTypeID id, CTSize sz, CTSize align); LJ_FUNC GCcdata *lj_cdata_newx(CTState *cts, CTypeID id, CTSize sz, CTInfo info); LJ_FUNC void LJ_FASTCALL lj_cdata_free(global_State *g, GCcdata *cd); LJ_FUNC void lj_cdata_setfin(lua_State *L, GCcdata *cd, GCobj *obj, uint32_t it); LJ_FUNC CType *lj_cdata_index(CTState *cts, GCcdata *cd, cTValue *key, uint8_t **pp, CTInfo *qual); LJ_FUNC int lj_cdata_get(CTState *cts, CType *s, TValue *o, uint8_t *sp); LJ_FUNC void lj_cdata_set(CTState *cts, CType *d, uint8_t *dp, TValue *o, CTInfo qual); #endif #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_api.c0000644000175100017510000007445213101703334017523 0ustar ondrejondrej/* ** Public Lua/C API. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h ** ** Major portions taken verbatim or adapted from the Lua interpreter. ** Copyright (C) 1994-2008 Lua.org, PUC-Rio. See Copyright Notice in lua.h */ #define lj_api_c #define LUA_CORE #include "lj_obj.h" #include "lj_gc.h" #include "lj_err.h" #include "lj_debug.h" #include "lj_str.h" #include "lj_tab.h" #include "lj_func.h" #include "lj_udata.h" #include "lj_meta.h" #include "lj_state.h" #include "lj_bc.h" #include "lj_frame.h" #include "lj_trace.h" #include "lj_vm.h" #include "lj_strscan.h" #include "lj_strfmt.h" /* -- Common helper functions --------------------------------------------- */ #define api_checknelems(L, n) api_check(L, (n) <= (L->top - L->base)) #define api_checkvalidindex(L, i) api_check(L, (i) != niltv(L)) static TValue *index2adr(lua_State *L, int idx) { if (idx > 0) { TValue *o = L->base + (idx - 1); return o < L->top ? o : niltv(L); } else if (idx > LUA_REGISTRYINDEX) { api_check(L, idx != 0 && -idx <= L->top - L->base); return L->top + idx; } else if (idx == LUA_GLOBALSINDEX) { TValue *o = &G(L)->tmptv; settabV(L, o, tabref(L->env)); return o; } else if (idx == LUA_REGISTRYINDEX) { return registry(L); } else { GCfunc *fn = curr_func(L); api_check(L, fn->c.gct == ~LJ_TFUNC && !isluafunc(fn)); if (idx == LUA_ENVIRONINDEX) { TValue *o = &G(L)->tmptv; settabV(L, o, tabref(fn->c.env)); return o; } else { idx = LUA_GLOBALSINDEX - idx; return idx <= fn->c.nupvalues ? &fn->c.upvalue[idx-1] : niltv(L); } } } static TValue *stkindex2adr(lua_State *L, int idx) { if (idx > 0) { TValue *o = L->base + (idx - 1); return o < L->top ? o : niltv(L); } else { api_check(L, idx != 0 && -idx <= L->top - L->base); return L->top + idx; } } static GCtab *getcurrenv(lua_State *L) { GCfunc *fn = curr_func(L); return fn->c.gct == ~LJ_TFUNC ? tabref(fn->c.env) : tabref(L->env); } /* -- Miscellaneous API functions ----------------------------------------- */ LUA_API int lua_status(lua_State *L) { return L->status; } LUA_API int lua_checkstack(lua_State *L, int size) { if (size > LUAI_MAXCSTACK || (L->top - L->base + size) > LUAI_MAXCSTACK) { return 0; /* Stack overflow. */ } else if (size > 0) { lj_state_checkstack(L, (MSize)size); } return 1; } LUALIB_API void luaL_checkstack(lua_State *L, int size, const char *msg) { if (!lua_checkstack(L, size)) lj_err_callerv(L, LJ_ERR_STKOVM, msg); } LUA_API void lua_xmove(lua_State *from, lua_State *to, int n) { TValue *f, *t; if (from == to) return; api_checknelems(from, n); api_check(from, G(from) == G(to)); lj_state_checkstack(to, (MSize)n); f = from->top; t = to->top = to->top + n; while (--n >= 0) copyTV(to, --t, --f); from->top = f; } LUA_API const lua_Number *lua_version(lua_State *L) { static const lua_Number version = LUA_VERSION_NUM; UNUSED(L); return &version; } /* -- Stack manipulation -------------------------------------------------- */ LUA_API int lua_gettop(lua_State *L) { return (int)(L->top - L->base); } LUA_API void lua_settop(lua_State *L, int idx) { if (idx >= 0) { api_check(L, idx <= tvref(L->maxstack) - L->base); if (L->base + idx > L->top) { if (L->base + idx >= tvref(L->maxstack)) lj_state_growstack(L, (MSize)idx - (MSize)(L->top - L->base)); do { setnilV(L->top++); } while (L->top < L->base + idx); } else { L->top = L->base + idx; } } else { api_check(L, -(idx+1) <= (L->top - L->base)); L->top += idx+1; /* Shrinks top (idx < 0). */ } } LUA_API void lua_remove(lua_State *L, int idx) { TValue *p = stkindex2adr(L, idx); api_checkvalidindex(L, p); while (++p < L->top) copyTV(L, p-1, p); L->top--; } LUA_API void lua_insert(lua_State *L, int idx) { TValue *q, *p = stkindex2adr(L, idx); api_checkvalidindex(L, p); for (q = L->top; q > p; q--) copyTV(L, q, q-1); copyTV(L, p, L->top); } static void copy_slot(lua_State *L, TValue *f, int idx) { if (idx == LUA_GLOBALSINDEX) { api_check(L, tvistab(f)); /* NOBARRIER: A thread (i.e. L) is never black. */ setgcref(L->env, obj2gco(tabV(f))); } else if (idx == LUA_ENVIRONINDEX) { GCfunc *fn = curr_func(L); if (fn->c.gct != ~LJ_TFUNC) lj_err_msg(L, LJ_ERR_NOENV); api_check(L, tvistab(f)); setgcref(fn->c.env, obj2gco(tabV(f))); lj_gc_barrier(L, fn, f); } else { TValue *o = index2adr(L, idx); api_checkvalidindex(L, o); copyTV(L, o, f); if (idx < LUA_GLOBALSINDEX) /* Need a barrier for upvalues. */ lj_gc_barrier(L, curr_func(L), f); } } LUA_API void lua_replace(lua_State *L, int idx) { api_checknelems(L, 1); copy_slot(L, L->top - 1, idx); L->top--; } LUA_API void lua_copy(lua_State *L, int fromidx, int toidx) { copy_slot(L, index2adr(L, fromidx), toidx); } LUA_API void lua_pushvalue(lua_State *L, int idx) { copyTV(L, L->top, index2adr(L, idx)); incr_top(L); } /* -- Stack getters ------------------------------------------------------- */ LUA_API int lua_type(lua_State *L, int idx) { cTValue *o = index2adr(L, idx); if (tvisnumber(o)) { return LUA_TNUMBER; #if LJ_64 && !LJ_GC64 } else if (tvislightud(o)) { return LUA_TLIGHTUSERDATA; #endif } else if (o == niltv(L)) { return LUA_TNONE; } else { /* Magic internal/external tag conversion. ORDER LJ_T */ uint32_t t = ~itype(o); #if LJ_64 int tt = (int)((U64x(75a06,98042110) >> 4*t) & 15u); #else int tt = (int)(((t < 8 ? 0x98042110u : 0x75a06u) >> 4*(t&7)) & 15u); #endif lua_assert(tt != LUA_TNIL || tvisnil(o)); return tt; } } LUALIB_API void luaL_checktype(lua_State *L, int idx, int tt) { if (lua_type(L, idx) != tt) lj_err_argt(L, idx, tt); } LUALIB_API void luaL_checkany(lua_State *L, int idx) { if (index2adr(L, idx) == niltv(L)) lj_err_arg(L, idx, LJ_ERR_NOVAL); } LUA_API const char *lua_typename(lua_State *L, int t) { UNUSED(L); return lj_obj_typename[t+1]; } LUA_API int lua_iscfunction(lua_State *L, int idx) { cTValue *o = index2adr(L, idx); return tvisfunc(o) && !isluafunc(funcV(o)); } LUA_API int lua_isnumber(lua_State *L, int idx) { cTValue *o = index2adr(L, idx); TValue tmp; return (tvisnumber(o) || (tvisstr(o) && lj_strscan_number(strV(o), &tmp))); } LUA_API int lua_isstring(lua_State *L, int idx) { cTValue *o = index2adr(L, idx); return (tvisstr(o) || tvisnumber(o)); } LUA_API int lua_isuserdata(lua_State *L, int idx) { cTValue *o = index2adr(L, idx); return (tvisudata(o) || tvislightud(o)); } LUA_API int lua_rawequal(lua_State *L, int idx1, int idx2) { cTValue *o1 = index2adr(L, idx1); cTValue *o2 = index2adr(L, idx2); return (o1 == niltv(L) || o2 == niltv(L)) ? 0 : lj_obj_equal(o1, o2); } LUA_API int lua_equal(lua_State *L, int idx1, int idx2) { cTValue *o1 = index2adr(L, idx1); cTValue *o2 = index2adr(L, idx2); if (tvisint(o1) && tvisint(o2)) { return intV(o1) == intV(o2); } else if (tvisnumber(o1) && tvisnumber(o2)) { return numberVnum(o1) == numberVnum(o2); } else if (itype(o1) != itype(o2)) { return 0; } else if (tvispri(o1)) { return o1 != niltv(L) && o2 != niltv(L); #if LJ_64 && !LJ_GC64 } else if (tvislightud(o1)) { return o1->u64 == o2->u64; #endif } else if (gcrefeq(o1->gcr, o2->gcr)) { return 1; } else if (!tvistabud(o1)) { return 0; } else { TValue *base = lj_meta_equal(L, gcV(o1), gcV(o2), 0); if ((uintptr_t)base <= 1) { return (int)(uintptr_t)base; } else { L->top = base+2; lj_vm_call(L, base, 1+1); L->top -= 2+LJ_FR2; return tvistruecond(L->top+1+LJ_FR2); } } } LUA_API int lua_lessthan(lua_State *L, int idx1, int idx2) { cTValue *o1 = index2adr(L, idx1); cTValue *o2 = index2adr(L, idx2); if (o1 == niltv(L) || o2 == niltv(L)) { return 0; } else if (tvisint(o1) && tvisint(o2)) { return intV(o1) < intV(o2); } else if (tvisnumber(o1) && tvisnumber(o2)) { return numberVnum(o1) < numberVnum(o2); } else { TValue *base = lj_meta_comp(L, o1, o2, 0); if ((uintptr_t)base <= 1) { return (int)(uintptr_t)base; } else { L->top = base+2; lj_vm_call(L, base, 1+1); L->top -= 2+LJ_FR2; return tvistruecond(L->top+1+LJ_FR2); } } } LUA_API lua_Number lua_tonumber(lua_State *L, int idx) { cTValue *o = index2adr(L, idx); TValue tmp; if (LJ_LIKELY(tvisnumber(o))) return numberVnum(o); else if (tvisstr(o) && lj_strscan_num(strV(o), &tmp)) return numV(&tmp); else return 0; } LUA_API lua_Number lua_tonumberx(lua_State *L, int idx, int *ok) { cTValue *o = index2adr(L, idx); TValue tmp; if (LJ_LIKELY(tvisnumber(o))) { if (ok) *ok = 1; return numberVnum(o); } else if (tvisstr(o) && lj_strscan_num(strV(o), &tmp)) { if (ok) *ok = 1; return numV(&tmp); } else { if (ok) *ok = 0; return 0; } } LUALIB_API lua_Number luaL_checknumber(lua_State *L, int idx) { cTValue *o = index2adr(L, idx); TValue tmp; if (LJ_LIKELY(tvisnumber(o))) return numberVnum(o); else if (!(tvisstr(o) && lj_strscan_num(strV(o), &tmp))) lj_err_argt(L, idx, LUA_TNUMBER); return numV(&tmp); } LUALIB_API lua_Number luaL_optnumber(lua_State *L, int idx, lua_Number def) { cTValue *o = index2adr(L, idx); TValue tmp; if (LJ_LIKELY(tvisnumber(o))) return numberVnum(o); else if (tvisnil(o)) return def; else if (!(tvisstr(o) && lj_strscan_num(strV(o), &tmp))) lj_err_argt(L, idx, LUA_TNUMBER); return numV(&tmp); } LUA_API lua_Integer lua_tointeger(lua_State *L, int idx) { cTValue *o = index2adr(L, idx); TValue tmp; lua_Number n; if (LJ_LIKELY(tvisint(o))) { return intV(o); } else if (LJ_LIKELY(tvisnum(o))) { n = numV(o); } else { if (!(tvisstr(o) && lj_strscan_number(strV(o), &tmp))) return 0; if (tvisint(&tmp)) return intV(&tmp); n = numV(&tmp); } #if LJ_64 return (lua_Integer)n; #else return lj_num2int(n); #endif } LUA_API lua_Integer lua_tointegerx(lua_State *L, int idx, int *ok) { cTValue *o = index2adr(L, idx); TValue tmp; lua_Number n; if (LJ_LIKELY(tvisint(o))) { if (ok) *ok = 1; return intV(o); } else if (LJ_LIKELY(tvisnum(o))) { n = numV(o); } else { if (!(tvisstr(o) && lj_strscan_number(strV(o), &tmp))) { if (ok) *ok = 0; return 0; } if (tvisint(&tmp)) { if (ok) *ok = 1; return intV(&tmp); } n = numV(&tmp); } if (ok) *ok = 1; #if LJ_64 return (lua_Integer)n; #else return lj_num2int(n); #endif } LUALIB_API lua_Integer luaL_checkinteger(lua_State *L, int idx) { cTValue *o = index2adr(L, idx); TValue tmp; lua_Number n; if (LJ_LIKELY(tvisint(o))) { return intV(o); } else if (LJ_LIKELY(tvisnum(o))) { n = numV(o); } else { if (!(tvisstr(o) && lj_strscan_number(strV(o), &tmp))) lj_err_argt(L, idx, LUA_TNUMBER); if (tvisint(&tmp)) return (lua_Integer)intV(&tmp); n = numV(&tmp); } #if LJ_64 return (lua_Integer)n; #else return lj_num2int(n); #endif } LUALIB_API lua_Integer luaL_optinteger(lua_State *L, int idx, lua_Integer def) { cTValue *o = index2adr(L, idx); TValue tmp; lua_Number n; if (LJ_LIKELY(tvisint(o))) { return intV(o); } else if (LJ_LIKELY(tvisnum(o))) { n = numV(o); } else if (tvisnil(o)) { return def; } else { if (!(tvisstr(o) && lj_strscan_number(strV(o), &tmp))) lj_err_argt(L, idx, LUA_TNUMBER); if (tvisint(&tmp)) return (lua_Integer)intV(&tmp); n = numV(&tmp); } #if LJ_64 return (lua_Integer)n; #else return lj_num2int(n); #endif } LUA_API int lua_toboolean(lua_State *L, int idx) { cTValue *o = index2adr(L, idx); return tvistruecond(o); } LUA_API const char *lua_tolstring(lua_State *L, int idx, size_t *len) { TValue *o = index2adr(L, idx); GCstr *s; if (LJ_LIKELY(tvisstr(o))) { s = strV(o); } else if (tvisnumber(o)) { lj_gc_check(L); o = index2adr(L, idx); /* GC may move the stack. */ s = lj_strfmt_number(L, o); setstrV(L, o, s); } else { if (len != NULL) *len = 0; return NULL; } if (len != NULL) *len = s->len; return strdata(s); } LUALIB_API const char *luaL_checklstring(lua_State *L, int idx, size_t *len) { TValue *o = index2adr(L, idx); GCstr *s; if (LJ_LIKELY(tvisstr(o))) { s = strV(o); } else if (tvisnumber(o)) { lj_gc_check(L); o = index2adr(L, idx); /* GC may move the stack. */ s = lj_strfmt_number(L, o); setstrV(L, o, s); } else { lj_err_argt(L, idx, LUA_TSTRING); } if (len != NULL) *len = s->len; return strdata(s); } LUALIB_API const char *luaL_optlstring(lua_State *L, int idx, const char *def, size_t *len) { TValue *o = index2adr(L, idx); GCstr *s; if (LJ_LIKELY(tvisstr(o))) { s = strV(o); } else if (tvisnil(o)) { if (len != NULL) *len = def ? strlen(def) : 0; return def; } else if (tvisnumber(o)) { lj_gc_check(L); o = index2adr(L, idx); /* GC may move the stack. */ s = lj_strfmt_number(L, o); setstrV(L, o, s); } else { lj_err_argt(L, idx, LUA_TSTRING); } if (len != NULL) *len = s->len; return strdata(s); } LUALIB_API int luaL_checkoption(lua_State *L, int idx, const char *def, const char *const lst[]) { ptrdiff_t i; const char *s = lua_tolstring(L, idx, NULL); if (s == NULL && (s = def) == NULL) lj_err_argt(L, idx, LUA_TSTRING); for (i = 0; lst[i]; i++) if (strcmp(lst[i], s) == 0) return (int)i; lj_err_argv(L, idx, LJ_ERR_INVOPTM, s); } LUA_API size_t lua_objlen(lua_State *L, int idx) { TValue *o = index2adr(L, idx); if (tvisstr(o)) { return strV(o)->len; } else if (tvistab(o)) { return (size_t)lj_tab_len(tabV(o)); } else if (tvisudata(o)) { return udataV(o)->len; } else if (tvisnumber(o)) { GCstr *s = lj_strfmt_number(L, o); setstrV(L, o, s); return s->len; } else { return 0; } } LUA_API lua_CFunction lua_tocfunction(lua_State *L, int idx) { cTValue *o = index2adr(L, idx); if (tvisfunc(o)) { BCOp op = bc_op(*mref(funcV(o)->c.pc, BCIns)); if (op == BC_FUNCC || op == BC_FUNCCW) return funcV(o)->c.f; } return NULL; } LUA_API void *lua_touserdata(lua_State *L, int idx) { cTValue *o = index2adr(L, idx); if (tvisudata(o)) return uddata(udataV(o)); else if (tvislightud(o)) return lightudV(o); else return NULL; } LUA_API lua_State *lua_tothread(lua_State *L, int idx) { cTValue *o = index2adr(L, idx); return (!tvisthread(o)) ? NULL : threadV(o); } LUA_API const void *lua_topointer(lua_State *L, int idx) { return lj_obj_ptr(index2adr(L, idx)); } /* -- Stack setters (object creation) ------------------------------------- */ LUA_API void lua_pushnil(lua_State *L) { setnilV(L->top); incr_top(L); } LUA_API void lua_pushnumber(lua_State *L, lua_Number n) { setnumV(L->top, n); if (LJ_UNLIKELY(tvisnan(L->top))) setnanV(L->top); /* Canonicalize injected NaNs. */ incr_top(L); } LUA_API void lua_pushinteger(lua_State *L, lua_Integer n) { setintptrV(L->top, n); incr_top(L); } LUA_API void lua_pushlstring(lua_State *L, const char *str, size_t len) { GCstr *s; lj_gc_check(L); s = lj_str_new(L, str, len); setstrV(L, L->top, s); incr_top(L); } LUA_API void lua_pushstring(lua_State *L, const char *str) { if (str == NULL) { setnilV(L->top); } else { GCstr *s; lj_gc_check(L); s = lj_str_newz(L, str); setstrV(L, L->top, s); } incr_top(L); } LUA_API const char *lua_pushvfstring(lua_State *L, const char *fmt, va_list argp) { lj_gc_check(L); return lj_strfmt_pushvf(L, fmt, argp); } LUA_API const char *lua_pushfstring(lua_State *L, const char *fmt, ...) { const char *ret; va_list argp; lj_gc_check(L); va_start(argp, fmt); ret = lj_strfmt_pushvf(L, fmt, argp); va_end(argp); return ret; } LUA_API void lua_pushcclosure(lua_State *L, lua_CFunction f, int n) { GCfunc *fn; lj_gc_check(L); api_checknelems(L, n); fn = lj_func_newC(L, (MSize)n, getcurrenv(L)); fn->c.f = f; L->top -= n; while (n--) copyTV(L, &fn->c.upvalue[n], L->top+n); setfuncV(L, L->top, fn); lua_assert(iswhite(obj2gco(fn))); incr_top(L); } LUA_API void lua_pushboolean(lua_State *L, int b) { setboolV(L->top, (b != 0)); incr_top(L); } LUA_API void lua_pushlightuserdata(lua_State *L, void *p) { setlightudV(L->top, checklightudptr(L, p)); incr_top(L); } LUA_API void lua_createtable(lua_State *L, int narray, int nrec) { lj_gc_check(L); settabV(L, L->top, lj_tab_new_ah(L, narray, nrec)); incr_top(L); } LUALIB_API int luaL_newmetatable(lua_State *L, const char *tname) { GCtab *regt = tabV(registry(L)); TValue *tv = lj_tab_setstr(L, regt, lj_str_newz(L, tname)); if (tvisnil(tv)) { GCtab *mt = lj_tab_new(L, 0, 1); settabV(L, tv, mt); settabV(L, L->top++, mt); lj_gc_anybarriert(L, regt); return 1; } else { copyTV(L, L->top++, tv); return 0; } } LUA_API int lua_pushthread(lua_State *L) { setthreadV(L, L->top, L); incr_top(L); return (mainthread(G(L)) == L); } LUA_API lua_State *lua_newthread(lua_State *L) { lua_State *L1; lj_gc_check(L); L1 = lj_state_new(L); setthreadV(L, L->top, L1); incr_top(L); return L1; } LUA_API void *lua_newuserdata(lua_State *L, size_t size) { GCudata *ud; lj_gc_check(L); if (size > LJ_MAX_UDATA) lj_err_msg(L, LJ_ERR_UDATAOV); ud = lj_udata_new(L, (MSize)size, getcurrenv(L)); setudataV(L, L->top, ud); incr_top(L); return uddata(ud); } LUA_API void lua_concat(lua_State *L, int n) { api_checknelems(L, n); if (n >= 2) { n--; do { TValue *top = lj_meta_cat(L, L->top-1, -n); if (top == NULL) { L->top -= n; break; } n -= (int)(L->top - top); L->top = top+2; lj_vm_call(L, top, 1+1); L->top -= 1+LJ_FR2; copyTV(L, L->top-1, L->top+LJ_FR2); } while (--n > 0); } else if (n == 0) { /* Push empty string. */ setstrV(L, L->top, &G(L)->strempty); incr_top(L); } /* else n == 1: nothing to do. */ } /* -- Object getters ------------------------------------------------------ */ LUA_API void lua_gettable(lua_State *L, int idx) { cTValue *v, *t = index2adr(L, idx); api_checkvalidindex(L, t); v = lj_meta_tget(L, t, L->top-1); if (v == NULL) { L->top += 2; lj_vm_call(L, L->top-2, 1+1); L->top -= 2+LJ_FR2; v = L->top+1+LJ_FR2; } copyTV(L, L->top-1, v); } LUA_API void lua_getfield(lua_State *L, int idx, const char *k) { cTValue *v, *t = index2adr(L, idx); TValue key; api_checkvalidindex(L, t); setstrV(L, &key, lj_str_newz(L, k)); v = lj_meta_tget(L, t, &key); if (v == NULL) { L->top += 2; lj_vm_call(L, L->top-2, 1+1); L->top -= 2+LJ_FR2; v = L->top+1+LJ_FR2; } copyTV(L, L->top, v); incr_top(L); } LUA_API void lua_rawget(lua_State *L, int idx) { cTValue *t = index2adr(L, idx); api_check(L, tvistab(t)); copyTV(L, L->top-1, lj_tab_get(L, tabV(t), L->top-1)); } LUA_API void lua_rawgeti(lua_State *L, int idx, int n) { cTValue *v, *t = index2adr(L, idx); api_check(L, tvistab(t)); v = lj_tab_getint(tabV(t), n); if (v) { copyTV(L, L->top, v); } else { setnilV(L->top); } incr_top(L); } LUA_API int lua_getmetatable(lua_State *L, int idx) { cTValue *o = index2adr(L, idx); GCtab *mt = NULL; if (tvistab(o)) mt = tabref(tabV(o)->metatable); else if (tvisudata(o)) mt = tabref(udataV(o)->metatable); else mt = tabref(basemt_obj(G(L), o)); if (mt == NULL) return 0; settabV(L, L->top, mt); incr_top(L); return 1; } LUALIB_API int luaL_getmetafield(lua_State *L, int idx, const char *field) { if (lua_getmetatable(L, idx)) { cTValue *tv = lj_tab_getstr(tabV(L->top-1), lj_str_newz(L, field)); if (tv && !tvisnil(tv)) { copyTV(L, L->top-1, tv); return 1; } L->top--; } return 0; } LUA_API void lua_getfenv(lua_State *L, int idx) { cTValue *o = index2adr(L, idx); api_checkvalidindex(L, o); if (tvisfunc(o)) { settabV(L, L->top, tabref(funcV(o)->c.env)); } else if (tvisudata(o)) { settabV(L, L->top, tabref(udataV(o)->env)); } else if (tvisthread(o)) { settabV(L, L->top, tabref(threadV(o)->env)); } else { setnilV(L->top); } incr_top(L); } LUA_API int lua_next(lua_State *L, int idx) { cTValue *t = index2adr(L, idx); int more; api_check(L, tvistab(t)); more = lj_tab_next(L, tabV(t), L->top-1); if (more) { incr_top(L); /* Return new key and value slot. */ } else { /* End of traversal. */ L->top--; /* Remove key slot. */ } return more; } LUA_API const char *lua_getupvalue(lua_State *L, int idx, int n) { TValue *val; const char *name = lj_debug_uvnamev(index2adr(L, idx), (uint32_t)(n-1), &val); if (name) { copyTV(L, L->top, val); incr_top(L); } return name; } LUA_API void *lua_upvalueid(lua_State *L, int idx, int n) { GCfunc *fn = funcV(index2adr(L, idx)); n--; api_check(L, (uint32_t)n < fn->l.nupvalues); return isluafunc(fn) ? (void *)gcref(fn->l.uvptr[n]) : (void *)&fn->c.upvalue[n]; } LUA_API void lua_upvaluejoin(lua_State *L, int idx1, int n1, int idx2, int n2) { GCfunc *fn1 = funcV(index2adr(L, idx1)); GCfunc *fn2 = funcV(index2adr(L, idx2)); n1--; n2--; api_check(L, isluafunc(fn1) && (uint32_t)n1 < fn1->l.nupvalues); api_check(L, isluafunc(fn2) && (uint32_t)n2 < fn2->l.nupvalues); setgcrefr(fn1->l.uvptr[n1], fn2->l.uvptr[n2]); lj_gc_objbarrier(L, fn1, gcref(fn1->l.uvptr[n1])); } LUALIB_API void *luaL_testudata(lua_State *L, int idx, const char *tname) { cTValue *o = index2adr(L, idx); if (tvisudata(o)) { GCudata *ud = udataV(o); cTValue *tv = lj_tab_getstr(tabV(registry(L)), lj_str_newz(L, tname)); if (tv && tvistab(tv) && tabV(tv) == tabref(ud->metatable)) return uddata(ud); } return NULL; /* value is not a userdata with a metatable */ } LUALIB_API void *luaL_checkudata(lua_State *L, int idx, const char *tname) { void *p = luaL_testudata(L, idx, tname); if (!p) lj_err_argtype(L, idx, tname); return p; } /* -- Object setters ------------------------------------------------------ */ LUA_API void lua_settable(lua_State *L, int idx) { TValue *o; cTValue *t = index2adr(L, idx); api_checknelems(L, 2); api_checkvalidindex(L, t); o = lj_meta_tset(L, t, L->top-2); if (o) { /* NOBARRIER: lj_meta_tset ensures the table is not black. */ L->top -= 2; copyTV(L, o, L->top+1); } else { TValue *base = L->top; copyTV(L, base+2, base-3-2*LJ_FR2); L->top = base+3; lj_vm_call(L, base, 0+1); L->top -= 3+LJ_FR2; } } LUA_API void lua_setfield(lua_State *L, int idx, const char *k) { TValue *o; TValue key; cTValue *t = index2adr(L, idx); api_checknelems(L, 1); api_checkvalidindex(L, t); setstrV(L, &key, lj_str_newz(L, k)); o = lj_meta_tset(L, t, &key); if (o) { /* NOBARRIER: lj_meta_tset ensures the table is not black. */ copyTV(L, o, --L->top); } else { TValue *base = L->top; copyTV(L, base+2, base-3-2*LJ_FR2); L->top = base+3; lj_vm_call(L, base, 0+1); L->top -= 2+LJ_FR2; } } LUA_API void lua_rawset(lua_State *L, int idx) { GCtab *t = tabV(index2adr(L, idx)); TValue *dst, *key; api_checknelems(L, 2); key = L->top-2; dst = lj_tab_set(L, t, key); copyTV(L, dst, key+1); lj_gc_anybarriert(L, t); L->top = key; } LUA_API void lua_rawseti(lua_State *L, int idx, int n) { GCtab *t = tabV(index2adr(L, idx)); TValue *dst, *src; api_checknelems(L, 1); dst = lj_tab_setint(L, t, n); src = L->top-1; copyTV(L, dst, src); lj_gc_barriert(L, t, dst); L->top = src; } LUA_API int lua_setmetatable(lua_State *L, int idx) { global_State *g; GCtab *mt; cTValue *o = index2adr(L, idx); api_checknelems(L, 1); api_checkvalidindex(L, o); if (tvisnil(L->top-1)) { mt = NULL; } else { api_check(L, tvistab(L->top-1)); mt = tabV(L->top-1); } g = G(L); if (tvistab(o)) { setgcref(tabV(o)->metatable, obj2gco(mt)); if (mt) lj_gc_objbarriert(L, tabV(o), mt); } else if (tvisudata(o)) { setgcref(udataV(o)->metatable, obj2gco(mt)); if (mt) lj_gc_objbarrier(L, udataV(o), mt); } else { /* Flush cache, since traces specialize to basemt. But not during __gc. */ if (lj_trace_flushall(L)) lj_err_caller(L, LJ_ERR_NOGCMM); if (tvisbool(o)) { /* NOBARRIER: basemt is a GC root. */ setgcref(basemt_it(g, LJ_TTRUE), obj2gco(mt)); setgcref(basemt_it(g, LJ_TFALSE), obj2gco(mt)); } else { /* NOBARRIER: basemt is a GC root. */ setgcref(basemt_obj(g, o), obj2gco(mt)); } } L->top--; return 1; } LUALIB_API void luaL_setmetatable(lua_State *L, const char *tname) { lua_getfield(L, LUA_REGISTRYINDEX, tname); lua_setmetatable(L, -2); } LUA_API int lua_setfenv(lua_State *L, int idx) { cTValue *o = index2adr(L, idx); GCtab *t; api_checknelems(L, 1); api_checkvalidindex(L, o); api_check(L, tvistab(L->top-1)); t = tabV(L->top-1); if (tvisfunc(o)) { setgcref(funcV(o)->c.env, obj2gco(t)); } else if (tvisudata(o)) { setgcref(udataV(o)->env, obj2gco(t)); } else if (tvisthread(o)) { setgcref(threadV(o)->env, obj2gco(t)); } else { L->top--; return 0; } lj_gc_objbarrier(L, gcV(o), t); L->top--; return 1; } LUA_API const char *lua_setupvalue(lua_State *L, int idx, int n) { cTValue *f = index2adr(L, idx); TValue *val; const char *name; api_checknelems(L, 1); name = lj_debug_uvnamev(f, (uint32_t)(n-1), &val); if (name) { L->top--; copyTV(L, val, L->top); lj_gc_barrier(L, funcV(f), L->top); } return name; } /* -- Calls --------------------------------------------------------------- */ #if LJ_FR2 static TValue *api_call_base(lua_State *L, int nargs) { TValue *o = L->top, *base = o - nargs; L->top = o+1; for (; o > base; o--) copyTV(L, o, o-1); setnilV(o); return o+1; } #else #define api_call_base(L, nargs) (L->top - (nargs)) #endif LUA_API void lua_call(lua_State *L, int nargs, int nresults) { api_check(L, L->status == LUA_OK || L->status == LUA_ERRERR); api_checknelems(L, nargs+1); lj_vm_call(L, api_call_base(L, nargs), nresults+1); } LUA_API int lua_pcall(lua_State *L, int nargs, int nresults, int errfunc) { global_State *g = G(L); uint8_t oldh = hook_save(g); ptrdiff_t ef; int status; api_check(L, L->status == LUA_OK || L->status == LUA_ERRERR); api_checknelems(L, nargs+1); if (errfunc == 0) { ef = 0; } else { cTValue *o = stkindex2adr(L, errfunc); api_checkvalidindex(L, o); ef = savestack(L, o); } status = lj_vm_pcall(L, api_call_base(L, nargs), nresults+1, ef); if (status) hook_restore(g, oldh); return status; } static TValue *cpcall(lua_State *L, lua_CFunction func, void *ud) { GCfunc *fn = lj_func_newC(L, 0, getcurrenv(L)); TValue *top = L->top; fn->c.f = func; setfuncV(L, top++, fn); if (LJ_FR2) setnilV(top++); setlightudV(top++, checklightudptr(L, ud)); cframe_nres(L->cframe) = 1+0; /* Zero results. */ L->top = top; return top-1; /* Now call the newly allocated C function. */ } LUA_API int lua_cpcall(lua_State *L, lua_CFunction func, void *ud) { global_State *g = G(L); uint8_t oldh = hook_save(g); int status; api_check(L, L->status == LUA_OK || L->status == LUA_ERRERR); status = lj_vm_cpcall(L, func, ud, cpcall); if (status) hook_restore(g, oldh); return status; } LUALIB_API int luaL_callmeta(lua_State *L, int idx, const char *field) { if (luaL_getmetafield(L, idx, field)) { TValue *top = L->top--; if (LJ_FR2) setnilV(top++); copyTV(L, top++, index2adr(L, idx)); L->top = top; lj_vm_call(L, top-1, 1+1); return 1; } return 0; } /* -- Coroutine yield and resume ------------------------------------------ */ LUA_API int lua_isyieldable(lua_State *L) { return cframe_canyield(L->cframe); } LUA_API int lua_yield(lua_State *L, int nresults) { void *cf = L->cframe; global_State *g = G(L); if (cframe_canyield(cf)) { cf = cframe_raw(cf); if (!hook_active(g)) { /* Regular yield: move results down if needed. */ cTValue *f = L->top - nresults; if (f > L->base) { TValue *t = L->base; while (--nresults >= 0) copyTV(L, t++, f++); L->top = t; } L->cframe = NULL; L->status = LUA_YIELD; return -1; } else { /* Yield from hook: add a pseudo-frame. */ TValue *top = L->top; hook_leave(g); (top++)->u64 = cframe_multres(cf); setcont(top, lj_cont_hook); if (LJ_FR2) top++; setframe_pc(top, cframe_pc(cf)-1); if (LJ_FR2) top++; setframe_gc(top, obj2gco(L), LJ_TTHREAD); setframe_ftsz(top, ((char *)(top+1)-(char *)L->base)+FRAME_CONT); L->top = L->base = top+1; #if LJ_TARGET_X64 lj_err_throw(L, LUA_YIELD); #else L->cframe = NULL; L->status = LUA_YIELD; lj_vm_unwind_c(cf, LUA_YIELD); #endif } } lj_err_msg(L, LJ_ERR_CYIELD); return 0; /* unreachable */ } LUA_API int lua_resume(lua_State *L, int nargs) { if (L->cframe == NULL && L->status <= LUA_YIELD) return lj_vm_resume(L, L->status == LUA_OK ? api_call_base(L, nargs) : L->top - nargs, 0, 0); L->top = L->base; setstrV(L, L->top, lj_err_str(L, LJ_ERR_COSUSP)); incr_top(L); return LUA_ERRRUN; } /* -- GC and memory management -------------------------------------------- */ LUA_API int lua_gc(lua_State *L, int what, int data) { global_State *g = G(L); int res = 0; switch (what) { case LUA_GCSTOP: g->gc.threshold = LJ_MAX_MEM; break; case LUA_GCRESTART: g->gc.threshold = data == -1 ? (g->gc.total/100)*g->gc.pause : g->gc.total; break; case LUA_GCCOLLECT: lj_gc_fullgc(L); break; case LUA_GCCOUNT: res = (int)(g->gc.total >> 10); break; case LUA_GCCOUNTB: res = (int)(g->gc.total & 0x3ff); break; case LUA_GCSTEP: { GCSize a = (GCSize)data << 10; g->gc.threshold = (a <= g->gc.total) ? (g->gc.total - a) : 0; while (g->gc.total >= g->gc.threshold) if (lj_gc_step(L) > 0) { res = 1; break; } break; } case LUA_GCSETPAUSE: res = (int)(g->gc.pause); g->gc.pause = (MSize)data; break; case LUA_GCSETSTEPMUL: res = (int)(g->gc.stepmul); g->gc.stepmul = (MSize)data; break; case LUA_GCISRUNNING: res = (g->gc.threshold != LJ_MAX_MEM); break; default: res = -1; /* Invalid option. */ } return res; } LUA_API lua_Alloc lua_getallocf(lua_State *L, void **ud) { global_State *g = G(L); if (ud) *ud = g->allocd; return g->allocf; } LUA_API void lua_setallocf(lua_State *L, lua_Alloc f, void *ud) { global_State *g = G(L); g->allocd = ud; g->allocf = f; } luajit-2.1.0~beta3+dfsg.orig/src/lj_strfmt.c0000644000175100017510000003171013101703334020257 0ustar ondrejondrej/* ** String formatting. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #include #define lj_strfmt_c #define LUA_CORE #include "lj_obj.h" #include "lj_buf.h" #include "lj_str.h" #include "lj_state.h" #include "lj_char.h" #include "lj_strfmt.h" /* -- Format parser ------------------------------------------------------- */ static const uint8_t strfmt_map[('x'-'A')+1] = { STRFMT_A,0,0,0,STRFMT_E,STRFMT_F,STRFMT_G,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,STRFMT_X,0,0, 0,0,0,0,0,0, STRFMT_A,0,STRFMT_C,STRFMT_D,STRFMT_E,STRFMT_F,STRFMT_G,0,STRFMT_I,0,0,0,0, 0,STRFMT_O,STRFMT_P,STRFMT_Q,0,STRFMT_S,0,STRFMT_U,0,0,STRFMT_X }; SFormat LJ_FASTCALL lj_strfmt_parse(FormatState *fs) { const uint8_t *p = fs->p, *e = fs->e; fs->str = (const char *)p; for (; p < e; p++) { if (*p == '%') { /* Escape char? */ if (p[1] == '%') { /* '%%'? */ fs->p = ++p+1; goto retlit; } else { SFormat sf = 0; uint32_t c; if (p != (const uint8_t *)fs->str) break; for (p++; (uint32_t)*p - ' ' <= (uint32_t)('0' - ' '); p++) { /* Parse flags. */ if (*p == '-') sf |= STRFMT_F_LEFT; else if (*p == '+') sf |= STRFMT_F_PLUS; else if (*p == '0') sf |= STRFMT_F_ZERO; else if (*p == ' ') sf |= STRFMT_F_SPACE; else if (*p == '#') sf |= STRFMT_F_ALT; else break; } if ((uint32_t)*p - '0' < 10) { /* Parse width. */ uint32_t width = (uint32_t)*p++ - '0'; if ((uint32_t)*p - '0' < 10) width = (uint32_t)*p++ - '0' + width*10; sf |= (width << STRFMT_SH_WIDTH); } if (*p == '.') { /* Parse precision. */ uint32_t prec = 0; p++; if ((uint32_t)*p - '0' < 10) { prec = (uint32_t)*p++ - '0'; if ((uint32_t)*p - '0' < 10) prec = (uint32_t)*p++ - '0' + prec*10; } sf |= ((prec+1) << STRFMT_SH_PREC); } /* Parse conversion. */ c = (uint32_t)*p - 'A'; if (LJ_LIKELY(c <= (uint32_t)('x' - 'A'))) { uint32_t sx = strfmt_map[c]; if (sx) { fs->p = p+1; return (sf | sx | ((c & 0x20) ? 0 : STRFMT_F_UPPER)); } } /* Return error location. */ if (*p >= 32) p++; fs->len = (MSize)(p - (const uint8_t *)fs->str); fs->p = fs->e; return STRFMT_ERR; } } } fs->p = p; retlit: fs->len = (MSize)(p - (const uint8_t *)fs->str); return fs->len ? STRFMT_LIT : STRFMT_EOF; } /* -- Raw conversions ----------------------------------------------------- */ #define WINT_R(x, sh, sc) \ { uint32_t d = (x*(((1<>sh; x -= d*sc; *p++ = (char)('0'+d); } /* Write integer to buffer. */ char * LJ_FASTCALL lj_strfmt_wint(char *p, int32_t k) { uint32_t u = (uint32_t)k; if (k < 0) { u = (uint32_t)-k; *p++ = '-'; } if (u < 10000) { if (u < 10) goto dig1; if (u < 100) goto dig2; if (u < 1000) goto dig3; } else { uint32_t v = u / 10000; u -= v * 10000; if (v < 10000) { if (v < 10) goto dig5; if (v < 100) goto dig6; if (v < 1000) goto dig7; } else { uint32_t w = v / 10000; v -= w * 10000; if (w >= 10) WINT_R(w, 10, 10) *p++ = (char)('0'+w); } WINT_R(v, 23, 1000) dig7: WINT_R(v, 12, 100) dig6: WINT_R(v, 10, 10) dig5: *p++ = (char)('0'+v); } WINT_R(u, 23, 1000) dig3: WINT_R(u, 12, 100) dig2: WINT_R(u, 10, 10) dig1: *p++ = (char)('0'+u); return p; } #undef WINT_R /* Write pointer to buffer. */ char * LJ_FASTCALL lj_strfmt_wptr(char *p, const void *v) { ptrdiff_t x = (ptrdiff_t)v; MSize i, n = STRFMT_MAXBUF_PTR; if (x == 0) { *p++ = 'N'; *p++ = 'U'; *p++ = 'L'; *p++ = 'L'; return p; } #if LJ_64 /* Shorten output for 64 bit pointers. */ n = 2+2*4+((x >> 32) ? 2+2*(lj_fls((uint32_t)(x >> 32))>>3) : 0); #endif p[0] = '0'; p[1] = 'x'; for (i = n-1; i >= 2; i--, x >>= 4) p[i] = "0123456789abcdef"[(x & 15)]; return p+n; } /* Write ULEB128 to buffer. */ char * LJ_FASTCALL lj_strfmt_wuleb128(char *p, uint32_t v) { for (; v >= 0x80; v >>= 7) *p++ = (char)((v & 0x7f) | 0x80); *p++ = (char)v; return p; } /* Return string or write number to tmp buffer and return pointer to start. */ const char *lj_strfmt_wstrnum(lua_State *L, cTValue *o, MSize *lenp) { SBuf *sb; if (tvisstr(o)) { *lenp = strV(o)->len; return strVdata(o); } else if (tvisint(o)) { sb = lj_strfmt_putint(lj_buf_tmp_(L), intV(o)); } else if (tvisnum(o)) { sb = lj_strfmt_putfnum(lj_buf_tmp_(L), STRFMT_G14, o->n); } else { return NULL; } *lenp = sbuflen(sb); return sbufB(sb); } /* -- Unformatted conversions to buffer ----------------------------------- */ /* Add integer to buffer. */ SBuf * LJ_FASTCALL lj_strfmt_putint(SBuf *sb, int32_t k) { setsbufP(sb, lj_strfmt_wint(lj_buf_more(sb, STRFMT_MAXBUF_INT), k)); return sb; } #if LJ_HASJIT /* Add number to buffer. */ SBuf * LJ_FASTCALL lj_strfmt_putnum(SBuf *sb, cTValue *o) { return lj_strfmt_putfnum(sb, STRFMT_G14, o->n); } #endif SBuf * LJ_FASTCALL lj_strfmt_putptr(SBuf *sb, const void *v) { setsbufP(sb, lj_strfmt_wptr(lj_buf_more(sb, STRFMT_MAXBUF_PTR), v)); return sb; } /* Add quoted string to buffer. */ SBuf * LJ_FASTCALL lj_strfmt_putquoted(SBuf *sb, GCstr *str) { const char *s = strdata(str); MSize len = str->len; lj_buf_putb(sb, '"'); while (len--) { uint32_t c = (uint32_t)(uint8_t)*s++; char *p = lj_buf_more(sb, 4); if (c == '"' || c == '\\' || c == '\n') { *p++ = '\\'; } else if (lj_char_iscntrl(c)) { /* This can only be 0-31 or 127. */ uint32_t d; *p++ = '\\'; if (c >= 100 || lj_char_isdigit((uint8_t)*s)) { *p++ = (char)('0'+(c >= 100)); if (c >= 100) c -= 100; goto tens; } else if (c >= 10) { tens: d = (c * 205) >> 11; c -= d * 10; *p++ = (char)('0'+d); } c += '0'; } *p++ = (char)c; setsbufP(sb, p); } lj_buf_putb(sb, '"'); return sb; } /* -- Formatted conversions to buffer ------------------------------------- */ /* Add formatted char to buffer. */ SBuf *lj_strfmt_putfchar(SBuf *sb, SFormat sf, int32_t c) { MSize width = STRFMT_WIDTH(sf); char *p = lj_buf_more(sb, width > 1 ? width : 1); if ((sf & STRFMT_F_LEFT)) *p++ = (char)c; while (width-- > 1) *p++ = ' '; if (!(sf & STRFMT_F_LEFT)) *p++ = (char)c; setsbufP(sb, p); return sb; } /* Add formatted string to buffer. */ SBuf *lj_strfmt_putfstr(SBuf *sb, SFormat sf, GCstr *str) { MSize len = str->len <= STRFMT_PREC(sf) ? str->len : STRFMT_PREC(sf); MSize width = STRFMT_WIDTH(sf); char *p = lj_buf_more(sb, width > len ? width : len); if ((sf & STRFMT_F_LEFT)) p = lj_buf_wmem(p, strdata(str), len); while (width-- > len) *p++ = ' '; if (!(sf & STRFMT_F_LEFT)) p = lj_buf_wmem(p, strdata(str), len); setsbufP(sb, p); return sb; } /* Add formatted signed/unsigned integer to buffer. */ SBuf *lj_strfmt_putfxint(SBuf *sb, SFormat sf, uint64_t k) { char buf[STRFMT_MAXBUF_XINT], *q = buf + sizeof(buf), *p; #ifdef LUA_USE_ASSERT char *ps; #endif MSize prefix = 0, len, prec, pprec, width, need; /* Figure out signed prefixes. */ if (STRFMT_TYPE(sf) == STRFMT_INT) { if ((int64_t)k < 0) { k = (uint64_t)-(int64_t)k; prefix = 256 + '-'; } else if ((sf & STRFMT_F_PLUS)) { prefix = 256 + '+'; } else if ((sf & STRFMT_F_SPACE)) { prefix = 256 + ' '; } } /* Convert number and store to fixed-size buffer in reverse order. */ prec = STRFMT_PREC(sf); if ((int32_t)prec >= 0) sf &= ~STRFMT_F_ZERO; if (k == 0) { /* Special-case zero argument. */ if (prec != 0 || (sf & (STRFMT_T_OCT|STRFMT_F_ALT)) == (STRFMT_T_OCT|STRFMT_F_ALT)) *--q = '0'; } else if (!(sf & (STRFMT_T_HEX|STRFMT_T_OCT))) { /* Decimal. */ uint32_t k2; while ((k >> 32)) { *--q = (char)('0' + k % 10); k /= 10; } k2 = (uint32_t)k; do { *--q = (char)('0' + k2 % 10); k2 /= 10; } while (k2); } else if ((sf & STRFMT_T_HEX)) { /* Hex. */ const char *hexdig = (sf & STRFMT_F_UPPER) ? "0123456789ABCDEF" : "0123456789abcdef"; do { *--q = hexdig[(k & 15)]; k >>= 4; } while (k); if ((sf & STRFMT_F_ALT)) prefix = 512 + ((sf & STRFMT_F_UPPER) ? 'X' : 'x'); } else { /* Octal. */ do { *--q = (char)('0' + (uint32_t)(k & 7)); k >>= 3; } while (k); if ((sf & STRFMT_F_ALT)) *--q = '0'; } /* Calculate sizes. */ len = (MSize)(buf + sizeof(buf) - q); if ((int32_t)len >= (int32_t)prec) prec = len; width = STRFMT_WIDTH(sf); pprec = prec + (prefix >> 8); need = width > pprec ? width : pprec; p = lj_buf_more(sb, need); #ifdef LUA_USE_ASSERT ps = p; #endif /* Format number with leading/trailing whitespace and zeros. */ if ((sf & (STRFMT_F_LEFT|STRFMT_F_ZERO)) == 0) while (width-- > pprec) *p++ = ' '; if (prefix) { if ((char)prefix >= 'X') *p++ = '0'; *p++ = (char)prefix; } if ((sf & (STRFMT_F_LEFT|STRFMT_F_ZERO)) == STRFMT_F_ZERO) while (width-- > pprec) *p++ = '0'; while (prec-- > len) *p++ = '0'; while (q < buf + sizeof(buf)) *p++ = *q++; /* Add number itself. */ if ((sf & STRFMT_F_LEFT)) while (width-- > pprec) *p++ = ' '; lua_assert(need == (MSize)(p - ps)); setsbufP(sb, p); return sb; } /* Add number formatted as signed integer to buffer. */ SBuf *lj_strfmt_putfnum_int(SBuf *sb, SFormat sf, lua_Number n) { int64_t k = (int64_t)n; if (checki32(k) && sf == STRFMT_INT) return lj_strfmt_putint(sb, (int32_t)k); /* Shortcut for plain %d. */ else return lj_strfmt_putfxint(sb, sf, (uint64_t)k); } /* Add number formatted as unsigned integer to buffer. */ SBuf *lj_strfmt_putfnum_uint(SBuf *sb, SFormat sf, lua_Number n) { int64_t k; if (n >= 9223372036854775808.0) k = (int64_t)(n - 18446744073709551616.0); else k = (int64_t)n; return lj_strfmt_putfxint(sb, sf, (uint64_t)k); } /* -- Conversions to strings ---------------------------------------------- */ /* Convert integer to string. */ GCstr * LJ_FASTCALL lj_strfmt_int(lua_State *L, int32_t k) { char buf[STRFMT_MAXBUF_INT]; MSize len = (MSize)(lj_strfmt_wint(buf, k) - buf); return lj_str_new(L, buf, len); } /* Convert integer or number to string. */ GCstr * LJ_FASTCALL lj_strfmt_number(lua_State *L, cTValue *o) { return tvisint(o) ? lj_strfmt_int(L, intV(o)) : lj_strfmt_num(L, o); } #if LJ_HASJIT /* Convert char value to string. */ GCstr * LJ_FASTCALL lj_strfmt_char(lua_State *L, int c) { char buf[1]; buf[0] = c; return lj_str_new(L, buf, 1); } #endif /* Raw conversion of object to string. */ GCstr * LJ_FASTCALL lj_strfmt_obj(lua_State *L, cTValue *o) { if (tvisstr(o)) { return strV(o); } else if (tvisnumber(o)) { return lj_strfmt_number(L, o); } else if (tvisnil(o)) { return lj_str_newlit(L, "nil"); } else if (tvisfalse(o)) { return lj_str_newlit(L, "false"); } else if (tvistrue(o)) { return lj_str_newlit(L, "true"); } else { char buf[8+2+2+16], *p = buf; p = lj_buf_wmem(p, lj_typename(o), (MSize)strlen(lj_typename(o))); *p++ = ':'; *p++ = ' '; if (tvisfunc(o) && isffunc(funcV(o))) { p = lj_buf_wmem(p, "builtin#", 8); p = lj_strfmt_wint(p, funcV(o)->c.ffid); } else { p = lj_strfmt_wptr(p, lj_obj_ptr(o)); } return lj_str_new(L, buf, (size_t)(p - buf)); } } /* -- Internal string formatting ------------------------------------------ */ /* ** These functions are only used for lua_pushfstring(), lua_pushvfstring() ** and for internal string formatting (e.g. error messages). Caveat: unlike ** string.format(), only a limited subset of formats and flags are supported! ** ** LuaJIT has support for a couple more formats than Lua 5.1/5.2: ** - %d %u %o %x with full formatting, 32 bit integers only. ** - %f and other FP formats are really %.14g. ** - %s %c %p without formatting. */ /* Push formatted message as a string object to Lua stack. va_list variant. */ const char *lj_strfmt_pushvf(lua_State *L, const char *fmt, va_list argp) { SBuf *sb = lj_buf_tmp_(L); FormatState fs; SFormat sf; GCstr *str; lj_strfmt_init(&fs, fmt, (MSize)strlen(fmt)); while ((sf = lj_strfmt_parse(&fs)) != STRFMT_EOF) { switch (STRFMT_TYPE(sf)) { case STRFMT_LIT: lj_buf_putmem(sb, fs.str, fs.len); break; case STRFMT_INT: lj_strfmt_putfxint(sb, sf, va_arg(argp, int32_t)); break; case STRFMT_UINT: lj_strfmt_putfxint(sb, sf, va_arg(argp, uint32_t)); break; case STRFMT_NUM: lj_strfmt_putfnum(sb, STRFMT_G14, va_arg(argp, lua_Number)); break; case STRFMT_STR: { const char *s = va_arg(argp, char *); if (s == NULL) s = "(null)"; lj_buf_putmem(sb, s, (MSize)strlen(s)); break; } case STRFMT_CHAR: lj_buf_putb(sb, va_arg(argp, int)); break; case STRFMT_PTR: lj_strfmt_putptr(sb, va_arg(argp, void *)); break; case STRFMT_ERR: default: lj_buf_putb(sb, '?'); lua_assert(0); break; } } str = lj_buf_str(L, sb); setstrV(L, L->top, str); incr_top(L); return strdata(str); } /* Push formatted message as a string object to Lua stack. Vararg variant. */ const char *lj_strfmt_pushf(lua_State *L, const char *fmt, ...) { const char *msg; va_list argp; va_start(argp, fmt); msg = lj_strfmt_pushvf(L, fmt, argp); va_end(argp); return msg; } luajit-2.1.0~beta3+dfsg.orig/src/lj_ccall.c0000644000175100017510000010534713101703334020026 0ustar ondrejondrej/* ** FFI C call handling. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #include "lj_obj.h" #if LJ_HASFFI #include "lj_gc.h" #include "lj_err.h" #include "lj_tab.h" #include "lj_ctype.h" #include "lj_cconv.h" #include "lj_cdata.h" #include "lj_ccall.h" #include "lj_trace.h" /* Target-specific handling of register arguments. */ #if LJ_TARGET_X86 /* -- x86 calling conventions --------------------------------------------- */ #if LJ_ABI_WIN #define CCALL_HANDLE_STRUCTRET \ /* Return structs bigger than 8 by reference (on stack only). */ \ cc->retref = (sz > 8); \ if (cc->retref) cc->stack[nsp++] = (GPRArg)dp; #define CCALL_HANDLE_COMPLEXRET CCALL_HANDLE_STRUCTRET #else #if LJ_TARGET_OSX #define CCALL_HANDLE_STRUCTRET \ /* Return structs of size 1, 2, 4 or 8 in registers. */ \ cc->retref = !(sz == 1 || sz == 2 || sz == 4 || sz == 8); \ if (cc->retref) { \ if (ngpr < maxgpr) \ cc->gpr[ngpr++] = (GPRArg)dp; \ else \ cc->stack[nsp++] = (GPRArg)dp; \ } else { /* Struct with single FP field ends up in FPR. */ \ cc->resx87 = ccall_classify_struct(cts, ctr); \ } #define CCALL_HANDLE_STRUCTRET2 \ if (cc->resx87) sp = (uint8_t *)&cc->fpr[0]; \ memcpy(dp, sp, ctr->size); #else #define CCALL_HANDLE_STRUCTRET \ cc->retref = 1; /* Return all structs by reference (in reg or on stack). */ \ if (ngpr < maxgpr) \ cc->gpr[ngpr++] = (GPRArg)dp; \ else \ cc->stack[nsp++] = (GPRArg)dp; #endif #define CCALL_HANDLE_COMPLEXRET \ /* Return complex float in GPRs and complex double by reference. */ \ cc->retref = (sz > 8); \ if (cc->retref) { \ if (ngpr < maxgpr) \ cc->gpr[ngpr++] = (GPRArg)dp; \ else \ cc->stack[nsp++] = (GPRArg)dp; \ } #endif #define CCALL_HANDLE_COMPLEXRET2 \ if (!cc->retref) \ *(int64_t *)dp = *(int64_t *)sp; /* Copy complex float from GPRs. */ #define CCALL_HANDLE_STRUCTARG \ ngpr = maxgpr; /* Pass all structs by value on the stack. */ #define CCALL_HANDLE_COMPLEXARG \ isfp = 1; /* Pass complex by value on stack. */ #define CCALL_HANDLE_REGARG \ if (!isfp) { /* Only non-FP values may be passed in registers. */ \ if (n > 1) { /* Anything > 32 bit is passed on the stack. */ \ if (!LJ_ABI_WIN) ngpr = maxgpr; /* Prevent reordering. */ \ } else if (ngpr + 1 <= maxgpr) { \ dp = &cc->gpr[ngpr]; \ ngpr += n; \ goto done; \ } \ } #elif LJ_TARGET_X64 && LJ_ABI_WIN /* -- Windows/x64 calling conventions ------------------------------------- */ #define CCALL_HANDLE_STRUCTRET \ /* Return structs of size 1, 2, 4 or 8 in a GPR. */ \ cc->retref = !(sz == 1 || sz == 2 || sz == 4 || sz == 8); \ if (cc->retref) cc->gpr[ngpr++] = (GPRArg)dp; #define CCALL_HANDLE_COMPLEXRET CCALL_HANDLE_STRUCTRET #define CCALL_HANDLE_COMPLEXRET2 \ if (!cc->retref) \ *(int64_t *)dp = *(int64_t *)sp; /* Copy complex float from GPRs. */ #define CCALL_HANDLE_STRUCTARG \ /* Pass structs of size 1, 2, 4 or 8 in a GPR by value. */ \ if (!(sz == 1 || sz == 2 || sz == 4 || sz == 8)) { \ rp = cdataptr(lj_cdata_new(cts, did, sz)); \ sz = CTSIZE_PTR; /* Pass all other structs by reference. */ \ } #define CCALL_HANDLE_COMPLEXARG \ /* Pass complex float in a GPR and complex double by reference. */ \ if (sz != 2*sizeof(float)) { \ rp = cdataptr(lj_cdata_new(cts, did, sz)); \ sz = CTSIZE_PTR; \ } /* Windows/x64 argument registers are strictly positional (use ngpr). */ #define CCALL_HANDLE_REGARG \ if (isfp) { \ if (ngpr < maxgpr) { dp = &cc->fpr[ngpr++]; nfpr = ngpr; goto done; } \ } else { \ if (ngpr < maxgpr) { dp = &cc->gpr[ngpr++]; goto done; } \ } #elif LJ_TARGET_X64 /* -- POSIX/x64 calling conventions --------------------------------------- */ #define CCALL_HANDLE_STRUCTRET \ int rcl[2]; rcl[0] = rcl[1] = 0; \ if (ccall_classify_struct(cts, ctr, rcl, 0)) { \ cc->retref = 1; /* Return struct by reference. */ \ cc->gpr[ngpr++] = (GPRArg)dp; \ } else { \ cc->retref = 0; /* Return small structs in registers. */ \ } #define CCALL_HANDLE_STRUCTRET2 \ int rcl[2]; rcl[0] = rcl[1] = 0; \ ccall_classify_struct(cts, ctr, rcl, 0); \ ccall_struct_ret(cc, rcl, dp, ctr->size); #define CCALL_HANDLE_COMPLEXRET \ /* Complex values are returned in one or two FPRs. */ \ cc->retref = 0; #define CCALL_HANDLE_COMPLEXRET2 \ if (ctr->size == 2*sizeof(float)) { /* Copy complex float from FPR. */ \ *(int64_t *)dp = cc->fpr[0].l[0]; \ } else { /* Copy non-contiguous complex double from FPRs. */ \ ((int64_t *)dp)[0] = cc->fpr[0].l[0]; \ ((int64_t *)dp)[1] = cc->fpr[1].l[0]; \ } #define CCALL_HANDLE_STRUCTARG \ int rcl[2]; rcl[0] = rcl[1] = 0; \ if (!ccall_classify_struct(cts, d, rcl, 0)) { \ cc->nsp = nsp; cc->ngpr = ngpr; cc->nfpr = nfpr; \ if (ccall_struct_arg(cc, cts, d, rcl, o, narg)) goto err_nyi; \ nsp = cc->nsp; ngpr = cc->ngpr; nfpr = cc->nfpr; \ continue; \ } /* Pass all other structs by value on stack. */ #define CCALL_HANDLE_COMPLEXARG \ isfp = 2; /* Pass complex in FPRs or on stack. Needs postprocessing. */ #define CCALL_HANDLE_REGARG \ if (isfp) { /* Try to pass argument in FPRs. */ \ int n2 = ctype_isvector(d->info) ? 1 : n; \ if (nfpr + n2 <= CCALL_NARG_FPR) { \ dp = &cc->fpr[nfpr]; \ nfpr += n2; \ goto done; \ } \ } else { /* Try to pass argument in GPRs. */ \ /* Note that reordering is explicitly allowed in the x64 ABI. */ \ if (n <= 2 && ngpr + n <= maxgpr) { \ dp = &cc->gpr[ngpr]; \ ngpr += n; \ goto done; \ } \ } #elif LJ_TARGET_ARM /* -- ARM calling conventions --------------------------------------------- */ #if LJ_ABI_SOFTFP #define CCALL_HANDLE_STRUCTRET \ /* Return structs of size <= 4 in a GPR. */ \ cc->retref = !(sz <= 4); \ if (cc->retref) cc->gpr[ngpr++] = (GPRArg)dp; #define CCALL_HANDLE_COMPLEXRET \ cc->retref = 1; /* Return all complex values by reference. */ \ cc->gpr[ngpr++] = (GPRArg)dp; #define CCALL_HANDLE_COMPLEXRET2 \ UNUSED(dp); /* Nothing to do. */ #define CCALL_HANDLE_STRUCTARG \ /* Pass all structs by value in registers and/or on the stack. */ #define CCALL_HANDLE_COMPLEXARG \ /* Pass complex by value in 2 or 4 GPRs. */ #define CCALL_HANDLE_REGARG_FP1 #define CCALL_HANDLE_REGARG_FP2 #else #define CCALL_HANDLE_STRUCTRET \ cc->retref = !ccall_classify_struct(cts, ctr, ct); \ if (cc->retref) cc->gpr[ngpr++] = (GPRArg)dp; #define CCALL_HANDLE_STRUCTRET2 \ if (ccall_classify_struct(cts, ctr, ct) > 1) sp = (uint8_t *)&cc->fpr[0]; \ memcpy(dp, sp, ctr->size); #define CCALL_HANDLE_COMPLEXRET \ if (!(ct->info & CTF_VARARG)) cc->retref = 0; /* Return complex in FPRs. */ #define CCALL_HANDLE_COMPLEXRET2 \ if (!(ct->info & CTF_VARARG)) memcpy(dp, &cc->fpr[0], ctr->size); #define CCALL_HANDLE_STRUCTARG \ isfp = (ccall_classify_struct(cts, d, ct) > 1); /* Pass all structs by value in registers and/or on the stack. */ #define CCALL_HANDLE_COMPLEXARG \ isfp = 1; /* Pass complex by value in FPRs or on stack. */ #define CCALL_HANDLE_REGARG_FP1 \ if (isfp && !(ct->info & CTF_VARARG)) { \ if ((d->info & CTF_ALIGN) > CTALIGN_PTR) { \ if (nfpr + (n >> 1) <= CCALL_NARG_FPR) { \ dp = &cc->fpr[nfpr]; \ nfpr += (n >> 1); \ goto done; \ } \ } else { \ if (sz > 1 && fprodd != nfpr) fprodd = 0; \ if (fprodd) { \ if (2*nfpr+n <= 2*CCALL_NARG_FPR+1) { \ dp = (void *)&cc->fpr[fprodd-1].f[1]; \ nfpr += (n >> 1); \ if ((n & 1)) fprodd = 0; else fprodd = nfpr-1; \ goto done; \ } \ } else { \ if (2*nfpr+n <= 2*CCALL_NARG_FPR) { \ dp = (void *)&cc->fpr[nfpr]; \ nfpr += (n >> 1); \ if ((n & 1)) fprodd = ++nfpr; else fprodd = 0; \ goto done; \ } \ } \ } \ fprodd = 0; /* No reordering after the first FP value is on stack. */ \ } else { #define CCALL_HANDLE_REGARG_FP2 } #endif #define CCALL_HANDLE_REGARG \ CCALL_HANDLE_REGARG_FP1 \ if ((d->info & CTF_ALIGN) > CTALIGN_PTR) { \ if (ngpr < maxgpr) \ ngpr = (ngpr + 1u) & ~1u; /* Align to regpair. */ \ } \ if (ngpr < maxgpr) { \ dp = &cc->gpr[ngpr]; \ if (ngpr + n > maxgpr) { \ nsp += ngpr + n - maxgpr; /* Assumes contiguous gpr/stack fields. */ \ if (nsp > CCALL_MAXSTACK) goto err_nyi; /* Too many arguments. */ \ ngpr = maxgpr; \ } else { \ ngpr += n; \ } \ goto done; \ } CCALL_HANDLE_REGARG_FP2 #define CCALL_HANDLE_RET \ if ((ct->info & CTF_VARARG)) sp = (uint8_t *)&cc->gpr[0]; #elif LJ_TARGET_ARM64 /* -- ARM64 calling conventions ------------------------------------------- */ #define CCALL_HANDLE_STRUCTRET \ cc->retref = !ccall_classify_struct(cts, ctr); \ if (cc->retref) cc->retp = dp; #define CCALL_HANDLE_STRUCTRET2 \ unsigned int cl = ccall_classify_struct(cts, ctr); \ if ((cl & 4)) { /* Combine float HFA from separate registers. */ \ CTSize i = (cl >> 8) - 1; \ do { ((uint32_t *)dp)[i] = cc->fpr[i].lo; } while (i--); \ } else { \ if (cl > 1) sp = (uint8_t *)&cc->fpr[0]; \ memcpy(dp, sp, ctr->size); \ } #define CCALL_HANDLE_COMPLEXRET \ /* Complex values are returned in one or two FPRs. */ \ cc->retref = 0; #define CCALL_HANDLE_COMPLEXRET2 \ if (ctr->size == 2*sizeof(float)) { /* Copy complex float from FPRs. */ \ ((float *)dp)[0] = cc->fpr[0].f; \ ((float *)dp)[1] = cc->fpr[1].f; \ } else { /* Copy complex double from FPRs. */ \ ((double *)dp)[0] = cc->fpr[0].d; \ ((double *)dp)[1] = cc->fpr[1].d; \ } #define CCALL_HANDLE_STRUCTARG \ unsigned int cl = ccall_classify_struct(cts, d); \ if (cl == 0) { /* Pass struct by reference. */ \ rp = cdataptr(lj_cdata_new(cts, did, sz)); \ sz = CTSIZE_PTR; \ } else if (cl > 1) { /* Pass struct in FPRs or on stack. */ \ isfp = (cl & 4) ? 2 : 1; \ } /* else: Pass struct in GPRs or on stack. */ #define CCALL_HANDLE_COMPLEXARG \ /* Pass complex by value in separate (!) FPRs or on stack. */ \ isfp = sz == 2*sizeof(float) ? 2 : 1; #define CCALL_HANDLE_REGARG \ if (LJ_TARGET_IOS && isva) { \ /* IOS: All variadic arguments are on the stack. */ \ } else if (isfp) { /* Try to pass argument in FPRs. */ \ int n2 = ctype_isvector(d->info) ? 1 : n*isfp; \ if (nfpr + n2 <= CCALL_NARG_FPR) { \ dp = &cc->fpr[nfpr]; \ nfpr += n2; \ goto done; \ } else { \ nfpr = CCALL_NARG_FPR; /* Prevent reordering. */ \ if (LJ_TARGET_IOS && d->size < 8) goto err_nyi; \ } \ } else { /* Try to pass argument in GPRs. */ \ if (!LJ_TARGET_IOS && (d->info & CTF_ALIGN) > CTALIGN_PTR) \ ngpr = (ngpr + 1u) & ~1u; /* Align to regpair. */ \ if (ngpr + n <= maxgpr) { \ dp = &cc->gpr[ngpr]; \ ngpr += n; \ goto done; \ } else { \ ngpr = maxgpr; /* Prevent reordering. */ \ if (LJ_TARGET_IOS && d->size < 8) goto err_nyi; \ } \ } #if LJ_BE #define CCALL_HANDLE_RET \ if (ctype_isfp(ctr->info) && ctr->size == sizeof(float)) \ sp = (uint8_t *)&cc->fpr[0].f; #endif #elif LJ_TARGET_PPC /* -- PPC calling conventions --------------------------------------------- */ #define CCALL_HANDLE_STRUCTRET \ cc->retref = 1; /* Return all structs by reference. */ \ cc->gpr[ngpr++] = (GPRArg)dp; #define CCALL_HANDLE_COMPLEXRET \ /* Complex values are returned in 2 or 4 GPRs. */ \ cc->retref = 0; #define CCALL_HANDLE_COMPLEXRET2 \ memcpy(dp, sp, ctr->size); /* Copy complex from GPRs. */ #define CCALL_HANDLE_STRUCTARG \ rp = cdataptr(lj_cdata_new(cts, did, sz)); \ sz = CTSIZE_PTR; /* Pass all structs by reference. */ #define CCALL_HANDLE_COMPLEXARG \ /* Pass complex by value in 2 or 4 GPRs. */ #define CCALL_HANDLE_REGARG \ if (isfp) { /* Try to pass argument in FPRs. */ \ if (nfpr + 1 <= CCALL_NARG_FPR) { \ dp = &cc->fpr[nfpr]; \ nfpr += 1; \ d = ctype_get(cts, CTID_DOUBLE); /* FPRs always hold doubles. */ \ goto done; \ } \ } else { /* Try to pass argument in GPRs. */ \ if (n > 1) { \ lua_assert(n == 2 || n == 4); /* int64_t or complex (float). */ \ if (ctype_isinteger(d->info)) \ ngpr = (ngpr + 1u) & ~1u; /* Align int64_t to regpair. */ \ else if (ngpr + n > maxgpr) \ ngpr = maxgpr; /* Prevent reordering. */ \ } \ if (ngpr + n <= maxgpr) { \ dp = &cc->gpr[ngpr]; \ ngpr += n; \ goto done; \ } \ } #define CCALL_HANDLE_RET \ if (ctype_isfp(ctr->info) && ctr->size == sizeof(float)) \ ctr = ctype_get(cts, CTID_DOUBLE); /* FPRs always hold doubles. */ #elif LJ_TARGET_MIPS32 /* -- MIPS o32 calling conventions ---------------------------------------- */ #define CCALL_HANDLE_STRUCTRET \ cc->retref = 1; /* Return all structs by reference. */ \ cc->gpr[ngpr++] = (GPRArg)dp; #define CCALL_HANDLE_COMPLEXRET \ /* Complex values are returned in 1 or 2 FPRs. */ \ cc->retref = 0; #if LJ_ABI_SOFTFP #define CCALL_HANDLE_COMPLEXRET2 \ if (ctr->size == 2*sizeof(float)) { /* Copy complex float from GPRs. */ \ ((intptr_t *)dp)[0] = cc->gpr[0]; \ ((intptr_t *)dp)[1] = cc->gpr[1]; \ } else { /* Copy complex double from GPRs. */ \ ((intptr_t *)dp)[0] = cc->gpr[0]; \ ((intptr_t *)dp)[1] = cc->gpr[1]; \ ((intptr_t *)dp)[2] = cc->gpr[2]; \ ((intptr_t *)dp)[3] = cc->gpr[3]; \ } #else #define CCALL_HANDLE_COMPLEXRET2 \ if (ctr->size == 2*sizeof(float)) { /* Copy complex float from FPRs. */ \ ((float *)dp)[0] = cc->fpr[0].f; \ ((float *)dp)[1] = cc->fpr[1].f; \ } else { /* Copy complex double from FPRs. */ \ ((double *)dp)[0] = cc->fpr[0].d; \ ((double *)dp)[1] = cc->fpr[1].d; \ } #endif #define CCALL_HANDLE_STRUCTARG \ /* Pass all structs by value in registers and/or on the stack. */ #define CCALL_HANDLE_COMPLEXARG \ /* Pass complex by value in 2 or 4 GPRs. */ #define CCALL_HANDLE_GPR \ if ((d->info & CTF_ALIGN) > CTALIGN_PTR) \ ngpr = (ngpr + 1u) & ~1u; /* Align to regpair. */ \ if (ngpr < maxgpr) { \ dp = &cc->gpr[ngpr]; \ if (ngpr + n > maxgpr) { \ nsp += ngpr + n - maxgpr; /* Assumes contiguous gpr/stack fields. */ \ if (nsp > CCALL_MAXSTACK) goto err_nyi; /* Too many arguments. */ \ ngpr = maxgpr; \ } else { \ ngpr += n; \ } \ goto done; \ } #if !LJ_ABI_SOFTFP /* MIPS32 hard-float */ #define CCALL_HANDLE_REGARG \ if (isfp && nfpr < CCALL_NARG_FPR && !(ct->info & CTF_VARARG)) { \ /* Try to pass argument in FPRs. */ \ dp = n == 1 ? (void *)&cc->fpr[nfpr].f : (void *)&cc->fpr[nfpr].d; \ nfpr++; ngpr += n; \ goto done; \ } else { /* Try to pass argument in GPRs. */ \ nfpr = CCALL_NARG_FPR; \ CCALL_HANDLE_GPR \ } #else /* MIPS32 soft-float */ #define CCALL_HANDLE_REGARG CCALL_HANDLE_GPR #endif #if !LJ_ABI_SOFTFP /* On MIPS64 soft-float, position of float return values is endian-dependant. */ #define CCALL_HANDLE_RET \ if (ctype_isfp(ctr->info) && ctr->size == sizeof(float)) \ sp = (uint8_t *)&cc->fpr[0].f; #endif #elif LJ_TARGET_MIPS64 /* -- MIPS n64 calling conventions ---------------------------------------- */ #define CCALL_HANDLE_STRUCTRET \ cc->retref = !(sz <= 16); \ if (cc->retref) cc->gpr[ngpr++] = (GPRArg)dp; #define CCALL_HANDLE_STRUCTRET2 \ ccall_copy_struct(cc, ctr, dp, sp, ccall_classify_struct(cts, ctr, ct)); #define CCALL_HANDLE_COMPLEXRET \ /* Complex values are returned in 1 or 2 FPRs. */ \ cc->retref = 0; #if LJ_ABI_SOFTFP /* MIPS64 soft-float */ #define CCALL_HANDLE_COMPLEXRET2 \ if (ctr->size == 2*sizeof(float)) { /* Copy complex float from GPRs. */ \ ((intptr_t *)dp)[0] = cc->gpr[0]; \ } else { /* Copy complex double from GPRs. */ \ ((intptr_t *)dp)[0] = cc->gpr[0]; \ ((intptr_t *)dp)[1] = cc->gpr[1]; \ } #define CCALL_HANDLE_COMPLEXARG \ /* Pass complex by value in 2 or 4 GPRs. */ /* Position of soft-float 'float' return value depends on endianess. */ #define CCALL_HANDLE_RET \ if (ctype_isfp(ctr->info) && ctr->size == sizeof(float)) \ sp = (uint8_t *)cc->gpr + LJ_ENDIAN_SELECT(0, 4); #else /* MIPS64 hard-float */ #define CCALL_HANDLE_COMPLEXRET2 \ if (ctr->size == 2*sizeof(float)) { /* Copy complex float from FPRs. */ \ ((float *)dp)[0] = cc->fpr[0].f; \ ((float *)dp)[1] = cc->fpr[1].f; \ } else { /* Copy complex double from FPRs. */ \ ((double *)dp)[0] = cc->fpr[0].d; \ ((double *)dp)[1] = cc->fpr[1].d; \ } #define CCALL_HANDLE_COMPLEXARG \ if (sz == 2*sizeof(float)) { \ isfp = 2; \ if (ngpr < maxgpr) \ sz *= 2; \ } #define CCALL_HANDLE_RET \ if (ctype_isfp(ctr->info) && ctr->size == sizeof(float)) \ sp = (uint8_t *)&cc->fpr[0].f; #endif #define CCALL_HANDLE_STRUCTARG \ /* Pass all structs by value in registers and/or on the stack. */ #define CCALL_HANDLE_REGARG \ if (ngpr < maxgpr) { \ dp = &cc->gpr[ngpr]; \ if (ngpr + n > maxgpr) { \ nsp += ngpr + n - maxgpr; /* Assumes contiguous gpr/stack fields. */ \ if (nsp > CCALL_MAXSTACK) goto err_nyi; /* Too many arguments. */ \ ngpr = maxgpr; \ } else { \ ngpr += n; \ } \ goto done; \ } #else #error "Missing calling convention definitions for this architecture" #endif #ifndef CCALL_HANDLE_STRUCTRET2 #define CCALL_HANDLE_STRUCTRET2 \ memcpy(dp, sp, ctr->size); /* Copy struct return value from GPRs. */ #endif /* -- x86 OSX ABI struct classification ----------------------------------- */ #if LJ_TARGET_X86 && LJ_TARGET_OSX /* Check for struct with single FP field. */ static int ccall_classify_struct(CTState *cts, CType *ct) { CTSize sz = ct->size; if (!(sz == sizeof(float) || sz == sizeof(double))) return 0; if ((ct->info & CTF_UNION)) return 0; while (ct->sib) { ct = ctype_get(cts, ct->sib); if (ctype_isfield(ct->info)) { CType *sct = ctype_rawchild(cts, ct); if (ctype_isfp(sct->info)) { if (sct->size == sz) return (sz >> 2); /* Return 1 for float or 2 for double. */ } else if (ctype_isstruct(sct->info)) { if (sct->size) return ccall_classify_struct(cts, sct); } else { break; } } else if (ctype_isbitfield(ct->info)) { break; } else if (ctype_isxattrib(ct->info, CTA_SUBTYPE)) { CType *sct = ctype_rawchild(cts, ct); if (sct->size) return ccall_classify_struct(cts, sct); } } return 0; } #endif /* -- x64 struct classification ------------------------------------------- */ #if LJ_TARGET_X64 && !LJ_ABI_WIN /* Register classes for x64 struct classification. */ #define CCALL_RCL_INT 1 #define CCALL_RCL_SSE 2 #define CCALL_RCL_MEM 4 /* NYI: classify vectors. */ static int ccall_classify_struct(CTState *cts, CType *ct, int *rcl, CTSize ofs); /* Classify a C type. */ static void ccall_classify_ct(CTState *cts, CType *ct, int *rcl, CTSize ofs) { if (ctype_isarray(ct->info)) { CType *cct = ctype_rawchild(cts, ct); CTSize eofs, esz = cct->size, asz = ct->size; for (eofs = 0; eofs < asz; eofs += esz) ccall_classify_ct(cts, cct, rcl, ofs+eofs); } else if (ctype_isstruct(ct->info)) { ccall_classify_struct(cts, ct, rcl, ofs); } else { int cl = ctype_isfp(ct->info) ? CCALL_RCL_SSE : CCALL_RCL_INT; lua_assert(ctype_hassize(ct->info)); if ((ofs & (ct->size-1))) cl = CCALL_RCL_MEM; /* Unaligned. */ rcl[(ofs >= 8)] |= cl; } } /* Recursively classify a struct based on its fields. */ static int ccall_classify_struct(CTState *cts, CType *ct, int *rcl, CTSize ofs) { if (ct->size > 16) return CCALL_RCL_MEM; /* Too big, gets memory class. */ while (ct->sib) { CTSize fofs; ct = ctype_get(cts, ct->sib); fofs = ofs+ct->size; if (ctype_isfield(ct->info)) ccall_classify_ct(cts, ctype_rawchild(cts, ct), rcl, fofs); else if (ctype_isbitfield(ct->info)) rcl[(fofs >= 8)] |= CCALL_RCL_INT; /* NYI: unaligned bitfields? */ else if (ctype_isxattrib(ct->info, CTA_SUBTYPE)) ccall_classify_struct(cts, ctype_rawchild(cts, ct), rcl, fofs); } return ((rcl[0]|rcl[1]) & CCALL_RCL_MEM); /* Memory class? */ } /* Try to split up a small struct into registers. */ static int ccall_struct_reg(CCallState *cc, GPRArg *dp, int *rcl) { MSize ngpr = cc->ngpr, nfpr = cc->nfpr; uint32_t i; for (i = 0; i < 2; i++) { lua_assert(!(rcl[i] & CCALL_RCL_MEM)); if ((rcl[i] & CCALL_RCL_INT)) { /* Integer class takes precedence. */ if (ngpr >= CCALL_NARG_GPR) return 1; /* Register overflow. */ cc->gpr[ngpr++] = dp[i]; } else if ((rcl[i] & CCALL_RCL_SSE)) { if (nfpr >= CCALL_NARG_FPR) return 1; /* Register overflow. */ cc->fpr[nfpr++].l[0] = dp[i]; } } cc->ngpr = ngpr; cc->nfpr = nfpr; return 0; /* Ok. */ } /* Pass a small struct argument. */ static int ccall_struct_arg(CCallState *cc, CTState *cts, CType *d, int *rcl, TValue *o, int narg) { GPRArg dp[2]; dp[0] = dp[1] = 0; /* Convert to temp. struct. */ lj_cconv_ct_tv(cts, d, (uint8_t *)dp, o, CCF_ARG(narg)); if (ccall_struct_reg(cc, dp, rcl)) { /* Register overflow? Pass on stack. */ MSize nsp = cc->nsp, n = rcl[1] ? 2 : 1; if (nsp + n > CCALL_MAXSTACK) return 1; /* Too many arguments. */ cc->nsp = nsp + n; memcpy(&cc->stack[nsp], dp, n*CTSIZE_PTR); } return 0; /* Ok. */ } /* Combine returned small struct. */ static void ccall_struct_ret(CCallState *cc, int *rcl, uint8_t *dp, CTSize sz) { GPRArg sp[2]; MSize ngpr = 0, nfpr = 0; uint32_t i; for (i = 0; i < 2; i++) { if ((rcl[i] & CCALL_RCL_INT)) { /* Integer class takes precedence. */ sp[i] = cc->gpr[ngpr++]; } else if ((rcl[i] & CCALL_RCL_SSE)) { sp[i] = cc->fpr[nfpr++].l[0]; } } memcpy(dp, sp, sz); } #endif /* -- ARM hard-float ABI struct classification ---------------------------- */ #if LJ_TARGET_ARM && !LJ_ABI_SOFTFP /* Classify a struct based on its fields. */ static unsigned int ccall_classify_struct(CTState *cts, CType *ct, CType *ctf) { CTSize sz = ct->size; unsigned int r = 0, n = 0, isu = (ct->info & CTF_UNION); if ((ctf->info & CTF_VARARG)) goto noth; while (ct->sib) { CType *sct; ct = ctype_get(cts, ct->sib); if (ctype_isfield(ct->info)) { sct = ctype_rawchild(cts, ct); if (ctype_isfp(sct->info)) { r |= sct->size; if (!isu) n++; else if (n == 0) n = 1; } else if (ctype_iscomplex(sct->info)) { r |= (sct->size >> 1); if (!isu) n += 2; else if (n < 2) n = 2; } else if (ctype_isstruct(sct->info)) { goto substruct; } else { goto noth; } } else if (ctype_isbitfield(ct->info)) { goto noth; } else if (ctype_isxattrib(ct->info, CTA_SUBTYPE)) { sct = ctype_rawchild(cts, ct); substruct: if (sct->size > 0) { unsigned int s = ccall_classify_struct(cts, sct, ctf); if (s <= 1) goto noth; r |= (s & 255); if (!isu) n += (s >> 8); else if (n < (s >>8)) n = (s >> 8); } } } if ((r == 4 || r == 8) && n <= 4) return r + (n << 8); noth: /* Not a homogeneous float/double aggregate. */ return (sz <= 4); /* Return structs of size <= 4 in a GPR. */ } #endif /* -- ARM64 ABI struct classification ------------------------------------- */ #if LJ_TARGET_ARM64 /* Classify a struct based on its fields. */ static unsigned int ccall_classify_struct(CTState *cts, CType *ct) { CTSize sz = ct->size; unsigned int r = 0, n = 0, isu = (ct->info & CTF_UNION); while (ct->sib) { CType *sct; ct = ctype_get(cts, ct->sib); if (ctype_isfield(ct->info)) { sct = ctype_rawchild(cts, ct); if (ctype_isfp(sct->info)) { r |= sct->size; if (!isu) n++; else if (n == 0) n = 1; } else if (ctype_iscomplex(sct->info)) { r |= (sct->size >> 1); if (!isu) n += 2; else if (n < 2) n = 2; } else if (ctype_isstruct(sct->info)) { goto substruct; } else { goto noth; } } else if (ctype_isbitfield(ct->info)) { goto noth; } else if (ctype_isxattrib(ct->info, CTA_SUBTYPE)) { sct = ctype_rawchild(cts, ct); substruct: if (sct->size > 0) { unsigned int s = ccall_classify_struct(cts, sct); if (s <= 1) goto noth; r |= (s & 255); if (!isu) n += (s >> 8); else if (n < (s >>8)) n = (s >> 8); } } } if ((r == 4 || r == 8) && n <= 4) return r + (n << 8); noth: /* Not a homogeneous float/double aggregate. */ return (sz <= 16); /* Return structs of size <= 16 in GPRs. */ } #endif /* -- MIPS64 ABI struct classification ---------------------------- */ #if LJ_TARGET_MIPS64 #define FTYPE_FLOAT 1 #define FTYPE_DOUBLE 2 /* Classify FP fields (max. 2) and their types. */ static unsigned int ccall_classify_struct(CTState *cts, CType *ct, CType *ctf) { int n = 0, ft = 0; if ((ctf->info & CTF_VARARG) || (ct->info & CTF_UNION)) goto noth; while (ct->sib) { CType *sct; ct = ctype_get(cts, ct->sib); if (n == 2) { goto noth; } else if (ctype_isfield(ct->info)) { sct = ctype_rawchild(cts, ct); if (ctype_isfp(sct->info)) { ft |= (sct->size == 4 ? FTYPE_FLOAT : FTYPE_DOUBLE) << 2*n; n++; } else { goto noth; } } else if (ctype_isbitfield(ct->info) || ctype_isxattrib(ct->info, CTA_SUBTYPE)) { goto noth; } } if (n <= 2) return ft; noth: /* Not a homogeneous float/double aggregate. */ return 0; /* Struct is in GPRs. */ } void ccall_copy_struct(CCallState *cc, CType *ctr, void *dp, void *sp, int ft) { if (LJ_ABI_SOFTFP ? ft : ((ft & 3) == FTYPE_FLOAT || (ft >> 2) == FTYPE_FLOAT)) { int i, ofs = 0; for (i = 0; ft != 0; i++, ft >>= 2) { if ((ft & 3) == FTYPE_FLOAT) { #if LJ_ABI_SOFTFP /* The 2nd FP struct result is in CARG1 (gpr[2]) and not CRET2. */ memcpy((uint8_t *)dp + ofs, (uint8_t *)&cc->gpr[2*i] + LJ_ENDIAN_SELECT(0, 4), 4); #else *(float *)((uint8_t *)dp + ofs) = cc->fpr[i].f; #endif ofs += 4; } else { ofs = (ofs + 7) & ~7; /* 64 bit alignment. */ #if LJ_ABI_SOFTFP *(intptr_t *)((uint8_t *)dp + ofs) = cc->gpr[2*i]; #else *(double *)((uint8_t *)dp + ofs) = cc->fpr[i].d; #endif ofs += 8; } } } else { #if !LJ_ABI_SOFTFP if (ft) sp = (uint8_t *)&cc->fpr[0]; #endif memcpy(dp, sp, ctr->size); } } #endif /* -- Common C call handling ---------------------------------------------- */ /* Infer the destination CTypeID for a vararg argument. */ CTypeID lj_ccall_ctid_vararg(CTState *cts, cTValue *o) { if (tvisnumber(o)) { return CTID_DOUBLE; } else if (tviscdata(o)) { CTypeID id = cdataV(o)->ctypeid; CType *s = ctype_get(cts, id); if (ctype_isrefarray(s->info)) { return lj_ctype_intern(cts, CTINFO(CT_PTR, CTALIGN_PTR|ctype_cid(s->info)), CTSIZE_PTR); } else if (ctype_isstruct(s->info) || ctype_isfunc(s->info)) { /* NYI: how to pass a struct by value in a vararg argument? */ return lj_ctype_intern(cts, CTINFO(CT_PTR, CTALIGN_PTR|id), CTSIZE_PTR); } else if (ctype_isfp(s->info) && s->size == sizeof(float)) { return CTID_DOUBLE; } else { return id; } } else if (tvisstr(o)) { return CTID_P_CCHAR; } else if (tvisbool(o)) { return CTID_BOOL; } else { return CTID_P_VOID; } } /* Setup arguments for C call. */ static int ccall_set_args(lua_State *L, CTState *cts, CType *ct, CCallState *cc) { int gcsteps = 0; TValue *o, *top = L->top; CTypeID fid; CType *ctr; MSize maxgpr, ngpr = 0, nsp = 0, narg; #if CCALL_NARG_FPR MSize nfpr = 0; #if LJ_TARGET_ARM MSize fprodd = 0; #endif #endif /* Clear unused regs to get some determinism in case of misdeclaration. */ memset(cc->gpr, 0, sizeof(cc->gpr)); #if CCALL_NUM_FPR memset(cc->fpr, 0, sizeof(cc->fpr)); #endif #if LJ_TARGET_X86 /* x86 has several different calling conventions. */ cc->resx87 = 0; switch (ctype_cconv(ct->info)) { case CTCC_FASTCALL: maxgpr = 2; break; case CTCC_THISCALL: maxgpr = 1; break; default: maxgpr = 0; break; } #else maxgpr = CCALL_NARG_GPR; #endif /* Perform required setup for some result types. */ ctr = ctype_rawchild(cts, ct); if (ctype_isvector(ctr->info)) { if (!(CCALL_VECTOR_REG && (ctr->size == 8 || ctr->size == 16))) goto err_nyi; } else if (ctype_iscomplex(ctr->info) || ctype_isstruct(ctr->info)) { /* Preallocate cdata object and anchor it after arguments. */ CTSize sz = ctr->size; GCcdata *cd = lj_cdata_new(cts, ctype_cid(ct->info), sz); void *dp = cdataptr(cd); setcdataV(L, L->top++, cd); if (ctype_isstruct(ctr->info)) { CCALL_HANDLE_STRUCTRET } else { CCALL_HANDLE_COMPLEXRET } #if LJ_TARGET_X86 } else if (ctype_isfp(ctr->info)) { cc->resx87 = ctr->size == sizeof(float) ? 1 : 2; #endif } /* Skip initial attributes. */ fid = ct->sib; while (fid) { CType *ctf = ctype_get(cts, fid); if (!ctype_isattrib(ctf->info)) break; fid = ctf->sib; } /* Walk through all passed arguments. */ for (o = L->base+1, narg = 1; o < top; o++, narg++) { CTypeID did; CType *d; CTSize sz; MSize n, isfp = 0, isva = 0; void *dp, *rp = NULL; if (fid) { /* Get argument type from field. */ CType *ctf = ctype_get(cts, fid); fid = ctf->sib; lua_assert(ctype_isfield(ctf->info)); did = ctype_cid(ctf->info); } else { if (!(ct->info & CTF_VARARG)) lj_err_caller(L, LJ_ERR_FFI_NUMARG); /* Too many arguments. */ did = lj_ccall_ctid_vararg(cts, o); /* Infer vararg type. */ isva = 1; } d = ctype_raw(cts, did); sz = d->size; /* Find out how (by value/ref) and where (GPR/FPR) to pass an argument. */ if (ctype_isnum(d->info)) { if (sz > 8) goto err_nyi; if ((d->info & CTF_FP)) isfp = 1; } else if (ctype_isvector(d->info)) { if (CCALL_VECTOR_REG && (sz == 8 || sz == 16)) isfp = 1; else goto err_nyi; } else if (ctype_isstruct(d->info)) { CCALL_HANDLE_STRUCTARG } else if (ctype_iscomplex(d->info)) { CCALL_HANDLE_COMPLEXARG } else { sz = CTSIZE_PTR; } sz = (sz + CTSIZE_PTR-1) & ~(CTSIZE_PTR-1); n = sz / CTSIZE_PTR; /* Number of GPRs or stack slots needed. */ CCALL_HANDLE_REGARG /* Handle register arguments. */ /* Otherwise pass argument on stack. */ if (CCALL_ALIGN_STACKARG && !rp && (d->info & CTF_ALIGN) > CTALIGN_PTR) { MSize align = (1u << ctype_align(d->info-CTALIGN_PTR)) -1; nsp = (nsp + align) & ~align; /* Align argument on stack. */ } if (nsp + n > CCALL_MAXSTACK) { /* Too many arguments. */ err_nyi: lj_err_caller(L, LJ_ERR_FFI_NYICALL); } dp = &cc->stack[nsp]; nsp += n; isva = 0; done: if (rp) { /* Pass by reference. */ gcsteps++; *(void **)dp = rp; dp = rp; } lj_cconv_ct_tv(cts, d, (uint8_t *)dp, o, CCF_ARG(narg)); /* Extend passed integers to 32 bits at least. */ if (ctype_isinteger_or_bool(d->info) && d->size < 4) { if (d->info & CTF_UNSIGNED) *(uint32_t *)dp = d->size == 1 ? (uint32_t)*(uint8_t *)dp : (uint32_t)*(uint16_t *)dp; else *(int32_t *)dp = d->size == 1 ? (int32_t)*(int8_t *)dp : (int32_t)*(int16_t *)dp; } #if LJ_TARGET_ARM64 && LJ_BE if (isfp && d->size == sizeof(float)) ((float *)dp)[1] = ((float *)dp)[0]; /* Floats occupy high slot. */ #endif #if LJ_TARGET_MIPS64 || (LJ_TARGET_ARM64 && LJ_BE) if ((ctype_isinteger_or_bool(d->info) || ctype_isenum(d->info) #if LJ_TARGET_MIPS64 || (isfp && nsp == 0) #endif ) && d->size <= 4) { *(int64_t *)dp = (int64_t)*(int32_t *)dp; /* Sign-extend to 64 bit. */ } #endif #if LJ_TARGET_X64 && LJ_ABI_WIN if (isva) { /* Windows/x64 mirrors varargs in both register sets. */ if (nfpr == ngpr) cc->gpr[ngpr-1] = cc->fpr[ngpr-1].l[0]; else cc->fpr[ngpr-1].l[0] = cc->gpr[ngpr-1]; } #else UNUSED(isva); #endif #if LJ_TARGET_X64 && !LJ_ABI_WIN if (isfp == 2 && n == 2 && (uint8_t *)dp == (uint8_t *)&cc->fpr[nfpr-2]) { cc->fpr[nfpr-1].d[0] = cc->fpr[nfpr-2].d[1]; /* Split complex double. */ cc->fpr[nfpr-2].d[1] = 0; } #elif LJ_TARGET_ARM64 || (LJ_TARGET_MIPS64 && !LJ_ABI_SOFTFP) if (isfp == 2 && (uint8_t *)dp < (uint8_t *)cc->stack) { /* Split float HFA or complex float into separate registers. */ CTSize i = (sz >> 2) - 1; do { ((uint64_t *)dp)[i] = ((uint32_t *)dp)[i]; } while (i--); } #else UNUSED(isfp); #endif } if (fid) lj_err_caller(L, LJ_ERR_FFI_NUMARG); /* Too few arguments. */ #if LJ_TARGET_X64 || LJ_TARGET_PPC cc->nfpr = nfpr; /* Required for vararg functions. */ #endif cc->nsp = nsp; cc->spadj = (CCALL_SPS_FREE + CCALL_SPS_EXTRA)*CTSIZE_PTR; if (nsp > CCALL_SPS_FREE) cc->spadj += (((nsp-CCALL_SPS_FREE)*CTSIZE_PTR + 15u) & ~15u); return gcsteps; } /* Get results from C call. */ static int ccall_get_results(lua_State *L, CTState *cts, CType *ct, CCallState *cc, int *ret) { CType *ctr = ctype_rawchild(cts, ct); uint8_t *sp = (uint8_t *)&cc->gpr[0]; if (ctype_isvoid(ctr->info)) { *ret = 0; /* Zero results. */ return 0; /* No additional GC step. */ } *ret = 1; /* One result. */ if (ctype_isstruct(ctr->info)) { /* Return cdata object which is already on top of stack. */ if (!cc->retref) { void *dp = cdataptr(cdataV(L->top-1)); /* Use preallocated object. */ CCALL_HANDLE_STRUCTRET2 } return 1; /* One GC step. */ } if (ctype_iscomplex(ctr->info)) { /* Return cdata object which is already on top of stack. */ void *dp = cdataptr(cdataV(L->top-1)); /* Use preallocated object. */ CCALL_HANDLE_COMPLEXRET2 return 1; /* One GC step. */ } if (LJ_BE && ctr->size < CTSIZE_PTR && (ctype_isinteger_or_bool(ctr->info) || ctype_isenum(ctr->info))) sp += (CTSIZE_PTR - ctr->size); #if CCALL_NUM_FPR if (ctype_isfp(ctr->info) || ctype_isvector(ctr->info)) sp = (uint8_t *)&cc->fpr[0]; #endif #ifdef CCALL_HANDLE_RET CCALL_HANDLE_RET #endif /* No reference types end up here, so there's no need for the CTypeID. */ lua_assert(!(ctype_isrefarray(ctr->info) || ctype_isstruct(ctr->info))); return lj_cconv_tv_ct(cts, ctr, 0, L->top-1, sp); } /* Call C function. */ int lj_ccall_func(lua_State *L, GCcdata *cd) { CTState *cts = ctype_cts(L); CType *ct = ctype_raw(cts, cd->ctypeid); CTSize sz = CTSIZE_PTR; if (ctype_isptr(ct->info)) { sz = ct->size; ct = ctype_rawchild(cts, ct); } if (ctype_isfunc(ct->info)) { CCallState cc; int gcsteps, ret; cc.func = (void (*)(void))cdata_getptr(cdataptr(cd), sz); gcsteps = ccall_set_args(L, cts, ct, &cc); ct = (CType *)((intptr_t)ct-(intptr_t)cts->tab); cts->cb.slot = ~0u; lj_vm_ffi_call(&cc); if (cts->cb.slot != ~0u) { /* Blacklist function that called a callback. */ TValue tv; setlightudV(&tv, (void *)cc.func); setboolV(lj_tab_set(L, cts->miscmap, &tv), 1); } ct = (CType *)((intptr_t)ct+(intptr_t)cts->tab); /* May be reallocated. */ gcsteps += ccall_get_results(L, cts, ct, &cc, &ret); #if LJ_TARGET_X86 && LJ_ABI_WIN /* Automatically detect __stdcall and fix up C function declaration. */ if (cc.spadj && ctype_cconv(ct->info) == CTCC_CDECL) { CTF_INSERT(ct->info, CCONV, CTCC_STDCALL); lj_trace_abort(G(L)); } #endif while (gcsteps-- > 0) lj_gc_check(L); return ret; } return -1; /* Not a function. */ } #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_char.c0000644000175100017510000000367413101703334017665 0ustar ondrejondrej/* ** Character types. ** Donated to the public domain. ** ** This is intended to replace the problematic libc single-byte NLS functions. ** These just don't make sense anymore with UTF-8 locales becoming the norm ** on POSIX systems. It never worked too well on Windows systems since hardly ** anyone bothered to call setlocale(). ** ** This table is hardcoded for ASCII. Identifiers include the characters ** 128-255, too. This allows for the use of all non-ASCII chars as identifiers ** in the lexer. This is a broad definition, but works well in practice ** for both UTF-8 locales and most single-byte locales (such as ISO-8859-*). ** ** If you really need proper character types for UTF-8 strings, please use ** an add-on library such as slnunicode: http://luaforge.net/projects/sln/ */ #define lj_char_c #define LUA_CORE #include "lj_char.h" LJ_DATADEF const uint8_t lj_char_bits[257] = { 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 152,152,152,152,152,152,152,152,152,152, 4, 4, 4, 4, 4, 4, 4,176,176,176,176,176,176,160,160,160,160,160,160,160,160,160, 160,160,160,160,160,160,160,160,160,160,160, 4, 4, 4, 4,132, 4,208,208,208,208,208,208,192,192,192,192,192,192,192,192,192, 192,192,192,192,192,192,192,192,192,192,192, 4, 4, 4, 4, 1, 128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128, 128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128, 128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128, 128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128, 128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128, 128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128, 128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128, 128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128 }; luajit-2.1.0~beta3+dfsg.orig/src/lj_ir.c0000644000175100017510000003114513101703334017354 0ustar ondrejondrej/* ** SSA IR (Intermediate Representation) emitter. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #define lj_ir_c #define LUA_CORE /* For pointers to libc/libm functions. */ #include #include #include "lj_obj.h" #if LJ_HASJIT #include "lj_gc.h" #include "lj_buf.h" #include "lj_str.h" #include "lj_tab.h" #include "lj_ir.h" #include "lj_jit.h" #include "lj_ircall.h" #include "lj_iropt.h" #include "lj_trace.h" #if LJ_HASFFI #include "lj_ctype.h" #include "lj_cdata.h" #include "lj_carith.h" #endif #include "lj_vm.h" #include "lj_strscan.h" #include "lj_strfmt.h" #include "lj_lib.h" /* Some local macros to save typing. Undef'd at the end. */ #define IR(ref) (&J->cur.ir[(ref)]) #define fins (&J->fold.ins) /* Pass IR on to next optimization in chain (FOLD). */ #define emitir(ot, a, b) (lj_ir_set(J, (ot), (a), (b)), lj_opt_fold(J)) /* -- IR tables ----------------------------------------------------------- */ /* IR instruction modes. */ LJ_DATADEF const uint8_t lj_ir_mode[IR__MAX+1] = { IRDEF(IRMODE) 0 }; /* IR type sizes. */ LJ_DATADEF const uint8_t lj_ir_type_size[IRT__MAX+1] = { #define IRTSIZE(name, size) size, IRTDEF(IRTSIZE) #undef IRTSIZE 0 }; /* C call info for CALL* instructions. */ LJ_DATADEF const CCallInfo lj_ir_callinfo[] = { #define IRCALLCI(cond, name, nargs, kind, type, flags) \ { (ASMFunction)IRCALLCOND_##cond(name), \ (nargs)|(CCI_CALL_##kind)|(IRT_##type<irbuf + J->irbotlim; MSize szins = J->irtoplim - J->irbotlim; if (szins) { baseir = (IRIns *)lj_mem_realloc(J->L, baseir, szins*sizeof(IRIns), 2*szins*sizeof(IRIns)); J->irtoplim = J->irbotlim + 2*szins; } else { baseir = (IRIns *)lj_mem_realloc(J->L, NULL, 0, LJ_MIN_IRSZ*sizeof(IRIns)); J->irbotlim = REF_BASE - LJ_MIN_IRSZ/4; J->irtoplim = J->irbotlim + LJ_MIN_IRSZ; } J->cur.ir = J->irbuf = baseir - J->irbotlim; } /* Grow IR buffer at the bottom or shift it up. */ static void lj_ir_growbot(jit_State *J) { IRIns *baseir = J->irbuf + J->irbotlim; MSize szins = J->irtoplim - J->irbotlim; lua_assert(szins != 0); lua_assert(J->cur.nk == J->irbotlim || J->cur.nk-1 == J->irbotlim); if (J->cur.nins + (szins >> 1) < J->irtoplim) { /* More than half of the buffer is free on top: shift up by a quarter. */ MSize ofs = szins >> 2; memmove(baseir + ofs, baseir, (J->cur.nins - J->irbotlim)*sizeof(IRIns)); J->irbotlim -= ofs; J->irtoplim -= ofs; J->cur.ir = J->irbuf = baseir - J->irbotlim; } else { /* Double the buffer size, but split the growth amongst top/bottom. */ IRIns *newbase = lj_mem_newt(J->L, 2*szins*sizeof(IRIns), IRIns); MSize ofs = szins >= 256 ? 128 : (szins >> 1); /* Limit bottom growth. */ memcpy(newbase + ofs, baseir, (J->cur.nins - J->irbotlim)*sizeof(IRIns)); lj_mem_free(G(J->L), baseir, szins*sizeof(IRIns)); J->irbotlim -= ofs; J->irtoplim = J->irbotlim + 2*szins; J->cur.ir = J->irbuf = newbase - J->irbotlim; } } /* Emit IR without any optimizations. */ TRef LJ_FASTCALL lj_ir_emit(jit_State *J) { IRRef ref = lj_ir_nextins(J); IRIns *ir = IR(ref); IROp op = fins->o; ir->prev = J->chain[op]; J->chain[op] = (IRRef1)ref; ir->o = op; ir->op1 = fins->op1; ir->op2 = fins->op2; J->guardemit.irt |= fins->t.irt; return TREF(ref, irt_t((ir->t = fins->t))); } /* Emit call to a C function. */ TRef lj_ir_call(jit_State *J, IRCallID id, ...) { const CCallInfo *ci = &lj_ir_callinfo[id]; uint32_t n = CCI_NARGS(ci); TRef tr = TREF_NIL; va_list argp; va_start(argp, id); if ((ci->flags & CCI_L)) n--; if (n > 0) tr = va_arg(argp, IRRef); while (n-- > 1) tr = emitir(IRT(IR_CARG, IRT_NIL), tr, va_arg(argp, IRRef)); va_end(argp); if (CCI_OP(ci) == IR_CALLS) J->needsnap = 1; /* Need snapshot after call with side effect. */ return emitir(CCI_OPTYPE(ci), tr, id); } /* Load field of type t from GG_State + offset. Must be 32 bit aligned. */ LJ_FUNC TRef lj_ir_ggfload(jit_State *J, IRType t, uintptr_t ofs) { lua_assert((ofs & 3) == 0); ofs >>= 2; lua_assert(ofs >= IRFL__MAX && ofs <= 0x3ff); /* 10 bit FOLD key limit. */ lj_ir_set(J, IRT(IR_FLOAD, t), REF_NIL, ofs); return lj_opt_fold(J); } /* -- Interning of constants ---------------------------------------------- */ /* ** IR instructions for constants are kept between J->cur.nk >= ref < REF_BIAS. ** They are chained like all other instructions, but grow downwards. ** The are interned (like strings in the VM) to facilitate reference ** comparisons. The same constant must get the same reference. */ /* Get ref of next IR constant and optionally grow IR. ** Note: this may invalidate all IRIns *! */ static LJ_AINLINE IRRef ir_nextk(jit_State *J) { IRRef ref = J->cur.nk; if (LJ_UNLIKELY(ref <= J->irbotlim)) lj_ir_growbot(J); J->cur.nk = --ref; return ref; } /* Get ref of next 64 bit IR constant and optionally grow IR. ** Note: this may invalidate all IRIns *! */ static LJ_AINLINE IRRef ir_nextk64(jit_State *J) { IRRef ref = J->cur.nk - 2; lua_assert(J->state != LJ_TRACE_ASM); if (LJ_UNLIKELY(ref < J->irbotlim)) lj_ir_growbot(J); J->cur.nk = ref; return ref; } #if LJ_GC64 #define ir_nextkgc ir_nextk64 #else #define ir_nextkgc ir_nextk #endif /* Intern int32_t constant. */ TRef LJ_FASTCALL lj_ir_kint(jit_State *J, int32_t k) { IRIns *ir, *cir = J->cur.ir; IRRef ref; for (ref = J->chain[IR_KINT]; ref; ref = cir[ref].prev) if (cir[ref].i == k) goto found; ref = ir_nextk(J); ir = IR(ref); ir->i = k; ir->t.irt = IRT_INT; ir->o = IR_KINT; ir->prev = J->chain[IR_KINT]; J->chain[IR_KINT] = (IRRef1)ref; found: return TREF(ref, IRT_INT); } /* Intern 64 bit constant, given by its 64 bit pattern. */ TRef lj_ir_k64(jit_State *J, IROp op, uint64_t u64) { IRIns *ir, *cir = J->cur.ir; IRRef ref; IRType t = op == IR_KNUM ? IRT_NUM : IRT_I64; for (ref = J->chain[op]; ref; ref = cir[ref].prev) if (ir_k64(&cir[ref])->u64 == u64) goto found; ref = ir_nextk64(J); ir = IR(ref); ir[1].tv.u64 = u64; ir->t.irt = t; ir->o = op; ir->op12 = 0; ir->prev = J->chain[op]; J->chain[op] = (IRRef1)ref; found: return TREF(ref, t); } /* Intern FP constant, given by its 64 bit pattern. */ TRef lj_ir_knum_u64(jit_State *J, uint64_t u64) { return lj_ir_k64(J, IR_KNUM, u64); } /* Intern 64 bit integer constant. */ TRef lj_ir_kint64(jit_State *J, uint64_t u64) { return lj_ir_k64(J, IR_KINT64, u64); } /* Check whether a number is int and return it. -0 is NOT considered an int. */ static int numistrueint(lua_Number n, int32_t *kp) { int32_t k = lj_num2int(n); if (n == (lua_Number)k) { if (kp) *kp = k; if (k == 0) { /* Special check for -0. */ TValue tv; setnumV(&tv, n); if (tv.u32.hi != 0) return 0; } return 1; } return 0; } /* Intern number as int32_t constant if possible, otherwise as FP constant. */ TRef lj_ir_knumint(jit_State *J, lua_Number n) { int32_t k; if (numistrueint(n, &k)) return lj_ir_kint(J, k); else return lj_ir_knum(J, n); } /* Intern GC object "constant". */ TRef lj_ir_kgc(jit_State *J, GCobj *o, IRType t) { IRIns *ir, *cir = J->cur.ir; IRRef ref; lua_assert(!isdead(J2G(J), o)); for (ref = J->chain[IR_KGC]; ref; ref = cir[ref].prev) if (ir_kgc(&cir[ref]) == o) goto found; ref = ir_nextkgc(J); ir = IR(ref); /* NOBARRIER: Current trace is a GC root. */ ir->op12 = 0; setgcref(ir[LJ_GC64].gcr, o); ir->t.irt = (uint8_t)t; ir->o = IR_KGC; ir->prev = J->chain[IR_KGC]; J->chain[IR_KGC] = (IRRef1)ref; found: return TREF(ref, t); } /* Allocate GCtrace constant placeholder (no interning). */ TRef lj_ir_ktrace(jit_State *J) { IRRef ref = ir_nextkgc(J); IRIns *ir = IR(ref); lua_assert(irt_toitype_(IRT_P64) == LJ_TTRACE); ir->t.irt = IRT_P64; ir->o = LJ_GC64 ? IR_KNUM : IR_KNULL; /* Not IR_KGC yet, but same size. */ ir->op12 = 0; ir->prev = 0; return TREF(ref, IRT_P64); } /* Intern pointer constant. */ TRef lj_ir_kptr_(jit_State *J, IROp op, void *ptr) { IRIns *ir, *cir = J->cur.ir; IRRef ref; #if LJ_64 && !LJ_GC64 lua_assert((void *)(uintptr_t)u32ptr(ptr) == ptr); #endif for (ref = J->chain[op]; ref; ref = cir[ref].prev) if (ir_kptr(&cir[ref]) == ptr) goto found; #if LJ_GC64 ref = ir_nextk64(J); #else ref = ir_nextk(J); #endif ir = IR(ref); ir->op12 = 0; setmref(ir[LJ_GC64].ptr, ptr); ir->t.irt = IRT_PGC; ir->o = op; ir->prev = J->chain[op]; J->chain[op] = (IRRef1)ref; found: return TREF(ref, IRT_PGC); } /* Intern typed NULL constant. */ TRef lj_ir_knull(jit_State *J, IRType t) { IRIns *ir, *cir = J->cur.ir; IRRef ref; for (ref = J->chain[IR_KNULL]; ref; ref = cir[ref].prev) if (irt_t(cir[ref].t) == t) goto found; ref = ir_nextk(J); ir = IR(ref); ir->i = 0; ir->t.irt = (uint8_t)t; ir->o = IR_KNULL; ir->prev = J->chain[IR_KNULL]; J->chain[IR_KNULL] = (IRRef1)ref; found: return TREF(ref, t); } /* Intern key slot. */ TRef lj_ir_kslot(jit_State *J, TRef key, IRRef slot) { IRIns *ir, *cir = J->cur.ir; IRRef2 op12 = IRREF2((IRRef1)key, (IRRef1)slot); IRRef ref; /* Const part is not touched by CSE/DCE, so 0-65535 is ok for IRMlit here. */ lua_assert(tref_isk(key) && slot == (IRRef)(IRRef1)slot); for (ref = J->chain[IR_KSLOT]; ref; ref = cir[ref].prev) if (cir[ref].op12 == op12) goto found; ref = ir_nextk(J); ir = IR(ref); ir->op12 = op12; ir->t.irt = IRT_P32; ir->o = IR_KSLOT; ir->prev = J->chain[IR_KSLOT]; J->chain[IR_KSLOT] = (IRRef1)ref; found: return TREF(ref, IRT_P32); } /* -- Access to IR constants ---------------------------------------------- */ /* Copy value of IR constant. */ void lj_ir_kvalue(lua_State *L, TValue *tv, const IRIns *ir) { UNUSED(L); lua_assert(ir->o != IR_KSLOT); /* Common mistake. */ switch (ir->o) { case IR_KPRI: setpriV(tv, irt_toitype(ir->t)); break; case IR_KINT: setintV(tv, ir->i); break; case IR_KGC: setgcV(L, tv, ir_kgc(ir), irt_toitype(ir->t)); break; case IR_KPTR: case IR_KKPTR: setlightudV(tv, ir_kptr(ir)); break; case IR_KNULL: setlightudV(tv, NULL); break; case IR_KNUM: setnumV(tv, ir_knum(ir)->n); break; #if LJ_HASFFI case IR_KINT64: { GCcdata *cd = lj_cdata_new_(L, CTID_INT64, 8); *(uint64_t *)cdataptr(cd) = ir_kint64(ir)->u64; setcdataV(L, tv, cd); break; } #endif default: lua_assert(0); break; } } /* -- Convert IR operand types -------------------------------------------- */ /* Convert from string to number. */ TRef LJ_FASTCALL lj_ir_tonumber(jit_State *J, TRef tr) { if (!tref_isnumber(tr)) { if (tref_isstr(tr)) tr = emitir(IRTG(IR_STRTO, IRT_NUM), tr, 0); else lj_trace_err(J, LJ_TRERR_BADTYPE); } return tr; } /* Convert from integer or string to number. */ TRef LJ_FASTCALL lj_ir_tonum(jit_State *J, TRef tr) { if (!tref_isnum(tr)) { if (tref_isinteger(tr)) tr = emitir(IRTN(IR_CONV), tr, IRCONV_NUM_INT); else if (tref_isstr(tr)) tr = emitir(IRTG(IR_STRTO, IRT_NUM), tr, 0); else lj_trace_err(J, LJ_TRERR_BADTYPE); } return tr; } /* Convert from integer or number to string. */ TRef LJ_FASTCALL lj_ir_tostr(jit_State *J, TRef tr) { if (!tref_isstr(tr)) { if (!tref_isnumber(tr)) lj_trace_err(J, LJ_TRERR_BADTYPE); tr = emitir(IRT(IR_TOSTR, IRT_STR), tr, tref_isnum(tr) ? IRTOSTR_NUM : IRTOSTR_INT); } return tr; } /* -- Miscellaneous IR ops ------------------------------------------------ */ /* Evaluate numeric comparison. */ int lj_ir_numcmp(lua_Number a, lua_Number b, IROp op) { switch (op) { case IR_EQ: return (a == b); case IR_NE: return (a != b); case IR_LT: return (a < b); case IR_GE: return (a >= b); case IR_LE: return (a <= b); case IR_GT: return (a > b); case IR_ULT: return !(a >= b); case IR_UGE: return !(a < b); case IR_ULE: return !(a > b); case IR_UGT: return !(a <= b); default: lua_assert(0); return 0; } } /* Evaluate string comparison. */ int lj_ir_strcmp(GCstr *a, GCstr *b, IROp op) { int res = lj_str_cmp(a, b); switch (op) { case IR_LT: return (res < 0); case IR_GE: return (res >= 0); case IR_LE: return (res <= 0); case IR_GT: return (res > 0); default: lua_assert(0); return 0; } } /* Rollback IR to previous state. */ void lj_ir_rollback(jit_State *J, IRRef ref) { IRRef nins = J->cur.nins; while (nins > ref) { IRIns *ir; nins--; ir = IR(nins); J->chain[ir->o] = ir->prev; } J->cur.nins = nins; } #undef IR #undef fins #undef emitir #endif luajit-2.1.0~beta3+dfsg.orig/src/lib_aux.c0000644000175100017510000002163513101703334017703 0ustar ondrejondrej/* ** Auxiliary library for the Lua/C API. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h ** ** Major parts taken verbatim or adapted from the Lua interpreter. ** Copyright (C) 1994-2008 Lua.org, PUC-Rio. See Copyright Notice in lua.h */ #include #include #include #define lib_aux_c #define LUA_LIB #include "lua.h" #include "lauxlib.h" #include "lj_obj.h" #include "lj_err.h" #include "lj_state.h" #include "lj_trace.h" #include "lj_lib.h" #if LJ_TARGET_POSIX #include #endif /* -- I/O error handling -------------------------------------------------- */ LUALIB_API int luaL_fileresult(lua_State *L, int stat, const char *fname) { if (stat) { setboolV(L->top++, 1); return 1; } else { int en = errno; /* Lua API calls may change this value. */ setnilV(L->top++); if (fname) lua_pushfstring(L, "%s: %s", fname, strerror(en)); else lua_pushfstring(L, "%s", strerror(en)); setintV(L->top++, en); lj_trace_abort(G(L)); return 3; } } LUALIB_API int luaL_execresult(lua_State *L, int stat) { if (stat != -1) { #if LJ_TARGET_POSIX if (WIFSIGNALED(stat)) { stat = WTERMSIG(stat); setnilV(L->top++); lua_pushliteral(L, "signal"); } else { if (WIFEXITED(stat)) stat = WEXITSTATUS(stat); if (stat == 0) setboolV(L->top++, 1); else setnilV(L->top++); lua_pushliteral(L, "exit"); } #else if (stat == 0) setboolV(L->top++, 1); else setnilV(L->top++); lua_pushliteral(L, "exit"); #endif setintV(L->top++, stat); return 3; } return luaL_fileresult(L, 0, NULL); } /* -- Module registration ------------------------------------------------- */ LUALIB_API const char *luaL_findtable(lua_State *L, int idx, const char *fname, int szhint) { const char *e; lua_pushvalue(L, idx); do { e = strchr(fname, '.'); if (e == NULL) e = fname + strlen(fname); lua_pushlstring(L, fname, (size_t)(e - fname)); lua_rawget(L, -2); if (lua_isnil(L, -1)) { /* no such field? */ lua_pop(L, 1); /* remove this nil */ lua_createtable(L, 0, (*e == '.' ? 1 : szhint)); /* new table for field */ lua_pushlstring(L, fname, (size_t)(e - fname)); lua_pushvalue(L, -2); lua_settable(L, -4); /* set new table into field */ } else if (!lua_istable(L, -1)) { /* field has a non-table value? */ lua_pop(L, 2); /* remove table and value */ return fname; /* return problematic part of the name */ } lua_remove(L, -2); /* remove previous table */ fname = e + 1; } while (*e == '.'); return NULL; } static int libsize(const luaL_Reg *l) { int size = 0; for (; l && l->name; l++) size++; return size; } LUALIB_API void luaL_pushmodule(lua_State *L, const char *modname, int sizehint) { luaL_findtable(L, LUA_REGISTRYINDEX, "_LOADED", 16); lua_getfield(L, -1, modname); if (!lua_istable(L, -1)) { lua_pop(L, 1); if (luaL_findtable(L, LUA_GLOBALSINDEX, modname, sizehint) != NULL) lj_err_callerv(L, LJ_ERR_BADMODN, modname); lua_pushvalue(L, -1); lua_setfield(L, -3, modname); /* _LOADED[modname] = new table. */ } lua_remove(L, -2); /* Remove _LOADED table. */ } LUALIB_API void luaL_openlib(lua_State *L, const char *libname, const luaL_Reg *l, int nup) { lj_lib_checkfpu(L); if (libname) { luaL_pushmodule(L, libname, libsize(l)); lua_insert(L, -(nup + 1)); /* Move module table below upvalues. */ } if (l) luaL_setfuncs(L, l, nup); else lua_pop(L, nup); /* Remove upvalues. */ } LUALIB_API void luaL_register(lua_State *L, const char *libname, const luaL_Reg *l) { luaL_openlib(L, libname, l, 0); } LUALIB_API void luaL_setfuncs(lua_State *L, const luaL_Reg *l, int nup) { luaL_checkstack(L, nup, "too many upvalues"); for (; l->name; l++) { int i; for (i = 0; i < nup; i++) /* Copy upvalues to the top. */ lua_pushvalue(L, -nup); lua_pushcclosure(L, l->func, nup); lua_setfield(L, -(nup + 2), l->name); } lua_pop(L, nup); /* Remove upvalues. */ } LUALIB_API const char *luaL_gsub(lua_State *L, const char *s, const char *p, const char *r) { const char *wild; size_t l = strlen(p); luaL_Buffer b; luaL_buffinit(L, &b); while ((wild = strstr(s, p)) != NULL) { luaL_addlstring(&b, s, (size_t)(wild - s)); /* push prefix */ luaL_addstring(&b, r); /* push replacement in place of pattern */ s = wild + l; /* continue after `p' */ } luaL_addstring(&b, s); /* push last suffix */ luaL_pushresult(&b); return lua_tostring(L, -1); } /* -- Buffer handling ----------------------------------------------------- */ #define bufflen(B) ((size_t)((B)->p - (B)->buffer)) #define bufffree(B) ((size_t)(LUAL_BUFFERSIZE - bufflen(B))) static int emptybuffer(luaL_Buffer *B) { size_t l = bufflen(B); if (l == 0) return 0; /* put nothing on stack */ lua_pushlstring(B->L, B->buffer, l); B->p = B->buffer; B->lvl++; return 1; } static void adjuststack(luaL_Buffer *B) { if (B->lvl > 1) { lua_State *L = B->L; int toget = 1; /* number of levels to concat */ size_t toplen = lua_strlen(L, -1); do { size_t l = lua_strlen(L, -(toget+1)); if (!(B->lvl - toget + 1 >= LUA_MINSTACK/2 || toplen > l)) break; toplen += l; toget++; } while (toget < B->lvl); lua_concat(L, toget); B->lvl = B->lvl - toget + 1; } } LUALIB_API char *luaL_prepbuffer(luaL_Buffer *B) { if (emptybuffer(B)) adjuststack(B); return B->buffer; } LUALIB_API void luaL_addlstring(luaL_Buffer *B, const char *s, size_t l) { while (l--) luaL_addchar(B, *s++); } LUALIB_API void luaL_addstring(luaL_Buffer *B, const char *s) { luaL_addlstring(B, s, strlen(s)); } LUALIB_API void luaL_pushresult(luaL_Buffer *B) { emptybuffer(B); lua_concat(B->L, B->lvl); B->lvl = 1; } LUALIB_API void luaL_addvalue(luaL_Buffer *B) { lua_State *L = B->L; size_t vl; const char *s = lua_tolstring(L, -1, &vl); if (vl <= bufffree(B)) { /* fit into buffer? */ memcpy(B->p, s, vl); /* put it there */ B->p += vl; lua_pop(L, 1); /* remove from stack */ } else { if (emptybuffer(B)) lua_insert(L, -2); /* put buffer before new value */ B->lvl++; /* add new value into B stack */ adjuststack(B); } } LUALIB_API void luaL_buffinit(lua_State *L, luaL_Buffer *B) { B->L = L; B->p = B->buffer; B->lvl = 0; } /* -- Reference management ------------------------------------------------ */ #define FREELIST_REF 0 /* Convert a stack index to an absolute index. */ #define abs_index(L, i) \ ((i) > 0 || (i) <= LUA_REGISTRYINDEX ? (i) : lua_gettop(L) + (i) + 1) LUALIB_API int luaL_ref(lua_State *L, int t) { int ref; t = abs_index(L, t); if (lua_isnil(L, -1)) { lua_pop(L, 1); /* remove from stack */ return LUA_REFNIL; /* `nil' has a unique fixed reference */ } lua_rawgeti(L, t, FREELIST_REF); /* get first free element */ ref = (int)lua_tointeger(L, -1); /* ref = t[FREELIST_REF] */ lua_pop(L, 1); /* remove it from stack */ if (ref != 0) { /* any free element? */ lua_rawgeti(L, t, ref); /* remove it from list */ lua_rawseti(L, t, FREELIST_REF); /* (t[FREELIST_REF] = t[ref]) */ } else { /* no free elements */ ref = (int)lua_objlen(L, t); ref++; /* create new reference */ } lua_rawseti(L, t, ref); return ref; } LUALIB_API void luaL_unref(lua_State *L, int t, int ref) { if (ref >= 0) { t = abs_index(L, t); lua_rawgeti(L, t, FREELIST_REF); lua_rawseti(L, t, ref); /* t[ref] = t[FREELIST_REF] */ lua_pushinteger(L, ref); lua_rawseti(L, t, FREELIST_REF); /* t[FREELIST_REF] = ref */ } } /* -- Default allocator and panic function -------------------------------- */ static int panic(lua_State *L) { const char *s = lua_tostring(L, -1); fputs("PANIC: unprotected error in call to Lua API (", stderr); fputs(s ? s : "?", stderr); fputc(')', stderr); fputc('\n', stderr); fflush(stderr); return 0; } #ifdef LUAJIT_USE_SYSMALLOC #if LJ_64 && !LJ_GC64 && !defined(LUAJIT_USE_VALGRIND) #error "Must use builtin allocator for 64 bit target" #endif static void *mem_alloc(void *ud, void *ptr, size_t osize, size_t nsize) { (void)ud; (void)osize; if (nsize == 0) { free(ptr); return NULL; } else { return realloc(ptr, nsize); } } LUALIB_API lua_State *luaL_newstate(void) { lua_State *L = lua_newstate(mem_alloc, NULL); if (L) G(L)->panic = panic; return L; } #else #include "lj_alloc.h" LUALIB_API lua_State *luaL_newstate(void) { lua_State *L; void *ud = lj_alloc_create(); if (ud == NULL) return NULL; #if LJ_64 && !LJ_GC64 L = lj_state_newstate(lj_alloc_f, ud); #else L = lua_newstate(lj_alloc_f, ud); #endif if (L) G(L)->panic = panic; return L; } #if LJ_64 && !LJ_GC64 LUA_API lua_State *lua_newstate(lua_Alloc f, void *ud) { UNUSED(f); UNUSED(ud); fputs("Must use luaL_newstate() for 64 bit target\n", stderr); return NULL; } #endif #endif luajit-2.1.0~beta3+dfsg.orig/src/vm_x86.dasc0000644000175100017510000046145113101703334020103 0ustar ondrejondrej|// Low-level VM code for x86 CPUs. |// Bytecode interpreter, fast functions and helper functions. |// Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h | |.if P64 |.arch x64 |.else |.arch x86 |.endif |.section code_op, code_sub | |.actionlist build_actionlist |.globals GLOB_ |.globalnames globnames |.externnames extnames | |//----------------------------------------------------------------------- | |.if P64 |.define X64, 1 |.if WIN |.define X64WIN, 1 |.endif |.endif | |// Fixed register assignments for the interpreter. |// This is very fragile and has many dependencies. Caveat emptor. |.define BASE, edx // Not C callee-save, refetched anyway. |.if not X64 |.define KBASE, edi // Must be C callee-save. |.define KBASEa, KBASE |.define PC, esi // Must be C callee-save. |.define PCa, PC |.define DISPATCH, ebx // Must be C callee-save. |.elif X64WIN |.define KBASE, edi // Must be C callee-save. |.define KBASEa, rdi |.define PC, esi // Must be C callee-save. |.define PCa, rsi |.define DISPATCH, ebx // Must be C callee-save. |.else |.define KBASE, r15d // Must be C callee-save. |.define KBASEa, r15 |.define PC, ebx // Must be C callee-save. |.define PCa, rbx |.define DISPATCH, r14d // Must be C callee-save. |.endif | |.define RA, ecx |.define RAH, ch |.define RAL, cl |.define RB, ebp // Must be ebp (C callee-save). |.define RC, eax // Must be eax. |.define RCW, ax |.define RCH, ah |.define RCL, al |.define OP, RB |.define RD, RC |.define RDW, RCW |.define RDL, RCL |.if X64 |.define RAa, rcx |.define RBa, rbp |.define RCa, rax |.define RDa, rax |.else |.define RAa, RA |.define RBa, RB |.define RCa, RC |.define RDa, RD |.endif | |.if not X64 |.define FCARG1, ecx // x86 fastcall arguments. |.define FCARG2, edx |.elif X64WIN |.define CARG1, rcx // x64/WIN64 C call arguments. |.define CARG2, rdx |.define CARG3, r8 |.define CARG4, r9 |.define CARG1d, ecx |.define CARG2d, edx |.define CARG3d, r8d |.define CARG4d, r9d |.define FCARG1, CARG1d // Upwards compatible to x86 fastcall. |.define FCARG2, CARG2d |.else |.define CARG1, rdi // x64/POSIX C call arguments. |.define CARG2, rsi |.define CARG3, rdx |.define CARG4, rcx |.define CARG5, r8 |.define CARG6, r9 |.define CARG1d, edi |.define CARG2d, esi |.define CARG3d, edx |.define CARG4d, ecx |.define CARG5d, r8d |.define CARG6d, r9d |.define FCARG1, CARG1d // Simulate x86 fastcall. |.define FCARG2, CARG2d |.endif | |// Type definitions. Some of these are only used for documentation. |.type L, lua_State |.type GL, global_State |.type TVALUE, TValue |.type GCOBJ, GCobj |.type STR, GCstr |.type TAB, GCtab |.type LFUNC, GCfuncL |.type CFUNC, GCfuncC |.type PROTO, GCproto |.type UPVAL, GCupval |.type NODE, Node |.type NARGS, int |.type TRACE, GCtrace |.type SBUF, SBuf | |// Stack layout while in interpreter. Must match with lj_frame.h. |//----------------------------------------------------------------------- |.if not X64 // x86 stack layout. | |.if WIN | |.define CFRAME_SPACE, aword*9 // Delta for esp (see <--). |.macro saveregs_ | push edi; push esi; push ebx | push extern lj_err_unwind_win | fs; push dword [0] | fs; mov [0], esp | sub esp, CFRAME_SPACE |.endmacro |.macro restoreregs | add esp, CFRAME_SPACE | fs; pop dword [0] | pop edi // Short for esp += 4. | pop ebx; pop esi; pop edi; pop ebp |.endmacro | |.else | |.define CFRAME_SPACE, aword*7 // Delta for esp (see <--). |.macro saveregs_ | push edi; push esi; push ebx | sub esp, CFRAME_SPACE |.endmacro |.macro restoreregs | add esp, CFRAME_SPACE | pop ebx; pop esi; pop edi; pop ebp |.endmacro | |.endif | |.macro saveregs | push ebp; saveregs_ |.endmacro | |.if WIN |.define SAVE_ERRF, aword [esp+aword*19] // vm_pcall/vm_cpcall only. |.define SAVE_NRES, aword [esp+aword*18] |.define SAVE_CFRAME, aword [esp+aword*17] |.define SAVE_L, aword [esp+aword*16] |//----- 16 byte aligned, ^^^ arguments from C caller |.define SAVE_RET, aword [esp+aword*15] //<-- esp entering interpreter. |.define SAVE_R4, aword [esp+aword*14] |.define SAVE_R3, aword [esp+aword*13] |.define SAVE_R2, aword [esp+aword*12] |//----- 16 byte aligned |.define SAVE_R1, aword [esp+aword*11] |.define SEH_FUNC, aword [esp+aword*10] |.define SEH_NEXT, aword [esp+aword*9] //<-- esp after register saves. |.define UNUSED2, aword [esp+aword*8] |//----- 16 byte aligned |.define UNUSED1, aword [esp+aword*7] |.define SAVE_PC, aword [esp+aword*6] |.define TMP2, aword [esp+aword*5] |.define TMP1, aword [esp+aword*4] |//----- 16 byte aligned |.define ARG4, aword [esp+aword*3] |.define ARG3, aword [esp+aword*2] |.define ARG2, aword [esp+aword*1] |.define ARG1, aword [esp] //<-- esp while in interpreter. |//----- 16 byte aligned, ^^^ arguments for C callee |.else |.define SAVE_ERRF, aword [esp+aword*15] // vm_pcall/vm_cpcall only. |.define SAVE_NRES, aword [esp+aword*14] |.define SAVE_CFRAME, aword [esp+aword*13] |.define SAVE_L, aword [esp+aword*12] |//----- 16 byte aligned, ^^^ arguments from C caller |.define SAVE_RET, aword [esp+aword*11] //<-- esp entering interpreter. |.define SAVE_R4, aword [esp+aword*10] |.define SAVE_R3, aword [esp+aword*9] |.define SAVE_R2, aword [esp+aword*8] |//----- 16 byte aligned |.define SAVE_R1, aword [esp+aword*7] //<-- esp after register saves. |.define SAVE_PC, aword [esp+aword*6] |.define TMP2, aword [esp+aword*5] |.define TMP1, aword [esp+aword*4] |//----- 16 byte aligned |.define ARG4, aword [esp+aword*3] |.define ARG3, aword [esp+aword*2] |.define ARG2, aword [esp+aword*1] |.define ARG1, aword [esp] //<-- esp while in interpreter. |//----- 16 byte aligned, ^^^ arguments for C callee |.endif | |// FPARGx overlaps ARGx and ARG(x+1) on x86. |.define FPARG3, qword [esp+qword*1] |.define FPARG1, qword [esp] |// TMPQ overlaps TMP1/TMP2. ARG5/MULTRES overlap TMP1/TMP2 (and TMPQ). |.define TMPQ, qword [esp+aword*4] |.define TMP3, ARG4 |.define ARG5, TMP1 |.define TMPa, TMP1 |.define MULTRES, TMP2 | |// Arguments for vm_call and vm_pcall. |.define INARG_BASE, SAVE_CFRAME // Overwritten by SAVE_CFRAME! | |// Arguments for vm_cpcall. |.define INARG_CP_CALL, SAVE_ERRF |.define INARG_CP_UD, SAVE_NRES |.define INARG_CP_FUNC, SAVE_CFRAME | |//----------------------------------------------------------------------- |.elif X64WIN // x64/Windows stack layout | |.define CFRAME_SPACE, aword*5 // Delta for rsp (see <--). |.macro saveregs_ | push rdi; push rsi; push rbx | sub rsp, CFRAME_SPACE |.endmacro |.macro saveregs | push rbp; saveregs_ |.endmacro |.macro restoreregs | add rsp, CFRAME_SPACE | pop rbx; pop rsi; pop rdi; pop rbp |.endmacro | |.define SAVE_CFRAME, aword [rsp+aword*13] |.define SAVE_PC, dword [rsp+dword*25] |.define SAVE_L, dword [rsp+dword*24] |.define SAVE_ERRF, dword [rsp+dword*23] |.define SAVE_NRES, dword [rsp+dword*22] |.define TMP2, dword [rsp+dword*21] |.define TMP1, dword [rsp+dword*20] |//----- 16 byte aligned, ^^^ 32 byte register save area, owned by interpreter |.define SAVE_RET, aword [rsp+aword*9] //<-- rsp entering interpreter. |.define SAVE_R4, aword [rsp+aword*8] |.define SAVE_R3, aword [rsp+aword*7] |.define SAVE_R2, aword [rsp+aword*6] |.define SAVE_R1, aword [rsp+aword*5] //<-- rsp after register saves. |.define ARG5, aword [rsp+aword*4] |.define CSAVE_4, aword [rsp+aword*3] |.define CSAVE_3, aword [rsp+aword*2] |.define CSAVE_2, aword [rsp+aword*1] |.define CSAVE_1, aword [rsp] //<-- rsp while in interpreter. |//----- 16 byte aligned, ^^^ 32 byte register save area, owned by callee | |// TMPQ overlaps TMP1/TMP2. MULTRES overlaps TMP2 (and TMPQ). |.define TMPQ, qword [rsp+aword*10] |.define MULTRES, TMP2 |.define TMPa, ARG5 |.define ARG5d, dword [rsp+aword*4] |.define TMP3, ARG5d | |//----------------------------------------------------------------------- |.else // x64/POSIX stack layout | |.define CFRAME_SPACE, aword*5 // Delta for rsp (see <--). |.macro saveregs_ | push rbx; push r15; push r14 |.if NO_UNWIND | push r13; push r12 |.endif | sub rsp, CFRAME_SPACE |.endmacro |.macro saveregs | push rbp; saveregs_ |.endmacro |.macro restoreregs | add rsp, CFRAME_SPACE |.if NO_UNWIND | pop r12; pop r13 |.endif | pop r14; pop r15; pop rbx; pop rbp |.endmacro | |//----- 16 byte aligned, |.if NO_UNWIND |.define SAVE_RET, aword [rsp+aword*11] //<-- rsp entering interpreter. |.define SAVE_R4, aword [rsp+aword*10] |.define SAVE_R3, aword [rsp+aword*9] |.define SAVE_R2, aword [rsp+aword*8] |.define SAVE_R1, aword [rsp+aword*7] |.define SAVE_RU2, aword [rsp+aword*6] |.define SAVE_RU1, aword [rsp+aword*5] //<-- rsp after register saves. |.else |.define SAVE_RET, aword [rsp+aword*9] //<-- rsp entering interpreter. |.define SAVE_R4, aword [rsp+aword*8] |.define SAVE_R3, aword [rsp+aword*7] |.define SAVE_R2, aword [rsp+aword*6] |.define SAVE_R1, aword [rsp+aword*5] //<-- rsp after register saves. |.endif |.define SAVE_CFRAME, aword [rsp+aword*4] |.define SAVE_PC, dword [rsp+dword*7] |.define SAVE_L, dword [rsp+dword*6] |.define SAVE_ERRF, dword [rsp+dword*5] |.define SAVE_NRES, dword [rsp+dword*4] |.define TMPa, aword [rsp+aword*1] |.define TMP2, dword [rsp+dword*1] |.define TMP1, dword [rsp] //<-- rsp while in interpreter. |//----- 16 byte aligned | |// TMPQ overlaps TMP1/TMP2. MULTRES overlaps TMP2 (and TMPQ). |.define TMPQ, qword [rsp] |.define TMP3, dword [rsp+aword*1] |.define MULTRES, TMP2 | |.endif | |//----------------------------------------------------------------------- | |// Instruction headers. |.macro ins_A; .endmacro |.macro ins_AD; .endmacro |.macro ins_AJ; .endmacro |.macro ins_ABC; movzx RB, RCH; movzx RC, RCL; .endmacro |.macro ins_AB_; movzx RB, RCH; .endmacro |.macro ins_A_C; movzx RC, RCL; .endmacro |.macro ins_AND; not RDa; .endmacro | |// Instruction decode+dispatch. Carefully tuned (nope, lodsd is not faster). |.macro ins_NEXT | mov RC, [PC] | movzx RA, RCH | movzx OP, RCL | add PC, 4 | shr RC, 16 |.if X64 | jmp aword [DISPATCH+OP*8] |.else | jmp aword [DISPATCH+OP*4] |.endif |.endmacro | |// Instruction footer. |.if 1 | // Replicated dispatch. Less unpredictable branches, but higher I-Cache use. | .define ins_next, ins_NEXT | .define ins_next_, ins_NEXT |.else | // Common dispatch. Lower I-Cache use, only one (very) unpredictable branch. | // Affects only certain kinds of benchmarks (and only with -j off). | // Around 10%-30% slower on Core2, a lot more slower on P4. | .macro ins_next | jmp ->ins_next | .endmacro | .macro ins_next_ | ->ins_next: | ins_NEXT | .endmacro |.endif | |// Call decode and dispatch. |.macro ins_callt | // BASE = new base, RB = LFUNC, RD = nargs+1, [BASE-4] = PC | mov PC, LFUNC:RB->pc | mov RA, [PC] | movzx OP, RAL | movzx RA, RAH | add PC, 4 |.if X64 | jmp aword [DISPATCH+OP*8] |.else | jmp aword [DISPATCH+OP*4] |.endif |.endmacro | |.macro ins_call | // BASE = new base, RB = LFUNC, RD = nargs+1 | mov [BASE-4], PC | ins_callt |.endmacro | |//----------------------------------------------------------------------- | |// Macros to test operand types. |.macro checktp, reg, tp; cmp dword [BASE+reg*8+4], tp; .endmacro |.macro checknum, reg, target; checktp reg, LJ_TISNUM; jae target; .endmacro |.macro checkint, reg, target; checktp reg, LJ_TISNUM; jne target; .endmacro |.macro checkstr, reg, target; checktp reg, LJ_TSTR; jne target; .endmacro |.macro checktab, reg, target; checktp reg, LJ_TTAB; jne target; .endmacro | |// These operands must be used with movzx. |.define PC_OP, byte [PC-4] |.define PC_RA, byte [PC-3] |.define PC_RB, byte [PC-1] |.define PC_RC, byte [PC-2] |.define PC_RD, word [PC-2] | |.macro branchPC, reg | lea PC, [PC+reg*4-BCBIAS_J*4] |.endmacro | |// Assumes DISPATCH is relative to GL. #define DISPATCH_GL(field) (GG_DISP2G + (int)offsetof(global_State, field)) #define DISPATCH_J(field) (GG_DISP2J + (int)offsetof(jit_State, field)) | #define PC2PROTO(field) ((int)offsetof(GCproto, field)-(int)sizeof(GCproto)) | |// Decrement hashed hotcount and trigger trace recorder if zero. |.macro hotloop, reg | mov reg, PC | shr reg, 1 | and reg, HOTCOUNT_PCMASK | sub word [DISPATCH+reg+GG_DISP2HOT], HOTCOUNT_LOOP | jb ->vm_hotloop |.endmacro | |.macro hotcall, reg | mov reg, PC | shr reg, 1 | and reg, HOTCOUNT_PCMASK | sub word [DISPATCH+reg+GG_DISP2HOT], HOTCOUNT_CALL | jb ->vm_hotcall |.endmacro | |// Set current VM state. |.macro set_vmstate, st | mov dword [DISPATCH+DISPATCH_GL(vmstate)], ~LJ_VMST_..st |.endmacro | |// x87 compares. |.macro fcomparepp // Compare and pop st0 >< st1. | fucomip st1 | fpop |.endmacro | |.macro fpop1; fstp st1; .endmacro | |// Synthesize SSE FP constants. |.macro sseconst_abs, reg, tmp // Synthesize abs mask. |.if X64 | mov64 tmp, U64x(7fffffff,ffffffff); movd reg, tmp |.else | pxor reg, reg; pcmpeqd reg, reg; psrlq reg, 1 |.endif |.endmacro | |.macro sseconst_hi, reg, tmp, val // Synthesize hi-32 bit const. |.if X64 | mov64 tmp, U64x(val,00000000); movd reg, tmp |.else | mov tmp, 0x .. val; movd reg, tmp; pshufd reg, reg, 0x51 |.endif |.endmacro | |.macro sseconst_sign, reg, tmp // Synthesize sign mask. | sseconst_hi reg, tmp, 80000000 |.endmacro |.macro sseconst_1, reg, tmp // Synthesize 1.0. | sseconst_hi reg, tmp, 3ff00000 |.endmacro |.macro sseconst_m1, reg, tmp // Synthesize -1.0. | sseconst_hi reg, tmp, bff00000 |.endmacro |.macro sseconst_2p52, reg, tmp // Synthesize 2^52. | sseconst_hi reg, tmp, 43300000 |.endmacro |.macro sseconst_tobit, reg, tmp // Synthesize 2^52 + 2^51. | sseconst_hi reg, tmp, 43380000 |.endmacro | |// Move table write barrier back. Overwrites reg. |.macro barrierback, tab, reg | and byte tab->marked, (uint8_t)~LJ_GC_BLACK // black2gray(tab) | mov reg, [DISPATCH+DISPATCH_GL(gc.grayagain)] | mov [DISPATCH+DISPATCH_GL(gc.grayagain)], tab | mov tab->gclist, reg |.endmacro | |//----------------------------------------------------------------------- /* Generate subroutines used by opcodes and other parts of the VM. */ /* The .code_sub section should be last to help static branch prediction. */ static void build_subroutines(BuildCtx *ctx) { |.code_sub | |//----------------------------------------------------------------------- |//-- Return handling ---------------------------------------------------- |//----------------------------------------------------------------------- | |->vm_returnp: | test PC, FRAME_P | jz ->cont_dispatch | | // Return from pcall or xpcall fast func. | and PC, -8 | sub BASE, PC // Restore caller base. | lea RAa, [RA+PC-8] // Rebase RA and prepend one result. | mov PC, [BASE-4] // Fetch PC of previous frame. | // Prepending may overwrite the pcall frame, so do it at the end. | mov dword [BASE+RA+4], LJ_TTRUE // Prepend true to results. | |->vm_returnc: | add RD, 1 // RD = nresults+1 | jz ->vm_unwind_yield | mov MULTRES, RD | test PC, FRAME_TYPE | jz ->BC_RET_Z // Handle regular return to Lua. | |->vm_return: | // BASE = base, RA = resultofs, RD = nresults+1 (= MULTRES), PC = return | xor PC, FRAME_C | test PC, FRAME_TYPE | jnz ->vm_returnp | | // Return to C. | set_vmstate C | and PC, -8 | sub PC, BASE | neg PC // Previous base = BASE - delta. | | sub RD, 1 | jz >2 |1: // Move results down. |.if X64 | mov RBa, [BASE+RA] | mov [BASE-8], RBa |.else | mov RB, [BASE+RA] | mov [BASE-8], RB | mov RB, [BASE+RA+4] | mov [BASE-4], RB |.endif | add BASE, 8 | sub RD, 1 | jnz <1 |2: | mov L:RB, SAVE_L | mov L:RB->base, PC |3: | mov RD, MULTRES | mov RA, SAVE_NRES // RA = wanted nresults+1 |4: | cmp RA, RD | jne >6 // More/less results wanted? |5: | sub BASE, 8 | mov L:RB->top, BASE | |->vm_leave_cp: | mov RAa, SAVE_CFRAME // Restore previous C frame. | mov L:RB->cframe, RAa | xor eax, eax // Ok return status for vm_pcall. | |->vm_leave_unw: | restoreregs | ret | |6: | jb >7 // Less results wanted? | // More results wanted. Check stack size and fill up results with nil. | cmp BASE, L:RB->maxstack | ja >8 | mov dword [BASE-4], LJ_TNIL | add BASE, 8 | add RD, 1 | jmp <4 | |7: // Less results wanted. | test RA, RA | jz <5 // But check for LUA_MULTRET+1. | sub RA, RD // Negative result! | lea BASE, [BASE+RA*8] // Correct top. | jmp <5 | |8: // Corner case: need to grow stack for filling up results. | // This can happen if: | // - A C function grows the stack (a lot). | // - The GC shrinks the stack in between. | // - A return back from a lua_call() with (high) nresults adjustment. | mov L:RB->top, BASE // Save current top held in BASE (yes). | mov MULTRES, RD // Need to fill only remainder with nil. | mov FCARG2, RA | mov FCARG1, L:RB | call extern lj_state_growstack@8 // (lua_State *L, int n) | mov BASE, L:RB->top // Need the (realloced) L->top in BASE. | jmp <3 | |->vm_unwind_yield: | mov al, LUA_YIELD | jmp ->vm_unwind_c_eh | |->vm_unwind_c@8: // Unwind C stack, return from vm_pcall. | // (void *cframe, int errcode) |.if X64 | mov eax, CARG2d // Error return status for vm_pcall. | mov rsp, CARG1 |.else | mov eax, FCARG2 // Error return status for vm_pcall. | mov esp, FCARG1 |.if WIN | lea FCARG1, SEH_NEXT | fs; mov [0], FCARG1 |.endif |.endif |->vm_unwind_c_eh: // Landing pad for external unwinder. | mov L:RB, SAVE_L | mov GL:RB, L:RB->glref | mov dword GL:RB->vmstate, ~LJ_VMST_C | jmp ->vm_leave_unw | |->vm_unwind_rethrow: |.if X64 and not X64WIN | mov FCARG1, SAVE_L | mov FCARG2, eax | restoreregs | jmp extern lj_err_throw@8 // (lua_State *L, int errcode) |.endif | |->vm_unwind_ff@4: // Unwind C stack, return from ff pcall. | // (void *cframe) |.if X64 | and CARG1, CFRAME_RAWMASK | mov rsp, CARG1 |.else | and FCARG1, CFRAME_RAWMASK | mov esp, FCARG1 |.if WIN | lea FCARG1, SEH_NEXT | fs; mov [0], FCARG1 |.endif |.endif |->vm_unwind_ff_eh: // Landing pad for external unwinder. | mov L:RB, SAVE_L | mov RAa, -8 // Results start at BASE+RA = BASE-8. | mov RD, 1+1 // Really 1+2 results, incr. later. | mov BASE, L:RB->base | mov DISPATCH, L:RB->glref // Setup pointer to dispatch table. | add DISPATCH, GG_G2DISP | mov PC, [BASE-4] // Fetch PC of previous frame. | mov dword [BASE-4], LJ_TFALSE // Prepend false to error message. | set_vmstate INTERP | jmp ->vm_returnc // Increments RD/MULTRES and returns. | |.if WIN and not X64 |->vm_rtlunwind@16: // Thin layer around RtlUnwind. | // (void *cframe, void *excptrec, void *unwinder, int errcode) | mov [esp], FCARG1 // Return value for RtlUnwind. | push FCARG2 // Exception record for RtlUnwind. | push 0 // Ignored by RtlUnwind. | push dword [FCARG1+CFRAME_OFS_SEH] | call extern RtlUnwind@16 // Violates ABI (clobbers too much). | mov FCARG1, eax | mov FCARG2, [esp+4] // errcode (for vm_unwind_c). | ret // Jump to unwinder. |.endif | |//----------------------------------------------------------------------- |//-- Grow stack for calls ----------------------------------------------- |//----------------------------------------------------------------------- | |->vm_growstack_c: // Grow stack for C function. | mov FCARG2, LUA_MINSTACK | jmp >2 | |->vm_growstack_v: // Grow stack for vararg Lua function. | sub RD, 8 | jmp >1 | |->vm_growstack_f: // Grow stack for fixarg Lua function. | // BASE = new base, RD = nargs+1, RB = L, PC = first PC | lea RD, [BASE+NARGS:RD*8-8] |1: | movzx RA, byte [PC-4+PC2PROTO(framesize)] | add PC, 4 // Must point after first instruction. | mov L:RB->base, BASE | mov L:RB->top, RD | mov SAVE_PC, PC | mov FCARG2, RA |2: | // RB = L, L->base = new base, L->top = top | mov FCARG1, L:RB | call extern lj_state_growstack@8 // (lua_State *L, int n) | mov BASE, L:RB->base | mov RD, L:RB->top | mov LFUNC:RB, [BASE-8] | sub RD, BASE | shr RD, 3 | add NARGS:RD, 1 | // BASE = new base, RB = LFUNC, RD = nargs+1 | ins_callt // Just retry the call. | |//----------------------------------------------------------------------- |//-- Entry points into the assembler VM --------------------------------- |//----------------------------------------------------------------------- | |->vm_resume: // Setup C frame and resume thread. | // (lua_State *L, TValue *base, int nres1 = 0, ptrdiff_t ef = 0) | saveregs |.if X64 | mov L:RB, CARG1d // Caveat: CARG1d may be RA. | mov SAVE_L, CARG1d | mov RA, CARG2d |.else | mov L:RB, SAVE_L | mov RA, INARG_BASE // Caveat: overlaps SAVE_CFRAME! |.endif | mov PC, FRAME_CP | xor RD, RD | lea KBASEa, [esp+CFRAME_RESUME] | mov DISPATCH, L:RB->glref // Setup pointer to dispatch table. | add DISPATCH, GG_G2DISP | mov SAVE_PC, RD // Any value outside of bytecode is ok. | mov SAVE_CFRAME, RDa |.if X64 | mov SAVE_NRES, RD | mov SAVE_ERRF, RD |.endif | mov L:RB->cframe, KBASEa | cmp byte L:RB->status, RDL | je >2 // Initial resume (like a call). | | // Resume after yield (like a return). | mov [DISPATCH+DISPATCH_GL(cur_L)], L:RB | set_vmstate INTERP | mov byte L:RB->status, RDL | mov BASE, L:RB->base | mov RD, L:RB->top | sub RD, RA | shr RD, 3 | add RD, 1 // RD = nresults+1 | sub RA, BASE // RA = resultofs | mov PC, [BASE-4] | mov MULTRES, RD | test PC, FRAME_TYPE | jz ->BC_RET_Z | jmp ->vm_return | |->vm_pcall: // Setup protected C frame and enter VM. | // (lua_State *L, TValue *base, int nres1, ptrdiff_t ef) | saveregs | mov PC, FRAME_CP |.if X64 | mov SAVE_ERRF, CARG4d |.endif | jmp >1 | |->vm_call: // Setup C frame and enter VM. | // (lua_State *L, TValue *base, int nres1) | saveregs | mov PC, FRAME_C | |1: // Entry point for vm_pcall above (PC = ftype). |.if X64 | mov SAVE_NRES, CARG3d | mov L:RB, CARG1d // Caveat: CARG1d may be RA. | mov SAVE_L, CARG1d | mov RA, CARG2d |.else | mov L:RB, SAVE_L | mov RA, INARG_BASE // Caveat: overlaps SAVE_CFRAME! |.endif | | mov DISPATCH, L:RB->glref // Setup pointer to dispatch table. | mov KBASEa, L:RB->cframe // Add our C frame to cframe chain. | mov SAVE_CFRAME, KBASEa | mov SAVE_PC, L:RB // Any value outside of bytecode is ok. | add DISPATCH, GG_G2DISP |.if X64 | mov L:RB->cframe, rsp |.else | mov L:RB->cframe, esp |.endif | |2: // Entry point for vm_resume/vm_cpcall (RA = base, RB = L, PC = ftype). | mov [DISPATCH+DISPATCH_GL(cur_L)], L:RB | set_vmstate INTERP | mov BASE, L:RB->base // BASE = old base (used in vmeta_call). | add PC, RA | sub PC, BASE // PC = frame delta + frame type | | mov RD, L:RB->top | sub RD, RA | shr NARGS:RD, 3 | add NARGS:RD, 1 // RD = nargs+1 | |->vm_call_dispatch: | mov LFUNC:RB, [RA-8] | cmp dword [RA-4], LJ_TFUNC | jne ->vmeta_call // Ensure KBASE defined and != BASE. | |->vm_call_dispatch_f: | mov BASE, RA | ins_call | // BASE = new base, RB = func, RD = nargs+1, PC = caller PC | |->vm_cpcall: // Setup protected C frame, call C. | // (lua_State *L, lua_CFunction func, void *ud, lua_CPFunction cp) | saveregs |.if X64 | mov L:RB, CARG1d // Caveat: CARG1d may be RA. | mov SAVE_L, CARG1d |.else | mov L:RB, SAVE_L | // Caveat: INARG_CP_* and SAVE_CFRAME/SAVE_NRES/SAVE_ERRF overlap! | mov RC, INARG_CP_UD // Get args before they are overwritten. | mov RA, INARG_CP_FUNC | mov BASE, INARG_CP_CALL |.endif | mov SAVE_PC, L:RB // Any value outside of bytecode is ok. | | mov KBASE, L:RB->stack // Compute -savestack(L, L->top). | sub KBASE, L:RB->top | mov DISPATCH, L:RB->glref // Setup pointer to dispatch table. | mov SAVE_ERRF, 0 // No error function. | mov SAVE_NRES, KBASE // Neg. delta means cframe w/o frame. | add DISPATCH, GG_G2DISP | // Handler may change cframe_nres(L->cframe) or cframe_errfunc(L->cframe). | |.if X64 | mov KBASEa, L:RB->cframe // Add our C frame to cframe chain. | mov SAVE_CFRAME, KBASEa | mov L:RB->cframe, rsp | mov [DISPATCH+DISPATCH_GL(cur_L)], L:RB | | call CARG4 // (lua_State *L, lua_CFunction func, void *ud) |.else | mov ARG3, RC // Have to copy args downwards. | mov ARG2, RA | mov ARG1, L:RB | | mov KBASE, L:RB->cframe // Add our C frame to cframe chain. | mov SAVE_CFRAME, KBASE | mov L:RB->cframe, esp | mov [DISPATCH+DISPATCH_GL(cur_L)], L:RB | | call BASE // (lua_State *L, lua_CFunction func, void *ud) |.endif | // TValue * (new base) or NULL returned in eax (RC). | test RC, RC | jz ->vm_leave_cp // No base? Just remove C frame. | mov RA, RC | mov PC, FRAME_CP | jmp <2 // Else continue with the call. | |//----------------------------------------------------------------------- |//-- Metamethod handling ------------------------------------------------ |//----------------------------------------------------------------------- | |//-- Continuation dispatch ---------------------------------------------- | |->cont_dispatch: | // BASE = meta base, RA = resultofs, RD = nresults+1 (also in MULTRES) | add RA, BASE | and PC, -8 | mov RB, BASE | sub BASE, PC // Restore caller BASE. | mov dword [RA+RD*8-4], LJ_TNIL // Ensure one valid arg. | mov RC, RA // ... in [RC] | mov PC, [RB-12] // Restore PC from [cont|PC]. |.if X64 | movsxd RAa, dword [RB-16] // May be negative on WIN64 with debug. |.if FFI | cmp RA, 1 | jbe >1 |.endif | lea KBASEa, qword [=>0] | add RAa, KBASEa |.else | mov RA, dword [RB-16] |.if FFI | cmp RA, 1 | jbe >1 |.endif |.endif | mov LFUNC:KBASE, [BASE-8] | mov KBASE, LFUNC:KBASE->pc | mov KBASE, [KBASE+PC2PROTO(k)] | // BASE = base, RC = result, RB = meta base | jmp RAa // Jump to continuation. | |.if FFI |1: | je ->cont_ffi_callback // cont = 1: return from FFI callback. | // cont = 0: Tail call from C function. | sub RB, BASE | shr RB, 3 | lea RD, [RB-1] | jmp ->vm_call_tail |.endif | |->cont_cat: // BASE = base, RC = result, RB = mbase | movzx RA, PC_RB | sub RB, 16 | lea RA, [BASE+RA*8] | sub RA, RB | je ->cont_ra | neg RA | shr RA, 3 |.if X64WIN | mov CARG3d, RA | mov L:CARG1d, SAVE_L | mov L:CARG1d->base, BASE | mov RCa, [RC] | mov [RB], RCa | mov CARG2d, RB |.elif X64 | mov L:CARG1d, SAVE_L | mov L:CARG1d->base, BASE | mov CARG3d, RA | mov RAa, [RC] | mov [RB], RAa | mov CARG2d, RB |.else | mov ARG3, RA | mov RA, [RC+4] | mov RC, [RC] | mov [RB+4], RA | mov [RB], RC | mov ARG2, RB |.endif | jmp ->BC_CAT_Z | |//-- Table indexing metamethods ----------------------------------------- | |->vmeta_tgets: | mov TMP1, RC // RC = GCstr * | mov TMP2, LJ_TSTR | lea RCa, TMP1 // Store temp. TValue in TMP1/TMP2. | cmp PC_OP, BC_GGET | jne >1 | lea RA, [DISPATCH+DISPATCH_GL(tmptv)] // Store fn->l.env in g->tmptv. | mov [RA], TAB:RB // RB = GCtab * | mov dword [RA+4], LJ_TTAB | mov RB, RA | jmp >2 | |->vmeta_tgetb: | movzx RC, PC_RC |.if DUALNUM | mov TMP2, LJ_TISNUM | mov TMP1, RC |.else | cvtsi2sd xmm0, RC | movsd TMPQ, xmm0 |.endif | lea RCa, TMPQ // Store temp. TValue in TMPQ. | jmp >1 | |->vmeta_tgetv: | movzx RC, PC_RC // Reload TValue *k from RC. | lea RC, [BASE+RC*8] |1: | movzx RB, PC_RB // Reload TValue *t from RB. | lea RB, [BASE+RB*8] |2: |.if X64 | mov L:CARG1d, SAVE_L | mov L:CARG1d->base, BASE // Caveat: CARG2d/CARG3d may be BASE. | mov CARG2d, RB | mov CARG3, RCa // May be 64 bit ptr to stack. | mov L:RB, L:CARG1d |.else | mov ARG2, RB | mov L:RB, SAVE_L | mov ARG3, RC | mov ARG1, L:RB | mov L:RB->base, BASE |.endif | mov SAVE_PC, PC | call extern lj_meta_tget // (lua_State *L, TValue *o, TValue *k) | // TValue * (finished) or NULL (metamethod) returned in eax (RC). | mov BASE, L:RB->base | test RC, RC | jz >3 |->cont_ra: // BASE = base, RC = result | movzx RA, PC_RA |.if X64 | mov RBa, [RC] | mov [BASE+RA*8], RBa |.else | mov RB, [RC+4] | mov RC, [RC] | mov [BASE+RA*8+4], RB | mov [BASE+RA*8], RC |.endif | ins_next | |3: // Call __index metamethod. | // BASE = base, L->top = new base, stack = cont/func/t/k | mov RA, L:RB->top | mov [RA-12], PC // [cont|PC] | lea PC, [RA+FRAME_CONT] | sub PC, BASE | mov LFUNC:RB, [RA-8] // Guaranteed to be a function here. | mov NARGS:RD, 2+1 // 2 args for func(t, k). | jmp ->vm_call_dispatch_f | |->vmeta_tgetr: | mov FCARG1, TAB:RB | mov RB, BASE // Save BASE. | mov FCARG2, RC // Caveat: FCARG2 == BASE | call extern lj_tab_getinth@8 // (GCtab *t, int32_t key) | // cTValue * or NULL returned in eax (RC). | movzx RA, PC_RA | mov BASE, RB // Restore BASE. | test RC, RC | jnz ->BC_TGETR_Z | mov dword [BASE+RA*8+4], LJ_TNIL | jmp ->BC_TGETR2_Z | |//----------------------------------------------------------------------- | |->vmeta_tsets: | mov TMP1, RC // RC = GCstr * | mov TMP2, LJ_TSTR | lea RCa, TMP1 // Store temp. TValue in TMP1/TMP2. | cmp PC_OP, BC_GSET | jne >1 | lea RA, [DISPATCH+DISPATCH_GL(tmptv)] // Store fn->l.env in g->tmptv. | mov [RA], TAB:RB // RB = GCtab * | mov dword [RA+4], LJ_TTAB | mov RB, RA | jmp >2 | |->vmeta_tsetb: | movzx RC, PC_RC |.if DUALNUM | mov TMP2, LJ_TISNUM | mov TMP1, RC |.else | cvtsi2sd xmm0, RC | movsd TMPQ, xmm0 |.endif | lea RCa, TMPQ // Store temp. TValue in TMPQ. | jmp >1 | |->vmeta_tsetv: | movzx RC, PC_RC // Reload TValue *k from RC. | lea RC, [BASE+RC*8] |1: | movzx RB, PC_RB // Reload TValue *t from RB. | lea RB, [BASE+RB*8] |2: |.if X64 | mov L:CARG1d, SAVE_L | mov L:CARG1d->base, BASE // Caveat: CARG2d/CARG3d may be BASE. | mov CARG2d, RB | mov CARG3, RCa // May be 64 bit ptr to stack. | mov L:RB, L:CARG1d |.else | mov ARG2, RB | mov L:RB, SAVE_L | mov ARG3, RC | mov ARG1, L:RB | mov L:RB->base, BASE |.endif | mov SAVE_PC, PC | call extern lj_meta_tset // (lua_State *L, TValue *o, TValue *k) | // TValue * (finished) or NULL (metamethod) returned in eax (RC). | mov BASE, L:RB->base | test RC, RC | jz >3 | // NOBARRIER: lj_meta_tset ensures the table is not black. | movzx RA, PC_RA |.if X64 | mov RBa, [BASE+RA*8] | mov [RC], RBa |.else | mov RB, [BASE+RA*8+4] | mov RA, [BASE+RA*8] | mov [RC+4], RB | mov [RC], RA |.endif |->cont_nop: // BASE = base, (RC = result) | ins_next | |3: // Call __newindex metamethod. | // BASE = base, L->top = new base, stack = cont/func/t/k/(v) | mov RA, L:RB->top | mov [RA-12], PC // [cont|PC] | movzx RC, PC_RA | // Copy value to third argument. |.if X64 | mov RBa, [BASE+RC*8] | mov [RA+16], RBa |.else | mov RB, [BASE+RC*8+4] | mov RC, [BASE+RC*8] | mov [RA+20], RB | mov [RA+16], RC |.endif | lea PC, [RA+FRAME_CONT] | sub PC, BASE | mov LFUNC:RB, [RA-8] // Guaranteed to be a function here. | mov NARGS:RD, 3+1 // 3 args for func(t, k, v). | jmp ->vm_call_dispatch_f | |->vmeta_tsetr: |.if X64WIN | mov L:CARG1d, SAVE_L | mov CARG3d, RC | mov L:CARG1d->base, BASE | xchg CARG2d, TAB:RB // Caveat: CARG2d == BASE. |.elif X64 | mov L:CARG1d, SAVE_L | mov CARG2d, TAB:RB | mov L:CARG1d->base, BASE | mov RB, BASE // Save BASE. | mov CARG3d, RC // Caveat: CARG3d == BASE. |.else | mov L:RA, SAVE_L | mov ARG2, TAB:RB | mov RB, BASE // Save BASE. | mov ARG3, RC | mov ARG1, L:RA | mov L:RA->base, BASE |.endif | mov SAVE_PC, PC | call extern lj_tab_setinth // (lua_State *L, GCtab *t, int32_t key) | // TValue * returned in eax (RC). | movzx RA, PC_RA | mov BASE, RB // Restore BASE. | jmp ->BC_TSETR_Z | |//-- Comparison metamethods --------------------------------------------- | |->vmeta_comp: |.if X64 | mov L:RB, SAVE_L | mov L:RB->base, BASE // Caveat: CARG2d/CARG3d == BASE. |.if X64WIN | lea CARG3d, [BASE+RD*8] | lea CARG2d, [BASE+RA*8] |.else | lea CARG2d, [BASE+RA*8] | lea CARG3d, [BASE+RD*8] |.endif | mov CARG1d, L:RB // Caveat: CARG1d/CARG4d == RA. | movzx CARG4d, PC_OP |.else | movzx RB, PC_OP | lea RD, [BASE+RD*8] | lea RA, [BASE+RA*8] | mov ARG4, RB | mov L:RB, SAVE_L | mov ARG3, RD | mov ARG2, RA | mov ARG1, L:RB | mov L:RB->base, BASE |.endif | mov SAVE_PC, PC | call extern lj_meta_comp // (lua_State *L, TValue *o1, *o2, int op) | // 0/1 or TValue * (metamethod) returned in eax (RC). |3: | mov BASE, L:RB->base | cmp RC, 1 | ja ->vmeta_binop |4: | lea PC, [PC+4] | jb >6 |5: | movzx RD, PC_RD | branchPC RD |6: | ins_next | |->cont_condt: // BASE = base, RC = result | add PC, 4 | cmp dword [RC+4], LJ_TISTRUECOND // Branch if result is true. | jb <5 | jmp <6 | |->cont_condf: // BASE = base, RC = result | cmp dword [RC+4], LJ_TISTRUECOND // Branch if result is false. | jmp <4 | |->vmeta_equal: | sub PC, 4 |.if X64WIN | mov CARG3d, RD | mov CARG4d, RB | mov L:RB, SAVE_L | mov L:RB->base, BASE // Caveat: CARG2d == BASE. | mov CARG2d, RA | mov CARG1d, L:RB // Caveat: CARG1d == RA. |.elif X64 | mov CARG2d, RA | mov CARG4d, RB // Caveat: CARG4d == RA. | mov L:RB, SAVE_L | mov L:RB->base, BASE // Caveat: CARG3d == BASE. | mov CARG3d, RD | mov CARG1d, L:RB |.else | mov ARG4, RB | mov L:RB, SAVE_L | mov ARG3, RD | mov ARG2, RA | mov ARG1, L:RB | mov L:RB->base, BASE |.endif | mov SAVE_PC, PC | call extern lj_meta_equal // (lua_State *L, GCobj *o1, *o2, int ne) | // 0/1 or TValue * (metamethod) returned in eax (RC). | jmp <3 | |->vmeta_equal_cd: |.if FFI | sub PC, 4 | mov L:RB, SAVE_L | mov L:RB->base, BASE | mov FCARG1, L:RB | mov FCARG2, dword [PC-4] | mov SAVE_PC, PC | call extern lj_meta_equal_cd@8 // (lua_State *L, BCIns ins) | // 0/1 or TValue * (metamethod) returned in eax (RC). | jmp <3 |.endif | |->vmeta_istype: |.if X64 | mov L:RB, SAVE_L | mov L:RB->base, BASE // Caveat: CARG2d/CARG3d may be BASE. | mov CARG2d, RA | movzx CARG3d, PC_RD | mov L:CARG1d, L:RB |.else | movzx RD, PC_RD | mov ARG2, RA | mov L:RB, SAVE_L | mov ARG3, RD | mov ARG1, L:RB | mov L:RB->base, BASE |.endif | mov SAVE_PC, PC | call extern lj_meta_istype // (lua_State *L, BCReg ra, BCReg tp) | mov BASE, L:RB->base | jmp <6 | |//-- Arithmetic metamethods --------------------------------------------- | |->vmeta_arith_vno: |.if DUALNUM | movzx RB, PC_RB |.endif |->vmeta_arith_vn: | lea RC, [KBASE+RC*8] | jmp >1 | |->vmeta_arith_nvo: |.if DUALNUM | movzx RC, PC_RC |.endif |->vmeta_arith_nv: | lea RC, [KBASE+RC*8] | lea RB, [BASE+RB*8] | xchg RB, RC | jmp >2 | |->vmeta_unm: | lea RC, [BASE+RD*8] | mov RB, RC | jmp >2 | |->vmeta_arith_vvo: |.if DUALNUM | movzx RB, PC_RB |.endif |->vmeta_arith_vv: | lea RC, [BASE+RC*8] |1: | lea RB, [BASE+RB*8] |2: | lea RA, [BASE+RA*8] |.if X64WIN | mov CARG3d, RB | mov CARG4d, RC | movzx RC, PC_OP | mov ARG5d, RC | mov L:RB, SAVE_L | mov L:RB->base, BASE // Caveat: CARG2d == BASE. | mov CARG2d, RA | mov CARG1d, L:RB // Caveat: CARG1d == RA. |.elif X64 | movzx CARG5d, PC_OP | mov CARG2d, RA | mov CARG4d, RC // Caveat: CARG4d == RA. | mov L:CARG1d, SAVE_L | mov L:CARG1d->base, BASE // Caveat: CARG3d == BASE. | mov CARG3d, RB | mov L:RB, L:CARG1d |.else | mov ARG3, RB | mov L:RB, SAVE_L | mov ARG4, RC | movzx RC, PC_OP | mov ARG2, RA | mov ARG5, RC | mov ARG1, L:RB | mov L:RB->base, BASE |.endif | mov SAVE_PC, PC | call extern lj_meta_arith // (lua_State *L, TValue *ra,*rb,*rc, BCReg op) | // NULL (finished) or TValue * (metamethod) returned in eax (RC). | mov BASE, L:RB->base | test RC, RC | jz ->cont_nop | | // Call metamethod for binary op. |->vmeta_binop: | // BASE = base, RC = new base, stack = cont/func/o1/o2 | mov RA, RC | sub RC, BASE | mov [RA-12], PC // [cont|PC] | lea PC, [RC+FRAME_CONT] | mov NARGS:RD, 2+1 // 2 args for func(o1, o2). | jmp ->vm_call_dispatch | |->vmeta_len: | mov L:RB, SAVE_L | mov L:RB->base, BASE | lea FCARG2, [BASE+RD*8] // Caveat: FCARG2 == BASE | mov L:FCARG1, L:RB | mov SAVE_PC, PC | call extern lj_meta_len@8 // (lua_State *L, TValue *o) | // NULL (retry) or TValue * (metamethod) returned in eax (RC). | mov BASE, L:RB->base #if LJ_52 | test RC, RC | jne ->vmeta_binop // Binop call for compatibility. | movzx RD, PC_RD | mov TAB:FCARG1, [BASE+RD*8] | jmp ->BC_LEN_Z #else | jmp ->vmeta_binop // Binop call for compatibility. #endif | |//-- Call metamethod ---------------------------------------------------- | |->vmeta_call_ra: | lea RA, [BASE+RA*8+8] |->vmeta_call: // Resolve and call __call metamethod. | // BASE = old base, RA = new base, RC = nargs+1, PC = return | mov TMP2, RA // Save RA, RC for us. | mov TMP1, NARGS:RD | sub RA, 8 |.if X64 | mov L:RB, SAVE_L | mov L:RB->base, BASE // Caveat: CARG2d/CARG3d may be BASE. | mov CARG2d, RA | lea CARG3d, [RA+NARGS:RD*8] | mov CARG1d, L:RB // Caveat: CARG1d may be RA. |.else | lea RC, [RA+NARGS:RD*8] | mov L:RB, SAVE_L | mov ARG2, RA | mov ARG3, RC | mov ARG1, L:RB | mov L:RB->base, BASE // This is the callers base! |.endif | mov SAVE_PC, PC | call extern lj_meta_call // (lua_State *L, TValue *func, TValue *top) | mov BASE, L:RB->base | mov RA, TMP2 | mov NARGS:RD, TMP1 | mov LFUNC:RB, [RA-8] | add NARGS:RD, 1 | // This is fragile. L->base must not move, KBASE must always be defined. | cmp KBASE, BASE // Continue with CALLT if flag set. | je ->BC_CALLT_Z | mov BASE, RA | ins_call // Otherwise call resolved metamethod. | |//-- Argument coercion for 'for' statement ------------------------------ | |->vmeta_for: | mov L:RB, SAVE_L | mov L:RB->base, BASE | mov FCARG2, RA // Caveat: FCARG2 == BASE | mov L:FCARG1, L:RB // Caveat: FCARG1 == RA | mov SAVE_PC, PC | call extern lj_meta_for@8 // (lua_State *L, TValue *base) | mov BASE, L:RB->base | mov RC, [PC-4] | movzx RA, RCH | movzx OP, RCL | shr RC, 16 |.if X64 | jmp aword [DISPATCH+OP*8+GG_DISP2STATIC] // Retry FORI or JFORI. |.else | jmp aword [DISPATCH+OP*4+GG_DISP2STATIC] // Retry FORI or JFORI. |.endif | |//----------------------------------------------------------------------- |//-- Fast functions ----------------------------------------------------- |//----------------------------------------------------------------------- | |.macro .ffunc, name |->ff_ .. name: |.endmacro | |.macro .ffunc_1, name |->ff_ .. name: | cmp NARGS:RD, 1+1; jb ->fff_fallback |.endmacro | |.macro .ffunc_2, name |->ff_ .. name: | cmp NARGS:RD, 2+1; jb ->fff_fallback |.endmacro | |.macro .ffunc_nsse, name, op | .ffunc_1 name | cmp dword [BASE+4], LJ_TISNUM; jae ->fff_fallback | op xmm0, qword [BASE] |.endmacro | |.macro .ffunc_nsse, name | .ffunc_nsse name, movsd |.endmacro | |.macro .ffunc_nnsse, name | .ffunc_2 name | cmp dword [BASE+4], LJ_TISNUM; jae ->fff_fallback | cmp dword [BASE+12], LJ_TISNUM; jae ->fff_fallback | movsd xmm0, qword [BASE] | movsd xmm1, qword [BASE+8] |.endmacro | |.macro .ffunc_nnr, name | .ffunc_2 name | cmp dword [BASE+4], LJ_TISNUM; jae ->fff_fallback | cmp dword [BASE+12], LJ_TISNUM; jae ->fff_fallback | fld qword [BASE+8] | fld qword [BASE] |.endmacro | |// Inlined GC threshold check. Caveat: uses label 1. |.macro ffgccheck | mov RB, [DISPATCH+DISPATCH_GL(gc.total)] | cmp RB, [DISPATCH+DISPATCH_GL(gc.threshold)] | jb >1 | call ->fff_gcstep |1: |.endmacro | |//-- Base library: checks ----------------------------------------------- | |.ffunc_1 assert | mov RB, [BASE+4] | cmp RB, LJ_TISTRUECOND; jae ->fff_fallback | mov PC, [BASE-4] | mov MULTRES, RD | mov [BASE-4], RB | mov RB, [BASE] | mov [BASE-8], RB | sub RD, 2 | jz >2 | mov RA, BASE |1: | add RA, 8 |.if X64 | mov RBa, [RA] | mov [RA-8], RBa |.else | mov RB, [RA+4] | mov [RA-4], RB | mov RB, [RA] | mov [RA-8], RB |.endif | sub RD, 1 | jnz <1 |2: | mov RD, MULTRES | jmp ->fff_res_ | |.ffunc_1 type | mov RB, [BASE+4] |.if X64 | mov RA, RB | sar RA, 15 | cmp RA, -2 | je >3 |.endif | mov RC, ~LJ_TNUMX | not RB | cmp RC, RB | cmova RC, RB |2: | mov CFUNC:RB, [BASE-8] | mov STR:RC, [CFUNC:RB+RC*8+((char *)(&((GCfuncC *)0)->upvalue))] | mov PC, [BASE-4] | mov dword [BASE-4], LJ_TSTR | mov [BASE-8], STR:RC | jmp ->fff_res1 |.if X64 |3: | mov RC, ~LJ_TLIGHTUD | jmp <2 |.endif | |//-- Base library: getters and setters --------------------------------- | |.ffunc_1 getmetatable | mov RB, [BASE+4] | mov PC, [BASE-4] | cmp RB, LJ_TTAB; jne >6 |1: // Field metatable must be at same offset for GCtab and GCudata! | mov TAB:RB, [BASE] | mov TAB:RB, TAB:RB->metatable |2: | test TAB:RB, TAB:RB | mov dword [BASE-4], LJ_TNIL | jz ->fff_res1 | mov STR:RC, [DISPATCH+DISPATCH_GL(gcroot)+4*(GCROOT_MMNAME+MM_metatable)] | mov dword [BASE-4], LJ_TTAB // Store metatable as default result. | mov [BASE-8], TAB:RB | mov RA, TAB:RB->hmask | and RA, STR:RC->hash | imul RA, #NODE | add NODE:RA, TAB:RB->node |3: // Rearranged logic, because we expect _not_ to find the key. | cmp dword NODE:RA->key.it, LJ_TSTR | jne >4 | cmp dword NODE:RA->key.gcr, STR:RC | je >5 |4: | mov NODE:RA, NODE:RA->next | test NODE:RA, NODE:RA | jnz <3 | jmp ->fff_res1 // Not found, keep default result. |5: | mov RB, [RA+4] | cmp RB, LJ_TNIL; je ->fff_res1 // Ditto for nil value. | mov RC, [RA] | mov [BASE-4], RB // Return value of mt.__metatable. | mov [BASE-8], RC | jmp ->fff_res1 | |6: | cmp RB, LJ_TUDATA; je <1 |.if X64 | cmp RB, LJ_TNUMX; ja >8 | cmp RB, LJ_TISNUM; jbe >7 | mov RB, LJ_TLIGHTUD | jmp >8 |7: |.else | cmp RB, LJ_TISNUM; ja >8 |.endif | mov RB, LJ_TNUMX |8: | not RB | mov TAB:RB, [DISPATCH+RB*4+DISPATCH_GL(gcroot[GCROOT_BASEMT])] | jmp <2 | |.ffunc_2 setmetatable | cmp dword [BASE+4], LJ_TTAB; jne ->fff_fallback | // Fast path: no mt for table yet and not clearing the mt. | mov TAB:RB, [BASE] | cmp dword TAB:RB->metatable, 0; jne ->fff_fallback | cmp dword [BASE+12], LJ_TTAB; jne ->fff_fallback | mov TAB:RC, [BASE+8] | mov TAB:RB->metatable, TAB:RC | mov PC, [BASE-4] | mov dword [BASE-4], LJ_TTAB // Return original table. | mov [BASE-8], TAB:RB | test byte TAB:RB->marked, LJ_GC_BLACK // isblack(table) | jz >1 | // Possible write barrier. Table is black, but skip iswhite(mt) check. | barrierback TAB:RB, RC |1: | jmp ->fff_res1 | |.ffunc_2 rawget | cmp dword [BASE+4], LJ_TTAB; jne ->fff_fallback |.if X64WIN | mov RB, BASE // Save BASE. | lea CARG3d, [BASE+8] | mov CARG2d, [BASE] // Caveat: CARG2d == BASE. | mov CARG1d, SAVE_L |.elif X64 | mov RB, BASE // Save BASE. | mov CARG2d, [BASE] | lea CARG3d, [BASE+8] // Caveat: CARG3d == BASE. | mov CARG1d, SAVE_L |.else | mov TAB:RD, [BASE] | mov L:RB, SAVE_L | mov ARG2, TAB:RD | mov ARG1, L:RB | mov RB, BASE // Save BASE. | add BASE, 8 | mov ARG3, BASE |.endif | call extern lj_tab_get // (lua_State *L, GCtab *t, cTValue *key) | // cTValue * returned in eax (RD). | mov BASE, RB // Restore BASE. | // Copy table slot. |.if X64 | mov RBa, [RD] | mov PC, [BASE-4] | mov [BASE-8], RBa |.else | mov RB, [RD] | mov RD, [RD+4] | mov PC, [BASE-4] | mov [BASE-8], RB | mov [BASE-4], RD |.endif | jmp ->fff_res1 | |//-- Base library: conversions ------------------------------------------ | |.ffunc tonumber | // Only handles the number case inline (without a base argument). | cmp NARGS:RD, 1+1; jne ->fff_fallback // Exactly one argument. | cmp dword [BASE+4], LJ_TISNUM |.if DUALNUM | jne >1 | mov RB, dword [BASE]; jmp ->fff_resi |1: | ja ->fff_fallback |.else | jae ->fff_fallback |.endif | movsd xmm0, qword [BASE]; jmp ->fff_resxmm0 | |.ffunc_1 tostring | // Only handles the string or number case inline. | mov PC, [BASE-4] | cmp dword [BASE+4], LJ_TSTR; jne >3 | // A __tostring method in the string base metatable is ignored. | mov STR:RD, [BASE] |2: | mov dword [BASE-4], LJ_TSTR | mov [BASE-8], STR:RD | jmp ->fff_res1 |3: // Handle numbers inline, unless a number base metatable is present. | cmp dword [BASE+4], LJ_TISNUM; ja ->fff_fallback | cmp dword [DISPATCH+DISPATCH_GL(gcroot[GCROOT_BASEMT_NUM])], 0 | jne ->fff_fallback | ffgccheck // Caveat: uses label 1. | mov L:RB, SAVE_L | mov L:RB->base, BASE // Add frame since C call can throw. | mov SAVE_PC, PC // Redundant (but a defined value). |.if X64 and not X64WIN | mov FCARG2, BASE // Otherwise: FCARG2 == BASE |.endif | mov L:FCARG1, L:RB |.if DUALNUM | call extern lj_strfmt_number@8 // (lua_State *L, cTValue *o) |.else | call extern lj_strfmt_num@8 // (lua_State *L, lua_Number *np) |.endif | // GCstr returned in eax (RD). | mov BASE, L:RB->base | jmp <2 | |//-- Base library: iterators ------------------------------------------- | |.ffunc_1 next | je >2 // Missing 2nd arg? |1: | cmp dword [BASE+4], LJ_TTAB; jne ->fff_fallback | mov L:RB, SAVE_L | mov L:RB->base, BASE // Add frame since C call can throw. | mov L:RB->top, BASE // Dummy frame length is ok. | mov PC, [BASE-4] |.if X64WIN | lea CARG3d, [BASE+8] | mov CARG2d, [BASE] // Caveat: CARG2d == BASE. | mov CARG1d, L:RB |.elif X64 | mov CARG2d, [BASE] | lea CARG3d, [BASE+8] // Caveat: CARG3d == BASE. | mov CARG1d, L:RB |.else | mov TAB:RD, [BASE] | mov ARG2, TAB:RD | mov ARG1, L:RB | add BASE, 8 | mov ARG3, BASE |.endif | mov SAVE_PC, PC // Needed for ITERN fallback. | call extern lj_tab_next // (lua_State *L, GCtab *t, TValue *key) | // Flag returned in eax (RD). | mov BASE, L:RB->base | test RD, RD; jz >3 // End of traversal? | // Copy key and value to results. |.if X64 | mov RBa, [BASE+8] | mov RDa, [BASE+16] | mov [BASE-8], RBa | mov [BASE], RDa |.else | mov RB, [BASE+8] | mov RD, [BASE+12] | mov [BASE-8], RB | mov [BASE-4], RD | mov RB, [BASE+16] | mov RD, [BASE+20] | mov [BASE], RB | mov [BASE+4], RD |.endif |->fff_res2: | mov RD, 1+2 | jmp ->fff_res |2: // Set missing 2nd arg to nil. | mov dword [BASE+12], LJ_TNIL | jmp <1 |3: // End of traversal: return nil. | mov dword [BASE-4], LJ_TNIL | jmp ->fff_res1 | |.ffunc_1 pairs | mov TAB:RB, [BASE] | cmp dword [BASE+4], LJ_TTAB; jne ->fff_fallback #if LJ_52 | cmp dword TAB:RB->metatable, 0; jne ->fff_fallback #endif | mov CFUNC:RB, [BASE-8] | mov CFUNC:RD, CFUNC:RB->upvalue[0] | mov PC, [BASE-4] | mov dword [BASE-4], LJ_TFUNC | mov [BASE-8], CFUNC:RD | mov dword [BASE+12], LJ_TNIL | mov RD, 1+3 | jmp ->fff_res | |.ffunc_2 ipairs_aux | cmp dword [BASE+4], LJ_TTAB; jne ->fff_fallback | cmp dword [BASE+12], LJ_TISNUM |.if DUALNUM | jne ->fff_fallback |.else | jae ->fff_fallback |.endif | mov PC, [BASE-4] |.if DUALNUM | mov RD, dword [BASE+8] | add RD, 1 | mov dword [BASE-4], LJ_TISNUM | mov dword [BASE-8], RD |.else | movsd xmm0, qword [BASE+8] | sseconst_1 xmm1, RBa | addsd xmm0, xmm1 | cvttsd2si RD, xmm0 | movsd qword [BASE-8], xmm0 |.endif | mov TAB:RB, [BASE] | cmp RD, TAB:RB->asize; jae >2 // Not in array part? | shl RD, 3 | add RD, TAB:RB->array |1: | cmp dword [RD+4], LJ_TNIL; je ->fff_res0 | // Copy array slot. |.if X64 | mov RBa, [RD] | mov [BASE], RBa |.else | mov RB, [RD] | mov RD, [RD+4] | mov [BASE], RB | mov [BASE+4], RD |.endif | jmp ->fff_res2 |2: // Check for empty hash part first. Otherwise call C function. | cmp dword TAB:RB->hmask, 0; je ->fff_res0 | mov FCARG1, TAB:RB | mov RB, BASE // Save BASE. | mov FCARG2, RD // Caveat: FCARG2 == BASE | call extern lj_tab_getinth@8 // (GCtab *t, int32_t key) | // cTValue * or NULL returned in eax (RD). | mov BASE, RB | test RD, RD | jnz <1 |->fff_res0: | mov RD, 1+0 | jmp ->fff_res | |.ffunc_1 ipairs | mov TAB:RB, [BASE] | cmp dword [BASE+4], LJ_TTAB; jne ->fff_fallback #if LJ_52 | cmp dword TAB:RB->metatable, 0; jne ->fff_fallback #endif | mov CFUNC:RB, [BASE-8] | mov CFUNC:RD, CFUNC:RB->upvalue[0] | mov PC, [BASE-4] | mov dword [BASE-4], LJ_TFUNC | mov [BASE-8], CFUNC:RD |.if DUALNUM | mov dword [BASE+12], LJ_TISNUM | mov dword [BASE+8], 0 |.else | xorps xmm0, xmm0 | movsd qword [BASE+8], xmm0 |.endif | mov RD, 1+3 | jmp ->fff_res | |//-- Base library: catch errors ---------------------------------------- | |.ffunc_1 pcall | lea RA, [BASE+8] | sub NARGS:RD, 1 | mov PC, 8+FRAME_PCALL |1: | movzx RB, byte [DISPATCH+DISPATCH_GL(hookmask)] | shr RB, HOOK_ACTIVE_SHIFT | and RB, 1 | add PC, RB // Remember active hook before pcall. | jmp ->vm_call_dispatch | |.ffunc_2 xpcall | cmp dword [BASE+12], LJ_TFUNC; jne ->fff_fallback | mov RB, [BASE+4] // Swap function and traceback. | mov [BASE+12], RB | mov dword [BASE+4], LJ_TFUNC | mov LFUNC:RB, [BASE] | mov PC, [BASE+8] | mov [BASE+8], LFUNC:RB | mov [BASE], PC | lea RA, [BASE+16] | sub NARGS:RD, 2 | mov PC, 16+FRAME_PCALL | jmp <1 | |//-- Coroutine library -------------------------------------------------- | |.macro coroutine_resume_wrap, resume |.if resume |.ffunc_1 coroutine_resume | mov L:RB, [BASE] |.else |.ffunc coroutine_wrap_aux | mov CFUNC:RB, [BASE-8] | mov L:RB, CFUNC:RB->upvalue[0].gcr |.endif | mov PC, [BASE-4] | mov SAVE_PC, PC |.if X64 | mov TMP1, L:RB |.else | mov ARG1, L:RB |.endif |.if resume | cmp dword [BASE+4], LJ_TTHREAD; jne ->fff_fallback |.endif | cmp aword L:RB->cframe, 0; jne ->fff_fallback | cmp byte L:RB->status, LUA_YIELD; ja ->fff_fallback | mov RA, L:RB->top | je >1 // Status != LUA_YIELD (i.e. 0)? | cmp RA, L:RB->base // Check for presence of initial func. | je ->fff_fallback |1: |.if resume | lea PC, [RA+NARGS:RD*8-16] // Check stack space (-1-thread). |.else | lea PC, [RA+NARGS:RD*8-8] // Check stack space (-1). |.endif | cmp PC, L:RB->maxstack; ja ->fff_fallback | mov L:RB->top, PC | | mov L:RB, SAVE_L | mov L:RB->base, BASE |.if resume | add BASE, 8 // Keep resumed thread in stack for GC. |.endif | mov L:RB->top, BASE |.if resume | lea RB, [BASE+NARGS:RD*8-24] // RB = end of source for stack move. |.else | lea RB, [BASE+NARGS:RD*8-16] // RB = end of source for stack move. |.endif | sub RBa, PCa // Relative to PC. | | cmp PC, RA | je >3 |2: // Move args to coroutine. |.if X64 | mov RCa, [PC+RB] | mov [PC-8], RCa |.else | mov RC, [PC+RB+4] | mov [PC-4], RC | mov RC, [PC+RB] | mov [PC-8], RC |.endif | sub PC, 8 | cmp PC, RA | jne <2 |3: |.if X64 | mov CARG2d, RA | mov CARG1d, TMP1 |.else | mov ARG2, RA | xor RA, RA | mov ARG4, RA | mov ARG3, RA |.endif | call ->vm_resume // (lua_State *L, TValue *base, 0, 0) | | mov L:RB, SAVE_L |.if X64 | mov L:PC, TMP1 |.else | mov L:PC, ARG1 // The callee doesn't modify SAVE_L. |.endif | mov BASE, L:RB->base | mov [DISPATCH+DISPATCH_GL(cur_L)], L:RB | set_vmstate INTERP | | cmp eax, LUA_YIELD | ja >8 |4: | mov RA, L:PC->base | mov KBASE, L:PC->top | mov L:PC->top, RA // Clear coroutine stack. | mov PC, KBASE | sub PC, RA | je >6 // No results? | lea RD, [BASE+PC] | shr PC, 3 | cmp RD, L:RB->maxstack | ja >9 // Need to grow stack? | | mov RB, BASE | sub RBa, RAa |5: // Move results from coroutine. |.if X64 | mov RDa, [RA] | mov [RA+RB], RDa |.else | mov RD, [RA] | mov [RA+RB], RD | mov RD, [RA+4] | mov [RA+RB+4], RD |.endif | add RA, 8 | cmp RA, KBASE | jne <5 |6: |.if resume | lea RD, [PC+2] // nresults+1 = 1 + true + results. | mov dword [BASE-4], LJ_TTRUE // Prepend true to results. |.else | lea RD, [PC+1] // nresults+1 = 1 + results. |.endif |7: | mov PC, SAVE_PC | mov MULTRES, RD |.if resume | mov RAa, -8 |.else | xor RA, RA |.endif | test PC, FRAME_TYPE | jz ->BC_RET_Z | jmp ->vm_return | |8: // Coroutine returned with error (at co->top-1). |.if resume | mov dword [BASE-4], LJ_TFALSE // Prepend false to results. | mov RA, L:PC->top | sub RA, 8 | mov L:PC->top, RA // Clear error from coroutine stack. | // Copy error message. |.if X64 | mov RDa, [RA] | mov [BASE], RDa |.else | mov RD, [RA] | mov [BASE], RD | mov RD, [RA+4] | mov [BASE+4], RD |.endif | mov RD, 1+2 // nresults+1 = 1 + false + error. | jmp <7 |.else | mov FCARG2, L:PC | mov FCARG1, L:RB | call extern lj_ffh_coroutine_wrap_err@8 // (lua_State *L, lua_State *co) | // Error function does not return. |.endif | |9: // Handle stack expansion on return from yield. |.if X64 | mov L:RA, TMP1 |.else | mov L:RA, ARG1 // The callee doesn't modify SAVE_L. |.endif | mov L:RA->top, KBASE // Undo coroutine stack clearing. | mov FCARG2, PC | mov FCARG1, L:RB | call extern lj_state_growstack@8 // (lua_State *L, int n) |.if X64 | mov L:PC, TMP1 |.else | mov L:PC, ARG1 |.endif | mov BASE, L:RB->base | jmp <4 // Retry the stack move. |.endmacro | | coroutine_resume_wrap 1 // coroutine.resume | coroutine_resume_wrap 0 // coroutine.wrap | |.ffunc coroutine_yield | mov L:RB, SAVE_L | test aword L:RB->cframe, CFRAME_RESUME | jz ->fff_fallback | mov L:RB->base, BASE | lea RD, [BASE+NARGS:RD*8-8] | mov L:RB->top, RD | xor RD, RD | mov aword L:RB->cframe, RDa | mov al, LUA_YIELD | mov byte L:RB->status, al | jmp ->vm_leave_unw | |//-- Math library ------------------------------------------------------- | |.if not DUALNUM |->fff_resi: // Dummy. |.endif | |->fff_resn: | mov PC, [BASE-4] | fstp qword [BASE-8] | jmp ->fff_res1 | | .ffunc_1 math_abs |.if DUALNUM | cmp dword [BASE+4], LJ_TISNUM; jne >2 | mov RB, dword [BASE] | cmp RB, 0; jns ->fff_resi | neg RB; js >1 |->fff_resbit: |->fff_resi: | mov PC, [BASE-4] | mov dword [BASE-4], LJ_TISNUM | mov dword [BASE-8], RB | jmp ->fff_res1 |1: | mov PC, [BASE-4] | mov dword [BASE-4], 0x41e00000 // 2^31. | mov dword [BASE-8], 0 | jmp ->fff_res1 |2: | ja ->fff_fallback |.else | cmp dword [BASE+4], LJ_TISNUM; jae ->fff_fallback |.endif | movsd xmm0, qword [BASE] | sseconst_abs xmm1, RDa | andps xmm0, xmm1 |->fff_resxmm0: | mov PC, [BASE-4] | movsd qword [BASE-8], xmm0 | // fallthrough | |->fff_res1: | mov RD, 1+1 |->fff_res: | mov MULTRES, RD |->fff_res_: | test PC, FRAME_TYPE | jnz >7 |5: | cmp PC_RB, RDL // More results expected? | ja >6 | // Adjust BASE. KBASE is assumed to be set for the calling frame. | movzx RA, PC_RA | not RAa // Note: ~RA = -(RA+1) | lea BASE, [BASE+RA*8] // base = base - (RA+1)*8 | ins_next | |6: // Fill up results with nil. | mov dword [BASE+RD*8-12], LJ_TNIL | add RD, 1 | jmp <5 | |7: // Non-standard return case. | mov RAa, -8 // Results start at BASE+RA = BASE-8. | jmp ->vm_return | |.if X64 |.define fff_resfp, fff_resxmm0 |.else |.define fff_resfp, fff_resn |.endif | |.macro math_round, func | .ffunc math_ .. func |.if DUALNUM | cmp dword [BASE+4], LJ_TISNUM; jne >1 | mov RB, dword [BASE]; jmp ->fff_resi |1: | ja ->fff_fallback |.else | cmp dword [BASE+4], LJ_TISNUM; jae ->fff_fallback |.endif | movsd xmm0, qword [BASE] | call ->vm_ .. func .. _sse |.if DUALNUM | cvttsd2si RB, xmm0 | cmp RB, 0x80000000 | jne ->fff_resi | cvtsi2sd xmm1, RB | ucomisd xmm0, xmm1 | jp ->fff_resxmm0 | je ->fff_resi |.endif | jmp ->fff_resxmm0 |.endmacro | | math_round floor | math_round ceil | |.ffunc_nsse math_sqrt, sqrtsd; jmp ->fff_resxmm0 | |.ffunc math_log | cmp NARGS:RD, 1+1; jne ->fff_fallback // Exactly one argument. | cmp dword [BASE+4], LJ_TISNUM; jae ->fff_fallback | movsd xmm0, qword [BASE] |.if not X64 | movsd FPARG1, xmm0 |.endif | mov RB, BASE | call extern log | mov BASE, RB | jmp ->fff_resfp | |.macro math_extern, func | .ffunc_nsse math_ .. func |.if not X64 | movsd FPARG1, xmm0 |.endif | mov RB, BASE | call extern func | mov BASE, RB | jmp ->fff_resfp |.endmacro | |.macro math_extern2, func | .ffunc_nnsse math_ .. func |.if not X64 | movsd FPARG1, xmm0 | movsd FPARG3, xmm1 |.endif | mov RB, BASE | call extern func | mov BASE, RB | jmp ->fff_resfp |.endmacro | | math_extern log10 | math_extern exp | math_extern sin | math_extern cos | math_extern tan | math_extern asin | math_extern acos | math_extern atan | math_extern sinh | math_extern cosh | math_extern tanh | math_extern2 pow | math_extern2 atan2 | math_extern2 fmod | |.ffunc_nnr math_ldexp; fscale; fpop1; jmp ->fff_resn | |.ffunc_1 math_frexp | mov RB, [BASE+4] | cmp RB, LJ_TISNUM; jae ->fff_fallback | mov PC, [BASE-4] | mov RC, [BASE] | mov [BASE-4], RB; mov [BASE-8], RC | shl RB, 1; cmp RB, 0xffe00000; jae >3 | or RC, RB; jz >3 | mov RC, 1022 | cmp RB, 0x00200000; jb >4 |1: | shr RB, 21; sub RB, RC // Extract and unbias exponent. | cvtsi2sd xmm0, RB | mov RB, [BASE-4] | and RB, 0x800fffff // Mask off exponent. | or RB, 0x3fe00000 // Put mantissa in range [0.5,1) or 0. | mov [BASE-4], RB |2: | movsd qword [BASE], xmm0 | mov RD, 1+2 | jmp ->fff_res |3: // Return +-0, +-Inf, NaN unmodified and an exponent of 0. | xorps xmm0, xmm0; jmp <2 |4: // Handle denormals by multiplying with 2^54 and adjusting the bias. | movsd xmm0, qword [BASE] | sseconst_hi xmm1, RBa, 43500000 // 2^54. | mulsd xmm0, xmm1 | movsd qword [BASE-8], xmm0 | mov RB, [BASE-4]; mov RC, 1076; shl RB, 1; jmp <1 | |.ffunc_nsse math_modf | mov RB, [BASE+4] | mov PC, [BASE-4] | shl RB, 1; cmp RB, 0xffe00000; je >4 // +-Inf? | movaps xmm4, xmm0 | call ->vm_trunc_sse | subsd xmm4, xmm0 |1: | movsd qword [BASE-8], xmm0 | movsd qword [BASE], xmm4 | mov RC, [BASE-4]; mov RB, [BASE+4] | xor RC, RB; js >3 // Need to adjust sign? |2: | mov RD, 1+2 | jmp ->fff_res |3: | xor RB, 0x80000000; mov [BASE+4], RB // Flip sign of fraction. | jmp <2 |4: | xorps xmm4, xmm4; jmp <1 // Return +-Inf and +-0. | |.macro math_minmax, name, cmovop, sseop | .ffunc name | mov RA, 2 | cmp dword [BASE+4], LJ_TISNUM |.if DUALNUM | jne >4 | mov RB, dword [BASE] |1: // Handle integers. | cmp RA, RD; jae ->fff_resi | cmp dword [BASE+RA*8-4], LJ_TISNUM; jne >3 | cmp RB, dword [BASE+RA*8-8] | cmovop RB, dword [BASE+RA*8-8] | add RA, 1 | jmp <1 |3: | ja ->fff_fallback | // Convert intermediate result to number and continue below. | cvtsi2sd xmm0, RB | jmp >6 |4: | ja ->fff_fallback |.else | jae ->fff_fallback |.endif | | movsd xmm0, qword [BASE] |5: // Handle numbers or integers. | cmp RA, RD; jae ->fff_resxmm0 | cmp dword [BASE+RA*8-4], LJ_TISNUM |.if DUALNUM | jb >6 | ja ->fff_fallback | cvtsi2sd xmm1, dword [BASE+RA*8-8] | jmp >7 |.else | jae ->fff_fallback |.endif |6: | movsd xmm1, qword [BASE+RA*8-8] |7: | sseop xmm0, xmm1 | add RA, 1 | jmp <5 |.endmacro | | math_minmax math_min, cmovg, minsd | math_minmax math_max, cmovl, maxsd | |//-- String library ----------------------------------------------------- | |.ffunc string_byte // Only handle the 1-arg case here. | cmp NARGS:RD, 1+1; jne ->fff_fallback | cmp dword [BASE+4], LJ_TSTR; jne ->fff_fallback | mov STR:RB, [BASE] | mov PC, [BASE-4] | cmp dword STR:RB->len, 1 | jb ->fff_res0 // Return no results for empty string. | movzx RB, byte STR:RB[1] |.if DUALNUM | jmp ->fff_resi |.else | cvtsi2sd xmm0, RB; jmp ->fff_resxmm0 |.endif | |.ffunc string_char // Only handle the 1-arg case here. | ffgccheck | cmp NARGS:RD, 1+1; jne ->fff_fallback // *Exactly* 1 arg. | cmp dword [BASE+4], LJ_TISNUM |.if DUALNUM | jne ->fff_fallback | mov RB, dword [BASE] | cmp RB, 255; ja ->fff_fallback | mov TMP2, RB |.else | jae ->fff_fallback | cvttsd2si RB, qword [BASE] | cmp RB, 255; ja ->fff_fallback | mov TMP2, RB |.endif |.if X64 | mov TMP3, 1 |.else | mov ARG3, 1 |.endif | lea RDa, TMP2 // Points to stack. Little-endian. |->fff_newstr: | mov L:RB, SAVE_L | mov L:RB->base, BASE |.if X64 | mov CARG3d, TMP3 // Zero-extended to size_t. | mov CARG2, RDa // May be 64 bit ptr to stack. | mov CARG1d, L:RB |.else | mov ARG2, RD | mov ARG1, L:RB |.endif | mov SAVE_PC, PC | call extern lj_str_new // (lua_State *L, char *str, size_t l) |->fff_resstr: | // GCstr * returned in eax (RD). | mov BASE, L:RB->base | mov PC, [BASE-4] | mov dword [BASE-4], LJ_TSTR | mov [BASE-8], STR:RD | jmp ->fff_res1 | |.ffunc string_sub | ffgccheck | mov TMP2, -1 | cmp NARGS:RD, 1+2; jb ->fff_fallback | jna >1 | cmp dword [BASE+20], LJ_TISNUM |.if DUALNUM | jne ->fff_fallback | mov RB, dword [BASE+16] | mov TMP2, RB |.else | jae ->fff_fallback | cvttsd2si RB, qword [BASE+16] | mov TMP2, RB |.endif |1: | cmp dword [BASE+4], LJ_TSTR; jne ->fff_fallback | cmp dword [BASE+12], LJ_TISNUM |.if DUALNUM | jne ->fff_fallback |.else | jae ->fff_fallback |.endif | mov STR:RB, [BASE] | mov TMP3, STR:RB | mov RB, STR:RB->len |.if DUALNUM | mov RA, dword [BASE+8] |.else | cvttsd2si RA, qword [BASE+8] |.endif | mov RC, TMP2 | cmp RB, RC // len < end? (unsigned compare) | jb >5 |2: | test RA, RA // start <= 0? | jle >7 |3: | mov STR:RB, TMP3 | sub RC, RA // start > end? | jl ->fff_emptystr | lea RB, [STR:RB+RA+#STR-1] | add RC, 1 |4: |.if X64 | mov TMP3, RC |.else | mov ARG3, RC |.endif | mov RD, RB | jmp ->fff_newstr | |5: // Negative end or overflow. | jl >6 | lea RC, [RC+RB+1] // end = end+(len+1) | jmp <2 |6: // Overflow. | mov RC, RB // end = len | jmp <2 | |7: // Negative start or underflow. | je >8 | add RA, RB // start = start+(len+1) | add RA, 1 | jg <3 // start > 0? |8: // Underflow. | mov RA, 1 // start = 1 | jmp <3 | |->fff_emptystr: // Range underflow. | xor RC, RC // Zero length. Any ptr in RB is ok. | jmp <4 | |.macro ffstring_op, name | .ffunc_1 string_ .. name | ffgccheck | cmp dword [BASE+4], LJ_TSTR; jne ->fff_fallback | mov L:RB, SAVE_L | lea SBUF:FCARG1, [DISPATCH+DISPATCH_GL(tmpbuf)] | mov L:RB->base, BASE | mov STR:FCARG2, [BASE] // Caveat: FCARG2 == BASE | mov RC, SBUF:FCARG1->b | mov SBUF:FCARG1->L, L:RB | mov SBUF:FCARG1->p, RC | mov SAVE_PC, PC | call extern lj_buf_putstr_ .. name .. @8 | mov FCARG1, eax | call extern lj_buf_tostr@4 | jmp ->fff_resstr |.endmacro | |ffstring_op reverse |ffstring_op lower |ffstring_op upper | |//-- Bit library -------------------------------------------------------- | |.macro .ffunc_bit, name, kind, fdef | fdef name |.if kind == 2 | sseconst_tobit xmm1, RBa |.endif | cmp dword [BASE+4], LJ_TISNUM |.if DUALNUM | jne >1 | mov RB, dword [BASE] |.if kind > 0 | jmp >2 |.else | jmp ->fff_resbit |.endif |1: | ja ->fff_fallback |.else | jae ->fff_fallback |.endif | movsd xmm0, qword [BASE] |.if kind < 2 | sseconst_tobit xmm1, RBa |.endif | addsd xmm0, xmm1 | movd RB, xmm0 |2: |.endmacro | |.macro .ffunc_bit, name, kind | .ffunc_bit name, kind, .ffunc_1 |.endmacro | |.ffunc_bit bit_tobit, 0 | jmp ->fff_resbit | |.macro .ffunc_bit_op, name, ins | .ffunc_bit name, 2 | mov TMP2, NARGS:RD // Save for fallback. | lea RD, [BASE+NARGS:RD*8-16] |1: | cmp RD, BASE | jbe ->fff_resbit | cmp dword [RD+4], LJ_TISNUM |.if DUALNUM | jne >2 | ins RB, dword [RD] | sub RD, 8 | jmp <1 |2: | ja ->fff_fallback_bit_op |.else | jae ->fff_fallback_bit_op |.endif | movsd xmm0, qword [RD] | addsd xmm0, xmm1 | movd RA, xmm0 | ins RB, RA | sub RD, 8 | jmp <1 |.endmacro | |.ffunc_bit_op bit_band, and |.ffunc_bit_op bit_bor, or |.ffunc_bit_op bit_bxor, xor | |.ffunc_bit bit_bswap, 1 | bswap RB | jmp ->fff_resbit | |.ffunc_bit bit_bnot, 1 | not RB |.if DUALNUM | jmp ->fff_resbit |.else |->fff_resbit: | cvtsi2sd xmm0, RB | jmp ->fff_resxmm0 |.endif | |->fff_fallback_bit_op: | mov NARGS:RD, TMP2 // Restore for fallback | jmp ->fff_fallback | |.macro .ffunc_bit_sh, name, ins |.if DUALNUM | .ffunc_bit name, 1, .ffunc_2 | // Note: no inline conversion from number for 2nd argument! | cmp dword [BASE+12], LJ_TISNUM; jne ->fff_fallback | mov RA, dword [BASE+8] |.else | .ffunc_nnsse name | sseconst_tobit xmm2, RBa | addsd xmm0, xmm2 | addsd xmm1, xmm2 | movd RB, xmm0 | movd RA, xmm1 |.endif | ins RB, cl // Assumes RA is ecx. | jmp ->fff_resbit |.endmacro | |.ffunc_bit_sh bit_lshift, shl |.ffunc_bit_sh bit_rshift, shr |.ffunc_bit_sh bit_arshift, sar |.ffunc_bit_sh bit_rol, rol |.ffunc_bit_sh bit_ror, ror | |//----------------------------------------------------------------------- | |->fff_fallback_2: | mov NARGS:RD, 1+2 // Other args are ignored, anyway. | jmp ->fff_fallback |->fff_fallback_1: | mov NARGS:RD, 1+1 // Other args are ignored, anyway. |->fff_fallback: // Call fast function fallback handler. | // BASE = new base, RD = nargs+1 | mov L:RB, SAVE_L | mov PC, [BASE-4] // Fallback may overwrite PC. | mov SAVE_PC, PC // Redundant (but a defined value). | mov L:RB->base, BASE | lea RD, [BASE+NARGS:RD*8-8] | lea RA, [RD+8*LUA_MINSTACK] // Ensure enough space for handler. | mov L:RB->top, RD | mov CFUNC:RD, [BASE-8] | cmp RA, L:RB->maxstack | ja >5 // Need to grow stack. |.if X64 | mov CARG1d, L:RB |.else | mov ARG1, L:RB |.endif | call aword CFUNC:RD->f // (lua_State *L) | mov BASE, L:RB->base | // Either throws an error, or recovers and returns -1, 0 or nresults+1. | test RD, RD; jg ->fff_res // Returned nresults+1? |1: | mov RA, L:RB->top | sub RA, BASE | shr RA, 3 | test RD, RD | lea NARGS:RD, [RA+1] | mov LFUNC:RB, [BASE-8] | jne ->vm_call_tail // Returned -1? | ins_callt // Returned 0: retry fast path. | |// Reconstruct previous base for vmeta_call during tailcall. |->vm_call_tail: | mov RA, BASE | test PC, FRAME_TYPE | jnz >3 | movzx RB, PC_RA | not RBa // Note: ~RB = -(RB+1) | lea BASE, [BASE+RB*8] // base = base - (RB+1)*8 | jmp ->vm_call_dispatch // Resolve again for tailcall. |3: | mov RB, PC | and RB, -8 | sub BASE, RB | jmp ->vm_call_dispatch // Resolve again for tailcall. | |5: // Grow stack for fallback handler. | mov FCARG2, LUA_MINSTACK | mov FCARG1, L:RB | call extern lj_state_growstack@8 // (lua_State *L, int n) | mov BASE, L:RB->base | xor RD, RD // Simulate a return 0. | jmp <1 // Dumb retry (goes through ff first). | |->fff_gcstep: // Call GC step function. | // BASE = new base, RD = nargs+1 | pop RBa // Must keep stack at same level. | mov TMPa, RBa // Save return address | mov L:RB, SAVE_L | mov SAVE_PC, PC // Redundant (but a defined value). | mov L:RB->base, BASE | lea RD, [BASE+NARGS:RD*8-8] | mov FCARG1, L:RB | mov L:RB->top, RD | call extern lj_gc_step@4 // (lua_State *L) | mov BASE, L:RB->base | mov RD, L:RB->top | sub RD, BASE | shr RD, 3 | add NARGS:RD, 1 | mov RBa, TMPa | push RBa // Restore return address. | ret | |//----------------------------------------------------------------------- |//-- Special dispatch targets ------------------------------------------- |//----------------------------------------------------------------------- | |->vm_record: // Dispatch target for recording phase. |.if JIT | movzx RD, byte [DISPATCH+DISPATCH_GL(hookmask)] | test RDL, HOOK_VMEVENT // No recording while in vmevent. | jnz >5 | // Decrement the hookcount for consistency, but always do the call. | test RDL, HOOK_ACTIVE | jnz >1 | test RDL, LUA_MASKLINE|LUA_MASKCOUNT | jz >1 | dec dword [DISPATCH+DISPATCH_GL(hookcount)] | jmp >1 |.endif | |->vm_rethook: // Dispatch target for return hooks. | movzx RD, byte [DISPATCH+DISPATCH_GL(hookmask)] | test RDL, HOOK_ACTIVE // Hook already active? | jnz >5 | jmp >1 | |->vm_inshook: // Dispatch target for instr/line hooks. | movzx RD, byte [DISPATCH+DISPATCH_GL(hookmask)] | test RDL, HOOK_ACTIVE // Hook already active? | jnz >5 | | test RDL, LUA_MASKLINE|LUA_MASKCOUNT | jz >5 | dec dword [DISPATCH+DISPATCH_GL(hookcount)] | jz >1 | test RDL, LUA_MASKLINE | jz >5 |1: | mov L:RB, SAVE_L | mov L:RB->base, BASE | mov FCARG2, PC // Caveat: FCARG2 == BASE | mov FCARG1, L:RB | // SAVE_PC must hold the _previous_ PC. The callee updates it with PC. | call extern lj_dispatch_ins@8 // (lua_State *L, const BCIns *pc) |3: | mov BASE, L:RB->base |4: | movzx RA, PC_RA |5: | movzx OP, PC_OP | movzx RD, PC_RD |.if X64 | jmp aword [DISPATCH+OP*8+GG_DISP2STATIC] // Re-dispatch to static ins. |.else | jmp aword [DISPATCH+OP*4+GG_DISP2STATIC] // Re-dispatch to static ins. |.endif | |->cont_hook: // Continue from hook yield. | add PC, 4 | mov RA, [RB-24] | mov MULTRES, RA // Restore MULTRES for *M ins. | jmp <4 | |->vm_hotloop: // Hot loop counter underflow. |.if JIT | mov LFUNC:RB, [BASE-8] // Same as curr_topL(L). | mov RB, LFUNC:RB->pc | movzx RD, byte [RB+PC2PROTO(framesize)] | lea RD, [BASE+RD*8] | mov L:RB, SAVE_L | mov L:RB->base, BASE | mov L:RB->top, RD | mov FCARG2, PC | lea FCARG1, [DISPATCH+GG_DISP2J] | mov aword [DISPATCH+DISPATCH_J(L)], L:RBa | mov SAVE_PC, PC | call extern lj_trace_hot@8 // (jit_State *J, const BCIns *pc) | jmp <3 |.endif | |->vm_callhook: // Dispatch target for call hooks. | mov SAVE_PC, PC |.if JIT | jmp >1 |.endif | |->vm_hotcall: // Hot call counter underflow. |.if JIT | mov SAVE_PC, PC | or PC, 1 // Marker for hot call. |1: |.endif | lea RD, [BASE+NARGS:RD*8-8] | mov L:RB, SAVE_L | mov L:RB->base, BASE | mov L:RB->top, RD | mov FCARG2, PC | mov FCARG1, L:RB | call extern lj_dispatch_call@8 // (lua_State *L, const BCIns *pc) | // ASMFunction returned in eax/rax (RDa). | mov SAVE_PC, 0 // Invalidate for subsequent line hook. |.if JIT | and PC, -2 |.endif | mov BASE, L:RB->base | mov RAa, RDa | mov RD, L:RB->top | sub RD, BASE | mov RBa, RAa | movzx RA, PC_RA | shr RD, 3 | add NARGS:RD, 1 | jmp RBa | |->cont_stitch: // Trace stitching. |.if JIT | // BASE = base, RC = result, RB = mbase | mov TRACE:RA, [RB-24] // Save previous trace. | mov TMP1, TRACE:RA | mov TMP3, DISPATCH // Need one more register. | mov DISPATCH, MULTRES | movzx RA, PC_RA | lea RA, [BASE+RA*8] // Call base. | sub DISPATCH, 1 | jz >2 |1: // Move results down. |.if X64 | mov RBa, [RC] | mov [RA], RBa |.else | mov RB, [RC] | mov [RA], RB | mov RB, [RC+4] | mov [RA+4], RB |.endif | add RC, 8 | add RA, 8 | sub DISPATCH, 1 | jnz <1 |2: | movzx RC, PC_RA | movzx RB, PC_RB | add RC, RB | lea RC, [BASE+RC*8-8] |3: | cmp RC, RA | ja >9 // More results wanted? | | mov DISPATCH, TMP3 | mov TRACE:RD, TMP1 // Get previous trace. | movzx RB, word TRACE:RD->traceno | movzx RD, word TRACE:RD->link | cmp RD, RB | je ->cont_nop // Blacklisted. | test RD, RD | jne =>BC_JLOOP // Jump to stitched trace. | | // Stitch a new trace to the previous trace. | mov [DISPATCH+DISPATCH_J(exitno)], RB | mov L:RB, SAVE_L | mov L:RB->base, BASE | mov FCARG2, PC | lea FCARG1, [DISPATCH+GG_DISP2J] | mov aword [DISPATCH+DISPATCH_J(L)], L:RBa | call extern lj_dispatch_stitch@8 // (jit_State *J, const BCIns *pc) | mov BASE, L:RB->base | jmp ->cont_nop | |9: // Fill up results with nil. | mov dword [RA+4], LJ_TNIL | add RA, 8 | jmp <3 |.endif | |->vm_profhook: // Dispatch target for profiler hook. #if LJ_HASPROFILE | mov L:RB, SAVE_L | mov L:RB->base, BASE | mov FCARG2, PC // Caveat: FCARG2 == BASE | mov FCARG1, L:RB | call extern lj_dispatch_profile@8 // (lua_State *L, const BCIns *pc) | mov BASE, L:RB->base | // HOOK_PROFILE is off again, so re-dispatch to dynamic instruction. | sub PC, 4 | jmp ->cont_nop #endif | |//----------------------------------------------------------------------- |//-- Trace exit handler ------------------------------------------------- |//----------------------------------------------------------------------- | |// Called from an exit stub with the exit number on the stack. |// The 16 bit exit number is stored with two (sign-extended) push imm8. |->vm_exit_handler: |.if JIT |.if X64 | push r13; push r12 | push r11; push r10; push r9; push r8 | push rdi; push rsi; push rbp; lea rbp, [rsp+88]; push rbp | push rbx; push rdx; push rcx; push rax | movzx RC, byte [rbp-8] // Reconstruct exit number. | mov RCH, byte [rbp-16] | mov [rbp-8], r15; mov [rbp-16], r14 |.else | push ebp; lea ebp, [esp+12]; push ebp | push ebx; push edx; push ecx; push eax | movzx RC, byte [ebp-4] // Reconstruct exit number. | mov RCH, byte [ebp-8] | mov [ebp-4], edi; mov [ebp-8], esi |.endif | // Caveat: DISPATCH is ebx. | mov DISPATCH, [ebp] | mov RA, [DISPATCH+DISPATCH_GL(vmstate)] // Get trace number. | set_vmstate EXIT | mov [DISPATCH+DISPATCH_J(exitno)], RC | mov [DISPATCH+DISPATCH_J(parent)], RA |.if X64 |.if X64WIN | sub rsp, 16*8+4*8 // Room for SSE regs + save area. |.else | sub rsp, 16*8 // Room for SSE regs. |.endif | add rbp, -128 | movsd qword [rbp-8], xmm15; movsd qword [rbp-16], xmm14 | movsd qword [rbp-24], xmm13; movsd qword [rbp-32], xmm12 | movsd qword [rbp-40], xmm11; movsd qword [rbp-48], xmm10 | movsd qword [rbp-56], xmm9; movsd qword [rbp-64], xmm8 | movsd qword [rbp-72], xmm7; movsd qword [rbp-80], xmm6 | movsd qword [rbp-88], xmm5; movsd qword [rbp-96], xmm4 | movsd qword [rbp-104], xmm3; movsd qword [rbp-112], xmm2 | movsd qword [rbp-120], xmm1; movsd qword [rbp-128], xmm0 |.else | sub esp, 8*8+16 // Room for SSE regs + args. | movsd qword [ebp-40], xmm7; movsd qword [ebp-48], xmm6 | movsd qword [ebp-56], xmm5; movsd qword [ebp-64], xmm4 | movsd qword [ebp-72], xmm3; movsd qword [ebp-80], xmm2 | movsd qword [ebp-88], xmm1; movsd qword [ebp-96], xmm0 |.endif | // Caveat: RB is ebp. | mov L:RB, [DISPATCH+DISPATCH_GL(cur_L)] | mov BASE, [DISPATCH+DISPATCH_GL(jit_base)] | mov aword [DISPATCH+DISPATCH_J(L)], L:RBa | mov L:RB->base, BASE |.if X64WIN | lea CARG2, [rsp+4*8] |.elif X64 | mov CARG2, rsp |.else | lea FCARG2, [esp+16] |.endif | lea FCARG1, [DISPATCH+GG_DISP2J] | mov dword [DISPATCH+DISPATCH_GL(jit_base)], 0 | call extern lj_trace_exit@8 // (jit_State *J, ExitState *ex) | // MULTRES or negated error code returned in eax (RD). | mov RAa, L:RB->cframe | and RAa, CFRAME_RAWMASK |.if X64WIN | // Reposition stack later. |.elif X64 | mov rsp, RAa // Reposition stack to C frame. |.else | mov esp, RAa // Reposition stack to C frame. |.endif | mov [RAa+CFRAME_OFS_L], L:RB // Set SAVE_L (on-trace resume/yield). | mov BASE, L:RB->base | mov PC, [RAa+CFRAME_OFS_PC] // Get SAVE_PC. |.if X64 | jmp >1 |.endif |.endif |->vm_exit_interp: | // RD = MULTRES or negated error code, BASE, PC and DISPATCH set. |.if JIT |.if X64 | // Restore additional callee-save registers only used in compiled code. |.if X64WIN | lea RAa, [rsp+9*16+4*8] |1: | movdqa xmm15, [RAa-9*16] | movdqa xmm14, [RAa-8*16] | movdqa xmm13, [RAa-7*16] | movdqa xmm12, [RAa-6*16] | movdqa xmm11, [RAa-5*16] | movdqa xmm10, [RAa-4*16] | movdqa xmm9, [RAa-3*16] | movdqa xmm8, [RAa-2*16] | movdqa xmm7, [RAa-1*16] | mov rsp, RAa // Reposition stack to C frame. | movdqa xmm6, [RAa] | mov r15, CSAVE_3 | mov r14, CSAVE_4 |.else | add rsp, 16 // Reposition stack to C frame. |1: |.endif | mov r13, TMPa | mov r12, TMPQ |.endif | test RD, RD; js >9 // Check for error from exit. | mov L:RB, SAVE_L | mov MULTRES, RD | mov LFUNC:KBASE, [BASE-8] | mov KBASE, LFUNC:KBASE->pc | mov KBASE, [KBASE+PC2PROTO(k)] | mov L:RB->base, BASE | mov dword [DISPATCH+DISPATCH_GL(jit_base)], 0 | set_vmstate INTERP | // Modified copy of ins_next which handles function header dispatch, too. | mov RC, [PC] | movzx RA, RCH | movzx OP, RCL | add PC, 4 | shr RC, 16 | cmp OP, BC_FUNCF // Function header? | jb >3 | cmp OP, BC_FUNCC+2 // Fast function? | jae >4 |2: | mov RC, MULTRES // RC/RD holds nres+1. |3: |.if X64 | jmp aword [DISPATCH+OP*8] |.else | jmp aword [DISPATCH+OP*4] |.endif | |4: // Check frame below fast function. | mov RC, [BASE-4] | test RC, FRAME_TYPE | jnz <2 // Trace stitching continuation? | // Otherwise set KBASE for Lua function below fast function. | movzx RC, byte [RC-3] | not RCa | mov LFUNC:KBASE, [BASE+RC*8-8] | mov KBASE, LFUNC:KBASE->pc | mov KBASE, [KBASE+PC2PROTO(k)] | jmp <2 | |9: // Rethrow error from the right C frame. | neg RD | mov FCARG1, L:RB | mov FCARG2, RD | call extern lj_err_throw@8 // (lua_State *L, int errcode) |.endif | |//----------------------------------------------------------------------- |//-- Math helper functions ---------------------------------------------- |//----------------------------------------------------------------------- | |// FP value rounding. Called by math.floor/math.ceil fast functions |// and from JIT code. arg/ret is xmm0. xmm0-xmm3 and RD (eax) modified. |.macro vm_round, name, mode, cond |->name: |.if not X64 and cond | movsd xmm0, qword [esp+4] | call ->name .. _sse | movsd qword [esp+4], xmm0 // Overwrite callee-owned arg. | fld qword [esp+4] | ret |.endif | |->name .. _sse: | sseconst_abs xmm2, RDa | sseconst_2p52 xmm3, RDa | movaps xmm1, xmm0 | andpd xmm1, xmm2 // |x| | ucomisd xmm3, xmm1 // No truncation if 2^52 <= |x|. | jbe >1 | andnpd xmm2, xmm0 // Isolate sign bit. |.if mode == 2 // trunc(x)? | movaps xmm0, xmm1 | addsd xmm1, xmm3 // (|x| + 2^52) - 2^52 | subsd xmm1, xmm3 | sseconst_1 xmm3, RDa | cmpsd xmm0, xmm1, 1 // |x| < result? | andpd xmm0, xmm3 | subsd xmm1, xmm0 // If yes, subtract -1. | orpd xmm1, xmm2 // Merge sign bit back in. |.else | addsd xmm1, xmm3 // (|x| + 2^52) - 2^52 | subsd xmm1, xmm3 | orpd xmm1, xmm2 // Merge sign bit back in. | .if mode == 1 // ceil(x)? | sseconst_m1 xmm2, RDa // Must subtract -1 to preserve -0. | cmpsd xmm0, xmm1, 6 // x > result? | .else // floor(x)? | sseconst_1 xmm2, RDa | cmpsd xmm0, xmm1, 1 // x < result? | .endif | andpd xmm0, xmm2 | subsd xmm1, xmm0 // If yes, subtract +-1. |.endif | movaps xmm0, xmm1 |1: | ret |.endmacro | | vm_round vm_floor, 0, 1 | vm_round vm_ceil, 1, JIT | vm_round vm_trunc, 2, JIT | |// FP modulo x%y. Called by BC_MOD* and vm_arith. |->vm_mod: |// Args in xmm0/xmm1, return value in xmm0. |// Caveat: xmm0-xmm5 and RC (eax) modified! | movaps xmm5, xmm0 | divsd xmm0, xmm1 | sseconst_abs xmm2, RDa | sseconst_2p52 xmm3, RDa | movaps xmm4, xmm0 | andpd xmm4, xmm2 // |x/y| | ucomisd xmm3, xmm4 // No truncation if 2^52 <= |x/y|. | jbe >1 | andnpd xmm2, xmm0 // Isolate sign bit. | addsd xmm4, xmm3 // (|x/y| + 2^52) - 2^52 | subsd xmm4, xmm3 | orpd xmm4, xmm2 // Merge sign bit back in. | sseconst_1 xmm2, RDa | cmpsd xmm0, xmm4, 1 // x/y < result? | andpd xmm0, xmm2 | subsd xmm4, xmm0 // If yes, subtract 1.0. | movaps xmm0, xmm5 | mulsd xmm1, xmm4 | subsd xmm0, xmm1 | ret |1: | mulsd xmm1, xmm0 | movaps xmm0, xmm5 | subsd xmm0, xmm1 | ret | |// Args in xmm0/eax. Ret in xmm0. xmm0-xmm1 and eax modified. |->vm_powi_sse: | cmp eax, 1; jle >6 // i<=1? | // Now 1 < (unsigned)i <= 0x80000000. |1: // Handle leading zeros. | test eax, 1; jnz >2 | mulsd xmm0, xmm0 | shr eax, 1 | jmp <1 |2: | shr eax, 1; jz >5 | movaps xmm1, xmm0 |3: // Handle trailing bits. | mulsd xmm0, xmm0 | shr eax, 1; jz >4 | jnc <3 | mulsd xmm1, xmm0 | jmp <3 |4: | mulsd xmm0, xmm1 |5: | ret |6: | je <5 // x^1 ==> x | jb >7 // x^0 ==> 1 | neg eax | call <1 | sseconst_1 xmm1, RDa | divsd xmm1, xmm0 | movaps xmm0, xmm1 | ret |7: | sseconst_1 xmm0, RDa | ret | |//----------------------------------------------------------------------- |//-- Miscellaneous functions -------------------------------------------- |//----------------------------------------------------------------------- | |// int lj_vm_cpuid(uint32_t f, uint32_t res[4]) |->vm_cpuid: |.if X64 | mov eax, CARG1d | .if X64WIN; push rsi; mov rsi, CARG2; .endif | push rbx | xor ecx, ecx | cpuid | mov [rsi], eax | mov [rsi+4], ebx | mov [rsi+8], ecx | mov [rsi+12], edx | pop rbx | .if X64WIN; pop rsi; .endif | ret |.else | pushfd | pop edx | mov ecx, edx | xor edx, 0x00200000 // Toggle ID bit in flags. | push edx | popfd | pushfd | pop edx | xor eax, eax // Zero means no features supported. | cmp ecx, edx | jz >1 // No ID toggle means no CPUID support. | mov eax, [esp+4] // Argument 1 is function number. | push edi | push ebx | xor ecx, ecx | cpuid | mov edi, [esp+16] // Argument 2 is result area. | mov [edi], eax | mov [edi+4], ebx | mov [edi+8], ecx | mov [edi+12], edx | pop ebx | pop edi |1: | ret |.endif | |//----------------------------------------------------------------------- |//-- Assertions --------------------------------------------------------- |//----------------------------------------------------------------------- | |->assert_bad_for_arg_type: #ifdef LUA_USE_ASSERT | int3 #endif | int3 | |//----------------------------------------------------------------------- |//-- FFI helper functions ----------------------------------------------- |//----------------------------------------------------------------------- | |// Handler for callback functions. Callback slot number in ah/al. |->vm_ffi_callback: |.if FFI |.type CTSTATE, CTState, PC |.if not X64 | sub esp, 16 // Leave room for SAVE_ERRF etc. |.endif | saveregs_ // ebp/rbp already saved. ebp now holds global_State *. | lea DISPATCH, [ebp+GG_G2DISP] | mov CTSTATE, GL:ebp->ctype_state | movzx eax, ax | mov CTSTATE->cb.slot, eax |.if X64 | mov CTSTATE->cb.gpr[0], CARG1 | mov CTSTATE->cb.gpr[1], CARG2 | mov CTSTATE->cb.gpr[2], CARG3 | mov CTSTATE->cb.gpr[3], CARG4 | movsd qword CTSTATE->cb.fpr[0], xmm0 | movsd qword CTSTATE->cb.fpr[1], xmm1 | movsd qword CTSTATE->cb.fpr[2], xmm2 | movsd qword CTSTATE->cb.fpr[3], xmm3 |.if X64WIN | lea rax, [rsp+CFRAME_SIZE+4*8] |.else | lea rax, [rsp+CFRAME_SIZE] | mov CTSTATE->cb.gpr[4], CARG5 | mov CTSTATE->cb.gpr[5], CARG6 | movsd qword CTSTATE->cb.fpr[4], xmm4 | movsd qword CTSTATE->cb.fpr[5], xmm5 | movsd qword CTSTATE->cb.fpr[6], xmm6 | movsd qword CTSTATE->cb.fpr[7], xmm7 |.endif | mov CTSTATE->cb.stack, rax | mov CARG2, rsp |.else | lea eax, [esp+CFRAME_SIZE+16] | mov CTSTATE->cb.gpr[0], FCARG1 | mov CTSTATE->cb.gpr[1], FCARG2 | mov CTSTATE->cb.stack, eax | mov FCARG1, [esp+CFRAME_SIZE+12] // Move around misplaced retaddr/ebp. | mov FCARG2, [esp+CFRAME_SIZE+8] | mov SAVE_RET, FCARG1 | mov SAVE_R4, FCARG2 | mov FCARG2, esp |.endif | mov SAVE_PC, CTSTATE // Any value outside of bytecode is ok. | mov FCARG1, CTSTATE | call extern lj_ccallback_enter@8 // (CTState *cts, void *cf) | // lua_State * returned in eax (RD). | set_vmstate INTERP | mov BASE, L:RD->base | mov RD, L:RD->top | sub RD, BASE | mov LFUNC:RB, [BASE-8] | shr RD, 3 | add RD, 1 | ins_callt |.endif | |->cont_ffi_callback: // Return from FFI callback. |.if FFI | mov L:RA, SAVE_L | mov CTSTATE, [DISPATCH+DISPATCH_GL(ctype_state)] | mov aword CTSTATE->L, L:RAa | mov L:RA->base, BASE | mov L:RA->top, RB | mov FCARG1, CTSTATE | mov FCARG2, RC | call extern lj_ccallback_leave@8 // (CTState *cts, TValue *o) |.if X64 | mov rax, CTSTATE->cb.gpr[0] | movsd xmm0, qword CTSTATE->cb.fpr[0] | jmp ->vm_leave_unw |.else | mov L:RB, SAVE_L | mov eax, CTSTATE->cb.gpr[0] | mov edx, CTSTATE->cb.gpr[1] | cmp dword CTSTATE->cb.gpr[2], 1 | jb >7 | je >6 | fld qword CTSTATE->cb.fpr[0].d | jmp >7 |6: | fld dword CTSTATE->cb.fpr[0].f |7: | mov ecx, L:RB->top | movzx ecx, word [ecx+6] // Get stack adjustment and copy up. | mov SAVE_L, ecx // Must be one slot above SAVE_RET | restoreregs | pop ecx // Move return addr from SAVE_RET. | add esp, [esp] // Adjust stack. | add esp, 16 | push ecx | ret |.endif |.endif | |->vm_ffi_call@4: // Call C function via FFI. | // Caveat: needs special frame unwinding, see below. |.if FFI |.if X64 | .type CCSTATE, CCallState, rbx | push rbp; mov rbp, rsp; push rbx; mov CCSTATE, CARG1 |.else | .type CCSTATE, CCallState, ebx | push ebp; mov ebp, esp; push ebx; mov CCSTATE, FCARG1 |.endif | | // Readjust stack. |.if X64 | mov eax, CCSTATE->spadj | sub rsp, rax |.else | sub esp, CCSTATE->spadj |.if WIN | mov CCSTATE->spadj, esp |.endif |.endif | | // Copy stack slots. | movzx ecx, byte CCSTATE->nsp | sub ecx, 1 | js >2 |1: |.if X64 | mov rax, [CCSTATE+rcx*8+offsetof(CCallState, stack)] | mov [rsp+rcx*8+CCALL_SPS_EXTRA*8], rax |.else | mov eax, [CCSTATE+ecx*4+offsetof(CCallState, stack)] | mov [esp+ecx*4], eax |.endif | sub ecx, 1 | jns <1 |2: | |.if X64 | movzx eax, byte CCSTATE->nfpr | mov CARG1, CCSTATE->gpr[0] | mov CARG2, CCSTATE->gpr[1] | mov CARG3, CCSTATE->gpr[2] | mov CARG4, CCSTATE->gpr[3] |.if not X64WIN | mov CARG5, CCSTATE->gpr[4] | mov CARG6, CCSTATE->gpr[5] |.endif | test eax, eax; jz >5 | movaps xmm0, CCSTATE->fpr[0] | movaps xmm1, CCSTATE->fpr[1] | movaps xmm2, CCSTATE->fpr[2] | movaps xmm3, CCSTATE->fpr[3] |.if not X64WIN | cmp eax, 4; jbe >5 | movaps xmm4, CCSTATE->fpr[4] | movaps xmm5, CCSTATE->fpr[5] | movaps xmm6, CCSTATE->fpr[6] | movaps xmm7, CCSTATE->fpr[7] |.endif |5: |.else | mov FCARG1, CCSTATE->gpr[0] | mov FCARG2, CCSTATE->gpr[1] |.endif | | call aword CCSTATE->func | |.if X64 | mov CCSTATE->gpr[0], rax | movaps CCSTATE->fpr[0], xmm0 |.if not X64WIN | mov CCSTATE->gpr[1], rdx | movaps CCSTATE->fpr[1], xmm1 |.endif |.else | mov CCSTATE->gpr[0], eax | mov CCSTATE->gpr[1], edx | cmp byte CCSTATE->resx87, 1 | jb >7 | je >6 | fstp qword CCSTATE->fpr[0].d[0] | jmp >7 |6: | fstp dword CCSTATE->fpr[0].f[0] |7: |.if WIN | sub CCSTATE->spadj, esp |.endif |.endif | |.if X64 | mov rbx, [rbp-8]; leave; ret |.else | mov ebx, [ebp-4]; leave; ret |.endif |.endif |// Note: vm_ffi_call must be the last function in this object file! | |//----------------------------------------------------------------------- } /* Generate the code for a single instruction. */ static void build_ins(BuildCtx *ctx, BCOp op, int defop) { int vk = 0; |// Note: aligning all instructions does not pay off. |=>defop: switch (op) { /* -- Comparison ops ---------------------------------------------------- */ /* Remember: all ops branch for a true comparison, fall through otherwise. */ |.macro jmp_comp, lt, ge, le, gt, target ||switch (op) { ||case BC_ISLT: | lt target ||break; ||case BC_ISGE: | ge target ||break; ||case BC_ISLE: | le target ||break; ||case BC_ISGT: | gt target ||break; ||default: break; /* Shut up GCC. */ ||} |.endmacro case BC_ISLT: case BC_ISGE: case BC_ISLE: case BC_ISGT: | // RA = src1, RD = src2, JMP with RD = target | ins_AD |.if DUALNUM | checkint RA, >7 | checkint RD, >8 | mov RB, dword [BASE+RA*8] | add PC, 4 | cmp RB, dword [BASE+RD*8] | jmp_comp jge, jl, jg, jle, >9 |6: | movzx RD, PC_RD | branchPC RD |9: | ins_next | |7: // RA is not an integer. | ja ->vmeta_comp | // RA is a number. | cmp dword [BASE+RD*8+4], LJ_TISNUM; jb >1; jne ->vmeta_comp | // RA is a number, RD is an integer. | cvtsi2sd xmm0, dword [BASE+RD*8] | jmp >2 | |8: // RA is an integer, RD is not an integer. | ja ->vmeta_comp | // RA is an integer, RD is a number. | cvtsi2sd xmm1, dword [BASE+RA*8] | movsd xmm0, qword [BASE+RD*8] | add PC, 4 | ucomisd xmm0, xmm1 | jmp_comp jbe, ja, jb, jae, <9 | jmp <6 |.else | checknum RA, ->vmeta_comp | checknum RD, ->vmeta_comp |.endif |1: | movsd xmm0, qword [BASE+RD*8] |2: | add PC, 4 | ucomisd xmm0, qword [BASE+RA*8] |3: | // Unordered: all of ZF CF PF set, ordered: PF clear. | // To preserve NaN semantics GE/GT branch on unordered, but LT/LE don't. |.if DUALNUM | jmp_comp jbe, ja, jb, jae, <9 | jmp <6 |.else | jmp_comp jbe, ja, jb, jae, >1 | movzx RD, PC_RD | branchPC RD |1: | ins_next |.endif break; case BC_ISEQV: case BC_ISNEV: vk = op == BC_ISEQV; | ins_AD // RA = src1, RD = src2, JMP with RD = target | mov RB, [BASE+RD*8+4] | add PC, 4 |.if DUALNUM | cmp RB, LJ_TISNUM; jne >7 | checkint RA, >8 | mov RB, dword [BASE+RD*8] | cmp RB, dword [BASE+RA*8] if (vk) { | jne >9 } else { | je >9 } | movzx RD, PC_RD | branchPC RD |9: | ins_next | |7: // RD is not an integer. | ja >5 | // RD is a number. | cmp dword [BASE+RA*8+4], LJ_TISNUM; jb >1; jne >5 | // RD is a number, RA is an integer. | cvtsi2sd xmm0, dword [BASE+RA*8] | jmp >2 | |8: // RD is an integer, RA is not an integer. | ja >5 | // RD is an integer, RA is a number. | cvtsi2sd xmm0, dword [BASE+RD*8] | ucomisd xmm0, qword [BASE+RA*8] | jmp >4 | |.else | cmp RB, LJ_TISNUM; jae >5 | checknum RA, >5 |.endif |1: | movsd xmm0, qword [BASE+RA*8] |2: | ucomisd xmm0, qword [BASE+RD*8] |4: iseqne_fp: if (vk) { | jp >2 // Unordered means not equal. | jne >2 } else { | jp >2 // Unordered means not equal. | je >1 } iseqne_end: if (vk) { |1: // EQ: Branch to the target. | movzx RD, PC_RD | branchPC RD |2: // NE: Fallthrough to next instruction. |.if not FFI |3: |.endif } else { |.if not FFI |3: |.endif |2: // NE: Branch to the target. | movzx RD, PC_RD | branchPC RD |1: // EQ: Fallthrough to next instruction. } if (LJ_DUALNUM && (op == BC_ISEQV || op == BC_ISNEV || op == BC_ISEQN || op == BC_ISNEN)) { | jmp <9 } else { | ins_next } | if (op == BC_ISEQV || op == BC_ISNEV) { |5: // Either or both types are not numbers. |.if FFI | cmp RB, LJ_TCDATA; je ->vmeta_equal_cd | checktp RA, LJ_TCDATA; je ->vmeta_equal_cd |.endif | checktp RA, RB // Compare types. | jne <2 // Not the same type? | cmp RB, LJ_TISPRI | jae <1 // Same type and primitive type? | | // Same types and not a primitive type. Compare GCobj or pvalue. | mov RA, [BASE+RA*8] | mov RD, [BASE+RD*8] | cmp RA, RD | je <1 // Same GCobjs or pvalues? | cmp RB, LJ_TISTABUD | ja <2 // Different objects and not table/ud? |.if X64 | cmp RB, LJ_TUDATA // And not 64 bit lightuserdata. | jb <2 |.endif | | // Different tables or userdatas. Need to check __eq metamethod. | // Field metatable must be at same offset for GCtab and GCudata! | mov TAB:RB, TAB:RA->metatable | test TAB:RB, TAB:RB | jz <2 // No metatable? | test byte TAB:RB->nomm, 1<vmeta_equal // Handle __eq metamethod. } else { |.if FFI |3: | cmp RB, LJ_TCDATA if (LJ_DUALNUM && vk) { | jne <9 } else { | jne <2 } | jmp ->vmeta_equal_cd |.endif } break; case BC_ISEQS: case BC_ISNES: vk = op == BC_ISEQS; | ins_AND // RA = src, RD = str const, JMP with RD = target | mov RB, [BASE+RA*8+4] | add PC, 4 | cmp RB, LJ_TSTR; jne >3 | mov RA, [BASE+RA*8] | cmp RA, [KBASE+RD*4] iseqne_test: if (vk) { | jne >2 } else { | je >1 } goto iseqne_end; case BC_ISEQN: case BC_ISNEN: vk = op == BC_ISEQN; | ins_AD // RA = src, RD = num const, JMP with RD = target | mov RB, [BASE+RA*8+4] | add PC, 4 |.if DUALNUM | cmp RB, LJ_TISNUM; jne >7 | cmp dword [KBASE+RD*8+4], LJ_TISNUM; jne >8 | mov RB, dword [KBASE+RD*8] | cmp RB, dword [BASE+RA*8] if (vk) { | jne >9 } else { | je >9 } | movzx RD, PC_RD | branchPC RD |9: | ins_next | |7: // RA is not an integer. | ja >3 | // RA is a number. | cmp dword [KBASE+RD*8+4], LJ_TISNUM; jb >1 | // RA is a number, RD is an integer. | cvtsi2sd xmm0, dword [KBASE+RD*8] | jmp >2 | |8: // RA is an integer, RD is a number. | cvtsi2sd xmm0, dword [BASE+RA*8] | ucomisd xmm0, qword [KBASE+RD*8] | jmp >4 |.else | cmp RB, LJ_TISNUM; jae >3 |.endif |1: | movsd xmm0, qword [KBASE+RD*8] |2: | ucomisd xmm0, qword [BASE+RA*8] |4: goto iseqne_fp; case BC_ISEQP: case BC_ISNEP: vk = op == BC_ISEQP; | ins_AND // RA = src, RD = primitive type (~), JMP with RD = target | mov RB, [BASE+RA*8+4] | add PC, 4 | cmp RB, RD if (!LJ_HASFFI) goto iseqne_test; if (vk) { | jne >3 | movzx RD, PC_RD | branchPC RD |2: | ins_next |3: | cmp RB, LJ_TCDATA; jne <2 | jmp ->vmeta_equal_cd } else { | je >2 | cmp RB, LJ_TCDATA; je ->vmeta_equal_cd | movzx RD, PC_RD | branchPC RD |2: | ins_next } break; /* -- Unary test and copy ops ------------------------------------------- */ case BC_ISTC: case BC_ISFC: case BC_IST: case BC_ISF: | ins_AD // RA = dst or unused, RD = src, JMP with RD = target | mov RB, [BASE+RD*8+4] | add PC, 4 | cmp RB, LJ_TISTRUECOND if (op == BC_IST || op == BC_ISTC) { | jae >1 } else { | jb >1 } if (op == BC_ISTC || op == BC_ISFC) { | mov [BASE+RA*8+4], RB | mov RB, [BASE+RD*8] | mov [BASE+RA*8], RB } | movzx RD, PC_RD | branchPC RD |1: // Fallthrough to the next instruction. | ins_next break; case BC_ISTYPE: | ins_AD // RA = src, RD = -type | add RD, [BASE+RA*8+4] | jne ->vmeta_istype | ins_next break; case BC_ISNUM: | ins_AD // RA = src, RD = -(TISNUM-1) | checknum RA, ->vmeta_istype | ins_next break; /* -- Unary ops --------------------------------------------------------- */ case BC_MOV: | ins_AD // RA = dst, RD = src |.if X64 | mov RBa, [BASE+RD*8] | mov [BASE+RA*8], RBa |.else | mov RB, [BASE+RD*8+4] | mov RD, [BASE+RD*8] | mov [BASE+RA*8+4], RB | mov [BASE+RA*8], RD |.endif | ins_next_ break; case BC_NOT: | ins_AD // RA = dst, RD = src | xor RB, RB | checktp RD, LJ_TISTRUECOND | adc RB, LJ_TTRUE | mov [BASE+RA*8+4], RB | ins_next break; case BC_UNM: | ins_AD // RA = dst, RD = src |.if DUALNUM | checkint RD, >5 | mov RB, [BASE+RD*8] | neg RB | jo >4 | mov dword [BASE+RA*8+4], LJ_TISNUM | mov dword [BASE+RA*8], RB |9: | ins_next |4: | mov dword [BASE+RA*8+4], 0x41e00000 // 2^31. | mov dword [BASE+RA*8], 0 | jmp <9 |5: | ja ->vmeta_unm |.else | checknum RD, ->vmeta_unm |.endif | movsd xmm0, qword [BASE+RD*8] | sseconst_sign xmm1, RDa | xorps xmm0, xmm1 | movsd qword [BASE+RA*8], xmm0 |.if DUALNUM | jmp <9 |.else | ins_next |.endif break; case BC_LEN: | ins_AD // RA = dst, RD = src | checkstr RD, >2 | mov STR:RD, [BASE+RD*8] |.if DUALNUM | mov RD, dword STR:RD->len |1: | mov dword [BASE+RA*8+4], LJ_TISNUM | mov dword [BASE+RA*8], RD |.else | xorps xmm0, xmm0 | cvtsi2sd xmm0, dword STR:RD->len |1: | movsd qword [BASE+RA*8], xmm0 |.endif | ins_next |2: | checktab RD, ->vmeta_len | mov TAB:FCARG1, [BASE+RD*8] #if LJ_52 | mov TAB:RB, TAB:FCARG1->metatable | cmp TAB:RB, 0 | jnz >9 |3: #endif |->BC_LEN_Z: | mov RB, BASE // Save BASE. | call extern lj_tab_len@4 // (GCtab *t) | // Length of table returned in eax (RD). |.if DUALNUM | // Nothing to do. |.else | cvtsi2sd xmm0, RD |.endif | mov BASE, RB // Restore BASE. | movzx RA, PC_RA | jmp <1 #if LJ_52 |9: // Check for __len. | test byte TAB:RB->nomm, 1<vmeta_len // 'no __len' flag NOT set: check. #endif break; /* -- Binary ops -------------------------------------------------------- */ |.macro ins_arithpre, sseins, ssereg | ins_ABC ||vk = ((int)op - BC_ADDVN) / (BC_ADDNV-BC_ADDVN); ||switch (vk) { ||case 0: | checknum RB, ->vmeta_arith_vn | .if DUALNUM | cmp dword [KBASE+RC*8+4], LJ_TISNUM; jae ->vmeta_arith_vn | .endif | movsd xmm0, qword [BASE+RB*8] | sseins ssereg, qword [KBASE+RC*8] || break; ||case 1: | checknum RB, ->vmeta_arith_nv | .if DUALNUM | cmp dword [KBASE+RC*8+4], LJ_TISNUM; jae ->vmeta_arith_nv | .endif | movsd xmm0, qword [KBASE+RC*8] | sseins ssereg, qword [BASE+RB*8] || break; ||default: | checknum RB, ->vmeta_arith_vv | checknum RC, ->vmeta_arith_vv | movsd xmm0, qword [BASE+RB*8] | sseins ssereg, qword [BASE+RC*8] || break; ||} |.endmacro | |.macro ins_arithdn, intins | ins_ABC ||vk = ((int)op - BC_ADDVN) / (BC_ADDNV-BC_ADDVN); ||switch (vk) { ||case 0: | checkint RB, ->vmeta_arith_vn | cmp dword [KBASE+RC*8+4], LJ_TISNUM; jne ->vmeta_arith_vn | mov RB, [BASE+RB*8] | intins RB, [KBASE+RC*8]; jo ->vmeta_arith_vno || break; ||case 1: | checkint RB, ->vmeta_arith_nv | cmp dword [KBASE+RC*8+4], LJ_TISNUM; jne ->vmeta_arith_nv | mov RC, [KBASE+RC*8] | intins RC, [BASE+RB*8]; jo ->vmeta_arith_nvo || break; ||default: | checkint RB, ->vmeta_arith_vv | checkint RC, ->vmeta_arith_vv | mov RB, [BASE+RB*8] | intins RB, [BASE+RC*8]; jo ->vmeta_arith_vvo || break; ||} | mov dword [BASE+RA*8+4], LJ_TISNUM ||if (vk == 1) { | mov dword [BASE+RA*8], RC ||} else { | mov dword [BASE+RA*8], RB ||} | ins_next |.endmacro | |.macro ins_arithpost | movsd qword [BASE+RA*8], xmm0 |.endmacro | |.macro ins_arith, sseins | ins_arithpre sseins, xmm0 | ins_arithpost | ins_next |.endmacro | |.macro ins_arith, intins, sseins |.if DUALNUM | ins_arithdn intins |.else | ins_arith, sseins |.endif |.endmacro | // RA = dst, RB = src1 or num const, RC = src2 or num const case BC_ADDVN: case BC_ADDNV: case BC_ADDVV: | ins_arith add, addsd break; case BC_SUBVN: case BC_SUBNV: case BC_SUBVV: | ins_arith sub, subsd break; case BC_MULVN: case BC_MULNV: case BC_MULVV: | ins_arith imul, mulsd break; case BC_DIVVN: case BC_DIVNV: case BC_DIVVV: | ins_arith divsd break; case BC_MODVN: | ins_arithpre movsd, xmm1 |->BC_MODVN_Z: | call ->vm_mod | ins_arithpost | ins_next break; case BC_MODNV: case BC_MODVV: | ins_arithpre movsd, xmm1 | jmp ->BC_MODVN_Z // Avoid 3 copies. It's slow anyway. break; case BC_POW: | ins_arithpre movsd, xmm1 | mov RB, BASE |.if not X64 | movsd FPARG1, xmm0 | movsd FPARG3, xmm1 |.endif | call extern pow | movzx RA, PC_RA | mov BASE, RB |.if X64 | ins_arithpost |.else | fstp qword [BASE+RA*8] |.endif | ins_next break; case BC_CAT: | ins_ABC // RA = dst, RB = src_start, RC = src_end |.if X64 | mov L:CARG1d, SAVE_L | mov L:CARG1d->base, BASE | lea CARG2d, [BASE+RC*8] | mov CARG3d, RC | sub CARG3d, RB |->BC_CAT_Z: | mov L:RB, L:CARG1d |.else | lea RA, [BASE+RC*8] | sub RC, RB | mov ARG2, RA | mov ARG3, RC |->BC_CAT_Z: | mov L:RB, SAVE_L | mov ARG1, L:RB | mov L:RB->base, BASE |.endif | mov SAVE_PC, PC | call extern lj_meta_cat // (lua_State *L, TValue *top, int left) | // NULL (finished) or TValue * (metamethod) returned in eax (RC). | mov BASE, L:RB->base | test RC, RC | jnz ->vmeta_binop | movzx RB, PC_RB // Copy result to Stk[RA] from Stk[RB]. | movzx RA, PC_RA |.if X64 | mov RCa, [BASE+RB*8] | mov [BASE+RA*8], RCa |.else | mov RC, [BASE+RB*8+4] | mov RB, [BASE+RB*8] | mov [BASE+RA*8+4], RC | mov [BASE+RA*8], RB |.endif | ins_next break; /* -- Constant ops ------------------------------------------------------ */ case BC_KSTR: | ins_AND // RA = dst, RD = str const (~) | mov RD, [KBASE+RD*4] | mov dword [BASE+RA*8+4], LJ_TSTR | mov [BASE+RA*8], RD | ins_next break; case BC_KCDATA: |.if FFI | ins_AND // RA = dst, RD = cdata const (~) | mov RD, [KBASE+RD*4] | mov dword [BASE+RA*8+4], LJ_TCDATA | mov [BASE+RA*8], RD | ins_next |.endif break; case BC_KSHORT: | ins_AD // RA = dst, RD = signed int16 literal |.if DUALNUM | movsx RD, RDW | mov dword [BASE+RA*8+4], LJ_TISNUM | mov dword [BASE+RA*8], RD |.else | movsx RD, RDW // Sign-extend literal. | cvtsi2sd xmm0, RD | movsd qword [BASE+RA*8], xmm0 |.endif | ins_next break; case BC_KNUM: | ins_AD // RA = dst, RD = num const | movsd xmm0, qword [KBASE+RD*8] | movsd qword [BASE+RA*8], xmm0 | ins_next break; case BC_KPRI: | ins_AND // RA = dst, RD = primitive type (~) | mov [BASE+RA*8+4], RD | ins_next break; case BC_KNIL: | ins_AD // RA = dst_start, RD = dst_end | lea RA, [BASE+RA*8+12] | lea RD, [BASE+RD*8+4] | mov RB, LJ_TNIL | mov [RA-8], RB // Sets minimum 2 slots. |1: | mov [RA], RB | add RA, 8 | cmp RA, RD | jbe <1 | ins_next break; /* -- Upvalue and function ops ------------------------------------------ */ case BC_UGET: | ins_AD // RA = dst, RD = upvalue # | mov LFUNC:RB, [BASE-8] | mov UPVAL:RB, [LFUNC:RB+RD*4+offsetof(GCfuncL, uvptr)] | mov RB, UPVAL:RB->v |.if X64 | mov RDa, [RB] | mov [BASE+RA*8], RDa |.else | mov RD, [RB+4] | mov RB, [RB] | mov [BASE+RA*8+4], RD | mov [BASE+RA*8], RB |.endif | ins_next break; case BC_USETV: #define TV2MARKOFS \ ((int32_t)offsetof(GCupval, marked)-(int32_t)offsetof(GCupval, tv)) | ins_AD // RA = upvalue #, RD = src | mov LFUNC:RB, [BASE-8] | mov UPVAL:RB, [LFUNC:RB+RA*4+offsetof(GCfuncL, uvptr)] | cmp byte UPVAL:RB->closed, 0 | mov RB, UPVAL:RB->v | mov RA, [BASE+RD*8] | mov RD, [BASE+RD*8+4] | mov [RB], RA | mov [RB+4], RD | jz >1 | // Check barrier for closed upvalue. | test byte [RB+TV2MARKOFS], LJ_GC_BLACK // isblack(uv) | jnz >2 |1: | ins_next | |2: // Upvalue is black. Check if new value is collectable and white. | sub RD, LJ_TISGCV | cmp RD, LJ_TNUMX - LJ_TISGCV // tvisgcv(v) | jbe <1 | test byte GCOBJ:RA->gch.marked, LJ_GC_WHITES // iswhite(v) | jz <1 | // Crossed a write barrier. Move the barrier forward. |.if X64 and not X64WIN | mov FCARG2, RB | mov RB, BASE // Save BASE. |.else | xchg FCARG2, RB // Save BASE (FCARG2 == BASE). |.endif | lea GL:FCARG1, [DISPATCH+GG_DISP2G] | call extern lj_gc_barrieruv@8 // (global_State *g, TValue *tv) | mov BASE, RB // Restore BASE. | jmp <1 break; #undef TV2MARKOFS case BC_USETS: | ins_AND // RA = upvalue #, RD = str const (~) | mov LFUNC:RB, [BASE-8] | mov UPVAL:RB, [LFUNC:RB+RA*4+offsetof(GCfuncL, uvptr)] | mov GCOBJ:RA, [KBASE+RD*4] | mov RD, UPVAL:RB->v | mov [RD], GCOBJ:RA | mov dword [RD+4], LJ_TSTR | test byte UPVAL:RB->marked, LJ_GC_BLACK // isblack(uv) | jnz >2 |1: | ins_next | |2: // Check if string is white and ensure upvalue is closed. | test byte GCOBJ:RA->gch.marked, LJ_GC_WHITES // iswhite(str) | jz <1 | cmp byte UPVAL:RB->closed, 0 | jz <1 | // Crossed a write barrier. Move the barrier forward. | mov RB, BASE // Save BASE (FCARG2 == BASE). | mov FCARG2, RD | lea GL:FCARG1, [DISPATCH+GG_DISP2G] | call extern lj_gc_barrieruv@8 // (global_State *g, TValue *tv) | mov BASE, RB // Restore BASE. | jmp <1 break; case BC_USETN: | ins_AD // RA = upvalue #, RD = num const | mov LFUNC:RB, [BASE-8] | movsd xmm0, qword [KBASE+RD*8] | mov UPVAL:RB, [LFUNC:RB+RA*4+offsetof(GCfuncL, uvptr)] | mov RA, UPVAL:RB->v | movsd qword [RA], xmm0 | ins_next break; case BC_USETP: | ins_AND // RA = upvalue #, RD = primitive type (~) | mov LFUNC:RB, [BASE-8] | mov UPVAL:RB, [LFUNC:RB+RA*4+offsetof(GCfuncL, uvptr)] | mov RA, UPVAL:RB->v | mov [RA+4], RD | ins_next break; case BC_UCLO: | ins_AD // RA = level, RD = target | branchPC RD // Do this first to free RD. | mov L:RB, SAVE_L | cmp dword L:RB->openupval, 0 | je >1 | mov L:RB->base, BASE | lea FCARG2, [BASE+RA*8] // Caveat: FCARG2 == BASE | mov L:FCARG1, L:RB // Caveat: FCARG1 == RA | call extern lj_func_closeuv@8 // (lua_State *L, TValue *level) | mov BASE, L:RB->base |1: | ins_next break; case BC_FNEW: | ins_AND // RA = dst, RD = proto const (~) (holding function prototype) |.if X64 | mov L:RB, SAVE_L | mov L:RB->base, BASE // Caveat: CARG2d/CARG3d may be BASE. | mov CARG3d, [BASE-8] | mov CARG2d, [KBASE+RD*4] // Fetch GCproto *. | mov CARG1d, L:RB |.else | mov LFUNC:RA, [BASE-8] | mov PROTO:RD, [KBASE+RD*4] // Fetch GCproto *. | mov L:RB, SAVE_L | mov ARG3, LFUNC:RA | mov ARG2, PROTO:RD | mov ARG1, L:RB | mov L:RB->base, BASE |.endif | mov SAVE_PC, PC | // (lua_State *L, GCproto *pt, GCfuncL *parent) | call extern lj_func_newL_gc | // GCfuncL * returned in eax (RC). | mov BASE, L:RB->base | movzx RA, PC_RA | mov [BASE+RA*8], LFUNC:RC | mov dword [BASE+RA*8+4], LJ_TFUNC | ins_next break; /* -- Table ops --------------------------------------------------------- */ case BC_TNEW: | ins_AD // RA = dst, RD = hbits|asize | mov L:RB, SAVE_L | mov L:RB->base, BASE | mov RA, [DISPATCH+DISPATCH_GL(gc.total)] | cmp RA, [DISPATCH+DISPATCH_GL(gc.threshold)] | mov SAVE_PC, PC | jae >5 |1: |.if X64 | mov CARG3d, RD | and RD, 0x7ff | shr CARG3d, 11 |.else | mov RA, RD | and RD, 0x7ff | shr RA, 11 | mov ARG3, RA |.endif | cmp RD, 0x7ff | je >3 |2: |.if X64 | mov L:CARG1d, L:RB | mov CARG2d, RD |.else | mov ARG1, L:RB | mov ARG2, RD |.endif | call extern lj_tab_new // (lua_State *L, int32_t asize, uint32_t hbits) | // Table * returned in eax (RC). | mov BASE, L:RB->base | movzx RA, PC_RA | mov [BASE+RA*8], TAB:RC | mov dword [BASE+RA*8+4], LJ_TTAB | ins_next |3: // Turn 0x7ff into 0x801. | mov RD, 0x801 | jmp <2 |5: | mov L:FCARG1, L:RB | call extern lj_gc_step_fixtop@4 // (lua_State *L) | movzx RD, PC_RD | jmp <1 break; case BC_TDUP: | ins_AND // RA = dst, RD = table const (~) (holding template table) | mov L:RB, SAVE_L | mov RA, [DISPATCH+DISPATCH_GL(gc.total)] | mov SAVE_PC, PC | cmp RA, [DISPATCH+DISPATCH_GL(gc.threshold)] | mov L:RB->base, BASE | jae >3 |2: | mov TAB:FCARG2, [KBASE+RD*4] // Caveat: FCARG2 == BASE | mov L:FCARG1, L:RB // Caveat: FCARG1 == RA | call extern lj_tab_dup@8 // (lua_State *L, Table *kt) | // Table * returned in eax (RC). | mov BASE, L:RB->base | movzx RA, PC_RA | mov [BASE+RA*8], TAB:RC | mov dword [BASE+RA*8+4], LJ_TTAB | ins_next |3: | mov L:FCARG1, L:RB | call extern lj_gc_step_fixtop@4 // (lua_State *L) | movzx RD, PC_RD // Need to reload RD. | not RDa | jmp <2 break; case BC_GGET: | ins_AND // RA = dst, RD = str const (~) | mov LFUNC:RB, [BASE-8] | mov TAB:RB, LFUNC:RB->env | mov STR:RC, [KBASE+RD*4] | jmp ->BC_TGETS_Z break; case BC_GSET: | ins_AND // RA = src, RD = str const (~) | mov LFUNC:RB, [BASE-8] | mov TAB:RB, LFUNC:RB->env | mov STR:RC, [KBASE+RD*4] | jmp ->BC_TSETS_Z break; case BC_TGETV: | ins_ABC // RA = dst, RB = table, RC = key | checktab RB, ->vmeta_tgetv | mov TAB:RB, [BASE+RB*8] | | // Integer key? |.if DUALNUM | checkint RC, >5 | mov RC, dword [BASE+RC*8] |.else | // Convert number to int and back and compare. | checknum RC, >5 | movsd xmm0, qword [BASE+RC*8] | cvttsd2si RC, xmm0 | cvtsi2sd xmm1, RC | ucomisd xmm0, xmm1 | jne ->vmeta_tgetv // Generic numeric key? Use fallback. |.endif | cmp RC, TAB:RB->asize // Takes care of unordered, too. | jae ->vmeta_tgetv // Not in array part? Use fallback. | shl RC, 3 | add RC, TAB:RB->array | cmp dword [RC+4], LJ_TNIL // Avoid overwriting RB in fastpath. | je >2 | // Get array slot. |.if X64 | mov RBa, [RC] | mov [BASE+RA*8], RBa |.else | mov RB, [RC] | mov RC, [RC+4] | mov [BASE+RA*8], RB | mov [BASE+RA*8+4], RC |.endif |1: | ins_next | |2: // Check for __index if table value is nil. | cmp dword TAB:RB->metatable, 0 // Shouldn't overwrite RA for fastpath. | jz >3 | mov TAB:RA, TAB:RB->metatable | test byte TAB:RA->nomm, 1<vmeta_tgetv // 'no __index' flag NOT set: check. | movzx RA, PC_RA // Restore RA. |3: | mov dword [BASE+RA*8+4], LJ_TNIL | jmp <1 | |5: // String key? | checkstr RC, ->vmeta_tgetv | mov STR:RC, [BASE+RC*8] | jmp ->BC_TGETS_Z break; case BC_TGETS: | ins_ABC // RA = dst, RB = table, RC = str const (~) | not RCa | mov STR:RC, [KBASE+RC*4] | checktab RB, ->vmeta_tgets | mov TAB:RB, [BASE+RB*8] |->BC_TGETS_Z: // RB = GCtab *, RC = GCstr *, refetches PC_RA. | mov RA, TAB:RB->hmask | and RA, STR:RC->hash | imul RA, #NODE | add NODE:RA, TAB:RB->node |1: | cmp dword NODE:RA->key.it, LJ_TSTR | jne >4 | cmp dword NODE:RA->key.gcr, STR:RC | jne >4 | // Ok, key found. Assumes: offsetof(Node, val) == 0 | cmp dword [RA+4], LJ_TNIL // Avoid overwriting RB in fastpath. | je >5 // Key found, but nil value? | movzx RC, PC_RA | // Get node value. |.if X64 | mov RBa, [RA] | mov [BASE+RC*8], RBa |.else | mov RB, [RA] | mov RA, [RA+4] | mov [BASE+RC*8], RB | mov [BASE+RC*8+4], RA |.endif |2: | ins_next | |3: | movzx RC, PC_RA | mov dword [BASE+RC*8+4], LJ_TNIL | jmp <2 | |4: // Follow hash chain. | mov NODE:RA, NODE:RA->next | test NODE:RA, NODE:RA | jnz <1 | // End of hash chain: key not found, nil result. | |5: // Check for __index if table value is nil. | mov TAB:RA, TAB:RB->metatable | test TAB:RA, TAB:RA | jz <3 // No metatable: done. | test byte TAB:RA->nomm, 1<vmeta_tgets // Caveat: preserve STR:RC. break; case BC_TGETB: | ins_ABC // RA = dst, RB = table, RC = byte literal | checktab RB, ->vmeta_tgetb | mov TAB:RB, [BASE+RB*8] | cmp RC, TAB:RB->asize | jae ->vmeta_tgetb | shl RC, 3 | add RC, TAB:RB->array | cmp dword [RC+4], LJ_TNIL // Avoid overwriting RB in fastpath. | je >2 | // Get array slot. |.if X64 | mov RBa, [RC] | mov [BASE+RA*8], RBa |.else | mov RB, [RC] | mov RC, [RC+4] | mov [BASE+RA*8], RB | mov [BASE+RA*8+4], RC |.endif |1: | ins_next | |2: // Check for __index if table value is nil. | cmp dword TAB:RB->metatable, 0 // Shouldn't overwrite RA for fastpath. | jz >3 | mov TAB:RA, TAB:RB->metatable | test byte TAB:RA->nomm, 1<vmeta_tgetb // 'no __index' flag NOT set: check. | movzx RA, PC_RA // Restore RA. |3: | mov dword [BASE+RA*8+4], LJ_TNIL | jmp <1 break; case BC_TGETR: | ins_ABC // RA = dst, RB = table, RC = key | mov TAB:RB, [BASE+RB*8] |.if DUALNUM | mov RC, dword [BASE+RC*8] |.else | cvttsd2si RC, qword [BASE+RC*8] |.endif | cmp RC, TAB:RB->asize | jae ->vmeta_tgetr // Not in array part? Use fallback. | shl RC, 3 | add RC, TAB:RB->array | // Get array slot. |->BC_TGETR_Z: |.if X64 | mov RBa, [RC] | mov [BASE+RA*8], RBa |.else | mov RB, [RC] | mov RC, [RC+4] | mov [BASE+RA*8], RB | mov [BASE+RA*8+4], RC |.endif |->BC_TGETR2_Z: | ins_next break; case BC_TSETV: | ins_ABC // RA = src, RB = table, RC = key | checktab RB, ->vmeta_tsetv | mov TAB:RB, [BASE+RB*8] | | // Integer key? |.if DUALNUM | checkint RC, >5 | mov RC, dword [BASE+RC*8] |.else | // Convert number to int and back and compare. | checknum RC, >5 | movsd xmm0, qword [BASE+RC*8] | cvttsd2si RC, xmm0 | cvtsi2sd xmm1, RC | ucomisd xmm0, xmm1 | jne ->vmeta_tsetv // Generic numeric key? Use fallback. |.endif | cmp RC, TAB:RB->asize // Takes care of unordered, too. | jae ->vmeta_tsetv | shl RC, 3 | add RC, TAB:RB->array | cmp dword [RC+4], LJ_TNIL | je >3 // Previous value is nil? |1: | test byte TAB:RB->marked, LJ_GC_BLACK // isblack(table) | jnz >7 |2: // Set array slot. |.if X64 | mov RBa, [BASE+RA*8] | mov [RC], RBa |.else | mov RB, [BASE+RA*8+4] | mov RA, [BASE+RA*8] | mov [RC+4], RB | mov [RC], RA |.endif | ins_next | |3: // Check for __newindex if previous value is nil. | cmp dword TAB:RB->metatable, 0 // Shouldn't overwrite RA for fastpath. | jz <1 | mov TAB:RA, TAB:RB->metatable | test byte TAB:RA->nomm, 1<vmeta_tsetv // 'no __newindex' flag NOT set: check. | movzx RA, PC_RA // Restore RA. | jmp <1 | |5: // String key? | checkstr RC, ->vmeta_tsetv | mov STR:RC, [BASE+RC*8] | jmp ->BC_TSETS_Z | |7: // Possible table write barrier for the value. Skip valiswhite check. | barrierback TAB:RB, RA | movzx RA, PC_RA // Restore RA. | jmp <2 break; case BC_TSETS: | ins_ABC // RA = src, RB = table, RC = str const (~) | not RCa | mov STR:RC, [KBASE+RC*4] | checktab RB, ->vmeta_tsets | mov TAB:RB, [BASE+RB*8] |->BC_TSETS_Z: // RB = GCtab *, RC = GCstr *, refetches PC_RA. | mov RA, TAB:RB->hmask | and RA, STR:RC->hash | imul RA, #NODE | mov byte TAB:RB->nomm, 0 // Clear metamethod cache. | add NODE:RA, TAB:RB->node |1: | cmp dword NODE:RA->key.it, LJ_TSTR | jne >5 | cmp dword NODE:RA->key.gcr, STR:RC | jne >5 | // Ok, key found. Assumes: offsetof(Node, val) == 0 | cmp dword [RA+4], LJ_TNIL | je >4 // Previous value is nil? |2: | test byte TAB:RB->marked, LJ_GC_BLACK // isblack(table) | jnz >7 |3: // Set node value. | movzx RC, PC_RA |.if X64 | mov RBa, [BASE+RC*8] | mov [RA], RBa |.else | mov RB, [BASE+RC*8+4] | mov RC, [BASE+RC*8] | mov [RA+4], RB | mov [RA], RC |.endif | ins_next | |4: // Check for __newindex if previous value is nil. | cmp dword TAB:RB->metatable, 0 // Shouldn't overwrite RA for fastpath. | jz <2 | mov TMP1, RA // Save RA. | mov TAB:RA, TAB:RB->metatable | test byte TAB:RA->nomm, 1<vmeta_tsets // 'no __newindex' flag NOT set: check. | mov RA, TMP1 // Restore RA. | jmp <2 | |5: // Follow hash chain. | mov NODE:RA, NODE:RA->next | test NODE:RA, NODE:RA | jnz <1 | // End of hash chain: key not found, add a new one. | | // But check for __newindex first. | mov TAB:RA, TAB:RB->metatable | test TAB:RA, TAB:RA | jz >6 // No metatable: continue. | test byte TAB:RA->nomm, 1<vmeta_tsets // 'no __newindex' flag NOT set: check. |6: | mov TMP1, STR:RC | mov TMP2, LJ_TSTR | mov TMP3, TAB:RB // Save TAB:RB for us. |.if X64 | mov L:CARG1d, SAVE_L | mov L:CARG1d->base, BASE | lea CARG3, TMP1 | mov CARG2d, TAB:RB | mov L:RB, L:CARG1d |.else | lea RC, TMP1 // Store temp. TValue in TMP1/TMP2. | mov ARG2, TAB:RB | mov L:RB, SAVE_L | mov ARG3, RC | mov ARG1, L:RB | mov L:RB->base, BASE |.endif | mov SAVE_PC, PC | call extern lj_tab_newkey // (lua_State *L, GCtab *t, TValue *k) | // Handles write barrier for the new key. TValue * returned in eax (RC). | mov BASE, L:RB->base | mov TAB:RB, TMP3 // Need TAB:RB for barrier. | mov RA, eax | jmp <2 // Must check write barrier for value. | |7: // Possible table write barrier for the value. Skip valiswhite check. | barrierback TAB:RB, RC // Destroys STR:RC. | jmp <3 break; case BC_TSETB: | ins_ABC // RA = src, RB = table, RC = byte literal | checktab RB, ->vmeta_tsetb | mov TAB:RB, [BASE+RB*8] | cmp RC, TAB:RB->asize | jae ->vmeta_tsetb | shl RC, 3 | add RC, TAB:RB->array | cmp dword [RC+4], LJ_TNIL | je >3 // Previous value is nil? |1: | test byte TAB:RB->marked, LJ_GC_BLACK // isblack(table) | jnz >7 |2: // Set array slot. |.if X64 | mov RAa, [BASE+RA*8] | mov [RC], RAa |.else | mov RB, [BASE+RA*8+4] | mov RA, [BASE+RA*8] | mov [RC+4], RB | mov [RC], RA |.endif | ins_next | |3: // Check for __newindex if previous value is nil. | cmp dword TAB:RB->metatable, 0 // Shouldn't overwrite RA for fastpath. | jz <1 | mov TAB:RA, TAB:RB->metatable | test byte TAB:RA->nomm, 1<vmeta_tsetb // 'no __newindex' flag NOT set: check. | movzx RA, PC_RA // Restore RA. | jmp <1 | |7: // Possible table write barrier for the value. Skip valiswhite check. | barrierback TAB:RB, RA | movzx RA, PC_RA // Restore RA. | jmp <2 break; case BC_TSETR: | ins_ABC // RA = src, RB = table, RC = key | mov TAB:RB, [BASE+RB*8] |.if DUALNUM | mov RC, dword [BASE+RC*8] |.else | cvttsd2si RC, qword [BASE+RC*8] |.endif | test byte TAB:RB->marked, LJ_GC_BLACK // isblack(table) | jnz >7 |2: | cmp RC, TAB:RB->asize | jae ->vmeta_tsetr | shl RC, 3 | add RC, TAB:RB->array | // Set array slot. |->BC_TSETR_Z: |.if X64 | mov RBa, [BASE+RA*8] | mov [RC], RBa |.else | mov RB, [BASE+RA*8+4] | mov RA, [BASE+RA*8] | mov [RC+4], RB | mov [RC], RA |.endif | ins_next | |7: // Possible table write barrier for the value. Skip valiswhite check. | barrierback TAB:RB, RA | movzx RA, PC_RA // Restore RA. | jmp <2 break; case BC_TSETM: | ins_AD // RA = base (table at base-1), RD = num const (start index) | mov TMP1, KBASE // Need one more free register. | mov KBASE, dword [KBASE+RD*8] // Integer constant is in lo-word. |1: | lea RA, [BASE+RA*8] | mov TAB:RB, [RA-8] // Guaranteed to be a table. | test byte TAB:RB->marked, LJ_GC_BLACK // isblack(table) | jnz >7 |2: | mov RD, MULTRES | sub RD, 1 | jz >4 // Nothing to copy? | add RD, KBASE // Compute needed size. | cmp RD, TAB:RB->asize | ja >5 // Doesn't fit into array part? | sub RD, KBASE | shl KBASE, 3 | add KBASE, TAB:RB->array |3: // Copy result slots to table. |.if X64 | mov RBa, [RA] | add RA, 8 | mov [KBASE], RBa |.else | mov RB, [RA] | mov [KBASE], RB | mov RB, [RA+4] | add RA, 8 | mov [KBASE+4], RB |.endif | add KBASE, 8 | sub RD, 1 | jnz <3 |4: | mov KBASE, TMP1 | ins_next | |5: // Need to resize array part. |.if X64 | mov L:CARG1d, SAVE_L | mov L:CARG1d->base, BASE // Caveat: CARG2d/CARG3d may be BASE. | mov CARG2d, TAB:RB | mov CARG3d, RD | mov L:RB, L:CARG1d |.else | mov ARG2, TAB:RB | mov L:RB, SAVE_L | mov L:RB->base, BASE | mov ARG3, RD | mov ARG1, L:RB |.endif | mov SAVE_PC, PC | call extern lj_tab_reasize // (lua_State *L, GCtab *t, int nasize) | mov BASE, L:RB->base | movzx RA, PC_RA // Restore RA. | jmp <1 // Retry. | |7: // Possible table write barrier for any value. Skip valiswhite check. | barrierback TAB:RB, RD | jmp <2 break; /* -- Calls and vararg handling ----------------------------------------- */ case BC_CALL: case BC_CALLM: | ins_A_C // RA = base, (RB = nresults+1,) RC = nargs+1 | extra_nargs if (op == BC_CALLM) { | add NARGS:RD, MULTRES } | cmp dword [BASE+RA*8+4], LJ_TFUNC | mov LFUNC:RB, [BASE+RA*8] | jne ->vmeta_call_ra | lea BASE, [BASE+RA*8+8] | ins_call break; case BC_CALLMT: | ins_AD // RA = base, RD = extra_nargs | add NARGS:RD, MULTRES | // Fall through. Assumes BC_CALLT follows and ins_AD is a no-op. break; case BC_CALLT: | ins_AD // RA = base, RD = nargs+1 | lea RA, [BASE+RA*8+8] | mov KBASE, BASE // Use KBASE for move + vmeta_call hint. | mov LFUNC:RB, [RA-8] | cmp dword [RA-4], LJ_TFUNC | jne ->vmeta_call |->BC_CALLT_Z: | mov PC, [BASE-4] | test PC, FRAME_TYPE | jnz >7 |1: | mov [BASE-8], LFUNC:RB // Copy function down, reloaded below. | mov MULTRES, NARGS:RD | sub NARGS:RD, 1 | jz >3 |2: // Move args down. |.if X64 | mov RBa, [RA] | add RA, 8 | mov [KBASE], RBa |.else | mov RB, [RA] | mov [KBASE], RB | mov RB, [RA+4] | add RA, 8 | mov [KBASE+4], RB |.endif | add KBASE, 8 | sub NARGS:RD, 1 | jnz <2 | | mov LFUNC:RB, [BASE-8] |3: | mov NARGS:RD, MULTRES | cmp byte LFUNC:RB->ffid, 1 // (> FF_C) Calling a fast function? | ja >5 |4: | ins_callt | |5: // Tailcall to a fast function. | test PC, FRAME_TYPE // Lua frame below? | jnz <4 | movzx RA, PC_RA | not RAa | mov LFUNC:KBASE, [BASE+RA*8-8] // Need to prepare KBASE. | mov KBASE, LFUNC:KBASE->pc | mov KBASE, [KBASE+PC2PROTO(k)] | jmp <4 | |7: // Tailcall from a vararg function. | sub PC, FRAME_VARG | test PC, FRAME_TYPEP | jnz >8 // Vararg frame below? | sub BASE, PC // Need to relocate BASE/KBASE down. | mov KBASE, BASE | mov PC, [BASE-4] | jmp <1 |8: | add PC, FRAME_VARG | jmp <1 break; case BC_ITERC: | ins_A // RA = base, (RB = nresults+1,) RC = nargs+1 (2+1) | lea RA, [BASE+RA*8+8] // fb = base+1 |.if X64 | mov RBa, [RA-24] // Copy state. fb[0] = fb[-3]. | mov RCa, [RA-16] // Copy control var. fb[1] = fb[-2]. | mov [RA], RBa | mov [RA+8], RCa |.else | mov RB, [RA-24] // Copy state. fb[0] = fb[-3]. | mov RC, [RA-20] | mov [RA], RB | mov [RA+4], RC | mov RB, [RA-16] // Copy control var. fb[1] = fb[-2]. | mov RC, [RA-12] | mov [RA+8], RB | mov [RA+12], RC |.endif | mov LFUNC:RB, [RA-32] // Copy callable. fb[-1] = fb[-4] | mov RC, [RA-28] | mov [RA-8], LFUNC:RB | mov [RA-4], RC | cmp RC, LJ_TFUNC // Handle like a regular 2-arg call. | mov NARGS:RD, 2+1 | jne ->vmeta_call | mov BASE, RA | ins_call break; case BC_ITERN: | ins_A // RA = base, (RB = nresults+1, RC = nargs+1 (2+1)) |.if JIT | // NYI: add hotloop, record BC_ITERN. |.endif | mov TMP1, KBASE // Need two more free registers. | mov TMP2, DISPATCH | mov TAB:RB, [BASE+RA*8-16] | mov RC, [BASE+RA*8-8] // Get index from control var. | mov DISPATCH, TAB:RB->asize | add PC, 4 | mov KBASE, TAB:RB->array |1: // Traverse array part. | cmp RC, DISPATCH; jae >5 // Index points after array part? | cmp dword [KBASE+RC*8+4], LJ_TNIL; je >4 |.if DUALNUM | mov dword [BASE+RA*8+4], LJ_TISNUM | mov dword [BASE+RA*8], RC |.else | cvtsi2sd xmm0, RC |.endif | // Copy array slot to returned value. |.if X64 | mov RBa, [KBASE+RC*8] | mov [BASE+RA*8+8], RBa |.else | mov RB, [KBASE+RC*8+4] | mov [BASE+RA*8+12], RB | mov RB, [KBASE+RC*8] | mov [BASE+RA*8+8], RB |.endif | add RC, 1 | // Return array index as a numeric key. |.if DUALNUM | // See above. |.else | movsd qword [BASE+RA*8], xmm0 |.endif | mov [BASE+RA*8-8], RC // Update control var. |2: | movzx RD, PC_RD // Get target from ITERL. | branchPC RD |3: | mov DISPATCH, TMP2 | mov KBASE, TMP1 | ins_next | |4: // Skip holes in array part. | add RC, 1 | jmp <1 | |5: // Traverse hash part. | sub RC, DISPATCH |6: | cmp RC, TAB:RB->hmask; ja <3 // End of iteration? Branch to ITERL+1. | imul KBASE, RC, #NODE | add NODE:KBASE, TAB:RB->node | cmp dword NODE:KBASE->val.it, LJ_TNIL; je >7 | lea DISPATCH, [RC+DISPATCH+1] | // Copy key and value from hash slot. |.if X64 | mov RBa, NODE:KBASE->key | mov RCa, NODE:KBASE->val | mov [BASE+RA*8], RBa | mov [BASE+RA*8+8], RCa |.else | mov RB, NODE:KBASE->key.gcr | mov RC, NODE:KBASE->key.it | mov [BASE+RA*8], RB | mov [BASE+RA*8+4], RC | mov RB, NODE:KBASE->val.gcr | mov RC, NODE:KBASE->val.it | mov [BASE+RA*8+8], RB | mov [BASE+RA*8+12], RC |.endif | mov [BASE+RA*8-8], DISPATCH | jmp <2 | |7: // Skip holes in hash part. | add RC, 1 | jmp <6 break; case BC_ISNEXT: | ins_AD // RA = base, RD = target (points to ITERN) | cmp dword [BASE+RA*8-20], LJ_TFUNC; jne >5 | mov CFUNC:RB, [BASE+RA*8-24] | cmp dword [BASE+RA*8-12], LJ_TTAB; jne >5 | cmp dword [BASE+RA*8-4], LJ_TNIL; jne >5 | cmp byte CFUNC:RB->ffid, FF_next_N; jne >5 | branchPC RD | mov dword [BASE+RA*8-8], 0 // Initialize control var. | mov dword [BASE+RA*8-4], 0xfffe7fff |1: | ins_next |5: // Despecialize bytecode if any of the checks fail. | mov PC_OP, BC_JMP | branchPC RD | mov byte [PC], BC_ITERC | jmp <1 break; case BC_VARG: | ins_ABC // RA = base, RB = nresults+1, RC = numparams | mov TMP1, KBASE // Need one more free register. | lea KBASE, [BASE+RC*8+(8+FRAME_VARG)] | lea RA, [BASE+RA*8] | sub KBASE, [BASE-4] | // Note: KBASE may now be even _above_ BASE if nargs was < numparams. | test RB, RB | jz >5 // Copy all varargs? | lea RB, [RA+RB*8-8] | cmp KBASE, BASE // No vararg slots? | jnb >2 |1: // Copy vararg slots to destination slots. |.if X64 | mov RCa, [KBASE-8] | add KBASE, 8 | mov [RA], RCa |.else | mov RC, [KBASE-8] | mov [RA], RC | mov RC, [KBASE-4] | add KBASE, 8 | mov [RA+4], RC |.endif | add RA, 8 | cmp RA, RB // All destination slots filled? | jnb >3 | cmp KBASE, BASE // No more vararg slots? | jb <1 |2: // Fill up remainder with nil. | mov dword [RA+4], LJ_TNIL | add RA, 8 | cmp RA, RB | jb <2 |3: | mov KBASE, TMP1 | ins_next | |5: // Copy all varargs. | mov MULTRES, 1 // MULTRES = 0+1 | mov RC, BASE | sub RC, KBASE | jbe <3 // No vararg slots? | mov RB, RC | shr RB, 3 | add RB, 1 | mov MULTRES, RB // MULTRES = #varargs+1 | mov L:RB, SAVE_L | add RC, RA | cmp RC, L:RB->maxstack | ja >7 // Need to grow stack? |6: // Copy all vararg slots. |.if X64 | mov RCa, [KBASE-8] | add KBASE, 8 | mov [RA], RCa |.else | mov RC, [KBASE-8] | mov [RA], RC | mov RC, [KBASE-4] | add KBASE, 8 | mov [RA+4], RC |.endif | add RA, 8 | cmp KBASE, BASE // No more vararg slots? | jb <6 | jmp <3 | |7: // Grow stack for varargs. | mov L:RB->base, BASE | mov L:RB->top, RA | mov SAVE_PC, PC | sub KBASE, BASE // Need delta, because BASE may change. | mov FCARG2, MULTRES | sub FCARG2, 1 | mov FCARG1, L:RB | call extern lj_state_growstack@8 // (lua_State *L, int n) | mov BASE, L:RB->base | mov RA, L:RB->top | add KBASE, BASE | jmp <6 break; /* -- Returns ----------------------------------------------------------- */ case BC_RETM: | ins_AD // RA = results, RD = extra_nresults | add RD, MULTRES // MULTRES >=1, so RD >=1. | // Fall through. Assumes BC_RET follows and ins_AD is a no-op. break; case BC_RET: case BC_RET0: case BC_RET1: | ins_AD // RA = results, RD = nresults+1 if (op != BC_RET0) { | shl RA, 3 } |1: | mov PC, [BASE-4] | mov MULTRES, RD // Save nresults+1. | test PC, FRAME_TYPE // Check frame type marker. | jnz >7 // Not returning to a fixarg Lua func? switch (op) { case BC_RET: |->BC_RET_Z: | mov KBASE, BASE // Use KBASE for result move. | sub RD, 1 | jz >3 |2: // Move results down. |.if X64 | mov RBa, [KBASE+RA] | mov [KBASE-8], RBa |.else | mov RB, [KBASE+RA] | mov [KBASE-8], RB | mov RB, [KBASE+RA+4] | mov [KBASE-4], RB |.endif | add KBASE, 8 | sub RD, 1 | jnz <2 |3: | mov RD, MULTRES // Note: MULTRES may be >255. | movzx RB, PC_RB // So cannot compare with RDL! |5: | cmp RB, RD // More results expected? | ja >6 break; case BC_RET1: |.if X64 | mov RBa, [BASE+RA] | mov [BASE-8], RBa |.else | mov RB, [BASE+RA+4] | mov [BASE-4], RB | mov RB, [BASE+RA] | mov [BASE-8], RB |.endif /* fallthrough */ case BC_RET0: |5: | cmp PC_RB, RDL // More results expected? | ja >6 default: break; } | movzx RA, PC_RA | not RAa // Note: ~RA = -(RA+1) | lea BASE, [BASE+RA*8] // base = base - (RA+1)*8 | mov LFUNC:KBASE, [BASE-8] | mov KBASE, LFUNC:KBASE->pc | mov KBASE, [KBASE+PC2PROTO(k)] | ins_next | |6: // Fill up results with nil. if (op == BC_RET) { | mov dword [KBASE-4], LJ_TNIL // Note: relies on shifted base. | add KBASE, 8 } else { | mov dword [BASE+RD*8-12], LJ_TNIL } | add RD, 1 | jmp <5 | |7: // Non-standard return case. | lea RB, [PC-FRAME_VARG] | test RB, FRAME_TYPEP | jnz ->vm_return | // Return from vararg function: relocate BASE down and RA up. | sub BASE, RB if (op != BC_RET0) { | add RA, RB } | jmp <1 break; /* -- Loops and branches ------------------------------------------------ */ |.define FOR_IDX, [RA]; .define FOR_TIDX, dword [RA+4] |.define FOR_STOP, [RA+8]; .define FOR_TSTOP, dword [RA+12] |.define FOR_STEP, [RA+16]; .define FOR_TSTEP, dword [RA+20] |.define FOR_EXT, [RA+24]; .define FOR_TEXT, dword [RA+28] case BC_FORL: |.if JIT | hotloop RB |.endif | // Fall through. Assumes BC_IFORL follows and ins_AJ is a no-op. break; case BC_JFORI: case BC_JFORL: #if !LJ_HASJIT break; #endif case BC_FORI: case BC_IFORL: vk = (op == BC_IFORL || op == BC_JFORL); | ins_AJ // RA = base, RD = target (after end of loop or start of loop) | lea RA, [BASE+RA*8] if (LJ_DUALNUM) { | cmp FOR_TIDX, LJ_TISNUM; jne >9 if (!vk) { | cmp FOR_TSTOP, LJ_TISNUM; jne ->vmeta_for | cmp FOR_TSTEP, LJ_TISNUM; jne ->vmeta_for | mov RB, dword FOR_IDX | cmp dword FOR_STEP, 0; jl >5 } else { #ifdef LUA_USE_ASSERT | cmp FOR_TSTOP, LJ_TISNUM; jne ->assert_bad_for_arg_type | cmp FOR_TSTEP, LJ_TISNUM; jne ->assert_bad_for_arg_type #endif | mov RB, dword FOR_STEP | test RB, RB; js >5 | add RB, dword FOR_IDX; jo >1 | mov dword FOR_IDX, RB } | cmp RB, dword FOR_STOP | mov FOR_TEXT, LJ_TISNUM | mov dword FOR_EXT, RB if (op == BC_FORI) { | jle >7 |1: |6: | branchPC RD } else if (op == BC_JFORI) { | branchPC RD | movzx RD, PC_RD | jle =>BC_JLOOP |1: |6: } else if (op == BC_IFORL) { | jg >7 |6: | branchPC RD |1: } else { | jle =>BC_JLOOP |1: |6: } |7: | ins_next | |5: // Invert check for negative step. if (vk) { | add RB, dword FOR_IDX; jo <1 | mov dword FOR_IDX, RB } | cmp RB, dword FOR_STOP | mov FOR_TEXT, LJ_TISNUM | mov dword FOR_EXT, RB if (op == BC_FORI) { | jge <7 } else if (op == BC_JFORI) { | branchPC RD | movzx RD, PC_RD | jge =>BC_JLOOP } else if (op == BC_IFORL) { | jl <7 } else { | jge =>BC_JLOOP } | jmp <6 |9: // Fallback to FP variant. } else if (!vk) { | cmp FOR_TIDX, LJ_TISNUM } if (!vk) { | jae ->vmeta_for | cmp FOR_TSTOP, LJ_TISNUM; jae ->vmeta_for } else { #ifdef LUA_USE_ASSERT | cmp FOR_TSTOP, LJ_TISNUM; jae ->assert_bad_for_arg_type | cmp FOR_TSTEP, LJ_TISNUM; jae ->assert_bad_for_arg_type #endif } | mov RB, FOR_TSTEP // Load type/hiword of for step. if (!vk) { | cmp RB, LJ_TISNUM; jae ->vmeta_for } | movsd xmm0, qword FOR_IDX | movsd xmm1, qword FOR_STOP if (vk) { | addsd xmm0, qword FOR_STEP | movsd qword FOR_IDX, xmm0 | test RB, RB; js >3 } else { | jl >3 } | ucomisd xmm1, xmm0 |1: | movsd qword FOR_EXT, xmm0 if (op == BC_FORI) { |.if DUALNUM | jnb <7 |.else | jnb >2 | branchPC RD |.endif } else if (op == BC_JFORI) { | branchPC RD | movzx RD, PC_RD | jnb =>BC_JLOOP } else if (op == BC_IFORL) { |.if DUALNUM | jb <7 |.else | jb >2 | branchPC RD |.endif } else { | jnb =>BC_JLOOP } |.if DUALNUM | jmp <6 |.else |2: | ins_next |.endif | |3: // Invert comparison if step is negative. | ucomisd xmm0, xmm1 | jmp <1 break; case BC_ITERL: |.if JIT | hotloop RB |.endif | // Fall through. Assumes BC_IITERL follows and ins_AJ is a no-op. break; case BC_JITERL: #if !LJ_HASJIT break; #endif case BC_IITERL: | ins_AJ // RA = base, RD = target | lea RA, [BASE+RA*8] | mov RB, [RA+4] | cmp RB, LJ_TNIL; je >1 // Stop if iterator returned nil. if (op == BC_JITERL) { | mov [RA-4], RB | mov RB, [RA] | mov [RA-8], RB | jmp =>BC_JLOOP } else { | branchPC RD // Otherwise save control var + branch. | mov RD, [RA] | mov [RA-4], RB | mov [RA-8], RD } |1: | ins_next break; case BC_LOOP: | ins_A // RA = base, RD = target (loop extent) | // Note: RA/RD is only used by trace recorder to determine scope/extent | // This opcode does NOT jump, it's only purpose is to detect a hot loop. |.if JIT | hotloop RB |.endif | // Fall through. Assumes BC_ILOOP follows and ins_A is a no-op. break; case BC_ILOOP: | ins_A // RA = base, RD = target (loop extent) | ins_next break; case BC_JLOOP: |.if JIT | ins_AD // RA = base (ignored), RD = traceno | mov RA, [DISPATCH+DISPATCH_J(trace)] | mov TRACE:RD, [RA+RD*4] | mov RDa, TRACE:RD->mcode | mov L:RB, SAVE_L | mov [DISPATCH+DISPATCH_GL(jit_base)], BASE | mov [DISPATCH+DISPATCH_GL(tmpbuf.L)], L:RB | // Save additional callee-save registers only used in compiled code. |.if X64WIN | mov TMPQ, r12 | mov TMPa, r13 | mov CSAVE_4, r14 | mov CSAVE_3, r15 | mov RAa, rsp | sub rsp, 9*16+4*8 | movdqa [RAa], xmm6 | movdqa [RAa-1*16], xmm7 | movdqa [RAa-2*16], xmm8 | movdqa [RAa-3*16], xmm9 | movdqa [RAa-4*16], xmm10 | movdqa [RAa-5*16], xmm11 | movdqa [RAa-6*16], xmm12 | movdqa [RAa-7*16], xmm13 | movdqa [RAa-8*16], xmm14 | movdqa [RAa-9*16], xmm15 |.elif X64 | mov TMPQ, r12 | mov TMPa, r13 | sub rsp, 16 |.endif | jmp RDa |.endif break; case BC_JMP: | ins_AJ // RA = unused, RD = target | branchPC RD | ins_next break; /* -- Function headers -------------------------------------------------- */ /* ** Reminder: A function may be called with func/args above L->maxstack, ** i.e. occupying EXTRA_STACK slots. And vmeta_call may add one extra slot, ** too. This means all FUNC* ops (including fast functions) must check ** for stack overflow _before_ adding more slots! */ case BC_FUNCF: |.if JIT | hotcall RB |.endif case BC_FUNCV: /* NYI: compiled vararg functions. */ | // Fall through. Assumes BC_IFUNCF/BC_IFUNCV follow and ins_AD is a no-op. break; case BC_JFUNCF: #if !LJ_HASJIT break; #endif case BC_IFUNCF: | ins_AD // BASE = new base, RA = framesize, RD = nargs+1 | mov KBASE, [PC-4+PC2PROTO(k)] | mov L:RB, SAVE_L | lea RA, [BASE+RA*8] // Top of frame. | cmp RA, L:RB->maxstack | ja ->vm_growstack_f | movzx RA, byte [PC-4+PC2PROTO(numparams)] | cmp NARGS:RD, RA // Check for missing parameters. | jbe >3 |2: if (op == BC_JFUNCF) { | movzx RD, PC_RD | jmp =>BC_JLOOP } else { | ins_next } | |3: // Clear missing parameters. | mov dword [BASE+NARGS:RD*8-4], LJ_TNIL | add NARGS:RD, 1 | cmp NARGS:RD, RA | jbe <3 | jmp <2 break; case BC_JFUNCV: #if !LJ_HASJIT break; #endif | int3 // NYI: compiled vararg functions break; /* NYI: compiled vararg functions. */ case BC_IFUNCV: | ins_AD // BASE = new base, RA = framesize, RD = nargs+1 | lea RB, [NARGS:RD*8+FRAME_VARG] | lea RD, [BASE+NARGS:RD*8] | mov LFUNC:KBASE, [BASE-8] | mov [RD-4], RB // Store delta + FRAME_VARG. | mov [RD-8], LFUNC:KBASE // Store copy of LFUNC. | mov L:RB, SAVE_L | lea RA, [RD+RA*8] | cmp RA, L:RB->maxstack | ja ->vm_growstack_v // Need to grow stack. | mov RA, BASE | mov BASE, RD | movzx RB, byte [PC-4+PC2PROTO(numparams)] | test RB, RB | jz >2 |1: // Copy fixarg slots up to new frame. | add RA, 8 | cmp RA, BASE | jnb >3 // Less args than parameters? | mov KBASE, [RA-8] | mov [RD], KBASE | mov KBASE, [RA-4] | mov [RD+4], KBASE | add RD, 8 | mov dword [RA-4], LJ_TNIL // Clear old fixarg slot (help the GC). | sub RB, 1 | jnz <1 |2: if (op == BC_JFUNCV) { | movzx RD, PC_RD | jmp =>BC_JLOOP } else { | mov KBASE, [PC-4+PC2PROTO(k)] | ins_next } | |3: // Clear missing parameters. | mov dword [RD+4], LJ_TNIL | add RD, 8 | sub RB, 1 | jnz <3 | jmp <2 break; case BC_FUNCC: case BC_FUNCCW: | ins_AD // BASE = new base, RA = ins RA|RD (unused), RD = nargs+1 | mov CFUNC:RB, [BASE-8] | mov KBASEa, CFUNC:RB->f | mov L:RB, SAVE_L | lea RD, [BASE+NARGS:RD*8-8] | mov L:RB->base, BASE | lea RA, [RD+8*LUA_MINSTACK] | cmp RA, L:RB->maxstack | mov L:RB->top, RD if (op == BC_FUNCC) { |.if X64 | mov CARG1d, L:RB // Caveat: CARG1d may be RA. |.else | mov ARG1, L:RB |.endif } else { |.if X64 | mov CARG2, KBASEa | mov CARG1d, L:RB // Caveat: CARG1d may be RA. |.else | mov ARG2, KBASEa | mov ARG1, L:RB |.endif } | ja ->vm_growstack_c // Need to grow stack. | set_vmstate C if (op == BC_FUNCC) { | call KBASEa // (lua_State *L) } else { | // (lua_State *L, lua_CFunction f) | call aword [DISPATCH+DISPATCH_GL(wrapf)] } | // nresults returned in eax (RD). | mov BASE, L:RB->base | mov [DISPATCH+DISPATCH_GL(cur_L)], L:RB | set_vmstate INTERP | lea RA, [BASE+RD*8] | neg RA | add RA, L:RB->top // RA = (L->top-(L->base+nresults))*8 | mov PC, [BASE-4] // Fetch PC of caller. | jmp ->vm_returnc break; /* ---------------------------------------------------------------------- */ default: fprintf(stderr, "Error: undefined opcode BC_%s\n", bc_names[op]); exit(2); break; } } static int build_backend(BuildCtx *ctx) { int op; dasm_growpc(Dst, BC__MAX); build_subroutines(ctx); |.code_op for (op = 0; op < BC__MAX; op++) build_ins(ctx, (BCOp)op, op); return BC__MAX; } /* Emit pseudo frame-info for all assembler functions. */ static void emit_asm_debug(BuildCtx *ctx) { int fcofs = (int)((uint8_t *)ctx->glob[GLOB_vm_ffi_call] - ctx->code); #if LJ_64 #define SZPTR "8" #define BSZPTR "3" #define REG_SP "0x7" #define REG_RA "0x10" #else #define SZPTR "4" #define BSZPTR "2" #define REG_SP "0x4" #define REG_RA "0x8" #endif switch (ctx->mode) { case BUILD_elfasm: fprintf(ctx->fp, "\t.section .debug_frame,\"\",@progbits\n"); fprintf(ctx->fp, ".Lframe0:\n" "\t.long .LECIE0-.LSCIE0\n" ".LSCIE0:\n" "\t.long 0xffffffff\n" "\t.byte 0x1\n" "\t.string \"\"\n" "\t.uleb128 0x1\n" "\t.sleb128 -" SZPTR "\n" "\t.byte " REG_RA "\n" "\t.byte 0xc\n\t.uleb128 " REG_SP "\n\t.uleb128 " SZPTR "\n" "\t.byte 0x80+" REG_RA "\n\t.uleb128 0x1\n" "\t.align " SZPTR "\n" ".LECIE0:\n\n"); fprintf(ctx->fp, ".LSFDE0:\n" "\t.long .LEFDE0-.LASFDE0\n" ".LASFDE0:\n" "\t.long .Lframe0\n" #if LJ_64 "\t.quad .Lbegin\n" "\t.quad %d\n" "\t.byte 0xe\n\t.uleb128 %d\n" /* def_cfa_offset */ "\t.byte 0x86\n\t.uleb128 0x2\n" /* offset rbp */ "\t.byte 0x83\n\t.uleb128 0x3\n" /* offset rbx */ "\t.byte 0x8f\n\t.uleb128 0x4\n" /* offset r15 */ "\t.byte 0x8e\n\t.uleb128 0x5\n" /* offset r14 */ #if LJ_NO_UNWIND "\t.byte 0x8d\n\t.uleb128 0x6\n" /* offset r13 */ "\t.byte 0x8c\n\t.uleb128 0x7\n" /* offset r12 */ #endif #else "\t.long .Lbegin\n" "\t.long %d\n" "\t.byte 0xe\n\t.uleb128 %d\n" /* def_cfa_offset */ "\t.byte 0x85\n\t.uleb128 0x2\n" /* offset ebp */ "\t.byte 0x87\n\t.uleb128 0x3\n" /* offset edi */ "\t.byte 0x86\n\t.uleb128 0x4\n" /* offset esi */ "\t.byte 0x83\n\t.uleb128 0x5\n" /* offset ebx */ #endif "\t.align " SZPTR "\n" ".LEFDE0:\n\n", fcofs, CFRAME_SIZE); #if LJ_HASFFI fprintf(ctx->fp, ".LSFDE1:\n" "\t.long .LEFDE1-.LASFDE1\n" ".LASFDE1:\n" "\t.long .Lframe0\n" #if LJ_64 "\t.quad lj_vm_ffi_call\n" "\t.quad %d\n" "\t.byte 0xe\n\t.uleb128 16\n" /* def_cfa_offset */ "\t.byte 0x86\n\t.uleb128 0x2\n" /* offset rbp */ "\t.byte 0xd\n\t.uleb128 0x6\n" /* def_cfa_register rbp */ "\t.byte 0x83\n\t.uleb128 0x3\n" /* offset rbx */ #else "\t.long lj_vm_ffi_call\n" "\t.long %d\n" "\t.byte 0xe\n\t.uleb128 8\n" /* def_cfa_offset */ "\t.byte 0x85\n\t.uleb128 0x2\n" /* offset ebp */ "\t.byte 0xd\n\t.uleb128 0x5\n" /* def_cfa_register ebp */ "\t.byte 0x83\n\t.uleb128 0x3\n" /* offset ebx */ #endif "\t.align " SZPTR "\n" ".LEFDE1:\n\n", (int)ctx->codesz - fcofs); #endif #if !LJ_NO_UNWIND #if (defined(__sun__) && defined(__svr4__)) #if LJ_64 fprintf(ctx->fp, "\t.section .eh_frame,\"a\",@unwind\n"); #else fprintf(ctx->fp, "\t.section .eh_frame,\"aw\",@progbits\n"); #endif #else fprintf(ctx->fp, "\t.section .eh_frame,\"a\",@progbits\n"); #endif fprintf(ctx->fp, ".Lframe1:\n" "\t.long .LECIE1-.LSCIE1\n" ".LSCIE1:\n" "\t.long 0\n" "\t.byte 0x1\n" "\t.string \"zPR\"\n" "\t.uleb128 0x1\n" "\t.sleb128 -" SZPTR "\n" "\t.byte " REG_RA "\n" "\t.uleb128 6\n" /* augmentation length */ "\t.byte 0x1b\n" /* pcrel|sdata4 */ "\t.long lj_err_unwind_dwarf-.\n" "\t.byte 0x1b\n" /* pcrel|sdata4 */ "\t.byte 0xc\n\t.uleb128 " REG_SP "\n\t.uleb128 " SZPTR "\n" "\t.byte 0x80+" REG_RA "\n\t.uleb128 0x1\n" "\t.align " SZPTR "\n" ".LECIE1:\n\n"); fprintf(ctx->fp, ".LSFDE2:\n" "\t.long .LEFDE2-.LASFDE2\n" ".LASFDE2:\n" "\t.long .LASFDE2-.Lframe1\n" "\t.long .Lbegin-.\n" "\t.long %d\n" "\t.uleb128 0\n" /* augmentation length */ "\t.byte 0xe\n\t.uleb128 %d\n" /* def_cfa_offset */ #if LJ_64 "\t.byte 0x86\n\t.uleb128 0x2\n" /* offset rbp */ "\t.byte 0x83\n\t.uleb128 0x3\n" /* offset rbx */ "\t.byte 0x8f\n\t.uleb128 0x4\n" /* offset r15 */ "\t.byte 0x8e\n\t.uleb128 0x5\n" /* offset r14 */ #else "\t.byte 0x85\n\t.uleb128 0x2\n" /* offset ebp */ "\t.byte 0x87\n\t.uleb128 0x3\n" /* offset edi */ "\t.byte 0x86\n\t.uleb128 0x4\n" /* offset esi */ "\t.byte 0x83\n\t.uleb128 0x5\n" /* offset ebx */ #endif "\t.align " SZPTR "\n" ".LEFDE2:\n\n", fcofs, CFRAME_SIZE); #if LJ_HASFFI fprintf(ctx->fp, ".Lframe2:\n" "\t.long .LECIE2-.LSCIE2\n" ".LSCIE2:\n" "\t.long 0\n" "\t.byte 0x1\n" "\t.string \"zR\"\n" "\t.uleb128 0x1\n" "\t.sleb128 -" SZPTR "\n" "\t.byte " REG_RA "\n" "\t.uleb128 1\n" /* augmentation length */ "\t.byte 0x1b\n" /* pcrel|sdata4 */ "\t.byte 0xc\n\t.uleb128 " REG_SP "\n\t.uleb128 " SZPTR "\n" "\t.byte 0x80+" REG_RA "\n\t.uleb128 0x1\n" "\t.align " SZPTR "\n" ".LECIE2:\n\n"); fprintf(ctx->fp, ".LSFDE3:\n" "\t.long .LEFDE3-.LASFDE3\n" ".LASFDE3:\n" "\t.long .LASFDE3-.Lframe2\n" "\t.long lj_vm_ffi_call-.\n" "\t.long %d\n" "\t.uleb128 0\n" /* augmentation length */ #if LJ_64 "\t.byte 0xe\n\t.uleb128 16\n" /* def_cfa_offset */ "\t.byte 0x86\n\t.uleb128 0x2\n" /* offset rbp */ "\t.byte 0xd\n\t.uleb128 0x6\n" /* def_cfa_register rbp */ "\t.byte 0x83\n\t.uleb128 0x3\n" /* offset rbx */ #else "\t.byte 0xe\n\t.uleb128 8\n" /* def_cfa_offset */ "\t.byte 0x85\n\t.uleb128 0x2\n" /* offset ebp */ "\t.byte 0xd\n\t.uleb128 0x5\n" /* def_cfa_register ebp */ "\t.byte 0x83\n\t.uleb128 0x3\n" /* offset ebx */ #endif "\t.align " SZPTR "\n" ".LEFDE3:\n\n", (int)ctx->codesz - fcofs); #endif #endif break; #if !LJ_NO_UNWIND /* Mental note: never let Apple design an assembler. ** Or a linker. Or a plastic case. But I digress. */ case BUILD_machasm: { #if LJ_HASFFI int fcsize = 0; #endif int i; fprintf(ctx->fp, "\t.section __TEXT,__eh_frame,coalesced,no_toc+strip_static_syms+live_support\n"); fprintf(ctx->fp, "EH_frame1:\n" "\t.set L$set$x,LECIEX-LSCIEX\n" "\t.long L$set$x\n" "LSCIEX:\n" "\t.long 0\n" "\t.byte 0x1\n" "\t.ascii \"zPR\\0\"\n" "\t.byte 0x1\n" "\t.byte 128-" SZPTR "\n" "\t.byte " REG_RA "\n" "\t.byte 6\n" /* augmentation length */ "\t.byte 0x9b\n" /* indirect|pcrel|sdata4 */ #if LJ_64 "\t.long _lj_err_unwind_dwarf+4@GOTPCREL\n" "\t.byte 0x1b\n" /* pcrel|sdata4 */ "\t.byte 0xc\n\t.byte " REG_SP "\n\t.byte " SZPTR "\n" #else "\t.long L_lj_err_unwind_dwarf$non_lazy_ptr-.\n" "\t.byte 0x1b\n" /* pcrel|sdata4 */ "\t.byte 0xc\n\t.byte 0x5\n\t.byte 0x4\n" /* esp=5 on 32 bit MACH-O. */ #endif "\t.byte 0x80+" REG_RA "\n\t.byte 0x1\n" "\t.align " BSZPTR "\n" "LECIEX:\n\n"); for (i = 0; i < ctx->nsym; i++) { const char *name = ctx->sym[i].name; int32_t size = ctx->sym[i+1].ofs - ctx->sym[i].ofs; if (size == 0) continue; #if LJ_HASFFI if (!strcmp(name, "_lj_vm_ffi_call")) { fcsize = size; continue; } #endif fprintf(ctx->fp, "%s.eh:\n" "LSFDE%d:\n" "\t.set L$set$%d,LEFDE%d-LASFDE%d\n" "\t.long L$set$%d\n" "LASFDE%d:\n" "\t.long LASFDE%d-EH_frame1\n" "\t.long %s-.\n" "\t.long %d\n" "\t.byte 0\n" /* augmentation length */ "\t.byte 0xe\n\t.byte %d\n" /* def_cfa_offset */ #if LJ_64 "\t.byte 0x86\n\t.byte 0x2\n" /* offset rbp */ "\t.byte 0x83\n\t.byte 0x3\n" /* offset rbx */ "\t.byte 0x8f\n\t.byte 0x4\n" /* offset r15 */ "\t.byte 0x8e\n\t.byte 0x5\n" /* offset r14 */ #else "\t.byte 0x84\n\t.byte 0x2\n" /* offset ebp (4 for MACH-O)*/ "\t.byte 0x87\n\t.byte 0x3\n" /* offset edi */ "\t.byte 0x86\n\t.byte 0x4\n" /* offset esi */ "\t.byte 0x83\n\t.byte 0x5\n" /* offset ebx */ #endif "\t.align " BSZPTR "\n" "LEFDE%d:\n\n", name, i, i, i, i, i, i, i, name, size, CFRAME_SIZE, i); } #if LJ_HASFFI if (fcsize) { fprintf(ctx->fp, "EH_frame2:\n" "\t.set L$set$y,LECIEY-LSCIEY\n" "\t.long L$set$y\n" "LSCIEY:\n" "\t.long 0\n" "\t.byte 0x1\n" "\t.ascii \"zR\\0\"\n" "\t.byte 0x1\n" "\t.byte 128-" SZPTR "\n" "\t.byte " REG_RA "\n" "\t.byte 1\n" /* augmentation length */ #if LJ_64 "\t.byte 0x1b\n" /* pcrel|sdata4 */ "\t.byte 0xc\n\t.byte " REG_SP "\n\t.byte " SZPTR "\n" #else "\t.byte 0x1b\n" /* pcrel|sdata4 */ "\t.byte 0xc\n\t.byte 0x5\n\t.byte 0x4\n" /* esp=5 on 32 bit MACH. */ #endif "\t.byte 0x80+" REG_RA "\n\t.byte 0x1\n" "\t.align " BSZPTR "\n" "LECIEY:\n\n"); fprintf(ctx->fp, "_lj_vm_ffi_call.eh:\n" "LSFDEY:\n" "\t.set L$set$yy,LEFDEY-LASFDEY\n" "\t.long L$set$yy\n" "LASFDEY:\n" "\t.long LASFDEY-EH_frame2\n" "\t.long _lj_vm_ffi_call-.\n" "\t.long %d\n" "\t.byte 0\n" /* augmentation length */ #if LJ_64 "\t.byte 0xe\n\t.byte 16\n" /* def_cfa_offset */ "\t.byte 0x86\n\t.byte 0x2\n" /* offset rbp */ "\t.byte 0xd\n\t.byte 0x6\n" /* def_cfa_register rbp */ "\t.byte 0x83\n\t.byte 0x3\n" /* offset rbx */ #else "\t.byte 0xe\n\t.byte 8\n" /* def_cfa_offset */ "\t.byte 0x84\n\t.byte 0x2\n" /* offset ebp (4 for MACH-O)*/ "\t.byte 0xd\n\t.byte 0x4\n" /* def_cfa_register ebp */ "\t.byte 0x83\n\t.byte 0x3\n" /* offset ebx */ #endif "\t.align " BSZPTR "\n" "LEFDEY:\n\n", fcsize); } #endif #if !LJ_64 fprintf(ctx->fp, "\t.non_lazy_symbol_pointer\n" "L_lj_err_unwind_dwarf$non_lazy_ptr:\n" ".indirect_symbol _lj_err_unwind_dwarf\n" ".long 0\n\n"); fprintf(ctx->fp, "\t.section __IMPORT,__jump_table,symbol_stubs,pure_instructions+self_modifying_code,5\n"); { const char *const *xn; for (xn = ctx->extnames; *xn; xn++) if (strncmp(*xn, LABEL_PREFIX, sizeof(LABEL_PREFIX)-1)) fprintf(ctx->fp, "L_%s$stub:\n\t.indirect_symbol _%s\n\t.ascii \"\\364\\364\\364\\364\\364\"\n", *xn, *xn); } #endif fprintf(ctx->fp, ".subsections_via_symbols\n"); } break; #endif default: /* Difficult for other modes. */ break; } } luajit-2.1.0~beta3+dfsg.orig/src/lj_profile.h0000644000175100017510000000065613101703334020412 0ustar ondrejondrej/* ** Low-overhead profiling. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_PROFILE_H #define _LJ_PROFILE_H #include "lj_obj.h" #if LJ_HASPROFILE LJ_FUNC void LJ_FASTCALL lj_profile_interpreter(lua_State *L); #if !LJ_PROFILE_SIGPROF LJ_FUNC void LJ_FASTCALL lj_profile_hook_enter(global_State *g); LJ_FUNC void LJ_FASTCALL lj_profile_hook_leave(global_State *g); #endif #endif #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_trace.h0000644000175100017510000000316313101703334020044 0ustar ondrejondrej/* ** Trace management. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_TRACE_H #define _LJ_TRACE_H #include "lj_obj.h" #if LJ_HASJIT #include "lj_jit.h" #include "lj_dispatch.h" /* Trace errors. */ typedef enum { #define TREDEF(name, msg) LJ_TRERR_##name, #include "lj_traceerr.h" LJ_TRERR__MAX } TraceError; LJ_FUNC_NORET void lj_trace_err(jit_State *J, TraceError e); LJ_FUNC_NORET void lj_trace_err_info(jit_State *J, TraceError e); /* Trace management. */ LJ_FUNC GCtrace * LJ_FASTCALL lj_trace_alloc(lua_State *L, GCtrace *T); LJ_FUNC void LJ_FASTCALL lj_trace_free(global_State *g, GCtrace *T); LJ_FUNC void lj_trace_reenableproto(GCproto *pt); LJ_FUNC void lj_trace_flushproto(global_State *g, GCproto *pt); LJ_FUNC void lj_trace_flush(jit_State *J, TraceNo traceno); LJ_FUNC int lj_trace_flushall(lua_State *L); LJ_FUNC void lj_trace_initstate(global_State *g); LJ_FUNC void lj_trace_freestate(global_State *g); /* Event handling. */ LJ_FUNC void lj_trace_ins(jit_State *J, const BCIns *pc); LJ_FUNCA void LJ_FASTCALL lj_trace_hot(jit_State *J, const BCIns *pc); LJ_FUNCA void LJ_FASTCALL lj_trace_stitch(jit_State *J, const BCIns *pc); LJ_FUNCA int LJ_FASTCALL lj_trace_exit(jit_State *J, void *exptr); /* Signal asynchronous abort of trace or end of trace. */ #define lj_trace_abort(g) (G2J(g)->state &= ~LJ_TRACE_ACTIVE) #define lj_trace_end(J) (J->state = LJ_TRACE_END) #else #define lj_trace_flushall(L) (UNUSED(L), 0) #define lj_trace_initstate(g) UNUSED(g) #define lj_trace_freestate(g) UNUSED(g) #define lj_trace_abort(g) UNUSED(g) #define lj_trace_end(J) UNUSED(J) #endif #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_opt_sink.c0000644000175100017510000001612413101703334020570 0ustar ondrejondrej/* ** SINK: Allocation Sinking and Store Sinking. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #define lj_opt_sink_c #define LUA_CORE #include "lj_obj.h" #if LJ_HASJIT #include "lj_ir.h" #include "lj_jit.h" #include "lj_iropt.h" #include "lj_target.h" /* Some local macros to save typing. Undef'd at the end. */ #define IR(ref) (&J->cur.ir[(ref)]) /* Check whether the store ref points to an eligible allocation. */ static IRIns *sink_checkalloc(jit_State *J, IRIns *irs) { IRIns *ir = IR(irs->op1); if (!irref_isk(ir->op2)) return NULL; /* Non-constant key. */ if (ir->o == IR_HREFK || ir->o == IR_AREF) ir = IR(ir->op1); else if (!(ir->o == IR_HREF || ir->o == IR_NEWREF || ir->o == IR_FREF || ir->o == IR_ADD)) return NULL; /* Unhandled reference type (for XSTORE). */ ir = IR(ir->op1); if (!(ir->o == IR_TNEW || ir->o == IR_TDUP || ir->o == IR_CNEW)) return NULL; /* Not an allocation. */ return ir; /* Return allocation. */ } /* Recursively check whether a value depends on a PHI. */ static int sink_phidep(jit_State *J, IRRef ref) { IRIns *ir = IR(ref); if (irt_isphi(ir->t)) return 1; if (ir->op1 >= REF_FIRST && sink_phidep(J, ir->op1)) return 1; if (ir->op2 >= REF_FIRST && sink_phidep(J, ir->op2)) return 1; return 0; } /* Check whether a value is a sinkable PHI or loop-invariant. */ static int sink_checkphi(jit_State *J, IRIns *ira, IRRef ref) { if (ref >= REF_FIRST) { IRIns *ir = IR(ref); if (irt_isphi(ir->t) || (ir->o == IR_CONV && ir->op2 == IRCONV_NUM_INT && irt_isphi(IR(ir->op1)->t))) { ira->prev++; return 1; /* Sinkable PHI. */ } /* Otherwise the value must be loop-invariant. */ return ref < J->loopref && !sink_phidep(J, ref); } return 1; /* Constant (non-PHI). */ } /* Mark non-sinkable allocations using single-pass backward propagation. ** ** Roots for the marking process are: ** - Some PHIs or snapshots (see below). ** - Non-PHI, non-constant values stored to PHI allocations. ** - All guards. ** - Any remaining loads not eliminated by store-to-load forwarding. ** - Stores with non-constant keys. ** - All stored values. */ static void sink_mark_ins(jit_State *J) { IRIns *ir, *irlast = IR(J->cur.nins-1); for (ir = irlast ; ; ir--) { switch (ir->o) { case IR_BASE: return; /* Finished. */ case IR_CALLL: /* IRCALL_lj_tab_len */ case IR_ALOAD: case IR_HLOAD: case IR_XLOAD: case IR_TBAR: irt_setmark(IR(ir->op1)->t); /* Mark ref for remaining loads. */ break; case IR_FLOAD: if (irt_ismarked(ir->t) || ir->op2 == IRFL_TAB_META) irt_setmark(IR(ir->op1)->t); /* Mark table for remaining loads. */ break; case IR_ASTORE: case IR_HSTORE: case IR_FSTORE: case IR_XSTORE: { IRIns *ira = sink_checkalloc(J, ir); if (!ira || (irt_isphi(ira->t) && !sink_checkphi(J, ira, ir->op2))) irt_setmark(IR(ir->op1)->t); /* Mark ineligible ref. */ irt_setmark(IR(ir->op2)->t); /* Mark stored value. */ break; } #if LJ_HASFFI case IR_CNEWI: if (irt_isphi(ir->t) && (!sink_checkphi(J, ir, ir->op2) || (LJ_32 && ir+1 < irlast && (ir+1)->o == IR_HIOP && !sink_checkphi(J, ir, (ir+1)->op2)))) irt_setmark(ir->t); /* Mark ineligible allocation. */ /* fallthrough */ #endif case IR_USTORE: irt_setmark(IR(ir->op2)->t); /* Mark stored value. */ break; #if LJ_HASFFI case IR_CALLXS: #endif case IR_CALLS: irt_setmark(IR(ir->op1)->t); /* Mark (potentially) stored values. */ break; case IR_PHI: { IRIns *irl = IR(ir->op1), *irr = IR(ir->op2); irl->prev = irr->prev = 0; /* Clear PHI value counts. */ if (irl->o == irr->o && (irl->o == IR_TNEW || irl->o == IR_TDUP || (LJ_HASFFI && (irl->o == IR_CNEW || irl->o == IR_CNEWI)))) break; irt_setmark(irl->t); irt_setmark(irr->t); break; } default: if (irt_ismarked(ir->t) || irt_isguard(ir->t)) { /* Propagate mark. */ if (ir->op1 >= REF_FIRST) irt_setmark(IR(ir->op1)->t); if (ir->op2 >= REF_FIRST) irt_setmark(IR(ir->op2)->t); } break; } } } /* Mark all instructions referenced by a snapshot. */ static void sink_mark_snap(jit_State *J, SnapShot *snap) { SnapEntry *map = &J->cur.snapmap[snap->mapofs]; MSize n, nent = snap->nent; for (n = 0; n < nent; n++) { IRRef ref = snap_ref(map[n]); if (!irref_isk(ref)) irt_setmark(IR(ref)->t); } } /* Iteratively remark PHI refs with differing marks or PHI value counts. */ static void sink_remark_phi(jit_State *J) { IRIns *ir; int remark; do { remark = 0; for (ir = IR(J->cur.nins-1); ir->o == IR_PHI; ir--) { IRIns *irl = IR(ir->op1), *irr = IR(ir->op2); if (!((irl->t.irt ^ irr->t.irt) & IRT_MARK) && irl->prev == irr->prev) continue; remark |= (~(irl->t.irt & irr->t.irt) & IRT_MARK); irt_setmark(IR(ir->op1)->t); irt_setmark(IR(ir->op2)->t); } } while (remark); } /* Sweep instructions and tag sunken allocations and stores. */ static void sink_sweep_ins(jit_State *J) { IRIns *ir, *irbase = IR(REF_BASE); for (ir = IR(J->cur.nins-1) ; ir >= irbase; ir--) { switch (ir->o) { case IR_ASTORE: case IR_HSTORE: case IR_FSTORE: case IR_XSTORE: { IRIns *ira = sink_checkalloc(J, ir); if (ira && !irt_ismarked(ira->t)) { int delta = (int)(ir - ira); ir->prev = REGSP(RID_SINK, delta > 255 ? 255 : delta); } else { ir->prev = REGSP_INIT; } break; } case IR_NEWREF: if (!irt_ismarked(IR(ir->op1)->t)) { ir->prev = REGSP(RID_SINK, 0); } else { irt_clearmark(ir->t); ir->prev = REGSP_INIT; } break; #if LJ_HASFFI case IR_CNEW: case IR_CNEWI: #endif case IR_TNEW: case IR_TDUP: if (!irt_ismarked(ir->t)) { ir->t.irt &= ~IRT_GUARD; ir->prev = REGSP(RID_SINK, 0); J->cur.sinktags = 1; /* Signal present SINK tags to assembler. */ } else { irt_clearmark(ir->t); ir->prev = REGSP_INIT; } break; case IR_PHI: { IRIns *ira = IR(ir->op2); if (!irt_ismarked(ira->t) && (ira->o == IR_TNEW || ira->o == IR_TDUP || (LJ_HASFFI && (ira->o == IR_CNEW || ira->o == IR_CNEWI)))) { ir->prev = REGSP(RID_SINK, 0); } else { ir->prev = REGSP_INIT; } break; } default: irt_clearmark(ir->t); ir->prev = REGSP_INIT; break; } } for (ir = IR(J->cur.nk); ir < irbase; ir++) { irt_clearmark(ir->t); ir->prev = REGSP_INIT; if (irt_is64(ir->t) && ir->o != IR_KNULL) ir++; } } /* Allocation sinking and store sinking. ** ** 1. Mark all non-sinkable allocations. ** 2. Then sink all remaining allocations and the related stores. */ void lj_opt_sink(jit_State *J) { const uint32_t need = (JIT_F_OPT_SINK|JIT_F_OPT_FWD| JIT_F_OPT_DCE|JIT_F_OPT_CSE|JIT_F_OPT_FOLD); if ((J->flags & need) == need && (J->chain[IR_TNEW] || J->chain[IR_TDUP] || (LJ_HASFFI && (J->chain[IR_CNEW] || J->chain[IR_CNEWI])))) { if (!J->loopref) sink_mark_snap(J, &J->cur.snap[J->cur.nsnap-1]); sink_mark_ins(J); if (J->loopref) sink_remark_phi(J); sink_sweep_ins(J); } } #undef IR #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_recdef.h0000644000175100017510000000507413101703334020201 0ustar ondrejondrej/* This is a generated file. DO NOT EDIT! */ static const uint16_t recff_idmap[] = { 0, 0x0100, 0x0200, 0x0300, 0, 0, 0x0400, 0x0500, 0x0600, 0x0700, 0, 0, 0x0800, 0x0900, 0x0a00, 0, 0x0b00, 0x0c00, 0x0d00, 0, 0x0e00, 0x0f00, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x1000, 0x1100+(IRFPM_FLOOR), 0x1100+(IRFPM_CEIL), 0x1200+(IRFPM_SQRT), 0x1200+(IRFPM_LOG10), 0x1200+(IRFPM_EXP), 0x1200+(IRFPM_SIN), 0x1200+(IRFPM_COS), 0x1200+(IRFPM_TAN), 0x1300+(FF_math_asin), 0x1300+(FF_math_acos), 0x1300+(FF_math_atan), 0x1400+(IRCALL_sinh), 0x1400+(IRCALL_cosh), 0x1400+(IRCALL_tanh), 0, 0x1500, 0x1600, 0x1600, 0x1700, 0x1800, 0x1900, 0, 0x1a00, 0x1b00+(IR_MIN), 0x1b00+(IR_MAX), 0x1c00, 0, 0x1d00+(IR_TOBIT), 0x1d00+(IR_BNOT), 0x1d00+(IR_BSWAP), 0x1e00+(IR_BSHL), 0x1e00+(IR_BSHR), 0x1e00+(IR_BSAR), 0x1e00+(IR_BROL), 0x1e00+(IR_BROR), 0x1f00+(IR_BAND), 0x1f00+(IR_BOR), 0x1f00+(IR_BXOR), 0, 0x2000, 0x2100+(0), 0, 0x2100+(1), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x2200, 0, 0x2300, 0x2400, 0, 0, 0, 0, 0x2500+(0), 0x2600+(0), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x2500+(GCROOT_IO_OUTPUT), 0x2600+(GCROOT_IO_OUTPUT), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x2700+(0), 0x2700+(1), 0x2800+(MM_eq), 0x2800+(MM_len), 0x2800+(MM_lt), 0x2800+(MM_le), 0x2800+(MM_concat), 0x2900, 0x2800+(MM_add), 0x2800+(MM_sub), 0x2800+(MM_mul), 0x2800+(MM_div), 0x2800+(MM_mod), 0x2800+(MM_pow), 0x2800+(MM_unm), 0, 0, 0, 0x2a00+(1), 0x2a00+(0), 0, 0, 0, 0, 0x2b00, 0x2b00, 0x2c00, 0x2d00, 0x2e00+(FF_ffi_sizeof), 0x2e00+(FF_ffi_alignof), 0x2e00+(FF_ffi_offsetof), 0x2f00, 0x3000, 0x3100, 0x3200, 0x3300, 0, 0x3400 }; static const RecordFunc recff_func[] = { recff_nyi, recff_c, recff_assert, recff_type, recff_ipairs_aux, recff_ipairs, recff_getmetatable, recff_setmetatable, recff_rawget, recff_rawset, recff_rawequal, recff_select, recff_tonumber, recff_tostring, recff_pcall, recff_xpcall, recff_math_abs, recff_math_round, recff_math_unary, recff_math_atrig, recff_math_htrig, recff_math_modf, recff_math_degrad, recff_math_log, recff_math_atan2, recff_math_pow, recff_math_ldexp, recff_math_minmax, recff_math_random, recff_bit_unary, recff_bit_shift, recff_bit_nary, recff_string_len, recff_string_range, recff_table_getn, recff_table_insert, recff_table_remove, recff_io_write, recff_io_flush, recff_cdata_index, recff_cdata_arith, recff_cdata_call, recff_clib_index, recff_ffi_new, recff_ffi_typeof, recff_ffi_istype, recff_ffi_xof, recff_ffi_errno, recff_ffi_string, recff_ffi_copy, recff_ffi_fill, recff_ffi_abi, recff_ffi_gc }; luajit-2.1.0~beta3+dfsg.orig/src/lj_strscan.h0000644000175100017510000000210013101703334020411 0ustar ondrejondrej/* ** String scanning. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_STRSCAN_H #define _LJ_STRSCAN_H #include "lj_obj.h" /* Options for accepted/returned formats. */ #define STRSCAN_OPT_TOINT 0x01 /* Convert to int32_t, if possible. */ #define STRSCAN_OPT_TONUM 0x02 /* Always convert to double. */ #define STRSCAN_OPT_IMAG 0x04 #define STRSCAN_OPT_LL 0x08 #define STRSCAN_OPT_C 0x10 /* Returned format. */ typedef enum { STRSCAN_ERROR, STRSCAN_NUM, STRSCAN_IMAG, STRSCAN_INT, STRSCAN_U32, STRSCAN_I64, STRSCAN_U64, } StrScanFmt; LJ_FUNC StrScanFmt lj_strscan_scan(const uint8_t *p, TValue *o, uint32_t opt); LJ_FUNC int LJ_FASTCALL lj_strscan_num(GCstr *str, TValue *o); #if LJ_DUALNUM LJ_FUNC int LJ_FASTCALL lj_strscan_number(GCstr *str, TValue *o); #else #define lj_strscan_number(s, o) lj_strscan_num((s), (o)) #endif /* Check for number or convert string to number/int in-place (!). */ static LJ_AINLINE int lj_strscan_numberobj(TValue *o) { return tvisnumber(o) || (tvisstr(o) && lj_strscan_number(strV(o), o)); } #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_emit_ppc.h0000644000175100017510000001564313101703334020554 0ustar ondrejondrej/* ** PPC instruction emitter. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ /* -- Emit basic instructions --------------------------------------------- */ static void emit_tab(ASMState *as, PPCIns pi, Reg rt, Reg ra, Reg rb) { *--as->mcp = pi | PPCF_T(rt) | PPCF_A(ra) | PPCF_B(rb); } #define emit_asb(as, pi, ra, rs, rb) emit_tab(as, (pi), (rs), (ra), (rb)) #define emit_as(as, pi, ra, rs) emit_tab(as, (pi), (rs), (ra), 0) #define emit_ab(as, pi, ra, rb) emit_tab(as, (pi), 0, (ra), (rb)) static void emit_tai(ASMState *as, PPCIns pi, Reg rt, Reg ra, int32_t i) { *--as->mcp = pi | PPCF_T(rt) | PPCF_A(ra) | (i & 0xffff); } #define emit_ti(as, pi, rt, i) emit_tai(as, (pi), (rt), 0, (i)) #define emit_ai(as, pi, ra, i) emit_tai(as, (pi), 0, (ra), (i)) #define emit_asi(as, pi, ra, rs, i) emit_tai(as, (pi), (rs), (ra), (i)) #define emit_fab(as, pi, rf, ra, rb) \ emit_tab(as, (pi), (rf)&31, (ra)&31, (rb)&31) #define emit_fb(as, pi, rf, rb) emit_tab(as, (pi), (rf)&31, 0, (rb)&31) #define emit_fac(as, pi, rf, ra, rc) \ emit_tab(as, (pi) | PPCF_C((rc) & 31), (rf)&31, (ra)&31, 0) #define emit_facb(as, pi, rf, ra, rc, rb) \ emit_tab(as, (pi) | PPCF_C((rc) & 31), (rf)&31, (ra)&31, (rb)&31) #define emit_fai(as, pi, rf, ra, i) emit_tai(as, (pi), (rf)&31, (ra), (i)) static void emit_rot(ASMState *as, PPCIns pi, Reg ra, Reg rs, int32_t n, int32_t b, int32_t e) { *--as->mcp = pi | PPCF_T(rs) | PPCF_A(ra) | PPCF_B(n) | PPCF_MB(b) | PPCF_ME(e); } static void emit_slwi(ASMState *as, Reg ra, Reg rs, int32_t n) { lua_assert(n >= 0 && n < 32); emit_rot(as, PPCI_RLWINM, ra, rs, n, 0, 31-n); } static void emit_rotlwi(ASMState *as, Reg ra, Reg rs, int32_t n) { lua_assert(n >= 0 && n < 32); emit_rot(as, PPCI_RLWINM, ra, rs, n, 0, 31); } /* -- Emit loads/stores --------------------------------------------------- */ /* Prefer rematerialization of BASE/L from global_State over spills. */ #define emit_canremat(ref) ((ref) <= REF_BASE) /* Try to find a one step delta relative to another constant. */ static int emit_kdelta1(ASMState *as, Reg t, int32_t i) { RegSet work = ~as->freeset & RSET_GPR; while (work) { Reg r = rset_picktop(work); IRRef ref = regcost_ref(as->cost[r]); lua_assert(r != t); if (ref < ASMREF_L) { int32_t delta = i - (ra_iskref(ref) ? ra_krefk(as, ref) : IR(ref)->i); if (checki16(delta)) { emit_tai(as, PPCI_ADDI, t, r, delta); return 1; } } rset_clear(work, r); } return 0; /* Failed. */ } /* Load a 32 bit constant into a GPR. */ static void emit_loadi(ASMState *as, Reg r, int32_t i) { if (checki16(i)) { emit_ti(as, PPCI_LI, r, i); } else { if ((i & 0xffff)) { int32_t jgl = i32ptr(J2G(as->J)); if ((uint32_t)(i-jgl) < 65536) { emit_tai(as, PPCI_ADDI, r, RID_JGL, i-jgl-32768); return; } else if (emit_kdelta1(as, r, i)) { return; } emit_asi(as, PPCI_ORI, r, r, i); } emit_ti(as, PPCI_LIS, r, (i >> 16)); } } #define emit_loada(as, r, addr) emit_loadi(as, (r), i32ptr((addr))) static Reg ra_allock(ASMState *as, intptr_t k, RegSet allow); /* Get/set from constant pointer. */ static void emit_lsptr(ASMState *as, PPCIns pi, Reg r, void *p, RegSet allow) { int32_t jgl = i32ptr(J2G(as->J)); int32_t i = i32ptr(p); Reg base; if ((uint32_t)(i-jgl) < 65536) { i = i-jgl-32768; base = RID_JGL; } else { base = ra_allock(as, i-(int16_t)i, allow); } emit_tai(as, pi, r, base, i); } #define emit_loadk64(as, r, ir) \ emit_lsptr(as, PPCI_LFD, ((r) & 31), (void *)&ir_knum((ir))->u64, RSET_GPR) /* Get/set global_State fields. */ static void emit_lsglptr(ASMState *as, PPCIns pi, Reg r, int32_t ofs) { emit_tai(as, pi, r, RID_JGL, ofs-32768); } #define emit_getgl(as, r, field) \ emit_lsglptr(as, PPCI_LWZ, (r), (int32_t)offsetof(global_State, field)) #define emit_setgl(as, r, field) \ emit_lsglptr(as, PPCI_STW, (r), (int32_t)offsetof(global_State, field)) /* Trace number is determined from per-trace exit stubs. */ #define emit_setvmstate(as, i) UNUSED(i) /* -- Emit control-flow instructions -------------------------------------- */ /* Label for internal jumps. */ typedef MCode *MCLabel; /* Return label pointing to current PC. */ #define emit_label(as) ((as)->mcp) static void emit_condbranch(ASMState *as, PPCIns pi, PPCCC cc, MCode *target) { MCode *p = --as->mcp; ptrdiff_t delta = (char *)target - (char *)p; lua_assert(((delta + 0x8000) >> 16) == 0); pi ^= (delta & 0x8000) * (PPCF_Y/0x8000); *p = pi | PPCF_CC(cc) | ((uint32_t)delta & 0xffffu); } static void emit_jmp(ASMState *as, MCode *target) { MCode *p = --as->mcp; ptrdiff_t delta = (char *)target - (char *)p; *p = PPCI_B | (delta & 0x03fffffcu); } static void emit_call(ASMState *as, void *target) { MCode *p = --as->mcp; ptrdiff_t delta = (char *)target - (char *)p; if ((((delta>>2) + 0x00800000) >> 24) == 0) { *p = PPCI_BL | (delta & 0x03fffffcu); } else { /* Target out of range: need indirect call. Don't use arg reg. */ RegSet allow = RSET_GPR & ~RSET_RANGE(RID_R0, REGARG_LASTGPR+1); Reg r = ra_allock(as, i32ptr(target), allow); *p = PPCI_BCTRL; p[-1] = PPCI_MTCTR | PPCF_T(r); as->mcp = p-1; } } /* -- Emit generic operations --------------------------------------------- */ #define emit_mr(as, dst, src) \ emit_asb(as, PPCI_MR, (dst), (src), (src)) /* Generic move between two regs. */ static void emit_movrr(ASMState *as, IRIns *ir, Reg dst, Reg src) { UNUSED(ir); if (dst < RID_MAX_GPR) emit_mr(as, dst, src); else emit_fb(as, PPCI_FMR, dst, src); } /* Generic load of register with base and (small) offset address. */ static void emit_loadofs(ASMState *as, IRIns *ir, Reg r, Reg base, int32_t ofs) { if (r < RID_MAX_GPR) emit_tai(as, PPCI_LWZ, r, base, ofs); else emit_fai(as, irt_isnum(ir->t) ? PPCI_LFD : PPCI_LFS, r, base, ofs); } /* Generic store of register with base and (small) offset address. */ static void emit_storeofs(ASMState *as, IRIns *ir, Reg r, Reg base, int32_t ofs) { if (r < RID_MAX_GPR) emit_tai(as, PPCI_STW, r, base, ofs); else emit_fai(as, irt_isnum(ir->t) ? PPCI_STFD : PPCI_STFS, r, base, ofs); } /* Emit a compare (for equality) with a constant operand. */ static void emit_cmpi(ASMState *as, Reg r, int32_t k) { if (checki16(k)) { emit_ai(as, PPCI_CMPWI, r, k); } else if (checku16(k)) { emit_ai(as, PPCI_CMPLWI, r, k); } else { emit_ai(as, PPCI_CMPLWI, RID_TMP, k); emit_asi(as, PPCI_XORIS, RID_TMP, r, (k >> 16)); } } /* Add offset to pointer. */ static void emit_addptr(ASMState *as, Reg r, int32_t ofs) { if (ofs) { emit_tai(as, PPCI_ADDI, r, r, ofs); if (!checki16(ofs)) emit_tai(as, PPCI_ADDIS, r, r, (ofs + 32768) >> 16); } } static void emit_spsub(ASMState *as, int32_t ofs) { if (ofs) { emit_tai(as, PPCI_STWU, RID_TMP, RID_SP, -ofs); emit_tai(as, PPCI_ADDI, RID_TMP, RID_SP, CFRAME_SIZE + (as->parent ? as->parent->spadjust : 0)); } } luajit-2.1.0~beta3+dfsg.orig/src/ljamalg.c0000644000175100017510000000453213101703334017664 0ustar ondrejondrej/* ** LuaJIT core and libraries amalgamation. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ /* +--------------------------------------------------------------------------+ | WARNING: Compiling the amalgamation needs a lot of virtual memory | | (around 300 MB with GCC 4.x)! If you don't have enough physical memory | | your machine will start swapping to disk and the compile will not finish | | within a reasonable amount of time. | | So either compile on a bigger machine or use the non-amalgamated build. | +--------------------------------------------------------------------------+ */ #define ljamalg_c #define LUA_CORE /* To get the mremap prototype. Must be defined before any system includes. */ #if defined(__linux__) && !defined(_GNU_SOURCE) #define _GNU_SOURCE #endif #ifndef WINVER #define WINVER 0x0501 #endif #include "lua.h" #include "lauxlib.h" #include "lj_gc.c" #include "lj_err.c" #include "lj_char.c" #include "lj_bc.c" #include "lj_obj.c" #include "lj_buf.c" #include "lj_str.c" #include "lj_tab.c" #include "lj_func.c" #include "lj_udata.c" #include "lj_meta.c" #include "lj_debug.c" #include "lj_state.c" #include "lj_dispatch.c" #include "lj_vmevent.c" #include "lj_vmmath.c" #include "lj_strscan.c" #include "lj_strfmt.c" #include "lj_strfmt_num.c" #include "lj_api.c" #include "lj_profile.c" #include "lj_lex.c" #include "lj_parse.c" #include "lj_bcread.c" #include "lj_bcwrite.c" #include "lj_load.c" #include "lj_ctype.c" #include "lj_cdata.c" #include "lj_cconv.c" #include "lj_ccall.c" #include "lj_ccallback.c" #include "lj_carith.c" #include "lj_clib.c" #include "lj_cparse.c" #include "lj_lib.c" #include "lj_ir.c" #include "lj_opt_mem.c" #include "lj_opt_fold.c" #include "lj_opt_narrow.c" #include "lj_opt_dce.c" #include "lj_opt_loop.c" #include "lj_opt_split.c" #include "lj_opt_sink.c" #include "lj_mcode.c" #include "lj_snap.c" #include "lj_record.c" #include "lj_crecord.c" #include "lj_ffrecord.c" #include "lj_asm.c" #include "lj_trace.c" #include "lj_gdbjit.c" #include "lj_alloc.c" #include "lib_aux.c" #include "lib_base.c" #include "lib_math.c" #include "lib_string.c" #include "lib_table.c" #include "lib_io.c" #include "lib_os.c" #include "lib_package.c" #include "lib_debug.c" #include "lib_bit.c" #include "lib_jit.c" #include "lib_ffi.c" #include "lib_init.c" luajit-2.1.0~beta3+dfsg.orig/src/lj_meta.h0000644000175100017510000000275713101703334017704 0ustar ondrejondrej/* ** Metamethod handling. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_META_H #define _LJ_META_H #include "lj_obj.h" /* Metamethod handling */ LJ_FUNC void lj_meta_init(lua_State *L); LJ_FUNC cTValue *lj_meta_cache(GCtab *mt, MMS mm, GCstr *name); LJ_FUNC cTValue *lj_meta_lookup(lua_State *L, cTValue *o, MMS mm); #if LJ_HASFFI LJ_FUNC int lj_meta_tailcall(lua_State *L, cTValue *tv); #endif #define lj_meta_fastg(g, mt, mm) \ ((mt) == NULL ? NULL : ((mt)->nomm & (1u<<(mm))) ? NULL : \ lj_meta_cache(mt, mm, mmname_str(g, mm))) #define lj_meta_fast(L, mt, mm) lj_meta_fastg(G(L), mt, mm) /* C helpers for some instructions, called from assembler VM. */ LJ_FUNCA cTValue *lj_meta_tget(lua_State *L, cTValue *o, cTValue *k); LJ_FUNCA TValue *lj_meta_tset(lua_State *L, cTValue *o, cTValue *k); LJ_FUNCA TValue *lj_meta_arith(lua_State *L, TValue *ra, cTValue *rb, cTValue *rc, BCReg op); LJ_FUNCA TValue *lj_meta_cat(lua_State *L, TValue *top, int left); LJ_FUNCA TValue * LJ_FASTCALL lj_meta_len(lua_State *L, cTValue *o); LJ_FUNCA TValue *lj_meta_equal(lua_State *L, GCobj *o1, GCobj *o2, int ne); LJ_FUNCA TValue * LJ_FASTCALL lj_meta_equal_cd(lua_State *L, BCIns ins); LJ_FUNCA TValue *lj_meta_comp(lua_State *L, cTValue *o1, cTValue *o2, int op); LJ_FUNCA void lj_meta_istype(lua_State *L, BCReg ra, BCReg tp); LJ_FUNCA void lj_meta_call(lua_State *L, TValue *func, TValue *top); LJ_FUNCA void LJ_FASTCALL lj_meta_for(lua_State *L, TValue *o); #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_clib.h0000644000175100017510000000136213101703334017656 0ustar ondrejondrej/* ** FFI C library loader. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_CLIB_H #define _LJ_CLIB_H #include "lj_obj.h" #if LJ_HASFFI /* Namespace for C library indexing. */ #define CLNS_INDEX ((1u<env. */ } CLibrary; LJ_FUNC TValue *lj_clib_index(lua_State *L, CLibrary *cl, GCstr *name); LJ_FUNC void lj_clib_load(lua_State *L, GCtab *mt, GCstr *name, int global); LJ_FUNC void lj_clib_unload(CLibrary *cl); LJ_FUNC void lj_clib_default(lua_State *L, GCtab *mt); #endif #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_opt_loop.c0000644000175100017510000003605413101703334020601 0ustar ondrejondrej/* ** LOOP: Loop Optimizations. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #define lj_opt_loop_c #define LUA_CORE #include "lj_obj.h" #if LJ_HASJIT #include "lj_err.h" #include "lj_buf.h" #include "lj_ir.h" #include "lj_jit.h" #include "lj_iropt.h" #include "lj_trace.h" #include "lj_snap.h" #include "lj_vm.h" /* Loop optimization: ** ** Traditional Loop-Invariant Code Motion (LICM) splits the instructions ** of a loop into invariant and variant instructions. The invariant ** instructions are hoisted out of the loop and only the variant ** instructions remain inside the loop body. ** ** Unfortunately LICM is mostly useless for compiling dynamic languages. ** The IR has many guards and most of the subsequent instructions are ** control-dependent on them. The first non-hoistable guard would ** effectively prevent hoisting of all subsequent instructions. ** ** That's why we use a special form of unrolling using copy-substitution, ** combined with redundancy elimination: ** ** The recorded instruction stream is re-emitted to the compiler pipeline ** with substituted operands. The substitution table is filled with the ** refs returned by re-emitting each instruction. This can be done ** on-the-fly, because the IR is in strict SSA form, where every ref is ** defined before its use. ** ** This aproach generates two code sections, separated by the LOOP ** instruction: ** ** 1. The recorded instructions form a kind of pre-roll for the loop. It ** contains a mix of invariant and variant instructions and performs ** exactly one loop iteration (but not necessarily the 1st iteration). ** ** 2. The loop body contains only the variant instructions and performs ** all remaining loop iterations. ** ** On first sight that looks like a waste of space, because the variant ** instructions are present twice. But the key insight is that the ** pre-roll honors the control-dependencies for *both* the pre-roll itself ** *and* the loop body! ** ** It also means one doesn't have to explicitly model control-dependencies ** (which, BTW, wouldn't help LICM much). And it's much easier to ** integrate sparse snapshotting with this approach. ** ** One of the nicest aspects of this approach is that all of the ** optimizations of the compiler pipeline (FOLD, CSE, FWD, etc.) can be ** reused with only minor restrictions (e.g. one should not fold ** instructions across loop-carried dependencies). ** ** But in general all optimizations can be applied which only need to look ** backwards into the generated instruction stream. At any point in time ** during the copy-substitution process this contains both a static loop ** iteration (the pre-roll) and a dynamic one (from the to-be-copied ** instruction up to the end of the partial loop body). ** ** Since control-dependencies are implicitly kept, CSE also applies to all ** kinds of guards. The major advantage is that all invariant guards can ** be hoisted, too. ** ** Load/store forwarding works across loop iterations, too. This is ** important if loop-carried dependencies are kept in upvalues or tables. ** E.g. 'self.idx = self.idx + 1' deep down in some OO-style method may ** become a forwarded loop-recurrence after inlining. ** ** Since the IR is in SSA form, loop-carried dependencies have to be ** modeled with PHI instructions. The potential candidates for PHIs are ** collected on-the-fly during copy-substitution. After eliminating the ** redundant ones, PHI instructions are emitted *below* the loop body. ** ** Note that this departure from traditional SSA form doesn't change the ** semantics of the PHI instructions themselves. But it greatly simplifies ** on-the-fly generation of the IR and the machine code. */ /* Some local macros to save typing. Undef'd at the end. */ #define IR(ref) (&J->cur.ir[(ref)]) /* Pass IR on to next optimization in chain (FOLD). */ #define emitir(ot, a, b) (lj_ir_set(J, (ot), (a), (b)), lj_opt_fold(J)) /* Emit raw IR without passing through optimizations. */ #define emitir_raw(ot, a, b) (lj_ir_set(J, (ot), (a), (b)), lj_ir_emit(J)) /* -- PHI elimination ----------------------------------------------------- */ /* Emit or eliminate collected PHIs. */ static void loop_emit_phi(jit_State *J, IRRef1 *subst, IRRef1 *phi, IRRef nphi, SnapNo onsnap) { int passx = 0; IRRef i, j, nslots; IRRef invar = J->chain[IR_LOOP]; /* Pass #1: mark redundant and potentially redundant PHIs. */ for (i = 0, j = 0; i < nphi; i++) { IRRef lref = phi[i]; IRRef rref = subst[lref]; if (lref == rref || rref == REF_DROP) { /* Invariants are redundant. */ irt_clearphi(IR(lref)->t); } else { phi[j++] = (IRRef1)lref; if (!(IR(rref)->op1 == lref || IR(rref)->op2 == lref)) { /* Quick check for simple recurrences failed, need pass2. */ irt_setmark(IR(lref)->t); passx = 1; } } } nphi = j; /* Pass #2: traverse variant part and clear marks of non-redundant PHIs. */ if (passx) { SnapNo s; for (i = J->cur.nins-1; i > invar; i--) { IRIns *ir = IR(i); if (!irref_isk(ir->op2)) irt_clearmark(IR(ir->op2)->t); if (!irref_isk(ir->op1)) { irt_clearmark(IR(ir->op1)->t); if (ir->op1 < invar && ir->o >= IR_CALLN && ir->o <= IR_CARG) { /* ORDER IR */ ir = IR(ir->op1); while (ir->o == IR_CARG) { if (!irref_isk(ir->op2)) irt_clearmark(IR(ir->op2)->t); if (irref_isk(ir->op1)) break; ir = IR(ir->op1); irt_clearmark(ir->t); } } } } for (s = J->cur.nsnap-1; s >= onsnap; s--) { SnapShot *snap = &J->cur.snap[s]; SnapEntry *map = &J->cur.snapmap[snap->mapofs]; MSize n, nent = snap->nent; for (n = 0; n < nent; n++) { IRRef ref = snap_ref(map[n]); if (!irref_isk(ref)) irt_clearmark(IR(ref)->t); } } } /* Pass #3: add PHIs for variant slots without a corresponding SLOAD. */ nslots = J->baseslot+J->maxslot; for (i = 1; i < nslots; i++) { IRRef ref = tref_ref(J->slot[i]); while (!irref_isk(ref) && ref != subst[ref]) { IRIns *ir = IR(ref); irt_clearmark(ir->t); /* Unmark potential uses, too. */ if (irt_isphi(ir->t) || irt_ispri(ir->t)) break; irt_setphi(ir->t); if (nphi >= LJ_MAX_PHI) lj_trace_err(J, LJ_TRERR_PHIOV); phi[nphi++] = (IRRef1)ref; ref = subst[ref]; if (ref > invar) break; } } /* Pass #4: propagate non-redundant PHIs. */ while (passx) { passx = 0; for (i = 0; i < nphi; i++) { IRRef lref = phi[i]; IRIns *ir = IR(lref); if (!irt_ismarked(ir->t)) { /* Propagate only from unmarked PHIs. */ IRIns *irr = IR(subst[lref]); if (irt_ismarked(irr->t)) { /* Right ref points to other PHI? */ irt_clearmark(irr->t); /* Mark that PHI as non-redundant. */ passx = 1; /* Retry. */ } } } } /* Pass #5: emit PHI instructions or eliminate PHIs. */ for (i = 0; i < nphi; i++) { IRRef lref = phi[i]; IRIns *ir = IR(lref); if (!irt_ismarked(ir->t)) { /* Emit PHI if not marked. */ IRRef rref = subst[lref]; if (rref > invar) irt_setphi(IR(rref)->t); emitir_raw(IRT(IR_PHI, irt_type(ir->t)), lref, rref); } else { /* Otherwise eliminate PHI. */ irt_clearmark(ir->t); irt_clearphi(ir->t); } } } /* -- Loop unrolling using copy-substitution ------------------------------ */ /* Copy-substitute snapshot. */ static void loop_subst_snap(jit_State *J, SnapShot *osnap, SnapEntry *loopmap, IRRef1 *subst) { SnapEntry *nmap, *omap = &J->cur.snapmap[osnap->mapofs]; SnapEntry *nextmap = &J->cur.snapmap[snap_nextofs(&J->cur, osnap)]; MSize nmapofs; MSize on, ln, nn, onent = osnap->nent; BCReg nslots = osnap->nslots; SnapShot *snap = &J->cur.snap[J->cur.nsnap]; if (irt_isguard(J->guardemit)) { /* Guard inbetween? */ nmapofs = J->cur.nsnapmap; J->cur.nsnap++; /* Add new snapshot. */ } else { /* Otherwise overwrite previous snapshot. */ snap--; nmapofs = snap->mapofs; } J->guardemit.irt = 0; /* Setup new snapshot. */ snap->mapofs = (uint16_t)nmapofs; snap->ref = (IRRef1)J->cur.nins; snap->nslots = nslots; snap->topslot = osnap->topslot; snap->count = 0; nmap = &J->cur.snapmap[nmapofs]; /* Substitute snapshot slots. */ on = ln = nn = 0; while (on < onent) { SnapEntry osn = omap[on], lsn = loopmap[ln]; if (snap_slot(lsn) < snap_slot(osn)) { /* Copy slot from loop map. */ nmap[nn++] = lsn; ln++; } else { /* Copy substituted slot from snapshot map. */ if (snap_slot(lsn) == snap_slot(osn)) ln++; /* Shadowed loop slot. */ if (!irref_isk(snap_ref(osn))) osn = snap_setref(osn, subst[snap_ref(osn)]); nmap[nn++] = osn; on++; } } while (snap_slot(loopmap[ln]) < nslots) /* Copy remaining loop slots. */ nmap[nn++] = loopmap[ln++]; snap->nent = (uint8_t)nn; omap += onent; nmap += nn; while (omap < nextmap) /* Copy PC + frame links. */ *nmap++ = *omap++; J->cur.nsnapmap = (uint16_t)(nmap - J->cur.snapmap); } typedef struct LoopState { jit_State *J; IRRef1 *subst; MSize sizesubst; } LoopState; /* Unroll loop. */ static void loop_unroll(LoopState *lps) { jit_State *J = lps->J; IRRef1 phi[LJ_MAX_PHI]; uint32_t nphi = 0; IRRef1 *subst; SnapNo onsnap; SnapShot *osnap, *loopsnap; SnapEntry *loopmap, *psentinel; IRRef ins, invar; /* Allocate substitution table. ** Only non-constant refs in [REF_BIAS,invar) are valid indexes. */ invar = J->cur.nins; lps->sizesubst = invar - REF_BIAS; lps->subst = lj_mem_newvec(J->L, lps->sizesubst, IRRef1); subst = lps->subst - REF_BIAS; subst[REF_BASE] = REF_BASE; /* LOOP separates the pre-roll from the loop body. */ emitir_raw(IRTG(IR_LOOP, IRT_NIL), 0, 0); /* Grow snapshot buffer and map for copy-substituted snapshots. ** Need up to twice the number of snapshots minus #0 and loop snapshot. ** Need up to twice the number of entries plus fallback substitutions ** from the loop snapshot entries for each new snapshot. ** Caveat: both calls may reallocate J->cur.snap and J->cur.snapmap! */ onsnap = J->cur.nsnap; lj_snap_grow_buf(J, 2*onsnap-2); lj_snap_grow_map(J, J->cur.nsnapmap*2+(onsnap-2)*J->cur.snap[onsnap-1].nent); /* The loop snapshot is used for fallback substitutions. */ loopsnap = &J->cur.snap[onsnap-1]; loopmap = &J->cur.snapmap[loopsnap->mapofs]; /* The PC of snapshot #0 and the loop snapshot must match. */ psentinel = &loopmap[loopsnap->nent]; lua_assert(*psentinel == J->cur.snapmap[J->cur.snap[0].nent]); *psentinel = SNAP(255, 0, 0); /* Replace PC with temporary sentinel. */ /* Start substitution with snapshot #1 (#0 is empty for root traces). */ osnap = &J->cur.snap[1]; /* Copy and substitute all recorded instructions and snapshots. */ for (ins = REF_FIRST; ins < invar; ins++) { IRIns *ir; IRRef op1, op2; if (ins >= osnap->ref) /* Instruction belongs to next snapshot? */ loop_subst_snap(J, osnap++, loopmap, subst); /* Copy-substitute it. */ /* Substitute instruction operands. */ ir = IR(ins); op1 = ir->op1; if (!irref_isk(op1)) op1 = subst[op1]; op2 = ir->op2; if (!irref_isk(op2)) op2 = subst[op2]; if (irm_kind(lj_ir_mode[ir->o]) == IRM_N && op1 == ir->op1 && op2 == ir->op2) { /* Regular invariant ins? */ subst[ins] = (IRRef1)ins; /* Shortcut. */ } else { /* Re-emit substituted instruction to the FOLD/CSE/etc. pipeline. */ IRType1 t = ir->t; /* Get this first, since emitir may invalidate ir. */ IRRef ref = tref_ref(emitir(ir->ot & ~IRT_ISPHI, op1, op2)); subst[ins] = (IRRef1)ref; if (ref != ins) { IRIns *irr = IR(ref); if (ref < invar) { /* Loop-carried dependency? */ /* Potential PHI? */ if (!irref_isk(ref) && !irt_isphi(irr->t) && !irt_ispri(irr->t)) { irt_setphi(irr->t); if (nphi >= LJ_MAX_PHI) lj_trace_err(J, LJ_TRERR_PHIOV); phi[nphi++] = (IRRef1)ref; } /* Check all loop-carried dependencies for type instability. */ if (!irt_sametype(t, irr->t)) { if (irt_isinteger(t) && irt_isinteger(irr->t)) continue; else if (irt_isnum(t) && irt_isinteger(irr->t)) /* Fix int->num. */ ref = tref_ref(emitir(IRTN(IR_CONV), ref, IRCONV_NUM_INT)); else if (irt_isnum(irr->t) && irt_isinteger(t)) /* Fix num->int. */ ref = tref_ref(emitir(IRTGI(IR_CONV), ref, IRCONV_INT_NUM|IRCONV_CHECK)); else lj_trace_err(J, LJ_TRERR_TYPEINS); subst[ins] = (IRRef1)ref; irr = IR(ref); goto phiconv; } } else if (ref != REF_DROP && irr->o == IR_CONV && ref > invar && irr->op1 < invar) { /* May need an extra PHI for a CONV. */ ref = irr->op1; irr = IR(ref); phiconv: if (ref < invar && !irref_isk(ref) && !irt_isphi(irr->t)) { irt_setphi(irr->t); if (nphi >= LJ_MAX_PHI) lj_trace_err(J, LJ_TRERR_PHIOV); phi[nphi++] = (IRRef1)ref; } } } } } if (!irt_isguard(J->guardemit)) /* Drop redundant snapshot. */ J->cur.nsnapmap = (uint16_t)J->cur.snap[--J->cur.nsnap].mapofs; lua_assert(J->cur.nsnapmap <= J->sizesnapmap); *psentinel = J->cur.snapmap[J->cur.snap[0].nent]; /* Restore PC. */ loop_emit_phi(J, subst, phi, nphi, onsnap); } /* Undo any partial changes made by the loop optimization. */ static void loop_undo(jit_State *J, IRRef ins, SnapNo nsnap, MSize nsnapmap) { ptrdiff_t i; SnapShot *snap = &J->cur.snap[nsnap-1]; SnapEntry *map = J->cur.snapmap; map[snap->mapofs + snap->nent] = map[J->cur.snap[0].nent]; /* Restore PC. */ J->cur.nsnapmap = (uint16_t)nsnapmap; J->cur.nsnap = nsnap; J->guardemit.irt = 0; lj_ir_rollback(J, ins); for (i = 0; i < BPROP_SLOTS; i++) { /* Remove backprop. cache entries. */ BPropEntry *bp = &J->bpropcache[i]; if (bp->val >= ins) bp->key = 0; } for (ins--; ins >= REF_FIRST; ins--) { /* Remove flags. */ IRIns *ir = IR(ins); irt_clearphi(ir->t); irt_clearmark(ir->t); } } /* Protected callback for loop optimization. */ static TValue *cploop_opt(lua_State *L, lua_CFunction dummy, void *ud) { UNUSED(L); UNUSED(dummy); loop_unroll((LoopState *)ud); return NULL; } /* Loop optimization. */ int lj_opt_loop(jit_State *J) { IRRef nins = J->cur.nins; SnapNo nsnap = J->cur.nsnap; MSize nsnapmap = J->cur.nsnapmap; LoopState lps; int errcode; lps.J = J; lps.subst = NULL; lps.sizesubst = 0; errcode = lj_vm_cpcall(J->L, NULL, &lps, cploop_opt); lj_mem_freevec(J2G(J), lps.subst, lps.sizesubst, IRRef1); if (LJ_UNLIKELY(errcode)) { lua_State *L = J->L; if (errcode == LUA_ERRRUN && tvisnumber(L->top-1)) { /* Trace error? */ int32_t e = numberVint(L->top-1); switch ((TraceError)e) { case LJ_TRERR_TYPEINS: /* Type instability. */ case LJ_TRERR_GFAIL: /* Guard would always fail. */ /* Unrolling via recording fixes many cases, e.g. a flipped boolean. */ if (--J->instunroll < 0) /* But do not unroll forever. */ break; L->top--; /* Remove error object. */ loop_undo(J, nins, nsnap, nsnapmap); return 1; /* Loop optimization failed, continue recording. */ default: break; } } lj_err_throw(L, errcode); /* Propagate all other errors. */ } return 0; /* Loop optimization is ok. */ } #undef IR #undef emitir #undef emitir_raw #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_ccallback.c0000644000175100017510000005326613101703334020651 0ustar ondrejondrej/* ** FFI C callback handling. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #include "lj_obj.h" #if LJ_HASFFI #include "lj_gc.h" #include "lj_err.h" #include "lj_tab.h" #include "lj_state.h" #include "lj_frame.h" #include "lj_ctype.h" #include "lj_cconv.h" #include "lj_ccall.h" #include "lj_ccallback.h" #include "lj_target.h" #include "lj_mcode.h" #include "lj_trace.h" #include "lj_vm.h" /* -- Target-specific handling of callback slots -------------------------- */ #define CALLBACK_MCODE_SIZE (LJ_PAGESIZE * LJ_NUM_CBPAGE) #if LJ_OS_NOJIT /* Callbacks disabled. */ #define CALLBACK_SLOT2OFS(slot) (0*(slot)) #define CALLBACK_OFS2SLOT(ofs) (0*(ofs)) #define CALLBACK_MAX_SLOT 0 #elif LJ_TARGET_X86ORX64 #define CALLBACK_MCODE_HEAD (LJ_64 ? 8 : 0) #define CALLBACK_MCODE_GROUP (-2+1+2+(LJ_GC64 ? 10 : 5)+(LJ_64 ? 6 : 5)) #define CALLBACK_SLOT2OFS(slot) \ (CALLBACK_MCODE_HEAD + CALLBACK_MCODE_GROUP*((slot)/32) + 4*(slot)) static MSize CALLBACK_OFS2SLOT(MSize ofs) { MSize group; ofs -= CALLBACK_MCODE_HEAD; group = ofs / (32*4 + CALLBACK_MCODE_GROUP); return (ofs % (32*4 + CALLBACK_MCODE_GROUP))/4 + group*32; } #define CALLBACK_MAX_SLOT \ (((CALLBACK_MCODE_SIZE-CALLBACK_MCODE_HEAD)/(CALLBACK_MCODE_GROUP+4*32))*32) #elif LJ_TARGET_ARM #define CALLBACK_MCODE_HEAD 32 #elif LJ_TARGET_ARM64 #define CALLBACK_MCODE_HEAD 32 #elif LJ_TARGET_PPC #define CALLBACK_MCODE_HEAD 24 #elif LJ_TARGET_MIPS32 #define CALLBACK_MCODE_HEAD 20 #elif LJ_TARGET_MIPS64 #define CALLBACK_MCODE_HEAD 52 #else /* Missing support for this architecture. */ #define CALLBACK_SLOT2OFS(slot) (0*(slot)) #define CALLBACK_OFS2SLOT(ofs) (0*(ofs)) #define CALLBACK_MAX_SLOT 0 #endif #ifndef CALLBACK_SLOT2OFS #define CALLBACK_SLOT2OFS(slot) (CALLBACK_MCODE_HEAD + 8*(slot)) #define CALLBACK_OFS2SLOT(ofs) (((ofs)-CALLBACK_MCODE_HEAD)/8) #define CALLBACK_MAX_SLOT (CALLBACK_OFS2SLOT(CALLBACK_MCODE_SIZE)) #endif /* Convert callback slot number to callback function pointer. */ static void *callback_slot2ptr(CTState *cts, MSize slot) { return (uint8_t *)cts->cb.mcode + CALLBACK_SLOT2OFS(slot); } /* Convert callback function pointer to slot number. */ MSize lj_ccallback_ptr2slot(CTState *cts, void *p) { uintptr_t ofs = (uintptr_t)((uint8_t *)p -(uint8_t *)cts->cb.mcode); if (ofs < CALLBACK_MCODE_SIZE) { MSize slot = CALLBACK_OFS2SLOT((MSize)ofs); if (CALLBACK_SLOT2OFS(slot) == (MSize)ofs) return slot; } return ~0u; /* Not a known callback function pointer. */ } /* Initialize machine code for callback function pointers. */ #if LJ_OS_NOJIT /* Disabled callback support. */ #define callback_mcode_init(g, p) UNUSED(p) #elif LJ_TARGET_X86ORX64 static void callback_mcode_init(global_State *g, uint8_t *page) { uint8_t *p = page; uint8_t *target = (uint8_t *)(void *)lj_vm_ffi_callback; MSize slot; #if LJ_64 *(void **)p = target; p += 8; #endif for (slot = 0; slot < CALLBACK_MAX_SLOT; slot++) { /* mov al, slot; jmp group */ *p++ = XI_MOVrib | RID_EAX; *p++ = (uint8_t)slot; if ((slot & 31) == 31 || slot == CALLBACK_MAX_SLOT-1) { /* push ebp/rbp; mov ah, slot>>8; mov ebp, &g. */ *p++ = XI_PUSH + RID_EBP; *p++ = XI_MOVrib | (RID_EAX+4); *p++ = (uint8_t)(slot >> 8); #if LJ_GC64 *p++ = 0x48; *p++ = XI_MOVri | RID_EBP; *(uint64_t *)p = (uint64_t)(g); p += 8; #else *p++ = XI_MOVri | RID_EBP; *(int32_t *)p = i32ptr(g); p += 4; #endif #if LJ_64 /* jmp [rip-pageofs] where lj_vm_ffi_callback is stored. */ *p++ = XI_GROUP5; *p++ = XM_OFS0 + (XOg_JMP<<3) + RID_EBP; *(int32_t *)p = (int32_t)(page-(p+4)); p += 4; #else /* jmp lj_vm_ffi_callback. */ *p++ = XI_JMP; *(int32_t *)p = target-(p+4); p += 4; #endif } else { *p++ = XI_JMPs; *p++ = (uint8_t)((2+2)*(31-(slot&31)) - 2); } } lua_assert(p - page <= CALLBACK_MCODE_SIZE); } #elif LJ_TARGET_ARM static void callback_mcode_init(global_State *g, uint32_t *page) { uint32_t *p = page; void *target = (void *)lj_vm_ffi_callback; MSize slot; /* This must match with the saveregs macro in buildvm_arm.dasc. */ *p++ = ARMI_SUB|ARMF_D(RID_R12)|ARMF_N(RID_R12)|ARMF_M(RID_PC); *p++ = ARMI_PUSH|ARMF_N(RID_SP)|RSET_RANGE(RID_R4,RID_R11+1)|RID2RSET(RID_LR); *p++ = ARMI_SUB|ARMI_K12|ARMF_D(RID_R12)|ARMF_N(RID_R12)|CALLBACK_MCODE_HEAD; *p++ = ARMI_STR|ARMI_LS_P|ARMI_LS_W|ARMF_D(RID_R12)|ARMF_N(RID_SP)|(CFRAME_SIZE-4*9); *p++ = ARMI_LDR|ARMI_LS_P|ARMI_LS_U|ARMF_D(RID_R12)|ARMF_N(RID_PC); *p++ = ARMI_LDR|ARMI_LS_P|ARMI_LS_U|ARMF_D(RID_PC)|ARMF_N(RID_PC); *p++ = u32ptr(g); *p++ = u32ptr(target); for (slot = 0; slot < CALLBACK_MAX_SLOT; slot++) { *p++ = ARMI_MOV|ARMF_D(RID_R12)|ARMF_M(RID_PC); *p = ARMI_B | ((page-p-2) & 0x00ffffffu); p++; } lua_assert(p - page <= CALLBACK_MCODE_SIZE); } #elif LJ_TARGET_ARM64 static void callback_mcode_init(global_State *g, uint32_t *page) { uint32_t *p = page; void *target = (void *)lj_vm_ffi_callback; MSize slot; *p++ = A64I_LE(A64I_LDRLx | A64F_D(RID_X11) | A64F_S19(4)); *p++ = A64I_LE(A64I_LDRLx | A64F_D(RID_X10) | A64F_S19(5)); *p++ = A64I_LE(A64I_BR | A64F_N(RID_X11)); *p++ = A64I_LE(A64I_NOP); ((void **)p)[0] = target; ((void **)p)[1] = g; p += 4; for (slot = 0; slot < CALLBACK_MAX_SLOT; slot++) { *p++ = A64I_LE(A64I_MOVZw | A64F_D(RID_X9) | A64F_U16(slot)); *p = A64I_LE(A64I_B | A64F_S26((page-p) & 0x03ffffffu)); p++; } lua_assert(p - page <= CALLBACK_MCODE_SIZE); } #elif LJ_TARGET_PPC static void callback_mcode_init(global_State *g, uint32_t *page) { uint32_t *p = page; void *target = (void *)lj_vm_ffi_callback; MSize slot; *p++ = PPCI_LIS | PPCF_T(RID_TMP) | (u32ptr(target) >> 16); *p++ = PPCI_LIS | PPCF_T(RID_R12) | (u32ptr(g) >> 16); *p++ = PPCI_ORI | PPCF_A(RID_TMP)|PPCF_T(RID_TMP) | (u32ptr(target) & 0xffff); *p++ = PPCI_ORI | PPCF_A(RID_R12)|PPCF_T(RID_R12) | (u32ptr(g) & 0xffff); *p++ = PPCI_MTCTR | PPCF_T(RID_TMP); *p++ = PPCI_BCTR; for (slot = 0; slot < CALLBACK_MAX_SLOT; slot++) { *p++ = PPCI_LI | PPCF_T(RID_R11) | slot; *p = PPCI_B | (((page-p) & 0x00ffffffu) << 2); p++; } lua_assert(p - page <= CALLBACK_MCODE_SIZE); } #elif LJ_TARGET_MIPS static void callback_mcode_init(global_State *g, uint32_t *page) { uint32_t *p = page; uintptr_t target = (uintptr_t)(void *)lj_vm_ffi_callback; uintptr_t ug = (uintptr_t)(void *)g; MSize slot; #if LJ_TARGET_MIPS32 *p++ = MIPSI_LUI | MIPSF_T(RID_R3) | (target >> 16); *p++ = MIPSI_LUI | MIPSF_T(RID_R2) | (ug >> 16); #else *p++ = MIPSI_LUI | MIPSF_T(RID_R3) | (target >> 48); *p++ = MIPSI_LUI | MIPSF_T(RID_R2) | (ug >> 48); *p++ = MIPSI_ORI | MIPSF_T(RID_R3)|MIPSF_S(RID_R3) | ((target >> 32) & 0xffff); *p++ = MIPSI_ORI | MIPSF_T(RID_R2)|MIPSF_S(RID_R2) | ((ug >> 32) & 0xffff); *p++ = MIPSI_DSLL | MIPSF_D(RID_R3)|MIPSF_T(RID_R3) | MIPSF_A(16); *p++ = MIPSI_DSLL | MIPSF_D(RID_R2)|MIPSF_T(RID_R2) | MIPSF_A(16); *p++ = MIPSI_ORI | MIPSF_T(RID_R3)|MIPSF_S(RID_R3) | ((target >> 16) & 0xffff); *p++ = MIPSI_ORI | MIPSF_T(RID_R2)|MIPSF_S(RID_R2) | ((ug >> 16) & 0xffff); *p++ = MIPSI_DSLL | MIPSF_D(RID_R3)|MIPSF_T(RID_R3) | MIPSF_A(16); *p++ = MIPSI_DSLL | MIPSF_D(RID_R2)|MIPSF_T(RID_R2) | MIPSF_A(16); #endif *p++ = MIPSI_ORI | MIPSF_T(RID_R3)|MIPSF_S(RID_R3) | (target & 0xffff); *p++ = MIPSI_JR | MIPSF_S(RID_R3); *p++ = MIPSI_ORI | MIPSF_T(RID_R2)|MIPSF_S(RID_R2) | (ug & 0xffff); for (slot = 0; slot < CALLBACK_MAX_SLOT; slot++) { *p = MIPSI_B | ((page-p-1) & 0x0000ffffu); p++; *p++ = MIPSI_LI | MIPSF_T(RID_R1) | slot; } lua_assert(p - page <= CALLBACK_MCODE_SIZE); } #else /* Missing support for this architecture. */ #define callback_mcode_init(g, p) UNUSED(p) #endif /* -- Machine code management --------------------------------------------- */ #if LJ_TARGET_WINDOWS #define WIN32_LEAN_AND_MEAN #include #elif LJ_TARGET_POSIX #include #ifndef MAP_ANONYMOUS #define MAP_ANONYMOUS MAP_ANON #endif #endif /* Allocate and initialize area for callback function pointers. */ static void callback_mcode_new(CTState *cts) { size_t sz = (size_t)CALLBACK_MCODE_SIZE; void *p; if (CALLBACK_MAX_SLOT == 0) lj_err_caller(cts->L, LJ_ERR_FFI_CBACKOV); #if LJ_TARGET_WINDOWS p = VirtualAlloc(NULL, sz, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE); if (!p) lj_err_caller(cts->L, LJ_ERR_FFI_CBACKOV); #elif LJ_TARGET_POSIX p = mmap(NULL, sz, (PROT_READ|PROT_WRITE), MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); if (p == MAP_FAILED) lj_err_caller(cts->L, LJ_ERR_FFI_CBACKOV); #else /* Fallback allocator. Fails if memory is not executable by default. */ p = lj_mem_new(cts->L, sz); #endif cts->cb.mcode = p; callback_mcode_init(cts->g, p); lj_mcode_sync(p, (char *)p + sz); #if LJ_TARGET_WINDOWS { DWORD oprot; VirtualProtect(p, sz, PAGE_EXECUTE_READ, &oprot); } #elif LJ_TARGET_POSIX mprotect(p, sz, (PROT_READ|PROT_EXEC)); #endif } /* Free area for callback function pointers. */ void lj_ccallback_mcode_free(CTState *cts) { size_t sz = (size_t)CALLBACK_MCODE_SIZE; void *p = cts->cb.mcode; if (p == NULL) return; #if LJ_TARGET_WINDOWS VirtualFree(p, 0, MEM_RELEASE); UNUSED(sz); #elif LJ_TARGET_POSIX munmap(p, sz); #else lj_mem_free(cts->g, p, sz); #endif } /* -- C callback entry ---------------------------------------------------- */ /* Target-specific handling of register arguments. Similar to lj_ccall.c. */ #if LJ_TARGET_X86 #define CALLBACK_HANDLE_REGARG \ if (!isfp) { /* Only non-FP values may be passed in registers. */ \ if (n > 1) { /* Anything > 32 bit is passed on the stack. */ \ if (!LJ_ABI_WIN) ngpr = maxgpr; /* Prevent reordering. */ \ } else if (ngpr + 1 <= maxgpr) { \ sp = &cts->cb.gpr[ngpr]; \ ngpr += n; \ goto done; \ } \ } #elif LJ_TARGET_X64 && LJ_ABI_WIN /* Windows/x64 argument registers are strictly positional (use ngpr). */ #define CALLBACK_HANDLE_REGARG \ if (isfp) { \ if (ngpr < maxgpr) { sp = &cts->cb.fpr[ngpr++]; UNUSED(nfpr); goto done; } \ } else { \ if (ngpr < maxgpr) { sp = &cts->cb.gpr[ngpr++]; goto done; } \ } #elif LJ_TARGET_X64 #define CALLBACK_HANDLE_REGARG \ if (isfp) { \ if (nfpr + n <= CCALL_NARG_FPR) { \ sp = &cts->cb.fpr[nfpr]; \ nfpr += n; \ goto done; \ } \ } else { \ if (ngpr + n <= maxgpr) { \ sp = &cts->cb.gpr[ngpr]; \ ngpr += n; \ goto done; \ } \ } #elif LJ_TARGET_ARM #if LJ_ABI_SOFTFP #define CALLBACK_HANDLE_REGARG_FP1 UNUSED(isfp); #define CALLBACK_HANDLE_REGARG_FP2 #else #define CALLBACK_HANDLE_REGARG_FP1 \ if (isfp) { \ if (n == 1) { \ if (fprodd) { \ sp = &cts->cb.fpr[fprodd-1]; \ fprodd = 0; \ goto done; \ } else if (nfpr + 1 <= CCALL_NARG_FPR) { \ sp = &cts->cb.fpr[nfpr++]; \ fprodd = nfpr; \ goto done; \ } \ } else { \ if (nfpr + 1 <= CCALL_NARG_FPR) { \ sp = &cts->cb.fpr[nfpr++]; \ goto done; \ } \ } \ fprodd = 0; /* No reordering after the first FP value is on stack. */ \ } else { #define CALLBACK_HANDLE_REGARG_FP2 } #endif #define CALLBACK_HANDLE_REGARG \ CALLBACK_HANDLE_REGARG_FP1 \ if (n > 1) ngpr = (ngpr + 1u) & ~1u; /* Align to regpair. */ \ if (ngpr + n <= maxgpr) { \ sp = &cts->cb.gpr[ngpr]; \ ngpr += n; \ goto done; \ } CALLBACK_HANDLE_REGARG_FP2 #elif LJ_TARGET_ARM64 #define CALLBACK_HANDLE_REGARG \ if (isfp) { \ if (nfpr + n <= CCALL_NARG_FPR) { \ sp = &cts->cb.fpr[nfpr]; \ nfpr += n; \ goto done; \ } else { \ nfpr = CCALL_NARG_FPR; /* Prevent reordering. */ \ } \ } else { \ if (!LJ_TARGET_IOS && n > 1) \ ngpr = (ngpr + 1u) & ~1u; /* Align to regpair. */ \ if (ngpr + n <= maxgpr) { \ sp = &cts->cb.gpr[ngpr]; \ ngpr += n; \ goto done; \ } else { \ ngpr = CCALL_NARG_GPR; /* Prevent reordering. */ \ } \ } #elif LJ_TARGET_PPC #define CALLBACK_HANDLE_REGARG \ if (isfp) { \ if (nfpr + 1 <= CCALL_NARG_FPR) { \ sp = &cts->cb.fpr[nfpr++]; \ cta = ctype_get(cts, CTID_DOUBLE); /* FPRs always hold doubles. */ \ goto done; \ } \ } else { /* Try to pass argument in GPRs. */ \ if (n > 1) { \ lua_assert(ctype_isinteger(cta->info) && n == 2); /* int64_t. */ \ ngpr = (ngpr + 1u) & ~1u; /* Align int64_t to regpair. */ \ } \ if (ngpr + n <= maxgpr) { \ sp = &cts->cb.gpr[ngpr]; \ ngpr += n; \ goto done; \ } \ } #define CALLBACK_HANDLE_RET \ if (ctype_isfp(ctr->info) && ctr->size == sizeof(float)) \ *(double *)dp = *(float *)dp; /* FPRs always hold doubles. */ #elif LJ_TARGET_MIPS32 #define CALLBACK_HANDLE_GPR \ if (n > 1) ngpr = (ngpr + 1u) & ~1u; /* Align to regpair. */ \ if (ngpr + n <= maxgpr) { \ sp = &cts->cb.gpr[ngpr]; \ ngpr += n; \ goto done; \ } #if !LJ_ABI_SOFTFP /* MIPS32 hard-float */ #define CALLBACK_HANDLE_REGARG \ if (isfp && nfpr < CCALL_NARG_FPR) { /* Try to pass argument in FPRs. */ \ sp = (void *)((uint8_t *)&cts->cb.fpr[nfpr] + ((LJ_BE && n==1) ? 4 : 0)); \ nfpr++; ngpr += n; \ goto done; \ } else { /* Try to pass argument in GPRs. */ \ nfpr = CCALL_NARG_FPR; \ CALLBACK_HANDLE_GPR \ } #else /* MIPS32 soft-float */ #define CALLBACK_HANDLE_REGARG \ CALLBACK_HANDLE_GPR \ UNUSED(isfp); #endif #define CALLBACK_HANDLE_RET \ if (ctype_isfp(ctr->info) && ctr->size == sizeof(float)) \ ((float *)dp)[1] = *(float *)dp; #elif LJ_TARGET_MIPS64 #if !LJ_ABI_SOFTFP /* MIPS64 hard-float */ #define CALLBACK_HANDLE_REGARG \ if (ngpr + n <= maxgpr) { \ sp = isfp ? (void*) &cts->cb.fpr[ngpr] : (void*) &cts->cb.gpr[ngpr]; \ ngpr += n; \ goto done; \ } #else /* MIPS64 soft-float */ #define CALLBACK_HANDLE_REGARG \ if (ngpr + n <= maxgpr) { \ UNUSED(isfp); \ sp = (void*) &cts->cb.gpr[ngpr]; \ ngpr += n; \ goto done; \ } #endif #define CALLBACK_HANDLE_RET \ if (ctype_isfp(ctr->info) && ctr->size == sizeof(float)) \ ((float *)dp)[1] = *(float *)dp; #else #error "Missing calling convention definitions for this architecture" #endif /* Convert and push callback arguments to Lua stack. */ static void callback_conv_args(CTState *cts, lua_State *L) { TValue *o = L->top; intptr_t *stack = cts->cb.stack; MSize slot = cts->cb.slot; CTypeID id = 0, rid, fid; int gcsteps = 0; CType *ct; GCfunc *fn; int fntp; MSize ngpr = 0, nsp = 0, maxgpr = CCALL_NARG_GPR; #if CCALL_NARG_FPR MSize nfpr = 0; #if LJ_TARGET_ARM MSize fprodd = 0; #endif #endif if (slot < cts->cb.sizeid && (id = cts->cb.cbid[slot]) != 0) { ct = ctype_get(cts, id); rid = ctype_cid(ct->info); /* Return type. x86: +(spadj<<16). */ fn = funcV(lj_tab_getint(cts->miscmap, (int32_t)slot)); fntp = LJ_TFUNC; } else { /* Must set up frame first, before throwing the error. */ ct = NULL; rid = 0; fn = (GCfunc *)L; fntp = LJ_TTHREAD; } /* Continuation returns from callback. */ if (LJ_FR2) { (o++)->u64 = LJ_CONT_FFI_CALLBACK; (o++)->u64 = rid; o++; } else { o->u32.lo = LJ_CONT_FFI_CALLBACK; o->u32.hi = rid; o++; } setframe_gc(o, obj2gco(fn), fntp); setframe_ftsz(o, ((char *)(o+1) - (char *)L->base) + FRAME_CONT); L->top = L->base = ++o; if (!ct) lj_err_caller(cts->L, LJ_ERR_FFI_BADCBACK); if (isluafunc(fn)) setcframe_pc(L->cframe, proto_bc(funcproto(fn))+1); lj_state_checkstack(L, LUA_MINSTACK); /* May throw. */ o = L->base; /* Might have been reallocated. */ #if LJ_TARGET_X86 /* x86 has several different calling conventions. */ switch (ctype_cconv(ct->info)) { case CTCC_FASTCALL: maxgpr = 2; break; case CTCC_THISCALL: maxgpr = 1; break; default: maxgpr = 0; break; } #endif fid = ct->sib; while (fid) { CType *ctf = ctype_get(cts, fid); if (!ctype_isattrib(ctf->info)) { CType *cta; void *sp; CTSize sz; int isfp; MSize n; lua_assert(ctype_isfield(ctf->info)); cta = ctype_rawchild(cts, ctf); isfp = ctype_isfp(cta->info); sz = (cta->size + CTSIZE_PTR-1) & ~(CTSIZE_PTR-1); n = sz / CTSIZE_PTR; /* Number of GPRs or stack slots needed. */ CALLBACK_HANDLE_REGARG /* Handle register arguments. */ /* Otherwise pass argument on stack. */ if (CCALL_ALIGN_STACKARG && LJ_32 && sz == 8) nsp = (nsp + 1) & ~1u; /* Align 64 bit argument on stack. */ sp = &stack[nsp]; nsp += n; done: if (LJ_BE && cta->size < CTSIZE_PTR #if LJ_TARGET_MIPS64 && !(isfp && nsp) #endif ) sp = (void *)((uint8_t *)sp + CTSIZE_PTR-cta->size); gcsteps += lj_cconv_tv_ct(cts, cta, 0, o++, sp); } fid = ctf->sib; } L->top = o; #if LJ_TARGET_X86 /* Store stack adjustment for returns from non-cdecl callbacks. */ if (ctype_cconv(ct->info) != CTCC_CDECL) { #if LJ_FR2 (L->base-3)->u64 |= (nsp << (16+2)); #else (L->base-2)->u32.hi |= (nsp << (16+2)); #endif } #endif while (gcsteps-- > 0) lj_gc_check(L); } /* Convert Lua object to callback result. */ static void callback_conv_result(CTState *cts, lua_State *L, TValue *o) { #if LJ_FR2 CType *ctr = ctype_raw(cts, (uint16_t)(L->base-3)->u64); #else CType *ctr = ctype_raw(cts, (uint16_t)(L->base-2)->u32.hi); #endif #if LJ_TARGET_X86 cts->cb.gpr[2] = 0; #endif if (!ctype_isvoid(ctr->info)) { uint8_t *dp = (uint8_t *)&cts->cb.gpr[0]; #if CCALL_NUM_FPR if (ctype_isfp(ctr->info)) dp = (uint8_t *)&cts->cb.fpr[0]; #endif #if LJ_TARGET_ARM64 && LJ_BE if (ctype_isfp(ctr->info) && ctr->size == sizeof(float)) dp = (uint8_t *)&cts->cb.fpr[0].f[1]; #endif lj_cconv_ct_tv(cts, ctr, dp, o, 0); #ifdef CALLBACK_HANDLE_RET CALLBACK_HANDLE_RET #endif /* Extend returned integers to (at least) 32 bits. */ if (ctype_isinteger_or_bool(ctr->info) && ctr->size < 4) { if (ctr->info & CTF_UNSIGNED) *(uint32_t *)dp = ctr->size == 1 ? (uint32_t)*(uint8_t *)dp : (uint32_t)*(uint16_t *)dp; else *(int32_t *)dp = ctr->size == 1 ? (int32_t)*(int8_t *)dp : (int32_t)*(int16_t *)dp; } #if LJ_TARGET_MIPS64 || (LJ_TARGET_ARM64 && LJ_BE) /* Always sign-extend results to 64 bits. Even a soft-fp 'float'. */ if (ctr->size <= 4 && (LJ_ABI_SOFTFP || ctype_isinteger_or_bool(ctr->info))) *(int64_t *)dp = (int64_t)*(int32_t *)dp; #endif #if LJ_TARGET_X86 if (ctype_isfp(ctr->info)) cts->cb.gpr[2] = ctr->size == sizeof(float) ? 1 : 2; #endif } } /* Enter callback. */ lua_State * LJ_FASTCALL lj_ccallback_enter(CTState *cts, void *cf) { lua_State *L = cts->L; global_State *g = cts->g; lua_assert(L != NULL); if (tvref(g->jit_base)) { setstrV(L, L->top++, lj_err_str(L, LJ_ERR_FFI_BADCBACK)); if (g->panic) g->panic(L); exit(EXIT_FAILURE); } lj_trace_abort(g); /* Never record across callback. */ /* Setup C frame. */ cframe_prev(cf) = L->cframe; setcframe_L(cf, L); cframe_errfunc(cf) = -1; cframe_nres(cf) = 0; L->cframe = cf; callback_conv_args(cts, L); return L; /* Now call the function on this stack. */ } /* Leave callback. */ void LJ_FASTCALL lj_ccallback_leave(CTState *cts, TValue *o) { lua_State *L = cts->L; GCfunc *fn; TValue *obase = L->base; L->base = L->top; /* Keep continuation frame for throwing errors. */ if (o >= L->base) { /* PC of RET* is lost. Point to last line for result conv. errors. */ fn = curr_func(L); if (isluafunc(fn)) { GCproto *pt = funcproto(fn); setcframe_pc(L->cframe, proto_bc(pt)+pt->sizebc+1); } } callback_conv_result(cts, L, o); /* Finally drop C frame and continuation frame. */ L->top -= 2+2*LJ_FR2; L->base = obase; L->cframe = cframe_prev(L->cframe); cts->cb.slot = 0; /* Blacklist C function that called the callback. */ } /* -- C callback management ----------------------------------------------- */ /* Get an unused slot in the callback slot table. */ static MSize callback_slot_new(CTState *cts, CType *ct) { CTypeID id = ctype_typeid(cts, ct); CTypeID1 *cbid = cts->cb.cbid; MSize top; for (top = cts->cb.topid; top < cts->cb.sizeid; top++) if (LJ_LIKELY(cbid[top] == 0)) goto found; #if CALLBACK_MAX_SLOT if (top >= CALLBACK_MAX_SLOT) #endif lj_err_caller(cts->L, LJ_ERR_FFI_CBACKOV); if (!cts->cb.mcode) callback_mcode_new(cts); lj_mem_growvec(cts->L, cbid, cts->cb.sizeid, CALLBACK_MAX_SLOT, CTypeID1); cts->cb.cbid = cbid; memset(cbid+top, 0, (cts->cb.sizeid-top)*sizeof(CTypeID1)); found: cbid[top] = id; cts->cb.topid = top+1; return top; } /* Check for function pointer and supported argument/result types. */ static CType *callback_checkfunc(CTState *cts, CType *ct) { int narg = 0; if (!ctype_isptr(ct->info) || (LJ_64 && ct->size != CTSIZE_PTR)) return NULL; ct = ctype_rawchild(cts, ct); if (ctype_isfunc(ct->info)) { CType *ctr = ctype_rawchild(cts, ct); CTypeID fid = ct->sib; if (!(ctype_isvoid(ctr->info) || ctype_isenum(ctr->info) || ctype_isptr(ctr->info) || (ctype_isnum(ctr->info) && ctr->size <= 8))) return NULL; if ((ct->info & CTF_VARARG)) return NULL; while (fid) { CType *ctf = ctype_get(cts, fid); if (!ctype_isattrib(ctf->info)) { CType *cta; lua_assert(ctype_isfield(ctf->info)); cta = ctype_rawchild(cts, ctf); if (!(ctype_isenum(cta->info) || ctype_isptr(cta->info) || (ctype_isnum(cta->info) && cta->size <= 8)) || ++narg >= LUA_MINSTACK-3) return NULL; } fid = ctf->sib; } return ct; } return NULL; } /* Create a new callback and return the callback function pointer. */ void *lj_ccallback_new(CTState *cts, CType *ct, GCfunc *fn) { ct = callback_checkfunc(cts, ct); if (ct) { MSize slot = callback_slot_new(cts, ct); GCtab *t = cts->miscmap; setfuncV(cts->L, lj_tab_setint(cts->L, t, (int32_t)slot), fn); lj_gc_anybarriert(cts->L, t); return callback_slot2ptr(cts, slot); } return NULL; /* Bad conversion. */ } #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_emit_x86.h0000644000175100017510000003456713101703334020425 0ustar ondrejondrej/* ** x86/x64 instruction emitter. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ /* -- Emit basic instructions --------------------------------------------- */ #define MODRM(mode, r1, r2) ((MCode)((mode)+(((r1)&7)<<3)+((r2)&7))) #if LJ_64 #define REXRB(p, rr, rb) \ { MCode rex = 0x40 + (((rr)>>1)&4) + (((rb)>>3)&1); \ if (rex != 0x40) *--(p) = rex; } #define FORCE_REX 0x200 #define REX_64 (FORCE_REX|0x080000) #define VEX_64 0x800000 #else #define REXRB(p, rr, rb) ((void)0) #define FORCE_REX 0 #define REX_64 0 #define VEX_64 0 #endif #if LJ_GC64 #define REX_GC64 REX_64 #else #define REX_GC64 0 #endif #define emit_i8(as, i) (*--as->mcp = (MCode)(i)) #define emit_i32(as, i) (*(int32_t *)(as->mcp-4) = (i), as->mcp -= 4) #define emit_u32(as, u) (*(uint32_t *)(as->mcp-4) = (u), as->mcp -= 4) #define emit_x87op(as, xo) \ (*(uint16_t *)(as->mcp-2) = (uint16_t)(xo), as->mcp -= 2) /* op */ static LJ_AINLINE MCode *emit_op(x86Op xo, Reg rr, Reg rb, Reg rx, MCode *p, int delta) { int n = (int8_t)xo; if (n == -60) { /* VEX-encoded instruction */ #if LJ_64 xo ^= (((rr>>1)&4)+((rx>>2)&2)+((rb>>3)&1))<<13; #endif *(uint32_t *)(p+delta-5) = (uint32_t)xo; return p+delta-5; } #if defined(__GNUC__) if (__builtin_constant_p(xo) && n == -2) p[delta-2] = (MCode)(xo >> 24); else if (__builtin_constant_p(xo) && n == -3) *(uint16_t *)(p+delta-3) = (uint16_t)(xo >> 16); else #endif *(uint32_t *)(p+delta-5) = (uint32_t)xo; p += n + delta; #if LJ_64 { uint32_t rex = 0x40 + ((rr>>1)&(4+(FORCE_REX>>1)))+((rx>>2)&2)+((rb>>3)&1); if (rex != 0x40) { rex |= (rr >> 16); if (n == -4) { *p = (MCode)rex; rex = (MCode)(xo >> 8); } else if ((xo & 0xffffff) == 0x6600fd) { *p = (MCode)rex; rex = 0x66; } *--p = (MCode)rex; } } #else UNUSED(rr); UNUSED(rb); UNUSED(rx); #endif return p; } /* op + modrm */ #define emit_opm(xo, mode, rr, rb, p, delta) \ (p[(delta)-1] = MODRM((mode), (rr), (rb)), \ emit_op((xo), (rr), (rb), 0, (p), (delta))) /* op + modrm + sib */ #define emit_opmx(xo, mode, scale, rr, rb, rx, p) \ (p[-1] = MODRM((scale), (rx), (rb)), \ p[-2] = MODRM((mode), (rr), RID_ESP), \ emit_op((xo), (rr), (rb), (rx), (p), -1)) /* op r1, r2 */ static void emit_rr(ASMState *as, x86Op xo, Reg r1, Reg r2) { MCode *p = as->mcp; as->mcp = emit_opm(xo, XM_REG, r1, r2, p, 0); } #if LJ_64 && defined(LUA_USE_ASSERT) /* [addr] is sign-extended in x64 and must be in lower 2G (not 4G). */ static int32_t ptr2addr(const void *p) { lua_assert((uintptr_t)p < (uintptr_t)0x80000000); return i32ptr(p); } #else #define ptr2addr(p) (i32ptr((p))) #endif /* op r, [base+ofs] */ static void emit_rmro(ASMState *as, x86Op xo, Reg rr, Reg rb, int32_t ofs) { MCode *p = as->mcp; x86Mode mode; if (ra_hasreg(rb)) { if (LJ_GC64 && rb == RID_RIP) { mode = XM_OFS0; p -= 4; *(int32_t *)p = ofs; } else if (ofs == 0 && (rb&7) != RID_EBP) { mode = XM_OFS0; } else if (checki8(ofs)) { *--p = (MCode)ofs; mode = XM_OFS8; } else { p -= 4; *(int32_t *)p = ofs; mode = XM_OFS32; } if ((rb&7) == RID_ESP) *--p = MODRM(XM_SCALE1, RID_ESP, RID_ESP); } else { *(int32_t *)(p-4) = ofs; #if LJ_64 p[-5] = MODRM(XM_SCALE1, RID_ESP, RID_EBP); p -= 5; rb = RID_ESP; #else p -= 4; rb = RID_EBP; #endif mode = XM_OFS0; } as->mcp = emit_opm(xo, mode, rr, rb, p, 0); } /* op r, [base+idx*scale+ofs] */ static void emit_rmrxo(ASMState *as, x86Op xo, Reg rr, Reg rb, Reg rx, x86Mode scale, int32_t ofs) { MCode *p = as->mcp; x86Mode mode; if (ofs == 0 && (rb&7) != RID_EBP) { mode = XM_OFS0; } else if (checki8(ofs)) { mode = XM_OFS8; *--p = (MCode)ofs; } else { mode = XM_OFS32; p -= 4; *(int32_t *)p = ofs; } as->mcp = emit_opmx(xo, mode, scale, rr, rb, rx, p); } /* op r, i */ static void emit_gri(ASMState *as, x86Group xg, Reg rb, int32_t i) { MCode *p = as->mcp; x86Op xo; if (checki8(i)) { *--p = (MCode)i; xo = XG_TOXOi8(xg); } else { p -= 4; *(int32_t *)p = i; xo = XG_TOXOi(xg); } as->mcp = emit_opm(xo, XM_REG, (Reg)(xg & 7) | (rb & REX_64), rb, p, 0); } /* op [base+ofs], i */ static void emit_gmroi(ASMState *as, x86Group xg, Reg rb, int32_t ofs, int32_t i) { x86Op xo; if (checki8(i)) { emit_i8(as, i); xo = XG_TOXOi8(xg); } else { emit_i32(as, i); xo = XG_TOXOi(xg); } emit_rmro(as, xo, (Reg)(xg & 7), rb, ofs); } #define emit_shifti(as, xg, r, i) \ (emit_i8(as, (i)), emit_rr(as, XO_SHIFTi, (Reg)(xg), (r))) /* op r, rm/mrm */ static void emit_mrm(ASMState *as, x86Op xo, Reg rr, Reg rb) { MCode *p = as->mcp; x86Mode mode = XM_REG; if (rb == RID_MRM) { rb = as->mrm.base; if (rb == RID_NONE) { rb = RID_EBP; mode = XM_OFS0; p -= 4; *(int32_t *)p = as->mrm.ofs; if (as->mrm.idx != RID_NONE) goto mrmidx; #if LJ_64 *--p = MODRM(XM_SCALE1, RID_ESP, RID_EBP); rb = RID_ESP; #endif } else if (LJ_GC64 && rb == RID_RIP) { lua_assert(as->mrm.idx == RID_NONE); mode = XM_OFS0; p -= 4; *(int32_t *)p = as->mrm.ofs; } else { if (as->mrm.ofs == 0 && (rb&7) != RID_EBP) { mode = XM_OFS0; } else if (checki8(as->mrm.ofs)) { *--p = (MCode)as->mrm.ofs; mode = XM_OFS8; } else { p -= 4; *(int32_t *)p = as->mrm.ofs; mode = XM_OFS32; } if (as->mrm.idx != RID_NONE) { mrmidx: as->mcp = emit_opmx(xo, mode, as->mrm.scale, rr, rb, as->mrm.idx, p); return; } if ((rb&7) == RID_ESP) *--p = MODRM(XM_SCALE1, RID_ESP, RID_ESP); } } as->mcp = emit_opm(xo, mode, rr, rb, p, 0); } /* op rm/mrm, i */ static void emit_gmrmi(ASMState *as, x86Group xg, Reg rb, int32_t i) { x86Op xo; if (checki8(i)) { emit_i8(as, i); xo = XG_TOXOi8(xg); } else { emit_i32(as, i); xo = XG_TOXOi(xg); } emit_mrm(as, xo, (Reg)(xg & 7) | (rb & REX_64), (rb & ~REX_64)); } /* -- Emit loads/stores --------------------------------------------------- */ /* mov [base+ofs], i */ static void emit_movmroi(ASMState *as, Reg base, int32_t ofs, int32_t i) { emit_i32(as, i); emit_rmro(as, XO_MOVmi, 0, base, ofs); } /* mov [base+ofs], r */ #define emit_movtomro(as, r, base, ofs) \ emit_rmro(as, XO_MOVto, (r), (base), (ofs)) /* Get/set global_State fields. */ #define emit_opgl(as, xo, r, field) \ emit_rma(as, (xo), (r), (void *)&J2G(as->J)->field) #define emit_getgl(as, r, field) emit_opgl(as, XO_MOV, (r)|REX_GC64, field) #define emit_setgl(as, r, field) emit_opgl(as, XO_MOVto, (r)|REX_GC64, field) #define emit_setvmstate(as, i) \ (emit_i32(as, i), emit_opgl(as, XO_MOVmi, 0, vmstate)) /* mov r, i / xor r, r */ static void emit_loadi(ASMState *as, Reg r, int32_t i) { /* XOR r,r is shorter, but modifies the flags. This is bad for HIOP. */ if (i == 0 && !(LJ_32 && (IR(as->curins)->o == IR_HIOP || (as->curins+1 < as->T->nins && IR(as->curins+1)->o == IR_HIOP)))) { emit_rr(as, XO_ARITH(XOg_XOR), r, r); } else { MCode *p = as->mcp; *(int32_t *)(p-4) = i; p[-5] = (MCode)(XI_MOVri+(r&7)); p -= 5; REXRB(p, 0, r); as->mcp = p; } } #if LJ_GC64 #define dispofs(as, k) \ ((intptr_t)((uintptr_t)(k) - (uintptr_t)J2GG(as->J)->dispatch)) #define mcpofs(as, k) \ ((intptr_t)((uintptr_t)(k) - (uintptr_t)as->mcp)) #define mctopofs(as, k) \ ((intptr_t)((uintptr_t)(k) - (uintptr_t)as->mctop)) /* mov r, addr */ #define emit_loada(as, r, addr) \ emit_loadu64(as, (r), (uintptr_t)(addr)) #else /* mov r, addr */ #define emit_loada(as, r, addr) \ emit_loadi(as, (r), ptr2addr((addr))) #endif #if LJ_64 /* mov r, imm64 or shorter 32 bit extended load. */ static void emit_loadu64(ASMState *as, Reg r, uint64_t u64) { if (checku32(u64)) { /* 32 bit load clears upper 32 bits. */ emit_loadi(as, r, (int32_t)u64); } else if (checki32((int64_t)u64)) { /* Sign-extended 32 bit load. */ MCode *p = as->mcp; *(int32_t *)(p-4) = (int32_t)u64; as->mcp = emit_opm(XO_MOVmi, XM_REG, REX_64, r, p, -4); #if LJ_GC64 } else if (checki32(dispofs(as, u64))) { emit_rmro(as, XO_LEA, r|REX_64, RID_DISPATCH, (int32_t)dispofs(as, u64)); } else if (checki32(mcpofs(as, u64)) && checki32(mctopofs(as, u64))) { /* Since as->realign assumes the code size doesn't change, check ** RIP-relative addressing reachability for both as->mcp and as->mctop. */ emit_rmro(as, XO_LEA, r|REX_64, RID_RIP, (int32_t)mcpofs(as, u64)); #endif } else { /* Full-size 64 bit load. */ MCode *p = as->mcp; *(uint64_t *)(p-8) = u64; p[-9] = (MCode)(XI_MOVri+(r&7)); p[-10] = 0x48 + ((r>>3)&1); p -= 10; as->mcp = p; } } #endif /* op r, [addr] */ static void emit_rma(ASMState *as, x86Op xo, Reg rr, const void *addr) { #if LJ_GC64 if (checki32(dispofs(as, addr))) { emit_rmro(as, xo, rr, RID_DISPATCH, (int32_t)dispofs(as, addr)); } else if (checki32(mcpofs(as, addr)) && checki32(mctopofs(as, addr))) { emit_rmro(as, xo, rr, RID_RIP, (int32_t)mcpofs(as, addr)); } else if (!checki32((intptr_t)addr) && (xo == XO_MOV || xo == XO_MOVSD)) { emit_rmro(as, xo, rr, rr, 0); emit_loadu64(as, rr, (uintptr_t)addr); } else #endif { MCode *p = as->mcp; *(int32_t *)(p-4) = ptr2addr(addr); #if LJ_64 p[-5] = MODRM(XM_SCALE1, RID_ESP, RID_EBP); as->mcp = emit_opm(xo, XM_OFS0, rr, RID_ESP, p, -5); #else as->mcp = emit_opm(xo, XM_OFS0, rr, RID_EBP, p, -4); #endif } } /* Load 64 bit IR constant into register. */ static void emit_loadk64(ASMState *as, Reg r, IRIns *ir) { Reg r64; x86Op xo; const uint64_t *k = &ir_k64(ir)->u64; if (rset_test(RSET_FPR, r)) { r64 = r; xo = XO_MOVSD; } else { r64 = r | REX_64; xo = XO_MOV; } if (*k == 0) { emit_rr(as, rset_test(RSET_FPR, r) ? XO_XORPS : XO_ARITH(XOg_XOR), r, r); #if LJ_GC64 } else if (checki32((intptr_t)k) || checki32(dispofs(as, k)) || (checki32(mcpofs(as, k)) && checki32(mctopofs(as, k)))) { emit_rma(as, xo, r64, k); } else { if (ir->i) { lua_assert(*k == *(uint64_t*)(as->mctop - ir->i)); } else if (as->curins <= as->stopins && rset_test(RSET_GPR, r)) { emit_loadu64(as, r, *k); return; } else { /* If all else fails, add the FP constant at the MCode area bottom. */ while ((uintptr_t)as->mcbot & 7) *as->mcbot++ = XI_INT3; *(uint64_t *)as->mcbot = *k; ir->i = (int32_t)(as->mctop - as->mcbot); as->mcbot += 8; as->mclim = as->mcbot + MCLIM_REDZONE; lj_mcode_commitbot(as->J, as->mcbot); } emit_rmro(as, xo, r64, RID_RIP, (int32_t)mcpofs(as, as->mctop - ir->i)); #else } else { emit_rma(as, xo, r64, k); #endif } } /* -- Emit control-flow instructions -------------------------------------- */ /* Label for short jumps. */ typedef MCode *MCLabel; #if LJ_32 && LJ_HASFFI /* jmp short target */ static void emit_sjmp(ASMState *as, MCLabel target) { MCode *p = as->mcp; ptrdiff_t delta = target - p; lua_assert(delta == (int8_t)delta); p[-1] = (MCode)(int8_t)delta; p[-2] = XI_JMPs; as->mcp = p - 2; } #endif /* jcc short target */ static void emit_sjcc(ASMState *as, int cc, MCLabel target) { MCode *p = as->mcp; ptrdiff_t delta = target - p; lua_assert(delta == (int8_t)delta); p[-1] = (MCode)(int8_t)delta; p[-2] = (MCode)(XI_JCCs+(cc&15)); as->mcp = p - 2; } /* jcc short (pending target) */ static MCLabel emit_sjcc_label(ASMState *as, int cc) { MCode *p = as->mcp; p[-1] = 0; p[-2] = (MCode)(XI_JCCs+(cc&15)); as->mcp = p - 2; return p; } /* Fixup jcc short target. */ static void emit_sfixup(ASMState *as, MCLabel source) { source[-1] = (MCode)(as->mcp-source); } /* Return label pointing to current PC. */ #define emit_label(as) ((as)->mcp) /* Compute relative 32 bit offset for jump and call instructions. */ static LJ_AINLINE int32_t jmprel(MCode *p, MCode *target) { ptrdiff_t delta = target - p; lua_assert(delta == (int32_t)delta); return (int32_t)delta; } /* jcc target */ static void emit_jcc(ASMState *as, int cc, MCode *target) { MCode *p = as->mcp; *(int32_t *)(p-4) = jmprel(p, target); p[-5] = (MCode)(XI_JCCn+(cc&15)); p[-6] = 0x0f; as->mcp = p - 6; } /* jmp target */ static void emit_jmp(ASMState *as, MCode *target) { MCode *p = as->mcp; *(int32_t *)(p-4) = jmprel(p, target); p[-5] = XI_JMP; as->mcp = p - 5; } /* call target */ static void emit_call_(ASMState *as, MCode *target) { MCode *p = as->mcp; #if LJ_64 if (target-p != (int32_t)(target-p)) { /* Assumes RID_RET is never an argument to calls and always clobbered. */ emit_rr(as, XO_GROUP5, XOg_CALL, RID_RET); emit_loadu64(as, RID_RET, (uint64_t)target); return; } #endif *(int32_t *)(p-4) = jmprel(p, target); p[-5] = XI_CALL; as->mcp = p - 5; } #define emit_call(as, f) emit_call_(as, (MCode *)(void *)(f)) /* -- Emit generic operations --------------------------------------------- */ /* Use 64 bit operations to handle 64 bit IR types. */ #if LJ_64 #define REX_64IR(ir, r) ((r) + (irt_is64((ir)->t) ? REX_64 : 0)) #define VEX_64IR(ir, r) ((r) + (irt_is64((ir)->t) ? VEX_64 : 0)) #else #define REX_64IR(ir, r) (r) #define VEX_64IR(ir, r) (r) #endif /* Generic move between two regs. */ static void emit_movrr(ASMState *as, IRIns *ir, Reg dst, Reg src) { UNUSED(ir); if (dst < RID_MAX_GPR) emit_rr(as, XO_MOV, REX_64IR(ir, dst), src); else emit_rr(as, XO_MOVAPS, dst, src); } /* Generic load of register with base and (small) offset address. */ static void emit_loadofs(ASMState *as, IRIns *ir, Reg r, Reg base, int32_t ofs) { if (r < RID_MAX_GPR) emit_rmro(as, XO_MOV, REX_64IR(ir, r), base, ofs); else emit_rmro(as, irt_isnum(ir->t) ? XO_MOVSD : XO_MOVSS, r, base, ofs); } /* Generic store of register with base and (small) offset address. */ static void emit_storeofs(ASMState *as, IRIns *ir, Reg r, Reg base, int32_t ofs) { if (r < RID_MAX_GPR) emit_rmro(as, XO_MOVto, REX_64IR(ir, r), base, ofs); else emit_rmro(as, irt_isnum(ir->t) ? XO_MOVSDto : XO_MOVSSto, r, base, ofs); } /* Add offset to pointer. */ static void emit_addptr(ASMState *as, Reg r, int32_t ofs) { if (ofs) { if ((as->flags & JIT_F_LEA_AGU)) emit_rmro(as, XO_LEA, r|REX_GC64, r, ofs); else emit_gri(as, XG_ARITHi(XOg_ADD), r|REX_GC64, ofs); } } #define emit_spsub(as, ofs) emit_addptr(as, RID_ESP|REX_64, -(ofs)) /* Prefer rematerialization of BASE/L from global_State over spills. */ #define emit_canremat(ref) ((ref) <= REF_BASE) luajit-2.1.0~beta3+dfsg.orig/src/lj_parse.h0000644000175100017510000000064113101703334020056 0ustar ondrejondrej/* ** Lua parser (source code -> bytecode). ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_PARSE_H #define _LJ_PARSE_H #include "lj_obj.h" #include "lj_lex.h" LJ_FUNC GCproto *lj_parse(LexState *ls); LJ_FUNC GCstr *lj_parse_keepstr(LexState *ls, const char *str, size_t l); #if LJ_HASFFI LJ_FUNC void lj_parse_keepcdata(LexState *ls, TValue *tv, GCcdata *cd); #endif #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_frame.h0000644000175100017510000002160613101703334020042 0ustar ondrejondrej/* ** Stack frames. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_FRAME_H #define _LJ_FRAME_H #include "lj_obj.h" #include "lj_bc.h" /* -- Lua stack frame ----------------------------------------------------- */ /* Frame type markers in LSB of PC (4-byte aligned) or delta (8-byte aligned: ** ** PC 00 Lua frame ** delta 001 C frame ** delta 010 Continuation frame ** delta 011 Lua vararg frame ** delta 101 cpcall() frame ** delta 110 ff pcall() frame ** delta 111 ff pcall() frame with active hook */ enum { FRAME_LUA, FRAME_C, FRAME_CONT, FRAME_VARG, FRAME_LUAP, FRAME_CP, FRAME_PCALL, FRAME_PCALLH }; #define FRAME_TYPE 3 #define FRAME_P 4 #define FRAME_TYPEP (FRAME_TYPE|FRAME_P) /* Macros to access and modify Lua frames. */ #if LJ_FR2 /* Two-slot frame info, required for 64 bit PC/GCRef: ** ** base-2 base-1 | base base+1 ... ** [func PC/delta/ft] | [slots ...] ** ^-- frame | ^-- base ^-- top ** ** Continuation frames: ** ** base-4 base-3 base-2 base-1 | base base+1 ... ** [cont PC ] [func PC/delta/ft] | [slots ...] ** ^-- frame | ^-- base ^-- top */ #define frame_gc(f) (gcval((f)-1)) #define frame_ftsz(f) ((ptrdiff_t)(f)->ftsz) #define frame_pc(f) ((const BCIns *)frame_ftsz(f)) #define setframe_gc(f, p, tp) (setgcVraw((f)-1, (p), (tp))) #define setframe_ftsz(f, sz) ((f)->ftsz = (sz)) #define setframe_pc(f, pc) ((f)->ftsz = (int64_t)(intptr_t)(pc)) #else /* One-slot frame info, sufficient for 32 bit PC/GCRef: ** ** base-1 | base base+1 ... ** lo hi | ** [func | PC/delta/ft] | [slots ...] ** ^-- frame | ^-- base ^-- top ** ** Continuation frames: ** ** base-2 base-1 | base base+1 ... ** lo hi lo hi | ** [cont | PC] [func | PC/delta/ft] | [slots ...] ** ^-- frame | ^-- base ^-- top */ #define frame_gc(f) (gcref((f)->fr.func)) #define frame_ftsz(f) ((ptrdiff_t)(f)->fr.tp.ftsz) #define frame_pc(f) (mref((f)->fr.tp.pcr, const BCIns)) #define setframe_gc(f, p, tp) (setgcref((f)->fr.func, (p)), UNUSED(tp)) #define setframe_ftsz(f, sz) ((f)->fr.tp.ftsz = (int32_t)(sz)) #define setframe_pc(f, pc) (setmref((f)->fr.tp.pcr, (pc))) #endif #define frame_type(f) (frame_ftsz(f) & FRAME_TYPE) #define frame_typep(f) (frame_ftsz(f) & FRAME_TYPEP) #define frame_islua(f) (frame_type(f) == FRAME_LUA) #define frame_isc(f) (frame_type(f) == FRAME_C) #define frame_iscont(f) (frame_typep(f) == FRAME_CONT) #define frame_isvarg(f) (frame_typep(f) == FRAME_VARG) #define frame_ispcall(f) ((frame_ftsz(f) & 6) == FRAME_PCALL) #define frame_func(f) (&frame_gc(f)->fn) #define frame_delta(f) (frame_ftsz(f) >> 3) #define frame_sized(f) (frame_ftsz(f) & ~FRAME_TYPEP) enum { LJ_CONT_TAILCALL, LJ_CONT_FFI_CALLBACK }; /* Special continuations. */ #if LJ_FR2 #define frame_contpc(f) (frame_pc((f)-2)) #define frame_contv(f) (((f)-3)->u64) #else #define frame_contpc(f) (frame_pc((f)-1)) #define frame_contv(f) (((f)-1)->u32.lo) #endif #if LJ_FR2 #define frame_contf(f) ((ASMFunction)(uintptr_t)((f)-3)->u64) #elif LJ_64 #define frame_contf(f) \ ((ASMFunction)(void *)((intptr_t)lj_vm_asm_begin + \ (intptr_t)(int32_t)((f)-1)->u32.lo)) #else #define frame_contf(f) ((ASMFunction)gcrefp(((f)-1)->gcr, void)) #endif #define frame_iscont_fficb(f) \ (LJ_HASFFI && frame_contv(f) == LJ_CONT_FFI_CALLBACK) #define frame_prevl(f) ((f) - (1+LJ_FR2+bc_a(frame_pc(f)[-1]))) #define frame_prevd(f) ((TValue *)((char *)(f) - frame_sized(f))) #define frame_prev(f) (frame_islua(f)?frame_prevl(f):frame_prevd(f)) /* Note: this macro does not skip over FRAME_VARG. */ /* -- C stack frame ------------------------------------------------------- */ /* Macros to access and modify the C stack frame chain. */ /* These definitions must match with the arch-specific *.dasc files. */ #if LJ_TARGET_X86 #if LJ_ABI_WIN #define CFRAME_OFS_ERRF (19*4) #define CFRAME_OFS_NRES (18*4) #define CFRAME_OFS_PREV (17*4) #define CFRAME_OFS_L (16*4) #define CFRAME_OFS_SEH (9*4) #define CFRAME_OFS_PC (6*4) #define CFRAME_OFS_MULTRES (5*4) #define CFRAME_SIZE (16*4) #define CFRAME_SHIFT_MULTRES 0 #else #define CFRAME_OFS_ERRF (15*4) #define CFRAME_OFS_NRES (14*4) #define CFRAME_OFS_PREV (13*4) #define CFRAME_OFS_L (12*4) #define CFRAME_OFS_PC (6*4) #define CFRAME_OFS_MULTRES (5*4) #define CFRAME_SIZE (12*4) #define CFRAME_SHIFT_MULTRES 0 #endif #elif LJ_TARGET_X64 #if LJ_ABI_WIN #define CFRAME_OFS_PREV (13*8) #if LJ_GC64 #define CFRAME_OFS_PC (12*8) #define CFRAME_OFS_L (11*8) #define CFRAME_OFS_ERRF (21*4) #define CFRAME_OFS_NRES (20*4) #define CFRAME_OFS_MULTRES (8*4) #else #define CFRAME_OFS_PC (25*4) #define CFRAME_OFS_L (24*4) #define CFRAME_OFS_ERRF (23*4) #define CFRAME_OFS_NRES (22*4) #define CFRAME_OFS_MULTRES (21*4) #endif #define CFRAME_SIZE (10*8) #define CFRAME_SIZE_JIT (CFRAME_SIZE + 9*16 + 4*8) #define CFRAME_SHIFT_MULTRES 0 #else #define CFRAME_OFS_PREV (4*8) #if LJ_GC64 #define CFRAME_OFS_PC (3*8) #define CFRAME_OFS_L (2*8) #define CFRAME_OFS_ERRF (3*4) #define CFRAME_OFS_NRES (2*4) #define CFRAME_OFS_MULTRES (0*4) #else #define CFRAME_OFS_PC (7*4) #define CFRAME_OFS_L (6*4) #define CFRAME_OFS_ERRF (5*4) #define CFRAME_OFS_NRES (4*4) #define CFRAME_OFS_MULTRES (1*4) #endif #if LJ_NO_UNWIND #define CFRAME_SIZE (12*8) #else #define CFRAME_SIZE (10*8) #endif #define CFRAME_SIZE_JIT (CFRAME_SIZE + 16) #define CFRAME_SHIFT_MULTRES 0 #endif #elif LJ_TARGET_ARM #define CFRAME_OFS_ERRF 24 #define CFRAME_OFS_NRES 20 #define CFRAME_OFS_PREV 16 #define CFRAME_OFS_L 12 #define CFRAME_OFS_PC 8 #define CFRAME_OFS_MULTRES 4 #if LJ_ARCH_HASFPU #define CFRAME_SIZE 128 #else #define CFRAME_SIZE 64 #endif #define CFRAME_SHIFT_MULTRES 3 #elif LJ_TARGET_ARM64 #define CFRAME_OFS_ERRF 196 #define CFRAME_OFS_NRES 200 #define CFRAME_OFS_PREV 160 #define CFRAME_OFS_L 176 #define CFRAME_OFS_PC 168 #define CFRAME_OFS_MULTRES 192 #define CFRAME_SIZE 208 #define CFRAME_SHIFT_MULTRES 3 #elif LJ_TARGET_PPC #if LJ_TARGET_XBOX360 #define CFRAME_OFS_ERRF 424 #define CFRAME_OFS_NRES 420 #define CFRAME_OFS_PREV 400 #define CFRAME_OFS_L 416 #define CFRAME_OFS_PC 412 #define CFRAME_OFS_MULTRES 408 #define CFRAME_SIZE 384 #define CFRAME_SHIFT_MULTRES 3 #elif LJ_ARCH_PPC32ON64 #define CFRAME_OFS_ERRF 472 #define CFRAME_OFS_NRES 468 #define CFRAME_OFS_PREV 448 #define CFRAME_OFS_L 464 #define CFRAME_OFS_PC 460 #define CFRAME_OFS_MULTRES 456 #define CFRAME_SIZE 400 #define CFRAME_SHIFT_MULTRES 3 #else #define CFRAME_OFS_ERRF 48 #define CFRAME_OFS_NRES 44 #define CFRAME_OFS_PREV 40 #define CFRAME_OFS_L 36 #define CFRAME_OFS_PC 32 #define CFRAME_OFS_MULTRES 28 #define CFRAME_SIZE 272 #define CFRAME_SHIFT_MULTRES 3 #endif #elif LJ_TARGET_MIPS32 #if LJ_ARCH_HASFPU #define CFRAME_OFS_ERRF 124 #define CFRAME_OFS_NRES 120 #define CFRAME_OFS_PREV 116 #define CFRAME_OFS_L 112 #define CFRAME_SIZE 112 #else #define CFRAME_OFS_ERRF 76 #define CFRAME_OFS_NRES 72 #define CFRAME_OFS_PREV 68 #define CFRAME_OFS_L 64 #define CFRAME_SIZE 64 #endif #define CFRAME_OFS_PC 20 #define CFRAME_OFS_MULTRES 16 #define CFRAME_SHIFT_MULTRES 3 #elif LJ_TARGET_MIPS64 #if LJ_ARCH_HASFPU #define CFRAME_OFS_ERRF 188 #define CFRAME_OFS_NRES 184 #define CFRAME_OFS_PREV 176 #define CFRAME_OFS_L 168 #define CFRAME_OFS_PC 160 #define CFRAME_SIZE 192 #else #define CFRAME_OFS_ERRF 124 #define CFRAME_OFS_NRES 120 #define CFRAME_OFS_PREV 112 #define CFRAME_OFS_L 104 #define CFRAME_OFS_PC 96 #define CFRAME_SIZE 128 #endif #define CFRAME_OFS_MULTRES 0 #define CFRAME_SHIFT_MULTRES 3 #else #error "Missing CFRAME_* definitions for this architecture" #endif #ifndef CFRAME_SIZE_JIT #define CFRAME_SIZE_JIT CFRAME_SIZE #endif #define CFRAME_RESUME 1 #define CFRAME_UNWIND_FF 2 /* Only used in unwinder. */ #define CFRAME_RAWMASK (~(intptr_t)(CFRAME_RESUME|CFRAME_UNWIND_FF)) #define cframe_errfunc(cf) (*(int32_t *)(((char *)(cf))+CFRAME_OFS_ERRF)) #define cframe_nres(cf) (*(int32_t *)(((char *)(cf))+CFRAME_OFS_NRES)) #define cframe_prev(cf) (*(void **)(((char *)(cf))+CFRAME_OFS_PREV)) #define cframe_multres(cf) (*(uint32_t *)(((char *)(cf))+CFRAME_OFS_MULTRES)) #define cframe_multres_n(cf) (cframe_multres((cf)) >> CFRAME_SHIFT_MULTRES) #define cframe_L(cf) \ (&gcref(*(GCRef *)(((char *)(cf))+CFRAME_OFS_L))->th) #define cframe_pc(cf) \ (mref(*(MRef *)(((char *)(cf))+CFRAME_OFS_PC), const BCIns)) #define setcframe_L(cf, L) \ (setmref(*(MRef *)(((char *)(cf))+CFRAME_OFS_L), (L))) #define setcframe_pc(cf, pc) \ (setmref(*(MRef *)(((char *)(cf))+CFRAME_OFS_PC), (pc))) #define cframe_canyield(cf) ((intptr_t)(cf) & CFRAME_RESUME) #define cframe_unwind_ff(cf) ((intptr_t)(cf) & CFRAME_UNWIND_FF) #define cframe_raw(cf) ((void *)((intptr_t)(cf) & CFRAME_RAWMASK)) #define cframe_Lpc(L) cframe_pc(cframe_raw(L->cframe)) #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_asm.h0000644000175100017510000000054413101703334017526 0ustar ondrejondrej/* ** IR assembler (SSA IR -> machine code). ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_ASM_H #define _LJ_ASM_H #include "lj_jit.h" #if LJ_HASJIT LJ_FUNC void lj_asm_trace(jit_State *J, GCtrace *T); LJ_FUNC void lj_asm_patchexit(jit_State *J, GCtrace *T, ExitNo exitno, MCode *target); #endif #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_func.c0000644000175100017510000001316613101703334017700 0ustar ondrejondrej/* ** Function handling (prototypes, functions and upvalues). ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h ** ** Portions taken verbatim or adapted from the Lua interpreter. ** Copyright (C) 1994-2008 Lua.org, PUC-Rio. See Copyright Notice in lua.h */ #define lj_func_c #define LUA_CORE #include "lj_obj.h" #include "lj_gc.h" #include "lj_func.h" #include "lj_trace.h" #include "lj_vm.h" /* -- Prototypes ---------------------------------------------------------- */ void LJ_FASTCALL lj_func_freeproto(global_State *g, GCproto *pt) { lj_mem_free(g, pt, pt->sizept); } /* -- Upvalues ------------------------------------------------------------ */ static void unlinkuv(GCupval *uv) { lua_assert(uvprev(uvnext(uv)) == uv && uvnext(uvprev(uv)) == uv); setgcrefr(uvnext(uv)->prev, uv->prev); setgcrefr(uvprev(uv)->next, uv->next); } /* Find existing open upvalue for a stack slot or create a new one. */ static GCupval *func_finduv(lua_State *L, TValue *slot) { global_State *g = G(L); GCRef *pp = &L->openupval; GCupval *p; GCupval *uv; /* Search the sorted list of open upvalues. */ while (gcref(*pp) != NULL && uvval((p = gco2uv(gcref(*pp)))) >= slot) { lua_assert(!p->closed && uvval(p) != &p->tv); if (uvval(p) == slot) { /* Found open upvalue pointing to same slot? */ if (isdead(g, obj2gco(p))) /* Resurrect it, if it's dead. */ flipwhite(obj2gco(p)); return p; } pp = &p->nextgc; } /* No matching upvalue found. Create a new one. */ uv = lj_mem_newt(L, sizeof(GCupval), GCupval); newwhite(g, uv); uv->gct = ~LJ_TUPVAL; uv->closed = 0; /* Still open. */ setmref(uv->v, slot); /* Pointing to the stack slot. */ /* NOBARRIER: The GCupval is new (marked white) and open. */ setgcrefr(uv->nextgc, *pp); /* Insert into sorted list of open upvalues. */ setgcref(*pp, obj2gco(uv)); setgcref(uv->prev, obj2gco(&g->uvhead)); /* Insert into GC list, too. */ setgcrefr(uv->next, g->uvhead.next); setgcref(uvnext(uv)->prev, obj2gco(uv)); setgcref(g->uvhead.next, obj2gco(uv)); lua_assert(uvprev(uvnext(uv)) == uv && uvnext(uvprev(uv)) == uv); return uv; } /* Create an empty and closed upvalue. */ static GCupval *func_emptyuv(lua_State *L) { GCupval *uv = (GCupval *)lj_mem_newgco(L, sizeof(GCupval)); uv->gct = ~LJ_TUPVAL; uv->closed = 1; setnilV(&uv->tv); setmref(uv->v, &uv->tv); return uv; } /* Close all open upvalues pointing to some stack level or above. */ void LJ_FASTCALL lj_func_closeuv(lua_State *L, TValue *level) { GCupval *uv; global_State *g = G(L); while (gcref(L->openupval) != NULL && uvval((uv = gco2uv(gcref(L->openupval)))) >= level) { GCobj *o = obj2gco(uv); lua_assert(!isblack(o) && !uv->closed && uvval(uv) != &uv->tv); setgcrefr(L->openupval, uv->nextgc); /* No longer in open list. */ if (isdead(g, o)) { lj_func_freeuv(g, uv); } else { unlinkuv(uv); lj_gc_closeuv(g, uv); } } } void LJ_FASTCALL lj_func_freeuv(global_State *g, GCupval *uv) { if (!uv->closed) unlinkuv(uv); lj_mem_freet(g, uv); } /* -- Functions (closures) ------------------------------------------------ */ GCfunc *lj_func_newC(lua_State *L, MSize nelems, GCtab *env) { GCfunc *fn = (GCfunc *)lj_mem_newgco(L, sizeCfunc(nelems)); fn->c.gct = ~LJ_TFUNC; fn->c.ffid = FF_C; fn->c.nupvalues = (uint8_t)nelems; /* NOBARRIER: The GCfunc is new (marked white). */ setmref(fn->c.pc, &G(L)->bc_cfunc_ext); setgcref(fn->c.env, obj2gco(env)); return fn; } static GCfunc *func_newL(lua_State *L, GCproto *pt, GCtab *env) { uint32_t count; GCfunc *fn = (GCfunc *)lj_mem_newgco(L, sizeLfunc((MSize)pt->sizeuv)); fn->l.gct = ~LJ_TFUNC; fn->l.ffid = FF_LUA; fn->l.nupvalues = 0; /* Set to zero until upvalues are initialized. */ /* NOBARRIER: Really a setgcref. But the GCfunc is new (marked white). */ setmref(fn->l.pc, proto_bc(pt)); setgcref(fn->l.env, obj2gco(env)); /* Saturating 3 bit counter (0..7) for created closures. */ count = (uint32_t)pt->flags + PROTO_CLCOUNT; pt->flags = (uint8_t)(count - ((count >> PROTO_CLC_BITS) & PROTO_CLCOUNT)); return fn; } /* Create a new Lua function with empty upvalues. */ GCfunc *lj_func_newL_empty(lua_State *L, GCproto *pt, GCtab *env) { GCfunc *fn = func_newL(L, pt, env); MSize i, nuv = pt->sizeuv; /* NOBARRIER: The GCfunc is new (marked white). */ for (i = 0; i < nuv; i++) { GCupval *uv = func_emptyuv(L); int32_t v = proto_uv(pt)[i]; uv->immutable = ((v / PROTO_UV_IMMUTABLE) & 1); uv->dhash = (uint32_t)(uintptr_t)pt ^ (v << 24); setgcref(fn->l.uvptr[i], obj2gco(uv)); } fn->l.nupvalues = (uint8_t)nuv; return fn; } /* Do a GC check and create a new Lua function with inherited upvalues. */ GCfunc *lj_func_newL_gc(lua_State *L, GCproto *pt, GCfuncL *parent) { GCfunc *fn; GCRef *puv; MSize i, nuv; TValue *base; lj_gc_check_fixtop(L); fn = func_newL(L, pt, tabref(parent->env)); /* NOBARRIER: The GCfunc is new (marked white). */ puv = parent->uvptr; nuv = pt->sizeuv; base = L->base; for (i = 0; i < nuv; i++) { uint32_t v = proto_uv(pt)[i]; GCupval *uv; if ((v & PROTO_UV_LOCAL)) { uv = func_finduv(L, base + (v & 0xff)); uv->immutable = ((v / PROTO_UV_IMMUTABLE) & 1); uv->dhash = (uint32_t)(uintptr_t)mref(parent->pc, char) ^ (v << 24); } else { uv = &gcref(puv[v])->uv; } setgcref(fn->l.uvptr[i], obj2gco(uv)); } fn->l.nupvalues = (uint8_t)nuv; return fn; } void LJ_FASTCALL lj_func_free(global_State *g, GCfunc *fn) { MSize size = isluafunc(fn) ? sizeLfunc((MSize)fn->l.nupvalues) : sizeCfunc((MSize)fn->c.nupvalues); lj_mem_free(g, fn, size); } luajit-2.1.0~beta3+dfsg.orig/src/lj_tab.c0000644000175100017510000004447313101703334017520 0ustar ondrejondrej/* ** Table handling. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h ** ** Major portions taken verbatim or adapted from the Lua interpreter. ** Copyright (C) 1994-2008 Lua.org, PUC-Rio. See Copyright Notice in lua.h */ #define lj_tab_c #define LUA_CORE #include "lj_obj.h" #include "lj_gc.h" #include "lj_err.h" #include "lj_tab.h" /* -- Object hashing ------------------------------------------------------ */ /* Hash values are masked with the table hash mask and used as an index. */ static LJ_AINLINE Node *hashmask(const GCtab *t, uint32_t hash) { Node *n = noderef(t->node); return &n[hash & t->hmask]; } /* String hashes are precomputed when they are interned. */ #define hashstr(t, s) hashmask(t, (s)->hash) #define hashlohi(t, lo, hi) hashmask((t), hashrot((lo), (hi))) #define hashnum(t, o) hashlohi((t), (o)->u32.lo, ((o)->u32.hi << 1)) #if LJ_GC64 #define hashgcref(t, r) \ hashlohi((t), (uint32_t)gcrefu(r), (uint32_t)(gcrefu(r) >> 32)) #else #define hashgcref(t, r) hashlohi((t), gcrefu(r), gcrefu(r) + HASH_BIAS) #endif /* Hash an arbitrary key and return its anchor position in the hash table. */ static Node *hashkey(const GCtab *t, cTValue *key) { lua_assert(!tvisint(key)); if (tvisstr(key)) return hashstr(t, strV(key)); else if (tvisnum(key)) return hashnum(t, key); else if (tvisbool(key)) return hashmask(t, boolV(key)); else return hashgcref(t, key->gcr); /* Only hash 32 bits of lightuserdata on a 64 bit CPU. Good enough? */ } /* -- Table creation and destruction -------------------------------------- */ /* Create new hash part for table. */ static LJ_AINLINE void newhpart(lua_State *L, GCtab *t, uint32_t hbits) { uint32_t hsize; Node *node; lua_assert(hbits != 0); if (hbits > LJ_MAX_HBITS) lj_err_msg(L, LJ_ERR_TABOV); hsize = 1u << hbits; node = lj_mem_newvec(L, hsize, Node); setmref(t->node, node); setfreetop(t, node, &node[hsize]); t->hmask = hsize-1; } /* ** Q: Why all of these copies of t->hmask, t->node etc. to local variables? ** A: Because alias analysis for C is _really_ tough. ** Even state-of-the-art C compilers won't produce good code without this. */ /* Clear hash part of table. */ static LJ_AINLINE void clearhpart(GCtab *t) { uint32_t i, hmask = t->hmask; Node *node = noderef(t->node); lua_assert(t->hmask != 0); for (i = 0; i <= hmask; i++) { Node *n = &node[i]; setmref(n->next, NULL); setnilV(&n->key); setnilV(&n->val); } } /* Clear array part of table. */ static LJ_AINLINE void clearapart(GCtab *t) { uint32_t i, asize = t->asize; TValue *array = tvref(t->array); for (i = 0; i < asize; i++) setnilV(&array[i]); } /* Create a new table. Note: the slots are not initialized (yet). */ static GCtab *newtab(lua_State *L, uint32_t asize, uint32_t hbits) { GCtab *t; /* First try to colocate the array part. */ if (LJ_MAX_COLOSIZE != 0 && asize > 0 && asize <= LJ_MAX_COLOSIZE) { Node *nilnode; lua_assert((sizeof(GCtab) & 7) == 0); t = (GCtab *)lj_mem_newgco(L, sizetabcolo(asize)); t->gct = ~LJ_TTAB; t->nomm = (uint8_t)~0; t->colo = (int8_t)asize; setmref(t->array, (TValue *)((char *)t + sizeof(GCtab))); setgcrefnull(t->metatable); t->asize = asize; t->hmask = 0; nilnode = &G(L)->nilnode; setmref(t->node, nilnode); #if LJ_GC64 setmref(t->freetop, nilnode); #endif } else { /* Otherwise separately allocate the array part. */ Node *nilnode; t = lj_mem_newobj(L, GCtab); t->gct = ~LJ_TTAB; t->nomm = (uint8_t)~0; t->colo = 0; setmref(t->array, NULL); setgcrefnull(t->metatable); t->asize = 0; /* In case the array allocation fails. */ t->hmask = 0; nilnode = &G(L)->nilnode; setmref(t->node, nilnode); #if LJ_GC64 setmref(t->freetop, nilnode); #endif if (asize > 0) { if (asize > LJ_MAX_ASIZE) lj_err_msg(L, LJ_ERR_TABOV); setmref(t->array, lj_mem_newvec(L, asize, TValue)); t->asize = asize; } } if (hbits) newhpart(L, t, hbits); return t; } /* Create a new table. ** ** IMPORTANT NOTE: The API differs from lua_createtable()! ** ** The array size is non-inclusive. E.g. asize=128 creates array slots ** for 0..127, but not for 128. If you need slots 1..128, pass asize=129 ** (slot 0 is wasted in this case). ** ** The hash size is given in hash bits. hbits=0 means no hash part. ** hbits=1 creates 2 hash slots, hbits=2 creates 4 hash slots and so on. */ GCtab *lj_tab_new(lua_State *L, uint32_t asize, uint32_t hbits) { GCtab *t = newtab(L, asize, hbits); clearapart(t); if (t->hmask > 0) clearhpart(t); return t; } /* The API of this function conforms to lua_createtable(). */ GCtab *lj_tab_new_ah(lua_State *L, int32_t a, int32_t h) { return lj_tab_new(L, (uint32_t)(a > 0 ? a+1 : 0), hsize2hbits(h)); } #if LJ_HASJIT GCtab * LJ_FASTCALL lj_tab_new1(lua_State *L, uint32_t ahsize) { GCtab *t = newtab(L, ahsize & 0xffffff, ahsize >> 24); clearapart(t); if (t->hmask > 0) clearhpart(t); return t; } #endif /* Duplicate a table. */ GCtab * LJ_FASTCALL lj_tab_dup(lua_State *L, const GCtab *kt) { GCtab *t; uint32_t asize, hmask; t = newtab(L, kt->asize, kt->hmask > 0 ? lj_fls(kt->hmask)+1 : 0); lua_assert(kt->asize == t->asize && kt->hmask == t->hmask); t->nomm = 0; /* Keys with metamethod names may be present. */ asize = kt->asize; if (asize > 0) { TValue *array = tvref(t->array); TValue *karray = tvref(kt->array); if (asize < 64) { /* An inlined loop beats memcpy for < 512 bytes. */ uint32_t i; for (i = 0; i < asize; i++) copyTV(L, &array[i], &karray[i]); } else { memcpy(array, karray, asize*sizeof(TValue)); } } hmask = kt->hmask; if (hmask > 0) { uint32_t i; Node *node = noderef(t->node); Node *knode = noderef(kt->node); ptrdiff_t d = (char *)node - (char *)knode; setfreetop(t, node, (Node *)((char *)getfreetop(kt, knode) + d)); for (i = 0; i <= hmask; i++) { Node *kn = &knode[i]; Node *n = &node[i]; Node *next = nextnode(kn); /* Don't use copyTV here, since it asserts on a copy of a dead key. */ n->val = kn->val; n->key = kn->key; setmref(n->next, next == NULL? next : (Node *)((char *)next + d)); } } return t; } /* Clear a table. */ void LJ_FASTCALL lj_tab_clear(GCtab *t) { clearapart(t); if (t->hmask > 0) { Node *node = noderef(t->node); setfreetop(t, node, &node[t->hmask+1]); clearhpart(t); } } /* Free a table. */ void LJ_FASTCALL lj_tab_free(global_State *g, GCtab *t) { if (t->hmask > 0) lj_mem_freevec(g, noderef(t->node), t->hmask+1, Node); if (t->asize > 0 && LJ_MAX_COLOSIZE != 0 && t->colo <= 0) lj_mem_freevec(g, tvref(t->array), t->asize, TValue); if (LJ_MAX_COLOSIZE != 0 && t->colo) lj_mem_free(g, t, sizetabcolo((uint32_t)t->colo & 0x7f)); else lj_mem_freet(g, t); } /* -- Table resizing ------------------------------------------------------ */ /* Resize a table to fit the new array/hash part sizes. */ void lj_tab_resize(lua_State *L, GCtab *t, uint32_t asize, uint32_t hbits) { Node *oldnode = noderef(t->node); uint32_t oldasize = t->asize; uint32_t oldhmask = t->hmask; if (asize > oldasize) { /* Array part grows? */ TValue *array; uint32_t i; if (asize > LJ_MAX_ASIZE) lj_err_msg(L, LJ_ERR_TABOV); if (LJ_MAX_COLOSIZE != 0 && t->colo > 0) { /* A colocated array must be separated and copied. */ TValue *oarray = tvref(t->array); array = lj_mem_newvec(L, asize, TValue); t->colo = (int8_t)(t->colo | 0x80); /* Mark as separated (colo < 0). */ for (i = 0; i < oldasize; i++) copyTV(L, &array[i], &oarray[i]); } else { array = (TValue *)lj_mem_realloc(L, tvref(t->array), oldasize*sizeof(TValue), asize*sizeof(TValue)); } setmref(t->array, array); t->asize = asize; for (i = oldasize; i < asize; i++) /* Clear newly allocated slots. */ setnilV(&array[i]); } /* Create new (empty) hash part. */ if (hbits) { newhpart(L, t, hbits); clearhpart(t); } else { global_State *g = G(L); setmref(t->node, &g->nilnode); #if LJ_GC64 setmref(t->freetop, &g->nilnode); #endif t->hmask = 0; } if (asize < oldasize) { /* Array part shrinks? */ TValue *array = tvref(t->array); uint32_t i; t->asize = asize; /* Note: This 'shrinks' even colocated arrays. */ for (i = asize; i < oldasize; i++) /* Reinsert old array values. */ if (!tvisnil(&array[i])) copyTV(L, lj_tab_setinth(L, t, (int32_t)i), &array[i]); /* Physically shrink only separated arrays. */ if (LJ_MAX_COLOSIZE != 0 && t->colo <= 0) setmref(t->array, lj_mem_realloc(L, array, oldasize*sizeof(TValue), asize*sizeof(TValue))); } if (oldhmask > 0) { /* Reinsert pairs from old hash part. */ global_State *g; uint32_t i; for (i = 0; i <= oldhmask; i++) { Node *n = &oldnode[i]; if (!tvisnil(&n->val)) copyTV(L, lj_tab_set(L, t, &n->key), &n->val); } g = G(L); lj_mem_freevec(g, oldnode, oldhmask+1, Node); } } static uint32_t countint(cTValue *key, uint32_t *bins) { lua_assert(!tvisint(key)); if (tvisnum(key)) { lua_Number nk = numV(key); int32_t k = lj_num2int(nk); if ((uint32_t)k < LJ_MAX_ASIZE && nk == (lua_Number)k) { bins[(k > 2 ? lj_fls((uint32_t)(k-1)) : 0)]++; return 1; } } return 0; } static uint32_t countarray(const GCtab *t, uint32_t *bins) { uint32_t na, b, i; if (t->asize == 0) return 0; for (na = i = b = 0; b < LJ_MAX_ABITS; b++) { uint32_t n, top = 2u << b; TValue *array; if (top >= t->asize) { top = t->asize-1; if (i > top) break; } array = tvref(t->array); for (n = 0; i <= top; i++) if (!tvisnil(&array[i])) n++; bins[b] += n; na += n; } return na; } static uint32_t counthash(const GCtab *t, uint32_t *bins, uint32_t *narray) { uint32_t total, na, i, hmask = t->hmask; Node *node = noderef(t->node); for (total = na = 0, i = 0; i <= hmask; i++) { Node *n = &node[i]; if (!tvisnil(&n->val)) { na += countint(&n->key, bins); total++; } } *narray += na; return total; } static uint32_t bestasize(uint32_t bins[], uint32_t *narray) { uint32_t b, sum, na = 0, sz = 0, nn = *narray; for (b = 0, sum = 0; 2*nn > (1u< 0 && 2*(sum += bins[b]) > (1u<hmask > 0 ? lj_fls(t->hmask)+1 : 0); } /* -- Table getters ------------------------------------------------------- */ cTValue * LJ_FASTCALL lj_tab_getinth(GCtab *t, int32_t key) { TValue k; Node *n; k.n = (lua_Number)key; n = hashnum(t, &k); do { if (tvisnum(&n->key) && n->key.n == k.n) return &n->val; } while ((n = nextnode(n))); return NULL; } cTValue *lj_tab_getstr(GCtab *t, GCstr *key) { Node *n = hashstr(t, key); do { if (tvisstr(&n->key) && strV(&n->key) == key) return &n->val; } while ((n = nextnode(n))); return NULL; } cTValue *lj_tab_get(lua_State *L, GCtab *t, cTValue *key) { if (tvisstr(key)) { cTValue *tv = lj_tab_getstr(t, strV(key)); if (tv) return tv; } else if (tvisint(key)) { cTValue *tv = lj_tab_getint(t, intV(key)); if (tv) return tv; } else if (tvisnum(key)) { lua_Number nk = numV(key); int32_t k = lj_num2int(nk); if (nk == (lua_Number)k) { cTValue *tv = lj_tab_getint(t, k); if (tv) return tv; } else { goto genlookup; /* Else use the generic lookup. */ } } else if (!tvisnil(key)) { Node *n; genlookup: n = hashkey(t, key); do { if (lj_obj_equal(&n->key, key)) return &n->val; } while ((n = nextnode(n))); } return niltv(L); } /* -- Table setters ------------------------------------------------------- */ /* Insert new key. Use Brent's variation to optimize the chain length. */ TValue *lj_tab_newkey(lua_State *L, GCtab *t, cTValue *key) { Node *n = hashkey(t, key); if (!tvisnil(&n->val) || t->hmask == 0) { Node *nodebase = noderef(t->node); Node *collide, *freenode = getfreetop(t, nodebase); lua_assert(freenode >= nodebase && freenode <= nodebase+t->hmask+1); do { if (freenode == nodebase) { /* No free node found? */ rehashtab(L, t, key); /* Rehash table. */ return lj_tab_set(L, t, key); /* Retry key insertion. */ } } while (!tvisnil(&(--freenode)->key)); setfreetop(t, nodebase, freenode); lua_assert(freenode != &G(L)->nilnode); collide = hashkey(t, &n->key); if (collide != n) { /* Colliding node not the main node? */ while (noderef(collide->next) != n) /* Find predecessor. */ collide = nextnode(collide); setmref(collide->next, freenode); /* Relink chain. */ /* Copy colliding node into free node and free main node. */ freenode->val = n->val; freenode->key = n->key; freenode->next = n->next; setmref(n->next, NULL); setnilV(&n->val); /* Rechain pseudo-resurrected string keys with colliding hashes. */ while (nextnode(freenode)) { Node *nn = nextnode(freenode); if (tvisstr(&nn->key) && !tvisnil(&nn->val) && hashstr(t, strV(&nn->key)) == n) { freenode->next = nn->next; nn->next = n->next; setmref(n->next, nn); } else { freenode = nn; } } } else { /* Otherwise use free node. */ setmrefr(freenode->next, n->next); /* Insert into chain. */ setmref(n->next, freenode); n = freenode; } } n->key.u64 = key->u64; if (LJ_UNLIKELY(tvismzero(&n->key))) n->key.u64 = 0; lj_gc_anybarriert(L, t); lua_assert(tvisnil(&n->val)); return &n->val; } TValue *lj_tab_setinth(lua_State *L, GCtab *t, int32_t key) { TValue k; Node *n; k.n = (lua_Number)key; n = hashnum(t, &k); do { if (tvisnum(&n->key) && n->key.n == k.n) return &n->val; } while ((n = nextnode(n))); return lj_tab_newkey(L, t, &k); } TValue *lj_tab_setstr(lua_State *L, GCtab *t, GCstr *key) { TValue k; Node *n = hashstr(t, key); do { if (tvisstr(&n->key) && strV(&n->key) == key) return &n->val; } while ((n = nextnode(n))); setstrV(L, &k, key); return lj_tab_newkey(L, t, &k); } TValue *lj_tab_set(lua_State *L, GCtab *t, cTValue *key) { Node *n; t->nomm = 0; /* Invalidate negative metamethod cache. */ if (tvisstr(key)) { return lj_tab_setstr(L, t, strV(key)); } else if (tvisint(key)) { return lj_tab_setint(L, t, intV(key)); } else if (tvisnum(key)) { lua_Number nk = numV(key); int32_t k = lj_num2int(nk); if (nk == (lua_Number)k) return lj_tab_setint(L, t, k); if (tvisnan(key)) lj_err_msg(L, LJ_ERR_NANIDX); /* Else use the generic lookup. */ } else if (tvisnil(key)) { lj_err_msg(L, LJ_ERR_NILIDX); } n = hashkey(t, key); do { if (lj_obj_equal(&n->key, key)) return &n->val; } while ((n = nextnode(n))); return lj_tab_newkey(L, t, key); } /* -- Table traversal ----------------------------------------------------- */ /* Get the traversal index of a key. */ static uint32_t keyindex(lua_State *L, GCtab *t, cTValue *key) { TValue tmp; if (tvisint(key)) { int32_t k = intV(key); if ((uint32_t)k < t->asize) return (uint32_t)k; /* Array key indexes: [0..t->asize-1] */ setnumV(&tmp, (lua_Number)k); key = &tmp; } else if (tvisnum(key)) { lua_Number nk = numV(key); int32_t k = lj_num2int(nk); if ((uint32_t)k < t->asize && nk == (lua_Number)k) return (uint32_t)k; /* Array key indexes: [0..t->asize-1] */ } if (!tvisnil(key)) { Node *n = hashkey(t, key); do { if (lj_obj_equal(&n->key, key)) return t->asize + (uint32_t)(n - noderef(t->node)); /* Hash key indexes: [t->asize..t->asize+t->nmask] */ } while ((n = nextnode(n))); if (key->u32.hi == 0xfffe7fff) /* ITERN was despecialized while running. */ return key->u32.lo - 1; lj_err_msg(L, LJ_ERR_NEXTIDX); return 0; /* unreachable */ } return ~0u; /* A nil key starts the traversal. */ } /* Advance to the next step in a table traversal. */ int lj_tab_next(lua_State *L, GCtab *t, TValue *key) { uint32_t i = keyindex(L, t, key); /* Find predecessor key index. */ for (i++; i < t->asize; i++) /* First traverse the array keys. */ if (!tvisnil(arrayslot(t, i))) { setintV(key, i); copyTV(L, key+1, arrayslot(t, i)); return 1; } for (i -= t->asize; i <= t->hmask; i++) { /* Then traverse the hash keys. */ Node *n = &noderef(t->node)[i]; if (!tvisnil(&n->val)) { copyTV(L, key, &n->key); copyTV(L, key+1, &n->val); return 1; } } return 0; /* End of traversal. */ } /* -- Table length calculation -------------------------------------------- */ static MSize unbound_search(GCtab *t, MSize j) { cTValue *tv; MSize i = j; /* i is zero or a present index */ j++; /* find `i' and `j' such that i is present and j is not */ while ((tv = lj_tab_getint(t, (int32_t)j)) && !tvisnil(tv)) { i = j; j *= 2; if (j > (MSize)(INT_MAX-2)) { /* overflow? */ /* table was built with bad purposes: resort to linear search */ i = 1; while ((tv = lj_tab_getint(t, (int32_t)i)) && !tvisnil(tv)) i++; return i - 1; } } /* now do a binary search between them */ while (j - i > 1) { MSize m = (i+j)/2; cTValue *tvb = lj_tab_getint(t, (int32_t)m); if (tvb && !tvisnil(tvb)) i = m; else j = m; } return i; } /* ** Try to find a boundary in table `t'. A `boundary' is an integer index ** such that t[i] is non-nil and t[i+1] is nil (and 0 if t[1] is nil). */ MSize LJ_FASTCALL lj_tab_len(GCtab *t) { MSize j = (MSize)t->asize; if (j > 1 && tvisnil(arrayslot(t, j-1))) { MSize i = 1; while (j - i > 1) { MSize m = (i+j)/2; if (tvisnil(arrayslot(t, m-1))) j = m; else i = m; } return i-1; } if (j) j--; if (t->hmask <= 0) return j; return unbound_search(t, j); } luajit-2.1.0~beta3+dfsg.orig/src/xedkbuild.bat0000644000175100017510000000607713101703334020562 0ustar ondrejondrej@rem Script to build LuaJIT with the Xbox 360 SDK. @rem Donated to the public domain. @rem @rem Open a "Visual Studio .NET Command Prompt" (32 bit host compiler) @rem Then cd to this directory and run this script. @if not defined INCLUDE goto :FAIL @if not defined XEDK goto :FAIL @setlocal @rem ---- Host compiler ---- @set LJCOMPILE=cl /nologo /c /MD /O2 /W3 /D_CRT_SECURE_NO_DEPRECATE @set LJLINK=link /nologo @set LJMT=mt /nologo @set DASMDIR=..\dynasm @set DASM=%DASMDIR%\dynasm.lua @set ALL_LIB=lib_base.c lib_math.c lib_bit.c lib_string.c lib_table.c lib_io.c lib_os.c lib_package.c lib_debug.c lib_jit.c lib_ffi.c %LJCOMPILE% host\minilua.c @if errorlevel 1 goto :BAD %LJLINK% /out:minilua.exe minilua.obj @if errorlevel 1 goto :BAD if exist minilua.exe.manifest^ %LJMT% -manifest minilua.exe.manifest -outputresource:minilua.exe @rem Error out for 64 bit host compiler @minilua @if errorlevel 8 goto :FAIL @set DASMFLAGS=-D GPR64 -D FRAME32 -D PPE -D SQRT -D DUALNUM minilua %DASM% -LN %DASMFLAGS% -o host\buildvm_arch.h vm_ppc.dasc @if errorlevel 1 goto :BAD %LJCOMPILE% /I "." /I %DASMDIR% /D_XBOX_VER=200 /DLUAJIT_TARGET=LUAJIT_ARCH_PPC host\buildvm*.c @if errorlevel 1 goto :BAD %LJLINK% /out:buildvm.exe buildvm*.obj @if errorlevel 1 goto :BAD if exist buildvm.exe.manifest^ %LJMT% -manifest buildvm.exe.manifest -outputresource:buildvm.exe buildvm -m peobj -o lj_vm.obj @if errorlevel 1 goto :BAD buildvm -m bcdef -o lj_bcdef.h %ALL_LIB% @if errorlevel 1 goto :BAD buildvm -m ffdef -o lj_ffdef.h %ALL_LIB% @if errorlevel 1 goto :BAD buildvm -m libdef -o lj_libdef.h %ALL_LIB% @if errorlevel 1 goto :BAD buildvm -m recdef -o lj_recdef.h %ALL_LIB% @if errorlevel 1 goto :BAD buildvm -m vmdef -o jit\vmdef.lua %ALL_LIB% @if errorlevel 1 goto :BAD buildvm -m folddef -o lj_folddef.h lj_opt_fold.c @if errorlevel 1 goto :BAD @rem ---- Cross compiler ---- @set LJCOMPILE="%XEDK%\bin\win32\cl" /nologo /c /MT /O2 /W3 /GF /Gm- /GR- /GS- /Gy /openmp- /D_CRT_SECURE_NO_DEPRECATE /DNDEBUG /D_XBOX /D_LIB /DLUAJIT_USE_SYSMALLOC @set LJLIB="%XEDK%\bin\win32\lib" /nologo @set "INCLUDE=%XEDK%\include\xbox" @if "%1" neq "debug" goto :NODEBUG @shift @set "LJCOMPILE=%LJCOMPILE% /Zi" :NODEBUG @if "%1"=="amalg" goto :AMALG %LJCOMPILE% /DLUA_BUILD_AS_DLL lj_*.c lib_*.c @if errorlevel 1 goto :BAD %LJLIB% /OUT:luajit20.lib lj_*.obj lib_*.obj @if errorlevel 1 goto :BAD @goto :NOAMALG :AMALG %LJCOMPILE% /DLUA_BUILD_AS_DLL ljamalg.c @if errorlevel 1 goto :BAD %LJLIB% /OUT:luajit20.lib ljamalg.obj lj_vm.obj @if errorlevel 1 goto :BAD :NOAMALG @del *.obj *.manifest minilua.exe buildvm.exe @echo. @echo === Successfully built LuaJIT for Xbox 360 === @goto :END :BAD @echo. @echo ******************************************************* @echo *** Build FAILED -- Please check the error messages *** @echo ******************************************************* @goto :END :FAIL @echo To run this script you must open a "Visual Studio .NET Command Prompt" @echo (32 bit host compiler). The Xbox 360 SDK must be installed, too. :END luajit-2.1.0~beta3+dfsg.orig/src/ps4build.bat0000644000175100017510000000733413101703334020332 0ustar ondrejondrej@rem Script to build LuaJIT with the PS4 SDK. @rem Donated to the public domain. @rem @rem Open a "Visual Studio .NET Command Prompt" (64 bit host compiler) @rem or "VS2015 x64 Native Tools Command Prompt". @rem @rem Then cd to this directory and run this script. @rem @rem Recommended invocation: @rem @rem ps4build release build, amalgamated, 64-bit GC @rem ps4build debug debug build, amalgamated, 64-bit GC @rem @rem Additional command-line options (not generally recommended): @rem @rem gc32 (before debug) 32-bit GC @rem noamalg (after debug) non-amalgamated build @if not defined INCLUDE goto :FAIL @if not defined SCE_ORBIS_SDK_DIR goto :FAIL @setlocal @rem ---- Host compiler ---- @set LJCOMPILE=cl /nologo /c /MD /O2 /W3 /D_CRT_SECURE_NO_DEPRECATE @set LJLINK=link /nologo @set LJMT=mt /nologo @set DASMDIR=..\dynasm @set DASM=%DASMDIR%\dynasm.lua @set ALL_LIB=lib_base.c lib_math.c lib_bit.c lib_string.c lib_table.c lib_io.c lib_os.c lib_package.c lib_debug.c lib_jit.c lib_ffi.c @set GC64=-DLUAJIT_ENABLE_GC64 @set DASC=vm_x64.dasc @if "%1" neq "gc32" goto :NOGC32 @shift @set GC64= @set DASC=vm_x86.dasc :NOGC32 %LJCOMPILE% host\minilua.c @if errorlevel 1 goto :BAD %LJLINK% /out:minilua.exe minilua.obj @if errorlevel 1 goto :BAD if exist minilua.exe.manifest^ %LJMT% -manifest minilua.exe.manifest -outputresource:minilua.exe @rem Check for 64 bit host compiler. @minilua @if not errorlevel 8 goto :FAIL @set DASMFLAGS=-D P64 -D NO_UNWIND minilua %DASM% -LN %DASMFLAGS% -o host\buildvm_arch.h %DASC% @if errorlevel 1 goto :BAD %LJCOMPILE% /I "." /I %DASMDIR% %GC64% -DLUAJIT_TARGET=LUAJIT_ARCH_X64 -DLUAJIT_OS=LUAJIT_OS_OTHER -DLUAJIT_DISABLE_JIT -DLUAJIT_DISABLE_FFI -DLUAJIT_NO_UNWIND host\buildvm*.c @if errorlevel 1 goto :BAD %LJLINK% /out:buildvm.exe buildvm*.obj @if errorlevel 1 goto :BAD if exist buildvm.exe.manifest^ %LJMT% -manifest buildvm.exe.manifest -outputresource:buildvm.exe buildvm -m elfasm -o lj_vm.s @if errorlevel 1 goto :BAD buildvm -m bcdef -o lj_bcdef.h %ALL_LIB% @if errorlevel 1 goto :BAD buildvm -m ffdef -o lj_ffdef.h %ALL_LIB% @if errorlevel 1 goto :BAD buildvm -m libdef -o lj_libdef.h %ALL_LIB% @if errorlevel 1 goto :BAD buildvm -m recdef -o lj_recdef.h %ALL_LIB% @if errorlevel 1 goto :BAD buildvm -m vmdef -o jit\vmdef.lua %ALL_LIB% @if errorlevel 1 goto :BAD buildvm -m folddef -o lj_folddef.h lj_opt_fold.c @if errorlevel 1 goto :BAD @rem ---- Cross compiler ---- @set LJCOMPILE="%SCE_ORBIS_SDK_DIR%\host_tools\bin\orbis-clang" -c -Wall -DLUAJIT_DISABLE_FFI %GC64% @set LJLIB="%SCE_ORBIS_SDK_DIR%\host_tools\bin\orbis-ar" rcus @set INCLUDE="" orbis-as -o lj_vm.o lj_vm.s @if "%1" neq "debug" goto :NODEBUG @shift @set LJCOMPILE=%LJCOMPILE% -g -O0 @set TARGETLIB=libluajitD_ps4.a goto :BUILD :NODEBUG @set LJCOMPILE=%LJCOMPILE% -O2 @set TARGETLIB=libluajit_ps4.a :BUILD del %TARGETLIB% @if "%1" neq "noamalg" goto :AMALG for %%f in (lj_*.c lib_*.c) do ( %LJCOMPILE% %%f @if errorlevel 1 goto :BAD ) %LJLIB% %TARGETLIB% lj_*.o lib_*.o @if errorlevel 1 goto :BAD @goto :NOAMALG :AMALG %LJCOMPILE% ljamalg.c @if errorlevel 1 goto :BAD %LJLIB% %TARGETLIB% ljamalg.o lj_vm.o @if errorlevel 1 goto :BAD :NOAMALG @del *.o *.obj *.manifest minilua.exe buildvm.exe @echo. @echo === Successfully built LuaJIT for PS4 === @goto :END :BAD @echo. @echo ******************************************************* @echo *** Build FAILED -- Please check the error messages *** @echo ******************************************************* @goto :END :FAIL @echo To run this script you must open a "Visual Studio .NET Command Prompt" @echo (64 bit host compiler). The PS4 Orbis SDK must be installed, too. :END luajit-2.1.0~beta3+dfsg.orig/src/lj_errmsg.h0000644000175100017510000001715313101703334020251 0ustar ondrejondrej/* ** VM error messages. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ /* This file may be included multiple times with different ERRDEF macros. */ /* Basic error handling. */ ERRDEF(ERRMEM, "not enough memory") ERRDEF(ERRERR, "error in error handling") ERRDEF(ERRCPP, "C++ exception") /* Allocations. */ ERRDEF(STROV, "string length overflow") ERRDEF(UDATAOV, "userdata length overflow") ERRDEF(STKOV, "stack overflow") ERRDEF(STKOVM, "stack overflow (%s)") ERRDEF(TABOV, "table overflow") /* Table indexing. */ ERRDEF(NANIDX, "table index is NaN") ERRDEF(NILIDX, "table index is nil") ERRDEF(NEXTIDX, "invalid key to " LUA_QL("next")) /* Metamethod resolving. */ ERRDEF(BADCALL, "attempt to call a %s value") ERRDEF(BADOPRT, "attempt to %s %s " LUA_QS " (a %s value)") ERRDEF(BADOPRV, "attempt to %s a %s value") ERRDEF(BADCMPT, "attempt to compare %s with %s") ERRDEF(BADCMPV, "attempt to compare two %s values") ERRDEF(GETLOOP, "loop in gettable") ERRDEF(SETLOOP, "loop in settable") ERRDEF(OPCALL, "call") ERRDEF(OPINDEX, "index") ERRDEF(OPARITH, "perform arithmetic on") ERRDEF(OPCAT, "concatenate") ERRDEF(OPLEN, "get length of") /* Type checks. */ ERRDEF(BADSELF, "calling " LUA_QS " on bad self (%s)") ERRDEF(BADARG, "bad argument #%d to " LUA_QS " (%s)") ERRDEF(BADTYPE, "%s expected, got %s") ERRDEF(BADVAL, "invalid value") ERRDEF(NOVAL, "value expected") ERRDEF(NOCORO, "coroutine expected") ERRDEF(NOTABN, "nil or table expected") ERRDEF(NOLFUNC, "Lua function expected") ERRDEF(NOFUNCL, "function or level expected") ERRDEF(NOSFT, "string/function/table expected") ERRDEF(NOPROXY, "boolean or proxy expected") ERRDEF(FORINIT, LUA_QL("for") " initial value must be a number") ERRDEF(FORLIM, LUA_QL("for") " limit must be a number") ERRDEF(FORSTEP, LUA_QL("for") " step must be a number") /* C API checks. */ ERRDEF(NOENV, "no calling environment") ERRDEF(CYIELD, "attempt to yield across C-call boundary") ERRDEF(BADLU, "bad light userdata pointer") ERRDEF(NOGCMM, "bad action while in __gc metamethod") #if LJ_TARGET_WINDOWS ERRDEF(BADFPU, "bad FPU precision (use D3DCREATE_FPU_PRESERVE with DirectX)") #endif /* Standard library function errors. */ ERRDEF(ASSERT, "assertion failed!") ERRDEF(PROTMT, "cannot change a protected metatable") ERRDEF(UNPACK, "too many results to unpack") ERRDEF(RDRSTR, "reader function must return a string") ERRDEF(PRTOSTR, LUA_QL("tostring") " must return a string to " LUA_QL("print")) ERRDEF(IDXRNG, "index out of range") ERRDEF(BASERNG, "base out of range") ERRDEF(LVLRNG, "level out of range") ERRDEF(INVLVL, "invalid level") ERRDEF(INVOPT, "invalid option") ERRDEF(INVOPTM, "invalid option " LUA_QS) ERRDEF(INVFMT, "invalid format") ERRDEF(SETFENV, LUA_QL("setfenv") " cannot change environment of given object") ERRDEF(CORUN, "cannot resume running coroutine") ERRDEF(CODEAD, "cannot resume dead coroutine") ERRDEF(COSUSP, "cannot resume non-suspended coroutine") ERRDEF(TABINS, "wrong number of arguments to " LUA_QL("insert")) ERRDEF(TABCAT, "invalid value (%s) at index %d in table for " LUA_QL("concat")) ERRDEF(TABSORT, "invalid order function for sorting") ERRDEF(IOCLFL, "attempt to use a closed file") ERRDEF(IOSTDCL, "standard file is closed") ERRDEF(OSUNIQF, "unable to generate a unique filename") ERRDEF(OSDATEF, "field " LUA_QS " missing in date table") ERRDEF(STRDUMP, "unable to dump given function") ERRDEF(STRSLC, "string slice too long") ERRDEF(STRPATB, "missing " LUA_QL("[") " after " LUA_QL("%f") " in pattern") ERRDEF(STRPATC, "invalid pattern capture") ERRDEF(STRPATE, "malformed pattern (ends with " LUA_QL("%") ")") ERRDEF(STRPATM, "malformed pattern (missing " LUA_QL("]") ")") ERRDEF(STRPATU, "unbalanced pattern") ERRDEF(STRPATX, "pattern too complex") ERRDEF(STRCAPI, "invalid capture index") ERRDEF(STRCAPN, "too many captures") ERRDEF(STRCAPU, "unfinished capture") ERRDEF(STRFMT, "invalid option " LUA_QS " to " LUA_QL("format")) ERRDEF(STRGSRV, "invalid replacement value (a %s)") ERRDEF(BADMODN, "name conflict for module " LUA_QS) #if LJ_HASJIT ERRDEF(JITPROT, "runtime code generation failed, restricted kernel?") #if LJ_TARGET_X86ORX64 ERRDEF(NOJIT, "JIT compiler disabled, CPU does not support SSE2") #else ERRDEF(NOJIT, "JIT compiler disabled") #endif #elif defined(LJ_ARCH_NOJIT) ERRDEF(NOJIT, "no JIT compiler for this architecture (yet)") #else ERRDEF(NOJIT, "JIT compiler permanently disabled by build option") #endif ERRDEF(JITOPT, "unknown or malformed optimization flag " LUA_QS) /* Lexer/parser errors. */ ERRDEF(XMODE, "attempt to load chunk with wrong mode") ERRDEF(XNEAR, "%s near " LUA_QS) ERRDEF(XLINES, "chunk has too many lines") ERRDEF(XLEVELS, "chunk has too many syntax levels") ERRDEF(XNUMBER, "malformed number") ERRDEF(XLSTR, "unfinished long string") ERRDEF(XLCOM, "unfinished long comment") ERRDEF(XSTR, "unfinished string") ERRDEF(XESC, "invalid escape sequence") ERRDEF(XLDELIM, "invalid long string delimiter") ERRDEF(XTOKEN, LUA_QS " expected") ERRDEF(XJUMP, "control structure too long") ERRDEF(XSLOTS, "function or expression too complex") ERRDEF(XLIMC, "chunk has more than %d local variables") ERRDEF(XLIMM, "main function has more than %d %s") ERRDEF(XLIMF, "function at line %d has more than %d %s") ERRDEF(XMATCH, LUA_QS " expected (to close " LUA_QS " at line %d)") ERRDEF(XFIXUP, "function too long for return fixup") ERRDEF(XPARAM, " or " LUA_QL("...") " expected") #if !LJ_52 ERRDEF(XAMBIG, "ambiguous syntax (function call x new statement)") #endif ERRDEF(XFUNARG, "function arguments expected") ERRDEF(XSYMBOL, "unexpected symbol") ERRDEF(XDOTS, "cannot use " LUA_QL("...") " outside a vararg function") ERRDEF(XSYNTAX, "syntax error") ERRDEF(XFOR, LUA_QL("=") " or " LUA_QL("in") " expected") ERRDEF(XBREAK, "no loop to break") ERRDEF(XLUNDEF, "undefined label " LUA_QS) ERRDEF(XLDUP, "duplicate label " LUA_QS) ERRDEF(XGSCOPE, " jumps into the scope of local " LUA_QS) /* Bytecode reader errors. */ ERRDEF(BCFMT, "cannot load incompatible bytecode") ERRDEF(BCBAD, "cannot load malformed bytecode") #if LJ_HASFFI /* FFI errors. */ ERRDEF(FFI_INVTYPE, "invalid C type") ERRDEF(FFI_INVSIZE, "size of C type is unknown or too large") ERRDEF(FFI_BADSCL, "bad storage class") ERRDEF(FFI_DECLSPEC, "declaration specifier expected") ERRDEF(FFI_BADTAG, "undeclared or implicit tag " LUA_QS) ERRDEF(FFI_REDEF, "attempt to redefine " LUA_QS) ERRDEF(FFI_NUMPARAM, "wrong number of type parameters") ERRDEF(FFI_INITOV, "too many initializers for " LUA_QS) ERRDEF(FFI_BADCONV, "cannot convert " LUA_QS " to " LUA_QS) ERRDEF(FFI_BADLEN, "attempt to get length of " LUA_QS) ERRDEF(FFI_BADCONCAT, "attempt to concatenate " LUA_QS " and " LUA_QS) ERRDEF(FFI_BADARITH, "attempt to perform arithmetic on " LUA_QS " and " LUA_QS) ERRDEF(FFI_BADCOMP, "attempt to compare " LUA_QS " with " LUA_QS) ERRDEF(FFI_BADCALL, LUA_QS " is not callable") ERRDEF(FFI_NUMARG, "wrong number of arguments for function call") ERRDEF(FFI_BADMEMBER, LUA_QS " has no member named " LUA_QS) ERRDEF(FFI_BADIDX, LUA_QS " cannot be indexed") ERRDEF(FFI_BADIDXW, LUA_QS " cannot be indexed with " LUA_QS) ERRDEF(FFI_BADMM, LUA_QS " has no " LUA_QS " metamethod") ERRDEF(FFI_WRCONST, "attempt to write to constant location") ERRDEF(FFI_NODECL, "missing declaration for symbol " LUA_QS) ERRDEF(FFI_BADCBACK, "bad callback") #if LJ_OS_NOJIT ERRDEF(FFI_CBACKOV, "no support for callbacks on this OS") #else ERRDEF(FFI_CBACKOV, "too many callbacks") #endif ERRDEF(FFI_NYIPACKBIT, "NYI: packed bit fields") ERRDEF(FFI_NYICALL, "NYI: cannot call this C function (yet)") #endif #undef ERRDEF /* Detecting unused error messages: awk -F, '/^ERRDEF/ { gsub(/ERRDEF./, ""); printf "grep -q LJ_ERR_%s *.[ch] || echo %s\n", $1, $1}' lj_errmsg.h | sh */ luajit-2.1.0~beta3+dfsg.orig/src/lj_record.c0000644000175100017510000025173513101703334020231 0ustar ondrejondrej/* ** Trace recorder (bytecode -> SSA IR). ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #define lj_record_c #define LUA_CORE #include "lj_obj.h" #if LJ_HASJIT #include "lj_err.h" #include "lj_str.h" #include "lj_tab.h" #include "lj_meta.h" #include "lj_frame.h" #if LJ_HASFFI #include "lj_ctype.h" #endif #include "lj_bc.h" #include "lj_ff.h" #if LJ_HASPROFILE #include "lj_debug.h" #endif #include "lj_ir.h" #include "lj_jit.h" #include "lj_ircall.h" #include "lj_iropt.h" #include "lj_trace.h" #include "lj_record.h" #include "lj_ffrecord.h" #include "lj_snap.h" #include "lj_dispatch.h" #include "lj_vm.h" /* Some local macros to save typing. Undef'd at the end. */ #define IR(ref) (&J->cur.ir[(ref)]) /* Pass IR on to next optimization in chain (FOLD). */ #define emitir(ot, a, b) (lj_ir_set(J, (ot), (a), (b)), lj_opt_fold(J)) /* Emit raw IR without passing through optimizations. */ #define emitir_raw(ot, a, b) (lj_ir_set(J, (ot), (a), (b)), lj_ir_emit(J)) /* -- Sanity checks ------------------------------------------------------- */ #ifdef LUA_USE_ASSERT /* Sanity check the whole IR -- sloooow. */ static void rec_check_ir(jit_State *J) { IRRef i, nins = J->cur.nins, nk = J->cur.nk; lua_assert(nk <= REF_BIAS && nins >= REF_BIAS && nins < 65536); for (i = nk; i < nins; i++) { IRIns *ir = IR(i); uint32_t mode = lj_ir_mode[ir->o]; IRRef op1 = ir->op1; IRRef op2 = ir->op2; switch (irm_op1(mode)) { case IRMnone: lua_assert(op1 == 0); break; case IRMref: lua_assert(op1 >= nk); lua_assert(i >= REF_BIAS ? op1 < i : op1 > i); break; case IRMlit: break; case IRMcst: lua_assert(i < REF_BIAS); if (irt_is64(ir->t) && ir->o != IR_KNULL) i++; continue; } switch (irm_op2(mode)) { case IRMnone: lua_assert(op2 == 0); break; case IRMref: lua_assert(op2 >= nk); lua_assert(i >= REF_BIAS ? op2 < i : op2 > i); break; case IRMlit: break; case IRMcst: lua_assert(0); break; } if (ir->prev) { lua_assert(ir->prev >= nk); lua_assert(i >= REF_BIAS ? ir->prev < i : ir->prev > i); lua_assert(ir->o == IR_NOP || IR(ir->prev)->o == ir->o); } } } /* Compare stack slots and frames of the recorder and the VM. */ static void rec_check_slots(jit_State *J) { BCReg s, nslots = J->baseslot + J->maxslot; int32_t depth = 0; cTValue *base = J->L->base - J->baseslot; lua_assert(J->baseslot >= 1+LJ_FR2 && J->baseslot < LJ_MAX_JSLOTS); lua_assert(J->baseslot == 1+LJ_FR2 || (J->slot[J->baseslot-1] & TREF_FRAME)); lua_assert(nslots < LJ_MAX_JSLOTS); for (s = 0; s < nslots; s++) { TRef tr = J->slot[s]; if (tr) { cTValue *tv = &base[s]; IRRef ref = tref_ref(tr); IRIns *ir = NULL; /* Silence compiler. */ if (!LJ_FR2 || ref || !(tr & (TREF_FRAME | TREF_CONT))) { lua_assert(ref >= J->cur.nk && ref < J->cur.nins); ir = IR(ref); lua_assert(irt_t(ir->t) == tref_t(tr)); } if (s == 0) { lua_assert(tref_isfunc(tr)); #if LJ_FR2 } else if (s == 1) { lua_assert((tr & ~TREF_FRAME) == 0); #endif } else if ((tr & TREF_FRAME)) { GCfunc *fn = gco2func(frame_gc(tv)); BCReg delta = (BCReg)(tv - frame_prev(tv)); #if LJ_FR2 if (ref) lua_assert(ir_knum(ir)->u64 == tv->u64); tr = J->slot[s-1]; ir = IR(tref_ref(tr)); #endif lua_assert(tref_isfunc(tr)); if (tref_isk(tr)) lua_assert(fn == ir_kfunc(ir)); lua_assert(s > delta + LJ_FR2 ? (J->slot[s-delta] & TREF_FRAME) : (s == delta + LJ_FR2)); depth++; } else if ((tr & TREF_CONT)) { #if LJ_FR2 if (ref) lua_assert(ir_knum(ir)->u64 == tv->u64); #else lua_assert(ir_kptr(ir) == gcrefp(tv->gcr, void)); #endif lua_assert((J->slot[s+1+LJ_FR2] & TREF_FRAME)); depth++; } else { if (tvisnumber(tv)) lua_assert(tref_isnumber(tr)); /* Could be IRT_INT etc., too. */ else lua_assert(itype2irt(tv) == tref_type(tr)); if (tref_isk(tr)) { /* Compare constants. */ TValue tvk; lj_ir_kvalue(J->L, &tvk, ir); if (!(tvisnum(&tvk) && tvisnan(&tvk))) lua_assert(lj_obj_equal(tv, &tvk)); else lua_assert(tvisnum(tv) && tvisnan(tv)); } } } } lua_assert(J->framedepth == depth); } #endif /* -- Type handling and specialization ------------------------------------ */ /* Note: these functions return tagged references (TRef). */ /* Specialize a slot to a specific type. Note: slot can be negative! */ static TRef sloadt(jit_State *J, int32_t slot, IRType t, int mode) { /* Caller may set IRT_GUARD in t. */ TRef ref = emitir_raw(IRT(IR_SLOAD, t), (int32_t)J->baseslot+slot, mode); J->base[slot] = ref; return ref; } /* Specialize a slot to the runtime type. Note: slot can be negative! */ static TRef sload(jit_State *J, int32_t slot) { IRType t = itype2irt(&J->L->base[slot]); TRef ref = emitir_raw(IRTG(IR_SLOAD, t), (int32_t)J->baseslot+slot, IRSLOAD_TYPECHECK); if (irtype_ispri(t)) ref = TREF_PRI(t); /* Canonicalize primitive refs. */ J->base[slot] = ref; return ref; } /* Get TRef from slot. Load slot and specialize if not done already. */ #define getslot(J, s) (J->base[(s)] ? J->base[(s)] : sload(J, (int32_t)(s))) /* Get TRef for current function. */ static TRef getcurrf(jit_State *J) { if (J->base[-1-LJ_FR2]) return J->base[-1-LJ_FR2]; lua_assert(J->baseslot == 1+LJ_FR2); return sloadt(J, -1-LJ_FR2, IRT_FUNC, IRSLOAD_READONLY); } /* Compare for raw object equality. ** Returns 0 if the objects are the same. ** Returns 1 if they are different, but the same type. ** Returns 2 for two different types. ** Comparisons between primitives always return 1 -- no caller cares about it. */ int lj_record_objcmp(jit_State *J, TRef a, TRef b, cTValue *av, cTValue *bv) { int diff = !lj_obj_equal(av, bv); if (!tref_isk2(a, b)) { /* Shortcut, also handles primitives. */ IRType ta = tref_isinteger(a) ? IRT_INT : tref_type(a); IRType tb = tref_isinteger(b) ? IRT_INT : tref_type(b); if (ta != tb) { /* Widen mixed number/int comparisons to number/number comparison. */ if (ta == IRT_INT && tb == IRT_NUM) { a = emitir(IRTN(IR_CONV), a, IRCONV_NUM_INT); ta = IRT_NUM; } else if (ta == IRT_NUM && tb == IRT_INT) { b = emitir(IRTN(IR_CONV), b, IRCONV_NUM_INT); } else { return 2; /* Two different types are never equal. */ } } emitir(IRTG(diff ? IR_NE : IR_EQ, ta), a, b); } return diff; } /* Constify a value. Returns 0 for non-representable object types. */ TRef lj_record_constify(jit_State *J, cTValue *o) { if (tvisgcv(o)) return lj_ir_kgc(J, gcV(o), itype2irt(o)); else if (tvisint(o)) return lj_ir_kint(J, intV(o)); else if (tvisnum(o)) return lj_ir_knumint(J, numV(o)); else if (tvisbool(o)) return TREF_PRI(itype2irt(o)); else return 0; /* Can't represent lightuserdata (pointless). */ } /* -- Record loop ops ----------------------------------------------------- */ /* Loop event. */ typedef enum { LOOPEV_LEAVE, /* Loop is left or not entered. */ LOOPEV_ENTERLO, /* Loop is entered with a low iteration count left. */ LOOPEV_ENTER /* Loop is entered. */ } LoopEvent; /* Canonicalize slots: convert integers to numbers. */ static void canonicalize_slots(jit_State *J) { BCReg s; if (LJ_DUALNUM) return; for (s = J->baseslot+J->maxslot-1; s >= 1; s--) { TRef tr = J->slot[s]; if (tref_isinteger(tr)) { IRIns *ir = IR(tref_ref(tr)); if (!(ir->o == IR_SLOAD && (ir->op2 & IRSLOAD_READONLY))) J->slot[s] = emitir(IRTN(IR_CONV), tr, IRCONV_NUM_INT); } } } /* Stop recording. */ void lj_record_stop(jit_State *J, TraceLink linktype, TraceNo lnk) { #ifdef LUAJIT_ENABLE_TABLE_BUMP if (J->retryrec) lj_trace_err(J, LJ_TRERR_RETRY); #endif lj_trace_end(J); J->cur.linktype = (uint8_t)linktype; J->cur.link = (uint16_t)lnk; /* Looping back at the same stack level? */ if (lnk == J->cur.traceno && J->framedepth + J->retdepth == 0) { if ((J->flags & JIT_F_OPT_LOOP)) /* Shall we try to create a loop? */ goto nocanon; /* Do not canonicalize or we lose the narrowing. */ if (J->cur.root) /* Otherwise ensure we always link to the root trace. */ J->cur.link = J->cur.root; } canonicalize_slots(J); nocanon: /* Note: all loop ops must set J->pc to the following instruction! */ lj_snap_add(J); /* Add loop snapshot. */ J->needsnap = 0; J->mergesnap = 1; /* In case recording continues. */ } /* Search bytecode backwards for a int/num constant slot initializer. */ static TRef find_kinit(jit_State *J, const BCIns *endpc, BCReg slot, IRType t) { /* This algorithm is rather simplistic and assumes quite a bit about ** how the bytecode is generated. It works fine for FORI initializers, ** but it won't necessarily work in other cases (e.g. iterator arguments). ** It doesn't do anything fancy, either (like backpropagating MOVs). */ const BCIns *pc, *startpc = proto_bc(J->pt); for (pc = endpc-1; pc > startpc; pc--) { BCIns ins = *pc; BCOp op = bc_op(ins); /* First try to find the last instruction that stores to this slot. */ if (bcmode_a(op) == BCMbase && bc_a(ins) <= slot) { return 0; /* Multiple results, e.g. from a CALL or KNIL. */ } else if (bcmode_a(op) == BCMdst && bc_a(ins) == slot) { if (op == BC_KSHORT || op == BC_KNUM) { /* Found const. initializer. */ /* Now try to verify there's no forward jump across it. */ const BCIns *kpc = pc; for (; pc > startpc; pc--) if (bc_op(*pc) == BC_JMP) { const BCIns *target = pc+bc_j(*pc)+1; if (target > kpc && target <= endpc) return 0; /* Conditional assignment. */ } if (op == BC_KSHORT) { int32_t k = (int32_t)(int16_t)bc_d(ins); return t == IRT_INT ? lj_ir_kint(J, k) : lj_ir_knum(J, (lua_Number)k); } else { cTValue *tv = proto_knumtv(J->pt, bc_d(ins)); if (t == IRT_INT) { int32_t k = numberVint(tv); if (tvisint(tv) || numV(tv) == (lua_Number)k) /* -0 is ok here. */ return lj_ir_kint(J, k); return 0; /* Type mismatch. */ } else { return lj_ir_knum(J, numberVnum(tv)); } } } return 0; /* Non-constant initializer. */ } } return 0; /* No assignment to this slot found? */ } /* Load and optionally convert a FORI argument from a slot. */ static TRef fori_load(jit_State *J, BCReg slot, IRType t, int mode) { int conv = (tvisint(&J->L->base[slot]) != (t==IRT_INT)) ? IRSLOAD_CONVERT : 0; return sloadt(J, (int32_t)slot, t + (((mode & IRSLOAD_TYPECHECK) || (conv && t == IRT_INT && !(mode >> 16))) ? IRT_GUARD : 0), mode + conv); } /* Peek before FORI to find a const initializer. Otherwise load from slot. */ static TRef fori_arg(jit_State *J, const BCIns *fori, BCReg slot, IRType t, int mode) { TRef tr = J->base[slot]; if (!tr) { tr = find_kinit(J, fori, slot, t); if (!tr) tr = fori_load(J, slot, t, mode); } return tr; } /* Return the direction of the FOR loop iterator. ** It's important to exactly reproduce the semantics of the interpreter. */ static int rec_for_direction(cTValue *o) { return (tvisint(o) ? intV(o) : (int32_t)o->u32.hi) >= 0; } /* Simulate the runtime behavior of the FOR loop iterator. */ static LoopEvent rec_for_iter(IROp *op, cTValue *o, int isforl) { lua_Number stopv = numberVnum(&o[FORL_STOP]); lua_Number idxv = numberVnum(&o[FORL_IDX]); lua_Number stepv = numberVnum(&o[FORL_STEP]); if (isforl) idxv += stepv; if (rec_for_direction(&o[FORL_STEP])) { if (idxv <= stopv) { *op = IR_LE; return idxv + 2*stepv > stopv ? LOOPEV_ENTERLO : LOOPEV_ENTER; } *op = IR_GT; return LOOPEV_LEAVE; } else { if (stopv <= idxv) { *op = IR_GE; return idxv + 2*stepv < stopv ? LOOPEV_ENTERLO : LOOPEV_ENTER; } *op = IR_LT; return LOOPEV_LEAVE; } } /* Record checks for FOR loop overflow and step direction. */ static void rec_for_check(jit_State *J, IRType t, int dir, TRef stop, TRef step, int init) { if (!tref_isk(step)) { /* Non-constant step: need a guard for the direction. */ TRef zero = (t == IRT_INT) ? lj_ir_kint(J, 0) : lj_ir_knum_zero(J); emitir(IRTG(dir ? IR_GE : IR_LT, t), step, zero); /* Add hoistable overflow checks for a narrowed FORL index. */ if (init && t == IRT_INT) { if (tref_isk(stop)) { /* Constant stop: optimize check away or to a range check for step. */ int32_t k = IR(tref_ref(stop))->i; if (dir) { if (k > 0) emitir(IRTGI(IR_LE), step, lj_ir_kint(J, (int32_t)0x7fffffff-k)); } else { if (k < 0) emitir(IRTGI(IR_GE), step, lj_ir_kint(J, (int32_t)0x80000000-k)); } } else { /* Stop+step variable: need full overflow check. */ TRef tr = emitir(IRTGI(IR_ADDOV), step, stop); emitir(IRTI(IR_USE), tr, 0); /* ADDOV is weak. Avoid dead result. */ } } } else if (init && t == IRT_INT && !tref_isk(stop)) { /* Constant step: optimize overflow check to a range check for stop. */ int32_t k = IR(tref_ref(step))->i; k = (int32_t)(dir ? 0x7fffffff : 0x80000000) - k; emitir(IRTGI(dir ? IR_LE : IR_GE), stop, lj_ir_kint(J, k)); } } /* Record a FORL instruction. */ static void rec_for_loop(jit_State *J, const BCIns *fori, ScEvEntry *scev, int init) { BCReg ra = bc_a(*fori); cTValue *tv = &J->L->base[ra]; TRef idx = J->base[ra+FORL_IDX]; IRType t = idx ? tref_type(idx) : (init || LJ_DUALNUM) ? lj_opt_narrow_forl(J, tv) : IRT_NUM; int mode = IRSLOAD_INHERIT + ((!LJ_DUALNUM || tvisint(tv) == (t == IRT_INT)) ? IRSLOAD_READONLY : 0); TRef stop = fori_arg(J, fori, ra+FORL_STOP, t, mode); TRef step = fori_arg(J, fori, ra+FORL_STEP, t, mode); int tc, dir = rec_for_direction(&tv[FORL_STEP]); lua_assert(bc_op(*fori) == BC_FORI || bc_op(*fori) == BC_JFORI); scev->t.irt = t; scev->dir = dir; scev->stop = tref_ref(stop); scev->step = tref_ref(step); rec_for_check(J, t, dir, stop, step, init); scev->start = tref_ref(find_kinit(J, fori, ra+FORL_IDX, IRT_INT)); tc = (LJ_DUALNUM && !(scev->start && irref_isk(scev->stop) && irref_isk(scev->step) && tvisint(&tv[FORL_IDX]) == (t == IRT_INT))) ? IRSLOAD_TYPECHECK : 0; if (tc) { J->base[ra+FORL_STOP] = stop; J->base[ra+FORL_STEP] = step; } if (!idx) idx = fori_load(J, ra+FORL_IDX, t, IRSLOAD_INHERIT + tc + (J->scev.start << 16)); if (!init) J->base[ra+FORL_IDX] = idx = emitir(IRT(IR_ADD, t), idx, step); J->base[ra+FORL_EXT] = idx; scev->idx = tref_ref(idx); setmref(scev->pc, fori); J->maxslot = ra+FORL_EXT+1; } /* Record FORL/JFORL or FORI/JFORI. */ static LoopEvent rec_for(jit_State *J, const BCIns *fori, int isforl) { BCReg ra = bc_a(*fori); TValue *tv = &J->L->base[ra]; TRef *tr = &J->base[ra]; IROp op; LoopEvent ev; TRef stop; IRType t; if (isforl) { /* Handle FORL/JFORL opcodes. */ TRef idx = tr[FORL_IDX]; if (mref(J->scev.pc, const BCIns) == fori && tref_ref(idx) == J->scev.idx) { t = J->scev.t.irt; stop = J->scev.stop; idx = emitir(IRT(IR_ADD, t), idx, J->scev.step); tr[FORL_EXT] = tr[FORL_IDX] = idx; } else { ScEvEntry scev; rec_for_loop(J, fori, &scev, 0); t = scev.t.irt; stop = scev.stop; } } else { /* Handle FORI/JFORI opcodes. */ BCReg i; lj_meta_for(J->L, tv); t = (LJ_DUALNUM || tref_isint(tr[FORL_IDX])) ? lj_opt_narrow_forl(J, tv) : IRT_NUM; for (i = FORL_IDX; i <= FORL_STEP; i++) { if (!tr[i]) sload(J, ra+i); lua_assert(tref_isnumber_str(tr[i])); if (tref_isstr(tr[i])) tr[i] = emitir(IRTG(IR_STRTO, IRT_NUM), tr[i], 0); if (t == IRT_INT) { if (!tref_isinteger(tr[i])) tr[i] = emitir(IRTGI(IR_CONV), tr[i], IRCONV_INT_NUM|IRCONV_CHECK); } else { if (!tref_isnum(tr[i])) tr[i] = emitir(IRTN(IR_CONV), tr[i], IRCONV_NUM_INT); } } tr[FORL_EXT] = tr[FORL_IDX]; stop = tr[FORL_STOP]; rec_for_check(J, t, rec_for_direction(&tv[FORL_STEP]), stop, tr[FORL_STEP], 1); } ev = rec_for_iter(&op, tv, isforl); if (ev == LOOPEV_LEAVE) { J->maxslot = ra+FORL_EXT+1; J->pc = fori+1; } else { J->maxslot = ra; J->pc = fori+bc_j(*fori)+1; } lj_snap_add(J); emitir(IRTG(op, t), tr[FORL_IDX], stop); if (ev == LOOPEV_LEAVE) { J->maxslot = ra; J->pc = fori+bc_j(*fori)+1; } else { J->maxslot = ra+FORL_EXT+1; J->pc = fori+1; } J->needsnap = 1; return ev; } /* Record ITERL/JITERL. */ static LoopEvent rec_iterl(jit_State *J, const BCIns iterins) { BCReg ra = bc_a(iterins); if (!tref_isnil(getslot(J, ra))) { /* Looping back? */ J->base[ra-1] = J->base[ra]; /* Copy result of ITERC to control var. */ J->maxslot = ra-1+bc_b(J->pc[-1]); J->pc += bc_j(iterins)+1; return LOOPEV_ENTER; } else { J->maxslot = ra-3; J->pc++; return LOOPEV_LEAVE; } } /* Record LOOP/JLOOP. Now, that was easy. */ static LoopEvent rec_loop(jit_State *J, BCReg ra) { if (ra < J->maxslot) J->maxslot = ra; J->pc++; return LOOPEV_ENTER; } /* Check if a loop repeatedly failed to trace because it didn't loop back. */ static int innerloopleft(jit_State *J, const BCIns *pc) { ptrdiff_t i; for (i = 0; i < PENALTY_SLOTS; i++) if (mref(J->penalty[i].pc, const BCIns) == pc) { if ((J->penalty[i].reason == LJ_TRERR_LLEAVE || J->penalty[i].reason == LJ_TRERR_LINNER) && J->penalty[i].val >= 2*PENALTY_MIN) return 1; break; } return 0; } /* Handle the case when an interpreted loop op is hit. */ static void rec_loop_interp(jit_State *J, const BCIns *pc, LoopEvent ev) { if (J->parent == 0 && J->exitno == 0) { if (pc == J->startpc && J->framedepth + J->retdepth == 0) { /* Same loop? */ if (ev == LOOPEV_LEAVE) /* Must loop back to form a root trace. */ lj_trace_err(J, LJ_TRERR_LLEAVE); lj_record_stop(J, LJ_TRLINK_LOOP, J->cur.traceno); /* Looping trace. */ } else if (ev != LOOPEV_LEAVE) { /* Entering inner loop? */ /* It's usually better to abort here and wait until the inner loop ** is traced. But if the inner loop repeatedly didn't loop back, ** this indicates a low trip count. In this case try unrolling ** an inner loop even in a root trace. But it's better to be a bit ** more conservative here and only do it for very short loops. */ if (bc_j(*pc) != -1 && !innerloopleft(J, pc)) lj_trace_err(J, LJ_TRERR_LINNER); /* Root trace hit an inner loop. */ if ((ev != LOOPEV_ENTERLO && J->loopref && J->cur.nins - J->loopref > 24) || --J->loopunroll < 0) lj_trace_err(J, LJ_TRERR_LUNROLL); /* Limit loop unrolling. */ J->loopref = J->cur.nins; } } else if (ev != LOOPEV_LEAVE) { /* Side trace enters an inner loop. */ J->loopref = J->cur.nins; if (--J->loopunroll < 0) lj_trace_err(J, LJ_TRERR_LUNROLL); /* Limit loop unrolling. */ } /* Side trace continues across a loop that's left or not entered. */ } /* Handle the case when an already compiled loop op is hit. */ static void rec_loop_jit(jit_State *J, TraceNo lnk, LoopEvent ev) { if (J->parent == 0 && J->exitno == 0) { /* Root trace hit an inner loop. */ /* Better let the inner loop spawn a side trace back here. */ lj_trace_err(J, LJ_TRERR_LINNER); } else if (ev != LOOPEV_LEAVE) { /* Side trace enters a compiled loop. */ J->instunroll = 0; /* Cannot continue across a compiled loop op. */ if (J->pc == J->startpc && J->framedepth + J->retdepth == 0) lj_record_stop(J, LJ_TRLINK_LOOP, J->cur.traceno); /* Form extra loop. */ else lj_record_stop(J, LJ_TRLINK_ROOT, lnk); /* Link to the loop. */ } /* Side trace continues across a loop that's left or not entered. */ } /* -- Record profiler hook checks ----------------------------------------- */ #if LJ_HASPROFILE /* Need to insert profiler hook check? */ static int rec_profile_need(jit_State *J, GCproto *pt, const BCIns *pc) { GCproto *ppt; lua_assert(J->prof_mode == 'f' || J->prof_mode == 'l'); if (!pt) return 0; ppt = J->prev_pt; J->prev_pt = pt; if (pt != ppt && ppt) { J->prev_line = -1; return 1; } if (J->prof_mode == 'l') { BCLine line = lj_debug_line(pt, proto_bcpos(pt, pc)); BCLine pline = J->prev_line; J->prev_line = line; if (pline != line) return 1; } return 0; } static void rec_profile_ins(jit_State *J, const BCIns *pc) { if (J->prof_mode && rec_profile_need(J, J->pt, pc)) { emitir(IRTG(IR_PROF, IRT_NIL), 0, 0); lj_snap_add(J); } } static void rec_profile_ret(jit_State *J) { if (J->prof_mode == 'f') { emitir(IRTG(IR_PROF, IRT_NIL), 0, 0); J->prev_pt = NULL; lj_snap_add(J); } } #endif /* -- Record calls and returns -------------------------------------------- */ /* Specialize to the runtime value of the called function or its prototype. */ static TRef rec_call_specialize(jit_State *J, GCfunc *fn, TRef tr) { TRef kfunc; if (isluafunc(fn)) { GCproto *pt = funcproto(fn); /* Too many closures created? Probably not a monomorphic function. */ if (pt->flags >= PROTO_CLC_POLY) { /* Specialize to prototype instead. */ TRef trpt = emitir(IRT(IR_FLOAD, IRT_PGC), tr, IRFL_FUNC_PC); emitir(IRTG(IR_EQ, IRT_PGC), trpt, lj_ir_kptr(J, proto_bc(pt))); (void)lj_ir_kgc(J, obj2gco(pt), IRT_PROTO); /* Prevent GC of proto. */ return tr; } } else { /* Don't specialize to non-monomorphic builtins. */ switch (fn->c.ffid) { case FF_coroutine_wrap_aux: case FF_string_gmatch_aux: /* NYI: io_file_iter doesn't have an ffid, yet. */ { /* Specialize to the ffid. */ TRef trid = emitir(IRT(IR_FLOAD, IRT_U8), tr, IRFL_FUNC_FFID); emitir(IRTG(IR_EQ, IRT_INT), trid, lj_ir_kint(J, fn->c.ffid)); } return tr; default: /* NYI: don't specialize to non-monomorphic C functions. */ break; } } /* Otherwise specialize to the function (closure) value itself. */ kfunc = lj_ir_kfunc(J, fn); emitir(IRTG(IR_EQ, IRT_FUNC), tr, kfunc); return kfunc; } /* Record call setup. */ static void rec_call_setup(jit_State *J, BCReg func, ptrdiff_t nargs) { RecordIndex ix; TValue *functv = &J->L->base[func]; TRef kfunc, *fbase = &J->base[func]; ptrdiff_t i; (void)getslot(J, func); /* Ensure func has a reference. */ for (i = 1; i <= nargs; i++) (void)getslot(J, func+LJ_FR2+i); /* Ensure all args have a reference. */ if (!tref_isfunc(fbase[0])) { /* Resolve __call metamethod. */ ix.tab = fbase[0]; copyTV(J->L, &ix.tabv, functv); if (!lj_record_mm_lookup(J, &ix, MM_call) || !tref_isfunc(ix.mobj)) lj_trace_err(J, LJ_TRERR_NOMM); for (i = ++nargs; i > LJ_FR2; i--) /* Shift arguments up. */ fbase[i+LJ_FR2] = fbase[i+LJ_FR2-1]; #if LJ_FR2 fbase[2] = fbase[0]; #endif fbase[0] = ix.mobj; /* Replace function. */ functv = &ix.mobjv; } kfunc = rec_call_specialize(J, funcV(functv), fbase[0]); #if LJ_FR2 fbase[0] = kfunc; fbase[1] = TREF_FRAME; #else fbase[0] = kfunc | TREF_FRAME; #endif J->maxslot = (BCReg)nargs; } /* Record call. */ void lj_record_call(jit_State *J, BCReg func, ptrdiff_t nargs) { rec_call_setup(J, func, nargs); /* Bump frame. */ J->framedepth++; J->base += func+1+LJ_FR2; J->baseslot += func+1+LJ_FR2; } /* Record tail call. */ void lj_record_tailcall(jit_State *J, BCReg func, ptrdiff_t nargs) { rec_call_setup(J, func, nargs); if (frame_isvarg(J->L->base - 1)) { BCReg cbase = (BCReg)frame_delta(J->L->base - 1); if (--J->framedepth < 0) lj_trace_err(J, LJ_TRERR_NYIRETL); J->baseslot -= (BCReg)cbase; J->base -= cbase; func += cbase; } /* Move func + args down. */ if (LJ_FR2 && J->baseslot == 2) J->base[func+1] = TREF_FRAME; memmove(&J->base[-1-LJ_FR2], &J->base[func], sizeof(TRef)*(J->maxslot+1+LJ_FR2)); /* Note: the new TREF_FRAME is now at J->base[-1] (even for slot #0). */ /* Tailcalls can form a loop, so count towards the loop unroll limit. */ if (++J->tailcalled > J->loopunroll) lj_trace_err(J, LJ_TRERR_LUNROLL); } /* Check unroll limits for down-recursion. */ static int check_downrec_unroll(jit_State *J, GCproto *pt) { IRRef ptref; for (ptref = J->chain[IR_KGC]; ptref; ptref = IR(ptref)->prev) if (ir_kgc(IR(ptref)) == obj2gco(pt)) { int count = 0; IRRef ref; for (ref = J->chain[IR_RETF]; ref; ref = IR(ref)->prev) if (IR(ref)->op1 == ptref) count++; if (count) { if (J->pc == J->startpc) { if (count + J->tailcalled > J->param[JIT_P_recunroll]) return 1; } else { lj_trace_err(J, LJ_TRERR_DOWNREC); } } } return 0; } static TRef rec_cat(jit_State *J, BCReg baseslot, BCReg topslot); /* Record return. */ void lj_record_ret(jit_State *J, BCReg rbase, ptrdiff_t gotresults) { TValue *frame = J->L->base - 1; ptrdiff_t i; for (i = 0; i < gotresults; i++) (void)getslot(J, rbase+i); /* Ensure all results have a reference. */ while (frame_ispcall(frame)) { /* Immediately resolve pcall() returns. */ BCReg cbase = (BCReg)frame_delta(frame); if (--J->framedepth <= 0) lj_trace_err(J, LJ_TRERR_NYIRETL); lua_assert(J->baseslot > 1+LJ_FR2); gotresults++; rbase += cbase; J->baseslot -= (BCReg)cbase; J->base -= cbase; J->base[--rbase] = TREF_TRUE; /* Prepend true to results. */ frame = frame_prevd(frame); } /* Return to lower frame via interpreter for unhandled cases. */ if (J->framedepth == 0 && J->pt && bc_isret(bc_op(*J->pc)) && (!frame_islua(frame) || (J->parent == 0 && J->exitno == 0 && !bc_isret(bc_op(J->cur.startins))))) { /* NYI: specialize to frame type and return directly, not via RET*. */ for (i = 0; i < (ptrdiff_t)rbase; i++) J->base[i] = 0; /* Purge dead slots. */ J->maxslot = rbase + (BCReg)gotresults; lj_record_stop(J, LJ_TRLINK_RETURN, 0); /* Return to interpreter. */ return; } if (frame_isvarg(frame)) { BCReg cbase = (BCReg)frame_delta(frame); if (--J->framedepth < 0) /* NYI: return of vararg func to lower frame. */ lj_trace_err(J, LJ_TRERR_NYIRETL); lua_assert(J->baseslot > 1+LJ_FR2); rbase += cbase; J->baseslot -= (BCReg)cbase; J->base -= cbase; frame = frame_prevd(frame); } if (frame_islua(frame)) { /* Return to Lua frame. */ BCIns callins = *(frame_pc(frame)-1); ptrdiff_t nresults = bc_b(callins) ? (ptrdiff_t)bc_b(callins)-1 :gotresults; BCReg cbase = bc_a(callins); GCproto *pt = funcproto(frame_func(frame - (cbase+1+LJ_FR2))); if ((pt->flags & PROTO_NOJIT)) lj_trace_err(J, LJ_TRERR_CJITOFF); if (J->framedepth == 0 && J->pt && frame == J->L->base - 1) { if (check_downrec_unroll(J, pt)) { J->maxslot = (BCReg)(rbase + gotresults); lj_snap_purge(J); lj_record_stop(J, LJ_TRLINK_DOWNREC, J->cur.traceno); /* Down-rec. */ return; } lj_snap_add(J); } for (i = 0; i < nresults; i++) /* Adjust results. */ J->base[i-1-LJ_FR2] = i < gotresults ? J->base[rbase+i] : TREF_NIL; J->maxslot = cbase+(BCReg)nresults; if (J->framedepth > 0) { /* Return to a frame that is part of the trace. */ J->framedepth--; lua_assert(J->baseslot > cbase+1+LJ_FR2); J->baseslot -= cbase+1+LJ_FR2; J->base -= cbase+1+LJ_FR2; } else if (J->parent == 0 && J->exitno == 0 && !bc_isret(bc_op(J->cur.startins))) { /* Return to lower frame would leave the loop in a root trace. */ lj_trace_err(J, LJ_TRERR_LLEAVE); } else if (J->needsnap) { /* Tailcalled to ff with side-effects. */ lj_trace_err(J, LJ_TRERR_NYIRETL); /* No way to insert snapshot here. */ } else { /* Return to lower frame. Guard for the target we return to. */ TRef trpt = lj_ir_kgc(J, obj2gco(pt), IRT_PROTO); TRef trpc = lj_ir_kptr(J, (void *)frame_pc(frame)); emitir(IRTG(IR_RETF, IRT_PGC), trpt, trpc); J->retdepth++; J->needsnap = 1; lua_assert(J->baseslot == 1+LJ_FR2); /* Shift result slots up and clear the slots of the new frame below. */ memmove(J->base + cbase, J->base-1-LJ_FR2, sizeof(TRef)*nresults); memset(J->base-1-LJ_FR2, 0, sizeof(TRef)*(cbase+1+LJ_FR2)); } } else if (frame_iscont(frame)) { /* Return to continuation frame. */ ASMFunction cont = frame_contf(frame); BCReg cbase = (BCReg)frame_delta(frame); if ((J->framedepth -= 2) < 0) lj_trace_err(J, LJ_TRERR_NYIRETL); J->baseslot -= (BCReg)cbase; J->base -= cbase; J->maxslot = cbase-(2<base[dst] = gotresults ? J->base[cbase+rbase] : TREF_NIL; if (dst >= J->maxslot) { J->maxslot = dst+1; } } else if (cont == lj_cont_nop) { /* Nothing to do here. */ } else if (cont == lj_cont_cat) { BCReg bslot = bc_b(*(frame_contpc(frame)-1)); TRef tr = gotresults ? J->base[cbase+rbase] : TREF_NIL; if (bslot != J->maxslot) { /* Concatenate the remainder. */ TValue *b = J->L->base, save; /* Simulate lower frame and result. */ J->base[J->maxslot] = tr; copyTV(J->L, &save, b-(2<L, b-(2<L->base = b - cbase; tr = rec_cat(J, bslot, cbase-(2<L->base + cbase; /* Undo. */ J->L->base = b; copyTV(J->L, b-(2<base[dst] = tr; if (dst >= J->maxslot) { J->maxslot = dst+1; } } /* Otherwise continue with another __concat call. */ } else { /* Result type already specialized. */ lua_assert(cont == lj_cont_condf || cont == lj_cont_condt); } } else { lj_trace_err(J, LJ_TRERR_NYIRETL); /* NYI: handle return to C frame. */ } lua_assert(J->baseslot >= 1+LJ_FR2); } /* -- Metamethod handling ------------------------------------------------- */ /* Prepare to record call to metamethod. */ static BCReg rec_mm_prep(jit_State *J, ASMFunction cont) { BCReg s, top = cont == lj_cont_cat ? J->maxslot : curr_proto(J->L)->framesize; #if LJ_FR2 J->base[top] = lj_ir_k64(J, IR_KNUM, u64ptr(contptr(cont))); J->base[top+1] = TREF_CONT; #else J->base[top] = lj_ir_kptr(J, contptr(cont)) | TREF_CONT; #endif J->framedepth++; for (s = J->maxslot; s < top; s++) J->base[s] = 0; /* Clear frame gap to avoid resurrecting previous refs. */ return top+1+LJ_FR2; } /* Record metamethod lookup. */ int lj_record_mm_lookup(jit_State *J, RecordIndex *ix, MMS mm) { RecordIndex mix; GCtab *mt; if (tref_istab(ix->tab)) { mt = tabref(tabV(&ix->tabv)->metatable); mix.tab = emitir(IRT(IR_FLOAD, IRT_TAB), ix->tab, IRFL_TAB_META); } else if (tref_isudata(ix->tab)) { int udtype = udataV(&ix->tabv)->udtype; mt = tabref(udataV(&ix->tabv)->metatable); /* The metatables of special userdata objects are treated as immutable. */ if (udtype != UDTYPE_USERDATA) { cTValue *mo; if (LJ_HASFFI && udtype == UDTYPE_FFI_CLIB) { /* Specialize to the C library namespace object. */ emitir(IRTG(IR_EQ, IRT_PGC), ix->tab, lj_ir_kptr(J, udataV(&ix->tabv))); } else { /* Specialize to the type of userdata. */ TRef tr = emitir(IRT(IR_FLOAD, IRT_U8), ix->tab, IRFL_UDATA_UDTYPE); emitir(IRTGI(IR_EQ), tr, lj_ir_kint(J, udtype)); } immutable_mt: mo = lj_tab_getstr(mt, mmname_str(J2G(J), mm)); if (!mo || tvisnil(mo)) return 0; /* No metamethod. */ /* Treat metamethod or index table as immutable, too. */ if (!(tvisfunc(mo) || tvistab(mo))) lj_trace_err(J, LJ_TRERR_BADTYPE); copyTV(J->L, &ix->mobjv, mo); ix->mobj = lj_ir_kgc(J, gcV(mo), tvisfunc(mo) ? IRT_FUNC : IRT_TAB); ix->mtv = mt; ix->mt = TREF_NIL; /* Dummy value for comparison semantics. */ return 1; /* Got metamethod or index table. */ } mix.tab = emitir(IRT(IR_FLOAD, IRT_TAB), ix->tab, IRFL_UDATA_META); } else { /* Specialize to base metatable. Must flush mcode in lua_setmetatable(). */ mt = tabref(basemt_obj(J2G(J), &ix->tabv)); if (mt == NULL) { ix->mt = TREF_NIL; return 0; /* No metamethod. */ } /* The cdata metatable is treated as immutable. */ if (LJ_HASFFI && tref_iscdata(ix->tab)) goto immutable_mt; #if LJ_GC64 /* TODO: fix ARM32 asm_fload(), so we can use this for all archs. */ ix->mt = mix.tab = lj_ir_ggfload(J, IRT_TAB, GG_OFS(g.gcroot[GCROOT_BASEMT+itypemap(&ix->tabv)])); #else ix->mt = mix.tab = lj_ir_ktab(J, mt); #endif goto nocheck; } ix->mt = mt ? mix.tab : TREF_NIL; emitir(IRTG(mt ? IR_NE : IR_EQ, IRT_TAB), mix.tab, lj_ir_knull(J, IRT_TAB)); nocheck: if (mt) { GCstr *mmstr = mmname_str(J2G(J), mm); cTValue *mo = lj_tab_getstr(mt, mmstr); if (mo && !tvisnil(mo)) copyTV(J->L, &ix->mobjv, mo); ix->mtv = mt; settabV(J->L, &mix.tabv, mt); setstrV(J->L, &mix.keyv, mmstr); mix.key = lj_ir_kstr(J, mmstr); mix.val = 0; mix.idxchain = 0; ix->mobj = lj_record_idx(J, &mix); return !tref_isnil(ix->mobj); /* 1 if metamethod found, 0 if not. */ } return 0; /* No metamethod. */ } /* Record call to arithmetic metamethod. */ static TRef rec_mm_arith(jit_State *J, RecordIndex *ix, MMS mm) { /* Set up metamethod call first to save ix->tab and ix->tabv. */ BCReg func = rec_mm_prep(J, mm == MM_concat ? lj_cont_cat : lj_cont_ra); TRef *base = J->base + func; TValue *basev = J->L->base + func; base[1+LJ_FR2] = ix->tab; base[2+LJ_FR2] = ix->key; copyTV(J->L, basev+1+LJ_FR2, &ix->tabv); copyTV(J->L, basev+2+LJ_FR2, &ix->keyv); if (!lj_record_mm_lookup(J, ix, mm)) { /* Lookup mm on 1st operand. */ if (mm != MM_unm) { ix->tab = ix->key; copyTV(J->L, &ix->tabv, &ix->keyv); if (lj_record_mm_lookup(J, ix, mm)) /* Lookup mm on 2nd operand. */ goto ok; } lj_trace_err(J, LJ_TRERR_NOMM); } ok: base[0] = ix->mobj; #if LJ_FR2 base[1] = 0; #endif copyTV(J->L, basev+0, &ix->mobjv); lj_record_call(J, func, 2); return 0; /* No result yet. */ } /* Record call to __len metamethod. */ static TRef rec_mm_len(jit_State *J, TRef tr, TValue *tv) { RecordIndex ix; ix.tab = tr; copyTV(J->L, &ix.tabv, tv); if (lj_record_mm_lookup(J, &ix, MM_len)) { BCReg func = rec_mm_prep(J, lj_cont_ra); TRef *base = J->base + func; TValue *basev = J->L->base + func; base[0] = ix.mobj; copyTV(J->L, basev+0, &ix.mobjv); base += LJ_FR2; basev += LJ_FR2; base[1] = tr; copyTV(J->L, basev+1, tv); #if LJ_52 base[2] = tr; copyTV(J->L, basev+2, tv); #else base[2] = TREF_NIL; setnilV(basev+2); #endif lj_record_call(J, func, 2); } else { if (LJ_52 && tref_istab(tr)) return lj_ir_call(J, IRCALL_lj_tab_len, tr); lj_trace_err(J, LJ_TRERR_NOMM); } return 0; /* No result yet. */ } /* Call a comparison metamethod. */ static void rec_mm_callcomp(jit_State *J, RecordIndex *ix, int op) { BCReg func = rec_mm_prep(J, (op&1) ? lj_cont_condf : lj_cont_condt); TRef *base = J->base + func + LJ_FR2; TValue *tv = J->L->base + func + LJ_FR2; base[-LJ_FR2] = ix->mobj; base[1] = ix->val; base[2] = ix->key; copyTV(J->L, tv-LJ_FR2, &ix->mobjv); copyTV(J->L, tv+1, &ix->valv); copyTV(J->L, tv+2, &ix->keyv); lj_record_call(J, func, 2); } /* Record call to equality comparison metamethod (for tab and udata only). */ static void rec_mm_equal(jit_State *J, RecordIndex *ix, int op) { ix->tab = ix->val; copyTV(J->L, &ix->tabv, &ix->valv); if (lj_record_mm_lookup(J, ix, MM_eq)) { /* Lookup mm on 1st operand. */ cTValue *bv; TRef mo1 = ix->mobj; TValue mo1v; copyTV(J->L, &mo1v, &ix->mobjv); /* Avoid the 2nd lookup and the objcmp if the metatables are equal. */ bv = &ix->keyv; if (tvistab(bv) && tabref(tabV(bv)->metatable) == ix->mtv) { TRef mt2 = emitir(IRT(IR_FLOAD, IRT_TAB), ix->key, IRFL_TAB_META); emitir(IRTG(IR_EQ, IRT_TAB), mt2, ix->mt); } else if (tvisudata(bv) && tabref(udataV(bv)->metatable) == ix->mtv) { TRef mt2 = emitir(IRT(IR_FLOAD, IRT_TAB), ix->key, IRFL_UDATA_META); emitir(IRTG(IR_EQ, IRT_TAB), mt2, ix->mt); } else { /* Lookup metamethod on 2nd operand and compare both. */ ix->tab = ix->key; copyTV(J->L, &ix->tabv, bv); if (!lj_record_mm_lookup(J, ix, MM_eq) || lj_record_objcmp(J, mo1, ix->mobj, &mo1v, &ix->mobjv)) return; } rec_mm_callcomp(J, ix, op); } } /* Record call to ordered comparison metamethods (for arbitrary objects). */ static void rec_mm_comp(jit_State *J, RecordIndex *ix, int op) { ix->tab = ix->val; copyTV(J->L, &ix->tabv, &ix->valv); while (1) { MMS mm = (op & 2) ? MM_le : MM_lt; /* Try __le + __lt or only __lt. */ #if LJ_52 if (!lj_record_mm_lookup(J, ix, mm)) { /* Lookup mm on 1st operand. */ ix->tab = ix->key; copyTV(J->L, &ix->tabv, &ix->keyv); if (!lj_record_mm_lookup(J, ix, mm)) /* Lookup mm on 2nd operand. */ goto nomatch; } rec_mm_callcomp(J, ix, op); return; #else if (lj_record_mm_lookup(J, ix, mm)) { /* Lookup mm on 1st operand. */ cTValue *bv; TRef mo1 = ix->mobj; TValue mo1v; copyTV(J->L, &mo1v, &ix->mobjv); /* Avoid the 2nd lookup and the objcmp if the metatables are equal. */ bv = &ix->keyv; if (tvistab(bv) && tabref(tabV(bv)->metatable) == ix->mtv) { TRef mt2 = emitir(IRT(IR_FLOAD, IRT_TAB), ix->key, IRFL_TAB_META); emitir(IRTG(IR_EQ, IRT_TAB), mt2, ix->mt); } else if (tvisudata(bv) && tabref(udataV(bv)->metatable) == ix->mtv) { TRef mt2 = emitir(IRT(IR_FLOAD, IRT_TAB), ix->key, IRFL_UDATA_META); emitir(IRTG(IR_EQ, IRT_TAB), mt2, ix->mt); } else { /* Lookup metamethod on 2nd operand and compare both. */ ix->tab = ix->key; copyTV(J->L, &ix->tabv, bv); if (!lj_record_mm_lookup(J, ix, mm) || lj_record_objcmp(J, mo1, ix->mobj, &mo1v, &ix->mobjv)) goto nomatch; } rec_mm_callcomp(J, ix, op); return; } #endif nomatch: /* Lookup failed. Retry with __lt and swapped operands. */ if (!(op & 2)) break; /* Already at __lt. Interpreter will throw. */ ix->tab = ix->key; ix->key = ix->val; ix->val = ix->tab; copyTV(J->L, &ix->tabv, &ix->keyv); copyTV(J->L, &ix->keyv, &ix->valv); copyTV(J->L, &ix->valv, &ix->tabv); op ^= 3; } } #if LJ_HASFFI /* Setup call to cdata comparison metamethod. */ static void rec_mm_comp_cdata(jit_State *J, RecordIndex *ix, int op, MMS mm) { lj_snap_add(J); if (tref_iscdata(ix->val)) { ix->tab = ix->val; copyTV(J->L, &ix->tabv, &ix->valv); } else { lua_assert(tref_iscdata(ix->key)); ix->tab = ix->key; copyTV(J->L, &ix->tabv, &ix->keyv); } lj_record_mm_lookup(J, ix, mm); rec_mm_callcomp(J, ix, op); } #endif /* -- Indexed access ------------------------------------------------------ */ #ifdef LUAJIT_ENABLE_TABLE_BUMP /* Bump table allocations in bytecode when they grow during recording. */ static void rec_idx_bump(jit_State *J, RecordIndex *ix) { RBCHashEntry *rbc = &J->rbchash[(ix->tab & (RBCHASH_SLOTS-1))]; if (tref_ref(ix->tab) == rbc->ref) { const BCIns *pc = mref(rbc->pc, const BCIns); GCtab *tb = tabV(&ix->tabv); uint32_t nhbits; IRIns *ir; if (!tvisnil(&ix->keyv)) (void)lj_tab_set(J->L, tb, &ix->keyv); /* Grow table right now. */ nhbits = tb->hmask > 0 ? lj_fls(tb->hmask)+1 : 0; ir = IR(tref_ref(ix->tab)); if (ir->o == IR_TNEW) { uint32_t ah = bc_d(*pc); uint32_t asize = ah & 0x7ff, hbits = ah >> 11; if (nhbits > hbits) hbits = nhbits; if (tb->asize > asize) { asize = tb->asize <= 0x7ff ? tb->asize : 0x7ff; } if ((asize | (hbits<<11)) != ah) { /* Has the size changed? */ /* Patch bytecode, but continue recording (for more patching). */ setbc_d(pc, (asize | (hbits<<11))); /* Patching TNEW operands is only safe if the trace is aborted. */ ir->op1 = asize; ir->op2 = hbits; J->retryrec = 1; /* Abort the trace at the end of recording. */ } } else if (ir->o == IR_TDUP) { GCtab *tpl = gco2tab(proto_kgc(&gcref(rbc->pt)->pt, ~(ptrdiff_t)bc_d(*pc))); /* Grow template table, but preserve keys with nil values. */ if ((tb->asize > tpl->asize && (1u << nhbits)-1 == tpl->hmask) || (tb->asize == tpl->asize && (1u << nhbits)-1 > tpl->hmask)) { Node *node = noderef(tpl->node); uint32_t i, hmask = tpl->hmask, asize; TValue *array; for (i = 0; i <= hmask; i++) { if (!tvisnil(&node[i].key) && tvisnil(&node[i].val)) settabV(J->L, &node[i].val, tpl); } if (!tvisnil(&ix->keyv) && tref_isk(ix->key)) { TValue *o = lj_tab_set(J->L, tpl, &ix->keyv); if (tvisnil(o)) settabV(J->L, o, tpl); } lj_tab_resize(J->L, tpl, tb->asize, nhbits); node = noderef(tpl->node); hmask = tpl->hmask; for (i = 0; i <= hmask; i++) { /* This is safe, since template tables only hold immutable values. */ if (tvistab(&node[i].val)) setnilV(&node[i].val); } /* The shape of the table may have changed. Clean up array part, too. */ asize = tpl->asize; array = tvref(tpl->array); for (i = 0; i < asize; i++) { if (tvistab(&array[i])) setnilV(&array[i]); } J->retryrec = 1; /* Abort the trace at the end of recording. */ } } } } #endif /* Record bounds-check. */ static void rec_idx_abc(jit_State *J, TRef asizeref, TRef ikey, uint32_t asize) { /* Try to emit invariant bounds checks. */ if ((J->flags & (JIT_F_OPT_LOOP|JIT_F_OPT_ABC)) == (JIT_F_OPT_LOOP|JIT_F_OPT_ABC)) { IRRef ref = tref_ref(ikey); IRIns *ir = IR(ref); int32_t ofs = 0; IRRef ofsref = 0; /* Handle constant offsets. */ if (ir->o == IR_ADD && irref_isk(ir->op2)) { ofsref = ir->op2; ofs = IR(ofsref)->i; ref = ir->op1; ir = IR(ref); } /* Got scalar evolution analysis results for this reference? */ if (ref == J->scev.idx) { int32_t stop; lua_assert(irt_isint(J->scev.t) && ir->o == IR_SLOAD); stop = numberVint(&(J->L->base - J->baseslot)[ir->op1 + FORL_STOP]); /* Runtime value for stop of loop is within bounds? */ if ((uint64_t)stop + ofs < (uint64_t)asize) { /* Emit invariant bounds check for stop. */ emitir(IRTG(IR_ABC, IRT_P32), asizeref, ofs == 0 ? J->scev.stop : emitir(IRTI(IR_ADD), J->scev.stop, ofsref)); /* Emit invariant bounds check for start, if not const or negative. */ if (!(J->scev.dir && J->scev.start && (int64_t)IR(J->scev.start)->i + ofs >= 0)) emitir(IRTG(IR_ABC, IRT_P32), asizeref, ikey); return; } } } emitir(IRTGI(IR_ABC), asizeref, ikey); /* Emit regular bounds check. */ } /* Record indexed key lookup. */ static TRef rec_idx_key(jit_State *J, RecordIndex *ix, IRRef *rbref, IRType1 *rbguard) { TRef key; GCtab *t = tabV(&ix->tabv); ix->oldv = lj_tab_get(J->L, t, &ix->keyv); /* Lookup previous value. */ *rbref = 0; rbguard->irt = 0; /* Integer keys are looked up in the array part first. */ key = ix->key; if (tref_isnumber(key)) { int32_t k = numberVint(&ix->keyv); if (!tvisint(&ix->keyv) && numV(&ix->keyv) != (lua_Number)k) k = LJ_MAX_ASIZE; if ((MSize)k < LJ_MAX_ASIZE) { /* Potential array key? */ TRef ikey = lj_opt_narrow_index(J, key); TRef asizeref = emitir(IRTI(IR_FLOAD), ix->tab, IRFL_TAB_ASIZE); if ((MSize)k < t->asize) { /* Currently an array key? */ TRef arrayref; rec_idx_abc(J, asizeref, ikey, t->asize); arrayref = emitir(IRT(IR_FLOAD, IRT_PGC), ix->tab, IRFL_TAB_ARRAY); return emitir(IRT(IR_AREF, IRT_PGC), arrayref, ikey); } else { /* Currently not in array (may be an array extension)? */ emitir(IRTGI(IR_ULE), asizeref, ikey); /* Inv. bounds check. */ if (k == 0 && tref_isk(key)) key = lj_ir_knum_zero(J); /* Canonicalize 0 or +-0.0 to +0.0. */ /* And continue with the hash lookup. */ } } else if (!tref_isk(key)) { /* We can rule out const numbers which failed the integerness test ** above. But all other numbers are potential array keys. */ if (t->asize == 0) { /* True sparse tables have an empty array part. */ /* Guard that the array part stays empty. */ TRef tmp = emitir(IRTI(IR_FLOAD), ix->tab, IRFL_TAB_ASIZE); emitir(IRTGI(IR_EQ), tmp, lj_ir_kint(J, 0)); } else { lj_trace_err(J, LJ_TRERR_NYITMIX); } } } /* Otherwise the key is located in the hash part. */ if (t->hmask == 0) { /* Shortcut for empty hash part. */ /* Guard that the hash part stays empty. */ TRef tmp = emitir(IRTI(IR_FLOAD), ix->tab, IRFL_TAB_HMASK); emitir(IRTGI(IR_EQ), tmp, lj_ir_kint(J, 0)); return lj_ir_kkptr(J, niltvg(J2G(J))); } if (tref_isinteger(key)) /* Hash keys are based on numbers, not ints. */ key = emitir(IRTN(IR_CONV), key, IRCONV_NUM_INT); if (tref_isk(key)) { /* Optimize lookup of constant hash keys. */ MSize hslot = (MSize)((char *)ix->oldv - (char *)&noderef(t->node)[0].val); if (t->hmask > 0 && hslot <= t->hmask*(MSize)sizeof(Node) && hslot <= 65535*(MSize)sizeof(Node)) { TRef node, kslot, hm; *rbref = J->cur.nins; /* Mark possible rollback point. */ *rbguard = J->guardemit; hm = emitir(IRTI(IR_FLOAD), ix->tab, IRFL_TAB_HMASK); emitir(IRTGI(IR_EQ), hm, lj_ir_kint(J, (int32_t)t->hmask)); node = emitir(IRT(IR_FLOAD, IRT_PGC), ix->tab, IRFL_TAB_NODE); kslot = lj_ir_kslot(J, key, hslot / sizeof(Node)); return emitir(IRTG(IR_HREFK, IRT_PGC), node, kslot); } } /* Fall back to a regular hash lookup. */ return emitir(IRT(IR_HREF, IRT_PGC), ix->tab, key); } /* Determine whether a key is NOT one of the fast metamethod names. */ static int nommstr(jit_State *J, TRef key) { if (tref_isstr(key)) { if (tref_isk(key)) { GCstr *str = ir_kstr(IR(tref_ref(key))); uint32_t mm; for (mm = 0; mm <= MM_FAST; mm++) if (mmname_str(J2G(J), mm) == str) return 0; /* MUST be one the fast metamethod names. */ } else { return 0; /* Variable string key MAY be a metamethod name. */ } } return 1; /* CANNOT be a metamethod name. */ } /* Record indexed load/store. */ TRef lj_record_idx(jit_State *J, RecordIndex *ix) { TRef xref; IROp xrefop, loadop; IRRef rbref; IRType1 rbguard; cTValue *oldv; while (!tref_istab(ix->tab)) { /* Handle non-table lookup. */ /* Never call raw lj_record_idx() on non-table. */ lua_assert(ix->idxchain != 0); if (!lj_record_mm_lookup(J, ix, ix->val ? MM_newindex : MM_index)) lj_trace_err(J, LJ_TRERR_NOMM); handlemm: if (tref_isfunc(ix->mobj)) { /* Handle metamethod call. */ BCReg func = rec_mm_prep(J, ix->val ? lj_cont_nop : lj_cont_ra); TRef *base = J->base + func + LJ_FR2; TValue *tv = J->L->base + func + LJ_FR2; base[-LJ_FR2] = ix->mobj; base[1] = ix->tab; base[2] = ix->key; setfuncV(J->L, tv-LJ_FR2, funcV(&ix->mobjv)); copyTV(J->L, tv+1, &ix->tabv); copyTV(J->L, tv+2, &ix->keyv); if (ix->val) { base[3] = ix->val; copyTV(J->L, tv+3, &ix->valv); lj_record_call(J, func, 3); /* mobj(tab, key, val) */ return 0; } else { lj_record_call(J, func, 2); /* res = mobj(tab, key) */ return 0; /* No result yet. */ } } /* Otherwise retry lookup with metaobject. */ ix->tab = ix->mobj; copyTV(J->L, &ix->tabv, &ix->mobjv); if (--ix->idxchain == 0) lj_trace_err(J, LJ_TRERR_IDXLOOP); } /* First catch nil and NaN keys for tables. */ if (tvisnil(&ix->keyv) || (tvisnum(&ix->keyv) && tvisnan(&ix->keyv))) { if (ix->val) /* Better fail early. */ lj_trace_err(J, LJ_TRERR_STORENN); if (tref_isk(ix->key)) { if (ix->idxchain && lj_record_mm_lookup(J, ix, MM_index)) goto handlemm; return TREF_NIL; } } /* Record the key lookup. */ xref = rec_idx_key(J, ix, &rbref, &rbguard); xrefop = IR(tref_ref(xref))->o; loadop = xrefop == IR_AREF ? IR_ALOAD : IR_HLOAD; /* The lj_meta_tset() inconsistency is gone, but better play safe. */ oldv = xrefop == IR_KKPTR ? (cTValue *)ir_kptr(IR(tref_ref(xref))) : ix->oldv; if (ix->val == 0) { /* Indexed load */ IRType t = itype2irt(oldv); TRef res; if (oldv == niltvg(J2G(J))) { emitir(IRTG(IR_EQ, IRT_PGC), xref, lj_ir_kkptr(J, niltvg(J2G(J)))); res = TREF_NIL; } else { res = emitir(IRTG(loadop, t), xref, 0); } if (tref_ref(res) < rbref) { /* HREFK + load forwarded? */ lj_ir_rollback(J, rbref); /* Rollback to eliminate hmask guard. */ J->guardemit = rbguard; } if (t == IRT_NIL && ix->idxchain && lj_record_mm_lookup(J, ix, MM_index)) goto handlemm; if (irtype_ispri(t)) res = TREF_PRI(t); /* Canonicalize primitives. */ return res; } else { /* Indexed store. */ GCtab *mt = tabref(tabV(&ix->tabv)->metatable); int keybarrier = tref_isgcv(ix->key) && !tref_isnil(ix->val); if (tref_ref(xref) < rbref) { /* HREFK forwarded? */ lj_ir_rollback(J, rbref); /* Rollback to eliminate hmask guard. */ J->guardemit = rbguard; } if (tvisnil(oldv)) { /* Previous value was nil? */ /* Need to duplicate the hasmm check for the early guards. */ int hasmm = 0; if (ix->idxchain && mt) { cTValue *mo = lj_tab_getstr(mt, mmname_str(J2G(J), MM_newindex)); hasmm = mo && !tvisnil(mo); } if (hasmm) emitir(IRTG(loadop, IRT_NIL), xref, 0); /* Guard for nil value. */ else if (xrefop == IR_HREF) emitir(IRTG(oldv == niltvg(J2G(J)) ? IR_EQ : IR_NE, IRT_PGC), xref, lj_ir_kkptr(J, niltvg(J2G(J)))); if (ix->idxchain && lj_record_mm_lookup(J, ix, MM_newindex)) { lua_assert(hasmm); goto handlemm; } lua_assert(!hasmm); if (oldv == niltvg(J2G(J))) { /* Need to insert a new key. */ TRef key = ix->key; if (tref_isinteger(key)) /* NEWREF needs a TValue as a key. */ key = emitir(IRTN(IR_CONV), key, IRCONV_NUM_INT); xref = emitir(IRT(IR_NEWREF, IRT_PGC), ix->tab, key); keybarrier = 0; /* NEWREF already takes care of the key barrier. */ #ifdef LUAJIT_ENABLE_TABLE_BUMP if ((J->flags & JIT_F_OPT_SINK)) /* Avoid a separate flag. */ rec_idx_bump(J, ix); #endif } } else if (!lj_opt_fwd_wasnonnil(J, loadop, tref_ref(xref))) { /* Cannot derive that the previous value was non-nil, must do checks. */ if (xrefop == IR_HREF) /* Guard against store to niltv. */ emitir(IRTG(IR_NE, IRT_PGC), xref, lj_ir_kkptr(J, niltvg(J2G(J)))); if (ix->idxchain) { /* Metamethod lookup required? */ /* A check for NULL metatable is cheaper (hoistable) than a load. */ if (!mt) { TRef mtref = emitir(IRT(IR_FLOAD, IRT_TAB), ix->tab, IRFL_TAB_META); emitir(IRTG(IR_EQ, IRT_TAB), mtref, lj_ir_knull(J, IRT_TAB)); } else { IRType t = itype2irt(oldv); emitir(IRTG(loadop, t), xref, 0); /* Guard for non-nil value. */ } } } else { keybarrier = 0; /* Previous non-nil value kept the key alive. */ } /* Convert int to number before storing. */ if (!LJ_DUALNUM && tref_isinteger(ix->val)) ix->val = emitir(IRTN(IR_CONV), ix->val, IRCONV_NUM_INT); emitir(IRT(loadop+IRDELTA_L2S, tref_type(ix->val)), xref, ix->val); if (keybarrier || tref_isgcv(ix->val)) emitir(IRT(IR_TBAR, IRT_NIL), ix->tab, 0); /* Invalidate neg. metamethod cache for stores with certain string keys. */ if (!nommstr(J, ix->key)) { TRef fref = emitir(IRT(IR_FREF, IRT_PGC), ix->tab, IRFL_TAB_NOMM); emitir(IRT(IR_FSTORE, IRT_U8), fref, lj_ir_kint(J, 0)); } J->needsnap = 1; return 0; } } static void rec_tsetm(jit_State *J, BCReg ra, BCReg rn, int32_t i) { RecordIndex ix; cTValue *basev = J->L->base; GCtab *t = tabV(&basev[ra-1]); settabV(J->L, &ix.tabv, t); ix.tab = getslot(J, ra-1); ix.idxchain = 0; #ifdef LUAJIT_ENABLE_TABLE_BUMP if ((J->flags & JIT_F_OPT_SINK)) { if (t->asize < i+rn-ra) lj_tab_reasize(J->L, t, i+rn-ra); setnilV(&ix.keyv); rec_idx_bump(J, &ix); } #endif for (; ra < rn; i++, ra++) { setintV(&ix.keyv, i); ix.key = lj_ir_kint(J, i); copyTV(J->L, &ix.valv, &basev[ra]); ix.val = getslot(J, ra); lj_record_idx(J, &ix); } } /* -- Upvalue access ------------------------------------------------------ */ /* Check whether upvalue is immutable and ok to constify. */ static int rec_upvalue_constify(jit_State *J, GCupval *uvp) { if (uvp->immutable) { cTValue *o = uvval(uvp); /* Don't constify objects that may retain large amounts of memory. */ #if LJ_HASFFI if (tviscdata(o)) { GCcdata *cd = cdataV(o); if (!cdataisv(cd) && !(cd->marked & LJ_GC_CDATA_FIN)) { CType *ct = ctype_raw(ctype_ctsG(J2G(J)), cd->ctypeid); if (!ctype_hassize(ct->info) || ct->size <= 16) return 1; } return 0; } #else UNUSED(J); #endif if (!(tvistab(o) || tvisudata(o) || tvisthread(o))) return 1; } return 0; } /* Record upvalue load/store. */ static TRef rec_upvalue(jit_State *J, uint32_t uv, TRef val) { GCupval *uvp = &gcref(J->fn->l.uvptr[uv])->uv; TRef fn = getcurrf(J); IRRef uref; int needbarrier = 0; if (rec_upvalue_constify(J, uvp)) { /* Try to constify immutable upvalue. */ TRef tr, kfunc; lua_assert(val == 0); if (!tref_isk(fn)) { /* Late specialization of current function. */ if (J->pt->flags >= PROTO_CLC_POLY) goto noconstify; kfunc = lj_ir_kfunc(J, J->fn); emitir(IRTG(IR_EQ, IRT_FUNC), fn, kfunc); #if LJ_FR2 J->base[-2] = kfunc; #else J->base[-1] = kfunc | TREF_FRAME; #endif fn = kfunc; } tr = lj_record_constify(J, uvval(uvp)); if (tr) return tr; } noconstify: /* Note: this effectively limits LJ_MAX_UPVAL to 127. */ uv = (uv << 8) | (hashrot(uvp->dhash, uvp->dhash + HASH_BIAS) & 0xff); if (!uvp->closed) { uref = tref_ref(emitir(IRTG(IR_UREFO, IRT_PGC), fn, uv)); /* In current stack? */ if (uvval(uvp) >= tvref(J->L->stack) && uvval(uvp) < tvref(J->L->maxstack)) { int32_t slot = (int32_t)(uvval(uvp) - (J->L->base - J->baseslot)); if (slot >= 0) { /* Aliases an SSA slot? */ emitir(IRTG(IR_EQ, IRT_PGC), REF_BASE, emitir(IRT(IR_ADD, IRT_PGC), uref, lj_ir_kint(J, (slot - 1 - LJ_FR2) * -8))); slot -= (int32_t)J->baseslot; /* Note: slot number may be negative! */ if (val == 0) { return getslot(J, slot); } else { J->base[slot] = val; if (slot >= (int32_t)J->maxslot) J->maxslot = (BCReg)(slot+1); return 0; } } } emitir(IRTG(IR_UGT, IRT_PGC), emitir(IRT(IR_SUB, IRT_PGC), uref, REF_BASE), lj_ir_kint(J, (J->baseslot + J->maxslot) * 8)); } else { needbarrier = 1; uref = tref_ref(emitir(IRTG(IR_UREFC, IRT_PGC), fn, uv)); } if (val == 0) { /* Upvalue load */ IRType t = itype2irt(uvval(uvp)); TRef res = emitir(IRTG(IR_ULOAD, t), uref, 0); if (irtype_ispri(t)) res = TREF_PRI(t); /* Canonicalize primitive refs. */ return res; } else { /* Upvalue store. */ /* Convert int to number before storing. */ if (!LJ_DUALNUM && tref_isinteger(val)) val = emitir(IRTN(IR_CONV), val, IRCONV_NUM_INT); emitir(IRT(IR_USTORE, tref_type(val)), uref, val); if (needbarrier && tref_isgcv(val)) emitir(IRT(IR_OBAR, IRT_NIL), uref, val); J->needsnap = 1; return 0; } } /* -- Record calls to Lua functions --------------------------------------- */ /* Check unroll limits for calls. */ static void check_call_unroll(jit_State *J, TraceNo lnk) { cTValue *frame = J->L->base - 1; void *pc = mref(frame_func(frame)->l.pc, void); int32_t depth = J->framedepth; int32_t count = 0; if ((J->pt->flags & PROTO_VARARG)) depth--; /* Vararg frame still missing. */ for (; depth > 0; depth--) { /* Count frames with same prototype. */ if (frame_iscont(frame)) depth--; frame = frame_prev(frame); if (mref(frame_func(frame)->l.pc, void) == pc) count++; } if (J->pc == J->startpc) { if (count + J->tailcalled > J->param[JIT_P_recunroll]) { J->pc++; if (J->framedepth + J->retdepth == 0) lj_record_stop(J, LJ_TRLINK_TAILREC, J->cur.traceno); /* Tail-rec. */ else lj_record_stop(J, LJ_TRLINK_UPREC, J->cur.traceno); /* Up-recursion. */ } } else { if (count > J->param[JIT_P_callunroll]) { if (lnk) { /* Possible tail- or up-recursion. */ lj_trace_flush(J, lnk); /* Flush trace that only returns. */ /* Set a small, pseudo-random hotcount for a quick retry of JFUNC*. */ hotcount_set(J2GG(J), J->pc+1, LJ_PRNG_BITS(J, 4)); } lj_trace_err(J, LJ_TRERR_CUNROLL); } } } /* Record Lua function setup. */ static void rec_func_setup(jit_State *J) { GCproto *pt = J->pt; BCReg s, numparams = pt->numparams; if ((pt->flags & PROTO_NOJIT)) lj_trace_err(J, LJ_TRERR_CJITOFF); if (J->baseslot + pt->framesize >= LJ_MAX_JSLOTS) lj_trace_err(J, LJ_TRERR_STACKOV); /* Fill up missing parameters with nil. */ for (s = J->maxslot; s < numparams; s++) J->base[s] = TREF_NIL; /* The remaining slots should never be read before they are written. */ J->maxslot = numparams; } /* Record Lua vararg function setup. */ static void rec_func_vararg(jit_State *J) { GCproto *pt = J->pt; BCReg s, fixargs, vframe = J->maxslot+1+LJ_FR2; lua_assert((pt->flags & PROTO_VARARG)); if (J->baseslot + vframe + pt->framesize >= LJ_MAX_JSLOTS) lj_trace_err(J, LJ_TRERR_STACKOV); J->base[vframe-1-LJ_FR2] = J->base[-1-LJ_FR2]; /* Copy function up. */ #if LJ_FR2 J->base[vframe-1] = TREF_FRAME; #endif /* Copy fixarg slots up and set their original slots to nil. */ fixargs = pt->numparams < J->maxslot ? pt->numparams : J->maxslot; for (s = 0; s < fixargs; s++) { J->base[vframe+s] = J->base[s]; J->base[s] = TREF_NIL; } J->maxslot = fixargs; J->framedepth++; J->base += vframe; J->baseslot += vframe; } /* Record entry to a Lua function. */ static void rec_func_lua(jit_State *J) { rec_func_setup(J); check_call_unroll(J, 0); } /* Record entry to an already compiled function. */ static void rec_func_jit(jit_State *J, TraceNo lnk) { GCtrace *T; rec_func_setup(J); T = traceref(J, lnk); if (T->linktype == LJ_TRLINK_RETURN) { /* Trace returns to interpreter? */ check_call_unroll(J, lnk); /* Temporarily unpatch JFUNC* to continue recording across function. */ J->patchins = *J->pc; J->patchpc = (BCIns *)J->pc; *J->patchpc = T->startins; return; } J->instunroll = 0; /* Cannot continue across a compiled function. */ if (J->pc == J->startpc && J->framedepth + J->retdepth == 0) lj_record_stop(J, LJ_TRLINK_TAILREC, J->cur.traceno); /* Extra tail-rec. */ else lj_record_stop(J, LJ_TRLINK_ROOT, lnk); /* Link to the function. */ } /* -- Vararg handling ----------------------------------------------------- */ /* Detect y = select(x, ...) idiom. */ static int select_detect(jit_State *J) { BCIns ins = J->pc[1]; if (bc_op(ins) == BC_CALLM && bc_b(ins) == 2 && bc_c(ins) == 1) { cTValue *func = &J->L->base[bc_a(ins)]; if (tvisfunc(func) && funcV(func)->c.ffid == FF_select) { TRef kfunc = lj_ir_kfunc(J, funcV(func)); emitir(IRTG(IR_EQ, IRT_FUNC), getslot(J, bc_a(ins)), kfunc); return 1; } } return 0; } /* Record vararg instruction. */ static void rec_varg(jit_State *J, BCReg dst, ptrdiff_t nresults) { int32_t numparams = J->pt->numparams; ptrdiff_t nvararg = frame_delta(J->L->base-1) - numparams - 1 - LJ_FR2; lua_assert(frame_isvarg(J->L->base-1)); if (LJ_FR2 && dst > J->maxslot) J->base[dst-1] = 0; /* Prevent resurrection of unrelated slot. */ if (J->framedepth > 0) { /* Simple case: varargs defined on-trace. */ ptrdiff_t i; if (nvararg < 0) nvararg = 0; if (nresults == -1) { nresults = nvararg; J->maxslot = dst + (BCReg)nvararg; } else if (dst + nresults > J->maxslot) { J->maxslot = dst + (BCReg)nresults; } for (i = 0; i < nresults; i++) J->base[dst+i] = i < nvararg ? getslot(J, i - nvararg - 1 - LJ_FR2) : TREF_NIL; } else { /* Unknown number of varargs passed to trace. */ TRef fr = emitir(IRTI(IR_SLOAD), LJ_FR2, IRSLOAD_READONLY|IRSLOAD_FRAME); int32_t frofs = 8*(1+LJ_FR2+numparams)+FRAME_VARG; if (nresults >= 0) { /* Known fixed number of results. */ ptrdiff_t i; if (nvararg > 0) { ptrdiff_t nload = nvararg >= nresults ? nresults : nvararg; TRef vbase; if (nvararg >= nresults) emitir(IRTGI(IR_GE), fr, lj_ir_kint(J, frofs+8*(int32_t)nresults)); else emitir(IRTGI(IR_EQ), fr, lj_ir_kint(J, (int32_t)frame_ftsz(J->L->base-1))); vbase = emitir(IRT(IR_SUB, IRT_IGC), REF_BASE, fr); vbase = emitir(IRT(IR_ADD, IRT_PGC), vbase, lj_ir_kint(J, frofs-8)); for (i = 0; i < nload; i++) { IRType t = itype2irt(&J->L->base[i-1-LJ_FR2-nvararg]); TRef aref = emitir(IRT(IR_AREF, IRT_PGC), vbase, lj_ir_kint(J, (int32_t)i)); TRef tr = emitir(IRTG(IR_VLOAD, t), aref, 0); if (irtype_ispri(t)) tr = TREF_PRI(t); /* Canonicalize primitives. */ J->base[dst+i] = tr; } } else { emitir(IRTGI(IR_LE), fr, lj_ir_kint(J, frofs)); nvararg = 0; } for (i = nvararg; i < nresults; i++) J->base[dst+i] = TREF_NIL; if (dst + (BCReg)nresults > J->maxslot) J->maxslot = dst + (BCReg)nresults; } else if (select_detect(J)) { /* y = select(x, ...) */ TRef tridx = J->base[dst-1]; TRef tr = TREF_NIL; ptrdiff_t idx = lj_ffrecord_select_mode(J, tridx, &J->L->base[dst-1]); if (idx < 0) goto nyivarg; if (idx != 0 && !tref_isinteger(tridx)) tridx = emitir(IRTGI(IR_CONV), tridx, IRCONV_INT_NUM|IRCONV_INDEX); if (idx != 0 && tref_isk(tridx)) { emitir(IRTGI(idx <= nvararg ? IR_GE : IR_LT), fr, lj_ir_kint(J, frofs+8*(int32_t)idx)); frofs -= 8; /* Bias for 1-based index. */ } else if (idx <= nvararg) { /* Compute size. */ TRef tmp = emitir(IRTI(IR_ADD), fr, lj_ir_kint(J, -frofs)); if (numparams) emitir(IRTGI(IR_GE), tmp, lj_ir_kint(J, 0)); tr = emitir(IRTI(IR_BSHR), tmp, lj_ir_kint(J, 3)); if (idx != 0) { tridx = emitir(IRTI(IR_ADD), tridx, lj_ir_kint(J, -1)); rec_idx_abc(J, tr, tridx, (uint32_t)nvararg); } } else { TRef tmp = lj_ir_kint(J, frofs); if (idx != 0) { TRef tmp2 = emitir(IRTI(IR_BSHL), tridx, lj_ir_kint(J, 3)); tmp = emitir(IRTI(IR_ADD), tmp2, tmp); } else { tr = lj_ir_kint(J, 0); } emitir(IRTGI(IR_LT), fr, tmp); } if (idx != 0 && idx <= nvararg) { IRType t; TRef aref, vbase = emitir(IRT(IR_SUB, IRT_IGC), REF_BASE, fr); vbase = emitir(IRT(IR_ADD, IRT_PGC), vbase, lj_ir_kint(J, frofs-(8<L->base[idx-2-LJ_FR2-nvararg]); aref = emitir(IRT(IR_AREF, IRT_PGC), vbase, tridx); tr = emitir(IRTG(IR_VLOAD, t), aref, 0); if (irtype_ispri(t)) tr = TREF_PRI(t); /* Canonicalize primitives. */ } J->base[dst-2-LJ_FR2] = tr; J->maxslot = dst-1-LJ_FR2; J->bcskip = 2; /* Skip CALLM + select. */ } else { nyivarg: setintV(&J->errinfo, BC_VARG); lj_trace_err_info(J, LJ_TRERR_NYIBC); } } } /* -- Record allocations -------------------------------------------------- */ static TRef rec_tnew(jit_State *J, uint32_t ah) { uint32_t asize = ah & 0x7ff; uint32_t hbits = ah >> 11; TRef tr; if (asize == 0x7ff) asize = 0x801; tr = emitir(IRTG(IR_TNEW, IRT_TAB), asize, hbits); #ifdef LUAJIT_ENABLE_TABLE_BUMP J->rbchash[(tr & (RBCHASH_SLOTS-1))].ref = tref_ref(tr); setmref(J->rbchash[(tr & (RBCHASH_SLOTS-1))].pc, J->pc); setgcref(J->rbchash[(tr & (RBCHASH_SLOTS-1))].pt, obj2gco(J->pt)); #endif return tr; } /* -- Concatenation ------------------------------------------------------- */ static TRef rec_cat(jit_State *J, BCReg baseslot, BCReg topslot) { TRef *top = &J->base[topslot]; TValue savetv[5]; BCReg s; RecordIndex ix; lua_assert(baseslot < topslot); for (s = baseslot; s <= topslot; s++) (void)getslot(J, s); /* Ensure all arguments have a reference. */ if (tref_isnumber_str(top[0]) && tref_isnumber_str(top[-1])) { TRef tr, hdr, *trp, *xbase, *base = &J->base[baseslot]; /* First convert numbers to strings. */ for (trp = top; trp >= base; trp--) { if (tref_isnumber(*trp)) *trp = emitir(IRT(IR_TOSTR, IRT_STR), *trp, tref_isnum(*trp) ? IRTOSTR_NUM : IRTOSTR_INT); else if (!tref_isstr(*trp)) break; } xbase = ++trp; tr = hdr = emitir(IRT(IR_BUFHDR, IRT_PGC), lj_ir_kptr(J, &J2G(J)->tmpbuf), IRBUFHDR_RESET); do { tr = emitir(IRT(IR_BUFPUT, IRT_PGC), tr, *trp++); } while (trp <= top); tr = emitir(IRT(IR_BUFSTR, IRT_STR), tr, hdr); J->maxslot = (BCReg)(xbase - J->base); if (xbase == base) return tr; /* Return simple concatenation result. */ /* Pass partial result. */ topslot = J->maxslot--; *xbase = tr; top = xbase; setstrV(J->L, &ix.keyv, &J2G(J)->strempty); /* Simulate string result. */ } else { J->maxslot = topslot-1; copyTV(J->L, &ix.keyv, &J->L->base[topslot]); } copyTV(J->L, &ix.tabv, &J->L->base[topslot-1]); ix.tab = top[-1]; ix.key = top[0]; memcpy(savetv, &J->L->base[topslot-1], sizeof(savetv)); /* Save slots. */ rec_mm_arith(J, &ix, MM_concat); /* Call __concat metamethod. */ memcpy(&J->L->base[topslot-1], savetv, sizeof(savetv)); /* Restore slots. */ return 0; /* No result yet. */ } /* -- Record bytecode ops ------------------------------------------------- */ /* Prepare for comparison. */ static void rec_comp_prep(jit_State *J) { /* Prevent merging with snapshot #0 (GC exit) since we fixup the PC. */ if (J->cur.nsnap == 1 && J->cur.snap[0].ref == J->cur.nins) emitir_raw(IRT(IR_NOP, IRT_NIL), 0, 0); lj_snap_add(J); } /* Fixup comparison. */ static void rec_comp_fixup(jit_State *J, const BCIns *pc, int cond) { BCIns jmpins = pc[1]; const BCIns *npc = pc + 2 + (cond ? bc_j(jmpins) : 0); SnapShot *snap = &J->cur.snap[J->cur.nsnap-1]; /* Set PC to opposite target to avoid re-recording the comp. in side trace. */ #if LJ_FR2 SnapEntry *flink = &J->cur.snapmap[snap->mapofs + snap->nent]; uint64_t pcbase; memcpy(&pcbase, flink, sizeof(uint64_t)); pcbase = (pcbase & 0xff) | (u64ptr(npc) << 8); memcpy(flink, &pcbase, sizeof(uint64_t)); #else J->cur.snapmap[snap->mapofs + snap->nent] = SNAP_MKPC(npc); #endif J->needsnap = 1; if (bc_a(jmpins) < J->maxslot) J->maxslot = bc_a(jmpins); lj_snap_shrink(J); /* Shrink last snapshot if possible. */ } /* Record the next bytecode instruction (_before_ it's executed). */ void lj_record_ins(jit_State *J) { cTValue *lbase; RecordIndex ix; const BCIns *pc; BCIns ins; BCOp op; TRef ra, rb, rc; /* Perform post-processing action before recording the next instruction. */ if (LJ_UNLIKELY(J->postproc != LJ_POST_NONE)) { switch (J->postproc) { case LJ_POST_FIXCOMP: /* Fixup comparison. */ pc = (const BCIns *)(uintptr_t)J2G(J)->tmptv.u64; rec_comp_fixup(J, pc, (!tvistruecond(&J2G(J)->tmptv2) ^ (bc_op(*pc)&1))); /* fallthrough */ case LJ_POST_FIXGUARD: /* Fixup and emit pending guard. */ case LJ_POST_FIXGUARDSNAP: /* Fixup and emit pending guard and snapshot. */ if (!tvistruecond(&J2G(J)->tmptv2)) { J->fold.ins.o ^= 1; /* Flip guard to opposite. */ if (J->postproc == LJ_POST_FIXGUARDSNAP) { SnapShot *snap = &J->cur.snap[J->cur.nsnap-1]; J->cur.snapmap[snap->mapofs+snap->nent-1]--; /* False -> true. */ } } lj_opt_fold(J); /* Emit pending guard. */ /* fallthrough */ case LJ_POST_FIXBOOL: if (!tvistruecond(&J2G(J)->tmptv2)) { BCReg s; TValue *tv = J->L->base; for (s = 0; s < J->maxslot; s++) /* Fixup stack slot (if any). */ if (J->base[s] == TREF_TRUE && tvisfalse(&tv[s])) { J->base[s] = TREF_FALSE; break; } } break; case LJ_POST_FIXCONST: { BCReg s; TValue *tv = J->L->base; for (s = 0; s < J->maxslot; s++) /* Constify stack slots (if any). */ if (J->base[s] == TREF_NIL && !tvisnil(&tv[s])) J->base[s] = lj_record_constify(J, &tv[s]); } break; case LJ_POST_FFRETRY: /* Suppress recording of retried fast function. */ if (bc_op(*J->pc) >= BC__MAX) return; break; default: lua_assert(0); break; } J->postproc = LJ_POST_NONE; } /* Need snapshot before recording next bytecode (e.g. after a store). */ if (J->needsnap) { J->needsnap = 0; lj_snap_purge(J); lj_snap_add(J); J->mergesnap = 1; } /* Skip some bytecodes. */ if (LJ_UNLIKELY(J->bcskip > 0)) { J->bcskip--; return; } /* Record only closed loops for root traces. */ pc = J->pc; if (J->framedepth == 0 && (MSize)((char *)pc - (char *)J->bc_min) >= J->bc_extent) lj_trace_err(J, LJ_TRERR_LLEAVE); #ifdef LUA_USE_ASSERT rec_check_slots(J); rec_check_ir(J); #endif #if LJ_HASPROFILE rec_profile_ins(J, pc); #endif /* Keep a copy of the runtime values of var/num/str operands. */ #define rav (&ix.valv) #define rbv (&ix.tabv) #define rcv (&ix.keyv) lbase = J->L->base; ins = *pc; op = bc_op(ins); ra = bc_a(ins); ix.val = 0; switch (bcmode_a(op)) { case BCMvar: copyTV(J->L, rav, &lbase[ra]); ix.val = ra = getslot(J, ra); break; default: break; /* Handled later. */ } rb = bc_b(ins); rc = bc_c(ins); switch (bcmode_b(op)) { case BCMnone: rb = 0; rc = bc_d(ins); break; /* Upgrade rc to 'rd'. */ case BCMvar: copyTV(J->L, rbv, &lbase[rb]); ix.tab = rb = getslot(J, rb); break; default: break; /* Handled later. */ } switch (bcmode_c(op)) { case BCMvar: copyTV(J->L, rcv, &lbase[rc]); ix.key = rc = getslot(J, rc); break; case BCMpri: setpriV(rcv, ~rc); ix.key = rc = TREF_PRI(IRT_NIL+rc); break; case BCMnum: { cTValue *tv = proto_knumtv(J->pt, rc); copyTV(J->L, rcv, tv); ix.key = rc = tvisint(tv) ? lj_ir_kint(J, intV(tv)) : lj_ir_knumint(J, numV(tv)); } break; case BCMstr: { GCstr *s = gco2str(proto_kgc(J->pt, ~(ptrdiff_t)rc)); setstrV(J->L, rcv, s); ix.key = rc = lj_ir_kstr(J, s); } break; default: break; /* Handled later. */ } switch (op) { /* -- Comparison ops ---------------------------------------------------- */ case BC_ISLT: case BC_ISGE: case BC_ISLE: case BC_ISGT: #if LJ_HASFFI if (tref_iscdata(ra) || tref_iscdata(rc)) { rec_mm_comp_cdata(J, &ix, op, ((int)op & 2) ? MM_le : MM_lt); break; } #endif /* Emit nothing for two numeric or string consts. */ if (!(tref_isk2(ra,rc) && tref_isnumber_str(ra) && tref_isnumber_str(rc))) { IRType ta = tref_isinteger(ra) ? IRT_INT : tref_type(ra); IRType tc = tref_isinteger(rc) ? IRT_INT : tref_type(rc); int irop; if (ta != tc) { /* Widen mixed number/int comparisons to number/number comparison. */ if (ta == IRT_INT && tc == IRT_NUM) { ra = emitir(IRTN(IR_CONV), ra, IRCONV_NUM_INT); ta = IRT_NUM; } else if (ta == IRT_NUM && tc == IRT_INT) { rc = emitir(IRTN(IR_CONV), rc, IRCONV_NUM_INT); } else if (LJ_52) { ta = IRT_NIL; /* Force metamethod for different types. */ } else if (!((ta == IRT_FALSE || ta == IRT_TRUE) && (tc == IRT_FALSE || tc == IRT_TRUE))) { break; /* Interpreter will throw for two different types. */ } } rec_comp_prep(J); irop = (int)op - (int)BC_ISLT + (int)IR_LT; if (ta == IRT_NUM) { if ((irop & 1)) irop ^= 4; /* ISGE/ISGT are unordered. */ if (!lj_ir_numcmp(numberVnum(rav), numberVnum(rcv), (IROp)irop)) irop ^= 5; } else if (ta == IRT_INT) { if (!lj_ir_numcmp(numberVnum(rav), numberVnum(rcv), (IROp)irop)) irop ^= 1; } else if (ta == IRT_STR) { if (!lj_ir_strcmp(strV(rav), strV(rcv), (IROp)irop)) irop ^= 1; ra = lj_ir_call(J, IRCALL_lj_str_cmp, ra, rc); rc = lj_ir_kint(J, 0); ta = IRT_INT; } else { rec_mm_comp(J, &ix, (int)op); break; } emitir(IRTG(irop, ta), ra, rc); rec_comp_fixup(J, J->pc, ((int)op ^ irop) & 1); } break; case BC_ISEQV: case BC_ISNEV: case BC_ISEQS: case BC_ISNES: case BC_ISEQN: case BC_ISNEN: case BC_ISEQP: case BC_ISNEP: #if LJ_HASFFI if (tref_iscdata(ra) || tref_iscdata(rc)) { rec_mm_comp_cdata(J, &ix, op, MM_eq); break; } #endif /* Emit nothing for two non-table, non-udata consts. */ if (!(tref_isk2(ra, rc) && !(tref_istab(ra) || tref_isudata(ra)))) { int diff; rec_comp_prep(J); diff = lj_record_objcmp(J, ra, rc, rav, rcv); if (diff == 2 || !(tref_istab(ra) || tref_isudata(ra))) rec_comp_fixup(J, J->pc, ((int)op & 1) == !diff); else if (diff == 1) /* Only check __eq if different, but same type. */ rec_mm_equal(J, &ix, (int)op); } break; /* -- Unary test and copy ops ------------------------------------------- */ case BC_ISTC: case BC_ISFC: if ((op & 1) == tref_istruecond(rc)) rc = 0; /* Don't store if condition is not true. */ /* fallthrough */ case BC_IST: case BC_ISF: /* Type specialization suffices. */ if (bc_a(pc[1]) < J->maxslot) J->maxslot = bc_a(pc[1]); /* Shrink used slots. */ break; case BC_ISTYPE: case BC_ISNUM: /* These coercions need to correspond with lj_meta_istype(). */ if (LJ_DUALNUM && rc == ~LJ_TNUMX+1) ra = lj_opt_narrow_toint(J, ra); else if (rc == ~LJ_TNUMX+2) ra = lj_ir_tonum(J, ra); else if (rc == ~LJ_TSTR+1) ra = lj_ir_tostr(J, ra); /* else: type specialization suffices. */ J->base[bc_a(ins)] = ra; break; /* -- Unary ops --------------------------------------------------------- */ case BC_NOT: /* Type specialization already forces const result. */ rc = tref_istruecond(rc) ? TREF_FALSE : TREF_TRUE; break; case BC_LEN: if (tref_isstr(rc)) rc = emitir(IRTI(IR_FLOAD), rc, IRFL_STR_LEN); else if (!LJ_52 && tref_istab(rc)) rc = lj_ir_call(J, IRCALL_lj_tab_len, rc); else rc = rec_mm_len(J, rc, rcv); break; /* -- Arithmetic ops ---------------------------------------------------- */ case BC_UNM: if (tref_isnumber_str(rc)) { rc = lj_opt_narrow_unm(J, rc, rcv); } else { ix.tab = rc; copyTV(J->L, &ix.tabv, rcv); rc = rec_mm_arith(J, &ix, MM_unm); } break; case BC_ADDNV: case BC_SUBNV: case BC_MULNV: case BC_DIVNV: case BC_MODNV: /* Swap rb/rc and rbv/rcv. rav is temp. */ ix.tab = rc; ix.key = rc = rb; rb = ix.tab; copyTV(J->L, rav, rbv); copyTV(J->L, rbv, rcv); copyTV(J->L, rcv, rav); if (op == BC_MODNV) goto recmod; /* fallthrough */ case BC_ADDVN: case BC_SUBVN: case BC_MULVN: case BC_DIVVN: case BC_ADDVV: case BC_SUBVV: case BC_MULVV: case BC_DIVVV: { MMS mm = bcmode_mm(op); if (tref_isnumber_str(rb) && tref_isnumber_str(rc)) rc = lj_opt_narrow_arith(J, rb, rc, rbv, rcv, (int)mm - (int)MM_add + (int)IR_ADD); else rc = rec_mm_arith(J, &ix, mm); break; } case BC_MODVN: case BC_MODVV: recmod: if (tref_isnumber_str(rb) && tref_isnumber_str(rc)) rc = lj_opt_narrow_mod(J, rb, rc, rbv, rcv); else rc = rec_mm_arith(J, &ix, MM_mod); break; case BC_POW: if (tref_isnumber_str(rb) && tref_isnumber_str(rc)) rc = lj_opt_narrow_pow(J, rb, rc, rbv, rcv); else rc = rec_mm_arith(J, &ix, MM_pow); break; /* -- Miscellaneous ops ------------------------------------------------- */ case BC_CAT: rc = rec_cat(J, rb, rc); break; /* -- Constant and move ops --------------------------------------------- */ case BC_MOV: /* Clear gap of method call to avoid resurrecting previous refs. */ if (ra > J->maxslot) { #if LJ_FR2 memset(J->base + J->maxslot, 0, (ra - J->maxslot) * sizeof(TRef)); #else J->base[ra-1] = 0; #endif } break; case BC_KSTR: case BC_KNUM: case BC_KPRI: break; case BC_KSHORT: rc = lj_ir_kint(J, (int32_t)(int16_t)rc); break; case BC_KNIL: if (LJ_FR2 && ra > J->maxslot) J->base[ra-1] = 0; while (ra <= rc) J->base[ra++] = TREF_NIL; if (rc >= J->maxslot) J->maxslot = rc+1; break; #if LJ_HASFFI case BC_KCDATA: rc = lj_ir_kgc(J, proto_kgc(J->pt, ~(ptrdiff_t)rc), IRT_CDATA); break; #endif /* -- Upvalue and function ops ------------------------------------------ */ case BC_UGET: rc = rec_upvalue(J, rc, 0); break; case BC_USETV: case BC_USETS: case BC_USETN: case BC_USETP: rec_upvalue(J, ra, rc); break; /* -- Table ops --------------------------------------------------------- */ case BC_GGET: case BC_GSET: settabV(J->L, &ix.tabv, tabref(J->fn->l.env)); ix.tab = emitir(IRT(IR_FLOAD, IRT_TAB), getcurrf(J), IRFL_FUNC_ENV); ix.idxchain = LJ_MAX_IDXCHAIN; rc = lj_record_idx(J, &ix); break; case BC_TGETB: case BC_TSETB: setintV(&ix.keyv, (int32_t)rc); ix.key = lj_ir_kint(J, (int32_t)rc); /* fallthrough */ case BC_TGETV: case BC_TGETS: case BC_TSETV: case BC_TSETS: ix.idxchain = LJ_MAX_IDXCHAIN; rc = lj_record_idx(J, &ix); break; case BC_TGETR: case BC_TSETR: ix.idxchain = 0; rc = lj_record_idx(J, &ix); break; case BC_TSETM: rec_tsetm(J, ra, (BCReg)(J->L->top - J->L->base), (int32_t)rcv->u32.lo); break; case BC_TNEW: rc = rec_tnew(J, rc); break; case BC_TDUP: rc = emitir(IRTG(IR_TDUP, IRT_TAB), lj_ir_ktab(J, gco2tab(proto_kgc(J->pt, ~(ptrdiff_t)rc))), 0); #ifdef LUAJIT_ENABLE_TABLE_BUMP J->rbchash[(rc & (RBCHASH_SLOTS-1))].ref = tref_ref(rc); setmref(J->rbchash[(rc & (RBCHASH_SLOTS-1))].pc, pc); setgcref(J->rbchash[(rc & (RBCHASH_SLOTS-1))].pt, obj2gco(J->pt)); #endif break; /* -- Calls and vararg handling ----------------------------------------- */ case BC_ITERC: J->base[ra] = getslot(J, ra-3); J->base[ra+1+LJ_FR2] = getslot(J, ra-2); J->base[ra+2+LJ_FR2] = getslot(J, ra-1); { /* Do the actual copy now because lj_record_call needs the values. */ TValue *b = &J->L->base[ra]; copyTV(J->L, b, b-3); copyTV(J->L, b+1+LJ_FR2, b-2); copyTV(J->L, b+2+LJ_FR2, b-1); } lj_record_call(J, ra, (ptrdiff_t)rc-1); break; /* L->top is set to L->base+ra+rc+NARGS-1+1. See lj_dispatch_ins(). */ case BC_CALLM: rc = (BCReg)(J->L->top - J->L->base) - ra - LJ_FR2; /* fallthrough */ case BC_CALL: lj_record_call(J, ra, (ptrdiff_t)rc-1); break; case BC_CALLMT: rc = (BCReg)(J->L->top - J->L->base) - ra - LJ_FR2; /* fallthrough */ case BC_CALLT: lj_record_tailcall(J, ra, (ptrdiff_t)rc-1); break; case BC_VARG: rec_varg(J, ra, (ptrdiff_t)rb-1); break; /* -- Returns ----------------------------------------------------------- */ case BC_RETM: /* L->top is set to L->base+ra+rc+NRESULTS-1, see lj_dispatch_ins(). */ rc = (BCReg)(J->L->top - J->L->base) - ra + 1; /* fallthrough */ case BC_RET: case BC_RET0: case BC_RET1: #if LJ_HASPROFILE rec_profile_ret(J); #endif lj_record_ret(J, ra, (ptrdiff_t)rc-1); break; /* -- Loops and branches ------------------------------------------------ */ case BC_FORI: if (rec_for(J, pc, 0) != LOOPEV_LEAVE) J->loopref = J->cur.nins; break; case BC_JFORI: lua_assert(bc_op(pc[(ptrdiff_t)rc-BCBIAS_J]) == BC_JFORL); if (rec_for(J, pc, 0) != LOOPEV_LEAVE) /* Link to existing loop. */ lj_record_stop(J, LJ_TRLINK_ROOT, bc_d(pc[(ptrdiff_t)rc-BCBIAS_J])); /* Continue tracing if the loop is not entered. */ break; case BC_FORL: rec_loop_interp(J, pc, rec_for(J, pc+((ptrdiff_t)rc-BCBIAS_J), 1)); break; case BC_ITERL: rec_loop_interp(J, pc, rec_iterl(J, *pc)); break; case BC_LOOP: rec_loop_interp(J, pc, rec_loop(J, ra)); break; case BC_JFORL: rec_loop_jit(J, rc, rec_for(J, pc+bc_j(traceref(J, rc)->startins), 1)); break; case BC_JITERL: rec_loop_jit(J, rc, rec_iterl(J, traceref(J, rc)->startins)); break; case BC_JLOOP: rec_loop_jit(J, rc, rec_loop(J, ra)); break; case BC_IFORL: case BC_IITERL: case BC_ILOOP: case BC_IFUNCF: case BC_IFUNCV: lj_trace_err(J, LJ_TRERR_BLACKL); break; case BC_JMP: if (ra < J->maxslot) J->maxslot = ra; /* Shrink used slots. */ break; /* -- Function headers -------------------------------------------------- */ case BC_FUNCF: rec_func_lua(J); break; case BC_JFUNCF: rec_func_jit(J, rc); break; case BC_FUNCV: rec_func_vararg(J); rec_func_lua(J); break; case BC_JFUNCV: lua_assert(0); /* Cannot happen. No hotcall counting for varag funcs. */ break; case BC_FUNCC: case BC_FUNCCW: lj_ffrecord_func(J); break; default: if (op >= BC__MAX) { lj_ffrecord_func(J); break; } /* fallthrough */ case BC_ITERN: case BC_ISNEXT: case BC_UCLO: case BC_FNEW: setintV(&J->errinfo, (int32_t)op); lj_trace_err_info(J, LJ_TRERR_NYIBC); break; } /* rc == 0 if we have no result yet, e.g. pending __index metamethod call. */ if (bcmode_a(op) == BCMdst && rc) { J->base[ra] = rc; if (ra >= J->maxslot) { #if LJ_FR2 if (ra > J->maxslot) J->base[ra-1] = 0; #endif J->maxslot = ra+1; } } #undef rav #undef rbv #undef rcv /* Limit the number of recorded IR instructions. */ if (J->cur.nins > REF_FIRST+(IRRef)J->param[JIT_P_maxrecord]) lj_trace_err(J, LJ_TRERR_TRACEOV); } /* -- Recording setup ----------------------------------------------------- */ /* Setup recording for a root trace started by a hot loop. */ static const BCIns *rec_setup_root(jit_State *J) { /* Determine the next PC and the bytecode range for the loop. */ const BCIns *pcj, *pc = J->pc; BCIns ins = *pc; BCReg ra = bc_a(ins); switch (bc_op(ins)) { case BC_FORL: J->bc_extent = (MSize)(-bc_j(ins))*sizeof(BCIns); pc += 1+bc_j(ins); J->bc_min = pc; break; case BC_ITERL: lua_assert(bc_op(pc[-1]) == BC_ITERC); J->maxslot = ra + bc_b(pc[-1]) - 1; J->bc_extent = (MSize)(-bc_j(ins))*sizeof(BCIns); pc += 1+bc_j(ins); lua_assert(bc_op(pc[-1]) == BC_JMP); J->bc_min = pc; break; case BC_LOOP: /* Only check BC range for real loops, but not for "repeat until true". */ pcj = pc + bc_j(ins); ins = *pcj; if (bc_op(ins) == BC_JMP && bc_j(ins) < 0) { J->bc_min = pcj+1 + bc_j(ins); J->bc_extent = (MSize)(-bc_j(ins))*sizeof(BCIns); } J->maxslot = ra; pc++; break; case BC_RET: case BC_RET0: case BC_RET1: /* No bytecode range check for down-recursive root traces. */ J->maxslot = ra + bc_d(ins) - 1; break; case BC_FUNCF: /* No bytecode range check for root traces started by a hot call. */ J->maxslot = J->pt->numparams; pc++; break; case BC_CALLM: case BC_CALL: case BC_ITERC: /* No bytecode range check for stitched traces. */ pc++; break; default: lua_assert(0); break; } return pc; } /* Setup for recording a new trace. */ void lj_record_setup(jit_State *J) { uint32_t i; /* Initialize state related to current trace. */ memset(J->slot, 0, sizeof(J->slot)); memset(J->chain, 0, sizeof(J->chain)); #ifdef LUAJIT_ENABLE_TABLE_BUMP memset(J->rbchash, 0, sizeof(J->rbchash)); #endif memset(J->bpropcache, 0, sizeof(J->bpropcache)); J->scev.idx = REF_NIL; setmref(J->scev.pc, NULL); J->baseslot = 1+LJ_FR2; /* Invoking function is at base[-1-LJ_FR2]. */ J->base = J->slot + J->baseslot; J->maxslot = 0; J->framedepth = 0; J->retdepth = 0; J->instunroll = J->param[JIT_P_instunroll]; J->loopunroll = J->param[JIT_P_loopunroll]; J->tailcalled = 0; J->loopref = 0; J->bc_min = NULL; /* Means no limit. */ J->bc_extent = ~(MSize)0; /* Emit instructions for fixed references. Also triggers initial IR alloc. */ emitir_raw(IRT(IR_BASE, IRT_PGC), J->parent, J->exitno); for (i = 0; i <= 2; i++) { IRIns *ir = IR(REF_NIL-i); ir->i = 0; ir->t.irt = (uint8_t)(IRT_NIL+i); ir->o = IR_KPRI; ir->prev = 0; } J->cur.nk = REF_TRUE; J->startpc = J->pc; setmref(J->cur.startpc, J->pc); if (J->parent) { /* Side trace. */ GCtrace *T = traceref(J, J->parent); TraceNo root = T->root ? T->root : J->parent; J->cur.root = (uint16_t)root; J->cur.startins = BCINS_AD(BC_JMP, 0, 0); /* Check whether we could at least potentially form an extra loop. */ if (J->exitno == 0 && T->snap[0].nent == 0) { /* We can narrow a FORL for some side traces, too. */ if (J->pc > proto_bc(J->pt) && bc_op(J->pc[-1]) == BC_JFORI && bc_d(J->pc[bc_j(J->pc[-1])-1]) == root) { lj_snap_add(J); rec_for_loop(J, J->pc-1, &J->scev, 1); goto sidecheck; } } else { J->startpc = NULL; /* Prevent forming an extra loop. */ } lj_snap_replay(J, T); sidecheck: if (traceref(J, J->cur.root)->nchild >= J->param[JIT_P_maxside] || T->snap[J->exitno].count >= J->param[JIT_P_hotexit] + J->param[JIT_P_tryside]) { lj_record_stop(J, LJ_TRLINK_INTERP, 0); } } else { /* Root trace. */ J->cur.root = 0; J->cur.startins = *J->pc; J->pc = rec_setup_root(J); /* Note: the loop instruction itself is recorded at the end and not ** at the start! So snapshot #0 needs to point to the *next* instruction. */ lj_snap_add(J); if (bc_op(J->cur.startins) == BC_FORL) rec_for_loop(J, J->pc-1, &J->scev, 1); else if (bc_op(J->cur.startins) == BC_ITERC) J->startpc = NULL; if (1 + J->pt->framesize >= LJ_MAX_JSLOTS) lj_trace_err(J, LJ_TRERR_STACKOV); } #if LJ_HASPROFILE J->prev_pt = NULL; J->prev_line = -1; #endif #ifdef LUAJIT_ENABLE_CHECKHOOK /* Regularly check for instruction/line hooks from compiled code and ** exit to the interpreter if the hooks are set. ** ** This is a compile-time option and disabled by default, since the ** hook checks may be quite expensive in tight loops. ** ** Note this is only useful if hooks are *not* set most of the time. ** Use this only if you want to *asynchronously* interrupt the execution. ** ** You can set the instruction hook via lua_sethook() with a count of 1 ** from a signal handler or another native thread. Please have a look ** at the first few functions in luajit.c for an example (Ctrl-C handler). */ { TRef tr = emitir(IRT(IR_XLOAD, IRT_U8), lj_ir_kptr(J, &J2G(J)->hookmask), IRXLOAD_VOLATILE); tr = emitir(IRTI(IR_BAND), tr, lj_ir_kint(J, (LUA_MASKLINE|LUA_MASKCOUNT))); emitir(IRTGI(IR_EQ), tr, lj_ir_kint(J, 0)); } #endif } #undef IR #undef emitir_raw #undef emitir #endif luajit-2.1.0~beta3+dfsg.orig/src/lua.hpp0000644000175100017510000000020713101703334017376 0ustar ondrejondrej// C++ wrapper for LuaJIT header files. extern "C" { #include "lua.h" #include "lauxlib.h" #include "lualib.h" #include "luajit.h" } luajit-2.1.0~beta3+dfsg.orig/src/lj_alloc.h0000644000175100017510000000051213101703334020033 0ustar ondrejondrej/* ** Bundled memory allocator. ** Donated to the public domain. */ #ifndef _LJ_ALLOC_H #define _LJ_ALLOC_H #include "lj_def.h" #ifndef LUAJIT_USE_SYSMALLOC LJ_FUNC void *lj_alloc_create(void); LJ_FUNC void lj_alloc_destroy(void *msp); LJ_FUNC void *lj_alloc_f(void *msp, void *ptr, size_t osize, size_t nsize); #endif #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_lib.c0000644000175100017510000001671313101703334017514 0ustar ondrejondrej/* ** Library function support. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #define lj_lib_c #define LUA_CORE #include "lauxlib.h" #include "lj_obj.h" #include "lj_gc.h" #include "lj_err.h" #include "lj_str.h" #include "lj_tab.h" #include "lj_func.h" #include "lj_bc.h" #include "lj_dispatch.h" #include "lj_vm.h" #include "lj_strscan.h" #include "lj_strfmt.h" #include "lj_lex.h" #include "lj_bcdump.h" #include "lj_lib.h" /* -- Library initialization ---------------------------------------------- */ static GCtab *lib_create_table(lua_State *L, const char *libname, int hsize) { if (libname) { luaL_findtable(L, LUA_REGISTRYINDEX, "_LOADED", 16); lua_getfield(L, -1, libname); if (!tvistab(L->top-1)) { L->top--; if (luaL_findtable(L, LUA_GLOBALSINDEX, libname, hsize) != NULL) lj_err_callerv(L, LJ_ERR_BADMODN, libname); settabV(L, L->top, tabV(L->top-1)); L->top++; lua_setfield(L, -3, libname); /* _LOADED[libname] = new table */ } L->top--; settabV(L, L->top-1, tabV(L->top)); } else { lua_createtable(L, 0, hsize); } return tabV(L->top-1); } static const uint8_t *lib_read_lfunc(lua_State *L, const uint8_t *p, GCtab *tab) { int len = *p++; GCstr *name = lj_str_new(L, (const char *)p, len); LexState ls; GCproto *pt; GCfunc *fn; memset(&ls, 0, sizeof(ls)); ls.L = L; ls.p = (const char *)(p+len); ls.pe = (const char *)~(uintptr_t)0; ls.c = -1; ls.level = (BCDUMP_F_STRIP|(LJ_BE*BCDUMP_F_BE)); ls.chunkname = name; pt = lj_bcread_proto(&ls); pt->firstline = ~(BCLine)0; fn = lj_func_newL_empty(L, pt, tabref(L->env)); /* NOBARRIER: See below for common barrier. */ setfuncV(L, lj_tab_setstr(L, tab, name), fn); return (const uint8_t *)ls.p; } void lj_lib_register(lua_State *L, const char *libname, const uint8_t *p, const lua_CFunction *cf) { GCtab *env = tabref(L->env); GCfunc *ofn = NULL; int ffid = *p++; BCIns *bcff = &L2GG(L)->bcff[*p++]; GCtab *tab = lib_create_table(L, libname, *p++); ptrdiff_t tpos = L->top - L->base; /* Avoid barriers further down. */ lj_gc_anybarriert(L, tab); tab->nomm = 0; for (;;) { uint32_t tag = *p++; MSize len = tag & LIBINIT_LENMASK; tag &= LIBINIT_TAGMASK; if (tag != LIBINIT_STRING) { const char *name; MSize nuv = (MSize)(L->top - L->base - tpos); GCfunc *fn = lj_func_newC(L, nuv, env); if (nuv) { L->top = L->base + tpos; memcpy(fn->c.upvalue, L->top, sizeof(TValue)*nuv); } fn->c.ffid = (uint8_t)(ffid++); name = (const char *)p; p += len; if (tag == LIBINIT_CF) setmref(fn->c.pc, &G(L)->bc_cfunc_int); else setmref(fn->c.pc, bcff++); if (tag == LIBINIT_ASM_) fn->c.f = ofn->c.f; /* Copy handler from previous function. */ else fn->c.f = *cf++; /* Get cf or handler from C function table. */ if (len) { /* NOBARRIER: See above for common barrier. */ setfuncV(L, lj_tab_setstr(L, tab, lj_str_new(L, name, len)), fn); } ofn = fn; } else { switch (tag | len) { case LIBINIT_LUA: p = lib_read_lfunc(L, p, tab); break; case LIBINIT_SET: L->top -= 2; if (tvisstr(L->top+1) && strV(L->top+1)->len == 0) env = tabV(L->top); else /* NOBARRIER: See above for common barrier. */ copyTV(L, lj_tab_set(L, tab, L->top+1), L->top); break; case LIBINIT_NUMBER: memcpy(&L->top->n, p, sizeof(double)); L->top++; p += sizeof(double); break; case LIBINIT_COPY: copyTV(L, L->top, L->top - *p++); L->top++; break; case LIBINIT_LASTCL: setfuncV(L, L->top++, ofn); break; case LIBINIT_FFID: ffid++; break; case LIBINIT_END: return; default: setstrV(L, L->top++, lj_str_new(L, (const char *)p, len)); p += len; break; } } } } /* Push internal function on the stack. */ GCfunc *lj_lib_pushcc(lua_State *L, lua_CFunction f, int id, int n) { GCfunc *fn; lua_pushcclosure(L, f, n); fn = funcV(L->top-1); fn->c.ffid = (uint8_t)id; setmref(fn->c.pc, &G(L)->bc_cfunc_int); return fn; } void lj_lib_prereg(lua_State *L, const char *name, lua_CFunction f, GCtab *env) { luaL_findtable(L, LUA_REGISTRYINDEX, "_PRELOAD", 4); lua_pushcfunction(L, f); /* NOBARRIER: The function is new (marked white). */ setgcref(funcV(L->top-1)->c.env, obj2gco(env)); lua_setfield(L, -2, name); L->top--; } int lj_lib_postreg(lua_State *L, lua_CFunction cf, int id, const char *name) { GCfunc *fn = lj_lib_pushcf(L, cf, id); GCtab *t = tabref(curr_func(L)->c.env); /* Reference to parent table. */ setfuncV(L, lj_tab_setstr(L, t, lj_str_newz(L, name)), fn); lj_gc_anybarriert(L, t); setfuncV(L, L->top++, fn); return 1; } /* -- Type checks --------------------------------------------------------- */ TValue *lj_lib_checkany(lua_State *L, int narg) { TValue *o = L->base + narg-1; if (o >= L->top) lj_err_arg(L, narg, LJ_ERR_NOVAL); return o; } GCstr *lj_lib_checkstr(lua_State *L, int narg) { TValue *o = L->base + narg-1; if (o < L->top) { if (LJ_LIKELY(tvisstr(o))) { return strV(o); } else if (tvisnumber(o)) { GCstr *s = lj_strfmt_number(L, o); setstrV(L, o, s); return s; } } lj_err_argt(L, narg, LUA_TSTRING); return NULL; /* unreachable */ } GCstr *lj_lib_optstr(lua_State *L, int narg) { TValue *o = L->base + narg-1; return (o < L->top && !tvisnil(o)) ? lj_lib_checkstr(L, narg) : NULL; } #if LJ_DUALNUM void lj_lib_checknumber(lua_State *L, int narg) { TValue *o = L->base + narg-1; if (!(o < L->top && lj_strscan_numberobj(o))) lj_err_argt(L, narg, LUA_TNUMBER); } #endif lua_Number lj_lib_checknum(lua_State *L, int narg) { TValue *o = L->base + narg-1; if (!(o < L->top && (tvisnumber(o) || (tvisstr(o) && lj_strscan_num(strV(o), o))))) lj_err_argt(L, narg, LUA_TNUMBER); if (LJ_UNLIKELY(tvisint(o))) { lua_Number n = (lua_Number)intV(o); setnumV(o, n); return n; } else { return numV(o); } } int32_t lj_lib_checkint(lua_State *L, int narg) { TValue *o = L->base + narg-1; if (!(o < L->top && lj_strscan_numberobj(o))) lj_err_argt(L, narg, LUA_TNUMBER); if (LJ_LIKELY(tvisint(o))) { return intV(o); } else { int32_t i = lj_num2int(numV(o)); if (LJ_DUALNUM) setintV(o, i); return i; } } int32_t lj_lib_optint(lua_State *L, int narg, int32_t def) { TValue *o = L->base + narg-1; return (o < L->top && !tvisnil(o)) ? lj_lib_checkint(L, narg) : def; } GCfunc *lj_lib_checkfunc(lua_State *L, int narg) { TValue *o = L->base + narg-1; if (!(o < L->top && tvisfunc(o))) lj_err_argt(L, narg, LUA_TFUNCTION); return funcV(o); } GCtab *lj_lib_checktab(lua_State *L, int narg) { TValue *o = L->base + narg-1; if (!(o < L->top && tvistab(o))) lj_err_argt(L, narg, LUA_TTABLE); return tabV(o); } GCtab *lj_lib_checktabornil(lua_State *L, int narg) { TValue *o = L->base + narg-1; if (o < L->top) { if (tvistab(o)) return tabV(o); else if (tvisnil(o)) return NULL; } lj_err_arg(L, narg, LJ_ERR_NOTABN); return NULL; /* unreachable */ } int lj_lib_checkopt(lua_State *L, int narg, int def, const char *lst) { GCstr *s = def >= 0 ? lj_lib_optstr(L, narg) : lj_lib_checkstr(L, narg); if (s) { const char *opt = strdata(s); MSize len = s->len; int i; for (i = 0; *(const uint8_t *)lst; i++) { if (*(const uint8_t *)lst == len && memcmp(opt, lst+1, len) == 0) return i; lst += 1+*(const uint8_t *)lst; } lj_err_argv(L, narg, LJ_ERR_INVOPTM, opt); } return def; } luajit-2.1.0~beta3+dfsg.orig/src/lib_table.c0000644000175100017510000001736613101703334020203 0ustar ondrejondrej/* ** Table library. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h ** ** Major portions taken verbatim or adapted from the Lua interpreter. ** Copyright (C) 1994-2008 Lua.org, PUC-Rio. See Copyright Notice in lua.h */ #define lib_table_c #define LUA_LIB #include "lua.h" #include "lauxlib.h" #include "lualib.h" #include "lj_obj.h" #include "lj_gc.h" #include "lj_err.h" #include "lj_buf.h" #include "lj_tab.h" #include "lj_ff.h" #include "lj_lib.h" /* ------------------------------------------------------------------------ */ #define LJLIB_MODULE_table LJLIB_LUA(table_foreachi) /* function(t, f) CHECK_tab(t) CHECK_func(f) for i=1,#t do local r = f(i, t[i]) if r ~= nil then return r end end end */ LJLIB_LUA(table_foreach) /* function(t, f) CHECK_tab(t) CHECK_func(f) for k, v in PAIRS(t) do local r = f(k, v) if r ~= nil then return r end end end */ LJLIB_LUA(table_getn) /* function(t) CHECK_tab(t) return #t end */ LJLIB_CF(table_maxn) { GCtab *t = lj_lib_checktab(L, 1); TValue *array = tvref(t->array); Node *node; lua_Number m = 0; ptrdiff_t i; for (i = (ptrdiff_t)t->asize - 1; i >= 0; i--) if (!tvisnil(&array[i])) { m = (lua_Number)(int32_t)i; break; } node = noderef(t->node); for (i = (ptrdiff_t)t->hmask; i >= 0; i--) if (!tvisnil(&node[i].val) && tvisnumber(&node[i].key)) { lua_Number n = numberVnum(&node[i].key); if (n > m) m = n; } setnumV(L->top-1, m); return 1; } LJLIB_CF(table_insert) LJLIB_REC(.) { GCtab *t = lj_lib_checktab(L, 1); int32_t n, i = (int32_t)lj_tab_len(t) + 1; int nargs = (int)((char *)L->top - (char *)L->base); if (nargs != 2*sizeof(TValue)) { if (nargs != 3*sizeof(TValue)) lj_err_caller(L, LJ_ERR_TABINS); /* NOBARRIER: This just moves existing elements around. */ for (n = lj_lib_checkint(L, 2); i > n; i--) { /* The set may invalidate the get pointer, so need to do it first! */ TValue *dst = lj_tab_setint(L, t, i); cTValue *src = lj_tab_getint(t, i-1); if (src) { copyTV(L, dst, src); } else { setnilV(dst); } } i = n; } { TValue *dst = lj_tab_setint(L, t, i); copyTV(L, dst, L->top-1); /* Set new value. */ lj_gc_barriert(L, t, dst); } return 0; } LJLIB_LUA(table_remove) /* function(t, pos) CHECK_tab(t) local len = #t if pos == nil then if len ~= 0 then local old = t[len] t[len] = nil return old end else CHECK_int(pos) if pos >= 1 and pos <= len then local old = t[pos] for i=pos+1,len do t[i-1] = t[i] end t[len] = nil return old end end end */ LJLIB_LUA(table_move) /* function(a1, f, e, t, a2) CHECK_tab(a1) CHECK_int(f) CHECK_int(e) CHECK_int(t) if a2 == nil then a2 = a1 end CHECK_tab(a2) if e >= f then local d = t - f if t > e or t <= f or a2 ~= a1 then for i=f,e do a2[i+d] = a1[i] end else for i=e,f,-1 do a2[i+d] = a1[i] end end end return a2 end */ LJLIB_CF(table_concat) LJLIB_REC(.) { GCtab *t = lj_lib_checktab(L, 1); GCstr *sep = lj_lib_optstr(L, 2); int32_t i = lj_lib_optint(L, 3, 1); int32_t e = (L->base+3 < L->top && !tvisnil(L->base+3)) ? lj_lib_checkint(L, 4) : (int32_t)lj_tab_len(t); SBuf *sb = lj_buf_tmp_(L); SBuf *sbx = lj_buf_puttab(sb, t, sep, i, e); if (LJ_UNLIKELY(!sbx)) { /* Error: bad element type. */ int32_t idx = (int32_t)(intptr_t)sbufP(sb); cTValue *o = lj_tab_getint(t, idx); lj_err_callerv(L, LJ_ERR_TABCAT, lj_obj_itypename[o ? itypemap(o) : ~LJ_TNIL], idx); } setstrV(L, L->top-1, lj_buf_str(L, sbx)); lj_gc_check(L); return 1; } /* ------------------------------------------------------------------------ */ static void set2(lua_State *L, int i, int j) { lua_rawseti(L, 1, i); lua_rawseti(L, 1, j); } static int sort_comp(lua_State *L, int a, int b) { if (!lua_isnil(L, 2)) { /* function? */ int res; lua_pushvalue(L, 2); lua_pushvalue(L, a-1); /* -1 to compensate function */ lua_pushvalue(L, b-2); /* -2 to compensate function and `a' */ lua_call(L, 2, 1); res = lua_toboolean(L, -1); lua_pop(L, 1); return res; } else { /* a < b? */ return lua_lessthan(L, a, b); } } static void auxsort(lua_State *L, int l, int u) { while (l < u) { /* for tail recursion */ int i, j; /* sort elements a[l], a[(l+u)/2] and a[u] */ lua_rawgeti(L, 1, l); lua_rawgeti(L, 1, u); if (sort_comp(L, -1, -2)) /* a[u] < a[l]? */ set2(L, l, u); /* swap a[l] - a[u] */ else lua_pop(L, 2); if (u-l == 1) break; /* only 2 elements */ i = (l+u)/2; lua_rawgeti(L, 1, i); lua_rawgeti(L, 1, l); if (sort_comp(L, -2, -1)) { /* a[i]= P */ while (lua_rawgeti(L, 1, ++i), sort_comp(L, -1, -2)) { if (i>=u) lj_err_caller(L, LJ_ERR_TABSORT); lua_pop(L, 1); /* remove a[i] */ } /* repeat --j until a[j] <= P */ while (lua_rawgeti(L, 1, --j), sort_comp(L, -3, -1)) { if (j<=l) lj_err_caller(L, LJ_ERR_TABSORT); lua_pop(L, 1); /* remove a[j] */ } if (jbase+1)) lj_lib_checkfunc(L, 2); auxsort(L, 1, n); return 0; } #if LJ_52 LJLIB_PUSH("n") LJLIB_CF(table_pack) { TValue *array, *base = L->base; MSize i, n = (uint32_t)(L->top - base); GCtab *t = lj_tab_new(L, n ? n+1 : 0, 1); /* NOBARRIER: The table is new (marked white). */ setintV(lj_tab_setstr(L, t, strV(lj_lib_upvalue(L, 1))), (int32_t)n); for (array = tvref(t->array) + 1, i = 0; i < n; i++) copyTV(L, &array[i], &base[i]); settabV(L, base, t); L->top = base+1; lj_gc_check(L); return 1; } #endif LJLIB_NOREG LJLIB_CF(table_new) LJLIB_REC(.) { int32_t a = lj_lib_checkint(L, 1); int32_t h = lj_lib_checkint(L, 2); lua_createtable(L, a, h); return 1; } LJLIB_NOREG LJLIB_CF(table_clear) LJLIB_REC(.) { lj_tab_clear(lj_lib_checktab(L, 1)); return 0; } static int luaopen_table_new(lua_State *L) { return lj_lib_postreg(L, lj_cf_table_new, FF_table_new, "new"); } static int luaopen_table_clear(lua_State *L) { return lj_lib_postreg(L, lj_cf_table_clear, FF_table_clear, "clear"); } /* ------------------------------------------------------------------------ */ #include "lj_libdef.h" LUALIB_API int luaopen_table(lua_State *L) { LJ_LIB_REG(L, LUA_TABLIBNAME, table); #if LJ_52 lua_getglobal(L, "unpack"); lua_setfield(L, -2, "unpack"); #endif lj_lib_prereg(L, LUA_TABLIBNAME ".new", luaopen_table_new, tabV(L->top-1)); lj_lib_prereg(L, LUA_TABLIBNAME ".clear", luaopen_table_clear, tabV(L->top-1)); return 1; } luajit-2.1.0~beta3+dfsg.orig/src/lj_snap.c0000644000175100017510000007063413101703334017711 0ustar ondrejondrej/* ** Snapshot handling. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #define lj_snap_c #define LUA_CORE #include "lj_obj.h" #if LJ_HASJIT #include "lj_gc.h" #include "lj_tab.h" #include "lj_state.h" #include "lj_frame.h" #include "lj_bc.h" #include "lj_ir.h" #include "lj_jit.h" #include "lj_iropt.h" #include "lj_trace.h" #include "lj_snap.h" #include "lj_target.h" #if LJ_HASFFI #include "lj_ctype.h" #include "lj_cdata.h" #endif /* Pass IR on to next optimization in chain (FOLD). */ #define emitir(ot, a, b) (lj_ir_set(J, (ot), (a), (b)), lj_opt_fold(J)) /* Emit raw IR without passing through optimizations. */ #define emitir_raw(ot, a, b) (lj_ir_set(J, (ot), (a), (b)), lj_ir_emit(J)) /* -- Snapshot buffer allocation ------------------------------------------ */ /* Grow snapshot buffer. */ void lj_snap_grow_buf_(jit_State *J, MSize need) { MSize maxsnap = (MSize)J->param[JIT_P_maxsnap]; if (need > maxsnap) lj_trace_err(J, LJ_TRERR_SNAPOV); lj_mem_growvec(J->L, J->snapbuf, J->sizesnap, maxsnap, SnapShot); J->cur.snap = J->snapbuf; } /* Grow snapshot map buffer. */ void lj_snap_grow_map_(jit_State *J, MSize need) { if (need < 2*J->sizesnapmap) need = 2*J->sizesnapmap; else if (need < 64) need = 64; J->snapmapbuf = (SnapEntry *)lj_mem_realloc(J->L, J->snapmapbuf, J->sizesnapmap*sizeof(SnapEntry), need*sizeof(SnapEntry)); J->cur.snapmap = J->snapmapbuf; J->sizesnapmap = need; } /* -- Snapshot generation ------------------------------------------------- */ /* Add all modified slots to the snapshot. */ static MSize snapshot_slots(jit_State *J, SnapEntry *map, BCReg nslots) { IRRef retf = J->chain[IR_RETF]; /* Limits SLOAD restore elimination. */ BCReg s; MSize n = 0; for (s = 0; s < nslots; s++) { TRef tr = J->slot[s]; IRRef ref = tref_ref(tr); #if LJ_FR2 if (s == 1) { /* Ignore slot 1 in LJ_FR2 mode, except if tailcalled. */ if ((tr & TREF_FRAME)) map[n++] = SNAP(1, SNAP_FRAME | SNAP_NORESTORE, REF_NIL); continue; } if ((tr & (TREF_FRAME | TREF_CONT)) && !ref) { cTValue *base = J->L->base - J->baseslot; tr = J->slot[s] = (tr & 0xff0000) | lj_ir_k64(J, IR_KNUM, base[s].u64); ref = tref_ref(tr); } #endif if (ref) { SnapEntry sn = SNAP_TR(s, tr); IRIns *ir = &J->cur.ir[ref]; if ((LJ_FR2 || !(sn & (SNAP_CONT|SNAP_FRAME))) && ir->o == IR_SLOAD && ir->op1 == s && ref > retf) { /* No need to snapshot unmodified non-inherited slots. */ if (!(ir->op2 & IRSLOAD_INHERIT)) continue; /* No need to restore readonly slots and unmodified non-parent slots. */ if (!(LJ_DUALNUM && (ir->op2 & IRSLOAD_CONVERT)) && (ir->op2 & (IRSLOAD_READONLY|IRSLOAD_PARENT)) != IRSLOAD_PARENT) sn |= SNAP_NORESTORE; } if (LJ_SOFTFP && irt_isnum(ir->t)) sn |= SNAP_SOFTFPNUM; map[n++] = sn; } } return n; } /* Add frame links at the end of the snapshot. */ static MSize snapshot_framelinks(jit_State *J, SnapEntry *map, uint8_t *topslot) { cTValue *frame = J->L->base - 1; cTValue *lim = J->L->base - J->baseslot + LJ_FR2; GCfunc *fn = frame_func(frame); cTValue *ftop = isluafunc(fn) ? (frame+funcproto(fn)->framesize) : J->L->top; #if LJ_FR2 uint64_t pcbase = (u64ptr(J->pc) << 8) | (J->baseslot - 2); lua_assert(2 <= J->baseslot && J->baseslot <= 257); memcpy(map, &pcbase, sizeof(uint64_t)); #else MSize f = 0; map[f++] = SNAP_MKPC(J->pc); /* The current PC is always the first entry. */ #endif while (frame > lim) { /* Backwards traversal of all frames above base. */ if (frame_islua(frame)) { #if !LJ_FR2 map[f++] = SNAP_MKPC(frame_pc(frame)); #endif frame = frame_prevl(frame); } else if (frame_iscont(frame)) { #if !LJ_FR2 map[f++] = SNAP_MKFTSZ(frame_ftsz(frame)); map[f++] = SNAP_MKPC(frame_contpc(frame)); #endif frame = frame_prevd(frame); } else { lua_assert(!frame_isc(frame)); #if !LJ_FR2 map[f++] = SNAP_MKFTSZ(frame_ftsz(frame)); #endif frame = frame_prevd(frame); continue; } if (frame + funcproto(frame_func(frame))->framesize > ftop) ftop = frame + funcproto(frame_func(frame))->framesize; } *topslot = (uint8_t)(ftop - lim); #if LJ_FR2 lua_assert(sizeof(SnapEntry) * 2 == sizeof(uint64_t)); return 2; #else lua_assert(f == (MSize)(1 + J->framedepth)); return f; #endif } /* Take a snapshot of the current stack. */ static void snapshot_stack(jit_State *J, SnapShot *snap, MSize nsnapmap) { BCReg nslots = J->baseslot + J->maxslot; MSize nent; SnapEntry *p; /* Conservative estimate. */ lj_snap_grow_map(J, nsnapmap + nslots + (MSize)(LJ_FR2?2:J->framedepth+1)); p = &J->cur.snapmap[nsnapmap]; nent = snapshot_slots(J, p, nslots); snap->nent = (uint8_t)nent; nent += snapshot_framelinks(J, p + nent, &snap->topslot); snap->mapofs = (uint16_t)nsnapmap; snap->ref = (IRRef1)J->cur.nins; snap->nslots = (uint8_t)nslots; snap->count = 0; J->cur.nsnapmap = (uint16_t)(nsnapmap + nent); } /* Add or merge a snapshot. */ void lj_snap_add(jit_State *J) { MSize nsnap = J->cur.nsnap; MSize nsnapmap = J->cur.nsnapmap; /* Merge if no ins. inbetween or if requested and no guard inbetween. */ if ((nsnap > 0 && J->cur.snap[nsnap-1].ref == J->cur.nins) || (J->mergesnap && !irt_isguard(J->guardemit))) { if (nsnap == 1) { /* But preserve snap #0 PC. */ emitir_raw(IRT(IR_NOP, IRT_NIL), 0, 0); goto nomerge; } nsnapmap = J->cur.snap[--nsnap].mapofs; } else { nomerge: lj_snap_grow_buf(J, nsnap+1); J->cur.nsnap = (uint16_t)(nsnap+1); } J->mergesnap = 0; J->guardemit.irt = 0; snapshot_stack(J, &J->cur.snap[nsnap], nsnapmap); } /* -- Snapshot modification ----------------------------------------------- */ #define SNAP_USEDEF_SLOTS (LJ_MAX_JSLOTS+LJ_STACK_EXTRA) /* Find unused slots with reaching-definitions bytecode data-flow analysis. */ static BCReg snap_usedef(jit_State *J, uint8_t *udf, const BCIns *pc, BCReg maxslot) { BCReg s; GCobj *o; if (maxslot == 0) return 0; #ifdef LUAJIT_USE_VALGRIND /* Avoid errors for harmless reads beyond maxslot. */ memset(udf, 1, SNAP_USEDEF_SLOTS); #else memset(udf, 1, maxslot); #endif /* Treat open upvalues as used. */ o = gcref(J->L->openupval); while (o) { if (uvval(gco2uv(o)) < J->L->base) break; udf[uvval(gco2uv(o)) - J->L->base] = 0; o = gcref(o->gch.nextgc); } #define USE_SLOT(s) udf[(s)] &= ~1 #define DEF_SLOT(s) udf[(s)] *= 3 /* Scan through following bytecode and check for uses/defs. */ lua_assert(pc >= proto_bc(J->pt) && pc < proto_bc(J->pt) + J->pt->sizebc); for (;;) { BCIns ins = *pc++; BCOp op = bc_op(ins); switch (bcmode_b(op)) { case BCMvar: USE_SLOT(bc_b(ins)); break; default: break; } switch (bcmode_c(op)) { case BCMvar: USE_SLOT(bc_c(ins)); break; case BCMrbase: lua_assert(op == BC_CAT); for (s = bc_b(ins); s <= bc_c(ins); s++) USE_SLOT(s); for (; s < maxslot; s++) DEF_SLOT(s); break; case BCMjump: handle_jump: { BCReg minslot = bc_a(ins); if (op >= BC_FORI && op <= BC_JFORL) minslot += FORL_EXT; else if (op >= BC_ITERL && op <= BC_JITERL) minslot += bc_b(pc[-2])-1; else if (op == BC_UCLO) { pc += bc_j(ins); break; } for (s = minslot; s < maxslot; s++) DEF_SLOT(s); return minslot < maxslot ? minslot : maxslot; } case BCMlit: if (op == BC_JFORL || op == BC_JITERL || op == BC_JLOOP) { goto handle_jump; } else if (bc_isret(op)) { BCReg top = op == BC_RETM ? maxslot : (bc_a(ins) + bc_d(ins)-1); for (s = 0; s < bc_a(ins); s++) DEF_SLOT(s); for (; s < top; s++) USE_SLOT(s); for (; s < maxslot; s++) DEF_SLOT(s); return 0; } break; case BCMfunc: return maxslot; /* NYI: will abort, anyway. */ default: break; } switch (bcmode_a(op)) { case BCMvar: USE_SLOT(bc_a(ins)); break; case BCMdst: if (!(op == BC_ISTC || op == BC_ISFC)) DEF_SLOT(bc_a(ins)); break; case BCMbase: if (op >= BC_CALLM && op <= BC_VARG) { BCReg top = (op == BC_CALLM || op == BC_CALLMT || bc_c(ins) == 0) ? maxslot : (bc_a(ins) + bc_c(ins)+LJ_FR2); if (LJ_FR2) DEF_SLOT(bc_a(ins)+1); s = bc_a(ins) - ((op == BC_ITERC || op == BC_ITERN) ? 3 : 0); for (; s < top; s++) USE_SLOT(s); for (; s < maxslot; s++) DEF_SLOT(s); if (op == BC_CALLT || op == BC_CALLMT) { for (s = 0; s < bc_a(ins); s++) DEF_SLOT(s); return 0; } } else if (op == BC_KNIL) { for (s = bc_a(ins); s <= bc_d(ins); s++) DEF_SLOT(s); } else if (op == BC_TSETM) { for (s = bc_a(ins)-1; s < maxslot; s++) USE_SLOT(s); } break; default: break; } lua_assert(pc >= proto_bc(J->pt) && pc < proto_bc(J->pt) + J->pt->sizebc); } #undef USE_SLOT #undef DEF_SLOT return 0; /* unreachable */ } /* Purge dead slots before the next snapshot. */ void lj_snap_purge(jit_State *J) { uint8_t udf[SNAP_USEDEF_SLOTS]; BCReg maxslot = J->maxslot; BCReg s = snap_usedef(J, udf, J->pc, maxslot); for (; s < maxslot; s++) if (udf[s] != 0) J->base[s] = 0; /* Purge dead slots. */ } /* Shrink last snapshot. */ void lj_snap_shrink(jit_State *J) { SnapShot *snap = &J->cur.snap[J->cur.nsnap-1]; SnapEntry *map = &J->cur.snapmap[snap->mapofs]; MSize n, m, nlim, nent = snap->nent; uint8_t udf[SNAP_USEDEF_SLOTS]; BCReg maxslot = J->maxslot; BCReg baseslot = J->baseslot; BCReg minslot = snap_usedef(J, udf, snap_pc(&map[nent]), maxslot); maxslot += baseslot; minslot += baseslot; snap->nslots = (uint8_t)maxslot; for (n = m = 0; n < nent; n++) { /* Remove unused slots from snapshot. */ BCReg s = snap_slot(map[n]); if (s < minslot || (s < maxslot && udf[s-baseslot] == 0)) map[m++] = map[n]; /* Only copy used slots. */ } snap->nent = (uint8_t)m; nlim = J->cur.nsnapmap - snap->mapofs - 1; while (n <= nlim) map[m++] = map[n++]; /* Move PC + frame links down. */ J->cur.nsnapmap = (uint16_t)(snap->mapofs + m); /* Free up space in map. */ } /* -- Snapshot access ----------------------------------------------------- */ /* Initialize a Bloom Filter with all renamed refs. ** There are very few renames (often none), so the filter has ** very few bits set. This makes it suitable for negative filtering. */ static BloomFilter snap_renamefilter(GCtrace *T, SnapNo lim) { BloomFilter rfilt = 0; IRIns *ir; for (ir = &T->ir[T->nins-1]; ir->o == IR_RENAME; ir--) if (ir->op2 <= lim) bloomset(rfilt, ir->op1); return rfilt; } /* Process matching renames to find the original RegSP. */ static RegSP snap_renameref(GCtrace *T, SnapNo lim, IRRef ref, RegSP rs) { IRIns *ir; for (ir = &T->ir[T->nins-1]; ir->o == IR_RENAME; ir--) if (ir->op1 == ref && ir->op2 <= lim) rs = ir->prev; return rs; } /* Copy RegSP from parent snapshot to the parent links of the IR. */ IRIns *lj_snap_regspmap(GCtrace *T, SnapNo snapno, IRIns *ir) { SnapShot *snap = &T->snap[snapno]; SnapEntry *map = &T->snapmap[snap->mapofs]; BloomFilter rfilt = snap_renamefilter(T, snapno); MSize n = 0; IRRef ref = 0; for ( ; ; ir++) { uint32_t rs; if (ir->o == IR_SLOAD) { if (!(ir->op2 & IRSLOAD_PARENT)) break; for ( ; ; n++) { lua_assert(n < snap->nent); if (snap_slot(map[n]) == ir->op1) { ref = snap_ref(map[n++]); break; } } } else if (LJ_SOFTFP && ir->o == IR_HIOP) { ref++; } else if (ir->o == IR_PVAL) { ref = ir->op1 + REF_BIAS; } else { break; } rs = T->ir[ref].prev; if (bloomtest(rfilt, ref)) rs = snap_renameref(T, snapno, ref, rs); ir->prev = (uint16_t)rs; lua_assert(regsp_used(rs)); } return ir; } /* -- Snapshot replay ----------------------------------------------------- */ /* Replay constant from parent trace. */ static TRef snap_replay_const(jit_State *J, IRIns *ir) { /* Only have to deal with constants that can occur in stack slots. */ switch ((IROp)ir->o) { case IR_KPRI: return TREF_PRI(irt_type(ir->t)); case IR_KINT: return lj_ir_kint(J, ir->i); case IR_KGC: return lj_ir_kgc(J, ir_kgc(ir), irt_t(ir->t)); case IR_KNUM: case IR_KINT64: return lj_ir_k64(J, (IROp)ir->o, ir_k64(ir)->u64); case IR_KPTR: return lj_ir_kptr(J, ir_kptr(ir)); /* Continuation. */ default: lua_assert(0); return TREF_NIL; break; } } /* De-duplicate parent reference. */ static TRef snap_dedup(jit_State *J, SnapEntry *map, MSize nmax, IRRef ref) { MSize j; for (j = 0; j < nmax; j++) if (snap_ref(map[j]) == ref) return J->slot[snap_slot(map[j])] & ~(SNAP_CONT|SNAP_FRAME); return 0; } /* Emit parent reference with de-duplication. */ static TRef snap_pref(jit_State *J, GCtrace *T, SnapEntry *map, MSize nmax, BloomFilter seen, IRRef ref) { IRIns *ir = &T->ir[ref]; TRef tr; if (irref_isk(ref)) tr = snap_replay_const(J, ir); else if (!regsp_used(ir->prev)) tr = 0; else if (!bloomtest(seen, ref) || (tr = snap_dedup(J, map, nmax, ref)) == 0) tr = emitir(IRT(IR_PVAL, irt_type(ir->t)), ref - REF_BIAS, 0); return tr; } /* Check whether a sunk store corresponds to an allocation. Slow path. */ static int snap_sunk_store2(GCtrace *T, IRIns *ira, IRIns *irs) { if (irs->o == IR_ASTORE || irs->o == IR_HSTORE || irs->o == IR_FSTORE || irs->o == IR_XSTORE) { IRIns *irk = &T->ir[irs->op1]; if (irk->o == IR_AREF || irk->o == IR_HREFK) irk = &T->ir[irk->op1]; return (&T->ir[irk->op1] == ira); } return 0; } /* Check whether a sunk store corresponds to an allocation. Fast path. */ static LJ_AINLINE int snap_sunk_store(GCtrace *T, IRIns *ira, IRIns *irs) { if (irs->s != 255) return (ira + irs->s == irs); /* Fast check. */ return snap_sunk_store2(T, ira, irs); } /* Replay snapshot state to setup side trace. */ void lj_snap_replay(jit_State *J, GCtrace *T) { SnapShot *snap = &T->snap[J->exitno]; SnapEntry *map = &T->snapmap[snap->mapofs]; MSize n, nent = snap->nent; BloomFilter seen = 0; int pass23 = 0; J->framedepth = 0; /* Emit IR for slots inherited from parent snapshot. */ for (n = 0; n < nent; n++) { SnapEntry sn = map[n]; BCReg s = snap_slot(sn); IRRef ref = snap_ref(sn); IRIns *ir = &T->ir[ref]; TRef tr; /* The bloom filter avoids O(nent^2) overhead for de-duping slots. */ if (bloomtest(seen, ref) && (tr = snap_dedup(J, map, n, ref)) != 0) goto setslot; bloomset(seen, ref); if (irref_isk(ref)) { /* See special treatment of LJ_FR2 slot 1 in snapshot_slots() above. */ if (LJ_FR2 && (sn == SNAP(1, SNAP_FRAME | SNAP_NORESTORE, REF_NIL))) tr = 0; else tr = snap_replay_const(J, ir); } else if (!regsp_used(ir->prev)) { pass23 = 1; lua_assert(s != 0); tr = s; } else { IRType t = irt_type(ir->t); uint32_t mode = IRSLOAD_INHERIT|IRSLOAD_PARENT; if (LJ_SOFTFP && (sn & SNAP_SOFTFPNUM)) t = IRT_NUM; if (ir->o == IR_SLOAD) mode |= (ir->op2 & IRSLOAD_READONLY); tr = emitir_raw(IRT(IR_SLOAD, t), s, mode); } setslot: J->slot[s] = tr | (sn&(SNAP_CONT|SNAP_FRAME)); /* Same as TREF_* flags. */ J->framedepth += ((sn & (SNAP_CONT|SNAP_FRAME)) && (s != LJ_FR2)); if ((sn & SNAP_FRAME)) J->baseslot = s+1; } if (pass23) { IRIns *irlast = &T->ir[snap->ref]; pass23 = 0; /* Emit dependent PVALs. */ for (n = 0; n < nent; n++) { SnapEntry sn = map[n]; IRRef refp = snap_ref(sn); IRIns *ir = &T->ir[refp]; if (regsp_reg(ir->r) == RID_SUNK) { if (J->slot[snap_slot(sn)] != snap_slot(sn)) continue; pass23 = 1; lua_assert(ir->o == IR_TNEW || ir->o == IR_TDUP || ir->o == IR_CNEW || ir->o == IR_CNEWI); if (ir->op1 >= T->nk) snap_pref(J, T, map, nent, seen, ir->op1); if (ir->op2 >= T->nk) snap_pref(J, T, map, nent, seen, ir->op2); if (LJ_HASFFI && ir->o == IR_CNEWI) { if (LJ_32 && refp+1 < T->nins && (ir+1)->o == IR_HIOP) snap_pref(J, T, map, nent, seen, (ir+1)->op2); } else { IRIns *irs; for (irs = ir+1; irs < irlast; irs++) if (irs->r == RID_SINK && snap_sunk_store(T, ir, irs)) { if (snap_pref(J, T, map, nent, seen, irs->op2) == 0) snap_pref(J, T, map, nent, seen, T->ir[irs->op2].op1); else if ((LJ_SOFTFP || (LJ_32 && LJ_HASFFI)) && irs+1 < irlast && (irs+1)->o == IR_HIOP) snap_pref(J, T, map, nent, seen, (irs+1)->op2); } } } else if (!irref_isk(refp) && !regsp_used(ir->prev)) { lua_assert(ir->o == IR_CONV && ir->op2 == IRCONV_NUM_INT); J->slot[snap_slot(sn)] = snap_pref(J, T, map, nent, seen, ir->op1); } } /* Replay sunk instructions. */ for (n = 0; pass23 && n < nent; n++) { SnapEntry sn = map[n]; IRRef refp = snap_ref(sn); IRIns *ir = &T->ir[refp]; if (regsp_reg(ir->r) == RID_SUNK) { TRef op1, op2; if (J->slot[snap_slot(sn)] != snap_slot(sn)) { /* De-dup allocs. */ J->slot[snap_slot(sn)] = J->slot[J->slot[snap_slot(sn)]]; continue; } op1 = ir->op1; if (op1 >= T->nk) op1 = snap_pref(J, T, map, nent, seen, op1); op2 = ir->op2; if (op2 >= T->nk) op2 = snap_pref(J, T, map, nent, seen, op2); if (LJ_HASFFI && ir->o == IR_CNEWI) { if (LJ_32 && refp+1 < T->nins && (ir+1)->o == IR_HIOP) { lj_needsplit(J); /* Emit joining HIOP. */ op2 = emitir_raw(IRT(IR_HIOP, IRT_I64), op2, snap_pref(J, T, map, nent, seen, (ir+1)->op2)); } J->slot[snap_slot(sn)] = emitir(ir->ot & ~(IRT_MARK|IRT_ISPHI), op1, op2); } else { IRIns *irs; TRef tr = emitir(ir->ot, op1, op2); J->slot[snap_slot(sn)] = tr; for (irs = ir+1; irs < irlast; irs++) if (irs->r == RID_SINK && snap_sunk_store(T, ir, irs)) { IRIns *irr = &T->ir[irs->op1]; TRef val, key = irr->op2, tmp = tr; if (irr->o != IR_FREF) { IRIns *irk = &T->ir[key]; if (irr->o == IR_HREFK) key = lj_ir_kslot(J, snap_replay_const(J, &T->ir[irk->op1]), irk->op2); else key = snap_replay_const(J, irk); if (irr->o == IR_HREFK || irr->o == IR_AREF) { IRIns *irf = &T->ir[irr->op1]; tmp = emitir(irf->ot, tmp, irf->op2); } } tmp = emitir(irr->ot, tmp, key); val = snap_pref(J, T, map, nent, seen, irs->op2); if (val == 0) { IRIns *irc = &T->ir[irs->op2]; lua_assert(irc->o == IR_CONV && irc->op2 == IRCONV_NUM_INT); val = snap_pref(J, T, map, nent, seen, irc->op1); val = emitir(IRTN(IR_CONV), val, IRCONV_NUM_INT); } else if ((LJ_SOFTFP || (LJ_32 && LJ_HASFFI)) && irs+1 < irlast && (irs+1)->o == IR_HIOP) { IRType t = IRT_I64; if (LJ_SOFTFP && irt_type((irs+1)->t) == IRT_SOFTFP) t = IRT_NUM; lj_needsplit(J); if (irref_isk(irs->op2) && irref_isk((irs+1)->op2)) { uint64_t k = (uint32_t)T->ir[irs->op2].i + ((uint64_t)T->ir[(irs+1)->op2].i << 32); val = lj_ir_k64(J, t == IRT_I64 ? IR_KINT64 : IR_KNUM, k); } else { val = emitir_raw(IRT(IR_HIOP, t), val, snap_pref(J, T, map, nent, seen, (irs+1)->op2)); } tmp = emitir(IRT(irs->o, t), tmp, val); continue; } tmp = emitir(irs->ot, tmp, val); } else if (LJ_HASFFI && irs->o == IR_XBAR && ir->o == IR_CNEW) { emitir(IRT(IR_XBAR, IRT_NIL), 0, 0); } } } } } J->base = J->slot + J->baseslot; J->maxslot = snap->nslots - J->baseslot; lj_snap_add(J); if (pass23) /* Need explicit GC step _after_ initial snapshot. */ emitir_raw(IRTG(IR_GCSTEP, IRT_NIL), 0, 0); } /* -- Snapshot restore ---------------------------------------------------- */ static void snap_unsink(jit_State *J, GCtrace *T, ExitState *ex, SnapNo snapno, BloomFilter rfilt, IRIns *ir, TValue *o); /* Restore a value from the trace exit state. */ static void snap_restoreval(jit_State *J, GCtrace *T, ExitState *ex, SnapNo snapno, BloomFilter rfilt, IRRef ref, TValue *o) { IRIns *ir = &T->ir[ref]; IRType1 t = ir->t; RegSP rs = ir->prev; if (irref_isk(ref)) { /* Restore constant slot. */ lj_ir_kvalue(J->L, o, ir); return; } if (LJ_UNLIKELY(bloomtest(rfilt, ref))) rs = snap_renameref(T, snapno, ref, rs); if (ra_hasspill(regsp_spill(rs))) { /* Restore from spill slot. */ int32_t *sps = &ex->spill[regsp_spill(rs)]; if (irt_isinteger(t)) { setintV(o, *sps); #if !LJ_SOFTFP } else if (irt_isnum(t)) { o->u64 = *(uint64_t *)sps; #endif #if LJ_64 && !LJ_GC64 } else if (irt_islightud(t)) { /* 64 bit lightuserdata which may escape already has the tag bits. */ o->u64 = *(uint64_t *)sps; #endif } else { lua_assert(!irt_ispri(t)); /* PRI refs never have a spill slot. */ setgcV(J->L, o, (GCobj *)(uintptr_t)*(GCSize *)sps, irt_toitype(t)); } } else { /* Restore from register. */ Reg r = regsp_reg(rs); if (ra_noreg(r)) { lua_assert(ir->o == IR_CONV && ir->op2 == IRCONV_NUM_INT); snap_restoreval(J, T, ex, snapno, rfilt, ir->op1, o); if (LJ_DUALNUM) setnumV(o, (lua_Number)intV(o)); return; } else if (irt_isinteger(t)) { setintV(o, (int32_t)ex->gpr[r-RID_MIN_GPR]); #if !LJ_SOFTFP } else if (irt_isnum(t)) { setnumV(o, ex->fpr[r-RID_MIN_FPR]); #endif #if LJ_64 && !LJ_GC64 } else if (irt_is64(t)) { /* 64 bit values that already have the tag bits. */ o->u64 = ex->gpr[r-RID_MIN_GPR]; #endif } else if (irt_ispri(t)) { setpriV(o, irt_toitype(t)); } else { setgcV(J->L, o, (GCobj *)ex->gpr[r-RID_MIN_GPR], irt_toitype(t)); } } } #if LJ_HASFFI /* Restore raw data from the trace exit state. */ static void snap_restoredata(GCtrace *T, ExitState *ex, SnapNo snapno, BloomFilter rfilt, IRRef ref, void *dst, CTSize sz) { IRIns *ir = &T->ir[ref]; RegSP rs = ir->prev; int32_t *src; uint64_t tmp; if (irref_isk(ref)) { if (ir->o == IR_KNUM || ir->o == IR_KINT64) { src = (int32_t *)&ir[1]; } else if (sz == 8) { tmp = (uint64_t)(uint32_t)ir->i; src = (int32_t *)&tmp; } else { src = &ir->i; } } else { if (LJ_UNLIKELY(bloomtest(rfilt, ref))) rs = snap_renameref(T, snapno, ref, rs); if (ra_hasspill(regsp_spill(rs))) { src = &ex->spill[regsp_spill(rs)]; if (sz == 8 && !irt_is64(ir->t)) { tmp = (uint64_t)(uint32_t)*src; src = (int32_t *)&tmp; } } else { Reg r = regsp_reg(rs); if (ra_noreg(r)) { /* Note: this assumes CNEWI is never used for SOFTFP split numbers. */ lua_assert(sz == 8 && ir->o == IR_CONV && ir->op2 == IRCONV_NUM_INT); snap_restoredata(T, ex, snapno, rfilt, ir->op1, dst, 4); *(lua_Number *)dst = (lua_Number)*(int32_t *)dst; return; } src = (int32_t *)&ex->gpr[r-RID_MIN_GPR]; #if !LJ_SOFTFP if (r >= RID_MAX_GPR) { src = (int32_t *)&ex->fpr[r-RID_MIN_FPR]; #if LJ_TARGET_PPC if (sz == 4) { /* PPC FPRs are always doubles. */ *(float *)dst = (float)*(double *)src; return; } #else if (LJ_BE && sz == 4) src++; #endif } else #endif if (LJ_64 && LJ_BE && sz == 4) src++; } } lua_assert(sz == 1 || sz == 2 || sz == 4 || sz == 8); if (sz == 4) *(int32_t *)dst = *src; else if (sz == 8) *(int64_t *)dst = *(int64_t *)src; else if (sz == 1) *(int8_t *)dst = (int8_t)*src; else *(int16_t *)dst = (int16_t)*src; } #endif /* Unsink allocation from the trace exit state. Unsink sunk stores. */ static void snap_unsink(jit_State *J, GCtrace *T, ExitState *ex, SnapNo snapno, BloomFilter rfilt, IRIns *ir, TValue *o) { lua_assert(ir->o == IR_TNEW || ir->o == IR_TDUP || ir->o == IR_CNEW || ir->o == IR_CNEWI); #if LJ_HASFFI if (ir->o == IR_CNEW || ir->o == IR_CNEWI) { CTState *cts = ctype_cts(J->L); CTypeID id = (CTypeID)T->ir[ir->op1].i; CTSize sz; CTInfo info = lj_ctype_info(cts, id, &sz); GCcdata *cd = lj_cdata_newx(cts, id, sz, info); setcdataV(J->L, o, cd); if (ir->o == IR_CNEWI) { uint8_t *p = (uint8_t *)cdataptr(cd); lua_assert(sz == 4 || sz == 8); if (LJ_32 && sz == 8 && ir+1 < T->ir + T->nins && (ir+1)->o == IR_HIOP) { snap_restoredata(T, ex, snapno, rfilt, (ir+1)->op2, LJ_LE?p+4:p, 4); if (LJ_BE) p += 4; sz = 4; } snap_restoredata(T, ex, snapno, rfilt, ir->op2, p, sz); } else { IRIns *irs, *irlast = &T->ir[T->snap[snapno].ref]; for (irs = ir+1; irs < irlast; irs++) if (irs->r == RID_SINK && snap_sunk_store(T, ir, irs)) { IRIns *iro = &T->ir[T->ir[irs->op1].op2]; uint8_t *p = (uint8_t *)cd; CTSize szs; lua_assert(irs->o == IR_XSTORE && T->ir[irs->op1].o == IR_ADD); lua_assert(iro->o == IR_KINT || iro->o == IR_KINT64); if (irt_is64(irs->t)) szs = 8; else if (irt_isi8(irs->t) || irt_isu8(irs->t)) szs = 1; else if (irt_isi16(irs->t) || irt_isu16(irs->t)) szs = 2; else szs = 4; if (LJ_64 && iro->o == IR_KINT64) p += (int64_t)ir_k64(iro)->u64; else p += iro->i; lua_assert(p >= (uint8_t *)cdataptr(cd) && p + szs <= (uint8_t *)cdataptr(cd) + sz); if (LJ_32 && irs+1 < T->ir + T->nins && (irs+1)->o == IR_HIOP) { lua_assert(szs == 4); snap_restoredata(T, ex, snapno, rfilt, (irs+1)->op2, LJ_LE?p+4:p,4); if (LJ_BE) p += 4; } snap_restoredata(T, ex, snapno, rfilt, irs->op2, p, szs); } } } else #endif { IRIns *irs, *irlast; GCtab *t = ir->o == IR_TNEW ? lj_tab_new(J->L, ir->op1, ir->op2) : lj_tab_dup(J->L, ir_ktab(&T->ir[ir->op1])); settabV(J->L, o, t); irlast = &T->ir[T->snap[snapno].ref]; for (irs = ir+1; irs < irlast; irs++) if (irs->r == RID_SINK && snap_sunk_store(T, ir, irs)) { IRIns *irk = &T->ir[irs->op1]; TValue tmp, *val; lua_assert(irs->o == IR_ASTORE || irs->o == IR_HSTORE || irs->o == IR_FSTORE); if (irk->o == IR_FREF) { lua_assert(irk->op2 == IRFL_TAB_META); snap_restoreval(J, T, ex, snapno, rfilt, irs->op2, &tmp); /* NOBARRIER: The table is new (marked white). */ setgcref(t->metatable, obj2gco(tabV(&tmp))); } else { irk = &T->ir[irk->op2]; if (irk->o == IR_KSLOT) irk = &T->ir[irk->op1]; lj_ir_kvalue(J->L, &tmp, irk); val = lj_tab_set(J->L, t, &tmp); /* NOBARRIER: The table is new (marked white). */ snap_restoreval(J, T, ex, snapno, rfilt, irs->op2, val); if (LJ_SOFTFP && irs+1 < T->ir + T->nins && (irs+1)->o == IR_HIOP) { snap_restoreval(J, T, ex, snapno, rfilt, (irs+1)->op2, &tmp); val->u32.hi = tmp.u32.lo; } } } } } /* Restore interpreter state from exit state with the help of a snapshot. */ const BCIns *lj_snap_restore(jit_State *J, void *exptr) { ExitState *ex = (ExitState *)exptr; SnapNo snapno = J->exitno; /* For now, snapno == exitno. */ GCtrace *T = traceref(J, J->parent); SnapShot *snap = &T->snap[snapno]; MSize n, nent = snap->nent; SnapEntry *map = &T->snapmap[snap->mapofs]; #if !LJ_FR2 || defined(LUA_USE_ASSERT) SnapEntry *flinks = &T->snapmap[snap_nextofs(T, snap)-1-LJ_FR2]; #endif #if !LJ_FR2 ptrdiff_t ftsz0; #endif TValue *frame; BloomFilter rfilt = snap_renamefilter(T, snapno); const BCIns *pc = snap_pc(&map[nent]); lua_State *L = J->L; /* Set interpreter PC to the next PC to get correct error messages. */ setcframe_pc(cframe_raw(L->cframe), pc+1); /* Make sure the stack is big enough for the slots from the snapshot. */ if (LJ_UNLIKELY(L->base + snap->topslot >= tvref(L->maxstack))) { L->top = curr_topL(L); lj_state_growstack(L, snap->topslot - curr_proto(L)->framesize); } /* Fill stack slots with data from the registers and spill slots. */ frame = L->base-1-LJ_FR2; #if !LJ_FR2 ftsz0 = frame_ftsz(frame); /* Preserve link to previous frame in slot #0. */ #endif for (n = 0; n < nent; n++) { SnapEntry sn = map[n]; if (!(sn & SNAP_NORESTORE)) { TValue *o = &frame[snap_slot(sn)]; IRRef ref = snap_ref(sn); IRIns *ir = &T->ir[ref]; if (ir->r == RID_SUNK) { MSize j; for (j = 0; j < n; j++) if (snap_ref(map[j]) == ref) { /* De-duplicate sunk allocations. */ copyTV(L, o, &frame[snap_slot(map[j])]); goto dupslot; } snap_unsink(J, T, ex, snapno, rfilt, ir, o); dupslot: continue; } snap_restoreval(J, T, ex, snapno, rfilt, ref, o); if (LJ_SOFTFP && (sn & SNAP_SOFTFPNUM) && tvisint(o)) { TValue tmp; snap_restoreval(J, T, ex, snapno, rfilt, ref+1, &tmp); o->u32.hi = tmp.u32.lo; #if !LJ_FR2 } else if ((sn & (SNAP_CONT|SNAP_FRAME))) { /* Overwrite tag with frame link. */ setframe_ftsz(o, snap_slot(sn) != 0 ? (int32_t)*flinks-- : ftsz0); L->base = o+1; #endif } } } #if LJ_FR2 L->base += (map[nent+LJ_BE] & 0xff); #endif lua_assert(map + nent == flinks); /* Compute current stack top. */ switch (bc_op(*pc)) { default: if (bc_op(*pc) < BC_FUNCF) { L->top = curr_topL(L); break; } /* fallthrough */ case BC_CALLM: case BC_CALLMT: case BC_RETM: case BC_TSETM: L->top = frame + snap->nslots; break; } return pc; } #undef emitir_raw #undef emitir #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_dispatch.h0000644000175100017510000001177513101703334020555 0ustar ondrejondrej/* ** Instruction dispatch handling. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_DISPATCH_H #define _LJ_DISPATCH_H #include "lj_obj.h" #include "lj_bc.h" #if LJ_HASJIT #include "lj_jit.h" #endif #if LJ_TARGET_MIPS /* Need our own global offset table for the dreaded MIPS calling conventions. */ #ifndef _LJ_VM_H LJ_ASMF int32_t LJ_FASTCALL lj_vm_modi(int32_t a, int32_t b); #endif #if LJ_SOFTFP #ifndef _LJ_IRCALL_H extern double __adddf3(double a, double b); extern double __subdf3(double a, double b); extern double __muldf3(double a, double b); extern double __divdf3(double a, double b); #endif #define SFGOTDEF(_) _(sqrt) _(__adddf3) _(__subdf3) _(__muldf3) _(__divdf3) #else #define SFGOTDEF(_) #endif #if LJ_HASJIT #define JITGOTDEF(_) _(lj_trace_exit) _(lj_trace_hot) #else #define JITGOTDEF(_) #endif #if LJ_HASFFI #define FFIGOTDEF(_) \ _(lj_meta_equal_cd) _(lj_ccallback_enter) _(lj_ccallback_leave) #else #define FFIGOTDEF(_) #endif #define GOTDEF(_) \ _(floor) _(ceil) _(trunc) _(log) _(log10) _(exp) _(sin) _(cos) _(tan) \ _(asin) _(acos) _(atan) _(sinh) _(cosh) _(tanh) _(frexp) _(modf) _(atan2) \ _(pow) _(fmod) _(ldexp) _(lj_vm_modi) \ _(lj_dispatch_call) _(lj_dispatch_ins) _(lj_dispatch_stitch) \ _(lj_dispatch_profile) _(lj_err_throw) \ _(lj_ffh_coroutine_wrap_err) _(lj_func_closeuv) _(lj_func_newL_gc) \ _(lj_gc_barrieruv) _(lj_gc_step) _(lj_gc_step_fixtop) _(lj_meta_arith) \ _(lj_meta_call) _(lj_meta_cat) _(lj_meta_comp) _(lj_meta_equal) \ _(lj_meta_for) _(lj_meta_istype) _(lj_meta_len) _(lj_meta_tget) \ _(lj_meta_tset) _(lj_state_growstack) _(lj_strfmt_number) \ _(lj_str_new) _(lj_tab_dup) _(lj_tab_get) _(lj_tab_getinth) _(lj_tab_len) \ _(lj_tab_new) _(lj_tab_newkey) _(lj_tab_next) _(lj_tab_reasize) \ _(lj_tab_setinth) _(lj_buf_putstr_reverse) _(lj_buf_putstr_lower) \ _(lj_buf_putstr_upper) _(lj_buf_tostr) \ JITGOTDEF(_) FFIGOTDEF(_) SFGOTDEF(_) enum { #define GOTENUM(name) LJ_GOT_##name, GOTDEF(GOTENUM) #undef GOTENUM LJ_GOT__MAX }; #endif /* Type of hot counter. Must match the code in the assembler VM. */ /* 16 bits are sufficient. Only 0.0015% overhead with maximum slot penalty. */ typedef uint16_t HotCount; /* Number of hot counter hash table entries (must be a power of two). */ #define HOTCOUNT_SIZE 64 #define HOTCOUNT_PCMASK ((HOTCOUNT_SIZE-1)*sizeof(HotCount)) /* Hotcount decrements. */ #define HOTCOUNT_LOOP 2 #define HOTCOUNT_CALL 1 /* This solves a circular dependency problem -- bump as needed. Sigh. */ #define GG_NUM_ASMFF 57 #define GG_LEN_DDISP (BC__MAX + GG_NUM_ASMFF) #define GG_LEN_SDISP BC_FUNCF #define GG_LEN_DISP (GG_LEN_DDISP + GG_LEN_SDISP) /* Global state, main thread and extra fields are allocated together. */ typedef struct GG_State { lua_State L; /* Main thread. */ global_State g; /* Global state. */ #if LJ_TARGET_MIPS ASMFunction got[LJ_GOT__MAX]; /* Global offset table. */ #endif #if LJ_HASJIT jit_State J; /* JIT state. */ HotCount hotcount[HOTCOUNT_SIZE]; /* Hot counters. */ #endif ASMFunction dispatch[GG_LEN_DISP]; /* Instruction dispatch tables. */ BCIns bcff[GG_NUM_ASMFF]; /* Bytecode for ASM fast functions. */ } GG_State; #define GG_OFS(field) ((int)offsetof(GG_State, field)) #define G2GG(gl) ((GG_State *)((char *)(gl) - GG_OFS(g))) #define J2GG(j) ((GG_State *)((char *)(j) - GG_OFS(J))) #define L2GG(L) (G2GG(G(L))) #define J2G(J) (&J2GG(J)->g) #define G2J(gl) (&G2GG(gl)->J) #define L2J(L) (&L2GG(L)->J) #define GG_G2J (GG_OFS(J) - GG_OFS(g)) #define GG_G2DISP (GG_OFS(dispatch) - GG_OFS(g)) #define GG_DISP2G (GG_OFS(g) - GG_OFS(dispatch)) #define GG_DISP2J (GG_OFS(J) - GG_OFS(dispatch)) #define GG_DISP2HOT (GG_OFS(hotcount) - GG_OFS(dispatch)) #define GG_DISP2STATIC (GG_LEN_DDISP*(int)sizeof(ASMFunction)) #define hotcount_get(gg, pc) \ (gg)->hotcount[(u32ptr(pc)>>2) & (HOTCOUNT_SIZE-1)] #define hotcount_set(gg, pc, val) \ (hotcount_get((gg), (pc)) = (HotCount)(val)) /* Dispatch table management. */ LJ_FUNC void lj_dispatch_init(GG_State *GG); #if LJ_HASJIT LJ_FUNC void lj_dispatch_init_hotcount(global_State *g); #endif LJ_FUNC void lj_dispatch_update(global_State *g); /* Instruction dispatch callback for hooks or when recording. */ LJ_FUNCA void LJ_FASTCALL lj_dispatch_ins(lua_State *L, const BCIns *pc); LJ_FUNCA ASMFunction LJ_FASTCALL lj_dispatch_call(lua_State *L, const BCIns*pc); #if LJ_HASJIT LJ_FUNCA void LJ_FASTCALL lj_dispatch_stitch(jit_State *J, const BCIns *pc); #endif #if LJ_HASPROFILE LJ_FUNCA void LJ_FASTCALL lj_dispatch_profile(lua_State *L, const BCIns *pc); #endif #if LJ_HASFFI && !defined(_BUILDVM_H) /* Save/restore errno and GetLastError() around hooks, exits and recording. */ #include #if LJ_TARGET_WINDOWS #define WIN32_LEAN_AND_MEAN #include #define ERRNO_SAVE int olderr = errno; DWORD oldwerr = GetLastError(); #define ERRNO_RESTORE errno = olderr; SetLastError(oldwerr); #else #define ERRNO_SAVE int olderr = errno; #define ERRNO_RESTORE errno = olderr; #endif #else #define ERRNO_SAVE #define ERRNO_RESTORE #endif #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_debug.c0000644000175100017510000004662313101703334020037 0ustar ondrejondrej/* ** Debugging and introspection. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #define lj_debug_c #define LUA_CORE #include "lj_obj.h" #include "lj_err.h" #include "lj_debug.h" #include "lj_buf.h" #include "lj_tab.h" #include "lj_state.h" #include "lj_frame.h" #include "lj_bc.h" #include "lj_strfmt.h" #if LJ_HASJIT #include "lj_jit.h" #endif /* -- Frames -------------------------------------------------------------- */ /* Get frame corresponding to a level. */ cTValue *lj_debug_frame(lua_State *L, int level, int *size) { cTValue *frame, *nextframe, *bot = tvref(L->stack)+LJ_FR2; /* Traverse frames backwards. */ for (nextframe = frame = L->base-1; frame > bot; ) { if (frame_gc(frame) == obj2gco(L)) level++; /* Skip dummy frames. See lj_err_optype_call(). */ if (level-- == 0) { *size = (int)(nextframe - frame); return frame; /* Level found. */ } nextframe = frame; if (frame_islua(frame)) { frame = frame_prevl(frame); } else { if (frame_isvarg(frame)) level++; /* Skip vararg pseudo-frame. */ frame = frame_prevd(frame); } } *size = level; return NULL; /* Level not found. */ } /* Invalid bytecode position. */ #define NO_BCPOS (~(BCPos)0) /* Return bytecode position for function/frame or NO_BCPOS. */ static BCPos debug_framepc(lua_State *L, GCfunc *fn, cTValue *nextframe) { const BCIns *ins; GCproto *pt; BCPos pos; lua_assert(fn->c.gct == ~LJ_TFUNC || fn->c.gct == ~LJ_TTHREAD); if (!isluafunc(fn)) { /* Cannot derive a PC for non-Lua functions. */ return NO_BCPOS; } else if (nextframe == NULL) { /* Lua function on top. */ void *cf = cframe_raw(L->cframe); if (cf == NULL || (char *)cframe_pc(cf) == (char *)cframe_L(cf)) return NO_BCPOS; ins = cframe_pc(cf); /* Only happens during error/hook handling. */ } else { if (frame_islua(nextframe)) { ins = frame_pc(nextframe); } else if (frame_iscont(nextframe)) { ins = frame_contpc(nextframe); } else { /* Lua function below errfunc/gc/hook: find cframe to get the PC. */ void *cf = cframe_raw(L->cframe); TValue *f = L->base-1; for (;;) { if (cf == NULL) return NO_BCPOS; while (cframe_nres(cf) < 0) { if (f >= restorestack(L, -cframe_nres(cf))) break; cf = cframe_raw(cframe_prev(cf)); if (cf == NULL) return NO_BCPOS; } if (f < nextframe) break; if (frame_islua(f)) { f = frame_prevl(f); } else { if (frame_isc(f) || (frame_iscont(f) && frame_iscont_fficb(f))) cf = cframe_raw(cframe_prev(cf)); f = frame_prevd(f); } } ins = cframe_pc(cf); } } pt = funcproto(fn); pos = proto_bcpos(pt, ins) - 1; #if LJ_HASJIT if (pos > pt->sizebc) { /* Undo the effects of lj_trace_exit for JLOOP. */ GCtrace *T = (GCtrace *)((char *)(ins-1) - offsetof(GCtrace, startins)); lua_assert(bc_isret(bc_op(ins[-1]))); pos = proto_bcpos(pt, mref(T->startpc, const BCIns)); } #endif return pos; } /* -- Line numbers -------------------------------------------------------- */ /* Get line number for a bytecode position. */ BCLine LJ_FASTCALL lj_debug_line(GCproto *pt, BCPos pc) { const void *lineinfo = proto_lineinfo(pt); if (pc <= pt->sizebc && lineinfo) { BCLine first = pt->firstline; if (pc == pt->sizebc) return first + pt->numline; if (pc-- == 0) return first; if (pt->numline < 256) return first + (BCLine)((const uint8_t *)lineinfo)[pc]; else if (pt->numline < 65536) return first + (BCLine)((const uint16_t *)lineinfo)[pc]; else return first + (BCLine)((const uint32_t *)lineinfo)[pc]; } return 0; } /* Get line number for function/frame. */ static BCLine debug_frameline(lua_State *L, GCfunc *fn, cTValue *nextframe) { BCPos pc = debug_framepc(L, fn, nextframe); if (pc != NO_BCPOS) { GCproto *pt = funcproto(fn); lua_assert(pc <= pt->sizebc); return lj_debug_line(pt, pc); } return -1; } /* -- Variable names ------------------------------------------------------ */ /* Get name of a local variable from slot number and PC. */ static const char *debug_varname(const GCproto *pt, BCPos pc, BCReg slot) { const char *p = (const char *)proto_varinfo(pt); if (p) { BCPos lastpc = 0; for (;;) { const char *name = p; uint32_t vn = *(const uint8_t *)p; BCPos startpc, endpc; if (vn < VARNAME__MAX) { if (vn == VARNAME_END) break; /* End of varinfo. */ } else { do { p++; } while (*(const uint8_t *)p); /* Skip over variable name. */ } p++; lastpc = startpc = lastpc + lj_buf_ruleb128(&p); if (startpc > pc) break; endpc = startpc + lj_buf_ruleb128(&p); if (pc < endpc && slot-- == 0) { if (vn < VARNAME__MAX) { #define VARNAMESTR(name, str) str "\0" name = VARNAMEDEF(VARNAMESTR); #undef VARNAMESTR if (--vn) while (*name++ || --vn) ; } return name; } } } return NULL; } /* Get name of local variable from 1-based slot number and function/frame. */ static TValue *debug_localname(lua_State *L, const lua_Debug *ar, const char **name, BCReg slot1) { uint32_t offset = (uint32_t)ar->i_ci & 0xffff; uint32_t size = (uint32_t)ar->i_ci >> 16; TValue *frame = tvref(L->stack) + offset; TValue *nextframe = size ? frame + size : NULL; GCfunc *fn = frame_func(frame); BCPos pc = debug_framepc(L, fn, nextframe); if (!nextframe) nextframe = L->top+LJ_FR2; if ((int)slot1 < 0) { /* Negative slot number is for varargs. */ if (pc != NO_BCPOS) { GCproto *pt = funcproto(fn); if ((pt->flags & PROTO_VARARG)) { slot1 = pt->numparams + (BCReg)(-(int)slot1); if (frame_isvarg(frame)) { /* Vararg frame has been set up? (pc!=0) */ nextframe = frame; frame = frame_prevd(frame); } if (frame + slot1+LJ_FR2 < nextframe) { *name = "(*vararg)"; return frame+slot1; } } } return NULL; } if (pc != NO_BCPOS && (*name = debug_varname(funcproto(fn), pc, slot1-1)) != NULL) ; else if (slot1 > 0 && frame + slot1+LJ_FR2 < nextframe) *name = "(*temporary)"; return frame+slot1; } /* Get name of upvalue. */ const char *lj_debug_uvname(GCproto *pt, uint32_t idx) { const uint8_t *p = proto_uvinfo(pt); lua_assert(idx < pt->sizeuv); if (!p) return ""; if (idx) while (*p++ || --idx) ; return (const char *)p; } /* Get name and value of upvalue. */ const char *lj_debug_uvnamev(cTValue *o, uint32_t idx, TValue **tvp) { if (tvisfunc(o)) { GCfunc *fn = funcV(o); if (isluafunc(fn)) { GCproto *pt = funcproto(fn); if (idx < pt->sizeuv) { *tvp = uvval(&gcref(fn->l.uvptr[idx])->uv); return lj_debug_uvname(pt, idx); } } else { if (idx < fn->c.nupvalues) { *tvp = &fn->c.upvalue[idx]; return ""; } } } return NULL; } /* Deduce name of an object from slot number and PC. */ const char *lj_debug_slotname(GCproto *pt, const BCIns *ip, BCReg slot, const char **name) { const char *lname; restart: lname = debug_varname(pt, proto_bcpos(pt, ip), slot); if (lname != NULL) { *name = lname; return "local"; } while (--ip > proto_bc(pt)) { BCIns ins = *ip; BCOp op = bc_op(ins); BCReg ra = bc_a(ins); if (bcmode_a(op) == BCMbase) { if (slot >= ra && (op != BC_KNIL || slot <= bc_d(ins))) return NULL; } else if (bcmode_a(op) == BCMdst && ra == slot) { switch (bc_op(ins)) { case BC_MOV: if (ra == slot) { slot = bc_d(ins); goto restart; } break; case BC_GGET: *name = strdata(gco2str(proto_kgc(pt, ~(ptrdiff_t)bc_d(ins)))); return "global"; case BC_TGETS: *name = strdata(gco2str(proto_kgc(pt, ~(ptrdiff_t)bc_c(ins)))); if (ip > proto_bc(pt)) { BCIns insp = ip[-1]; if (bc_op(insp) == BC_MOV && bc_a(insp) == ra+1+LJ_FR2 && bc_d(insp) == bc_b(ins)) return "method"; } return "field"; case BC_UGET: *name = lj_debug_uvname(pt, bc_d(ins)); return "upvalue"; default: return NULL; } } } return NULL; } /* Deduce function name from caller of a frame. */ const char *lj_debug_funcname(lua_State *L, cTValue *frame, const char **name) { cTValue *pframe; GCfunc *fn; BCPos pc; if (frame <= tvref(L->stack)+LJ_FR2) return NULL; if (frame_isvarg(frame)) frame = frame_prevd(frame); pframe = frame_prev(frame); fn = frame_func(pframe); pc = debug_framepc(L, fn, frame); if (pc != NO_BCPOS) { GCproto *pt = funcproto(fn); const BCIns *ip = &proto_bc(pt)[check_exp(pc < pt->sizebc, pc)]; MMS mm = bcmode_mm(bc_op(*ip)); if (mm == MM_call) { BCReg slot = bc_a(*ip); if (bc_op(*ip) == BC_ITERC) slot -= 3; return lj_debug_slotname(pt, ip, slot, name); } else if (mm != MM__MAX) { *name = strdata(mmname_str(G(L), mm)); return "metamethod"; } } return NULL; } /* -- Source code locations ----------------------------------------------- */ /* Generate shortened source name. */ void lj_debug_shortname(char *out, GCstr *str, BCLine line) { const char *src = strdata(str); if (*src == '=') { strncpy(out, src+1, LUA_IDSIZE); /* Remove first char. */ out[LUA_IDSIZE-1] = '\0'; /* Ensures null termination. */ } else if (*src == '@') { /* Output "source", or "...source". */ size_t len = str->len-1; src++; /* Skip the `@' */ if (len >= LUA_IDSIZE) { src += len-(LUA_IDSIZE-4); /* Get last part of file name. */ *out++ = '.'; *out++ = '.'; *out++ = '.'; } strcpy(out, src); } else { /* Output [string "string"] or [builtin:name]. */ size_t len; /* Length, up to first control char. */ for (len = 0; len < LUA_IDSIZE-12; len++) if (((const unsigned char *)src)[len] < ' ') break; strcpy(out, line == ~(BCLine)0 ? "[builtin:" : "[string \""); out += 9; if (src[len] != '\0') { /* Must truncate? */ if (len > LUA_IDSIZE-15) len = LUA_IDSIZE-15; strncpy(out, src, len); out += len; strcpy(out, "..."); out += 3; } else { strcpy(out, src); out += len; } strcpy(out, line == ~(BCLine)0 ? "]" : "\"]"); } } /* Add current location of a frame to error message. */ void lj_debug_addloc(lua_State *L, const char *msg, cTValue *frame, cTValue *nextframe) { if (frame) { GCfunc *fn = frame_func(frame); if (isluafunc(fn)) { BCLine line = debug_frameline(L, fn, nextframe); if (line >= 0) { GCproto *pt = funcproto(fn); char buf[LUA_IDSIZE]; lj_debug_shortname(buf, proto_chunkname(pt), pt->firstline); lj_strfmt_pushf(L, "%s:%d: %s", buf, line, msg); return; } } } lj_strfmt_pushf(L, "%s", msg); } /* Push location string for a bytecode position to Lua stack. */ void lj_debug_pushloc(lua_State *L, GCproto *pt, BCPos pc) { GCstr *name = proto_chunkname(pt); const char *s = strdata(name); MSize i, len = name->len; BCLine line = lj_debug_line(pt, pc); if (pt->firstline == ~(BCLine)0) { lj_strfmt_pushf(L, "builtin:%s", s); } else if (*s == '@') { s++; len--; for (i = len; i > 0; i--) if (s[i] == '/' || s[i] == '\\') { s += i+1; break; } lj_strfmt_pushf(L, "%s:%d", s, line); } else if (len > 40) { lj_strfmt_pushf(L, "%p:%d", pt, line); } else if (*s == '=') { lj_strfmt_pushf(L, "%s:%d", s+1, line); } else { lj_strfmt_pushf(L, "\"%s\":%d", s, line); } } /* -- Public debug API ---------------------------------------------------- */ /* lua_getupvalue() and lua_setupvalue() are in lj_api.c. */ LUA_API const char *lua_getlocal(lua_State *L, const lua_Debug *ar, int n) { const char *name = NULL; if (ar) { TValue *o = debug_localname(L, ar, &name, (BCReg)n); if (name) { copyTV(L, L->top, o); incr_top(L); } } else if (tvisfunc(L->top-1) && isluafunc(funcV(L->top-1))) { name = debug_varname(funcproto(funcV(L->top-1)), 0, (BCReg)n-1); } return name; } LUA_API const char *lua_setlocal(lua_State *L, const lua_Debug *ar, int n) { const char *name = NULL; TValue *o = debug_localname(L, ar, &name, (BCReg)n); if (name) copyTV(L, o, L->top-1); L->top--; return name; } int lj_debug_getinfo(lua_State *L, const char *what, lj_Debug *ar, int ext) { int opt_f = 0, opt_L = 0; TValue *frame = NULL; TValue *nextframe = NULL; GCfunc *fn; if (*what == '>') { TValue *func = L->top - 1; api_check(L, tvisfunc(func)); fn = funcV(func); L->top--; what++; } else { uint32_t offset = (uint32_t)ar->i_ci & 0xffff; uint32_t size = (uint32_t)ar->i_ci >> 16; lua_assert(offset != 0); frame = tvref(L->stack) + offset; if (size) nextframe = frame + size; lua_assert(frame <= tvref(L->maxstack) && (!nextframe || nextframe <= tvref(L->maxstack))); fn = frame_func(frame); lua_assert(fn->c.gct == ~LJ_TFUNC); } for (; *what; what++) { if (*what == 'S') { if (isluafunc(fn)) { GCproto *pt = funcproto(fn); BCLine firstline = pt->firstline; GCstr *name = proto_chunkname(pt); ar->source = strdata(name); lj_debug_shortname(ar->short_src, name, pt->firstline); ar->linedefined = (int)firstline; ar->lastlinedefined = (int)(firstline + pt->numline); ar->what = (firstline || !pt->numline) ? "Lua" : "main"; } else { ar->source = "=[C]"; ar->short_src[0] = '['; ar->short_src[1] = 'C'; ar->short_src[2] = ']'; ar->short_src[3] = '\0'; ar->linedefined = -1; ar->lastlinedefined = -1; ar->what = "C"; } } else if (*what == 'l') { ar->currentline = frame ? debug_frameline(L, fn, nextframe) : -1; } else if (*what == 'u') { ar->nups = fn->c.nupvalues; if (ext) { if (isluafunc(fn)) { GCproto *pt = funcproto(fn); ar->nparams = pt->numparams; ar->isvararg = !!(pt->flags & PROTO_VARARG); } else { ar->nparams = 0; ar->isvararg = 1; } } } else if (*what == 'n') { ar->namewhat = frame ? lj_debug_funcname(L, frame, &ar->name) : NULL; if (ar->namewhat == NULL) { ar->namewhat = ""; ar->name = NULL; } } else if (*what == 'f') { opt_f = 1; } else if (*what == 'L') { opt_L = 1; } else { return 0; /* Bad option. */ } } if (opt_f) { setfuncV(L, L->top, fn); incr_top(L); } if (opt_L) { if (isluafunc(fn)) { GCtab *t = lj_tab_new(L, 0, 0); GCproto *pt = funcproto(fn); const void *lineinfo = proto_lineinfo(pt); if (lineinfo) { BCLine first = pt->firstline; int sz = pt->numline < 256 ? 1 : pt->numline < 65536 ? 2 : 4; MSize i, szl = pt->sizebc-1; for (i = 0; i < szl; i++) { BCLine line = first + (sz == 1 ? (BCLine)((const uint8_t *)lineinfo)[i] : sz == 2 ? (BCLine)((const uint16_t *)lineinfo)[i] : (BCLine)((const uint32_t *)lineinfo)[i]); setboolV(lj_tab_setint(L, t, line), 1); } } settabV(L, L->top, t); } else { setnilV(L->top); } incr_top(L); } return 1; /* Ok. */ } LUA_API int lua_getinfo(lua_State *L, const char *what, lua_Debug *ar) { return lj_debug_getinfo(L, what, (lj_Debug *)ar, 0); } LUA_API int lua_getstack(lua_State *L, int level, lua_Debug *ar) { int size; cTValue *frame = lj_debug_frame(L, level, &size); if (frame) { ar->i_ci = (size << 16) + (int)(frame - tvref(L->stack)); return 1; } else { ar->i_ci = level - size; return 0; } } #if LJ_HASPROFILE /* Put the chunkname into a buffer. */ static int debug_putchunkname(SBuf *sb, GCproto *pt, int pathstrip) { GCstr *name = proto_chunkname(pt); const char *p = strdata(name); if (pt->firstline == ~(BCLine)0) { lj_buf_putmem(sb, "[builtin:", 9); lj_buf_putstr(sb, name); lj_buf_putb(sb, ']'); return 0; } if (*p == '=' || *p == '@') { MSize len = name->len-1; p++; if (pathstrip) { int i; for (i = len-1; i >= 0; i--) if (p[i] == '/' || p[i] == '\\') { len -= i+1; p = p+i+1; break; } } lj_buf_putmem(sb, p, len); } else { lj_buf_putmem(sb, "[string]", 8); } return 1; } /* Put a compact stack dump into a buffer. */ void lj_debug_dumpstack(lua_State *L, SBuf *sb, const char *fmt, int depth) { int level = 0, dir = 1, pathstrip = 1; MSize lastlen = 0; if (depth < 0) { level = ~depth; depth = dir = -1; } /* Reverse frames. */ while (level != depth) { /* Loop through all frame. */ int size; cTValue *frame = lj_debug_frame(L, level, &size); if (frame) { cTValue *nextframe = size ? frame+size : NULL; GCfunc *fn = frame_func(frame); const uint8_t *p = (const uint8_t *)fmt; int c; while ((c = *p++)) { switch (c) { case 'p': /* Preserve full path. */ pathstrip = 0; break; case 'F': case 'f': { /* Dump function name. */ const char *name; const char *what = lj_debug_funcname(L, frame, &name); if (what) { if (c == 'F' && isluafunc(fn)) { /* Dump module:name for 'F'. */ GCproto *pt = funcproto(fn); if (pt->firstline != ~(BCLine)0) { /* Not a bytecode builtin. */ debug_putchunkname(sb, pt, pathstrip); lj_buf_putb(sb, ':'); } } lj_buf_putmem(sb, name, (MSize)strlen(name)); break; } /* else: can't derive a name, dump module:line. */ } /* fallthrough */ case 'l': /* Dump module:line. */ if (isluafunc(fn)) { GCproto *pt = funcproto(fn); if (debug_putchunkname(sb, pt, pathstrip)) { /* Regular Lua function. */ BCLine line = c == 'l' ? debug_frameline(L, fn, nextframe) : pt->firstline; lj_buf_putb(sb, ':'); lj_strfmt_putint(sb, line >= 0 ? line : pt->firstline); } } else if (isffunc(fn)) { /* Dump numbered builtins. */ lj_buf_putmem(sb, "[builtin#", 9); lj_strfmt_putint(sb, fn->c.ffid); lj_buf_putb(sb, ']'); } else { /* Dump C function address. */ lj_buf_putb(sb, '@'); lj_strfmt_putptr(sb, fn->c.f); } break; case 'Z': /* Zap trailing separator. */ lastlen = sbuflen(sb); break; default: lj_buf_putb(sb, c); break; } } } else if (dir == 1) { break; } else { level -= size; /* Reverse frame order: quickly skip missing level. */ } level += dir; } if (lastlen) setsbufP(sb, sbufB(sb) + lastlen); /* Zap trailing separator. */ } #endif /* Number of frames for the leading and trailing part of a traceback. */ #define TRACEBACK_LEVELS1 12 #define TRACEBACK_LEVELS2 10 LUALIB_API void luaL_traceback (lua_State *L, lua_State *L1, const char *msg, int level) { int top = (int)(L->top - L->base); int lim = TRACEBACK_LEVELS1; lua_Debug ar; if (msg) lua_pushfstring(L, "%s\n", msg); lua_pushliteral(L, "stack traceback:"); while (lua_getstack(L1, level++, &ar)) { GCfunc *fn; if (level > lim) { if (!lua_getstack(L1, level + TRACEBACK_LEVELS2, &ar)) { level--; } else { lua_pushliteral(L, "\n\t..."); lua_getstack(L1, -10, &ar); level = ar.i_ci - TRACEBACK_LEVELS2; } lim = 2147483647; continue; } lua_getinfo(L1, "Snlf", &ar); fn = funcV(L1->top-1); L1->top--; if (isffunc(fn) && !*ar.namewhat) lua_pushfstring(L, "\n\t[builtin#%d]:", fn->c.ffid); else lua_pushfstring(L, "\n\t%s:", ar.short_src); if (ar.currentline > 0) lua_pushfstring(L, "%d:", ar.currentline); if (*ar.namewhat) { lua_pushfstring(L, " in function " LUA_QS, ar.name); } else { if (*ar.what == 'm') { lua_pushliteral(L, " in main chunk"); } else if (*ar.what == 'C') { lua_pushfstring(L, " at %p", fn->c.f); } else { lua_pushfstring(L, " in function <%s:%d>", ar.short_src, ar.linedefined); } } if ((int)(L->top - L->base) - top >= 15) lua_concat(L, (int)(L->top - L->base) - top); } lua_concat(L, (int)(L->top - L->base) - top); } luajit-2.1.0~beta3+dfsg.orig/src/lj_mcode.h0000644000175100017510000000126313101703334020034 0ustar ondrejondrej/* ** Machine code management. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_MCODE_H #define _LJ_MCODE_H #include "lj_obj.h" #if LJ_HASJIT || LJ_HASFFI LJ_FUNC void lj_mcode_sync(void *start, void *end); #endif #if LJ_HASJIT #include "lj_jit.h" LJ_FUNC void lj_mcode_free(jit_State *J); LJ_FUNC MCode *lj_mcode_reserve(jit_State *J, MCode **lim); LJ_FUNC void lj_mcode_commit(jit_State *J, MCode *m); LJ_FUNC void lj_mcode_abort(jit_State *J); LJ_FUNC MCode *lj_mcode_patch(jit_State *J, MCode *ptr, int finish); LJ_FUNC_NORET void lj_mcode_limiterr(jit_State *J, size_t need); #define lj_mcode_commitbot(J, m) (J->mcbot = (m)) #endif #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_gc.c0000644000175100017510000006352313101703334017340 0ustar ondrejondrej/* ** Garbage collector. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h ** ** Major portions taken verbatim or adapted from the Lua interpreter. ** Copyright (C) 1994-2008 Lua.org, PUC-Rio. See Copyright Notice in lua.h */ #define lj_gc_c #define LUA_CORE #include "lj_obj.h" #include "lj_gc.h" #include "lj_err.h" #include "lj_buf.h" #include "lj_str.h" #include "lj_tab.h" #include "lj_func.h" #include "lj_udata.h" #include "lj_meta.h" #include "lj_state.h" #include "lj_frame.h" #if LJ_HASFFI #include "lj_ctype.h" #include "lj_cdata.h" #endif #include "lj_trace.h" #include "lj_vm.h" #define GCSTEPSIZE 1024u #define GCSWEEPMAX 40 #define GCSWEEPCOST 10 #define GCFINALIZECOST 100 /* Macros to set GCobj colors and flags. */ #define white2gray(x) ((x)->gch.marked &= (uint8_t)~LJ_GC_WHITES) #define gray2black(x) ((x)->gch.marked |= LJ_GC_BLACK) #define isfinalized(u) ((u)->marked & LJ_GC_FINALIZED) /* -- Mark phase ---------------------------------------------------------- */ /* Mark a TValue (if needed). */ #define gc_marktv(g, tv) \ { lua_assert(!tvisgcv(tv) || (~itype(tv) == gcval(tv)->gch.gct)); \ if (tviswhite(tv)) gc_mark(g, gcV(tv)); } /* Mark a GCobj (if needed). */ #define gc_markobj(g, o) \ { if (iswhite(obj2gco(o))) gc_mark(g, obj2gco(o)); } /* Mark a string object. */ #define gc_mark_str(s) ((s)->marked &= (uint8_t)~LJ_GC_WHITES) /* Mark a white GCobj. */ static void gc_mark(global_State *g, GCobj *o) { int gct = o->gch.gct; lua_assert(iswhite(o) && !isdead(g, o)); white2gray(o); if (LJ_UNLIKELY(gct == ~LJ_TUDATA)) { GCtab *mt = tabref(gco2ud(o)->metatable); gray2black(o); /* Userdata are never gray. */ if (mt) gc_markobj(g, mt); gc_markobj(g, tabref(gco2ud(o)->env)); } else if (LJ_UNLIKELY(gct == ~LJ_TUPVAL)) { GCupval *uv = gco2uv(o); gc_marktv(g, uvval(uv)); if (uv->closed) gray2black(o); /* Closed upvalues are never gray. */ } else if (gct != ~LJ_TSTR && gct != ~LJ_TCDATA) { lua_assert(gct == ~LJ_TFUNC || gct == ~LJ_TTAB || gct == ~LJ_TTHREAD || gct == ~LJ_TPROTO || gct == ~LJ_TTRACE); setgcrefr(o->gch.gclist, g->gc.gray); setgcref(g->gc.gray, o); } } /* Mark GC roots. */ static void gc_mark_gcroot(global_State *g) { ptrdiff_t i; for (i = 0; i < GCROOT_MAX; i++) if (gcref(g->gcroot[i]) != NULL) gc_markobj(g, gcref(g->gcroot[i])); } /* Start a GC cycle and mark the root set. */ static void gc_mark_start(global_State *g) { setgcrefnull(g->gc.gray); setgcrefnull(g->gc.grayagain); setgcrefnull(g->gc.weak); gc_markobj(g, mainthread(g)); gc_markobj(g, tabref(mainthread(g)->env)); gc_marktv(g, &g->registrytv); gc_mark_gcroot(g); g->gc.state = GCSpropagate; } /* Mark open upvalues. */ static void gc_mark_uv(global_State *g) { GCupval *uv; for (uv = uvnext(&g->uvhead); uv != &g->uvhead; uv = uvnext(uv)) { lua_assert(uvprev(uvnext(uv)) == uv && uvnext(uvprev(uv)) == uv); if (isgray(obj2gco(uv))) gc_marktv(g, uvval(uv)); } } /* Mark userdata in mmudata list. */ static void gc_mark_mmudata(global_State *g) { GCobj *root = gcref(g->gc.mmudata); GCobj *u = root; if (u) { do { u = gcnext(u); makewhite(g, u); /* Could be from previous GC. */ gc_mark(g, u); } while (u != root); } } /* Separate userdata objects to be finalized to mmudata list. */ size_t lj_gc_separateudata(global_State *g, int all) { size_t m = 0; GCRef *p = &mainthread(g)->nextgc; GCobj *o; while ((o = gcref(*p)) != NULL) { if (!(iswhite(o) || all) || isfinalized(gco2ud(o))) { p = &o->gch.nextgc; /* Nothing to do. */ } else if (!lj_meta_fastg(g, tabref(gco2ud(o)->metatable), MM_gc)) { markfinalized(o); /* Done, as there's no __gc metamethod. */ p = &o->gch.nextgc; } else { /* Otherwise move userdata to be finalized to mmudata list. */ m += sizeudata(gco2ud(o)); markfinalized(o); *p = o->gch.nextgc; if (gcref(g->gc.mmudata)) { /* Link to end of mmudata list. */ GCobj *root = gcref(g->gc.mmudata); setgcrefr(o->gch.nextgc, root->gch.nextgc); setgcref(root->gch.nextgc, o); setgcref(g->gc.mmudata, o); } else { /* Create circular list. */ setgcref(o->gch.nextgc, o); setgcref(g->gc.mmudata, o); } } } return m; } /* -- Propagation phase --------------------------------------------------- */ /* Traverse a table. */ static int gc_traverse_tab(global_State *g, GCtab *t) { int weak = 0; cTValue *mode; GCtab *mt = tabref(t->metatable); if (mt) gc_markobj(g, mt); mode = lj_meta_fastg(g, mt, MM_mode); if (mode && tvisstr(mode)) { /* Valid __mode field? */ const char *modestr = strVdata(mode); int c; while ((c = *modestr++)) { if (c == 'k') weak |= LJ_GC_WEAKKEY; else if (c == 'v') weak |= LJ_GC_WEAKVAL; } if (weak) { /* Weak tables are cleared in the atomic phase. */ #if LJ_HASFFI CTState *cts = ctype_ctsG(g); if (cts && cts->finalizer == t) { weak = (int)(~0u & ~LJ_GC_WEAKVAL); } else #endif { t->marked = (uint8_t)((t->marked & ~LJ_GC_WEAK) | weak); setgcrefr(t->gclist, g->gc.weak); setgcref(g->gc.weak, obj2gco(t)); } } } if (weak == LJ_GC_WEAK) /* Nothing to mark if both keys/values are weak. */ return 1; if (!(weak & LJ_GC_WEAKVAL)) { /* Mark array part. */ MSize i, asize = t->asize; for (i = 0; i < asize; i++) gc_marktv(g, arrayslot(t, i)); } if (t->hmask > 0) { /* Mark hash part. */ Node *node = noderef(t->node); MSize i, hmask = t->hmask; for (i = 0; i <= hmask; i++) { Node *n = &node[i]; if (!tvisnil(&n->val)) { /* Mark non-empty slot. */ lua_assert(!tvisnil(&n->key)); if (!(weak & LJ_GC_WEAKKEY)) gc_marktv(g, &n->key); if (!(weak & LJ_GC_WEAKVAL)) gc_marktv(g, &n->val); } } } return weak; } /* Traverse a function. */ static void gc_traverse_func(global_State *g, GCfunc *fn) { gc_markobj(g, tabref(fn->c.env)); if (isluafunc(fn)) { uint32_t i; lua_assert(fn->l.nupvalues <= funcproto(fn)->sizeuv); gc_markobj(g, funcproto(fn)); for (i = 0; i < fn->l.nupvalues; i++) /* Mark Lua function upvalues. */ gc_markobj(g, &gcref(fn->l.uvptr[i])->uv); } else { uint32_t i; for (i = 0; i < fn->c.nupvalues; i++) /* Mark C function upvalues. */ gc_marktv(g, &fn->c.upvalue[i]); } } #if LJ_HASJIT /* Mark a trace. */ static void gc_marktrace(global_State *g, TraceNo traceno) { GCobj *o = obj2gco(traceref(G2J(g), traceno)); lua_assert(traceno != G2J(g)->cur.traceno); if (iswhite(o)) { white2gray(o); setgcrefr(o->gch.gclist, g->gc.gray); setgcref(g->gc.gray, o); } } /* Traverse a trace. */ static void gc_traverse_trace(global_State *g, GCtrace *T) { IRRef ref; if (T->traceno == 0) return; for (ref = T->nk; ref < REF_TRUE; ref++) { IRIns *ir = &T->ir[ref]; if (ir->o == IR_KGC) gc_markobj(g, ir_kgc(ir)); if (irt_is64(ir->t) && ir->o != IR_KNULL) ref++; } if (T->link) gc_marktrace(g, T->link); if (T->nextroot) gc_marktrace(g, T->nextroot); if (T->nextside) gc_marktrace(g, T->nextside); gc_markobj(g, gcref(T->startpt)); } /* The current trace is a GC root while not anchored in the prototype (yet). */ #define gc_traverse_curtrace(g) gc_traverse_trace(g, &G2J(g)->cur) #else #define gc_traverse_curtrace(g) UNUSED(g) #endif /* Traverse a prototype. */ static void gc_traverse_proto(global_State *g, GCproto *pt) { ptrdiff_t i; gc_mark_str(proto_chunkname(pt)); for (i = -(ptrdiff_t)pt->sizekgc; i < 0; i++) /* Mark collectable consts. */ gc_markobj(g, proto_kgc(pt, i)); #if LJ_HASJIT if (pt->trace) gc_marktrace(g, pt->trace); #endif } /* Traverse the frame structure of a stack. */ static MSize gc_traverse_frames(global_State *g, lua_State *th) { TValue *frame, *top = th->top-1, *bot = tvref(th->stack); /* Note: extra vararg frame not skipped, marks function twice (harmless). */ for (frame = th->base-1; frame > bot+LJ_FR2; frame = frame_prev(frame)) { GCfunc *fn = frame_func(frame); TValue *ftop = frame; if (isluafunc(fn)) ftop += funcproto(fn)->framesize; if (ftop > top) top = ftop; if (!LJ_FR2) gc_markobj(g, fn); /* Need to mark hidden function (or L). */ } top++; /* Correct bias of -1 (frame == base-1). */ if (top > tvref(th->maxstack)) top = tvref(th->maxstack); return (MSize)(top - bot); /* Return minimum needed stack size. */ } /* Traverse a thread object. */ static void gc_traverse_thread(global_State *g, lua_State *th) { TValue *o, *top = th->top; for (o = tvref(th->stack)+1+LJ_FR2; o < top; o++) gc_marktv(g, o); if (g->gc.state == GCSatomic) { top = tvref(th->stack) + th->stacksize; for (; o < top; o++) /* Clear unmarked slots. */ setnilV(o); } gc_markobj(g, tabref(th->env)); lj_state_shrinkstack(th, gc_traverse_frames(g, th)); } /* Propagate one gray object. Traverse it and turn it black. */ static size_t propagatemark(global_State *g) { GCobj *o = gcref(g->gc.gray); int gct = o->gch.gct; lua_assert(isgray(o)); gray2black(o); setgcrefr(g->gc.gray, o->gch.gclist); /* Remove from gray list. */ if (LJ_LIKELY(gct == ~LJ_TTAB)) { GCtab *t = gco2tab(o); if (gc_traverse_tab(g, t) > 0) black2gray(o); /* Keep weak tables gray. */ return sizeof(GCtab) + sizeof(TValue) * t->asize + (t->hmask ? sizeof(Node) * (t->hmask + 1) : 0); } else if (LJ_LIKELY(gct == ~LJ_TFUNC)) { GCfunc *fn = gco2func(o); gc_traverse_func(g, fn); return isluafunc(fn) ? sizeLfunc((MSize)fn->l.nupvalues) : sizeCfunc((MSize)fn->c.nupvalues); } else if (LJ_LIKELY(gct == ~LJ_TPROTO)) { GCproto *pt = gco2pt(o); gc_traverse_proto(g, pt); return pt->sizept; } else if (LJ_LIKELY(gct == ~LJ_TTHREAD)) { lua_State *th = gco2th(o); setgcrefr(th->gclist, g->gc.grayagain); setgcref(g->gc.grayagain, o); black2gray(o); /* Threads are never black. */ gc_traverse_thread(g, th); return sizeof(lua_State) + sizeof(TValue) * th->stacksize; } else { #if LJ_HASJIT GCtrace *T = gco2trace(o); gc_traverse_trace(g, T); return ((sizeof(GCtrace)+7)&~7) + (T->nins-T->nk)*sizeof(IRIns) + T->nsnap*sizeof(SnapShot) + T->nsnapmap*sizeof(SnapEntry); #else lua_assert(0); return 0; #endif } } /* Propagate all gray objects. */ static size_t gc_propagate_gray(global_State *g) { size_t m = 0; while (gcref(g->gc.gray) != NULL) m += propagatemark(g); return m; } /* -- Sweep phase --------------------------------------------------------- */ /* Type of GC free functions. */ typedef void (LJ_FASTCALL *GCFreeFunc)(global_State *g, GCobj *o); /* GC free functions for LJ_TSTR .. LJ_TUDATA. ORDER LJ_T */ static const GCFreeFunc gc_freefunc[] = { (GCFreeFunc)lj_str_free, (GCFreeFunc)lj_func_freeuv, (GCFreeFunc)lj_state_free, (GCFreeFunc)lj_func_freeproto, (GCFreeFunc)lj_func_free, #if LJ_HASJIT (GCFreeFunc)lj_trace_free, #else (GCFreeFunc)0, #endif #if LJ_HASFFI (GCFreeFunc)lj_cdata_free, #else (GCFreeFunc)0, #endif (GCFreeFunc)lj_tab_free, (GCFreeFunc)lj_udata_free }; /* Full sweep of a GC list. */ #define gc_fullsweep(g, p) gc_sweep(g, (p), ~(uint32_t)0) /* Partial sweep of a GC list. */ static GCRef *gc_sweep(global_State *g, GCRef *p, uint32_t lim) { /* Mask with other white and LJ_GC_FIXED. Or LJ_GC_SFIXED on shutdown. */ int ow = otherwhite(g); GCobj *o; while ((o = gcref(*p)) != NULL && lim-- > 0) { if (o->gch.gct == ~LJ_TTHREAD) /* Need to sweep open upvalues, too. */ gc_fullsweep(g, &gco2th(o)->openupval); if (((o->gch.marked ^ LJ_GC_WHITES) & ow)) { /* Black or current white? */ lua_assert(!isdead(g, o) || (o->gch.marked & LJ_GC_FIXED)); makewhite(g, o); /* Value is alive, change to the current white. */ p = &o->gch.nextgc; } else { /* Otherwise value is dead, free it. */ lua_assert(isdead(g, o) || ow == LJ_GC_SFIXED); setgcrefr(*p, o->gch.nextgc); if (o == gcref(g->gc.root)) setgcrefr(g->gc.root, o->gch.nextgc); /* Adjust list anchor. */ gc_freefunc[o->gch.gct - ~LJ_TSTR](g, o); } } return p; } /* Check whether we can clear a key or a value slot from a table. */ static int gc_mayclear(cTValue *o, int val) { if (tvisgcv(o)) { /* Only collectable objects can be weak references. */ if (tvisstr(o)) { /* But strings cannot be used as weak references. */ gc_mark_str(strV(o)); /* And need to be marked. */ return 0; } if (iswhite(gcV(o))) return 1; /* Object is about to be collected. */ if (tvisudata(o) && val && isfinalized(udataV(o))) return 1; /* Finalized userdata is dropped only from values. */ } return 0; /* Cannot clear. */ } /* Clear collected entries from weak tables. */ static void gc_clearweak(GCobj *o) { while (o) { GCtab *t = gco2tab(o); lua_assert((t->marked & LJ_GC_WEAK)); if ((t->marked & LJ_GC_WEAKVAL)) { MSize i, asize = t->asize; for (i = 0; i < asize; i++) { /* Clear array slot when value is about to be collected. */ TValue *tv = arrayslot(t, i); if (gc_mayclear(tv, 1)) setnilV(tv); } } if (t->hmask > 0) { Node *node = noderef(t->node); MSize i, hmask = t->hmask; for (i = 0; i <= hmask; i++) { Node *n = &node[i]; /* Clear hash slot when key or value is about to be collected. */ if (!tvisnil(&n->val) && (gc_mayclear(&n->key, 0) || gc_mayclear(&n->val, 1))) setnilV(&n->val); } } o = gcref(t->gclist); } } /* Call a userdata or cdata finalizer. */ static void gc_call_finalizer(global_State *g, lua_State *L, cTValue *mo, GCobj *o) { /* Save and restore lots of state around the __gc callback. */ uint8_t oldh = hook_save(g); GCSize oldt = g->gc.threshold; int errcode; TValue *top; lj_trace_abort(g); hook_entergc(g); /* Disable hooks and new traces during __gc. */ g->gc.threshold = LJ_MAX_MEM; /* Prevent GC steps. */ top = L->top; copyTV(L, top++, mo); if (LJ_FR2) setnilV(top++); setgcV(L, top, o, ~o->gch.gct); L->top = top+1; errcode = lj_vm_pcall(L, top, 1+0, -1); /* Stack: |mo|o| -> | */ hook_restore(g, oldh); g->gc.threshold = oldt; /* Restore GC threshold. */ if (errcode) lj_err_throw(L, errcode); /* Propagate errors. */ } /* Finalize one userdata or cdata object from the mmudata list. */ static void gc_finalize(lua_State *L) { global_State *g = G(L); GCobj *o = gcnext(gcref(g->gc.mmudata)); cTValue *mo; lua_assert(tvref(g->jit_base) == NULL); /* Must not be called on trace. */ /* Unchain from list of userdata to be finalized. */ if (o == gcref(g->gc.mmudata)) setgcrefnull(g->gc.mmudata); else setgcrefr(gcref(g->gc.mmudata)->gch.nextgc, o->gch.nextgc); #if LJ_HASFFI if (o->gch.gct == ~LJ_TCDATA) { TValue tmp, *tv; /* Add cdata back to the GC list and make it white. */ setgcrefr(o->gch.nextgc, g->gc.root); setgcref(g->gc.root, o); makewhite(g, o); o->gch.marked &= (uint8_t)~LJ_GC_CDATA_FIN; /* Resolve finalizer. */ setcdataV(L, &tmp, gco2cd(o)); tv = lj_tab_set(L, ctype_ctsG(g)->finalizer, &tmp); if (!tvisnil(tv)) { g->gc.nocdatafin = 0; copyTV(L, &tmp, tv); setnilV(tv); /* Clear entry in finalizer table. */ gc_call_finalizer(g, L, &tmp, o); } return; } #endif /* Add userdata back to the main userdata list and make it white. */ setgcrefr(o->gch.nextgc, mainthread(g)->nextgc); setgcref(mainthread(g)->nextgc, o); makewhite(g, o); /* Resolve the __gc metamethod. */ mo = lj_meta_fastg(g, tabref(gco2ud(o)->metatable), MM_gc); if (mo) gc_call_finalizer(g, L, mo, o); } /* Finalize all userdata objects from mmudata list. */ void lj_gc_finalize_udata(lua_State *L) { while (gcref(G(L)->gc.mmudata) != NULL) gc_finalize(L); } #if LJ_HASFFI /* Finalize all cdata objects from finalizer table. */ void lj_gc_finalize_cdata(lua_State *L) { global_State *g = G(L); CTState *cts = ctype_ctsG(g); if (cts) { GCtab *t = cts->finalizer; Node *node = noderef(t->node); ptrdiff_t i; setgcrefnull(t->metatable); /* Mark finalizer table as disabled. */ for (i = (ptrdiff_t)t->hmask; i >= 0; i--) if (!tvisnil(&node[i].val) && tviscdata(&node[i].key)) { GCobj *o = gcV(&node[i].key); TValue tmp; makewhite(g, o); o->gch.marked &= (uint8_t)~LJ_GC_CDATA_FIN; copyTV(L, &tmp, &node[i].val); setnilV(&node[i].val); gc_call_finalizer(g, L, &tmp, o); } } } #endif /* Free all remaining GC objects. */ void lj_gc_freeall(global_State *g) { MSize i, strmask; /* Free everything, except super-fixed objects (the main thread). */ g->gc.currentwhite = LJ_GC_WHITES | LJ_GC_SFIXED; gc_fullsweep(g, &g->gc.root); strmask = g->strmask; for (i = 0; i <= strmask; i++) /* Free all string hash chains. */ gc_fullsweep(g, &g->strhash[i]); } /* -- Collector ----------------------------------------------------------- */ /* Atomic part of the GC cycle, transitioning from mark to sweep phase. */ static void atomic(global_State *g, lua_State *L) { size_t udsize; gc_mark_uv(g); /* Need to remark open upvalues (the thread may be dead). */ gc_propagate_gray(g); /* Propagate any left-overs. */ setgcrefr(g->gc.gray, g->gc.weak); /* Empty the list of weak tables. */ setgcrefnull(g->gc.weak); lua_assert(!iswhite(obj2gco(mainthread(g)))); gc_markobj(g, L); /* Mark running thread. */ gc_traverse_curtrace(g); /* Traverse current trace. */ gc_mark_gcroot(g); /* Mark GC roots (again). */ gc_propagate_gray(g); /* Propagate all of the above. */ setgcrefr(g->gc.gray, g->gc.grayagain); /* Empty the 2nd chance list. */ setgcrefnull(g->gc.grayagain); gc_propagate_gray(g); /* Propagate it. */ udsize = lj_gc_separateudata(g, 0); /* Separate userdata to be finalized. */ gc_mark_mmudata(g); /* Mark them. */ udsize += gc_propagate_gray(g); /* And propagate the marks. */ /* All marking done, clear weak tables. */ gc_clearweak(gcref(g->gc.weak)); lj_buf_shrink(L, &g->tmpbuf); /* Shrink temp buffer. */ /* Prepare for sweep phase. */ g->gc.currentwhite = (uint8_t)otherwhite(g); /* Flip current white. */ g->strempty.marked = g->gc.currentwhite; setmref(g->gc.sweep, &g->gc.root); g->gc.estimate = g->gc.total - (GCSize)udsize; /* Initial estimate. */ } /* GC state machine. Returns a cost estimate for each step performed. */ static size_t gc_onestep(lua_State *L) { global_State *g = G(L); switch (g->gc.state) { case GCSpause: gc_mark_start(g); /* Start a new GC cycle by marking all GC roots. */ return 0; case GCSpropagate: if (gcref(g->gc.gray) != NULL) return propagatemark(g); /* Propagate one gray object. */ g->gc.state = GCSatomic; /* End of mark phase. */ return 0; case GCSatomic: if (tvref(g->jit_base)) /* Don't run atomic phase on trace. */ return LJ_MAX_MEM; atomic(g, L); g->gc.state = GCSsweepstring; /* Start of sweep phase. */ g->gc.sweepstr = 0; return 0; case GCSsweepstring: { GCSize old = g->gc.total; gc_fullsweep(g, &g->strhash[g->gc.sweepstr++]); /* Sweep one chain. */ if (g->gc.sweepstr > g->strmask) g->gc.state = GCSsweep; /* All string hash chains sweeped. */ lua_assert(old >= g->gc.total); g->gc.estimate -= old - g->gc.total; return GCSWEEPCOST; } case GCSsweep: { GCSize old = g->gc.total; setmref(g->gc.sweep, gc_sweep(g, mref(g->gc.sweep, GCRef), GCSWEEPMAX)); lua_assert(old >= g->gc.total); g->gc.estimate -= old - g->gc.total; if (gcref(*mref(g->gc.sweep, GCRef)) == NULL) { if (g->strnum <= (g->strmask >> 2) && g->strmask > LJ_MIN_STRTAB*2-1) lj_str_resize(L, g->strmask >> 1); /* Shrink string table. */ if (gcref(g->gc.mmudata)) { /* Need any finalizations? */ g->gc.state = GCSfinalize; #if LJ_HASFFI g->gc.nocdatafin = 1; #endif } else { /* Otherwise skip this phase to help the JIT. */ g->gc.state = GCSpause; /* End of GC cycle. */ g->gc.debt = 0; } } return GCSWEEPMAX*GCSWEEPCOST; } case GCSfinalize: if (gcref(g->gc.mmudata) != NULL) { if (tvref(g->jit_base)) /* Don't call finalizers on trace. */ return LJ_MAX_MEM; gc_finalize(L); /* Finalize one userdata object. */ if (g->gc.estimate > GCFINALIZECOST) g->gc.estimate -= GCFINALIZECOST; return GCFINALIZECOST; } #if LJ_HASFFI if (!g->gc.nocdatafin) lj_tab_rehash(L, ctype_ctsG(g)->finalizer); #endif g->gc.state = GCSpause; /* End of GC cycle. */ g->gc.debt = 0; return 0; default: lua_assert(0); return 0; } } /* Perform a limited amount of incremental GC steps. */ int LJ_FASTCALL lj_gc_step(lua_State *L) { global_State *g = G(L); GCSize lim; int32_t ostate = g->vmstate; setvmstate(g, GC); lim = (GCSTEPSIZE/100) * g->gc.stepmul; if (lim == 0) lim = LJ_MAX_MEM; if (g->gc.total > g->gc.threshold) g->gc.debt += g->gc.total - g->gc.threshold; do { lim -= (GCSize)gc_onestep(L); if (g->gc.state == GCSpause) { g->gc.threshold = (g->gc.estimate/100) * g->gc.pause; g->vmstate = ostate; return 1; /* Finished a GC cycle. */ } } while (sizeof(lim) == 8 ? ((int64_t)lim > 0) : ((int32_t)lim > 0)); if (g->gc.debt < GCSTEPSIZE) { g->gc.threshold = g->gc.total + GCSTEPSIZE; g->vmstate = ostate; return -1; } else { g->gc.debt -= GCSTEPSIZE; g->gc.threshold = g->gc.total; g->vmstate = ostate; return 0; } } /* Ditto, but fix the stack top first. */ void LJ_FASTCALL lj_gc_step_fixtop(lua_State *L) { if (curr_funcisL(L)) L->top = curr_topL(L); lj_gc_step(L); } #if LJ_HASJIT /* Perform multiple GC steps. Called from JIT-compiled code. */ int LJ_FASTCALL lj_gc_step_jit(global_State *g, MSize steps) { lua_State *L = gco2th(gcref(g->cur_L)); L->base = tvref(G(L)->jit_base); L->top = curr_topL(L); while (steps-- > 0 && lj_gc_step(L) == 0) ; /* Return 1 to force a trace exit. */ return (G(L)->gc.state == GCSatomic || G(L)->gc.state == GCSfinalize); } #endif /* Perform a full GC cycle. */ void lj_gc_fullgc(lua_State *L) { global_State *g = G(L); int32_t ostate = g->vmstate; setvmstate(g, GC); if (g->gc.state <= GCSatomic) { /* Caught somewhere in the middle. */ setmref(g->gc.sweep, &g->gc.root); /* Sweep everything (preserving it). */ setgcrefnull(g->gc.gray); /* Reset lists from partial propagation. */ setgcrefnull(g->gc.grayagain); setgcrefnull(g->gc.weak); g->gc.state = GCSsweepstring; /* Fast forward to the sweep phase. */ g->gc.sweepstr = 0; } while (g->gc.state == GCSsweepstring || g->gc.state == GCSsweep) gc_onestep(L); /* Finish sweep. */ lua_assert(g->gc.state == GCSfinalize || g->gc.state == GCSpause); /* Now perform a full GC. */ g->gc.state = GCSpause; do { gc_onestep(L); } while (g->gc.state != GCSpause); g->gc.threshold = (g->gc.estimate/100) * g->gc.pause; g->vmstate = ostate; } /* -- Write barriers ------------------------------------------------------ */ /* Move the GC propagation frontier forward. */ void lj_gc_barrierf(global_State *g, GCobj *o, GCobj *v) { lua_assert(isblack(o) && iswhite(v) && !isdead(g, v) && !isdead(g, o)); lua_assert(g->gc.state != GCSfinalize && g->gc.state != GCSpause); lua_assert(o->gch.gct != ~LJ_TTAB); /* Preserve invariant during propagation. Otherwise it doesn't matter. */ if (g->gc.state == GCSpropagate || g->gc.state == GCSatomic) gc_mark(g, v); /* Move frontier forward. */ else makewhite(g, o); /* Make it white to avoid the following barrier. */ } /* Specialized barrier for closed upvalue. Pass &uv->tv. */ void LJ_FASTCALL lj_gc_barrieruv(global_State *g, TValue *tv) { #define TV2MARKED(x) \ (*((uint8_t *)(x) - offsetof(GCupval, tv) + offsetof(GCupval, marked))) if (g->gc.state == GCSpropagate || g->gc.state == GCSatomic) gc_mark(g, gcV(tv)); else TV2MARKED(tv) = (TV2MARKED(tv) & (uint8_t)~LJ_GC_COLORS) | curwhite(g); #undef TV2MARKED } /* Close upvalue. Also needs a write barrier. */ void lj_gc_closeuv(global_State *g, GCupval *uv) { GCobj *o = obj2gco(uv); /* Copy stack slot to upvalue itself and point to the copy. */ copyTV(mainthread(g), &uv->tv, uvval(uv)); setmref(uv->v, &uv->tv); uv->closed = 1; setgcrefr(o->gch.nextgc, g->gc.root); setgcref(g->gc.root, o); if (isgray(o)) { /* A closed upvalue is never gray, so fix this. */ if (g->gc.state == GCSpropagate || g->gc.state == GCSatomic) { gray2black(o); /* Make it black and preserve invariant. */ if (tviswhite(&uv->tv)) lj_gc_barrierf(g, o, gcV(&uv->tv)); } else { makewhite(g, o); /* Make it white, i.e. sweep the upvalue. */ lua_assert(g->gc.state != GCSfinalize && g->gc.state != GCSpause); } } } #if LJ_HASJIT /* Mark a trace if it's saved during the propagation phase. */ void lj_gc_barriertrace(global_State *g, uint32_t traceno) { if (g->gc.state == GCSpropagate || g->gc.state == GCSatomic) gc_marktrace(g, traceno); } #endif /* -- Allocator ----------------------------------------------------------- */ /* Call pluggable memory allocator to allocate or resize a fragment. */ void *lj_mem_realloc(lua_State *L, void *p, GCSize osz, GCSize nsz) { global_State *g = G(L); lua_assert((osz == 0) == (p == NULL)); p = g->allocf(g->allocd, p, osz, nsz); if (p == NULL && nsz > 0) lj_err_mem(L); lua_assert((nsz == 0) == (p == NULL)); lua_assert(checkptrGC(p)); g->gc.total = (g->gc.total - osz) + nsz; return p; } /* Allocate new GC object and link it to the root set. */ void * LJ_FASTCALL lj_mem_newgco(lua_State *L, GCSize size) { global_State *g = G(L); GCobj *o = (GCobj *)g->allocf(g->allocd, NULL, 0, size); if (o == NULL) lj_err_mem(L); lua_assert(checkptrGC(o)); g->gc.total += size; setgcrefr(o->gch.nextgc, g->gc.root); setgcref(g->gc.root, o); newwhite(g, o); return o; } /* Resize growable vector. */ void *lj_mem_grow(lua_State *L, void *p, MSize *szp, MSize lim, MSize esz) { MSize sz = (*szp) << 1; if (sz < LJ_MIN_VECSZ) sz = LJ_MIN_VECSZ; if (sz > lim) sz = lim; p = lj_mem_realloc(L, p, (*szp)*esz, sz*esz); *szp = sz; return p; } luajit-2.1.0~beta3+dfsg.orig/src/lj_vm.h0000644000175100017510000000707013101703334017371 0ustar ondrejondrej/* ** Assembler VM interface definitions. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_VM_H #define _LJ_VM_H #include "lj_obj.h" /* Entry points for ASM parts of VM. */ LJ_ASMF void lj_vm_call(lua_State *L, TValue *base, int nres1); LJ_ASMF int lj_vm_pcall(lua_State *L, TValue *base, int nres1, ptrdiff_t ef); typedef TValue *(*lua_CPFunction)(lua_State *L, lua_CFunction func, void *ud); LJ_ASMF int lj_vm_cpcall(lua_State *L, lua_CFunction func, void *ud, lua_CPFunction cp); LJ_ASMF int lj_vm_resume(lua_State *L, TValue *base, int nres1, ptrdiff_t ef); LJ_ASMF_NORET void LJ_FASTCALL lj_vm_unwind_c(void *cframe, int errcode); LJ_ASMF_NORET void LJ_FASTCALL lj_vm_unwind_ff(void *cframe); #if LJ_ABI_WIN && LJ_TARGET_X86 LJ_ASMF_NORET void LJ_FASTCALL lj_vm_rtlunwind(void *cframe, void *excptrec, void *unwinder, int errcode); #endif LJ_ASMF void lj_vm_unwind_c_eh(void); LJ_ASMF void lj_vm_unwind_ff_eh(void); #if LJ_TARGET_X86ORX64 LJ_ASMF void lj_vm_unwind_rethrow(void); #endif /* Miscellaneous functions. */ #if LJ_TARGET_X86ORX64 LJ_ASMF int lj_vm_cpuid(uint32_t f, uint32_t res[4]); #endif #if LJ_TARGET_PPC void lj_vm_cachesync(void *start, void *end); #endif LJ_ASMF double lj_vm_foldarith(double x, double y, int op); #if LJ_HASJIT LJ_ASMF double lj_vm_foldfpm(double x, int op); #endif #if !LJ_ARCH_HASFPU /* Declared in lj_obj.h: LJ_ASMF int32_t lj_vm_tobit(double x); */ #endif /* Dispatch targets for recording and hooks. */ LJ_ASMF void lj_vm_record(void); LJ_ASMF void lj_vm_inshook(void); LJ_ASMF void lj_vm_rethook(void); LJ_ASMF void lj_vm_callhook(void); LJ_ASMF void lj_vm_profhook(void); /* Trace exit handling. */ LJ_ASMF void lj_vm_exit_handler(void); LJ_ASMF void lj_vm_exit_interp(void); /* Internal math helper functions. */ #if LJ_TARGET_PPC || LJ_TARGET_ARM64 || (LJ_TARGET_MIPS && LJ_ABI_SOFTFP) #define lj_vm_floor floor #define lj_vm_ceil ceil #else LJ_ASMF double lj_vm_floor(double); LJ_ASMF double lj_vm_ceil(double); #if LJ_TARGET_ARM LJ_ASMF double lj_vm_floor_sf(double); LJ_ASMF double lj_vm_ceil_sf(double); #endif #endif #ifdef LUAJIT_NO_LOG2 LJ_ASMF double lj_vm_log2(double); #else #define lj_vm_log2 log2 #endif #if !(defined(_LJ_DISPATCH_H) && LJ_TARGET_MIPS) LJ_ASMF int32_t LJ_FASTCALL lj_vm_modi(int32_t, int32_t); #endif #if LJ_HASJIT #if LJ_TARGET_X86ORX64 LJ_ASMF void lj_vm_floor_sse(void); LJ_ASMF void lj_vm_ceil_sse(void); LJ_ASMF void lj_vm_trunc_sse(void); LJ_ASMF void lj_vm_powi_sse(void); #define lj_vm_powi NULL #else LJ_ASMF double lj_vm_powi(double, int32_t); #endif #if LJ_TARGET_PPC || LJ_TARGET_ARM64 #define lj_vm_trunc trunc #else LJ_ASMF double lj_vm_trunc(double); #if LJ_TARGET_ARM LJ_ASMF double lj_vm_trunc_sf(double); #endif #endif #ifdef LUAJIT_NO_EXP2 LJ_ASMF double lj_vm_exp2(double); #else #define lj_vm_exp2 exp2 #endif #if LJ_HASFFI LJ_ASMF int lj_vm_errno(void); #endif #endif /* Continuations for metamethods. */ LJ_ASMF void lj_cont_cat(void); /* Continue with concatenation. */ LJ_ASMF void lj_cont_ra(void); /* Store result in RA from instruction. */ LJ_ASMF void lj_cont_nop(void); /* Do nothing, just continue execution. */ LJ_ASMF void lj_cont_condt(void); /* Branch if result is true. */ LJ_ASMF void lj_cont_condf(void); /* Branch if result is false. */ LJ_ASMF void lj_cont_hook(void); /* Continue from hook yield. */ LJ_ASMF void lj_cont_stitch(void); /* Trace stitching. */ /* Start of the ASM code. */ LJ_ASMF char lj_vm_asm_begin[]; /* Bytecode offsets are relative to lj_vm_asm_begin. */ #define makeasmfunc(ofs) ((ASMFunction)(lj_vm_asm_begin + (ofs))) #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_target_mips.h0000644000175100017510000002351713101703334021271 0ustar ondrejondrej/* ** Definitions for MIPS CPUs. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_TARGET_MIPS_H #define _LJ_TARGET_MIPS_H /* -- Registers IDs ------------------------------------------------------- */ #define GPRDEF(_) \ _(R0) _(R1) _(R2) _(R3) _(R4) _(R5) _(R6) _(R7) \ _(R8) _(R9) _(R10) _(R11) _(R12) _(R13) _(R14) _(R15) \ _(R16) _(R17) _(R18) _(R19) _(R20) _(R21) _(R22) _(R23) \ _(R24) _(R25) _(SYS1) _(SYS2) _(R28) _(SP) _(R30) _(RA) #if LJ_SOFTFP #define FPRDEF(_) #else #define FPRDEF(_) \ _(F0) _(F1) _(F2) _(F3) _(F4) _(F5) _(F6) _(F7) \ _(F8) _(F9) _(F10) _(F11) _(F12) _(F13) _(F14) _(F15) \ _(F16) _(F17) _(F18) _(F19) _(F20) _(F21) _(F22) _(F23) \ _(F24) _(F25) _(F26) _(F27) _(F28) _(F29) _(F30) _(F31) #endif #define VRIDDEF(_) #define RIDENUM(name) RID_##name, enum { GPRDEF(RIDENUM) /* General-purpose registers (GPRs). */ FPRDEF(RIDENUM) /* Floating-point registers (FPRs). */ RID_MAX, RID_ZERO = RID_R0, RID_TMP = RID_RA, RID_GP = RID_R28, /* Calling conventions. */ RID_RET = RID_R2, #if LJ_LE RID_RETHI = RID_R3, RID_RETLO = RID_R2, #else RID_RETHI = RID_R2, RID_RETLO = RID_R3, #endif #if LJ_SOFTFP RID_FPRET = RID_R2, #else RID_FPRET = RID_F0, #endif RID_CFUNCADDR = RID_R25, /* These definitions must match with the *.dasc file(s): */ RID_BASE = RID_R16, /* Interpreter BASE. */ RID_LPC = RID_R18, /* Interpreter PC. */ RID_DISPATCH = RID_R19, /* Interpreter DISPATCH table. */ RID_LREG = RID_R20, /* Interpreter L. */ RID_JGL = RID_R30, /* On-trace: global_State + 32768. */ /* Register ranges [min, max) and number of registers. */ RID_MIN_GPR = RID_R0, RID_MAX_GPR = RID_RA+1, RID_MIN_FPR = RID_MAX_GPR, #if LJ_SOFTFP RID_MAX_FPR = RID_MIN_FPR, #else RID_MAX_FPR = RID_F31+1, #endif RID_NUM_GPR = RID_MAX_GPR - RID_MIN_GPR, RID_NUM_FPR = RID_MAX_FPR - RID_MIN_FPR /* Only even regs are used. */ }; #define RID_NUM_KREF RID_NUM_GPR #define RID_MIN_KREF RID_R0 /* -- Register sets ------------------------------------------------------- */ /* Make use of all registers, except ZERO, TMP, SP, SYS1, SYS2, JGL and GP. */ #define RSET_FIXED \ (RID2RSET(RID_ZERO)|RID2RSET(RID_TMP)|RID2RSET(RID_SP)|\ RID2RSET(RID_SYS1)|RID2RSET(RID_SYS2)|RID2RSET(RID_JGL)|RID2RSET(RID_GP)) #define RSET_GPR (RSET_RANGE(RID_MIN_GPR, RID_MAX_GPR) - RSET_FIXED) #if LJ_SOFTFP #define RSET_FPR 0 #else #if LJ_32 #define RSET_FPR \ (RID2RSET(RID_F0)|RID2RSET(RID_F2)|RID2RSET(RID_F4)|RID2RSET(RID_F6)|\ RID2RSET(RID_F8)|RID2RSET(RID_F10)|RID2RSET(RID_F12)|RID2RSET(RID_F14)|\ RID2RSET(RID_F16)|RID2RSET(RID_F18)|RID2RSET(RID_F20)|RID2RSET(RID_F22)|\ RID2RSET(RID_F24)|RID2RSET(RID_F26)|RID2RSET(RID_F28)|RID2RSET(RID_F30)) #else #define RSET_FPR RSET_RANGE(RID_MIN_FPR, RID_MAX_FPR) #endif #endif #define RSET_ALL (RSET_GPR|RSET_FPR) #define RSET_INIT RSET_ALL #define RSET_SCRATCH_GPR \ (RSET_RANGE(RID_R1, RID_R15+1)|\ RID2RSET(RID_R24)|RID2RSET(RID_R25)) #if LJ_SOFTFP #define RSET_SCRATCH_FPR 0 #else #if LJ_32 #define RSET_SCRATCH_FPR \ (RID2RSET(RID_F0)|RID2RSET(RID_F2)|RID2RSET(RID_F4)|RID2RSET(RID_F6)|\ RID2RSET(RID_F8)|RID2RSET(RID_F10)|RID2RSET(RID_F12)|RID2RSET(RID_F14)|\ RID2RSET(RID_F16)|RID2RSET(RID_F18)) #else #define RSET_SCRATCH_FPR RSET_RANGE(RID_F0, RID_F24) #endif #endif #define RSET_SCRATCH (RSET_SCRATCH_GPR|RSET_SCRATCH_FPR) #define REGARG_FIRSTGPR RID_R4 #if LJ_32 #define REGARG_LASTGPR RID_R7 #define REGARG_NUMGPR 4 #else #define REGARG_LASTGPR RID_R11 #define REGARG_NUMGPR 8 #endif #if LJ_ABI_SOFTFP #define REGARG_FIRSTFPR 0 #define REGARG_LASTFPR 0 #define REGARG_NUMFPR 0 #else #define REGARG_FIRSTFPR RID_F12 #if LJ_32 #define REGARG_LASTFPR RID_F14 #define REGARG_NUMFPR 2 #else #define REGARG_LASTFPR RID_F19 #define REGARG_NUMFPR 8 #endif #endif /* -- Spill slots --------------------------------------------------------- */ /* Spill slots are 32 bit wide. An even/odd pair is used for FPRs. ** ** SPS_FIXED: Available fixed spill slots in interpreter frame. ** This definition must match with the *.dasc file(s). ** ** SPS_FIRST: First spill slot for general use. */ #if LJ_32 #define SPS_FIXED 5 #else #define SPS_FIXED 4 #endif #define SPS_FIRST 4 #define SPOFS_TMP 0 #define sps_scale(slot) (4 * (int32_t)(slot)) #define sps_align(slot) (((slot) - SPS_FIXED + 1) & ~1) /* -- Exit state ---------------------------------------------------------- */ /* This definition must match with the *.dasc file(s). */ typedef struct { #if !LJ_SOFTFP lua_Number fpr[RID_NUM_FPR]; /* Floating-point registers. */ #endif intptr_t gpr[RID_NUM_GPR]; /* General-purpose registers. */ int32_t spill[256]; /* Spill slots. */ } ExitState; /* Highest exit + 1 indicates stack check. */ #define EXITSTATE_CHECKEXIT 1 /* Return the address of a per-trace exit stub. */ static LJ_AINLINE uint32_t *exitstub_trace_addr_(uint32_t *p) { while (*p == 0x00000000) p++; /* Skip MIPSI_NOP. */ return p; } /* Avoid dependence on lj_jit.h if only including lj_target.h. */ #define exitstub_trace_addr(T, exitno) \ exitstub_trace_addr_((MCode *)((char *)(T)->mcode + (T)->szmcode)) /* -- Instructions -------------------------------------------------------- */ /* Instruction fields. */ #define MIPSF_S(r) ((r) << 21) #define MIPSF_T(r) ((r) << 16) #define MIPSF_D(r) ((r) << 11) #define MIPSF_R(r) ((r) << 21) #define MIPSF_H(r) ((r) << 16) #define MIPSF_G(r) ((r) << 11) #define MIPSF_F(r) ((r) << 6) #define MIPSF_A(n) ((n) << 6) #define MIPSF_M(n) ((n) << 11) #define MIPSF_L(n) ((n) << 6) typedef enum MIPSIns { MIPSI_D = 0x38, MIPSI_DV = 0x10, MIPSI_D32 = 0x3c, /* Integer instructions. */ MIPSI_MOVE = 0x00000025, MIPSI_NOP = 0x00000000, MIPSI_LI = 0x24000000, MIPSI_LU = 0x34000000, MIPSI_LUI = 0x3c000000, MIPSI_AND = 0x00000024, MIPSI_ANDI = 0x30000000, MIPSI_OR = 0x00000025, MIPSI_ORI = 0x34000000, MIPSI_XOR = 0x00000026, MIPSI_XORI = 0x38000000, MIPSI_NOR = 0x00000027, MIPSI_SLT = 0x0000002a, MIPSI_SLTU = 0x0000002b, MIPSI_SLTI = 0x28000000, MIPSI_SLTIU = 0x2c000000, MIPSI_ADDU = 0x00000021, MIPSI_ADDIU = 0x24000000, MIPSI_SUB = 0x00000022, MIPSI_SUBU = 0x00000023, MIPSI_MUL = 0x70000002, MIPSI_DIV = 0x0000001a, MIPSI_DIVU = 0x0000001b, MIPSI_MOVZ = 0x0000000a, MIPSI_MOVN = 0x0000000b, MIPSI_MFHI = 0x00000010, MIPSI_MFLO = 0x00000012, MIPSI_MULT = 0x00000018, MIPSI_SLL = 0x00000000, MIPSI_SRL = 0x00000002, MIPSI_SRA = 0x00000003, MIPSI_ROTR = 0x00200002, /* MIPSXXR2 */ MIPSI_DROTR = 0x0020003a, MIPSI_DROTR32 = 0x0020003e, MIPSI_SLLV = 0x00000004, MIPSI_SRLV = 0x00000006, MIPSI_SRAV = 0x00000007, MIPSI_ROTRV = 0x00000046, /* MIPSXXR2 */ MIPSI_DROTRV = 0x00000056, MIPSI_SEB = 0x7c000420, /* MIPSXXR2 */ MIPSI_SEH = 0x7c000620, /* MIPSXXR2 */ MIPSI_WSBH = 0x7c0000a0, /* MIPSXXR2 */ MIPSI_DSBH = 0x7c0000a4, MIPSI_B = 0x10000000, MIPSI_J = 0x08000000, MIPSI_JAL = 0x0c000000, MIPSI_JALX = 0x74000000, MIPSI_JR = 0x00000008, MIPSI_JALR = 0x0000f809, MIPSI_BEQ = 0x10000000, MIPSI_BNE = 0x14000000, MIPSI_BLEZ = 0x18000000, MIPSI_BGTZ = 0x1c000000, MIPSI_BLTZ = 0x04000000, MIPSI_BGEZ = 0x04010000, /* Load/store instructions. */ MIPSI_LW = 0x8c000000, MIPSI_LD = 0xdc000000, MIPSI_SW = 0xac000000, MIPSI_SD = 0xfc000000, MIPSI_LB = 0x80000000, MIPSI_SB = 0xa0000000, MIPSI_LH = 0x84000000, MIPSI_SH = 0xa4000000, MIPSI_LBU = 0x90000000, MIPSI_LHU = 0x94000000, MIPSI_LWC1 = 0xc4000000, MIPSI_SWC1 = 0xe4000000, MIPSI_LDC1 = 0xd4000000, MIPSI_SDC1 = 0xf4000000, /* MIPS64 instructions. */ MIPSI_DADD = 0x0000002c, MIPSI_DADDI = 0x60000000, MIPSI_DADDU = 0x0000002d, MIPSI_DADDIU = 0x64000000, MIPSI_DSUB = 0x0000002e, MIPSI_DSUBU = 0x0000002f, MIPSI_DDIV = 0x0000001e, MIPSI_DDIVU = 0x0000001f, MIPSI_DMULT = 0x0000001c, MIPSI_DMULTU = 0x0000001d, MIPSI_DSLL = 0x00000038, MIPSI_DSRL = 0x0000003a, MIPSI_DSLLV = 0x00000014, MIPSI_DSRLV = 0x00000016, MIPSI_DSRA = 0x0000003b, MIPSI_DSRAV = 0x00000017, MIPSI_DSRA32 = 0x0000003f, MIPSI_DSLL32 = 0x0000003c, MIPSI_DSRL32 = 0x0000003e, MIPSI_DSHD = 0x7c000164, MIPSI_AADDU = LJ_32 ? MIPSI_ADDU : MIPSI_DADDU, MIPSI_AADDIU = LJ_32 ? MIPSI_ADDIU : MIPSI_DADDIU, MIPSI_ASUBU = LJ_32 ? MIPSI_SUBU : MIPSI_DSUBU, MIPSI_AL = LJ_32 ? MIPSI_LW : MIPSI_LD, MIPSI_AS = LJ_32 ? MIPSI_SW : MIPSI_SD, /* Extract/insert instructions. */ MIPSI_DEXTM = 0x7c000001, MIPSI_DEXTU = 0x7c000002, MIPSI_DEXT = 0x7c000003, MIPSI_DINSM = 0x7c000005, MIPSI_DINSU = 0x7c000006, MIPSI_DINS = 0x7c000007, MIPSI_RINT_D = 0x4620001a, MIPSI_RINT_S = 0x4600001a, MIPSI_RINT = 0x4400001a, MIPSI_FLOOR_D = 0x4620000b, MIPSI_CEIL_D = 0x4620000a, MIPSI_ROUND_D = 0x46200008, /* FP instructions. */ MIPSI_MOV_S = 0x46000006, MIPSI_MOV_D = 0x46200006, MIPSI_MOVT_D = 0x46210011, MIPSI_MOVF_D = 0x46200011, MIPSI_ABS_D = 0x46200005, MIPSI_NEG_D = 0x46200007, MIPSI_ADD_D = 0x46200000, MIPSI_SUB_D = 0x46200001, MIPSI_MUL_D = 0x46200002, MIPSI_DIV_D = 0x46200003, MIPSI_SQRT_D = 0x46200004, MIPSI_ADD_S = 0x46000000, MIPSI_SUB_S = 0x46000001, MIPSI_CVT_D_S = 0x46000021, MIPSI_CVT_W_S = 0x46000024, MIPSI_CVT_S_D = 0x46200020, MIPSI_CVT_W_D = 0x46200024, MIPSI_CVT_S_W = 0x46800020, MIPSI_CVT_D_W = 0x46800021, MIPSI_CVT_S_L = 0x46a00020, MIPSI_CVT_D_L = 0x46a00021, MIPSI_TRUNC_W_S = 0x4600000d, MIPSI_TRUNC_W_D = 0x4620000d, MIPSI_TRUNC_L_S = 0x46000009, MIPSI_TRUNC_L_D = 0x46200009, MIPSI_FLOOR_W_S = 0x4600000f, MIPSI_FLOOR_W_D = 0x4620000f, MIPSI_MFC1 = 0x44000000, MIPSI_MTC1 = 0x44800000, MIPSI_DMTC1 = 0x44a00000, MIPSI_DMFC1 = 0x44200000, MIPSI_BC1F = 0x45000000, MIPSI_BC1T = 0x45010000, MIPSI_C_EQ_D = 0x46200032, MIPSI_C_OLT_S = 0x46000034, MIPSI_C_OLT_D = 0x46200034, MIPSI_C_ULT_D = 0x46200035, MIPSI_C_OLE_D = 0x46200036, MIPSI_C_ULE_D = 0x46200037, } MIPSIns; #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_asm_mips.h0000644000175100017510000023463713101703334020572 0ustar ondrejondrej/* ** MIPS IR assembler (SSA IR -> machine code). ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ /* -- Register allocator extensions --------------------------------------- */ /* Allocate a register with a hint. */ static Reg ra_hintalloc(ASMState *as, IRRef ref, Reg hint, RegSet allow) { Reg r = IR(ref)->r; if (ra_noreg(r)) { if (!ra_hashint(r) && !iscrossref(as, ref)) ra_sethint(IR(ref)->r, hint); /* Propagate register hint. */ r = ra_allocref(as, ref, allow); } ra_noweak(as, r); return r; } /* Allocate a register or RID_ZERO. */ static Reg ra_alloc1z(ASMState *as, IRRef ref, RegSet allow) { Reg r = IR(ref)->r; if (ra_noreg(r)) { if (!(allow & RSET_FPR) && irref_isk(ref) && get_kval(IR(ref)) == 0) return RID_ZERO; r = ra_allocref(as, ref, allow); } else { ra_noweak(as, r); } return r; } /* Allocate two source registers for three-operand instructions. */ static Reg ra_alloc2(ASMState *as, IRIns *ir, RegSet allow) { IRIns *irl = IR(ir->op1), *irr = IR(ir->op2); Reg left = irl->r, right = irr->r; if (ra_hasreg(left)) { ra_noweak(as, left); if (ra_noreg(right)) right = ra_alloc1z(as, ir->op2, rset_exclude(allow, left)); else ra_noweak(as, right); } else if (ra_hasreg(right)) { ra_noweak(as, right); left = ra_alloc1z(as, ir->op1, rset_exclude(allow, right)); } else if (ra_hashint(right)) { right = ra_alloc1z(as, ir->op2, allow); left = ra_alloc1z(as, ir->op1, rset_exclude(allow, right)); } else { left = ra_alloc1z(as, ir->op1, allow); right = ra_alloc1z(as, ir->op2, rset_exclude(allow, left)); } return left | (right << 8); } /* -- Guard handling ------------------------------------------------------ */ /* Need some spare long-range jump slots, for out-of-range branches. */ #define MIPS_SPAREJUMP 4 /* Setup spare long-range jump slots per mcarea. */ static void asm_sparejump_setup(ASMState *as) { MCode *mxp = as->mcbot; /* Assumes sizeof(MCLink) == 8. */ if (((uintptr_t)mxp & (LJ_PAGESIZE-1)) == 8) { lua_assert(MIPSI_NOP == 0); memset(mxp+2, 0, MIPS_SPAREJUMP*8); mxp += MIPS_SPAREJUMP*2; lua_assert(mxp < as->mctop); lj_mcode_sync(as->mcbot, mxp); lj_mcode_commitbot(as->J, mxp); as->mcbot = mxp; as->mclim = as->mcbot + MCLIM_REDZONE; } } /* Setup exit stub after the end of each trace. */ static void asm_exitstub_setup(ASMState *as) { MCode *mxp = as->mctop; /* sw TMP, 0(sp); j ->vm_exit_handler; li TMP, traceno */ *--mxp = MIPSI_LI|MIPSF_T(RID_TMP)|as->T->traceno; *--mxp = MIPSI_J|((((uintptr_t)(void *)lj_vm_exit_handler)>>2)&0x03ffffffu); lua_assert(((uintptr_t)mxp ^ (uintptr_t)(void *)lj_vm_exit_handler)>>28 == 0); *--mxp = MIPSI_SW|MIPSF_T(RID_TMP)|MIPSF_S(RID_SP)|0; as->mctop = mxp; } /* Keep this in-sync with exitstub_trace_addr(). */ #define asm_exitstub_addr(as) ((as)->mctop) /* Emit conditional branch to exit for guard. */ static void asm_guard(ASMState *as, MIPSIns mi, Reg rs, Reg rt) { MCode *target = asm_exitstub_addr(as); MCode *p = as->mcp; if (LJ_UNLIKELY(p == as->invmcp)) { as->invmcp = NULL; as->loopinv = 1; as->mcp = p+1; mi = mi ^ ((mi>>28) == 1 ? 0x04000000u : 0x00010000u); /* Invert cond. */ target = p; /* Patch target later in asm_loop_fixup. */ } emit_ti(as, MIPSI_LI, RID_TMP, as->snapno); emit_branch(as, mi, rs, rt, target); } /* -- Operand fusion ------------------------------------------------------ */ /* Limit linear search to this distance. Avoids O(n^2) behavior. */ #define CONFLICT_SEARCH_LIM 31 /* Check if there's no conflicting instruction between curins and ref. */ static int noconflict(ASMState *as, IRRef ref, IROp conflict) { IRIns *ir = as->ir; IRRef i = as->curins; if (i > ref + CONFLICT_SEARCH_LIM) return 0; /* Give up, ref is too far away. */ while (--i > ref) if (ir[i].o == conflict) return 0; /* Conflict found. */ return 1; /* Ok, no conflict. */ } /* Fuse the array base of colocated arrays. */ static int32_t asm_fuseabase(ASMState *as, IRRef ref) { IRIns *ir = IR(ref); if (ir->o == IR_TNEW && ir->op1 <= LJ_MAX_COLOSIZE && !neverfuse(as) && noconflict(as, ref, IR_NEWREF)) return (int32_t)sizeof(GCtab); return 0; } /* Fuse array/hash/upvalue reference into register+offset operand. */ static Reg asm_fuseahuref(ASMState *as, IRRef ref, int32_t *ofsp, RegSet allow) { IRIns *ir = IR(ref); if (ra_noreg(ir->r)) { if (ir->o == IR_AREF) { if (mayfuse(as, ref)) { if (irref_isk(ir->op2)) { IRRef tab = IR(ir->op1)->op1; int32_t ofs = asm_fuseabase(as, tab); IRRef refa = ofs ? tab : ir->op1; ofs += 8*IR(ir->op2)->i; if (checki16(ofs)) { *ofsp = ofs; return ra_alloc1(as, refa, allow); } } } } else if (ir->o == IR_HREFK) { if (mayfuse(as, ref)) { int32_t ofs = (int32_t)(IR(ir->op2)->op2 * sizeof(Node)); if (checki16(ofs)) { *ofsp = ofs; return ra_alloc1(as, ir->op1, allow); } } } else if (ir->o == IR_UREFC) { if (irref_isk(ir->op1)) { GCfunc *fn = ir_kfunc(IR(ir->op1)); intptr_t ofs = (intptr_t)&gcref(fn->l.uvptr[(ir->op2 >> 8)])->uv.tv; intptr_t jgl = (intptr_t)J2G(as->J); if ((uintptr_t)(ofs-jgl) < 65536) { *ofsp = ofs-jgl-32768; return RID_JGL; } else { *ofsp = (int16_t)ofs; return ra_allock(as, ofs-(int16_t)ofs, allow); } } } } *ofsp = 0; return ra_alloc1(as, ref, allow); } /* Fuse XLOAD/XSTORE reference into load/store operand. */ static void asm_fusexref(ASMState *as, MIPSIns mi, Reg rt, IRRef ref, RegSet allow, int32_t ofs) { IRIns *ir = IR(ref); Reg base; if (ra_noreg(ir->r) && canfuse(as, ir)) { if (ir->o == IR_ADD) { intptr_t ofs2; if (irref_isk(ir->op2) && (ofs2 = ofs + get_kval(IR(ir->op2)), checki16(ofs2))) { ref = ir->op1; ofs = (int32_t)ofs2; } } else if (ir->o == IR_STRREF) { intptr_t ofs2 = 65536; lua_assert(ofs == 0); ofs = (int32_t)sizeof(GCstr); if (irref_isk(ir->op2)) { ofs2 = ofs + get_kval(IR(ir->op2)); ref = ir->op1; } else if (irref_isk(ir->op1)) { ofs2 = ofs + get_kval(IR(ir->op1)); ref = ir->op2; } if (!checki16(ofs2)) { /* NYI: Fuse ADD with constant. */ Reg right, left = ra_alloc2(as, ir, allow); right = (left >> 8); left &= 255; emit_hsi(as, mi, rt, RID_TMP, ofs); emit_dst(as, MIPSI_AADDU, RID_TMP, left, right); return; } ofs = ofs2; } } base = ra_alloc1(as, ref, allow); emit_hsi(as, mi, rt, base, ofs); } /* -- Calls --------------------------------------------------------------- */ /* Generate a call to a C function. */ static void asm_gencall(ASMState *as, const CCallInfo *ci, IRRef *args) { uint32_t n, nargs = CCI_XNARGS(ci); int32_t ofs = LJ_32 ? 16 : 0; #if LJ_SOFTFP Reg gpr = REGARG_FIRSTGPR; #else Reg gpr, fpr = REGARG_FIRSTFPR; #endif if ((void *)ci->func) emit_call(as, (void *)ci->func, 1); #if !LJ_SOFTFP for (gpr = REGARG_FIRSTGPR; gpr <= REGARG_LASTGPR; gpr++) as->cost[gpr] = REGCOST(~0u, ASMREF_L); gpr = REGARG_FIRSTGPR; #endif for (n = 0; n < nargs; n++) { /* Setup args. */ IRRef ref = args[n]; if (ref) { IRIns *ir = IR(ref); #if !LJ_SOFTFP if (irt_isfp(ir->t) && fpr <= REGARG_LASTFPR && !(ci->flags & CCI_VARARG)) { lua_assert(rset_test(as->freeset, fpr)); /* Already evicted. */ ra_leftov(as, fpr, ref); fpr += LJ_32 ? 2 : 1; gpr += (LJ_32 && irt_isnum(ir->t)) ? 2 : 1; } else #endif { #if LJ_32 && !LJ_SOFTFP fpr = REGARG_LASTFPR+1; #endif if (LJ_32 && irt_isnum(ir->t)) gpr = (gpr+1) & ~1; if (gpr <= REGARG_LASTGPR) { lua_assert(rset_test(as->freeset, gpr)); /* Already evicted. */ #if !LJ_SOFTFP if (irt_isfp(ir->t)) { RegSet of = as->freeset; Reg r; /* Workaround to protect argument GPRs from being used for remat. */ as->freeset &= ~RSET_RANGE(REGARG_FIRSTGPR, REGARG_LASTGPR+1); r = ra_alloc1(as, ref, RSET_FPR); as->freeset |= (of & RSET_RANGE(REGARG_FIRSTGPR, REGARG_LASTGPR+1)); if (irt_isnum(ir->t)) { #if LJ_32 emit_tg(as, MIPSI_MFC1, gpr+(LJ_BE?0:1), r+1); emit_tg(as, MIPSI_MFC1, gpr+(LJ_BE?1:0), r); lua_assert(rset_test(as->freeset, gpr+1)); /* Already evicted. */ gpr += 2; #else emit_tg(as, MIPSI_DMFC1, gpr, r); gpr++; fpr++; #endif } else if (irt_isfloat(ir->t)) { emit_tg(as, MIPSI_MFC1, gpr, r); gpr++; #if LJ_64 fpr++; #endif } } else #endif { ra_leftov(as, gpr, ref); gpr++; #if LJ_64 fpr++; #endif } } else { Reg r = ra_alloc1z(as, ref, !LJ_SOFTFP && irt_isfp(ir->t) ? RSET_FPR : RSET_GPR); #if LJ_32 if (irt_isnum(ir->t)) ofs = (ofs + 4) & ~4; emit_spstore(as, ir, r, ofs); ofs += irt_isnum(ir->t) ? 8 : 4; #else emit_spstore(as, ir, r, ofs + ((LJ_BE && (LJ_SOFTFP || r < RID_MAX_GPR) && !irt_is64(ir->t)) ? 4 : 0)); ofs += 8; #endif } } } else { #if !LJ_SOFTFP fpr = REGARG_LASTFPR+1; #endif if (gpr <= REGARG_LASTGPR) { gpr++; #if LJ_64 fpr++; #endif } else { ofs += LJ_32 ? 4 : 8; } } checkmclim(as); } } /* Setup result reg/sp for call. Evict scratch regs. */ static void asm_setupresult(ASMState *as, IRIns *ir, const CCallInfo *ci) { RegSet drop = RSET_SCRATCH; #if LJ_32 int hiop = ((ir+1)->o == IR_HIOP && !irt_isnil((ir+1)->t)); #endif #if !LJ_SOFTFP if ((ci->flags & CCI_NOFPRCLOBBER)) drop &= ~RSET_FPR; #endif if (ra_hasreg(ir->r)) rset_clear(drop, ir->r); /* Dest reg handled below. */ #if LJ_32 if (hiop && ra_hasreg((ir+1)->r)) rset_clear(drop, (ir+1)->r); /* Dest reg handled below. */ #endif ra_evictset(as, drop); /* Evictions must be performed first. */ if (ra_used(ir)) { lua_assert(!irt_ispri(ir->t)); if (!LJ_SOFTFP && irt_isfp(ir->t)) { if ((ci->flags & CCI_CASTU64)) { int32_t ofs = sps_scale(ir->s); Reg dest = ir->r; if (ra_hasreg(dest)) { ra_free(as, dest); ra_modified(as, dest); #if LJ_32 emit_tg(as, MIPSI_MTC1, RID_RETHI, dest+1); emit_tg(as, MIPSI_MTC1, RID_RETLO, dest); #else emit_tg(as, MIPSI_DMTC1, RID_RET, dest); #endif } if (ofs) { #if LJ_32 emit_tsi(as, MIPSI_SW, RID_RETLO, RID_SP, ofs+(LJ_BE?4:0)); emit_tsi(as, MIPSI_SW, RID_RETHI, RID_SP, ofs+(LJ_BE?0:4)); #else emit_tsi(as, MIPSI_SD, RID_RET, RID_SP, ofs); #endif } } else { ra_destreg(as, ir, RID_FPRET); } #if LJ_32 } else if (hiop) { ra_destpair(as, ir); #endif } else { ra_destreg(as, ir, RID_RET); } } } static void asm_callx(ASMState *as, IRIns *ir) { IRRef args[CCI_NARGS_MAX*2]; CCallInfo ci; IRRef func; IRIns *irf; ci.flags = asm_callx_flags(as, ir); asm_collectargs(as, ir, &ci, args); asm_setupresult(as, ir, &ci); func = ir->op2; irf = IR(func); if (irf->o == IR_CARG) { func = irf->op1; irf = IR(func); } if (irref_isk(func)) { /* Call to constant address. */ ci.func = (ASMFunction)(void *)get_kval(irf); } else { /* Need specific register for indirect calls. */ Reg r = ra_alloc1(as, func, RID2RSET(RID_CFUNCADDR)); MCode *p = as->mcp; if (r == RID_CFUNCADDR) *--p = MIPSI_NOP; else *--p = MIPSI_MOVE | MIPSF_D(RID_CFUNCADDR) | MIPSF_S(r); *--p = MIPSI_JALR | MIPSF_S(r); as->mcp = p; ci.func = (ASMFunction)(void *)0; } asm_gencall(as, &ci, args); } #if !LJ_SOFTFP static void asm_callround(ASMState *as, IRIns *ir, IRCallID id) { /* The modified regs must match with the *.dasc implementation. */ RegSet drop = RID2RSET(RID_R1)|RID2RSET(RID_R12)|RID2RSET(RID_FPRET)| RID2RSET(RID_F2)|RID2RSET(RID_F4)|RID2RSET(REGARG_FIRSTFPR); if (ra_hasreg(ir->r)) rset_clear(drop, ir->r); ra_evictset(as, drop); ra_destreg(as, ir, RID_FPRET); emit_call(as, (void *)lj_ir_callinfo[id].func, 0); ra_leftov(as, REGARG_FIRSTFPR, ir->op1); } #endif /* -- Returns ------------------------------------------------------------- */ /* Return to lower frame. Guard that it goes to the right spot. */ static void asm_retf(ASMState *as, IRIns *ir) { Reg base = ra_alloc1(as, REF_BASE, RSET_GPR); void *pc = ir_kptr(IR(ir->op2)); int32_t delta = 1+LJ_FR2+bc_a(*((const BCIns *)pc - 1)); as->topslot -= (BCReg)delta; if ((int32_t)as->topslot < 0) as->topslot = 0; irt_setmark(IR(REF_BASE)->t); /* Children must not coalesce with BASE reg. */ emit_setgl(as, base, jit_base); emit_addptr(as, base, -8*delta); asm_guard(as, MIPSI_BNE, RID_TMP, ra_allock(as, igcptr(pc), rset_exclude(RSET_GPR, base))); emit_tsi(as, MIPSI_AL, RID_TMP, base, -8); } /* -- Type conversions ---------------------------------------------------- */ #if !LJ_SOFTFP static void asm_tointg(ASMState *as, IRIns *ir, Reg left) { Reg tmp = ra_scratch(as, rset_exclude(RSET_FPR, left)); Reg dest = ra_dest(as, ir, RSET_GPR); asm_guard(as, MIPSI_BC1F, 0, 0); emit_fgh(as, MIPSI_C_EQ_D, 0, tmp, left); emit_fg(as, MIPSI_CVT_D_W, tmp, tmp); emit_tg(as, MIPSI_MFC1, dest, tmp); emit_fg(as, MIPSI_CVT_W_D, tmp, left); } static void asm_tobit(ASMState *as, IRIns *ir) { RegSet allow = RSET_FPR; Reg dest = ra_dest(as, ir, RSET_GPR); Reg left = ra_alloc1(as, ir->op1, allow); Reg right = ra_alloc1(as, ir->op2, rset_clear(allow, left)); Reg tmp = ra_scratch(as, rset_clear(allow, right)); emit_tg(as, MIPSI_MFC1, dest, tmp); emit_fgh(as, MIPSI_ADD_D, tmp, left, right); } #endif static void asm_conv(ASMState *as, IRIns *ir) { IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK); #if !LJ_SOFTFP int stfp = (st == IRT_NUM || st == IRT_FLOAT); #endif #if LJ_64 int st64 = (st == IRT_I64 || st == IRT_U64 || st == IRT_P64); #endif IRRef lref = ir->op1; #if LJ_32 lua_assert(!(irt_isint64(ir->t) || (st == IRT_I64 || st == IRT_U64))); /* Handled by SPLIT. */ #endif #if LJ_32 && LJ_SOFTFP /* FP conversions are handled by SPLIT. */ lua_assert(!irt_isfp(ir->t) && !(st == IRT_NUM || st == IRT_FLOAT)); /* Can't check for same types: SPLIT uses CONV int.int + BXOR for sfp NEG. */ #else lua_assert(irt_type(ir->t) != st); if (irt_isfp(ir->t)) { Reg dest = ra_dest(as, ir, RSET_FPR); if (stfp) { /* FP to FP conversion. */ emit_fg(as, st == IRT_NUM ? MIPSI_CVT_S_D : MIPSI_CVT_D_S, dest, ra_alloc1(as, lref, RSET_FPR)); } else if (st == IRT_U32) { /* U32 to FP conversion. */ /* y = (x ^ 0x8000000) + 2147483648.0 */ Reg left = ra_alloc1(as, lref, RSET_GPR); Reg tmp = ra_scratch(as, rset_exclude(RSET_FPR, dest)); if (irt_isfloat(ir->t)) emit_fg(as, MIPSI_CVT_S_D, dest, dest); /* Must perform arithmetic with doubles to keep the precision. */ emit_fgh(as, MIPSI_ADD_D, dest, dest, tmp); emit_fg(as, MIPSI_CVT_D_W, dest, dest); emit_lsptr(as, MIPSI_LDC1, (tmp & 31), (void *)&as->J->k64[LJ_K64_2P31], RSET_GPR); emit_tg(as, MIPSI_MTC1, RID_TMP, dest); emit_dst(as, MIPSI_XOR, RID_TMP, RID_TMP, left); emit_ti(as, MIPSI_LUI, RID_TMP, 0x8000); #if LJ_64 } else if(st == IRT_U64) { /* U64 to FP conversion. */ /* if (x >= 1u<<63) y = (double)(int64_t)(x&(1u<<63)-1) + pow(2.0, 63) */ Reg left = ra_alloc1(as, lref, RSET_GPR); Reg tmp = ra_scratch(as, rset_exclude(RSET_FPR, dest)); MCLabel l_end = emit_label(as); if (irt_isfloat(ir->t)) { emit_fgh(as, MIPSI_ADD_S, dest, dest, tmp); emit_lsptr(as, MIPSI_LWC1, (tmp & 31), (void *)&as->J->k32[LJ_K32_2P63], rset_exclude(RSET_GPR, left)); emit_fg(as, MIPSI_CVT_S_L, dest, dest); } else { emit_fgh(as, MIPSI_ADD_D, dest, dest, tmp); emit_lsptr(as, MIPSI_LDC1, (tmp & 31), (void *)&as->J->k64[LJ_K64_2P63], rset_exclude(RSET_GPR, left)); emit_fg(as, MIPSI_CVT_D_L, dest, dest); } emit_branch(as, MIPSI_BGEZ, left, RID_ZERO, l_end); emit_tg(as, MIPSI_DMTC1, RID_TMP, dest); emit_tsml(as, MIPSI_DEXTM, RID_TMP, left, 30, 0); #endif } else { /* Integer to FP conversion. */ Reg left = ra_alloc1(as, lref, RSET_GPR); #if LJ_32 emit_fg(as, irt_isfloat(ir->t) ? MIPSI_CVT_S_W : MIPSI_CVT_D_W, dest, dest); emit_tg(as, MIPSI_MTC1, left, dest); #else MIPSIns mi = irt_isfloat(ir->t) ? (st64 ? MIPSI_CVT_S_L : MIPSI_CVT_S_W) : (st64 ? MIPSI_CVT_D_L : MIPSI_CVT_D_W); emit_fg(as, mi, dest, dest); emit_tg(as, st64 ? MIPSI_DMTC1 : MIPSI_MTC1, left, dest); #endif } } else if (stfp) { /* FP to integer conversion. */ if (irt_isguard(ir->t)) { /* Checked conversions are only supported from number to int. */ lua_assert(irt_isint(ir->t) && st == IRT_NUM); asm_tointg(as, ir, ra_alloc1(as, lref, RSET_FPR)); } else { Reg dest = ra_dest(as, ir, RSET_GPR); Reg left = ra_alloc1(as, lref, RSET_FPR); Reg tmp = ra_scratch(as, rset_exclude(RSET_FPR, left)); if (irt_isu32(ir->t)) { /* FP to U32 conversion. */ /* y = (int)floor(x - 2147483648.0) ^ 0x80000000 */ emit_dst(as, MIPSI_XOR, dest, dest, RID_TMP); emit_ti(as, MIPSI_LUI, RID_TMP, 0x8000); emit_tg(as, MIPSI_MFC1, dest, tmp); emit_fg(as, st == IRT_FLOAT ? MIPSI_FLOOR_W_S : MIPSI_FLOOR_W_D, tmp, tmp); emit_fgh(as, st == IRT_FLOAT ? MIPSI_SUB_S : MIPSI_SUB_D, tmp, left, tmp); if (st == IRT_FLOAT) emit_lsptr(as, MIPSI_LWC1, (tmp & 31), (void *)&as->J->k32[LJ_K32_2P31], RSET_GPR); else emit_lsptr(as, MIPSI_LDC1, (tmp & 31), (void *)&as->J->k64[LJ_K64_2P31], RSET_GPR); #if LJ_64 } else if (irt_isu64(ir->t)) { /* FP to U64 conversion. */ MCLabel l_end; emit_tg(as, MIPSI_DMFC1, dest, tmp); l_end = emit_label(as); /* For inputs >= 2^63 add -2^64 and convert again. */ if (st == IRT_NUM) { emit_fg(as, MIPSI_TRUNC_L_D, tmp, tmp); emit_fgh(as, MIPSI_ADD_D, tmp, left, tmp); emit_lsptr(as, MIPSI_LDC1, (tmp & 31), (void *)&as->J->k64[LJ_K64_M2P64], rset_exclude(RSET_GPR, dest)); emit_fg(as, MIPSI_TRUNC_L_D, tmp, left); /* Delay slot. */ emit_branch(as, MIPSI_BC1T, 0, 0, l_end); emit_fgh(as, MIPSI_C_OLT_D, 0, left, tmp); emit_lsptr(as, MIPSI_LDC1, (tmp & 31), (void *)&as->J->k64[LJ_K64_2P63], rset_exclude(RSET_GPR, dest)); } else { emit_fg(as, MIPSI_TRUNC_L_S, tmp, tmp); emit_fgh(as, MIPSI_ADD_S, tmp, left, tmp); emit_lsptr(as, MIPSI_LWC1, (tmp & 31), (void *)&as->J->k32[LJ_K32_M2P64], rset_exclude(RSET_GPR, dest)); emit_fg(as, MIPSI_TRUNC_L_S, tmp, left); /* Delay slot. */ emit_branch(as, MIPSI_BC1T, 0, 0, l_end); emit_fgh(as, MIPSI_C_OLT_S, 0, left, tmp); emit_lsptr(as, MIPSI_LWC1, (tmp & 31), (void *)&as->J->k32[LJ_K32_2P63], rset_exclude(RSET_GPR, dest)); } #endif } else { #if LJ_32 emit_tg(as, MIPSI_MFC1, dest, tmp); emit_fg(as, st == IRT_FLOAT ? MIPSI_TRUNC_W_S : MIPSI_TRUNC_W_D, tmp, left); #else MIPSIns mi = irt_is64(ir->t) ? (st == IRT_NUM ? MIPSI_TRUNC_L_D : MIPSI_TRUNC_L_S) : (st == IRT_NUM ? MIPSI_TRUNC_W_D : MIPSI_TRUNC_W_S); emit_tg(as, irt_is64(ir->t) ? MIPSI_DMFC1 : MIPSI_MFC1, dest, left); emit_fg(as, mi, left, left); #endif } } } else #endif { Reg dest = ra_dest(as, ir, RSET_GPR); if (st >= IRT_I8 && st <= IRT_U16) { /* Extend to 32 bit integer. */ Reg left = ra_alloc1(as, ir->op1, RSET_GPR); lua_assert(irt_isint(ir->t) || irt_isu32(ir->t)); if ((ir->op2 & IRCONV_SEXT)) { if (LJ_64 || (as->flags & JIT_F_MIPSXXR2)) { emit_dst(as, st == IRT_I8 ? MIPSI_SEB : MIPSI_SEH, dest, 0, left); } else { uint32_t shift = st == IRT_I8 ? 24 : 16; emit_dta(as, MIPSI_SRA, dest, dest, shift); emit_dta(as, MIPSI_SLL, dest, left, shift); } } else { emit_tsi(as, MIPSI_ANDI, dest, left, (int32_t)(st == IRT_U8 ? 0xff : 0xffff)); } } else { /* 32/64 bit integer conversions. */ #if LJ_32 /* Only need to handle 32/32 bit no-op (cast) on 32 bit archs. */ ra_leftov(as, dest, lref); /* Do nothing, but may need to move regs. */ #else if (irt_is64(ir->t)) { if (st64) { /* 64/64 bit no-op (cast)*/ ra_leftov(as, dest, lref); } else { Reg left = ra_alloc1(as, lref, RSET_GPR); if ((ir->op2 & IRCONV_SEXT)) { /* 32 to 64 bit sign extension. */ emit_dta(as, MIPSI_SLL, dest, left, 0); } else { /* 32 to 64 bit zero extension. */ emit_tsml(as, MIPSI_DEXT, dest, left, 31, 0); } } } else { if (st64) { /* This is either a 32 bit reg/reg mov which zeroes the hiword ** or a load of the loword from a 64 bit address. */ Reg left = ra_alloc1(as, lref, RSET_GPR); emit_tsml(as, MIPSI_DEXT, dest, left, 31, 0); } else { /* 32/32 bit no-op (cast). */ /* Do nothing, but may need to move regs. */ ra_leftov(as, dest, lref); } } #endif } } } static void asm_strto(ASMState *as, IRIns *ir) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_strscan_num]; IRRef args[2]; int32_t ofs = 0; #if LJ_SOFTFP ra_evictset(as, RSET_SCRATCH); if (ra_used(ir)) { if (ra_hasspill(ir->s) && ra_hasspill((ir+1)->s) && (ir->s & 1) == LJ_BE && (ir->s ^ 1) == (ir+1)->s) { int i; for (i = 0; i < 2; i++) { Reg r = (ir+i)->r; if (ra_hasreg(r)) { ra_free(as, r); ra_modified(as, r); emit_spload(as, ir+i, r, sps_scale((ir+i)->s)); } } ofs = sps_scale(ir->s & ~1); } else { Reg rhi = ra_dest(as, ir+1, RSET_GPR); Reg rlo = ra_dest(as, ir, rset_exclude(RSET_GPR, rhi)); emit_tsi(as, MIPSI_LW, rhi, RID_SP, ofs+(LJ_BE?0:4)); emit_tsi(as, MIPSI_LW, rlo, RID_SP, ofs+(LJ_BE?4:0)); } } #else RegSet drop = RSET_SCRATCH; if (ra_hasreg(ir->r)) rset_set(drop, ir->r); /* Spill dest reg (if any). */ ra_evictset(as, drop); ofs = sps_scale(ir->s); #endif asm_guard(as, MIPSI_BEQ, RID_RET, RID_ZERO); /* Test return status. */ args[0] = ir->op1; /* GCstr *str */ args[1] = ASMREF_TMP1; /* TValue *n */ asm_gencall(as, ci, args); /* Store the result to the spill slot or temp slots. */ emit_tsi(as, MIPSI_AADDIU, ra_releasetmp(as, ASMREF_TMP1), RID_SP, ofs); } /* -- Memory references --------------------------------------------------- */ #if LJ_64 /* Store tagged value for ref at base+ofs. */ static void asm_tvstore64(ASMState *as, Reg base, int32_t ofs, IRRef ref) { RegSet allow = rset_exclude(RSET_GPR, base); IRIns *ir = IR(ref); lua_assert(irt_ispri(ir->t) || irt_isaddr(ir->t) || irt_isinteger(ir->t)); if (irref_isk(ref)) { TValue k; lj_ir_kvalue(as->J->L, &k, ir); emit_tsi(as, MIPSI_SD, ra_allock(as, (int64_t)k.u64, allow), base, ofs); } else { Reg src = ra_alloc1(as, ref, allow); Reg type = ra_allock(as, (int64_t)irt_toitype(ir->t) << 47, rset_exclude(allow, src)); emit_tsi(as, MIPSI_SD, RID_TMP, base, ofs); if (irt_isinteger(ir->t)) { emit_dst(as, MIPSI_DADDU, RID_TMP, RID_TMP, type); emit_tsml(as, MIPSI_DEXT, RID_TMP, src, 31, 0); } else { emit_dst(as, MIPSI_DADDU, RID_TMP, src, type); } } } #endif /* Get pointer to TValue. */ static void asm_tvptr(ASMState *as, Reg dest, IRRef ref) { IRIns *ir = IR(ref); if (irt_isnum(ir->t)) { if (irref_isk(ref)) /* Use the number constant itself as a TValue. */ ra_allockreg(as, igcptr(ir_knum(ir)), dest); else /* Otherwise force a spill and use the spill slot. */ emit_tsi(as, MIPSI_AADDIU, dest, RID_SP, ra_spill(as, ir)); } else { /* Otherwise use g->tmptv to hold the TValue. */ #if LJ_32 RegSet allow = rset_exclude(RSET_GPR, dest); Reg type; emit_tsi(as, MIPSI_ADDIU, dest, RID_JGL, (int32_t)(offsetof(global_State, tmptv)-32768)); if (!irt_ispri(ir->t)) { Reg src = ra_alloc1(as, ref, allow); emit_setgl(as, src, tmptv.gcr); } if (LJ_SOFTFP && (ir+1)->o == IR_HIOP) type = ra_alloc1(as, ref+1, allow); else type = ra_allock(as, (int32_t)irt_toitype(ir->t), allow); emit_setgl(as, type, tmptv.it); #else asm_tvstore64(as, dest, 0, ref); emit_tsi(as, MIPSI_DADDIU, dest, RID_JGL, (int32_t)(offsetof(global_State, tmptv)-32768)); #endif } } static void asm_aref(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg idx, base; if (irref_isk(ir->op2)) { IRRef tab = IR(ir->op1)->op1; int32_t ofs = asm_fuseabase(as, tab); IRRef refa = ofs ? tab : ir->op1; ofs += 8*IR(ir->op2)->i; if (checki16(ofs)) { base = ra_alloc1(as, refa, RSET_GPR); emit_tsi(as, MIPSI_AADDIU, dest, base, ofs); return; } } base = ra_alloc1(as, ir->op1, RSET_GPR); idx = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, base)); emit_dst(as, MIPSI_AADDU, dest, RID_TMP, base); emit_dta(as, MIPSI_SLL, RID_TMP, idx, 3); } /* Inlined hash lookup. Specialized for key type and for const keys. ** The equivalent C code is: ** Node *n = hashkey(t, key); ** do { ** if (lj_obj_equal(&n->key, key)) return &n->val; ** } while ((n = nextnode(n))); ** return niltv(L); */ static void asm_href(ASMState *as, IRIns *ir, IROp merge) { RegSet allow = RSET_GPR; int destused = ra_used(ir); Reg dest = ra_dest(as, ir, allow); Reg tab = ra_alloc1(as, ir->op1, rset_clear(allow, dest)); Reg key = RID_NONE, type = RID_NONE, tmpnum = RID_NONE, tmp1 = RID_TMP, tmp2; IRRef refkey = ir->op2; IRIns *irkey = IR(refkey); int isk = irref_isk(refkey); IRType1 kt = irkey->t; uint32_t khash; MCLabel l_end, l_loop, l_next; rset_clear(allow, tab); #if LJ_32 && LJ_SOFTFP if (!isk) { key = ra_alloc1(as, refkey, allow); rset_clear(allow, key); if (irkey[1].o == IR_HIOP) { if (ra_hasreg((irkey+1)->r)) { type = tmpnum = (irkey+1)->r; tmp1 = ra_scratch(as, allow); rset_clear(allow, tmp1); ra_noweak(as, tmpnum); } else { type = tmpnum = ra_allocref(as, refkey+1, allow); } rset_clear(allow, tmpnum); } else { type = ra_allock(as, (int32_t)irt_toitype(irkey->t), allow); rset_clear(allow, type); } } #else if (irt_isnum(kt)) { key = ra_alloc1(as, refkey, RSET_FPR); tmpnum = ra_scratch(as, rset_exclude(RSET_FPR, key)); } else if (!irt_ispri(kt)) { key = ra_alloc1(as, refkey, allow); rset_clear(allow, key); #if LJ_32 type = ra_allock(as, (int32_t)irt_toitype(irkey->t), allow); rset_clear(allow, type); #endif } #endif tmp2 = ra_scratch(as, allow); rset_clear(allow, tmp2); /* Key not found in chain: jump to exit (if merged) or load niltv. */ l_end = emit_label(as); as->invmcp = NULL; if (merge == IR_NE) asm_guard(as, MIPSI_B, RID_ZERO, RID_ZERO); else if (destused) emit_loada(as, dest, niltvg(J2G(as->J))); /* Follow hash chain until the end. */ emit_move(as, dest, tmp1); l_loop = --as->mcp; emit_tsi(as, MIPSI_AL, tmp1, dest, (int32_t)offsetof(Node, next)); l_next = emit_label(as); /* Type and value comparison. */ if (merge == IR_EQ) { /* Must match asm_guard(). */ emit_ti(as, MIPSI_LI, RID_TMP, as->snapno); l_end = asm_exitstub_addr(as); } if (!LJ_SOFTFP && irt_isnum(kt)) { emit_branch(as, MIPSI_BC1T, 0, 0, l_end); emit_fgh(as, MIPSI_C_EQ_D, 0, tmpnum, key); *--as->mcp = MIPSI_NOP; /* Avoid NaN comparison overhead. */ emit_branch(as, MIPSI_BEQ, tmp1, RID_ZERO, l_next); emit_tsi(as, MIPSI_SLTIU, tmp1, tmp1, (int32_t)LJ_TISNUM); #if LJ_32 emit_hsi(as, MIPSI_LDC1, tmpnum, dest, (int32_t)offsetof(Node, key.n)); } else { if (irt_ispri(kt)) { emit_branch(as, MIPSI_BEQ, tmp1, type, l_end); } else { emit_branch(as, MIPSI_BEQ, tmp2, key, l_end); emit_tsi(as, MIPSI_LW, tmp2, dest, (int32_t)offsetof(Node, key.gcr)); emit_branch(as, MIPSI_BNE, tmp1, type, l_next); } } emit_tsi(as, MIPSI_LW, tmp1, dest, (int32_t)offsetof(Node, key.it)); *l_loop = MIPSI_BNE | MIPSF_S(tmp1) | ((as->mcp-l_loop-1) & 0xffffu); #else emit_dta(as, MIPSI_DSRA32, tmp1, tmp1, 15); emit_tg(as, MIPSI_DMTC1, tmp1, tmpnum); emit_tsi(as, MIPSI_LD, tmp1, dest, (int32_t)offsetof(Node, key.u64)); } else if (irt_isaddr(kt)) { Reg refk = tmp2; if (isk) { int64_t k = ((int64_t)irt_toitype(irkey->t) << 47) | irkey[1].tv.u64; refk = ra_allock(as, k, allow); rset_clear(allow, refk); } emit_branch(as, MIPSI_BEQ, tmp1, refk, l_end); emit_tsi(as, MIPSI_LD, tmp1, dest, offsetof(Node, key)); } else { Reg pri = ra_allock(as, ~((int64_t)~irt_toitype(ir->t) << 47), allow); rset_clear(allow, pri); lua_assert(irt_ispri(kt) && !irt_isnil(kt)); emit_branch(as, MIPSI_BEQ, tmp1, pri, l_end); emit_tsi(as, MIPSI_LD, tmp1, dest, offsetof(Node, key)); } *l_loop = MIPSI_BNE | MIPSF_S(tmp1) | ((as->mcp-l_loop-1) & 0xffffu); if (!isk && irt_isaddr(kt)) { type = ra_allock(as, (int64_t)irt_toitype(kt) << 47, allow); emit_dst(as, MIPSI_DADDU, tmp2, key, type); rset_clear(allow, type); } #endif /* Load main position relative to tab->node into dest. */ khash = isk ? ir_khash(irkey) : 1; if (khash == 0) { emit_tsi(as, MIPSI_AL, dest, tab, (int32_t)offsetof(GCtab, node)); } else { Reg tmphash = tmp1; if (isk) tmphash = ra_allock(as, khash, allow); emit_dst(as, MIPSI_AADDU, dest, dest, tmp1); lua_assert(sizeof(Node) == 24); emit_dst(as, MIPSI_SUBU, tmp1, tmp2, tmp1); emit_dta(as, MIPSI_SLL, tmp1, tmp1, 3); emit_dta(as, MIPSI_SLL, tmp2, tmp1, 5); emit_dst(as, MIPSI_AND, tmp1, tmp2, tmphash); emit_tsi(as, MIPSI_AL, dest, tab, (int32_t)offsetof(GCtab, node)); emit_tsi(as, MIPSI_LW, tmp2, tab, (int32_t)offsetof(GCtab, hmask)); if (isk) { /* Nothing to do. */ } else if (irt_isstr(kt)) { emit_tsi(as, MIPSI_LW, tmp1, key, (int32_t)offsetof(GCstr, hash)); } else { /* Must match with hash*() in lj_tab.c. */ emit_dst(as, MIPSI_SUBU, tmp1, tmp1, tmp2); emit_rotr(as, tmp2, tmp2, dest, (-HASH_ROT3)&31); emit_dst(as, MIPSI_XOR, tmp1, tmp1, tmp2); emit_rotr(as, tmp1, tmp1, dest, (-HASH_ROT2-HASH_ROT1)&31); emit_dst(as, MIPSI_SUBU, tmp2, tmp2, dest); #if LJ_32 if (LJ_SOFTFP ? (irkey[1].o == IR_HIOP) : irt_isnum(kt)) { emit_dst(as, MIPSI_XOR, tmp2, tmp2, tmp1); if ((as->flags & JIT_F_MIPSXXR2)) { emit_dta(as, MIPSI_ROTR, dest, tmp1, (-HASH_ROT1)&31); } else { emit_dst(as, MIPSI_OR, dest, dest, tmp1); emit_dta(as, MIPSI_SLL, tmp1, tmp1, HASH_ROT1); emit_dta(as, MIPSI_SRL, dest, tmp1, (-HASH_ROT1)&31); } emit_dst(as, MIPSI_ADDU, tmp1, tmp1, tmp1); #if LJ_SOFTFP emit_ds(as, MIPSI_MOVE, tmp1, type); emit_ds(as, MIPSI_MOVE, tmp2, key); #else emit_tg(as, MIPSI_MFC1, tmp2, key); emit_tg(as, MIPSI_MFC1, tmp1, key+1); #endif } else { emit_dst(as, MIPSI_XOR, tmp2, key, tmp1); emit_rotr(as, dest, tmp1, tmp2, (-HASH_ROT1)&31); emit_dst(as, MIPSI_ADDU, tmp1, key, ra_allock(as, HASH_BIAS, allow)); } #else emit_dst(as, MIPSI_XOR, tmp2, tmp2, tmp1); emit_dta(as, MIPSI_ROTR, dest, tmp1, (-HASH_ROT1)&31); if (irt_isnum(kt)) { emit_dst(as, MIPSI_ADDU, tmp1, tmp1, tmp1); emit_dta(as, MIPSI_DSRA32, tmp1, tmp1, 0); emit_dta(as, MIPSI_SLL, tmp2, LJ_SOFTFP ? key : tmp1, 0); #if !LJ_SOFTFP emit_tg(as, MIPSI_DMFC1, tmp1, key); #endif } else { checkmclim(as); emit_dta(as, MIPSI_DSRA32, tmp1, tmp1, 0); emit_dta(as, MIPSI_SLL, tmp2, key, 0); emit_dst(as, MIPSI_DADDU, tmp1, key, type); } #endif } } } static void asm_hrefk(ASMState *as, IRIns *ir) { IRIns *kslot = IR(ir->op2); IRIns *irkey = IR(kslot->op1); int32_t ofs = (int32_t)(kslot->op2 * sizeof(Node)); int32_t kofs = ofs + (int32_t)offsetof(Node, key); Reg dest = (ra_used(ir)||ofs > 32736) ? ra_dest(as, ir, RSET_GPR) : RID_NONE; Reg node = ra_alloc1(as, ir->op1, RSET_GPR); RegSet allow = rset_exclude(RSET_GPR, node); Reg idx = node; #if LJ_32 Reg key = RID_NONE, type = RID_TMP; int32_t lo, hi; #else Reg key = ra_scratch(as, allow); int64_t k; #endif lua_assert(ofs % sizeof(Node) == 0); if (ofs > 32736) { idx = dest; rset_clear(allow, dest); kofs = (int32_t)offsetof(Node, key); } else if (ra_hasreg(dest)) { emit_tsi(as, MIPSI_AADDIU, dest, node, ofs); } #if LJ_32 if (!irt_ispri(irkey->t)) { key = ra_scratch(as, allow); rset_clear(allow, key); } if (irt_isnum(irkey->t)) { lo = (int32_t)ir_knum(irkey)->u32.lo; hi = (int32_t)ir_knum(irkey)->u32.hi; } else { lo = irkey->i; hi = irt_toitype(irkey->t); if (!ra_hasreg(key)) goto nolo; } asm_guard(as, MIPSI_BNE, key, lo ? ra_allock(as, lo, allow) : RID_ZERO); nolo: asm_guard(as, MIPSI_BNE, type, hi ? ra_allock(as, hi, allow) : RID_ZERO); if (ra_hasreg(key)) emit_tsi(as, MIPSI_LW, key, idx, kofs+(LJ_BE?4:0)); emit_tsi(as, MIPSI_LW, type, idx, kofs+(LJ_BE?0:4)); #else if (irt_ispri(irkey->t)) { lua_assert(!irt_isnil(irkey->t)); k = ~((int64_t)~irt_toitype(irkey->t) << 47); } else if (irt_isnum(irkey->t)) { k = (int64_t)ir_knum(irkey)->u64; } else { k = ((int64_t)irt_toitype(irkey->t) << 47) | (int64_t)ir_kgc(irkey); } asm_guard(as, MIPSI_BNE, key, ra_allock(as, k, allow)); emit_tsi(as, MIPSI_LD, key, idx, kofs); #endif if (ofs > 32736) emit_tsi(as, MIPSI_AADDU, dest, node, ra_allock(as, ofs, allow)); } static void asm_uref(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); if (irref_isk(ir->op1)) { GCfunc *fn = ir_kfunc(IR(ir->op1)); MRef *v = &gcref(fn->l.uvptr[(ir->op2 >> 8)])->uv.v; emit_lsptr(as, MIPSI_AL, dest, v, RSET_GPR); } else { Reg uv = ra_scratch(as, RSET_GPR); Reg func = ra_alloc1(as, ir->op1, RSET_GPR); if (ir->o == IR_UREFC) { asm_guard(as, MIPSI_BEQ, RID_TMP, RID_ZERO); emit_tsi(as, MIPSI_AADDIU, dest, uv, (int32_t)offsetof(GCupval, tv)); emit_tsi(as, MIPSI_LBU, RID_TMP, uv, (int32_t)offsetof(GCupval, closed)); } else { emit_tsi(as, MIPSI_AL, dest, uv, (int32_t)offsetof(GCupval, v)); } emit_tsi(as, MIPSI_AL, uv, func, (int32_t)offsetof(GCfuncL, uvptr) + (int32_t)sizeof(MRef) * (int32_t)(ir->op2 >> 8)); } } static void asm_fref(ASMState *as, IRIns *ir) { UNUSED(as); UNUSED(ir); lua_assert(!ra_used(ir)); } static void asm_strref(ASMState *as, IRIns *ir) { #if LJ_32 Reg dest = ra_dest(as, ir, RSET_GPR); IRRef ref = ir->op2, refk = ir->op1; int32_t ofs = (int32_t)sizeof(GCstr); Reg r; if (irref_isk(ref)) { IRRef tmp = refk; refk = ref; ref = tmp; } else if (!irref_isk(refk)) { Reg right, left = ra_alloc1(as, ir->op1, RSET_GPR); IRIns *irr = IR(ir->op2); if (ra_hasreg(irr->r)) { ra_noweak(as, irr->r); right = irr->r; } else if (mayfuse(as, irr->op2) && irr->o == IR_ADD && irref_isk(irr->op2) && checki16(ofs + IR(irr->op2)->i)) { ofs += IR(irr->op2)->i; right = ra_alloc1(as, irr->op1, rset_exclude(RSET_GPR, left)); } else { right = ra_allocref(as, ir->op2, rset_exclude(RSET_GPR, left)); } emit_tsi(as, MIPSI_ADDIU, dest, dest, ofs); emit_dst(as, MIPSI_ADDU, dest, left, right); return; } r = ra_alloc1(as, ref, RSET_GPR); ofs += IR(refk)->i; if (checki16(ofs)) emit_tsi(as, MIPSI_ADDIU, dest, r, ofs); else emit_dst(as, MIPSI_ADDU, dest, r, ra_allock(as, ofs, rset_exclude(RSET_GPR, r))); #else RegSet allow = RSET_GPR; Reg dest = ra_dest(as, ir, allow); Reg base = ra_alloc1(as, ir->op1, allow); IRIns *irr = IR(ir->op2); int32_t ofs = sizeof(GCstr); rset_clear(allow, base); if (irref_isk(ir->op2) && checki16(ofs + irr->i)) { emit_tsi(as, MIPSI_DADDIU, dest, base, ofs + irr->i); } else { emit_tsi(as, MIPSI_DADDIU, dest, dest, ofs); emit_dst(as, MIPSI_DADDU, dest, base, ra_alloc1(as, ir->op2, allow)); } #endif } /* -- Loads and stores ---------------------------------------------------- */ static MIPSIns asm_fxloadins(IRIns *ir) { switch (irt_type(ir->t)) { case IRT_I8: return MIPSI_LB; case IRT_U8: return MIPSI_LBU; case IRT_I16: return MIPSI_LH; case IRT_U16: return MIPSI_LHU; case IRT_NUM: lua_assert(!LJ_SOFTFP); return MIPSI_LDC1; case IRT_FLOAT: if (!LJ_SOFTFP) return MIPSI_LWC1; default: return (LJ_64 && irt_is64(ir->t)) ? MIPSI_LD : MIPSI_LW; } } static MIPSIns asm_fxstoreins(IRIns *ir) { switch (irt_type(ir->t)) { case IRT_I8: case IRT_U8: return MIPSI_SB; case IRT_I16: case IRT_U16: return MIPSI_SH; case IRT_NUM: lua_assert(!LJ_SOFTFP); return MIPSI_SDC1; case IRT_FLOAT: if (!LJ_SOFTFP) return MIPSI_SWC1; default: return (LJ_64 && irt_is64(ir->t)) ? MIPSI_SD : MIPSI_SW; } } static void asm_fload(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); MIPSIns mi = asm_fxloadins(ir); Reg idx; int32_t ofs; if (ir->op1 == REF_NIL) { idx = RID_JGL; ofs = (ir->op2 << 2) - 32768 - GG_OFS(g); } else { idx = ra_alloc1(as, ir->op1, RSET_GPR); if (ir->op2 == IRFL_TAB_ARRAY) { ofs = asm_fuseabase(as, ir->op1); if (ofs) { /* Turn the t->array load into an add for colocated arrays. */ emit_tsi(as, MIPSI_AADDIU, dest, idx, ofs); return; } } ofs = field_ofs[ir->op2]; } lua_assert(!irt_isfp(ir->t)); emit_tsi(as, mi, dest, idx, ofs); } static void asm_fstore(ASMState *as, IRIns *ir) { if (ir->r != RID_SINK) { Reg src = ra_alloc1z(as, ir->op2, RSET_GPR); IRIns *irf = IR(ir->op1); Reg idx = ra_alloc1(as, irf->op1, rset_exclude(RSET_GPR, src)); int32_t ofs = field_ofs[irf->op2]; MIPSIns mi = asm_fxstoreins(ir); lua_assert(!irt_isfp(ir->t)); emit_tsi(as, mi, src, idx, ofs); } } static void asm_xload(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, (!LJ_SOFTFP && irt_isfp(ir->t)) ? RSET_FPR : RSET_GPR); lua_assert(!(ir->op2 & IRXLOAD_UNALIGNED)); asm_fusexref(as, asm_fxloadins(ir), dest, ir->op1, RSET_GPR, 0); } static void asm_xstore_(ASMState *as, IRIns *ir, int32_t ofs) { if (ir->r != RID_SINK) { Reg src = ra_alloc1z(as, ir->op2, (!LJ_SOFTFP && irt_isfp(ir->t)) ? RSET_FPR : RSET_GPR); asm_fusexref(as, asm_fxstoreins(ir), src, ir->op1, rset_exclude(RSET_GPR, src), ofs); } } #define asm_xstore(as, ir) asm_xstore_(as, ir, 0) static void asm_ahuvload(ASMState *as, IRIns *ir) { int hiop = (LJ_32 && LJ_SOFTFP && (ir+1)->o == IR_HIOP); Reg dest = RID_NONE, type = RID_TMP, idx; RegSet allow = RSET_GPR; int32_t ofs = 0; IRType1 t = ir->t; if (hiop) { t.irt = IRT_NUM; if (ra_used(ir+1)) { type = ra_dest(as, ir+1, allow); rset_clear(allow, type); } } if (ra_used(ir)) { lua_assert((LJ_SOFTFP ? 0 : irt_isnum(ir->t)) || irt_isint(ir->t) || irt_isaddr(ir->t)); dest = ra_dest(as, ir, (!LJ_SOFTFP && irt_isnum(t)) ? RSET_FPR : allow); rset_clear(allow, dest); #if LJ_64 if (irt_isaddr(t)) emit_tsml(as, MIPSI_DEXTM, dest, dest, 14, 0); else if (irt_isint(t)) emit_dta(as, MIPSI_SLL, dest, dest, 0); #endif } idx = asm_fuseahuref(as, ir->op1, &ofs, allow); rset_clear(allow, idx); if (irt_isnum(t)) { asm_guard(as, MIPSI_BEQ, RID_TMP, RID_ZERO); emit_tsi(as, MIPSI_SLTIU, RID_TMP, type, (int32_t)LJ_TISNUM); } else { asm_guard(as, MIPSI_BNE, type, ra_allock(as, (int32_t)irt_toitype(t), allow)); } #if LJ_32 if (ra_hasreg(dest)) { if (!LJ_SOFTFP && irt_isnum(t)) emit_hsi(as, MIPSI_LDC1, dest, idx, ofs); else emit_tsi(as, MIPSI_LW, dest, idx, ofs+(LJ_BE?4:0)); } emit_tsi(as, MIPSI_LW, type, idx, ofs+(LJ_BE?0:4)); #else if (ra_hasreg(dest)) { if (!LJ_SOFTFP && irt_isnum(t)) { emit_hsi(as, MIPSI_LDC1, dest, idx, ofs); dest = type; } } else { dest = type; } emit_dta(as, MIPSI_DSRA32, type, dest, 15); emit_tsi(as, MIPSI_LD, dest, idx, ofs); #endif } static void asm_ahustore(ASMState *as, IRIns *ir) { RegSet allow = RSET_GPR; Reg idx, src = RID_NONE, type = RID_NONE; int32_t ofs = 0; if (ir->r == RID_SINK) return; if (!LJ_SOFTFP && irt_isnum(ir->t)) { src = ra_alloc1(as, ir->op2, RSET_FPR); idx = asm_fuseahuref(as, ir->op1, &ofs, allow); emit_hsi(as, MIPSI_SDC1, src, idx, ofs); } else { #if LJ_32 if (!irt_ispri(ir->t)) { src = ra_alloc1(as, ir->op2, allow); rset_clear(allow, src); } if (LJ_SOFTFP && (ir+1)->o == IR_HIOP) type = ra_alloc1(as, (ir+1)->op2, allow); else type = ra_allock(as, (int32_t)irt_toitype(ir->t), allow); rset_clear(allow, type); idx = asm_fuseahuref(as, ir->op1, &ofs, allow); if (ra_hasreg(src)) emit_tsi(as, MIPSI_SW, src, idx, ofs+(LJ_BE?4:0)); emit_tsi(as, MIPSI_SW, type, idx, ofs+(LJ_BE?0:4)); #else Reg tmp = RID_TMP; if (irt_ispri(ir->t)) { tmp = ra_allock(as, ~((int64_t)~irt_toitype(ir->t) << 47), allow); rset_clear(allow, tmp); } else { src = ra_alloc1(as, ir->op2, allow); rset_clear(allow, src); type = ra_allock(as, (int64_t)irt_toitype(ir->t) << 47, allow); rset_clear(allow, type); } idx = asm_fuseahuref(as, ir->op1, &ofs, allow); emit_tsi(as, MIPSI_SD, tmp, idx, ofs); if (ra_hasreg(src)) { if (irt_isinteger(ir->t)) { emit_dst(as, MIPSI_DADDU, tmp, tmp, type); emit_tsml(as, MIPSI_DEXT, tmp, src, 31, 0); } else { emit_dst(as, MIPSI_DADDU, tmp, src, type); } } #endif } } static void asm_sload(ASMState *as, IRIns *ir) { Reg dest = RID_NONE, type = RID_NONE, base; RegSet allow = RSET_GPR; IRType1 t = ir->t; #if LJ_32 int32_t ofs = 8*((int32_t)ir->op1-1) + ((ir->op2 & IRSLOAD_FRAME) ? 4 : 0); int hiop = (LJ_32 && LJ_SOFTFP && (ir+1)->o == IR_HIOP); if (hiop) t.irt = IRT_NUM; #else int32_t ofs = 8*((int32_t)ir->op1-2); #endif lua_assert(!(ir->op2 & IRSLOAD_PARENT)); /* Handled by asm_head_side(). */ lua_assert(irt_isguard(ir->t) || !(ir->op2 & IRSLOAD_TYPECHECK)); #if LJ_32 && LJ_SOFTFP lua_assert(!(ir->op2 & IRSLOAD_CONVERT)); /* Handled by LJ_SOFTFP SPLIT. */ if (hiop && ra_used(ir+1)) { type = ra_dest(as, ir+1, allow); rset_clear(allow, type); } #else if ((ir->op2 & IRSLOAD_CONVERT) && irt_isguard(t) && irt_isint(t)) { dest = ra_scratch(as, RSET_FPR); asm_tointg(as, ir, dest); t.irt = IRT_NUM; /* Continue with a regular number type check. */ } else #endif if (ra_used(ir)) { lua_assert((LJ_SOFTFP ? 0 : irt_isnum(ir->t)) || irt_isint(ir->t) || irt_isaddr(ir->t)); dest = ra_dest(as, ir, (!LJ_SOFTFP && irt_isnum(t)) ? RSET_FPR : allow); rset_clear(allow, dest); base = ra_alloc1(as, REF_BASE, allow); rset_clear(allow, base); if (!LJ_SOFTFP && (ir->op2 & IRSLOAD_CONVERT)) { if (irt_isint(t)) { Reg tmp = ra_scratch(as, RSET_FPR); emit_tg(as, MIPSI_MFC1, dest, tmp); emit_fg(as, MIPSI_TRUNC_W_D, tmp, tmp); dest = tmp; t.irt = IRT_NUM; /* Check for original type. */ } else { Reg tmp = ra_scratch(as, RSET_GPR); emit_fg(as, MIPSI_CVT_D_W, dest, dest); emit_tg(as, MIPSI_MTC1, tmp, dest); dest = tmp; t.irt = IRT_INT; /* Check for original type. */ } } #if LJ_64 else if (irt_isaddr(t)) { /* Clear type from pointers. */ emit_tsml(as, MIPSI_DEXTM, dest, dest, 14, 0); } else if (irt_isint(t) && (ir->op2 & IRSLOAD_TYPECHECK)) { /* Sign-extend integers. */ emit_dta(as, MIPSI_SLL, dest, dest, 0); } #endif goto dotypecheck; } base = ra_alloc1(as, REF_BASE, allow); rset_clear(allow, base); dotypecheck: #if LJ_32 if ((ir->op2 & IRSLOAD_TYPECHECK)) { if (ra_noreg(type)) type = RID_TMP; if (irt_isnum(t)) { asm_guard(as, MIPSI_BEQ, RID_TMP, RID_ZERO); emit_tsi(as, MIPSI_SLTIU, RID_TMP, type, (int32_t)LJ_TISNUM); } else { Reg ktype = ra_allock(as, irt_toitype(t), allow); asm_guard(as, MIPSI_BNE, type, ktype); } } if (ra_hasreg(dest)) { if (!LJ_SOFTFP && irt_isnum(t)) emit_hsi(as, MIPSI_LDC1, dest, base, ofs); else emit_tsi(as, MIPSI_LW, dest, base, ofs ^ (LJ_BE?4:0)); } if (ra_hasreg(type)) emit_tsi(as, MIPSI_LW, type, base, ofs ^ (LJ_BE?0:4)); #else if ((ir->op2 & IRSLOAD_TYPECHECK)) { type = dest < RID_MAX_GPR ? dest : RID_TMP; if (irt_ispri(t)) { asm_guard(as, MIPSI_BNE, type, ra_allock(as, ~((int64_t)~irt_toitype(t) << 47) , allow)); } else { if (irt_isnum(t)) { asm_guard(as, MIPSI_BEQ, RID_TMP, RID_ZERO); emit_tsi(as, MIPSI_SLTIU, RID_TMP, RID_TMP, (int32_t)LJ_TISNUM); if (ra_hasreg(dest)) emit_hsi(as, MIPSI_LDC1, dest, base, ofs); } else { asm_guard(as, MIPSI_BNE, RID_TMP, ra_allock(as, (int32_t)irt_toitype(t), allow)); } emit_dta(as, MIPSI_DSRA32, RID_TMP, type, 15); } emit_tsi(as, MIPSI_LD, type, base, ofs); } else if (ra_hasreg(dest)) { if (irt_isnum(t)) emit_hsi(as, MIPSI_LDC1, dest, base, ofs); else emit_tsi(as, irt_isint(t) ? MIPSI_LW : MIPSI_LD, dest, base, ofs ^ ((LJ_BE && irt_isint(t)) ? 4 : 0)); } #endif } /* -- Allocations --------------------------------------------------------- */ #if LJ_HASFFI static void asm_cnew(ASMState *as, IRIns *ir) { CTState *cts = ctype_ctsG(J2G(as->J)); CTypeID id = (CTypeID)IR(ir->op1)->i; CTSize sz; CTInfo info = lj_ctype_info(cts, id, &sz); const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_mem_newgco]; IRRef args[4]; RegSet drop = RSET_SCRATCH; lua_assert(sz != CTSIZE_INVALID || (ir->o == IR_CNEW && ir->op2 != REF_NIL)); as->gcsteps++; if (ra_hasreg(ir->r)) rset_clear(drop, ir->r); /* Dest reg handled below. */ ra_evictset(as, drop); if (ra_used(ir)) ra_destreg(as, ir, RID_RET); /* GCcdata * */ /* Initialize immutable cdata object. */ if (ir->o == IR_CNEWI) { RegSet allow = (RSET_GPR & ~RSET_SCRATCH); #if LJ_32 int32_t ofs = sizeof(GCcdata); if (sz == 8) { ofs += 4; lua_assert((ir+1)->o == IR_HIOP); if (LJ_LE) ir++; } for (;;) { Reg r = ra_alloc1z(as, ir->op2, allow); emit_tsi(as, MIPSI_SW, r, RID_RET, ofs); rset_clear(allow, r); if (ofs == sizeof(GCcdata)) break; ofs -= 4; if (LJ_BE) ir++; else ir--; } #else emit_tsi(as, MIPSI_SD, ra_alloc1(as, ir->op2, allow), RID_RET, sizeof(GCcdata)); #endif lua_assert(sz == 4 || sz == 8); } else if (ir->op2 != REF_NIL) { /* Create VLA/VLS/aligned cdata. */ ci = &lj_ir_callinfo[IRCALL_lj_cdata_newv]; args[0] = ASMREF_L; /* lua_State *L */ args[1] = ir->op1; /* CTypeID id */ args[2] = ir->op2; /* CTSize sz */ args[3] = ASMREF_TMP1; /* CTSize align */ asm_gencall(as, ci, args); emit_loadi(as, ra_releasetmp(as, ASMREF_TMP1), (int32_t)ctype_align(info)); return; } /* Initialize gct and ctypeid. lj_mem_newgco() already sets marked. */ emit_tsi(as, MIPSI_SB, RID_RET+1, RID_RET, offsetof(GCcdata, gct)); emit_tsi(as, MIPSI_SH, RID_TMP, RID_RET, offsetof(GCcdata, ctypeid)); emit_ti(as, MIPSI_LI, RID_RET+1, ~LJ_TCDATA); emit_ti(as, MIPSI_LI, RID_TMP, id); /* Lower 16 bit used. Sign-ext ok. */ args[0] = ASMREF_L; /* lua_State *L */ args[1] = ASMREF_TMP1; /* MSize size */ asm_gencall(as, ci, args); ra_allockreg(as, (int32_t)(sz+sizeof(GCcdata)), ra_releasetmp(as, ASMREF_TMP1)); } #else #define asm_cnew(as, ir) ((void)0) #endif /* -- Write barriers ------------------------------------------------------ */ static void asm_tbar(ASMState *as, IRIns *ir) { Reg tab = ra_alloc1(as, ir->op1, RSET_GPR); Reg mark = ra_scratch(as, rset_exclude(RSET_GPR, tab)); Reg link = RID_TMP; MCLabel l_end = emit_label(as); emit_tsi(as, MIPSI_AS, link, tab, (int32_t)offsetof(GCtab, gclist)); emit_tsi(as, MIPSI_SB, mark, tab, (int32_t)offsetof(GCtab, marked)); emit_setgl(as, tab, gc.grayagain); emit_getgl(as, link, gc.grayagain); emit_dst(as, MIPSI_XOR, mark, mark, RID_TMP); /* Clear black bit. */ emit_branch(as, MIPSI_BEQ, RID_TMP, RID_ZERO, l_end); emit_tsi(as, MIPSI_ANDI, RID_TMP, mark, LJ_GC_BLACK); emit_tsi(as, MIPSI_LBU, mark, tab, (int32_t)offsetof(GCtab, marked)); } static void asm_obar(ASMState *as, IRIns *ir) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_gc_barrieruv]; IRRef args[2]; MCLabel l_end; Reg obj, val, tmp; /* No need for other object barriers (yet). */ lua_assert(IR(ir->op1)->o == IR_UREFC); ra_evictset(as, RSET_SCRATCH); l_end = emit_label(as); args[0] = ASMREF_TMP1; /* global_State *g */ args[1] = ir->op1; /* TValue *tv */ asm_gencall(as, ci, args); emit_tsi(as, MIPSI_AADDIU, ra_releasetmp(as, ASMREF_TMP1), RID_JGL, -32768); obj = IR(ir->op1)->r; tmp = ra_scratch(as, rset_exclude(RSET_GPR, obj)); emit_branch(as, MIPSI_BEQ, RID_TMP, RID_ZERO, l_end); emit_tsi(as, MIPSI_ANDI, tmp, tmp, LJ_GC_BLACK); emit_branch(as, MIPSI_BEQ, RID_TMP, RID_ZERO, l_end); emit_tsi(as, MIPSI_ANDI, RID_TMP, RID_TMP, LJ_GC_WHITES); val = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, obj)); emit_tsi(as, MIPSI_LBU, tmp, obj, (int32_t)offsetof(GCupval, marked)-(int32_t)offsetof(GCupval, tv)); emit_tsi(as, MIPSI_LBU, RID_TMP, val, (int32_t)offsetof(GChead, marked)); } /* -- Arithmetic and logic operations ------------------------------------- */ #if !LJ_SOFTFP static void asm_fparith(ASMState *as, IRIns *ir, MIPSIns mi) { Reg dest = ra_dest(as, ir, RSET_FPR); Reg right, left = ra_alloc2(as, ir, RSET_FPR); right = (left >> 8); left &= 255; emit_fgh(as, mi, dest, left, right); } static void asm_fpunary(ASMState *as, IRIns *ir, MIPSIns mi) { Reg dest = ra_dest(as, ir, RSET_FPR); Reg left = ra_hintalloc(as, ir->op1, dest, RSET_FPR); emit_fg(as, mi, dest, left); } static void asm_fpmath(ASMState *as, IRIns *ir) { if (ir->op2 == IRFPM_EXP2 && asm_fpjoin_pow(as, ir)) return; if (ir->op2 <= IRFPM_TRUNC) asm_callround(as, ir, IRCALL_lj_vm_floor + ir->op2); else if (ir->op2 == IRFPM_SQRT) asm_fpunary(as, ir, MIPSI_SQRT_D); else asm_callid(as, ir, IRCALL_lj_vm_floor + ir->op2); } #endif static void asm_add(ASMState *as, IRIns *ir) { IRType1 t = ir->t; #if !LJ_SOFTFP if (irt_isnum(t)) { asm_fparith(as, ir, MIPSI_ADD_D); } else #endif { Reg dest = ra_dest(as, ir, RSET_GPR); Reg right, left = ra_hintalloc(as, ir->op1, dest, RSET_GPR); if (irref_isk(ir->op2)) { intptr_t k = get_kval(IR(ir->op2)); if (checki16(k)) { emit_tsi(as, (LJ_64 && irt_is64(t)) ? MIPSI_DADDIU : MIPSI_ADDIU, dest, left, k); return; } } right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left)); emit_dst(as, (LJ_64 && irt_is64(t)) ? MIPSI_DADDU : MIPSI_ADDU, dest, left, right); } } static void asm_sub(ASMState *as, IRIns *ir) { #if !LJ_SOFTFP if (irt_isnum(ir->t)) { asm_fparith(as, ir, MIPSI_SUB_D); } else #endif { Reg dest = ra_dest(as, ir, RSET_GPR); Reg right, left = ra_alloc2(as, ir, RSET_GPR); right = (left >> 8); left &= 255; emit_dst(as, (LJ_64 && irt_is64(ir->t)) ? MIPSI_DSUBU : MIPSI_SUBU, dest, left, right); } } static void asm_mul(ASMState *as, IRIns *ir) { #if !LJ_SOFTFP if (irt_isnum(ir->t)) { asm_fparith(as, ir, MIPSI_MUL_D); } else #endif { Reg dest = ra_dest(as, ir, RSET_GPR); Reg right, left = ra_alloc2(as, ir, RSET_GPR); right = (left >> 8); left &= 255; if (LJ_64 && irt_is64(ir->t)) { emit_dst(as, MIPSI_MFLO, dest, 0, 0); emit_dst(as, MIPSI_DMULT, 0, left, right); } else { emit_dst(as, MIPSI_MUL, dest, left, right); } } } static void asm_mod(ASMState *as, IRIns *ir) { #if LJ_64 && LJ_HASFFI if (!irt_isint(ir->t)) asm_callid(as, ir, irt_isi64(ir->t) ? IRCALL_lj_carith_modi64 : IRCALL_lj_carith_modu64); else #endif asm_callid(as, ir, IRCALL_lj_vm_modi); } #if !LJ_SOFTFP static void asm_pow(ASMState *as, IRIns *ir) { #if LJ_64 && LJ_HASFFI if (!irt_isnum(ir->t)) asm_callid(as, ir, irt_isi64(ir->t) ? IRCALL_lj_carith_powi64 : IRCALL_lj_carith_powu64); else #endif asm_callid(as, ir, IRCALL_lj_vm_powi); } static void asm_div(ASMState *as, IRIns *ir) { #if LJ_64 && LJ_HASFFI if (!irt_isnum(ir->t)) asm_callid(as, ir, irt_isi64(ir->t) ? IRCALL_lj_carith_divi64 : IRCALL_lj_carith_divu64); else #endif asm_fparith(as, ir, MIPSI_DIV_D); } #endif static void asm_neg(ASMState *as, IRIns *ir) { #if !LJ_SOFTFP if (irt_isnum(ir->t)) { asm_fpunary(as, ir, MIPSI_NEG_D); } else #endif { Reg dest = ra_dest(as, ir, RSET_GPR); Reg left = ra_hintalloc(as, ir->op1, dest, RSET_GPR); emit_dst(as, (LJ_64 && irt_is64(ir->t)) ? MIPSI_DSUBU : MIPSI_SUBU, dest, RID_ZERO, left); } } #define asm_abs(as, ir) asm_fpunary(as, ir, MIPSI_ABS_D) #define asm_atan2(as, ir) asm_callid(as, ir, IRCALL_atan2) #define asm_ldexp(as, ir) asm_callid(as, ir, IRCALL_ldexp) static void asm_arithov(ASMState *as, IRIns *ir) { Reg right, left, tmp, dest = ra_dest(as, ir, RSET_GPR); lua_assert(!irt_is64(ir->t)); if (irref_isk(ir->op2)) { int k = IR(ir->op2)->i; if (ir->o == IR_SUBOV) k = -k; if (checki16(k)) { /* (dest < left) == (k >= 0 ? 1 : 0) */ left = ra_alloc1(as, ir->op1, RSET_GPR); asm_guard(as, k >= 0 ? MIPSI_BNE : MIPSI_BEQ, RID_TMP, RID_ZERO); emit_dst(as, MIPSI_SLT, RID_TMP, dest, dest == left ? RID_TMP : left); emit_tsi(as, MIPSI_ADDIU, dest, left, k); if (dest == left) emit_move(as, RID_TMP, left); return; } } left = ra_alloc2(as, ir, RSET_GPR); right = (left >> 8); left &= 255; tmp = ra_scratch(as, rset_exclude(rset_exclude(rset_exclude(RSET_GPR, left), right), dest)); asm_guard(as, MIPSI_BLTZ, RID_TMP, 0); emit_dst(as, MIPSI_AND, RID_TMP, RID_TMP, tmp); if (ir->o == IR_ADDOV) { /* ((dest^left) & (dest^right)) < 0 */ emit_dst(as, MIPSI_XOR, RID_TMP, dest, dest == right ? RID_TMP : right); } else { /* ((dest^left) & (dest^~right)) < 0 */ emit_dst(as, MIPSI_XOR, RID_TMP, RID_TMP, dest); emit_dst(as, MIPSI_NOR, RID_TMP, dest == right ? RID_TMP : right, RID_ZERO); } emit_dst(as, MIPSI_XOR, tmp, dest, dest == left ? RID_TMP : left); emit_dst(as, ir->o == IR_ADDOV ? MIPSI_ADDU : MIPSI_SUBU, dest, left, right); if (dest == left || dest == right) emit_move(as, RID_TMP, dest == left ? left : right); } #define asm_addov(as, ir) asm_arithov(as, ir) #define asm_subov(as, ir) asm_arithov(as, ir) static void asm_mulov(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg tmp, right, left = ra_alloc2(as, ir, RSET_GPR); right = (left >> 8); left &= 255; tmp = ra_scratch(as, rset_exclude(rset_exclude(rset_exclude(RSET_GPR, left), right), dest)); asm_guard(as, MIPSI_BNE, RID_TMP, tmp); emit_dta(as, MIPSI_SRA, RID_TMP, dest, 31); emit_dst(as, MIPSI_MFHI, tmp, 0, 0); emit_dst(as, MIPSI_MFLO, dest, 0, 0); emit_dst(as, MIPSI_MULT, 0, left, right); } #if LJ_32 && LJ_HASFFI static void asm_add64(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg right, left = ra_alloc1(as, ir->op1, RSET_GPR); if (irref_isk(ir->op2)) { int32_t k = IR(ir->op2)->i; if (k == 0) { emit_dst(as, MIPSI_ADDU, dest, left, RID_TMP); goto loarith; } else if (checki16(k)) { emit_dst(as, MIPSI_ADDU, dest, dest, RID_TMP); emit_tsi(as, MIPSI_ADDIU, dest, left, k); goto loarith; } } emit_dst(as, MIPSI_ADDU, dest, dest, RID_TMP); right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left)); emit_dst(as, MIPSI_ADDU, dest, left, right); loarith: ir--; dest = ra_dest(as, ir, RSET_GPR); left = ra_alloc1(as, ir->op1, RSET_GPR); if (irref_isk(ir->op2)) { int32_t k = IR(ir->op2)->i; if (k == 0) { if (dest != left) emit_move(as, dest, left); return; } else if (checki16(k)) { if (dest == left) { Reg tmp = ra_scratch(as, rset_exclude(RSET_GPR, left)); emit_move(as, dest, tmp); dest = tmp; } emit_dst(as, MIPSI_SLTU, RID_TMP, dest, left); emit_tsi(as, MIPSI_ADDIU, dest, left, k); return; } } right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left)); if (dest == left && dest == right) { Reg tmp = ra_scratch(as, rset_exclude(rset_exclude(RSET_GPR, left), right)); emit_move(as, dest, tmp); dest = tmp; } emit_dst(as, MIPSI_SLTU, RID_TMP, dest, dest == left ? right : left); emit_dst(as, MIPSI_ADDU, dest, left, right); } static void asm_sub64(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg right, left = ra_alloc2(as, ir, RSET_GPR); right = (left >> 8); left &= 255; emit_dst(as, MIPSI_SUBU, dest, dest, RID_TMP); emit_dst(as, MIPSI_SUBU, dest, left, right); ir--; dest = ra_dest(as, ir, RSET_GPR); left = ra_alloc2(as, ir, RSET_GPR); right = (left >> 8); left &= 255; if (dest == left) { Reg tmp = ra_scratch(as, rset_exclude(rset_exclude(RSET_GPR, left), right)); emit_move(as, dest, tmp); dest = tmp; } emit_dst(as, MIPSI_SLTU, RID_TMP, left, dest); emit_dst(as, MIPSI_SUBU, dest, left, right); } static void asm_neg64(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg left = ra_alloc1(as, ir->op1, RSET_GPR); emit_dst(as, MIPSI_SUBU, dest, dest, RID_TMP); emit_dst(as, MIPSI_SUBU, dest, RID_ZERO, left); ir--; dest = ra_dest(as, ir, RSET_GPR); left = ra_alloc1(as, ir->op1, RSET_GPR); emit_dst(as, MIPSI_SLTU, RID_TMP, RID_ZERO, dest); emit_dst(as, MIPSI_SUBU, dest, RID_ZERO, left); } #endif static void asm_bnot(ASMState *as, IRIns *ir) { Reg left, right, dest = ra_dest(as, ir, RSET_GPR); IRIns *irl = IR(ir->op1); if (mayfuse(as, ir->op1) && irl->o == IR_BOR) { left = ra_alloc2(as, irl, RSET_GPR); right = (left >> 8); left &= 255; } else { left = ra_hintalloc(as, ir->op1, dest, RSET_GPR); right = RID_ZERO; } emit_dst(as, MIPSI_NOR, dest, left, right); } static void asm_bswap(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg left = ra_alloc1(as, ir->op1, RSET_GPR); #if LJ_32 if ((as->flags & JIT_F_MIPSXXR2)) { emit_dta(as, MIPSI_ROTR, dest, RID_TMP, 16); emit_dst(as, MIPSI_WSBH, RID_TMP, 0, left); } else { Reg tmp = ra_scratch(as, rset_exclude(rset_exclude(RSET_GPR, left), dest)); emit_dst(as, MIPSI_OR, dest, dest, tmp); emit_dst(as, MIPSI_OR, dest, dest, RID_TMP); emit_tsi(as, MIPSI_ANDI, dest, dest, 0xff00); emit_dta(as, MIPSI_SLL, RID_TMP, RID_TMP, 8); emit_dta(as, MIPSI_SRL, dest, left, 8); emit_tsi(as, MIPSI_ANDI, RID_TMP, left, 0xff00); emit_dst(as, MIPSI_OR, tmp, tmp, RID_TMP); emit_dta(as, MIPSI_SRL, tmp, left, 24); emit_dta(as, MIPSI_SLL, RID_TMP, left, 24); } #else if (irt_is64(ir->t)) { emit_dst(as, MIPSI_DSHD, dest, 0, RID_TMP); emit_dst(as, MIPSI_DSBH, RID_TMP, 0, left); } else { emit_dta(as, MIPSI_ROTR, dest, RID_TMP, 16); emit_dst(as, MIPSI_WSBH, RID_TMP, 0, left); } #endif } static void asm_bitop(ASMState *as, IRIns *ir, MIPSIns mi, MIPSIns mik) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg right, left = ra_hintalloc(as, ir->op1, dest, RSET_GPR); if (irref_isk(ir->op2)) { intptr_t k = get_kval(IR(ir->op2)); if (checku16(k)) { emit_tsi(as, mik, dest, left, k); return; } } right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left)); emit_dst(as, mi, dest, left, right); } #define asm_band(as, ir) asm_bitop(as, ir, MIPSI_AND, MIPSI_ANDI) #define asm_bor(as, ir) asm_bitop(as, ir, MIPSI_OR, MIPSI_ORI) #define asm_bxor(as, ir) asm_bitop(as, ir, MIPSI_XOR, MIPSI_XORI) static void asm_bitshift(ASMState *as, IRIns *ir, MIPSIns mi, MIPSIns mik) { Reg dest = ra_dest(as, ir, RSET_GPR); if (irref_isk(ir->op2)) { /* Constant shifts. */ uint32_t shift = (uint32_t)IR(ir->op2)->i; if (LJ_64 && irt_is64(ir->t)) mik |= (shift & 32) ? MIPSI_D32 : MIPSI_D; emit_dta(as, mik, dest, ra_hintalloc(as, ir->op1, dest, RSET_GPR), (shift & 31)); } else { Reg right, left = ra_alloc2(as, ir, RSET_GPR); right = (left >> 8); left &= 255; if (LJ_64 && irt_is64(ir->t)) mi |= MIPSI_DV; emit_dst(as, mi, dest, right, left); /* Shift amount is in rs. */ } } #define asm_bshl(as, ir) asm_bitshift(as, ir, MIPSI_SLLV, MIPSI_SLL) #define asm_bshr(as, ir) asm_bitshift(as, ir, MIPSI_SRLV, MIPSI_SRL) #define asm_bsar(as, ir) asm_bitshift(as, ir, MIPSI_SRAV, MIPSI_SRA) #define asm_brol(as, ir) lua_assert(0) static void asm_bror(ASMState *as, IRIns *ir) { if (LJ_64 || (as->flags & JIT_F_MIPSXXR2)) { asm_bitshift(as, ir, MIPSI_ROTRV, MIPSI_ROTR); } else { Reg dest = ra_dest(as, ir, RSET_GPR); if (irref_isk(ir->op2)) { /* Constant shifts. */ uint32_t shift = (uint32_t)(IR(ir->op2)->i & 31); Reg left = ra_hintalloc(as, ir->op1, dest, RSET_GPR); emit_rotr(as, dest, left, RID_TMP, shift); } else { Reg right, left = ra_alloc2(as, ir, RSET_GPR); right = (left >> 8); left &= 255; emit_dst(as, MIPSI_OR, dest, dest, RID_TMP); emit_dst(as, MIPSI_SRLV, dest, right, left); emit_dst(as, MIPSI_SLLV, RID_TMP, RID_TMP, left); emit_dst(as, MIPSI_SUBU, RID_TMP, ra_allock(as, 32, RSET_GPR), right); } } } #if LJ_32 && LJ_SOFTFP static void asm_sfpmin_max(ASMState *as, IRIns *ir) { CCallInfo ci = lj_ir_callinfo[(IROp)ir->o == IR_MIN ? IRCALL_lj_vm_sfmin : IRCALL_lj_vm_sfmax]; IRRef args[4]; args[0^LJ_BE] = ir->op1; args[1^LJ_BE] = (ir+1)->op1; args[2^LJ_BE] = ir->op2; args[3^LJ_BE] = (ir+1)->op2; asm_setupresult(as, ir, &ci); emit_call(as, (void *)ci.func, 0); ci.func = NULL; asm_gencall(as, &ci, args); } #endif static void asm_min_max(ASMState *as, IRIns *ir, int ismax) { if (!LJ_SOFTFP && irt_isnum(ir->t)) { Reg dest = ra_dest(as, ir, RSET_FPR); Reg right, left = ra_alloc2(as, ir, RSET_FPR); right = (left >> 8); left &= 255; if (dest == left) { emit_fg(as, MIPSI_MOVT_D, dest, right); } else { emit_fg(as, MIPSI_MOVF_D, dest, left); if (dest != right) emit_fg(as, MIPSI_MOV_D, dest, right); } emit_fgh(as, MIPSI_C_OLT_D, 0, ismax ? left : right, ismax ? right : left); } else { Reg dest = ra_dest(as, ir, RSET_GPR); Reg right, left = ra_alloc2(as, ir, RSET_GPR); right = (left >> 8); left &= 255; if (dest == left) { emit_dst(as, MIPSI_MOVN, dest, right, RID_TMP); } else { emit_dst(as, MIPSI_MOVZ, dest, left, RID_TMP); if (dest != right) emit_move(as, dest, right); } emit_dst(as, MIPSI_SLT, RID_TMP, ismax ? left : right, ismax ? right : left); } } #define asm_min(as, ir) asm_min_max(as, ir, 0) #define asm_max(as, ir) asm_min_max(as, ir, 1) /* -- Comparisons --------------------------------------------------------- */ #if LJ_32 && LJ_SOFTFP /* SFP comparisons. */ static void asm_sfpcomp(ASMState *as, IRIns *ir) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_softfp_cmp]; RegSet drop = RSET_SCRATCH; Reg r; IRRef args[4]; args[LJ_LE ? 0 : 1] = ir->op1; args[LJ_LE ? 1 : 0] = (ir+1)->op1; args[LJ_LE ? 2 : 3] = ir->op2; args[LJ_LE ? 3 : 2] = (ir+1)->op2; for (r = REGARG_FIRSTGPR; r <= REGARG_FIRSTGPR+3; r++) { if (!rset_test(as->freeset, r) && regcost_ref(as->cost[r]) == args[r-REGARG_FIRSTGPR]) rset_clear(drop, r); } ra_evictset(as, drop); asm_setupresult(as, ir, ci); switch ((IROp)ir->o) { case IR_LT: asm_guard(as, MIPSI_BGEZ, RID_RET, 0); break; case IR_ULT: asm_guard(as, MIPSI_BEQ, RID_RET, RID_TMP); emit_loadi(as, RID_TMP, 1); asm_guard(as, MIPSI_BEQ, RID_RET, RID_ZERO); break; case IR_GE: asm_guard(as, MIPSI_BEQ, RID_RET, RID_TMP); emit_loadi(as, RID_TMP, 2); asm_guard(as, MIPSI_BLTZ, RID_RET, 0); break; case IR_LE: asm_guard(as, MIPSI_BGTZ, RID_RET, 0); break; case IR_GT: asm_guard(as, MIPSI_BEQ, RID_RET, RID_TMP); emit_loadi(as, RID_TMP, 2); asm_guard(as, MIPSI_BLEZ, RID_RET, 0); break; case IR_UGE: asm_guard(as, MIPSI_BLTZ, RID_RET, 0); break; case IR_ULE: asm_guard(as, MIPSI_BEQ, RID_RET, RID_TMP); emit_loadi(as, RID_TMP, 1); break; case IR_UGT: case IR_ABC: asm_guard(as, MIPSI_BLEZ, RID_RET, 0); break; case IR_EQ: case IR_NE: asm_guard(as, (ir->o & 1) ? MIPSI_BEQ : MIPSI_BNE, RID_RET, RID_ZERO); default: break; } asm_gencall(as, ci, args); } #endif static void asm_comp(ASMState *as, IRIns *ir) { /* ORDER IR: LT GE LE GT ULT UGE ULE UGT. */ IROp op = ir->o; if (!LJ_SOFTFP && irt_isnum(ir->t)) { Reg right, left = ra_alloc2(as, ir, RSET_FPR); right = (left >> 8); left &= 255; asm_guard(as, (op&1) ? MIPSI_BC1T : MIPSI_BC1F, 0, 0); emit_fgh(as, MIPSI_C_OLT_D + ((op&3) ^ ((op>>2)&1)), 0, left, right); } else { Reg right, left = ra_alloc1(as, ir->op1, RSET_GPR); if (op == IR_ABC) op = IR_UGT; if ((op&4) == 0 && irref_isk(ir->op2) && get_kval(IR(ir->op2)) == 0) { MIPSIns mi = (op&2) ? ((op&1) ? MIPSI_BLEZ : MIPSI_BGTZ) : ((op&1) ? MIPSI_BLTZ : MIPSI_BGEZ); asm_guard(as, mi, left, 0); } else { if (irref_isk(ir->op2)) { intptr_t k = get_kval(IR(ir->op2)); if ((op&2)) k++; if (checki16(k)) { asm_guard(as, (op&1) ? MIPSI_BNE : MIPSI_BEQ, RID_TMP, RID_ZERO); emit_tsi(as, (op&4) ? MIPSI_SLTIU : MIPSI_SLTI, RID_TMP, left, k); return; } } right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left)); asm_guard(as, ((op^(op>>1))&1) ? MIPSI_BNE : MIPSI_BEQ, RID_TMP, RID_ZERO); emit_dst(as, (op&4) ? MIPSI_SLTU : MIPSI_SLT, RID_TMP, (op&2) ? right : left, (op&2) ? left : right); } } } static void asm_equal(ASMState *as, IRIns *ir) { Reg right, left = ra_alloc2(as, ir, (!LJ_SOFTFP && irt_isnum(ir->t)) ? RSET_FPR : RSET_GPR); right = (left >> 8); left &= 255; if (!LJ_SOFTFP && irt_isnum(ir->t)) { asm_guard(as, (ir->o & 1) ? MIPSI_BC1T : MIPSI_BC1F, 0, 0); emit_fgh(as, MIPSI_C_EQ_D, 0, left, right); } else { asm_guard(as, (ir->o & 1) ? MIPSI_BEQ : MIPSI_BNE, left, right); } } #if LJ_32 && LJ_HASFFI /* 64 bit integer comparisons. */ static void asm_comp64(ASMState *as, IRIns *ir) { /* ORDER IR: LT GE LE GT ULT UGE ULE UGT. */ IROp op = (ir-1)->o; MCLabel l_end; Reg rightlo, leftlo, righthi, lefthi = ra_alloc2(as, ir, RSET_GPR); righthi = (lefthi >> 8); lefthi &= 255; leftlo = ra_alloc2(as, ir-1, rset_exclude(rset_exclude(RSET_GPR, lefthi), righthi)); rightlo = (leftlo >> 8); leftlo &= 255; asm_guard(as, ((op^(op>>1))&1) ? MIPSI_BNE : MIPSI_BEQ, RID_TMP, RID_ZERO); l_end = emit_label(as); if (lefthi != righthi) emit_dst(as, (op&4) ? MIPSI_SLTU : MIPSI_SLT, RID_TMP, (op&2) ? righthi : lefthi, (op&2) ? lefthi : righthi); emit_dst(as, MIPSI_SLTU, RID_TMP, (op&2) ? rightlo : leftlo, (op&2) ? leftlo : rightlo); if (lefthi != righthi) emit_branch(as, MIPSI_BEQ, lefthi, righthi, l_end); } static void asm_comp64eq(ASMState *as, IRIns *ir) { Reg tmp, right, left = ra_alloc2(as, ir, RSET_GPR); right = (left >> 8); left &= 255; asm_guard(as, ((ir-1)->o & 1) ? MIPSI_BEQ : MIPSI_BNE, RID_TMP, RID_ZERO); tmp = ra_scratch(as, rset_exclude(rset_exclude(RSET_GPR, left), right)); emit_dst(as, MIPSI_OR, RID_TMP, RID_TMP, tmp); emit_dst(as, MIPSI_XOR, tmp, left, right); left = ra_alloc2(as, ir-1, RSET_GPR); right = (left >> 8); left &= 255; emit_dst(as, MIPSI_XOR, RID_TMP, left, right); } #endif /* -- Support for 64 bit ops in 32 bit mode ------------------------------- */ /* Hiword op of a split 64 bit op. Previous op must be the loword op. */ static void asm_hiop(ASMState *as, IRIns *ir) { #if LJ_32 && (LJ_HASFFI || LJ_SOFTFP) /* HIOP is marked as a store because it needs its own DCE logic. */ int uselo = ra_used(ir-1), usehi = ra_used(ir); /* Loword/hiword used? */ if (LJ_UNLIKELY(!(as->flags & JIT_F_OPT_DCE))) uselo = usehi = 1; if ((ir-1)->o == IR_CONV) { /* Conversions to/from 64 bit. */ as->curins--; /* Always skip the CONV. */ #if LJ_HASFFI && !LJ_SOFTFP if (usehi || uselo) asm_conv64(as, ir); return; #endif } else if ((ir-1)->o < IR_EQ) { /* 64 bit integer comparisons. ORDER IR. */ as->curins--; /* Always skip the loword comparison. */ #if LJ_SOFTFP if (!irt_isint(ir->t)) { asm_sfpcomp(as, ir-1); return; } #endif #if LJ_HASFFI asm_comp64(as, ir); #endif return; } else if ((ir-1)->o <= IR_NE) { /* 64 bit integer comparisons. ORDER IR. */ as->curins--; /* Always skip the loword comparison. */ #if LJ_SOFTFP if (!irt_isint(ir->t)) { asm_sfpcomp(as, ir-1); return; } #endif #if LJ_HASFFI asm_comp64eq(as, ir); #endif return; #if LJ_SOFTFP } else if ((ir-1)->o == IR_MIN || (ir-1)->o == IR_MAX) { as->curins--; /* Always skip the loword min/max. */ if (uselo || usehi) asm_sfpmin_max(as, ir-1); return; #endif } else if ((ir-1)->o == IR_XSTORE) { as->curins--; /* Handle both stores here. */ if ((ir-1)->r != RID_SINK) { asm_xstore_(as, ir, LJ_LE ? 4 : 0); asm_xstore_(as, ir-1, LJ_LE ? 0 : 4); } return; } if (!usehi) return; /* Skip unused hiword op for all remaining ops. */ switch ((ir-1)->o) { #if LJ_HASFFI case IR_ADD: as->curins--; asm_add64(as, ir); break; case IR_SUB: as->curins--; asm_sub64(as, ir); break; case IR_NEG: as->curins--; asm_neg64(as, ir); break; #endif #if LJ_SOFTFP case IR_SLOAD: case IR_ALOAD: case IR_HLOAD: case IR_ULOAD: case IR_VLOAD: case IR_STRTO: if (!uselo) ra_allocref(as, ir->op1, RSET_GPR); /* Mark lo op as used. */ break; #endif case IR_CALLN: case IR_CALLS: case IR_CALLXS: if (!uselo) ra_allocref(as, ir->op1, RID2RSET(RID_RETLO)); /* Mark lo op as used. */ break; #if LJ_SOFTFP case IR_ASTORE: case IR_HSTORE: case IR_USTORE: case IR_TOSTR: #endif case IR_CNEWI: /* Nothing to do here. Handled by lo op itself. */ break; default: lua_assert(0); break; } #else UNUSED(as); UNUSED(ir); lua_assert(0); /* Unused without FFI. */ #endif } /* -- Profiling ----------------------------------------------------------- */ static void asm_prof(ASMState *as, IRIns *ir) { UNUSED(ir); asm_guard(as, MIPSI_BNE, RID_TMP, RID_ZERO); emit_tsi(as, MIPSI_ANDI, RID_TMP, RID_TMP, HOOK_PROFILE); emit_lsglptr(as, MIPSI_LBU, RID_TMP, (int32_t)offsetof(global_State, hookmask)); } /* -- Stack handling ------------------------------------------------------ */ /* Check Lua stack size for overflow. Use exit handler as fallback. */ static void asm_stack_check(ASMState *as, BCReg topslot, IRIns *irp, RegSet allow, ExitNo exitno) { /* Try to get an unused temp. register, otherwise spill/restore RID_RET*. */ Reg tmp, pbase = irp ? (ra_hasreg(irp->r) ? irp->r : RID_TMP) : RID_BASE; ExitNo oldsnap = as->snapno; rset_clear(allow, pbase); #if LJ_32 tmp = allow ? rset_pickbot(allow) : (pbase == RID_RETHI ? RID_RETLO : RID_RETHI); #else tmp = allow ? rset_pickbot(allow) : RID_RET; #endif as->snapno = exitno; asm_guard(as, MIPSI_BNE, RID_TMP, RID_ZERO); as->snapno = oldsnap; if (allow == RSET_EMPTY) /* Restore temp. register. */ emit_tsi(as, MIPSI_AL, tmp, RID_SP, 0); else ra_modified(as, tmp); emit_tsi(as, MIPSI_SLTIU, RID_TMP, RID_TMP, (int32_t)(8*topslot)); emit_dst(as, MIPSI_ASUBU, RID_TMP, tmp, pbase); emit_tsi(as, MIPSI_AL, tmp, tmp, offsetof(lua_State, maxstack)); if (pbase == RID_TMP) emit_getgl(as, RID_TMP, jit_base); emit_getgl(as, tmp, cur_L); if (allow == RSET_EMPTY) /* Spill temp. register. */ emit_tsi(as, MIPSI_AS, tmp, RID_SP, 0); } /* Restore Lua stack from on-trace state. */ static void asm_stack_restore(ASMState *as, SnapShot *snap) { SnapEntry *map = &as->T->snapmap[snap->mapofs]; #if LJ_32 || defined(LUA_USE_ASSERT) SnapEntry *flinks = &as->T->snapmap[snap_nextofs(as->T, snap)-1-LJ_FR2]; #endif MSize n, nent = snap->nent; /* Store the value of all modified slots to the Lua stack. */ for (n = 0; n < nent; n++) { SnapEntry sn = map[n]; BCReg s = snap_slot(sn); int32_t ofs = 8*((int32_t)s-1-LJ_FR2); IRRef ref = snap_ref(sn); IRIns *ir = IR(ref); if ((sn & SNAP_NORESTORE)) continue; if (irt_isnum(ir->t)) { #if LJ_SOFTFP Reg tmp; RegSet allow = rset_exclude(RSET_GPR, RID_BASE); lua_assert(irref_isk(ref)); /* LJ_SOFTFP: must be a number constant. */ tmp = ra_allock(as, (int32_t)ir_knum(ir)->u32.lo, allow); emit_tsi(as, MIPSI_SW, tmp, RID_BASE, ofs+(LJ_BE?4:0)); if (rset_test(as->freeset, tmp+1)) allow = RID2RSET(tmp+1); tmp = ra_allock(as, (int32_t)ir_knum(ir)->u32.hi, allow); emit_tsi(as, MIPSI_SW, tmp, RID_BASE, ofs+(LJ_BE?0:4)); #else Reg src = ra_alloc1(as, ref, RSET_FPR); emit_hsi(as, MIPSI_SDC1, src, RID_BASE, ofs); #endif } else { #if LJ_32 RegSet allow = rset_exclude(RSET_GPR, RID_BASE); Reg type; lua_assert(irt_ispri(ir->t) || irt_isaddr(ir->t) || irt_isinteger(ir->t)); if (!irt_ispri(ir->t)) { Reg src = ra_alloc1(as, ref, allow); rset_clear(allow, src); emit_tsi(as, MIPSI_SW, src, RID_BASE, ofs+(LJ_BE?4:0)); } if ((sn & (SNAP_CONT|SNAP_FRAME))) { if (s == 0) continue; /* Do not overwrite link to previous frame. */ type = ra_allock(as, (int32_t)(*flinks--), allow); #if LJ_SOFTFP } else if ((sn & SNAP_SOFTFPNUM)) { type = ra_alloc1(as, ref+1, rset_exclude(RSET_GPR, RID_BASE)); #endif } else { type = ra_allock(as, (int32_t)irt_toitype(ir->t), allow); } emit_tsi(as, MIPSI_SW, type, RID_BASE, ofs+(LJ_BE?0:4)); #else asm_tvstore64(as, RID_BASE, ofs, ref); #endif } checkmclim(as); } lua_assert(map + nent == flinks); } /* -- GC handling --------------------------------------------------------- */ /* Check GC threshold and do one or more GC steps. */ static void asm_gc_check(ASMState *as) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_gc_step_jit]; IRRef args[2]; MCLabel l_end; Reg tmp; ra_evictset(as, RSET_SCRATCH); l_end = emit_label(as); /* Exit trace if in GCSatomic or GCSfinalize. Avoids syncing GC objects. */ /* Assumes asm_snap_prep() already done. */ asm_guard(as, MIPSI_BNE, RID_RET, RID_ZERO); args[0] = ASMREF_TMP1; /* global_State *g */ args[1] = ASMREF_TMP2; /* MSize steps */ asm_gencall(as, ci, args); emit_tsi(as, MIPSI_AADDIU, ra_releasetmp(as, ASMREF_TMP1), RID_JGL, -32768); tmp = ra_releasetmp(as, ASMREF_TMP2); emit_loadi(as, tmp, as->gcsteps); /* Jump around GC step if GC total < GC threshold. */ emit_branch(as, MIPSI_BNE, RID_TMP, RID_ZERO, l_end); emit_dst(as, MIPSI_SLTU, RID_TMP, RID_TMP, tmp); emit_getgl(as, tmp, gc.threshold); emit_getgl(as, RID_TMP, gc.total); as->gcsteps = 0; checkmclim(as); } /* -- Loop handling ------------------------------------------------------- */ /* Fixup the loop branch. */ static void asm_loop_fixup(ASMState *as) { MCode *p = as->mctop; MCode *target = as->mcp; p[-1] = MIPSI_NOP; if (as->loopinv) { /* Inverted loop branch? */ /* asm_guard already inverted the cond branch. Only patch the target. */ p[-3] |= ((target-p+2) & 0x0000ffffu); } else { p[-2] = MIPSI_J|(((uintptr_t)target>>2)&0x03ffffffu); } } /* -- Head of trace ------------------------------------------------------- */ /* Coalesce BASE register for a root trace. */ static void asm_head_root_base(ASMState *as) { IRIns *ir = IR(REF_BASE); Reg r = ir->r; if (as->loopinv) as->mctop--; if (ra_hasreg(r)) { ra_free(as, r); if (rset_test(as->modset, r) || irt_ismarked(ir->t)) ir->r = RID_INIT; /* No inheritance for modified BASE register. */ if (r != RID_BASE) emit_move(as, r, RID_BASE); } } /* Coalesce BASE register for a side trace. */ static RegSet asm_head_side_base(ASMState *as, IRIns *irp, RegSet allow) { IRIns *ir = IR(REF_BASE); Reg r = ir->r; if (as->loopinv) as->mctop--; if (ra_hasreg(r)) { ra_free(as, r); if (rset_test(as->modset, r) || irt_ismarked(ir->t)) ir->r = RID_INIT; /* No inheritance for modified BASE register. */ if (irp->r == r) { rset_clear(allow, r); /* Mark same BASE register as coalesced. */ } else if (ra_hasreg(irp->r) && rset_test(as->freeset, irp->r)) { rset_clear(allow, irp->r); emit_move(as, r, irp->r); /* Move from coalesced parent reg. */ } else { emit_getgl(as, r, jit_base); /* Otherwise reload BASE. */ } } return allow; } /* -- Tail of trace ------------------------------------------------------- */ /* Fixup the tail code. */ static void asm_tail_fixup(ASMState *as, TraceNo lnk) { MCode *target = lnk ? traceref(as->J,lnk)->mcode : (MCode *)lj_vm_exit_interp; int32_t spadj = as->T->spadjust; MCode *p = as->mctop-1; *p = spadj ? (MIPSI_AADDIU|MIPSF_T(RID_SP)|MIPSF_S(RID_SP)|spadj) : MIPSI_NOP; p[-1] = MIPSI_J|(((uintptr_t)target>>2)&0x03ffffffu); } /* Prepare tail of code. */ static void asm_tail_prep(ASMState *as) { as->mcp = as->mctop-2; /* Leave room for branch plus nop or stack adj. */ as->invmcp = as->loopref ? as->mcp : NULL; } /* -- Trace setup --------------------------------------------------------- */ /* Ensure there are enough stack slots for call arguments. */ static Reg asm_setup_call_slots(ASMState *as, IRIns *ir, const CCallInfo *ci) { IRRef args[CCI_NARGS_MAX*2]; uint32_t i, nargs = CCI_XNARGS(ci); #if LJ_32 int nslots = 4, ngpr = REGARG_NUMGPR, nfpr = REGARG_NUMFPR; #else int nslots = 0, ngpr = REGARG_NUMGPR; #endif asm_collectargs(as, ir, ci, args); for (i = 0; i < nargs; i++) { #if LJ_32 if (!LJ_SOFTFP && args[i] && irt_isfp(IR(args[i])->t) && nfpr > 0 && !(ci->flags & CCI_VARARG)) { nfpr--; ngpr -= irt_isnum(IR(args[i])->t) ? 2 : 1; } else if (!LJ_SOFTFP && args[i] && irt_isnum(IR(args[i])->t)) { nfpr = 0; ngpr = ngpr & ~1; if (ngpr > 0) ngpr -= 2; else nslots = (nslots+3) & ~1; } else { nfpr = 0; if (ngpr > 0) ngpr--; else nslots++; } #else if (ngpr > 0) ngpr--; else nslots += 2; #endif } if (nslots > as->evenspill) /* Leave room for args in stack slots. */ as->evenspill = nslots; return irt_isfp(ir->t) ? REGSP_HINT(RID_FPRET) : REGSP_HINT(RID_RET); } static void asm_setup_target(ASMState *as) { asm_sparejump_setup(as); asm_exitstub_setup(as); } /* -- Trace patching ------------------------------------------------------ */ /* Patch exit jumps of existing machine code to a new target. */ void lj_asm_patchexit(jit_State *J, GCtrace *T, ExitNo exitno, MCode *target) { MCode *p = T->mcode; MCode *pe = (MCode *)((char *)p + T->szmcode); MCode *px = exitstub_trace_addr(T, exitno); MCode *cstart = NULL, *cstop = NULL; MCode *mcarea = lj_mcode_patch(J, p, 0); MCode exitload = MIPSI_LI | MIPSF_T(RID_TMP) | exitno; MCode tjump = MIPSI_J|(((uintptr_t)target>>2)&0x03ffffffu); for (p++; p < pe; p++) { if (*p == exitload) { /* Look for load of exit number. */ if (((p[-1] ^ (px-p)) & 0xffffu) == 0) { /* Look for exitstub branch. */ ptrdiff_t delta = target - p; if (((delta + 0x8000) >> 16) == 0) { /* Patch in-range branch. */ patchbranch: p[-1] = (p[-1] & 0xffff0000u) | (delta & 0xffffu); *p = MIPSI_NOP; /* Replace the load of the exit number. */ cstop = p; if (!cstart) cstart = p-1; } else { /* Branch out of range. Use spare jump slot in mcarea. */ int i; for (i = 2; i < 2+MIPS_SPAREJUMP*2; i += 2) { if (mcarea[i] == tjump) { delta = mcarea+i - p; goto patchbranch; } else if (mcarea[i] == MIPSI_NOP) { mcarea[i] = tjump; cstart = mcarea+i; delta = mcarea+i - p; goto patchbranch; } } /* Ignore jump slot overflow. Child trace is simply not attached. */ } } else if (p+1 == pe) { /* Patch NOP after code for inverted loop branch. Use of J is ok. */ lua_assert(p[1] == MIPSI_NOP); p[1] = tjump; *p = MIPSI_NOP; /* Replace the load of the exit number. */ cstop = p+2; if (!cstart) cstart = p+1; } } } if (cstart) lj_mcode_sync(cstart, cstop); lj_mcode_patch(J, mcarea, 1); } luajit-2.1.0~beta3+dfsg.orig/src/lj_cconv.h0000644000175100017510000000375113101703334020061 0ustar ondrejondrej/* ** C type conversions. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_CCONV_H #define _LJ_CCONV_H #include "lj_obj.h" #include "lj_ctype.h" #if LJ_HASFFI /* Compressed C type index. ORDER CCX. */ enum { CCX_B, /* Bool. */ CCX_I, /* Integer. */ CCX_F, /* Floating-point number. */ CCX_C, /* Complex. */ CCX_V, /* Vector. */ CCX_P, /* Pointer. */ CCX_A, /* Refarray. */ CCX_S /* Struct/union. */ }; /* Convert C type info to compressed C type index. ORDER CT. ORDER CCX. */ static LJ_AINLINE uint32_t cconv_idx(CTInfo info) { uint32_t idx = ((info >> 26) & 15u); /* Dispatch bits. */ lua_assert(ctype_type(info) <= CT_MAYCONVERT); #if LJ_64 idx = ((uint32_t)(U64x(f436fff5,fff7f021) >> 4*idx) & 15u); #else idx = (((idx < 8 ? 0xfff7f021u : 0xf436fff5) >> 4*(idx & 7u)) & 15u); #endif lua_assert(idx < 8); return idx; } #define cconv_idx2(dinfo, sinfo) \ ((cconv_idx((dinfo)) << 3) + cconv_idx((sinfo))) #define CCX(dst, src) ((CCX_##dst << 3) + CCX_##src) /* Conversion flags. */ #define CCF_CAST 0x00000001u #define CCF_FROMTV 0x00000002u #define CCF_SAME 0x00000004u #define CCF_IGNQUAL 0x00000008u #define CCF_ARG_SHIFT 8 #define CCF_ARG(n) ((n) << CCF_ARG_SHIFT) #define CCF_GETARG(f) ((f) >> CCF_ARG_SHIFT) LJ_FUNC int lj_cconv_compatptr(CTState *cts, CType *d, CType *s, CTInfo flags); LJ_FUNC void lj_cconv_ct_ct(CTState *cts, CType *d, CType *s, uint8_t *dp, uint8_t *sp, CTInfo flags); LJ_FUNC int lj_cconv_tv_ct(CTState *cts, CType *s, CTypeID sid, TValue *o, uint8_t *sp); LJ_FUNC int lj_cconv_tv_bf(CTState *cts, CType *s, TValue *o, uint8_t *sp); LJ_FUNC void lj_cconv_ct_tv(CTState *cts, CType *d, uint8_t *dp, TValue *o, CTInfo flags); LJ_FUNC void lj_cconv_bf_tv(CTState *cts, CType *d, uint8_t *dp, TValue *o); LJ_FUNC int lj_cconv_multi_init(CTState *cts, CType *d, TValue *o); LJ_FUNC void lj_cconv_ct_init(CTState *cts, CType *d, CTSize sz, uint8_t *dp, TValue *o, MSize len); #endif #endif luajit-2.1.0~beta3+dfsg.orig/src/psvitabuild.bat0000644000175100017510000000604413101703334021127 0ustar ondrejondrej@rem Script to build LuaJIT with the PS Vita SDK. @rem Donated to the public domain. @rem @rem Open a "Visual Studio .NET Command Prompt" (32 bit host compiler) @rem Then cd to this directory and run this script. @if not defined INCLUDE goto :FAIL @if not defined SCE_PSP2_SDK_DIR goto :FAIL @setlocal @rem ---- Host compiler ---- @set LJCOMPILE=cl /nologo /c /MD /O2 /W3 /D_CRT_SECURE_NO_DEPRECATE @set LJLINK=link /nologo @set LJMT=mt /nologo @set DASMDIR=..\dynasm @set DASM=%DASMDIR%\dynasm.lua @set ALL_LIB=lib_base.c lib_math.c lib_bit.c lib_string.c lib_table.c lib_io.c lib_os.c lib_package.c lib_debug.c lib_jit.c lib_ffi.c %LJCOMPILE% host\minilua.c @if errorlevel 1 goto :BAD %LJLINK% /out:minilua.exe minilua.obj @if errorlevel 1 goto :BAD if exist minilua.exe.manifest^ %LJMT% -manifest minilua.exe.manifest -outputresource:minilua.exe @rem Check for 32 bit host compiler. @minilua @if errorlevel 8 goto :FAIL @set DASMFLAGS=-D FPU -D HFABI minilua %DASM% -LN %DASMFLAGS% -o host\buildvm_arch.h vm_arm.dasc @if errorlevel 1 goto :BAD %LJCOMPILE% /I "." /I %DASMDIR% -DLUAJIT_TARGET=LUAJIT_ARCH_ARM -DLUAJIT_OS=LUAJIT_OS_OTHER -DLUAJIT_DISABLE_JIT -DLUAJIT_DISABLE_FFI -DLJ_TARGET_PSVITA=1 host\buildvm*.c @if errorlevel 1 goto :BAD %LJLINK% /out:buildvm.exe buildvm*.obj @if errorlevel 1 goto :BAD if exist buildvm.exe.manifest^ %LJMT% -manifest buildvm.exe.manifest -outputresource:buildvm.exe buildvm -m elfasm -o lj_vm.s @if errorlevel 1 goto :BAD buildvm -m bcdef -o lj_bcdef.h %ALL_LIB% @if errorlevel 1 goto :BAD buildvm -m ffdef -o lj_ffdef.h %ALL_LIB% @if errorlevel 1 goto :BAD buildvm -m libdef -o lj_libdef.h %ALL_LIB% @if errorlevel 1 goto :BAD buildvm -m recdef -o lj_recdef.h %ALL_LIB% @if errorlevel 1 goto :BAD buildvm -m vmdef -o jit\vmdef.lua %ALL_LIB% @if errorlevel 1 goto :BAD buildvm -m folddef -o lj_folddef.h lj_opt_fold.c @if errorlevel 1 goto :BAD @rem ---- Cross compiler ---- @set LJCOMPILE="%SCE_PSP2_SDK_DIR%\host_tools\build\bin\psp2snc" -c -w -DLUAJIT_DISABLE_FFI -DLUAJIT_USE_SYSMALLOC @set LJLIB="%SCE_PSP2_SDK_DIR%\host_tools\build\bin\psp2ld32" -r --output= @set INCLUDE="" "%SCE_PSP2_SDK_DIR%\host_tools\build\bin\psp2as" -o lj_vm.o lj_vm.s @if "%1" neq "debug" goto :NODEBUG @shift @set LJCOMPILE=%LJCOMPILE% -g -O0 @set TARGETLIB=libluajitD.a goto :BUILD :NODEBUG @set LJCOMPILE=%LJCOMPILE% -O2 @set TARGETLIB=libluajit.a :BUILD del %TARGETLIB% %LJCOMPILE% ljamalg.c @if errorlevel 1 goto :BAD %LJLIB%%TARGETLIB% ljamalg.o lj_vm.o @if errorlevel 1 goto :BAD @del *.o *.obj *.manifest minilua.exe buildvm.exe @echo. @echo === Successfully built LuaJIT for PS Vita === @goto :END :BAD @echo. @echo ******************************************************* @echo *** Build FAILED -- Please check the error messages *** @echo ******************************************************* @goto :END :FAIL @echo To run this script you must open a "Visual Studio .NET Command Prompt" @echo (32 bit host compiler). The PS Vita SDK must be installed, too. :END luajit-2.1.0~beta3+dfsg.orig/src/lj_udata.h0000644000175100017510000000046313101703334020044 0ustar ondrejondrej/* ** Userdata handling. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_UDATA_H #define _LJ_UDATA_H #include "lj_obj.h" LJ_FUNC GCudata *lj_udata_new(lua_State *L, MSize sz, GCtab *env); LJ_FUNC void LJ_FASTCALL lj_udata_free(global_State *g, GCudata *ud); #endif luajit-2.1.0~beta3+dfsg.orig/src/Makefile0000644000175100017510000005464013101703334017556 0ustar ondrejondrej############################################################################## # LuaJIT Makefile. Requires GNU Make. # # Please read doc/install.html before changing any variables! # # Suitable for POSIX platforms (Linux, *BSD, OSX etc.). # Also works with MinGW and Cygwin on Windows. # Please check msvcbuild.bat for building with MSVC on Windows. # # Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h ############################################################################## MAJVER= 2 MINVER= 1 RELVER= 0 ABIVER= 5.1 NODOTABIVER= 51 ############################################################################## ############################# COMPILER OPTIONS ############################# ############################################################################## # These options mainly affect the speed of the JIT compiler itself, not the # speed of the JIT-compiled code. Turn any of the optional settings on by # removing the '#' in front of them. Make sure you force a full recompile # with "make clean", followed by "make" if you change any options. # DEFAULT_CC = gcc # # LuaJIT builds as a native 32 or 64 bit binary by default. CC= $(DEFAULT_CC) # # Use this if you want to force a 32 bit build on a 64 bit multilib OS. #CC= $(DEFAULT_CC) -m32 # # Since the assembler part does NOT maintain a frame pointer, it's pointless # to slow down the C part by not omitting it. Debugging, tracebacks and # unwinding are not affected -- the assembler part has frame unwind # information and GCC emits it where needed (x64) or with -g (see CCDEBUG). CCOPT= -O2 -fomit-frame-pointer # Use this if you want to generate a smaller binary (but it's slower): #CCOPT= -Os -fomit-frame-pointer # Note: it's no longer recommended to use -O3 with GCC 4.x. # The I-Cache bloat usually outweighs the benefits from aggressive inlining. # # Target-specific compiler options: # # x86/x64 only: For GCC 4.2 or higher and if you don't intend to distribute # the binaries to a different machine you could also use: -march=native # CCOPT_x86= -march=i686 -msse -msse2 -mfpmath=sse CCOPT_x64= CCOPT_arm= CCOPT_arm64= CCOPT_ppc= CCOPT_mips= # CCDEBUG= # Uncomment the next line to generate debug information: #CCDEBUG= -g # CCWARN= -Wall # Uncomment the next line to enable more warnings: #CCWARN+= -Wextra -Wdeclaration-after-statement -Wredundant-decls -Wshadow -Wpointer-arith # ############################################################################## ############################################################################## ################################ BUILD MODE ################################ ############################################################################## # The default build mode is mixed mode on POSIX. On Windows this is the same # as dynamic mode. # # Mixed mode creates a static + dynamic library and a statically linked luajit. BUILDMODE= mixed # # Static mode creates a static library and a statically linked luajit. #BUILDMODE= static # # Dynamic mode creates a dynamic library and a dynamically linked luajit. # Note: this executable will only run when the library is installed! #BUILDMODE= dynamic # ############################################################################## ############################################################################## ################################# FEATURES ################################# ############################################################################## # Enable/disable these features as needed, but make sure you force a full # recompile with "make clean", followed by "make". XCFLAGS= # # Permanently disable the FFI extension to reduce the size of the LuaJIT # executable. But please consider that the FFI library is compiled-in, # but NOT loaded by default. It only allocates any memory, if you actually # make use of it. #XCFLAGS+= -DLUAJIT_DISABLE_FFI # # Features from Lua 5.2 that are unlikely to break existing code are # enabled by default. Some other features that *might* break some existing # code (e.g. __pairs or os.execute() return values) can be enabled here. # Note: this does not provide full compatibility with Lua 5.2 at this time. #XCFLAGS+= -DLUAJIT_ENABLE_LUA52COMPAT # # Disable the JIT compiler, i.e. turn LuaJIT into a pure interpreter. #XCFLAGS+= -DLUAJIT_DISABLE_JIT # # Some architectures (e.g. PPC) can use either single-number (1) or # dual-number (2) mode. Uncomment one of these lines to override the # default mode. Please see LJ_ARCH_NUMMODE in lj_arch.h for details. #XCFLAGS+= -DLUAJIT_NUMMODE=1 #XCFLAGS+= -DLUAJIT_NUMMODE=2 # # Enable GC64 mode for x64. #XCFLAGS+= -DLUAJIT_ENABLE_GC64 # ############################################################################## ############################################################################## ############################ DEBUGGING SUPPORT ############################# ############################################################################## # Enable these options as needed, but make sure you force a full recompile # with "make clean", followed by "make". # Note that most of these are NOT suitable for benchmarking or release mode! # # Use the system provided memory allocator (realloc) instead of the # bundled memory allocator. This is slower, but sometimes helpful for # debugging. This option cannot be enabled on x64 without GC64, since # realloc usually doesn't return addresses in the right address range. # OTOH this option is mandatory for Valgrind's memcheck tool on x64 and # the only way to get useful results from it for all other architectures. #XCFLAGS+= -DLUAJIT_USE_SYSMALLOC # # This define is required to run LuaJIT under Valgrind. The Valgrind # header files must be installed. You should enable debug information, too. # Use --suppressions=lj.supp to avoid some false positives. #XCFLAGS+= -DLUAJIT_USE_VALGRIND # # This is the client for the GDB JIT API. GDB 7.0 or higher is required # to make use of it. See lj_gdbjit.c for details. Enabling this causes # a non-negligible overhead, even when not running under GDB. #XCFLAGS+= -DLUAJIT_USE_GDBJIT # # Turn on assertions for the Lua/C API to debug problems with lua_* calls. # This is rather slow -- use only while developing C libraries/embeddings. #XCFLAGS+= -DLUA_USE_APICHECK # # Turn on assertions for the whole LuaJIT VM. This significantly slows down # everything. Use only if you suspect a problem with LuaJIT itself. #XCFLAGS+= -DLUA_USE_ASSERT # ############################################################################## # You probably don't need to change anything below this line! ############################################################################## ############################################################################## # Host system detection. ############################################################################## ifeq (Windows,$(findstring Windows,$(OS))$(MSYSTEM)$(TERM)) HOST_SYS= Windows HOST_RM= del else HOST_SYS:= $(shell uname -s) ifneq (,$(findstring MINGW,$(HOST_SYS))) HOST_SYS= Windows HOST_MSYS= mingw endif ifneq (,$(findstring CYGWIN,$(HOST_SYS))) HOST_SYS= Windows HOST_MSYS= cygwin endif endif ############################################################################## # Flags and options for host and target. ############################################################################## # You can override the following variables at the make command line: # CC HOST_CC STATIC_CC DYNAMIC_CC # CFLAGS HOST_CFLAGS TARGET_CFLAGS # LDFLAGS HOST_LDFLAGS TARGET_LDFLAGS TARGET_SHLDFLAGS # LIBS HOST_LIBS TARGET_LIBS # CROSS HOST_SYS TARGET_SYS TARGET_FLAGS # # Cross-compilation examples: # make HOST_CC="gcc -m32" CROSS=i586-mingw32msvc- TARGET_SYS=Windows # make HOST_CC="gcc -m32" CROSS=powerpc-linux-gnu- ASOPTIONS= $(CCOPT) $(CCWARN) $(XCFLAGS) $(CFLAGS) CCOPTIONS= $(CCDEBUG) $(ASOPTIONS) LDOPTIONS= $(CCDEBUG) $(LDFLAGS) HOST_CC= $(CC) HOST_RM= rm -f # If left blank, minilua is built and used. You can supply an installed # copy of (plain) Lua 5.1 or 5.2, plus Lua BitOp. E.g. with: HOST_LUA=lua HOST_LUA= HOST_XCFLAGS= -I. HOST_XLDFLAGS= HOST_XLIBS= HOST_ACFLAGS= $(CCOPTIONS) $(HOST_XCFLAGS) $(TARGET_ARCH) $(HOST_CFLAGS) HOST_ALDFLAGS= $(LDOPTIONS) $(HOST_XLDFLAGS) $(HOST_LDFLAGS) HOST_ALIBS= $(HOST_XLIBS) $(LIBS) $(HOST_LIBS) STATIC_CC = $(CROSS)$(CC) DYNAMIC_CC = $(CROSS)$(CC) -fPIC TARGET_CC= $(STATIC_CC) TARGET_STCC= $(STATIC_CC) TARGET_DYNCC= $(DYNAMIC_CC) TARGET_LD= $(CROSS)$(CC) TARGET_AR= $(CROSS)ar rcus 2>/dev/null TARGET_STRIP= $(CROSS)strip TARGET_LIBPATH= $(or $(PREFIX),/usr/local)/$(or $(MULTILIB),lib) TARGET_SONAME= libluajit-$(ABIVER).so.$(MAJVER) TARGET_DYLIBNAME= libluajit-$(ABIVER).$(MAJVER).dylib TARGET_DYLIBPATH= $(TARGET_LIBPATH)/$(TARGET_DYLIBNAME) TARGET_DLLNAME= lua$(NODOTABIVER).dll TARGET_XSHLDFLAGS= -shared -fPIC -Wl,-soname,$(TARGET_SONAME) TARGET_DYNXLDOPTS= TARGET_LFSFLAGS= -D_FILE_OFFSET_BITS=64 -D_LARGEFILE_SOURCE TARGET_XCFLAGS= $(TARGET_LFSFLAGS) -U_FORTIFY_SOURCE TARGET_XLDFLAGS= TARGET_XLIBS= -lm TARGET_TCFLAGS= $(CCOPTIONS) $(TARGET_XCFLAGS) $(TARGET_FLAGS) $(TARGET_CFLAGS) TARGET_ACFLAGS= $(CCOPTIONS) $(TARGET_XCFLAGS) $(TARGET_FLAGS) $(TARGET_CFLAGS) TARGET_ASFLAGS= $(ASOPTIONS) $(TARGET_XCFLAGS) $(TARGET_FLAGS) $(TARGET_CFLAGS) TARGET_ALDFLAGS= $(LDOPTIONS) $(TARGET_XLDFLAGS) $(TARGET_FLAGS) $(TARGET_LDFLAGS) TARGET_ASHLDFLAGS= $(LDOPTIONS) $(TARGET_XSHLDFLAGS) $(TARGET_FLAGS) $(TARGET_SHLDFLAGS) TARGET_ALIBS= $(TARGET_XLIBS) $(LIBS) $(TARGET_LIBS) TARGET_TESTARCH=$(shell $(TARGET_CC) $(TARGET_TCFLAGS) -E lj_arch.h -dM) ifneq (,$(findstring LJ_TARGET_X64 ,$(TARGET_TESTARCH))) TARGET_LJARCH= x64 else ifneq (,$(findstring LJ_TARGET_X86 ,$(TARGET_TESTARCH))) TARGET_LJARCH= x86 else ifneq (,$(findstring LJ_TARGET_ARM ,$(TARGET_TESTARCH))) TARGET_LJARCH= arm else ifneq (,$(findstring LJ_TARGET_ARM64 ,$(TARGET_TESTARCH))) ifneq (,$(findstring __AARCH64EB__ ,$(TARGET_TESTARCH))) TARGET_ARCH= -D__AARCH64EB__=1 endif TARGET_LJARCH= arm64 else ifneq (,$(findstring LJ_TARGET_PPC ,$(TARGET_TESTARCH))) ifneq (,$(findstring LJ_LE 1,$(TARGET_TESTARCH))) TARGET_ARCH= -DLJ_ARCH_ENDIAN=LUAJIT_LE else TARGET_ARCH= -DLJ_ARCH_ENDIAN=LUAJIT_BE endif TARGET_LJARCH= ppc else ifneq (,$(findstring LJ_TARGET_MIPS ,$(TARGET_TESTARCH))) ifneq (,$(findstring MIPSEL ,$(TARGET_TESTARCH))) TARGET_ARCH= -D__MIPSEL__=1 endif ifneq (,$(findstring LJ_TARGET_MIPS64 ,$(TARGET_TESTARCH))) TARGET_LJARCH= mips64 else TARGET_LJARCH= mips endif else $(error Unsupported target architecture) endif endif endif endif endif endif ifneq (,$(findstring LJ_TARGET_PS3 1,$(TARGET_TESTARCH))) TARGET_SYS= PS3 TARGET_ARCH+= -D__CELLOS_LV2__ TARGET_XCFLAGS+= -DLUAJIT_USE_SYSMALLOC TARGET_XLIBS+= -lpthread endif TARGET_XCFLAGS+= $(CCOPT_$(TARGET_LJARCH)) TARGET_ARCH+= $(patsubst %,-DLUAJIT_TARGET=LUAJIT_ARCH_%,$(TARGET_LJARCH)) ifneq (,$(PREFIX)) ifneq (/usr/local,$(PREFIX)) TARGET_XCFLAGS+= -DLUA_ROOT=\"$(PREFIX)\" ifneq (/usr,$(PREFIX)) TARGET_DYNXLDOPTS= -Wl,-rpath,$(TARGET_LIBPATH) endif endif endif ifneq (,$(MULTILIB)) TARGET_XCFLAGS+= -DLUA_MULTILIB=\"$(MULTILIB)\" endif ifneq (,$(LMULTILIB)) TARGET_XCFLAGS+= -DLUA_LMULTILIB=\"$(LMULTILIB)\" endif ############################################################################## # Target system detection. ############################################################################## TARGET_SYS?= $(HOST_SYS) ifeq (Windows,$(TARGET_SYS)) TARGET_STRIP+= --strip-unneeded TARGET_XSHLDFLAGS= -shared TARGET_DYNXLDOPTS= else ifeq (,$(shell $(TARGET_CC) -o /dev/null -c -x c /dev/null -fno-stack-protector 2>/dev/null || echo 1)) TARGET_XCFLAGS+= -fno-stack-protector endif ifeq (Darwin,$(TARGET_SYS)) ifeq (,$(MACOSX_DEPLOYMENT_TARGET)) export MACOSX_DEPLOYMENT_TARGET=10.4 endif TARGET_STRIP+= -x TARGET_XSHLDFLAGS= -dynamiclib -single_module -undefined dynamic_lookup -fPIC TARGET_DYNXLDOPTS= TARGET_XSHLDFLAGS+= -install_name $(TARGET_DYLIBPATH) -compatibility_version $(MAJVER).$(MINVER) -current_version $(MAJVER).$(MINVER).$(RELVER) ifeq (x64,$(TARGET_LJARCH)) TARGET_XLDFLAGS+= -pagezero_size 10000 -image_base 100000000 TARGET_XSHLDFLAGS+= -image_base 7fff04c4a000 endif else ifeq (iOS,$(TARGET_SYS)) TARGET_STRIP+= -x TARGET_XSHLDFLAGS= -dynamiclib -single_module -undefined dynamic_lookup -fPIC TARGET_DYNXLDOPTS= TARGET_XSHLDFLAGS+= -install_name $(TARGET_DYLIBPATH) -compatibility_version $(MAJVER).$(MINVER) -current_version $(MAJVER).$(MINVER).$(RELVER) ifeq (arm64,$(TARGET_LJARCH)) TARGET_XCFLAGS+= -fno-omit-frame-pointer endif else ifneq (SunOS,$(TARGET_SYS)) ifneq (PS3,$(TARGET_SYS)) TARGET_XLDFLAGS+= -Wl,-E endif endif ifeq (Linux,$(TARGET_SYS)) TARGET_XLIBS+= -ldl endif ifeq (GNU/kFreeBSD,$(TARGET_SYS)) TARGET_XLIBS+= -ldl endif endif endif endif ifneq ($(HOST_SYS),$(TARGET_SYS)) ifeq (Windows,$(TARGET_SYS)) HOST_XCFLAGS+= -malign-double -DLUAJIT_OS=LUAJIT_OS_WINDOWS else ifeq (Linux,$(TARGET_SYS)) HOST_XCFLAGS+= -DLUAJIT_OS=LUAJIT_OS_LINUX else ifeq (Darwin,$(TARGET_SYS)) HOST_XCFLAGS+= -DLUAJIT_OS=LUAJIT_OS_OSX else ifeq (iOS,$(TARGET_SYS)) HOST_XCFLAGS+= -DLUAJIT_OS=LUAJIT_OS_OSX else HOST_XCFLAGS+= -DLUAJIT_OS=LUAJIT_OS_OTHER endif endif endif endif endif ifneq (,$(CCDEBUG)) TARGET_STRIP= @: endif ############################################################################## # Files and pathnames. ############################################################################## MINILUA_O= host/minilua.o MINILUA_LIBS= -lm MINILUA_T= host/minilua MINILUA_X= $(MINILUA_T) ifeq (,$(HOST_LUA)) HOST_LUA= $(MINILUA_X) DASM_DEP= $(MINILUA_T) endif DASM_DIR= ../dynasm DASM= $(HOST_LUA) $(DASM_DIR)/dynasm.lua DASM_XFLAGS= DASM_AFLAGS= DASM_ARCH= $(TARGET_LJARCH) ifneq (,$(findstring LJ_LE 1,$(TARGET_TESTARCH))) DASM_AFLAGS+= -D ENDIAN_LE else DASM_AFLAGS+= -D ENDIAN_BE endif ifneq (,$(findstring LJ_ARCH_BITS 64,$(TARGET_TESTARCH))) DASM_AFLAGS+= -D P64 endif ifneq (,$(findstring LJ_HASJIT 1,$(TARGET_TESTARCH))) DASM_AFLAGS+= -D JIT endif ifneq (,$(findstring LJ_HASFFI 1,$(TARGET_TESTARCH))) DASM_AFLAGS+= -D FFI endif ifneq (,$(findstring LJ_DUALNUM 1,$(TARGET_TESTARCH))) DASM_AFLAGS+= -D DUALNUM endif ifneq (,$(findstring LJ_ARCH_HASFPU 1,$(TARGET_TESTARCH))) DASM_AFLAGS+= -D FPU TARGET_ARCH+= -DLJ_ARCH_HASFPU=1 else TARGET_ARCH+= -DLJ_ARCH_HASFPU=0 endif ifeq (,$(findstring LJ_ABI_SOFTFP 1,$(TARGET_TESTARCH))) DASM_AFLAGS+= -D HFABI TARGET_ARCH+= -DLJ_ABI_SOFTFP=0 else TARGET_ARCH+= -DLJ_ABI_SOFTFP=1 endif ifneq (,$(findstring LJ_NO_UNWIND 1,$(TARGET_TESTARCH))) DASM_AFLAGS+= -D NO_UNWIND TARGET_ARCH+= -DLUAJIT_NO_UNWIND endif DASM_AFLAGS+= -D VER=$(subst LJ_ARCH_VERSION_,,$(filter LJ_ARCH_VERSION_%,$(subst LJ_ARCH_VERSION ,LJ_ARCH_VERSION_,$(TARGET_TESTARCH)))) ifeq (Windows,$(TARGET_SYS)) DASM_AFLAGS+= -D WIN endif ifeq (x64,$(TARGET_LJARCH)) ifeq (,$(findstring LJ_FR2 1,$(TARGET_TESTARCH))) DASM_ARCH= x86 endif else ifeq (arm,$(TARGET_LJARCH)) ifeq (iOS,$(TARGET_SYS)) DASM_AFLAGS+= -D IOS endif else ifeq (ppc,$(TARGET_LJARCH)) ifneq (,$(findstring LJ_ARCH_SQRT 1,$(TARGET_TESTARCH))) DASM_AFLAGS+= -D SQRT endif ifneq (,$(findstring LJ_ARCH_ROUND 1,$(TARGET_TESTARCH))) DASM_AFLAGS+= -D ROUND endif ifneq (,$(findstring LJ_ARCH_PPC32ON64 1,$(TARGET_TESTARCH))) DASM_AFLAGS+= -D GPR64 endif ifeq (PS3,$(TARGET_SYS)) DASM_AFLAGS+= -D PPE -D TOC endif ifneq (,$(findstring LJ_ARCH_PPC64 ,$(TARGET_TESTARCH))) DASM_ARCH= ppc64 endif endif endif endif DASM_FLAGS= $(DASM_XFLAGS) $(DASM_AFLAGS) DASM_DASC= vm_$(DASM_ARCH).dasc BUILDVM_O= host/buildvm.o host/buildvm_asm.o host/buildvm_peobj.o \ host/buildvm_lib.o host/buildvm_fold.o BUILDVM_T= host/buildvm BUILDVM_X= $(BUILDVM_T) HOST_O= $(MINILUA_O) $(BUILDVM_O) HOST_T= $(MINILUA_T) $(BUILDVM_T) LJVM_S= lj_vm.S LJVM_O= lj_vm.o LJVM_BOUT= $(LJVM_S) LJVM_MODE= elfasm LJLIB_O= lib_base.o lib_math.o lib_bit.o lib_string.o lib_table.o \ lib_io.o lib_os.o lib_package.o lib_debug.o lib_jit.o lib_ffi.o LJLIB_C= $(LJLIB_O:.o=.c) LJCORE_O= lj_gc.o lj_err.o lj_char.o lj_bc.o lj_obj.o lj_buf.o \ lj_str.o lj_tab.o lj_func.o lj_udata.o lj_meta.o lj_debug.o \ lj_state.o lj_dispatch.o lj_vmevent.o lj_vmmath.o lj_strscan.o \ lj_strfmt.o lj_strfmt_num.o lj_api.o lj_profile.o \ lj_lex.o lj_parse.o lj_bcread.o lj_bcwrite.o lj_load.o \ lj_ir.o lj_opt_mem.o lj_opt_fold.o lj_opt_narrow.o \ lj_opt_dce.o lj_opt_loop.o lj_opt_split.o lj_opt_sink.o \ lj_mcode.o lj_snap.o lj_record.o lj_crecord.o lj_ffrecord.o \ lj_asm.o lj_trace.o lj_gdbjit.o \ lj_ctype.o lj_cdata.o lj_cconv.o lj_ccall.o lj_ccallback.o \ lj_carith.o lj_clib.o lj_cparse.o \ lj_lib.o lj_alloc.o lib_aux.o \ $(LJLIB_O) lib_init.o LJVMCORE_O= $(LJVM_O) $(LJCORE_O) LJVMCORE_DYNO= $(LJVMCORE_O:.o=_dyn.o) LIB_VMDEF= jit/vmdef.lua LIB_VMDEFP= $(LIB_VMDEF) LUAJIT_O= luajit.o LUAJIT_A= libluajit.a LUAJIT_SO= libluajit.so LUAJIT_T= luajit ALL_T= $(LUAJIT_T) $(LUAJIT_A) $(LUAJIT_SO) $(HOST_T) ALL_HDRGEN= lj_bcdef.h lj_ffdef.h lj_libdef.h lj_recdef.h lj_folddef.h \ host/buildvm_arch.h ALL_GEN= $(LJVM_S) $(ALL_HDRGEN) $(LIB_VMDEFP) WIN_RM= *.obj *.lib *.exp *.dll *.exe *.manifest *.pdb *.ilk ALL_RM= $(ALL_T) $(ALL_GEN) *.o host/*.o $(WIN_RM) ############################################################################## # Build mode handling. ############################################################################## # Mixed mode defaults. TARGET_O= $(LUAJIT_A) TARGET_T= $(LUAJIT_T) $(LUAJIT_SO) TARGET_DEP= $(LIB_VMDEF) $(LUAJIT_SO) ifeq (Windows,$(TARGET_SYS)) TARGET_DYNCC= $(STATIC_CC) LJVM_MODE= peobj LJVM_BOUT= $(LJVM_O) LUAJIT_T= luajit.exe ifeq (cygwin,$(HOST_MSYS)) LUAJIT_SO= cyg$(TARGET_DLLNAME) else LUAJIT_SO= $(TARGET_DLLNAME) endif # Mixed mode is not supported on Windows. And static mode doesn't work well. # C modules cannot be loaded, because they bind to lua51.dll. ifneq (static,$(BUILDMODE)) BUILDMODE= dynamic TARGET_XCFLAGS+= -DLUA_BUILD_AS_DLL endif endif ifeq (Darwin,$(TARGET_SYS)) LJVM_MODE= machasm endif ifeq (iOS,$(TARGET_SYS)) LJVM_MODE= machasm endif ifeq (SunOS,$(TARGET_SYS)) BUILDMODE= static endif ifeq (PS3,$(TARGET_SYS)) BUILDMODE= static endif ifeq (Windows,$(HOST_SYS)) MINILUA_T= host/minilua.exe BUILDVM_T= host/buildvm.exe ifeq (,$(HOST_MSYS)) MINILUA_X= host\minilua BUILDVM_X= host\buildvm ALL_RM:= $(subst /,\,$(ALL_RM)) endif endif ifeq (static,$(BUILDMODE)) TARGET_DYNCC= @: TARGET_T= $(LUAJIT_T) TARGET_DEP= $(LIB_VMDEF) else ifeq (dynamic,$(BUILDMODE)) ifneq (Windows,$(TARGET_SYS)) TARGET_CC= $(DYNAMIC_CC) endif TARGET_DYNCC= @: LJVMCORE_DYNO= $(LJVMCORE_O) TARGET_O= $(LUAJIT_SO) TARGET_XLDFLAGS+= $(TARGET_DYNXLDOPTS) else ifeq (Darwin,$(TARGET_SYS)) TARGET_DYNCC= @: LJVMCORE_DYNO= $(LJVMCORE_O) endif ifeq (iOS,$(TARGET_SYS)) TARGET_DYNCC= @: LJVMCORE_DYNO= $(LJVMCORE_O) endif endif endif Q= @ E= @echo #Q= #E= @: ############################################################################## # Make targets. ############################################################################## default all: $(TARGET_T) amalg: @grep "^[+|]" ljamalg.c $(MAKE) all "LJCORE_O=ljamalg.o" clean: $(HOST_RM) $(ALL_RM) libbc: ./$(LUAJIT_T) host/genlibbc.lua -o host/buildvm_libbc.h $(LJLIB_C) $(MAKE) all depend: @for file in $(ALL_HDRGEN); do \ test -f $$file || touch $$file; \ done @$(HOST_CC) $(HOST_ACFLAGS) -MM *.c host/*.c | \ sed -e "s| [^ ]*/dasm_\S*\.h||g" \ -e "s|^\([^l ]\)|host/\1|" \ -e "s| lj_target_\S*\.h| lj_target_*.h|g" \ -e "s| lj_emit_\S*\.h| lj_emit_*.h|g" \ -e "s| lj_asm_\S*\.h| lj_asm_*.h|g" >Makefile.dep @for file in $(ALL_HDRGEN); do \ test -s $$file || $(HOST_RM) $$file; \ done .PHONY: default all amalg clean libbc depend ############################################################################## # Rules for generated files. ############################################################################## $(MINILUA_T): $(MINILUA_O) $(E) "HOSTLINK $@" $(Q)$(HOST_CC) $(HOST_ALDFLAGS) -o $@ $(MINILUA_O) $(MINILUA_LIBS) $(HOST_ALIBS) host/buildvm_arch.h: $(DASM_DASC) $(DASM_DEP) $(DASM_DIR)/*.lua $(E) "DYNASM $@" $(Q)$(DASM) $(DASM_FLAGS) -o $@ $(DASM_DASC) host/buildvm.o: $(DASM_DIR)/dasm_*.h $(BUILDVM_T): $(BUILDVM_O) $(E) "HOSTLINK $@" $(Q)$(HOST_CC) $(HOST_ALDFLAGS) -o $@ $(BUILDVM_O) $(HOST_ALIBS) $(LJVM_BOUT): $(BUILDVM_T) $(E) "BUILDVM $@" $(Q)$(BUILDVM_X) -m $(LJVM_MODE) -o $@ lj_bcdef.h: $(BUILDVM_T) $(LJLIB_C) $(E) "BUILDVM $@" $(Q)$(BUILDVM_X) -m bcdef -o $@ $(LJLIB_C) lj_ffdef.h: $(BUILDVM_T) $(LJLIB_C) $(E) "BUILDVM $@" $(Q)$(BUILDVM_X) -m ffdef -o $@ $(LJLIB_C) lj_libdef.h: $(BUILDVM_T) $(LJLIB_C) $(E) "BUILDVM $@" $(Q)$(BUILDVM_X) -m libdef -o $@ $(LJLIB_C) lj_recdef.h: $(BUILDVM_T) $(LJLIB_C) $(E) "BUILDVM $@" $(Q)$(BUILDVM_X) -m recdef -o $@ $(LJLIB_C) $(LIB_VMDEF): $(BUILDVM_T) $(LJLIB_C) $(E) "BUILDVM $@" $(Q)$(BUILDVM_X) -m vmdef -o $(LIB_VMDEFP) $(LJLIB_C) lj_folddef.h: $(BUILDVM_T) lj_opt_fold.c $(E) "BUILDVM $@" $(Q)$(BUILDVM_X) -m folddef -o $@ lj_opt_fold.c ############################################################################## # Object file rules. ############################################################################## %.o: %.c $(E) "CC $@" $(Q)$(TARGET_DYNCC) $(TARGET_ACFLAGS) -c -o $(@:.o=_dyn.o) $< $(Q)$(TARGET_CC) $(TARGET_ACFLAGS) -c -o $@ $< %.o: %.S $(E) "ASM $@" $(Q)$(TARGET_DYNCC) $(TARGET_ASFLAGS) -c -o $(@:.o=_dyn.o) $< $(Q)$(TARGET_CC) $(TARGET_ASFLAGS) -c -o $@ $< $(LUAJIT_O): $(E) "CC $@" $(Q)$(TARGET_STCC) $(TARGET_ACFLAGS) -c -o $@ $< $(HOST_O): %.o: %.c $(E) "HOSTCC $@" $(Q)$(HOST_CC) $(HOST_ACFLAGS) -c -o $@ $< include Makefile.dep ############################################################################## # Target file rules. ############################################################################## $(LUAJIT_A): $(LJVMCORE_O) $(E) "AR $@" $(Q)$(TARGET_AR) $@ $(LJVMCORE_O) # The dependency on _O, but linking with _DYNO is intentional. $(LUAJIT_SO): $(LJVMCORE_O) $(E) "DYNLINK $@" $(Q)$(TARGET_LD) $(TARGET_ASHLDFLAGS) -o $@ $(LJVMCORE_DYNO) $(TARGET_ALIBS) $(Q)$(TARGET_STRIP) $@ $(LUAJIT_T): $(TARGET_O) $(LUAJIT_O) $(TARGET_DEP) $(E) "LINK $@" $(Q)$(TARGET_LD) $(TARGET_ALDFLAGS) -o $@ $(LUAJIT_O) $(TARGET_O) $(TARGET_ALIBS) $(Q)$(TARGET_STRIP) $@ $(E) "OK Successfully built LuaJIT" ############################################################################## luajit-2.1.0~beta3+dfsg.orig/src/lib_math.c0000644000175100017510000001370213101703334020033 0ustar ondrejondrej/* ** Math library. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #include #define lib_math_c #define LUA_LIB #include "lua.h" #include "lauxlib.h" #include "lualib.h" #include "lj_obj.h" #include "lj_lib.h" #include "lj_vm.h" /* ------------------------------------------------------------------------ */ #define LJLIB_MODULE_math LJLIB_ASM(math_abs) LJLIB_REC(.) { lj_lib_checknumber(L, 1); return FFH_RETRY; } LJLIB_ASM_(math_floor) LJLIB_REC(math_round IRFPM_FLOOR) LJLIB_ASM_(math_ceil) LJLIB_REC(math_round IRFPM_CEIL) LJLIB_ASM(math_sqrt) LJLIB_REC(math_unary IRFPM_SQRT) { lj_lib_checknum(L, 1); return FFH_RETRY; } LJLIB_ASM_(math_log10) LJLIB_REC(math_unary IRFPM_LOG10) LJLIB_ASM_(math_exp) LJLIB_REC(math_unary IRFPM_EXP) LJLIB_ASM_(math_sin) LJLIB_REC(math_unary IRFPM_SIN) LJLIB_ASM_(math_cos) LJLIB_REC(math_unary IRFPM_COS) LJLIB_ASM_(math_tan) LJLIB_REC(math_unary IRFPM_TAN) LJLIB_ASM_(math_asin) LJLIB_REC(math_atrig FF_math_asin) LJLIB_ASM_(math_acos) LJLIB_REC(math_atrig FF_math_acos) LJLIB_ASM_(math_atan) LJLIB_REC(math_atrig FF_math_atan) LJLIB_ASM_(math_sinh) LJLIB_REC(math_htrig IRCALL_sinh) LJLIB_ASM_(math_cosh) LJLIB_REC(math_htrig IRCALL_cosh) LJLIB_ASM_(math_tanh) LJLIB_REC(math_htrig IRCALL_tanh) LJLIB_ASM_(math_frexp) LJLIB_ASM_(math_modf) LJLIB_REC(.) LJLIB_ASM(math_log) LJLIB_REC(math_log) { double x = lj_lib_checknum(L, 1); if (L->base+1 < L->top) { double y = lj_lib_checknum(L, 2); #ifdef LUAJIT_NO_LOG2 x = log(x); y = 1.0 / log(y); #else x = lj_vm_log2(x); y = 1.0 / lj_vm_log2(y); #endif setnumV(L->base-1-LJ_FR2, x*y); /* Do NOT join the expression to x / y. */ return FFH_RES(1); } return FFH_RETRY; } LJLIB_LUA(math_deg) /* function(x) return x * 57.29577951308232 end */ LJLIB_LUA(math_rad) /* function(x) return x * 0.017453292519943295 end */ LJLIB_ASM(math_atan2) LJLIB_REC(.) { lj_lib_checknum(L, 1); lj_lib_checknum(L, 2); return FFH_RETRY; } LJLIB_ASM_(math_pow) LJLIB_REC(.) LJLIB_ASM_(math_fmod) LJLIB_ASM(math_ldexp) LJLIB_REC(.) { lj_lib_checknum(L, 1); #if LJ_DUALNUM && !LJ_TARGET_X86ORX64 lj_lib_checkint(L, 2); #else lj_lib_checknum(L, 2); #endif return FFH_RETRY; } LJLIB_ASM(math_min) LJLIB_REC(math_minmax IR_MIN) { int i = 0; do { lj_lib_checknumber(L, ++i); } while (L->base+i < L->top); return FFH_RETRY; } LJLIB_ASM_(math_max) LJLIB_REC(math_minmax IR_MAX) LJLIB_PUSH(3.14159265358979323846) LJLIB_SET(pi) LJLIB_PUSH(1e310) LJLIB_SET(huge) /* ------------------------------------------------------------------------ */ /* This implements a Tausworthe PRNG with period 2^223. Based on: ** Tables of maximally-equidistributed combined LFSR generators, ** Pierre L'Ecuyer, 1991, table 3, 1st entry. ** Full-period ME-CF generator with L=64, J=4, k=223, N1=49. */ /* PRNG state. */ struct RandomState { uint64_t gen[4]; /* State of the 4 LFSR generators. */ int valid; /* State is valid. */ }; /* Union needed for bit-pattern conversion between uint64_t and double. */ typedef union { uint64_t u64; double d; } U64double; /* Update generator i and compute a running xor of all states. */ #define TW223_GEN(i, k, q, s) \ z = rs->gen[i]; \ z = (((z<> (k-s)) ^ ((z&((uint64_t)(int64_t)-1 << (64-k)))<gen[i] = z; /* PRNG step function. Returns a double in the range 1.0 <= d < 2.0. */ LJ_NOINLINE uint64_t LJ_FASTCALL lj_math_random_step(RandomState *rs) { uint64_t z, r = 0; TW223_GEN(0, 63, 31, 18) TW223_GEN(1, 58, 19, 28) TW223_GEN(2, 55, 24, 7) TW223_GEN(3, 47, 21, 8) return (r & U64x(000fffff,ffffffff)) | U64x(3ff00000,00000000); } /* PRNG initialization function. */ static void random_init(RandomState *rs, double d) { uint32_t r = 0x11090601; /* 64-k[i] as four 8 bit constants. */ int i; for (i = 0; i < 4; i++) { U64double u; uint32_t m = 1u << (r&255); r >>= 8; u.d = d = d * 3.14159265358979323846 + 2.7182818284590452354; if (u.u64 < m) u.u64 += m; /* Ensure k[i] MSB of gen[i] are non-zero. */ rs->gen[i] = u.u64; } rs->valid = 1; for (i = 0; i < 10; i++) lj_math_random_step(rs); } /* PRNG extract function. */ LJLIB_PUSH(top-2) /* Upvalue holds userdata with RandomState. */ LJLIB_CF(math_random) LJLIB_REC(.) { int n = (int)(L->top - L->base); RandomState *rs = (RandomState *)(uddata(udataV(lj_lib_upvalue(L, 1)))); U64double u; double d; if (LJ_UNLIKELY(!rs->valid)) random_init(rs, 0.0); u.u64 = lj_math_random_step(rs); d = u.d - 1.0; if (n > 0) { #if LJ_DUALNUM int isint = 1; double r1; lj_lib_checknumber(L, 1); if (tvisint(L->base)) { r1 = (lua_Number)intV(L->base); } else { isint = 0; r1 = numV(L->base); } #else double r1 = lj_lib_checknum(L, 1); #endif if (n == 1) { d = lj_vm_floor(d*r1) + 1.0; /* d is an int in range [1, r1] */ } else { #if LJ_DUALNUM double r2; lj_lib_checknumber(L, 2); if (tvisint(L->base+1)) { r2 = (lua_Number)intV(L->base+1); } else { isint = 0; r2 = numV(L->base+1); } #else double r2 = lj_lib_checknum(L, 2); #endif d = lj_vm_floor(d*(r2-r1+1.0)) + r1; /* d is an int in range [r1, r2] */ } #if LJ_DUALNUM if (isint) { setintV(L->top-1, lj_num2int(d)); return 1; } #endif } /* else: d is a double in range [0, 1] */ setnumV(L->top++, d); return 1; } /* PRNG seed function. */ LJLIB_PUSH(top-2) /* Upvalue holds userdata with RandomState. */ LJLIB_CF(math_randomseed) { RandomState *rs = (RandomState *)(uddata(udataV(lj_lib_upvalue(L, 1)))); random_init(rs, lj_lib_checknum(L, 1)); return 0; } /* ------------------------------------------------------------------------ */ #include "lj_libdef.h" LUALIB_API int luaopen_math(lua_State *L) { RandomState *rs; rs = (RandomState *)lua_newuserdata(L, sizeof(RandomState)); rs->valid = 0; /* Use lazy initialization to save some time on startup. */ LJ_LIB_REG(L, LUA_MATHLIBNAME, math); return 1; } luajit-2.1.0~beta3+dfsg.orig/src/lj_gdbjit.h0000644000175100017510000000072013101703334020205 0ustar ondrejondrej/* ** Client for the GDB JIT API. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_GDBJIT_H #define _LJ_GDBJIT_H #include "lj_obj.h" #include "lj_jit.h" #if LJ_HASJIT && defined(LUAJIT_USE_GDBJIT) LJ_FUNC void lj_gdbjit_addtrace(jit_State *J, GCtrace *T); LJ_FUNC void lj_gdbjit_deltrace(jit_State *J, GCtrace *T); #else #define lj_gdbjit_addtrace(J, T) UNUSED(T) #define lj_gdbjit_deltrace(J, T) UNUSED(T) #endif #endif luajit-2.1.0~beta3+dfsg.orig/src/vm_arm64.dasc0000644000175100017510000033506413101703334020407 0ustar ondrejondrej|// Low-level VM code for ARM64 CPUs. |// Bytecode interpreter, fast functions and helper functions. |// Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h | |.arch arm64 |.section code_op, code_sub | |.actionlist build_actionlist |.globals GLOB_ |.globalnames globnames |.externnames extnames | |// Note: The ragged indentation of the instructions is intentional. |// The starting columns indicate data dependencies. | |//----------------------------------------------------------------------- | |// ARM64 registers and the AAPCS64 ABI 1.0 at a glance: |// |// x0-x17 temp, x19-x28 callee-saved, x29 fp, x30 lr |// x18 is reserved on most platforms. Don't use it, save it or restore it. |// x31 doesn't exist. Register number 31 either means xzr/wzr (zero) or sp, |// depending on the instruction. |// v0-v7 temp, v8-v15 callee-saved (only d8-d15 preserved), v16-v31 temp |// |// x0-x7/v0-v7 hold parameters and results. | |// Fixed register assignments for the interpreter. | |// The following must be C callee-save. |.define BASE, x19 // Base of current Lua stack frame. |.define KBASE, x20 // Constants of current Lua function. |.define PC, x21 // Next PC. |.define GLREG, x22 // Global state. |.define LREG, x23 // Register holding lua_State (also in SAVE_L). |.define TISNUM, x24 // Constant LJ_TISNUM << 47. |.define TISNUMhi, x25 // Constant LJ_TISNUM << 15. |.define TISNIL, x26 // Constant -1LL. |.define fp, x29 // Yes, we have to maintain a frame pointer. | |.define ST_INTERP, w26 // Constant -1. | |// The following temporaries are not saved across C calls, except for RA/RC. |.define RA, x27 |.define RC, x28 |.define RB, x17 |.define RAw, w27 |.define RCw, w28 |.define RBw, w17 |.define INS, x16 |.define INSw, w16 |.define ITYPE, x15 |.define TMP0, x8 |.define TMP1, x9 |.define TMP2, x10 |.define TMP3, x11 |.define TMP0w, w8 |.define TMP1w, w9 |.define TMP2w, w10 |.define TMP3w, w11 | |// Calling conventions. Also used as temporaries. |.define CARG1, x0 |.define CARG2, x1 |.define CARG3, x2 |.define CARG4, x3 |.define CARG5, x4 |.define CARG1w, w0 |.define CARG2w, w1 |.define CARG3w, w2 |.define CARG4w, w3 |.define CARG5w, w4 | |.define FARG1, d0 |.define FARG2, d1 | |.define CRET1, x0 |.define CRET1w, w0 | |// Stack layout while in interpreter. Must match with lj_frame.h. | |.define CFRAME_SPACE, 208 |//----- 16 byte aligned, <-- sp entering interpreter |// Unused [sp, #204] // 32 bit values |.define SAVE_NRES, [sp, #200] |.define SAVE_ERRF, [sp, #196] |.define SAVE_MULTRES, [sp, #192] |.define TMPD, [sp, #184] // 64 bit values |.define SAVE_L, [sp, #176] |.define SAVE_PC, [sp, #168] |.define SAVE_CFRAME, [sp, #160] |.define SAVE_FPR_, 96 // 96+8*8: 64 bit FPR saves |.define SAVE_GPR_, 16 // 16+10*8: 64 bit GPR saves |.define SAVE_LR, [sp, #8] |.define SAVE_FP, [sp] |//----- 16 byte aligned, <-- sp while in interpreter. | |.define TMPDofs, #184 | |.macro save_, gpr1, gpr2, fpr1, fpr2 | stp d..fpr1, d..fpr2, [sp, # SAVE_FPR_+(fpr1-8)*8] | stp x..gpr1, x..gpr2, [sp, # SAVE_GPR_+(gpr1-19)*8] |.endmacro |.macro rest_, gpr1, gpr2, fpr1, fpr2 | ldp d..fpr1, d..fpr2, [sp, # SAVE_FPR_+(fpr1-8)*8] | ldp x..gpr1, x..gpr2, [sp, # SAVE_GPR_+(gpr1-19)*8] |.endmacro | |.macro saveregs | stp fp, lr, [sp, #-CFRAME_SPACE]! | add fp, sp, #0 | stp x19, x20, [sp, # SAVE_GPR_] | save_ 21, 22, 8, 9 | save_ 23, 24, 10, 11 | save_ 25, 26, 12, 13 | save_ 27, 28, 14, 15 |.endmacro |.macro restoreregs | ldp x19, x20, [sp, # SAVE_GPR_] | rest_ 21, 22, 8, 9 | rest_ 23, 24, 10, 11 | rest_ 25, 26, 12, 13 | rest_ 27, 28, 14, 15 | ldp fp, lr, [sp], # CFRAME_SPACE |.endmacro | |// Type definitions. Some of these are only used for documentation. |.type L, lua_State, LREG |.type GL, global_State, GLREG |.type TVALUE, TValue |.type GCOBJ, GCobj |.type STR, GCstr |.type TAB, GCtab |.type LFUNC, GCfuncL |.type CFUNC, GCfuncC |.type PROTO, GCproto |.type UPVAL, GCupval |.type NODE, Node |.type NARGS8, int |.type TRACE, GCtrace |.type SBUF, SBuf | |//----------------------------------------------------------------------- | |// Trap for not-yet-implemented parts. |.macro NYI; brk; .endmacro | |//----------------------------------------------------------------------- | |// Access to frame relative to BASE. |.define FRAME_FUNC, #-16 |.define FRAME_PC, #-8 | |// Endian-specific defines. |.if ENDIAN_LE |.define LO, 0 |.define OFS_RD, 2 |.define OFS_RB, 3 |.define OFS_RA, 1 |.define OFS_OP, 0 |.else |.define LO, 4 |.define OFS_RD, 0 |.define OFS_RB, 0 |.define OFS_RA, 2 |.define OFS_OP, 3 |.endif | |.macro decode_RA, dst, ins; ubfx dst, ins, #8, #8; .endmacro |.macro decode_RB, dst, ins; ubfx dst, ins, #24, #8; .endmacro |.macro decode_RC, dst, ins; ubfx dst, ins, #16, #8; .endmacro |.macro decode_RD, dst, ins; ubfx dst, ins, #16, #16; .endmacro |.macro decode_RC8RD, dst, src; ubfiz dst, src, #3, #8; .endmacro | |// Instruction decode+dispatch. |.macro ins_NEXT | ldr INSw, [PC], #4 | add TMP1, GL, INS, uxtb #3 | decode_RA RA, INS | ldr TMP0, [TMP1, #GG_G2DISP] | decode_RD RC, INS | br TMP0 |.endmacro | |// Instruction footer. |.if 1 | // Replicated dispatch. Less unpredictable branches, but higher I-Cache use. | .define ins_next, ins_NEXT | .define ins_next_, ins_NEXT |.else | // Common dispatch. Lower I-Cache use, only one (very) unpredictable branch. | // Affects only certain kinds of benchmarks (and only with -j off). | .macro ins_next | b ->ins_next | .endmacro | .macro ins_next_ | ->ins_next: | ins_NEXT | .endmacro |.endif | |// Call decode and dispatch. |.macro ins_callt | // BASE = new base, CARG3 = LFUNC/CFUNC, RC = nargs*8, FRAME_PC(BASE) = PC | ldr PC, LFUNC:CARG3->pc | ldr INSw, [PC], #4 | add TMP1, GL, INS, uxtb #3 | decode_RA RA, INS | ldr TMP0, [TMP1, #GG_G2DISP] | add RA, BASE, RA, lsl #3 | br TMP0 |.endmacro | |.macro ins_call | // BASE = new base, CARG3 = LFUNC/CFUNC, RC = nargs*8, PC = caller PC | str PC, [BASE, FRAME_PC] | ins_callt |.endmacro | |//----------------------------------------------------------------------- | |// Macros to check the TValue type and extract the GCobj. Branch on failure. |.macro checktp, reg, tp, target | asr ITYPE, reg, #47 | cmn ITYPE, #-tp | and reg, reg, #LJ_GCVMASK | bne target |.endmacro |.macro checktp, dst, reg, tp, target | asr ITYPE, reg, #47 | cmn ITYPE, #-tp | and dst, reg, #LJ_GCVMASK | bne target |.endmacro |.macro checkstr, reg, target; checktp reg, LJ_TSTR, target; .endmacro |.macro checktab, reg, target; checktp reg, LJ_TTAB, target; .endmacro |.macro checkfunc, reg, target; checktp reg, LJ_TFUNC, target; .endmacro |.macro checkint, reg, target | cmp TISNUMhi, reg, lsr #32 | bne target |.endmacro |.macro checknum, reg, target | cmp TISNUMhi, reg, lsr #32 | bls target |.endmacro |.macro checknumber, reg, target | cmp TISNUMhi, reg, lsr #32 | blo target |.endmacro | |.macro mov_false, reg; movn reg, #0x8000, lsl #32; .endmacro |.macro mov_true, reg; movn reg, #0x0001, lsl #48; .endmacro | #define GL_J(field) (GG_G2J + (int)offsetof(jit_State, field)) | #define PC2PROTO(field) ((int)offsetof(GCproto, field)-(int)sizeof(GCproto)) | |.macro hotcheck, delta | lsr CARG1, PC, #1 | and CARG1, CARG1, #126 | add CARG1, CARG1, #GG_G2DISP+GG_DISP2HOT | ldrh CARG2w, [GL, CARG1] | subs CARG2, CARG2, #delta | strh CARG2w, [GL, CARG1] |.endmacro | |.macro hotloop | hotcheck HOTCOUNT_LOOP | blo ->vm_hotloop |.endmacro | |.macro hotcall | hotcheck HOTCOUNT_CALL | blo ->vm_hotcall |.endmacro | |// Set current VM state. |.macro mv_vmstate, reg, st; movn reg, #LJ_VMST_..st; .endmacro |.macro st_vmstate, reg; str reg, GL->vmstate; .endmacro | |// Move table write barrier back. Overwrites mark and tmp. |.macro barrierback, tab, mark, tmp | ldr tmp, GL->gc.grayagain | and mark, mark, #~LJ_GC_BLACK // black2gray(tab) | str tab, GL->gc.grayagain | strb mark, tab->marked | str tmp, tab->gclist |.endmacro | |//----------------------------------------------------------------------- #if !LJ_DUALNUM #error "Only dual-number mode supported for ARM64 target" #endif /* Generate subroutines used by opcodes and other parts of the VM. */ /* The .code_sub section should be last to help static branch prediction. */ static void build_subroutines(BuildCtx *ctx) { |.code_sub | |//----------------------------------------------------------------------- |//-- Return handling ---------------------------------------------------- |//----------------------------------------------------------------------- | |->vm_returnp: | // See vm_return. Also: RB = previous base. | tbz PC, #2, ->cont_dispatch // (PC & FRAME_P) == 0? | | // Return from pcall or xpcall fast func. | ldr PC, [RB, FRAME_PC] // Fetch PC of previous frame. | mov_true TMP0 | mov BASE, RB | // Prepending may overwrite the pcall frame, so do it at the end. | str TMP0, [RA, #-8]! // Prepend true to results. | |->vm_returnc: | adds RC, RC, #8 // RC = (nresults+1)*8. | mov CRET1, #LUA_YIELD | beq ->vm_unwind_c_eh | str RCw, SAVE_MULTRES | ands CARG1, PC, #FRAME_TYPE | beq ->BC_RET_Z // Handle regular return to Lua. | |->vm_return: | // BASE = base, RA = resultptr, RC/MULTRES = (nresults+1)*8, PC = return | // CARG1 = PC & FRAME_TYPE | and RB, PC, #~FRAME_TYPEP | cmp CARG1, #FRAME_C | sub RB, BASE, RB // RB = previous base. | bne ->vm_returnp | | str RB, L->base | ldrsw CARG2, SAVE_NRES // CARG2 = nresults+1. | mv_vmstate TMP0w, C | sub BASE, BASE, #16 | subs TMP2, RC, #8 | st_vmstate TMP0w | beq >2 |1: | subs TMP2, TMP2, #8 | ldr TMP0, [RA], #8 | str TMP0, [BASE], #8 | bne <1 |2: | cmp RC, CARG2, lsl #3 // More/less results wanted? | bne >6 |3: | str BASE, L->top // Store new top. | |->vm_leave_cp: | ldr RC, SAVE_CFRAME // Restore previous C frame. | mov CRET1, #0 // Ok return status for vm_pcall. | str RC, L->cframe | |->vm_leave_unw: | restoreregs | ret | |6: | bgt >7 // Less results wanted? | // More results wanted. Check stack size and fill up results with nil. | ldr CARG3, L->maxstack | cmp BASE, CARG3 | bhs >8 | str TISNIL, [BASE], #8 | add RC, RC, #8 | b <2 | |7: // Less results wanted. | cbz CARG2, <3 // LUA_MULTRET+1 case? | sub CARG1, RC, CARG2, lsl #3 | sub BASE, BASE, CARG1 // Shrink top. | b <3 | |8: // Corner case: need to grow stack for filling up results. | // This can happen if: | // - A C function grows the stack (a lot). | // - The GC shrinks the stack in between. | // - A return back from a lua_call() with (high) nresults adjustment. | str BASE, L->top // Save current top held in BASE (yes). | mov CARG1, L | bl extern lj_state_growstack // (lua_State *L, int n) | ldr BASE, L->top // Need the (realloced) L->top in BASE. | ldrsw CARG2, SAVE_NRES | b <2 | |->vm_unwind_c: // Unwind C stack, return from vm_pcall. | // (void *cframe, int errcode) | mov sp, CARG1 | mov CRET1, CARG2 |->vm_unwind_c_eh: // Landing pad for external unwinder. | ldr L, SAVE_L | mv_vmstate TMP0w, C | ldr GL, L->glref | st_vmstate TMP0w | b ->vm_leave_unw | |->vm_unwind_ff: // Unwind C stack, return from ff pcall. | // (void *cframe) | and sp, CARG1, #CFRAME_RAWMASK |->vm_unwind_ff_eh: // Landing pad for external unwinder. | ldr L, SAVE_L | movz TISNUM, #(LJ_TISNUM>>1)&0xffff, lsl #48 | movz TISNUMhi, #(LJ_TISNUM>>1)&0xffff, lsl #16 | movn TISNIL, #0 | mov RC, #16 // 2 results: false + error message. | ldr BASE, L->base | ldr GL, L->glref // Setup pointer to global state. | mov_false TMP0 | sub RA, BASE, #8 // Results start at BASE-8. | ldr PC, [BASE, FRAME_PC] // Fetch PC of previous frame. | str TMP0, [BASE, #-8] // Prepend false to error message. | st_vmstate ST_INTERP | b ->vm_returnc | |//----------------------------------------------------------------------- |//-- Grow stack for calls ----------------------------------------------- |//----------------------------------------------------------------------- | |->vm_growstack_c: // Grow stack for C function. | // CARG1 = L | mov CARG2, #LUA_MINSTACK | b >2 | |->vm_growstack_l: // Grow stack for Lua function. | // BASE = new base, RA = BASE+framesize*8, RC = nargs*8, PC = first PC | add RC, BASE, RC | sub RA, RA, BASE | mov CARG1, L | stp BASE, RC, L->base | add PC, PC, #4 // Must point after first instruction. | lsr CARG2, RA, #3 |2: | // L->base = new base, L->top = top | str PC, SAVE_PC | bl extern lj_state_growstack // (lua_State *L, int n) | ldp BASE, RC, L->base | ldr LFUNC:CARG3, [BASE, FRAME_FUNC] | sub NARGS8:RC, RC, BASE | and LFUNC:CARG3, CARG3, #LJ_GCVMASK | // BASE = new base, RB = LFUNC/CFUNC, RC = nargs*8, FRAME_PC(BASE) = PC | ins_callt // Just retry the call. | |//----------------------------------------------------------------------- |//-- Entry points into the assembler VM --------------------------------- |//----------------------------------------------------------------------- | |->vm_resume: // Setup C frame and resume thread. | // (lua_State *L, TValue *base, int nres1 = 0, ptrdiff_t ef = 0) | saveregs | mov L, CARG1 | ldr GL, L->glref // Setup pointer to global state. | mov BASE, CARG2 | str L, SAVE_L | mov PC, #FRAME_CP | str wzr, SAVE_NRES | add TMP0, sp, #CFRAME_RESUME | ldrb TMP1w, L->status | str wzr, SAVE_ERRF | str L, SAVE_PC // Any value outside of bytecode is ok. | str xzr, SAVE_CFRAME | str TMP0, L->cframe | cbz TMP1w, >3 | | // Resume after yield (like a return). | str L, GL->cur_L | mov RA, BASE | ldp BASE, CARG1, L->base | movz TISNUM, #(LJ_TISNUM>>1)&0xffff, lsl #48 | movz TISNUMhi, #(LJ_TISNUM>>1)&0xffff, lsl #16 | ldr PC, [BASE, FRAME_PC] | strb wzr, L->status | movn TISNIL, #0 | sub RC, CARG1, BASE | ands CARG1, PC, #FRAME_TYPE | add RC, RC, #8 | st_vmstate ST_INTERP | str RCw, SAVE_MULTRES | beq ->BC_RET_Z | b ->vm_return | |->vm_pcall: // Setup protected C frame and enter VM. | // (lua_State *L, TValue *base, int nres1, ptrdiff_t ef) | saveregs | mov PC, #FRAME_CP | str CARG4w, SAVE_ERRF | b >1 | |->vm_call: // Setup C frame and enter VM. | // (lua_State *L, TValue *base, int nres1) | saveregs | mov PC, #FRAME_C | |1: // Entry point for vm_pcall above (PC = ftype). | ldr RC, L:CARG1->cframe | str CARG3w, SAVE_NRES | mov L, CARG1 | str CARG1, SAVE_L | ldr GL, L->glref // Setup pointer to global state. | mov BASE, CARG2 | str CARG1, SAVE_PC // Any value outside of bytecode is ok. | str RC, SAVE_CFRAME | str fp, L->cframe // Add our C frame to cframe chain. | |3: // Entry point for vm_cpcall/vm_resume (BASE = base, PC = ftype). | str L, GL->cur_L | ldp RB, CARG1, L->base // RB = old base (for vmeta_call). | movz TISNUM, #(LJ_TISNUM>>1)&0xffff, lsl #48 | movz TISNUMhi, #(LJ_TISNUM>>1)&0xffff, lsl #16 | add PC, PC, BASE | movn TISNIL, #0 | sub PC, PC, RB // PC = frame delta + frame type | sub NARGS8:RC, CARG1, BASE | st_vmstate ST_INTERP | |->vm_call_dispatch: | // RB = old base, BASE = new base, RC = nargs*8, PC = caller PC | ldr CARG3, [BASE, FRAME_FUNC] | checkfunc CARG3, ->vmeta_call | |->vm_call_dispatch_f: | ins_call | // BASE = new base, CARG3 = func, RC = nargs*8, PC = caller PC | |->vm_cpcall: // Setup protected C frame, call C. | // (lua_State *L, lua_CFunction func, void *ud, lua_CPFunction cp) | saveregs | mov L, CARG1 | ldr RA, L:CARG1->stack | str CARG1, SAVE_L | ldr GL, L->glref // Setup pointer to global state. | ldr RB, L->top | str CARG1, SAVE_PC // Any value outside of bytecode is ok. | ldr RC, L->cframe | sub RA, RA, RB // Compute -savestack(L, L->top). | str RAw, SAVE_NRES // Neg. delta means cframe w/o frame. | str wzr, SAVE_ERRF // No error function. | str RC, SAVE_CFRAME | str fp, L->cframe // Add our C frame to cframe chain. | str L, GL->cur_L | blr CARG4 // (lua_State *L, lua_CFunction func, void *ud) | mov BASE, CRET1 | mov PC, #FRAME_CP | cbnz BASE, <3 // Else continue with the call. | b ->vm_leave_cp // No base? Just remove C frame. | |//----------------------------------------------------------------------- |//-- Metamethod handling ------------------------------------------------ |//----------------------------------------------------------------------- | |//-- Continuation dispatch ---------------------------------------------- | |->cont_dispatch: | // BASE = meta base, RA = resultptr, RC = (nresults+1)*8 | ldr LFUNC:CARG3, [RB, FRAME_FUNC] | ldr CARG1, [BASE, #-32] // Get continuation. | mov CARG4, BASE | mov BASE, RB // Restore caller BASE. | and LFUNC:CARG3, CARG3, #LJ_GCVMASK |.if FFI | cmp CARG1, #1 |.endif | ldr PC, [CARG4, #-24] // Restore PC from [cont|PC]. | ldr CARG3, LFUNC:CARG3->pc | add TMP0, RA, RC | str TISNIL, [TMP0, #-8] // Ensure one valid arg. |.if FFI | bls >1 |.endif | ldr KBASE, [CARG3, #PC2PROTO(k)] | // BASE = base, RA = resultptr, CARG4 = meta base | br CARG1 | |.if FFI |1: | beq ->cont_ffi_callback // cont = 1: return from FFI callback. | // cont = 0: tailcall from C function. | sub CARG4, CARG4, #32 | sub RC, CARG4, BASE | b ->vm_call_tail |.endif | |->cont_cat: // RA = resultptr, CARG4 = meta base | ldr INSw, [PC, #-4] | sub CARG2, CARG4, #32 | ldr TMP0, [RA] | str BASE, L->base | decode_RB RB, INS | decode_RA RA, INS | add TMP1, BASE, RB, lsl #3 | subs TMP1, CARG2, TMP1 | beq >1 | str TMP0, [CARG2] | lsr CARG3, TMP1, #3 | b ->BC_CAT_Z | |1: | str TMP0, [BASE, RA, lsl #3] | b ->cont_nop | |//-- Table indexing metamethods ----------------------------------------- | |->vmeta_tgets1: | movn CARG4, #~LJ_TSTR | add CARG2, BASE, RB, lsl #3 | add CARG4, STR:RC, CARG4, lsl #47 | b >2 | |->vmeta_tgets: | movk CARG2, #(LJ_TTAB>>1)&0xffff, lsl #48 | str CARG2, GL->tmptv | add CARG2, GL, #offsetof(global_State, tmptv) |2: | add CARG3, sp, TMPDofs | str CARG4, TMPD | b >1 | |->vmeta_tgetb: // RB = table, RC = index | add RC, RC, TISNUM | add CARG2, BASE, RB, lsl #3 | add CARG3, sp, TMPDofs | str RC, TMPD | b >1 | |->vmeta_tgetv: // RB = table, RC = key | add CARG2, BASE, RB, lsl #3 | add CARG3, BASE, RC, lsl #3 |1: | str BASE, L->base | mov CARG1, L | str PC, SAVE_PC | bl extern lj_meta_tget // (lua_State *L, TValue *o, TValue *k) | // Returns TValue * (finished) or NULL (metamethod). | cbz CRET1, >3 | ldr TMP0, [CRET1] | str TMP0, [BASE, RA, lsl #3] | ins_next | |3: // Call __index metamethod. | // BASE = base, L->top = new base, stack = cont/func/t/k | sub TMP1, BASE, #FRAME_CONT | ldr BASE, L->top | mov NARGS8:RC, #16 // 2 args for func(t, k). | ldr LFUNC:CARG3, [BASE, FRAME_FUNC] // Guaranteed to be a function here. | str PC, [BASE, #-24] // [cont|PC] | sub PC, BASE, TMP1 | and LFUNC:CARG3, CARG3, #LJ_GCVMASK | b ->vm_call_dispatch_f | |->vmeta_tgetr: | sxtw CARG2, TMP1w | bl extern lj_tab_getinth // (GCtab *t, int32_t key) | // Returns cTValue * or NULL. | mov TMP0, TISNIL | cbz CRET1, ->BC_TGETR_Z | ldr TMP0, [CRET1] | b ->BC_TGETR_Z | |//----------------------------------------------------------------------- | |->vmeta_tsets1: | movn CARG4, #~LJ_TSTR | add CARG2, BASE, RB, lsl #3 | add CARG4, STR:RC, CARG4, lsl #47 | b >2 | |->vmeta_tsets: | movk CARG2, #(LJ_TTAB>>1)&0xffff, lsl #48 | str CARG2, GL->tmptv | add CARG2, GL, #offsetof(global_State, tmptv) |2: | add CARG3, sp, TMPDofs | str CARG4, TMPD | b >1 | |->vmeta_tsetb: // RB = table, RC = index | add RC, RC, TISNUM | add CARG2, BASE, RB, lsl #3 | add CARG3, sp, TMPDofs | str RC, TMPD | b >1 | |->vmeta_tsetv: | add CARG2, BASE, RB, lsl #3 | add CARG3, BASE, RC, lsl #3 |1: | str BASE, L->base | mov CARG1, L | str PC, SAVE_PC | bl extern lj_meta_tset // (lua_State *L, TValue *o, TValue *k) | // Returns TValue * (finished) or NULL (metamethod). | ldr TMP0, [BASE, RA, lsl #3] | cbz CRET1, >3 | // NOBARRIER: lj_meta_tset ensures the table is not black. | str TMP0, [CRET1] | ins_next | |3: // Call __newindex metamethod. | // BASE = base, L->top = new base, stack = cont/func/t/k/(v) | sub TMP1, BASE, #FRAME_CONT | ldr BASE, L->top | mov NARGS8:RC, #24 // 3 args for func(t, k, v). | ldr LFUNC:CARG3, [BASE, FRAME_FUNC] // Guaranteed to be a function here. | str TMP0, [BASE, #16] // Copy value to third argument. | str PC, [BASE, #-24] // [cont|PC] | sub PC, BASE, TMP1 | and LFUNC:CARG3, CARG3, #LJ_GCVMASK | b ->vm_call_dispatch_f | |->vmeta_tsetr: | sxtw CARG3, TMP1w | str BASE, L->base | str PC, SAVE_PC | bl extern lj_tab_setinth // (lua_State *L, GCtab *t, int32_t key) | // Returns TValue *. | b ->BC_TSETR_Z | |//-- Comparison metamethods --------------------------------------------- | |->vmeta_comp: | add CARG2, BASE, RA, lsl #3 | sub PC, PC, #4 | add CARG3, BASE, RC, lsl #3 | str BASE, L->base | mov CARG1, L | str PC, SAVE_PC | uxtb CARG4w, INSw | bl extern lj_meta_comp // (lua_State *L, TValue *o1, *o2, int op) | // Returns 0/1 or TValue * (metamethod). |3: | cmp CRET1, #1 | bhi ->vmeta_binop |4: | ldrh RBw, [PC, # OFS_RD] | add PC, PC, #4 | add RB, PC, RB, lsl #2 | sub RB, RB, #0x20000 | csel PC, PC, RB, lo |->cont_nop: | ins_next | |->cont_ra: // RA = resultptr | ldr INSw, [PC, #-4] | ldr TMP0, [RA] | decode_RA TMP1, INS | str TMP0, [BASE, TMP1, lsl #3] | b ->cont_nop | |->cont_condt: // RA = resultptr | ldr TMP0, [RA] | mov_true TMP1 | cmp TMP1, TMP0 // Branch if result is true. | b <4 | |->cont_condf: // RA = resultptr | ldr TMP0, [RA] | mov_false TMP1 | cmp TMP0, TMP1 // Branch if result is false. | b <4 | |->vmeta_equal: | // CARG2, CARG3, CARG4 are already set by BC_ISEQV/BC_ISNEV. | and TAB:CARG3, CARG3, #LJ_GCVMASK | sub PC, PC, #4 | str BASE, L->base | mov CARG1, L | str PC, SAVE_PC | bl extern lj_meta_equal // (lua_State *L, GCobj *o1, *o2, int ne) | // Returns 0/1 or TValue * (metamethod). | b <3 | |->vmeta_equal_cd: |.if FFI | sub PC, PC, #4 | str BASE, L->base | mov CARG1, L | mov CARG2, INS | str PC, SAVE_PC | bl extern lj_meta_equal_cd // (lua_State *L, BCIns op) | // Returns 0/1 or TValue * (metamethod). | b <3 |.endif | |->vmeta_istype: | sub PC, PC, #4 | str BASE, L->base | mov CARG1, L | mov CARG2, RA | mov CARG3, RC | str PC, SAVE_PC | bl extern lj_meta_istype // (lua_State *L, BCReg ra, BCReg tp) | b ->cont_nop | |//-- Arithmetic metamethods --------------------------------------------- | |->vmeta_arith_vn: | add CARG3, BASE, RB, lsl #3 | add CARG4, KBASE, RC, lsl #3 | b >1 | |->vmeta_arith_nv: | add CARG4, BASE, RB, lsl #3 | add CARG3, KBASE, RC, lsl #3 | b >1 | |->vmeta_unm: | add CARG3, BASE, RC, lsl #3 | mov CARG4, CARG3 | b >1 | |->vmeta_arith_vv: | add CARG3, BASE, RB, lsl #3 | add CARG4, BASE, RC, lsl #3 |1: | uxtb CARG5w, INSw | add CARG2, BASE, RA, lsl #3 | str BASE, L->base | mov CARG1, L | str PC, SAVE_PC | bl extern lj_meta_arith // (lua_State *L, TValue *ra,*rb,*rc, BCReg op) | // Returns NULL (finished) or TValue * (metamethod). | cbz CRET1, ->cont_nop | | // Call metamethod for binary op. |->vmeta_binop: | // BASE = old base, CRET1 = new base, stack = cont/func/o1/o2 | sub TMP1, CRET1, BASE | str PC, [CRET1, #-24] // [cont|PC] | add PC, TMP1, #FRAME_CONT | mov BASE, CRET1 | mov NARGS8:RC, #16 // 2 args for func(o1, o2). | b ->vm_call_dispatch | |->vmeta_len: | add CARG2, BASE, RC, lsl #3 #if LJ_52 | mov TAB:RC, TAB:CARG1 // Save table (ignored for other types). #endif | str BASE, L->base | mov CARG1, L | str PC, SAVE_PC | bl extern lj_meta_len // (lua_State *L, TValue *o) | // Returns NULL (retry) or TValue * (metamethod base). #if LJ_52 | cbnz CRET1, ->vmeta_binop // Binop call for compatibility. | mov TAB:CARG1, TAB:RC | b ->BC_LEN_Z #else | b ->vmeta_binop // Binop call for compatibility. #endif | |//-- Call metamethod ---------------------------------------------------- | |->vmeta_call: // Resolve and call __call metamethod. | // RB = old base, BASE = new base, RC = nargs*8 | mov CARG1, L | str RB, L->base // This is the callers base! | sub CARG2, BASE, #16 | str PC, SAVE_PC | add CARG3, BASE, NARGS8:RC | bl extern lj_meta_call // (lua_State *L, TValue *func, TValue *top) | ldr LFUNC:CARG3, [BASE, FRAME_FUNC] // Guaranteed to be a function here. | add NARGS8:RC, NARGS8:RC, #8 // Got one more argument now. | and LFUNC:CARG3, CARG3, #LJ_GCVMASK | ins_call | |->vmeta_callt: // Resolve __call for BC_CALLT. | // BASE = old base, RA = new base, RC = nargs*8 | mov CARG1, L | str BASE, L->base | sub CARG2, RA, #16 | str PC, SAVE_PC | add CARG3, RA, NARGS8:RC | bl extern lj_meta_call // (lua_State *L, TValue *func, TValue *top) | ldr TMP1, [RA, FRAME_FUNC] // Guaranteed to be a function here. | ldr PC, [BASE, FRAME_PC] | add NARGS8:RC, NARGS8:RC, #8 // Got one more argument now. | and LFUNC:CARG3, TMP1, #LJ_GCVMASK | b ->BC_CALLT2_Z | |//-- Argument coercion for 'for' statement ------------------------------ | |->vmeta_for: | mov CARG1, L | str BASE, L->base | mov CARG2, RA | str PC, SAVE_PC | bl extern lj_meta_for // (lua_State *L, TValue *base) | ldr INSw, [PC, #-4] |.if JIT | uxtb TMP0w, INSw |.endif | decode_RA RA, INS | decode_RD RC, INS |.if JIT | cmp TMP0, #BC_JFORI | beq =>BC_JFORI |.endif | b =>BC_FORI | |//----------------------------------------------------------------------- |//-- Fast functions ----------------------------------------------------- |//----------------------------------------------------------------------- | |.macro .ffunc, name |->ff_ .. name: |.endmacro | |.macro .ffunc_1, name |->ff_ .. name: | ldr CARG1, [BASE] | cmp NARGS8:RC, #8 | blo ->fff_fallback |.endmacro | |.macro .ffunc_2, name |->ff_ .. name: | ldp CARG1, CARG2, [BASE] | cmp NARGS8:RC, #16 | blo ->fff_fallback |.endmacro | |.macro .ffunc_n, name | .ffunc name | ldr CARG1, [BASE] | cmp NARGS8:RC, #8 | ldr FARG1, [BASE] | blo ->fff_fallback | checknum CARG1, ->fff_fallback |.endmacro | |.macro .ffunc_nn, name | .ffunc name | ldp CARG1, CARG2, [BASE] | cmp NARGS8:RC, #16 | ldp FARG1, FARG2, [BASE] | blo ->fff_fallback | checknum CARG1, ->fff_fallback | checknum CARG2, ->fff_fallback |.endmacro | |// Inlined GC threshold check. Caveat: uses CARG1 and CARG2. |.macro ffgccheck | ldp CARG1, CARG2, GL->gc.total // Assumes threshold follows total. | cmp CARG1, CARG2 | blt >1 | bl ->fff_gcstep |1: |.endmacro | |//-- Base library: checks ----------------------------------------------- | |.ffunc_1 assert | ldr PC, [BASE, FRAME_PC] | mov_false TMP1 | cmp CARG1, TMP1 | bhs ->fff_fallback | str CARG1, [BASE, #-16] | sub RB, BASE, #8 | subs RA, NARGS8:RC, #8 | add RC, NARGS8:RC, #8 // Compute (nresults+1)*8. | cbz RA, ->fff_res // Done if exactly 1 argument. |1: | ldr CARG1, [RB, #16] | sub RA, RA, #8 | str CARG1, [RB], #8 | cbnz RA, <1 | b ->fff_res | |.ffunc_1 type | mov TMP0, #~LJ_TISNUM | asr ITYPE, CARG1, #47 | cmn ITYPE, #~LJ_TISNUM | csinv TMP1, TMP0, ITYPE, lo | add TMP1, TMP1, #offsetof(GCfuncC, upvalue)/8 | ldr CARG1, [CFUNC:CARG3, TMP1, lsl #3] | b ->fff_restv | |//-- Base library: getters and setters --------------------------------- | |.ffunc_1 getmetatable | asr ITYPE, CARG1, #47 | cmn ITYPE, #-LJ_TTAB | ccmn ITYPE, #-LJ_TUDATA, #4, ne | and TAB:CARG1, CARG1, #LJ_GCVMASK | bne >6 |1: // Field metatable must be at same offset for GCtab and GCudata! | ldr TAB:RB, TAB:CARG1->metatable |2: | mov CARG1, TISNIL | ldr STR:RC, GL->gcroot[GCROOT_MMNAME+MM_metatable] | cbz TAB:RB, ->fff_restv | ldr TMP1w, TAB:RB->hmask | ldr TMP2w, STR:RC->hash | ldr NODE:CARG3, TAB:RB->node | and TMP1w, TMP1w, TMP2w // idx = str->hash & tab->hmask | add TMP1, TMP1, TMP1, lsl #1 | movn CARG4, #~LJ_TSTR | add NODE:CARG3, NODE:CARG3, TMP1, lsl #3 // node = tab->node + idx*3*8 | add CARG4, STR:RC, CARG4, lsl #47 // Tagged key to look for. |3: // Rearranged logic, because we expect _not_ to find the key. | ldp CARG1, TMP0, NODE:CARG3->val | ldr NODE:CARG3, NODE:CARG3->next | cmp TMP0, CARG4 | beq >5 | cbnz NODE:CARG3, <3 |4: | mov CARG1, RB // Use metatable as default result. | movk CARG1, #(LJ_TTAB>>1)&0xffff, lsl #48 | b ->fff_restv |5: | cmp TMP0, TISNIL | bne ->fff_restv | b <4 | |6: | movn TMP0, #~LJ_TISNUM | cmp ITYPE, TMP0 | csel ITYPE, ITYPE, TMP0, hs | sub TMP1, GL, ITYPE, lsl #3 | ldr TAB:RB, [TMP1, #offsetof(global_State, gcroot[GCROOT_BASEMT])-8] | b <2 | |.ffunc_2 setmetatable | // Fast path: no mt for table yet and not clearing the mt. | checktp TMP1, CARG1, LJ_TTAB, ->fff_fallback | ldr TAB:TMP0, TAB:TMP1->metatable | asr ITYPE, CARG2, #47 | ldrb TMP2w, TAB:TMP1->marked | cmn ITYPE, #-LJ_TTAB | and TAB:CARG2, CARG2, #LJ_GCVMASK | ccmp TAB:TMP0, #0, #0, eq | bne ->fff_fallback | str TAB:CARG2, TAB:TMP1->metatable | tbz TMP2w, #2, ->fff_restv // isblack(table) | barrierback TAB:TMP1, TMP2w, TMP0 | b ->fff_restv | |.ffunc rawget | ldr CARG2, [BASE] | cmp NARGS8:RC, #16 | blo ->fff_fallback | checktab CARG2, ->fff_fallback | mov CARG1, L | add CARG3, BASE, #8 | bl extern lj_tab_get // (lua_State *L, GCtab *t, cTValue *key) | // Returns cTValue *. | ldr CARG1, [CRET1] | b ->fff_restv | |//-- Base library: conversions ------------------------------------------ | |.ffunc tonumber | // Only handles the number case inline (without a base argument). | ldr CARG1, [BASE] | cmp NARGS8:RC, #8 | bne ->fff_fallback | checknumber CARG1, ->fff_fallback | b ->fff_restv | |.ffunc_1 tostring | // Only handles the string or number case inline. | asr ITYPE, CARG1, #47 | cmn ITYPE, #-LJ_TSTR | // A __tostring method in the string base metatable is ignored. | beq ->fff_restv | // Handle numbers inline, unless a number base metatable is present. | ldr TMP1, GL->gcroot[GCROOT_BASEMT_NUM] | str BASE, L->base | cmn ITYPE, #-LJ_TISNUM | ccmp TMP1, #0, #0, ls | str PC, SAVE_PC // Redundant (but a defined value). | bne ->fff_fallback | ffgccheck | mov CARG1, L | mov CARG2, BASE | bl extern lj_strfmt_number // (lua_State *L, cTValue *o) | // Returns GCstr *. | movn TMP1, #~LJ_TSTR | ldr BASE, L->base | add CARG1, CARG1, TMP1, lsl #47 | b ->fff_restv | |//-- Base library: iterators ------------------------------------------- | |.ffunc_1 next | checktp CARG2, CARG1, LJ_TTAB, ->fff_fallback | str TISNIL, [BASE, NARGS8:RC] // Set missing 2nd arg to nil. | ldr PC, [BASE, FRAME_PC] | stp BASE, BASE, L->base // Add frame since C call can throw. | mov CARG1, L | add CARG3, BASE, #8 | str PC, SAVE_PC | bl extern lj_tab_next // (lua_State *L, GCtab *t, TValue *key) | // Returns 0 at end of traversal. | str TISNIL, [BASE, #-16] | cbz CRET1, ->fff_res1 // End of traversal: return nil. | ldp CARG1, CARG2, [BASE, #8] // Copy key and value to results. | mov RC, #(2+1)*8 | stp CARG1, CARG2, [BASE, #-16] | b ->fff_res | |.ffunc_1 pairs | checktp TMP1, CARG1, LJ_TTAB, ->fff_fallback #if LJ_52 | ldr TAB:CARG2, TAB:TMP1->metatable #endif | ldr CFUNC:CARG4, CFUNC:CARG3->upvalue[0] | ldr PC, [BASE, FRAME_PC] #if LJ_52 | cbnz TAB:CARG2, ->fff_fallback #endif | mov RC, #(3+1)*8 | stp CARG1, TISNIL, [BASE, #-8] | str CFUNC:CARG4, [BASE, #-16] | b ->fff_res | |.ffunc_2 ipairs_aux | checktab CARG1, ->fff_fallback | checkint CARG2, ->fff_fallback | ldr TMP1w, TAB:CARG1->asize | ldr CARG3, TAB:CARG1->array | ldr TMP0w, TAB:CARG1->hmask | add CARG2w, CARG2w, #1 | cmp CARG2w, TMP1w | ldr PC, [BASE, FRAME_PC] | add TMP2, CARG2, TISNUM | mov RC, #(0+1)*8 | str TMP2, [BASE, #-16] | bhs >2 // Not in array part? | ldr TMP0, [CARG3, CARG2, lsl #3] |1: | mov TMP1, #(2+1)*8 | cmp TMP0, TISNIL | str TMP0, [BASE, #-8] | csel RC, RC, TMP1, eq | b ->fff_res |2: // Check for empty hash part first. Otherwise call C function. | cbz TMP0w, ->fff_res | bl extern lj_tab_getinth // (GCtab *t, int32_t key) | // Returns cTValue * or NULL. | cbz CRET1, ->fff_res | ldr TMP0, [CRET1] | b <1 | |.ffunc_1 ipairs | checktp TMP1, CARG1, LJ_TTAB, ->fff_fallback #if LJ_52 | ldr TAB:CARG2, TAB:TMP1->metatable #endif | ldr CFUNC:CARG4, CFUNC:CARG3->upvalue[0] | ldr PC, [BASE, FRAME_PC] #if LJ_52 | cbnz TAB:CARG2, ->fff_fallback #endif | mov RC, #(3+1)*8 | stp CARG1, TISNUM, [BASE, #-8] | str CFUNC:CARG4, [BASE, #-16] | b ->fff_res | |//-- Base library: catch errors ---------------------------------------- | |.ffunc pcall | ldrb TMP0w, GL->hookmask | subs NARGS8:RC, NARGS8:RC, #8 | blo ->fff_fallback | mov RB, BASE | add BASE, BASE, #16 | ubfx TMP0w, TMP0w, #HOOK_ACTIVE_SHIFT, #1 | add PC, TMP0, #16+FRAME_PCALL | beq ->vm_call_dispatch |1: | add TMP2, BASE, NARGS8:RC |2: | ldr TMP0, [TMP2, #-16] | str TMP0, [TMP2, #-8]! | cmp TMP2, BASE | bne <2 | b ->vm_call_dispatch | |.ffunc xpcall | ldp CARG1, CARG2, [BASE] | ldrb TMP0w, GL->hookmask | subs NARGS8:RC, NARGS8:RC, #16 | blo ->fff_fallback | mov RB, BASE | add BASE, BASE, #24 | asr ITYPE, CARG2, #47 | ubfx TMP0w, TMP0w, #HOOK_ACTIVE_SHIFT, #1 | cmn ITYPE, #-LJ_TFUNC | add PC, TMP0, #24+FRAME_PCALL | bne ->fff_fallback // Traceback must be a function. | stp CARG2, CARG1, [RB] // Swap function and traceback. | cbz NARGS8:RC, ->vm_call_dispatch | b <1 | |//-- Coroutine library -------------------------------------------------- | |.macro coroutine_resume_wrap, resume |.if resume |.ffunc_1 coroutine_resume | checktp CARG1, LJ_TTHREAD, ->fff_fallback |.else |.ffunc coroutine_wrap_aux | ldr L:CARG1, CFUNC:CARG3->upvalue[0].gcr | and L:CARG1, CARG1, #LJ_GCVMASK |.endif | ldr PC, [BASE, FRAME_PC] | str BASE, L->base | ldp RB, CARG2, L:CARG1->base | ldrb TMP1w, L:CARG1->status | add TMP0, CARG2, TMP1 | str PC, SAVE_PC | cmp TMP0, RB | beq ->fff_fallback | cmp TMP1, #LUA_YIELD | add TMP0, CARG2, #8 | csel CARG2, CARG2, TMP0, hs | ldr CARG4, L:CARG1->maxstack | add CARG3, CARG2, NARGS8:RC | ldr RB, L:CARG1->cframe | ccmp CARG3, CARG4, #2, ls | ccmp RB, #0, #2, ls | bhi ->fff_fallback |.if resume | sub CARG3, CARG3, #8 // Keep resumed thread in stack for GC. | add BASE, BASE, #8 | sub NARGS8:RC, NARGS8:RC, #8 |.endif | str CARG3, L:CARG1->top | str BASE, L->top | cbz NARGS8:RC, >3 |2: // Move args to coroutine. | ldr TMP0, [BASE, RB] | cmp RB, NARGS8:RC | str TMP0, [CARG2, RB] | add RB, RB, #8 | bne <2 |3: | mov CARG3, #0 | mov L:RA, L:CARG1 | mov CARG4, #0 | bl ->vm_resume // (lua_State *L, TValue *base, 0, 0) | // Returns thread status. |4: | ldp CARG3, CARG4, L:RA->base | cmp CRET1, #LUA_YIELD | ldr BASE, L->base | str L, GL->cur_L | st_vmstate ST_INTERP | bhi >8 | sub RC, CARG4, CARG3 | ldr CARG1, L->maxstack | add CARG2, BASE, RC | cbz RC, >6 // No results? | cmp CARG2, CARG1 | mov RB, #0 | bhi >9 // Need to grow stack? | | sub CARG4, RC, #8 | str CARG3, L:RA->top // Clear coroutine stack. |5: // Move results from coroutine. | ldr TMP0, [CARG3, RB] | cmp RB, CARG4 | str TMP0, [BASE, RB] | add RB, RB, #8 | bne <5 |6: |.if resume | mov_true TMP1 | add RC, RC, #16 |7: | str TMP1, [BASE, #-8] // Prepend true/false to results. | sub RA, BASE, #8 |.else | mov RA, BASE | add RC, RC, #8 |.endif | ands CARG1, PC, #FRAME_TYPE | str PC, SAVE_PC | str RCw, SAVE_MULTRES | beq ->BC_RET_Z | b ->vm_return | |8: // Coroutine returned with error (at co->top-1). |.if resume | ldr TMP0, [CARG4, #-8]! | mov_false TMP1 | mov RC, #(2+1)*8 | str CARG4, L:RA->top // Remove error from coroutine stack. | str TMP0, [BASE] // Copy error message. | b <7 |.else | mov CARG1, L | mov CARG2, L:RA | bl extern lj_ffh_coroutine_wrap_err // (lua_State *L, lua_State *co) | // Never returns. |.endif | |9: // Handle stack expansion on return from yield. | mov CARG1, L | lsr CARG2, RC, #3 | bl extern lj_state_growstack // (lua_State *L, int n) | mov CRET1, #0 | b <4 |.endmacro | | coroutine_resume_wrap 1 // coroutine.resume | coroutine_resume_wrap 0 // coroutine.wrap | |.ffunc coroutine_yield | ldr TMP0, L->cframe | add TMP1, BASE, NARGS8:RC | mov CRET1, #LUA_YIELD | stp BASE, TMP1, L->base | tbz TMP0, #0, ->fff_fallback | str xzr, L->cframe | strb CRET1w, L->status | b ->vm_leave_unw | |//-- Math library ------------------------------------------------------- | |.macro math_round, func, round | .ffunc math_ .. func | ldr CARG1, [BASE] | cmp NARGS8:RC, #8 | ldr d0, [BASE] | blo ->fff_fallback | cmp TISNUMhi, CARG1, lsr #32 | beq ->fff_restv | blo ->fff_fallback | round d0, d0 | b ->fff_resn |.endmacro | | math_round floor, frintm | math_round ceil, frintp | |.ffunc_1 math_abs | checknumber CARG1, ->fff_fallback | and CARG1, CARG1, #U64x(7fffffff,ffffffff) | bne ->fff_restv | eor CARG2w, CARG1w, CARG1w, asr #31 | movz CARG3, #0x41e0, lsl #48 // 2^31. | subs CARG1w, CARG2w, CARG1w, asr #31 | add CARG1, CARG1, TISNUM | csel CARG1, CARG1, CARG3, pl | // Fallthrough. | |->fff_restv: | // CARG1 = TValue result. | ldr PC, [BASE, FRAME_PC] | str CARG1, [BASE, #-16] |->fff_res1: | // PC = return. | mov RC, #(1+1)*8 |->fff_res: | // RC = (nresults+1)*8, PC = return. | ands CARG1, PC, #FRAME_TYPE | str RCw, SAVE_MULTRES | sub RA, BASE, #16 | bne ->vm_return | ldr INSw, [PC, #-4] | decode_RB RB, INS |5: | cmp RC, RB, lsl #3 // More results expected? | blo >6 | decode_RA TMP1, INS | // Adjust BASE. KBASE is assumed to be set for the calling frame. | sub BASE, RA, TMP1, lsl #3 | ins_next | |6: // Fill up results with nil. | add TMP1, RA, RC | add RC, RC, #8 | str TISNIL, [TMP1, #-8] | b <5 | |.macro math_extern, func | .ffunc_n math_ .. func | bl extern func | b ->fff_resn |.endmacro | |.macro math_extern2, func | .ffunc_nn math_ .. func | bl extern func | b ->fff_resn |.endmacro | |.ffunc_n math_sqrt | fsqrt d0, d0 |->fff_resn: | ldr PC, [BASE, FRAME_PC] | str d0, [BASE, #-16] | b ->fff_res1 | |.ffunc math_log | ldr CARG1, [BASE] | cmp NARGS8:RC, #8 | ldr FARG1, [BASE] | bne ->fff_fallback // Need exactly 1 argument. | checknum CARG1, ->fff_fallback | bl extern log | b ->fff_resn | | math_extern log10 | math_extern exp | math_extern sin | math_extern cos | math_extern tan | math_extern asin | math_extern acos | math_extern atan | math_extern sinh | math_extern cosh | math_extern tanh | math_extern2 pow | math_extern2 atan2 | math_extern2 fmod | |.ffunc_2 math_ldexp | ldr FARG1, [BASE] | checknum CARG1, ->fff_fallback | checkint CARG2, ->fff_fallback | sxtw CARG1, CARG2w | bl extern ldexp // (double x, int exp) | b ->fff_resn | |.ffunc_n math_frexp | add CARG1, sp, TMPDofs | bl extern frexp | ldr CARG2w, TMPD | ldr PC, [BASE, FRAME_PC] | str d0, [BASE, #-16] | mov RC, #(2+1)*8 | add CARG2, CARG2, TISNUM | str CARG2, [BASE, #-8] | b ->fff_res | |.ffunc_n math_modf | sub CARG1, BASE, #16 | ldr PC, [BASE, FRAME_PC] | bl extern modf | mov RC, #(2+1)*8 | str d0, [BASE, #-8] | b ->fff_res | |.macro math_minmax, name, cond, fcond | .ffunc_1 name | add RB, BASE, RC | add RA, BASE, #8 | checkint CARG1, >4 |1: // Handle integers. | ldr CARG2, [RA] | cmp RA, RB | bhs ->fff_restv | checkint CARG2, >3 | cmp CARG1w, CARG2w | add RA, RA, #8 | csel CARG1, CARG2, CARG1, cond | b <1 |3: // Convert intermediate result to number and continue below. | scvtf d0, CARG1w | blo ->fff_fallback | ldr d1, [RA] | b >6 | |4: | ldr d0, [BASE] | blo ->fff_fallback |5: // Handle numbers. | ldr CARG2, [RA] | ldr d1, [RA] | cmp RA, RB | bhs ->fff_resn | checknum CARG2, >7 |6: | fcmp d0, d1 | add RA, RA, #8 | fcsel d0, d1, d0, fcond | b <5 |7: // Convert integer to number and continue above. | scvtf d1, CARG2w | blo ->fff_fallback | b <6 |.endmacro | | math_minmax math_min, gt, hi | math_minmax math_max, lt, lo | |//-- String library ----------------------------------------------------- | |.ffunc string_byte // Only handle the 1-arg case here. | ldp PC, CARG1, [BASE, FRAME_PC] | cmp NARGS8:RC, #8 | asr ITYPE, CARG1, #47 | ccmn ITYPE, #-LJ_TSTR, #0, eq | and STR:CARG1, CARG1, #LJ_GCVMASK | bne ->fff_fallback | ldrb TMP0w, STR:CARG1[1] // Access is always ok (NUL at end). | ldr CARG3w, STR:CARG1->len | add TMP0, TMP0, TISNUM | str TMP0, [BASE, #-16] | mov RC, #(0+1)*8 | cbz CARG3, ->fff_res | b ->fff_res1 | |.ffunc string_char // Only handle the 1-arg case here. | ffgccheck | ldp PC, CARG1, [BASE, FRAME_PC] | cmp CARG1w, #255 | ccmp NARGS8:RC, #8, #0, ls // Need exactly 1 argument. | bne ->fff_fallback | checkint CARG1, ->fff_fallback | mov CARG3, #1 | // Point to the char inside the integer in the stack slot. |.if ENDIAN_LE | mov CARG2, BASE |.else | add CARG2, BASE, #7 |.endif |->fff_newstr: | // CARG2 = str, CARG3 = len. | str BASE, L->base | mov CARG1, L | str PC, SAVE_PC | bl extern lj_str_new // (lua_State *L, char *str, size_t l) |->fff_resstr: | // Returns GCstr *. | ldr BASE, L->base | movn TMP1, #~LJ_TSTR | add CARG1, CARG1, TMP1, lsl #47 | b ->fff_restv | |.ffunc string_sub | ffgccheck | ldr CARG1, [BASE] | ldr CARG3, [BASE, #16] | cmp NARGS8:RC, #16 | movn RB, #0 | beq >1 | blo ->fff_fallback | checkint CARG3, ->fff_fallback | sxtw RB, CARG3w |1: | ldr CARG2, [BASE, #8] | checkstr CARG1, ->fff_fallback | ldr TMP1w, STR:CARG1->len | checkint CARG2, ->fff_fallback | sxtw CARG2, CARG2w | // CARG1 = str, TMP1 = str->len, CARG2 = start, RB = end | add TMP2, RB, TMP1 | cmp RB, #0 | add TMP0, CARG2, TMP1 | csinc RB, RB, TMP2, ge // if (end < 0) end += len+1 | cmp CARG2, #0 | csinc CARG2, CARG2, TMP0, ge // if (start < 0) start += len+1 | cmp RB, #0 | csel RB, RB, xzr, ge // if (end < 0) end = 0 | cmp CARG2, #1 | csinc CARG2, CARG2, xzr, ge // if (start < 1) start = 1 | cmp RB, TMP1 | csel RB, RB, TMP1, le // if (end > len) end = len | add CARG1, STR:CARG1, #sizeof(GCstr)-1 | subs CARG3, RB, CARG2 // len = end - start | add CARG2, CARG1, CARG2 | add CARG3, CARG3, #1 // len += 1 | bge ->fff_newstr | add STR:CARG1, GL, #offsetof(global_State, strempty) | movn TMP1, #~LJ_TSTR | add CARG1, CARG1, TMP1, lsl #47 | b ->fff_restv | |.macro ffstring_op, name | .ffunc string_ .. name | ffgccheck | ldr CARG2, [BASE] | cmp NARGS8:RC, #8 | asr ITYPE, CARG2, #47 | ccmn ITYPE, #-LJ_TSTR, #0, hs | and STR:CARG2, CARG2, #LJ_GCVMASK | bne ->fff_fallback | ldr TMP0, GL->tmpbuf.b | add SBUF:CARG1, GL, #offsetof(global_State, tmpbuf) | str BASE, L->base | str PC, SAVE_PC | str L, GL->tmpbuf.L | str TMP0, GL->tmpbuf.p | bl extern lj_buf_putstr_ .. name | bl extern lj_buf_tostr | b ->fff_resstr |.endmacro | |ffstring_op reverse |ffstring_op lower |ffstring_op upper | |//-- Bit library -------------------------------------------------------- | |// FP number to bit conversion for soft-float. Clobbers CARG1-CARG3 |->vm_tobit_fb: | bls ->fff_fallback | add CARG2, CARG1, CARG1 | mov CARG3, #1076 | sub CARG3, CARG3, CARG2, lsr #53 | cmp CARG3, #53 | bhi >1 | and CARG2, CARG2, #U64x(001fffff,ffffffff) | orr CARG2, CARG2, #U64x(00200000,00000000) | cmp CARG1, #0 | lsr CARG2, CARG2, CARG3 | cneg CARG1w, CARG2w, mi | br lr |1: | mov CARG1w, #0 | br lr | |.macro .ffunc_bit, name | .ffunc_1 bit_..name | adr lr, >1 | checkint CARG1, ->vm_tobit_fb |1: |.endmacro | |.macro .ffunc_bit_op, name, ins | .ffunc_bit name | mov RA, #8 | mov TMP0w, CARG1w | adr lr, >2 |1: | ldr CARG1, [BASE, RA] | cmp RA, NARGS8:RC | add RA, RA, #8 | bge >9 | checkint CARG1, ->vm_tobit_fb |2: | ins TMP0w, TMP0w, CARG1w | b <1 |.endmacro | |.ffunc_bit_op band, and |.ffunc_bit_op bor, orr |.ffunc_bit_op bxor, eor | |.ffunc_bit tobit | mov TMP0w, CARG1w |9: // Label reused by .ffunc_bit_op users. | add CARG1, TMP0, TISNUM | b ->fff_restv | |.ffunc_bit bswap | rev TMP0w, CARG1w | add CARG1, TMP0, TISNUM | b ->fff_restv | |.ffunc_bit bnot | mvn TMP0w, CARG1w | add CARG1, TMP0, TISNUM | b ->fff_restv | |.macro .ffunc_bit_sh, name, ins, shmod | .ffunc bit_..name | ldp TMP0, CARG1, [BASE] | cmp NARGS8:RC, #16 | blo ->fff_fallback | adr lr, >1 | checkint CARG1, ->vm_tobit_fb |1: |.if shmod == 0 | mov TMP1, CARG1 |.else | neg TMP1, CARG1 |.endif | mov CARG1, TMP0 | adr lr, >2 | checkint CARG1, ->vm_tobit_fb |2: | ins TMP0w, CARG1w, TMP1w | add CARG1, TMP0, TISNUM | b ->fff_restv |.endmacro | |.ffunc_bit_sh lshift, lsl, 0 |.ffunc_bit_sh rshift, lsr, 0 |.ffunc_bit_sh arshift, asr, 0 |.ffunc_bit_sh rol, ror, 1 |.ffunc_bit_sh ror, ror, 0 | |//----------------------------------------------------------------------- | |->fff_fallback: // Call fast function fallback handler. | // BASE = new base, RC = nargs*8 | ldp CFUNC:CARG3, PC, [BASE, FRAME_FUNC] // Fallback may overwrite PC. | ldr TMP2, L->maxstack | add TMP1, BASE, NARGS8:RC | stp BASE, TMP1, L->base | and CFUNC:CARG3, CARG3, #LJ_GCVMASK | add TMP1, TMP1, #8*LUA_MINSTACK | ldr CARG3, CFUNC:CARG3->f | str PC, SAVE_PC // Redundant (but a defined value). | cmp TMP1, TMP2 | mov CARG1, L | bhi >5 // Need to grow stack. | blr CARG3 // (lua_State *L) | // Either throws an error, or recovers and returns -1, 0 or nresults+1. | ldr BASE, L->base | cmp CRET1w, #0 | lsl RC, CRET1, #3 | sub RA, BASE, #16 | bgt ->fff_res // Returned nresults+1? |1: // Returned 0 or -1: retry fast path. | ldr CARG1, L->top | ldr CFUNC:CARG3, [BASE, FRAME_FUNC] | sub NARGS8:RC, CARG1, BASE | bne ->vm_call_tail // Returned -1? | and CFUNC:CARG3, CARG3, #LJ_GCVMASK | ins_callt // Returned 0: retry fast path. | |// Reconstruct previous base for vmeta_call during tailcall. |->vm_call_tail: | ands TMP0, PC, #FRAME_TYPE | and TMP1, PC, #~FRAME_TYPEP | bne >3 | ldrb RAw, [PC, #-4+OFS_RA] | lsl RA, RA, #3 | add TMP1, RA, #16 |3: | sub RB, BASE, TMP1 | b ->vm_call_dispatch // Resolve again for tailcall. | |5: // Grow stack for fallback handler. | mov CARG2, #LUA_MINSTACK | bl extern lj_state_growstack // (lua_State *L, int n) | ldr BASE, L->base | cmp CARG1, CARG1 // Set zero-flag to force retry. | b <1 | |->fff_gcstep: // Call GC step function. | // BASE = new base, RC = nargs*8 | add CARG2, BASE, NARGS8:RC // Calculate L->top. | mov RA, lr | stp BASE, CARG2, L->base | str PC, SAVE_PC // Redundant (but a defined value). | mov CARG1, L | bl extern lj_gc_step // (lua_State *L) | ldp BASE, CARG2, L->base | ldr CFUNC:CARG3, [BASE, FRAME_FUNC] | mov lr, RA // Help return address predictor. | sub NARGS8:RC, CARG2, BASE // Calculate nargs*8. | and CFUNC:CARG3, CARG3, #LJ_GCVMASK | ret | |//----------------------------------------------------------------------- |//-- Special dispatch targets ------------------------------------------- |//----------------------------------------------------------------------- | |->vm_record: // Dispatch target for recording phase. |.if JIT | ldrb CARG1w, GL->hookmask | tst CARG1, #HOOK_VMEVENT // No recording while in vmevent. | bne >5 | // Decrement the hookcount for consistency, but always do the call. | ldr CARG2w, GL->hookcount | tst CARG1, #HOOK_ACTIVE | bne >1 | sub CARG2w, CARG2w, #1 | tst CARG1, #LUA_MASKLINE|LUA_MASKCOUNT | beq >1 | str CARG2w, GL->hookcount | b >1 |.endif | |->vm_rethook: // Dispatch target for return hooks. | ldrb TMP2w, GL->hookmask | tbz TMP2w, #HOOK_ACTIVE_SHIFT, >1 // Hook already active? |5: // Re-dispatch to static ins. | ldr TMP0, [TMP1, #GG_G2DISP+GG_DISP2STATIC] | br TMP0 | |->vm_inshook: // Dispatch target for instr/line hooks. | ldrb TMP2w, GL->hookmask | ldr TMP3w, GL->hookcount | tbnz TMP2w, #HOOK_ACTIVE_SHIFT, <5 // Hook already active? | tst TMP2w, #LUA_MASKLINE|LUA_MASKCOUNT | beq <5 | sub TMP3w, TMP3w, #1 | str TMP3w, GL->hookcount | cbz TMP3w, >1 | tbz TMP2w, #LUA_HOOKLINE, <5 |1: | mov CARG1, L | str BASE, L->base | mov CARG2, PC | // SAVE_PC must hold the _previous_ PC. The callee updates it with PC. | bl extern lj_dispatch_ins // (lua_State *L, const BCIns *pc) |3: | ldr BASE, L->base |4: // Re-dispatch to static ins. | ldr INSw, [PC, #-4] | add TMP1, GL, INS, uxtb #3 | decode_RA RA, INS | ldr TMP0, [TMP1, #GG_G2DISP+GG_DISP2STATIC] | decode_RD RC, INS | br TMP0 | |->cont_hook: // Continue from hook yield. | ldr CARG1, [CARG4, #-40] | add PC, PC, #4 | str CARG1w, SAVE_MULTRES // Restore MULTRES for *M ins. | b <4 | |->vm_hotloop: // Hot loop counter underflow. |.if JIT | ldr LFUNC:CARG3, [BASE, FRAME_FUNC] // Same as curr_topL(L). | add CARG1, GL, #GG_G2DISP+GG_DISP2J | and LFUNC:CARG3, CARG3, #LJ_GCVMASK | str PC, SAVE_PC | ldr CARG3, LFUNC:CARG3->pc | mov CARG2, PC | str L, [GL, #GL_J(L)] | ldrb CARG3w, [CARG3, #PC2PROTO(framesize)] | str BASE, L->base | add CARG3, BASE, CARG3, lsl #3 | str CARG3, L->top | bl extern lj_trace_hot // (jit_State *J, const BCIns *pc) | b <3 |.endif | |->vm_callhook: // Dispatch target for call hooks. | mov CARG2, PC |.if JIT | b >1 |.endif | |->vm_hotcall: // Hot call counter underflow. |.if JIT | orr CARG2, PC, #1 |1: |.endif | add TMP1, BASE, NARGS8:RC | str PC, SAVE_PC | mov CARG1, L | sub RA, RA, BASE | stp BASE, TMP1, L->base | bl extern lj_dispatch_call // (lua_State *L, const BCIns *pc) | // Returns ASMFunction. | ldp BASE, TMP1, L->base | str xzr, SAVE_PC // Invalidate for subsequent line hook. | ldr LFUNC:CARG3, [BASE, FRAME_FUNC] | add RA, BASE, RA | sub NARGS8:RC, TMP1, BASE | ldr INSw, [PC, #-4] | and LFUNC:CARG3, CARG3, #LJ_GCVMASK | br CRET1 | |->cont_stitch: // Trace stitching. |.if JIT | // RA = resultptr, CARG4 = meta base | ldr RBw, SAVE_MULTRES | ldr INSw, [PC, #-4] | ldr TRACE:CARG3, [CARG4, #-40] // Save previous trace. | subs RB, RB, #8 | decode_RA RC, INS // Call base. | and CARG3, CARG3, #LJ_GCVMASK | beq >2 |1: // Move results down. | ldr CARG1, [RA] | add RA, RA, #8 | subs RB, RB, #8 | str CARG1, [BASE, RC, lsl #3] | add RC, RC, #1 | bne <1 |2: | decode_RA RA, INS | decode_RB RB, INS | add RA, RA, RB |3: | cmp RA, RC | bhi >9 // More results wanted? | | ldrh RAw, TRACE:CARG3->traceno | ldrh RCw, TRACE:CARG3->link | cmp RCw, RAw | beq ->cont_nop // Blacklisted. | cmp RCw, #0 | bne =>BC_JLOOP // Jump to stitched trace. | | // Stitch a new trace to the previous trace. | mov CARG1, #GL_J(exitno) | str RAw, [GL, CARG1] | mov CARG1, #GL_J(L) | str L, [GL, CARG1] | str BASE, L->base | add CARG1, GL, #GG_G2J | mov CARG2, PC | bl extern lj_dispatch_stitch // (jit_State *J, const BCIns *pc) | ldr BASE, L->base | b ->cont_nop | |9: // Fill up results with nil. | str TISNIL, [BASE, RC, lsl #3] | add RC, RC, #1 | b <3 |.endif | |->vm_profhook: // Dispatch target for profiler hook. #if LJ_HASPROFILE | mov CARG1, L | str BASE, L->base | mov CARG2, PC | bl extern lj_dispatch_profile // (lua_State *L, const BCIns *pc) | // HOOK_PROFILE is off again, so re-dispatch to dynamic instruction. | ldr BASE, L->base | sub PC, PC, #4 | b ->cont_nop #endif | |//----------------------------------------------------------------------- |//-- Trace exit handler ------------------------------------------------- |//----------------------------------------------------------------------- | |.macro savex_, a, b | stp d..a, d..b, [sp, #a*8] | stp x..a, x..b, [sp, #32*8+a*8] |.endmacro | |->vm_exit_handler: |.if JIT | sub sp, sp, #(64*8) | savex_, 0, 1 | savex_, 2, 3 | savex_, 4, 5 | savex_, 6, 7 | savex_, 8, 9 | savex_, 10, 11 | savex_, 12, 13 | savex_, 14, 15 | savex_, 16, 17 | savex_, 18, 19 | savex_, 20, 21 | savex_, 22, 23 | savex_, 24, 25 | savex_, 26, 27 | savex_, 28, 29 | stp d30, d31, [sp, #30*8] | ldr CARG1, [sp, #64*8] // Load original value of lr. | add CARG3, sp, #64*8 // Recompute original value of sp. | mv_vmstate CARG4w, EXIT | stp xzr, CARG3, [sp, #62*8] // Store 0/sp in RID_LR/RID_SP. | sub CARG1, CARG1, lr | ldr L, GL->cur_L | lsr CARG1, CARG1, #2 | ldr BASE, GL->jit_base | sub CARG1, CARG1, #2 | ldr CARG2w, [lr] // Load trace number. | st_vmstate CARG4w |.if ENDIAN_BE | rev32 CARG2, CARG2 |.endif | str BASE, L->base | ubfx CARG2w, CARG2w, #5, #16 | str CARG1w, [GL, #GL_J(exitno)] | str CARG2w, [GL, #GL_J(parent)] | str L, [GL, #GL_J(L)] | str xzr, GL->jit_base | add CARG1, GL, #GG_G2J | mov CARG2, sp | bl extern lj_trace_exit // (jit_State *J, ExitState *ex) | // Returns MULTRES (unscaled) or negated error code. | ldr CARG2, L->cframe | ldr BASE, L->base | and sp, CARG2, #CFRAME_RAWMASK | ldr PC, SAVE_PC // Get SAVE_PC. | str L, SAVE_L // Set SAVE_L (on-trace resume/yield). | b >1 |.endif | |->vm_exit_interp: | // CARG1 = MULTRES or negated error code, BASE, PC and GL set. |.if JIT | ldr L, SAVE_L |1: | cmp CARG1w, #0 | blt >9 // Check for error from exit. | lsl RC, CARG1, #3 | ldr LFUNC:CARG2, [BASE, FRAME_FUNC] | movz TISNUM, #(LJ_TISNUM>>1)&0xffff, lsl #48 | movz TISNUMhi, #(LJ_TISNUM>>1)&0xffff, lsl #16 | movn TISNIL, #0 | and LFUNC:CARG2, CARG2, #LJ_GCVMASK | str RCw, SAVE_MULTRES | str BASE, L->base | ldr CARG2, LFUNC:CARG2->pc | str xzr, GL->jit_base | mv_vmstate CARG4w, INTERP | ldr KBASE, [CARG2, #PC2PROTO(k)] | // Modified copy of ins_next which handles function header dispatch, too. | ldrb RBw, [PC, # OFS_OP] | ldr INSw, [PC], #4 | st_vmstate CARG4w | cmp RBw, #BC_FUNCC+2 // Fast function? | add TMP1, GL, INS, uxtb #3 | bhs >4 |2: | cmp RBw, #BC_FUNCF // Function header? | add TMP0, GL, RB, uxtb #3 | ldr RB, [TMP0, #GG_G2DISP] | decode_RA RA, INS | lsr TMP0, INS, #16 | csel RC, TMP0, RC, lo | blo >5 | ldr CARG3, [BASE, FRAME_FUNC] | sub RC, RC, #8 | add RA, BASE, RA, lsl #3 // Yes: RA = BASE+framesize*8, RC = nargs*8 | and LFUNC:CARG3, CARG3, #LJ_GCVMASK |5: | br RB | |4: // Check frame below fast function. | ldr CARG1, [BASE, FRAME_PC] | ands CARG2, CARG1, #FRAME_TYPE | bne <2 // Trace stitching continuation? | // Otherwise set KBASE for Lua function below fast function. | ldr CARG3w, [CARG1, #-4] | decode_RA CARG1, CARG3 | sub CARG2, BASE, CARG1, lsl #3 | ldr LFUNC:CARG3, [CARG2, #-32] | and LFUNC:CARG3, CARG3, #LJ_GCVMASK | ldr CARG3, LFUNC:CARG3->pc | ldr KBASE, [CARG3, #PC2PROTO(k)] | b <2 | |9: // Rethrow error from the right C frame. | neg CARG2, CARG1 | mov CARG1, L | bl extern lj_err_throw // (lua_State *L, int errcode) |.endif | |//----------------------------------------------------------------------- |//-- Math helper functions ---------------------------------------------- |//----------------------------------------------------------------------- | | // int lj_vm_modi(int dividend, int divisor); |->vm_modi: | eor CARG4w, CARG1w, CARG2w | cmp CARG4w, #0 | eor CARG3w, CARG1w, CARG1w, asr #31 | eor CARG4w, CARG2w, CARG2w, asr #31 | sub CARG3w, CARG3w, CARG1w, asr #31 | sub CARG4w, CARG4w, CARG2w, asr #31 | udiv CARG1w, CARG3w, CARG4w | msub CARG1w, CARG1w, CARG4w, CARG3w | ccmp CARG1w, #0, #4, mi | sub CARG3w, CARG1w, CARG4w | csel CARG1w, CARG1w, CARG3w, eq | eor CARG3w, CARG1w, CARG2w | cmp CARG3w, #0 | cneg CARG1w, CARG1w, mi | ret | |//----------------------------------------------------------------------- |//-- Miscellaneous functions -------------------------------------------- |//----------------------------------------------------------------------- | |//----------------------------------------------------------------------- |//-- FFI helper functions ----------------------------------------------- |//----------------------------------------------------------------------- | |// Handler for callback functions. |// Saveregs already performed. Callback slot number in [sp], g in r12. |->vm_ffi_callback: |.if FFI |.type CTSTATE, CTState, PC | saveregs | ldr CTSTATE, GL:x10->ctype_state | mov GL, x10 | add x10, sp, # CFRAME_SPACE | str w9, CTSTATE->cb.slot | stp x0, x1, CTSTATE->cb.gpr[0] | stp d0, d1, CTSTATE->cb.fpr[0] | stp x2, x3, CTSTATE->cb.gpr[2] | stp d2, d3, CTSTATE->cb.fpr[2] | stp x4, x5, CTSTATE->cb.gpr[4] | stp d4, d5, CTSTATE->cb.fpr[4] | stp x6, x7, CTSTATE->cb.gpr[6] | stp d6, d7, CTSTATE->cb.fpr[6] | str x10, CTSTATE->cb.stack | mov CARG1, CTSTATE | str CTSTATE, SAVE_PC // Any value outside of bytecode is ok. | mov CARG2, sp | bl extern lj_ccallback_enter // (CTState *cts, void *cf) | // Returns lua_State *. | ldp BASE, RC, L:CRET1->base | movz TISNUM, #(LJ_TISNUM>>1)&0xffff, lsl #48 | movz TISNUMhi, #(LJ_TISNUM>>1)&0xffff, lsl #16 | movn TISNIL, #0 | mov L, CRET1 | ldr LFUNC:CARG3, [BASE, FRAME_FUNC] | sub RC, RC, BASE | st_vmstate ST_INTERP | and LFUNC:CARG3, CARG3, #LJ_GCVMASK | ins_callt |.endif | |->cont_ffi_callback: // Return from FFI callback. |.if FFI | ldr CTSTATE, GL->ctype_state | stp BASE, CARG4, L->base | str L, CTSTATE->L | mov CARG1, CTSTATE | mov CARG2, RA | bl extern lj_ccallback_leave // (CTState *cts, TValue *o) | ldp x0, x1, CTSTATE->cb.gpr[0] | ldp d0, d1, CTSTATE->cb.fpr[0] | b ->vm_leave_unw |.endif | |->vm_ffi_call: // Call C function via FFI. | // Caveat: needs special frame unwinding, see below. |.if FFI | .type CCSTATE, CCallState, x19 | stp fp, lr, [sp, #-32]! | add fp, sp, #0 | str CCSTATE, [sp, #16] | mov CCSTATE, x0 | ldr TMP0w, CCSTATE:x0->spadj | ldrb TMP1w, CCSTATE->nsp | add TMP2, CCSTATE, #offsetof(CCallState, stack) | subs TMP1, TMP1, #1 | ldr TMP3, CCSTATE->func | sub sp, fp, TMP0 | bmi >2 |1: // Copy stack slots | ldr TMP0, [TMP2, TMP1, lsl #3] | str TMP0, [sp, TMP1, lsl #3] | subs TMP1, TMP1, #1 | bpl <1 |2: | ldp x0, x1, CCSTATE->gpr[0] | ldp d0, d1, CCSTATE->fpr[0] | ldp x2, x3, CCSTATE->gpr[2] | ldp d2, d3, CCSTATE->fpr[2] | ldp x4, x5, CCSTATE->gpr[4] | ldp d4, d5, CCSTATE->fpr[4] | ldp x6, x7, CCSTATE->gpr[6] | ldp d6, d7, CCSTATE->fpr[6] | ldr x8, CCSTATE->retp | blr TMP3 | mov sp, fp | stp x0, x1, CCSTATE->gpr[0] | stp d0, d1, CCSTATE->fpr[0] | stp d2, d3, CCSTATE->fpr[2] | ldr CCSTATE, [sp, #16] | ldp fp, lr, [sp], #32 | ret |.endif |// Note: vm_ffi_call must be the last function in this object file! | |//----------------------------------------------------------------------- } /* Generate the code for a single instruction. */ static void build_ins(BuildCtx *ctx, BCOp op, int defop) { int vk = 0; |=>defop: switch (op) { /* -- Comparison ops ---------------------------------------------------- */ /* Remember: all ops branch for a true comparison, fall through otherwise. */ case BC_ISLT: case BC_ISGE: case BC_ISLE: case BC_ISGT: | // RA = src1, RC = src2, JMP with RC = target | ldr CARG1, [BASE, RA, lsl #3] | ldrh RBw, [PC, # OFS_RD] | ldr CARG2, [BASE, RC, lsl #3] | add PC, PC, #4 | add RB, PC, RB, lsl #2 | sub RB, RB, #0x20000 | checkint CARG1, >3 | checkint CARG2, >4 | cmp CARG1w, CARG2w if (op == BC_ISLT) { | csel PC, RB, PC, lt } else if (op == BC_ISGE) { | csel PC, RB, PC, ge } else if (op == BC_ISLE) { | csel PC, RB, PC, le } else { | csel PC, RB, PC, gt } |1: | ins_next | |3: // RA not int. | ldr FARG1, [BASE, RA, lsl #3] | blo ->vmeta_comp | ldr FARG2, [BASE, RC, lsl #3] | cmp TISNUMhi, CARG2, lsr #32 | bhi >5 | bne ->vmeta_comp | // RA number, RC int. | scvtf FARG2, CARG2w | b >5 | |4: // RA int, RC not int | ldr FARG2, [BASE, RC, lsl #3] | blo ->vmeta_comp | // RA int, RC number. | scvtf FARG1, CARG1w | |5: // RA number, RC number | fcmp FARG1, FARG2 | // To preserve NaN semantics GE/GT branch on unordered, but LT/LE don't. if (op == BC_ISLT) { | csel PC, RB, PC, lo } else if (op == BC_ISGE) { | csel PC, RB, PC, hs } else if (op == BC_ISLE) { | csel PC, RB, PC, ls } else { | csel PC, RB, PC, hi } | b <1 break; case BC_ISEQV: case BC_ISNEV: vk = op == BC_ISEQV; | // RA = src1, RC = src2, JMP with RC = target | ldr CARG1, [BASE, RA, lsl #3] | add RC, BASE, RC, lsl #3 | ldrh RBw, [PC, # OFS_RD] | ldr CARG3, [RC] | add PC, PC, #4 | add RB, PC, RB, lsl #2 | sub RB, RB, #0x20000 | asr ITYPE, CARG3, #47 | cmn ITYPE, #-LJ_TISNUM if (vk) { | bls ->BC_ISEQN_Z } else { | bls ->BC_ISNEN_Z } | // RC is not a number. | asr TMP0, CARG1, #47 |.if FFI | // Check if RC or RA is a cdata. | cmn ITYPE, #-LJ_TCDATA | ccmn TMP0, #-LJ_TCDATA, #4, ne | beq ->vmeta_equal_cd |.endif | cmp CARG1, CARG3 | bne >2 | // Tag and value are equal. if (vk) { |->BC_ISEQV_Z: | mov PC, RB // Perform branch. } |1: | ins_next | |2: // Check if the tags are the same and it's a table or userdata. | cmp ITYPE, TMP0 | ccmn ITYPE, #-LJ_TISTABUD, #2, eq if (vk) { | bhi <1 } else { | bhi ->BC_ISEQV_Z // Reuse code from opposite instruction. } | // Different tables or userdatas. Need to check __eq metamethod. | // Field metatable must be at same offset for GCtab and GCudata! | and TAB:CARG2, CARG1, #LJ_GCVMASK | ldr TAB:TMP2, TAB:CARG2->metatable if (vk) { | cbz TAB:TMP2, <1 // No metatable? | ldrb TMP1w, TAB:TMP2->nomm | mov CARG4, #0 // ne = 0 | tbnz TMP1w, #MM_eq, <1 // 'no __eq' flag set: done. } else { | cbz TAB:TMP2, ->BC_ISEQV_Z // No metatable? | ldrb TMP1w, TAB:TMP2->nomm | mov CARG4, #1 // ne = 1. | tbnz TMP1w, #MM_eq, ->BC_ISEQV_Z // 'no __eq' flag set: done. } | b ->vmeta_equal break; case BC_ISEQS: case BC_ISNES: vk = op == BC_ISEQS; | // RA = src, RC = str_const (~), JMP with RC = target | ldr CARG1, [BASE, RA, lsl #3] | mvn RC, RC | ldrh RBw, [PC, # OFS_RD] | ldr CARG2, [KBASE, RC, lsl #3] | add PC, PC, #4 | movn TMP0, #~LJ_TSTR |.if FFI | asr ITYPE, CARG1, #47 |.endif | add RB, PC, RB, lsl #2 | add CARG2, CARG2, TMP0, lsl #47 | sub RB, RB, #0x20000 |.if FFI | cmn ITYPE, #-LJ_TCDATA | beq ->vmeta_equal_cd |.endif | cmp CARG1, CARG2 if (vk) { | csel PC, RB, PC, eq } else { | csel PC, RB, PC, ne } | ins_next break; case BC_ISEQN: case BC_ISNEN: vk = op == BC_ISEQN; | // RA = src, RC = num_const (~), JMP with RC = target | ldr CARG1, [BASE, RA, lsl #3] | add RC, KBASE, RC, lsl #3 | ldrh RBw, [PC, # OFS_RD] | ldr CARG3, [RC] | add PC, PC, #4 | add RB, PC, RB, lsl #2 | sub RB, RB, #0x20000 if (vk) { |->BC_ISEQN_Z: } else { |->BC_ISNEN_Z: } | checkint CARG1, >4 | checkint CARG3, >6 | cmp CARG1w, CARG3w |1: if (vk) { | csel PC, RB, PC, eq |2: } else { |2: | csel PC, RB, PC, ne } |3: | ins_next | |4: // RA not int. |.if FFI | blo >7 |.else | blo <2 |.endif | ldr FARG1, [BASE, RA, lsl #3] | ldr FARG2, [RC] | cmp TISNUMhi, CARG3, lsr #32 | bne >5 | // RA number, RC int. | scvtf FARG2, CARG3w |5: | // RA number, RC number. | fcmp FARG1, FARG2 | b <1 | |6: // RA int, RC number | ldr FARG2, [RC] | scvtf FARG1, CARG1w | fcmp FARG1, FARG2 | b <1 | |.if FFI |7: | asr ITYPE, CARG1, #47 | cmn ITYPE, #-LJ_TCDATA | bne <2 | b ->vmeta_equal_cd |.endif break; case BC_ISEQP: case BC_ISNEP: vk = op == BC_ISEQP; | // RA = src, RC = primitive_type (~), JMP with RC = target | ldr TMP0, [BASE, RA, lsl #3] | ldrh RBw, [PC, # OFS_RD] | add PC, PC, #4 | add RC, RC, #1 | add RB, PC, RB, lsl #2 |.if FFI | asr ITYPE, TMP0, #47 | cmn ITYPE, #-LJ_TCDATA | beq ->vmeta_equal_cd | cmn RC, ITYPE |.else | cmn RC, TMP0, asr #47 |.endif | sub RB, RB, #0x20000 if (vk) { | csel PC, RB, PC, eq } else { | csel PC, RB, PC, ne } | ins_next break; /* -- Unary test and copy ops ------------------------------------------- */ case BC_ISTC: case BC_ISFC: case BC_IST: case BC_ISF: | // RA = dst or unused, RC = src, JMP with RC = target | ldrh RBw, [PC, # OFS_RD] | ldr TMP0, [BASE, RC, lsl #3] | add PC, PC, #4 | mov_false TMP1 | add RB, PC, RB, lsl #2 | cmp TMP0, TMP1 | sub RB, RB, #0x20000 if (op == BC_ISTC || op == BC_IST) { if (op == BC_ISTC) { | csel RA, RA, RC, lo } | csel PC, RB, PC, lo } else { if (op == BC_ISFC) { | csel RA, RA, RC, hs } | csel PC, RB, PC, hs } if (op == BC_ISTC || op == BC_ISFC) { | str TMP0, [BASE, RA, lsl #3] } | ins_next break; case BC_ISTYPE: | // RA = src, RC = -type | ldr TMP0, [BASE, RA, lsl #3] | cmn RC, TMP0, asr #47 | bne ->vmeta_istype | ins_next break; case BC_ISNUM: | // RA = src, RC = -(TISNUM-1) | ldr TMP0, [BASE, RA] | checknum TMP0, ->vmeta_istype | ins_next break; /* -- Unary ops --------------------------------------------------------- */ case BC_MOV: | // RA = dst, RC = src | ldr TMP0, [BASE, RC, lsl #3] | str TMP0, [BASE, RA, lsl #3] | ins_next break; case BC_NOT: | // RA = dst, RC = src | ldr TMP0, [BASE, RC, lsl #3] | mov_false TMP1 | mov_true TMP2 | cmp TMP0, TMP1 | csel TMP0, TMP1, TMP2, lo | str TMP0, [BASE, RA, lsl #3] | ins_next break; case BC_UNM: | // RA = dst, RC = src | ldr TMP0, [BASE, RC, lsl #3] | asr ITYPE, TMP0, #47 | cmn ITYPE, #-LJ_TISNUM | bhi ->vmeta_unm | eor TMP0, TMP0, #U64x(80000000,00000000) | bne >5 | negs TMP0w, TMP0w | movz CARG3, #0x41e0, lsl #48 // 2^31. | add TMP0, TMP0, TISNUM | csel TMP0, TMP0, CARG3, vc |5: | str TMP0, [BASE, RA, lsl #3] | ins_next break; case BC_LEN: | // RA = dst, RC = src | ldr CARG1, [BASE, RC, lsl #3] | asr ITYPE, CARG1, #47 | cmn ITYPE, #-LJ_TSTR | and CARG1, CARG1, #LJ_GCVMASK | bne >2 | ldr CARG1w, STR:CARG1->len |1: | add CARG1, CARG1, TISNUM | str CARG1, [BASE, RA, lsl #3] | ins_next | |2: | cmn ITYPE, #-LJ_TTAB | bne ->vmeta_len #if LJ_52 | ldr TAB:CARG2, TAB:CARG1->metatable | cbnz TAB:CARG2, >9 |3: #endif |->BC_LEN_Z: | bl extern lj_tab_len // (GCtab *t) | // Returns uint32_t (but less than 2^31). | b <1 | #if LJ_52 |9: | ldrb TMP1w, TAB:CARG2->nomm | tbnz TMP1w, #MM_len, <3 // 'no __len' flag set: done. | b ->vmeta_len #endif break; /* -- Binary ops -------------------------------------------------------- */ |.macro ins_arithcheck_int, target | checkint CARG1, target | checkint CARG2, target |.endmacro | |.macro ins_arithcheck_num, target | checknum CARG1, target | checknum CARG2, target |.endmacro | |.macro ins_arithcheck_nzdiv, target | cbz CARG2w, target |.endmacro | |.macro ins_arithhead ||vk = ((int)op - BC_ADDVN) / (BC_ADDNV-BC_ADDVN); ||if (vk == 1) { | and RC, RC, #255 | decode_RB RB, INS ||} else { | decode_RB RB, INS | and RC, RC, #255 ||} |.endmacro | |.macro ins_arithload, reg1, reg2 | // RA = dst, RB = src1, RC = src2 | num_const ||switch (vk) { ||case 0: | ldr reg1, [BASE, RB, lsl #3] | ldr reg2, [KBASE, RC, lsl #3] || break; ||case 1: | ldr reg1, [KBASE, RC, lsl #3] | ldr reg2, [BASE, RB, lsl #3] || break; ||default: | ldr reg1, [BASE, RB, lsl #3] | ldr reg2, [BASE, RC, lsl #3] || break; ||} |.endmacro | |.macro ins_arithfallback, ins ||switch (vk) { ||case 0: | ins ->vmeta_arith_vn || break; ||case 1: | ins ->vmeta_arith_nv || break; ||default: | ins ->vmeta_arith_vv || break; ||} |.endmacro | |.macro ins_arithmod, res, reg1, reg2 | fdiv d2, reg1, reg2 | frintm d2, d2 | fmsub res, d2, reg2, reg1 |.endmacro | |.macro ins_arithdn, intins, fpins | ins_arithhead | ins_arithload CARG1, CARG2 | ins_arithcheck_int >5 |.if "intins" == "smull" | smull CARG1, CARG1w, CARG2w | cmp CARG1, CARG1, sxtw | mov CARG1w, CARG1w | ins_arithfallback bne |.elif "intins" == "ins_arithmodi" | ins_arithfallback ins_arithcheck_nzdiv | bl ->vm_modi |.else | intins CARG1w, CARG1w, CARG2w | ins_arithfallback bvs |.endif | add CARG1, CARG1, TISNUM | str CARG1, [BASE, RA, lsl #3] |4: | ins_next | |5: // FP variant. | ins_arithload FARG1, FARG2 | ins_arithfallback ins_arithcheck_num | fpins FARG1, FARG1, FARG2 | str FARG1, [BASE, RA, lsl #3] | b <4 |.endmacro | |.macro ins_arithfp, fpins | ins_arithhead | ins_arithload CARG1, CARG2 | ins_arithload FARG1, FARG2 | ins_arithfallback ins_arithcheck_num |.if "fpins" == "fpow" | bl extern pow |.else | fpins FARG1, FARG1, FARG2 |.endif | str FARG1, [BASE, RA, lsl #3] | ins_next |.endmacro case BC_ADDVN: case BC_ADDNV: case BC_ADDVV: | ins_arithdn adds, fadd break; case BC_SUBVN: case BC_SUBNV: case BC_SUBVV: | ins_arithdn subs, fsub break; case BC_MULVN: case BC_MULNV: case BC_MULVV: | ins_arithdn smull, fmul break; case BC_DIVVN: case BC_DIVNV: case BC_DIVVV: | ins_arithfp fdiv break; case BC_MODVN: case BC_MODNV: case BC_MODVV: | ins_arithdn ins_arithmodi, ins_arithmod break; case BC_POW: | // NYI: (partial) integer arithmetic. | ins_arithfp fpow break; case BC_CAT: | decode_RB RB, INS | and RC, RC, #255 | // RA = dst, RB = src_start, RC = src_end | str BASE, L->base | sub CARG3, RC, RB | add CARG2, BASE, RC, lsl #3 |->BC_CAT_Z: | // RA = dst, CARG2 = top-1, CARG3 = left | mov CARG1, L | str PC, SAVE_PC | bl extern lj_meta_cat // (lua_State *L, TValue *top, int left) | // Returns NULL (finished) or TValue * (metamethod). | ldrb RBw, [PC, #-4+OFS_RB] | ldr BASE, L->base | cbnz CRET1, ->vmeta_binop | ldr TMP0, [BASE, RB, lsl #3] | str TMP0, [BASE, RA, lsl #3] // Copy result to RA. | ins_next break; /* -- Constant ops ------------------------------------------------------ */ case BC_KSTR: | // RA = dst, RC = str_const (~) | mvn RC, RC | ldr TMP0, [KBASE, RC, lsl #3] | movn TMP1, #~LJ_TSTR | add TMP0, TMP0, TMP1, lsl #47 | str TMP0, [BASE, RA, lsl #3] | ins_next break; case BC_KCDATA: |.if FFI | // RA = dst, RC = cdata_const (~) | mvn RC, RC | ldr TMP0, [KBASE, RC, lsl #3] | movn TMP1, #~LJ_TCDATA | add TMP0, TMP0, TMP1, lsl #47 | str TMP0, [BASE, RA, lsl #3] | ins_next |.endif break; case BC_KSHORT: | // RA = dst, RC = int16_literal | sxth RCw, RCw | add TMP0, RC, TISNUM | str TMP0, [BASE, RA, lsl #3] | ins_next break; case BC_KNUM: | // RA = dst, RC = num_const | ldr TMP0, [KBASE, RC, lsl #3] | str TMP0, [BASE, RA, lsl #3] | ins_next break; case BC_KPRI: | // RA = dst, RC = primitive_type (~) | mvn TMP0, RC, lsl #47 | str TMP0, [BASE, RA, lsl #3] | ins_next break; case BC_KNIL: | // RA = base, RC = end | add RA, BASE, RA, lsl #3 | add RC, BASE, RC, lsl #3 | str TISNIL, [RA], #8 |1: | cmp RA, RC | str TISNIL, [RA], #8 | blt <1 | ins_next_ break; /* -- Upvalue and function ops ------------------------------------------ */ case BC_UGET: | // RA = dst, RC = uvnum | ldr LFUNC:CARG2, [BASE, FRAME_FUNC] | add RC, RC, #offsetof(GCfuncL, uvptr)/8 | and LFUNC:CARG2, CARG2, #LJ_GCVMASK | ldr UPVAL:CARG2, [LFUNC:CARG2, RC, lsl #3] | ldr CARG2, UPVAL:CARG2->v | ldr TMP0, [CARG2] | str TMP0, [BASE, RA, lsl #3] | ins_next break; case BC_USETV: | // RA = uvnum, RC = src | ldr LFUNC:CARG2, [BASE, FRAME_FUNC] | add RA, RA, #offsetof(GCfuncL, uvptr)/8 | and LFUNC:CARG2, CARG2, #LJ_GCVMASK | ldr UPVAL:CARG1, [LFUNC:CARG2, RA, lsl #3] | ldr CARG3, [BASE, RC, lsl #3] | ldr CARG2, UPVAL:CARG1->v | ldrb TMP2w, UPVAL:CARG1->marked | ldrb TMP0w, UPVAL:CARG1->closed | asr ITYPE, CARG3, #47 | str CARG3, [CARG2] | add ITYPE, ITYPE, #-LJ_TISGCV | tst TMP2w, #LJ_GC_BLACK // isblack(uv) | ccmp TMP0w, #0, #4, ne // && uv->closed | ccmn ITYPE, #-(LJ_TNUMX - LJ_TISGCV), #0, ne // && tvisgcv(v) | bhi >2 |1: | ins_next | |2: // Check if new value is white. | and GCOBJ:CARG3, CARG3, #LJ_GCVMASK | ldrb TMP1w, GCOBJ:CARG3->gch.marked | tst TMP1w, #LJ_GC_WHITES // iswhite(str) | beq <1 | // Crossed a write barrier. Move the barrier forward. | mov CARG1, GL | bl extern lj_gc_barrieruv // (global_State *g, TValue *tv) | b <1 break; case BC_USETS: | // RA = uvnum, RC = str_const (~) | ldr LFUNC:CARG2, [BASE, FRAME_FUNC] | add RA, RA, #offsetof(GCfuncL, uvptr)/8 | mvn RC, RC | and LFUNC:CARG2, CARG2, #LJ_GCVMASK | ldr UPVAL:CARG1, [LFUNC:CARG2, RA, lsl #3] | ldr STR:CARG3, [KBASE, RC, lsl #3] | movn TMP0, #~LJ_TSTR | ldr CARG2, UPVAL:CARG1->v | ldrb TMP2w, UPVAL:CARG1->marked | add TMP0, STR:CARG3, TMP0, lsl #47 | ldrb TMP1w, STR:CARG3->marked | str TMP0, [CARG2] | tbnz TMP2w, #2, >2 // isblack(uv) |1: | ins_next | |2: // Check if string is white and ensure upvalue is closed. | ldrb TMP0w, UPVAL:CARG1->closed | tst TMP1w, #LJ_GC_WHITES // iswhite(str) | ccmp TMP0w, #0, #0, ne | beq <1 | // Crossed a write barrier. Move the barrier forward. | mov CARG1, GL | bl extern lj_gc_barrieruv // (global_State *g, TValue *tv) | b <1 break; case BC_USETN: | // RA = uvnum, RC = num_const | ldr LFUNC:CARG2, [BASE, FRAME_FUNC] | add RA, RA, #offsetof(GCfuncL, uvptr)/8 | and LFUNC:CARG2, CARG2, #LJ_GCVMASK | ldr UPVAL:CARG2, [LFUNC:CARG2, RA, lsl #3] | ldr TMP0, [KBASE, RC, lsl #3] | ldr CARG2, UPVAL:CARG2->v | str TMP0, [CARG2] | ins_next break; case BC_USETP: | // RA = uvnum, RC = primitive_type (~) | ldr LFUNC:CARG2, [BASE, FRAME_FUNC] | add RA, RA, #offsetof(GCfuncL, uvptr)/8 | and LFUNC:CARG2, CARG2, #LJ_GCVMASK | ldr UPVAL:CARG2, [LFUNC:CARG2, RA, lsl #3] | mvn TMP0, RC, lsl #47 | ldr CARG2, UPVAL:CARG2->v | str TMP0, [CARG2] | ins_next break; case BC_UCLO: | // RA = level, RC = target | ldr CARG3, L->openupval | add RC, PC, RC, lsl #2 | str BASE, L->base | sub PC, RC, #0x20000 | cbz CARG3, >1 | mov CARG1, L | add CARG2, BASE, RA, lsl #3 | bl extern lj_func_closeuv // (lua_State *L, TValue *level) | ldr BASE, L->base |1: | ins_next break; case BC_FNEW: | // RA = dst, RC = proto_const (~) (holding function prototype) | mvn RC, RC | str BASE, L->base | ldr LFUNC:CARG3, [BASE, FRAME_FUNC] | str PC, SAVE_PC | ldr CARG2, [KBASE, RC, lsl #3] | mov CARG1, L | and LFUNC:CARG3, CARG3, #LJ_GCVMASK | // (lua_State *L, GCproto *pt, GCfuncL *parent) | bl extern lj_func_newL_gc | // Returns GCfuncL *. | ldr BASE, L->base | movn TMP0, #~LJ_TFUNC | add CRET1, CRET1, TMP0, lsl #47 | str CRET1, [BASE, RA, lsl #3] | ins_next break; /* -- Table ops --------------------------------------------------------- */ case BC_TNEW: case BC_TDUP: | // RA = dst, RC = (hbits|asize) | tab_const (~) | ldp CARG3, CARG4, GL->gc.total // Assumes threshold follows total. | str BASE, L->base | str PC, SAVE_PC | mov CARG1, L | cmp CARG3, CARG4 | bhs >5 |1: if (op == BC_TNEW) { | and CARG2, RC, #0x7ff | lsr CARG3, RC, #11 | cmp CARG2, #0x7ff | mov TMP0, #0x801 | csel CARG2, CARG2, TMP0, ne | bl extern lj_tab_new // (lua_State *L, int32_t asize, uint32_t hbits) | // Returns GCtab *. } else { | mvn RC, RC | ldr CARG2, [KBASE, RC, lsl #3] | bl extern lj_tab_dup // (lua_State *L, Table *kt) | // Returns GCtab *. } | ldr BASE, L->base | movk CRET1, #(LJ_TTAB>>1)&0xffff, lsl #48 | str CRET1, [BASE, RA, lsl #3] | ins_next | |5: | bl extern lj_gc_step_fixtop // (lua_State *L) | mov CARG1, L | b <1 break; case BC_GGET: | // RA = dst, RC = str_const (~) case BC_GSET: | // RA = dst, RC = str_const (~) | ldr LFUNC:CARG1, [BASE, FRAME_FUNC] | mvn RC, RC | and LFUNC:CARG1, CARG1, #LJ_GCVMASK | ldr TAB:CARG2, LFUNC:CARG1->env | ldr STR:RC, [KBASE, RC, lsl #3] if (op == BC_GGET) { | b ->BC_TGETS_Z } else { | b ->BC_TSETS_Z } break; case BC_TGETV: | decode_RB RB, INS | and RC, RC, #255 | // RA = dst, RB = table, RC = key | ldr CARG2, [BASE, RB, lsl #3] | ldr TMP1, [BASE, RC, lsl #3] | checktab CARG2, ->vmeta_tgetv | checkint TMP1, >9 // Integer key? | ldr CARG3, TAB:CARG2->array | ldr CARG1w, TAB:CARG2->asize | add CARG3, CARG3, TMP1, uxtw #3 | cmp TMP1w, CARG1w // In array part? | bhs ->vmeta_tgetv | ldr TMP0, [CARG3] | cmp TMP0, TISNIL | beq >5 |1: | str TMP0, [BASE, RA, lsl #3] | ins_next | |5: // Check for __index if table value is nil. | ldr TAB:CARG1, TAB:CARG2->metatable | cbz TAB:CARG1, <1 // No metatable: done. | ldrb TMP1w, TAB:CARG1->nomm | tbnz TMP1w, #MM_index, <1 // 'no __index' flag set: done. | b ->vmeta_tgetv | |9: | asr ITYPE, TMP1, #47 | cmn ITYPE, #-LJ_TSTR // String key? | bne ->vmeta_tgetv | and STR:RC, TMP1, #LJ_GCVMASK | b ->BC_TGETS_Z break; case BC_TGETS: | decode_RB RB, INS | and RC, RC, #255 | // RA = dst, RB = table, RC = str_const (~) | ldr CARG2, [BASE, RB, lsl #3] | mvn RC, RC | ldr STR:RC, [KBASE, RC, lsl #3] | checktab CARG2, ->vmeta_tgets1 |->BC_TGETS_Z: | // TAB:CARG2 = GCtab *, STR:RC = GCstr *, RA = dst | ldr TMP1w, TAB:CARG2->hmask | ldr TMP2w, STR:RC->hash | ldr NODE:CARG3, TAB:CARG2->node | and TMP1w, TMP1w, TMP2w // idx = str->hash & tab->hmask | add TMP1, TMP1, TMP1, lsl #1 | movn CARG4, #~LJ_TSTR | add NODE:CARG3, NODE:CARG3, TMP1, lsl #3 // node = tab->node + idx*3*8 | add CARG4, STR:RC, CARG4, lsl #47 // Tagged key to look for. |1: | ldp TMP0, CARG1, NODE:CARG3->val | ldr NODE:CARG3, NODE:CARG3->next | cmp CARG1, CARG4 | bne >4 | cmp TMP0, TISNIL | beq >5 |3: | str TMP0, [BASE, RA, lsl #3] | ins_next | |4: // Follow hash chain. | cbnz NODE:CARG3, <1 | // End of hash chain: key not found, nil result. | mov TMP0, TISNIL | |5: // Check for __index if table value is nil. | ldr TAB:CARG1, TAB:CARG2->metatable | cbz TAB:CARG1, <3 // No metatable: done. | ldrb TMP1w, TAB:CARG1->nomm | tbnz TMP1w, #MM_index, <3 // 'no __index' flag set: done. | b ->vmeta_tgets break; case BC_TGETB: | decode_RB RB, INS | and RC, RC, #255 | // RA = dst, RB = table, RC = index | ldr CARG2, [BASE, RB, lsl #3] | checktab CARG2, ->vmeta_tgetb | ldr CARG3, TAB:CARG2->array | ldr CARG1w, TAB:CARG2->asize | add CARG3, CARG3, RC, lsl #3 | cmp RCw, CARG1w // In array part? | bhs ->vmeta_tgetb | ldr TMP0, [CARG3] | cmp TMP0, TISNIL | beq >5 |1: | str TMP0, [BASE, RA, lsl #3] | ins_next | |5: // Check for __index if table value is nil. | ldr TAB:CARG1, TAB:CARG2->metatable | cbz TAB:CARG1, <1 // No metatable: done. | ldrb TMP1w, TAB:CARG1->nomm | tbnz TMP1w, #MM_index, <1 // 'no __index' flag set: done. | b ->vmeta_tgetb break; case BC_TGETR: | decode_RB RB, INS | and RC, RC, #255 | // RA = dst, RB = table, RC = key | ldr CARG1, [BASE, RB, lsl #3] | ldr TMP1, [BASE, RC, lsl #3] | and TAB:CARG1, CARG1, #LJ_GCVMASK | ldr CARG3, TAB:CARG1->array | ldr TMP2w, TAB:CARG1->asize | add CARG3, CARG3, TMP1w, uxtw #3 | cmp TMP1w, TMP2w // In array part? | bhs ->vmeta_tgetr | ldr TMP0, [CARG3] |->BC_TGETR_Z: | str TMP0, [BASE, RA, lsl #3] | ins_next break; case BC_TSETV: | decode_RB RB, INS | and RC, RC, #255 | // RA = src, RB = table, RC = key | ldr CARG2, [BASE, RB, lsl #3] | ldr TMP1, [BASE, RC, lsl #3] | checktab CARG2, ->vmeta_tsetv | checkint TMP1, >9 // Integer key? | ldr CARG3, TAB:CARG2->array | ldr CARG1w, TAB:CARG2->asize | add CARG3, CARG3, TMP1, uxtw #3 | cmp TMP1w, CARG1w // In array part? | bhs ->vmeta_tsetv | ldr TMP1, [CARG3] | ldr TMP0, [BASE, RA, lsl #3] | ldrb TMP2w, TAB:CARG2->marked | cmp TMP1, TISNIL // Previous value is nil? | beq >5 |1: | str TMP0, [CARG3] | tbnz TMP2w, #2, >7 // isblack(table) |2: | ins_next | |5: // Check for __newindex if previous value is nil. | ldr TAB:CARG1, TAB:CARG2->metatable | cbz TAB:CARG1, <1 // No metatable: done. | ldrb TMP1w, TAB:CARG1->nomm | tbnz TMP1w, #MM_newindex, <1 // 'no __newindex' flag set: done. | b ->vmeta_tsetv | |7: // Possible table write barrier for the value. Skip valiswhite check. | barrierback TAB:CARG2, TMP2w, TMP1 | b <2 | |9: | asr ITYPE, TMP1, #47 | cmn ITYPE, #-LJ_TSTR // String key? | bne ->vmeta_tsetv | and STR:RC, TMP1, #LJ_GCVMASK | b ->BC_TSETS_Z break; case BC_TSETS: | decode_RB RB, INS | and RC, RC, #255 | // RA = dst, RB = table, RC = str_const (~) | ldr CARG2, [BASE, RB, lsl #3] | mvn RC, RC | ldr STR:RC, [KBASE, RC, lsl #3] | checktab CARG2, ->vmeta_tsets1 |->BC_TSETS_Z: | // TAB:CARG2 = GCtab *, STR:RC = GCstr *, RA = src | ldr TMP1w, TAB:CARG2->hmask | ldr TMP2w, STR:RC->hash | ldr NODE:CARG3, TAB:CARG2->node | and TMP1w, TMP1w, TMP2w // idx = str->hash & tab->hmask | add TMP1, TMP1, TMP1, lsl #1 | movn CARG4, #~LJ_TSTR | add NODE:CARG3, NODE:CARG3, TMP1, lsl #3 // node = tab->node + idx*3*8 | add CARG4, STR:RC, CARG4, lsl #47 // Tagged key to look for. | strb wzr, TAB:CARG2->nomm // Clear metamethod cache. |1: | ldp TMP1, CARG1, NODE:CARG3->val | ldr NODE:TMP3, NODE:CARG3->next | ldrb TMP2w, TAB:CARG2->marked | cmp CARG1, CARG4 | bne >5 | ldr TMP0, [BASE, RA, lsl #3] | cmp TMP1, TISNIL // Previous value is nil? | beq >4 |2: | str TMP0, NODE:CARG3->val | tbnz TMP2w, #2, >7 // isblack(table) |3: | ins_next | |4: // Check for __newindex if previous value is nil. | ldr TAB:CARG1, TAB:CARG2->metatable | cbz TAB:CARG1, <2 // No metatable: done. | ldrb TMP1w, TAB:CARG1->nomm | tbnz TMP1w, #MM_newindex, <2 // 'no __newindex' flag set: done. | b ->vmeta_tsets | |5: // Follow hash chain. | mov NODE:CARG3, NODE:TMP3 | cbnz NODE:TMP3, <1 | // End of hash chain: key not found, add a new one. | | // But check for __newindex first. | ldr TAB:CARG1, TAB:CARG2->metatable | cbz TAB:CARG1, >6 // No metatable: continue. | ldrb TMP1w, TAB:CARG1->nomm | // 'no __newindex' flag NOT set: check. | tbz TMP1w, #MM_newindex, ->vmeta_tsets |6: | movn TMP1, #~LJ_TSTR | str PC, SAVE_PC | add TMP0, STR:RC, TMP1, lsl #47 | str BASE, L->base | mov CARG1, L | str TMP0, TMPD | add CARG3, sp, TMPDofs | bl extern lj_tab_newkey // (lua_State *L, GCtab *t, TValue *k) | // Returns TValue *. | ldr BASE, L->base | ldr TMP0, [BASE, RA, lsl #3] | str TMP0, [CRET1] | b <3 // No 2nd write barrier needed. | |7: // Possible table write barrier for the value. Skip valiswhite check. | barrierback TAB:CARG2, TMP2w, TMP1 | b <3 break; case BC_TSETB: | decode_RB RB, INS | and RC, RC, #255 | // RA = src, RB = table, RC = index | ldr CARG2, [BASE, RB, lsl #3] | checktab CARG2, ->vmeta_tsetb | ldr CARG3, TAB:CARG2->array | ldr CARG1w, TAB:CARG2->asize | add CARG3, CARG3, RC, lsl #3 | cmp RCw, CARG1w // In array part? | bhs ->vmeta_tsetb | ldr TMP1, [CARG3] | ldr TMP0, [BASE, RA, lsl #3] | ldrb TMP2w, TAB:CARG2->marked | cmp TMP1, TISNIL // Previous value is nil? | beq >5 |1: | str TMP0, [CARG3] | tbnz TMP2w, #2, >7 // isblack(table) |2: | ins_next | |5: // Check for __newindex if previous value is nil. | ldr TAB:CARG1, TAB:CARG2->metatable | cbz TAB:CARG1, <1 // No metatable: done. | ldrb TMP1w, TAB:CARG1->nomm | tbnz TMP1w, #MM_newindex, <1 // 'no __newindex' flag set: done. | b ->vmeta_tsetb | |7: // Possible table write barrier for the value. Skip valiswhite check. | barrierback TAB:CARG2, TMP2w, TMP1 | b <2 break; case BC_TSETR: | decode_RB RB, INS | and RC, RC, #255 | // RA = src, RB = table, RC = key | ldr CARG2, [BASE, RB, lsl #3] | ldr TMP1, [BASE, RC, lsl #3] | and TAB:CARG2, CARG2, #LJ_GCVMASK | ldr CARG1, TAB:CARG2->array | ldrb TMP2w, TAB:CARG2->marked | ldr CARG4w, TAB:CARG2->asize | add CARG1, CARG1, TMP1, uxtw #3 | tbnz TMP2w, #2, >7 // isblack(table) |2: | cmp TMP1w, CARG4w // In array part? | bhs ->vmeta_tsetr |->BC_TSETR_Z: | ldr TMP0, [BASE, RA, lsl #3] | str TMP0, [CARG1] | ins_next | |7: // Possible table write barrier for the value. Skip valiswhite check. | barrierback TAB:CARG2, TMP2w, TMP0 | b <2 break; case BC_TSETM: | // RA = base (table at base-1), RC = num_const (start index) | add RA, BASE, RA, lsl #3 |1: | ldr RBw, SAVE_MULTRES | ldr TAB:CARG2, [RA, #-8] // Guaranteed to be a table. | ldr TMP1, [KBASE, RC, lsl #3] // Integer constant is in lo-word. | sub RB, RB, #8 | cbz RB, >4 // Nothing to copy? | and TAB:CARG2, CARG2, #LJ_GCVMASK | ldr CARG1w, TAB:CARG2->asize | add CARG3w, TMP1w, RBw, lsr #3 | ldr CARG4, TAB:CARG2->array | cmp CARG3, CARG1 | add RB, RA, RB | bhi >5 | add TMP1, CARG4, TMP1w, uxtw #3 | ldrb TMP2w, TAB:CARG2->marked |3: // Copy result slots to table. | ldr TMP0, [RA], #8 | str TMP0, [TMP1], #8 | cmp RA, RB | blo <3 | tbnz TMP2w, #2, >7 // isblack(table) |4: | ins_next | |5: // Need to resize array part. | str BASE, L->base | mov CARG1, L | str PC, SAVE_PC | bl extern lj_tab_reasize // (lua_State *L, GCtab *t, int nasize) | // Must not reallocate the stack. | b <1 | |7: // Possible table write barrier for any value. Skip valiswhite check. | barrierback TAB:CARG2, TMP2w, TMP1 | b <4 break; /* -- Calls and vararg handling ----------------------------------------- */ case BC_CALLM: | // RA = base, (RB = nresults+1,) RC = extra_nargs | ldr TMP0w, SAVE_MULTRES | decode_RC8RD NARGS8:RC, RC | add NARGS8:RC, NARGS8:RC, TMP0 | b ->BC_CALL_Z break; case BC_CALL: | decode_RC8RD NARGS8:RC, RC | // RA = base, (RB = nresults+1,) RC = (nargs+1)*8 |->BC_CALL_Z: | mov RB, BASE // Save old BASE for vmeta_call. | add BASE, BASE, RA, lsl #3 | ldr CARG3, [BASE] | sub NARGS8:RC, NARGS8:RC, #8 | add BASE, BASE, #16 | checkfunc CARG3, ->vmeta_call | ins_call break; case BC_CALLMT: | // RA = base, (RB = 0,) RC = extra_nargs | ldr TMP0w, SAVE_MULTRES | add NARGS8:RC, TMP0, RC, lsl #3 | b ->BC_CALLT1_Z break; case BC_CALLT: | lsl NARGS8:RC, RC, #3 | // RA = base, (RB = 0,) RC = (nargs+1)*8 |->BC_CALLT1_Z: | add RA, BASE, RA, lsl #3 | ldr TMP1, [RA] | sub NARGS8:RC, NARGS8:RC, #8 | add RA, RA, #16 | checktp CARG3, TMP1, LJ_TFUNC, ->vmeta_callt | ldr PC, [BASE, FRAME_PC] |->BC_CALLT2_Z: | mov RB, #0 | ldrb TMP2w, LFUNC:CARG3->ffid | tst PC, #FRAME_TYPE | bne >7 |1: | str TMP1, [BASE, FRAME_FUNC] // Copy function down, but keep PC. | cbz NARGS8:RC, >3 |2: | ldr TMP0, [RA, RB] | add TMP1, RB, #8 | cmp TMP1, NARGS8:RC | str TMP0, [BASE, RB] | mov RB, TMP1 | bne <2 |3: | cmp TMP2, #1 // (> FF_C) Calling a fast function? | bhi >5 |4: | ins_callt | |5: // Tailcall to a fast function with a Lua frame below. | ldrb RAw, [PC, #-4+OFS_RA] | sub CARG1, BASE, RA, lsl #3 | ldr LFUNC:CARG1, [CARG1, #-32] | and LFUNC:CARG1, CARG1, #LJ_GCVMASK | ldr CARG1, LFUNC:CARG1->pc | ldr KBASE, [CARG1, #PC2PROTO(k)] | b <4 | |7: // Tailcall from a vararg function. | eor PC, PC, #FRAME_VARG | tst PC, #FRAME_TYPEP // Vararg frame below? | csel TMP2, RB, TMP2, ne // Clear ffid if no Lua function below. | bne <1 | sub BASE, BASE, PC | ldr PC, [BASE, FRAME_PC] | tst PC, #FRAME_TYPE | csel TMP2, RB, TMP2, ne // Clear ffid if no Lua function below. | b <1 break; case BC_ITERC: | // RA = base, (RB = nresults+1, RC = nargs+1 (2+1)) | add RA, BASE, RA, lsl #3 | ldr CARG3, [RA, #-24] | mov RB, BASE // Save old BASE for vmeta_call. | ldp CARG1, CARG2, [RA, #-16] | add BASE, RA, #16 | mov NARGS8:RC, #16 // Iterators get 2 arguments. | str CARG3, [RA] // Copy callable. | stp CARG1, CARG2, [RA, #16] // Copy state and control var. | checkfunc CARG3, ->vmeta_call | ins_call break; case BC_ITERN: | // RA = base, (RB = nresults+1, RC = nargs+1 (2+1)) |.if JIT | // NYI: add hotloop, record BC_ITERN. |.endif | add RA, BASE, RA, lsl #3 | ldr TAB:RB, [RA, #-16] | ldrh TMP3w, [PC, # OFS_RD] | ldr CARG1w, [RA, #-8+LO] // Get index from control var. | add PC, PC, #4 | add TMP3, PC, TMP3, lsl #2 | and TAB:RB, RB, #LJ_GCVMASK | sub TMP3, TMP3, #0x20000 | ldr TMP1w, TAB:RB->asize | ldr CARG2, TAB:RB->array |1: // Traverse array part. | subs RC, CARG1, TMP1 | add CARG3, CARG2, CARG1, lsl #3 | bhs >5 // Index points after array part? | ldr TMP0, [CARG3] | cmp TMP0, TISNIL | cinc CARG1, CARG1, eq // Skip holes in array part. | beq <1 | add CARG1, CARG1, TISNUM | stp CARG1, TMP0, [RA] | add CARG1, CARG1, #1 |3: | str CARG1w, [RA, #-8+LO] // Update control var. | mov PC, TMP3 |4: | ins_next | |5: // Traverse hash part. | ldr TMP2w, TAB:RB->hmask | ldr NODE:RB, TAB:RB->node |6: | add CARG1, RC, RC, lsl #1 | cmp RC, TMP2 // End of iteration? Branch to ITERN+1. | add NODE:CARG3, NODE:RB, CARG1, lsl #3 // node = tab->node + idx*3*8 | bhi <4 | ldp TMP0, CARG1, NODE:CARG3->val | cmp TMP0, TISNIL | add RC, RC, #1 | beq <6 // Skip holes in hash part. | stp CARG1, TMP0, [RA] | add CARG1, RC, TMP1 | b <3 break; case BC_ISNEXT: | // RA = base, RC = target (points to ITERN) | add RA, BASE, RA, lsl #3 | ldr CFUNC:CARG1, [RA, #-24] | add RC, PC, RC, lsl #2 | ldp TAB:CARG3, CARG4, [RA, #-16] | sub RC, RC, #0x20000 | checkfunc CFUNC:CARG1, >5 | asr TMP0, TAB:CARG3, #47 | ldrb TMP1w, CFUNC:CARG1->ffid | cmn TMP0, #-LJ_TTAB | ccmp CARG4, TISNIL, #0, eq | ccmp TMP1w, #FF_next_N, #0, eq | bne >5 | mov TMP0w, #0xfffe7fff | lsl TMP0, TMP0, #32 | str TMP0, [RA, #-8] // Initialize control var. |1: | mov PC, RC | ins_next | |5: // Despecialize bytecode if any of the checks fail. | mov TMP0, #BC_JMP | mov TMP1, #BC_ITERC | strb TMP0w, [PC, #-4+OFS_OP] | strb TMP1w, [RC, # OFS_OP] | b <1 break; case BC_VARG: | decode_RB RB, INS | and RC, RC, #255 | // RA = base, RB = (nresults+1), RC = numparams | ldr TMP1, [BASE, FRAME_PC] | add RC, BASE, RC, lsl #3 | add RA, BASE, RA, lsl #3 | add RC, RC, #FRAME_VARG | add TMP2, RA, RB, lsl #3 | sub RC, RC, TMP1 // RC = vbase | // Note: RC may now be even _above_ BASE if nargs was < numparams. | sub TMP3, BASE, #16 // TMP3 = vtop | cbz RB, >5 | sub TMP2, TMP2, #16 |1: // Copy vararg slots to destination slots. | cmp RC, TMP3 | ldr TMP0, [RC], #8 | csel TMP0, TMP0, TISNIL, lo | cmp RA, TMP2 | str TMP0, [RA], #8 | blo <1 |2: | ins_next | |5: // Copy all varargs. | ldr TMP0, L->maxstack | subs TMP2, TMP3, RC | csel RB, xzr, TMP2, le // MULTRES = (max(vtop-vbase,0)+1)*8 | add RB, RB, #8 | add TMP1, RA, TMP2 | str RBw, SAVE_MULTRES | ble <2 // Nothing to copy. | cmp TMP1, TMP0 | bhi >7 |6: | ldr TMP0, [RC], #8 | str TMP0, [RA], #8 | cmp RC, TMP3 | blo <6 | b <2 | |7: // Grow stack for varargs. | lsr CARG2, TMP2, #3 | stp BASE, RA, L->base | mov CARG1, L | sub RC, RC, BASE // Need delta, because BASE may change. | str PC, SAVE_PC | bl extern lj_state_growstack // (lua_State *L, int n) | ldp BASE, RA, L->base | add RC, BASE, RC | sub TMP3, BASE, #16 | b <6 break; /* -- Returns ----------------------------------------------------------- */ case BC_RETM: | // RA = results, RC = extra results | ldr TMP0w, SAVE_MULTRES | ldr PC, [BASE, FRAME_PC] | add RA, BASE, RA, lsl #3 | add RC, TMP0, RC, lsl #3 | b ->BC_RETM_Z break; case BC_RET: | // RA = results, RC = nresults+1 | ldr PC, [BASE, FRAME_PC] | lsl RC, RC, #3 | add RA, BASE, RA, lsl #3 |->BC_RETM_Z: | str RCw, SAVE_MULTRES |1: | ands CARG1, PC, #FRAME_TYPE | eor CARG2, PC, #FRAME_VARG | bne ->BC_RETV2_Z | |->BC_RET_Z: | // BASE = base, RA = resultptr, RC = (nresults+1)*8, PC = return | ldr INSw, [PC, #-4] | subs TMP1, RC, #8 | sub CARG3, BASE, #16 | beq >3 |2: | ldr TMP0, [RA], #8 | add BASE, BASE, #8 | sub TMP1, TMP1, #8 | str TMP0, [BASE, #-24] | cbnz TMP1, <2 |3: | decode_RA RA, INS | sub CARG4, CARG3, RA, lsl #3 | decode_RB RB, INS | ldr LFUNC:CARG1, [CARG4, FRAME_FUNC] |5: | cmp RC, RB, lsl #3 // More results expected? | blo >6 | and LFUNC:CARG1, CARG1, #LJ_GCVMASK | mov BASE, CARG4 | ldr CARG2, LFUNC:CARG1->pc | ldr KBASE, [CARG2, #PC2PROTO(k)] | ins_next | |6: // Fill up results with nil. | add BASE, BASE, #8 | add RC, RC, #8 | str TISNIL, [BASE, #-24] | b <5 | |->BC_RETV1_Z: // Non-standard return case. | add RA, BASE, RA, lsl #3 |->BC_RETV2_Z: | tst CARG2, #FRAME_TYPEP | bne ->vm_return | // Return from vararg function: relocate BASE down. | sub BASE, BASE, CARG2 | ldr PC, [BASE, FRAME_PC] | b <1 break; case BC_RET0: case BC_RET1: | // RA = results, RC = nresults+1 | ldr PC, [BASE, FRAME_PC] | lsl RC, RC, #3 | str RCw, SAVE_MULTRES | ands CARG1, PC, #FRAME_TYPE | eor CARG2, PC, #FRAME_VARG | bne ->BC_RETV1_Z | ldr INSw, [PC, #-4] if (op == BC_RET1) { | ldr TMP0, [BASE, RA, lsl #3] } | sub CARG4, BASE, #16 | decode_RA RA, INS | sub BASE, CARG4, RA, lsl #3 if (op == BC_RET1) { | str TMP0, [CARG4], #8 } | decode_RB RB, INS | ldr LFUNC:CARG1, [BASE, FRAME_FUNC] |5: | cmp RC, RB, lsl #3 | blo >6 | and LFUNC:CARG1, CARG1, #LJ_GCVMASK | ldr CARG2, LFUNC:CARG1->pc | ldr KBASE, [CARG2, #PC2PROTO(k)] | ins_next | |6: // Fill up results with nil. | add RC, RC, #8 | str TISNIL, [CARG4], #8 | b <5 break; /* -- Loops and branches ------------------------------------------------ */ |.define FOR_IDX, [RA]; .define FOR_TIDX, [RA, #4] |.define FOR_STOP, [RA, #8]; .define FOR_TSTOP, [RA, #12] |.define FOR_STEP, [RA, #16]; .define FOR_TSTEP, [RA, #20] |.define FOR_EXT, [RA, #24]; .define FOR_TEXT, [RA, #28] case BC_FORL: |.if JIT | hotloop |.endif | // Fall through. Assumes BC_IFORL follows. break; case BC_JFORI: case BC_JFORL: #if !LJ_HASJIT break; #endif case BC_FORI: case BC_IFORL: | // RA = base, RC = target (after end of loop or start of loop) vk = (op == BC_IFORL || op == BC_JFORL); | add RA, BASE, RA, lsl #3 | ldp CARG1, CARG2, FOR_IDX // CARG1 = IDX, CARG2 = STOP | ldr CARG3, FOR_STEP // CARG3 = STEP if (op != BC_JFORL) { | add RC, PC, RC, lsl #2 | sub RC, RC, #0x20000 } | checkint CARG1, >5 if (!vk) { | checkint CARG2, ->vmeta_for | checkint CARG3, ->vmeta_for | tbnz CARG3w, #31, >4 | cmp CARG1w, CARG2w } else { | adds CARG1w, CARG1w, CARG3w | bvs >2 | add TMP0, CARG1, TISNUM | tbnz CARG3w, #31, >4 | cmp CARG1w, CARG2w } |1: if (op == BC_FORI) { | csel PC, RC, PC, gt } else if (op == BC_JFORI) { | mov PC, RC | ldrh RCw, [RC, #-4+OFS_RD] } else if (op == BC_IFORL) { | csel PC, RC, PC, le } if (vk) { | str TMP0, FOR_IDX | str TMP0, FOR_EXT } else { | str CARG1, FOR_EXT } if (op == BC_JFORI || op == BC_JFORL) { | ble =>BC_JLOOP } |2: | ins_next | |4: // Invert check for negative step. | cmp CARG2w, CARG1w | b <1 | |5: // FP loop. | ldp d0, d1, FOR_IDX | blo ->vmeta_for if (!vk) { | checknum CARG2, ->vmeta_for | checknum CARG3, ->vmeta_for | str d0, FOR_EXT } else { | ldr d2, FOR_STEP | fadd d0, d0, d2 } | tbnz CARG3, #63, >7 | fcmp d0, d1 |6: if (vk) { | str d0, FOR_IDX | str d0, FOR_EXT } if (op == BC_FORI) { | csel PC, RC, PC, hi } else if (op == BC_JFORI) { | ldrh RCw, [RC, #-4+OFS_RD] | bls =>BC_JLOOP } else if (op == BC_IFORL) { | csel PC, RC, PC, ls } else { | bls =>BC_JLOOP } | b <2 | |7: // Invert check for negative step. | fcmp d1, d0 | b <6 break; case BC_ITERL: |.if JIT | hotloop |.endif | // Fall through. Assumes BC_IITERL follows. break; case BC_JITERL: #if !LJ_HASJIT break; #endif case BC_IITERL: | // RA = base, RC = target | ldr CARG1, [BASE, RA, lsl #3] | add TMP1, BASE, RA, lsl #3 | cmp CARG1, TISNIL | beq >1 // Stop if iterator returned nil. if (op == BC_JITERL) { | str CARG1, [TMP1, #-8] | b =>BC_JLOOP } else { | add TMP0, PC, RC, lsl #2 // Otherwise save control var + branch. | sub PC, TMP0, #0x20000 | str CARG1, [TMP1, #-8] } |1: | ins_next break; case BC_LOOP: | // RA = base, RC = target (loop extent) | // Note: RA/RC is only used by trace recorder to determine scope/extent | // This opcode does NOT jump, it's only purpose is to detect a hot loop. |.if JIT | hotloop |.endif | // Fall through. Assumes BC_ILOOP follows. break; case BC_ILOOP: | // RA = base, RC = target (loop extent) | ins_next break; case BC_JLOOP: |.if JIT | // RA = base (ignored), RC = traceno | ldr CARG1, [GL, #GL_J(trace)] | mov CARG2w, #0 // Traces on ARM64 don't store the trace #, so use 0. | ldr TRACE:RC, [CARG1, RC, lsl #3] | st_vmstate CARG2w | ldr RA, TRACE:RC->mcode | str BASE, GL->jit_base | str L, GL->tmpbuf.L | sub sp, sp, #16 // See SPS_FIXED. Avoids sp adjust in every root trace. | br RA |.endif break; case BC_JMP: | // RA = base (only used by trace recorder), RC = target | add RC, PC, RC, lsl #2 | sub PC, RC, #0x20000 | ins_next break; /* -- Function headers -------------------------------------------------- */ case BC_FUNCF: |.if JIT | hotcall |.endif case BC_FUNCV: /* NYI: compiled vararg functions. */ | // Fall through. Assumes BC_IFUNCF/BC_IFUNCV follow. break; case BC_JFUNCF: #if !LJ_HASJIT break; #endif case BC_IFUNCF: | // BASE = new base, RA = BASE+framesize*8, CARG3 = LFUNC, RC = nargs*8 | ldr CARG1, L->maxstack | ldrb TMP1w, [PC, #-4+PC2PROTO(numparams)] | ldr KBASE, [PC, #-4+PC2PROTO(k)] | cmp RA, CARG1 | bhi ->vm_growstack_l |2: | cmp NARGS8:RC, TMP1, lsl #3 // Check for missing parameters. | blo >3 if (op == BC_JFUNCF) { | decode_RD RC, INS | b =>BC_JLOOP } else { | ins_next } | |3: // Clear missing parameters. | str TISNIL, [BASE, NARGS8:RC] | add NARGS8:RC, NARGS8:RC, #8 | b <2 break; case BC_JFUNCV: #if !LJ_HASJIT break; #endif | NYI // NYI: compiled vararg functions break; /* NYI: compiled vararg functions. */ case BC_IFUNCV: | // BASE = new base, RA = BASE+framesize*8, CARG3 = LFUNC, RC = nargs*8 | ldr CARG1, L->maxstack | movn TMP0, #~LJ_TFUNC | add TMP2, BASE, RC | add LFUNC:CARG3, CARG3, TMP0, lsl #47 | add RA, RA, RC | add TMP0, RC, #16+FRAME_VARG | str LFUNC:CARG3, [TMP2], #8 // Store (tagged) copy of LFUNC. | ldr KBASE, [PC, #-4+PC2PROTO(k)] | cmp RA, CARG1 | str TMP0, [TMP2], #8 // Store delta + FRAME_VARG. | bhs ->vm_growstack_l | sub RC, TMP2, #16 | ldrb TMP1w, [PC, #-4+PC2PROTO(numparams)] | mov RA, BASE | mov BASE, TMP2 | cbz TMP1, >2 |1: | cmp RA, RC // Less args than parameters? | bhs >3 | ldr TMP0, [RA] | sub TMP1, TMP1, #1 | str TISNIL, [RA], #8 // Clear old fixarg slot (help the GC). | str TMP0, [TMP2], #8 | cbnz TMP1, <1 |2: | ins_next | |3: | sub TMP1, TMP1, #1 | str TISNIL, [TMP2], #8 | cbz TMP1, <2 | b <3 break; case BC_FUNCC: case BC_FUNCCW: | // BASE = new base, RA = BASE+framesize*8, CARG3 = CFUNC, RC = nargs*8 if (op == BC_FUNCC) { | ldr CARG4, CFUNC:CARG3->f } else { | ldr CARG4, GL->wrapf } | add CARG2, RA, NARGS8:RC | ldr CARG1, L->maxstack | add RC, BASE, NARGS8:RC | cmp CARG2, CARG1 | stp BASE, RC, L->base if (op == BC_FUNCCW) { | ldr CARG2, CFUNC:CARG3->f } | mv_vmstate TMP0w, C | mov CARG1, L | bhi ->vm_growstack_c // Need to grow stack. | st_vmstate TMP0w | blr CARG4 // (lua_State *L [, lua_CFunction f]) | // Returns nresults. | ldp BASE, TMP1, L->base | str L, GL->cur_L | sbfiz RC, CRET1, #3, #32 | st_vmstate ST_INTERP | ldr PC, [BASE, FRAME_PC] | sub RA, TMP1, RC // RA = L->top - nresults*8 | b ->vm_returnc break; /* ---------------------------------------------------------------------- */ default: fprintf(stderr, "Error: undefined opcode BC_%s\n", bc_names[op]); exit(2); break; } } static int build_backend(BuildCtx *ctx) { int op; dasm_growpc(Dst, BC__MAX); build_subroutines(ctx); |.code_op for (op = 0; op < BC__MAX; op++) build_ins(ctx, (BCOp)op, op); return BC__MAX; } /* Emit pseudo frame-info for all assembler functions. */ static void emit_asm_debug(BuildCtx *ctx) { int fcofs = (int)((uint8_t *)ctx->glob[GLOB_vm_ffi_call] - ctx->code); int i, cf = CFRAME_SIZE >> 3; switch (ctx->mode) { case BUILD_elfasm: fprintf(ctx->fp, "\t.section .debug_frame,\"\",%%progbits\n"); fprintf(ctx->fp, ".Lframe0:\n" "\t.long .LECIE0-.LSCIE0\n" ".LSCIE0:\n" "\t.long 0xffffffff\n" "\t.byte 0x1\n" "\t.string \"\"\n" "\t.uleb128 0x1\n" "\t.sleb128 -8\n" "\t.byte 30\n" /* Return address is in lr. */ "\t.byte 0xc\n\t.uleb128 31\n\t.uleb128 0\n" /* def_cfa sp */ "\t.align 3\n" ".LECIE0:\n\n"); fprintf(ctx->fp, ".LSFDE0:\n" "\t.long .LEFDE0-.LASFDE0\n" ".LASFDE0:\n" "\t.long .Lframe0\n" "\t.quad .Lbegin\n" "\t.quad %d\n" "\t.byte 0xe\n\t.uleb128 %d\n" /* def_cfa_offset */ "\t.byte 0x9d\n\t.uleb128 %d\n" /* offset fp */ "\t.byte 0x9e\n\t.uleb128 %d\n", /* offset lr */ fcofs, CFRAME_SIZE, cf, cf-1); for (i = 19; i <= 28; i++) /* offset x19-x28 */ fprintf(ctx->fp, "\t.byte 0x%x\n\t.uleb128 %d\n", 0x80+i, cf-i+17); for (i = 8; i <= 15; i++) /* offset d8-d15 */ fprintf(ctx->fp, "\t.byte 5\n\t.uleb128 0x%x\n\t.uleb128 %d\n", 64+i, cf-i-4); fprintf(ctx->fp, "\t.align 3\n" ".LEFDE0:\n\n"); #if LJ_HASFFI fprintf(ctx->fp, ".LSFDE1:\n" "\t.long .LEFDE1-.LASFDE1\n" ".LASFDE1:\n" "\t.long .Lframe0\n" "\t.quad lj_vm_ffi_call\n" "\t.quad %d\n" "\t.byte 0xe\n\t.uleb128 32\n" /* def_cfa_offset */ "\t.byte 0x9d\n\t.uleb128 4\n" /* offset fp */ "\t.byte 0x9e\n\t.uleb128 3\n" /* offset lr */ "\t.byte 0x93\n\t.uleb128 2\n" /* offset x19 */ "\t.align 3\n" ".LEFDE1:\n\n", (int)ctx->codesz - fcofs); #endif fprintf(ctx->fp, "\t.section .eh_frame,\"a\",%%progbits\n"); fprintf(ctx->fp, ".Lframe1:\n" "\t.long .LECIE1-.LSCIE1\n" ".LSCIE1:\n" "\t.long 0\n" "\t.byte 0x1\n" "\t.string \"zPR\"\n" "\t.uleb128 0x1\n" "\t.sleb128 -8\n" "\t.byte 30\n" /* Return address is in lr. */ "\t.uleb128 6\n" /* augmentation length */ "\t.byte 0x1b\n" /* pcrel|sdata4 */ "\t.long lj_err_unwind_dwarf-.\n" "\t.byte 0x1b\n" /* pcrel|sdata4 */ "\t.byte 0xc\n\t.uleb128 31\n\t.uleb128 0\n" /* def_cfa sp */ "\t.align 3\n" ".LECIE1:\n\n"); fprintf(ctx->fp, ".LSFDE2:\n" "\t.long .LEFDE2-.LASFDE2\n" ".LASFDE2:\n" "\t.long .LASFDE2-.Lframe1\n" "\t.long .Lbegin-.\n" "\t.long %d\n" "\t.uleb128 0\n" /* augmentation length */ "\t.byte 0xe\n\t.uleb128 %d\n" /* def_cfa_offset */ "\t.byte 0x9d\n\t.uleb128 %d\n" /* offset fp */ "\t.byte 0x9e\n\t.uleb128 %d\n", /* offset lr */ fcofs, CFRAME_SIZE, cf, cf-1); for (i = 19; i <= 28; i++) /* offset x19-x28 */ fprintf(ctx->fp, "\t.byte 0x%x\n\t.uleb128 %d\n", 0x80+i, cf-i+17); for (i = 8; i <= 15; i++) /* offset d8-d15 */ fprintf(ctx->fp, "\t.byte 5\n\t.uleb128 0x%x\n\t.uleb128 %d\n", 64+i, cf-i-4); fprintf(ctx->fp, "\t.align 3\n" ".LEFDE2:\n\n"); #if LJ_HASFFI fprintf(ctx->fp, ".Lframe2:\n" "\t.long .LECIE2-.LSCIE2\n" ".LSCIE2:\n" "\t.long 0\n" "\t.byte 0x1\n" "\t.string \"zR\"\n" "\t.uleb128 0x1\n" "\t.sleb128 -8\n" "\t.byte 30\n" /* Return address is in lr. */ "\t.uleb128 1\n" /* augmentation length */ "\t.byte 0x1b\n" /* pcrel|sdata4 */ "\t.byte 0xc\n\t.uleb128 31\n\t.uleb128 0\n" /* def_cfa sp */ "\t.align 3\n" ".LECIE2:\n\n"); fprintf(ctx->fp, ".LSFDE3:\n" "\t.long .LEFDE3-.LASFDE3\n" ".LASFDE3:\n" "\t.long .LASFDE3-.Lframe2\n" "\t.long lj_vm_ffi_call-.\n" "\t.long %d\n" "\t.uleb128 0\n" /* augmentation length */ "\t.byte 0xe\n\t.uleb128 32\n" /* def_cfa_offset */ "\t.byte 0x9d\n\t.uleb128 4\n" /* offset fp */ "\t.byte 0x9e\n\t.uleb128 3\n" /* offset lr */ "\t.byte 0x93\n\t.uleb128 2\n" /* offset x19 */ "\t.align 3\n" ".LEFDE3:\n\n", (int)ctx->codesz - fcofs); #endif break; default: break; } } luajit-2.1.0~beta3+dfsg.orig/src/lj_buf.c0000644000175100017510000001263613101703334017522 0ustar ondrejondrej/* ** Buffer handling. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #define lj_buf_c #define LUA_CORE #include "lj_obj.h" #include "lj_gc.h" #include "lj_err.h" #include "lj_buf.h" #include "lj_str.h" #include "lj_tab.h" #include "lj_strfmt.h" /* -- Buffer management --------------------------------------------------- */ static void buf_grow(SBuf *sb, MSize sz) { MSize osz = sbufsz(sb), len = sbuflen(sb), nsz = osz; char *b; if (nsz < LJ_MIN_SBUF) nsz = LJ_MIN_SBUF; while (nsz < sz) nsz += nsz; b = (char *)lj_mem_realloc(sbufL(sb), sbufB(sb), osz, nsz); setmref(sb->b, b); setmref(sb->p, b + len); setmref(sb->e, b + nsz); } LJ_NOINLINE char *LJ_FASTCALL lj_buf_need2(SBuf *sb, MSize sz) { lua_assert(sz > sbufsz(sb)); if (LJ_UNLIKELY(sz > LJ_MAX_BUF)) lj_err_mem(sbufL(sb)); buf_grow(sb, sz); return sbufB(sb); } LJ_NOINLINE char *LJ_FASTCALL lj_buf_more2(SBuf *sb, MSize sz) { MSize len = sbuflen(sb); lua_assert(sz > sbufleft(sb)); if (LJ_UNLIKELY(sz > LJ_MAX_BUF || len + sz > LJ_MAX_BUF)) lj_err_mem(sbufL(sb)); buf_grow(sb, len + sz); return sbufP(sb); } void LJ_FASTCALL lj_buf_shrink(lua_State *L, SBuf *sb) { char *b = sbufB(sb); MSize osz = (MSize)(sbufE(sb) - b); if (osz > 2*LJ_MIN_SBUF) { MSize n = (MSize)(sbufP(sb) - b); b = lj_mem_realloc(L, b, osz, (osz >> 1)); setmref(sb->b, b); setmref(sb->p, b + n); setmref(sb->e, b + (osz >> 1)); } } char * LJ_FASTCALL lj_buf_tmp(lua_State *L, MSize sz) { SBuf *sb = &G(L)->tmpbuf; setsbufL(sb, L); return lj_buf_need(sb, sz); } /* -- Low-level buffer put operations ------------------------------------- */ SBuf *lj_buf_putmem(SBuf *sb, const void *q, MSize len) { char *p = lj_buf_more(sb, len); p = lj_buf_wmem(p, q, len); setsbufP(sb, p); return sb; } SBuf * LJ_FASTCALL lj_buf_putchar(SBuf *sb, int c) { char *p = lj_buf_more(sb, 1); *p++ = (char)c; setsbufP(sb, p); return sb; } SBuf * LJ_FASTCALL lj_buf_putstr(SBuf *sb, GCstr *s) { MSize len = s->len; char *p = lj_buf_more(sb, len); p = lj_buf_wmem(p, strdata(s), len); setsbufP(sb, p); return sb; } /* -- High-level buffer put operations ------------------------------------ */ SBuf * LJ_FASTCALL lj_buf_putstr_reverse(SBuf *sb, GCstr *s) { MSize len = s->len; char *p = lj_buf_more(sb, len), *e = p+len; const char *q = strdata(s)+len-1; while (p < e) *p++ = *q--; setsbufP(sb, p); return sb; } SBuf * LJ_FASTCALL lj_buf_putstr_lower(SBuf *sb, GCstr *s) { MSize len = s->len; char *p = lj_buf_more(sb, len), *e = p+len; const char *q = strdata(s); for (; p < e; p++, q++) { uint32_t c = *(unsigned char *)q; #if LJ_TARGET_PPC *p = c + ((c >= 'A' && c <= 'Z') << 5); #else if (c >= 'A' && c <= 'Z') c += 0x20; *p = c; #endif } setsbufP(sb, p); return sb; } SBuf * LJ_FASTCALL lj_buf_putstr_upper(SBuf *sb, GCstr *s) { MSize len = s->len; char *p = lj_buf_more(sb, len), *e = p+len; const char *q = strdata(s); for (; p < e; p++, q++) { uint32_t c = *(unsigned char *)q; #if LJ_TARGET_PPC *p = c - ((c >= 'a' && c <= 'z') << 5); #else if (c >= 'a' && c <= 'z') c -= 0x20; *p = c; #endif } setsbufP(sb, p); return sb; } SBuf *lj_buf_putstr_rep(SBuf *sb, GCstr *s, int32_t rep) { MSize len = s->len; if (rep > 0 && len) { uint64_t tlen = (uint64_t)rep * len; char *p; if (LJ_UNLIKELY(tlen > LJ_MAX_STR)) lj_err_mem(sbufL(sb)); p = lj_buf_more(sb, (MSize)tlen); if (len == 1) { /* Optimize a common case. */ uint32_t c = strdata(s)[0]; do { *p++ = c; } while (--rep > 0); } else { const char *e = strdata(s) + len; do { const char *q = strdata(s); do { *p++ = *q++; } while (q < e); } while (--rep > 0); } setsbufP(sb, p); } return sb; } SBuf *lj_buf_puttab(SBuf *sb, GCtab *t, GCstr *sep, int32_t i, int32_t e) { MSize seplen = sep ? sep->len : 0; if (i <= e) { for (;;) { cTValue *o = lj_tab_getint(t, i); char *p; if (!o) { badtype: /* Error: bad element type. */ setsbufP(sb, (void *)(intptr_t)i); /* Store failing index. */ return NULL; } else if (tvisstr(o)) { MSize len = strV(o)->len; p = lj_buf_wmem(lj_buf_more(sb, len + seplen), strVdata(o), len); } else if (tvisint(o)) { p = lj_strfmt_wint(lj_buf_more(sb, STRFMT_MAXBUF_INT+seplen), intV(o)); } else if (tvisnum(o)) { p = lj_buf_more(lj_strfmt_putfnum(sb, STRFMT_G14, numV(o)), seplen); } else { goto badtype; } if (i++ == e) { setsbufP(sb, p); break; } if (seplen) p = lj_buf_wmem(p, strdata(sep), seplen); setsbufP(sb, p); } } return sb; } /* -- Miscellaneous buffer operations ------------------------------------- */ GCstr * LJ_FASTCALL lj_buf_tostr(SBuf *sb) { return lj_str_new(sbufL(sb), sbufB(sb), sbuflen(sb)); } /* Concatenate two strings. */ GCstr *lj_buf_cat2str(lua_State *L, GCstr *s1, GCstr *s2) { MSize len1 = s1->len, len2 = s2->len; char *buf = lj_buf_tmp(L, len1 + len2); memcpy(buf, strdata(s1), len1); memcpy(buf+len1, strdata(s2), len2); return lj_str_new(L, buf, len1 + len2); } /* Read ULEB128 from buffer. */ uint32_t LJ_FASTCALL lj_buf_ruleb128(const char **pp) { const uint8_t *p = (const uint8_t *)*pp; uint32_t v = *p++; if (LJ_UNLIKELY(v >= 0x80)) { int sh = 0; v &= 0x7f; do { v |= ((*p & 0x7f) << (sh += 7)); } while (*p++ >= 0x80); } *pp = (const char *)p; return v; } luajit-2.1.0~beta3+dfsg.orig/src/lj_trace.c0000644000175100017510000006337413101703334020051 0ustar ondrejondrej/* ** Trace management. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #define lj_trace_c #define LUA_CORE #include "lj_obj.h" #if LJ_HASJIT #include "lj_gc.h" #include "lj_err.h" #include "lj_debug.h" #include "lj_str.h" #include "lj_frame.h" #include "lj_state.h" #include "lj_bc.h" #include "lj_ir.h" #include "lj_jit.h" #include "lj_iropt.h" #include "lj_mcode.h" #include "lj_trace.h" #include "lj_snap.h" #include "lj_gdbjit.h" #include "lj_record.h" #include "lj_asm.h" #include "lj_dispatch.h" #include "lj_vm.h" #include "lj_vmevent.h" #include "lj_target.h" /* -- Error handling ------------------------------------------------------ */ /* Synchronous abort with error message. */ void lj_trace_err(jit_State *J, TraceError e) { setnilV(&J->errinfo); /* No error info. */ setintV(J->L->top++, (int32_t)e); lj_err_throw(J->L, LUA_ERRRUN); } /* Synchronous abort with error message and error info. */ void lj_trace_err_info(jit_State *J, TraceError e) { setintV(J->L->top++, (int32_t)e); lj_err_throw(J->L, LUA_ERRRUN); } /* -- Trace management ---------------------------------------------------- */ /* The current trace is first assembled in J->cur. The variable length ** arrays point to shared, growable buffers (J->irbuf etc.). When trace ** recording ends successfully, the current trace and its data structures ** are copied to a new (compact) GCtrace object. */ /* Find a free trace number. */ static TraceNo trace_findfree(jit_State *J) { MSize osz, lim; if (J->freetrace == 0) J->freetrace = 1; for (; J->freetrace < J->sizetrace; J->freetrace++) if (traceref(J, J->freetrace) == NULL) return J->freetrace++; /* Need to grow trace array. */ lim = (MSize)J->param[JIT_P_maxtrace] + 1; if (lim < 2) lim = 2; else if (lim > 65535) lim = 65535; osz = J->sizetrace; if (osz >= lim) return 0; /* Too many traces. */ lj_mem_growvec(J->L, J->trace, J->sizetrace, lim, GCRef); for (; osz < J->sizetrace; osz++) setgcrefnull(J->trace[osz]); return J->freetrace; } #define TRACE_APPENDVEC(field, szfield, tp) \ T->field = (tp *)p; \ memcpy(p, J->cur.field, J->cur.szfield*sizeof(tp)); \ p += J->cur.szfield*sizeof(tp); #ifdef LUAJIT_USE_PERFTOOLS /* ** Create symbol table of JIT-compiled code. For use with Linux perf tools. ** Example usage: ** perf record -f -e cycles luajit test.lua ** perf report -s symbol ** rm perf.data /tmp/perf-*.map */ #include #include static void perftools_addtrace(GCtrace *T) { static FILE *fp; GCproto *pt = &gcref(T->startpt)->pt; const BCIns *startpc = mref(T->startpc, const BCIns); const char *name = proto_chunknamestr(pt); BCLine lineno; if (name[0] == '@' || name[0] == '=') name++; else name = "(string)"; lua_assert(startpc >= proto_bc(pt) && startpc < proto_bc(pt) + pt->sizebc); lineno = lj_debug_line(pt, proto_bcpos(pt, startpc)); if (!fp) { char fname[40]; sprintf(fname, "/tmp/perf-%d.map", getpid()); if (!(fp = fopen(fname, "w"))) return; setlinebuf(fp); } fprintf(fp, "%lx %x TRACE_%d::%s:%u\n", (long)T->mcode, T->szmcode, T->traceno, name, lineno); } #endif /* Allocate space for copy of T. */ GCtrace * LJ_FASTCALL lj_trace_alloc(lua_State *L, GCtrace *T) { size_t sztr = ((sizeof(GCtrace)+7)&~7); size_t szins = (T->nins-T->nk)*sizeof(IRIns); size_t sz = sztr + szins + T->nsnap*sizeof(SnapShot) + T->nsnapmap*sizeof(SnapEntry); GCtrace *T2 = lj_mem_newt(L, (MSize)sz, GCtrace); char *p = (char *)T2 + sztr; T2->gct = ~LJ_TTRACE; T2->marked = 0; T2->traceno = 0; T2->ir = (IRIns *)p - T->nk; T2->nins = T->nins; T2->nk = T->nk; T2->nsnap = T->nsnap; T2->nsnapmap = T->nsnapmap; memcpy(p, T->ir + T->nk, szins); return T2; } /* Save current trace by copying and compacting it. */ static void trace_save(jit_State *J, GCtrace *T) { size_t sztr = ((sizeof(GCtrace)+7)&~7); size_t szins = (J->cur.nins-J->cur.nk)*sizeof(IRIns); char *p = (char *)T + sztr; memcpy(T, &J->cur, sizeof(GCtrace)); setgcrefr(T->nextgc, J2G(J)->gc.root); setgcrefp(J2G(J)->gc.root, T); newwhite(J2G(J), T); T->gct = ~LJ_TTRACE; T->ir = (IRIns *)p - J->cur.nk; /* The IR has already been copied above. */ p += szins; TRACE_APPENDVEC(snap, nsnap, SnapShot) TRACE_APPENDVEC(snapmap, nsnapmap, SnapEntry) J->cur.traceno = 0; J->curfinal = NULL; setgcrefp(J->trace[T->traceno], T); lj_gc_barriertrace(J2G(J), T->traceno); lj_gdbjit_addtrace(J, T); #ifdef LUAJIT_USE_PERFTOOLS perftools_addtrace(T); #endif } void LJ_FASTCALL lj_trace_free(global_State *g, GCtrace *T) { jit_State *J = G2J(g); if (T->traceno) { lj_gdbjit_deltrace(J, T); if (T->traceno < J->freetrace) J->freetrace = T->traceno; setgcrefnull(J->trace[T->traceno]); } lj_mem_free(g, T, ((sizeof(GCtrace)+7)&~7) + (T->nins-T->nk)*sizeof(IRIns) + T->nsnap*sizeof(SnapShot) + T->nsnapmap*sizeof(SnapEntry)); } /* Re-enable compiling a prototype by unpatching any modified bytecode. */ void lj_trace_reenableproto(GCproto *pt) { if ((pt->flags & PROTO_ILOOP)) { BCIns *bc = proto_bc(pt); BCPos i, sizebc = pt->sizebc;; pt->flags &= ~PROTO_ILOOP; if (bc_op(bc[0]) == BC_IFUNCF) setbc_op(&bc[0], BC_FUNCF); for (i = 1; i < sizebc; i++) { BCOp op = bc_op(bc[i]); if (op == BC_IFORL || op == BC_IITERL || op == BC_ILOOP) setbc_op(&bc[i], (int)op+(int)BC_LOOP-(int)BC_ILOOP); } } } /* Unpatch the bytecode modified by a root trace. */ static void trace_unpatch(jit_State *J, GCtrace *T) { BCOp op = bc_op(T->startins); BCIns *pc = mref(T->startpc, BCIns); UNUSED(J); if (op == BC_JMP) return; /* No need to unpatch branches in parent traces (yet). */ switch (bc_op(*pc)) { case BC_JFORL: lua_assert(traceref(J, bc_d(*pc)) == T); *pc = T->startins; pc += bc_j(T->startins); lua_assert(bc_op(*pc) == BC_JFORI); setbc_op(pc, BC_FORI); break; case BC_JITERL: case BC_JLOOP: lua_assert(op == BC_ITERL || op == BC_LOOP || bc_isret(op)); *pc = T->startins; break; case BC_JMP: lua_assert(op == BC_ITERL); pc += bc_j(*pc)+2; if (bc_op(*pc) == BC_JITERL) { lua_assert(traceref(J, bc_d(*pc)) == T); *pc = T->startins; } break; case BC_JFUNCF: lua_assert(op == BC_FUNCF); *pc = T->startins; break; default: /* Already unpatched. */ break; } } /* Flush a root trace. */ static void trace_flushroot(jit_State *J, GCtrace *T) { GCproto *pt = &gcref(T->startpt)->pt; lua_assert(T->root == 0 && pt != NULL); /* First unpatch any modified bytecode. */ trace_unpatch(J, T); /* Unlink root trace from chain anchored in prototype. */ if (pt->trace == T->traceno) { /* Trace is first in chain. Easy. */ pt->trace = T->nextroot; } else if (pt->trace) { /* Otherwise search in chain of root traces. */ GCtrace *T2 = traceref(J, pt->trace); if (T2) { for (; T2->nextroot; T2 = traceref(J, T2->nextroot)) if (T2->nextroot == T->traceno) { T2->nextroot = T->nextroot; /* Unlink from chain. */ break; } } } } /* Flush a trace. Only root traces are considered. */ void lj_trace_flush(jit_State *J, TraceNo traceno) { if (traceno > 0 && traceno < J->sizetrace) { GCtrace *T = traceref(J, traceno); if (T && T->root == 0) trace_flushroot(J, T); } } /* Flush all traces associated with a prototype. */ void lj_trace_flushproto(global_State *g, GCproto *pt) { while (pt->trace != 0) trace_flushroot(G2J(g), traceref(G2J(g), pt->trace)); } /* Flush all traces. */ int lj_trace_flushall(lua_State *L) { jit_State *J = L2J(L); ptrdiff_t i; if ((J2G(J)->hookmask & HOOK_GC)) return 1; for (i = (ptrdiff_t)J->sizetrace-1; i > 0; i--) { GCtrace *T = traceref(J, i); if (T) { if (T->root == 0) trace_flushroot(J, T); lj_gdbjit_deltrace(J, T); T->traceno = T->link = 0; /* Blacklist the link for cont_stitch. */ setgcrefnull(J->trace[i]); } } J->cur.traceno = 0; J->freetrace = 0; /* Clear penalty cache. */ memset(J->penalty, 0, sizeof(J->penalty)); /* Free the whole machine code and invalidate all exit stub groups. */ lj_mcode_free(J); memset(J->exitstubgroup, 0, sizeof(J->exitstubgroup)); lj_vmevent_send(L, TRACE, setstrV(L, L->top++, lj_str_newlit(L, "flush")); ); return 0; } /* Initialize JIT compiler state. */ void lj_trace_initstate(global_State *g) { jit_State *J = G2J(g); TValue *tv; /* Initialize aligned SIMD constants. */ tv = LJ_KSIMD(J, LJ_KSIMD_ABS); tv[0].u64 = U64x(7fffffff,ffffffff); tv[1].u64 = U64x(7fffffff,ffffffff); tv = LJ_KSIMD(J, LJ_KSIMD_NEG); tv[0].u64 = U64x(80000000,00000000); tv[1].u64 = U64x(80000000,00000000); /* Initialize 32/64 bit constants. */ #if LJ_TARGET_X86ORX64 J->k64[LJ_K64_TOBIT].u64 = U64x(43380000,00000000); #if LJ_32 J->k64[LJ_K64_M2P64_31].u64 = U64x(c1e00000,00000000); #endif J->k64[LJ_K64_2P64].u64 = U64x(43f00000,00000000); J->k32[LJ_K32_M2P64_31] = LJ_64 ? 0xdf800000 : 0xcf000000; #endif #if LJ_TARGET_X86ORX64 || LJ_TARGET_MIPS64 J->k64[LJ_K64_M2P64].u64 = U64x(c3f00000,00000000); #endif #if LJ_TARGET_PPC J->k32[LJ_K32_2P52_2P31] = 0x59800004; J->k32[LJ_K32_2P52] = 0x59800000; #endif #if LJ_TARGET_PPC || LJ_TARGET_MIPS J->k32[LJ_K32_2P31] = 0x4f000000; #endif #if LJ_TARGET_MIPS J->k64[LJ_K64_2P31].u64 = U64x(41e00000,00000000); #if LJ_64 J->k64[LJ_K64_2P63].u64 = U64x(43e00000,00000000); J->k32[LJ_K32_2P63] = 0x5f000000; J->k32[LJ_K32_M2P64] = 0xdf800000; #endif #endif } /* Free everything associated with the JIT compiler state. */ void lj_trace_freestate(global_State *g) { jit_State *J = G2J(g); #ifdef LUA_USE_ASSERT { /* This assumes all traces have already been freed. */ ptrdiff_t i; for (i = 1; i < (ptrdiff_t)J->sizetrace; i++) lua_assert(i == (ptrdiff_t)J->cur.traceno || traceref(J, i) == NULL); } #endif lj_mcode_free(J); lj_mem_freevec(g, J->snapmapbuf, J->sizesnapmap, SnapEntry); lj_mem_freevec(g, J->snapbuf, J->sizesnap, SnapShot); lj_mem_freevec(g, J->irbuf + J->irbotlim, J->irtoplim - J->irbotlim, IRIns); lj_mem_freevec(g, J->trace, J->sizetrace, GCRef); } /* -- Penalties and blacklisting ------------------------------------------ */ /* Blacklist a bytecode instruction. */ static void blacklist_pc(GCproto *pt, BCIns *pc) { setbc_op(pc, (int)bc_op(*pc)+(int)BC_ILOOP-(int)BC_LOOP); pt->flags |= PROTO_ILOOP; } /* Penalize a bytecode instruction. */ static void penalty_pc(jit_State *J, GCproto *pt, BCIns *pc, TraceError e) { uint32_t i, val = PENALTY_MIN; for (i = 0; i < PENALTY_SLOTS; i++) if (mref(J->penalty[i].pc, const BCIns) == pc) { /* Cache slot found? */ /* First try to bump its hotcount several times. */ val = ((uint32_t)J->penalty[i].val << 1) + LJ_PRNG_BITS(J, PENALTY_RNDBITS); if (val > PENALTY_MAX) { blacklist_pc(pt, pc); /* Blacklist it, if that didn't help. */ return; } goto setpenalty; } /* Assign a new penalty cache slot. */ i = J->penaltyslot; J->penaltyslot = (J->penaltyslot + 1) & (PENALTY_SLOTS-1); setmref(J->penalty[i].pc, pc); setpenalty: J->penalty[i].val = (uint16_t)val; J->penalty[i].reason = e; hotcount_set(J2GG(J), pc+1, val); } /* -- Trace compiler state machine ---------------------------------------- */ /* Start tracing. */ static void trace_start(jit_State *J) { lua_State *L; TraceNo traceno; if ((J->pt->flags & PROTO_NOJIT)) { /* JIT disabled for this proto? */ if (J->parent == 0 && J->exitno == 0) { /* Lazy bytecode patching to disable hotcount events. */ lua_assert(bc_op(*J->pc) == BC_FORL || bc_op(*J->pc) == BC_ITERL || bc_op(*J->pc) == BC_LOOP || bc_op(*J->pc) == BC_FUNCF); setbc_op(J->pc, (int)bc_op(*J->pc)+(int)BC_ILOOP-(int)BC_LOOP); J->pt->flags |= PROTO_ILOOP; } J->state = LJ_TRACE_IDLE; /* Silently ignored. */ return; } /* Get a new trace number. */ traceno = trace_findfree(J); if (LJ_UNLIKELY(traceno == 0)) { /* No free trace? */ lua_assert((J2G(J)->hookmask & HOOK_GC) == 0); lj_trace_flushall(J->L); J->state = LJ_TRACE_IDLE; /* Silently ignored. */ return; } setgcrefp(J->trace[traceno], &J->cur); /* Setup enough of the current trace to be able to send the vmevent. */ memset(&J->cur, 0, sizeof(GCtrace)); J->cur.traceno = traceno; J->cur.nins = J->cur.nk = REF_BASE; J->cur.ir = J->irbuf; J->cur.snap = J->snapbuf; J->cur.snapmap = J->snapmapbuf; J->mergesnap = 0; J->needsnap = 0; J->bcskip = 0; J->guardemit.irt = 0; J->postproc = LJ_POST_NONE; lj_resetsplit(J); J->retryrec = 0; J->ktrace = 0; setgcref(J->cur.startpt, obj2gco(J->pt)); L = J->L; lj_vmevent_send(L, TRACE, setstrV(L, L->top++, lj_str_newlit(L, "start")); setintV(L->top++, traceno); setfuncV(L, L->top++, J->fn); setintV(L->top++, proto_bcpos(J->pt, J->pc)); if (J->parent) { setintV(L->top++, J->parent); setintV(L->top++, J->exitno); } else { BCOp op = bc_op(*J->pc); if (op == BC_CALLM || op == BC_CALL || op == BC_ITERC) { setintV(L->top++, J->exitno); /* Parent of stitched trace. */ setintV(L->top++, -1); } } ); lj_record_setup(J); } /* Stop tracing. */ static void trace_stop(jit_State *J) { BCIns *pc = mref(J->cur.startpc, BCIns); BCOp op = bc_op(J->cur.startins); GCproto *pt = &gcref(J->cur.startpt)->pt; TraceNo traceno = J->cur.traceno; GCtrace *T = J->curfinal; lua_State *L; switch (op) { case BC_FORL: setbc_op(pc+bc_j(J->cur.startins), BC_JFORI); /* Patch FORI, too. */ /* fallthrough */ case BC_LOOP: case BC_ITERL: case BC_FUNCF: /* Patch bytecode of starting instruction in root trace. */ setbc_op(pc, (int)op+(int)BC_JLOOP-(int)BC_LOOP); setbc_d(pc, traceno); addroot: /* Add to root trace chain in prototype. */ J->cur.nextroot = pt->trace; pt->trace = (TraceNo1)traceno; break; case BC_RET: case BC_RET0: case BC_RET1: *pc = BCINS_AD(BC_JLOOP, J->cur.snap[0].nslots, traceno); goto addroot; case BC_JMP: /* Patch exit branch in parent to side trace entry. */ lua_assert(J->parent != 0 && J->cur.root != 0); lj_asm_patchexit(J, traceref(J, J->parent), J->exitno, J->cur.mcode); /* Avoid compiling a side trace twice (stack resizing uses parent exit). */ traceref(J, J->parent)->snap[J->exitno].count = SNAPCOUNT_DONE; /* Add to side trace chain in root trace. */ { GCtrace *root = traceref(J, J->cur.root); root->nchild++; J->cur.nextside = root->nextside; root->nextside = (TraceNo1)traceno; } break; case BC_CALLM: case BC_CALL: case BC_ITERC: /* Trace stitching: patch link of previous trace. */ traceref(J, J->exitno)->link = traceno; break; default: lua_assert(0); break; } /* Commit new mcode only after all patching is done. */ lj_mcode_commit(J, J->cur.mcode); J->postproc = LJ_POST_NONE; trace_save(J, T); L = J->L; lj_vmevent_send(L, TRACE, setstrV(L, L->top++, lj_str_newlit(L, "stop")); setintV(L->top++, traceno); setfuncV(L, L->top++, J->fn); ); } /* Start a new root trace for down-recursion. */ static int trace_downrec(jit_State *J) { /* Restart recording at the return instruction. */ lua_assert(J->pt != NULL); lua_assert(bc_isret(bc_op(*J->pc))); if (bc_op(*J->pc) == BC_RETM) return 0; /* NYI: down-recursion with RETM. */ J->parent = 0; J->exitno = 0; J->state = LJ_TRACE_RECORD; trace_start(J); return 1; } /* Abort tracing. */ static int trace_abort(jit_State *J) { lua_State *L = J->L; TraceError e = LJ_TRERR_RECERR; TraceNo traceno; J->postproc = LJ_POST_NONE; lj_mcode_abort(J); if (J->curfinal) { lj_trace_free(J2G(J), J->curfinal); J->curfinal = NULL; } if (tvisnumber(L->top-1)) e = (TraceError)numberVint(L->top-1); if (e == LJ_TRERR_MCODELM) { L->top--; /* Remove error object */ J->state = LJ_TRACE_ASM; return 1; /* Retry ASM with new MCode area. */ } /* Penalize or blacklist starting bytecode instruction. */ if (J->parent == 0 && !bc_isret(bc_op(J->cur.startins))) { if (J->exitno == 0) { BCIns *startpc = mref(J->cur.startpc, BCIns); if (e == LJ_TRERR_RETRY) hotcount_set(J2GG(J), startpc+1, 1); /* Immediate retry. */ else penalty_pc(J, &gcref(J->cur.startpt)->pt, startpc, e); } else { traceref(J, J->exitno)->link = J->exitno; /* Self-link is blacklisted. */ } } /* Is there anything to abort? */ traceno = J->cur.traceno; if (traceno) { ptrdiff_t errobj = savestack(L, L->top-1); /* Stack may be resized. */ J->cur.link = 0; J->cur.linktype = LJ_TRLINK_NONE; lj_vmevent_send(L, TRACE, TValue *frame; const BCIns *pc; GCfunc *fn; setstrV(L, L->top++, lj_str_newlit(L, "abort")); setintV(L->top++, traceno); /* Find original Lua function call to generate a better error message. */ frame = J->L->base-1; pc = J->pc; while (!isluafunc(frame_func(frame))) { pc = (frame_iscont(frame) ? frame_contpc(frame) : frame_pc(frame)) - 1; frame = frame_prev(frame); } fn = frame_func(frame); setfuncV(L, L->top++, fn); setintV(L->top++, proto_bcpos(funcproto(fn), pc)); copyTV(L, L->top++, restorestack(L, errobj)); copyTV(L, L->top++, &J->errinfo); ); /* Drop aborted trace after the vmevent (which may still access it). */ setgcrefnull(J->trace[traceno]); if (traceno < J->freetrace) J->freetrace = traceno; J->cur.traceno = 0; } L->top--; /* Remove error object */ if (e == LJ_TRERR_DOWNREC) return trace_downrec(J); else if (e == LJ_TRERR_MCODEAL) lj_trace_flushall(L); return 0; } /* Perform pending re-patch of a bytecode instruction. */ static LJ_AINLINE void trace_pendpatch(jit_State *J, int force) { if (LJ_UNLIKELY(J->patchpc)) { if (force || J->bcskip == 0) { *J->patchpc = J->patchins; J->patchpc = NULL; } else { J->bcskip = 0; } } } /* State machine for the trace compiler. Protected callback. */ static TValue *trace_state(lua_State *L, lua_CFunction dummy, void *ud) { jit_State *J = (jit_State *)ud; UNUSED(dummy); do { retry: switch (J->state) { case LJ_TRACE_START: J->state = LJ_TRACE_RECORD; /* trace_start() may change state. */ trace_start(J); lj_dispatch_update(J2G(J)); break; case LJ_TRACE_RECORD: trace_pendpatch(J, 0); setvmstate(J2G(J), RECORD); lj_vmevent_send_(L, RECORD, /* Save/restore tmptv state for trace recorder. */ TValue savetv = J2G(J)->tmptv; TValue savetv2 = J2G(J)->tmptv2; setintV(L->top++, J->cur.traceno); setfuncV(L, L->top++, J->fn); setintV(L->top++, J->pt ? (int32_t)proto_bcpos(J->pt, J->pc) : -1); setintV(L->top++, J->framedepth); , J2G(J)->tmptv = savetv; J2G(J)->tmptv2 = savetv2; ); lj_record_ins(J); break; case LJ_TRACE_END: trace_pendpatch(J, 1); J->loopref = 0; if ((J->flags & JIT_F_OPT_LOOP) && J->cur.link == J->cur.traceno && J->framedepth + J->retdepth == 0) { setvmstate(J2G(J), OPT); lj_opt_dce(J); if (lj_opt_loop(J)) { /* Loop optimization failed? */ J->cur.link = 0; J->cur.linktype = LJ_TRLINK_NONE; J->loopref = J->cur.nins; J->state = LJ_TRACE_RECORD; /* Try to continue recording. */ break; } J->loopref = J->chain[IR_LOOP]; /* Needed by assembler. */ } lj_opt_split(J); lj_opt_sink(J); if (!J->loopref) J->cur.snap[J->cur.nsnap-1].count = SNAPCOUNT_DONE; J->state = LJ_TRACE_ASM; break; case LJ_TRACE_ASM: setvmstate(J2G(J), ASM); lj_asm_trace(J, &J->cur); trace_stop(J); setvmstate(J2G(J), INTERP); J->state = LJ_TRACE_IDLE; lj_dispatch_update(J2G(J)); return NULL; default: /* Trace aborted asynchronously. */ setintV(L->top++, (int32_t)LJ_TRERR_RECERR); /* fallthrough */ case LJ_TRACE_ERR: trace_pendpatch(J, 1); if (trace_abort(J)) goto retry; setvmstate(J2G(J), INTERP); J->state = LJ_TRACE_IDLE; lj_dispatch_update(J2G(J)); return NULL; } } while (J->state > LJ_TRACE_RECORD); return NULL; } /* -- Event handling ------------------------------------------------------ */ /* A bytecode instruction is about to be executed. Record it. */ void lj_trace_ins(jit_State *J, const BCIns *pc) { /* Note: J->L must already be set. pc is the true bytecode PC here. */ J->pc = pc; J->fn = curr_func(J->L); J->pt = isluafunc(J->fn) ? funcproto(J->fn) : NULL; while (lj_vm_cpcall(J->L, NULL, (void *)J, trace_state) != 0) J->state = LJ_TRACE_ERR; } /* A hotcount triggered. Start recording a root trace. */ void LJ_FASTCALL lj_trace_hot(jit_State *J, const BCIns *pc) { /* Note: pc is the interpreter bytecode PC here. It's offset by 1. */ ERRNO_SAVE /* Reset hotcount. */ hotcount_set(J2GG(J), pc, J->param[JIT_P_hotloop]*HOTCOUNT_LOOP); /* Only start a new trace if not recording or inside __gc call or vmevent. */ if (J->state == LJ_TRACE_IDLE && !(J2G(J)->hookmask & (HOOK_GC|HOOK_VMEVENT))) { J->parent = 0; /* Root trace. */ J->exitno = 0; J->state = LJ_TRACE_START; lj_trace_ins(J, pc-1); } ERRNO_RESTORE } /* Check for a hot side exit. If yes, start recording a side trace. */ static void trace_hotside(jit_State *J, const BCIns *pc) { SnapShot *snap = &traceref(J, J->parent)->snap[J->exitno]; if (!(J2G(J)->hookmask & (HOOK_GC|HOOK_VMEVENT)) && isluafunc(curr_func(J->L)) && snap->count != SNAPCOUNT_DONE && ++snap->count >= J->param[JIT_P_hotexit]) { lua_assert(J->state == LJ_TRACE_IDLE); /* J->parent is non-zero for a side trace. */ J->state = LJ_TRACE_START; lj_trace_ins(J, pc); } } /* Stitch a new trace to the previous trace. */ void LJ_FASTCALL lj_trace_stitch(jit_State *J, const BCIns *pc) { /* Only start a new trace if not recording or inside __gc call or vmevent. */ if (J->state == LJ_TRACE_IDLE && !(J2G(J)->hookmask & (HOOK_GC|HOOK_VMEVENT))) { J->parent = 0; /* Have to treat it like a root trace. */ /* J->exitno is set to the invoking trace. */ J->state = LJ_TRACE_START; lj_trace_ins(J, pc); } } /* Tiny struct to pass data to protected call. */ typedef struct ExitDataCP { jit_State *J; void *exptr; /* Pointer to exit state. */ const BCIns *pc; /* Restart interpreter at this PC. */ } ExitDataCP; /* Need to protect lj_snap_restore because it may throw. */ static TValue *trace_exit_cp(lua_State *L, lua_CFunction dummy, void *ud) { ExitDataCP *exd = (ExitDataCP *)ud; cframe_errfunc(L->cframe) = -1; /* Inherit error function. */ exd->pc = lj_snap_restore(exd->J, exd->exptr); UNUSED(dummy); return NULL; } #ifndef LUAJIT_DISABLE_VMEVENT /* Push all registers from exit state. */ static void trace_exit_regs(lua_State *L, ExitState *ex) { int32_t i; setintV(L->top++, RID_NUM_GPR); setintV(L->top++, RID_NUM_FPR); for (i = 0; i < RID_NUM_GPR; i++) { if (sizeof(ex->gpr[i]) == sizeof(int32_t)) setintV(L->top++, (int32_t)ex->gpr[i]); else setnumV(L->top++, (lua_Number)ex->gpr[i]); } #if !LJ_SOFTFP for (i = 0; i < RID_NUM_FPR; i++) { setnumV(L->top, ex->fpr[i]); if (LJ_UNLIKELY(tvisnan(L->top))) setnanV(L->top); L->top++; } #endif } #endif #ifdef EXITSTATE_PCREG /* Determine trace number from pc of exit instruction. */ static TraceNo trace_exit_find(jit_State *J, MCode *pc) { TraceNo traceno; for (traceno = 1; traceno < J->sizetrace; traceno++) { GCtrace *T = traceref(J, traceno); if (T && pc >= T->mcode && pc < (MCode *)((char *)T->mcode + T->szmcode)) return traceno; } lua_assert(0); return 0; } #endif /* A trace exited. Restore interpreter state. */ int LJ_FASTCALL lj_trace_exit(jit_State *J, void *exptr) { ERRNO_SAVE lua_State *L = J->L; ExitState *ex = (ExitState *)exptr; ExitDataCP exd; int errcode; const BCIns *pc; void *cf; GCtrace *T; #ifdef EXITSTATE_PCREG J->parent = trace_exit_find(J, (MCode *)(intptr_t)ex->gpr[EXITSTATE_PCREG]); #endif T = traceref(J, J->parent); UNUSED(T); #ifdef EXITSTATE_CHECKEXIT if (J->exitno == T->nsnap) { /* Treat stack check like a parent exit. */ lua_assert(T->root != 0); J->exitno = T->ir[REF_BASE].op2; J->parent = T->ir[REF_BASE].op1; T = traceref(J, J->parent); } #endif lua_assert(T != NULL && J->exitno < T->nsnap); exd.J = J; exd.exptr = exptr; errcode = lj_vm_cpcall(L, NULL, &exd, trace_exit_cp); if (errcode) return -errcode; /* Return negated error code. */ if (!(LJ_HASPROFILE && (G(L)->hookmask & HOOK_PROFILE))) lj_vmevent_send(L, TEXIT, lj_state_checkstack(L, 4+RID_NUM_GPR+RID_NUM_FPR+LUA_MINSTACK); setintV(L->top++, J->parent); setintV(L->top++, J->exitno); trace_exit_regs(L, ex); ); pc = exd.pc; cf = cframe_raw(L->cframe); setcframe_pc(cf, pc); if (LJ_HASPROFILE && (G(L)->hookmask & HOOK_PROFILE)) { /* Just exit to interpreter. */ } else if (G(L)->gc.state == GCSatomic || G(L)->gc.state == GCSfinalize) { if (!(G(L)->hookmask & HOOK_GC)) lj_gc_step(L); /* Exited because of GC: drive GC forward. */ } else { trace_hotside(J, pc); } if (bc_op(*pc) == BC_JLOOP) { BCIns *retpc = &traceref(J, bc_d(*pc))->startins; if (bc_isret(bc_op(*retpc))) { if (J->state == LJ_TRACE_RECORD) { J->patchins = *pc; J->patchpc = (BCIns *)pc; *J->patchpc = *retpc; J->bcskip = 1; } else { pc = retpc; setcframe_pc(cf, pc); } } } /* Return MULTRES or 0. */ ERRNO_RESTORE switch (bc_op(*pc)) { case BC_CALLM: case BC_CALLMT: return (int)((BCReg)(L->top - L->base) - bc_a(*pc) - bc_c(*pc) - LJ_FR2); case BC_RETM: return (int)((BCReg)(L->top - L->base) + 1 - bc_a(*pc) - bc_d(*pc)); case BC_TSETM: return (int)((BCReg)(L->top - L->base) + 1 - bc_a(*pc)); default: if (bc_op(*pc) >= BC_FUNCF) return (int)((BCReg)(L->top - L->base) + 1); return 0; } } #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_strscan.c0000644000175100017510000004050613101703334020420 0ustar ondrejondrej/* ** String scanning. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #include #define lj_strscan_c #define LUA_CORE #include "lj_obj.h" #include "lj_char.h" #include "lj_strscan.h" /* -- Scanning numbers ---------------------------------------------------- */ /* ** Rationale for the builtin string to number conversion library: ** ** It removes a dependency on libc's strtod(), which is a true portability ** nightmare. Mainly due to the plethora of supported OS and toolchain ** combinations. Sadly, the various implementations ** a) are often buggy, incomplete (no hex floats) and/or imprecise, ** b) sometimes crash or hang on certain inputs, ** c) return non-standard NaNs that need to be filtered out, and ** d) fail if the locale-specific decimal separator is not a dot, ** which can only be fixed with atrocious workarounds. ** ** Also, most of the strtod() implementations are hopelessly bloated, ** which is not just an I-cache hog, but a problem for static linkage ** on embedded systems, too. ** ** OTOH the builtin conversion function is very compact. Even though it ** does a lot more, like parsing long longs, octal or imaginary numbers ** and returning the result in different formats: ** a) It needs less than 3 KB (!) of machine code (on x64 with -Os), ** b) it doesn't perform any dynamic allocation and, ** c) it needs only around 600 bytes of stack space. ** ** The builtin function is faster than strtod() for typical inputs, e.g. ** "123", "1.5" or "1e6". Arguably, it's slower for very large exponents, ** which are not very common (this could be fixed, if needed). ** ** And most importantly, the builtin function is equally precise on all ** platforms. It correctly converts and rounds any input to a double. ** If this is not the case, please send a bug report -- but PLEASE verify ** that the implementation you're comparing to is not the culprit! ** ** The implementation quickly pre-scans the entire string first and ** handles simple integers on-the-fly. Otherwise, it dispatches to the ** base-specific parser. Hex and octal is straightforward. ** ** Decimal to binary conversion uses a fixed-length circular buffer in ** base 100. Some simple cases are handled directly. For other cases, the ** number in the buffer is up-scaled or down-scaled until the integer part ** is in the proper range. Then the integer part is rounded and converted ** to a double which is finally rescaled to the result. Denormals need ** special treatment to prevent incorrect 'double rounding'. */ /* Definitions for circular decimal digit buffer (base 100 = 2 digits/byte). */ #define STRSCAN_DIG 1024 #define STRSCAN_MAXDIG 800 /* 772 + extra are sufficient. */ #define STRSCAN_DDIG (STRSCAN_DIG/2) #define STRSCAN_DMASK (STRSCAN_DDIG-1) /* Helpers for circular buffer. */ #define DNEXT(a) (((a)+1) & STRSCAN_DMASK) #define DPREV(a) (((a)-1) & STRSCAN_DMASK) #define DLEN(lo, hi) ((int32_t)(((lo)-(hi)) & STRSCAN_DMASK)) #define casecmp(c, k) (((c) | 0x20) == k) /* Final conversion to double. */ static void strscan_double(uint64_t x, TValue *o, int32_t ex2, int32_t neg) { double n; /* Avoid double rounding for denormals. */ if (LJ_UNLIKELY(ex2 <= -1075 && x != 0)) { /* NYI: all of this generates way too much code on 32 bit CPUs. */ #if defined(__GNUC__) && LJ_64 int32_t b = (int32_t)(__builtin_clzll(x)^63); #else int32_t b = (x>>32) ? 32+(int32_t)lj_fls((uint32_t)(x>>32)) : (int32_t)lj_fls((uint32_t)x); #endif if ((int32_t)b + ex2 <= -1023 && (int32_t)b + ex2 >= -1075) { uint64_t rb = (uint64_t)1 << (-1075-ex2); if ((x & rb) && ((x & (rb+rb+rb-1)))) x += rb+rb; x = (x & ~(rb+rb-1)); } } /* Convert to double using a signed int64_t conversion, then rescale. */ lua_assert((int64_t)x >= 0); n = (double)(int64_t)x; if (neg) n = -n; if (ex2) n = ldexp(n, ex2); o->n = n; } /* Parse hexadecimal number. */ static StrScanFmt strscan_hex(const uint8_t *p, TValue *o, StrScanFmt fmt, uint32_t opt, int32_t ex2, int32_t neg, uint32_t dig) { uint64_t x = 0; uint32_t i; /* Scan hex digits. */ for (i = dig > 16 ? 16 : dig ; i; i--, p++) { uint32_t d = (*p != '.' ? *p : *++p); if (d > '9') d += 9; x = (x << 4) + (d & 15); } /* Summarize rounding-effect of excess digits. */ for (i = 16; i < dig; i++, p++) x |= ((*p != '.' ? *p : *++p) != '0'), ex2 += 4; /* Format-specific handling. */ switch (fmt) { case STRSCAN_INT: if (!(opt & STRSCAN_OPT_TONUM) && x < 0x80000000u+neg) { o->i = neg ? -(int32_t)x : (int32_t)x; return STRSCAN_INT; /* Fast path for 32 bit integers. */ } if (!(opt & STRSCAN_OPT_C)) { fmt = STRSCAN_NUM; break; } /* fallthrough */ case STRSCAN_U32: if (dig > 8) return STRSCAN_ERROR; o->i = neg ? -(int32_t)x : (int32_t)x; return STRSCAN_U32; case STRSCAN_I64: case STRSCAN_U64: if (dig > 16) return STRSCAN_ERROR; o->u64 = neg ? (uint64_t)-(int64_t)x : x; return fmt; default: break; } /* Reduce range, then convert to double. */ if ((x & U64x(c0000000,0000000))) { x = (x >> 2) | (x & 3); ex2 += 2; } strscan_double(x, o, ex2, neg); return fmt; } /* Parse octal number. */ static StrScanFmt strscan_oct(const uint8_t *p, TValue *o, StrScanFmt fmt, int32_t neg, uint32_t dig) { uint64_t x = 0; /* Scan octal digits. */ if (dig > 22 || (dig == 22 && *p > '1')) return STRSCAN_ERROR; while (dig-- > 0) { if (!(*p >= '0' && *p <= '7')) return STRSCAN_ERROR; x = (x << 3) + (*p++ & 7); } /* Format-specific handling. */ switch (fmt) { case STRSCAN_INT: if (x >= 0x80000000u+neg) fmt = STRSCAN_U32; /* fallthrough */ case STRSCAN_U32: if ((x >> 32)) return STRSCAN_ERROR; o->i = neg ? -(int32_t)x : (int32_t)x; break; default: case STRSCAN_I64: case STRSCAN_U64: o->u64 = neg ? (uint64_t)-(int64_t)x : x; break; } return fmt; } /* Parse decimal number. */ static StrScanFmt strscan_dec(const uint8_t *p, TValue *o, StrScanFmt fmt, uint32_t opt, int32_t ex10, int32_t neg, uint32_t dig) { uint8_t xi[STRSCAN_DDIG], *xip = xi; if (dig) { uint32_t i = dig; if (i > STRSCAN_MAXDIG) { ex10 += (int32_t)(i - STRSCAN_MAXDIG); i = STRSCAN_MAXDIG; } /* Scan unaligned leading digit. */ if (((ex10^i) & 1)) *xip++ = ((*p != '.' ? *p : *++p) & 15), i--, p++; /* Scan aligned double-digits. */ for ( ; i > 1; i -= 2) { uint32_t d = 10 * ((*p != '.' ? *p : *++p) & 15); p++; *xip++ = d + ((*p != '.' ? *p : *++p) & 15); p++; } /* Scan and realign trailing digit. */ if (i) *xip++ = 10 * ((*p != '.' ? *p : *++p) & 15), ex10--, dig++, p++; /* Summarize rounding-effect of excess digits. */ if (dig > STRSCAN_MAXDIG) { do { if ((*p != '.' ? *p : *++p) != '0') { xip[-1] |= 1; break; } p++; } while (--dig > STRSCAN_MAXDIG); dig = STRSCAN_MAXDIG; } else { /* Simplify exponent. */ while (ex10 > 0 && dig <= 18) *xip++ = 0, ex10 -= 2, dig += 2; } } else { /* Only got zeros. */ ex10 = 0; xi[0] = 0; } /* Fast path for numbers in integer format (but handles e.g. 1e6, too). */ if (dig <= 20 && ex10 == 0) { uint8_t *xis; uint64_t x = xi[0]; double n; for (xis = xi+1; xis < xip; xis++) x = x * 100 + *xis; if (!(dig == 20 && (xi[0] > 18 || (int64_t)x >= 0))) { /* No overflow? */ /* Format-specific handling. */ switch (fmt) { case STRSCAN_INT: if (!(opt & STRSCAN_OPT_TONUM) && x < 0x80000000u+neg) { o->i = neg ? -(int32_t)x : (int32_t)x; return STRSCAN_INT; /* Fast path for 32 bit integers. */ } if (!(opt & STRSCAN_OPT_C)) { fmt = STRSCAN_NUM; goto plainnumber; } /* fallthrough */ case STRSCAN_U32: if ((x >> 32) != 0) return STRSCAN_ERROR; o->i = neg ? -(int32_t)x : (int32_t)x; return STRSCAN_U32; case STRSCAN_I64: case STRSCAN_U64: o->u64 = neg ? (uint64_t)-(int64_t)x : x; return fmt; default: plainnumber: /* Fast path for plain numbers < 2^63. */ if ((int64_t)x < 0) break; n = (double)(int64_t)x; if (neg) n = -n; o->n = n; return fmt; } } } /* Slow non-integer path. */ if (fmt == STRSCAN_INT) { if ((opt & STRSCAN_OPT_C)) return STRSCAN_ERROR; fmt = STRSCAN_NUM; } else if (fmt > STRSCAN_INT) { return STRSCAN_ERROR; } { uint32_t hi = 0, lo = (uint32_t)(xip-xi); int32_t ex2 = 0, idig = (int32_t)lo + (ex10 >> 1); lua_assert(lo > 0 && (ex10 & 1) == 0); /* Handle simple overflow/underflow. */ if (idig > 310/2) { if (neg) setminfV(o); else setpinfV(o); return fmt; } else if (idig < -326/2) { o->n = neg ? -0.0 : 0.0; return fmt; } /* Scale up until we have at least 17 or 18 integer part digits. */ while (idig < 9 && idig < DLEN(lo, hi)) { uint32_t i, cy = 0; ex2 -= 6; for (i = DPREV(lo); ; i = DPREV(i)) { uint32_t d = (xi[i] << 6) + cy; cy = (((d >> 2) * 5243) >> 17); d = d - cy * 100; /* Div/mod 100. */ xi[i] = (uint8_t)d; if (i == hi) break; if (d == 0 && i == DPREV(lo)) lo = i; } if (cy) { hi = DPREV(hi); if (xi[DPREV(lo)] == 0) lo = DPREV(lo); else if (hi == lo) { lo = DPREV(lo); xi[DPREV(lo)] |= xi[lo]; } xi[hi] = (uint8_t)cy; idig++; } } /* Scale down until no more than 17 or 18 integer part digits remain. */ while (idig > 9) { uint32_t i = hi, cy = 0; ex2 += 6; do { cy += xi[i]; xi[i] = (cy >> 6); cy = 100 * (cy & 0x3f); if (xi[i] == 0 && i == hi) hi = DNEXT(hi), idig--; i = DNEXT(i); } while (i != lo); while (cy) { if (hi == lo) { xi[DPREV(lo)] |= 1; break; } xi[lo] = (cy >> 6); lo = DNEXT(lo); cy = 100 * (cy & 0x3f); } } /* Collect integer part digits and convert to rescaled double. */ { uint64_t x = xi[hi]; uint32_t i; for (i = DNEXT(hi); --idig > 0 && i != lo; i = DNEXT(i)) x = x * 100 + xi[i]; if (i == lo) { while (--idig >= 0) x = x * 100; } else { /* Gather round bit from remaining digits. */ x <<= 1; ex2--; do { if (xi[i]) { x |= 1; break; } i = DNEXT(i); } while (i != lo); } strscan_double(x, o, ex2, neg); } } return fmt; } /* Parse binary number. */ static StrScanFmt strscan_bin(const uint8_t *p, TValue *o, StrScanFmt fmt, uint32_t opt, int32_t ex2, int32_t neg, uint32_t dig) { uint64_t x = 0; uint32_t i; if (ex2 || dig > 64) return STRSCAN_ERROR; /* Scan binary digits. */ for (i = dig; i; i--, p++) { if ((*p & ~1) != '0') return STRSCAN_ERROR; x = (x << 1) | (*p & 1); } /* Format-specific handling. */ switch (fmt) { case STRSCAN_INT: if (!(opt & STRSCAN_OPT_TONUM) && x < 0x80000000u+neg) { o->i = neg ? -(int32_t)x : (int32_t)x; return STRSCAN_INT; /* Fast path for 32 bit integers. */ } if (!(opt & STRSCAN_OPT_C)) { fmt = STRSCAN_NUM; break; } /* fallthrough */ case STRSCAN_U32: if (dig > 32) return STRSCAN_ERROR; o->i = neg ? -(int32_t)x : (int32_t)x; return STRSCAN_U32; case STRSCAN_I64: case STRSCAN_U64: o->u64 = neg ? (uint64_t)-(int64_t)x : x; return fmt; default: break; } /* Reduce range, then convert to double. */ if ((x & U64x(c0000000,0000000))) { x = (x >> 2) | (x & 3); ex2 += 2; } strscan_double(x, o, ex2, neg); return fmt; } /* Scan string containing a number. Returns format. Returns value in o. */ StrScanFmt lj_strscan_scan(const uint8_t *p, TValue *o, uint32_t opt) { int32_t neg = 0; /* Remove leading space, parse sign and non-numbers. */ if (LJ_UNLIKELY(!lj_char_isdigit(*p))) { while (lj_char_isspace(*p)) p++; if (*p == '+' || *p == '-') neg = (*p++ == '-'); if (LJ_UNLIKELY(*p >= 'A')) { /* Parse "inf", "infinity" or "nan". */ TValue tmp; setnanV(&tmp); if (casecmp(p[0],'i') && casecmp(p[1],'n') && casecmp(p[2],'f')) { if (neg) setminfV(&tmp); else setpinfV(&tmp); p += 3; if (casecmp(p[0],'i') && casecmp(p[1],'n') && casecmp(p[2],'i') && casecmp(p[3],'t') && casecmp(p[4],'y')) p += 5; } else if (casecmp(p[0],'n') && casecmp(p[1],'a') && casecmp(p[2],'n')) { p += 3; } while (lj_char_isspace(*p)) p++; if (*p) return STRSCAN_ERROR; o->u64 = tmp.u64; return STRSCAN_NUM; } } /* Parse regular number. */ { StrScanFmt fmt = STRSCAN_INT; int cmask = LJ_CHAR_DIGIT; int base = (opt & STRSCAN_OPT_C) && *p == '0' ? 0 : 10; const uint8_t *sp, *dp = NULL; uint32_t dig = 0, hasdig = 0, x = 0; int32_t ex = 0; /* Determine base and skip leading zeros. */ if (LJ_UNLIKELY(*p <= '0')) { if (*p == '0') { if (casecmp(p[1], 'x')) base = 16, cmask = LJ_CHAR_XDIGIT, p += 2; else if (casecmp(p[1], 'b')) base = 2, cmask = LJ_CHAR_DIGIT, p += 2; } for ( ; ; p++) { if (*p == '0') { hasdig = 1; } else if (*p == '.') { if (dp) return STRSCAN_ERROR; dp = p; } else { break; } } } /* Preliminary digit and decimal point scan. */ for (sp = p; ; p++) { if (LJ_LIKELY(lj_char_isa(*p, cmask))) { x = x * 10 + (*p & 15); /* For fast path below. */ dig++; } else if (*p == '.') { if (dp) return STRSCAN_ERROR; dp = p; } else { break; } } if (!(hasdig | dig)) return STRSCAN_ERROR; /* Handle decimal point. */ if (dp) { fmt = STRSCAN_NUM; if (dig) { ex = (int32_t)(dp-(p-1)); dp = p-1; while (ex < 0 && *dp-- == '0') ex++, dig--; /* Skip trailing zeros. */ if (base == 16) ex *= 4; } } /* Parse exponent. */ if (base >= 10 && casecmp(*p, (uint32_t)(base == 16 ? 'p' : 'e'))) { uint32_t xx; int negx = 0; fmt = STRSCAN_NUM; p++; if (*p == '+' || *p == '-') negx = (*p++ == '-'); if (!lj_char_isdigit(*p)) return STRSCAN_ERROR; xx = (*p++ & 15); while (lj_char_isdigit(*p)) { if (xx < 65536) xx = xx * 10 + (*p & 15); p++; } ex += negx ? -(int32_t)xx : (int32_t)xx; } /* Parse suffix. */ if (*p) { /* I (IMAG), U (U32), LL (I64), ULL/LLU (U64), L (long), UL/LU (ulong). */ /* NYI: f (float). Not needed until cp_number() handles non-integers. */ if (casecmp(*p, 'i')) { if (!(opt & STRSCAN_OPT_IMAG)) return STRSCAN_ERROR; p++; fmt = STRSCAN_IMAG; } else if (fmt == STRSCAN_INT) { if (casecmp(*p, 'u')) p++, fmt = STRSCAN_U32; if (casecmp(*p, 'l')) { p++; if (casecmp(*p, 'l')) p++, fmt += STRSCAN_I64 - STRSCAN_INT; else if (!(opt & STRSCAN_OPT_C)) return STRSCAN_ERROR; else if (sizeof(long) == 8) fmt += STRSCAN_I64 - STRSCAN_INT; } if (casecmp(*p, 'u') && (fmt == STRSCAN_INT || fmt == STRSCAN_I64)) p++, fmt += STRSCAN_U32 - STRSCAN_INT; if ((fmt == STRSCAN_U32 && !(opt & STRSCAN_OPT_C)) || (fmt >= STRSCAN_I64 && !(opt & STRSCAN_OPT_LL))) return STRSCAN_ERROR; } while (lj_char_isspace(*p)) p++; if (*p) return STRSCAN_ERROR; } /* Fast path for decimal 32 bit integers. */ if (fmt == STRSCAN_INT && base == 10 && (dig < 10 || (dig == 10 && *sp <= '2' && x < 0x80000000u+neg))) { int32_t y = neg ? -(int32_t)x : (int32_t)x; if ((opt & STRSCAN_OPT_TONUM)) { o->n = (double)y; return STRSCAN_NUM; } else { o->i = y; return STRSCAN_INT; } } /* Dispatch to base-specific parser. */ if (base == 0 && !(fmt == STRSCAN_NUM || fmt == STRSCAN_IMAG)) return strscan_oct(sp, o, fmt, neg, dig); if (base == 16) fmt = strscan_hex(sp, o, fmt, opt, ex, neg, dig); else if (base == 2) fmt = strscan_bin(sp, o, fmt, opt, ex, neg, dig); else fmt = strscan_dec(sp, o, fmt, opt, ex, neg, dig); /* Try to convert number to integer, if requested. */ if (fmt == STRSCAN_NUM && (opt & STRSCAN_OPT_TOINT)) { double n = o->n; int32_t i = lj_num2int(n); if (n == (lua_Number)i) { o->i = i; return STRSCAN_INT; } } return fmt; } } int LJ_FASTCALL lj_strscan_num(GCstr *str, TValue *o) { StrScanFmt fmt = lj_strscan_scan((const uint8_t *)strdata(str), o, STRSCAN_OPT_TONUM); lua_assert(fmt == STRSCAN_ERROR || fmt == STRSCAN_NUM); return (fmt != STRSCAN_ERROR); } #if LJ_DUALNUM int LJ_FASTCALL lj_strscan_number(GCstr *str, TValue *o) { StrScanFmt fmt = lj_strscan_scan((const uint8_t *)strdata(str), o, STRSCAN_OPT_TOINT); lua_assert(fmt == STRSCAN_ERROR || fmt == STRSCAN_NUM || fmt == STRSCAN_INT); if (fmt == STRSCAN_INT) setitype(o, LJ_TISNUM); return (fmt != STRSCAN_ERROR); } #endif #undef DNEXT #undef DPREV #undef DLEN luajit-2.1.0~beta3+dfsg.orig/src/lib_bit.c0000644000175100017510000001035713101703334017663 0ustar ondrejondrej/* ** Bit manipulation library. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #define lib_bit_c #define LUA_LIB #include "lua.h" #include "lauxlib.h" #include "lualib.h" #include "lj_obj.h" #include "lj_err.h" #include "lj_buf.h" #include "lj_strscan.h" #include "lj_strfmt.h" #if LJ_HASFFI #include "lj_ctype.h" #include "lj_cdata.h" #include "lj_cconv.h" #include "lj_carith.h" #endif #include "lj_ff.h" #include "lj_lib.h" /* ------------------------------------------------------------------------ */ #define LJLIB_MODULE_bit #if LJ_HASFFI static int bit_result64(lua_State *L, CTypeID id, uint64_t x) { GCcdata *cd = lj_cdata_new_(L, id, 8); *(uint64_t *)cdataptr(cd) = x; setcdataV(L, L->base-1-LJ_FR2, cd); return FFH_RES(1); } #else static int32_t bit_checkbit(lua_State *L, int narg) { TValue *o = L->base + narg-1; if (!(o < L->top && lj_strscan_numberobj(o))) lj_err_argt(L, narg, LUA_TNUMBER); if (LJ_LIKELY(tvisint(o))) { return intV(o); } else { int32_t i = lj_num2bit(numV(o)); if (LJ_DUALNUM) setintV(o, i); return i; } } #endif LJLIB_ASM(bit_tobit) LJLIB_REC(bit_tobit) { #if LJ_HASFFI CTypeID id = 0; setintV(L->base-1-LJ_FR2, (int32_t)lj_carith_check64(L, 1, &id)); return FFH_RES(1); #else lj_lib_checknumber(L, 1); return FFH_RETRY; #endif } LJLIB_ASM(bit_bnot) LJLIB_REC(bit_unary IR_BNOT) { #if LJ_HASFFI CTypeID id = 0; uint64_t x = lj_carith_check64(L, 1, &id); return id ? bit_result64(L, id, ~x) : FFH_RETRY; #else lj_lib_checknumber(L, 1); return FFH_RETRY; #endif } LJLIB_ASM(bit_bswap) LJLIB_REC(bit_unary IR_BSWAP) { #if LJ_HASFFI CTypeID id = 0; uint64_t x = lj_carith_check64(L, 1, &id); return id ? bit_result64(L, id, lj_bswap64(x)) : FFH_RETRY; #else lj_lib_checknumber(L, 1); return FFH_RETRY; #endif } LJLIB_ASM(bit_lshift) LJLIB_REC(bit_shift IR_BSHL) { #if LJ_HASFFI CTypeID id = 0, id2 = 0; uint64_t x = lj_carith_check64(L, 1, &id); int32_t sh = (int32_t)lj_carith_check64(L, 2, &id2); if (id) { x = lj_carith_shift64(x, sh, curr_func(L)->c.ffid - (int)FF_bit_lshift); return bit_result64(L, id, x); } if (id2) setintV(L->base+1, sh); return FFH_RETRY; #else lj_lib_checknumber(L, 1); bit_checkbit(L, 2); return FFH_RETRY; #endif } LJLIB_ASM_(bit_rshift) LJLIB_REC(bit_shift IR_BSHR) LJLIB_ASM_(bit_arshift) LJLIB_REC(bit_shift IR_BSAR) LJLIB_ASM_(bit_rol) LJLIB_REC(bit_shift IR_BROL) LJLIB_ASM_(bit_ror) LJLIB_REC(bit_shift IR_BROR) LJLIB_ASM(bit_band) LJLIB_REC(bit_nary IR_BAND) { #if LJ_HASFFI CTypeID id = 0; TValue *o = L->base, *top = L->top; int i = 0; do { lj_carith_check64(L, ++i, &id); } while (++o < top); if (id) { CTState *cts = ctype_cts(L); CType *ct = ctype_get(cts, id); int op = curr_func(L)->c.ffid - (int)FF_bit_bor; uint64_t x, y = op >= 0 ? 0 : ~(uint64_t)0; o = L->base; do { lj_cconv_ct_tv(cts, ct, (uint8_t *)&x, o, 0); if (op < 0) y &= x; else if (op == 0) y |= x; else y ^= x; } while (++o < top); return bit_result64(L, id, y); } return FFH_RETRY; #else int i = 0; do { lj_lib_checknumber(L, ++i); } while (L->base+i < L->top); return FFH_RETRY; #endif } LJLIB_ASM_(bit_bor) LJLIB_REC(bit_nary IR_BOR) LJLIB_ASM_(bit_bxor) LJLIB_REC(bit_nary IR_BXOR) /* ------------------------------------------------------------------------ */ LJLIB_CF(bit_tohex) LJLIB_REC(.) { #if LJ_HASFFI CTypeID id = 0, id2 = 0; uint64_t b = lj_carith_check64(L, 1, &id); int32_t n = L->base+1>=L->top ? (id ? 16 : 8) : (int32_t)lj_carith_check64(L, 2, &id2); #else uint32_t b = (uint32_t)bit_checkbit(L, 1); int32_t n = L->base+1>=L->top ? 8 : bit_checkbit(L, 2); #endif SBuf *sb = lj_buf_tmp_(L); SFormat sf = (STRFMT_UINT|STRFMT_T_HEX); if (n < 0) { n = -n; sf |= STRFMT_F_UPPER; } sf |= ((SFormat)((n+1)&255) << STRFMT_SH_PREC); #if LJ_HASFFI if (n < 16) b &= ((uint64_t)1 << 4*n)-1; #else if (n < 8) b &= (1u << 4*n)-1; #endif sb = lj_strfmt_putfxint(sb, sf, b); setstrV(L, L->top-1, lj_buf_str(L, sb)); lj_gc_check(L); return 1; } /* ------------------------------------------------------------------------ */ #include "lj_libdef.h" LUALIB_API int luaopen_bit(lua_State *L) { LJ_LIB_REG(L, LUA_BITLIBNAME, bit); return 1; } luajit-2.1.0~beta3+dfsg.orig/src/lj_meta.c0000644000175100017510000003541313101703334017672 0ustar ondrejondrej/* ** Metamethod handling. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h ** ** Portions taken verbatim or adapted from the Lua interpreter. ** Copyright (C) 1994-2008 Lua.org, PUC-Rio. See Copyright Notice in lua.h */ #define lj_meta_c #define LUA_CORE #include "lj_obj.h" #include "lj_gc.h" #include "lj_err.h" #include "lj_buf.h" #include "lj_str.h" #include "lj_tab.h" #include "lj_meta.h" #include "lj_frame.h" #include "lj_bc.h" #include "lj_vm.h" #include "lj_strscan.h" #include "lj_strfmt.h" #include "lj_lib.h" /* -- Metamethod handling ------------------------------------------------- */ /* String interning of metamethod names for fast indexing. */ void lj_meta_init(lua_State *L) { #define MMNAME(name) "__" #name const char *metanames = MMDEF(MMNAME); #undef MMNAME global_State *g = G(L); const char *p, *q; uint32_t mm; for (mm = 0, p = metanames; *p; mm++, p = q) { GCstr *s; for (q = p+2; *q && *q != '_'; q++) ; s = lj_str_new(L, p, (size_t)(q-p)); /* NOBARRIER: g->gcroot[] is a GC root. */ setgcref(g->gcroot[GCROOT_MMNAME+mm], obj2gco(s)); } } /* Negative caching of a few fast metamethods. See the lj_meta_fast() macro. */ cTValue *lj_meta_cache(GCtab *mt, MMS mm, GCstr *name) { cTValue *mo = lj_tab_getstr(mt, name); lua_assert(mm <= MM_FAST); if (!mo || tvisnil(mo)) { /* No metamethod? */ mt->nomm |= (uint8_t)(1u<metatable); else if (tvisudata(o)) mt = tabref(udataV(o)->metatable); else mt = tabref(basemt_obj(G(L), o)); if (mt) { cTValue *mo = lj_tab_getstr(mt, mmname_str(G(L), mm)); if (mo) return mo; } return niltv(L); } #if LJ_HASFFI /* Tailcall from C function. */ int lj_meta_tailcall(lua_State *L, cTValue *tv) { TValue *base = L->base; TValue *top = L->top; const BCIns *pc = frame_pc(base-1); /* Preserve old PC from frame. */ copyTV(L, base-1-LJ_FR2, tv); /* Replace frame with new object. */ if (LJ_FR2) (top++)->u64 = LJ_CONT_TAILCALL; else top->u32.lo = LJ_CONT_TAILCALL; setframe_pc(top++, pc); if (LJ_FR2) top++; setframe_gc(top, obj2gco(L), LJ_TTHREAD); /* Dummy frame object. */ setframe_ftsz(top, ((char *)(top+1) - (char *)base) + FRAME_CONT); L->base = L->top = top+1; /* ** before: [old_mo|PC] [... ...] ** ^base ^top ** after: [new_mo|itype] [... ...] [NULL|PC] [dummy|delta] ** ^base/top ** tailcall: [new_mo|PC] [... ...] ** ^base ^top */ return 0; } #endif /* Setup call to metamethod to be run by Assembler VM. */ static TValue *mmcall(lua_State *L, ASMFunction cont, cTValue *mo, cTValue *a, cTValue *b) { /* ** |-- framesize -> top top+1 top+2 top+3 ** before: [func slots ...] ** mm setup: [func slots ...] [cont|?] [mo|tmtype] [a] [b] ** in asm: [func slots ...] [cont|PC] [mo|delta] [a] [b] ** ^-- func base ^-- mm base ** after mm: [func slots ...] [result] ** ^-- copy to base[PC_RA] --/ for lj_cont_ra ** istruecond + branch for lj_cont_cond* ** ignore for lj_cont_nop ** next PC: [func slots ...] */ TValue *top = L->top; if (curr_funcisL(L)) top = curr_topL(L); setcont(top++, cont); /* Assembler VM stores PC in upper word or FR2. */ if (LJ_FR2) setnilV(top++); copyTV(L, top++, mo); /* Store metamethod and two arguments. */ if (LJ_FR2) setnilV(top++); copyTV(L, top, a); copyTV(L, top+1, b); return top; /* Return new base. */ } /* -- C helpers for some instructions, called from assembler VM ----------- */ /* Helper for TGET*. __index chain and metamethod. */ cTValue *lj_meta_tget(lua_State *L, cTValue *o, cTValue *k) { int loop; for (loop = 0; loop < LJ_MAX_IDXCHAIN; loop++) { cTValue *mo; if (LJ_LIKELY(tvistab(o))) { GCtab *t = tabV(o); cTValue *tv = lj_tab_get(L, t, k); if (!tvisnil(tv) || !(mo = lj_meta_fast(L, tabref(t->metatable), MM_index))) return tv; } else if (tvisnil(mo = lj_meta_lookup(L, o, MM_index))) { lj_err_optype(L, o, LJ_ERR_OPINDEX); return NULL; /* unreachable */ } if (tvisfunc(mo)) { L->top = mmcall(L, lj_cont_ra, mo, o, k); return NULL; /* Trigger metamethod call. */ } o = mo; } lj_err_msg(L, LJ_ERR_GETLOOP); return NULL; /* unreachable */ } /* Helper for TSET*. __newindex chain and metamethod. */ TValue *lj_meta_tset(lua_State *L, cTValue *o, cTValue *k) { TValue tmp; int loop; for (loop = 0; loop < LJ_MAX_IDXCHAIN; loop++) { cTValue *mo; if (LJ_LIKELY(tvistab(o))) { GCtab *t = tabV(o); cTValue *tv = lj_tab_get(L, t, k); if (LJ_LIKELY(!tvisnil(tv))) { t->nomm = 0; /* Invalidate negative metamethod cache. */ lj_gc_anybarriert(L, t); return (TValue *)tv; } else if (!(mo = lj_meta_fast(L, tabref(t->metatable), MM_newindex))) { t->nomm = 0; /* Invalidate negative metamethod cache. */ lj_gc_anybarriert(L, t); if (tv != niltv(L)) return (TValue *)tv; if (tvisnil(k)) lj_err_msg(L, LJ_ERR_NILIDX); else if (tvisint(k)) { setnumV(&tmp, (lua_Number)intV(k)); k = &tmp; } else if (tvisnum(k) && tvisnan(k)) lj_err_msg(L, LJ_ERR_NANIDX); return lj_tab_newkey(L, t, k); } } else if (tvisnil(mo = lj_meta_lookup(L, o, MM_newindex))) { lj_err_optype(L, o, LJ_ERR_OPINDEX); return NULL; /* unreachable */ } if (tvisfunc(mo)) { L->top = mmcall(L, lj_cont_nop, mo, o, k); /* L->top+2 = v filled in by caller. */ return NULL; /* Trigger metamethod call. */ } copyTV(L, &tmp, mo); o = &tmp; } lj_err_msg(L, LJ_ERR_SETLOOP); return NULL; /* unreachable */ } static cTValue *str2num(cTValue *o, TValue *n) { if (tvisnum(o)) return o; else if (tvisint(o)) return (setnumV(n, (lua_Number)intV(o)), n); else if (tvisstr(o) && lj_strscan_num(strV(o), n)) return n; else return NULL; } /* Helper for arithmetic instructions. Coercion, metamethod. */ TValue *lj_meta_arith(lua_State *L, TValue *ra, cTValue *rb, cTValue *rc, BCReg op) { MMS mm = bcmode_mm(op); TValue tempb, tempc; cTValue *b, *c; if ((b = str2num(rb, &tempb)) != NULL && (c = str2num(rc, &tempc)) != NULL) { /* Try coercion first. */ setnumV(ra, lj_vm_foldarith(numV(b), numV(c), (int)mm-MM_add)); return NULL; } else { cTValue *mo = lj_meta_lookup(L, rb, mm); if (tvisnil(mo)) { mo = lj_meta_lookup(L, rc, mm); if (tvisnil(mo)) { if (str2num(rb, &tempb) == NULL) rc = rb; lj_err_optype(L, rc, LJ_ERR_OPARITH); return NULL; /* unreachable */ } } return mmcall(L, lj_cont_ra, mo, rb, rc); } } /* Helper for CAT. Coercion, iterative concat, __concat metamethod. */ TValue *lj_meta_cat(lua_State *L, TValue *top, int left) { int fromc = 0; if (left < 0) { left = -left; fromc = 1; } do { if (!(tvisstr(top) || tvisnumber(top)) || !(tvisstr(top-1) || tvisnumber(top-1))) { cTValue *mo = lj_meta_lookup(L, top-1, MM_concat); if (tvisnil(mo)) { mo = lj_meta_lookup(L, top, MM_concat); if (tvisnil(mo)) { if (tvisstr(top-1) || tvisnumber(top-1)) top++; lj_err_optype(L, top-1, LJ_ERR_OPCAT); return NULL; /* unreachable */ } } /* One of the top two elements is not a string, call __cat metamethod: ** ** before: [...][CAT stack .........................] ** top-1 top top+1 top+2 ** pick two: [...][CAT stack ...] [o1] [o2] ** setup mm: [...][CAT stack ...] [cont|?] [mo|tmtype] [o1] [o2] ** in asm: [...][CAT stack ...] [cont|PC] [mo|delta] [o1] [o2] ** ^-- func base ^-- mm base ** after mm: [...][CAT stack ...] <--push-- [result] ** next step: [...][CAT stack .............] */ copyTV(L, top+2*LJ_FR2+2, top); /* Carefully ordered stack copies! */ copyTV(L, top+2*LJ_FR2+1, top-1); copyTV(L, top+LJ_FR2, mo); setcont(top-1, lj_cont_cat); if (LJ_FR2) { setnilV(top); setnilV(top+2); top += 2; } return top+1; /* Trigger metamethod call. */ } else { /* Pick as many strings as possible from the top and concatenate them: ** ** before: [...][CAT stack ...........................] ** pick str: [...][CAT stack ...] [...... strings ......] ** concat: [...][CAT stack ...] [result] ** next step: [...][CAT stack ............] */ TValue *e, *o = top; uint64_t tlen = tvisstr(o) ? strV(o)->len : STRFMT_MAXBUF_NUM; SBuf *sb; do { o--; tlen += tvisstr(o) ? strV(o)->len : STRFMT_MAXBUF_NUM; } while (--left > 0 && (tvisstr(o-1) || tvisnumber(o-1))); if (tlen >= LJ_MAX_STR) lj_err_msg(L, LJ_ERR_STROV); sb = lj_buf_tmp_(L); lj_buf_more(sb, (MSize)tlen); for (e = top, top = o; o <= e; o++) { if (tvisstr(o)) { GCstr *s = strV(o); MSize len = s->len; lj_buf_putmem(sb, strdata(s), len); } else if (tvisint(o)) { lj_strfmt_putint(sb, intV(o)); } else { lj_strfmt_putfnum(sb, STRFMT_G14, numV(o)); } } setstrV(L, top, lj_buf_str(L, sb)); } } while (left >= 1); if (LJ_UNLIKELY(G(L)->gc.total >= G(L)->gc.threshold)) { if (!fromc) L->top = curr_topL(L); lj_gc_step(L); } return NULL; } /* Helper for LEN. __len metamethod. */ TValue * LJ_FASTCALL lj_meta_len(lua_State *L, cTValue *o) { cTValue *mo = lj_meta_lookup(L, o, MM_len); if (tvisnil(mo)) { if (LJ_52 && tvistab(o)) tabref(tabV(o)->metatable)->nomm |= (uint8_t)(1u<gch.metatable), MM_eq); if (mo) { TValue *top; uint32_t it; if (tabref(o1->gch.metatable) != tabref(o2->gch.metatable)) { cTValue *mo2 = lj_meta_fast(L, tabref(o2->gch.metatable), MM_eq); if (mo2 == NULL || !lj_obj_equal(mo, mo2)) return (TValue *)(intptr_t)ne; } top = curr_top(L); setcont(top++, ne ? lj_cont_condf : lj_cont_condt); if (LJ_FR2) setnilV(top++); copyTV(L, top++, mo); if (LJ_FR2) setnilV(top++); it = ~(uint32_t)o1->gch.gct; setgcV(L, top, o1, it); setgcV(L, top+1, o2, it); return top; /* Trigger metamethod call. */ } return (TValue *)(intptr_t)ne; } #if LJ_HASFFI TValue * LJ_FASTCALL lj_meta_equal_cd(lua_State *L, BCIns ins) { ASMFunction cont = (bc_op(ins) & 1) ? lj_cont_condf : lj_cont_condt; int op = (int)bc_op(ins) & ~1; TValue tv; cTValue *mo, *o2, *o1 = &L->base[bc_a(ins)]; cTValue *o1mm = o1; if (op == BC_ISEQV) { o2 = &L->base[bc_d(ins)]; if (!tviscdata(o1mm)) o1mm = o2; } else if (op == BC_ISEQS) { setstrV(L, &tv, gco2str(proto_kgc(curr_proto(L), ~(ptrdiff_t)bc_d(ins)))); o2 = &tv; } else if (op == BC_ISEQN) { o2 = &mref(curr_proto(L)->k, cTValue)[bc_d(ins)]; } else { lua_assert(op == BC_ISEQP); setpriV(&tv, ~bc_d(ins)); o2 = &tv; } mo = lj_meta_lookup(L, o1mm, MM_eq); if (LJ_LIKELY(!tvisnil(mo))) return mmcall(L, cont, mo, o1, o2); else return (TValue *)(intptr_t)(bc_op(ins) & 1); } #endif /* Helper for ordered comparisons. String compare, __lt/__le metamethods. */ TValue *lj_meta_comp(lua_State *L, cTValue *o1, cTValue *o2, int op) { if (LJ_HASFFI && (tviscdata(o1) || tviscdata(o2))) { ASMFunction cont = (op & 1) ? lj_cont_condf : lj_cont_condt; MMS mm = (op & 2) ? MM_le : MM_lt; cTValue *mo = lj_meta_lookup(L, tviscdata(o1) ? o1 : o2, mm); if (LJ_UNLIKELY(tvisnil(mo))) goto err; return mmcall(L, cont, mo, o1, o2); } else if (LJ_52 || itype(o1) == itype(o2)) { /* Never called with two numbers. */ if (tvisstr(o1) && tvisstr(o2)) { int32_t res = lj_str_cmp(strV(o1), strV(o2)); return (TValue *)(intptr_t)(((op&2) ? res <= 0 : res < 0) ^ (op&1)); } else { trymt: while (1) { ASMFunction cont = (op & 1) ? lj_cont_condf : lj_cont_condt; MMS mm = (op & 2) ? MM_le : MM_lt; cTValue *mo = lj_meta_lookup(L, o1, mm); #if LJ_52 if (tvisnil(mo) && tvisnil((mo = lj_meta_lookup(L, o2, mm)))) #else cTValue *mo2 = lj_meta_lookup(L, o2, mm); if (tvisnil(mo) || !lj_obj_equal(mo, mo2)) #endif { if (op & 2) { /* MM_le not found: retry with MM_lt. */ cTValue *ot = o1; o1 = o2; o2 = ot; /* Swap operands. */ op ^= 3; /* Use LT and flip condition. */ continue; } goto err; } return mmcall(L, cont, mo, o1, o2); } } } else if (tvisbool(o1) && tvisbool(o2)) { goto trymt; } else { err: lj_err_comp(L, o1, o2); return NULL; } } /* Helper for ISTYPE and ISNUM. Implicit coercion or error. */ void lj_meta_istype(lua_State *L, BCReg ra, BCReg tp) { L->top = curr_topL(L); ra++; tp--; lua_assert(LJ_DUALNUM || tp != ~LJ_TNUMX); /* ISTYPE -> ISNUM broken. */ if (LJ_DUALNUM && tp == ~LJ_TNUMX) lj_lib_checkint(L, ra); else if (tp == ~LJ_TNUMX+1) lj_lib_checknum(L, ra); else if (tp == ~LJ_TSTR) lj_lib_checkstr(L, ra); else lj_err_argtype(L, ra, lj_obj_itypename[tp]); } /* Helper for calls. __call metamethod. */ void lj_meta_call(lua_State *L, TValue *func, TValue *top) { cTValue *mo = lj_meta_lookup(L, func, MM_call); TValue *p; if (!tvisfunc(mo)) lj_err_optype_call(L, func); for (p = top; p > func+2*LJ_FR2; p--) copyTV(L, p, p-1); if (LJ_FR2) copyTV(L, func+2, func); copyTV(L, func, mo); } /* Helper for FORI. Coercion. */ void LJ_FASTCALL lj_meta_for(lua_State *L, TValue *o) { if (!lj_strscan_numberobj(o)) lj_err_msg(L, LJ_ERR_FORINIT); if (!lj_strscan_numberobj(o+1)) lj_err_msg(L, LJ_ERR_FORLIM); if (!lj_strscan_numberobj(o+2)) lj_err_msg(L, LJ_ERR_FORSTEP); if (LJ_DUALNUM) { /* Ensure all slots are integers or all slots are numbers. */ int32_t k[3]; int nint = 0; ptrdiff_t i; for (i = 0; i <= 2; i++) { if (tvisint(o+i)) { k[i] = intV(o+i); nint++; } else { k[i] = lj_num2int(numV(o+i)); nint += ((lua_Number)k[i] == numV(o+i)); } } if (nint == 3) { /* Narrow to integers. */ setintV(o, k[0]); setintV(o+1, k[1]); setintV(o+2, k[2]); } else if (nint != 0) { /* Widen to numbers. */ if (tvisint(o)) setnumV(o, (lua_Number)intV(o)); if (tvisint(o+1)) setnumV(o+1, (lua_Number)intV(o+1)); if (tvisint(o+2)) setnumV(o+2, (lua_Number)intV(o+2)); } } } luajit-2.1.0~beta3+dfsg.orig/src/lj_opt_dce.c0000644000175100017510000000375713101703334020367 0ustar ondrejondrej/* ** DCE: Dead Code Elimination. Pre-LOOP only -- ASM already performs DCE. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #define lj_opt_dce_c #define LUA_CORE #include "lj_obj.h" #if LJ_HASJIT #include "lj_ir.h" #include "lj_jit.h" #include "lj_iropt.h" /* Some local macros to save typing. Undef'd at the end. */ #define IR(ref) (&J->cur.ir[(ref)]) /* Scan through all snapshots and mark all referenced instructions. */ static void dce_marksnap(jit_State *J) { SnapNo i, nsnap = J->cur.nsnap; for (i = 0; i < nsnap; i++) { SnapShot *snap = &J->cur.snap[i]; SnapEntry *map = &J->cur.snapmap[snap->mapofs]; MSize n, nent = snap->nent; for (n = 0; n < nent; n++) { IRRef ref = snap_ref(map[n]); if (ref >= REF_FIRST) irt_setmark(IR(ref)->t); } } } /* Backwards propagate marks. Replace unused instructions with NOPs. */ static void dce_propagate(jit_State *J) { IRRef1 *pchain[IR__MAX]; IRRef ins; uint32_t i; for (i = 0; i < IR__MAX; i++) pchain[i] = &J->chain[i]; for (ins = J->cur.nins-1; ins >= REF_FIRST; ins--) { IRIns *ir = IR(ins); if (irt_ismarked(ir->t)) { irt_clearmark(ir->t); pchain[ir->o] = &ir->prev; } else if (!ir_sideeff(ir)) { *pchain[ir->o] = ir->prev; /* Reroute original instruction chain. */ ir->t.irt = IRT_NIL; ir->o = IR_NOP; /* Replace instruction with NOP. */ ir->op1 = ir->op2 = 0; ir->prev = 0; continue; } if (ir->op1 >= REF_FIRST) irt_setmark(IR(ir->op1)->t); if (ir->op2 >= REF_FIRST) irt_setmark(IR(ir->op2)->t); } } /* Dead Code Elimination. ** ** First backpropagate marks for all used instructions. Then replace ** the unused ones with a NOP. Note that compressing the IR to eliminate ** the NOPs does not pay off. */ void lj_opt_dce(jit_State *J) { if ((J->flags & JIT_F_OPT_DCE)) { dce_marksnap(J); dce_propagate(J); memset(J->bpropcache, 0, sizeof(J->bpropcache)); /* Invalidate cache. */ } } #undef IR #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_bcread.c0000644000175100017510000003130613101703334020161 0ustar ondrejondrej/* ** Bytecode reader. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #define lj_bcread_c #define LUA_CORE #include "lj_obj.h" #include "lj_gc.h" #include "lj_err.h" #include "lj_buf.h" #include "lj_str.h" #include "lj_tab.h" #include "lj_bc.h" #if LJ_HASFFI #include "lj_ctype.h" #include "lj_cdata.h" #include "lualib.h" #endif #include "lj_lex.h" #include "lj_bcdump.h" #include "lj_state.h" #include "lj_strfmt.h" /* Reuse some lexer fields for our own purposes. */ #define bcread_flags(ls) ls->level #define bcread_swap(ls) \ ((bcread_flags(ls) & BCDUMP_F_BE) != LJ_BE*BCDUMP_F_BE) #define bcread_oldtop(L, ls) restorestack(L, ls->lastline) #define bcread_savetop(L, ls, top) \ ls->lastline = (BCLine)savestack(L, (top)) /* -- Input buffer handling ----------------------------------------------- */ /* Throw reader error. */ static LJ_NOINLINE void bcread_error(LexState *ls, ErrMsg em) { lua_State *L = ls->L; const char *name = ls->chunkarg; if (*name == BCDUMP_HEAD1) name = "(binary)"; else if (*name == '@' || *name == '=') name++; lj_strfmt_pushf(L, "%s: %s", name, err2msg(em)); lj_err_throw(L, LUA_ERRSYNTAX); } /* Refill buffer. */ static LJ_NOINLINE void bcread_fill(LexState *ls, MSize len, int need) { lua_assert(len != 0); if (len > LJ_MAX_BUF || ls->c < 0) bcread_error(ls, LJ_ERR_BCBAD); do { const char *buf; size_t sz; char *p = sbufB(&ls->sb); MSize n = (MSize)(ls->pe - ls->p); if (n) { /* Copy remainder to buffer. */ if (sbuflen(&ls->sb)) { /* Move down in buffer. */ lua_assert(ls->pe == sbufP(&ls->sb)); if (ls->p != p) memmove(p, ls->p, n); } else { /* Copy from buffer provided by reader. */ p = lj_buf_need(&ls->sb, len); memcpy(p, ls->p, n); } ls->p = p; ls->pe = p + n; } setsbufP(&ls->sb, p + n); buf = ls->rfunc(ls->L, ls->rdata, &sz); /* Get more data from reader. */ if (buf == NULL || sz == 0) { /* EOF? */ if (need) bcread_error(ls, LJ_ERR_BCBAD); ls->c = -1; /* Only bad if we get called again. */ break; } if (n) { /* Append to buffer. */ n += (MSize)sz; p = lj_buf_need(&ls->sb, n < len ? len : n); memcpy(sbufP(&ls->sb), buf, sz); setsbufP(&ls->sb, p + n); ls->p = p; ls->pe = p + n; } else { /* Return buffer provided by reader. */ ls->p = buf; ls->pe = buf + sz; } } while (ls->p + len > ls->pe); } /* Need a certain number of bytes. */ static LJ_AINLINE void bcread_need(LexState *ls, MSize len) { if (LJ_UNLIKELY(ls->p + len > ls->pe)) bcread_fill(ls, len, 1); } /* Want to read up to a certain number of bytes, but may need less. */ static LJ_AINLINE void bcread_want(LexState *ls, MSize len) { if (LJ_UNLIKELY(ls->p + len > ls->pe)) bcread_fill(ls, len, 0); } /* Return memory block from buffer. */ static LJ_AINLINE uint8_t *bcread_mem(LexState *ls, MSize len) { uint8_t *p = (uint8_t *)ls->p; ls->p += len; lua_assert(ls->p <= ls->pe); return p; } /* Copy memory block from buffer. */ static void bcread_block(LexState *ls, void *q, MSize len) { memcpy(q, bcread_mem(ls, len), len); } /* Read byte from buffer. */ static LJ_AINLINE uint32_t bcread_byte(LexState *ls) { lua_assert(ls->p < ls->pe); return (uint32_t)(uint8_t)*ls->p++; } /* Read ULEB128 value from buffer. */ static LJ_AINLINE uint32_t bcread_uleb128(LexState *ls) { uint32_t v = lj_buf_ruleb128(&ls->p); lua_assert(ls->p <= ls->pe); return v; } /* Read top 32 bits of 33 bit ULEB128 value from buffer. */ static uint32_t bcread_uleb128_33(LexState *ls) { const uint8_t *p = (const uint8_t *)ls->p; uint32_t v = (*p++ >> 1); if (LJ_UNLIKELY(v >= 0x40)) { int sh = -1; v &= 0x3f; do { v |= ((*p & 0x7f) << (sh += 7)); } while (*p++ >= 0x80); } ls->p = (char *)p; lua_assert(ls->p <= ls->pe); return v; } /* -- Bytecode reader ----------------------------------------------------- */ /* Read debug info of a prototype. */ static void bcread_dbg(LexState *ls, GCproto *pt, MSize sizedbg) { void *lineinfo = (void *)proto_lineinfo(pt); bcread_block(ls, lineinfo, sizedbg); /* Swap lineinfo if the endianess differs. */ if (bcread_swap(ls) && pt->numline >= 256) { MSize i, n = pt->sizebc-1; if (pt->numline < 65536) { uint16_t *p = (uint16_t *)lineinfo; for (i = 0; i < n; i++) p[i] = (uint16_t)((p[i] >> 8)|(p[i] << 8)); } else { uint32_t *p = (uint32_t *)lineinfo; for (i = 0; i < n; i++) p[i] = lj_bswap(p[i]); } } } /* Find pointer to varinfo. */ static const void *bcread_varinfo(GCproto *pt) { const uint8_t *p = proto_uvinfo(pt); MSize n = pt->sizeuv; if (n) while (*p++ || --n) ; return p; } /* Read a single constant key/value of a template table. */ static void bcread_ktabk(LexState *ls, TValue *o) { MSize tp = bcread_uleb128(ls); if (tp >= BCDUMP_KTAB_STR) { MSize len = tp - BCDUMP_KTAB_STR; const char *p = (const char *)bcread_mem(ls, len); setstrV(ls->L, o, lj_str_new(ls->L, p, len)); } else if (tp == BCDUMP_KTAB_INT) { setintV(o, (int32_t)bcread_uleb128(ls)); } else if (tp == BCDUMP_KTAB_NUM) { o->u32.lo = bcread_uleb128(ls); o->u32.hi = bcread_uleb128(ls); } else { lua_assert(tp <= BCDUMP_KTAB_TRUE); setpriV(o, ~tp); } } /* Read a template table. */ static GCtab *bcread_ktab(LexState *ls) { MSize narray = bcread_uleb128(ls); MSize nhash = bcread_uleb128(ls); GCtab *t = lj_tab_new(ls->L, narray, hsize2hbits(nhash)); if (narray) { /* Read array entries. */ MSize i; TValue *o = tvref(t->array); for (i = 0; i < narray; i++, o++) bcread_ktabk(ls, o); } if (nhash) { /* Read hash entries. */ MSize i; for (i = 0; i < nhash; i++) { TValue key; bcread_ktabk(ls, &key); lua_assert(!tvisnil(&key)); bcread_ktabk(ls, lj_tab_set(ls->L, t, &key)); } } return t; } /* Read GC constants of a prototype. */ static void bcread_kgc(LexState *ls, GCproto *pt, MSize sizekgc) { MSize i; GCRef *kr = mref(pt->k, GCRef) - (ptrdiff_t)sizekgc; for (i = 0; i < sizekgc; i++, kr++) { MSize tp = bcread_uleb128(ls); if (tp >= BCDUMP_KGC_STR) { MSize len = tp - BCDUMP_KGC_STR; const char *p = (const char *)bcread_mem(ls, len); setgcref(*kr, obj2gco(lj_str_new(ls->L, p, len))); } else if (tp == BCDUMP_KGC_TAB) { setgcref(*kr, obj2gco(bcread_ktab(ls))); #if LJ_HASFFI } else if (tp != BCDUMP_KGC_CHILD) { CTypeID id = tp == BCDUMP_KGC_COMPLEX ? CTID_COMPLEX_DOUBLE : tp == BCDUMP_KGC_I64 ? CTID_INT64 : CTID_UINT64; CTSize sz = tp == BCDUMP_KGC_COMPLEX ? 16 : 8; GCcdata *cd = lj_cdata_new_(ls->L, id, sz); TValue *p = (TValue *)cdataptr(cd); setgcref(*kr, obj2gco(cd)); p[0].u32.lo = bcread_uleb128(ls); p[0].u32.hi = bcread_uleb128(ls); if (tp == BCDUMP_KGC_COMPLEX) { p[1].u32.lo = bcread_uleb128(ls); p[1].u32.hi = bcread_uleb128(ls); } #endif } else { lua_State *L = ls->L; lua_assert(tp == BCDUMP_KGC_CHILD); if (L->top <= bcread_oldtop(L, ls)) /* Stack underflow? */ bcread_error(ls, LJ_ERR_BCBAD); L->top--; setgcref(*kr, obj2gco(protoV(L->top))); } } } /* Read number constants of a prototype. */ static void bcread_knum(LexState *ls, GCproto *pt, MSize sizekn) { MSize i; TValue *o = mref(pt->k, TValue); for (i = 0; i < sizekn; i++, o++) { int isnum = (ls->p[0] & 1); uint32_t lo = bcread_uleb128_33(ls); if (isnum) { o->u32.lo = lo; o->u32.hi = bcread_uleb128(ls); } else { setintV(o, lo); } } } /* Read bytecode instructions. */ static void bcread_bytecode(LexState *ls, GCproto *pt, MSize sizebc) { BCIns *bc = proto_bc(pt); bc[0] = BCINS_AD((pt->flags & PROTO_VARARG) ? BC_FUNCV : BC_FUNCF, pt->framesize, 0); bcread_block(ls, bc+1, (sizebc-1)*(MSize)sizeof(BCIns)); /* Swap bytecode instructions if the endianess differs. */ if (bcread_swap(ls)) { MSize i; for (i = 1; i < sizebc; i++) bc[i] = lj_bswap(bc[i]); } } /* Read upvalue refs. */ static void bcread_uv(LexState *ls, GCproto *pt, MSize sizeuv) { if (sizeuv) { uint16_t *uv = proto_uv(pt); bcread_block(ls, uv, sizeuv*2); /* Swap upvalue refs if the endianess differs. */ if (bcread_swap(ls)) { MSize i; for (i = 0; i < sizeuv; i++) uv[i] = (uint16_t)((uv[i] >> 8)|(uv[i] << 8)); } } } /* Read a prototype. */ GCproto *lj_bcread_proto(LexState *ls) { GCproto *pt; MSize framesize, numparams, flags, sizeuv, sizekgc, sizekn, sizebc, sizept; MSize ofsk, ofsuv, ofsdbg; MSize sizedbg = 0; BCLine firstline = 0, numline = 0; /* Read prototype header. */ flags = bcread_byte(ls); numparams = bcread_byte(ls); framesize = bcread_byte(ls); sizeuv = bcread_byte(ls); sizekgc = bcread_uleb128(ls); sizekn = bcread_uleb128(ls); sizebc = bcread_uleb128(ls) + 1; if (!(bcread_flags(ls) & BCDUMP_F_STRIP)) { sizedbg = bcread_uleb128(ls); if (sizedbg) { firstline = bcread_uleb128(ls); numline = bcread_uleb128(ls); } } /* Calculate total size of prototype including all colocated arrays. */ sizept = (MSize)sizeof(GCproto) + sizebc*(MSize)sizeof(BCIns) + sizekgc*(MSize)sizeof(GCRef); sizept = (sizept + (MSize)sizeof(TValue)-1) & ~((MSize)sizeof(TValue)-1); ofsk = sizept; sizept += sizekn*(MSize)sizeof(TValue); ofsuv = sizept; sizept += ((sizeuv+1)&~1)*2; ofsdbg = sizept; sizept += sizedbg; /* Allocate prototype object and initialize its fields. */ pt = (GCproto *)lj_mem_newgco(ls->L, (MSize)sizept); pt->gct = ~LJ_TPROTO; pt->numparams = (uint8_t)numparams; pt->framesize = (uint8_t)framesize; pt->sizebc = sizebc; setmref(pt->k, (char *)pt + ofsk); setmref(pt->uv, (char *)pt + ofsuv); pt->sizekgc = 0; /* Set to zero until fully initialized. */ pt->sizekn = sizekn; pt->sizept = sizept; pt->sizeuv = (uint8_t)sizeuv; pt->flags = (uint8_t)flags; pt->trace = 0; setgcref(pt->chunkname, obj2gco(ls->chunkname)); /* Close potentially uninitialized gap between bc and kgc. */ *(uint32_t *)((char *)pt + ofsk - sizeof(GCRef)*(sizekgc+1)) = 0; /* Read bytecode instructions and upvalue refs. */ bcread_bytecode(ls, pt, sizebc); bcread_uv(ls, pt, sizeuv); /* Read constants. */ bcread_kgc(ls, pt, sizekgc); pt->sizekgc = sizekgc; bcread_knum(ls, pt, sizekn); /* Read and initialize debug info. */ pt->firstline = firstline; pt->numline = numline; if (sizedbg) { MSize sizeli = (sizebc-1) << (numline < 256 ? 0 : numline < 65536 ? 1 : 2); setmref(pt->lineinfo, (char *)pt + ofsdbg); setmref(pt->uvinfo, (char *)pt + ofsdbg + sizeli); bcread_dbg(ls, pt, sizedbg); setmref(pt->varinfo, bcread_varinfo(pt)); } else { setmref(pt->lineinfo, NULL); setmref(pt->uvinfo, NULL); setmref(pt->varinfo, NULL); } return pt; } /* Read and check header of bytecode dump. */ static int bcread_header(LexState *ls) { uint32_t flags; bcread_want(ls, 3+5+5); if (bcread_byte(ls) != BCDUMP_HEAD2 || bcread_byte(ls) != BCDUMP_HEAD3 || bcread_byte(ls) != BCDUMP_VERSION) return 0; bcread_flags(ls) = flags = bcread_uleb128(ls); if ((flags & ~(BCDUMP_F_KNOWN)) != 0) return 0; if ((flags & BCDUMP_F_FR2) != LJ_FR2*BCDUMP_F_FR2) return 0; if ((flags & BCDUMP_F_FFI)) { #if LJ_HASFFI lua_State *L = ls->L; if (!ctype_ctsG(G(L))) { ptrdiff_t oldtop = savestack(L, L->top); luaopen_ffi(L); /* Load FFI library on-demand. */ L->top = restorestack(L, oldtop); } #else return 0; #endif } if ((flags & BCDUMP_F_STRIP)) { ls->chunkname = lj_str_newz(ls->L, ls->chunkarg); } else { MSize len = bcread_uleb128(ls); bcread_need(ls, len); ls->chunkname = lj_str_new(ls->L, (const char *)bcread_mem(ls, len), len); } return 1; /* Ok. */ } /* Read a bytecode dump. */ GCproto *lj_bcread(LexState *ls) { lua_State *L = ls->L; lua_assert(ls->c == BCDUMP_HEAD1); bcread_savetop(L, ls, L->top); lj_buf_reset(&ls->sb); /* Check for a valid bytecode dump header. */ if (!bcread_header(ls)) bcread_error(ls, LJ_ERR_BCFMT); for (;;) { /* Process all prototypes in the bytecode dump. */ GCproto *pt; MSize len; const char *startp; /* Read length. */ if (ls->p < ls->pe && ls->p[0] == 0) { /* Shortcut EOF. */ ls->p++; break; } bcread_want(ls, 5); len = bcread_uleb128(ls); if (!len) break; /* EOF */ bcread_need(ls, len); startp = ls->p; pt = lj_bcread_proto(ls); if (ls->p != startp + len) bcread_error(ls, LJ_ERR_BCBAD); setprotoV(L, L->top, pt); incr_top(L); } if ((int32_t)(2*(uint32_t)(ls->pe - ls->p)) > 0 || L->top-1 != bcread_oldtop(L, ls)) bcread_error(ls, LJ_ERR_BCBAD); /* Pop off last prototype. */ L->top--; return protoV(L->top); } luajit-2.1.0~beta3+dfsg.orig/src/lj_vmevent.h0000644000175100017510000000304313101703334020427 0ustar ondrejondrej/* ** VM event handling. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_VMEVENT_H #define _LJ_VMEVENT_H #include "lj_obj.h" /* Registry key for VM event handler table. */ #define LJ_VMEVENTS_REGKEY "_VMEVENTS" #define LJ_VMEVENTS_HSIZE 4 #define VMEVENT_MASK(ev) ((uint8_t)1 << ((int)(ev) & 7)) #define VMEVENT_HASH(ev) ((int)(ev) & ~7) #define VMEVENT_HASHIDX(h) ((int)(h) << 3) #define VMEVENT_NOCACHE 255 #define VMEVENT_DEF(name, hash) \ LJ_VMEVENT_##name##_, \ LJ_VMEVENT_##name = ((LJ_VMEVENT_##name##_) & 7)|((hash) << 3) /* VM event IDs. */ typedef enum { VMEVENT_DEF(BC, 0x00003883), VMEVENT_DEF(TRACE, 0xb2d91467), VMEVENT_DEF(RECORD, 0x9284bf4f), VMEVENT_DEF(TEXIT, 0xb29df2b0), LJ_VMEVENT__MAX } VMEvent; #ifdef LUAJIT_DISABLE_VMEVENT #define lj_vmevent_send(L, ev, args) UNUSED(L) #define lj_vmevent_send_(L, ev, args, post) UNUSED(L) #else #define lj_vmevent_send(L, ev, args) \ if (G(L)->vmevmask & VMEVENT_MASK(LJ_VMEVENT_##ev)) { \ ptrdiff_t argbase = lj_vmevent_prepare(L, LJ_VMEVENT_##ev); \ if (argbase) { \ args \ lj_vmevent_call(L, argbase); \ } \ } #define lj_vmevent_send_(L, ev, args, post) \ if (G(L)->vmevmask & VMEVENT_MASK(LJ_VMEVENT_##ev)) { \ ptrdiff_t argbase = lj_vmevent_prepare(L, LJ_VMEVENT_##ev); \ if (argbase) { \ args \ lj_vmevent_call(L, argbase); \ post \ } \ } LJ_FUNC ptrdiff_t lj_vmevent_prepare(lua_State *L, VMEvent ev); LJ_FUNC void lj_vmevent_call(lua_State *L, ptrdiff_t argbase); #endif #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_cdata.c0000644000175100017510000002152213101703334020014 0ustar ondrejondrej/* ** C data management. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #include "lj_obj.h" #if LJ_HASFFI #include "lj_gc.h" #include "lj_err.h" #include "lj_tab.h" #include "lj_ctype.h" #include "lj_cconv.h" #include "lj_cdata.h" /* -- C data allocation --------------------------------------------------- */ /* Allocate a new C data object holding a reference to another object. */ GCcdata *lj_cdata_newref(CTState *cts, const void *p, CTypeID id) { CTypeID refid = lj_ctype_intern(cts, CTINFO_REF(id), CTSIZE_PTR); GCcdata *cd = lj_cdata_new(cts, refid, CTSIZE_PTR); *(const void **)cdataptr(cd) = p; return cd; } /* Allocate variable-sized or specially aligned C data object. */ GCcdata *lj_cdata_newv(lua_State *L, CTypeID id, CTSize sz, CTSize align) { global_State *g; MSize extra = sizeof(GCcdataVar) + sizeof(GCcdata) + (align > CT_MEMALIGN ? (1u<offset = (uint16_t)((char *)cd - p); cdatav(cd)->extra = extra; cdatav(cd)->len = sz; g = G(L); setgcrefr(cd->nextgc, g->gc.root); setgcref(g->gc.root, obj2gco(cd)); newwhite(g, obj2gco(cd)); cd->marked |= 0x80; cd->gct = ~LJ_TCDATA; cd->ctypeid = id; return cd; } /* Allocate arbitrary C data object. */ GCcdata *lj_cdata_newx(CTState *cts, CTypeID id, CTSize sz, CTInfo info) { if (!(info & CTF_VLA) && ctype_align(info) <= CT_MEMALIGN) return lj_cdata_new(cts, id, sz); else return lj_cdata_newv(cts->L, id, sz, ctype_align(info)); } /* Free a C data object. */ void LJ_FASTCALL lj_cdata_free(global_State *g, GCcdata *cd) { if (LJ_UNLIKELY(cd->marked & LJ_GC_CDATA_FIN)) { GCobj *root; makewhite(g, obj2gco(cd)); markfinalized(obj2gco(cd)); if ((root = gcref(g->gc.mmudata)) != NULL) { setgcrefr(cd->nextgc, root->gch.nextgc); setgcref(root->gch.nextgc, obj2gco(cd)); setgcref(g->gc.mmudata, obj2gco(cd)); } else { setgcref(cd->nextgc, obj2gco(cd)); setgcref(g->gc.mmudata, obj2gco(cd)); } } else if (LJ_LIKELY(!cdataisv(cd))) { CType *ct = ctype_raw(ctype_ctsG(g), cd->ctypeid); CTSize sz = ctype_hassize(ct->info) ? ct->size : CTSIZE_PTR; lua_assert(ctype_hassize(ct->info) || ctype_isfunc(ct->info) || ctype_isextern(ct->info)); lj_mem_free(g, cd, sizeof(GCcdata) + sz); } else { lj_mem_free(g, memcdatav(cd), sizecdatav(cd)); } } void lj_cdata_setfin(lua_State *L, GCcdata *cd, GCobj *obj, uint32_t it) { GCtab *t = ctype_ctsG(G(L))->finalizer; if (gcref(t->metatable)) { /* Add cdata to finalizer table, if still enabled. */ TValue *tv, tmp; setcdataV(L, &tmp, cd); lj_gc_anybarriert(L, t); tv = lj_tab_set(L, t, &tmp); if (it == LJ_TNIL) { setnilV(tv); cd->marked &= ~LJ_GC_CDATA_FIN; } else { setgcV(L, tv, obj, it); cd->marked |= LJ_GC_CDATA_FIN; } } } /* -- C data indexing ----------------------------------------------------- */ /* Index C data by a TValue. Return CType and pointer. */ CType *lj_cdata_index(CTState *cts, GCcdata *cd, cTValue *key, uint8_t **pp, CTInfo *qual) { uint8_t *p = (uint8_t *)cdataptr(cd); CType *ct = ctype_get(cts, cd->ctypeid); ptrdiff_t idx; /* Resolve reference for cdata object. */ if (ctype_isref(ct->info)) { lua_assert(ct->size == CTSIZE_PTR); p = *(uint8_t **)p; ct = ctype_child(cts, ct); } collect_attrib: /* Skip attributes and collect qualifiers. */ while (ctype_isattrib(ct->info)) { if (ctype_attrib(ct->info) == CTA_QUAL) *qual |= ct->size; ct = ctype_child(cts, ct); } lua_assert(!ctype_isref(ct->info)); /* Interning rejects refs to refs. */ if (tvisint(key)) { idx = (ptrdiff_t)intV(key); goto integer_key; } else if (tvisnum(key)) { /* Numeric key. */ #ifdef _MSC_VER /* Workaround for MSVC bug. */ volatile #endif lua_Number n = numV(key); idx = LJ_64 ? (ptrdiff_t)n : (ptrdiff_t)lj_num2int(n); integer_key: if (ctype_ispointer(ct->info)) { CTSize sz = lj_ctype_size(cts, ctype_cid(ct->info)); /* Element size. */ if (sz == CTSIZE_INVALID) lj_err_caller(cts->L, LJ_ERR_FFI_INVSIZE); if (ctype_isptr(ct->info)) { p = (uint8_t *)cdata_getptr(p, ct->size); } else if ((ct->info & (CTF_VECTOR|CTF_COMPLEX))) { if ((ct->info & CTF_COMPLEX)) idx &= 1; *qual |= CTF_CONST; /* Valarray elements are constant. */ } *pp = p + idx*(int32_t)sz; return ct; } } else if (tviscdata(key)) { /* Integer cdata key. */ GCcdata *cdk = cdataV(key); CType *ctk = ctype_raw(cts, cdk->ctypeid); if (ctype_isenum(ctk->info)) ctk = ctype_child(cts, ctk); if (ctype_isinteger(ctk->info)) { lj_cconv_ct_ct(cts, ctype_get(cts, CTID_INT_PSZ), ctk, (uint8_t *)&idx, cdataptr(cdk), 0); goto integer_key; } } else if (tvisstr(key)) { /* String key. */ GCstr *name = strV(key); if (ctype_isstruct(ct->info)) { CTSize ofs; CType *fct = lj_ctype_getfieldq(cts, ct, name, &ofs, qual); if (fct) { *pp = p + ofs; return fct; } } else if (ctype_iscomplex(ct->info)) { if (name->len == 2) { *qual |= CTF_CONST; /* Complex fields are constant. */ if (strdata(name)[0] == 'r' && strdata(name)[1] == 'e') { *pp = p; return ct; } else if (strdata(name)[0] == 'i' && strdata(name)[1] == 'm') { *pp = p + (ct->size >> 1); return ct; } } } else if (cd->ctypeid == CTID_CTYPEID) { /* Allow indexing a (pointer to) struct constructor to get constants. */ CType *sct = ctype_raw(cts, *(CTypeID *)p); if (ctype_isptr(sct->info)) sct = ctype_rawchild(cts, sct); if (ctype_isstruct(sct->info)) { CTSize ofs; CType *fct = lj_ctype_getfield(cts, sct, name, &ofs); if (fct && ctype_isconstval(fct->info)) return fct; } ct = sct; /* Allow resolving metamethods for constructors, too. */ } } if (ctype_isptr(ct->info)) { /* Automatically perform '->'. */ if (ctype_isstruct(ctype_rawchild(cts, ct)->info)) { p = (uint8_t *)cdata_getptr(p, ct->size); ct = ctype_child(cts, ct); goto collect_attrib; } } *qual |= 1; /* Lookup failed. */ return ct; /* But return the resolved raw type. */ } /* -- C data getters ------------------------------------------------------ */ /* Get constant value and convert to TValue. */ static void cdata_getconst(CTState *cts, TValue *o, CType *ct) { CType *ctt = ctype_child(cts, ct); lua_assert(ctype_isinteger(ctt->info) && ctt->size <= 4); /* Constants are already zero-extended/sign-extended to 32 bits. */ if ((ctt->info & CTF_UNSIGNED) && (int32_t)ct->size < 0) setnumV(o, (lua_Number)(uint32_t)ct->size); else setintV(o, (int32_t)ct->size); } /* Get C data value and convert to TValue. */ int lj_cdata_get(CTState *cts, CType *s, TValue *o, uint8_t *sp) { CTypeID sid; if (ctype_isconstval(s->info)) { cdata_getconst(cts, o, s); return 0; /* No GC step needed. */ } else if (ctype_isbitfield(s->info)) { return lj_cconv_tv_bf(cts, s, o, sp); } /* Get child type of pointer/array/field. */ lua_assert(ctype_ispointer(s->info) || ctype_isfield(s->info)); sid = ctype_cid(s->info); s = ctype_get(cts, sid); /* Resolve reference for field. */ if (ctype_isref(s->info)) { lua_assert(s->size == CTSIZE_PTR); sp = *(uint8_t **)sp; sid = ctype_cid(s->info); s = ctype_get(cts, sid); } /* Skip attributes. */ while (ctype_isattrib(s->info)) s = ctype_child(cts, s); return lj_cconv_tv_ct(cts, s, sid, o, sp); } /* -- C data setters ------------------------------------------------------ */ /* Convert TValue and set C data value. */ void lj_cdata_set(CTState *cts, CType *d, uint8_t *dp, TValue *o, CTInfo qual) { if (ctype_isconstval(d->info)) { goto err_const; } else if (ctype_isbitfield(d->info)) { if (((d->info|qual) & CTF_CONST)) goto err_const; lj_cconv_bf_tv(cts, d, dp, o); return; } /* Get child type of pointer/array/field. */ lua_assert(ctype_ispointer(d->info) || ctype_isfield(d->info)); d = ctype_child(cts, d); /* Resolve reference for field. */ if (ctype_isref(d->info)) { lua_assert(d->size == CTSIZE_PTR); dp = *(uint8_t **)dp; d = ctype_child(cts, d); } /* Skip attributes and collect qualifiers. */ for (;;) { if (ctype_isattrib(d->info)) { if (ctype_attrib(d->info) == CTA_QUAL) qual |= d->size; } else { break; } d = ctype_child(cts, d); } lua_assert(ctype_hassize(d->info) && !ctype_isvoid(d->info)); if (((d->info|qual) & CTF_CONST)) { err_const: lj_err_caller(cts->L, LJ_ERR_FFI_WRCONST); } lj_cconv_ct_tv(cts, d, dp, o, 0); } #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_target_x86.h0000644000175100017510000002464613101703334020752 0ustar ondrejondrej/* ** Definitions for x86 and x64 CPUs. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_TARGET_X86_H #define _LJ_TARGET_X86_H /* -- Registers IDs ------------------------------------------------------- */ #if LJ_64 #define GPRDEF(_) \ _(EAX) _(ECX) _(EDX) _(EBX) _(ESP) _(EBP) _(ESI) _(EDI) \ _(R8D) _(R9D) _(R10D) _(R11D) _(R12D) _(R13D) _(R14D) _(R15D) #define FPRDEF(_) \ _(XMM0) _(XMM1) _(XMM2) _(XMM3) _(XMM4) _(XMM5) _(XMM6) _(XMM7) \ _(XMM8) _(XMM9) _(XMM10) _(XMM11) _(XMM12) _(XMM13) _(XMM14) _(XMM15) #else #define GPRDEF(_) \ _(EAX) _(ECX) _(EDX) _(EBX) _(ESP) _(EBP) _(ESI) _(EDI) #define FPRDEF(_) \ _(XMM0) _(XMM1) _(XMM2) _(XMM3) _(XMM4) _(XMM5) _(XMM6) _(XMM7) #endif #define VRIDDEF(_) \ _(MRM) _(RIP) #define RIDENUM(name) RID_##name, enum { GPRDEF(RIDENUM) /* General-purpose registers (GPRs). */ FPRDEF(RIDENUM) /* Floating-point registers (FPRs). */ RID_MAX, RID_MRM = RID_MAX, /* Pseudo-id for ModRM operand. */ RID_RIP = RID_MAX+5, /* Pseudo-id for RIP (x64 only), rm bits = 5. */ /* Calling conventions. */ RID_SP = RID_ESP, RID_RET = RID_EAX, #if LJ_64 RID_FPRET = RID_XMM0, #else RID_RETLO = RID_EAX, RID_RETHI = RID_EDX, #endif /* These definitions must match with the *.dasc file(s): */ RID_BASE = RID_EDX, /* Interpreter BASE. */ #if LJ_64 && !LJ_ABI_WIN RID_LPC = RID_EBX, /* Interpreter PC. */ RID_DISPATCH = RID_R14D, /* Interpreter DISPATCH table. */ #else RID_LPC = RID_ESI, /* Interpreter PC. */ RID_DISPATCH = RID_EBX, /* Interpreter DISPATCH table. */ #endif /* Register ranges [min, max) and number of registers. */ RID_MIN_GPR = RID_EAX, RID_MIN_FPR = RID_XMM0, RID_MAX_GPR = RID_MIN_FPR, RID_MAX_FPR = RID_MAX, RID_NUM_GPR = RID_MAX_GPR - RID_MIN_GPR, RID_NUM_FPR = RID_MAX_FPR - RID_MIN_FPR, }; /* -- Register sets ------------------------------------------------------- */ /* Make use of all registers, except the stack pointer (and maybe DISPATCH). */ #define RSET_GPR (RSET_RANGE(RID_MIN_GPR, RID_MAX_GPR) \ - RID2RSET(RID_ESP) \ - LJ_GC64*RID2RSET(RID_DISPATCH)) #define RSET_FPR (RSET_RANGE(RID_MIN_FPR, RID_MAX_FPR)) #define RSET_ALL (RSET_GPR|RSET_FPR) #define RSET_INIT RSET_ALL #if LJ_64 /* Note: this requires the use of FORCE_REX! */ #define RSET_GPR8 RSET_GPR #else #define RSET_GPR8 (RSET_RANGE(RID_EAX, RID_EBX+1)) #endif /* ABI-specific register sets. */ #define RSET_ACD (RID2RSET(RID_EAX)|RID2RSET(RID_ECX)|RID2RSET(RID_EDX)) #if LJ_64 #if LJ_ABI_WIN /* Windows x64 ABI. */ #define RSET_SCRATCH \ (RSET_ACD|RSET_RANGE(RID_R8D, RID_R11D+1)|RSET_RANGE(RID_XMM0, RID_XMM5+1)) #define REGARG_GPRS \ (RID_ECX|((RID_EDX|((RID_R8D|(RID_R9D<<5))<<5))<<5)) #define REGARG_NUMGPR 4 #define REGARG_NUMFPR 4 #define REGARG_FIRSTFPR RID_XMM0 #define REGARG_LASTFPR RID_XMM3 #define STACKARG_OFS (4*8) #else /* The rest of the civilized x64 world has a common ABI. */ #define RSET_SCRATCH \ (RSET_ACD|RSET_RANGE(RID_ESI, RID_R11D+1)|RSET_FPR) #define REGARG_GPRS \ (RID_EDI|((RID_ESI|((RID_EDX|((RID_ECX|((RID_R8D|(RID_R9D \ <<5))<<5))<<5))<<5))<<5)) #define REGARG_NUMGPR 6 #define REGARG_NUMFPR 8 #define REGARG_FIRSTFPR RID_XMM0 #define REGARG_LASTFPR RID_XMM7 #define STACKARG_OFS 0 #endif #else /* Common x86 ABI. */ #define RSET_SCRATCH (RSET_ACD|RSET_FPR) #define REGARG_GPRS (RID_ECX|(RID_EDX<<5)) /* Fastcall only. */ #define REGARG_NUMGPR 2 /* Fastcall only. */ #define REGARG_NUMFPR 0 #define STACKARG_OFS 0 #endif #if LJ_64 /* Prefer the low 8 regs of each type to reduce REX prefixes. */ #undef rset_picktop #define rset_picktop(rs) (lj_fls(lj_bswap(rs)) ^ 0x18) #endif /* -- Spill slots --------------------------------------------------------- */ /* Spill slots are 32 bit wide. An even/odd pair is used for FPRs. ** ** SPS_FIXED: Available fixed spill slots in interpreter frame. ** This definition must match with the *.dasc file(s). ** ** SPS_FIRST: First spill slot for general use. Reserve min. two 32 bit slots. */ #if LJ_64 #if LJ_ABI_WIN #define SPS_FIXED (4*2) #define SPS_FIRST (4*2) /* Don't use callee register save area. */ #else #if LJ_GC64 #define SPS_FIXED 2 #else #define SPS_FIXED 4 #endif #define SPS_FIRST 2 #endif #else #define SPS_FIXED 6 #define SPS_FIRST 2 #endif #define SPOFS_TMP 0 #define sps_scale(slot) (4 * (int32_t)(slot)) #define sps_align(slot) (((slot) - SPS_FIXED + 3) & ~3) /* -- Exit state ---------------------------------------------------------- */ /* This definition must match with the *.dasc file(s). */ typedef struct { lua_Number fpr[RID_NUM_FPR]; /* Floating-point registers. */ intptr_t gpr[RID_NUM_GPR]; /* General-purpose registers. */ int32_t spill[256]; /* Spill slots. */ } ExitState; /* Limited by the range of a short fwd jump (127): (2+2)*(32-1)-2 = 122. */ #define EXITSTUB_SPACING (2+2) #define EXITSTUBS_PER_GROUP 32 /* -- x86 ModRM operand encoding ------------------------------------------ */ typedef enum { XM_OFS0 = 0x00, XM_OFS8 = 0x40, XM_OFS32 = 0x80, XM_REG = 0xc0, XM_SCALE1 = 0x00, XM_SCALE2 = 0x40, XM_SCALE4 = 0x80, XM_SCALE8 = 0xc0, XM_MASK = 0xc0 } x86Mode; /* Structure to hold variable ModRM operand. */ typedef struct { int32_t ofs; /* Offset. */ uint8_t base; /* Base register or RID_NONE. */ uint8_t idx; /* Index register or RID_NONE. */ uint8_t scale; /* Index scale (XM_SCALE1 .. XM_SCALE8). */ } x86ModRM; /* -- Opcodes ------------------------------------------------------------- */ /* Macros to construct variable-length x86 opcodes. -(len+1) is in LSB. */ #define XO_(o) ((uint32_t)(0x0000fe + (0x##o<<24))) #define XO_FPU(a,b) ((uint32_t)(0x00fd + (0x##a<<16)+(0x##b<<24))) #define XO_0f(o) ((uint32_t)(0x0f00fd + (0x##o<<24))) #define XO_66(o) ((uint32_t)(0x6600fd + (0x##o<<24))) #define XO_660f(o) ((uint32_t)(0x0f66fc + (0x##o<<24))) #define XO_f20f(o) ((uint32_t)(0x0ff2fc + (0x##o<<24))) #define XO_f30f(o) ((uint32_t)(0x0ff3fc + (0x##o<<24))) #define XV_660f38(o) ((uint32_t)(0x79e2c4 + (0x##o<<24))) #define XV_f20f38(o) ((uint32_t)(0x7be2c4 + (0x##o<<24))) #define XV_f20f3a(o) ((uint32_t)(0x7be3c4 + (0x##o<<24))) #define XV_f30f38(o) ((uint32_t)(0x7ae2c4 + (0x##o<<24))) /* This list of x86 opcodes is not intended to be complete. Opcodes are only ** included when needed. Take a look at DynASM or jit.dis_x86 to see the ** whole mess. */ typedef enum { /* Fixed length opcodes. XI_* prefix. */ XI_O16 = 0x66, XI_NOP = 0x90, XI_XCHGa = 0x90, XI_CALL = 0xe8, XI_JMP = 0xe9, XI_JMPs = 0xeb, XI_PUSH = 0x50, /* Really 50+r. */ XI_JCCs = 0x70, /* Really 7x. */ XI_JCCn = 0x80, /* Really 0f8x. */ XI_LEA = 0x8d, XI_MOVrib = 0xb0, /* Really b0+r. */ XI_MOVri = 0xb8, /* Really b8+r. */ XI_ARITHib = 0x80, XI_ARITHi = 0x81, XI_ARITHi8 = 0x83, XI_PUSHi8 = 0x6a, XI_TESTb = 0x84, XI_TEST = 0x85, XI_INT3 = 0xcc, XI_MOVmi = 0xc7, XI_GROUP5 = 0xff, /* Note: little-endian byte-order! */ XI_FLDZ = 0xeed9, XI_FLD1 = 0xe8d9, XI_FLDLG2 = 0xecd9, XI_FLDLN2 = 0xedd9, XI_FDUP = 0xc0d9, /* Really fld st0. */ XI_FPOP = 0xd8dd, /* Really fstp st0. */ XI_FPOP1 = 0xd9dd, /* Really fstp st1. */ XI_FRNDINT = 0xfcd9, XI_FSIN = 0xfed9, XI_FCOS = 0xffd9, XI_FPTAN = 0xf2d9, XI_FPATAN = 0xf3d9, XI_FSCALE = 0xfdd9, XI_FYL2X = 0xf1d9, /* VEX-encoded instructions. XV_* prefix. */ XV_RORX = XV_f20f3a(f0), XV_SARX = XV_f30f38(f7), XV_SHLX = XV_660f38(f7), XV_SHRX = XV_f20f38(f7), /* Variable-length opcodes. XO_* prefix. */ XO_OR = XO_(0b), XO_MOV = XO_(8b), XO_MOVto = XO_(89), XO_MOVtow = XO_66(89), XO_MOVtob = XO_(88), XO_MOVmi = XO_(c7), XO_MOVmib = XO_(c6), XO_LEA = XO_(8d), XO_ARITHib = XO_(80), XO_ARITHi = XO_(81), XO_ARITHi8 = XO_(83), XO_ARITHiw8 = XO_66(83), XO_SHIFTi = XO_(c1), XO_SHIFT1 = XO_(d1), XO_SHIFTcl = XO_(d3), XO_IMUL = XO_0f(af), XO_IMULi = XO_(69), XO_IMULi8 = XO_(6b), XO_CMP = XO_(3b), XO_TESTb = XO_(84), XO_TEST = XO_(85), XO_GROUP3b = XO_(f6), XO_GROUP3 = XO_(f7), XO_GROUP5b = XO_(fe), XO_GROUP5 = XO_(ff), XO_MOVZXb = XO_0f(b6), XO_MOVZXw = XO_0f(b7), XO_MOVSXb = XO_0f(be), XO_MOVSXw = XO_0f(bf), XO_MOVSXd = XO_(63), XO_BSWAP = XO_0f(c8), XO_CMOV = XO_0f(40), XO_MOVSD = XO_f20f(10), XO_MOVSDto = XO_f20f(11), XO_MOVSS = XO_f30f(10), XO_MOVSSto = XO_f30f(11), XO_MOVLPD = XO_660f(12), XO_MOVAPS = XO_0f(28), XO_XORPS = XO_0f(57), XO_ANDPS = XO_0f(54), XO_ADDSD = XO_f20f(58), XO_SUBSD = XO_f20f(5c), XO_MULSD = XO_f20f(59), XO_DIVSD = XO_f20f(5e), XO_SQRTSD = XO_f20f(51), XO_MINSD = XO_f20f(5d), XO_MAXSD = XO_f20f(5f), XO_ROUNDSD = 0x0b3a0ffc, /* Really 66 0f 3a 0b. See asm_fpmath. */ XO_UCOMISD = XO_660f(2e), XO_CVTSI2SD = XO_f20f(2a), XO_CVTTSD2SI= XO_f20f(2c), XO_CVTSI2SS = XO_f30f(2a), XO_CVTTSS2SI= XO_f30f(2c), XO_CVTSS2SD = XO_f30f(5a), XO_CVTSD2SS = XO_f20f(5a), XO_ADDSS = XO_f30f(58), XO_MOVD = XO_660f(6e), XO_MOVDto = XO_660f(7e), XO_FLDd = XO_(d9), XOg_FLDd = 0, XO_FLDq = XO_(dd), XOg_FLDq = 0, XO_FILDd = XO_(db), XOg_FILDd = 0, XO_FILDq = XO_(df), XOg_FILDq = 5, XO_FSTPd = XO_(d9), XOg_FSTPd = 3, XO_FSTPq = XO_(dd), XOg_FSTPq = 3, XO_FISTPq = XO_(df), XOg_FISTPq = 7, XO_FISTTPq = XO_(dd), XOg_FISTTPq = 1, XO_FADDq = XO_(dc), XOg_FADDq = 0, XO_FLDCW = XO_(d9), XOg_FLDCW = 5, XO_FNSTCW = XO_(d9), XOg_FNSTCW = 7 } x86Op; /* x86 opcode groups. */ typedef uint32_t x86Group; #define XG_(i8, i, g) ((x86Group)(((i8) << 16) + ((i) << 8) + (g))) #define XG_ARITHi(g) XG_(XI_ARITHi8, XI_ARITHi, g) #define XG_TOXOi(xg) ((x86Op)(0x000000fe + (((xg)<<16) & 0xff000000))) #define XG_TOXOi8(xg) ((x86Op)(0x000000fe + (((xg)<<8) & 0xff000000))) #define XO_ARITH(a) ((x86Op)(0x030000fe + ((a)<<27))) #define XO_ARITHw(a) ((x86Op)(0x036600fd + ((a)<<27))) typedef enum { XOg_ADD, XOg_OR, XOg_ADC, XOg_SBB, XOg_AND, XOg_SUB, XOg_XOR, XOg_CMP, XOg_X_IMUL } x86Arith; typedef enum { XOg_ROL, XOg_ROR, XOg_RCL, XOg_RCR, XOg_SHL, XOg_SHR, XOg_SAL, XOg_SAR } x86Shift; typedef enum { XOg_TEST, XOg_TEST_, XOg_NOT, XOg_NEG, XOg_MUL, XOg_IMUL, XOg_DIV, XOg_IDIV } x86Group3; typedef enum { XOg_INC, XOg_DEC, XOg_CALL, XOg_CALLfar, XOg_JMP, XOg_JMPfar, XOg_PUSH } x86Group5; /* x86 condition codes. */ typedef enum { CC_O, CC_NO, CC_B, CC_NB, CC_E, CC_NE, CC_BE, CC_NBE, CC_S, CC_NS, CC_P, CC_NP, CC_L, CC_NL, CC_LE, CC_NLE, CC_C = CC_B, CC_NAE = CC_C, CC_NC = CC_NB, CC_AE = CC_NB, CC_Z = CC_E, CC_NZ = CC_NE, CC_NA = CC_BE, CC_A = CC_NBE, CC_PE = CC_P, CC_PO = CC_NP, CC_NGE = CC_L, CC_GE = CC_NL, CC_NG = CC_LE, CC_G = CC_NLE } x86CC; #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_opt_narrow.c0000644000175100017510000006212713101703334021140 0ustar ondrejondrej/* ** NARROW: Narrowing of numbers to integers (double to int32_t). ** STRIPOV: Stripping of overflow checks. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #define lj_opt_narrow_c #define LUA_CORE #include "lj_obj.h" #if LJ_HASJIT #include "lj_bc.h" #include "lj_ir.h" #include "lj_jit.h" #include "lj_iropt.h" #include "lj_trace.h" #include "lj_vm.h" #include "lj_strscan.h" /* Rationale for narrowing optimizations: ** ** Lua has only a single number type and this is a FP double by default. ** Narrowing doubles to integers does not pay off for the interpreter on a ** current-generation x86/x64 machine. Most FP operations need the same ** amount of execution resources as their integer counterparts, except ** with slightly longer latencies. Longer latencies are a non-issue for ** the interpreter, since they are usually hidden by other overhead. ** ** The total CPU execution bandwidth is the sum of the bandwidth of the FP ** and the integer units, because they execute in parallel. The FP units ** have an equal or higher bandwidth than the integer units. Not using ** them means losing execution bandwidth. Moving work away from them to ** the already quite busy integer units is a losing proposition. ** ** The situation for JIT-compiled code is a bit different: the higher code ** density makes the extra latencies much more visible. Tight loops expose ** the latencies for updating the induction variables. Array indexing ** requires narrowing conversions with high latencies and additional ** guards (to check that the index is really an integer). And many common ** optimizations only work on integers. ** ** One solution would be speculative, eager narrowing of all number loads. ** This causes many problems, like losing -0 or the need to resolve type ** mismatches between traces. It also effectively forces the integer type ** to have overflow-checking semantics. This impedes many basic ** optimizations and requires adding overflow checks to all integer ** arithmetic operations (whereas FP arithmetics can do without). ** ** Always replacing an FP op with an integer op plus an overflow check is ** counter-productive on a current-generation super-scalar CPU. Although ** the overflow check branches are highly predictable, they will clog the ** execution port for the branch unit and tie up reorder buffers. This is ** turning a pure data-flow dependency into a different data-flow ** dependency (with slightly lower latency) *plus* a control dependency. ** In general, you don't want to do this since latencies due to data-flow ** dependencies can be well hidden by out-of-order execution. ** ** A better solution is to keep all numbers as FP values and only narrow ** when it's beneficial to do so. LuaJIT uses predictive narrowing for ** induction variables and demand-driven narrowing for index expressions, ** integer arguments and bit operations. Additionally it can eliminate or ** hoist most of the resulting overflow checks. Regular arithmetic ** computations are never narrowed to integers. ** ** The integer type in the IR has convenient wrap-around semantics and ** ignores overflow. Extra operations have been added for ** overflow-checking arithmetic (ADDOV/SUBOV) instead of an extra type. ** Apart from reducing overall complexity of the compiler, this also ** nicely solves the problem where you want to apply algebraic ** simplifications to ADD, but not to ADDOV. And the x86/x64 assembler can ** use lea instead of an add for integer ADD, but not for ADDOV (lea does ** not affect the flags, but it helps to avoid register moves). ** ** ** All of the above has to be reconsidered for architectures with slow FP ** operations or without a hardware FPU. The dual-number mode of LuaJIT ** addresses this issue. Arithmetic operations are performed on integers ** as far as possible and overflow checks are added as needed. ** ** This implies that narrowing for integer arguments and bit operations ** should also strip overflow checks, e.g. replace ADDOV with ADD. The ** original overflow guards are weak and can be eliminated by DCE, if ** there's no other use. ** ** A slight twist is that it's usually beneficial to use overflow-checked ** integer arithmetics if all inputs are already integers. This is the only ** change that affects the single-number mode, too. */ /* Some local macros to save typing. Undef'd at the end. */ #define IR(ref) (&J->cur.ir[(ref)]) #define fins (&J->fold.ins) /* Pass IR on to next optimization in chain (FOLD). */ #define emitir(ot, a, b) (lj_ir_set(J, (ot), (a), (b)), lj_opt_fold(J)) #define emitir_raw(ot, a, b) (lj_ir_set(J, (ot), (a), (b)), lj_ir_emit(J)) /* -- Elimination of narrowing type conversions --------------------------- */ /* Narrowing of index expressions and bit operations is demand-driven. The ** trace recorder emits a narrowing type conversion (CONV.int.num or TOBIT) ** in all of these cases (e.g. array indexing or string indexing). FOLD ** already takes care of eliminating simple redundant conversions like ** CONV.int.num(CONV.num.int(x)) ==> x. ** ** But the surrounding code is FP-heavy and arithmetic operations are ** performed on FP numbers (for the single-number mode). Consider a common ** example such as 'x=t[i+1]', with 'i' already an integer (due to induction ** variable narrowing). The index expression would be recorded as ** CONV.int.num(ADD(CONV.num.int(i), 1)) ** which is clearly suboptimal. ** ** One can do better by recursively backpropagating the narrowing type ** conversion across FP arithmetic operations. This turns FP ops into ** their corresponding integer counterparts. Depending on the semantics of ** the conversion they also need to check for overflow. Currently only ADD ** and SUB are supported. ** ** The above example can be rewritten as ** ADDOV(CONV.int.num(CONV.num.int(i)), 1) ** and then into ADDOV(i, 1) after folding of the conversions. The original ** FP ops remain in the IR and are eliminated by DCE since all references to ** them are gone. ** ** [In dual-number mode the trace recorder already emits ADDOV etc., but ** this can be further reduced. See below.] ** ** Special care has to be taken to avoid narrowing across an operation ** which is potentially operating on non-integral operands. One obvious ** case is when an expression contains a non-integral constant, but ends ** up as an integer index at runtime (like t[x+1.5] with x=0.5). ** ** Operations with two non-constant operands illustrate a similar problem ** (like t[a+b] with a=1.5 and b=2.5). Backpropagation has to stop there, ** unless it can be proven that either operand is integral (e.g. by CSEing ** a previous conversion). As a not-so-obvious corollary this logic also ** applies for a whole expression tree (e.g. t[(a+1)+(b+1)]). ** ** Correctness of the transformation is guaranteed by avoiding to expand ** the tree by adding more conversions than the one we would need to emit ** if not backpropagating. TOBIT employs a more optimistic rule, because ** the conversion has special semantics, designed to make the life of the ** compiler writer easier. ;-) ** ** Using on-the-fly backpropagation of an expression tree doesn't work ** because it's unknown whether the transform is correct until the end. ** This either requires IR rollback and cache invalidation for every ** subtree or a two-pass algorithm. The former didn't work out too well, ** so the code now combines a recursive collector with a stack-based ** emitter. ** ** [A recursive backpropagation algorithm with backtracking, employing ** skip-list lookup and round-robin caching, emitting stack operations ** on-the-fly for a stack-based interpreter -- and all of that in a meager ** kilobyte? Yep, compilers are a great treasure chest. Throw away your ** textbooks and read the codebase of a compiler today!] ** ** There's another optimization opportunity for array indexing: it's ** always accompanied by an array bounds-check. The outermost overflow ** check may be delegated to the ABC operation. This works because ABC is ** an unsigned comparison and wrap-around due to overflow creates negative ** numbers. ** ** But this optimization is only valid for constants that cannot overflow ** an int32_t into the range of valid array indexes [0..2^27+1). A check ** for +-2^30 is safe since -2^31 - 2^30 wraps to 2^30 and 2^31-1 + 2^30 ** wraps to -2^30-1. ** ** It's also good enough in practice, since e.g. t[i+1] or t[i-10] are ** quite common. So the above example finally ends up as ADD(i, 1)! ** ** Later on, the assembler is able to fuse the whole array reference and ** the ADD into the memory operands of loads and other instructions. This ** is why LuaJIT is able to generate very pretty (and fast) machine code ** for array indexing. And that, my dear, concludes another story about ** one of the hidden secrets of LuaJIT ... */ /* Maximum backpropagation depth and maximum stack size. */ #define NARROW_MAX_BACKPROP 100 #define NARROW_MAX_STACK 256 /* The stack machine has a 32 bit instruction format: [IROpT | IRRef1] ** The lower 16 bits hold a reference (or 0). The upper 16 bits hold ** the IR opcode + type or one of the following special opcodes: */ enum { NARROW_REF, /* Push ref. */ NARROW_CONV, /* Push conversion of ref. */ NARROW_SEXT, /* Push sign-extension of ref. */ NARROW_INT /* Push KINT ref. The next code holds an int32_t. */ }; typedef uint32_t NarrowIns; #define NARROWINS(op, ref) (((op) << 16) + (ref)) #define narrow_op(ins) ((IROpT)((ins) >> 16)) #define narrow_ref(ins) ((IRRef1)(ins)) /* Context used for narrowing of type conversions. */ typedef struct NarrowConv { jit_State *J; /* JIT compiler state. */ NarrowIns *sp; /* Current stack pointer. */ NarrowIns *maxsp; /* Maximum stack pointer minus redzone. */ IRRef mode; /* Conversion mode (IRCONV_*). */ IRType t; /* Destination type: IRT_INT or IRT_I64. */ NarrowIns stack[NARROW_MAX_STACK]; /* Stack holding stack-machine code. */ } NarrowConv; /* Lookup a reference in the backpropagation cache. */ static BPropEntry *narrow_bpc_get(jit_State *J, IRRef1 key, IRRef mode) { ptrdiff_t i; for (i = 0; i < BPROP_SLOTS; i++) { BPropEntry *bp = &J->bpropcache[i]; /* Stronger checks are ok, too. */ if (bp->key == key && bp->mode >= mode && ((bp->mode ^ mode) & IRCONV_MODEMASK) == 0) return bp; } return NULL; } /* Add an entry to the backpropagation cache. */ static void narrow_bpc_set(jit_State *J, IRRef1 key, IRRef1 val, IRRef mode) { uint32_t slot = J->bpropslot; BPropEntry *bp = &J->bpropcache[slot]; J->bpropslot = (slot + 1) & (BPROP_SLOTS-1); bp->key = key; bp->val = val; bp->mode = mode; } /* Backpropagate overflow stripping. */ static void narrow_stripov_backprop(NarrowConv *nc, IRRef ref, int depth) { jit_State *J = nc->J; IRIns *ir = IR(ref); if (ir->o == IR_ADDOV || ir->o == IR_SUBOV || (ir->o == IR_MULOV && (nc->mode & IRCONV_CONVMASK) == IRCONV_ANY)) { BPropEntry *bp = narrow_bpc_get(nc->J, ref, IRCONV_TOBIT); if (bp) { ref = bp->val; } else if (++depth < NARROW_MAX_BACKPROP && nc->sp < nc->maxsp) { NarrowIns *savesp = nc->sp; narrow_stripov_backprop(nc, ir->op1, depth); if (nc->sp < nc->maxsp) { narrow_stripov_backprop(nc, ir->op2, depth); if (nc->sp < nc->maxsp) { *nc->sp++ = NARROWINS(IRT(ir->o - IR_ADDOV + IR_ADD, IRT_INT), ref); return; } } nc->sp = savesp; /* Path too deep, need to backtrack. */ } } *nc->sp++ = NARROWINS(NARROW_REF, ref); } /* Backpropagate narrowing conversion. Return number of needed conversions. */ static int narrow_conv_backprop(NarrowConv *nc, IRRef ref, int depth) { jit_State *J = nc->J; IRIns *ir = IR(ref); IRRef cref; if (nc->sp >= nc->maxsp) return 10; /* Path too deep. */ /* Check the easy cases first. */ if (ir->o == IR_CONV && (ir->op2 & IRCONV_SRCMASK) == IRT_INT) { if ((nc->mode & IRCONV_CONVMASK) <= IRCONV_ANY) narrow_stripov_backprop(nc, ir->op1, depth+1); else *nc->sp++ = NARROWINS(NARROW_REF, ir->op1); /* Undo conversion. */ if (nc->t == IRT_I64) *nc->sp++ = NARROWINS(NARROW_SEXT, 0); /* Sign-extend integer. */ return 0; } else if (ir->o == IR_KNUM) { /* Narrow FP constant. */ lua_Number n = ir_knum(ir)->n; if ((nc->mode & IRCONV_CONVMASK) == IRCONV_TOBIT) { /* Allows a wider range of constants. */ int64_t k64 = (int64_t)n; if (n == (lua_Number)k64) { /* Only if const doesn't lose precision. */ *nc->sp++ = NARROWINS(NARROW_INT, 0); *nc->sp++ = (NarrowIns)k64; /* But always truncate to 32 bits. */ return 0; } } else { int32_t k = lj_num2int(n); /* Only if constant is a small integer. */ if (checki16(k) && n == (lua_Number)k) { *nc->sp++ = NARROWINS(NARROW_INT, 0); *nc->sp++ = (NarrowIns)k; return 0; } } return 10; /* Never narrow other FP constants (this is rare). */ } /* Try to CSE the conversion. Stronger checks are ok, too. */ cref = J->chain[fins->o]; while (cref > ref) { IRIns *cr = IR(cref); if (cr->op1 == ref && (fins->o == IR_TOBIT || ((cr->op2 & IRCONV_MODEMASK) == (nc->mode & IRCONV_MODEMASK) && irt_isguard(cr->t) >= irt_isguard(fins->t)))) { *nc->sp++ = NARROWINS(NARROW_REF, cref); return 0; /* Already there, no additional conversion needed. */ } cref = cr->prev; } /* Backpropagate across ADD/SUB. */ if (ir->o == IR_ADD || ir->o == IR_SUB) { /* Try cache lookup first. */ IRRef mode = nc->mode; BPropEntry *bp; /* Inner conversions need a stronger check. */ if ((mode & IRCONV_CONVMASK) == IRCONV_INDEX && depth > 0) mode += IRCONV_CHECK-IRCONV_INDEX; bp = narrow_bpc_get(nc->J, (IRRef1)ref, mode); if (bp) { *nc->sp++ = NARROWINS(NARROW_REF, bp->val); return 0; } else if (nc->t == IRT_I64) { /* Try sign-extending from an existing (checked) conversion to int. */ mode = (IRT_INT<<5)|IRT_NUM|IRCONV_INDEX; bp = narrow_bpc_get(nc->J, (IRRef1)ref, mode); if (bp) { *nc->sp++ = NARROWINS(NARROW_REF, bp->val); *nc->sp++ = NARROWINS(NARROW_SEXT, 0); return 0; } } if (++depth < NARROW_MAX_BACKPROP && nc->sp < nc->maxsp) { NarrowIns *savesp = nc->sp; int count = narrow_conv_backprop(nc, ir->op1, depth); count += narrow_conv_backprop(nc, ir->op2, depth); if (count <= 1) { /* Limit total number of conversions. */ *nc->sp++ = NARROWINS(IRT(ir->o, nc->t), ref); return count; } nc->sp = savesp; /* Too many conversions, need to backtrack. */ } } /* Otherwise add a conversion. */ *nc->sp++ = NARROWINS(NARROW_CONV, ref); return 1; } /* Emit the conversions collected during backpropagation. */ static IRRef narrow_conv_emit(jit_State *J, NarrowConv *nc) { /* The fins fields must be saved now -- emitir() overwrites them. */ IROpT guardot = irt_isguard(fins->t) ? IRTG(IR_ADDOV-IR_ADD, 0) : 0; IROpT convot = fins->ot; IRRef1 convop2 = fins->op2; NarrowIns *next = nc->stack; /* List of instructions from backpropagation. */ NarrowIns *last = nc->sp; NarrowIns *sp = nc->stack; /* Recycle the stack to store operands. */ while (next < last) { /* Simple stack machine to process the ins. list. */ NarrowIns ref = *next++; IROpT op = narrow_op(ref); if (op == NARROW_REF) { *sp++ = ref; } else if (op == NARROW_CONV) { *sp++ = emitir_raw(convot, ref, convop2); /* Raw emit avoids a loop. */ } else if (op == NARROW_SEXT) { lua_assert(sp >= nc->stack+1); sp[-1] = emitir(IRT(IR_CONV, IRT_I64), sp[-1], (IRT_I64<<5)|IRT_INT|IRCONV_SEXT); } else if (op == NARROW_INT) { lua_assert(next < last); *sp++ = nc->t == IRT_I64 ? lj_ir_kint64(J, (int64_t)(int32_t)*next++) : lj_ir_kint(J, *next++); } else { /* Regular IROpT. Pops two operands and pushes one result. */ IRRef mode = nc->mode; lua_assert(sp >= nc->stack+2); sp--; /* Omit some overflow checks for array indexing. See comments above. */ if ((mode & IRCONV_CONVMASK) == IRCONV_INDEX) { if (next == last && irref_isk(narrow_ref(sp[0])) && (uint32_t)IR(narrow_ref(sp[0]))->i + 0x40000000u < 0x80000000u) guardot = 0; else /* Otherwise cache a stronger check. */ mode += IRCONV_CHECK-IRCONV_INDEX; } sp[-1] = emitir(op+guardot, sp[-1], sp[0]); /* Add to cache. */ if (narrow_ref(ref)) narrow_bpc_set(J, narrow_ref(ref), narrow_ref(sp[-1]), mode); } } lua_assert(sp == nc->stack+1); return nc->stack[0]; } /* Narrow a type conversion of an arithmetic operation. */ TRef LJ_FASTCALL lj_opt_narrow_convert(jit_State *J) { if ((J->flags & JIT_F_OPT_NARROW)) { NarrowConv nc; nc.J = J; nc.sp = nc.stack; nc.maxsp = &nc.stack[NARROW_MAX_STACK-4]; nc.t = irt_type(fins->t); if (fins->o == IR_TOBIT) { nc.mode = IRCONV_TOBIT; /* Used only in the backpropagation cache. */ } else { nc.mode = fins->op2; } if (narrow_conv_backprop(&nc, fins->op1, 0) <= 1) return narrow_conv_emit(J, &nc); } return NEXTFOLD; } /* -- Narrowing of implicit conversions ----------------------------------- */ /* Recursively strip overflow checks. */ static TRef narrow_stripov(jit_State *J, TRef tr, int lastop, IRRef mode) { IRRef ref = tref_ref(tr); IRIns *ir = IR(ref); int op = ir->o; if (op >= IR_ADDOV && op <= lastop) { BPropEntry *bp = narrow_bpc_get(J, ref, mode); if (bp) { return TREF(bp->val, irt_t(IR(bp->val)->t)); } else { IRRef op1 = ir->op1, op2 = ir->op2; /* The IR may be reallocated. */ op1 = narrow_stripov(J, op1, lastop, mode); op2 = narrow_stripov(J, op2, lastop, mode); tr = emitir(IRT(op - IR_ADDOV + IR_ADD, ((mode & IRCONV_DSTMASK) >> IRCONV_DSH)), op1, op2); narrow_bpc_set(J, ref, tref_ref(tr), mode); } } else if (LJ_64 && (mode & IRCONV_SEXT) && !irt_is64(ir->t)) { tr = emitir(IRT(IR_CONV, IRT_INTP), tr, mode); } return tr; } /* Narrow array index. */ TRef LJ_FASTCALL lj_opt_narrow_index(jit_State *J, TRef tr) { IRIns *ir; lua_assert(tref_isnumber(tr)); if (tref_isnum(tr)) /* Conversion may be narrowed, too. See above. */ return emitir(IRTGI(IR_CONV), tr, IRCONV_INT_NUM|IRCONV_INDEX); /* Omit some overflow checks for array indexing. See comments above. */ ir = IR(tref_ref(tr)); if ((ir->o == IR_ADDOV || ir->o == IR_SUBOV) && irref_isk(ir->op2) && (uint32_t)IR(ir->op2)->i + 0x40000000u < 0x80000000u) return emitir(IRTI(ir->o - IR_ADDOV + IR_ADD), ir->op1, ir->op2); return tr; } /* Narrow conversion to integer operand (overflow undefined). */ TRef LJ_FASTCALL lj_opt_narrow_toint(jit_State *J, TRef tr) { if (tref_isstr(tr)) tr = emitir(IRTG(IR_STRTO, IRT_NUM), tr, 0); if (tref_isnum(tr)) /* Conversion may be narrowed, too. See above. */ return emitir(IRTI(IR_CONV), tr, IRCONV_INT_NUM|IRCONV_ANY); if (!tref_isinteger(tr)) lj_trace_err(J, LJ_TRERR_BADTYPE); /* ** Undefined overflow semantics allow stripping of ADDOV, SUBOV and MULOV. ** Use IRCONV_TOBIT for the cache entries, since the semantics are the same. */ return narrow_stripov(J, tr, IR_MULOV, (IRT_INT<<5)|IRT_INT|IRCONV_TOBIT); } /* Narrow conversion to bitop operand (overflow wrapped). */ TRef LJ_FASTCALL lj_opt_narrow_tobit(jit_State *J, TRef tr) { if (tref_isstr(tr)) tr = emitir(IRTG(IR_STRTO, IRT_NUM), tr, 0); if (tref_isnum(tr)) /* Conversion may be narrowed, too. See above. */ return emitir(IRTI(IR_TOBIT), tr, lj_ir_knum_tobit(J)); if (!tref_isinteger(tr)) lj_trace_err(J, LJ_TRERR_BADTYPE); /* ** Wrapped overflow semantics allow stripping of ADDOV and SUBOV. ** MULOV cannot be stripped due to precision widening. */ return narrow_stripov(J, tr, IR_SUBOV, (IRT_INT<<5)|IRT_INT|IRCONV_TOBIT); } #if LJ_HASFFI /* Narrow C array index (overflow undefined). */ TRef LJ_FASTCALL lj_opt_narrow_cindex(jit_State *J, TRef tr) { lua_assert(tref_isnumber(tr)); if (tref_isnum(tr)) return emitir(IRT(IR_CONV, IRT_INTP), tr, (IRT_INTP<<5)|IRT_NUM|IRCONV_ANY); /* Undefined overflow semantics allow stripping of ADDOV, SUBOV and MULOV. */ return narrow_stripov(J, tr, IR_MULOV, LJ_64 ? ((IRT_INTP<<5)|IRT_INT|IRCONV_SEXT) : ((IRT_INTP<<5)|IRT_INT|IRCONV_TOBIT)); } #endif /* -- Narrowing of arithmetic operators ----------------------------------- */ /* Check whether a number fits into an int32_t (-0 is ok, too). */ static int numisint(lua_Number n) { return (n == (lua_Number)lj_num2int(n)); } /* Convert string to number. Error out for non-numeric string values. */ static TRef conv_str_tonum(jit_State *J, TRef tr, TValue *o) { if (tref_isstr(tr)) { tr = emitir(IRTG(IR_STRTO, IRT_NUM), tr, 0); /* Would need an inverted STRTO for this rare and useless case. */ if (!lj_strscan_num(strV(o), o)) /* Convert in-place. Value used below. */ lj_trace_err(J, LJ_TRERR_BADTYPE); /* Punt if non-numeric. */ } return tr; } /* Narrowing of arithmetic operations. */ TRef lj_opt_narrow_arith(jit_State *J, TRef rb, TRef rc, TValue *vb, TValue *vc, IROp op) { rb = conv_str_tonum(J, rb, vb); rc = conv_str_tonum(J, rc, vc); /* Must not narrow MUL in non-DUALNUM variant, because it loses -0. */ if ((op >= IR_ADD && op <= (LJ_DUALNUM ? IR_MUL : IR_SUB)) && tref_isinteger(rb) && tref_isinteger(rc) && numisint(lj_vm_foldarith(numberVnum(vb), numberVnum(vc), (int)op - (int)IR_ADD))) return emitir(IRTGI((int)op - (int)IR_ADD + (int)IR_ADDOV), rb, rc); if (!tref_isnum(rb)) rb = emitir(IRTN(IR_CONV), rb, IRCONV_NUM_INT); if (!tref_isnum(rc)) rc = emitir(IRTN(IR_CONV), rc, IRCONV_NUM_INT); return emitir(IRTN(op), rb, rc); } /* Narrowing of unary minus operator. */ TRef lj_opt_narrow_unm(jit_State *J, TRef rc, TValue *vc) { rc = conv_str_tonum(J, rc, vc); if (tref_isinteger(rc)) { if ((uint32_t)numberVint(vc) != 0x80000000u) return emitir(IRTGI(IR_SUBOV), lj_ir_kint(J, 0), rc); rc = emitir(IRTN(IR_CONV), rc, IRCONV_NUM_INT); } return emitir(IRTN(IR_NEG), rc, lj_ir_ksimd(J, LJ_KSIMD_NEG)); } /* Narrowing of modulo operator. */ TRef lj_opt_narrow_mod(jit_State *J, TRef rb, TRef rc, TValue *vb, TValue *vc) { TRef tmp; rb = conv_str_tonum(J, rb, vb); rc = conv_str_tonum(J, rc, vc); if ((LJ_DUALNUM || (J->flags & JIT_F_OPT_NARROW)) && tref_isinteger(rb) && tref_isinteger(rc) && (tvisint(vc) ? intV(vc) != 0 : !tviszero(vc))) { emitir(IRTGI(IR_NE), rc, lj_ir_kint(J, 0)); return emitir(IRTI(IR_MOD), rb, rc); } /* b % c ==> b - floor(b/c)*c */ rb = lj_ir_tonum(J, rb); rc = lj_ir_tonum(J, rc); tmp = emitir(IRTN(IR_DIV), rb, rc); tmp = emitir(IRTN(IR_FPMATH), tmp, IRFPM_FLOOR); tmp = emitir(IRTN(IR_MUL), tmp, rc); return emitir(IRTN(IR_SUB), rb, tmp); } /* Narrowing of power operator or math.pow. */ TRef lj_opt_narrow_pow(jit_State *J, TRef rb, TRef rc, TValue *vb, TValue *vc) { rb = conv_str_tonum(J, rb, vb); rb = lj_ir_tonum(J, rb); /* Left arg is always treated as an FP number. */ rc = conv_str_tonum(J, rc, vc); /* Narrowing must be unconditional to preserve (-x)^i semantics. */ if (tvisint(vc) || numisint(numV(vc))) { int checkrange = 0; /* Split pow is faster for bigger exponents. But do this only for (+k)^i. */ if (tref_isk(rb) && (int32_t)ir_knum(IR(tref_ref(rb)))->u32.hi >= 0) { int32_t k = numberVint(vc); if (!(k >= -65536 && k <= 65536)) goto split_pow; checkrange = 1; } if (!tref_isinteger(rc)) { /* Guarded conversion to integer! */ rc = emitir(IRTGI(IR_CONV), rc, IRCONV_INT_NUM|IRCONV_CHECK); } if (checkrange && !tref_isk(rc)) { /* Range guard: -65536 <= i <= 65536 */ TRef tmp = emitir(IRTI(IR_ADD), rc, lj_ir_kint(J, 65536)); emitir(IRTGI(IR_ULE), tmp, lj_ir_kint(J, 2*65536)); } return emitir(IRTN(IR_POW), rb, rc); } split_pow: /* FOLD covers most cases, but some are easier to do here. */ if (tref_isk(rb) && tvispone(ir_knum(IR(tref_ref(rb))))) return rb; /* 1 ^ x ==> 1 */ rc = lj_ir_tonum(J, rc); if (tref_isk(rc) && ir_knum(IR(tref_ref(rc)))->n == 0.5) return emitir(IRTN(IR_FPMATH), rb, IRFPM_SQRT); /* x ^ 0.5 ==> sqrt(x) */ /* Split up b^c into exp2(c*log2(b)). Assembler may rejoin later. */ rb = emitir(IRTN(IR_FPMATH), rb, IRFPM_LOG2); rc = emitir(IRTN(IR_MUL), rb, rc); return emitir(IRTN(IR_FPMATH), rc, IRFPM_EXP2); } /* -- Predictive narrowing of induction variables ------------------------- */ /* Narrow a single runtime value. */ static int narrow_forl(jit_State *J, cTValue *o) { if (tvisint(o)) return 1; if (LJ_DUALNUM || (J->flags & JIT_F_OPT_NARROW)) return numisint(numV(o)); return 0; } /* Narrow the FORL index type by looking at the runtime values. */ IRType lj_opt_narrow_forl(jit_State *J, cTValue *tv) { lua_assert(tvisnumber(&tv[FORL_IDX]) && tvisnumber(&tv[FORL_STOP]) && tvisnumber(&tv[FORL_STEP])); /* Narrow only if the runtime values of start/stop/step are all integers. */ if (narrow_forl(J, &tv[FORL_IDX]) && narrow_forl(J, &tv[FORL_STOP]) && narrow_forl(J, &tv[FORL_STEP])) { /* And if the loop index can't possibly overflow. */ lua_Number step = numberVnum(&tv[FORL_STEP]); lua_Number sum = numberVnum(&tv[FORL_STOP]) + step; if (0 <= step ? (sum <= 2147483647.0) : (sum >= -2147483648.0)) return IRT_INT; } return IRT_NUM; } #undef IR #undef fins #undef emitir #undef emitir_raw #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_asm_ppc.h0000644000175100017510000020127313101703334020372 0ustar ondrejondrej/* ** PPC IR assembler (SSA IR -> machine code). ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ /* -- Register allocator extensions --------------------------------------- */ /* Allocate a register with a hint. */ static Reg ra_hintalloc(ASMState *as, IRRef ref, Reg hint, RegSet allow) { Reg r = IR(ref)->r; if (ra_noreg(r)) { if (!ra_hashint(r) && !iscrossref(as, ref)) ra_sethint(IR(ref)->r, hint); /* Propagate register hint. */ r = ra_allocref(as, ref, allow); } ra_noweak(as, r); return r; } /* Allocate two source registers for three-operand instructions. */ static Reg ra_alloc2(ASMState *as, IRIns *ir, RegSet allow) { IRIns *irl = IR(ir->op1), *irr = IR(ir->op2); Reg left = irl->r, right = irr->r; if (ra_hasreg(left)) { ra_noweak(as, left); if (ra_noreg(right)) right = ra_allocref(as, ir->op2, rset_exclude(allow, left)); else ra_noweak(as, right); } else if (ra_hasreg(right)) { ra_noweak(as, right); left = ra_allocref(as, ir->op1, rset_exclude(allow, right)); } else if (ra_hashint(right)) { right = ra_allocref(as, ir->op2, allow); left = ra_alloc1(as, ir->op1, rset_exclude(allow, right)); } else { left = ra_allocref(as, ir->op1, allow); right = ra_alloc1(as, ir->op2, rset_exclude(allow, left)); } return left | (right << 8); } /* -- Guard handling ------------------------------------------------------ */ /* Setup exit stubs after the end of each trace. */ static void asm_exitstub_setup(ASMState *as, ExitNo nexits) { ExitNo i; MCode *mxp = as->mctop; if (mxp - (nexits + 3 + MCLIM_REDZONE) < as->mclim) asm_mclimit(as); /* 1: mflr r0; bl ->vm_exit_handler; li r0, traceno; bl <1; bl <1; ... */ for (i = nexits-1; (int32_t)i >= 0; i--) *--mxp = PPCI_BL|(((-3-i)&0x00ffffffu)<<2); *--mxp = PPCI_LI|PPCF_T(RID_TMP)|as->T->traceno; /* Read by exit handler. */ mxp--; *mxp = PPCI_BL|((((MCode *)(void *)lj_vm_exit_handler-mxp)&0x00ffffffu)<<2); *--mxp = PPCI_MFLR|PPCF_T(RID_TMP); as->mctop = mxp; } static MCode *asm_exitstub_addr(ASMState *as, ExitNo exitno) { /* Keep this in-sync with exitstub_trace_addr(). */ return as->mctop + exitno + 3; } /* Emit conditional branch to exit for guard. */ static void asm_guardcc(ASMState *as, PPCCC cc) { MCode *target = asm_exitstub_addr(as, as->snapno); MCode *p = as->mcp; if (LJ_UNLIKELY(p == as->invmcp)) { as->loopinv = 1; *p = PPCI_B | (((target-p) & 0x00ffffffu) << 2); emit_condbranch(as, PPCI_BC, cc^4, p); return; } emit_condbranch(as, PPCI_BC, cc, target); } /* -- Operand fusion ------------------------------------------------------ */ /* Limit linear search to this distance. Avoids O(n^2) behavior. */ #define CONFLICT_SEARCH_LIM 31 /* Check if there's no conflicting instruction between curins and ref. */ static int noconflict(ASMState *as, IRRef ref, IROp conflict) { IRIns *ir = as->ir; IRRef i = as->curins; if (i > ref + CONFLICT_SEARCH_LIM) return 0; /* Give up, ref is too far away. */ while (--i > ref) if (ir[i].o == conflict) return 0; /* Conflict found. */ return 1; /* Ok, no conflict. */ } /* Fuse the array base of colocated arrays. */ static int32_t asm_fuseabase(ASMState *as, IRRef ref) { IRIns *ir = IR(ref); if (ir->o == IR_TNEW && ir->op1 <= LJ_MAX_COLOSIZE && !neverfuse(as) && noconflict(as, ref, IR_NEWREF)) return (int32_t)sizeof(GCtab); return 0; } /* Indicates load/store indexed is ok. */ #define AHUREF_LSX ((int32_t)0x80000000) /* Fuse array/hash/upvalue reference into register+offset operand. */ static Reg asm_fuseahuref(ASMState *as, IRRef ref, int32_t *ofsp, RegSet allow) { IRIns *ir = IR(ref); if (ra_noreg(ir->r)) { if (ir->o == IR_AREF) { if (mayfuse(as, ref)) { if (irref_isk(ir->op2)) { IRRef tab = IR(ir->op1)->op1; int32_t ofs = asm_fuseabase(as, tab); IRRef refa = ofs ? tab : ir->op1; ofs += 8*IR(ir->op2)->i; if (checki16(ofs)) { *ofsp = ofs; return ra_alloc1(as, refa, allow); } } if (*ofsp == AHUREF_LSX) { Reg base = ra_alloc1(as, ir->op1, allow); Reg idx = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, base)); return base | (idx << 8); } } } else if (ir->o == IR_HREFK) { if (mayfuse(as, ref)) { int32_t ofs = (int32_t)(IR(ir->op2)->op2 * sizeof(Node)); if (checki16(ofs)) { *ofsp = ofs; return ra_alloc1(as, ir->op1, allow); } } } else if (ir->o == IR_UREFC) { if (irref_isk(ir->op1)) { GCfunc *fn = ir_kfunc(IR(ir->op1)); int32_t ofs = i32ptr(&gcref(fn->l.uvptr[(ir->op2 >> 8)])->uv.tv); int32_t jgl = (intptr_t)J2G(as->J); if ((uint32_t)(ofs-jgl) < 65536) { *ofsp = ofs-jgl-32768; return RID_JGL; } else { *ofsp = (int16_t)ofs; return ra_allock(as, ofs-(int16_t)ofs, allow); } } } } *ofsp = 0; return ra_alloc1(as, ref, allow); } /* Fuse XLOAD/XSTORE reference into load/store operand. */ static void asm_fusexref(ASMState *as, PPCIns pi, Reg rt, IRRef ref, RegSet allow, int32_t ofs) { IRIns *ir = IR(ref); Reg base; if (ra_noreg(ir->r) && canfuse(as, ir)) { if (ir->o == IR_ADD) { int32_t ofs2; if (irref_isk(ir->op2) && (ofs2 = ofs + IR(ir->op2)->i, checki16(ofs2))) { ofs = ofs2; ref = ir->op1; } else if (ofs == 0) { Reg right, left = ra_alloc2(as, ir, allow); right = (left >> 8); left &= 255; emit_fab(as, PPCI_LWZX | ((pi >> 20) & 0x780), rt, left, right); return; } } else if (ir->o == IR_STRREF) { lua_assert(ofs == 0); ofs = (int32_t)sizeof(GCstr); if (irref_isk(ir->op2)) { ofs += IR(ir->op2)->i; ref = ir->op1; } else if (irref_isk(ir->op1)) { ofs += IR(ir->op1)->i; ref = ir->op2; } else { /* NYI: Fuse ADD with constant. */ Reg tmp, right, left = ra_alloc2(as, ir, allow); right = (left >> 8); left &= 255; tmp = ra_scratch(as, rset_exclude(rset_exclude(allow, left), right)); emit_fai(as, pi, rt, tmp, ofs); emit_tab(as, PPCI_ADD, tmp, left, right); return; } if (!checki16(ofs)) { Reg left = ra_alloc1(as, ref, allow); Reg right = ra_allock(as, ofs, rset_exclude(allow, left)); emit_fab(as, PPCI_LWZX | ((pi >> 20) & 0x780), rt, left, right); return; } } } base = ra_alloc1(as, ref, allow); emit_fai(as, pi, rt, base, ofs); } /* Fuse XLOAD/XSTORE reference into indexed-only load/store operand. */ static void asm_fusexrefx(ASMState *as, PPCIns pi, Reg rt, IRRef ref, RegSet allow) { IRIns *ira = IR(ref); Reg right, left; if (canfuse(as, ira) && ira->o == IR_ADD && ra_noreg(ira->r)) { left = ra_alloc2(as, ira, allow); right = (left >> 8); left &= 255; } else { right = ra_alloc1(as, ref, allow); left = RID_R0; } emit_tab(as, pi, rt, left, right); } /* Fuse to multiply-add/sub instruction. */ static int asm_fusemadd(ASMState *as, IRIns *ir, PPCIns pi, PPCIns pir) { IRRef lref = ir->op1, rref = ir->op2; IRIns *irm; if (lref != rref && ((mayfuse(as, lref) && (irm = IR(lref), irm->o == IR_MUL) && ra_noreg(irm->r)) || (mayfuse(as, rref) && (irm = IR(rref), irm->o == IR_MUL) && (rref = lref, pi = pir, ra_noreg(irm->r))))) { Reg dest = ra_dest(as, ir, RSET_FPR); Reg add = ra_alloc1(as, rref, RSET_FPR); Reg right, left = ra_alloc2(as, irm, rset_exclude(RSET_FPR, add)); right = (left >> 8); left &= 255; emit_facb(as, pi, dest, left, right, add); return 1; } return 0; } /* -- Calls --------------------------------------------------------------- */ /* Generate a call to a C function. */ static void asm_gencall(ASMState *as, const CCallInfo *ci, IRRef *args) { uint32_t n, nargs = CCI_XNARGS(ci); int32_t ofs = 8; Reg gpr = REGARG_FIRSTGPR, fpr = REGARG_FIRSTFPR; if ((void *)ci->func) emit_call(as, (void *)ci->func); for (n = 0; n < nargs; n++) { /* Setup args. */ IRRef ref = args[n]; if (ref) { IRIns *ir = IR(ref); if (irt_isfp(ir->t)) { if (fpr <= REGARG_LASTFPR) { lua_assert(rset_test(as->freeset, fpr)); /* Already evicted. */ ra_leftov(as, fpr, ref); fpr++; } else { Reg r = ra_alloc1(as, ref, RSET_FPR); if (irt_isnum(ir->t)) ofs = (ofs + 4) & ~4; emit_spstore(as, ir, r, ofs); ofs += irt_isnum(ir->t) ? 8 : 4; } } else { if (gpr <= REGARG_LASTGPR) { lua_assert(rset_test(as->freeset, gpr)); /* Already evicted. */ ra_leftov(as, gpr, ref); gpr++; } else { Reg r = ra_alloc1(as, ref, RSET_GPR); emit_spstore(as, ir, r, ofs); ofs += 4; } } } else { if (gpr <= REGARG_LASTGPR) gpr++; else ofs += 4; } checkmclim(as); } if ((ci->flags & CCI_VARARG)) /* Vararg calls need to know about FPR use. */ emit_tab(as, fpr == REGARG_FIRSTFPR ? PPCI_CRXOR : PPCI_CREQV, 6, 6, 6); } /* Setup result reg/sp for call. Evict scratch regs. */ static void asm_setupresult(ASMState *as, IRIns *ir, const CCallInfo *ci) { RegSet drop = RSET_SCRATCH; int hiop = ((ir+1)->o == IR_HIOP && !irt_isnil((ir+1)->t)); if ((ci->flags & CCI_NOFPRCLOBBER)) drop &= ~RSET_FPR; if (ra_hasreg(ir->r)) rset_clear(drop, ir->r); /* Dest reg handled below. */ if (hiop && ra_hasreg((ir+1)->r)) rset_clear(drop, (ir+1)->r); /* Dest reg handled below. */ ra_evictset(as, drop); /* Evictions must be performed first. */ if (ra_used(ir)) { lua_assert(!irt_ispri(ir->t)); if (irt_isfp(ir->t)) { if ((ci->flags & CCI_CASTU64)) { /* Use spill slot or temp slots. */ int32_t ofs = ir->s ? sps_scale(ir->s) : SPOFS_TMP; Reg dest = ir->r; if (ra_hasreg(dest)) { ra_free(as, dest); ra_modified(as, dest); emit_fai(as, PPCI_LFD, dest, RID_SP, ofs); } emit_tai(as, PPCI_STW, RID_RETHI, RID_SP, ofs); emit_tai(as, PPCI_STW, RID_RETLO, RID_SP, ofs+4); } else { ra_destreg(as, ir, RID_FPRET); } #if LJ_32 } else if (hiop) { ra_destpair(as, ir); #endif } else { ra_destreg(as, ir, RID_RET); } } } static void asm_callx(ASMState *as, IRIns *ir) { IRRef args[CCI_NARGS_MAX*2]; CCallInfo ci; IRRef func; IRIns *irf; ci.flags = asm_callx_flags(as, ir); asm_collectargs(as, ir, &ci, args); asm_setupresult(as, ir, &ci); func = ir->op2; irf = IR(func); if (irf->o == IR_CARG) { func = irf->op1; irf = IR(func); } if (irref_isk(func)) { /* Call to constant address. */ ci.func = (ASMFunction)(void *)(intptr_t)(irf->i); } else { /* Need a non-argument register for indirect calls. */ RegSet allow = RSET_GPR & ~RSET_RANGE(RID_R0, REGARG_LASTGPR+1); Reg freg = ra_alloc1(as, func, allow); *--as->mcp = PPCI_BCTRL; *--as->mcp = PPCI_MTCTR | PPCF_T(freg); ci.func = (ASMFunction)(void *)0; } asm_gencall(as, &ci, args); } /* -- Returns ------------------------------------------------------------- */ /* Return to lower frame. Guard that it goes to the right spot. */ static void asm_retf(ASMState *as, IRIns *ir) { Reg base = ra_alloc1(as, REF_BASE, RSET_GPR); void *pc = ir_kptr(IR(ir->op2)); int32_t delta = 1+LJ_FR2+bc_a(*((const BCIns *)pc - 1)); as->topslot -= (BCReg)delta; if ((int32_t)as->topslot < 0) as->topslot = 0; irt_setmark(IR(REF_BASE)->t); /* Children must not coalesce with BASE reg. */ emit_setgl(as, base, jit_base); emit_addptr(as, base, -8*delta); asm_guardcc(as, CC_NE); emit_ab(as, PPCI_CMPW, RID_TMP, ra_allock(as, i32ptr(pc), rset_exclude(RSET_GPR, base))); emit_tai(as, PPCI_LWZ, RID_TMP, base, -8); } /* -- Type conversions ---------------------------------------------------- */ static void asm_tointg(ASMState *as, IRIns *ir, Reg left) { RegSet allow = RSET_FPR; Reg tmp = ra_scratch(as, rset_clear(allow, left)); Reg fbias = ra_scratch(as, rset_clear(allow, tmp)); Reg dest = ra_dest(as, ir, RSET_GPR); Reg hibias = ra_allock(as, 0x43300000, rset_exclude(RSET_GPR, dest)); asm_guardcc(as, CC_NE); emit_fab(as, PPCI_FCMPU, 0, tmp, left); emit_fab(as, PPCI_FSUB, tmp, tmp, fbias); emit_fai(as, PPCI_LFD, tmp, RID_SP, SPOFS_TMP); emit_tai(as, PPCI_STW, RID_TMP, RID_SP, SPOFS_TMPLO); emit_tai(as, PPCI_STW, hibias, RID_SP, SPOFS_TMPHI); emit_asi(as, PPCI_XORIS, RID_TMP, dest, 0x8000); emit_tai(as, PPCI_LWZ, dest, RID_SP, SPOFS_TMPLO); emit_lsptr(as, PPCI_LFS, (fbias & 31), (void *)&as->J->k32[LJ_K32_2P52_2P31], RSET_GPR); emit_fai(as, PPCI_STFD, tmp, RID_SP, SPOFS_TMP); emit_fb(as, PPCI_FCTIWZ, tmp, left); } static void asm_tobit(ASMState *as, IRIns *ir) { RegSet allow = RSET_FPR; Reg dest = ra_dest(as, ir, RSET_GPR); Reg left = ra_alloc1(as, ir->op1, allow); Reg right = ra_alloc1(as, ir->op2, rset_clear(allow, left)); Reg tmp = ra_scratch(as, rset_clear(allow, right)); emit_tai(as, PPCI_LWZ, dest, RID_SP, SPOFS_TMPLO); emit_fai(as, PPCI_STFD, tmp, RID_SP, SPOFS_TMP); emit_fab(as, PPCI_FADD, tmp, left, right); } static void asm_conv(ASMState *as, IRIns *ir) { IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK); int stfp = (st == IRT_NUM || st == IRT_FLOAT); IRRef lref = ir->op1; lua_assert(irt_type(ir->t) != st); lua_assert(!(irt_isint64(ir->t) || (st == IRT_I64 || st == IRT_U64))); /* Handled by SPLIT. */ if (irt_isfp(ir->t)) { Reg dest = ra_dest(as, ir, RSET_FPR); if (stfp) { /* FP to FP conversion. */ if (st == IRT_NUM) /* double -> float conversion. */ emit_fb(as, PPCI_FRSP, dest, ra_alloc1(as, lref, RSET_FPR)); else /* float -> double conversion is a no-op on PPC. */ ra_leftov(as, dest, lref); /* Do nothing, but may need to move regs. */ } else { /* Integer to FP conversion. */ /* IRT_INT: Flip hibit, bias with 2^52, subtract 2^52+2^31. */ /* IRT_U32: Bias with 2^52, subtract 2^52. */ RegSet allow = RSET_GPR; Reg left = ra_alloc1(as, lref, allow); Reg hibias = ra_allock(as, 0x43300000, rset_clear(allow, left)); Reg fbias = ra_scratch(as, rset_exclude(RSET_FPR, dest)); if (irt_isfloat(ir->t)) emit_fb(as, PPCI_FRSP, dest, dest); emit_fab(as, PPCI_FSUB, dest, dest, fbias); emit_fai(as, PPCI_LFD, dest, RID_SP, SPOFS_TMP); emit_lsptr(as, PPCI_LFS, (fbias & 31), &as->J->k32[st == IRT_U32 ? LJ_K32_2P52 : LJ_K32_2P52_2P31], rset_clear(allow, hibias)); emit_tai(as, PPCI_STW, st == IRT_U32 ? left : RID_TMP, RID_SP, SPOFS_TMPLO); emit_tai(as, PPCI_STW, hibias, RID_SP, SPOFS_TMPHI); if (st != IRT_U32) emit_asi(as, PPCI_XORIS, RID_TMP, left, 0x8000); } } else if (stfp) { /* FP to integer conversion. */ if (irt_isguard(ir->t)) { /* Checked conversions are only supported from number to int. */ lua_assert(irt_isint(ir->t) && st == IRT_NUM); asm_tointg(as, ir, ra_alloc1(as, lref, RSET_FPR)); } else { Reg dest = ra_dest(as, ir, RSET_GPR); Reg left = ra_alloc1(as, lref, RSET_FPR); Reg tmp = ra_scratch(as, rset_exclude(RSET_FPR, left)); if (irt_isu32(ir->t)) { /* Convert both x and x-2^31 to int and merge results. */ Reg tmpi = ra_scratch(as, rset_exclude(RSET_GPR, dest)); emit_asb(as, PPCI_OR, dest, dest, tmpi); /* Select with mask idiom. */ emit_asb(as, PPCI_AND, tmpi, tmpi, RID_TMP); emit_asb(as, PPCI_ANDC, dest, dest, RID_TMP); emit_tai(as, PPCI_LWZ, tmpi, RID_SP, SPOFS_TMPLO); /* tmp = (int)(x) */ emit_tai(as, PPCI_ADDIS, dest, dest, 0x8000); /* dest += 2^31 */ emit_asb(as, PPCI_SRAWI, RID_TMP, dest, 31); /* mask = -(dest < 0) */ emit_fai(as, PPCI_STFD, tmp, RID_SP, SPOFS_TMP); emit_tai(as, PPCI_LWZ, dest, RID_SP, SPOFS_TMPLO); /* dest = (int)(x-2^31) */ emit_fb(as, PPCI_FCTIWZ, tmp, left); emit_fai(as, PPCI_STFD, tmp, RID_SP, SPOFS_TMP); emit_fb(as, PPCI_FCTIWZ, tmp, tmp); emit_fab(as, PPCI_FSUB, tmp, left, tmp); emit_lsptr(as, PPCI_LFS, (tmp & 31), (void *)&as->J->k32[LJ_K32_2P31], RSET_GPR); } else { emit_tai(as, PPCI_LWZ, dest, RID_SP, SPOFS_TMPLO); emit_fai(as, PPCI_STFD, tmp, RID_SP, SPOFS_TMP); emit_fb(as, PPCI_FCTIWZ, tmp, left); } } } else { Reg dest = ra_dest(as, ir, RSET_GPR); if (st >= IRT_I8 && st <= IRT_U16) { /* Extend to 32 bit integer. */ Reg left = ra_alloc1(as, ir->op1, RSET_GPR); lua_assert(irt_isint(ir->t) || irt_isu32(ir->t)); if ((ir->op2 & IRCONV_SEXT)) emit_as(as, st == IRT_I8 ? PPCI_EXTSB : PPCI_EXTSH, dest, left); else emit_rot(as, PPCI_RLWINM, dest, left, 0, st == IRT_U8 ? 24 : 16, 31); } else { /* 32/64 bit integer conversions. */ /* Only need to handle 32/32 bit no-op (cast) on 32 bit archs. */ ra_leftov(as, dest, lref); /* Do nothing, but may need to move regs. */ } } } static void asm_strto(ASMState *as, IRIns *ir) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_strscan_num]; IRRef args[2]; int32_t ofs; RegSet drop = RSET_SCRATCH; if (ra_hasreg(ir->r)) rset_set(drop, ir->r); /* Spill dest reg (if any). */ ra_evictset(as, drop); asm_guardcc(as, CC_EQ); emit_ai(as, PPCI_CMPWI, RID_RET, 0); /* Test return status. */ args[0] = ir->op1; /* GCstr *str */ args[1] = ASMREF_TMP1; /* TValue *n */ asm_gencall(as, ci, args); /* Store the result to the spill slot or temp slots. */ ofs = ir->s ? sps_scale(ir->s) : SPOFS_TMP; emit_tai(as, PPCI_ADDI, ra_releasetmp(as, ASMREF_TMP1), RID_SP, ofs); } /* -- Memory references --------------------------------------------------- */ /* Get pointer to TValue. */ static void asm_tvptr(ASMState *as, Reg dest, IRRef ref) { IRIns *ir = IR(ref); if (irt_isnum(ir->t)) { if (irref_isk(ref)) /* Use the number constant itself as a TValue. */ ra_allockreg(as, i32ptr(ir_knum(ir)), dest); else /* Otherwise force a spill and use the spill slot. */ emit_tai(as, PPCI_ADDI, dest, RID_SP, ra_spill(as, ir)); } else { /* Otherwise use g->tmptv to hold the TValue. */ RegSet allow = rset_exclude(RSET_GPR, dest); Reg type; emit_tai(as, PPCI_ADDI, dest, RID_JGL, (int32_t)offsetof(global_State, tmptv)-32768); if (!irt_ispri(ir->t)) { Reg src = ra_alloc1(as, ref, allow); emit_setgl(as, src, tmptv.gcr); } type = ra_allock(as, irt_toitype(ir->t), allow); emit_setgl(as, type, tmptv.it); } } static void asm_aref(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg idx, base; if (irref_isk(ir->op2)) { IRRef tab = IR(ir->op1)->op1; int32_t ofs = asm_fuseabase(as, tab); IRRef refa = ofs ? tab : ir->op1; ofs += 8*IR(ir->op2)->i; if (checki16(ofs)) { base = ra_alloc1(as, refa, RSET_GPR); emit_tai(as, PPCI_ADDI, dest, base, ofs); return; } } base = ra_alloc1(as, ir->op1, RSET_GPR); idx = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, base)); emit_tab(as, PPCI_ADD, dest, RID_TMP, base); emit_slwi(as, RID_TMP, idx, 3); } /* Inlined hash lookup. Specialized for key type and for const keys. ** The equivalent C code is: ** Node *n = hashkey(t, key); ** do { ** if (lj_obj_equal(&n->key, key)) return &n->val; ** } while ((n = nextnode(n))); ** return niltv(L); */ static void asm_href(ASMState *as, IRIns *ir, IROp merge) { RegSet allow = RSET_GPR; int destused = ra_used(ir); Reg dest = ra_dest(as, ir, allow); Reg tab = ra_alloc1(as, ir->op1, rset_clear(allow, dest)); Reg key = RID_NONE, tmp1 = RID_TMP, tmp2; Reg tisnum = RID_NONE, tmpnum = RID_NONE; IRRef refkey = ir->op2; IRIns *irkey = IR(refkey); IRType1 kt = irkey->t; uint32_t khash; MCLabel l_end, l_loop, l_next; rset_clear(allow, tab); if (irt_isnum(kt)) { key = ra_alloc1(as, refkey, RSET_FPR); tmpnum = ra_scratch(as, rset_exclude(RSET_FPR, key)); tisnum = ra_allock(as, (int32_t)LJ_TISNUM, allow); rset_clear(allow, tisnum); } else if (!irt_ispri(kt)) { key = ra_alloc1(as, refkey, allow); rset_clear(allow, key); } tmp2 = ra_scratch(as, allow); rset_clear(allow, tmp2); /* Key not found in chain: jump to exit (if merged) or load niltv. */ l_end = emit_label(as); as->invmcp = NULL; if (merge == IR_NE) asm_guardcc(as, CC_EQ); else if (destused) emit_loada(as, dest, niltvg(J2G(as->J))); /* Follow hash chain until the end. */ l_loop = --as->mcp; emit_ai(as, PPCI_CMPWI, dest, 0); emit_tai(as, PPCI_LWZ, dest, dest, (int32_t)offsetof(Node, next)); l_next = emit_label(as); /* Type and value comparison. */ if (merge == IR_EQ) asm_guardcc(as, CC_EQ); else emit_condbranch(as, PPCI_BC|PPCF_Y, CC_EQ, l_end); if (irt_isnum(kt)) { emit_fab(as, PPCI_FCMPU, 0, tmpnum, key); emit_condbranch(as, PPCI_BC, CC_GE, l_next); emit_ab(as, PPCI_CMPLW, tmp1, tisnum); emit_fai(as, PPCI_LFD, tmpnum, dest, (int32_t)offsetof(Node, key.n)); } else { if (!irt_ispri(kt)) { emit_ab(as, PPCI_CMPW, tmp2, key); emit_condbranch(as, PPCI_BC, CC_NE, l_next); } emit_ai(as, PPCI_CMPWI, tmp1, irt_toitype(irkey->t)); if (!irt_ispri(kt)) emit_tai(as, PPCI_LWZ, tmp2, dest, (int32_t)offsetof(Node, key.gcr)); } emit_tai(as, PPCI_LWZ, tmp1, dest, (int32_t)offsetof(Node, key.it)); *l_loop = PPCI_BC | PPCF_Y | PPCF_CC(CC_NE) | (((char *)as->mcp-(char *)l_loop) & 0xffffu); /* Load main position relative to tab->node into dest. */ khash = irref_isk(refkey) ? ir_khash(irkey) : 1; if (khash == 0) { emit_tai(as, PPCI_LWZ, dest, tab, (int32_t)offsetof(GCtab, node)); } else { Reg tmphash = tmp1; if (irref_isk(refkey)) tmphash = ra_allock(as, khash, allow); emit_tab(as, PPCI_ADD, dest, dest, tmp1); emit_tai(as, PPCI_MULLI, tmp1, tmp1, sizeof(Node)); emit_asb(as, PPCI_AND, tmp1, tmp2, tmphash); emit_tai(as, PPCI_LWZ, dest, tab, (int32_t)offsetof(GCtab, node)); emit_tai(as, PPCI_LWZ, tmp2, tab, (int32_t)offsetof(GCtab, hmask)); if (irref_isk(refkey)) { /* Nothing to do. */ } else if (irt_isstr(kt)) { emit_tai(as, PPCI_LWZ, tmp1, key, (int32_t)offsetof(GCstr, hash)); } else { /* Must match with hash*() in lj_tab.c. */ emit_tab(as, PPCI_SUBF, tmp1, tmp2, tmp1); emit_rotlwi(as, tmp2, tmp2, HASH_ROT3); emit_asb(as, PPCI_XOR, tmp1, tmp1, tmp2); emit_rotlwi(as, tmp1, tmp1, (HASH_ROT2+HASH_ROT1)&31); emit_tab(as, PPCI_SUBF, tmp2, dest, tmp2); if (irt_isnum(kt)) { int32_t ofs = ra_spill(as, irkey); emit_asb(as, PPCI_XOR, tmp2, tmp2, tmp1); emit_rotlwi(as, dest, tmp1, HASH_ROT1); emit_tab(as, PPCI_ADD, tmp1, tmp1, tmp1); emit_tai(as, PPCI_LWZ, tmp2, RID_SP, ofs+4); emit_tai(as, PPCI_LWZ, tmp1, RID_SP, ofs); } else { emit_asb(as, PPCI_XOR, tmp2, key, tmp1); emit_rotlwi(as, dest, tmp1, HASH_ROT1); emit_tai(as, PPCI_ADDI, tmp1, tmp2, HASH_BIAS); emit_tai(as, PPCI_ADDIS, tmp2, key, (HASH_BIAS + 32768)>>16); } } } } static void asm_hrefk(ASMState *as, IRIns *ir) { IRIns *kslot = IR(ir->op2); IRIns *irkey = IR(kslot->op1); int32_t ofs = (int32_t)(kslot->op2 * sizeof(Node)); int32_t kofs = ofs + (int32_t)offsetof(Node, key); Reg dest = (ra_used(ir)||ofs > 32736) ? ra_dest(as, ir, RSET_GPR) : RID_NONE; Reg node = ra_alloc1(as, ir->op1, RSET_GPR); Reg key = RID_NONE, type = RID_TMP, idx = node; RegSet allow = rset_exclude(RSET_GPR, node); lua_assert(ofs % sizeof(Node) == 0); if (ofs > 32736) { idx = dest; rset_clear(allow, dest); kofs = (int32_t)offsetof(Node, key); } else if (ra_hasreg(dest)) { emit_tai(as, PPCI_ADDI, dest, node, ofs); } asm_guardcc(as, CC_NE); if (!irt_ispri(irkey->t)) { key = ra_scratch(as, allow); rset_clear(allow, key); } rset_clear(allow, type); if (irt_isnum(irkey->t)) { emit_cmpi(as, key, (int32_t)ir_knum(irkey)->u32.lo); asm_guardcc(as, CC_NE); emit_cmpi(as, type, (int32_t)ir_knum(irkey)->u32.hi); } else { if (ra_hasreg(key)) { emit_cmpi(as, key, irkey->i); /* May use RID_TMP, i.e. type. */ asm_guardcc(as, CC_NE); } emit_ai(as, PPCI_CMPWI, type, irt_toitype(irkey->t)); } if (ra_hasreg(key)) emit_tai(as, PPCI_LWZ, key, idx, kofs+4); emit_tai(as, PPCI_LWZ, type, idx, kofs); if (ofs > 32736) { emit_tai(as, PPCI_ADDIS, dest, dest, (ofs + 32768) >> 16); emit_tai(as, PPCI_ADDI, dest, node, ofs); } } static void asm_uref(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); if (irref_isk(ir->op1)) { GCfunc *fn = ir_kfunc(IR(ir->op1)); MRef *v = &gcref(fn->l.uvptr[(ir->op2 >> 8)])->uv.v; emit_lsptr(as, PPCI_LWZ, dest, v, RSET_GPR); } else { Reg uv = ra_scratch(as, RSET_GPR); Reg func = ra_alloc1(as, ir->op1, RSET_GPR); if (ir->o == IR_UREFC) { asm_guardcc(as, CC_NE); emit_ai(as, PPCI_CMPWI, RID_TMP, 1); emit_tai(as, PPCI_ADDI, dest, uv, (int32_t)offsetof(GCupval, tv)); emit_tai(as, PPCI_LBZ, RID_TMP, uv, (int32_t)offsetof(GCupval, closed)); } else { emit_tai(as, PPCI_LWZ, dest, uv, (int32_t)offsetof(GCupval, v)); } emit_tai(as, PPCI_LWZ, uv, func, (int32_t)offsetof(GCfuncL, uvptr) + 4*(int32_t)(ir->op2 >> 8)); } } static void asm_fref(ASMState *as, IRIns *ir) { UNUSED(as); UNUSED(ir); lua_assert(!ra_used(ir)); } static void asm_strref(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); IRRef ref = ir->op2, refk = ir->op1; int32_t ofs = (int32_t)sizeof(GCstr); Reg r; if (irref_isk(ref)) { IRRef tmp = refk; refk = ref; ref = tmp; } else if (!irref_isk(refk)) { Reg right, left = ra_alloc1(as, ir->op1, RSET_GPR); IRIns *irr = IR(ir->op2); if (ra_hasreg(irr->r)) { ra_noweak(as, irr->r); right = irr->r; } else if (mayfuse(as, irr->op2) && irr->o == IR_ADD && irref_isk(irr->op2) && checki16(ofs + IR(irr->op2)->i)) { ofs += IR(irr->op2)->i; right = ra_alloc1(as, irr->op1, rset_exclude(RSET_GPR, left)); } else { right = ra_allocref(as, ir->op2, rset_exclude(RSET_GPR, left)); } emit_tai(as, PPCI_ADDI, dest, dest, ofs); emit_tab(as, PPCI_ADD, dest, left, right); return; } r = ra_alloc1(as, ref, RSET_GPR); ofs += IR(refk)->i; if (checki16(ofs)) emit_tai(as, PPCI_ADDI, dest, r, ofs); else emit_tab(as, PPCI_ADD, dest, r, ra_allock(as, ofs, rset_exclude(RSET_GPR, r))); } /* -- Loads and stores ---------------------------------------------------- */ static PPCIns asm_fxloadins(IRIns *ir) { switch (irt_type(ir->t)) { case IRT_I8: return PPCI_LBZ; /* Needs sign-extension. */ case IRT_U8: return PPCI_LBZ; case IRT_I16: return PPCI_LHA; case IRT_U16: return PPCI_LHZ; case IRT_NUM: return PPCI_LFD; case IRT_FLOAT: return PPCI_LFS; default: return PPCI_LWZ; } } static PPCIns asm_fxstoreins(IRIns *ir) { switch (irt_type(ir->t)) { case IRT_I8: case IRT_U8: return PPCI_STB; case IRT_I16: case IRT_U16: return PPCI_STH; case IRT_NUM: return PPCI_STFD; case IRT_FLOAT: return PPCI_STFS; default: return PPCI_STW; } } static void asm_fload(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); PPCIns pi = asm_fxloadins(ir); Reg idx; int32_t ofs; if (ir->op1 == REF_NIL) { idx = RID_JGL; ofs = (ir->op2 << 2) - 32768; } else { idx = ra_alloc1(as, ir->op1, RSET_GPR); if (ir->op2 == IRFL_TAB_ARRAY) { ofs = asm_fuseabase(as, ir->op1); if (ofs) { /* Turn the t->array load into an add for colocated arrays. */ emit_tai(as, PPCI_ADDI, dest, idx, ofs); return; } } ofs = field_ofs[ir->op2]; } lua_assert(!irt_isi8(ir->t)); emit_tai(as, pi, dest, idx, ofs); } static void asm_fstore(ASMState *as, IRIns *ir) { if (ir->r != RID_SINK) { Reg src = ra_alloc1(as, ir->op2, RSET_GPR); IRIns *irf = IR(ir->op1); Reg idx = ra_alloc1(as, irf->op1, rset_exclude(RSET_GPR, src)); int32_t ofs = field_ofs[irf->op2]; PPCIns pi = asm_fxstoreins(ir); emit_tai(as, pi, src, idx, ofs); } } static void asm_xload(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, irt_isfp(ir->t) ? RSET_FPR : RSET_GPR); lua_assert(!(ir->op2 & IRXLOAD_UNALIGNED)); if (irt_isi8(ir->t)) emit_as(as, PPCI_EXTSB, dest, dest); asm_fusexref(as, asm_fxloadins(ir), dest, ir->op1, RSET_GPR, 0); } static void asm_xstore_(ASMState *as, IRIns *ir, int32_t ofs) { IRIns *irb; if (ir->r == RID_SINK) return; if (ofs == 0 && mayfuse(as, ir->op2) && (irb = IR(ir->op2))->o == IR_BSWAP && ra_noreg(irb->r) && (irt_isint(ir->t) || irt_isu32(ir->t))) { /* Fuse BSWAP with XSTORE to stwbrx. */ Reg src = ra_alloc1(as, irb->op1, RSET_GPR); asm_fusexrefx(as, PPCI_STWBRX, src, ir->op1, rset_exclude(RSET_GPR, src)); } else { Reg src = ra_alloc1(as, ir->op2, irt_isfp(ir->t) ? RSET_FPR : RSET_GPR); asm_fusexref(as, asm_fxstoreins(ir), src, ir->op1, rset_exclude(RSET_GPR, src), ofs); } } #define asm_xstore(as, ir) asm_xstore_(as, ir, 0) static void asm_ahuvload(ASMState *as, IRIns *ir) { IRType1 t = ir->t; Reg dest = RID_NONE, type = RID_TMP, tmp = RID_TMP, idx; RegSet allow = RSET_GPR; int32_t ofs = AHUREF_LSX; if (ra_used(ir)) { lua_assert(irt_isnum(t) || irt_isint(t) || irt_isaddr(t)); if (!irt_isnum(t)) ofs = 0; dest = ra_dest(as, ir, irt_isnum(t) ? RSET_FPR : RSET_GPR); rset_clear(allow, dest); } idx = asm_fuseahuref(as, ir->op1, &ofs, allow); if (irt_isnum(t)) { Reg tisnum = ra_allock(as, (int32_t)LJ_TISNUM, rset_exclude(allow, idx)); asm_guardcc(as, CC_GE); emit_ab(as, PPCI_CMPLW, type, tisnum); if (ra_hasreg(dest)) { if (ofs == AHUREF_LSX) { tmp = ra_scratch(as, rset_exclude(rset_exclude(RSET_GPR, (idx&255)), (idx>>8))); emit_fab(as, PPCI_LFDX, dest, (idx&255), tmp); } else { emit_fai(as, PPCI_LFD, dest, idx, ofs); } } } else { asm_guardcc(as, CC_NE); emit_ai(as, PPCI_CMPWI, type, irt_toitype(t)); if (ra_hasreg(dest)) emit_tai(as, PPCI_LWZ, dest, idx, ofs+4); } if (ofs == AHUREF_LSX) { emit_tab(as, PPCI_LWZX, type, (idx&255), tmp); emit_slwi(as, tmp, (idx>>8), 3); } else { emit_tai(as, PPCI_LWZ, type, idx, ofs); } } static void asm_ahustore(ASMState *as, IRIns *ir) { RegSet allow = RSET_GPR; Reg idx, src = RID_NONE, type = RID_NONE; int32_t ofs = AHUREF_LSX; if (ir->r == RID_SINK) return; if (irt_isnum(ir->t)) { src = ra_alloc1(as, ir->op2, RSET_FPR); } else { if (!irt_ispri(ir->t)) { src = ra_alloc1(as, ir->op2, allow); rset_clear(allow, src); ofs = 0; } type = ra_allock(as, (int32_t)irt_toitype(ir->t), allow); rset_clear(allow, type); } idx = asm_fuseahuref(as, ir->op1, &ofs, allow); if (irt_isnum(ir->t)) { if (ofs == AHUREF_LSX) { emit_fab(as, PPCI_STFDX, src, (idx&255), RID_TMP); emit_slwi(as, RID_TMP, (idx>>8), 3); } else { emit_fai(as, PPCI_STFD, src, idx, ofs); } } else { if (ra_hasreg(src)) emit_tai(as, PPCI_STW, src, idx, ofs+4); if (ofs == AHUREF_LSX) { emit_tab(as, PPCI_STWX, type, (idx&255), RID_TMP); emit_slwi(as, RID_TMP, (idx>>8), 3); } else { emit_tai(as, PPCI_STW, type, idx, ofs); } } } static void asm_sload(ASMState *as, IRIns *ir) { int32_t ofs = 8*((int32_t)ir->op1-1) + ((ir->op2 & IRSLOAD_FRAME) ? 0 : 4); IRType1 t = ir->t; Reg dest = RID_NONE, type = RID_NONE, base; RegSet allow = RSET_GPR; lua_assert(!(ir->op2 & IRSLOAD_PARENT)); /* Handled by asm_head_side(). */ lua_assert(irt_isguard(t) || !(ir->op2 & IRSLOAD_TYPECHECK)); lua_assert(LJ_DUALNUM || !irt_isint(t) || (ir->op2 & (IRSLOAD_CONVERT|IRSLOAD_FRAME))); if ((ir->op2 & IRSLOAD_CONVERT) && irt_isguard(t) && irt_isint(t)) { dest = ra_scratch(as, RSET_FPR); asm_tointg(as, ir, dest); t.irt = IRT_NUM; /* Continue with a regular number type check. */ } else if (ra_used(ir)) { lua_assert(irt_isnum(t) || irt_isint(t) || irt_isaddr(t)); dest = ra_dest(as, ir, irt_isnum(t) ? RSET_FPR : RSET_GPR); rset_clear(allow, dest); base = ra_alloc1(as, REF_BASE, allow); rset_clear(allow, base); if ((ir->op2 & IRSLOAD_CONVERT)) { if (irt_isint(t)) { emit_tai(as, PPCI_LWZ, dest, RID_SP, SPOFS_TMPLO); dest = ra_scratch(as, RSET_FPR); emit_fai(as, PPCI_STFD, dest, RID_SP, SPOFS_TMP); emit_fb(as, PPCI_FCTIWZ, dest, dest); t.irt = IRT_NUM; /* Check for original type. */ } else { Reg tmp = ra_scratch(as, allow); Reg hibias = ra_allock(as, 0x43300000, rset_clear(allow, tmp)); Reg fbias = ra_scratch(as, rset_exclude(RSET_FPR, dest)); emit_fab(as, PPCI_FSUB, dest, dest, fbias); emit_fai(as, PPCI_LFD, dest, RID_SP, SPOFS_TMP); emit_lsptr(as, PPCI_LFS, (fbias & 31), (void *)&as->J->k32[LJ_K32_2P52_2P31], rset_clear(allow, hibias)); emit_tai(as, PPCI_STW, tmp, RID_SP, SPOFS_TMPLO); emit_tai(as, PPCI_STW, hibias, RID_SP, SPOFS_TMPHI); emit_asi(as, PPCI_XORIS, tmp, tmp, 0x8000); dest = tmp; t.irt = IRT_INT; /* Check for original type. */ } } goto dotypecheck; } base = ra_alloc1(as, REF_BASE, allow); rset_clear(allow, base); dotypecheck: if (irt_isnum(t)) { if ((ir->op2 & IRSLOAD_TYPECHECK)) { Reg tisnum = ra_allock(as, (int32_t)LJ_TISNUM, allow); asm_guardcc(as, CC_GE); emit_ab(as, PPCI_CMPLW, RID_TMP, tisnum); type = RID_TMP; } if (ra_hasreg(dest)) emit_fai(as, PPCI_LFD, dest, base, ofs-4); } else { if ((ir->op2 & IRSLOAD_TYPECHECK)) { asm_guardcc(as, CC_NE); emit_ai(as, PPCI_CMPWI, RID_TMP, irt_toitype(t)); type = RID_TMP; } if (ra_hasreg(dest)) emit_tai(as, PPCI_LWZ, dest, base, ofs); } if (ra_hasreg(type)) emit_tai(as, PPCI_LWZ, type, base, ofs-4); } /* -- Allocations --------------------------------------------------------- */ #if LJ_HASFFI static void asm_cnew(ASMState *as, IRIns *ir) { CTState *cts = ctype_ctsG(J2G(as->J)); CTypeID id = (CTypeID)IR(ir->op1)->i; CTSize sz; CTInfo info = lj_ctype_info(cts, id, &sz); const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_mem_newgco]; IRRef args[4]; RegSet drop = RSET_SCRATCH; lua_assert(sz != CTSIZE_INVALID || (ir->o == IR_CNEW && ir->op2 != REF_NIL)); as->gcsteps++; if (ra_hasreg(ir->r)) rset_clear(drop, ir->r); /* Dest reg handled below. */ ra_evictset(as, drop); if (ra_used(ir)) ra_destreg(as, ir, RID_RET); /* GCcdata * */ /* Initialize immutable cdata object. */ if (ir->o == IR_CNEWI) { RegSet allow = (RSET_GPR & ~RSET_SCRATCH); int32_t ofs = sizeof(GCcdata); lua_assert(sz == 4 || sz == 8); if (sz == 8) { ofs += 4; lua_assert((ir+1)->o == IR_HIOP); } for (;;) { Reg r = ra_alloc1(as, ir->op2, allow); emit_tai(as, PPCI_STW, r, RID_RET, ofs); rset_clear(allow, r); if (ofs == sizeof(GCcdata)) break; ofs -= 4; ir++; } } else if (ir->op2 != REF_NIL) { /* Create VLA/VLS/aligned cdata. */ ci = &lj_ir_callinfo[IRCALL_lj_cdata_newv]; args[0] = ASMREF_L; /* lua_State *L */ args[1] = ir->op1; /* CTypeID id */ args[2] = ir->op2; /* CTSize sz */ args[3] = ASMREF_TMP1; /* CTSize align */ asm_gencall(as, ci, args); emit_loadi(as, ra_releasetmp(as, ASMREF_TMP1), (int32_t)ctype_align(info)); return; } /* Initialize gct and ctypeid. lj_mem_newgco() already sets marked. */ emit_tai(as, PPCI_STB, RID_RET+1, RID_RET, offsetof(GCcdata, gct)); emit_tai(as, PPCI_STH, RID_TMP, RID_RET, offsetof(GCcdata, ctypeid)); emit_ti(as, PPCI_LI, RID_RET+1, ~LJ_TCDATA); emit_ti(as, PPCI_LI, RID_TMP, id); /* Lower 16 bit used. Sign-ext ok. */ args[0] = ASMREF_L; /* lua_State *L */ args[1] = ASMREF_TMP1; /* MSize size */ asm_gencall(as, ci, args); ra_allockreg(as, (int32_t)(sz+sizeof(GCcdata)), ra_releasetmp(as, ASMREF_TMP1)); } #else #define asm_cnew(as, ir) ((void)0) #endif /* -- Write barriers ------------------------------------------------------ */ static void asm_tbar(ASMState *as, IRIns *ir) { Reg tab = ra_alloc1(as, ir->op1, RSET_GPR); Reg mark = ra_scratch(as, rset_exclude(RSET_GPR, tab)); Reg link = RID_TMP; MCLabel l_end = emit_label(as); emit_tai(as, PPCI_STW, link, tab, (int32_t)offsetof(GCtab, gclist)); emit_tai(as, PPCI_STB, mark, tab, (int32_t)offsetof(GCtab, marked)); emit_setgl(as, tab, gc.grayagain); lua_assert(LJ_GC_BLACK == 0x04); emit_rot(as, PPCI_RLWINM, mark, mark, 0, 30, 28); /* Clear black bit. */ emit_getgl(as, link, gc.grayagain); emit_condbranch(as, PPCI_BC|PPCF_Y, CC_EQ, l_end); emit_asi(as, PPCI_ANDIDOT, RID_TMP, mark, LJ_GC_BLACK); emit_tai(as, PPCI_LBZ, mark, tab, (int32_t)offsetof(GCtab, marked)); } static void asm_obar(ASMState *as, IRIns *ir) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_gc_barrieruv]; IRRef args[2]; MCLabel l_end; Reg obj, val, tmp; /* No need for other object barriers (yet). */ lua_assert(IR(ir->op1)->o == IR_UREFC); ra_evictset(as, RSET_SCRATCH); l_end = emit_label(as); args[0] = ASMREF_TMP1; /* global_State *g */ args[1] = ir->op1; /* TValue *tv */ asm_gencall(as, ci, args); emit_tai(as, PPCI_ADDI, ra_releasetmp(as, ASMREF_TMP1), RID_JGL, -32768); obj = IR(ir->op1)->r; tmp = ra_scratch(as, rset_exclude(RSET_GPR, obj)); emit_condbranch(as, PPCI_BC|PPCF_Y, CC_EQ, l_end); emit_asi(as, PPCI_ANDIDOT, tmp, tmp, LJ_GC_BLACK); emit_condbranch(as, PPCI_BC, CC_EQ, l_end); emit_asi(as, PPCI_ANDIDOT, RID_TMP, RID_TMP, LJ_GC_WHITES); val = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, obj)); emit_tai(as, PPCI_LBZ, tmp, obj, (int32_t)offsetof(GCupval, marked)-(int32_t)offsetof(GCupval, tv)); emit_tai(as, PPCI_LBZ, RID_TMP, val, (int32_t)offsetof(GChead, marked)); } /* -- Arithmetic and logic operations ------------------------------------- */ static void asm_fparith(ASMState *as, IRIns *ir, PPCIns pi) { Reg dest = ra_dest(as, ir, RSET_FPR); Reg right, left = ra_alloc2(as, ir, RSET_FPR); right = (left >> 8); left &= 255; if (pi == PPCI_FMUL) emit_fac(as, pi, dest, left, right); else emit_fab(as, pi, dest, left, right); } static void asm_fpunary(ASMState *as, IRIns *ir, PPCIns pi) { Reg dest = ra_dest(as, ir, RSET_FPR); Reg left = ra_hintalloc(as, ir->op1, dest, RSET_FPR); emit_fb(as, pi, dest, left); } static void asm_fpmath(ASMState *as, IRIns *ir) { if (ir->op2 == IRFPM_EXP2 && asm_fpjoin_pow(as, ir)) return; if (ir->op2 == IRFPM_SQRT && (as->flags & JIT_F_SQRT)) asm_fpunary(as, ir, PPCI_FSQRT); else asm_callid(as, ir, IRCALL_lj_vm_floor + ir->op2); } static void asm_add(ASMState *as, IRIns *ir) { if (irt_isnum(ir->t)) { if (!asm_fusemadd(as, ir, PPCI_FMADD, PPCI_FMADD)) asm_fparith(as, ir, PPCI_FADD); } else { Reg dest = ra_dest(as, ir, RSET_GPR); Reg right, left = ra_hintalloc(as, ir->op1, dest, RSET_GPR); PPCIns pi; if (irref_isk(ir->op2)) { int32_t k = IR(ir->op2)->i; if (checki16(k)) { pi = PPCI_ADDI; /* May fail due to spills/restores above, but simplifies the logic. */ if (as->flagmcp == as->mcp) { as->flagmcp = NULL; as->mcp++; pi = PPCI_ADDICDOT; } emit_tai(as, pi, dest, left, k); return; } else if ((k & 0xffff) == 0) { emit_tai(as, PPCI_ADDIS, dest, left, (k >> 16)); return; } else if (!as->sectref) { emit_tai(as, PPCI_ADDIS, dest, dest, (k + 32768) >> 16); emit_tai(as, PPCI_ADDI, dest, left, k); return; } } pi = PPCI_ADD; /* May fail due to spills/restores above, but simplifies the logic. */ if (as->flagmcp == as->mcp) { as->flagmcp = NULL; as->mcp++; pi |= PPCF_DOT; } right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left)); emit_tab(as, pi, dest, left, right); } } static void asm_sub(ASMState *as, IRIns *ir) { if (irt_isnum(ir->t)) { if (!asm_fusemadd(as, ir, PPCI_FMSUB, PPCI_FNMSUB)) asm_fparith(as, ir, PPCI_FSUB); } else { PPCIns pi = PPCI_SUBF; Reg dest = ra_dest(as, ir, RSET_GPR); Reg left, right; if (irref_isk(ir->op1)) { int32_t k = IR(ir->op1)->i; if (checki16(k)) { right = ra_alloc1(as, ir->op2, RSET_GPR); emit_tai(as, PPCI_SUBFIC, dest, right, k); return; } } /* May fail due to spills/restores above, but simplifies the logic. */ if (as->flagmcp == as->mcp) { as->flagmcp = NULL; as->mcp++; pi |= PPCF_DOT; } left = ra_hintalloc(as, ir->op1, dest, RSET_GPR); right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left)); emit_tab(as, pi, dest, right, left); /* Subtract right _from_ left. */ } } static void asm_mul(ASMState *as, IRIns *ir) { if (irt_isnum(ir->t)) { asm_fparith(as, ir, PPCI_FMUL); } else { PPCIns pi = PPCI_MULLW; Reg dest = ra_dest(as, ir, RSET_GPR); Reg right, left = ra_hintalloc(as, ir->op1, dest, RSET_GPR); if (irref_isk(ir->op2)) { int32_t k = IR(ir->op2)->i; if (checki16(k)) { emit_tai(as, PPCI_MULLI, dest, left, k); return; } } /* May fail due to spills/restores above, but simplifies the logic. */ if (as->flagmcp == as->mcp) { as->flagmcp = NULL; as->mcp++; pi |= PPCF_DOT; } right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left)); emit_tab(as, pi, dest, left, right); } } #define asm_div(as, ir) asm_fparith(as, ir, PPCI_FDIV) #define asm_mod(as, ir) asm_callid(as, ir, IRCALL_lj_vm_modi) #define asm_pow(as, ir) asm_callid(as, ir, IRCALL_lj_vm_powi) static void asm_neg(ASMState *as, IRIns *ir) { if (irt_isnum(ir->t)) { asm_fpunary(as, ir, PPCI_FNEG); } else { Reg dest, left; PPCIns pi = PPCI_NEG; if (as->flagmcp == as->mcp) { as->flagmcp = NULL; as->mcp++; pi |= PPCF_DOT; } dest = ra_dest(as, ir, RSET_GPR); left = ra_hintalloc(as, ir->op1, dest, RSET_GPR); emit_tab(as, pi, dest, left, 0); } } #define asm_abs(as, ir) asm_fpunary(as, ir, PPCI_FABS) #define asm_atan2(as, ir) asm_callid(as, ir, IRCALL_atan2) #define asm_ldexp(as, ir) asm_callid(as, ir, IRCALL_ldexp) static void asm_arithov(ASMState *as, IRIns *ir, PPCIns pi) { Reg dest, left, right; if (as->flagmcp == as->mcp) { as->flagmcp = NULL; as->mcp++; } asm_guardcc(as, CC_SO); dest = ra_dest(as, ir, RSET_GPR); left = ra_alloc2(as, ir, RSET_GPR); right = (left >> 8); left &= 255; if (pi == PPCI_SUBFO) { Reg tmp = left; left = right; right = tmp; } emit_tab(as, pi|PPCF_DOT, dest, left, right); } #define asm_addov(as, ir) asm_arithov(as, ir, PPCI_ADDO) #define asm_subov(as, ir) asm_arithov(as, ir, PPCI_SUBFO) #define asm_mulov(as, ir) asm_arithov(as, ir, PPCI_MULLWO) #if LJ_HASFFI static void asm_add64(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg right, left = ra_alloc1(as, ir->op1, RSET_GPR); PPCIns pi = PPCI_ADDE; if (irref_isk(ir->op2)) { int32_t k = IR(ir->op2)->i; if (k == 0) pi = PPCI_ADDZE; else if (k == -1) pi = PPCI_ADDME; else goto needright; right = 0; } else { needright: right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left)); } emit_tab(as, pi, dest, left, right); ir--; dest = ra_dest(as, ir, RSET_GPR); left = ra_alloc1(as, ir->op1, RSET_GPR); if (irref_isk(ir->op2)) { int32_t k = IR(ir->op2)->i; if (checki16(k)) { emit_tai(as, PPCI_ADDIC, dest, left, k); return; } } right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left)); emit_tab(as, PPCI_ADDC, dest, left, right); } static void asm_sub64(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg left, right = ra_alloc1(as, ir->op2, RSET_GPR); PPCIns pi = PPCI_SUBFE; if (irref_isk(ir->op1)) { int32_t k = IR(ir->op1)->i; if (k == 0) pi = PPCI_SUBFZE; else if (k == -1) pi = PPCI_SUBFME; else goto needleft; left = 0; } else { needleft: left = ra_alloc1(as, ir->op1, rset_exclude(RSET_GPR, right)); } emit_tab(as, pi, dest, right, left); /* Subtract right _from_ left. */ ir--; dest = ra_dest(as, ir, RSET_GPR); right = ra_alloc1(as, ir->op2, RSET_GPR); if (irref_isk(ir->op1)) { int32_t k = IR(ir->op1)->i; if (checki16(k)) { emit_tai(as, PPCI_SUBFIC, dest, right, k); return; } } left = ra_alloc1(as, ir->op1, rset_exclude(RSET_GPR, right)); emit_tab(as, PPCI_SUBFC, dest, right, left); } static void asm_neg64(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg left = ra_alloc1(as, ir->op1, RSET_GPR); emit_tab(as, PPCI_SUBFZE, dest, left, 0); ir--; dest = ra_dest(as, ir, RSET_GPR); left = ra_alloc1(as, ir->op1, RSET_GPR); emit_tai(as, PPCI_SUBFIC, dest, left, 0); } #endif static void asm_bnot(ASMState *as, IRIns *ir) { Reg dest, left, right; PPCIns pi = PPCI_NOR; if (as->flagmcp == as->mcp) { as->flagmcp = NULL; as->mcp++; pi |= PPCF_DOT; } dest = ra_dest(as, ir, RSET_GPR); if (mayfuse(as, ir->op1)) { IRIns *irl = IR(ir->op1); if (irl->o == IR_BAND) pi ^= (PPCI_NOR ^ PPCI_NAND); else if (irl->o == IR_BXOR) pi ^= (PPCI_NOR ^ PPCI_EQV); else if (irl->o != IR_BOR) goto nofuse; left = ra_hintalloc(as, irl->op1, dest, RSET_GPR); right = ra_alloc1(as, irl->op2, rset_exclude(RSET_GPR, left)); } else { nofuse: left = right = ra_hintalloc(as, ir->op1, dest, RSET_GPR); } emit_asb(as, pi, dest, left, right); } static void asm_bswap(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); IRIns *irx; if (mayfuse(as, ir->op1) && (irx = IR(ir->op1))->o == IR_XLOAD && ra_noreg(irx->r) && (irt_isint(irx->t) || irt_isu32(irx->t))) { /* Fuse BSWAP with XLOAD to lwbrx. */ asm_fusexrefx(as, PPCI_LWBRX, dest, irx->op1, RSET_GPR); } else { Reg left = ra_alloc1(as, ir->op1, RSET_GPR); Reg tmp = dest; if (tmp == left) { tmp = RID_TMP; emit_mr(as, dest, RID_TMP); } emit_rot(as, PPCI_RLWIMI, tmp, left, 24, 16, 23); emit_rot(as, PPCI_RLWIMI, tmp, left, 24, 0, 7); emit_rotlwi(as, tmp, left, 8); } } /* Fuse BAND with contiguous bitmask and a shift to rlwinm. */ static void asm_fuseandsh(ASMState *as, PPCIns pi, int32_t mask, IRRef ref) { IRIns *ir; Reg left; if (mayfuse(as, ref) && (ir = IR(ref), ra_noreg(ir->r)) && irref_isk(ir->op2) && ir->o >= IR_BSHL && ir->o <= IR_BROR) { int32_t sh = (IR(ir->op2)->i & 31); switch (ir->o) { case IR_BSHL: if ((mask & ((1u<>sh))) goto nofuse; sh = ((32-sh)&31); break; case IR_BROL: break; default: goto nofuse; } left = ra_alloc1(as, ir->op1, RSET_GPR); *--as->mcp = pi | PPCF_T(left) | PPCF_B(sh); return; } nofuse: left = ra_alloc1(as, ref, RSET_GPR); *--as->mcp = pi | PPCF_T(left); } static void asm_band(ASMState *as, IRIns *ir) { Reg dest, left, right; IRRef lref = ir->op1; PPCIns dot = 0; IRRef op2; if (as->flagmcp == as->mcp) { as->flagmcp = NULL; as->mcp++; dot = PPCF_DOT; } dest = ra_dest(as, ir, RSET_GPR); if (irref_isk(ir->op2)) { int32_t k = IR(ir->op2)->i; if (k) { /* First check for a contiguous bitmask as used by rlwinm. */ uint32_t s1 = lj_ffs((uint32_t)k); uint32_t k1 = ((uint32_t)k >> s1); if ((k1 & (k1+1)) == 0) { asm_fuseandsh(as, PPCI_RLWINM|dot | PPCF_A(dest) | PPCF_MB(31-lj_fls((uint32_t)k)) | PPCF_ME(31-s1), k, lref); return; } if (~(uint32_t)k) { uint32_t s2 = lj_ffs(~(uint32_t)k); uint32_t k2 = (~(uint32_t)k >> s2); if ((k2 & (k2+1)) == 0) { asm_fuseandsh(as, PPCI_RLWINM|dot | PPCF_A(dest) | PPCF_MB(32-s2) | PPCF_ME(30-lj_fls(~(uint32_t)k)), k, lref); return; } } } if (checku16(k)) { left = ra_alloc1(as, lref, RSET_GPR); emit_asi(as, PPCI_ANDIDOT, dest, left, k); return; } else if ((k & 0xffff) == 0) { left = ra_alloc1(as, lref, RSET_GPR); emit_asi(as, PPCI_ANDISDOT, dest, left, (k >> 16)); return; } } op2 = ir->op2; if (mayfuse(as, op2) && IR(op2)->o == IR_BNOT && ra_noreg(IR(op2)->r)) { dot ^= (PPCI_AND ^ PPCI_ANDC); op2 = IR(op2)->op1; } left = ra_hintalloc(as, lref, dest, RSET_GPR); right = ra_alloc1(as, op2, rset_exclude(RSET_GPR, left)); emit_asb(as, PPCI_AND ^ dot, dest, left, right); } static void asm_bitop(ASMState *as, IRIns *ir, PPCIns pi, PPCIns pik) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg right, left = ra_hintalloc(as, ir->op1, dest, RSET_GPR); if (irref_isk(ir->op2)) { int32_t k = IR(ir->op2)->i; Reg tmp = left; if ((checku16(k) || (k & 0xffff) == 0) || (tmp = dest, !as->sectref)) { if (!checku16(k)) { emit_asi(as, pik ^ (PPCI_ORI ^ PPCI_ORIS), dest, tmp, (k >> 16)); if ((k & 0xffff) == 0) return; } emit_asi(as, pik, dest, left, k); return; } } /* May fail due to spills/restores above, but simplifies the logic. */ if (as->flagmcp == as->mcp) { as->flagmcp = NULL; as->mcp++; pi |= PPCF_DOT; } right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left)); emit_asb(as, pi, dest, left, right); } #define asm_bor(as, ir) asm_bitop(as, ir, PPCI_OR, PPCI_ORI) #define asm_bxor(as, ir) asm_bitop(as, ir, PPCI_XOR, PPCI_XORI) static void asm_bitshift(ASMState *as, IRIns *ir, PPCIns pi, PPCIns pik) { Reg dest, left; Reg dot = 0; if (as->flagmcp == as->mcp) { as->flagmcp = NULL; as->mcp++; dot = PPCF_DOT; } dest = ra_dest(as, ir, RSET_GPR); left = ra_alloc1(as, ir->op1, RSET_GPR); if (irref_isk(ir->op2)) { /* Constant shifts. */ int32_t shift = (IR(ir->op2)->i & 31); if (pik == 0) /* SLWI */ emit_rot(as, PPCI_RLWINM|dot, dest, left, shift, 0, 31-shift); else if (pik == 1) /* SRWI */ emit_rot(as, PPCI_RLWINM|dot, dest, left, (32-shift)&31, shift, 31); else emit_asb(as, pik|dot, dest, left, shift); } else { Reg right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left)); emit_asb(as, pi|dot, dest, left, right); } } #define asm_bshl(as, ir) asm_bitshift(as, ir, PPCI_SLW, 0) #define asm_bshr(as, ir) asm_bitshift(as, ir, PPCI_SRW, 1) #define asm_bsar(as, ir) asm_bitshift(as, ir, PPCI_SRAW, PPCI_SRAWI) #define asm_brol(as, ir) \ asm_bitshift(as, ir, PPCI_RLWNM|PPCF_MB(0)|PPCF_ME(31), \ PPCI_RLWINM|PPCF_MB(0)|PPCF_ME(31)) #define asm_bror(as, ir) lua_assert(0) static void asm_min_max(ASMState *as, IRIns *ir, int ismax) { if (irt_isnum(ir->t)) { Reg dest = ra_dest(as, ir, RSET_FPR); Reg tmp = dest; Reg right, left = ra_alloc2(as, ir, RSET_FPR); right = (left >> 8); left &= 255; if (tmp == left || tmp == right) tmp = ra_scratch(as, rset_exclude(rset_exclude(rset_exclude(RSET_FPR, dest), left), right)); emit_facb(as, PPCI_FSEL, dest, tmp, ismax ? left : right, ismax ? right : left); emit_fab(as, PPCI_FSUB, tmp, left, right); } else { Reg dest = ra_dest(as, ir, RSET_GPR); Reg tmp1 = RID_TMP, tmp2 = dest; Reg right, left = ra_alloc2(as, ir, RSET_GPR); right = (left >> 8); left &= 255; if (tmp2 == left || tmp2 == right) tmp2 = ra_scratch(as, rset_exclude(rset_exclude(rset_exclude(RSET_GPR, dest), left), right)); emit_tab(as, PPCI_ADD, dest, tmp2, right); emit_asb(as, ismax ? PPCI_ANDC : PPCI_AND, tmp2, tmp2, tmp1); emit_tab(as, PPCI_SUBFE, tmp1, tmp1, tmp1); emit_tab(as, PPCI_SUBFC, tmp2, tmp2, tmp1); emit_asi(as, PPCI_XORIS, tmp2, right, 0x8000); emit_asi(as, PPCI_XORIS, tmp1, left, 0x8000); } } #define asm_min(as, ir) asm_min_max(as, ir, 0) #define asm_max(as, ir) asm_min_max(as, ir, 1) /* -- Comparisons --------------------------------------------------------- */ #define CC_UNSIGNED 0x08 /* Unsigned integer comparison. */ #define CC_TWO 0x80 /* Check two flags for FP comparison. */ /* Map of comparisons to flags. ORDER IR. */ static const uint8_t asm_compmap[IR_ABC+1] = { /* op int cc FP cc */ /* LT */ CC_GE + (CC_GE<<4), /* GE */ CC_LT + (CC_LE<<4) + CC_TWO, /* LE */ CC_GT + (CC_GE<<4) + CC_TWO, /* GT */ CC_LE + (CC_LE<<4), /* ULT */ CC_GE + CC_UNSIGNED + (CC_GT<<4) + CC_TWO, /* UGE */ CC_LT + CC_UNSIGNED + (CC_LT<<4), /* ULE */ CC_GT + CC_UNSIGNED + (CC_GT<<4), /* UGT */ CC_LE + CC_UNSIGNED + (CC_LT<<4) + CC_TWO, /* EQ */ CC_NE + (CC_NE<<4), /* NE */ CC_EQ + (CC_EQ<<4), /* ABC */ CC_LE + CC_UNSIGNED + (CC_LT<<4) + CC_TWO /* Same as UGT. */ }; static void asm_intcomp_(ASMState *as, IRRef lref, IRRef rref, Reg cr, PPCCC cc) { Reg right, left = ra_alloc1(as, lref, RSET_GPR); if (irref_isk(rref)) { int32_t k = IR(rref)->i; if ((cc & CC_UNSIGNED) == 0) { /* Signed comparison with constant. */ if (checki16(k)) { emit_tai(as, PPCI_CMPWI, cr, left, k); /* Signed comparison with zero and referencing previous ins? */ if (k == 0 && lref == as->curins-1) as->flagmcp = as->mcp; /* Allow elimination of the compare. */ return; } else if ((cc & 3) == (CC_EQ & 3)) { /* Use CMPLWI for EQ or NE. */ if (checku16(k)) { emit_tai(as, PPCI_CMPLWI, cr, left, k); return; } else if (!as->sectref && ra_noreg(IR(rref)->r)) { emit_tai(as, PPCI_CMPLWI, cr, RID_TMP, k); emit_asi(as, PPCI_XORIS, RID_TMP, left, (k >> 16)); return; } } } else { /* Unsigned comparison with constant. */ if (checku16(k)) { emit_tai(as, PPCI_CMPLWI, cr, left, k); return; } } } right = ra_alloc1(as, rref, rset_exclude(RSET_GPR, left)); emit_tab(as, (cc & CC_UNSIGNED) ? PPCI_CMPLW : PPCI_CMPW, cr, left, right); } static void asm_comp(ASMState *as, IRIns *ir) { PPCCC cc = asm_compmap[ir->o]; if (irt_isnum(ir->t)) { Reg right, left = ra_alloc2(as, ir, RSET_FPR); right = (left >> 8); left &= 255; asm_guardcc(as, (cc >> 4)); if ((cc & CC_TWO)) emit_tab(as, PPCI_CROR, ((cc>>4)&3), ((cc>>4)&3), (CC_EQ&3)); emit_fab(as, PPCI_FCMPU, 0, left, right); } else { IRRef lref = ir->op1, rref = ir->op2; if (irref_isk(lref) && !irref_isk(rref)) { /* Swap constants to the right (only for ABC). */ IRRef tmp = lref; lref = rref; rref = tmp; if ((cc & 2) == 0) cc ^= 1; /* LT <-> GT, LE <-> GE */ } asm_guardcc(as, cc); asm_intcomp_(as, lref, rref, 0, cc); } } #define asm_equal(as, ir) asm_comp(as, ir) #if LJ_HASFFI /* 64 bit integer comparisons. */ static void asm_comp64(ASMState *as, IRIns *ir) { PPCCC cc = asm_compmap[(ir-1)->o]; if ((cc&3) == (CC_EQ&3)) { asm_guardcc(as, cc); emit_tab(as, (cc&4) ? PPCI_CRAND : PPCI_CROR, (CC_EQ&3), (CC_EQ&3), 4+(CC_EQ&3)); } else { asm_guardcc(as, CC_EQ); emit_tab(as, PPCI_CROR, (CC_EQ&3), (CC_EQ&3), ((cc^~(cc>>2))&1)); emit_tab(as, (cc&4) ? PPCI_CRAND : PPCI_CRANDC, (CC_EQ&3), (CC_EQ&3), 4+(cc&3)); } /* Loword comparison sets cr1 and is unsigned, except for equality. */ asm_intcomp_(as, (ir-1)->op1, (ir-1)->op2, 4, cc | ((cc&3) == (CC_EQ&3) ? 0 : CC_UNSIGNED)); /* Hiword comparison sets cr0. */ asm_intcomp_(as, ir->op1, ir->op2, 0, cc); as->flagmcp = NULL; /* Doesn't work here. */ } #endif /* -- Support for 64 bit ops in 32 bit mode ------------------------------- */ /* Hiword op of a split 64 bit op. Previous op must be the loword op. */ static void asm_hiop(ASMState *as, IRIns *ir) { #if LJ_HASFFI /* HIOP is marked as a store because it needs its own DCE logic. */ int uselo = ra_used(ir-1), usehi = ra_used(ir); /* Loword/hiword used? */ if (LJ_UNLIKELY(!(as->flags & JIT_F_OPT_DCE))) uselo = usehi = 1; if ((ir-1)->o == IR_CONV) { /* Conversions to/from 64 bit. */ as->curins--; /* Always skip the CONV. */ if (usehi || uselo) asm_conv64(as, ir); return; } else if ((ir-1)->o <= IR_NE) { /* 64 bit integer comparisons. ORDER IR. */ as->curins--; /* Always skip the loword comparison. */ asm_comp64(as, ir); return; } else if ((ir-1)->o == IR_XSTORE) { as->curins--; /* Handle both stores here. */ if ((ir-1)->r != RID_SINK) { asm_xstore_(as, ir, 0); asm_xstore_(as, ir-1, 4); } return; } if (!usehi) return; /* Skip unused hiword op for all remaining ops. */ switch ((ir-1)->o) { case IR_ADD: as->curins--; asm_add64(as, ir); break; case IR_SUB: as->curins--; asm_sub64(as, ir); break; case IR_NEG: as->curins--; asm_neg64(as, ir); break; case IR_CALLN: case IR_CALLXS: if (!uselo) ra_allocref(as, ir->op1, RID2RSET(RID_RETLO)); /* Mark lo op as used. */ break; case IR_CNEWI: /* Nothing to do here. Handled by lo op itself. */ break; default: lua_assert(0); break; } #else UNUSED(as); UNUSED(ir); lua_assert(0); /* Unused without FFI. */ #endif } /* -- Profiling ----------------------------------------------------------- */ static void asm_prof(ASMState *as, IRIns *ir) { UNUSED(ir); asm_guardcc(as, CC_NE); emit_asi(as, PPCI_ANDIDOT, RID_TMP, RID_TMP, HOOK_PROFILE); emit_lsglptr(as, PPCI_LBZ, RID_TMP, (int32_t)offsetof(global_State, hookmask)); } /* -- Stack handling ------------------------------------------------------ */ /* Check Lua stack size for overflow. Use exit handler as fallback. */ static void asm_stack_check(ASMState *as, BCReg topslot, IRIns *irp, RegSet allow, ExitNo exitno) { /* Try to get an unused temp. register, otherwise spill/restore RID_RET*. */ Reg tmp, pbase = irp ? (ra_hasreg(irp->r) ? irp->r : RID_TMP) : RID_BASE; rset_clear(allow, pbase); tmp = allow ? rset_pickbot(allow) : (pbase == RID_RETHI ? RID_RETLO : RID_RETHI); emit_condbranch(as, PPCI_BC, CC_LT, asm_exitstub_addr(as, exitno)); if (allow == RSET_EMPTY) /* Restore temp. register. */ emit_tai(as, PPCI_LWZ, tmp, RID_SP, SPOFS_TMPW); else ra_modified(as, tmp); emit_ai(as, PPCI_CMPLWI, RID_TMP, (int32_t)(8*topslot)); emit_tab(as, PPCI_SUBF, RID_TMP, pbase, tmp); emit_tai(as, PPCI_LWZ, tmp, tmp, offsetof(lua_State, maxstack)); if (pbase == RID_TMP) emit_getgl(as, RID_TMP, jit_base); emit_getgl(as, tmp, cur_L); if (allow == RSET_EMPTY) /* Spill temp. register. */ emit_tai(as, PPCI_STW, tmp, RID_SP, SPOFS_TMPW); } /* Restore Lua stack from on-trace state. */ static void asm_stack_restore(ASMState *as, SnapShot *snap) { SnapEntry *map = &as->T->snapmap[snap->mapofs]; SnapEntry *flinks = &as->T->snapmap[snap_nextofs(as->T, snap)-1]; MSize n, nent = snap->nent; /* Store the value of all modified slots to the Lua stack. */ for (n = 0; n < nent; n++) { SnapEntry sn = map[n]; BCReg s = snap_slot(sn); int32_t ofs = 8*((int32_t)s-1); IRRef ref = snap_ref(sn); IRIns *ir = IR(ref); if ((sn & SNAP_NORESTORE)) continue; if (irt_isnum(ir->t)) { Reg src = ra_alloc1(as, ref, RSET_FPR); emit_fai(as, PPCI_STFD, src, RID_BASE, ofs); } else { Reg type; RegSet allow = rset_exclude(RSET_GPR, RID_BASE); lua_assert(irt_ispri(ir->t) || irt_isaddr(ir->t) || irt_isinteger(ir->t)); if (!irt_ispri(ir->t)) { Reg src = ra_alloc1(as, ref, allow); rset_clear(allow, src); emit_tai(as, PPCI_STW, src, RID_BASE, ofs+4); } if ((sn & (SNAP_CONT|SNAP_FRAME))) { if (s == 0) continue; /* Do not overwrite link to previous frame. */ type = ra_allock(as, (int32_t)(*flinks--), allow); } else { type = ra_allock(as, (int32_t)irt_toitype(ir->t), allow); } emit_tai(as, PPCI_STW, type, RID_BASE, ofs); } checkmclim(as); } lua_assert(map + nent == flinks); } /* -- GC handling --------------------------------------------------------- */ /* Check GC threshold and do one or more GC steps. */ static void asm_gc_check(ASMState *as) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_gc_step_jit]; IRRef args[2]; MCLabel l_end; Reg tmp; ra_evictset(as, RSET_SCRATCH); l_end = emit_label(as); /* Exit trace if in GCSatomic or GCSfinalize. Avoids syncing GC objects. */ asm_guardcc(as, CC_NE); /* Assumes asm_snap_prep() already done. */ emit_ai(as, PPCI_CMPWI, RID_RET, 0); args[0] = ASMREF_TMP1; /* global_State *g */ args[1] = ASMREF_TMP2; /* MSize steps */ asm_gencall(as, ci, args); emit_tai(as, PPCI_ADDI, ra_releasetmp(as, ASMREF_TMP1), RID_JGL, -32768); tmp = ra_releasetmp(as, ASMREF_TMP2); emit_loadi(as, tmp, as->gcsteps); /* Jump around GC step if GC total < GC threshold. */ emit_condbranch(as, PPCI_BC|PPCF_Y, CC_LT, l_end); emit_ab(as, PPCI_CMPLW, RID_TMP, tmp); emit_getgl(as, tmp, gc.threshold); emit_getgl(as, RID_TMP, gc.total); as->gcsteps = 0; checkmclim(as); } /* -- Loop handling ------------------------------------------------------- */ /* Fixup the loop branch. */ static void asm_loop_fixup(ASMState *as) { MCode *p = as->mctop; MCode *target = as->mcp; if (as->loopinv) { /* Inverted loop branch? */ /* asm_guardcc already inverted the cond branch and patched the final b. */ p[-2] = (p[-2] & (0xffff0000u & ~PPCF_Y)) | (((target-p+2) & 0x3fffu) << 2); } else { p[-1] = PPCI_B|(((target-p+1)&0x00ffffffu)<<2); } } /* -- Head of trace ------------------------------------------------------- */ /* Coalesce BASE register for a root trace. */ static void asm_head_root_base(ASMState *as) { IRIns *ir = IR(REF_BASE); Reg r = ir->r; if (ra_hasreg(r)) { ra_free(as, r); if (rset_test(as->modset, r) || irt_ismarked(ir->t)) ir->r = RID_INIT; /* No inheritance for modified BASE register. */ if (r != RID_BASE) emit_mr(as, r, RID_BASE); } } /* Coalesce BASE register for a side trace. */ static RegSet asm_head_side_base(ASMState *as, IRIns *irp, RegSet allow) { IRIns *ir = IR(REF_BASE); Reg r = ir->r; if (ra_hasreg(r)) { ra_free(as, r); if (rset_test(as->modset, r) || irt_ismarked(ir->t)) ir->r = RID_INIT; /* No inheritance for modified BASE register. */ if (irp->r == r) { rset_clear(allow, r); /* Mark same BASE register as coalesced. */ } else if (ra_hasreg(irp->r) && rset_test(as->freeset, irp->r)) { rset_clear(allow, irp->r); emit_mr(as, r, irp->r); /* Move from coalesced parent reg. */ } else { emit_getgl(as, r, jit_base); /* Otherwise reload BASE. */ } } return allow; } /* -- Tail of trace ------------------------------------------------------- */ /* Fixup the tail code. */ static void asm_tail_fixup(ASMState *as, TraceNo lnk) { MCode *p = as->mctop; MCode *target; int32_t spadj = as->T->spadjust; if (spadj == 0) { *--p = PPCI_NOP; *--p = PPCI_NOP; as->mctop = p; } else { /* Patch stack adjustment. */ lua_assert(checki16(CFRAME_SIZE+spadj)); p[-3] = PPCI_ADDI | PPCF_T(RID_TMP) | PPCF_A(RID_SP) | (CFRAME_SIZE+spadj); p[-2] = PPCI_STWU | PPCF_T(RID_TMP) | PPCF_A(RID_SP) | spadj; } /* Patch exit branch. */ target = lnk ? traceref(as->J, lnk)->mcode : (MCode *)lj_vm_exit_interp; p[-1] = PPCI_B|(((target-p+1)&0x00ffffffu)<<2); } /* Prepare tail of code. */ static void asm_tail_prep(ASMState *as) { MCode *p = as->mctop - 1; /* Leave room for exit branch. */ if (as->loopref) { as->invmcp = as->mcp = p; } else { as->mcp = p-2; /* Leave room for stack pointer adjustment. */ as->invmcp = NULL; } } /* -- Trace setup --------------------------------------------------------- */ /* Ensure there are enough stack slots for call arguments. */ static Reg asm_setup_call_slots(ASMState *as, IRIns *ir, const CCallInfo *ci) { IRRef args[CCI_NARGS_MAX*2]; uint32_t i, nargs = CCI_XNARGS(ci); int nslots = 2, ngpr = REGARG_NUMGPR, nfpr = REGARG_NUMFPR; asm_collectargs(as, ir, ci, args); for (i = 0; i < nargs; i++) if (args[i] && irt_isfp(IR(args[i])->t)) { if (nfpr > 0) nfpr--; else nslots = (nslots+3) & ~1; } else { if (ngpr > 0) ngpr--; else nslots++; } if (nslots > as->evenspill) /* Leave room for args in stack slots. */ as->evenspill = nslots; return irt_isfp(ir->t) ? REGSP_HINT(RID_FPRET) : REGSP_HINT(RID_RET); } static void asm_setup_target(ASMState *as) { asm_exitstub_setup(as, as->T->nsnap + (as->parent ? 1 : 0)); } /* -- Trace patching ------------------------------------------------------ */ /* Patch exit jumps of existing machine code to a new target. */ void lj_asm_patchexit(jit_State *J, GCtrace *T, ExitNo exitno, MCode *target) { MCode *p = T->mcode; MCode *pe = (MCode *)((char *)p + T->szmcode); MCode *px = exitstub_trace_addr(T, exitno); MCode *cstart = NULL; MCode *mcarea = lj_mcode_patch(J, p, 0); int clearso = 0; for (; p < pe; p++) { /* Look for exitstub branch, try to replace with branch to target. */ uint32_t ins = *p; if ((ins & 0xfc000000u) == 0x40000000u && ((ins ^ ((char *)px-(char *)p)) & 0xffffu) == 0) { ptrdiff_t delta = (char *)target - (char *)p; if (((ins >> 16) & 3) == (CC_SO&3)) { clearso = sizeof(MCode); delta -= sizeof(MCode); } /* Many, but not all short-range branches can be patched directly. */ if (((delta + 0x8000) >> 16) == 0) { *p = (ins & 0xffdf0000u) | ((uint32_t)delta & 0xffffu) | ((delta & 0x8000) * (PPCF_Y/0x8000)); if (!cstart) cstart = p; } } else if ((ins & 0xfc000000u) == PPCI_B && ((ins ^ ((char *)px-(char *)p)) & 0x03ffffffu) == 0) { ptrdiff_t delta = (char *)target - (char *)p; lua_assert(((delta + 0x02000000) >> 26) == 0); *p = PPCI_B | ((uint32_t)delta & 0x03ffffffu); if (!cstart) cstart = p; } } { /* Always patch long-range branch in exit stub itself. */ ptrdiff_t delta = (char *)target - (char *)px - clearso; lua_assert(((delta + 0x02000000) >> 26) == 0); *px = PPCI_B | ((uint32_t)delta & 0x03ffffffu); } if (!cstart) cstart = px; lj_mcode_sync(cstart, px+1); if (clearso) { /* Extend the current trace. Ugly workaround. */ MCode *pp = J->cur.mcode; J->cur.szmcode += sizeof(MCode); *--pp = PPCI_MCRXR; /* Clear SO flag. */ J->cur.mcode = pp; lj_mcode_sync(pp, pp+1); } lj_mcode_patch(J, mcarea, 1); } luajit-2.1.0~beta3+dfsg.orig/src/lj_strfmt.h0000644000175100017510000001065713101703334020273 0ustar ondrejondrej/* ** String formatting. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_STRFMT_H #define _LJ_STRFMT_H #include "lj_obj.h" typedef uint32_t SFormat; /* Format indicator. */ /* Format parser state. */ typedef struct FormatState { const uint8_t *p; /* Current format string pointer. */ const uint8_t *e; /* End of format string. */ const char *str; /* Returned literal string. */ MSize len; /* Size of literal string. */ } FormatState; /* Format types (max. 16). */ typedef enum FormatType { STRFMT_EOF, STRFMT_ERR, STRFMT_LIT, STRFMT_INT, STRFMT_UINT, STRFMT_NUM, STRFMT_STR, STRFMT_CHAR, STRFMT_PTR } FormatType; /* Format subtypes (bits are reused). */ #define STRFMT_T_HEX 0x0010 /* STRFMT_UINT */ #define STRFMT_T_OCT 0x0020 /* STRFMT_UINT */ #define STRFMT_T_FP_A 0x0000 /* STRFMT_NUM */ #define STRFMT_T_FP_E 0x0010 /* STRFMT_NUM */ #define STRFMT_T_FP_F 0x0020 /* STRFMT_NUM */ #define STRFMT_T_FP_G 0x0030 /* STRFMT_NUM */ #define STRFMT_T_QUOTED 0x0010 /* STRFMT_STR */ /* Format flags. */ #define STRFMT_F_LEFT 0x0100 #define STRFMT_F_PLUS 0x0200 #define STRFMT_F_ZERO 0x0400 #define STRFMT_F_SPACE 0x0800 #define STRFMT_F_ALT 0x1000 #define STRFMT_F_UPPER 0x2000 /* Format indicator fields. */ #define STRFMT_SH_WIDTH 16 #define STRFMT_SH_PREC 24 #define STRFMT_TYPE(sf) ((FormatType)((sf) & 15)) #define STRFMT_WIDTH(sf) (((sf) >> STRFMT_SH_WIDTH) & 255u) #define STRFMT_PREC(sf) ((((sf) >> STRFMT_SH_PREC) & 255u) - 1u) #define STRFMT_FP(sf) (((sf) >> 4) & 3) /* Formats for conversion characters. */ #define STRFMT_A (STRFMT_NUM|STRFMT_T_FP_A) #define STRFMT_C (STRFMT_CHAR) #define STRFMT_D (STRFMT_INT) #define STRFMT_E (STRFMT_NUM|STRFMT_T_FP_E) #define STRFMT_F (STRFMT_NUM|STRFMT_T_FP_F) #define STRFMT_G (STRFMT_NUM|STRFMT_T_FP_G) #define STRFMT_I STRFMT_D #define STRFMT_O (STRFMT_UINT|STRFMT_T_OCT) #define STRFMT_P (STRFMT_PTR) #define STRFMT_Q (STRFMT_STR|STRFMT_T_QUOTED) #define STRFMT_S (STRFMT_STR) #define STRFMT_U (STRFMT_UINT) #define STRFMT_X (STRFMT_UINT|STRFMT_T_HEX) #define STRFMT_G14 (STRFMT_G | ((14+1) << STRFMT_SH_PREC)) /* Maximum buffer sizes for conversions. */ #define STRFMT_MAXBUF_XINT (1+22) /* '0' prefix + uint64_t in octal. */ #define STRFMT_MAXBUF_INT (1+10) /* Sign + int32_t in decimal. */ #define STRFMT_MAXBUF_NUM 32 /* Must correspond with STRFMT_G14. */ #define STRFMT_MAXBUF_PTR (2+2*sizeof(ptrdiff_t)) /* "0x" + hex ptr. */ /* Format parser. */ LJ_FUNC SFormat LJ_FASTCALL lj_strfmt_parse(FormatState *fs); static LJ_AINLINE void lj_strfmt_init(FormatState *fs, const char *p, MSize len) { fs->p = (const uint8_t *)p; fs->e = (const uint8_t *)p + len; lua_assert(*fs->e == 0); /* Must be NUL-terminated (may have NULs inside). */ } /* Raw conversions. */ LJ_FUNC char * LJ_FASTCALL lj_strfmt_wint(char *p, int32_t k); LJ_FUNC char * LJ_FASTCALL lj_strfmt_wptr(char *p, const void *v); LJ_FUNC char * LJ_FASTCALL lj_strfmt_wuleb128(char *p, uint32_t v); LJ_FUNC const char *lj_strfmt_wstrnum(lua_State *L, cTValue *o, MSize *lenp); /* Unformatted conversions to buffer. */ LJ_FUNC SBuf * LJ_FASTCALL lj_strfmt_putint(SBuf *sb, int32_t k); #if LJ_HASJIT LJ_FUNC SBuf * LJ_FASTCALL lj_strfmt_putnum(SBuf *sb, cTValue *o); #endif LJ_FUNC SBuf * LJ_FASTCALL lj_strfmt_putptr(SBuf *sb, const void *v); LJ_FUNC SBuf * LJ_FASTCALL lj_strfmt_putquoted(SBuf *sb, GCstr *str); /* Formatted conversions to buffer. */ LJ_FUNC SBuf *lj_strfmt_putfxint(SBuf *sb, SFormat sf, uint64_t k); LJ_FUNC SBuf *lj_strfmt_putfnum_int(SBuf *sb, SFormat sf, lua_Number n); LJ_FUNC SBuf *lj_strfmt_putfnum_uint(SBuf *sb, SFormat sf, lua_Number n); LJ_FUNC SBuf *lj_strfmt_putfnum(SBuf *sb, SFormat, lua_Number n); LJ_FUNC SBuf *lj_strfmt_putfchar(SBuf *sb, SFormat, int32_t c); LJ_FUNC SBuf *lj_strfmt_putfstr(SBuf *sb, SFormat, GCstr *str); /* Conversions to strings. */ LJ_FUNC GCstr * LJ_FASTCALL lj_strfmt_int(lua_State *L, int32_t k); LJ_FUNCA GCstr * LJ_FASTCALL lj_strfmt_num(lua_State *L, cTValue *o); LJ_FUNCA GCstr * LJ_FASTCALL lj_strfmt_number(lua_State *L, cTValue *o); #if LJ_HASJIT LJ_FUNC GCstr * LJ_FASTCALL lj_strfmt_char(lua_State *L, int c); #endif LJ_FUNC GCstr * LJ_FASTCALL lj_strfmt_obj(lua_State *L, cTValue *o); /* Internal string formatting. */ LJ_FUNC const char *lj_strfmt_pushvf(lua_State *L, const char *fmt, va_list argp); LJ_FUNC const char *lj_strfmt_pushf(lua_State *L, const char *fmt, ...) #ifdef __GNUC__ __attribute__ ((format (printf, 2, 3))) #endif ; #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_ccall.h0000644000175100017510000001122713101703334020024 0ustar ondrejondrej/* ** FFI C call handling. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_CCALL_H #define _LJ_CCALL_H #include "lj_obj.h" #include "lj_ctype.h" #if LJ_HASFFI /* -- C calling conventions ----------------------------------------------- */ #if LJ_TARGET_X86ORX64 #if LJ_TARGET_X86 #define CCALL_NARG_GPR 2 /* For fastcall arguments. */ #define CCALL_NARG_FPR 0 #define CCALL_NRET_GPR 2 #define CCALL_NRET_FPR 1 /* For FP results on x87 stack. */ #define CCALL_ALIGN_STACKARG 0 /* Don't align argument on stack. */ #elif LJ_ABI_WIN #define CCALL_NARG_GPR 4 #define CCALL_NARG_FPR 4 #define CCALL_NRET_GPR 1 #define CCALL_NRET_FPR 1 #define CCALL_SPS_EXTRA 4 #else #define CCALL_NARG_GPR 6 #define CCALL_NARG_FPR 8 #define CCALL_NRET_GPR 2 #define CCALL_NRET_FPR 2 #define CCALL_VECTOR_REG 1 /* Pass vectors in registers. */ #endif #define CCALL_SPS_FREE 1 #define CCALL_ALIGN_CALLSTATE 16 typedef LJ_ALIGN(16) union FPRArg { double d[2]; float f[4]; uint8_t b[16]; uint16_t s[8]; int i[4]; int64_t l[2]; } FPRArg; typedef intptr_t GPRArg; #elif LJ_TARGET_ARM #define CCALL_NARG_GPR 4 #define CCALL_NRET_GPR 2 /* For softfp double. */ #if LJ_ABI_SOFTFP #define CCALL_NARG_FPR 0 #define CCALL_NRET_FPR 0 #else #define CCALL_NARG_FPR 8 #define CCALL_NRET_FPR 4 #endif #define CCALL_SPS_FREE 0 typedef intptr_t GPRArg; typedef union FPRArg { double d; float f[2]; } FPRArg; #elif LJ_TARGET_ARM64 #define CCALL_NARG_GPR 8 #define CCALL_NRET_GPR 2 #define CCALL_NARG_FPR 8 #define CCALL_NRET_FPR 4 #define CCALL_SPS_FREE 0 typedef intptr_t GPRArg; typedef union FPRArg { double d; struct { LJ_ENDIAN_LOHI(float f; , float g;) }; struct { LJ_ENDIAN_LOHI(uint32_t lo; , uint32_t hi;) }; } FPRArg; #elif LJ_TARGET_PPC #define CCALL_NARG_GPR 8 #define CCALL_NARG_FPR 8 #define CCALL_NRET_GPR 4 /* For complex double. */ #define CCALL_NRET_FPR 1 #define CCALL_SPS_EXTRA 4 #define CCALL_SPS_FREE 0 typedef intptr_t GPRArg; typedef double FPRArg; #elif LJ_TARGET_MIPS32 #define CCALL_NARG_GPR 4 #define CCALL_NARG_FPR (LJ_ABI_SOFTFP ? 0 : 2) #define CCALL_NRET_GPR (LJ_ABI_SOFTFP ? 4 : 2) #define CCALL_NRET_FPR (LJ_ABI_SOFTFP ? 0 : 2) #define CCALL_SPS_EXTRA 7 #define CCALL_SPS_FREE 1 typedef intptr_t GPRArg; typedef union FPRArg { double d; struct { LJ_ENDIAN_LOHI(float f; , float g;) }; } FPRArg; #elif LJ_TARGET_MIPS64 /* FP args are positional and overlay the GPR array. */ #define CCALL_NARG_GPR 8 #define CCALL_NARG_FPR 0 #define CCALL_NRET_GPR 2 #define CCALL_NRET_FPR (LJ_ABI_SOFTFP ? 0 : 2) #define CCALL_SPS_EXTRA 3 #define CCALL_SPS_FREE 1 typedef intptr_t GPRArg; typedef union FPRArg { double d; struct { LJ_ENDIAN_LOHI(float f; , float g;) }; } FPRArg; #else #error "Missing calling convention definitions for this architecture" #endif #ifndef CCALL_SPS_EXTRA #define CCALL_SPS_EXTRA 0 #endif #ifndef CCALL_VECTOR_REG #define CCALL_VECTOR_REG 0 #endif #ifndef CCALL_ALIGN_STACKARG #define CCALL_ALIGN_STACKARG 1 #endif #ifndef CCALL_ALIGN_CALLSTATE #define CCALL_ALIGN_CALLSTATE 8 #endif #define CCALL_NUM_GPR \ (CCALL_NARG_GPR > CCALL_NRET_GPR ? CCALL_NARG_GPR : CCALL_NRET_GPR) #define CCALL_NUM_FPR \ (CCALL_NARG_FPR > CCALL_NRET_FPR ? CCALL_NARG_FPR : CCALL_NRET_FPR) /* Check against constants in lj_ctype.h. */ LJ_STATIC_ASSERT(CCALL_NUM_GPR <= CCALL_MAX_GPR); LJ_STATIC_ASSERT(CCALL_NUM_FPR <= CCALL_MAX_FPR); #define CCALL_MAXSTACK 32 /* -- C call state -------------------------------------------------------- */ typedef LJ_ALIGN(CCALL_ALIGN_CALLSTATE) struct CCallState { void (*func)(void); /* Pointer to called function. */ uint32_t spadj; /* Stack pointer adjustment. */ uint8_t nsp; /* Number of stack slots. */ uint8_t retref; /* Return value by reference. */ #if LJ_TARGET_X64 uint8_t ngpr; /* Number of arguments in GPRs. */ uint8_t nfpr; /* Number of arguments in FPRs. */ #elif LJ_TARGET_X86 uint8_t resx87; /* Result on x87 stack: 1:float, 2:double. */ #elif LJ_TARGET_ARM64 void *retp; /* Aggregate return pointer in x8. */ #elif LJ_TARGET_PPC uint8_t nfpr; /* Number of arguments in FPRs. */ #endif #if LJ_32 int32_t align1; #endif #if CCALL_NUM_FPR FPRArg fpr[CCALL_NUM_FPR]; /* Arguments/results in FPRs. */ #endif GPRArg gpr[CCALL_NUM_GPR]; /* Arguments/results in GPRs. */ GPRArg stack[CCALL_MAXSTACK]; /* Stack slots. */ } CCallState; /* -- C call handling ----------------------------------------------------- */ /* Really belongs to lj_vm.h. */ LJ_ASMF void LJ_FASTCALL lj_vm_ffi_call(CCallState *cc); LJ_FUNC CTypeID lj_ccall_ctid_vararg(CTState *cts, cTValue *o); LJ_FUNC int lj_ccall_func(lua_State *L, GCcdata *cd); #endif #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_char.h0000644000175100017510000000263513101703334017666 0ustar ondrejondrej/* ** Character types. ** Donated to the public domain. */ #ifndef _LJ_CHAR_H #define _LJ_CHAR_H #include "lj_def.h" #define LJ_CHAR_CNTRL 0x01 #define LJ_CHAR_SPACE 0x02 #define LJ_CHAR_PUNCT 0x04 #define LJ_CHAR_DIGIT 0x08 #define LJ_CHAR_XDIGIT 0x10 #define LJ_CHAR_UPPER 0x20 #define LJ_CHAR_LOWER 0x40 #define LJ_CHAR_IDENT 0x80 #define LJ_CHAR_ALPHA (LJ_CHAR_LOWER|LJ_CHAR_UPPER) #define LJ_CHAR_ALNUM (LJ_CHAR_ALPHA|LJ_CHAR_DIGIT) #define LJ_CHAR_GRAPH (LJ_CHAR_ALNUM|LJ_CHAR_PUNCT) /* Only pass -1 or 0..255 to these macros. Never pass a signed char! */ #define lj_char_isa(c, t) ((lj_char_bits+1)[(c)] & t) #define lj_char_iscntrl(c) lj_char_isa((c), LJ_CHAR_CNTRL) #define lj_char_isspace(c) lj_char_isa((c), LJ_CHAR_SPACE) #define lj_char_ispunct(c) lj_char_isa((c), LJ_CHAR_PUNCT) #define lj_char_isdigit(c) lj_char_isa((c), LJ_CHAR_DIGIT) #define lj_char_isxdigit(c) lj_char_isa((c), LJ_CHAR_XDIGIT) #define lj_char_isupper(c) lj_char_isa((c), LJ_CHAR_UPPER) #define lj_char_islower(c) lj_char_isa((c), LJ_CHAR_LOWER) #define lj_char_isident(c) lj_char_isa((c), LJ_CHAR_IDENT) #define lj_char_isalpha(c) lj_char_isa((c), LJ_CHAR_ALPHA) #define lj_char_isalnum(c) lj_char_isa((c), LJ_CHAR_ALNUM) #define lj_char_isgraph(c) lj_char_isa((c), LJ_CHAR_GRAPH) #define lj_char_toupper(c) ((c) - (lj_char_islower(c) >> 1)) #define lj_char_tolower(c) ((c) + lj_char_isupper(c)) LJ_DATA const uint8_t lj_char_bits[257]; #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_target_arm64.h0000644000175100017510000002235713101703334021253 0ustar ondrejondrej/* ** Definitions for ARM64 CPUs. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_TARGET_ARM64_H #define _LJ_TARGET_ARM64_H /* -- Registers IDs ------------------------------------------------------- */ #define GPRDEF(_) \ _(X0) _(X1) _(X2) _(X3) _(X4) _(X5) _(X6) _(X7) \ _(X8) _(X9) _(X10) _(X11) _(X12) _(X13) _(X14) _(X15) \ _(X16) _(X17) _(X18) _(X19) _(X20) _(X21) _(X22) _(X23) \ _(X24) _(X25) _(X26) _(X27) _(X28) _(FP) _(LR) _(SP) #define FPRDEF(_) \ _(D0) _(D1) _(D2) _(D3) _(D4) _(D5) _(D6) _(D7) \ _(D8) _(D9) _(D10) _(D11) _(D12) _(D13) _(D14) _(D15) \ _(D16) _(D17) _(D18) _(D19) _(D20) _(D21) _(D22) _(D23) \ _(D24) _(D25) _(D26) _(D27) _(D28) _(D29) _(D30) _(D31) #define VRIDDEF(_) #define RIDENUM(name) RID_##name, enum { GPRDEF(RIDENUM) /* General-purpose registers (GPRs). */ FPRDEF(RIDENUM) /* Floating-point registers (FPRs). */ RID_MAX, RID_TMP = RID_LR, RID_ZERO = RID_SP, /* Calling conventions. */ RID_RET = RID_X0, RID_FPRET = RID_D0, /* These definitions must match with the *.dasc file(s): */ RID_BASE = RID_X19, /* Interpreter BASE. */ RID_LPC = RID_X21, /* Interpreter PC. */ RID_GL = RID_X22, /* Interpreter GL. */ RID_LREG = RID_X23, /* Interpreter L. */ /* Register ranges [min, max) and number of registers. */ RID_MIN_GPR = RID_X0, RID_MAX_GPR = RID_SP+1, RID_MIN_FPR = RID_MAX_GPR, RID_MAX_FPR = RID_D31+1, RID_NUM_GPR = RID_MAX_GPR - RID_MIN_GPR, RID_NUM_FPR = RID_MAX_FPR - RID_MIN_FPR }; #define RID_NUM_KREF RID_NUM_GPR #define RID_MIN_KREF RID_X0 /* -- Register sets ------------------------------------------------------- */ /* Make use of all registers, except for x18, fp, lr and sp. */ #define RSET_FIXED \ (RID2RSET(RID_X18)|RID2RSET(RID_FP)|RID2RSET(RID_LR)|RID2RSET(RID_SP)|\ RID2RSET(RID_GL)) #define RSET_GPR (RSET_RANGE(RID_MIN_GPR, RID_MAX_GPR) - RSET_FIXED) #define RSET_FPR RSET_RANGE(RID_MIN_FPR, RID_MAX_FPR) #define RSET_ALL (RSET_GPR|RSET_FPR) #define RSET_INIT RSET_ALL /* lr is an implicit scratch register. */ #define RSET_SCRATCH_GPR (RSET_RANGE(RID_X0, RID_X17+1)) #define RSET_SCRATCH_FPR \ (RSET_RANGE(RID_D0, RID_D7+1)|RSET_RANGE(RID_D16, RID_D31+1)) #define RSET_SCRATCH (RSET_SCRATCH_GPR|RSET_SCRATCH_FPR) #define REGARG_FIRSTGPR RID_X0 #define REGARG_LASTGPR RID_X7 #define REGARG_NUMGPR 8 #define REGARG_FIRSTFPR RID_D0 #define REGARG_LASTFPR RID_D7 #define REGARG_NUMFPR 8 /* -- Spill slots --------------------------------------------------------- */ /* Spill slots are 32 bit wide. An even/odd pair is used for FPRs. ** ** SPS_FIXED: Available fixed spill slots in interpreter frame. ** This definition must match with the vm_arm64.dasc file. ** Pre-allocate some slots to avoid sp adjust in every root trace. ** ** SPS_FIRST: First spill slot for general use. Reserve min. two 32 bit slots. */ #define SPS_FIXED 4 #define SPS_FIRST 2 #define SPOFS_TMP 0 #define sps_scale(slot) (4 * (int32_t)(slot)) #define sps_align(slot) (((slot) - SPS_FIXED + 3) & ~3) /* -- Exit state ---------------------------------------------------------- */ /* This definition must match with the *.dasc file(s). */ typedef struct { lua_Number fpr[RID_NUM_FPR]; /* Floating-point registers. */ intptr_t gpr[RID_NUM_GPR]; /* General-purpose registers. */ int32_t spill[256]; /* Spill slots. */ } ExitState; /* Highest exit + 1 indicates stack check. */ #define EXITSTATE_CHECKEXIT 1 /* Return the address of a per-trace exit stub. */ static LJ_AINLINE uint32_t *exitstub_trace_addr_(uint32_t *p, uint32_t exitno) { while (*p == (LJ_LE ? 0xd503201f : 0x1f2003d5)) p++; /* Skip A64I_NOP. */ return p + 3 + exitno; } /* Avoid dependence on lj_jit.h if only including lj_target.h. */ #define exitstub_trace_addr(T, exitno) \ exitstub_trace_addr_((MCode *)((char *)(T)->mcode + (T)->szmcode), (exitno)) /* -- Instructions -------------------------------------------------------- */ /* ARM64 instructions are always little-endian. Swap for ARM64BE. */ #if LJ_BE #define A64I_LE(x) (lj_bswap(x)) #else #define A64I_LE(x) (x) #endif /* Instruction fields. */ #define A64F_D(r) (r) #define A64F_N(r) ((r) << 5) #define A64F_A(r) ((r) << 10) #define A64F_M(r) ((r) << 16) #define A64F_IMMS(x) ((x) << 10) #define A64F_IMMR(x) ((x) << 16) #define A64F_U16(x) ((x) << 5) #define A64F_U12(x) ((x) << 10) #define A64F_S26(x) (x) #define A64F_S19(x) (((uint32_t)(x) & 0x7ffffu) << 5) #define A64F_S14(x) ((x) << 5) #define A64F_S9(x) ((x) << 12) #define A64F_BIT(x) ((x) << 19) #define A64F_SH(sh, x) (((sh) << 22) | ((x) << 10)) #define A64F_EX(ex) (A64I_EX | ((ex) << 13)) #define A64F_EXSH(ex,x) (A64I_EX | ((ex) << 13) | ((x) << 10)) #define A64F_FP8(x) ((x) << 13) #define A64F_CC(cc) ((cc) << 12) #define A64F_LSL16(x) (((x) / 16) << 21) #define A64F_BSH(sh) ((sh) << 10) typedef enum A64Ins { A64I_S = 0x20000000, A64I_X = 0x80000000, A64I_EX = 0x00200000, A64I_ON = 0x00200000, A64I_K12 = 0x1a000000, A64I_K13 = 0x18000000, A64I_LS_U = 0x01000000, A64I_LS_S = 0x00800000, A64I_LS_R = 0x01200800, A64I_LS_SH = 0x00001000, A64I_LS_UXTWx = 0x00004000, A64I_LS_SXTWx = 0x0000c000, A64I_LS_SXTXx = 0x0000e000, A64I_LS_LSLx = 0x00006000, A64I_ADDw = 0x0b000000, A64I_ADDx = 0x8b000000, A64I_ADDSw = 0x2b000000, A64I_ADDSx = 0xab000000, A64I_NEGw = 0x4b0003e0, A64I_NEGx = 0xcb0003e0, A64I_SUBw = 0x4b000000, A64I_SUBx = 0xcb000000, A64I_SUBSw = 0x6b000000, A64I_SUBSx = 0xeb000000, A64I_MULw = 0x1b007c00, A64I_MULx = 0x9b007c00, A64I_SMULL = 0x9b207c00, A64I_ANDw = 0x0a000000, A64I_ANDx = 0x8a000000, A64I_ANDSw = 0x6a000000, A64I_ANDSx = 0xea000000, A64I_EORw = 0x4a000000, A64I_EORx = 0xca000000, A64I_ORRw = 0x2a000000, A64I_ORRx = 0xaa000000, A64I_TSTw = 0x6a00001f, A64I_TSTx = 0xea00001f, A64I_CMPw = 0x6b00001f, A64I_CMPx = 0xeb00001f, A64I_CMNw = 0x2b00001f, A64I_CMNx = 0xab00001f, A64I_CCMPw = 0x7a400000, A64I_CCMPx = 0xfa400000, A64I_CSELw = 0x1a800000, A64I_CSELx = 0x9a800000, A64I_ASRw = 0x13007c00, A64I_ASRx = 0x9340fc00, A64I_LSLx = 0xd3400000, A64I_LSRx = 0xd340fc00, A64I_SHRw = 0x1ac02000, A64I_SHRx = 0x9ac02000, /* lsl/lsr/asr/ror x0, x0, x0 */ A64I_REVw = 0x5ac00800, A64I_REVx = 0xdac00c00, A64I_EXTRw = 0x13800000, A64I_EXTRx = 0x93c00000, A64I_SBFMw = 0x13000000, A64I_SBFMx = 0x93400000, A64I_SXTBw = 0x13001c00, A64I_SXTHw = 0x13003c00, A64I_SXTW = 0x93407c00, A64I_UBFMw = 0x53000000, A64I_UBFMx = 0xd3400000, A64I_UXTBw = 0x53001c00, A64I_UXTHw = 0x53003c00, A64I_MOVw = 0x2a0003e0, A64I_MOVx = 0xaa0003e0, A64I_MVNw = 0x2a2003e0, A64I_MVNx = 0xaa2003e0, A64I_MOVKw = 0x72800000, A64I_MOVKx = 0xf2800000, A64I_MOVZw = 0x52800000, A64I_MOVZx = 0xd2800000, A64I_MOVNw = 0x12800000, A64I_MOVNx = 0x92800000, A64I_LDRB = 0x39400000, A64I_LDRH = 0x79400000, A64I_LDRw = 0xb9400000, A64I_LDRx = 0xf9400000, A64I_LDRLw = 0x18000000, A64I_LDRLx = 0x58000000, A64I_STRB = 0x39000000, A64I_STRH = 0x79000000, A64I_STRw = 0xb9000000, A64I_STRx = 0xf9000000, A64I_STPw = 0x29000000, A64I_STPx = 0xa9000000, A64I_LDPw = 0x29400000, A64I_LDPx = 0xa9400000, A64I_B = 0x14000000, A64I_BCC = 0x54000000, A64I_BL = 0x94000000, A64I_BR = 0xd61f0000, A64I_BLR = 0xd63f0000, A64I_TBZ = 0x36000000, A64I_TBNZ = 0x37000000, A64I_CBZ = 0x34000000, A64I_CBNZ = 0x35000000, A64I_NOP = 0xd503201f, /* FP */ A64I_FADDd = 0x1e602800, A64I_FSUBd = 0x1e603800, A64I_FMADDd = 0x1f400000, A64I_FMSUBd = 0x1f408000, A64I_FNMADDd = 0x1f600000, A64I_FNMSUBd = 0x1f608000, A64I_FMULd = 0x1e600800, A64I_FDIVd = 0x1e601800, A64I_FNEGd = 0x1e614000, A64I_FABS = 0x1e60c000, A64I_FSQRTd = 0x1e61c000, A64I_LDRs = 0xbd400000, A64I_LDRd = 0xfd400000, A64I_STRs = 0xbd000000, A64I_STRd = 0xfd000000, A64I_LDPs = 0x2d400000, A64I_LDPd = 0x6d400000, A64I_STPs = 0x2d000000, A64I_STPd = 0x6d000000, A64I_FCMPd = 0x1e602000, A64I_FCMPZd = 0x1e602008, A64I_FCSELd = 0x1e600c00, A64I_FRINTMd = 0x1e654000, A64I_FRINTPd = 0x1e64c000, A64I_FRINTZd = 0x1e65c000, A64I_FCVT_F32_F64 = 0x1e624000, A64I_FCVT_F64_F32 = 0x1e22c000, A64I_FCVT_F32_S32 = 0x1e220000, A64I_FCVT_F64_S32 = 0x1e620000, A64I_FCVT_F32_U32 = 0x1e230000, A64I_FCVT_F64_U32 = 0x1e630000, A64I_FCVT_F32_S64 = 0x9e220000, A64I_FCVT_F64_S64 = 0x9e620000, A64I_FCVT_F32_U64 = 0x9e230000, A64I_FCVT_F64_U64 = 0x9e630000, A64I_FCVT_S32_F64 = 0x1e780000, A64I_FCVT_S32_F32 = 0x1e380000, A64I_FCVT_U32_F64 = 0x1e790000, A64I_FCVT_U32_F32 = 0x1e390000, A64I_FCVT_S64_F64 = 0x9e780000, A64I_FCVT_S64_F32 = 0x9e380000, A64I_FCVT_U64_F64 = 0x9e790000, A64I_FCVT_U64_F32 = 0x9e390000, A64I_FMOV_S = 0x1e204000, A64I_FMOV_D = 0x1e604000, A64I_FMOV_R_S = 0x1e260000, A64I_FMOV_S_R = 0x1e270000, A64I_FMOV_R_D = 0x9e660000, A64I_FMOV_D_R = 0x9e670000, A64I_FMOV_DI = 0x1e601000, } A64Ins; typedef enum A64Shift { A64SH_LSL, A64SH_LSR, A64SH_ASR, A64SH_ROR } A64Shift; typedef enum A64Extend { A64EX_UXTB, A64EX_UXTH, A64EX_UXTW, A64EX_UXTX, A64EX_SXTB, A64EX_SXTH, A64EX_SXTW, A64EX_SXTX, } A64Extend; /* ARM condition codes. */ typedef enum A64CC { CC_EQ, CC_NE, CC_CS, CC_CC, CC_MI, CC_PL, CC_VS, CC_VC, CC_HI, CC_LS, CC_GE, CC_LT, CC_GT, CC_LE, CC_AL, CC_HS = CC_CS, CC_LO = CC_CC } A64CC; #endif luajit-2.1.0~beta3+dfsg.orig/src/jit/0000755000175100017510000000000013101703334016673 5ustar ondrejondrejluajit-2.1.0~beta3+dfsg.orig/src/jit/dis_mips64el.lua0000644000175100017510000000131513101703334021700 0ustar ondrejondrej---------------------------------------------------------------------------- -- LuaJIT MIPS64EL disassembler wrapper module. -- -- Copyright (C) 2005-2017 Mike Pall. All rights reserved. -- Released under the MIT license. See Copyright Notice in luajit.h ---------------------------------------------------------------------------- -- This module just exports the little-endian functions from the -- MIPS disassembler module. All the interesting stuff is there. ------------------------------------------------------------------------------ local dis_mips = require((string.match(..., ".*%.") or "").."dis_mips") return { create = dis_mips.create_el, disass = dis_mips.disass_el, regname = dis_mips.regname } luajit-2.1.0~beta3+dfsg.orig/src/jit/dis_mipsel.lua0000644000175100017510000000131313101703334021524 0ustar ondrejondrej---------------------------------------------------------------------------- -- LuaJIT MIPSEL disassembler wrapper module. -- -- Copyright (C) 2005-2017 Mike Pall. All rights reserved. -- Released under the MIT license. See Copyright Notice in luajit.h ---------------------------------------------------------------------------- -- This module just exports the little-endian functions from the -- MIPS disassembler module. All the interesting stuff is there. ------------------------------------------------------------------------------ local dis_mips = require((string.match(..., ".*%.") or "").."dis_mips") return { create = dis_mips.create_el, disass = dis_mips.disass_el, regname = dis_mips.regname } luajit-2.1.0~beta3+dfsg.orig/src/jit/zone.lua0000644000175100017510000000175213101703334020356 0ustar ondrejondrej---------------------------------------------------------------------------- -- LuaJIT profiler zones. -- -- Copyright (C) 2005-2017 Mike Pall. All rights reserved. -- Released under the MIT license. See Copyright Notice in luajit.h ---------------------------------------------------------------------------- -- -- This module implements a simple hierarchical zone model. -- -- Example usage: -- -- local zone = require("jit.zone") -- zone("AI") -- ... -- zone("A*") -- ... -- print(zone:get()) --> "A*" -- ... -- zone() -- ... -- print(zone:get()) --> "AI" -- ... -- zone() -- ---------------------------------------------------------------------------- local remove = table.remove return setmetatable({ flush = function(t) for i=#t,1,-1 do t[i] = nil end end, get = function(t) return t[#t] end }, { __call = function(t, zone) if zone then t[#t+1] = zone else return (assert(remove(t), "empty zone stack")) end end }) luajit-2.1.0~beta3+dfsg.orig/src/jit/dis_mips.lua0000644000175100017510000003271513101703334021215 0ustar ondrejondrej---------------------------------------------------------------------------- -- LuaJIT MIPS disassembler module. -- -- Copyright (C) 2005-2017 Mike Pall. All rights reserved. -- Released under the MIT/X license. See Copyright Notice in luajit.h ---------------------------------------------------------------------------- -- This is a helper module used by the LuaJIT machine code dumper module. -- -- It disassembles all standard MIPS32R1/R2 instructions. -- Default mode is big-endian, but see: dis_mipsel.lua ------------------------------------------------------------------------------ local type = type local byte, format = string.byte, string.format local match, gmatch = string.match, string.gmatch local concat = table.concat local bit = require("bit") local band, bor, tohex = bit.band, bit.bor, bit.tohex local lshift, rshift, arshift = bit.lshift, bit.rshift, bit.arshift ------------------------------------------------------------------------------ -- Primary and extended opcode maps ------------------------------------------------------------------------------ local map_movci = { shift = 16, mask = 1, [0] = "movfDSC", "movtDSC", } local map_srl = { shift = 21, mask = 1, [0] = "srlDTA", "rotrDTA", } local map_srlv = { shift = 6, mask = 1, [0] = "srlvDTS", "rotrvDTS", } local map_special = { shift = 0, mask = 63, [0] = { shift = 0, mask = -1, [0] = "nop", _ = "sllDTA" }, map_movci, map_srl, "sraDTA", "sllvDTS", false, map_srlv, "sravDTS", "jrS", "jalrD1S", "movzDST", "movnDST", "syscallY", "breakY", false, "sync", "mfhiD", "mthiS", "mfloD", "mtloS", "dsllvDST", false, "dsrlvDST", "dsravDST", "multST", "multuST", "divST", "divuST", "dmultST", "dmultuST", "ddivST", "ddivuST", "addDST", "addu|moveDST0", "subDST", "subu|neguDS0T", "andDST", "or|moveDST0", "xorDST", "nor|notDST0", false, false, "sltDST", "sltuDST", "daddDST", "dadduDST", "dsubDST", "dsubuDST", "tgeSTZ", "tgeuSTZ", "tltSTZ", "tltuSTZ", "teqSTZ", false, "tneSTZ", false, "dsllDTA", false, "dsrlDTA", "dsraDTA", "dsll32DTA", false, "dsrl32DTA", "dsra32DTA", } local map_special2 = { shift = 0, mask = 63, [0] = "maddST", "madduST", "mulDST", false, "msubST", "msubuST", [32] = "clzDS", [33] = "cloDS", [63] = "sdbbpY", } local map_bshfl = { shift = 6, mask = 31, [2] = "wsbhDT", [16] = "sebDT", [24] = "sehDT", } local map_dbshfl = { shift = 6, mask = 31, [2] = "dsbhDT", [5] = "dshdDT", } local map_special3 = { shift = 0, mask = 63, [0] = "extTSAK", [1] = "dextmTSAP", [3] = "dextTSAK", [4] = "insTSAL", [6] = "dinsuTSEQ", [7] = "dinsTSAL", [32] = map_bshfl, [36] = map_dbshfl, [59] = "rdhwrTD", } local map_regimm = { shift = 16, mask = 31, [0] = "bltzSB", "bgezSB", "bltzlSB", "bgezlSB", false, false, false, false, "tgeiSI", "tgeiuSI", "tltiSI", "tltiuSI", "teqiSI", false, "tneiSI", false, "bltzalSB", "bgezalSB", "bltzallSB", "bgezallSB", false, false, false, false, false, false, false, false, false, false, false, "synciSO", } local map_cop0 = { shift = 25, mask = 1, [0] = { shift = 21, mask = 15, [0] = "mfc0TDW", [4] = "mtc0TDW", [10] = "rdpgprDT", [11] = { shift = 5, mask = 1, [0] = "diT0", "eiT0", }, [14] = "wrpgprDT", }, { shift = 0, mask = 63, [1] = "tlbr", [2] = "tlbwi", [6] = "tlbwr", [8] = "tlbp", [24] = "eret", [31] = "deret", [32] = "wait", }, } local map_cop1s = { shift = 0, mask = 63, [0] = "add.sFGH", "sub.sFGH", "mul.sFGH", "div.sFGH", "sqrt.sFG", "abs.sFG", "mov.sFG", "neg.sFG", "round.l.sFG", "trunc.l.sFG", "ceil.l.sFG", "floor.l.sFG", "round.w.sFG", "trunc.w.sFG", "ceil.w.sFG", "floor.w.sFG", false, { shift = 16, mask = 1, [0] = "movf.sFGC", "movt.sFGC" }, "movz.sFGT", "movn.sFGT", false, "recip.sFG", "rsqrt.sFG", false, false, false, false, false, false, false, false, false, false, "cvt.d.sFG", false, false, "cvt.w.sFG", "cvt.l.sFG", "cvt.ps.sFGH", false, false, false, false, false, false, false, false, false, "c.f.sVGH", "c.un.sVGH", "c.eq.sVGH", "c.ueq.sVGH", "c.olt.sVGH", "c.ult.sVGH", "c.ole.sVGH", "c.ule.sVGH", "c.sf.sVGH", "c.ngle.sVGH", "c.seq.sVGH", "c.ngl.sVGH", "c.lt.sVGH", "c.nge.sVGH", "c.le.sVGH", "c.ngt.sVGH", } local map_cop1d = { shift = 0, mask = 63, [0] = "add.dFGH", "sub.dFGH", "mul.dFGH", "div.dFGH", "sqrt.dFG", "abs.dFG", "mov.dFG", "neg.dFG", "round.l.dFG", "trunc.l.dFG", "ceil.l.dFG", "floor.l.dFG", "round.w.dFG", "trunc.w.dFG", "ceil.w.dFG", "floor.w.dFG", false, { shift = 16, mask = 1, [0] = "movf.dFGC", "movt.dFGC" }, "movz.dFGT", "movn.dFGT", false, "recip.dFG", "rsqrt.dFG", false, false, false, false, false, false, false, false, false, "cvt.s.dFG", false, false, false, "cvt.w.dFG", "cvt.l.dFG", false, false, false, false, false, false, false, false, false, false, "c.f.dVGH", "c.un.dVGH", "c.eq.dVGH", "c.ueq.dVGH", "c.olt.dVGH", "c.ult.dVGH", "c.ole.dVGH", "c.ule.dVGH", "c.df.dVGH", "c.ngle.dVGH", "c.deq.dVGH", "c.ngl.dVGH", "c.lt.dVGH", "c.nge.dVGH", "c.le.dVGH", "c.ngt.dVGH", } local map_cop1ps = { shift = 0, mask = 63, [0] = "add.psFGH", "sub.psFGH", "mul.psFGH", false, false, "abs.psFG", "mov.psFG", "neg.psFG", false, false, false, false, false, false, false, false, false, { shift = 16, mask = 1, [0] = "movf.psFGC", "movt.psFGC" }, "movz.psFGT", "movn.psFGT", false, false, false, false, false, false, false, false, false, false, false, false, "cvt.s.puFG", false, false, false, false, false, false, false, "cvt.s.plFG", false, false, false, "pll.psFGH", "plu.psFGH", "pul.psFGH", "puu.psFGH", "c.f.psVGH", "c.un.psVGH", "c.eq.psVGH", "c.ueq.psVGH", "c.olt.psVGH", "c.ult.psVGH", "c.ole.psVGH", "c.ule.psVGH", "c.psf.psVGH", "c.ngle.psVGH", "c.pseq.psVGH", "c.ngl.psVGH", "c.lt.psVGH", "c.nge.psVGH", "c.le.psVGH", "c.ngt.psVGH", } local map_cop1w = { shift = 0, mask = 63, [32] = "cvt.s.wFG", [33] = "cvt.d.wFG", } local map_cop1l = { shift = 0, mask = 63, [32] = "cvt.s.lFG", [33] = "cvt.d.lFG", } local map_cop1bc = { shift = 16, mask = 3, [0] = "bc1fCB", "bc1tCB", "bc1flCB", "bc1tlCB", } local map_cop1 = { shift = 21, mask = 31, [0] = "mfc1TG", "dmfc1TG", "cfc1TG", "mfhc1TG", "mtc1TG", "dmtc1TG", "ctc1TG", "mthc1TG", map_cop1bc, false, false, false, false, false, false, false, map_cop1s, map_cop1d, false, false, map_cop1w, map_cop1l, map_cop1ps, } local map_cop1x = { shift = 0, mask = 63, [0] = "lwxc1FSX", "ldxc1FSX", false, false, false, "luxc1FSX", false, false, "swxc1FSX", "sdxc1FSX", false, false, false, "suxc1FSX", false, "prefxMSX", false, false, false, false, false, false, false, false, false, false, false, false, false, false, "alnv.psFGHS", false, "madd.sFRGH", "madd.dFRGH", false, false, false, false, "madd.psFRGH", false, "msub.sFRGH", "msub.dFRGH", false, false, false, false, "msub.psFRGH", false, "nmadd.sFRGH", "nmadd.dFRGH", false, false, false, false, "nmadd.psFRGH", false, "nmsub.sFRGH", "nmsub.dFRGH", false, false, false, false, "nmsub.psFRGH", false, } local map_pri = { [0] = map_special, map_regimm, "jJ", "jalJ", "beq|beqz|bST00B", "bne|bnezST0B", "blezSB", "bgtzSB", "addiTSI", "addiu|liTS0I", "sltiTSI", "sltiuTSI", "andiTSU", "ori|liTS0U", "xoriTSU", "luiTU", map_cop0, map_cop1, false, map_cop1x, "beql|beqzlST0B", "bnel|bnezlST0B", "blezlSB", "bgtzlSB", "daddiTSI", "daddiuTSI", false, false, map_special2, "jalxJ", false, map_special3, "lbTSO", "lhTSO", "lwlTSO", "lwTSO", "lbuTSO", "lhuTSO", "lwrTSO", false, "sbTSO", "shTSO", "swlTSO", "swTSO", false, false, "swrTSO", "cacheNSO", "llTSO", "lwc1HSO", "lwc2TSO", "prefNSO", false, "ldc1HSO", "ldc2TSO", "ldTSO", "scTSO", "swc1HSO", "swc2TSO", false, false, "sdc1HSO", "sdc2TSO", "sdTSO", } ------------------------------------------------------------------------------ local map_gpr = { [0] = "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "sp", "r30", "ra", } ------------------------------------------------------------------------------ -- Output a nicely formatted line with an opcode and operands. local function putop(ctx, text, operands) local pos = ctx.pos local extra = "" if ctx.rel then local sym = ctx.symtab[ctx.rel] if sym then extra = "\t->"..sym end end if ctx.hexdump > 0 then ctx.out(format("%08x %s %-7s %s%s\n", ctx.addr+pos, tohex(ctx.op), text, concat(operands, ", "), extra)) else ctx.out(format("%08x %-7s %s%s\n", ctx.addr+pos, text, concat(operands, ", "), extra)) end ctx.pos = pos + 4 end -- Fallback for unknown opcodes. local function unknown(ctx) return putop(ctx, ".long", { "0x"..tohex(ctx.op) }) end local function get_be(ctx) local pos = ctx.pos local b0, b1, b2, b3 = byte(ctx.code, pos+1, pos+4) return bor(lshift(b0, 24), lshift(b1, 16), lshift(b2, 8), b3) end local function get_le(ctx) local pos = ctx.pos local b0, b1, b2, b3 = byte(ctx.code, pos+1, pos+4) return bor(lshift(b3, 24), lshift(b2, 16), lshift(b1, 8), b0) end -- Disassemble a single instruction. local function disass_ins(ctx) local op = ctx:get() local operands = {} local last = nil ctx.op = op ctx.rel = nil local opat = map_pri[rshift(op, 26)] while type(opat) ~= "string" do if not opat then return unknown(ctx) end opat = opat[band(rshift(op, opat.shift), opat.mask)] or opat._ end local name, pat = match(opat, "^([a-z0-9_.]*)(.*)") local altname, pat2 = match(pat, "|([a-z0-9_.|]*)(.*)") if altname then pat = pat2 end for p in gmatch(pat, ".") do local x = nil if p == "S" then x = map_gpr[band(rshift(op, 21), 31)] elseif p == "T" then x = map_gpr[band(rshift(op, 16), 31)] elseif p == "D" then x = map_gpr[band(rshift(op, 11), 31)] elseif p == "F" then x = "f"..band(rshift(op, 6), 31) elseif p == "G" then x = "f"..band(rshift(op, 11), 31) elseif p == "H" then x = "f"..band(rshift(op, 16), 31) elseif p == "R" then x = "f"..band(rshift(op, 21), 31) elseif p == "A" then x = band(rshift(op, 6), 31) elseif p == "E" then x = band(rshift(op, 6), 31) + 32 elseif p == "M" then x = band(rshift(op, 11), 31) elseif p == "N" then x = band(rshift(op, 16), 31) elseif p == "C" then x = band(rshift(op, 18), 7) if x == 0 then x = nil end elseif p == "K" then x = band(rshift(op, 11), 31) + 1 elseif p == "P" then x = band(rshift(op, 11), 31) + 33 elseif p == "L" then x = band(rshift(op, 11), 31) - last + 1 elseif p == "Q" then x = band(rshift(op, 11), 31) - last + 33 elseif p == "I" then x = arshift(lshift(op, 16), 16) elseif p == "U" then x = band(op, 0xffff) elseif p == "O" then local disp = arshift(lshift(op, 16), 16) operands[#operands] = format("%d(%s)", disp, last) elseif p == "X" then local index = map_gpr[band(rshift(op, 16), 31)] operands[#operands] = format("%s(%s)", index, last) elseif p == "B" then x = ctx.addr + ctx.pos + arshift(lshift(op, 16), 16)*4 + 4 ctx.rel = x x = format("0x%08x", x) elseif p == "J" then local a = ctx.addr + ctx.pos x = a - band(a, 0x0fffffff) + band(op, 0x03ffffff)*4 ctx.rel = x x = format("0x%08x", x) elseif p == "V" then x = band(rshift(op, 8), 7) if x == 0 then x = nil end elseif p == "W" then x = band(op, 7) if x == 0 then x = nil end elseif p == "Y" then x = band(rshift(op, 6), 0x000fffff) if x == 0 then x = nil end elseif p == "Z" then x = band(rshift(op, 6), 1023) if x == 0 then x = nil end elseif p == "0" then if last == "r0" or last == 0 then local n = #operands operands[n] = nil last = operands[n-1] if altname then local a1, a2 = match(altname, "([^|]*)|(.*)") if a1 then name, altname = a1, a2 else name = altname end end end elseif p == "1" then if last == "ra" then operands[#operands] = nil end else assert(false) end if x then operands[#operands+1] = x; last = x end end return putop(ctx, name, operands) end ------------------------------------------------------------------------------ -- Disassemble a block of code. local function disass_block(ctx, ofs, len) if not ofs then ofs = 0 end local stop = len and ofs+len or #ctx.code stop = stop - stop % 4 ctx.pos = ofs - ofs % 4 ctx.rel = nil while ctx.pos < stop do disass_ins(ctx) end end -- Extended API: create a disassembler context. Then call ctx:disass(ofs, len). local function create(code, addr, out) local ctx = {} ctx.code = code ctx.addr = addr or 0 ctx.out = out or io.write ctx.symtab = {} ctx.disass = disass_block ctx.hexdump = 8 ctx.get = get_be return ctx end local function create_el(code, addr, out) local ctx = create(code, addr, out) ctx.get = get_le return ctx end -- Simple API: disassemble code (a string) at address and output via out. local function disass(code, addr, out) create(code, addr, out):disass() end local function disass_el(code, addr, out) create_el(code, addr, out):disass() end -- Return register name for RID. local function regname(r) if r < 32 then return map_gpr[r] end return "f"..(r-32) end -- Public module functions. return { create = create, create_el = create_el, disass = disass, disass_el = disass_el, regname = regname } luajit-2.1.0~beta3+dfsg.orig/src/jit/bc.lua0000644000175100017510000001276413101703334017774 0ustar ondrejondrej---------------------------------------------------------------------------- -- LuaJIT bytecode listing module. -- -- Copyright (C) 2005-2017 Mike Pall. All rights reserved. -- Released under the MIT license. See Copyright Notice in luajit.h ---------------------------------------------------------------------------- -- -- This module lists the bytecode of a Lua function. If it's loaded by -jbc -- it hooks into the parser and lists all functions of a chunk as they -- are parsed. -- -- Example usage: -- -- luajit -jbc -e 'local x=0; for i=1,1e6 do x=x+i end; print(x)' -- luajit -jbc=- foo.lua -- luajit -jbc=foo.list foo.lua -- -- Default output is to stderr. To redirect the output to a file, pass a -- filename as an argument (use '-' for stdout) or set the environment -- variable LUAJIT_LISTFILE. The file is overwritten every time the module -- is started. -- -- This module can also be used programmatically: -- -- local bc = require("jit.bc") -- -- local function foo() print("hello") end -- -- bc.dump(foo) --> -- BYTECODE -- [...] -- print(bc.line(foo, 2)) --> 0002 KSTR 1 1 ; "hello" -- -- local out = { -- -- Do something with each line: -- write = function(t, ...) io.write(...) end, -- close = function(t) end, -- flush = function(t) end, -- } -- bc.dump(foo, out) -- ------------------------------------------------------------------------------ -- Cache some library functions and objects. local jit = require("jit") assert(jit.version_num == 20100, "LuaJIT core/library version mismatch") local jutil = require("jit.util") local vmdef = require("jit.vmdef") local bit = require("bit") local sub, gsub, format = string.sub, string.gsub, string.format local byte, band, shr = string.byte, bit.band, bit.rshift local funcinfo, funcbc, funck = jutil.funcinfo, jutil.funcbc, jutil.funck local funcuvname = jutil.funcuvname local bcnames = vmdef.bcnames local stdout, stderr = io.stdout, io.stderr ------------------------------------------------------------------------------ local function ctlsub(c) if c == "\n" then return "\\n" elseif c == "\r" then return "\\r" elseif c == "\t" then return "\\t" else return format("\\%03d", byte(c)) end end -- Return one bytecode line. local function bcline(func, pc, prefix) local ins, m = funcbc(func, pc) if not ins then return end local ma, mb, mc = band(m, 7), band(m, 15*8), band(m, 15*128) local a = band(shr(ins, 8), 0xff) local oidx = 6*band(ins, 0xff) local op = sub(bcnames, oidx+1, oidx+6) local s = format("%04d %s %-6s %3s ", pc, prefix or " ", op, ma == 0 and "" or a) local d = shr(ins, 16) if mc == 13*128 then -- BCMjump return format("%s=> %04d\n", s, pc+d-0x7fff) end if mb ~= 0 then d = band(d, 0xff) elseif mc == 0 then return s.."\n" end local kc if mc == 10*128 then -- BCMstr kc = funck(func, -d-1) kc = format(#kc > 40 and '"%.40s"~' or '"%s"', gsub(kc, "%c", ctlsub)) elseif mc == 9*128 then -- BCMnum kc = funck(func, d) if op == "TSETM " then kc = kc - 2^52 end elseif mc == 12*128 then -- BCMfunc local fi = funcinfo(funck(func, -d-1)) if fi.ffid then kc = vmdef.ffnames[fi.ffid] else kc = fi.loc end elseif mc == 5*128 then -- BCMuv kc = funcuvname(func, d) end if ma == 5 then -- BCMuv local ka = funcuvname(func, a) if kc then kc = ka.." ; "..kc else kc = ka end end if mb ~= 0 then local b = shr(ins, 24) if kc then return format("%s%3d %3d ; %s\n", s, b, d, kc) end return format("%s%3d %3d\n", s, b, d) end if kc then return format("%s%3d ; %s\n", s, d, kc) end if mc == 7*128 and d > 32767 then d = d - 65536 end -- BCMlits return format("%s%3d\n", s, d) end -- Collect branch targets of a function. local function bctargets(func) local target = {} for pc=1,1000000000 do local ins, m = funcbc(func, pc) if not ins then break end if band(m, 15*128) == 13*128 then target[pc+shr(ins, 16)-0x7fff] = true end end return target end -- Dump bytecode instructions of a function. local function bcdump(func, out, all) if not out then out = stdout end local fi = funcinfo(func) if all and fi.children then for n=-1,-1000000000,-1 do local k = funck(func, n) if not k then break end if type(k) == "proto" then bcdump(k, out, true) end end end out:write(format("-- BYTECODE -- %s-%d\n", fi.loc, fi.lastlinedefined)) local target = bctargets(func) for pc=1,1000000000 do local s = bcline(func, pc, target[pc] and "=>") if not s then break end out:write(s) end out:write("\n") out:flush() end ------------------------------------------------------------------------------ -- Active flag and output file handle. local active, out -- List handler. local function h_list(func) return bcdump(func, out) end -- Detach list handler. local function bclistoff() if active then active = false jit.attach(h_list) if out and out ~= stdout and out ~= stderr then out:close() end out = nil end end -- Open the output file and attach list handler. local function bcliston(outfile) if active then bclistoff() end if not outfile then outfile = os.getenv("LUAJIT_LISTFILE") end if outfile then out = outfile == "-" and stdout or assert(io.open(outfile, "w")) else out = stderr end jit.attach(h_list, "bc") active = true end -- Public module functions. return { line = bcline, dump = bcdump, targets = bctargets, on = bcliston, off = bclistoff, start = bcliston -- For -j command line option. } luajit-2.1.0~beta3+dfsg.orig/src/jit/dis_arm64be.lua0000644000175100017510000000115313101703334021475 0ustar ondrejondrej---------------------------------------------------------------------------- -- LuaJIT ARM64BE disassembler wrapper module. -- -- Copyright (C) 2005-2017 Mike Pall. All rights reserved. -- Released under the MIT license. See Copyright Notice in luajit.h ---------------------------------------------------------------------------- -- ARM64 instructions are always little-endian. So just forward to the -- common ARM64 disassembler module. All the interesting stuff is there. ------------------------------------------------------------------------------ return require((string.match(..., ".*%.") or "").."dis_arm64") luajit-2.1.0~beta3+dfsg.orig/src/jit/dis_x86.lua0000644000175100017510000010006213101703334020661 0ustar ondrejondrej---------------------------------------------------------------------------- -- LuaJIT x86/x64 disassembler module. -- -- Copyright (C) 2005-2017 Mike Pall. All rights reserved. -- Released under the MIT license. See Copyright Notice in luajit.h ---------------------------------------------------------------------------- -- This is a helper module used by the LuaJIT machine code dumper module. -- -- Sending small code snippets to an external disassembler and mixing the -- output with our own stuff was too fragile. So I had to bite the bullet -- and write yet another x86 disassembler. Oh well ... -- -- The output format is very similar to what ndisasm generates. But it has -- been developed independently by looking at the opcode tables from the -- Intel and AMD manuals. The supported instruction set is quite extensive -- and reflects what a current generation Intel or AMD CPU implements in -- 32 bit and 64 bit mode. Yes, this includes MMX, SSE, SSE2, SSE3, SSSE3, -- SSE4.1, SSE4.2, SSE4a, AVX, AVX2 and even privileged and hypervisor -- (VMX/SVM) instructions. -- -- Notes: -- * The (useless) a16 prefix, 3DNow and pre-586 opcodes are unsupported. -- * No attempt at optimization has been made -- it's fast enough for my needs. ------------------------------------------------------------------------------ local type = type local sub, byte, format = string.sub, string.byte, string.format local match, gmatch, gsub = string.match, string.gmatch, string.gsub local lower, rep = string.lower, string.rep local bit = require("bit") local tohex = bit.tohex -- Map for 1st opcode byte in 32 bit mode. Ugly? Well ... read on. local map_opc1_32 = { --0x [0]="addBmr","addVmr","addBrm","addVrm","addBai","addVai","push es","pop es", "orBmr","orVmr","orBrm","orVrm","orBai","orVai","push cs","opc2*", --1x "adcBmr","adcVmr","adcBrm","adcVrm","adcBai","adcVai","push ss","pop ss", "sbbBmr","sbbVmr","sbbBrm","sbbVrm","sbbBai","sbbVai","push ds","pop ds", --2x "andBmr","andVmr","andBrm","andVrm","andBai","andVai","es:seg","daa", "subBmr","subVmr","subBrm","subVrm","subBai","subVai","cs:seg","das", --3x "xorBmr","xorVmr","xorBrm","xorVrm","xorBai","xorVai","ss:seg","aaa", "cmpBmr","cmpVmr","cmpBrm","cmpVrm","cmpBai","cmpVai","ds:seg","aas", --4x "incVR","incVR","incVR","incVR","incVR","incVR","incVR","incVR", "decVR","decVR","decVR","decVR","decVR","decVR","decVR","decVR", --5x "pushUR","pushUR","pushUR","pushUR","pushUR","pushUR","pushUR","pushUR", "popUR","popUR","popUR","popUR","popUR","popUR","popUR","popUR", --6x "sz*pushaw,pusha","sz*popaw,popa","boundVrm","arplWmr", "fs:seg","gs:seg","o16:","a16", "pushUi","imulVrmi","pushBs","imulVrms", "insb","insVS","outsb","outsVS", --7x "joBj","jnoBj","jbBj","jnbBj","jzBj","jnzBj","jbeBj","jaBj", "jsBj","jnsBj","jpeBj","jpoBj","jlBj","jgeBj","jleBj","jgBj", --8x "arith!Bmi","arith!Vmi","arith!Bmi","arith!Vms", "testBmr","testVmr","xchgBrm","xchgVrm", "movBmr","movVmr","movBrm","movVrm", "movVmg","leaVrm","movWgm","popUm", --9x "nop*xchgVaR|pause|xchgWaR|repne nop","xchgVaR","xchgVaR","xchgVaR", "xchgVaR","xchgVaR","xchgVaR","xchgVaR", "sz*cbw,cwde,cdqe","sz*cwd,cdq,cqo","call farViw","wait", "sz*pushfw,pushf","sz*popfw,popf","sahf","lahf", --Ax "movBao","movVao","movBoa","movVoa", "movsb","movsVS","cmpsb","cmpsVS", "testBai","testVai","stosb","stosVS", "lodsb","lodsVS","scasb","scasVS", --Bx "movBRi","movBRi","movBRi","movBRi","movBRi","movBRi","movBRi","movBRi", "movVRI","movVRI","movVRI","movVRI","movVRI","movVRI","movVRI","movVRI", --Cx "shift!Bmu","shift!Vmu","retBw","ret","vex*3$lesVrm","vex*2$ldsVrm","movBmi","movVmi", "enterBwu","leave","retfBw","retf","int3","intBu","into","iretVS", --Dx "shift!Bm1","shift!Vm1","shift!Bmc","shift!Vmc","aamBu","aadBu","salc","xlatb", "fp*0","fp*1","fp*2","fp*3","fp*4","fp*5","fp*6","fp*7", --Ex "loopneBj","loopeBj","loopBj","sz*jcxzBj,jecxzBj,jrcxzBj", "inBau","inVau","outBua","outVua", "callVj","jmpVj","jmp farViw","jmpBj","inBad","inVad","outBda","outVda", --Fx "lock:","int1","repne:rep","rep:","hlt","cmc","testb!Bm","testv!Vm", "clc","stc","cli","sti","cld","std","incb!Bm","incd!Vm", } assert(#map_opc1_32 == 255) -- Map for 1st opcode byte in 64 bit mode (overrides only). local map_opc1_64 = setmetatable({ [0x06]=false, [0x07]=false, [0x0e]=false, [0x16]=false, [0x17]=false, [0x1e]=false, [0x1f]=false, [0x27]=false, [0x2f]=false, [0x37]=false, [0x3f]=false, [0x60]=false, [0x61]=false, [0x62]=false, [0x63]="movsxdVrDmt", [0x67]="a32:", [0x40]="rex*", [0x41]="rex*b", [0x42]="rex*x", [0x43]="rex*xb", [0x44]="rex*r", [0x45]="rex*rb", [0x46]="rex*rx", [0x47]="rex*rxb", [0x48]="rex*w", [0x49]="rex*wb", [0x4a]="rex*wx", [0x4b]="rex*wxb", [0x4c]="rex*wr", [0x4d]="rex*wrb", [0x4e]="rex*wrx", [0x4f]="rex*wrxb", [0x82]=false, [0x9a]=false, [0xc4]="vex*3", [0xc5]="vex*2", [0xce]=false, [0xd4]=false, [0xd5]=false, [0xd6]=false, [0xea]=false, }, { __index = map_opc1_32 }) -- Map for 2nd opcode byte (0F xx). True CISC hell. Hey, I told you. -- Prefix dependent MMX/SSE opcodes: (none)|rep|o16|repne, -|F3|66|F2 local map_opc2 = { --0x [0]="sldt!Dmp","sgdt!Ump","larVrm","lslVrm",nil,"syscall","clts","sysret", "invd","wbinvd",nil,"ud1",nil,"$prefetch!Bm","femms","3dnowMrmu", --1x "movupsXrm|movssXrvm|movupdXrm|movsdXrvm", "movupsXmr|movssXmvr|movupdXmr|movsdXmvr", "movhlpsXrm$movlpsXrm|movsldupXrm|movlpdXrm|movddupXrm", "movlpsXmr||movlpdXmr", "unpcklpsXrvm||unpcklpdXrvm", "unpckhpsXrvm||unpckhpdXrvm", "movlhpsXrm$movhpsXrm|movshdupXrm|movhpdXrm", "movhpsXmr||movhpdXmr", "$prefetcht!Bm","hintnopVm","hintnopVm","hintnopVm", "hintnopVm","hintnopVm","hintnopVm","hintnopVm", --2x "movUmx$","movUmy$","movUxm$","movUym$","movUmz$",nil,"movUzm$",nil, "movapsXrm||movapdXrm", "movapsXmr||movapdXmr", "cvtpi2psXrMm|cvtsi2ssXrvVmt|cvtpi2pdXrMm|cvtsi2sdXrvVmt", "movntpsXmr|movntssXmr|movntpdXmr|movntsdXmr", "cvttps2piMrXm|cvttss2siVrXm|cvttpd2piMrXm|cvttsd2siVrXm", "cvtps2piMrXm|cvtss2siVrXm|cvtpd2piMrXm|cvtsd2siVrXm", "ucomissXrm||ucomisdXrm", "comissXrm||comisdXrm", --3x "wrmsr","rdtsc","rdmsr","rdpmc","sysenter","sysexit",nil,"getsec", "opc3*38",nil,"opc3*3a",nil,nil,nil,nil,nil, --4x "cmovoVrm","cmovnoVrm","cmovbVrm","cmovnbVrm", "cmovzVrm","cmovnzVrm","cmovbeVrm","cmovaVrm", "cmovsVrm","cmovnsVrm","cmovpeVrm","cmovpoVrm", "cmovlVrm","cmovgeVrm","cmovleVrm","cmovgVrm", --5x "movmskpsVrXm$||movmskpdVrXm$","sqrtpsXrm|sqrtssXrm|sqrtpdXrm|sqrtsdXrm", "rsqrtpsXrm|rsqrtssXrvm","rcppsXrm|rcpssXrvm", "andpsXrvm||andpdXrvm","andnpsXrvm||andnpdXrvm", "orpsXrvm||orpdXrvm","xorpsXrvm||xorpdXrvm", "addpsXrvm|addssXrvm|addpdXrvm|addsdXrvm","mulpsXrvm|mulssXrvm|mulpdXrvm|mulsdXrvm", "cvtps2pdXrm|cvtss2sdXrvm|cvtpd2psXrm|cvtsd2ssXrvm", "cvtdq2psXrm|cvttps2dqXrm|cvtps2dqXrm", "subpsXrvm|subssXrvm|subpdXrvm|subsdXrvm","minpsXrvm|minssXrvm|minpdXrvm|minsdXrvm", "divpsXrvm|divssXrvm|divpdXrvm|divsdXrvm","maxpsXrvm|maxssXrvm|maxpdXrvm|maxsdXrvm", --6x "punpcklbwPrvm","punpcklwdPrvm","punpckldqPrvm","packsswbPrvm", "pcmpgtbPrvm","pcmpgtwPrvm","pcmpgtdPrvm","packuswbPrvm", "punpckhbwPrvm","punpckhwdPrvm","punpckhdqPrvm","packssdwPrvm", "||punpcklqdqXrvm","||punpckhqdqXrvm", "movPrVSm","movqMrm|movdquXrm|movdqaXrm", --7x "pshufwMrmu|pshufhwXrmu|pshufdXrmu|pshuflwXrmu","pshiftw!Pvmu", "pshiftd!Pvmu","pshiftq!Mvmu||pshiftdq!Xvmu", "pcmpeqbPrvm","pcmpeqwPrvm","pcmpeqdPrvm","emms*|", "vmreadUmr||extrqXmuu$|insertqXrmuu$","vmwriteUrm||extrqXrm$|insertqXrm$", nil,nil, "||haddpdXrvm|haddpsXrvm","||hsubpdXrvm|hsubpsXrvm", "movVSmMr|movqXrm|movVSmXr","movqMmr|movdquXmr|movdqaXmr", --8x "joVj","jnoVj","jbVj","jnbVj","jzVj","jnzVj","jbeVj","jaVj", "jsVj","jnsVj","jpeVj","jpoVj","jlVj","jgeVj","jleVj","jgVj", --9x "setoBm","setnoBm","setbBm","setnbBm","setzBm","setnzBm","setbeBm","setaBm", "setsBm","setnsBm","setpeBm","setpoBm","setlBm","setgeBm","setleBm","setgBm", --Ax "push fs","pop fs","cpuid","btVmr","shldVmru","shldVmrc",nil,nil, "push gs","pop gs","rsm","btsVmr","shrdVmru","shrdVmrc","fxsave!Dmp","imulVrm", --Bx "cmpxchgBmr","cmpxchgVmr","$lssVrm","btrVmr", "$lfsVrm","$lgsVrm","movzxVrBmt","movzxVrWmt", "|popcntVrm","ud2Dp","bt!Vmu","btcVmr", "bsfVrm","bsrVrm|lzcntVrm|bsrWrm","movsxVrBmt","movsxVrWmt", --Cx "xaddBmr","xaddVmr", "cmppsXrvmu|cmpssXrvmu|cmppdXrvmu|cmpsdXrvmu","$movntiVmr|", "pinsrwPrvWmu","pextrwDrPmu", "shufpsXrvmu||shufpdXrvmu","$cmpxchg!Qmp", "bswapVR","bswapVR","bswapVR","bswapVR","bswapVR","bswapVR","bswapVR","bswapVR", --Dx "||addsubpdXrvm|addsubpsXrvm","psrlwPrvm","psrldPrvm","psrlqPrvm", "paddqPrvm","pmullwPrvm", "|movq2dqXrMm|movqXmr|movdq2qMrXm$","pmovmskbVrMm||pmovmskbVrXm", "psubusbPrvm","psubuswPrvm","pminubPrvm","pandPrvm", "paddusbPrvm","padduswPrvm","pmaxubPrvm","pandnPrvm", --Ex "pavgbPrvm","psrawPrvm","psradPrvm","pavgwPrvm", "pmulhuwPrvm","pmulhwPrvm", "|cvtdq2pdXrm|cvttpd2dqXrm|cvtpd2dqXrm","$movntqMmr||$movntdqXmr", "psubsbPrvm","psubswPrvm","pminswPrvm","porPrvm", "paddsbPrvm","paddswPrvm","pmaxswPrvm","pxorPrvm", --Fx "|||lddquXrm","psllwPrvm","pslldPrvm","psllqPrvm", "pmuludqPrvm","pmaddwdPrvm","psadbwPrvm","maskmovqMrm||maskmovdquXrm$", "psubbPrvm","psubwPrvm","psubdPrvm","psubqPrvm", "paddbPrvm","paddwPrvm","padddPrvm","ud", } assert(map_opc2[255] == "ud") -- Map for three-byte opcodes. Can't wait for their next invention. local map_opc3 = { ["38"] = { -- [66] 0f 38 xx --0x [0]="pshufbPrvm","phaddwPrvm","phadddPrvm","phaddswPrvm", "pmaddubswPrvm","phsubwPrvm","phsubdPrvm","phsubswPrvm", "psignbPrvm","psignwPrvm","psigndPrvm","pmulhrswPrvm", "||permilpsXrvm","||permilpdXrvm",nil,nil, --1x "||pblendvbXrma",nil,nil,nil, "||blendvpsXrma","||blendvpdXrma","||permpsXrvm","||ptestXrm", "||broadcastssXrm","||broadcastsdXrm","||broadcastf128XrlXm",nil, "pabsbPrm","pabswPrm","pabsdPrm",nil, --2x "||pmovsxbwXrm","||pmovsxbdXrm","||pmovsxbqXrm","||pmovsxwdXrm", "||pmovsxwqXrm","||pmovsxdqXrm",nil,nil, "||pmuldqXrvm","||pcmpeqqXrvm","||$movntdqaXrm","||packusdwXrvm", "||maskmovpsXrvm","||maskmovpdXrvm","||maskmovpsXmvr","||maskmovpdXmvr", --3x "||pmovzxbwXrm","||pmovzxbdXrm","||pmovzxbqXrm","||pmovzxwdXrm", "||pmovzxwqXrm","||pmovzxdqXrm","||permdXrvm","||pcmpgtqXrvm", "||pminsbXrvm","||pminsdXrvm","||pminuwXrvm","||pminudXrvm", "||pmaxsbXrvm","||pmaxsdXrvm","||pmaxuwXrvm","||pmaxudXrvm", --4x "||pmulddXrvm","||phminposuwXrm",nil,nil, nil,"||psrlvVSXrvm","||psravdXrvm","||psllvVSXrvm", --5x [0x58] = "||pbroadcastdXrlXm",[0x59] = "||pbroadcastqXrlXm", [0x5a] = "||broadcasti128XrlXm", --7x [0x78] = "||pbroadcastbXrlXm",[0x79] = "||pbroadcastwXrlXm", --8x [0x8c] = "||pmaskmovXrvVSm", [0x8e] = "||pmaskmovVSmXvr", --Dx [0xdc] = "||aesencXrvm", [0xdd] = "||aesenclastXrvm", [0xde] = "||aesdecXrvm", [0xdf] = "||aesdeclastXrvm", --Fx [0xf0] = "|||crc32TrBmt",[0xf1] = "|||crc32TrVmt", [0xf7] = "| sarxVrmv| shlxVrmv| shrxVrmv", }, ["3a"] = { -- [66] 0f 3a xx --0x [0x00]="||permqXrmu","||permpdXrmu","||pblenddXrvmu",nil, "||permilpsXrmu","||permilpdXrmu","||perm2f128Xrvmu",nil, "||roundpsXrmu","||roundpdXrmu","||roundssXrvmu","||roundsdXrvmu", "||blendpsXrvmu","||blendpdXrvmu","||pblendwXrvmu","palignrPrvmu", --1x nil,nil,nil,nil, "||pextrbVmXru","||pextrwVmXru","||pextrVmSXru","||extractpsVmXru", "||insertf128XrvlXmu","||extractf128XlXmYru",nil,nil, nil,nil,nil,nil, --2x "||pinsrbXrvVmu","||insertpsXrvmu","||pinsrXrvVmuS",nil, --3x [0x38] = "||inserti128Xrvmu",[0x39] = "||extracti128XlXmYru", --4x [0x40] = "||dppsXrvmu", [0x41] = "||dppdXrvmu", [0x42] = "||mpsadbwXrvmu", [0x44] = "||pclmulqdqXrvmu", [0x46] = "||perm2i128Xrvmu", [0x4a] = "||blendvpsXrvmb",[0x4b] = "||blendvpdXrvmb", [0x4c] = "||pblendvbXrvmb", --6x [0x60] = "||pcmpestrmXrmu",[0x61] = "||pcmpestriXrmu", [0x62] = "||pcmpistrmXrmu",[0x63] = "||pcmpistriXrmu", [0xdf] = "||aeskeygenassistXrmu", --Fx [0xf0] = "||| rorxVrmu", }, } -- Map for VMX/SVM opcodes 0F 01 C0-FF (sgdt group with register operands). local map_opcvm = { [0xc1]="vmcall",[0xc2]="vmlaunch",[0xc3]="vmresume",[0xc4]="vmxoff", [0xc8]="monitor",[0xc9]="mwait", [0xd8]="vmrun",[0xd9]="vmmcall",[0xda]="vmload",[0xdb]="vmsave", [0xdc]="stgi",[0xdd]="clgi",[0xde]="skinit",[0xdf]="invlpga", [0xf8]="swapgs",[0xf9]="rdtscp", } -- Map for FP opcodes. And you thought stack machines are simple? local map_opcfp = { -- D8-DF 00-BF: opcodes with a memory operand. -- D8 [0]="faddFm","fmulFm","fcomFm","fcompFm","fsubFm","fsubrFm","fdivFm","fdivrFm", "fldFm",nil,"fstFm","fstpFm","fldenvVm","fldcwWm","fnstenvVm","fnstcwWm", -- DA "fiaddDm","fimulDm","ficomDm","ficompDm", "fisubDm","fisubrDm","fidivDm","fidivrDm", -- DB "fildDm","fisttpDm","fistDm","fistpDm",nil,"fld twordFmp",nil,"fstp twordFmp", -- DC "faddGm","fmulGm","fcomGm","fcompGm","fsubGm","fsubrGm","fdivGm","fdivrGm", -- DD "fldGm","fisttpQm","fstGm","fstpGm","frstorDmp",nil,"fnsaveDmp","fnstswWm", -- DE "fiaddWm","fimulWm","ficomWm","ficompWm", "fisubWm","fisubrWm","fidivWm","fidivrWm", -- DF "fildWm","fisttpWm","fistWm","fistpWm", "fbld twordFmp","fildQm","fbstp twordFmp","fistpQm", -- xx C0-FF: opcodes with a pseudo-register operand. -- D8 "faddFf","fmulFf","fcomFf","fcompFf","fsubFf","fsubrFf","fdivFf","fdivrFf", -- D9 "fldFf","fxchFf",{"fnop"},nil, {"fchs","fabs",nil,nil,"ftst","fxam"}, {"fld1","fldl2t","fldl2e","fldpi","fldlg2","fldln2","fldz"}, {"f2xm1","fyl2x","fptan","fpatan","fxtract","fprem1","fdecstp","fincstp"}, {"fprem","fyl2xp1","fsqrt","fsincos","frndint","fscale","fsin","fcos"}, -- DA "fcmovbFf","fcmoveFf","fcmovbeFf","fcmovuFf",nil,{nil,"fucompp"},nil,nil, -- DB "fcmovnbFf","fcmovneFf","fcmovnbeFf","fcmovnuFf", {nil,nil,"fnclex","fninit"},"fucomiFf","fcomiFf",nil, -- DC "fadd toFf","fmul toFf",nil,nil, "fsub toFf","fsubr toFf","fdivr toFf","fdiv toFf", -- DD "ffreeFf",nil,"fstFf","fstpFf","fucomFf","fucompFf",nil,nil, -- DE "faddpFf","fmulpFf",nil,{nil,"fcompp"}, "fsubrpFf","fsubpFf","fdivrpFf","fdivpFf", -- DF nil,nil,nil,nil,{"fnstsw ax"},"fucomipFf","fcomipFf",nil, } assert(map_opcfp[126] == "fcomipFf") -- Map for opcode groups. The subkey is sp from the ModRM byte. local map_opcgroup = { arith = { "add", "or", "adc", "sbb", "and", "sub", "xor", "cmp" }, shift = { "rol", "ror", "rcl", "rcr", "shl", "shr", "sal", "sar" }, testb = { "testBmi", "testBmi", "not", "neg", "mul", "imul", "div", "idiv" }, testv = { "testVmi", "testVmi", "not", "neg", "mul", "imul", "div", "idiv" }, incb = { "inc", "dec" }, incd = { "inc", "dec", "callUmp", "$call farDmp", "jmpUmp", "$jmp farDmp", "pushUm" }, sldt = { "sldt", "str", "lldt", "ltr", "verr", "verw" }, sgdt = { "vm*$sgdt", "vm*$sidt", "$lgdt", "vm*$lidt", "smsw", nil, "lmsw", "vm*$invlpg" }, bt = { nil, nil, nil, nil, "bt", "bts", "btr", "btc" }, cmpxchg = { nil, "sz*,cmpxchg8bQmp,cmpxchg16bXmp", nil, nil, nil, nil, "vmptrld|vmxon|vmclear", "vmptrst" }, pshiftw = { nil, nil, "psrlw", nil, "psraw", nil, "psllw" }, pshiftd = { nil, nil, "psrld", nil, "psrad", nil, "pslld" }, pshiftq = { nil, nil, "psrlq", nil, nil, nil, "psllq" }, pshiftdq = { nil, nil, "psrlq", "psrldq", nil, nil, "psllq", "pslldq" }, fxsave = { "$fxsave", "$fxrstor", "$ldmxcsr", "$stmxcsr", nil, "lfenceDp$", "mfenceDp$", "sfenceDp$clflush" }, prefetch = { "prefetch", "prefetchw" }, prefetcht = { "prefetchnta", "prefetcht0", "prefetcht1", "prefetcht2" }, } ------------------------------------------------------------------------------ -- Maps for register names. local map_regs = { B = { "al", "cl", "dl", "bl", "ah", "ch", "dh", "bh", "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b", "r15b" }, B64 = { "al", "cl", "dl", "bl", "spl", "bpl", "sil", "dil", "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b", "r15b" }, W = { "ax", "cx", "dx", "bx", "sp", "bp", "si", "di", "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w" }, D = { "eax", "ecx", "edx", "ebx", "esp", "ebp", "esi", "edi", "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d" }, Q = { "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" }, M = { "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" }, -- No x64 ext! X = { "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15" }, Y = { "ymm0", "ymm1", "ymm2", "ymm3", "ymm4", "ymm5", "ymm6", "ymm7", "ymm8", "ymm9", "ymm10", "ymm11", "ymm12", "ymm13", "ymm14", "ymm15" }, } local map_segregs = { "es", "cs", "ss", "ds", "fs", "gs", "segr6", "segr7" } -- Maps for size names. local map_sz2n = { B = 1, W = 2, D = 4, Q = 8, M = 8, X = 16, Y = 32, } local map_sz2prefix = { B = "byte", W = "word", D = "dword", Q = "qword", M = "qword", X = "xword", Y = "yword", F = "dword", G = "qword", -- No need for sizes/register names for these two. } ------------------------------------------------------------------------------ -- Output a nicely formatted line with an opcode and operands. local function putop(ctx, text, operands) local code, pos, hex = ctx.code, ctx.pos, "" local hmax = ctx.hexdump if hmax > 0 then for i=ctx.start,pos-1 do hex = hex..format("%02X", byte(code, i, i)) end if #hex > hmax then hex = sub(hex, 1, hmax)..". " else hex = hex..rep(" ", hmax-#hex+2) end end if operands then text = text.." "..operands end if ctx.o16 then text = "o16 "..text; ctx.o16 = false end if ctx.a32 then text = "a32 "..text; ctx.a32 = false end if ctx.rep then text = ctx.rep.." "..text; ctx.rep = false end if ctx.rex then local t = (ctx.rexw and "w" or "")..(ctx.rexr and "r" or "").. (ctx.rexx and "x" or "")..(ctx.rexb and "b" or "").. (ctx.vexl and "l" or "") if ctx.vexv and ctx.vexv ~= 0 then t = t.."v"..ctx.vexv end if t ~= "" then text = ctx.rex.."."..t.." "..gsub(text, "^ ", "") elseif ctx.rex == "vex" then text = gsub("v"..text, "^v ", "") end ctx.rexw = false; ctx.rexr = false; ctx.rexx = false; ctx.rexb = false ctx.rex = false; ctx.vexl = false; ctx.vexv = false end if ctx.seg then local text2, n = gsub(text, "%[", "["..ctx.seg..":") if n == 0 then text = ctx.seg.." "..text else text = text2 end ctx.seg = false end if ctx.lock then text = "lock "..text; ctx.lock = false end local imm = ctx.imm if imm then local sym = ctx.symtab[imm] if sym then text = text.."\t->"..sym end end ctx.out(format("%08x %s%s\n", ctx.addr+ctx.start, hex, text)) ctx.mrm = false ctx.vexv = false ctx.start = pos ctx.imm = nil end -- Clear all prefix flags. local function clearprefixes(ctx) ctx.o16 = false; ctx.seg = false; ctx.lock = false; ctx.rep = false ctx.rexw = false; ctx.rexr = false; ctx.rexx = false; ctx.rexb = false ctx.rex = false; ctx.a32 = false; ctx.vexl = false end -- Fallback for incomplete opcodes at the end. local function incomplete(ctx) ctx.pos = ctx.stop+1 clearprefixes(ctx) return putop(ctx, "(incomplete)") end -- Fallback for unknown opcodes. local function unknown(ctx) clearprefixes(ctx) return putop(ctx, "(unknown)") end -- Return an immediate of the specified size. local function getimm(ctx, pos, n) if pos+n-1 > ctx.stop then return incomplete(ctx) end local code = ctx.code if n == 1 then local b1 = byte(code, pos, pos) return b1 elseif n == 2 then local b1, b2 = byte(code, pos, pos+1) return b1+b2*256 else local b1, b2, b3, b4 = byte(code, pos, pos+3) local imm = b1+b2*256+b3*65536+b4*16777216 ctx.imm = imm return imm end end -- Process pattern string and generate the operands. local function putpat(ctx, name, pat) local operands, regs, sz, mode, sp, rm, sc, rx, sdisp local code, pos, stop, vexl = ctx.code, ctx.pos, ctx.stop, ctx.vexl -- Chars used: 1DFGIMPQRSTUVWXYabcdfgijlmoprstuvwxyz for p in gmatch(pat, ".") do local x = nil if p == "V" or p == "U" then if ctx.rexw then sz = "Q"; ctx.rexw = false elseif ctx.o16 then sz = "W"; ctx.o16 = false elseif p == "U" and ctx.x64 then sz = "Q" else sz = "D" end regs = map_regs[sz] elseif p == "T" then if ctx.rexw then sz = "Q"; ctx.rexw = false else sz = "D" end regs = map_regs[sz] elseif p == "B" then sz = "B" regs = ctx.rex and map_regs.B64 or map_regs.B elseif match(p, "[WDQMXYFG]") then sz = p if sz == "X" and vexl then sz = "Y"; ctx.vexl = false end regs = map_regs[sz] elseif p == "P" then sz = ctx.o16 and "X" or "M"; ctx.o16 = false if sz == "X" and vexl then sz = "Y"; ctx.vexl = false end regs = map_regs[sz] elseif p == "S" then name = name..lower(sz) elseif p == "s" then local imm = getimm(ctx, pos, 1); if not imm then return end x = imm <= 127 and format("+0x%02x", imm) or format("-0x%02x", 256-imm) pos = pos+1 elseif p == "u" then local imm = getimm(ctx, pos, 1); if not imm then return end x = format("0x%02x", imm) pos = pos+1 elseif p == "b" then local imm = getimm(ctx, pos, 1); if not imm then return end x = regs[imm/16+1] pos = pos+1 elseif p == "w" then local imm = getimm(ctx, pos, 2); if not imm then return end x = format("0x%x", imm) pos = pos+2 elseif p == "o" then -- [offset] if ctx.x64 then local imm1 = getimm(ctx, pos, 4); if not imm1 then return end local imm2 = getimm(ctx, pos+4, 4); if not imm2 then return end x = format("[0x%08x%08x]", imm2, imm1) pos = pos+8 else local imm = getimm(ctx, pos, 4); if not imm then return end x = format("[0x%08x]", imm) pos = pos+4 end elseif p == "i" or p == "I" then local n = map_sz2n[sz] if n == 8 and ctx.x64 and p == "I" then local imm1 = getimm(ctx, pos, 4); if not imm1 then return end local imm2 = getimm(ctx, pos+4, 4); if not imm2 then return end x = format("0x%08x%08x", imm2, imm1) else if n == 8 then n = 4 end local imm = getimm(ctx, pos, n); if not imm then return end if sz == "Q" and (imm < 0 or imm > 0x7fffffff) then imm = (0xffffffff+1)-imm x = format(imm > 65535 and "-0x%08x" or "-0x%x", imm) else x = format(imm > 65535 and "0x%08x" or "0x%x", imm) end end pos = pos+n elseif p == "j" then local n = map_sz2n[sz] if n == 8 then n = 4 end local imm = getimm(ctx, pos, n); if not imm then return end if sz == "B" and imm > 127 then imm = imm-256 elseif imm > 2147483647 then imm = imm-4294967296 end pos = pos+n imm = imm + pos + ctx.addr if imm > 4294967295 and not ctx.x64 then imm = imm-4294967296 end ctx.imm = imm if sz == "W" then x = format("word 0x%04x", imm%65536) elseif ctx.x64 then local lo = imm % 0x1000000 x = format("0x%02x%06x", (imm-lo) / 0x1000000, lo) else x = "0x"..tohex(imm) end elseif p == "R" then local r = byte(code, pos-1, pos-1)%8 if ctx.rexb then r = r + 8; ctx.rexb = false end x = regs[r+1] elseif p == "a" then x = regs[1] elseif p == "c" then x = "cl" elseif p == "d" then x = "dx" elseif p == "1" then x = "1" else if not mode then mode = ctx.mrm if not mode then if pos > stop then return incomplete(ctx) end mode = byte(code, pos, pos) pos = pos+1 end rm = mode%8; mode = (mode-rm)/8 sp = mode%8; mode = (mode-sp)/8 sdisp = "" if mode < 3 then if rm == 4 then if pos > stop then return incomplete(ctx) end sc = byte(code, pos, pos) pos = pos+1 rm = sc%8; sc = (sc-rm)/8 rx = sc%8; sc = (sc-rx)/8 if ctx.rexx then rx = rx + 8; ctx.rexx = false end if rx == 4 then rx = nil end end if mode > 0 or rm == 5 then local dsz = mode if dsz ~= 1 then dsz = 4 end local disp = getimm(ctx, pos, dsz); if not disp then return end if mode == 0 then rm = nil end if rm or rx or (not sc and ctx.x64 and not ctx.a32) then if dsz == 1 and disp > 127 then sdisp = format("-0x%x", 256-disp) elseif disp >= 0 and disp <= 0x7fffffff then sdisp = format("+0x%x", disp) else sdisp = format("-0x%x", (0xffffffff+1)-disp) end else sdisp = format(ctx.x64 and not ctx.a32 and not (disp >= 0 and disp <= 0x7fffffff) and "0xffffffff%08x" or "0x%08x", disp) end pos = pos+dsz end end if rm and ctx.rexb then rm = rm + 8; ctx.rexb = false end if ctx.rexr then sp = sp + 8; ctx.rexr = false end end if p == "m" then if mode == 3 then x = regs[rm+1] else local aregs = ctx.a32 and map_regs.D or ctx.aregs local srm, srx = "", "" if rm then srm = aregs[rm+1] elseif not sc and ctx.x64 and not ctx.a32 then srm = "rip" end ctx.a32 = false if rx then if rm then srm = srm.."+" end srx = aregs[rx+1] if sc > 0 then srx = srx.."*"..(2^sc) end end x = format("[%s%s%s]", srm, srx, sdisp) end if mode < 3 and (not match(pat, "[aRrgp]") or match(pat, "t")) then -- Yuck. x = map_sz2prefix[sz].." "..x end elseif p == "r" then x = regs[sp+1] elseif p == "g" then x = map_segregs[sp+1] elseif p == "p" then -- Suppress prefix. elseif p == "f" then x = "st"..rm elseif p == "x" then if sp == 0 and ctx.lock and not ctx.x64 then x = "CR8"; ctx.lock = false else x = "CR"..sp end elseif p == "v" then if ctx.vexv then x = regs[ctx.vexv+1]; ctx.vexv = false end elseif p == "y" then x = "DR"..sp elseif p == "z" then x = "TR"..sp elseif p == "l" then vexl = false elseif p == "t" then else error("bad pattern `"..pat.."'") end end if x then operands = operands and operands..", "..x or x end end ctx.pos = pos return putop(ctx, name, operands) end -- Forward declaration. local map_act -- Fetch and cache MRM byte. local function getmrm(ctx) local mrm = ctx.mrm if not mrm then local pos = ctx.pos if pos > ctx.stop then return nil end mrm = byte(ctx.code, pos, pos) ctx.pos = pos+1 ctx.mrm = mrm end return mrm end -- Dispatch to handler depending on pattern. local function dispatch(ctx, opat, patgrp) if not opat then return unknown(ctx) end if match(opat, "%|") then -- MMX/SSE variants depending on prefix. local p if ctx.rep then p = ctx.rep=="rep" and "%|([^%|]*)" or "%|[^%|]*%|[^%|]*%|([^%|]*)" ctx.rep = false elseif ctx.o16 then p = "%|[^%|]*%|([^%|]*)"; ctx.o16 = false else p = "^[^%|]*" end opat = match(opat, p) if not opat then return unknown(ctx) end -- ctx.rep = false; ctx.o16 = false --XXX fails for 66 f2 0f 38 f1 06 crc32 eax,WORD PTR [esi] --XXX remove in branches? end if match(opat, "%$") then -- reg$mem variants. local mrm = getmrm(ctx); if not mrm then return incomplete(ctx) end opat = match(opat, mrm >= 192 and "^[^%$]*" or "%$(.*)") if opat == "" then return unknown(ctx) end end if opat == "" then return unknown(ctx) end local name, pat = match(opat, "^([a-z0-9 ]*)(.*)") if pat == "" and patgrp then pat = patgrp end return map_act[sub(pat, 1, 1)](ctx, name, pat) end -- Get a pattern from an opcode map and dispatch to handler. local function dispatchmap(ctx, opcmap) local pos = ctx.pos local opat = opcmap[byte(ctx.code, pos, pos)] pos = pos + 1 ctx.pos = pos return dispatch(ctx, opat) end -- Map for action codes. The key is the first char after the name. map_act = { -- Simple opcodes without operands. [""] = function(ctx, name, pat) return putop(ctx, name) end, -- Operand size chars fall right through. B = putpat, W = putpat, D = putpat, Q = putpat, V = putpat, U = putpat, T = putpat, M = putpat, X = putpat, P = putpat, F = putpat, G = putpat, Y = putpat, -- Collect prefixes. [":"] = function(ctx, name, pat) ctx[pat == ":" and name or sub(pat, 2)] = name if ctx.pos - ctx.start > 5 then return unknown(ctx) end -- Limit #prefixes. end, -- Chain to special handler specified by name. ["*"] = function(ctx, name, pat) return map_act[name](ctx, name, sub(pat, 2)) end, -- Use named subtable for opcode group. ["!"] = function(ctx, name, pat) local mrm = getmrm(ctx); if not mrm then return incomplete(ctx) end return dispatch(ctx, map_opcgroup[name][((mrm-(mrm%8))/8)%8+1], sub(pat, 2)) end, -- o16,o32[,o64] variants. sz = function(ctx, name, pat) if ctx.o16 then ctx.o16 = false else pat = match(pat, ",(.*)") if ctx.rexw then local p = match(pat, ",(.*)") if p then pat = p; ctx.rexw = false end end end pat = match(pat, "^[^,]*") return dispatch(ctx, pat) end, -- Two-byte opcode dispatch. opc2 = function(ctx, name, pat) return dispatchmap(ctx, map_opc2) end, -- Three-byte opcode dispatch. opc3 = function(ctx, name, pat) return dispatchmap(ctx, map_opc3[pat]) end, -- VMX/SVM dispatch. vm = function(ctx, name, pat) return dispatch(ctx, map_opcvm[ctx.mrm]) end, -- Floating point opcode dispatch. fp = function(ctx, name, pat) local mrm = getmrm(ctx); if not mrm then return incomplete(ctx) end local rm = mrm%8 local idx = pat*8 + ((mrm-rm)/8)%8 if mrm >= 192 then idx = idx + 64 end local opat = map_opcfp[idx] if type(opat) == "table" then opat = opat[rm+1] end return dispatch(ctx, opat) end, -- REX prefix. rex = function(ctx, name, pat) if ctx.rex then return unknown(ctx) end -- Only 1 REX or VEX prefix allowed. for p in gmatch(pat, ".") do ctx["rex"..p] = true end ctx.rex = "rex" end, -- VEX prefix. vex = function(ctx, name, pat) if ctx.rex then return unknown(ctx) end -- Only 1 REX or VEX prefix allowed. ctx.rex = "vex" local pos = ctx.pos if ctx.mrm then ctx.mrm = nil pos = pos-1 end local b = byte(ctx.code, pos, pos) if not b then return incomplete(ctx) end pos = pos+1 if b < 128 then ctx.rexr = true end local m = 1 if pat == "3" then m = b%32; b = (b-m)/32 local nb = b%2; b = (b-nb)/2 if nb == 0 then ctx.rexb = true end local nx = b%2 if nx == 0 then ctx.rexx = true end b = byte(ctx.code, pos, pos) if not b then return incomplete(ctx) end pos = pos+1 if b >= 128 then ctx.rexw = true end end ctx.pos = pos local map if m == 1 then map = map_opc2 elseif m == 2 then map = map_opc3["38"] elseif m == 3 then map = map_opc3["3a"] else return unknown(ctx) end local p = b%4; b = (b-p)/4 if p == 1 then ctx.o16 = "o16" elseif p == 2 then ctx.rep = "rep" elseif p == 3 then ctx.rep = "repne" end local l = b%2; b = (b-l)/2 if l ~= 0 then ctx.vexl = true end ctx.vexv = (-1-b)%16 return dispatchmap(ctx, map) end, -- Special case for nop with REX prefix. nop = function(ctx, name, pat) return dispatch(ctx, ctx.rex and pat or "nop") end, -- Special case for 0F 77. emms = function(ctx, name, pat) if ctx.rex ~= "vex" then return putop(ctx, "emms") elseif ctx.vexl then ctx.vexl = false return putop(ctx, "zeroall") else return putop(ctx, "zeroupper") end end, } ------------------------------------------------------------------------------ -- Disassemble a block of code. local function disass_block(ctx, ofs, len) if not ofs then ofs = 0 end local stop = len and ofs+len or #ctx.code ofs = ofs + 1 ctx.start = ofs ctx.pos = ofs ctx.stop = stop ctx.imm = nil ctx.mrm = false clearprefixes(ctx) while ctx.pos <= stop do dispatchmap(ctx, ctx.map1) end if ctx.pos ~= ctx.start then incomplete(ctx) end end -- Extended API: create a disassembler context. Then call ctx:disass(ofs, len). local function create(code, addr, out) local ctx = {} ctx.code = code ctx.addr = (addr or 0) - 1 ctx.out = out or io.write ctx.symtab = {} ctx.disass = disass_block ctx.hexdump = 16 ctx.x64 = false ctx.map1 = map_opc1_32 ctx.aregs = map_regs.D return ctx end local function create64(code, addr, out) local ctx = create(code, addr, out) ctx.x64 = true ctx.map1 = map_opc1_64 ctx.aregs = map_regs.Q return ctx end -- Simple API: disassemble code (a string) at address and output via out. local function disass(code, addr, out) create(code, addr, out):disass() end local function disass64(code, addr, out) create64(code, addr, out):disass() end -- Return register name for RID. local function regname(r) if r < 8 then return map_regs.D[r+1] end return map_regs.X[r-7] end local function regname64(r) if r < 16 then return map_regs.Q[r+1] end return map_regs.X[r-15] end -- Public module functions. return { create = create, create64 = create64, disass = disass, disass64 = disass64, regname = regname, regname64 = regname64 } luajit-2.1.0~beta3+dfsg.orig/src/jit/dump.lua0000644000175100017510000004722013101703334020350 0ustar ondrejondrej---------------------------------------------------------------------------- -- LuaJIT compiler dump module. -- -- Copyright (C) 2005-2017 Mike Pall. All rights reserved. -- Released under the MIT license. See Copyright Notice in luajit.h ---------------------------------------------------------------------------- -- -- This module can be used to debug the JIT compiler itself. It dumps the -- code representations and structures used in various compiler stages. -- -- Example usage: -- -- luajit -jdump -e "local x=0; for i=1,1e6 do x=x+i end; print(x)" -- luajit -jdump=im -e "for i=1,1000 do for j=1,1000 do end end" | less -R -- luajit -jdump=is myapp.lua | less -R -- luajit -jdump=-b myapp.lua -- luajit -jdump=+aH,myapp.html myapp.lua -- luajit -jdump=ixT,myapp.dump myapp.lua -- -- The first argument specifies the dump mode. The second argument gives -- the output file name. Default output is to stdout, unless the environment -- variable LUAJIT_DUMPFILE is set. The file is overwritten every time the -- module is started. -- -- Different features can be turned on or off with the dump mode. If the -- mode starts with a '+', the following features are added to the default -- set of features; a '-' removes them. Otherwise the features are replaced. -- -- The following dump features are available (* marks the default): -- -- * t Print a line for each started, ended or aborted trace (see also -jv). -- * b Dump the traced bytecode. -- * i Dump the IR (intermediate representation). -- r Augment the IR with register/stack slots. -- s Dump the snapshot map. -- * m Dump the generated machine code. -- x Print each taken trace exit. -- X Print each taken trace exit and the contents of all registers. -- a Print the IR of aborted traces, too. -- -- The output format can be set with the following characters: -- -- T Plain text output. -- A ANSI-colored text output -- H Colorized HTML + CSS output. -- -- The default output format is plain text. It's set to ANSI-colored text -- if the COLORTERM variable is set. Note: this is independent of any output -- redirection, which is actually considered a feature. -- -- You probably want to use less -R to enjoy viewing ANSI-colored text from -- a pipe or a file. Add this to your ~/.bashrc: export LESS="-R" -- ------------------------------------------------------------------------------ -- Cache some library functions and objects. local jit = require("jit") assert(jit.version_num == 20100, "LuaJIT core/library version mismatch") local jutil = require("jit.util") local vmdef = require("jit.vmdef") local funcinfo, funcbc = jutil.funcinfo, jutil.funcbc local traceinfo, traceir, tracek = jutil.traceinfo, jutil.traceir, jutil.tracek local tracemc, tracesnap = jutil.tracemc, jutil.tracesnap local traceexitstub, ircalladdr = jutil.traceexitstub, jutil.ircalladdr local bit = require("bit") local band, shr, tohex = bit.band, bit.rshift, bit.tohex local sub, gsub, format = string.sub, string.gsub, string.format local byte, rep = string.byte, string.rep local type, tostring = type, tostring local stdout, stderr = io.stdout, io.stderr -- Load other modules on-demand. local bcline, disass -- Active flag, output file handle and dump mode. local active, out, dumpmode ------------------------------------------------------------------------------ local symtabmt = { __index = false } local symtab = {} local nexitsym = 0 -- Fill nested symbol table with per-trace exit stub addresses. local function fillsymtab_tr(tr, nexit) local t = {} symtabmt.__index = t if jit.arch:sub(1, 4) == "mips" then t[traceexitstub(tr, 0)] = "exit" return end for i=0,nexit-1 do local addr = traceexitstub(tr, i) if addr < 0 then addr = addr + 2^32 end t[addr] = tostring(i) end local addr = traceexitstub(tr, nexit) if addr then t[addr] = "stack_check" end end -- Fill symbol table with trace exit stub addresses. local function fillsymtab(tr, nexit) local t = symtab if nexitsym == 0 then local ircall = vmdef.ircall for i=0,#ircall do local addr = ircalladdr(i) if addr ~= 0 then if addr < 0 then addr = addr + 2^32 end t[addr] = ircall[i] end end end if nexitsym == 1000000 then -- Per-trace exit stubs. fillsymtab_tr(tr, nexit) elseif nexit > nexitsym then -- Shared exit stubs. for i=nexitsym,nexit-1 do local addr = traceexitstub(i) if addr == nil then -- Fall back to per-trace exit stubs. fillsymtab_tr(tr, nexit) setmetatable(symtab, symtabmt) nexit = 1000000 break end if addr < 0 then addr = addr + 2^32 end t[addr] = tostring(i) end nexitsym = nexit end return t end local function dumpwrite(s) out:write(s) end -- Disassemble machine code. local function dump_mcode(tr) local info = traceinfo(tr) if not info then return end local mcode, addr, loop = tracemc(tr) if not mcode then return end if not disass then disass = require("jit.dis_"..jit.arch) end if addr < 0 then addr = addr + 2^32 end out:write("---- TRACE ", tr, " mcode ", #mcode, "\n") local ctx = disass.create(mcode, addr, dumpwrite) ctx.hexdump = 0 ctx.symtab = fillsymtab(tr, info.nexit) if loop ~= 0 then symtab[addr+loop] = "LOOP" ctx:disass(0, loop) out:write("->LOOP:\n") ctx:disass(loop, #mcode-loop) symtab[addr+loop] = nil else ctx:disass(0, #mcode) end end ------------------------------------------------------------------------------ local irtype_text = { [0] = "nil", "fal", "tru", "lud", "str", "p32", "thr", "pro", "fun", "p64", "cdt", "tab", "udt", "flt", "num", "i8 ", "u8 ", "i16", "u16", "int", "u32", "i64", "u64", "sfp", } local colortype_ansi = { [0] = "%s", "%s", "%s", "\027[36m%s\027[m", "\027[32m%s\027[m", "%s", "\027[1m%s\027[m", "%s", "\027[1m%s\027[m", "%s", "\027[33m%s\027[m", "\027[31m%s\027[m", "\027[36m%s\027[m", "\027[34m%s\027[m", "\027[34m%s\027[m", "\027[35m%s\027[m", "\027[35m%s\027[m", "\027[35m%s\027[m", "\027[35m%s\027[m", "\027[35m%s\027[m", "\027[35m%s\027[m", "\027[35m%s\027[m", "\027[35m%s\027[m", "\027[35m%s\027[m", } local function colorize_text(s) return s end local function colorize_ansi(s, t) return format(colortype_ansi[t], s) end local irtype_ansi = setmetatable({}, { __index = function(tab, t) local s = colorize_ansi(irtype_text[t], t); tab[t] = s; return s; end }) local html_escape = { ["<"] = "<", [">"] = ">", ["&"] = "&", } local function colorize_html(s, t) s = gsub(s, "[<>&]", html_escape) return format('%s', irtype_text[t], s) end local irtype_html = setmetatable({}, { __index = function(tab, t) local s = colorize_html(irtype_text[t], t); tab[t] = s; return s; end }) local header_html = [[ ]] local colorize, irtype -- Lookup tables to convert some literals into names. local litname = { ["SLOAD "] = setmetatable({}, { __index = function(t, mode) local s = "" if band(mode, 1) ~= 0 then s = s.."P" end if band(mode, 2) ~= 0 then s = s.."F" end if band(mode, 4) ~= 0 then s = s.."T" end if band(mode, 8) ~= 0 then s = s.."C" end if band(mode, 16) ~= 0 then s = s.."R" end if band(mode, 32) ~= 0 then s = s.."I" end t[mode] = s return s end}), ["XLOAD "] = { [0] = "", "R", "V", "RV", "U", "RU", "VU", "RVU", }, ["CONV "] = setmetatable({}, { __index = function(t, mode) local s = irtype[band(mode, 31)] s = irtype[band(shr(mode, 5), 31)].."."..s if band(mode, 0x800) ~= 0 then s = s.." sext" end local c = shr(mode, 14) if c == 2 then s = s.." index" elseif c == 3 then s = s.." check" end t[mode] = s return s end}), ["FLOAD "] = vmdef.irfield, ["FREF "] = vmdef.irfield, ["FPMATH"] = vmdef.irfpm, ["BUFHDR"] = { [0] = "RESET", "APPEND" }, ["TOSTR "] = { [0] = "INT", "NUM", "CHAR" }, } local function ctlsub(c) if c == "\n" then return "\\n" elseif c == "\r" then return "\\r" elseif c == "\t" then return "\\t" else return format("\\%03d", byte(c)) end end local function fmtfunc(func, pc) local fi = funcinfo(func, pc) if fi.loc then return fi.loc elseif fi.ffid then return vmdef.ffnames[fi.ffid] elseif fi.addr then return format("C:%x", fi.addr) else return "(?)" end end local function formatk(tr, idx, sn) local k, t, slot = tracek(tr, idx) local tn = type(k) local s if tn == "number" then if band(sn or 0, 0x30000) ~= 0 then s = band(sn, 0x20000) ~= 0 and "contpc" or "ftsz" elseif k == 2^52+2^51 then s = "bias" else s = format(0 < k and k < 0x1p-1026 and "%+a" or "%+.14g", k) end elseif tn == "string" then s = format(#k > 20 and '"%.20s"~' or '"%s"', gsub(k, "%c", ctlsub)) elseif tn == "function" then s = fmtfunc(k) elseif tn == "table" then s = format("{%p}", k) elseif tn == "userdata" then if t == 12 then s = format("userdata:%p", k) else s = format("[%p]", k) if s == "[NULL]" then s = "NULL" end end elseif t == 21 then -- int64_t s = sub(tostring(k), 1, -3) if sub(s, 1, 1) ~= "-" then s = "+"..s end elseif sn == 0x1057fff then -- SNAP(1, SNAP_FRAME | SNAP_NORESTORE, REF_NIL) return "----" -- Special case for LJ_FR2 slot 1. else s = tostring(k) -- For primitives. end s = colorize(format("%-4s", s), t) if slot then s = format("%s @%d", s, slot) end return s end local function printsnap(tr, snap) local n = 2 for s=0,snap[1]-1 do local sn = snap[n] if shr(sn, 24) == s then n = n + 1 local ref = band(sn, 0xffff) - 0x8000 -- REF_BIAS if ref < 0 then out:write(formatk(tr, ref, sn)) elseif band(sn, 0x80000) ~= 0 then -- SNAP_SOFTFPNUM out:write(colorize(format("%04d/%04d", ref, ref+1), 14)) else local m, ot, op1, op2 = traceir(tr, ref) out:write(colorize(format("%04d", ref), band(ot, 31))) end out:write(band(sn, 0x10000) == 0 and " " or "|") -- SNAP_FRAME else out:write("---- ") end end out:write("]\n") end -- Dump snapshots (not interleaved with IR). local function dump_snap(tr) out:write("---- TRACE ", tr, " snapshots\n") for i=0,1000000000 do local snap = tracesnap(tr, i) if not snap then break end out:write(format("#%-3d %04d [ ", i, snap[0])) printsnap(tr, snap) end end -- Return a register name or stack slot for a rid/sp location. local function ridsp_name(ridsp, ins) if not disass then disass = require("jit.dis_"..jit.arch) end local rid, slot = band(ridsp, 0xff), shr(ridsp, 8) if rid == 253 or rid == 254 then return (slot == 0 or slot == 255) and " {sink" or format(" {%04d", ins-slot) end if ridsp > 255 then return format("[%x]", slot*4) end if rid < 128 then return disass.regname(rid) end return "" end -- Dump CALL* function ref and return optional ctype. local function dumpcallfunc(tr, ins) local ctype if ins > 0 then local m, ot, op1, op2 = traceir(tr, ins) if band(ot, 31) == 0 then -- nil type means CARG(func, ctype). ins = op1 ctype = formatk(tr, op2) end end if ins < 0 then out:write(format("[0x%x](", tonumber((tracek(tr, ins))))) else out:write(format("%04d (", ins)) end return ctype end -- Recursively gather CALL* args and dump them. local function dumpcallargs(tr, ins) if ins < 0 then out:write(formatk(tr, ins)) else local m, ot, op1, op2 = traceir(tr, ins) local oidx = 6*shr(ot, 8) local op = sub(vmdef.irnames, oidx+1, oidx+6) if op == "CARG " then dumpcallargs(tr, op1) if op2 < 0 then out:write(" ", formatk(tr, op2)) else out:write(" ", format("%04d", op2)) end else out:write(format("%04d", ins)) end end end -- Dump IR and interleaved snapshots. local function dump_ir(tr, dumpsnap, dumpreg) local info = traceinfo(tr) if not info then return end local nins = info.nins out:write("---- TRACE ", tr, " IR\n") local irnames = vmdef.irnames local snapref = 65536 local snap, snapno if dumpsnap then snap = tracesnap(tr, 0) snapref = snap[0] snapno = 0 end for ins=1,nins do if ins >= snapref then if dumpreg then out:write(format(".... SNAP #%-3d [ ", snapno)) else out:write(format(".... SNAP #%-3d [ ", snapno)) end printsnap(tr, snap) snapno = snapno + 1 snap = tracesnap(tr, snapno) snapref = snap and snap[0] or 65536 end local m, ot, op1, op2, ridsp = traceir(tr, ins) local oidx, t = 6*shr(ot, 8), band(ot, 31) local op = sub(irnames, oidx+1, oidx+6) if op == "LOOP " then if dumpreg then out:write(format("%04d ------------ LOOP ------------\n", ins)) else out:write(format("%04d ------ LOOP ------------\n", ins)) end elseif op ~= "NOP " and op ~= "CARG " and (dumpreg or op ~= "RENAME") then local rid = band(ridsp, 255) if dumpreg then out:write(format("%04d %-6s", ins, ridsp_name(ridsp, ins))) else out:write(format("%04d ", ins)) end out:write(format("%s%s %s %s ", (rid == 254 or rid == 253) and "}" or (band(ot, 128) == 0 and " " or ">"), band(ot, 64) == 0 and " " or "+", irtype[t], op)) local m1, m2 = band(m, 3), band(m, 3*4) if sub(op, 1, 4) == "CALL" then local ctype if m2 == 1*4 then -- op2 == IRMlit out:write(format("%-10s (", vmdef.ircall[op2])) else ctype = dumpcallfunc(tr, op2) end if op1 ~= -1 then dumpcallargs(tr, op1) end out:write(")") if ctype then out:write(" ctype ", ctype) end elseif op == "CNEW " and op2 == -1 then out:write(formatk(tr, op1)) elseif m1 ~= 3 then -- op1 != IRMnone if op1 < 0 then out:write(formatk(tr, op1)) else out:write(format(m1 == 0 and "%04d" or "#%-3d", op1)) end if m2 ~= 3*4 then -- op2 != IRMnone if m2 == 1*4 then -- op2 == IRMlit local litn = litname[op] if litn and litn[op2] then out:write(" ", litn[op2]) elseif op == "UREFO " or op == "UREFC " then out:write(format(" #%-3d", shr(op2, 8))) else out:write(format(" #%-3d", op2)) end elseif op2 < 0 then out:write(" ", formatk(tr, op2)) else out:write(format(" %04d", op2)) end end end out:write("\n") end end if snap then if dumpreg then out:write(format(".... SNAP #%-3d [ ", snapno)) else out:write(format(".... SNAP #%-3d [ ", snapno)) end printsnap(tr, snap) end end ------------------------------------------------------------------------------ local recprefix = "" local recdepth = 0 -- Format trace error message. local function fmterr(err, info) if type(err) == "number" then if type(info) == "function" then info = fmtfunc(info) end err = format(vmdef.traceerr[err], info) end return err end -- Dump trace states. local function dump_trace(what, tr, func, pc, otr, oex) if what == "stop" or (what == "abort" and dumpmode.a) then if dumpmode.i then dump_ir(tr, dumpmode.s, dumpmode.r and what == "stop") elseif dumpmode.s then dump_snap(tr) end if dumpmode.m then dump_mcode(tr) end end if what == "start" then if dumpmode.H then out:write('
\n') end
    out:write("---- TRACE ", tr, " ", what)
    if otr then out:write(" ", otr, "/", oex == -1 and "stitch" or oex) end
    out:write(" ", fmtfunc(func, pc), "\n")
  elseif what == "stop" or what == "abort" then
    out:write("---- TRACE ", tr, " ", what)
    if what == "abort" then
      out:write(" ", fmtfunc(func, pc), " -- ", fmterr(otr, oex), "\n")
    else
      local info = traceinfo(tr)
      local link, ltype = info.link, info.linktype
      if link == tr or link == 0 then
	out:write(" -> ", ltype, "\n")
      elseif ltype == "root" then
	out:write(" -> ", link, "\n")
      else
	out:write(" -> ", link, " ", ltype, "\n")
      end
    end
    if dumpmode.H then out:write("
\n\n") else out:write("\n") end else if what == "flush" then symtab, nexitsym = {}, 0 end out:write("---- TRACE ", what, "\n\n") end out:flush() end -- Dump recorded bytecode. local function dump_record(tr, func, pc, depth, callee) if depth ~= recdepth then recdepth = depth recprefix = rep(" .", depth) end local line if pc >= 0 then line = bcline(func, pc, recprefix) if dumpmode.H then line = gsub(line, "[<>&]", html_escape) end else line = "0000 "..recprefix.." FUNCC \n" callee = func end if pc <= 0 then out:write(sub(line, 1, -2), " ; ", fmtfunc(func), "\n") else out:write(line) end if pc >= 0 and band(funcbc(func, pc), 0xff) < 16 then -- ORDER BC out:write(bcline(func, pc+1, recprefix)) -- Write JMP for cond. end end ------------------------------------------------------------------------------ -- Dump taken trace exits. local function dump_texit(tr, ex, ngpr, nfpr, ...) out:write("---- TRACE ", tr, " exit ", ex, "\n") if dumpmode.X then local regs = {...} if jit.arch == "x64" then for i=1,ngpr do out:write(format(" %016x", regs[i])) if i % 4 == 0 then out:write("\n") end end else for i=1,ngpr do out:write(" ", tohex(regs[i])) if i % 8 == 0 then out:write("\n") end end end if jit.arch == "mips" or jit.arch == "mipsel" then for i=1,nfpr,2 do out:write(format(" %+17.14g", regs[ngpr+i])) if i % 8 == 7 then out:write("\n") end end else for i=1,nfpr do out:write(format(" %+17.14g", regs[ngpr+i])) if i % 4 == 0 then out:write("\n") end end end end end ------------------------------------------------------------------------------ -- Detach dump handlers. local function dumpoff() if active then active = false jit.attach(dump_texit) jit.attach(dump_record) jit.attach(dump_trace) if out and out ~= stdout and out ~= stderr then out:close() end out = nil end end -- Open the output file and attach dump handlers. local function dumpon(opt, outfile) if active then dumpoff() end local term = os.getenv("TERM") local colormode = (term and term:match("color") or os.getenv("COLORTERM")) and "A" or "T" if opt then opt = gsub(opt, "[TAH]", function(mode) colormode = mode; return ""; end) end local m = { t=true, b=true, i=true, m=true, } if opt and opt ~= "" then local o = sub(opt, 1, 1) if o ~= "+" and o ~= "-" then m = {} end for i=1,#opt do m[sub(opt, i, i)] = (o ~= "-") end end dumpmode = m if m.t or m.b or m.i or m.s or m.m then jit.attach(dump_trace, "trace") end if m.b then jit.attach(dump_record, "record") if not bcline then bcline = require("jit.bc").line end end if m.x or m.X then jit.attach(dump_texit, "texit") end if not outfile then outfile = os.getenv("LUAJIT_DUMPFILE") end if outfile then out = outfile == "-" and stdout or assert(io.open(outfile, "w")) else out = stdout end m[colormode] = true if colormode == "A" then colorize = colorize_ansi irtype = irtype_ansi elseif colormode == "H" then colorize = colorize_html irtype = irtype_html out:write(header_html) else colorize = colorize_text irtype = irtype_text end active = true end -- Public module functions. return { on = dumpon, off = dumpoff, start = dumpon -- For -j command line option. } luajit-2.1.0~beta3+dfsg.orig/src/jit/dis_arm.lua0000644000175100017510000004562013101703334021023 0ustar ondrejondrej---------------------------------------------------------------------------- -- LuaJIT ARM disassembler module. -- -- Copyright (C) 2005-2017 Mike Pall. All rights reserved. -- Released under the MIT license. See Copyright Notice in luajit.h ---------------------------------------------------------------------------- -- This is a helper module used by the LuaJIT machine code dumper module. -- -- It disassembles most user-mode ARMv7 instructions -- NYI: Advanced SIMD and VFP instructions. ------------------------------------------------------------------------------ local type = type local sub, byte, format = string.sub, string.byte, string.format local match, gmatch = string.match, string.gmatch local concat = table.concat local bit = require("bit") local band, bor, ror, tohex = bit.band, bit.bor, bit.ror, bit.tohex local lshift, rshift, arshift = bit.lshift, bit.rshift, bit.arshift ------------------------------------------------------------------------------ -- Opcode maps ------------------------------------------------------------------------------ local map_loadc = { shift = 8, mask = 15, [10] = { shift = 20, mask = 1, [0] = { shift = 23, mask = 3, [0] = "vmovFmDN", "vstmFNdr", _ = { shift = 21, mask = 1, [0] = "vstrFdl", { shift = 16, mask = 15, [13] = "vpushFdr", _ = "vstmdbFNdr", } }, }, { shift = 23, mask = 3, [0] = "vmovFDNm", { shift = 16, mask = 15, [13] = "vpopFdr", _ = "vldmFNdr", }, _ = { shift = 21, mask = 1, [0] = "vldrFdl", "vldmdbFNdr", }, }, }, [11] = { shift = 20, mask = 1, [0] = { shift = 23, mask = 3, [0] = "vmovGmDN", "vstmGNdr", _ = { shift = 21, mask = 1, [0] = "vstrGdl", { shift = 16, mask = 15, [13] = "vpushGdr", _ = "vstmdbGNdr", } }, }, { shift = 23, mask = 3, [0] = "vmovGDNm", { shift = 16, mask = 15, [13] = "vpopGdr", _ = "vldmGNdr", }, _ = { shift = 21, mask = 1, [0] = "vldrGdl", "vldmdbGNdr", }, }, }, _ = { shift = 0, mask = 0 -- NYI ldc, mcrr, mrrc. }, } local map_vfps = { shift = 6, mask = 0x2c001, [0] = "vmlaF.dnm", "vmlsF.dnm", [0x04000] = "vnmlsF.dnm", [0x04001] = "vnmlaF.dnm", [0x08000] = "vmulF.dnm", [0x08001] = "vnmulF.dnm", [0x0c000] = "vaddF.dnm", [0x0c001] = "vsubF.dnm", [0x20000] = "vdivF.dnm", [0x24000] = "vfnmsF.dnm", [0x24001] = "vfnmaF.dnm", [0x28000] = "vfmaF.dnm", [0x28001] = "vfmsF.dnm", [0x2c000] = "vmovF.dY", [0x2c001] = { shift = 7, mask = 0x1e01, [0] = "vmovF.dm", "vabsF.dm", [0x0200] = "vnegF.dm", [0x0201] = "vsqrtF.dm", [0x0800] = "vcmpF.dm", [0x0801] = "vcmpeF.dm", [0x0a00] = "vcmpzF.d", [0x0a01] = "vcmpzeF.d", [0x0e01] = "vcvtG.dF.m", [0x1000] = "vcvt.f32.u32Fdm", [0x1001] = "vcvt.f32.s32Fdm", [0x1800] = "vcvtr.u32F.dm", [0x1801] = "vcvt.u32F.dm", [0x1a00] = "vcvtr.s32F.dm", [0x1a01] = "vcvt.s32F.dm", }, } local map_vfpd = { shift = 6, mask = 0x2c001, [0] = "vmlaG.dnm", "vmlsG.dnm", [0x04000] = "vnmlsG.dnm", [0x04001] = "vnmlaG.dnm", [0x08000] = "vmulG.dnm", [0x08001] = "vnmulG.dnm", [0x0c000] = "vaddG.dnm", [0x0c001] = "vsubG.dnm", [0x20000] = "vdivG.dnm", [0x24000] = "vfnmsG.dnm", [0x24001] = "vfnmaG.dnm", [0x28000] = "vfmaG.dnm", [0x28001] = "vfmsG.dnm", [0x2c000] = "vmovG.dY", [0x2c001] = { shift = 7, mask = 0x1e01, [0] = "vmovG.dm", "vabsG.dm", [0x0200] = "vnegG.dm", [0x0201] = "vsqrtG.dm", [0x0800] = "vcmpG.dm", [0x0801] = "vcmpeG.dm", [0x0a00] = "vcmpzG.d", [0x0a01] = "vcmpzeG.d", [0x0e01] = "vcvtF.dG.m", [0x1000] = "vcvt.f64.u32GdFm", [0x1001] = "vcvt.f64.s32GdFm", [0x1800] = "vcvtr.u32FdG.m", [0x1801] = "vcvt.u32FdG.m", [0x1a00] = "vcvtr.s32FdG.m", [0x1a01] = "vcvt.s32FdG.m", }, } local map_datac = { shift = 24, mask = 1, [0] = { shift = 4, mask = 1, [0] = { shift = 8, mask = 15, [10] = map_vfps, [11] = map_vfpd, -- NYI cdp, mcr, mrc. }, { shift = 8, mask = 15, [10] = { shift = 20, mask = 15, [0] = "vmovFnD", "vmovFDn", [14] = "vmsrD", [15] = { shift = 12, mask = 15, [15] = "vmrs", _ = "vmrsD", }, }, }, }, "svcT", } local map_loadcu = { shift = 0, mask = 0, -- NYI unconditional CP load/store. } local map_datacu = { shift = 0, mask = 0, -- NYI unconditional CP data. } local map_simddata = { shift = 0, mask = 0, -- NYI SIMD data. } local map_simdload = { shift = 0, mask = 0, -- NYI SIMD load/store, preload. } local map_preload = { shift = 0, mask = 0, -- NYI preload. } local map_media = { shift = 20, mask = 31, [0] = false, { --01 shift = 5, mask = 7, [0] = "sadd16DNM", "sasxDNM", "ssaxDNM", "ssub16DNM", "sadd8DNM", false, false, "ssub8DNM", }, { --02 shift = 5, mask = 7, [0] = "qadd16DNM", "qasxDNM", "qsaxDNM", "qsub16DNM", "qadd8DNM", false, false, "qsub8DNM", }, { --03 shift = 5, mask = 7, [0] = "shadd16DNM", "shasxDNM", "shsaxDNM", "shsub16DNM", "shadd8DNM", false, false, "shsub8DNM", }, false, { --05 shift = 5, mask = 7, [0] = "uadd16DNM", "uasxDNM", "usaxDNM", "usub16DNM", "uadd8DNM", false, false, "usub8DNM", }, { --06 shift = 5, mask = 7, [0] = "uqadd16DNM", "uqasxDNM", "uqsaxDNM", "uqsub16DNM", "uqadd8DNM", false, false, "uqsub8DNM", }, { --07 shift = 5, mask = 7, [0] = "uhadd16DNM", "uhasxDNM", "uhsaxDNM", "uhsub16DNM", "uhadd8DNM", false, false, "uhsub8DNM", }, { --08 shift = 5, mask = 7, [0] = "pkhbtDNMU", false, "pkhtbDNMU", { shift = 16, mask = 15, [15] = "sxtb16DMU", _ = "sxtab16DNMU", }, "pkhbtDNMU", "selDNM", "pkhtbDNMU", }, false, { --0a shift = 5, mask = 7, [0] = "ssatDxMu", "ssat16DxM", "ssatDxMu", { shift = 16, mask = 15, [15] = "sxtbDMU", _ = "sxtabDNMU", }, "ssatDxMu", false, "ssatDxMu", }, { --0b shift = 5, mask = 7, [0] = "ssatDxMu", "revDM", "ssatDxMu", { shift = 16, mask = 15, [15] = "sxthDMU", _ = "sxtahDNMU", }, "ssatDxMu", "rev16DM", "ssatDxMu", }, { --0c shift = 5, mask = 7, [3] = { shift = 16, mask = 15, [15] = "uxtb16DMU", _ = "uxtab16DNMU", }, }, false, { --0e shift = 5, mask = 7, [0] = "usatDwMu", "usat16DwM", "usatDwMu", { shift = 16, mask = 15, [15] = "uxtbDMU", _ = "uxtabDNMU", }, "usatDwMu", false, "usatDwMu", }, { --0f shift = 5, mask = 7, [0] = "usatDwMu", "rbitDM", "usatDwMu", { shift = 16, mask = 15, [15] = "uxthDMU", _ = "uxtahDNMU", }, "usatDwMu", "revshDM", "usatDwMu", }, { --10 shift = 12, mask = 15, [15] = { shift = 5, mask = 7, "smuadNMS", "smuadxNMS", "smusdNMS", "smusdxNMS", }, _ = { shift = 5, mask = 7, [0] = "smladNMSD", "smladxNMSD", "smlsdNMSD", "smlsdxNMSD", }, }, false, false, false, { --14 shift = 5, mask = 7, [0] = "smlaldDNMS", "smlaldxDNMS", "smlsldDNMS", "smlsldxDNMS", }, { --15 shift = 5, mask = 7, [0] = { shift = 12, mask = 15, [15] = "smmulNMS", _ = "smmlaNMSD", }, { shift = 12, mask = 15, [15] = "smmulrNMS", _ = "smmlarNMSD", }, false, false, false, false, "smmlsNMSD", "smmlsrNMSD", }, false, false, { --18 shift = 5, mask = 7, [0] = { shift = 12, mask = 15, [15] = "usad8NMS", _ = "usada8NMSD", }, }, false, { --1a shift = 5, mask = 3, [2] = "sbfxDMvw", }, { --1b shift = 5, mask = 3, [2] = "sbfxDMvw", }, { --1c shift = 5, mask = 3, [0] = { shift = 0, mask = 15, [15] = "bfcDvX", _ = "bfiDMvX", }, }, { --1d shift = 5, mask = 3, [0] = { shift = 0, mask = 15, [15] = "bfcDvX", _ = "bfiDMvX", }, }, { --1e shift = 5, mask = 3, [2] = "ubfxDMvw", }, { --1f shift = 5, mask = 3, [2] = "ubfxDMvw", }, } local map_load = { shift = 21, mask = 9, { shift = 20, mask = 5, [0] = "strtDL", "ldrtDL", [4] = "strbtDL", [5] = "ldrbtDL", }, _ = { shift = 20, mask = 5, [0] = "strDL", "ldrDL", [4] = "strbDL", [5] = "ldrbDL", } } local map_load1 = { shift = 4, mask = 1, [0] = map_load, map_media, } local map_loadm = { shift = 20, mask = 1, [0] = { shift = 23, mask = 3, [0] = "stmdaNR", "stmNR", { shift = 16, mask = 63, [45] = "pushR", _ = "stmdbNR", }, "stmibNR", }, { shift = 23, mask = 3, [0] = "ldmdaNR", { shift = 16, mask = 63, [61] = "popR", _ = "ldmNR", }, "ldmdbNR", "ldmibNR", }, } local map_data = { shift = 21, mask = 15, [0] = "andDNPs", "eorDNPs", "subDNPs", "rsbDNPs", "addDNPs", "adcDNPs", "sbcDNPs", "rscDNPs", "tstNP", "teqNP", "cmpNP", "cmnNP", "orrDNPs", "movDPs", "bicDNPs", "mvnDPs", } local map_mul = { shift = 21, mask = 7, [0] = "mulNMSs", "mlaNMSDs", "umaalDNMS", "mlsDNMS", "umullDNMSs", "umlalDNMSs", "smullDNMSs", "smlalDNMSs", } local map_sync = { shift = 20, mask = 15, -- NYI: brackets around N. R(D+1) for ldrexd/strexd. [0] = "swpDMN", false, false, false, "swpbDMN", false, false, false, "strexDMN", "ldrexDN", "strexdDN", "ldrexdDN", "strexbDMN", "ldrexbDN", "strexhDN", "ldrexhDN", } local map_mulh = { shift = 21, mask = 3, [0] = { shift = 5, mask = 3, [0] = "smlabbNMSD", "smlatbNMSD", "smlabtNMSD", "smlattNMSD", }, { shift = 5, mask = 3, [0] = "smlawbNMSD", "smulwbNMS", "smlawtNMSD", "smulwtNMS", }, { shift = 5, mask = 3, [0] = "smlalbbDNMS", "smlaltbDNMS", "smlalbtDNMS", "smlalttDNMS", }, { shift = 5, mask = 3, [0] = "smulbbNMS", "smultbNMS", "smulbtNMS", "smulttNMS", }, } local map_misc = { shift = 4, mask = 7, -- NYI: decode PSR bits of msr. [0] = { shift = 21, mask = 1, [0] = "mrsD", "msrM", }, { shift = 21, mask = 3, "bxM", false, "clzDM", }, { shift = 21, mask = 3, "bxjM", }, { shift = 21, mask = 3, "blxM", }, false, { shift = 21, mask = 3, [0] = "qaddDMN", "qsubDMN", "qdaddDMN", "qdsubDMN", }, false, { shift = 21, mask = 3, "bkptK", }, } local map_datar = { shift = 4, mask = 9, [9] = { shift = 5, mask = 3, [0] = { shift = 24, mask = 1, [0] = map_mul, map_sync, }, { shift = 20, mask = 1, [0] = "strhDL", "ldrhDL", }, { shift = 20, mask = 1, [0] = "ldrdDL", "ldrsbDL", }, { shift = 20, mask = 1, [0] = "strdDL", "ldrshDL", }, }, _ = { shift = 20, mask = 25, [16] = { shift = 7, mask = 1, [0] = map_misc, map_mulh, }, _ = { shift = 0, mask = 0xffffffff, [bor(0xe1a00000)] = "nop", _ = map_data, } }, } local map_datai = { shift = 20, mask = 31, -- NYI: decode PSR bits of msr. Decode imm12. [16] = "movwDW", [20] = "movtDW", [18] = { shift = 0, mask = 0xf00ff, [0] = "nopv6", _ = "msrNW", }, [22] = "msrNW", _ = map_data, } local map_branch = { shift = 24, mask = 1, [0] = "bB", "blB" } local map_condins = { [0] = map_datar, map_datai, map_load, map_load1, map_loadm, map_branch, map_loadc, map_datac } -- NYI: setend. local map_uncondins = { [0] = false, map_simddata, map_simdload, map_preload, false, "blxB", map_loadcu, map_datacu, } ------------------------------------------------------------------------------ local map_gpr = { [0] = "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "sp", "lr", "pc", } local map_cond = { [0] = "eq", "ne", "hs", "lo", "mi", "pl", "vs", "vc", "hi", "ls", "ge", "lt", "gt", "le", "al", } local map_shift = { [0] = "lsl", "lsr", "asr", "ror", } ------------------------------------------------------------------------------ -- Output a nicely formatted line with an opcode and operands. local function putop(ctx, text, operands) local pos = ctx.pos local extra = "" if ctx.rel then local sym = ctx.symtab[ctx.rel] if sym then extra = "\t->"..sym elseif band(ctx.op, 0x0e000000) ~= 0x0a000000 then extra = "\t; 0x"..tohex(ctx.rel) end end if ctx.hexdump > 0 then ctx.out(format("%08x %s %-5s %s%s\n", ctx.addr+pos, tohex(ctx.op), text, concat(operands, ", "), extra)) else ctx.out(format("%08x %-5s %s%s\n", ctx.addr+pos, text, concat(operands, ", "), extra)) end ctx.pos = pos + 4 end -- Fallback for unknown opcodes. local function unknown(ctx) return putop(ctx, ".long", { "0x"..tohex(ctx.op) }) end -- Format operand 2 of load/store opcodes. local function fmtload(ctx, op, pos) local base = map_gpr[band(rshift(op, 16), 15)] local x, ofs local ext = (band(op, 0x04000000) == 0) if not ext and band(op, 0x02000000) == 0 then ofs = band(op, 4095) if band(op, 0x00800000) == 0 then ofs = -ofs end if base == "pc" then ctx.rel = ctx.addr + pos + 8 + ofs end ofs = "#"..ofs elseif ext and band(op, 0x00400000) ~= 0 then ofs = band(op, 15) + band(rshift(op, 4), 0xf0) if band(op, 0x00800000) == 0 then ofs = -ofs end if base == "pc" then ctx.rel = ctx.addr + pos + 8 + ofs end ofs = "#"..ofs else ofs = map_gpr[band(op, 15)] if ext or band(op, 0xfe0) == 0 then elseif band(op, 0xfe0) == 0x60 then ofs = format("%s, rrx", ofs) else local sh = band(rshift(op, 7), 31) if sh == 0 then sh = 32 end ofs = format("%s, %s #%d", ofs, map_shift[band(rshift(op, 5), 3)], sh) end if band(op, 0x00800000) == 0 then ofs = "-"..ofs end end if ofs == "#0" then x = format("[%s]", base) elseif band(op, 0x01000000) == 0 then x = format("[%s], %s", base, ofs) else x = format("[%s, %s]", base, ofs) end if band(op, 0x01200000) == 0x01200000 then x = x.."!" end return x end -- Format operand 2 of vector load/store opcodes. local function fmtvload(ctx, op, pos) local base = map_gpr[band(rshift(op, 16), 15)] local ofs = band(op, 255)*4 if band(op, 0x00800000) == 0 then ofs = -ofs end if base == "pc" then ctx.rel = ctx.addr + pos + 8 + ofs end if ofs == 0 then return format("[%s]", base) else return format("[%s, #%d]", base, ofs) end end local function fmtvr(op, vr, sh0, sh1) if vr == "s" then return format("s%d", 2*band(rshift(op, sh0), 15)+band(rshift(op, sh1), 1)) else return format("d%d", band(rshift(op, sh0), 15)+band(rshift(op, sh1-4), 16)) end end -- Disassemble a single instruction. local function disass_ins(ctx) local pos = ctx.pos local b0, b1, b2, b3 = byte(ctx.code, pos+1, pos+4) local op = bor(lshift(b3, 24), lshift(b2, 16), lshift(b1, 8), b0) local operands = {} local suffix = "" local last, name, pat local vr ctx.op = op ctx.rel = nil local cond = rshift(op, 28) local opat if cond == 15 then opat = map_uncondins[band(rshift(op, 25), 7)] else if cond ~= 14 then suffix = map_cond[cond] end opat = map_condins[band(rshift(op, 25), 7)] end while type(opat) ~= "string" do if not opat then return unknown(ctx) end opat = opat[band(rshift(op, opat.shift), opat.mask)] or opat._ end name, pat = match(opat, "^([a-z0-9]*)(.*)") if sub(pat, 1, 1) == "." then local s2, p2 = match(pat, "^([a-z0-9.]*)(.*)") suffix = suffix..s2 pat = p2 end for p in gmatch(pat, ".") do local x = nil if p == "D" then x = map_gpr[band(rshift(op, 12), 15)] elseif p == "N" then x = map_gpr[band(rshift(op, 16), 15)] elseif p == "S" then x = map_gpr[band(rshift(op, 8), 15)] elseif p == "M" then x = map_gpr[band(op, 15)] elseif p == "d" then x = fmtvr(op, vr, 12, 22) elseif p == "n" then x = fmtvr(op, vr, 16, 7) elseif p == "m" then x = fmtvr(op, vr, 0, 5) elseif p == "P" then if band(op, 0x02000000) ~= 0 then x = ror(band(op, 255), 2*band(rshift(op, 8), 15)) else x = map_gpr[band(op, 15)] if band(op, 0xff0) ~= 0 then operands[#operands+1] = x local s = map_shift[band(rshift(op, 5), 3)] local r = nil if band(op, 0xf90) == 0 then if s == "ror" then s = "rrx" else r = "#32" end elseif band(op, 0x10) == 0 then r = "#"..band(rshift(op, 7), 31) else r = map_gpr[band(rshift(op, 8), 15)] end if name == "mov" then name = s; x = r elseif r then x = format("%s %s", s, r) else x = s end end end elseif p == "L" then x = fmtload(ctx, op, pos) elseif p == "l" then x = fmtvload(ctx, op, pos) elseif p == "B" then local addr = ctx.addr + pos + 8 + arshift(lshift(op, 8), 6) if cond == 15 then addr = addr + band(rshift(op, 23), 2) end ctx.rel = addr x = "0x"..tohex(addr) elseif p == "F" then vr = "s" elseif p == "G" then vr = "d" elseif p == "." then suffix = suffix..(vr == "s" and ".f32" or ".f64") elseif p == "R" then if band(op, 0x00200000) ~= 0 and #operands == 1 then operands[1] = operands[1].."!" end local t = {} for i=0,15 do if band(rshift(op, i), 1) == 1 then t[#t+1] = map_gpr[i] end end x = "{"..concat(t, ", ").."}" elseif p == "r" then if band(op, 0x00200000) ~= 0 and #operands == 2 then operands[1] = operands[1].."!" end local s = tonumber(sub(last, 2)) local n = band(op, 255) if vr == "d" then n = rshift(n, 1) end operands[#operands] = format("{%s-%s%d}", last, vr, s+n-1) elseif p == "W" then x = band(op, 0x0fff) + band(rshift(op, 4), 0xf000) elseif p == "T" then x = "#0x"..tohex(band(op, 0x00ffffff), 6) elseif p == "U" then x = band(rshift(op, 7), 31) if x == 0 then x = nil end elseif p == "u" then x = band(rshift(op, 7), 31) if band(op, 0x40) == 0 then if x == 0 then x = nil else x = "lsl #"..x end else if x == 0 then x = "asr #32" else x = "asr #"..x end end elseif p == "v" then x = band(rshift(op, 7), 31) elseif p == "w" then x = band(rshift(op, 16), 31) elseif p == "x" then x = band(rshift(op, 16), 31) + 1 elseif p == "X" then x = band(rshift(op, 16), 31) - last + 1 elseif p == "Y" then x = band(rshift(op, 12), 0xf0) + band(op, 0x0f) elseif p == "K" then x = "#0x"..tohex(band(rshift(op, 4), 0x0000fff0) + band(op, 15), 4) elseif p == "s" then if band(op, 0x00100000) ~= 0 then suffix = "s"..suffix end else assert(false) end if x then last = x if type(x) == "number" then x = "#"..x end operands[#operands+1] = x end end return putop(ctx, name..suffix, operands) end ------------------------------------------------------------------------------ -- Disassemble a block of code. local function disass_block(ctx, ofs, len) if not ofs then ofs = 0 end local stop = len and ofs+len or #ctx.code ctx.pos = ofs ctx.rel = nil while ctx.pos < stop do disass_ins(ctx) end end -- Extended API: create a disassembler context. Then call ctx:disass(ofs, len). local function create(code, addr, out) local ctx = {} ctx.code = code ctx.addr = addr or 0 ctx.out = out or io.write ctx.symtab = {} ctx.disass = disass_block ctx.hexdump = 8 return ctx end -- Simple API: disassemble code (a string) at address and output via out. local function disass(code, addr, out) create(code, addr, out):disass() end -- Return register name for RID. local function regname(r) if r < 16 then return map_gpr[r] end return "d"..(r-16) end -- Public module functions. return { create = create, disass = disass, regname = regname } luajit-2.1.0~beta3+dfsg.orig/src/jit/v.lua0000644000175100017510000001322713101703334017650 0ustar ondrejondrej---------------------------------------------------------------------------- -- Verbose mode of the LuaJIT compiler. -- -- Copyright (C) 2005-2017 Mike Pall. All rights reserved. -- Released under the MIT license. See Copyright Notice in luajit.h ---------------------------------------------------------------------------- -- -- This module shows verbose information about the progress of the -- JIT compiler. It prints one line for each generated trace. This module -- is useful to see which code has been compiled or where the compiler -- punts and falls back to the interpreter. -- -- Example usage: -- -- luajit -jv -e "for i=1,1000 do for j=1,1000 do end end" -- luajit -jv=myapp.out myapp.lua -- -- Default output is to stderr. To redirect the output to a file, pass a -- filename as an argument (use '-' for stdout) or set the environment -- variable LUAJIT_VERBOSEFILE. The file is overwritten every time the -- module is started. -- -- The output from the first example should look like this: -- -- [TRACE 1 (command line):1 loop] -- [TRACE 2 (1/3) (command line):1 -> 1] -- -- The first number in each line is the internal trace number. Next are -- the file name ('(command line)') and the line number (':1') where the -- trace has started. Side traces also show the parent trace number and -- the exit number where they are attached to in parentheses ('(1/3)'). -- An arrow at the end shows where the trace links to ('-> 1'), unless -- it loops to itself. -- -- In this case the inner loop gets hot and is traced first, generating -- a root trace. Then the last exit from the 1st trace gets hot, too, -- and triggers generation of the 2nd trace. The side trace follows the -- path along the outer loop and *around* the inner loop, back to its -- start, and then links to the 1st trace. Yes, this may seem unusual, -- if you know how traditional compilers work. Trace compilers are full -- of surprises like this -- have fun! :-) -- -- Aborted traces are shown like this: -- -- [TRACE --- foo.lua:44 -- leaving loop in root trace at foo:lua:50] -- -- Don't worry -- trace aborts are quite common, even in programs which -- can be fully compiled. The compiler may retry several times until it -- finds a suitable trace. -- -- Of course this doesn't work with features that are not-yet-implemented -- (NYI error messages). The VM simply falls back to the interpreter. This -- may not matter at all if the particular trace is not very high up in -- the CPU usage profile. Oh, and the interpreter is quite fast, too. -- -- Also check out the -jdump module, which prints all the gory details. -- ------------------------------------------------------------------------------ -- Cache some library functions and objects. local jit = require("jit") assert(jit.version_num == 20100, "LuaJIT core/library version mismatch") local jutil = require("jit.util") local vmdef = require("jit.vmdef") local funcinfo, traceinfo = jutil.funcinfo, jutil.traceinfo local type, format = type, string.format local stdout, stderr = io.stdout, io.stderr -- Active flag and output file handle. local active, out ------------------------------------------------------------------------------ local startloc, startex local function fmtfunc(func, pc) local fi = funcinfo(func, pc) if fi.loc then return fi.loc elseif fi.ffid then return vmdef.ffnames[fi.ffid] elseif fi.addr then return format("C:%x", fi.addr) else return "(?)" end end -- Format trace error message. local function fmterr(err, info) if type(err) == "number" then if type(info) == "function" then info = fmtfunc(info) end err = format(vmdef.traceerr[err], info) end return err end -- Dump trace states. local function dump_trace(what, tr, func, pc, otr, oex) if what == "start" then startloc = fmtfunc(func, pc) startex = otr and "("..otr.."/"..(oex == -1 and "stitch" or oex)..") " or "" else if what == "abort" then local loc = fmtfunc(func, pc) if loc ~= startloc then out:write(format("[TRACE --- %s%s -- %s at %s]\n", startex, startloc, fmterr(otr, oex), loc)) else out:write(format("[TRACE --- %s%s -- %s]\n", startex, startloc, fmterr(otr, oex))) end elseif what == "stop" then local info = traceinfo(tr) local link, ltype = info.link, info.linktype if ltype == "interpreter" then out:write(format("[TRACE %3s %s%s -- fallback to interpreter]\n", tr, startex, startloc)) elseif ltype == "stitch" then out:write(format("[TRACE %3s %s%s %s %s]\n", tr, startex, startloc, ltype, fmtfunc(func, pc))) elseif link == tr or link == 0 then out:write(format("[TRACE %3s %s%s %s]\n", tr, startex, startloc, ltype)) elseif ltype == "root" then out:write(format("[TRACE %3s %s%s -> %d]\n", tr, startex, startloc, link)) else out:write(format("[TRACE %3s %s%s -> %d %s]\n", tr, startex, startloc, link, ltype)) end else out:write(format("[TRACE %s]\n", what)) end out:flush() end end ------------------------------------------------------------------------------ -- Detach dump handlers. local function dumpoff() if active then active = false jit.attach(dump_trace) if out and out ~= stdout and out ~= stderr then out:close() end out = nil end end -- Open the output file and attach dump handlers. local function dumpon(outfile) if active then dumpoff() end if not outfile then outfile = os.getenv("LUAJIT_VERBOSEFILE") end if outfile then out = outfile == "-" and stdout or assert(io.open(outfile, "w")) else out = stderr end jit.attach(dump_trace, "trace") active = true end -- Public module functions. return { on = dumpon, off = dumpoff, start = dumpon -- For -j command line option. } luajit-2.1.0~beta3+dfsg.orig/src/jit/dis_x64.lua0000644000175100017510000000131013101703334020651 0ustar ondrejondrej---------------------------------------------------------------------------- -- LuaJIT x64 disassembler wrapper module. -- -- Copyright (C) 2005-2017 Mike Pall. All rights reserved. -- Released under the MIT license. See Copyright Notice in luajit.h ---------------------------------------------------------------------------- -- This module just exports the 64 bit functions from the combined -- x86/x64 disassembler module. All the interesting stuff is there. ------------------------------------------------------------------------------ local dis_x86 = require((string.match(..., ".*%.") or "").."dis_x86") return { create = dis_x86.create64, disass = dis_x86.disass64, regname = dis_x86.regname64 } luajit-2.1.0~beta3+dfsg.orig/src/jit/bcsave.lua0000644000175100017510000004365013101703334020651 0ustar ondrejondrej---------------------------------------------------------------------------- -- LuaJIT module to save/list bytecode. -- -- Copyright (C) 2005-2017 Mike Pall. All rights reserved. -- Released under the MIT license. See Copyright Notice in luajit.h ---------------------------------------------------------------------------- -- -- This module saves or lists the bytecode for an input file. -- It's run by the -b command line option. -- ------------------------------------------------------------------------------ local jit = require("jit") assert(jit.version_num == 20100, "LuaJIT core/library version mismatch") local bit = require("bit") -- Symbol name prefix for LuaJIT bytecode. local LJBC_PREFIX = "luaJIT_BC_" ------------------------------------------------------------------------------ local function usage() io.stderr:write[[ Save LuaJIT bytecode: luajit -b[options] input output -l Only list bytecode. -s Strip debug info (default). -g Keep debug info. -n name Set module name (default: auto-detect from input name). -t type Set output file type (default: auto-detect from output name). -a arch Override architecture for object files (default: native). -o os Override OS for object files (default: native). -e chunk Use chunk string as input. -- Stop handling options. - Use stdin as input and/or stdout as output. File types: c h obj o raw (default) ]] os.exit(1) end local function check(ok, ...) if ok then return ok, ... end io.stderr:write("luajit: ", ...) io.stderr:write("\n") os.exit(1) end local function readfile(input) if type(input) == "function" then return input end if input == "-" then input = nil end return check(loadfile(input)) end local function savefile(name, mode) if name == "-" then return io.stdout end return check(io.open(name, mode)) end ------------------------------------------------------------------------------ local map_type = { raw = "raw", c = "c", h = "h", o = "obj", obj = "obj", } local map_arch = { x86 = true, x64 = true, arm = true, arm64 = true, arm64be = true, ppc = true, mips = true, mipsel = true, } local map_os = { linux = true, windows = true, osx = true, freebsd = true, netbsd = true, openbsd = true, dragonfly = true, solaris = true, } local function checkarg(str, map, err) str = string.lower(str) local s = check(map[str], "unknown ", err) return s == true and str or s end local function detecttype(str) local ext = string.match(string.lower(str), "%.(%a+)$") return map_type[ext] or "raw" end local function checkmodname(str) check(string.match(str, "^[%w_.%-]+$"), "bad module name") return string.gsub(str, "[%.%-]", "_") end local function detectmodname(str) if type(str) == "string" then local tail = string.match(str, "[^/\\]+$") if tail then str = tail end local head = string.match(str, "^(.*)%.[^.]*$") if head then str = head end str = string.match(str, "^[%w_.%-]+") else str = nil end check(str, "cannot derive module name, use -n name") return string.gsub(str, "[%.%-]", "_") end ------------------------------------------------------------------------------ local function bcsave_tail(fp, output, s) local ok, err = fp:write(s) if ok and output ~= "-" then ok, err = fp:close() end check(ok, "cannot write ", output, ": ", err) end local function bcsave_raw(output, s) local fp = savefile(output, "wb") bcsave_tail(fp, output, s) end local function bcsave_c(ctx, output, s) local fp = savefile(output, "w") if ctx.type == "c" then fp:write(string.format([[ #ifdef _cplusplus extern "C" #endif #ifdef _WIN32 __declspec(dllexport) #endif const unsigned char %s%s[] = { ]], LJBC_PREFIX, ctx.modname)) else fp:write(string.format([[ #define %s%s_SIZE %d static const unsigned char %s%s[] = { ]], LJBC_PREFIX, ctx.modname, #s, LJBC_PREFIX, ctx.modname)) end local t, n, m = {}, 0, 0 for i=1,#s do local b = tostring(string.byte(s, i)) m = m + #b + 1 if m > 78 then fp:write(table.concat(t, ",", 1, n), ",\n") n, m = 0, #b + 1 end n = n + 1 t[n] = b end bcsave_tail(fp, output, table.concat(t, ",", 1, n).."\n};\n") end local function bcsave_elfobj(ctx, output, s, ffi) ffi.cdef[[ typedef struct { uint8_t emagic[4], eclass, eendian, eversion, eosabi, eabiversion, epad[7]; uint16_t type, machine; uint32_t version; uint32_t entry, phofs, shofs; uint32_t flags; uint16_t ehsize, phentsize, phnum, shentsize, shnum, shstridx; } ELF32header; typedef struct { uint8_t emagic[4], eclass, eendian, eversion, eosabi, eabiversion, epad[7]; uint16_t type, machine; uint32_t version; uint64_t entry, phofs, shofs; uint32_t flags; uint16_t ehsize, phentsize, phnum, shentsize, shnum, shstridx; } ELF64header; typedef struct { uint32_t name, type, flags, addr, ofs, size, link, info, align, entsize; } ELF32sectheader; typedef struct { uint32_t name, type; uint64_t flags, addr, ofs, size; uint32_t link, info; uint64_t align, entsize; } ELF64sectheader; typedef struct { uint32_t name, value, size; uint8_t info, other; uint16_t sectidx; } ELF32symbol; typedef struct { uint32_t name; uint8_t info, other; uint16_t sectidx; uint64_t value, size; } ELF64symbol; typedef struct { ELF32header hdr; ELF32sectheader sect[6]; ELF32symbol sym[2]; uint8_t space[4096]; } ELF32obj; typedef struct { ELF64header hdr; ELF64sectheader sect[6]; ELF64symbol sym[2]; uint8_t space[4096]; } ELF64obj; ]] local symname = LJBC_PREFIX..ctx.modname local is64, isbe = false, false if ctx.arch == "x64" or ctx.arch == "arm64" or ctx.arch == "arm64be" then is64 = true elseif ctx.arch == "ppc" or ctx.arch == "mips" then isbe = true end -- Handle different host/target endianess. local function f32(x) return x end local f16, fofs = f32, f32 if ffi.abi("be") ~= isbe then f32 = bit.bswap function f16(x) return bit.rshift(bit.bswap(x), 16) end if is64 then local two32 = ffi.cast("int64_t", 2^32) function fofs(x) return bit.bswap(x)*two32 end else fofs = f32 end end -- Create ELF object and fill in header. local o = ffi.new(is64 and "ELF64obj" or "ELF32obj") local hdr = o.hdr if ctx.os == "bsd" or ctx.os == "other" then -- Determine native hdr.eosabi. local bf = assert(io.open("/bin/ls", "rb")) local bs = bf:read(9) bf:close() ffi.copy(o, bs, 9) check(hdr.emagic[0] == 127, "no support for writing native object files") else hdr.emagic = "\127ELF" hdr.eosabi = ({ freebsd=9, netbsd=2, openbsd=12, solaris=6 })[ctx.os] or 0 end hdr.eclass = is64 and 2 or 1 hdr.eendian = isbe and 2 or 1 hdr.eversion = 1 hdr.type = f16(1) hdr.machine = f16(({ x86=3, x64=62, arm=40, arm64=183, arm64be=183, ppc=20, mips=8, mipsel=8 })[ctx.arch]) if ctx.arch == "mips" or ctx.arch == "mipsel" then hdr.flags = f32(0x50001006) end hdr.version = f32(1) hdr.shofs = fofs(ffi.offsetof(o, "sect")) hdr.ehsize = f16(ffi.sizeof(hdr)) hdr.shentsize = f16(ffi.sizeof(o.sect[0])) hdr.shnum = f16(6) hdr.shstridx = f16(2) -- Fill in sections and symbols. local sofs, ofs = ffi.offsetof(o, "space"), 1 for i,name in ipairs{ ".symtab", ".shstrtab", ".strtab", ".rodata", ".note.GNU-stack", } do local sect = o.sect[i] sect.align = fofs(1) sect.name = f32(ofs) ffi.copy(o.space+ofs, name) ofs = ofs + #name+1 end o.sect[1].type = f32(2) -- .symtab o.sect[1].link = f32(3) o.sect[1].info = f32(1) o.sect[1].align = fofs(8) o.sect[1].ofs = fofs(ffi.offsetof(o, "sym")) o.sect[1].entsize = fofs(ffi.sizeof(o.sym[0])) o.sect[1].size = fofs(ffi.sizeof(o.sym)) o.sym[1].name = f32(1) o.sym[1].sectidx = f16(4) o.sym[1].size = fofs(#s) o.sym[1].info = 17 o.sect[2].type = f32(3) -- .shstrtab o.sect[2].ofs = fofs(sofs) o.sect[2].size = fofs(ofs) o.sect[3].type = f32(3) -- .strtab o.sect[3].ofs = fofs(sofs + ofs) o.sect[3].size = fofs(#symname+1) ffi.copy(o.space+ofs+1, symname) ofs = ofs + #symname + 2 o.sect[4].type = f32(1) -- .rodata o.sect[4].flags = fofs(2) o.sect[4].ofs = fofs(sofs + ofs) o.sect[4].size = fofs(#s) o.sect[5].type = f32(1) -- .note.GNU-stack o.sect[5].ofs = fofs(sofs + ofs + #s) -- Write ELF object file. local fp = savefile(output, "wb") fp:write(ffi.string(o, ffi.sizeof(o)-4096+ofs)) bcsave_tail(fp, output, s) end local function bcsave_peobj(ctx, output, s, ffi) ffi.cdef[[ typedef struct { uint16_t arch, nsects; uint32_t time, symtabofs, nsyms; uint16_t opthdrsz, flags; } PEheader; typedef struct { char name[8]; uint32_t vsize, vaddr, size, ofs, relocofs, lineofs; uint16_t nreloc, nline; uint32_t flags; } PEsection; typedef struct __attribute((packed)) { union { char name[8]; uint32_t nameref[2]; }; uint32_t value; int16_t sect; uint16_t type; uint8_t scl, naux; } PEsym; typedef struct __attribute((packed)) { uint32_t size; uint16_t nreloc, nline; uint32_t cksum; uint16_t assoc; uint8_t comdatsel, unused[3]; } PEsymaux; typedef struct { PEheader hdr; PEsection sect[2]; // Must be an even number of symbol structs. PEsym sym0; PEsymaux sym0aux; PEsym sym1; PEsymaux sym1aux; PEsym sym2; PEsym sym3; uint32_t strtabsize; uint8_t space[4096]; } PEobj; ]] local symname = LJBC_PREFIX..ctx.modname local is64 = false if ctx.arch == "x86" then symname = "_"..symname elseif ctx.arch == "x64" then is64 = true end local symexport = " /EXPORT:"..symname..",DATA " -- The file format is always little-endian. Swap if the host is big-endian. local function f32(x) return x end local f16 = f32 if ffi.abi("be") then f32 = bit.bswap function f16(x) return bit.rshift(bit.bswap(x), 16) end end -- Create PE object and fill in header. local o = ffi.new("PEobj") local hdr = o.hdr hdr.arch = f16(({ x86=0x14c, x64=0x8664, arm=0x1c0, ppc=0x1f2, mips=0x366, mipsel=0x366 })[ctx.arch]) hdr.nsects = f16(2) hdr.symtabofs = f32(ffi.offsetof(o, "sym0")) hdr.nsyms = f32(6) -- Fill in sections and symbols. o.sect[0].name = ".drectve" o.sect[0].size = f32(#symexport) o.sect[0].flags = f32(0x00100a00) o.sym0.sect = f16(1) o.sym0.scl = 3 o.sym0.name = ".drectve" o.sym0.naux = 1 o.sym0aux.size = f32(#symexport) o.sect[1].name = ".rdata" o.sect[1].size = f32(#s) o.sect[1].flags = f32(0x40300040) o.sym1.sect = f16(2) o.sym1.scl = 3 o.sym1.name = ".rdata" o.sym1.naux = 1 o.sym1aux.size = f32(#s) o.sym2.sect = f16(2) o.sym2.scl = 2 o.sym2.nameref[1] = f32(4) o.sym3.sect = f16(-1) o.sym3.scl = 2 o.sym3.value = f32(1) o.sym3.name = "@feat.00" -- Mark as SafeSEH compliant. ffi.copy(o.space, symname) local ofs = #symname + 1 o.strtabsize = f32(ofs + 4) o.sect[0].ofs = f32(ffi.offsetof(o, "space") + ofs) ffi.copy(o.space + ofs, symexport) ofs = ofs + #symexport o.sect[1].ofs = f32(ffi.offsetof(o, "space") + ofs) -- Write PE object file. local fp = savefile(output, "wb") fp:write(ffi.string(o, ffi.sizeof(o)-4096+ofs)) bcsave_tail(fp, output, s) end local function bcsave_machobj(ctx, output, s, ffi) ffi.cdef[[ typedef struct { uint32_t magic, cputype, cpusubtype, filetype, ncmds, sizeofcmds, flags; } mach_header; typedef struct { mach_header; uint32_t reserved; } mach_header_64; typedef struct { uint32_t cmd, cmdsize; char segname[16]; uint32_t vmaddr, vmsize, fileoff, filesize; uint32_t maxprot, initprot, nsects, flags; } mach_segment_command; typedef struct { uint32_t cmd, cmdsize; char segname[16]; uint64_t vmaddr, vmsize, fileoff, filesize; uint32_t maxprot, initprot, nsects, flags; } mach_segment_command_64; typedef struct { char sectname[16], segname[16]; uint32_t addr, size; uint32_t offset, align, reloff, nreloc, flags; uint32_t reserved1, reserved2; } mach_section; typedef struct { char sectname[16], segname[16]; uint64_t addr, size; uint32_t offset, align, reloff, nreloc, flags; uint32_t reserved1, reserved2, reserved3; } mach_section_64; typedef struct { uint32_t cmd, cmdsize, symoff, nsyms, stroff, strsize; } mach_symtab_command; typedef struct { int32_t strx; uint8_t type, sect; int16_t desc; uint32_t value; } mach_nlist; typedef struct { uint32_t strx; uint8_t type, sect; uint16_t desc; uint64_t value; } mach_nlist_64; typedef struct { uint32_t magic, nfat_arch; } mach_fat_header; typedef struct { uint32_t cputype, cpusubtype, offset, size, align; } mach_fat_arch; typedef struct { struct { mach_header hdr; mach_segment_command seg; mach_section sec; mach_symtab_command sym; } arch[1]; mach_nlist sym_entry; uint8_t space[4096]; } mach_obj; typedef struct { struct { mach_header_64 hdr; mach_segment_command_64 seg; mach_section_64 sec; mach_symtab_command sym; } arch[1]; mach_nlist_64 sym_entry; uint8_t space[4096]; } mach_obj_64; typedef struct { mach_fat_header fat; mach_fat_arch fat_arch[2]; struct { mach_header hdr; mach_segment_command seg; mach_section sec; mach_symtab_command sym; } arch[2]; mach_nlist sym_entry; uint8_t space[4096]; } mach_fat_obj; ]] local symname = '_'..LJBC_PREFIX..ctx.modname local isfat, is64, align, mobj = false, false, 4, "mach_obj" if ctx.arch == "x64" then is64, align, mobj = true, 8, "mach_obj_64" elseif ctx.arch == "arm" then isfat, mobj = true, "mach_fat_obj" elseif ctx.arch == "arm64" then is64, align, isfat, mobj = true, 8, true, "mach_fat_obj" else check(ctx.arch == "x86", "unsupported architecture for OSX") end local function aligned(v, a) return bit.band(v+a-1, -a) end local be32 = bit.bswap -- Mach-O FAT is BE, supported archs are LE. -- Create Mach-O object and fill in header. local o = ffi.new(mobj) local mach_size = aligned(ffi.offsetof(o, "space")+#symname+2, align) local cputype = ({ x86={7}, x64={0x01000007}, arm={7,12}, arm64={0x01000007,0x0100000c} })[ctx.arch] local cpusubtype = ({ x86={3}, x64={3}, arm={3,9}, arm64={3,0} })[ctx.arch] if isfat then o.fat.magic = be32(0xcafebabe) o.fat.nfat_arch = be32(#cpusubtype) end -- Fill in sections and symbols. for i=0,#cpusubtype-1 do local ofs = 0 if isfat then local a = o.fat_arch[i] a.cputype = be32(cputype[i+1]) a.cpusubtype = be32(cpusubtype[i+1]) -- Subsequent slices overlap each other to share data. ofs = ffi.offsetof(o, "arch") + i*ffi.sizeof(o.arch[0]) a.offset = be32(ofs) a.size = be32(mach_size-ofs+#s) end local a = o.arch[i] a.hdr.magic = is64 and 0xfeedfacf or 0xfeedface a.hdr.cputype = cputype[i+1] a.hdr.cpusubtype = cpusubtype[i+1] a.hdr.filetype = 1 a.hdr.ncmds = 2 a.hdr.sizeofcmds = ffi.sizeof(a.seg)+ffi.sizeof(a.sec)+ffi.sizeof(a.sym) a.seg.cmd = is64 and 0x19 or 0x1 a.seg.cmdsize = ffi.sizeof(a.seg)+ffi.sizeof(a.sec) a.seg.vmsize = #s a.seg.fileoff = mach_size-ofs a.seg.filesize = #s a.seg.maxprot = 1 a.seg.initprot = 1 a.seg.nsects = 1 ffi.copy(a.sec.sectname, "__data") ffi.copy(a.sec.segname, "__DATA") a.sec.size = #s a.sec.offset = mach_size-ofs a.sym.cmd = 2 a.sym.cmdsize = ffi.sizeof(a.sym) a.sym.symoff = ffi.offsetof(o, "sym_entry")-ofs a.sym.nsyms = 1 a.sym.stroff = ffi.offsetof(o, "sym_entry")+ffi.sizeof(o.sym_entry)-ofs a.sym.strsize = aligned(#symname+2, align) end o.sym_entry.type = 0xf o.sym_entry.sect = 1 o.sym_entry.strx = 1 ffi.copy(o.space+1, symname) -- Write Macho-O object file. local fp = savefile(output, "wb") fp:write(ffi.string(o, mach_size)) bcsave_tail(fp, output, s) end local function bcsave_obj(ctx, output, s) local ok, ffi = pcall(require, "ffi") check(ok, "FFI library required to write this file type") if ctx.os == "windows" then return bcsave_peobj(ctx, output, s, ffi) elseif ctx.os == "osx" then return bcsave_machobj(ctx, output, s, ffi) else return bcsave_elfobj(ctx, output, s, ffi) end end ------------------------------------------------------------------------------ local function bclist(input, output) local f = readfile(input) require("jit.bc").dump(f, savefile(output, "w"), true) end local function bcsave(ctx, input, output) local f = readfile(input) local s = string.dump(f, ctx.strip) local t = ctx.type if not t then t = detecttype(output) ctx.type = t end if t == "raw" then bcsave_raw(output, s) else if not ctx.modname then ctx.modname = detectmodname(input) end if t == "obj" then bcsave_obj(ctx, output, s) else bcsave_c(ctx, output, s) end end end local function docmd(...) local arg = {...} local n = 1 local list = false local ctx = { strip = true, arch = jit.arch, os = string.lower(jit.os), type = false, modname = false, } while n <= #arg do local a = arg[n] if type(a) == "string" and string.sub(a, 1, 1) == "-" and a ~= "-" then table.remove(arg, n) if a == "--" then break end for m=2,#a do local opt = string.sub(a, m, m) if opt == "l" then list = true elseif opt == "s" then ctx.strip = true elseif opt == "g" then ctx.strip = false else if arg[n] == nil or m ~= #a then usage() end if opt == "e" then if n ~= 1 then usage() end arg[1] = check(loadstring(arg[1])) elseif opt == "n" then ctx.modname = checkmodname(table.remove(arg, n)) elseif opt == "t" then ctx.type = checkarg(table.remove(arg, n), map_type, "file type") elseif opt == "a" then ctx.arch = checkarg(table.remove(arg, n), map_arch, "architecture") elseif opt == "o" then ctx.os = checkarg(table.remove(arg, n), map_os, "OS name") else usage() end end end else n = n + 1 end end if list then if #arg == 0 or #arg > 2 then usage() end bclist(arg[1], arg[2] or "-") else if #arg ~= 2 then usage() end bcsave(ctx, arg[1], arg[2]) end end ------------------------------------------------------------------------------ -- Public module functions. return { start = docmd -- Process -b command line option. } luajit-2.1.0~beta3+dfsg.orig/src/jit/dis_arm64.lua0000644000175100017510000007427013101703334021200 0ustar ondrejondrej---------------------------------------------------------------------------- -- LuaJIT ARM64 disassembler module. -- -- Copyright (C) 2005-2017 Mike Pall. All rights reserved. -- Released under the MIT license. See Copyright Notice in luajit.h -- -- Contributed by Djordje Kovacevic and Stefan Pejic from RT-RK.com. -- Sponsored by Cisco Systems, Inc. ---------------------------------------------------------------------------- -- This is a helper module used by the LuaJIT machine code dumper module. -- -- It disassembles most user-mode AArch64 instructions. -- NYI: Advanced SIMD and VFP instructions. ------------------------------------------------------------------------------ local type = type local sub, byte, format = string.sub, string.byte, string.format local match, gmatch, gsub = string.match, string.gmatch, string.gsub local concat = table.concat local bit = require("bit") local band, bor, bxor, tohex = bit.band, bit.bor, bit.bxor, bit.tohex local lshift, rshift, arshift = bit.lshift, bit.rshift, bit.arshift local ror = bit.ror ------------------------------------------------------------------------------ -- Opcode maps ------------------------------------------------------------------------------ local map_adr = { -- PC-relative addressing. shift = 31, mask = 1, [0] = "adrDBx", "adrpDBx" } local map_addsubi = { -- Add/subtract immediate. shift = 29, mask = 3, [0] = "add|movDNIg", "adds|cmnD0NIg", "subDNIg", "subs|cmpD0NIg", } local map_logi = { -- Logical immediate. shift = 31, mask = 1, [0] = { shift = 22, mask = 1, [0] = { shift = 29, mask = 3, [0] = "andDNig", "orr|movDN0ig", "eorDNig", "ands|tstD0Nig" }, false -- unallocated }, { shift = 29, mask = 3, [0] = "andDNig", "orr|movDN0ig", "eorDNig", "ands|tstD0Nig" } } local map_movwi = { -- Move wide immediate. shift = 31, mask = 1, [0] = { shift = 22, mask = 1, [0] = { shift = 29, mask = 3, [0] = "movnDWRg", false, "movz|movDYRg", "movkDWRg" }, false -- unallocated }, { shift = 29, mask = 3, [0] = "movnDWRg", false, "movz|movDYRg", "movkDWRg" }, } local map_bitf = { -- Bitfield. shift = 31, mask = 1, [0] = { shift = 22, mask = 1, [0] = { shift = 29, mask = 3, [0] = "sbfm|sbfiz|sbfx|asr|sxtw|sxth|sxtbDN12w", "bfm|bfi|bfxilDN13w", "ubfm|ubfiz|ubfx|lsr|lsl|uxth|uxtbDN12w" } }, { shift = 22, mask = 1, { shift = 29, mask = 3, [0] = "sbfm|sbfiz|sbfx|asr|sxtw|sxth|sxtbDN12x", "bfm|bfi|bfxilDN13x", "ubfm|ubfiz|ubfx|lsr|lsl|uxth|uxtbDN12x" } } } local map_datai = { -- Data processing - immediate. shift = 23, mask = 7, [0] = map_adr, map_adr, map_addsubi, false, map_logi, map_movwi, map_bitf, { shift = 15, mask = 0x1c0c1, [0] = "extr|rorDNM4w", [0x10080] = "extr|rorDNM4x", [0x10081] = "extr|rorDNM4x" } } local map_logsr = { -- Logical, shifted register. shift = 31, mask = 1, [0] = { shift = 15, mask = 1, [0] = { shift = 29, mask = 3, [0] = { shift = 21, mask = 7, [0] = "andDNMSg", "bicDNMSg", "andDNMSg", "bicDNMSg", "andDNMSg", "bicDNMSg", "andDNMg", "bicDNMg" }, { shift = 21, mask = 7, [0] ="orr|movDN0MSg", "orn|mvnDN0MSg", "orr|movDN0MSg", "orn|mvnDN0MSg", "orr|movDN0MSg", "orn|mvnDN0MSg", "orr|movDN0Mg", "orn|mvnDN0Mg" }, { shift = 21, mask = 7, [0] = "eorDNMSg", "eonDNMSg", "eorDNMSg", "eonDNMSg", "eorDNMSg", "eonDNMSg", "eorDNMg", "eonDNMg" }, { shift = 21, mask = 7, [0] = "ands|tstD0NMSg", "bicsDNMSg", "ands|tstD0NMSg", "bicsDNMSg", "ands|tstD0NMSg", "bicsDNMSg", "ands|tstD0NMg", "bicsDNMg" } }, false -- unallocated }, { shift = 29, mask = 3, [0] = { shift = 21, mask = 7, [0] = "andDNMSg", "bicDNMSg", "andDNMSg", "bicDNMSg", "andDNMSg", "bicDNMSg", "andDNMg", "bicDNMg" }, { shift = 21, mask = 7, [0] = "orr|movDN0MSg", "orn|mvnDN0MSg", "orr|movDN0MSg", "orn|mvnDN0MSg", "orr|movDN0MSg", "orn|mvnDN0MSg", "orr|movDN0Mg", "orn|mvnDN0Mg" }, { shift = 21, mask = 7, [0] = "eorDNMSg", "eonDNMSg", "eorDNMSg", "eonDNMSg", "eorDNMSg", "eonDNMSg", "eorDNMg", "eonDNMg" }, { shift = 21, mask = 7, [0] = "ands|tstD0NMSg", "bicsDNMSg", "ands|tstD0NMSg", "bicsDNMSg", "ands|tstD0NMSg", "bicsDNMSg", "ands|tstD0NMg", "bicsDNMg" } } } local map_assh = { shift = 31, mask = 1, [0] = { shift = 15, mask = 1, [0] = { shift = 29, mask = 3, [0] = { shift = 22, mask = 3, [0] = "addDNMSg", "addDNMSg", "addDNMSg", "addDNMg" }, { shift = 22, mask = 3, [0] = "adds|cmnD0NMSg", "adds|cmnD0NMSg", "adds|cmnD0NMSg", "adds|cmnD0NMg" }, { shift = 22, mask = 3, [0] = "sub|negDN0MSg", "sub|negDN0MSg", "sub|negDN0MSg", "sub|negDN0Mg" }, { shift = 22, mask = 3, [0] = "subs|cmp|negsD0N0MzSg", "subs|cmp|negsD0N0MzSg", "subs|cmp|negsD0N0MzSg", "subs|cmp|negsD0N0Mzg" }, }, false -- unallocated }, { shift = 29, mask = 3, [0] = { shift = 22, mask = 3, [0] = "addDNMSg", "addDNMSg", "addDNMSg", "addDNMg" }, { shift = 22, mask = 3, [0] = "adds|cmnD0NMSg", "adds|cmnD0NMSg", "adds|cmnD0NMSg", "adds|cmnD0NMg" }, { shift = 22, mask = 3, [0] = "sub|negDN0MSg", "sub|negDN0MSg", "sub|negDN0MSg", "sub|negDN0Mg" }, { shift = 22, mask = 3, [0] = "subs|cmp|negsD0N0MzSg", "subs|cmp|negsD0N0MzSg", "subs|cmp|negsD0N0MzSg", "subs|cmp|negsD0N0Mzg" } } } local map_addsubsh = { -- Add/subtract, shifted register. shift = 22, mask = 3, [0] = map_assh, map_assh, map_assh } local map_addsubex = { -- Add/subtract, extended register. shift = 22, mask = 3, [0] = { shift = 29, mask = 3, [0] = "addDNMXg", "adds|cmnD0NMXg", "subDNMXg", "subs|cmpD0NMzXg", } } local map_addsubc = { -- Add/subtract, with carry. shift = 10, mask = 63, [0] = { shift = 29, mask = 3, [0] = "adcDNMg", "adcsDNMg", "sbc|ngcDN0Mg", "sbcs|ngcsDN0Mg", } } local map_ccomp = { shift = 4, mask = 1, [0] = { shift = 10, mask = 3, [0] = { -- Conditional compare register. shift = 29, mask = 3, "ccmnNMVCg", false, "ccmpNMVCg", }, [2] = { -- Conditional compare immediate. shift = 29, mask = 3, "ccmnN5VCg", false, "ccmpN5VCg", } } } local map_csel = { -- Conditional select. shift = 11, mask = 1, [0] = { shift = 10, mask = 1, [0] = { shift = 29, mask = 3, [0] = "cselDNMzCg", false, "csinv|cinv|csetmDNMcg", false, }, { shift = 29, mask = 3, [0] = "csinc|cinc|csetDNMcg", false, "csneg|cnegDNMcg", false, } } } local map_data1s = { -- Data processing, 1 source. shift = 29, mask = 1, [0] = { shift = 31, mask = 1, [0] = { shift = 10, mask = 0x7ff, [0] = "rbitDNg", "rev16DNg", "revDNw", false, "clzDNg", "clsDNg" }, { shift = 10, mask = 0x7ff, [0] = "rbitDNg", "rev16DNg", "rev32DNx", "revDNx", "clzDNg", "clsDNg" } } } local map_data2s = { -- Data processing, 2 sources. shift = 29, mask = 1, [0] = { shift = 10, mask = 63, false, "udivDNMg", "sdivDNMg", false, false, false, false, "lslDNMg", "lsrDNMg", "asrDNMg", "rorDNMg" } } local map_data3s = { -- Data processing, 3 sources. shift = 29, mask = 7, [0] = { shift = 21, mask = 7, [0] = { shift = 15, mask = 1, [0] = "madd|mulDNMA0g", "msub|mnegDNMA0g" } }, false, false, false, { shift = 15, mask = 1, [0] = { shift = 21, mask = 7, [0] = "madd|mulDNMA0g", "smaddl|smullDxNMwA0x", "smulhDNMx", false, false, "umaddl|umullDxNMwA0x", "umulhDNMx" }, { shift = 21, mask = 7, [0] = "msub|mnegDNMA0g", "smsubl|smneglDxNMwA0x", false, false, false, "umsubl|umneglDxNMwA0x" } } } local map_datar = { -- Data processing, register. shift = 28, mask = 1, [0] = { shift = 24, mask = 1, [0] = map_logsr, { shift = 21, mask = 1, [0] = map_addsubsh, map_addsubex } }, { shift = 21, mask = 15, [0] = map_addsubc, false, map_ccomp, false, map_csel, false, { shift = 30, mask = 1, [0] = map_data2s, map_data1s }, false, map_data3s, map_data3s, map_data3s, map_data3s, map_data3s, map_data3s, map_data3s, map_data3s } } local map_lrl = { -- Load register, literal. shift = 26, mask = 1, [0] = { shift = 30, mask = 3, [0] = "ldrDwB", "ldrDxB", "ldrswDxB" }, { shift = 30, mask = 3, [0] = "ldrDsB", "ldrDdB" } } local map_lsriind = { -- Load/store register, immediate pre/post-indexed. shift = 30, mask = 3, [0] = { shift = 26, mask = 1, [0] = { shift = 22, mask = 3, [0] = "strbDwzL", "ldrbDwzL", "ldrsbDxzL", "ldrsbDwzL" } }, { shift = 26, mask = 1, [0] = { shift = 22, mask = 3, [0] = "strhDwzL", "ldrhDwzL", "ldrshDxzL", "ldrshDwzL" } }, { shift = 26, mask = 1, [0] = { shift = 22, mask = 3, [0] = "strDwzL", "ldrDwzL", "ldrswDxzL" }, { shift = 22, mask = 3, [0] = "strDszL", "ldrDszL" } }, { shift = 26, mask = 1, [0] = { shift = 22, mask = 3, [0] = "strDxzL", "ldrDxzL" }, { shift = 22, mask = 3, [0] = "strDdzL", "ldrDdzL" } } } local map_lsriro = { shift = 21, mask = 1, [0] = { -- Load/store register immediate. shift = 10, mask = 3, [0] = { -- Unscaled immediate. shift = 26, mask = 1, [0] = { shift = 30, mask = 3, [0] = { shift = 22, mask = 3, [0] = "sturbDwK", "ldurbDwK" }, { shift = 22, mask = 3, [0] = "sturhDwK", "ldurhDwK" }, { shift = 22, mask = 3, [0] = "sturDwK", "ldurDwK" }, { shift = 22, mask = 3, [0] = "sturDxK", "ldurDxK" } } }, map_lsriind, false, map_lsriind }, { -- Load/store register, register offset. shift = 10, mask = 3, [2] = { shift = 26, mask = 1, [0] = { shift = 30, mask = 3, [0] = { shift = 22, mask = 3, [0] = "strbDwO", "ldrbDwO", "ldrsbDxO", "ldrsbDwO" }, { shift = 22, mask = 3, [0] = "strhDwO", "ldrhDwO", "ldrshDxO", "ldrshDwO" }, { shift = 22, mask = 3, [0] = "strDwO", "ldrDwO", "ldrswDxO" }, { shift = 22, mask = 3, [0] = "strDxO", "ldrDxO" } }, { shift = 30, mask = 3, [2] = { shift = 22, mask = 3, [0] = "strDsO", "ldrDsO" }, [3] = { shift = 22, mask = 3, [0] = "strDdO", "ldrDdO" } } } } } local map_lsp = { -- Load/store register pair, offset. shift = 22, mask = 1, [0] = { shift = 30, mask = 3, [0] = { shift = 26, mask = 1, [0] = "stpDzAzwP", "stpDzAzsP", }, { shift = 26, mask = 1, "stpDzAzdP" }, { shift = 26, mask = 1, [0] = "stpDzAzxP" } }, { shift = 30, mask = 3, [0] = { shift = 26, mask = 1, [0] = "ldpDzAzwP", "ldpDzAzsP", }, { shift = 26, mask = 1, [0] = "ldpswDAxP", "ldpDzAzdP" }, { shift = 26, mask = 1, [0] = "ldpDzAzxP" } } } local map_ls = { -- Loads and stores. shift = 24, mask = 0x31, [0x10] = map_lrl, [0x30] = map_lsriro, [0x20] = { shift = 23, mask = 3, map_lsp, map_lsp, map_lsp }, [0x21] = { shift = 23, mask = 3, map_lsp, map_lsp, map_lsp }, [0x31] = { shift = 26, mask = 1, [0] = { shift = 30, mask = 3, [0] = { shift = 22, mask = 3, [0] = "strbDwzU", "ldrbDwzU" }, { shift = 22, mask = 3, [0] = "strhDwzU", "ldrhDwzU" }, { shift = 22, mask = 3, [0] = "strDwzU", "ldrDwzU" }, { shift = 22, mask = 3, [0] = "strDxzU", "ldrDxzU" } }, { shift = 30, mask = 3, [2] = { shift = 22, mask = 3, [0] = "strDszU", "ldrDszU" }, [3] = { shift = 22, mask = 3, [0] = "strDdzU", "ldrDdzU" } } }, } local map_datafp = { -- Data processing, SIMD and FP. shift = 28, mask = 7, { -- 001 shift = 24, mask = 1, [0] = { shift = 21, mask = 1, { shift = 10, mask = 3, [0] = { shift = 12, mask = 1, [0] = { shift = 13, mask = 1, [0] = { shift = 14, mask = 1, [0] = { shift = 15, mask = 1, [0] = { -- FP/int conversion. shift = 31, mask = 1, [0] = { shift = 16, mask = 0xff, [0x20] = "fcvtnsDwNs", [0x21] = "fcvtnuDwNs", [0x22] = "scvtfDsNw", [0x23] = "ucvtfDsNw", [0x24] = "fcvtasDwNs", [0x25] = "fcvtauDwNs", [0x26] = "fmovDwNs", [0x27] = "fmovDsNw", [0x28] = "fcvtpsDwNs", [0x29] = "fcvtpuDwNs", [0x30] = "fcvtmsDwNs", [0x31] = "fcvtmuDwNs", [0x38] = "fcvtzsDwNs", [0x39] = "fcvtzuDwNs", [0x60] = "fcvtnsDwNd", [0x61] = "fcvtnuDwNd", [0x62] = "scvtfDdNw", [0x63] = "ucvtfDdNw", [0x64] = "fcvtasDwNd", [0x65] = "fcvtauDwNd", [0x68] = "fcvtpsDwNd", [0x69] = "fcvtpuDwNd", [0x70] = "fcvtmsDwNd", [0x71] = "fcvtmuDwNd", [0x78] = "fcvtzsDwNd", [0x79] = "fcvtzuDwNd" }, { shift = 16, mask = 0xff, [0x20] = "fcvtnsDxNs", [0x21] = "fcvtnuDxNs", [0x22] = "scvtfDsNx", [0x23] = "ucvtfDsNx", [0x24] = "fcvtasDxNs", [0x25] = "fcvtauDxNs", [0x28] = "fcvtpsDxNs", [0x29] = "fcvtpuDxNs", [0x30] = "fcvtmsDxNs", [0x31] = "fcvtmuDxNs", [0x38] = "fcvtzsDxNs", [0x39] = "fcvtzuDxNs", [0x60] = "fcvtnsDxNd", [0x61] = "fcvtnuDxNd", [0x62] = "scvtfDdNx", [0x63] = "ucvtfDdNx", [0x64] = "fcvtasDxNd", [0x65] = "fcvtauDxNd", [0x66] = "fmovDxNd", [0x67] = "fmovDdNx", [0x68] = "fcvtpsDxNd", [0x69] = "fcvtpuDxNd", [0x70] = "fcvtmsDxNd", [0x71] = "fcvtmuDxNd", [0x78] = "fcvtzsDxNd", [0x79] = "fcvtzuDxNd" } } }, { -- FP data-processing, 1 source. shift = 31, mask = 1, [0] = { shift = 22, mask = 3, [0] = { shift = 15, mask = 63, [0] = "fmovDNf", "fabsDNf", "fnegDNf", "fsqrtDNf", false, "fcvtDdNs", false, false, "frintnDNf", "frintpDNf", "frintmDNf", "frintzDNf", "frintaDNf", false, "frintxDNf", "frintiDNf", }, { shift = 15, mask = 63, [0] = "fmovDNf", "fabsDNf", "fnegDNf", "fsqrtDNf", "fcvtDsNd", false, false, false, "frintnDNf", "frintpDNf", "frintmDNf", "frintzDNf", "frintaDNf", false, "frintxDNf", "frintiDNf", } } } }, { -- FP compare. shift = 31, mask = 1, [0] = { shift = 14, mask = 3, [0] = { shift = 23, mask = 1, [0] = { shift = 0, mask = 31, [0] = "fcmpNMf", [8] = "fcmpNZf", [16] = "fcmpeNMf", [24] = "fcmpeNZf", } } } } }, { -- FP immediate. shift = 31, mask = 1, [0] = { shift = 5, mask = 31, [0] = { shift = 23, mask = 1, [0] = "fmovDFf" } } } }, { -- FP conditional compare. shift = 31, mask = 1, [0] = { shift = 23, mask = 1, [0] = { shift = 4, mask = 1, [0] = "fccmpNMVCf", "fccmpeNMVCf" } } }, { -- FP data-processing, 2 sources. shift = 31, mask = 1, [0] = { shift = 23, mask = 1, [0] = { shift = 12, mask = 15, [0] = "fmulDNMf", "fdivDNMf", "faddDNMf", "fsubDNMf", "fmaxDNMf", "fminDNMf", "fmaxnmDNMf", "fminnmDNMf", "fnmulDNMf" } } }, { -- FP conditional select. shift = 31, mask = 1, [0] = { shift = 23, mask = 1, [0] = "fcselDNMCf" } } } }, { -- FP data-processing, 3 sources. shift = 31, mask = 1, [0] = { shift = 15, mask = 1, [0] = { shift = 21, mask = 5, [0] = "fmaddDNMAf", "fnmaddDNMAf" }, { shift = 21, mask = 5, [0] = "fmsubDNMAf", "fnmsubDNMAf" } } } } } local map_br = { -- Branches, exception generating and system instructions. shift = 29, mask = 7, [0] = "bB", { -- Compare & branch, immediate. shift = 24, mask = 3, [0] = "cbzDBg", "cbnzDBg", "tbzDTBw", "tbnzDTBw" }, { -- Conditional branch, immediate. shift = 24, mask = 3, [0] = { shift = 4, mask = 1, [0] = { shift = 0, mask = 15, [0] = "beqB", "bneB", "bhsB", "bloB", "bmiB", "bplB", "bvsB", "bvcB", "bhiB", "blsB", "bgeB", "bltB", "bgtB", "bleB", "balB" } } }, false, "blB", { -- Compare & branch, immediate. shift = 24, mask = 3, [0] = "cbzDBg", "cbnzDBg", "tbzDTBx", "tbnzDTBx" }, { shift = 24, mask = 3, [0] = { -- Exception generation. shift = 0, mask = 0xe0001f, [0x200000] = "brkW" }, { -- System instructions. shift = 0, mask = 0x3fffff, [0x03201f] = "nop" }, { -- Unconditional branch, register. shift = 0, mask = 0xfffc1f, [0x1f0000] = "brNx", [0x3f0000] = "blrNx", [0x5f0000] = "retNx" }, } } local map_init = { shift = 25, mask = 15, [0] = false, false, false, false, map_ls, map_datar, map_ls, map_datafp, map_datai, map_datai, map_br, map_br, map_ls, map_datar, map_ls, map_datafp } ------------------------------------------------------------------------------ local map_regs = { x = {}, w = {}, d = {}, s = {} } for i=0,30 do map_regs.x[i] = "x"..i map_regs.w[i] = "w"..i map_regs.d[i] = "d"..i map_regs.s[i] = "s"..i end map_regs.x[31] = "sp" map_regs.w[31] = "wsp" map_regs.d[31] = "d31" map_regs.s[31] = "s31" local map_cond = { [0] = "eq", "ne", "cs", "cc", "mi", "pl", "vs", "vc", "hi", "ls", "ge", "lt", "gt", "le", "al", } local map_shift = { [0] = "lsl", "lsr", "asr", } local map_extend = { [0] = "uxtb", "uxth", "uxtw", "uxtx", "sxtb", "sxth", "sxtw", "sxtx", } ------------------------------------------------------------------------------ -- Output a nicely formatted line with an opcode and operands. local function putop(ctx, text, operands) local pos = ctx.pos local extra = "" if ctx.rel then local sym = ctx.symtab[ctx.rel] if sym then extra = "\t->"..sym end end if ctx.hexdump > 0 then ctx.out(format("%08x %s %-5s %s%s\n", ctx.addr+pos, tohex(ctx.op), text, concat(operands, ", "), extra)) else ctx.out(format("%08x %-5s %s%s\n", ctx.addr+pos, text, concat(operands, ", "), extra)) end ctx.pos = pos + 4 end -- Fallback for unknown opcodes. local function unknown(ctx) return putop(ctx, ".long", { "0x"..tohex(ctx.op) }) end local function match_reg(p, pat, regnum) return map_regs[match(pat, p.."%w-([xwds])")][regnum] end local function fmt_hex32(x) if x < 0 then return tohex(x) else return format("%x", x) end end local imm13_rep = { 0x55555555, 0x11111111, 0x01010101, 0x00010001, 0x00000001 } local function decode_imm13(op) local imms = band(rshift(op, 10), 63) local immr = band(rshift(op, 16), 63) if band(op, 0x00400000) == 0 then local len = 5 if imms >= 56 then if imms >= 60 then len = 1 else len = 2 end elseif imms >= 48 then len = 3 elseif imms >= 32 then len = 4 end local l = lshift(1, len)-1 local s = band(imms, l) local r = band(immr, l) local imm = ror(rshift(-1, 31-s), r) if len ~= 5 then imm = band(imm, lshift(1, l)-1) + rshift(imm, 31-l) end imm = imm * imm13_rep[len] local ix = fmt_hex32(imm) if rshift(op, 31) ~= 0 then return ix..tohex(imm) else return ix end else local lo, hi = -1, 0 if imms < 32 then lo = rshift(-1, 31-imms) else hi = rshift(-1, 63-imms) end if immr ~= 0 then lo, hi = ror(lo, immr), ror(hi, immr) local x = immr == 32 and 0 or band(bxor(lo, hi), lshift(-1, 32-immr)) lo, hi = bxor(lo, x), bxor(hi, x) if immr >= 32 then lo, hi = hi, lo end end if hi ~= 0 then return fmt_hex32(hi)..tohex(lo) else return fmt_hex32(lo) end end end local function parse_immpc(op, name) if name == "b" or name == "bl" then return arshift(lshift(op, 6), 4) elseif name == "adr" or name == "adrp" then local immlo = band(rshift(op, 29), 3) local immhi = lshift(arshift(lshift(op, 8), 13), 2) return bor(immhi, immlo) elseif name == "tbz" or name == "tbnz" then return lshift(arshift(lshift(op, 13), 18), 2) else return lshift(arshift(lshift(op, 8), 13), 2) end end local function parse_fpimm8(op) local sign = band(op, 0x100000) == 0 and 1 or -1 local exp = bxor(rshift(arshift(lshift(op, 12), 5), 24), 0x80) - 131 local frac = 16+band(rshift(op, 13), 15) return sign * frac * 2^exp end local function prefer_bfx(sf, uns, imms, immr) if imms < immr or imms == 31 or imms == 63 then return false end if immr == 0 then if sf == 0 and (imms == 7 or imms == 15) then return false end if sf ~= 0 and uns == 0 and (imms == 7 or imms == 15 or imms == 31) then return false end end return true end -- Disassemble a single instruction. local function disass_ins(ctx) local pos = ctx.pos local b0, b1, b2, b3 = byte(ctx.code, pos+1, pos+4) local op = bor(lshift(b3, 24), lshift(b2, 16), lshift(b1, 8), b0) local operands = {} local suffix = "" local last, name, pat local map_reg ctx.op = op ctx.rel = nil last = nil local opat opat = map_init[band(rshift(op, 25), 15)] while type(opat) ~= "string" do if not opat then return unknown(ctx) end opat = opat[band(rshift(op, opat.shift), opat.mask)] or opat._ end name, pat = match(opat, "^([a-z0-9]*)(.*)") local altname, pat2 = match(pat, "|([a-z0-9_.|]*)(.*)") if altname then pat = pat2 end if sub(pat, 1, 1) == "." then local s2, p2 = match(pat, "^([a-z0-9.]*)(.*)") suffix = suffix..s2 pat = p2 end local rt = match(pat, "[gf]") if rt then if rt == "g" then map_reg = band(op, 0x80000000) ~= 0 and map_regs.x or map_regs.w else map_reg = band(op, 0x400000) ~= 0 and map_regs.d or map_regs.s end end local second0, immr for p in gmatch(pat, ".") do local x = nil if p == "D" then local regnum = band(op, 31) x = rt and map_reg[regnum] or match_reg(p, pat, regnum) elseif p == "N" then local regnum = band(rshift(op, 5), 31) x = rt and map_reg[regnum] or match_reg(p, pat, regnum) elseif p == "M" then local regnum = band(rshift(op, 16), 31) x = rt and map_reg[regnum] or match_reg(p, pat, regnum) elseif p == "A" then local regnum = band(rshift(op, 10), 31) x = rt and map_reg[regnum] or match_reg(p, pat, regnum) elseif p == "B" then local addr = ctx.addr + pos + parse_immpc(op, name) ctx.rel = addr x = "0x"..tohex(addr) elseif p == "T" then x = bor(band(rshift(op, 26), 32), band(rshift(op, 19), 31)) elseif p == "V" then x = band(op, 15) elseif p == "C" then x = map_cond[band(rshift(op, 12), 15)] elseif p == "c" then local rn = band(rshift(op, 5), 31) local rm = band(rshift(op, 16), 31) local cond = band(rshift(op, 12), 15) local invc = bxor(cond, 1) x = map_cond[cond] if altname and cond ~= 14 and cond ~= 15 then local a1, a2 = match(altname, "([^|]*)|(.*)") if rn == rm then local n = #operands operands[n] = nil x = map_cond[invc] if rn ~= 31 then if a1 then name = a1 else name = altname end else operands[n-1] = nil name = a2 end end end elseif p == "W" then x = band(rshift(op, 5), 0xffff) elseif p == "Y" then x = band(rshift(op, 5), 0xffff) local hw = band(rshift(op, 21), 3) if altname and (hw == 0 or x ~= 0) then name = altname end elseif p == "L" then local rn = map_regs.x[band(rshift(op, 5), 31)] local imm9 = arshift(lshift(op, 11), 23) if band(op, 0x800) ~= 0 then x = "["..rn..", #"..imm9.."]!" else x = "["..rn.."], #"..imm9 end elseif p == "U" then local rn = map_regs.x[band(rshift(op, 5), 31)] local sz = band(rshift(op, 30), 3) local imm12 = lshift(arshift(lshift(op, 10), 20), sz) if imm12 ~= 0 then x = "["..rn..", #"..imm12.."]" else x = "["..rn.."]" end elseif p == "K" then local rn = map_regs.x[band(rshift(op, 5), 31)] local imm9 = arshift(lshift(op, 11), 23) if imm9 ~= 0 then x = "["..rn..", #"..imm9.."]" else x = "["..rn.."]" end elseif p == "O" then local rn, rm = map_regs.x[band(rshift(op, 5), 31)] local m = band(rshift(op, 13), 1) if m == 0 then rm = map_regs.w[band(rshift(op, 16), 31)] else rm = map_regs.x[band(rshift(op, 16), 31)] end x = "["..rn..", "..rm local opt = band(rshift(op, 13), 7) local s = band(rshift(op, 12), 1) local sz = band(rshift(op, 30), 3) -- extension to be applied if opt == 3 then if s == 0 then x = x.."]" else x = x..", lsl #"..sz.."]" end elseif opt == 2 or opt == 6 or opt == 7 then if s == 0 then x = x..", "..map_extend[opt].."]" else x = x..", "..map_extend[opt].." #"..sz.."]" end else x = x.."]" end elseif p == "P" then local opcv, sh = rshift(op, 26), 2 if opcv >= 0x2a then sh = 4 elseif opcv >= 0x1b then sh = 3 end local imm7 = lshift(arshift(lshift(op, 10), 25), sh) local rn = map_regs.x[band(rshift(op, 5), 31)] local ind = band(rshift(op, 23), 3) if ind == 1 then x = "["..rn.."], #"..imm7 elseif ind == 2 then if imm7 == 0 then x = "["..rn.."]" else x = "["..rn..", #"..imm7.."]" end elseif ind == 3 then x = "["..rn..", #"..imm7.."]!" end elseif p == "I" then local shf = band(rshift(op, 22), 3) local imm12 = band(rshift(op, 10), 0x0fff) local rn, rd = band(rshift(op, 5), 31), band(op, 31) if altname == "mov" and shf == 0 and imm12 == 0 and (rn == 31 or rd == 31) then name = altname x = nil elseif shf == 0 then x = imm12 elseif shf == 1 then x = imm12..", lsl #12" end elseif p == "i" then x = "#0x"..decode_imm13(op) elseif p == "1" then immr = band(rshift(op, 16), 63) x = immr elseif p == "2" then x = band(rshift(op, 10), 63) if altname then local a1, a2, a3, a4, a5, a6 = match(altname, "([^|]*)|([^|]*)|([^|]*)|([^|]*)|([^|]*)|(.*)") local sf = band(rshift(op, 26), 32) local uns = band(rshift(op, 30), 1) if prefer_bfx(sf, uns, x, immr) then name = a2 x = x - immr + 1 elseif immr == 0 and x == 7 then local n = #operands operands[n] = nil if sf ~= 0 then operands[n-1] = gsub(operands[n-1], "x", "w") end last = operands[n-1] name = a6 x = nil elseif immr == 0 and x == 15 then local n = #operands operands[n] = nil if sf ~= 0 then operands[n-1] = gsub(operands[n-1], "x", "w") end last = operands[n-1] name = a5 x = nil elseif x == 31 or x == 63 then if x == 31 and immr == 0 and name == "sbfm" then name = a4 local n = #operands operands[n] = nil if sf ~= 0 then operands[n-1] = gsub(operands[n-1], "x", "w") end last = operands[n-1] else name = a3 end x = nil elseif band(x, 31) ~= 31 and immr == x+1 and name == "ubfm" then name = a4 last = "#"..(sf+32 - immr) operands[#operands] = last x = nil elseif x < immr then name = a1 last = "#"..(sf+32 - immr) operands[#operands] = last x = x + 1 end end elseif p == "3" then x = band(rshift(op, 10), 63) if altname then local a1, a2 = match(altname, "([^|]*)|(.*)") if x < immr then name = a1 local sf = band(rshift(op, 26), 32) last = "#"..(sf+32 - immr) operands[#operands] = last x = x + 1 elseif x >= immr then name = a2 x = x - immr + 1 end end elseif p == "4" then x = band(rshift(op, 10), 63) local rn = band(rshift(op, 5), 31) local rm = band(rshift(op, 16), 31) if altname and rn == rm then local n = #operands operands[n] = nil last = operands[n-1] name = altname end elseif p == "5" then x = band(rshift(op, 16), 31) elseif p == "S" then x = band(rshift(op, 10), 63) if x == 0 then x = nil else x = map_shift[band(rshift(op, 22), 3)].." #"..x end elseif p == "X" then local opt = band(rshift(op, 13), 7) -- Width specifier . if opt ~= 3 and opt ~= 7 then last = map_regs.w[band(rshift(op, 16), 31)] operands[#operands] = last end x = band(rshift(op, 10), 7) -- Extension. if opt == 2 + band(rshift(op, 31), 1) and band(rshift(op, second0 and 5 or 0), 31) == 31 then if x == 0 then x = nil else x = "lsl #"..x end else if x == 0 then x = map_extend[band(rshift(op, 13), 7)] else x = map_extend[band(rshift(op, 13), 7)].." #"..x end end elseif p == "R" then x = band(rshift(op,21), 3) if x == 0 then x = nil else x = "lsl #"..x*16 end elseif p == "z" then local n = #operands if operands[n] == "sp" then operands[n] = "xzr" elseif operands[n] == "wsp" then operands[n] = "wzr" end elseif p == "Z" then x = 0 elseif p == "F" then x = parse_fpimm8(op) elseif p == "g" or p == "f" or p == "x" or p == "w" or p == "d" or p == "s" then -- These are handled in D/N/M/A. elseif p == "0" then if last == "sp" or last == "wsp" then local n = #operands operands[n] = nil last = operands[n-1] if altname then local a1, a2 = match(altname, "([^|]*)|(.*)") if not a1 then name = altname elseif second0 then name, altname = a2, a1 else name, altname = a1, a2 end end end second0 = true else assert(false) end if x then last = x if type(x) == "number" then x = "#"..x end operands[#operands+1] = x end end return putop(ctx, name..suffix, operands) end ------------------------------------------------------------------------------ -- Disassemble a block of code. local function disass_block(ctx, ofs, len) if not ofs then ofs = 0 end local stop = len and ofs+len or #ctx.code ctx.pos = ofs ctx.rel = nil while ctx.pos < stop do disass_ins(ctx) end end -- Extended API: create a disassembler context. Then call ctx:disass(ofs, len). local function create(code, addr, out) local ctx = {} ctx.code = code ctx.addr = addr or 0 ctx.out = out or io.write ctx.symtab = {} ctx.disass = disass_block ctx.hexdump = 8 return ctx end -- Simple API: disassemble code (a string) at address and output via out. local function disass(code, addr, out) create(code, addr, out):disass() end -- Return register name for RID. local function regname(r) if r < 32 then return map_regs.x[r] end return map_regs.d[r-32] end -- Public module functions. return { create = create, disass = disass, regname = regname } luajit-2.1.0~beta3+dfsg.orig/src/jit/dis_ppc.lua0000644000175100017510000004751513101703334021033 0ustar ondrejondrej---------------------------------------------------------------------------- -- LuaJIT PPC disassembler module. -- -- Copyright (C) 2005-2017 Mike Pall. All rights reserved. -- Released under the MIT/X license. See Copyright Notice in luajit.h ---------------------------------------------------------------------------- -- This is a helper module used by the LuaJIT machine code dumper module. -- -- It disassembles all common, non-privileged 32/64 bit PowerPC instructions -- plus the e500 SPE instructions and some Cell/Xenon extensions. -- -- NYI: VMX, VMX128 ------------------------------------------------------------------------------ local type = type local byte, format = string.byte, string.format local match, gmatch, gsub = string.match, string.gmatch, string.gsub local concat = table.concat local bit = require("bit") local band, bor, tohex = bit.band, bit.bor, bit.tohex local lshift, rshift, arshift = bit.lshift, bit.rshift, bit.arshift ------------------------------------------------------------------------------ -- Primary and extended opcode maps ------------------------------------------------------------------------------ local map_crops = { shift = 1, mask = 1023, [0] = "mcrfXX", [33] = "crnor|crnotCCC=", [129] = "crandcCCC", [193] = "crxor|crclrCCC%", [225] = "crnandCCC", [257] = "crandCCC", [289] = "creqv|crsetCCC%", [417] = "crorcCCC", [449] = "cror|crmoveCCC=", [16] = "b_lrKB", [528] = "b_ctrKB", [150] = "isync", } local map_rlwinm = setmetatable({ shift = 0, mask = -1, }, { __index = function(t, x) local rot = band(rshift(x, 11), 31) local mb = band(rshift(x, 6), 31) local me = band(rshift(x, 1), 31) if mb == 0 and me == 31-rot then return "slwiRR~A." elseif me == 31 and mb == 32-rot then return "srwiRR~-A." else return "rlwinmRR~AAA." end end }) local map_rld = { shift = 2, mask = 7, [0] = "rldiclRR~HM.", "rldicrRR~HM.", "rldicRR~HM.", "rldimiRR~HM.", { shift = 1, mask = 1, [0] = "rldclRR~RM.", "rldcrRR~RM.", }, } local map_ext = setmetatable({ shift = 1, mask = 1023, [0] = "cmp_YLRR", [32] = "cmpl_YLRR", [4] = "twARR", [68] = "tdARR", [8] = "subfcRRR.", [40] = "subfRRR.", [104] = "negRR.", [136] = "subfeRRR.", [200] = "subfzeRR.", [232] = "subfmeRR.", [520] = "subfcoRRR.", [552] = "subfoRRR.", [616] = "negoRR.", [648] = "subfeoRRR.", [712] = "subfzeoRR.", [744] = "subfmeoRR.", [9] = "mulhduRRR.", [73] = "mulhdRRR.", [233] = "mulldRRR.", [457] = "divduRRR.", [489] = "divdRRR.", [745] = "mulldoRRR.", [969] = "divduoRRR.", [1001] = "divdoRRR.", [10] = "addcRRR.", [138] = "addeRRR.", [202] = "addzeRR.", [234] = "addmeRR.", [266] = "addRRR.", [522] = "addcoRRR.", [650] = "addeoRRR.", [714] = "addzeoRR.", [746] = "addmeoRR.", [778] = "addoRRR.", [11] = "mulhwuRRR.", [75] = "mulhwRRR.", [235] = "mullwRRR.", [459] = "divwuRRR.", [491] = "divwRRR.", [747] = "mullwoRRR.", [971] = "divwouRRR.", [1003] = "divwoRRR.", [15] = "iselltRRR", [47] = "iselgtRRR", [79] = "iseleqRRR", [144] = { shift = 20, mask = 1, [0] = "mtcrfRZ~", "mtocrfRZ~", }, [19] = { shift = 20, mask = 1, [0] = "mfcrR", "mfocrfRZ", }, [371] = { shift = 11, mask = 1023, [392] = "mftbR", [424] = "mftbuR", }, [339] = { shift = 11, mask = 1023, [32] = "mferR", [256] = "mflrR", [288] = "mfctrR", [16] = "mfspefscrR", }, [467] = { shift = 11, mask = 1023, [32] = "mtxerR", [256] = "mtlrR", [288] = "mtctrR", [16] = "mtspefscrR", }, [20] = "lwarxRR0R", [84] = "ldarxRR0R", [21] = "ldxRR0R", [53] = "lduxRRR", [149] = "stdxRR0R", [181] = "stduxRRR", [341] = "lwaxRR0R", [373] = "lwauxRRR", [23] = "lwzxRR0R", [55] = "lwzuxRRR", [87] = "lbzxRR0R", [119] = "lbzuxRRR", [151] = "stwxRR0R", [183] = "stwuxRRR", [215] = "stbxRR0R", [247] = "stbuxRRR", [279] = "lhzxRR0R", [311] = "lhzuxRRR", [343] = "lhaxRR0R", [375] = "lhauxRRR", [407] = "sthxRR0R", [439] = "sthuxRRR", [54] = "dcbst-R0R", [86] = "dcbf-R0R", [150] = "stwcxRR0R.", [214] = "stdcxRR0R.", [246] = "dcbtst-R0R", [278] = "dcbt-R0R", [310] = "eciwxRR0R", [438] = "ecowxRR0R", [470] = "dcbi-RR", [598] = { shift = 21, mask = 3, [0] = "sync", "lwsync", "ptesync", }, [758] = "dcba-RR", [854] = "eieio", [982] = "icbi-R0R", [1014] = "dcbz-R0R", [26] = "cntlzwRR~", [58] = "cntlzdRR~", [122] = "popcntbRR~", [154] = "prtywRR~", [186] = "prtydRR~", [28] = "andRR~R.", [60] = "andcRR~R.", [124] = "nor|notRR~R=.", [284] = "eqvRR~R.", [316] = "xorRR~R.", [412] = "orcRR~R.", [444] = "or|mrRR~R=.", [476] = "nandRR~R.", [508] = "cmpbRR~R", [512] = "mcrxrX", [532] = "ldbrxRR0R", [660] = "stdbrxRR0R", [533] = "lswxRR0R", [597] = "lswiRR0A", [661] = "stswxRR0R", [725] = "stswiRR0A", [534] = "lwbrxRR0R", [662] = "stwbrxRR0R", [790] = "lhbrxRR0R", [918] = "sthbrxRR0R", [535] = "lfsxFR0R", [567] = "lfsuxFRR", [599] = "lfdxFR0R", [631] = "lfduxFRR", [663] = "stfsxFR0R", [695] = "stfsuxFRR", [727] = "stfdxFR0R", [759] = "stfduxFR0R", [855] = "lfiwaxFR0R", [983] = "stfiwxFR0R", [24] = "slwRR~R.", [27] = "sldRR~R.", [536] = "srwRR~R.", [792] = "srawRR~R.", [824] = "srawiRR~A.", [794] = "sradRR~R.", [826] = "sradiRR~H.", [827] = "sradiRR~H.", [922] = "extshRR~.", [954] = "extsbRR~.", [986] = "extswRR~.", [539] = "srdRR~R.", }, { __index = function(t, x) if band(x, 31) == 15 then return "iselRRRC" end end }) local map_ld = { shift = 0, mask = 3, [0] = "ldRRE", "lduRRE", "lwaRRE", } local map_std = { shift = 0, mask = 3, [0] = "stdRRE", "stduRRE", } local map_fps = { shift = 5, mask = 1, { shift = 1, mask = 15, [0] = false, false, "fdivsFFF.", false, "fsubsFFF.", "faddsFFF.", "fsqrtsF-F.", false, "fresF-F.", "fmulsFF-F.", "frsqrtesF-F.", false, "fmsubsFFFF~.", "fmaddsFFFF~.", "fnmsubsFFFF~.", "fnmaddsFFFF~.", } } local map_fpd = { shift = 5, mask = 1, [0] = { shift = 1, mask = 1023, [0] = "fcmpuXFF", [32] = "fcmpoXFF", [64] = "mcrfsXX", [38] = "mtfsb1A.", [70] = "mtfsb0A.", [134] = "mtfsfiA>>-A>", [8] = "fcpsgnFFF.", [40] = "fnegF-F.", [72] = "fmrF-F.", [136] = "fnabsF-F.", [264] = "fabsF-F.", [12] = "frspF-F.", [14] = "fctiwF-F.", [15] = "fctiwzF-F.", [583] = "mffsF.", [711] = "mtfsfZF.", [392] = "frinF-F.", [424] = "frizF-F.", [456] = "fripF-F.", [488] = "frimF-F.", [814] = "fctidF-F.", [815] = "fctidzF-F.", [846] = "fcfidF-F.", }, { shift = 1, mask = 15, [0] = false, false, "fdivFFF.", false, "fsubFFF.", "faddFFF.", "fsqrtF-F.", "fselFFFF~.", "freF-F.", "fmulFF-F.", "frsqrteF-F.", false, "fmsubFFFF~.", "fmaddFFFF~.", "fnmsubFFFF~.", "fnmaddFFFF~.", } } local map_spe = { shift = 0, mask = 2047, [512] = "evaddwRRR", [514] = "evaddiwRAR~", [516] = "evsubwRRR~", [518] = "evsubiwRAR~", [520] = "evabsRR", [521] = "evnegRR", [522] = "evextsbRR", [523] = "evextshRR", [524] = "evrndwRR", [525] = "evcntlzwRR", [526] = "evcntlswRR", [527] = "brincRRR", [529] = "evandRRR", [530] = "evandcRRR", [534] = "evxorRRR", [535] = "evor|evmrRRR=", [536] = "evnor|evnotRRR=", [537] = "eveqvRRR", [539] = "evorcRRR", [542] = "evnandRRR", [544] = "evsrwuRRR", [545] = "evsrwsRRR", [546] = "evsrwiuRRA", [547] = "evsrwisRRA", [548] = "evslwRRR", [550] = "evslwiRRA", [552] = "evrlwRRR", [553] = "evsplatiRS", [554] = "evrlwiRRA", [555] = "evsplatfiRS", [556] = "evmergehiRRR", [557] = "evmergeloRRR", [558] = "evmergehiloRRR", [559] = "evmergelohiRRR", [560] = "evcmpgtuYRR", [561] = "evcmpgtsYRR", [562] = "evcmpltuYRR", [563] = "evcmpltsYRR", [564] = "evcmpeqYRR", [632] = "evselRRR", [633] = "evselRRRW", [634] = "evselRRRW", [635] = "evselRRRW", [636] = "evselRRRW", [637] = "evselRRRW", [638] = "evselRRRW", [639] = "evselRRRW", [640] = "evfsaddRRR", [641] = "evfssubRRR", [644] = "evfsabsRR", [645] = "evfsnabsRR", [646] = "evfsnegRR", [648] = "evfsmulRRR", [649] = "evfsdivRRR", [652] = "evfscmpgtYRR", [653] = "evfscmpltYRR", [654] = "evfscmpeqYRR", [656] = "evfscfuiR-R", [657] = "evfscfsiR-R", [658] = "evfscfufR-R", [659] = "evfscfsfR-R", [660] = "evfsctuiR-R", [661] = "evfsctsiR-R", [662] = "evfsctufR-R", [663] = "evfsctsfR-R", [664] = "evfsctuizR-R", [666] = "evfsctsizR-R", [668] = "evfststgtYRR", [669] = "evfststltYRR", [670] = "evfststeqYRR", [704] = "efsaddRRR", [705] = "efssubRRR", [708] = "efsabsRR", [709] = "efsnabsRR", [710] = "efsnegRR", [712] = "efsmulRRR", [713] = "efsdivRRR", [716] = "efscmpgtYRR", [717] = "efscmpltYRR", [718] = "efscmpeqYRR", [719] = "efscfdR-R", [720] = "efscfuiR-R", [721] = "efscfsiR-R", [722] = "efscfufR-R", [723] = "efscfsfR-R", [724] = "efsctuiR-R", [725] = "efsctsiR-R", [726] = "efsctufR-R", [727] = "efsctsfR-R", [728] = "efsctuizR-R", [730] = "efsctsizR-R", [732] = "efststgtYRR", [733] = "efststltYRR", [734] = "efststeqYRR", [736] = "efdaddRRR", [737] = "efdsubRRR", [738] = "efdcfuidR-R", [739] = "efdcfsidR-R", [740] = "efdabsRR", [741] = "efdnabsRR", [742] = "efdnegRR", [744] = "efdmulRRR", [745] = "efddivRRR", [746] = "efdctuidzR-R", [747] = "efdctsidzR-R", [748] = "efdcmpgtYRR", [749] = "efdcmpltYRR", [750] = "efdcmpeqYRR", [751] = "efdcfsR-R", [752] = "efdcfuiR-R", [753] = "efdcfsiR-R", [754] = "efdcfufR-R", [755] = "efdcfsfR-R", [756] = "efdctuiR-R", [757] = "efdctsiR-R", [758] = "efdctufR-R", [759] = "efdctsfR-R", [760] = "efdctuizR-R", [762] = "efdctsizR-R", [764] = "efdtstgtYRR", [765] = "efdtstltYRR", [766] = "efdtsteqYRR", [768] = "evlddxRR0R", [769] = "evlddRR8", [770] = "evldwxRR0R", [771] = "evldwRR8", [772] = "evldhxRR0R", [773] = "evldhRR8", [776] = "evlhhesplatxRR0R", [777] = "evlhhesplatRR2", [780] = "evlhhousplatxRR0R", [781] = "evlhhousplatRR2", [782] = "evlhhossplatxRR0R", [783] = "evlhhossplatRR2", [784] = "evlwhexRR0R", [785] = "evlwheRR4", [788] = "evlwhouxRR0R", [789] = "evlwhouRR4", [790] = "evlwhosxRR0R", [791] = "evlwhosRR4", [792] = "evlwwsplatxRR0R", [793] = "evlwwsplatRR4", [796] = "evlwhsplatxRR0R", [797] = "evlwhsplatRR4", [800] = "evstddxRR0R", [801] = "evstddRR8", [802] = "evstdwxRR0R", [803] = "evstdwRR8", [804] = "evstdhxRR0R", [805] = "evstdhRR8", [816] = "evstwhexRR0R", [817] = "evstwheRR4", [820] = "evstwhoxRR0R", [821] = "evstwhoRR4", [824] = "evstwwexRR0R", [825] = "evstwweRR4", [828] = "evstwwoxRR0R", [829] = "evstwwoRR4", [1027] = "evmhessfRRR", [1031] = "evmhossfRRR", [1032] = "evmheumiRRR", [1033] = "evmhesmiRRR", [1035] = "evmhesmfRRR", [1036] = "evmhoumiRRR", [1037] = "evmhosmiRRR", [1039] = "evmhosmfRRR", [1059] = "evmhessfaRRR", [1063] = "evmhossfaRRR", [1064] = "evmheumiaRRR", [1065] = "evmhesmiaRRR", [1067] = "evmhesmfaRRR", [1068] = "evmhoumiaRRR", [1069] = "evmhosmiaRRR", [1071] = "evmhosmfaRRR", [1095] = "evmwhssfRRR", [1096] = "evmwlumiRRR", [1100] = "evmwhumiRRR", [1101] = "evmwhsmiRRR", [1103] = "evmwhsmfRRR", [1107] = "evmwssfRRR", [1112] = "evmwumiRRR", [1113] = "evmwsmiRRR", [1115] = "evmwsmfRRR", [1127] = "evmwhssfaRRR", [1128] = "evmwlumiaRRR", [1132] = "evmwhumiaRRR", [1133] = "evmwhsmiaRRR", [1135] = "evmwhsmfaRRR", [1139] = "evmwssfaRRR", [1144] = "evmwumiaRRR", [1145] = "evmwsmiaRRR", [1147] = "evmwsmfaRRR", [1216] = "evaddusiaawRR", [1217] = "evaddssiaawRR", [1218] = "evsubfusiaawRR", [1219] = "evsubfssiaawRR", [1220] = "evmraRR", [1222] = "evdivwsRRR", [1223] = "evdivwuRRR", [1224] = "evaddumiaawRR", [1225] = "evaddsmiaawRR", [1226] = "evsubfumiaawRR", [1227] = "evsubfsmiaawRR", [1280] = "evmheusiaawRRR", [1281] = "evmhessiaawRRR", [1283] = "evmhessfaawRRR", [1284] = "evmhousiaawRRR", [1285] = "evmhossiaawRRR", [1287] = "evmhossfaawRRR", [1288] = "evmheumiaawRRR", [1289] = "evmhesmiaawRRR", [1291] = "evmhesmfaawRRR", [1292] = "evmhoumiaawRRR", [1293] = "evmhosmiaawRRR", [1295] = "evmhosmfaawRRR", [1320] = "evmhegumiaaRRR", [1321] = "evmhegsmiaaRRR", [1323] = "evmhegsmfaaRRR", [1324] = "evmhogumiaaRRR", [1325] = "evmhogsmiaaRRR", [1327] = "evmhogsmfaaRRR", [1344] = "evmwlusiaawRRR", [1345] = "evmwlssiaawRRR", [1352] = "evmwlumiaawRRR", [1353] = "evmwlsmiaawRRR", [1363] = "evmwssfaaRRR", [1368] = "evmwumiaaRRR", [1369] = "evmwsmiaaRRR", [1371] = "evmwsmfaaRRR", [1408] = "evmheusianwRRR", [1409] = "evmhessianwRRR", [1411] = "evmhessfanwRRR", [1412] = "evmhousianwRRR", [1413] = "evmhossianwRRR", [1415] = "evmhossfanwRRR", [1416] = "evmheumianwRRR", [1417] = "evmhesmianwRRR", [1419] = "evmhesmfanwRRR", [1420] = "evmhoumianwRRR", [1421] = "evmhosmianwRRR", [1423] = "evmhosmfanwRRR", [1448] = "evmhegumianRRR", [1449] = "evmhegsmianRRR", [1451] = "evmhegsmfanRRR", [1452] = "evmhogumianRRR", [1453] = "evmhogsmianRRR", [1455] = "evmhogsmfanRRR", [1472] = "evmwlusianwRRR", [1473] = "evmwlssianwRRR", [1480] = "evmwlumianwRRR", [1481] = "evmwlsmianwRRR", [1491] = "evmwssfanRRR", [1496] = "evmwumianRRR", [1497] = "evmwsmianRRR", [1499] = "evmwsmfanRRR", } local map_pri = { [0] = false, false, "tdiARI", "twiARI", map_spe, false, false, "mulliRRI", "subficRRI", false, "cmpl_iYLRU", "cmp_iYLRI", "addicRRI", "addic.RRI", "addi|liRR0I", "addis|lisRR0I", "b_KBJ", "sc", "bKJ", map_crops, "rlwimiRR~AAA.", map_rlwinm, false, "rlwnmRR~RAA.", "oriNRR~U", "orisRR~U", "xoriRR~U", "xorisRR~U", "andi.RR~U", "andis.RR~U", map_rld, map_ext, "lwzRRD", "lwzuRRD", "lbzRRD", "lbzuRRD", "stwRRD", "stwuRRD", "stbRRD", "stbuRRD", "lhzRRD", "lhzuRRD", "lhaRRD", "lhauRRD", "sthRRD", "sthuRRD", "lmwRRD", "stmwRRD", "lfsFRD", "lfsuFRD", "lfdFRD", "lfduFRD", "stfsFRD", "stfsuFRD", "stfdFRD", "stfduFRD", false, false, map_ld, map_fps, false, false, map_std, map_fpd, } ------------------------------------------------------------------------------ local map_gpr = { [0] = "r0", "sp", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", } local map_cond = { [0] = "lt", "gt", "eq", "so", "ge", "le", "ne", "ns", } -- Format a condition bit. local function condfmt(cond) if cond <= 3 then return map_cond[band(cond, 3)] else return format("4*cr%d+%s", rshift(cond, 2), map_cond[band(cond, 3)]) end end ------------------------------------------------------------------------------ -- Output a nicely formatted line with an opcode and operands. local function putop(ctx, text, operands) local pos = ctx.pos local extra = "" if ctx.rel then local sym = ctx.symtab[ctx.rel] if sym then extra = "\t->"..sym end end if ctx.hexdump > 0 then ctx.out(format("%08x %s %-7s %s%s\n", ctx.addr+pos, tohex(ctx.op), text, concat(operands, ", "), extra)) else ctx.out(format("%08x %-7s %s%s\n", ctx.addr+pos, text, concat(operands, ", "), extra)) end ctx.pos = pos + 4 end -- Fallback for unknown opcodes. local function unknown(ctx) return putop(ctx, ".long", { "0x"..tohex(ctx.op) }) end -- Disassemble a single instruction. local function disass_ins(ctx) local pos = ctx.pos local b0, b1, b2, b3 = byte(ctx.code, pos+1, pos+4) local op = bor(lshift(b0, 24), lshift(b1, 16), lshift(b2, 8), b3) local operands = {} local last = nil local rs = 21 ctx.op = op ctx.rel = nil local opat = map_pri[rshift(b0, 2)] while type(opat) ~= "string" do if not opat then return unknown(ctx) end opat = opat[band(rshift(op, opat.shift), opat.mask)] end local name, pat = match(opat, "^([a-z0-9_.]*)(.*)") local altname, pat2 = match(pat, "|([a-z0-9_.]*)(.*)") if altname then pat = pat2 end for p in gmatch(pat, ".") do local x = nil if p == "R" then x = map_gpr[band(rshift(op, rs), 31)] rs = rs - 5 elseif p == "F" then x = "f"..band(rshift(op, rs), 31) rs = rs - 5 elseif p == "A" then x = band(rshift(op, rs), 31) rs = rs - 5 elseif p == "S" then x = arshift(lshift(op, 27-rs), 27) rs = rs - 5 elseif p == "I" then x = arshift(lshift(op, 16), 16) elseif p == "U" then x = band(op, 0xffff) elseif p == "D" or p == "E" then local disp = arshift(lshift(op, 16), 16) if p == "E" then disp = band(disp, -4) end if last == "r0" then last = "0" end operands[#operands] = format("%d(%s)", disp, last) elseif p >= "2" and p <= "8" then local disp = band(rshift(op, rs), 31) * p if last == "r0" then last = "0" end operands[#operands] = format("%d(%s)", disp, last) elseif p == "H" then x = band(rshift(op, rs), 31) + lshift(band(op, 2), 4) rs = rs - 5 elseif p == "M" then x = band(rshift(op, rs), 31) + band(op, 0x20) elseif p == "C" then x = condfmt(band(rshift(op, rs), 31)) rs = rs - 5 elseif p == "B" then local bo = rshift(op, 21) local cond = band(rshift(op, 16), 31) local cn = "" rs = rs - 10 if band(bo, 4) == 0 then cn = band(bo, 2) == 0 and "dnz" or "dz" if band(bo, 0x10) == 0 then cn = cn..(band(bo, 8) == 0 and "f" or "t") end if band(bo, 0x10) == 0 then x = condfmt(cond) end name = name..(band(bo, 1) == band(rshift(op, 15), 1) and "-" or "+") elseif band(bo, 0x10) == 0 then cn = map_cond[band(cond, 3) + (band(bo, 8) == 0 and 4 or 0)] if cond > 3 then x = "cr"..rshift(cond, 2) end name = name..(band(bo, 1) == band(rshift(op, 15), 1) and "-" or "+") end name = gsub(name, "_", cn) elseif p == "J" then x = arshift(lshift(op, 27-rs), 29-rs)*4 if band(op, 2) == 0 then x = ctx.addr + pos + x end ctx.rel = x x = "0x"..tohex(x) elseif p == "K" then if band(op, 1) ~= 0 then name = name.."l" end if band(op, 2) ~= 0 then name = name.."a" end elseif p == "X" or p == "Y" then x = band(rshift(op, rs+2), 7) if x == 0 and p == "Y" then x = nil else x = "cr"..x end rs = rs - 5 elseif p == "W" then x = "cr"..band(op, 7) elseif p == "Z" then x = band(rshift(op, rs-4), 255) rs = rs - 10 elseif p == ">" then operands[#operands] = rshift(operands[#operands], 1) elseif p == "0" then if last == "r0" then operands[#operands] = nil if altname then name = altname end end elseif p == "L" then name = gsub(name, "_", band(op, 0x00200000) ~= 0 and "d" or "w") elseif p == "." then if band(op, 1) == 1 then name = name.."." end elseif p == "N" then if op == 0x60000000 then name = "nop"; break end elseif p == "~" then local n = #operands operands[n-1], operands[n] = operands[n], operands[n-1] elseif p == "=" then local n = #operands if last == operands[n-1] then operands[n] = nil name = altname end elseif p == "%" then local n = #operands if last == operands[n-1] and last == operands[n-2] then operands[n] = nil operands[n-1] = nil name = altname end elseif p == "-" then rs = rs - 5 else assert(false) end if x then operands[#operands+1] = x; last = x end end return putop(ctx, name, operands) end ------------------------------------------------------------------------------ -- Disassemble a block of code. local function disass_block(ctx, ofs, len) if not ofs then ofs = 0 end local stop = len and ofs+len or #ctx.code stop = stop - stop % 4 ctx.pos = ofs - ofs % 4 ctx.rel = nil while ctx.pos < stop do disass_ins(ctx) end end -- Extended API: create a disassembler context. Then call ctx:disass(ofs, len). local function create(code, addr, out) local ctx = {} ctx.code = code ctx.addr = addr or 0 ctx.out = out or io.write ctx.symtab = {} ctx.disass = disass_block ctx.hexdump = 8 return ctx end -- Simple API: disassemble code (a string) at address and output via out. local function disass(code, addr, out) create(code, addr, out):disass() end -- Return register name for RID. local function regname(r) if r < 32 then return map_gpr[r] end return "f"..(r-32) end -- Public module functions. return { create = create, disass = disass, regname = regname } luajit-2.1.0~beta3+dfsg.orig/src/jit/p.lua0000644000175100017510000002165713101703334017650 0ustar ondrejondrej---------------------------------------------------------------------------- -- LuaJIT profiler. -- -- Copyright (C) 2005-2017 Mike Pall. All rights reserved. -- Released under the MIT license. See Copyright Notice in luajit.h ---------------------------------------------------------------------------- -- -- This module is a simple command line interface to the built-in -- low-overhead profiler of LuaJIT. -- -- The lower-level API of the profiler is accessible via the "jit.profile" -- module or the luaJIT_profile_* C API. -- -- Example usage: -- -- luajit -jp myapp.lua -- luajit -jp=s myapp.lua -- luajit -jp=-s myapp.lua -- luajit -jp=vl myapp.lua -- luajit -jp=G,profile.txt myapp.lua -- -- The following dump features are available: -- -- f Stack dump: function name, otherwise module:line. Default mode. -- F Stack dump: ditto, but always prepend module. -- l Stack dump: module:line. -- stack dump depth (callee < caller). Default: 1. -- - Inverse stack dump depth (caller > callee). -- s Split stack dump after first stack level. Implies abs(depth) >= 2. -- p Show full path for module names. -- v Show VM states. Can be combined with stack dumps, e.g. vf or fv. -- z Show zones. Can be combined with stack dumps, e.g. zf or fz. -- r Show raw sample counts. Default: show percentages. -- a Annotate excerpts from source code files. -- A Annotate complete source code files. -- G Produce raw output suitable for graphical tools (e.g. flame graphs). -- m Minimum sample percentage to be shown. Default: 3. -- i Sampling interval in milliseconds. Default: 10. -- ---------------------------------------------------------------------------- -- Cache some library functions and objects. local jit = require("jit") assert(jit.version_num == 20100, "LuaJIT core/library version mismatch") local profile = require("jit.profile") local vmdef = require("jit.vmdef") local math = math local pairs, ipairs, tonumber, floor = pairs, ipairs, tonumber, math.floor local sort, format = table.sort, string.format local stdout = io.stdout local zone -- Load jit.zone module on demand. -- Output file handle. local out ------------------------------------------------------------------------------ local prof_ud local prof_states, prof_split, prof_min, prof_raw, prof_fmt, prof_depth local prof_ann, prof_count1, prof_count2, prof_samples local map_vmmode = { N = "Compiled", I = "Interpreted", C = "C code", G = "Garbage Collector", J = "JIT Compiler", } -- Profiler callback. local function prof_cb(th, samples, vmmode) prof_samples = prof_samples + samples local key_stack, key_stack2, key_state -- Collect keys for sample. if prof_states then if prof_states == "v" then key_state = map_vmmode[vmmode] or vmmode else key_state = zone:get() or "(none)" end end if prof_fmt then key_stack = profile.dumpstack(th, prof_fmt, prof_depth) key_stack = key_stack:gsub("%[builtin#(%d+)%]", function(x) return vmdef.ffnames[tonumber(x)] end) if prof_split == 2 then local k1, k2 = key_stack:match("(.-) [<>] (.*)") if k2 then key_stack, key_stack2 = k1, k2 end elseif prof_split == 3 then key_stack2 = profile.dumpstack(th, "l", 1) end end -- Order keys. local k1, k2 if prof_split == 1 then if key_state then k1 = key_state if key_stack then k2 = key_stack end end elseif key_stack then k1 = key_stack if key_stack2 then k2 = key_stack2 elseif key_state then k2 = key_state end end -- Coalesce samples in one or two levels. if k1 then local t1 = prof_count1 t1[k1] = (t1[k1] or 0) + samples if k2 then local t2 = prof_count2 local t3 = t2[k1] if not t3 then t3 = {}; t2[k1] = t3 end t3[k2] = (t3[k2] or 0) + samples end end end ------------------------------------------------------------------------------ -- Show top N list. local function prof_top(count1, count2, samples, indent) local t, n = {}, 0 for k in pairs(count1) do n = n + 1 t[n] = k end sort(t, function(a, b) return count1[a] > count1[b] end) for i=1,n do local k = t[i] local v = count1[k] local pct = floor(v*100/samples + 0.5) if pct < prof_min then break end if not prof_raw then out:write(format("%s%2d%% %s\n", indent, pct, k)) elseif prof_raw == "r" then out:write(format("%s%5d %s\n", indent, v, k)) else out:write(format("%s %d\n", k, v)) end if count2 then local r = count2[k] if r then prof_top(r, nil, v, (prof_split == 3 or prof_split == 1) and " -- " or (prof_depth < 0 and " -> " or " <- ")) end end end end -- Annotate source code local function prof_annotate(count1, samples) local files = {} local ms = 0 for k, v in pairs(count1) do local pct = floor(v*100/samples + 0.5) ms = math.max(ms, v) if pct >= prof_min then local file, line = k:match("^(.*):(%d+)$") if not file then file = k; line = 0 end local fl = files[file] if not fl then fl = {}; files[file] = fl; files[#files+1] = file end line = tonumber(line) fl[line] = prof_raw and v or pct end end sort(files) local fmtv, fmtn = " %3d%% | %s\n", " | %s\n" if prof_raw then local n = math.max(5, math.ceil(math.log10(ms))) fmtv = "%"..n.."d | %s\n" fmtn = (" "):rep(n).." | %s\n" end local ann = prof_ann for _, file in ipairs(files) do local f0 = file:byte() if f0 == 40 or f0 == 91 then out:write(format("\n====== %s ======\n[Cannot annotate non-file]\n", file)) break end local fp, err = io.open(file) if not fp then out:write(format("====== ERROR: %s: %s\n", file, err)) break end out:write(format("\n====== %s ======\n", file)) local fl = files[file] local n, show = 1, false if ann ~= 0 then for i=1,ann do if fl[i] then show = true; out:write("@@ 1 @@\n"); break end end end for line in fp:lines() do if line:byte() == 27 then out:write("[Cannot annotate bytecode file]\n") break end local v = fl[n] if ann ~= 0 then local v2 = fl[n+ann] if show then if v2 then show = n+ann elseif v then show = n elseif show+ann < n then show = false end elseif v2 then show = n+ann out:write(format("@@ %d @@\n", n)) end if not show then goto next end end if v then out:write(format(fmtv, v, line)) else out:write(format(fmtn, line)) end ::next:: n = n + 1 end fp:close() end end ------------------------------------------------------------------------------ -- Finish profiling and dump result. local function prof_finish() if prof_ud then profile.stop() local samples = prof_samples if samples == 0 then if prof_raw ~= true then out:write("[No samples collected]\n") end return end if prof_ann then prof_annotate(prof_count1, samples) else prof_top(prof_count1, prof_count2, samples, "") end prof_count1 = nil prof_count2 = nil prof_ud = nil end end -- Start profiling. local function prof_start(mode) local interval = "" mode = mode:gsub("i%d*", function(s) interval = s; return "" end) prof_min = 3 mode = mode:gsub("m(%d+)", function(s) prof_min = tonumber(s); return "" end) prof_depth = 1 mode = mode:gsub("%-?%d+", function(s) prof_depth = tonumber(s); return "" end) local m = {} for c in mode:gmatch(".") do m[c] = c end prof_states = m.z or m.v if prof_states == "z" then zone = require("jit.zone") end local scope = m.l or m.f or m.F or (prof_states and "" or "f") local flags = (m.p or "") prof_raw = m.r if m.s then prof_split = 2 if prof_depth == -1 or m["-"] then prof_depth = -2 elseif prof_depth == 1 then prof_depth = 2 end elseif mode:find("[fF].*l") then scope = "l" prof_split = 3 else prof_split = (scope == "" or mode:find("[zv].*[lfF]")) and 1 or 0 end prof_ann = m.A and 0 or (m.a and 3) if prof_ann then scope = "l" prof_fmt = "pl" prof_split = 0 prof_depth = 1 elseif m.G and scope ~= "" then prof_fmt = flags..scope.."Z;" prof_depth = -100 prof_raw = true prof_min = 0 elseif scope == "" then prof_fmt = false else local sc = prof_split == 3 and m.f or m.F or scope prof_fmt = flags..sc..(prof_depth >= 0 and "Z < " or "Z > ") end prof_count1 = {} prof_count2 = {} prof_samples = 0 profile.start(scope:lower()..interval, prof_cb) prof_ud = newproxy(true) getmetatable(prof_ud).__gc = prof_finish end ------------------------------------------------------------------------------ local function start(mode, outfile) if not outfile then outfile = os.getenv("LUAJIT_PROFILEFILE") end if outfile then out = outfile == "-" and stdout or assert(io.open(outfile, "w")) else out = stdout end prof_start(mode or "f") end -- Public module functions. return { start = start, -- For -j command line option. stop = prof_finish } luajit-2.1.0~beta3+dfsg.orig/src/jit/dis_mips64.lua0000644000175100017510000000130213101703334021353 0ustar ondrejondrej---------------------------------------------------------------------------- -- LuaJIT MIPS64 disassembler wrapper module. -- -- Copyright (C) 2005-2017 Mike Pall. All rights reserved. -- Released under the MIT license. See Copyright Notice in luajit.h ---------------------------------------------------------------------------- -- This module just exports the big-endian functions from the -- MIPS disassembler module. All the interesting stuff is there. ------------------------------------------------------------------------------ local dis_mips = require((string.match(..., ".*%.") or "").."dis_mips") return { create = dis_mips.create, disass = dis_mips.disass, regname = dis_mips.regname } luajit-2.1.0~beta3+dfsg.orig/src/lauxlib.h0000644000175100017510000001361413101703334017723 0ustar ondrejondrej/* ** $Id: lauxlib.h,v 1.88.1.1 2007/12/27 13:02:25 roberto Exp $ ** Auxiliary functions for building Lua libraries ** See Copyright Notice in lua.h */ #ifndef lauxlib_h #define lauxlib_h #include #include #include "lua.h" /* extra error code for `luaL_load' */ #define LUA_ERRFILE (LUA_ERRERR+1) typedef struct luaL_Reg { const char *name; lua_CFunction func; } luaL_Reg; LUALIB_API void (luaL_openlib) (lua_State *L, const char *libname, const luaL_Reg *l, int nup); LUALIB_API void (luaL_register) (lua_State *L, const char *libname, const luaL_Reg *l); LUALIB_API int (luaL_getmetafield) (lua_State *L, int obj, const char *e); LUALIB_API int (luaL_callmeta) (lua_State *L, int obj, const char *e); LUALIB_API int (luaL_typerror) (lua_State *L, int narg, const char *tname); LUALIB_API int (luaL_argerror) (lua_State *L, int numarg, const char *extramsg); LUALIB_API const char *(luaL_checklstring) (lua_State *L, int numArg, size_t *l); LUALIB_API const char *(luaL_optlstring) (lua_State *L, int numArg, const char *def, size_t *l); LUALIB_API lua_Number (luaL_checknumber) (lua_State *L, int numArg); LUALIB_API lua_Number (luaL_optnumber) (lua_State *L, int nArg, lua_Number def); LUALIB_API lua_Integer (luaL_checkinteger) (lua_State *L, int numArg); LUALIB_API lua_Integer (luaL_optinteger) (lua_State *L, int nArg, lua_Integer def); LUALIB_API void (luaL_checkstack) (lua_State *L, int sz, const char *msg); LUALIB_API void (luaL_checktype) (lua_State *L, int narg, int t); LUALIB_API void (luaL_checkany) (lua_State *L, int narg); LUALIB_API int (luaL_newmetatable) (lua_State *L, const char *tname); LUALIB_API void *(luaL_checkudata) (lua_State *L, int ud, const char *tname); LUALIB_API void (luaL_where) (lua_State *L, int lvl); LUALIB_API int (luaL_error) (lua_State *L, const char *fmt, ...); LUALIB_API int (luaL_checkoption) (lua_State *L, int narg, const char *def, const char *const lst[]); /* pre-defined references */ #define LUA_NOREF (-2) #define LUA_REFNIL (-1) LUALIB_API int (luaL_ref) (lua_State *L, int t); LUALIB_API void (luaL_unref) (lua_State *L, int t, int ref); LUALIB_API int (luaL_loadfile) (lua_State *L, const char *filename); LUALIB_API int (luaL_loadbuffer) (lua_State *L, const char *buff, size_t sz, const char *name); LUALIB_API int (luaL_loadstring) (lua_State *L, const char *s); LUALIB_API lua_State *(luaL_newstate) (void); LUALIB_API const char *(luaL_gsub) (lua_State *L, const char *s, const char *p, const char *r); LUALIB_API const char *(luaL_findtable) (lua_State *L, int idx, const char *fname, int szhint); /* From Lua 5.2. */ LUALIB_API int luaL_fileresult(lua_State *L, int stat, const char *fname); LUALIB_API int luaL_execresult(lua_State *L, int stat); LUALIB_API int (luaL_loadfilex) (lua_State *L, const char *filename, const char *mode); LUALIB_API int (luaL_loadbufferx) (lua_State *L, const char *buff, size_t sz, const char *name, const char *mode); LUALIB_API void luaL_traceback (lua_State *L, lua_State *L1, const char *msg, int level); LUALIB_API void (luaL_setfuncs) (lua_State *L, const luaL_Reg *l, int nup); LUALIB_API void (luaL_pushmodule) (lua_State *L, const char *modname, int sizehint); LUALIB_API void *(luaL_testudata) (lua_State *L, int ud, const char *tname); LUALIB_API void (luaL_setmetatable) (lua_State *L, const char *tname); /* ** =============================================================== ** some useful macros ** =============================================================== */ #define luaL_argcheck(L, cond,numarg,extramsg) \ ((void)((cond) || luaL_argerror(L, (numarg), (extramsg)))) #define luaL_checkstring(L,n) (luaL_checklstring(L, (n), NULL)) #define luaL_optstring(L,n,d) (luaL_optlstring(L, (n), (d), NULL)) #define luaL_checkint(L,n) ((int)luaL_checkinteger(L, (n))) #define luaL_optint(L,n,d) ((int)luaL_optinteger(L, (n), (d))) #define luaL_checklong(L,n) ((long)luaL_checkinteger(L, (n))) #define luaL_optlong(L,n,d) ((long)luaL_optinteger(L, (n), (d))) #define luaL_typename(L,i) lua_typename(L, lua_type(L,(i))) #define luaL_dofile(L, fn) \ (luaL_loadfile(L, fn) || lua_pcall(L, 0, LUA_MULTRET, 0)) #define luaL_dostring(L, s) \ (luaL_loadstring(L, s) || lua_pcall(L, 0, LUA_MULTRET, 0)) #define luaL_getmetatable(L,n) (lua_getfield(L, LUA_REGISTRYINDEX, (n))) #define luaL_opt(L,f,n,d) (lua_isnoneornil(L,(n)) ? (d) : f(L,(n))) /* From Lua 5.2. */ #define luaL_newlibtable(L, l) \ lua_createtable(L, 0, sizeof(l)/sizeof((l)[0]) - 1) #define luaL_newlib(L, l) (luaL_newlibtable(L, l), luaL_setfuncs(L, l, 0)) /* ** {====================================================== ** Generic Buffer manipulation ** ======================================================= */ typedef struct luaL_Buffer { char *p; /* current position in buffer */ int lvl; /* number of strings in the stack (level) */ lua_State *L; char buffer[LUAL_BUFFERSIZE]; } luaL_Buffer; #define luaL_addchar(B,c) \ ((void)((B)->p < ((B)->buffer+LUAL_BUFFERSIZE) || luaL_prepbuffer(B)), \ (*(B)->p++ = (char)(c))) /* compatibility only */ #define luaL_putchar(B,c) luaL_addchar(B,c) #define luaL_addsize(B,n) ((B)->p += (n)) LUALIB_API void (luaL_buffinit) (lua_State *L, luaL_Buffer *B); LUALIB_API char *(luaL_prepbuffer) (luaL_Buffer *B); LUALIB_API void (luaL_addlstring) (luaL_Buffer *B, const char *s, size_t l); LUALIB_API void (luaL_addstring) (luaL_Buffer *B, const char *s); LUALIB_API void (luaL_addvalue) (luaL_Buffer *B); LUALIB_API void (luaL_pushresult) (luaL_Buffer *B); /* }====================================================== */ #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_ir.h0000644000175100017510000004506613101703334017370 0ustar ondrejondrej/* ** SSA IR (Intermediate Representation) format. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_IR_H #define _LJ_IR_H #include "lj_obj.h" /* -- IR instructions ----------------------------------------------------- */ /* IR instruction definition. Order matters, see below. ORDER IR */ #define IRDEF(_) \ /* Guarded assertions. */ \ /* Must be properly aligned to flip opposites (^1) and (un)ordered (^4). */ \ _(LT, N , ref, ref) \ _(GE, N , ref, ref) \ _(LE, N , ref, ref) \ _(GT, N , ref, ref) \ \ _(ULT, N , ref, ref) \ _(UGE, N , ref, ref) \ _(ULE, N , ref, ref) \ _(UGT, N , ref, ref) \ \ _(EQ, C , ref, ref) \ _(NE, C , ref, ref) \ \ _(ABC, N , ref, ref) \ _(RETF, S , ref, ref) \ \ /* Miscellaneous ops. */ \ _(NOP, N , ___, ___) \ _(BASE, N , lit, lit) \ _(PVAL, N , lit, ___) \ _(GCSTEP, S , ___, ___) \ _(HIOP, S , ref, ref) \ _(LOOP, S , ___, ___) \ _(USE, S , ref, ___) \ _(PHI, S , ref, ref) \ _(RENAME, S , ref, lit) \ _(PROF, S , ___, ___) \ \ /* Constants. */ \ _(KPRI, N , ___, ___) \ _(KINT, N , cst, ___) \ _(KGC, N , cst, ___) \ _(KPTR, N , cst, ___) \ _(KKPTR, N , cst, ___) \ _(KNULL, N , cst, ___) \ _(KNUM, N , cst, ___) \ _(KINT64, N , cst, ___) \ _(KSLOT, N , ref, lit) \ \ /* Bit ops. */ \ _(BNOT, N , ref, ___) \ _(BSWAP, N , ref, ___) \ _(BAND, C , ref, ref) \ _(BOR, C , ref, ref) \ _(BXOR, C , ref, ref) \ _(BSHL, N , ref, ref) \ _(BSHR, N , ref, ref) \ _(BSAR, N , ref, ref) \ _(BROL, N , ref, ref) \ _(BROR, N , ref, ref) \ \ /* Arithmetic ops. ORDER ARITH */ \ _(ADD, C , ref, ref) \ _(SUB, N , ref, ref) \ _(MUL, C , ref, ref) \ _(DIV, N , ref, ref) \ _(MOD, N , ref, ref) \ _(POW, N , ref, ref) \ _(NEG, N , ref, ref) \ \ _(ABS, N , ref, ref) \ _(ATAN2, N , ref, ref) \ _(LDEXP, N , ref, ref) \ _(MIN, C , ref, ref) \ _(MAX, C , ref, ref) \ _(FPMATH, N , ref, lit) \ \ /* Overflow-checking arithmetic ops. */ \ _(ADDOV, CW, ref, ref) \ _(SUBOV, NW, ref, ref) \ _(MULOV, CW, ref, ref) \ \ /* Memory ops. A = array, H = hash, U = upvalue, F = field, S = stack. */ \ \ /* Memory references. */ \ _(AREF, R , ref, ref) \ _(HREFK, R , ref, ref) \ _(HREF, L , ref, ref) \ _(NEWREF, S , ref, ref) \ _(UREFO, LW, ref, lit) \ _(UREFC, LW, ref, lit) \ _(FREF, R , ref, lit) \ _(STRREF, N , ref, ref) \ _(LREF, L , ___, ___) \ \ /* Loads and Stores. These must be in the same order. */ \ _(ALOAD, L , ref, ___) \ _(HLOAD, L , ref, ___) \ _(ULOAD, L , ref, ___) \ _(FLOAD, L , ref, lit) \ _(XLOAD, L , ref, lit) \ _(SLOAD, L , lit, lit) \ _(VLOAD, L , ref, ___) \ \ _(ASTORE, S , ref, ref) \ _(HSTORE, S , ref, ref) \ _(USTORE, S , ref, ref) \ _(FSTORE, S , ref, ref) \ _(XSTORE, S , ref, ref) \ \ /* Allocations. */ \ _(SNEW, N , ref, ref) /* CSE is ok, not marked as A. */ \ _(XSNEW, A , ref, ref) \ _(TNEW, AW, lit, lit) \ _(TDUP, AW, ref, ___) \ _(CNEW, AW, ref, ref) \ _(CNEWI, NW, ref, ref) /* CSE is ok, not marked as A. */ \ \ /* Buffer operations. */ \ _(BUFHDR, L , ref, lit) \ _(BUFPUT, L , ref, ref) \ _(BUFSTR, A , ref, ref) \ \ /* Barriers. */ \ _(TBAR, S , ref, ___) \ _(OBAR, S , ref, ref) \ _(XBAR, S , ___, ___) \ \ /* Type conversions. */ \ _(CONV, NW, ref, lit) \ _(TOBIT, N , ref, ref) \ _(TOSTR, N , ref, lit) \ _(STRTO, N , ref, ___) \ \ /* Calls. */ \ _(CALLN, N , ref, lit) \ _(CALLA, A , ref, lit) \ _(CALLL, L , ref, lit) \ _(CALLS, S , ref, lit) \ _(CALLXS, S , ref, ref) \ _(CARG, N , ref, ref) \ \ /* End of list. */ /* IR opcodes (max. 256). */ typedef enum { #define IRENUM(name, m, m1, m2) IR_##name, IRDEF(IRENUM) #undef IRENUM IR__MAX } IROp; /* Stored opcode. */ typedef uint8_t IROp1; LJ_STATIC_ASSERT(((int)IR_EQ^1) == (int)IR_NE); LJ_STATIC_ASSERT(((int)IR_LT^1) == (int)IR_GE); LJ_STATIC_ASSERT(((int)IR_LE^1) == (int)IR_GT); LJ_STATIC_ASSERT(((int)IR_LT^3) == (int)IR_GT); LJ_STATIC_ASSERT(((int)IR_LT^4) == (int)IR_ULT); /* Delta between xLOAD and xSTORE. */ #define IRDELTA_L2S ((int)IR_ASTORE - (int)IR_ALOAD) LJ_STATIC_ASSERT((int)IR_HLOAD + IRDELTA_L2S == (int)IR_HSTORE); LJ_STATIC_ASSERT((int)IR_ULOAD + IRDELTA_L2S == (int)IR_USTORE); LJ_STATIC_ASSERT((int)IR_FLOAD + IRDELTA_L2S == (int)IR_FSTORE); LJ_STATIC_ASSERT((int)IR_XLOAD + IRDELTA_L2S == (int)IR_XSTORE); /* -- Named IR literals --------------------------------------------------- */ /* FPMATH sub-functions. ORDER FPM. */ #define IRFPMDEF(_) \ _(FLOOR) _(CEIL) _(TRUNC) /* Must be first and in this order. */ \ _(SQRT) _(EXP) _(EXP2) _(LOG) _(LOG2) _(LOG10) \ _(SIN) _(COS) _(TAN) \ _(OTHER) typedef enum { #define FPMENUM(name) IRFPM_##name, IRFPMDEF(FPMENUM) #undef FPMENUM IRFPM__MAX } IRFPMathOp; /* FLOAD fields. */ #define IRFLDEF(_) \ _(STR_LEN, offsetof(GCstr, len)) \ _(FUNC_ENV, offsetof(GCfunc, l.env)) \ _(FUNC_PC, offsetof(GCfunc, l.pc)) \ _(FUNC_FFID, offsetof(GCfunc, l.ffid)) \ _(THREAD_ENV, offsetof(lua_State, env)) \ _(TAB_META, offsetof(GCtab, metatable)) \ _(TAB_ARRAY, offsetof(GCtab, array)) \ _(TAB_NODE, offsetof(GCtab, node)) \ _(TAB_ASIZE, offsetof(GCtab, asize)) \ _(TAB_HMASK, offsetof(GCtab, hmask)) \ _(TAB_NOMM, offsetof(GCtab, nomm)) \ _(UDATA_META, offsetof(GCudata, metatable)) \ _(UDATA_UDTYPE, offsetof(GCudata, udtype)) \ _(UDATA_FILE, sizeof(GCudata)) \ _(CDATA_CTYPEID, offsetof(GCcdata, ctypeid)) \ _(CDATA_PTR, sizeof(GCcdata)) \ _(CDATA_INT, sizeof(GCcdata)) \ _(CDATA_INT64, sizeof(GCcdata)) \ _(CDATA_INT64_4, sizeof(GCcdata) + 4) typedef enum { #define FLENUM(name, ofs) IRFL_##name, IRFLDEF(FLENUM) #undef FLENUM IRFL__MAX } IRFieldID; /* SLOAD mode bits, stored in op2. */ #define IRSLOAD_PARENT 0x01 /* Coalesce with parent trace. */ #define IRSLOAD_FRAME 0x02 /* Load 32 bits of ftsz. */ #define IRSLOAD_TYPECHECK 0x04 /* Needs type check. */ #define IRSLOAD_CONVERT 0x08 /* Number to integer conversion. */ #define IRSLOAD_READONLY 0x10 /* Read-only, omit slot store. */ #define IRSLOAD_INHERIT 0x20 /* Inherited by exits/side traces. */ /* XLOAD mode, stored in op2. */ #define IRXLOAD_READONLY 1 /* Load from read-only data. */ #define IRXLOAD_VOLATILE 2 /* Load from volatile data. */ #define IRXLOAD_UNALIGNED 4 /* Unaligned load. */ /* BUFHDR mode, stored in op2. */ #define IRBUFHDR_RESET 0 /* Reset buffer. */ #define IRBUFHDR_APPEND 1 /* Append to buffer. */ /* CONV mode, stored in op2. */ #define IRCONV_SRCMASK 0x001f /* Source IRType. */ #define IRCONV_DSTMASK 0x03e0 /* Dest. IRType (also in ir->t). */ #define IRCONV_DSH 5 #define IRCONV_NUM_INT ((IRT_NUM<>2)&3)) #define irm_iscomm(m) ((m) & IRM_C) #define irm_kind(m) ((m) & IRM_S) #define IRMODE(name, m, m1, m2) (((IRM##m1)|((IRM##m2)<<2)|(IRM_##m))^IRM_W), LJ_DATA const uint8_t lj_ir_mode[IR__MAX+1]; /* -- IR instruction types ------------------------------------------------ */ #define IRTSIZE_PGC (LJ_GC64 ? 8 : 4) /* Map of itypes to non-negative numbers and their sizes. ORDER LJ_T. ** LJ_TUPVAL/LJ_TTRACE never appear in a TValue. Use these itypes for ** IRT_P32 and IRT_P64, which never escape the IR. ** The various integers are only used in the IR and can only escape to ** a TValue after implicit or explicit conversion. Their types must be ** contiguous and next to IRT_NUM (see the typerange macros below). */ #define IRTDEF(_) \ _(NIL, 4) _(FALSE, 4) _(TRUE, 4) _(LIGHTUD, LJ_64 ? 8 : 4) \ _(STR, IRTSIZE_PGC) _(P32, 4) _(THREAD, IRTSIZE_PGC) _(PROTO, IRTSIZE_PGC) \ _(FUNC, IRTSIZE_PGC) _(P64, 8) _(CDATA, IRTSIZE_PGC) _(TAB, IRTSIZE_PGC) \ _(UDATA, IRTSIZE_PGC) \ _(FLOAT, 4) _(NUM, 8) _(I8, 1) _(U8, 1) _(I16, 2) _(U16, 2) \ _(INT, 4) _(U32, 4) _(I64, 8) _(U64, 8) \ _(SOFTFP, 4) /* There is room for 8 more types. */ /* IR result type and flags (8 bit). */ typedef enum { #define IRTENUM(name, size) IRT_##name, IRTDEF(IRTENUM) #undef IRTENUM IRT__MAX, /* Native pointer type and the corresponding integer type. */ IRT_PTR = LJ_64 ? IRT_P64 : IRT_P32, IRT_PGC = LJ_GC64 ? IRT_P64 : IRT_P32, IRT_IGC = LJ_GC64 ? IRT_I64 : IRT_INT, IRT_INTP = LJ_64 ? IRT_I64 : IRT_INT, IRT_UINTP = LJ_64 ? IRT_U64 : IRT_U32, /* Additional flags. */ IRT_MARK = 0x20, /* Marker for misc. purposes. */ IRT_ISPHI = 0x40, /* Instruction is left or right PHI operand. */ IRT_GUARD = 0x80, /* Instruction is a guard. */ /* Masks. */ IRT_TYPE = 0x1f, IRT_T = 0xff } IRType; #define irtype_ispri(irt) ((uint32_t)(irt) <= IRT_TRUE) /* Stored IRType. */ typedef struct IRType1 { uint8_t irt; } IRType1; #define IRT(o, t) ((uint32_t)(((o)<<8) | (t))) #define IRTI(o) (IRT((o), IRT_INT)) #define IRTN(o) (IRT((o), IRT_NUM)) #define IRTG(o, t) (IRT((o), IRT_GUARD|(t))) #define IRTGI(o) (IRT((o), IRT_GUARD|IRT_INT)) #define irt_t(t) ((IRType)(t).irt) #define irt_type(t) ((IRType)((t).irt & IRT_TYPE)) #define irt_sametype(t1, t2) ((((t1).irt ^ (t2).irt) & IRT_TYPE) == 0) #define irt_typerange(t, first, last) \ ((uint32_t)((t).irt & IRT_TYPE) - (uint32_t)(first) <= (uint32_t)(last-first)) #define irt_isnil(t) (irt_type(t) == IRT_NIL) #define irt_ispri(t) ((uint32_t)irt_type(t) <= IRT_TRUE) #define irt_islightud(t) (irt_type(t) == IRT_LIGHTUD) #define irt_isstr(t) (irt_type(t) == IRT_STR) #define irt_istab(t) (irt_type(t) == IRT_TAB) #define irt_iscdata(t) (irt_type(t) == IRT_CDATA) #define irt_isfloat(t) (irt_type(t) == IRT_FLOAT) #define irt_isnum(t) (irt_type(t) == IRT_NUM) #define irt_isint(t) (irt_type(t) == IRT_INT) #define irt_isi8(t) (irt_type(t) == IRT_I8) #define irt_isu8(t) (irt_type(t) == IRT_U8) #define irt_isi16(t) (irt_type(t) == IRT_I16) #define irt_isu16(t) (irt_type(t) == IRT_U16) #define irt_isu32(t) (irt_type(t) == IRT_U32) #define irt_isi64(t) (irt_type(t) == IRT_I64) #define irt_isu64(t) (irt_type(t) == IRT_U64) #define irt_isfp(t) (irt_isnum(t) || irt_isfloat(t)) #define irt_isinteger(t) (irt_typerange((t), IRT_I8, IRT_INT)) #define irt_isgcv(t) (irt_typerange((t), IRT_STR, IRT_UDATA)) #define irt_isaddr(t) (irt_typerange((t), IRT_LIGHTUD, IRT_UDATA)) #define irt_isint64(t) (irt_typerange((t), IRT_I64, IRT_U64)) #if LJ_GC64 #define IRT_IS64 \ ((1u<> irt_type(t)) & 1) #define irt_is64orfp(t) (((IRT_IS64|(1u<>irt_type(t)) & 1) #define irt_size(t) (lj_ir_type_size[irt_t((t))]) LJ_DATA const uint8_t lj_ir_type_size[]; static LJ_AINLINE IRType itype2irt(const TValue *tv) { if (tvisint(tv)) return IRT_INT; else if (tvisnum(tv)) return IRT_NUM; #if LJ_64 && !LJ_GC64 else if (tvislightud(tv)) return IRT_LIGHTUD; #endif else return (IRType)~itype(tv); } static LJ_AINLINE uint32_t irt_toitype_(IRType t) { lua_assert(!LJ_64 || LJ_GC64 || t != IRT_LIGHTUD); if (LJ_DUALNUM && t > IRT_NUM) { return LJ_TISNUM; } else { lua_assert(t <= IRT_NUM); return ~(uint32_t)t; } } #define irt_toitype(t) irt_toitype_(irt_type((t))) #define irt_isguard(t) ((t).irt & IRT_GUARD) #define irt_ismarked(t) ((t).irt & IRT_MARK) #define irt_setmark(t) ((t).irt |= IRT_MARK) #define irt_clearmark(t) ((t).irt &= ~IRT_MARK) #define irt_isphi(t) ((t).irt & IRT_ISPHI) #define irt_setphi(t) ((t).irt |= IRT_ISPHI) #define irt_clearphi(t) ((t).irt &= ~IRT_ISPHI) /* Stored combined IR opcode and type. */ typedef uint16_t IROpT; /* -- IR references ------------------------------------------------------- */ /* IR references. */ typedef uint16_t IRRef1; /* One stored reference. */ typedef uint32_t IRRef2; /* Two stored references. */ typedef uint32_t IRRef; /* Used to pass around references. */ /* Fixed references. */ enum { REF_BIAS = 0x8000, REF_TRUE = REF_BIAS-3, REF_FALSE = REF_BIAS-2, REF_NIL = REF_BIAS-1, /* \--- Constants grow downwards. */ REF_BASE = REF_BIAS, /* /--- IR grows upwards. */ REF_FIRST = REF_BIAS+1, REF_DROP = 0xffff }; /* Note: IRMlit operands must be < REF_BIAS, too! ** This allows for fast and uniform manipulation of all operands ** without looking up the operand mode in lj_ir_mode: ** - CSE calculates the maximum reference of two operands. ** This must work with mixed reference/literal operands, too. ** - DCE marking only checks for operand >= REF_BIAS. ** - LOOP needs to substitute reference operands. ** Constant references and literals must not be modified. */ #define IRREF2(lo, hi) ((IRRef2)(lo) | ((IRRef2)(hi) << 16)) #define irref_isk(ref) ((ref) < REF_BIAS) /* Tagged IR references (32 bit). ** ** +-------+-------+---------------+ ** | irt | flags | ref | ** +-------+-------+---------------+ ** ** The tag holds a copy of the IRType and speeds up IR type checks. */ typedef uint32_t TRef; #define TREF_REFMASK 0x0000ffff #define TREF_FRAME 0x00010000 #define TREF_CONT 0x00020000 #define TREF(ref, t) ((TRef)((ref) + ((t)<<24))) #define tref_ref(tr) ((IRRef1)(tr)) #define tref_t(tr) ((IRType)((tr)>>24)) #define tref_type(tr) ((IRType)(((tr)>>24) & IRT_TYPE)) #define tref_typerange(tr, first, last) \ ((((tr)>>24) & IRT_TYPE) - (TRef)(first) <= (TRef)(last-first)) #define tref_istype(tr, t) (((tr) & (IRT_TYPE<<24)) == ((t)<<24)) #define tref_isnil(tr) (tref_istype((tr), IRT_NIL)) #define tref_isfalse(tr) (tref_istype((tr), IRT_FALSE)) #define tref_istrue(tr) (tref_istype((tr), IRT_TRUE)) #define tref_islightud(tr) (tref_istype((tr), IRT_LIGHTUD)) #define tref_isstr(tr) (tref_istype((tr), IRT_STR)) #define tref_isfunc(tr) (tref_istype((tr), IRT_FUNC)) #define tref_iscdata(tr) (tref_istype((tr), IRT_CDATA)) #define tref_istab(tr) (tref_istype((tr), IRT_TAB)) #define tref_isudata(tr) (tref_istype((tr), IRT_UDATA)) #define tref_isnum(tr) (tref_istype((tr), IRT_NUM)) #define tref_isint(tr) (tref_istype((tr), IRT_INT)) #define tref_isbool(tr) (tref_typerange((tr), IRT_FALSE, IRT_TRUE)) #define tref_ispri(tr) (tref_typerange((tr), IRT_NIL, IRT_TRUE)) #define tref_istruecond(tr) (!tref_typerange((tr), IRT_NIL, IRT_FALSE)) #define tref_isinteger(tr) (tref_typerange((tr), IRT_I8, IRT_INT)) #define tref_isnumber(tr) (tref_typerange((tr), IRT_NUM, IRT_INT)) #define tref_isnumber_str(tr) (tref_isnumber((tr)) || tref_isstr((tr))) #define tref_isgcv(tr) (tref_typerange((tr), IRT_STR, IRT_UDATA)) #define tref_isk(tr) (irref_isk(tref_ref((tr)))) #define tref_isk2(tr1, tr2) (irref_isk(tref_ref((tr1) | (tr2)))) #define TREF_PRI(t) (TREF(REF_NIL-(t), (t))) #define TREF_NIL (TREF_PRI(IRT_NIL)) #define TREF_FALSE (TREF_PRI(IRT_FALSE)) #define TREF_TRUE (TREF_PRI(IRT_TRUE)) /* -- IR format ----------------------------------------------------------- */ /* IR instruction format (64 bit). ** ** 16 16 8 8 8 8 ** +-------+-------+---+---+---+---+ ** | op1 | op2 | t | o | r | s | ** +-------+-------+---+---+---+---+ ** | op12/i/gco32 | ot | prev | (alternative fields in union) ** +-------+-------+---+---+---+---+ ** | TValue/gco64 | (2nd IR slot for 64 bit constants) ** +---------------+-------+-------+ ** 32 16 16 ** ** prev is only valid prior to register allocation and then reused for r + s. */ typedef union IRIns { struct { LJ_ENDIAN_LOHI( IRRef1 op1; /* IR operand 1. */ , IRRef1 op2; /* IR operand 2. */ ) IROpT ot; /* IR opcode and type (overlaps t and o). */ IRRef1 prev; /* Previous ins in same chain (overlaps r and s). */ }; struct { IRRef2 op12; /* IR operand 1 and 2 (overlaps op1 and op2). */ LJ_ENDIAN_LOHI( IRType1 t; /* IR type. */ , IROp1 o; /* IR opcode. */ ) LJ_ENDIAN_LOHI( uint8_t r; /* Register allocation (overlaps prev). */ , uint8_t s; /* Spill slot allocation (overlaps prev). */ ) }; int32_t i; /* 32 bit signed integer literal (overlaps op12). */ GCRef gcr; /* GCobj constant (overlaps op12 or entire slot). */ MRef ptr; /* Pointer constant (overlaps op12 or entire slot). */ TValue tv; /* TValue constant (overlaps entire slot). */ } IRIns; #define ir_kgc(ir) check_exp((ir)->o == IR_KGC, gcref((ir)[LJ_GC64].gcr)) #define ir_kstr(ir) (gco2str(ir_kgc((ir)))) #define ir_ktab(ir) (gco2tab(ir_kgc((ir)))) #define ir_kfunc(ir) (gco2func(ir_kgc((ir)))) #define ir_kcdata(ir) (gco2cd(ir_kgc((ir)))) #define ir_knum(ir) check_exp((ir)->o == IR_KNUM, &(ir)[1].tv) #define ir_kint64(ir) check_exp((ir)->o == IR_KINT64, &(ir)[1].tv) #define ir_k64(ir) \ check_exp((ir)->o == IR_KNUM || (ir)->o == IR_KINT64 || \ (LJ_GC64 && \ ((ir)->o == IR_KGC || \ (ir)->o == IR_KPTR || (ir)->o == IR_KKPTR)), \ &(ir)[1].tv) #define ir_kptr(ir) \ check_exp((ir)->o == IR_KPTR || (ir)->o == IR_KKPTR, \ mref((ir)[LJ_GC64].ptr, void)) /* A store or any other op with a non-weak guard has a side-effect. */ static LJ_AINLINE int ir_sideeff(IRIns *ir) { return (((ir->t.irt | ~IRT_GUARD) & lj_ir_mode[ir->o]) >= IRM_S); } LJ_STATIC_ASSERT((int)IRT_GUARD == (int)IRM_W); #endif luajit-2.1.0~beta3+dfsg.orig/src/msvcbuild.bat0000644000175100017510000000755213101703334020576 0ustar ondrejondrej@rem Script to build LuaJIT with MSVC. @rem Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h @rem @rem Either open a "Visual Studio .NET Command Prompt" @rem (Note that the Express Edition does not contain an x64 compiler) @rem -or- @rem Open a "Windows SDK Command Shell" and set the compiler environment: @rem setenv /release /x86 @rem -or- @rem setenv /release /x64 @rem @rem Then cd to this directory and run this script. @if not defined INCLUDE goto :FAIL @setlocal @set LJCOMPILE=cl /nologo /c /O2 /W3 /D_CRT_SECURE_NO_DEPRECATE /D_CRT_STDIO_INLINE=__declspec(dllexport)__inline @set LJLINK=link /nologo @set LJMT=mt /nologo @set LJLIB=lib /nologo /nodefaultlib @set DASMDIR=..\dynasm @set DASM=%DASMDIR%\dynasm.lua @set DASC=vm_x86.dasc @set LJDLLNAME=lua51.dll @set LJLIBNAME=lua51.lib @set ALL_LIB=lib_base.c lib_math.c lib_bit.c lib_string.c lib_table.c lib_io.c lib_os.c lib_package.c lib_debug.c lib_jit.c lib_ffi.c %LJCOMPILE% host\minilua.c @if errorlevel 1 goto :BAD %LJLINK% /out:minilua.exe minilua.obj @if errorlevel 1 goto :BAD if exist minilua.exe.manifest^ %LJMT% -manifest minilua.exe.manifest -outputresource:minilua.exe @set DASMFLAGS=-D WIN -D JIT -D FFI -D P64 @set LJARCH=x64 @minilua @if errorlevel 8 goto :X64 @set DASMFLAGS=-D WIN -D JIT -D FFI @set LJARCH=x86 @set LJCOMPILE=%LJCOMPILE% /arch:SSE2 :X64 @if "%1" neq "gc64" goto :NOGC64 @shift @set DASC=vm_x64.dasc @set LJCOMPILE=%LJCOMPILE% /DLUAJIT_ENABLE_GC64 :NOGC64 minilua %DASM% -LN %DASMFLAGS% -o host\buildvm_arch.h %DASC% @if errorlevel 1 goto :BAD %LJCOMPILE% /I "." /I %DASMDIR% host\buildvm*.c @if errorlevel 1 goto :BAD %LJLINK% /out:buildvm.exe buildvm*.obj @if errorlevel 1 goto :BAD if exist buildvm.exe.manifest^ %LJMT% -manifest buildvm.exe.manifest -outputresource:buildvm.exe buildvm -m peobj -o lj_vm.obj @if errorlevel 1 goto :BAD buildvm -m bcdef -o lj_bcdef.h %ALL_LIB% @if errorlevel 1 goto :BAD buildvm -m ffdef -o lj_ffdef.h %ALL_LIB% @if errorlevel 1 goto :BAD buildvm -m libdef -o lj_libdef.h %ALL_LIB% @if errorlevel 1 goto :BAD buildvm -m recdef -o lj_recdef.h %ALL_LIB% @if errorlevel 1 goto :BAD buildvm -m vmdef -o jit\vmdef.lua %ALL_LIB% @if errorlevel 1 goto :BAD buildvm -m folddef -o lj_folddef.h lj_opt_fold.c @if errorlevel 1 goto :BAD @if "%1" neq "debug" goto :NODEBUG @shift @set LJCOMPILE=%LJCOMPILE% /Zi @set LJLINK=%LJLINK% /debug /opt:ref /opt:icf /incremental:no :NODEBUG @if "%1"=="amalg" goto :AMALGDLL @if "%1"=="static" goto :STATIC %LJCOMPILE% /MD /DLUA_BUILD_AS_DLL lj_*.c lib_*.c @if errorlevel 1 goto :BAD %LJLINK% /DLL /out:%LJDLLNAME% lj_*.obj lib_*.obj @if errorlevel 1 goto :BAD @goto :MTDLL :STATIC %LJCOMPILE% lj_*.c lib_*.c @if errorlevel 1 goto :BAD %LJLIB% /OUT:%LJLIBNAME% lj_*.obj lib_*.obj @if errorlevel 1 goto :BAD @goto :MTDLL :AMALGDLL %LJCOMPILE% /MD /DLUA_BUILD_AS_DLL ljamalg.c @if errorlevel 1 goto :BAD %LJLINK% /DLL /out:%LJDLLNAME% ljamalg.obj lj_vm.obj @if errorlevel 1 goto :BAD :MTDLL if exist %LJDLLNAME%.manifest^ %LJMT% -manifest %LJDLLNAME%.manifest -outputresource:%LJDLLNAME%;2 %LJCOMPILE% luajit.c @if errorlevel 1 goto :BAD %LJLINK% /out:luajit.exe luajit.obj %LJLIBNAME% @if errorlevel 1 goto :BAD if exist luajit.exe.manifest^ %LJMT% -manifest luajit.exe.manifest -outputresource:luajit.exe @del *.obj *.manifest minilua.exe buildvm.exe @del host\buildvm_arch.h @del lj_bcdef.h lj_ffdef.h lj_libdef.h lj_recdef.h lj_folddef.h @echo. @echo === Successfully built LuaJIT for Windows/%LJARCH% === @goto :END :BAD @echo. @echo ******************************************************* @echo *** Build FAILED -- Please check the error messages *** @echo ******************************************************* @goto :END :FAIL @echo You must open a "Visual Studio .NET Command Prompt" to run this script :END luajit-2.1.0~beta3+dfsg.orig/src/lj_profile.c0000644000175100017510000002174113101703334020403 0ustar ondrejondrej/* ** Low-overhead profiling. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #define lj_profile_c #define LUA_CORE #include "lj_obj.h" #if LJ_HASPROFILE #include "lj_buf.h" #include "lj_frame.h" #include "lj_debug.h" #include "lj_dispatch.h" #if LJ_HASJIT #include "lj_jit.h" #include "lj_trace.h" #endif #include "lj_profile.h" #include "luajit.h" #if LJ_PROFILE_SIGPROF #include #include #define profile_lock(ps) UNUSED(ps) #define profile_unlock(ps) UNUSED(ps) #elif LJ_PROFILE_PTHREAD #include #include #if LJ_TARGET_PS3 #include #endif #define profile_lock(ps) pthread_mutex_lock(&ps->lock) #define profile_unlock(ps) pthread_mutex_unlock(&ps->lock) #elif LJ_PROFILE_WTHREAD #define WIN32_LEAN_AND_MEAN #if LJ_TARGET_XBOX360 #include #include #else #include #endif typedef unsigned int (WINAPI *WMM_TPFUNC)(unsigned int); #define profile_lock(ps) EnterCriticalSection(&ps->lock) #define profile_unlock(ps) LeaveCriticalSection(&ps->lock) #endif /* Profiler state. */ typedef struct ProfileState { global_State *g; /* VM state that started the profiler. */ luaJIT_profile_callback cb; /* Profiler callback. */ void *data; /* Profiler callback data. */ SBuf sb; /* String buffer for stack dumps. */ int interval; /* Sample interval in milliseconds. */ int samples; /* Number of samples for next callback. */ int vmstate; /* VM state when profile timer triggered. */ #if LJ_PROFILE_SIGPROF struct sigaction oldsa; /* Previous SIGPROF state. */ #elif LJ_PROFILE_PTHREAD pthread_mutex_t lock; /* g->hookmask update lock. */ pthread_t thread; /* Timer thread. */ int abort; /* Abort timer thread. */ #elif LJ_PROFILE_WTHREAD #if LJ_TARGET_WINDOWS HINSTANCE wmm; /* WinMM library handle. */ WMM_TPFUNC wmm_tbp; /* WinMM timeBeginPeriod function. */ WMM_TPFUNC wmm_tep; /* WinMM timeEndPeriod function. */ #endif CRITICAL_SECTION lock; /* g->hookmask update lock. */ HANDLE thread; /* Timer thread. */ int abort; /* Abort timer thread. */ #endif } ProfileState; /* Sadly, we have to use a static profiler state. ** ** The SIGPROF variant needs a static pointer to the global state, anyway. ** And it would be hard to extend for multiple threads. You can still use ** multiple VMs in multiple threads, but only profile one at a time. */ static ProfileState profile_state; /* Default sample interval in milliseconds. */ #define LJ_PROFILE_INTERVAL_DEFAULT 10 /* -- Profiler/hook interaction ------------------------------------------- */ #if !LJ_PROFILE_SIGPROF void LJ_FASTCALL lj_profile_hook_enter(global_State *g) { ProfileState *ps = &profile_state; if (ps->g) { profile_lock(ps); hook_enter(g); profile_unlock(ps); } else { hook_enter(g); } } void LJ_FASTCALL lj_profile_hook_leave(global_State *g) { ProfileState *ps = &profile_state; if (ps->g) { profile_lock(ps); hook_leave(g); profile_unlock(ps); } else { hook_leave(g); } } #endif /* -- Profile callbacks --------------------------------------------------- */ /* Callback from profile hook (HOOK_PROFILE already cleared). */ void LJ_FASTCALL lj_profile_interpreter(lua_State *L) { ProfileState *ps = &profile_state; global_State *g = G(L); uint8_t mask; profile_lock(ps); mask = (g->hookmask & ~HOOK_PROFILE); if (!(mask & HOOK_VMEVENT)) { int samples = ps->samples; ps->samples = 0; g->hookmask = HOOK_VMEVENT; lj_dispatch_update(g); profile_unlock(ps); ps->cb(ps->data, L, samples, ps->vmstate); /* Invoke user callback. */ profile_lock(ps); mask |= (g->hookmask & HOOK_PROFILE); } g->hookmask = mask; lj_dispatch_update(g); profile_unlock(ps); } /* Trigger profile hook. Asynchronous call from OS-specific profile timer. */ static void profile_trigger(ProfileState *ps) { global_State *g = ps->g; uint8_t mask; profile_lock(ps); ps->samples++; /* Always increment number of samples. */ mask = g->hookmask; if (!(mask & (HOOK_PROFILE|HOOK_VMEVENT))) { /* Set profile hook. */ int st = g->vmstate; ps->vmstate = st >= 0 ? 'N' : st == ~LJ_VMST_INTERP ? 'I' : st == ~LJ_VMST_C ? 'C' : st == ~LJ_VMST_GC ? 'G' : 'J'; g->hookmask = (mask | HOOK_PROFILE); lj_dispatch_update(g); } profile_unlock(ps); } /* -- OS-specific profile timer handling ---------------------------------- */ #if LJ_PROFILE_SIGPROF /* SIGPROF handler. */ static void profile_signal(int sig) { UNUSED(sig); profile_trigger(&profile_state); } /* Start profiling timer. */ static void profile_timer_start(ProfileState *ps) { int interval = ps->interval; struct itimerval tm; struct sigaction sa; tm.it_value.tv_sec = tm.it_interval.tv_sec = interval / 1000; tm.it_value.tv_usec = tm.it_interval.tv_usec = (interval % 1000) * 1000; setitimer(ITIMER_PROF, &tm, NULL); sa.sa_flags = SA_RESTART; sa.sa_handler = profile_signal; sigemptyset(&sa.sa_mask); sigaction(SIGPROF, &sa, &ps->oldsa); } /* Stop profiling timer. */ static void profile_timer_stop(ProfileState *ps) { struct itimerval tm; tm.it_value.tv_sec = tm.it_interval.tv_sec = 0; tm.it_value.tv_usec = tm.it_interval.tv_usec = 0; setitimer(ITIMER_PROF, &tm, NULL); sigaction(SIGPROF, &ps->oldsa, NULL); } #elif LJ_PROFILE_PTHREAD /* POSIX timer thread. */ static void *profile_thread(ProfileState *ps) { int interval = ps->interval; #if !LJ_TARGET_PS3 struct timespec ts; ts.tv_sec = interval / 1000; ts.tv_nsec = (interval % 1000) * 1000000; #endif while (1) { #if LJ_TARGET_PS3 sys_timer_usleep(interval * 1000); #else nanosleep(&ts, NULL); #endif if (ps->abort) break; profile_trigger(ps); } return NULL; } /* Start profiling timer thread. */ static void profile_timer_start(ProfileState *ps) { pthread_mutex_init(&ps->lock, 0); ps->abort = 0; pthread_create(&ps->thread, NULL, (void *(*)(void *))profile_thread, ps); } /* Stop profiling timer thread. */ static void profile_timer_stop(ProfileState *ps) { ps->abort = 1; pthread_join(ps->thread, NULL); pthread_mutex_destroy(&ps->lock); } #elif LJ_PROFILE_WTHREAD /* Windows timer thread. */ static DWORD WINAPI profile_thread(void *psx) { ProfileState *ps = (ProfileState *)psx; int interval = ps->interval; #if LJ_TARGET_WINDOWS ps->wmm_tbp(interval); #endif while (1) { Sleep(interval); if (ps->abort) break; profile_trigger(ps); } #if LJ_TARGET_WINDOWS ps->wmm_tep(interval); #endif return 0; } /* Start profiling timer thread. */ static void profile_timer_start(ProfileState *ps) { #if LJ_TARGET_WINDOWS if (!ps->wmm) { /* Load WinMM library on-demand. */ ps->wmm = LoadLibraryExA("winmm.dll", NULL, 0); if (ps->wmm) { ps->wmm_tbp = (WMM_TPFUNC)GetProcAddress(ps->wmm, "timeBeginPeriod"); ps->wmm_tep = (WMM_TPFUNC)GetProcAddress(ps->wmm, "timeEndPeriod"); if (!ps->wmm_tbp || !ps->wmm_tep) { ps->wmm = NULL; return; } } } #endif InitializeCriticalSection(&ps->lock); ps->abort = 0; ps->thread = CreateThread(NULL, 0, profile_thread, ps, 0, NULL); } /* Stop profiling timer thread. */ static void profile_timer_stop(ProfileState *ps) { ps->abort = 1; WaitForSingleObject(ps->thread, INFINITE); DeleteCriticalSection(&ps->lock); } #endif /* -- Public profiling API ------------------------------------------------ */ /* Start profiling. */ LUA_API void luaJIT_profile_start(lua_State *L, const char *mode, luaJIT_profile_callback cb, void *data) { ProfileState *ps = &profile_state; int interval = LJ_PROFILE_INTERVAL_DEFAULT; while (*mode) { int m = *mode++; switch (m) { case 'i': interval = 0; while (*mode >= '0' && *mode <= '9') interval = interval * 10 + (*mode++ - '0'); if (interval <= 0) interval = 1; break; #if LJ_HASJIT case 'l': case 'f': L2J(L)->prof_mode = m; lj_trace_flushall(L); break; #endif default: /* Ignore unknown mode chars. */ break; } } if (ps->g) { luaJIT_profile_stop(L); if (ps->g) return; /* Profiler in use by another VM. */ } ps->g = G(L); ps->interval = interval; ps->cb = cb; ps->data = data; ps->samples = 0; lj_buf_init(L, &ps->sb); profile_timer_start(ps); } /* Stop profiling. */ LUA_API void luaJIT_profile_stop(lua_State *L) { ProfileState *ps = &profile_state; global_State *g = ps->g; if (G(L) == g) { /* Only stop profiler if started by this VM. */ profile_timer_stop(ps); g->hookmask &= ~HOOK_PROFILE; lj_dispatch_update(g); #if LJ_HASJIT G2J(g)->prof_mode = 0; lj_trace_flushall(L); #endif lj_buf_free(g, &ps->sb); setmref(ps->sb.b, NULL); setmref(ps->sb.e, NULL); ps->g = NULL; } } /* Return a compact stack dump. */ LUA_API const char *luaJIT_profile_dumpstack(lua_State *L, const char *fmt, int depth, size_t *len) { ProfileState *ps = &profile_state; SBuf *sb = &ps->sb; setsbufL(sb, L); lj_buf_reset(sb); lj_debug_dumpstack(L, sb, fmt, depth); *len = (size_t)sbuflen(sb); return sbufB(sb); } #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_ffrecord.h0000644000175100017510000000117513101703334020541 0ustar ondrejondrej/* ** Fast function call recorder. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_FFRECORD_H #define _LJ_FFRECORD_H #include "lj_obj.h" #include "lj_jit.h" #if LJ_HASJIT /* Data used by handlers to record a fast function. */ typedef struct RecordFFData { TValue *argv; /* Runtime argument values. */ ptrdiff_t nres; /* Number of returned results (defaults to 1). */ uint32_t data; /* Per-ffid auxiliary data (opcode, literal etc.). */ } RecordFFData; LJ_FUNC int32_t lj_ffrecord_select_mode(jit_State *J, TRef tr, TValue *tv); LJ_FUNC void lj_ffrecord_func(jit_State *J); #endif #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_state.c0000644000175100017510000002212313101703334020056 0ustar ondrejondrej/* ** State and stack handling. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h ** ** Portions taken verbatim or adapted from the Lua interpreter. ** Copyright (C) 1994-2008 Lua.org, PUC-Rio. See Copyright Notice in lua.h */ #define lj_state_c #define LUA_CORE #include "lj_obj.h" #include "lj_gc.h" #include "lj_err.h" #include "lj_buf.h" #include "lj_str.h" #include "lj_tab.h" #include "lj_func.h" #include "lj_meta.h" #include "lj_state.h" #include "lj_frame.h" #if LJ_HASFFI #include "lj_ctype.h" #endif #include "lj_trace.h" #include "lj_dispatch.h" #include "lj_vm.h" #include "lj_lex.h" #include "lj_alloc.h" #include "luajit.h" /* -- Stack handling ------------------------------------------------------ */ /* Stack sizes. */ #define LJ_STACK_MIN LUA_MINSTACK /* Min. stack size. */ #define LJ_STACK_MAX LUAI_MAXSTACK /* Max. stack size. */ #define LJ_STACK_START (2*LJ_STACK_MIN) /* Starting stack size. */ #define LJ_STACK_MAXEX (LJ_STACK_MAX + 1 + LJ_STACK_EXTRA) /* Explanation of LJ_STACK_EXTRA: ** ** Calls to metamethods store their arguments beyond the current top ** without checking for the stack limit. This avoids stack resizes which ** would invalidate passed TValue pointers. The stack check is performed ** later by the function header. This can safely resize the stack or raise ** an error. Thus we need some extra slots beyond the current stack limit. ** ** Most metamethods need 4 slots above top (cont, mobj, arg1, arg2) plus ** one extra slot if mobj is not a function. Only lj_meta_tset needs 5 ** slots above top, but then mobj is always a function. So we can get by ** with 5 extra slots. ** LJ_FR2: We need 2 more slots for the frame PC and the continuation PC. */ /* Resize stack slots and adjust pointers in state. */ static void resizestack(lua_State *L, MSize n) { TValue *st, *oldst = tvref(L->stack); ptrdiff_t delta; MSize oldsize = L->stacksize; MSize realsize = n + 1 + LJ_STACK_EXTRA; GCobj *up; lua_assert((MSize)(tvref(L->maxstack)-oldst)==L->stacksize-LJ_STACK_EXTRA-1); st = (TValue *)lj_mem_realloc(L, tvref(L->stack), (MSize)(oldsize*sizeof(TValue)), (MSize)(realsize*sizeof(TValue))); setmref(L->stack, st); delta = (char *)st - (char *)oldst; setmref(L->maxstack, st + n); while (oldsize < realsize) /* Clear new slots. */ setnilV(st + oldsize++); L->stacksize = realsize; if ((size_t)(mref(G(L)->jit_base, char) - (char *)oldst) < oldsize) setmref(G(L)->jit_base, mref(G(L)->jit_base, char) + delta); L->base = (TValue *)((char *)L->base + delta); L->top = (TValue *)((char *)L->top + delta); for (up = gcref(L->openupval); up != NULL; up = gcnext(up)) setmref(gco2uv(up)->v, (TValue *)((char *)uvval(gco2uv(up)) + delta)); } /* Relimit stack after error, in case the limit was overdrawn. */ void lj_state_relimitstack(lua_State *L) { if (L->stacksize > LJ_STACK_MAXEX && L->top-tvref(L->stack) < LJ_STACK_MAX-1) resizestack(L, LJ_STACK_MAX); } /* Try to shrink the stack (called from GC). */ void lj_state_shrinkstack(lua_State *L, MSize used) { if (L->stacksize > LJ_STACK_MAXEX) return; /* Avoid stack shrinking while handling stack overflow. */ if (4*used < L->stacksize && 2*(LJ_STACK_START+LJ_STACK_EXTRA) < L->stacksize && /* Don't shrink stack of live trace. */ (tvref(G(L)->jit_base) == NULL || obj2gco(L) != gcref(G(L)->cur_L))) resizestack(L, L->stacksize >> 1); } /* Try to grow stack. */ void LJ_FASTCALL lj_state_growstack(lua_State *L, MSize need) { MSize n; if (L->stacksize > LJ_STACK_MAXEX) /* Overflow while handling overflow? */ lj_err_throw(L, LUA_ERRERR); n = L->stacksize + need; if (n > LJ_STACK_MAX) { n += 2*LUA_MINSTACK; } else if (n < 2*L->stacksize) { n = 2*L->stacksize; if (n >= LJ_STACK_MAX) n = LJ_STACK_MAX; } resizestack(L, n); if (L->stacksize > LJ_STACK_MAXEX) lj_err_msg(L, LJ_ERR_STKOV); } void LJ_FASTCALL lj_state_growstack1(lua_State *L) { lj_state_growstack(L, 1); } /* Allocate basic stack for new state. */ static void stack_init(lua_State *L1, lua_State *L) { TValue *stend, *st = lj_mem_newvec(L, LJ_STACK_START+LJ_STACK_EXTRA, TValue); setmref(L1->stack, st); L1->stacksize = LJ_STACK_START + LJ_STACK_EXTRA; stend = st + L1->stacksize; setmref(L1->maxstack, stend - LJ_STACK_EXTRA - 1); setthreadV(L1, st++, L1); /* Needed for curr_funcisL() on empty stack. */ if (LJ_FR2) setnilV(st++); L1->base = L1->top = st; while (st < stend) /* Clear new slots. */ setnilV(st++); } /* -- State handling ------------------------------------------------------ */ /* Open parts that may cause memory-allocation errors. */ static TValue *cpluaopen(lua_State *L, lua_CFunction dummy, void *ud) { global_State *g = G(L); UNUSED(dummy); UNUSED(ud); stack_init(L, L); /* NOBARRIER: State initialization, all objects are white. */ setgcref(L->env, obj2gco(lj_tab_new(L, 0, LJ_MIN_GLOBAL))); settabV(L, registry(L), lj_tab_new(L, 0, LJ_MIN_REGISTRY)); lj_str_resize(L, LJ_MIN_STRTAB-1); lj_meta_init(L); lj_lex_init(L); fixstring(lj_err_str(L, LJ_ERR_ERRMEM)); /* Preallocate memory error msg. */ g->gc.threshold = 4*g->gc.total; lj_trace_initstate(g); return NULL; } static void close_state(lua_State *L) { global_State *g = G(L); lj_func_closeuv(L, tvref(L->stack)); lj_gc_freeall(g); lua_assert(gcref(g->gc.root) == obj2gco(L)); lua_assert(g->strnum == 0); lj_trace_freestate(g); #if LJ_HASFFI lj_ctype_freestate(g); #endif lj_mem_freevec(g, g->strhash, g->strmask+1, GCRef); lj_buf_free(g, &g->tmpbuf); lj_mem_freevec(g, tvref(L->stack), L->stacksize, TValue); lua_assert(g->gc.total == sizeof(GG_State)); #ifndef LUAJIT_USE_SYSMALLOC if (g->allocf == lj_alloc_f) lj_alloc_destroy(g->allocd); else #endif g->allocf(g->allocd, G2GG(g), sizeof(GG_State), 0); } #if LJ_64 && !LJ_GC64 && !(defined(LUAJIT_USE_VALGRIND) && defined(LUAJIT_USE_SYSMALLOC)) lua_State *lj_state_newstate(lua_Alloc f, void *ud) #else LUA_API lua_State *lua_newstate(lua_Alloc f, void *ud) #endif { GG_State *GG = (GG_State *)f(ud, NULL, 0, sizeof(GG_State)); lua_State *L = &GG->L; global_State *g = &GG->g; if (GG == NULL || !checkptrGC(GG)) return NULL; memset(GG, 0, sizeof(GG_State)); L->gct = ~LJ_TTHREAD; L->marked = LJ_GC_WHITE0 | LJ_GC_FIXED | LJ_GC_SFIXED; /* Prevent free. */ L->dummy_ffid = FF_C; setmref(L->glref, g); g->gc.currentwhite = LJ_GC_WHITE0 | LJ_GC_FIXED; g->strempty.marked = LJ_GC_WHITE0; g->strempty.gct = ~LJ_TSTR; g->allocf = f; g->allocd = ud; setgcref(g->mainthref, obj2gco(L)); setgcref(g->uvhead.prev, obj2gco(&g->uvhead)); setgcref(g->uvhead.next, obj2gco(&g->uvhead)); g->strmask = ~(MSize)0; setnilV(registry(L)); setnilV(&g->nilnode.val); setnilV(&g->nilnode.key); #if !LJ_GC64 setmref(g->nilnode.freetop, &g->nilnode); #endif lj_buf_init(NULL, &g->tmpbuf); g->gc.state = GCSpause; setgcref(g->gc.root, obj2gco(L)); setmref(g->gc.sweep, &g->gc.root); g->gc.total = sizeof(GG_State); g->gc.pause = LUAI_GCPAUSE; g->gc.stepmul = LUAI_GCMUL; lj_dispatch_init((GG_State *)L); L->status = LUA_ERRERR+1; /* Avoid touching the stack upon memory error. */ if (lj_vm_cpcall(L, NULL, NULL, cpluaopen) != 0) { /* Memory allocation error: free partial state. */ close_state(L); return NULL; } L->status = LUA_OK; return L; } static TValue *cpfinalize(lua_State *L, lua_CFunction dummy, void *ud) { UNUSED(dummy); UNUSED(ud); lj_gc_finalize_cdata(L); lj_gc_finalize_udata(L); /* Frame pop omitted. */ return NULL; } LUA_API void lua_close(lua_State *L) { global_State *g = G(L); int i; L = mainthread(g); /* Only the main thread can be closed. */ #if LJ_HASPROFILE luaJIT_profile_stop(L); #endif setgcrefnull(g->cur_L); lj_func_closeuv(L, tvref(L->stack)); lj_gc_separateudata(g, 1); /* Separate udata which have GC metamethods. */ #if LJ_HASJIT G2J(g)->flags &= ~JIT_F_ON; G2J(g)->state = LJ_TRACE_IDLE; lj_dispatch_update(g); #endif for (i = 0;;) { hook_enter(g); L->status = LUA_OK; L->base = L->top = tvref(L->stack) + 1 + LJ_FR2; L->cframe = NULL; if (lj_vm_cpcall(L, NULL, NULL, cpfinalize) == LUA_OK) { if (++i >= 10) break; lj_gc_separateudata(g, 1); /* Separate udata again. */ if (gcref(g->gc.mmudata) == NULL) /* Until nothing is left to do. */ break; } } close_state(L); } lua_State *lj_state_new(lua_State *L) { lua_State *L1 = lj_mem_newobj(L, lua_State); L1->gct = ~LJ_TTHREAD; L1->dummy_ffid = FF_C; L1->status = LUA_OK; L1->stacksize = 0; setmref(L1->stack, NULL); L1->cframe = NULL; /* NOBARRIER: The lua_State is new (marked white). */ setgcrefnull(L1->openupval); setmrefr(L1->glref, L->glref); setgcrefr(L1->env, L->env); stack_init(L1, L); /* init stack */ lua_assert(iswhite(obj2gco(L1))); return L1; } void LJ_FASTCALL lj_state_free(global_State *g, lua_State *L) { lua_assert(L != mainthread(g)); if (obj2gco(L) == gcref(g->cur_L)) setgcrefnull(g->cur_L); lj_func_closeuv(L, tvref(L->stack)); lua_assert(gcref(L->openupval) == NULL); lj_mem_freevec(g, tvref(L->stack), L->stacksize, TValue); lj_mem_freet(g, L); } luajit-2.1.0~beta3+dfsg.orig/src/lj_opt_mem.c0000644000175100017510000007505113101703334020406 0ustar ondrejondrej/* ** Memory access optimizations. ** AA: Alias Analysis using high-level semantic disambiguation. ** FWD: Load Forwarding (L2L) + Store Forwarding (S2L). ** DSE: Dead-Store Elimination. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #define lj_opt_mem_c #define LUA_CORE #include "lj_obj.h" #if LJ_HASJIT #include "lj_tab.h" #include "lj_ir.h" #include "lj_jit.h" #include "lj_iropt.h" #include "lj_ircall.h" /* Some local macros to save typing. Undef'd at the end. */ #define IR(ref) (&J->cur.ir[(ref)]) #define fins (&J->fold.ins) #define fleft (J->fold.left) #define fright (J->fold.right) /* ** Caveat #1: return value is not always a TRef -- only use with tref_ref(). ** Caveat #2: FWD relies on active CSE for xREF operands -- see lj_opt_fold(). */ /* Return values from alias analysis. */ typedef enum { ALIAS_NO, /* The two refs CANNOT alias (exact). */ ALIAS_MAY, /* The two refs MAY alias (inexact). */ ALIAS_MUST /* The two refs MUST alias (exact). */ } AliasRet; /* -- ALOAD/HLOAD forwarding and ASTORE/HSTORE elimination ---------------- */ /* Simplified escape analysis: check for intervening stores. */ static AliasRet aa_escape(jit_State *J, IRIns *ir, IRIns *stop) { IRRef ref = (IRRef)(ir - J->cur.ir); /* The ref that might be stored. */ for (ir++; ir < stop; ir++) if (ir->op2 == ref && (ir->o == IR_ASTORE || ir->o == IR_HSTORE || ir->o == IR_USTORE || ir->o == IR_FSTORE)) return ALIAS_MAY; /* Reference was stored and might alias. */ return ALIAS_NO; /* Reference was not stored. */ } /* Alias analysis for two different table references. */ static AliasRet aa_table(jit_State *J, IRRef ta, IRRef tb) { IRIns *taba = IR(ta), *tabb = IR(tb); int newa, newb; lua_assert(ta != tb); lua_assert(irt_istab(taba->t) && irt_istab(tabb->t)); /* Disambiguate new allocations. */ newa = (taba->o == IR_TNEW || taba->o == IR_TDUP); newb = (tabb->o == IR_TNEW || tabb->o == IR_TDUP); if (newa && newb) return ALIAS_NO; /* Two different allocations never alias. */ if (newb) { /* At least one allocation? */ IRIns *tmp = taba; taba = tabb; tabb = tmp; } else if (!newa) { return ALIAS_MAY; /* Anything else: we just don't know. */ } return aa_escape(J, taba, tabb); } /* Alias analysis for array and hash access using key-based disambiguation. */ static AliasRet aa_ahref(jit_State *J, IRIns *refa, IRIns *refb) { IRRef ka = refa->op2; IRRef kb = refb->op2; IRIns *keya, *keyb; IRRef ta, tb; if (refa == refb) return ALIAS_MUST; /* Shortcut for same refs. */ keya = IR(ka); if (keya->o == IR_KSLOT) { ka = keya->op1; keya = IR(ka); } keyb = IR(kb); if (keyb->o == IR_KSLOT) { kb = keyb->op1; keyb = IR(kb); } ta = (refa->o==IR_HREFK || refa->o==IR_AREF) ? IR(refa->op1)->op1 : refa->op1; tb = (refb->o==IR_HREFK || refb->o==IR_AREF) ? IR(refb->op1)->op1 : refb->op1; if (ka == kb) { /* Same key. Check for same table with different ref (NEWREF vs. HREF). */ if (ta == tb) return ALIAS_MUST; /* Same key, same table. */ else return aa_table(J, ta, tb); /* Same key, possibly different table. */ } if (irref_isk(ka) && irref_isk(kb)) return ALIAS_NO; /* Different constant keys. */ if (refa->o == IR_AREF) { /* Disambiguate array references based on index arithmetic. */ int32_t ofsa = 0, ofsb = 0; IRRef basea = ka, baseb = kb; lua_assert(refb->o == IR_AREF); /* Gather base and offset from t[base] or t[base+-ofs]. */ if (keya->o == IR_ADD && irref_isk(keya->op2)) { basea = keya->op1; ofsa = IR(keya->op2)->i; if (basea == kb && ofsa != 0) return ALIAS_NO; /* t[base+-ofs] vs. t[base]. */ } if (keyb->o == IR_ADD && irref_isk(keyb->op2)) { baseb = keyb->op1; ofsb = IR(keyb->op2)->i; if (ka == baseb && ofsb != 0) return ALIAS_NO; /* t[base] vs. t[base+-ofs]. */ } if (basea == baseb && ofsa != ofsb) return ALIAS_NO; /* t[base+-o1] vs. t[base+-o2] and o1 != o2. */ } else { /* Disambiguate hash references based on the type of their keys. */ lua_assert((refa->o==IR_HREF || refa->o==IR_HREFK || refa->o==IR_NEWREF) && (refb->o==IR_HREF || refb->o==IR_HREFK || refb->o==IR_NEWREF)); if (!irt_sametype(keya->t, keyb->t)) return ALIAS_NO; /* Different key types. */ } if (ta == tb) return ALIAS_MAY; /* Same table, cannot disambiguate keys. */ else return aa_table(J, ta, tb); /* Try to disambiguate tables. */ } /* Array and hash load forwarding. */ static TRef fwd_ahload(jit_State *J, IRRef xref) { IRIns *xr = IR(xref); IRRef lim = xref; /* Search limit. */ IRRef ref; /* Search for conflicting stores. */ ref = J->chain[fins->o+IRDELTA_L2S]; while (ref > xref) { IRIns *store = IR(ref); switch (aa_ahref(J, xr, IR(store->op1))) { case ALIAS_NO: break; /* Continue searching. */ case ALIAS_MAY: lim = ref; goto cselim; /* Limit search for load. */ case ALIAS_MUST: return store->op2; /* Store forwarding. */ } ref = store->prev; } /* No conflicting store (yet): const-fold loads from allocations. */ { IRIns *ir = (xr->o == IR_HREFK || xr->o == IR_AREF) ? IR(xr->op1) : xr; IRRef tab = ir->op1; ir = IR(tab); if (ir->o == IR_TNEW || (ir->o == IR_TDUP && irref_isk(xr->op2))) { /* A NEWREF with a number key may end up pointing to the array part. ** But it's referenced from HSTORE and not found in the ASTORE chain. ** For now simply consider this a conflict without forwarding anything. */ if (xr->o == IR_AREF) { IRRef ref2 = J->chain[IR_NEWREF]; while (ref2 > tab) { IRIns *newref = IR(ref2); if (irt_isnum(IR(newref->op2)->t)) goto cselim; ref2 = newref->prev; } } /* NEWREF inhibits CSE for HREF, and dependent FLOADs from HREFK/AREF. ** But the above search for conflicting stores was limited by xref. ** So continue searching, limited by the TNEW/TDUP. Store forwarding ** is ok, too. A conflict does NOT limit the search for a matching load. */ while (ref > tab) { IRIns *store = IR(ref); switch (aa_ahref(J, xr, IR(store->op1))) { case ALIAS_NO: break; /* Continue searching. */ case ALIAS_MAY: goto cselim; /* Conflicting store. */ case ALIAS_MUST: return store->op2; /* Store forwarding. */ } ref = store->prev; } lua_assert(ir->o != IR_TNEW || irt_isnil(fins->t)); if (irt_ispri(fins->t)) { return TREF_PRI(irt_type(fins->t)); } else if (irt_isnum(fins->t) || (LJ_DUALNUM && irt_isint(fins->t)) || irt_isstr(fins->t)) { TValue keyv; cTValue *tv; IRIns *key = IR(xr->op2); if (key->o == IR_KSLOT) key = IR(key->op1); lj_ir_kvalue(J->L, &keyv, key); tv = lj_tab_get(J->L, ir_ktab(IR(ir->op1)), &keyv); lua_assert(itype2irt(tv) == irt_type(fins->t)); if (irt_isnum(fins->t)) return lj_ir_knum_u64(J, tv->u64); else if (LJ_DUALNUM && irt_isint(fins->t)) return lj_ir_kint(J, intV(tv)); else return lj_ir_kstr(J, strV(tv)); } /* Othwerwise: don't intern as a constant. */ } } cselim: /* Try to find a matching load. Below the conflicting store, if any. */ ref = J->chain[fins->o]; while (ref > lim) { IRIns *load = IR(ref); if (load->op1 == xref) return ref; /* Load forwarding. */ ref = load->prev; } return 0; /* Conflict or no match. */ } /* Reassociate ALOAD across PHIs to handle t[i-1] forwarding case. */ static TRef fwd_aload_reassoc(jit_State *J) { IRIns *irx = IR(fins->op1); IRIns *key = IR(irx->op2); if (key->o == IR_ADD && irref_isk(key->op2)) { IRIns *add2 = IR(key->op1); if (add2->o == IR_ADD && irref_isk(add2->op2) && IR(key->op2)->i == -IR(add2->op2)->i) { IRRef ref = J->chain[IR_AREF]; IRRef lim = add2->op1; if (irx->op1 > lim) lim = irx->op1; while (ref > lim) { IRIns *ir = IR(ref); if (ir->op1 == irx->op1 && ir->op2 == add2->op1) return fwd_ahload(J, ref); ref = ir->prev; } } } return 0; } /* ALOAD forwarding. */ TRef LJ_FASTCALL lj_opt_fwd_aload(jit_State *J) { IRRef ref; if ((ref = fwd_ahload(J, fins->op1)) || (ref = fwd_aload_reassoc(J))) return ref; return EMITFOLD; } /* HLOAD forwarding. */ TRef LJ_FASTCALL lj_opt_fwd_hload(jit_State *J) { IRRef ref = fwd_ahload(J, fins->op1); if (ref) return ref; return EMITFOLD; } /* HREFK forwarding. */ TRef LJ_FASTCALL lj_opt_fwd_hrefk(jit_State *J) { IRRef tab = fleft->op1; IRRef ref = J->chain[IR_NEWREF]; while (ref > tab) { IRIns *newref = IR(ref); if (tab == newref->op1) { if (fright->op1 == newref->op2) return ref; /* Forward from NEWREF. */ else goto docse; } else if (aa_table(J, tab, newref->op1) != ALIAS_NO) { goto docse; } ref = newref->prev; } /* No conflicting NEWREF: key location unchanged for HREFK of TDUP. */ if (IR(tab)->o == IR_TDUP) fins->t.irt &= ~IRT_GUARD; /* Drop HREFK guard. */ docse: return CSEFOLD; } /* Check whether HREF of TNEW/TDUP can be folded to niltv. */ int LJ_FASTCALL lj_opt_fwd_href_nokey(jit_State *J) { IRRef lim = fins->op1; /* Search limit. */ IRRef ref; /* The key for an ASTORE may end up in the hash part after a NEWREF. */ if (irt_isnum(fright->t) && J->chain[IR_NEWREF] > lim) { ref = J->chain[IR_ASTORE]; while (ref > lim) { if (ref < J->chain[IR_NEWREF]) return 0; /* Conflict. */ ref = IR(ref)->prev; } } /* Search for conflicting stores. */ ref = J->chain[IR_HSTORE]; while (ref > lim) { IRIns *store = IR(ref); if (aa_ahref(J, fins, IR(store->op1)) != ALIAS_NO) return 0; /* Conflict. */ ref = store->prev; } return 1; /* No conflict. Can fold to niltv. */ } /* Check whether there's no aliasing table.clear. */ static int fwd_aa_tab_clear(jit_State *J, IRRef lim, IRRef ta) { IRRef ref = J->chain[IR_CALLS]; while (ref > lim) { IRIns *calls = IR(ref); if (calls->op2 == IRCALL_lj_tab_clear && (ta == calls->op1 || aa_table(J, ta, calls->op1) != ALIAS_NO)) return 0; /* Conflict. */ ref = calls->prev; } return 1; /* No conflict. Can safely FOLD/CSE. */ } /* Check whether there's no aliasing NEWREF/table.clear for the left operand. */ int LJ_FASTCALL lj_opt_fwd_tptr(jit_State *J, IRRef lim) { IRRef ta = fins->op1; IRRef ref = J->chain[IR_NEWREF]; while (ref > lim) { IRIns *newref = IR(ref); if (ta == newref->op1 || aa_table(J, ta, newref->op1) != ALIAS_NO) return 0; /* Conflict. */ ref = newref->prev; } return fwd_aa_tab_clear(J, lim, ta); } /* ASTORE/HSTORE elimination. */ TRef LJ_FASTCALL lj_opt_dse_ahstore(jit_State *J) { IRRef xref = fins->op1; /* xREF reference. */ IRRef val = fins->op2; /* Stored value reference. */ IRIns *xr = IR(xref); IRRef1 *refp = &J->chain[fins->o]; IRRef ref = *refp; while (ref > xref) { /* Search for redundant or conflicting stores. */ IRIns *store = IR(ref); switch (aa_ahref(J, xr, IR(store->op1))) { case ALIAS_NO: break; /* Continue searching. */ case ALIAS_MAY: /* Store to MAYBE the same location. */ if (store->op2 != val) /* Conflict if the value is different. */ goto doemit; break; /* Otherwise continue searching. */ case ALIAS_MUST: /* Store to the same location. */ if (store->op2 == val) /* Same value: drop the new store. */ return DROPFOLD; /* Different value: try to eliminate the redundant store. */ if (ref > J->chain[IR_LOOP]) { /* Quick check to avoid crossing LOOP. */ IRIns *ir; /* Check for any intervening guards (includes conflicting loads). */ for (ir = IR(J->cur.nins-1); ir > store; ir--) if (irt_isguard(ir->t) || ir->o == IR_CALLL) goto doemit; /* No elimination possible. */ /* Remove redundant store from chain and replace with NOP. */ *refp = store->prev; store->o = IR_NOP; store->t.irt = IRT_NIL; store->op1 = store->op2 = 0; store->prev = 0; /* Now emit the new store instead. */ } goto doemit; } ref = *(refp = &store->prev); } doemit: return EMITFOLD; /* Otherwise we have a conflict or simply no match. */ } /* -- ULOAD forwarding ---------------------------------------------------- */ /* The current alias analysis for upvalues is very simplistic. It only ** disambiguates between the unique upvalues of the same function. ** This is good enough for now, since most upvalues are read-only. ** ** A more precise analysis would be feasible with the help of the parser: ** generate a unique key for every upvalue, even across all prototypes. ** Lacking a realistic use-case, it's unclear whether this is beneficial. */ static AliasRet aa_uref(IRIns *refa, IRIns *refb) { if (refa->o != refb->o) return ALIAS_NO; /* Different UREFx type. */ if (refa->op1 == refb->op1) { /* Same function. */ if (refa->op2 == refb->op2) return ALIAS_MUST; /* Same function, same upvalue idx. */ else return ALIAS_NO; /* Same function, different upvalue idx. */ } else { /* Different functions, check disambiguation hash values. */ if (((refa->op2 ^ refb->op2) & 0xff)) return ALIAS_NO; /* Upvalues with different hash values cannot alias. */ else return ALIAS_MAY; /* No conclusion can be drawn for same hash value. */ } } /* ULOAD forwarding. */ TRef LJ_FASTCALL lj_opt_fwd_uload(jit_State *J) { IRRef uref = fins->op1; IRRef lim = REF_BASE; /* Search limit. */ IRIns *xr = IR(uref); IRRef ref; /* Search for conflicting stores. */ ref = J->chain[IR_USTORE]; while (ref > lim) { IRIns *store = IR(ref); switch (aa_uref(xr, IR(store->op1))) { case ALIAS_NO: break; /* Continue searching. */ case ALIAS_MAY: lim = ref; goto cselim; /* Limit search for load. */ case ALIAS_MUST: return store->op2; /* Store forwarding. */ } ref = store->prev; } cselim: /* Try to find a matching load. Below the conflicting store, if any. */ ref = J->chain[IR_ULOAD]; while (ref > lim) { IRIns *ir = IR(ref); if (ir->op1 == uref || (IR(ir->op1)->op12 == IR(uref)->op12 && IR(ir->op1)->o == IR(uref)->o)) return ref; /* Match for identical or equal UREFx (non-CSEable UREFO). */ ref = ir->prev; } return lj_ir_emit(J); } /* USTORE elimination. */ TRef LJ_FASTCALL lj_opt_dse_ustore(jit_State *J) { IRRef xref = fins->op1; /* xREF reference. */ IRRef val = fins->op2; /* Stored value reference. */ IRIns *xr = IR(xref); IRRef1 *refp = &J->chain[IR_USTORE]; IRRef ref = *refp; while (ref > xref) { /* Search for redundant or conflicting stores. */ IRIns *store = IR(ref); switch (aa_uref(xr, IR(store->op1))) { case ALIAS_NO: break; /* Continue searching. */ case ALIAS_MAY: /* Store to MAYBE the same location. */ if (store->op2 != val) /* Conflict if the value is different. */ goto doemit; break; /* Otherwise continue searching. */ case ALIAS_MUST: /* Store to the same location. */ if (store->op2 == val) /* Same value: drop the new store. */ return DROPFOLD; /* Different value: try to eliminate the redundant store. */ if (ref > J->chain[IR_LOOP]) { /* Quick check to avoid crossing LOOP. */ IRIns *ir; /* Check for any intervening guards (includes conflicting loads). */ for (ir = IR(J->cur.nins-1); ir > store; ir--) if (irt_isguard(ir->t)) goto doemit; /* No elimination possible. */ /* Remove redundant store from chain and replace with NOP. */ *refp = store->prev; store->o = IR_NOP; store->t.irt = IRT_NIL; store->op1 = store->op2 = 0; store->prev = 0; if (ref+1 < J->cur.nins && store[1].o == IR_OBAR && store[1].op1 == xref) { IRRef1 *bp = &J->chain[IR_OBAR]; IRIns *obar; for (obar = IR(*bp); *bp > ref+1; obar = IR(*bp)) bp = &obar->prev; /* Remove OBAR, too. */ *bp = obar->prev; obar->o = IR_NOP; obar->t.irt = IRT_NIL; obar->op1 = obar->op2 = 0; obar->prev = 0; } /* Now emit the new store instead. */ } goto doemit; } ref = *(refp = &store->prev); } doemit: return EMITFOLD; /* Otherwise we have a conflict or simply no match. */ } /* -- FLOAD forwarding and FSTORE elimination ----------------------------- */ /* Alias analysis for field access. ** Field loads are cheap and field stores are rare. ** Simple disambiguation based on field types is good enough. */ static AliasRet aa_fref(jit_State *J, IRIns *refa, IRIns *refb) { if (refa->op2 != refb->op2) return ALIAS_NO; /* Different fields. */ if (refa->op1 == refb->op1) return ALIAS_MUST; /* Same field, same object. */ else if (refa->op2 >= IRFL_TAB_META && refa->op2 <= IRFL_TAB_NOMM) return aa_table(J, refa->op1, refb->op1); /* Disambiguate tables. */ else return ALIAS_MAY; /* Same field, possibly different object. */ } /* Only the loads for mutable fields end up here (see FOLD). */ TRef LJ_FASTCALL lj_opt_fwd_fload(jit_State *J) { IRRef oref = fins->op1; /* Object reference. */ IRRef fid = fins->op2; /* Field ID. */ IRRef lim = oref; /* Search limit. */ IRRef ref; /* Search for conflicting stores. */ ref = J->chain[IR_FSTORE]; while (ref > oref) { IRIns *store = IR(ref); switch (aa_fref(J, fins, IR(store->op1))) { case ALIAS_NO: break; /* Continue searching. */ case ALIAS_MAY: lim = ref; goto cselim; /* Limit search for load. */ case ALIAS_MUST: return store->op2; /* Store forwarding. */ } ref = store->prev; } /* No conflicting store: const-fold field loads from allocations. */ if (fid == IRFL_TAB_META) { IRIns *ir = IR(oref); if (ir->o == IR_TNEW || ir->o == IR_TDUP) return lj_ir_knull(J, IRT_TAB); } cselim: /* Try to find a matching load. Below the conflicting store, if any. */ return lj_opt_cselim(J, lim); } /* FSTORE elimination. */ TRef LJ_FASTCALL lj_opt_dse_fstore(jit_State *J) { IRRef fref = fins->op1; /* FREF reference. */ IRRef val = fins->op2; /* Stored value reference. */ IRIns *xr = IR(fref); IRRef1 *refp = &J->chain[IR_FSTORE]; IRRef ref = *refp; while (ref > fref) { /* Search for redundant or conflicting stores. */ IRIns *store = IR(ref); switch (aa_fref(J, xr, IR(store->op1))) { case ALIAS_NO: break; /* Continue searching. */ case ALIAS_MAY: if (store->op2 != val) /* Conflict if the value is different. */ goto doemit; break; /* Otherwise continue searching. */ case ALIAS_MUST: if (store->op2 == val) /* Same value: drop the new store. */ return DROPFOLD; /* Different value: try to eliminate the redundant store. */ if (ref > J->chain[IR_LOOP]) { /* Quick check to avoid crossing LOOP. */ IRIns *ir; /* Check for any intervening guards or conflicting loads. */ for (ir = IR(J->cur.nins-1); ir > store; ir--) if (irt_isguard(ir->t) || (ir->o == IR_FLOAD && ir->op2 == xr->op2)) goto doemit; /* No elimination possible. */ /* Remove redundant store from chain and replace with NOP. */ *refp = store->prev; store->o = IR_NOP; store->t.irt = IRT_NIL; store->op1 = store->op2 = 0; store->prev = 0; /* Now emit the new store instead. */ } goto doemit; } ref = *(refp = &store->prev); } doemit: return EMITFOLD; /* Otherwise we have a conflict or simply no match. */ } /* -- XLOAD forwarding and XSTORE elimination ----------------------------- */ /* Find cdata allocation for a reference (if any). */ static IRIns *aa_findcnew(jit_State *J, IRIns *ir) { while (ir->o == IR_ADD) { if (!irref_isk(ir->op1)) { IRIns *ir1 = aa_findcnew(J, IR(ir->op1)); /* Left-recursion. */ if (ir1) return ir1; } if (irref_isk(ir->op2)) return NULL; ir = IR(ir->op2); /* Flatten right-recursion. */ } return ir->o == IR_CNEW ? ir : NULL; } /* Alias analysis for two cdata allocations. */ static AliasRet aa_cnew(jit_State *J, IRIns *refa, IRIns *refb) { IRIns *cnewa = aa_findcnew(J, refa); IRIns *cnewb = aa_findcnew(J, refb); if (cnewa == cnewb) return ALIAS_MAY; /* Same allocation or neither is an allocation. */ if (cnewa && cnewb) return ALIAS_NO; /* Two different allocations never alias. */ if (cnewb) { cnewa = cnewb; refb = refa; } return aa_escape(J, cnewa, refb); } /* Alias analysis for XLOAD/XSTORE. */ static AliasRet aa_xref(jit_State *J, IRIns *refa, IRIns *xa, IRIns *xb) { ptrdiff_t ofsa = 0, ofsb = 0; IRIns *refb = IR(xb->op1); IRIns *basea = refa, *baseb = refb; if (refa == refb && irt_sametype(xa->t, xb->t)) return ALIAS_MUST; /* Shortcut for same refs with identical type. */ /* Offset-based disambiguation. */ if (refa->o == IR_ADD && irref_isk(refa->op2)) { IRIns *irk = IR(refa->op2); basea = IR(refa->op1); ofsa = (LJ_64 && irk->o == IR_KINT64) ? (ptrdiff_t)ir_k64(irk)->u64 : (ptrdiff_t)irk->i; } if (refb->o == IR_ADD && irref_isk(refb->op2)) { IRIns *irk = IR(refb->op2); baseb = IR(refb->op1); ofsb = (LJ_64 && irk->o == IR_KINT64) ? (ptrdiff_t)ir_k64(irk)->u64 : (ptrdiff_t)irk->i; } /* Treat constified pointers like base vs. base+offset. */ if (basea->o == IR_KPTR && baseb->o == IR_KPTR) { ofsb += (char *)ir_kptr(baseb) - (char *)ir_kptr(basea); baseb = basea; } /* This implements (very) strict aliasing rules. ** Different types do NOT alias, except for differences in signedness. ** Type punning through unions is allowed (but forces a reload). */ if (basea == baseb) { ptrdiff_t sza = irt_size(xa->t), szb = irt_size(xb->t); if (ofsa == ofsb) { if (sza == szb && irt_isfp(xa->t) == irt_isfp(xb->t)) return ALIAS_MUST; /* Same-sized, same-kind. May need to convert. */ } else if (ofsa + sza <= ofsb || ofsb + szb <= ofsa) { return ALIAS_NO; /* Non-overlapping base+-o1 vs. base+-o2. */ } /* NYI: extract, extend or reinterpret bits (int <-> fp). */ return ALIAS_MAY; /* Overlapping or type punning: force reload. */ } if (!irt_sametype(xa->t, xb->t) && !(irt_typerange(xa->t, IRT_I8, IRT_U64) && ((xa->t.irt - IRT_I8) ^ (xb->t.irt - IRT_I8)) == 1)) return ALIAS_NO; /* NYI: structural disambiguation. */ return aa_cnew(J, basea, baseb); /* Try to disambiguate allocations. */ } /* Return CSEd reference or 0. Caveat: swaps lower ref to the right! */ static IRRef reassoc_trycse(jit_State *J, IROp op, IRRef op1, IRRef op2) { IRRef ref = J->chain[op]; IRRef lim = op1; if (op2 > lim) { lim = op2; op2 = op1; op1 = lim; } while (ref > lim) { IRIns *ir = IR(ref); if (ir->op1 == op1 && ir->op2 == op2) return ref; ref = ir->prev; } return 0; } /* Reassociate index references. */ static IRRef reassoc_xref(jit_State *J, IRIns *ir) { ptrdiff_t ofs = 0; if (ir->o == IR_ADD && irref_isk(ir->op2)) { /* Get constant offset. */ IRIns *irk = IR(ir->op2); ofs = (LJ_64 && irk->o == IR_KINT64) ? (ptrdiff_t)ir_k64(irk)->u64 : (ptrdiff_t)irk->i; ir = IR(ir->op1); } if (ir->o == IR_ADD) { /* Add of base + index. */ /* Index ref > base ref for loop-carried dependences. Only check op1. */ IRIns *ir2, *ir1 = IR(ir->op1); int32_t shift = 0; IRRef idxref; /* Determine index shifts. Don't bother with IR_MUL here. */ if (ir1->o == IR_BSHL && irref_isk(ir1->op2)) shift = IR(ir1->op2)->i; else if (ir1->o == IR_ADD && ir1->op1 == ir1->op2) shift = 1; else ir1 = ir; ir2 = IR(ir1->op1); /* A non-reassociated add. Must be a loop-carried dependence. */ if (ir2->o == IR_ADD && irt_isint(ir2->t) && irref_isk(ir2->op2)) ofs += (ptrdiff_t)IR(ir2->op2)->i << shift; else return 0; idxref = ir2->op1; /* Try to CSE the reassociated chain. Give up if not found. */ if (ir1 != ir && !(idxref = reassoc_trycse(J, ir1->o, idxref, ir1->o == IR_BSHL ? ir1->op2 : idxref))) return 0; if (!(idxref = reassoc_trycse(J, IR_ADD, idxref, ir->op2))) return 0; if (ofs != 0) { IRRef refk = tref_ref(lj_ir_kintp(J, ofs)); if (!(idxref = reassoc_trycse(J, IR_ADD, idxref, refk))) return 0; } return idxref; /* Success, found a reassociated index reference. Phew. */ } return 0; /* Failure. */ } /* XLOAD forwarding. */ TRef LJ_FASTCALL lj_opt_fwd_xload(jit_State *J) { IRRef xref = fins->op1; IRIns *xr = IR(xref); IRRef lim = xref; /* Search limit. */ IRRef ref; if ((fins->op2 & IRXLOAD_READONLY)) goto cselim; if ((fins->op2 & IRXLOAD_VOLATILE)) goto doemit; /* Search for conflicting stores. */ ref = J->chain[IR_XSTORE]; retry: if (J->chain[IR_CALLXS] > lim) lim = J->chain[IR_CALLXS]; if (J->chain[IR_XBAR] > lim) lim = J->chain[IR_XBAR]; while (ref > lim) { IRIns *store = IR(ref); switch (aa_xref(J, xr, fins, store)) { case ALIAS_NO: break; /* Continue searching. */ case ALIAS_MAY: lim = ref; goto cselim; /* Limit search for load. */ case ALIAS_MUST: /* Emit conversion if the loaded type doesn't match the forwarded type. */ if (!irt_sametype(fins->t, IR(store->op2)->t)) { IRType dt = irt_type(fins->t), st = irt_type(IR(store->op2)->t); if (dt == IRT_I8 || dt == IRT_I16) { /* Trunc + sign-extend. */ st = dt | IRCONV_SEXT; dt = IRT_INT; } else if (dt == IRT_U8 || dt == IRT_U16) { /* Trunc + zero-extend. */ st = dt; dt = IRT_INT; } fins->ot = IRT(IR_CONV, dt); fins->op1 = store->op2; fins->op2 = (dt<<5)|st; return RETRYFOLD; } return store->op2; /* Store forwarding. */ } ref = store->prev; } cselim: /* Try to find a matching load. Below the conflicting store, if any. */ ref = J->chain[IR_XLOAD]; while (ref > lim) { /* CSE for XLOAD depends on the type, but not on the IRXLOAD_* flags. */ if (IR(ref)->op1 == xref && irt_sametype(IR(ref)->t, fins->t)) return ref; ref = IR(ref)->prev; } /* Reassociate XLOAD across PHIs to handle a[i-1] forwarding case. */ if (!(fins->op2 & IRXLOAD_READONLY) && J->chain[IR_LOOP] && xref == fins->op1 && (xref = reassoc_xref(J, xr)) != 0) { ref = J->chain[IR_XSTORE]; while (ref > lim) /* Skip stores that have already been checked. */ ref = IR(ref)->prev; lim = xref; xr = IR(xref); goto retry; /* Retry with the reassociated reference. */ } doemit: return EMITFOLD; } /* XSTORE elimination. */ TRef LJ_FASTCALL lj_opt_dse_xstore(jit_State *J) { IRRef xref = fins->op1; IRIns *xr = IR(xref); IRRef lim = xref; /* Search limit. */ IRRef val = fins->op2; /* Stored value reference. */ IRRef1 *refp = &J->chain[IR_XSTORE]; IRRef ref = *refp; if (J->chain[IR_CALLXS] > lim) lim = J->chain[IR_CALLXS]; if (J->chain[IR_XBAR] > lim) lim = J->chain[IR_XBAR]; if (J->chain[IR_XSNEW] > lim) lim = J->chain[IR_XSNEW]; while (ref > lim) { /* Search for redundant or conflicting stores. */ IRIns *store = IR(ref); switch (aa_xref(J, xr, fins, store)) { case ALIAS_NO: break; /* Continue searching. */ case ALIAS_MAY: if (store->op2 != val) /* Conflict if the value is different. */ goto doemit; break; /* Otherwise continue searching. */ case ALIAS_MUST: if (store->op2 == val) /* Same value: drop the new store. */ return DROPFOLD; /* Different value: try to eliminate the redundant store. */ if (ref > J->chain[IR_LOOP]) { /* Quick check to avoid crossing LOOP. */ IRIns *ir; /* Check for any intervening guards or any XLOADs (no AA performed). */ for (ir = IR(J->cur.nins-1); ir > store; ir--) if (irt_isguard(ir->t) || ir->o == IR_XLOAD) goto doemit; /* No elimination possible. */ /* Remove redundant store from chain and replace with NOP. */ *refp = store->prev; store->o = IR_NOP; store->t.irt = IRT_NIL; store->op1 = store->op2 = 0; store->prev = 0; /* Now emit the new store instead. */ } goto doemit; } ref = *(refp = &store->prev); } doemit: return EMITFOLD; /* Otherwise we have a conflict or simply no match. */ } /* -- Forwarding of lj_tab_len -------------------------------------------- */ /* This is rather simplistic right now, but better than nothing. */ TRef LJ_FASTCALL lj_opt_fwd_tab_len(jit_State *J) { IRRef tab = fins->op1; /* Table reference. */ IRRef lim = tab; /* Search limit. */ IRRef ref; /* Any ASTORE is a conflict and limits the search. */ if (J->chain[IR_ASTORE] > lim) lim = J->chain[IR_ASTORE]; /* Search for conflicting HSTORE with numeric key. */ ref = J->chain[IR_HSTORE]; while (ref > lim) { IRIns *store = IR(ref); IRIns *href = IR(store->op1); IRIns *key = IR(href->op2); if (irt_isnum(key->o == IR_KSLOT ? IR(key->op1)->t : key->t)) { lim = ref; /* Conflicting store found, limits search for TLEN. */ break; } ref = store->prev; } /* Search for aliasing table.clear. */ if (!fwd_aa_tab_clear(J, lim, tab)) return lj_ir_emit(J); /* Try to find a matching load. Below the conflicting store, if any. */ return lj_opt_cselim(J, lim); } /* -- ASTORE/HSTORE previous type analysis -------------------------------- */ /* Check whether the previous value for a table store is non-nil. ** This can be derived either from a previous store or from a previous ** load (because all loads from tables perform a type check). ** ** The result of the analysis can be used to avoid the metatable check ** and the guard against HREF returning niltv. Both of these are cheap, ** so let's not spend too much effort on the analysis. ** ** A result of 1 is exact: previous value CANNOT be nil. ** A result of 0 is inexact: previous value MAY be nil. */ int lj_opt_fwd_wasnonnil(jit_State *J, IROpT loadop, IRRef xref) { /* First check stores. */ IRRef ref = J->chain[loadop+IRDELTA_L2S]; while (ref > xref) { IRIns *store = IR(ref); if (store->op1 == xref) { /* Same xREF. */ /* A nil store MAY alias, but a non-nil store MUST alias. */ return !irt_isnil(store->t); } else if (irt_isnil(store->t)) { /* Must check any nil store. */ IRRef skref = IR(store->op1)->op2; IRRef xkref = IR(xref)->op2; /* Same key type MAY alias. Need ALOAD check due to multiple int types. */ if (loadop == IR_ALOAD || irt_sametype(IR(skref)->t, IR(xkref)->t)) { if (skref == xkref || !irref_isk(skref) || !irref_isk(xkref)) return 0; /* A nil store with same const key or var key MAY alias. */ /* Different const keys CANNOT alias. */ } /* Different key types CANNOT alias. */ } /* Other non-nil stores MAY alias. */ ref = store->prev; } /* Check loads since nothing could be derived from stores. */ ref = J->chain[loadop]; while (ref > xref) { IRIns *load = IR(ref); if (load->op1 == xref) { /* Same xREF. */ /* A nil load MAY alias, but a non-nil load MUST alias. */ return !irt_isnil(load->t); } /* Other non-nil loads MAY alias. */ ref = load->prev; } return 0; /* Nothing derived at all, previous value MAY be nil. */ } /* ------------------------------------------------------------------------ */ #undef IR #undef fins #undef fleft #undef fright #endif luajit-2.1.0~beta3+dfsg.orig/src/vm_x64.dasc0000644000175100017510000040476513101703334020104 0ustar ondrejondrej|// Low-level VM code for x64 CPUs in LJ_GC64 mode. |// Bytecode interpreter, fast functions and helper functions. |// Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h | |.arch x64 |.section code_op, code_sub | |.actionlist build_actionlist |.globals GLOB_ |.globalnames globnames |.externnames extnames | |//----------------------------------------------------------------------- | |.if WIN |.define X64WIN, 1 // Windows/x64 calling conventions. |.endif | |// Fixed register assignments for the interpreter. |// This is very fragile and has many dependencies. Caveat emptor. |.define BASE, rdx // Not C callee-save, refetched anyway. |.if X64WIN |.define KBASE, rdi // Must be C callee-save. |.define PC, rsi // Must be C callee-save. |.define DISPATCH, rbx // Must be C callee-save. |.define KBASEd, edi |.define PCd, esi |.define DISPATCHd, ebx |.else |.define KBASE, r15 // Must be C callee-save. |.define PC, rbx // Must be C callee-save. |.define DISPATCH, r14 // Must be C callee-save. |.define KBASEd, r15d |.define PCd, ebx |.define DISPATCHd, r14d |.endif | |.define RA, rcx |.define RAd, ecx |.define RAH, ch |.define RAL, cl |.define RB, rbp // Must be rbp (C callee-save). |.define RBd, ebp |.define RC, rax // Must be rax. |.define RCd, eax |.define RCW, ax |.define RCH, ah |.define RCL, al |.define OP, RBd |.define RD, RC |.define RDd, RCd |.define RDW, RCW |.define RDL, RCL |.define TMPR, r10 |.define TMPRd, r10d |.define ITYPE, r11 |.define ITYPEd, r11d | |.if X64WIN |.define CARG1, rcx // x64/WIN64 C call arguments. |.define CARG2, rdx |.define CARG3, r8 |.define CARG4, r9 |.define CARG1d, ecx |.define CARG2d, edx |.define CARG3d, r8d |.define CARG4d, r9d |.else |.define CARG1, rdi // x64/POSIX C call arguments. |.define CARG2, rsi |.define CARG3, rdx |.define CARG4, rcx |.define CARG5, r8 |.define CARG6, r9 |.define CARG1d, edi |.define CARG2d, esi |.define CARG3d, edx |.define CARG4d, ecx |.define CARG5d, r8d |.define CARG6d, r9d |.endif | |// Type definitions. Some of these are only used for documentation. |.type L, lua_State |.type GL, global_State |.type TVALUE, TValue |.type GCOBJ, GCobj |.type STR, GCstr |.type TAB, GCtab |.type LFUNC, GCfuncL |.type CFUNC, GCfuncC |.type PROTO, GCproto |.type UPVAL, GCupval |.type NODE, Node |.type NARGS, int |.type TRACE, GCtrace |.type SBUF, SBuf | |// Stack layout while in interpreter. Must match with lj_frame.h. |//----------------------------------------------------------------------- |.if X64WIN // x64/Windows stack layout | |.define CFRAME_SPACE, aword*5 // Delta for rsp (see <--). |.macro saveregs_ | push rdi; push rsi; push rbx | sub rsp, CFRAME_SPACE |.endmacro |.macro saveregs | push rbp; saveregs_ |.endmacro |.macro restoreregs | add rsp, CFRAME_SPACE | pop rbx; pop rsi; pop rdi; pop rbp |.endmacro | |.define SAVE_CFRAME, aword [rsp+aword*13] |.define SAVE_PC, aword [rsp+aword*12] |.define SAVE_L, aword [rsp+aword*11] |.define SAVE_ERRF, dword [rsp+dword*21] |.define SAVE_NRES, dword [rsp+dword*20] |//----- 16 byte aligned, ^^^ 32 byte register save area, owned by interpreter |.define SAVE_RET, aword [rsp+aword*9] //<-- rsp entering interpreter. |.define SAVE_R4, aword [rsp+aword*8] |.define SAVE_R3, aword [rsp+aword*7] |.define SAVE_R2, aword [rsp+aword*6] |.define SAVE_R1, aword [rsp+aword*5] //<-- rsp after register saves. |.define ARG5, aword [rsp+aword*4] |.define CSAVE_4, aword [rsp+aword*3] |.define CSAVE_3, aword [rsp+aword*2] |.define CSAVE_2, aword [rsp+aword*1] |.define CSAVE_1, aword [rsp] //<-- rsp while in interpreter. |//----- 16 byte aligned, ^^^ 32 byte register save area, owned by callee | |.define ARG5d, dword [rsp+dword*8] |.define TMP1, ARG5 // TMP1 overlaps ARG5 |.define TMP1d, ARG5d |.define TMP1hi, dword [rsp+dword*9] |.define MULTRES, TMP1d // MULTRES overlaps TMP1d. | |//----------------------------------------------------------------------- |.else // x64/POSIX stack layout | |.define CFRAME_SPACE, aword*5 // Delta for rsp (see <--). |.macro saveregs_ | push rbx; push r15; push r14 |.if NO_UNWIND | push r13; push r12 |.endif | sub rsp, CFRAME_SPACE |.endmacro |.macro saveregs | push rbp; saveregs_ |.endmacro |.macro restoreregs | add rsp, CFRAME_SPACE |.if NO_UNWIND | pop r12; pop r13 |.endif | pop r14; pop r15; pop rbx; pop rbp |.endmacro | |//----- 16 byte aligned, |.if NO_UNWIND |.define SAVE_RET, aword [rsp+aword*11] //<-- rsp entering interpreter. |.define SAVE_R4, aword [rsp+aword*10] |.define SAVE_R3, aword [rsp+aword*9] |.define SAVE_R2, aword [rsp+aword*8] |.define SAVE_R1, aword [rsp+aword*7] |.define SAVE_RU2, aword [rsp+aword*6] |.define SAVE_RU1, aword [rsp+aword*5] //<-- rsp after register saves. |.else |.define SAVE_RET, aword [rsp+aword*9] //<-- rsp entering interpreter. |.define SAVE_R4, aword [rsp+aword*8] |.define SAVE_R3, aword [rsp+aword*7] |.define SAVE_R2, aword [rsp+aword*6] |.define SAVE_R1, aword [rsp+aword*5] //<-- rsp after register saves. |.endif |.define SAVE_CFRAME, aword [rsp+aword*4] |.define SAVE_PC, aword [rsp+aword*3] |.define SAVE_L, aword [rsp+aword*2] |.define SAVE_ERRF, dword [rsp+dword*3] |.define SAVE_NRES, dword [rsp+dword*2] |.define TMP1, aword [rsp] //<-- rsp while in interpreter. |//----- 16 byte aligned | |.define TMP1d, dword [rsp] |.define TMP1hi, dword [rsp+dword*1] |.define MULTRES, TMP1d // MULTRES overlaps TMP1d. | |.endif | |//----------------------------------------------------------------------- | |// Instruction headers. |.macro ins_A; .endmacro |.macro ins_AD; .endmacro |.macro ins_AJ; .endmacro |.macro ins_ABC; movzx RBd, RCH; movzx RCd, RCL; .endmacro |.macro ins_AB_; movzx RBd, RCH; .endmacro |.macro ins_A_C; movzx RCd, RCL; .endmacro |.macro ins_AND; not RD; .endmacro | |// Instruction decode+dispatch. Carefully tuned (nope, lodsd is not faster). |.macro ins_NEXT | mov RCd, [PC] | movzx RAd, RCH | movzx OP, RCL | add PC, 4 | shr RCd, 16 | jmp aword [DISPATCH+OP*8] |.endmacro | |// Instruction footer. |.if 1 | // Replicated dispatch. Less unpredictable branches, but higher I-Cache use. | .define ins_next, ins_NEXT | .define ins_next_, ins_NEXT |.else | // Common dispatch. Lower I-Cache use, only one (very) unpredictable branch. | // Affects only certain kinds of benchmarks (and only with -j off). | // Around 10%-30% slower on Core2, a lot more slower on P4. | .macro ins_next | jmp ->ins_next | .endmacro | .macro ins_next_ | ->ins_next: | ins_NEXT | .endmacro |.endif | |// Call decode and dispatch. |.macro ins_callt | // BASE = new base, RB = LFUNC, RD = nargs+1, [BASE-8] = PC | mov PC, LFUNC:RB->pc | mov RAd, [PC] | movzx OP, RAL | movzx RAd, RAH | add PC, 4 | jmp aword [DISPATCH+OP*8] |.endmacro | |.macro ins_call | // BASE = new base, RB = LFUNC, RD = nargs+1 | mov [BASE-8], PC | ins_callt |.endmacro | |//----------------------------------------------------------------------- | |// Macros to clear or set tags. |.macro cleartp, reg; shl reg, 17; shr reg, 17; .endmacro |.macro settp, reg, tp | mov64 ITYPE, ((uint64_t)tp<<47) | or reg, ITYPE |.endmacro |.macro settp, dst, reg, tp | mov64 dst, ((uint64_t)tp<<47) | or dst, reg |.endmacro |.macro setint, reg | settp reg, LJ_TISNUM |.endmacro |.macro setint, dst, reg | settp dst, reg, LJ_TISNUM |.endmacro | |// Macros to test operand types. |.macro checktp_nc, reg, tp, target | mov ITYPE, reg | sar ITYPE, 47 | cmp ITYPEd, tp | jne target |.endmacro |.macro checktp, reg, tp, target | mov ITYPE, reg | cleartp reg | sar ITYPE, 47 | cmp ITYPEd, tp | jne target |.endmacro |.macro checktptp, src, tp, target | mov ITYPE, src | sar ITYPE, 47 | cmp ITYPEd, tp | jne target |.endmacro |.macro checkstr, reg, target; checktp reg, LJ_TSTR, target; .endmacro |.macro checktab, reg, target; checktp reg, LJ_TTAB, target; .endmacro |.macro checkfunc, reg, target; checktp reg, LJ_TFUNC, target; .endmacro | |.macro checknumx, reg, target, jump | mov ITYPE, reg | sar ITYPE, 47 | cmp ITYPEd, LJ_TISNUM | jump target |.endmacro |.macro checkint, reg, target; checknumx reg, target, jne; .endmacro |.macro checkinttp, src, target; checknumx src, target, jne; .endmacro |.macro checknum, reg, target; checknumx reg, target, jae; .endmacro |.macro checknumtp, src, target; checknumx src, target, jae; .endmacro |.macro checknumber, src, target; checknumx src, target, ja; .endmacro | |.macro mov_false, reg; mov64 reg, (int64_t)~((uint64_t)1<<47); .endmacro |.macro mov_true, reg; mov64 reg, (int64_t)~((uint64_t)2<<47); .endmacro | |// These operands must be used with movzx. |.define PC_OP, byte [PC-4] |.define PC_RA, byte [PC-3] |.define PC_RB, byte [PC-1] |.define PC_RC, byte [PC-2] |.define PC_RD, word [PC-2] | |.macro branchPC, reg | lea PC, [PC+reg*4-BCBIAS_J*4] |.endmacro | |// Assumes DISPATCH is relative to GL. #define DISPATCH_GL(field) (GG_DISP2G + (int)offsetof(global_State, field)) #define DISPATCH_J(field) (GG_DISP2J + (int)offsetof(jit_State, field)) | #define PC2PROTO(field) ((int)offsetof(GCproto, field)-(int)sizeof(GCproto)) | |// Decrement hashed hotcount and trigger trace recorder if zero. |.macro hotloop, reg | mov reg, PCd | shr reg, 1 | and reg, HOTCOUNT_PCMASK | sub word [DISPATCH+reg+GG_DISP2HOT], HOTCOUNT_LOOP | jb ->vm_hotloop |.endmacro | |.macro hotcall, reg | mov reg, PCd | shr reg, 1 | and reg, HOTCOUNT_PCMASK | sub word [DISPATCH+reg+GG_DISP2HOT], HOTCOUNT_CALL | jb ->vm_hotcall |.endmacro | |// Set current VM state. |.macro set_vmstate, st | mov dword [DISPATCH+DISPATCH_GL(vmstate)], ~LJ_VMST_..st |.endmacro | |.macro fpop1; fstp st1; .endmacro | |// Synthesize SSE FP constants. |.macro sseconst_abs, reg, tmp // Synthesize abs mask. | mov64 tmp, U64x(7fffffff,ffffffff); movd reg, tmp |.endmacro | |.macro sseconst_hi, reg, tmp, val // Synthesize hi-32 bit const. | mov64 tmp, U64x(val,00000000); movd reg, tmp |.endmacro | |.macro sseconst_sign, reg, tmp // Synthesize sign mask. | sseconst_hi reg, tmp, 80000000 |.endmacro |.macro sseconst_1, reg, tmp // Synthesize 1.0. | sseconst_hi reg, tmp, 3ff00000 |.endmacro |.macro sseconst_m1, reg, tmp // Synthesize -1.0. | sseconst_hi reg, tmp, bff00000 |.endmacro |.macro sseconst_2p52, reg, tmp // Synthesize 2^52. | sseconst_hi reg, tmp, 43300000 |.endmacro |.macro sseconst_tobit, reg, tmp // Synthesize 2^52 + 2^51. | sseconst_hi reg, tmp, 43380000 |.endmacro | |// Move table write barrier back. Overwrites reg. |.macro barrierback, tab, reg | and byte tab->marked, (uint8_t)~LJ_GC_BLACK // black2gray(tab) | mov reg, [DISPATCH+DISPATCH_GL(gc.grayagain)] | mov [DISPATCH+DISPATCH_GL(gc.grayagain)], tab | mov tab->gclist, reg |.endmacro | |//----------------------------------------------------------------------- /* Generate subroutines used by opcodes and other parts of the VM. */ /* The .code_sub section should be last to help static branch prediction. */ static void build_subroutines(BuildCtx *ctx) { |.code_sub | |//----------------------------------------------------------------------- |//-- Return handling ---------------------------------------------------- |//----------------------------------------------------------------------- | |->vm_returnp: | test PCd, FRAME_P | jz ->cont_dispatch | | // Return from pcall or xpcall fast func. | and PC, -8 | sub BASE, PC // Restore caller base. | lea RA, [RA+PC-8] // Rebase RA and prepend one result. | mov PC, [BASE-8] // Fetch PC of previous frame. | // Prepending may overwrite the pcall frame, so do it at the end. | mov_true ITYPE | mov aword [BASE+RA], ITYPE // Prepend true to results. | |->vm_returnc: | add RDd, 1 // RD = nresults+1 | jz ->vm_unwind_yield | mov MULTRES, RDd | test PC, FRAME_TYPE | jz ->BC_RET_Z // Handle regular return to Lua. | |->vm_return: | // BASE = base, RA = resultofs, RD = nresults+1 (= MULTRES), PC = return | xor PC, FRAME_C | test PCd, FRAME_TYPE | jnz ->vm_returnp | | // Return to C. | set_vmstate C | and PC, -8 | sub PC, BASE | neg PC // Previous base = BASE - delta. | | sub RDd, 1 | jz >2 |1: // Move results down. | mov RB, [BASE+RA] | mov [BASE-16], RB | add BASE, 8 | sub RDd, 1 | jnz <1 |2: | mov L:RB, SAVE_L | mov L:RB->base, PC |3: | mov RDd, MULTRES | mov RAd, SAVE_NRES // RA = wanted nresults+1 |4: | cmp RAd, RDd | jne >6 // More/less results wanted? |5: | sub BASE, 16 | mov L:RB->top, BASE | |->vm_leave_cp: | mov RA, SAVE_CFRAME // Restore previous C frame. | mov L:RB->cframe, RA | xor eax, eax // Ok return status for vm_pcall. | |->vm_leave_unw: | restoreregs | ret | |6: | jb >7 // Less results wanted? | // More results wanted. Check stack size and fill up results with nil. | cmp BASE, L:RB->maxstack | ja >8 | mov aword [BASE-16], LJ_TNIL | add BASE, 8 | add RDd, 1 | jmp <4 | |7: // Less results wanted. | test RAd, RAd | jz <5 // But check for LUA_MULTRET+1. | sub RA, RD // Negative result! | lea BASE, [BASE+RA*8] // Correct top. | jmp <5 | |8: // Corner case: need to grow stack for filling up results. | // This can happen if: | // - A C function grows the stack (a lot). | // - The GC shrinks the stack in between. | // - A return back from a lua_call() with (high) nresults adjustment. | mov L:RB->top, BASE // Save current top held in BASE (yes). | mov MULTRES, RDd // Need to fill only remainder with nil. | mov CARG2d, RAd | mov CARG1, L:RB | call extern lj_state_growstack // (lua_State *L, int n) | mov BASE, L:RB->top // Need the (realloced) L->top in BASE. | jmp <3 | |->vm_unwind_yield: | mov al, LUA_YIELD | jmp ->vm_unwind_c_eh | |->vm_unwind_c: // Unwind C stack, return from vm_pcall. | // (void *cframe, int errcode) | mov eax, CARG2d // Error return status for vm_pcall. | mov rsp, CARG1 |->vm_unwind_c_eh: // Landing pad for external unwinder. | mov L:RB, SAVE_L | mov GL:RB, L:RB->glref | mov dword GL:RB->vmstate, ~LJ_VMST_C | jmp ->vm_leave_unw | |->vm_unwind_rethrow: |.if not X64WIN | mov CARG1, SAVE_L | mov CARG2d, eax | restoreregs | jmp extern lj_err_throw // (lua_State *L, int errcode) |.endif | |->vm_unwind_ff: // Unwind C stack, return from ff pcall. | // (void *cframe) | and CARG1, CFRAME_RAWMASK | mov rsp, CARG1 |->vm_unwind_ff_eh: // Landing pad for external unwinder. | mov L:RB, SAVE_L | mov RDd, 1+1 // Really 1+2 results, incr. later. | mov BASE, L:RB->base | mov DISPATCH, L:RB->glref // Setup pointer to dispatch table. | add DISPATCH, GG_G2DISP | mov PC, [BASE-8] // Fetch PC of previous frame. | mov_false RA | mov RB, [BASE] | mov [BASE-16], RA // Prepend false to error message. | mov [BASE-8], RB | mov RA, -16 // Results start at BASE+RA = BASE-16. | set_vmstate INTERP | jmp ->vm_returnc // Increments RD/MULTRES and returns. | |//----------------------------------------------------------------------- |//-- Grow stack for calls ----------------------------------------------- |//----------------------------------------------------------------------- | |->vm_growstack_c: // Grow stack for C function. | mov CARG2d, LUA_MINSTACK | jmp >2 | |->vm_growstack_v: // Grow stack for vararg Lua function. | sub RD, 16 // LJ_FR2 | jmp >1 | |->vm_growstack_f: // Grow stack for fixarg Lua function. | // BASE = new base, RD = nargs+1, RB = L, PC = first PC | lea RD, [BASE+NARGS:RD*8-8] |1: | movzx RAd, byte [PC-4+PC2PROTO(framesize)] | add PC, 4 // Must point after first instruction. | mov L:RB->base, BASE | mov L:RB->top, RD | mov SAVE_PC, PC | mov CARG2, RA |2: | // RB = L, L->base = new base, L->top = top | mov CARG1, L:RB | call extern lj_state_growstack // (lua_State *L, int n) | mov BASE, L:RB->base | mov RD, L:RB->top | mov LFUNC:RB, [BASE-16] | cleartp LFUNC:RB | sub RD, BASE | shr RDd, 3 | add NARGS:RDd, 1 | // BASE = new base, RB = LFUNC, RD = nargs+1 | ins_callt // Just retry the call. | |//----------------------------------------------------------------------- |//-- Entry points into the assembler VM --------------------------------- |//----------------------------------------------------------------------- | |->vm_resume: // Setup C frame and resume thread. | // (lua_State *L, TValue *base, int nres1 = 0, ptrdiff_t ef = 0) | saveregs | mov L:RB, CARG1 // Caveat: CARG1 may be RA. | mov SAVE_L, CARG1 | mov RA, CARG2 | mov PCd, FRAME_CP | xor RDd, RDd | lea KBASE, [esp+CFRAME_RESUME] | mov DISPATCH, L:RB->glref // Setup pointer to dispatch table. | add DISPATCH, GG_G2DISP | mov SAVE_PC, RD // Any value outside of bytecode is ok. | mov SAVE_CFRAME, RD | mov SAVE_NRES, RDd | mov SAVE_ERRF, RDd | mov L:RB->cframe, KBASE | cmp byte L:RB->status, RDL | je >2 // Initial resume (like a call). | | // Resume after yield (like a return). | mov [DISPATCH+DISPATCH_GL(cur_L)], L:RB | set_vmstate INTERP | mov byte L:RB->status, RDL | mov BASE, L:RB->base | mov RD, L:RB->top | sub RD, RA | shr RDd, 3 | add RDd, 1 // RD = nresults+1 | sub RA, BASE // RA = resultofs | mov PC, [BASE-8] | mov MULTRES, RDd | test PCd, FRAME_TYPE | jz ->BC_RET_Z | jmp ->vm_return | |->vm_pcall: // Setup protected C frame and enter VM. | // (lua_State *L, TValue *base, int nres1, ptrdiff_t ef) | saveregs | mov PCd, FRAME_CP | mov SAVE_ERRF, CARG4d | jmp >1 | |->vm_call: // Setup C frame and enter VM. | // (lua_State *L, TValue *base, int nres1) | saveregs | mov PCd, FRAME_C | |1: // Entry point for vm_pcall above (PC = ftype). | mov SAVE_NRES, CARG3d | mov L:RB, CARG1 // Caveat: CARG1 may be RA. | mov SAVE_L, CARG1 | mov RA, CARG2 | | mov DISPATCH, L:RB->glref // Setup pointer to dispatch table. | mov KBASE, L:RB->cframe // Add our C frame to cframe chain. | mov SAVE_CFRAME, KBASE | mov SAVE_PC, L:RB // Any value outside of bytecode is ok. | add DISPATCH, GG_G2DISP | mov L:RB->cframe, rsp | |2: // Entry point for vm_resume/vm_cpcall (RA = base, RB = L, PC = ftype). | mov [DISPATCH+DISPATCH_GL(cur_L)], L:RB | set_vmstate INTERP | mov BASE, L:RB->base // BASE = old base (used in vmeta_call). | add PC, RA | sub PC, BASE // PC = frame delta + frame type | | mov RD, L:RB->top | sub RD, RA | shr NARGS:RDd, 3 | add NARGS:RDd, 1 // RD = nargs+1 | |->vm_call_dispatch: | mov LFUNC:RB, [RA-16] | checkfunc LFUNC:RB, ->vmeta_call // Ensure KBASE defined and != BASE. | |->vm_call_dispatch_f: | mov BASE, RA | ins_call | // BASE = new base, RB = func, RD = nargs+1, PC = caller PC | |->vm_cpcall: // Setup protected C frame, call C. | // (lua_State *L, lua_CFunction func, void *ud, lua_CPFunction cp) | saveregs | mov L:RB, CARG1 // Caveat: CARG1 may be RA. | mov SAVE_L, CARG1 | mov SAVE_PC, L:RB // Any value outside of bytecode is ok. | | mov KBASE, L:RB->stack // Compute -savestack(L, L->top). | sub KBASE, L:RB->top | mov DISPATCH, L:RB->glref // Setup pointer to dispatch table. | mov SAVE_ERRF, 0 // No error function. | mov SAVE_NRES, KBASEd // Neg. delta means cframe w/o frame. | add DISPATCH, GG_G2DISP | // Handler may change cframe_nres(L->cframe) or cframe_errfunc(L->cframe). | | mov KBASE, L:RB->cframe // Add our C frame to cframe chain. | mov SAVE_CFRAME, KBASE | mov L:RB->cframe, rsp | mov [DISPATCH+DISPATCH_GL(cur_L)], L:RB | | call CARG4 // (lua_State *L, lua_CFunction func, void *ud) | // TValue * (new base) or NULL returned in eax (RC). | test RC, RC | jz ->vm_leave_cp // No base? Just remove C frame. | mov RA, RC | mov PCd, FRAME_CP | jmp <2 // Else continue with the call. | |//----------------------------------------------------------------------- |//-- Metamethod handling ------------------------------------------------ |//----------------------------------------------------------------------- | |//-- Continuation dispatch ---------------------------------------------- | |->cont_dispatch: | // BASE = meta base, RA = resultofs, RD = nresults+1 (also in MULTRES) | add RA, BASE | and PC, -8 | mov RB, BASE | sub BASE, PC // Restore caller BASE. | mov aword [RA+RD*8-8], LJ_TNIL // Ensure one valid arg. | mov RC, RA // ... in [RC] | mov PC, [RB-24] // Restore PC from [cont|PC]. | mov RA, qword [RB-32] // May be negative on WIN64 with debug. |.if FFI | cmp RA, 1 | jbe >1 |.endif | mov LFUNC:KBASE, [BASE-16] | cleartp LFUNC:KBASE | mov KBASE, LFUNC:KBASE->pc | mov KBASE, [KBASE+PC2PROTO(k)] | // BASE = base, RC = result, RB = meta base | jmp RA // Jump to continuation. | |.if FFI |1: | je ->cont_ffi_callback // cont = 1: return from FFI callback. | // cont = 0: Tail call from C function. | sub RB, BASE | shr RBd, 3 | lea RDd, [RBd-3] | jmp ->vm_call_tail |.endif | |->cont_cat: // BASE = base, RC = result, RB = mbase | movzx RAd, PC_RB | sub RB, 32 | lea RA, [BASE+RA*8] | sub RA, RB | je ->cont_ra | neg RA | shr RAd, 3 |.if X64WIN | mov CARG3d, RAd | mov L:CARG1, SAVE_L | mov L:CARG1->base, BASE | mov RC, [RC] | mov [RB], RC | mov CARG2, RB |.else | mov L:CARG1, SAVE_L | mov L:CARG1->base, BASE | mov CARG3d, RAd | mov RA, [RC] | mov [RB], RA | mov CARG2, RB |.endif | jmp ->BC_CAT_Z | |//-- Table indexing metamethods ----------------------------------------- | |->vmeta_tgets: | settp STR:RC, LJ_TSTR // STR:RC = GCstr * | mov TMP1, STR:RC | lea RC, TMP1 | cmp PC_OP, BC_GGET | jne >1 | settp TAB:RA, TAB:RB, LJ_TTAB // TAB:RB = GCtab * | lea RB, [DISPATCH+DISPATCH_GL(tmptv)] // Store fn->l.env in g->tmptv. | mov [RB], TAB:RA | jmp >2 | |->vmeta_tgetb: | movzx RCd, PC_RC |.if DUALNUM | setint RC | mov TMP1, RC |.else | cvtsi2sd xmm0, RCd | movsd TMP1, xmm0 |.endif | lea RC, TMP1 | jmp >1 | |->vmeta_tgetv: | movzx RCd, PC_RC // Reload TValue *k from RC. | lea RC, [BASE+RC*8] |1: | movzx RBd, PC_RB // Reload TValue *t from RB. | lea RB, [BASE+RB*8] |2: | mov L:CARG1, SAVE_L | mov L:CARG1->base, BASE // Caveat: CARG2/CARG3 may be BASE. | mov CARG2, RB | mov CARG3, RC | mov L:RB, L:CARG1 | mov SAVE_PC, PC | call extern lj_meta_tget // (lua_State *L, TValue *o, TValue *k) | // TValue * (finished) or NULL (metamethod) returned in eax (RC). | mov BASE, L:RB->base | test RC, RC | jz >3 |->cont_ra: // BASE = base, RC = result | movzx RAd, PC_RA | mov RB, [RC] | mov [BASE+RA*8], RB | ins_next | |3: // Call __index metamethod. | // BASE = base, L->top = new base, stack = cont/func/t/k | mov RA, L:RB->top | mov [RA-24], PC // [cont|PC] | lea PC, [RA+FRAME_CONT] | sub PC, BASE | mov LFUNC:RB, [RA-16] // Guaranteed to be a function here. | mov NARGS:RDd, 2+1 // 2 args for func(t, k). | cleartp LFUNC:RB | jmp ->vm_call_dispatch_f | |->vmeta_tgetr: | mov CARG1, TAB:RB | mov RB, BASE // Save BASE. | mov CARG2d, RCd // Caveat: CARG2 == BASE | call extern lj_tab_getinth // (GCtab *t, int32_t key) | // cTValue * or NULL returned in eax (RC). | movzx RAd, PC_RA | mov BASE, RB // Restore BASE. | test RC, RC | jnz ->BC_TGETR_Z | mov ITYPE, LJ_TNIL | jmp ->BC_TGETR2_Z | |//----------------------------------------------------------------------- | |->vmeta_tsets: | settp STR:RC, LJ_TSTR // STR:RC = GCstr * | mov TMP1, STR:RC | lea RC, TMP1 | cmp PC_OP, BC_GSET | jne >1 | settp TAB:RA, TAB:RB, LJ_TTAB // TAB:RB = GCtab * | lea RB, [DISPATCH+DISPATCH_GL(tmptv)] // Store fn->l.env in g->tmptv. | mov [RB], TAB:RA | jmp >2 | |->vmeta_tsetb: | movzx RCd, PC_RC |.if DUALNUM | setint RC | mov TMP1, RC |.else | cvtsi2sd xmm0, RCd | movsd TMP1, xmm0 |.endif | lea RC, TMP1 | jmp >1 | |->vmeta_tsetv: | movzx RCd, PC_RC // Reload TValue *k from RC. | lea RC, [BASE+RC*8] |1: | movzx RBd, PC_RB // Reload TValue *t from RB. | lea RB, [BASE+RB*8] |2: | mov L:CARG1, SAVE_L | mov L:CARG1->base, BASE // Caveat: CARG2/CARG3 may be BASE. | mov CARG2, RB | mov CARG3, RC | mov L:RB, L:CARG1 | mov SAVE_PC, PC | call extern lj_meta_tset // (lua_State *L, TValue *o, TValue *k) | // TValue * (finished) or NULL (metamethod) returned in eax (RC). | mov BASE, L:RB->base | test RC, RC | jz >3 | // NOBARRIER: lj_meta_tset ensures the table is not black. | movzx RAd, PC_RA | mov RB, [BASE+RA*8] | mov [RC], RB |->cont_nop: // BASE = base, (RC = result) | ins_next | |3: // Call __newindex metamethod. | // BASE = base, L->top = new base, stack = cont/func/t/k/(v) | mov RA, L:RB->top | mov [RA-24], PC // [cont|PC] | movzx RCd, PC_RA | // Copy value to third argument. | mov RB, [BASE+RC*8] | mov [RA+16], RB | lea PC, [RA+FRAME_CONT] | sub PC, BASE | mov LFUNC:RB, [RA-16] // Guaranteed to be a function here. | mov NARGS:RDd, 3+1 // 3 args for func(t, k, v). | cleartp LFUNC:RB | jmp ->vm_call_dispatch_f | |->vmeta_tsetr: |.if X64WIN | mov L:CARG1, SAVE_L | mov CARG3d, RCd | mov L:CARG1->base, BASE | xchg CARG2, TAB:RB // Caveat: CARG2 == BASE. |.else | mov L:CARG1, SAVE_L | mov CARG2, TAB:RB | mov L:CARG1->base, BASE | mov RB, BASE // Save BASE. | mov CARG3d, RCd // Caveat: CARG3 == BASE. |.endif | mov SAVE_PC, PC | call extern lj_tab_setinth // (lua_State *L, GCtab *t, int32_t key) | // TValue * returned in eax (RC). | movzx RAd, PC_RA | mov BASE, RB // Restore BASE. | jmp ->BC_TSETR_Z | |//-- Comparison metamethods --------------------------------------------- | |->vmeta_comp: | movzx RDd, PC_RD | movzx RAd, PC_RA | mov L:RB, SAVE_L | mov L:RB->base, BASE // Caveat: CARG2/CARG3 == BASE. |.if X64WIN | lea CARG3, [BASE+RD*8] | lea CARG2, [BASE+RA*8] |.else | lea CARG2, [BASE+RA*8] | lea CARG3, [BASE+RD*8] |.endif | mov CARG1, L:RB // Caveat: CARG1/CARG4 == RA. | movzx CARG4d, PC_OP | mov SAVE_PC, PC | call extern lj_meta_comp // (lua_State *L, TValue *o1, *o2, int op) | // 0/1 or TValue * (metamethod) returned in eax (RC). |3: | mov BASE, L:RB->base | cmp RC, 1 | ja ->vmeta_binop |4: | lea PC, [PC+4] | jb >6 |5: | movzx RDd, PC_RD | branchPC RD |6: | ins_next | |->cont_condt: // BASE = base, RC = result | add PC, 4 | mov ITYPE, [RC] | sar ITYPE, 47 | cmp ITYPEd, LJ_TISTRUECOND // Branch if result is true. | jb <5 | jmp <6 | |->cont_condf: // BASE = base, RC = result | mov ITYPE, [RC] | sar ITYPE, 47 | cmp ITYPEd, LJ_TISTRUECOND // Branch if result is false. | jmp <4 | |->vmeta_equal: | cleartp TAB:RD | sub PC, 4 |.if X64WIN | mov CARG3, RD | mov CARG4d, RBd | mov L:RB, SAVE_L | mov L:RB->base, BASE // Caveat: CARG2 == BASE. | mov CARG2, RA | mov CARG1, L:RB // Caveat: CARG1 == RA. |.else | mov CARG2, RA | mov CARG4d, RBd // Caveat: CARG4 == RA. | mov L:RB, SAVE_L | mov L:RB->base, BASE // Caveat: CARG3 == BASE. | mov CARG3, RD | mov CARG1, L:RB |.endif | mov SAVE_PC, PC | call extern lj_meta_equal // (lua_State *L, GCobj *o1, *o2, int ne) | // 0/1 or TValue * (metamethod) returned in eax (RC). | jmp <3 | |->vmeta_equal_cd: |.if FFI | sub PC, 4 | mov L:RB, SAVE_L | mov L:RB->base, BASE | mov CARG1, L:RB | mov CARG2d, dword [PC-4] | mov SAVE_PC, PC | call extern lj_meta_equal_cd // (lua_State *L, BCIns ins) | // 0/1 or TValue * (metamethod) returned in eax (RC). | jmp <3 |.endif | |->vmeta_istype: | mov L:RB, SAVE_L | mov L:RB->base, BASE // Caveat: CARG2/CARG3 may be BASE. | mov CARG2d, RAd | mov CARG3d, RDd | mov L:CARG1, L:RB | mov SAVE_PC, PC | call extern lj_meta_istype // (lua_State *L, BCReg ra, BCReg tp) | mov BASE, L:RB->base | jmp <6 | |//-- Arithmetic metamethods --------------------------------------------- | |->vmeta_arith_vno: |.if DUALNUM | movzx RBd, PC_RB | movzx RCd, PC_RC |.endif |->vmeta_arith_vn: | lea RC, [KBASE+RC*8] | jmp >1 | |->vmeta_arith_nvo: |.if DUALNUM | movzx RBd, PC_RB | movzx RCd, PC_RC |.endif |->vmeta_arith_nv: | lea TMPR, [KBASE+RC*8] | lea RC, [BASE+RB*8] | mov RB, TMPR | jmp >2 | |->vmeta_unm: | lea RC, [BASE+RD*8] | mov RB, RC | jmp >2 | |->vmeta_arith_vvo: |.if DUALNUM | movzx RBd, PC_RB | movzx RCd, PC_RC |.endif |->vmeta_arith_vv: | lea RC, [BASE+RC*8] |1: | lea RB, [BASE+RB*8] |2: | lea RA, [BASE+RA*8] |.if X64WIN | mov CARG3, RB | mov CARG4, RC | movzx RCd, PC_OP | mov ARG5d, RCd | mov L:RB, SAVE_L | mov L:RB->base, BASE // Caveat: CARG2 == BASE. | mov CARG2, RA | mov CARG1, L:RB // Caveat: CARG1 == RA. |.else | movzx CARG5d, PC_OP | mov CARG2, RA | mov CARG4, RC // Caveat: CARG4 == RA. | mov L:CARG1, SAVE_L | mov L:CARG1->base, BASE // Caveat: CARG3 == BASE. | mov CARG3, RB | mov L:RB, L:CARG1 |.endif | mov SAVE_PC, PC | call extern lj_meta_arith // (lua_State *L, TValue *ra,*rb,*rc, BCReg op) | // NULL (finished) or TValue * (metamethod) returned in eax (RC). | mov BASE, L:RB->base | test RC, RC | jz ->cont_nop | | // Call metamethod for binary op. |->vmeta_binop: | // BASE = base, RC = new base, stack = cont/func/o1/o2 | mov RA, RC | sub RC, BASE | mov [RA-24], PC // [cont|PC] | lea PC, [RC+FRAME_CONT] | mov NARGS:RDd, 2+1 // 2 args for func(o1, o2). | jmp ->vm_call_dispatch | |->vmeta_len: | movzx RDd, PC_RD | mov L:RB, SAVE_L | mov L:RB->base, BASE | lea CARG2, [BASE+RD*8] // Caveat: CARG2 == BASE | mov L:CARG1, L:RB | mov SAVE_PC, PC | call extern lj_meta_len // (lua_State *L, TValue *o) | // NULL (retry) or TValue * (metamethod) returned in eax (RC). | mov BASE, L:RB->base #if LJ_52 | test RC, RC | jne ->vmeta_binop // Binop call for compatibility. | movzx RDd, PC_RD | mov TAB:CARG1, [BASE+RD*8] | cleartp TAB:CARG1 | jmp ->BC_LEN_Z #else | jmp ->vmeta_binop // Binop call for compatibility. #endif | |//-- Call metamethod ---------------------------------------------------- | |->vmeta_call_ra: | lea RA, [BASE+RA*8+16] |->vmeta_call: // Resolve and call __call metamethod. | // BASE = old base, RA = new base, RC = nargs+1, PC = return | mov TMP1d, NARGS:RDd // Save RA, RC for us. | mov RB, RA |.if X64WIN | mov L:TMPR, SAVE_L | mov L:TMPR->base, BASE // Caveat: CARG2 is BASE. | lea CARG2, [RA-16] | lea CARG3, [RA+NARGS:RD*8-8] | mov CARG1, L:TMPR // Caveat: CARG1 is RA. |.else | mov L:CARG1, SAVE_L | mov L:CARG1->base, BASE // Caveat: CARG3 is BASE. | lea CARG2, [RA-16] | lea CARG3, [RA+NARGS:RD*8-8] |.endif | mov SAVE_PC, PC | call extern lj_meta_call // (lua_State *L, TValue *func, TValue *top) | mov RA, RB | mov L:RB, SAVE_L | mov BASE, L:RB->base | mov NARGS:RDd, TMP1d | mov LFUNC:RB, [RA-16] | add NARGS:RDd, 1 | // This is fragile. L->base must not move, KBASE must always be defined. | cmp KBASE, BASE // Continue with CALLT if flag set. | je ->BC_CALLT_Z | cleartp LFUNC:RB | mov BASE, RA | ins_call // Otherwise call resolved metamethod. | |//-- Argument coercion for 'for' statement ------------------------------ | |->vmeta_for: | mov L:RB, SAVE_L | mov L:RB->base, BASE | mov CARG2, RA // Caveat: CARG2 == BASE | mov L:CARG1, L:RB // Caveat: CARG1 == RA | mov SAVE_PC, PC | call extern lj_meta_for // (lua_State *L, TValue *base) | mov BASE, L:RB->base | mov RCd, [PC-4] | movzx RAd, RCH | movzx OP, RCL | shr RCd, 16 | jmp aword [DISPATCH+OP*8+GG_DISP2STATIC] // Retry FORI or JFORI. | |//----------------------------------------------------------------------- |//-- Fast functions ----------------------------------------------------- |//----------------------------------------------------------------------- | |.macro .ffunc, name |->ff_ .. name: |.endmacro | |.macro .ffunc_1, name |->ff_ .. name: | cmp NARGS:RDd, 1+1; jb ->fff_fallback |.endmacro | |.macro .ffunc_2, name |->ff_ .. name: | cmp NARGS:RDd, 2+1; jb ->fff_fallback |.endmacro | |.macro .ffunc_n, name, op | .ffunc_1 name | checknumtp [BASE], ->fff_fallback | op xmm0, qword [BASE] |.endmacro | |.macro .ffunc_n, name | .ffunc_n name, movsd |.endmacro | |.macro .ffunc_nn, name | .ffunc_2 name | checknumtp [BASE], ->fff_fallback | checknumtp [BASE+8], ->fff_fallback | movsd xmm0, qword [BASE] | movsd xmm1, qword [BASE+8] |.endmacro | |// Inlined GC threshold check. Caveat: uses label 1. |.macro ffgccheck | mov RB, [DISPATCH+DISPATCH_GL(gc.total)] | cmp RB, [DISPATCH+DISPATCH_GL(gc.threshold)] | jb >1 | call ->fff_gcstep |1: |.endmacro | |//-- Base library: checks ----------------------------------------------- | |.ffunc_1 assert | mov ITYPE, [BASE] | mov RB, ITYPE | sar ITYPE, 47 | cmp ITYPEd, LJ_TISTRUECOND; jae ->fff_fallback | mov PC, [BASE-8] | mov MULTRES, RDd | mov RB, [BASE] | mov [BASE-16], RB | sub RDd, 2 | jz >2 | mov RA, BASE |1: | add RA, 8 | mov RB, [RA] | mov [RA-16], RB | sub RDd, 1 | jnz <1 |2: | mov RDd, MULTRES | jmp ->fff_res_ | |.ffunc_1 type | mov RC, [BASE] | sar RC, 47 | mov RBd, LJ_TISNUM | cmp RCd, RBd | cmovb RCd, RBd | not RCd |2: | mov CFUNC:RB, [BASE-16] | cleartp CFUNC:RB | mov STR:RC, [CFUNC:RB+RC*8+((char *)(&((GCfuncC *)0)->upvalue))] | mov PC, [BASE-8] | settp STR:RC, LJ_TSTR | mov [BASE-16], STR:RC | jmp ->fff_res1 | |//-- Base library: getters and setters --------------------------------- | |.ffunc_1 getmetatable | mov TAB:RB, [BASE] | mov PC, [BASE-8] | checktab TAB:RB, >6 |1: // Field metatable must be at same offset for GCtab and GCudata! | mov TAB:RB, TAB:RB->metatable |2: | test TAB:RB, TAB:RB | mov aword [BASE-16], LJ_TNIL | jz ->fff_res1 | settp TAB:RC, TAB:RB, LJ_TTAB | mov [BASE-16], TAB:RC // Store metatable as default result. | mov STR:RC, [DISPATCH+DISPATCH_GL(gcroot)+8*(GCROOT_MMNAME+MM_metatable)] | mov RAd, TAB:RB->hmask | and RAd, STR:RC->hash | settp STR:RC, LJ_TSTR | imul RAd, #NODE | add NODE:RA, TAB:RB->node |3: // Rearranged logic, because we expect _not_ to find the key. | cmp NODE:RA->key, STR:RC | je >5 |4: | mov NODE:RA, NODE:RA->next | test NODE:RA, NODE:RA | jnz <3 | jmp ->fff_res1 // Not found, keep default result. |5: | mov RB, NODE:RA->val | cmp RB, LJ_TNIL; je ->fff_res1 // Ditto for nil value. | mov [BASE-16], RB // Return value of mt.__metatable. | jmp ->fff_res1 | |6: | cmp ITYPEd, LJ_TUDATA; je <1 | cmp ITYPEd, LJ_TISNUM; ja >7 | mov ITYPEd, LJ_TISNUM |7: | not ITYPEd | mov TAB:RB, [DISPATCH+ITYPE*8+DISPATCH_GL(gcroot[GCROOT_BASEMT])] | jmp <2 | |.ffunc_2 setmetatable | mov TAB:RB, [BASE] | mov TAB:TMPR, TAB:RB | checktab TAB:RB, ->fff_fallback | // Fast path: no mt for table yet and not clearing the mt. | cmp aword TAB:RB->metatable, 0; jne ->fff_fallback | mov TAB:RA, [BASE+8] | checktab TAB:RA, ->fff_fallback | mov TAB:RB->metatable, TAB:RA | mov PC, [BASE-8] | mov [BASE-16], TAB:TMPR // Return original table. | test byte TAB:RB->marked, LJ_GC_BLACK // isblack(table) | jz >1 | // Possible write barrier. Table is black, but skip iswhite(mt) check. | barrierback TAB:RB, RC |1: | jmp ->fff_res1 | |.ffunc_2 rawget |.if X64WIN | mov TAB:RA, [BASE] | checktab TAB:RA, ->fff_fallback | mov RB, BASE // Save BASE. | lea CARG3, [BASE+8] | mov CARG2, TAB:RA // Caveat: CARG2 == BASE. | mov CARG1, SAVE_L |.else | mov TAB:CARG2, [BASE] | checktab TAB:CARG2, ->fff_fallback | mov RB, BASE // Save BASE. | lea CARG3, [BASE+8] // Caveat: CARG3 == BASE. | mov CARG1, SAVE_L |.endif | call extern lj_tab_get // (lua_State *L, GCtab *t, cTValue *key) | // cTValue * returned in eax (RD). | mov BASE, RB // Restore BASE. | // Copy table slot. | mov RB, [RD] | mov PC, [BASE-8] | mov [BASE-16], RB | jmp ->fff_res1 | |//-- Base library: conversions ------------------------------------------ | |.ffunc tonumber | // Only handles the number case inline (without a base argument). | cmp NARGS:RDd, 1+1; jne ->fff_fallback // Exactly one argument. | mov RB, [BASE] | checknumber RB, ->fff_fallback | mov PC, [BASE-8] | mov [BASE-16], RB | jmp ->fff_res1 | |.ffunc_1 tostring | // Only handles the string or number case inline. | mov PC, [BASE-8] | mov STR:RB, [BASE] | checktp_nc STR:RB, LJ_TSTR, >3 | // A __tostring method in the string base metatable is ignored. |2: | mov [BASE-16], STR:RB | jmp ->fff_res1 |3: // Handle numbers inline, unless a number base metatable is present. | cmp ITYPEd, LJ_TISNUM; ja ->fff_fallback_1 | cmp aword [DISPATCH+DISPATCH_GL(gcroot[GCROOT_BASEMT_NUM])], 0 | jne ->fff_fallback | ffgccheck // Caveat: uses label 1. | mov L:RB, SAVE_L | mov L:RB->base, BASE // Add frame since C call can throw. | mov SAVE_PC, PC // Redundant (but a defined value). |.if not X64WIN | mov CARG2, BASE // Otherwise: CARG2 == BASE |.endif | mov L:CARG1, L:RB |.if DUALNUM | call extern lj_strfmt_number // (lua_State *L, cTValue *o) |.else | call extern lj_strfmt_num // (lua_State *L, lua_Number *np) |.endif | // GCstr returned in eax (RD). | mov BASE, L:RB->base | settp STR:RB, RD, LJ_TSTR | jmp <2 | |//-- Base library: iterators ------------------------------------------- | |.ffunc_1 next | je >2 // Missing 2nd arg? |1: |.if X64WIN | mov RA, [BASE] | checktab RA, ->fff_fallback |.else | mov CARG2, [BASE] | checktab CARG2, ->fff_fallback |.endif | mov L:RB, SAVE_L | mov L:RB->base, BASE // Add frame since C call can throw. | mov L:RB->top, BASE // Dummy frame length is ok. | mov PC, [BASE-8] |.if X64WIN | lea CARG3, [BASE+8] | mov CARG2, RA // Caveat: CARG2 == BASE. | mov CARG1, L:RB |.else | lea CARG3, [BASE+8] // Caveat: CARG3 == BASE. | mov CARG1, L:RB |.endif | mov SAVE_PC, PC // Needed for ITERN fallback. | call extern lj_tab_next // (lua_State *L, GCtab *t, TValue *key) | // Flag returned in eax (RD). | mov BASE, L:RB->base | test RDd, RDd; jz >3 // End of traversal? | // Copy key and value to results. | mov RB, [BASE+8] | mov RD, [BASE+16] | mov [BASE-16], RB | mov [BASE-8], RD |->fff_res2: | mov RDd, 1+2 | jmp ->fff_res |2: // Set missing 2nd arg to nil. | mov aword [BASE+8], LJ_TNIL | jmp <1 |3: // End of traversal: return nil. | mov aword [BASE-16], LJ_TNIL | jmp ->fff_res1 | |.ffunc_1 pairs | mov TAB:RB, [BASE] | mov TMPR, TAB:RB | checktab TAB:RB, ->fff_fallback #if LJ_52 | cmp aword TAB:RB->metatable, 0; jne ->fff_fallback #endif | mov CFUNC:RD, [BASE-16] | cleartp CFUNC:RD | mov CFUNC:RD, CFUNC:RD->upvalue[0] | settp CFUNC:RD, LJ_TFUNC | mov PC, [BASE-8] | mov [BASE-16], CFUNC:RD | mov [BASE-8], TMPR | mov aword [BASE], LJ_TNIL | mov RDd, 1+3 | jmp ->fff_res | |.ffunc_2 ipairs_aux | mov TAB:RB, [BASE] | checktab TAB:RB, ->fff_fallback |.if DUALNUM | mov RA, [BASE+8] | checkint RA, ->fff_fallback |.else | checknumtp [BASE+8], ->fff_fallback | movsd xmm0, qword [BASE+8] |.endif | mov PC, [BASE-8] |.if DUALNUM | add RAd, 1 | setint ITYPE, RA | mov [BASE-16], ITYPE |.else | sseconst_1 xmm1, TMPR | addsd xmm0, xmm1 | cvttsd2si RAd, xmm0 | movsd qword [BASE-16], xmm0 |.endif | cmp RAd, TAB:RB->asize; jae >2 // Not in array part? | mov RD, TAB:RB->array | lea RD, [RD+RA*8] |1: | cmp aword [RD], LJ_TNIL; je ->fff_res0 | // Copy array slot. | mov RB, [RD] | mov [BASE-8], RB | jmp ->fff_res2 |2: // Check for empty hash part first. Otherwise call C function. | cmp dword TAB:RB->hmask, 0; je ->fff_res0 |.if X64WIN | mov TMPR, BASE | mov CARG2d, RAd | mov CARG1, TAB:RB | mov RB, TMPR |.else | mov CARG1, TAB:RB | mov RB, BASE // Save BASE. | mov CARG2d, RAd // Caveat: CARG2 == BASE |.endif | call extern lj_tab_getinth // (GCtab *t, int32_t key) | // cTValue * or NULL returned in eax (RD). | mov BASE, RB | test RD, RD | jnz <1 |->fff_res0: | mov RDd, 1+0 | jmp ->fff_res | |.ffunc_1 ipairs | mov TAB:RB, [BASE] | mov TMPR, TAB:RB | checktab TAB:RB, ->fff_fallback #if LJ_52 | cmp aword TAB:RB->metatable, 0; jne ->fff_fallback #endif | mov CFUNC:RD, [BASE-16] | cleartp CFUNC:RD | mov CFUNC:RD, CFUNC:RD->upvalue[0] | settp CFUNC:RD, LJ_TFUNC | mov PC, [BASE-8] | mov [BASE-16], CFUNC:RD | mov [BASE-8], TMPR |.if DUALNUM | mov64 RD, ((uint64_t)LJ_TISNUM<<47) | mov [BASE], RD |.else | mov qword [BASE], 0 |.endif | mov RDd, 1+3 | jmp ->fff_res | |//-- Base library: catch errors ---------------------------------------- | |.ffunc_1 pcall | lea RA, [BASE+16] | sub NARGS:RDd, 1 | mov PCd, 16+FRAME_PCALL |1: | movzx RBd, byte [DISPATCH+DISPATCH_GL(hookmask)] | shr RB, HOOK_ACTIVE_SHIFT | and RB, 1 | add PC, RB // Remember active hook before pcall. | // Note: this does a (harmless) copy of the function to the PC slot, too. | mov KBASE, RD |2: | mov RB, [RA+KBASE*8-24] | mov [RA+KBASE*8-16], RB | sub KBASE, 1 | ja <2 | jmp ->vm_call_dispatch | |.ffunc_2 xpcall | mov LFUNC:RA, [BASE+8] | checktp_nc LFUNC:RA, LJ_TFUNC, ->fff_fallback | mov LFUNC:RB, [BASE] // Swap function and traceback. | mov [BASE], LFUNC:RA | mov [BASE+8], LFUNC:RB | lea RA, [BASE+24] | sub NARGS:RDd, 2 | mov PCd, 24+FRAME_PCALL | jmp <1 | |//-- Coroutine library -------------------------------------------------- | |.macro coroutine_resume_wrap, resume |.if resume |.ffunc_1 coroutine_resume | mov L:RB, [BASE] | cleartp L:RB |.else |.ffunc coroutine_wrap_aux | mov CFUNC:RB, [BASE-16] | cleartp CFUNC:RB | mov L:RB, CFUNC:RB->upvalue[0].gcr | cleartp L:RB |.endif | mov PC, [BASE-8] | mov SAVE_PC, PC | mov TMP1, L:RB |.if resume | checktptp [BASE], LJ_TTHREAD, ->fff_fallback |.endif | cmp aword L:RB->cframe, 0; jne ->fff_fallback | cmp byte L:RB->status, LUA_YIELD; ja ->fff_fallback | mov RA, L:RB->top | je >1 // Status != LUA_YIELD (i.e. 0)? | cmp RA, L:RB->base // Check for presence of initial func. | je ->fff_fallback | mov PC, [RA-8] // Move initial function up. | mov [RA], PC | add RA, 8 |1: |.if resume | lea PC, [RA+NARGS:RD*8-16] // Check stack space (-1-thread). |.else | lea PC, [RA+NARGS:RD*8-8] // Check stack space (-1). |.endif | cmp PC, L:RB->maxstack; ja ->fff_fallback | mov L:RB->top, PC | | mov L:RB, SAVE_L | mov L:RB->base, BASE |.if resume | add BASE, 8 // Keep resumed thread in stack for GC. |.endif | mov L:RB->top, BASE |.if resume | lea RB, [BASE+NARGS:RD*8-24] // RB = end of source for stack move. |.else | lea RB, [BASE+NARGS:RD*8-16] // RB = end of source for stack move. |.endif | sub RB, PC // Relative to PC. | | cmp PC, RA | je >3 |2: // Move args to coroutine. | mov RC, [PC+RB] | mov [PC-8], RC | sub PC, 8 | cmp PC, RA | jne <2 |3: | mov CARG2, RA | mov CARG1, TMP1 | call ->vm_resume // (lua_State *L, TValue *base, 0, 0) | | mov L:RB, SAVE_L | mov L:PC, TMP1 | mov BASE, L:RB->base | mov [DISPATCH+DISPATCH_GL(cur_L)], L:RB | set_vmstate INTERP | | cmp eax, LUA_YIELD | ja >8 |4: | mov RA, L:PC->base | mov KBASE, L:PC->top | mov L:PC->top, RA // Clear coroutine stack. | mov PC, KBASE | sub PC, RA | je >6 // No results? | lea RD, [BASE+PC] | shr PCd, 3 | cmp RD, L:RB->maxstack | ja >9 // Need to grow stack? | | mov RB, BASE | sub RB, RA |5: // Move results from coroutine. | mov RD, [RA] | mov [RA+RB], RD | add RA, 8 | cmp RA, KBASE | jne <5 |6: |.if resume | lea RDd, [PCd+2] // nresults+1 = 1 + true + results. | mov_true ITYPE // Prepend true to results. | mov [BASE-8], ITYPE |.else | lea RDd, [PCd+1] // nresults+1 = 1 + results. |.endif |7: | mov PC, SAVE_PC | mov MULTRES, RDd |.if resume | mov RA, -8 |.else | xor RAd, RAd |.endif | test PCd, FRAME_TYPE | jz ->BC_RET_Z | jmp ->vm_return | |8: // Coroutine returned with error (at co->top-1). |.if resume | mov_false ITYPE // Prepend false to results. | mov [BASE-8], ITYPE | mov RA, L:PC->top | sub RA, 8 | mov L:PC->top, RA // Clear error from coroutine stack. | // Copy error message. | mov RD, [RA] | mov [BASE], RD | mov RDd, 1+2 // nresults+1 = 1 + false + error. | jmp <7 |.else | mov CARG2, L:PC | mov CARG1, L:RB | call extern lj_ffh_coroutine_wrap_err // (lua_State *L, lua_State *co) | // Error function does not return. |.endif | |9: // Handle stack expansion on return from yield. | mov L:RA, TMP1 | mov L:RA->top, KBASE // Undo coroutine stack clearing. | mov CARG2, PC | mov CARG1, L:RB | call extern lj_state_growstack // (lua_State *L, int n) | mov L:PC, TMP1 | mov BASE, L:RB->base | jmp <4 // Retry the stack move. |.endmacro | | coroutine_resume_wrap 1 // coroutine.resume | coroutine_resume_wrap 0 // coroutine.wrap | |.ffunc coroutine_yield | mov L:RB, SAVE_L | test aword L:RB->cframe, CFRAME_RESUME | jz ->fff_fallback | mov L:RB->base, BASE | lea RD, [BASE+NARGS:RD*8-8] | mov L:RB->top, RD | xor RDd, RDd | mov aword L:RB->cframe, RD | mov al, LUA_YIELD | mov byte L:RB->status, al | jmp ->vm_leave_unw | |//-- Math library ------------------------------------------------------- | | .ffunc_1 math_abs | mov RB, [BASE] |.if DUALNUM | checkint RB, >3 | cmp RBd, 0; jns ->fff_resi | neg RBd; js >2 |->fff_resbit: |->fff_resi: | setint RB |->fff_resRB: | mov PC, [BASE-8] | mov [BASE-16], RB | jmp ->fff_res1 |2: | mov64 RB, U64x(41e00000,00000000) // 2^31. | jmp ->fff_resRB |3: | ja ->fff_fallback |.else | checknum RB, ->fff_fallback |.endif | shl RB, 1 | shr RB, 1 | mov PC, [BASE-8] | mov [BASE-16], RB | jmp ->fff_res1 | |.ffunc_n math_sqrt, sqrtsd |->fff_resxmm0: | mov PC, [BASE-8] | movsd qword [BASE-16], xmm0 | // fallthrough | |->fff_res1: | mov RDd, 1+1 |->fff_res: | mov MULTRES, RDd |->fff_res_: | test PCd, FRAME_TYPE | jnz >7 |5: | cmp PC_RB, RDL // More results expected? | ja >6 | // Adjust BASE. KBASE is assumed to be set for the calling frame. | movzx RAd, PC_RA | neg RA | lea BASE, [BASE+RA*8-16] // base = base - (RA+2)*8 | ins_next | |6: // Fill up results with nil. | mov aword [BASE+RD*8-24], LJ_TNIL | add RD, 1 | jmp <5 | |7: // Non-standard return case. | mov RA, -16 // Results start at BASE+RA = BASE-16. | jmp ->vm_return | |.macro math_round, func | .ffunc math_ .. func |.if DUALNUM | mov RB, [BASE] | checknumx RB, ->fff_resRB, je | ja ->fff_fallback |.else | checknumtp [BASE], ->fff_fallback |.endif | movsd xmm0, qword [BASE] | call ->vm_ .. func .. _sse |.if DUALNUM | cvttsd2si RBd, xmm0 | cmp RBd, 0x80000000 | jne ->fff_resi | cvtsi2sd xmm1, RBd | ucomisd xmm0, xmm1 | jp ->fff_resxmm0 | je ->fff_resi |.endif | jmp ->fff_resxmm0 |.endmacro | | math_round floor | math_round ceil | |.ffunc math_log | cmp NARGS:RDd, 1+1; jne ->fff_fallback // Exactly one argument. | checknumtp [BASE], ->fff_fallback | movsd xmm0, qword [BASE] | mov RB, BASE | call extern log | mov BASE, RB | jmp ->fff_resxmm0 | |.macro math_extern, func | .ffunc_n math_ .. func | mov RB, BASE | call extern func | mov BASE, RB | jmp ->fff_resxmm0 |.endmacro | |.macro math_extern2, func | .ffunc_nn math_ .. func | mov RB, BASE | call extern func | mov BASE, RB | jmp ->fff_resxmm0 |.endmacro | | math_extern log10 | math_extern exp | math_extern sin | math_extern cos | math_extern tan | math_extern asin | math_extern acos | math_extern atan | math_extern sinh | math_extern cosh | math_extern tanh | math_extern2 pow | math_extern2 atan2 | math_extern2 fmod | |.ffunc_2 math_ldexp | checknumtp [BASE], ->fff_fallback | checknumtp [BASE+8], ->fff_fallback | fld qword [BASE+8] | fld qword [BASE] | fscale | fpop1 | mov PC, [BASE-8] | fstp qword [BASE-16] | jmp ->fff_res1 | |.ffunc_n math_frexp | mov RB, BASE |.if X64WIN | lea CARG2, TMP1 // Caveat: CARG2 == BASE |.else | lea CARG1, TMP1 |.endif | call extern frexp | mov BASE, RB | mov RBd, TMP1d | mov PC, [BASE-8] | movsd qword [BASE-16], xmm0 |.if DUALNUM | setint RB | mov [BASE-8], RB |.else | cvtsi2sd xmm1, RBd | movsd qword [BASE-8], xmm1 |.endif | mov RDd, 1+2 | jmp ->fff_res | |.ffunc_n math_modf | mov RB, BASE |.if X64WIN | lea CARG2, [BASE-16] // Caveat: CARG2 == BASE |.else | lea CARG1, [BASE-16] |.endif | call extern modf | mov BASE, RB | mov PC, [BASE-8] | movsd qword [BASE-8], xmm0 | mov RDd, 1+2 | jmp ->fff_res | |.macro math_minmax, name, cmovop, sseop | .ffunc name | mov RAd, 2 |.if DUALNUM | mov RB, [BASE] | checkint RB, >4 |1: // Handle integers. | cmp RAd, RDd; jae ->fff_resRB | mov TMPR, [BASE+RA*8-8] | checkint TMPR, >3 | cmp RBd, TMPRd | cmovop RB, TMPR | add RAd, 1 | jmp <1 |3: | ja ->fff_fallback | // Convert intermediate result to number and continue below. | cvtsi2sd xmm0, RBd | jmp >6 |4: | ja ->fff_fallback |.else | checknumtp [BASE], ->fff_fallback |.endif | | movsd xmm0, qword [BASE] |5: // Handle numbers or integers. | cmp RAd, RDd; jae ->fff_resxmm0 |.if DUALNUM | mov RB, [BASE+RA*8-8] | checknumx RB, >6, jb | ja ->fff_fallback | cvtsi2sd xmm1, RBd | jmp >7 |.else | checknumtp [BASE+RA*8-8], ->fff_fallback |.endif |6: | movsd xmm1, qword [BASE+RA*8-8] |7: | sseop xmm0, xmm1 | add RAd, 1 | jmp <5 |.endmacro | | math_minmax math_min, cmovg, minsd | math_minmax math_max, cmovl, maxsd | |//-- String library ----------------------------------------------------- | |.ffunc string_byte // Only handle the 1-arg case here. | cmp NARGS:RDd, 1+1; jne ->fff_fallback | mov STR:RB, [BASE] | checkstr STR:RB, ->fff_fallback | mov PC, [BASE-8] | cmp dword STR:RB->len, 1 | jb ->fff_res0 // Return no results for empty string. | movzx RBd, byte STR:RB[1] |.if DUALNUM | jmp ->fff_resi |.else | cvtsi2sd xmm0, RBd; jmp ->fff_resxmm0 |.endif | |.ffunc string_char // Only handle the 1-arg case here. | ffgccheck | cmp NARGS:RDd, 1+1; jne ->fff_fallback // *Exactly* 1 arg. |.if DUALNUM | mov RB, [BASE] | checkint RB, ->fff_fallback |.else | checknumtp [BASE], ->fff_fallback | cvttsd2si RBd, qword [BASE] |.endif | cmp RBd, 255; ja ->fff_fallback | mov TMP1d, RBd | mov TMPRd, 1 | lea RD, TMP1 // Points to stack. Little-endian. |->fff_newstr: | mov L:RB, SAVE_L | mov L:RB->base, BASE | mov CARG3d, TMPRd // Zero-extended to size_t. | mov CARG2, RD | mov CARG1, L:RB | mov SAVE_PC, PC | call extern lj_str_new // (lua_State *L, char *str, size_t l) |->fff_resstr: | // GCstr * returned in eax (RD). | mov BASE, L:RB->base | mov PC, [BASE-8] | settp STR:RD, LJ_TSTR | mov [BASE-16], STR:RD | jmp ->fff_res1 | |.ffunc string_sub | ffgccheck | mov TMPRd, -1 | cmp NARGS:RDd, 1+2; jb ->fff_fallback | jna >1 |.if DUALNUM | mov TMPR, [BASE+16] | checkint TMPR, ->fff_fallback |.else | checknumtp [BASE+16], ->fff_fallback | cvttsd2si TMPRd, qword [BASE+16] |.endif |1: | mov STR:RB, [BASE] | checkstr STR:RB, ->fff_fallback |.if DUALNUM | mov ITYPE, [BASE+8] | mov RAd, ITYPEd // Must clear hiword for lea below. | sar ITYPE, 47 | cmp ITYPEd, LJ_TISNUM | jne ->fff_fallback |.else | checknumtp [BASE+8], ->fff_fallback | cvttsd2si RAd, qword [BASE+8] |.endif | mov RCd, STR:RB->len | cmp RCd, TMPRd // len < end? (unsigned compare) | jb >5 |2: | test RAd, RAd // start <= 0? | jle >7 |3: | sub TMPRd, RAd // start > end? | jl ->fff_emptystr | lea RD, [STR:RB+RAd+#STR-1] | add TMPRd, 1 |4: | jmp ->fff_newstr | |5: // Negative end or overflow. | jl >6 | lea TMPRd, [TMPRd+RCd+1] // end = end+(len+1) | jmp <2 |6: // Overflow. | mov TMPRd, RCd // end = len | jmp <2 | |7: // Negative start or underflow. | je >8 | add RAd, RCd // start = start+(len+1) | add RAd, 1 | jg <3 // start > 0? |8: // Underflow. | mov RAd, 1 // start = 1 | jmp <3 | |->fff_emptystr: // Range underflow. | xor TMPRd, TMPRd // Zero length. Any ptr in RD is ok. | jmp <4 | |.macro ffstring_op, name | .ffunc_1 string_ .. name | ffgccheck |.if X64WIN | mov STR:TMPR, [BASE] | checkstr STR:TMPR, ->fff_fallback |.else | mov STR:CARG2, [BASE] | checkstr STR:CARG2, ->fff_fallback |.endif | mov L:RB, SAVE_L | lea SBUF:CARG1, [DISPATCH+DISPATCH_GL(tmpbuf)] | mov L:RB->base, BASE |.if X64WIN | mov STR:CARG2, STR:TMPR // Caveat: CARG2 == BASE |.endif | mov RC, SBUF:CARG1->b | mov SBUF:CARG1->L, L:RB | mov SBUF:CARG1->p, RC | mov SAVE_PC, PC | call extern lj_buf_putstr_ .. name | mov CARG1, rax | call extern lj_buf_tostr | jmp ->fff_resstr |.endmacro | |ffstring_op reverse |ffstring_op lower |ffstring_op upper | |//-- Bit library -------------------------------------------------------- | |.macro .ffunc_bit, name, kind, fdef | fdef name |.if kind == 2 | sseconst_tobit xmm1, RB |.endif |.if DUALNUM | mov RB, [BASE] | checkint RB, >1 |.if kind > 0 | jmp >2 |.else | jmp ->fff_resbit |.endif |1: | ja ->fff_fallback | movd xmm0, RB |.else | checknumtp [BASE], ->fff_fallback | movsd xmm0, qword [BASE] |.endif |.if kind < 2 | sseconst_tobit xmm1, RB |.endif | addsd xmm0, xmm1 | movd RBd, xmm0 |2: |.endmacro | |.macro .ffunc_bit, name, kind | .ffunc_bit name, kind, .ffunc_1 |.endmacro | |.ffunc_bit bit_tobit, 0 | jmp ->fff_resbit | |.macro .ffunc_bit_op, name, ins | .ffunc_bit name, 2 | mov TMPRd, NARGS:RDd // Save for fallback. | lea RD, [BASE+NARGS:RD*8-16] |1: | cmp RD, BASE | jbe ->fff_resbit |.if DUALNUM | mov RA, [RD] | checkint RA, >2 | ins RBd, RAd | sub RD, 8 | jmp <1 |2: | ja ->fff_fallback_bit_op | movd xmm0, RA |.else | checknumtp [RD], ->fff_fallback_bit_op | movsd xmm0, qword [RD] |.endif | addsd xmm0, xmm1 | movd RAd, xmm0 | ins RBd, RAd | sub RD, 8 | jmp <1 |.endmacro | |.ffunc_bit_op bit_band, and |.ffunc_bit_op bit_bor, or |.ffunc_bit_op bit_bxor, xor | |.ffunc_bit bit_bswap, 1 | bswap RBd | jmp ->fff_resbit | |.ffunc_bit bit_bnot, 1 | not RBd |.if DUALNUM | jmp ->fff_resbit |.else |->fff_resbit: | cvtsi2sd xmm0, RBd | jmp ->fff_resxmm0 |.endif | |->fff_fallback_bit_op: | mov NARGS:RDd, TMPRd // Restore for fallback | jmp ->fff_fallback | |.macro .ffunc_bit_sh, name, ins |.if DUALNUM | .ffunc_bit name, 1, .ffunc_2 | // Note: no inline conversion from number for 2nd argument! | mov RA, [BASE+8] | checkint RA, ->fff_fallback |.else | .ffunc_nn name | sseconst_tobit xmm2, RB | addsd xmm0, xmm2 | addsd xmm1, xmm2 | movd RBd, xmm0 | movd RAd, xmm1 |.endif | ins RBd, cl // Assumes RA is ecx. | jmp ->fff_resbit |.endmacro | |.ffunc_bit_sh bit_lshift, shl |.ffunc_bit_sh bit_rshift, shr |.ffunc_bit_sh bit_arshift, sar |.ffunc_bit_sh bit_rol, rol |.ffunc_bit_sh bit_ror, ror | |//----------------------------------------------------------------------- | |->fff_fallback_2: | mov NARGS:RDd, 1+2 // Other args are ignored, anyway. | jmp ->fff_fallback |->fff_fallback_1: | mov NARGS:RDd, 1+1 // Other args are ignored, anyway. |->fff_fallback: // Call fast function fallback handler. | // BASE = new base, RD = nargs+1 | mov L:RB, SAVE_L | mov PC, [BASE-8] // Fallback may overwrite PC. | mov SAVE_PC, PC // Redundant (but a defined value). | mov L:RB->base, BASE | lea RD, [BASE+NARGS:RD*8-8] | lea RA, [RD+8*LUA_MINSTACK] // Ensure enough space for handler. | mov L:RB->top, RD | mov CFUNC:RD, [BASE-16] | cleartp CFUNC:RD | cmp RA, L:RB->maxstack | ja >5 // Need to grow stack. | mov CARG1, L:RB | call aword CFUNC:RD->f // (lua_State *L) | mov BASE, L:RB->base | // Either throws an error, or recovers and returns -1, 0 or nresults+1. | test RDd, RDd; jg ->fff_res // Returned nresults+1? |1: | mov RA, L:RB->top | sub RA, BASE | shr RAd, 3 | test RDd, RDd | lea NARGS:RDd, [RAd+1] | mov LFUNC:RB, [BASE-16] | jne ->vm_call_tail // Returned -1? | cleartp LFUNC:RB | ins_callt // Returned 0: retry fast path. | |// Reconstruct previous base for vmeta_call during tailcall. |->vm_call_tail: | mov RA, BASE | test PCd, FRAME_TYPE | jnz >3 | movzx RBd, PC_RA | neg RB | lea BASE, [BASE+RB*8-16] // base = base - (RB+2)*8 | jmp ->vm_call_dispatch // Resolve again for tailcall. |3: | mov RB, PC | and RB, -8 | sub BASE, RB | jmp ->vm_call_dispatch // Resolve again for tailcall. | |5: // Grow stack for fallback handler. | mov CARG2d, LUA_MINSTACK | mov CARG1, L:RB | call extern lj_state_growstack // (lua_State *L, int n) | mov BASE, L:RB->base | xor RDd, RDd // Simulate a return 0. | jmp <1 // Dumb retry (goes through ff first). | |->fff_gcstep: // Call GC step function. | // BASE = new base, RD = nargs+1 | pop RB // Must keep stack at same level. | mov TMP1, RB // Save return address | mov L:RB, SAVE_L | mov SAVE_PC, PC // Redundant (but a defined value). | mov L:RB->base, BASE | lea RD, [BASE+NARGS:RD*8-8] | mov CARG1, L:RB | mov L:RB->top, RD | call extern lj_gc_step // (lua_State *L) | mov BASE, L:RB->base | mov RD, L:RB->top | sub RD, BASE | shr RDd, 3 | add NARGS:RDd, 1 | mov RB, TMP1 | push RB // Restore return address. | ret | |//----------------------------------------------------------------------- |//-- Special dispatch targets ------------------------------------------- |//----------------------------------------------------------------------- | |->vm_record: // Dispatch target for recording phase. |.if JIT | movzx RDd, byte [DISPATCH+DISPATCH_GL(hookmask)] | test RDL, HOOK_VMEVENT // No recording while in vmevent. | jnz >5 | // Decrement the hookcount for consistency, but always do the call. | test RDL, HOOK_ACTIVE | jnz >1 | test RDL, LUA_MASKLINE|LUA_MASKCOUNT | jz >1 | dec dword [DISPATCH+DISPATCH_GL(hookcount)] | jmp >1 |.endif | |->vm_rethook: // Dispatch target for return hooks. | movzx RDd, byte [DISPATCH+DISPATCH_GL(hookmask)] | test RDL, HOOK_ACTIVE // Hook already active? | jnz >5 | jmp >1 | |->vm_inshook: // Dispatch target for instr/line hooks. | movzx RDd, byte [DISPATCH+DISPATCH_GL(hookmask)] | test RDL, HOOK_ACTIVE // Hook already active? | jnz >5 | | test RDL, LUA_MASKLINE|LUA_MASKCOUNT | jz >5 | dec dword [DISPATCH+DISPATCH_GL(hookcount)] | jz >1 | test RDL, LUA_MASKLINE | jz >5 |1: | mov L:RB, SAVE_L | mov L:RB->base, BASE | mov CARG2, PC // Caveat: CARG2 == BASE | mov CARG1, L:RB | // SAVE_PC must hold the _previous_ PC. The callee updates it with PC. | call extern lj_dispatch_ins // (lua_State *L, const BCIns *pc) |3: | mov BASE, L:RB->base |4: | movzx RAd, PC_RA |5: | movzx OP, PC_OP | movzx RDd, PC_RD | jmp aword [DISPATCH+OP*8+GG_DISP2STATIC] // Re-dispatch to static ins. | |->cont_hook: // Continue from hook yield. | add PC, 4 | mov RA, [RB-40] | mov MULTRES, RAd // Restore MULTRES for *M ins. | jmp <4 | |->vm_hotloop: // Hot loop counter underflow. |.if JIT | mov LFUNC:RB, [BASE-16] // Same as curr_topL(L). | cleartp LFUNC:RB | mov RB, LFUNC:RB->pc | movzx RDd, byte [RB+PC2PROTO(framesize)] | lea RD, [BASE+RD*8] | mov L:RB, SAVE_L | mov L:RB->base, BASE | mov L:RB->top, RD | mov CARG2, PC | lea CARG1, [DISPATCH+GG_DISP2J] | mov aword [DISPATCH+DISPATCH_J(L)], L:RB | mov SAVE_PC, PC | call extern lj_trace_hot // (jit_State *J, const BCIns *pc) | jmp <3 |.endif | |->vm_callhook: // Dispatch target for call hooks. | mov SAVE_PC, PC |.if JIT | jmp >1 |.endif | |->vm_hotcall: // Hot call counter underflow. |.if JIT | mov SAVE_PC, PC | or PC, 1 // Marker for hot call. |1: |.endif | lea RD, [BASE+NARGS:RD*8-8] | mov L:RB, SAVE_L | mov L:RB->base, BASE | mov L:RB->top, RD | mov CARG2, PC | mov CARG1, L:RB | call extern lj_dispatch_call // (lua_State *L, const BCIns *pc) | // ASMFunction returned in eax/rax (RD). | mov SAVE_PC, 0 // Invalidate for subsequent line hook. |.if JIT | and PC, -2 |.endif | mov BASE, L:RB->base | mov RA, RD | mov RD, L:RB->top | sub RD, BASE | mov RB, RA | movzx RAd, PC_RA | shr RDd, 3 | add NARGS:RDd, 1 | jmp RB | |->cont_stitch: // Trace stitching. |.if JIT | // BASE = base, RC = result, RB = mbase | mov TRACE:ITYPE, [RB-40] // Save previous trace. | cleartp TRACE:ITYPE | mov TMPRd, MULTRES | movzx RAd, PC_RA | lea RA, [BASE+RA*8] // Call base. | sub TMPRd, 1 | jz >2 |1: // Move results down. | mov RB, [RC] | mov [RA], RB | add RC, 8 | add RA, 8 | sub TMPRd, 1 | jnz <1 |2: | movzx RCd, PC_RA | movzx RBd, PC_RB | add RC, RB | lea RC, [BASE+RC*8-8] |3: | cmp RC, RA | ja >9 // More results wanted? | | test TRACE:ITYPE, TRACE:ITYPE | jz ->cont_nop | movzx RBd, word TRACE:ITYPE->traceno | movzx RDd, word TRACE:ITYPE->link | cmp RDd, RBd | je ->cont_nop // Blacklisted. | test RDd, RDd | jne =>BC_JLOOP // Jump to stitched trace. | | // Stitch a new trace to the previous trace. | mov [DISPATCH+DISPATCH_J(exitno)], RB | mov L:RB, SAVE_L | mov L:RB->base, BASE | mov CARG2, PC | lea CARG1, [DISPATCH+GG_DISP2J] | mov aword [DISPATCH+DISPATCH_J(L)], L:RB | call extern lj_dispatch_stitch // (jit_State *J, const BCIns *pc) | mov BASE, L:RB->base | jmp ->cont_nop | |9: // Fill up results with nil. | mov aword [RA], LJ_TNIL | add RA, 8 | jmp <3 |.endif | |->vm_profhook: // Dispatch target for profiler hook. #if LJ_HASPROFILE | mov L:RB, SAVE_L | mov L:RB->base, BASE | mov CARG2, PC // Caveat: CARG2 == BASE | mov CARG1, L:RB | call extern lj_dispatch_profile // (lua_State *L, const BCIns *pc) | mov BASE, L:RB->base | // HOOK_PROFILE is off again, so re-dispatch to dynamic instruction. | sub PC, 4 | jmp ->cont_nop #endif | |//----------------------------------------------------------------------- |//-- Trace exit handler ------------------------------------------------- |//----------------------------------------------------------------------- | |// Called from an exit stub with the exit number on the stack. |// The 16 bit exit number is stored with two (sign-extended) push imm8. |->vm_exit_handler: |.if JIT | push r13; push r12 | push r11; push r10; push r9; push r8 | push rdi; push rsi; push rbp; lea rbp, [rsp+88]; push rbp | push rbx; push rdx; push rcx; push rax | movzx RCd, byte [rbp-8] // Reconstruct exit number. | mov RCH, byte [rbp-16] | mov [rbp-8], r15; mov [rbp-16], r14 | // DISPATCH is preserved on-trace in LJ_GC64 mode. | mov RAd, [DISPATCH+DISPATCH_GL(vmstate)] // Get trace number. | set_vmstate EXIT | mov [DISPATCH+DISPATCH_J(exitno)], RCd | mov [DISPATCH+DISPATCH_J(parent)], RAd |.if X64WIN | sub rsp, 16*8+4*8 // Room for SSE regs + save area. |.else | sub rsp, 16*8 // Room for SSE regs. |.endif | add rbp, -128 | movsd qword [rbp-8], xmm15; movsd qword [rbp-16], xmm14 | movsd qword [rbp-24], xmm13; movsd qword [rbp-32], xmm12 | movsd qword [rbp-40], xmm11; movsd qword [rbp-48], xmm10 | movsd qword [rbp-56], xmm9; movsd qword [rbp-64], xmm8 | movsd qword [rbp-72], xmm7; movsd qword [rbp-80], xmm6 | movsd qword [rbp-88], xmm5; movsd qword [rbp-96], xmm4 | movsd qword [rbp-104], xmm3; movsd qword [rbp-112], xmm2 | movsd qword [rbp-120], xmm1; movsd qword [rbp-128], xmm0 | // Caveat: RB is rbp. | mov L:RB, [DISPATCH+DISPATCH_GL(cur_L)] | mov BASE, [DISPATCH+DISPATCH_GL(jit_base)] | mov aword [DISPATCH+DISPATCH_J(L)], L:RB | mov L:RB->base, BASE |.if X64WIN | lea CARG2, [rsp+4*8] |.else | mov CARG2, rsp |.endif | lea CARG1, [DISPATCH+GG_DISP2J] | mov qword [DISPATCH+DISPATCH_GL(jit_base)], 0 | call extern lj_trace_exit // (jit_State *J, ExitState *ex) | // MULTRES or negated error code returned in eax (RD). | mov RA, L:RB->cframe | and RA, CFRAME_RAWMASK | mov [RA+CFRAME_OFS_L], L:RB // Set SAVE_L (on-trace resume/yield). | mov BASE, L:RB->base | mov PC, [RA+CFRAME_OFS_PC] // Get SAVE_PC. | jmp >1 |.endif |->vm_exit_interp: | // RD = MULTRES or negated error code, BASE, PC and DISPATCH set. |.if JIT | // Restore additional callee-save registers only used in compiled code. |.if X64WIN | lea RA, [rsp+10*16+4*8] |1: | movdqa xmm15, [RA-10*16] | movdqa xmm14, [RA-9*16] | movdqa xmm13, [RA-8*16] | movdqa xmm12, [RA-7*16] | movdqa xmm11, [RA-6*16] | movdqa xmm10, [RA-5*16] | movdqa xmm9, [RA-4*16] | movdqa xmm8, [RA-3*16] | movdqa xmm7, [RA-2*16] | mov rsp, RA // Reposition stack to C frame. | movdqa xmm6, [RA-1*16] | mov r15, CSAVE_1 | mov r14, CSAVE_2 | mov r13, CSAVE_3 | mov r12, CSAVE_4 |.else | lea RA, [rsp+16] |1: | mov r13, [RA-8] | mov r12, [RA] | mov rsp, RA // Reposition stack to C frame. |.endif | test RDd, RDd; js >9 // Check for error from exit. | mov L:RB, SAVE_L | mov MULTRES, RDd | mov LFUNC:KBASE, [BASE-16] | cleartp LFUNC:KBASE | mov KBASE, LFUNC:KBASE->pc | mov KBASE, [KBASE+PC2PROTO(k)] | mov L:RB->base, BASE | mov qword [DISPATCH+DISPATCH_GL(jit_base)], 0 | set_vmstate INTERP | // Modified copy of ins_next which handles function header dispatch, too. | mov RCd, [PC] | movzx RAd, RCH | movzx OP, RCL | add PC, 4 | shr RCd, 16 | cmp OP, BC_FUNCF // Function header? | jb >3 | cmp OP, BC_FUNCC+2 // Fast function? | jae >4 |2: | mov RCd, MULTRES // RC/RD holds nres+1. |3: | jmp aword [DISPATCH+OP*8] | |4: // Check frame below fast function. | mov RC, [BASE-8] | test RCd, FRAME_TYPE | jnz <2 // Trace stitching continuation? | // Otherwise set KBASE for Lua function below fast function. | movzx RCd, byte [RC-3] | neg RC | mov LFUNC:KBASE, [BASE+RC*8-32] | cleartp LFUNC:KBASE | mov KBASE, LFUNC:KBASE->pc | mov KBASE, [KBASE+PC2PROTO(k)] | jmp <2 | |9: // Rethrow error from the right C frame. | neg RD | mov CARG1, L:RB | mov CARG2, RD | call extern lj_err_throw // (lua_State *L, int errcode) |.endif | |//----------------------------------------------------------------------- |//-- Math helper functions ---------------------------------------------- |//----------------------------------------------------------------------- | |// FP value rounding. Called by math.floor/math.ceil fast functions |// and from JIT code. arg/ret is xmm0. xmm0-xmm3 and RD (eax) modified. |.macro vm_round, name, mode, cond |->name: |->name .. _sse: | sseconst_abs xmm2, RD | sseconst_2p52 xmm3, RD | movaps xmm1, xmm0 | andpd xmm1, xmm2 // |x| | ucomisd xmm3, xmm1 // No truncation if 2^52 <= |x|. | jbe >1 | andnpd xmm2, xmm0 // Isolate sign bit. |.if mode == 2 // trunc(x)? | movaps xmm0, xmm1 | addsd xmm1, xmm3 // (|x| + 2^52) - 2^52 | subsd xmm1, xmm3 | sseconst_1 xmm3, RD | cmpsd xmm0, xmm1, 1 // |x| < result? | andpd xmm0, xmm3 | subsd xmm1, xmm0 // If yes, subtract -1. | orpd xmm1, xmm2 // Merge sign bit back in. |.else | addsd xmm1, xmm3 // (|x| + 2^52) - 2^52 | subsd xmm1, xmm3 | orpd xmm1, xmm2 // Merge sign bit back in. | .if mode == 1 // ceil(x)? | sseconst_m1 xmm2, RD // Must subtract -1 to preserve -0. | cmpsd xmm0, xmm1, 6 // x > result? | .else // floor(x)? | sseconst_1 xmm2, RD | cmpsd xmm0, xmm1, 1 // x < result? | .endif | andpd xmm0, xmm2 | subsd xmm1, xmm0 // If yes, subtract +-1. |.endif | movaps xmm0, xmm1 |1: | ret |.endmacro | | vm_round vm_floor, 0, 1 | vm_round vm_ceil, 1, JIT | vm_round vm_trunc, 2, JIT | |// FP modulo x%y. Called by BC_MOD* and vm_arith. |->vm_mod: |// Args in xmm0/xmm1, return value in xmm0. |// Caveat: xmm0-xmm5 and RC (eax) modified! | movaps xmm5, xmm0 | divsd xmm0, xmm1 | sseconst_abs xmm2, RD | sseconst_2p52 xmm3, RD | movaps xmm4, xmm0 | andpd xmm4, xmm2 // |x/y| | ucomisd xmm3, xmm4 // No truncation if 2^52 <= |x/y|. | jbe >1 | andnpd xmm2, xmm0 // Isolate sign bit. | addsd xmm4, xmm3 // (|x/y| + 2^52) - 2^52 | subsd xmm4, xmm3 | orpd xmm4, xmm2 // Merge sign bit back in. | sseconst_1 xmm2, RD | cmpsd xmm0, xmm4, 1 // x/y < result? | andpd xmm0, xmm2 | subsd xmm4, xmm0 // If yes, subtract 1.0. | movaps xmm0, xmm5 | mulsd xmm1, xmm4 | subsd xmm0, xmm1 | ret |1: | mulsd xmm1, xmm0 | movaps xmm0, xmm5 | subsd xmm0, xmm1 | ret | |// Args in xmm0/eax. Ret in xmm0. xmm0-xmm1 and eax modified. |->vm_powi_sse: | cmp eax, 1; jle >6 // i<=1? | // Now 1 < (unsigned)i <= 0x80000000. |1: // Handle leading zeros. | test eax, 1; jnz >2 | mulsd xmm0, xmm0 | shr eax, 1 | jmp <1 |2: | shr eax, 1; jz >5 | movaps xmm1, xmm0 |3: // Handle trailing bits. | mulsd xmm0, xmm0 | shr eax, 1; jz >4 | jnc <3 | mulsd xmm1, xmm0 | jmp <3 |4: | mulsd xmm0, xmm1 |5: | ret |6: | je <5 // x^1 ==> x | jb >7 // x^0 ==> 1 | neg eax | call <1 | sseconst_1 xmm1, RD | divsd xmm1, xmm0 | movaps xmm0, xmm1 | ret |7: | sseconst_1 xmm0, RD | ret | |//----------------------------------------------------------------------- |//-- Miscellaneous functions -------------------------------------------- |//----------------------------------------------------------------------- | |// int lj_vm_cpuid(uint32_t f, uint32_t res[4]) |->vm_cpuid: | mov eax, CARG1d | .if X64WIN; push rsi; mov rsi, CARG2; .endif | push rbx | xor ecx, ecx | cpuid | mov [rsi], eax | mov [rsi+4], ebx | mov [rsi+8], ecx | mov [rsi+12], edx | pop rbx | .if X64WIN; pop rsi; .endif | ret | |//----------------------------------------------------------------------- |//-- Assertions --------------------------------------------------------- |//----------------------------------------------------------------------- | |->assert_bad_for_arg_type: #ifdef LUA_USE_ASSERT | int3 #endif | int3 | |//----------------------------------------------------------------------- |//-- FFI helper functions ----------------------------------------------- |//----------------------------------------------------------------------- | |// Handler for callback functions. Callback slot number in ah/al. |->vm_ffi_callback: |.if FFI |.type CTSTATE, CTState, PC | saveregs_ // ebp/rbp already saved. ebp now holds global_State *. | lea DISPATCH, [ebp+GG_G2DISP] | mov CTSTATE, GL:ebp->ctype_state | movzx eax, ax | mov CTSTATE->cb.slot, eax | mov CTSTATE->cb.gpr[0], CARG1 | mov CTSTATE->cb.gpr[1], CARG2 | mov CTSTATE->cb.gpr[2], CARG3 | mov CTSTATE->cb.gpr[3], CARG4 | movsd qword CTSTATE->cb.fpr[0], xmm0 | movsd qword CTSTATE->cb.fpr[1], xmm1 | movsd qword CTSTATE->cb.fpr[2], xmm2 | movsd qword CTSTATE->cb.fpr[3], xmm3 |.if X64WIN | lea rax, [rsp+CFRAME_SIZE+4*8] |.else | lea rax, [rsp+CFRAME_SIZE] | mov CTSTATE->cb.gpr[4], CARG5 | mov CTSTATE->cb.gpr[5], CARG6 | movsd qword CTSTATE->cb.fpr[4], xmm4 | movsd qword CTSTATE->cb.fpr[5], xmm5 | movsd qword CTSTATE->cb.fpr[6], xmm6 | movsd qword CTSTATE->cb.fpr[7], xmm7 |.endif | mov CTSTATE->cb.stack, rax | mov CARG2, rsp | mov SAVE_PC, CTSTATE // Any value outside of bytecode is ok. | mov CARG1, CTSTATE | call extern lj_ccallback_enter // (CTState *cts, void *cf) | // lua_State * returned in eax (RD). | set_vmstate INTERP | mov BASE, L:RD->base | mov RD, L:RD->top | sub RD, BASE | mov LFUNC:RB, [BASE-16] | cleartp LFUNC:RB | shr RD, 3 | add RD, 1 | ins_callt |.endif | |->cont_ffi_callback: // Return from FFI callback. |.if FFI | mov L:RA, SAVE_L | mov CTSTATE, [DISPATCH+DISPATCH_GL(ctype_state)] | mov aword CTSTATE->L, L:RA | mov L:RA->base, BASE | mov L:RA->top, RB | mov CARG1, CTSTATE | mov CARG2, RC | call extern lj_ccallback_leave // (CTState *cts, TValue *o) | mov rax, CTSTATE->cb.gpr[0] | movsd xmm0, qword CTSTATE->cb.fpr[0] | jmp ->vm_leave_unw |.endif | |->vm_ffi_call: // Call C function via FFI. | // Caveat: needs special frame unwinding, see below. |.if FFI | .type CCSTATE, CCallState, rbx | push rbp; mov rbp, rsp; push rbx; mov CCSTATE, CARG1 | | // Readjust stack. | mov eax, CCSTATE->spadj | sub rsp, rax | | // Copy stack slots. | movzx ecx, byte CCSTATE->nsp | sub ecx, 1 | js >2 |1: | mov rax, [CCSTATE+rcx*8+offsetof(CCallState, stack)] | mov [rsp+rcx*8+CCALL_SPS_EXTRA*8], rax | sub ecx, 1 | jns <1 |2: | | movzx eax, byte CCSTATE->nfpr | mov CARG1, CCSTATE->gpr[0] | mov CARG2, CCSTATE->gpr[1] | mov CARG3, CCSTATE->gpr[2] | mov CARG4, CCSTATE->gpr[3] |.if not X64WIN | mov CARG5, CCSTATE->gpr[4] | mov CARG6, CCSTATE->gpr[5] |.endif | test eax, eax; jz >5 | movaps xmm0, CCSTATE->fpr[0] | movaps xmm1, CCSTATE->fpr[1] | movaps xmm2, CCSTATE->fpr[2] | movaps xmm3, CCSTATE->fpr[3] |.if not X64WIN | cmp eax, 4; jbe >5 | movaps xmm4, CCSTATE->fpr[4] | movaps xmm5, CCSTATE->fpr[5] | movaps xmm6, CCSTATE->fpr[6] | movaps xmm7, CCSTATE->fpr[7] |.endif |5: | | call aword CCSTATE->func | | mov CCSTATE->gpr[0], rax | movaps CCSTATE->fpr[0], xmm0 |.if not X64WIN | mov CCSTATE->gpr[1], rdx | movaps CCSTATE->fpr[1], xmm1 |.endif | | mov rbx, [rbp-8]; leave; ret |.endif |// Note: vm_ffi_call must be the last function in this object file! | |//----------------------------------------------------------------------- } /* Generate the code for a single instruction. */ static void build_ins(BuildCtx *ctx, BCOp op, int defop) { int vk = 0; |// Note: aligning all instructions does not pay off. |=>defop: switch (op) { /* -- Comparison ops ---------------------------------------------------- */ /* Remember: all ops branch for a true comparison, fall through otherwise. */ |.macro jmp_comp, lt, ge, le, gt, target ||switch (op) { ||case BC_ISLT: | lt target ||break; ||case BC_ISGE: | ge target ||break; ||case BC_ISLE: | le target ||break; ||case BC_ISGT: | gt target ||break; ||default: break; /* Shut up GCC. */ ||} |.endmacro case BC_ISLT: case BC_ISGE: case BC_ISLE: case BC_ISGT: | // RA = src1, RD = src2, JMP with RD = target | ins_AD | mov ITYPE, [BASE+RA*8] | mov RB, [BASE+RD*8] | mov RA, ITYPE | mov RD, RB | sar ITYPE, 47 | sar RB, 47 |.if DUALNUM | cmp ITYPEd, LJ_TISNUM; jne >7 | cmp RBd, LJ_TISNUM; jne >8 | add PC, 4 | cmp RAd, RDd | jmp_comp jge, jl, jg, jle, >9 |6: | movzx RDd, PC_RD | branchPC RD |9: | ins_next | |7: // RA is not an integer. | ja ->vmeta_comp | // RA is a number. | cmp RBd, LJ_TISNUM; jb >1; jne ->vmeta_comp | // RA is a number, RD is an integer. | cvtsi2sd xmm0, RDd | jmp >2 | |8: // RA is an integer, RD is not an integer. | ja ->vmeta_comp | // RA is an integer, RD is a number. | cvtsi2sd xmm1, RAd | movd xmm0, RD | jmp >3 |.else | cmp ITYPEd, LJ_TISNUM; jae ->vmeta_comp | cmp RBd, LJ_TISNUM; jae ->vmeta_comp |.endif |1: | movd xmm0, RD |2: | movd xmm1, RA |3: | add PC, 4 | ucomisd xmm0, xmm1 | // Unordered: all of ZF CF PF set, ordered: PF clear. | // To preserve NaN semantics GE/GT branch on unordered, but LT/LE don't. |.if DUALNUM | jmp_comp jbe, ja, jb, jae, <9 | jmp <6 |.else | jmp_comp jbe, ja, jb, jae, >1 | movzx RDd, PC_RD | branchPC RD |1: | ins_next |.endif break; case BC_ISEQV: case BC_ISNEV: vk = op == BC_ISEQV; | ins_AD // RA = src1, RD = src2, JMP with RD = target | mov RB, [BASE+RD*8] | mov ITYPE, [BASE+RA*8] | add PC, 4 | mov RD, RB | mov RA, ITYPE | sar RB, 47 | sar ITYPE, 47 |.if DUALNUM | cmp RBd, LJ_TISNUM; jne >7 | cmp ITYPEd, LJ_TISNUM; jne >8 | cmp RDd, RAd if (vk) { | jne >9 } else { | je >9 } | movzx RDd, PC_RD | branchPC RD |9: | ins_next | |7: // RD is not an integer. | ja >5 | // RD is a number. | movd xmm1, RD | cmp ITYPEd, LJ_TISNUM; jb >1; jne >5 | // RD is a number, RA is an integer. | cvtsi2sd xmm0, RAd | jmp >2 | |8: // RD is an integer, RA is not an integer. | ja >5 | // RD is an integer, RA is a number. | cvtsi2sd xmm1, RDd | jmp >1 | |.else | cmp RBd, LJ_TISNUM; jae >5 | cmp ITYPEd, LJ_TISNUM; jae >5 | movd xmm1, RD |.endif |1: | movd xmm0, RA |2: | ucomisd xmm0, xmm1 |4: iseqne_fp: if (vk) { | jp >2 // Unordered means not equal. | jne >2 } else { | jp >2 // Unordered means not equal. | je >1 } iseqne_end: if (vk) { |1: // EQ: Branch to the target. | movzx RDd, PC_RD | branchPC RD |2: // NE: Fallthrough to next instruction. |.if not FFI |3: |.endif } else { |.if not FFI |3: |.endif |2: // NE: Branch to the target. | movzx RDd, PC_RD | branchPC RD |1: // EQ: Fallthrough to next instruction. } if (LJ_DUALNUM && (op == BC_ISEQV || op == BC_ISNEV || op == BC_ISEQN || op == BC_ISNEN)) { | jmp <9 } else { | ins_next } | if (op == BC_ISEQV || op == BC_ISNEV) { |5: // Either or both types are not numbers. |.if FFI | cmp RBd, LJ_TCDATA; je ->vmeta_equal_cd | cmp ITYPEd, LJ_TCDATA; je ->vmeta_equal_cd |.endif | cmp RA, RD | je <1 // Same GCobjs or pvalues? | cmp RBd, ITYPEd | jne <2 // Not the same type? | cmp RBd, LJ_TISTABUD | ja <2 // Different objects and not table/ud? | | // Different tables or userdatas. Need to check __eq metamethod. | // Field metatable must be at same offset for GCtab and GCudata! | cleartp TAB:RA | mov TAB:RB, TAB:RA->metatable | test TAB:RB, TAB:RB | jz <2 // No metatable? | test byte TAB:RB->nomm, 1<vmeta_equal // Handle __eq metamethod. } else { |.if FFI |3: | cmp ITYPEd, LJ_TCDATA if (LJ_DUALNUM && vk) { | jne <9 } else { | jne <2 } | jmp ->vmeta_equal_cd |.endif } break; case BC_ISEQS: case BC_ISNES: vk = op == BC_ISEQS; | ins_AND // RA = src, RD = str const, JMP with RD = target | mov RB, [BASE+RA*8] | add PC, 4 | checkstr RB, >3 | cmp RB, [KBASE+RD*8] iseqne_test: if (vk) { | jne >2 } else { | je >1 } goto iseqne_end; case BC_ISEQN: case BC_ISNEN: vk = op == BC_ISEQN; | ins_AD // RA = src, RD = num const, JMP with RD = target | mov RB, [BASE+RA*8] | add PC, 4 |.if DUALNUM | checkint RB, >7 | mov RD, [KBASE+RD*8] | checkint RD, >8 | cmp RBd, RDd if (vk) { | jne >9 } else { | je >9 } | movzx RDd, PC_RD | branchPC RD |9: | ins_next | |7: // RA is not an integer. | ja >3 | // RA is a number. | mov RD, [KBASE+RD*8] | checkint RD, >1 | // RA is a number, RD is an integer. | cvtsi2sd xmm0, RDd | jmp >2 | |8: // RA is an integer, RD is a number. | cvtsi2sd xmm0, RBd | movd xmm1, RD | ucomisd xmm0, xmm1 | jmp >4 |1: | movd xmm0, RD |.else | checknum RB, >3 |1: | movsd xmm0, qword [KBASE+RD*8] |.endif |2: | ucomisd xmm0, qword [BASE+RA*8] |4: goto iseqne_fp; case BC_ISEQP: case BC_ISNEP: vk = op == BC_ISEQP; | ins_AND // RA = src, RD = primitive type (~), JMP with RD = target | mov RB, [BASE+RA*8] | sar RB, 47 | add PC, 4 | cmp RBd, RDd if (!LJ_HASFFI) goto iseqne_test; if (vk) { | jne >3 | movzx RDd, PC_RD | branchPC RD |2: | ins_next |3: | cmp RBd, LJ_TCDATA; jne <2 | jmp ->vmeta_equal_cd } else { | je >2 | cmp RBd, LJ_TCDATA; je ->vmeta_equal_cd | movzx RDd, PC_RD | branchPC RD |2: | ins_next } break; /* -- Unary test and copy ops ------------------------------------------- */ case BC_ISTC: case BC_ISFC: case BC_IST: case BC_ISF: | ins_AD // RA = dst or unused, RD = src, JMP with RD = target | mov ITYPE, [BASE+RD*8] | add PC, 4 if (op == BC_ISTC || op == BC_ISFC) { | mov RB, ITYPE } | sar ITYPE, 47 | cmp ITYPEd, LJ_TISTRUECOND if (op == BC_IST || op == BC_ISTC) { | jae >1 } else { | jb >1 } if (op == BC_ISTC || op == BC_ISFC) { | mov [BASE+RA*8], RB } | movzx RDd, PC_RD | branchPC RD |1: // Fallthrough to the next instruction. | ins_next break; case BC_ISTYPE: | ins_AD // RA = src, RD = -type | mov RB, [BASE+RA*8] | sar RB, 47 | add RBd, RDd | jne ->vmeta_istype | ins_next break; case BC_ISNUM: | ins_AD // RA = src, RD = -(TISNUM-1) | checknumtp [BASE+RA*8], ->vmeta_istype | ins_next break; /* -- Unary ops --------------------------------------------------------- */ case BC_MOV: | ins_AD // RA = dst, RD = src | mov RB, [BASE+RD*8] | mov [BASE+RA*8], RB | ins_next_ break; case BC_NOT: | ins_AD // RA = dst, RD = src | mov RB, [BASE+RD*8] | sar RB, 47 | mov RCd, 2 | cmp RB, LJ_TISTRUECOND | sbb RCd, 0 | shl RC, 47 | not RC | mov [BASE+RA*8], RC | ins_next break; case BC_UNM: | ins_AD // RA = dst, RD = src | mov RB, [BASE+RD*8] |.if DUALNUM | checkint RB, >5 | neg RBd | jo >4 | setint RB |9: | mov [BASE+RA*8], RB | ins_next |4: | mov64 RB, U64x(41e00000,00000000) // 2^31. | jmp <9 |5: | ja ->vmeta_unm |.else | checknum RB, ->vmeta_unm |.endif | mov64 RD, U64x(80000000,00000000) | xor RB, RD |.if DUALNUM | jmp <9 |.else | mov [BASE+RA*8], RB | ins_next |.endif break; case BC_LEN: | ins_AD // RA = dst, RD = src | mov RD, [BASE+RD*8] | checkstr RD, >2 |.if DUALNUM | mov RDd, dword STR:RD->len |1: | setint RD | mov [BASE+RA*8], RD |.else | xorps xmm0, xmm0 | cvtsi2sd xmm0, dword STR:RD->len |1: | movsd qword [BASE+RA*8], xmm0 |.endif | ins_next |2: | cmp ITYPEd, LJ_TTAB; jne ->vmeta_len | mov TAB:CARG1, TAB:RD #if LJ_52 | mov TAB:RB, TAB:RD->metatable | cmp TAB:RB, 0 | jnz >9 |3: #endif |->BC_LEN_Z: | mov RB, BASE // Save BASE. | call extern lj_tab_len // (GCtab *t) | // Length of table returned in eax (RD). |.if DUALNUM | // Nothing to do. |.else | cvtsi2sd xmm0, RDd |.endif | mov BASE, RB // Restore BASE. | movzx RAd, PC_RA | jmp <1 #if LJ_52 |9: // Check for __len. | test byte TAB:RB->nomm, 1<vmeta_len // 'no __len' flag NOT set: check. #endif break; /* -- Binary ops -------------------------------------------------------- */ |.macro ins_arithpre, sseins, ssereg | ins_ABC ||vk = ((int)op - BC_ADDVN) / (BC_ADDNV-BC_ADDVN); ||switch (vk) { ||case 0: | checknumtp [BASE+RB*8], ->vmeta_arith_vn | .if DUALNUM | checknumtp [KBASE+RC*8], ->vmeta_arith_vn | .endif | movsd xmm0, qword [BASE+RB*8] | sseins ssereg, qword [KBASE+RC*8] || break; ||case 1: | checknumtp [BASE+RB*8], ->vmeta_arith_nv | .if DUALNUM | checknumtp [KBASE+RC*8], ->vmeta_arith_nv | .endif | movsd xmm0, qword [KBASE+RC*8] | sseins ssereg, qword [BASE+RB*8] || break; ||default: | checknumtp [BASE+RB*8], ->vmeta_arith_vv | checknumtp [BASE+RC*8], ->vmeta_arith_vv | movsd xmm0, qword [BASE+RB*8] | sseins ssereg, qword [BASE+RC*8] || break; ||} |.endmacro | |.macro ins_arithdn, intins | ins_ABC ||vk = ((int)op - BC_ADDVN) / (BC_ADDNV-BC_ADDVN); ||switch (vk) { ||case 0: | mov RB, [BASE+RB*8] | mov RC, [KBASE+RC*8] | checkint RB, ->vmeta_arith_vno | checkint RC, ->vmeta_arith_vno | intins RBd, RCd; jo ->vmeta_arith_vno || break; ||case 1: | mov RB, [BASE+RB*8] | mov RC, [KBASE+RC*8] | checkint RB, ->vmeta_arith_nvo | checkint RC, ->vmeta_arith_nvo | intins RCd, RBd; jo ->vmeta_arith_nvo || break; ||default: | mov RB, [BASE+RB*8] | mov RC, [BASE+RC*8] | checkint RB, ->vmeta_arith_vvo | checkint RC, ->vmeta_arith_vvo | intins RBd, RCd; jo ->vmeta_arith_vvo || break; ||} ||if (vk == 1) { | setint RC | mov [BASE+RA*8], RC ||} else { | setint RB | mov [BASE+RA*8], RB ||} | ins_next |.endmacro | |.macro ins_arithpost | movsd qword [BASE+RA*8], xmm0 |.endmacro | |.macro ins_arith, sseins | ins_arithpre sseins, xmm0 | ins_arithpost | ins_next |.endmacro | |.macro ins_arith, intins, sseins |.if DUALNUM | ins_arithdn intins |.else | ins_arith, sseins |.endif |.endmacro | // RA = dst, RB = src1 or num const, RC = src2 or num const case BC_ADDVN: case BC_ADDNV: case BC_ADDVV: | ins_arith add, addsd break; case BC_SUBVN: case BC_SUBNV: case BC_SUBVV: | ins_arith sub, subsd break; case BC_MULVN: case BC_MULNV: case BC_MULVV: | ins_arith imul, mulsd break; case BC_DIVVN: case BC_DIVNV: case BC_DIVVV: | ins_arith divsd break; case BC_MODVN: | ins_arithpre movsd, xmm1 |->BC_MODVN_Z: | call ->vm_mod | ins_arithpost | ins_next break; case BC_MODNV: case BC_MODVV: | ins_arithpre movsd, xmm1 | jmp ->BC_MODVN_Z // Avoid 3 copies. It's slow anyway. break; case BC_POW: | ins_arithpre movsd, xmm1 | mov RB, BASE | call extern pow | movzx RAd, PC_RA | mov BASE, RB | ins_arithpost | ins_next break; case BC_CAT: | ins_ABC // RA = dst, RB = src_start, RC = src_end | mov L:CARG1, SAVE_L | mov L:CARG1->base, BASE | lea CARG2, [BASE+RC*8] | mov CARG3d, RCd | sub CARG3d, RBd |->BC_CAT_Z: | mov L:RB, L:CARG1 | mov SAVE_PC, PC | call extern lj_meta_cat // (lua_State *L, TValue *top, int left) | // NULL (finished) or TValue * (metamethod) returned in eax (RC). | mov BASE, L:RB->base | test RC, RC | jnz ->vmeta_binop | movzx RBd, PC_RB // Copy result to Stk[RA] from Stk[RB]. | movzx RAd, PC_RA | mov RC, [BASE+RB*8] | mov [BASE+RA*8], RC | ins_next break; /* -- Constant ops ------------------------------------------------------ */ case BC_KSTR: | ins_AND // RA = dst, RD = str const (~) | mov RD, [KBASE+RD*8] | settp RD, LJ_TSTR | mov [BASE+RA*8], RD | ins_next break; case BC_KCDATA: |.if FFI | ins_AND // RA = dst, RD = cdata const (~) | mov RD, [KBASE+RD*8] | settp RD, LJ_TCDATA | mov [BASE+RA*8], RD | ins_next |.endif break; case BC_KSHORT: | ins_AD // RA = dst, RD = signed int16 literal |.if DUALNUM | movsx RDd, RDW | setint RD | mov [BASE+RA*8], RD |.else | movsx RDd, RDW // Sign-extend literal. | cvtsi2sd xmm0, RDd | movsd qword [BASE+RA*8], xmm0 |.endif | ins_next break; case BC_KNUM: | ins_AD // RA = dst, RD = num const | movsd xmm0, qword [KBASE+RD*8] | movsd qword [BASE+RA*8], xmm0 | ins_next break; case BC_KPRI: | ins_AD // RA = dst, RD = primitive type (~) | shl RD, 47 | not RD | mov [BASE+RA*8], RD | ins_next break; case BC_KNIL: | ins_AD // RA = dst_start, RD = dst_end | lea RA, [BASE+RA*8+8] | lea RD, [BASE+RD*8] | mov RB, LJ_TNIL | mov [RA-8], RB // Sets minimum 2 slots. |1: | mov [RA], RB | add RA, 8 | cmp RA, RD | jbe <1 | ins_next break; /* -- Upvalue and function ops ------------------------------------------ */ case BC_UGET: | ins_AD // RA = dst, RD = upvalue # | mov LFUNC:RB, [BASE-16] | cleartp LFUNC:RB | mov UPVAL:RB, [LFUNC:RB+RD*8+offsetof(GCfuncL, uvptr)] | mov RB, UPVAL:RB->v | mov RD, [RB] | mov [BASE+RA*8], RD | ins_next break; case BC_USETV: #define TV2MARKOFS \ ((int32_t)offsetof(GCupval, marked)-(int32_t)offsetof(GCupval, tv)) | ins_AD // RA = upvalue #, RD = src | mov LFUNC:RB, [BASE-16] | cleartp LFUNC:RB | mov UPVAL:RB, [LFUNC:RB+RA*8+offsetof(GCfuncL, uvptr)] | cmp byte UPVAL:RB->closed, 0 | mov RB, UPVAL:RB->v | mov RA, [BASE+RD*8] | mov [RB], RA | jz >1 | // Check barrier for closed upvalue. | test byte [RB+TV2MARKOFS], LJ_GC_BLACK // isblack(uv) | jnz >2 |1: | ins_next | |2: // Upvalue is black. Check if new value is collectable and white. | mov RD, RA | sar RD, 47 | sub RDd, LJ_TISGCV | cmp RDd, LJ_TNUMX - LJ_TISGCV // tvisgcv(v) | jbe <1 | cleartp GCOBJ:RA | test byte GCOBJ:RA->gch.marked, LJ_GC_WHITES // iswhite(v) | jz <1 | // Crossed a write barrier. Move the barrier forward. |.if not X64WIN | mov CARG2, RB | mov RB, BASE // Save BASE. |.else | xchg CARG2, RB // Save BASE (CARG2 == BASE). |.endif | lea GL:CARG1, [DISPATCH+GG_DISP2G] | call extern lj_gc_barrieruv // (global_State *g, TValue *tv) | mov BASE, RB // Restore BASE. | jmp <1 break; #undef TV2MARKOFS case BC_USETS: | ins_AND // RA = upvalue #, RD = str const (~) | mov LFUNC:RB, [BASE-16] | cleartp LFUNC:RB | mov UPVAL:RB, [LFUNC:RB+RA*8+offsetof(GCfuncL, uvptr)] | mov STR:RA, [KBASE+RD*8] | mov RD, UPVAL:RB->v | settp STR:ITYPE, STR:RA, LJ_TSTR | mov [RD], STR:ITYPE | test byte UPVAL:RB->marked, LJ_GC_BLACK // isblack(uv) | jnz >2 |1: | ins_next | |2: // Check if string is white and ensure upvalue is closed. | test byte GCOBJ:RA->gch.marked, LJ_GC_WHITES // iswhite(str) | jz <1 | cmp byte UPVAL:RB->closed, 0 | jz <1 | // Crossed a write barrier. Move the barrier forward. | mov RB, BASE // Save BASE (CARG2 == BASE). | mov CARG2, RD | lea GL:CARG1, [DISPATCH+GG_DISP2G] | call extern lj_gc_barrieruv // (global_State *g, TValue *tv) | mov BASE, RB // Restore BASE. | jmp <1 break; case BC_USETN: | ins_AD // RA = upvalue #, RD = num const | mov LFUNC:RB, [BASE-16] | cleartp LFUNC:RB | movsd xmm0, qword [KBASE+RD*8] | mov UPVAL:RB, [LFUNC:RB+RA*8+offsetof(GCfuncL, uvptr)] | mov RA, UPVAL:RB->v | movsd qword [RA], xmm0 | ins_next break; case BC_USETP: | ins_AD // RA = upvalue #, RD = primitive type (~) | mov LFUNC:RB, [BASE-16] | cleartp LFUNC:RB | mov UPVAL:RB, [LFUNC:RB+RA*8+offsetof(GCfuncL, uvptr)] | shl RD, 47 | not RD | mov RA, UPVAL:RB->v | mov [RA], RD | ins_next break; case BC_UCLO: | ins_AD // RA = level, RD = target | branchPC RD // Do this first to free RD. | mov L:RB, SAVE_L | cmp aword L:RB->openupval, 0 | je >1 | mov L:RB->base, BASE | lea CARG2, [BASE+RA*8] // Caveat: CARG2 == BASE | mov L:CARG1, L:RB // Caveat: CARG1 == RA | call extern lj_func_closeuv // (lua_State *L, TValue *level) | mov BASE, L:RB->base |1: | ins_next break; case BC_FNEW: | ins_AND // RA = dst, RD = proto const (~) (holding function prototype) | mov L:RB, SAVE_L | mov L:RB->base, BASE // Caveat: CARG2/CARG3 may be BASE. | mov CARG3, [BASE-16] | cleartp CARG3 | mov CARG2, [KBASE+RD*8] // Fetch GCproto *. | mov CARG1, L:RB | mov SAVE_PC, PC | // (lua_State *L, GCproto *pt, GCfuncL *parent) | call extern lj_func_newL_gc | // GCfuncL * returned in eax (RC). | mov BASE, L:RB->base | movzx RAd, PC_RA | settp LFUNC:RC, LJ_TFUNC | mov [BASE+RA*8], LFUNC:RC | ins_next break; /* -- Table ops --------------------------------------------------------- */ case BC_TNEW: | ins_AD // RA = dst, RD = hbits|asize | mov L:RB, SAVE_L | mov L:RB->base, BASE | mov RA, [DISPATCH+DISPATCH_GL(gc.total)] | cmp RA, [DISPATCH+DISPATCH_GL(gc.threshold)] | mov SAVE_PC, PC | jae >5 |1: | mov CARG3d, RDd | and RDd, 0x7ff | shr CARG3d, 11 | cmp RDd, 0x7ff | je >3 |2: | mov L:CARG1, L:RB | mov CARG2d, RDd | call extern lj_tab_new // (lua_State *L, int32_t asize, uint32_t hbits) | // Table * returned in eax (RC). | mov BASE, L:RB->base | movzx RAd, PC_RA | settp TAB:RC, LJ_TTAB | mov [BASE+RA*8], TAB:RC | ins_next |3: // Turn 0x7ff into 0x801. | mov RDd, 0x801 | jmp <2 |5: | mov L:CARG1, L:RB | call extern lj_gc_step_fixtop // (lua_State *L) | movzx RDd, PC_RD | jmp <1 break; case BC_TDUP: | ins_AND // RA = dst, RD = table const (~) (holding template table) | mov L:RB, SAVE_L | mov RA, [DISPATCH+DISPATCH_GL(gc.total)] | mov SAVE_PC, PC | cmp RA, [DISPATCH+DISPATCH_GL(gc.threshold)] | mov L:RB->base, BASE | jae >3 |2: | mov TAB:CARG2, [KBASE+RD*8] // Caveat: CARG2 == BASE | mov L:CARG1, L:RB // Caveat: CARG1 == RA | call extern lj_tab_dup // (lua_State *L, Table *kt) | // Table * returned in eax (RC). | mov BASE, L:RB->base | movzx RAd, PC_RA | settp TAB:RC, LJ_TTAB | mov [BASE+RA*8], TAB:RC | ins_next |3: | mov L:CARG1, L:RB | call extern lj_gc_step_fixtop // (lua_State *L) | movzx RDd, PC_RD // Need to reload RD. | not RD | jmp <2 break; case BC_GGET: | ins_AND // RA = dst, RD = str const (~) | mov LFUNC:RB, [BASE-16] | cleartp LFUNC:RB | mov TAB:RB, LFUNC:RB->env | mov STR:RC, [KBASE+RD*8] | jmp ->BC_TGETS_Z break; case BC_GSET: | ins_AND // RA = src, RD = str const (~) | mov LFUNC:RB, [BASE-16] | cleartp LFUNC:RB | mov TAB:RB, LFUNC:RB->env | mov STR:RC, [KBASE+RD*8] | jmp ->BC_TSETS_Z break; case BC_TGETV: | ins_ABC // RA = dst, RB = table, RC = key | mov TAB:RB, [BASE+RB*8] | mov RC, [BASE+RC*8] | checktab TAB:RB, ->vmeta_tgetv | | // Integer key? |.if DUALNUM | checkint RC, >5 |.else | // Convert number to int and back and compare. | checknum RC, >5 | movd xmm0, RC | cvttsd2si RCd, xmm0 | cvtsi2sd xmm1, RCd | ucomisd xmm0, xmm1 | jne ->vmeta_tgetv // Generic numeric key? Use fallback. |.endif | cmp RCd, TAB:RB->asize // Takes care of unordered, too. | jae ->vmeta_tgetv // Not in array part? Use fallback. | shl RCd, 3 | add RC, TAB:RB->array | // Get array slot. | mov ITYPE, [RC] | cmp ITYPE, LJ_TNIL // Avoid overwriting RB in fastpath. | je >2 |1: | mov [BASE+RA*8], ITYPE | ins_next | |2: // Check for __index if table value is nil. | mov TAB:TMPR, TAB:RB->metatable | test TAB:TMPR, TAB:TMPR | jz <1 | test byte TAB:TMPR->nomm, 1<vmeta_tgetv // 'no __index' flag NOT set: check. | jmp <1 | |5: // String key? | cmp ITYPEd, LJ_TSTR; jne ->vmeta_tgetv | cleartp STR:RC | jmp ->BC_TGETS_Z break; case BC_TGETS: | ins_ABC // RA = dst, RB = table, RC = str const (~) | mov TAB:RB, [BASE+RB*8] | not RC | mov STR:RC, [KBASE+RC*8] | checktab TAB:RB, ->vmeta_tgets |->BC_TGETS_Z: // RB = GCtab *, RC = GCstr * | mov TMPRd, TAB:RB->hmask | and TMPRd, STR:RC->hash | imul TMPRd, #NODE | add NODE:TMPR, TAB:RB->node | settp ITYPE, STR:RC, LJ_TSTR |1: | cmp NODE:TMPR->key, ITYPE | jne >4 | // Get node value. | mov ITYPE, NODE:TMPR->val | cmp ITYPE, LJ_TNIL | je >5 // Key found, but nil value? |2: | mov [BASE+RA*8], ITYPE | ins_next | |4: // Follow hash chain. | mov NODE:TMPR, NODE:TMPR->next | test NODE:TMPR, NODE:TMPR | jnz <1 | // End of hash chain: key not found, nil result. | mov ITYPE, LJ_TNIL | |5: // Check for __index if table value is nil. | mov TAB:TMPR, TAB:RB->metatable | test TAB:TMPR, TAB:TMPR | jz <2 // No metatable: done. | test byte TAB:TMPR->nomm, 1<vmeta_tgets // Caveat: preserve STR:RC. break; case BC_TGETB: | ins_ABC // RA = dst, RB = table, RC = byte literal | mov TAB:RB, [BASE+RB*8] | checktab TAB:RB, ->vmeta_tgetb | cmp RCd, TAB:RB->asize | jae ->vmeta_tgetb | shl RCd, 3 | add RC, TAB:RB->array | // Get array slot. | mov ITYPE, [RC] | cmp ITYPE, LJ_TNIL | je >2 |1: | mov [BASE+RA*8], ITYPE | ins_next | |2: // Check for __index if table value is nil. | mov TAB:TMPR, TAB:RB->metatable | test TAB:TMPR, TAB:TMPR | jz <1 | test byte TAB:TMPR->nomm, 1<vmeta_tgetb // 'no __index' flag NOT set: check. | jmp <1 break; case BC_TGETR: | ins_ABC // RA = dst, RB = table, RC = key | mov TAB:RB, [BASE+RB*8] | cleartp TAB:RB |.if DUALNUM | mov RCd, dword [BASE+RC*8] |.else | cvttsd2si RCd, qword [BASE+RC*8] |.endif | cmp RCd, TAB:RB->asize | jae ->vmeta_tgetr // Not in array part? Use fallback. | shl RCd, 3 | add RC, TAB:RB->array | // Get array slot. |->BC_TGETR_Z: | mov ITYPE, [RC] |->BC_TGETR2_Z: | mov [BASE+RA*8], ITYPE | ins_next break; case BC_TSETV: | ins_ABC // RA = src, RB = table, RC = key | mov TAB:RB, [BASE+RB*8] | mov RC, [BASE+RC*8] | checktab TAB:RB, ->vmeta_tsetv | | // Integer key? |.if DUALNUM | checkint RC, >5 |.else | // Convert number to int and back and compare. | checknum RC, >5 | movd xmm0, RC | cvttsd2si RCd, xmm0 | cvtsi2sd xmm1, RCd | ucomisd xmm0, xmm1 | jne ->vmeta_tsetv // Generic numeric key? Use fallback. |.endif | cmp RCd, TAB:RB->asize // Takes care of unordered, too. | jae ->vmeta_tsetv | shl RCd, 3 | add RC, TAB:RB->array | cmp aword [RC], LJ_TNIL | je >3 // Previous value is nil? |1: | test byte TAB:RB->marked, LJ_GC_BLACK // isblack(table) | jnz >7 |2: // Set array slot. | mov RB, [BASE+RA*8] | mov [RC], RB | ins_next | |3: // Check for __newindex if previous value is nil. | mov TAB:TMPR, TAB:RB->metatable | test TAB:TMPR, TAB:TMPR | jz <1 | test byte TAB:TMPR->nomm, 1<vmeta_tsetv // 'no __newindex' flag NOT set: check. | jmp <1 | |5: // String key? | cmp ITYPEd, LJ_TSTR; jne ->vmeta_tsetv | cleartp STR:RC | jmp ->BC_TSETS_Z | |7: // Possible table write barrier for the value. Skip valiswhite check. | barrierback TAB:RB, TMPR | jmp <2 break; case BC_TSETS: | ins_ABC // RA = src, RB = table, RC = str const (~) | mov TAB:RB, [BASE+RB*8] | not RC | mov STR:RC, [KBASE+RC*8] | checktab TAB:RB, ->vmeta_tsets |->BC_TSETS_Z: // RB = GCtab *, RC = GCstr * | mov TMPRd, TAB:RB->hmask | and TMPRd, STR:RC->hash | imul TMPRd, #NODE | mov byte TAB:RB->nomm, 0 // Clear metamethod cache. | add NODE:TMPR, TAB:RB->node | settp ITYPE, STR:RC, LJ_TSTR |1: | cmp NODE:TMPR->key, ITYPE | jne >5 | // Ok, key found. Assumes: offsetof(Node, val) == 0 | cmp aword [TMPR], LJ_TNIL | je >4 // Previous value is nil? |2: | test byte TAB:RB->marked, LJ_GC_BLACK // isblack(table) | jnz >7 |3: // Set node value. | mov ITYPE, [BASE+RA*8] | mov [TMPR], ITYPE | ins_next | |4: // Check for __newindex if previous value is nil. | mov TAB:ITYPE, TAB:RB->metatable | test TAB:ITYPE, TAB:ITYPE | jz <2 | test byte TAB:ITYPE->nomm, 1<vmeta_tsets // 'no __newindex' flag NOT set: check. | jmp <2 | |5: // Follow hash chain. | mov NODE:TMPR, NODE:TMPR->next | test NODE:TMPR, NODE:TMPR | jnz <1 | // End of hash chain: key not found, add a new one. | | // But check for __newindex first. | mov TAB:TMPR, TAB:RB->metatable | test TAB:TMPR, TAB:TMPR | jz >6 // No metatable: continue. | test byte TAB:TMPR->nomm, 1<vmeta_tsets // 'no __newindex' flag NOT set: check. |6: | mov TMP1, ITYPE | mov L:CARG1, SAVE_L | mov L:CARG1->base, BASE | lea CARG3, TMP1 | mov CARG2, TAB:RB | mov SAVE_PC, PC | call extern lj_tab_newkey // (lua_State *L, GCtab *t, TValue *k) | // Handles write barrier for the new key. TValue * returned in eax (RC). | mov L:CARG1, SAVE_L | mov BASE, L:CARG1->base | mov TMPR, rax | movzx RAd, PC_RA | jmp <2 // Must check write barrier for value. | |7: // Possible table write barrier for the value. Skip valiswhite check. | barrierback TAB:RB, ITYPE | jmp <3 break; case BC_TSETB: | ins_ABC // RA = src, RB = table, RC = byte literal | mov TAB:RB, [BASE+RB*8] | checktab TAB:RB, ->vmeta_tsetb | cmp RCd, TAB:RB->asize | jae ->vmeta_tsetb | shl RCd, 3 | add RC, TAB:RB->array | cmp aword [RC], LJ_TNIL | je >3 // Previous value is nil? |1: | test byte TAB:RB->marked, LJ_GC_BLACK // isblack(table) | jnz >7 |2: // Set array slot. | mov ITYPE, [BASE+RA*8] | mov [RC], ITYPE | ins_next | |3: // Check for __newindex if previous value is nil. | mov TAB:TMPR, TAB:RB->metatable | test TAB:TMPR, TAB:TMPR | jz <1 | test byte TAB:TMPR->nomm, 1<vmeta_tsetb // 'no __newindex' flag NOT set: check. | jmp <1 | |7: // Possible table write barrier for the value. Skip valiswhite check. | barrierback TAB:RB, TMPR | jmp <2 break; case BC_TSETR: | ins_ABC // RA = src, RB = table, RC = key | mov TAB:RB, [BASE+RB*8] | cleartp TAB:RB |.if DUALNUM | mov RC, [BASE+RC*8] |.else | cvttsd2si RCd, qword [BASE+RC*8] |.endif | test byte TAB:RB->marked, LJ_GC_BLACK // isblack(table) | jnz >7 |2: | cmp RCd, TAB:RB->asize | jae ->vmeta_tsetr | shl RCd, 3 | add RC, TAB:RB->array | // Set array slot. |->BC_TSETR_Z: | mov ITYPE, [BASE+RA*8] | mov [RC], ITYPE | ins_next | |7: // Possible table write barrier for the value. Skip valiswhite check. | barrierback TAB:RB, TMPR | jmp <2 break; case BC_TSETM: | ins_AD // RA = base (table at base-1), RD = num const (start index) |1: | mov TMPRd, dword [KBASE+RD*8] // Integer constant is in lo-word. | lea RA, [BASE+RA*8] | mov TAB:RB, [RA-8] // Guaranteed to be a table. | cleartp TAB:RB | test byte TAB:RB->marked, LJ_GC_BLACK // isblack(table) | jnz >7 |2: | mov RDd, MULTRES | sub RDd, 1 | jz >4 // Nothing to copy? | add RDd, TMPRd // Compute needed size. | cmp RDd, TAB:RB->asize | ja >5 // Doesn't fit into array part? | sub RDd, TMPRd | shl TMPRd, 3 | add TMPR, TAB:RB->array |3: // Copy result slots to table. | mov RB, [RA] | add RA, 8 | mov [TMPR], RB | add TMPR, 8 | sub RDd, 1 | jnz <3 |4: | ins_next | |5: // Need to resize array part. | mov L:CARG1, SAVE_L | mov L:CARG1->base, BASE // Caveat: CARG2/CARG3 may be BASE. | mov CARG2, TAB:RB | mov CARG3d, RDd | mov L:RB, L:CARG1 | mov SAVE_PC, PC | call extern lj_tab_reasize // (lua_State *L, GCtab *t, int nasize) | mov BASE, L:RB->base | movzx RAd, PC_RA // Restore RA. | movzx RDd, PC_RD // Restore RD. | jmp <1 // Retry. | |7: // Possible table write barrier for any value. Skip valiswhite check. | barrierback TAB:RB, RD | jmp <2 break; /* -- Calls and vararg handling ----------------------------------------- */ case BC_CALL: case BC_CALLM: | ins_A_C // RA = base, (RB = nresults+1,) RC = nargs+1 | extra_nargs if (op == BC_CALLM) { | add NARGS:RDd, MULTRES } | mov LFUNC:RB, [BASE+RA*8] | checkfunc LFUNC:RB, ->vmeta_call_ra | lea BASE, [BASE+RA*8+16] | ins_call break; case BC_CALLMT: | ins_AD // RA = base, RD = extra_nargs | add NARGS:RDd, MULTRES | // Fall through. Assumes BC_CALLT follows and ins_AD is a no-op. break; case BC_CALLT: | ins_AD // RA = base, RD = nargs+1 | lea RA, [BASE+RA*8+16] | mov KBASE, BASE // Use KBASE for move + vmeta_call hint. | mov LFUNC:RB, [RA-16] | checktp_nc LFUNC:RB, LJ_TFUNC, ->vmeta_call |->BC_CALLT_Z: | mov PC, [BASE-8] | test PCd, FRAME_TYPE | jnz >7 |1: | mov [BASE-16], LFUNC:RB // Copy func+tag down, reloaded below. | mov MULTRES, NARGS:RDd | sub NARGS:RDd, 1 | jz >3 |2: // Move args down. | mov RB, [RA] | add RA, 8 | mov [KBASE], RB | add KBASE, 8 | sub NARGS:RDd, 1 | jnz <2 | | mov LFUNC:RB, [BASE-16] |3: | cleartp LFUNC:RB | mov NARGS:RDd, MULTRES | cmp byte LFUNC:RB->ffid, 1 // (> FF_C) Calling a fast function? | ja >5 |4: | ins_callt | |5: // Tailcall to a fast function. | test PCd, FRAME_TYPE // Lua frame below? | jnz <4 | movzx RAd, PC_RA | neg RA | mov LFUNC:KBASE, [BASE+RA*8-32] // Need to prepare KBASE. | cleartp LFUNC:KBASE | mov KBASE, LFUNC:KBASE->pc | mov KBASE, [KBASE+PC2PROTO(k)] | jmp <4 | |7: // Tailcall from a vararg function. | sub PC, FRAME_VARG | test PCd, FRAME_TYPEP | jnz >8 // Vararg frame below? | sub BASE, PC // Need to relocate BASE/KBASE down. | mov KBASE, BASE | mov PC, [BASE-8] | jmp <1 |8: | add PCd, FRAME_VARG | jmp <1 break; case BC_ITERC: | ins_A // RA = base, (RB = nresults+1,) RC = nargs+1 (2+1) | lea RA, [BASE+RA*8+16] // fb = base+2 | mov RB, [RA-32] // Copy state. fb[0] = fb[-4]. | mov RC, [RA-24] // Copy control var. fb[1] = fb[-3]. | mov [RA], RB | mov [RA+8], RC | mov LFUNC:RB, [RA-40] // Copy callable. fb[-2] = fb[-5] | mov [RA-16], LFUNC:RB | mov NARGS:RDd, 2+1 // Handle like a regular 2-arg call. | checkfunc LFUNC:RB, ->vmeta_call | mov BASE, RA | ins_call break; case BC_ITERN: | ins_A // RA = base, (RB = nresults+1, RC = nargs+1 (2+1)) |.if JIT | // NYI: add hotloop, record BC_ITERN. |.endif | mov TAB:RB, [BASE+RA*8-16] | cleartp TAB:RB | mov RCd, [BASE+RA*8-8] // Get index from control var. | mov TMPRd, TAB:RB->asize | add PC, 4 | mov ITYPE, TAB:RB->array |1: // Traverse array part. | cmp RCd, TMPRd; jae >5 // Index points after array part? | cmp aword [ITYPE+RC*8], LJ_TNIL; je >4 |.if not DUALNUM | cvtsi2sd xmm0, RCd |.endif | // Copy array slot to returned value. | mov RB, [ITYPE+RC*8] | mov [BASE+RA*8+8], RB | // Return array index as a numeric key. |.if DUALNUM | setint ITYPE, RC | mov [BASE+RA*8], ITYPE |.else | movsd qword [BASE+RA*8], xmm0 |.endif | add RCd, 1 | mov [BASE+RA*8-8], RCd // Update control var. |2: | movzx RDd, PC_RD // Get target from ITERL. | branchPC RD |3: | ins_next | |4: // Skip holes in array part. | add RCd, 1 | jmp <1 | |5: // Traverse hash part. | sub RCd, TMPRd |6: | cmp RCd, TAB:RB->hmask; ja <3 // End of iteration? Branch to ITERL+1. | imul ITYPEd, RCd, #NODE | add NODE:ITYPE, TAB:RB->node | cmp aword NODE:ITYPE->val, LJ_TNIL; je >7 | lea TMPRd, [RCd+TMPRd+1] | // Copy key and value from hash slot. | mov RB, NODE:ITYPE->key | mov RC, NODE:ITYPE->val | mov [BASE+RA*8], RB | mov [BASE+RA*8+8], RC | mov [BASE+RA*8-8], TMPRd | jmp <2 | |7: // Skip holes in hash part. | add RCd, 1 | jmp <6 break; case BC_ISNEXT: | ins_AD // RA = base, RD = target (points to ITERN) | mov CFUNC:RB, [BASE+RA*8-24] | checkfunc CFUNC:RB, >5 | checktptp [BASE+RA*8-16], LJ_TTAB, >5 | cmp aword [BASE+RA*8-8], LJ_TNIL; jne >5 | cmp byte CFUNC:RB->ffid, FF_next_N; jne >5 | branchPC RD | mov64 TMPR, U64x(fffe7fff, 00000000) | mov [BASE+RA*8-8], TMPR // Initialize control var. |1: | ins_next |5: // Despecialize bytecode if any of the checks fail. | mov PC_OP, BC_JMP | branchPC RD | mov byte [PC], BC_ITERC | jmp <1 break; case BC_VARG: | ins_ABC // RA = base, RB = nresults+1, RC = numparams | lea TMPR, [BASE+RC*8+(16+FRAME_VARG)] | lea RA, [BASE+RA*8] | sub TMPR, [BASE-8] | // Note: TMPR may now be even _above_ BASE if nargs was < numparams. | test RB, RB | jz >5 // Copy all varargs? | lea RB, [RA+RB*8-8] | cmp TMPR, BASE // No vararg slots? | jnb >2 |1: // Copy vararg slots to destination slots. | mov RC, [TMPR-16] | add TMPR, 8 | mov [RA], RC | add RA, 8 | cmp RA, RB // All destination slots filled? | jnb >3 | cmp TMPR, BASE // No more vararg slots? | jb <1 |2: // Fill up remainder with nil. | mov aword [RA], LJ_TNIL | add RA, 8 | cmp RA, RB | jb <2 |3: | ins_next | |5: // Copy all varargs. | mov MULTRES, 1 // MULTRES = 0+1 | mov RC, BASE | sub RC, TMPR | jbe <3 // No vararg slots? | mov RBd, RCd | shr RBd, 3 | add RBd, 1 | mov MULTRES, RBd // MULTRES = #varargs+1 | mov L:RB, SAVE_L | add RC, RA | cmp RC, L:RB->maxstack | ja >7 // Need to grow stack? |6: // Copy all vararg slots. | mov RC, [TMPR-16] | add TMPR, 8 | mov [RA], RC | add RA, 8 | cmp TMPR, BASE // No more vararg slots? | jb <6 | jmp <3 | |7: // Grow stack for varargs. | mov L:RB->base, BASE | mov L:RB->top, RA | mov SAVE_PC, PC | sub TMPR, BASE // Need delta, because BASE may change. | mov TMP1hi, TMPRd | mov CARG2d, MULTRES | sub CARG2d, 1 | mov CARG1, L:RB | call extern lj_state_growstack // (lua_State *L, int n) | mov BASE, L:RB->base | movsxd TMPR, TMP1hi | mov RA, L:RB->top | add TMPR, BASE | jmp <6 break; /* -- Returns ----------------------------------------------------------- */ case BC_RETM: | ins_AD // RA = results, RD = extra_nresults | add RDd, MULTRES // MULTRES >=1, so RD >=1. | // Fall through. Assumes BC_RET follows and ins_AD is a no-op. break; case BC_RET: case BC_RET0: case BC_RET1: | ins_AD // RA = results, RD = nresults+1 if (op != BC_RET0) { | shl RAd, 3 } |1: | mov PC, [BASE-8] | mov MULTRES, RDd // Save nresults+1. | test PCd, FRAME_TYPE // Check frame type marker. | jnz >7 // Not returning to a fixarg Lua func? switch (op) { case BC_RET: |->BC_RET_Z: | mov KBASE, BASE // Use KBASE for result move. | sub RDd, 1 | jz >3 |2: // Move results down. | mov RB, [KBASE+RA] | mov [KBASE-16], RB | add KBASE, 8 | sub RDd, 1 | jnz <2 |3: | mov RDd, MULTRES // Note: MULTRES may be >255. | movzx RBd, PC_RB // So cannot compare with RDL! |5: | cmp RBd, RDd // More results expected? | ja >6 break; case BC_RET1: | mov RB, [BASE+RA] | mov [BASE-16], RB /* fallthrough */ case BC_RET0: |5: | cmp PC_RB, RDL // More results expected? | ja >6 default: break; } | movzx RAd, PC_RA | neg RA | lea BASE, [BASE+RA*8-16] // base = base - (RA+2)*8 | mov LFUNC:KBASE, [BASE-16] | cleartp LFUNC:KBASE | mov KBASE, LFUNC:KBASE->pc | mov KBASE, [KBASE+PC2PROTO(k)] | ins_next | |6: // Fill up results with nil. if (op == BC_RET) { | mov aword [KBASE-16], LJ_TNIL // Note: relies on shifted base. | add KBASE, 8 } else { | mov aword [BASE+RD*8-24], LJ_TNIL } | add RD, 1 | jmp <5 | |7: // Non-standard return case. | lea RB, [PC-FRAME_VARG] | test RBd, FRAME_TYPEP | jnz ->vm_return | // Return from vararg function: relocate BASE down and RA up. | sub BASE, RB if (op != BC_RET0) { | add RA, RB } | jmp <1 break; /* -- Loops and branches ------------------------------------------------ */ |.define FOR_IDX, [RA] |.define FOR_STOP, [RA+8] |.define FOR_STEP, [RA+16] |.define FOR_EXT, [RA+24] case BC_FORL: |.if JIT | hotloop RBd |.endif | // Fall through. Assumes BC_IFORL follows and ins_AJ is a no-op. break; case BC_JFORI: case BC_JFORL: #if !LJ_HASJIT break; #endif case BC_FORI: case BC_IFORL: vk = (op == BC_IFORL || op == BC_JFORL); | ins_AJ // RA = base, RD = target (after end of loop or start of loop) | lea RA, [BASE+RA*8] if (LJ_DUALNUM) { | mov RB, FOR_IDX | checkint RB, >9 | mov TMPR, FOR_STOP if (!vk) { | checkint TMPR, ->vmeta_for | mov ITYPE, FOR_STEP | test ITYPEd, ITYPEd; js >5 | sar ITYPE, 47; | cmp ITYPEd, LJ_TISNUM; jne ->vmeta_for } else { #ifdef LUA_USE_ASSERT | checkinttp FOR_STOP, ->assert_bad_for_arg_type | checkinttp FOR_STEP, ->assert_bad_for_arg_type #endif | mov ITYPE, FOR_STEP | test ITYPEd, ITYPEd; js >5 | add RBd, ITYPEd; jo >1 | setint RB | mov FOR_IDX, RB } | cmp RBd, TMPRd | mov FOR_EXT, RB if (op == BC_FORI) { | jle >7 |1: |6: | branchPC RD } else if (op == BC_JFORI) { | branchPC RD | movzx RDd, PC_RD | jle =>BC_JLOOP |1: |6: } else if (op == BC_IFORL) { | jg >7 |6: | branchPC RD |1: } else { | jle =>BC_JLOOP |1: |6: } |7: | ins_next | |5: // Invert check for negative step. if (!vk) { | sar ITYPE, 47; | cmp ITYPEd, LJ_TISNUM; jne ->vmeta_for } else { | add RBd, ITYPEd; jo <1 | setint RB | mov FOR_IDX, RB } | cmp RBd, TMPRd | mov FOR_EXT, RB if (op == BC_FORI) { | jge <7 } else if (op == BC_JFORI) { | branchPC RD | movzx RDd, PC_RD | jge =>BC_JLOOP } else if (op == BC_IFORL) { | jl <7 } else { | jge =>BC_JLOOP } | jmp <6 |9: // Fallback to FP variant. if (!vk) { | jae ->vmeta_for } } else if (!vk) { | checknumtp FOR_IDX, ->vmeta_for } if (!vk) { | checknumtp FOR_STOP, ->vmeta_for } else { #ifdef LUA_USE_ASSERT | checknumtp FOR_STOP, ->assert_bad_for_arg_type | checknumtp FOR_STEP, ->assert_bad_for_arg_type #endif } | mov RB, FOR_STEP if (!vk) { | checknum RB, ->vmeta_for } | movsd xmm0, qword FOR_IDX | movsd xmm1, qword FOR_STOP if (vk) { | addsd xmm0, qword FOR_STEP | movsd qword FOR_IDX, xmm0 | test RB, RB; js >3 } else { | jl >3 } | ucomisd xmm1, xmm0 |1: | movsd qword FOR_EXT, xmm0 if (op == BC_FORI) { |.if DUALNUM | jnb <7 |.else | jnb >2 | branchPC RD |.endif } else if (op == BC_JFORI) { | branchPC RD | movzx RDd, PC_RD | jnb =>BC_JLOOP } else if (op == BC_IFORL) { |.if DUALNUM | jb <7 |.else | jb >2 | branchPC RD |.endif } else { | jnb =>BC_JLOOP } |.if DUALNUM | jmp <6 |.else |2: | ins_next |.endif | |3: // Invert comparison if step is negative. | ucomisd xmm0, xmm1 | jmp <1 break; case BC_ITERL: |.if JIT | hotloop RBd |.endif | // Fall through. Assumes BC_IITERL follows and ins_AJ is a no-op. break; case BC_JITERL: #if !LJ_HASJIT break; #endif case BC_IITERL: | ins_AJ // RA = base, RD = target | lea RA, [BASE+RA*8] | mov RB, [RA] | cmp RB, LJ_TNIL; je >1 // Stop if iterator returned nil. if (op == BC_JITERL) { | mov [RA-8], RB | jmp =>BC_JLOOP } else { | branchPC RD // Otherwise save control var + branch. | mov [RA-8], RB } |1: | ins_next break; case BC_LOOP: | ins_A // RA = base, RD = target (loop extent) | // Note: RA/RD is only used by trace recorder to determine scope/extent | // This opcode does NOT jump, it's only purpose is to detect a hot loop. |.if JIT | hotloop RBd |.endif | // Fall through. Assumes BC_ILOOP follows and ins_A is a no-op. break; case BC_ILOOP: | ins_A // RA = base, RD = target (loop extent) | ins_next break; case BC_JLOOP: |.if JIT | ins_AD // RA = base (ignored), RD = traceno | mov RA, [DISPATCH+DISPATCH_J(trace)] | mov TRACE:RD, [RA+RD*8] | mov RD, TRACE:RD->mcode | mov L:RB, SAVE_L | mov [DISPATCH+DISPATCH_GL(jit_base)], BASE | mov [DISPATCH+DISPATCH_GL(tmpbuf.L)], L:RB | // Save additional callee-save registers only used in compiled code. |.if X64WIN | mov CSAVE_4, r12 | mov CSAVE_3, r13 | mov CSAVE_2, r14 | mov CSAVE_1, r15 | mov RA, rsp | sub rsp, 10*16+4*8 | movdqa [RA-1*16], xmm6 | movdqa [RA-2*16], xmm7 | movdqa [RA-3*16], xmm8 | movdqa [RA-4*16], xmm9 | movdqa [RA-5*16], xmm10 | movdqa [RA-6*16], xmm11 | movdqa [RA-7*16], xmm12 | movdqa [RA-8*16], xmm13 | movdqa [RA-9*16], xmm14 | movdqa [RA-10*16], xmm15 |.else | sub rsp, 16 | mov [rsp+16], r12 | mov [rsp+8], r13 |.endif | jmp RD |.endif break; case BC_JMP: | ins_AJ // RA = unused, RD = target | branchPC RD | ins_next break; /* -- Function headers -------------------------------------------------- */ /* ** Reminder: A function may be called with func/args above L->maxstack, ** i.e. occupying EXTRA_STACK slots. And vmeta_call may add one extra slot, ** too. This means all FUNC* ops (including fast functions) must check ** for stack overflow _before_ adding more slots! */ case BC_FUNCF: |.if JIT | hotcall RBd |.endif case BC_FUNCV: /* NYI: compiled vararg functions. */ | // Fall through. Assumes BC_IFUNCF/BC_IFUNCV follow and ins_AD is a no-op. break; case BC_JFUNCF: #if !LJ_HASJIT break; #endif case BC_IFUNCF: | ins_AD // BASE = new base, RA = framesize, RD = nargs+1 | mov KBASE, [PC-4+PC2PROTO(k)] | mov L:RB, SAVE_L | lea RA, [BASE+RA*8] // Top of frame. | cmp RA, L:RB->maxstack | ja ->vm_growstack_f | movzx RAd, byte [PC-4+PC2PROTO(numparams)] | cmp NARGS:RDd, RAd // Check for missing parameters. | jbe >3 |2: if (op == BC_JFUNCF) { | movzx RDd, PC_RD | jmp =>BC_JLOOP } else { | ins_next } | |3: // Clear missing parameters. | mov aword [BASE+NARGS:RD*8-8], LJ_TNIL | add NARGS:RDd, 1 | cmp NARGS:RDd, RAd | jbe <3 | jmp <2 break; case BC_JFUNCV: #if !LJ_HASJIT break; #endif | int3 // NYI: compiled vararg functions break; /* NYI: compiled vararg functions. */ case BC_IFUNCV: | ins_AD // BASE = new base, RA = framesize, RD = nargs+1 | lea RBd, [NARGS:RD*8+FRAME_VARG+8] | lea RD, [BASE+NARGS:RD*8+8] | mov LFUNC:KBASE, [BASE-16] | mov [RD-8], RB // Store delta + FRAME_VARG. | mov [RD-16], LFUNC:KBASE // Store copy of LFUNC. | mov L:RB, SAVE_L | lea RA, [RD+RA*8] | cmp RA, L:RB->maxstack | ja ->vm_growstack_v // Need to grow stack. | mov RA, BASE | mov BASE, RD | movzx RBd, byte [PC-4+PC2PROTO(numparams)] | test RBd, RBd | jz >2 | add RA, 8 |1: // Copy fixarg slots up to new frame. | add RA, 8 | cmp RA, BASE | jnb >3 // Less args than parameters? | mov KBASE, [RA-16] | mov [RD], KBASE | add RD, 8 | mov aword [RA-16], LJ_TNIL // Clear old fixarg slot (help the GC). | sub RBd, 1 | jnz <1 |2: if (op == BC_JFUNCV) { | movzx RDd, PC_RD | jmp =>BC_JLOOP } else { | mov KBASE, [PC-4+PC2PROTO(k)] | ins_next } | |3: // Clear missing parameters. | mov aword [RD], LJ_TNIL | add RD, 8 | sub RBd, 1 | jnz <3 | jmp <2 break; case BC_FUNCC: case BC_FUNCCW: | ins_AD // BASE = new base, RA = ins RA|RD (unused), RD = nargs+1 | mov CFUNC:RB, [BASE-16] | cleartp CFUNC:RB | mov KBASE, CFUNC:RB->f | mov L:RB, SAVE_L | lea RD, [BASE+NARGS:RD*8-8] | mov L:RB->base, BASE | lea RA, [RD+8*LUA_MINSTACK] | cmp RA, L:RB->maxstack | mov L:RB->top, RD if (op == BC_FUNCC) { | mov CARG1, L:RB // Caveat: CARG1 may be RA. } else { | mov CARG2, KBASE | mov CARG1, L:RB // Caveat: CARG1 may be RA. } | ja ->vm_growstack_c // Need to grow stack. | set_vmstate C if (op == BC_FUNCC) { | call KBASE // (lua_State *L) } else { | // (lua_State *L, lua_CFunction f) | call aword [DISPATCH+DISPATCH_GL(wrapf)] } | // nresults returned in eax (RD). | mov BASE, L:RB->base | mov [DISPATCH+DISPATCH_GL(cur_L)], L:RB | set_vmstate INTERP | lea RA, [BASE+RD*8] | neg RA | add RA, L:RB->top // RA = (L->top-(L->base+nresults))*8 | mov PC, [BASE-8] // Fetch PC of caller. | jmp ->vm_returnc break; /* ---------------------------------------------------------------------- */ default: fprintf(stderr, "Error: undefined opcode BC_%s\n", bc_names[op]); exit(2); break; } } static int build_backend(BuildCtx *ctx) { int op; dasm_growpc(Dst, BC__MAX); build_subroutines(ctx); |.code_op for (op = 0; op < BC__MAX; op++) build_ins(ctx, (BCOp)op, op); return BC__MAX; } /* Emit pseudo frame-info for all assembler functions. */ static void emit_asm_debug(BuildCtx *ctx) { int fcofs = (int)((uint8_t *)ctx->glob[GLOB_vm_ffi_call] - ctx->code); switch (ctx->mode) { case BUILD_elfasm: fprintf(ctx->fp, "\t.section .debug_frame,\"\",@progbits\n"); fprintf(ctx->fp, ".Lframe0:\n" "\t.long .LECIE0-.LSCIE0\n" ".LSCIE0:\n" "\t.long 0xffffffff\n" "\t.byte 0x1\n" "\t.string \"\"\n" "\t.uleb128 0x1\n" "\t.sleb128 -8\n" "\t.byte 0x10\n" "\t.byte 0xc\n\t.uleb128 0x7\n\t.uleb128 8\n" "\t.byte 0x80+0x10\n\t.uleb128 0x1\n" "\t.align 8\n" ".LECIE0:\n\n"); fprintf(ctx->fp, ".LSFDE0:\n" "\t.long .LEFDE0-.LASFDE0\n" ".LASFDE0:\n" "\t.long .Lframe0\n" "\t.quad .Lbegin\n" "\t.quad %d\n" "\t.byte 0xe\n\t.uleb128 %d\n" /* def_cfa_offset */ "\t.byte 0x86\n\t.uleb128 0x2\n" /* offset rbp */ "\t.byte 0x83\n\t.uleb128 0x3\n" /* offset rbx */ "\t.byte 0x8f\n\t.uleb128 0x4\n" /* offset r15 */ "\t.byte 0x8e\n\t.uleb128 0x5\n" /* offset r14 */ #if LJ_NO_UNWIND "\t.byte 0x8d\n\t.uleb128 0x6\n" /* offset r13 */ "\t.byte 0x8c\n\t.uleb128 0x7\n" /* offset r12 */ #endif "\t.align 8\n" ".LEFDE0:\n\n", fcofs, CFRAME_SIZE); #if LJ_HASFFI fprintf(ctx->fp, ".LSFDE1:\n" "\t.long .LEFDE1-.LASFDE1\n" ".LASFDE1:\n" "\t.long .Lframe0\n" "\t.quad lj_vm_ffi_call\n" "\t.quad %d\n" "\t.byte 0xe\n\t.uleb128 16\n" /* def_cfa_offset */ "\t.byte 0x86\n\t.uleb128 0x2\n" /* offset rbp */ "\t.byte 0xd\n\t.uleb128 0x6\n" /* def_cfa_register rbp */ "\t.byte 0x83\n\t.uleb128 0x3\n" /* offset rbx */ "\t.align 8\n" ".LEFDE1:\n\n", (int)ctx->codesz - fcofs); #endif #if !LJ_NO_UNWIND #if (defined(__sun__) && defined(__svr4__)) fprintf(ctx->fp, "\t.section .eh_frame,\"a\",@unwind\n"); #else fprintf(ctx->fp, "\t.section .eh_frame,\"a\",@progbits\n"); #endif fprintf(ctx->fp, ".Lframe1:\n" "\t.long .LECIE1-.LSCIE1\n" ".LSCIE1:\n" "\t.long 0\n" "\t.byte 0x1\n" "\t.string \"zPR\"\n" "\t.uleb128 0x1\n" "\t.sleb128 -8\n" "\t.byte 0x10\n" "\t.uleb128 6\n" /* augmentation length */ "\t.byte 0x1b\n" /* pcrel|sdata4 */ "\t.long lj_err_unwind_dwarf-.\n" "\t.byte 0x1b\n" /* pcrel|sdata4 */ "\t.byte 0xc\n\t.uleb128 0x7\n\t.uleb128 8\n" "\t.byte 0x80+0x10\n\t.uleb128 0x1\n" "\t.align 8\n" ".LECIE1:\n\n"); fprintf(ctx->fp, ".LSFDE2:\n" "\t.long .LEFDE2-.LASFDE2\n" ".LASFDE2:\n" "\t.long .LASFDE2-.Lframe1\n" "\t.long .Lbegin-.\n" "\t.long %d\n" "\t.uleb128 0\n" /* augmentation length */ "\t.byte 0xe\n\t.uleb128 %d\n" /* def_cfa_offset */ "\t.byte 0x86\n\t.uleb128 0x2\n" /* offset rbp */ "\t.byte 0x83\n\t.uleb128 0x3\n" /* offset rbx */ "\t.byte 0x8f\n\t.uleb128 0x4\n" /* offset r15 */ "\t.byte 0x8e\n\t.uleb128 0x5\n" /* offset r14 */ "\t.align 8\n" ".LEFDE2:\n\n", fcofs, CFRAME_SIZE); #if LJ_HASFFI fprintf(ctx->fp, ".Lframe2:\n" "\t.long .LECIE2-.LSCIE2\n" ".LSCIE2:\n" "\t.long 0\n" "\t.byte 0x1\n" "\t.string \"zR\"\n" "\t.uleb128 0x1\n" "\t.sleb128 -8\n" "\t.byte 0x10\n" "\t.uleb128 1\n" /* augmentation length */ "\t.byte 0x1b\n" /* pcrel|sdata4 */ "\t.byte 0xc\n\t.uleb128 0x7\n\t.uleb128 8\n" "\t.byte 0x80+0x10\n\t.uleb128 0x1\n" "\t.align 8\n" ".LECIE2:\n\n"); fprintf(ctx->fp, ".LSFDE3:\n" "\t.long .LEFDE3-.LASFDE3\n" ".LASFDE3:\n" "\t.long .LASFDE3-.Lframe2\n" "\t.long lj_vm_ffi_call-.\n" "\t.long %d\n" "\t.uleb128 0\n" /* augmentation length */ "\t.byte 0xe\n\t.uleb128 16\n" /* def_cfa_offset */ "\t.byte 0x86\n\t.uleb128 0x2\n" /* offset rbp */ "\t.byte 0xd\n\t.uleb128 0x6\n" /* def_cfa_register rbp */ "\t.byte 0x83\n\t.uleb128 0x3\n" /* offset rbx */ "\t.align 8\n" ".LEFDE3:\n\n", (int)ctx->codesz - fcofs); #endif #endif break; #if !LJ_NO_UNWIND /* Mental note: never let Apple design an assembler. ** Or a linker. Or a plastic case. But I digress. */ case BUILD_machasm: { #if LJ_HASFFI int fcsize = 0; #endif int i; fprintf(ctx->fp, "\t.section __TEXT,__eh_frame,coalesced,no_toc+strip_static_syms+live_support\n"); fprintf(ctx->fp, "EH_frame1:\n" "\t.set L$set$x,LECIEX-LSCIEX\n" "\t.long L$set$x\n" "LSCIEX:\n" "\t.long 0\n" "\t.byte 0x1\n" "\t.ascii \"zPR\\0\"\n" "\t.byte 0x1\n" "\t.byte 128-8\n" "\t.byte 0x10\n" "\t.byte 6\n" /* augmentation length */ "\t.byte 0x9b\n" /* indirect|pcrel|sdata4 */ "\t.long _lj_err_unwind_dwarf+4@GOTPCREL\n" "\t.byte 0x1b\n" /* pcrel|sdata4 */ "\t.byte 0xc\n\t.byte 0x7\n\t.byte 8\n" "\t.byte 0x80+0x10\n\t.byte 0x1\n" "\t.align 3\n" "LECIEX:\n\n"); for (i = 0; i < ctx->nsym; i++) { const char *name = ctx->sym[i].name; int32_t size = ctx->sym[i+1].ofs - ctx->sym[i].ofs; if (size == 0) continue; #if LJ_HASFFI if (!strcmp(name, "_lj_vm_ffi_call")) { fcsize = size; continue; } #endif fprintf(ctx->fp, "%s.eh:\n" "LSFDE%d:\n" "\t.set L$set$%d,LEFDE%d-LASFDE%d\n" "\t.long L$set$%d\n" "LASFDE%d:\n" "\t.long LASFDE%d-EH_frame1\n" "\t.long %s-.\n" "\t.long %d\n" "\t.byte 0\n" /* augmentation length */ "\t.byte 0xe\n\t.byte %d\n" /* def_cfa_offset */ "\t.byte 0x86\n\t.byte 0x2\n" /* offset rbp */ "\t.byte 0x83\n\t.byte 0x3\n" /* offset rbx */ "\t.byte 0x8f\n\t.byte 0x4\n" /* offset r15 */ "\t.byte 0x8e\n\t.byte 0x5\n" /* offset r14 */ "\t.align 3\n" "LEFDE%d:\n\n", name, i, i, i, i, i, i, i, name, size, CFRAME_SIZE, i); } #if LJ_HASFFI if (fcsize) { fprintf(ctx->fp, "EH_frame2:\n" "\t.set L$set$y,LECIEY-LSCIEY\n" "\t.long L$set$y\n" "LSCIEY:\n" "\t.long 0\n" "\t.byte 0x1\n" "\t.ascii \"zR\\0\"\n" "\t.byte 0x1\n" "\t.byte 128-8\n" "\t.byte 0x10\n" "\t.byte 1\n" /* augmentation length */ "\t.byte 0x1b\n" /* pcrel|sdata4 */ "\t.byte 0xc\n\t.byte 0x7\n\t.byte 8\n" "\t.byte 0x80+0x10\n\t.byte 0x1\n" "\t.align 3\n" "LECIEY:\n\n"); fprintf(ctx->fp, "_lj_vm_ffi_call.eh:\n" "LSFDEY:\n" "\t.set L$set$yy,LEFDEY-LASFDEY\n" "\t.long L$set$yy\n" "LASFDEY:\n" "\t.long LASFDEY-EH_frame2\n" "\t.long _lj_vm_ffi_call-.\n" "\t.long %d\n" "\t.byte 0\n" /* augmentation length */ "\t.byte 0xe\n\t.byte 16\n" /* def_cfa_offset */ "\t.byte 0x86\n\t.byte 0x2\n" /* offset rbp */ "\t.byte 0xd\n\t.byte 0x6\n" /* def_cfa_register rbp */ "\t.byte 0x83\n\t.byte 0x3\n" /* offset rbx */ "\t.align 3\n" "LEFDEY:\n\n", fcsize); } #endif fprintf(ctx->fp, ".subsections_via_symbols\n"); } break; #endif default: /* Difficult for other modes. */ break; } } luajit-2.1.0~beta3+dfsg.orig/src/lj_carith.h0000644000175100017510000000214313101703334020215 0ustar ondrejondrej/* ** C data arithmetic. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_CARITH_H #define _LJ_CARITH_H #include "lj_obj.h" #if LJ_HASFFI LJ_FUNC int lj_carith_op(lua_State *L, MMS mm); #if LJ_32 LJ_FUNC uint64_t lj_carith_shl64(uint64_t x, int32_t sh); LJ_FUNC uint64_t lj_carith_shr64(uint64_t x, int32_t sh); LJ_FUNC uint64_t lj_carith_sar64(uint64_t x, int32_t sh); LJ_FUNC uint64_t lj_carith_rol64(uint64_t x, int32_t sh); LJ_FUNC uint64_t lj_carith_ror64(uint64_t x, int32_t sh); #endif LJ_FUNC uint64_t lj_carith_shift64(uint64_t x, int32_t sh, int op); LJ_FUNC uint64_t lj_carith_check64(lua_State *L, int narg, CTypeID *id); #if LJ_32 && LJ_HASJIT LJ_FUNC int64_t lj_carith_mul64(int64_t x, int64_t k); #endif LJ_FUNC uint64_t lj_carith_divu64(uint64_t a, uint64_t b); LJ_FUNC int64_t lj_carith_divi64(int64_t a, int64_t b); LJ_FUNC uint64_t lj_carith_modu64(uint64_t a, uint64_t b); LJ_FUNC int64_t lj_carith_modi64(int64_t a, int64_t b); LJ_FUNC uint64_t lj_carith_powu64(uint64_t x, uint64_t k); LJ_FUNC int64_t lj_carith_powi64(int64_t x, int64_t k); #endif #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_opt_fold.c0000644000175100017510000021163313101703334020552 0ustar ondrejondrej/* ** FOLD: Constant Folding, Algebraic Simplifications and Reassociation. ** ABCelim: Array Bounds Check Elimination. ** CSE: Common-Subexpression Elimination. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #define lj_opt_fold_c #define LUA_CORE #include #include "lj_obj.h" #if LJ_HASJIT #include "lj_buf.h" #include "lj_str.h" #include "lj_tab.h" #include "lj_ir.h" #include "lj_jit.h" #include "lj_ircall.h" #include "lj_iropt.h" #include "lj_trace.h" #if LJ_HASFFI #include "lj_ctype.h" #include "lj_carith.h" #endif #include "lj_vm.h" #include "lj_strscan.h" #include "lj_strfmt.h" /* Here's a short description how the FOLD engine processes instructions: ** ** The FOLD engine receives a single instruction stored in fins (J->fold.ins). ** The instruction and its operands are used to select matching fold rules. ** These are applied iteratively until a fixed point is reached. ** ** The 8 bit opcode of the instruction itself plus the opcodes of the ** two instructions referenced by its operands form a 24 bit key ** 'ins left right' (unused operands -> 0, literals -> lowest 8 bits). ** ** This key is used for partial matching against the fold rules. The ** left/right operand fields of the key are successively masked with ** the 'any' wildcard, from most specific to least specific: ** ** ins left right ** ins any right ** ins left any ** ins any any ** ** The masked key is used to lookup a matching fold rule in a semi-perfect ** hash table. If a matching rule is found, the related fold function is run. ** Multiple rules can share the same fold function. A fold rule may return ** one of several special values: ** ** - NEXTFOLD means no folding was applied, because an additional test ** inside the fold function failed. Matching continues against less ** specific fold rules. Finally the instruction is passed on to CSE. ** ** - RETRYFOLD means the instruction was modified in-place. Folding is ** retried as if this instruction had just been received. ** ** All other return values are terminal actions -- no further folding is ** applied: ** ** - INTFOLD(i) returns a reference to the integer constant i. ** ** - LEFTFOLD and RIGHTFOLD return the left/right operand reference ** without emitting an instruction. ** ** - CSEFOLD and EMITFOLD pass the instruction directly to CSE or emit ** it without passing through any further optimizations. ** ** - FAILFOLD, DROPFOLD and CONDFOLD only apply to instructions which have ** no result (e.g. guarded assertions): FAILFOLD means the guard would ** always fail, i.e. the current trace is pointless. DROPFOLD means ** the guard is always true and has been eliminated. CONDFOLD is a ** shortcut for FAILFOLD + cond (i.e. drop if true, otherwise fail). ** ** - Any other return value is interpreted as an IRRef or TRef. This ** can be a reference to an existing or a newly created instruction. ** Only the least-significant 16 bits (IRRef1) are used to form a TRef ** which is finally returned to the caller. ** ** The FOLD engine receives instructions both from the trace recorder and ** substituted instructions from LOOP unrolling. This means all types ** of instructions may end up here, even though the recorder bypasses ** FOLD in some cases. Thus all loads, stores and allocations must have ** an any/any rule to avoid being passed on to CSE. ** ** Carefully read the following requirements before adding or modifying ** any fold rules: ** ** Requirement #1: All fold rules must preserve their destination type. ** ** Consistently use INTFOLD() (KINT result) or lj_ir_knum() (KNUM result). ** Never use lj_ir_knumint() which can have either a KINT or KNUM result. ** ** Requirement #2: Fold rules should not create *new* instructions which ** reference operands *across* PHIs. ** ** E.g. a RETRYFOLD with 'fins->op1 = fleft->op1' is invalid if the ** left operand is a PHI. Then fleft->op1 would point across the PHI ** frontier to an invariant instruction. Adding a PHI for this instruction ** would be counterproductive. The solution is to add a barrier which ** prevents folding across PHIs, i.e. 'PHIBARRIER(fleft)' in this case. ** The only exception is for recurrences with high latencies like ** repeated int->num->int conversions. ** ** One could relax this condition a bit if the referenced instruction is ** a PHI, too. But this often leads to worse code due to excessive ** register shuffling. ** ** Note: returning *existing* instructions (e.g. LEFTFOLD) is ok, though. ** Even returning fleft->op1 would be ok, because a new PHI will added, ** if needed. But again, this leads to excessive register shuffling and ** should be avoided. ** ** Requirement #3: The set of all fold rules must be monotonic to guarantee ** termination. ** ** The goal is optimization, so one primarily wants to add strength-reducing ** rules. This means eliminating an instruction or replacing an instruction ** with one or more simpler instructions. Don't add fold rules which point ** into the other direction. ** ** Some rules (like commutativity) do not directly reduce the strength of ** an instruction, but enable other fold rules (e.g. by moving constants ** to the right operand). These rules must be made unidirectional to avoid ** cycles. ** ** Rule of thumb: the trace recorder expands the IR and FOLD shrinks it. */ /* Some local macros to save typing. Undef'd at the end. */ #define IR(ref) (&J->cur.ir[(ref)]) #define fins (&J->fold.ins) #define fleft (J->fold.left) #define fright (J->fold.right) #define knumleft (ir_knum(fleft)->n) #define knumright (ir_knum(fright)->n) /* Pass IR on to next optimization in chain (FOLD). */ #define emitir(ot, a, b) (lj_ir_set(J, (ot), (a), (b)), lj_opt_fold(J)) /* Fold function type. Fastcall on x86 significantly reduces their size. */ typedef IRRef (LJ_FASTCALL *FoldFunc)(jit_State *J); /* Macros for the fold specs, so buildvm can recognize them. */ #define LJFOLD(x) #define LJFOLDX(x) #define LJFOLDF(name) static TRef LJ_FASTCALL fold_##name(jit_State *J) /* Note: They must be at the start of a line or buildvm ignores them! */ /* Barrier to prevent using operands across PHIs. */ #define PHIBARRIER(ir) if (irt_isphi((ir)->t)) return NEXTFOLD /* Barrier to prevent folding across a GC step. ** GC steps can only happen at the head of a trace and at LOOP. ** And the GC is only driven forward if there's at least one allocation. */ #define gcstep_barrier(J, ref) \ ((ref) < J->chain[IR_LOOP] && \ (J->chain[IR_SNEW] || J->chain[IR_XSNEW] || \ J->chain[IR_TNEW] || J->chain[IR_TDUP] || \ J->chain[IR_CNEW] || J->chain[IR_CNEWI] || \ J->chain[IR_BUFSTR] || J->chain[IR_TOSTR] || J->chain[IR_CALLA])) /* -- Constant folding for FP numbers ------------------------------------- */ LJFOLD(ADD KNUM KNUM) LJFOLD(SUB KNUM KNUM) LJFOLD(MUL KNUM KNUM) LJFOLD(DIV KNUM KNUM) LJFOLD(ATAN2 KNUM KNUM) LJFOLD(LDEXP KNUM KNUM) LJFOLD(MIN KNUM KNUM) LJFOLD(MAX KNUM KNUM) LJFOLDF(kfold_numarith) { lua_Number a = knumleft; lua_Number b = knumright; lua_Number y = lj_vm_foldarith(a, b, fins->o - IR_ADD); return lj_ir_knum(J, y); } LJFOLD(NEG KNUM FLOAD) LJFOLD(ABS KNUM FLOAD) LJFOLDF(kfold_numabsneg) { lua_Number a = knumleft; lua_Number y = lj_vm_foldarith(a, a, fins->o - IR_ADD); return lj_ir_knum(J, y); } LJFOLD(LDEXP KNUM KINT) LJFOLDF(kfold_ldexp) { #if LJ_TARGET_X86ORX64 UNUSED(J); return NEXTFOLD; #else return lj_ir_knum(J, ldexp(knumleft, fright->i)); #endif } LJFOLD(FPMATH KNUM any) LJFOLDF(kfold_fpmath) { lua_Number a = knumleft; lua_Number y = lj_vm_foldfpm(a, fins->op2); return lj_ir_knum(J, y); } LJFOLD(POW KNUM KINT) LJFOLDF(kfold_numpow) { lua_Number a = knumleft; lua_Number b = (lua_Number)fright->i; lua_Number y = lj_vm_foldarith(a, b, IR_POW - IR_ADD); return lj_ir_knum(J, y); } /* Must not use kfold_kref for numbers (could be NaN). */ LJFOLD(EQ KNUM KNUM) LJFOLD(NE KNUM KNUM) LJFOLD(LT KNUM KNUM) LJFOLD(GE KNUM KNUM) LJFOLD(LE KNUM KNUM) LJFOLD(GT KNUM KNUM) LJFOLD(ULT KNUM KNUM) LJFOLD(UGE KNUM KNUM) LJFOLD(ULE KNUM KNUM) LJFOLD(UGT KNUM KNUM) LJFOLDF(kfold_numcomp) { return CONDFOLD(lj_ir_numcmp(knumleft, knumright, (IROp)fins->o)); } /* -- Constant folding for 32 bit integers -------------------------------- */ static int32_t kfold_intop(int32_t k1, int32_t k2, IROp op) { switch (op) { case IR_ADD: k1 += k2; break; case IR_SUB: k1 -= k2; break; case IR_MUL: k1 *= k2; break; case IR_MOD: k1 = lj_vm_modi(k1, k2); break; case IR_NEG: k1 = -k1; break; case IR_BAND: k1 &= k2; break; case IR_BOR: k1 |= k2; break; case IR_BXOR: k1 ^= k2; break; case IR_BSHL: k1 <<= (k2 & 31); break; case IR_BSHR: k1 = (int32_t)((uint32_t)k1 >> (k2 & 31)); break; case IR_BSAR: k1 >>= (k2 & 31); break; case IR_BROL: k1 = (int32_t)lj_rol((uint32_t)k1, (k2 & 31)); break; case IR_BROR: k1 = (int32_t)lj_ror((uint32_t)k1, (k2 & 31)); break; case IR_MIN: k1 = k1 < k2 ? k1 : k2; break; case IR_MAX: k1 = k1 > k2 ? k1 : k2; break; default: lua_assert(0); break; } return k1; } LJFOLD(ADD KINT KINT) LJFOLD(SUB KINT KINT) LJFOLD(MUL KINT KINT) LJFOLD(MOD KINT KINT) LJFOLD(NEG KINT KINT) LJFOLD(BAND KINT KINT) LJFOLD(BOR KINT KINT) LJFOLD(BXOR KINT KINT) LJFOLD(BSHL KINT KINT) LJFOLD(BSHR KINT KINT) LJFOLD(BSAR KINT KINT) LJFOLD(BROL KINT KINT) LJFOLD(BROR KINT KINT) LJFOLD(MIN KINT KINT) LJFOLD(MAX KINT KINT) LJFOLDF(kfold_intarith) { return INTFOLD(kfold_intop(fleft->i, fright->i, (IROp)fins->o)); } LJFOLD(ADDOV KINT KINT) LJFOLD(SUBOV KINT KINT) LJFOLD(MULOV KINT KINT) LJFOLDF(kfold_intovarith) { lua_Number n = lj_vm_foldarith((lua_Number)fleft->i, (lua_Number)fright->i, fins->o - IR_ADDOV); int32_t k = lj_num2int(n); if (n != (lua_Number)k) return FAILFOLD; return INTFOLD(k); } LJFOLD(BNOT KINT) LJFOLDF(kfold_bnot) { return INTFOLD(~fleft->i); } LJFOLD(BSWAP KINT) LJFOLDF(kfold_bswap) { return INTFOLD((int32_t)lj_bswap((uint32_t)fleft->i)); } LJFOLD(LT KINT KINT) LJFOLD(GE KINT KINT) LJFOLD(LE KINT KINT) LJFOLD(GT KINT KINT) LJFOLD(ULT KINT KINT) LJFOLD(UGE KINT KINT) LJFOLD(ULE KINT KINT) LJFOLD(UGT KINT KINT) LJFOLD(ABC KINT KINT) LJFOLDF(kfold_intcomp) { int32_t a = fleft->i, b = fright->i; switch ((IROp)fins->o) { case IR_LT: return CONDFOLD(a < b); case IR_GE: return CONDFOLD(a >= b); case IR_LE: return CONDFOLD(a <= b); case IR_GT: return CONDFOLD(a > b); case IR_ULT: return CONDFOLD((uint32_t)a < (uint32_t)b); case IR_UGE: return CONDFOLD((uint32_t)a >= (uint32_t)b); case IR_ULE: return CONDFOLD((uint32_t)a <= (uint32_t)b); case IR_ABC: case IR_UGT: return CONDFOLD((uint32_t)a > (uint32_t)b); default: lua_assert(0); return FAILFOLD; } } LJFOLD(UGE any KINT) LJFOLDF(kfold_intcomp0) { if (fright->i == 0) return DROPFOLD; return NEXTFOLD; } /* -- Constant folding for 64 bit integers -------------------------------- */ static uint64_t kfold_int64arith(uint64_t k1, uint64_t k2, IROp op) { switch (op) { #if LJ_HASFFI case IR_ADD: k1 += k2; break; case IR_SUB: k1 -= k2; break; case IR_MUL: k1 *= k2; break; case IR_BAND: k1 &= k2; break; case IR_BOR: k1 |= k2; break; case IR_BXOR: k1 ^= k2; break; case IR_BSHL: k1 <<= (k2 & 63); break; case IR_BSHR: k1 = (int32_t)((uint32_t)k1 >> (k2 & 63)); break; case IR_BSAR: k1 >>= (k2 & 63); break; case IR_BROL: k1 = (int32_t)lj_rol((uint32_t)k1, (k2 & 63)); break; case IR_BROR: k1 = (int32_t)lj_ror((uint32_t)k1, (k2 & 63)); break; #endif default: UNUSED(k2); lua_assert(0); break; } return k1; } LJFOLD(ADD KINT64 KINT64) LJFOLD(SUB KINT64 KINT64) LJFOLD(MUL KINT64 KINT64) LJFOLD(BAND KINT64 KINT64) LJFOLD(BOR KINT64 KINT64) LJFOLD(BXOR KINT64 KINT64) LJFOLDF(kfold_int64arith) { return INT64FOLD(kfold_int64arith(ir_k64(fleft)->u64, ir_k64(fright)->u64, (IROp)fins->o)); } LJFOLD(DIV KINT64 KINT64) LJFOLD(MOD KINT64 KINT64) LJFOLD(POW KINT64 KINT64) LJFOLDF(kfold_int64arith2) { #if LJ_HASFFI uint64_t k1 = ir_k64(fleft)->u64, k2 = ir_k64(fright)->u64; if (irt_isi64(fins->t)) { k1 = fins->o == IR_DIV ? lj_carith_divi64((int64_t)k1, (int64_t)k2) : fins->o == IR_MOD ? lj_carith_modi64((int64_t)k1, (int64_t)k2) : lj_carith_powi64((int64_t)k1, (int64_t)k2); } else { k1 = fins->o == IR_DIV ? lj_carith_divu64(k1, k2) : fins->o == IR_MOD ? lj_carith_modu64(k1, k2) : lj_carith_powu64(k1, k2); } return INT64FOLD(k1); #else UNUSED(J); lua_assert(0); return FAILFOLD; #endif } LJFOLD(BSHL KINT64 KINT) LJFOLD(BSHR KINT64 KINT) LJFOLD(BSAR KINT64 KINT) LJFOLD(BROL KINT64 KINT) LJFOLD(BROR KINT64 KINT) LJFOLDF(kfold_int64shift) { #if LJ_HASFFI uint64_t k = ir_k64(fleft)->u64; int32_t sh = (fright->i & 63); return INT64FOLD(lj_carith_shift64(k, sh, fins->o - IR_BSHL)); #else UNUSED(J); lua_assert(0); return FAILFOLD; #endif } LJFOLD(BNOT KINT64) LJFOLDF(kfold_bnot64) { #if LJ_HASFFI return INT64FOLD(~ir_k64(fleft)->u64); #else UNUSED(J); lua_assert(0); return FAILFOLD; #endif } LJFOLD(BSWAP KINT64) LJFOLDF(kfold_bswap64) { #if LJ_HASFFI return INT64FOLD(lj_bswap64(ir_k64(fleft)->u64)); #else UNUSED(J); lua_assert(0); return FAILFOLD; #endif } LJFOLD(LT KINT64 KINT64) LJFOLD(GE KINT64 KINT64) LJFOLD(LE KINT64 KINT64) LJFOLD(GT KINT64 KINT64) LJFOLD(ULT KINT64 KINT64) LJFOLD(UGE KINT64 KINT64) LJFOLD(ULE KINT64 KINT64) LJFOLD(UGT KINT64 KINT64) LJFOLDF(kfold_int64comp) { #if LJ_HASFFI uint64_t a = ir_k64(fleft)->u64, b = ir_k64(fright)->u64; switch ((IROp)fins->o) { case IR_LT: return CONDFOLD((int64_t)a < (int64_t)b); case IR_GE: return CONDFOLD((int64_t)a >= (int64_t)b); case IR_LE: return CONDFOLD((int64_t)a <= (int64_t)b); case IR_GT: return CONDFOLD((int64_t)a > (int64_t)b); case IR_ULT: return CONDFOLD(a < b); case IR_UGE: return CONDFOLD(a >= b); case IR_ULE: return CONDFOLD(a <= b); case IR_UGT: return CONDFOLD(a > b); default: lua_assert(0); return FAILFOLD; } #else UNUSED(J); lua_assert(0); return FAILFOLD; #endif } LJFOLD(UGE any KINT64) LJFOLDF(kfold_int64comp0) { #if LJ_HASFFI if (ir_k64(fright)->u64 == 0) return DROPFOLD; return NEXTFOLD; #else UNUSED(J); lua_assert(0); return FAILFOLD; #endif } /* -- Constant folding for strings ---------------------------------------- */ LJFOLD(SNEW KKPTR KINT) LJFOLDF(kfold_snew_kptr) { GCstr *s = lj_str_new(J->L, (const char *)ir_kptr(fleft), (size_t)fright->i); return lj_ir_kstr(J, s); } LJFOLD(SNEW any KINT) LJFOLDF(kfold_snew_empty) { if (fright->i == 0) return lj_ir_kstr(J, &J2G(J)->strempty); return NEXTFOLD; } LJFOLD(STRREF KGC KINT) LJFOLDF(kfold_strref) { GCstr *str = ir_kstr(fleft); lua_assert((MSize)fright->i <= str->len); return lj_ir_kkptr(J, (char *)strdata(str) + fright->i); } LJFOLD(STRREF SNEW any) LJFOLDF(kfold_strref_snew) { PHIBARRIER(fleft); if (irref_isk(fins->op2) && fright->i == 0) { return fleft->op1; /* strref(snew(ptr, len), 0) ==> ptr */ } else { /* Reassociate: strref(snew(strref(str, a), len), b) ==> strref(str, a+b) */ IRIns *ir = IR(fleft->op1); if (ir->o == IR_STRREF) { IRRef1 str = ir->op1; /* IRIns * is not valid across emitir. */ PHIBARRIER(ir); fins->op2 = emitir(IRTI(IR_ADD), ir->op2, fins->op2); /* Clobbers fins! */ fins->op1 = str; fins->ot = IRT(IR_STRREF, IRT_PGC); return RETRYFOLD; } } return NEXTFOLD; } LJFOLD(CALLN CARG IRCALL_lj_str_cmp) LJFOLDF(kfold_strcmp) { if (irref_isk(fleft->op1) && irref_isk(fleft->op2)) { GCstr *a = ir_kstr(IR(fleft->op1)); GCstr *b = ir_kstr(IR(fleft->op2)); return INTFOLD(lj_str_cmp(a, b)); } return NEXTFOLD; } /* -- Constant folding and forwarding for buffers ------------------------- */ /* ** Buffer ops perform stores, but their effect is limited to the buffer ** itself. Also, buffer ops are chained: a use of an op implies a use of ** all other ops up the chain. Conversely, if an op is unused, all ops ** up the chain can go unsed. This largely eliminates the need to treat ** them as stores. ** ** Alas, treating them as normal (IRM_N) ops doesn't work, because they ** cannot be CSEd in isolation. CSE for IRM_N is implicitly done in LOOP ** or if FOLD is disabled. ** ** The compromise is to declare them as loads, emit them like stores and ** CSE whole chains manually when the BUFSTR is to be emitted. Any chain ** fragments left over from CSE are eliminated by DCE. */ /* BUFHDR is emitted like a store, see below. */ LJFOLD(BUFPUT BUFHDR BUFSTR) LJFOLDF(bufput_append) { /* New buffer, no other buffer op inbetween and same buffer? */ if ((J->flags & JIT_F_OPT_FWD) && !(fleft->op2 & IRBUFHDR_APPEND) && fleft->prev == fright->op2 && fleft->op1 == IR(fright->op2)->op1) { IRRef ref = fins->op1; IR(ref)->op2 = (fleft->op2 | IRBUFHDR_APPEND); /* Modify BUFHDR. */ IR(ref)->op1 = fright->op1; return ref; } return EMITFOLD; /* Always emit, CSE later. */ } LJFOLD(BUFPUT any any) LJFOLDF(bufput_kgc) { if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD) && fright->o == IR_KGC) { GCstr *s2 = ir_kstr(fright); if (s2->len == 0) { /* Empty string? */ return LEFTFOLD; } else { if (fleft->o == IR_BUFPUT && irref_isk(fleft->op2) && !irt_isphi(fleft->t)) { /* Join two constant string puts in a row. */ GCstr *s1 = ir_kstr(IR(fleft->op2)); IRRef kref = lj_ir_kstr(J, lj_buf_cat2str(J->L, s1, s2)); /* lj_ir_kstr() may realloc the IR and invalidates any IRIns *. */ IR(fins->op1)->op2 = kref; /* Modify previous BUFPUT. */ return fins->op1; } } } return EMITFOLD; /* Always emit, CSE later. */ } LJFOLD(BUFSTR any any) LJFOLDF(bufstr_kfold_cse) { lua_assert(fleft->o == IR_BUFHDR || fleft->o == IR_BUFPUT || fleft->o == IR_CALLL); if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD)) { if (fleft->o == IR_BUFHDR) { /* No put operations? */ if (!(fleft->op2 & IRBUFHDR_APPEND)) /* Empty buffer? */ return lj_ir_kstr(J, &J2G(J)->strempty); fins->op1 = fleft->op1; fins->op2 = fleft->prev; /* Relies on checks in bufput_append. */ return CSEFOLD; } else if (fleft->o == IR_BUFPUT) { IRIns *irb = IR(fleft->op1); if (irb->o == IR_BUFHDR && !(irb->op2 & IRBUFHDR_APPEND)) return fleft->op2; /* Shortcut for a single put operation. */ } } /* Try to CSE the whole chain. */ if (LJ_LIKELY(J->flags & JIT_F_OPT_CSE)) { IRRef ref = J->chain[IR_BUFSTR]; while (ref) { IRIns *irs = IR(ref), *ira = fleft, *irb = IR(irs->op1); while (ira->o == irb->o && ira->op2 == irb->op2) { lua_assert(ira->o == IR_BUFHDR || ira->o == IR_BUFPUT || ira->o == IR_CALLL || ira->o == IR_CARG); if (ira->o == IR_BUFHDR && !(ira->op2 & IRBUFHDR_APPEND)) return ref; /* CSE succeeded. */ if (ira->o == IR_CALLL && ira->op2 == IRCALL_lj_buf_puttab) break; ira = IR(ira->op1); irb = IR(irb->op1); } ref = irs->prev; } } return EMITFOLD; /* No CSE possible. */ } LJFOLD(CALLL CARG IRCALL_lj_buf_putstr_reverse) LJFOLD(CALLL CARG IRCALL_lj_buf_putstr_upper) LJFOLD(CALLL CARG IRCALL_lj_buf_putstr_lower) LJFOLD(CALLL CARG IRCALL_lj_strfmt_putquoted) LJFOLDF(bufput_kfold_op) { if (irref_isk(fleft->op2)) { const CCallInfo *ci = &lj_ir_callinfo[fins->op2]; SBuf *sb = lj_buf_tmp_(J->L); sb = ((SBuf * (LJ_FASTCALL *)(SBuf *, GCstr *))ci->func)(sb, ir_kstr(IR(fleft->op2))); fins->o = IR_BUFPUT; fins->op1 = fleft->op1; fins->op2 = lj_ir_kstr(J, lj_buf_tostr(sb)); return RETRYFOLD; } return EMITFOLD; /* Always emit, CSE later. */ } LJFOLD(CALLL CARG IRCALL_lj_buf_putstr_rep) LJFOLDF(bufput_kfold_rep) { if (irref_isk(fleft->op2)) { IRIns *irc = IR(fleft->op1); if (irref_isk(irc->op2)) { SBuf *sb = lj_buf_tmp_(J->L); sb = lj_buf_putstr_rep(sb, ir_kstr(IR(irc->op2)), IR(fleft->op2)->i); fins->o = IR_BUFPUT; fins->op1 = irc->op1; fins->op2 = lj_ir_kstr(J, lj_buf_tostr(sb)); return RETRYFOLD; } } return EMITFOLD; /* Always emit, CSE later. */ } LJFOLD(CALLL CARG IRCALL_lj_strfmt_putfxint) LJFOLD(CALLL CARG IRCALL_lj_strfmt_putfnum_int) LJFOLD(CALLL CARG IRCALL_lj_strfmt_putfnum_uint) LJFOLD(CALLL CARG IRCALL_lj_strfmt_putfnum) LJFOLD(CALLL CARG IRCALL_lj_strfmt_putfstr) LJFOLD(CALLL CARG IRCALL_lj_strfmt_putfchar) LJFOLDF(bufput_kfold_fmt) { IRIns *irc = IR(fleft->op1); lua_assert(irref_isk(irc->op2)); /* SFormat must be const. */ if (irref_isk(fleft->op2)) { SFormat sf = (SFormat)IR(irc->op2)->i; IRIns *ira = IR(fleft->op2); SBuf *sb = lj_buf_tmp_(J->L); switch (fins->op2) { case IRCALL_lj_strfmt_putfxint: sb = lj_strfmt_putfxint(sb, sf, ir_k64(ira)->u64); break; case IRCALL_lj_strfmt_putfstr: sb = lj_strfmt_putfstr(sb, sf, ir_kstr(ira)); break; case IRCALL_lj_strfmt_putfchar: sb = lj_strfmt_putfchar(sb, sf, ira->i); break; case IRCALL_lj_strfmt_putfnum_int: case IRCALL_lj_strfmt_putfnum_uint: case IRCALL_lj_strfmt_putfnum: default: { const CCallInfo *ci = &lj_ir_callinfo[fins->op2]; sb = ((SBuf * (*)(SBuf *, SFormat, lua_Number))ci->func)(sb, sf, ir_knum(ira)->n); break; } } fins->o = IR_BUFPUT; fins->op1 = irc->op1; fins->op2 = lj_ir_kstr(J, lj_buf_tostr(sb)); return RETRYFOLD; } return EMITFOLD; /* Always emit, CSE later. */ } /* -- Constant folding of pointer arithmetic ------------------------------ */ LJFOLD(ADD KGC KINT) LJFOLD(ADD KGC KINT64) LJFOLDF(kfold_add_kgc) { GCobj *o = ir_kgc(fleft); #if LJ_64 ptrdiff_t ofs = (ptrdiff_t)ir_kint64(fright)->u64; #else ptrdiff_t ofs = fright->i; #endif #if LJ_HASFFI if (irt_iscdata(fleft->t)) { CType *ct = ctype_raw(ctype_ctsG(J2G(J)), gco2cd(o)->ctypeid); if (ctype_isnum(ct->info) || ctype_isenum(ct->info) || ctype_isptr(ct->info) || ctype_isfunc(ct->info) || ctype_iscomplex(ct->info) || ctype_isvector(ct->info)) return lj_ir_kkptr(J, (char *)o + ofs); } #endif return lj_ir_kptr(J, (char *)o + ofs); } LJFOLD(ADD KPTR KINT) LJFOLD(ADD KPTR KINT64) LJFOLD(ADD KKPTR KINT) LJFOLD(ADD KKPTR KINT64) LJFOLDF(kfold_add_kptr) { void *p = ir_kptr(fleft); #if LJ_64 ptrdiff_t ofs = (ptrdiff_t)ir_kint64(fright)->u64; #else ptrdiff_t ofs = fright->i; #endif return lj_ir_kptr_(J, fleft->o, (char *)p + ofs); } LJFOLD(ADD any KGC) LJFOLD(ADD any KPTR) LJFOLD(ADD any KKPTR) LJFOLDF(kfold_add_kright) { if (fleft->o == IR_KINT || fleft->o == IR_KINT64) { IRRef1 tmp = fins->op1; fins->op1 = fins->op2; fins->op2 = tmp; return RETRYFOLD; } return NEXTFOLD; } /* -- Constant folding of conversions ------------------------------------- */ LJFOLD(TOBIT KNUM KNUM) LJFOLDF(kfold_tobit) { return INTFOLD(lj_num2bit(knumleft)); } LJFOLD(CONV KINT IRCONV_NUM_INT) LJFOLDF(kfold_conv_kint_num) { return lj_ir_knum(J, (lua_Number)fleft->i); } LJFOLD(CONV KINT IRCONV_NUM_U32) LJFOLDF(kfold_conv_kintu32_num) { return lj_ir_knum(J, (lua_Number)(uint32_t)fleft->i); } LJFOLD(CONV KINT IRCONV_INT_I8) LJFOLD(CONV KINT IRCONV_INT_U8) LJFOLD(CONV KINT IRCONV_INT_I16) LJFOLD(CONV KINT IRCONV_INT_U16) LJFOLDF(kfold_conv_kint_ext) { int32_t k = fleft->i; if ((fins->op2 & IRCONV_SRCMASK) == IRT_I8) k = (int8_t)k; else if ((fins->op2 & IRCONV_SRCMASK) == IRT_U8) k = (uint8_t)k; else if ((fins->op2 & IRCONV_SRCMASK) == IRT_I16) k = (int16_t)k; else k = (uint16_t)k; return INTFOLD(k); } LJFOLD(CONV KINT IRCONV_I64_INT) LJFOLD(CONV KINT IRCONV_U64_INT) LJFOLD(CONV KINT IRCONV_I64_U32) LJFOLD(CONV KINT IRCONV_U64_U32) LJFOLDF(kfold_conv_kint_i64) { if ((fins->op2 & IRCONV_SEXT)) return INT64FOLD((uint64_t)(int64_t)fleft->i); else return INT64FOLD((uint64_t)(int64_t)(uint32_t)fleft->i); } LJFOLD(CONV KINT64 IRCONV_NUM_I64) LJFOLDF(kfold_conv_kint64_num_i64) { return lj_ir_knum(J, (lua_Number)(int64_t)ir_kint64(fleft)->u64); } LJFOLD(CONV KINT64 IRCONV_NUM_U64) LJFOLDF(kfold_conv_kint64_num_u64) { return lj_ir_knum(J, (lua_Number)ir_kint64(fleft)->u64); } LJFOLD(CONV KINT64 IRCONV_INT_I64) LJFOLD(CONV KINT64 IRCONV_U32_I64) LJFOLDF(kfold_conv_kint64_int_i64) { return INTFOLD((int32_t)ir_kint64(fleft)->u64); } LJFOLD(CONV KNUM IRCONV_INT_NUM) LJFOLDF(kfold_conv_knum_int_num) { lua_Number n = knumleft; int32_t k = lj_num2int(n); if (irt_isguard(fins->t) && n != (lua_Number)k) { /* We're about to create a guard which always fails, like CONV +1.5. ** Some pathological loops cause this during LICM, e.g.: ** local x,k,t = 0,1.5,{1,[1.5]=2} ** for i=1,200 do x = x+ t[k]; k = k == 1 and 1.5 or 1 end ** assert(x == 300) */ return FAILFOLD; } return INTFOLD(k); } LJFOLD(CONV KNUM IRCONV_U32_NUM) LJFOLDF(kfold_conv_knum_u32_num) { #ifdef _MSC_VER { /* Workaround for MSVC bug. */ volatile uint32_t u = (uint32_t)knumleft; return INTFOLD((int32_t)u); } #else return INTFOLD((int32_t)(uint32_t)knumleft); #endif } LJFOLD(CONV KNUM IRCONV_I64_NUM) LJFOLDF(kfold_conv_knum_i64_num) { return INT64FOLD((uint64_t)(int64_t)knumleft); } LJFOLD(CONV KNUM IRCONV_U64_NUM) LJFOLDF(kfold_conv_knum_u64_num) { return INT64FOLD(lj_num2u64(knumleft)); } LJFOLD(TOSTR KNUM any) LJFOLDF(kfold_tostr_knum) { return lj_ir_kstr(J, lj_strfmt_num(J->L, ir_knum(fleft))); } LJFOLD(TOSTR KINT any) LJFOLDF(kfold_tostr_kint) { return lj_ir_kstr(J, fins->op2 == IRTOSTR_INT ? lj_strfmt_int(J->L, fleft->i) : lj_strfmt_char(J->L, fleft->i)); } LJFOLD(STRTO KGC) LJFOLDF(kfold_strto) { TValue n; if (lj_strscan_num(ir_kstr(fleft), &n)) return lj_ir_knum(J, numV(&n)); return FAILFOLD; } /* -- Constant folding of equality checks --------------------------------- */ /* Don't constant-fold away FLOAD checks against KNULL. */ LJFOLD(EQ FLOAD KNULL) LJFOLD(NE FLOAD KNULL) LJFOLDX(lj_opt_cse) /* But fold all other KNULL compares, since only KNULL is equal to KNULL. */ LJFOLD(EQ any KNULL) LJFOLD(NE any KNULL) LJFOLD(EQ KNULL any) LJFOLD(NE KNULL any) LJFOLD(EQ KINT KINT) /* Constants are unique, so same refs <==> same value. */ LJFOLD(NE KINT KINT) LJFOLD(EQ KINT64 KINT64) LJFOLD(NE KINT64 KINT64) LJFOLD(EQ KGC KGC) LJFOLD(NE KGC KGC) LJFOLDF(kfold_kref) { return CONDFOLD((fins->op1 == fins->op2) ^ (fins->o == IR_NE)); } /* -- Algebraic shortcuts ------------------------------------------------- */ LJFOLD(FPMATH FPMATH IRFPM_FLOOR) LJFOLD(FPMATH FPMATH IRFPM_CEIL) LJFOLD(FPMATH FPMATH IRFPM_TRUNC) LJFOLDF(shortcut_round) { IRFPMathOp op = (IRFPMathOp)fleft->op2; if (op == IRFPM_FLOOR || op == IRFPM_CEIL || op == IRFPM_TRUNC) return LEFTFOLD; /* round(round_left(x)) = round_left(x) */ return NEXTFOLD; } LJFOLD(ABS ABS FLOAD) LJFOLDF(shortcut_left) { return LEFTFOLD; /* f(g(x)) ==> g(x) */ } LJFOLD(ABS NEG FLOAD) LJFOLDF(shortcut_dropleft) { PHIBARRIER(fleft); fins->op1 = fleft->op1; /* abs(neg(x)) ==> abs(x) */ return RETRYFOLD; } /* Note: no safe shortcuts with STRTO and TOSTR ("1e2" ==> +100 ==> "100"). */ LJFOLD(NEG NEG any) LJFOLD(BNOT BNOT) LJFOLD(BSWAP BSWAP) LJFOLDF(shortcut_leftleft) { PHIBARRIER(fleft); /* See above. Fold would be ok, but not beneficial. */ return fleft->op1; /* f(g(x)) ==> x */ } /* -- FP algebraic simplifications ---------------------------------------- */ /* FP arithmetic is tricky -- there's not much to simplify. ** Please note the following common pitfalls before sending "improvements": ** x+0 ==> x is INVALID for x=-0 ** 0-x ==> -x is INVALID for x=+0 ** x*0 ==> 0 is INVALID for x=-0, x=+-Inf or x=NaN */ LJFOLD(ADD NEG any) LJFOLDF(simplify_numadd_negx) { PHIBARRIER(fleft); fins->o = IR_SUB; /* (-a) + b ==> b - a */ fins->op1 = fins->op2; fins->op2 = fleft->op1; return RETRYFOLD; } LJFOLD(ADD any NEG) LJFOLDF(simplify_numadd_xneg) { PHIBARRIER(fright); fins->o = IR_SUB; /* a + (-b) ==> a - b */ fins->op2 = fright->op1; return RETRYFOLD; } LJFOLD(SUB any KNUM) LJFOLDF(simplify_numsub_k) { lua_Number n = knumright; if (n == 0.0) /* x - (+-0) ==> x */ return LEFTFOLD; return NEXTFOLD; } LJFOLD(SUB NEG KNUM) LJFOLDF(simplify_numsub_negk) { PHIBARRIER(fleft); fins->op2 = fleft->op1; /* (-x) - k ==> (-k) - x */ fins->op1 = (IRRef1)lj_ir_knum(J, -knumright); return RETRYFOLD; } LJFOLD(SUB any NEG) LJFOLDF(simplify_numsub_xneg) { PHIBARRIER(fright); fins->o = IR_ADD; /* a - (-b) ==> a + b */ fins->op2 = fright->op1; return RETRYFOLD; } LJFOLD(MUL any KNUM) LJFOLD(DIV any KNUM) LJFOLDF(simplify_nummuldiv_k) { lua_Number n = knumright; if (n == 1.0) { /* x o 1 ==> x */ return LEFTFOLD; } else if (n == -1.0) { /* x o -1 ==> -x */ IRRef op1 = fins->op1; fins->op2 = (IRRef1)lj_ir_ksimd(J, LJ_KSIMD_NEG); /* Modifies fins. */ fins->op1 = op1; fins->o = IR_NEG; return RETRYFOLD; } else if (fins->o == IR_MUL && n == 2.0) { /* x * 2 ==> x + x */ fins->o = IR_ADD; fins->op2 = fins->op1; return RETRYFOLD; } else if (fins->o == IR_DIV) { /* x / 2^k ==> x * 2^-k */ uint64_t u = ir_knum(fright)->u64; uint32_t ex = ((uint32_t)(u >> 52) & 0x7ff); if ((u & U64x(000fffff,ffffffff)) == 0 && ex - 1 < 0x7fd) { u = (u & ((uint64_t)1 << 63)) | ((uint64_t)(0x7fe - ex) << 52); fins->o = IR_MUL; /* Multiply by exact reciprocal. */ fins->op2 = lj_ir_knum_u64(J, u); return RETRYFOLD; } } return NEXTFOLD; } LJFOLD(MUL NEG KNUM) LJFOLD(DIV NEG KNUM) LJFOLDF(simplify_nummuldiv_negk) { PHIBARRIER(fleft); fins->op1 = fleft->op1; /* (-a) o k ==> a o (-k) */ fins->op2 = (IRRef1)lj_ir_knum(J, -knumright); return RETRYFOLD; } LJFOLD(MUL NEG NEG) LJFOLD(DIV NEG NEG) LJFOLDF(simplify_nummuldiv_negneg) { PHIBARRIER(fleft); PHIBARRIER(fright); fins->op1 = fleft->op1; /* (-a) o (-b) ==> a o b */ fins->op2 = fright->op1; return RETRYFOLD; } LJFOLD(POW any KINT) LJFOLDF(simplify_numpow_xk) { int32_t k = fright->i; TRef ref = fins->op1; if (k == 0) /* x ^ 0 ==> 1 */ return lj_ir_knum_one(J); /* Result must be a number, not an int. */ if (k == 1) /* x ^ 1 ==> x */ return LEFTFOLD; if ((uint32_t)(k+65536) > 2*65536u) /* Limit code explosion. */ return NEXTFOLD; if (k < 0) { /* x ^ (-k) ==> (1/x) ^ k. */ ref = emitir(IRTN(IR_DIV), lj_ir_knum_one(J), ref); k = -k; } /* Unroll x^k for 1 <= k <= 65536. */ for (; (k & 1) == 0; k >>= 1) /* Handle leading zeros. */ ref = emitir(IRTN(IR_MUL), ref, ref); if ((k >>= 1) != 0) { /* Handle trailing bits. */ TRef tmp = emitir(IRTN(IR_MUL), ref, ref); for (; k != 1; k >>= 1) { if (k & 1) ref = emitir(IRTN(IR_MUL), ref, tmp); tmp = emitir(IRTN(IR_MUL), tmp, tmp); } ref = emitir(IRTN(IR_MUL), ref, tmp); } return ref; } LJFOLD(POW KNUM any) LJFOLDF(simplify_numpow_kx) { lua_Number n = knumleft; if (n == 2.0) { /* 2.0 ^ i ==> ldexp(1.0, tonum(i)) */ fins->o = IR_CONV; #if LJ_TARGET_X86ORX64 fins->op1 = fins->op2; fins->op2 = IRCONV_NUM_INT; fins->op2 = (IRRef1)lj_opt_fold(J); #endif fins->op1 = (IRRef1)lj_ir_knum_one(J); fins->o = IR_LDEXP; return RETRYFOLD; } return NEXTFOLD; } /* -- Simplify conversions ------------------------------------------------ */ LJFOLD(CONV CONV IRCONV_NUM_INT) /* _NUM */ LJFOLDF(shortcut_conv_num_int) { PHIBARRIER(fleft); /* Only safe with a guarded conversion to int. */ if ((fleft->op2 & IRCONV_SRCMASK) == IRT_NUM && irt_isguard(fleft->t)) return fleft->op1; /* f(g(x)) ==> x */ return NEXTFOLD; } LJFOLD(CONV CONV IRCONV_INT_NUM) /* _INT */ LJFOLD(CONV CONV IRCONV_U32_NUM) /* _U32*/ LJFOLDF(simplify_conv_int_num) { /* Fold even across PHI to avoid expensive num->int conversions in loop. */ if ((fleft->op2 & IRCONV_SRCMASK) == ((fins->op2 & IRCONV_DSTMASK) >> IRCONV_DSH)) return fleft->op1; return NEXTFOLD; } LJFOLD(CONV CONV IRCONV_I64_NUM) /* _INT or _U32 */ LJFOLD(CONV CONV IRCONV_U64_NUM) /* _INT or _U32 */ LJFOLDF(simplify_conv_i64_num) { PHIBARRIER(fleft); if ((fleft->op2 & IRCONV_SRCMASK) == IRT_INT) { /* Reduce to a sign-extension. */ fins->op1 = fleft->op1; fins->op2 = ((IRT_I64<<5)|IRT_INT|IRCONV_SEXT); return RETRYFOLD; } else if ((fleft->op2 & IRCONV_SRCMASK) == IRT_U32) { #if LJ_TARGET_X64 return fleft->op1; #else /* Reduce to a zero-extension. */ fins->op1 = fleft->op1; fins->op2 = (IRT_I64<<5)|IRT_U32; return RETRYFOLD; #endif } return NEXTFOLD; } LJFOLD(CONV CONV IRCONV_INT_I64) /* _INT or _U32 */ LJFOLD(CONV CONV IRCONV_INT_U64) /* _INT or _U32 */ LJFOLD(CONV CONV IRCONV_U32_I64) /* _INT or _U32 */ LJFOLD(CONV CONV IRCONV_U32_U64) /* _INT or _U32 */ LJFOLDF(simplify_conv_int_i64) { int src; PHIBARRIER(fleft); src = (fleft->op2 & IRCONV_SRCMASK); if (src == IRT_INT || src == IRT_U32) { if (src == ((fins->op2 & IRCONV_DSTMASK) >> IRCONV_DSH)) { return fleft->op1; } else { fins->op2 = ((fins->op2 & IRCONV_DSTMASK) | src); fins->op1 = fleft->op1; return RETRYFOLD; } } return NEXTFOLD; } LJFOLD(CONV CONV IRCONV_FLOAT_NUM) /* _FLOAT */ LJFOLDF(simplify_conv_flt_num) { PHIBARRIER(fleft); if ((fleft->op2 & IRCONV_SRCMASK) == IRT_FLOAT) return fleft->op1; return NEXTFOLD; } /* Shortcut TOBIT + IRT_NUM <- IRT_INT/IRT_U32 conversion. */ LJFOLD(TOBIT CONV KNUM) LJFOLDF(simplify_tobit_conv) { /* Fold even across PHI to avoid expensive num->int conversions in loop. */ if ((fleft->op2 & IRCONV_SRCMASK) == IRT_INT) { lua_assert(irt_isnum(fleft->t)); return fleft->op1; } else if ((fleft->op2 & IRCONV_SRCMASK) == IRT_U32) { lua_assert(irt_isnum(fleft->t)); fins->o = IR_CONV; fins->op1 = fleft->op1; fins->op2 = (IRT_INT<<5)|IRT_U32; return RETRYFOLD; } return NEXTFOLD; } /* Shortcut floor/ceil/round + IRT_NUM <- IRT_INT/IRT_U32 conversion. */ LJFOLD(FPMATH CONV IRFPM_FLOOR) LJFOLD(FPMATH CONV IRFPM_CEIL) LJFOLD(FPMATH CONV IRFPM_TRUNC) LJFOLDF(simplify_floor_conv) { if ((fleft->op2 & IRCONV_SRCMASK) == IRT_INT || (fleft->op2 & IRCONV_SRCMASK) == IRT_U32) return LEFTFOLD; return NEXTFOLD; } /* Strength reduction of widening. */ LJFOLD(CONV any IRCONV_I64_INT) LJFOLD(CONV any IRCONV_U64_INT) LJFOLDF(simplify_conv_sext) { IRRef ref = fins->op1; int64_t ofs = 0; if (!(fins->op2 & IRCONV_SEXT)) return NEXTFOLD; PHIBARRIER(fleft); if (fleft->o == IR_XLOAD && (irt_isu8(fleft->t) || irt_isu16(fleft->t))) goto ok_reduce; if (fleft->o == IR_ADD && irref_isk(fleft->op2)) { ofs = (int64_t)IR(fleft->op2)->i; ref = fleft->op1; } /* Use scalar evolution analysis results to strength-reduce sign-extension. */ if (ref == J->scev.idx) { IRRef lo = J->scev.dir ? J->scev.start : J->scev.stop; lua_assert(irt_isint(J->scev.t)); if (lo && IR(lo)->i + ofs >= 0) { ok_reduce: #if LJ_TARGET_X64 /* Eliminate widening. All 32 bit ops do an implicit zero-extension. */ return LEFTFOLD; #else /* Reduce to a (cheaper) zero-extension. */ fins->op2 &= ~IRCONV_SEXT; return RETRYFOLD; #endif } } return NEXTFOLD; } /* Strength reduction of narrowing. */ LJFOLD(CONV ADD IRCONV_INT_I64) LJFOLD(CONV SUB IRCONV_INT_I64) LJFOLD(CONV MUL IRCONV_INT_I64) LJFOLD(CONV ADD IRCONV_INT_U64) LJFOLD(CONV SUB IRCONV_INT_U64) LJFOLD(CONV MUL IRCONV_INT_U64) LJFOLD(CONV ADD IRCONV_U32_I64) LJFOLD(CONV SUB IRCONV_U32_I64) LJFOLD(CONV MUL IRCONV_U32_I64) LJFOLD(CONV ADD IRCONV_U32_U64) LJFOLD(CONV SUB IRCONV_U32_U64) LJFOLD(CONV MUL IRCONV_U32_U64) LJFOLDF(simplify_conv_narrow) { IROp op = (IROp)fleft->o; IRType t = irt_type(fins->t); IRRef op1 = fleft->op1, op2 = fleft->op2, mode = fins->op2; PHIBARRIER(fleft); op1 = emitir(IRTI(IR_CONV), op1, mode); op2 = emitir(IRTI(IR_CONV), op2, mode); fins->ot = IRT(op, t); fins->op1 = op1; fins->op2 = op2; return RETRYFOLD; } /* Special CSE rule for CONV. */ LJFOLD(CONV any any) LJFOLDF(cse_conv) { if (LJ_LIKELY(J->flags & JIT_F_OPT_CSE)) { IRRef op1 = fins->op1, op2 = (fins->op2 & IRCONV_MODEMASK); uint8_t guard = irt_isguard(fins->t); IRRef ref = J->chain[IR_CONV]; while (ref > op1) { IRIns *ir = IR(ref); /* Commoning with stronger checks is ok. */ if (ir->op1 == op1 && (ir->op2 & IRCONV_MODEMASK) == op2 && irt_isguard(ir->t) >= guard) return ref; ref = ir->prev; } } return EMITFOLD; /* No fallthrough to regular CSE. */ } /* FP conversion narrowing. */ LJFOLD(TOBIT ADD KNUM) LJFOLD(TOBIT SUB KNUM) LJFOLD(CONV ADD IRCONV_INT_NUM) LJFOLD(CONV SUB IRCONV_INT_NUM) LJFOLD(CONV ADD IRCONV_I64_NUM) LJFOLD(CONV SUB IRCONV_I64_NUM) LJFOLDF(narrow_convert) { PHIBARRIER(fleft); /* Narrowing ignores PHIs and repeating it inside the loop is not useful. */ if (J->chain[IR_LOOP]) return NEXTFOLD; lua_assert(fins->o != IR_CONV || (fins->op2&IRCONV_CONVMASK) != IRCONV_TOBIT); return lj_opt_narrow_convert(J); } /* -- Integer algebraic simplifications ----------------------------------- */ LJFOLD(ADD any KINT) LJFOLD(ADDOV any KINT) LJFOLD(SUBOV any KINT) LJFOLDF(simplify_intadd_k) { if (fright->i == 0) /* i o 0 ==> i */ return LEFTFOLD; return NEXTFOLD; } LJFOLD(MULOV any KINT) LJFOLDF(simplify_intmul_k) { if (fright->i == 0) /* i * 0 ==> 0 */ return RIGHTFOLD; if (fright->i == 1) /* i * 1 ==> i */ return LEFTFOLD; if (fright->i == 2) { /* i * 2 ==> i + i */ fins->o = IR_ADDOV; fins->op2 = fins->op1; return RETRYFOLD; } return NEXTFOLD; } LJFOLD(SUB any KINT) LJFOLDF(simplify_intsub_k) { if (fright->i == 0) /* i - 0 ==> i */ return LEFTFOLD; fins->o = IR_ADD; /* i - k ==> i + (-k) */ fins->op2 = (IRRef1)lj_ir_kint(J, -fright->i); /* Overflow for -2^31 ok. */ return RETRYFOLD; } LJFOLD(SUB KINT any) LJFOLD(SUB KINT64 any) LJFOLDF(simplify_intsub_kleft) { if (fleft->o == IR_KINT ? (fleft->i == 0) : (ir_kint64(fleft)->u64 == 0)) { fins->o = IR_NEG; /* 0 - i ==> -i */ fins->op1 = fins->op2; return RETRYFOLD; } return NEXTFOLD; } LJFOLD(ADD any KINT64) LJFOLDF(simplify_intadd_k64) { if (ir_kint64(fright)->u64 == 0) /* i + 0 ==> i */ return LEFTFOLD; return NEXTFOLD; } LJFOLD(SUB any KINT64) LJFOLDF(simplify_intsub_k64) { uint64_t k = ir_kint64(fright)->u64; if (k == 0) /* i - 0 ==> i */ return LEFTFOLD; fins->o = IR_ADD; /* i - k ==> i + (-k) */ fins->op2 = (IRRef1)lj_ir_kint64(J, (uint64_t)-(int64_t)k); return RETRYFOLD; } static TRef simplify_intmul_k(jit_State *J, int32_t k) { /* Note: many more simplifications are possible, e.g. 2^k1 +- 2^k2. ** But this is mainly intended for simple address arithmetic. ** Also it's easier for the backend to optimize the original multiplies. */ if (k == 0) { /* i * 0 ==> 0 */ return RIGHTFOLD; } else if (k == 1) { /* i * 1 ==> i */ return LEFTFOLD; } else if ((k & (k-1)) == 0) { /* i * 2^k ==> i << k */ fins->o = IR_BSHL; fins->op2 = lj_ir_kint(J, lj_fls((uint32_t)k)); return RETRYFOLD; } return NEXTFOLD; } LJFOLD(MUL any KINT) LJFOLDF(simplify_intmul_k32) { if (fright->i >= 0) return simplify_intmul_k(J, fright->i); return NEXTFOLD; } LJFOLD(MUL any KINT64) LJFOLDF(simplify_intmul_k64) { #if LJ_HASFFI if (ir_kint64(fright)->u64 < 0x80000000u) return simplify_intmul_k(J, (int32_t)ir_kint64(fright)->u64); return NEXTFOLD; #else UNUSED(J); lua_assert(0); return FAILFOLD; #endif } LJFOLD(MOD any KINT) LJFOLDF(simplify_intmod_k) { int32_t k = fright->i; lua_assert(k != 0); if (k > 0 && (k & (k-1)) == 0) { /* i % (2^k) ==> i & (2^k-1) */ fins->o = IR_BAND; fins->op2 = lj_ir_kint(J, k-1); return RETRYFOLD; } return NEXTFOLD; } LJFOLD(MOD KINT any) LJFOLDF(simplify_intmod_kleft) { if (fleft->i == 0) return INTFOLD(0); return NEXTFOLD; } LJFOLD(SUB any any) LJFOLD(SUBOV any any) LJFOLDF(simplify_intsub) { if (fins->op1 == fins->op2 && !irt_isnum(fins->t)) /* i - i ==> 0 */ return irt_is64(fins->t) ? INT64FOLD(0) : INTFOLD(0); return NEXTFOLD; } LJFOLD(SUB ADD any) LJFOLDF(simplify_intsubadd_leftcancel) { if (!irt_isnum(fins->t)) { PHIBARRIER(fleft); if (fins->op2 == fleft->op1) /* (i + j) - i ==> j */ return fleft->op2; if (fins->op2 == fleft->op2) /* (i + j) - j ==> i */ return fleft->op1; } return NEXTFOLD; } LJFOLD(SUB SUB any) LJFOLDF(simplify_intsubsub_leftcancel) { if (!irt_isnum(fins->t)) { PHIBARRIER(fleft); if (fins->op2 == fleft->op1) { /* (i - j) - i ==> 0 - j */ fins->op1 = (IRRef1)lj_ir_kint(J, 0); fins->op2 = fleft->op2; return RETRYFOLD; } } return NEXTFOLD; } LJFOLD(SUB any SUB) LJFOLDF(simplify_intsubsub_rightcancel) { if (!irt_isnum(fins->t)) { PHIBARRIER(fright); if (fins->op1 == fright->op1) /* i - (i - j) ==> j */ return fright->op2; } return NEXTFOLD; } LJFOLD(SUB any ADD) LJFOLDF(simplify_intsubadd_rightcancel) { if (!irt_isnum(fins->t)) { PHIBARRIER(fright); if (fins->op1 == fright->op1) { /* i - (i + j) ==> 0 - j */ fins->op2 = fright->op2; fins->op1 = (IRRef1)lj_ir_kint(J, 0); return RETRYFOLD; } if (fins->op1 == fright->op2) { /* i - (j + i) ==> 0 - j */ fins->op2 = fright->op1; fins->op1 = (IRRef1)lj_ir_kint(J, 0); return RETRYFOLD; } } return NEXTFOLD; } LJFOLD(SUB ADD ADD) LJFOLDF(simplify_intsubaddadd_cancel) { if (!irt_isnum(fins->t)) { PHIBARRIER(fleft); PHIBARRIER(fright); if (fleft->op1 == fright->op1) { /* (i + j1) - (i + j2) ==> j1 - j2 */ fins->op1 = fleft->op2; fins->op2 = fright->op2; return RETRYFOLD; } if (fleft->op1 == fright->op2) { /* (i + j1) - (j2 + i) ==> j1 - j2 */ fins->op1 = fleft->op2; fins->op2 = fright->op1; return RETRYFOLD; } if (fleft->op2 == fright->op1) { /* (j1 + i) - (i + j2) ==> j1 - j2 */ fins->op1 = fleft->op1; fins->op2 = fright->op2; return RETRYFOLD; } if (fleft->op2 == fright->op2) { /* (j1 + i) - (j2 + i) ==> j1 - j2 */ fins->op1 = fleft->op1; fins->op2 = fright->op1; return RETRYFOLD; } } return NEXTFOLD; } LJFOLD(BAND any KINT) LJFOLD(BAND any KINT64) LJFOLDF(simplify_band_k) { int64_t k = fright->o == IR_KINT ? (int64_t)fright->i : (int64_t)ir_k64(fright)->u64; if (k == 0) /* i & 0 ==> 0 */ return RIGHTFOLD; if (k == -1) /* i & -1 ==> i */ return LEFTFOLD; return NEXTFOLD; } LJFOLD(BOR any KINT) LJFOLD(BOR any KINT64) LJFOLDF(simplify_bor_k) { int64_t k = fright->o == IR_KINT ? (int64_t)fright->i : (int64_t)ir_k64(fright)->u64; if (k == 0) /* i | 0 ==> i */ return LEFTFOLD; if (k == -1) /* i | -1 ==> -1 */ return RIGHTFOLD; return NEXTFOLD; } LJFOLD(BXOR any KINT) LJFOLD(BXOR any KINT64) LJFOLDF(simplify_bxor_k) { int64_t k = fright->o == IR_KINT ? (int64_t)fright->i : (int64_t)ir_k64(fright)->u64; if (k == 0) /* i xor 0 ==> i */ return LEFTFOLD; if (k == -1) { /* i xor -1 ==> ~i */ fins->o = IR_BNOT; fins->op2 = 0; return RETRYFOLD; } return NEXTFOLD; } LJFOLD(BSHL any KINT) LJFOLD(BSHR any KINT) LJFOLD(BSAR any KINT) LJFOLD(BROL any KINT) LJFOLD(BROR any KINT) LJFOLDF(simplify_shift_ik) { int32_t mask = irt_is64(fins->t) ? 63 : 31; int32_t k = (fright->i & mask); if (k == 0) /* i o 0 ==> i */ return LEFTFOLD; if (k == 1 && fins->o == IR_BSHL) { /* i << 1 ==> i + i */ fins->o = IR_ADD; fins->op2 = fins->op1; return RETRYFOLD; } if (k != fright->i) { /* i o k ==> i o (k & mask) */ fins->op2 = (IRRef1)lj_ir_kint(J, k); return RETRYFOLD; } #ifndef LJ_TARGET_UNIFYROT if (fins->o == IR_BROR) { /* bror(i, k) ==> brol(i, (-k)&mask) */ fins->o = IR_BROL; fins->op2 = (IRRef1)lj_ir_kint(J, (-k)&mask); return RETRYFOLD; } #endif return NEXTFOLD; } LJFOLD(BSHL any BAND) LJFOLD(BSHR any BAND) LJFOLD(BSAR any BAND) LJFOLD(BROL any BAND) LJFOLD(BROR any BAND) LJFOLDF(simplify_shift_andk) { IRIns *irk = IR(fright->op2); PHIBARRIER(fright); if ((fins->o < IR_BROL ? LJ_TARGET_MASKSHIFT : LJ_TARGET_MASKROT) && irk->o == IR_KINT) { /* i o (j & mask) ==> i o j */ int32_t mask = irt_is64(fins->t) ? 63 : 31; int32_t k = irk->i & mask; if (k == mask) { fins->op2 = fright->op1; return RETRYFOLD; } } return NEXTFOLD; } LJFOLD(BSHL KINT any) LJFOLD(BSHR KINT any) LJFOLD(BSHL KINT64 any) LJFOLD(BSHR KINT64 any) LJFOLDF(simplify_shift1_ki) { int64_t k = fleft->o == IR_KINT ? (int64_t)fleft->i : (int64_t)ir_k64(fleft)->u64; if (k == 0) /* 0 o i ==> 0 */ return LEFTFOLD; return NEXTFOLD; } LJFOLD(BSAR KINT any) LJFOLD(BROL KINT any) LJFOLD(BROR KINT any) LJFOLD(BSAR KINT64 any) LJFOLD(BROL KINT64 any) LJFOLD(BROR KINT64 any) LJFOLDF(simplify_shift2_ki) { int64_t k = fleft->o == IR_KINT ? (int64_t)fleft->i : (int64_t)ir_k64(fleft)->u64; if (k == 0 || k == -1) /* 0 o i ==> 0; -1 o i ==> -1 */ return LEFTFOLD; return NEXTFOLD; } LJFOLD(BSHL BAND KINT) LJFOLD(BSHR BAND KINT) LJFOLD(BROL BAND KINT) LJFOLD(BROR BAND KINT) LJFOLDF(simplify_shiftk_andk) { IRIns *irk = IR(fleft->op2); PHIBARRIER(fleft); if (irk->o == IR_KINT) { /* (i & k1) o k2 ==> (i o k2) & (k1 o k2) */ int32_t k = kfold_intop(irk->i, fright->i, (IROp)fins->o); fins->op1 = fleft->op1; fins->op1 = (IRRef1)lj_opt_fold(J); fins->op2 = (IRRef1)lj_ir_kint(J, k); fins->ot = IRTI(IR_BAND); return RETRYFOLD; } else if (irk->o == IR_KINT64) { uint64_t k = kfold_int64arith(ir_k64(irk)->u64, fright->i, (IROp)fins->o); IROpT ot = fleft->ot; fins->op1 = fleft->op1; fins->op1 = (IRRef1)lj_opt_fold(J); fins->op2 = (IRRef1)lj_ir_kint64(J, k); fins->ot = ot; return RETRYFOLD; } return NEXTFOLD; } LJFOLD(BAND BSHL KINT) LJFOLD(BAND BSHR KINT) LJFOLDF(simplify_andk_shiftk) { IRIns *irk = IR(fleft->op2); if (irk->o == IR_KINT && kfold_intop(-1, irk->i, (IROp)fleft->o) == fright->i) return LEFTFOLD; /* (i o k1) & k2 ==> i, if (-1 o k1) == k2 */ return NEXTFOLD; } LJFOLD(BAND BOR KINT) LJFOLD(BOR BAND KINT) LJFOLDF(simplify_andor_k) { IRIns *irk = IR(fleft->op2); PHIBARRIER(fleft); if (irk->o == IR_KINT) { int32_t k = kfold_intop(irk->i, fright->i, (IROp)fins->o); /* (i | k1) & k2 ==> i & k2, if (k1 & k2) == 0. */ /* (i & k1) | k2 ==> i | k2, if (k1 | k2) == -1. */ if (k == (fins->o == IR_BAND ? 0 : -1)) { fins->op1 = fleft->op1; return RETRYFOLD; } } return NEXTFOLD; } LJFOLD(BAND BOR KINT64) LJFOLD(BOR BAND KINT64) LJFOLDF(simplify_andor_k64) { #if LJ_HASFFI IRIns *irk = IR(fleft->op2); PHIBARRIER(fleft); if (irk->o == IR_KINT64) { uint64_t k = kfold_int64arith(ir_k64(irk)->u64, ir_k64(fright)->u64, (IROp)fins->o); /* (i | k1) & k2 ==> i & k2, if (k1 & k2) == 0. */ /* (i & k1) | k2 ==> i | k2, if (k1 | k2) == -1. */ if (k == (fins->o == IR_BAND ? (uint64_t)0 : ~(uint64_t)0)) { fins->op1 = fleft->op1; return RETRYFOLD; } } return NEXTFOLD; #else UNUSED(J); lua_assert(0); return FAILFOLD; #endif } /* -- Reassociation ------------------------------------------------------- */ LJFOLD(ADD ADD KINT) LJFOLD(MUL MUL KINT) LJFOLD(BAND BAND KINT) LJFOLD(BOR BOR KINT) LJFOLD(BXOR BXOR KINT) LJFOLDF(reassoc_intarith_k) { IRIns *irk = IR(fleft->op2); if (irk->o == IR_KINT) { int32_t k = kfold_intop(irk->i, fright->i, (IROp)fins->o); if (k == irk->i) /* (i o k1) o k2 ==> i o k1, if (k1 o k2) == k1. */ return LEFTFOLD; PHIBARRIER(fleft); fins->op1 = fleft->op1; fins->op2 = (IRRef1)lj_ir_kint(J, k); return RETRYFOLD; /* (i o k1) o k2 ==> i o (k1 o k2) */ } return NEXTFOLD; } LJFOLD(ADD ADD KINT64) LJFOLD(MUL MUL KINT64) LJFOLD(BAND BAND KINT64) LJFOLD(BOR BOR KINT64) LJFOLD(BXOR BXOR KINT64) LJFOLDF(reassoc_intarith_k64) { #if LJ_HASFFI IRIns *irk = IR(fleft->op2); if (irk->o == IR_KINT64) { uint64_t k = kfold_int64arith(ir_k64(irk)->u64, ir_k64(fright)->u64, (IROp)fins->o); PHIBARRIER(fleft); fins->op1 = fleft->op1; fins->op2 = (IRRef1)lj_ir_kint64(J, k); return RETRYFOLD; /* (i o k1) o k2 ==> i o (k1 o k2) */ } return NEXTFOLD; #else UNUSED(J); lua_assert(0); return FAILFOLD; #endif } LJFOLD(MIN MIN any) LJFOLD(MAX MAX any) LJFOLD(BAND BAND any) LJFOLD(BOR BOR any) LJFOLDF(reassoc_dup) { if (fins->op2 == fleft->op1 || fins->op2 == fleft->op2) return LEFTFOLD; /* (a o b) o a ==> a o b; (a o b) o b ==> a o b */ return NEXTFOLD; } LJFOLD(BXOR BXOR any) LJFOLDF(reassoc_bxor) { PHIBARRIER(fleft); if (fins->op2 == fleft->op1) /* (a xor b) xor a ==> b */ return fleft->op2; if (fins->op2 == fleft->op2) /* (a xor b) xor b ==> a */ return fleft->op1; return NEXTFOLD; } LJFOLD(BSHL BSHL KINT) LJFOLD(BSHR BSHR KINT) LJFOLD(BSAR BSAR KINT) LJFOLD(BROL BROL KINT) LJFOLD(BROR BROR KINT) LJFOLDF(reassoc_shift) { IRIns *irk = IR(fleft->op2); PHIBARRIER(fleft); /* The (shift any KINT) rule covers k2 == 0 and more. */ if (irk->o == IR_KINT) { /* (i o k1) o k2 ==> i o (k1 + k2) */ int32_t mask = irt_is64(fins->t) ? 63 : 31; int32_t k = (irk->i & mask) + (fright->i & mask); if (k > mask) { /* Combined shift too wide? */ if (fins->o == IR_BSHL || fins->o == IR_BSHR) return mask == 31 ? INTFOLD(0) : INT64FOLD(0); else if (fins->o == IR_BSAR) k = mask; else k &= mask; } fins->op1 = fleft->op1; fins->op2 = (IRRef1)lj_ir_kint(J, k); return RETRYFOLD; } return NEXTFOLD; } LJFOLD(MIN MIN KNUM) LJFOLD(MAX MAX KNUM) LJFOLD(MIN MIN KINT) LJFOLD(MAX MAX KINT) LJFOLDF(reassoc_minmax_k) { IRIns *irk = IR(fleft->op2); if (irk->o == IR_KNUM) { lua_Number a = ir_knum(irk)->n; lua_Number y = lj_vm_foldarith(a, knumright, fins->o - IR_ADD); if (a == y) /* (x o k1) o k2 ==> x o k1, if (k1 o k2) == k1. */ return LEFTFOLD; PHIBARRIER(fleft); fins->op1 = fleft->op1; fins->op2 = (IRRef1)lj_ir_knum(J, y); return RETRYFOLD; /* (x o k1) o k2 ==> x o (k1 o k2) */ } else if (irk->o == IR_KINT) { int32_t a = irk->i; int32_t y = kfold_intop(a, fright->i, fins->o); if (a == y) /* (x o k1) o k2 ==> x o k1, if (k1 o k2) == k1. */ return LEFTFOLD; PHIBARRIER(fleft); fins->op1 = fleft->op1; fins->op2 = (IRRef1)lj_ir_kint(J, y); return RETRYFOLD; /* (x o k1) o k2 ==> x o (k1 o k2) */ } return NEXTFOLD; } LJFOLD(MIN MAX any) LJFOLD(MAX MIN any) LJFOLDF(reassoc_minmax_left) { if (fins->op2 == fleft->op1 || fins->op2 == fleft->op2) return RIGHTFOLD; /* (b o1 a) o2 b ==> b; (a o1 b) o2 b ==> b */ return NEXTFOLD; } LJFOLD(MIN any MAX) LJFOLD(MAX any MIN) LJFOLDF(reassoc_minmax_right) { if (fins->op1 == fright->op1 || fins->op1 == fright->op2) return LEFTFOLD; /* a o2 (a o1 b) ==> a; a o2 (b o1 a) ==> a */ return NEXTFOLD; } /* -- Array bounds check elimination -------------------------------------- */ /* Eliminate ABC across PHIs to handle t[i-1] forwarding case. ** ABC(asize, (i+k)+(-k)) ==> ABC(asize, i), but only if it already exists. ** Could be generalized to (i+k1)+k2 ==> i+(k1+k2), but needs better disambig. */ LJFOLD(ABC any ADD) LJFOLDF(abc_fwd) { if (LJ_LIKELY(J->flags & JIT_F_OPT_ABC)) { if (irref_isk(fright->op2)) { IRIns *add2 = IR(fright->op1); if (add2->o == IR_ADD && irref_isk(add2->op2) && IR(fright->op2)->i == -IR(add2->op2)->i) { IRRef ref = J->chain[IR_ABC]; IRRef lim = add2->op1; if (fins->op1 > lim) lim = fins->op1; while (ref > lim) { IRIns *ir = IR(ref); if (ir->op1 == fins->op1 && ir->op2 == add2->op1) return DROPFOLD; ref = ir->prev; } } } } return NEXTFOLD; } /* Eliminate ABC for constants. ** ABC(asize, k1), ABC(asize k2) ==> ABC(asize, max(k1, k2)) ** Drop second ABC if k2 is lower. Otherwise patch first ABC with k2. */ LJFOLD(ABC any KINT) LJFOLDF(abc_k) { if (LJ_LIKELY(J->flags & JIT_F_OPT_ABC)) { IRRef ref = J->chain[IR_ABC]; IRRef asize = fins->op1; while (ref > asize) { IRIns *ir = IR(ref); if (ir->op1 == asize && irref_isk(ir->op2)) { int32_t k = IR(ir->op2)->i; if (fright->i > k) ir->op2 = fins->op2; return DROPFOLD; } ref = ir->prev; } return EMITFOLD; /* Already performed CSE. */ } return NEXTFOLD; } /* Eliminate invariant ABC inside loop. */ LJFOLD(ABC any any) LJFOLDF(abc_invar) { /* Invariant ABC marked as PTR. Drop if op1 is invariant, too. */ if (!irt_isint(fins->t) && fins->op1 < J->chain[IR_LOOP] && !irt_isphi(IR(fins->op1)->t)) return DROPFOLD; return NEXTFOLD; } /* -- Commutativity ------------------------------------------------------- */ /* The refs of commutative ops are canonicalized. Lower refs go to the right. ** Rationale behind this: ** - It (also) moves constants to the right. ** - It reduces the number of FOLD rules (e.g. (BOR any KINT) suffices). ** - It helps CSE to find more matches. ** - The assembler generates better code with constants at the right. */ LJFOLD(ADD any any) LJFOLD(MUL any any) LJFOLD(ADDOV any any) LJFOLD(MULOV any any) LJFOLDF(comm_swap) { if (fins->op1 < fins->op2) { /* Move lower ref to the right. */ IRRef1 tmp = fins->op1; fins->op1 = fins->op2; fins->op2 = tmp; return RETRYFOLD; } return NEXTFOLD; } LJFOLD(EQ any any) LJFOLD(NE any any) LJFOLDF(comm_equal) { /* For non-numbers only: x == x ==> drop; x ~= x ==> fail */ if (fins->op1 == fins->op2 && !irt_isnum(fins->t)) return CONDFOLD(fins->o == IR_EQ); return fold_comm_swap(J); } LJFOLD(LT any any) LJFOLD(GE any any) LJFOLD(LE any any) LJFOLD(GT any any) LJFOLD(ULT any any) LJFOLD(UGE any any) LJFOLD(ULE any any) LJFOLD(UGT any any) LJFOLDF(comm_comp) { /* For non-numbers only: x <=> x ==> drop; x <> x ==> fail */ if (fins->op1 == fins->op2 && !irt_isnum(fins->t)) return CONDFOLD((fins->o ^ (fins->o >> 1)) & 1); if (fins->op1 < fins->op2) { /* Move lower ref to the right. */ IRRef1 tmp = fins->op1; fins->op1 = fins->op2; fins->op2 = tmp; fins->o ^= 3; /* GT <-> LT, GE <-> LE, does not affect U */ return RETRYFOLD; } return NEXTFOLD; } LJFOLD(BAND any any) LJFOLD(BOR any any) LJFOLD(MIN any any) LJFOLD(MAX any any) LJFOLDF(comm_dup) { if (fins->op1 == fins->op2) /* x o x ==> x */ return LEFTFOLD; return fold_comm_swap(J); } LJFOLD(BXOR any any) LJFOLDF(comm_bxor) { if (fins->op1 == fins->op2) /* i xor i ==> 0 */ return irt_is64(fins->t) ? INT64FOLD(0) : INTFOLD(0); return fold_comm_swap(J); } /* -- Simplification of compound expressions ------------------------------ */ static TRef kfold_xload(jit_State *J, IRIns *ir, const void *p) { int32_t k; switch (irt_type(ir->t)) { case IRT_NUM: return lj_ir_knum_u64(J, *(uint64_t *)p); case IRT_I8: k = (int32_t)*(int8_t *)p; break; case IRT_U8: k = (int32_t)*(uint8_t *)p; break; case IRT_I16: k = (int32_t)(int16_t)lj_getu16(p); break; case IRT_U16: k = (int32_t)(uint16_t)lj_getu16(p); break; case IRT_INT: case IRT_U32: k = (int32_t)lj_getu32(p); break; case IRT_I64: case IRT_U64: return lj_ir_kint64(J, *(uint64_t *)p); default: return 0; } return lj_ir_kint(J, k); } /* Turn: string.sub(str, a, b) == kstr ** into: string.byte(str, a) == string.byte(kstr, 1) etc. ** Note: this creates unaligned XLOADs on x86/x64. */ LJFOLD(EQ SNEW KGC) LJFOLD(NE SNEW KGC) LJFOLDF(merge_eqne_snew_kgc) { GCstr *kstr = ir_kstr(fright); int32_t len = (int32_t)kstr->len; lua_assert(irt_isstr(fins->t)); #if LJ_TARGET_UNALIGNED #define FOLD_SNEW_MAX_LEN 4 /* Handle string lengths 0, 1, 2, 3, 4. */ #define FOLD_SNEW_TYPE8 IRT_I8 /* Creates shorter immediates. */ #else #define FOLD_SNEW_MAX_LEN 1 /* Handle string lengths 0 or 1. */ #define FOLD_SNEW_TYPE8 IRT_U8 /* Prefer unsigned loads. */ #endif PHIBARRIER(fleft); if (len <= FOLD_SNEW_MAX_LEN) { IROp op = (IROp)fins->o; IRRef strref = fleft->op1; if (IR(strref)->o != IR_STRREF) return NEXTFOLD; if (op == IR_EQ) { emitir(IRTGI(IR_EQ), fleft->op2, lj_ir_kint(J, len)); /* Caveat: fins/fleft/fright is no longer valid after emitir. */ } else { /* NE is not expanded since this would need an OR of two conds. */ if (!irref_isk(fleft->op2)) /* Only handle the constant length case. */ return NEXTFOLD; if (IR(fleft->op2)->i != len) return DROPFOLD; } if (len > 0) { /* A 4 byte load for length 3 is ok -- all strings have an extra NUL. */ uint16_t ot = (uint16_t)(len == 1 ? IRT(IR_XLOAD, FOLD_SNEW_TYPE8) : len == 2 ? IRT(IR_XLOAD, IRT_U16) : IRTI(IR_XLOAD)); TRef tmp = emitir(ot, strref, IRXLOAD_READONLY | (len > 1 ? IRXLOAD_UNALIGNED : 0)); TRef val = kfold_xload(J, IR(tref_ref(tmp)), strdata(kstr)); if (len == 3) tmp = emitir(IRTI(IR_BAND), tmp, lj_ir_kint(J, LJ_ENDIAN_SELECT(0x00ffffff, 0xffffff00))); fins->op1 = (IRRef1)tmp; fins->op2 = (IRRef1)val; fins->ot = (IROpT)IRTGI(op); return RETRYFOLD; } else { return DROPFOLD; } } return NEXTFOLD; } /* -- Loads --------------------------------------------------------------- */ /* Loads cannot be folded or passed on to CSE in general. ** Alias analysis is needed to check for forwarding opportunities. ** ** Caveat: *all* loads must be listed here or they end up at CSE! */ LJFOLD(ALOAD any) LJFOLDX(lj_opt_fwd_aload) /* From HREF fwd (see below). Must eliminate, not supported by fwd/backend. */ LJFOLD(HLOAD KKPTR) LJFOLDF(kfold_hload_kkptr) { UNUSED(J); lua_assert(ir_kptr(fleft) == niltvg(J2G(J))); return TREF_NIL; } LJFOLD(HLOAD any) LJFOLDX(lj_opt_fwd_hload) LJFOLD(ULOAD any) LJFOLDX(lj_opt_fwd_uload) LJFOLD(CALLL any IRCALL_lj_tab_len) LJFOLDX(lj_opt_fwd_tab_len) /* Upvalue refs are really loads, but there are no corresponding stores. ** So CSE is ok for them, except for UREFO across a GC step (see below). ** If the referenced function is const, its upvalue addresses are const, too. ** This can be used to improve CSE by looking for the same address, ** even if the upvalues originate from a different function. */ LJFOLD(UREFO KGC any) LJFOLD(UREFC KGC any) LJFOLDF(cse_uref) { if (LJ_LIKELY(J->flags & JIT_F_OPT_CSE)) { IRRef ref = J->chain[fins->o]; GCfunc *fn = ir_kfunc(fleft); GCupval *uv = gco2uv(gcref(fn->l.uvptr[(fins->op2 >> 8)])); while (ref > 0) { IRIns *ir = IR(ref); if (irref_isk(ir->op1)) { GCfunc *fn2 = ir_kfunc(IR(ir->op1)); if (gco2uv(gcref(fn2->l.uvptr[(ir->op2 >> 8)])) == uv) { if (fins->o == IR_UREFO && gcstep_barrier(J, ref)) break; return ref; } } ref = ir->prev; } } return EMITFOLD; } LJFOLD(HREFK any any) LJFOLDX(lj_opt_fwd_hrefk) LJFOLD(HREF TNEW any) LJFOLDF(fwd_href_tnew) { if (lj_opt_fwd_href_nokey(J)) return lj_ir_kkptr(J, niltvg(J2G(J))); return NEXTFOLD; } LJFOLD(HREF TDUP KPRI) LJFOLD(HREF TDUP KGC) LJFOLD(HREF TDUP KNUM) LJFOLDF(fwd_href_tdup) { TValue keyv; lj_ir_kvalue(J->L, &keyv, fright); if (lj_tab_get(J->L, ir_ktab(IR(fleft->op1)), &keyv) == niltvg(J2G(J)) && lj_opt_fwd_href_nokey(J)) return lj_ir_kkptr(J, niltvg(J2G(J))); return NEXTFOLD; } /* We can safely FOLD/CSE array/hash refs and field loads, since there ** are no corresponding stores. But we need to check for any NEWREF with ** an aliased table, as it may invalidate all of the pointers and fields. ** Only HREF needs the NEWREF check -- AREF and HREFK already depend on ** FLOADs. And NEWREF itself is treated like a store (see below). ** LREF is constant (per trace) since coroutine switches are not inlined. */ LJFOLD(FLOAD TNEW IRFL_TAB_ASIZE) LJFOLDF(fload_tab_tnew_asize) { if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD) && lj_opt_fwd_tptr(J, fins->op1)) return INTFOLD(fleft->op1); return NEXTFOLD; } LJFOLD(FLOAD TNEW IRFL_TAB_HMASK) LJFOLDF(fload_tab_tnew_hmask) { if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD) && lj_opt_fwd_tptr(J, fins->op1)) return INTFOLD((1 << fleft->op2)-1); return NEXTFOLD; } LJFOLD(FLOAD TDUP IRFL_TAB_ASIZE) LJFOLDF(fload_tab_tdup_asize) { if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD) && lj_opt_fwd_tptr(J, fins->op1)) return INTFOLD((int32_t)ir_ktab(IR(fleft->op1))->asize); return NEXTFOLD; } LJFOLD(FLOAD TDUP IRFL_TAB_HMASK) LJFOLDF(fload_tab_tdup_hmask) { if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD) && lj_opt_fwd_tptr(J, fins->op1)) return INTFOLD((int32_t)ir_ktab(IR(fleft->op1))->hmask); return NEXTFOLD; } LJFOLD(HREF any any) LJFOLD(FLOAD any IRFL_TAB_ARRAY) LJFOLD(FLOAD any IRFL_TAB_NODE) LJFOLD(FLOAD any IRFL_TAB_ASIZE) LJFOLD(FLOAD any IRFL_TAB_HMASK) LJFOLDF(fload_tab_ah) { TRef tr = lj_opt_cse(J); return lj_opt_fwd_tptr(J, tref_ref(tr)) ? tr : EMITFOLD; } /* Strings are immutable, so we can safely FOLD/CSE the related FLOAD. */ LJFOLD(FLOAD KGC IRFL_STR_LEN) LJFOLDF(fload_str_len_kgc) { if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD)) return INTFOLD((int32_t)ir_kstr(fleft)->len); return NEXTFOLD; } LJFOLD(FLOAD SNEW IRFL_STR_LEN) LJFOLDF(fload_str_len_snew) { if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD)) { PHIBARRIER(fleft); return fleft->op2; } return NEXTFOLD; } LJFOLD(FLOAD TOSTR IRFL_STR_LEN) LJFOLDF(fload_str_len_tostr) { if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD) && fleft->op2 == IRTOSTR_CHAR) return INTFOLD(1); return NEXTFOLD; } /* The C type ID of cdata objects is immutable. */ LJFOLD(FLOAD KGC IRFL_CDATA_CTYPEID) LJFOLDF(fload_cdata_typeid_kgc) { if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD)) return INTFOLD((int32_t)ir_kcdata(fleft)->ctypeid); return NEXTFOLD; } /* Get the contents of immutable cdata objects. */ LJFOLD(FLOAD KGC IRFL_CDATA_PTR) LJFOLD(FLOAD KGC IRFL_CDATA_INT) LJFOLD(FLOAD KGC IRFL_CDATA_INT64) LJFOLDF(fload_cdata_int64_kgc) { if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD)) { void *p = cdataptr(ir_kcdata(fleft)); if (irt_is64(fins->t)) return INT64FOLD(*(uint64_t *)p); else return INTFOLD(*(int32_t *)p); } return NEXTFOLD; } LJFOLD(FLOAD CNEW IRFL_CDATA_CTYPEID) LJFOLD(FLOAD CNEWI IRFL_CDATA_CTYPEID) LJFOLDF(fload_cdata_typeid_cnew) { if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD)) return fleft->op1; /* No PHI barrier needed. CNEW/CNEWI op1 is const. */ return NEXTFOLD; } /* Pointer, int and int64 cdata objects are immutable. */ LJFOLD(FLOAD CNEWI IRFL_CDATA_PTR) LJFOLD(FLOAD CNEWI IRFL_CDATA_INT) LJFOLD(FLOAD CNEWI IRFL_CDATA_INT64) LJFOLDF(fload_cdata_ptr_int64_cnew) { if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD)) return fleft->op2; /* Fold even across PHI to avoid allocations. */ return NEXTFOLD; } LJFOLD(FLOAD any IRFL_STR_LEN) LJFOLD(FLOAD any IRFL_FUNC_ENV) LJFOLD(FLOAD any IRFL_THREAD_ENV) LJFOLD(FLOAD any IRFL_CDATA_CTYPEID) LJFOLD(FLOAD any IRFL_CDATA_PTR) LJFOLD(FLOAD any IRFL_CDATA_INT) LJFOLD(FLOAD any IRFL_CDATA_INT64) LJFOLD(VLOAD any any) /* Vararg loads have no corresponding stores. */ LJFOLDX(lj_opt_cse) /* All other field loads need alias analysis. */ LJFOLD(FLOAD any any) LJFOLDX(lj_opt_fwd_fload) /* This is for LOOP only. Recording handles SLOADs internally. */ LJFOLD(SLOAD any any) LJFOLDF(fwd_sload) { if ((fins->op2 & IRSLOAD_FRAME)) { TRef tr = lj_opt_cse(J); return tref_ref(tr) < J->chain[IR_RETF] ? EMITFOLD : tr; } else { lua_assert(J->slot[fins->op1] != 0); return J->slot[fins->op1]; } } /* Only fold for KKPTR. The pointer _and_ the contents must be const. */ LJFOLD(XLOAD KKPTR any) LJFOLDF(xload_kptr) { TRef tr = kfold_xload(J, fins, ir_kptr(fleft)); return tr ? tr : NEXTFOLD; } LJFOLD(XLOAD any any) LJFOLDX(lj_opt_fwd_xload) /* -- Write barriers ------------------------------------------------------ */ /* Write barriers are amenable to CSE, but not across any incremental ** GC steps. ** ** The same logic applies to open upvalue references, because a stack ** may be resized during a GC step (not the current stack, but maybe that ** of a coroutine). */ LJFOLD(TBAR any) LJFOLD(OBAR any any) LJFOLD(UREFO any any) LJFOLDF(barrier_tab) { TRef tr = lj_opt_cse(J); if (gcstep_barrier(J, tref_ref(tr))) /* CSE across GC step? */ return EMITFOLD; /* Raw emit. Assumes fins is left intact by CSE. */ return tr; } LJFOLD(TBAR TNEW) LJFOLD(TBAR TDUP) LJFOLDF(barrier_tnew_tdup) { /* New tables are always white and never need a barrier. */ if (fins->op1 < J->chain[IR_LOOP]) /* Except across a GC step. */ return NEXTFOLD; return DROPFOLD; } /* -- Profiling ----------------------------------------------------------- */ LJFOLD(PROF any any) LJFOLDF(prof) { IRRef ref = J->chain[IR_PROF]; if (ref+1 == J->cur.nins) /* Drop neighbouring IR_PROF. */ return ref; return EMITFOLD; } /* -- Stores and allocations ---------------------------------------------- */ /* Stores and allocations cannot be folded or passed on to CSE in general. ** But some stores can be eliminated with dead-store elimination (DSE). ** ** Caveat: *all* stores and allocs must be listed here or they end up at CSE! */ LJFOLD(ASTORE any any) LJFOLD(HSTORE any any) LJFOLDX(lj_opt_dse_ahstore) LJFOLD(USTORE any any) LJFOLDX(lj_opt_dse_ustore) LJFOLD(FSTORE any any) LJFOLDX(lj_opt_dse_fstore) LJFOLD(XSTORE any any) LJFOLDX(lj_opt_dse_xstore) LJFOLD(NEWREF any any) /* Treated like a store. */ LJFOLD(CALLA any any) LJFOLD(CALLL any any) /* Safeguard fallback. */ LJFOLD(CALLS any any) LJFOLD(CALLXS any any) LJFOLD(XBAR) LJFOLD(RETF any any) /* Modifies BASE. */ LJFOLD(TNEW any any) LJFOLD(TDUP any) LJFOLD(CNEW any any) LJFOLD(XSNEW any any) LJFOLD(BUFHDR any any) LJFOLDX(lj_ir_emit) /* ------------------------------------------------------------------------ */ /* Every entry in the generated hash table is a 32 bit pattern: ** ** xxxxxxxx iiiiiii lllllll rrrrrrrrrr ** ** xxxxxxxx = 8 bit index into fold function table ** iiiiiii = 7 bit folded instruction opcode ** lllllll = 7 bit left instruction opcode ** rrrrrrrrrr = 8 bit right instruction opcode or 10 bits from literal field */ #include "lj_folddef.h" /* ------------------------------------------------------------------------ */ /* Fold IR instruction. */ TRef LJ_FASTCALL lj_opt_fold(jit_State *J) { uint32_t key, any; IRRef ref; if (LJ_UNLIKELY((J->flags & JIT_F_OPT_MASK) != JIT_F_OPT_DEFAULT)) { lua_assert(((JIT_F_OPT_FOLD|JIT_F_OPT_FWD|JIT_F_OPT_CSE|JIT_F_OPT_DSE) | JIT_F_OPT_DEFAULT) == JIT_F_OPT_DEFAULT); /* Folding disabled? Chain to CSE, but not for loads/stores/allocs. */ if (!(J->flags & JIT_F_OPT_FOLD) && irm_kind(lj_ir_mode[fins->o]) == IRM_N) return lj_opt_cse(J); /* No FOLD, forwarding or CSE? Emit raw IR for loads, except for SLOAD. */ if ((J->flags & (JIT_F_OPT_FOLD|JIT_F_OPT_FWD|JIT_F_OPT_CSE)) != (JIT_F_OPT_FOLD|JIT_F_OPT_FWD|JIT_F_OPT_CSE) && irm_kind(lj_ir_mode[fins->o]) == IRM_L && fins->o != IR_SLOAD) return lj_ir_emit(J); /* No FOLD or DSE? Emit raw IR for stores. */ if ((J->flags & (JIT_F_OPT_FOLD|JIT_F_OPT_DSE)) != (JIT_F_OPT_FOLD|JIT_F_OPT_DSE) && irm_kind(lj_ir_mode[fins->o]) == IRM_S) return lj_ir_emit(J); } /* Fold engine start/retry point. */ retry: /* Construct key from opcode and operand opcodes (unless literal/none). */ key = ((uint32_t)fins->o << 17); if (fins->op1 >= J->cur.nk) { key += (uint32_t)IR(fins->op1)->o << 10; *fleft = *IR(fins->op1); if (fins->op1 < REF_TRUE) fleft[1] = IR(fins->op1)[1]; } if (fins->op2 >= J->cur.nk) { key += (uint32_t)IR(fins->op2)->o; *fright = *IR(fins->op2); if (fins->op2 < REF_TRUE) fright[1] = IR(fins->op2)[1]; } else { key += (fins->op2 & 0x3ffu); /* Literal mask. Must include IRCONV_*MASK. */ } /* Check for a match in order from most specific to least specific. */ any = 0; for (;;) { uint32_t k = key | (any & 0x1ffff); uint32_t h = fold_hashkey(k); uint32_t fh = fold_hash[h]; /* Lookup key in semi-perfect hash table. */ if ((fh & 0xffffff) == k || (fh = fold_hash[h+1], (fh & 0xffffff) == k)) { ref = (IRRef)tref_ref(fold_func[fh >> 24](J)); if (ref != NEXTFOLD) break; } if (any == 0xfffff) /* Exhausted folding. Pass on to CSE. */ return lj_opt_cse(J); any = (any | (any >> 10)) ^ 0xffc00; } /* Return value processing, ordered by frequency. */ if (LJ_LIKELY(ref >= MAX_FOLD)) return TREF(ref, irt_t(IR(ref)->t)); if (ref == RETRYFOLD) goto retry; if (ref == KINTFOLD) return lj_ir_kint(J, fins->i); if (ref == FAILFOLD) lj_trace_err(J, LJ_TRERR_GFAIL); lua_assert(ref == DROPFOLD); return REF_DROP; } /* -- Common-Subexpression Elimination ------------------------------------ */ /* CSE an IR instruction. This is very fast due to the skip-list chains. */ TRef LJ_FASTCALL lj_opt_cse(jit_State *J) { /* Avoid narrow to wide store-to-load forwarding stall */ IRRef2 op12 = (IRRef2)fins->op1 + ((IRRef2)fins->op2 << 16); IROp op = fins->o; if (LJ_LIKELY(J->flags & JIT_F_OPT_CSE)) { /* Limited search for same operands in per-opcode chain. */ IRRef ref = J->chain[op]; IRRef lim = fins->op1; if (fins->op2 > lim) lim = fins->op2; /* Relies on lit < REF_BIAS. */ while (ref > lim) { if (IR(ref)->op12 == op12) return TREF(ref, irt_t(IR(ref)->t)); /* Common subexpression found. */ ref = IR(ref)->prev; } } /* Otherwise emit IR (inlined for speed). */ { IRRef ref = lj_ir_nextins(J); IRIns *ir = IR(ref); ir->prev = J->chain[op]; ir->op12 = op12; J->chain[op] = (IRRef1)ref; ir->o = fins->o; J->guardemit.irt |= fins->t.irt; return TREF(ref, irt_t((ir->t = fins->t))); } } /* CSE with explicit search limit. */ TRef LJ_FASTCALL lj_opt_cselim(jit_State *J, IRRef lim) { IRRef ref = J->chain[fins->o]; IRRef2 op12 = (IRRef2)fins->op1 + ((IRRef2)fins->op2 << 16); while (ref > lim) { if (IR(ref)->op12 == op12) return ref; ref = IR(ref)->prev; } return lj_ir_emit(J); } /* ------------------------------------------------------------------------ */ #undef IR #undef fins #undef fleft #undef fright #undef knumleft #undef knumright #undef emitir #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_target.h0000644000175100017510000001363213101703334020236 0ustar ondrejondrej/* ** Definitions for target CPU. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_TARGET_H #define _LJ_TARGET_H #include "lj_def.h" #include "lj_arch.h" /* -- Registers and spill slots ------------------------------------------- */ /* Register type (uint8_t in ir->r). */ typedef uint32_t Reg; /* The hi-bit is NOT set for an allocated register. This means the value ** can be directly used without masking. The hi-bit is set for a register ** allocation hint or for RID_INIT, RID_SINK or RID_SUNK. */ #define RID_NONE 0x80 #define RID_MASK 0x7f #define RID_INIT (RID_NONE|RID_MASK) #define RID_SINK (RID_INIT-1) #define RID_SUNK (RID_INIT-2) #define ra_noreg(r) ((r) & RID_NONE) #define ra_hasreg(r) (!((r) & RID_NONE)) /* The ra_hashint() macro assumes a previous test for ra_noreg(). */ #define ra_hashint(r) ((r) < RID_SUNK) #define ra_gethint(r) ((Reg)((r) & RID_MASK)) #define ra_sethint(rr, r) rr = (uint8_t)((r)|RID_NONE) #define ra_samehint(r1, r2) (ra_gethint((r1)^(r2)) == 0) /* Spill slot 0 means no spill slot has been allocated. */ #define SPS_NONE 0 #define ra_hasspill(s) ((s) != SPS_NONE) /* Combined register and spill slot (uint16_t in ir->prev). */ typedef uint32_t RegSP; #define REGSP(r, s) ((r) + ((s) << 8)) #define REGSP_HINT(r) ((r)|RID_NONE) #define REGSP_INIT REGSP(RID_INIT, 0) #define regsp_reg(rs) ((rs) & 255) #define regsp_spill(rs) ((rs) >> 8) #define regsp_used(rs) \ (((rs) & ~REGSP(RID_MASK, 0)) != REGSP(RID_NONE, 0)) /* -- Register sets ------------------------------------------------------- */ /* Bitset for registers. 32 registers suffice for most architectures. ** Note that one set holds bits for both GPRs and FPRs. */ #if LJ_TARGET_PPC || LJ_TARGET_MIPS || LJ_TARGET_ARM64 typedef uint64_t RegSet; #else typedef uint32_t RegSet; #endif #define RID2RSET(r) (((RegSet)1) << (r)) #define RSET_EMPTY ((RegSet)0) #define RSET_RANGE(lo, hi) ((RID2RSET((hi)-(lo))-1) << (lo)) #define rset_test(rs, r) ((int)((rs) >> (r)) & 1) #define rset_set(rs, r) (rs |= RID2RSET(r)) #define rset_clear(rs, r) (rs &= ~RID2RSET(r)) #define rset_exclude(rs, r) (rs & ~RID2RSET(r)) #if LJ_TARGET_PPC || LJ_TARGET_MIPS || LJ_TARGET_ARM64 #define rset_picktop(rs) ((Reg)(__builtin_clzll(rs)^63)) #define rset_pickbot(rs) ((Reg)__builtin_ctzll(rs)) #else #define rset_picktop(rs) ((Reg)lj_fls(rs)) #define rset_pickbot(rs) ((Reg)lj_ffs(rs)) #endif /* -- Register allocation cost -------------------------------------------- */ /* The register allocation heuristic keeps track of the cost for allocating ** a specific register: ** ** A free register (obviously) has a cost of 0 and a 1-bit in the free mask. ** ** An already allocated register has the (non-zero) IR reference in the lowest ** bits and the result of a blended cost-model in the higher bits. ** ** The allocator first checks the free mask for a hit. Otherwise an (unrolled) ** linear search for the minimum cost is used. The search doesn't need to ** keep track of the position of the minimum, which makes it very fast. ** The lowest bits of the minimum cost show the desired IR reference whose ** register is the one to evict. ** ** Without the cost-model this degenerates to the standard heuristics for ** (reverse) linear-scan register allocation. Since code generation is done ** in reverse, a live interval extends from the last use to the first def. ** For an SSA IR the IR reference is the first (and only) def and thus ** trivially marks the end of the interval. The LSRA heuristics says to pick ** the register whose live interval has the furthest extent, i.e. the lowest ** IR reference in our case. ** ** A cost-model should take into account other factors, like spill-cost and ** restore- or rematerialization-cost, which depend on the kind of instruction. ** E.g. constants have zero spill costs, variant instructions have higher ** costs than invariants and PHIs should preferably never be spilled. ** ** Here's a first cut at simple, but effective blended cost-model for R-LSRA: ** - Due to careful design of the IR, constants already have lower IR ** references than invariants and invariants have lower IR references ** than variants. ** - The cost in the upper 16 bits is the sum of the IR reference and a ** weighted score. The score currently only takes into account whether ** the IRT_ISPHI bit is set in the instruction type. ** - The PHI weight is the minimum distance (in IR instructions) a PHI ** reference has to be further apart from a non-PHI reference to be spilled. ** - It should be a power of two (for speed) and must be between 2 and 32768. ** Good values for the PHI weight seem to be between 40 and 150. ** - Further study is required. */ #define REGCOST_PHI_WEIGHT 64 /* Cost for allocating a specific register. */ typedef uint32_t RegCost; /* Note: assumes 16 bit IRRef1. */ #define REGCOST(cost, ref) ((RegCost)(ref) + ((RegCost)(cost) << 16)) #define regcost_ref(rc) ((IRRef1)(rc)) #define REGCOST_T(t) \ ((RegCost)((t)&IRT_ISPHI) * (((RegCost)(REGCOST_PHI_WEIGHT)<<16)/IRT_ISPHI)) #define REGCOST_REF_T(ref, t) (REGCOST((ref), (ref)) + REGCOST_T((t))) /* -- Target-specific definitions ----------------------------------------- */ #if LJ_TARGET_X86ORX64 #include "lj_target_x86.h" #elif LJ_TARGET_ARM #include "lj_target_arm.h" #elif LJ_TARGET_ARM64 #include "lj_target_arm64.h" #elif LJ_TARGET_PPC #include "lj_target_ppc.h" #elif LJ_TARGET_MIPS #include "lj_target_mips.h" #else #error "Missing include for target CPU" #endif #ifdef EXITSTUBS_PER_GROUP /* Return the address of an exit stub. */ static LJ_AINLINE char *exitstub_addr_(char **group, uint32_t exitno) { lua_assert(group[exitno / EXITSTUBS_PER_GROUP] != NULL); return (char *)group[exitno / EXITSTUBS_PER_GROUP] + EXITSTUB_SPACING*(exitno % EXITSTUBS_PER_GROUP); } /* Avoid dependence on lj_jit.h if only including lj_target.h. */ #define exitstub_addr(J, exitno) \ ((MCode *)exitstub_addr_((char **)((J)->exitstubgroup), (exitno))) #endif #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_bcdump.h0000644000175100017510000000373313101703334020223 0ustar ondrejondrej/* ** Bytecode dump definitions. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_BCDUMP_H #define _LJ_BCDUMP_H #include "lj_obj.h" #include "lj_lex.h" /* -- Bytecode dump format ------------------------------------------------ */ /* ** dump = header proto+ 0U ** header = ESC 'L' 'J' versionB flagsU [namelenU nameB*] ** proto = lengthU pdata ** pdata = phead bcinsW* uvdataH* kgc* knum* [debugB*] ** phead = flagsB numparamsB framesizeB numuvB numkgcU numknU numbcU ** [debuglenU [firstlineU numlineU]] ** kgc = kgctypeU { ktab | (loU hiU) | (rloU rhiU iloU ihiU) | strB* } ** knum = intU0 | (loU1 hiU) ** ktab = narrayU nhashU karray* khash* ** karray = ktabk ** khash = ktabk ktabk ** ktabk = ktabtypeU { intU | (loU hiU) | strB* } ** ** B = 8 bit, H = 16 bit, W = 32 bit, U = ULEB128 of W, U0/U1 = ULEB128 of W+1 */ /* Bytecode dump header. */ #define BCDUMP_HEAD1 0x1b #define BCDUMP_HEAD2 0x4c #define BCDUMP_HEAD3 0x4a /* If you perform *any* kind of private modifications to the bytecode itself ** or to the dump format, you *must* set BCDUMP_VERSION to 0x80 or higher. */ #define BCDUMP_VERSION 2 /* Compatibility flags. */ #define BCDUMP_F_BE 0x01 #define BCDUMP_F_STRIP 0x02 #define BCDUMP_F_FFI 0x04 #define BCDUMP_F_FR2 0x08 #define BCDUMP_F_KNOWN (BCDUMP_F_FR2*2-1) /* Type codes for the GC constants of a prototype. Plus length for strings. */ enum { BCDUMP_KGC_CHILD, BCDUMP_KGC_TAB, BCDUMP_KGC_I64, BCDUMP_KGC_U64, BCDUMP_KGC_COMPLEX, BCDUMP_KGC_STR }; /* Type codes for the keys/values of a constant table. */ enum { BCDUMP_KTAB_NIL, BCDUMP_KTAB_FALSE, BCDUMP_KTAB_TRUE, BCDUMP_KTAB_INT, BCDUMP_KTAB_NUM, BCDUMP_KTAB_STR }; /* -- Bytecode reader/writer ---------------------------------------------- */ LJ_FUNC int lj_bcwrite(lua_State *L, GCproto *pt, lua_Writer writer, void *data, int strip); LJ_FUNC GCproto *lj_bcread_proto(LexState *ls); LJ_FUNC GCproto *lj_bcread(LexState *ls); #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_traceerr.h0000644000175100017510000000406513101703334020557 0ustar ondrejondrej/* ** Trace compiler error messages. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ /* This file may be included multiple times with different TREDEF macros. */ /* Recording. */ TREDEF(RECERR, "error thrown or hook called during recording") TREDEF(TRACEUV, "trace too short") TREDEF(TRACEOV, "trace too long") TREDEF(STACKOV, "trace too deep") TREDEF(SNAPOV, "too many snapshots") TREDEF(BLACKL, "blacklisted") TREDEF(RETRY, "retry recording") TREDEF(NYIBC, "NYI: bytecode %d") /* Recording loop ops. */ TREDEF(LLEAVE, "leaving loop in root trace") TREDEF(LINNER, "inner loop in root trace") TREDEF(LUNROLL, "loop unroll limit reached") /* Recording calls/returns. */ TREDEF(BADTYPE, "bad argument type") TREDEF(CJITOFF, "JIT compilation disabled for function") TREDEF(CUNROLL, "call unroll limit reached") TREDEF(DOWNREC, "down-recursion, restarting") TREDEF(NYIFFU, "NYI: unsupported variant of FastFunc %s") TREDEF(NYIRETL, "NYI: return to lower frame") /* Recording indexed load/store. */ TREDEF(STORENN, "store with nil or NaN key") TREDEF(NOMM, "missing metamethod") TREDEF(IDXLOOP, "looping index lookup") TREDEF(NYITMIX, "NYI: mixed sparse/dense table") /* Recording C data operations. */ TREDEF(NOCACHE, "symbol not in cache") TREDEF(NYICONV, "NYI: unsupported C type conversion") TREDEF(NYICALL, "NYI: unsupported C function type") /* Optimizations. */ TREDEF(GFAIL, "guard would always fail") TREDEF(PHIOV, "too many PHIs") TREDEF(TYPEINS, "persistent type instability") /* Assembler. */ TREDEF(MCODEAL, "failed to allocate mcode memory") TREDEF(MCODEOV, "machine code too long") TREDEF(MCODELM, "hit mcode limit (retrying)") TREDEF(SPILLOV, "too many spill slots") TREDEF(BADRA, "inconsistent register allocation") TREDEF(NYIIR, "NYI: cannot assemble IR instruction %d") TREDEF(NYIPHI, "NYI: PHI shuffling too complex") TREDEF(NYICOAL, "NYI: register coalescing too complex") #undef TREDEF /* Detecting unused error messages: awk -F, '/^TREDEF/ { gsub(/TREDEF./, ""); printf "grep -q LJ_TRERR_%s *.[ch] || echo %s\n", $1, $1}' lj_traceerr.h | sh */ luajit-2.1.0~beta3+dfsg.orig/src/lib_ffi.c0000644000175100017510000005507013101703334017652 0ustar ondrejondrej/* ** FFI library. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #define lib_ffi_c #define LUA_LIB #include #include "lua.h" #include "lauxlib.h" #include "lualib.h" #include "lj_obj.h" #if LJ_HASFFI #include "lj_gc.h" #include "lj_err.h" #include "lj_str.h" #include "lj_tab.h" #include "lj_meta.h" #include "lj_ctype.h" #include "lj_cparse.h" #include "lj_cdata.h" #include "lj_cconv.h" #include "lj_carith.h" #include "lj_ccall.h" #include "lj_ccallback.h" #include "lj_clib.h" #include "lj_strfmt.h" #include "lj_ff.h" #include "lj_lib.h" /* -- C type checks ------------------------------------------------------- */ /* Check first argument for a C type and returns its ID. */ static CTypeID ffi_checkctype(lua_State *L, CTState *cts, TValue *param) { TValue *o = L->base; if (!(o < L->top)) { err_argtype: lj_err_argtype(L, 1, "C type"); } if (tvisstr(o)) { /* Parse an abstract C type declaration. */ GCstr *s = strV(o); CPState cp; int errcode; cp.L = L; cp.cts = cts; cp.srcname = strdata(s); cp.p = strdata(s); cp.param = param; cp.mode = CPARSE_MODE_ABSTRACT|CPARSE_MODE_NOIMPLICIT; errcode = lj_cparse(&cp); if (errcode) lj_err_throw(L, errcode); /* Propagate errors. */ return cp.val.id; } else { GCcdata *cd; if (!tviscdata(o)) goto err_argtype; if (param && param < L->top) lj_err_arg(L, 1, LJ_ERR_FFI_NUMPARAM); cd = cdataV(o); return cd->ctypeid == CTID_CTYPEID ? *(CTypeID *)cdataptr(cd) : cd->ctypeid; } } /* Check argument for C data and return it. */ static GCcdata *ffi_checkcdata(lua_State *L, int narg) { TValue *o = L->base + narg-1; if (!(o < L->top && tviscdata(o))) lj_err_argt(L, narg, LUA_TCDATA); return cdataV(o); } /* Convert argument to C pointer. */ static void *ffi_checkptr(lua_State *L, int narg, CTypeID id) { CTState *cts = ctype_cts(L); TValue *o = L->base + narg-1; void *p; if (o >= L->top) lj_err_arg(L, narg, LJ_ERR_NOVAL); lj_cconv_ct_tv(cts, ctype_get(cts, id), (uint8_t *)&p, o, CCF_ARG(narg)); return p; } /* Convert argument to int32_t. */ static int32_t ffi_checkint(lua_State *L, int narg) { CTState *cts = ctype_cts(L); TValue *o = L->base + narg-1; int32_t i; if (o >= L->top) lj_err_arg(L, narg, LJ_ERR_NOVAL); lj_cconv_ct_tv(cts, ctype_get(cts, CTID_INT32), (uint8_t *)&i, o, CCF_ARG(narg)); return i; } /* -- C type metamethods -------------------------------------------------- */ #define LJLIB_MODULE_ffi_meta /* Handle ctype __index/__newindex metamethods. */ static int ffi_index_meta(lua_State *L, CTState *cts, CType *ct, MMS mm) { CTypeID id = ctype_typeid(cts, ct); cTValue *tv = lj_ctype_meta(cts, id, mm); TValue *base = L->base; if (!tv) { const char *s; err_index: s = strdata(lj_ctype_repr(L, id, NULL)); if (tvisstr(L->base+1)) { lj_err_callerv(L, LJ_ERR_FFI_BADMEMBER, s, strVdata(L->base+1)); } else { const char *key = tviscdata(L->base+1) ? strdata(lj_ctype_repr(L, cdataV(L->base+1)->ctypeid, NULL)) : lj_typename(L->base+1); lj_err_callerv(L, LJ_ERR_FFI_BADIDXW, s, key); } } if (!tvisfunc(tv)) { if (mm == MM_index) { cTValue *o = lj_meta_tget(L, tv, base+1); if (o) { if (tvisnil(o)) goto err_index; copyTV(L, L->top-1, o); return 1; } } else { TValue *o = lj_meta_tset(L, tv, base+1); if (o) { copyTV(L, o, base+2); return 0; } } copyTV(L, base, L->top); tv = L->top-1-LJ_FR2; } return lj_meta_tailcall(L, tv); } LJLIB_CF(ffi_meta___index) LJLIB_REC(cdata_index 0) { CTState *cts = ctype_cts(L); CTInfo qual = 0; CType *ct; uint8_t *p; TValue *o = L->base; if (!(o+1 < L->top && tviscdata(o))) /* Also checks for presence of key. */ lj_err_argt(L, 1, LUA_TCDATA); ct = lj_cdata_index(cts, cdataV(o), o+1, &p, &qual); if ((qual & 1)) return ffi_index_meta(L, cts, ct, MM_index); if (lj_cdata_get(cts, ct, L->top-1, p)) lj_gc_check(L); return 1; } LJLIB_CF(ffi_meta___newindex) LJLIB_REC(cdata_index 1) { CTState *cts = ctype_cts(L); CTInfo qual = 0; CType *ct; uint8_t *p; TValue *o = L->base; if (!(o+2 < L->top && tviscdata(o))) /* Also checks for key and value. */ lj_err_argt(L, 1, LUA_TCDATA); ct = lj_cdata_index(cts, cdataV(o), o+1, &p, &qual); if ((qual & 1)) { if ((qual & CTF_CONST)) lj_err_caller(L, LJ_ERR_FFI_WRCONST); return ffi_index_meta(L, cts, ct, MM_newindex); } lj_cdata_set(cts, ct, p, o+2, qual); return 0; } /* Common handler for cdata arithmetic. */ static int ffi_arith(lua_State *L) { MMS mm = (MMS)(curr_func(L)->c.ffid - (int)FF_ffi_meta___eq + (int)MM_eq); return lj_carith_op(L, mm); } /* The following functions must be in contiguous ORDER MM. */ LJLIB_CF(ffi_meta___eq) LJLIB_REC(cdata_arith MM_eq) { return ffi_arith(L); } LJLIB_CF(ffi_meta___len) LJLIB_REC(cdata_arith MM_len) { return ffi_arith(L); } LJLIB_CF(ffi_meta___lt) LJLIB_REC(cdata_arith MM_lt) { return ffi_arith(L); } LJLIB_CF(ffi_meta___le) LJLIB_REC(cdata_arith MM_le) { return ffi_arith(L); } LJLIB_CF(ffi_meta___concat) LJLIB_REC(cdata_arith MM_concat) { return ffi_arith(L); } /* Forward declaration. */ static int lj_cf_ffi_new(lua_State *L); LJLIB_CF(ffi_meta___call) LJLIB_REC(cdata_call) { CTState *cts = ctype_cts(L); GCcdata *cd = ffi_checkcdata(L, 1); CTypeID id = cd->ctypeid; CType *ct; cTValue *tv; MMS mm = MM_call; if (cd->ctypeid == CTID_CTYPEID) { id = *(CTypeID *)cdataptr(cd); mm = MM_new; } else { int ret = lj_ccall_func(L, cd); if (ret >= 0) return ret; } /* Handle ctype __call/__new metamethod. */ ct = ctype_raw(cts, id); if (ctype_isptr(ct->info)) id = ctype_cid(ct->info); tv = lj_ctype_meta(cts, id, mm); if (tv) return lj_meta_tailcall(L, tv); else if (mm == MM_call) lj_err_callerv(L, LJ_ERR_FFI_BADCALL, strdata(lj_ctype_repr(L, id, NULL))); return lj_cf_ffi_new(L); } LJLIB_CF(ffi_meta___add) LJLIB_REC(cdata_arith MM_add) { return ffi_arith(L); } LJLIB_CF(ffi_meta___sub) LJLIB_REC(cdata_arith MM_sub) { return ffi_arith(L); } LJLIB_CF(ffi_meta___mul) LJLIB_REC(cdata_arith MM_mul) { return ffi_arith(L); } LJLIB_CF(ffi_meta___div) LJLIB_REC(cdata_arith MM_div) { return ffi_arith(L); } LJLIB_CF(ffi_meta___mod) LJLIB_REC(cdata_arith MM_mod) { return ffi_arith(L); } LJLIB_CF(ffi_meta___pow) LJLIB_REC(cdata_arith MM_pow) { return ffi_arith(L); } LJLIB_CF(ffi_meta___unm) LJLIB_REC(cdata_arith MM_unm) { return ffi_arith(L); } /* End of contiguous ORDER MM. */ LJLIB_CF(ffi_meta___tostring) { GCcdata *cd = ffi_checkcdata(L, 1); const char *msg = "cdata<%s>: %p"; CTypeID id = cd->ctypeid; void *p = cdataptr(cd); if (id == CTID_CTYPEID) { msg = "ctype<%s>"; id = *(CTypeID *)p; } else { CTState *cts = ctype_cts(L); CType *ct = ctype_raw(cts, id); if (ctype_isref(ct->info)) { p = *(void **)p; ct = ctype_rawchild(cts, ct); } if (ctype_iscomplex(ct->info)) { setstrV(L, L->top-1, lj_ctype_repr_complex(L, cdataptr(cd), ct->size)); goto checkgc; } else if (ct->size == 8 && ctype_isinteger(ct->info)) { setstrV(L, L->top-1, lj_ctype_repr_int64(L, *(uint64_t *)cdataptr(cd), (ct->info & CTF_UNSIGNED))); goto checkgc; } else if (ctype_isfunc(ct->info)) { p = *(void **)p; } else if (ctype_isenum(ct->info)) { msg = "cdata<%s>: %d"; p = (void *)(uintptr_t)*(uint32_t **)p; } else { if (ctype_isptr(ct->info)) { p = cdata_getptr(p, ct->size); ct = ctype_rawchild(cts, ct); } if (ctype_isstruct(ct->info) || ctype_isvector(ct->info)) { /* Handle ctype __tostring metamethod. */ cTValue *tv = lj_ctype_meta(cts, ctype_typeid(cts, ct), MM_tostring); if (tv) return lj_meta_tailcall(L, tv); } } } lj_strfmt_pushf(L, msg, strdata(lj_ctype_repr(L, id, NULL)), p); checkgc: lj_gc_check(L); return 1; } static int ffi_pairs(lua_State *L, MMS mm) { CTState *cts = ctype_cts(L); CTypeID id = ffi_checkcdata(L, 1)->ctypeid; CType *ct = ctype_raw(cts, id); cTValue *tv; if (ctype_isptr(ct->info)) id = ctype_cid(ct->info); tv = lj_ctype_meta(cts, id, mm); if (!tv) lj_err_callerv(L, LJ_ERR_FFI_BADMM, strdata(lj_ctype_repr(L, id, NULL)), strdata(mmname_str(G(L), mm))); return lj_meta_tailcall(L, tv); } LJLIB_CF(ffi_meta___pairs) { return ffi_pairs(L, MM_pairs); } LJLIB_CF(ffi_meta___ipairs) { return ffi_pairs(L, MM_ipairs); } LJLIB_PUSH("ffi") LJLIB_SET(__metatable) #include "lj_libdef.h" /* -- C library metamethods ----------------------------------------------- */ #define LJLIB_MODULE_ffi_clib /* Index C library by a name. */ static TValue *ffi_clib_index(lua_State *L) { TValue *o = L->base; CLibrary *cl; if (!(o < L->top && tvisudata(o) && udataV(o)->udtype == UDTYPE_FFI_CLIB)) lj_err_argt(L, 1, LUA_TUSERDATA); cl = (CLibrary *)uddata(udataV(o)); if (!(o+1 < L->top && tvisstr(o+1))) lj_err_argt(L, 2, LUA_TSTRING); return lj_clib_index(L, cl, strV(o+1)); } LJLIB_CF(ffi_clib___index) LJLIB_REC(clib_index 1) { TValue *tv = ffi_clib_index(L); if (tviscdata(tv)) { CTState *cts = ctype_cts(L); GCcdata *cd = cdataV(tv); CType *s = ctype_get(cts, cd->ctypeid); if (ctype_isextern(s->info)) { CTypeID sid = ctype_cid(s->info); void *sp = *(void **)cdataptr(cd); CType *ct = ctype_raw(cts, sid); if (lj_cconv_tv_ct(cts, ct, sid, L->top-1, sp)) lj_gc_check(L); return 1; } } copyTV(L, L->top-1, tv); return 1; } LJLIB_CF(ffi_clib___newindex) LJLIB_REC(clib_index 0) { TValue *tv = ffi_clib_index(L); TValue *o = L->base+2; if (o < L->top && tviscdata(tv)) { CTState *cts = ctype_cts(L); GCcdata *cd = cdataV(tv); CType *d = ctype_get(cts, cd->ctypeid); if (ctype_isextern(d->info)) { CTInfo qual = 0; for (;;) { /* Skip attributes and collect qualifiers. */ d = ctype_child(cts, d); if (!ctype_isattrib(d->info)) break; if (ctype_attrib(d->info) == CTA_QUAL) qual |= d->size; } if (!((d->info|qual) & CTF_CONST)) { lj_cconv_ct_tv(cts, d, *(void **)cdataptr(cd), o, 0); return 0; } } } lj_err_caller(L, LJ_ERR_FFI_WRCONST); return 0; /* unreachable */ } LJLIB_CF(ffi_clib___gc) { TValue *o = L->base; if (o < L->top && tvisudata(o) && udataV(o)->udtype == UDTYPE_FFI_CLIB) lj_clib_unload((CLibrary *)uddata(udataV(o))); return 0; } #include "lj_libdef.h" /* -- Callback function metamethods --------------------------------------- */ #define LJLIB_MODULE_ffi_callback static int ffi_callback_set(lua_State *L, GCfunc *fn) { GCcdata *cd = ffi_checkcdata(L, 1); CTState *cts = ctype_cts(L); CType *ct = ctype_raw(cts, cd->ctypeid); if (ctype_isptr(ct->info) && (LJ_32 || ct->size == 8)) { MSize slot = lj_ccallback_ptr2slot(cts, *(void **)cdataptr(cd)); if (slot < cts->cb.sizeid && cts->cb.cbid[slot] != 0) { GCtab *t = cts->miscmap; TValue *tv = lj_tab_setint(L, t, (int32_t)slot); if (fn) { setfuncV(L, tv, fn); lj_gc_anybarriert(L, t); } else { setnilV(tv); cts->cb.cbid[slot] = 0; cts->cb.topid = slot < cts->cb.topid ? slot : cts->cb.topid; } return 0; } } lj_err_caller(L, LJ_ERR_FFI_BADCBACK); return 0; } LJLIB_CF(ffi_callback_free) { return ffi_callback_set(L, NULL); } LJLIB_CF(ffi_callback_set) { GCfunc *fn = lj_lib_checkfunc(L, 2); return ffi_callback_set(L, fn); } LJLIB_PUSH(top-1) LJLIB_SET(__index) #include "lj_libdef.h" /* -- FFI library functions ----------------------------------------------- */ #define LJLIB_MODULE_ffi LJLIB_CF(ffi_cdef) { GCstr *s = lj_lib_checkstr(L, 1); CPState cp; int errcode; cp.L = L; cp.cts = ctype_cts(L); cp.srcname = strdata(s); cp.p = strdata(s); cp.param = L->base+1; cp.mode = CPARSE_MODE_MULTI|CPARSE_MODE_DIRECT; errcode = lj_cparse(&cp); if (errcode) lj_err_throw(L, errcode); /* Propagate errors. */ lj_gc_check(L); return 0; } LJLIB_CF(ffi_new) LJLIB_REC(.) { CTState *cts = ctype_cts(L); CTypeID id = ffi_checkctype(L, cts, NULL); CType *ct = ctype_raw(cts, id); CTSize sz; CTInfo info = lj_ctype_info(cts, id, &sz); TValue *o = L->base+1; GCcdata *cd; if ((info & CTF_VLA)) { o++; sz = lj_ctype_vlsize(cts, ct, (CTSize)ffi_checkint(L, 2)); } if (sz == CTSIZE_INVALID) lj_err_arg(L, 1, LJ_ERR_FFI_INVSIZE); cd = lj_cdata_newx(cts, id, sz, info); setcdataV(L, o-1, cd); /* Anchor the uninitialized cdata. */ lj_cconv_ct_init(cts, ct, sz, cdataptr(cd), o, (MSize)(L->top - o)); /* Initialize cdata. */ if (ctype_isstruct(ct->info)) { /* Handle ctype __gc metamethod. Use the fast lookup here. */ cTValue *tv = lj_tab_getinth(cts->miscmap, -(int32_t)id); if (tv && tvistab(tv) && (tv = lj_meta_fast(L, tabV(tv), MM_gc))) { GCtab *t = cts->finalizer; if (gcref(t->metatable)) { /* Add to finalizer table, if still enabled. */ copyTV(L, lj_tab_set(L, t, o-1), tv); lj_gc_anybarriert(L, t); cd->marked |= LJ_GC_CDATA_FIN; } } } L->top = o; /* Only return the cdata itself. */ lj_gc_check(L); return 1; } LJLIB_CF(ffi_cast) LJLIB_REC(ffi_new) { CTState *cts = ctype_cts(L); CTypeID id = ffi_checkctype(L, cts, NULL); CType *d = ctype_raw(cts, id); TValue *o = lj_lib_checkany(L, 2); L->top = o+1; /* Make sure this is the last item on the stack. */ if (!(ctype_isnum(d->info) || ctype_isptr(d->info) || ctype_isenum(d->info))) lj_err_arg(L, 1, LJ_ERR_FFI_INVTYPE); if (!(tviscdata(o) && cdataV(o)->ctypeid == id)) { GCcdata *cd = lj_cdata_new(cts, id, d->size); lj_cconv_ct_tv(cts, d, cdataptr(cd), o, CCF_CAST); setcdataV(L, o, cd); lj_gc_check(L); } return 1; } LJLIB_CF(ffi_typeof) LJLIB_REC(.) { CTState *cts = ctype_cts(L); CTypeID id = ffi_checkctype(L, cts, L->base+1); GCcdata *cd = lj_cdata_new(cts, CTID_CTYPEID, 4); *(CTypeID *)cdataptr(cd) = id; setcdataV(L, L->top-1, cd); lj_gc_check(L); return 1; } /* Internal and unsupported API. */ LJLIB_CF(ffi_typeinfo) { CTState *cts = ctype_cts(L); CTypeID id = (CTypeID)ffi_checkint(L, 1); if (id > 0 && id < cts->top) { CType *ct = ctype_get(cts, id); GCtab *t; lua_createtable(L, 0, 4); /* Increment hash size if fields are added. */ t = tabV(L->top-1); setintV(lj_tab_setstr(L, t, lj_str_newlit(L, "info")), (int32_t)ct->info); if (ct->size != CTSIZE_INVALID) setintV(lj_tab_setstr(L, t, lj_str_newlit(L, "size")), (int32_t)ct->size); if (ct->sib) setintV(lj_tab_setstr(L, t, lj_str_newlit(L, "sib")), (int32_t)ct->sib); if (gcref(ct->name)) { GCstr *s = gco2str(gcref(ct->name)); setstrV(L, lj_tab_setstr(L, t, lj_str_newlit(L, "name")), s); } lj_gc_check(L); return 1; } return 0; } LJLIB_CF(ffi_istype) LJLIB_REC(.) { CTState *cts = ctype_cts(L); CTypeID id1 = ffi_checkctype(L, cts, NULL); TValue *o = lj_lib_checkany(L, 2); int b = 0; if (tviscdata(o)) { GCcdata *cd = cdataV(o); CTypeID id2 = cd->ctypeid == CTID_CTYPEID ? *(CTypeID *)cdataptr(cd) : cd->ctypeid; CType *ct1 = lj_ctype_rawref(cts, id1); CType *ct2 = lj_ctype_rawref(cts, id2); if (ct1 == ct2) { b = 1; } else if (ctype_type(ct1->info) == ctype_type(ct2->info) && ct1->size == ct2->size) { if (ctype_ispointer(ct1->info)) b = lj_cconv_compatptr(cts, ct1, ct2, CCF_IGNQUAL); else if (ctype_isnum(ct1->info) || ctype_isvoid(ct1->info)) b = (((ct1->info ^ ct2->info) & ~(CTF_QUAL|CTF_LONG)) == 0); } else if (ctype_isstruct(ct1->info) && ctype_isptr(ct2->info) && ct1 == ctype_rawchild(cts, ct2)) { b = 1; } } setboolV(L->top-1, b); setboolV(&G(L)->tmptv2, b); /* Remember for trace recorder. */ return 1; } LJLIB_CF(ffi_sizeof) LJLIB_REC(ffi_xof FF_ffi_sizeof) { CTState *cts = ctype_cts(L); CTypeID id = ffi_checkctype(L, cts, NULL); CTSize sz; if (LJ_UNLIKELY(tviscdata(L->base) && cdataisv(cdataV(L->base)))) { sz = cdatavlen(cdataV(L->base)); } else { CType *ct = lj_ctype_rawref(cts, id); if (ctype_isvltype(ct->info)) sz = lj_ctype_vlsize(cts, ct, (CTSize)ffi_checkint(L, 2)); else sz = ctype_hassize(ct->info) ? ct->size : CTSIZE_INVALID; if (LJ_UNLIKELY(sz == CTSIZE_INVALID)) { setnilV(L->top-1); return 1; } } setintV(L->top-1, (int32_t)sz); return 1; } LJLIB_CF(ffi_alignof) LJLIB_REC(ffi_xof FF_ffi_alignof) { CTState *cts = ctype_cts(L); CTypeID id = ffi_checkctype(L, cts, NULL); CTSize sz = 0; CTInfo info = lj_ctype_info(cts, id, &sz); setintV(L->top-1, 1 << ctype_align(info)); return 1; } LJLIB_CF(ffi_offsetof) LJLIB_REC(ffi_xof FF_ffi_offsetof) { CTState *cts = ctype_cts(L); CTypeID id = ffi_checkctype(L, cts, NULL); GCstr *name = lj_lib_checkstr(L, 2); CType *ct = lj_ctype_rawref(cts, id); CTSize ofs; if (ctype_isstruct(ct->info) && ct->size != CTSIZE_INVALID) { CType *fct = lj_ctype_getfield(cts, ct, name, &ofs); if (fct) { setintV(L->top-1, ofs); if (ctype_isfield(fct->info)) { return 1; } else if (ctype_isbitfield(fct->info)) { setintV(L->top++, ctype_bitpos(fct->info)); setintV(L->top++, ctype_bitbsz(fct->info)); return 3; } } } return 0; } LJLIB_CF(ffi_errno) LJLIB_REC(.) { int err = errno; if (L->top > L->base) errno = ffi_checkint(L, 1); setintV(L->top++, err); return 1; } LJLIB_CF(ffi_string) LJLIB_REC(.) { CTState *cts = ctype_cts(L); TValue *o = lj_lib_checkany(L, 1); const char *p; size_t len; if (o+1 < L->top && !tvisnil(o+1)) { len = (size_t)ffi_checkint(L, 2); lj_cconv_ct_tv(cts, ctype_get(cts, CTID_P_CVOID), (uint8_t *)&p, o, CCF_ARG(1)); } else { lj_cconv_ct_tv(cts, ctype_get(cts, CTID_P_CCHAR), (uint8_t *)&p, o, CCF_ARG(1)); len = strlen(p); } L->top = o+1; /* Make sure this is the last item on the stack. */ setstrV(L, o, lj_str_new(L, p, len)); lj_gc_check(L); return 1; } LJLIB_CF(ffi_copy) LJLIB_REC(.) { void *dp = ffi_checkptr(L, 1, CTID_P_VOID); void *sp = ffi_checkptr(L, 2, CTID_P_CVOID); TValue *o = L->base+1; CTSize len; if (tvisstr(o) && o+1 >= L->top) len = strV(o)->len+1; /* Copy Lua string including trailing '\0'. */ else len = (CTSize)ffi_checkint(L, 3); memcpy(dp, sp, len); return 0; } LJLIB_CF(ffi_fill) LJLIB_REC(.) { void *dp = ffi_checkptr(L, 1, CTID_P_VOID); CTSize len = (CTSize)ffi_checkint(L, 2); int32_t fill = 0; if (L->base+2 < L->top && !tvisnil(L->base+2)) fill = ffi_checkint(L, 3); memset(dp, fill, len); return 0; } #define H_(le, be) LJ_ENDIAN_SELECT(0x##le, 0x##be) /* Test ABI string. */ LJLIB_CF(ffi_abi) LJLIB_REC(.) { GCstr *s = lj_lib_checkstr(L, 1); int b = 0; switch (s->hash) { #if LJ_64 case H_(849858eb,ad35fd06): b = 1; break; /* 64bit */ #else case H_(662d3c79,d0e22477): b = 1; break; /* 32bit */ #endif #if LJ_ARCH_HASFPU case H_(e33ee463,e33ee463): b = 1; break; /* fpu */ #endif #if LJ_ABI_SOFTFP case H_(61211a23,c2e8c81c): b = 1; break; /* softfp */ #else case H_(539417a8,8ce0812f): b = 1; break; /* hardfp */ #endif #if LJ_ABI_EABI case H_(2182df8f,f2ed1152): b = 1; break; /* eabi */ #endif #if LJ_ABI_WIN case H_(4ab624a8,4ab624a8): b = 1; break; /* win */ #endif case H_(3af93066,1f001464): b = 1; break; /* le/be */ #if LJ_GC64 case H_(9e89d2c9,13c83c92): b = 1; break; /* gc64 */ #endif default: break; } setboolV(L->top-1, b); setboolV(&G(L)->tmptv2, b); /* Remember for trace recorder. */ return 1; } #undef H_ LJLIB_PUSH(top-8) LJLIB_SET(!) /* Store reference to miscmap table. */ LJLIB_CF(ffi_metatype) { CTState *cts = ctype_cts(L); CTypeID id = ffi_checkctype(L, cts, NULL); GCtab *mt = lj_lib_checktab(L, 2); GCtab *t = cts->miscmap; CType *ct = ctype_get(cts, id); /* Only allow raw types. */ TValue *tv; GCcdata *cd; if (!(ctype_isstruct(ct->info) || ctype_iscomplex(ct->info) || ctype_isvector(ct->info))) lj_err_arg(L, 1, LJ_ERR_FFI_INVTYPE); tv = lj_tab_setinth(L, t, -(int32_t)id); if (!tvisnil(tv)) lj_err_caller(L, LJ_ERR_PROTMT); settabV(L, tv, mt); lj_gc_anybarriert(L, t); cd = lj_cdata_new(cts, CTID_CTYPEID, 4); *(CTypeID *)cdataptr(cd) = id; setcdataV(L, L->top-1, cd); lj_gc_check(L); return 1; } LJLIB_PUSH(top-7) LJLIB_SET(!) /* Store reference to finalizer table. */ LJLIB_CF(ffi_gc) LJLIB_REC(.) { GCcdata *cd = ffi_checkcdata(L, 1); TValue *fin = lj_lib_checkany(L, 2); CTState *cts = ctype_cts(L); CType *ct = ctype_raw(cts, cd->ctypeid); if (!(ctype_isptr(ct->info) || ctype_isstruct(ct->info) || ctype_isrefarray(ct->info))) lj_err_arg(L, 1, LJ_ERR_FFI_INVTYPE); lj_cdata_setfin(L, cd, gcval(fin), itype(fin)); L->top = L->base+1; /* Pass through the cdata object. */ return 1; } LJLIB_PUSH(top-5) LJLIB_SET(!) /* Store clib metatable in func environment. */ LJLIB_CF(ffi_load) { GCstr *name = lj_lib_checkstr(L, 1); int global = (L->base+1 < L->top && tvistruecond(L->base+1)); lj_clib_load(L, tabref(curr_func(L)->c.env), name, global); return 1; } LJLIB_PUSH(top-4) LJLIB_SET(C) LJLIB_PUSH(top-3) LJLIB_SET(os) LJLIB_PUSH(top-2) LJLIB_SET(arch) #include "lj_libdef.h" /* ------------------------------------------------------------------------ */ /* Create special weak-keyed finalizer table. */ static GCtab *ffi_finalizer(lua_State *L) { /* NOBARRIER: The table is new (marked white). */ GCtab *t = lj_tab_new(L, 0, 1); settabV(L, L->top++, t); setgcref(t->metatable, obj2gco(t)); setstrV(L, lj_tab_setstr(L, t, lj_str_newlit(L, "__mode")), lj_str_newlit(L, "k")); t->nomm = (uint8_t)(~(1u<top-1); lj_gc_anybarriert(L, t); } } LUALIB_API int luaopen_ffi(lua_State *L) { CTState *cts = lj_ctype_init(L); settabV(L, L->top++, (cts->miscmap = lj_tab_new(L, 0, 1))); cts->finalizer = ffi_finalizer(L); LJ_LIB_REG(L, NULL, ffi_meta); /* NOBARRIER: basemt is a GC root. */ setgcref(basemt_it(G(L), LJ_TCDATA), obj2gco(tabV(L->top-1))); LJ_LIB_REG(L, NULL, ffi_clib); LJ_LIB_REG(L, NULL, ffi_callback); /* NOBARRIER: the key is new and lj_tab_newkey() handles the barrier. */ settabV(L, lj_tab_setstr(L, cts->miscmap, &cts->g->strempty), tabV(L->top-1)); L->top--; lj_clib_default(L, tabV(L->top-1)); /* Create ffi.C default namespace. */ lua_pushliteral(L, LJ_OS_NAME); lua_pushliteral(L, LJ_ARCH_NAME); LJ_LIB_REG(L, NULL, ffi); /* Note: no global "ffi" created! */ ffi_register_module(L); return 1; } #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_obj.h0000644000175100017510000010214413101703334017517 0ustar ondrejondrej/* ** LuaJIT VM tags, values and objects. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h ** ** Portions taken verbatim or adapted from the Lua interpreter. ** Copyright (C) 1994-2008 Lua.org, PUC-Rio. See Copyright Notice in lua.h */ #ifndef _LJ_OBJ_H #define _LJ_OBJ_H #include "lua.h" #include "lj_def.h" #include "lj_arch.h" /* -- Memory references (32 bit address space) ---------------------------- */ /* Memory and GC object sizes. */ typedef uint32_t MSize; #if LJ_GC64 typedef uint64_t GCSize; #else typedef uint32_t GCSize; #endif /* Memory reference */ typedef struct MRef { #if LJ_GC64 uint64_t ptr64; /* True 64 bit pointer. */ #else uint32_t ptr32; /* Pseudo 32 bit pointer. */ #endif } MRef; #if LJ_GC64 #define mref(r, t) ((t *)(void *)(r).ptr64) #define setmref(r, p) ((r).ptr64 = (uint64_t)(void *)(p)) #define setmrefr(r, v) ((r).ptr64 = (v).ptr64) #else #define mref(r, t) ((t *)(void *)(uintptr_t)(r).ptr32) #define setmref(r, p) ((r).ptr32 = (uint32_t)(uintptr_t)(void *)(p)) #define setmrefr(r, v) ((r).ptr32 = (v).ptr32) #endif /* -- GC object references (32 bit address space) ------------------------- */ /* GCobj reference */ typedef struct GCRef { #if LJ_GC64 uint64_t gcptr64; /* True 64 bit pointer. */ #else uint32_t gcptr32; /* Pseudo 32 bit pointer. */ #endif } GCRef; /* Common GC header for all collectable objects. */ #define GCHeader GCRef nextgc; uint8_t marked; uint8_t gct /* This occupies 6 bytes, so use the next 2 bytes for non-32 bit fields. */ #if LJ_GC64 #define gcref(r) ((GCobj *)(r).gcptr64) #define gcrefp(r, t) ((t *)(void *)(r).gcptr64) #define gcrefu(r) ((r).gcptr64) #define gcrefeq(r1, r2) ((r1).gcptr64 == (r2).gcptr64) #define setgcref(r, gc) ((r).gcptr64 = (uint64_t)&(gc)->gch) #define setgcreft(r, gc, it) \ (r).gcptr64 = (uint64_t)&(gc)->gch | (((uint64_t)(it)) << 47) #define setgcrefp(r, p) ((r).gcptr64 = (uint64_t)(p)) #define setgcrefnull(r) ((r).gcptr64 = 0) #define setgcrefr(r, v) ((r).gcptr64 = (v).gcptr64) #else #define gcref(r) ((GCobj *)(uintptr_t)(r).gcptr32) #define gcrefp(r, t) ((t *)(void *)(uintptr_t)(r).gcptr32) #define gcrefu(r) ((r).gcptr32) #define gcrefeq(r1, r2) ((r1).gcptr32 == (r2).gcptr32) #define setgcref(r, gc) ((r).gcptr32 = (uint32_t)(uintptr_t)&(gc)->gch) #define setgcrefp(r, p) ((r).gcptr32 = (uint32_t)(uintptr_t)(p)) #define setgcrefnull(r) ((r).gcptr32 = 0) #define setgcrefr(r, v) ((r).gcptr32 = (v).gcptr32) #endif #define gcnext(gc) (gcref((gc)->gch.nextgc)) /* IMPORTANT NOTE: ** ** All uses of the setgcref* macros MUST be accompanied with a write barrier. ** ** This is to ensure the integrity of the incremental GC. The invariant ** to preserve is that a black object never points to a white object. ** I.e. never store a white object into a field of a black object. ** ** It's ok to LEAVE OUT the write barrier ONLY in the following cases: ** - The source is not a GC object (NULL). ** - The target is a GC root. I.e. everything in global_State. ** - The target is a lua_State field (threads are never black). ** - The target is a stack slot, see setgcV et al. ** - The target is an open upvalue, i.e. pointing to a stack slot. ** - The target is a newly created object (i.e. marked white). But make ** sure nothing invokes the GC inbetween. ** - The target and the source are the same object (self-reference). ** - The target already contains the object (e.g. moving elements around). ** ** The most common case is a store to a stack slot. All other cases where ** a barrier has been omitted are annotated with a NOBARRIER comment. ** ** The same logic applies for stores to table slots (array part or hash ** part). ALL uses of lj_tab_set* require a barrier for the stored value ** *and* the stored key, based on the above rules. In practice this means ** a barrier is needed if *either* of the key or value are a GC object. ** ** It's ok to LEAVE OUT the write barrier in the following special cases: ** - The stored value is nil. The key doesn't matter because it's either ** not resurrected or lj_tab_newkey() will take care of the key barrier. ** - The key doesn't matter if the *previously* stored value is guaranteed ** to be non-nil (because the key is kept alive in the table). ** - The key doesn't matter if it's guaranteed not to be part of the table, ** since lj_tab_newkey() takes care of the key barrier. This applies ** trivially to new tables, but watch out for resurrected keys. Storing ** a nil value leaves the key in the table! ** ** In case of doubt use lj_gc_anybarriert() as it's rather cheap. It's used ** by the interpreter for all table stores. ** ** Note: In contrast to Lua's GC, LuaJIT's GC does *not* specially mark ** dead keys in tables. The reference is left in, but it's guaranteed to ** be never dereferenced as long as the value is nil. It's ok if the key is ** freed or if any object subsequently gets the same address. ** ** Not destroying dead keys helps to keep key hash slots stable. This avoids ** specialization back-off for HREFK when a value flips between nil and ** non-nil and the GC gets in the way. It also allows safely hoisting ** HREF/HREFK across GC steps. Dead keys are only removed if a table is ** resized (i.e. by NEWREF) and xREF must not be CSEd across a resize. ** ** The trade-off is that a write barrier for tables must take the key into ** account, too. Implicitly resurrecting the key by storing a non-nil value ** may invalidate the incremental GC invariant. */ /* -- Common type definitions --------------------------------------------- */ /* Types for handling bytecodes. Need this here, details in lj_bc.h. */ typedef uint32_t BCIns; /* Bytecode instruction. */ typedef uint32_t BCPos; /* Bytecode position. */ typedef uint32_t BCReg; /* Bytecode register. */ typedef int32_t BCLine; /* Bytecode line number. */ /* Internal assembler functions. Never call these directly from C. */ typedef void (*ASMFunction)(void); /* Resizable string buffer. Need this here, details in lj_buf.h. */ typedef struct SBuf { MRef p; /* String buffer pointer. */ MRef e; /* String buffer end pointer. */ MRef b; /* String buffer base. */ MRef L; /* lua_State, used for buffer resizing. */ } SBuf; /* -- Tags and values ----------------------------------------------------- */ /* Frame link. */ typedef union { int32_t ftsz; /* Frame type and size of previous frame. */ MRef pcr; /* Or PC for Lua frames. */ } FrameLink; /* Tagged value. */ typedef LJ_ALIGN(8) union TValue { uint64_t u64; /* 64 bit pattern overlaps number. */ lua_Number n; /* Number object overlaps split tag/value object. */ #if LJ_GC64 GCRef gcr; /* GCobj reference with tag. */ int64_t it64; struct { LJ_ENDIAN_LOHI( int32_t i; /* Integer value. */ , uint32_t it; /* Internal object tag. Must overlap MSW of number. */ ) }; #else struct { LJ_ENDIAN_LOHI( union { GCRef gcr; /* GCobj reference (if any). */ int32_t i; /* Integer value. */ }; , uint32_t it; /* Internal object tag. Must overlap MSW of number. */ ) }; #endif #if LJ_FR2 int64_t ftsz; /* Frame type and size of previous frame, or PC. */ #else struct { LJ_ENDIAN_LOHI( GCRef func; /* Function for next frame (or dummy L). */ , FrameLink tp; /* Link to previous frame. */ ) } fr; #endif struct { LJ_ENDIAN_LOHI( uint32_t lo; /* Lower 32 bits of number. */ , uint32_t hi; /* Upper 32 bits of number. */ ) } u32; } TValue; typedef const TValue cTValue; #define tvref(r) (mref(r, TValue)) /* More external and GCobj tags for internal objects. */ #define LAST_TT LUA_TTHREAD #define LUA_TPROTO (LAST_TT+1) #define LUA_TCDATA (LAST_TT+2) /* Internal object tags. ** ** Format for 32 bit GC references (!LJ_GC64): ** ** Internal tags overlap the MSW of a number object (must be a double). ** Interpreted as a double these are special NaNs. The FPU only generates ** one type of NaN (0xfff8_0000_0000_0000). So MSWs > 0xfff80000 are available ** for use as internal tags. Small negative numbers are used to shorten the ** encoding of type comparisons (reg/mem against sign-ext. 8 bit immediate). ** ** ---MSW---.---LSW--- ** primitive types | itype | | ** lightuserdata | itype | void * | (32 bit platforms) ** lightuserdata |ffff| void * | (64 bit platforms, 47 bit pointers) ** GC objects | itype | GCRef | ** int (LJ_DUALNUM)| itype | int | ** number -------double------ ** ** Format for 64 bit GC references (LJ_GC64): ** ** The upper 13 bits must be 1 (0xfff8...) for a special NaN. The next ** 4 bits hold the internal tag. The lowest 47 bits either hold a pointer, ** a zero-extended 32 bit integer or all bits set to 1 for primitive types. ** ** ------MSW------.------LSW------ ** primitive types |1..1|itype|1..................1| ** GC objects/lightud |1..1|itype|-------GCRef--------| ** int (LJ_DUALNUM) |1..1|itype|0..0|-----int-------| ** number ------------double------------- ** ** ORDER LJ_T ** Primitive types nil/false/true must be first, lightuserdata next. ** GC objects are at the end, table/userdata must be lowest. ** Also check lj_ir.h for similar ordering constraints. */ #define LJ_TNIL (~0u) #define LJ_TFALSE (~1u) #define LJ_TTRUE (~2u) #define LJ_TLIGHTUD (~3u) #define LJ_TSTR (~4u) #define LJ_TUPVAL (~5u) #define LJ_TTHREAD (~6u) #define LJ_TPROTO (~7u) #define LJ_TFUNC (~8u) #define LJ_TTRACE (~9u) #define LJ_TCDATA (~10u) #define LJ_TTAB (~11u) #define LJ_TUDATA (~12u) /* This is just the canonical number type used in some places. */ #define LJ_TNUMX (~13u) /* Integers have itype == LJ_TISNUM doubles have itype < LJ_TISNUM */ #if LJ_64 && !LJ_GC64 #define LJ_TISNUM 0xfffeffffu #else #define LJ_TISNUM LJ_TNUMX #endif #define LJ_TISTRUECOND LJ_TFALSE #define LJ_TISPRI LJ_TTRUE #define LJ_TISGCV (LJ_TSTR+1) #define LJ_TISTABUD LJ_TTAB #if LJ_GC64 #define LJ_GCVMASK (((uint64_t)1 << 47) - 1) #endif /* -- String object ------------------------------------------------------- */ /* String object header. String payload follows. */ typedef struct GCstr { GCHeader; uint8_t reserved; /* Used by lexer for fast lookup of reserved words. */ uint8_t unused; MSize hash; /* Hash of string. */ MSize len; /* Size of string. */ } GCstr; #define strref(r) (&gcref((r))->str) #define strdata(s) ((const char *)((s)+1)) #define strdatawr(s) ((char *)((s)+1)) #define strVdata(o) strdata(strV(o)) #define sizestring(s) (sizeof(struct GCstr)+(s)->len+1) /* -- Userdata object ----------------------------------------------------- */ /* Userdata object. Payload follows. */ typedef struct GCudata { GCHeader; uint8_t udtype; /* Userdata type. */ uint8_t unused2; GCRef env; /* Should be at same offset in GCfunc. */ MSize len; /* Size of payload. */ GCRef metatable; /* Must be at same offset in GCtab. */ uint32_t align1; /* To force 8 byte alignment of the payload. */ } GCudata; /* Userdata types. */ enum { UDTYPE_USERDATA, /* Regular userdata. */ UDTYPE_IO_FILE, /* I/O library FILE. */ UDTYPE_FFI_CLIB, /* FFI C library namespace. */ UDTYPE__MAX }; #define uddata(u) ((void *)((u)+1)) #define sizeudata(u) (sizeof(struct GCudata)+(u)->len) /* -- C data object ------------------------------------------------------- */ /* C data object. Payload follows. */ typedef struct GCcdata { GCHeader; uint16_t ctypeid; /* C type ID. */ } GCcdata; /* Prepended to variable-sized or realigned C data objects. */ typedef struct GCcdataVar { uint16_t offset; /* Offset to allocated memory (relative to GCcdata). */ uint16_t extra; /* Extra space allocated (incl. GCcdata + GCcdatav). */ MSize len; /* Size of payload. */ } GCcdataVar; #define cdataptr(cd) ((void *)((cd)+1)) #define cdataisv(cd) ((cd)->marked & 0x80) #define cdatav(cd) ((GCcdataVar *)((char *)(cd) - sizeof(GCcdataVar))) #define cdatavlen(cd) check_exp(cdataisv(cd), cdatav(cd)->len) #define sizecdatav(cd) (cdatavlen(cd) + cdatav(cd)->extra) #define memcdatav(cd) ((void *)((char *)(cd) - cdatav(cd)->offset)) /* -- Prototype object ---------------------------------------------------- */ #define SCALE_NUM_GCO ((int32_t)sizeof(lua_Number)/sizeof(GCRef)) #define round_nkgc(n) (((n) + SCALE_NUM_GCO-1) & ~(SCALE_NUM_GCO-1)) typedef struct GCproto { GCHeader; uint8_t numparams; /* Number of parameters. */ uint8_t framesize; /* Fixed frame size. */ MSize sizebc; /* Number of bytecode instructions. */ #if LJ_GC64 uint32_t unused_gc64; #endif GCRef gclist; MRef k; /* Split constant array (points to the middle). */ MRef uv; /* Upvalue list. local slot|0x8000 or parent uv idx. */ MSize sizekgc; /* Number of collectable constants. */ MSize sizekn; /* Number of lua_Number constants. */ MSize sizept; /* Total size including colocated arrays. */ uint8_t sizeuv; /* Number of upvalues. */ uint8_t flags; /* Miscellaneous flags (see below). */ uint16_t trace; /* Anchor for chain of root traces. */ /* ------ The following fields are for debugging/tracebacks only ------ */ GCRef chunkname; /* Name of the chunk this function was defined in. */ BCLine firstline; /* First line of the function definition. */ BCLine numline; /* Number of lines for the function definition. */ MRef lineinfo; /* Compressed map from bytecode ins. to source line. */ MRef uvinfo; /* Upvalue names. */ MRef varinfo; /* Names and compressed extents of local variables. */ } GCproto; /* Flags for prototype. */ #define PROTO_CHILD 0x01 /* Has child prototypes. */ #define PROTO_VARARG 0x02 /* Vararg function. */ #define PROTO_FFI 0x04 /* Uses BC_KCDATA for FFI datatypes. */ #define PROTO_NOJIT 0x08 /* JIT disabled for this function. */ #define PROTO_ILOOP 0x10 /* Patched bytecode with ILOOP etc. */ /* Only used during parsing. */ #define PROTO_HAS_RETURN 0x20 /* Already emitted a return. */ #define PROTO_FIXUP_RETURN 0x40 /* Need to fixup emitted returns. */ /* Top bits used for counting created closures. */ #define PROTO_CLCOUNT 0x20 /* Base of saturating 3 bit counter. */ #define PROTO_CLC_BITS 3 #define PROTO_CLC_POLY (3*PROTO_CLCOUNT) /* Polymorphic threshold. */ #define PROTO_UV_LOCAL 0x8000 /* Upvalue for local slot. */ #define PROTO_UV_IMMUTABLE 0x4000 /* Immutable upvalue. */ #define proto_kgc(pt, idx) \ check_exp((uintptr_t)(intptr_t)(idx) >= (uintptr_t)-(intptr_t)(pt)->sizekgc, \ gcref(mref((pt)->k, GCRef)[(idx)])) #define proto_knumtv(pt, idx) \ check_exp((uintptr_t)(idx) < (pt)->sizekn, &mref((pt)->k, TValue)[(idx)]) #define proto_bc(pt) ((BCIns *)((char *)(pt) + sizeof(GCproto))) #define proto_bcpos(pt, pc) ((BCPos)((pc) - proto_bc(pt))) #define proto_uv(pt) (mref((pt)->uv, uint16_t)) #define proto_chunkname(pt) (strref((pt)->chunkname)) #define proto_chunknamestr(pt) (strdata(proto_chunkname((pt)))) #define proto_lineinfo(pt) (mref((pt)->lineinfo, const void)) #define proto_uvinfo(pt) (mref((pt)->uvinfo, const uint8_t)) #define proto_varinfo(pt) (mref((pt)->varinfo, const uint8_t)) /* -- Upvalue object ------------------------------------------------------ */ typedef struct GCupval { GCHeader; uint8_t closed; /* Set if closed (i.e. uv->v == &uv->u.value). */ uint8_t immutable; /* Immutable value. */ union { TValue tv; /* If closed: the value itself. */ struct { /* If open: double linked list, anchored at thread. */ GCRef prev; GCRef next; }; }; MRef v; /* Points to stack slot (open) or above (closed). */ uint32_t dhash; /* Disambiguation hash: dh1 != dh2 => cannot alias. */ } GCupval; #define uvprev(uv_) (&gcref((uv_)->prev)->uv) #define uvnext(uv_) (&gcref((uv_)->next)->uv) #define uvval(uv_) (mref((uv_)->v, TValue)) /* -- Function object (closures) ------------------------------------------ */ /* Common header for functions. env should be at same offset in GCudata. */ #define GCfuncHeader \ GCHeader; uint8_t ffid; uint8_t nupvalues; \ GCRef env; GCRef gclist; MRef pc typedef struct GCfuncC { GCfuncHeader; lua_CFunction f; /* C function to be called. */ TValue upvalue[1]; /* Array of upvalues (TValue). */ } GCfuncC; typedef struct GCfuncL { GCfuncHeader; GCRef uvptr[1]; /* Array of _pointers_ to upvalue objects (GCupval). */ } GCfuncL; typedef union GCfunc { GCfuncC c; GCfuncL l; } GCfunc; #define FF_LUA 0 #define FF_C 1 #define isluafunc(fn) ((fn)->c.ffid == FF_LUA) #define iscfunc(fn) ((fn)->c.ffid == FF_C) #define isffunc(fn) ((fn)->c.ffid > FF_C) #define funcproto(fn) \ check_exp(isluafunc(fn), (GCproto *)(mref((fn)->l.pc, char)-sizeof(GCproto))) #define sizeCfunc(n) (sizeof(GCfuncC)-sizeof(TValue)+sizeof(TValue)*(n)) #define sizeLfunc(n) (sizeof(GCfuncL)-sizeof(GCRef)+sizeof(GCRef)*(n)) /* -- Table object -------------------------------------------------------- */ /* Hash node. */ typedef struct Node { TValue val; /* Value object. Must be first field. */ TValue key; /* Key object. */ MRef next; /* Hash chain. */ #if !LJ_GC64 MRef freetop; /* Top of free elements (stored in t->node[0]). */ #endif } Node; LJ_STATIC_ASSERT(offsetof(Node, val) == 0); typedef struct GCtab { GCHeader; uint8_t nomm; /* Negative cache for fast metamethods. */ int8_t colo; /* Array colocation. */ MRef array; /* Array part. */ GCRef gclist; GCRef metatable; /* Must be at same offset in GCudata. */ MRef node; /* Hash part. */ uint32_t asize; /* Size of array part (keys [0, asize-1]). */ uint32_t hmask; /* Hash part mask (size of hash part - 1). */ #if LJ_GC64 MRef freetop; /* Top of free elements. */ #endif } GCtab; #define sizetabcolo(n) ((n)*sizeof(TValue) + sizeof(GCtab)) #define tabref(r) (&gcref((r))->tab) #define noderef(r) (mref((r), Node)) #define nextnode(n) (mref((n)->next, Node)) #if LJ_GC64 #define getfreetop(t, n) (noderef((t)->freetop)) #define setfreetop(t, n, v) (setmref((t)->freetop, (v))) #else #define getfreetop(t, n) (noderef((n)->freetop)) #define setfreetop(t, n, v) (setmref((n)->freetop, (v))) #endif /* -- State objects ------------------------------------------------------- */ /* VM states. */ enum { LJ_VMST_INTERP, /* Interpreter. */ LJ_VMST_C, /* C function. */ LJ_VMST_GC, /* Garbage collector. */ LJ_VMST_EXIT, /* Trace exit handler. */ LJ_VMST_RECORD, /* Trace recorder. */ LJ_VMST_OPT, /* Optimizer. */ LJ_VMST_ASM, /* Assembler. */ LJ_VMST__MAX }; #define setvmstate(g, st) ((g)->vmstate = ~LJ_VMST_##st) /* Metamethods. ORDER MM */ #ifdef LJ_HASFFI #define MMDEF_FFI(_) _(new) #else #define MMDEF_FFI(_) #endif #if LJ_52 || LJ_HASFFI #define MMDEF_PAIRS(_) _(pairs) _(ipairs) #else #define MMDEF_PAIRS(_) #define MM_pairs 255 #define MM_ipairs 255 #endif #define MMDEF(_) \ _(index) _(newindex) _(gc) _(mode) _(eq) _(len) \ /* Only the above (fast) metamethods are negative cached (max. 8). */ \ _(lt) _(le) _(concat) _(call) \ /* The following must be in ORDER ARITH. */ \ _(add) _(sub) _(mul) _(div) _(mod) _(pow) _(unm) \ /* The following are used in the standard libraries. */ \ _(metatable) _(tostring) MMDEF_FFI(_) MMDEF_PAIRS(_) typedef enum { #define MMENUM(name) MM_##name, MMDEF(MMENUM) #undef MMENUM MM__MAX, MM____ = MM__MAX, MM_FAST = MM_len } MMS; /* GC root IDs. */ typedef enum { GCROOT_MMNAME, /* Metamethod names. */ GCROOT_MMNAME_LAST = GCROOT_MMNAME + MM__MAX-1, GCROOT_BASEMT, /* Metatables for base types. */ GCROOT_BASEMT_NUM = GCROOT_BASEMT + ~LJ_TNUMX, GCROOT_IO_INPUT, /* Userdata for default I/O input file. */ GCROOT_IO_OUTPUT, /* Userdata for default I/O output file. */ GCROOT_MAX } GCRootID; #define basemt_it(g, it) ((g)->gcroot[GCROOT_BASEMT+~(it)]) #define basemt_obj(g, o) ((g)->gcroot[GCROOT_BASEMT+itypemap(o)]) #define mmname_str(g, mm) (strref((g)->gcroot[GCROOT_MMNAME+(mm)])) typedef struct GCState { GCSize total; /* Memory currently allocated. */ GCSize threshold; /* Memory threshold. */ uint8_t currentwhite; /* Current white color. */ uint8_t state; /* GC state. */ uint8_t nocdatafin; /* No cdata finalizer called. */ uint8_t unused2; MSize sweepstr; /* Sweep position in string table. */ GCRef root; /* List of all collectable objects. */ MRef sweep; /* Sweep position in root list. */ GCRef gray; /* List of gray objects. */ GCRef grayagain; /* List of objects for atomic traversal. */ GCRef weak; /* List of weak tables (to be cleared). */ GCRef mmudata; /* List of userdata (to be finalized). */ GCSize debt; /* Debt (how much GC is behind schedule). */ GCSize estimate; /* Estimate of memory actually in use. */ MSize stepmul; /* Incremental GC step granularity. */ MSize pause; /* Pause between successive GC cycles. */ } GCState; /* Global state, shared by all threads of a Lua universe. */ typedef struct global_State { GCRef *strhash; /* String hash table (hash chain anchors). */ MSize strmask; /* String hash mask (size of hash table - 1). */ MSize strnum; /* Number of strings in hash table. */ lua_Alloc allocf; /* Memory allocator. */ void *allocd; /* Memory allocator data. */ GCState gc; /* Garbage collector. */ volatile int32_t vmstate; /* VM state or current JIT code trace number. */ SBuf tmpbuf; /* Temporary string buffer. */ GCstr strempty; /* Empty string. */ uint8_t stremptyz; /* Zero terminator of empty string. */ uint8_t hookmask; /* Hook mask. */ uint8_t dispatchmode; /* Dispatch mode. */ uint8_t vmevmask; /* VM event mask. */ GCRef mainthref; /* Link to main thread. */ TValue registrytv; /* Anchor for registry. */ TValue tmptv, tmptv2; /* Temporary TValues. */ Node nilnode; /* Fallback 1-element hash part (nil key and value). */ GCupval uvhead; /* Head of double-linked list of all open upvalues. */ int32_t hookcount; /* Instruction hook countdown. */ int32_t hookcstart; /* Start count for instruction hook counter. */ lua_Hook hookf; /* Hook function. */ lua_CFunction wrapf; /* Wrapper for C function calls. */ lua_CFunction panic; /* Called as a last resort for errors. */ BCIns bc_cfunc_int; /* Bytecode for internal C function calls. */ BCIns bc_cfunc_ext; /* Bytecode for external C function calls. */ GCRef cur_L; /* Currently executing lua_State. */ MRef jit_base; /* Current JIT code L->base or NULL. */ MRef ctype_state; /* Pointer to C type state. */ GCRef gcroot[GCROOT_MAX]; /* GC roots. */ } global_State; #define mainthread(g) (&gcref(g->mainthref)->th) #define niltv(L) \ check_exp(tvisnil(&G(L)->nilnode.val), &G(L)->nilnode.val) #define niltvg(g) \ check_exp(tvisnil(&(g)->nilnode.val), &(g)->nilnode.val) /* Hook management. Hook event masks are defined in lua.h. */ #define HOOK_EVENTMASK 0x0f #define HOOK_ACTIVE 0x10 #define HOOK_ACTIVE_SHIFT 4 #define HOOK_VMEVENT 0x20 #define HOOK_GC 0x40 #define HOOK_PROFILE 0x80 #define hook_active(g) ((g)->hookmask & HOOK_ACTIVE) #define hook_enter(g) ((g)->hookmask |= HOOK_ACTIVE) #define hook_entergc(g) ((g)->hookmask |= (HOOK_ACTIVE|HOOK_GC)) #define hook_vmevent(g) ((g)->hookmask |= (HOOK_ACTIVE|HOOK_VMEVENT)) #define hook_leave(g) ((g)->hookmask &= ~HOOK_ACTIVE) #define hook_save(g) ((g)->hookmask & ~HOOK_EVENTMASK) #define hook_restore(g, h) \ ((g)->hookmask = ((g)->hookmask & HOOK_EVENTMASK) | (h)) /* Per-thread state object. */ struct lua_State { GCHeader; uint8_t dummy_ffid; /* Fake FF_C for curr_funcisL() on dummy frames. */ uint8_t status; /* Thread status. */ MRef glref; /* Link to global state. */ GCRef gclist; /* GC chain. */ TValue *base; /* Base of currently executing function. */ TValue *top; /* First free slot in the stack. */ MRef maxstack; /* Last free slot in the stack. */ MRef stack; /* Stack base. */ GCRef openupval; /* List of open upvalues in the stack. */ GCRef env; /* Thread environment (table of globals). */ void *cframe; /* End of C stack frame chain. */ MSize stacksize; /* True stack size (incl. LJ_STACK_EXTRA). */ }; #define G(L) (mref(L->glref, global_State)) #define registry(L) (&G(L)->registrytv) /* Macros to access the currently executing (Lua) function. */ #if LJ_GC64 #define curr_func(L) (&gcval(L->base-2)->fn) #elif LJ_FR2 #define curr_func(L) (&gcref((L->base-2)->gcr)->fn) #else #define curr_func(L) (&gcref((L->base-1)->fr.func)->fn) #endif #define curr_funcisL(L) (isluafunc(curr_func(L))) #define curr_proto(L) (funcproto(curr_func(L))) #define curr_topL(L) (L->base + curr_proto(L)->framesize) #define curr_top(L) (curr_funcisL(L) ? curr_topL(L) : L->top) /* -- GC object definition and conversions -------------------------------- */ /* GC header for generic access to common fields of GC objects. */ typedef struct GChead { GCHeader; uint8_t unused1; uint8_t unused2; GCRef env; GCRef gclist; GCRef metatable; } GChead; /* The env field SHOULD be at the same offset for all GC objects. */ LJ_STATIC_ASSERT(offsetof(GChead, env) == offsetof(GCfuncL, env)); LJ_STATIC_ASSERT(offsetof(GChead, env) == offsetof(GCudata, env)); /* The metatable field MUST be at the same offset for all GC objects. */ LJ_STATIC_ASSERT(offsetof(GChead, metatable) == offsetof(GCtab, metatable)); LJ_STATIC_ASSERT(offsetof(GChead, metatable) == offsetof(GCudata, metatable)); /* The gclist field MUST be at the same offset for all GC objects. */ LJ_STATIC_ASSERT(offsetof(GChead, gclist) == offsetof(lua_State, gclist)); LJ_STATIC_ASSERT(offsetof(GChead, gclist) == offsetof(GCproto, gclist)); LJ_STATIC_ASSERT(offsetof(GChead, gclist) == offsetof(GCfuncL, gclist)); LJ_STATIC_ASSERT(offsetof(GChead, gclist) == offsetof(GCtab, gclist)); typedef union GCobj { GChead gch; GCstr str; GCupval uv; lua_State th; GCproto pt; GCfunc fn; GCcdata cd; GCtab tab; GCudata ud; } GCobj; /* Macros to convert a GCobj pointer into a specific value. */ #define gco2str(o) check_exp((o)->gch.gct == ~LJ_TSTR, &(o)->str) #define gco2uv(o) check_exp((o)->gch.gct == ~LJ_TUPVAL, &(o)->uv) #define gco2th(o) check_exp((o)->gch.gct == ~LJ_TTHREAD, &(o)->th) #define gco2pt(o) check_exp((o)->gch.gct == ~LJ_TPROTO, &(o)->pt) #define gco2func(o) check_exp((o)->gch.gct == ~LJ_TFUNC, &(o)->fn) #define gco2cd(o) check_exp((o)->gch.gct == ~LJ_TCDATA, &(o)->cd) #define gco2tab(o) check_exp((o)->gch.gct == ~LJ_TTAB, &(o)->tab) #define gco2ud(o) check_exp((o)->gch.gct == ~LJ_TUDATA, &(o)->ud) /* Macro to convert any collectable object into a GCobj pointer. */ #define obj2gco(v) ((GCobj *)(v)) /* -- TValue getters/setters ---------------------------------------------- */ #ifdef LUA_USE_ASSERT #include "lj_gc.h" #endif /* Macros to test types. */ #if LJ_GC64 #define itype(o) ((uint32_t)((o)->it64 >> 47)) #define tvisnil(o) ((o)->it64 == -1) #else #define itype(o) ((o)->it) #define tvisnil(o) (itype(o) == LJ_TNIL) #endif #define tvisfalse(o) (itype(o) == LJ_TFALSE) #define tvistrue(o) (itype(o) == LJ_TTRUE) #define tvisbool(o) (tvisfalse(o) || tvistrue(o)) #if LJ_64 && !LJ_GC64 #define tvislightud(o) (((int32_t)itype(o) >> 15) == -2) #else #define tvislightud(o) (itype(o) == LJ_TLIGHTUD) #endif #define tvisstr(o) (itype(o) == LJ_TSTR) #define tvisfunc(o) (itype(o) == LJ_TFUNC) #define tvisthread(o) (itype(o) == LJ_TTHREAD) #define tvisproto(o) (itype(o) == LJ_TPROTO) #define tviscdata(o) (itype(o) == LJ_TCDATA) #define tvistab(o) (itype(o) == LJ_TTAB) #define tvisudata(o) (itype(o) == LJ_TUDATA) #define tvisnumber(o) (itype(o) <= LJ_TISNUM) #define tvisint(o) (LJ_DUALNUM && itype(o) == LJ_TISNUM) #define tvisnum(o) (itype(o) < LJ_TISNUM) #define tvistruecond(o) (itype(o) < LJ_TISTRUECOND) #define tvispri(o) (itype(o) >= LJ_TISPRI) #define tvistabud(o) (itype(o) <= LJ_TISTABUD) /* && !tvisnum() */ #define tvisgcv(o) ((itype(o) - LJ_TISGCV) > (LJ_TNUMX - LJ_TISGCV)) /* Special macros to test numbers for NaN, +0, -0, +1 and raw equality. */ #define tvisnan(o) ((o)->n != (o)->n) #if LJ_64 #define tviszero(o) (((o)->u64 << 1) == 0) #else #define tviszero(o) (((o)->u32.lo | ((o)->u32.hi << 1)) == 0) #endif #define tvispzero(o) ((o)->u64 == 0) #define tvismzero(o) ((o)->u64 == U64x(80000000,00000000)) #define tvispone(o) ((o)->u64 == U64x(3ff00000,00000000)) #define rawnumequal(o1, o2) ((o1)->u64 == (o2)->u64) /* Macros to convert type ids. */ #if LJ_64 && !LJ_GC64 #define itypemap(o) \ (tvisnumber(o) ? ~LJ_TNUMX : tvislightud(o) ? ~LJ_TLIGHTUD : ~itype(o)) #else #define itypemap(o) (tvisnumber(o) ? ~LJ_TNUMX : ~itype(o)) #endif /* Macros to get tagged values. */ #if LJ_GC64 #define gcval(o) ((GCobj *)(gcrefu((o)->gcr) & LJ_GCVMASK)) #else #define gcval(o) (gcref((o)->gcr)) #endif #define boolV(o) check_exp(tvisbool(o), (LJ_TFALSE - itype(o))) #if LJ_64 #define lightudV(o) \ check_exp(tvislightud(o), (void *)((o)->u64 & U64x(00007fff,ffffffff))) #else #define lightudV(o) check_exp(tvislightud(o), gcrefp((o)->gcr, void)) #endif #define gcV(o) check_exp(tvisgcv(o), gcval(o)) #define strV(o) check_exp(tvisstr(o), &gcval(o)->str) #define funcV(o) check_exp(tvisfunc(o), &gcval(o)->fn) #define threadV(o) check_exp(tvisthread(o), &gcval(o)->th) #define protoV(o) check_exp(tvisproto(o), &gcval(o)->pt) #define cdataV(o) check_exp(tviscdata(o), &gcval(o)->cd) #define tabV(o) check_exp(tvistab(o), &gcval(o)->tab) #define udataV(o) check_exp(tvisudata(o), &gcval(o)->ud) #define numV(o) check_exp(tvisnum(o), (o)->n) #define intV(o) check_exp(tvisint(o), (int32_t)(o)->i) /* Macros to set tagged values. */ #if LJ_GC64 #define setitype(o, i) ((o)->it = ((i) << 15)) #define setnilV(o) ((o)->it64 = -1) #define setpriV(o, x) ((o)->it64 = (int64_t)~((uint64_t)~(x)<<47)) #define setboolV(o, x) ((o)->it64 = (int64_t)~((uint64_t)((x)+1)<<47)) #else #define setitype(o, i) ((o)->it = (i)) #define setnilV(o) ((o)->it = LJ_TNIL) #define setboolV(o, x) ((o)->it = LJ_TFALSE-(uint32_t)(x)) #define setpriV(o, i) (setitype((o), (i))) #endif static LJ_AINLINE void setlightudV(TValue *o, void *p) { #if LJ_GC64 o->u64 = (uint64_t)p | (((uint64_t)LJ_TLIGHTUD) << 47); #elif LJ_64 o->u64 = (uint64_t)p | (((uint64_t)0xffff) << 48); #else setgcrefp(o->gcr, p); setitype(o, LJ_TLIGHTUD); #endif } #if LJ_64 #define checklightudptr(L, p) \ (((uint64_t)(p) >> 47) ? (lj_err_msg(L, LJ_ERR_BADLU), NULL) : (p)) #else #define checklightudptr(L, p) (p) #endif #if LJ_FR2 #define contptr(f) ((void *)(f)) #define setcont(o, f) ((o)->u64 = (uint64_t)(uintptr_t)contptr(f)) #elif LJ_64 #define contptr(f) \ ((void *)(uintptr_t)(uint32_t)((intptr_t)(f) - (intptr_t)lj_vm_asm_begin)) #define setcont(o, f) \ ((o)->u64 = (uint64_t)(void *)(f) - (uint64_t)lj_vm_asm_begin) #else #define contptr(f) ((void *)(f)) #define setcont(o, f) setlightudV((o), contptr(f)) #endif #define tvchecklive(L, o) \ UNUSED(L), lua_assert(!tvisgcv(o) || \ ((~itype(o) == gcval(o)->gch.gct) && !isdead(G(L), gcval(o)))) static LJ_AINLINE void setgcVraw(TValue *o, GCobj *v, uint32_t itype) { #if LJ_GC64 setgcreft(o->gcr, v, itype); #else setgcref(o->gcr, v); setitype(o, itype); #endif } static LJ_AINLINE void setgcV(lua_State *L, TValue *o, GCobj *v, uint32_t it) { setgcVraw(o, v, it); tvchecklive(L, o); } #define define_setV(name, type, tag) \ static LJ_AINLINE void name(lua_State *L, TValue *o, type *v) \ { \ setgcV(L, o, obj2gco(v), tag); \ } define_setV(setstrV, GCstr, LJ_TSTR) define_setV(setthreadV, lua_State, LJ_TTHREAD) define_setV(setprotoV, GCproto, LJ_TPROTO) define_setV(setfuncV, GCfunc, LJ_TFUNC) define_setV(setcdataV, GCcdata, LJ_TCDATA) define_setV(settabV, GCtab, LJ_TTAB) define_setV(setudataV, GCudata, LJ_TUDATA) #define setnumV(o, x) ((o)->n = (x)) #define setnanV(o) ((o)->u64 = U64x(fff80000,00000000)) #define setpinfV(o) ((o)->u64 = U64x(7ff00000,00000000)) #define setminfV(o) ((o)->u64 = U64x(fff00000,00000000)) static LJ_AINLINE void setintV(TValue *o, int32_t i) { #if LJ_DUALNUM o->i = (uint32_t)i; setitype(o, LJ_TISNUM); #else o->n = (lua_Number)i; #endif } static LJ_AINLINE void setint64V(TValue *o, int64_t i) { if (LJ_DUALNUM && LJ_LIKELY(i == (int64_t)(int32_t)i)) setintV(o, (int32_t)i); else setnumV(o, (lua_Number)i); } #if LJ_64 #define setintptrV(o, i) setint64V((o), (i)) #else #define setintptrV(o, i) setintV((o), (i)) #endif /* Copy tagged values. */ static LJ_AINLINE void copyTV(lua_State *L, TValue *o1, const TValue *o2) { *o1 = *o2; tvchecklive(L, o1); } /* -- Number to integer conversion ---------------------------------------- */ #if LJ_SOFTFP LJ_ASMF int32_t lj_vm_tobit(double x); #endif static LJ_AINLINE int32_t lj_num2bit(lua_Number n) { #if LJ_SOFTFP return lj_vm_tobit(n); #else TValue o; o.n = n + 6755399441055744.0; /* 2^52 + 2^51 */ return (int32_t)o.u32.lo; #endif } #define lj_num2int(n) ((int32_t)(n)) static LJ_AINLINE uint64_t lj_num2u64(lua_Number n) { #ifdef _MSC_VER if (n >= 9223372036854775808.0) /* They think it's a feature. */ return (uint64_t)(int64_t)(n - 18446744073709551616.0); else #endif return (uint64_t)n; } static LJ_AINLINE int32_t numberVint(cTValue *o) { if (LJ_LIKELY(tvisint(o))) return intV(o); else return lj_num2int(numV(o)); } static LJ_AINLINE lua_Number numberVnum(cTValue *o) { if (LJ_UNLIKELY(tvisint(o))) return (lua_Number)intV(o); else return numV(o); } /* -- Miscellaneous object handling --------------------------------------- */ /* Names and maps for internal and external object tags. */ LJ_DATA const char *const lj_obj_typename[1+LUA_TCDATA+1]; LJ_DATA const char *const lj_obj_itypename[~LJ_TNUMX+1]; #define lj_typename(o) (lj_obj_itypename[itypemap(o)]) /* Compare two objects without calling metamethods. */ LJ_FUNC int LJ_FASTCALL lj_obj_equal(cTValue *o1, cTValue *o2); LJ_FUNC const void * LJ_FASTCALL lj_obj_ptr(cTValue *o); #endif luajit-2.1.0~beta3+dfsg.orig/src/luajit.c0000644000175100017510000003471413101703334017552 0ustar ondrejondrej/* ** LuaJIT frontend. Runs commands, scripts, read-eval-print (REPL) etc. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h ** ** Major portions taken verbatim or adapted from the Lua interpreter. ** Copyright (C) 1994-2008 Lua.org, PUC-Rio. See Copyright Notice in lua.h */ #include #include #include #define luajit_c #include "lua.h" #include "lauxlib.h" #include "lualib.h" #include "luajit.h" #include "lj_arch.h" #if LJ_TARGET_POSIX #include #define lua_stdin_is_tty() isatty(0) #elif LJ_TARGET_WINDOWS #include #ifdef __BORLANDC__ #define lua_stdin_is_tty() isatty(_fileno(stdin)) #else #define lua_stdin_is_tty() _isatty(_fileno(stdin)) #endif #else #define lua_stdin_is_tty() 1 #endif #if !LJ_TARGET_CONSOLE #include #endif static lua_State *globalL = NULL; static const char *progname = LUA_PROGNAME; #if !LJ_TARGET_CONSOLE static void lstop(lua_State *L, lua_Debug *ar) { (void)ar; /* unused arg. */ lua_sethook(L, NULL, 0, 0); /* Avoid luaL_error -- a C hook doesn't add an extra frame. */ luaL_where(L, 0); lua_pushfstring(L, "%sinterrupted!", lua_tostring(L, -1)); lua_error(L); } static void laction(int i) { signal(i, SIG_DFL); /* if another SIGINT happens before lstop, terminate process (default action) */ lua_sethook(globalL, lstop, LUA_MASKCALL | LUA_MASKRET | LUA_MASKCOUNT, 1); } #endif static void print_usage(void) { fputs("usage: ", stderr); fputs(progname, stderr); fputs(" [options]... [script [args]...].\n" "Available options are:\n" " -e chunk Execute string " LUA_QL("chunk") ".\n" " -l name Require library " LUA_QL("name") ".\n" " -b ... Save or list bytecode.\n" " -j cmd Perform LuaJIT control command.\n" " -O[opt] Control LuaJIT optimizations.\n" " -i Enter interactive mode after executing " LUA_QL("script") ".\n" " -v Show version information.\n" " -E Ignore environment variables.\n" " -- Stop handling options.\n" " - Execute stdin and stop handling options.\n", stderr); fflush(stderr); } static void l_message(const char *pname, const char *msg) { if (pname) { fputs(pname, stderr); fputc(':', stderr); fputc(' ', stderr); } fputs(msg, stderr); fputc('\n', stderr); fflush(stderr); } static int report(lua_State *L, int status) { if (status && !lua_isnil(L, -1)) { const char *msg = lua_tostring(L, -1); if (msg == NULL) msg = "(error object is not a string)"; l_message(progname, msg); lua_pop(L, 1); } return status; } static int traceback(lua_State *L) { if (!lua_isstring(L, 1)) { /* Non-string error object? Try metamethod. */ if (lua_isnoneornil(L, 1) || !luaL_callmeta(L, 1, "__tostring") || !lua_isstring(L, -1)) return 1; /* Return non-string error object. */ lua_remove(L, 1); /* Replace object by result of __tostring metamethod. */ } luaL_traceback(L, L, lua_tostring(L, 1), 1); return 1; } static int docall(lua_State *L, int narg, int clear) { int status; int base = lua_gettop(L) - narg; /* function index */ lua_pushcfunction(L, traceback); /* push traceback function */ lua_insert(L, base); /* put it under chunk and args */ #if !LJ_TARGET_CONSOLE signal(SIGINT, laction); #endif status = lua_pcall(L, narg, (clear ? 0 : LUA_MULTRET), base); #if !LJ_TARGET_CONSOLE signal(SIGINT, SIG_DFL); #endif lua_remove(L, base); /* remove traceback function */ /* force a complete garbage collection in case of errors */ if (status != LUA_OK) lua_gc(L, LUA_GCCOLLECT, 0); return status; } static void print_version(void) { fputs(LUAJIT_VERSION " -- " LUAJIT_COPYRIGHT ". " LUAJIT_URL "\n", stdout); } static void print_jit_status(lua_State *L) { int n; const char *s; lua_getfield(L, LUA_REGISTRYINDEX, "_LOADED"); lua_getfield(L, -1, "jit"); /* Get jit.* module table. */ lua_remove(L, -2); lua_getfield(L, -1, "status"); lua_remove(L, -2); n = lua_gettop(L); lua_call(L, 0, LUA_MULTRET); fputs(lua_toboolean(L, n) ? "JIT: ON" : "JIT: OFF", stdout); for (n++; (s = lua_tostring(L, n)); n++) { putc(' ', stdout); fputs(s, stdout); } putc('\n', stdout); } static void createargtable(lua_State *L, char **argv, int argc, int argf) { int i; lua_createtable(L, argc - argf, argf); for (i = 0; i < argc; i++) { lua_pushstring(L, argv[i]); lua_rawseti(L, -2, i - argf); } lua_setglobal(L, "arg"); } static int dofile(lua_State *L, const char *name) { int status = luaL_loadfile(L, name) || docall(L, 0, 1); return report(L, status); } static int dostring(lua_State *L, const char *s, const char *name) { int status = luaL_loadbuffer(L, s, strlen(s), name) || docall(L, 0, 1); return report(L, status); } static int dolibrary(lua_State *L, const char *name) { lua_getglobal(L, "require"); lua_pushstring(L, name); return report(L, docall(L, 1, 1)); } static void write_prompt(lua_State *L, int firstline) { const char *p; lua_getfield(L, LUA_GLOBALSINDEX, firstline ? "_PROMPT" : "_PROMPT2"); p = lua_tostring(L, -1); if (p == NULL) p = firstline ? LUA_PROMPT : LUA_PROMPT2; fputs(p, stdout); fflush(stdout); lua_pop(L, 1); /* remove global */ } static int incomplete(lua_State *L, int status) { if (status == LUA_ERRSYNTAX) { size_t lmsg; const char *msg = lua_tolstring(L, -1, &lmsg); const char *tp = msg + lmsg - (sizeof(LUA_QL("")) - 1); if (strstr(msg, LUA_QL("")) == tp) { lua_pop(L, 1); return 1; } } return 0; /* else... */ } static int pushline(lua_State *L, int firstline) { char buf[LUA_MAXINPUT]; write_prompt(L, firstline); if (fgets(buf, LUA_MAXINPUT, stdin)) { size_t len = strlen(buf); if (len > 0 && buf[len-1] == '\n') buf[len-1] = '\0'; if (firstline && buf[0] == '=') lua_pushfstring(L, "return %s", buf+1); else lua_pushstring(L, buf); return 1; } return 0; } static int loadline(lua_State *L) { int status; lua_settop(L, 0); if (!pushline(L, 1)) return -1; /* no input */ for (;;) { /* repeat until gets a complete line */ status = luaL_loadbuffer(L, lua_tostring(L, 1), lua_strlen(L, 1), "=stdin"); if (!incomplete(L, status)) break; /* cannot try to add lines? */ if (!pushline(L, 0)) /* no more input? */ return -1; lua_pushliteral(L, "\n"); /* add a new line... */ lua_insert(L, -2); /* ...between the two lines */ lua_concat(L, 3); /* join them */ } lua_remove(L, 1); /* remove line */ return status; } static void dotty(lua_State *L) { int status; const char *oldprogname = progname; progname = NULL; while ((status = loadline(L)) != -1) { if (status == LUA_OK) status = docall(L, 0, 0); report(L, status); if (status == LUA_OK && lua_gettop(L) > 0) { /* any result to print? */ lua_getglobal(L, "print"); lua_insert(L, 1); if (lua_pcall(L, lua_gettop(L)-1, 0, 0) != 0) l_message(progname, lua_pushfstring(L, "error calling " LUA_QL("print") " (%s)", lua_tostring(L, -1))); } } lua_settop(L, 0); /* clear stack */ fputs("\n", stdout); fflush(stdout); progname = oldprogname; } static int handle_script(lua_State *L, char **argx) { int status; const char *fname = argx[0]; if (strcmp(fname, "-") == 0 && strcmp(argx[-1], "--") != 0) fname = NULL; /* stdin */ status = luaL_loadfile(L, fname); if (status == LUA_OK) { /* Fetch args from arg table. LUA_INIT or -e might have changed them. */ int narg = 0; lua_getglobal(L, "arg"); if (lua_istable(L, -1)) { do { narg++; lua_rawgeti(L, -narg, narg); } while (!lua_isnil(L, -1)); lua_pop(L, 1); lua_remove(L, -narg); narg--; } else { lua_pop(L, 1); } status = docall(L, narg, 0); } return report(L, status); } /* Load add-on module. */ static int loadjitmodule(lua_State *L) { lua_getglobal(L, "require"); lua_pushliteral(L, "jit."); lua_pushvalue(L, -3); lua_concat(L, 2); if (lua_pcall(L, 1, 1, 0)) { const char *msg = lua_tostring(L, -1); if (msg && !strncmp(msg, "module ", 7)) goto nomodule; return report(L, 1); } lua_getfield(L, -1, "start"); if (lua_isnil(L, -1)) { nomodule: l_message(progname, "unknown luaJIT command or jit.* modules not installed"); return 1; } lua_remove(L, -2); /* Drop module table. */ return 0; } /* Run command with options. */ static int runcmdopt(lua_State *L, const char *opt) { int narg = 0; if (opt && *opt) { for (;;) { /* Split arguments. */ const char *p = strchr(opt, ','); narg++; if (!p) break; if (p == opt) lua_pushnil(L); else lua_pushlstring(L, opt, (size_t)(p - opt)); opt = p + 1; } if (*opt) lua_pushstring(L, opt); else lua_pushnil(L); } return report(L, lua_pcall(L, narg, 0, 0)); } /* JIT engine control command: try jit library first or load add-on module. */ static int dojitcmd(lua_State *L, const char *cmd) { const char *opt = strchr(cmd, '='); lua_pushlstring(L, cmd, opt ? (size_t)(opt - cmd) : strlen(cmd)); lua_getfield(L, LUA_REGISTRYINDEX, "_LOADED"); lua_getfield(L, -1, "jit"); /* Get jit.* module table. */ lua_remove(L, -2); lua_pushvalue(L, -2); lua_gettable(L, -2); /* Lookup library function. */ if (!lua_isfunction(L, -1)) { lua_pop(L, 2); /* Drop non-function and jit.* table, keep module name. */ if (loadjitmodule(L)) return 1; } else { lua_remove(L, -2); /* Drop jit.* table. */ } lua_remove(L, -2); /* Drop module name. */ return runcmdopt(L, opt ? opt+1 : opt); } /* Optimization flags. */ static int dojitopt(lua_State *L, const char *opt) { lua_getfield(L, LUA_REGISTRYINDEX, "_LOADED"); lua_getfield(L, -1, "jit.opt"); /* Get jit.opt.* module table. */ lua_remove(L, -2); lua_getfield(L, -1, "start"); lua_remove(L, -2); return runcmdopt(L, opt); } /* Save or list bytecode. */ static int dobytecode(lua_State *L, char **argv) { int narg = 0; lua_pushliteral(L, "bcsave"); if (loadjitmodule(L)) return 1; if (argv[0][2]) { narg++; argv[0][1] = '-'; lua_pushstring(L, argv[0]+1); } for (argv++; *argv != NULL; narg++, argv++) lua_pushstring(L, *argv); report(L, lua_pcall(L, narg, 0, 0)); return -1; } /* check that argument has no extra characters at the end */ #define notail(x) {if ((x)[2] != '\0') return -1;} #define FLAGS_INTERACTIVE 1 #define FLAGS_VERSION 2 #define FLAGS_EXEC 4 #define FLAGS_OPTION 8 #define FLAGS_NOENV 16 static int collectargs(char **argv, int *flags) { int i; for (i = 1; argv[i] != NULL; i++) { if (argv[i][0] != '-') /* Not an option? */ return i; switch (argv[i][1]) { /* Check option. */ case '-': notail(argv[i]); return i+1; case '\0': return i; case 'i': notail(argv[i]); *flags |= FLAGS_INTERACTIVE; /* fallthrough */ case 'v': notail(argv[i]); *flags |= FLAGS_VERSION; break; case 'e': *flags |= FLAGS_EXEC; case 'j': /* LuaJIT extension */ case 'l': *flags |= FLAGS_OPTION; if (argv[i][2] == '\0') { i++; if (argv[i] == NULL) return -1; } break; case 'O': break; /* LuaJIT extension */ case 'b': /* LuaJIT extension */ if (*flags) return -1; *flags |= FLAGS_EXEC; return i+1; case 'E': *flags |= FLAGS_NOENV; break; default: return -1; /* invalid option */ } } return i; } static int runargs(lua_State *L, char **argv, int argn) { int i; for (i = 1; i < argn; i++) { if (argv[i] == NULL) continue; lua_assert(argv[i][0] == '-'); switch (argv[i][1]) { case 'e': { const char *chunk = argv[i] + 2; if (*chunk == '\0') chunk = argv[++i]; lua_assert(chunk != NULL); if (dostring(L, chunk, "=(command line)") != 0) return 1; break; } case 'l': { const char *filename = argv[i] + 2; if (*filename == '\0') filename = argv[++i]; lua_assert(filename != NULL); if (dolibrary(L, filename)) return 1; break; } case 'j': { /* LuaJIT extension. */ const char *cmd = argv[i] + 2; if (*cmd == '\0') cmd = argv[++i]; lua_assert(cmd != NULL); if (dojitcmd(L, cmd)) return 1; break; } case 'O': /* LuaJIT extension. */ if (dojitopt(L, argv[i] + 2)) return 1; break; case 'b': /* LuaJIT extension. */ return dobytecode(L, argv+i); default: break; } } return LUA_OK; } static int handle_luainit(lua_State *L) { #if LJ_TARGET_CONSOLE const char *init = NULL; #else const char *init = getenv(LUA_INIT); #endif if (init == NULL) return LUA_OK; else if (init[0] == '@') return dofile(L, init+1); else return dostring(L, init, "=" LUA_INIT); } static struct Smain { char **argv; int argc; int status; } smain; static int pmain(lua_State *L) { struct Smain *s = &smain; char **argv = s->argv; int argn; int flags = 0; globalL = L; if (argv[0] && argv[0][0]) progname = argv[0]; LUAJIT_VERSION_SYM(); /* Linker-enforced version check. */ argn = collectargs(argv, &flags); if (argn < 0) { /* Invalid args? */ print_usage(); s->status = 1; return 0; } if ((flags & FLAGS_NOENV)) { lua_pushboolean(L, 1); lua_setfield(L, LUA_REGISTRYINDEX, "LUA_NOENV"); } /* Stop collector during library initialization. */ lua_gc(L, LUA_GCSTOP, 0); luaL_openlibs(L); lua_gc(L, LUA_GCRESTART, -1); createargtable(L, argv, s->argc, argn); if (!(flags & FLAGS_NOENV)) { s->status = handle_luainit(L); if (s->status != LUA_OK) return 0; } if ((flags & FLAGS_VERSION)) print_version(); s->status = runargs(L, argv, argn); if (s->status != LUA_OK) return 0; if (s->argc > argn) { s->status = handle_script(L, argv + argn); if (s->status != LUA_OK) return 0; } if ((flags & FLAGS_INTERACTIVE)) { print_jit_status(L); dotty(L); } else if (s->argc == argn && !(flags & (FLAGS_EXEC|FLAGS_VERSION))) { if (lua_stdin_is_tty()) { print_version(); print_jit_status(L); dotty(L); } else { dofile(L, NULL); /* Executes stdin as a file. */ } } return 0; } int main(int argc, char **argv) { int status; lua_State *L = lua_open(); if (L == NULL) { l_message(argv[0], "cannot create state: not enough memory"); return EXIT_FAILURE; } smain.argc = argc; smain.argv = argv; status = lua_cpcall(L, pmain, NULL); report(L, status); lua_close(L); return (status || smain.status > 0) ? EXIT_FAILURE : EXIT_SUCCESS; } luajit-2.1.0~beta3+dfsg.orig/src/lj_folddef.h0000644000175100017510000003466613101703334020365 0ustar ondrejondrej/* This is a generated file. DO NOT EDIT! */ static const FoldFunc fold_func[] = { fold_kfold_numarith, fold_kfold_ldexp, fold_kfold_fpmath, fold_kfold_numpow, fold_kfold_numcomp, fold_kfold_intarith, fold_kfold_intovarith, fold_kfold_bnot, fold_kfold_bswap, fold_kfold_intcomp, fold_kfold_intcomp0, fold_kfold_int64arith, fold_kfold_int64arith2, fold_kfold_int64shift, fold_kfold_bnot64, fold_kfold_bswap64, fold_kfold_int64comp, fold_kfold_int64comp0, fold_kfold_snew_kptr, fold_kfold_snew_empty, fold_kfold_strref, fold_kfold_strref_snew, fold_kfold_strcmp, fold_kfold_add_kgc, fold_kfold_add_kptr, fold_kfold_add_kright, fold_kfold_tobit, fold_kfold_conv_kint_num, fold_kfold_conv_kintu32_num, fold_kfold_conv_kint_ext, fold_kfold_conv_kint_i64, fold_kfold_conv_kint64_num_i64, fold_kfold_conv_kint64_num_u64, fold_kfold_conv_kint64_int_i64, fold_kfold_conv_knum_int_num, fold_kfold_conv_knum_u32_num, fold_kfold_conv_knum_i64_num, fold_kfold_conv_knum_u64_num, fold_kfold_tostr_knum, fold_kfold_tostr_kint, fold_kfold_strto, lj_opt_cse, fold_kfold_kref, fold_shortcut_round, fold_shortcut_left, fold_shortcut_dropleft, fold_shortcut_leftleft, fold_simplify_numadd_negx, fold_simplify_numadd_xneg, fold_simplify_numsub_k, fold_simplify_numsub_negk, fold_simplify_numsub_xneg, fold_simplify_nummuldiv_k, fold_simplify_nummuldiv_negk, fold_simplify_nummuldiv_negneg, fold_simplify_numpow_xk, fold_simplify_numpow_kx, fold_shortcut_conv_num_int, fold_simplify_conv_int_num, fold_simplify_conv_i64_num, fold_simplify_conv_int_i64, fold_simplify_conv_flt_num, fold_simplify_tobit_conv, fold_simplify_floor_conv, fold_simplify_conv_sext, fold_simplify_conv_narrow, fold_cse_conv, fold_narrow_convert, fold_simplify_intadd_k, fold_simplify_intmul_k, fold_simplify_intsub_k, fold_simplify_intsub_kleft, fold_simplify_intadd_k64, fold_simplify_intsub_k64, fold_simplify_intmul_k32, fold_simplify_intmul_k64, fold_simplify_intmod_k, fold_simplify_intmod_kleft, fold_simplify_intsub, fold_simplify_intsubadd_leftcancel, fold_simplify_intsubsub_leftcancel, fold_simplify_intsubsub_rightcancel, fold_simplify_intsubadd_rightcancel, fold_simplify_intsubaddadd_cancel, fold_simplify_band_k, fold_simplify_bor_k, fold_simplify_bxor_k, fold_simplify_shift_ik, fold_simplify_shift_andk, fold_simplify_shift1_ki, fold_simplify_shift2_ki, fold_simplify_shiftk_andk, fold_simplify_andk_shiftk, fold_reassoc_intarith_k, fold_reassoc_intarith_k64, fold_reassoc_dup, fold_reassoc_bxor, fold_reassoc_shift, fold_reassoc_minmax_k, fold_reassoc_minmax_left, fold_reassoc_minmax_right, fold_abc_fwd, fold_abc_k, fold_abc_invar, fold_comm_swap, fold_comm_equal, fold_comm_comp, fold_comm_dup, fold_comm_bxor, fold_merge_eqne_snew_kgc, lj_opt_fwd_aload, fold_kfold_hload_kkptr, lj_opt_fwd_hload, lj_opt_fwd_uload, lj_opt_fwd_tab_len, fold_cse_uref, lj_opt_fwd_hrefk, fold_fwd_href_tnew, fold_fwd_href_tdup, fold_fload_tab_tnew_asize, fold_fload_tab_tnew_hmask, fold_fload_tab_tdup_asize, fold_fload_tab_tdup_hmask, fold_fload_tab_ah, fold_fload_str_len_kgc, fold_fload_str_len_snew, fold_fload_cdata_typeid_kgc, fold_fload_cdata_int64_kgc, fold_fload_cdata_typeid_cnew, fold_fload_cdata_ptr_int64_cnew, lj_opt_cse, lj_opt_fwd_fload, fold_fwd_sload, fold_xload_kptr, lj_opt_fwd_xload, fold_barrier_tab, fold_barrier_tnew_tdup, lj_opt_dse_ahstore, lj_opt_dse_ustore, lj_opt_dse_fstore, lj_opt_dse_xstore, lj_ir_emit }; static const uint32_t fold_hash[916] = { 0xffffffff, 0xffffffff, 0x5b4c8016, 0x0d4e7016, 0xffffffff, 0x1000701c, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x29110c1a, 0xffffffff, 0xffffffff, 0x5b488016, 0x0d4a7016, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x7b87fc07, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x0d467016, 0xffffffff, 0x5a4c73ff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x5153fc29, 0xffffffff, 0xffffffff, 0xffffffff, 0x5d408016, 0xffffffff, 0x594873ff, 0x8187440f, 0xffffffff, 0xffffffff, 0xffffffff, 0x8287fc0f, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x6715ffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x2a11fc1a, 0xffffffff, 0x1daa5a70, 0xffffffff, 0xffffffff, 0x0a0bfc16, 0x5c408c16, 0x6911ffff, 0x8db7ffff, 0xffffffff, 0xffffffff, 0x1caa59d4, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x6a0dffff, 0x2b68d002, 0xffffffff, 0x3cab5695, 0xffffffff, 0x41aaa675, 0xffffffff, 0xffffffff, 0xffffffff, 0x27ae5800, 0xffffffff, 0x6a09ffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x7f865c0f, 0xffffffff, 0xffffffff, 0xffffffff, 0x6a05ffff, 0x42abffff, 0x5e44881c, 0x5d50a016, 0x066c5816, 0x00646c1b, 0x75753bff, 0x1951fc18, 0x6264c81b, 0x1850641c, 0xffffffff, 0x6a01ffff, 0x87a7ffff, 0x4953fc1c, 0x8da80000, 0x4f52a3ff, 0x00606c1b, 0xffffffff, 0xffffffff, 0xffffffff, 0x5d428416, 0x88a53800, 0xffffffff, 0xffffffff, 0xffffffff, 0x05645816, 0xffffffff, 0x005c6c1b, 0x20aa71d6, 0xffffffff, 0xffffffff, 0xffffffff, 0x1399fc16, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x157f33ff, 0xffffffff, 0xffffffff, 0x584dfc20, 0xffffffff, 0xffffffff, 0xffffffff, 0x8d9bffff, 0xffffffff, 0x055c5816, 0xffffffff, 0x00546c1b, 0xffffffff, 0xffffffff, 0x5849fc20, 0xffffffff, 0xffffffff, 0xffffffff, 0x8c97ffff, 0x5543fc1c, 0x05585816, 0xffffffff, 0x00506c1b, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x8a93ffff, 0x26ae6c00, 0x05545816, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x76753c17, 0x41aaa695, 0xffffffff, 0x898fffff, 0xffffffff, 0x05505816, 0xffffffff, 0xffffffff, 0xffffffff, 0x858867ff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x848bffff, 0xffffffff, 0x054c5816, 0x79873c06, 0x47525bff, 0xffffffff, 0x3f695401, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x8387ffff, 0xffffffff, 0x05485816, 0xffffffff, 0x5a4e5bff, 0xffffffff, 0xffffffff, 0x6264c816, 0x43aaa26e, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x05445816, 0xffffffff, 0x5a4a5bff, 0xffffffff, 0xffffffff, 0xffffffff, 0x3455fc1b, 0x0c5a701c, 0x6366cbff, 0x0e3c7000, 0xffffffff, 0x05405816, 0xffffffff, 0x59465bff, 0xffffffff, 0xffffffff, 0xffffffff, 0x41aaa276, 0x0c56701c, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x21aa7275, 0x0b52701c, 0x61489016, 0x6465fc33, 0x8d77ffff, 0xffffffff, 0x7b87fc05, 0xffffffff, 0xffffffff, 0x2a126bff, 0x385a6fff, 0xffffffff, 0x446dfc16, 0xffffffff, 0x7473ffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x7d873000, 0xffffffff, 0x5c409016, 0x686fffff, 0x8187440d, 0xffffffff, 0xffffffff, 0x3554b81b, 0x8287fc0d, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x686bffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x8d9ffc00, 0x737a5fff, 0x41aaaa75, 0xffffffff, 0xffffffff, 0x5e40801c, 0x0b42701c, 0x6b67ffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x2b68d000, 0xffffffff, 0xffffffff, 0x6d133017, 0xffffffff, 0xffffffff, 0x4c59fc16, 0xffffffff, 0xffffffff, 0x110bfc1c, 0x3aab566e, 0xffffffff, 0x5052a7ff, 0xffffffff, 0xffffffff, 0xffffffff, 0x6515fc28, 0x4a55fc16, 0x7f865c0d, 0x88a53c00, 0x41aaa296, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x4451fc16, 0xffffffff, 0x60448bff, 0x21aa7295, 0xffffffff, 0x3cab5676, 0x04106c1b, 0xffffffff, 0x78873807, 0xffffffff, 0xffffffff, 0x574dfc16, 0xffffffff, 0x4e53ffff, 0xffffffff, 0x09145816, 0xffffffff, 0x040c6c1b, 0x8287fc00, 0x5e50a01c, 0x6467fc32, 0xffffffff, 0x5749fc16, 0xffffffff, 0xffffffff, 0xffffffff, 0x2a105816, 0x2e3e7c00, 0x04086c1b, 0x7083fc00, 0xffffffff, 0xffffffff, 0xffffffff, 0x5645fc16, 0xffffffff, 0x22aa6e6e, 0x5e42841c, 0x614e9c16, 0x090c5816, 0x04046c1b, 0x1eaa5ab3, 0xffffffff, 0xffffffff, 0xffffffff, 0x5441fc16, 0x41aaaa95, 0xffffffff, 0x5352a028, 0x09085816, 0x17505c16, 0x04006c1b, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x6b43ffff, 0xffffffff, 0x09045816, 0xffffffff, 0x43aaa2ae, 0xffffffff, 0xffffffff, 0xffffffff, 0x083e5800, 0x7c865c00, 0xffffffff, 0x76753c15, 0x3051fc2e, 0x09005816, 0xffffffff, 0xffffffff, 0xffffffff, 0x3aab568e, 0xffffffff, 0x43aaa66e, 0xffffffff, 0x1daa5a71, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x2a12701c, 0x5f66cfff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x3cab5696, 0xffffffff, 0x100e701c, 0x41aaa676, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x2a125c17, 0x3654b82e, 0x100a701c, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x1006701c, 0xffffffff, 0x1951fc19, 0xffffffff, 0xffffffff, 0xffffffff, 0x23aa6e8e, 0xffffffff, 0x5b4e8016, 0xffffffff, 0x1eaa5ad3, 0x1002701c, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x29130c1a, 0xffffffff, 0xffffffff, 0x0d4c7016, 0xffffffff, 0x475273ff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x5b468016, 0x0d487016, 0x5a4e73ff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x5d54a816, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x5a4a73ff, 0x6615fc16, 0x3bab56ae, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x594673ff, 0xffffffff, 0x61468c16, 0x8d17ffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x2a13fc1a, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x6913ffff, 0x40abfeb3, 0x8db9ffff, 0x41aaa696, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x6a0fffff, 0x8db5ffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x7a873c07, 0xffffffff, 0xffffffff, 0xffffffff, 0x6a0bffff, 0x3f695402, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x24aa6eae, 0xffffffff, 0xffffffff, 0x6a07ffff, 0xffffffff, 0xffffffff, 0x066e5816, 0xffffffff, 0x00666c1b, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x6a03ffff, 0xffffffff, 0x4b55fc1c, 0x066a5816, 0xffffffff, 0x00626c1b, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x4851fc1c, 0x05665816, 0x18506016, 0x005e6c1b, 0x12986416, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x8da1ffff, 0xffffffff, 0x3bab56ce, 0xffffffff, 0x43aaa6ae, 0xffffffff, 0xffffffff, 0x584ffc20, 0x7b87fc06, 0xffffffff, 0x5f4287ff, 0x8d9dffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x00566c1b, 0xffffffff, 0xffffffff, 0x584bfc20, 0x5253fc28, 0xffffffff, 0xffffffff, 0xffffffff, 0x5645fc1c, 0xffffffff, 0x40abfed3, 0x00526c1b, 0x8187440e, 0xffffffff, 0x5847fc20, 0x8287fc0e, 0xffffffff, 0xffffffff, 0x8b95ffff, 0x2e3c7800, 0x5441fc1c, 0xffffffff, 0xffffffff, 0xffffffff, 0x17505c1c, 0xffffffff, 0xffffffff, 0x41aaaa76, 0xffffffff, 0x614c9816, 0x8991ffff, 0x1daa5a6f, 0x05525816, 0x4d585bff, 0xffffffff, 0x8087400c, 0xffffffff, 0xffffffff, 0xffffffff, 0x1baa59d3, 0x828dffff, 0x25aa6ece, 0x054e5816, 0x76753c1b, 0xffffffff, 0xffffffff, 0xffffffff, 0x2b68d001, 0xffffffff, 0xffffffff, 0xffffffff, 0x8689ffff, 0xffffffff, 0x054a5816, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x43aca01b, 0x05465816, 0x7f865c0e, 0x5a4c5bff, 0x39ab55d3, 0x01626c16, 0x02686fff, 0x3457fc1b, 0xffffffff, 0xffffffff, 0x0f3e7000, 0x3dab55ae, 0x05425816, 0x1951fc17, 0x59485bff, 0xffffffff, 0xffffffff, 0xffffffff, 0x3153fc1b, 0x0c58701c, 0x5f64cbff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x035a6c16, 0xffffffff, 0xffffffff, 0xffffffff, 0x0b54701c, 0xffffffff, 0x8779ffff, 0x1faa71d5, 0xffffffff, 0xffffffff, 0x2d5eb81b, 0x72b5fc08, 0xffffffff, 0xffffffff, 0xffffffff, 0x0b50701c, 0x456ffc16, 0x7b75ffff, 0xffffffff, 0xffffffff, 0x147e5c16, 0xffffffff, 0xffffffff, 0x2a106bff, 0xffffffff, 0x1eaa5ab4, 0x446bfc16, 0xffffffff, 0xffffffff, 0xffffffff, 0x41aaaa96, 0xffffffff, 0x3556b81b, 0x87a5fc00, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x4e6dffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x3252b81b, 0xffffffff, 0x5e54a81c, 0xffffffff, 0xffffffff, 0x0b44701c, 0x28b05c00, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x73785fff, 0xffffffff, 0xffffffff, 0xffffffff, 0x0b40701c, 0xffffffff, 0x6b65ffff, 0xffffffff, 0xffffffff, 0x1daa5a72, 0xffffffff, 0xffffffff, 0xffffffff, 0x6266cc1b, 0xffffffff, 0x375bfc16, 0xffffffff, 0xffffffff, 0xffffffff, 0x3f695400, 0xffffffff, 0xffffffff, 0xffffffff, 0x6d113017, 0x3ead541b, 0xffffffff, 0x5d448816, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x18506416, 0xffffffff, 0xffffffff, 0x16b37400, 0xffffffff, 0x4653fc16, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x04126c1b, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x574ffc16, 0xffffffff, 0x6855ffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x040e6c1b, 0x41aaa275, 0xffffffff, 0xffffffff, 0xffffffff, 0x574bfc16, 0x6f826400, 0x6851ffff, 0x1eaa5ad4, 0x2a125816, 0xffffffff, 0x040a6c1b, 0x7185fc00, 0xffffffff, 0xffffffff, 0xffffffff, 0x5747fc16, 0x7b87fc04, 0xffffffff, 0xffffffff, 0x090e5816, 0xffffffff, 0x04066c1b, 0x6e81fc00, 0x1aac6c1b, 0x1850601c, 0x2e5cbbff, 0x5543fc16, 0xffffffff, 0xffffffff, 0xffffffff, 0x090a5816, 0xffffffff, 0x04026c1b, 0xffffffff, 0xffffffff, 0x8087440c, 0xffffffff, 0xffffffff, 0xffffffff, 0x6c45ffff, 0x8287fc0c, 0x09065816, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x6b41ffff, 0x3353fc2e, 0x09025816, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x2f50bbff, 0x073c5800, 0x6266cc16, 0x5f4083ff, 0xffffffff, 0xffffffff, 0x43aca41b, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x2a10701c, 0x6364cfff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x7e865c0c, 0xffffffff, 0xffffffff, 0x3656b82e, 0x41aaa295, 0x100c701c, 0x614a9416, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x2c5ebc1b, 0xffffffff, 0x2a105c17, 0xffffffff, 0x1008701c, 0x3cab5675, 0xffffffff, 0xffffffff, 0x77873806, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x1004701c, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff }; #define fold_hashkey(k) (lj_rol(lj_rol((k),17)-(k),16)%915) luajit-2.1.0~beta3+dfsg.orig/src/lib_os.c0000644000175100017510000001454113101703334017525 0ustar ondrejondrej/* ** OS library. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h ** ** Major portions taken verbatim or adapted from the Lua interpreter. ** Copyright (C) 1994-2008 Lua.org, PUC-Rio. See Copyright Notice in lua.h */ #include #include #define lib_os_c #define LUA_LIB #include "lua.h" #include "lauxlib.h" #include "lualib.h" #include "lj_obj.h" #include "lj_gc.h" #include "lj_err.h" #include "lj_buf.h" #include "lj_str.h" #include "lj_lib.h" #if LJ_TARGET_POSIX #include #else #include #endif #if !LJ_TARGET_PSVITA #include #endif /* ------------------------------------------------------------------------ */ #define LJLIB_MODULE_os LJLIB_CF(os_execute) { #if LJ_NO_SYSTEM #if LJ_52 errno = ENOSYS; return luaL_fileresult(L, 0, NULL); #else lua_pushinteger(L, -1); return 1; #endif #else const char *cmd = luaL_optstring(L, 1, NULL); int stat = system(cmd); #if LJ_52 if (cmd) return luaL_execresult(L, stat); setboolV(L->top++, 1); #else setintV(L->top++, stat); #endif return 1; #endif } LJLIB_CF(os_remove) { const char *filename = luaL_checkstring(L, 1); return luaL_fileresult(L, remove(filename) == 0, filename); } LJLIB_CF(os_rename) { const char *fromname = luaL_checkstring(L, 1); const char *toname = luaL_checkstring(L, 2); return luaL_fileresult(L, rename(fromname, toname) == 0, fromname); } LJLIB_CF(os_tmpname) { #if LJ_TARGET_PS3 || LJ_TARGET_PS4 || LJ_TARGET_PSVITA lj_err_caller(L, LJ_ERR_OSUNIQF); return 0; #else #if LJ_TARGET_POSIX char buf[15+1]; int fp; strcpy(buf, "/tmp/lua_XXXXXX"); fp = mkstemp(buf); if (fp != -1) close(fp); else lj_err_caller(L, LJ_ERR_OSUNIQF); #else char buf[L_tmpnam]; if (tmpnam(buf) == NULL) lj_err_caller(L, LJ_ERR_OSUNIQF); #endif lua_pushstring(L, buf); return 1; #endif } LJLIB_CF(os_getenv) { #if LJ_TARGET_CONSOLE lua_pushnil(L); #else lua_pushstring(L, getenv(luaL_checkstring(L, 1))); /* if NULL push nil */ #endif return 1; } LJLIB_CF(os_exit) { int status; if (L->base < L->top && tvisbool(L->base)) status = boolV(L->base) ? EXIT_SUCCESS : EXIT_FAILURE; else status = lj_lib_optint(L, 1, EXIT_SUCCESS); if (L->base+1 < L->top && tvistruecond(L->base+1)) lua_close(L); exit(status); return 0; /* Unreachable. */ } LJLIB_CF(os_clock) { setnumV(L->top++, ((lua_Number)clock())*(1.0/(lua_Number)CLOCKS_PER_SEC)); return 1; } /* ------------------------------------------------------------------------ */ static void setfield(lua_State *L, const char *key, int value) { lua_pushinteger(L, value); lua_setfield(L, -2, key); } static void setboolfield(lua_State *L, const char *key, int value) { if (value < 0) /* undefined? */ return; /* does not set field */ lua_pushboolean(L, value); lua_setfield(L, -2, key); } static int getboolfield(lua_State *L, const char *key) { int res; lua_getfield(L, -1, key); res = lua_isnil(L, -1) ? -1 : lua_toboolean(L, -1); lua_pop(L, 1); return res; } static int getfield(lua_State *L, const char *key, int d) { int res; lua_getfield(L, -1, key); if (lua_isnumber(L, -1)) { res = (int)lua_tointeger(L, -1); } else { if (d < 0) lj_err_callerv(L, LJ_ERR_OSDATEF, key); res = d; } lua_pop(L, 1); return res; } LJLIB_CF(os_date) { const char *s = luaL_optstring(L, 1, "%c"); time_t t = luaL_opt(L, (time_t)luaL_checknumber, 2, time(NULL)); struct tm *stm; #if LJ_TARGET_POSIX struct tm rtm; #endif if (*s == '!') { /* UTC? */ s++; /* Skip '!' */ #if LJ_TARGET_POSIX stm = gmtime_r(&t, &rtm); #else stm = gmtime(&t); #endif } else { #if LJ_TARGET_POSIX stm = localtime_r(&t, &rtm); #else stm = localtime(&t); #endif } if (stm == NULL) { /* Invalid date? */ setnilV(L->top++); } else if (strcmp(s, "*t") == 0) { lua_createtable(L, 0, 9); /* 9 = number of fields */ setfield(L, "sec", stm->tm_sec); setfield(L, "min", stm->tm_min); setfield(L, "hour", stm->tm_hour); setfield(L, "day", stm->tm_mday); setfield(L, "month", stm->tm_mon+1); setfield(L, "year", stm->tm_year+1900); setfield(L, "wday", stm->tm_wday+1); setfield(L, "yday", stm->tm_yday+1); setboolfield(L, "isdst", stm->tm_isdst); } else if (*s) { SBuf *sb = &G(L)->tmpbuf; MSize sz = 0; const char *q; for (q = s; *q; q++) sz += (*q == '%') ? 30 : 1; /* Overflow doesn't matter. */ setsbufL(sb, L); for (;;) { char *buf = lj_buf_need(sb, sz); size_t len = strftime(buf, sbufsz(sb), s, stm); if (len) { setstrV(L, L->top++, lj_str_new(L, buf, len)); lj_gc_check(L); break; } sz += (sz|1); } } else { setstrV(L, L->top++, &G(L)->strempty); } return 1; } LJLIB_CF(os_time) { time_t t; if (lua_isnoneornil(L, 1)) { /* called without args? */ t = time(NULL); /* get current time */ } else { struct tm ts; luaL_checktype(L, 1, LUA_TTABLE); lua_settop(L, 1); /* make sure table is at the top */ ts.tm_sec = getfield(L, "sec", 0); ts.tm_min = getfield(L, "min", 0); ts.tm_hour = getfield(L, "hour", 12); ts.tm_mday = getfield(L, "day", -1); ts.tm_mon = getfield(L, "month", -1) - 1; ts.tm_year = getfield(L, "year", -1) - 1900; ts.tm_isdst = getboolfield(L, "isdst"); t = mktime(&ts); } if (t == (time_t)(-1)) lua_pushnil(L); else lua_pushnumber(L, (lua_Number)t); return 1; } LJLIB_CF(os_difftime) { lua_pushnumber(L, difftime((time_t)(luaL_checknumber(L, 1)), (time_t)(luaL_optnumber(L, 2, (lua_Number)0)))); return 1; } /* ------------------------------------------------------------------------ */ LJLIB_CF(os_setlocale) { #if LJ_TARGET_PSVITA lua_pushliteral(L, "C"); #else GCstr *s = lj_lib_optstr(L, 1); const char *str = s ? strdata(s) : NULL; int opt = lj_lib_checkopt(L, 2, 6, "\5ctype\7numeric\4time\7collate\10monetary\1\377\3all"); if (opt == 0) opt = LC_CTYPE; else if (opt == 1) opt = LC_NUMERIC; else if (opt == 2) opt = LC_TIME; else if (opt == 3) opt = LC_COLLATE; else if (opt == 4) opt = LC_MONETARY; else if (opt == 6) opt = LC_ALL; lua_pushstring(L, setlocale(opt, str)); #endif return 1; } /* ------------------------------------------------------------------------ */ #include "lj_libdef.h" LUALIB_API int luaopen_os(lua_State *L) { LJ_LIB_REG(L, LUA_OSLIBNAME, os); return 1; } luajit-2.1.0~beta3+dfsg.orig/src/lj_err.h0000644000175100017510000000273013101703334017535 0ustar ondrejondrej/* ** Error handling. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_ERR_H #define _LJ_ERR_H #include #include "lj_obj.h" typedef enum { #define ERRDEF(name, msg) \ LJ_ERR_##name, LJ_ERR_##name##_ = LJ_ERR_##name + sizeof(msg)-1, #include "lj_errmsg.h" LJ_ERR__MAX } ErrMsg; LJ_DATA const char *lj_err_allmsg; #define err2msg(em) (lj_err_allmsg+(int)(em)) LJ_FUNC GCstr *lj_err_str(lua_State *L, ErrMsg em); LJ_FUNCA_NORET void LJ_FASTCALL lj_err_throw(lua_State *L, int errcode); LJ_FUNC_NORET void lj_err_mem(lua_State *L); LJ_FUNC_NORET void lj_err_run(lua_State *L); LJ_FUNC_NORET void lj_err_msg(lua_State *L, ErrMsg em); LJ_FUNC_NORET void lj_err_lex(lua_State *L, GCstr *src, const char *tok, BCLine line, ErrMsg em, va_list argp); LJ_FUNC_NORET void lj_err_optype(lua_State *L, cTValue *o, ErrMsg opm); LJ_FUNC_NORET void lj_err_comp(lua_State *L, cTValue *o1, cTValue *o2); LJ_FUNC_NORET void lj_err_optype_call(lua_State *L, TValue *o); LJ_FUNC_NORET void lj_err_callermsg(lua_State *L, const char *msg); LJ_FUNC_NORET void lj_err_callerv(lua_State *L, ErrMsg em, ...); LJ_FUNC_NORET void lj_err_caller(lua_State *L, ErrMsg em); LJ_FUNC_NORET void lj_err_arg(lua_State *L, int narg, ErrMsg em); LJ_FUNC_NORET void lj_err_argv(lua_State *L, int narg, ErrMsg em, ...); LJ_FUNC_NORET void lj_err_argtype(lua_State *L, int narg, const char *xname); LJ_FUNC_NORET void lj_err_argt(lua_State *L, int narg, int tt); #endif luajit-2.1.0~beta3+dfsg.orig/src/lua.h0000644000175100017510000003004313101703334017037 0ustar ondrejondrej/* ** $Id: lua.h,v 1.218.1.5 2008/08/06 13:30:12 roberto Exp $ ** Lua - An Extensible Extension Language ** Lua.org, PUC-Rio, Brazil (http://www.lua.org) ** See Copyright Notice at the end of this file */ #ifndef lua_h #define lua_h #include #include #include "luaconf.h" #define LUA_VERSION "Lua 5.1" #define LUA_RELEASE "Lua 5.1.4" #define LUA_VERSION_NUM 501 #define LUA_COPYRIGHT "Copyright (C) 1994-2008 Lua.org, PUC-Rio" #define LUA_AUTHORS "R. Ierusalimschy, L. H. de Figueiredo & W. Celes" /* mark for precompiled code (`Lua') */ #define LUA_SIGNATURE "\033Lua" /* option for multiple returns in `lua_pcall' and `lua_call' */ #define LUA_MULTRET (-1) /* ** pseudo-indices */ #define LUA_REGISTRYINDEX (-10000) #define LUA_ENVIRONINDEX (-10001) #define LUA_GLOBALSINDEX (-10002) #define lua_upvalueindex(i) (LUA_GLOBALSINDEX-(i)) /* thread status */ #define LUA_OK 0 #define LUA_YIELD 1 #define LUA_ERRRUN 2 #define LUA_ERRSYNTAX 3 #define LUA_ERRMEM 4 #define LUA_ERRERR 5 typedef struct lua_State lua_State; typedef int (*lua_CFunction) (lua_State *L); /* ** functions that read/write blocks when loading/dumping Lua chunks */ typedef const char * (*lua_Reader) (lua_State *L, void *ud, size_t *sz); typedef int (*lua_Writer) (lua_State *L, const void* p, size_t sz, void* ud); /* ** prototype for memory-allocation functions */ typedef void * (*lua_Alloc) (void *ud, void *ptr, size_t osize, size_t nsize); /* ** basic types */ #define LUA_TNONE (-1) #define LUA_TNIL 0 #define LUA_TBOOLEAN 1 #define LUA_TLIGHTUSERDATA 2 #define LUA_TNUMBER 3 #define LUA_TSTRING 4 #define LUA_TTABLE 5 #define LUA_TFUNCTION 6 #define LUA_TUSERDATA 7 #define LUA_TTHREAD 8 /* minimum Lua stack available to a C function */ #define LUA_MINSTACK 20 /* ** generic extra include file */ #if defined(LUA_USER_H) #include LUA_USER_H #endif /* type of numbers in Lua */ typedef LUA_NUMBER lua_Number; /* type for integer functions */ typedef LUA_INTEGER lua_Integer; /* ** state manipulation */ LUA_API lua_State *(lua_newstate) (lua_Alloc f, void *ud); LUA_API void (lua_close) (lua_State *L); LUA_API lua_State *(lua_newthread) (lua_State *L); LUA_API lua_CFunction (lua_atpanic) (lua_State *L, lua_CFunction panicf); /* ** basic stack manipulation */ LUA_API int (lua_gettop) (lua_State *L); LUA_API void (lua_settop) (lua_State *L, int idx); LUA_API void (lua_pushvalue) (lua_State *L, int idx); LUA_API void (lua_remove) (lua_State *L, int idx); LUA_API void (lua_insert) (lua_State *L, int idx); LUA_API void (lua_replace) (lua_State *L, int idx); LUA_API int (lua_checkstack) (lua_State *L, int sz); LUA_API void (lua_xmove) (lua_State *from, lua_State *to, int n); /* ** access functions (stack -> C) */ LUA_API int (lua_isnumber) (lua_State *L, int idx); LUA_API int (lua_isstring) (lua_State *L, int idx); LUA_API int (lua_iscfunction) (lua_State *L, int idx); LUA_API int (lua_isuserdata) (lua_State *L, int idx); LUA_API int (lua_type) (lua_State *L, int idx); LUA_API const char *(lua_typename) (lua_State *L, int tp); LUA_API int (lua_equal) (lua_State *L, int idx1, int idx2); LUA_API int (lua_rawequal) (lua_State *L, int idx1, int idx2); LUA_API int (lua_lessthan) (lua_State *L, int idx1, int idx2); LUA_API lua_Number (lua_tonumber) (lua_State *L, int idx); LUA_API lua_Integer (lua_tointeger) (lua_State *L, int idx); LUA_API int (lua_toboolean) (lua_State *L, int idx); LUA_API const char *(lua_tolstring) (lua_State *L, int idx, size_t *len); LUA_API size_t (lua_objlen) (lua_State *L, int idx); LUA_API lua_CFunction (lua_tocfunction) (lua_State *L, int idx); LUA_API void *(lua_touserdata) (lua_State *L, int idx); LUA_API lua_State *(lua_tothread) (lua_State *L, int idx); LUA_API const void *(lua_topointer) (lua_State *L, int idx); /* ** push functions (C -> stack) */ LUA_API void (lua_pushnil) (lua_State *L); LUA_API void (lua_pushnumber) (lua_State *L, lua_Number n); LUA_API void (lua_pushinteger) (lua_State *L, lua_Integer n); LUA_API void (lua_pushlstring) (lua_State *L, const char *s, size_t l); LUA_API void (lua_pushstring) (lua_State *L, const char *s); LUA_API const char *(lua_pushvfstring) (lua_State *L, const char *fmt, va_list argp); LUA_API const char *(lua_pushfstring) (lua_State *L, const char *fmt, ...); LUA_API void (lua_pushcclosure) (lua_State *L, lua_CFunction fn, int n); LUA_API void (lua_pushboolean) (lua_State *L, int b); LUA_API void (lua_pushlightuserdata) (lua_State *L, void *p); LUA_API int (lua_pushthread) (lua_State *L); /* ** get functions (Lua -> stack) */ LUA_API void (lua_gettable) (lua_State *L, int idx); LUA_API void (lua_getfield) (lua_State *L, int idx, const char *k); LUA_API void (lua_rawget) (lua_State *L, int idx); LUA_API void (lua_rawgeti) (lua_State *L, int idx, int n); LUA_API void (lua_createtable) (lua_State *L, int narr, int nrec); LUA_API void *(lua_newuserdata) (lua_State *L, size_t sz); LUA_API int (lua_getmetatable) (lua_State *L, int objindex); LUA_API void (lua_getfenv) (lua_State *L, int idx); /* ** set functions (stack -> Lua) */ LUA_API void (lua_settable) (lua_State *L, int idx); LUA_API void (lua_setfield) (lua_State *L, int idx, const char *k); LUA_API void (lua_rawset) (lua_State *L, int idx); LUA_API void (lua_rawseti) (lua_State *L, int idx, int n); LUA_API int (lua_setmetatable) (lua_State *L, int objindex); LUA_API int (lua_setfenv) (lua_State *L, int idx); /* ** `load' and `call' functions (load and run Lua code) */ LUA_API void (lua_call) (lua_State *L, int nargs, int nresults); LUA_API int (lua_pcall) (lua_State *L, int nargs, int nresults, int errfunc); LUA_API int (lua_cpcall) (lua_State *L, lua_CFunction func, void *ud); LUA_API int (lua_load) (lua_State *L, lua_Reader reader, void *dt, const char *chunkname); LUA_API int (lua_dump) (lua_State *L, lua_Writer writer, void *data); /* ** coroutine functions */ LUA_API int (lua_yield) (lua_State *L, int nresults); LUA_API int (lua_resume) (lua_State *L, int narg); LUA_API int (lua_status) (lua_State *L); /* ** garbage-collection function and options */ #define LUA_GCSTOP 0 #define LUA_GCRESTART 1 #define LUA_GCCOLLECT 2 #define LUA_GCCOUNT 3 #define LUA_GCCOUNTB 4 #define LUA_GCSTEP 5 #define LUA_GCSETPAUSE 6 #define LUA_GCSETSTEPMUL 7 #define LUA_GCISRUNNING 9 LUA_API int (lua_gc) (lua_State *L, int what, int data); /* ** miscellaneous functions */ LUA_API int (lua_error) (lua_State *L); LUA_API int (lua_next) (lua_State *L, int idx); LUA_API void (lua_concat) (lua_State *L, int n); LUA_API lua_Alloc (lua_getallocf) (lua_State *L, void **ud); LUA_API void lua_setallocf (lua_State *L, lua_Alloc f, void *ud); /* ** =============================================================== ** some useful macros ** =============================================================== */ #define lua_pop(L,n) lua_settop(L, -(n)-1) #define lua_newtable(L) lua_createtable(L, 0, 0) #define lua_register(L,n,f) (lua_pushcfunction(L, (f)), lua_setglobal(L, (n))) #define lua_pushcfunction(L,f) lua_pushcclosure(L, (f), 0) #define lua_strlen(L,i) lua_objlen(L, (i)) #define lua_isfunction(L,n) (lua_type(L, (n)) == LUA_TFUNCTION) #define lua_istable(L,n) (lua_type(L, (n)) == LUA_TTABLE) #define lua_islightuserdata(L,n) (lua_type(L, (n)) == LUA_TLIGHTUSERDATA) #define lua_isnil(L,n) (lua_type(L, (n)) == LUA_TNIL) #define lua_isboolean(L,n) (lua_type(L, (n)) == LUA_TBOOLEAN) #define lua_isthread(L,n) (lua_type(L, (n)) == LUA_TTHREAD) #define lua_isnone(L,n) (lua_type(L, (n)) == LUA_TNONE) #define lua_isnoneornil(L, n) (lua_type(L, (n)) <= 0) #define lua_pushliteral(L, s) \ lua_pushlstring(L, "" s, (sizeof(s)/sizeof(char))-1) #define lua_setglobal(L,s) lua_setfield(L, LUA_GLOBALSINDEX, (s)) #define lua_getglobal(L,s) lua_getfield(L, LUA_GLOBALSINDEX, (s)) #define lua_tostring(L,i) lua_tolstring(L, (i), NULL) /* ** compatibility macros and functions */ #define lua_open() luaL_newstate() #define lua_getregistry(L) lua_pushvalue(L, LUA_REGISTRYINDEX) #define lua_getgccount(L) lua_gc(L, LUA_GCCOUNT, 0) #define lua_Chunkreader lua_Reader #define lua_Chunkwriter lua_Writer /* hack */ LUA_API void lua_setlevel (lua_State *from, lua_State *to); /* ** {====================================================================== ** Debug API ** ======================================================================= */ /* ** Event codes */ #define LUA_HOOKCALL 0 #define LUA_HOOKRET 1 #define LUA_HOOKLINE 2 #define LUA_HOOKCOUNT 3 #define LUA_HOOKTAILRET 4 /* ** Event masks */ #define LUA_MASKCALL (1 << LUA_HOOKCALL) #define LUA_MASKRET (1 << LUA_HOOKRET) #define LUA_MASKLINE (1 << LUA_HOOKLINE) #define LUA_MASKCOUNT (1 << LUA_HOOKCOUNT) typedef struct lua_Debug lua_Debug; /* activation record */ /* Functions to be called by the debuger in specific events */ typedef void (*lua_Hook) (lua_State *L, lua_Debug *ar); LUA_API int lua_getstack (lua_State *L, int level, lua_Debug *ar); LUA_API int lua_getinfo (lua_State *L, const char *what, lua_Debug *ar); LUA_API const char *lua_getlocal (lua_State *L, const lua_Debug *ar, int n); LUA_API const char *lua_setlocal (lua_State *L, const lua_Debug *ar, int n); LUA_API const char *lua_getupvalue (lua_State *L, int funcindex, int n); LUA_API const char *lua_setupvalue (lua_State *L, int funcindex, int n); LUA_API int lua_sethook (lua_State *L, lua_Hook func, int mask, int count); LUA_API lua_Hook lua_gethook (lua_State *L); LUA_API int lua_gethookmask (lua_State *L); LUA_API int lua_gethookcount (lua_State *L); /* From Lua 5.2. */ LUA_API void *lua_upvalueid (lua_State *L, int idx, int n); LUA_API void lua_upvaluejoin (lua_State *L, int idx1, int n1, int idx2, int n2); LUA_API int lua_loadx (lua_State *L, lua_Reader reader, void *dt, const char *chunkname, const char *mode); LUA_API const lua_Number *lua_version (lua_State *L); LUA_API void lua_copy (lua_State *L, int fromidx, int toidx); LUA_API lua_Number lua_tonumberx (lua_State *L, int idx, int *isnum); LUA_API lua_Integer lua_tointegerx (lua_State *L, int idx, int *isnum); /* From Lua 5.3. */ LUA_API int lua_isyieldable (lua_State *L); struct lua_Debug { int event; const char *name; /* (n) */ const char *namewhat; /* (n) `global', `local', `field', `method' */ const char *what; /* (S) `Lua', `C', `main', `tail' */ const char *source; /* (S) */ int currentline; /* (l) */ int nups; /* (u) number of upvalues */ int linedefined; /* (S) */ int lastlinedefined; /* (S) */ char short_src[LUA_IDSIZE]; /* (S) */ /* private part */ int i_ci; /* active function */ }; /* }====================================================================== */ /****************************************************************************** * Copyright (C) 1994-2008 Lua.org, PUC-Rio. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ******************************************************************************/ #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_lex.h0000644000175100017510000000612213101703334017534 0ustar ondrejondrej/* ** Lexical analyzer. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_LEX_H #define _LJ_LEX_H #include #include "lj_obj.h" #include "lj_err.h" /* Lua lexer tokens. */ #define TKDEF(_, __) \ _(and) _(break) _(do) _(else) _(elseif) _(end) _(false) \ _(for) _(function) _(goto) _(if) _(in) _(local) _(nil) _(not) _(or) \ _(repeat) _(return) _(then) _(true) _(until) _(while) \ __(concat, ..) __(dots, ...) __(eq, ==) __(ge, >=) __(le, <=) __(ne, ~=) \ __(label, ::) __(number, ) __(name, ) __(string, ) \ __(eof, ) enum { TK_OFS = 256, #define TKENUM1(name) TK_##name, #define TKENUM2(name, sym) TK_##name, TKDEF(TKENUM1, TKENUM2) #undef TKENUM1 #undef TKENUM2 TK_RESERVED = TK_while - TK_OFS }; typedef int LexChar; /* Lexical character. Unsigned ext. from char. */ typedef int LexToken; /* Lexical token. */ /* Combined bytecode ins/line. Only used during bytecode generation. */ typedef struct BCInsLine { BCIns ins; /* Bytecode instruction. */ BCLine line; /* Line number for this bytecode. */ } BCInsLine; /* Info for local variables. Only used during bytecode generation. */ typedef struct VarInfo { GCRef name; /* Local variable name or goto/label name. */ BCPos startpc; /* First point where the local variable is active. */ BCPos endpc; /* First point where the local variable is dead. */ uint8_t slot; /* Variable slot. */ uint8_t info; /* Variable/goto/label info. */ } VarInfo; /* Lua lexer state. */ typedef struct LexState { struct FuncState *fs; /* Current FuncState. Defined in lj_parse.c. */ struct lua_State *L; /* Lua state. */ TValue tokval; /* Current token value. */ TValue lookaheadval; /* Lookahead token value. */ const char *p; /* Current position in input buffer. */ const char *pe; /* End of input buffer. */ LexChar c; /* Current character. */ LexToken tok; /* Current token. */ LexToken lookahead; /* Lookahead token. */ SBuf sb; /* String buffer for tokens. */ lua_Reader rfunc; /* Reader callback. */ void *rdata; /* Reader callback data. */ BCLine linenumber; /* Input line counter. */ BCLine lastline; /* Line of last token. */ GCstr *chunkname; /* Current chunk name (interned string). */ const char *chunkarg; /* Chunk name argument. */ const char *mode; /* Allow loading bytecode (b) and/or source text (t). */ VarInfo *vstack; /* Stack for names and extents of local variables. */ MSize sizevstack; /* Size of variable stack. */ MSize vtop; /* Top of variable stack. */ BCInsLine *bcstack; /* Stack for bytecode instructions/line numbers. */ MSize sizebcstack; /* Size of bytecode stack. */ uint32_t level; /* Syntactical nesting level. */ } LexState; LJ_FUNC int lj_lex_setup(lua_State *L, LexState *ls); LJ_FUNC void lj_lex_cleanup(lua_State *L, LexState *ls); LJ_FUNC void lj_lex_next(LexState *ls); LJ_FUNC LexToken lj_lex_lookahead(LexState *ls); LJ_FUNC const char *lj_lex_token2str(LexState *ls, LexToken tok); LJ_FUNC_NORET void lj_lex_error(LexState *ls, LexToken tok, ErrMsg em, ...); LJ_FUNC void lj_lex_init(lua_State *L); #endif luajit-2.1.0~beta3+dfsg.orig/src/vm_mips64.dasc0000644000175100017510000041470613101703334020601 0ustar ondrejondrej|// Low-level VM code for MIPS64 CPUs. |// Bytecode interpreter, fast functions and helper functions. |// Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h |// |// Contributed by Djordje Kovacevic and Stefan Pejic from RT-RK.com. |// Sponsored by Cisco Systems, Inc. | |.arch mips64 |.section code_op, code_sub | |.actionlist build_actionlist |.globals GLOB_ |.globalnames globnames |.externnames extnames | |// Note: The ragged indentation of the instructions is intentional. |// The starting columns indicate data dependencies. | |//----------------------------------------------------------------------- | |// Fixed register assignments for the interpreter. |// Don't use: r0 = 0, r26/r27 = reserved, r28 = gp, r29 = sp, r31 = ra | |.macro .FPU, a, b |.if FPU | a, b |.endif |.endmacro | |// The following must be C callee-save (but BASE is often refetched). |.define BASE, r16 // Base of current Lua stack frame. |.define KBASE, r17 // Constants of current Lua function. |.define PC, r18 // Next PC. |.define DISPATCH, r19 // Opcode dispatch table. |.define LREG, r20 // Register holding lua_State (also in SAVE_L). |.define MULTRES, r21 // Size of multi-result: (nresults+1)*8. | |.define JGL, r30 // On-trace: global_State + 32768. | |// Constants for type-comparisons, stores and conversions. C callee-save. |.define TISNIL, r30 |.define TISNUM, r22 |.if FPU |.define TOBIT, f30 // 2^52 + 2^51. |.endif | |// The following temporaries are not saved across C calls, except for RA. |.define RA, r23 // Callee-save. |.define RB, r8 |.define RC, r9 |.define RD, r10 |.define INS, r11 | |.define AT, r1 // Assembler temporary. |.define TMP0, r12 |.define TMP1, r13 |.define TMP2, r14 |.define TMP3, r15 | |// MIPS n64 calling convention. |.define CFUNCADDR, r25 |.define CARG1, r4 |.define CARG2, r5 |.define CARG3, r6 |.define CARG4, r7 |.define CARG5, r8 |.define CARG6, r9 |.define CARG7, r10 |.define CARG8, r11 | |.define CRET1, r2 |.define CRET2, r3 | |.if FPU |.define FARG1, f12 |.define FARG2, f13 |.define FARG3, f14 |.define FARG4, f15 |.define FARG5, f16 |.define FARG6, f17 |.define FARG7, f18 |.define FARG8, f19 | |.define FRET1, f0 |.define FRET2, f2 |.endif | |// Stack layout while in interpreter. Must match with lj_frame.h. |.if FPU // MIPS64 hard-float. | |.define CFRAME_SPACE, 192 // Delta for sp. | |//----- 16 byte aligned, <-- sp entering interpreter |.define SAVE_ERRF, 188(sp) // 32 bit values. |.define SAVE_NRES, 184(sp) |.define SAVE_CFRAME, 176(sp) // 64 bit values. |.define SAVE_L, 168(sp) |.define SAVE_PC, 160(sp) |//----- 16 byte aligned |.define SAVE_GPR_, 80 // .. 80+10*8: 64 bit GPR saves. |.define SAVE_FPR_, 16 // .. 16+8*8: 64 bit FPR saves. | |.else // MIPS64 soft-float | |.define CFRAME_SPACE, 128 // Delta for sp. | |//----- 16 byte aligned, <-- sp entering interpreter |.define SAVE_ERRF, 124(sp) // 32 bit values. |.define SAVE_NRES, 120(sp) |.define SAVE_CFRAME, 112(sp) // 64 bit values. |.define SAVE_L, 104(sp) |.define SAVE_PC, 96(sp) |//----- 16 byte aligned |.define SAVE_GPR_, 16 // .. 16+10*8: 64 bit GPR saves. | |.endif | |.define TMPX, 8(sp) // Unused by interpreter, temp for JIT code. |.define TMPD, 0(sp) |//----- 16 byte aligned | |.define TMPD_OFS, 0 | |.define SAVE_MULTRES, TMPD | |//----------------------------------------------------------------------- | |.macro saveregs | daddiu sp, sp, -CFRAME_SPACE | sd ra, SAVE_GPR_+9*8(sp) | sd r30, SAVE_GPR_+8*8(sp) | .FPU sdc1 f31, SAVE_FPR_+7*8(sp) | sd r23, SAVE_GPR_+7*8(sp) | .FPU sdc1 f30, SAVE_FPR_+6*8(sp) | sd r22, SAVE_GPR_+6*8(sp) | .FPU sdc1 f29, SAVE_FPR_+5*8(sp) | sd r21, SAVE_GPR_+5*8(sp) | .FPU sdc1 f28, SAVE_FPR_+4*8(sp) | sd r20, SAVE_GPR_+4*8(sp) | .FPU sdc1 f27, SAVE_FPR_+3*8(sp) | sd r19, SAVE_GPR_+3*8(sp) | .FPU sdc1 f26, SAVE_FPR_+2*8(sp) | sd r18, SAVE_GPR_+2*8(sp) | .FPU sdc1 f25, SAVE_FPR_+1*8(sp) | sd r17, SAVE_GPR_+1*8(sp) | .FPU sdc1 f24, SAVE_FPR_+0*8(sp) | sd r16, SAVE_GPR_+0*8(sp) |.endmacro | |.macro restoreregs_ret | ld ra, SAVE_GPR_+9*8(sp) | ld r30, SAVE_GPR_+8*8(sp) | ld r23, SAVE_GPR_+7*8(sp) | .FPU ldc1 f31, SAVE_FPR_+7*8(sp) | ld r22, SAVE_GPR_+6*8(sp) | .FPU ldc1 f30, SAVE_FPR_+6*8(sp) | ld r21, SAVE_GPR_+5*8(sp) | .FPU ldc1 f29, SAVE_FPR_+5*8(sp) | ld r20, SAVE_GPR_+4*8(sp) | .FPU ldc1 f28, SAVE_FPR_+4*8(sp) | ld r19, SAVE_GPR_+3*8(sp) | .FPU ldc1 f27, SAVE_FPR_+3*8(sp) | ld r18, SAVE_GPR_+2*8(sp) | .FPU ldc1 f26, SAVE_FPR_+2*8(sp) | ld r17, SAVE_GPR_+1*8(sp) | .FPU ldc1 f25, SAVE_FPR_+1*8(sp) | ld r16, SAVE_GPR_+0*8(sp) | .FPU ldc1 f24, SAVE_FPR_+0*8(sp) | jr ra | daddiu sp, sp, CFRAME_SPACE |.endmacro | |// Type definitions. Some of these are only used for documentation. |.type L, lua_State, LREG |.type GL, global_State |.type TVALUE, TValue |.type GCOBJ, GCobj |.type STR, GCstr |.type TAB, GCtab |.type LFUNC, GCfuncL |.type CFUNC, GCfuncC |.type PROTO, GCproto |.type UPVAL, GCupval |.type NODE, Node |.type NARGS8, int |.type TRACE, GCtrace |.type SBUF, SBuf | |//----------------------------------------------------------------------- | |// Trap for not-yet-implemented parts. |.macro NYI; .long 0xf0f0f0f0; .endmacro | |// Macros to mark delay slots. |.macro ., a; a; .endmacro |.macro ., a,b; a,b; .endmacro |.macro ., a,b,c; a,b,c; .endmacro |.macro ., a,b,c,d; a,b,c,d; .endmacro | |.define FRAME_PC, -8 |.define FRAME_FUNC, -16 | |//----------------------------------------------------------------------- | |// Endian-specific defines. |.if ENDIAN_LE |.define HI, 4 |.define LO, 0 |.define OFS_RD, 2 |.define OFS_RA, 1 |.define OFS_OP, 0 |.else |.define HI, 0 |.define LO, 4 |.define OFS_RD, 0 |.define OFS_RA, 2 |.define OFS_OP, 3 |.endif | |// Instruction decode. |.macro decode_OP1, dst, ins; andi dst, ins, 0xff; .endmacro |.macro decode_OP8a, dst, ins; andi dst, ins, 0xff; .endmacro |.macro decode_OP8b, dst; sll dst, dst, 3; .endmacro |.macro decode_RC8a, dst, ins; srl dst, ins, 13; .endmacro |.macro decode_RC8b, dst; andi dst, dst, 0x7f8; .endmacro |.macro decode_RD4b, dst; sll dst, dst, 2; .endmacro |.macro decode_RA8a, dst, ins; srl dst, ins, 5; .endmacro |.macro decode_RA8b, dst; andi dst, dst, 0x7f8; .endmacro |.macro decode_RB8a, dst, ins; srl dst, ins, 21; .endmacro |.macro decode_RB8b, dst; andi dst, dst, 0x7f8; .endmacro |.macro decode_RD8a, dst, ins; srl dst, ins, 16; .endmacro |.macro decode_RD8b, dst; sll dst, dst, 3; .endmacro |.macro decode_RDtoRC8, dst, src; andi dst, src, 0x7f8; .endmacro | |// Instruction fetch. |.macro ins_NEXT1 | lw INS, 0(PC) | daddiu PC, PC, 4 |.endmacro |// Instruction decode+dispatch. |.macro ins_NEXT2 | decode_OP8a TMP1, INS | decode_OP8b TMP1 | daddu TMP0, DISPATCH, TMP1 | decode_RD8a RD, INS | ld AT, 0(TMP0) | decode_RA8a RA, INS | decode_RD8b RD | jr AT | decode_RA8b RA |.endmacro |.macro ins_NEXT | ins_NEXT1 | ins_NEXT2 |.endmacro | |// Instruction footer. |.if 1 | // Replicated dispatch. Less unpredictable branches, but higher I-Cache use. | .define ins_next, ins_NEXT | .define ins_next_, ins_NEXT | .define ins_next1, ins_NEXT1 | .define ins_next2, ins_NEXT2 |.else | // Common dispatch. Lower I-Cache use, only one (very) unpredictable branch. | // Affects only certain kinds of benchmarks (and only with -j off). | .macro ins_next | b ->ins_next | .endmacro | .macro ins_next1 | .endmacro | .macro ins_next2 | b ->ins_next | .endmacro | .macro ins_next_ | ->ins_next: | ins_NEXT | .endmacro |.endif | |// Call decode and dispatch. |.macro ins_callt | // BASE = new base, RB = LFUNC/CFUNC, RC = nargs*8, FRAME_PC(BASE) = PC | ld PC, LFUNC:RB->pc | lw INS, 0(PC) | daddiu PC, PC, 4 | decode_OP8a TMP1, INS | decode_RA8a RA, INS | decode_OP8b TMP1 | decode_RA8b RA | daddu TMP0, DISPATCH, TMP1 | ld TMP0, 0(TMP0) | jr TMP0 | daddu RA, RA, BASE |.endmacro | |.macro ins_call | // BASE = new base, RB = LFUNC/CFUNC, RC = nargs*8, PC = caller PC | sd PC, FRAME_PC(BASE) | ins_callt |.endmacro | |//----------------------------------------------------------------------- | |.macro branch_RD | srl TMP0, RD, 1 | lui AT, (-(BCBIAS_J*4 >> 16) & 65535) | addu TMP0, TMP0, AT | daddu PC, PC, TMP0 |.endmacro | |// Assumes DISPATCH is relative to GL. #define DISPATCH_GL(field) (GG_DISP2G + (int)offsetof(global_State, field)) #define DISPATCH_J(field) (GG_DISP2J + (int)offsetof(jit_State, field)) #define GG_DISP2GOT (GG_OFS(got) - GG_OFS(dispatch)) #define DISPATCH_GOT(name) (GG_DISP2GOT + sizeof(void*)*LJ_GOT_##name) | #define PC2PROTO(field) ((int)offsetof(GCproto, field)-(int)sizeof(GCproto)) | |.macro load_got, func | ld CFUNCADDR, DISPATCH_GOT(func)(DISPATCH) |.endmacro |// Much faster. Sadly, there's no easy way to force the required code layout. |// .macro call_intern, func; bal extern func; .endmacro |.macro call_intern, func; jalr CFUNCADDR; .endmacro |.macro call_extern; jalr CFUNCADDR; .endmacro |.macro jmp_extern; jr CFUNCADDR; .endmacro | |.macro hotcheck, delta, target | dsrl TMP1, PC, 1 | andi TMP1, TMP1, 126 | daddu TMP1, TMP1, DISPATCH | lhu TMP2, GG_DISP2HOT(TMP1) | addiu TMP2, TMP2, -delta | bltz TMP2, target |. sh TMP2, GG_DISP2HOT(TMP1) |.endmacro | |.macro hotloop | hotcheck HOTCOUNT_LOOP, ->vm_hotloop |.endmacro | |.macro hotcall | hotcheck HOTCOUNT_CALL, ->vm_hotcall |.endmacro | |// Set current VM state. Uses TMP0. |.macro li_vmstate, st; li TMP0, ~LJ_VMST_..st; .endmacro |.macro st_vmstate; sw TMP0, DISPATCH_GL(vmstate)(DISPATCH); .endmacro | |// Move table write barrier back. Overwrites mark and tmp. |.macro barrierback, tab, mark, tmp, target | ld tmp, DISPATCH_GL(gc.grayagain)(DISPATCH) | andi mark, mark, ~LJ_GC_BLACK & 255 // black2gray(tab) | sd tab, DISPATCH_GL(gc.grayagain)(DISPATCH) | sb mark, tab->marked | b target |. sd tmp, tab->gclist |.endmacro | |// Clear type tag. Isolate lowest 14+32+1=47 bits of reg. |.macro cleartp, reg; dextm reg, reg, 0, 14; .endmacro |.macro cleartp, dst, reg; dextm dst, reg, 0, 14; .endmacro | |// Set type tag: Merge 17 type bits into bits [15+32=47, 31+32+1=64) of dst. |.macro settp, dst, tp; dinsu dst, tp, 15, 31; .endmacro | |// Extract (negative) type tag. |.macro gettp, dst, src; dsra dst, src, 47; .endmacro | |// Macros to check the TValue type and extract the GCobj. Branch on failure. |.macro checktp, reg, tp, target | gettp AT, reg | daddiu AT, AT, tp | bnez AT, target |. cleartp reg |.endmacro |.macro checktp, dst, reg, tp, target | gettp AT, reg | daddiu AT, AT, tp | bnez AT, target |. cleartp dst, reg |.endmacro |.macro checkstr, reg, target; checktp reg, -LJ_TSTR, target; .endmacro |.macro checktab, reg, target; checktp reg, -LJ_TTAB, target; .endmacro |.macro checkfunc, reg, target; checktp reg, -LJ_TFUNC, target; .endmacro |.macro checkint, reg, target // Caveat: has delay slot! | gettp AT, reg | bne AT, TISNUM, target |.endmacro |.macro checknum, reg, target // Caveat: has delay slot! | gettp AT, reg | sltiu AT, AT, LJ_TISNUM | beqz AT, target |.endmacro | |.macro mov_false, reg | lu reg, 0x8000 | dsll reg, reg, 32 | not reg, reg |.endmacro |.macro mov_true, reg | li reg, 0x0001 | dsll reg, reg, 48 | not reg, reg |.endmacro | |//----------------------------------------------------------------------- /* Generate subroutines used by opcodes and other parts of the VM. */ /* The .code_sub section should be last to help static branch prediction. */ static void build_subroutines(BuildCtx *ctx) { |.code_sub | |//----------------------------------------------------------------------- |//-- Return handling ---------------------------------------------------- |//----------------------------------------------------------------------- | |->vm_returnp: | // See vm_return. Also: TMP2 = previous base. | andi AT, PC, FRAME_P | beqz AT, ->cont_dispatch | | // Return from pcall or xpcall fast func. |. mov_true TMP1 | ld PC, FRAME_PC(TMP2) // Fetch PC of previous frame. | move BASE, TMP2 // Restore caller base. | // Prepending may overwrite the pcall frame, so do it at the end. | sd TMP1, -8(RA) // Prepend true to results. | daddiu RA, RA, -8 | |->vm_returnc: | addiu RD, RD, 8 // RD = (nresults+1)*8. | andi TMP0, PC, FRAME_TYPE | beqz RD, ->vm_unwind_c_eh |. li CRET1, LUA_YIELD | beqz TMP0, ->BC_RET_Z // Handle regular return to Lua. |. move MULTRES, RD | |->vm_return: | // BASE = base, RA = resultptr, RD/MULTRES = (nresults+1)*8, PC = return | // TMP0 = PC & FRAME_TYPE | li TMP2, -8 | xori AT, TMP0, FRAME_C | and TMP2, PC, TMP2 | bnez AT, ->vm_returnp | dsubu TMP2, BASE, TMP2 // TMP2 = previous base. | | addiu TMP1, RD, -8 | sd TMP2, L->base | li_vmstate C | lw TMP2, SAVE_NRES | daddiu BASE, BASE, -16 | st_vmstate | beqz TMP1, >2 |. sll TMP2, TMP2, 3 |1: | addiu TMP1, TMP1, -8 | ld CRET1, 0(RA) | daddiu RA, RA, 8 | sd CRET1, 0(BASE) | bnez TMP1, <1 |. daddiu BASE, BASE, 8 | |2: | bne TMP2, RD, >6 |3: |. sd BASE, L->top // Store new top. | |->vm_leave_cp: | ld TMP0, SAVE_CFRAME // Restore previous C frame. | move CRET1, r0 // Ok return status for vm_pcall. | sd TMP0, L->cframe | |->vm_leave_unw: | restoreregs_ret | |6: | ld TMP1, L->maxstack | slt AT, TMP2, RD | bnez AT, >7 // Less results wanted? | // More results wanted. Check stack size and fill up results with nil. |. slt AT, BASE, TMP1 | beqz AT, >8 |. nop | sd TISNIL, 0(BASE) | addiu RD, RD, 8 | b <2 |. daddiu BASE, BASE, 8 | |7: // Less results wanted. | subu TMP0, RD, TMP2 | dsubu TMP0, BASE, TMP0 // Either keep top or shrink it. | b <3 |. movn BASE, TMP0, TMP2 // LUA_MULTRET+1 case? | |8: // Corner case: need to grow stack for filling up results. | // This can happen if: | // - A C function grows the stack (a lot). | // - The GC shrinks the stack in between. | // - A return back from a lua_call() with (high) nresults adjustment. | load_got lj_state_growstack | move MULTRES, RD | srl CARG2, TMP2, 3 | call_intern lj_state_growstack // (lua_State *L, int n) |. move CARG1, L | lw TMP2, SAVE_NRES | ld BASE, L->top // Need the (realloced) L->top in BASE. | move RD, MULTRES | b <2 |. sll TMP2, TMP2, 3 | |->vm_unwind_c: // Unwind C stack, return from vm_pcall. | // (void *cframe, int errcode) | move sp, CARG1 | move CRET1, CARG2 |->vm_unwind_c_eh: // Landing pad for external unwinder. | ld L, SAVE_L | li TMP0, ~LJ_VMST_C | ld GL:TMP1, L->glref | b ->vm_leave_unw |. sw TMP0, GL:TMP1->vmstate | |->vm_unwind_ff: // Unwind C stack, return from ff pcall. | // (void *cframe) | li AT, -4 | and sp, CARG1, AT |->vm_unwind_ff_eh: // Landing pad for external unwinder. | ld L, SAVE_L | .FPU lui TMP3, 0x59c0 // TOBIT = 2^52 + 2^51 (float). | li TISNIL, LJ_TNIL | li TISNUM, LJ_TISNUM | ld BASE, L->base | ld DISPATCH, L->glref // Setup pointer to dispatch table. | .FPU mtc1 TMP3, TOBIT | mov_false TMP1 | li_vmstate INTERP | ld PC, FRAME_PC(BASE) // Fetch PC of previous frame. | .FPU cvt.d.s TOBIT, TOBIT | daddiu RA, BASE, -8 // Results start at BASE-8. | daddiu DISPATCH, DISPATCH, GG_G2DISP | sd TMP1, 0(RA) // Prepend false to error message. | st_vmstate | b ->vm_returnc |. li RD, 16 // 2 results: false + error message. | |//----------------------------------------------------------------------- |//-- Grow stack for calls ----------------------------------------------- |//----------------------------------------------------------------------- | |->vm_growstack_c: // Grow stack for C function. | b >2 |. li CARG2, LUA_MINSTACK | |->vm_growstack_l: // Grow stack for Lua function. | // BASE = new base, RA = BASE+framesize*8, RC = nargs*8, PC = first PC | daddu RC, BASE, RC | dsubu RA, RA, BASE | sd BASE, L->base | daddiu PC, PC, 4 // Must point after first instruction. | sd RC, L->top | srl CARG2, RA, 3 |2: | // L->base = new base, L->top = top | load_got lj_state_growstack | sd PC, SAVE_PC | call_intern lj_state_growstack // (lua_State *L, int n) |. move CARG1, L | ld BASE, L->base | ld RC, L->top | ld LFUNC:RB, FRAME_FUNC(BASE) | dsubu RC, RC, BASE | cleartp LFUNC:RB | // BASE = new base, RB = LFUNC/CFUNC, RC = nargs*8, FRAME_PC(BASE) = PC | ins_callt // Just retry the call. | |//----------------------------------------------------------------------- |//-- Entry points into the assembler VM --------------------------------- |//----------------------------------------------------------------------- | |->vm_resume: // Setup C frame and resume thread. | // (lua_State *L, TValue *base, int nres1 = 0, ptrdiff_t ef = 0) | saveregs | move L, CARG1 | ld DISPATCH, L->glref // Setup pointer to dispatch table. | move BASE, CARG2 | lbu TMP1, L->status | sd L, SAVE_L | li PC, FRAME_CP | daddiu TMP0, sp, CFRAME_RESUME | daddiu DISPATCH, DISPATCH, GG_G2DISP | sw r0, SAVE_NRES | sw r0, SAVE_ERRF | sd CARG1, SAVE_PC // Any value outside of bytecode is ok. | sd r0, SAVE_CFRAME | beqz TMP1, >3 |. sd TMP0, L->cframe | | // Resume after yield (like a return). | sd L, DISPATCH_GL(cur_L)(DISPATCH) | move RA, BASE | ld BASE, L->base | ld TMP1, L->top | ld PC, FRAME_PC(BASE) | .FPU lui TMP3, 0x59c0 // TOBIT = 2^52 + 2^51 (float). | dsubu RD, TMP1, BASE | .FPU mtc1 TMP3, TOBIT | sb r0, L->status | .FPU cvt.d.s TOBIT, TOBIT | li_vmstate INTERP | daddiu RD, RD, 8 | st_vmstate | move MULTRES, RD | andi TMP0, PC, FRAME_TYPE | li TISNIL, LJ_TNIL | beqz TMP0, ->BC_RET_Z |. li TISNUM, LJ_TISNUM | b ->vm_return |. nop | |->vm_pcall: // Setup protected C frame and enter VM. | // (lua_State *L, TValue *base, int nres1, ptrdiff_t ef) | saveregs | sw CARG4, SAVE_ERRF | b >1 |. li PC, FRAME_CP | |->vm_call: // Setup C frame and enter VM. | // (lua_State *L, TValue *base, int nres1) | saveregs | li PC, FRAME_C | |1: // Entry point for vm_pcall above (PC = ftype). | ld TMP1, L:CARG1->cframe | move L, CARG1 | sw CARG3, SAVE_NRES | ld DISPATCH, L->glref // Setup pointer to dispatch table. | sd CARG1, SAVE_L | move BASE, CARG2 | daddiu DISPATCH, DISPATCH, GG_G2DISP | sd CARG1, SAVE_PC // Any value outside of bytecode is ok. | sd TMP1, SAVE_CFRAME | sd sp, L->cframe // Add our C frame to cframe chain. | |3: // Entry point for vm_cpcall/vm_resume (BASE = base, PC = ftype). | sd L, DISPATCH_GL(cur_L)(DISPATCH) | ld TMP2, L->base // TMP2 = old base (used in vmeta_call). | .FPU lui TMP3, 0x59c0 // TOBIT = 2^52 + 2^51 (float). | ld TMP1, L->top | .FPU mtc1 TMP3, TOBIT | daddu PC, PC, BASE | dsubu NARGS8:RC, TMP1, BASE | li TISNUM, LJ_TISNUM | dsubu PC, PC, TMP2 // PC = frame delta + frame type | .FPU cvt.d.s TOBIT, TOBIT | li_vmstate INTERP | li TISNIL, LJ_TNIL | st_vmstate | |->vm_call_dispatch: | // TMP2 = old base, BASE = new base, RC = nargs*8, PC = caller PC | ld LFUNC:RB, FRAME_FUNC(BASE) | checkfunc LFUNC:RB, ->vmeta_call | |->vm_call_dispatch_f: | ins_call | // BASE = new base, RB = func, RC = nargs*8, PC = caller PC | |->vm_cpcall: // Setup protected C frame, call C. | // (lua_State *L, lua_CFunction func, void *ud, lua_CPFunction cp) | saveregs | move L, CARG1 | ld TMP0, L:CARG1->stack | sd CARG1, SAVE_L | ld TMP1, L->top | ld DISPATCH, L->glref // Setup pointer to dispatch table. | sd CARG1, SAVE_PC // Any value outside of bytecode is ok. | dsubu TMP0, TMP0, TMP1 // Compute -savestack(L, L->top). | ld TMP1, L->cframe | daddiu DISPATCH, DISPATCH, GG_G2DISP | sw TMP0, SAVE_NRES // Neg. delta means cframe w/o frame. | sw r0, SAVE_ERRF // No error function. | sd TMP1, SAVE_CFRAME | sd sp, L->cframe // Add our C frame to cframe chain. | sd L, DISPATCH_GL(cur_L)(DISPATCH) | jalr CARG4 // (lua_State *L, lua_CFunction func, void *ud) |. move CFUNCADDR, CARG4 | move BASE, CRET1 | bnez CRET1, <3 // Else continue with the call. |. li PC, FRAME_CP | b ->vm_leave_cp // No base? Just remove C frame. |. nop | |//----------------------------------------------------------------------- |//-- Metamethod handling ------------------------------------------------ |//----------------------------------------------------------------------- | |// The lj_meta_* functions (except for lj_meta_cat) don't reallocate the |// stack, so BASE doesn't need to be reloaded across these calls. | |//-- Continuation dispatch ---------------------------------------------- | |->cont_dispatch: | // BASE = meta base, RA = resultptr, RD = (nresults+1)*8 | ld TMP0, -32(BASE) // Continuation. | move RB, BASE | move BASE, TMP2 // Restore caller BASE. | ld LFUNC:TMP1, FRAME_FUNC(TMP2) |.if FFI | sltiu AT, TMP0, 2 |.endif | ld PC, -24(RB) // Restore PC from [cont|PC]. | cleartp LFUNC:TMP1 | daddu TMP2, RA, RD | ld TMP1, LFUNC:TMP1->pc |.if FFI | bnez AT, >1 |.endif |. sd TISNIL, -8(TMP2) // Ensure one valid arg. | // BASE = base, RA = resultptr, RB = meta base | jr TMP0 // Jump to continuation. |. ld KBASE, PC2PROTO(k)(TMP1) | |.if FFI |1: | bnez TMP0, ->cont_ffi_callback // cont = 1: return from FFI callback. | // cont = 0: tailcall from C function. |. daddiu TMP1, RB, -32 | b ->vm_call_tail |. dsubu RC, TMP1, BASE |.endif | |->cont_cat: // RA = resultptr, RB = meta base | lw INS, -4(PC) | daddiu CARG2, RB, -32 | ld CRET1, 0(RA) | decode_RB8a MULTRES, INS | decode_RA8a RA, INS | decode_RB8b MULTRES | decode_RA8b RA | daddu TMP1, BASE, MULTRES | sd BASE, L->base | dsubu CARG3, CARG2, TMP1 | bne TMP1, CARG2, ->BC_CAT_Z |. sd CRET1, 0(CARG2) | daddu RA, BASE, RA | b ->cont_nop |. sd CRET1, 0(RA) | |//-- Table indexing metamethods ----------------------------------------- | |->vmeta_tgets1: | daddiu CARG3, DISPATCH, DISPATCH_GL(tmptv) | li TMP0, LJ_TSTR | settp STR:RC, TMP0 | b >1 |. sd STR:RC, 0(CARG3) | |->vmeta_tgets: | daddiu CARG2, DISPATCH, DISPATCH_GL(tmptv) | li TMP0, LJ_TTAB | li TMP1, LJ_TSTR | settp TAB:RB, TMP0 | daddiu CARG3, DISPATCH, DISPATCH_GL(tmptv2) | sd TAB:RB, 0(CARG2) | settp STR:RC, TMP1 | b >1 |. sd STR:RC, 0(CARG3) | |->vmeta_tgetb: // TMP0 = index | daddiu CARG3, DISPATCH, DISPATCH_GL(tmptv) | settp TMP0, TISNUM | sd TMP0, 0(CARG3) | |->vmeta_tgetv: |1: | load_got lj_meta_tget | sd BASE, L->base | sd PC, SAVE_PC | call_intern lj_meta_tget // (lua_State *L, TValue *o, TValue *k) |. move CARG1, L | // Returns TValue * (finished) or NULL (metamethod). | beqz CRET1, >3 |. daddiu TMP1, BASE, -FRAME_CONT | ld CARG1, 0(CRET1) | ins_next1 | sd CARG1, 0(RA) | ins_next2 | |3: // Call __index metamethod. | // BASE = base, L->top = new base, stack = cont/func/t/k | ld BASE, L->top | sd PC, -24(BASE) // [cont|PC] | dsubu PC, BASE, TMP1 | ld LFUNC:RB, FRAME_FUNC(BASE) // Guaranteed to be a function here. | cleartp LFUNC:RB | b ->vm_call_dispatch_f |. li NARGS8:RC, 16 // 2 args for func(t, k). | |->vmeta_tgetr: | load_got lj_tab_getinth | call_intern lj_tab_getinth // (GCtab *t, int32_t key) |. nop | // Returns cTValue * or NULL. | beqz CRET1, ->BC_TGETR_Z |. move CARG2, TISNIL | b ->BC_TGETR_Z |. ld CARG2, 0(CRET1) | |//----------------------------------------------------------------------- | |->vmeta_tsets1: | daddiu CARG3, DISPATCH, DISPATCH_GL(tmptv) | li TMP0, LJ_TSTR | settp STR:RC, TMP0 | b >1 |. sd STR:RC, 0(CARG3) | |->vmeta_tsets: | daddiu CARG2, DISPATCH, DISPATCH_GL(tmptv) | li TMP0, LJ_TTAB | li TMP1, LJ_TSTR | settp TAB:RB, TMP0 | daddiu CARG3, DISPATCH, DISPATCH_GL(tmptv2) | sd TAB:RB, 0(CARG2) | settp STR:RC, TMP1 | b >1 |. sd STR:RC, 0(CARG3) | |->vmeta_tsetb: // TMP0 = index | daddiu CARG3, DISPATCH, DISPATCH_GL(tmptv) | settp TMP0, TISNUM | sd TMP0, 0(CARG3) | |->vmeta_tsetv: |1: | load_got lj_meta_tset | sd BASE, L->base | sd PC, SAVE_PC | call_intern lj_meta_tset // (lua_State *L, TValue *o, TValue *k) |. move CARG1, L | // Returns TValue * (finished) or NULL (metamethod). | beqz CRET1, >3 |. ld CARG1, 0(RA) | // NOBARRIER: lj_meta_tset ensures the table is not black. | ins_next1 | sd CARG1, 0(CRET1) | ins_next2 | |3: // Call __newindex metamethod. | // BASE = base, L->top = new base, stack = cont/func/t/k/(v) | daddiu TMP1, BASE, -FRAME_CONT | ld BASE, L->top | sd PC, -24(BASE) // [cont|PC] | dsubu PC, BASE, TMP1 | ld LFUNC:RB, FRAME_FUNC(BASE) // Guaranteed to be a function here. | cleartp LFUNC:RB | sd CARG1, 16(BASE) // Copy value to third argument. | b ->vm_call_dispatch_f |. li NARGS8:RC, 24 // 3 args for func(t, k, v) | |->vmeta_tsetr: | load_got lj_tab_setinth | sd BASE, L->base | sd PC, SAVE_PC | call_intern lj_tab_setinth // (lua_State *L, GCtab *t, int32_t key) |. move CARG1, L | // Returns TValue *. | b ->BC_TSETR_Z |. nop | |//-- Comparison metamethods --------------------------------------------- | |->vmeta_comp: | // RA/RD point to o1/o2. | move CARG2, RA | move CARG3, RD | load_got lj_meta_comp | daddiu PC, PC, -4 | sd BASE, L->base | sd PC, SAVE_PC | decode_OP1 CARG4, INS | call_intern lj_meta_comp // (lua_State *L, TValue *o1, *o2, int op) |. move CARG1, L | // Returns 0/1 or TValue * (metamethod). |3: | sltiu AT, CRET1, 2 | beqz AT, ->vmeta_binop | negu TMP2, CRET1 |4: | lhu RD, OFS_RD(PC) | daddiu PC, PC, 4 | lui TMP1, (-(BCBIAS_J*4 >> 16) & 65535) | sll RD, RD, 2 | addu RD, RD, TMP1 | and RD, RD, TMP2 | daddu PC, PC, RD |->cont_nop: | ins_next | |->cont_ra: // RA = resultptr | lbu TMP1, -4+OFS_RA(PC) | ld CRET1, 0(RA) | sll TMP1, TMP1, 3 | daddu TMP1, BASE, TMP1 | b ->cont_nop |. sd CRET1, 0(TMP1) | |->cont_condt: // RA = resultptr | ld TMP0, 0(RA) | gettp TMP0, TMP0 | sltiu AT, TMP0, LJ_TISTRUECOND | b <4 |. negu TMP2, AT // Branch if result is true. | |->cont_condf: // RA = resultptr | ld TMP0, 0(RA) | gettp TMP0, TMP0 | sltiu AT, TMP0, LJ_TISTRUECOND | b <4 |. addiu TMP2, AT, -1 // Branch if result is false. | |->vmeta_equal: | // CARG1/CARG2 point to o1/o2. TMP0 is set to 0/1. | load_got lj_meta_equal | cleartp LFUNC:CARG3, CARG2 | cleartp LFUNC:CARG2, CARG1 | move CARG4, TMP0 | daddiu PC, PC, -4 | sd BASE, L->base | sd PC, SAVE_PC | call_intern lj_meta_equal // (lua_State *L, GCobj *o1, *o2, int ne) |. move CARG1, L | // Returns 0/1 or TValue * (metamethod). | b <3 |. nop | |->vmeta_equal_cd: |.if FFI | load_got lj_meta_equal_cd | move CARG2, INS | daddiu PC, PC, -4 | sd BASE, L->base | sd PC, SAVE_PC | call_intern lj_meta_equal_cd // (lua_State *L, BCIns op) |. move CARG1, L | // Returns 0/1 or TValue * (metamethod). | b <3 |. nop |.endif | |->vmeta_istype: | load_got lj_meta_istype | daddiu PC, PC, -4 | sd BASE, L->base | srl CARG2, RA, 3 | srl CARG3, RD, 3 | sd PC, SAVE_PC | call_intern lj_meta_istype // (lua_State *L, BCReg ra, BCReg tp) |. move CARG1, L | b ->cont_nop |. nop | |//-- Arithmetic metamethods --------------------------------------------- | |->vmeta_unm: | move RC, RB | |->vmeta_arith: | load_got lj_meta_arith | sd BASE, L->base | move CARG2, RA | sd PC, SAVE_PC | move CARG3, RB | move CARG4, RC | decode_OP1 CARG5, INS // CARG5 == RB. | call_intern lj_meta_arith // (lua_State *L, TValue *ra,*rb,*rc, BCReg op) |. move CARG1, L | // Returns NULL (finished) or TValue * (metamethod). | beqz CRET1, ->cont_nop |. nop | | // Call metamethod for binary op. |->vmeta_binop: | // BASE = old base, CRET1 = new base, stack = cont/func/o1/o2 | dsubu TMP1, CRET1, BASE | sd PC, -24(CRET1) // [cont|PC] | move TMP2, BASE | daddiu PC, TMP1, FRAME_CONT | move BASE, CRET1 | b ->vm_call_dispatch |. li NARGS8:RC, 16 // 2 args for func(o1, o2). | |->vmeta_len: | // CARG2 already set by BC_LEN. #if LJ_52 | move MULTRES, CARG1 #endif | load_got lj_meta_len | sd BASE, L->base | sd PC, SAVE_PC | call_intern lj_meta_len // (lua_State *L, TValue *o) |. move CARG1, L | // Returns NULL (retry) or TValue * (metamethod base). #if LJ_52 | bnez CRET1, ->vmeta_binop // Binop call for compatibility. |. nop | b ->BC_LEN_Z |. move CARG1, MULTRES #else | b ->vmeta_binop // Binop call for compatibility. |. nop #endif | |//-- Call metamethod ---------------------------------------------------- | |->vmeta_call: // Resolve and call __call metamethod. | // TMP2 = old base, BASE = new base, RC = nargs*8 | load_got lj_meta_call | sd TMP2, L->base // This is the callers base! | daddiu CARG2, BASE, -16 | sd PC, SAVE_PC | daddu CARG3, BASE, RC | move MULTRES, NARGS8:RC | call_intern lj_meta_call // (lua_State *L, TValue *func, TValue *top) |. move CARG1, L | ld LFUNC:RB, FRAME_FUNC(BASE) // Guaranteed to be a function here. | daddiu NARGS8:RC, MULTRES, 8 // Got one more argument now. | cleartp LFUNC:RB | ins_call | |->vmeta_callt: // Resolve __call for BC_CALLT. | // BASE = old base, RA = new base, RC = nargs*8 | load_got lj_meta_call | sd BASE, L->base | daddiu CARG2, RA, -16 | sd PC, SAVE_PC | daddu CARG3, RA, RC | move MULTRES, NARGS8:RC | call_intern lj_meta_call // (lua_State *L, TValue *func, TValue *top) |. move CARG1, L | ld RB, FRAME_FUNC(RA) // Guaranteed to be a function here. | ld TMP1, FRAME_PC(BASE) | daddiu NARGS8:RC, MULTRES, 8 // Got one more argument now. | b ->BC_CALLT_Z |. cleartp LFUNC:CARG3, RB | |//-- Argument coercion for 'for' statement ------------------------------ | |->vmeta_for: | load_got lj_meta_for | sd BASE, L->base | move CARG2, RA | sd PC, SAVE_PC | move MULTRES, INS | call_intern lj_meta_for // (lua_State *L, TValue *base) |. move CARG1, L |.if JIT | decode_OP1 TMP0, MULTRES | li AT, BC_JFORI |.endif | decode_RA8a RA, MULTRES | decode_RD8a RD, MULTRES | decode_RA8b RA |.if JIT | beq TMP0, AT, =>BC_JFORI |. decode_RD8b RD | b =>BC_FORI |. nop |.else | b =>BC_FORI |. decode_RD8b RD |.endif | |//----------------------------------------------------------------------- |//-- Fast functions ----------------------------------------------------- |//----------------------------------------------------------------------- | |.macro .ffunc, name |->ff_ .. name: |.endmacro | |.macro .ffunc_1, name |->ff_ .. name: | beqz NARGS8:RC, ->fff_fallback |. ld CARG1, 0(BASE) |.endmacro | |.macro .ffunc_2, name |->ff_ .. name: | sltiu AT, NARGS8:RC, 16 | ld CARG1, 0(BASE) | bnez AT, ->fff_fallback |. ld CARG2, 8(BASE) |.endmacro | |.macro .ffunc_n, name // Caveat: has delay slot! |->ff_ .. name: | ld CARG1, 0(BASE) | beqz NARGS8:RC, ->fff_fallback | // Either ldc1 or the 1st instruction of checknum is in the delay slot. | .FPU ldc1 FARG1, 0(BASE) | checknum CARG1, ->fff_fallback |.endmacro | |.macro .ffunc_nn, name // Caveat: has delay slot! |->ff_ .. name: | ld CARG1, 0(BASE) | sltiu AT, NARGS8:RC, 16 | ld CARG2, 8(BASE) | bnez AT, ->fff_fallback |. gettp TMP0, CARG1 | gettp TMP1, CARG2 | sltiu TMP0, TMP0, LJ_TISNUM | sltiu TMP1, TMP1, LJ_TISNUM | .FPU ldc1 FARG1, 0(BASE) | and TMP0, TMP0, TMP1 | .FPU ldc1 FARG2, 8(BASE) | beqz TMP0, ->fff_fallback |.endmacro | |// Inlined GC threshold check. Caveat: uses TMP0 and TMP1 and has delay slot! |.macro ffgccheck | ld TMP0, DISPATCH_GL(gc.total)(DISPATCH) | ld TMP1, DISPATCH_GL(gc.threshold)(DISPATCH) | dsubu AT, TMP0, TMP1 | bgezal AT, ->fff_gcstep |.endmacro | |//-- Base library: checks ----------------------------------------------- |.ffunc_1 assert | gettp AT, CARG1 | sltiu AT, AT, LJ_TISTRUECOND | beqz AT, ->fff_fallback |. daddiu RA, BASE, -16 | ld PC, FRAME_PC(BASE) | addiu RD, NARGS8:RC, 8 // Compute (nresults+1)*8. | daddu TMP2, RA, RD | daddiu TMP1, BASE, 8 | beq BASE, TMP2, ->fff_res // Done if exactly 1 argument. |. sd CARG1, 0(RA) |1: | ld CRET1, 0(TMP1) | sd CRET1, -16(TMP1) | bne TMP1, TMP2, <1 |. daddiu TMP1, TMP1, 8 | b ->fff_res |. nop | |.ffunc_1 type | gettp TMP0, CARG1 | sltu TMP1, TISNUM, TMP0 | not TMP2, TMP0 | li TMP3, ~LJ_TISNUM | movz TMP2, TMP3, TMP1 | dsll TMP2, TMP2, 3 | daddu TMP2, CFUNC:RB, TMP2 | b ->fff_restv |. ld CARG1, CFUNC:TMP2->upvalue | |//-- Base library: getters and setters --------------------------------- | |.ffunc_1 getmetatable | gettp TMP2, CARG1 | daddiu TMP0, TMP2, -LJ_TTAB | daddiu TMP1, TMP2, -LJ_TUDATA | movn TMP0, TMP1, TMP0 | bnez TMP0, >6 |. cleartp TAB:CARG1 |1: // Field metatable must be at same offset for GCtab and GCudata! | ld TAB:RB, TAB:CARG1->metatable |2: | ld STR:RC, DISPATCH_GL(gcroot[GCROOT_MMNAME+MM_metatable])(DISPATCH) | beqz TAB:RB, ->fff_restv |. li CARG1, LJ_TNIL | lw TMP0, TAB:RB->hmask | lw TMP1, STR:RC->hash | ld NODE:TMP2, TAB:RB->node | and TMP1, TMP1, TMP0 // idx = str->hash & tab->hmask | dsll TMP0, TMP1, 5 | dsll TMP1, TMP1, 3 | dsubu TMP1, TMP0, TMP1 | daddu NODE:TMP2, NODE:TMP2, TMP1 // node = tab->node + (idx*32-idx*8) | li CARG4, LJ_TSTR | settp STR:RC, CARG4 // Tagged key to look for. |3: // Rearranged logic, because we expect _not_ to find the key. | ld TMP0, NODE:TMP2->key | ld CARG1, NODE:TMP2->val | ld NODE:TMP2, NODE:TMP2->next | beq RC, TMP0, >5 |. li AT, LJ_TTAB | bnez NODE:TMP2, <3 |. nop |4: | move CARG1, RB | b ->fff_restv // Not found, keep default result. |. settp CARG1, AT |5: | bne CARG1, TISNIL, ->fff_restv |. nop | b <4 // Ditto for nil value. |. nop | |6: | sltiu AT, TMP2, LJ_TISNUM | movn TMP2, TISNUM, AT | dsll TMP2, TMP2, 3 | dsubu TMP0, DISPATCH, TMP2 | b <2 |. ld TAB:RB, DISPATCH_GL(gcroot[GCROOT_BASEMT])-8(TMP0) | |.ffunc_2 setmetatable | // Fast path: no mt for table yet and not clearing the mt. | checktp TMP1, CARG1, -LJ_TTAB, ->fff_fallback | gettp TMP3, CARG2 | ld TAB:TMP0, TAB:TMP1->metatable | lbu TMP2, TAB:TMP1->marked | daddiu AT, TMP3, -LJ_TTAB | cleartp TAB:CARG2 | or AT, AT, TAB:TMP0 | bnez AT, ->fff_fallback |. andi AT, TMP2, LJ_GC_BLACK // isblack(table) | beqz AT, ->fff_restv |. sd TAB:CARG2, TAB:TMP1->metatable | barrierback TAB:TMP1, TMP2, TMP0, ->fff_restv | |.ffunc rawget | ld CARG2, 0(BASE) | sltiu AT, NARGS8:RC, 16 | load_got lj_tab_get | gettp TMP0, CARG2 | cleartp CARG2 | daddiu TMP0, TMP0, -LJ_TTAB | or AT, AT, TMP0 | bnez AT, ->fff_fallback |. daddiu CARG3, BASE, 8 | call_intern lj_tab_get // (lua_State *L, GCtab *t, cTValue *key) |. move CARG1, L | b ->fff_restv |. ld CARG1, 0(CRET1) | |//-- Base library: conversions ------------------------------------------ | |.ffunc tonumber | // Only handles the number case inline (without a base argument). | ld CARG1, 0(BASE) | xori AT, NARGS8:RC, 8 // Exactly one number argument. | gettp TMP1, CARG1 | sltu TMP0, TISNUM, TMP1 | or AT, AT, TMP0 | bnez AT, ->fff_fallback |. nop | b ->fff_restv |. nop | |.ffunc_1 tostring | // Only handles the string or number case inline. | gettp TMP0, CARG1 | daddiu AT, TMP0, -LJ_TSTR | // A __tostring method in the string base metatable is ignored. | beqz AT, ->fff_restv // String key? | // Handle numbers inline, unless a number base metatable is present. |. ld TMP1, DISPATCH_GL(gcroot[GCROOT_BASEMT_NUM])(DISPATCH) | sltu TMP0, TISNUM, TMP0 | or TMP0, TMP0, TMP1 | bnez TMP0, ->fff_fallback |. sd BASE, L->base // Add frame since C call can throw. | ffgccheck |. sd PC, SAVE_PC // Redundant (but a defined value). | load_got lj_strfmt_number | move CARG1, L | call_intern lj_strfmt_number // (lua_State *L, cTValue *o) |. move CARG2, BASE | // Returns GCstr *. | li AT, LJ_TSTR | settp CRET1, AT | b ->fff_restv |. move CARG1, CRET1 | |//-- Base library: iterators ------------------------------------------- | |.ffunc_1 next | checktp CARG2, CARG1, -LJ_TTAB, ->fff_fallback | daddu TMP2, BASE, NARGS8:RC | sd TISNIL, 0(TMP2) // Set missing 2nd arg to nil. | ld PC, FRAME_PC(BASE) | load_got lj_tab_next | sd BASE, L->base // Add frame since C call can throw. | sd BASE, L->top // Dummy frame length is ok. | daddiu CARG3, BASE, 8 | sd PC, SAVE_PC | call_intern lj_tab_next // (lua_State *L, GCtab *t, TValue *key) |. move CARG1, L | // Returns 0 at end of traversal. | beqz CRET1, ->fff_restv // End of traversal: return nil. |. move CARG1, TISNIL | ld TMP0, 8(BASE) | daddiu RA, BASE, -16 | ld TMP2, 16(BASE) | sd TMP0, 0(RA) | sd TMP2, 8(RA) | b ->fff_res |. li RD, (2+1)*8 | |.ffunc_1 pairs | checktp TAB:TMP1, CARG1, -LJ_TTAB, ->fff_fallback | ld PC, FRAME_PC(BASE) #if LJ_52 | ld TAB:TMP2, TAB:TMP1->metatable | ld TMP0, CFUNC:RB->upvalue[0] | bnez TAB:TMP2, ->fff_fallback #else | ld TMP0, CFUNC:RB->upvalue[0] #endif |. daddiu RA, BASE, -16 | sd TISNIL, 0(BASE) | sd CARG1, -8(BASE) | sd TMP0, 0(RA) | b ->fff_res |. li RD, (3+1)*8 | |.ffunc_2 ipairs_aux | checktab CARG1, ->fff_fallback | checkint CARG2, ->fff_fallback |. lw TMP0, TAB:CARG1->asize | ld TMP1, TAB:CARG1->array | ld PC, FRAME_PC(BASE) | sextw TMP2, CARG2 | addiu TMP2, TMP2, 1 | sltu AT, TMP2, TMP0 | daddiu RA, BASE, -16 | zextw TMP0, TMP2 | settp TMP0, TISNUM | beqz AT, >2 // Not in array part? |. sd TMP0, 0(RA) | dsll TMP3, TMP2, 3 | daddu TMP3, TMP1, TMP3 | ld TMP1, 0(TMP3) |1: | beq TMP1, TISNIL, ->fff_res // End of iteration, return 0 results. |. li RD, (0+1)*8 | sd TMP1, -8(BASE) | b ->fff_res |. li RD, (2+1)*8 |2: // Check for empty hash part first. Otherwise call C function. | lw TMP0, TAB:CARG1->hmask | load_got lj_tab_getinth | beqz TMP0, ->fff_res |. li RD, (0+1)*8 | call_intern lj_tab_getinth // (GCtab *t, int32_t key) |. move CARG2, TMP2 | // Returns cTValue * or NULL. | beqz CRET1, ->fff_res |. li RD, (0+1)*8 | b <1 |. ld TMP1, 0(CRET1) | |.ffunc_1 ipairs | checktp TAB:TMP1, CARG1, -LJ_TTAB, ->fff_fallback | ld PC, FRAME_PC(BASE) #if LJ_52 | ld TAB:TMP2, TAB:TMP1->metatable | ld CFUNC:TMP0, CFUNC:RB->upvalue[0] | bnez TAB:TMP2, ->fff_fallback #else | ld TMP0, CFUNC:RB->upvalue[0] #endif | daddiu RA, BASE, -16 | dsll AT, TISNUM, 47 | sd CARG1, -8(BASE) | sd AT, 0(BASE) | sd CFUNC:TMP0, 0(RA) | b ->fff_res |. li RD, (3+1)*8 | |//-- Base library: catch errors ---------------------------------------- | |.ffunc pcall | daddiu NARGS8:RC, NARGS8:RC, -8 | lbu TMP3, DISPATCH_GL(hookmask)(DISPATCH) | bltz NARGS8:RC, ->fff_fallback |. move TMP2, BASE | daddiu BASE, BASE, 16 | // Remember active hook before pcall. | srl TMP3, TMP3, HOOK_ACTIVE_SHIFT | andi TMP3, TMP3, 1 | daddiu PC, TMP3, 16+FRAME_PCALL | beqz NARGS8:RC, ->vm_call_dispatch |1: |. daddu TMP0, BASE, NARGS8:RC |2: | ld TMP1, -16(TMP0) | sd TMP1, -8(TMP0) | daddiu TMP0, TMP0, -8 | bne TMP0, BASE, <2 |. nop | b ->vm_call_dispatch |. nop | |.ffunc xpcall | daddiu NARGS8:RC, NARGS8:RC, -16 | ld CARG1, 0(BASE) | ld CARG2, 8(BASE) | bltz NARGS8:RC, ->fff_fallback |. lbu TMP1, DISPATCH_GL(hookmask)(DISPATCH) | gettp AT, CARG2 | daddiu AT, AT, -LJ_TFUNC | bnez AT, ->fff_fallback // Traceback must be a function. |. move TMP2, BASE | daddiu BASE, BASE, 24 | // Remember active hook before pcall. | srl TMP3, TMP3, HOOK_ACTIVE_SHIFT | sd CARG2, 0(TMP2) // Swap function and traceback. | andi TMP3, TMP3, 1 | sd CARG1, 8(TMP2) | beqz NARGS8:RC, ->vm_call_dispatch |. daddiu PC, TMP3, 24+FRAME_PCALL | b <1 |. nop | |//-- Coroutine library -------------------------------------------------- | |.macro coroutine_resume_wrap, resume |.if resume |.ffunc_1 coroutine_resume | checktp CARG1, CARG1, -LJ_TTHREAD, ->fff_fallback |.else |.ffunc coroutine_wrap_aux | ld L:CARG1, CFUNC:RB->upvalue[0].gcr | cleartp L:CARG1 |.endif | lbu TMP0, L:CARG1->status | ld TMP1, L:CARG1->cframe | ld CARG2, L:CARG1->top | ld TMP2, L:CARG1->base | addiu AT, TMP0, -LUA_YIELD | daddu CARG3, CARG2, TMP0 | daddiu TMP3, CARG2, 8 | bgtz AT, ->fff_fallback // st > LUA_YIELD? |. movn CARG2, TMP3, AT | xor TMP2, TMP2, CARG3 | bnez TMP1, ->fff_fallback // cframe != 0? |. or AT, TMP2, TMP0 | ld TMP0, L:CARG1->maxstack | beqz AT, ->fff_fallback // base == top && st == 0? |. ld PC, FRAME_PC(BASE) | daddu TMP2, CARG2, NARGS8:RC | sltu AT, TMP0, TMP2 | bnez AT, ->fff_fallback // Stack overflow? |. sd PC, SAVE_PC | sd BASE, L->base |1: |.if resume | daddiu BASE, BASE, 8 // Keep resumed thread in stack for GC. | daddiu NARGS8:RC, NARGS8:RC, -8 | daddiu TMP2, TMP2, -8 |.endif | sd TMP2, L:CARG1->top | daddu TMP1, BASE, NARGS8:RC | move CARG3, CARG2 | sd BASE, L->top |2: // Move args to coroutine. | ld CRET1, 0(BASE) | sltu AT, BASE, TMP1 | beqz AT, >3 |. daddiu BASE, BASE, 8 | sd CRET1, 0(CARG3) | b <2 |. daddiu CARG3, CARG3, 8 |3: | bal ->vm_resume // (lua_State *L, TValue *base, 0, 0) |. move L:RA, L:CARG1 | // Returns thread status. |4: | ld TMP2, L:RA->base | sltiu AT, CRET1, LUA_YIELD+1 | ld TMP3, L:RA->top | li_vmstate INTERP | ld BASE, L->base | sd L, DISPATCH_GL(cur_L)(DISPATCH) | st_vmstate | beqz AT, >8 |. dsubu RD, TMP3, TMP2 | ld TMP0, L->maxstack | beqz RD, >6 // No results? |. daddu TMP1, BASE, RD | sltu AT, TMP0, TMP1 | bnez AT, >9 // Need to grow stack? |. daddu TMP3, TMP2, RD | sd TMP2, L:RA->top // Clear coroutine stack. | move TMP1, BASE |5: // Move results from coroutine. | ld CRET1, 0(TMP2) | daddiu TMP2, TMP2, 8 | sltu AT, TMP2, TMP3 | sd CRET1, 0(TMP1) | bnez AT, <5 |. daddiu TMP1, TMP1, 8 |6: | andi TMP0, PC, FRAME_TYPE |.if resume | mov_true TMP1 | daddiu RA, BASE, -8 | sd TMP1, -8(BASE) // Prepend true to results. | daddiu RD, RD, 16 |.else | move RA, BASE | daddiu RD, RD, 8 |.endif |7: | sd PC, SAVE_PC | beqz TMP0, ->BC_RET_Z |. move MULTRES, RD | b ->vm_return |. nop | |8: // Coroutine returned with error (at co->top-1). |.if resume | daddiu TMP3, TMP3, -8 | mov_false TMP1 | ld CRET1, 0(TMP3) | sd TMP3, L:RA->top // Remove error from coroutine stack. | li RD, (2+1)*8 | sd TMP1, -8(BASE) // Prepend false to results. | daddiu RA, BASE, -8 | sd CRET1, 0(BASE) // Copy error message. | b <7 |. andi TMP0, PC, FRAME_TYPE |.else | load_got lj_ffh_coroutine_wrap_err | move CARG2, L:RA | call_intern lj_ffh_coroutine_wrap_err // (lua_State *L, lua_State *co) |. move CARG1, L |.endif | |9: // Handle stack expansion on return from yield. | load_got lj_state_growstack | srl CARG2, RD, 3 | call_intern lj_state_growstack // (lua_State *L, int n) |. move CARG1, L | b <4 |. li CRET1, 0 |.endmacro | | coroutine_resume_wrap 1 // coroutine.resume | coroutine_resume_wrap 0 // coroutine.wrap | |.ffunc coroutine_yield | ld TMP0, L->cframe | daddu TMP1, BASE, NARGS8:RC | sd BASE, L->base | andi TMP0, TMP0, CFRAME_RESUME | sd TMP1, L->top | beqz TMP0, ->fff_fallback |. li CRET1, LUA_YIELD | sd r0, L->cframe | b ->vm_leave_unw |. sb CRET1, L->status | |//-- Math library ------------------------------------------------------- | |.ffunc_1 math_abs | gettp CARG2, CARG1 | daddiu AT, CARG2, -LJ_TISNUM | bnez AT, >1 |. sextw TMP1, CARG1 | sra TMP0, TMP1, 31 // Extract sign. | xor TMP1, TMP1, TMP0 | dsubu CARG1, TMP1, TMP0 | dsll TMP3, CARG1, 32 | bgez TMP3, ->fff_restv |. settp CARG1, TISNUM | li CARG1, 0x41e0 // 2^31 as a double. | b ->fff_restv |. dsll CARG1, CARG1, 48 |1: | sltiu AT, CARG2, LJ_TISNUM | beqz AT, ->fff_fallback |. dextm CARG1, CARG1, 0, 30 |// fallthrough | |->fff_restv: | // CARG1 = TValue result. | ld PC, FRAME_PC(BASE) | daddiu RA, BASE, -16 | sd CARG1, -16(BASE) |->fff_res1: | // RA = results, PC = return. | li RD, (1+1)*8 |->fff_res: | // RA = results, RD = (nresults+1)*8, PC = return. | andi TMP0, PC, FRAME_TYPE | bnez TMP0, ->vm_return |. move MULTRES, RD | lw INS, -4(PC) | decode_RB8a RB, INS | decode_RB8b RB |5: | sltu AT, RD, RB | bnez AT, >6 // More results expected? |. decode_RA8a TMP0, INS | decode_RA8b TMP0 | ins_next1 | // Adjust BASE. KBASE is assumed to be set for the calling frame. | dsubu BASE, RA, TMP0 | ins_next2 | |6: // Fill up results with nil. | daddu TMP1, RA, RD | daddiu RD, RD, 8 | b <5 |. sd TISNIL, -8(TMP1) | |.macro math_extern, func | .ffunc_n math_ .. func | load_got func | call_extern |. nop | b ->fff_resn |. nop |.endmacro | |.macro math_extern2, func | .ffunc_nn math_ .. func |. load_got func | call_extern |. nop | b ->fff_resn |. nop |.endmacro | |// TODO: Return integer type if result is integer (own sf implementation). |.macro math_round, func |->ff_math_ .. func: | ld CARG1, 0(BASE) | beqz NARGS8:RC, ->fff_fallback |. gettp TMP0, CARG1 | beq TMP0, TISNUM, ->fff_restv |. sltu AT, TMP0, TISNUM | beqz AT, ->fff_fallback |.if FPU |. ldc1 FARG1, 0(BASE) | bal ->vm_ .. func |. nop |.else |. load_got func | call_extern |. nop |.endif | b ->fff_resn |. nop |.endmacro | | math_round floor | math_round ceil | |.ffunc math_log | li AT, 8 | bne NARGS8:RC, AT, ->fff_fallback // Exactly 1 argument. |. ld CARG1, 0(BASE) | checknum CARG1, ->fff_fallback |. load_got log |.if FPU | call_extern |. ldc1 FARG1, 0(BASE) |.else | call_extern |. nop |.endif | b ->fff_resn |. nop | | math_extern log10 | math_extern exp | math_extern sin | math_extern cos | math_extern tan | math_extern asin | math_extern acos | math_extern atan | math_extern sinh | math_extern cosh | math_extern tanh | math_extern2 pow | math_extern2 atan2 | math_extern2 fmod | |.if FPU |.ffunc_n math_sqrt |. sqrt.d FRET1, FARG1 |// fallthrough to ->fff_resn |.else | math_extern sqrt |.endif | |->fff_resn: | ld PC, FRAME_PC(BASE) | daddiu RA, BASE, -16 | b ->fff_res1 |.if FPU |. sdc1 FRET1, 0(RA) |.else |. sd CRET1, 0(RA) |.endif | | |.ffunc_2 math_ldexp | checknum CARG1, ->fff_fallback | checkint CARG2, ->fff_fallback |. load_got ldexp | .FPU ldc1 FARG1, 0(BASE) | call_extern |. lw CARG2, 8+LO(BASE) | b ->fff_resn |. nop | |.ffunc_n math_frexp | load_got frexp | ld PC, FRAME_PC(BASE) | call_extern |. daddiu CARG2, DISPATCH, DISPATCH_GL(tmptv) | lw TMP1, DISPATCH_GL(tmptv)(DISPATCH) | daddiu RA, BASE, -16 |.if FPU | mtc1 TMP1, FARG2 | sdc1 FRET1, 0(RA) | cvt.d.w FARG2, FARG2 | sdc1 FARG2, 8(RA) |.else | sd CRET1, 0(RA) | zextw TMP1, TMP1 | settp TMP1, TISNUM | sd TMP1, 8(RA) |.endif | b ->fff_res |. li RD, (2+1)*8 | |.ffunc_n math_modf | load_got modf | ld PC, FRAME_PC(BASE) | call_extern |. daddiu CARG2, BASE, -16 | daddiu RA, BASE, -16 |.if FPU | sdc1 FRET1, -8(BASE) |.else | sd CRET1, -8(BASE) |.endif | b ->fff_res |. li RD, (2+1)*8 | |.macro math_minmax, name, intins, fpins | .ffunc_1 name | daddu TMP3, BASE, NARGS8:RC | checkint CARG1, >5 |. daddiu TMP2, BASE, 8 |1: // Handle integers. | beq TMP2, TMP3, ->fff_restv |. ld CARG2, 0(TMP2) | checkint CARG2, >3 |. sextw CARG1, CARG1 | lw CARG2, LO(TMP2) |. slt AT, CARG1, CARG2 | intins CARG1, CARG2, AT | daddiu TMP2, TMP2, 8 | zextw CARG1, CARG1 | b <1 |. settp CARG1, TISNUM | |3: // Convert intermediate result to number and continue with number loop. | checknum CARG2, ->fff_fallback |.if FPU |. mtc1 CARG1, FRET1 | cvt.d.w FRET1, FRET1 | b >7 |. ldc1 FARG1, 0(TMP2) |.else |. nop | bal ->vm_sfi2d_1 |. nop | b >7 |. nop |.endif | |5: | .FPU ldc1 FRET1, 0(BASE) | checknum CARG1, ->fff_fallback |6: // Handle numbers. |. ld CARG2, 0(TMP2) | beq TMP2, TMP3, ->fff_resn |.if FPU | ldc1 FARG1, 0(TMP2) |.else | move CRET1, CARG1 |.endif | checknum CARG2, >8 |. nop |7: |.if FPU | c.olt.d FRET1, FARG1 | fpins FRET1, FARG1 |.else | bal ->vm_sfcmpolt |. nop | intins CARG1, CARG2, CRET1 |.endif | b <6 |. daddiu TMP2, TMP2, 8 | |8: // Convert integer to number and continue with number loop. | checkint CARG2, ->fff_fallback |.if FPU |. lwc1 FARG1, LO(TMP2) | b <7 |. cvt.d.w FARG1, FARG1 |.else |. lw CARG2, LO(TMP2) | bal ->vm_sfi2d_2 |. nop | b <7 |. nop |.endif | |.endmacro | | math_minmax math_min, movz, movf.d | math_minmax math_max, movn, movt.d | |//-- String library ----------------------------------------------------- | |.ffunc string_byte // Only handle the 1-arg case here. | ld CARG1, 0(BASE) | gettp TMP0, CARG1 | xori AT, NARGS8:RC, 8 | daddiu TMP0, TMP0, -LJ_TSTR | or AT, AT, TMP0 | bnez AT, ->fff_fallback // Need exactly 1 string argument. |. cleartp STR:CARG1 | lw TMP0, STR:CARG1->len | daddiu RA, BASE, -16 | ld PC, FRAME_PC(BASE) | sltu RD, r0, TMP0 | lbu TMP1, STR:CARG1[1] // Access is always ok (NUL at end). | addiu RD, RD, 1 | sll RD, RD, 3 // RD = ((str->len != 0)+1)*8 | settp TMP1, TISNUM | b ->fff_res |. sd TMP1, 0(RA) | |.ffunc string_char // Only handle the 1-arg case here. | ffgccheck |. nop | ld CARG1, 0(BASE) | gettp TMP0, CARG1 | xori AT, NARGS8:RC, 8 // Exactly 1 argument. | daddiu TMP0, TMP0, -LJ_TISNUM // Integer. | li TMP1, 255 | sextw CARG1, CARG1 | or AT, AT, TMP0 | sltu TMP1, TMP1, CARG1 // !(255 < n). | or AT, AT, TMP1 | bnez AT, ->fff_fallback |. li CARG3, 1 | daddiu CARG2, sp, TMPD_OFS | sb CARG1, TMPD |->fff_newstr: | load_got lj_str_new | sd BASE, L->base | sd PC, SAVE_PC | call_intern lj_str_new // (lua_State *L, char *str, size_t l) |. move CARG1, L | // Returns GCstr *. | ld BASE, L->base |->fff_resstr: | li AT, LJ_TSTR | settp CRET1, AT | b ->fff_restv |. move CARG1, CRET1 | |.ffunc string_sub | ffgccheck |. nop | addiu AT, NARGS8:RC, -16 | ld TMP0, 0(BASE) | bltz AT, ->fff_fallback |. gettp TMP3, TMP0 | cleartp STR:CARG1, TMP0 | ld CARG2, 8(BASE) | beqz AT, >1 |. li CARG4, -1 | ld CARG3, 16(BASE) | checkint CARG3, ->fff_fallback |. sextw CARG4, CARG3 |1: | checkint CARG2, ->fff_fallback |. li AT, LJ_TSTR | bne TMP3, AT, ->fff_fallback |. sextw CARG3, CARG2 | lw CARG2, STR:CARG1->len | // STR:CARG1 = str, CARG2 = str->len, CARG3 = start, CARG4 = end | slt AT, CARG4, r0 | addiu TMP0, CARG2, 1 | addu TMP1, CARG4, TMP0 | slt TMP3, CARG3, r0 | movn CARG4, TMP1, AT // if (end < 0) end += len+1 | addu TMP1, CARG3, TMP0 | movn CARG3, TMP1, TMP3 // if (start < 0) start += len+1 | li TMP2, 1 | slt AT, CARG4, r0 | slt TMP3, r0, CARG3 | movn CARG4, r0, AT // if (end < 0) end = 0 | movz CARG3, TMP2, TMP3 // if (start < 1) start = 1 | slt AT, CARG2, CARG4 | movn CARG4, CARG2, AT // if (end > len) end = len | daddu CARG2, STR:CARG1, CARG3 | subu CARG3, CARG4, CARG3 // len = end - start | daddiu CARG2, CARG2, sizeof(GCstr)-1 | bgez CARG3, ->fff_newstr |. addiu CARG3, CARG3, 1 // len++ |->fff_emptystr: // Return empty string. | li AT, LJ_TSTR | daddiu STR:CARG1, DISPATCH, DISPATCH_GL(strempty) | b ->fff_restv |. settp CARG1, AT | |.macro ffstring_op, name | .ffunc string_ .. name | ffgccheck |. nop | beqz NARGS8:RC, ->fff_fallback |. ld CARG2, 0(BASE) | checkstr STR:CARG2, ->fff_fallback | daddiu SBUF:CARG1, DISPATCH, DISPATCH_GL(tmpbuf) | load_got lj_buf_putstr_ .. name | ld TMP0, SBUF:CARG1->b | sd L, SBUF:CARG1->L | sd BASE, L->base | sd TMP0, SBUF:CARG1->p | call_intern extern lj_buf_putstr_ .. name |. sd PC, SAVE_PC | load_got lj_buf_tostr | call_intern lj_buf_tostr |. move SBUF:CARG1, SBUF:CRET1 | b ->fff_resstr |. ld BASE, L->base |.endmacro | |ffstring_op reverse |ffstring_op lower |ffstring_op upper | |//-- Bit library -------------------------------------------------------- | |->vm_tobit_fb: | beqz TMP1, ->fff_fallback |.if FPU |. ldc1 FARG1, 0(BASE) | add.d FARG1, FARG1, TOBIT | mfc1 CRET1, FARG1 | jr ra |. zextw CRET1, CRET1 |.else |// FP number to bit conversion for soft-float. |->vm_tobit: | dsll TMP0, CARG1, 1 | li CARG3, 1076 | dsrl AT, TMP0, 53 | dsubu CARG3, CARG3, AT | sltiu AT, CARG3, 54 | beqz AT, >1 |. dextm TMP0, TMP0, 0, 20 | dinsu TMP0, AT, 21, 21 | slt AT, CARG1, r0 | dsrlv CRET1, TMP0, CARG3 | dsubu TMP0, r0, CRET1 | movn CRET1, TMP0, AT | jr ra |. zextw CRET1, CRET1 |1: | jr ra |. move CRET1, r0 |.endif | |.macro .ffunc_bit, name | .ffunc_1 bit_..name | gettp TMP0, CARG1 | beq TMP0, TISNUM, >6 |. zextw CRET1, CARG1 | bal ->vm_tobit_fb |. sltiu TMP1, TMP0, LJ_TISNUM |6: |.endmacro | |.macro .ffunc_bit_op, name, bins | .ffunc_bit name | daddiu TMP2, BASE, 8 | daddu TMP3, BASE, NARGS8:RC |1: | beq TMP2, TMP3, ->fff_resi |. ld CARG1, 0(TMP2) | gettp TMP0, CARG1 |.if FPU | bne TMP0, TISNUM, >2 |. daddiu TMP2, TMP2, 8 | zextw CARG1, CARG1 | b <1 |. bins CRET1, CRET1, CARG1 |2: | ldc1 FARG1, -8(TMP2) | sltiu AT, TMP0, LJ_TISNUM | beqz AT, ->fff_fallback |. add.d FARG1, FARG1, TOBIT | mfc1 CARG1, FARG1 | zextw CARG1, CARG1 | b <1 |. bins CRET1, CRET1, CARG1 |.else | beq TMP0, TISNUM, >2 |. move CRET2, CRET1 | bal ->vm_tobit_fb |. sltiu TMP1, TMP0, LJ_TISNUM | move CARG1, CRET2 |2: | zextw CARG1, CARG1 | bins CRET1, CRET1, CARG1 | b <1 |. daddiu TMP2, TMP2, 8 |.endif |.endmacro | |.ffunc_bit_op band, and |.ffunc_bit_op bor, or |.ffunc_bit_op bxor, xor | |.ffunc_bit bswap | dsrl TMP0, CRET1, 8 | dsrl TMP1, CRET1, 24 | andi TMP2, TMP0, 0xff00 | dins TMP1, CRET1, 24, 31 | dins TMP2, TMP0, 16, 23 | b ->fff_resi |. or CRET1, TMP1, TMP2 | |.ffunc_bit bnot | not CRET1, CRET1 | b ->fff_resi |. zextw CRET1, CRET1 | |.macro .ffunc_bit_sh, name, shins, shmod | .ffunc_2 bit_..name | gettp TMP0, CARG1 | beq TMP0, TISNUM, >1 |. nop | bal ->vm_tobit_fb |. sltiu TMP1, TMP0, LJ_TISNUM | move CARG1, CRET1 |1: | gettp TMP0, CARG2 | bne TMP0, TISNUM, ->fff_fallback |. zextw CARG2, CARG2 | sextw CARG1, CARG1 |.if shmod == 1 | negu CARG2, CARG2 |.endif | shins CRET1, CARG1, CARG2 | b ->fff_resi |. zextw CRET1, CRET1 |.endmacro | |.ffunc_bit_sh lshift, sllv, 0 |.ffunc_bit_sh rshift, srlv, 0 |.ffunc_bit_sh arshift, srav, 0 |.ffunc_bit_sh rol, rotrv, 1 |.ffunc_bit_sh ror, rotrv, 0 | |.ffunc_bit tobit |->fff_resi: | ld PC, FRAME_PC(BASE) | daddiu RA, BASE, -16 | settp CRET1, TISNUM | b ->fff_res1 |. sd CRET1, -16(BASE) | |//----------------------------------------------------------------------- |->fff_fallback: // Call fast function fallback handler. | // BASE = new base, RB = CFUNC, RC = nargs*8 | ld TMP3, CFUNC:RB->f | daddu TMP1, BASE, NARGS8:RC | ld PC, FRAME_PC(BASE) // Fallback may overwrite PC. | daddiu TMP0, TMP1, 8*LUA_MINSTACK | ld TMP2, L->maxstack | sd PC, SAVE_PC // Redundant (but a defined value). | sltu AT, TMP2, TMP0 | sd BASE, L->base | sd TMP1, L->top | bnez AT, >5 // Need to grow stack. |. move CFUNCADDR, TMP3 | jalr TMP3 // (lua_State *L) |. move CARG1, L | // Either throws an error, or recovers and returns -1, 0 or nresults+1. | ld BASE, L->base | sll RD, CRET1, 3 | bgtz CRET1, ->fff_res // Returned nresults+1? |. daddiu RA, BASE, -16 |1: // Returned 0 or -1: retry fast path. | ld LFUNC:RB, FRAME_FUNC(BASE) | ld TMP0, L->top | cleartp LFUNC:RB | bnez CRET1, ->vm_call_tail // Returned -1? |. dsubu NARGS8:RC, TMP0, BASE | ins_callt // Returned 0: retry fast path. | |// Reconstruct previous base for vmeta_call during tailcall. |->vm_call_tail: | andi TMP0, PC, FRAME_TYPE | li AT, -4 | bnez TMP0, >3 |. and TMP1, PC, AT | lbu TMP1, OFS_RA(PC) | sll TMP1, TMP1, 3 | addiu TMP1, TMP1, 16 |3: | b ->vm_call_dispatch // Resolve again for tailcall. |. dsubu TMP2, BASE, TMP1 | |5: // Grow stack for fallback handler. | load_got lj_state_growstack | li CARG2, LUA_MINSTACK | call_intern lj_state_growstack // (lua_State *L, int n) |. move CARG1, L | ld BASE, L->base | b <1 |. li CRET1, 0 // Force retry. | |->fff_gcstep: // Call GC step function. | // BASE = new base, RC = nargs*8 | move MULTRES, ra | load_got lj_gc_step | sd BASE, L->base | daddu TMP0, BASE, NARGS8:RC | sd PC, SAVE_PC // Redundant (but a defined value). | sd TMP0, L->top | call_intern lj_gc_step // (lua_State *L) |. move CARG1, L | ld BASE, L->base | move ra, MULTRES | ld TMP0, L->top | ld CFUNC:RB, FRAME_FUNC(BASE) | cleartp CFUNC:RB | jr ra |. dsubu NARGS8:RC, TMP0, BASE | |//----------------------------------------------------------------------- |//-- Special dispatch targets ------------------------------------------- |//----------------------------------------------------------------------- | |->vm_record: // Dispatch target for recording phase. |.if JIT | lbu TMP3, DISPATCH_GL(hookmask)(DISPATCH) | andi AT, TMP3, HOOK_VMEVENT // No recording while in vmevent. | bnez AT, >5 | // Decrement the hookcount for consistency, but always do the call. |. lw TMP2, DISPATCH_GL(hookcount)(DISPATCH) | andi AT, TMP3, HOOK_ACTIVE | bnez AT, >1 |. addiu TMP2, TMP2, -1 | andi AT, TMP3, LUA_MASKLINE|LUA_MASKCOUNT | beqz AT, >1 |. nop | b >1 |. sw TMP2, DISPATCH_GL(hookcount)(DISPATCH) |.endif | |->vm_rethook: // Dispatch target for return hooks. | lbu TMP3, DISPATCH_GL(hookmask)(DISPATCH) | andi AT, TMP3, HOOK_ACTIVE // Hook already active? | beqz AT, >1 |5: // Re-dispatch to static ins. |. ld AT, GG_DISP2STATIC(TMP0) // Assumes TMP0 holds DISPATCH+OP*4. | jr AT |. nop | |->vm_inshook: // Dispatch target for instr/line hooks. | lbu TMP3, DISPATCH_GL(hookmask)(DISPATCH) | lw TMP2, DISPATCH_GL(hookcount)(DISPATCH) | andi AT, TMP3, HOOK_ACTIVE // Hook already active? | bnez AT, <5 |. andi AT, TMP3, LUA_MASKLINE|LUA_MASKCOUNT | beqz AT, <5 |. addiu TMP2, TMP2, -1 | beqz TMP2, >1 |. sw TMP2, DISPATCH_GL(hookcount)(DISPATCH) | andi AT, TMP3, LUA_MASKLINE | beqz AT, <5 |1: |. load_got lj_dispatch_ins | sw MULTRES, SAVE_MULTRES | move CARG2, PC | sd BASE, L->base | // SAVE_PC must hold the _previous_ PC. The callee updates it with PC. | call_intern lj_dispatch_ins // (lua_State *L, const BCIns *pc) |. move CARG1, L |3: | ld BASE, L->base |4: // Re-dispatch to static ins. | lw INS, -4(PC) | decode_OP8a TMP1, INS | decode_OP8b TMP1 | daddu TMP0, DISPATCH, TMP1 | decode_RD8a RD, INS | ld AT, GG_DISP2STATIC(TMP0) | decode_RA8a RA, INS | decode_RD8b RD | jr AT | decode_RA8b RA | |->cont_hook: // Continue from hook yield. | daddiu PC, PC, 4 | b <4 |. lw MULTRES, -24+LO(RB) // Restore MULTRES for *M ins. | |->vm_hotloop: // Hot loop counter underflow. |.if JIT | ld LFUNC:TMP1, FRAME_FUNC(BASE) | daddiu CARG1, DISPATCH, GG_DISP2J | cleartp LFUNC:TMP1 | sd PC, SAVE_PC | ld TMP1, LFUNC:TMP1->pc | move CARG2, PC | sd L, DISPATCH_J(L)(DISPATCH) | lbu TMP1, PC2PROTO(framesize)(TMP1) | load_got lj_trace_hot | sd BASE, L->base | dsll TMP1, TMP1, 3 | daddu TMP1, BASE, TMP1 | call_intern lj_trace_hot // (jit_State *J, const BCIns *pc) |. sd TMP1, L->top | b <3 |. nop |.endif | | |->vm_callhook: // Dispatch target for call hooks. |.if JIT | b >1 |.endif |. move CARG2, PC | |->vm_hotcall: // Hot call counter underflow. |.if JIT | ori CARG2, PC, 1 |1: |.endif | load_got lj_dispatch_call | daddu TMP0, BASE, RC | sd PC, SAVE_PC | sd BASE, L->base | dsubu RA, RA, BASE | sd TMP0, L->top | call_intern lj_dispatch_call // (lua_State *L, const BCIns *pc) |. move CARG1, L | // Returns ASMFunction. | ld BASE, L->base | ld TMP0, L->top | sd r0, SAVE_PC // Invalidate for subsequent line hook. | dsubu NARGS8:RC, TMP0, BASE | daddu RA, BASE, RA | ld LFUNC:RB, FRAME_FUNC(BASE) | cleartp LFUNC:RB | jr CRET1 |. lw INS, -4(PC) | |->cont_stitch: // Trace stitching. |.if JIT | // RA = resultptr, RB = meta base | lw INS, -4(PC) | ld TRACE:TMP2, -40(RB) // Save previous trace. | decode_RA8a RC, INS | daddiu AT, MULTRES, -8 | cleartp TRACE:TMP2 | decode_RA8b RC | beqz AT, >2 |. daddu RC, BASE, RC // Call base. |1: // Move results down. | ld CARG1, 0(RA) | daddiu AT, AT, -8 | daddiu RA, RA, 8 | sd CARG1, 0(RC) | bnez AT, <1 |. daddiu RC, RC, 8 |2: | decode_RA8a RA, INS | decode_RB8a RB, INS | decode_RA8b RA | decode_RB8b RB | daddu RA, RA, RB | daddu RA, BASE, RA |3: | sltu AT, RC, RA | bnez AT, >9 // More results wanted? |. nop | | lhu TMP3, TRACE:TMP2->traceno | lhu RD, TRACE:TMP2->link | beq RD, TMP3, ->cont_nop // Blacklisted. |. load_got lj_dispatch_stitch | bnez RD, =>BC_JLOOP // Jump to stitched trace. |. sll RD, RD, 3 | | // Stitch a new trace to the previous trace. | sw TMP3, DISPATCH_J(exitno)(DISPATCH) | sd L, DISPATCH_J(L)(DISPATCH) | sd BASE, L->base | daddiu CARG1, DISPATCH, GG_DISP2J | call_intern lj_dispatch_stitch // (jit_State *J, const BCIns *pc) |. move CARG2, PC | b ->cont_nop |. ld BASE, L->base | |9: | sd TISNIL, 0(RC) | b <3 |. daddiu RC, RC, 8 |.endif | |->vm_profhook: // Dispatch target for profiler hook. #if LJ_HASPROFILE | load_got lj_dispatch_profile | sw MULTRES, SAVE_MULTRES | move CARG2, PC | sd BASE, L->base | call_intern lj_dispatch_profile // (lua_State *L, const BCIns *pc) |. move CARG1, L | // HOOK_PROFILE is off again, so re-dispatch to dynamic instruction. | daddiu PC, PC, -4 | b ->cont_nop |. ld BASE, L->base #endif | |//----------------------------------------------------------------------- |//-- Trace exit handler ------------------------------------------------- |//----------------------------------------------------------------------- | |.macro savex_, a, b |.if FPU | sdc1 f..a, a*8(sp) | sdc1 f..b, b*8(sp) | sd r..a, 32*8+a*8(sp) | sd r..b, 32*8+b*8(sp) |.else | sd r..a, a*8(sp) | sd r..b, b*8(sp) |.endif |.endmacro | |->vm_exit_handler: |.if JIT |.if FPU | daddiu sp, sp, -(32*8+32*8) |.else | daddiu sp, sp, -(32*8) |.endif | savex_ 0, 1 | savex_ 2, 3 | savex_ 4, 5 | savex_ 6, 7 | savex_ 8, 9 | savex_ 10, 11 | savex_ 12, 13 | savex_ 14, 15 | savex_ 16, 17 | savex_ 18, 19 | savex_ 20, 21 | savex_ 22, 23 | savex_ 24, 25 | savex_ 26, 27 | savex_ 28, 30 |.if FPU | sdc1 f29, 29*8(sp) | sdc1 f31, 31*8(sp) | sd r0, 32*8+31*8(sp) // Clear RID_TMP. | daddiu TMP2, sp, 32*8+32*8 // Recompute original value of sp. | sd TMP2, 32*8+29*8(sp) // Store sp in RID_SP |.else | sd r0, 31*8(sp) // Clear RID_TMP. | daddiu TMP2, sp, 32*8 // Recompute original value of sp. | sd TMP2, 29*8(sp) // Store sp in RID_SP |.endif | li_vmstate EXIT | daddiu DISPATCH, JGL, -GG_DISP2G-32768 | lw TMP1, 0(TMP2) // Load exit number. | st_vmstate | ld L, DISPATCH_GL(cur_L)(DISPATCH) | ld BASE, DISPATCH_GL(jit_base)(DISPATCH) | load_got lj_trace_exit | sd L, DISPATCH_J(L)(DISPATCH) | sw ra, DISPATCH_J(parent)(DISPATCH) // Store trace number. | sd BASE, L->base | sw TMP1, DISPATCH_J(exitno)(DISPATCH) // Store exit number. | daddiu CARG1, DISPATCH, GG_DISP2J | sd r0, DISPATCH_GL(jit_base)(DISPATCH) | call_intern lj_trace_exit // (jit_State *J, ExitState *ex) |. move CARG2, sp | // Returns MULTRES (unscaled) or negated error code. | ld TMP1, L->cframe | li AT, -4 | ld BASE, L->base | and sp, TMP1, AT | ld PC, SAVE_PC // Get SAVE_PC. | b >1 |. sd L, SAVE_L // Set SAVE_L (on-trace resume/yield). |.endif |->vm_exit_interp: |.if JIT | // CRET1 = MULTRES or negated error code, BASE, PC and JGL set. | ld L, SAVE_L | daddiu DISPATCH, JGL, -GG_DISP2G-32768 | sd BASE, L->base |1: | bltz CRET1, >9 // Check for error from exit. |. ld LFUNC:RB, FRAME_FUNC(BASE) | .FPU lui TMP3, 0x59c0 // TOBIT = 2^52 + 2^51 (float). | dsll MULTRES, CRET1, 3 | cleartp LFUNC:RB | sw MULTRES, SAVE_MULTRES | li TISNIL, LJ_TNIL | li TISNUM, LJ_TISNUM // Setup type comparison constants. | .FPU mtc1 TMP3, TOBIT | ld TMP1, LFUNC:RB->pc | sd r0, DISPATCH_GL(jit_base)(DISPATCH) | ld KBASE, PC2PROTO(k)(TMP1) | .FPU cvt.d.s TOBIT, TOBIT | // Modified copy of ins_next which handles function header dispatch, too. | lw INS, 0(PC) | daddiu PC, PC, 4 | // Assumes TISNIL == ~LJ_VMST_INTERP == -1 | sw TISNIL, DISPATCH_GL(vmstate)(DISPATCH) | decode_OP8a TMP1, INS | decode_OP8b TMP1 | sltiu TMP2, TMP1, BC_FUNCF*8 | daddu TMP0, DISPATCH, TMP1 | decode_RD8a RD, INS | ld AT, 0(TMP0) | decode_RA8a RA, INS | beqz TMP2, >2 |. decode_RA8b RA | jr AT |. decode_RD8b RD |2: | sltiu TMP2, TMP1, (BC_FUNCC+2)*8 // Fast function? | bnez TMP2, >3 |. ld TMP1, FRAME_PC(BASE) | // Check frame below fast function. | andi TMP0, TMP1, FRAME_TYPE | bnez TMP0, >3 // Trace stitching continuation? |. nop | // Otherwise set KBASE for Lua function below fast function. | lw TMP2, -4(TMP1) | decode_RA8a TMP0, TMP2 | decode_RA8b TMP0 | dsubu TMP1, BASE, TMP0 | ld LFUNC:TMP2, -32(TMP1) | cleartp LFUNC:TMP2 | ld TMP1, LFUNC:TMP2->pc | ld KBASE, PC2PROTO(k)(TMP1) |3: | daddiu RC, MULTRES, -8 | jr AT |. daddu RA, RA, BASE | |9: // Rethrow error from the right C frame. | load_got lj_err_throw | negu CARG2, CRET1 | call_intern lj_err_throw // (lua_State *L, int errcode) |. move CARG1, L |.endif | |//----------------------------------------------------------------------- |//-- Math helper functions ---------------------------------------------- |//----------------------------------------------------------------------- | |// Hard-float round to integer. |// Modifies AT, TMP0, FRET1, FRET2, f4. Keeps all others incl. FARG1. |.macro vm_round_hf, func | lui TMP0, 0x4330 // Hiword of 2^52 (double). | dsll TMP0, TMP0, 32 | dmtc1 TMP0, f4 | abs.d FRET2, FARG1 // |x| | dmfc1 AT, FARG1 | c.olt.d 0, FRET2, f4 | add.d FRET1, FRET2, f4 // (|x| + 2^52) - 2^52 | bc1f 0, >1 // Truncate only if |x| < 2^52. |. sub.d FRET1, FRET1, f4 | slt AT, AT, r0 |.if "func" == "ceil" | lui TMP0, 0xbff0 // Hiword of -1 (double). Preserves -0. |.else | lui TMP0, 0x3ff0 // Hiword of +1 (double). |.endif |.if "func" == "trunc" | dsll TMP0, TMP0, 32 | dmtc1 TMP0, f4 | c.olt.d 0, FRET2, FRET1 // |x| < result? | sub.d FRET2, FRET1, f4 | movt.d FRET1, FRET2, 0 // If yes, subtract +1. | neg.d FRET2, FRET1 | jr ra |. movn.d FRET1, FRET2, AT // Merge sign bit back in. |.else | neg.d FRET2, FRET1 | dsll TMP0, TMP0, 32 | dmtc1 TMP0, f4 | movn.d FRET1, FRET2, AT // Merge sign bit back in. |.if "func" == "ceil" | c.olt.d 0, FRET1, FARG1 // x > result? |.else | c.olt.d 0, FARG1, FRET1 // x < result? |.endif | sub.d FRET2, FRET1, f4 // If yes, subtract +-1. | jr ra |. movt.d FRET1, FRET2, 0 |.endif |1: | jr ra |. mov.d FRET1, FARG1 |.endmacro | |.macro vm_round, func |.if FPU | vm_round_hf, func |.endif |.endmacro | |->vm_floor: | vm_round floor |->vm_ceil: | vm_round ceil |->vm_trunc: |.if JIT | vm_round trunc |.endif | |// Soft-float integer to number conversion. |.macro sfi2d, ARG |.if not FPU | beqz ARG, >9 // Handle zero first. |. sra TMP0, ARG, 31 | xor TMP1, ARG, TMP0 | dsubu TMP1, TMP1, TMP0 // Absolute value in TMP1. | dclz ARG, TMP1 | addiu ARG, ARG, -11 | li AT, 0x3ff+63-11-1 | dsllv TMP1, TMP1, ARG // Align mantissa left with leading 1. | subu ARG, AT, ARG // Exponent - 1. | ins ARG, TMP0, 11, 11 // Sign | Exponent. | dsll ARG, ARG, 52 // Align left. | jr ra |. daddu ARG, ARG, TMP1 // Add mantissa, increment exponent. |9: | jr ra |. nop |.endif |.endmacro | |// Input CARG1. Output: CARG1. Temporaries: AT, TMP0, TMP1. |->vm_sfi2d_1: | sfi2d CARG1 | |// Input CARG2. Output: CARG2. Temporaries: AT, TMP0, TMP1. |->vm_sfi2d_2: | sfi2d CARG2 | |// Soft-float comparison. Equivalent to c.eq.d. |// Input: CARG*. Output: CRET1. Temporaries: AT, TMP0, TMP1. |->vm_sfcmpeq: |.if not FPU | dsll AT, CARG1, 1 | dsll TMP0, CARG2, 1 | or TMP1, AT, TMP0 | beqz TMP1, >8 // Both args +-0: return 1. |. lui TMP1, 0xffe0 | dsll TMP1, TMP1, 32 | sltu AT, TMP1, AT | sltu TMP0, TMP1, TMP0 | or TMP1, AT, TMP0 | bnez TMP1, >9 // Either arg is NaN: return 0; |. xor AT, CARG1, CARG2 | jr ra |. sltiu CRET1, AT, 1 // Same values: return 1. |8: | jr ra |. li CRET1, 1 |9: | jr ra |. li CRET1, 0 |.endif | |// Soft-float comparison. Equivalent to c.ult.d and c.olt.d. |// Input: CARG1, CARG2. Output: CRET1. Temporaries: AT, TMP0, TMP1, CRET2. |->vm_sfcmpult: |.if not FPU | b >1 |. li CRET2, 1 |.endif | |->vm_sfcmpolt: |.if not FPU | li CRET2, 0 |1: | dsll AT, CARG1, 1 | dsll TMP0, CARG2, 1 | or TMP1, AT, TMP0 | beqz TMP1, >8 // Both args +-0: return 0. |. lui TMP1, 0xffe0 | dsll TMP1, TMP1, 32 | sltu AT, TMP1, AT | sltu TMP0, TMP1, TMP0 | or TMP1, AT, TMP0 | bnez TMP1, >9 // Either arg is NaN: return 0 or 1; |. and AT, CARG1, CARG2 | bltz AT, >5 // Both args negative? |. nop | jr ra |. slt CRET1, CARG1, CARG2 |5: // Swap conditions if both operands are negative. | jr ra |. slt CRET1, CARG2, CARG1 |8: | jr ra |. nop |9: | jr ra |. move CRET1, CRET2 |.endif | |// Soft-float comparison. Equivalent to c.ole.d a, b or c.ole.d b, a. |// Input: CARG1, CARG2, TMP3. Output: CRET1. Temporaries: AT, TMP0, TMP1. |->vm_sfcmpolex: |.if not FPU | dsll AT, CARG1, 1 | dsll TMP0, CARG2, 1 | or TMP1, AT, TMP0 | beqz TMP1, >8 // Both args +-0: return 1. |. lui TMP1, 0xffe0 | dsll TMP1, TMP1, 32 | sltu AT, TMP1, AT | sltu TMP0, TMP1, TMP0 | or TMP1, AT, TMP0 | bnez TMP1, >9 // Either arg is NaN: return 0; |. and AT, CARG1, CARG2 | xor AT, AT, TMP3 | bltz AT, >5 // Both args negative? |. nop | jr ra |. slt CRET1, CARG2, CARG1 |5: // Swap conditions if both operands are negative. | jr ra |. slt CRET1, CARG1, CARG2 |8: | jr ra |. li CRET1, 1 |9: | jr ra |. li CRET1, 0 |.endif | |//----------------------------------------------------------------------- |//-- Miscellaneous functions -------------------------------------------- |//----------------------------------------------------------------------- | |//----------------------------------------------------------------------- |//-- FFI helper functions ----------------------------------------------- |//----------------------------------------------------------------------- | |// Handler for callback functions. Callback slot number in r1, g in r2. |->vm_ffi_callback: |.if FFI |.type CTSTATE, CTState, PC | saveregs | ld CTSTATE, GL:r2->ctype_state | daddiu DISPATCH, r2, GG_G2DISP | load_got lj_ccallback_enter | sw r1, CTSTATE->cb.slot | sd CARG1, CTSTATE->cb.gpr[0] | .FPU sdc1 FARG1, CTSTATE->cb.fpr[0] | sd CARG2, CTSTATE->cb.gpr[1] | .FPU sdc1 FARG2, CTSTATE->cb.fpr[1] | sd CARG3, CTSTATE->cb.gpr[2] | .FPU sdc1 FARG3, CTSTATE->cb.fpr[2] | sd CARG4, CTSTATE->cb.gpr[3] | .FPU sdc1 FARG4, CTSTATE->cb.fpr[3] | sd CARG5, CTSTATE->cb.gpr[4] | .FPU sdc1 FARG5, CTSTATE->cb.fpr[4] | sd CARG6, CTSTATE->cb.gpr[5] | .FPU sdc1 FARG6, CTSTATE->cb.fpr[5] | sd CARG7, CTSTATE->cb.gpr[6] | .FPU sdc1 FARG7, CTSTATE->cb.fpr[6] | sd CARG8, CTSTATE->cb.gpr[7] | .FPU sdc1 FARG8, CTSTATE->cb.fpr[7] | daddiu TMP0, sp, CFRAME_SPACE | sd TMP0, CTSTATE->cb.stack | sd r0, SAVE_PC // Any value outside of bytecode is ok. | move CARG2, sp | call_intern lj_ccallback_enter // (CTState *cts, void *cf) |. move CARG1, CTSTATE | // Returns lua_State *. | ld BASE, L:CRET1->base | ld RC, L:CRET1->top | move L, CRET1 | .FPU lui TMP3, 0x59c0 // TOBIT = 2^52 + 2^51 (float). | ld LFUNC:RB, FRAME_FUNC(BASE) | .FPU mtc1 TMP3, TOBIT | li TISNIL, LJ_TNIL | li TISNUM, LJ_TISNUM | li_vmstate INTERP | subu RC, RC, BASE | cleartp LFUNC:RB | st_vmstate | .FPU cvt.d.s TOBIT, TOBIT | ins_callt |.endif | |->cont_ffi_callback: // Return from FFI callback. |.if FFI | load_got lj_ccallback_leave | ld CTSTATE, DISPATCH_GL(ctype_state)(DISPATCH) | sd BASE, L->base | sd RB, L->top | sd L, CTSTATE->L | move CARG2, RA | call_intern lj_ccallback_leave // (CTState *cts, TValue *o) |. move CARG1, CTSTATE | .FPU ldc1 FRET1, CTSTATE->cb.fpr[0] | ld CRET1, CTSTATE->cb.gpr[0] | .FPU ldc1 FRET2, CTSTATE->cb.fpr[1] | b ->vm_leave_unw |. ld CRET2, CTSTATE->cb.gpr[1] |.endif | |->vm_ffi_call: // Call C function via FFI. | // Caveat: needs special frame unwinding, see below. |.if FFI | .type CCSTATE, CCallState, CARG1 | lw TMP1, CCSTATE->spadj | lbu CARG2, CCSTATE->nsp | move TMP2, sp | dsubu sp, sp, TMP1 | sd ra, -8(TMP2) | sll CARG2, CARG2, 3 | sd r16, -16(TMP2) | sd CCSTATE, -24(TMP2) | move r16, TMP2 | daddiu TMP1, CCSTATE, offsetof(CCallState, stack) | move TMP2, sp | beqz CARG2, >2 |. daddu TMP3, TMP1, CARG2 |1: | ld TMP0, 0(TMP1) | daddiu TMP1, TMP1, 8 | sltu AT, TMP1, TMP3 | sd TMP0, 0(TMP2) | bnez AT, <1 |. daddiu TMP2, TMP2, 8 |2: | ld CFUNCADDR, CCSTATE->func | .FPU ldc1 FARG1, CCSTATE->gpr[0] | ld CARG2, CCSTATE->gpr[1] | .FPU ldc1 FARG2, CCSTATE->gpr[1] | ld CARG3, CCSTATE->gpr[2] | .FPU ldc1 FARG3, CCSTATE->gpr[2] | ld CARG4, CCSTATE->gpr[3] | .FPU ldc1 FARG4, CCSTATE->gpr[3] | ld CARG5, CCSTATE->gpr[4] | .FPU ldc1 FARG5, CCSTATE->gpr[4] | ld CARG6, CCSTATE->gpr[5] | .FPU ldc1 FARG6, CCSTATE->gpr[5] | ld CARG7, CCSTATE->gpr[6] | .FPU ldc1 FARG7, CCSTATE->gpr[6] | ld CARG8, CCSTATE->gpr[7] | .FPU ldc1 FARG8, CCSTATE->gpr[7] | jalr CFUNCADDR |. ld CARG1, CCSTATE->gpr[0] // Do this last, since CCSTATE is CARG1. | ld CCSTATE:TMP1, -24(r16) | ld TMP2, -16(r16) | ld ra, -8(r16) | sd CRET1, CCSTATE:TMP1->gpr[0] | sd CRET2, CCSTATE:TMP1->gpr[1] |.if FPU | sdc1 FRET1, CCSTATE:TMP1->fpr[0] | sdc1 FRET2, CCSTATE:TMP1->fpr[1] |.else | sd CARG1, CCSTATE:TMP1->gpr[2] // 2nd FP struct field for soft-float. |.endif | move sp, r16 | jr ra |. move r16, TMP2 |.endif |// Note: vm_ffi_call must be the last function in this object file! | |//----------------------------------------------------------------------- } /* Generate the code for a single instruction. */ static void build_ins(BuildCtx *ctx, BCOp op, int defop) { int vk = 0; |=>defop: switch (op) { /* -- Comparison ops ---------------------------------------------------- */ /* Remember: all ops branch for a true comparison, fall through otherwise. */ case BC_ISLT: case BC_ISGE: case BC_ISLE: case BC_ISGT: | // RA = src1*8, RD = src2*8, JMP with RD = target |.macro bc_comp, FRA, FRD, ARGRA, ARGRD, movop, fmovop, fcomp, sfcomp | daddu RA, BASE, RA | daddu RD, BASE, RD | ld ARGRA, 0(RA) | ld ARGRD, 0(RD) | lhu TMP2, OFS_RD(PC) | gettp CARG3, ARGRA | gettp CARG4, ARGRD | bne CARG3, TISNUM, >2 |. daddiu PC, PC, 4 | bne CARG4, TISNUM, >5 |. decode_RD4b TMP2 | sextw ARGRA, ARGRA | sextw ARGRD, ARGRD | lui TMP3, (-(BCBIAS_J*4 >> 16) & 65535) | slt AT, CARG1, CARG2 | addu TMP2, TMP2, TMP3 | movop TMP2, r0, AT |1: | daddu PC, PC, TMP2 | ins_next | |2: // RA is not an integer. | sltiu AT, CARG3, LJ_TISNUM | beqz AT, ->vmeta_comp |. lui TMP3, (-(BCBIAS_J*4 >> 16) & 65535) | sltiu AT, CARG4, LJ_TISNUM | beqz AT, >4 |. decode_RD4b TMP2 |.if FPU | ldc1 FRA, 0(RA) | ldc1 FRD, 0(RD) |.endif |3: // RA and RD are both numbers. |.if FPU | fcomp f20, f22 | addu TMP2, TMP2, TMP3 | b <1 |. fmovop TMP2, r0 |.else | bal sfcomp |. addu TMP2, TMP2, TMP3 | b <1 |. movop TMP2, r0, CRET1 |.endif | |4: // RA is a number, RD is not a number. | bne CARG4, TISNUM, ->vmeta_comp | // RA is a number, RD is an integer. Convert RD to a number. |.if FPU |. lwc1 FRD, LO(RD) | ldc1 FRA, 0(RA) | b <3 |. cvt.d.w FRD, FRD |.else |.if "ARGRD" == "CARG1" |. sextw CARG1, CARG1 | bal ->vm_sfi2d_1 |. nop |.else |. sextw CARG2, CARG2 | bal ->vm_sfi2d_2 |. nop |.endif | b <3 |. nop |.endif | |5: // RA is an integer, RD is not an integer | sltiu AT, CARG4, LJ_TISNUM | beqz AT, ->vmeta_comp |. lui TMP3, (-(BCBIAS_J*4 >> 16) & 65535) | // RA is an integer, RD is a number. Convert RA to a number. |.if FPU | lwc1 FRA, LO(RA) | ldc1 FRD, 0(RD) | b <3 | cvt.d.w FRA, FRA |.else |.if "ARGRA" == "CARG1" | bal ->vm_sfi2d_1 |. sextw CARG1, CARG1 |.else | bal ->vm_sfi2d_2 |. sextw CARG2, CARG2 |.endif | b <3 |. nop |.endif |.endmacro | if (op == BC_ISLT) { | bc_comp f20, f22, CARG1, CARG2, movz, movf, c.olt.d, ->vm_sfcmpolt } else if (op == BC_ISGE) { | bc_comp f20, f22, CARG1, CARG2, movn, movt, c.olt.d, ->vm_sfcmpolt } else if (op == BC_ISLE) { | bc_comp f22, f20, CARG2, CARG1, movn, movt, c.ult.d, ->vm_sfcmpult } else { | bc_comp f22, f20, CARG2, CARG1, movz, movf, c.ult.d, ->vm_sfcmpult } break; case BC_ISEQV: case BC_ISNEV: vk = op == BC_ISEQV; | // RA = src1*8, RD = src2*8, JMP with RD = target | daddu RA, BASE, RA | daddiu PC, PC, 4 | daddu RD, BASE, RD | ld CARG1, 0(RA) | lhu TMP2, -4+OFS_RD(PC) | ld CARG2, 0(RD) | gettp CARG3, CARG1 | gettp CARG4, CARG2 | sltu AT, TISNUM, CARG3 | sltu TMP1, TISNUM, CARG4 | or AT, AT, TMP1 if (vk) { | beqz AT, ->BC_ISEQN_Z } else { | beqz AT, ->BC_ISNEN_Z } | // Either or both types are not numbers. | lui TMP3, (-(BCBIAS_J*4 >> 16) & 65535) |.if FFI |. li AT, LJ_TCDATA | beq CARG3, AT, ->vmeta_equal_cd |.endif | decode_RD4b TMP2 |.if FFI | beq CARG4, AT, ->vmeta_equal_cd |. nop |.endif | bne CARG1, CARG2, >2 |. addu TMP2, TMP2, TMP3 | // Tag and value are equal. if (vk) { |->BC_ISEQV_Z: | daddu PC, PC, TMP2 } |1: | ins_next | |2: // Check if the tags are the same and it's a table or userdata. | xor AT, CARG3, CARG4 // Same type? | sltiu TMP0, CARG3, LJ_TISTABUD+1 // Table or userdata? | movn TMP0, r0, AT if (vk) { | beqz TMP0, <1 } else { | beqz TMP0, ->BC_ISEQV_Z // Reuse code from opposite instruction. } | // Different tables or userdatas. Need to check __eq metamethod. | // Field metatable must be at same offset for GCtab and GCudata! |. cleartp TAB:TMP1, CARG1 | ld TAB:TMP3, TAB:TMP1->metatable if (vk) { | beqz TAB:TMP3, <1 // No metatable? |. nop | lbu TMP3, TAB:TMP3->nomm | andi TMP3, TMP3, 1<1 // Or 'no __eq' flag set? } else { | beqz TAB:TMP3,->BC_ISEQV_Z // No metatable? |. nop | lbu TMP3, TAB:TMP3->nomm | andi TMP3, TMP3, 1<BC_ISEQV_Z // Or 'no __eq' flag set? } |. nop | b ->vmeta_equal // Handle __eq metamethod. |. li TMP0, 1-vk // ne = 0 or 1. break; case BC_ISEQS: case BC_ISNES: vk = op == BC_ISEQS; | // RA = src*8, RD = str_const*8 (~), JMP with RD = target | daddu RA, BASE, RA | daddiu PC, PC, 4 | ld CARG1, 0(RA) | dsubu RD, KBASE, RD | lhu TMP2, -4+OFS_RD(PC) | ld CARG2, -8(RD) // KBASE-8-str_const*8 |.if FFI | gettp TMP0, CARG1 | li AT, LJ_TCDATA |.endif | li TMP1, LJ_TSTR | decode_RD4b TMP2 |.if FFI | beq TMP0, AT, ->vmeta_equal_cd |.endif |. settp CARG2, TMP1 | lui TMP3, (-(BCBIAS_J*4 >> 16) & 65535) | xor TMP1, CARG1, CARG2 | addu TMP2, TMP2, TMP3 if (vk) { | movn TMP2, r0, TMP1 } else { | movz TMP2, r0, TMP1 } | daddu PC, PC, TMP2 | ins_next break; case BC_ISEQN: case BC_ISNEN: vk = op == BC_ISEQN; | // RA = src*8, RD = num_const*8, JMP with RD = target | daddu RA, BASE, RA | daddu RD, KBASE, RD | ld CARG1, 0(RA) | ld CARG2, 0(RD) | lhu TMP2, OFS_RD(PC) | gettp CARG3, CARG1 | gettp CARG4, CARG2 | daddiu PC, PC, 4 | lui TMP3, (-(BCBIAS_J*4 >> 16) & 65535) if (vk) { |->BC_ISEQN_Z: } else { |->BC_ISNEN_Z: } | bne CARG3, TISNUM, >3 |. decode_RD4b TMP2 | bne CARG4, TISNUM, >6 |. addu TMP2, TMP2, TMP3 | xor AT, CARG1, CARG2 if (vk) { | movn TMP2, r0, AT |1: | daddu PC, PC, TMP2 |2: } else { | movz TMP2, r0, AT |1: |2: | daddu PC, PC, TMP2 } | ins_next | |3: // RA is not an integer. | sltu AT, CARG3, TISNUM |.if FFI | beqz AT, >8 |.else | beqz AT, <2 |.endif |. addu TMP2, TMP2, TMP3 | sltu AT, CARG4, TISNUM |.if FPU | ldc1 f20, 0(RA) | ldc1 f22, 0(RD) |.endif | beqz AT, >5 |. nop |4: // RA and RD are both numbers. |.if FPU | c.eq.d f20, f22 | b <1 if (vk) { |. movf TMP2, r0 } else { |. movt TMP2, r0 } |.else | bal ->vm_sfcmpeq |. nop | b <1 if (vk) { |. movz TMP2, r0, CRET1 } else { |. movn TMP2, r0, CRET1 } |.endif | |5: // RA is a number, RD is not a number. |.if FFI | bne CARG4, TISNUM, >9 |.else | bne CARG4, TISNUM, <2 |.endif | // RA is a number, RD is an integer. Convert RD to a number. |.if FPU |. lwc1 f22, LO(RD) | b <4 |. cvt.d.w f22, f22 |.else |. sextw CARG2, CARG2 | bal ->vm_sfi2d_2 |. nop | b <4 |. nop |.endif | |6: // RA is an integer, RD is not an integer | sltu AT, CARG4, TISNUM |.if FFI | beqz AT, >9 |.else | beqz AT, <2 |.endif | // RA is an integer, RD is a number. Convert RA to a number. |.if FPU |. lwc1 f20, LO(RA) | ldc1 f22, 0(RD) | b <4 | cvt.d.w f20, f20 |.else |. sextw CARG1, CARG1 | bal ->vm_sfi2d_1 |. nop | b <4 |. nop |.endif | |.if FFI |8: | li AT, LJ_TCDATA | bne CARG3, AT, <2 |. nop | b ->vmeta_equal_cd |. nop |9: | li AT, LJ_TCDATA | bne CARG4, AT, <2 |. nop | b ->vmeta_equal_cd |. nop |.endif break; case BC_ISEQP: case BC_ISNEP: vk = op == BC_ISEQP; | // RA = src*8, RD = primitive_type*8 (~), JMP with RD = target | daddu RA, BASE, RA | srl TMP1, RD, 3 | ld TMP0, 0(RA) | lhu TMP2, OFS_RD(PC) | not TMP1, TMP1 | gettp TMP0, TMP0 | daddiu PC, PC, 4 |.if FFI | li AT, LJ_TCDATA | beq TMP0, AT, ->vmeta_equal_cd |.endif |. xor TMP0, TMP0, TMP1 | decode_RD4b TMP2 | lui TMP3, (-(BCBIAS_J*4 >> 16) & 65535) | addu TMP2, TMP2, TMP3 if (vk) { | movn TMP2, r0, TMP0 } else { | movz TMP2, r0, TMP0 } | daddu PC, PC, TMP2 | ins_next break; /* -- Unary test and copy ops ------------------------------------------- */ case BC_ISTC: case BC_ISFC: case BC_IST: case BC_ISF: | // RA = dst*8 or unused, RD = src*8, JMP with RD = target | daddu RD, BASE, RD | lhu TMP2, OFS_RD(PC) | ld TMP0, 0(RD) | daddiu PC, PC, 4 | gettp TMP0, TMP0 | sltiu TMP0, TMP0, LJ_TISTRUECOND if (op == BC_IST || op == BC_ISF) { | decode_RD4b TMP2 | lui TMP3, (-(BCBIAS_J*4 >> 16) & 65535) | addu TMP2, TMP2, TMP3 if (op == BC_IST) { | movz TMP2, r0, TMP0 } else { | movn TMP2, r0, TMP0 } | daddu PC, PC, TMP2 } else { | ld CRET1, 0(RD) if (op == BC_ISTC) { | beqz TMP0, >1 } else { | bnez TMP0, >1 } |. daddu RA, BASE, RA | decode_RD4b TMP2 | lui TMP3, (-(BCBIAS_J*4 >> 16) & 65535) | addu TMP2, TMP2, TMP3 | sd CRET1, 0(RA) | daddu PC, PC, TMP2 |1: } | ins_next break; case BC_ISTYPE: | // RA = src*8, RD = -type*8 | daddu TMP2, BASE, RA | srl TMP1, RD, 3 | ld TMP0, 0(TMP2) | ins_next1 | gettp TMP0, TMP0 | daddu AT, TMP0, TMP1 | bnez AT, ->vmeta_istype |. ins_next2 break; case BC_ISNUM: | // RA = src*8, RD = -(TISNUM-1)*8 | daddu TMP2, BASE, RA | ld TMP0, 0(TMP2) | ins_next1 | checknum TMP0, ->vmeta_istype |. ins_next2 break; /* -- Unary ops --------------------------------------------------------- */ case BC_MOV: | // RA = dst*8, RD = src*8 | daddu RD, BASE, RD | daddu RA, BASE, RA | ld CRET1, 0(RD) | ins_next1 | sd CRET1, 0(RA) | ins_next2 break; case BC_NOT: | // RA = dst*8, RD = src*8 | daddu RD, BASE, RD | daddu RA, BASE, RA | ld TMP0, 0(RD) | li AT, LJ_TTRUE | gettp TMP0, TMP0 | sltu TMP0, AT, TMP0 | addiu TMP0, TMP0, 1 | dsll TMP0, TMP0, 47 | not TMP0, TMP0 | ins_next1 | sd TMP0, 0(RA) | ins_next2 break; case BC_UNM: | // RA = dst*8, RD = src*8 | daddu RB, BASE, RD | ld CARG1, 0(RB) | daddu RA, BASE, RA | gettp CARG3, CARG1 | bne CARG3, TISNUM, >2 |. lui TMP1, 0x8000 | sextw CARG1, CARG1 | beq CARG1, TMP1, ->vmeta_unm // Meta handler deals with -2^31. |. negu CARG1, CARG1 | zextw CARG1, CARG1 | settp CARG1, TISNUM |1: | ins_next1 | sd CARG1, 0(RA) | ins_next2 |2: | sltiu AT, CARG3, LJ_TISNUM | beqz AT, ->vmeta_unm |. dsll TMP1, TMP1, 32 | b <1 |. xor CARG1, CARG1, TMP1 break; case BC_LEN: | // RA = dst*8, RD = src*8 | daddu CARG2, BASE, RD | daddu RA, BASE, RA | ld TMP0, 0(CARG2) | gettp TMP1, TMP0 | daddiu AT, TMP1, -LJ_TSTR | bnez AT, >2 |. cleartp STR:CARG1, TMP0 | lw CRET1, STR:CARG1->len |1: | settp CRET1, TISNUM | ins_next1 | sd CRET1, 0(RA) | ins_next2 |2: | daddiu AT, TMP1, -LJ_TTAB | bnez AT, ->vmeta_len |. nop #if LJ_52 | ld TAB:TMP2, TAB:CARG1->metatable | bnez TAB:TMP2, >9 |. nop |3: #endif |->BC_LEN_Z: | load_got lj_tab_len | call_intern lj_tab_len // (GCtab *t) |. nop | // Returns uint32_t (but less than 2^31). | b <1 |. nop #if LJ_52 |9: | lbu TMP0, TAB:TMP2->nomm | andi TMP0, TMP0, 1<vmeta_len |. nop #endif break; /* -- Binary ops -------------------------------------------------------- */ |.macro fpmod, a, b, c | bal ->vm_floor // floor(b/c) |. div.d FARG1, b, c | mul.d a, FRET1, c | sub.d a, b, a // b - floor(b/c)*c |.endmacro |.macro sfpmod | daddiu sp, sp, -16 | | load_got __divdf3 | sd CARG1, 0(sp) | call_extern |. sd CARG2, 8(sp) | | load_got floor | call_extern |. move CARG1, CRET1 | | load_got __muldf3 | move CARG1, CRET1 | call_extern |. ld CARG2, 8(sp) | | load_got __subdf3 | ld CARG1, 0(sp) | call_extern |. move CARG2, CRET1 | | daddiu sp, sp, 16 |.endmacro |.macro ins_arithpre, label ||vk = ((int)op - BC_ADDVN) / (BC_ADDNV-BC_ADDVN); | // RA = dst*8, RB = src1*8, RC = src2*8 | num_const*8 ||switch (vk) { ||case 0: | decode_RB8a RB, INS | decode_RB8b RB | decode_RDtoRC8 RC, RD | // RA = dst*8, RB = src1*8, RC = num_const*8 | daddu RB, BASE, RB |.if "label" ~= "none" | b label |.endif |. daddu RC, KBASE, RC || break; ||case 1: | decode_RB8a RC, INS | decode_RB8b RC | decode_RDtoRC8 RB, RD | // RA = dst*8, RB = num_const*8, RC = src1*8 | daddu RC, BASE, RC |.if "label" ~= "none" | b label |.endif |. daddu RB, KBASE, RB || break; ||default: | decode_RB8a RB, INS | decode_RB8b RB | decode_RDtoRC8 RC, RD | // RA = dst*8, RB = src1*8, RC = src2*8 | daddu RB, BASE, RB |.if "label" ~= "none" | b label |.endif |. daddu RC, BASE, RC || break; ||} |.endmacro | |.macro ins_arith, intins, fpins, fpcall, label | ins_arithpre none | |.if "label" ~= "none" |label: |.endif | |// Used in 5. | ld CARG1, 0(RB) | ld CARG2, 0(RC) | gettp TMP0, CARG1 | gettp TMP1, CARG2 | |.if "intins" ~= "div" | | // Check for two integers. | sextw CARG3, CARG1 | bne TMP0, TISNUM, >5 |. sextw CARG4, CARG2 | bne TMP1, TISNUM, >5 | |.if "intins" == "addu" |. intins CRET1, CARG3, CARG4 | xor TMP1, CRET1, CARG3 // ((y^a) & (y^b)) < 0: overflow. | xor TMP2, CRET1, CARG4 | and TMP1, TMP1, TMP2 | bltz TMP1, ->vmeta_arith |. daddu RA, BASE, RA |.elif "intins" == "subu" |. intins CRET1, CARG3, CARG4 | xor TMP1, CRET1, CARG3 // ((y^a) & (a^b)) < 0: overflow. | xor TMP2, CARG3, CARG4 | and TMP1, TMP1, TMP2 | bltz TMP1, ->vmeta_arith |. daddu RA, BASE, RA |.elif "intins" == "mult" |. intins CARG3, CARG4 | mflo CRET1 | mfhi TMP2 | sra TMP1, CRET1, 31 | bne TMP1, TMP2, ->vmeta_arith |. daddu RA, BASE, RA |.else |. load_got lj_vm_modi | beqz CARG4, ->vmeta_arith |. daddu RA, BASE, RA | move CARG1, CARG3 | call_extern |. move CARG2, CARG4 |.endif | | zextw CRET1, CRET1 | settp CRET1, TISNUM | ins_next1 | sd CRET1, 0(RA) |3: | ins_next2 | |.endif | |5: // Check for two numbers. | .FPU ldc1 f20, 0(RB) | sltu AT, TMP0, TISNUM | sltu TMP0, TMP1, TISNUM | .FPU ldc1 f22, 0(RC) | and AT, AT, TMP0 | beqz AT, ->vmeta_arith |. daddu RA, BASE, RA | |.if FPU | fpins FRET1, f20, f22 |.elif "fpcall" == "sfpmod" | sfpmod |.else | load_got fpcall | call_extern |. nop |.endif | | ins_next1 |.if "intins" ~= "div" | b <3 |.endif |.if FPU |. sdc1 FRET1, 0(RA) |.else |. sd CRET1, 0(RA) |.endif |.if "intins" == "div" | ins_next2 |.endif | |.endmacro case BC_ADDVN: case BC_ADDNV: case BC_ADDVV: | ins_arith addu, add.d, __adddf3, none break; case BC_SUBVN: case BC_SUBNV: case BC_SUBVV: | ins_arith subu, sub.d, __subdf3, none break; case BC_MULVN: case BC_MULNV: case BC_MULVV: | ins_arith mult, mul.d, __muldf3, none break; case BC_DIVVN: | ins_arith div, div.d, __divdf3, ->BC_DIVVN_Z break; case BC_DIVNV: case BC_DIVVV: | ins_arithpre ->BC_DIVVN_Z break; case BC_MODVN: | ins_arith modi, fpmod, sfpmod, ->BC_MODVN_Z break; case BC_MODNV: case BC_MODVV: | ins_arithpre ->BC_MODVN_Z break; case BC_POW: | ins_arithpre none | ld CARG1, 0(RB) | ld CARG2, 0(RC) | gettp TMP0, CARG1 | gettp TMP1, CARG2 | sltiu TMP0, TMP0, LJ_TISNUM | sltiu TMP1, TMP1, LJ_TISNUM | and AT, TMP0, TMP1 | load_got pow | beqz AT, ->vmeta_arith |. daddu RA, BASE, RA |.if FPU | ldc1 FARG1, 0(RB) | ldc1 FARG2, 0(RC) |.endif | call_extern |. nop | ins_next1 |.if FPU | sdc1 FRET1, 0(RA) |.else | sd CRET1, 0(RA) |.endif | ins_next2 break; case BC_CAT: | // RA = dst*8, RB = src_start*8, RC = src_end*8 | decode_RB8a RB, INS | decode_RB8b RB | decode_RDtoRC8 RC, RD | dsubu CARG3, RC, RB | sd BASE, L->base | daddu CARG2, BASE, RC | move MULTRES, RB |->BC_CAT_Z: | load_got lj_meta_cat | srl CARG3, CARG3, 3 | sd PC, SAVE_PC | call_intern lj_meta_cat // (lua_State *L, TValue *top, int left) |. move CARG1, L | // Returns NULL (finished) or TValue * (metamethod). | bnez CRET1, ->vmeta_binop |. ld BASE, L->base | daddu RB, BASE, MULTRES | ld CRET1, 0(RB) | daddu RA, BASE, RA | ins_next1 | sd CRET1, 0(RA) | ins_next2 break; /* -- Constant ops ------------------------------------------------------ */ case BC_KSTR: | // RA = dst*8, RD = str_const*8 (~) | dsubu TMP1, KBASE, RD | ins_next1 | li TMP2, LJ_TSTR | ld TMP0, -8(TMP1) // KBASE-8-str_const*8 | daddu RA, BASE, RA | settp TMP0, TMP2 | sd TMP0, 0(RA) | ins_next2 break; case BC_KCDATA: |.if FFI | // RA = dst*8, RD = cdata_const*8 (~) | dsubu TMP1, KBASE, RD | ins_next1 | ld TMP0, -8(TMP1) // KBASE-8-cdata_const*8 | li TMP2, LJ_TCDATA | daddu RA, BASE, RA | settp TMP0, TMP2 | sd TMP0, 0(RA) | ins_next2 |.endif break; case BC_KSHORT: | // RA = dst*8, RD = int16_literal*8 | sra RD, INS, 16 | daddu RA, BASE, RA | zextw RD, RD | ins_next1 | settp RD, TISNUM | sd RD, 0(RA) | ins_next2 break; case BC_KNUM: | // RA = dst*8, RD = num_const*8 | daddu RD, KBASE, RD | daddu RA, BASE, RA | ld CRET1, 0(RD) | ins_next1 | sd CRET1, 0(RA) | ins_next2 break; case BC_KPRI: | // RA = dst*8, RD = primitive_type*8 (~) | daddu RA, BASE, RA | dsll TMP0, RD, 44 | not TMP0, TMP0 | ins_next1 | sd TMP0, 0(RA) | ins_next2 break; case BC_KNIL: | // RA = base*8, RD = end*8 | daddu RA, BASE, RA | sd TISNIL, 0(RA) | daddiu RA, RA, 8 | daddu RD, BASE, RD |1: | sd TISNIL, 0(RA) | slt AT, RA, RD | bnez AT, <1 |. daddiu RA, RA, 8 | ins_next_ break; /* -- Upvalue and function ops ------------------------------------------ */ case BC_UGET: | // RA = dst*8, RD = uvnum*8 | ld LFUNC:RB, FRAME_FUNC(BASE) | daddu RA, BASE, RA | cleartp LFUNC:RB | daddu RD, RD, LFUNC:RB | ld UPVAL:RB, LFUNC:RD->uvptr | ins_next1 | ld TMP1, UPVAL:RB->v | ld CRET1, 0(TMP1) | sd CRET1, 0(RA) | ins_next2 break; case BC_USETV: | // RA = uvnum*8, RD = src*8 | ld LFUNC:RB, FRAME_FUNC(BASE) | daddu RD, BASE, RD | cleartp LFUNC:RB | daddu RA, RA, LFUNC:RB | ld UPVAL:RB, LFUNC:RA->uvptr | ld CRET1, 0(RD) | lbu TMP3, UPVAL:RB->marked | ld CARG2, UPVAL:RB->v | andi TMP3, TMP3, LJ_GC_BLACK // isblack(uv) | lbu TMP0, UPVAL:RB->closed | gettp TMP2, CRET1 | sd CRET1, 0(CARG2) | li AT, LJ_GC_BLACK|1 | or TMP3, TMP3, TMP0 | beq TMP3, AT, >2 // Upvalue is closed and black? |. daddiu TMP2, TMP2, -(LJ_TNUMX+1) |1: | ins_next | |2: // Check if new value is collectable. | sltiu AT, TMP2, LJ_TISGCV - (LJ_TNUMX+1) | beqz AT, <1 // tvisgcv(v) |. cleartp GCOBJ:CRET1, CRET1 | lbu TMP3, GCOBJ:CRET1->gch.marked | andi TMP3, TMP3, LJ_GC_WHITES // iswhite(v) | beqz TMP3, <1 |. load_got lj_gc_barrieruv | // Crossed a write barrier. Move the barrier forward. | call_intern lj_gc_barrieruv // (global_State *g, TValue *tv) |. daddiu CARG1, DISPATCH, GG_DISP2G | b <1 |. nop break; case BC_USETS: | // RA = uvnum*8, RD = str_const*8 (~) | ld LFUNC:RB, FRAME_FUNC(BASE) | dsubu TMP1, KBASE, RD | cleartp LFUNC:RB | daddu RA, RA, LFUNC:RB | ld UPVAL:RB, LFUNC:RA->uvptr | ld STR:TMP1, -8(TMP1) // KBASE-8-str_const*8 | lbu TMP2, UPVAL:RB->marked | ld CARG2, UPVAL:RB->v | lbu TMP3, STR:TMP1->marked | andi AT, TMP2, LJ_GC_BLACK // isblack(uv) | lbu TMP2, UPVAL:RB->closed | li TMP0, LJ_TSTR | settp TMP1, TMP0 | bnez AT, >2 |. sd TMP1, 0(CARG2) |1: | ins_next | |2: // Check if string is white and ensure upvalue is closed. | beqz TMP2, <1 |. andi AT, TMP3, LJ_GC_WHITES // iswhite(str) | beqz AT, <1 |. load_got lj_gc_barrieruv | // Crossed a write barrier. Move the barrier forward. | call_intern lj_gc_barrieruv // (global_State *g, TValue *tv) |. daddiu CARG1, DISPATCH, GG_DISP2G | b <1 |. nop break; case BC_USETN: | // RA = uvnum*8, RD = num_const*8 | ld LFUNC:RB, FRAME_FUNC(BASE) | daddu RD, KBASE, RD | cleartp LFUNC:RB | daddu RA, RA, LFUNC:RB | ld UPVAL:RB, LFUNC:RA->uvptr | ld CRET1, 0(RD) | ld TMP1, UPVAL:RB->v | ins_next1 | sd CRET1, 0(TMP1) | ins_next2 break; case BC_USETP: | // RA = uvnum*8, RD = primitive_type*8 (~) | ld LFUNC:RB, FRAME_FUNC(BASE) | dsll TMP0, RD, 44 | cleartp LFUNC:RB | daddu RA, RA, LFUNC:RB | not TMP0, TMP0 | ld UPVAL:RB, LFUNC:RA->uvptr | ins_next1 | ld TMP1, UPVAL:RB->v | sd TMP0, 0(TMP1) | ins_next2 break; case BC_UCLO: | // RA = level*8, RD = target | ld TMP2, L->openupval | branch_RD // Do this first since RD is not saved. | load_got lj_func_closeuv | sd BASE, L->base | beqz TMP2, >1 |. move CARG1, L | call_intern lj_func_closeuv // (lua_State *L, TValue *level) |. daddu CARG2, BASE, RA | ld BASE, L->base |1: | ins_next break; case BC_FNEW: | // RA = dst*8, RD = proto_const*8 (~) (holding function prototype) | load_got lj_func_newL_gc | dsubu TMP1, KBASE, RD | ld CARG3, FRAME_FUNC(BASE) | ld CARG2, -8(TMP1) // KBASE-8-tab_const*8 | sd BASE, L->base | sd PC, SAVE_PC | cleartp CARG3 | // (lua_State *L, GCproto *pt, GCfuncL *parent) | call_intern lj_func_newL_gc |. move CARG1, L | // Returns GCfuncL *. | li TMP0, LJ_TFUNC | ld BASE, L->base | ins_next1 | settp CRET1, TMP0 | daddu RA, BASE, RA | sd CRET1, 0(RA) | ins_next2 break; /* -- Table ops --------------------------------------------------------- */ case BC_TNEW: case BC_TDUP: | // RA = dst*8, RD = (hbits|asize)*8 | tab_const*8 (~) | ld TMP0, DISPATCH_GL(gc.total)(DISPATCH) | ld TMP1, DISPATCH_GL(gc.threshold)(DISPATCH) | sd BASE, L->base | sd PC, SAVE_PC | sltu AT, TMP0, TMP1 | beqz AT, >5 |1: if (op == BC_TNEW) { | load_got lj_tab_new | srl CARG2, RD, 3 | andi CARG2, CARG2, 0x7ff | li TMP0, 0x801 | addiu AT, CARG2, -0x7ff | srl CARG3, RD, 14 | movz CARG2, TMP0, AT | // (lua_State *L, int32_t asize, uint32_t hbits) | call_intern lj_tab_new |. move CARG1, L | // Returns Table *. } else { | load_got lj_tab_dup | dsubu TMP1, KBASE, RD | move CARG1, L | call_intern lj_tab_dup // (lua_State *L, Table *kt) |. ld CARG2, -8(TMP1) // KBASE-8-str_const*8 | // Returns Table *. } | li TMP0, LJ_TTAB | ld BASE, L->base | ins_next1 | daddu RA, BASE, RA | settp CRET1, TMP0 | sd CRET1, 0(RA) | ins_next2 |5: | load_got lj_gc_step_fixtop | move MULTRES, RD | call_intern lj_gc_step_fixtop // (lua_State *L) |. move CARG1, L | b <1 |. move RD, MULTRES break; case BC_GGET: | // RA = dst*8, RD = str_const*8 (~) case BC_GSET: | // RA = src*8, RD = str_const*8 (~) | ld LFUNC:TMP2, FRAME_FUNC(BASE) | dsubu TMP1, KBASE, RD | ld STR:RC, -8(TMP1) // KBASE-8-str_const*8 | cleartp LFUNC:TMP2 | ld TAB:RB, LFUNC:TMP2->env if (op == BC_GGET) { | b ->BC_TGETS_Z } else { | b ->BC_TSETS_Z } |. daddu RA, BASE, RA break; case BC_TGETV: | // RA = dst*8, RB = table*8, RC = key*8 | decode_RB8a RB, INS | decode_RB8b RB | decode_RDtoRC8 RC, RD | daddu CARG2, BASE, RB | daddu CARG3, BASE, RC | ld TAB:RB, 0(CARG2) | ld TMP2, 0(CARG3) | daddu RA, BASE, RA | checktab TAB:RB, ->vmeta_tgetv | gettp TMP3, TMP2 | bne TMP3, TISNUM, >5 // Integer key? |. lw TMP0, TAB:RB->asize | sextw TMP2, TMP2 | ld TMP1, TAB:RB->array | sltu AT, TMP2, TMP0 | sll TMP2, TMP2, 3 | beqz AT, ->vmeta_tgetv // Integer key and in array part? |. daddu TMP2, TMP1, TMP2 | ld AT, 0(TMP2) | beq AT, TISNIL, >2 |. ld CRET1, 0(TMP2) |1: | ins_next1 | sd CRET1, 0(RA) | ins_next2 | |2: // Check for __index if table value is nil. | ld TAB:TMP2, TAB:RB->metatable | beqz TAB:TMP2, <1 // No metatable: done. |. nop | lbu TMP0, TAB:TMP2->nomm | andi TMP0, TMP0, 1<vmeta_tgetv |. nop | |5: | li AT, LJ_TSTR | bne TMP3, AT, ->vmeta_tgetv |. cleartp RC, TMP2 | b ->BC_TGETS_Z // String key? |. nop break; case BC_TGETS: | // RA = dst*8, RB = table*8, RC = str_const*8 (~) | decode_RB8a RB, INS | decode_RB8b RB | decode_RC8a RC, INS | daddu CARG2, BASE, RB | decode_RC8b RC | ld TAB:RB, 0(CARG2) | dsubu CARG3, KBASE, RC | daddu RA, BASE, RA | ld STR:RC, -8(CARG3) // KBASE-8-str_const*8 | checktab TAB:RB, ->vmeta_tgets1 |->BC_TGETS_Z: | // TAB:RB = GCtab *, STR:RC = GCstr *, RA = dst*8 | lw TMP0, TAB:RB->hmask | lw TMP1, STR:RC->hash | ld NODE:TMP2, TAB:RB->node | and TMP1, TMP1, TMP0 // idx = str->hash & tab->hmask | sll TMP0, TMP1, 5 | sll TMP1, TMP1, 3 | subu TMP1, TMP0, TMP1 | li TMP3, LJ_TSTR | daddu NODE:TMP2, NODE:TMP2, TMP1 // node = tab->node + (idx*32-idx*8) | settp STR:RC, TMP3 // Tagged key to look for. |1: | ld CARG1, NODE:TMP2->key | ld CRET1, NODE:TMP2->val | ld NODE:TMP1, NODE:TMP2->next | bne CARG1, RC, >4 |. ld TAB:TMP3, TAB:RB->metatable | beq CRET1, TISNIL, >5 // Key found, but nil value? |. nop |3: | ins_next1 | sd CRET1, 0(RA) | ins_next2 | |4: // Follow hash chain. | bnez NODE:TMP1, <1 |. move NODE:TMP2, NODE:TMP1 | // End of hash chain: key not found, nil result. | |5: // Check for __index if table value is nil. | beqz TAB:TMP3, <3 // No metatable: done. |. move CRET1, TISNIL | lbu TMP0, TAB:TMP3->nomm | andi TMP0, TMP0, 1<vmeta_tgets |. nop break; case BC_TGETB: | // RA = dst*8, RB = table*8, RC = index*8 | decode_RB8a RB, INS | decode_RB8b RB | daddu CARG2, BASE, RB | decode_RDtoRC8 RC, RD | ld TAB:RB, 0(CARG2) | daddu RA, BASE, RA | srl TMP0, RC, 3 | checktab TAB:RB, ->vmeta_tgetb | lw TMP1, TAB:RB->asize | ld TMP2, TAB:RB->array | sltu AT, TMP0, TMP1 | beqz AT, ->vmeta_tgetb |. daddu RC, TMP2, RC | ld AT, 0(RC) | beq AT, TISNIL, >5 |. ld CRET1, 0(RC) |1: | ins_next1 | sd CRET1, 0(RA) | ins_next2 | |5: // Check for __index if table value is nil. | ld TAB:TMP2, TAB:RB->metatable | beqz TAB:TMP2, <1 // No metatable: done. |. nop | lbu TMP1, TAB:TMP2->nomm | andi TMP1, TMP1, 1<vmeta_tgetb // Caveat: preserve TMP0 and CARG2! |. nop break; case BC_TGETR: | // RA = dst*8, RB = table*8, RC = key*8 | decode_RB8a RB, INS | decode_RB8b RB | decode_RDtoRC8 RC, RD | daddu RB, BASE, RB | daddu RC, BASE, RC | ld TAB:CARG1, 0(RB) | lw CARG2, LO(RC) | daddu RA, BASE, RA | cleartp TAB:CARG1 | lw TMP0, TAB:CARG1->asize | ld TMP1, TAB:CARG1->array | sltu AT, CARG2, TMP0 | sll TMP2, CARG2, 3 | beqz AT, ->vmeta_tgetr // In array part? |. daddu CRET1, TMP1, TMP2 | ld CARG2, 0(CRET1) |->BC_TGETR_Z: | ins_next1 | sd CARG2, 0(RA) | ins_next2 break; case BC_TSETV: | // RA = src*8, RB = table*8, RC = key*8 | decode_RB8a RB, INS | decode_RB8b RB | decode_RDtoRC8 RC, RD | daddu CARG2, BASE, RB | daddu CARG3, BASE, RC | ld RB, 0(CARG2) | ld TMP2, 0(CARG3) | daddu RA, BASE, RA | checktab RB, ->vmeta_tsetv | checkint TMP2, >5 |. sextw RC, TMP2 | lw TMP0, TAB:RB->asize | ld TMP1, TAB:RB->array | sltu AT, RC, TMP0 | sll TMP2, RC, 3 | beqz AT, ->vmeta_tsetv // Integer key and in array part? |. daddu TMP1, TMP1, TMP2 | ld TMP0, 0(TMP1) | lbu TMP3, TAB:RB->marked | beq TMP0, TISNIL, >3 |. ld CRET1, 0(RA) |1: | andi AT, TMP3, LJ_GC_BLACK // isblack(table) | bnez AT, >7 |. sd CRET1, 0(TMP1) |2: | ins_next | |3: // Check for __newindex if previous value is nil. | ld TAB:TMP2, TAB:RB->metatable | beqz TAB:TMP2, <1 // No metatable: done. |. nop | lbu TMP2, TAB:TMP2->nomm | andi TMP2, TMP2, 1<vmeta_tsetv |. nop | |5: | gettp AT, TMP2 | daddiu AT, AT, -LJ_TSTR | bnez AT, ->vmeta_tsetv |. nop | b ->BC_TSETS_Z // String key? |. cleartp STR:RC, TMP2 | |7: // Possible table write barrier for the value. Skip valiswhite check. | barrierback TAB:RB, TMP3, TMP0, <2 break; case BC_TSETS: | // RA = src*8, RB = table*8, RC = str_const*8 (~) | decode_RB8a RB, INS | decode_RB8b RB | daddu CARG2, BASE, RB | decode_RC8a RC, INS | ld TAB:RB, 0(CARG2) | decode_RC8b RC | dsubu CARG3, KBASE, RC | ld RC, -8(CARG3) // KBASE-8-str_const*8 | daddu RA, BASE, RA | cleartp STR:RC | checktab TAB:RB, ->vmeta_tsets1 |->BC_TSETS_Z: | // TAB:RB = GCtab *, STR:RC = GCstr *, RA = BASE+src*8 | lw TMP0, TAB:RB->hmask | lw TMP1, STR:RC->hash | ld NODE:TMP2, TAB:RB->node | sb r0, TAB:RB->nomm // Clear metamethod cache. | and TMP1, TMP1, TMP0 // idx = str->hash & tab->hmask | sll TMP0, TMP1, 5 | sll TMP1, TMP1, 3 | subu TMP1, TMP0, TMP1 | li TMP3, LJ_TSTR | daddu NODE:TMP2, NODE:TMP2, TMP1 // node = tab->node + (idx*32-idx*8) | settp STR:RC, TMP3 // Tagged key to look for. |.if FPU | ldc1 f20, 0(RA) |.else | ld CRET1, 0(RA) |.endif |1: | ld TMP0, NODE:TMP2->key | ld CARG2, NODE:TMP2->val | ld NODE:TMP1, NODE:TMP2->next | bne TMP0, RC, >5 |. lbu TMP3, TAB:RB->marked | beq CARG2, TISNIL, >4 // Key found, but nil value? |. ld TAB:TMP0, TAB:RB->metatable |2: | andi AT, TMP3, LJ_GC_BLACK // isblack(table) | bnez AT, >7 |.if FPU |. sdc1 f20, NODE:TMP2->val |.else |. sd CRET1, NODE:TMP2->val |.endif |3: | ins_next | |4: // Check for __newindex if previous value is nil. | beqz TAB:TMP0, <2 // No metatable: done. |. nop | lbu TMP0, TAB:TMP0->nomm | andi TMP0, TMP0, 1<vmeta_tsets |. nop | |5: // Follow hash chain. | bnez NODE:TMP1, <1 |. move NODE:TMP2, NODE:TMP1 | // End of hash chain: key not found, add a new one | | // But check for __newindex first. | ld TAB:TMP2, TAB:RB->metatable | beqz TAB:TMP2, >6 // No metatable: continue. |. daddiu CARG3, DISPATCH, DISPATCH_GL(tmptv) | lbu TMP0, TAB:TMP2->nomm | andi TMP0, TMP0, 1<vmeta_tsets // 'no __newindex' flag NOT set: check. |6: | load_got lj_tab_newkey | sd RC, 0(CARG3) | sd BASE, L->base | move CARG2, TAB:RB | sd PC, SAVE_PC | call_intern lj_tab_newkey // (lua_State *L, GCtab *t, TValue *k |. move CARG1, L | // Returns TValue *. | ld BASE, L->base |.if FPU | b <3 // No 2nd write barrier needed. |. sdc1 f20, 0(CRET1) |.else | ld CARG1, 0(RA) | b <3 // No 2nd write barrier needed. |. sd CARG1, 0(CRET1) |.endif | |7: // Possible table write barrier for the value. Skip valiswhite check. | barrierback TAB:RB, TMP3, TMP0, <3 break; case BC_TSETB: | // RA = src*8, RB = table*8, RC = index*8 | decode_RB8a RB, INS | decode_RB8b RB | daddu CARG2, BASE, RB | decode_RDtoRC8 RC, RD | ld TAB:RB, 0(CARG2) | daddu RA, BASE, RA | srl TMP0, RC, 3 | checktab RB, ->vmeta_tsetb | lw TMP1, TAB:RB->asize | ld TMP2, TAB:RB->array | sltu AT, TMP0, TMP1 | beqz AT, ->vmeta_tsetb |. daddu RC, TMP2, RC | ld TMP1, 0(RC) | lbu TMP3, TAB:RB->marked | beq TMP1, TISNIL, >5 |1: |. ld CRET1, 0(RA) | andi AT, TMP3, LJ_GC_BLACK // isblack(table) | bnez AT, >7 |. sd CRET1, 0(RC) |2: | ins_next | |5: // Check for __newindex if previous value is nil. | ld TAB:TMP2, TAB:RB->metatable | beqz TAB:TMP2, <1 // No metatable: done. |. nop | lbu TMP1, TAB:TMP2->nomm | andi TMP1, TMP1, 1<vmeta_tsetb // Caveat: preserve TMP0 and CARG2! |. nop | |7: // Possible table write barrier for the value. Skip valiswhite check. | barrierback TAB:RB, TMP3, TMP0, <2 break; case BC_TSETR: | // RA = dst*8, RB = table*8, RC = key*8 | decode_RB8a RB, INS | decode_RB8b RB | decode_RDtoRC8 RC, RD | daddu CARG1, BASE, RB | daddu CARG3, BASE, RC | ld TAB:CARG2, 0(CARG1) | lw CARG3, LO(CARG3) | cleartp TAB:CARG2 | lbu TMP3, TAB:CARG2->marked | lw TMP0, TAB:CARG2->asize | ld TMP1, TAB:CARG2->array | andi AT, TMP3, LJ_GC_BLACK // isblack(table) | bnez AT, >7 |. daddu RA, BASE, RA |2: | sltu AT, CARG3, TMP0 | sll TMP2, CARG3, 3 | beqz AT, ->vmeta_tsetr // In array part? |. daddu CRET1, TMP1, TMP2 |->BC_TSETR_Z: | ld CARG1, 0(RA) | ins_next1 | sd CARG1, 0(CRET1) | ins_next2 | |7: // Possible table write barrier for the value. Skip valiswhite check. | barrierback TAB:CARG2, TMP3, TMP0, <2 break; case BC_TSETM: | // RA = base*8 (table at base-1), RD = num_const*8 (start index) | daddu RA, BASE, RA |1: | daddu TMP3, KBASE, RD | ld TAB:CARG2, -8(RA) // Guaranteed to be a table. | addiu TMP0, MULTRES, -8 | lw TMP3, LO(TMP3) // Integer constant is in lo-word. | beqz TMP0, >4 // Nothing to copy? |. srl CARG3, TMP0, 3 | cleartp CARG2 | addu CARG3, CARG3, TMP3 | lw TMP2, TAB:CARG2->asize | sll TMP1, TMP3, 3 | lbu TMP3, TAB:CARG2->marked | ld CARG1, TAB:CARG2->array | sltu AT, TMP2, CARG3 | bnez AT, >5 |. daddu TMP2, RA, TMP0 | daddu TMP1, TMP1, CARG1 | andi TMP0, TMP3, LJ_GC_BLACK // isblack(table) |3: // Copy result slots to table. | ld CRET1, 0(RA) | daddiu RA, RA, 8 | sltu AT, RA, TMP2 | sd CRET1, 0(TMP1) | bnez AT, <3 |. daddiu TMP1, TMP1, 8 | bnez TMP0, >7 |. nop |4: | ins_next | |5: // Need to resize array part. | load_got lj_tab_reasize | sd BASE, L->base | sd PC, SAVE_PC | move BASE, RD | call_intern lj_tab_reasize // (lua_State *L, GCtab *t, int nasize) |. move CARG1, L | // Must not reallocate the stack. | move RD, BASE | b <1 |. ld BASE, L->base // Reload BASE for lack of a saved register. | |7: // Possible table write barrier for any value. Skip valiswhite check. | barrierback TAB:CARG2, TMP3, TMP0, <4 break; /* -- Calls and vararg handling ----------------------------------------- */ case BC_CALLM: | // RA = base*8, (RB = (nresults+1)*8,) RC = extra_nargs*8 | decode_RDtoRC8 NARGS8:RC, RD | b ->BC_CALL_Z |. addu NARGS8:RC, NARGS8:RC, MULTRES break; case BC_CALL: | // RA = base*8, (RB = (nresults+1)*8,) RC = (nargs+1)*8 | decode_RDtoRC8 NARGS8:RC, RD |->BC_CALL_Z: | move TMP2, BASE | daddu BASE, BASE, RA | ld LFUNC:RB, 0(BASE) | daddiu BASE, BASE, 16 | addiu NARGS8:RC, NARGS8:RC, -8 | checkfunc RB, ->vmeta_call | ins_call break; case BC_CALLMT: | // RA = base*8, (RB = 0,) RC = extra_nargs*8 | addu NARGS8:RD, NARGS8:RD, MULTRES // BC_CALLT gets RC from RD. | // Fall through. Assumes BC_CALLT follows. break; case BC_CALLT: | // RA = base*8, (RB = 0,) RC = (nargs+1)*8 | daddu RA, BASE, RA | ld RB, 0(RA) | move NARGS8:RC, RD | ld TMP1, FRAME_PC(BASE) | daddiu RA, RA, 16 | addiu NARGS8:RC, NARGS8:RC, -8 | checktp CARG3, RB, -LJ_TFUNC, ->vmeta_callt |->BC_CALLT_Z: | andi TMP0, TMP1, FRAME_TYPE // Caveat: preserve TMP0 until the 'or'. | lbu TMP3, LFUNC:CARG3->ffid | bnez TMP0, >7 |. xori TMP2, TMP1, FRAME_VARG |1: | sd RB, FRAME_FUNC(BASE) // Copy function down, but keep PC. | sltiu AT, TMP3, 2 // (> FF_C) Calling a fast function? | move TMP2, BASE | move RB, CARG3 | beqz NARGS8:RC, >3 |. move TMP3, NARGS8:RC |2: | ld CRET1, 0(RA) | daddiu RA, RA, 8 | addiu TMP3, TMP3, -8 | sd CRET1, 0(TMP2) | bnez TMP3, <2 |. daddiu TMP2, TMP2, 8 |3: | or TMP0, TMP0, AT | beqz TMP0, >5 |. nop |4: | ins_callt | |5: // Tailcall to a fast function with a Lua frame below. | lw INS, -4(TMP1) | decode_RA8a RA, INS | decode_RA8b RA | dsubu TMP1, BASE, RA | ld TMP1, -32(TMP1) | cleartp LFUNC:TMP1 | ld TMP1, LFUNC:TMP1->pc | b <4 |. ld KBASE, PC2PROTO(k)(TMP1) // Need to prepare KBASE. | |7: // Tailcall from a vararg function. | andi AT, TMP2, FRAME_TYPEP | bnez AT, <1 // Vararg frame below? |. dsubu TMP2, BASE, TMP2 // Relocate BASE down. | move BASE, TMP2 | ld TMP1, FRAME_PC(TMP2) | b <1 |. andi TMP0, TMP1, FRAME_TYPE break; case BC_ITERC: | // RA = base*8, (RB = (nresults+1)*8, RC = (nargs+1)*8 ((2+1)*8)) | move TMP2, BASE // Save old BASE fir vmeta_call. | daddu BASE, BASE, RA | ld RB, -24(BASE) | ld CARG1, -16(BASE) | ld CARG2, -8(BASE) | li NARGS8:RC, 16 // Iterators get 2 arguments. | sd RB, 0(BASE) // Copy callable. | sd CARG1, 16(BASE) // Copy state. | sd CARG2, 24(BASE) // Copy control var. | daddiu BASE, BASE, 16 | checkfunc RB, ->vmeta_call | ins_call break; case BC_ITERN: | // RA = base*8, (RB = (nresults+1)*8, RC = (nargs+1)*8 (2+1)*8) |.if JIT | // NYI: add hotloop, record BC_ITERN. |.endif | daddu RA, BASE, RA | ld TAB:RB, -16(RA) | lw RC, -8+LO(RA) // Get index from control var. | cleartp TAB:RB | daddiu PC, PC, 4 | lw TMP0, TAB:RB->asize | ld TMP1, TAB:RB->array | dsll CARG3, TISNUM, 47 |1: // Traverse array part. | sltu AT, RC, TMP0 | beqz AT, >5 // Index points after array part? |. sll TMP3, RC, 3 | daddu TMP3, TMP1, TMP3 | ld CARG1, 0(TMP3) | lhu RD, -4+OFS_RD(PC) | or TMP2, RC, CARG3 | beq CARG1, TISNIL, <1 // Skip holes in array part. |. addiu RC, RC, 1 | sd TMP2, 0(RA) | sd CARG1, 8(RA) | or TMP0, RC, CARG3 | lui TMP3, (-(BCBIAS_J*4 >> 16) & 65535) | decode_RD4b RD | daddu RD, RD, TMP3 | sw TMP0, -8+LO(RA) // Update control var. | daddu PC, PC, RD |3: | ins_next | |5: // Traverse hash part. | lw TMP1, TAB:RB->hmask | subu RC, RC, TMP0 | ld TMP2, TAB:RB->node |6: | sltu AT, TMP1, RC // End of iteration? Branch to ITERL+1. | bnez AT, <3 |. sll TMP3, RC, 5 | sll RB, RC, 3 | subu TMP3, TMP3, RB | daddu NODE:TMP3, TMP3, TMP2 | ld CARG1, 0(NODE:TMP3) | lhu RD, -4+OFS_RD(PC) | beq CARG1, TISNIL, <6 // Skip holes in hash part. |. addiu RC, RC, 1 | ld CARG2, NODE:TMP3->key | lui TMP3, (-(BCBIAS_J*4 >> 16) & 65535) | sd CARG1, 8(RA) | addu RC, RC, TMP0 | decode_RD4b RD | addu RD, RD, TMP3 | sd CARG2, 0(RA) | daddu PC, PC, RD | b <3 |. sw RC, -8+LO(RA) // Update control var. break; case BC_ISNEXT: | // RA = base*8, RD = target (points to ITERN) | daddu RA, BASE, RA | srl TMP0, RD, 1 | ld CFUNC:CARG1, -24(RA) | daddu TMP0, PC, TMP0 | ld CARG2, -16(RA) | ld CARG3, -8(RA) | lui TMP2, (-(BCBIAS_J*4 >> 16) & 65535) | checkfunc CFUNC:CARG1, >5 | gettp CARG2, CARG2 | daddiu CARG2, CARG2, -LJ_TTAB | lbu TMP1, CFUNC:CARG1->ffid | daddiu CARG3, CARG3, -LJ_TNIL | or AT, CARG2, CARG3 | daddiu TMP1, TMP1, -FF_next_N | or AT, AT, TMP1 | bnez AT, >5 |. lui TMP1, 0xfffe | daddu PC, TMP0, TMP2 | ori TMP1, TMP1, 0x7fff | dsll TMP1, TMP1, 32 | sd TMP1, -8(RA) |1: | ins_next |5: // Despecialize bytecode if any of the checks fail. | li TMP3, BC_JMP | li TMP1, BC_ITERC | sb TMP3, -4+OFS_OP(PC) | daddu PC, TMP0, TMP2 | b <1 |. sb TMP1, OFS_OP(PC) break; case BC_VARG: | // RA = base*8, RB = (nresults+1)*8, RC = numparams*8 | ld TMP0, FRAME_PC(BASE) | decode_RDtoRC8 RC, RD | decode_RB8a RB, INS | daddu RC, BASE, RC | decode_RB8b RB | daddu RA, BASE, RA | daddiu RC, RC, FRAME_VARG | daddu TMP2, RA, RB | daddiu TMP3, BASE, -16 // TMP3 = vtop | dsubu RC, RC, TMP0 // RC = vbase | // Note: RC may now be even _above_ BASE if nargs was < numparams. | beqz RB, >5 // Copy all varargs? |. dsubu TMP1, TMP3, RC | daddiu TMP2, TMP2, -16 |1: // Copy vararg slots to destination slots. | ld CARG1, 0(RC) | sltu AT, RC, TMP3 | daddiu RC, RC, 8 | movz CARG1, TISNIL, AT | sd CARG1, 0(RA) | sltu AT, RA, TMP2 | bnez AT, <1 |. daddiu RA, RA, 8 |3: | ins_next | |5: // Copy all varargs. | ld TMP0, L->maxstack | blez TMP1, <3 // No vararg slots? |. li MULTRES, 8 // MULTRES = (0+1)*8 | daddu TMP2, RA, TMP1 | sltu AT, TMP0, TMP2 | bnez AT, >7 |. daddiu MULTRES, TMP1, 8 |6: | ld CRET1, 0(RC) | daddiu RC, RC, 8 | sd CRET1, 0(RA) | sltu AT, RC, TMP3 | bnez AT, <6 // More vararg slots? |. daddiu RA, RA, 8 | b <3 |. nop | |7: // Grow stack for varargs. | load_got lj_state_growstack | sd RA, L->top | dsubu RA, RA, BASE | sd BASE, L->base | dsubu BASE, RC, BASE // Need delta, because BASE may change. | sd PC, SAVE_PC | srl CARG2, TMP1, 3 | call_intern lj_state_growstack // (lua_State *L, int n) |. move CARG1, L | move RC, BASE | ld BASE, L->base | daddu RA, BASE, RA | daddu RC, BASE, RC | b <6 |. daddiu TMP3, BASE, -16 break; /* -- Returns ----------------------------------------------------------- */ case BC_RETM: | // RA = results*8, RD = extra_nresults*8 | addu RD, RD, MULTRES // MULTRES >= 8, so RD >= 8. | // Fall through. Assumes BC_RET follows. break; case BC_RET: | // RA = results*8, RD = (nresults+1)*8 | ld PC, FRAME_PC(BASE) | daddu RA, BASE, RA | move MULTRES, RD |1: | andi TMP0, PC, FRAME_TYPE | bnez TMP0, ->BC_RETV_Z |. xori TMP1, PC, FRAME_VARG | |->BC_RET_Z: | // BASE = base, RA = resultptr, RD = (nresults+1)*8, PC = return | lw INS, -4(PC) | daddiu TMP2, BASE, -16 | daddiu RC, RD, -8 | decode_RA8a TMP0, INS | decode_RB8a RB, INS | decode_RA8b TMP0 | decode_RB8b RB | daddu TMP3, TMP2, RB | beqz RC, >3 |. dsubu BASE, TMP2, TMP0 |2: | ld CRET1, 0(RA) | daddiu RA, RA, 8 | daddiu RC, RC, -8 | sd CRET1, 0(TMP2) | bnez RC, <2 |. daddiu TMP2, TMP2, 8 |3: | daddiu TMP3, TMP3, -8 |5: | sltu AT, TMP2, TMP3 | bnez AT, >6 |. ld LFUNC:TMP1, FRAME_FUNC(BASE) | ins_next1 | cleartp LFUNC:TMP1 | ld TMP1, LFUNC:TMP1->pc | ld KBASE, PC2PROTO(k)(TMP1) | ins_next2 | |6: // Fill up results with nil. | sd TISNIL, 0(TMP2) | b <5 |. daddiu TMP2, TMP2, 8 | |->BC_RETV_Z: // Non-standard return case. | andi TMP2, TMP1, FRAME_TYPEP | bnez TMP2, ->vm_return |. nop | // Return from vararg function: relocate BASE down. | dsubu BASE, BASE, TMP1 | b <1 |. ld PC, FRAME_PC(BASE) break; case BC_RET0: case BC_RET1: | // RA = results*8, RD = (nresults+1)*8 | ld PC, FRAME_PC(BASE) | daddu RA, BASE, RA | move MULTRES, RD | andi TMP0, PC, FRAME_TYPE | bnez TMP0, ->BC_RETV_Z |. xori TMP1, PC, FRAME_VARG | lw INS, -4(PC) | daddiu TMP2, BASE, -16 if (op == BC_RET1) { | ld CRET1, 0(RA) } | decode_RB8a RB, INS | decode_RA8a RA, INS | decode_RB8b RB | decode_RA8b RA | dsubu BASE, TMP2, RA if (op == BC_RET1) { | sd CRET1, 0(TMP2) } |5: | sltu AT, RD, RB | bnez AT, >6 |. ld TMP1, FRAME_FUNC(BASE) | ins_next1 | cleartp LFUNC:TMP1 | ld TMP1, LFUNC:TMP1->pc | ld KBASE, PC2PROTO(k)(TMP1) | ins_next2 | |6: // Fill up results with nil. | daddiu TMP2, TMP2, 8 | daddiu RD, RD, 8 | b <5 if (op == BC_RET1) { |. sd TISNIL, 0(TMP2) } else { |. sd TISNIL, -8(TMP2) } break; /* -- Loops and branches ------------------------------------------------ */ case BC_FORL: |.if JIT | hotloop |.endif | // Fall through. Assumes BC_IFORL follows. break; case BC_JFORI: case BC_JFORL: #if !LJ_HASJIT break; #endif case BC_FORI: case BC_IFORL: | // RA = base*8, RD = target (after end of loop or start of loop) vk = (op == BC_IFORL || op == BC_JFORL); | daddu RA, BASE, RA | ld CARG1, FORL_IDX*8(RA) // IDX CARG1 - CARG3 type | gettp CARG3, CARG1 if (op != BC_JFORL) { | srl RD, RD, 1 | lui TMP2, (-(BCBIAS_J*4 >> 16) & 65535) | daddu TMP2, RD, TMP2 } if (!vk) { | ld CARG2, FORL_STOP*8(RA) // STOP CARG2 - CARG4 type | ld CRET1, FORL_STEP*8(RA) // STEP CRET1 - CRET2 type | gettp CARG4, CARG2 | bne CARG3, TISNUM, >5 |. gettp CRET2, CRET1 | bne CARG4, TISNUM, ->vmeta_for |. sextw CARG3, CARG1 | bne CRET2, TISNUM, ->vmeta_for |. sextw CARG2, CARG2 | dext AT, CRET1, 31, 0 | slt CRET1, CARG2, CARG3 | slt TMP1, CARG3, CARG2 | movn CRET1, TMP1, AT } else { | bne CARG3, TISNUM, >5 |. ld CARG2, FORL_STEP*8(RA) // STEP CARG2 - CARG4 type | ld CRET1, FORL_STOP*8(RA) // STOP CRET1 - CRET2 type | sextw TMP3, CARG1 | sextw CARG2, CARG2 | sextw CRET1, CRET1 | addu CARG1, TMP3, CARG2 | xor TMP0, CARG1, TMP3 | xor TMP1, CARG1, CARG2 | and TMP0, TMP0, TMP1 | slt TMP1, CARG1, CRET1 | slt CRET1, CRET1, CARG1 | slt AT, CARG2, r0 | slt TMP0, TMP0, r0 // ((y^a) & (y^b)) < 0: overflow. | movn CRET1, TMP1, AT | or CRET1, CRET1, TMP0 | zextw CARG1, CARG1 | settp CARG1, TISNUM } |1: if (op == BC_FORI) { | movz TMP2, r0, CRET1 | daddu PC, PC, TMP2 } else if (op == BC_JFORI) { | daddu PC, PC, TMP2 | lhu RD, -4+OFS_RD(PC) } else if (op == BC_IFORL) { | movn TMP2, r0, CRET1 | daddu PC, PC, TMP2 } if (vk) { | sd CARG1, FORL_IDX*8(RA) } | ins_next1 | sd CARG1, FORL_EXT*8(RA) |2: if (op == BC_JFORI) { | beqz CRET1, =>BC_JLOOP |. decode_RD8b RD } else if (op == BC_JFORL) { | beqz CRET1, =>BC_JLOOP } | ins_next2 | |5: // FP loop. |.if FPU if (!vk) { | ldc1 f0, FORL_IDX*8(RA) | ldc1 f2, FORL_STOP*8(RA) | sltiu TMP0, CARG3, LJ_TISNUM | sltiu TMP1, CARG4, LJ_TISNUM | sltiu AT, CRET2, LJ_TISNUM | ld TMP3, FORL_STEP*8(RA) | and TMP0, TMP0, TMP1 | and AT, AT, TMP0 | beqz AT, ->vmeta_for |. slt TMP3, TMP3, r0 | c.ole.d 0, f0, f2 | c.ole.d 1, f2, f0 | li CRET1, 1 | movt CRET1, r0, 0 | movt AT, r0, 1 | b <1 |. movn CRET1, AT, TMP3 } else { | ldc1 f0, FORL_IDX*8(RA) | ldc1 f4, FORL_STEP*8(RA) | ldc1 f2, FORL_STOP*8(RA) | ld TMP3, FORL_STEP*8(RA) | add.d f0, f0, f4 | c.ole.d 0, f0, f2 | c.ole.d 1, f2, f0 | slt TMP3, TMP3, r0 | li CRET1, 1 | li AT, 1 | movt CRET1, r0, 0 | movt AT, r0, 1 | movn CRET1, AT, TMP3 if (op == BC_IFORL) { | movn TMP2, r0, CRET1 | daddu PC, PC, TMP2 } | sdc1 f0, FORL_IDX*8(RA) | ins_next1 | b <2 |. sdc1 f0, FORL_EXT*8(RA) } |.else if (!vk) { | sltiu TMP0, CARG3, LJ_TISNUM | sltiu TMP1, CARG4, LJ_TISNUM | sltiu AT, CRET2, LJ_TISNUM | and TMP0, TMP0, TMP1 | and AT, AT, TMP0 | beqz AT, ->vmeta_for |. nop | bal ->vm_sfcmpolex |. lw TMP3, FORL_STEP*8+HI(RA) | b <1 |. nop } else { | load_got __adddf3 | call_extern |. sw TMP2, TMPD | ld CARG2, FORL_STOP*8(RA) | move CARG1, CRET1 if ( op == BC_JFORL ) { | lhu RD, -4+OFS_RD(PC) | decode_RD8b RD } | bal ->vm_sfcmpolex |. lw TMP3, FORL_STEP*8+HI(RA) | b <1 |. lw TMP2, TMPD } |.endif break; case BC_ITERL: |.if JIT | hotloop |.endif | // Fall through. Assumes BC_IITERL follows. break; case BC_JITERL: #if !LJ_HASJIT break; #endif case BC_IITERL: | // RA = base*8, RD = target | daddu RA, BASE, RA | ld TMP1, 0(RA) | beq TMP1, TISNIL, >1 // Stop if iterator returned nil. |. nop if (op == BC_JITERL) { | b =>BC_JLOOP |. sd TMP1, -8(RA) } else { | branch_RD // Otherwise save control var + branch. | sd TMP1, -8(RA) } |1: | ins_next break; case BC_LOOP: | // RA = base*8, RD = target (loop extent) | // Note: RA/RD is only used by trace recorder to determine scope/extent | // This opcode does NOT jump, it's only purpose is to detect a hot loop. |.if JIT | hotloop |.endif | // Fall through. Assumes BC_ILOOP follows. break; case BC_ILOOP: | // RA = base*8, RD = target (loop extent) | ins_next break; case BC_JLOOP: |.if JIT | // RA = base*8 (ignored), RD = traceno*8 | ld TMP1, DISPATCH_J(trace)(DISPATCH) | li AT, 0 | daddu TMP1, TMP1, RD | // Traces on MIPS don't store the trace number, so use 0. | sd AT, DISPATCH_GL(vmstate)(DISPATCH) | ld TRACE:TMP2, 0(TMP1) | sd BASE, DISPATCH_GL(jit_base)(DISPATCH) | ld TMP2, TRACE:TMP2->mcode | sd L, DISPATCH_GL(tmpbuf.L)(DISPATCH) | jr TMP2 |. daddiu JGL, DISPATCH, GG_DISP2G+32768 |.endif break; case BC_JMP: | // RA = base*8 (only used by trace recorder), RD = target | branch_RD | ins_next break; /* -- Function headers -------------------------------------------------- */ case BC_FUNCF: |.if JIT | hotcall |.endif case BC_FUNCV: /* NYI: compiled vararg functions. */ | // Fall through. Assumes BC_IFUNCF/BC_IFUNCV follow. break; case BC_JFUNCF: #if !LJ_HASJIT break; #endif case BC_IFUNCF: | // BASE = new base, RA = BASE+framesize*8, RB = LFUNC, RC = nargs*8 | ld TMP2, L->maxstack | lbu TMP1, -4+PC2PROTO(numparams)(PC) | ld KBASE, -4+PC2PROTO(k)(PC) | sltu AT, TMP2, RA | bnez AT, ->vm_growstack_l |. sll TMP1, TMP1, 3 if (op != BC_JFUNCF) { | ins_next1 } |2: | sltu AT, NARGS8:RC, TMP1 // Check for missing parameters. | bnez AT, >3 |. daddu AT, BASE, NARGS8:RC if (op == BC_JFUNCF) { | decode_RD8a RD, INS | b =>BC_JLOOP |. decode_RD8b RD } else { | ins_next2 } | |3: // Clear missing parameters. | sd TISNIL, 0(AT) | b <2 |. addiu NARGS8:RC, NARGS8:RC, 8 break; case BC_JFUNCV: #if !LJ_HASJIT break; #endif | NYI // NYI: compiled vararg functions break; /* NYI: compiled vararg functions. */ case BC_IFUNCV: | // BASE = new base, RA = BASE+framesize*8, RB = LFUNC, RC = nargs*8 | li TMP0, LJ_TFUNC | daddu TMP1, BASE, RC | ld TMP2, L->maxstack | settp LFUNC:RB, TMP0 | daddu TMP0, RA, RC | sd LFUNC:RB, 0(TMP1) // Store (tagged) copy of LFUNC. | daddiu TMP3, RC, 16+FRAME_VARG | sltu AT, TMP0, TMP2 | ld KBASE, -4+PC2PROTO(k)(PC) | beqz AT, ->vm_growstack_l |. sd TMP3, 8(TMP1) // Store delta + FRAME_VARG. | lbu TMP2, -4+PC2PROTO(numparams)(PC) | move RA, BASE | move RC, TMP1 | ins_next1 | beqz TMP2, >3 |. daddiu BASE, TMP1, 16 |1: | ld TMP0, 0(RA) | sltu AT, RA, RC // Less args than parameters? | move CARG1, TMP0 | movz TMP0, TISNIL, AT // Clear missing parameters. | movn CARG1, TISNIL, AT // Clear old fixarg slot (help the GC). | addiu TMP2, TMP2, -1 | sd TMP0, 16(TMP1) | daddiu TMP1, TMP1, 8 | sd CARG1, 0(RA) | bnez TMP2, <1 |. daddiu RA, RA, 8 |3: | ins_next2 break; case BC_FUNCC: case BC_FUNCCW: | // BASE = new base, RA = BASE+framesize*8, RB = CFUNC, RC = nargs*8 if (op == BC_FUNCC) { | ld CFUNCADDR, CFUNC:RB->f } else { | ld CFUNCADDR, DISPATCH_GL(wrapf)(DISPATCH) } | daddu TMP1, RA, NARGS8:RC | ld TMP2, L->maxstack | daddu RC, BASE, NARGS8:RC | sd BASE, L->base | sltu AT, TMP2, TMP1 | sd RC, L->top | li_vmstate C if (op == BC_FUNCCW) { | ld CARG2, CFUNC:RB->f } | bnez AT, ->vm_growstack_c // Need to grow stack. |. move CARG1, L | jalr CFUNCADDR // (lua_State *L [, lua_CFunction f]) |. st_vmstate | // Returns nresults. | ld BASE, L->base | sll RD, CRET1, 3 | ld TMP1, L->top | li_vmstate INTERP | ld PC, FRAME_PC(BASE) // Fetch PC of caller. | dsubu RA, TMP1, RD // RA = L->top - nresults*8 | sd L, DISPATCH_GL(cur_L)(DISPATCH) | b ->vm_returnc |. st_vmstate break; /* ---------------------------------------------------------------------- */ default: fprintf(stderr, "Error: undefined opcode BC_%s\n", bc_names[op]); exit(2); break; } } static int build_backend(BuildCtx *ctx) { int op; dasm_growpc(Dst, BC__MAX); build_subroutines(ctx); |.code_op for (op = 0; op < BC__MAX; op++) build_ins(ctx, (BCOp)op, op); return BC__MAX; } /* Emit pseudo frame-info for all assembler functions. */ static void emit_asm_debug(BuildCtx *ctx) { int fcofs = (int)((uint8_t *)ctx->glob[GLOB_vm_ffi_call] - ctx->code); int i; switch (ctx->mode) { case BUILD_elfasm: fprintf(ctx->fp, "\t.section .debug_frame,\"\",@progbits\n"); fprintf(ctx->fp, ".Lframe0:\n" "\t.4byte .LECIE0-.LSCIE0\n" ".LSCIE0:\n" "\t.4byte 0xffffffff\n" "\t.byte 0x1\n" "\t.string \"\"\n" "\t.uleb128 0x1\n" "\t.sleb128 -4\n" "\t.byte 31\n" "\t.byte 0xc\n\t.uleb128 29\n\t.uleb128 0\n" "\t.align 2\n" ".LECIE0:\n\n"); fprintf(ctx->fp, ".LSFDE0:\n" "\t.4byte .LEFDE0-.LASFDE0\n" ".LASFDE0:\n" "\t.4byte .Lframe0\n" "\t.8byte .Lbegin\n" "\t.8byte %d\n" "\t.byte 0xe\n\t.uleb128 %d\n" "\t.byte 0x9f\n\t.sleb128 2*5\n" "\t.byte 0x9e\n\t.sleb128 2*6\n", fcofs, CFRAME_SIZE); for (i = 23; i >= 16; i--) fprintf(ctx->fp, "\t.byte %d\n\t.uleb128 %d\n", 0x80+i, 2*(30-i)); #if !LJ_SOFTFP for (i = 31; i >= 24; i--) fprintf(ctx->fp, "\t.byte %d\n\t.uleb128 %d\n", 0x80+32+i, 2*(46-i)); #endif fprintf(ctx->fp, "\t.align 2\n" ".LEFDE0:\n\n"); #if LJ_HASFFI fprintf(ctx->fp, ".LSFDE1:\n" "\t.4byte .LEFDE1-.LASFDE1\n" ".LASFDE1:\n" "\t.4byte .Lframe0\n" "\t.4byte lj_vm_ffi_call\n" "\t.4byte %d\n" "\t.byte 0x9f\n\t.uleb128 2*1\n" "\t.byte 0x90\n\t.uleb128 2*2\n" "\t.byte 0xd\n\t.uleb128 0x10\n" "\t.align 2\n" ".LEFDE1:\n\n", (int)ctx->codesz - fcofs); #endif #if !LJ_NO_UNWIND /* NYI */ #endif break; default: break; } } luajit-2.1.0~beta3+dfsg.orig/src/lj_crecord.h0000644000175100017510000000334013101703334020364 0ustar ondrejondrej/* ** Trace recorder for C data operations. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_CRECORD_H #define _LJ_CRECORD_H #include "lj_obj.h" #include "lj_jit.h" #include "lj_ffrecord.h" #if LJ_HASJIT && LJ_HASFFI LJ_FUNC void LJ_FASTCALL recff_cdata_index(jit_State *J, RecordFFData *rd); LJ_FUNC void LJ_FASTCALL recff_cdata_call(jit_State *J, RecordFFData *rd); LJ_FUNC void LJ_FASTCALL recff_cdata_arith(jit_State *J, RecordFFData *rd); LJ_FUNC void LJ_FASTCALL recff_clib_index(jit_State *J, RecordFFData *rd); LJ_FUNC void LJ_FASTCALL recff_ffi_new(jit_State *J, RecordFFData *rd); LJ_FUNC void LJ_FASTCALL recff_ffi_errno(jit_State *J, RecordFFData *rd); LJ_FUNC void LJ_FASTCALL recff_ffi_string(jit_State *J, RecordFFData *rd); LJ_FUNC void LJ_FASTCALL recff_ffi_copy(jit_State *J, RecordFFData *rd); LJ_FUNC void LJ_FASTCALL recff_ffi_fill(jit_State *J, RecordFFData *rd); LJ_FUNC void LJ_FASTCALL recff_ffi_typeof(jit_State *J, RecordFFData *rd); LJ_FUNC void LJ_FASTCALL recff_ffi_istype(jit_State *J, RecordFFData *rd); LJ_FUNC void LJ_FASTCALL recff_ffi_abi(jit_State *J, RecordFFData *rd); LJ_FUNC void LJ_FASTCALL recff_ffi_xof(jit_State *J, RecordFFData *rd); LJ_FUNC void LJ_FASTCALL recff_ffi_gc(jit_State *J, RecordFFData *rd); LJ_FUNC void LJ_FASTCALL recff_bit64_tobit(jit_State *J, RecordFFData *rd); LJ_FUNC int LJ_FASTCALL recff_bit64_unary(jit_State *J, RecordFFData *rd); LJ_FUNC int LJ_FASTCALL recff_bit64_nary(jit_State *J, RecordFFData *rd); LJ_FUNC int LJ_FASTCALL recff_bit64_shift(jit_State *J, RecordFFData *rd); LJ_FUNC TRef recff_bit64_tohex(jit_State *J, RecordFFData *rd, TRef hdr); LJ_FUNC void LJ_FASTCALL lj_crecord_tonumber(jit_State *J, RecordFFData *rd); #endif #endif luajit-2.1.0~beta3+dfsg.orig/src/lib_init.c0000644000175100017510000000251313101703334020043 0ustar ondrejondrej/* ** Library initialization. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h ** ** Major parts taken verbatim from the Lua interpreter. ** Copyright (C) 1994-2008 Lua.org, PUC-Rio. See Copyright Notice in lua.h */ #define lib_init_c #define LUA_LIB #include "lua.h" #include "lauxlib.h" #include "lualib.h" #include "lj_arch.h" static const luaL_Reg lj_lib_load[] = { { "", luaopen_base }, { LUA_LOADLIBNAME, luaopen_package }, { LUA_TABLIBNAME, luaopen_table }, { LUA_IOLIBNAME, luaopen_io }, { LUA_OSLIBNAME, luaopen_os }, { LUA_STRLIBNAME, luaopen_string }, { LUA_MATHLIBNAME, luaopen_math }, { LUA_DBLIBNAME, luaopen_debug }, { LUA_BITLIBNAME, luaopen_bit }, { LUA_JITLIBNAME, luaopen_jit }, { NULL, NULL } }; static const luaL_Reg lj_lib_preload[] = { #if LJ_HASFFI { LUA_FFILIBNAME, luaopen_ffi }, #endif { NULL, NULL } }; LUALIB_API void luaL_openlibs(lua_State *L) { const luaL_Reg *lib; for (lib = lj_lib_load; lib->func; lib++) { lua_pushcfunction(L, lib->func); lua_pushstring(L, lib->name); lua_call(L, 1, 0); } luaL_findtable(L, LUA_REGISTRYINDEX, "_PRELOAD", sizeof(lj_lib_preload)/sizeof(lj_lib_preload[0])-1); for (lib = lj_lib_preload; lib->func; lib++) { lua_pushcfunction(L, lib->func); lua_setfield(L, -2, lib->name); } lua_pop(L, 1); } luajit-2.1.0~beta3+dfsg.orig/src/lj_asm_arm.h0000644000175100017510000021253613101703334020373 0ustar ondrejondrej/* ** ARM IR assembler (SSA IR -> machine code). ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ /* -- Register allocator extensions --------------------------------------- */ /* Allocate a register with a hint. */ static Reg ra_hintalloc(ASMState *as, IRRef ref, Reg hint, RegSet allow) { Reg r = IR(ref)->r; if (ra_noreg(r)) { if (!ra_hashint(r) && !iscrossref(as, ref)) ra_sethint(IR(ref)->r, hint); /* Propagate register hint. */ r = ra_allocref(as, ref, allow); } ra_noweak(as, r); return r; } /* Allocate a scratch register pair. */ static Reg ra_scratchpair(ASMState *as, RegSet allow) { RegSet pick1 = as->freeset & allow; RegSet pick2 = pick1 & (pick1 >> 1) & RSET_GPREVEN; Reg r; if (pick2) { r = rset_picktop(pick2); } else { RegSet pick = pick1 & (allow >> 1) & RSET_GPREVEN; if (pick) { r = rset_picktop(pick); ra_restore(as, regcost_ref(as->cost[r+1])); } else { pick = pick1 & (allow << 1) & RSET_GPRODD; if (pick) { r = ra_restore(as, regcost_ref(as->cost[rset_picktop(pick)-1])); } else { r = ra_evict(as, allow & (allow >> 1) & RSET_GPREVEN); ra_restore(as, regcost_ref(as->cost[r+1])); } } } lua_assert(rset_test(RSET_GPREVEN, r)); ra_modified(as, r); ra_modified(as, r+1); RA_DBGX((as, "scratchpair $r $r", r, r+1)); return r; } #if !LJ_SOFTFP /* Allocate two source registers for three-operand instructions. */ static Reg ra_alloc2(ASMState *as, IRIns *ir, RegSet allow) { IRIns *irl = IR(ir->op1), *irr = IR(ir->op2); Reg left = irl->r, right = irr->r; if (ra_hasreg(left)) { ra_noweak(as, left); if (ra_noreg(right)) right = ra_allocref(as, ir->op2, rset_exclude(allow, left)); else ra_noweak(as, right); } else if (ra_hasreg(right)) { ra_noweak(as, right); left = ra_allocref(as, ir->op1, rset_exclude(allow, right)); } else if (ra_hashint(right)) { right = ra_allocref(as, ir->op2, allow); left = ra_alloc1(as, ir->op1, rset_exclude(allow, right)); } else { left = ra_allocref(as, ir->op1, allow); right = ra_alloc1(as, ir->op2, rset_exclude(allow, left)); } return left | (right << 8); } #endif /* -- Guard handling ------------------------------------------------------ */ /* Generate an exit stub group at the bottom of the reserved MCode memory. */ static MCode *asm_exitstub_gen(ASMState *as, ExitNo group) { MCode *mxp = as->mcbot; int i; if (mxp + 4*4+4*EXITSTUBS_PER_GROUP >= as->mctop) asm_mclimit(as); /* str lr, [sp]; bl ->vm_exit_handler; .long DISPATCH_address, group. */ *mxp++ = ARMI_STR|ARMI_LS_P|ARMI_LS_U|ARMF_D(RID_LR)|ARMF_N(RID_SP); *mxp = ARMI_BL|((((MCode *)(void *)lj_vm_exit_handler-mxp)-2)&0x00ffffffu); mxp++; *mxp++ = (MCode)i32ptr(J2GG(as->J)->dispatch); /* DISPATCH address */ *mxp++ = group*EXITSTUBS_PER_GROUP; for (i = 0; i < EXITSTUBS_PER_GROUP; i++) *mxp++ = ARMI_B|((-6-i)&0x00ffffffu); lj_mcode_sync(as->mcbot, mxp); lj_mcode_commitbot(as->J, mxp); as->mcbot = mxp; as->mclim = as->mcbot + MCLIM_REDZONE; return mxp - EXITSTUBS_PER_GROUP; } /* Setup all needed exit stubs. */ static void asm_exitstub_setup(ASMState *as, ExitNo nexits) { ExitNo i; if (nexits >= EXITSTUBS_PER_GROUP*LJ_MAX_EXITSTUBGR) lj_trace_err(as->J, LJ_TRERR_SNAPOV); for (i = 0; i < (nexits+EXITSTUBS_PER_GROUP-1)/EXITSTUBS_PER_GROUP; i++) if (as->J->exitstubgroup[i] == NULL) as->J->exitstubgroup[i] = asm_exitstub_gen(as, i); } /* Emit conditional branch to exit for guard. */ static void asm_guardcc(ASMState *as, ARMCC cc) { MCode *target = exitstub_addr(as->J, as->snapno); MCode *p = as->mcp; if (LJ_UNLIKELY(p == as->invmcp)) { as->loopinv = 1; *p = ARMI_BL | ((target-p-2) & 0x00ffffffu); emit_branch(as, ARMF_CC(ARMI_B, cc^1), p+1); return; } emit_branch(as, ARMF_CC(ARMI_BL, cc), target); } /* -- Operand fusion ------------------------------------------------------ */ /* Limit linear search to this distance. Avoids O(n^2) behavior. */ #define CONFLICT_SEARCH_LIM 31 /* Check if there's no conflicting instruction between curins and ref. */ static int noconflict(ASMState *as, IRRef ref, IROp conflict) { IRIns *ir = as->ir; IRRef i = as->curins; if (i > ref + CONFLICT_SEARCH_LIM) return 0; /* Give up, ref is too far away. */ while (--i > ref) if (ir[i].o == conflict) return 0; /* Conflict found. */ return 1; /* Ok, no conflict. */ } /* Fuse the array base of colocated arrays. */ static int32_t asm_fuseabase(ASMState *as, IRRef ref) { IRIns *ir = IR(ref); if (ir->o == IR_TNEW && ir->op1 <= LJ_MAX_COLOSIZE && !neverfuse(as) && noconflict(as, ref, IR_NEWREF)) return (int32_t)sizeof(GCtab); return 0; } /* Fuse array/hash/upvalue reference into register+offset operand. */ static Reg asm_fuseahuref(ASMState *as, IRRef ref, int32_t *ofsp, RegSet allow, int lim) { IRIns *ir = IR(ref); if (ra_noreg(ir->r)) { if (ir->o == IR_AREF) { if (mayfuse(as, ref)) { if (irref_isk(ir->op2)) { IRRef tab = IR(ir->op1)->op1; int32_t ofs = asm_fuseabase(as, tab); IRRef refa = ofs ? tab : ir->op1; ofs += 8*IR(ir->op2)->i; if (ofs > -lim && ofs < lim) { *ofsp = ofs; return ra_alloc1(as, refa, allow); } } } } else if (ir->o == IR_HREFK) { if (mayfuse(as, ref)) { int32_t ofs = (int32_t)(IR(ir->op2)->op2 * sizeof(Node)); if (ofs < lim) { *ofsp = ofs; return ra_alloc1(as, ir->op1, allow); } } } else if (ir->o == IR_UREFC) { if (irref_isk(ir->op1)) { GCfunc *fn = ir_kfunc(IR(ir->op1)); int32_t ofs = i32ptr(&gcref(fn->l.uvptr[(ir->op2 >> 8)])->uv.tv); *ofsp = (ofs & 255); /* Mask out less bits to allow LDRD. */ return ra_allock(as, (ofs & ~255), allow); } } } *ofsp = 0; return ra_alloc1(as, ref, allow); } /* Fuse m operand into arithmetic/logic instructions. */ static uint32_t asm_fuseopm(ASMState *as, ARMIns ai, IRRef ref, RegSet allow) { IRIns *ir = IR(ref); if (ra_hasreg(ir->r)) { ra_noweak(as, ir->r); return ARMF_M(ir->r); } else if (irref_isk(ref)) { uint32_t k = emit_isk12(ai, ir->i); if (k) return k; } else if (mayfuse(as, ref)) { if (ir->o >= IR_BSHL && ir->o <= IR_BROR) { Reg m = ra_alloc1(as, ir->op1, allow); ARMShift sh = ir->o == IR_BSHL ? ARMSH_LSL : ir->o == IR_BSHR ? ARMSH_LSR : ir->o == IR_BSAR ? ARMSH_ASR : ARMSH_ROR; if (irref_isk(ir->op2)) { return m | ARMF_SH(sh, (IR(ir->op2)->i & 31)); } else { Reg s = ra_alloc1(as, ir->op2, rset_exclude(allow, m)); return m | ARMF_RSH(sh, s); } } else if (ir->o == IR_ADD && ir->op1 == ir->op2) { Reg m = ra_alloc1(as, ir->op1, allow); return m | ARMF_SH(ARMSH_LSL, 1); } } return ra_allocref(as, ref, allow); } /* Fuse shifts into loads/stores. Only bother with BSHL 2 => lsl #2. */ static IRRef asm_fuselsl2(ASMState *as, IRRef ref) { IRIns *ir = IR(ref); if (ra_noreg(ir->r) && mayfuse(as, ref) && ir->o == IR_BSHL && irref_isk(ir->op2) && IR(ir->op2)->i == 2) return ir->op1; return 0; /* No fusion. */ } /* Fuse XLOAD/XSTORE reference into load/store operand. */ static void asm_fusexref(ASMState *as, ARMIns ai, Reg rd, IRRef ref, RegSet allow, int32_t ofs) { IRIns *ir = IR(ref); Reg base; if (ra_noreg(ir->r) && canfuse(as, ir)) { int32_t lim = (!LJ_SOFTFP && (ai & 0x08000000)) ? 1024 : (ai & 0x04000000) ? 4096 : 256; if (ir->o == IR_ADD) { int32_t ofs2; if (irref_isk(ir->op2) && (ofs2 = ofs + IR(ir->op2)->i) > -lim && ofs2 < lim && (!(!LJ_SOFTFP && (ai & 0x08000000)) || !(ofs2 & 3))) { ofs = ofs2; ref = ir->op1; } else if (ofs == 0 && !(!LJ_SOFTFP && (ai & 0x08000000))) { IRRef lref = ir->op1, rref = ir->op2; Reg rn, rm; if ((ai & 0x04000000)) { IRRef sref = asm_fuselsl2(as, rref); if (sref) { rref = sref; ai |= ARMF_SH(ARMSH_LSL, 2); } else if ((sref = asm_fuselsl2(as, lref)) != 0) { lref = rref; rref = sref; ai |= ARMF_SH(ARMSH_LSL, 2); } } rn = ra_alloc1(as, lref, allow); rm = ra_alloc1(as, rref, rset_exclude(allow, rn)); if ((ai & 0x04000000)) ai |= ARMI_LS_R; emit_dnm(as, ai|ARMI_LS_P|ARMI_LS_U, rd, rn, rm); return; } } else if (ir->o == IR_STRREF && !(!LJ_SOFTFP && (ai & 0x08000000))) { lua_assert(ofs == 0); ofs = (int32_t)sizeof(GCstr); if (irref_isk(ir->op2)) { ofs += IR(ir->op2)->i; ref = ir->op1; } else if (irref_isk(ir->op1)) { ofs += IR(ir->op1)->i; ref = ir->op2; } else { /* NYI: Fuse ADD with constant. */ Reg rn = ra_alloc1(as, ir->op1, allow); uint32_t m = asm_fuseopm(as, 0, ir->op2, rset_exclude(allow, rn)); if ((ai & 0x04000000)) emit_lso(as, ai, rd, rd, ofs); else emit_lsox(as, ai, rd, rd, ofs); emit_dn(as, ARMI_ADD^m, rd, rn); return; } if (ofs <= -lim || ofs >= lim) { Reg rn = ra_alloc1(as, ref, allow); Reg rm = ra_allock(as, ofs, rset_exclude(allow, rn)); if ((ai & 0x04000000)) ai |= ARMI_LS_R; emit_dnm(as, ai|ARMI_LS_P|ARMI_LS_U, rd, rn, rm); return; } } } base = ra_alloc1(as, ref, allow); #if !LJ_SOFTFP if ((ai & 0x08000000)) emit_vlso(as, ai, rd, base, ofs); else #endif if ((ai & 0x04000000)) emit_lso(as, ai, rd, base, ofs); else emit_lsox(as, ai, rd, base, ofs); } #if !LJ_SOFTFP /* Fuse to multiply-add/sub instruction. */ static int asm_fusemadd(ASMState *as, IRIns *ir, ARMIns ai, ARMIns air) { IRRef lref = ir->op1, rref = ir->op2; IRIns *irm; if (lref != rref && ((mayfuse(as, lref) && (irm = IR(lref), irm->o == IR_MUL) && ra_noreg(irm->r)) || (mayfuse(as, rref) && (irm = IR(rref), irm->o == IR_MUL) && (rref = lref, ai = air, ra_noreg(irm->r))))) { Reg dest = ra_dest(as, ir, RSET_FPR); Reg add = ra_hintalloc(as, rref, dest, RSET_FPR); Reg right, left = ra_alloc2(as, irm, rset_exclude(rset_exclude(RSET_FPR, dest), add)); right = (left >> 8); left &= 255; emit_dnm(as, ai, (dest & 15), (left & 15), (right & 15)); if (dest != add) emit_dm(as, ARMI_VMOV_D, (dest & 15), (add & 15)); return 1; } return 0; } #endif /* -- Calls --------------------------------------------------------------- */ /* Generate a call to a C function. */ static void asm_gencall(ASMState *as, const CCallInfo *ci, IRRef *args) { uint32_t n, nargs = CCI_XNARGS(ci); int32_t ofs = 0; #if LJ_SOFTFP Reg gpr = REGARG_FIRSTGPR; #else Reg gpr, fpr = REGARG_FIRSTFPR, fprodd = 0; #endif if ((void *)ci->func) emit_call(as, (void *)ci->func); #if !LJ_SOFTFP for (gpr = REGARG_FIRSTGPR; gpr <= REGARG_LASTGPR; gpr++) as->cost[gpr] = REGCOST(~0u, ASMREF_L); gpr = REGARG_FIRSTGPR; #endif for (n = 0; n < nargs; n++) { /* Setup args. */ IRRef ref = args[n]; IRIns *ir = IR(ref); #if !LJ_SOFTFP if (ref && irt_isfp(ir->t)) { RegSet of = as->freeset; Reg src; if (!LJ_ABI_SOFTFP && !(ci->flags & CCI_VARARG)) { if (irt_isnum(ir->t)) { if (fpr <= REGARG_LASTFPR) { ra_leftov(as, fpr, ref); fpr++; continue; } } else if (fprodd) { /* Ick. */ src = ra_alloc1(as, ref, RSET_FPR); emit_dm(as, ARMI_VMOV_S, (fprodd & 15), (src & 15) | 0x00400000); fprodd = 0; continue; } else if (fpr <= REGARG_LASTFPR) { ra_leftov(as, fpr, ref); fprodd = fpr++; continue; } /* Workaround to protect argument GPRs from being used for remat. */ as->freeset &= ~RSET_RANGE(REGARG_FIRSTGPR, REGARG_LASTGPR+1); src = ra_alloc1(as, ref, RSET_FPR); /* May alloc GPR to remat FPR. */ as->freeset |= (of & RSET_RANGE(REGARG_FIRSTGPR, REGARG_LASTGPR+1)); fprodd = 0; goto stackfp; } /* Workaround to protect argument GPRs from being used for remat. */ as->freeset &= ~RSET_RANGE(REGARG_FIRSTGPR, REGARG_LASTGPR+1); src = ra_alloc1(as, ref, RSET_FPR); /* May alloc GPR to remat FPR. */ as->freeset |= (of & RSET_RANGE(REGARG_FIRSTGPR, REGARG_LASTGPR+1)); if (irt_isnum(ir->t)) gpr = (gpr+1) & ~1u; if (gpr <= REGARG_LASTGPR) { lua_assert(rset_test(as->freeset, gpr)); /* Must have been evicted. */ if (irt_isnum(ir->t)) { lua_assert(rset_test(as->freeset, gpr+1)); /* Ditto. */ emit_dnm(as, ARMI_VMOV_RR_D, gpr, gpr+1, (src & 15)); gpr += 2; } else { emit_dn(as, ARMI_VMOV_R_S, gpr, (src & 15)); gpr++; } } else { stackfp: if (irt_isnum(ir->t)) ofs = (ofs + 4) & ~4; emit_spstore(as, ir, src, ofs); ofs += irt_isnum(ir->t) ? 8 : 4; } } else #endif { if (gpr <= REGARG_LASTGPR) { lua_assert(rset_test(as->freeset, gpr)); /* Must have been evicted. */ if (ref) ra_leftov(as, gpr, ref); gpr++; } else { if (ref) { Reg r = ra_alloc1(as, ref, RSET_GPR); emit_spstore(as, ir, r, ofs); } ofs += 4; } } } } /* Setup result reg/sp for call. Evict scratch regs. */ static void asm_setupresult(ASMState *as, IRIns *ir, const CCallInfo *ci) { RegSet drop = RSET_SCRATCH; int hiop = ((ir+1)->o == IR_HIOP && !irt_isnil((ir+1)->t)); if (ra_hasreg(ir->r)) rset_clear(drop, ir->r); /* Dest reg handled below. */ if (hiop && ra_hasreg((ir+1)->r)) rset_clear(drop, (ir+1)->r); /* Dest reg handled below. */ ra_evictset(as, drop); /* Evictions must be performed first. */ if (ra_used(ir)) { lua_assert(!irt_ispri(ir->t)); if (!LJ_SOFTFP && irt_isfp(ir->t)) { if (LJ_ABI_SOFTFP || (ci->flags & (CCI_CASTU64|CCI_VARARG))) { Reg dest = (ra_dest(as, ir, RSET_FPR) & 15); if (irt_isnum(ir->t)) emit_dnm(as, ARMI_VMOV_D_RR, RID_RETLO, RID_RETHI, dest); else emit_dn(as, ARMI_VMOV_S_R, RID_RET, dest); } else { ra_destreg(as, ir, RID_FPRET); } } else if (hiop) { ra_destpair(as, ir); } else { ra_destreg(as, ir, RID_RET); } } UNUSED(ci); } static void asm_callx(ASMState *as, IRIns *ir) { IRRef args[CCI_NARGS_MAX*2]; CCallInfo ci; IRRef func; IRIns *irf; ci.flags = asm_callx_flags(as, ir); asm_collectargs(as, ir, &ci, args); asm_setupresult(as, ir, &ci); func = ir->op2; irf = IR(func); if (irf->o == IR_CARG) { func = irf->op1; irf = IR(func); } if (irref_isk(func)) { /* Call to constant address. */ ci.func = (ASMFunction)(void *)(irf->i); } else { /* Need a non-argument register for indirect calls. */ Reg freg = ra_alloc1(as, func, RSET_RANGE(RID_R4, RID_R12+1)); emit_m(as, ARMI_BLXr, freg); ci.func = (ASMFunction)(void *)0; } asm_gencall(as, &ci, args); } /* -- Returns ------------------------------------------------------------- */ /* Return to lower frame. Guard that it goes to the right spot. */ static void asm_retf(ASMState *as, IRIns *ir) { Reg base = ra_alloc1(as, REF_BASE, RSET_GPR); void *pc = ir_kptr(IR(ir->op2)); int32_t delta = 1+LJ_FR2+bc_a(*((const BCIns *)pc - 1)); as->topslot -= (BCReg)delta; if ((int32_t)as->topslot < 0) as->topslot = 0; irt_setmark(IR(REF_BASE)->t); /* Children must not coalesce with BASE reg. */ /* Need to force a spill on REF_BASE now to update the stack slot. */ emit_lso(as, ARMI_STR, base, RID_SP, ra_spill(as, IR(REF_BASE))); emit_setgl(as, base, jit_base); emit_addptr(as, base, -8*delta); asm_guardcc(as, CC_NE); emit_nm(as, ARMI_CMP, RID_TMP, ra_allock(as, i32ptr(pc), rset_exclude(RSET_GPR, base))); emit_lso(as, ARMI_LDR, RID_TMP, base, -4); } /* -- Type conversions ---------------------------------------------------- */ #if !LJ_SOFTFP static void asm_tointg(ASMState *as, IRIns *ir, Reg left) { Reg tmp = ra_scratch(as, rset_exclude(RSET_FPR, left)); Reg dest = ra_dest(as, ir, RSET_GPR); asm_guardcc(as, CC_NE); emit_d(as, ARMI_VMRS, 0); emit_dm(as, ARMI_VCMP_D, (tmp & 15), (left & 15)); emit_dm(as, ARMI_VCVT_F64_S32, (tmp & 15), (tmp & 15)); emit_dn(as, ARMI_VMOV_R_S, dest, (tmp & 15)); emit_dm(as, ARMI_VCVT_S32_F64, (tmp & 15), (left & 15)); } static void asm_tobit(ASMState *as, IRIns *ir) { RegSet allow = RSET_FPR; Reg left = ra_alloc1(as, ir->op1, allow); Reg right = ra_alloc1(as, ir->op2, rset_clear(allow, left)); Reg tmp = ra_scratch(as, rset_clear(allow, right)); Reg dest = ra_dest(as, ir, RSET_GPR); emit_dn(as, ARMI_VMOV_R_S, dest, (tmp & 15)); emit_dnm(as, ARMI_VADD_D, (tmp & 15), (left & 15), (right & 15)); } #endif static void asm_conv(ASMState *as, IRIns *ir) { IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK); #if !LJ_SOFTFP int stfp = (st == IRT_NUM || st == IRT_FLOAT); #endif IRRef lref = ir->op1; /* 64 bit integer conversions are handled by SPLIT. */ lua_assert(!irt_isint64(ir->t) && !(st == IRT_I64 || st == IRT_U64)); #if LJ_SOFTFP /* FP conversions are handled by SPLIT. */ lua_assert(!irt_isfp(ir->t) && !(st == IRT_NUM || st == IRT_FLOAT)); /* Can't check for same types: SPLIT uses CONV int.int + BXOR for sfp NEG. */ #else lua_assert(irt_type(ir->t) != st); if (irt_isfp(ir->t)) { Reg dest = ra_dest(as, ir, RSET_FPR); if (stfp) { /* FP to FP conversion. */ emit_dm(as, st == IRT_NUM ? ARMI_VCVT_F32_F64 : ARMI_VCVT_F64_F32, (dest & 15), (ra_alloc1(as, lref, RSET_FPR) & 15)); } else { /* Integer to FP conversion. */ Reg left = ra_alloc1(as, lref, RSET_GPR); ARMIns ai = irt_isfloat(ir->t) ? (st == IRT_INT ? ARMI_VCVT_F32_S32 : ARMI_VCVT_F32_U32) : (st == IRT_INT ? ARMI_VCVT_F64_S32 : ARMI_VCVT_F64_U32); emit_dm(as, ai, (dest & 15), (dest & 15)); emit_dn(as, ARMI_VMOV_S_R, left, (dest & 15)); } } else if (stfp) { /* FP to integer conversion. */ if (irt_isguard(ir->t)) { /* Checked conversions are only supported from number to int. */ lua_assert(irt_isint(ir->t) && st == IRT_NUM); asm_tointg(as, ir, ra_alloc1(as, lref, RSET_FPR)); } else { Reg left = ra_alloc1(as, lref, RSET_FPR); Reg tmp = ra_scratch(as, rset_exclude(RSET_FPR, left)); Reg dest = ra_dest(as, ir, RSET_GPR); ARMIns ai; emit_dn(as, ARMI_VMOV_R_S, dest, (tmp & 15)); ai = irt_isint(ir->t) ? (st == IRT_NUM ? ARMI_VCVT_S32_F64 : ARMI_VCVT_S32_F32) : (st == IRT_NUM ? ARMI_VCVT_U32_F64 : ARMI_VCVT_U32_F32); emit_dm(as, ai, (tmp & 15), (left & 15)); } } else #endif { Reg dest = ra_dest(as, ir, RSET_GPR); if (st >= IRT_I8 && st <= IRT_U16) { /* Extend to 32 bit integer. */ Reg left = ra_alloc1(as, lref, RSET_GPR); lua_assert(irt_isint(ir->t) || irt_isu32(ir->t)); if ((as->flags & JIT_F_ARMV6)) { ARMIns ai = st == IRT_I8 ? ARMI_SXTB : st == IRT_U8 ? ARMI_UXTB : st == IRT_I16 ? ARMI_SXTH : ARMI_UXTH; emit_dm(as, ai, dest, left); } else if (st == IRT_U8) { emit_dn(as, ARMI_AND|ARMI_K12|255, dest, left); } else { uint32_t shift = st == IRT_I8 ? 24 : 16; ARMShift sh = st == IRT_U16 ? ARMSH_LSR : ARMSH_ASR; emit_dm(as, ARMI_MOV|ARMF_SH(sh, shift), dest, RID_TMP); emit_dm(as, ARMI_MOV|ARMF_SH(ARMSH_LSL, shift), RID_TMP, left); } } else { /* Handle 32/32 bit no-op (cast). */ ra_leftov(as, dest, lref); /* Do nothing, but may need to move regs. */ } } } static void asm_strto(ASMState *as, IRIns *ir) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_strscan_num]; IRRef args[2]; Reg rlo = 0, rhi = 0, tmp; int destused = ra_used(ir); int32_t ofs = 0; ra_evictset(as, RSET_SCRATCH); #if LJ_SOFTFP if (destused) { if (ra_hasspill(ir->s) && ra_hasspill((ir+1)->s) && (ir->s & 1) == 0 && ir->s + 1 == (ir+1)->s) { int i; for (i = 0; i < 2; i++) { Reg r = (ir+i)->r; if (ra_hasreg(r)) { ra_free(as, r); ra_modified(as, r); emit_spload(as, ir+i, r, sps_scale((ir+i)->s)); } } ofs = sps_scale(ir->s); destused = 0; } else { rhi = ra_dest(as, ir+1, RSET_GPR); rlo = ra_dest(as, ir, rset_exclude(RSET_GPR, rhi)); } } asm_guardcc(as, CC_EQ); if (destused) { emit_lso(as, ARMI_LDR, rhi, RID_SP, 4); emit_lso(as, ARMI_LDR, rlo, RID_SP, 0); } #else UNUSED(rhi); if (destused) { if (ra_hasspill(ir->s)) { ofs = sps_scale(ir->s); destused = 0; if (ra_hasreg(ir->r)) { ra_free(as, ir->r); ra_modified(as, ir->r); emit_spload(as, ir, ir->r, ofs); } } else { rlo = ra_dest(as, ir, RSET_FPR); } } asm_guardcc(as, CC_EQ); if (destused) emit_vlso(as, ARMI_VLDR_D, rlo, RID_SP, 0); #endif emit_n(as, ARMI_CMP|ARMI_K12|0, RID_RET); /* Test return status. */ args[0] = ir->op1; /* GCstr *str */ args[1] = ASMREF_TMP1; /* TValue *n */ asm_gencall(as, ci, args); tmp = ra_releasetmp(as, ASMREF_TMP1); if (ofs == 0) emit_dm(as, ARMI_MOV, tmp, RID_SP); else emit_opk(as, ARMI_ADD, tmp, RID_SP, ofs, RSET_GPR); } /* -- Memory references --------------------------------------------------- */ /* Get pointer to TValue. */ static void asm_tvptr(ASMState *as, Reg dest, IRRef ref) { IRIns *ir = IR(ref); if (irt_isnum(ir->t)) { if (irref_isk(ref)) { /* Use the number constant itself as a TValue. */ ra_allockreg(as, i32ptr(ir_knum(ir)), dest); } else { #if LJ_SOFTFP lua_assert(0); #else /* Otherwise force a spill and use the spill slot. */ emit_opk(as, ARMI_ADD, dest, RID_SP, ra_spill(as, ir), RSET_GPR); #endif } } else { /* Otherwise use [sp] and [sp+4] to hold the TValue. */ RegSet allow = rset_exclude(RSET_GPR, dest); Reg type; emit_dm(as, ARMI_MOV, dest, RID_SP); if (!irt_ispri(ir->t)) { Reg src = ra_alloc1(as, ref, allow); emit_lso(as, ARMI_STR, src, RID_SP, 0); } if (LJ_SOFTFP && (ir+1)->o == IR_HIOP) type = ra_alloc1(as, ref+1, allow); else type = ra_allock(as, irt_toitype(ir->t), allow); emit_lso(as, ARMI_STR, type, RID_SP, 4); } } static void asm_aref(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg idx, base; if (irref_isk(ir->op2)) { IRRef tab = IR(ir->op1)->op1; int32_t ofs = asm_fuseabase(as, tab); IRRef refa = ofs ? tab : ir->op1; uint32_t k = emit_isk12(ARMI_ADD, ofs + 8*IR(ir->op2)->i); if (k) { base = ra_alloc1(as, refa, RSET_GPR); emit_dn(as, ARMI_ADD^k, dest, base); return; } } base = ra_alloc1(as, ir->op1, RSET_GPR); idx = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, base)); emit_dnm(as, ARMI_ADD|ARMF_SH(ARMSH_LSL, 3), dest, base, idx); } /* Inlined hash lookup. Specialized for key type and for const keys. ** The equivalent C code is: ** Node *n = hashkey(t, key); ** do { ** if (lj_obj_equal(&n->key, key)) return &n->val; ** } while ((n = nextnode(n))); ** return niltv(L); */ static void asm_href(ASMState *as, IRIns *ir, IROp merge) { RegSet allow = RSET_GPR; int destused = ra_used(ir); Reg dest = ra_dest(as, ir, allow); Reg tab = ra_alloc1(as, ir->op1, rset_clear(allow, dest)); Reg key = 0, keyhi = 0, keynumhi = RID_NONE, tmp = RID_TMP; IRRef refkey = ir->op2; IRIns *irkey = IR(refkey); IRType1 kt = irkey->t; int32_t k = 0, khi = emit_isk12(ARMI_CMP, irt_toitype(kt)); uint32_t khash; MCLabel l_end, l_loop; rset_clear(allow, tab); if (!irref_isk(refkey) || irt_isstr(kt)) { #if LJ_SOFTFP key = ra_alloc1(as, refkey, allow); rset_clear(allow, key); if (irkey[1].o == IR_HIOP) { if (ra_hasreg((irkey+1)->r)) { keynumhi = (irkey+1)->r; keyhi = RID_TMP; ra_noweak(as, keynumhi); } else { keyhi = keynumhi = ra_allocref(as, refkey+1, allow); } rset_clear(allow, keynumhi); khi = 0; } #else if (irt_isnum(kt)) { key = ra_scratch(as, allow); rset_clear(allow, key); keyhi = keynumhi = ra_scratch(as, allow); rset_clear(allow, keyhi); khi = 0; } else { key = ra_alloc1(as, refkey, allow); rset_clear(allow, key); } #endif } else if (irt_isnum(kt)) { int32_t val = (int32_t)ir_knum(irkey)->u32.lo; k = emit_isk12(ARMI_CMP, val); if (!k) { key = ra_allock(as, val, allow); rset_clear(allow, key); } val = (int32_t)ir_knum(irkey)->u32.hi; khi = emit_isk12(ARMI_CMP, val); if (!khi) { keyhi = ra_allock(as, val, allow); rset_clear(allow, keyhi); } } else if (!irt_ispri(kt)) { k = emit_isk12(ARMI_CMP, irkey->i); if (!k) { key = ra_alloc1(as, refkey, allow); rset_clear(allow, key); } } if (!irt_ispri(kt)) tmp = ra_scratchpair(as, allow); /* Key not found in chain: jump to exit (if merged) or load niltv. */ l_end = emit_label(as); as->invmcp = NULL; if (merge == IR_NE) asm_guardcc(as, CC_AL); else if (destused) emit_loada(as, dest, niltvg(J2G(as->J))); /* Follow hash chain until the end. */ l_loop = --as->mcp; emit_n(as, ARMI_CMP|ARMI_K12|0, dest); emit_lso(as, ARMI_LDR, dest, dest, (int32_t)offsetof(Node, next)); /* Type and value comparison. */ if (merge == IR_EQ) asm_guardcc(as, CC_EQ); else emit_branch(as, ARMF_CC(ARMI_B, CC_EQ), l_end); if (!irt_ispri(kt)) { emit_nm(as, ARMF_CC(ARMI_CMP, CC_EQ)^k, tmp, key); emit_nm(as, ARMI_CMP^khi, tmp+1, keyhi); emit_lsox(as, ARMI_LDRD, tmp, dest, (int32_t)offsetof(Node, key)); } else { emit_n(as, ARMI_CMP^khi, tmp); emit_lso(as, ARMI_LDR, tmp, dest, (int32_t)offsetof(Node, key.it)); } *l_loop = ARMF_CC(ARMI_B, CC_NE) | ((as->mcp-l_loop-2) & 0x00ffffffu); /* Load main position relative to tab->node into dest. */ khash = irref_isk(refkey) ? ir_khash(irkey) : 1; if (khash == 0) { emit_lso(as, ARMI_LDR, dest, tab, (int32_t)offsetof(GCtab, node)); } else { emit_dnm(as, ARMI_ADD|ARMF_SH(ARMSH_LSL, 3), dest, dest, tmp); emit_dnm(as, ARMI_ADD|ARMF_SH(ARMSH_LSL, 1), tmp, tmp, tmp); if (irt_isstr(kt)) { /* Fetch of str->hash is cheaper than ra_allock. */ emit_dnm(as, ARMI_AND, tmp, tmp+1, RID_TMP); emit_lso(as, ARMI_LDR, dest, tab, (int32_t)offsetof(GCtab, node)); emit_lso(as, ARMI_LDR, tmp+1, key, (int32_t)offsetof(GCstr, hash)); emit_lso(as, ARMI_LDR, RID_TMP, tab, (int32_t)offsetof(GCtab, hmask)); } else if (irref_isk(refkey)) { emit_opk(as, ARMI_AND, tmp, RID_TMP, (int32_t)khash, rset_exclude(rset_exclude(RSET_GPR, tab), dest)); emit_lso(as, ARMI_LDR, dest, tab, (int32_t)offsetof(GCtab, node)); emit_lso(as, ARMI_LDR, RID_TMP, tab, (int32_t)offsetof(GCtab, hmask)); } else { /* Must match with hash*() in lj_tab.c. */ if (ra_hasreg(keynumhi)) { /* Canonicalize +-0.0 to 0.0. */ if (keyhi == RID_TMP) emit_dm(as, ARMF_CC(ARMI_MOV, CC_NE), keyhi, keynumhi); emit_d(as, ARMF_CC(ARMI_MOV, CC_EQ)|ARMI_K12|0, keyhi); } emit_dnm(as, ARMI_AND, tmp, tmp, RID_TMP); emit_dnm(as, ARMI_SUB|ARMF_SH(ARMSH_ROR, 32-HASH_ROT3), tmp, tmp, tmp+1); emit_lso(as, ARMI_LDR, dest, tab, (int32_t)offsetof(GCtab, node)); emit_dnm(as, ARMI_EOR|ARMF_SH(ARMSH_ROR, 32-((HASH_ROT2+HASH_ROT1)&31)), tmp, tmp+1, tmp); emit_lso(as, ARMI_LDR, RID_TMP, tab, (int32_t)offsetof(GCtab, hmask)); emit_dnm(as, ARMI_SUB|ARMF_SH(ARMSH_ROR, 32-HASH_ROT1), tmp+1, tmp+1, tmp); if (ra_hasreg(keynumhi)) { emit_dnm(as, ARMI_EOR, tmp+1, tmp, key); emit_dnm(as, ARMI_ORR|ARMI_S, RID_TMP, tmp, key); /* Test for +-0.0. */ emit_dnm(as, ARMI_ADD, tmp, keynumhi, keynumhi); #if !LJ_SOFTFP emit_dnm(as, ARMI_VMOV_RR_D, key, keynumhi, (ra_alloc1(as, refkey, RSET_FPR) & 15)); #endif } else { emit_dnm(as, ARMI_EOR, tmp+1, tmp, key); emit_opk(as, ARMI_ADD, tmp, key, (int32_t)HASH_BIAS, rset_exclude(rset_exclude(RSET_GPR, tab), key)); } } } } static void asm_hrefk(ASMState *as, IRIns *ir) { IRIns *kslot = IR(ir->op2); IRIns *irkey = IR(kslot->op1); int32_t ofs = (int32_t)(kslot->op2 * sizeof(Node)); int32_t kofs = ofs + (int32_t)offsetof(Node, key); Reg dest = (ra_used(ir) || ofs > 4095) ? ra_dest(as, ir, RSET_GPR) : RID_NONE; Reg node = ra_alloc1(as, ir->op1, RSET_GPR); Reg key = RID_NONE, type = RID_TMP, idx = node; RegSet allow = rset_exclude(RSET_GPR, node); lua_assert(ofs % sizeof(Node) == 0); if (ofs > 4095) { idx = dest; rset_clear(allow, dest); kofs = (int32_t)offsetof(Node, key); } else if (ra_hasreg(dest)) { emit_opk(as, ARMI_ADD, dest, node, ofs, allow); } asm_guardcc(as, CC_NE); if (!irt_ispri(irkey->t)) { RegSet even = (as->freeset & allow); even = even & (even >> 1) & RSET_GPREVEN; if (even) { key = ra_scratch(as, even); if (rset_test(as->freeset, key+1)) { type = key+1; ra_modified(as, type); } } else { key = ra_scratch(as, allow); } rset_clear(allow, key); } rset_clear(allow, type); if (irt_isnum(irkey->t)) { emit_opk(as, ARMF_CC(ARMI_CMP, CC_EQ), 0, type, (int32_t)ir_knum(irkey)->u32.hi, allow); emit_opk(as, ARMI_CMP, 0, key, (int32_t)ir_knum(irkey)->u32.lo, allow); } else { if (ra_hasreg(key)) emit_opk(as, ARMF_CC(ARMI_CMP, CC_EQ), 0, key, irkey->i, allow); emit_n(as, ARMI_CMN|ARMI_K12|-irt_toitype(irkey->t), type); } emit_lso(as, ARMI_LDR, type, idx, kofs+4); if (ra_hasreg(key)) emit_lso(as, ARMI_LDR, key, idx, kofs); if (ofs > 4095) emit_opk(as, ARMI_ADD, dest, node, ofs, RSET_GPR); } static void asm_uref(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); if (irref_isk(ir->op1)) { GCfunc *fn = ir_kfunc(IR(ir->op1)); MRef *v = &gcref(fn->l.uvptr[(ir->op2 >> 8)])->uv.v; emit_lsptr(as, ARMI_LDR, dest, v); } else { Reg uv = ra_scratch(as, RSET_GPR); Reg func = ra_alloc1(as, ir->op1, RSET_GPR); if (ir->o == IR_UREFC) { asm_guardcc(as, CC_NE); emit_n(as, ARMI_CMP|ARMI_K12|1, RID_TMP); emit_opk(as, ARMI_ADD, dest, uv, (int32_t)offsetof(GCupval, tv), RSET_GPR); emit_lso(as, ARMI_LDRB, RID_TMP, uv, (int32_t)offsetof(GCupval, closed)); } else { emit_lso(as, ARMI_LDR, dest, uv, (int32_t)offsetof(GCupval, v)); } emit_lso(as, ARMI_LDR, uv, func, (int32_t)offsetof(GCfuncL, uvptr) + 4*(int32_t)(ir->op2 >> 8)); } } static void asm_fref(ASMState *as, IRIns *ir) { UNUSED(as); UNUSED(ir); lua_assert(!ra_used(ir)); } static void asm_strref(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); IRRef ref = ir->op2, refk = ir->op1; Reg r; if (irref_isk(ref)) { IRRef tmp = refk; refk = ref; ref = tmp; } else if (!irref_isk(refk)) { uint32_t k, m = ARMI_K12|sizeof(GCstr); Reg right, left = ra_alloc1(as, ir->op1, RSET_GPR); IRIns *irr = IR(ir->op2); if (ra_hasreg(irr->r)) { ra_noweak(as, irr->r); right = irr->r; } else if (mayfuse(as, irr->op2) && irr->o == IR_ADD && irref_isk(irr->op2) && (k = emit_isk12(ARMI_ADD, (int32_t)sizeof(GCstr) + IR(irr->op2)->i))) { m = k; right = ra_alloc1(as, irr->op1, rset_exclude(RSET_GPR, left)); } else { right = ra_allocref(as, ir->op2, rset_exclude(RSET_GPR, left)); } emit_dn(as, ARMI_ADD^m, dest, dest); emit_dnm(as, ARMI_ADD, dest, left, right); return; } r = ra_alloc1(as, ref, RSET_GPR); emit_opk(as, ARMI_ADD, dest, r, sizeof(GCstr) + IR(refk)->i, rset_exclude(RSET_GPR, r)); } /* -- Loads and stores ---------------------------------------------------- */ static ARMIns asm_fxloadins(IRIns *ir) { switch (irt_type(ir->t)) { case IRT_I8: return ARMI_LDRSB; case IRT_U8: return ARMI_LDRB; case IRT_I16: return ARMI_LDRSH; case IRT_U16: return ARMI_LDRH; case IRT_NUM: lua_assert(!LJ_SOFTFP); return ARMI_VLDR_D; case IRT_FLOAT: if (!LJ_SOFTFP) return ARMI_VLDR_S; default: return ARMI_LDR; } } static ARMIns asm_fxstoreins(IRIns *ir) { switch (irt_type(ir->t)) { case IRT_I8: case IRT_U8: return ARMI_STRB; case IRT_I16: case IRT_U16: return ARMI_STRH; case IRT_NUM: lua_assert(!LJ_SOFTFP); return ARMI_VSTR_D; case IRT_FLOAT: if (!LJ_SOFTFP) return ARMI_VSTR_S; default: return ARMI_STR; } } static void asm_fload(ASMState *as, IRIns *ir) { if (ir->op1 == REF_NIL) { lua_assert(!ra_used(ir)); /* We can end up here if DCE is turned off. */ } else { Reg dest = ra_dest(as, ir, RSET_GPR); Reg idx = ra_alloc1(as, ir->op1, RSET_GPR); ARMIns ai = asm_fxloadins(ir); int32_t ofs; if (ir->op2 == IRFL_TAB_ARRAY) { ofs = asm_fuseabase(as, ir->op1); if (ofs) { /* Turn the t->array load into an add for colocated arrays. */ emit_dn(as, ARMI_ADD|ARMI_K12|ofs, dest, idx); return; } } ofs = field_ofs[ir->op2]; if ((ai & 0x04000000)) emit_lso(as, ai, dest, idx, ofs); else emit_lsox(as, ai, dest, idx, ofs); } } static void asm_fstore(ASMState *as, IRIns *ir) { if (ir->r != RID_SINK) { Reg src = ra_alloc1(as, ir->op2, RSET_GPR); IRIns *irf = IR(ir->op1); Reg idx = ra_alloc1(as, irf->op1, rset_exclude(RSET_GPR, src)); int32_t ofs = field_ofs[irf->op2]; ARMIns ai = asm_fxstoreins(ir); if ((ai & 0x04000000)) emit_lso(as, ai, src, idx, ofs); else emit_lsox(as, ai, src, idx, ofs); } } static void asm_xload(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, (!LJ_SOFTFP && irt_isfp(ir->t)) ? RSET_FPR : RSET_GPR); lua_assert(!(ir->op2 & IRXLOAD_UNALIGNED)); asm_fusexref(as, asm_fxloadins(ir), dest, ir->op1, RSET_GPR, 0); } static void asm_xstore_(ASMState *as, IRIns *ir, int32_t ofs) { if (ir->r != RID_SINK) { Reg src = ra_alloc1(as, ir->op2, (!LJ_SOFTFP && irt_isfp(ir->t)) ? RSET_FPR : RSET_GPR); asm_fusexref(as, asm_fxstoreins(ir), src, ir->op1, rset_exclude(RSET_GPR, src), ofs); } } #define asm_xstore(as, ir) asm_xstore_(as, ir, 0) static void asm_ahuvload(ASMState *as, IRIns *ir) { int hiop = (LJ_SOFTFP && (ir+1)->o == IR_HIOP); IRType t = hiop ? IRT_NUM : irt_type(ir->t); Reg dest = RID_NONE, type = RID_NONE, idx; RegSet allow = RSET_GPR; int32_t ofs = 0; if (hiop && ra_used(ir+1)) { type = ra_dest(as, ir+1, allow); rset_clear(allow, type); } if (ra_used(ir)) { lua_assert((LJ_SOFTFP ? 0 : irt_isnum(ir->t)) || irt_isint(ir->t) || irt_isaddr(ir->t)); dest = ra_dest(as, ir, (!LJ_SOFTFP && t == IRT_NUM) ? RSET_FPR : allow); rset_clear(allow, dest); } idx = asm_fuseahuref(as, ir->op1, &ofs, allow, (!LJ_SOFTFP && t == IRT_NUM) ? 1024 : 4096); if (!hiop || type == RID_NONE) { rset_clear(allow, idx); if (ofs < 256 && ra_hasreg(dest) && (dest & 1) == 0 && rset_test((as->freeset & allow), dest+1)) { type = dest+1; ra_modified(as, type); } else { type = RID_TMP; } } asm_guardcc(as, t == IRT_NUM ? CC_HS : CC_NE); emit_n(as, ARMI_CMN|ARMI_K12|-irt_toitype_(t), type); if (ra_hasreg(dest)) { #if !LJ_SOFTFP if (t == IRT_NUM) emit_vlso(as, ARMI_VLDR_D, dest, idx, ofs); else #endif emit_lso(as, ARMI_LDR, dest, idx, ofs); } emit_lso(as, ARMI_LDR, type, idx, ofs+4); } static void asm_ahustore(ASMState *as, IRIns *ir) { if (ir->r != RID_SINK) { RegSet allow = RSET_GPR; Reg idx, src = RID_NONE, type = RID_NONE; int32_t ofs = 0; #if !LJ_SOFTFP if (irt_isnum(ir->t)) { src = ra_alloc1(as, ir->op2, RSET_FPR); idx = asm_fuseahuref(as, ir->op1, &ofs, allow, 1024); emit_vlso(as, ARMI_VSTR_D, src, idx, ofs); } else #endif { int hiop = (LJ_SOFTFP && (ir+1)->o == IR_HIOP); if (!irt_ispri(ir->t)) { src = ra_alloc1(as, ir->op2, allow); rset_clear(allow, src); } if (hiop) type = ra_alloc1(as, (ir+1)->op2, allow); else type = ra_allock(as, (int32_t)irt_toitype(ir->t), allow); idx = asm_fuseahuref(as, ir->op1, &ofs, rset_exclude(allow, type), 4096); if (ra_hasreg(src)) emit_lso(as, ARMI_STR, src, idx, ofs); emit_lso(as, ARMI_STR, type, idx, ofs+4); } } } static void asm_sload(ASMState *as, IRIns *ir) { int32_t ofs = 8*((int32_t)ir->op1-1) + ((ir->op2 & IRSLOAD_FRAME) ? 4 : 0); int hiop = (LJ_SOFTFP && (ir+1)->o == IR_HIOP); IRType t = hiop ? IRT_NUM : irt_type(ir->t); Reg dest = RID_NONE, type = RID_NONE, base; RegSet allow = RSET_GPR; lua_assert(!(ir->op2 & IRSLOAD_PARENT)); /* Handled by asm_head_side(). */ lua_assert(irt_isguard(ir->t) || !(ir->op2 & IRSLOAD_TYPECHECK)); #if LJ_SOFTFP lua_assert(!(ir->op2 & IRSLOAD_CONVERT)); /* Handled by LJ_SOFTFP SPLIT. */ if (hiop && ra_used(ir+1)) { type = ra_dest(as, ir+1, allow); rset_clear(allow, type); } #else if ((ir->op2 & IRSLOAD_CONVERT) && irt_isguard(ir->t) && t == IRT_INT) { dest = ra_scratch(as, RSET_FPR); asm_tointg(as, ir, dest); t = IRT_NUM; /* Continue with a regular number type check. */ } else #endif if (ra_used(ir)) { Reg tmp = RID_NONE; if ((ir->op2 & IRSLOAD_CONVERT)) tmp = ra_scratch(as, t == IRT_INT ? RSET_FPR : RSET_GPR); lua_assert((LJ_SOFTFP ? 0 : irt_isnum(ir->t)) || irt_isint(ir->t) || irt_isaddr(ir->t)); dest = ra_dest(as, ir, (!LJ_SOFTFP && t == IRT_NUM) ? RSET_FPR : allow); rset_clear(allow, dest); base = ra_alloc1(as, REF_BASE, allow); if ((ir->op2 & IRSLOAD_CONVERT)) { if (t == IRT_INT) { emit_dn(as, ARMI_VMOV_R_S, dest, (tmp & 15)); emit_dm(as, ARMI_VCVT_S32_F64, (tmp & 15), (tmp & 15)); t = IRT_NUM; /* Check for original type. */ } else { emit_dm(as, ARMI_VCVT_F64_S32, (dest & 15), (dest & 15)); emit_dn(as, ARMI_VMOV_S_R, tmp, (dest & 15)); t = IRT_INT; /* Check for original type. */ } dest = tmp; } goto dotypecheck; } base = ra_alloc1(as, REF_BASE, allow); dotypecheck: rset_clear(allow, base); if ((ir->op2 & IRSLOAD_TYPECHECK)) { if (ra_noreg(type)) { if (ofs < 256 && ra_hasreg(dest) && (dest & 1) == 0 && rset_test((as->freeset & allow), dest+1)) { type = dest+1; ra_modified(as, type); } else { type = RID_TMP; } } asm_guardcc(as, t == IRT_NUM ? CC_HS : CC_NE); emit_n(as, ARMI_CMN|ARMI_K12|-irt_toitype_(t), type); } if (ra_hasreg(dest)) { #if !LJ_SOFTFP if (t == IRT_NUM) { if (ofs < 1024) { emit_vlso(as, ARMI_VLDR_D, dest, base, ofs); } else { if (ra_hasreg(type)) emit_lso(as, ARMI_LDR, type, base, ofs+4); emit_vlso(as, ARMI_VLDR_D, dest, RID_TMP, 0); emit_opk(as, ARMI_ADD, RID_TMP, base, ofs, allow); return; } } else #endif emit_lso(as, ARMI_LDR, dest, base, ofs); } if (ra_hasreg(type)) emit_lso(as, ARMI_LDR, type, base, ofs+4); } /* -- Allocations --------------------------------------------------------- */ #if LJ_HASFFI static void asm_cnew(ASMState *as, IRIns *ir) { CTState *cts = ctype_ctsG(J2G(as->J)); CTypeID id = (CTypeID)IR(ir->op1)->i; CTSize sz; CTInfo info = lj_ctype_info(cts, id, &sz); const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_mem_newgco]; IRRef args[4]; RegSet allow = (RSET_GPR & ~RSET_SCRATCH); RegSet drop = RSET_SCRATCH; lua_assert(sz != CTSIZE_INVALID || (ir->o == IR_CNEW && ir->op2 != REF_NIL)); as->gcsteps++; if (ra_hasreg(ir->r)) rset_clear(drop, ir->r); /* Dest reg handled below. */ ra_evictset(as, drop); if (ra_used(ir)) ra_destreg(as, ir, RID_RET); /* GCcdata * */ /* Initialize immutable cdata object. */ if (ir->o == IR_CNEWI) { int32_t ofs = sizeof(GCcdata); lua_assert(sz == 4 || sz == 8); if (sz == 8) { ofs += 4; ir++; lua_assert(ir->o == IR_HIOP); } for (;;) { Reg r = ra_alloc1(as, ir->op2, allow); emit_lso(as, ARMI_STR, r, RID_RET, ofs); rset_clear(allow, r); if (ofs == sizeof(GCcdata)) break; ofs -= 4; ir--; } } else if (ir->op2 != REF_NIL) { /* Create VLA/VLS/aligned cdata. */ ci = &lj_ir_callinfo[IRCALL_lj_cdata_newv]; args[0] = ASMREF_L; /* lua_State *L */ args[1] = ir->op1; /* CTypeID id */ args[2] = ir->op2; /* CTSize sz */ args[3] = ASMREF_TMP1; /* CTSize align */ asm_gencall(as, ci, args); emit_loadi(as, ra_releasetmp(as, ASMREF_TMP1), (int32_t)ctype_align(info)); return; } /* Initialize gct and ctypeid. lj_mem_newgco() already sets marked. */ { uint32_t k = emit_isk12(ARMI_MOV, id); Reg r = k ? RID_R1 : ra_allock(as, id, allow); emit_lso(as, ARMI_STRB, RID_TMP, RID_RET, offsetof(GCcdata, gct)); emit_lsox(as, ARMI_STRH, r, RID_RET, offsetof(GCcdata, ctypeid)); emit_d(as, ARMI_MOV|ARMI_K12|~LJ_TCDATA, RID_TMP); if (k) emit_d(as, ARMI_MOV^k, RID_R1); } args[0] = ASMREF_L; /* lua_State *L */ args[1] = ASMREF_TMP1; /* MSize size */ asm_gencall(as, ci, args); ra_allockreg(as, (int32_t)(sz+sizeof(GCcdata)), ra_releasetmp(as, ASMREF_TMP1)); } #else #define asm_cnew(as, ir) ((void)0) #endif /* -- Write barriers ------------------------------------------------------ */ static void asm_tbar(ASMState *as, IRIns *ir) { Reg tab = ra_alloc1(as, ir->op1, RSET_GPR); Reg link = ra_scratch(as, rset_exclude(RSET_GPR, tab)); Reg gr = ra_allock(as, i32ptr(J2G(as->J)), rset_exclude(rset_exclude(RSET_GPR, tab), link)); Reg mark = RID_TMP; MCLabel l_end = emit_label(as); emit_lso(as, ARMI_STR, link, tab, (int32_t)offsetof(GCtab, gclist)); emit_lso(as, ARMI_STRB, mark, tab, (int32_t)offsetof(GCtab, marked)); emit_lso(as, ARMI_STR, tab, gr, (int32_t)offsetof(global_State, gc.grayagain)); emit_dn(as, ARMI_BIC|ARMI_K12|LJ_GC_BLACK, mark, mark); emit_lso(as, ARMI_LDR, link, gr, (int32_t)offsetof(global_State, gc.grayagain)); emit_branch(as, ARMF_CC(ARMI_B, CC_EQ), l_end); emit_n(as, ARMI_TST|ARMI_K12|LJ_GC_BLACK, mark); emit_lso(as, ARMI_LDRB, mark, tab, (int32_t)offsetof(GCtab, marked)); } static void asm_obar(ASMState *as, IRIns *ir) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_gc_barrieruv]; IRRef args[2]; MCLabel l_end; Reg obj, val, tmp; /* No need for other object barriers (yet). */ lua_assert(IR(ir->op1)->o == IR_UREFC); ra_evictset(as, RSET_SCRATCH); l_end = emit_label(as); args[0] = ASMREF_TMP1; /* global_State *g */ args[1] = ir->op1; /* TValue *tv */ asm_gencall(as, ci, args); if ((l_end[-1] >> 28) == CC_AL) l_end[-1] = ARMF_CC(l_end[-1], CC_NE); else emit_branch(as, ARMF_CC(ARMI_B, CC_EQ), l_end); ra_allockreg(as, i32ptr(J2G(as->J)), ra_releasetmp(as, ASMREF_TMP1)); obj = IR(ir->op1)->r; tmp = ra_scratch(as, rset_exclude(RSET_GPR, obj)); emit_n(as, ARMF_CC(ARMI_TST, CC_NE)|ARMI_K12|LJ_GC_BLACK, tmp); emit_n(as, ARMI_TST|ARMI_K12|LJ_GC_WHITES, RID_TMP); val = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, obj)); emit_lso(as, ARMI_LDRB, tmp, obj, (int32_t)offsetof(GCupval, marked)-(int32_t)offsetof(GCupval, tv)); emit_lso(as, ARMI_LDRB, RID_TMP, val, (int32_t)offsetof(GChead, marked)); } /* -- Arithmetic and logic operations ------------------------------------- */ #if !LJ_SOFTFP static void asm_fparith(ASMState *as, IRIns *ir, ARMIns ai) { Reg dest = ra_dest(as, ir, RSET_FPR); Reg right, left = ra_alloc2(as, ir, RSET_FPR); right = (left >> 8); left &= 255; emit_dnm(as, ai, (dest & 15), (left & 15), (right & 15)); } static void asm_fpunary(ASMState *as, IRIns *ir, ARMIns ai) { Reg dest = ra_dest(as, ir, RSET_FPR); Reg left = ra_hintalloc(as, ir->op1, dest, RSET_FPR); emit_dm(as, ai, (dest & 15), (left & 15)); } static void asm_callround(ASMState *as, IRIns *ir, int id) { /* The modified regs must match with the *.dasc implementation. */ RegSet drop = RID2RSET(RID_R0)|RID2RSET(RID_R1)|RID2RSET(RID_R2)| RID2RSET(RID_R3)|RID2RSET(RID_R12); RegSet of; Reg dest, src; ra_evictset(as, drop); dest = ra_dest(as, ir, RSET_FPR); emit_dnm(as, ARMI_VMOV_D_RR, RID_RETLO, RID_RETHI, (dest & 15)); emit_call(as, id == IRFPM_FLOOR ? (void *)lj_vm_floor_sf : id == IRFPM_CEIL ? (void *)lj_vm_ceil_sf : (void *)lj_vm_trunc_sf); /* Workaround to protect argument GPRs from being used for remat. */ of = as->freeset; as->freeset &= ~RSET_RANGE(RID_R0, RID_R1+1); as->cost[RID_R0] = as->cost[RID_R1] = REGCOST(~0u, ASMREF_L); src = ra_alloc1(as, ir->op1, RSET_FPR); /* May alloc GPR to remat FPR. */ as->freeset |= (of & RSET_RANGE(RID_R0, RID_R1+1)); emit_dnm(as, ARMI_VMOV_RR_D, RID_R0, RID_R1, (src & 15)); } static void asm_fpmath(ASMState *as, IRIns *ir) { if (ir->op2 == IRFPM_EXP2 && asm_fpjoin_pow(as, ir)) return; if (ir->op2 <= IRFPM_TRUNC) asm_callround(as, ir, ir->op2); else if (ir->op2 == IRFPM_SQRT) asm_fpunary(as, ir, ARMI_VSQRT_D); else asm_callid(as, ir, IRCALL_lj_vm_floor + ir->op2); } #endif static int asm_swapops(ASMState *as, IRRef lref, IRRef rref) { IRIns *ir; if (irref_isk(rref)) return 0; /* Don't swap constants to the left. */ if (irref_isk(lref)) return 1; /* But swap constants to the right. */ ir = IR(rref); if ((ir->o >= IR_BSHL && ir->o <= IR_BROR) || (ir->o == IR_ADD && ir->op1 == ir->op2)) return 0; /* Don't swap fusable operands to the left. */ ir = IR(lref); if ((ir->o >= IR_BSHL && ir->o <= IR_BROR) || (ir->o == IR_ADD && ir->op1 == ir->op2)) return 1; /* But swap fusable operands to the right. */ return 0; /* Otherwise don't swap. */ } static void asm_intop(ASMState *as, IRIns *ir, ARMIns ai) { IRRef lref = ir->op1, rref = ir->op2; Reg left, dest = ra_dest(as, ir, RSET_GPR); uint32_t m; if (asm_swapops(as, lref, rref)) { IRRef tmp = lref; lref = rref; rref = tmp; if ((ai & ~ARMI_S) == ARMI_SUB || (ai & ~ARMI_S) == ARMI_SBC) ai ^= (ARMI_SUB^ARMI_RSB); } left = ra_hintalloc(as, lref, dest, RSET_GPR); m = asm_fuseopm(as, ai, rref, rset_exclude(RSET_GPR, left)); if (irt_isguard(ir->t)) { /* For IR_ADDOV etc. */ asm_guardcc(as, CC_VS); ai |= ARMI_S; } emit_dn(as, ai^m, dest, left); } static void asm_intop_s(ASMState *as, IRIns *ir, ARMIns ai) { if (as->flagmcp == as->mcp) { /* Drop cmp r, #0. */ as->flagmcp = NULL; as->mcp++; ai |= ARMI_S; } asm_intop(as, ir, ai); } static void asm_intneg(ASMState *as, IRIns *ir, ARMIns ai) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg left = ra_hintalloc(as, ir->op1, dest, RSET_GPR); emit_dn(as, ai|ARMI_K12|0, dest, left); } /* NYI: use add/shift for MUL(OV) with constants. FOLD only does 2^k. */ static void asm_intmul(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg left = ra_alloc1(as, ir->op1, rset_exclude(RSET_GPR, dest)); Reg right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left)); Reg tmp = RID_NONE; /* ARMv5 restriction: dest != left and dest_hi != left. */ if (dest == left && left != right) { left = right; right = dest; } if (irt_isguard(ir->t)) { /* IR_MULOV */ if (!(as->flags & JIT_F_ARMV6) && dest == left) tmp = left = ra_scratch(as, rset_exclude(RSET_GPR, left)); asm_guardcc(as, CC_NE); emit_nm(as, ARMI_TEQ|ARMF_SH(ARMSH_ASR, 31), RID_TMP, dest); emit_dnm(as, ARMI_SMULL|ARMF_S(right), dest, RID_TMP, left); } else { if (!(as->flags & JIT_F_ARMV6) && dest == left) tmp = left = RID_TMP; emit_nm(as, ARMI_MUL|ARMF_S(right), dest, left); } /* Only need this for the dest == left == right case. */ if (ra_hasreg(tmp)) emit_dm(as, ARMI_MOV, tmp, right); } static void asm_add(ASMState *as, IRIns *ir) { #if !LJ_SOFTFP if (irt_isnum(ir->t)) { if (!asm_fusemadd(as, ir, ARMI_VMLA_D, ARMI_VMLA_D)) asm_fparith(as, ir, ARMI_VADD_D); return; } #endif asm_intop_s(as, ir, ARMI_ADD); } static void asm_sub(ASMState *as, IRIns *ir) { #if !LJ_SOFTFP if (irt_isnum(ir->t)) { if (!asm_fusemadd(as, ir, ARMI_VNMLS_D, ARMI_VMLS_D)) asm_fparith(as, ir, ARMI_VSUB_D); return; } #endif asm_intop_s(as, ir, ARMI_SUB); } static void asm_mul(ASMState *as, IRIns *ir) { #if !LJ_SOFTFP if (irt_isnum(ir->t)) { asm_fparith(as, ir, ARMI_VMUL_D); return; } #endif asm_intmul(as, ir); } #define asm_addov(as, ir) asm_add(as, ir) #define asm_subov(as, ir) asm_sub(as, ir) #define asm_mulov(as, ir) asm_mul(as, ir) #if !LJ_SOFTFP #define asm_div(as, ir) asm_fparith(as, ir, ARMI_VDIV_D) #define asm_pow(as, ir) asm_callid(as, ir, IRCALL_lj_vm_powi) #define asm_abs(as, ir) asm_fpunary(as, ir, ARMI_VABS_D) #define asm_atan2(as, ir) asm_callid(as, ir, IRCALL_atan2) #define asm_ldexp(as, ir) asm_callid(as, ir, IRCALL_ldexp) #endif #define asm_mod(as, ir) asm_callid(as, ir, IRCALL_lj_vm_modi) static void asm_neg(ASMState *as, IRIns *ir) { #if !LJ_SOFTFP if (irt_isnum(ir->t)) { asm_fpunary(as, ir, ARMI_VNEG_D); return; } #endif asm_intneg(as, ir, ARMI_RSB); } static void asm_bitop(ASMState *as, IRIns *ir, ARMIns ai) { if (as->flagmcp == as->mcp) { /* Try to drop cmp r, #0. */ uint32_t cc = (as->mcp[1] >> 28); as->flagmcp = NULL; if (cc <= CC_NE) { as->mcp++; ai |= ARMI_S; } else if (cc == CC_GE) { *++as->mcp ^= ((CC_GE^CC_PL) << 28); ai |= ARMI_S; } else if (cc == CC_LT) { *++as->mcp ^= ((CC_LT^CC_MI) << 28); ai |= ARMI_S; } /* else: other conds don't work with bit ops. */ } if (ir->op2 == 0) { Reg dest = ra_dest(as, ir, RSET_GPR); uint32_t m = asm_fuseopm(as, ai, ir->op1, RSET_GPR); emit_d(as, ai^m, dest); } else { /* NYI: Turn BAND !k12 into uxtb, uxth or bfc or shl+shr. */ asm_intop(as, ir, ai); } } #define asm_bnot(as, ir) asm_bitop(as, ir, ARMI_MVN) static void asm_bswap(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg left = ra_alloc1(as, ir->op1, RSET_GPR); if ((as->flags & JIT_F_ARMV6)) { emit_dm(as, ARMI_REV, dest, left); } else { Reg tmp2 = dest; if (tmp2 == left) tmp2 = ra_scratch(as, rset_exclude(rset_exclude(RSET_GPR, dest), left)); emit_dnm(as, ARMI_EOR|ARMF_SH(ARMSH_LSR, 8), dest, tmp2, RID_TMP); emit_dm(as, ARMI_MOV|ARMF_SH(ARMSH_ROR, 8), tmp2, left); emit_dn(as, ARMI_BIC|ARMI_K12|256*8|255, RID_TMP, RID_TMP); emit_dnm(as, ARMI_EOR|ARMF_SH(ARMSH_ROR, 16), RID_TMP, left, left); } } #define asm_band(as, ir) asm_bitop(as, ir, ARMI_AND) #define asm_bor(as, ir) asm_bitop(as, ir, ARMI_ORR) #define asm_bxor(as, ir) asm_bitop(as, ir, ARMI_EOR) static void asm_bitshift(ASMState *as, IRIns *ir, ARMShift sh) { if (irref_isk(ir->op2)) { /* Constant shifts. */ /* NYI: Turn SHL+SHR or BAND+SHR into uxtb, uxth or ubfx. */ /* NYI: Turn SHL+ASR into sxtb, sxth or sbfx. */ Reg dest = ra_dest(as, ir, RSET_GPR); Reg left = ra_alloc1(as, ir->op1, RSET_GPR); int32_t shift = (IR(ir->op2)->i & 31); emit_dm(as, ARMI_MOV|ARMF_SH(sh, shift), dest, left); } else { Reg dest = ra_dest(as, ir, RSET_GPR); Reg left = ra_alloc1(as, ir->op1, RSET_GPR); Reg right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left)); emit_dm(as, ARMI_MOV|ARMF_RSH(sh, right), dest, left); } } #define asm_bshl(as, ir) asm_bitshift(as, ir, ARMSH_LSL) #define asm_bshr(as, ir) asm_bitshift(as, ir, ARMSH_LSR) #define asm_bsar(as, ir) asm_bitshift(as, ir, ARMSH_ASR) #define asm_bror(as, ir) asm_bitshift(as, ir, ARMSH_ROR) #define asm_brol(as, ir) lua_assert(0) static void asm_intmin_max(ASMState *as, IRIns *ir, int cc) { uint32_t kcmp = 0, kmov = 0; Reg dest = ra_dest(as, ir, RSET_GPR); Reg left = ra_hintalloc(as, ir->op1, dest, RSET_GPR); Reg right = 0; if (irref_isk(ir->op2)) { kcmp = emit_isk12(ARMI_CMP, IR(ir->op2)->i); if (kcmp) kmov = emit_isk12(ARMI_MOV, IR(ir->op2)->i); } if (!kmov) { kcmp = 0; right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left)); } if (kmov || dest != right) { emit_dm(as, ARMF_CC(ARMI_MOV, cc)^kmov, dest, right); cc ^= 1; /* Must use opposite conditions for paired moves. */ } else { cc ^= (CC_LT^CC_GT); /* Otherwise may swap CC_LT <-> CC_GT. */ } if (dest != left) emit_dm(as, ARMF_CC(ARMI_MOV, cc), dest, left); emit_nm(as, ARMI_CMP^kcmp, left, right); } #if LJ_SOFTFP static void asm_sfpmin_max(ASMState *as, IRIns *ir, int cc) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_softfp_cmp]; RegSet drop = RSET_SCRATCH; Reg r; IRRef args[4]; args[0] = ir->op1; args[1] = (ir+1)->op1; args[2] = ir->op2; args[3] = (ir+1)->op2; /* __aeabi_cdcmple preserves r0-r3. */ if (ra_hasreg(ir->r)) rset_clear(drop, ir->r); if (ra_hasreg((ir+1)->r)) rset_clear(drop, (ir+1)->r); if (!rset_test(as->freeset, RID_R2) && regcost_ref(as->cost[RID_R2]) == args[2]) rset_clear(drop, RID_R2); if (!rset_test(as->freeset, RID_R3) && regcost_ref(as->cost[RID_R3]) == args[3]) rset_clear(drop, RID_R3); ra_evictset(as, drop); ra_destpair(as, ir); emit_dm(as, ARMF_CC(ARMI_MOV, cc), RID_RETHI, RID_R3); emit_dm(as, ARMF_CC(ARMI_MOV, cc), RID_RETLO, RID_R2); emit_call(as, (void *)ci->func); for (r = RID_R0; r <= RID_R3; r++) ra_leftov(as, r, args[r-RID_R0]); } #else static void asm_fpmin_max(ASMState *as, IRIns *ir, int cc) { Reg dest = (ra_dest(as, ir, RSET_FPR) & 15); Reg right, left = ra_alloc2(as, ir, RSET_FPR); right = ((left >> 8) & 15); left &= 15; if (dest != left) emit_dm(as, ARMF_CC(ARMI_VMOV_D, cc^1), dest, left); if (dest != right) emit_dm(as, ARMF_CC(ARMI_VMOV_D, cc), dest, right); emit_d(as, ARMI_VMRS, 0); emit_dm(as, ARMI_VCMP_D, left, right); } #endif static void asm_min_max(ASMState *as, IRIns *ir, int cc, int fcc) { #if LJ_SOFTFP UNUSED(fcc); #else if (irt_isnum(ir->t)) asm_fpmin_max(as, ir, fcc); else #endif asm_intmin_max(as, ir, cc); } #define asm_min(as, ir) asm_min_max(as, ir, CC_GT, CC_HI) #define asm_max(as, ir) asm_min_max(as, ir, CC_LT, CC_LO) /* -- Comparisons --------------------------------------------------------- */ /* Map of comparisons to flags. ORDER IR. */ static const uint8_t asm_compmap[IR_ABC+1] = { /* op FP swp int cc FP cc */ /* LT */ CC_GE + (CC_HS << 4), /* GE x */ CC_LT + (CC_HI << 4), /* LE */ CC_GT + (CC_HI << 4), /* GT x */ CC_LE + (CC_HS << 4), /* ULT x */ CC_HS + (CC_LS << 4), /* UGE */ CC_LO + (CC_LO << 4), /* ULE x */ CC_HI + (CC_LO << 4), /* UGT */ CC_LS + (CC_LS << 4), /* EQ */ CC_NE + (CC_NE << 4), /* NE */ CC_EQ + (CC_EQ << 4), /* ABC */ CC_LS + (CC_LS << 4) /* Same as UGT. */ }; #if LJ_SOFTFP /* FP comparisons. */ static void asm_sfpcomp(ASMState *as, IRIns *ir) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_softfp_cmp]; RegSet drop = RSET_SCRATCH; Reg r; IRRef args[4]; int swp = (((ir->o ^ (ir->o >> 2)) & ~(ir->o >> 3) & 1) << 1); args[swp^0] = ir->op1; args[swp^1] = (ir+1)->op1; args[swp^2] = ir->op2; args[swp^3] = (ir+1)->op2; /* __aeabi_cdcmple preserves r0-r3. This helps to reduce spills. */ for (r = RID_R0; r <= RID_R3; r++) if (!rset_test(as->freeset, r) && regcost_ref(as->cost[r]) == args[r-RID_R0]) rset_clear(drop, r); ra_evictset(as, drop); asm_guardcc(as, (asm_compmap[ir->o] >> 4)); emit_call(as, (void *)ci->func); for (r = RID_R0; r <= RID_R3; r++) ra_leftov(as, r, args[r-RID_R0]); } #else /* FP comparisons. */ static void asm_fpcomp(ASMState *as, IRIns *ir) { Reg left, right; ARMIns ai; int swp = ((ir->o ^ (ir->o >> 2)) & ~(ir->o >> 3) & 1); if (!swp && irref_isk(ir->op2) && ir_knum(IR(ir->op2))->u64 == 0) { left = (ra_alloc1(as, ir->op1, RSET_FPR) & 15); right = 0; ai = ARMI_VCMPZ_D; } else { left = ra_alloc2(as, ir, RSET_FPR); if (swp) { right = (left & 15); left = ((left >> 8) & 15); } else { right = ((left >> 8) & 15); left &= 15; } ai = ARMI_VCMP_D; } asm_guardcc(as, (asm_compmap[ir->o] >> 4)); emit_d(as, ARMI_VMRS, 0); emit_dm(as, ai, left, right); } #endif /* Integer comparisons. */ static void asm_intcomp(ASMState *as, IRIns *ir) { ARMCC cc = (asm_compmap[ir->o] & 15); IRRef lref = ir->op1, rref = ir->op2; Reg left; uint32_t m; int cmpprev0 = 0; lua_assert(irt_isint(ir->t) || irt_isu32(ir->t) || irt_isaddr(ir->t)); if (asm_swapops(as, lref, rref)) { Reg tmp = lref; lref = rref; rref = tmp; if (cc >= CC_GE) cc ^= 7; /* LT <-> GT, LE <-> GE */ else if (cc > CC_NE) cc ^= 11; /* LO <-> HI, LS <-> HS */ } if (irref_isk(rref) && IR(rref)->i == 0) { IRIns *irl = IR(lref); cmpprev0 = (irl+1 == ir); /* Combine comp(BAND(left, right), 0) into tst left, right. */ if (cmpprev0 && irl->o == IR_BAND && !ra_used(irl)) { IRRef blref = irl->op1, brref = irl->op2; uint32_t m2 = 0; Reg bleft; if (asm_swapops(as, blref, brref)) { Reg tmp = blref; blref = brref; brref = tmp; } if (irref_isk(brref)) { m2 = emit_isk12(ARMI_AND, IR(brref)->i); if ((m2 & (ARMI_AND^ARMI_BIC))) goto notst; /* Not beneficial if we miss a constant operand. */ } if (cc == CC_GE) cc = CC_PL; else if (cc == CC_LT) cc = CC_MI; else if (cc > CC_NE) goto notst; /* Other conds don't work with tst. */ bleft = ra_alloc1(as, blref, RSET_GPR); if (!m2) m2 = asm_fuseopm(as, 0, brref, rset_exclude(RSET_GPR, bleft)); asm_guardcc(as, cc); emit_n(as, ARMI_TST^m2, bleft); return; } } notst: left = ra_alloc1(as, lref, RSET_GPR); m = asm_fuseopm(as, ARMI_CMP, rref, rset_exclude(RSET_GPR, left)); asm_guardcc(as, cc); emit_n(as, ARMI_CMP^m, left); /* Signed comparison with zero and referencing previous ins? */ if (cmpprev0 && (cc <= CC_NE || cc >= CC_GE)) as->flagmcp = as->mcp; /* Allow elimination of the compare. */ } static void asm_comp(ASMState *as, IRIns *ir) { #if !LJ_SOFTFP if (irt_isnum(ir->t)) asm_fpcomp(as, ir); else #endif asm_intcomp(as, ir); } #define asm_equal(as, ir) asm_comp(as, ir) #if LJ_HASFFI /* 64 bit integer comparisons. */ static void asm_int64comp(ASMState *as, IRIns *ir) { int signedcomp = (ir->o <= IR_GT); ARMCC cclo, cchi; Reg leftlo, lefthi; uint32_t mlo, mhi; RegSet allow = RSET_GPR, oldfree; /* Always use unsigned comparison for loword. */ cclo = asm_compmap[ir->o + (signedcomp ? 4 : 0)] & 15; leftlo = ra_alloc1(as, ir->op1, allow); oldfree = as->freeset; mlo = asm_fuseopm(as, ARMI_CMP, ir->op2, rset_clear(allow, leftlo)); allow &= ~(oldfree & ~as->freeset); /* Update for allocs of asm_fuseopm. */ /* Use signed or unsigned comparison for hiword. */ cchi = asm_compmap[ir->o] & 15; lefthi = ra_alloc1(as, (ir+1)->op1, allow); mhi = asm_fuseopm(as, ARMI_CMP, (ir+1)->op2, rset_clear(allow, lefthi)); /* All register allocations must be performed _before_ this point. */ if (signedcomp) { MCLabel l_around = emit_label(as); asm_guardcc(as, cclo); emit_n(as, ARMI_CMP^mlo, leftlo); emit_branch(as, ARMF_CC(ARMI_B, CC_NE), l_around); if (cchi == CC_GE || cchi == CC_LE) cchi ^= 6; /* GE -> GT, LE -> LT */ asm_guardcc(as, cchi); } else { asm_guardcc(as, cclo); emit_n(as, ARMF_CC(ARMI_CMP, CC_EQ)^mlo, leftlo); } emit_n(as, ARMI_CMP^mhi, lefthi); } #endif /* -- Support for 64 bit ops in 32 bit mode ------------------------------- */ /* Hiword op of a split 64 bit op. Previous op must be the loword op. */ static void asm_hiop(ASMState *as, IRIns *ir) { #if LJ_HASFFI || LJ_SOFTFP /* HIOP is marked as a store because it needs its own DCE logic. */ int uselo = ra_used(ir-1), usehi = ra_used(ir); /* Loword/hiword used? */ if (LJ_UNLIKELY(!(as->flags & JIT_F_OPT_DCE))) uselo = usehi = 1; if ((ir-1)->o <= IR_NE) { /* 64 bit integer or FP comparisons. ORDER IR. */ as->curins--; /* Always skip the loword comparison. */ #if LJ_SOFTFP if (!irt_isint(ir->t)) { asm_sfpcomp(as, ir-1); return; } #endif #if LJ_HASFFI asm_int64comp(as, ir-1); #endif return; #if LJ_SOFTFP } else if ((ir-1)->o == IR_MIN || (ir-1)->o == IR_MAX) { as->curins--; /* Always skip the loword min/max. */ if (uselo || usehi) asm_sfpmin_max(as, ir-1, (ir-1)->o == IR_MIN ? CC_HI : CC_LO); return; #elif LJ_HASFFI } else if ((ir-1)->o == IR_CONV) { as->curins--; /* Always skip the CONV. */ if (usehi || uselo) asm_conv64(as, ir); return; #endif } else if ((ir-1)->o == IR_XSTORE) { if ((ir-1)->r != RID_SINK) asm_xstore_(as, ir, 4); return; } if (!usehi) return; /* Skip unused hiword op for all remaining ops. */ switch ((ir-1)->o) { #if LJ_HASFFI case IR_ADD: as->curins--; asm_intop(as, ir, ARMI_ADC); asm_intop(as, ir-1, ARMI_ADD|ARMI_S); break; case IR_SUB: as->curins--; asm_intop(as, ir, ARMI_SBC); asm_intop(as, ir-1, ARMI_SUB|ARMI_S); break; case IR_NEG: as->curins--; asm_intneg(as, ir, ARMI_RSC); asm_intneg(as, ir-1, ARMI_RSB|ARMI_S); break; #endif #if LJ_SOFTFP case IR_SLOAD: case IR_ALOAD: case IR_HLOAD: case IR_ULOAD: case IR_VLOAD: case IR_STRTO: if (!uselo) ra_allocref(as, ir->op1, RSET_GPR); /* Mark lo op as used. */ break; #endif case IR_CALLN: case IR_CALLS: case IR_CALLXS: if (!uselo) ra_allocref(as, ir->op1, RID2RSET(RID_RETLO)); /* Mark lo op as used. */ break; #if LJ_SOFTFP case IR_ASTORE: case IR_HSTORE: case IR_USTORE: case IR_TOSTR: #endif case IR_CNEWI: /* Nothing to do here. Handled by lo op itself. */ break; default: lua_assert(0); break; } #else UNUSED(as); UNUSED(ir); lua_assert(0); #endif } /* -- Profiling ----------------------------------------------------------- */ static void asm_prof(ASMState *as, IRIns *ir) { UNUSED(ir); asm_guardcc(as, CC_NE); emit_n(as, ARMI_TST|ARMI_K12|HOOK_PROFILE, RID_TMP); emit_lsptr(as, ARMI_LDRB, RID_TMP, (void *)&J2G(as->J)->hookmask); } /* -- Stack handling ------------------------------------------------------ */ /* Check Lua stack size for overflow. Use exit handler as fallback. */ static void asm_stack_check(ASMState *as, BCReg topslot, IRIns *irp, RegSet allow, ExitNo exitno) { Reg pbase; uint32_t k; if (irp) { if (!ra_hasspill(irp->s)) { pbase = irp->r; lua_assert(ra_hasreg(pbase)); } else if (allow) { pbase = rset_pickbot(allow); } else { pbase = RID_RET; emit_lso(as, ARMI_LDR, RID_RET, RID_SP, 0); /* Restore temp. register. */ } } else { pbase = RID_BASE; } emit_branch(as, ARMF_CC(ARMI_BL, CC_LS), exitstub_addr(as->J, exitno)); k = emit_isk12(0, (int32_t)(8*topslot)); lua_assert(k); emit_n(as, ARMI_CMP^k, RID_TMP); emit_dnm(as, ARMI_SUB, RID_TMP, RID_TMP, pbase); emit_lso(as, ARMI_LDR, RID_TMP, RID_TMP, (int32_t)offsetof(lua_State, maxstack)); if (irp) { /* Must not spill arbitrary registers in head of side trace. */ int32_t i = i32ptr(&J2G(as->J)->cur_L); if (ra_hasspill(irp->s)) emit_lso(as, ARMI_LDR, pbase, RID_SP, sps_scale(irp->s)); emit_lso(as, ARMI_LDR, RID_TMP, RID_TMP, (i & 4095)); if (ra_hasspill(irp->s) && !allow) emit_lso(as, ARMI_STR, RID_RET, RID_SP, 0); /* Save temp. register. */ emit_loadi(as, RID_TMP, (i & ~4095)); } else { emit_getgl(as, RID_TMP, cur_L); } } /* Restore Lua stack from on-trace state. */ static void asm_stack_restore(ASMState *as, SnapShot *snap) { SnapEntry *map = &as->T->snapmap[snap->mapofs]; SnapEntry *flinks = &as->T->snapmap[snap_nextofs(as->T, snap)-1]; MSize n, nent = snap->nent; /* Store the value of all modified slots to the Lua stack. */ for (n = 0; n < nent; n++) { SnapEntry sn = map[n]; BCReg s = snap_slot(sn); int32_t ofs = 8*((int32_t)s-1); IRRef ref = snap_ref(sn); IRIns *ir = IR(ref); if ((sn & SNAP_NORESTORE)) continue; if (irt_isnum(ir->t)) { #if LJ_SOFTFP RegSet odd = rset_exclude(RSET_GPRODD, RID_BASE); Reg tmp; lua_assert(irref_isk(ref)); /* LJ_SOFTFP: must be a number constant. */ tmp = ra_allock(as, (int32_t)ir_knum(ir)->u32.lo, rset_exclude(RSET_GPREVEN, RID_BASE)); emit_lso(as, ARMI_STR, tmp, RID_BASE, ofs); if (rset_test(as->freeset, tmp+1)) odd = RID2RSET(tmp+1); tmp = ra_allock(as, (int32_t)ir_knum(ir)->u32.hi, odd); emit_lso(as, ARMI_STR, tmp, RID_BASE, ofs+4); #else Reg src = ra_alloc1(as, ref, RSET_FPR); emit_vlso(as, ARMI_VSTR_D, src, RID_BASE, ofs); #endif } else { RegSet odd = rset_exclude(RSET_GPRODD, RID_BASE); Reg type; lua_assert(irt_ispri(ir->t) || irt_isaddr(ir->t) || irt_isinteger(ir->t)); if (!irt_ispri(ir->t)) { Reg src = ra_alloc1(as, ref, rset_exclude(RSET_GPREVEN, RID_BASE)); emit_lso(as, ARMI_STR, src, RID_BASE, ofs); if (rset_test(as->freeset, src+1)) odd = RID2RSET(src+1); } if ((sn & (SNAP_CONT|SNAP_FRAME))) { if (s == 0) continue; /* Do not overwrite link to previous frame. */ type = ra_allock(as, (int32_t)(*flinks--), odd); #if LJ_SOFTFP } else if ((sn & SNAP_SOFTFPNUM)) { type = ra_alloc1(as, ref+1, rset_exclude(RSET_GPRODD, RID_BASE)); #endif } else { type = ra_allock(as, (int32_t)irt_toitype(ir->t), odd); } emit_lso(as, ARMI_STR, type, RID_BASE, ofs+4); } checkmclim(as); } lua_assert(map + nent == flinks); } /* -- GC handling --------------------------------------------------------- */ /* Check GC threshold and do one or more GC steps. */ static void asm_gc_check(ASMState *as) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_gc_step_jit]; IRRef args[2]; MCLabel l_end; Reg tmp1, tmp2; ra_evictset(as, RSET_SCRATCH); l_end = emit_label(as); /* Exit trace if in GCSatomic or GCSfinalize. Avoids syncing GC objects. */ asm_guardcc(as, CC_NE); /* Assumes asm_snap_prep() already done. */ emit_n(as, ARMI_CMP|ARMI_K12|0, RID_RET); args[0] = ASMREF_TMP1; /* global_State *g */ args[1] = ASMREF_TMP2; /* MSize steps */ asm_gencall(as, ci, args); tmp1 = ra_releasetmp(as, ASMREF_TMP1); tmp2 = ra_releasetmp(as, ASMREF_TMP2); emit_loadi(as, tmp2, as->gcsteps); /* Jump around GC step if GC total < GC threshold. */ emit_branch(as, ARMF_CC(ARMI_B, CC_LS), l_end); emit_nm(as, ARMI_CMP, RID_TMP, tmp2); emit_lso(as, ARMI_LDR, tmp2, tmp1, (int32_t)offsetof(global_State, gc.threshold)); emit_lso(as, ARMI_LDR, RID_TMP, tmp1, (int32_t)offsetof(global_State, gc.total)); ra_allockreg(as, i32ptr(J2G(as->J)), tmp1); as->gcsteps = 0; checkmclim(as); } /* -- Loop handling ------------------------------------------------------- */ /* Fixup the loop branch. */ static void asm_loop_fixup(ASMState *as) { MCode *p = as->mctop; MCode *target = as->mcp; if (as->loopinv) { /* Inverted loop branch? */ /* asm_guardcc already inverted the bcc and patched the final bl. */ p[-2] |= ((uint32_t)(target-p) & 0x00ffffffu); } else { p[-1] = ARMI_B | ((uint32_t)((target-p)-1) & 0x00ffffffu); } } /* -- Head of trace ------------------------------------------------------- */ /* Reload L register from g->cur_L. */ static void asm_head_lreg(ASMState *as) { IRIns *ir = IR(ASMREF_L); if (ra_used(ir)) { Reg r = ra_dest(as, ir, RSET_GPR); emit_getgl(as, r, cur_L); ra_evictk(as); } } /* Coalesce BASE register for a root trace. */ static void asm_head_root_base(ASMState *as) { IRIns *ir; asm_head_lreg(as); ir = IR(REF_BASE); if (ra_hasreg(ir->r) && (rset_test(as->modset, ir->r) || irt_ismarked(ir->t))) ra_spill(as, ir); ra_destreg(as, ir, RID_BASE); } /* Coalesce BASE register for a side trace. */ static RegSet asm_head_side_base(ASMState *as, IRIns *irp, RegSet allow) { IRIns *ir; asm_head_lreg(as); ir = IR(REF_BASE); if (ra_hasreg(ir->r) && (rset_test(as->modset, ir->r) || irt_ismarked(ir->t))) ra_spill(as, ir); if (ra_hasspill(irp->s)) { rset_clear(allow, ra_dest(as, ir, allow)); } else { Reg r = irp->r; lua_assert(ra_hasreg(r)); rset_clear(allow, r); if (r != ir->r && !rset_test(as->freeset, r)) ra_restore(as, regcost_ref(as->cost[r])); ra_destreg(as, ir, r); } return allow; } /* -- Tail of trace ------------------------------------------------------- */ /* Fixup the tail code. */ static void asm_tail_fixup(ASMState *as, TraceNo lnk) { MCode *p = as->mctop; MCode *target; int32_t spadj = as->T->spadjust; if (spadj == 0) { as->mctop = --p; } else { /* Patch stack adjustment. */ uint32_t k = emit_isk12(ARMI_ADD, spadj); lua_assert(k); p[-2] = (ARMI_ADD^k) | ARMF_D(RID_SP) | ARMF_N(RID_SP); } /* Patch exit branch. */ target = lnk ? traceref(as->J, lnk)->mcode : (MCode *)lj_vm_exit_interp; p[-1] = ARMI_B|(((target-p)-1)&0x00ffffffu); } /* Prepare tail of code. */ static void asm_tail_prep(ASMState *as) { MCode *p = as->mctop - 1; /* Leave room for exit branch. */ if (as->loopref) { as->invmcp = as->mcp = p; } else { as->mcp = p-1; /* Leave room for stack pointer adjustment. */ as->invmcp = NULL; } *p = 0; /* Prevent load/store merging. */ } /* -- Trace setup --------------------------------------------------------- */ /* Ensure there are enough stack slots for call arguments. */ static Reg asm_setup_call_slots(ASMState *as, IRIns *ir, const CCallInfo *ci) { IRRef args[CCI_NARGS_MAX*2]; uint32_t i, nargs = CCI_XNARGS(ci); int nslots = 0, ngpr = REGARG_NUMGPR, nfpr = REGARG_NUMFPR, fprodd = 0; asm_collectargs(as, ir, ci, args); for (i = 0; i < nargs; i++) { if (!LJ_SOFTFP && args[i] && irt_isfp(IR(args[i])->t)) { if (!LJ_ABI_SOFTFP && !(ci->flags & CCI_VARARG)) { if (irt_isnum(IR(args[i])->t)) { if (nfpr > 0) nfpr--; else fprodd = 0, nslots = (nslots + 3) & ~1; } else { if (fprodd) fprodd--; else if (nfpr > 0) fprodd = 1, nfpr--; else nslots++; } } else if (irt_isnum(IR(args[i])->t)) { ngpr &= ~1; if (ngpr > 0) ngpr -= 2; else nslots += 2; } else { if (ngpr > 0) ngpr--; else nslots++; } } else { if (ngpr > 0) ngpr--; else nslots++; } } if (nslots > as->evenspill) /* Leave room for args in stack slots. */ as->evenspill = nslots; return REGSP_HINT(RID_RET); } static void asm_setup_target(ASMState *as) { /* May need extra exit for asm_stack_check on side traces. */ asm_exitstub_setup(as, as->T->nsnap + (as->parent ? 1 : 0)); } /* -- Trace patching ------------------------------------------------------ */ /* Patch exit jumps of existing machine code to a new target. */ void lj_asm_patchexit(jit_State *J, GCtrace *T, ExitNo exitno, MCode *target) { MCode *p = T->mcode; MCode *pe = (MCode *)((char *)p + T->szmcode); MCode *cstart = NULL, *cend = p; MCode *mcarea = lj_mcode_patch(J, p, 0); MCode *px = exitstub_addr(J, exitno) - 2; for (; p < pe; p++) { /* Look for bl_cc exitstub, replace with b_cc target. */ uint32_t ins = *p; if ((ins & 0x0f000000u) == 0x0b000000u && ins < 0xf0000000u && ((ins ^ (px-p)) & 0x00ffffffu) == 0) { *p = (ins & 0xfe000000u) | (((target-p)-2) & 0x00ffffffu); cend = p+1; if (!cstart) cstart = p; } } lua_assert(cstart != NULL); lj_mcode_sync(cstart, cend); lj_mcode_patch(J, mcarea, 1); } luajit-2.1.0~beta3+dfsg.orig/src/lj_ctype.c0000644000175100017510000004347413101703334020076 0ustar ondrejondrej/* ** C type management. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #include "lj_obj.h" #if LJ_HASFFI #include "lj_gc.h" #include "lj_err.h" #include "lj_str.h" #include "lj_tab.h" #include "lj_strfmt.h" #include "lj_ctype.h" #include "lj_ccallback.h" #include "lj_buf.h" /* -- C type definitions -------------------------------------------------- */ /* Predefined typedefs. */ #define CTTDDEF(_) \ /* Vararg handling. */ \ _("va_list", P_VOID) \ _("__builtin_va_list", P_VOID) \ _("__gnuc_va_list", P_VOID) \ /* From stddef.h. */ \ _("ptrdiff_t", INT_PSZ) \ _("size_t", UINT_PSZ) \ _("wchar_t", WCHAR) \ /* Subset of stdint.h. */ \ _("int8_t", INT8) \ _("int16_t", INT16) \ _("int32_t", INT32) \ _("int64_t", INT64) \ _("uint8_t", UINT8) \ _("uint16_t", UINT16) \ _("uint32_t", UINT32) \ _("uint64_t", UINT64) \ _("intptr_t", INT_PSZ) \ _("uintptr_t", UINT_PSZ) \ /* From POSIX. */ \ _("ssize_t", INT_PSZ) \ /* End of typedef list. */ /* Keywords (only the ones we actually care for). */ #define CTKWDEF(_) \ /* Type specifiers. */ \ _("void", -1, CTOK_VOID) \ _("_Bool", 0, CTOK_BOOL) \ _("bool", 1, CTOK_BOOL) \ _("char", 1, CTOK_CHAR) \ _("int", 4, CTOK_INT) \ _("__int8", 1, CTOK_INT) \ _("__int16", 2, CTOK_INT) \ _("__int32", 4, CTOK_INT) \ _("__int64", 8, CTOK_INT) \ _("float", 4, CTOK_FP) \ _("double", 8, CTOK_FP) \ _("long", 0, CTOK_LONG) \ _("short", 0, CTOK_SHORT) \ _("_Complex", 0, CTOK_COMPLEX) \ _("complex", 0, CTOK_COMPLEX) \ _("__complex", 0, CTOK_COMPLEX) \ _("__complex__", 0, CTOK_COMPLEX) \ _("signed", 0, CTOK_SIGNED) \ _("__signed", 0, CTOK_SIGNED) \ _("__signed__", 0, CTOK_SIGNED) \ _("unsigned", 0, CTOK_UNSIGNED) \ /* Type qualifiers. */ \ _("const", 0, CTOK_CONST) \ _("__const", 0, CTOK_CONST) \ _("__const__", 0, CTOK_CONST) \ _("volatile", 0, CTOK_VOLATILE) \ _("__volatile", 0, CTOK_VOLATILE) \ _("__volatile__", 0, CTOK_VOLATILE) \ _("restrict", 0, CTOK_RESTRICT) \ _("__restrict", 0, CTOK_RESTRICT) \ _("__restrict__", 0, CTOK_RESTRICT) \ _("inline", 0, CTOK_INLINE) \ _("__inline", 0, CTOK_INLINE) \ _("__inline__", 0, CTOK_INLINE) \ /* Storage class specifiers. */ \ _("typedef", 0, CTOK_TYPEDEF) \ _("extern", 0, CTOK_EXTERN) \ _("static", 0, CTOK_STATIC) \ _("auto", 0, CTOK_AUTO) \ _("register", 0, CTOK_REGISTER) \ /* GCC Attributes. */ \ _("__extension__", 0, CTOK_EXTENSION) \ _("__attribute", 0, CTOK_ATTRIBUTE) \ _("__attribute__", 0, CTOK_ATTRIBUTE) \ _("asm", 0, CTOK_ASM) \ _("__asm", 0, CTOK_ASM) \ _("__asm__", 0, CTOK_ASM) \ /* MSVC Attributes. */ \ _("__declspec", 0, CTOK_DECLSPEC) \ _("__cdecl", CTCC_CDECL, CTOK_CCDECL) \ _("__thiscall", CTCC_THISCALL, CTOK_CCDECL) \ _("__fastcall", CTCC_FASTCALL, CTOK_CCDECL) \ _("__stdcall", CTCC_STDCALL, CTOK_CCDECL) \ _("__ptr32", 4, CTOK_PTRSZ) \ _("__ptr64", 8, CTOK_PTRSZ) \ /* Other type specifiers. */ \ _("struct", 0, CTOK_STRUCT) \ _("union", 0, CTOK_UNION) \ _("enum", 0, CTOK_ENUM) \ /* Operators. */ \ _("sizeof", 0, CTOK_SIZEOF) \ _("__alignof", 0, CTOK_ALIGNOF) \ _("__alignof__", 0, CTOK_ALIGNOF) \ /* End of keyword list. */ /* Type info for predefined types. Size merged in. */ static CTInfo lj_ctype_typeinfo[] = { #define CTTYINFODEF(id, sz, ct, info) CTINFO((ct),(((sz)&0x3fu)<<10)+(info)), #define CTTDINFODEF(name, id) CTINFO(CT_TYPEDEF, CTID_##id), #define CTKWINFODEF(name, sz, kw) CTINFO(CT_KW,(((sz)&0x3fu)<<10)+(kw)), CTTYDEF(CTTYINFODEF) CTTDDEF(CTTDINFODEF) CTKWDEF(CTKWINFODEF) #undef CTTYINFODEF #undef CTTDINFODEF #undef CTKWINFODEF 0 }; /* Predefined type names collected in a single string. */ static const char * const lj_ctype_typenames = #define CTTDNAMEDEF(name, id) name "\0" #define CTKWNAMEDEF(name, sz, cds) name "\0" CTTDDEF(CTTDNAMEDEF) CTKWDEF(CTKWNAMEDEF) #undef CTTDNAMEDEF #undef CTKWNAMEDEF ; #define CTTYPEINFO_NUM (sizeof(lj_ctype_typeinfo)/sizeof(CTInfo)-1) #ifdef LUAJIT_CTYPE_CHECK_ANCHOR #define CTTYPETAB_MIN CTTYPEINFO_NUM #else #define CTTYPETAB_MIN 128 #endif /* -- C type interning ---------------------------------------------------- */ #define ct_hashtype(info, size) (hashrot(info, size) & CTHASH_MASK) #define ct_hashname(name) \ (hashrot(u32ptr(name), u32ptr(name) + HASH_BIAS) & CTHASH_MASK) /* Create new type element. */ CTypeID lj_ctype_new(CTState *cts, CType **ctp) { CTypeID id = cts->top; CType *ct; lua_assert(cts->L); if (LJ_UNLIKELY(id >= cts->sizetab)) { if (id >= CTID_MAX) lj_err_msg(cts->L, LJ_ERR_TABOV); #ifdef LUAJIT_CTYPE_CHECK_ANCHOR ct = lj_mem_newvec(cts->L, id+1, CType); memcpy(ct, cts->tab, id*sizeof(CType)); memset(cts->tab, 0, id*sizeof(CType)); lj_mem_freevec(cts->g, cts->tab, cts->sizetab, CType); cts->tab = ct; cts->sizetab = id+1; #else lj_mem_growvec(cts->L, cts->tab, cts->sizetab, CTID_MAX, CType); #endif } cts->top = id+1; *ctp = ct = &cts->tab[id]; ct->info = 0; ct->size = 0; ct->sib = 0; ct->next = 0; setgcrefnull(ct->name); return id; } /* Intern a type element. */ CTypeID lj_ctype_intern(CTState *cts, CTInfo info, CTSize size) { uint32_t h = ct_hashtype(info, size); CTypeID id = cts->hash[h]; lua_assert(cts->L); while (id) { CType *ct = ctype_get(cts, id); if (ct->info == info && ct->size == size) return id; id = ct->next; } id = cts->top; if (LJ_UNLIKELY(id >= cts->sizetab)) { if (id >= CTID_MAX) lj_err_msg(cts->L, LJ_ERR_TABOV); lj_mem_growvec(cts->L, cts->tab, cts->sizetab, CTID_MAX, CType); } cts->top = id+1; cts->tab[id].info = info; cts->tab[id].size = size; cts->tab[id].sib = 0; cts->tab[id].next = cts->hash[h]; setgcrefnull(cts->tab[id].name); cts->hash[h] = (CTypeID1)id; return id; } /* Add type element to hash table. */ static void ctype_addtype(CTState *cts, CType *ct, CTypeID id) { uint32_t h = ct_hashtype(ct->info, ct->size); ct->next = cts->hash[h]; cts->hash[h] = (CTypeID1)id; } /* Add named element to hash table. */ void lj_ctype_addname(CTState *cts, CType *ct, CTypeID id) { uint32_t h = ct_hashname(gcref(ct->name)); ct->next = cts->hash[h]; cts->hash[h] = (CTypeID1)id; } /* Get a C type by name, matching the type mask. */ CTypeID lj_ctype_getname(CTState *cts, CType **ctp, GCstr *name, uint32_t tmask) { CTypeID id = cts->hash[ct_hashname(name)]; while (id) { CType *ct = ctype_get(cts, id); if (gcref(ct->name) == obj2gco(name) && ((tmask >> ctype_type(ct->info)) & 1)) { *ctp = ct; return id; } id = ct->next; } *ctp = &cts->tab[0]; /* Simplify caller logic. ctype_get() would assert. */ return 0; } /* Get a struct/union/enum/function field by name. */ CType *lj_ctype_getfieldq(CTState *cts, CType *ct, GCstr *name, CTSize *ofs, CTInfo *qual) { while (ct->sib) { ct = ctype_get(cts, ct->sib); if (gcref(ct->name) == obj2gco(name)) { *ofs = ct->size; return ct; } if (ctype_isxattrib(ct->info, CTA_SUBTYPE)) { CType *fct, *cct = ctype_child(cts, ct); CTInfo q = 0; while (ctype_isattrib(cct->info)) { if (ctype_attrib(cct->info) == CTA_QUAL) q |= cct->size; cct = ctype_child(cts, cct); } fct = lj_ctype_getfieldq(cts, cct, name, ofs, qual); if (fct) { if (qual) *qual |= q; *ofs += ct->size; return fct; } } } return NULL; /* Not found. */ } /* -- C type information -------------------------------------------------- */ /* Follow references and get raw type for a C type ID. */ CType *lj_ctype_rawref(CTState *cts, CTypeID id) { CType *ct = ctype_get(cts, id); while (ctype_isattrib(ct->info) || ctype_isref(ct->info)) ct = ctype_child(cts, ct); return ct; } /* Get size for a C type ID. Does NOT support VLA/VLS. */ CTSize lj_ctype_size(CTState *cts, CTypeID id) { CType *ct = ctype_raw(cts, id); return ctype_hassize(ct->info) ? ct->size : CTSIZE_INVALID; } /* Get size for a variable-length C type. Does NOT support other C types. */ CTSize lj_ctype_vlsize(CTState *cts, CType *ct, CTSize nelem) { uint64_t xsz = 0; if (ctype_isstruct(ct->info)) { CTypeID arrid = 0, fid = ct->sib; xsz = ct->size; /* Add the struct size. */ while (fid) { CType *ctf = ctype_get(cts, fid); if (ctype_type(ctf->info) == CT_FIELD) arrid = ctype_cid(ctf->info); /* Remember last field of VLS. */ fid = ctf->sib; } ct = ctype_raw(cts, arrid); } lua_assert(ctype_isvlarray(ct->info)); /* Must be a VLA. */ ct = ctype_rawchild(cts, ct); /* Get array element. */ lua_assert(ctype_hassize(ct->info)); /* Calculate actual size of VLA and check for overflow. */ xsz += (uint64_t)ct->size * nelem; return xsz < 0x80000000u ? (CTSize)xsz : CTSIZE_INVALID; } /* Get type, qualifiers, size and alignment for a C type ID. */ CTInfo lj_ctype_info(CTState *cts, CTypeID id, CTSize *szp) { CTInfo qual = 0; CType *ct = ctype_get(cts, id); for (;;) { CTInfo info = ct->info; if (ctype_isenum(info)) { /* Follow child. Need to look at its attributes, too. */ } else if (ctype_isattrib(info)) { if (ctype_isxattrib(info, CTA_QUAL)) qual |= ct->size; else if (ctype_isxattrib(info, CTA_ALIGN) && !(qual & CTFP_ALIGNED)) qual |= CTFP_ALIGNED + CTALIGN(ct->size); } else { if (!(qual & CTFP_ALIGNED)) qual |= (info & CTF_ALIGN); qual |= (info & ~(CTF_ALIGN|CTMASK_CID)); lua_assert(ctype_hassize(info) || ctype_isfunc(info)); *szp = ctype_isfunc(info) ? CTSIZE_INVALID : ct->size; break; } ct = ctype_get(cts, ctype_cid(info)); } return qual; } /* Get ctype metamethod. */ cTValue *lj_ctype_meta(CTState *cts, CTypeID id, MMS mm) { CType *ct = ctype_get(cts, id); cTValue *tv; while (ctype_isattrib(ct->info) || ctype_isref(ct->info)) { id = ctype_cid(ct->info); ct = ctype_get(cts, id); } if (ctype_isptr(ct->info) && ctype_isfunc(ctype_get(cts, ctype_cid(ct->info))->info)) tv = lj_tab_getstr(cts->miscmap, &cts->g->strempty); else tv = lj_tab_getinth(cts->miscmap, -(int32_t)id); if (tv && tvistab(tv) && (tv = lj_tab_getstr(tabV(tv), mmname_str(cts->g, mm))) && !tvisnil(tv)) return tv; return NULL; } /* -- C type representation ----------------------------------------------- */ /* Fixed max. length of a C type representation. */ #define CTREPR_MAX 512 typedef struct CTRepr { char *pb, *pe; CTState *cts; lua_State *L; int needsp; int ok; char buf[CTREPR_MAX]; } CTRepr; /* Prepend string. */ static void ctype_prepstr(CTRepr *ctr, const char *str, MSize len) { char *p = ctr->pb; if (ctr->buf + len+1 > p) { ctr->ok = 0; return; } if (ctr->needsp) *--p = ' '; ctr->needsp = 1; p -= len; while (len-- > 0) p[len] = str[len]; ctr->pb = p; } #define ctype_preplit(ctr, str) ctype_prepstr((ctr), "" str, sizeof(str)-1) /* Prepend char. */ static void ctype_prepc(CTRepr *ctr, int c) { if (ctr->buf >= ctr->pb) { ctr->ok = 0; return; } *--ctr->pb = c; } /* Prepend number. */ static void ctype_prepnum(CTRepr *ctr, uint32_t n) { char *p = ctr->pb; if (ctr->buf + 10+1 > p) { ctr->ok = 0; return; } do { *--p = (char)('0' + n % 10); } while (n /= 10); ctr->pb = p; ctr->needsp = 0; } /* Append char. */ static void ctype_appc(CTRepr *ctr, int c) { if (ctr->pe >= ctr->buf + CTREPR_MAX) { ctr->ok = 0; return; } *ctr->pe++ = c; } /* Append number. */ static void ctype_appnum(CTRepr *ctr, uint32_t n) { char buf[10]; char *p = buf+sizeof(buf); char *q = ctr->pe; if (q > ctr->buf + CTREPR_MAX - 10) { ctr->ok = 0; return; } do { *--p = (char)('0' + n % 10); } while (n /= 10); do { *q++ = *p++; } while (p < buf+sizeof(buf)); ctr->pe = q; } /* Prepend qualifiers. */ static void ctype_prepqual(CTRepr *ctr, CTInfo info) { if ((info & CTF_VOLATILE)) ctype_preplit(ctr, "volatile"); if ((info & CTF_CONST)) ctype_preplit(ctr, "const"); } /* Prepend named type. */ static void ctype_preptype(CTRepr *ctr, CType *ct, CTInfo qual, const char *t) { if (gcref(ct->name)) { GCstr *str = gco2str(gcref(ct->name)); ctype_prepstr(ctr, strdata(str), str->len); } else { if (ctr->needsp) ctype_prepc(ctr, ' '); ctype_prepnum(ctr, ctype_typeid(ctr->cts, ct)); ctr->needsp = 1; } ctype_prepstr(ctr, t, (MSize)strlen(t)); ctype_prepqual(ctr, qual); } static void ctype_repr(CTRepr *ctr, CTypeID id) { CType *ct = ctype_get(ctr->cts, id); CTInfo qual = 0; int ptrto = 0; for (;;) { CTInfo info = ct->info; CTSize size = ct->size; switch (ctype_type(info)) { case CT_NUM: if ((info & CTF_BOOL)) { ctype_preplit(ctr, "bool"); } else if ((info & CTF_FP)) { if (size == sizeof(double)) ctype_preplit(ctr, "double"); else if (size == sizeof(float)) ctype_preplit(ctr, "float"); else ctype_preplit(ctr, "long double"); } else if (size == 1) { if (!((info ^ CTF_UCHAR) & CTF_UNSIGNED)) ctype_preplit(ctr, "char"); else if (CTF_UCHAR) ctype_preplit(ctr, "signed char"); else ctype_preplit(ctr, "unsigned char"); } else if (size < 8) { if (size == 4) ctype_preplit(ctr, "int"); else ctype_preplit(ctr, "short"); if ((info & CTF_UNSIGNED)) ctype_preplit(ctr, "unsigned"); } else { ctype_preplit(ctr, "_t"); ctype_prepnum(ctr, size*8); ctype_preplit(ctr, "int"); if ((info & CTF_UNSIGNED)) ctype_prepc(ctr, 'u'); } ctype_prepqual(ctr, (qual|info)); return; case CT_VOID: ctype_preplit(ctr, "void"); ctype_prepqual(ctr, (qual|info)); return; case CT_STRUCT: ctype_preptype(ctr, ct, qual, (info & CTF_UNION) ? "union" : "struct"); return; case CT_ENUM: if (id == CTID_CTYPEID) { ctype_preplit(ctr, "ctype"); return; } ctype_preptype(ctr, ct, qual, "enum"); return; case CT_ATTRIB: if (ctype_attrib(info) == CTA_QUAL) qual |= size; break; case CT_PTR: if ((info & CTF_REF)) { ctype_prepc(ctr, '&'); } else { ctype_prepqual(ctr, (qual|info)); if (LJ_64 && size == 4) ctype_preplit(ctr, "__ptr32"); ctype_prepc(ctr, '*'); } qual = 0; ptrto = 1; ctr->needsp = 1; break; case CT_ARRAY: if (ctype_isrefarray(info)) { ctr->needsp = 1; if (ptrto) { ptrto = 0; ctype_prepc(ctr, '('); ctype_appc(ctr, ')'); } ctype_appc(ctr, '['); if (size != CTSIZE_INVALID) { CTSize csize = ctype_child(ctr->cts, ct)->size; ctype_appnum(ctr, csize ? size/csize : 0); } else if ((info & CTF_VLA)) { ctype_appc(ctr, '?'); } ctype_appc(ctr, ']'); } else if ((info & CTF_COMPLEX)) { if (size == 2*sizeof(float)) ctype_preplit(ctr, "float"); ctype_preplit(ctr, "complex"); return; } else { ctype_preplit(ctr, ")))"); ctype_prepnum(ctr, size); ctype_preplit(ctr, "__attribute__((vector_size("); } break; case CT_FUNC: ctr->needsp = 1; if (ptrto) { ptrto = 0; ctype_prepc(ctr, '('); ctype_appc(ctr, ')'); } ctype_appc(ctr, '('); ctype_appc(ctr, ')'); break; default: lua_assert(0); break; } ct = ctype_get(ctr->cts, ctype_cid(info)); } } /* Return a printable representation of a C type. */ GCstr *lj_ctype_repr(lua_State *L, CTypeID id, GCstr *name) { global_State *g = G(L); CTRepr ctr; ctr.pb = ctr.pe = &ctr.buf[CTREPR_MAX/2]; ctr.cts = ctype_ctsG(g); ctr.L = L; ctr.ok = 1; ctr.needsp = 0; if (name) ctype_prepstr(&ctr, strdata(name), name->len); ctype_repr(&ctr, id); if (LJ_UNLIKELY(!ctr.ok)) return lj_str_newlit(L, "?"); return lj_str_new(L, ctr.pb, ctr.pe - ctr.pb); } /* Convert int64_t/uint64_t to string with 'LL' or 'ULL' suffix. */ GCstr *lj_ctype_repr_int64(lua_State *L, uint64_t n, int isunsigned) { char buf[1+20+3]; char *p = buf+sizeof(buf); int sign = 0; *--p = 'L'; *--p = 'L'; if (isunsigned) { *--p = 'U'; } else if ((int64_t)n < 0) { n = (uint64_t)-(int64_t)n; sign = 1; } do { *--p = (char)('0' + n % 10); } while (n /= 10); if (sign) *--p = '-'; return lj_str_new(L, p, (size_t)(buf+sizeof(buf)-p)); } /* Convert complex to string with 'i' or 'I' suffix. */ GCstr *lj_ctype_repr_complex(lua_State *L, void *sp, CTSize size) { SBuf *sb = lj_buf_tmp_(L); TValue re, im; if (size == 2*sizeof(double)) { re.n = *(double *)sp; im.n = ((double *)sp)[1]; } else { re.n = (double)*(float *)sp; im.n = (double)((float *)sp)[1]; } lj_strfmt_putfnum(sb, STRFMT_G14, re.n); if (!(im.u32.hi & 0x80000000u) || im.n != im.n) lj_buf_putchar(sb, '+'); lj_strfmt_putfnum(sb, STRFMT_G14, im.n); lj_buf_putchar(sb, sbufP(sb)[-1] >= 'a' ? 'I' : 'i'); return lj_buf_str(L, sb); } /* -- C type state -------------------------------------------------------- */ /* Initialize C type table and state. */ CTState *lj_ctype_init(lua_State *L) { CTState *cts = lj_mem_newt(L, sizeof(CTState), CTState); CType *ct = lj_mem_newvec(L, CTTYPETAB_MIN, CType); const char *name = lj_ctype_typenames; CTypeID id; memset(cts, 0, sizeof(CTState)); cts->tab = ct; cts->sizetab = CTTYPETAB_MIN; cts->top = CTTYPEINFO_NUM; cts->L = NULL; cts->g = G(L); for (id = 0; id < CTTYPEINFO_NUM; id++, ct++) { CTInfo info = lj_ctype_typeinfo[id]; ct->size = (CTSize)((int32_t)(info << 16) >> 26); ct->info = info & 0xffff03ffu; ct->sib = 0; if (ctype_type(info) == CT_KW || ctype_istypedef(info)) { size_t len = strlen(name); GCstr *str = lj_str_new(L, name, len); ctype_setname(ct, str); name += len+1; lj_ctype_addname(cts, ct, id); } else { setgcrefnull(ct->name); ct->next = 0; if (!ctype_isenum(info)) ctype_addtype(cts, ct, id); } } setmref(G(L)->ctype_state, cts); return cts; } /* Free C type table and state. */ void lj_ctype_freestate(global_State *g) { CTState *cts = ctype_ctsG(g); if (cts) { lj_ccallback_mcode_free(cts); lj_mem_freevec(g, cts->tab, cts->sizetab, CType); lj_mem_freevec(g, cts->cb.cbid, cts->cb.sizeid, CTypeID1); lj_mem_freet(g, cts); } } #endif luajit-2.1.0~beta3+dfsg.orig/src/Makefile.dep0000644000175100017510000003574113101703334020326 0ustar ondrejondrejlib_aux.o: lib_aux.c lua.h luaconf.h lauxlib.h lj_obj.h lj_def.h \ lj_arch.h lj_err.h lj_errmsg.h lj_state.h lj_trace.h lj_jit.h lj_ir.h \ lj_dispatch.h lj_bc.h lj_traceerr.h lj_lib.h lj_alloc.h lib_base.o: lib_base.c lua.h luaconf.h lauxlib.h lualib.h lj_obj.h \ lj_def.h lj_arch.h lj_gc.h lj_err.h lj_errmsg.h lj_debug.h lj_str.h \ lj_tab.h lj_meta.h lj_state.h lj_frame.h lj_bc.h lj_ctype.h lj_cconv.h \ lj_ff.h lj_ffdef.h lj_dispatch.h lj_jit.h lj_ir.h lj_char.h lj_strscan.h \ lj_strfmt.h lj_lib.h lj_libdef.h lib_bit.o: lib_bit.c lua.h luaconf.h lauxlib.h lualib.h lj_obj.h lj_def.h \ lj_arch.h lj_err.h lj_errmsg.h lj_buf.h lj_gc.h lj_str.h lj_strscan.h \ lj_strfmt.h lj_ctype.h lj_cdata.h lj_cconv.h lj_carith.h lj_ff.h \ lj_ffdef.h lj_lib.h lj_libdef.h lib_debug.o: lib_debug.c lua.h luaconf.h lauxlib.h lualib.h lj_obj.h \ lj_def.h lj_arch.h lj_gc.h lj_err.h lj_errmsg.h lj_debug.h lj_lib.h \ lj_libdef.h lib_ffi.o: lib_ffi.c lua.h luaconf.h lauxlib.h lualib.h lj_obj.h lj_def.h \ lj_arch.h lj_gc.h lj_err.h lj_errmsg.h lj_str.h lj_tab.h lj_meta.h \ lj_ctype.h lj_cparse.h lj_cdata.h lj_cconv.h lj_carith.h lj_ccall.h \ lj_ccallback.h lj_clib.h lj_strfmt.h lj_ff.h lj_ffdef.h lj_lib.h \ lj_libdef.h lib_init.o: lib_init.c lua.h luaconf.h lauxlib.h lualib.h lj_arch.h lib_io.o: lib_io.c lua.h luaconf.h lauxlib.h lualib.h lj_obj.h lj_def.h \ lj_arch.h lj_gc.h lj_err.h lj_errmsg.h lj_buf.h lj_str.h lj_state.h \ lj_strfmt.h lj_ff.h lj_ffdef.h lj_lib.h lj_libdef.h lib_jit.o: lib_jit.c lua.h luaconf.h lauxlib.h lualib.h lj_obj.h lj_def.h \ lj_arch.h lj_gc.h lj_err.h lj_errmsg.h lj_debug.h lj_str.h lj_tab.h \ lj_state.h lj_bc.h lj_ctype.h lj_ir.h lj_jit.h lj_ircall.h lj_iropt.h \ lj_target.h lj_target_*.h lj_trace.h lj_dispatch.h lj_traceerr.h \ lj_vm.h lj_vmevent.h lj_lib.h luajit.h lj_libdef.h lib_math.o: lib_math.c lua.h luaconf.h lauxlib.h lualib.h lj_obj.h \ lj_def.h lj_arch.h lj_lib.h lj_vm.h lj_libdef.h lib_os.o: lib_os.c lua.h luaconf.h lauxlib.h lualib.h lj_obj.h lj_def.h \ lj_arch.h lj_gc.h lj_err.h lj_errmsg.h lj_buf.h lj_str.h lj_lib.h \ lj_libdef.h lib_package.o: lib_package.c lua.h luaconf.h lauxlib.h lualib.h lj_obj.h \ lj_def.h lj_arch.h lj_err.h lj_errmsg.h lj_lib.h lib_string.o: lib_string.c lua.h luaconf.h lauxlib.h lualib.h lj_obj.h \ lj_def.h lj_arch.h lj_gc.h lj_err.h lj_errmsg.h lj_buf.h lj_str.h \ lj_tab.h lj_meta.h lj_state.h lj_ff.h lj_ffdef.h lj_bcdump.h lj_lex.h \ lj_char.h lj_strfmt.h lj_lib.h lj_libdef.h lib_table.o: lib_table.c lua.h luaconf.h lauxlib.h lualib.h lj_obj.h \ lj_def.h lj_arch.h lj_gc.h lj_err.h lj_errmsg.h lj_buf.h lj_str.h \ lj_tab.h lj_ff.h lj_ffdef.h lj_lib.h lj_libdef.h lj_alloc.o: lj_alloc.c lj_def.h lua.h luaconf.h lj_arch.h lj_alloc.h lj_api.o: lj_api.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h lj_gc.h \ lj_err.h lj_errmsg.h lj_debug.h lj_str.h lj_tab.h lj_func.h lj_udata.h \ lj_meta.h lj_state.h lj_bc.h lj_frame.h lj_trace.h lj_jit.h lj_ir.h \ lj_dispatch.h lj_traceerr.h lj_vm.h lj_strscan.h lj_strfmt.h lj_asm.o: lj_asm.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h lj_gc.h \ lj_str.h lj_tab.h lj_frame.h lj_bc.h lj_ctype.h lj_ir.h lj_jit.h \ lj_ircall.h lj_iropt.h lj_mcode.h lj_trace.h lj_dispatch.h lj_traceerr.h \ lj_snap.h lj_asm.h lj_vm.h lj_target.h lj_target_*.h lj_emit_*.h \ lj_asm_*.h lj_bc.o: lj_bc.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h lj_bc.h \ lj_bcdef.h lj_bcread.o: lj_bcread.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h \ lj_gc.h lj_err.h lj_errmsg.h lj_buf.h lj_str.h lj_tab.h lj_bc.h \ lj_ctype.h lj_cdata.h lualib.h lj_lex.h lj_bcdump.h lj_state.h \ lj_strfmt.h lj_bcwrite.o: lj_bcwrite.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h \ lj_gc.h lj_buf.h lj_str.h lj_bc.h lj_ctype.h lj_dispatch.h lj_jit.h \ lj_ir.h lj_strfmt.h lj_bcdump.h lj_lex.h lj_err.h lj_errmsg.h lj_vm.h lj_buf.o: lj_buf.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h lj_gc.h \ lj_err.h lj_errmsg.h lj_buf.h lj_str.h lj_tab.h lj_strfmt.h lj_carith.o: lj_carith.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h \ lj_gc.h lj_err.h lj_errmsg.h lj_tab.h lj_meta.h lj_ir.h lj_ctype.h \ lj_cconv.h lj_cdata.h lj_carith.h lj_strscan.h lj_ccall.o: lj_ccall.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h \ lj_gc.h lj_err.h lj_errmsg.h lj_tab.h lj_ctype.h lj_cconv.h lj_cdata.h \ lj_ccall.h lj_trace.h lj_jit.h lj_ir.h lj_dispatch.h lj_bc.h \ lj_traceerr.h lj_ccallback.o: lj_ccallback.c lj_obj.h lua.h luaconf.h lj_def.h \ lj_arch.h lj_gc.h lj_err.h lj_errmsg.h lj_tab.h lj_state.h lj_frame.h \ lj_bc.h lj_ctype.h lj_cconv.h lj_ccall.h lj_ccallback.h lj_target.h \ lj_target_*.h lj_mcode.h lj_jit.h lj_ir.h lj_trace.h lj_dispatch.h \ lj_traceerr.h lj_vm.h lj_cconv.o: lj_cconv.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h \ lj_err.h lj_errmsg.h lj_tab.h lj_ctype.h lj_gc.h lj_cdata.h lj_cconv.h \ lj_ccallback.h lj_cdata.o: lj_cdata.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h \ lj_gc.h lj_err.h lj_errmsg.h lj_tab.h lj_ctype.h lj_cconv.h lj_cdata.h lj_char.o: lj_char.c lj_char.h lj_def.h lua.h luaconf.h lj_clib.o: lj_clib.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h lj_gc.h \ lj_err.h lj_errmsg.h lj_tab.h lj_str.h lj_udata.h lj_ctype.h lj_cconv.h \ lj_cdata.h lj_clib.h lj_strfmt.h lj_cparse.o: lj_cparse.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h \ lj_gc.h lj_err.h lj_errmsg.h lj_buf.h lj_str.h lj_ctype.h lj_cparse.h \ lj_frame.h lj_bc.h lj_vm.h lj_char.h lj_strscan.h lj_strfmt.h lj_crecord.o: lj_crecord.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h \ lj_err.h lj_errmsg.h lj_tab.h lj_frame.h lj_bc.h lj_ctype.h lj_gc.h \ lj_cdata.h lj_cparse.h lj_cconv.h lj_carith.h lj_clib.h lj_ccall.h \ lj_ff.h lj_ffdef.h lj_ir.h lj_jit.h lj_ircall.h lj_iropt.h lj_trace.h \ lj_dispatch.h lj_traceerr.h lj_record.h lj_ffrecord.h lj_snap.h \ lj_crecord.h lj_strfmt.h lj_ctype.o: lj_ctype.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h \ lj_gc.h lj_err.h lj_errmsg.h lj_str.h lj_tab.h lj_strfmt.h lj_ctype.h \ lj_ccallback.h lj_buf.h lj_debug.o: lj_debug.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h \ lj_err.h lj_errmsg.h lj_debug.h lj_buf.h lj_gc.h lj_str.h lj_tab.h \ lj_state.h lj_frame.h lj_bc.h lj_strfmt.h lj_jit.h lj_ir.h lj_dispatch.o: lj_dispatch.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h \ lj_err.h lj_errmsg.h lj_buf.h lj_gc.h lj_str.h lj_func.h lj_tab.h \ lj_meta.h lj_debug.h lj_state.h lj_frame.h lj_bc.h lj_ff.h lj_ffdef.h \ lj_strfmt.h lj_jit.h lj_ir.h lj_ccallback.h lj_ctype.h lj_trace.h \ lj_dispatch.h lj_traceerr.h lj_profile.h lj_vm.h luajit.h lj_err.o: lj_err.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h lj_err.h \ lj_errmsg.h lj_debug.h lj_str.h lj_func.h lj_state.h lj_frame.h lj_bc.h \ lj_ff.h lj_ffdef.h lj_trace.h lj_jit.h lj_ir.h lj_dispatch.h \ lj_traceerr.h lj_vm.h lj_strfmt.h lj_ffrecord.o: lj_ffrecord.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h \ lj_err.h lj_errmsg.h lj_str.h lj_tab.h lj_frame.h lj_bc.h lj_ff.h \ lj_ffdef.h lj_ir.h lj_jit.h lj_ircall.h lj_iropt.h lj_trace.h \ lj_dispatch.h lj_traceerr.h lj_record.h lj_ffrecord.h lj_crecord.h \ lj_vm.h lj_strscan.h lj_strfmt.h lj_recdef.h lj_func.o: lj_func.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h lj_gc.h \ lj_func.h lj_trace.h lj_jit.h lj_ir.h lj_dispatch.h lj_bc.h \ lj_traceerr.h lj_vm.h lj_gc.o: lj_gc.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h lj_gc.h \ lj_err.h lj_errmsg.h lj_buf.h lj_str.h lj_tab.h lj_func.h lj_udata.h \ lj_meta.h lj_state.h lj_frame.h lj_bc.h lj_ctype.h lj_cdata.h lj_trace.h \ lj_jit.h lj_ir.h lj_dispatch.h lj_traceerr.h lj_vm.h lj_gdbjit.o: lj_gdbjit.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h \ lj_gc.h lj_err.h lj_errmsg.h lj_debug.h lj_frame.h lj_bc.h lj_buf.h \ lj_str.h lj_strfmt.h lj_jit.h lj_ir.h lj_dispatch.h lj_ir.o: lj_ir.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h lj_gc.h \ lj_buf.h lj_str.h lj_tab.h lj_ir.h lj_jit.h lj_ircall.h lj_iropt.h \ lj_trace.h lj_dispatch.h lj_bc.h lj_traceerr.h lj_ctype.h lj_cdata.h \ lj_carith.h lj_vm.h lj_strscan.h lj_strfmt.h lj_lib.h lj_lex.o: lj_lex.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h lj_gc.h \ lj_err.h lj_errmsg.h lj_buf.h lj_str.h lj_tab.h lj_ctype.h lj_cdata.h \ lualib.h lj_state.h lj_lex.h lj_parse.h lj_char.h lj_strscan.h \ lj_strfmt.h lj_lib.o: lj_lib.c lauxlib.h lua.h luaconf.h lj_obj.h lj_def.h lj_arch.h \ lj_gc.h lj_err.h lj_errmsg.h lj_str.h lj_tab.h lj_func.h lj_bc.h \ lj_dispatch.h lj_jit.h lj_ir.h lj_vm.h lj_strscan.h lj_strfmt.h lj_lex.h \ lj_bcdump.h lj_lib.h lj_load.o: lj_load.c lua.h luaconf.h lauxlib.h lj_obj.h lj_def.h \ lj_arch.h lj_gc.h lj_err.h lj_errmsg.h lj_buf.h lj_str.h lj_func.h \ lj_frame.h lj_bc.h lj_vm.h lj_lex.h lj_bcdump.h lj_parse.h lj_mcode.o: lj_mcode.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h \ lj_gc.h lj_err.h lj_errmsg.h lj_jit.h lj_ir.h lj_mcode.h lj_trace.h \ lj_dispatch.h lj_bc.h lj_traceerr.h lj_vm.h lj_meta.o: lj_meta.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h lj_gc.h \ lj_err.h lj_errmsg.h lj_buf.h lj_str.h lj_tab.h lj_meta.h lj_frame.h \ lj_bc.h lj_vm.h lj_strscan.h lj_strfmt.h lj_lib.h lj_obj.o: lj_obj.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h lj_opt_dce.o: lj_opt_dce.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h \ lj_ir.h lj_jit.h lj_iropt.h lj_opt_fold.o: lj_opt_fold.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h \ lj_buf.h lj_gc.h lj_str.h lj_tab.h lj_ir.h lj_jit.h lj_ircall.h \ lj_iropt.h lj_trace.h lj_dispatch.h lj_bc.h lj_traceerr.h lj_ctype.h \ lj_carith.h lj_vm.h lj_strscan.h lj_strfmt.h lj_folddef.h lj_opt_loop.o: lj_opt_loop.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h \ lj_err.h lj_errmsg.h lj_buf.h lj_gc.h lj_str.h lj_ir.h lj_jit.h \ lj_iropt.h lj_trace.h lj_dispatch.h lj_bc.h lj_traceerr.h lj_snap.h \ lj_vm.h lj_opt_mem.o: lj_opt_mem.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h \ lj_tab.h lj_ir.h lj_jit.h lj_iropt.h lj_ircall.h lj_opt_narrow.o: lj_opt_narrow.c lj_obj.h lua.h luaconf.h lj_def.h \ lj_arch.h lj_bc.h lj_ir.h lj_jit.h lj_iropt.h lj_trace.h lj_dispatch.h \ lj_traceerr.h lj_vm.h lj_strscan.h lj_opt_sink.o: lj_opt_sink.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h \ lj_ir.h lj_jit.h lj_iropt.h lj_target.h lj_target_*.h lj_opt_split.o: lj_opt_split.c lj_obj.h lua.h luaconf.h lj_def.h \ lj_arch.h lj_err.h lj_errmsg.h lj_buf.h lj_gc.h lj_str.h lj_ir.h \ lj_jit.h lj_ircall.h lj_iropt.h lj_dispatch.h lj_bc.h lj_vm.h lj_parse.o: lj_parse.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h \ lj_gc.h lj_err.h lj_errmsg.h lj_debug.h lj_buf.h lj_str.h lj_tab.h \ lj_func.h lj_state.h lj_bc.h lj_ctype.h lj_strfmt.h lj_lex.h lj_parse.h \ lj_vm.h lj_vmevent.h lj_profile.o: lj_profile.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h \ lj_buf.h lj_gc.h lj_str.h lj_frame.h lj_bc.h lj_debug.h lj_dispatch.h \ lj_jit.h lj_ir.h lj_trace.h lj_traceerr.h lj_profile.h luajit.h lj_record.o: lj_record.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h \ lj_err.h lj_errmsg.h lj_str.h lj_tab.h lj_meta.h lj_frame.h lj_bc.h \ lj_ctype.h lj_gc.h lj_ff.h lj_ffdef.h lj_debug.h lj_ir.h lj_jit.h \ lj_ircall.h lj_iropt.h lj_trace.h lj_dispatch.h lj_traceerr.h \ lj_record.h lj_ffrecord.h lj_snap.h lj_vm.h lj_snap.o: lj_snap.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h lj_gc.h \ lj_tab.h lj_state.h lj_frame.h lj_bc.h lj_ir.h lj_jit.h lj_iropt.h \ lj_trace.h lj_dispatch.h lj_traceerr.h lj_snap.h lj_target.h \ lj_target_*.h lj_ctype.h lj_cdata.h lj_state.o: lj_state.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h \ lj_gc.h lj_err.h lj_errmsg.h lj_buf.h lj_str.h lj_tab.h lj_func.h \ lj_meta.h lj_state.h lj_frame.h lj_bc.h lj_ctype.h lj_trace.h lj_jit.h \ lj_ir.h lj_dispatch.h lj_traceerr.h lj_vm.h lj_lex.h lj_alloc.h luajit.h lj_str.o: lj_str.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h lj_gc.h \ lj_err.h lj_errmsg.h lj_str.h lj_char.h lj_strfmt.o: lj_strfmt.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h \ lj_buf.h lj_gc.h lj_str.h lj_state.h lj_char.h lj_strfmt.h lj_strfmt_num.o: lj_strfmt_num.c lj_obj.h lua.h luaconf.h lj_def.h \ lj_arch.h lj_buf.h lj_gc.h lj_str.h lj_strfmt.h lj_strscan.o: lj_strscan.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h \ lj_char.h lj_strscan.h lj_tab.o: lj_tab.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h lj_gc.h \ lj_err.h lj_errmsg.h lj_tab.h lj_trace.o: lj_trace.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h \ lj_gc.h lj_err.h lj_errmsg.h lj_debug.h lj_str.h lj_frame.h lj_bc.h \ lj_state.h lj_ir.h lj_jit.h lj_iropt.h lj_mcode.h lj_trace.h \ lj_dispatch.h lj_traceerr.h lj_snap.h lj_gdbjit.h lj_record.h lj_asm.h \ lj_vm.h lj_vmevent.h lj_target.h lj_target_*.h lj_udata.o: lj_udata.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h \ lj_gc.h lj_udata.h lj_vmevent.o: lj_vmevent.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h \ lj_str.h lj_tab.h lj_state.h lj_dispatch.h lj_bc.h lj_jit.h lj_ir.h \ lj_vm.h lj_vmevent.h lj_vmmath.o: lj_vmmath.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h \ lj_ir.h lj_vm.h ljamalg.o: ljamalg.c lua.h luaconf.h lauxlib.h lj_gc.c lj_obj.h lj_def.h \ lj_arch.h lj_gc.h lj_err.h lj_errmsg.h lj_buf.h lj_str.h lj_tab.h \ lj_func.h lj_udata.h lj_meta.h lj_state.h lj_frame.h lj_bc.h lj_ctype.h \ lj_cdata.h lj_trace.h lj_jit.h lj_ir.h lj_dispatch.h lj_traceerr.h \ lj_vm.h lj_err.c lj_debug.h lj_ff.h lj_ffdef.h lj_strfmt.h lj_char.c \ lj_char.h lj_bc.c lj_bcdef.h lj_obj.c lj_buf.c lj_str.c lj_tab.c \ lj_func.c lj_udata.c lj_meta.c lj_strscan.h lj_lib.h lj_debug.c \ lj_state.c lj_lex.h lj_alloc.h luajit.h lj_dispatch.c lj_ccallback.h \ lj_profile.h lj_vmevent.c lj_vmevent.h lj_vmmath.c lj_strscan.c \ lj_strfmt.c lj_strfmt_num.c lj_api.c lj_profile.c lj_lex.c lualib.h \ lj_parse.h lj_parse.c lj_bcread.c lj_bcdump.h lj_bcwrite.c lj_load.c \ lj_ctype.c lj_cdata.c lj_cconv.h lj_cconv.c lj_ccall.c lj_ccall.h \ lj_ccallback.c lj_target.h lj_target_*.h lj_mcode.h lj_carith.c \ lj_carith.h lj_clib.c lj_clib.h lj_cparse.c lj_cparse.h lj_lib.c lj_ir.c \ lj_ircall.h lj_iropt.h lj_opt_mem.c lj_opt_fold.c lj_folddef.h \ lj_opt_narrow.c lj_opt_dce.c lj_opt_loop.c lj_snap.h lj_opt_split.c \ lj_opt_sink.c lj_mcode.c lj_snap.c lj_record.c lj_record.h lj_ffrecord.h \ lj_crecord.c lj_crecord.h lj_ffrecord.c lj_recdef.h lj_asm.c lj_asm.h \ lj_emit_*.h lj_asm_*.h lj_trace.c lj_gdbjit.h lj_gdbjit.c lj_alloc.c \ lib_aux.c lib_base.c lj_libdef.h lib_math.c lib_string.c lib_table.c \ lib_io.c lib_os.c lib_package.c lib_debug.c lib_bit.c lib_jit.c \ lib_ffi.c lib_init.c luajit.o: luajit.c lua.h luaconf.h lauxlib.h lualib.h luajit.h lj_arch.h host/buildvm.o: host/buildvm.c host/buildvm.h lj_def.h lua.h luaconf.h \ lj_arch.h lj_obj.h lj_def.h lj_arch.h lj_gc.h lj_obj.h lj_bc.h lj_ir.h \ lj_ircall.h lj_ir.h lj_jit.h lj_frame.h lj_bc.h lj_dispatch.h lj_ctype.h \ lj_gc.h lj_ccall.h lj_ctype.h luajit.h \ host/buildvm_arch.h lj_traceerr.h host/buildvm_asm.o: host/buildvm_asm.c host/buildvm.h lj_def.h lua.h luaconf.h \ lj_arch.h lj_bc.h lj_def.h lj_arch.h host/buildvm_fold.o: host/buildvm_fold.c host/buildvm.h lj_def.h lua.h \ luaconf.h lj_arch.h lj_obj.h lj_def.h lj_arch.h lj_ir.h lj_obj.h host/buildvm_lib.o: host/buildvm_lib.c host/buildvm.h lj_def.h lua.h luaconf.h \ lj_arch.h lj_obj.h lj_def.h lj_arch.h lj_bc.h lj_lib.h lj_obj.h \ host/buildvm_libbc.h host/buildvm_peobj.o: host/buildvm_peobj.c host/buildvm.h lj_def.h lua.h \ luaconf.h lj_arch.h lj_bc.h lj_def.h lj_arch.h host/minilua.o: host/minilua.c luajit-2.1.0~beta3+dfsg.orig/src/lj_cparse.c0000644000175100017510000015720213101703334020222 0ustar ondrejondrej/* ** C declaration parser. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #include "lj_obj.h" #if LJ_HASFFI #include "lj_gc.h" #include "lj_err.h" #include "lj_buf.h" #include "lj_ctype.h" #include "lj_cparse.h" #include "lj_frame.h" #include "lj_vm.h" #include "lj_char.h" #include "lj_strscan.h" #include "lj_strfmt.h" /* ** Important note: this is NOT a validating C parser! This is a minimal ** C declaration parser, solely for use by the LuaJIT FFI. ** ** It ought to return correct results for properly formed C declarations, ** but it may accept some invalid declarations, too (and return nonsense). ** Also, it shows rather generic error messages to avoid unnecessary bloat. ** If in doubt, please check the input against your favorite C compiler. */ /* -- C lexer ------------------------------------------------------------- */ /* C lexer token names. */ static const char *const ctoknames[] = { #define CTOKSTR(name, str) str, CTOKDEF(CTOKSTR) #undef CTOKSTR NULL }; /* Forward declaration. */ LJ_NORET static void cp_err(CPState *cp, ErrMsg em); static const char *cp_tok2str(CPState *cp, CPToken tok) { lua_assert(tok < CTOK_FIRSTDECL); if (tok > CTOK_OFS) return ctoknames[tok-CTOK_OFS-1]; else if (!lj_char_iscntrl(tok)) return lj_strfmt_pushf(cp->L, "%c", tok); else return lj_strfmt_pushf(cp->L, "char(%d)", tok); } /* End-of-line? */ static LJ_AINLINE int cp_iseol(CPChar c) { return (c == '\n' || c == '\r'); } /* Peek next raw character. */ static LJ_AINLINE CPChar cp_rawpeek(CPState *cp) { return (CPChar)(uint8_t)(*cp->p); } static LJ_NOINLINE CPChar cp_get_bs(CPState *cp); /* Get next character. */ static LJ_AINLINE CPChar cp_get(CPState *cp) { cp->c = (CPChar)(uint8_t)(*cp->p++); if (LJ_LIKELY(cp->c != '\\')) return cp->c; return cp_get_bs(cp); } /* Transparently skip backslash-escaped line breaks. */ static LJ_NOINLINE CPChar cp_get_bs(CPState *cp) { CPChar c2, c = cp_rawpeek(cp); if (!cp_iseol(c)) return cp->c; cp->p++; c2 = cp_rawpeek(cp); if (cp_iseol(c2) && c2 != c) cp->p++; cp->linenumber++; return cp_get(cp); } /* Save character in buffer. */ static LJ_AINLINE void cp_save(CPState *cp, CPChar c) { lj_buf_putb(&cp->sb, c); } /* Skip line break. Handles "\n", "\r", "\r\n" or "\n\r". */ static void cp_newline(CPState *cp) { CPChar c = cp_rawpeek(cp); if (cp_iseol(c) && c != cp->c) cp->p++; cp->linenumber++; } LJ_NORET static void cp_errmsg(CPState *cp, CPToken tok, ErrMsg em, ...) { const char *msg, *tokstr; lua_State *L; va_list argp; if (tok == 0) { tokstr = NULL; } else if (tok == CTOK_IDENT || tok == CTOK_INTEGER || tok == CTOK_STRING || tok >= CTOK_FIRSTDECL) { if (sbufP(&cp->sb) == sbufB(&cp->sb)) cp_save(cp, '$'); cp_save(cp, '\0'); tokstr = sbufB(&cp->sb); } else { tokstr = cp_tok2str(cp, tok); } L = cp->L; va_start(argp, em); msg = lj_strfmt_pushvf(L, err2msg(em), argp); va_end(argp); if (tokstr) msg = lj_strfmt_pushf(L, err2msg(LJ_ERR_XNEAR), msg, tokstr); if (cp->linenumber > 1) msg = lj_strfmt_pushf(L, "%s at line %d", msg, cp->linenumber); lj_err_callermsg(L, msg); } LJ_NORET LJ_NOINLINE static void cp_err_token(CPState *cp, CPToken tok) { cp_errmsg(cp, cp->tok, LJ_ERR_XTOKEN, cp_tok2str(cp, tok)); } LJ_NORET LJ_NOINLINE static void cp_err_badidx(CPState *cp, CType *ct) { GCstr *s = lj_ctype_repr(cp->cts->L, ctype_typeid(cp->cts, ct), NULL); cp_errmsg(cp, 0, LJ_ERR_FFI_BADIDX, strdata(s)); } LJ_NORET LJ_NOINLINE static void cp_err(CPState *cp, ErrMsg em) { cp_errmsg(cp, 0, em); } /* -- Main lexical scanner ------------------------------------------------ */ /* Parse number literal. Only handles int32_t/uint32_t right now. */ static CPToken cp_number(CPState *cp) { StrScanFmt fmt; TValue o; do { cp_save(cp, cp->c); } while (lj_char_isident(cp_get(cp))); cp_save(cp, '\0'); fmt = lj_strscan_scan((const uint8_t *)sbufB(&cp->sb), &o, STRSCAN_OPT_C); if (fmt == STRSCAN_INT) cp->val.id = CTID_INT32; else if (fmt == STRSCAN_U32) cp->val.id = CTID_UINT32; else if (!(cp->mode & CPARSE_MODE_SKIP)) cp_errmsg(cp, CTOK_INTEGER, LJ_ERR_XNUMBER); cp->val.u32 = (uint32_t)o.i; return CTOK_INTEGER; } /* Parse identifier or keyword. */ static CPToken cp_ident(CPState *cp) { do { cp_save(cp, cp->c); } while (lj_char_isident(cp_get(cp))); cp->str = lj_buf_str(cp->L, &cp->sb); cp->val.id = lj_ctype_getname(cp->cts, &cp->ct, cp->str, cp->tmask); if (ctype_type(cp->ct->info) == CT_KW) return ctype_cid(cp->ct->info); return CTOK_IDENT; } /* Parse parameter. */ static CPToken cp_param(CPState *cp) { CPChar c = cp_get(cp); TValue *o = cp->param; if (lj_char_isident(c) || c == '$') /* Reserve $xyz for future extensions. */ cp_errmsg(cp, c, LJ_ERR_XSYNTAX); if (!o || o >= cp->L->top) cp_err(cp, LJ_ERR_FFI_NUMPARAM); cp->param = o+1; if (tvisstr(o)) { cp->str = strV(o); cp->val.id = 0; cp->ct = &cp->cts->tab[0]; return CTOK_IDENT; } else if (tvisnumber(o)) { cp->val.i32 = numberVint(o); cp->val.id = CTID_INT32; return CTOK_INTEGER; } else { GCcdata *cd; if (!tviscdata(o)) lj_err_argtype(cp->L, (int)(o-cp->L->base)+1, "type parameter"); cd = cdataV(o); if (cd->ctypeid == CTID_CTYPEID) cp->val.id = *(CTypeID *)cdataptr(cd); else cp->val.id = cd->ctypeid; return '$'; } } /* Parse string or character constant. */ static CPToken cp_string(CPState *cp) { CPChar delim = cp->c; cp_get(cp); while (cp->c != delim) { CPChar c = cp->c; if (c == '\0') cp_errmsg(cp, CTOK_EOF, LJ_ERR_XSTR); if (c == '\\') { c = cp_get(cp); switch (c) { case '\0': cp_errmsg(cp, CTOK_EOF, LJ_ERR_XSTR); break; case 'a': c = '\a'; break; case 'b': c = '\b'; break; case 'f': c = '\f'; break; case 'n': c = '\n'; break; case 'r': c = '\r'; break; case 't': c = '\t'; break; case 'v': c = '\v'; break; case 'e': c = 27; break; case 'x': c = 0; while (lj_char_isxdigit(cp_get(cp))) c = (c<<4) + (lj_char_isdigit(cp->c) ? cp->c-'0' : (cp->c&15)+9); cp_save(cp, (c & 0xff)); continue; default: if (lj_char_isdigit(c)) { c -= '0'; if (lj_char_isdigit(cp_get(cp))) { c = c*8 + (cp->c - '0'); if (lj_char_isdigit(cp_get(cp))) { c = c*8 + (cp->c - '0'); cp_get(cp); } } cp_save(cp, (c & 0xff)); continue; } break; } } cp_save(cp, c); cp_get(cp); } cp_get(cp); if (delim == '"') { cp->str = lj_buf_str(cp->L, &cp->sb); return CTOK_STRING; } else { if (sbuflen(&cp->sb) != 1) cp_err_token(cp, '\''); cp->val.i32 = (int32_t)(char)*sbufB(&cp->sb); cp->val.id = CTID_INT32; return CTOK_INTEGER; } } /* Skip C comment. */ static void cp_comment_c(CPState *cp) { do { if (cp_get(cp) == '*') { do { if (cp_get(cp) == '/') { cp_get(cp); return; } } while (cp->c == '*'); } if (cp_iseol(cp->c)) cp_newline(cp); } while (cp->c != '\0'); } /* Skip C++ comment. */ static void cp_comment_cpp(CPState *cp) { while (!cp_iseol(cp_get(cp)) && cp->c != '\0') ; } /* Lexical scanner for C. Only a minimal subset is implemented. */ static CPToken cp_next_(CPState *cp) { lj_buf_reset(&cp->sb); for (;;) { if (lj_char_isident(cp->c)) return lj_char_isdigit(cp->c) ? cp_number(cp) : cp_ident(cp); switch (cp->c) { case '\n': case '\r': cp_newline(cp); /* fallthrough. */ case ' ': case '\t': case '\v': case '\f': cp_get(cp); break; case '"': case '\'': return cp_string(cp); case '/': if (cp_get(cp) == '*') cp_comment_c(cp); else if (cp->c == '/') cp_comment_cpp(cp); else return '/'; break; case '|': if (cp_get(cp) != '|') return '|'; cp_get(cp); return CTOK_OROR; case '&': if (cp_get(cp) != '&') return '&'; cp_get(cp); return CTOK_ANDAND; case '=': if (cp_get(cp) != '=') return '='; cp_get(cp); return CTOK_EQ; case '!': if (cp_get(cp) != '=') return '!'; cp_get(cp); return CTOK_NE; case '<': if (cp_get(cp) == '=') { cp_get(cp); return CTOK_LE; } else if (cp->c == '<') { cp_get(cp); return CTOK_SHL; } return '<'; case '>': if (cp_get(cp) == '=') { cp_get(cp); return CTOK_GE; } else if (cp->c == '>') { cp_get(cp); return CTOK_SHR; } return '>'; case '-': if (cp_get(cp) != '>') return '-'; cp_get(cp); return CTOK_DEREF; case '$': return cp_param(cp); case '\0': return CTOK_EOF; default: { CPToken c = cp->c; cp_get(cp); return c; } } } } static LJ_NOINLINE CPToken cp_next(CPState *cp) { return (cp->tok = cp_next_(cp)); } /* -- C parser ------------------------------------------------------------ */ /* Namespaces for resolving identifiers. */ #define CPNS_DEFAULT \ ((1u<linenumber = 1; cp->depth = 0; cp->curpack = 0; cp->packstack[0] = 255; lj_buf_init(cp->L, &cp->sb); lua_assert(cp->p != NULL); cp_get(cp); /* Read-ahead first char. */ cp->tok = 0; cp->tmask = CPNS_DEFAULT; cp_next(cp); /* Read-ahead first token. */ } /* Cleanup C parser state. */ static void cp_cleanup(CPState *cp) { global_State *g = G(cp->L); lj_buf_free(g, &cp->sb); } /* Check and consume optional token. */ static int cp_opt(CPState *cp, CPToken tok) { if (cp->tok == tok) { cp_next(cp); return 1; } return 0; } /* Check and consume token. */ static void cp_check(CPState *cp, CPToken tok) { if (cp->tok != tok) cp_err_token(cp, tok); cp_next(cp); } /* Check if the next token may start a type declaration. */ static int cp_istypedecl(CPState *cp) { if (cp->tok >= CTOK_FIRSTDECL && cp->tok <= CTOK_LASTDECL) return 1; if (cp->tok == CTOK_IDENT && ctype_istypedef(cp->ct->info)) return 1; if (cp->tok == '$') return 1; return 0; } /* -- Constant expression evaluator --------------------------------------- */ /* Forward declarations. */ static void cp_expr_unary(CPState *cp, CPValue *k); static void cp_expr_sub(CPState *cp, CPValue *k, int pri); /* Please note that type handling is very weak here. Most ops simply ** assume integer operands. Accessors are only needed to compute types and ** return synthetic values. The only purpose of the expression evaluator ** is to compute the values of constant expressions one would typically ** find in C header files. And again: this is NOT a validating C parser! */ /* Parse comma separated expression and return last result. */ static void cp_expr_comma(CPState *cp, CPValue *k) { do { cp_expr_sub(cp, k, 0); } while (cp_opt(cp, ',')); } /* Parse sizeof/alignof operator. */ static void cp_expr_sizeof(CPState *cp, CPValue *k, int wantsz) { CTSize sz; CTInfo info; if (cp_opt(cp, '(')) { if (cp_istypedecl(cp)) k->id = cp_decl_abstract(cp); else cp_expr_comma(cp, k); cp_check(cp, ')'); } else { cp_expr_unary(cp, k); } info = lj_ctype_info(cp->cts, k->id, &sz); if (wantsz) { if (sz != CTSIZE_INVALID) k->u32 = sz; else if (k->id != CTID_A_CCHAR) /* Special case for sizeof("string"). */ cp_err(cp, LJ_ERR_FFI_INVSIZE); } else { k->u32 = 1u << ctype_align(info); } k->id = CTID_UINT32; /* Really size_t. */ } /* Parse prefix operators. */ static void cp_expr_prefix(CPState *cp, CPValue *k) { if (cp->tok == CTOK_INTEGER) { *k = cp->val; cp_next(cp); } else if (cp_opt(cp, '+')) { cp_expr_unary(cp, k); /* Nothing to do (well, integer promotion). */ } else if (cp_opt(cp, '-')) { cp_expr_unary(cp, k); k->i32 = -k->i32; } else if (cp_opt(cp, '~')) { cp_expr_unary(cp, k); k->i32 = ~k->i32; } else if (cp_opt(cp, '!')) { cp_expr_unary(cp, k); k->i32 = !k->i32; k->id = CTID_INT32; } else if (cp_opt(cp, '(')) { if (cp_istypedecl(cp)) { /* Cast operator. */ CTypeID id = cp_decl_abstract(cp); cp_check(cp, ')'); cp_expr_unary(cp, k); k->id = id; /* No conversion performed. */ } else { /* Sub-expression. */ cp_expr_comma(cp, k); cp_check(cp, ')'); } } else if (cp_opt(cp, '*')) { /* Indirection. */ CType *ct; cp_expr_unary(cp, k); ct = lj_ctype_rawref(cp->cts, k->id); if (!ctype_ispointer(ct->info)) cp_err_badidx(cp, ct); k->u32 = 0; k->id = ctype_cid(ct->info); } else if (cp_opt(cp, '&')) { /* Address operator. */ cp_expr_unary(cp, k); k->id = lj_ctype_intern(cp->cts, CTINFO(CT_PTR, CTALIGN_PTR+k->id), CTSIZE_PTR); } else if (cp_opt(cp, CTOK_SIZEOF)) { cp_expr_sizeof(cp, k, 1); } else if (cp_opt(cp, CTOK_ALIGNOF)) { cp_expr_sizeof(cp, k, 0); } else if (cp->tok == CTOK_IDENT) { if (ctype_type(cp->ct->info) == CT_CONSTVAL) { k->u32 = cp->ct->size; k->id = ctype_cid(cp->ct->info); } else if (ctype_type(cp->ct->info) == CT_EXTERN) { k->u32 = cp->val.id; k->id = ctype_cid(cp->ct->info); } else if (ctype_type(cp->ct->info) == CT_FUNC) { k->u32 = cp->val.id; k->id = cp->val.id; } else { goto err_expr; } cp_next(cp); } else if (cp->tok == CTOK_STRING) { CTSize sz = cp->str->len; while (cp_next(cp) == CTOK_STRING) sz += cp->str->len; k->u32 = sz + 1; k->id = CTID_A_CCHAR; } else { err_expr: cp_errmsg(cp, cp->tok, LJ_ERR_XSYMBOL); } } /* Parse postfix operators. */ static void cp_expr_postfix(CPState *cp, CPValue *k) { for (;;) { CType *ct; if (cp_opt(cp, '[')) { /* Array/pointer index. */ CPValue k2; cp_expr_comma(cp, &k2); ct = lj_ctype_rawref(cp->cts, k->id); if (!ctype_ispointer(ct->info)) { ct = lj_ctype_rawref(cp->cts, k2.id); if (!ctype_ispointer(ct->info)) cp_err_badidx(cp, ct); } cp_check(cp, ']'); k->u32 = 0; } else if (cp->tok == '.' || cp->tok == CTOK_DEREF) { /* Struct deref. */ CTSize ofs; CType *fct; ct = lj_ctype_rawref(cp->cts, k->id); if (cp->tok == CTOK_DEREF) { if (!ctype_ispointer(ct->info)) cp_err_badidx(cp, ct); ct = lj_ctype_rawref(cp->cts, ctype_cid(ct->info)); } cp_next(cp); if (cp->tok != CTOK_IDENT) cp_err_token(cp, CTOK_IDENT); if (!ctype_isstruct(ct->info) || ct->size == CTSIZE_INVALID || !(fct = lj_ctype_getfield(cp->cts, ct, cp->str, &ofs)) || ctype_isbitfield(fct->info)) { GCstr *s = lj_ctype_repr(cp->cts->L, ctype_typeid(cp->cts, ct), NULL); cp_errmsg(cp, 0, LJ_ERR_FFI_BADMEMBER, strdata(s), strdata(cp->str)); } ct = fct; k->u32 = ctype_isconstval(ct->info) ? ct->size : 0; cp_next(cp); } else { return; } k->id = ctype_cid(ct->info); } } /* Parse infix operators. */ static void cp_expr_infix(CPState *cp, CPValue *k, int pri) { CPValue k2; k2.u32 = 0; k2.id = 0; /* Silence the compiler. */ for (;;) { switch (pri) { case 0: if (cp_opt(cp, '?')) { CPValue k3; cp_expr_comma(cp, &k2); /* Right-associative. */ cp_check(cp, ':'); cp_expr_sub(cp, &k3, 0); k->u32 = k->u32 ? k2.u32 : k3.u32; k->id = k2.id > k3.id ? k2.id : k3.id; continue; } case 1: if (cp_opt(cp, CTOK_OROR)) { cp_expr_sub(cp, &k2, 2); k->i32 = k->u32 || k2.u32; k->id = CTID_INT32; continue; } case 2: if (cp_opt(cp, CTOK_ANDAND)) { cp_expr_sub(cp, &k2, 3); k->i32 = k->u32 && k2.u32; k->id = CTID_INT32; continue; } case 3: if (cp_opt(cp, '|')) { cp_expr_sub(cp, &k2, 4); k->u32 = k->u32 | k2.u32; goto arith_result; } case 4: if (cp_opt(cp, '^')) { cp_expr_sub(cp, &k2, 5); k->u32 = k->u32 ^ k2.u32; goto arith_result; } case 5: if (cp_opt(cp, '&')) { cp_expr_sub(cp, &k2, 6); k->u32 = k->u32 & k2.u32; goto arith_result; } case 6: if (cp_opt(cp, CTOK_EQ)) { cp_expr_sub(cp, &k2, 7); k->i32 = k->u32 == k2.u32; k->id = CTID_INT32; continue; } else if (cp_opt(cp, CTOK_NE)) { cp_expr_sub(cp, &k2, 7); k->i32 = k->u32 != k2.u32; k->id = CTID_INT32; continue; } case 7: if (cp_opt(cp, '<')) { cp_expr_sub(cp, &k2, 8); if (k->id == CTID_INT32 && k2.id == CTID_INT32) k->i32 = k->i32 < k2.i32; else k->i32 = k->u32 < k2.u32; k->id = CTID_INT32; continue; } else if (cp_opt(cp, '>')) { cp_expr_sub(cp, &k2, 8); if (k->id == CTID_INT32 && k2.id == CTID_INT32) k->i32 = k->i32 > k2.i32; else k->i32 = k->u32 > k2.u32; k->id = CTID_INT32; continue; } else if (cp_opt(cp, CTOK_LE)) { cp_expr_sub(cp, &k2, 8); if (k->id == CTID_INT32 && k2.id == CTID_INT32) k->i32 = k->i32 <= k2.i32; else k->i32 = k->u32 <= k2.u32; k->id = CTID_INT32; continue; } else if (cp_opt(cp, CTOK_GE)) { cp_expr_sub(cp, &k2, 8); if (k->id == CTID_INT32 && k2.id == CTID_INT32) k->i32 = k->i32 >= k2.i32; else k->i32 = k->u32 >= k2.u32; k->id = CTID_INT32; continue; } case 8: if (cp_opt(cp, CTOK_SHL)) { cp_expr_sub(cp, &k2, 9); k->u32 = k->u32 << k2.u32; continue; } else if (cp_opt(cp, CTOK_SHR)) { cp_expr_sub(cp, &k2, 9); if (k->id == CTID_INT32) k->i32 = k->i32 >> k2.i32; else k->u32 = k->u32 >> k2.u32; continue; } case 9: if (cp_opt(cp, '+')) { cp_expr_sub(cp, &k2, 10); k->u32 = k->u32 + k2.u32; arith_result: if (k2.id > k->id) k->id = k2.id; /* Trivial promotion to unsigned. */ continue; } else if (cp_opt(cp, '-')) { cp_expr_sub(cp, &k2, 10); k->u32 = k->u32 - k2.u32; goto arith_result; } case 10: if (cp_opt(cp, '*')) { cp_expr_unary(cp, &k2); k->u32 = k->u32 * k2.u32; goto arith_result; } else if (cp_opt(cp, '/')) { cp_expr_unary(cp, &k2); if (k2.id > k->id) k->id = k2.id; /* Trivial promotion to unsigned. */ if (k2.u32 == 0 || (k->id == CTID_INT32 && k->u32 == 0x80000000u && k2.i32 == -1)) cp_err(cp, LJ_ERR_BADVAL); if (k->id == CTID_INT32) k->i32 = k->i32 / k2.i32; else k->u32 = k->u32 / k2.u32; continue; } else if (cp_opt(cp, '%')) { cp_expr_unary(cp, &k2); if (k2.id > k->id) k->id = k2.id; /* Trivial promotion to unsigned. */ if (k2.u32 == 0 || (k->id == CTID_INT32 && k->u32 == 0x80000000u && k2.i32 == -1)) cp_err(cp, LJ_ERR_BADVAL); if (k->id == CTID_INT32) k->i32 = k->i32 % k2.i32; else k->u32 = k->u32 % k2.u32; continue; } default: return; } } } /* Parse and evaluate unary expression. */ static void cp_expr_unary(CPState *cp, CPValue *k) { if (++cp->depth > CPARSE_MAX_DECLDEPTH) cp_err(cp, LJ_ERR_XLEVELS); cp_expr_prefix(cp, k); cp_expr_postfix(cp, k); cp->depth--; } /* Parse and evaluate sub-expression. */ static void cp_expr_sub(CPState *cp, CPValue *k, int pri) { cp_expr_unary(cp, k); cp_expr_infix(cp, k, pri); } /* Parse constant integer expression. */ static void cp_expr_kint(CPState *cp, CPValue *k) { CType *ct; cp_expr_sub(cp, k, 0); ct = ctype_raw(cp->cts, k->id); if (!ctype_isinteger(ct->info)) cp_err(cp, LJ_ERR_BADVAL); } /* Parse (non-negative) size expression. */ static CTSize cp_expr_ksize(CPState *cp) { CPValue k; cp_expr_kint(cp, &k); if (k.u32 >= 0x80000000u) cp_err(cp, LJ_ERR_FFI_INVSIZE); return k.u32; } /* -- Type declaration stack management ----------------------------------- */ /* Add declaration element behind the insertion position. */ static CPDeclIdx cp_add(CPDecl *decl, CTInfo info, CTSize size) { CPDeclIdx top = decl->top; if (top >= CPARSE_MAX_DECLSTACK) cp_err(decl->cp, LJ_ERR_XLEVELS); decl->stack[top].info = info; decl->stack[top].size = size; decl->stack[top].sib = 0; setgcrefnull(decl->stack[top].name); decl->stack[top].next = decl->stack[decl->pos].next; decl->stack[decl->pos].next = (CTypeID1)top; decl->top = top+1; return top; } /* Push declaration element before the insertion position. */ static CPDeclIdx cp_push(CPDecl *decl, CTInfo info, CTSize size) { return (decl->pos = cp_add(decl, info, size)); } /* Push or merge attributes. */ static void cp_push_attributes(CPDecl *decl) { CType *ct = &decl->stack[decl->pos]; if (ctype_isfunc(ct->info)) { /* Ok to modify in-place. */ #if LJ_TARGET_X86 if ((decl->fattr & CTFP_CCONV)) ct->info = (ct->info & (CTMASK_NUM|CTF_VARARG|CTMASK_CID)) + (decl->fattr & ~CTMASK_CID); #endif } else { if ((decl->attr & CTFP_ALIGNED) && !(decl->mode & CPARSE_MODE_FIELD)) cp_push(decl, CTINFO(CT_ATTRIB, CTATTRIB(CTA_ALIGN)), ctype_align(decl->attr)); } } /* Push unrolled type to declaration stack and merge qualifiers. */ static void cp_push_type(CPDecl *decl, CTypeID id) { CType *ct = ctype_get(decl->cp->cts, id); CTInfo info = ct->info; CTSize size = ct->size; switch (ctype_type(info)) { case CT_STRUCT: case CT_ENUM: cp_push(decl, CTINFO(CT_TYPEDEF, id), 0); /* Don't copy unique types. */ if ((decl->attr & CTF_QUAL)) { /* Push unmerged qualifiers. */ cp_push(decl, CTINFO(CT_ATTRIB, CTATTRIB(CTA_QUAL)), (decl->attr & CTF_QUAL)); decl->attr &= ~CTF_QUAL; } break; case CT_ATTRIB: if (ctype_isxattrib(info, CTA_QUAL)) decl->attr &= ~size; /* Remove redundant qualifiers. */ cp_push_type(decl, ctype_cid(info)); /* Unroll. */ cp_push(decl, info & ~CTMASK_CID, size); /* Copy type. */ break; case CT_ARRAY: if ((ct->info & (CTF_VECTOR|CTF_COMPLEX))) { info |= (decl->attr & CTF_QUAL); decl->attr &= ~CTF_QUAL; } cp_push_type(decl, ctype_cid(info)); /* Unroll. */ cp_push(decl, info & ~CTMASK_CID, size); /* Copy type. */ decl->stack[decl->pos].sib = 1; /* Mark as already checked and sized. */ /* Note: this is not copied to the ct->sib in the C type table. */ break; case CT_FUNC: /* Copy type, link parameters (shared). */ decl->stack[cp_push(decl, info, size)].sib = ct->sib; break; default: /* Copy type, merge common qualifiers. */ cp_push(decl, info|(decl->attr & CTF_QUAL), size); decl->attr &= ~CTF_QUAL; break; } } /* Consume the declaration element chain and intern the C type. */ static CTypeID cp_decl_intern(CPState *cp, CPDecl *decl) { CTypeID id = 0; CPDeclIdx idx = 0; CTSize csize = CTSIZE_INVALID; CTSize cinfo = 0; do { CType *ct = &decl->stack[idx]; CTInfo info = ct->info; CTInfo size = ct->size; /* The cid is already part of info for copies of pointers/functions. */ idx = ct->next; if (ctype_istypedef(info)) { lua_assert(id == 0); id = ctype_cid(info); /* Always refetch info/size, since struct/enum may have been completed. */ cinfo = ctype_get(cp->cts, id)->info; csize = ctype_get(cp->cts, id)->size; lua_assert(ctype_isstruct(cinfo) || ctype_isenum(cinfo)); } else if (ctype_isfunc(info)) { /* Intern function. */ CType *fct; CTypeID fid; CTypeID sib; if (id) { CType *refct = ctype_raw(cp->cts, id); /* Reject function or refarray return types. */ if (ctype_isfunc(refct->info) || ctype_isrefarray(refct->info)) cp_err(cp, LJ_ERR_FFI_INVTYPE); } /* No intervening attributes allowed, skip forward. */ while (idx) { CType *ctn = &decl->stack[idx]; if (!ctype_isattrib(ctn->info)) break; idx = ctn->next; /* Skip attribute. */ } sib = ct->sib; /* Next line may reallocate the C type table. */ fid = lj_ctype_new(cp->cts, &fct); csize = CTSIZE_INVALID; fct->info = cinfo = info + id; fct->size = size; fct->sib = sib; id = fid; } else if (ctype_isattrib(info)) { if (ctype_isxattrib(info, CTA_QUAL)) cinfo |= size; else if (ctype_isxattrib(info, CTA_ALIGN)) CTF_INSERT(cinfo, ALIGN, size); id = lj_ctype_intern(cp->cts, info+id, size); /* Inherit csize/cinfo from original type. */ } else { if (ctype_isnum(info)) { /* Handle mode/vector-size attributes. */ lua_assert(id == 0); if (!(info & CTF_BOOL)) { CTSize msize = ctype_msizeP(decl->attr); CTSize vsize = ctype_vsizeP(decl->attr); if (msize && (!(info & CTF_FP) || (msize == 4 || msize == 8))) { CTSize malign = lj_fls(msize); if (malign > 4) malign = 4; /* Limit alignment. */ CTF_INSERT(info, ALIGN, malign); size = msize; /* Override size via mode. */ } if (vsize) { /* Vector size set? */ CTSize esize = lj_fls(size); if (vsize >= esize) { /* Intern the element type first. */ id = lj_ctype_intern(cp->cts, info, size); /* Then create a vector (array) with vsize alignment. */ size = (1u << vsize); if (vsize > 4) vsize = 4; /* Limit alignment. */ if (ctype_align(info) > vsize) vsize = ctype_align(info); info = CTINFO(CT_ARRAY, (info & CTF_QUAL) + CTF_VECTOR + CTALIGN(vsize)); } } } } else if (ctype_isptr(info)) { /* Reject pointer/ref to ref. */ if (id && ctype_isref(ctype_raw(cp->cts, id)->info)) cp_err(cp, LJ_ERR_FFI_INVTYPE); if (ctype_isref(info)) { info &= ~CTF_VOLATILE; /* Refs are always const, never volatile. */ /* No intervening attributes allowed, skip forward. */ while (idx) { CType *ctn = &decl->stack[idx]; if (!ctype_isattrib(ctn->info)) break; idx = ctn->next; /* Skip attribute. */ } } } else if (ctype_isarray(info)) { /* Check for valid array size etc. */ if (ct->sib == 0) { /* Only check/size arrays not copied by unroll. */ if (ctype_isref(cinfo)) /* Reject arrays of refs. */ cp_err(cp, LJ_ERR_FFI_INVTYPE); /* Reject VLS or unknown-sized types. */ if (ctype_isvltype(cinfo) || csize == CTSIZE_INVALID) cp_err(cp, LJ_ERR_FFI_INVSIZE); /* a[] and a[?] keep their invalid size. */ if (size != CTSIZE_INVALID) { uint64_t xsz = (uint64_t)size * csize; if (xsz >= 0x80000000u) cp_err(cp, LJ_ERR_FFI_INVSIZE); size = (CTSize)xsz; } } if ((cinfo & CTF_ALIGN) > (info & CTF_ALIGN)) /* Find max. align. */ info = (info & ~CTF_ALIGN) | (cinfo & CTF_ALIGN); info |= (cinfo & CTF_QUAL); /* Inherit qual. */ } else { lua_assert(ctype_isvoid(info)); } csize = size; cinfo = info+id; id = lj_ctype_intern(cp->cts, info+id, size); } } while (idx); return id; } /* -- C declaration parser ------------------------------------------------ */ #define H_(le, be) LJ_ENDIAN_SELECT(0x##le, 0x##be) /* Reset declaration state to declaration specifier. */ static void cp_decl_reset(CPDecl *decl) { decl->pos = decl->specpos; decl->top = decl->specpos+1; decl->stack[decl->specpos].next = 0; decl->attr = decl->specattr; decl->fattr = decl->specfattr; decl->name = NULL; decl->redir = NULL; } /* Parse constant initializer. */ /* NYI: FP constants and strings as initializers. */ static CTypeID cp_decl_constinit(CPState *cp, CType **ctp, CTypeID ctypeid) { CType *ctt = ctype_get(cp->cts, ctypeid); CTInfo info; CTSize size; CPValue k; CTypeID constid; while (ctype_isattrib(ctt->info)) { /* Skip attributes. */ ctypeid = ctype_cid(ctt->info); /* Update ID, too. */ ctt = ctype_get(cp->cts, ctypeid); } info = ctt->info; size = ctt->size; if (!ctype_isinteger(info) || !(info & CTF_CONST) || size > 4) cp_err(cp, LJ_ERR_FFI_INVTYPE); cp_check(cp, '='); cp_expr_sub(cp, &k, 0); constid = lj_ctype_new(cp->cts, ctp); (*ctp)->info = CTINFO(CT_CONSTVAL, CTF_CONST|ctypeid); k.u32 <<= 8*(4-size); if ((info & CTF_UNSIGNED)) k.u32 >>= 8*(4-size); else k.u32 = (uint32_t)((int32_t)k.u32 >> 8*(4-size)); (*ctp)->size = k.u32; return constid; } /* Parse size in parentheses as part of attribute. */ static CTSize cp_decl_sizeattr(CPState *cp) { CTSize sz; uint32_t oldtmask = cp->tmask; cp->tmask = CPNS_DEFAULT; /* Required for expression evaluator. */ cp_check(cp, '('); sz = cp_expr_ksize(cp); cp->tmask = oldtmask; cp_check(cp, ')'); return sz; } /* Parse alignment attribute. */ static void cp_decl_align(CPState *cp, CPDecl *decl) { CTSize al = 4; /* Unspecified alignment is 16 bytes. */ if (cp->tok == '(') { al = cp_decl_sizeattr(cp); al = al ? lj_fls(al) : 0; } CTF_INSERT(decl->attr, ALIGN, al); decl->attr |= CTFP_ALIGNED; } /* Parse GCC asm("name") redirect. */ static void cp_decl_asm(CPState *cp, CPDecl *decl) { UNUSED(decl); cp_next(cp); cp_check(cp, '('); if (cp->tok == CTOK_STRING) { GCstr *str = cp->str; while (cp_next(cp) == CTOK_STRING) { lj_strfmt_pushf(cp->L, "%s%s", strdata(str), strdata(cp->str)); cp->L->top--; str = strV(cp->L->top); } decl->redir = str; } cp_check(cp, ')'); } /* Parse GCC __attribute__((mode(...))). */ static void cp_decl_mode(CPState *cp, CPDecl *decl) { cp_check(cp, '('); if (cp->tok == CTOK_IDENT) { const char *s = strdata(cp->str); CTSize sz = 0, vlen = 0; if (s[0] == '_' && s[1] == '_') s += 2; if (*s == 'V') { s++; vlen = *s++ - '0'; if (*s >= '0' && *s <= '9') vlen = vlen*10 + (*s++ - '0'); } switch (*s++) { case 'Q': sz = 1; break; case 'H': sz = 2; break; case 'S': sz = 4; break; case 'D': sz = 8; break; case 'T': sz = 16; break; case 'O': sz = 32; break; default: goto bad_size; } if (*s == 'I' || *s == 'F') { CTF_INSERT(decl->attr, MSIZEP, sz); if (vlen) CTF_INSERT(decl->attr, VSIZEP, lj_fls(vlen*sz)); } bad_size: cp_next(cp); } cp_check(cp, ')'); } /* Parse GCC __attribute__((...)). */ static void cp_decl_gccattribute(CPState *cp, CPDecl *decl) { cp_next(cp); cp_check(cp, '('); cp_check(cp, '('); while (cp->tok != ')') { if (cp->tok == CTOK_IDENT) { GCstr *attrstr = cp->str; cp_next(cp); switch (attrstr->hash) { case H_(64a9208e,8ce14319): case H_(8e6331b2,95a282af): /* aligned */ cp_decl_align(cp, decl); break; case H_(42eb47de,f0ede26c): case H_(29f48a09,cf383e0c): /* packed */ decl->attr |= CTFP_PACKED; break; case H_(0a84eef6,8dfab04c): case H_(995cf92c,d5696591): /* mode */ cp_decl_mode(cp, decl); break; case H_(0ab31997,2d5213fa): case H_(bf875611,200e9990): /* vector_size */ { CTSize vsize = cp_decl_sizeattr(cp); if (vsize) CTF_INSERT(decl->attr, VSIZEP, lj_fls(vsize)); } break; #if LJ_TARGET_X86 case H_(5ad22db8,c689b848): case H_(439150fa,65ea78cb): /* regparm */ CTF_INSERT(decl->fattr, REGPARM, cp_decl_sizeattr(cp)); decl->fattr |= CTFP_CCONV; break; case H_(18fc0b98,7ff4c074): case H_(4e62abed,0a747424): /* cdecl */ CTF_INSERT(decl->fattr, CCONV, CTCC_CDECL); decl->fattr |= CTFP_CCONV; break; case H_(72b2e41b,494c5a44): case H_(f2356d59,f25fc9bd): /* thiscall */ CTF_INSERT(decl->fattr, CCONV, CTCC_THISCALL); decl->fattr |= CTFP_CCONV; break; case H_(0d0ffc42,ab746f88): case H_(21c54ba1,7f0ca7e3): /* fastcall */ CTF_INSERT(decl->fattr, CCONV, CTCC_FASTCALL); decl->fattr |= CTFP_CCONV; break; case H_(ef76b040,9412e06a): case H_(de56697b,c750e6e1): /* stdcall */ CTF_INSERT(decl->fattr, CCONV, CTCC_STDCALL); decl->fattr |= CTFP_CCONV; break; case H_(ea78b622,f234bd8e): case H_(252ffb06,8d50f34b): /* sseregparm */ decl->fattr |= CTF_SSEREGPARM; decl->fattr |= CTFP_CCONV; break; #endif default: /* Skip all other attributes. */ goto skip_attr; } } else if (cp->tok >= CTOK_FIRSTDECL) { /* For __attribute((const)) etc. */ cp_next(cp); skip_attr: if (cp_opt(cp, '(')) { while (cp->tok != ')' && cp->tok != CTOK_EOF) cp_next(cp); cp_check(cp, ')'); } } else { break; } if (!cp_opt(cp, ',')) break; } cp_check(cp, ')'); cp_check(cp, ')'); } /* Parse MSVC __declspec(...). */ static void cp_decl_msvcattribute(CPState *cp, CPDecl *decl) { cp_next(cp); cp_check(cp, '('); while (cp->tok == CTOK_IDENT) { GCstr *attrstr = cp->str; cp_next(cp); switch (attrstr->hash) { case H_(bc2395fa,98f267f8): /* align */ cp_decl_align(cp, decl); break; default: /* Ignore all other attributes. */ if (cp_opt(cp, '(')) { while (cp->tok != ')' && cp->tok != CTOK_EOF) cp_next(cp); cp_check(cp, ')'); } break; } } cp_check(cp, ')'); } /* Parse declaration attributes (and common qualifiers). */ static void cp_decl_attributes(CPState *cp, CPDecl *decl) { for (;;) { switch (cp->tok) { case CTOK_CONST: decl->attr |= CTF_CONST; break; case CTOK_VOLATILE: decl->attr |= CTF_VOLATILE; break; case CTOK_RESTRICT: break; /* Ignore. */ case CTOK_EXTENSION: break; /* Ignore. */ case CTOK_ATTRIBUTE: cp_decl_gccattribute(cp, decl); continue; case CTOK_ASM: cp_decl_asm(cp, decl); continue; case CTOK_DECLSPEC: cp_decl_msvcattribute(cp, decl); continue; case CTOK_CCDECL: #if LJ_TARGET_X86 CTF_INSERT(decl->fattr, CCONV, cp->ct->size); decl->fattr |= CTFP_CCONV; #endif break; case CTOK_PTRSZ: #if LJ_64 CTF_INSERT(decl->attr, MSIZEP, cp->ct->size); #endif break; default: return; } cp_next(cp); } } /* Parse struct/union/enum name. */ static CTypeID cp_struct_name(CPState *cp, CPDecl *sdecl, CTInfo info) { CTypeID sid; CType *ct; cp->tmask = CPNS_STRUCT; cp_next(cp); cp_decl_attributes(cp, sdecl); cp->tmask = CPNS_DEFAULT; if (cp->tok != '{') { if (cp->tok != CTOK_IDENT) cp_err_token(cp, CTOK_IDENT); if (cp->val.id) { /* Name of existing struct/union/enum. */ sid = cp->val.id; ct = cp->ct; if ((ct->info ^ info) & (CTMASK_NUM|CTF_UNION)) /* Wrong type. */ cp_errmsg(cp, 0, LJ_ERR_FFI_REDEF, strdata(gco2str(gcref(ct->name)))); } else { /* Create named, incomplete struct/union/enum. */ if ((cp->mode & CPARSE_MODE_NOIMPLICIT)) cp_errmsg(cp, 0, LJ_ERR_FFI_BADTAG, strdata(cp->str)); sid = lj_ctype_new(cp->cts, &ct); ct->info = info; ct->size = CTSIZE_INVALID; ctype_setname(ct, cp->str); lj_ctype_addname(cp->cts, ct, sid); } cp_next(cp); } else { /* Create anonymous, incomplete struct/union/enum. */ sid = lj_ctype_new(cp->cts, &ct); ct->info = info; ct->size = CTSIZE_INVALID; } if (cp->tok == '{') { if (ct->size != CTSIZE_INVALID || ct->sib) cp_errmsg(cp, 0, LJ_ERR_FFI_REDEF, strdata(gco2str(gcref(ct->name)))); ct->sib = 1; /* Indicate the type is currently being defined. */ } return sid; } /* Determine field alignment. */ static CTSize cp_field_align(CPState *cp, CType *ct, CTInfo info) { CTSize align = ctype_align(info); UNUSED(cp); UNUSED(ct); #if (LJ_TARGET_X86 && !LJ_ABI_WIN) || (LJ_TARGET_ARM && __APPLE__) /* The SYSV i386 and iOS ABIs limit alignment of non-vector fields to 2^2. */ if (align > 2 && !(info & CTFP_ALIGNED)) { if (ctype_isarray(info) && !(info & CTF_VECTOR)) { do { ct = ctype_rawchild(cp->cts, ct); info = ct->info; } while (ctype_isarray(info) && !(info & CTF_VECTOR)); } if (ctype_isnum(info) || ctype_isenum(info)) align = 2; } #endif return align; } /* Layout struct/union fields. */ static void cp_struct_layout(CPState *cp, CTypeID sid, CTInfo sattr) { CTSize bofs = 0, bmaxofs = 0; /* Bit offset and max. bit offset. */ CTSize maxalign = ctype_align(sattr); CType *sct = ctype_get(cp->cts, sid); CTInfo sinfo = sct->info; CTypeID fieldid = sct->sib; while (fieldid) { CType *ct = ctype_get(cp->cts, fieldid); CTInfo attr = ct->size; /* Field declaration attributes (temp.). */ if (ctype_isfield(ct->info) || (ctype_isxattrib(ct->info, CTA_SUBTYPE) && attr)) { CTSize align, amask; /* Alignment (pow2) and alignment mask (bits). */ CTSize sz; CTInfo info = lj_ctype_info(cp->cts, ctype_cid(ct->info), &sz); CTSize bsz, csz = 8*sz; /* Field size and container size (in bits). */ sinfo |= (info & (CTF_QUAL|CTF_VLA)); /* Merge pseudo-qualifiers. */ /* Check for size overflow and determine alignment. */ if (sz >= 0x20000000u || bofs + csz < bofs || (info & CTF_VLA)) { if (!(sz == CTSIZE_INVALID && ctype_isarray(info) && !(sinfo & CTF_UNION))) cp_err(cp, LJ_ERR_FFI_INVSIZE); csz = sz = 0; /* Treat a[] and a[?] as zero-sized. */ } align = cp_field_align(cp, ct, info); if (((attr|sattr) & CTFP_PACKED) || ((attr & CTFP_ALIGNED) && ctype_align(attr) > align)) align = ctype_align(attr); if (cp->packstack[cp->curpack] < align) align = cp->packstack[cp->curpack]; if (align > maxalign) maxalign = align; amask = (8u << align) - 1; bsz = ctype_bitcsz(ct->info); /* Bitfield size (temp.). */ if (bsz == CTBSZ_FIELD || !ctype_isfield(ct->info)) { bsz = csz; /* Regular fields or subtypes always fill the container. */ bofs = (bofs + amask) & ~amask; /* Start new aligned field. */ ct->size = (bofs >> 3); /* Store field offset. */ } else { /* Bitfield. */ if (bsz == 0 || (attr & CTFP_ALIGNED) || (!((attr|sattr) & CTFP_PACKED) && (bofs & amask) + bsz > csz)) bofs = (bofs + amask) & ~amask; /* Start new aligned field. */ /* Prefer regular field over bitfield. */ if (bsz == csz && (bofs & amask) == 0) { ct->info = CTINFO(CT_FIELD, ctype_cid(ct->info)); ct->size = (bofs >> 3); /* Store field offset. */ } else { ct->info = CTINFO(CT_BITFIELD, (info & (CTF_QUAL|CTF_UNSIGNED|CTF_BOOL)) + (csz << (CTSHIFT_BITCSZ-3)) + (bsz << CTSHIFT_BITBSZ)); #if LJ_BE ct->info += ((csz - (bofs & (csz-1)) - bsz) << CTSHIFT_BITPOS); #else ct->info += ((bofs & (csz-1)) << CTSHIFT_BITPOS); #endif ct->size = ((bofs & ~(csz-1)) >> 3); /* Store container offset. */ } } /* Determine next offset or max. offset. */ if ((sinfo & CTF_UNION)) { if (bsz > bmaxofs) bmaxofs = bsz; } else { bofs += bsz; } } /* All other fields in the chain are already set up. */ fieldid = ct->sib; } /* Complete struct/union. */ sct->info = sinfo + CTALIGN(maxalign); bofs = (sinfo & CTF_UNION) ? bmaxofs : bofs; maxalign = (8u << maxalign) - 1; sct->size = (((bofs + maxalign) & ~maxalign) >> 3); } /* Parse struct/union declaration. */ static CTypeID cp_decl_struct(CPState *cp, CPDecl *sdecl, CTInfo sinfo) { CTypeID sid = cp_struct_name(cp, sdecl, sinfo); if (cp_opt(cp, '{')) { /* Struct/union definition. */ CTypeID lastid = sid; int lastdecl = 0; while (cp->tok != '}') { CPDecl decl; CPscl scl = cp_decl_spec(cp, &decl, CDF_STATIC); decl.mode = scl ? CPARSE_MODE_DIRECT : CPARSE_MODE_DIRECT|CPARSE_MODE_ABSTRACT|CPARSE_MODE_FIELD; for (;;) { CTypeID ctypeid; if (lastdecl) cp_err_token(cp, '}'); /* Parse field declarator. */ decl.bits = CTSIZE_INVALID; cp_declarator(cp, &decl); ctypeid = cp_decl_intern(cp, &decl); if ((scl & CDF_STATIC)) { /* Static constant in struct namespace. */ CType *ct; CTypeID fieldid = cp_decl_constinit(cp, &ct, ctypeid); ctype_get(cp->cts, lastid)->sib = fieldid; lastid = fieldid; ctype_setname(ct, decl.name); } else { CTSize bsz = CTBSZ_FIELD; /* Temp. for layout phase. */ CType *ct; CTypeID fieldid = lj_ctype_new(cp->cts, &ct); /* Do this first. */ CType *tct = ctype_raw(cp->cts, ctypeid); if (decl.bits == CTSIZE_INVALID) { /* Regular field. */ if (ctype_isarray(tct->info) && tct->size == CTSIZE_INVALID) lastdecl = 1; /* a[] or a[?] must be the last declared field. */ /* Accept transparent struct/union/enum. */ if (!decl.name) { if (!((ctype_isstruct(tct->info) && !(tct->info & CTF_VLA)) || ctype_isenum(tct->info))) cp_err_token(cp, CTOK_IDENT); ct->info = CTINFO(CT_ATTRIB, CTATTRIB(CTA_SUBTYPE) + ctypeid); ct->size = ctype_isstruct(tct->info) ? (decl.attr|0x80000000u) : 0; /* For layout phase. */ goto add_field; } } else { /* Bitfield. */ bsz = decl.bits; if (!ctype_isinteger_or_bool(tct->info) || (bsz == 0 && decl.name) || 8*tct->size > CTBSZ_MAX || bsz > ((tct->info & CTF_BOOL) ? 1 : 8*tct->size)) cp_errmsg(cp, ':', LJ_ERR_BADVAL); } /* Create temporary field for layout phase. */ ct->info = CTINFO(CT_FIELD, ctypeid + (bsz << CTSHIFT_BITCSZ)); ct->size = decl.attr; if (decl.name) ctype_setname(ct, decl.name); add_field: ctype_get(cp->cts, lastid)->sib = fieldid; lastid = fieldid; } if (!cp_opt(cp, ',')) break; cp_decl_reset(&decl); } cp_check(cp, ';'); } cp_check(cp, '}'); ctype_get(cp->cts, lastid)->sib = 0; /* Drop sib = 1 for empty structs. */ cp_decl_attributes(cp, sdecl); /* Layout phase needs postfix attributes. */ cp_struct_layout(cp, sid, sdecl->attr); } return sid; } /* Parse enum declaration. */ static CTypeID cp_decl_enum(CPState *cp, CPDecl *sdecl) { CTypeID eid = cp_struct_name(cp, sdecl, CTINFO(CT_ENUM, CTID_VOID)); CTInfo einfo = CTINFO(CT_ENUM, CTALIGN(2) + CTID_UINT32); CTSize esize = 4; /* Only 32 bit enums are supported. */ if (cp_opt(cp, '{')) { /* Enum definition. */ CPValue k; CTypeID lastid = eid; k.u32 = 0; k.id = CTID_INT32; do { GCstr *name = cp->str; if (cp->tok != CTOK_IDENT) cp_err_token(cp, CTOK_IDENT); if (cp->val.id) cp_errmsg(cp, 0, LJ_ERR_FFI_REDEF, strdata(name)); cp_next(cp); if (cp_opt(cp, '=')) { cp_expr_kint(cp, &k); if (k.id == CTID_UINT32) { /* C99 says that enum constants are always (signed) integers. ** But since unsigned constants like 0x80000000 are quite common, ** those are left as uint32_t. */ if (k.i32 >= 0) k.id = CTID_INT32; } else { /* OTOH it's common practice and even mandated by some ABIs ** that the enum type itself is unsigned, unless there are any ** negative constants. */ k.id = CTID_INT32; if (k.i32 < 0) einfo = CTINFO(CT_ENUM, CTALIGN(2) + CTID_INT32); } } /* Add named enum constant. */ { CType *ct; CTypeID constid = lj_ctype_new(cp->cts, &ct); ctype_get(cp->cts, lastid)->sib = constid; lastid = constid; ctype_setname(ct, name); ct->info = CTINFO(CT_CONSTVAL, CTF_CONST|k.id); ct->size = k.u32++; if (k.u32 == 0x80000000u) k.id = CTID_UINT32; lj_ctype_addname(cp->cts, ct, constid); } if (!cp_opt(cp, ',')) break; } while (cp->tok != '}'); /* Trailing ',' is ok. */ cp_check(cp, '}'); /* Complete enum. */ ctype_get(cp->cts, eid)->info = einfo; ctype_get(cp->cts, eid)->size = esize; } return eid; } /* Parse declaration specifiers. */ static CPscl cp_decl_spec(CPState *cp, CPDecl *decl, CPscl scl) { uint32_t cds = 0, sz = 0; CTypeID tdef = 0; decl->cp = cp; decl->mode = cp->mode; decl->name = NULL; decl->redir = NULL; decl->attr = 0; decl->fattr = 0; decl->pos = decl->top = 0; decl->stack[0].next = 0; for (;;) { /* Parse basic types. */ cp_decl_attributes(cp, decl); if (cp->tok >= CTOK_FIRSTDECL && cp->tok <= CTOK_LASTDECLFLAG) { uint32_t cbit; if (cp->ct->size) { if (sz) goto end_decl; sz = cp->ct->size; } cbit = (1u << (cp->tok - CTOK_FIRSTDECL)); cds = cds | cbit | ((cbit & cds & CDF_LONG) << 1); if (cp->tok >= CTOK_FIRSTSCL) { if (!(scl & cbit)) cp_errmsg(cp, cp->tok, LJ_ERR_FFI_BADSCL); } else if (tdef) { goto end_decl; } cp_next(cp); continue; } if (sz || tdef || (cds & (CDF_SHORT|CDF_LONG|CDF_SIGNED|CDF_UNSIGNED|CDF_COMPLEX))) break; switch (cp->tok) { case CTOK_STRUCT: tdef = cp_decl_struct(cp, decl, CTINFO(CT_STRUCT, 0)); continue; case CTOK_UNION: tdef = cp_decl_struct(cp, decl, CTINFO(CT_STRUCT, CTF_UNION)); continue; case CTOK_ENUM: tdef = cp_decl_enum(cp, decl); continue; case CTOK_IDENT: if (ctype_istypedef(cp->ct->info)) { tdef = ctype_cid(cp->ct->info); /* Get typedef. */ cp_next(cp); continue; } break; case '$': tdef = cp->val.id; cp_next(cp); continue; default: break; } break; } end_decl: if ((cds & CDF_COMPLEX)) /* Use predefined complex types. */ tdef = sz == 4 ? CTID_COMPLEX_FLOAT : CTID_COMPLEX_DOUBLE; if (tdef) { cp_push_type(decl, tdef); } else if ((cds & CDF_VOID)) { cp_push(decl, CTINFO(CT_VOID, (decl->attr & CTF_QUAL)), CTSIZE_INVALID); decl->attr &= ~CTF_QUAL; } else { /* Determine type info and size. */ CTInfo info = CTINFO(CT_NUM, (cds & CDF_UNSIGNED) ? CTF_UNSIGNED : 0); if ((cds & CDF_BOOL)) { if ((cds & ~(CDF_SCL|CDF_BOOL|CDF_INT|CDF_SIGNED|CDF_UNSIGNED))) cp_errmsg(cp, 0, LJ_ERR_FFI_INVTYPE); info |= CTF_BOOL; if (!(cds & CDF_SIGNED)) info |= CTF_UNSIGNED; if (!sz) { sz = 1; } } else if ((cds & CDF_FP)) { info = CTINFO(CT_NUM, CTF_FP); if ((cds & CDF_LONG)) sz = sizeof(long double); } else if ((cds & CDF_CHAR)) { if ((cds & (CDF_CHAR|CDF_SIGNED|CDF_UNSIGNED)) == CDF_CHAR) info |= CTF_UCHAR; /* Handle platforms where char is unsigned. */ } else if ((cds & CDF_SHORT)) { sz = sizeof(short); } else if ((cds & CDF_LONGLONG)) { sz = 8; } else if ((cds & CDF_LONG)) { info |= CTF_LONG; sz = sizeof(long); } else if (!sz) { if (!(cds & (CDF_SIGNED|CDF_UNSIGNED))) cp_errmsg(cp, cp->tok, LJ_ERR_FFI_DECLSPEC); sz = sizeof(int); } lua_assert(sz != 0); info += CTALIGN(lj_fls(sz)); /* Use natural alignment. */ info += (decl->attr & CTF_QUAL); /* Merge qualifiers. */ cp_push(decl, info, sz); decl->attr &= ~CTF_QUAL; } decl->specpos = decl->pos; decl->specattr = decl->attr; decl->specfattr = decl->fattr; return (cds & CDF_SCL); /* Return storage class. */ } /* Parse array declaration. */ static void cp_decl_array(CPState *cp, CPDecl *decl) { CTInfo info = CTINFO(CT_ARRAY, 0); CTSize nelem = CTSIZE_INVALID; /* Default size for a[] or a[?]. */ cp_decl_attributes(cp, decl); if (cp_opt(cp, '?')) info |= CTF_VLA; /* Create variable-length array a[?]. */ else if (cp->tok != ']') nelem = cp_expr_ksize(cp); cp_check(cp, ']'); cp_add(decl, info, nelem); } /* Parse function declaration. */ static void cp_decl_func(CPState *cp, CPDecl *fdecl) { CTSize nargs = 0; CTInfo info = CTINFO(CT_FUNC, 0); CTypeID lastid = 0, anchor = 0; if (cp->tok != ')') { do { CPDecl decl; CTypeID ctypeid, fieldid; CType *ct; if (cp_opt(cp, '.')) { /* Vararg function. */ cp_check(cp, '.'); /* Workaround for the minimalistic lexer. */ cp_check(cp, '.'); info |= CTF_VARARG; break; } cp_decl_spec(cp, &decl, CDF_REGISTER); decl.mode = CPARSE_MODE_DIRECT|CPARSE_MODE_ABSTRACT; cp_declarator(cp, &decl); ctypeid = cp_decl_intern(cp, &decl); ct = ctype_raw(cp->cts, ctypeid); if (ctype_isvoid(ct->info)) break; else if (ctype_isrefarray(ct->info)) ctypeid = lj_ctype_intern(cp->cts, CTINFO(CT_PTR, CTALIGN_PTR|ctype_cid(ct->info)), CTSIZE_PTR); else if (ctype_isfunc(ct->info)) ctypeid = lj_ctype_intern(cp->cts, CTINFO(CT_PTR, CTALIGN_PTR|ctypeid), CTSIZE_PTR); /* Add new parameter. */ fieldid = lj_ctype_new(cp->cts, &ct); if (anchor) ctype_get(cp->cts, lastid)->sib = fieldid; else anchor = fieldid; lastid = fieldid; if (decl.name) ctype_setname(ct, decl.name); ct->info = CTINFO(CT_FIELD, ctypeid); ct->size = nargs++; } while (cp_opt(cp, ',')); } cp_check(cp, ')'); if (cp_opt(cp, '{')) { /* Skip function definition. */ int level = 1; cp->mode |= CPARSE_MODE_SKIP; for (;;) { if (cp->tok == '{') level++; else if (cp->tok == '}' && --level == 0) break; else if (cp->tok == CTOK_EOF) cp_err_token(cp, '}'); cp_next(cp); } cp->mode &= ~CPARSE_MODE_SKIP; cp->tok = ';'; /* Ok for cp_decl_multi(), error in cp_decl_single(). */ } info |= (fdecl->fattr & ~CTMASK_CID); fdecl->fattr = 0; fdecl->stack[cp_add(fdecl, info, nargs)].sib = anchor; } /* Parse declarator. */ static void cp_declarator(CPState *cp, CPDecl *decl) { if (++cp->depth > CPARSE_MAX_DECLDEPTH) cp_err(cp, LJ_ERR_XLEVELS); for (;;) { /* Head of declarator. */ if (cp_opt(cp, '*')) { /* Pointer. */ CTSize sz; CTInfo info; cp_decl_attributes(cp, decl); sz = CTSIZE_PTR; info = CTINFO(CT_PTR, CTALIGN_PTR); #if LJ_64 if (ctype_msizeP(decl->attr) == 4) { sz = 4; info = CTINFO(CT_PTR, CTALIGN(2)); } #endif info += (decl->attr & (CTF_QUAL|CTF_REF)); decl->attr &= ~(CTF_QUAL|(CTMASK_MSIZEP<attr &= ~(CTF_QUAL|(CTMASK_MSIZEP<mode & CPARSE_MODE_ABSTRACT) && (cp->tok == ')' || cp_istypedecl(cp))) goto func_decl; pos = decl->pos; cp_declarator(cp, decl); cp_check(cp, ')'); decl->pos = pos; } else if (cp->tok == CTOK_IDENT) { /* Direct declarator. */ if (!(decl->mode & CPARSE_MODE_DIRECT)) cp_err_token(cp, CTOK_EOF); decl->name = cp->str; decl->nameid = cp->val.id; cp_next(cp); } else { /* Abstract declarator. */ if (!(decl->mode & CPARSE_MODE_ABSTRACT)) cp_err_token(cp, CTOK_IDENT); } for (;;) { /* Tail of declarator. */ if (cp_opt(cp, '[')) { /* Array. */ cp_decl_array(cp, decl); } else if (cp_opt(cp, '(')) { /* Function. */ func_decl: cp_decl_func(cp, decl); } else { break; } } if ((decl->mode & CPARSE_MODE_FIELD) && cp_opt(cp, ':')) /* Field width. */ decl->bits = cp_expr_ksize(cp); /* Process postfix attributes. */ cp_decl_attributes(cp, decl); cp_push_attributes(decl); cp->depth--; } /* Parse an abstract type declaration and return it's C type ID. */ static CTypeID cp_decl_abstract(CPState *cp) { CPDecl decl; cp_decl_spec(cp, &decl, 0); decl.mode = CPARSE_MODE_ABSTRACT; cp_declarator(cp, &decl); return cp_decl_intern(cp, &decl); } /* Handle pragmas. */ static void cp_pragma(CPState *cp, BCLine pragmaline) { cp_next(cp); if (cp->tok == CTOK_IDENT && cp->str->hash == H_(e79b999f,42ca3e85)) { /* pack */ cp_next(cp); cp_check(cp, '('); if (cp->tok == CTOK_IDENT) { if (cp->str->hash == H_(738e923c,a1b65954)) { /* push */ if (cp->curpack < CPARSE_MAX_PACKSTACK) { cp->packstack[cp->curpack+1] = cp->packstack[cp->curpack]; cp->curpack++; } } else if (cp->str->hash == H_(6c71cf27,6c71cf27)) { /* pop */ if (cp->curpack > 0) cp->curpack--; } else { cp_errmsg(cp, cp->tok, LJ_ERR_XSYMBOL); } cp_next(cp); if (!cp_opt(cp, ',')) goto end_pack; } if (cp->tok == CTOK_INTEGER) { cp->packstack[cp->curpack] = cp->val.u32 ? lj_fls(cp->val.u32) : 0; cp_next(cp); } else { cp->packstack[cp->curpack] = 255; } end_pack: cp_check(cp, ')'); } else { /* Ignore all other pragmas. */ while (cp->tok != CTOK_EOF && cp->linenumber == pragmaline) cp_next(cp); } } /* Handle line number. */ static void cp_line(CPState *cp, BCLine hashline) { BCLine newline = cp->val.u32; /* TODO: Handle file name and include it in error messages. */ while (cp->tok != CTOK_EOF && cp->linenumber == hashline) cp_next(cp); cp->linenumber = newline; } /* Parse multiple C declarations of types or extern identifiers. */ static void cp_decl_multi(CPState *cp) { int first = 1; while (cp->tok != CTOK_EOF) { CPDecl decl; CPscl scl; if (cp_opt(cp, ';')) { /* Skip empty statements. */ first = 0; continue; } if (cp->tok == '#') { /* Workaround, since we have no preprocessor, yet. */ BCLine hashline = cp->linenumber; CPToken tok = cp_next(cp); if (tok == CTOK_INTEGER) { cp_line(cp, hashline); continue; } else if (tok == CTOK_IDENT && cp->str->hash == H_(187aab88,fcb60b42)) { /* line */ if (cp_next(cp) != CTOK_INTEGER) cp_err_token(cp, tok); cp_line(cp, hashline); continue; } else if (tok == CTOK_IDENT && cp->str->hash == H_(f5e6b4f8,1d509107)) { /* pragma */ cp_pragma(cp, hashline); continue; } else { cp_errmsg(cp, cp->tok, LJ_ERR_XSYMBOL); } } scl = cp_decl_spec(cp, &decl, CDF_TYPEDEF|CDF_EXTERN|CDF_STATIC); if ((cp->tok == ';' || cp->tok == CTOK_EOF) && ctype_istypedef(decl.stack[0].info)) { CTInfo info = ctype_rawchild(cp->cts, &decl.stack[0])->info; if (ctype_isstruct(info) || ctype_isenum(info)) goto decl_end; /* Accept empty declaration of struct/union/enum. */ } for (;;) { CTypeID ctypeid; cp_declarator(cp, &decl); ctypeid = cp_decl_intern(cp, &decl); if (decl.name && !decl.nameid) { /* NYI: redeclarations are ignored. */ CType *ct; CTypeID id; if ((scl & CDF_TYPEDEF)) { /* Create new typedef. */ id = lj_ctype_new(cp->cts, &ct); ct->info = CTINFO(CT_TYPEDEF, ctypeid); goto noredir; } else if (ctype_isfunc(ctype_get(cp->cts, ctypeid)->info)) { /* Treat both static and extern function declarations as extern. */ ct = ctype_get(cp->cts, ctypeid); /* We always get new anonymous functions (typedefs are copied). */ lua_assert(gcref(ct->name) == NULL); id = ctypeid; /* Just name it. */ } else if ((scl & CDF_STATIC)) { /* Accept static constants. */ id = cp_decl_constinit(cp, &ct, ctypeid); goto noredir; } else { /* External references have extern or no storage class. */ id = lj_ctype_new(cp->cts, &ct); ct->info = CTINFO(CT_EXTERN, ctypeid); } if (decl.redir) { /* Add attribute for redirected symbol name. */ CType *cta; CTypeID aid = lj_ctype_new(cp->cts, &cta); ct = ctype_get(cp->cts, id); /* Table may have been reallocated. */ cta->info = CTINFO(CT_ATTRIB, CTATTRIB(CTA_REDIR)); cta->sib = ct->sib; ct->sib = aid; ctype_setname(cta, decl.redir); } noredir: ctype_setname(ct, decl.name); lj_ctype_addname(cp->cts, ct, id); } if (!cp_opt(cp, ',')) break; cp_decl_reset(&decl); } decl_end: if (cp->tok == CTOK_EOF && first) break; /* May omit ';' for 1 decl. */ first = 0; cp_check(cp, ';'); } } /* Parse a single C type declaration. */ static void cp_decl_single(CPState *cp) { CPDecl decl; cp_decl_spec(cp, &decl, 0); cp_declarator(cp, &decl); cp->val.id = cp_decl_intern(cp, &decl); if (cp->tok != CTOK_EOF) cp_err_token(cp, CTOK_EOF); } #undef H_ /* ------------------------------------------------------------------------ */ /* Protected callback for C parser. */ static TValue *cpcparser(lua_State *L, lua_CFunction dummy, void *ud) { CPState *cp = (CPState *)ud; UNUSED(dummy); cframe_errfunc(L->cframe) = -1; /* Inherit error function. */ cp_init(cp); if ((cp->mode & CPARSE_MODE_MULTI)) cp_decl_multi(cp); else cp_decl_single(cp); if (cp->param && cp->param != cp->L->top) cp_err(cp, LJ_ERR_FFI_NUMPARAM); lua_assert(cp->depth == 0); return NULL; } /* C parser. */ int lj_cparse(CPState *cp) { LJ_CTYPE_SAVE(cp->cts); int errcode = lj_vm_cpcall(cp->L, NULL, cp, cpcparser); if (errcode) LJ_CTYPE_RESTORE(cp->cts); cp_cleanup(cp); return errcode; } #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_str.c0000644000175100017510000001332313101703334017550 0ustar ondrejondrej/* ** String handling. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #define lj_str_c #define LUA_CORE #include "lj_obj.h" #include "lj_gc.h" #include "lj_err.h" #include "lj_str.h" #include "lj_char.h" /* -- String helpers ------------------------------------------------------ */ /* Ordered compare of strings. Assumes string data is 4-byte aligned. */ int32_t LJ_FASTCALL lj_str_cmp(GCstr *a, GCstr *b) { MSize i, n = a->len > b->len ? b->len : a->len; for (i = 0; i < n; i += 4) { /* Note: innocuous access up to end of string + 3. */ uint32_t va = *(const uint32_t *)(strdata(a)+i); uint32_t vb = *(const uint32_t *)(strdata(b)+i); if (va != vb) { #if LJ_LE va = lj_bswap(va); vb = lj_bswap(vb); #endif i -= n; if ((int32_t)i >= -3) { va >>= 32+(i<<3); vb >>= 32+(i<<3); if (va == vb) break; } return va < vb ? -1 : 1; } } return (int32_t)(a->len - b->len); } /* Fast string data comparison. Caveat: unaligned access to 1st string! */ static LJ_AINLINE int str_fastcmp(const char *a, const char *b, MSize len) { MSize i = 0; lua_assert(len > 0); lua_assert((((uintptr_t)a+len-1) & (LJ_PAGESIZE-1)) <= LJ_PAGESIZE-4); do { /* Note: innocuous access up to end of string + 3. */ uint32_t v = lj_getu32(a+i) ^ *(const uint32_t *)(b+i); if (v) { i -= len; #if LJ_LE return (int32_t)i >= -3 ? (v << (32+(i<<3))) : 1; #else return (int32_t)i >= -3 ? (v >> (32+(i<<3))) : 1; #endif } i += 4; } while (i < len); return 0; } /* Find fixed string p inside string s. */ const char *lj_str_find(const char *s, const char *p, MSize slen, MSize plen) { if (plen <= slen) { if (plen == 0) { return s; } else { int c = *(const uint8_t *)p++; plen--; slen -= plen; while (slen) { const char *q = (const char *)memchr(s, c, slen); if (!q) break; if (memcmp(q+1, p, plen) == 0) return q; q++; slen -= (MSize)(q-s); s = q; } } } return NULL; } /* Check whether a string has a pattern matching character. */ int lj_str_haspattern(GCstr *s) { const char *p = strdata(s), *q = p + s->len; while (p < q) { int c = *(const uint8_t *)p++; if (lj_char_ispunct(c) && strchr("^$*+?.([%-", c)) return 1; /* Found a pattern matching char. */ } return 0; /* No pattern matching chars found. */ } /* -- String interning ---------------------------------------------------- */ /* Resize the string hash table (grow and shrink). */ void lj_str_resize(lua_State *L, MSize newmask) { global_State *g = G(L); GCRef *newhash; MSize i; if (g->gc.state == GCSsweepstring || newmask >= LJ_MAX_STRTAB-1) return; /* No resizing during GC traversal or if already too big. */ newhash = lj_mem_newvec(L, newmask+1, GCRef); memset(newhash, 0, (newmask+1)*sizeof(GCRef)); for (i = g->strmask; i != ~(MSize)0; i--) { /* Rehash old table. */ GCobj *p = gcref(g->strhash[i]); while (p) { /* Follow each hash chain and reinsert all strings. */ MSize h = gco2str(p)->hash & newmask; GCobj *next = gcnext(p); /* NOBARRIER: The string table is a GC root. */ setgcrefr(p->gch.nextgc, newhash[h]); setgcref(newhash[h], p); p = next; } } lj_mem_freevec(g, g->strhash, g->strmask+1, GCRef); g->strmask = newmask; g->strhash = newhash; } /* Intern a string and return string object. */ GCstr *lj_str_new(lua_State *L, const char *str, size_t lenx) { global_State *g; GCstr *s; GCobj *o; MSize len = (MSize)lenx; MSize a, b, h = len; if (lenx >= LJ_MAX_STR) lj_err_msg(L, LJ_ERR_STROV); g = G(L); /* Compute string hash. Constants taken from lookup3 hash by Bob Jenkins. */ if (len >= 4) { /* Caveat: unaligned access! */ a = lj_getu32(str); h ^= lj_getu32(str+len-4); b = lj_getu32(str+(len>>1)-2); h ^= b; h -= lj_rol(b, 14); b += lj_getu32(str+(len>>2)-1); } else if (len > 0) { a = *(const uint8_t *)str; h ^= *(const uint8_t *)(str+len-1); b = *(const uint8_t *)(str+(len>>1)); h ^= b; h -= lj_rol(b, 14); } else { return &g->strempty; } a ^= h; a -= lj_rol(h, 11); b ^= a; b -= lj_rol(a, 25); h ^= b; h -= lj_rol(b, 16); /* Check if the string has already been interned. */ o = gcref(g->strhash[h & g->strmask]); if (LJ_LIKELY((((uintptr_t)str+len-1) & (LJ_PAGESIZE-1)) <= LJ_PAGESIZE-4)) { while (o != NULL) { GCstr *sx = gco2str(o); if (sx->len == len && str_fastcmp(str, strdata(sx), len) == 0) { /* Resurrect if dead. Can only happen with fixstring() (keywords). */ if (isdead(g, o)) flipwhite(o); return sx; /* Return existing string. */ } o = gcnext(o); } } else { /* Slow path: end of string is too close to a page boundary. */ while (o != NULL) { GCstr *sx = gco2str(o); if (sx->len == len && memcmp(str, strdata(sx), len) == 0) { /* Resurrect if dead. Can only happen with fixstring() (keywords). */ if (isdead(g, o)) flipwhite(o); return sx; /* Return existing string. */ } o = gcnext(o); } } /* Nope, create a new string. */ s = lj_mem_newt(L, sizeof(GCstr)+len+1, GCstr); newwhite(g, s); s->gct = ~LJ_TSTR; s->len = len; s->hash = h; s->reserved = 0; memcpy(strdatawr(s), str, len); strdatawr(s)[len] = '\0'; /* Zero-terminate string. */ /* Add it to string hash table. */ h &= g->strmask; s->nextgc = g->strhash[h]; /* NOBARRIER: The string table is a GC root. */ setgcref(g->strhash[h], obj2gco(s)); if (g->strnum++ > g->strmask) /* Allow a 100% load factor. */ lj_str_resize(L, (g->strmask<<1)+1); /* Grow string table. */ return s; /* Return newly interned string. */ } void LJ_FASTCALL lj_str_free(global_State *g, GCstr *s) { g->strnum--; lj_mem_free(g, s, sizestring(s)); } luajit-2.1.0~beta3+dfsg.orig/src/lj_vmmath.c0000644000175100017510000000776313101703334020247 0ustar ondrejondrej/* ** Math helper functions for assembler VM. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #define lj_vmmath_c #define LUA_CORE #include #include #include "lj_obj.h" #include "lj_ir.h" #include "lj_vm.h" /* -- Wrapper functions --------------------------------------------------- */ #if LJ_TARGET_X86 && __ELF__ && __PIC__ /* Wrapper functions to deal with the ELF/x86 PIC disaster. */ LJ_FUNCA double lj_wrap_log(double x) { return log(x); } LJ_FUNCA double lj_wrap_log10(double x) { return log10(x); } LJ_FUNCA double lj_wrap_exp(double x) { return exp(x); } LJ_FUNCA double lj_wrap_sin(double x) { return sin(x); } LJ_FUNCA double lj_wrap_cos(double x) { return cos(x); } LJ_FUNCA double lj_wrap_tan(double x) { return tan(x); } LJ_FUNCA double lj_wrap_asin(double x) { return asin(x); } LJ_FUNCA double lj_wrap_acos(double x) { return acos(x); } LJ_FUNCA double lj_wrap_atan(double x) { return atan(x); } LJ_FUNCA double lj_wrap_sinh(double x) { return sinh(x); } LJ_FUNCA double lj_wrap_cosh(double x) { return cosh(x); } LJ_FUNCA double lj_wrap_tanh(double x) { return tanh(x); } LJ_FUNCA double lj_wrap_atan2(double x, double y) { return atan2(x, y); } LJ_FUNCA double lj_wrap_pow(double x, double y) { return pow(x, y); } LJ_FUNCA double lj_wrap_fmod(double x, double y) { return fmod(x, y); } #endif /* -- Helper functions for generated machine code ------------------------- */ double lj_vm_foldarith(double x, double y, int op) { switch (op) { case IR_ADD - IR_ADD: return x+y; break; case IR_SUB - IR_ADD: return x-y; break; case IR_MUL - IR_ADD: return x*y; break; case IR_DIV - IR_ADD: return x/y; break; case IR_MOD - IR_ADD: return x-lj_vm_floor(x/y)*y; break; case IR_POW - IR_ADD: return pow(x, y); break; case IR_NEG - IR_ADD: return -x; break; case IR_ABS - IR_ADD: return fabs(x); break; #if LJ_HASJIT case IR_ATAN2 - IR_ADD: return atan2(x, y); break; case IR_LDEXP - IR_ADD: return ldexp(x, (int)y); break; case IR_MIN - IR_ADD: return x > y ? y : x; break; case IR_MAX - IR_ADD: return x < y ? y : x; break; #endif default: return x; } } #if (LJ_HASJIT && !(LJ_TARGET_ARM || LJ_TARGET_ARM64 || LJ_TARGET_PPC)) || LJ_TARGET_MIPS int32_t LJ_FASTCALL lj_vm_modi(int32_t a, int32_t b) { uint32_t y, ua, ub; lua_assert(b != 0); /* This must be checked before using this function. */ ua = a < 0 ? (uint32_t)-a : (uint32_t)a; ub = b < 0 ? (uint32_t)-b : (uint32_t)b; y = ua % ub; if (y != 0 && (a^b) < 0) y = y - ub; if (((int32_t)y^b) < 0) y = (uint32_t)-(int32_t)y; return (int32_t)y; } #endif #if LJ_HASJIT #ifdef LUAJIT_NO_LOG2 double lj_vm_log2(double a) { return log(a) * 1.4426950408889634074; } #endif #ifdef LUAJIT_NO_EXP2 double lj_vm_exp2(double a) { return exp(a * 0.6931471805599453); } #endif #if !LJ_TARGET_X86ORX64 /* Unsigned x^k. */ static double lj_vm_powui(double x, uint32_t k) { double y; lua_assert(k != 0); for (; (k & 1) == 0; k >>= 1) x *= x; y = x; if ((k >>= 1) != 0) { for (;;) { x *= x; if (k == 1) break; if (k & 1) y *= x; k >>= 1; } y *= x; } return y; } /* Signed x^k. */ double lj_vm_powi(double x, int32_t k) { if (k > 1) return lj_vm_powui(x, (uint32_t)k); else if (k == 1) return x; else if (k == 0) return 1.0; else return 1.0 / lj_vm_powui(x, (uint32_t)-k); } #endif /* Computes fpm(x) for extended math functions. */ double lj_vm_foldfpm(double x, int fpm) { switch (fpm) { case IRFPM_FLOOR: return lj_vm_floor(x); case IRFPM_CEIL: return lj_vm_ceil(x); case IRFPM_TRUNC: return lj_vm_trunc(x); case IRFPM_SQRT: return sqrt(x); case IRFPM_EXP: return exp(x); case IRFPM_EXP2: return lj_vm_exp2(x); case IRFPM_LOG: return log(x); case IRFPM_LOG2: return lj_vm_log2(x); case IRFPM_LOG10: return log10(x); case IRFPM_SIN: return sin(x); case IRFPM_COS: return cos(x); case IRFPM_TAN: return tan(x); default: lua_assert(0); } return 0; } #if LJ_HASFFI int lj_vm_errno(void) { return errno; } #endif #endif luajit-2.1.0~beta3+dfsg.orig/src/lib_io.c0000644000175100017510000003213313101703334017510 0ustar ondrejondrej/* ** I/O library. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h ** ** Major portions taken verbatim or adapted from the Lua interpreter. ** Copyright (C) 1994-2011 Lua.org, PUC-Rio. See Copyright Notice in lua.h */ #include #include #define lib_io_c #define LUA_LIB #include "lua.h" #include "lauxlib.h" #include "lualib.h" #include "lj_obj.h" #include "lj_gc.h" #include "lj_err.h" #include "lj_buf.h" #include "lj_str.h" #include "lj_state.h" #include "lj_strfmt.h" #include "lj_ff.h" #include "lj_lib.h" /* Userdata payload for I/O file. */ typedef struct IOFileUD { FILE *fp; /* File handle. */ uint32_t type; /* File type. */ } IOFileUD; #define IOFILE_TYPE_FILE 0 /* Regular file. */ #define IOFILE_TYPE_PIPE 1 /* Pipe. */ #define IOFILE_TYPE_STDF 2 /* Standard file handle. */ #define IOFILE_TYPE_MASK 3 #define IOFILE_FLAG_CLOSE 4 /* Close after io.lines() iterator. */ #define IOSTDF_UD(L, id) (&gcref(G(L)->gcroot[(id)])->ud) #define IOSTDF_IOF(L, id) ((IOFileUD *)uddata(IOSTDF_UD(L, (id)))) /* -- Open/close helpers -------------------------------------------------- */ static IOFileUD *io_tofilep(lua_State *L) { if (!(L->base < L->top && tvisudata(L->base) && udataV(L->base)->udtype == UDTYPE_IO_FILE)) lj_err_argtype(L, 1, "FILE*"); return (IOFileUD *)uddata(udataV(L->base)); } static IOFileUD *io_tofile(lua_State *L) { IOFileUD *iof = io_tofilep(L); if (iof->fp == NULL) lj_err_caller(L, LJ_ERR_IOCLFL); return iof; } static FILE *io_stdfile(lua_State *L, ptrdiff_t id) { IOFileUD *iof = IOSTDF_IOF(L, id); if (iof->fp == NULL) lj_err_caller(L, LJ_ERR_IOSTDCL); return iof->fp; } static IOFileUD *io_file_new(lua_State *L) { IOFileUD *iof = (IOFileUD *)lua_newuserdata(L, sizeof(IOFileUD)); GCudata *ud = udataV(L->top-1); ud->udtype = UDTYPE_IO_FILE; /* NOBARRIER: The GCudata is new (marked white). */ setgcrefr(ud->metatable, curr_func(L)->c.env); iof->fp = NULL; iof->type = IOFILE_TYPE_FILE; return iof; } static IOFileUD *io_file_open(lua_State *L, const char *mode) { const char *fname = strdata(lj_lib_checkstr(L, 1)); IOFileUD *iof = io_file_new(L); iof->fp = fopen(fname, mode); if (iof->fp == NULL) luaL_argerror(L, 1, lj_strfmt_pushf(L, "%s: %s", fname, strerror(errno))); return iof; } static int io_file_close(lua_State *L, IOFileUD *iof) { int ok; if ((iof->type & IOFILE_TYPE_MASK) == IOFILE_TYPE_FILE) { ok = (fclose(iof->fp) == 0); } else if ((iof->type & IOFILE_TYPE_MASK) == IOFILE_TYPE_PIPE) { int stat = -1; #if LJ_TARGET_POSIX stat = pclose(iof->fp); #elif LJ_TARGET_WINDOWS && !LJ_TARGET_XBOXONE stat = _pclose(iof->fp); #else lua_assert(0); return 0; #endif #if LJ_52 iof->fp = NULL; return luaL_execresult(L, stat); #else ok = (stat != -1); #endif } else { lua_assert((iof->type & IOFILE_TYPE_MASK) == IOFILE_TYPE_STDF); setnilV(L->top++); lua_pushliteral(L, "cannot close standard file"); return 2; } iof->fp = NULL; return luaL_fileresult(L, ok, NULL); } /* -- Read/write helpers -------------------------------------------------- */ static int io_file_readnum(lua_State *L, FILE *fp) { lua_Number d; if (fscanf(fp, LUA_NUMBER_SCAN, &d) == 1) { if (LJ_DUALNUM) { int32_t i = lj_num2int(d); if (d == (lua_Number)i && !tvismzero((cTValue *)&d)) { setintV(L->top++, i); return 1; } } setnumV(L->top++, d); return 1; } else { setnilV(L->top++); return 0; } } static int io_file_readline(lua_State *L, FILE *fp, MSize chop) { MSize m = LUAL_BUFFERSIZE, n = 0, ok = 0; char *buf; for (;;) { buf = lj_buf_tmp(L, m); if (fgets(buf+n, m-n, fp) == NULL) break; n += (MSize)strlen(buf+n); ok |= n; if (n && buf[n-1] == '\n') { n -= chop; break; } if (n >= m - 64) m += m; } setstrV(L, L->top++, lj_str_new(L, buf, (size_t)n)); lj_gc_check(L); return (int)ok; } static void io_file_readall(lua_State *L, FILE *fp) { MSize m, n; for (m = LUAL_BUFFERSIZE, n = 0; ; m += m) { char *buf = lj_buf_tmp(L, m); n += (MSize)fread(buf+n, 1, m-n, fp); if (n != m) { setstrV(L, L->top++, lj_str_new(L, buf, (size_t)n)); lj_gc_check(L); return; } } } static int io_file_readlen(lua_State *L, FILE *fp, MSize m) { if (m) { char *buf = lj_buf_tmp(L, m); MSize n = (MSize)fread(buf, 1, m, fp); setstrV(L, L->top++, lj_str_new(L, buf, (size_t)n)); lj_gc_check(L); return (n > 0 || m == 0); } else { int c = getc(fp); ungetc(c, fp); setstrV(L, L->top++, &G(L)->strempty); return (c != EOF); } } static int io_file_read(lua_State *L, FILE *fp, int start) { int ok, n, nargs = (int)(L->top - L->base) - start; clearerr(fp); if (nargs == 0) { ok = io_file_readline(L, fp, 1); n = start+1; /* Return 1 result. */ } else { /* The results plus the buffers go on top of the args. */ luaL_checkstack(L, nargs+LUA_MINSTACK, "too many arguments"); ok = 1; for (n = start; nargs-- && ok; n++) { if (tvisstr(L->base+n)) { const char *p = strVdata(L->base+n); if (p[0] == '*') p++; if (p[0] == 'n') ok = io_file_readnum(L, fp); else if ((p[0] & ~0x20) == 'L') ok = io_file_readline(L, fp, (p[0] == 'l')); else if (p[0] == 'a') io_file_readall(L, fp); else lj_err_arg(L, n+1, LJ_ERR_INVFMT); } else if (tvisnumber(L->base+n)) { ok = io_file_readlen(L, fp, (MSize)lj_lib_checkint(L, n+1)); } else { lj_err_arg(L, n+1, LJ_ERR_INVOPT); } } } if (ferror(fp)) return luaL_fileresult(L, 0, NULL); if (!ok) setnilV(L->top-1); /* Replace last result with nil. */ return n - start; } static int io_file_write(lua_State *L, FILE *fp, int start) { cTValue *tv; int status = 1; for (tv = L->base+start; tv < L->top; tv++) { MSize len; const char *p = lj_strfmt_wstrnum(L, tv, &len); if (!p) lj_err_argt(L, (int)(tv - L->base) + 1, LUA_TSTRING); status = status && (fwrite(p, 1, len, fp) == len); } if (LJ_52 && status) { L->top = L->base+1; if (start == 0) setudataV(L, L->base, IOSTDF_UD(L, GCROOT_IO_OUTPUT)); return 1; } return luaL_fileresult(L, status, NULL); } static int io_file_iter(lua_State *L) { GCfunc *fn = curr_func(L); IOFileUD *iof = uddata(udataV(&fn->c.upvalue[0])); int n = fn->c.nupvalues - 1; if (iof->fp == NULL) lj_err_caller(L, LJ_ERR_IOCLFL); L->top = L->base; if (n) { /* Copy upvalues with options to stack. */ if (n > LUAI_MAXCSTACK) lj_err_caller(L, LJ_ERR_STKOV); lj_state_checkstack(L, (MSize)n); memcpy(L->top, &fn->c.upvalue[1], n*sizeof(TValue)); L->top += n; } n = io_file_read(L, iof->fp, 0); if (ferror(iof->fp)) lj_err_callermsg(L, strVdata(L->top-2)); if (tvisnil(L->base) && (iof->type & IOFILE_FLAG_CLOSE)) { io_file_close(L, iof); /* Return values are ignored. */ return 0; } return n; } static int io_file_lines(lua_State *L) { int n = (int)(L->top - L->base); if (n > LJ_MAX_UPVAL) lj_err_caller(L, LJ_ERR_UNPACK); lua_pushcclosure(L, io_file_iter, n); return 1; } /* -- I/O file methods ---------------------------------------------------- */ #define LJLIB_MODULE_io_method LJLIB_CF(io_method_close) { IOFileUD *iof = L->base < L->top ? io_tofile(L) : IOSTDF_IOF(L, GCROOT_IO_OUTPUT); return io_file_close(L, iof); } LJLIB_CF(io_method_read) { return io_file_read(L, io_tofile(L)->fp, 1); } LJLIB_CF(io_method_write) LJLIB_REC(io_write 0) { return io_file_write(L, io_tofile(L)->fp, 1); } LJLIB_CF(io_method_flush) LJLIB_REC(io_flush 0) { return luaL_fileresult(L, fflush(io_tofile(L)->fp) == 0, NULL); } LJLIB_CF(io_method_seek) { FILE *fp = io_tofile(L)->fp; int opt = lj_lib_checkopt(L, 2, 1, "\3set\3cur\3end"); int64_t ofs = 0; cTValue *o; int res; if (opt == 0) opt = SEEK_SET; else if (opt == 1) opt = SEEK_CUR; else if (opt == 2) opt = SEEK_END; o = L->base+2; if (o < L->top) { if (tvisint(o)) ofs = (int64_t)intV(o); else if (tvisnum(o)) ofs = (int64_t)numV(o); else if (!tvisnil(o)) lj_err_argt(L, 3, LUA_TNUMBER); } #if LJ_TARGET_POSIX res = fseeko(fp, ofs, opt); #elif _MSC_VER >= 1400 res = _fseeki64(fp, ofs, opt); #elif defined(__MINGW32__) res = fseeko64(fp, ofs, opt); #else res = fseek(fp, (long)ofs, opt); #endif if (res) return luaL_fileresult(L, 0, NULL); #if LJ_TARGET_POSIX ofs = ftello(fp); #elif _MSC_VER >= 1400 ofs = _ftelli64(fp); #elif defined(__MINGW32__) ofs = ftello64(fp); #else ofs = (int64_t)ftell(fp); #endif setint64V(L->top-1, ofs); return 1; } LJLIB_CF(io_method_setvbuf) { FILE *fp = io_tofile(L)->fp; int opt = lj_lib_checkopt(L, 2, -1, "\4full\4line\2no"); size_t sz = (size_t)lj_lib_optint(L, 3, LUAL_BUFFERSIZE); if (opt == 0) opt = _IOFBF; else if (opt == 1) opt = _IOLBF; else if (opt == 2) opt = _IONBF; return luaL_fileresult(L, setvbuf(fp, NULL, opt, sz) == 0, NULL); } LJLIB_CF(io_method_lines) { io_tofile(L); return io_file_lines(L); } LJLIB_CF(io_method___gc) { IOFileUD *iof = io_tofilep(L); if (iof->fp != NULL && (iof->type & IOFILE_TYPE_MASK) != IOFILE_TYPE_STDF) io_file_close(L, iof); return 0; } LJLIB_CF(io_method___tostring) { IOFileUD *iof = io_tofilep(L); if (iof->fp != NULL) lua_pushfstring(L, "file (%p)", iof->fp); else lua_pushliteral(L, "file (closed)"); return 1; } LJLIB_PUSH(top-1) LJLIB_SET(__index) #include "lj_libdef.h" /* -- I/O library functions ----------------------------------------------- */ #define LJLIB_MODULE_io LJLIB_PUSH(top-2) LJLIB_SET(!) /* Set environment. */ LJLIB_CF(io_open) { const char *fname = strdata(lj_lib_checkstr(L, 1)); GCstr *s = lj_lib_optstr(L, 2); const char *mode = s ? strdata(s) : "r"; IOFileUD *iof = io_file_new(L); iof->fp = fopen(fname, mode); return iof->fp != NULL ? 1 : luaL_fileresult(L, 0, fname); } LJLIB_CF(io_popen) { #if LJ_TARGET_POSIX || (LJ_TARGET_WINDOWS && !LJ_TARGET_XBOXONE) const char *fname = strdata(lj_lib_checkstr(L, 1)); GCstr *s = lj_lib_optstr(L, 2); const char *mode = s ? strdata(s) : "r"; IOFileUD *iof = io_file_new(L); iof->type = IOFILE_TYPE_PIPE; #if LJ_TARGET_POSIX fflush(NULL); iof->fp = popen(fname, mode); #else iof->fp = _popen(fname, mode); #endif return iof->fp != NULL ? 1 : luaL_fileresult(L, 0, fname); #else return luaL_error(L, LUA_QL("popen") " not supported"); #endif } LJLIB_CF(io_tmpfile) { IOFileUD *iof = io_file_new(L); #if LJ_TARGET_PS3 || LJ_TARGET_PS4 || LJ_TARGET_PSVITA iof->fp = NULL; errno = ENOSYS; #else iof->fp = tmpfile(); #endif return iof->fp != NULL ? 1 : luaL_fileresult(L, 0, NULL); } LJLIB_CF(io_close) { return lj_cf_io_method_close(L); } LJLIB_CF(io_read) { return io_file_read(L, io_stdfile(L, GCROOT_IO_INPUT), 0); } LJLIB_CF(io_write) LJLIB_REC(io_write GCROOT_IO_OUTPUT) { return io_file_write(L, io_stdfile(L, GCROOT_IO_OUTPUT), 0); } LJLIB_CF(io_flush) LJLIB_REC(io_flush GCROOT_IO_OUTPUT) { return luaL_fileresult(L, fflush(io_stdfile(L, GCROOT_IO_OUTPUT)) == 0, NULL); } static int io_std_getset(lua_State *L, ptrdiff_t id, const char *mode) { if (L->base < L->top && !tvisnil(L->base)) { if (tvisudata(L->base)) { io_tofile(L); L->top = L->base+1; } else { io_file_open(L, mode); } /* NOBARRIER: The standard I/O handles are GC roots. */ setgcref(G(L)->gcroot[id], gcV(L->top-1)); } else { setudataV(L, L->top++, IOSTDF_UD(L, id)); } return 1; } LJLIB_CF(io_input) { return io_std_getset(L, GCROOT_IO_INPUT, "r"); } LJLIB_CF(io_output) { return io_std_getset(L, GCROOT_IO_OUTPUT, "w"); } LJLIB_CF(io_lines) { if (L->base == L->top) setnilV(L->top++); if (!tvisnil(L->base)) { /* io.lines(fname) */ IOFileUD *iof = io_file_open(L, "r"); iof->type = IOFILE_TYPE_FILE|IOFILE_FLAG_CLOSE; L->top--; setudataV(L, L->base, udataV(L->top)); } else { /* io.lines() iterates over stdin. */ setudataV(L, L->base, IOSTDF_UD(L, GCROOT_IO_INPUT)); } return io_file_lines(L); } LJLIB_CF(io_type) { cTValue *o = lj_lib_checkany(L, 1); if (!(tvisudata(o) && udataV(o)->udtype == UDTYPE_IO_FILE)) setnilV(L->top++); else if (((IOFileUD *)uddata(udataV(o)))->fp != NULL) lua_pushliteral(L, "file"); else lua_pushliteral(L, "closed file"); return 1; } #include "lj_libdef.h" /* ------------------------------------------------------------------------ */ static GCobj *io_std_new(lua_State *L, FILE *fp, const char *name) { IOFileUD *iof = (IOFileUD *)lua_newuserdata(L, sizeof(IOFileUD)); GCudata *ud = udataV(L->top-1); ud->udtype = UDTYPE_IO_FILE; /* NOBARRIER: The GCudata is new (marked white). */ setgcref(ud->metatable, gcV(L->top-3)); iof->fp = fp; iof->type = IOFILE_TYPE_STDF; lua_setfield(L, -2, name); return obj2gco(ud); } LUALIB_API int luaopen_io(lua_State *L) { LJ_LIB_REG(L, NULL, io_method); copyTV(L, L->top, L->top-1); L->top++; lua_setfield(L, LUA_REGISTRYINDEX, LUA_FILEHANDLE); LJ_LIB_REG(L, LUA_IOLIBNAME, io); setgcref(G(L)->gcroot[GCROOT_IO_INPUT], io_std_new(L, stdin, "stdin")); setgcref(G(L)->gcroot[GCROOT_IO_OUTPUT], io_std_new(L, stdout, "stdout")); io_std_new(L, stderr, "stderr"); return 1; } luajit-2.1.0~beta3+dfsg.orig/src/lj_bc.h0000644000175100017510000002025313101703334017331 0ustar ondrejondrej/* ** Bytecode instruction format. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_BC_H #define _LJ_BC_H #include "lj_def.h" #include "lj_arch.h" /* Bytecode instruction format, 32 bit wide, fields of 8 or 16 bit: ** ** +----+----+----+----+ ** | B | C | A | OP | Format ABC ** +----+----+----+----+ ** | D | A | OP | Format AD ** +-------------------- ** MSB LSB ** ** In-memory instructions are always stored in host byte order. */ /* Operand ranges and related constants. */ #define BCMAX_A 0xff #define BCMAX_B 0xff #define BCMAX_C 0xff #define BCMAX_D 0xffff #define BCBIAS_J 0x8000 #define NO_REG BCMAX_A #define NO_JMP (~(BCPos)0) /* Macros to get instruction fields. */ #define bc_op(i) ((BCOp)((i)&0xff)) #define bc_a(i) ((BCReg)(((i)>>8)&0xff)) #define bc_b(i) ((BCReg)((i)>>24)) #define bc_c(i) ((BCReg)(((i)>>16)&0xff)) #define bc_d(i) ((BCReg)((i)>>16)) #define bc_j(i) ((ptrdiff_t)bc_d(i)-BCBIAS_J) /* Macros to set instruction fields. */ #define setbc_byte(p, x, ofs) \ ((uint8_t *)(p))[LJ_ENDIAN_SELECT(ofs, 3-ofs)] = (uint8_t)(x) #define setbc_op(p, x) setbc_byte(p, (x), 0) #define setbc_a(p, x) setbc_byte(p, (x), 1) #define setbc_b(p, x) setbc_byte(p, (x), 3) #define setbc_c(p, x) setbc_byte(p, (x), 2) #define setbc_d(p, x) \ ((uint16_t *)(p))[LJ_ENDIAN_SELECT(1, 0)] = (uint16_t)(x) #define setbc_j(p, x) setbc_d(p, (BCPos)((int32_t)(x)+BCBIAS_J)) /* Macros to compose instructions. */ #define BCINS_ABC(o, a, b, c) \ (((BCIns)(o))|((BCIns)(a)<<8)|((BCIns)(b)<<24)|((BCIns)(c)<<16)) #define BCINS_AD(o, a, d) \ (((BCIns)(o))|((BCIns)(a)<<8)|((BCIns)(d)<<16)) #define BCINS_AJ(o, a, j) BCINS_AD(o, a, (BCPos)((int32_t)(j)+BCBIAS_J)) /* Bytecode instruction definition. Order matters, see below. ** ** (name, filler, Amode, Bmode, Cmode or Dmode, metamethod) ** ** The opcode name suffixes specify the type for RB/RC or RD: ** V = variable slot ** S = string const ** N = number const ** P = primitive type (~itype) ** B = unsigned byte literal ** M = multiple args/results */ #define BCDEF(_) \ /* Comparison ops. ORDER OPR. */ \ _(ISLT, var, ___, var, lt) \ _(ISGE, var, ___, var, lt) \ _(ISLE, var, ___, var, le) \ _(ISGT, var, ___, var, le) \ \ _(ISEQV, var, ___, var, eq) \ _(ISNEV, var, ___, var, eq) \ _(ISEQS, var, ___, str, eq) \ _(ISNES, var, ___, str, eq) \ _(ISEQN, var, ___, num, eq) \ _(ISNEN, var, ___, num, eq) \ _(ISEQP, var, ___, pri, eq) \ _(ISNEP, var, ___, pri, eq) \ \ /* Unary test and copy ops. */ \ _(ISTC, dst, ___, var, ___) \ _(ISFC, dst, ___, var, ___) \ _(IST, ___, ___, var, ___) \ _(ISF, ___, ___, var, ___) \ _(ISTYPE, var, ___, lit, ___) \ _(ISNUM, var, ___, lit, ___) \ \ /* Unary ops. */ \ _(MOV, dst, ___, var, ___) \ _(NOT, dst, ___, var, ___) \ _(UNM, dst, ___, var, unm) \ _(LEN, dst, ___, var, len) \ \ /* Binary ops. ORDER OPR. VV last, POW must be next. */ \ _(ADDVN, dst, var, num, add) \ _(SUBVN, dst, var, num, sub) \ _(MULVN, dst, var, num, mul) \ _(DIVVN, dst, var, num, div) \ _(MODVN, dst, var, num, mod) \ \ _(ADDNV, dst, var, num, add) \ _(SUBNV, dst, var, num, sub) \ _(MULNV, dst, var, num, mul) \ _(DIVNV, dst, var, num, div) \ _(MODNV, dst, var, num, mod) \ \ _(ADDVV, dst, var, var, add) \ _(SUBVV, dst, var, var, sub) \ _(MULVV, dst, var, var, mul) \ _(DIVVV, dst, var, var, div) \ _(MODVV, dst, var, var, mod) \ \ _(POW, dst, var, var, pow) \ _(CAT, dst, rbase, rbase, concat) \ \ /* Constant ops. */ \ _(KSTR, dst, ___, str, ___) \ _(KCDATA, dst, ___, cdata, ___) \ _(KSHORT, dst, ___, lits, ___) \ _(KNUM, dst, ___, num, ___) \ _(KPRI, dst, ___, pri, ___) \ _(KNIL, base, ___, base, ___) \ \ /* Upvalue and function ops. */ \ _(UGET, dst, ___, uv, ___) \ _(USETV, uv, ___, var, ___) \ _(USETS, uv, ___, str, ___) \ _(USETN, uv, ___, num, ___) \ _(USETP, uv, ___, pri, ___) \ _(UCLO, rbase, ___, jump, ___) \ _(FNEW, dst, ___, func, gc) \ \ /* Table ops. */ \ _(TNEW, dst, ___, lit, gc) \ _(TDUP, dst, ___, tab, gc) \ _(GGET, dst, ___, str, index) \ _(GSET, var, ___, str, newindex) \ _(TGETV, dst, var, var, index) \ _(TGETS, dst, var, str, index) \ _(TGETB, dst, var, lit, index) \ _(TGETR, dst, var, var, index) \ _(TSETV, var, var, var, newindex) \ _(TSETS, var, var, str, newindex) \ _(TSETB, var, var, lit, newindex) \ _(TSETM, base, ___, num, newindex) \ _(TSETR, var, var, var, newindex) \ \ /* Calls and vararg handling. T = tail call. */ \ _(CALLM, base, lit, lit, call) \ _(CALL, base, lit, lit, call) \ _(CALLMT, base, ___, lit, call) \ _(CALLT, base, ___, lit, call) \ _(ITERC, base, lit, lit, call) \ _(ITERN, base, lit, lit, call) \ _(VARG, base, lit, lit, ___) \ _(ISNEXT, base, ___, jump, ___) \ \ /* Returns. */ \ _(RETM, base, ___, lit, ___) \ _(RET, rbase, ___, lit, ___) \ _(RET0, rbase, ___, lit, ___) \ _(RET1, rbase, ___, lit, ___) \ \ /* Loops and branches. I/J = interp/JIT, I/C/L = init/call/loop. */ \ _(FORI, base, ___, jump, ___) \ _(JFORI, base, ___, jump, ___) \ \ _(FORL, base, ___, jump, ___) \ _(IFORL, base, ___, jump, ___) \ _(JFORL, base, ___, lit, ___) \ \ _(ITERL, base, ___, jump, ___) \ _(IITERL, base, ___, jump, ___) \ _(JITERL, base, ___, lit, ___) \ \ _(LOOP, rbase, ___, jump, ___) \ _(ILOOP, rbase, ___, jump, ___) \ _(JLOOP, rbase, ___, lit, ___) \ \ _(JMP, rbase, ___, jump, ___) \ \ /* Function headers. I/J = interp/JIT, F/V/C = fixarg/vararg/C func. */ \ _(FUNCF, rbase, ___, ___, ___) \ _(IFUNCF, rbase, ___, ___, ___) \ _(JFUNCF, rbase, ___, lit, ___) \ _(FUNCV, rbase, ___, ___, ___) \ _(IFUNCV, rbase, ___, ___, ___) \ _(JFUNCV, rbase, ___, lit, ___) \ _(FUNCC, rbase, ___, ___, ___) \ _(FUNCCW, rbase, ___, ___, ___) /* Bytecode opcode numbers. */ typedef enum { #define BCENUM(name, ma, mb, mc, mt) BC_##name, BCDEF(BCENUM) #undef BCENUM BC__MAX } BCOp; LJ_STATIC_ASSERT((int)BC_ISEQV+1 == (int)BC_ISNEV); LJ_STATIC_ASSERT(((int)BC_ISEQV^1) == (int)BC_ISNEV); LJ_STATIC_ASSERT(((int)BC_ISEQS^1) == (int)BC_ISNES); LJ_STATIC_ASSERT(((int)BC_ISEQN^1) == (int)BC_ISNEN); LJ_STATIC_ASSERT(((int)BC_ISEQP^1) == (int)BC_ISNEP); LJ_STATIC_ASSERT(((int)BC_ISLT^1) == (int)BC_ISGE); LJ_STATIC_ASSERT(((int)BC_ISLE^1) == (int)BC_ISGT); LJ_STATIC_ASSERT(((int)BC_ISLT^3) == (int)BC_ISGT); LJ_STATIC_ASSERT((int)BC_IST-(int)BC_ISTC == (int)BC_ISF-(int)BC_ISFC); LJ_STATIC_ASSERT((int)BC_CALLT-(int)BC_CALL == (int)BC_CALLMT-(int)BC_CALLM); LJ_STATIC_ASSERT((int)BC_CALLMT + 1 == (int)BC_CALLT); LJ_STATIC_ASSERT((int)BC_RETM + 1 == (int)BC_RET); LJ_STATIC_ASSERT((int)BC_FORL + 1 == (int)BC_IFORL); LJ_STATIC_ASSERT((int)BC_FORL + 2 == (int)BC_JFORL); LJ_STATIC_ASSERT((int)BC_ITERL + 1 == (int)BC_IITERL); LJ_STATIC_ASSERT((int)BC_ITERL + 2 == (int)BC_JITERL); LJ_STATIC_ASSERT((int)BC_LOOP + 1 == (int)BC_ILOOP); LJ_STATIC_ASSERT((int)BC_LOOP + 2 == (int)BC_JLOOP); LJ_STATIC_ASSERT((int)BC_FUNCF + 1 == (int)BC_IFUNCF); LJ_STATIC_ASSERT((int)BC_FUNCF + 2 == (int)BC_JFUNCF); LJ_STATIC_ASSERT((int)BC_FUNCV + 1 == (int)BC_IFUNCV); LJ_STATIC_ASSERT((int)BC_FUNCV + 2 == (int)BC_JFUNCV); /* This solves a circular dependency problem, change as needed. */ #define FF_next_N 4 /* Stack slots used by FORI/FORL, relative to operand A. */ enum { FORL_IDX, FORL_STOP, FORL_STEP, FORL_EXT }; /* Bytecode operand modes. ORDER BCMode */ typedef enum { BCMnone, BCMdst, BCMbase, BCMvar, BCMrbase, BCMuv, /* Mode A must be <= 7 */ BCMlit, BCMlits, BCMpri, BCMnum, BCMstr, BCMtab, BCMfunc, BCMjump, BCMcdata, BCM_max } BCMode; #define BCM___ BCMnone #define bcmode_a(op) ((BCMode)(lj_bc_mode[op] & 7)) #define bcmode_b(op) ((BCMode)((lj_bc_mode[op]>>3) & 15)) #define bcmode_c(op) ((BCMode)((lj_bc_mode[op]>>7) & 15)) #define bcmode_d(op) bcmode_c(op) #define bcmode_hasd(op) ((lj_bc_mode[op] & (15<<3)) == (BCMnone<<3)) #define bcmode_mm(op) ((MMS)(lj_bc_mode[op]>>11)) #define BCMODE(name, ma, mb, mc, mm) \ (BCM##ma|(BCM##mb<<3)|(BCM##mc<<7)|(MM_##mm<<11)), #define BCMODE_FF 0 static LJ_AINLINE int bc_isret(BCOp op) { return (op == BC_RETM || op == BC_RET || op == BC_RET0 || op == BC_RET1); } LJ_DATA const uint16_t lj_bc_mode[]; LJ_DATA const uint16_t lj_bc_ofs[]; #endif luajit-2.1.0~beta3+dfsg.orig/src/lib_string.c0000644000175100017510000004642713101703334020422 0ustar ondrejondrej/* ** String library. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h ** ** Major portions taken verbatim or adapted from the Lua interpreter. ** Copyright (C) 1994-2008 Lua.org, PUC-Rio. See Copyright Notice in lua.h */ #define lib_string_c #define LUA_LIB #include "lua.h" #include "lauxlib.h" #include "lualib.h" #include "lj_obj.h" #include "lj_gc.h" #include "lj_err.h" #include "lj_buf.h" #include "lj_str.h" #include "lj_tab.h" #include "lj_meta.h" #include "lj_state.h" #include "lj_ff.h" #include "lj_bcdump.h" #include "lj_char.h" #include "lj_strfmt.h" #include "lj_lib.h" /* ------------------------------------------------------------------------ */ #define LJLIB_MODULE_string LJLIB_LUA(string_len) /* function(s) CHECK_str(s) return #s end */ LJLIB_ASM(string_byte) LJLIB_REC(string_range 0) { GCstr *s = lj_lib_checkstr(L, 1); int32_t len = (int32_t)s->len; int32_t start = lj_lib_optint(L, 2, 1); int32_t stop = lj_lib_optint(L, 3, start); int32_t n, i; const unsigned char *p; if (stop < 0) stop += len+1; if (start < 0) start += len+1; if (start <= 0) start = 1; if (stop > len) stop = len; if (start > stop) return FFH_RES(0); /* Empty interval: return no results. */ start--; n = stop - start; if ((uint32_t)n > LUAI_MAXCSTACK) lj_err_caller(L, LJ_ERR_STRSLC); lj_state_checkstack(L, (MSize)n); p = (const unsigned char *)strdata(s) + start; for (i = 0; i < n; i++) setintV(L->base + i-1-LJ_FR2, p[i]); return FFH_RES(n); } LJLIB_ASM(string_char) LJLIB_REC(.) { int i, nargs = (int)(L->top - L->base); char *buf = lj_buf_tmp(L, (MSize)nargs); for (i = 1; i <= nargs; i++) { int32_t k = lj_lib_checkint(L, i); if (!checku8(k)) lj_err_arg(L, i, LJ_ERR_BADVAL); buf[i-1] = (char)k; } setstrV(L, L->base-1-LJ_FR2, lj_str_new(L, buf, (size_t)nargs)); return FFH_RES(1); } LJLIB_ASM(string_sub) LJLIB_REC(string_range 1) { lj_lib_checkstr(L, 1); lj_lib_checkint(L, 2); setintV(L->base+2, lj_lib_optint(L, 3, -1)); return FFH_RETRY; } LJLIB_CF(string_rep) LJLIB_REC(.) { GCstr *s = lj_lib_checkstr(L, 1); int32_t rep = lj_lib_checkint(L, 2); GCstr *sep = lj_lib_optstr(L, 3); SBuf *sb = lj_buf_tmp_(L); if (sep && rep > 1) { GCstr *s2 = lj_buf_cat2str(L, sep, s); lj_buf_reset(sb); lj_buf_putstr(sb, s); s = s2; rep--; } sb = lj_buf_putstr_rep(sb, s, rep); setstrV(L, L->top-1, lj_buf_str(L, sb)); lj_gc_check(L); return 1; } LJLIB_ASM(string_reverse) LJLIB_REC(string_op IRCALL_lj_buf_putstr_reverse) { lj_lib_checkstr(L, 1); return FFH_RETRY; } LJLIB_ASM_(string_lower) LJLIB_REC(string_op IRCALL_lj_buf_putstr_lower) LJLIB_ASM_(string_upper) LJLIB_REC(string_op IRCALL_lj_buf_putstr_upper) /* ------------------------------------------------------------------------ */ static int writer_buf(lua_State *L, const void *p, size_t size, void *sb) { lj_buf_putmem((SBuf *)sb, p, (MSize)size); UNUSED(L); return 0; } LJLIB_CF(string_dump) { GCfunc *fn = lj_lib_checkfunc(L, 1); int strip = L->base+1 < L->top && tvistruecond(L->base+1); SBuf *sb = lj_buf_tmp_(L); /* Assumes lj_bcwrite() doesn't use tmpbuf. */ L->top = L->base+1; if (!isluafunc(fn) || lj_bcwrite(L, funcproto(fn), writer_buf, sb, strip)) lj_err_caller(L, LJ_ERR_STRDUMP); setstrV(L, L->top-1, lj_buf_str(L, sb)); lj_gc_check(L); return 1; } /* ------------------------------------------------------------------------ */ /* macro to `unsign' a character */ #define uchar(c) ((unsigned char)(c)) #define CAP_UNFINISHED (-1) #define CAP_POSITION (-2) typedef struct MatchState { const char *src_init; /* init of source string */ const char *src_end; /* end (`\0') of source string */ lua_State *L; int level; /* total number of captures (finished or unfinished) */ int depth; struct { const char *init; ptrdiff_t len; } capture[LUA_MAXCAPTURES]; } MatchState; #define L_ESC '%' static int check_capture(MatchState *ms, int l) { l -= '1'; if (l < 0 || l >= ms->level || ms->capture[l].len == CAP_UNFINISHED) lj_err_caller(ms->L, LJ_ERR_STRCAPI); return l; } static int capture_to_close(MatchState *ms) { int level = ms->level; for (level--; level>=0; level--) if (ms->capture[level].len == CAP_UNFINISHED) return level; lj_err_caller(ms->L, LJ_ERR_STRPATC); return 0; /* unreachable */ } static const char *classend(MatchState *ms, const char *p) { switch (*p++) { case L_ESC: if (*p == '\0') lj_err_caller(ms->L, LJ_ERR_STRPATE); return p+1; case '[': if (*p == '^') p++; do { /* look for a `]' */ if (*p == '\0') lj_err_caller(ms->L, LJ_ERR_STRPATM); if (*(p++) == L_ESC && *p != '\0') p++; /* skip escapes (e.g. `%]') */ } while (*p != ']'); return p+1; default: return p; } } static const unsigned char match_class_map[32] = { 0,LJ_CHAR_ALPHA,0,LJ_CHAR_CNTRL,LJ_CHAR_DIGIT,0,0,LJ_CHAR_GRAPH,0,0,0,0, LJ_CHAR_LOWER,0,0,0,LJ_CHAR_PUNCT,0,0,LJ_CHAR_SPACE,0, LJ_CHAR_UPPER,0,LJ_CHAR_ALNUM,LJ_CHAR_XDIGIT,0,0,0,0,0,0,0 }; static int match_class(int c, int cl) { if ((cl & 0xc0) == 0x40) { int t = match_class_map[(cl&0x1f)]; if (t) { t = lj_char_isa(c, t); return (cl & 0x20) ? t : !t; } if (cl == 'z') return c == 0; if (cl == 'Z') return c != 0; } return (cl == c); } static int matchbracketclass(int c, const char *p, const char *ec) { int sig = 1; if (*(p+1) == '^') { sig = 0; p++; /* skip the `^' */ } while (++p < ec) { if (*p == L_ESC) { p++; if (match_class(c, uchar(*p))) return sig; } else if ((*(p+1) == '-') && (p+2 < ec)) { p+=2; if (uchar(*(p-2)) <= c && c <= uchar(*p)) return sig; } else if (uchar(*p) == c) return sig; } return !sig; } static int singlematch(int c, const char *p, const char *ep) { switch (*p) { case '.': return 1; /* matches any char */ case L_ESC: return match_class(c, uchar(*(p+1))); case '[': return matchbracketclass(c, p, ep-1); default: return (uchar(*p) == c); } } static const char *match(MatchState *ms, const char *s, const char *p); static const char *matchbalance(MatchState *ms, const char *s, const char *p) { if (*p == 0 || *(p+1) == 0) lj_err_caller(ms->L, LJ_ERR_STRPATU); if (*s != *p) { return NULL; } else { int b = *p; int e = *(p+1); int cont = 1; while (++s < ms->src_end) { if (*s == e) { if (--cont == 0) return s+1; } else if (*s == b) { cont++; } } } return NULL; /* string ends out of balance */ } static const char *max_expand(MatchState *ms, const char *s, const char *p, const char *ep) { ptrdiff_t i = 0; /* counts maximum expand for item */ while ((s+i)src_end && singlematch(uchar(*(s+i)), p, ep)) i++; /* keeps trying to match with the maximum repetitions */ while (i>=0) { const char *res = match(ms, (s+i), ep+1); if (res) return res; i--; /* else didn't match; reduce 1 repetition to try again */ } return NULL; } static const char *min_expand(MatchState *ms, const char *s, const char *p, const char *ep) { for (;;) { const char *res = match(ms, s, ep+1); if (res != NULL) return res; else if (ssrc_end && singlematch(uchar(*s), p, ep)) s++; /* try with one more repetition */ else return NULL; } } static const char *start_capture(MatchState *ms, const char *s, const char *p, int what) { const char *res; int level = ms->level; if (level >= LUA_MAXCAPTURES) lj_err_caller(ms->L, LJ_ERR_STRCAPN); ms->capture[level].init = s; ms->capture[level].len = what; ms->level = level+1; if ((res=match(ms, s, p)) == NULL) /* match failed? */ ms->level--; /* undo capture */ return res; } static const char *end_capture(MatchState *ms, const char *s, const char *p) { int l = capture_to_close(ms); const char *res; ms->capture[l].len = s - ms->capture[l].init; /* close capture */ if ((res = match(ms, s, p)) == NULL) /* match failed? */ ms->capture[l].len = CAP_UNFINISHED; /* undo capture */ return res; } static const char *match_capture(MatchState *ms, const char *s, int l) { size_t len; l = check_capture(ms, l); len = (size_t)ms->capture[l].len; if ((size_t)(ms->src_end-s) >= len && memcmp(ms->capture[l].init, s, len) == 0) return s+len; else return NULL; } static const char *match(MatchState *ms, const char *s, const char *p) { if (++ms->depth > LJ_MAX_XLEVEL) lj_err_caller(ms->L, LJ_ERR_STRPATX); init: /* using goto's to optimize tail recursion */ switch (*p) { case '(': /* start capture */ if (*(p+1) == ')') /* position capture? */ s = start_capture(ms, s, p+2, CAP_POSITION); else s = start_capture(ms, s, p+1, CAP_UNFINISHED); break; case ')': /* end capture */ s = end_capture(ms, s, p+1); break; case L_ESC: switch (*(p+1)) { case 'b': /* balanced string? */ s = matchbalance(ms, s, p+2); if (s == NULL) break; p+=4; goto init; /* else s = match(ms, s, p+4); */ case 'f': { /* frontier? */ const char *ep; char previous; p += 2; if (*p != '[') lj_err_caller(ms->L, LJ_ERR_STRPATB); ep = classend(ms, p); /* points to what is next */ previous = (s == ms->src_init) ? '\0' : *(s-1); if (matchbracketclass(uchar(previous), p, ep-1) || !matchbracketclass(uchar(*s), p, ep-1)) { s = NULL; break; } p=ep; goto init; /* else s = match(ms, s, ep); */ } default: if (lj_char_isdigit(uchar(*(p+1)))) { /* capture results (%0-%9)? */ s = match_capture(ms, s, uchar(*(p+1))); if (s == NULL) break; p+=2; goto init; /* else s = match(ms, s, p+2) */ } goto dflt; /* case default */ } break; case '\0': /* end of pattern */ break; /* match succeeded */ case '$': /* is the `$' the last char in pattern? */ if (*(p+1) != '\0') goto dflt; if (s != ms->src_end) s = NULL; /* check end of string */ break; default: dflt: { /* it is a pattern item */ const char *ep = classend(ms, p); /* points to what is next */ int m = ssrc_end && singlematch(uchar(*s), p, ep); switch (*ep) { case '?': { /* optional */ const char *res; if (m && ((res=match(ms, s+1, ep+1)) != NULL)) { s = res; break; } p=ep+1; goto init; /* else s = match(ms, s, ep+1); */ } case '*': /* 0 or more repetitions */ s = max_expand(ms, s, p, ep); break; case '+': /* 1 or more repetitions */ s = (m ? max_expand(ms, s+1, p, ep) : NULL); break; case '-': /* 0 or more repetitions (minimum) */ s = min_expand(ms, s, p, ep); break; default: if (m) { s++; p=ep; goto init; } /* else s = match(ms, s+1, ep); */ s = NULL; break; } break; } } ms->depth--; return s; } static void push_onecapture(MatchState *ms, int i, const char *s, const char *e) { if (i >= ms->level) { if (i == 0) /* ms->level == 0, too */ lua_pushlstring(ms->L, s, (size_t)(e - s)); /* add whole match */ else lj_err_caller(ms->L, LJ_ERR_STRCAPI); } else { ptrdiff_t l = ms->capture[i].len; if (l == CAP_UNFINISHED) lj_err_caller(ms->L, LJ_ERR_STRCAPU); if (l == CAP_POSITION) lua_pushinteger(ms->L, ms->capture[i].init - ms->src_init + 1); else lua_pushlstring(ms->L, ms->capture[i].init, (size_t)l); } } static int push_captures(MatchState *ms, const char *s, const char *e) { int i; int nlevels = (ms->level == 0 && s) ? 1 : ms->level; luaL_checkstack(ms->L, nlevels, "too many captures"); for (i = 0; i < nlevels; i++) push_onecapture(ms, i, s, e); return nlevels; /* number of strings pushed */ } static int str_find_aux(lua_State *L, int find) { GCstr *s = lj_lib_checkstr(L, 1); GCstr *p = lj_lib_checkstr(L, 2); int32_t start = lj_lib_optint(L, 3, 1); MSize st; if (start < 0) start += (int32_t)s->len; else start--; if (start < 0) start = 0; st = (MSize)start; if (st > s->len) { #if LJ_52 setnilV(L->top-1); return 1; #else st = s->len; #endif } if (find && ((L->base+3 < L->top && tvistruecond(L->base+3)) || !lj_str_haspattern(p))) { /* Search for fixed string. */ const char *q = lj_str_find(strdata(s)+st, strdata(p), s->len-st, p->len); if (q) { setintV(L->top-2, (int32_t)(q-strdata(s)) + 1); setintV(L->top-1, (int32_t)(q-strdata(s)) + (int32_t)p->len); return 2; } } else { /* Search for pattern. */ MatchState ms; const char *pstr = strdata(p); const char *sstr = strdata(s) + st; int anchor = 0; if (*pstr == '^') { pstr++; anchor = 1; } ms.L = L; ms.src_init = strdata(s); ms.src_end = strdata(s) + s->len; do { /* Loop through string and try to match the pattern. */ const char *q; ms.level = ms.depth = 0; q = match(&ms, sstr, pstr); if (q) { if (find) { setintV(L->top++, (int32_t)(sstr-(strdata(s)-1))); setintV(L->top++, (int32_t)(q-strdata(s))); return push_captures(&ms, NULL, NULL) + 2; } else { return push_captures(&ms, sstr, q); } } } while (sstr++ < ms.src_end && !anchor); } setnilV(L->top-1); /* Not found. */ return 1; } LJLIB_CF(string_find) LJLIB_REC(.) { return str_find_aux(L, 1); } LJLIB_CF(string_match) { return str_find_aux(L, 0); } LJLIB_NOREG LJLIB_CF(string_gmatch_aux) { const char *p = strVdata(lj_lib_upvalue(L, 2)); GCstr *str = strV(lj_lib_upvalue(L, 1)); const char *s = strdata(str); TValue *tvpos = lj_lib_upvalue(L, 3); const char *src = s + tvpos->u32.lo; MatchState ms; ms.L = L; ms.src_init = s; ms.src_end = s + str->len; for (; src <= ms.src_end; src++) { const char *e; ms.level = ms.depth = 0; if ((e = match(&ms, src, p)) != NULL) { int32_t pos = (int32_t)(e - s); if (e == src) pos++; /* Ensure progress for empty match. */ tvpos->u32.lo = (uint32_t)pos; return push_captures(&ms, src, e); } } return 0; /* not found */ } LJLIB_CF(string_gmatch) { lj_lib_checkstr(L, 1); lj_lib_checkstr(L, 2); L->top = L->base+3; (L->top-1)->u64 = 0; lj_lib_pushcc(L, lj_cf_string_gmatch_aux, FF_string_gmatch_aux, 3); return 1; } static void add_s(MatchState *ms, luaL_Buffer *b, const char *s, const char *e) { size_t l, i; const char *news = lua_tolstring(ms->L, 3, &l); for (i = 0; i < l; i++) { if (news[i] != L_ESC) { luaL_addchar(b, news[i]); } else { i++; /* skip ESC */ if (!lj_char_isdigit(uchar(news[i]))) { luaL_addchar(b, news[i]); } else if (news[i] == '0') { luaL_addlstring(b, s, (size_t)(e - s)); } else { push_onecapture(ms, news[i] - '1', s, e); luaL_addvalue(b); /* add capture to accumulated result */ } } } } static void add_value(MatchState *ms, luaL_Buffer *b, const char *s, const char *e) { lua_State *L = ms->L; switch (lua_type(L, 3)) { case LUA_TNUMBER: case LUA_TSTRING: { add_s(ms, b, s, e); return; } case LUA_TFUNCTION: { int n; lua_pushvalue(L, 3); n = push_captures(ms, s, e); lua_call(L, n, 1); break; } case LUA_TTABLE: { push_onecapture(ms, 0, s, e); lua_gettable(L, 3); break; } } if (!lua_toboolean(L, -1)) { /* nil or false? */ lua_pop(L, 1); lua_pushlstring(L, s, (size_t)(e - s)); /* keep original text */ } else if (!lua_isstring(L, -1)) { lj_err_callerv(L, LJ_ERR_STRGSRV, luaL_typename(L, -1)); } luaL_addvalue(b); /* add result to accumulator */ } LJLIB_CF(string_gsub) { size_t srcl; const char *src = luaL_checklstring(L, 1, &srcl); const char *p = luaL_checkstring(L, 2); int tr = lua_type(L, 3); int max_s = luaL_optint(L, 4, (int)(srcl+1)); int anchor = (*p == '^') ? (p++, 1) : 0; int n = 0; MatchState ms; luaL_Buffer b; if (!(tr == LUA_TNUMBER || tr == LUA_TSTRING || tr == LUA_TFUNCTION || tr == LUA_TTABLE)) lj_err_arg(L, 3, LJ_ERR_NOSFT); luaL_buffinit(L, &b); ms.L = L; ms.src_init = src; ms.src_end = src+srcl; while (n < max_s) { const char *e; ms.level = ms.depth = 0; e = match(&ms, src, p); if (e) { n++; add_value(&ms, &b, src, e); } if (e && e>src) /* non empty match? */ src = e; /* skip it */ else if (src < ms.src_end) luaL_addchar(&b, *src++); else break; if (anchor) break; } luaL_addlstring(&b, src, (size_t)(ms.src_end-src)); luaL_pushresult(&b); lua_pushinteger(L, n); /* number of substitutions */ return 2; } /* ------------------------------------------------------------------------ */ /* Emulate tostring() inline. */ static GCstr *string_fmt_tostring(lua_State *L, int arg, int retry) { TValue *o = L->base+arg-1; cTValue *mo; lua_assert(o < L->top); /* Caller already checks for existence. */ if (LJ_LIKELY(tvisstr(o))) return strV(o); if (retry != 2 && !tvisnil(mo = lj_meta_lookup(L, o, MM_tostring))) { copyTV(L, L->top++, mo); copyTV(L, L->top++, o); lua_call(L, 1, 1); copyTV(L, L->base+arg-1, --L->top); return NULL; /* Buffer may be overwritten, retry. */ } return lj_strfmt_obj(L, o); } LJLIB_CF(string_format) LJLIB_REC(.) { int arg, top = (int)(L->top - L->base); GCstr *fmt; SBuf *sb; FormatState fs; SFormat sf; int retry = 0; again: arg = 1; sb = lj_buf_tmp_(L); fmt = lj_lib_checkstr(L, arg); lj_strfmt_init(&fs, strdata(fmt), fmt->len); while ((sf = lj_strfmt_parse(&fs)) != STRFMT_EOF) { if (sf == STRFMT_LIT) { lj_buf_putmem(sb, fs.str, fs.len); } else if (sf == STRFMT_ERR) { lj_err_callerv(L, LJ_ERR_STRFMT, strdata(lj_str_new(L, fs.str, fs.len))); } else { if (++arg > top) luaL_argerror(L, arg, lj_obj_typename[0]); switch (STRFMT_TYPE(sf)) { case STRFMT_INT: if (tvisint(L->base+arg-1)) { int32_t k = intV(L->base+arg-1); if (sf == STRFMT_INT) lj_strfmt_putint(sb, k); /* Shortcut for plain %d. */ else lj_strfmt_putfxint(sb, sf, k); } else { lj_strfmt_putfnum_int(sb, sf, lj_lib_checknum(L, arg)); } break; case STRFMT_UINT: if (tvisint(L->base+arg-1)) lj_strfmt_putfxint(sb, sf, intV(L->base+arg-1)); else lj_strfmt_putfnum_uint(sb, sf, lj_lib_checknum(L, arg)); break; case STRFMT_NUM: lj_strfmt_putfnum(sb, sf, lj_lib_checknum(L, arg)); break; case STRFMT_STR: { GCstr *str = string_fmt_tostring(L, arg, retry); if (str == NULL) retry = 1; else if ((sf & STRFMT_T_QUOTED)) lj_strfmt_putquoted(sb, str); /* No formatting. */ else lj_strfmt_putfstr(sb, sf, str); break; } case STRFMT_CHAR: lj_strfmt_putfchar(sb, sf, lj_lib_checkint(L, arg)); break; case STRFMT_PTR: /* No formatting. */ lj_strfmt_putptr(sb, lj_obj_ptr(L->base+arg-1)); break; default: lua_assert(0); break; } } } if (retry++ == 1) goto again; setstrV(L, L->top-1, lj_buf_str(L, sb)); lj_gc_check(L); return 1; } /* ------------------------------------------------------------------------ */ #include "lj_libdef.h" LUALIB_API int luaopen_string(lua_State *L) { GCtab *mt; global_State *g; LJ_LIB_REG(L, LUA_STRLIBNAME, string); mt = lj_tab_new(L, 0, 1); /* NOBARRIER: basemt is a GC root. */ g = G(L); setgcref(basemt_it(g, LJ_TSTR), obj2gco(mt)); settabV(L, lj_tab_setstr(L, mt, mmname_str(g, MM_index)), tabV(L->top-1)); mt->nomm = (uint8_t)(~(1u<gct = ~LJ_TUDATA; ud->udtype = UDTYPE_USERDATA; ud->len = sz; /* NOBARRIER: The GCudata is new (marked white). */ setgcrefnull(ud->metatable); setgcref(ud->env, obj2gco(env)); /* Chain to userdata list (after main thread). */ setgcrefr(ud->nextgc, mainthread(g)->nextgc); setgcref(mainthread(g)->nextgc, obj2gco(ud)); return ud; } void LJ_FASTCALL lj_udata_free(global_State *g, GCudata *ud) { lj_mem_free(g, ud, sizeudata(ud)); } luajit-2.1.0~beta3+dfsg.orig/src/lj_target_arm.h0000644000175100017510000001567713101703334021110 0ustar ondrejondrej/* ** Definitions for ARM CPUs. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_TARGET_ARM_H #define _LJ_TARGET_ARM_H /* -- Registers IDs ------------------------------------------------------- */ #define GPRDEF(_) \ _(R0) _(R1) _(R2) _(R3) _(R4) _(R5) _(R6) _(R7) \ _(R8) _(R9) _(R10) _(R11) _(R12) _(SP) _(LR) _(PC) #if LJ_SOFTFP #define FPRDEF(_) #else #define FPRDEF(_) \ _(D0) _(D1) _(D2) _(D3) _(D4) _(D5) _(D6) _(D7) \ _(D8) _(D9) _(D10) _(D11) _(D12) _(D13) _(D14) _(D15) #endif #define VRIDDEF(_) #define RIDENUM(name) RID_##name, enum { GPRDEF(RIDENUM) /* General-purpose registers (GPRs). */ FPRDEF(RIDENUM) /* Floating-point registers (FPRs). */ RID_MAX, RID_TMP = RID_LR, /* Calling conventions. */ RID_RET = RID_R0, RID_RETLO = RID_R0, RID_RETHI = RID_R1, #if LJ_SOFTFP RID_FPRET = RID_R0, #else RID_FPRET = RID_D0, #endif /* These definitions must match with the *.dasc file(s): */ RID_BASE = RID_R9, /* Interpreter BASE. */ RID_LPC = RID_R6, /* Interpreter PC. */ RID_DISPATCH = RID_R7, /* Interpreter DISPATCH table. */ RID_LREG = RID_R8, /* Interpreter L. */ /* Register ranges [min, max) and number of registers. */ RID_MIN_GPR = RID_R0, RID_MAX_GPR = RID_PC+1, RID_MIN_FPR = RID_MAX_GPR, #if LJ_SOFTFP RID_MAX_FPR = RID_MIN_FPR, #else RID_MAX_FPR = RID_D15+1, #endif RID_NUM_GPR = RID_MAX_GPR - RID_MIN_GPR, RID_NUM_FPR = RID_MAX_FPR - RID_MIN_FPR }; #define RID_NUM_KREF RID_NUM_GPR #define RID_MIN_KREF RID_R0 /* -- Register sets ------------------------------------------------------- */ /* Make use of all registers, except sp, lr and pc. */ #define RSET_GPR (RSET_RANGE(RID_MIN_GPR, RID_R12+1)) #define RSET_GPREVEN \ (RID2RSET(RID_R0)|RID2RSET(RID_R2)|RID2RSET(RID_R4)|RID2RSET(RID_R6)| \ RID2RSET(RID_R8)|RID2RSET(RID_R10)) #define RSET_GPRODD \ (RID2RSET(RID_R1)|RID2RSET(RID_R3)|RID2RSET(RID_R5)|RID2RSET(RID_R7)| \ RID2RSET(RID_R9)|RID2RSET(RID_R11)) #if LJ_SOFTFP #define RSET_FPR 0 #else #define RSET_FPR (RSET_RANGE(RID_MIN_FPR, RID_MAX_FPR)) #endif #define RSET_ALL (RSET_GPR|RSET_FPR) #define RSET_INIT RSET_ALL /* ABI-specific register sets. lr is an implicit scratch register. */ #define RSET_SCRATCH_GPR_ (RSET_RANGE(RID_R0, RID_R3+1)|RID2RSET(RID_R12)) #ifdef __APPLE__ #define RSET_SCRATCH_GPR (RSET_SCRATCH_GPR_|RID2RSET(RID_R9)) #else #define RSET_SCRATCH_GPR RSET_SCRATCH_GPR_ #endif #if LJ_SOFTFP #define RSET_SCRATCH_FPR 0 #else #define RSET_SCRATCH_FPR (RSET_RANGE(RID_D0, RID_D7+1)) #endif #define RSET_SCRATCH (RSET_SCRATCH_GPR|RSET_SCRATCH_FPR) #define REGARG_FIRSTGPR RID_R0 #define REGARG_LASTGPR RID_R3 #define REGARG_NUMGPR 4 #if LJ_ABI_SOFTFP #define REGARG_FIRSTFPR 0 #define REGARG_LASTFPR 0 #define REGARG_NUMFPR 0 #else #define REGARG_FIRSTFPR RID_D0 #define REGARG_LASTFPR RID_D7 #define REGARG_NUMFPR 8 #endif /* -- Spill slots --------------------------------------------------------- */ /* Spill slots are 32 bit wide. An even/odd pair is used for FPRs. ** ** SPS_FIXED: Available fixed spill slots in interpreter frame. ** This definition must match with the *.dasc file(s). ** ** SPS_FIRST: First spill slot for general use. Reserve min. two 32 bit slots. */ #define SPS_FIXED 2 #define SPS_FIRST 2 #define SPOFS_TMP 0 #define sps_scale(slot) (4 * (int32_t)(slot)) #define sps_align(slot) (((slot) - SPS_FIXED + 1) & ~1) /* -- Exit state ---------------------------------------------------------- */ /* This definition must match with the *.dasc file(s). */ typedef struct { #if !LJ_SOFTFP lua_Number fpr[RID_NUM_FPR]; /* Floating-point registers. */ #endif int32_t gpr[RID_NUM_GPR]; /* General-purpose registers. */ int32_t spill[256]; /* Spill slots. */ } ExitState; /* PC after instruction that caused an exit. Used to find the trace number. */ #define EXITSTATE_PCREG RID_PC /* Highest exit + 1 indicates stack check. */ #define EXITSTATE_CHECKEXIT 1 #define EXITSTUB_SPACING 4 #define EXITSTUBS_PER_GROUP 32 /* -- Instructions -------------------------------------------------------- */ /* Instruction fields. */ #define ARMF_CC(ai, cc) (((ai) ^ ARMI_CCAL) | ((cc) << 28)) #define ARMF_N(r) ((r) << 16) #define ARMF_D(r) ((r) << 12) #define ARMF_S(r) ((r) << 8) #define ARMF_M(r) (r) #define ARMF_SH(sh, n) (((sh) << 5) | ((n) << 7)) #define ARMF_RSH(sh, r) (0x10 | ((sh) << 5) | ARMF_S(r)) typedef enum ARMIns { ARMI_CCAL = 0xe0000000, ARMI_S = 0x000100000, ARMI_K12 = 0x02000000, ARMI_KNEG = 0x00200000, ARMI_LS_W = 0x00200000, ARMI_LS_U = 0x00800000, ARMI_LS_P = 0x01000000, ARMI_LS_R = 0x02000000, ARMI_LSX_I = 0x00400000, ARMI_AND = 0xe0000000, ARMI_EOR = 0xe0200000, ARMI_SUB = 0xe0400000, ARMI_RSB = 0xe0600000, ARMI_ADD = 0xe0800000, ARMI_ADC = 0xe0a00000, ARMI_SBC = 0xe0c00000, ARMI_RSC = 0xe0e00000, ARMI_TST = 0xe1100000, ARMI_TEQ = 0xe1300000, ARMI_CMP = 0xe1500000, ARMI_CMN = 0xe1700000, ARMI_ORR = 0xe1800000, ARMI_MOV = 0xe1a00000, ARMI_BIC = 0xe1c00000, ARMI_MVN = 0xe1e00000, ARMI_NOP = 0xe1a00000, ARMI_MUL = 0xe0000090, ARMI_SMULL = 0xe0c00090, ARMI_LDR = 0xe4100000, ARMI_LDRB = 0xe4500000, ARMI_LDRH = 0xe01000b0, ARMI_LDRSB = 0xe01000d0, ARMI_LDRSH = 0xe01000f0, ARMI_LDRD = 0xe00000d0, ARMI_STR = 0xe4000000, ARMI_STRB = 0xe4400000, ARMI_STRH = 0xe00000b0, ARMI_STRD = 0xe00000f0, ARMI_PUSH = 0xe92d0000, ARMI_B = 0xea000000, ARMI_BL = 0xeb000000, ARMI_BLX = 0xfa000000, ARMI_BLXr = 0xe12fff30, /* ARMv6 */ ARMI_REV = 0xe6bf0f30, ARMI_SXTB = 0xe6af0070, ARMI_SXTH = 0xe6bf0070, ARMI_UXTB = 0xe6ef0070, ARMI_UXTH = 0xe6ff0070, /* ARMv6T2 */ ARMI_MOVW = 0xe3000000, ARMI_MOVT = 0xe3400000, /* VFP */ ARMI_VMOV_D = 0xeeb00b40, ARMI_VMOV_S = 0xeeb00a40, ARMI_VMOVI_D = 0xeeb00b00, ARMI_VMOV_R_S = 0xee100a10, ARMI_VMOV_S_R = 0xee000a10, ARMI_VMOV_RR_D = 0xec500b10, ARMI_VMOV_D_RR = 0xec400b10, ARMI_VADD_D = 0xee300b00, ARMI_VSUB_D = 0xee300b40, ARMI_VMUL_D = 0xee200b00, ARMI_VMLA_D = 0xee000b00, ARMI_VMLS_D = 0xee000b40, ARMI_VNMLS_D = 0xee100b00, ARMI_VDIV_D = 0xee800b00, ARMI_VABS_D = 0xeeb00bc0, ARMI_VNEG_D = 0xeeb10b40, ARMI_VSQRT_D = 0xeeb10bc0, ARMI_VCMP_D = 0xeeb40b40, ARMI_VCMPZ_D = 0xeeb50b40, ARMI_VMRS = 0xeef1fa10, ARMI_VCVT_S32_F32 = 0xeebd0ac0, ARMI_VCVT_S32_F64 = 0xeebd0bc0, ARMI_VCVT_U32_F32 = 0xeebc0ac0, ARMI_VCVT_U32_F64 = 0xeebc0bc0, ARMI_VCVT_F32_S32 = 0xeeb80ac0, ARMI_VCVT_F64_S32 = 0xeeb80bc0, ARMI_VCVT_F32_U32 = 0xeeb80a40, ARMI_VCVT_F64_U32 = 0xeeb80b40, ARMI_VCVT_F32_F64 = 0xeeb70bc0, ARMI_VCVT_F64_F32 = 0xeeb70ac0, ARMI_VLDR_S = 0xed100a00, ARMI_VLDR_D = 0xed100b00, ARMI_VSTR_S = 0xed000a00, ARMI_VSTR_D = 0xed000b00, } ARMIns; typedef enum ARMShift { ARMSH_LSL, ARMSH_LSR, ARMSH_ASR, ARMSH_ROR } ARMShift; /* ARM condition codes. */ typedef enum ARMCC { CC_EQ, CC_NE, CC_CS, CC_CC, CC_MI, CC_PL, CC_VS, CC_VC, CC_HI, CC_LS, CC_GE, CC_LT, CC_GT, CC_LE, CC_AL, CC_HS = CC_CS, CC_LO = CC_CC } ARMCC; #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_gdbjit.c0000644000175100017510000005314013101703334020204 0ustar ondrejondrej/* ** Client for the GDB JIT API. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #define lj_gdbjit_c #define LUA_CORE #include "lj_obj.h" #if LJ_HASJIT #include "lj_gc.h" #include "lj_err.h" #include "lj_debug.h" #include "lj_frame.h" #include "lj_buf.h" #include "lj_strfmt.h" #include "lj_jit.h" #include "lj_dispatch.h" /* This is not compiled in by default. ** Enable with -DLUAJIT_USE_GDBJIT in the Makefile and recompile everything. */ #ifdef LUAJIT_USE_GDBJIT /* The GDB JIT API allows JIT compilers to pass debug information about ** JIT-compiled code back to GDB. You need at least GDB 7.0 or higher ** to see it in action. ** ** This is a passive API, so it works even when not running under GDB ** or when attaching to an already running process. Alas, this implies ** enabling it always has a non-negligible overhead -- do not use in ** release mode! ** ** The LuaJIT GDB JIT client is rather minimal at the moment. It gives ** each trace a symbol name and adds a source location and frame unwind ** information. Obviously LuaJIT itself and any embedding C application ** should be compiled with debug symbols, too (see the Makefile). ** ** Traces are named TRACE_1, TRACE_2, ... these correspond to the trace ** numbers from -jv or -jdump. Use "break TRACE_1" or "tbreak TRACE_1" etc. ** to set breakpoints on specific traces (even ahead of their creation). ** ** The source location for each trace allows listing the corresponding ** source lines with the GDB command "list" (but only if the Lua source ** has been loaded from a file). Currently this is always set to the ** location where the trace has been started. ** ** Frame unwind information can be inspected with the GDB command ** "info frame". This also allows proper backtraces across JIT-compiled ** code with the GDB command "bt". ** ** You probably want to add the following settings to a .gdbinit file ** (or add them to ~/.gdbinit): ** set disassembly-flavor intel ** set breakpoint pending on ** ** Here's a sample GDB session: ** ------------------------------------------------------------------------ $ cat >x.lua for outer=1,100 do for inner=1,100 do end end ^D $ luajit -jv x.lua [TRACE 1 x.lua:2] [TRACE 2 (1/3) x.lua:1 -> 1] $ gdb --quiet --args luajit x.lua (gdb) tbreak TRACE_1 Function "TRACE_1" not defined. Temporary breakpoint 1 (TRACE_1) pending. (gdb) run Starting program: luajit x.lua Temporary breakpoint 1, TRACE_1 () at x.lua:2 2 for inner=1,100 do end (gdb) list 1 for outer=1,100 do 2 for inner=1,100 do end 3 end (gdb) bt #0 TRACE_1 () at x.lua:2 #1 0x08053690 in lua_pcall [...] [...] #7 0x0806ff90 in main [...] (gdb) disass TRACE_1 Dump of assembler code for function TRACE_1: 0xf7fd9fba : mov DWORD PTR ds:0xf7e0e2a0,0x1 0xf7fd9fc4 : movsd xmm7,QWORD PTR [edx+0x20] [...] 0xf7fd9ff8 : jmp 0xf7fd2014 End of assembler dump. (gdb) tbreak TRACE_2 Function "TRACE_2" not defined. Temporary breakpoint 2 (TRACE_2) pending. (gdb) cont Continuing. Temporary breakpoint 2, TRACE_2 () at x.lua:1 1 for outer=1,100 do (gdb) info frame Stack level 0, frame at 0xffffd7c0: eip = 0xf7fd9f60 in TRACE_2 (x.lua:1); saved eip 0x8053690 called by frame at 0xffffd7e0 source language unknown. Arglist at 0xffffd78c, args: Locals at 0xffffd78c, Previous frame's sp is 0xffffd7c0 Saved registers: ebx at 0xffffd7ac, ebp at 0xffffd7b8, esi at 0xffffd7b0, edi at 0xffffd7b4, eip at 0xffffd7bc (gdb) ** ------------------------------------------------------------------------ */ /* -- GDB JIT API --------------------------------------------------------- */ /* GDB JIT actions. */ enum { GDBJIT_NOACTION = 0, GDBJIT_REGISTER, GDBJIT_UNREGISTER }; /* GDB JIT entry. */ typedef struct GDBJITentry { struct GDBJITentry *next_entry; struct GDBJITentry *prev_entry; const char *symfile_addr; uint64_t symfile_size; } GDBJITentry; /* GDB JIT descriptor. */ typedef struct GDBJITdesc { uint32_t version; uint32_t action_flag; GDBJITentry *relevant_entry; GDBJITentry *first_entry; } GDBJITdesc; GDBJITdesc __jit_debug_descriptor = { 1, GDBJIT_NOACTION, NULL, NULL }; /* GDB sets a breakpoint at this function. */ void LJ_NOINLINE __jit_debug_register_code() { __asm__ __volatile__(""); }; /* -- In-memory ELF object definitions ------------------------------------ */ /* ELF definitions. */ typedef struct ELFheader { uint8_t emagic[4]; uint8_t eclass; uint8_t eendian; uint8_t eversion; uint8_t eosabi; uint8_t eabiversion; uint8_t epad[7]; uint16_t type; uint16_t machine; uint32_t version; uintptr_t entry; uintptr_t phofs; uintptr_t shofs; uint32_t flags; uint16_t ehsize; uint16_t phentsize; uint16_t phnum; uint16_t shentsize; uint16_t shnum; uint16_t shstridx; } ELFheader; typedef struct ELFsectheader { uint32_t name; uint32_t type; uintptr_t flags; uintptr_t addr; uintptr_t ofs; uintptr_t size; uint32_t link; uint32_t info; uintptr_t align; uintptr_t entsize; } ELFsectheader; #define ELFSECT_IDX_ABS 0xfff1 enum { ELFSECT_TYPE_PROGBITS = 1, ELFSECT_TYPE_SYMTAB = 2, ELFSECT_TYPE_STRTAB = 3, ELFSECT_TYPE_NOBITS = 8 }; #define ELFSECT_FLAGS_WRITE 1 #define ELFSECT_FLAGS_ALLOC 2 #define ELFSECT_FLAGS_EXEC 4 typedef struct ELFsymbol { #if LJ_64 uint32_t name; uint8_t info; uint8_t other; uint16_t sectidx; uintptr_t value; uint64_t size; #else uint32_t name; uintptr_t value; uint32_t size; uint8_t info; uint8_t other; uint16_t sectidx; #endif } ELFsymbol; enum { ELFSYM_TYPE_FUNC = 2, ELFSYM_TYPE_FILE = 4, ELFSYM_BIND_LOCAL = 0 << 4, ELFSYM_BIND_GLOBAL = 1 << 4, }; /* DWARF definitions. */ #define DW_CIE_VERSION 1 enum { DW_CFA_nop = 0x0, DW_CFA_offset_extended = 0x5, DW_CFA_def_cfa = 0xc, DW_CFA_def_cfa_offset = 0xe, DW_CFA_offset_extended_sf = 0x11, DW_CFA_advance_loc = 0x40, DW_CFA_offset = 0x80 }; enum { DW_EH_PE_udata4 = 3, DW_EH_PE_textrel = 0x20 }; enum { DW_TAG_compile_unit = 0x11 }; enum { DW_children_no = 0, DW_children_yes = 1 }; enum { DW_AT_name = 0x03, DW_AT_stmt_list = 0x10, DW_AT_low_pc = 0x11, DW_AT_high_pc = 0x12 }; enum { DW_FORM_addr = 0x01, DW_FORM_data4 = 0x06, DW_FORM_string = 0x08 }; enum { DW_LNS_extended_op = 0, DW_LNS_copy = 1, DW_LNS_advance_pc = 2, DW_LNS_advance_line = 3 }; enum { DW_LNE_end_sequence = 1, DW_LNE_set_address = 2 }; enum { #if LJ_TARGET_X86 DW_REG_AX, DW_REG_CX, DW_REG_DX, DW_REG_BX, DW_REG_SP, DW_REG_BP, DW_REG_SI, DW_REG_DI, DW_REG_RA, #elif LJ_TARGET_X64 /* Yes, the order is strange, but correct. */ DW_REG_AX, DW_REG_DX, DW_REG_CX, DW_REG_BX, DW_REG_SI, DW_REG_DI, DW_REG_BP, DW_REG_SP, DW_REG_8, DW_REG_9, DW_REG_10, DW_REG_11, DW_REG_12, DW_REG_13, DW_REG_14, DW_REG_15, DW_REG_RA, #elif LJ_TARGET_ARM DW_REG_SP = 13, DW_REG_RA = 14, #elif LJ_TARGET_ARM64 DW_REG_SP = 31, DW_REG_RA = 30, #elif LJ_TARGET_PPC DW_REG_SP = 1, DW_REG_RA = 65, DW_REG_CR = 70, #elif LJ_TARGET_MIPS DW_REG_SP = 29, DW_REG_RA = 31, #else #error "Unsupported target architecture" #endif }; /* Minimal list of sections for the in-memory ELF object. */ enum { GDBJIT_SECT_NULL, GDBJIT_SECT_text, GDBJIT_SECT_eh_frame, GDBJIT_SECT_shstrtab, GDBJIT_SECT_strtab, GDBJIT_SECT_symtab, GDBJIT_SECT_debug_info, GDBJIT_SECT_debug_abbrev, GDBJIT_SECT_debug_line, GDBJIT_SECT__MAX }; enum { GDBJIT_SYM_UNDEF, GDBJIT_SYM_FILE, GDBJIT_SYM_FUNC, GDBJIT_SYM__MAX }; /* In-memory ELF object. */ typedef struct GDBJITobj { ELFheader hdr; /* ELF header. */ ELFsectheader sect[GDBJIT_SECT__MAX]; /* ELF sections. */ ELFsymbol sym[GDBJIT_SYM__MAX]; /* ELF symbol table. */ uint8_t space[4096]; /* Space for various section data. */ } GDBJITobj; /* Combined structure for GDB JIT entry and ELF object. */ typedef struct GDBJITentryobj { GDBJITentry entry; size_t sz; GDBJITobj obj; } GDBJITentryobj; /* Template for in-memory ELF header. */ static const ELFheader elfhdr_template = { .emagic = { 0x7f, 'E', 'L', 'F' }, .eclass = LJ_64 ? 2 : 1, .eendian = LJ_ENDIAN_SELECT(1, 2), .eversion = 1, #if LJ_TARGET_LINUX .eosabi = 0, /* Nope, it's not 3. */ #elif defined(__FreeBSD__) .eosabi = 9, #elif defined(__NetBSD__) .eosabi = 2, #elif defined(__OpenBSD__) .eosabi = 12, #elif defined(__DragonFly__) .eosabi = 0, #elif (defined(__sun__) && defined(__svr4__)) .eosabi = 6, #else .eosabi = 0, #endif .eabiversion = 0, .epad = { 0, 0, 0, 0, 0, 0, 0 }, .type = 1, #if LJ_TARGET_X86 .machine = 3, #elif LJ_TARGET_X64 .machine = 62, #elif LJ_TARGET_ARM .machine = 40, #elif LJ_TARGET_ARM64 .machine = 183, #elif LJ_TARGET_PPC .machine = 20, #elif LJ_TARGET_MIPS .machine = 8, #else #error "Unsupported target architecture" #endif .version = 1, .entry = 0, .phofs = 0, .shofs = offsetof(GDBJITobj, sect), .flags = 0, .ehsize = sizeof(ELFheader), .phentsize = 0, .phnum = 0, .shentsize = sizeof(ELFsectheader), .shnum = GDBJIT_SECT__MAX, .shstridx = GDBJIT_SECT_shstrtab }; /* -- In-memory ELF object generation ------------------------------------- */ /* Context for generating the ELF object for the GDB JIT API. */ typedef struct GDBJITctx { uint8_t *p; /* Pointer to next address in obj.space. */ uint8_t *startp; /* Pointer to start address in obj.space. */ GCtrace *T; /* Generate symbols for this trace. */ uintptr_t mcaddr; /* Machine code address. */ MSize szmcode; /* Size of machine code. */ MSize spadjp; /* Stack adjustment for parent trace or interpreter. */ MSize spadj; /* Stack adjustment for trace itself. */ BCLine lineno; /* Starting line number. */ const char *filename; /* Starting file name. */ size_t objsize; /* Final size of ELF object. */ GDBJITobj obj; /* In-memory ELF object. */ } GDBJITctx; /* Add a zero-terminated string. */ static uint32_t gdbjit_strz(GDBJITctx *ctx, const char *str) { uint8_t *p = ctx->p; uint32_t ofs = (uint32_t)(p - ctx->startp); do { *p++ = (uint8_t)*str; } while (*str++); ctx->p = p; return ofs; } /* Append a decimal number. */ static void gdbjit_catnum(GDBJITctx *ctx, uint32_t n) { if (n >= 10) { uint32_t m = n / 10; n = n % 10; gdbjit_catnum(ctx, m); } *ctx->p++ = '0' + n; } /* Add a SLEB128 value. */ static void gdbjit_sleb128(GDBJITctx *ctx, int32_t v) { uint8_t *p = ctx->p; for (; (uint32_t)(v+0x40) >= 0x80; v >>= 7) *p++ = (uint8_t)((v & 0x7f) | 0x80); *p++ = (uint8_t)(v & 0x7f); ctx->p = p; } /* Shortcuts to generate DWARF structures. */ #define DB(x) (*p++ = (x)) #define DI8(x) (*(int8_t *)p = (x), p++) #define DU16(x) (*(uint16_t *)p = (x), p += 2) #define DU32(x) (*(uint32_t *)p = (x), p += 4) #define DADDR(x) (*(uintptr_t *)p = (x), p += sizeof(uintptr_t)) #define DUV(x) (p = (uint8_t *)lj_strfmt_wuleb128((char *)p, (x))) #define DSV(x) (ctx->p = p, gdbjit_sleb128(ctx, (x)), p = ctx->p) #define DSTR(str) (ctx->p = p, gdbjit_strz(ctx, (str)), p = ctx->p) #define DALIGNNOP(s) while ((uintptr_t)p & ((s)-1)) *p++ = DW_CFA_nop #define DSECT(name, stmt) \ { uint32_t *szp_##name = (uint32_t *)p; p += 4; stmt \ *szp_##name = (uint32_t)((p-(uint8_t *)szp_##name)-4); } \ /* Initialize ELF section headers. */ static void LJ_FASTCALL gdbjit_secthdr(GDBJITctx *ctx) { ELFsectheader *sect; *ctx->p++ = '\0'; /* Empty string at start of string table. */ #define SECTDEF(id, tp, al) \ sect = &ctx->obj.sect[GDBJIT_SECT_##id]; \ sect->name = gdbjit_strz(ctx, "." #id); \ sect->type = ELFSECT_TYPE_##tp; \ sect->align = (al) SECTDEF(text, NOBITS, 16); sect->flags = ELFSECT_FLAGS_ALLOC|ELFSECT_FLAGS_EXEC; sect->addr = ctx->mcaddr; sect->ofs = 0; sect->size = ctx->szmcode; SECTDEF(eh_frame, PROGBITS, sizeof(uintptr_t)); sect->flags = ELFSECT_FLAGS_ALLOC; SECTDEF(shstrtab, STRTAB, 1); SECTDEF(strtab, STRTAB, 1); SECTDEF(symtab, SYMTAB, sizeof(uintptr_t)); sect->ofs = offsetof(GDBJITobj, sym); sect->size = sizeof(ctx->obj.sym); sect->link = GDBJIT_SECT_strtab; sect->entsize = sizeof(ELFsymbol); sect->info = GDBJIT_SYM_FUNC; SECTDEF(debug_info, PROGBITS, 1); SECTDEF(debug_abbrev, PROGBITS, 1); SECTDEF(debug_line, PROGBITS, 1); #undef SECTDEF } /* Initialize symbol table. */ static void LJ_FASTCALL gdbjit_symtab(GDBJITctx *ctx) { ELFsymbol *sym; *ctx->p++ = '\0'; /* Empty string at start of string table. */ sym = &ctx->obj.sym[GDBJIT_SYM_FILE]; sym->name = gdbjit_strz(ctx, "JIT mcode"); sym->sectidx = ELFSECT_IDX_ABS; sym->info = ELFSYM_TYPE_FILE|ELFSYM_BIND_LOCAL; sym = &ctx->obj.sym[GDBJIT_SYM_FUNC]; sym->name = gdbjit_strz(ctx, "TRACE_"); ctx->p--; gdbjit_catnum(ctx, ctx->T->traceno); *ctx->p++ = '\0'; sym->sectidx = GDBJIT_SECT_text; sym->value = 0; sym->size = ctx->szmcode; sym->info = ELFSYM_TYPE_FUNC|ELFSYM_BIND_GLOBAL; } /* Initialize .eh_frame section. */ static void LJ_FASTCALL gdbjit_ehframe(GDBJITctx *ctx) { uint8_t *p = ctx->p; uint8_t *framep = p; /* Emit DWARF EH CIE. */ DSECT(CIE, DU32(0); /* Offset to CIE itself. */ DB(DW_CIE_VERSION); DSTR("zR"); /* Augmentation. */ DUV(1); /* Code alignment factor. */ DSV(-(int32_t)sizeof(uintptr_t)); /* Data alignment factor. */ DB(DW_REG_RA); /* Return address register. */ DB(1); DB(DW_EH_PE_textrel|DW_EH_PE_udata4); /* Augmentation data. */ DB(DW_CFA_def_cfa); DUV(DW_REG_SP); DUV(sizeof(uintptr_t)); #if LJ_TARGET_PPC DB(DW_CFA_offset_extended_sf); DB(DW_REG_RA); DSV(-1); #else DB(DW_CFA_offset|DW_REG_RA); DUV(1); #endif DALIGNNOP(sizeof(uintptr_t)); ) /* Emit DWARF EH FDE. */ DSECT(FDE, DU32((uint32_t)(p-framep)); /* Offset to CIE. */ DU32(0); /* Machine code offset relative to .text. */ DU32(ctx->szmcode); /* Machine code length. */ DB(0); /* Augmentation data. */ /* Registers saved in CFRAME. */ #if LJ_TARGET_X86 DB(DW_CFA_offset|DW_REG_BP); DUV(2); DB(DW_CFA_offset|DW_REG_DI); DUV(3); DB(DW_CFA_offset|DW_REG_SI); DUV(4); DB(DW_CFA_offset|DW_REG_BX); DUV(5); #elif LJ_TARGET_X64 DB(DW_CFA_offset|DW_REG_BP); DUV(2); DB(DW_CFA_offset|DW_REG_BX); DUV(3); DB(DW_CFA_offset|DW_REG_15); DUV(4); DB(DW_CFA_offset|DW_REG_14); DUV(5); /* Extra registers saved for JIT-compiled code. */ DB(DW_CFA_offset|DW_REG_13); DUV(LJ_GC64 ? 10 : 9); DB(DW_CFA_offset|DW_REG_12); DUV(LJ_GC64 ? 11 : 10); #elif LJ_TARGET_ARM { int i; for (i = 11; i >= 4; i--) { DB(DW_CFA_offset|i); DUV(2+(11-i)); } } #elif LJ_TARGET_ARM64 { int i; DB(DW_CFA_offset|31); DUV(2); for (i = 28; i >= 19; i--) { DB(DW_CFA_offset|i); DUV(3+(28-i)); } for (i = 15; i >= 8; i--) { DB(DW_CFA_offset|32|i); DUV(28-i); } } #elif LJ_TARGET_PPC { int i; DB(DW_CFA_offset_extended); DB(DW_REG_CR); DUV(55); for (i = 14; i <= 31; i++) { DB(DW_CFA_offset|i); DUV(37+(31-i)); DB(DW_CFA_offset|32|i); DUV(2+2*(31-i)); } } #elif LJ_TARGET_MIPS { int i; DB(DW_CFA_offset|30); DUV(2); for (i = 23; i >= 16; i--) { DB(DW_CFA_offset|i); DUV(26-i); } for (i = 30; i >= 20; i -= 2) { DB(DW_CFA_offset|32|i); DUV(42-i); } } #else #error "Unsupported target architecture" #endif if (ctx->spadjp != ctx->spadj) { /* Parent/interpreter stack frame size. */ DB(DW_CFA_def_cfa_offset); DUV(ctx->spadjp); DB(DW_CFA_advance_loc|1); /* Only an approximation. */ } DB(DW_CFA_def_cfa_offset); DUV(ctx->spadj); /* Trace stack frame size. */ DALIGNNOP(sizeof(uintptr_t)); ) ctx->p = p; } /* Initialize .debug_info section. */ static void LJ_FASTCALL gdbjit_debuginfo(GDBJITctx *ctx) { uint8_t *p = ctx->p; DSECT(info, DU16(2); /* DWARF version. */ DU32(0); /* Abbrev offset. */ DB(sizeof(uintptr_t)); /* Pointer size. */ DUV(1); /* Abbrev #1: DW_TAG_compile_unit. */ DSTR(ctx->filename); /* DW_AT_name. */ DADDR(ctx->mcaddr); /* DW_AT_low_pc. */ DADDR(ctx->mcaddr + ctx->szmcode); /* DW_AT_high_pc. */ DU32(0); /* DW_AT_stmt_list. */ ) ctx->p = p; } /* Initialize .debug_abbrev section. */ static void LJ_FASTCALL gdbjit_debugabbrev(GDBJITctx *ctx) { uint8_t *p = ctx->p; /* Abbrev #1: DW_TAG_compile_unit. */ DUV(1); DUV(DW_TAG_compile_unit); DB(DW_children_no); DUV(DW_AT_name); DUV(DW_FORM_string); DUV(DW_AT_low_pc); DUV(DW_FORM_addr); DUV(DW_AT_high_pc); DUV(DW_FORM_addr); DUV(DW_AT_stmt_list); DUV(DW_FORM_data4); DB(0); DB(0); ctx->p = p; } #define DLNE(op, s) (DB(DW_LNS_extended_op), DUV(1+(s)), DB((op))) /* Initialize .debug_line section. */ static void LJ_FASTCALL gdbjit_debugline(GDBJITctx *ctx) { uint8_t *p = ctx->p; DSECT(line, DU16(2); /* DWARF version. */ DSECT(header, DB(1); /* Minimum instruction length. */ DB(1); /* is_stmt. */ DI8(0); /* Line base for special opcodes. */ DB(2); /* Line range for special opcodes. */ DB(3+1); /* Opcode base at DW_LNS_advance_line+1. */ DB(0); DB(1); DB(1); /* Standard opcode lengths. */ /* Directory table. */ DB(0); /* File name table. */ DSTR(ctx->filename); DUV(0); DUV(0); DUV(0); DB(0); ) DLNE(DW_LNE_set_address, sizeof(uintptr_t)); DADDR(ctx->mcaddr); if (ctx->lineno) { DB(DW_LNS_advance_line); DSV(ctx->lineno-1); } DB(DW_LNS_copy); DB(DW_LNS_advance_pc); DUV(ctx->szmcode); DLNE(DW_LNE_end_sequence, 0); ) ctx->p = p; } #undef DLNE /* Undef shortcuts. */ #undef DB #undef DI8 #undef DU16 #undef DU32 #undef DADDR #undef DUV #undef DSV #undef DSTR #undef DALIGNNOP #undef DSECT /* Type of a section initializer callback. */ typedef void (LJ_FASTCALL *GDBJITinitf)(GDBJITctx *ctx); /* Call section initializer and set the section offset and size. */ static void gdbjit_initsect(GDBJITctx *ctx, int sect, GDBJITinitf initf) { ctx->startp = ctx->p; ctx->obj.sect[sect].ofs = (uintptr_t)((char *)ctx->p - (char *)&ctx->obj); initf(ctx); ctx->obj.sect[sect].size = (uintptr_t)(ctx->p - ctx->startp); } #define SECTALIGN(p, a) \ ((p) = (uint8_t *)(((uintptr_t)(p) + ((a)-1)) & ~(uintptr_t)((a)-1))) /* Build in-memory ELF object. */ static void gdbjit_buildobj(GDBJITctx *ctx) { GDBJITobj *obj = &ctx->obj; /* Fill in ELF header and clear structures. */ memcpy(&obj->hdr, &elfhdr_template, sizeof(ELFheader)); memset(&obj->sect, 0, sizeof(ELFsectheader)*GDBJIT_SECT__MAX); memset(&obj->sym, 0, sizeof(ELFsymbol)*GDBJIT_SYM__MAX); /* Initialize sections. */ ctx->p = obj->space; gdbjit_initsect(ctx, GDBJIT_SECT_shstrtab, gdbjit_secthdr); gdbjit_initsect(ctx, GDBJIT_SECT_strtab, gdbjit_symtab); gdbjit_initsect(ctx, GDBJIT_SECT_debug_info, gdbjit_debuginfo); gdbjit_initsect(ctx, GDBJIT_SECT_debug_abbrev, gdbjit_debugabbrev); gdbjit_initsect(ctx, GDBJIT_SECT_debug_line, gdbjit_debugline); SECTALIGN(ctx->p, sizeof(uintptr_t)); gdbjit_initsect(ctx, GDBJIT_SECT_eh_frame, gdbjit_ehframe); ctx->objsize = (size_t)((char *)ctx->p - (char *)obj); lua_assert(ctx->objsize < sizeof(GDBJITobj)); } #undef SECTALIGN /* -- Interface to GDB JIT API -------------------------------------------- */ static int gdbjit_lock; static void gdbjit_lock_acquire() { while (__sync_lock_test_and_set(&gdbjit_lock, 1)) { /* Just spin; futexes or pthreads aren't worth the portability cost. */ } } static void gdbjit_lock_release() { __sync_lock_release(&gdbjit_lock); } /* Add new entry to GDB JIT symbol chain. */ static void gdbjit_newentry(lua_State *L, GDBJITctx *ctx) { /* Allocate memory for GDB JIT entry and ELF object. */ MSize sz = (MSize)(sizeof(GDBJITentryobj) - sizeof(GDBJITobj) + ctx->objsize); GDBJITentryobj *eo = lj_mem_newt(L, sz, GDBJITentryobj); memcpy(&eo->obj, &ctx->obj, ctx->objsize); /* Copy ELF object. */ eo->sz = sz; ctx->T->gdbjit_entry = (void *)eo; /* Link new entry to chain and register it. */ eo->entry.prev_entry = NULL; gdbjit_lock_acquire(); eo->entry.next_entry = __jit_debug_descriptor.first_entry; if (eo->entry.next_entry) eo->entry.next_entry->prev_entry = &eo->entry; eo->entry.symfile_addr = (const char *)&eo->obj; eo->entry.symfile_size = ctx->objsize; __jit_debug_descriptor.first_entry = &eo->entry; __jit_debug_descriptor.relevant_entry = &eo->entry; __jit_debug_descriptor.action_flag = GDBJIT_REGISTER; __jit_debug_register_code(); gdbjit_lock_release(); } /* Add debug info for newly compiled trace and notify GDB. */ void lj_gdbjit_addtrace(jit_State *J, GCtrace *T) { GDBJITctx ctx; GCproto *pt = &gcref(T->startpt)->pt; TraceNo parent = T->ir[REF_BASE].op1; const BCIns *startpc = mref(T->startpc, const BCIns); ctx.T = T; ctx.mcaddr = (uintptr_t)T->mcode; ctx.szmcode = T->szmcode; ctx.spadjp = CFRAME_SIZE_JIT + (MSize)(parent ? traceref(J, parent)->spadjust : 0); ctx.spadj = CFRAME_SIZE_JIT + T->spadjust; lua_assert(startpc >= proto_bc(pt) && startpc < proto_bc(pt) + pt->sizebc); ctx.lineno = lj_debug_line(pt, proto_bcpos(pt, startpc)); ctx.filename = proto_chunknamestr(pt); if (*ctx.filename == '@' || *ctx.filename == '=') ctx.filename++; else ctx.filename = "(string)"; gdbjit_buildobj(&ctx); gdbjit_newentry(J->L, &ctx); } /* Delete debug info for trace and notify GDB. */ void lj_gdbjit_deltrace(jit_State *J, GCtrace *T) { GDBJITentryobj *eo = (GDBJITentryobj *)T->gdbjit_entry; if (eo) { gdbjit_lock_acquire(); if (eo->entry.prev_entry) eo->entry.prev_entry->next_entry = eo->entry.next_entry; else __jit_debug_descriptor.first_entry = eo->entry.next_entry; if (eo->entry.next_entry) eo->entry.next_entry->prev_entry = eo->entry.prev_entry; __jit_debug_descriptor.relevant_entry = &eo->entry; __jit_debug_descriptor.action_flag = GDBJIT_UNREGISTER; __jit_debug_register_code(); gdbjit_lock_release(); lj_mem_free(J2G(J), eo, eo->sz); } } #endif #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_buf.h0000644000175100017510000000561113101703334017522 0ustar ondrejondrej/* ** Buffer handling. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_BUF_H #define _LJ_BUF_H #include "lj_obj.h" #include "lj_gc.h" #include "lj_str.h" /* Resizable string buffers. Struct definition in lj_obj.h. */ #define sbufB(sb) (mref((sb)->b, char)) #define sbufP(sb) (mref((sb)->p, char)) #define sbufE(sb) (mref((sb)->e, char)) #define sbufL(sb) (mref((sb)->L, lua_State)) #define sbufsz(sb) ((MSize)(sbufE((sb)) - sbufB((sb)))) #define sbuflen(sb) ((MSize)(sbufP((sb)) - sbufB((sb)))) #define sbufleft(sb) ((MSize)(sbufE((sb)) - sbufP((sb)))) #define setsbufP(sb, q) (setmref((sb)->p, (q))) #define setsbufL(sb, l) (setmref((sb)->L, (l))) /* Buffer management */ LJ_FUNC char *LJ_FASTCALL lj_buf_need2(SBuf *sb, MSize sz); LJ_FUNC char *LJ_FASTCALL lj_buf_more2(SBuf *sb, MSize sz); LJ_FUNC void LJ_FASTCALL lj_buf_shrink(lua_State *L, SBuf *sb); LJ_FUNC char * LJ_FASTCALL lj_buf_tmp(lua_State *L, MSize sz); static LJ_AINLINE void lj_buf_init(lua_State *L, SBuf *sb) { setsbufL(sb, L); setmref(sb->p, NULL); setmref(sb->e, NULL); setmref(sb->b, NULL); } static LJ_AINLINE void lj_buf_reset(SBuf *sb) { setmrefr(sb->p, sb->b); } static LJ_AINLINE SBuf *lj_buf_tmp_(lua_State *L) { SBuf *sb = &G(L)->tmpbuf; setsbufL(sb, L); lj_buf_reset(sb); return sb; } static LJ_AINLINE void lj_buf_free(global_State *g, SBuf *sb) { lj_mem_free(g, sbufB(sb), sbufsz(sb)); } static LJ_AINLINE char *lj_buf_need(SBuf *sb, MSize sz) { if (LJ_UNLIKELY(sz > sbufsz(sb))) return lj_buf_need2(sb, sz); return sbufB(sb); } static LJ_AINLINE char *lj_buf_more(SBuf *sb, MSize sz) { if (LJ_UNLIKELY(sz > sbufleft(sb))) return lj_buf_more2(sb, sz); return sbufP(sb); } /* Low-level buffer put operations */ LJ_FUNC SBuf *lj_buf_putmem(SBuf *sb, const void *q, MSize len); LJ_FUNC SBuf * LJ_FASTCALL lj_buf_putchar(SBuf *sb, int c); LJ_FUNC SBuf * LJ_FASTCALL lj_buf_putstr(SBuf *sb, GCstr *s); static LJ_AINLINE char *lj_buf_wmem(char *p, const void *q, MSize len) { return (char *)memcpy(p, q, len) + len; } static LJ_AINLINE void lj_buf_putb(SBuf *sb, int c) { char *p = lj_buf_more(sb, 1); *p++ = (char)c; setsbufP(sb, p); } /* High-level buffer put operations */ LJ_FUNCA SBuf * LJ_FASTCALL lj_buf_putstr_reverse(SBuf *sb, GCstr *s); LJ_FUNCA SBuf * LJ_FASTCALL lj_buf_putstr_lower(SBuf *sb, GCstr *s); LJ_FUNCA SBuf * LJ_FASTCALL lj_buf_putstr_upper(SBuf *sb, GCstr *s); LJ_FUNC SBuf *lj_buf_putstr_rep(SBuf *sb, GCstr *s, int32_t rep); LJ_FUNC SBuf *lj_buf_puttab(SBuf *sb, GCtab *t, GCstr *sep, int32_t i, int32_t e); /* Miscellaneous buffer operations */ LJ_FUNCA GCstr * LJ_FASTCALL lj_buf_tostr(SBuf *sb); LJ_FUNC GCstr *lj_buf_cat2str(lua_State *L, GCstr *s1, GCstr *s2); LJ_FUNC uint32_t LJ_FASTCALL lj_buf_ruleb128(const char **pp); static LJ_AINLINE GCstr *lj_buf_str(lua_State *L, SBuf *sb) { return lj_str_new(L, sbufB(sb), sbuflen(sb)); } #endif luajit-2.1.0~beta3+dfsg.orig/src/vm_arm.dasc0000644000175100017510000036544513101703334020243 0ustar ondrejondrej|// Low-level VM code for ARM CPUs. |// Bytecode interpreter, fast functions and helper functions. |// Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h | |.arch arm |.section code_op, code_sub | |.actionlist build_actionlist |.globals GLOB_ |.globalnames globnames |.externnames extnames | |// Note: The ragged indentation of the instructions is intentional. |// The starting columns indicate data dependencies. | |//----------------------------------------------------------------------- | |// Fixed register assignments for the interpreter. | |// The following must be C callee-save. |.define MASKR8, r4 // 255*8 constant for fast bytecode decoding. |.define KBASE, r5 // Constants of current Lua function. |.define PC, r6 // Next PC. |.define DISPATCH, r7 // Opcode dispatch table. |.define LREG, r8 // Register holding lua_State (also in SAVE_L). | |// C callee-save in EABI, but often refetched. Temporary in iOS 3.0+. |.define BASE, r9 // Base of current Lua stack frame. | |// The following temporaries are not saved across C calls, except for RA/RC. |.define RA, r10 // Callee-save. |.define RC, r11 // Callee-save. |.define RB, r12 |.define OP, r12 // Overlaps RB, must not be lr. |.define INS, lr | |// Calling conventions. Also used as temporaries. |.define CARG1, r0 |.define CARG2, r1 |.define CARG3, r2 |.define CARG4, r3 |.define CARG12, r0 // For 1st soft-fp double. |.define CARG34, r2 // For 2nd soft-fp double. | |.define CRET1, r0 |.define CRET2, r1 | |// Stack layout while in interpreter. Must match with lj_frame.h. |.define SAVE_R4, [sp, #28] |.define CFRAME_SPACE, #28 |.define SAVE_ERRF, [sp, #24] |.define SAVE_NRES, [sp, #20] |.define SAVE_CFRAME, [sp, #16] |.define SAVE_L, [sp, #12] |.define SAVE_PC, [sp, #8] |.define SAVE_MULTRES, [sp, #4] |.define ARG5, [sp] | |.define TMPDhi, [sp, #4] |.define TMPDlo, [sp] |.define TMPD, [sp] |.define TMPDp, sp | |.if FPU |.macro saveregs | push {r5, r6, r7, r8, r9, r10, r11, lr} | vpush {d8-d15} | sub sp, sp, CFRAME_SPACE+4 | str r4, SAVE_R4 |.endmacro |.macro restoreregs_ret | ldr r4, SAVE_R4 | add sp, sp, CFRAME_SPACE+4 | vpop {d8-d15} | pop {r5, r6, r7, r8, r9, r10, r11, pc} |.endmacro |.else |.macro saveregs | push {r4, r5, r6, r7, r8, r9, r10, r11, lr} | sub sp, sp, CFRAME_SPACE |.endmacro |.macro restoreregs_ret | add sp, sp, CFRAME_SPACE | pop {r4, r5, r6, r7, r8, r9, r10, r11, pc} |.endmacro |.endif | |// Type definitions. Some of these are only used for documentation. |.type L, lua_State, LREG |.type GL, global_State |.type TVALUE, TValue |.type GCOBJ, GCobj |.type STR, GCstr |.type TAB, GCtab |.type LFUNC, GCfuncL |.type CFUNC, GCfuncC |.type PROTO, GCproto |.type UPVAL, GCupval |.type NODE, Node |.type NARGS8, int |.type TRACE, GCtrace |.type SBUF, SBuf | |//----------------------------------------------------------------------- | |// Trap for not-yet-implemented parts. |.macro NYI; ud; .endmacro | |//----------------------------------------------------------------------- | |// Access to frame relative to BASE. |.define FRAME_FUNC, #-8 |.define FRAME_PC, #-4 | |.macro decode_RA8, dst, ins; and dst, MASKR8, ins, lsr #5; .endmacro |.macro decode_RB8, dst, ins; and dst, MASKR8, ins, lsr #21; .endmacro |.macro decode_RC8, dst, ins; and dst, MASKR8, ins, lsr #13; .endmacro |.macro decode_RD, dst, ins; lsr dst, ins, #16; .endmacro |.macro decode_OP, dst, ins; and dst, ins, #255; .endmacro | |// Instruction fetch. |.macro ins_NEXT1 | ldrb OP, [PC] |.endmacro |.macro ins_NEXT2 | ldr INS, [PC], #4 |.endmacro |// Instruction decode+dispatch. |.macro ins_NEXT3 | ldr OP, [DISPATCH, OP, lsl #2] | decode_RA8 RA, INS | decode_RD RC, INS | bx OP |.endmacro |.macro ins_NEXT | ins_NEXT1 | ins_NEXT2 | ins_NEXT3 |.endmacro | |// Instruction footer. |.if 1 | // Replicated dispatch. Less unpredictable branches, but higher I-Cache use. | .define ins_next, ins_NEXT | .define ins_next_, ins_NEXT | .define ins_next1, ins_NEXT1 | .define ins_next2, ins_NEXT2 | .define ins_next3, ins_NEXT3 |.else | // Common dispatch. Lower I-Cache use, only one (very) unpredictable branch. | // Affects only certain kinds of benchmarks (and only with -j off). | .macro ins_next | b ->ins_next | .endmacro | .macro ins_next1 | .endmacro | .macro ins_next2 | .endmacro | .macro ins_next3 | b ->ins_next | .endmacro | .macro ins_next_ | ->ins_next: | ins_NEXT | .endmacro |.endif | |// Avoid register name substitution for field name. #define field_pc pc | |// Call decode and dispatch. |.macro ins_callt | // BASE = new base, CARG3 = LFUNC/CFUNC, RC = nargs*8, FRAME_PC(BASE) = PC | ldr PC, LFUNC:CARG3->field_pc | ldrb OP, [PC] // STALL: load PC. early PC. | ldr INS, [PC], #4 | ldr OP, [DISPATCH, OP, lsl #2] // STALL: load OP. early OP. | decode_RA8 RA, INS | add RA, RA, BASE | bx OP |.endmacro | |.macro ins_call | // BASE = new base, CARG3 = LFUNC/CFUNC, RC = nargs*8, PC = caller PC | str PC, [BASE, FRAME_PC] | ins_callt // STALL: locked PC. |.endmacro | |//----------------------------------------------------------------------- | |// Macros to test operand types. |.macro checktp, reg, tp; cmn reg, #-tp; .endmacro |.macro checktpeq, reg, tp; cmneq reg, #-tp; .endmacro |.macro checktpne, reg, tp; cmnne reg, #-tp; .endmacro |.macro checkstr, reg, target; checktp reg, LJ_TSTR; bne target; .endmacro |.macro checktab, reg, target; checktp reg, LJ_TTAB; bne target; .endmacro |.macro checkfunc, reg, target; checktp reg, LJ_TFUNC; bne target; .endmacro | |// Assumes DISPATCH is relative to GL. #define DISPATCH_GL(field) (GG_DISP2G + (int)offsetof(global_State, field)) #define DISPATCH_J(field) (GG_DISP2J + (int)offsetof(jit_State, field)) | #define PC2PROTO(field) ((int)offsetof(GCproto, field)-(int)sizeof(GCproto)) | |.macro hotcheck, delta | lsr CARG1, PC, #1 | and CARG1, CARG1, #126 | sub CARG1, CARG1, #-GG_DISP2HOT | ldrh CARG2, [DISPATCH, CARG1] | subs CARG2, CARG2, #delta | strh CARG2, [DISPATCH, CARG1] |.endmacro | |.macro hotloop | hotcheck HOTCOUNT_LOOP | blo ->vm_hotloop |.endmacro | |.macro hotcall | hotcheck HOTCOUNT_CALL | blo ->vm_hotcall |.endmacro | |// Set current VM state. |.macro mv_vmstate, reg, st; mvn reg, #LJ_VMST_..st; .endmacro |.macro st_vmstate, reg; str reg, [DISPATCH, #DISPATCH_GL(vmstate)]; .endmacro | |// Move table write barrier back. Overwrites mark and tmp. |.macro barrierback, tab, mark, tmp | ldr tmp, [DISPATCH, #DISPATCH_GL(gc.grayagain)] | bic mark, mark, #LJ_GC_BLACK // black2gray(tab) | str tab, [DISPATCH, #DISPATCH_GL(gc.grayagain)] | strb mark, tab->marked | str tmp, tab->gclist |.endmacro | |.macro .IOS, a, b |.if IOS | a, b |.endif |.endmacro | |//----------------------------------------------------------------------- #if !LJ_DUALNUM #error "Only dual-number mode supported for ARM target" #endif /* Generate subroutines used by opcodes and other parts of the VM. */ /* The .code_sub section should be last to help static branch prediction. */ static void build_subroutines(BuildCtx *ctx) { |.code_sub | |//----------------------------------------------------------------------- |//-- Return handling ---------------------------------------------------- |//----------------------------------------------------------------------- | |->vm_returnp: | // See vm_return. Also: RB = previous base. | tst PC, #FRAME_P | beq ->cont_dispatch | | // Return from pcall or xpcall fast func. | ldr PC, [RB, FRAME_PC] // Fetch PC of previous frame. | mvn CARG2, #~LJ_TTRUE | mov BASE, RB | // Prepending may overwrite the pcall frame, so do it at the end. | str CARG2, [RA, FRAME_PC] // Prepend true to results. | sub RA, RA, #8 | |->vm_returnc: | adds RC, RC, #8 // RC = (nresults+1)*8. | mov CRET1, #LUA_YIELD | beq ->vm_unwind_c_eh | str RC, SAVE_MULTRES | ands CARG1, PC, #FRAME_TYPE | beq ->BC_RET_Z // Handle regular return to Lua. | |->vm_return: | // BASE = base, RA = resultptr, RC/MULTRES = (nresults+1)*8, PC = return | // CARG1 = PC & FRAME_TYPE | bic RB, PC, #FRAME_TYPEP | cmp CARG1, #FRAME_C | sub RB, BASE, RB // RB = previous base. | bne ->vm_returnp | | str RB, L->base | ldr KBASE, SAVE_NRES | mv_vmstate CARG4, C | sub BASE, BASE, #8 | subs CARG3, RC, #8 | lsl KBASE, KBASE, #3 // KBASE = (nresults_wanted+1)*8 | st_vmstate CARG4 | beq >2 |1: | subs CARG3, CARG3, #8 | ldrd CARG12, [RA], #8 | strd CARG12, [BASE], #8 | bne <1 |2: | cmp KBASE, RC // More/less results wanted? | bne >6 |3: | str BASE, L->top // Store new top. | |->vm_leave_cp: | ldr RC, SAVE_CFRAME // Restore previous C frame. | mov CRET1, #0 // Ok return status for vm_pcall. | str RC, L->cframe | |->vm_leave_unw: | restoreregs_ret | |6: | blt >7 // Less results wanted? | // More results wanted. Check stack size and fill up results with nil. | ldr CARG3, L->maxstack | mvn CARG2, #~LJ_TNIL | cmp BASE, CARG3 | bhs >8 | str CARG2, [BASE, #4] | add RC, RC, #8 | add BASE, BASE, #8 | b <2 | |7: // Less results wanted. | sub CARG1, RC, KBASE | cmp KBASE, #0 // LUA_MULTRET+1 case? | subne BASE, BASE, CARG1 // Either keep top or shrink it. | b <3 | |8: // Corner case: need to grow stack for filling up results. | // This can happen if: | // - A C function grows the stack (a lot). | // - The GC shrinks the stack in between. | // - A return back from a lua_call() with (high) nresults adjustment. | str BASE, L->top // Save current top held in BASE (yes). | lsr CARG2, KBASE, #3 | mov CARG1, L | bl extern lj_state_growstack // (lua_State *L, int n) | ldr BASE, L->top // Need the (realloced) L->top in BASE. | b <2 | |->vm_unwind_c: // Unwind C stack, return from vm_pcall. | // (void *cframe, int errcode) | mov sp, CARG1 | mov CRET1, CARG2 |->vm_unwind_c_eh: // Landing pad for external unwinder. | ldr L, SAVE_L | mv_vmstate CARG4, C | ldr GL:CARG3, L->glref | str CARG4, GL:CARG3->vmstate | b ->vm_leave_unw | |->vm_unwind_ff: // Unwind C stack, return from ff pcall. | // (void *cframe) | bic CARG1, CARG1, #~CFRAME_RAWMASK // Use two steps: bic sp is deprecated. | mov sp, CARG1 |->vm_unwind_ff_eh: // Landing pad for external unwinder. | ldr L, SAVE_L | mov MASKR8, #255 | mov RC, #16 // 2 results: false + error message. | lsl MASKR8, MASKR8, #3 // MASKR8 = 255*8. | ldr BASE, L->base | ldr DISPATCH, L->glref // Setup pointer to dispatch table. | mvn CARG1, #~LJ_TFALSE | sub RA, BASE, #8 // Results start at BASE-8. | ldr PC, [BASE, FRAME_PC] // Fetch PC of previous frame. | add DISPATCH, DISPATCH, #GG_G2DISP | mv_vmstate CARG2, INTERP | str CARG1, [BASE, #-4] // Prepend false to error message. | st_vmstate CARG2 | b ->vm_returnc | |->vm_unwind_ext: // Complete external unwind. #if !LJ_NO_UNWIND | push {r0, r1, r2, lr} | bl extern _Unwind_Complete | ldr r0, [sp] | bl extern _Unwind_DeleteException | pop {r0, r1, r2, lr} | mov r0, r1 | bx r2 #endif | |//----------------------------------------------------------------------- |//-- Grow stack for calls ----------------------------------------------- |//----------------------------------------------------------------------- | |->vm_growstack_c: // Grow stack for C function. | // CARG1 = L | mov CARG2, #LUA_MINSTACK | b >2 | |->vm_growstack_l: // Grow stack for Lua function. | // BASE = new base, RA = BASE+framesize*8, RC = nargs*8, PC = first PC | add RC, BASE, RC | sub RA, RA, BASE | mov CARG1, L | str BASE, L->base | add PC, PC, #4 // Must point after first instruction. | str RC, L->top | lsr CARG2, RA, #3 |2: | // L->base = new base, L->top = top | str PC, SAVE_PC | bl extern lj_state_growstack // (lua_State *L, int n) | ldr BASE, L->base | ldr RC, L->top | ldr LFUNC:CARG3, [BASE, FRAME_FUNC] | sub NARGS8:RC, RC, BASE | // BASE = new base, RB = LFUNC/CFUNC, RC = nargs*8, FRAME_PC(BASE) = PC | ins_callt // Just retry the call. | |//----------------------------------------------------------------------- |//-- Entry points into the assembler VM --------------------------------- |//----------------------------------------------------------------------- | |->vm_resume: // Setup C frame and resume thread. | // (lua_State *L, TValue *base, int nres1 = 0, ptrdiff_t ef = 0) | saveregs | mov L, CARG1 | ldr DISPATCH, L:CARG1->glref // Setup pointer to dispatch table. | mov BASE, CARG2 | add DISPATCH, DISPATCH, #GG_G2DISP | str L, SAVE_L | mov PC, #FRAME_CP | str CARG3, SAVE_NRES | add CARG2, sp, #CFRAME_RESUME | ldrb CARG1, L->status | str CARG3, SAVE_ERRF | str L, SAVE_PC // Any value outside of bytecode is ok. | str CARG3, SAVE_CFRAME | cmp CARG1, #0 | str CARG2, L->cframe | beq >3 | | // Resume after yield (like a return). | str L, [DISPATCH, #DISPATCH_GL(cur_L)] | mov RA, BASE | ldr BASE, L->base | ldr CARG1, L->top | mov MASKR8, #255 | strb CARG3, L->status | sub RC, CARG1, BASE | ldr PC, [BASE, FRAME_PC] | lsl MASKR8, MASKR8, #3 // MASKR8 = 255*8. | mv_vmstate CARG2, INTERP | add RC, RC, #8 | ands CARG1, PC, #FRAME_TYPE | st_vmstate CARG2 | str RC, SAVE_MULTRES | beq ->BC_RET_Z | b ->vm_return | |->vm_pcall: // Setup protected C frame and enter VM. | // (lua_State *L, TValue *base, int nres1, ptrdiff_t ef) | saveregs | mov PC, #FRAME_CP | str CARG4, SAVE_ERRF | b >1 | |->vm_call: // Setup C frame and enter VM. | // (lua_State *L, TValue *base, int nres1) | saveregs | mov PC, #FRAME_C | |1: // Entry point for vm_pcall above (PC = ftype). | ldr RC, L:CARG1->cframe | str CARG3, SAVE_NRES | mov L, CARG1 | str CARG1, SAVE_L | ldr DISPATCH, L->glref // Setup pointer to dispatch table. | mov BASE, CARG2 | str CARG1, SAVE_PC // Any value outside of bytecode is ok. | str RC, SAVE_CFRAME | add DISPATCH, DISPATCH, #GG_G2DISP | str sp, L->cframe // Add our C frame to cframe chain. | |3: // Entry point for vm_cpcall/vm_resume (BASE = base, PC = ftype). | str L, [DISPATCH, #DISPATCH_GL(cur_L)] | ldr RB, L->base // RB = old base (for vmeta_call). | ldr CARG1, L->top | mov MASKR8, #255 | add PC, PC, BASE | lsl MASKR8, MASKR8, #3 // MASKR8 = 255*8. | sub PC, PC, RB // PC = frame delta + frame type | mv_vmstate CARG2, INTERP | sub NARGS8:RC, CARG1, BASE | st_vmstate CARG2 | |->vm_call_dispatch: | // RB = old base, BASE = new base, RC = nargs*8, PC = caller PC | ldrd CARG34, [BASE, FRAME_FUNC] | checkfunc CARG4, ->vmeta_call | |->vm_call_dispatch_f: | ins_call | // BASE = new base, CARG3 = func, RC = nargs*8, PC = caller PC | |->vm_cpcall: // Setup protected C frame, call C. | // (lua_State *L, lua_CFunction func, void *ud, lua_CPFunction cp) | saveregs | mov L, CARG1 | ldr RA, L:CARG1->stack | str CARG1, SAVE_L | ldr DISPATCH, L->glref // Setup pointer to dispatch table. | ldr RB, L->top | str CARG1, SAVE_PC // Any value outside of bytecode is ok. | ldr RC, L->cframe | add DISPATCH, DISPATCH, #GG_G2DISP | sub RA, RA, RB // Compute -savestack(L, L->top). | mov RB, #0 | str RA, SAVE_NRES // Neg. delta means cframe w/o frame. | str RB, SAVE_ERRF // No error function. | str RC, SAVE_CFRAME | str sp, L->cframe // Add our C frame to cframe chain. | str L, [DISPATCH, #DISPATCH_GL(cur_L)] | blx CARG4 // (lua_State *L, lua_CFunction func, void *ud) | movs BASE, CRET1 | mov PC, #FRAME_CP | bne <3 // Else continue with the call. | b ->vm_leave_cp // No base? Just remove C frame. | |//----------------------------------------------------------------------- |//-- Metamethod handling ------------------------------------------------ |//----------------------------------------------------------------------- | |//-- Continuation dispatch ---------------------------------------------- | |->cont_dispatch: | // BASE = meta base, RA = resultptr, RC = (nresults+1)*8 | ldr LFUNC:CARG3, [RB, FRAME_FUNC] | ldr CARG1, [BASE, #-16] // Get continuation. | mov CARG4, BASE | mov BASE, RB // Restore caller BASE. |.if FFI | cmp CARG1, #1 |.endif | ldr PC, [CARG4, #-12] // Restore PC from [cont|PC]. | ldr CARG3, LFUNC:CARG3->field_pc | mvn INS, #~LJ_TNIL | add CARG2, RA, RC | str INS, [CARG2, #-4] // Ensure one valid arg. |.if FFI | bls >1 |.endif | ldr KBASE, [CARG3, #PC2PROTO(k)] | // BASE = base, RA = resultptr, CARG4 = meta base | bx CARG1 | |.if FFI |1: | beq ->cont_ffi_callback // cont = 1: return from FFI callback. | // cont = 0: tailcall from C function. | sub CARG4, CARG4, #16 | sub RC, CARG4, BASE | b ->vm_call_tail |.endif | |->cont_cat: // RA = resultptr, CARG4 = meta base | ldr INS, [PC, #-4] | sub CARG2, CARG4, #16 | ldrd CARG34, [RA] | str BASE, L->base | decode_RB8 RC, INS | decode_RA8 RA, INS | add CARG1, BASE, RC | subs CARG1, CARG2, CARG1 | strdne CARG34, [CARG2] | movne CARG3, CARG1 | bne ->BC_CAT_Z | strd CARG34, [BASE, RA] | b ->cont_nop | |//-- Table indexing metamethods ----------------------------------------- | |->vmeta_tgets1: | add CARG2, BASE, RB | b >2 | |->vmeta_tgets: | sub CARG2, DISPATCH, #-DISPATCH_GL(tmptv) | mvn CARG4, #~LJ_TTAB | str TAB:RB, [CARG2] | str CARG4, [CARG2, #4] |2: | mvn CARG4, #~LJ_TSTR | str STR:RC, TMPDlo | str CARG4, TMPDhi | mov CARG3, TMPDp | b >1 | |->vmeta_tgetb: // RC = index | decode_RB8 RB, INS | str RC, TMPDlo | mvn CARG4, #~LJ_TISNUM | add CARG2, BASE, RB | str CARG4, TMPDhi | mov CARG3, TMPDp | b >1 | |->vmeta_tgetv: | add CARG2, BASE, RB | add CARG3, BASE, RC |1: | str BASE, L->base | mov CARG1, L | str PC, SAVE_PC | bl extern lj_meta_tget // (lua_State *L, TValue *o, TValue *k) | // Returns TValue * (finished) or NULL (metamethod). | .IOS ldr BASE, L->base | cmp CRET1, #0 | beq >3 | ldrd CARG34, [CRET1] | ins_next1 | ins_next2 | strd CARG34, [BASE, RA] | ins_next3 | |3: // Call __index metamethod. | // BASE = base, L->top = new base, stack = cont/func/t/k | rsb CARG1, BASE, #FRAME_CONT | ldr BASE, L->top | mov NARGS8:RC, #16 // 2 args for func(t, k). | str PC, [BASE, #-12] // [cont|PC] | add PC, CARG1, BASE | ldr LFUNC:CARG3, [BASE, FRAME_FUNC] // Guaranteed to be a function here. | b ->vm_call_dispatch_f | |->vmeta_tgetr: | .IOS mov RC, BASE | bl extern lj_tab_getinth // (GCtab *t, int32_t key) | // Returns cTValue * or NULL. | .IOS mov BASE, RC | cmp CRET1, #0 | ldrdne CARG12, [CRET1] | mvneq CARG2, #~LJ_TNIL | b ->BC_TGETR_Z | |//----------------------------------------------------------------------- | |->vmeta_tsets1: | add CARG2, BASE, RB | b >2 | |->vmeta_tsets: | sub CARG2, DISPATCH, #-DISPATCH_GL(tmptv) | mvn CARG4, #~LJ_TTAB | str TAB:RB, [CARG2] | str CARG4, [CARG2, #4] |2: | mvn CARG4, #~LJ_TSTR | str STR:RC, TMPDlo | str CARG4, TMPDhi | mov CARG3, TMPDp | b >1 | |->vmeta_tsetb: // RC = index | decode_RB8 RB, INS | str RC, TMPDlo | mvn CARG4, #~LJ_TISNUM | add CARG2, BASE, RB | str CARG4, TMPDhi | mov CARG3, TMPDp | b >1 | |->vmeta_tsetv: | add CARG2, BASE, RB | add CARG3, BASE, RC |1: | str BASE, L->base | mov CARG1, L | str PC, SAVE_PC | bl extern lj_meta_tset // (lua_State *L, TValue *o, TValue *k) | // Returns TValue * (finished) or NULL (metamethod). | .IOS ldr BASE, L->base | cmp CRET1, #0 | ldrd CARG34, [BASE, RA] | beq >3 | ins_next1 | // NOBARRIER: lj_meta_tset ensures the table is not black. | strd CARG34, [CRET1] | ins_next2 | ins_next3 | |3: // Call __newindex metamethod. | // BASE = base, L->top = new base, stack = cont/func/t/k/(v) | rsb CARG1, BASE, #FRAME_CONT | ldr BASE, L->top | mov NARGS8:RC, #24 // 3 args for func(t, k, v). | strd CARG34, [BASE, #16] // Copy value to third argument. | str PC, [BASE, #-12] // [cont|PC] | add PC, CARG1, BASE | ldr LFUNC:CARG3, [BASE, FRAME_FUNC] // Guaranteed to be a function here. | b ->vm_call_dispatch_f | |->vmeta_tsetr: | str BASE, L->base | .IOS mov RC, BASE | str PC, SAVE_PC | bl extern lj_tab_setinth // (lua_State *L, GCtab *t, int32_t key) | // Returns TValue *. | .IOS mov BASE, RC | b ->BC_TSETR_Z | |//-- Comparison metamethods --------------------------------------------- | |->vmeta_comp: | mov CARG1, L | sub PC, PC, #4 | mov CARG2, RA | str BASE, L->base | mov CARG3, RC | str PC, SAVE_PC | decode_OP CARG4, INS | bl extern lj_meta_comp // (lua_State *L, TValue *o1, *o2, int op) | // Returns 0/1 or TValue * (metamethod). |3: | .IOS ldr BASE, L->base | cmp CRET1, #1 | bhi ->vmeta_binop |4: | ldrh RB, [PC, #2] | add PC, PC, #4 | add RB, PC, RB, lsl #2 | subhs PC, RB, #0x20000 |->cont_nop: | ins_next | |->cont_ra: // RA = resultptr | ldr INS, [PC, #-4] | ldrd CARG12, [RA] | decode_RA8 CARG3, INS | strd CARG12, [BASE, CARG3] | b ->cont_nop | |->cont_condt: // RA = resultptr | ldr CARG2, [RA, #4] | mvn CARG1, #~LJ_TTRUE | cmp CARG1, CARG2 // Branch if result is true. | b <4 | |->cont_condf: // RA = resultptr | ldr CARG2, [RA, #4] | checktp CARG2, LJ_TFALSE // Branch if result is false. | b <4 | |->vmeta_equal: | // CARG2, CARG3, CARG4 are already set by BC_ISEQV/BC_ISNEV. | sub PC, PC, #4 | str BASE, L->base | mov CARG1, L | str PC, SAVE_PC | bl extern lj_meta_equal // (lua_State *L, GCobj *o1, *o2, int ne) | // Returns 0/1 or TValue * (metamethod). | b <3 | |->vmeta_equal_cd: |.if FFI | sub PC, PC, #4 | str BASE, L->base | mov CARG1, L | mov CARG2, INS | str PC, SAVE_PC | bl extern lj_meta_equal_cd // (lua_State *L, BCIns op) | // Returns 0/1 or TValue * (metamethod). | b <3 |.endif | |->vmeta_istype: | sub PC, PC, #4 | str BASE, L->base | mov CARG1, L | lsr CARG2, RA, #3 | mov CARG3, RC | str PC, SAVE_PC | bl extern lj_meta_istype // (lua_State *L, BCReg ra, BCReg tp) | .IOS ldr BASE, L->base | b ->cont_nop | |//-- Arithmetic metamethods --------------------------------------------- | |->vmeta_arith_vn: | decode_RB8 RB, INS | decode_RC8 RC, INS | add CARG3, BASE, RB | add CARG4, KBASE, RC | b >1 | |->vmeta_arith_nv: | decode_RB8 RB, INS | decode_RC8 RC, INS | add CARG4, BASE, RB | add CARG3, KBASE, RC | b >1 | |->vmeta_unm: | ldr INS, [PC, #-8] | sub PC, PC, #4 | add CARG3, BASE, RC | add CARG4, BASE, RC | b >1 | |->vmeta_arith_vv: | decode_RB8 RB, INS | decode_RC8 RC, INS | add CARG3, BASE, RB | add CARG4, BASE, RC |1: | decode_OP OP, INS | add CARG2, BASE, RA | str BASE, L->base | mov CARG1, L | str PC, SAVE_PC | str OP, ARG5 | bl extern lj_meta_arith // (lua_State *L, TValue *ra,*rb,*rc, BCReg op) | // Returns NULL (finished) or TValue * (metamethod). | .IOS ldr BASE, L->base | cmp CRET1, #0 | beq ->cont_nop | | // Call metamethod for binary op. |->vmeta_binop: | // BASE = old base, CRET1 = new base, stack = cont/func/o1/o2 | sub CARG2, CRET1, BASE | str PC, [CRET1, #-12] // [cont|PC] | add PC, CARG2, #FRAME_CONT | mov BASE, CRET1 | mov NARGS8:RC, #16 // 2 args for func(o1, o2). | b ->vm_call_dispatch | |->vmeta_len: | add CARG2, BASE, RC | str BASE, L->base | mov CARG1, L | str PC, SAVE_PC | bl extern lj_meta_len // (lua_State *L, TValue *o) | // Returns NULL (retry) or TValue * (metamethod base). | .IOS ldr BASE, L->base #if LJ_52 | cmp CRET1, #0 | bne ->vmeta_binop // Binop call for compatibility. | ldr TAB:CARG1, [BASE, RC] | b ->BC_LEN_Z #else | b ->vmeta_binop // Binop call for compatibility. #endif | |//-- Call metamethod ---------------------------------------------------- | |->vmeta_call: // Resolve and call __call metamethod. | // RB = old base, BASE = new base, RC = nargs*8 | mov CARG1, L | str RB, L->base // This is the callers base! | sub CARG2, BASE, #8 | str PC, SAVE_PC | add CARG3, BASE, NARGS8:RC | .IOS mov RA, BASE | bl extern lj_meta_call // (lua_State *L, TValue *func, TValue *top) | .IOS mov BASE, RA | ldr LFUNC:CARG3, [BASE, FRAME_FUNC] // Guaranteed to be a function here. | add NARGS8:RC, NARGS8:RC, #8 // Got one more argument now. | ins_call | |->vmeta_callt: // Resolve __call for BC_CALLT. | // BASE = old base, RA = new base, RC = nargs*8 | mov CARG1, L | str BASE, L->base | sub CARG2, RA, #8 | str PC, SAVE_PC | add CARG3, RA, NARGS8:RC | bl extern lj_meta_call // (lua_State *L, TValue *func, TValue *top) | .IOS ldr BASE, L->base | ldr LFUNC:CARG3, [RA, FRAME_FUNC] // Guaranteed to be a function here. | ldr PC, [BASE, FRAME_PC] | add NARGS8:RC, NARGS8:RC, #8 // Got one more argument now. | b ->BC_CALLT2_Z | |//-- Argument coercion for 'for' statement ------------------------------ | |->vmeta_for: | mov CARG1, L | str BASE, L->base | mov CARG2, RA | str PC, SAVE_PC | bl extern lj_meta_for // (lua_State *L, TValue *base) | .IOS ldr BASE, L->base |.if JIT | ldrb OP, [PC, #-4] |.endif | ldr INS, [PC, #-4] |.if JIT | cmp OP, #BC_JFORI |.endif | decode_RA8 RA, INS | decode_RD RC, INS |.if JIT | beq =>BC_JFORI |.endif | b =>BC_FORI | |//----------------------------------------------------------------------- |//-- Fast functions ----------------------------------------------------- |//----------------------------------------------------------------------- | |.macro .ffunc, name |->ff_ .. name: |.endmacro | |.macro .ffunc_1, name |->ff_ .. name: | ldrd CARG12, [BASE] | cmp NARGS8:RC, #8 | blo ->fff_fallback |.endmacro | |.macro .ffunc_2, name |->ff_ .. name: | ldrd CARG12, [BASE] | ldrd CARG34, [BASE, #8] | cmp NARGS8:RC, #16 | blo ->fff_fallback |.endmacro | |.macro .ffunc_n, name | .ffunc_1 name | checktp CARG2, LJ_TISNUM | bhs ->fff_fallback |.endmacro | |.macro .ffunc_nn, name | .ffunc_2 name | checktp CARG2, LJ_TISNUM | cmnlo CARG4, #-LJ_TISNUM | bhs ->fff_fallback |.endmacro | |.macro .ffunc_d, name | .ffunc name | ldr CARG2, [BASE, #4] | cmp NARGS8:RC, #8 | vldr d0, [BASE] | blo ->fff_fallback | checktp CARG2, LJ_TISNUM | bhs ->fff_fallback |.endmacro | |.macro .ffunc_dd, name | .ffunc name | ldr CARG2, [BASE, #4] | ldr CARG4, [BASE, #12] | cmp NARGS8:RC, #16 | vldr d0, [BASE] | vldr d1, [BASE, #8] | blo ->fff_fallback | checktp CARG2, LJ_TISNUM | cmnlo CARG4, #-LJ_TISNUM | bhs ->fff_fallback |.endmacro | |// Inlined GC threshold check. Caveat: uses CARG1 and CARG2. |.macro ffgccheck | ldr CARG1, [DISPATCH, #DISPATCH_GL(gc.total)] | ldr CARG2, [DISPATCH, #DISPATCH_GL(gc.threshold)] | cmp CARG1, CARG2 | blge ->fff_gcstep |.endmacro | |//-- Base library: checks ----------------------------------------------- | |.ffunc_1 assert | checktp CARG2, LJ_TTRUE | bhi ->fff_fallback | ldr PC, [BASE, FRAME_PC] | strd CARG12, [BASE, #-8] | mov RB, BASE | subs RA, NARGS8:RC, #8 | add RC, NARGS8:RC, #8 // Compute (nresults+1)*8. | beq ->fff_res // Done if exactly 1 argument. |1: | ldrd CARG12, [RB, #8] | subs RA, RA, #8 | strd CARG12, [RB], #8 | bne <1 | b ->fff_res | |.ffunc type | ldr CARG2, [BASE, #4] | cmp NARGS8:RC, #8 | blo ->fff_fallback | checktp CARG2, LJ_TISNUM | mvnlo CARG2, #~LJ_TISNUM | rsb CARG4, CARG2, #(int)(offsetof(GCfuncC, upvalue)>>3)-1 | lsl CARG4, CARG4, #3 | ldrd CARG12, [CFUNC:CARG3, CARG4] | b ->fff_restv | |//-- Base library: getters and setters --------------------------------- | |.ffunc_1 getmetatable | checktp CARG2, LJ_TTAB | cmnne CARG2, #-LJ_TUDATA | bne >6 |1: // Field metatable must be at same offset for GCtab and GCudata! | ldr TAB:RB, TAB:CARG1->metatable |2: | mvn CARG2, #~LJ_TNIL | ldr STR:RC, [DISPATCH, #DISPATCH_GL(gcroot[GCROOT_MMNAME+MM_metatable])] | cmp TAB:RB, #0 | beq ->fff_restv | ldr CARG3, TAB:RB->hmask | ldr CARG4, STR:RC->hash | ldr NODE:INS, TAB:RB->node | and CARG3, CARG3, CARG4 // idx = str->hash & tab->hmask | add CARG3, CARG3, CARG3, lsl #1 | add NODE:INS, NODE:INS, CARG3, lsl #3 // node = tab->node + idx*3*8 |3: // Rearranged logic, because we expect _not_ to find the key. | ldrd CARG34, NODE:INS->key // STALL: early NODE:INS. | ldrd CARG12, NODE:INS->val | ldr NODE:INS, NODE:INS->next | checktp CARG4, LJ_TSTR | cmpeq CARG3, STR:RC | beq >5 | cmp NODE:INS, #0 | bne <3 |4: | mov CARG1, RB // Use metatable as default result. | mvn CARG2, #~LJ_TTAB | b ->fff_restv |5: | checktp CARG2, LJ_TNIL | bne ->fff_restv | b <4 | |6: | checktp CARG2, LJ_TISNUM | mvnhs CARG2, CARG2 | movlo CARG2, #~LJ_TISNUM | add CARG4, DISPATCH, CARG2, lsl #2 | ldr TAB:RB, [CARG4, #DISPATCH_GL(gcroot[GCROOT_BASEMT])] | b <2 | |.ffunc_2 setmetatable | // Fast path: no mt for table yet and not clearing the mt. | checktp CARG2, LJ_TTAB | ldreq TAB:RB, TAB:CARG1->metatable | checktpeq CARG4, LJ_TTAB | ldrbeq CARG4, TAB:CARG1->marked | cmpeq TAB:RB, #0 | bne ->fff_fallback | tst CARG4, #LJ_GC_BLACK // isblack(table) | str TAB:CARG3, TAB:CARG1->metatable | beq ->fff_restv | barrierback TAB:CARG1, CARG4, CARG3 | b ->fff_restv | |.ffunc rawget | ldrd CARG34, [BASE] | cmp NARGS8:RC, #16 | blo ->fff_fallback | mov CARG2, CARG3 | checktab CARG4, ->fff_fallback | mov CARG1, L | add CARG3, BASE, #8 | .IOS mov RA, BASE | bl extern lj_tab_get // (lua_State *L, GCtab *t, cTValue *key) | // Returns cTValue *. | .IOS mov BASE, RA | ldrd CARG12, [CRET1] | b ->fff_restv | |//-- Base library: conversions ------------------------------------------ | |.ffunc tonumber | // Only handles the number case inline (without a base argument). | ldrd CARG12, [BASE] | cmp NARGS8:RC, #8 | bne ->fff_fallback | checktp CARG2, LJ_TISNUM | bls ->fff_restv | b ->fff_fallback | |.ffunc_1 tostring | // Only handles the string or number case inline. | checktp CARG2, LJ_TSTR | // A __tostring method in the string base metatable is ignored. | beq ->fff_restv | // Handle numbers inline, unless a number base metatable is present. | ldr CARG4, [DISPATCH, #DISPATCH_GL(gcroot[GCROOT_BASEMT_NUM])] | str BASE, L->base | checktp CARG2, LJ_TISNUM | cmpls CARG4, #0 | str PC, SAVE_PC // Redundant (but a defined value). | bhi ->fff_fallback | ffgccheck | mov CARG1, L | mov CARG2, BASE | bl extern lj_strfmt_number // (lua_State *L, cTValue *o) | // Returns GCstr *. | ldr BASE, L->base | mvn CARG2, #~LJ_TSTR | b ->fff_restv | |//-- Base library: iterators ------------------------------------------- | |.ffunc_1 next | mvn CARG4, #~LJ_TNIL | checktab CARG2, ->fff_fallback | strd CARG34, [BASE, NARGS8:RC] // Set missing 2nd arg to nil. | ldr PC, [BASE, FRAME_PC] | mov CARG2, CARG1 | str BASE, L->base // Add frame since C call can throw. | mov CARG1, L | str BASE, L->top // Dummy frame length is ok. | add CARG3, BASE, #8 | str PC, SAVE_PC | bl extern lj_tab_next // (lua_State *L, GCtab *t, TValue *key) | // Returns 0 at end of traversal. | .IOS ldr BASE, L->base | cmp CRET1, #0 | mvneq CRET2, #~LJ_TNIL | beq ->fff_restv // End of traversal: return nil. | ldrd CARG12, [BASE, #8] // Copy key and value to results. | ldrd CARG34, [BASE, #16] | mov RC, #(2+1)*8 | strd CARG12, [BASE, #-8] | strd CARG34, [BASE] | b ->fff_res | |.ffunc_1 pairs | checktab CARG2, ->fff_fallback #if LJ_52 | ldr TAB:RB, TAB:CARG1->metatable #endif | ldrd CFUNC:CARG34, CFUNC:CARG3->upvalue[0] | ldr PC, [BASE, FRAME_PC] #if LJ_52 | cmp TAB:RB, #0 | bne ->fff_fallback #endif | mvn CARG2, #~LJ_TNIL | mov RC, #(3+1)*8 | strd CFUNC:CARG34, [BASE, #-8] | str CARG2, [BASE, #12] | b ->fff_res | |.ffunc_2 ipairs_aux | checktp CARG2, LJ_TTAB | checktpeq CARG4, LJ_TISNUM | bne ->fff_fallback | ldr RB, TAB:CARG1->asize | ldr RC, TAB:CARG1->array | add CARG3, CARG3, #1 | ldr PC, [BASE, FRAME_PC] | cmp CARG3, RB | add RC, RC, CARG3, lsl #3 | strd CARG34, [BASE, #-8] | ldrdlo CARG12, [RC] | mov RC, #(0+1)*8 | bhs >2 // Not in array part? |1: | checktp CARG2, LJ_TNIL | movne RC, #(2+1)*8 | strdne CARG12, [BASE] | b ->fff_res |2: // Check for empty hash part first. Otherwise call C function. | ldr RB, TAB:CARG1->hmask | mov CARG2, CARG3 | cmp RB, #0 | beq ->fff_res | .IOS mov RA, BASE | bl extern lj_tab_getinth // (GCtab *t, int32_t key) | // Returns cTValue * or NULL. | .IOS mov BASE, RA | cmp CRET1, #0 | beq ->fff_res | ldrd CARG12, [CRET1] | b <1 | |.ffunc_1 ipairs | checktab CARG2, ->fff_fallback #if LJ_52 | ldr TAB:RB, TAB:CARG1->metatable #endif | ldrd CFUNC:CARG34, CFUNC:CARG3->upvalue[0] | ldr PC, [BASE, FRAME_PC] #if LJ_52 | cmp TAB:RB, #0 | bne ->fff_fallback #endif | mov CARG1, #0 | mvn CARG2, #~LJ_TISNUM | mov RC, #(3+1)*8 | strd CFUNC:CARG34, [BASE, #-8] | strd CARG12, [BASE, #8] | b ->fff_res | |//-- Base library: catch errors ---------------------------------------- | |.ffunc pcall | ldrb RA, [DISPATCH, #DISPATCH_GL(hookmask)] | cmp NARGS8:RC, #8 | blo ->fff_fallback | tst RA, #HOOK_ACTIVE // Remember active hook before pcall. | mov RB, BASE | add BASE, BASE, #8 | moveq PC, #8+FRAME_PCALL | movne PC, #8+FRAME_PCALLH | sub NARGS8:RC, NARGS8:RC, #8 | b ->vm_call_dispatch | |.ffunc_2 xpcall | ldrb RA, [DISPATCH, #DISPATCH_GL(hookmask)] | checkfunc CARG4, ->fff_fallback // Traceback must be a function. | mov RB, BASE | strd CARG12, [BASE, #8] // Swap function and traceback. | strd CARG34, [BASE] | tst RA, #HOOK_ACTIVE // Remember active hook before pcall. | add BASE, BASE, #16 | moveq PC, #16+FRAME_PCALL | movne PC, #16+FRAME_PCALLH | sub NARGS8:RC, NARGS8:RC, #16 | b ->vm_call_dispatch | |//-- Coroutine library -------------------------------------------------- | |.macro coroutine_resume_wrap, resume |.if resume |.ffunc_1 coroutine_resume | checktp CARG2, LJ_TTHREAD | bne ->fff_fallback |.else |.ffunc coroutine_wrap_aux | ldr L:CARG1, CFUNC:CARG3->upvalue[0].gcr |.endif | ldr PC, [BASE, FRAME_PC] | str BASE, L->base | ldr CARG2, L:CARG1->top | ldrb RA, L:CARG1->status | ldr RB, L:CARG1->base | add CARG3, CARG2, NARGS8:RC | add CARG4, CARG2, RA | str PC, SAVE_PC | cmp CARG4, RB | beq ->fff_fallback | ldr CARG4, L:CARG1->maxstack | ldr RB, L:CARG1->cframe | cmp RA, #LUA_YIELD | cmpls CARG3, CARG4 | cmpls RB, #0 | bhi ->fff_fallback |1: |.if resume | sub CARG3, CARG3, #8 // Keep resumed thread in stack for GC. | add BASE, BASE, #8 | sub NARGS8:RC, NARGS8:RC, #8 |.endif | str CARG3, L:CARG1->top | str BASE, L->top |2: // Move args to coroutine. | ldrd CARG34, [BASE, RB] | cmp RB, NARGS8:RC | strdne CARG34, [CARG2, RB] | add RB, RB, #8 | bne <2 | | mov CARG3, #0 | mov L:RA, L:CARG1 | mov CARG4, #0 | bl ->vm_resume // (lua_State *L, TValue *base, 0, 0) | // Returns thread status. |4: | ldr CARG3, L:RA->base | mv_vmstate CARG2, INTERP | ldr CARG4, L:RA->top | cmp CRET1, #LUA_YIELD | ldr BASE, L->base | str L, [DISPATCH, #DISPATCH_GL(cur_L)] | st_vmstate CARG2 | bhi >8 | subs RC, CARG4, CARG3 | ldr CARG1, L->maxstack | add CARG2, BASE, RC | beq >6 // No results? | cmp CARG2, CARG1 | mov RB, #0 | bhi >9 // Need to grow stack? | | sub CARG4, RC, #8 | str CARG3, L:RA->top // Clear coroutine stack. |5: // Move results from coroutine. | ldrd CARG12, [CARG3, RB] | cmp RB, CARG4 | strd CARG12, [BASE, RB] | add RB, RB, #8 | bne <5 |6: |.if resume | mvn CARG3, #~LJ_TTRUE | add RC, RC, #16 |7: | str CARG3, [BASE, #-4] // Prepend true/false to results. | sub RA, BASE, #8 |.else | mov RA, BASE | add RC, RC, #8 |.endif | ands CARG1, PC, #FRAME_TYPE | str PC, SAVE_PC | str RC, SAVE_MULTRES | beq ->BC_RET_Z | b ->vm_return | |8: // Coroutine returned with error (at co->top-1). |.if resume | ldrd CARG12, [CARG4, #-8]! | mvn CARG3, #~LJ_TFALSE | mov RC, #(2+1)*8 | str CARG4, L:RA->top // Remove error from coroutine stack. | strd CARG12, [BASE] // Copy error message. | b <7 |.else | mov CARG1, L | mov CARG2, L:RA | bl extern lj_ffh_coroutine_wrap_err // (lua_State *L, lua_State *co) | // Never returns. |.endif | |9: // Handle stack expansion on return from yield. | mov CARG1, L | lsr CARG2, RC, #3 | bl extern lj_state_growstack // (lua_State *L, int n) | mov CRET1, #0 | b <4 |.endmacro | | coroutine_resume_wrap 1 // coroutine.resume | coroutine_resume_wrap 0 // coroutine.wrap | |.ffunc coroutine_yield | ldr CARG1, L->cframe | add CARG2, BASE, NARGS8:RC | str BASE, L->base | tst CARG1, #CFRAME_RESUME | str CARG2, L->top | mov CRET1, #LUA_YIELD | mov CARG3, #0 | beq ->fff_fallback | str CARG3, L->cframe | strb CRET1, L->status | b ->vm_leave_unw | |//-- Math library ------------------------------------------------------- | |.macro math_round, func | .ffunc_1 math_ .. func | checktp CARG2, LJ_TISNUM | beq ->fff_restv | bhi ->fff_fallback | // Round FP value and normalize result. | lsl CARG3, CARG2, #1 | adds RB, CARG3, #0x00200000 | bpl >2 // |x| < 1? | mvn CARG4, #0x3e0 | subs RB, CARG4, RB, asr #21 | lsl CARG4, CARG2, #11 | lsl CARG3, CARG1, #11 | orr CARG4, CARG4, #0x80000000 | rsb INS, RB, #32 | orr CARG4, CARG4, CARG1, lsr #21 | bls >3 // |x| >= 2^31? | orr CARG3, CARG3, CARG4, lsl INS | lsr CARG1, CARG4, RB |.if "func" == "floor" | tst CARG3, CARG2, asr #31 | addne CARG1, CARG1, #1 |.else | bics CARG3, CARG3, CARG2, asr #31 | addsne CARG1, CARG1, #1 | ldrdvs CARG12, >9 | bvs ->fff_restv |.endif | cmp CARG2, #0 | rsblt CARG1, CARG1, #0 |1: | mvn CARG2, #~LJ_TISNUM | b ->fff_restv | |2: // |x| < 1 | bcs ->fff_restv // |x| is not finite. | orr CARG3, CARG3, CARG1 // ztest = abs(hi) | lo |.if "func" == "floor" | tst CARG3, CARG2, asr #31 // return (ztest & sign) == 0 ? 0 : -1 | moveq CARG1, #0 | mvnne CARG1, #0 |.else | bics CARG3, CARG3, CARG2, asr #31 // return (ztest & ~sign) == 0 ? 0 : 1 | moveq CARG1, #0 | movne CARG1, #1 |.endif | mvn CARG2, #~LJ_TISNUM | b ->fff_restv | |3: // |x| >= 2^31. Check for x == -(2^31). | cmpeq CARG4, #0x80000000 |.if "func" == "floor" | cmpeq CARG3, #0 |.endif | bne >4 | cmp CARG2, #0 | movmi CARG1, #0x80000000 | bmi <1 |4: | bl ->vm_..func.._sf | b ->fff_restv |.endmacro | | math_round floor | math_round ceil | |.align 8 |9: | .long 0x00000000, 0x41e00000 // 2^31. | |.ffunc_1 math_abs | checktp CARG2, LJ_TISNUM | bhi ->fff_fallback | bicne CARG2, CARG2, #0x80000000 | bne ->fff_restv | cmp CARG1, #0 | rsbslt CARG1, CARG1, #0 | ldrdvs CARG12, <9 | // Fallthrough. | |->fff_restv: | // CARG12 = TValue result. | ldr PC, [BASE, FRAME_PC] | strd CARG12, [BASE, #-8] |->fff_res1: | // PC = return. | mov RC, #(1+1)*8 |->fff_res: | // RC = (nresults+1)*8, PC = return. | ands CARG1, PC, #FRAME_TYPE | ldreq INS, [PC, #-4] | str RC, SAVE_MULTRES | sub RA, BASE, #8 | bne ->vm_return | decode_RB8 RB, INS |5: | cmp RB, RC // More results expected? | bhi >6 | decode_RA8 CARG1, INS | ins_next1 | ins_next2 | // Adjust BASE. KBASE is assumed to be set for the calling frame. | sub BASE, RA, CARG1 | ins_next3 | |6: // Fill up results with nil. | add CARG2, RA, RC | mvn CARG1, #~LJ_TNIL | add RC, RC, #8 | str CARG1, [CARG2, #-4] | b <5 | |.macro math_extern, func |.if HFABI | .ffunc_d math_ .. func |.else | .ffunc_n math_ .. func |.endif | .IOS mov RA, BASE | bl extern func | .IOS mov BASE, RA |.if HFABI | b ->fff_resd |.else | b ->fff_restv |.endif |.endmacro | |.macro math_extern2, func |.if HFABI | .ffunc_dd math_ .. func |.else | .ffunc_nn math_ .. func |.endif | .IOS mov RA, BASE | bl extern func | .IOS mov BASE, RA |.if HFABI | b ->fff_resd |.else | b ->fff_restv |.endif |.endmacro | |.if FPU | .ffunc_d math_sqrt | vsqrt.f64 d0, d0 |->fff_resd: | ldr PC, [BASE, FRAME_PC] | vstr d0, [BASE, #-8] | b ->fff_res1 |.else | math_extern sqrt |.endif | |.ffunc math_log |.if HFABI | ldr CARG2, [BASE, #4] | cmp NARGS8:RC, #8 // Need exactly 1 argument. | vldr d0, [BASE] | bne ->fff_fallback |.else | ldrd CARG12, [BASE] | cmp NARGS8:RC, #8 // Need exactly 1 argument. | bne ->fff_fallback |.endif | checktp CARG2, LJ_TISNUM | bhs ->fff_fallback | .IOS mov RA, BASE | bl extern log | .IOS mov BASE, RA |.if HFABI | b ->fff_resd |.else | b ->fff_restv |.endif | | math_extern log10 | math_extern exp | math_extern sin | math_extern cos | math_extern tan | math_extern asin | math_extern acos | math_extern atan | math_extern sinh | math_extern cosh | math_extern tanh | math_extern2 pow | math_extern2 atan2 | math_extern2 fmod | |.if HFABI | .ffunc math_ldexp | ldr CARG4, [BASE, #4] | ldrd CARG12, [BASE, #8] | cmp NARGS8:RC, #16 | blo ->fff_fallback | vldr d0, [BASE] | checktp CARG4, LJ_TISNUM | bhs ->fff_fallback | checktp CARG2, LJ_TISNUM | bne ->fff_fallback | .IOS mov RA, BASE | bl extern ldexp // (double x, int exp) | .IOS mov BASE, RA | b ->fff_resd |.else |.ffunc_2 math_ldexp | checktp CARG2, LJ_TISNUM | bhs ->fff_fallback | checktp CARG4, LJ_TISNUM | bne ->fff_fallback | .IOS mov RA, BASE | bl extern ldexp // (double x, int exp) | .IOS mov BASE, RA | b ->fff_restv |.endif | |.if HFABI |.ffunc_d math_frexp | mov CARG1, sp | .IOS mov RA, BASE | bl extern frexp | .IOS mov BASE, RA | ldr CARG3, [sp] | mvn CARG4, #~LJ_TISNUM | ldr PC, [BASE, FRAME_PC] | vstr d0, [BASE, #-8] | mov RC, #(2+1)*8 | strd CARG34, [BASE] | b ->fff_res |.else |.ffunc_n math_frexp | mov CARG3, sp | .IOS mov RA, BASE | bl extern frexp | .IOS mov BASE, RA | ldr CARG3, [sp] | mvn CARG4, #~LJ_TISNUM | ldr PC, [BASE, FRAME_PC] | strd CARG12, [BASE, #-8] | mov RC, #(2+1)*8 | strd CARG34, [BASE] | b ->fff_res |.endif | |.if HFABI |.ffunc_d math_modf | sub CARG1, BASE, #8 | ldr PC, [BASE, FRAME_PC] | .IOS mov RA, BASE | bl extern modf | .IOS mov BASE, RA | mov RC, #(2+1)*8 | vstr d0, [BASE] | b ->fff_res |.else |.ffunc_n math_modf | sub CARG3, BASE, #8 | ldr PC, [BASE, FRAME_PC] | .IOS mov RA, BASE | bl extern modf | .IOS mov BASE, RA | mov RC, #(2+1)*8 | strd CARG12, [BASE] | b ->fff_res |.endif | |.macro math_minmax, name, cond, fcond |.if FPU | .ffunc_1 name | add RB, BASE, RC | checktp CARG2, LJ_TISNUM | add RA, BASE, #8 | bne >4 |1: // Handle integers. | ldrd CARG34, [RA] | cmp RA, RB | bhs ->fff_restv | checktp CARG4, LJ_TISNUM | bne >3 | cmp CARG1, CARG3 | add RA, RA, #8 | mov..cond CARG1, CARG3 | b <1 |3: // Convert intermediate result to number and continue below. | vmov s4, CARG1 | bhi ->fff_fallback | vldr d1, [RA] | vcvt.f64.s32 d0, s4 | b >6 | |4: | vldr d0, [BASE] | bhi ->fff_fallback |5: // Handle numbers. | ldrd CARG34, [RA] | vldr d1, [RA] | cmp RA, RB | bhs ->fff_resd | checktp CARG4, LJ_TISNUM | bhs >7 |6: | vcmp.f64 d0, d1 | vmrs | add RA, RA, #8 | vmov..fcond.f64 d0, d1 | b <5 |7: // Convert integer to number and continue above. | vmov s4, CARG3 | bhi ->fff_fallback | vcvt.f64.s32 d1, s4 | b <6 | |.else | | .ffunc_1 name | checktp CARG2, LJ_TISNUM | mov RA, #8 | bne >4 |1: // Handle integers. | ldrd CARG34, [BASE, RA] | cmp RA, RC | bhs ->fff_restv | checktp CARG4, LJ_TISNUM | bne >3 | cmp CARG1, CARG3 | add RA, RA, #8 | mov..cond CARG1, CARG3 | b <1 |3: // Convert intermediate result to number and continue below. | bhi ->fff_fallback | bl extern __aeabi_i2d | ldrd CARG34, [BASE, RA] | b >6 | |4: | bhi ->fff_fallback |5: // Handle numbers. | ldrd CARG34, [BASE, RA] | cmp RA, RC | bhs ->fff_restv | checktp CARG4, LJ_TISNUM | bhs >7 |6: | bl extern __aeabi_cdcmple | add RA, RA, #8 | mov..fcond CARG1, CARG3 | mov..fcond CARG2, CARG4 | b <5 |7: // Convert integer to number and continue above. | bhi ->fff_fallback | strd CARG12, TMPD | mov CARG1, CARG3 | bl extern __aeabi_i2d | ldrd CARG34, TMPD | b <6 |.endif |.endmacro | | math_minmax math_min, gt, hi | math_minmax math_max, lt, lo | |//-- String library ----------------------------------------------------- | |.ffunc string_byte // Only handle the 1-arg case here. | ldrd CARG12, [BASE] | ldr PC, [BASE, FRAME_PC] | cmp NARGS8:RC, #8 | checktpeq CARG2, LJ_TSTR // Need exactly 1 argument. | bne ->fff_fallback | ldr CARG3, STR:CARG1->len | ldrb CARG1, STR:CARG1[1] // Access is always ok (NUL at end). | mvn CARG2, #~LJ_TISNUM | cmp CARG3, #0 | moveq RC, #(0+1)*8 | movne RC, #(1+1)*8 | strd CARG12, [BASE, #-8] | b ->fff_res | |.ffunc string_char // Only handle the 1-arg case here. | ffgccheck | ldrd CARG12, [BASE] | ldr PC, [BASE, FRAME_PC] | cmp NARGS8:RC, #8 // Need exactly 1 argument. | checktpeq CARG2, LJ_TISNUM | bicseq CARG4, CARG1, #255 | mov CARG3, #1 | bne ->fff_fallback | str CARG1, TMPD | mov CARG2, TMPDp // Points to stack. Little-endian. |->fff_newstr: | // CARG2 = str, CARG3 = len. | str BASE, L->base | mov CARG1, L | str PC, SAVE_PC | bl extern lj_str_new // (lua_State *L, char *str, size_t l) |->fff_resstr: | // Returns GCstr *. | ldr BASE, L->base | mvn CARG2, #~LJ_TSTR | b ->fff_restv | |.ffunc string_sub | ffgccheck | ldrd CARG12, [BASE] | ldrd CARG34, [BASE, #16] | cmp NARGS8:RC, #16 | mvn RB, #0 | beq >1 | blo ->fff_fallback | checktp CARG4, LJ_TISNUM | mov RB, CARG3 | bne ->fff_fallback |1: | ldrd CARG34, [BASE, #8] | checktp CARG2, LJ_TSTR | ldreq CARG2, STR:CARG1->len | checktpeq CARG4, LJ_TISNUM | bne ->fff_fallback | // CARG1 = str, CARG2 = str->len, CARG3 = start, RB = end | add CARG4, CARG2, #1 | cmp CARG3, #0 // if (start < 0) start += len+1 | addlt CARG3, CARG3, CARG4 | cmp CARG3, #1 // if (start < 1) start = 1 | movlt CARG3, #1 | cmp RB, #0 // if (end < 0) end += len+1 | addlt RB, RB, CARG4 | bic RB, RB, RB, asr #31 // if (end < 0) end = 0 | cmp RB, CARG2 // if (end > len) end = len | add CARG1, STR:CARG1, #sizeof(GCstr)-1 | movgt RB, CARG2 | add CARG2, CARG1, CARG3 | subs CARG3, RB, CARG3 // len = end - start | add CARG3, CARG3, #1 // len += 1 | bge ->fff_newstr |->fff_emptystr: | sub STR:CARG1, DISPATCH, #-DISPATCH_GL(strempty) | mvn CARG2, #~LJ_TSTR | b ->fff_restv | |.macro ffstring_op, name | .ffunc string_ .. name | ffgccheck | ldr CARG3, [BASE, #4] | cmp NARGS8:RC, #8 | ldr STR:CARG2, [BASE] | blo ->fff_fallback | sub SBUF:CARG1, DISPATCH, #-DISPATCH_GL(tmpbuf) | checkstr CARG3, ->fff_fallback | ldr CARG4, SBUF:CARG1->b | str BASE, L->base | str PC, SAVE_PC | str L, SBUF:CARG1->L | str CARG4, SBUF:CARG1->p | bl extern lj_buf_putstr_ .. name | bl extern lj_buf_tostr | b ->fff_resstr |.endmacro | |ffstring_op reverse |ffstring_op lower |ffstring_op upper | |//-- Bit library -------------------------------------------------------- | |// FP number to bit conversion for soft-float. Clobbers r0-r3. |->vm_tobit_fb: | bhi ->fff_fallback |->vm_tobit: | lsl RB, CARG2, #1 | adds RB, RB, #0x00200000 | movpl CARG1, #0 // |x| < 1? | bxpl lr | mvn CARG4, #0x3e0 | subs RB, CARG4, RB, asr #21 | bmi >1 // |x| >= 2^32? | lsl CARG4, CARG2, #11 | orr CARG4, CARG4, #0x80000000 | orr CARG4, CARG4, CARG1, lsr #21 | cmp CARG2, #0 | lsr CARG1, CARG4, RB | rsblt CARG1, CARG1, #0 | bx lr |1: | add RB, RB, #21 | lsr CARG4, CARG1, RB | rsb RB, RB, #20 | lsl CARG1, CARG2, #12 | cmp CARG2, #0 | orr CARG1, CARG4, CARG1, lsl RB | rsblt CARG1, CARG1, #0 | bx lr | |.macro .ffunc_bit, name | .ffunc_1 bit_..name | checktp CARG2, LJ_TISNUM | blne ->vm_tobit_fb |.endmacro | |.ffunc_bit tobit | mvn CARG2, #~LJ_TISNUM | b ->fff_restv | |.macro .ffunc_bit_op, name, ins | .ffunc_bit name | mov CARG3, CARG1 | mov RA, #8 |1: | ldrd CARG12, [BASE, RA] | cmp RA, NARGS8:RC | add RA, RA, #8 | bge >2 | checktp CARG2, LJ_TISNUM | blne ->vm_tobit_fb | ins CARG3, CARG3, CARG1 | b <1 |.endmacro | |.ffunc_bit_op band, and |.ffunc_bit_op bor, orr |.ffunc_bit_op bxor, eor | |2: | mvn CARG4, #~LJ_TISNUM | ldr PC, [BASE, FRAME_PC] | strd CARG34, [BASE, #-8] | b ->fff_res1 | |.ffunc_bit bswap | eor CARG3, CARG1, CARG1, ror #16 | bic CARG3, CARG3, #0x00ff0000 | ror CARG1, CARG1, #8 | mvn CARG2, #~LJ_TISNUM | eor CARG1, CARG1, CARG3, lsr #8 | b ->fff_restv | |.ffunc_bit bnot | mvn CARG1, CARG1 | mvn CARG2, #~LJ_TISNUM | b ->fff_restv | |.macro .ffunc_bit_sh, name, ins, shmod | .ffunc bit_..name | ldrd CARG12, [BASE, #8] | cmp NARGS8:RC, #16 | blo ->fff_fallback | checktp CARG2, LJ_TISNUM | blne ->vm_tobit_fb |.if shmod == 0 | and RA, CARG1, #31 |.else | rsb RA, CARG1, #0 |.endif | ldrd CARG12, [BASE] | checktp CARG2, LJ_TISNUM | blne ->vm_tobit_fb | ins CARG1, CARG1, RA | mvn CARG2, #~LJ_TISNUM | b ->fff_restv |.endmacro | |.ffunc_bit_sh lshift, lsl, 0 |.ffunc_bit_sh rshift, lsr, 0 |.ffunc_bit_sh arshift, asr, 0 |.ffunc_bit_sh rol, ror, 1 |.ffunc_bit_sh ror, ror, 0 | |//----------------------------------------------------------------------- | |->fff_fallback: // Call fast function fallback handler. | // BASE = new base, RC = nargs*8 | ldr CARG3, [BASE, FRAME_FUNC] | ldr CARG2, L->maxstack | add CARG1, BASE, NARGS8:RC | ldr PC, [BASE, FRAME_PC] // Fallback may overwrite PC. | str CARG1, L->top | ldr CARG3, CFUNC:CARG3->f | str BASE, L->base | add CARG1, CARG1, #8*LUA_MINSTACK | str PC, SAVE_PC // Redundant (but a defined value). | cmp CARG1, CARG2 | mov CARG1, L | bhi >5 // Need to grow stack. | blx CARG3 // (lua_State *L) | // Either throws an error, or recovers and returns -1, 0 or nresults+1. | ldr BASE, L->base | cmp CRET1, #0 | lsl RC, CRET1, #3 | sub RA, BASE, #8 | bgt ->fff_res // Returned nresults+1? |1: // Returned 0 or -1: retry fast path. | ldr CARG1, L->top | ldr LFUNC:CARG3, [BASE, FRAME_FUNC] | sub NARGS8:RC, CARG1, BASE | bne ->vm_call_tail // Returned -1? | ins_callt // Returned 0: retry fast path. | |// Reconstruct previous base for vmeta_call during tailcall. |->vm_call_tail: | ands CARG1, PC, #FRAME_TYPE | bic CARG2, PC, #FRAME_TYPEP | ldreq INS, [PC, #-4] | andeq CARG2, MASKR8, INS, lsr #5 // Conditional decode_RA8. | addeq CARG2, CARG2, #8 | sub RB, BASE, CARG2 | b ->vm_call_dispatch // Resolve again for tailcall. | |5: // Grow stack for fallback handler. | mov CARG2, #LUA_MINSTACK | bl extern lj_state_growstack // (lua_State *L, int n) | ldr BASE, L->base | cmp CARG1, CARG1 // Set zero-flag to force retry. | b <1 | |->fff_gcstep: // Call GC step function. | // BASE = new base, RC = nargs*8 | mov RA, lr | str BASE, L->base | add CARG2, BASE, NARGS8:RC | str PC, SAVE_PC // Redundant (but a defined value). | str CARG2, L->top | mov CARG1, L | bl extern lj_gc_step // (lua_State *L) | ldr BASE, L->base | mov lr, RA // Help return address predictor. | ldr CFUNC:CARG3, [BASE, FRAME_FUNC] | bx lr | |//----------------------------------------------------------------------- |//-- Special dispatch targets ------------------------------------------- |//----------------------------------------------------------------------- | |->vm_record: // Dispatch target for recording phase. |.if JIT | ldrb CARG1, [DISPATCH, #DISPATCH_GL(hookmask)] | tst CARG1, #HOOK_VMEVENT // No recording while in vmevent. | bne >5 | // Decrement the hookcount for consistency, but always do the call. | ldr CARG2, [DISPATCH, #DISPATCH_GL(hookcount)] | tst CARG1, #HOOK_ACTIVE | bne >1 | sub CARG2, CARG2, #1 | tst CARG1, #LUA_MASKLINE|LUA_MASKCOUNT | strne CARG2, [DISPATCH, #DISPATCH_GL(hookcount)] | b >1 |.endif | |->vm_rethook: // Dispatch target for return hooks. | ldrb CARG1, [DISPATCH, #DISPATCH_GL(hookmask)] | tst CARG1, #HOOK_ACTIVE // Hook already active? | beq >1 |5: // Re-dispatch to static ins. | decode_OP OP, INS | add OP, DISPATCH, OP, lsl #2 | ldr pc, [OP, #GG_DISP2STATIC] | |->vm_inshook: // Dispatch target for instr/line hooks. | ldrb CARG1, [DISPATCH, #DISPATCH_GL(hookmask)] | ldr CARG2, [DISPATCH, #DISPATCH_GL(hookcount)] | tst CARG1, #HOOK_ACTIVE // Hook already active? | bne <5 | tst CARG1, #LUA_MASKLINE|LUA_MASKCOUNT | beq <5 | subs CARG2, CARG2, #1 | str CARG2, [DISPATCH, #DISPATCH_GL(hookcount)] | beq >1 | tst CARG1, #LUA_MASKLINE | beq <5 |1: | mov CARG1, L | str BASE, L->base | mov CARG2, PC | // SAVE_PC must hold the _previous_ PC. The callee updates it with PC. | bl extern lj_dispatch_ins // (lua_State *L, const BCIns *pc) |3: | ldr BASE, L->base |4: // Re-dispatch to static ins. | ldrb OP, [PC, #-4] | ldr INS, [PC, #-4] | add OP, DISPATCH, OP, lsl #2 | ldr OP, [OP, #GG_DISP2STATIC] | decode_RA8 RA, INS | decode_RD RC, INS | bx OP | |->cont_hook: // Continue from hook yield. | ldr CARG1, [CARG4, #-24] | add PC, PC, #4 | str CARG1, SAVE_MULTRES // Restore MULTRES for *M ins. | b <4 | |->vm_hotloop: // Hot loop counter underflow. |.if JIT | ldr LFUNC:CARG3, [BASE, FRAME_FUNC] // Same as curr_topL(L). | sub CARG1, DISPATCH, #-GG_DISP2J | str PC, SAVE_PC | ldr CARG3, LFUNC:CARG3->field_pc | mov CARG2, PC | str L, [DISPATCH, #DISPATCH_J(L)] | ldrb CARG3, [CARG3, #PC2PROTO(framesize)] | str BASE, L->base | add CARG3, BASE, CARG3, lsl #3 | str CARG3, L->top | bl extern lj_trace_hot // (jit_State *J, const BCIns *pc) | b <3 |.endif | |->vm_callhook: // Dispatch target for call hooks. | mov CARG2, PC |.if JIT | b >1 |.endif | |->vm_hotcall: // Hot call counter underflow. |.if JIT | orr CARG2, PC, #1 |1: |.endif | add CARG4, BASE, RC | str PC, SAVE_PC | mov CARG1, L | str BASE, L->base | sub RA, RA, BASE | str CARG4, L->top | bl extern lj_dispatch_call // (lua_State *L, const BCIns *pc) | // Returns ASMFunction. | ldr BASE, L->base | ldr CARG4, L->top | mov CARG2, #0 | add RA, BASE, RA | sub NARGS8:RC, CARG4, BASE | str CARG2, SAVE_PC // Invalidate for subsequent line hook. | ldr LFUNC:CARG3, [BASE, FRAME_FUNC] | ldr INS, [PC, #-4] | bx CRET1 | |->cont_stitch: // Trace stitching. |.if JIT | // RA = resultptr, CARG4 = meta base | ldr RB, SAVE_MULTRES | ldr INS, [PC, #-4] | ldr TRACE:CARG3, [CARG4, #-24] // Save previous trace. | subs RB, RB, #8 | decode_RA8 RC, INS // Call base. | beq >2 |1: // Move results down. | ldrd CARG12, [RA] | add RA, RA, #8 | subs RB, RB, #8 | strd CARG12, [BASE, RC] | add RC, RC, #8 | bne <1 |2: | decode_RA8 RA, INS | decode_RB8 RB, INS | add RA, RA, RB |3: | cmp RA, RC | mvn CARG2, #~LJ_TNIL | bhi >9 // More results wanted? | | ldrh RA, TRACE:CARG3->traceno | ldrh RC, TRACE:CARG3->link | cmp RC, RA | beq ->cont_nop // Blacklisted. | cmp RC, #0 | bne =>BC_JLOOP // Jump to stitched trace. | | // Stitch a new trace to the previous trace. | str RA, [DISPATCH, #DISPATCH_J(exitno)] | str L, [DISPATCH, #DISPATCH_J(L)] | str BASE, L->base | sub CARG1, DISPATCH, #-GG_DISP2J | mov CARG2, PC | bl extern lj_dispatch_stitch // (jit_State *J, const BCIns *pc) | ldr BASE, L->base | b ->cont_nop | |9: // Fill up results with nil. | strd CARG12, [BASE, RC] | add RC, RC, #8 | b <3 |.endif | |->vm_profhook: // Dispatch target for profiler hook. #if LJ_HASPROFILE | mov CARG1, L | str BASE, L->base | mov CARG2, PC | bl extern lj_dispatch_profile // (lua_State *L, const BCIns *pc) | // HOOK_PROFILE is off again, so re-dispatch to dynamic instruction. | ldr BASE, L->base | sub PC, PC, #4 | b ->cont_nop #endif | |//----------------------------------------------------------------------- |//-- Trace exit handler ------------------------------------------------- |//----------------------------------------------------------------------- | |->vm_exit_handler: |.if JIT | sub sp, sp, #12 | push {r0,r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,r11,r12} | ldr CARG1, [sp, #64] // Load original value of lr. | ldr DISPATCH, [lr] // Load DISPATCH. | add CARG3, sp, #64 // Recompute original value of sp. | mv_vmstate CARG4, EXIT | str CARG3, [sp, #52] // Store sp in RID_SP | st_vmstate CARG4 | ldr CARG2, [CARG1, #-4]! // Get exit instruction. | str CARG1, [sp, #56] // Store exit pc in RID_LR and RID_PC. | str CARG1, [sp, #60] |.if FPU | vpush {d0-d15} |.endif | lsl CARG2, CARG2, #8 | add CARG1, CARG1, CARG2, asr #6 | ldr CARG2, [lr, #4] // Load exit stub group offset. | sub CARG1, CARG1, lr | ldr L, [DISPATCH, #DISPATCH_GL(cur_L)] | add CARG1, CARG2, CARG1, lsr #2 // Compute exit number. | ldr BASE, [DISPATCH, #DISPATCH_GL(jit_base)] | str CARG1, [DISPATCH, #DISPATCH_J(exitno)] | mov CARG4, #0 | str BASE, L->base | str L, [DISPATCH, #DISPATCH_J(L)] | str CARG4, [DISPATCH, #DISPATCH_GL(jit_base)] | sub CARG1, DISPATCH, #-GG_DISP2J | mov CARG2, sp | bl extern lj_trace_exit // (jit_State *J, ExitState *ex) | // Returns MULTRES (unscaled) or negated error code. | ldr CARG2, L->cframe | ldr BASE, L->base | bic CARG2, CARG2, #~CFRAME_RAWMASK // Use two steps: bic sp is deprecated. | mov sp, CARG2 | ldr PC, SAVE_PC // Get SAVE_PC. | str L, SAVE_L // Set SAVE_L (on-trace resume/yield). | b >1 |.endif |->vm_exit_interp: | // CARG1 = MULTRES or negated error code, BASE, PC and DISPATCH set. |.if JIT | ldr L, SAVE_L |1: | cmp CARG1, #0 | blt >9 // Check for error from exit. | lsl RC, CARG1, #3 | ldr LFUNC:CARG2, [BASE, FRAME_FUNC] | str RC, SAVE_MULTRES | mov CARG3, #0 | str BASE, L->base | ldr CARG2, LFUNC:CARG2->field_pc | str CARG3, [DISPATCH, #DISPATCH_GL(jit_base)] | mv_vmstate CARG4, INTERP | ldr KBASE, [CARG2, #PC2PROTO(k)] | // Modified copy of ins_next which handles function header dispatch, too. | ldrb OP, [PC] | mov MASKR8, #255 | ldr INS, [PC], #4 | lsl MASKR8, MASKR8, #3 // MASKR8 = 255*8. | st_vmstate CARG4 | cmp OP, #BC_FUNCC+2 // Fast function? | bhs >4 |2: | cmp OP, #BC_FUNCF // Function header? | ldr OP, [DISPATCH, OP, lsl #2] | decode_RA8 RA, INS | lsrlo RC, INS, #16 // No: Decode operands A*8 and D. | subhs RC, RC, #8 | addhs RA, RA, BASE // Yes: RA = BASE+framesize*8, RC = nargs*8 | ldrhs CARG3, [BASE, FRAME_FUNC] | bx OP | |4: // Check frame below fast function. | ldr CARG1, [BASE, FRAME_PC] | ands CARG2, CARG1, #FRAME_TYPE | bne <2 // Trace stitching continuation? | // Otherwise set KBASE for Lua function below fast function. | ldr CARG3, [CARG1, #-4] | decode_RA8 CARG1, CARG3 | sub CARG2, BASE, CARG1 | ldr LFUNC:CARG3, [CARG2, #-16] | ldr CARG3, LFUNC:CARG3->field_pc | ldr KBASE, [CARG3, #PC2PROTO(k)] | b <2 | |9: // Rethrow error from the right C frame. | rsb CARG2, CARG1, #0 | mov CARG1, L | bl extern lj_err_throw // (lua_State *L, int errcode) |.endif | |//----------------------------------------------------------------------- |//-- Math helper functions ---------------------------------------------- |//----------------------------------------------------------------------- | |// FP value rounding. Called from JIT code. |// |// double lj_vm_floor/ceil/trunc(double x); |.macro vm_round, func, hf |.if hf == 1 | vmov CARG1, CARG2, d0 |.endif | lsl CARG3, CARG2, #1 | adds RB, CARG3, #0x00200000 | bpl >2 // |x| < 1? | mvn CARG4, #0x3cc | subs RB, CARG4, RB, asr #21 // 2^0: RB = 51, 2^51: RB = 0. | bxlo lr // |x| >= 2^52: done. | mvn CARG4, #1 | bic CARG3, CARG1, CARG4, lsl RB // ztest = lo & ~lomask | and CARG1, CARG1, CARG4, lsl RB // lo &= lomask | subs RB, RB, #32 | bicpl CARG4, CARG2, CARG4, lsl RB // |x| <= 2^20: ztest |= hi & ~himask | orrpl CARG3, CARG3, CARG4 | mvnpl CARG4, #1 | andpl CARG2, CARG2, CARG4, lsl RB // |x| <= 2^20: hi &= himask |.if "func" == "floor" | tst CARG3, CARG2, asr #31 // iszero = ((ztest & signmask) == 0) |.else | bics CARG3, CARG3, CARG2, asr #31 // iszero = ((ztest & ~signmask) == 0) |.endif |.if hf == 1 | vmoveq d0, CARG1, CARG2 |.endif | bxeq lr // iszero: done. | mvn CARG4, #1 | cmp RB, #0 | lslpl CARG3, CARG4, RB | mvnmi CARG3, #0 | add RB, RB, #32 | subs CARG1, CARG1, CARG4, lsl RB // lo = lo-lomask | sbc CARG2, CARG2, CARG3 // hi = hi-himask+carry |.if hf == 1 | vmov d0, CARG1, CARG2 |.endif | bx lr | |2: // |x| < 1: | bxcs lr // |x| is not finite. | orr CARG3, CARG3, CARG1 // ztest = (2*hi) | lo |.if "func" == "floor" | tst CARG3, CARG2, asr #31 // iszero = ((ztest & signmask) == 0) |.else | bics CARG3, CARG3, CARG2, asr #31 // iszero = ((ztest & ~signmask) == 0) |.endif | mov CARG1, #0 // lo = 0 | and CARG2, CARG2, #0x80000000 | ldrne CARG4, <9 // hi = sign(x) | (iszero ? 0.0 : 1.0) | orrne CARG2, CARG2, CARG4 |.if hf == 1 | vmov d0, CARG1, CARG2 |.endif | bx lr |.endmacro | |9: | .long 0x3ff00000 // hiword(+1.0) | |->vm_floor: |.if HFABI | vm_round floor, 1 |.endif |->vm_floor_sf: | vm_round floor, 0 | |->vm_ceil: |.if HFABI | vm_round ceil, 1 |.endif |->vm_ceil_sf: | vm_round ceil, 0 | |.macro vm_trunc, hf |.if JIT |.if hf == 1 | vmov CARG1, CARG2, d0 |.endif | lsl CARG3, CARG2, #1 | adds RB, CARG3, #0x00200000 | andpl CARG2, CARG2, #0x80000000 // |x| < 1? hi = sign(x), lo = 0. | movpl CARG1, #0 |.if hf == 1 | vmovpl d0, CARG1, CARG2 |.endif | bxpl lr | mvn CARG4, #0x3cc | subs RB, CARG4, RB, asr #21 // 2^0: RB = 51, 2^51: RB = 0. | bxlo lr // |x| >= 2^52: already done. | mvn CARG4, #1 | and CARG1, CARG1, CARG4, lsl RB // lo &= lomask | subs RB, RB, #32 | andpl CARG2, CARG2, CARG4, lsl RB // |x| <= 2^20: hi &= himask |.if hf == 1 | vmov d0, CARG1, CARG2 |.endif | bx lr |.endif |.endmacro | |->vm_trunc: |.if HFABI | vm_trunc 1 |.endif |->vm_trunc_sf: | vm_trunc 0 | | // double lj_vm_mod(double dividend, double divisor); |->vm_mod: |.if FPU | // Special calling convention. Also, RC (r11) is not preserved. | vdiv.f64 d0, d6, d7 | mov RC, lr | vmov CARG1, CARG2, d0 | bl ->vm_floor_sf | vmov d0, CARG1, CARG2 | vmul.f64 d0, d0, d7 | mov lr, RC | vsub.f64 d6, d6, d0 | bx lr |.else | push {r0, r1, r2, r3, r4, lr} | bl extern __aeabi_ddiv | bl ->vm_floor_sf | ldrd CARG34, [sp, #8] | bl extern __aeabi_dmul | ldrd CARG34, [sp] | eor CARG2, CARG2, #0x80000000 | bl extern __aeabi_dadd | add sp, sp, #20 | pop {pc} |.endif | | // int lj_vm_modi(int dividend, int divisor); |->vm_modi: | ands RB, CARG1, #0x80000000 | rsbmi CARG1, CARG1, #0 // a = |dividend| | eor RB, RB, CARG2, asr #1 // Keep signdiff and sign(divisor). | cmp CARG2, #0 | rsbmi CARG2, CARG2, #0 // b = |divisor| | subs CARG4, CARG2, #1 | cmpne CARG1, CARG2 | moveq CARG1, #0 // if (b == 1 || a == b) a = 0 | tsthi CARG2, CARG4 | andeq CARG1, CARG1, CARG4 // else if ((b & (b-1)) == 0) a &= b-1 | bls >1 | // Use repeated subtraction to get the remainder. | clz CARG3, CARG1 | clz CARG4, CARG2 | sub CARG4, CARG4, CARG3 | rsbs CARG3, CARG4, #31 // entry = (31-(clz(b)-clz(a)))*8 | addne pc, pc, CARG3, lsl #3 // Duff's device. | nop { int i; for (i = 31; i >= 0; i--) { | cmp CARG1, CARG2, lsl #i | subhs CARG1, CARG1, CARG2, lsl #i } } |1: | cmp CARG1, #0 | cmpne RB, #0 | submi CARG1, CARG1, CARG2 // if (y != 0 && signdiff) y = y - b | eors CARG2, CARG1, RB, lsl #1 | rsbmi CARG1, CARG1, #0 // if (sign(divisor) != sign(y)) y = -y | bx lr | |//----------------------------------------------------------------------- |//-- Miscellaneous functions -------------------------------------------- |//----------------------------------------------------------------------- | |//----------------------------------------------------------------------- |//-- FFI helper functions ----------------------------------------------- |//----------------------------------------------------------------------- | |// Handler for callback functions. |// Saveregs already performed. Callback slot number in [sp], g in r12. |->vm_ffi_callback: |.if FFI |.type CTSTATE, CTState, PC | ldr CTSTATE, GL:r12->ctype_state | add DISPATCH, r12, #GG_G2DISP |.if FPU | str r4, SAVE_R4 | add r4, sp, CFRAME_SPACE+4+8*8 | vstmdb r4!, {d8-d15} |.endif |.if HFABI | add r12, CTSTATE, #offsetof(CTState, cb.fpr[8]) |.endif | strd CARG34, CTSTATE->cb.gpr[2] | strd CARG12, CTSTATE->cb.gpr[0] |.if HFABI | vstmdb r12!, {d0-d7} |.endif | ldr CARG4, [sp] | add CARG3, sp, #CFRAME_SIZE | mov CARG1, CTSTATE | lsr CARG4, CARG4, #3 | str CARG3, CTSTATE->cb.stack | mov CARG2, sp | str CARG4, CTSTATE->cb.slot | str CTSTATE, SAVE_PC // Any value outside of bytecode is ok. | bl extern lj_ccallback_enter // (CTState *cts, void *cf) | // Returns lua_State *. | ldr BASE, L:CRET1->base | mv_vmstate CARG2, INTERP | ldr RC, L:CRET1->top | mov MASKR8, #255 | ldr LFUNC:CARG3, [BASE, FRAME_FUNC] | mov L, CRET1 | sub RC, RC, BASE | lsl MASKR8, MASKR8, #3 // MASKR8 = 255*8. | st_vmstate CARG2 | ins_callt |.endif | |->cont_ffi_callback: // Return from FFI callback. |.if FFI | ldr CTSTATE, [DISPATCH, #DISPATCH_GL(ctype_state)] | str BASE, L->base | str CARG4, L->top | str L, CTSTATE->L | mov CARG1, CTSTATE | mov CARG2, RA | bl extern lj_ccallback_leave // (CTState *cts, TValue *o) | ldrd CARG12, CTSTATE->cb.gpr[0] |.if HFABI | vldr d0, CTSTATE->cb.fpr[0] |.endif | b ->vm_leave_unw |.endif | |->vm_ffi_call: // Call C function via FFI. | // Caveat: needs special frame unwinding, see below. |.if FFI | .type CCSTATE, CCallState, r4 | push {CCSTATE, r5, r11, lr} | mov CCSTATE, CARG1 | ldr CARG1, CCSTATE:CARG1->spadj | ldrb CARG2, CCSTATE->nsp | add CARG3, CCSTATE, #offsetof(CCallState, stack) |.if HFABI | add RB, CCSTATE, #offsetof(CCallState, fpr[0]) |.endif | mov r11, sp | sub sp, sp, CARG1 // Readjust stack. | subs CARG2, CARG2, #1 |.if HFABI | vldm RB, {d0-d7} |.endif | ldr RB, CCSTATE->func | bmi >2 |1: // Copy stack slots. | ldr CARG4, [CARG3, CARG2, lsl #2] | str CARG4, [sp, CARG2, lsl #2] | subs CARG2, CARG2, #1 | bpl <1 |2: | ldrd CARG12, CCSTATE->gpr[0] | ldrd CARG34, CCSTATE->gpr[2] | blx RB | mov sp, r11 |.if HFABI | add r12, CCSTATE, #offsetof(CCallState, fpr[4]) |.endif | strd CRET1, CCSTATE->gpr[0] |.if HFABI | vstmdb r12!, {d0-d3} |.endif | pop {CCSTATE, r5, r11, pc} |.endif |// Note: vm_ffi_call must be the last function in this object file! | |//----------------------------------------------------------------------- } /* Generate the code for a single instruction. */ static void build_ins(BuildCtx *ctx, BCOp op, int defop) { int vk = 0; |=>defop: switch (op) { /* -- Comparison ops ---------------------------------------------------- */ /* Remember: all ops branch for a true comparison, fall through otherwise. */ case BC_ISLT: case BC_ISGE: case BC_ISLE: case BC_ISGT: | // RA = src1*8, RC = src2, JMP with RC = target | lsl RC, RC, #3 | ldrd CARG12, [RA, BASE]! | ldrh RB, [PC, #2] | ldrd CARG34, [RC, BASE]! | add PC, PC, #4 | add RB, PC, RB, lsl #2 | checktp CARG2, LJ_TISNUM | bne >3 | checktp CARG4, LJ_TISNUM | bne >4 | cmp CARG1, CARG3 if (op == BC_ISLT) { | sublt PC, RB, #0x20000 } else if (op == BC_ISGE) { | subge PC, RB, #0x20000 } else if (op == BC_ISLE) { | suble PC, RB, #0x20000 } else { | subgt PC, RB, #0x20000 } |1: | ins_next | |3: // CARG12 is not an integer. |.if FPU | vldr d0, [RA] | bhi ->vmeta_comp | // d0 is a number. | checktp CARG4, LJ_TISNUM | vldr d1, [RC] | blo >5 | bhi ->vmeta_comp | // d0 is a number, CARG3 is an integer. | vmov s4, CARG3 | vcvt.f64.s32 d1, s4 | b >5 |4: // CARG1 is an integer, CARG34 is not an integer. | vldr d1, [RC] | bhi ->vmeta_comp | // CARG1 is an integer, d1 is a number. | vmov s4, CARG1 | vcvt.f64.s32 d0, s4 |5: // d0 and d1 are numbers. | vcmp.f64 d0, d1 | vmrs | // To preserve NaN semantics GE/GT branch on unordered, but LT/LE don't. if (op == BC_ISLT) { | sublo PC, RB, #0x20000 } else if (op == BC_ISGE) { | subhs PC, RB, #0x20000 } else if (op == BC_ISLE) { | subls PC, RB, #0x20000 } else { | subhi PC, RB, #0x20000 } | b <1 |.else | bhi ->vmeta_comp | // CARG12 is a number. | checktp CARG4, LJ_TISNUM | movlo RA, RB // Save RB. | blo >5 | bhi ->vmeta_comp | // CARG12 is a number, CARG3 is an integer. | mov CARG1, CARG3 | mov RC, RA | mov RA, RB // Save RB. | bl extern __aeabi_i2d | mov CARG3, CARG1 | mov CARG4, CARG2 | ldrd CARG12, [RC] // Restore first operand. | b >5 |4: // CARG1 is an integer, CARG34 is not an integer. | bhi ->vmeta_comp | // CARG1 is an integer, CARG34 is a number. | mov RA, RB // Save RB. | bl extern __aeabi_i2d | ldrd CARG34, [RC] // Restore second operand. |5: // CARG12 and CARG34 are numbers. | bl extern __aeabi_cdcmple | // To preserve NaN semantics GE/GT branch on unordered, but LT/LE don't. if (op == BC_ISLT) { | sublo PC, RA, #0x20000 } else if (op == BC_ISGE) { | subhs PC, RA, #0x20000 } else if (op == BC_ISLE) { | subls PC, RA, #0x20000 } else { | subhi PC, RA, #0x20000 } | b <1 |.endif break; case BC_ISEQV: case BC_ISNEV: vk = op == BC_ISEQV; | // RA = src1*8, RC = src2, JMP with RC = target | lsl RC, RC, #3 | ldrd CARG12, [RA, BASE]! | ldrh RB, [PC, #2] | ldrd CARG34, [RC, BASE]! | add PC, PC, #4 | add RB, PC, RB, lsl #2 | checktp CARG2, LJ_TISNUM | cmnls CARG4, #-LJ_TISNUM if (vk) { | bls ->BC_ISEQN_Z } else { | bls ->BC_ISNEN_Z } | // Either or both types are not numbers. |.if FFI | checktp CARG2, LJ_TCDATA | checktpne CARG4, LJ_TCDATA | beq ->vmeta_equal_cd |.endif | cmp CARG2, CARG4 // Compare types. | bne >2 // Not the same type? | checktp CARG2, LJ_TISPRI | bhs >1 // Same type and primitive type? | | // Same types and not a primitive type. Compare GCobj or pvalue. | cmp CARG1, CARG3 if (vk) { | bne >3 // Different GCobjs or pvalues? |1: // Branch if same. | sub PC, RB, #0x20000 |2: // Different. | ins_next |3: | checktp CARG2, LJ_TISTABUD | bhi <2 // Different objects and not table/ud? } else { | beq >1 // Same GCobjs or pvalues? | checktp CARG2, LJ_TISTABUD | bhi >2 // Different objects and not table/ud? } | // Different tables or userdatas. Need to check __eq metamethod. | // Field metatable must be at same offset for GCtab and GCudata! | ldr TAB:RA, TAB:CARG1->metatable | cmp TAB:RA, #0 if (vk) { | beq <2 // No metatable? } else { | beq >2 // No metatable? } | ldrb RA, TAB:RA->nomm | mov CARG4, #1-vk // ne = 0 or 1. | mov CARG2, CARG1 | tst RA, #1<vmeta_equal // 'no __eq' flag not set? if (vk) { | b <2 } else { |2: // Branch if different. | sub PC, RB, #0x20000 |1: // Same. | ins_next } break; case BC_ISEQS: case BC_ISNES: vk = op == BC_ISEQS; | // RA = src*8, RC = str_const (~), JMP with RC = target | mvn RC, RC | ldrd CARG12, [BASE, RA] | ldrh RB, [PC, #2] | ldr STR:CARG3, [KBASE, RC, lsl #2] | add PC, PC, #4 | add RB, PC, RB, lsl #2 | checktp CARG2, LJ_TSTR |.if FFI | bne >7 | cmp CARG1, CARG3 |.else | cmpeq CARG1, CARG3 |.endif if (vk) { | subeq PC, RB, #0x20000 |1: } else { |1: | subne PC, RB, #0x20000 } | ins_next | |.if FFI |7: | checktp CARG2, LJ_TCDATA | bne <1 | b ->vmeta_equal_cd |.endif break; case BC_ISEQN: case BC_ISNEN: vk = op == BC_ISEQN; | // RA = src*8, RC = num_const (~), JMP with RC = target | lsl RC, RC, #3 | ldrd CARG12, [RA, BASE]! | ldrh RB, [PC, #2] | ldrd CARG34, [RC, KBASE]! | add PC, PC, #4 | add RB, PC, RB, lsl #2 if (vk) { |->BC_ISEQN_Z: } else { |->BC_ISNEN_Z: } | checktp CARG2, LJ_TISNUM | bne >3 | checktp CARG4, LJ_TISNUM | bne >4 | cmp CARG1, CARG3 if (vk) { | subeq PC, RB, #0x20000 |1: } else { |1: | subne PC, RB, #0x20000 } |2: | ins_next | |3: // CARG12 is not an integer. |.if FFI | bhi >7 |.else if (!vk) { | subhi PC, RB, #0x20000 } | bhi <2 |.endif |.if FPU | checktp CARG4, LJ_TISNUM | vmov s4, CARG3 | vldr d0, [RA] | vldrlo d1, [RC] | vcvths.f64.s32 d1, s4 | b >5 |4: // CARG1 is an integer, d1 is a number. | vmov s4, CARG1 | vldr d1, [RC] | vcvt.f64.s32 d0, s4 |5: // d0 and d1 are numbers. | vcmp.f64 d0, d1 | vmrs if (vk) { | subeq PC, RB, #0x20000 } else { | subne PC, RB, #0x20000 } | b <2 |.else | // CARG12 is a number. | checktp CARG4, LJ_TISNUM | movlo RA, RB // Save RB. | blo >5 | // CARG12 is a number, CARG3 is an integer. | mov CARG1, CARG3 | mov RC, RA |4: // CARG1 is an integer, CARG34 is a number. | mov RA, RB // Save RB. | bl extern __aeabi_i2d | ldrd CARG34, [RC] // Restore other operand. |5: // CARG12 and CARG34 are numbers. | bl extern __aeabi_cdcmpeq if (vk) { | subeq PC, RA, #0x20000 } else { | subne PC, RA, #0x20000 } | b <2 |.endif | |.if FFI |7: | checktp CARG2, LJ_TCDATA | bne <1 | b ->vmeta_equal_cd |.endif break; case BC_ISEQP: case BC_ISNEP: vk = op == BC_ISEQP; | // RA = src*8, RC = primitive_type (~), JMP with RC = target | ldrd CARG12, [BASE, RA] | ldrh RB, [PC, #2] | add PC, PC, #4 | mvn RC, RC | add RB, PC, RB, lsl #2 |.if FFI | checktp CARG2, LJ_TCDATA | beq ->vmeta_equal_cd |.endif | cmp CARG2, RC if (vk) { | subeq PC, RB, #0x20000 } else { | subne PC, RB, #0x20000 } | ins_next break; /* -- Unary test and copy ops ------------------------------------------- */ case BC_ISTC: case BC_ISFC: case BC_IST: case BC_ISF: | // RA = dst*8 or unused, RC = src, JMP with RC = target | add RC, BASE, RC, lsl #3 | ldrh RB, [PC, #2] | ldrd CARG12, [RC] | add PC, PC, #4 | add RB, PC, RB, lsl #2 | checktp CARG2, LJ_TTRUE if (op == BC_ISTC || op == BC_IST) { | subls PC, RB, #0x20000 if (op == BC_ISTC) { | strdls CARG12, [BASE, RA] } } else { | subhi PC, RB, #0x20000 if (op == BC_ISFC) { | strdhi CARG12, [BASE, RA] } } | ins_next break; case BC_ISTYPE: | // RA = src*8, RC = -type | ldrd CARG12, [BASE, RA] | ins_next1 | cmn CARG2, RC | ins_next2 | bne ->vmeta_istype | ins_next3 break; case BC_ISNUM: | // RA = src*8, RC = -(TISNUM-1) | ldrd CARG12, [BASE, RA] | ins_next1 | checktp CARG2, LJ_TISNUM | ins_next2 | bhs ->vmeta_istype | ins_next3 break; /* -- Unary ops --------------------------------------------------------- */ case BC_MOV: | // RA = dst*8, RC = src | lsl RC, RC, #3 | ins_next1 | ldrd CARG12, [BASE, RC] | ins_next2 | strd CARG12, [BASE, RA] | ins_next3 break; case BC_NOT: | // RA = dst*8, RC = src | add RC, BASE, RC, lsl #3 | ins_next1 | ldr CARG1, [RC, #4] | add RA, BASE, RA | ins_next2 | checktp CARG1, LJ_TTRUE | mvnls CARG2, #~LJ_TFALSE | mvnhi CARG2, #~LJ_TTRUE | str CARG2, [RA, #4] | ins_next3 break; case BC_UNM: | // RA = dst*8, RC = src | lsl RC, RC, #3 | ldrd CARG12, [BASE, RC] | ins_next1 | ins_next2 | checktp CARG2, LJ_TISNUM | bhi ->vmeta_unm | eorne CARG2, CARG2, #0x80000000 | bne >5 | rsbseq CARG1, CARG1, #0 | ldrdvs CARG12, >9 |5: | strd CARG12, [BASE, RA] | ins_next3 | |.align 8 |9: | .long 0x00000000, 0x41e00000 // 2^31. break; case BC_LEN: | // RA = dst*8, RC = src | lsl RC, RC, #3 | ldrd CARG12, [BASE, RC] | checkstr CARG2, >2 | ldr CARG1, STR:CARG1->len |1: | mvn CARG2, #~LJ_TISNUM | ins_next1 | ins_next2 | strd CARG12, [BASE, RA] | ins_next3 |2: | checktab CARG2, ->vmeta_len #if LJ_52 | ldr TAB:CARG3, TAB:CARG1->metatable | cmp TAB:CARG3, #0 | bne >9 |3: #endif |->BC_LEN_Z: | .IOS mov RC, BASE | bl extern lj_tab_len // (GCtab *t) | // Returns uint32_t (but less than 2^31). | .IOS mov BASE, RC | b <1 #if LJ_52 |9: | ldrb CARG4, TAB:CARG3->nomm | tst CARG4, #1<vmeta_len #endif break; /* -- Binary ops -------------------------------------------------------- */ |.macro ins_arithcheck, cond, ncond, target ||if (vk == 1) { | cmn CARG4, #-LJ_TISNUM | cmn..cond CARG2, #-LJ_TISNUM ||} else { | cmn CARG2, #-LJ_TISNUM | cmn..cond CARG4, #-LJ_TISNUM ||} | b..ncond target |.endmacro |.macro ins_arithcheck_int, target | ins_arithcheck eq, ne, target |.endmacro |.macro ins_arithcheck_num, target | ins_arithcheck lo, hs, target |.endmacro | |.macro ins_arithpre | decode_RB8 RB, INS | decode_RC8 RC, INS | // RA = dst*8, RB = src1*8, RC = src2*8 | num_const*8 ||vk = ((int)op - BC_ADDVN) / (BC_ADDNV-BC_ADDVN); ||switch (vk) { ||case 0: | .if FPU | ldrd CARG12, [RB, BASE]! | ldrd CARG34, [RC, KBASE]! | .else | ldrd CARG12, [BASE, RB] | ldrd CARG34, [KBASE, RC] | .endif || break; ||case 1: | .if FPU | ldrd CARG34, [RB, BASE]! | ldrd CARG12, [RC, KBASE]! | .else | ldrd CARG34, [BASE, RB] | ldrd CARG12, [KBASE, RC] | .endif || break; ||default: | .if FPU | ldrd CARG12, [RB, BASE]! | ldrd CARG34, [RC, BASE]! | .else | ldrd CARG12, [BASE, RB] | ldrd CARG34, [BASE, RC] | .endif || break; ||} |.endmacro | |.macro ins_arithpre_fpu, reg1, reg2 |.if FPU ||if (vk == 1) { | vldr reg2, [RB] | vldr reg1, [RC] ||} else { | vldr reg1, [RB] | vldr reg2, [RC] ||} |.endif |.endmacro | |.macro ins_arithpost_fpu, reg | ins_next1 | add RA, BASE, RA | ins_next2 | vstr reg, [RA] | ins_next3 |.endmacro | |.macro ins_arithfallback, ins ||switch (vk) { ||case 0: | ins ->vmeta_arith_vn || break; ||case 1: | ins ->vmeta_arith_nv || break; ||default: | ins ->vmeta_arith_vv || break; ||} |.endmacro | |.macro ins_arithdn, intins, fpins, fpcall | ins_arithpre |.if "intins" ~= "vm_modi" and not FPU | ins_next1 |.endif | ins_arithcheck_int >5 |.if "intins" == "smull" | smull CARG1, RC, CARG3, CARG1 | cmp RC, CARG1, asr #31 | ins_arithfallback bne |.elif "intins" == "vm_modi" | movs CARG2, CARG3 | ins_arithfallback beq | bl ->vm_modi | mvn CARG2, #~LJ_TISNUM |.else | intins CARG1, CARG1, CARG3 | ins_arithfallback bvs |.endif |4: |.if "intins" == "vm_modi" or FPU | ins_next1 |.endif | ins_next2 | strd CARG12, [BASE, RA] | ins_next3 |5: // FP variant. | ins_arithpre_fpu d6, d7 | ins_arithfallback ins_arithcheck_num |.if FPU |.if "intins" == "vm_modi" | bl fpcall |.else | fpins d6, d6, d7 |.endif | ins_arithpost_fpu d6 |.else | bl fpcall |.if "intins" ~= "vm_modi" | ins_next1 |.endif | b <4 |.endif |.endmacro | |.macro ins_arithfp, fpins, fpcall | ins_arithpre |.if "fpins" ~= "extern" or HFABI | ins_arithpre_fpu d0, d1 |.endif | ins_arithfallback ins_arithcheck_num |.if "fpins" == "extern" | .IOS mov RC, BASE | bl fpcall | .IOS mov BASE, RC |.elif FPU | fpins d0, d0, d1 |.else | bl fpcall |.endif |.if ("fpins" ~= "extern" or HFABI) and FPU | ins_arithpost_fpu d0 |.else | ins_next1 | ins_next2 | strd CARG12, [BASE, RA] | ins_next3 |.endif |.endmacro case BC_ADDVN: case BC_ADDNV: case BC_ADDVV: | ins_arithdn adds, vadd.f64, extern __aeabi_dadd break; case BC_SUBVN: case BC_SUBNV: case BC_SUBVV: | ins_arithdn subs, vsub.f64, extern __aeabi_dsub break; case BC_MULVN: case BC_MULNV: case BC_MULVV: | ins_arithdn smull, vmul.f64, extern __aeabi_dmul break; case BC_DIVVN: case BC_DIVNV: case BC_DIVVV: | ins_arithfp vdiv.f64, extern __aeabi_ddiv break; case BC_MODVN: case BC_MODNV: case BC_MODVV: | ins_arithdn vm_modi, vm_mod, ->vm_mod break; case BC_POW: | // NYI: (partial) integer arithmetic. | ins_arithfp extern, extern pow break; case BC_CAT: | decode_RB8 RC, INS | decode_RC8 RB, INS | // RA = dst*8, RC = src_start*8, RB = src_end*8 (note: RB/RC swapped!) | sub CARG3, RB, RC | str BASE, L->base | add CARG2, BASE, RB |->BC_CAT_Z: | // RA = dst*8, RC = src_start*8, CARG2 = top-1 | mov CARG1, L | str PC, SAVE_PC | lsr CARG3, CARG3, #3 | bl extern lj_meta_cat // (lua_State *L, TValue *top, int left) | // Returns NULL (finished) or TValue * (metamethod). | ldr BASE, L->base | cmp CRET1, #0 | bne ->vmeta_binop | ldrd CARG34, [BASE, RC] | ins_next1 | ins_next2 | strd CARG34, [BASE, RA] // Copy result to RA. | ins_next3 break; /* -- Constant ops ------------------------------------------------------ */ case BC_KSTR: | // RA = dst*8, RC = str_const (~) | mvn RC, RC | ins_next1 | ldr CARG1, [KBASE, RC, lsl #2] | mvn CARG2, #~LJ_TSTR | ins_next2 | strd CARG12, [BASE, RA] | ins_next3 break; case BC_KCDATA: |.if FFI | // RA = dst*8, RC = cdata_const (~) | mvn RC, RC | ins_next1 | ldr CARG1, [KBASE, RC, lsl #2] | mvn CARG2, #~LJ_TCDATA | ins_next2 | strd CARG12, [BASE, RA] | ins_next3 |.endif break; case BC_KSHORT: | // RA = dst*8, (RC = int16_literal) | mov CARG1, INS, asr #16 // Refetch sign-extended reg. | mvn CARG2, #~LJ_TISNUM | ins_next1 | ins_next2 | strd CARG12, [BASE, RA] | ins_next3 break; case BC_KNUM: | // RA = dst*8, RC = num_const | lsl RC, RC, #3 | ins_next1 | ldrd CARG12, [KBASE, RC] | ins_next2 | strd CARG12, [BASE, RA] | ins_next3 break; case BC_KPRI: | // RA = dst*8, RC = primitive_type (~) | add RA, BASE, RA | mvn RC, RC | ins_next1 | ins_next2 | str RC, [RA, #4] | ins_next3 break; case BC_KNIL: | // RA = base*8, RC = end | add RA, BASE, RA | add RC, BASE, RC, lsl #3 | mvn CARG1, #~LJ_TNIL | str CARG1, [RA, #4] | add RA, RA, #8 |1: | str CARG1, [RA, #4] | cmp RA, RC | add RA, RA, #8 | blt <1 | ins_next_ break; /* -- Upvalue and function ops ------------------------------------------ */ case BC_UGET: | // RA = dst*8, RC = uvnum | ldr LFUNC:CARG2, [BASE, FRAME_FUNC] | lsl RC, RC, #2 | add RC, RC, #offsetof(GCfuncL, uvptr) | ldr UPVAL:CARG2, [LFUNC:CARG2, RC] | ldr CARG2, UPVAL:CARG2->v | ldrd CARG34, [CARG2] | ins_next1 | ins_next2 | strd CARG34, [BASE, RA] | ins_next3 break; case BC_USETV: | // RA = uvnum*8, RC = src | ldr LFUNC:CARG2, [BASE, FRAME_FUNC] | lsr RA, RA, #1 | add RA, RA, #offsetof(GCfuncL, uvptr) | lsl RC, RC, #3 | ldr UPVAL:CARG2, [LFUNC:CARG2, RA] | ldrd CARG34, [BASE, RC] | ldrb RB, UPVAL:CARG2->marked | ldrb RC, UPVAL:CARG2->closed | ldr CARG2, UPVAL:CARG2->v | tst RB, #LJ_GC_BLACK // isblack(uv) | add RB, CARG4, #-LJ_TISGCV | cmpne RC, #0 | strd CARG34, [CARG2] | bne >2 // Upvalue is closed and black? |1: | ins_next | |2: // Check if new value is collectable. | cmn RB, #-(LJ_TNUMX - LJ_TISGCV) | ldrbhi RC, GCOBJ:CARG3->gch.marked | bls <1 // tvisgcv(v) | sub CARG1, DISPATCH, #-GG_DISP2G | tst RC, #LJ_GC_WHITES | // Crossed a write barrier. Move the barrier forward. |.if IOS | beq <1 | mov RC, BASE | bl extern lj_gc_barrieruv // (global_State *g, TValue *tv) | mov BASE, RC |.else | blne extern lj_gc_barrieruv // (global_State *g, TValue *tv) |.endif | b <1 break; case BC_USETS: | // RA = uvnum*8, RC = str_const (~) | ldr LFUNC:CARG2, [BASE, FRAME_FUNC] | lsr RA, RA, #1 | add RA, RA, #offsetof(GCfuncL, uvptr) | mvn RC, RC | ldr UPVAL:CARG2, [LFUNC:CARG2, RA] | ldr STR:CARG3, [KBASE, RC, lsl #2] | ldrb RB, UPVAL:CARG2->marked | ldrb RC, UPVAL:CARG2->closed | ldr CARG2, UPVAL:CARG2->v | mvn CARG4, #~LJ_TSTR | tst RB, #LJ_GC_BLACK // isblack(uv) | ldrb RB, STR:CARG3->marked | strd CARG34, [CARG2] | bne >2 |1: | ins_next | |2: // Check if string is white and ensure upvalue is closed. | tst RB, #LJ_GC_WHITES // iswhite(str) | cmpne RC, #0 | sub CARG1, DISPATCH, #-GG_DISP2G | // Crossed a write barrier. Move the barrier forward. |.if IOS | beq <1 | mov RC, BASE | bl extern lj_gc_barrieruv // (global_State *g, TValue *tv) | mov BASE, RC |.else | blne extern lj_gc_barrieruv // (global_State *g, TValue *tv) |.endif | b <1 break; case BC_USETN: | // RA = uvnum*8, RC = num_const | ldr LFUNC:CARG2, [BASE, FRAME_FUNC] | lsr RA, RA, #1 | add RA, RA, #offsetof(GCfuncL, uvptr) | lsl RC, RC, #3 | ldr UPVAL:CARG2, [LFUNC:CARG2, RA] | ldrd CARG34, [KBASE, RC] | ldr CARG2, UPVAL:CARG2->v | ins_next1 | ins_next2 | strd CARG34, [CARG2] | ins_next3 break; case BC_USETP: | // RA = uvnum*8, RC = primitive_type (~) | ldr LFUNC:CARG2, [BASE, FRAME_FUNC] | lsr RA, RA, #1 | add RA, RA, #offsetof(GCfuncL, uvptr) | ldr UPVAL:CARG2, [LFUNC:CARG2, RA] | mvn RC, RC | ldr CARG2, UPVAL:CARG2->v | ins_next1 | ins_next2 | str RC, [CARG2, #4] | ins_next3 break; case BC_UCLO: | // RA = level*8, RC = target | ldr CARG3, L->openupval | add RC, PC, RC, lsl #2 | str BASE, L->base | cmp CARG3, #0 | sub PC, RC, #0x20000 | beq >1 | mov CARG1, L | add CARG2, BASE, RA | bl extern lj_func_closeuv // (lua_State *L, TValue *level) | ldr BASE, L->base |1: | ins_next break; case BC_FNEW: | // RA = dst*8, RC = proto_const (~) (holding function prototype) | mvn RC, RC | str BASE, L->base | ldr CARG2, [KBASE, RC, lsl #2] | str PC, SAVE_PC | ldr CARG3, [BASE, FRAME_FUNC] | mov CARG1, L | // (lua_State *L, GCproto *pt, GCfuncL *parent) | bl extern lj_func_newL_gc | // Returns GCfuncL *. | ldr BASE, L->base | mvn CARG2, #~LJ_TFUNC | ins_next1 | ins_next2 | strd CARG12, [BASE, RA] | ins_next3 break; /* -- Table ops --------------------------------------------------------- */ case BC_TNEW: case BC_TDUP: | // RA = dst*8, RC = (hbits|asize) | tab_const (~) if (op == BC_TDUP) { | mvn RC, RC } | ldr CARG3, [DISPATCH, #DISPATCH_GL(gc.total)] | ldr CARG4, [DISPATCH, #DISPATCH_GL(gc.threshold)] | str BASE, L->base | str PC, SAVE_PC | cmp CARG3, CARG4 | mov CARG1, L | bhs >5 |1: if (op == BC_TNEW) { | lsl CARG2, RC, #21 | lsr CARG3, RC, #11 | asr RC, CARG2, #21 | lsr CARG2, CARG2, #21 | cmn RC, #1 | addeq CARG2, CARG2, #2 | bl extern lj_tab_new // (lua_State *L, int32_t asize, uint32_t hbits) | // Returns GCtab *. } else { | ldr CARG2, [KBASE, RC, lsl #2] | bl extern lj_tab_dup // (lua_State *L, Table *kt) | // Returns GCtab *. } | ldr BASE, L->base | mvn CARG2, #~LJ_TTAB | ins_next1 | ins_next2 | strd CARG12, [BASE, RA] | ins_next3 |5: | bl extern lj_gc_step_fixtop // (lua_State *L) | mov CARG1, L | b <1 break; case BC_GGET: | // RA = dst*8, RC = str_const (~) case BC_GSET: | // RA = dst*8, RC = str_const (~) | ldr LFUNC:CARG2, [BASE, FRAME_FUNC] | mvn RC, RC | ldr TAB:CARG1, LFUNC:CARG2->env | ldr STR:RC, [KBASE, RC, lsl #2] if (op == BC_GGET) { | b ->BC_TGETS_Z } else { | b ->BC_TSETS_Z } break; case BC_TGETV: | decode_RB8 RB, INS | decode_RC8 RC, INS | // RA = dst*8, RB = table*8, RC = key*8 | ldrd TAB:CARG12, [BASE, RB] | ldrd CARG34, [BASE, RC] | checktab CARG2, ->vmeta_tgetv // STALL: load CARG12. | checktp CARG4, LJ_TISNUM // Integer key? | ldreq CARG4, TAB:CARG1->array | ldreq CARG2, TAB:CARG1->asize | bne >9 | | add CARG4, CARG4, CARG3, lsl #3 | cmp CARG3, CARG2 // In array part? | ldrdlo CARG34, [CARG4] | bhs ->vmeta_tgetv | ins_next1 // Overwrites RB! | checktp CARG4, LJ_TNIL | beq >5 |1: | ins_next2 | strd CARG34, [BASE, RA] | ins_next3 | |5: // Check for __index if table value is nil. | ldr TAB:CARG2, TAB:CARG1->metatable | cmp TAB:CARG2, #0 | beq <1 // No metatable: done. | ldrb CARG2, TAB:CARG2->nomm | tst CARG2, #1<vmeta_tgetv | |9: | checktp CARG4, LJ_TSTR // String key? | moveq STR:RC, CARG3 | beq ->BC_TGETS_Z | b ->vmeta_tgetv break; case BC_TGETS: | decode_RB8 RB, INS | and RC, RC, #255 | // RA = dst*8, RB = table*8, RC = str_const (~) | ldrd CARG12, [BASE, RB] | mvn RC, RC | ldr STR:RC, [KBASE, RC, lsl #2] // STALL: early RC. | checktab CARG2, ->vmeta_tgets1 |->BC_TGETS_Z: | // (TAB:RB =) TAB:CARG1 = GCtab *, STR:RC = GCstr *, RA = dst*8 | ldr CARG3, TAB:CARG1->hmask | ldr CARG4, STR:RC->hash | ldr NODE:INS, TAB:CARG1->node | mov TAB:RB, TAB:CARG1 | and CARG3, CARG3, CARG4 // idx = str->hash & tab->hmask | add CARG3, CARG3, CARG3, lsl #1 | add NODE:INS, NODE:INS, CARG3, lsl #3 // node = tab->node + idx*3*8 |1: | ldrd CARG12, NODE:INS->key // STALL: early NODE:INS. | ldrd CARG34, NODE:INS->val | ldr NODE:INS, NODE:INS->next | checktp CARG2, LJ_TSTR | cmpeq CARG1, STR:RC | bne >4 | checktp CARG4, LJ_TNIL | beq >5 |3: | ins_next1 | ins_next2 | strd CARG34, [BASE, RA] | ins_next3 | |4: // Follow hash chain. | cmp NODE:INS, #0 | bne <1 | // End of hash chain: key not found, nil result. | |5: // Check for __index if table value is nil. | ldr TAB:CARG1, TAB:RB->metatable | mov CARG3, #0 // Optional clear of undef. value (during load stall). | mvn CARG4, #~LJ_TNIL | cmp TAB:CARG1, #0 | beq <3 // No metatable: done. | ldrb CARG2, TAB:CARG1->nomm | tst CARG2, #1<vmeta_tgets break; case BC_TGETB: | decode_RB8 RB, INS | and RC, RC, #255 | // RA = dst*8, RB = table*8, RC = index | ldrd CARG12, [BASE, RB] | checktab CARG2, ->vmeta_tgetb // STALL: load CARG12. | ldr CARG3, TAB:CARG1->asize | ldr CARG4, TAB:CARG1->array | lsl CARG2, RC, #3 | cmp RC, CARG3 | ldrdlo CARG34, [CARG4, CARG2] | bhs ->vmeta_tgetb | ins_next1 // Overwrites RB! | checktp CARG4, LJ_TNIL | beq >5 |1: | ins_next2 | strd CARG34, [BASE, RA] | ins_next3 | |5: // Check for __index if table value is nil. | ldr TAB:CARG2, TAB:CARG1->metatable | cmp TAB:CARG2, #0 | beq <1 // No metatable: done. | ldrb CARG2, TAB:CARG2->nomm | tst CARG2, #1<vmeta_tgetb break; case BC_TGETR: | decode_RB8 RB, INS | decode_RC8 RC, INS | // RA = dst*8, RB = table*8, RC = key*8 | ldr TAB:CARG1, [BASE, RB] | ldr CARG2, [BASE, RC] | ldr CARG4, TAB:CARG1->array | ldr CARG3, TAB:CARG1->asize | add CARG4, CARG4, CARG2, lsl #3 | cmp CARG2, CARG3 // In array part? | bhs ->vmeta_tgetr | ldrd CARG12, [CARG4] |->BC_TGETR_Z: | ins_next1 | ins_next2 | strd CARG12, [BASE, RA] | ins_next3 break; case BC_TSETV: | decode_RB8 RB, INS | decode_RC8 RC, INS | // RA = src*8, RB = table*8, RC = key*8 | ldrd TAB:CARG12, [BASE, RB] | ldrd CARG34, [BASE, RC] | checktab CARG2, ->vmeta_tsetv // STALL: load CARG12. | checktp CARG4, LJ_TISNUM // Integer key? | ldreq CARG2, TAB:CARG1->array | ldreq CARG4, TAB:CARG1->asize | bne >9 | | add CARG2, CARG2, CARG3, lsl #3 | cmp CARG3, CARG4 // In array part? | ldrlo INS, [CARG2, #4] | bhs ->vmeta_tsetv | ins_next1 // Overwrites RB! | checktp INS, LJ_TNIL | ldrb INS, TAB:CARG1->marked | ldrd CARG34, [BASE, RA] | beq >5 |1: | tst INS, #LJ_GC_BLACK // isblack(table) | strd CARG34, [CARG2] | bne >7 |2: | ins_next2 | ins_next3 | |5: // Check for __newindex if previous value is nil. | ldr TAB:RA, TAB:CARG1->metatable | cmp TAB:RA, #0 | beq <1 // No metatable: done. | ldrb RA, TAB:RA->nomm | tst RA, #1<vmeta_tsetv | |7: // Possible table write barrier for the value. Skip valiswhite check. | barrierback TAB:CARG1, INS, CARG3 | b <2 | |9: | checktp CARG4, LJ_TSTR // String key? | moveq STR:RC, CARG3 | beq ->BC_TSETS_Z | b ->vmeta_tsetv break; case BC_TSETS: | decode_RB8 RB, INS | and RC, RC, #255 | // RA = src*8, RB = table*8, RC = str_const (~) | ldrd CARG12, [BASE, RB] | mvn RC, RC | ldr STR:RC, [KBASE, RC, lsl #2] // STALL: early RC. | checktab CARG2, ->vmeta_tsets1 |->BC_TSETS_Z: | // (TAB:RB =) TAB:CARG1 = GCtab *, STR:RC = GCstr *, RA = dst*8 | ldr CARG3, TAB:CARG1->hmask | ldr CARG4, STR:RC->hash | ldr NODE:INS, TAB:CARG1->node | mov TAB:RB, TAB:CARG1 | and CARG3, CARG3, CARG4 // idx = str->hash & tab->hmask | add CARG3, CARG3, CARG3, lsl #1 | mov CARG4, #0 | add NODE:INS, NODE:INS, CARG3, lsl #3 // node = tab->node + idx*3*8 | strb CARG4, TAB:RB->nomm // Clear metamethod cache. |1: | ldrd CARG12, NODE:INS->key | ldr CARG4, NODE:INS->val.it | ldr NODE:CARG3, NODE:INS->next | checktp CARG2, LJ_TSTR | cmpeq CARG1, STR:RC | bne >5 | ldrb CARG2, TAB:RB->marked | checktp CARG4, LJ_TNIL // Key found, but nil value? | ldrd CARG34, [BASE, RA] | beq >4 |2: | tst CARG2, #LJ_GC_BLACK // isblack(table) | strd CARG34, NODE:INS->val | bne >7 |3: | ins_next | |4: // Check for __newindex if previous value is nil. | ldr TAB:CARG1, TAB:RB->metatable | cmp TAB:CARG1, #0 | beq <2 // No metatable: done. | ldrb CARG1, TAB:CARG1->nomm | tst CARG1, #1<vmeta_tsets | |5: // Follow hash chain. | movs NODE:INS, NODE:CARG3 | bne <1 | // End of hash chain: key not found, add a new one. | | // But check for __newindex first. | ldr TAB:CARG1, TAB:RB->metatable | mov CARG3, TMPDp | str PC, SAVE_PC | cmp TAB:CARG1, #0 // No metatable: continue. | str BASE, L->base | ldrbne CARG2, TAB:CARG1->nomm | mov CARG1, L | beq >6 | tst CARG2, #1<vmeta_tsets // 'no __newindex' flag NOT set: check. |6: | mvn CARG4, #~LJ_TSTR | str STR:RC, TMPDlo | mov CARG2, TAB:RB | str CARG4, TMPDhi | bl extern lj_tab_newkey // (lua_State *L, GCtab *t, TValue *k) | // Returns TValue *. | ldr BASE, L->base | ldrd CARG34, [BASE, RA] | strd CARG34, [CRET1] | b <3 // No 2nd write barrier needed. | |7: // Possible table write barrier for the value. Skip valiswhite check. | barrierback TAB:RB, CARG2, CARG3 | b <3 break; case BC_TSETB: | decode_RB8 RB, INS | and RC, RC, #255 | // RA = src*8, RB = table*8, RC = index | ldrd CARG12, [BASE, RB] | checktab CARG2, ->vmeta_tsetb // STALL: load CARG12. | ldr CARG3, TAB:CARG1->asize | ldr RB, TAB:CARG1->array | lsl CARG2, RC, #3 | cmp RC, CARG3 | ldrdlo CARG34, [CARG2, RB]! | bhs ->vmeta_tsetb | ins_next1 // Overwrites RB! | checktp CARG4, LJ_TNIL | ldrb INS, TAB:CARG1->marked | ldrd CARG34, [BASE, RA] | beq >5 |1: | tst INS, #LJ_GC_BLACK // isblack(table) | strd CARG34, [CARG2] | bne >7 |2: | ins_next2 | ins_next3 | |5: // Check for __newindex if previous value is nil. | ldr TAB:RA, TAB:CARG1->metatable | cmp TAB:RA, #0 | beq <1 // No metatable: done. | ldrb RA, TAB:RA->nomm | tst RA, #1<vmeta_tsetb | |7: // Possible table write barrier for the value. Skip valiswhite check. | barrierback TAB:CARG1, INS, CARG3 | b <2 break; case BC_TSETR: | decode_RB8 RB, INS | decode_RC8 RC, INS | // RA = src*8, RB = table*8, RC = key*8 | ldr TAB:CARG2, [BASE, RB] | ldr CARG3, [BASE, RC] | ldrb INS, TAB:CARG2->marked | ldr CARG1, TAB:CARG2->array | ldr CARG4, TAB:CARG2->asize | tst INS, #LJ_GC_BLACK // isblack(table) | add CARG1, CARG1, CARG3, lsl #3 | bne >7 |2: | cmp CARG3, CARG4 // In array part? | bhs ->vmeta_tsetr |->BC_TSETR_Z: | ldrd CARG34, [BASE, RA] | ins_next1 | ins_next2 | strd CARG34, [CARG1] | ins_next3 | |7: // Possible table write barrier for the value. Skip valiswhite check. | barrierback TAB:CARG2, INS, RB | b <2 break; case BC_TSETM: | // RA = base*8 (table at base-1), RC = num_const (start index) | add RA, BASE, RA |1: | ldr RB, SAVE_MULTRES | ldr TAB:CARG2, [RA, #-8] // Guaranteed to be a table. | ldr CARG1, [KBASE, RC, lsl #3] // Integer constant is in lo-word. | subs RB, RB, #8 | ldr CARG4, TAB:CARG2->asize | beq >4 // Nothing to copy? | add CARG3, CARG1, RB, lsr #3 | cmp CARG3, CARG4 | ldr CARG4, TAB:CARG2->array | add RB, RA, RB | bhi >5 | add INS, CARG4, CARG1, lsl #3 | ldrb CARG1, TAB:CARG2->marked |3: // Copy result slots to table. | ldrd CARG34, [RA], #8 | strd CARG34, [INS], #8 | cmp RA, RB | blo <3 | tst CARG1, #LJ_GC_BLACK // isblack(table) | bne >7 |4: | ins_next | |5: // Need to resize array part. | str BASE, L->base | mov CARG1, L | str PC, SAVE_PC | bl extern lj_tab_reasize // (lua_State *L, GCtab *t, int nasize) | // Must not reallocate the stack. | .IOS ldr BASE, L->base | b <1 | |7: // Possible table write barrier for any value. Skip valiswhite check. | barrierback TAB:CARG2, CARG1, CARG3 | b <4 break; /* -- Calls and vararg handling ----------------------------------------- */ case BC_CALLM: | // RA = base*8, (RB = nresults+1,) RC = extra_nargs | ldr CARG1, SAVE_MULTRES | decode_RC8 NARGS8:RC, INS | add NARGS8:RC, NARGS8:RC, CARG1 | b ->BC_CALL_Z break; case BC_CALL: | decode_RC8 NARGS8:RC, INS | // RA = base*8, (RB = nresults+1,) RC = (nargs+1)*8 |->BC_CALL_Z: | mov RB, BASE // Save old BASE for vmeta_call. | ldrd CARG34, [BASE, RA]! | sub NARGS8:RC, NARGS8:RC, #8 | add BASE, BASE, #8 | checkfunc CARG4, ->vmeta_call | ins_call break; case BC_CALLMT: | // RA = base*8, (RB = 0,) RC = extra_nargs | ldr CARG1, SAVE_MULTRES | add NARGS8:RC, CARG1, RC, lsl #3 | b ->BC_CALLT1_Z break; case BC_CALLT: | lsl NARGS8:RC, RC, #3 | // RA = base*8, (RB = 0,) RC = (nargs+1)*8 |->BC_CALLT1_Z: | ldrd LFUNC:CARG34, [RA, BASE]! | sub NARGS8:RC, NARGS8:RC, #8 | add RA, RA, #8 | checkfunc CARG4, ->vmeta_callt | ldr PC, [BASE, FRAME_PC] |->BC_CALLT2_Z: | mov RB, #0 | ldrb CARG4, LFUNC:CARG3->ffid | tst PC, #FRAME_TYPE | bne >7 |1: | str LFUNC:CARG3, [BASE, FRAME_FUNC] // Copy function down, but keep PC. | cmp NARGS8:RC, #0 | beq >3 |2: | ldrd CARG12, [RA, RB] | add INS, RB, #8 | cmp INS, NARGS8:RC | strd CARG12, [BASE, RB] | mov RB, INS | bne <2 |3: | cmp CARG4, #1 // (> FF_C) Calling a fast function? | bhi >5 |4: | ins_callt | |5: // Tailcall to a fast function with a Lua frame below. | ldr INS, [PC, #-4] | decode_RA8 RA, INS | sub CARG1, BASE, RA | ldr LFUNC:CARG1, [CARG1, #-16] | ldr CARG1, LFUNC:CARG1->field_pc | ldr KBASE, [CARG1, #PC2PROTO(k)] | b <4 | |7: // Tailcall from a vararg function. | eor PC, PC, #FRAME_VARG | tst PC, #FRAME_TYPEP // Vararg frame below? | movne CARG4, #0 // Clear ffid if no Lua function below. | bne <1 | sub BASE, BASE, PC | ldr PC, [BASE, FRAME_PC] | tst PC, #FRAME_TYPE | movne CARG4, #0 // Clear ffid if no Lua function below. | b <1 break; case BC_ITERC: | // RA = base*8, (RB = nresults+1, RC = nargs+1 (2+1)) | add RA, BASE, RA | mov RB, BASE // Save old BASE for vmeta_call. | ldrd CARG34, [RA, #-16] | ldrd CARG12, [RA, #-8] | add BASE, RA, #8 | strd CARG34, [RA, #8] // Copy state. | strd CARG12, [RA, #16] // Copy control var. | // STALL: locked CARG34. | ldrd LFUNC:CARG34, [RA, #-24] | mov NARGS8:RC, #16 // Iterators get 2 arguments. | // STALL: load CARG34. | strd LFUNC:CARG34, [RA] // Copy callable. | checkfunc CARG4, ->vmeta_call | ins_call break; case BC_ITERN: | // RA = base*8, (RB = nresults+1, RC = nargs+1 (2+1)) |.if JIT | // NYI: add hotloop, record BC_ITERN. |.endif | add RA, BASE, RA | ldr TAB:RB, [RA, #-16] | ldr CARG1, [RA, #-8] // Get index from control var. | ldr INS, TAB:RB->asize | ldr CARG2, TAB:RB->array | add PC, PC, #4 |1: // Traverse array part. | subs RC, CARG1, INS | add CARG3, CARG2, CARG1, lsl #3 | bhs >5 // Index points after array part? | ldrd CARG34, [CARG3] | checktp CARG4, LJ_TNIL | addeq CARG1, CARG1, #1 // Skip holes in array part. | beq <1 | ldrh RC, [PC, #-2] | mvn CARG2, #~LJ_TISNUM | strd CARG34, [RA, #8] | add RC, PC, RC, lsl #2 | add RB, CARG1, #1 | strd CARG12, [RA] | sub PC, RC, #0x20000 | str RB, [RA, #-8] // Update control var. |3: | ins_next | |5: // Traverse hash part. | ldr CARG4, TAB:RB->hmask | ldr NODE:RB, TAB:RB->node |6: | add CARG1, RC, RC, lsl #1 | cmp RC, CARG4 // End of iteration? Branch to ITERL+1. | add NODE:CARG3, NODE:RB, CARG1, lsl #3 // node = tab->node + idx*3*8 | bhi <3 | ldrd CARG12, NODE:CARG3->val | checktp CARG2, LJ_TNIL | add RC, RC, #1 | beq <6 // Skip holes in hash part. | ldrh RB, [PC, #-2] | add RC, RC, INS | ldrd CARG34, NODE:CARG3->key | str RC, [RA, #-8] // Update control var. | strd CARG12, [RA, #8] | add RC, PC, RB, lsl #2 | sub PC, RC, #0x20000 | strd CARG34, [RA] | b <3 break; case BC_ISNEXT: | // RA = base*8, RC = target (points to ITERN) | add RA, BASE, RA | add RC, PC, RC, lsl #2 | ldrd CFUNC:CARG12, [RA, #-24] | ldr CARG3, [RA, #-12] | ldr CARG4, [RA, #-4] | checktp CARG2, LJ_TFUNC | ldrbeq CARG1, CFUNC:CARG1->ffid | checktpeq CARG3, LJ_TTAB | checktpeq CARG4, LJ_TNIL | cmpeq CARG1, #FF_next_N | subeq PC, RC, #0x20000 | bne >5 | ins_next1 | ins_next2 | mov CARG1, #0 | mvn CARG2, #0x00018000 | strd CARG1, [RA, #-8] // Initialize control var. |1: | ins_next3 |5: // Despecialize bytecode if any of the checks fail. | mov CARG1, #BC_JMP | mov OP, #BC_ITERC | strb CARG1, [PC, #-4] | sub PC, RC, #0x20000 | strb OP, [PC] // Subsumes ins_next1. | ins_next2 | b <1 break; case BC_VARG: | decode_RB8 RB, INS | decode_RC8 RC, INS | // RA = base*8, RB = (nresults+1)*8, RC = numparams*8 | ldr CARG1, [BASE, FRAME_PC] | add RC, BASE, RC | add RA, BASE, RA | add RC, RC, #FRAME_VARG | add CARG4, RA, RB | sub CARG3, BASE, #8 // CARG3 = vtop | sub RC, RC, CARG1 // RC = vbase | // Note: RC may now be even _above_ BASE if nargs was < numparams. | cmp RB, #0 | sub CARG1, CARG3, RC | beq >5 // Copy all varargs? | sub CARG4, CARG4, #16 |1: // Copy vararg slots to destination slots. | cmp RC, CARG3 | ldrdlo CARG12, [RC], #8 | mvnhs CARG2, #~LJ_TNIL | cmp RA, CARG4 | strd CARG12, [RA], #8 | blo <1 |2: | ins_next | |5: // Copy all varargs. | ldr CARG4, L->maxstack | cmp CARG1, #0 | movle RB, #8 // MULTRES = (0+1)*8 | addgt RB, CARG1, #8 | add CARG2, RA, CARG1 | str RB, SAVE_MULTRES | ble <2 | cmp CARG2, CARG4 | bhi >7 |6: | ldrd CARG12, [RC], #8 | strd CARG12, [RA], #8 | cmp RC, CARG3 | blo <6 | b <2 | |7: // Grow stack for varargs. | lsr CARG2, CARG1, #3 | str RA, L->top | mov CARG1, L | str BASE, L->base | sub RC, RC, BASE // Need delta, because BASE may change. | str PC, SAVE_PC | sub RA, RA, BASE | bl extern lj_state_growstack // (lua_State *L, int n) | ldr BASE, L->base | add RA, BASE, RA | add RC, BASE, RC | sub CARG3, BASE, #8 | b <6 break; /* -- Returns ----------------------------------------------------------- */ case BC_RETM: | // RA = results*8, RC = extra results | ldr CARG1, SAVE_MULTRES | ldr PC, [BASE, FRAME_PC] | add RA, BASE, RA | add RC, CARG1, RC, lsl #3 | b ->BC_RETM_Z break; case BC_RET: | // RA = results*8, RC = nresults+1 | ldr PC, [BASE, FRAME_PC] | lsl RC, RC, #3 | add RA, BASE, RA |->BC_RETM_Z: | str RC, SAVE_MULTRES |1: | ands CARG1, PC, #FRAME_TYPE | eor CARG2, PC, #FRAME_VARG | bne ->BC_RETV2_Z | |->BC_RET_Z: | // BASE = base, RA = resultptr, RC = (nresults+1)*8, PC = return | ldr INS, [PC, #-4] | subs CARG4, RC, #8 | sub CARG3, BASE, #8 | beq >3 |2: | ldrd CARG12, [RA], #8 | add BASE, BASE, #8 | subs CARG4, CARG4, #8 | strd CARG12, [BASE, #-16] | bne <2 |3: | decode_RA8 RA, INS | sub CARG4, CARG3, RA | decode_RB8 RB, INS | ldr LFUNC:CARG1, [CARG4, FRAME_FUNC] |5: | cmp RB, RC // More results expected? | bhi >6 | mov BASE, CARG4 | ldr CARG2, LFUNC:CARG1->field_pc | ins_next1 | ins_next2 | ldr KBASE, [CARG2, #PC2PROTO(k)] | ins_next3 | |6: // Fill up results with nil. | mvn CARG2, #~LJ_TNIL | add BASE, BASE, #8 | add RC, RC, #8 | str CARG2, [BASE, #-12] | b <5 | |->BC_RETV1_Z: // Non-standard return case. | add RA, BASE, RA |->BC_RETV2_Z: | tst CARG2, #FRAME_TYPEP | bne ->vm_return | // Return from vararg function: relocate BASE down. | sub BASE, BASE, CARG2 | ldr PC, [BASE, FRAME_PC] | b <1 break; case BC_RET0: case BC_RET1: | // RA = results*8, RC = nresults+1 | ldr PC, [BASE, FRAME_PC] | lsl RC, RC, #3 | str RC, SAVE_MULTRES | ands CARG1, PC, #FRAME_TYPE | eor CARG2, PC, #FRAME_VARG | ldreq INS, [PC, #-4] | bne ->BC_RETV1_Z if (op == BC_RET1) { | ldrd CARG12, [BASE, RA] } | sub CARG4, BASE, #8 | decode_RA8 RA, INS if (op == BC_RET1) { | strd CARG12, [CARG4] } | sub BASE, CARG4, RA | decode_RB8 RB, INS | ldr LFUNC:CARG1, [BASE, FRAME_FUNC] |5: | cmp RB, RC | bhi >6 | ldr CARG2, LFUNC:CARG1->field_pc | ins_next1 | ins_next2 | ldr KBASE, [CARG2, #PC2PROTO(k)] | ins_next3 | |6: // Fill up results with nil. | sub CARG2, CARG4, #4 | mvn CARG3, #~LJ_TNIL | str CARG3, [CARG2, RC] | add RC, RC, #8 | b <5 break; /* -- Loops and branches ------------------------------------------------ */ |.define FOR_IDX, [RA]; .define FOR_TIDX, [RA, #4] |.define FOR_STOP, [RA, #8]; .define FOR_TSTOP, [RA, #12] |.define FOR_STEP, [RA, #16]; .define FOR_TSTEP, [RA, #20] |.define FOR_EXT, [RA, #24]; .define FOR_TEXT, [RA, #28] case BC_FORL: |.if JIT | hotloop |.endif | // Fall through. Assumes BC_IFORL follows. break; case BC_JFORI: case BC_JFORL: #if !LJ_HASJIT break; #endif case BC_FORI: case BC_IFORL: | // RA = base*8, RC = target (after end of loop or start of loop) vk = (op == BC_IFORL || op == BC_JFORL); | ldrd CARG12, [RA, BASE]! if (op != BC_JFORL) { | add RC, PC, RC, lsl #2 } if (!vk) { | ldrd CARG34, FOR_STOP | checktp CARG2, LJ_TISNUM | ldr RB, FOR_TSTEP | bne >5 | checktp CARG4, LJ_TISNUM | ldr CARG4, FOR_STEP | checktpeq RB, LJ_TISNUM | bne ->vmeta_for | cmp CARG4, #0 | blt >4 | cmp CARG1, CARG3 } else { | ldrd CARG34, FOR_STEP | checktp CARG2, LJ_TISNUM | bne >5 | adds CARG1, CARG1, CARG3 | ldr CARG4, FOR_STOP if (op == BC_IFORL) { | addvs RC, PC, #0x20000 // Overflow: prevent branch. } else { | bvs >2 // Overflow: do not enter mcode. } | cmp CARG3, #0 | blt >4 | cmp CARG1, CARG4 } |1: if (op == BC_FORI) { | subgt PC, RC, #0x20000 } else if (op == BC_JFORI) { | sub PC, RC, #0x20000 | ldrhle RC, [PC, #-2] } else if (op == BC_IFORL) { | suble PC, RC, #0x20000 } if (vk) { | strd CARG12, FOR_IDX } |2: | ins_next1 | ins_next2 | strd CARG12, FOR_EXT if (op == BC_JFORI || op == BC_JFORL) { | ble =>BC_JLOOP } |3: | ins_next3 | |4: // Invert check for negative step. if (!vk) { | cmp CARG3, CARG1 } else { | cmp CARG4, CARG1 } | b <1 | |5: // FP loop. if (!vk) { | cmnlo CARG4, #-LJ_TISNUM | cmnlo RB, #-LJ_TISNUM | bhs ->vmeta_for |.if FPU | vldr d0, FOR_IDX | vldr d1, FOR_STOP | cmp RB, #0 | vstr d0, FOR_EXT |.else | cmp RB, #0 | strd CARG12, FOR_EXT | blt >8 |.endif } else { |.if FPU | vldr d0, FOR_IDX | vldr d2, FOR_STEP | vldr d1, FOR_STOP | cmp CARG4, #0 | vadd.f64 d0, d0, d2 |.else | cmp CARG4, #0 | blt >8 | bl extern __aeabi_dadd | strd CARG12, FOR_IDX | ldrd CARG34, FOR_STOP | strd CARG12, FOR_EXT |.endif } |6: |.if FPU | vcmpge.f64 d0, d1 | vcmplt.f64 d1, d0 | vmrs |.else | bl extern __aeabi_cdcmple |.endif if (vk) { |.if FPU | vstr d0, FOR_IDX | vstr d0, FOR_EXT |.endif } if (op == BC_FORI) { | subhi PC, RC, #0x20000 } else if (op == BC_JFORI) { | sub PC, RC, #0x20000 | ldrhls RC, [PC, #-2] | bls =>BC_JLOOP } else if (op == BC_IFORL) { | subls PC, RC, #0x20000 } else { | bls =>BC_JLOOP } | ins_next1 | ins_next2 | b <3 | |.if not FPU |8: // Invert check for negative step. if (vk) { | bl extern __aeabi_dadd | strd CARG12, FOR_IDX | strd CARG12, FOR_EXT } | mov CARG3, CARG1 | mov CARG4, CARG2 | ldrd CARG12, FOR_STOP | b <6 |.endif break; case BC_ITERL: |.if JIT | hotloop |.endif | // Fall through. Assumes BC_IITERL follows. break; case BC_JITERL: #if !LJ_HASJIT break; #endif case BC_IITERL: | // RA = base*8, RC = target | ldrd CARG12, [RA, BASE]! if (op == BC_JITERL) { | cmn CARG2, #-LJ_TNIL // Stop if iterator returned nil. | strdne CARG12, [RA, #-8] | bne =>BC_JLOOP } else { | add RC, PC, RC, lsl #2 | // STALL: load CARG12. | cmn CARG2, #-LJ_TNIL // Stop if iterator returned nil. | subne PC, RC, #0x20000 // Otherwise save control var + branch. | strdne CARG12, [RA, #-8] } | ins_next break; case BC_LOOP: | // RA = base*8, RC = target (loop extent) | // Note: RA/RC is only used by trace recorder to determine scope/extent | // This opcode does NOT jump, it's only purpose is to detect a hot loop. |.if JIT | hotloop |.endif | // Fall through. Assumes BC_ILOOP follows. break; case BC_ILOOP: | // RA = base*8, RC = target (loop extent) | ins_next break; case BC_JLOOP: |.if JIT | // RA = base (ignored), RC = traceno | ldr CARG1, [DISPATCH, #DISPATCH_J(trace)] | mov CARG2, #0 // Traces on ARM don't store the trace number, so use 0. | ldr TRACE:RC, [CARG1, RC, lsl #2] | st_vmstate CARG2 | ldr RA, TRACE:RC->mcode | str BASE, [DISPATCH, #DISPATCH_GL(jit_base)] | str L, [DISPATCH, #DISPATCH_GL(tmpbuf.L)] | bx RA |.endif break; case BC_JMP: | // RA = base*8 (only used by trace recorder), RC = target | add RC, PC, RC, lsl #2 | sub PC, RC, #0x20000 | ins_next break; /* -- Function headers -------------------------------------------------- */ case BC_FUNCF: |.if JIT | hotcall |.endif case BC_FUNCV: /* NYI: compiled vararg functions. */ | // Fall through. Assumes BC_IFUNCF/BC_IFUNCV follow. break; case BC_JFUNCF: #if !LJ_HASJIT break; #endif case BC_IFUNCF: | // BASE = new base, RA = BASE+framesize*8, CARG3 = LFUNC, RC = nargs*8 | ldr CARG1, L->maxstack | ldrb CARG2, [PC, #-4+PC2PROTO(numparams)] | ldr KBASE, [PC, #-4+PC2PROTO(k)] | cmp RA, CARG1 | bhi ->vm_growstack_l if (op != BC_JFUNCF) { | ins_next1 | ins_next2 } |2: | cmp NARGS8:RC, CARG2, lsl #3 // Check for missing parameters. | mvn CARG4, #~LJ_TNIL | blo >3 if (op == BC_JFUNCF) { | decode_RD RC, INS | b =>BC_JLOOP } else { | ins_next3 } | |3: // Clear missing parameters. | strd CARG34, [BASE, NARGS8:RC] | add NARGS8:RC, NARGS8:RC, #8 | b <2 break; case BC_JFUNCV: #if !LJ_HASJIT break; #endif | NYI // NYI: compiled vararg functions break; /* NYI: compiled vararg functions. */ case BC_IFUNCV: | // BASE = new base, RA = BASE+framesize*8, CARG3 = LFUNC, RC = nargs*8 | ldr CARG1, L->maxstack | add CARG4, BASE, RC | add RA, RA, RC | str LFUNC:CARG3, [CARG4] // Store copy of LFUNC. | add CARG2, RC, #8+FRAME_VARG | ldr KBASE, [PC, #-4+PC2PROTO(k)] | cmp RA, CARG1 | str CARG2, [CARG4, #4] // Store delta + FRAME_VARG. | bhs ->vm_growstack_l | ldrb RB, [PC, #-4+PC2PROTO(numparams)] | mov RA, BASE | mov RC, CARG4 | cmp RB, #0 | add BASE, CARG4, #8 | beq >3 | mvn CARG3, #~LJ_TNIL |1: | cmp RA, RC // Less args than parameters? | ldrdlo CARG12, [RA], #8 | movhs CARG2, CARG3 | strlo CARG3, [RA, #-4] // Clear old fixarg slot (help the GC). |2: | subs RB, RB, #1 | strd CARG12, [CARG4, #8]! | bne <1 |3: | ins_next break; case BC_FUNCC: case BC_FUNCCW: | // BASE = new base, RA = BASE+framesize*8, CARG3 = CFUNC, RC = nargs*8 if (op == BC_FUNCC) { | ldr CARG4, CFUNC:CARG3->f } else { | ldr CARG4, [DISPATCH, #DISPATCH_GL(wrapf)] } | add CARG2, RA, NARGS8:RC | ldr CARG1, L->maxstack | add RC, BASE, NARGS8:RC | str BASE, L->base | cmp CARG2, CARG1 | str RC, L->top if (op == BC_FUNCCW) { | ldr CARG2, CFUNC:CARG3->f } | mv_vmstate CARG3, C | mov CARG1, L | bhi ->vm_growstack_c // Need to grow stack. | st_vmstate CARG3 | blx CARG4 // (lua_State *L [, lua_CFunction f]) | // Returns nresults. | ldr BASE, L->base | mv_vmstate CARG3, INTERP | ldr CRET2, L->top | str L, [DISPATCH, #DISPATCH_GL(cur_L)] | lsl RC, CRET1, #3 | st_vmstate CARG3 | ldr PC, [BASE, FRAME_PC] | sub RA, CRET2, RC // RA = L->top - nresults*8 | b ->vm_returnc break; /* ---------------------------------------------------------------------- */ default: fprintf(stderr, "Error: undefined opcode BC_%s\n", bc_names[op]); exit(2); break; } } static int build_backend(BuildCtx *ctx) { int op; dasm_growpc(Dst, BC__MAX); build_subroutines(ctx); |.code_op for (op = 0; op < BC__MAX; op++) build_ins(ctx, (BCOp)op, op); return BC__MAX; } /* Emit pseudo frame-info for all assembler functions. */ static void emit_asm_debug(BuildCtx *ctx) { int fcofs = (int)((uint8_t *)ctx->glob[GLOB_vm_ffi_call] - ctx->code); int i; switch (ctx->mode) { case BUILD_elfasm: fprintf(ctx->fp, "\t.section .debug_frame,\"\",%%progbits\n"); fprintf(ctx->fp, ".Lframe0:\n" "\t.long .LECIE0-.LSCIE0\n" ".LSCIE0:\n" "\t.long 0xffffffff\n" "\t.byte 0x1\n" "\t.string \"\"\n" "\t.uleb128 0x1\n" "\t.sleb128 -4\n" "\t.byte 0xe\n" /* Return address is in lr. */ "\t.byte 0xc\n\t.uleb128 0xd\n\t.uleb128 0\n" /* def_cfa sp */ "\t.align 2\n" ".LECIE0:\n\n"); fprintf(ctx->fp, ".LSFDE0:\n" "\t.long .LEFDE0-.LASFDE0\n" ".LASFDE0:\n" "\t.long .Lframe0\n" "\t.long .Lbegin\n" "\t.long %d\n" "\t.byte 0xe\n\t.uleb128 %d\n" /* def_cfa_offset */ "\t.byte 0x8e\n\t.uleb128 1\n", /* offset lr */ fcofs, CFRAME_SIZE); for (i = 11; i >= (LJ_ARCH_HASFPU ? 5 : 4); i--) /* offset r4-r11 */ fprintf(ctx->fp, "\t.byte %d\n\t.uleb128 %d\n", 0x80+i, 2+(11-i)); #if LJ_ARCH_HASFPU for (i = 15; i >= 8; i--) /* offset d8-d15 */ fprintf(ctx->fp, "\t.byte 5\n\t.uleb128 %d, %d\n", 64+2*i, 10+2*(15-i)); fprintf(ctx->fp, "\t.byte 0x84\n\t.uleb128 %d\n", 25); /* offset r4 */ #endif fprintf(ctx->fp, "\t.align 2\n" ".LEFDE0:\n\n"); #if LJ_HASFFI fprintf(ctx->fp, ".LSFDE1:\n" "\t.long .LEFDE1-.LASFDE1\n" ".LASFDE1:\n" "\t.long .Lframe0\n" "\t.long lj_vm_ffi_call\n" "\t.long %d\n" "\t.byte 0xe\n\t.uleb128 16\n" /* def_cfa_offset */ "\t.byte 0x8e\n\t.uleb128 1\n" /* offset lr */ "\t.byte 0x8b\n\t.uleb128 2\n" /* offset r11 */ "\t.byte 0x85\n\t.uleb128 3\n" /* offset r5 */ "\t.byte 0x84\n\t.uleb128 4\n" /* offset r4 */ "\t.byte 0xd\n\t.uleb128 0xb\n" /* def_cfa_register r11 */ "\t.align 2\n" ".LEFDE1:\n\n", (int)ctx->codesz - fcofs); #endif break; default: break; } } luajit-2.1.0~beta3+dfsg.orig/src/lj_debug.h0000644000175100017510000000360213101703334020032 0ustar ondrejondrej/* ** Debugging and introspection. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_DEBUG_H #define _LJ_DEBUG_H #include "lj_obj.h" typedef struct lj_Debug { /* Common fields. Must be in the same order as in lua.h. */ int event; const char *name; const char *namewhat; const char *what; const char *source; int currentline; int nups; int linedefined; int lastlinedefined; char short_src[LUA_IDSIZE]; int i_ci; /* Extended fields. Only valid if lj_debug_getinfo() is called with ext = 1.*/ int nparams; int isvararg; } lj_Debug; LJ_FUNC cTValue *lj_debug_frame(lua_State *L, int level, int *size); LJ_FUNC BCLine LJ_FASTCALL lj_debug_line(GCproto *pt, BCPos pc); LJ_FUNC const char *lj_debug_uvname(GCproto *pt, uint32_t idx); LJ_FUNC const char *lj_debug_uvnamev(cTValue *o, uint32_t idx, TValue **tvp); LJ_FUNC const char *lj_debug_slotname(GCproto *pt, const BCIns *pc, BCReg slot, const char **name); LJ_FUNC const char *lj_debug_funcname(lua_State *L, cTValue *frame, const char **name); LJ_FUNC void lj_debug_shortname(char *out, GCstr *str, BCLine line); LJ_FUNC void lj_debug_addloc(lua_State *L, const char *msg, cTValue *frame, cTValue *nextframe); LJ_FUNC void lj_debug_pushloc(lua_State *L, GCproto *pt, BCPos pc); LJ_FUNC int lj_debug_getinfo(lua_State *L, const char *what, lj_Debug *ar, int ext); #if LJ_HASPROFILE LJ_FUNC void lj_debug_dumpstack(lua_State *L, SBuf *sb, const char *fmt, int depth); #endif /* Fixed internal variable names. */ #define VARNAMEDEF(_) \ _(FOR_IDX, "(for index)") \ _(FOR_STOP, "(for limit)") \ _(FOR_STEP, "(for step)") \ _(FOR_GEN, "(for generator)") \ _(FOR_STATE, "(for state)") \ _(FOR_CTL, "(for control)") enum { VARNAME_END, #define VARNAMEENUM(name, str) VARNAME_##name, VARNAMEDEF(VARNAMEENUM) #undef VARNAMEENUM VARNAME__MAX }; #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_bcwrite.c0000644000175100017510000002436013101703334020402 0ustar ondrejondrej/* ** Bytecode writer. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #define lj_bcwrite_c #define LUA_CORE #include "lj_obj.h" #include "lj_gc.h" #include "lj_buf.h" #include "lj_bc.h" #if LJ_HASFFI #include "lj_ctype.h" #endif #if LJ_HASJIT #include "lj_dispatch.h" #include "lj_jit.h" #endif #include "lj_strfmt.h" #include "lj_bcdump.h" #include "lj_vm.h" /* Context for bytecode writer. */ typedef struct BCWriteCtx { SBuf sb; /* Output buffer. */ GCproto *pt; /* Root prototype. */ lua_Writer wfunc; /* Writer callback. */ void *wdata; /* Writer callback data. */ int strip; /* Strip debug info. */ int status; /* Status from writer callback. */ } BCWriteCtx; /* -- Bytecode writer ----------------------------------------------------- */ /* Write a single constant key/value of a template table. */ static void bcwrite_ktabk(BCWriteCtx *ctx, cTValue *o, int narrow) { char *p = lj_buf_more(&ctx->sb, 1+10); if (tvisstr(o)) { const GCstr *str = strV(o); MSize len = str->len; p = lj_buf_more(&ctx->sb, 5+len); p = lj_strfmt_wuleb128(p, BCDUMP_KTAB_STR+len); p = lj_buf_wmem(p, strdata(str), len); } else if (tvisint(o)) { *p++ = BCDUMP_KTAB_INT; p = lj_strfmt_wuleb128(p, intV(o)); } else if (tvisnum(o)) { if (!LJ_DUALNUM && narrow) { /* Narrow number constants to integers. */ lua_Number num = numV(o); int32_t k = lj_num2int(num); if (num == (lua_Number)k) { /* -0 is never a constant. */ *p++ = BCDUMP_KTAB_INT; p = lj_strfmt_wuleb128(p, k); setsbufP(&ctx->sb, p); return; } } *p++ = BCDUMP_KTAB_NUM; p = lj_strfmt_wuleb128(p, o->u32.lo); p = lj_strfmt_wuleb128(p, o->u32.hi); } else { lua_assert(tvispri(o)); *p++ = BCDUMP_KTAB_NIL+~itype(o); } setsbufP(&ctx->sb, p); } /* Write a template table. */ static void bcwrite_ktab(BCWriteCtx *ctx, char *p, const GCtab *t) { MSize narray = 0, nhash = 0; if (t->asize > 0) { /* Determine max. length of array part. */ ptrdiff_t i; TValue *array = tvref(t->array); for (i = (ptrdiff_t)t->asize-1; i >= 0; i--) if (!tvisnil(&array[i])) break; narray = (MSize)(i+1); } if (t->hmask > 0) { /* Count number of used hash slots. */ MSize i, hmask = t->hmask; Node *node = noderef(t->node); for (i = 0; i <= hmask; i++) nhash += !tvisnil(&node[i].val); } /* Write number of array slots and hash slots. */ p = lj_strfmt_wuleb128(p, narray); p = lj_strfmt_wuleb128(p, nhash); setsbufP(&ctx->sb, p); if (narray) { /* Write array entries (may contain nil). */ MSize i; TValue *o = tvref(t->array); for (i = 0; i < narray; i++, o++) bcwrite_ktabk(ctx, o, 1); } if (nhash) { /* Write hash entries. */ MSize i = nhash; Node *node = noderef(t->node) + t->hmask; for (;; node--) if (!tvisnil(&node->val)) { bcwrite_ktabk(ctx, &node->key, 0); bcwrite_ktabk(ctx, &node->val, 1); if (--i == 0) break; } } } /* Write GC constants of a prototype. */ static void bcwrite_kgc(BCWriteCtx *ctx, GCproto *pt) { MSize i, sizekgc = pt->sizekgc; GCRef *kr = mref(pt->k, GCRef) - (ptrdiff_t)sizekgc; for (i = 0; i < sizekgc; i++, kr++) { GCobj *o = gcref(*kr); MSize tp, need = 1; char *p; /* Determine constant type and needed size. */ if (o->gch.gct == ~LJ_TSTR) { tp = BCDUMP_KGC_STR + gco2str(o)->len; need = 5+gco2str(o)->len; } else if (o->gch.gct == ~LJ_TPROTO) { lua_assert((pt->flags & PROTO_CHILD)); tp = BCDUMP_KGC_CHILD; #if LJ_HASFFI } else if (o->gch.gct == ~LJ_TCDATA) { CTypeID id = gco2cd(o)->ctypeid; need = 1+4*5; if (id == CTID_INT64) { tp = BCDUMP_KGC_I64; } else if (id == CTID_UINT64) { tp = BCDUMP_KGC_U64; } else { lua_assert(id == CTID_COMPLEX_DOUBLE); tp = BCDUMP_KGC_COMPLEX; } #endif } else { lua_assert(o->gch.gct == ~LJ_TTAB); tp = BCDUMP_KGC_TAB; need = 1+2*5; } /* Write constant type. */ p = lj_buf_more(&ctx->sb, need); p = lj_strfmt_wuleb128(p, tp); /* Write constant data (if any). */ if (tp >= BCDUMP_KGC_STR) { p = lj_buf_wmem(p, strdata(gco2str(o)), gco2str(o)->len); } else if (tp == BCDUMP_KGC_TAB) { bcwrite_ktab(ctx, p, gco2tab(o)); continue; #if LJ_HASFFI } else if (tp != BCDUMP_KGC_CHILD) { cTValue *q = (TValue *)cdataptr(gco2cd(o)); p = lj_strfmt_wuleb128(p, q[0].u32.lo); p = lj_strfmt_wuleb128(p, q[0].u32.hi); if (tp == BCDUMP_KGC_COMPLEX) { p = lj_strfmt_wuleb128(p, q[1].u32.lo); p = lj_strfmt_wuleb128(p, q[1].u32.hi); } #endif } setsbufP(&ctx->sb, p); } } /* Write number constants of a prototype. */ static void bcwrite_knum(BCWriteCtx *ctx, GCproto *pt) { MSize i, sizekn = pt->sizekn; cTValue *o = mref(pt->k, TValue); char *p = lj_buf_more(&ctx->sb, 10*sizekn); for (i = 0; i < sizekn; i++, o++) { int32_t k; if (tvisint(o)) { k = intV(o); goto save_int; } else { /* Write a 33 bit ULEB128 for the int (lsb=0) or loword (lsb=1). */ if (!LJ_DUALNUM) { /* Narrow number constants to integers. */ lua_Number num = numV(o); k = lj_num2int(num); if (num == (lua_Number)k) { /* -0 is never a constant. */ save_int: p = lj_strfmt_wuleb128(p, 2*(uint32_t)k | ((uint32_t)k&0x80000000u)); if (k < 0) p[-1] = (p[-1] & 7) | ((k>>27) & 0x18); continue; } } p = lj_strfmt_wuleb128(p, 1+(2*o->u32.lo | (o->u32.lo & 0x80000000u))); if (o->u32.lo >= 0x80000000u) p[-1] = (p[-1] & 7) | ((o->u32.lo>>27) & 0x18); p = lj_strfmt_wuleb128(p, o->u32.hi); } } setsbufP(&ctx->sb, p); } /* Write bytecode instructions. */ static char *bcwrite_bytecode(BCWriteCtx *ctx, char *p, GCproto *pt) { MSize nbc = pt->sizebc-1; /* Omit the [JI]FUNC* header. */ #if LJ_HASJIT uint8_t *q = (uint8_t *)p; #endif p = lj_buf_wmem(p, proto_bc(pt)+1, nbc*(MSize)sizeof(BCIns)); UNUSED(ctx); #if LJ_HASJIT /* Unpatch modified bytecode containing ILOOP/JLOOP etc. */ if ((pt->flags & PROTO_ILOOP) || pt->trace) { jit_State *J = L2J(sbufL(&ctx->sb)); MSize i; for (i = 0; i < nbc; i++, q += sizeof(BCIns)) { BCOp op = (BCOp)q[LJ_ENDIAN_SELECT(0, 3)]; if (op == BC_IFORL || op == BC_IITERL || op == BC_ILOOP || op == BC_JFORI) { q[LJ_ENDIAN_SELECT(0, 3)] = (uint8_t)(op-BC_IFORL+BC_FORL); } else if (op == BC_JFORL || op == BC_JITERL || op == BC_JLOOP) { BCReg rd = q[LJ_ENDIAN_SELECT(2, 1)] + (q[LJ_ENDIAN_SELECT(3, 0)] << 8); BCIns ins = traceref(J, rd)->startins; q[LJ_ENDIAN_SELECT(0, 3)] = (uint8_t)(op-BC_JFORL+BC_FORL); q[LJ_ENDIAN_SELECT(2, 1)] = bc_c(ins); q[LJ_ENDIAN_SELECT(3, 0)] = bc_b(ins); } } } #endif return p; } /* Write prototype. */ static void bcwrite_proto(BCWriteCtx *ctx, GCproto *pt) { MSize sizedbg = 0; char *p; /* Recursively write children of prototype. */ if ((pt->flags & PROTO_CHILD)) { ptrdiff_t i, n = pt->sizekgc; GCRef *kr = mref(pt->k, GCRef) - 1; for (i = 0; i < n; i++, kr--) { GCobj *o = gcref(*kr); if (o->gch.gct == ~LJ_TPROTO) bcwrite_proto(ctx, gco2pt(o)); } } /* Start writing the prototype info to a buffer. */ p = lj_buf_need(&ctx->sb, 5+4+6*5+(pt->sizebc-1)*(MSize)sizeof(BCIns)+pt->sizeuv*2); p += 5; /* Leave room for final size. */ /* Write prototype header. */ *p++ = (pt->flags & (PROTO_CHILD|PROTO_VARARG|PROTO_FFI)); *p++ = pt->numparams; *p++ = pt->framesize; *p++ = pt->sizeuv; p = lj_strfmt_wuleb128(p, pt->sizekgc); p = lj_strfmt_wuleb128(p, pt->sizekn); p = lj_strfmt_wuleb128(p, pt->sizebc-1); if (!ctx->strip) { if (proto_lineinfo(pt)) sizedbg = pt->sizept - (MSize)((char *)proto_lineinfo(pt) - (char *)pt); p = lj_strfmt_wuleb128(p, sizedbg); if (sizedbg) { p = lj_strfmt_wuleb128(p, pt->firstline); p = lj_strfmt_wuleb128(p, pt->numline); } } /* Write bytecode instructions and upvalue refs. */ p = bcwrite_bytecode(ctx, p, pt); p = lj_buf_wmem(p, proto_uv(pt), pt->sizeuv*2); setsbufP(&ctx->sb, p); /* Write constants. */ bcwrite_kgc(ctx, pt); bcwrite_knum(ctx, pt); /* Write debug info, if not stripped. */ if (sizedbg) { p = lj_buf_more(&ctx->sb, sizedbg); p = lj_buf_wmem(p, proto_lineinfo(pt), sizedbg); setsbufP(&ctx->sb, p); } /* Pass buffer to writer function. */ if (ctx->status == 0) { MSize n = sbuflen(&ctx->sb) - 5; MSize nn = (lj_fls(n)+8)*9 >> 6; char *q = sbufB(&ctx->sb) + (5 - nn); p = lj_strfmt_wuleb128(q, n); /* Fill in final size. */ lua_assert(p == sbufB(&ctx->sb) + 5); ctx->status = ctx->wfunc(sbufL(&ctx->sb), q, nn+n, ctx->wdata); } } /* Write header of bytecode dump. */ static void bcwrite_header(BCWriteCtx *ctx) { GCstr *chunkname = proto_chunkname(ctx->pt); const char *name = strdata(chunkname); MSize len = chunkname->len; char *p = lj_buf_need(&ctx->sb, 5+5+len); *p++ = BCDUMP_HEAD1; *p++ = BCDUMP_HEAD2; *p++ = BCDUMP_HEAD3; *p++ = BCDUMP_VERSION; *p++ = (ctx->strip ? BCDUMP_F_STRIP : 0) + LJ_BE*BCDUMP_F_BE + ((ctx->pt->flags & PROTO_FFI) ? BCDUMP_F_FFI : 0) + LJ_FR2*BCDUMP_F_FR2; if (!ctx->strip) { p = lj_strfmt_wuleb128(p, len); p = lj_buf_wmem(p, name, len); } ctx->status = ctx->wfunc(sbufL(&ctx->sb), sbufB(&ctx->sb), (MSize)(p - sbufB(&ctx->sb)), ctx->wdata); } /* Write footer of bytecode dump. */ static void bcwrite_footer(BCWriteCtx *ctx) { if (ctx->status == 0) { uint8_t zero = 0; ctx->status = ctx->wfunc(sbufL(&ctx->sb), &zero, 1, ctx->wdata); } } /* Protected callback for bytecode writer. */ static TValue *cpwriter(lua_State *L, lua_CFunction dummy, void *ud) { BCWriteCtx *ctx = (BCWriteCtx *)ud; UNUSED(L); UNUSED(dummy); lj_buf_need(&ctx->sb, 1024); /* Avoids resize for most prototypes. */ bcwrite_header(ctx); bcwrite_proto(ctx, ctx->pt); bcwrite_footer(ctx); return NULL; } /* Write bytecode for a prototype. */ int lj_bcwrite(lua_State *L, GCproto *pt, lua_Writer writer, void *data, int strip) { BCWriteCtx ctx; int status; ctx.pt = pt; ctx.wfunc = writer; ctx.wdata = data; ctx.strip = strip; ctx.status = 0; lj_buf_init(L, &ctx.sb); status = lj_vm_cpcall(L, NULL, &ctx, cpwriter); if (status == 0) status = ctx.status; lj_buf_free(G(sbufL(&ctx.sb)), &ctx.sb); return status; } luajit-2.1.0~beta3+dfsg.orig/src/lj_mcode.c0000644000175100017510000002367213101703334020037 0ustar ondrejondrej/* ** Machine code management. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #define lj_mcode_c #define LUA_CORE #include "lj_obj.h" #if LJ_HASJIT #include "lj_gc.h" #include "lj_err.h" #include "lj_jit.h" #include "lj_mcode.h" #include "lj_trace.h" #include "lj_dispatch.h" #endif #if LJ_HASJIT || LJ_HASFFI #include "lj_vm.h" #endif /* -- OS-specific functions ----------------------------------------------- */ #if LJ_HASJIT || LJ_HASFFI /* Define this if you want to run LuaJIT with Valgrind. */ #ifdef LUAJIT_USE_VALGRIND #include #endif #if LJ_TARGET_IOS void sys_icache_invalidate(void *start, size_t len); #endif /* Synchronize data/instruction cache. */ void lj_mcode_sync(void *start, void *end) { #ifdef LUAJIT_USE_VALGRIND VALGRIND_DISCARD_TRANSLATIONS(start, (char *)end-(char *)start); #endif #if LJ_TARGET_X86ORX64 UNUSED(start); UNUSED(end); #elif LJ_TARGET_IOS sys_icache_invalidate(start, (char *)end-(char *)start); #elif LJ_TARGET_PPC lj_vm_cachesync(start, end); #elif defined(__GNUC__) __clear_cache(start, end); #else #error "Missing builtin to flush instruction cache" #endif } #endif #if LJ_HASJIT #if LJ_TARGET_WINDOWS #define WIN32_LEAN_AND_MEAN #include #define MCPROT_RW PAGE_READWRITE #define MCPROT_RX PAGE_EXECUTE_READ #define MCPROT_RWX PAGE_EXECUTE_READWRITE static void *mcode_alloc_at(jit_State *J, uintptr_t hint, size_t sz, DWORD prot) { void *p = VirtualAlloc((void *)hint, sz, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN, prot); if (!p && !hint) lj_trace_err(J, LJ_TRERR_MCODEAL); return p; } static void mcode_free(jit_State *J, void *p, size_t sz) { UNUSED(J); UNUSED(sz); VirtualFree(p, 0, MEM_RELEASE); } static int mcode_setprot(void *p, size_t sz, DWORD prot) { DWORD oprot; return !VirtualProtect(p, sz, prot, &oprot); } #elif LJ_TARGET_POSIX #include #ifndef MAP_ANONYMOUS #define MAP_ANONYMOUS MAP_ANON #endif #define MCPROT_RW (PROT_READ|PROT_WRITE) #define MCPROT_RX (PROT_READ|PROT_EXEC) #define MCPROT_RWX (PROT_READ|PROT_WRITE|PROT_EXEC) static void *mcode_alloc_at(jit_State *J, uintptr_t hint, size_t sz, int prot) { void *p = mmap((void *)hint, sz, prot, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); if (p == MAP_FAILED) { if (!hint) lj_trace_err(J, LJ_TRERR_MCODEAL); p = NULL; } return p; } static void mcode_free(jit_State *J, void *p, size_t sz) { UNUSED(J); munmap(p, sz); } static int mcode_setprot(void *p, size_t sz, int prot) { return mprotect(p, sz, prot); } #elif LJ_64 #error "Missing OS support for explicit placement of executable memory" #else /* Fallback allocator. This will fail if memory is not executable by default. */ #define LUAJIT_UNPROTECT_MCODE #define MCPROT_RW 0 #define MCPROT_RX 0 #define MCPROT_RWX 0 static void *mcode_alloc_at(jit_State *J, uintptr_t hint, size_t sz, int prot) { UNUSED(hint); UNUSED(prot); return lj_mem_new(J->L, sz); } static void mcode_free(jit_State *J, void *p, size_t sz) { lj_mem_free(J2G(J), p, sz); } #endif /* -- MCode area protection ----------------------------------------------- */ /* Define this ONLY if page protection twiddling becomes a bottleneck. */ #ifdef LUAJIT_UNPROTECT_MCODE /* It's generally considered to be a potential security risk to have ** pages with simultaneous write *and* execute access in a process. ** ** Do not even think about using this mode for server processes or ** apps handling untrusted external data (such as a browser). ** ** The security risk is not in LuaJIT itself -- but if an adversary finds ** any *other* flaw in your C application logic, then any RWX memory page ** simplifies writing an exploit considerably. */ #define MCPROT_GEN MCPROT_RWX #define MCPROT_RUN MCPROT_RWX static void mcode_protect(jit_State *J, int prot) { UNUSED(J); UNUSED(prot); } #else /* This is the default behaviour and much safer: ** ** Most of the time the memory pages holding machine code are executable, ** but NONE of them is writable. ** ** The current memory area is marked read-write (but NOT executable) only ** during the short time window while the assembler generates machine code. */ #define MCPROT_GEN MCPROT_RW #define MCPROT_RUN MCPROT_RX /* Protection twiddling failed. Probably due to kernel security. */ static LJ_NOINLINE void mcode_protfail(jit_State *J) { lua_CFunction panic = J2G(J)->panic; if (panic) { lua_State *L = J->L; setstrV(L, L->top++, lj_err_str(L, LJ_ERR_JITPROT)); panic(L); } } /* Change protection of MCode area. */ static void mcode_protect(jit_State *J, int prot) { if (J->mcprot != prot) { if (LJ_UNLIKELY(mcode_setprot(J->mcarea, J->szmcarea, prot))) mcode_protfail(J); J->mcprot = prot; } } #endif /* -- MCode area allocation ----------------------------------------------- */ #if LJ_64 #define mcode_validptr(p) (p) #else #define mcode_validptr(p) ((p) && (uintptr_t)(p) < 0xffff0000) #endif #ifdef LJ_TARGET_JUMPRANGE /* Get memory within relative jump distance of our code in 64 bit mode. */ static void *mcode_alloc(jit_State *J, size_t sz) { /* Target an address in the static assembler code (64K aligned). ** Try addresses within a distance of target-range/2+1MB..target+range/2-1MB. ** Use half the jump range so every address in the range can reach any other. */ #if LJ_TARGET_MIPS /* Use the middle of the 256MB-aligned region. */ uintptr_t target = ((uintptr_t)(void *)lj_vm_exit_handler & ~(uintptr_t)0x0fffffffu) + 0x08000000u; #else uintptr_t target = (uintptr_t)(void *)lj_vm_exit_handler & ~(uintptr_t)0xffff; #endif const uintptr_t range = (1u << (LJ_TARGET_JUMPRANGE-1)) - (1u << 21); /* First try a contiguous area below the last one. */ uintptr_t hint = J->mcarea ? (uintptr_t)J->mcarea - sz : 0; int i; /* Limit probing iterations, depending on the available pool size. */ for (i = 0; i < LJ_TARGET_JUMPRANGE; i++) { if (mcode_validptr(hint)) { void *p = mcode_alloc_at(J, hint, sz, MCPROT_GEN); if (mcode_validptr(p) && ((uintptr_t)p + sz - target < range || target - (uintptr_t)p < range)) return p; if (p) mcode_free(J, p, sz); /* Free badly placed area. */ } /* Next try probing 64K-aligned pseudo-random addresses. */ do { hint = LJ_PRNG_BITS(J, LJ_TARGET_JUMPRANGE-16) << 16; } while (!(hint + sz < range+range)); hint = target + hint - range; } lj_trace_err(J, LJ_TRERR_MCODEAL); /* Give up. OS probably ignores hints? */ return NULL; } #else /* All memory addresses are reachable by relative jumps. */ static void *mcode_alloc(jit_State *J, size_t sz) { #ifdef __OpenBSD__ /* Allow better executable memory allocation for OpenBSD W^X mode. */ void *p = mcode_alloc_at(J, 0, sz, MCPROT_RUN); if (p && mcode_setprot(p, sz, MCPROT_GEN)) { mcode_free(J, p, sz); return NULL; } return p; #else return mcode_alloc_at(J, 0, sz, MCPROT_GEN); #endif } #endif /* -- MCode area management ----------------------------------------------- */ /* Linked list of MCode areas. */ typedef struct MCLink { MCode *next; /* Next area. */ size_t size; /* Size of current area. */ } MCLink; /* Allocate a new MCode area. */ static void mcode_allocarea(jit_State *J) { MCode *oldarea = J->mcarea; size_t sz = (size_t)J->param[JIT_P_sizemcode] << 10; sz = (sz + LJ_PAGESIZE-1) & ~(size_t)(LJ_PAGESIZE - 1); J->mcarea = (MCode *)mcode_alloc(J, sz); J->szmcarea = sz; J->mcprot = MCPROT_GEN; J->mctop = (MCode *)((char *)J->mcarea + J->szmcarea); J->mcbot = (MCode *)((char *)J->mcarea + sizeof(MCLink)); ((MCLink *)J->mcarea)->next = oldarea; ((MCLink *)J->mcarea)->size = sz; J->szallmcarea += sz; } /* Free all MCode areas. */ void lj_mcode_free(jit_State *J) { MCode *mc = J->mcarea; J->mcarea = NULL; J->szallmcarea = 0; while (mc) { MCode *next = ((MCLink *)mc)->next; mcode_free(J, mc, ((MCLink *)mc)->size); mc = next; } } /* -- MCode transactions -------------------------------------------------- */ /* Reserve the remainder of the current MCode area. */ MCode *lj_mcode_reserve(jit_State *J, MCode **lim) { if (!J->mcarea) mcode_allocarea(J); else mcode_protect(J, MCPROT_GEN); *lim = J->mcbot; return J->mctop; } /* Commit the top part of the current MCode area. */ void lj_mcode_commit(jit_State *J, MCode *top) { J->mctop = top; mcode_protect(J, MCPROT_RUN); } /* Abort the reservation. */ void lj_mcode_abort(jit_State *J) { if (J->mcarea) mcode_protect(J, MCPROT_RUN); } /* Set/reset protection to allow patching of MCode areas. */ MCode *lj_mcode_patch(jit_State *J, MCode *ptr, int finish) { #ifdef LUAJIT_UNPROTECT_MCODE UNUSED(J); UNUSED(ptr); UNUSED(finish); return NULL; #else if (finish) { if (J->mcarea == ptr) mcode_protect(J, MCPROT_RUN); else if (LJ_UNLIKELY(mcode_setprot(ptr, ((MCLink *)ptr)->size, MCPROT_RUN))) mcode_protfail(J); return NULL; } else { MCode *mc = J->mcarea; /* Try current area first to use the protection cache. */ if (ptr >= mc && ptr < (MCode *)((char *)mc + J->szmcarea)) { mcode_protect(J, MCPROT_GEN); return mc; } /* Otherwise search through the list of MCode areas. */ for (;;) { mc = ((MCLink *)mc)->next; lua_assert(mc != NULL); if (ptr >= mc && ptr < (MCode *)((char *)mc + ((MCLink *)mc)->size)) { if (LJ_UNLIKELY(mcode_setprot(mc, ((MCLink *)mc)->size, MCPROT_GEN))) mcode_protfail(J); return mc; } } } #endif } /* Limit of MCode reservation reached. */ void lj_mcode_limiterr(jit_State *J, size_t need) { size_t sizemcode, maxmcode; lj_mcode_abort(J); sizemcode = (size_t)J->param[JIT_P_sizemcode] << 10; sizemcode = (sizemcode + LJ_PAGESIZE-1) & ~(size_t)(LJ_PAGESIZE - 1); maxmcode = (size_t)J->param[JIT_P_maxmcode] << 10; if ((size_t)need > sizemcode) lj_trace_err(J, LJ_TRERR_MCODEOV); /* Too long for any area. */ if (J->szallmcarea + sizemcode > maxmcode) lj_trace_err(J, LJ_TRERR_MCODEAL); mcode_allocarea(J); lj_trace_err(J, LJ_TRERR_MCODELM); /* Retry with new area. */ } #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_gc.h0000644000175100017510000001146713101703334017345 0ustar ondrejondrej/* ** Garbage collector. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_GC_H #define _LJ_GC_H #include "lj_obj.h" /* Garbage collector states. Order matters. */ enum { GCSpause, GCSpropagate, GCSatomic, GCSsweepstring, GCSsweep, GCSfinalize }; /* Bitmasks for marked field of GCobj. */ #define LJ_GC_WHITE0 0x01 #define LJ_GC_WHITE1 0x02 #define LJ_GC_BLACK 0x04 #define LJ_GC_FINALIZED 0x08 #define LJ_GC_WEAKKEY 0x08 #define LJ_GC_WEAKVAL 0x10 #define LJ_GC_CDATA_FIN 0x10 #define LJ_GC_FIXED 0x20 #define LJ_GC_SFIXED 0x40 #define LJ_GC_WHITES (LJ_GC_WHITE0 | LJ_GC_WHITE1) #define LJ_GC_COLORS (LJ_GC_WHITES | LJ_GC_BLACK) #define LJ_GC_WEAK (LJ_GC_WEAKKEY | LJ_GC_WEAKVAL) /* Macros to test and set GCobj colors. */ #define iswhite(x) ((x)->gch.marked & LJ_GC_WHITES) #define isblack(x) ((x)->gch.marked & LJ_GC_BLACK) #define isgray(x) (!((x)->gch.marked & (LJ_GC_BLACK|LJ_GC_WHITES))) #define tviswhite(x) (tvisgcv(x) && iswhite(gcV(x))) #define otherwhite(g) (g->gc.currentwhite ^ LJ_GC_WHITES) #define isdead(g, v) ((v)->gch.marked & otherwhite(g) & LJ_GC_WHITES) #define curwhite(g) ((g)->gc.currentwhite & LJ_GC_WHITES) #define newwhite(g, x) (obj2gco(x)->gch.marked = (uint8_t)curwhite(g)) #define makewhite(g, x) \ ((x)->gch.marked = ((x)->gch.marked & (uint8_t)~LJ_GC_COLORS) | curwhite(g)) #define flipwhite(x) ((x)->gch.marked ^= LJ_GC_WHITES) #define black2gray(x) ((x)->gch.marked &= (uint8_t)~LJ_GC_BLACK) #define fixstring(s) ((s)->marked |= LJ_GC_FIXED) #define markfinalized(x) ((x)->gch.marked |= LJ_GC_FINALIZED) /* Collector. */ LJ_FUNC size_t lj_gc_separateudata(global_State *g, int all); LJ_FUNC void lj_gc_finalize_udata(lua_State *L); #if LJ_HASFFI LJ_FUNC void lj_gc_finalize_cdata(lua_State *L); #else #define lj_gc_finalize_cdata(L) UNUSED(L) #endif LJ_FUNC void lj_gc_freeall(global_State *g); LJ_FUNCA int LJ_FASTCALL lj_gc_step(lua_State *L); LJ_FUNCA void LJ_FASTCALL lj_gc_step_fixtop(lua_State *L); #if LJ_HASJIT LJ_FUNC int LJ_FASTCALL lj_gc_step_jit(global_State *g, MSize steps); #endif LJ_FUNC void lj_gc_fullgc(lua_State *L); /* GC check: drive collector forward if the GC threshold has been reached. */ #define lj_gc_check(L) \ { if (LJ_UNLIKELY(G(L)->gc.total >= G(L)->gc.threshold)) \ lj_gc_step(L); } #define lj_gc_check_fixtop(L) \ { if (LJ_UNLIKELY(G(L)->gc.total >= G(L)->gc.threshold)) \ lj_gc_step_fixtop(L); } /* Write barriers. */ LJ_FUNC void lj_gc_barrierf(global_State *g, GCobj *o, GCobj *v); LJ_FUNCA void LJ_FASTCALL lj_gc_barrieruv(global_State *g, TValue *tv); LJ_FUNC void lj_gc_closeuv(global_State *g, GCupval *uv); #if LJ_HASJIT LJ_FUNC void lj_gc_barriertrace(global_State *g, uint32_t traceno); #endif /* Move the GC propagation frontier back for tables (make it gray again). */ static LJ_AINLINE void lj_gc_barrierback(global_State *g, GCtab *t) { GCobj *o = obj2gco(t); lua_assert(isblack(o) && !isdead(g, o)); lua_assert(g->gc.state != GCSfinalize && g->gc.state != GCSpause); black2gray(o); setgcrefr(t->gclist, g->gc.grayagain); setgcref(g->gc.grayagain, o); } /* Barrier for stores to table objects. TValue and GCobj variant. */ #define lj_gc_anybarriert(L, t) \ { if (LJ_UNLIKELY(isblack(obj2gco(t)))) lj_gc_barrierback(G(L), (t)); } #define lj_gc_barriert(L, t, tv) \ { if (tviswhite(tv) && isblack(obj2gco(t))) \ lj_gc_barrierback(G(L), (t)); } #define lj_gc_objbarriert(L, t, o) \ { if (iswhite(obj2gco(o)) && isblack(obj2gco(t))) \ lj_gc_barrierback(G(L), (t)); } /* Barrier for stores to any other object. TValue and GCobj variant. */ #define lj_gc_barrier(L, p, tv) \ { if (tviswhite(tv) && isblack(obj2gco(p))) \ lj_gc_barrierf(G(L), obj2gco(p), gcV(tv)); } #define lj_gc_objbarrier(L, p, o) \ { if (iswhite(obj2gco(o)) && isblack(obj2gco(p))) \ lj_gc_barrierf(G(L), obj2gco(p), obj2gco(o)); } /* Allocator. */ LJ_FUNC void *lj_mem_realloc(lua_State *L, void *p, GCSize osz, GCSize nsz); LJ_FUNC void * LJ_FASTCALL lj_mem_newgco(lua_State *L, GCSize size); LJ_FUNC void *lj_mem_grow(lua_State *L, void *p, MSize *szp, MSize lim, MSize esz); #define lj_mem_new(L, s) lj_mem_realloc(L, NULL, 0, (s)) static LJ_AINLINE void lj_mem_free(global_State *g, void *p, size_t osize) { g->gc.total -= (GCSize)osize; g->allocf(g->allocd, p, osize, 0); } #define lj_mem_newvec(L, n, t) ((t *)lj_mem_new(L, (GCSize)((n)*sizeof(t)))) #define lj_mem_reallocvec(L, p, on, n, t) \ ((p) = (t *)lj_mem_realloc(L, p, (on)*sizeof(t), (GCSize)((n)*sizeof(t)))) #define lj_mem_growvec(L, p, n, m, t) \ ((p) = (t *)lj_mem_grow(L, (p), &(n), (m), (MSize)sizeof(t))) #define lj_mem_freevec(g, p, n, t) lj_mem_free(g, (p), (n)*sizeof(t)) #define lj_mem_newobj(L, t) ((t *)lj_mem_newgco(L, sizeof(t))) #define lj_mem_newt(L, s, t) ((t *)lj_mem_new(L, (s))) #define lj_mem_freet(g, p) lj_mem_free(g, (p), sizeof(*(p))) #endif luajit-2.1.0~beta3+dfsg.orig/src/lj.supp0000644000175100017510000000111513101703334017421 0ustar ondrejondrej# Valgrind suppression file for LuaJIT 2.0. { Optimized string compare Memcheck:Addr4 fun:lj_str_cmp } { Optimized string compare Memcheck:Addr1 fun:lj_str_cmp } { Optimized string compare Memcheck:Addr4 fun:lj_str_new } { Optimized string compare Memcheck:Addr1 fun:lj_str_new } { Optimized string compare Memcheck:Cond fun:lj_str_new } { Optimized string compare Memcheck:Addr4 fun:str_fastcmp } { Optimized string compare Memcheck:Addr1 fun:str_fastcmp } { Optimized string compare Memcheck:Cond fun:str_fastcmp } luajit-2.1.0~beta3+dfsg.orig/src/lj_ircall.h0000644000175100017510000002616413101703334020222 0ustar ondrejondrej/* ** IR CALL* instruction definitions. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_IRCALL_H #define _LJ_IRCALL_H #include "lj_obj.h" #include "lj_ir.h" #include "lj_jit.h" /* C call info for CALL* instructions. */ typedef struct CCallInfo { ASMFunction func; /* Function pointer. */ uint32_t flags; /* Number of arguments and flags. */ } CCallInfo; #define CCI_NARGS(ci) ((ci)->flags & 0xff) /* # of args. */ #define CCI_NARGS_MAX 32 /* Max. # of args. */ #define CCI_OTSHIFT 16 #define CCI_OPTYPE(ci) ((ci)->flags >> CCI_OTSHIFT) /* Get op/type. */ #define CCI_OPSHIFT 24 #define CCI_OP(ci) ((ci)->flags >> CCI_OPSHIFT) /* Get op. */ #define CCI_CALL_N (IR_CALLN << CCI_OPSHIFT) #define CCI_CALL_A (IR_CALLA << CCI_OPSHIFT) #define CCI_CALL_L (IR_CALLL << CCI_OPSHIFT) #define CCI_CALL_S (IR_CALLS << CCI_OPSHIFT) #define CCI_CALL_FN (CCI_CALL_N|CCI_CC_FASTCALL) #define CCI_CALL_FL (CCI_CALL_L|CCI_CC_FASTCALL) #define CCI_CALL_FS (CCI_CALL_S|CCI_CC_FASTCALL) /* C call info flags. */ #define CCI_L 0x0100 /* Implicit L arg. */ #define CCI_CASTU64 0x0200 /* Cast u64 result to number. */ #define CCI_NOFPRCLOBBER 0x0400 /* Does not clobber any FPRs. */ #define CCI_VARARG 0x0800 /* Vararg function. */ #define CCI_CC_MASK 0x3000 /* Calling convention mask. */ #define CCI_CC_SHIFT 12 /* ORDER CC */ #define CCI_CC_CDECL 0x0000 /* Default cdecl calling convention. */ #define CCI_CC_THISCALL 0x1000 /* Thiscall calling convention. */ #define CCI_CC_FASTCALL 0x2000 /* Fastcall calling convention. */ #define CCI_CC_STDCALL 0x3000 /* Stdcall calling convention. */ /* Extra args for SOFTFP, SPLIT 64 bit. */ #define CCI_XARGS_SHIFT 14 #define CCI_XARGS(ci) (((ci)->flags >> CCI_XARGS_SHIFT) & 3) #define CCI_XA (1u << CCI_XARGS_SHIFT) #if LJ_SOFTFP || (LJ_32 && LJ_HASFFI) #define CCI_XNARGS(ci) (CCI_NARGS((ci)) + CCI_XARGS((ci))) #else #define CCI_XNARGS(ci) CCI_NARGS((ci)) #endif /* Helpers for conditional function definitions. */ #define IRCALLCOND_ANY(x) x #if LJ_TARGET_X86ORX64 #define IRCALLCOND_FPMATH(x) NULL #else #define IRCALLCOND_FPMATH(x) x #endif #if LJ_SOFTFP #define IRCALLCOND_SOFTFP(x) x #if LJ_HASFFI #define IRCALLCOND_SOFTFP_FFI(x) x #else #define IRCALLCOND_SOFTFP_FFI(x) NULL #endif #else #define IRCALLCOND_SOFTFP(x) NULL #define IRCALLCOND_SOFTFP_FFI(x) NULL #endif #if LJ_SOFTFP && LJ_TARGET_MIPS32 #define IRCALLCOND_SOFTFP_MIPS(x) x #else #define IRCALLCOND_SOFTFP_MIPS(x) NULL #endif #define LJ_NEED_FP64 (LJ_TARGET_ARM || LJ_TARGET_PPC || LJ_TARGET_MIPS32) #if LJ_HASFFI && (LJ_SOFTFP || LJ_NEED_FP64) #define IRCALLCOND_FP64_FFI(x) x #else #define IRCALLCOND_FP64_FFI(x) NULL #endif #if LJ_HASFFI #define IRCALLCOND_FFI(x) x #if LJ_32 #define IRCALLCOND_FFI32(x) x #else #define IRCALLCOND_FFI32(x) NULL #endif #else #define IRCALLCOND_FFI(x) NULL #define IRCALLCOND_FFI32(x) NULL #endif #if LJ_SOFTFP #define XA_FP CCI_XA #define XA2_FP (CCI_XA+CCI_XA) #else #define XA_FP 0 #define XA2_FP 0 #endif #if LJ_32 #define XA_64 CCI_XA #define XA2_64 (CCI_XA+CCI_XA) #else #define XA_64 0 #define XA2_64 0 #endif /* Function definitions for CALL* instructions. */ #define IRCALLDEF(_) \ _(ANY, lj_str_cmp, 2, FN, INT, CCI_NOFPRCLOBBER) \ _(ANY, lj_str_find, 4, N, PGC, 0) \ _(ANY, lj_str_new, 3, S, STR, CCI_L) \ _(ANY, lj_strscan_num, 2, FN, INT, 0) \ _(ANY, lj_strfmt_int, 2, FN, STR, CCI_L) \ _(ANY, lj_strfmt_num, 2, FN, STR, CCI_L) \ _(ANY, lj_strfmt_char, 2, FN, STR, CCI_L) \ _(ANY, lj_strfmt_putint, 2, FL, PGC, 0) \ _(ANY, lj_strfmt_putnum, 2, FL, PGC, 0) \ _(ANY, lj_strfmt_putquoted, 2, FL, PGC, 0) \ _(ANY, lj_strfmt_putfxint, 3, L, PGC, XA_64) \ _(ANY, lj_strfmt_putfnum_int, 3, L, PGC, XA_FP) \ _(ANY, lj_strfmt_putfnum_uint, 3, L, PGC, XA_FP) \ _(ANY, lj_strfmt_putfnum, 3, L, PGC, XA_FP) \ _(ANY, lj_strfmt_putfstr, 3, L, PGC, 0) \ _(ANY, lj_strfmt_putfchar, 3, L, PGC, 0) \ _(ANY, lj_buf_putmem, 3, S, PGC, 0) \ _(ANY, lj_buf_putstr, 2, FL, PGC, 0) \ _(ANY, lj_buf_putchar, 2, FL, PGC, 0) \ _(ANY, lj_buf_putstr_reverse, 2, FL, PGC, 0) \ _(ANY, lj_buf_putstr_lower, 2, FL, PGC, 0) \ _(ANY, lj_buf_putstr_upper, 2, FL, PGC, 0) \ _(ANY, lj_buf_putstr_rep, 3, L, PGC, 0) \ _(ANY, lj_buf_puttab, 5, L, PGC, 0) \ _(ANY, lj_buf_tostr, 1, FL, STR, 0) \ _(ANY, lj_tab_new_ah, 3, A, TAB, CCI_L) \ _(ANY, lj_tab_new1, 2, FS, TAB, CCI_L) \ _(ANY, lj_tab_dup, 2, FS, TAB, CCI_L) \ _(ANY, lj_tab_clear, 1, FS, NIL, 0) \ _(ANY, lj_tab_newkey, 3, S, PGC, CCI_L) \ _(ANY, lj_tab_len, 1, FL, INT, 0) \ _(ANY, lj_gc_step_jit, 2, FS, NIL, CCI_L) \ _(ANY, lj_gc_barrieruv, 2, FS, NIL, 0) \ _(ANY, lj_mem_newgco, 2, FS, PGC, CCI_L) \ _(ANY, lj_math_random_step, 1, FS, NUM, CCI_CASTU64) \ _(ANY, lj_vm_modi, 2, FN, INT, 0) \ _(ANY, sinh, 1, N, NUM, XA_FP) \ _(ANY, cosh, 1, N, NUM, XA_FP) \ _(ANY, tanh, 1, N, NUM, XA_FP) \ _(ANY, fputc, 2, S, INT, 0) \ _(ANY, fwrite, 4, S, INT, 0) \ _(ANY, fflush, 1, S, INT, 0) \ /* ORDER FPM */ \ _(FPMATH, lj_vm_floor, 1, N, NUM, XA_FP) \ _(FPMATH, lj_vm_ceil, 1, N, NUM, XA_FP) \ _(FPMATH, lj_vm_trunc, 1, N, NUM, XA_FP) \ _(FPMATH, sqrt, 1, N, NUM, XA_FP) \ _(ANY, exp, 1, N, NUM, XA_FP) \ _(ANY, lj_vm_exp2, 1, N, NUM, XA_FP) \ _(ANY, log, 1, N, NUM, XA_FP) \ _(ANY, lj_vm_log2, 1, N, NUM, XA_FP) \ _(ANY, log10, 1, N, NUM, XA_FP) \ _(ANY, sin, 1, N, NUM, XA_FP) \ _(ANY, cos, 1, N, NUM, XA_FP) \ _(ANY, tan, 1, N, NUM, XA_FP) \ _(ANY, lj_vm_powi, 2, N, NUM, XA_FP) \ _(ANY, pow, 2, N, NUM, XA2_FP) \ _(ANY, atan2, 2, N, NUM, XA2_FP) \ _(ANY, ldexp, 2, N, NUM, XA_FP) \ _(SOFTFP, lj_vm_tobit, 2, N, INT, 0) \ _(SOFTFP, softfp_add, 4, N, NUM, 0) \ _(SOFTFP, softfp_sub, 4, N, NUM, 0) \ _(SOFTFP, softfp_mul, 4, N, NUM, 0) \ _(SOFTFP, softfp_div, 4, N, NUM, 0) \ _(SOFTFP, softfp_cmp, 4, N, NIL, 0) \ _(SOFTFP, softfp_i2d, 1, N, NUM, 0) \ _(SOFTFP, softfp_d2i, 2, N, INT, 0) \ _(SOFTFP_MIPS, lj_vm_sfmin, 4, N, NUM, 0) \ _(SOFTFP_MIPS, lj_vm_sfmax, 4, N, NUM, 0) \ _(SOFTFP_FFI, softfp_ui2d, 1, N, NUM, 0) \ _(SOFTFP_FFI, softfp_f2d, 1, N, NUM, 0) \ _(SOFTFP_FFI, softfp_d2ui, 2, N, INT, 0) \ _(SOFTFP_FFI, softfp_d2f, 2, N, FLOAT, 0) \ _(SOFTFP_FFI, softfp_i2f, 1, N, FLOAT, 0) \ _(SOFTFP_FFI, softfp_ui2f, 1, N, FLOAT, 0) \ _(SOFTFP_FFI, softfp_f2i, 1, N, INT, 0) \ _(SOFTFP_FFI, softfp_f2ui, 1, N, INT, 0) \ _(FP64_FFI, fp64_l2d, 1, N, NUM, XA_64) \ _(FP64_FFI, fp64_ul2d, 1, N, NUM, XA_64) \ _(FP64_FFI, fp64_l2f, 1, N, FLOAT, XA_64) \ _(FP64_FFI, fp64_ul2f, 1, N, FLOAT, XA_64) \ _(FP64_FFI, fp64_d2l, 1, N, I64, XA_FP) \ _(FP64_FFI, fp64_d2ul, 1, N, U64, XA_FP) \ _(FP64_FFI, fp64_f2l, 1, N, I64, 0) \ _(FP64_FFI, fp64_f2ul, 1, N, U64, 0) \ _(FFI, lj_carith_divi64, 2, N, I64, XA2_64|CCI_NOFPRCLOBBER) \ _(FFI, lj_carith_divu64, 2, N, U64, XA2_64|CCI_NOFPRCLOBBER) \ _(FFI, lj_carith_modi64, 2, N, I64, XA2_64|CCI_NOFPRCLOBBER) \ _(FFI, lj_carith_modu64, 2, N, U64, XA2_64|CCI_NOFPRCLOBBER) \ _(FFI, lj_carith_powi64, 2, N, I64, XA2_64|CCI_NOFPRCLOBBER) \ _(FFI, lj_carith_powu64, 2, N, U64, XA2_64|CCI_NOFPRCLOBBER) \ _(FFI, lj_cdata_newv, 4, S, CDATA, CCI_L) \ _(FFI, lj_cdata_setfin, 4, S, NIL, CCI_L) \ _(FFI, strlen, 1, L, INTP, 0) \ _(FFI, memcpy, 3, S, PTR, 0) \ _(FFI, memset, 3, S, PTR, 0) \ _(FFI, lj_vm_errno, 0, S, INT, CCI_NOFPRCLOBBER) \ _(FFI32, lj_carith_mul64, 2, N, I64, XA2_64|CCI_NOFPRCLOBBER) \ _(FFI32, lj_carith_shl64, 2, N, U64, XA_64|CCI_NOFPRCLOBBER) \ _(FFI32, lj_carith_shr64, 2, N, U64, XA_64|CCI_NOFPRCLOBBER) \ _(FFI32, lj_carith_sar64, 2, N, U64, XA_64|CCI_NOFPRCLOBBER) \ _(FFI32, lj_carith_rol64, 2, N, U64, XA_64|CCI_NOFPRCLOBBER) \ _(FFI32, lj_carith_ror64, 2, N, U64, XA_64|CCI_NOFPRCLOBBER) \ \ /* End of list. */ typedef enum { #define IRCALLENUM(cond, name, nargs, kind, type, flags) IRCALL_##name, IRCALLDEF(IRCALLENUM) #undef IRCALLENUM IRCALL__MAX } IRCallID; LJ_FUNC TRef lj_ir_call(jit_State *J, IRCallID id, ...); LJ_DATA const CCallInfo lj_ir_callinfo[IRCALL__MAX+1]; /* Soft-float declarations. */ #if LJ_SOFTFP #if LJ_TARGET_ARM #define softfp_add __aeabi_dadd #define softfp_sub __aeabi_dsub #define softfp_mul __aeabi_dmul #define softfp_div __aeabi_ddiv #define softfp_cmp __aeabi_cdcmple #define softfp_i2d __aeabi_i2d #define softfp_d2i __aeabi_d2iz #define softfp_ui2d __aeabi_ui2d #define softfp_f2d __aeabi_f2d #define softfp_d2ui __aeabi_d2uiz #define softfp_d2f __aeabi_d2f #define softfp_i2f __aeabi_i2f #define softfp_ui2f __aeabi_ui2f #define softfp_f2i __aeabi_f2iz #define softfp_f2ui __aeabi_f2uiz #define fp64_l2d __aeabi_l2d #define fp64_ul2d __aeabi_ul2d #define fp64_l2f __aeabi_l2f #define fp64_ul2f __aeabi_ul2f #if LJ_TARGET_IOS #define fp64_d2l __fixdfdi #define fp64_d2ul __fixunsdfdi #define fp64_f2l __fixsfdi #define fp64_f2ul __fixunssfdi #else #define fp64_d2l __aeabi_d2lz #define fp64_d2ul __aeabi_d2ulz #define fp64_f2l __aeabi_f2lz #define fp64_f2ul __aeabi_f2ulz #endif #elif LJ_TARGET_MIPS #define softfp_add __adddf3 #define softfp_sub __subdf3 #define softfp_mul __muldf3 #define softfp_div __divdf3 #define softfp_cmp __ledf2 #define softfp_i2d __floatsidf #define softfp_d2i __fixdfsi #define softfp_ui2d __floatunsidf #define softfp_f2d __extendsfdf2 #define softfp_d2ui __fixunsdfsi #define softfp_d2f __truncdfsf2 #define softfp_i2f __floatsisf #define softfp_ui2f __floatunsisf #define softfp_f2i __fixsfsi #define softfp_f2ui __fixunssfsi #else #error "Missing soft-float definitions for target architecture" #endif extern double softfp_add(double a, double b); extern double softfp_sub(double a, double b); extern double softfp_mul(double a, double b); extern double softfp_div(double a, double b); extern void softfp_cmp(double a, double b); extern double softfp_i2d(int32_t a); extern int32_t softfp_d2i(double a); #if LJ_HASFFI extern double softfp_ui2d(uint32_t a); extern double softfp_f2d(float a); extern uint32_t softfp_d2ui(double a); extern float softfp_d2f(double a); extern float softfp_i2f(int32_t a); extern float softfp_ui2f(uint32_t a); extern int32_t softfp_f2i(float a); extern uint32_t softfp_f2ui(float a); #endif #if LJ_TARGET_MIPS extern double lj_vm_sfmin(double a, double b); extern double lj_vm_sfmax(double a, double b); #endif #endif #if LJ_HASFFI && LJ_NEED_FP64 && !(LJ_TARGET_ARM && LJ_SOFTFP) #ifdef __GNUC__ #define fp64_l2d __floatdidf #define fp64_ul2d __floatundidf #define fp64_l2f __floatdisf #define fp64_ul2f __floatundisf #define fp64_d2l __fixdfdi #define fp64_d2ul __fixunsdfdi #define fp64_f2l __fixsfdi #define fp64_f2ul __fixunssfdi #else #error "Missing fp64 helper definitions for this compiler" #endif #endif #if LJ_HASFFI && (LJ_SOFTFP || LJ_NEED_FP64) extern double fp64_l2d(int64_t a); extern double fp64_ul2d(uint64_t a); extern float fp64_l2f(int64_t a); extern float fp64_ul2f(uint64_t a); extern int64_t fp64_d2l(double a); extern uint64_t fp64_d2ul(double a); extern int64_t fp64_f2l(float a); extern uint64_t fp64_f2ul(float a); #endif #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_def.h0000644000175100017510000002525613101703334017513 0ustar ondrejondrej/* ** LuaJIT common internal definitions. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_DEF_H #define _LJ_DEF_H #include "lua.h" #if defined(_MSC_VER) /* MSVC is stuck in the last century and doesn't have C99's stdint.h. */ typedef __int8 int8_t; typedef __int16 int16_t; typedef __int32 int32_t; typedef __int64 int64_t; typedef unsigned __int8 uint8_t; typedef unsigned __int16 uint16_t; typedef unsigned __int32 uint32_t; typedef unsigned __int64 uint64_t; #ifdef _WIN64 typedef __int64 intptr_t; typedef unsigned __int64 uintptr_t; #else typedef __int32 intptr_t; typedef unsigned __int32 uintptr_t; #endif #elif defined(__symbian__) /* Cough. */ typedef signed char int8_t; typedef short int int16_t; typedef int int32_t; typedef long long int64_t; typedef unsigned char uint8_t; typedef unsigned short int uint16_t; typedef unsigned int uint32_t; typedef unsigned long long uint64_t; typedef int intptr_t; typedef unsigned int uintptr_t; #else #include #endif /* Needed everywhere. */ #include #include /* Various VM limits. */ #define LJ_MAX_MEM32 0x7fffff00 /* Max. 32 bit memory allocation. */ #define LJ_MAX_MEM64 ((uint64_t)1<<47) /* Max. 64 bit memory allocation. */ /* Max. total memory allocation. */ #define LJ_MAX_MEM (LJ_GC64 ? LJ_MAX_MEM64 : LJ_MAX_MEM32) #define LJ_MAX_ALLOC LJ_MAX_MEM /* Max. individual allocation length. */ #define LJ_MAX_STR LJ_MAX_MEM32 /* Max. string length. */ #define LJ_MAX_BUF LJ_MAX_MEM32 /* Max. buffer length. */ #define LJ_MAX_UDATA LJ_MAX_MEM32 /* Max. userdata length. */ #define LJ_MAX_STRTAB (1<<26) /* Max. string table size. */ #define LJ_MAX_HBITS 26 /* Max. hash bits. */ #define LJ_MAX_ABITS 28 /* Max. bits of array key. */ #define LJ_MAX_ASIZE ((1<<(LJ_MAX_ABITS-1))+1) /* Max. array part size. */ #define LJ_MAX_COLOSIZE 16 /* Max. elems for colocated array. */ #define LJ_MAX_LINE LJ_MAX_MEM32 /* Max. source code line number. */ #define LJ_MAX_XLEVEL 200 /* Max. syntactic nesting level. */ #define LJ_MAX_BCINS (1<<26) /* Max. # of bytecode instructions. */ #define LJ_MAX_SLOTS 250 /* Max. # of slots in a Lua func. */ #define LJ_MAX_LOCVAR 200 /* Max. # of local variables. */ #define LJ_MAX_UPVAL 60 /* Max. # of upvalues. */ #define LJ_MAX_IDXCHAIN 100 /* __index/__newindex chain limit. */ #define LJ_STACK_EXTRA (5+2*LJ_FR2) /* Extra stack space (metamethods). */ #define LJ_NUM_CBPAGE 1 /* Number of FFI callback pages. */ /* Minimum table/buffer sizes. */ #define LJ_MIN_GLOBAL 6 /* Min. global table size (hbits). */ #define LJ_MIN_REGISTRY 2 /* Min. registry size (hbits). */ #define LJ_MIN_STRTAB 256 /* Min. string table size (pow2). */ #define LJ_MIN_SBUF 32 /* Min. string buffer length. */ #define LJ_MIN_VECSZ 8 /* Min. size for growable vectors. */ #define LJ_MIN_IRSZ 32 /* Min. size for growable IR. */ #define LJ_MIN_K64SZ 16 /* Min. size for chained K64Array. */ /* JIT compiler limits. */ #define LJ_MAX_JSLOTS 250 /* Max. # of stack slots for a trace. */ #define LJ_MAX_PHI 64 /* Max. # of PHIs for a loop. */ #define LJ_MAX_EXITSTUBGR 16 /* Max. # of exit stub groups. */ /* Various macros. */ #ifndef UNUSED #define UNUSED(x) ((void)(x)) /* to avoid warnings */ #endif #define U64x(hi, lo) (((uint64_t)0x##hi << 32) + (uint64_t)0x##lo) #define i32ptr(p) ((int32_t)(intptr_t)(void *)(p)) #define u32ptr(p) ((uint32_t)(intptr_t)(void *)(p)) #define i64ptr(p) ((int64_t)(intptr_t)(void *)(p)) #define u64ptr(p) ((uint64_t)(intptr_t)(void *)(p)) #define igcptr(p) (LJ_GC64 ? i64ptr(p) : i32ptr(p)) #define checki8(x) ((x) == (int32_t)(int8_t)(x)) #define checku8(x) ((x) == (int32_t)(uint8_t)(x)) #define checki16(x) ((x) == (int32_t)(int16_t)(x)) #define checku16(x) ((x) == (int32_t)(uint16_t)(x)) #define checki32(x) ((x) == (int32_t)(x)) #define checku32(x) ((x) == (uint32_t)(x)) #define checkptr32(x) ((uintptr_t)(x) == (uint32_t)(uintptr_t)(x)) #define checkptr47(x) (((uint64_t)(uintptr_t)(x) >> 47) == 0) #define checkptrGC(x) (LJ_GC64 ? checkptr47((x)) : LJ_64 ? checkptr32((x)) :1) /* Every half-decent C compiler transforms this into a rotate instruction. */ #define lj_rol(x, n) (((x)<<(n)) | ((x)>>(-(int)(n)&(8*sizeof(x)-1)))) #define lj_ror(x, n) (((x)<<(-(int)(n)&(8*sizeof(x)-1))) | ((x)>>(n))) /* A really naive Bloom filter. But sufficient for our needs. */ typedef uintptr_t BloomFilter; #define BLOOM_MASK (8*sizeof(BloomFilter) - 1) #define bloombit(x) ((uintptr_t)1 << ((x) & BLOOM_MASK)) #define bloomset(b, x) ((b) |= bloombit((x))) #define bloomtest(b, x) ((b) & bloombit((x))) #if defined(__GNUC__) || defined(__psp2__) #define LJ_NORET __attribute__((noreturn)) #define LJ_ALIGN(n) __attribute__((aligned(n))) #define LJ_INLINE inline #define LJ_AINLINE inline __attribute__((always_inline)) #define LJ_NOINLINE __attribute__((noinline)) #if defined(__ELF__) || defined(__MACH__) || defined(__psp2__) #if !((defined(__sun__) && defined(__svr4__)) || defined(__CELLOS_LV2__)) #define LJ_NOAPI extern __attribute__((visibility("hidden"))) #endif #endif /* Note: it's only beneficial to use fastcall on x86 and then only for up to ** two non-FP args. The amalgamated compile covers all LJ_FUNC cases. Only ** indirect calls and related tail-called C functions are marked as fastcall. */ #if defined(__i386__) #define LJ_FASTCALL __attribute__((fastcall)) #endif #define LJ_LIKELY(x) __builtin_expect(!!(x), 1) #define LJ_UNLIKELY(x) __builtin_expect(!!(x), 0) #define lj_ffs(x) ((uint32_t)__builtin_ctz(x)) /* Don't ask ... */ #if defined(__INTEL_COMPILER) && (defined(__i386__) || defined(__x86_64__)) static LJ_AINLINE uint32_t lj_fls(uint32_t x) { uint32_t r; __asm__("bsrl %1, %0" : "=r" (r) : "rm" (x) : "cc"); return r; } #else #define lj_fls(x) ((uint32_t)(__builtin_clz(x)^31)) #endif #if defined(__arm__) static LJ_AINLINE uint32_t lj_bswap(uint32_t x) { #if defined(__psp2__) return __builtin_rev(x); #else uint32_t r; #if __ARM_ARCH_6__ || __ARM_ARCH_6J__ || __ARM_ARCH_6T2__ || __ARM_ARCH_6Z__ ||\ __ARM_ARCH_6ZK__ || __ARM_ARCH_7__ || __ARM_ARCH_7A__ || __ARM_ARCH_7R__ __asm__("rev %0, %1" : "=r" (r) : "r" (x)); return r; #else #ifdef __thumb__ r = x ^ lj_ror(x, 16); #else __asm__("eor %0, %1, %1, ror #16" : "=r" (r) : "r" (x)); #endif return ((r & 0xff00ffffu) >> 8) ^ lj_ror(x, 8); #endif #endif } static LJ_AINLINE uint64_t lj_bswap64(uint64_t x) { return ((uint64_t)lj_bswap((uint32_t)x)<<32) | lj_bswap((uint32_t)(x>>32)); } #elif (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3) static LJ_AINLINE uint32_t lj_bswap(uint32_t x) { return (uint32_t)__builtin_bswap32((int32_t)x); } static LJ_AINLINE uint64_t lj_bswap64(uint64_t x) { return (uint64_t)__builtin_bswap64((int64_t)x); } #elif defined(__i386__) || defined(__x86_64__) static LJ_AINLINE uint32_t lj_bswap(uint32_t x) { uint32_t r; __asm__("bswap %0" : "=r" (r) : "0" (x)); return r; } #if defined(__i386__) static LJ_AINLINE uint64_t lj_bswap64(uint64_t x) { return ((uint64_t)lj_bswap((uint32_t)x)<<32) | lj_bswap((uint32_t)(x>>32)); } #else static LJ_AINLINE uint64_t lj_bswap64(uint64_t x) { uint64_t r; __asm__("bswap %0" : "=r" (r) : "0" (x)); return r; } #endif #else static LJ_AINLINE uint32_t lj_bswap(uint32_t x) { return (x << 24) | ((x & 0xff00) << 8) | ((x >> 8) & 0xff00) | (x >> 24); } static LJ_AINLINE uint64_t lj_bswap64(uint64_t x) { return (uint64_t)lj_bswap((uint32_t)(x >> 32)) | ((uint64_t)lj_bswap((uint32_t)x) << 32); } #endif typedef union __attribute__((packed)) Unaligned16 { uint16_t u; uint8_t b[2]; } Unaligned16; typedef union __attribute__((packed)) Unaligned32 { uint32_t u; uint8_t b[4]; } Unaligned32; /* Unaligned load of uint16_t. */ static LJ_AINLINE uint16_t lj_getu16(const void *p) { return ((const Unaligned16 *)p)->u; } /* Unaligned load of uint32_t. */ static LJ_AINLINE uint32_t lj_getu32(const void *p) { return ((const Unaligned32 *)p)->u; } #elif defined(_MSC_VER) #define LJ_NORET __declspec(noreturn) #define LJ_ALIGN(n) __declspec(align(n)) #define LJ_INLINE __inline #define LJ_AINLINE __forceinline #define LJ_NOINLINE __declspec(noinline) #if defined(_M_IX86) #define LJ_FASTCALL __fastcall #endif #ifdef _M_PPC unsigned int _CountLeadingZeros(long); #pragma intrinsic(_CountLeadingZeros) static LJ_AINLINE uint32_t lj_fls(uint32_t x) { return _CountLeadingZeros(x) ^ 31; } #else unsigned char _BitScanForward(uint32_t *, unsigned long); unsigned char _BitScanReverse(uint32_t *, unsigned long); #pragma intrinsic(_BitScanForward) #pragma intrinsic(_BitScanReverse) static LJ_AINLINE uint32_t lj_ffs(uint32_t x) { uint32_t r; _BitScanForward(&r, x); return r; } static LJ_AINLINE uint32_t lj_fls(uint32_t x) { uint32_t r; _BitScanReverse(&r, x); return r; } #endif unsigned long _byteswap_ulong(unsigned long); uint64_t _byteswap_uint64(uint64_t); #define lj_bswap(x) (_byteswap_ulong((x))) #define lj_bswap64(x) (_byteswap_uint64((x))) #if defined(_M_PPC) && defined(LUAJIT_NO_UNALIGNED) /* ** Replacement for unaligned loads on Xbox 360. Disabled by default since it's ** usually more costly than the occasional stall when crossing a cache-line. */ static LJ_AINLINE uint16_t lj_getu16(const void *v) { const uint8_t *p = (const uint8_t *)v; return (uint16_t)((p[0]<<8) | p[1]); } static LJ_AINLINE uint32_t lj_getu32(const void *v) { const uint8_t *p = (const uint8_t *)v; return (uint32_t)((p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]); } #else /* Unaligned loads are generally ok on x86/x64. */ #define lj_getu16(p) (*(uint16_t *)(p)) #define lj_getu32(p) (*(uint32_t *)(p)) #endif #else #error "missing defines for your compiler" #endif /* Optional defines. */ #ifndef LJ_FASTCALL #define LJ_FASTCALL #endif #ifndef LJ_NORET #define LJ_NORET #endif #ifndef LJ_NOAPI #define LJ_NOAPI extern #endif #ifndef LJ_LIKELY #define LJ_LIKELY(x) (x) #define LJ_UNLIKELY(x) (x) #endif /* Attributes for internal functions. */ #define LJ_DATA LJ_NOAPI #define LJ_DATADEF #define LJ_ASMF LJ_NOAPI #define LJ_FUNCA LJ_NOAPI #if defined(ljamalg_c) #define LJ_FUNC static #else #define LJ_FUNC LJ_NOAPI #endif #define LJ_FUNC_NORET LJ_FUNC LJ_NORET #define LJ_FUNCA_NORET LJ_FUNCA LJ_NORET #define LJ_ASMF_NORET LJ_ASMF LJ_NORET /* Runtime assertions. */ #ifdef lua_assert #define check_exp(c, e) (lua_assert(c), (e)) #define api_check(l, e) lua_assert(e) #else #define lua_assert(c) ((void)0) #define check_exp(c, e) (e) #define api_check luai_apicheck #endif /* Static assertions. */ #define LJ_ASSERT_NAME2(name, line) name ## line #define LJ_ASSERT_NAME(line) LJ_ASSERT_NAME2(lj_assert_, line) #ifdef __COUNTER__ #define LJ_STATIC_ASSERT(cond) \ extern void LJ_ASSERT_NAME(__COUNTER__)(int STATIC_ASSERTION_FAILED[(cond)?1:-1]) #else #define LJ_STATIC_ASSERT(cond) \ extern void LJ_ASSERT_NAME(__LINE__)(int STATIC_ASSERTION_FAILED[(cond)?1:-1]) #endif #endif luajit-2.1.0~beta3+dfsg.orig/src/host/0000755000175100017510000000000013101703334017062 5ustar ondrejondrejluajit-2.1.0~beta3+dfsg.orig/src/host/genminilua.lua0000644000175100017510000002740713101703334021727 0ustar ondrejondrej---------------------------------------------------------------------------- -- Lua script to generate a customized, minified version of Lua. -- The resulting 'minilua' is used for the build process of LuaJIT. ---------------------------------------------------------------------------- -- Copyright (C) 2005-2017 Mike Pall. All rights reserved. -- Released under the MIT license. See Copyright Notice in luajit.h ---------------------------------------------------------------------------- local sub, match, gsub = string.sub, string.match, string.gsub local LUA_VERSION = "5.1.5" local LUA_SOURCE local function usage() io.stderr:write("Usage: ", arg and arg[0] or "genminilua", " lua-", LUA_VERSION, "-source-dir\n") os.exit(1) end local function find_sources() LUA_SOURCE = arg and arg[1] if not LUA_SOURCE then usage() end if sub(LUA_SOURCE, -1) ~= "/" then LUA_SOURCE = LUA_SOURCE.."/" end local fp = io.open(LUA_SOURCE .. "lua.h") if not fp then LUA_SOURCE = LUA_SOURCE.."src/" fp = io.open(LUA_SOURCE .. "lua.h") if not fp then usage() end end local all = fp:read("*a") fp:close() if not match(all, 'LUA_RELEASE%s*"Lua '..LUA_VERSION..'"') then io.stderr:write("Error: version mismatch\n") usage() end end local LUA_FILES = { "lmem.c", "lobject.c", "ltm.c", "lfunc.c", "ldo.c", "lstring.c", "ltable.c", "lgc.c", "lstate.c", "ldebug.c", "lzio.c", "lopcodes.c", "llex.c", "lcode.c", "lparser.c", "lvm.c", "lapi.c", "lauxlib.c", "lbaselib.c", "ltablib.c", "liolib.c", "loslib.c", "lstrlib.c", "linit.c", } local REMOVE_LIB = {} gsub([[ collectgarbage dofile gcinfo getfenv getmetatable load print rawequal rawset select tostring xpcall foreach foreachi getn maxn setn popen tmpfile seek setvbuf __tostring clock date difftime execute getenv rename setlocale time tmpname dump gfind len reverse LUA_LOADLIBNAME LUA_MATHLIBNAME LUA_DBLIBNAME ]], "%S+", function(name) REMOVE_LIB[name] = true end) local REMOVE_EXTINC = { [""] = true, [""] = true, } local CUSTOM_MAIN = [[ typedef unsigned int UB; static UB barg(lua_State *L,int idx){ union{lua_Number n;U64 b;}bn; bn.n=lua_tonumber(L,idx)+6755399441055744.0; if (bn.n==0.0&&!lua_isnumber(L,idx))luaL_typerror(L,idx,"number"); return(UB)bn.b; } #define BRET(b) lua_pushnumber(L,(lua_Number)(int)(b));return 1; static int tobit(lua_State *L){ BRET(barg(L,1))} static int bnot(lua_State *L){ BRET(~barg(L,1))} static int band(lua_State *L){ int i;UB b=barg(L,1);for(i=lua_gettop(L);i>1;i--)b&=barg(L,i);BRET(b)} static int bor(lua_State *L){ int i;UB b=barg(L,1);for(i=lua_gettop(L);i>1;i--)b|=barg(L,i);BRET(b)} static int bxor(lua_State *L){ int i;UB b=barg(L,1);for(i=lua_gettop(L);i>1;i--)b^=barg(L,i);BRET(b)} static int lshift(lua_State *L){ UB b=barg(L,1),n=barg(L,2)&31;BRET(b<>n)} static int arshift(lua_State *L){ UB b=barg(L,1),n=barg(L,2)&31;BRET((int)b>>n)} static int rol(lua_State *L){ UB b=barg(L,1),n=barg(L,2)&31;BRET((b<>(32-n)))} static int ror(lua_State *L){ UB b=barg(L,1),n=barg(L,2)&31;BRET((b>>n)|(b<<(32-n)))} static int bswap(lua_State *L){ UB b=barg(L,1);b=(b>>24)|((b>>8)&0xff00)|((b&0xff00)<<8)|(b<<24);BRET(b)} static int tohex(lua_State *L){ UB b=barg(L,1); int n=lua_isnone(L,2)?8:(int)barg(L,2); const char *hexdigits="0123456789abcdef"; char buf[8]; int i; if(n<0){n=-n;hexdigits="0123456789ABCDEF";} if(n>8)n=8; for(i=(int)n;--i>=0;){buf[i]=hexdigits[b&15];b>>=4;} lua_pushlstring(L,buf,(size_t)n); return 1; } static const struct luaL_Reg bitlib[] = { {"tobit",tobit}, {"bnot",bnot}, {"band",band}, {"bor",bor}, {"bxor",bxor}, {"lshift",lshift}, {"rshift",rshift}, {"arshift",arshift}, {"rol",rol}, {"ror",ror}, {"bswap",bswap}, {"tohex",tohex}, {NULL,NULL} }; int main(int argc, char **argv){ lua_State *L = luaL_newstate(); int i; luaL_openlibs(L); luaL_register(L, "bit", bitlib); if (argc < 2) return sizeof(void *); lua_createtable(L, 0, 1); lua_pushstring(L, argv[1]); lua_rawseti(L, -2, 0); lua_setglobal(L, "arg"); if (luaL_loadfile(L, argv[1])) goto err; for (i = 2; i < argc; i++) lua_pushstring(L, argv[i]); if (lua_pcall(L, argc - 2, 0, 0)) { err: fprintf(stderr, "Error: %s\n", lua_tostring(L, -1)); return 1; } lua_close(L); return 0; } ]] local function read_sources() local t = {} for i, name in ipairs(LUA_FILES) do local fp = assert(io.open(LUA_SOURCE..name, "r")) t[i] = fp:read("*a") assert(fp:close()) end t[#t+1] = CUSTOM_MAIN return table.concat(t) end local includes = {} local function merge_includes(src) return gsub(src, '#include%s*"([^"]*)"%s*\n', function(name) if includes[name] then return "" end includes[name] = true local fp = assert(io.open(LUA_SOURCE..name, "r")) local inc = fp:read("*a") assert(fp:close()) inc = gsub(inc, "#ifndef%s+%w+_h\n#define%s+%w+_h\n", "") inc = gsub(inc, "#endif%s*$", "") return merge_includes(inc) end) end local function get_license(src) return match(src, "/%*+\n%* Copyright %(.-%*/\n") end local function fold_lines(src) return gsub(src, "\\\n", " ") end local strings = {} local function save_str(str) local n = #strings+1 strings[n] = str return "\1"..n.."\2" end local function save_strings(src) src = gsub(src, '"[^"\n]*"', save_str) return gsub(src, "'[^'\n]*'", save_str) end local function restore_strings(src) return gsub(src, "\1(%d+)\2", function(numstr) return strings[tonumber(numstr)] end) end local function def_istrue(def) return def == "INT_MAX > 2147483640L" or def == "LUAI_BITSINT >= 32" or def == "SIZE_Bx < LUAI_BITSINT-1" or def == "cast" or def == "defined(LUA_CORE)" or def == "MINSTRTABSIZE" or def == "LUA_MINBUFFER" or def == "HARDSTACKTESTS" or def == "UNUSED" end local head, defs = {[[ #ifdef _MSC_VER typedef unsigned __int64 U64; #else typedef unsigned long long U64; #endif int _CRT_glob = 0; ]]}, {} local function preprocess(src) local t = { match(src, "^(.-)#") } local lvl, on, oldon = 0, true, {} for pp, def, txt in string.gmatch(src, "#(%w+) *([^\n]*)\n([^#]*)") do if pp == "if" or pp == "ifdef" or pp == "ifndef" then lvl = lvl + 1 oldon[lvl] = on on = def_istrue(def) elseif pp == "else" then if oldon[lvl] then if on == false then on = true else on = false end end elseif pp == "elif" then if oldon[lvl] then on = def_istrue(def) end elseif pp == "endif" then on = oldon[lvl] lvl = lvl - 1 elseif on then if pp == "include" then if not head[def] and not REMOVE_EXTINC[def] then head[def] = true head[#head+1] = "#include "..def.."\n" end elseif pp == "define" then local k, sp, v = match(def, "([%w_]+)(%s*)(.*)") if k and not (sp == "" and sub(v, 1, 1) == "(") then defs[k] = gsub(v, "%a[%w_]*", function(tok) return defs[tok] or tok end) else t[#t+1] = "#define "..def.."\n" end elseif pp ~= "undef" then error("unexpected directive: "..pp.." "..def) end end if on then t[#t+1] = txt end end return gsub(table.concat(t), "%a[%w_]*", function(tok) return defs[tok] or tok end) end local function merge_header(src, license) local hdr = string.format([[ /* This is a heavily customized and minimized copy of Lua %s. */ /* It's only used to build LuaJIT. It does NOT have all standard functions! */ ]], LUA_VERSION) return hdr..license..table.concat(head)..src end local function strip_unused1(src) return gsub(src, '( {"?([%w_]+)"?,%s+%a[%w_]*},\n)', function(line, func) return REMOVE_LIB[func] and "" or line end) end local function strip_unused2(src) return gsub(src, "Symbolic Execution.-}=", "") end local function strip_unused3(src) src = gsub(src, "extern", "static") src = gsub(src, "\nstatic([^\n]-)%(([^)]*)%)%(", "\nstatic%1 %2(") src = gsub(src, "#define lua_assert[^\n]*\n", "") src = gsub(src, "lua_assert%b();?", "") src = gsub(src, "default:\n}", "default:;\n}") src = gsub(src, "lua_lock%b();", "") src = gsub(src, "lua_unlock%b();", "") src = gsub(src, "luai_threadyield%b();", "") src = gsub(src, "luai_userstateopen%b();", "{}") src = gsub(src, "luai_userstate%w+%b();", "") src = gsub(src, "%(%(c==.*luaY_parser%)", "luaY_parser") src = gsub(src, "trydecpoint%(ls,seminfo%)", "luaX_lexerror(ls,\"malformed number\",TK_NUMBER)") src = gsub(src, "int c=luaZ_lookahead%b();", "") src = gsub(src, "luaL_register%(L,[^,]*,co_funcs%);\nreturn 2;", "return 1;") src = gsub(src, "getfuncname%b():", "NULL:") src = gsub(src, "getobjname%b():", "NULL:") src = gsub(src, "if%([^\n]*hookmask[^\n]*%)\n[^\n]*\n", "") src = gsub(src, "if%([^\n]*hookmask[^\n]*%)%b{}\n", "") src = gsub(src, "if%([^\n]*hookmask[^\n]*&&\n[^\n]*%b{}\n", "") src = gsub(src, "(twoto%b()%()", "%1(size_t)") src = gsub(src, "ifp, "\t.byte %d", p[i]); else fprintf(ctx->fp, ",%d", p[i]); if ((i & 15) == 15) putc('\n', ctx->fp); } if ((n & 15) != 0) putc('\n', ctx->fp); } /* Emit relocation */ static void emit_asm_reloc(BuildCtx *ctx, int type, const char *sym) { switch (ctx->mode) { case BUILD_elfasm: if (type) fprintf(ctx->fp, "\t.long %s-.-4\n", sym); else fprintf(ctx->fp, "\t.long %s\n", sym); break; case BUILD_coffasm: fprintf(ctx->fp, "\t.def %s; .scl 3; .type 32; .endef\n", sym); if (type) fprintf(ctx->fp, "\t.long %s-.-4\n", sym); else fprintf(ctx->fp, "\t.long %s\n", sym); break; default: /* BUILD_machasm for relative relocations handled below. */ fprintf(ctx->fp, "\t.long %s\n", sym); break; } } static const char *const jccnames[] = { "jo", "jno", "jb", "jnb", "jz", "jnz", "jbe", "ja", "js", "jns", "jpe", "jpo", "jl", "jge", "jle", "jg" }; /* Emit x86/x64 text relocations. */ static void emit_asm_reloc_text(BuildCtx *ctx, uint8_t *cp, int n, const char *sym) { const char *opname = NULL; if (--n < 0) goto err; if (cp[n] == 0xe8) { opname = "call"; } else if (cp[n] == 0xe9) { opname = "jmp"; } else if (cp[n] >= 0x80 && cp[n] <= 0x8f && n > 0 && cp[n-1] == 0x0f) { opname = jccnames[cp[n]-0x80]; n--; } else { err: fprintf(stderr, "Error: unsupported opcode for %s symbol relocation.\n", sym); exit(1); } emit_asm_bytes(ctx, cp, n); if (strncmp(sym+(*sym == '_'), LABEL_PREFIX, sizeof(LABEL_PREFIX)-1)) { /* Various fixups for external symbols outside of our binary. */ if (ctx->mode == BUILD_elfasm) { if (LJ_32) fprintf(ctx->fp, "#if __PIC__\n\t%s lj_wrap_%s\n#else\n", opname, sym); fprintf(ctx->fp, "\t%s %s@PLT\n", opname, sym); if (LJ_32) fprintf(ctx->fp, "#endif\n"); return; } else if (LJ_32 && ctx->mode == BUILD_machasm) { fprintf(ctx->fp, "\t%s L%s$stub\n", opname, sym); return; } } fprintf(ctx->fp, "\t%s %s\n", opname, sym); } #else /* Emit words piecewise as assembler text. */ static void emit_asm_words(BuildCtx *ctx, uint8_t *p, int n) { int i; for (i = 0; i < n; i += 4) { uint32_t ins = *(uint32_t *)(p+i); #if LJ_TARGET_ARM64 && LJ_BE ins = lj_bswap(ins); /* ARM64 instructions are always little-endian. */ #endif if ((i & 15) == 0) fprintf(ctx->fp, "\t.long 0x%08x", ins); else fprintf(ctx->fp, ",0x%08x", ins); if ((i & 15) == 12) putc('\n', ctx->fp); } if ((n & 15) != 0) putc('\n', ctx->fp); } /* Emit relocation as part of an instruction. */ static void emit_asm_wordreloc(BuildCtx *ctx, uint8_t *p, int n, const char *sym) { uint32_t ins; emit_asm_words(ctx, p, n-4); ins = *(uint32_t *)(p+n-4); #if LJ_TARGET_ARM if ((ins & 0xff000000u) == 0xfa000000u) { fprintf(ctx->fp, "\tblx %s\n", sym); } else if ((ins & 0x0e000000u) == 0x0a000000u) { fprintf(ctx->fp, "\t%s%.2s %s\n", (ins & 0x01000000u) ? "bl" : "b", &"eqnecsccmiplvsvchilsgeltgtle"[2*(ins >> 28)], sym); } else { fprintf(stderr, "Error: unsupported opcode %08x for %s symbol relocation.\n", ins, sym); exit(1); } #elif LJ_TARGET_ARM64 if ((ins >> 26) == 0x25u) { fprintf(ctx->fp, "\tbl %s\n", sym); } else { fprintf(stderr, "Error: unsupported opcode %08x for %s symbol relocation.\n", ins, sym); exit(1); } #elif LJ_TARGET_PPC #if LJ_TARGET_PS3 #define TOCPREFIX "." #else #define TOCPREFIX "" #endif if ((ins >> 26) == 16) { fprintf(ctx->fp, "\t%s %d, %d, " TOCPREFIX "%s\n", (ins & 1) ? "bcl" : "bc", (ins >> 21) & 31, (ins >> 16) & 31, sym); } else if ((ins >> 26) == 18) { #if LJ_ARCH_PPC64 const char *suffix = strchr(sym, '@'); if (suffix && suffix[1] == 'h') { fprintf(ctx->fp, "\taddis 11, 2, %s\n", sym); } else if (suffix && suffix[1] == 'l') { fprintf(ctx->fp, "\tld 12, %s\n", sym); } else #endif fprintf(ctx->fp, "\t%s " TOCPREFIX "%s\n", (ins & 1) ? "bl" : "b", sym); } else { fprintf(stderr, "Error: unsupported opcode %08x for %s symbol relocation.\n", ins, sym); exit(1); } #elif LJ_TARGET_MIPS fprintf(stderr, "Error: unsupported opcode %08x for %s symbol relocation.\n", ins, sym); exit(1); #else #error "missing relocation support for this architecture" #endif } #endif #if LJ_TARGET_ARM #define ELFASM_PX "%%" #else #define ELFASM_PX "@" #endif /* Emit an assembler label. */ static void emit_asm_label(BuildCtx *ctx, const char *name, int size, int isfunc) { switch (ctx->mode) { case BUILD_elfasm: #if LJ_TARGET_PS3 if (!strncmp(name, "lj_vm_", 6) && strcmp(name, ctx->beginsym) && !strstr(name, "hook")) { fprintf(ctx->fp, "\n\t.globl %s\n" "\t.section \".opd\",\"aw\"\n" "%s:\n" "\t.long .%s,.TOC.@tocbase32\n" "\t.size %s,8\n" "\t.previous\n" "\t.globl .%s\n" "\t.hidden .%s\n" "\t.type .%s, " ELFASM_PX "function\n" "\t.size .%s, %d\n" ".%s:\n", name, name, name, name, name, name, name, name, size, name); break; } #endif fprintf(ctx->fp, "\n\t.globl %s\n" "\t.hidden %s\n" "\t.type %s, " ELFASM_PX "%s\n" "\t.size %s, %d\n" "%s:\n", name, name, name, isfunc ? "function" : "object", name, size, name); break; case BUILD_coffasm: fprintf(ctx->fp, "\n\t.globl %s\n", name); if (isfunc) fprintf(ctx->fp, "\t.def %s; .scl 3; .type 32; .endef\n", name); fprintf(ctx->fp, "%s:\n", name); break; case BUILD_machasm: fprintf(ctx->fp, "\n\t.private_extern %s\n" "\t.no_dead_strip %s\n" "%s:\n", name, name, name); break; default: break; } } /* Emit alignment. */ static void emit_asm_align(BuildCtx *ctx, int bits) { switch (ctx->mode) { case BUILD_elfasm: case BUILD_coffasm: fprintf(ctx->fp, "\t.p2align %d\n", bits); break; case BUILD_machasm: fprintf(ctx->fp, "\t.align %d\n", bits); break; default: break; } } /* ------------------------------------------------------------------------ */ /* Emit assembler source code. */ void emit_asm(BuildCtx *ctx) { int i, rel; fprintf(ctx->fp, "\t.file \"buildvm_%s.dasc\"\n", ctx->dasm_arch); #if LJ_ARCH_PPC64 fprintf(ctx->fp, "\t.abiversion 2\n"); #endif fprintf(ctx->fp, "\t.text\n"); emit_asm_align(ctx, 4); #if LJ_TARGET_PS3 emit_asm_label(ctx, ctx->beginsym, ctx->codesz, 0); #else emit_asm_label(ctx, ctx->beginsym, 0, 0); #endif if (ctx->mode != BUILD_machasm) fprintf(ctx->fp, ".Lbegin:\n"); #if LJ_TARGET_ARM && defined(__GNUC__) && !LJ_NO_UNWIND /* This should really be moved into buildvm_arm.dasc. */ #if LJ_ARCH_HASFPU fprintf(ctx->fp, ".fnstart\n" ".save {r5, r6, r7, r8, r9, r10, r11, lr}\n" ".vsave {d8-d15}\n" ".save {r4}\n" ".pad #28\n"); #else fprintf(ctx->fp, ".fnstart\n" ".save {r4, r5, r6, r7, r8, r9, r10, r11, lr}\n" ".pad #28\n"); #endif #endif #if LJ_TARGET_MIPS fprintf(ctx->fp, ".set nomips16\n.abicalls\n.set noreorder\n.set nomacro\n"); #endif for (i = rel = 0; i < ctx->nsym; i++) { int32_t ofs = ctx->sym[i].ofs; int32_t next = ctx->sym[i+1].ofs; #if LJ_TARGET_ARM && defined(__GNUC__) && !LJ_NO_UNWIND && LJ_HASFFI if (!strcmp(ctx->sym[i].name, "lj_vm_ffi_call")) fprintf(ctx->fp, ".globl lj_err_unwind_arm\n" ".personality lj_err_unwind_arm\n" ".fnend\n" ".fnstart\n" ".save {r4, r5, r11, lr}\n" ".setfp r11, sp\n"); #endif emit_asm_label(ctx, ctx->sym[i].name, next - ofs, 1); while (rel < ctx->nreloc && ctx->reloc[rel].ofs <= next) { BuildReloc *r = &ctx->reloc[rel]; int n = r->ofs - ofs; #if LJ_TARGET_X86ORX64 if (r->type != 0 && (ctx->mode == BUILD_elfasm || ctx->mode == BUILD_machasm)) { emit_asm_reloc_text(ctx, ctx->code+ofs, n, ctx->relocsym[r->sym]); } else { emit_asm_bytes(ctx, ctx->code+ofs, n); emit_asm_reloc(ctx, r->type, ctx->relocsym[r->sym]); } ofs += n+4; #else emit_asm_wordreloc(ctx, ctx->code+ofs, n, ctx->relocsym[r->sym]); ofs += n; #endif rel++; } #if LJ_TARGET_X86ORX64 emit_asm_bytes(ctx, ctx->code+ofs, next-ofs); #else emit_asm_words(ctx, ctx->code+ofs, next-ofs); #endif } #if LJ_TARGET_ARM && defined(__GNUC__) && !LJ_NO_UNWIND fprintf(ctx->fp, #if !LJ_HASFFI ".globl lj_err_unwind_arm\n" ".personality lj_err_unwind_arm\n" #endif ".fnend\n"); #endif fprintf(ctx->fp, "\n"); switch (ctx->mode) { case BUILD_elfasm: #if !(LJ_TARGET_PS3 || LJ_TARGET_PSVITA) fprintf(ctx->fp, "\t.section .note.GNU-stack,\"\"," ELFASM_PX "progbits\n"); #endif #if LJ_TARGET_PPC && !LJ_TARGET_PS3 /* Hard-float ABI. */ fprintf(ctx->fp, "\t.gnu_attribute 4, 1\n"); #endif /* fallthrough */ case BUILD_coffasm: fprintf(ctx->fp, "\t.ident \"%s\"\n", ctx->dasm_ident); break; case BUILD_machasm: fprintf(ctx->fp, "\t.cstring\n" "\t.ascii \"%s\\0\"\n", ctx->dasm_ident); break; default: break; } fprintf(ctx->fp, "\n"); } luajit-2.1.0~beta3+dfsg.orig/src/host/buildvm.h0000644000175100017510000000504013101703334020674 0ustar ondrejondrej/* ** LuaJIT VM builder. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _BUILDVM_H #define _BUILDVM_H #include #include #include #include #include #include "lj_def.h" #include "lj_arch.h" /* Hardcoded limits. Increase as needed. */ #define BUILD_MAX_RELOC 200 /* Max. number of relocations. */ #define BUILD_MAX_FOLD 4096 /* Max. number of fold rules. */ /* Prefix for scanned library definitions. */ #define LIBDEF_PREFIX "LJLIB_" /* Prefix for scanned fold definitions. */ #define FOLDDEF_PREFIX "LJFOLD" /* Prefixes for generated labels. */ #define LABEL_PREFIX "lj_" #define LABEL_PREFIX_BC LABEL_PREFIX "BC_" #define LABEL_PREFIX_FF LABEL_PREFIX "ff_" #define LABEL_PREFIX_CF LABEL_PREFIX "cf_" #define LABEL_PREFIX_FFH LABEL_PREFIX "ffh_" #define LABEL_PREFIX_LIBCF LABEL_PREFIX "lib_cf_" #define LABEL_PREFIX_LIBINIT LABEL_PREFIX "lib_init_" /* Forward declaration. */ struct dasm_State; /* Build modes. */ #define BUILDDEF(_) \ _(elfasm) _(coffasm) _(machasm) _(peobj) _(raw) \ _(bcdef) _(ffdef) _(libdef) _(recdef) _(vmdef) \ _(folddef) typedef enum { #define BUILDENUM(name) BUILD_##name, BUILDDEF(BUILDENUM) #undef BUILDENUM BUILD__MAX } BuildMode; /* Code relocation. */ typedef struct BuildReloc { int32_t ofs; int sym; int type; } BuildReloc; typedef struct BuildSym { const char *name; int32_t ofs; } BuildSym; /* Build context structure. */ typedef struct BuildCtx { /* DynASM state pointer. Should be first member. */ struct dasm_State *D; /* Parsed command line. */ BuildMode mode; FILE *fp; const char *outname; char **args; /* Code and symbols generated by DynASM. */ uint8_t *code; size_t codesz; int npc, nglob, nsym, nreloc, nrelocsym; void **glob; BuildSym *sym; const char **relocsym; int32_t *bc_ofs; const char *beginsym; /* Strings generated by DynASM. */ const char *const *globnames; const char *const *extnames; const char *dasm_ident; const char *dasm_arch; /* Relocations. */ BuildReloc reloc[BUILD_MAX_RELOC]; } BuildCtx; extern void owrite(BuildCtx *ctx, const void *ptr, size_t sz); extern void emit_asm(BuildCtx *ctx); extern void emit_peobj(BuildCtx *ctx); extern void emit_lib(BuildCtx *ctx); extern void emit_fold(BuildCtx *ctx); extern const char *const bc_names[]; extern const char *const ir_names[]; extern const char *const irt_names[]; extern const char *const irfpm_names[]; extern const char *const irfield_names[]; extern const char *const ircall_names[]; #endif luajit-2.1.0~beta3+dfsg.orig/src/host/minilua.c0000644000175100017510000052443413101703334020700 0ustar ondrejondrej/* This is a heavily customized and minimized copy of Lua 5.1.5. */ /* It's only used to build LuaJIT. It does NOT have all standard functions! */ /****************************************************************************** * Copyright (C) 1994-2012 Lua.org, PUC-Rio. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ******************************************************************************/ #ifdef _MSC_VER typedef unsigned __int64 U64; #else typedef unsigned long long U64; #endif int _CRT_glob = 0; #include #include #include #include #include #include #include #include #include #include #include typedef enum{ TM_INDEX, TM_NEWINDEX, TM_GC, TM_MODE, TM_EQ, TM_ADD, TM_SUB, TM_MUL, TM_DIV, TM_MOD, TM_POW, TM_UNM, TM_LEN, TM_LT, TM_LE, TM_CONCAT, TM_CALL, TM_N }TMS; enum OpMode{iABC,iABx,iAsBx}; typedef enum{ OP_MOVE, OP_LOADK, OP_LOADBOOL, OP_LOADNIL, OP_GETUPVAL, OP_GETGLOBAL, OP_GETTABLE, OP_SETGLOBAL, OP_SETUPVAL, OP_SETTABLE, OP_NEWTABLE, OP_SELF, OP_ADD, OP_SUB, OP_MUL, OP_DIV, OP_MOD, OP_POW, OP_UNM, OP_NOT, OP_LEN, OP_CONCAT, OP_JMP, OP_EQ, OP_LT, OP_LE, OP_TEST, OP_TESTSET, OP_CALL, OP_TAILCALL, OP_RETURN, OP_FORLOOP, OP_FORPREP, OP_TFORLOOP, OP_SETLIST, OP_CLOSE, OP_CLOSURE, OP_VARARG }OpCode; enum OpArgMask{ OpArgN, OpArgU, OpArgR, OpArgK }; typedef enum{ VVOID, VNIL, VTRUE, VFALSE, VK, VKNUM, VLOCAL, VUPVAL, VGLOBAL, VINDEXED, VJMP, VRELOCABLE, VNONRELOC, VCALL, VVARARG }expkind; enum RESERVED{ TK_AND=257,TK_BREAK, TK_DO,TK_ELSE,TK_ELSEIF,TK_END,TK_FALSE,TK_FOR,TK_FUNCTION, TK_IF,TK_IN,TK_LOCAL,TK_NIL,TK_NOT,TK_OR,TK_REPEAT, TK_RETURN,TK_THEN,TK_TRUE,TK_UNTIL,TK_WHILE, TK_CONCAT,TK_DOTS,TK_EQ,TK_GE,TK_LE,TK_NE,TK_NUMBER, TK_NAME,TK_STRING,TK_EOS }; typedef enum BinOpr{ OPR_ADD,OPR_SUB,OPR_MUL,OPR_DIV,OPR_MOD,OPR_POW, OPR_CONCAT, OPR_NE,OPR_EQ, OPR_LT,OPR_LE,OPR_GT,OPR_GE, OPR_AND,OPR_OR, OPR_NOBINOPR }BinOpr; typedef enum UnOpr{OPR_MINUS,OPR_NOT,OPR_LEN,OPR_NOUNOPR}UnOpr; #define LUA_QL(x)"'"x"'" #define luai_apicheck(L,o){(void)L;} #define lua_number2str(s,n)sprintf((s),"%.14g",(n)) #define lua_str2number(s,p)strtod((s),(p)) #define luai_numadd(a,b)((a)+(b)) #define luai_numsub(a,b)((a)-(b)) #define luai_nummul(a,b)((a)*(b)) #define luai_numdiv(a,b)((a)/(b)) #define luai_nummod(a,b)((a)-floor((a)/(b))*(b)) #define luai_numpow(a,b)(pow(a,b)) #define luai_numunm(a)(-(a)) #define luai_numeq(a,b)((a)==(b)) #define luai_numlt(a,b)((a)<(b)) #define luai_numle(a,b)((a)<=(b)) #define luai_numisnan(a)(!luai_numeq((a),(a))) #define lua_number2int(i,d)((i)=(int)(d)) #define lua_number2integer(i,d)((i)=(lua_Integer)(d)) #define LUAI_THROW(L,c)longjmp((c)->b,1) #define LUAI_TRY(L,c,a)if(setjmp((c)->b)==0){a} #define lua_pclose(L,file)((void)((void)L,file),0) #define lua_upvalueindex(i)((-10002)-(i)) typedef struct lua_State lua_State; typedef int(*lua_CFunction)(lua_State*L); typedef const char*(*lua_Reader)(lua_State*L,void*ud,size_t*sz); typedef void*(*lua_Alloc)(void*ud,void*ptr,size_t osize,size_t nsize); typedef double lua_Number; typedef ptrdiff_t lua_Integer; static void lua_settop(lua_State*L,int idx); static int lua_type(lua_State*L,int idx); static const char* lua_tolstring(lua_State*L,int idx,size_t*len); static size_t lua_objlen(lua_State*L,int idx); static void lua_pushlstring(lua_State*L,const char*s,size_t l); static void lua_pushcclosure(lua_State*L,lua_CFunction fn,int n); static void lua_createtable(lua_State*L,int narr,int nrec); static void lua_setfield(lua_State*L,int idx,const char*k); #define lua_pop(L,n)lua_settop(L,-(n)-1) #define lua_newtable(L)lua_createtable(L,0,0) #define lua_pushcfunction(L,f)lua_pushcclosure(L,(f),0) #define lua_strlen(L,i)lua_objlen(L,(i)) #define lua_isfunction(L,n)(lua_type(L,(n))==6) #define lua_istable(L,n)(lua_type(L,(n))==5) #define lua_isnil(L,n)(lua_type(L,(n))==0) #define lua_isboolean(L,n)(lua_type(L,(n))==1) #define lua_isnone(L,n)(lua_type(L,(n))==(-1)) #define lua_isnoneornil(L,n)(lua_type(L,(n))<=0) #define lua_pushliteral(L,s)lua_pushlstring(L,""s,(sizeof(s)/sizeof(char))-1) #define lua_setglobal(L,s)lua_setfield(L,(-10002),(s)) #define lua_tostring(L,i)lua_tolstring(L,(i),NULL) typedef struct lua_Debug lua_Debug; typedef void(*lua_Hook)(lua_State*L,lua_Debug*ar); struct lua_Debug{ int event; const char*name; const char*namewhat; const char*what; const char*source; int currentline; int nups; int linedefined; int lastlinedefined; char short_src[60]; int i_ci; }; typedef unsigned int lu_int32; typedef size_t lu_mem; typedef ptrdiff_t l_mem; typedef unsigned char lu_byte; #define IntPoint(p)((unsigned int)(lu_mem)(p)) typedef union{double u;void*s;long l;}L_Umaxalign; typedef double l_uacNumber; #define check_exp(c,e)(e) #define UNUSED(x)((void)(x)) #define cast(t,exp)((t)(exp)) #define cast_byte(i)cast(lu_byte,(i)) #define cast_num(i)cast(lua_Number,(i)) #define cast_int(i)cast(int,(i)) typedef lu_int32 Instruction; #define condhardstacktests(x)((void)0) typedef union GCObject GCObject; typedef struct GCheader{ GCObject*next;lu_byte tt;lu_byte marked; }GCheader; typedef union{ GCObject*gc; void*p; lua_Number n; int b; }Value; typedef struct lua_TValue{ Value value;int tt; }TValue; #define ttisnil(o)(ttype(o)==0) #define ttisnumber(o)(ttype(o)==3) #define ttisstring(o)(ttype(o)==4) #define ttistable(o)(ttype(o)==5) #define ttisfunction(o)(ttype(o)==6) #define ttisboolean(o)(ttype(o)==1) #define ttisuserdata(o)(ttype(o)==7) #define ttisthread(o)(ttype(o)==8) #define ttislightuserdata(o)(ttype(o)==2) #define ttype(o)((o)->tt) #define gcvalue(o)check_exp(iscollectable(o),(o)->value.gc) #define pvalue(o)check_exp(ttislightuserdata(o),(o)->value.p) #define nvalue(o)check_exp(ttisnumber(o),(o)->value.n) #define rawtsvalue(o)check_exp(ttisstring(o),&(o)->value.gc->ts) #define tsvalue(o)(&rawtsvalue(o)->tsv) #define rawuvalue(o)check_exp(ttisuserdata(o),&(o)->value.gc->u) #define uvalue(o)(&rawuvalue(o)->uv) #define clvalue(o)check_exp(ttisfunction(o),&(o)->value.gc->cl) #define hvalue(o)check_exp(ttistable(o),&(o)->value.gc->h) #define bvalue(o)check_exp(ttisboolean(o),(o)->value.b) #define thvalue(o)check_exp(ttisthread(o),&(o)->value.gc->th) #define l_isfalse(o)(ttisnil(o)||(ttisboolean(o)&&bvalue(o)==0)) #define checkconsistency(obj) #define checkliveness(g,obj) #define setnilvalue(obj)((obj)->tt=0) #define setnvalue(obj,x){TValue*i_o=(obj);i_o->value.n=(x);i_o->tt=3;} #define setbvalue(obj,x){TValue*i_o=(obj);i_o->value.b=(x);i_o->tt=1;} #define setsvalue(L,obj,x){TValue*i_o=(obj);i_o->value.gc=cast(GCObject*,(x));i_o->tt=4;checkliveness(G(L),i_o);} #define setuvalue(L,obj,x){TValue*i_o=(obj);i_o->value.gc=cast(GCObject*,(x));i_o->tt=7;checkliveness(G(L),i_o);} #define setthvalue(L,obj,x){TValue*i_o=(obj);i_o->value.gc=cast(GCObject*,(x));i_o->tt=8;checkliveness(G(L),i_o);} #define setclvalue(L,obj,x){TValue*i_o=(obj);i_o->value.gc=cast(GCObject*,(x));i_o->tt=6;checkliveness(G(L),i_o);} #define sethvalue(L,obj,x){TValue*i_o=(obj);i_o->value.gc=cast(GCObject*,(x));i_o->tt=5;checkliveness(G(L),i_o);} #define setptvalue(L,obj,x){TValue*i_o=(obj);i_o->value.gc=cast(GCObject*,(x));i_o->tt=(8+1);checkliveness(G(L),i_o);} #define setobj(L,obj1,obj2){const TValue*o2=(obj2);TValue*o1=(obj1);o1->value=o2->value;o1->tt=o2->tt;checkliveness(G(L),o1);} #define setttype(obj,tt)(ttype(obj)=(tt)) #define iscollectable(o)(ttype(o)>=4) typedef TValue*StkId; typedef union TString{ L_Umaxalign dummy; struct{ GCObject*next;lu_byte tt;lu_byte marked; lu_byte reserved; unsigned int hash; size_t len; }tsv; }TString; #define getstr(ts)cast(const char*,(ts)+1) #define svalue(o)getstr(rawtsvalue(o)) typedef union Udata{ L_Umaxalign dummy; struct{ GCObject*next;lu_byte tt;lu_byte marked; struct Table*metatable; struct Table*env; size_t len; }uv; }Udata; typedef struct Proto{ GCObject*next;lu_byte tt;lu_byte marked; TValue*k; Instruction*code; struct Proto**p; int*lineinfo; struct LocVar*locvars; TString**upvalues; TString*source; int sizeupvalues; int sizek; int sizecode; int sizelineinfo; int sizep; int sizelocvars; int linedefined; int lastlinedefined; GCObject*gclist; lu_byte nups; lu_byte numparams; lu_byte is_vararg; lu_byte maxstacksize; }Proto; typedef struct LocVar{ TString*varname; int startpc; int endpc; }LocVar; typedef struct UpVal{ GCObject*next;lu_byte tt;lu_byte marked; TValue*v; union{ TValue value; struct{ struct UpVal*prev; struct UpVal*next; }l; }u; }UpVal; typedef struct CClosure{ GCObject*next;lu_byte tt;lu_byte marked;lu_byte isC;lu_byte nupvalues;GCObject*gclist;struct Table*env; lua_CFunction f; TValue upvalue[1]; }CClosure; typedef struct LClosure{ GCObject*next;lu_byte tt;lu_byte marked;lu_byte isC;lu_byte nupvalues;GCObject*gclist;struct Table*env; struct Proto*p; UpVal*upvals[1]; }LClosure; typedef union Closure{ CClosure c; LClosure l; }Closure; #define iscfunction(o)(ttype(o)==6&&clvalue(o)->c.isC) typedef union TKey{ struct{ Value value;int tt; struct Node*next; }nk; TValue tvk; }TKey; typedef struct Node{ TValue i_val; TKey i_key; }Node; typedef struct Table{ GCObject*next;lu_byte tt;lu_byte marked; lu_byte flags; lu_byte lsizenode; struct Table*metatable; TValue*array; Node*node; Node*lastfree; GCObject*gclist; int sizearray; }Table; #define lmod(s,size)(check_exp((size&(size-1))==0,(cast(int,(s)&((size)-1))))) #define twoto(x)((size_t)1<<(x)) #define sizenode(t)(twoto((t)->lsizenode)) static const TValue luaO_nilobject_; #define ceillog2(x)(luaO_log2((x)-1)+1) static int luaO_log2(unsigned int x); #define gfasttm(g,et,e)((et)==NULL?NULL:((et)->flags&(1u<<(e)))?NULL:luaT_gettm(et,e,(g)->tmname[e])) #define fasttm(l,et,e)gfasttm(G(l),et,e) static const TValue*luaT_gettm(Table*events,TMS event,TString*ename); #define luaM_reallocv(L,b,on,n,e)((cast(size_t,(n)+1)<=((size_t)(~(size_t)0)-2)/(e))?luaM_realloc_(L,(b),(on)*(e),(n)*(e)):luaM_toobig(L)) #define luaM_freemem(L,b,s)luaM_realloc_(L,(b),(s),0) #define luaM_free(L,b)luaM_realloc_(L,(b),sizeof(*(b)),0) #define luaM_freearray(L,b,n,t)luaM_reallocv(L,(b),n,0,sizeof(t)) #define luaM_malloc(L,t)luaM_realloc_(L,NULL,0,(t)) #define luaM_new(L,t)cast(t*,luaM_malloc(L,sizeof(t))) #define luaM_newvector(L,n,t)cast(t*,luaM_reallocv(L,NULL,0,n,sizeof(t))) #define luaM_growvector(L,v,nelems,size,t,limit,e)if((nelems)+1>(size))((v)=cast(t*,luaM_growaux_(L,v,&(size),sizeof(t),limit,e))) #define luaM_reallocvector(L,v,oldn,n,t)((v)=cast(t*,luaM_reallocv(L,v,oldn,n,sizeof(t)))) static void*luaM_realloc_(lua_State*L,void*block,size_t oldsize, size_t size); static void*luaM_toobig(lua_State*L); static void*luaM_growaux_(lua_State*L,void*block,int*size, size_t size_elem,int limit, const char*errormsg); typedef struct Zio ZIO; #define char2int(c)cast(int,cast(unsigned char,(c))) #define zgetc(z)(((z)->n--)>0?char2int(*(z)->p++):luaZ_fill(z)) typedef struct Mbuffer{ char*buffer; size_t n; size_t buffsize; }Mbuffer; #define luaZ_initbuffer(L,buff)((buff)->buffer=NULL,(buff)->buffsize=0) #define luaZ_buffer(buff)((buff)->buffer) #define luaZ_sizebuffer(buff)((buff)->buffsize) #define luaZ_bufflen(buff)((buff)->n) #define luaZ_resetbuffer(buff)((buff)->n=0) #define luaZ_resizebuffer(L,buff,size)(luaM_reallocvector(L,(buff)->buffer,(buff)->buffsize,size,char),(buff)->buffsize=size) #define luaZ_freebuffer(L,buff)luaZ_resizebuffer(L,buff,0) struct Zio{ size_t n; const char*p; lua_Reader reader; void*data; lua_State*L; }; static int luaZ_fill(ZIO*z); struct lua_longjmp; #define gt(L)(&L->l_gt) #define registry(L)(&G(L)->l_registry) typedef struct stringtable{ GCObject**hash; lu_int32 nuse; int size; }stringtable; typedef struct CallInfo{ StkId base; StkId func; StkId top; const Instruction*savedpc; int nresults; int tailcalls; }CallInfo; #define curr_func(L)(clvalue(L->ci->func)) #define ci_func(ci)(clvalue((ci)->func)) #define f_isLua(ci)(!ci_func(ci)->c.isC) #define isLua(ci)(ttisfunction((ci)->func)&&f_isLua(ci)) typedef struct global_State{ stringtable strt; lua_Alloc frealloc; void*ud; lu_byte currentwhite; lu_byte gcstate; int sweepstrgc; GCObject*rootgc; GCObject**sweepgc; GCObject*gray; GCObject*grayagain; GCObject*weak; GCObject*tmudata; Mbuffer buff; lu_mem GCthreshold; lu_mem totalbytes; lu_mem estimate; lu_mem gcdept; int gcpause; int gcstepmul; lua_CFunction panic; TValue l_registry; struct lua_State*mainthread; UpVal uvhead; struct Table*mt[(8+1)]; TString*tmname[TM_N]; }global_State; struct lua_State{ GCObject*next;lu_byte tt;lu_byte marked; lu_byte status; StkId top; StkId base; global_State*l_G; CallInfo*ci; const Instruction*savedpc; StkId stack_last; StkId stack; CallInfo*end_ci; CallInfo*base_ci; int stacksize; int size_ci; unsigned short nCcalls; unsigned short baseCcalls; lu_byte hookmask; lu_byte allowhook; int basehookcount; int hookcount; lua_Hook hook; TValue l_gt; TValue env; GCObject*openupval; GCObject*gclist; struct lua_longjmp*errorJmp; ptrdiff_t errfunc; }; #define G(L)(L->l_G) union GCObject{ GCheader gch; union TString ts; union Udata u; union Closure cl; struct Table h; struct Proto p; struct UpVal uv; struct lua_State th; }; #define rawgco2ts(o)check_exp((o)->gch.tt==4,&((o)->ts)) #define gco2ts(o)(&rawgco2ts(o)->tsv) #define rawgco2u(o)check_exp((o)->gch.tt==7,&((o)->u)) #define gco2u(o)(&rawgco2u(o)->uv) #define gco2cl(o)check_exp((o)->gch.tt==6,&((o)->cl)) #define gco2h(o)check_exp((o)->gch.tt==5,&((o)->h)) #define gco2p(o)check_exp((o)->gch.tt==(8+1),&((o)->p)) #define gco2uv(o)check_exp((o)->gch.tt==(8+2),&((o)->uv)) #define ngcotouv(o)check_exp((o)==NULL||(o)->gch.tt==(8+2),&((o)->uv)) #define gco2th(o)check_exp((o)->gch.tt==8,&((o)->th)) #define obj2gco(v)(cast(GCObject*,(v))) static void luaE_freethread(lua_State*L,lua_State*L1); #define pcRel(pc,p)(cast(int,(pc)-(p)->code)-1) #define getline_(f,pc)(((f)->lineinfo)?(f)->lineinfo[pc]:0) #define resethookcount(L)(L->hookcount=L->basehookcount) static void luaG_typeerror(lua_State*L,const TValue*o, const char*opname); static void luaG_runerror(lua_State*L,const char*fmt,...); #define luaD_checkstack(L,n)if((char*)L->stack_last-(char*)L->top<=(n)*(int)sizeof(TValue))luaD_growstack(L,n);else condhardstacktests(luaD_reallocstack(L,L->stacksize-5-1)); #define incr_top(L){luaD_checkstack(L,1);L->top++;} #define savestack(L,p)((char*)(p)-(char*)L->stack) #define restorestack(L,n)((TValue*)((char*)L->stack+(n))) #define saveci(L,p)((char*)(p)-(char*)L->base_ci) #define restoreci(L,n)((CallInfo*)((char*)L->base_ci+(n))) typedef void(*Pfunc)(lua_State*L,void*ud); static int luaD_poscall(lua_State*L,StkId firstResult); static void luaD_reallocCI(lua_State*L,int newsize); static void luaD_reallocstack(lua_State*L,int newsize); static void luaD_growstack(lua_State*L,int n); static void luaD_throw(lua_State*L,int errcode); static void*luaM_growaux_(lua_State*L,void*block,int*size,size_t size_elems, int limit,const char*errormsg){ void*newblock; int newsize; if(*size>=limit/2){ if(*size>=limit) luaG_runerror(L,errormsg); newsize=limit; } else{ newsize=(*size)*2; if(newsize<4) newsize=4; } newblock=luaM_reallocv(L,block,*size,newsize,size_elems); *size=newsize; return newblock; } static void*luaM_toobig(lua_State*L){ luaG_runerror(L,"memory allocation error: block too big"); return NULL; } static void*luaM_realloc_(lua_State*L,void*block,size_t osize,size_t nsize){ global_State*g=G(L); block=(*g->frealloc)(g->ud,block,osize,nsize); if(block==NULL&&nsize>0) luaD_throw(L,4); g->totalbytes=(g->totalbytes-osize)+nsize; return block; } #define resetbits(x,m)((x)&=cast(lu_byte,~(m))) #define setbits(x,m)((x)|=(m)) #define testbits(x,m)((x)&(m)) #define bitmask(b)(1<<(b)) #define bit2mask(b1,b2)(bitmask(b1)|bitmask(b2)) #define l_setbit(x,b)setbits(x,bitmask(b)) #define resetbit(x,b)resetbits(x,bitmask(b)) #define testbit(x,b)testbits(x,bitmask(b)) #define set2bits(x,b1,b2)setbits(x,(bit2mask(b1,b2))) #define reset2bits(x,b1,b2)resetbits(x,(bit2mask(b1,b2))) #define test2bits(x,b1,b2)testbits(x,(bit2mask(b1,b2))) #define iswhite(x)test2bits((x)->gch.marked,0,1) #define isblack(x)testbit((x)->gch.marked,2) #define isgray(x)(!isblack(x)&&!iswhite(x)) #define otherwhite(g)(g->currentwhite^bit2mask(0,1)) #define isdead(g,v)((v)->gch.marked&otherwhite(g)&bit2mask(0,1)) #define changewhite(x)((x)->gch.marked^=bit2mask(0,1)) #define gray2black(x)l_setbit((x)->gch.marked,2) #define valiswhite(x)(iscollectable(x)&&iswhite(gcvalue(x))) #define luaC_white(g)cast(lu_byte,(g)->currentwhite&bit2mask(0,1)) #define luaC_checkGC(L){condhardstacktests(luaD_reallocstack(L,L->stacksize-5-1));if(G(L)->totalbytes>=G(L)->GCthreshold)luaC_step(L);} #define luaC_barrier(L,p,v){if(valiswhite(v)&&isblack(obj2gco(p)))luaC_barrierf(L,obj2gco(p),gcvalue(v));} #define luaC_barriert(L,t,v){if(valiswhite(v)&&isblack(obj2gco(t)))luaC_barrierback(L,t);} #define luaC_objbarrier(L,p,o){if(iswhite(obj2gco(o))&&isblack(obj2gco(p)))luaC_barrierf(L,obj2gco(p),obj2gco(o));} #define luaC_objbarriert(L,t,o){if(iswhite(obj2gco(o))&&isblack(obj2gco(t)))luaC_barrierback(L,t);} static void luaC_step(lua_State*L); static void luaC_link(lua_State*L,GCObject*o,lu_byte tt); static void luaC_linkupval(lua_State*L,UpVal*uv); static void luaC_barrierf(lua_State*L,GCObject*o,GCObject*v); static void luaC_barrierback(lua_State*L,Table*t); #define sizestring(s)(sizeof(union TString)+((s)->len+1)*sizeof(char)) #define sizeudata(u)(sizeof(union Udata)+(u)->len) #define luaS_new(L,s)(luaS_newlstr(L,s,strlen(s))) #define luaS_newliteral(L,s)(luaS_newlstr(L,""s,(sizeof(s)/sizeof(char))-1)) #define luaS_fix(s)l_setbit((s)->tsv.marked,5) static TString*luaS_newlstr(lua_State*L,const char*str,size_t l); #define tostring(L,o)((ttype(o)==4)||(luaV_tostring(L,o))) #define tonumber(o,n)(ttype(o)==3||(((o)=luaV_tonumber(o,n))!=NULL)) #define equalobj(L,o1,o2)(ttype(o1)==ttype(o2)&&luaV_equalval(L,o1,o2)) static int luaV_equalval(lua_State*L,const TValue*t1,const TValue*t2); static const TValue*luaV_tonumber(const TValue*obj,TValue*n); static int luaV_tostring(lua_State*L,StkId obj); static void luaV_execute(lua_State*L,int nexeccalls); static void luaV_concat(lua_State*L,int total,int last); static const TValue luaO_nilobject_={{NULL},0}; static int luaO_int2fb(unsigned int x){ int e=0; while(x>=16){ x=(x+1)>>1; e++; } if(x<8)return x; else return((e+1)<<3)|(cast_int(x)-8); } static int luaO_fb2int(int x){ int e=(x>>3)&31; if(e==0)return x; else return((x&7)+8)<<(e-1); } static int luaO_log2(unsigned int x){ static const lu_byte log_2[256]={ 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8 }; int l=-1; while(x>=256){l+=8;x>>=8;} return l+log_2[x]; } static int luaO_rawequalObj(const TValue*t1,const TValue*t2){ if(ttype(t1)!=ttype(t2))return 0; else switch(ttype(t1)){ case 0: return 1; case 3: return luai_numeq(nvalue(t1),nvalue(t2)); case 1: return bvalue(t1)==bvalue(t2); case 2: return pvalue(t1)==pvalue(t2); default: return gcvalue(t1)==gcvalue(t2); } } static int luaO_str2d(const char*s,lua_Number*result){ char*endptr; *result=lua_str2number(s,&endptr); if(endptr==s)return 0; if(*endptr=='x'||*endptr=='X') *result=cast_num(strtoul(s,&endptr,16)); if(*endptr=='\0')return 1; while(isspace(cast(unsigned char,*endptr)))endptr++; if(*endptr!='\0')return 0; return 1; } static void pushstr(lua_State*L,const char*str){ setsvalue(L,L->top,luaS_new(L,str)); incr_top(L); } static const char*luaO_pushvfstring(lua_State*L,const char*fmt,va_list argp){ int n=1; pushstr(L,""); for(;;){ const char*e=strchr(fmt,'%'); if(e==NULL)break; setsvalue(L,L->top,luaS_newlstr(L,fmt,e-fmt)); incr_top(L); switch(*(e+1)){ case's':{ const char*s=va_arg(argp,char*); if(s==NULL)s="(null)"; pushstr(L,s); break; } case'c':{ char buff[2]; buff[0]=cast(char,va_arg(argp,int)); buff[1]='\0'; pushstr(L,buff); break; } case'd':{ setnvalue(L->top,cast_num(va_arg(argp,int))); incr_top(L); break; } case'f':{ setnvalue(L->top,cast_num(va_arg(argp,l_uacNumber))); incr_top(L); break; } case'p':{ char buff[4*sizeof(void*)+8]; sprintf(buff,"%p",va_arg(argp,void*)); pushstr(L,buff); break; } case'%':{ pushstr(L,"%"); break; } default:{ char buff[3]; buff[0]='%'; buff[1]=*(e+1); buff[2]='\0'; pushstr(L,buff); break; } } n+=2; fmt=e+2; } pushstr(L,fmt); luaV_concat(L,n+1,cast_int(L->top-L->base)-1); L->top-=n; return svalue(L->top-1); } static const char*luaO_pushfstring(lua_State*L,const char*fmt,...){ const char*msg; va_list argp; va_start(argp,fmt); msg=luaO_pushvfstring(L,fmt,argp); va_end(argp); return msg; } static void luaO_chunkid(char*out,const char*source,size_t bufflen){ if(*source=='='){ strncpy(out,source+1,bufflen); out[bufflen-1]='\0'; } else{ if(*source=='@'){ size_t l; source++; bufflen-=sizeof(" '...' "); l=strlen(source); strcpy(out,""); if(l>bufflen){ source+=(l-bufflen); strcat(out,"..."); } strcat(out,source); } else{ size_t len=strcspn(source,"\n\r"); bufflen-=sizeof(" [string \"...\"] "); if(len>bufflen)len=bufflen; strcpy(out,"[string \""); if(source[len]!='\0'){ strncat(out,source,len); strcat(out,"..."); } else strcat(out,source); strcat(out,"\"]"); } } } #define gnode(t,i)(&(t)->node[i]) #define gkey(n)(&(n)->i_key.nk) #define gval(n)(&(n)->i_val) #define gnext(n)((n)->i_key.nk.next) #define key2tval(n)(&(n)->i_key.tvk) static TValue*luaH_setnum(lua_State*L,Table*t,int key); static const TValue*luaH_getstr(Table*t,TString*key); static TValue*luaH_set(lua_State*L,Table*t,const TValue*key); static const char*const luaT_typenames[]={ "nil","boolean","userdata","number", "string","table","function","userdata","thread", "proto","upval" }; static void luaT_init(lua_State*L){ static const char*const luaT_eventname[]={ "__index","__newindex", "__gc","__mode","__eq", "__add","__sub","__mul","__div","__mod", "__pow","__unm","__len","__lt","__le", "__concat","__call" }; int i; for(i=0;itmname[i]=luaS_new(L,luaT_eventname[i]); luaS_fix(G(L)->tmname[i]); } } static const TValue*luaT_gettm(Table*events,TMS event,TString*ename){ const TValue*tm=luaH_getstr(events,ename); if(ttisnil(tm)){ events->flags|=cast_byte(1u<metatable; break; case 7: mt=uvalue(o)->metatable; break; default: mt=G(L)->mt[ttype(o)]; } return(mt?luaH_getstr(mt,G(L)->tmname[event]):(&luaO_nilobject_)); } #define sizeCclosure(n)(cast(int,sizeof(CClosure))+cast(int,sizeof(TValue)*((n)-1))) #define sizeLclosure(n)(cast(int,sizeof(LClosure))+cast(int,sizeof(TValue*)*((n)-1))) static Closure*luaF_newCclosure(lua_State*L,int nelems,Table*e){ Closure*c=cast(Closure*,luaM_malloc(L,sizeCclosure(nelems))); luaC_link(L,obj2gco(c),6); c->c.isC=1; c->c.env=e; c->c.nupvalues=cast_byte(nelems); return c; } static Closure*luaF_newLclosure(lua_State*L,int nelems,Table*e){ Closure*c=cast(Closure*,luaM_malloc(L,sizeLclosure(nelems))); luaC_link(L,obj2gco(c),6); c->l.isC=0; c->l.env=e; c->l.nupvalues=cast_byte(nelems); while(nelems--)c->l.upvals[nelems]=NULL; return c; } static UpVal*luaF_newupval(lua_State*L){ UpVal*uv=luaM_new(L,UpVal); luaC_link(L,obj2gco(uv),(8+2)); uv->v=&uv->u.value; setnilvalue(uv->v); return uv; } static UpVal*luaF_findupval(lua_State*L,StkId level){ global_State*g=G(L); GCObject**pp=&L->openupval; UpVal*p; UpVal*uv; while(*pp!=NULL&&(p=ngcotouv(*pp))->v>=level){ if(p->v==level){ if(isdead(g,obj2gco(p))) changewhite(obj2gco(p)); return p; } pp=&p->next; } uv=luaM_new(L,UpVal); uv->tt=(8+2); uv->marked=luaC_white(g); uv->v=level; uv->next=*pp; *pp=obj2gco(uv); uv->u.l.prev=&g->uvhead; uv->u.l.next=g->uvhead.u.l.next; uv->u.l.next->u.l.prev=uv; g->uvhead.u.l.next=uv; return uv; } static void unlinkupval(UpVal*uv){ uv->u.l.next->u.l.prev=uv->u.l.prev; uv->u.l.prev->u.l.next=uv->u.l.next; } static void luaF_freeupval(lua_State*L,UpVal*uv){ if(uv->v!=&uv->u.value) unlinkupval(uv); luaM_free(L,uv); } static void luaF_close(lua_State*L,StkId level){ UpVal*uv; global_State*g=G(L); while(L->openupval!=NULL&&(uv=ngcotouv(L->openupval))->v>=level){ GCObject*o=obj2gco(uv); L->openupval=uv->next; if(isdead(g,o)) luaF_freeupval(L,uv); else{ unlinkupval(uv); setobj(L,&uv->u.value,uv->v); uv->v=&uv->u.value; luaC_linkupval(L,uv); } } } static Proto*luaF_newproto(lua_State*L){ Proto*f=luaM_new(L,Proto); luaC_link(L,obj2gco(f),(8+1)); f->k=NULL; f->sizek=0; f->p=NULL; f->sizep=0; f->code=NULL; f->sizecode=0; f->sizelineinfo=0; f->sizeupvalues=0; f->nups=0; f->upvalues=NULL; f->numparams=0; f->is_vararg=0; f->maxstacksize=0; f->lineinfo=NULL; f->sizelocvars=0; f->locvars=NULL; f->linedefined=0; f->lastlinedefined=0; f->source=NULL; return f; } static void luaF_freeproto(lua_State*L,Proto*f){ luaM_freearray(L,f->code,f->sizecode,Instruction); luaM_freearray(L,f->p,f->sizep,Proto*); luaM_freearray(L,f->k,f->sizek,TValue); luaM_freearray(L,f->lineinfo,f->sizelineinfo,int); luaM_freearray(L,f->locvars,f->sizelocvars,struct LocVar); luaM_freearray(L,f->upvalues,f->sizeupvalues,TString*); luaM_free(L,f); } static void luaF_freeclosure(lua_State*L,Closure*c){ int size=(c->c.isC)?sizeCclosure(c->c.nupvalues): sizeLclosure(c->l.nupvalues); luaM_freemem(L,c,size); } #define MASK1(n,p)((~((~(Instruction)0)<>0)&MASK1(6,0))) #define SET_OPCODE(i,o)((i)=(((i)&MASK0(6,0))|((cast(Instruction,o)<<0)&MASK1(6,0)))) #define GETARG_A(i)(cast(int,((i)>>(0+6))&MASK1(8,0))) #define SETARG_A(i,u)((i)=(((i)&MASK0(8,(0+6)))|((cast(Instruction,u)<<(0+6))&MASK1(8,(0+6))))) #define GETARG_B(i)(cast(int,((i)>>(((0+6)+8)+9))&MASK1(9,0))) #define SETARG_B(i,b)((i)=(((i)&MASK0(9,(((0+6)+8)+9)))|((cast(Instruction,b)<<(((0+6)+8)+9))&MASK1(9,(((0+6)+8)+9))))) #define GETARG_C(i)(cast(int,((i)>>((0+6)+8))&MASK1(9,0))) #define SETARG_C(i,b)((i)=(((i)&MASK0(9,((0+6)+8)))|((cast(Instruction,b)<<((0+6)+8))&MASK1(9,((0+6)+8))))) #define GETARG_Bx(i)(cast(int,((i)>>((0+6)+8))&MASK1((9+9),0))) #define SETARG_Bx(i,b)((i)=(((i)&MASK0((9+9),((0+6)+8)))|((cast(Instruction,b)<<((0+6)+8))&MASK1((9+9),((0+6)+8))))) #define GETARG_sBx(i)(GETARG_Bx(i)-(((1<<(9+9))-1)>>1)) #define SETARG_sBx(i,b)SETARG_Bx((i),cast(unsigned int,(b)+(((1<<(9+9))-1)>>1))) #define CREATE_ABC(o,a,b,c)((cast(Instruction,o)<<0)|(cast(Instruction,a)<<(0+6))|(cast(Instruction,b)<<(((0+6)+8)+9))|(cast(Instruction,c)<<((0+6)+8))) #define CREATE_ABx(o,a,bc)((cast(Instruction,o)<<0)|(cast(Instruction,a)<<(0+6))|(cast(Instruction,bc)<<((0+6)+8))) #define ISK(x)((x)&(1<<(9-1))) #define INDEXK(r)((int)(r)&~(1<<(9-1))) #define RKASK(x)((x)|(1<<(9-1))) static const lu_byte luaP_opmodes[(cast(int,OP_VARARG)+1)]; #define getBMode(m)(cast(enum OpArgMask,(luaP_opmodes[m]>>4)&3)) #define getCMode(m)(cast(enum OpArgMask,(luaP_opmodes[m]>>2)&3)) #define testTMode(m)(luaP_opmodes[m]&(1<<7)) typedef struct expdesc{ expkind k; union{ struct{int info,aux;}s; lua_Number nval; }u; int t; int f; }expdesc; typedef struct upvaldesc{ lu_byte k; lu_byte info; }upvaldesc; struct BlockCnt; typedef struct FuncState{ Proto*f; Table*h; struct FuncState*prev; struct LexState*ls; struct lua_State*L; struct BlockCnt*bl; int pc; int lasttarget; int jpc; int freereg; int nk; int np; short nlocvars; lu_byte nactvar; upvaldesc upvalues[60]; unsigned short actvar[200]; }FuncState; static Proto*luaY_parser(lua_State*L,ZIO*z,Mbuffer*buff, const char*name); struct lua_longjmp{ struct lua_longjmp*previous; jmp_buf b; volatile int status; }; static void luaD_seterrorobj(lua_State*L,int errcode,StkId oldtop){ switch(errcode){ case 4:{ setsvalue(L,oldtop,luaS_newliteral(L,"not enough memory")); break; } case 5:{ setsvalue(L,oldtop,luaS_newliteral(L,"error in error handling")); break; } case 3: case 2:{ setobj(L,oldtop,L->top-1); break; } } L->top=oldtop+1; } static void restore_stack_limit(lua_State*L){ if(L->size_ci>20000){ int inuse=cast_int(L->ci-L->base_ci); if(inuse+1<20000) luaD_reallocCI(L,20000); } } static void resetstack(lua_State*L,int status){ L->ci=L->base_ci; L->base=L->ci->base; luaF_close(L,L->base); luaD_seterrorobj(L,status,L->base); L->nCcalls=L->baseCcalls; L->allowhook=1; restore_stack_limit(L); L->errfunc=0; L->errorJmp=NULL; } static void luaD_throw(lua_State*L,int errcode){ if(L->errorJmp){ L->errorJmp->status=errcode; LUAI_THROW(L,L->errorJmp); } else{ L->status=cast_byte(errcode); if(G(L)->panic){ resetstack(L,errcode); G(L)->panic(L); } exit(EXIT_FAILURE); } } static int luaD_rawrunprotected(lua_State*L,Pfunc f,void*ud){ struct lua_longjmp lj; lj.status=0; lj.previous=L->errorJmp; L->errorJmp=&lj; LUAI_TRY(L,&lj, (*f)(L,ud); ); L->errorJmp=lj.previous; return lj.status; } static void correctstack(lua_State*L,TValue*oldstack){ CallInfo*ci; GCObject*up; L->top=(L->top-oldstack)+L->stack; for(up=L->openupval;up!=NULL;up=up->gch.next) gco2uv(up)->v=(gco2uv(up)->v-oldstack)+L->stack; for(ci=L->base_ci;ci<=L->ci;ci++){ ci->top=(ci->top-oldstack)+L->stack; ci->base=(ci->base-oldstack)+L->stack; ci->func=(ci->func-oldstack)+L->stack; } L->base=(L->base-oldstack)+L->stack; } static void luaD_reallocstack(lua_State*L,int newsize){ TValue*oldstack=L->stack; int realsize=newsize+1+5; luaM_reallocvector(L,L->stack,L->stacksize,realsize,TValue); L->stacksize=realsize; L->stack_last=L->stack+newsize; correctstack(L,oldstack); } static void luaD_reallocCI(lua_State*L,int newsize){ CallInfo*oldci=L->base_ci; luaM_reallocvector(L,L->base_ci,L->size_ci,newsize,CallInfo); L->size_ci=newsize; L->ci=(L->ci-oldci)+L->base_ci; L->end_ci=L->base_ci+L->size_ci-1; } static void luaD_growstack(lua_State*L,int n){ if(n<=L->stacksize) luaD_reallocstack(L,2*L->stacksize); else luaD_reallocstack(L,L->stacksize+n); } static CallInfo*growCI(lua_State*L){ if(L->size_ci>20000) luaD_throw(L,5); else{ luaD_reallocCI(L,2*L->size_ci); if(L->size_ci>20000) luaG_runerror(L,"stack overflow"); } return++L->ci; } static StkId adjust_varargs(lua_State*L,Proto*p,int actual){ int i; int nfixargs=p->numparams; Table*htab=NULL; StkId base,fixed; for(;actualtop++); fixed=L->top-actual; base=L->top; for(i=0;itop++,fixed+i); setnilvalue(fixed+i); } if(htab){ sethvalue(L,L->top++,htab); } return base; } static StkId tryfuncTM(lua_State*L,StkId func){ const TValue*tm=luaT_gettmbyobj(L,func,TM_CALL); StkId p; ptrdiff_t funcr=savestack(L,func); if(!ttisfunction(tm)) luaG_typeerror(L,func,"call"); for(p=L->top;p>func;p--)setobj(L,p,p-1); incr_top(L); func=restorestack(L,funcr); setobj(L,func,tm); return func; } #define inc_ci(L)((L->ci==L->end_ci)?growCI(L):(condhardstacktests(luaD_reallocCI(L,L->size_ci)),++L->ci)) static int luaD_precall(lua_State*L,StkId func,int nresults){ LClosure*cl; ptrdiff_t funcr; if(!ttisfunction(func)) func=tryfuncTM(L,func); funcr=savestack(L,func); cl=&clvalue(func)->l; L->ci->savedpc=L->savedpc; if(!cl->isC){ CallInfo*ci; StkId st,base; Proto*p=cl->p; luaD_checkstack(L,p->maxstacksize); func=restorestack(L,funcr); if(!p->is_vararg){ base=func+1; if(L->top>base+p->numparams) L->top=base+p->numparams; } else{ int nargs=cast_int(L->top-func)-1; base=adjust_varargs(L,p,nargs); func=restorestack(L,funcr); } ci=inc_ci(L); ci->func=func; L->base=ci->base=base; ci->top=L->base+p->maxstacksize; L->savedpc=p->code; ci->tailcalls=0; ci->nresults=nresults; for(st=L->top;sttop;st++) setnilvalue(st); L->top=ci->top; return 0; } else{ CallInfo*ci; int n; luaD_checkstack(L,20); ci=inc_ci(L); ci->func=restorestack(L,funcr); L->base=ci->base=ci->func+1; ci->top=L->top+20; ci->nresults=nresults; n=(*curr_func(L)->c.f)(L); if(n<0) return 2; else{ luaD_poscall(L,L->top-n); return 1; } } } static int luaD_poscall(lua_State*L,StkId firstResult){ StkId res; int wanted,i; CallInfo*ci; ci=L->ci--; res=ci->func; wanted=ci->nresults; L->base=(ci-1)->base; L->savedpc=(ci-1)->savedpc; for(i=wanted;i!=0&&firstResulttop;i--) setobj(L,res++,firstResult++); while(i-->0) setnilvalue(res++); L->top=res; return(wanted-(-1)); } static void luaD_call(lua_State*L,StkId func,int nResults){ if(++L->nCcalls>=200){ if(L->nCcalls==200) luaG_runerror(L,"C stack overflow"); else if(L->nCcalls>=(200+(200>>3))) luaD_throw(L,5); } if(luaD_precall(L,func,nResults)==0) luaV_execute(L,1); L->nCcalls--; luaC_checkGC(L); } static int luaD_pcall(lua_State*L,Pfunc func,void*u, ptrdiff_t old_top,ptrdiff_t ef){ int status; unsigned short oldnCcalls=L->nCcalls; ptrdiff_t old_ci=saveci(L,L->ci); lu_byte old_allowhooks=L->allowhook; ptrdiff_t old_errfunc=L->errfunc; L->errfunc=ef; status=luaD_rawrunprotected(L,func,u); if(status!=0){ StkId oldtop=restorestack(L,old_top); luaF_close(L,oldtop); luaD_seterrorobj(L,status,oldtop); L->nCcalls=oldnCcalls; L->ci=restoreci(L,old_ci); L->base=L->ci->base; L->savedpc=L->ci->savedpc; L->allowhook=old_allowhooks; restore_stack_limit(L); } L->errfunc=old_errfunc; return status; } struct SParser{ ZIO*z; Mbuffer buff; const char*name; }; static void f_parser(lua_State*L,void*ud){ int i; Proto*tf; Closure*cl; struct SParser*p=cast(struct SParser*,ud); luaC_checkGC(L); tf=luaY_parser(L,p->z, &p->buff,p->name); cl=luaF_newLclosure(L,tf->nups,hvalue(gt(L))); cl->l.p=tf; for(i=0;inups;i++) cl->l.upvals[i]=luaF_newupval(L); setclvalue(L,L->top,cl); incr_top(L); } static int luaD_protectedparser(lua_State*L,ZIO*z,const char*name){ struct SParser p; int status; p.z=z;p.name=name; luaZ_initbuffer(L,&p.buff); status=luaD_pcall(L,f_parser,&p,savestack(L,L->top),L->errfunc); luaZ_freebuffer(L,&p.buff); return status; } static void luaS_resize(lua_State*L,int newsize){ GCObject**newhash; stringtable*tb; int i; if(G(L)->gcstate==2) return; newhash=luaM_newvector(L,newsize,GCObject*); tb=&G(L)->strt; for(i=0;isize;i++){ GCObject*p=tb->hash[i]; while(p){ GCObject*next=p->gch.next; unsigned int h=gco2ts(p)->hash; int h1=lmod(h,newsize); p->gch.next=newhash[h1]; newhash[h1]=p; p=next; } } luaM_freearray(L,tb->hash,tb->size,TString*); tb->size=newsize; tb->hash=newhash; } static TString*newlstr(lua_State*L,const char*str,size_t l, unsigned int h){ TString*ts; stringtable*tb; if(l+1>(((size_t)(~(size_t)0)-2)-sizeof(TString))/sizeof(char)) luaM_toobig(L); ts=cast(TString*,luaM_malloc(L,(l+1)*sizeof(char)+sizeof(TString))); ts->tsv.len=l; ts->tsv.hash=h; ts->tsv.marked=luaC_white(G(L)); ts->tsv.tt=4; ts->tsv.reserved=0; memcpy(ts+1,str,l*sizeof(char)); ((char*)(ts+1))[l]='\0'; tb=&G(L)->strt; h=lmod(h,tb->size); ts->tsv.next=tb->hash[h]; tb->hash[h]=obj2gco(ts); tb->nuse++; if(tb->nuse>cast(lu_int32,tb->size)&&tb->size<=(INT_MAX-2)/2) luaS_resize(L,tb->size*2); return ts; } static TString*luaS_newlstr(lua_State*L,const char*str,size_t l){ GCObject*o; unsigned int h=cast(unsigned int,l); size_t step=(l>>5)+1; size_t l1; for(l1=l;l1>=step;l1-=step) h=h^((h<<5)+(h>>2)+cast(unsigned char,str[l1-1])); for(o=G(L)->strt.hash[lmod(h,G(L)->strt.size)]; o!=NULL; o=o->gch.next){ TString*ts=rawgco2ts(o); if(ts->tsv.len==l&&(memcmp(str,getstr(ts),l)==0)){ if(isdead(G(L),o))changewhite(o); return ts; } } return newlstr(L,str,l,h); } static Udata*luaS_newudata(lua_State*L,size_t s,Table*e){ Udata*u; if(s>((size_t)(~(size_t)0)-2)-sizeof(Udata)) luaM_toobig(L); u=cast(Udata*,luaM_malloc(L,s+sizeof(Udata))); u->uv.marked=luaC_white(G(L)); u->uv.tt=7; u->uv.len=s; u->uv.metatable=NULL; u->uv.env=e; u->uv.next=G(L)->mainthread->next; G(L)->mainthread->next=obj2gco(u); return u; } #define hashpow2(t,n)(gnode(t,lmod((n),sizenode(t)))) #define hashstr(t,str)hashpow2(t,(str)->tsv.hash) #define hashboolean(t,p)hashpow2(t,p) #define hashmod(t,n)(gnode(t,((n)%((sizenode(t)-1)|1)))) #define hashpointer(t,p)hashmod(t,IntPoint(p)) static const Node dummynode_={ {{NULL},0}, {{{NULL},0,NULL}} }; static Node*hashnum(const Table*t,lua_Number n){ unsigned int a[cast_int(sizeof(lua_Number)/sizeof(int))]; int i; if(luai_numeq(n,0)) return gnode(t,0); memcpy(a,&n,sizeof(a)); for(i=1;isizearray) return i-1; else{ Node*n=mainposition(t,key); do{ if(luaO_rawequalObj(key2tval(n),key)|| (ttype(gkey(n))==(8+3)&&iscollectable(key)&& gcvalue(gkey(n))==gcvalue(key))){ i=cast_int(n-gnode(t,0)); return i+t->sizearray; } else n=gnext(n); }while(n); luaG_runerror(L,"invalid key to "LUA_QL("next")); return 0; } } static int luaH_next(lua_State*L,Table*t,StkId key){ int i=findindex(L,t,key); for(i++;isizearray;i++){ if(!ttisnil(&t->array[i])){ setnvalue(key,cast_num(i+1)); setobj(L,key+1,&t->array[i]); return 1; } } for(i-=t->sizearray;i<(int)sizenode(t);i++){ if(!ttisnil(gval(gnode(t,i)))){ setobj(L,key,key2tval(gnode(t,i))); setobj(L,key+1,gval(gnode(t,i))); return 1; } } return 0; } static int computesizes(int nums[],int*narray){ int i; int twotoi; int a=0; int na=0; int n=0; for(i=0,twotoi=1;twotoi/2<*narray;i++,twotoi*=2){ if(nums[i]>0){ a+=nums[i]; if(a>twotoi/2){ n=twotoi; na=a; } } if(a==*narray)break; } *narray=n; return na; } static int countint(const TValue*key,int*nums){ int k=arrayindex(key); if(0t->sizearray){ lim=t->sizearray; if(i>lim) break; } for(;i<=lim;i++){ if(!ttisnil(&t->array[i-1])) lc++; } nums[lg]+=lc; ause+=lc; } return ause; } static int numusehash(const Table*t,int*nums,int*pnasize){ int totaluse=0; int ause=0; int i=sizenode(t); while(i--){ Node*n=&t->node[i]; if(!ttisnil(gval(n))){ ause+=countint(key2tval(n),nums); totaluse++; } } *pnasize+=ause; return totaluse; } static void setarrayvector(lua_State*L,Table*t,int size){ int i; luaM_reallocvector(L,t->array,t->sizearray,size,TValue); for(i=t->sizearray;iarray[i]); t->sizearray=size; } static void setnodevector(lua_State*L,Table*t,int size){ int lsize; if(size==0){ t->node=cast(Node*,(&dummynode_)); lsize=0; } else{ int i; lsize=ceillog2(size); if(lsize>(32-2)) luaG_runerror(L,"table overflow"); size=twoto(lsize); t->node=luaM_newvector(L,size,Node); for(i=0;ilsizenode=cast_byte(lsize); t->lastfree=gnode(t,size); } static void resize(lua_State*L,Table*t,int nasize,int nhsize){ int i; int oldasize=t->sizearray; int oldhsize=t->lsizenode; Node*nold=t->node; if(nasize>oldasize) setarrayvector(L,t,nasize); setnodevector(L,t,nhsize); if(nasizesizearray=nasize; for(i=nasize;iarray[i])) setobj(L,luaH_setnum(L,t,i+1),&t->array[i]); } luaM_reallocvector(L,t->array,oldasize,nasize,TValue); } for(i=twoto(oldhsize)-1;i>=0;i--){ Node*old=nold+i; if(!ttisnil(gval(old))) setobj(L,luaH_set(L,t,key2tval(old)),gval(old)); } if(nold!=(&dummynode_)) luaM_freearray(L,nold,twoto(oldhsize),Node); } static void luaH_resizearray(lua_State*L,Table*t,int nasize){ int nsize=(t->node==(&dummynode_))?0:sizenode(t); resize(L,t,nasize,nsize); } static void rehash(lua_State*L,Table*t,const TValue*ek){ int nasize,na; int nums[(32-2)+1]; int i; int totaluse; for(i=0;i<=(32-2);i++)nums[i]=0; nasize=numusearray(t,nums); totaluse=nasize; totaluse+=numusehash(t,nums,&nasize); nasize+=countint(ek,nums); totaluse++; na=computesizes(nums,&nasize); resize(L,t,nasize,totaluse-na); } static Table*luaH_new(lua_State*L,int narray,int nhash){ Table*t=luaM_new(L,Table); luaC_link(L,obj2gco(t),5); t->metatable=NULL; t->flags=cast_byte(~0); t->array=NULL; t->sizearray=0; t->lsizenode=0; t->node=cast(Node*,(&dummynode_)); setarrayvector(L,t,narray); setnodevector(L,t,nhash); return t; } static void luaH_free(lua_State*L,Table*t){ if(t->node!=(&dummynode_)) luaM_freearray(L,t->node,sizenode(t),Node); luaM_freearray(L,t->array,t->sizearray,TValue); luaM_free(L,t); } static Node*getfreepos(Table*t){ while(t->lastfree-->t->node){ if(ttisnil(gkey(t->lastfree))) return t->lastfree; } return NULL; } static TValue*newkey(lua_State*L,Table*t,const TValue*key){ Node*mp=mainposition(t,key); if(!ttisnil(gval(mp))||mp==(&dummynode_)){ Node*othern; Node*n=getfreepos(t); if(n==NULL){ rehash(L,t,key); return luaH_set(L,t,key); } othern=mainposition(t,key2tval(mp)); if(othern!=mp){ while(gnext(othern)!=mp)othern=gnext(othern); gnext(othern)=n; *n=*mp; gnext(mp)=NULL; setnilvalue(gval(mp)); } else{ gnext(n)=gnext(mp); gnext(mp)=n; mp=n; } } gkey(mp)->value=key->value;gkey(mp)->tt=key->tt; luaC_barriert(L,t,key); return gval(mp); } static const TValue*luaH_getnum(Table*t,int key){ if(cast(unsigned int,key)-1sizearray)) return&t->array[key-1]; else{ lua_Number nk=cast_num(key); Node*n=hashnum(t,nk); do{ if(ttisnumber(gkey(n))&&luai_numeq(nvalue(gkey(n)),nk)) return gval(n); else n=gnext(n); }while(n); return(&luaO_nilobject_); } } static const TValue*luaH_getstr(Table*t,TString*key){ Node*n=hashstr(t,key); do{ if(ttisstring(gkey(n))&&rawtsvalue(gkey(n))==key) return gval(n); else n=gnext(n); }while(n); return(&luaO_nilobject_); } static const TValue*luaH_get(Table*t,const TValue*key){ switch(ttype(key)){ case 0:return(&luaO_nilobject_); case 4:return luaH_getstr(t,rawtsvalue(key)); case 3:{ int k; lua_Number n=nvalue(key); lua_number2int(k,n); if(luai_numeq(cast_num(k),nvalue(key))) return luaH_getnum(t,k); } default:{ Node*n=mainposition(t,key); do{ if(luaO_rawequalObj(key2tval(n),key)) return gval(n); else n=gnext(n); }while(n); return(&luaO_nilobject_); } } } static TValue*luaH_set(lua_State*L,Table*t,const TValue*key){ const TValue*p=luaH_get(t,key); t->flags=0; if(p!=(&luaO_nilobject_)) return cast(TValue*,p); else{ if(ttisnil(key))luaG_runerror(L,"table index is nil"); else if(ttisnumber(key)&&luai_numisnan(nvalue(key))) luaG_runerror(L,"table index is NaN"); return newkey(L,t,key); } } static TValue*luaH_setnum(lua_State*L,Table*t,int key){ const TValue*p=luaH_getnum(t,key); if(p!=(&luaO_nilobject_)) return cast(TValue*,p); else{ TValue k; setnvalue(&k,cast_num(key)); return newkey(L,t,&k); } } static TValue*luaH_setstr(lua_State*L,Table*t,TString*key){ const TValue*p=luaH_getstr(t,key); if(p!=(&luaO_nilobject_)) return cast(TValue*,p); else{ TValue k; setsvalue(L,&k,key); return newkey(L,t,&k); } } static int unbound_search(Table*t,unsigned int j){ unsigned int i=j; j++; while(!ttisnil(luaH_getnum(t,j))){ i=j; j*=2; if(j>cast(unsigned int,(INT_MAX-2))){ i=1; while(!ttisnil(luaH_getnum(t,i)))i++; return i-1; } } while(j-i>1){ unsigned int m=(i+j)/2; if(ttisnil(luaH_getnum(t,m)))j=m; else i=m; } return i; } static int luaH_getn(Table*t){ unsigned int j=t->sizearray; if(j>0&&ttisnil(&t->array[j-1])){ unsigned int i=0; while(j-i>1){ unsigned int m=(i+j)/2; if(ttisnil(&t->array[m-1]))j=m; else i=m; } return i; } else if(t->node==(&dummynode_)) return j; else return unbound_search(t,j); } #define makewhite(g,x)((x)->gch.marked=cast_byte(((x)->gch.marked&cast_byte(~(bitmask(2)|bit2mask(0,1))))|luaC_white(g))) #define white2gray(x)reset2bits((x)->gch.marked,0,1) #define black2gray(x)resetbit((x)->gch.marked,2) #define stringmark(s)reset2bits((s)->tsv.marked,0,1) #define isfinalized(u)testbit((u)->marked,3) #define markfinalized(u)l_setbit((u)->marked,3) #define markvalue(g,o){checkconsistency(o);if(iscollectable(o)&&iswhite(gcvalue(o)))reallymarkobject(g,gcvalue(o));} #define markobject(g,t){if(iswhite(obj2gco(t)))reallymarkobject(g,obj2gco(t));} #define setthreshold(g)(g->GCthreshold=(g->estimate/100)*g->gcpause) static void removeentry(Node*n){ if(iscollectable(gkey(n))) setttype(gkey(n),(8+3)); } static void reallymarkobject(global_State*g,GCObject*o){ white2gray(o); switch(o->gch.tt){ case 4:{ return; } case 7:{ Table*mt=gco2u(o)->metatable; gray2black(o); if(mt)markobject(g,mt); markobject(g,gco2u(o)->env); return; } case(8+2):{ UpVal*uv=gco2uv(o); markvalue(g,uv->v); if(uv->v==&uv->u.value) gray2black(o); return; } case 6:{ gco2cl(o)->c.gclist=g->gray; g->gray=o; break; } case 5:{ gco2h(o)->gclist=g->gray; g->gray=o; break; } case 8:{ gco2th(o)->gclist=g->gray; g->gray=o; break; } case(8+1):{ gco2p(o)->gclist=g->gray; g->gray=o; break; } default:; } } static void marktmu(global_State*g){ GCObject*u=g->tmudata; if(u){ do{ u=u->gch.next; makewhite(g,u); reallymarkobject(g,u); }while(u!=g->tmudata); } } static size_t luaC_separateudata(lua_State*L,int all){ global_State*g=G(L); size_t deadmem=0; GCObject**p=&g->mainthread->next; GCObject*curr; while((curr=*p)!=NULL){ if(!(iswhite(curr)||all)||isfinalized(gco2u(curr))) p=&curr->gch.next; else if(fasttm(L,gco2u(curr)->metatable,TM_GC)==NULL){ markfinalized(gco2u(curr)); p=&curr->gch.next; } else{ deadmem+=sizeudata(gco2u(curr)); markfinalized(gco2u(curr)); *p=curr->gch.next; if(g->tmudata==NULL) g->tmudata=curr->gch.next=curr; else{ curr->gch.next=g->tmudata->gch.next; g->tmudata->gch.next=curr; g->tmudata=curr; } } } return deadmem; } static int traversetable(global_State*g,Table*h){ int i; int weakkey=0; int weakvalue=0; const TValue*mode; if(h->metatable) markobject(g,h->metatable); mode=gfasttm(g,h->metatable,TM_MODE); if(mode&&ttisstring(mode)){ weakkey=(strchr(svalue(mode),'k')!=NULL); weakvalue=(strchr(svalue(mode),'v')!=NULL); if(weakkey||weakvalue){ h->marked&=~(bitmask(3)|bitmask(4)); h->marked|=cast_byte((weakkey<<3)| (weakvalue<<4)); h->gclist=g->weak; g->weak=obj2gco(h); } } if(weakkey&&weakvalue)return 1; if(!weakvalue){ i=h->sizearray; while(i--) markvalue(g,&h->array[i]); } i=sizenode(h); while(i--){ Node*n=gnode(h,i); if(ttisnil(gval(n))) removeentry(n); else{ if(!weakkey)markvalue(g,gkey(n)); if(!weakvalue)markvalue(g,gval(n)); } } return weakkey||weakvalue; } static void traverseproto(global_State*g,Proto*f){ int i; if(f->source)stringmark(f->source); for(i=0;isizek;i++) markvalue(g,&f->k[i]); for(i=0;isizeupvalues;i++){ if(f->upvalues[i]) stringmark(f->upvalues[i]); } for(i=0;isizep;i++){ if(f->p[i]) markobject(g,f->p[i]); } for(i=0;isizelocvars;i++){ if(f->locvars[i].varname) stringmark(f->locvars[i].varname); } } static void traverseclosure(global_State*g,Closure*cl){ markobject(g,cl->c.env); if(cl->c.isC){ int i; for(i=0;ic.nupvalues;i++) markvalue(g,&cl->c.upvalue[i]); } else{ int i; markobject(g,cl->l.p); for(i=0;il.nupvalues;i++) markobject(g,cl->l.upvals[i]); } } static void checkstacksizes(lua_State*L,StkId max){ int ci_used=cast_int(L->ci-L->base_ci); int s_used=cast_int(max-L->stack); if(L->size_ci>20000) return; if(4*ci_usedsize_ci&&2*8size_ci) luaD_reallocCI(L,L->size_ci/2); condhardstacktests(luaD_reallocCI(L,ci_used+1)); if(4*s_usedstacksize&& 2*((2*20)+5)stacksize) luaD_reallocstack(L,L->stacksize/2); condhardstacktests(luaD_reallocstack(L,s_used)); } static void traversestack(global_State*g,lua_State*l){ StkId o,lim; CallInfo*ci; markvalue(g,gt(l)); lim=l->top; for(ci=l->base_ci;ci<=l->ci;ci++){ if(limtop)lim=ci->top; } for(o=l->stack;otop;o++) markvalue(g,o); for(;o<=lim;o++) setnilvalue(o); checkstacksizes(l,lim); } static l_mem propagatemark(global_State*g){ GCObject*o=g->gray; gray2black(o); switch(o->gch.tt){ case 5:{ Table*h=gco2h(o); g->gray=h->gclist; if(traversetable(g,h)) black2gray(o); return sizeof(Table)+sizeof(TValue)*h->sizearray+ sizeof(Node)*sizenode(h); } case 6:{ Closure*cl=gco2cl(o); g->gray=cl->c.gclist; traverseclosure(g,cl); return(cl->c.isC)?sizeCclosure(cl->c.nupvalues): sizeLclosure(cl->l.nupvalues); } case 8:{ lua_State*th=gco2th(o); g->gray=th->gclist; th->gclist=g->grayagain; g->grayagain=o; black2gray(o); traversestack(g,th); return sizeof(lua_State)+sizeof(TValue)*th->stacksize+ sizeof(CallInfo)*th->size_ci; } case(8+1):{ Proto*p=gco2p(o); g->gray=p->gclist; traverseproto(g,p); return sizeof(Proto)+sizeof(Instruction)*p->sizecode+ sizeof(Proto*)*p->sizep+ sizeof(TValue)*p->sizek+ sizeof(int)*p->sizelineinfo+ sizeof(LocVar)*p->sizelocvars+ sizeof(TString*)*p->sizeupvalues; } default:return 0; } } static size_t propagateall(global_State*g){ size_t m=0; while(g->gray)m+=propagatemark(g); return m; } static int iscleared(const TValue*o,int iskey){ if(!iscollectable(o))return 0; if(ttisstring(o)){ stringmark(rawtsvalue(o)); return 0; } return iswhite(gcvalue(o))|| (ttisuserdata(o)&&(!iskey&&isfinalized(uvalue(o)))); } static void cleartable(GCObject*l){ while(l){ Table*h=gco2h(l); int i=h->sizearray; if(testbit(h->marked,4)){ while(i--){ TValue*o=&h->array[i]; if(iscleared(o,0)) setnilvalue(o); } } i=sizenode(h); while(i--){ Node*n=gnode(h,i); if(!ttisnil(gval(n))&& (iscleared(key2tval(n),1)||iscleared(gval(n),0))){ setnilvalue(gval(n)); removeentry(n); } } l=h->gclist; } } static void freeobj(lua_State*L,GCObject*o){ switch(o->gch.tt){ case(8+1):luaF_freeproto(L,gco2p(o));break; case 6:luaF_freeclosure(L,gco2cl(o));break; case(8+2):luaF_freeupval(L,gco2uv(o));break; case 5:luaH_free(L,gco2h(o));break; case 8:{ luaE_freethread(L,gco2th(o)); break; } case 4:{ G(L)->strt.nuse--; luaM_freemem(L,o,sizestring(gco2ts(o))); break; } case 7:{ luaM_freemem(L,o,sizeudata(gco2u(o))); break; } default:; } } #define sweepwholelist(L,p)sweeplist(L,p,((lu_mem)(~(lu_mem)0)-2)) static GCObject**sweeplist(lua_State*L,GCObject**p,lu_mem count){ GCObject*curr; global_State*g=G(L); int deadmask=otherwhite(g); while((curr=*p)!=NULL&&count-->0){ if(curr->gch.tt==8) sweepwholelist(L,&gco2th(curr)->openupval); if((curr->gch.marked^bit2mask(0,1))&deadmask){ makewhite(g,curr); p=&curr->gch.next; } else{ *p=curr->gch.next; if(curr==g->rootgc) g->rootgc=curr->gch.next; freeobj(L,curr); } } return p; } static void checkSizes(lua_State*L){ global_State*g=G(L); if(g->strt.nusestrt.size/4)&& g->strt.size>32*2) luaS_resize(L,g->strt.size/2); if(luaZ_sizebuffer(&g->buff)>32*2){ size_t newsize=luaZ_sizebuffer(&g->buff)/2; luaZ_resizebuffer(L,&g->buff,newsize); } } static void GCTM(lua_State*L){ global_State*g=G(L); GCObject*o=g->tmudata->gch.next; Udata*udata=rawgco2u(o); const TValue*tm; if(o==g->tmudata) g->tmudata=NULL; else g->tmudata->gch.next=udata->uv.next; udata->uv.next=g->mainthread->next; g->mainthread->next=o; makewhite(g,o); tm=fasttm(L,udata->uv.metatable,TM_GC); if(tm!=NULL){ lu_byte oldah=L->allowhook; lu_mem oldt=g->GCthreshold; L->allowhook=0; g->GCthreshold=2*g->totalbytes; setobj(L,L->top,tm); setuvalue(L,L->top+1,udata); L->top+=2; luaD_call(L,L->top-2,0); L->allowhook=oldah; g->GCthreshold=oldt; } } static void luaC_callGCTM(lua_State*L){ while(G(L)->tmudata) GCTM(L); } static void luaC_freeall(lua_State*L){ global_State*g=G(L); int i; g->currentwhite=bit2mask(0,1)|bitmask(6); sweepwholelist(L,&g->rootgc); for(i=0;istrt.size;i++) sweepwholelist(L,&g->strt.hash[i]); } static void markmt(global_State*g){ int i; for(i=0;i<(8+1);i++) if(g->mt[i])markobject(g,g->mt[i]); } static void markroot(lua_State*L){ global_State*g=G(L); g->gray=NULL; g->grayagain=NULL; g->weak=NULL; markobject(g,g->mainthread); markvalue(g,gt(g->mainthread)); markvalue(g,registry(L)); markmt(g); g->gcstate=1; } static void remarkupvals(global_State*g){ UpVal*uv; for(uv=g->uvhead.u.l.next;uv!=&g->uvhead;uv=uv->u.l.next){ if(isgray(obj2gco(uv))) markvalue(g,uv->v); } } static void atomic(lua_State*L){ global_State*g=G(L); size_t udsize; remarkupvals(g); propagateall(g); g->gray=g->weak; g->weak=NULL; markobject(g,L); markmt(g); propagateall(g); g->gray=g->grayagain; g->grayagain=NULL; propagateall(g); udsize=luaC_separateudata(L,0); marktmu(g); udsize+=propagateall(g); cleartable(g->weak); g->currentwhite=cast_byte(otherwhite(g)); g->sweepstrgc=0; g->sweepgc=&g->rootgc; g->gcstate=2; g->estimate=g->totalbytes-udsize; } static l_mem singlestep(lua_State*L){ global_State*g=G(L); switch(g->gcstate){ case 0:{ markroot(L); return 0; } case 1:{ if(g->gray) return propagatemark(g); else{ atomic(L); return 0; } } case 2:{ lu_mem old=g->totalbytes; sweepwholelist(L,&g->strt.hash[g->sweepstrgc++]); if(g->sweepstrgc>=g->strt.size) g->gcstate=3; g->estimate-=old-g->totalbytes; return 10; } case 3:{ lu_mem old=g->totalbytes; g->sweepgc=sweeplist(L,g->sweepgc,40); if(*g->sweepgc==NULL){ checkSizes(L); g->gcstate=4; } g->estimate-=old-g->totalbytes; return 40*10; } case 4:{ if(g->tmudata){ GCTM(L); if(g->estimate>100) g->estimate-=100; return 100; } else{ g->gcstate=0; g->gcdept=0; return 0; } } default:return 0; } } static void luaC_step(lua_State*L){ global_State*g=G(L); l_mem lim=(1024u/100)*g->gcstepmul; if(lim==0) lim=(((lu_mem)(~(lu_mem)0)-2)-1)/2; g->gcdept+=g->totalbytes-g->GCthreshold; do{ lim-=singlestep(L); if(g->gcstate==0) break; }while(lim>0); if(g->gcstate!=0){ if(g->gcdept<1024u) g->GCthreshold=g->totalbytes+1024u; else{ g->gcdept-=1024u; g->GCthreshold=g->totalbytes; } } else{ setthreshold(g); } } static void luaC_barrierf(lua_State*L,GCObject*o,GCObject*v){ global_State*g=G(L); if(g->gcstate==1) reallymarkobject(g,v); else makewhite(g,o); } static void luaC_barrierback(lua_State*L,Table*t){ global_State*g=G(L); GCObject*o=obj2gco(t); black2gray(o); t->gclist=g->grayagain; g->grayagain=o; } static void luaC_link(lua_State*L,GCObject*o,lu_byte tt){ global_State*g=G(L); o->gch.next=g->rootgc; g->rootgc=o; o->gch.marked=luaC_white(g); o->gch.tt=tt; } static void luaC_linkupval(lua_State*L,UpVal*uv){ global_State*g=G(L); GCObject*o=obj2gco(uv); o->gch.next=g->rootgc; g->rootgc=o; if(isgray(o)){ if(g->gcstate==1){ gray2black(o); luaC_barrier(L,uv,uv->v); } else{ makewhite(g,o); } } } typedef union{ lua_Number r; TString*ts; }SemInfo; typedef struct Token{ int token; SemInfo seminfo; }Token; typedef struct LexState{ int current; int linenumber; int lastline; Token t; Token lookahead; struct FuncState*fs; struct lua_State*L; ZIO*z; Mbuffer*buff; TString*source; char decpoint; }LexState; static void luaX_init(lua_State*L); static void luaX_lexerror(LexState*ls,const char*msg,int token); #define state_size(x)(sizeof(x)+0) #define fromstate(l)(cast(lu_byte*,(l))-0) #define tostate(l)(cast(lua_State*,cast(lu_byte*,l)+0)) typedef struct LG{ lua_State l; global_State g; }LG; static void stack_init(lua_State*L1,lua_State*L){ L1->base_ci=luaM_newvector(L,8,CallInfo); L1->ci=L1->base_ci; L1->size_ci=8; L1->end_ci=L1->base_ci+L1->size_ci-1; L1->stack=luaM_newvector(L,(2*20)+5,TValue); L1->stacksize=(2*20)+5; L1->top=L1->stack; L1->stack_last=L1->stack+(L1->stacksize-5)-1; L1->ci->func=L1->top; setnilvalue(L1->top++); L1->base=L1->ci->base=L1->top; L1->ci->top=L1->top+20; } static void freestack(lua_State*L,lua_State*L1){ luaM_freearray(L,L1->base_ci,L1->size_ci,CallInfo); luaM_freearray(L,L1->stack,L1->stacksize,TValue); } static void f_luaopen(lua_State*L,void*ud){ global_State*g=G(L); UNUSED(ud); stack_init(L,L); sethvalue(L,gt(L),luaH_new(L,0,2)); sethvalue(L,registry(L),luaH_new(L,0,2)); luaS_resize(L,32); luaT_init(L); luaX_init(L); luaS_fix(luaS_newliteral(L,"not enough memory")); g->GCthreshold=4*g->totalbytes; } static void preinit_state(lua_State*L,global_State*g){ G(L)=g; L->stack=NULL; L->stacksize=0; L->errorJmp=NULL; L->hook=NULL; L->hookmask=0; L->basehookcount=0; L->allowhook=1; resethookcount(L); L->openupval=NULL; L->size_ci=0; L->nCcalls=L->baseCcalls=0; L->status=0; L->base_ci=L->ci=NULL; L->savedpc=NULL; L->errfunc=0; setnilvalue(gt(L)); } static void close_state(lua_State*L){ global_State*g=G(L); luaF_close(L,L->stack); luaC_freeall(L); luaM_freearray(L,G(L)->strt.hash,G(L)->strt.size,TString*); luaZ_freebuffer(L,&g->buff); freestack(L,L); (*g->frealloc)(g->ud,fromstate(L),state_size(LG),0); } static void luaE_freethread(lua_State*L,lua_State*L1){ luaF_close(L1,L1->stack); freestack(L,L1); luaM_freemem(L,fromstate(L1),state_size(lua_State)); } static lua_State*lua_newstate(lua_Alloc f,void*ud){ int i; lua_State*L; global_State*g; void*l=(*f)(ud,NULL,0,state_size(LG)); if(l==NULL)return NULL; L=tostate(l); g=&((LG*)L)->g; L->next=NULL; L->tt=8; g->currentwhite=bit2mask(0,5); L->marked=luaC_white(g); set2bits(L->marked,5,6); preinit_state(L,g); g->frealloc=f; g->ud=ud; g->mainthread=L; g->uvhead.u.l.prev=&g->uvhead; g->uvhead.u.l.next=&g->uvhead; g->GCthreshold=0; g->strt.size=0; g->strt.nuse=0; g->strt.hash=NULL; setnilvalue(registry(L)); luaZ_initbuffer(L,&g->buff); g->panic=NULL; g->gcstate=0; g->rootgc=obj2gco(L); g->sweepstrgc=0; g->sweepgc=&g->rootgc; g->gray=NULL; g->grayagain=NULL; g->weak=NULL; g->tmudata=NULL; g->totalbytes=sizeof(LG); g->gcpause=200; g->gcstepmul=200; g->gcdept=0; for(i=0;i<(8+1);i++)g->mt[i]=NULL; if(luaD_rawrunprotected(L,f_luaopen,NULL)!=0){ close_state(L); L=NULL; } else {} return L; } static void callallgcTM(lua_State*L,void*ud){ UNUSED(ud); luaC_callGCTM(L); } static void lua_close(lua_State*L){ L=G(L)->mainthread; luaF_close(L,L->stack); luaC_separateudata(L,1); L->errfunc=0; do{ L->ci=L->base_ci; L->base=L->top=L->ci->base; L->nCcalls=L->baseCcalls=0; }while(luaD_rawrunprotected(L,callallgcTM,NULL)!=0); close_state(L); } #define getcode(fs,e)((fs)->f->code[(e)->u.s.info]) #define luaK_codeAsBx(fs,o,A,sBx)luaK_codeABx(fs,o,A,(sBx)+(((1<<(9+9))-1)>>1)) #define luaK_setmultret(fs,e)luaK_setreturns(fs,e,(-1)) static int luaK_codeABx(FuncState*fs,OpCode o,int A,unsigned int Bx); static int luaK_codeABC(FuncState*fs,OpCode o,int A,int B,int C); static void luaK_setreturns(FuncState*fs,expdesc*e,int nresults); static void luaK_patchtohere(FuncState*fs,int list); static void luaK_concat(FuncState*fs,int*l1,int l2); static int currentpc(lua_State*L,CallInfo*ci){ if(!isLua(ci))return-1; if(ci==L->ci) ci->savedpc=L->savedpc; return pcRel(ci->savedpc,ci_func(ci)->l.p); } static int currentline(lua_State*L,CallInfo*ci){ int pc=currentpc(L,ci); if(pc<0) return-1; else return getline_(ci_func(ci)->l.p,pc); } static int lua_getstack(lua_State*L,int level,lua_Debug*ar){ int status; CallInfo*ci; for(ci=L->ci;level>0&&ci>L->base_ci;ci--){ level--; if(f_isLua(ci)) level-=ci->tailcalls; } if(level==0&&ci>L->base_ci){ status=1; ar->i_ci=cast_int(ci-L->base_ci); } else if(level<0){ status=1; ar->i_ci=0; } else status=0; return status; } static Proto*getluaproto(CallInfo*ci){ return(isLua(ci)?ci_func(ci)->l.p:NULL); } static void funcinfo(lua_Debug*ar,Closure*cl){ if(cl->c.isC){ ar->source="=[C]"; ar->linedefined=-1; ar->lastlinedefined=-1; ar->what="C"; } else{ ar->source=getstr(cl->l.p->source); ar->linedefined=cl->l.p->linedefined; ar->lastlinedefined=cl->l.p->lastlinedefined; ar->what=(ar->linedefined==0)?"main":"Lua"; } luaO_chunkid(ar->short_src,ar->source,60); } static void info_tailcall(lua_Debug*ar){ ar->name=ar->namewhat=""; ar->what="tail"; ar->lastlinedefined=ar->linedefined=ar->currentline=-1; ar->source="=(tail call)"; luaO_chunkid(ar->short_src,ar->source,60); ar->nups=0; } static void collectvalidlines(lua_State*L,Closure*f){ if(f==NULL||f->c.isC){ setnilvalue(L->top); } else{ Table*t=luaH_new(L,0,0); int*lineinfo=f->l.p->lineinfo; int i; for(i=0;il.p->sizelineinfo;i++) setbvalue(luaH_setnum(L,t,lineinfo[i]),1); sethvalue(L,L->top,t); } incr_top(L); } static int auxgetinfo(lua_State*L,const char*what,lua_Debug*ar, Closure*f,CallInfo*ci){ int status=1; if(f==NULL){ info_tailcall(ar); return status; } for(;*what;what++){ switch(*what){ case'S':{ funcinfo(ar,f); break; } case'l':{ ar->currentline=(ci)?currentline(L,ci):-1; break; } case'u':{ ar->nups=f->c.nupvalues; break; } case'n':{ ar->namewhat=(ci)?NULL:NULL; if(ar->namewhat==NULL){ ar->namewhat=""; ar->name=NULL; } break; } case'L': case'f': break; default:status=0; } } return status; } static int lua_getinfo(lua_State*L,const char*what,lua_Debug*ar){ int status; Closure*f=NULL; CallInfo*ci=NULL; if(*what=='>'){ StkId func=L->top-1; luai_apicheck(L,ttisfunction(func)); what++; f=clvalue(func); L->top--; } else if(ar->i_ci!=0){ ci=L->base_ci+ar->i_ci; f=clvalue(ci->func); } status=auxgetinfo(L,what,ar,f,ci); if(strchr(what,'f')){ if(f==NULL)setnilvalue(L->top); else setclvalue(L,L->top,f); incr_top(L); } if(strchr(what,'L')) collectvalidlines(L,f); return status; } static int isinstack(CallInfo*ci,const TValue*o){ StkId p; for(p=ci->base;ptop;p++) if(o==p)return 1; return 0; } static void luaG_typeerror(lua_State*L,const TValue*o,const char*op){ const char*name=NULL; const char*t=luaT_typenames[ttype(o)]; const char*kind=(isinstack(L->ci,o))? NULL: NULL; if(kind) luaG_runerror(L,"attempt to %s %s "LUA_QL("%s")" (a %s value)", op,kind,name,t); else luaG_runerror(L,"attempt to %s a %s value",op,t); } static void luaG_concaterror(lua_State*L,StkId p1,StkId p2){ if(ttisstring(p1)||ttisnumber(p1))p1=p2; luaG_typeerror(L,p1,"concatenate"); } static void luaG_aritherror(lua_State*L,const TValue*p1,const TValue*p2){ TValue temp; if(luaV_tonumber(p1,&temp)==NULL) p2=p1; luaG_typeerror(L,p2,"perform arithmetic on"); } static int luaG_ordererror(lua_State*L,const TValue*p1,const TValue*p2){ const char*t1=luaT_typenames[ttype(p1)]; const char*t2=luaT_typenames[ttype(p2)]; if(t1[2]==t2[2]) luaG_runerror(L,"attempt to compare two %s values",t1); else luaG_runerror(L,"attempt to compare %s with %s",t1,t2); return 0; } static void addinfo(lua_State*L,const char*msg){ CallInfo*ci=L->ci; if(isLua(ci)){ char buff[60]; int line=currentline(L,ci); luaO_chunkid(buff,getstr(getluaproto(ci)->source),60); luaO_pushfstring(L,"%s:%d: %s",buff,line,msg); } } static void luaG_errormsg(lua_State*L){ if(L->errfunc!=0){ StkId errfunc=restorestack(L,L->errfunc); if(!ttisfunction(errfunc))luaD_throw(L,5); setobj(L,L->top,L->top-1); setobj(L,L->top-1,errfunc); incr_top(L); luaD_call(L,L->top-2,1); } luaD_throw(L,2); } static void luaG_runerror(lua_State*L,const char*fmt,...){ va_list argp; va_start(argp,fmt); addinfo(L,luaO_pushvfstring(L,fmt,argp)); va_end(argp); luaG_errormsg(L); } static int luaZ_fill(ZIO*z){ size_t size; lua_State*L=z->L; const char*buff; buff=z->reader(L,z->data,&size); if(buff==NULL||size==0)return(-1); z->n=size-1; z->p=buff; return char2int(*(z->p++)); } static void luaZ_init(lua_State*L,ZIO*z,lua_Reader reader,void*data){ z->L=L; z->reader=reader; z->data=data; z->n=0; z->p=NULL; } static char*luaZ_openspace(lua_State*L,Mbuffer*buff,size_t n){ if(n>buff->buffsize){ if(n<32)n=32; luaZ_resizebuffer(L,buff,n); } return buff->buffer; } #define opmode(t,a,b,c,m)(((t)<<7)|((a)<<6)|((b)<<4)|((c)<<2)|(m)) static const lu_byte luaP_opmodes[(cast(int,OP_VARARG)+1)]={ opmode(0,1,OpArgR,OpArgN,iABC) ,opmode(0,1,OpArgK,OpArgN,iABx) ,opmode(0,1,OpArgU,OpArgU,iABC) ,opmode(0,1,OpArgR,OpArgN,iABC) ,opmode(0,1,OpArgU,OpArgN,iABC) ,opmode(0,1,OpArgK,OpArgN,iABx) ,opmode(0,1,OpArgR,OpArgK,iABC) ,opmode(0,0,OpArgK,OpArgN,iABx) ,opmode(0,0,OpArgU,OpArgN,iABC) ,opmode(0,0,OpArgK,OpArgK,iABC) ,opmode(0,1,OpArgU,OpArgU,iABC) ,opmode(0,1,OpArgR,OpArgK,iABC) ,opmode(0,1,OpArgK,OpArgK,iABC) ,opmode(0,1,OpArgK,OpArgK,iABC) ,opmode(0,1,OpArgK,OpArgK,iABC) ,opmode(0,1,OpArgK,OpArgK,iABC) ,opmode(0,1,OpArgK,OpArgK,iABC) ,opmode(0,1,OpArgK,OpArgK,iABC) ,opmode(0,1,OpArgR,OpArgN,iABC) ,opmode(0,1,OpArgR,OpArgN,iABC) ,opmode(0,1,OpArgR,OpArgN,iABC) ,opmode(0,1,OpArgR,OpArgR,iABC) ,opmode(0,0,OpArgR,OpArgN,iAsBx) ,opmode(1,0,OpArgK,OpArgK,iABC) ,opmode(1,0,OpArgK,OpArgK,iABC) ,opmode(1,0,OpArgK,OpArgK,iABC) ,opmode(1,1,OpArgR,OpArgU,iABC) ,opmode(1,1,OpArgR,OpArgU,iABC) ,opmode(0,1,OpArgU,OpArgU,iABC) ,opmode(0,1,OpArgU,OpArgU,iABC) ,opmode(0,0,OpArgU,OpArgN,iABC) ,opmode(0,1,OpArgR,OpArgN,iAsBx) ,opmode(0,1,OpArgR,OpArgN,iAsBx) ,opmode(1,0,OpArgN,OpArgU,iABC) ,opmode(0,0,OpArgU,OpArgU,iABC) ,opmode(0,0,OpArgN,OpArgN,iABC) ,opmode(0,1,OpArgU,OpArgN,iABx) ,opmode(0,1,OpArgU,OpArgN,iABC) }; #define next(ls)(ls->current=zgetc(ls->z)) #define currIsNewline(ls)(ls->current=='\n'||ls->current=='\r') static const char*const luaX_tokens[]={ "and","break","do","else","elseif", "end","false","for","function","if", "in","local","nil","not","or","repeat", "return","then","true","until","while", "..","...","==",">=","<=","~=", "","","","", NULL }; #define save_and_next(ls)(save(ls,ls->current),next(ls)) static void save(LexState*ls,int c){ Mbuffer*b=ls->buff; if(b->n+1>b->buffsize){ size_t newsize; if(b->buffsize>=((size_t)(~(size_t)0)-2)/2) luaX_lexerror(ls,"lexical element too long",0); newsize=b->buffsize*2; luaZ_resizebuffer(ls->L,b,newsize); } b->buffer[b->n++]=cast(char,c); } static void luaX_init(lua_State*L){ int i; for(i=0;i<(cast(int,TK_WHILE-257+1));i++){ TString*ts=luaS_new(L,luaX_tokens[i]); luaS_fix(ts); ts->tsv.reserved=cast_byte(i+1); } } static const char*luaX_token2str(LexState*ls,int token){ if(token<257){ return(iscntrl(token))?luaO_pushfstring(ls->L,"char(%d)",token): luaO_pushfstring(ls->L,"%c",token); } else return luaX_tokens[token-257]; } static const char*txtToken(LexState*ls,int token){ switch(token){ case TK_NAME: case TK_STRING: case TK_NUMBER: save(ls,'\0'); return luaZ_buffer(ls->buff); default: return luaX_token2str(ls,token); } } static void luaX_lexerror(LexState*ls,const char*msg,int token){ char buff[80]; luaO_chunkid(buff,getstr(ls->source),80); msg=luaO_pushfstring(ls->L,"%s:%d: %s",buff,ls->linenumber,msg); if(token) luaO_pushfstring(ls->L,"%s near "LUA_QL("%s"),msg,txtToken(ls,token)); luaD_throw(ls->L,3); } static void luaX_syntaxerror(LexState*ls,const char*msg){ luaX_lexerror(ls,msg,ls->t.token); } static TString*luaX_newstring(LexState*ls,const char*str,size_t l){ lua_State*L=ls->L; TString*ts=luaS_newlstr(L,str,l); TValue*o=luaH_setstr(L,ls->fs->h,ts); if(ttisnil(o)){ setbvalue(o,1); luaC_checkGC(L); } return ts; } static void inclinenumber(LexState*ls){ int old=ls->current; next(ls); if(currIsNewline(ls)&&ls->current!=old) next(ls); if(++ls->linenumber>=(INT_MAX-2)) luaX_syntaxerror(ls,"chunk has too many lines"); } static void luaX_setinput(lua_State*L,LexState*ls,ZIO*z,TString*source){ ls->decpoint='.'; ls->L=L; ls->lookahead.token=TK_EOS; ls->z=z; ls->fs=NULL; ls->linenumber=1; ls->lastline=1; ls->source=source; luaZ_resizebuffer(ls->L,ls->buff,32); next(ls); } static int check_next(LexState*ls,const char*set){ if(!strchr(set,ls->current)) return 0; save_and_next(ls); return 1; } static void buffreplace(LexState*ls,char from,char to){ size_t n=luaZ_bufflen(ls->buff); char*p=luaZ_buffer(ls->buff); while(n--) if(p[n]==from)p[n]=to; } static void read_numeral(LexState*ls,SemInfo*seminfo){ do{ save_and_next(ls); }while(isdigit(ls->current)||ls->current=='.'); if(check_next(ls,"Ee")) check_next(ls,"+-"); while(isalnum(ls->current)||ls->current=='_') save_and_next(ls); save(ls,'\0'); buffreplace(ls,'.',ls->decpoint); if(!luaO_str2d(luaZ_buffer(ls->buff),&seminfo->r)) luaX_lexerror(ls,"malformed number",TK_NUMBER); } static int skip_sep(LexState*ls){ int count=0; int s=ls->current; save_and_next(ls); while(ls->current=='='){ save_and_next(ls); count++; } return(ls->current==s)?count:(-count)-1; } static void read_long_string(LexState*ls,SemInfo*seminfo,int sep){ int cont=0; (void)(cont); save_and_next(ls); if(currIsNewline(ls)) inclinenumber(ls); for(;;){ switch(ls->current){ case(-1): luaX_lexerror(ls,(seminfo)?"unfinished long string": "unfinished long comment",TK_EOS); break; case']':{ if(skip_sep(ls)==sep){ save_and_next(ls); goto endloop; } break; } case'\n': case'\r':{ save(ls,'\n'); inclinenumber(ls); if(!seminfo)luaZ_resetbuffer(ls->buff); break; } default:{ if(seminfo)save_and_next(ls); else next(ls); } } }endloop: if(seminfo) seminfo->ts=luaX_newstring(ls,luaZ_buffer(ls->buff)+(2+sep), luaZ_bufflen(ls->buff)-2*(2+sep)); } static void read_string(LexState*ls,int del,SemInfo*seminfo){ save_and_next(ls); while(ls->current!=del){ switch(ls->current){ case(-1): luaX_lexerror(ls,"unfinished string",TK_EOS); continue; case'\n': case'\r': luaX_lexerror(ls,"unfinished string",TK_STRING); continue; case'\\':{ int c; next(ls); switch(ls->current){ case'a':c='\a';break; case'b':c='\b';break; case'f':c='\f';break; case'n':c='\n';break; case'r':c='\r';break; case't':c='\t';break; case'v':c='\v';break; case'\n': case'\r':save(ls,'\n');inclinenumber(ls);continue; case(-1):continue; default:{ if(!isdigit(ls->current)) save_and_next(ls); else{ int i=0; c=0; do{ c=10*c+(ls->current-'0'); next(ls); }while(++i<3&&isdigit(ls->current)); if(c>UCHAR_MAX) luaX_lexerror(ls,"escape sequence too large",TK_STRING); save(ls,c); } continue; } } save(ls,c); next(ls); continue; } default: save_and_next(ls); } } save_and_next(ls); seminfo->ts=luaX_newstring(ls,luaZ_buffer(ls->buff)+1, luaZ_bufflen(ls->buff)-2); } static int llex(LexState*ls,SemInfo*seminfo){ luaZ_resetbuffer(ls->buff); for(;;){ switch(ls->current){ case'\n': case'\r':{ inclinenumber(ls); continue; } case'-':{ next(ls); if(ls->current!='-')return'-'; next(ls); if(ls->current=='['){ int sep=skip_sep(ls); luaZ_resetbuffer(ls->buff); if(sep>=0){ read_long_string(ls,NULL,sep); luaZ_resetbuffer(ls->buff); continue; } } while(!currIsNewline(ls)&&ls->current!=(-1)) next(ls); continue; } case'[':{ int sep=skip_sep(ls); if(sep>=0){ read_long_string(ls,seminfo,sep); return TK_STRING; } else if(sep==-1)return'['; else luaX_lexerror(ls,"invalid long string delimiter",TK_STRING); } case'=':{ next(ls); if(ls->current!='=')return'='; else{next(ls);return TK_EQ;} } case'<':{ next(ls); if(ls->current!='=')return'<'; else{next(ls);return TK_LE;} } case'>':{ next(ls); if(ls->current!='=')return'>'; else{next(ls);return TK_GE;} } case'~':{ next(ls); if(ls->current!='=')return'~'; else{next(ls);return TK_NE;} } case'"': case'\'':{ read_string(ls,ls->current,seminfo); return TK_STRING; } case'.':{ save_and_next(ls); if(check_next(ls,".")){ if(check_next(ls,".")) return TK_DOTS; else return TK_CONCAT; } else if(!isdigit(ls->current))return'.'; else{ read_numeral(ls,seminfo); return TK_NUMBER; } } case(-1):{ return TK_EOS; } default:{ if(isspace(ls->current)){ next(ls); continue; } else if(isdigit(ls->current)){ read_numeral(ls,seminfo); return TK_NUMBER; } else if(isalpha(ls->current)||ls->current=='_'){ TString*ts; do{ save_and_next(ls); }while(isalnum(ls->current)||ls->current=='_'); ts=luaX_newstring(ls,luaZ_buffer(ls->buff), luaZ_bufflen(ls->buff)); if(ts->tsv.reserved>0) return ts->tsv.reserved-1+257; else{ seminfo->ts=ts; return TK_NAME; } } else{ int c=ls->current; next(ls); return c; } } } } } static void luaX_next(LexState*ls){ ls->lastline=ls->linenumber; if(ls->lookahead.token!=TK_EOS){ ls->t=ls->lookahead; ls->lookahead.token=TK_EOS; } else ls->t.token=llex(ls,&ls->t.seminfo); } static void luaX_lookahead(LexState*ls){ ls->lookahead.token=llex(ls,&ls->lookahead.seminfo); } #define hasjumps(e)((e)->t!=(e)->f) static int isnumeral(expdesc*e){ return(e->k==VKNUM&&e->t==(-1)&&e->f==(-1)); } static void luaK_nil(FuncState*fs,int from,int n){ Instruction*previous; if(fs->pc>fs->lasttarget){ if(fs->pc==0){ if(from>=fs->nactvar) return; } else{ previous=&fs->f->code[fs->pc-1]; if(GET_OPCODE(*previous)==OP_LOADNIL){ int pfrom=GETARG_A(*previous); int pto=GETARG_B(*previous); if(pfrom<=from&&from<=pto+1){ if(from+n-1>pto) SETARG_B(*previous,from+n-1); return; } } } } luaK_codeABC(fs,OP_LOADNIL,from,from+n-1,0); } static int luaK_jump(FuncState*fs){ int jpc=fs->jpc; int j; fs->jpc=(-1); j=luaK_codeAsBx(fs,OP_JMP,0,(-1)); luaK_concat(fs,&j,jpc); return j; } static void luaK_ret(FuncState*fs,int first,int nret){ luaK_codeABC(fs,OP_RETURN,first,nret+1,0); } static int condjump(FuncState*fs,OpCode op,int A,int B,int C){ luaK_codeABC(fs,op,A,B,C); return luaK_jump(fs); } static void fixjump(FuncState*fs,int pc,int dest){ Instruction*jmp=&fs->f->code[pc]; int offset=dest-(pc+1); if(abs(offset)>(((1<<(9+9))-1)>>1)) luaX_syntaxerror(fs->ls,"control structure too long"); SETARG_sBx(*jmp,offset); } static int luaK_getlabel(FuncState*fs){ fs->lasttarget=fs->pc; return fs->pc; } static int getjump(FuncState*fs,int pc){ int offset=GETARG_sBx(fs->f->code[pc]); if(offset==(-1)) return(-1); else return(pc+1)+offset; } static Instruction*getjumpcontrol(FuncState*fs,int pc){ Instruction*pi=&fs->f->code[pc]; if(pc>=1&&testTMode(GET_OPCODE(*(pi-1)))) return pi-1; else return pi; } static int need_value(FuncState*fs,int list){ for(;list!=(-1);list=getjump(fs,list)){ Instruction i=*getjumpcontrol(fs,list); if(GET_OPCODE(i)!=OP_TESTSET)return 1; } return 0; } static int patchtestreg(FuncState*fs,int node,int reg){ Instruction*i=getjumpcontrol(fs,node); if(GET_OPCODE(*i)!=OP_TESTSET) return 0; if(reg!=((1<<8)-1)&®!=GETARG_B(*i)) SETARG_A(*i,reg); else *i=CREATE_ABC(OP_TEST,GETARG_B(*i),0,GETARG_C(*i)); return 1; } static void removevalues(FuncState*fs,int list){ for(;list!=(-1);list=getjump(fs,list)) patchtestreg(fs,list,((1<<8)-1)); } static void patchlistaux(FuncState*fs,int list,int vtarget,int reg, int dtarget){ while(list!=(-1)){ int next=getjump(fs,list); if(patchtestreg(fs,list,reg)) fixjump(fs,list,vtarget); else fixjump(fs,list,dtarget); list=next; } } static void dischargejpc(FuncState*fs){ patchlistaux(fs,fs->jpc,fs->pc,((1<<8)-1),fs->pc); fs->jpc=(-1); } static void luaK_patchlist(FuncState*fs,int list,int target){ if(target==fs->pc) luaK_patchtohere(fs,list); else{ patchlistaux(fs,list,target,((1<<8)-1),target); } } static void luaK_patchtohere(FuncState*fs,int list){ luaK_getlabel(fs); luaK_concat(fs,&fs->jpc,list); } static void luaK_concat(FuncState*fs,int*l1,int l2){ if(l2==(-1))return; else if(*l1==(-1)) *l1=l2; else{ int list=*l1; int next; while((next=getjump(fs,list))!=(-1)) list=next; fixjump(fs,list,l2); } } static void luaK_checkstack(FuncState*fs,int n){ int newstack=fs->freereg+n; if(newstack>fs->f->maxstacksize){ if(newstack>=250) luaX_syntaxerror(fs->ls,"function or expression too complex"); fs->f->maxstacksize=cast_byte(newstack); } } static void luaK_reserveregs(FuncState*fs,int n){ luaK_checkstack(fs,n); fs->freereg+=n; } static void freereg(FuncState*fs,int reg){ if(!ISK(reg)&®>=fs->nactvar){ fs->freereg--; } } static void freeexp(FuncState*fs,expdesc*e){ if(e->k==VNONRELOC) freereg(fs,e->u.s.info); } static int addk(FuncState*fs,TValue*k,TValue*v){ lua_State*L=fs->L; TValue*idx=luaH_set(L,fs->h,k); Proto*f=fs->f; int oldsize=f->sizek; if(ttisnumber(idx)){ return cast_int(nvalue(idx)); } else{ setnvalue(idx,cast_num(fs->nk)); luaM_growvector(L,f->k,fs->nk,f->sizek,TValue, ((1<<(9+9))-1),"constant table overflow"); while(oldsizesizek)setnilvalue(&f->k[oldsize++]); setobj(L,&f->k[fs->nk],v); luaC_barrier(L,f,v); return fs->nk++; } } static int luaK_stringK(FuncState*fs,TString*s){ TValue o; setsvalue(fs->L,&o,s); return addk(fs,&o,&o); } static int luaK_numberK(FuncState*fs,lua_Number r){ TValue o; setnvalue(&o,r); return addk(fs,&o,&o); } static int boolK(FuncState*fs,int b){ TValue o; setbvalue(&o,b); return addk(fs,&o,&o); } static int nilK(FuncState*fs){ TValue k,v; setnilvalue(&v); sethvalue(fs->L,&k,fs->h); return addk(fs,&k,&v); } static void luaK_setreturns(FuncState*fs,expdesc*e,int nresults){ if(e->k==VCALL){ SETARG_C(getcode(fs,e),nresults+1); } else if(e->k==VVARARG){ SETARG_B(getcode(fs,e),nresults+1); SETARG_A(getcode(fs,e),fs->freereg); luaK_reserveregs(fs,1); } } static void luaK_setoneret(FuncState*fs,expdesc*e){ if(e->k==VCALL){ e->k=VNONRELOC; e->u.s.info=GETARG_A(getcode(fs,e)); } else if(e->k==VVARARG){ SETARG_B(getcode(fs,e),2); e->k=VRELOCABLE; } } static void luaK_dischargevars(FuncState*fs,expdesc*e){ switch(e->k){ case VLOCAL:{ e->k=VNONRELOC; break; } case VUPVAL:{ e->u.s.info=luaK_codeABC(fs,OP_GETUPVAL,0,e->u.s.info,0); e->k=VRELOCABLE; break; } case VGLOBAL:{ e->u.s.info=luaK_codeABx(fs,OP_GETGLOBAL,0,e->u.s.info); e->k=VRELOCABLE; break; } case VINDEXED:{ freereg(fs,e->u.s.aux); freereg(fs,e->u.s.info); e->u.s.info=luaK_codeABC(fs,OP_GETTABLE,0,e->u.s.info,e->u.s.aux); e->k=VRELOCABLE; break; } case VVARARG: case VCALL:{ luaK_setoneret(fs,e); break; } default:break; } } static int code_label(FuncState*fs,int A,int b,int jump){ luaK_getlabel(fs); return luaK_codeABC(fs,OP_LOADBOOL,A,b,jump); } static void discharge2reg(FuncState*fs,expdesc*e,int reg){ luaK_dischargevars(fs,e); switch(e->k){ case VNIL:{ luaK_nil(fs,reg,1); break; } case VFALSE:case VTRUE:{ luaK_codeABC(fs,OP_LOADBOOL,reg,e->k==VTRUE,0); break; } case VK:{ luaK_codeABx(fs,OP_LOADK,reg,e->u.s.info); break; } case VKNUM:{ luaK_codeABx(fs,OP_LOADK,reg,luaK_numberK(fs,e->u.nval)); break; } case VRELOCABLE:{ Instruction*pc=&getcode(fs,e); SETARG_A(*pc,reg); break; } case VNONRELOC:{ if(reg!=e->u.s.info) luaK_codeABC(fs,OP_MOVE,reg,e->u.s.info,0); break; } default:{ return; } } e->u.s.info=reg; e->k=VNONRELOC; } static void discharge2anyreg(FuncState*fs,expdesc*e){ if(e->k!=VNONRELOC){ luaK_reserveregs(fs,1); discharge2reg(fs,e,fs->freereg-1); } } static void exp2reg(FuncState*fs,expdesc*e,int reg){ discharge2reg(fs,e,reg); if(e->k==VJMP) luaK_concat(fs,&e->t,e->u.s.info); if(hasjumps(e)){ int final; int p_f=(-1); int p_t=(-1); if(need_value(fs,e->t)||need_value(fs,e->f)){ int fj=(e->k==VJMP)?(-1):luaK_jump(fs); p_f=code_label(fs,reg,0,1); p_t=code_label(fs,reg,1,0); luaK_patchtohere(fs,fj); } final=luaK_getlabel(fs); patchlistaux(fs,e->f,final,reg,p_f); patchlistaux(fs,e->t,final,reg,p_t); } e->f=e->t=(-1); e->u.s.info=reg; e->k=VNONRELOC; } static void luaK_exp2nextreg(FuncState*fs,expdesc*e){ luaK_dischargevars(fs,e); freeexp(fs,e); luaK_reserveregs(fs,1); exp2reg(fs,e,fs->freereg-1); } static int luaK_exp2anyreg(FuncState*fs,expdesc*e){ luaK_dischargevars(fs,e); if(e->k==VNONRELOC){ if(!hasjumps(e))return e->u.s.info; if(e->u.s.info>=fs->nactvar){ exp2reg(fs,e,e->u.s.info); return e->u.s.info; } } luaK_exp2nextreg(fs,e); return e->u.s.info; } static void luaK_exp2val(FuncState*fs,expdesc*e){ if(hasjumps(e)) luaK_exp2anyreg(fs,e); else luaK_dischargevars(fs,e); } static int luaK_exp2RK(FuncState*fs,expdesc*e){ luaK_exp2val(fs,e); switch(e->k){ case VKNUM: case VTRUE: case VFALSE: case VNIL:{ if(fs->nk<=((1<<(9-1))-1)){ e->u.s.info=(e->k==VNIL)?nilK(fs): (e->k==VKNUM)?luaK_numberK(fs,e->u.nval): boolK(fs,(e->k==VTRUE)); e->k=VK; return RKASK(e->u.s.info); } else break; } case VK:{ if(e->u.s.info<=((1<<(9-1))-1)) return RKASK(e->u.s.info); else break; } default:break; } return luaK_exp2anyreg(fs,e); } static void luaK_storevar(FuncState*fs,expdesc*var,expdesc*ex){ switch(var->k){ case VLOCAL:{ freeexp(fs,ex); exp2reg(fs,ex,var->u.s.info); return; } case VUPVAL:{ int e=luaK_exp2anyreg(fs,ex); luaK_codeABC(fs,OP_SETUPVAL,e,var->u.s.info,0); break; } case VGLOBAL:{ int e=luaK_exp2anyreg(fs,ex); luaK_codeABx(fs,OP_SETGLOBAL,e,var->u.s.info); break; } case VINDEXED:{ int e=luaK_exp2RK(fs,ex); luaK_codeABC(fs,OP_SETTABLE,var->u.s.info,var->u.s.aux,e); break; } default:{ break; } } freeexp(fs,ex); } static void luaK_self(FuncState*fs,expdesc*e,expdesc*key){ int func; luaK_exp2anyreg(fs,e); freeexp(fs,e); func=fs->freereg; luaK_reserveregs(fs,2); luaK_codeABC(fs,OP_SELF,func,e->u.s.info,luaK_exp2RK(fs,key)); freeexp(fs,key); e->u.s.info=func; e->k=VNONRELOC; } static void invertjump(FuncState*fs,expdesc*e){ Instruction*pc=getjumpcontrol(fs,e->u.s.info); SETARG_A(*pc,!(GETARG_A(*pc))); } static int jumponcond(FuncState*fs,expdesc*e,int cond){ if(e->k==VRELOCABLE){ Instruction ie=getcode(fs,e); if(GET_OPCODE(ie)==OP_NOT){ fs->pc--; return condjump(fs,OP_TEST,GETARG_B(ie),0,!cond); } } discharge2anyreg(fs,e); freeexp(fs,e); return condjump(fs,OP_TESTSET,((1<<8)-1),e->u.s.info,cond); } static void luaK_goiftrue(FuncState*fs,expdesc*e){ int pc; luaK_dischargevars(fs,e); switch(e->k){ case VK:case VKNUM:case VTRUE:{ pc=(-1); break; } case VJMP:{ invertjump(fs,e); pc=e->u.s.info; break; } default:{ pc=jumponcond(fs,e,0); break; } } luaK_concat(fs,&e->f,pc); luaK_patchtohere(fs,e->t); e->t=(-1); } static void luaK_goiffalse(FuncState*fs,expdesc*e){ int pc; luaK_dischargevars(fs,e); switch(e->k){ case VNIL:case VFALSE:{ pc=(-1); break; } case VJMP:{ pc=e->u.s.info; break; } default:{ pc=jumponcond(fs,e,1); break; } } luaK_concat(fs,&e->t,pc); luaK_patchtohere(fs,e->f); e->f=(-1); } static void codenot(FuncState*fs,expdesc*e){ luaK_dischargevars(fs,e); switch(e->k){ case VNIL:case VFALSE:{ e->k=VTRUE; break; } case VK:case VKNUM:case VTRUE:{ e->k=VFALSE; break; } case VJMP:{ invertjump(fs,e); break; } case VRELOCABLE: case VNONRELOC:{ discharge2anyreg(fs,e); freeexp(fs,e); e->u.s.info=luaK_codeABC(fs,OP_NOT,0,e->u.s.info,0); e->k=VRELOCABLE; break; } default:{ break; } } {int temp=e->f;e->f=e->t;e->t=temp;} removevalues(fs,e->f); removevalues(fs,e->t); } static void luaK_indexed(FuncState*fs,expdesc*t,expdesc*k){ t->u.s.aux=luaK_exp2RK(fs,k); t->k=VINDEXED; } static int constfolding(OpCode op,expdesc*e1,expdesc*e2){ lua_Number v1,v2,r; if(!isnumeral(e1)||!isnumeral(e2))return 0; v1=e1->u.nval; v2=e2->u.nval; switch(op){ case OP_ADD:r=luai_numadd(v1,v2);break; case OP_SUB:r=luai_numsub(v1,v2);break; case OP_MUL:r=luai_nummul(v1,v2);break; case OP_DIV: if(v2==0)return 0; r=luai_numdiv(v1,v2);break; case OP_MOD: if(v2==0)return 0; r=luai_nummod(v1,v2);break; case OP_POW:r=luai_numpow(v1,v2);break; case OP_UNM:r=luai_numunm(v1);break; case OP_LEN:return 0; default:r=0;break; } if(luai_numisnan(r))return 0; e1->u.nval=r; return 1; } static void codearith(FuncState*fs,OpCode op,expdesc*e1,expdesc*e2){ if(constfolding(op,e1,e2)) return; else{ int o2=(op!=OP_UNM&&op!=OP_LEN)?luaK_exp2RK(fs,e2):0; int o1=luaK_exp2RK(fs,e1); if(o1>o2){ freeexp(fs,e1); freeexp(fs,e2); } else{ freeexp(fs,e2); freeexp(fs,e1); } e1->u.s.info=luaK_codeABC(fs,op,0,o1,o2); e1->k=VRELOCABLE; } } static void codecomp(FuncState*fs,OpCode op,int cond,expdesc*e1, expdesc*e2){ int o1=luaK_exp2RK(fs,e1); int o2=luaK_exp2RK(fs,e2); freeexp(fs,e2); freeexp(fs,e1); if(cond==0&&op!=OP_EQ){ int temp; temp=o1;o1=o2;o2=temp; cond=1; } e1->u.s.info=condjump(fs,op,cond,o1,o2); e1->k=VJMP; } static void luaK_prefix(FuncState*fs,UnOpr op,expdesc*e){ expdesc e2; e2.t=e2.f=(-1);e2.k=VKNUM;e2.u.nval=0; switch(op){ case OPR_MINUS:{ if(!isnumeral(e)) luaK_exp2anyreg(fs,e); codearith(fs,OP_UNM,e,&e2); break; } case OPR_NOT:codenot(fs,e);break; case OPR_LEN:{ luaK_exp2anyreg(fs,e); codearith(fs,OP_LEN,e,&e2); break; } default:; } } static void luaK_infix(FuncState*fs,BinOpr op,expdesc*v){ switch(op){ case OPR_AND:{ luaK_goiftrue(fs,v); break; } case OPR_OR:{ luaK_goiffalse(fs,v); break; } case OPR_CONCAT:{ luaK_exp2nextreg(fs,v); break; } case OPR_ADD:case OPR_SUB:case OPR_MUL:case OPR_DIV: case OPR_MOD:case OPR_POW:{ if(!isnumeral(v))luaK_exp2RK(fs,v); break; } default:{ luaK_exp2RK(fs,v); break; } } } static void luaK_posfix(FuncState*fs,BinOpr op,expdesc*e1,expdesc*e2){ switch(op){ case OPR_AND:{ luaK_dischargevars(fs,e2); luaK_concat(fs,&e2->f,e1->f); *e1=*e2; break; } case OPR_OR:{ luaK_dischargevars(fs,e2); luaK_concat(fs,&e2->t,e1->t); *e1=*e2; break; } case OPR_CONCAT:{ luaK_exp2val(fs,e2); if(e2->k==VRELOCABLE&&GET_OPCODE(getcode(fs,e2))==OP_CONCAT){ freeexp(fs,e1); SETARG_B(getcode(fs,e2),e1->u.s.info); e1->k=VRELOCABLE;e1->u.s.info=e2->u.s.info; } else{ luaK_exp2nextreg(fs,e2); codearith(fs,OP_CONCAT,e1,e2); } break; } case OPR_ADD:codearith(fs,OP_ADD,e1,e2);break; case OPR_SUB:codearith(fs,OP_SUB,e1,e2);break; case OPR_MUL:codearith(fs,OP_MUL,e1,e2);break; case OPR_DIV:codearith(fs,OP_DIV,e1,e2);break; case OPR_MOD:codearith(fs,OP_MOD,e1,e2);break; case OPR_POW:codearith(fs,OP_POW,e1,e2);break; case OPR_EQ:codecomp(fs,OP_EQ,1,e1,e2);break; case OPR_NE:codecomp(fs,OP_EQ,0,e1,e2);break; case OPR_LT:codecomp(fs,OP_LT,1,e1,e2);break; case OPR_LE:codecomp(fs,OP_LE,1,e1,e2);break; case OPR_GT:codecomp(fs,OP_LT,0,e1,e2);break; case OPR_GE:codecomp(fs,OP_LE,0,e1,e2);break; default:; } } static void luaK_fixline(FuncState*fs,int line){ fs->f->lineinfo[fs->pc-1]=line; } static int luaK_code(FuncState*fs,Instruction i,int line){ Proto*f=fs->f; dischargejpc(fs); luaM_growvector(fs->L,f->code,fs->pc,f->sizecode,Instruction, (INT_MAX-2),"code size overflow"); f->code[fs->pc]=i; luaM_growvector(fs->L,f->lineinfo,fs->pc,f->sizelineinfo,int, (INT_MAX-2),"code size overflow"); f->lineinfo[fs->pc]=line; return fs->pc++; } static int luaK_codeABC(FuncState*fs,OpCode o,int a,int b,int c){ return luaK_code(fs,CREATE_ABC(o,a,b,c),fs->ls->lastline); } static int luaK_codeABx(FuncState*fs,OpCode o,int a,unsigned int bc){ return luaK_code(fs,CREATE_ABx(o,a,bc),fs->ls->lastline); } static void luaK_setlist(FuncState*fs,int base,int nelems,int tostore){ int c=(nelems-1)/50+1; int b=(tostore==(-1))?0:tostore; if(c<=((1<<9)-1)) luaK_codeABC(fs,OP_SETLIST,base,b,c); else{ luaK_codeABC(fs,OP_SETLIST,base,b,0); luaK_code(fs,cast(Instruction,c),fs->ls->lastline); } fs->freereg=base+1; } #define hasmultret(k)((k)==VCALL||(k)==VVARARG) #define getlocvar(fs,i)((fs)->f->locvars[(fs)->actvar[i]]) #define luaY_checklimit(fs,v,l,m)if((v)>(l))errorlimit(fs,l,m) typedef struct BlockCnt{ struct BlockCnt*previous; int breaklist; lu_byte nactvar; lu_byte upval; lu_byte isbreakable; }BlockCnt; static void chunk(LexState*ls); static void expr(LexState*ls,expdesc*v); static void anchor_token(LexState*ls){ if(ls->t.token==TK_NAME||ls->t.token==TK_STRING){ TString*ts=ls->t.seminfo.ts; luaX_newstring(ls,getstr(ts),ts->tsv.len); } } static void error_expected(LexState*ls,int token){ luaX_syntaxerror(ls, luaO_pushfstring(ls->L,LUA_QL("%s")" expected",luaX_token2str(ls,token))); } static void errorlimit(FuncState*fs,int limit,const char*what){ const char*msg=(fs->f->linedefined==0)? luaO_pushfstring(fs->L,"main function has more than %d %s",limit,what): luaO_pushfstring(fs->L,"function at line %d has more than %d %s", fs->f->linedefined,limit,what); luaX_lexerror(fs->ls,msg,0); } static int testnext(LexState*ls,int c){ if(ls->t.token==c){ luaX_next(ls); return 1; } else return 0; } static void check(LexState*ls,int c){ if(ls->t.token!=c) error_expected(ls,c); } static void checknext(LexState*ls,int c){ check(ls,c); luaX_next(ls); } #define check_condition(ls,c,msg){if(!(c))luaX_syntaxerror(ls,msg);} static void check_match(LexState*ls,int what,int who,int where){ if(!testnext(ls,what)){ if(where==ls->linenumber) error_expected(ls,what); else{ luaX_syntaxerror(ls,luaO_pushfstring(ls->L, LUA_QL("%s")" expected (to close "LUA_QL("%s")" at line %d)", luaX_token2str(ls,what),luaX_token2str(ls,who),where)); } } } static TString*str_checkname(LexState*ls){ TString*ts; check(ls,TK_NAME); ts=ls->t.seminfo.ts; luaX_next(ls); return ts; } static void init_exp(expdesc*e,expkind k,int i){ e->f=e->t=(-1); e->k=k; e->u.s.info=i; } static void codestring(LexState*ls,expdesc*e,TString*s){ init_exp(e,VK,luaK_stringK(ls->fs,s)); } static void checkname(LexState*ls,expdesc*e){ codestring(ls,e,str_checkname(ls)); } static int registerlocalvar(LexState*ls,TString*varname){ FuncState*fs=ls->fs; Proto*f=fs->f; int oldsize=f->sizelocvars; luaM_growvector(ls->L,f->locvars,fs->nlocvars,f->sizelocvars, LocVar,SHRT_MAX,"too many local variables"); while(oldsizesizelocvars)f->locvars[oldsize++].varname=NULL; f->locvars[fs->nlocvars].varname=varname; luaC_objbarrier(ls->L,f,varname); return fs->nlocvars++; } #define new_localvarliteral(ls,v,n)new_localvar(ls,luaX_newstring(ls,""v,(sizeof(v)/sizeof(char))-1),n) static void new_localvar(LexState*ls,TString*name,int n){ FuncState*fs=ls->fs; luaY_checklimit(fs,fs->nactvar+n+1,200,"local variables"); fs->actvar[fs->nactvar+n]=cast(unsigned short,registerlocalvar(ls,name)); } static void adjustlocalvars(LexState*ls,int nvars){ FuncState*fs=ls->fs; fs->nactvar=cast_byte(fs->nactvar+nvars); for(;nvars;nvars--){ getlocvar(fs,fs->nactvar-nvars).startpc=fs->pc; } } static void removevars(LexState*ls,int tolevel){ FuncState*fs=ls->fs; while(fs->nactvar>tolevel) getlocvar(fs,--fs->nactvar).endpc=fs->pc; } static int indexupvalue(FuncState*fs,TString*name,expdesc*v){ int i; Proto*f=fs->f; int oldsize=f->sizeupvalues; for(i=0;inups;i++){ if(fs->upvalues[i].k==v->k&&fs->upvalues[i].info==v->u.s.info){ return i; } } luaY_checklimit(fs,f->nups+1,60,"upvalues"); luaM_growvector(fs->L,f->upvalues,f->nups,f->sizeupvalues, TString*,(INT_MAX-2),""); while(oldsizesizeupvalues)f->upvalues[oldsize++]=NULL; f->upvalues[f->nups]=name; luaC_objbarrier(fs->L,f,name); fs->upvalues[f->nups].k=cast_byte(v->k); fs->upvalues[f->nups].info=cast_byte(v->u.s.info); return f->nups++; } static int searchvar(FuncState*fs,TString*n){ int i; for(i=fs->nactvar-1;i>=0;i--){ if(n==getlocvar(fs,i).varname) return i; } return-1; } static void markupval(FuncState*fs,int level){ BlockCnt*bl=fs->bl; while(bl&&bl->nactvar>level)bl=bl->previous; if(bl)bl->upval=1; } static int singlevaraux(FuncState*fs,TString*n,expdesc*var,int base){ if(fs==NULL){ init_exp(var,VGLOBAL,((1<<8)-1)); return VGLOBAL; } else{ int v=searchvar(fs,n); if(v>=0){ init_exp(var,VLOCAL,v); if(!base) markupval(fs,v); return VLOCAL; } else{ if(singlevaraux(fs->prev,n,var,0)==VGLOBAL) return VGLOBAL; var->u.s.info=indexupvalue(fs,n,var); var->k=VUPVAL; return VUPVAL; } } } static void singlevar(LexState*ls,expdesc*var){ TString*varname=str_checkname(ls); FuncState*fs=ls->fs; if(singlevaraux(fs,varname,var,1)==VGLOBAL) var->u.s.info=luaK_stringK(fs,varname); } static void adjust_assign(LexState*ls,int nvars,int nexps,expdesc*e){ FuncState*fs=ls->fs; int extra=nvars-nexps; if(hasmultret(e->k)){ extra++; if(extra<0)extra=0; luaK_setreturns(fs,e,extra); if(extra>1)luaK_reserveregs(fs,extra-1); } else{ if(e->k!=VVOID)luaK_exp2nextreg(fs,e); if(extra>0){ int reg=fs->freereg; luaK_reserveregs(fs,extra); luaK_nil(fs,reg,extra); } } } static void enterlevel(LexState*ls){ if(++ls->L->nCcalls>200) luaX_lexerror(ls,"chunk has too many syntax levels",0); } #define leavelevel(ls)((ls)->L->nCcalls--) static void enterblock(FuncState*fs,BlockCnt*bl,lu_byte isbreakable){ bl->breaklist=(-1); bl->isbreakable=isbreakable; bl->nactvar=fs->nactvar; bl->upval=0; bl->previous=fs->bl; fs->bl=bl; } static void leaveblock(FuncState*fs){ BlockCnt*bl=fs->bl; fs->bl=bl->previous; removevars(fs->ls,bl->nactvar); if(bl->upval) luaK_codeABC(fs,OP_CLOSE,bl->nactvar,0,0); fs->freereg=fs->nactvar; luaK_patchtohere(fs,bl->breaklist); } static void pushclosure(LexState*ls,FuncState*func,expdesc*v){ FuncState*fs=ls->fs; Proto*f=fs->f; int oldsize=f->sizep; int i; luaM_growvector(ls->L,f->p,fs->np,f->sizep,Proto*, ((1<<(9+9))-1),"constant table overflow"); while(oldsizesizep)f->p[oldsize++]=NULL; f->p[fs->np++]=func->f; luaC_objbarrier(ls->L,f,func->f); init_exp(v,VRELOCABLE,luaK_codeABx(fs,OP_CLOSURE,0,fs->np-1)); for(i=0;if->nups;i++){ OpCode o=(func->upvalues[i].k==VLOCAL)?OP_MOVE:OP_GETUPVAL; luaK_codeABC(fs,o,0,func->upvalues[i].info,0); } } static void open_func(LexState*ls,FuncState*fs){ lua_State*L=ls->L; Proto*f=luaF_newproto(L); fs->f=f; fs->prev=ls->fs; fs->ls=ls; fs->L=L; ls->fs=fs; fs->pc=0; fs->lasttarget=-1; fs->jpc=(-1); fs->freereg=0; fs->nk=0; fs->np=0; fs->nlocvars=0; fs->nactvar=0; fs->bl=NULL; f->source=ls->source; f->maxstacksize=2; fs->h=luaH_new(L,0,0); sethvalue(L,L->top,fs->h); incr_top(L); setptvalue(L,L->top,f); incr_top(L); } static void close_func(LexState*ls){ lua_State*L=ls->L; FuncState*fs=ls->fs; Proto*f=fs->f; removevars(ls,0); luaK_ret(fs,0,0); luaM_reallocvector(L,f->code,f->sizecode,fs->pc,Instruction); f->sizecode=fs->pc; luaM_reallocvector(L,f->lineinfo,f->sizelineinfo,fs->pc,int); f->sizelineinfo=fs->pc; luaM_reallocvector(L,f->k,f->sizek,fs->nk,TValue); f->sizek=fs->nk; luaM_reallocvector(L,f->p,f->sizep,fs->np,Proto*); f->sizep=fs->np; luaM_reallocvector(L,f->locvars,f->sizelocvars,fs->nlocvars,LocVar); f->sizelocvars=fs->nlocvars; luaM_reallocvector(L,f->upvalues,f->sizeupvalues,f->nups,TString*); f->sizeupvalues=f->nups; ls->fs=fs->prev; if(fs)anchor_token(ls); L->top-=2; } static Proto*luaY_parser(lua_State*L,ZIO*z,Mbuffer*buff,const char*name){ struct LexState lexstate; struct FuncState funcstate; lexstate.buff=buff; luaX_setinput(L,&lexstate,z,luaS_new(L,name)); open_func(&lexstate,&funcstate); funcstate.f->is_vararg=2; luaX_next(&lexstate); chunk(&lexstate); check(&lexstate,TK_EOS); close_func(&lexstate); return funcstate.f; } static void field(LexState*ls,expdesc*v){ FuncState*fs=ls->fs; expdesc key; luaK_exp2anyreg(fs,v); luaX_next(ls); checkname(ls,&key); luaK_indexed(fs,v,&key); } static void yindex(LexState*ls,expdesc*v){ luaX_next(ls); expr(ls,v); luaK_exp2val(ls->fs,v); checknext(ls,']'); } struct ConsControl{ expdesc v; expdesc*t; int nh; int na; int tostore; }; static void recfield(LexState*ls,struct ConsControl*cc){ FuncState*fs=ls->fs; int reg=ls->fs->freereg; expdesc key,val; int rkkey; if(ls->t.token==TK_NAME){ luaY_checklimit(fs,cc->nh,(INT_MAX-2),"items in a constructor"); checkname(ls,&key); } else yindex(ls,&key); cc->nh++; checknext(ls,'='); rkkey=luaK_exp2RK(fs,&key); expr(ls,&val); luaK_codeABC(fs,OP_SETTABLE,cc->t->u.s.info,rkkey,luaK_exp2RK(fs,&val)); fs->freereg=reg; } static void closelistfield(FuncState*fs,struct ConsControl*cc){ if(cc->v.k==VVOID)return; luaK_exp2nextreg(fs,&cc->v); cc->v.k=VVOID; if(cc->tostore==50){ luaK_setlist(fs,cc->t->u.s.info,cc->na,cc->tostore); cc->tostore=0; } } static void lastlistfield(FuncState*fs,struct ConsControl*cc){ if(cc->tostore==0)return; if(hasmultret(cc->v.k)){ luaK_setmultret(fs,&cc->v); luaK_setlist(fs,cc->t->u.s.info,cc->na,(-1)); cc->na--; } else{ if(cc->v.k!=VVOID) luaK_exp2nextreg(fs,&cc->v); luaK_setlist(fs,cc->t->u.s.info,cc->na,cc->tostore); } } static void listfield(LexState*ls,struct ConsControl*cc){ expr(ls,&cc->v); luaY_checklimit(ls->fs,cc->na,(INT_MAX-2),"items in a constructor"); cc->na++; cc->tostore++; } static void constructor(LexState*ls,expdesc*t){ FuncState*fs=ls->fs; int line=ls->linenumber; int pc=luaK_codeABC(fs,OP_NEWTABLE,0,0,0); struct ConsControl cc; cc.na=cc.nh=cc.tostore=0; cc.t=t; init_exp(t,VRELOCABLE,pc); init_exp(&cc.v,VVOID,0); luaK_exp2nextreg(ls->fs,t); checknext(ls,'{'); do{ if(ls->t.token=='}')break; closelistfield(fs,&cc); switch(ls->t.token){ case TK_NAME:{ luaX_lookahead(ls); if(ls->lookahead.token!='=') listfield(ls,&cc); else recfield(ls,&cc); break; } case'[':{ recfield(ls,&cc); break; } default:{ listfield(ls,&cc); break; } } }while(testnext(ls,',')||testnext(ls,';')); check_match(ls,'}','{',line); lastlistfield(fs,&cc); SETARG_B(fs->f->code[pc],luaO_int2fb(cc.na)); SETARG_C(fs->f->code[pc],luaO_int2fb(cc.nh)); } static void parlist(LexState*ls){ FuncState*fs=ls->fs; Proto*f=fs->f; int nparams=0; f->is_vararg=0; if(ls->t.token!=')'){ do{ switch(ls->t.token){ case TK_NAME:{ new_localvar(ls,str_checkname(ls),nparams++); break; } case TK_DOTS:{ luaX_next(ls); f->is_vararg|=2; break; } default:luaX_syntaxerror(ls," or "LUA_QL("...")" expected"); } }while(!f->is_vararg&&testnext(ls,',')); } adjustlocalvars(ls,nparams); f->numparams=cast_byte(fs->nactvar-(f->is_vararg&1)); luaK_reserveregs(fs,fs->nactvar); } static void body(LexState*ls,expdesc*e,int needself,int line){ FuncState new_fs; open_func(ls,&new_fs); new_fs.f->linedefined=line; checknext(ls,'('); if(needself){ new_localvarliteral(ls,"self",0); adjustlocalvars(ls,1); } parlist(ls); checknext(ls,')'); chunk(ls); new_fs.f->lastlinedefined=ls->linenumber; check_match(ls,TK_END,TK_FUNCTION,line); close_func(ls); pushclosure(ls,&new_fs,e); } static int explist1(LexState*ls,expdesc*v){ int n=1; expr(ls,v); while(testnext(ls,',')){ luaK_exp2nextreg(ls->fs,v); expr(ls,v); n++; } return n; } static void funcargs(LexState*ls,expdesc*f){ FuncState*fs=ls->fs; expdesc args; int base,nparams; int line=ls->linenumber; switch(ls->t.token){ case'(':{ if(line!=ls->lastline) luaX_syntaxerror(ls,"ambiguous syntax (function call x new statement)"); luaX_next(ls); if(ls->t.token==')') args.k=VVOID; else{ explist1(ls,&args); luaK_setmultret(fs,&args); } check_match(ls,')','(',line); break; } case'{':{ constructor(ls,&args); break; } case TK_STRING:{ codestring(ls,&args,ls->t.seminfo.ts); luaX_next(ls); break; } default:{ luaX_syntaxerror(ls,"function arguments expected"); return; } } base=f->u.s.info; if(hasmultret(args.k)) nparams=(-1); else{ if(args.k!=VVOID) luaK_exp2nextreg(fs,&args); nparams=fs->freereg-(base+1); } init_exp(f,VCALL,luaK_codeABC(fs,OP_CALL,base,nparams+1,2)); luaK_fixline(fs,line); fs->freereg=base+1; } static void prefixexp(LexState*ls,expdesc*v){ switch(ls->t.token){ case'(':{ int line=ls->linenumber; luaX_next(ls); expr(ls,v); check_match(ls,')','(',line); luaK_dischargevars(ls->fs,v); return; } case TK_NAME:{ singlevar(ls,v); return; } default:{ luaX_syntaxerror(ls,"unexpected symbol"); return; } } } static void primaryexp(LexState*ls,expdesc*v){ FuncState*fs=ls->fs; prefixexp(ls,v); for(;;){ switch(ls->t.token){ case'.':{ field(ls,v); break; } case'[':{ expdesc key; luaK_exp2anyreg(fs,v); yindex(ls,&key); luaK_indexed(fs,v,&key); break; } case':':{ expdesc key; luaX_next(ls); checkname(ls,&key); luaK_self(fs,v,&key); funcargs(ls,v); break; } case'(':case TK_STRING:case'{':{ luaK_exp2nextreg(fs,v); funcargs(ls,v); break; } default:return; } } } static void simpleexp(LexState*ls,expdesc*v){ switch(ls->t.token){ case TK_NUMBER:{ init_exp(v,VKNUM,0); v->u.nval=ls->t.seminfo.r; break; } case TK_STRING:{ codestring(ls,v,ls->t.seminfo.ts); break; } case TK_NIL:{ init_exp(v,VNIL,0); break; } case TK_TRUE:{ init_exp(v,VTRUE,0); break; } case TK_FALSE:{ init_exp(v,VFALSE,0); break; } case TK_DOTS:{ FuncState*fs=ls->fs; check_condition(ls,fs->f->is_vararg, "cannot use "LUA_QL("...")" outside a vararg function"); fs->f->is_vararg&=~4; init_exp(v,VVARARG,luaK_codeABC(fs,OP_VARARG,0,1,0)); break; } case'{':{ constructor(ls,v); return; } case TK_FUNCTION:{ luaX_next(ls); body(ls,v,0,ls->linenumber); return; } default:{ primaryexp(ls,v); return; } } luaX_next(ls); } static UnOpr getunopr(int op){ switch(op){ case TK_NOT:return OPR_NOT; case'-':return OPR_MINUS; case'#':return OPR_LEN; default:return OPR_NOUNOPR; } } static BinOpr getbinopr(int op){ switch(op){ case'+':return OPR_ADD; case'-':return OPR_SUB; case'*':return OPR_MUL; case'/':return OPR_DIV; case'%':return OPR_MOD; case'^':return OPR_POW; case TK_CONCAT:return OPR_CONCAT; case TK_NE:return OPR_NE; case TK_EQ:return OPR_EQ; case'<':return OPR_LT; case TK_LE:return OPR_LE; case'>':return OPR_GT; case TK_GE:return OPR_GE; case TK_AND:return OPR_AND; case TK_OR:return OPR_OR; default:return OPR_NOBINOPR; } } static const struct{ lu_byte left; lu_byte right; }priority[]={ {6,6},{6,6},{7,7},{7,7},{7,7}, {10,9},{5,4}, {3,3},{3,3}, {3,3},{3,3},{3,3},{3,3}, {2,2},{1,1} }; static BinOpr subexpr(LexState*ls,expdesc*v,unsigned int limit){ BinOpr op; UnOpr uop; enterlevel(ls); uop=getunopr(ls->t.token); if(uop!=OPR_NOUNOPR){ luaX_next(ls); subexpr(ls,v,8); luaK_prefix(ls->fs,uop,v); } else simpleexp(ls,v); op=getbinopr(ls->t.token); while(op!=OPR_NOBINOPR&&priority[op].left>limit){ expdesc v2; BinOpr nextop; luaX_next(ls); luaK_infix(ls->fs,op,v); nextop=subexpr(ls,&v2,priority[op].right); luaK_posfix(ls->fs,op,v,&v2); op=nextop; } leavelevel(ls); return op; } static void expr(LexState*ls,expdesc*v){ subexpr(ls,v,0); } static int block_follow(int token){ switch(token){ case TK_ELSE:case TK_ELSEIF:case TK_END: case TK_UNTIL:case TK_EOS: return 1; default:return 0; } } static void block(LexState*ls){ FuncState*fs=ls->fs; BlockCnt bl; enterblock(fs,&bl,0); chunk(ls); leaveblock(fs); } struct LHS_assign{ struct LHS_assign*prev; expdesc v; }; static void check_conflict(LexState*ls,struct LHS_assign*lh,expdesc*v){ FuncState*fs=ls->fs; int extra=fs->freereg; int conflict=0; for(;lh;lh=lh->prev){ if(lh->v.k==VINDEXED){ if(lh->v.u.s.info==v->u.s.info){ conflict=1; lh->v.u.s.info=extra; } if(lh->v.u.s.aux==v->u.s.info){ conflict=1; lh->v.u.s.aux=extra; } } } if(conflict){ luaK_codeABC(fs,OP_MOVE,fs->freereg,v->u.s.info,0); luaK_reserveregs(fs,1); } } static void assignment(LexState*ls,struct LHS_assign*lh,int nvars){ expdesc e; check_condition(ls,VLOCAL<=lh->v.k&&lh->v.k<=VINDEXED, "syntax error"); if(testnext(ls,',')){ struct LHS_assign nv; nv.prev=lh; primaryexp(ls,&nv.v); if(nv.v.k==VLOCAL) check_conflict(ls,lh,&nv.v); luaY_checklimit(ls->fs,nvars,200-ls->L->nCcalls, "variables in assignment"); assignment(ls,&nv,nvars+1); } else{ int nexps; checknext(ls,'='); nexps=explist1(ls,&e); if(nexps!=nvars){ adjust_assign(ls,nvars,nexps,&e); if(nexps>nvars) ls->fs->freereg-=nexps-nvars; } else{ luaK_setoneret(ls->fs,&e); luaK_storevar(ls->fs,&lh->v,&e); return; } } init_exp(&e,VNONRELOC,ls->fs->freereg-1); luaK_storevar(ls->fs,&lh->v,&e); } static int cond(LexState*ls){ expdesc v; expr(ls,&v); if(v.k==VNIL)v.k=VFALSE; luaK_goiftrue(ls->fs,&v); return v.f; } static void breakstat(LexState*ls){ FuncState*fs=ls->fs; BlockCnt*bl=fs->bl; int upval=0; while(bl&&!bl->isbreakable){ upval|=bl->upval; bl=bl->previous; } if(!bl) luaX_syntaxerror(ls,"no loop to break"); if(upval) luaK_codeABC(fs,OP_CLOSE,bl->nactvar,0,0); luaK_concat(fs,&bl->breaklist,luaK_jump(fs)); } static void whilestat(LexState*ls,int line){ FuncState*fs=ls->fs; int whileinit; int condexit; BlockCnt bl; luaX_next(ls); whileinit=luaK_getlabel(fs); condexit=cond(ls); enterblock(fs,&bl,1); checknext(ls,TK_DO); block(ls); luaK_patchlist(fs,luaK_jump(fs),whileinit); check_match(ls,TK_END,TK_WHILE,line); leaveblock(fs); luaK_patchtohere(fs,condexit); } static void repeatstat(LexState*ls,int line){ int condexit; FuncState*fs=ls->fs; int repeat_init=luaK_getlabel(fs); BlockCnt bl1,bl2; enterblock(fs,&bl1,1); enterblock(fs,&bl2,0); luaX_next(ls); chunk(ls); check_match(ls,TK_UNTIL,TK_REPEAT,line); condexit=cond(ls); if(!bl2.upval){ leaveblock(fs); luaK_patchlist(ls->fs,condexit,repeat_init); } else{ breakstat(ls); luaK_patchtohere(ls->fs,condexit); leaveblock(fs); luaK_patchlist(ls->fs,luaK_jump(fs),repeat_init); } leaveblock(fs); } static int exp1(LexState*ls){ expdesc e; int k; expr(ls,&e); k=e.k; luaK_exp2nextreg(ls->fs,&e); return k; } static void forbody(LexState*ls,int base,int line,int nvars,int isnum){ BlockCnt bl; FuncState*fs=ls->fs; int prep,endfor; adjustlocalvars(ls,3); checknext(ls,TK_DO); prep=isnum?luaK_codeAsBx(fs,OP_FORPREP,base,(-1)):luaK_jump(fs); enterblock(fs,&bl,0); adjustlocalvars(ls,nvars); luaK_reserveregs(fs,nvars); block(ls); leaveblock(fs); luaK_patchtohere(fs,prep); endfor=(isnum)?luaK_codeAsBx(fs,OP_FORLOOP,base,(-1)): luaK_codeABC(fs,OP_TFORLOOP,base,0,nvars); luaK_fixline(fs,line); luaK_patchlist(fs,(isnum?endfor:luaK_jump(fs)),prep+1); } static void fornum(LexState*ls,TString*varname,int line){ FuncState*fs=ls->fs; int base=fs->freereg; new_localvarliteral(ls,"(for index)",0); new_localvarliteral(ls,"(for limit)",1); new_localvarliteral(ls,"(for step)",2); new_localvar(ls,varname,3); checknext(ls,'='); exp1(ls); checknext(ls,','); exp1(ls); if(testnext(ls,',')) exp1(ls); else{ luaK_codeABx(fs,OP_LOADK,fs->freereg,luaK_numberK(fs,1)); luaK_reserveregs(fs,1); } forbody(ls,base,line,1,1); } static void forlist(LexState*ls,TString*indexname){ FuncState*fs=ls->fs; expdesc e; int nvars=0; int line; int base=fs->freereg; new_localvarliteral(ls,"(for generator)",nvars++); new_localvarliteral(ls,"(for state)",nvars++); new_localvarliteral(ls,"(for control)",nvars++); new_localvar(ls,indexname,nvars++); while(testnext(ls,',')) new_localvar(ls,str_checkname(ls),nvars++); checknext(ls,TK_IN); line=ls->linenumber; adjust_assign(ls,3,explist1(ls,&e),&e); luaK_checkstack(fs,3); forbody(ls,base,line,nvars-3,0); } static void forstat(LexState*ls,int line){ FuncState*fs=ls->fs; TString*varname; BlockCnt bl; enterblock(fs,&bl,1); luaX_next(ls); varname=str_checkname(ls); switch(ls->t.token){ case'=':fornum(ls,varname,line);break; case',':case TK_IN:forlist(ls,varname);break; default:luaX_syntaxerror(ls,LUA_QL("=")" or "LUA_QL("in")" expected"); } check_match(ls,TK_END,TK_FOR,line); leaveblock(fs); } static int test_then_block(LexState*ls){ int condexit; luaX_next(ls); condexit=cond(ls); checknext(ls,TK_THEN); block(ls); return condexit; } static void ifstat(LexState*ls,int line){ FuncState*fs=ls->fs; int flist; int escapelist=(-1); flist=test_then_block(ls); while(ls->t.token==TK_ELSEIF){ luaK_concat(fs,&escapelist,luaK_jump(fs)); luaK_patchtohere(fs,flist); flist=test_then_block(ls); } if(ls->t.token==TK_ELSE){ luaK_concat(fs,&escapelist,luaK_jump(fs)); luaK_patchtohere(fs,flist); luaX_next(ls); block(ls); } else luaK_concat(fs,&escapelist,flist); luaK_patchtohere(fs,escapelist); check_match(ls,TK_END,TK_IF,line); } static void localfunc(LexState*ls){ expdesc v,b; FuncState*fs=ls->fs; new_localvar(ls,str_checkname(ls),0); init_exp(&v,VLOCAL,fs->freereg); luaK_reserveregs(fs,1); adjustlocalvars(ls,1); body(ls,&b,0,ls->linenumber); luaK_storevar(fs,&v,&b); getlocvar(fs,fs->nactvar-1).startpc=fs->pc; } static void localstat(LexState*ls){ int nvars=0; int nexps; expdesc e; do{ new_localvar(ls,str_checkname(ls),nvars++); }while(testnext(ls,',')); if(testnext(ls,'=')) nexps=explist1(ls,&e); else{ e.k=VVOID; nexps=0; } adjust_assign(ls,nvars,nexps,&e); adjustlocalvars(ls,nvars); } static int funcname(LexState*ls,expdesc*v){ int needself=0; singlevar(ls,v); while(ls->t.token=='.') field(ls,v); if(ls->t.token==':'){ needself=1; field(ls,v); } return needself; } static void funcstat(LexState*ls,int line){ int needself; expdesc v,b; luaX_next(ls); needself=funcname(ls,&v); body(ls,&b,needself,line); luaK_storevar(ls->fs,&v,&b); luaK_fixline(ls->fs,line); } static void exprstat(LexState*ls){ FuncState*fs=ls->fs; struct LHS_assign v; primaryexp(ls,&v.v); if(v.v.k==VCALL) SETARG_C(getcode(fs,&v.v),1); else{ v.prev=NULL; assignment(ls,&v,1); } } static void retstat(LexState*ls){ FuncState*fs=ls->fs; expdesc e; int first,nret; luaX_next(ls); if(block_follow(ls->t.token)||ls->t.token==';') first=nret=0; else{ nret=explist1(ls,&e); if(hasmultret(e.k)){ luaK_setmultret(fs,&e); if(e.k==VCALL&&nret==1){ SET_OPCODE(getcode(fs,&e),OP_TAILCALL); } first=fs->nactvar; nret=(-1); } else{ if(nret==1) first=luaK_exp2anyreg(fs,&e); else{ luaK_exp2nextreg(fs,&e); first=fs->nactvar; } } } luaK_ret(fs,first,nret); } static int statement(LexState*ls){ int line=ls->linenumber; switch(ls->t.token){ case TK_IF:{ ifstat(ls,line); return 0; } case TK_WHILE:{ whilestat(ls,line); return 0; } case TK_DO:{ luaX_next(ls); block(ls); check_match(ls,TK_END,TK_DO,line); return 0; } case TK_FOR:{ forstat(ls,line); return 0; } case TK_REPEAT:{ repeatstat(ls,line); return 0; } case TK_FUNCTION:{ funcstat(ls,line); return 0; } case TK_LOCAL:{ luaX_next(ls); if(testnext(ls,TK_FUNCTION)) localfunc(ls); else localstat(ls); return 0; } case TK_RETURN:{ retstat(ls); return 1; } case TK_BREAK:{ luaX_next(ls); breakstat(ls); return 1; } default:{ exprstat(ls); return 0; } } } static void chunk(LexState*ls){ int islast=0; enterlevel(ls); while(!islast&&!block_follow(ls->t.token)){ islast=statement(ls); testnext(ls,';'); ls->fs->freereg=ls->fs->nactvar; } leavelevel(ls); } static const TValue*luaV_tonumber(const TValue*obj,TValue*n){ lua_Number num; if(ttisnumber(obj))return obj; if(ttisstring(obj)&&luaO_str2d(svalue(obj),&num)){ setnvalue(n,num); return n; } else return NULL; } static int luaV_tostring(lua_State*L,StkId obj){ if(!ttisnumber(obj)) return 0; else{ char s[32]; lua_Number n=nvalue(obj); lua_number2str(s,n); setsvalue(L,obj,luaS_new(L,s)); return 1; } } static void callTMres(lua_State*L,StkId res,const TValue*f, const TValue*p1,const TValue*p2){ ptrdiff_t result=savestack(L,res); setobj(L,L->top,f); setobj(L,L->top+1,p1); setobj(L,L->top+2,p2); luaD_checkstack(L,3); L->top+=3; luaD_call(L,L->top-3,1); res=restorestack(L,result); L->top--; setobj(L,res,L->top); } static void callTM(lua_State*L,const TValue*f,const TValue*p1, const TValue*p2,const TValue*p3){ setobj(L,L->top,f); setobj(L,L->top+1,p1); setobj(L,L->top+2,p2); setobj(L,L->top+3,p3); luaD_checkstack(L,4); L->top+=4; luaD_call(L,L->top-4,0); } static void luaV_gettable(lua_State*L,const TValue*t,TValue*key,StkId val){ int loop; for(loop=0;loop<100;loop++){ const TValue*tm; if(ttistable(t)){ Table*h=hvalue(t); const TValue*res=luaH_get(h,key); if(!ttisnil(res)|| (tm=fasttm(L,h->metatable,TM_INDEX))==NULL){ setobj(L,val,res); return; } } else if(ttisnil(tm=luaT_gettmbyobj(L,t,TM_INDEX))) luaG_typeerror(L,t,"index"); if(ttisfunction(tm)){ callTMres(L,val,tm,t,key); return; } t=tm; } luaG_runerror(L,"loop in gettable"); } static void luaV_settable(lua_State*L,const TValue*t,TValue*key,StkId val){ int loop; TValue temp; for(loop=0;loop<100;loop++){ const TValue*tm; if(ttistable(t)){ Table*h=hvalue(t); TValue*oldval=luaH_set(L,h,key); if(!ttisnil(oldval)|| (tm=fasttm(L,h->metatable,TM_NEWINDEX))==NULL){ setobj(L,oldval,val); h->flags=0; luaC_barriert(L,h,val); return; } } else if(ttisnil(tm=luaT_gettmbyobj(L,t,TM_NEWINDEX))) luaG_typeerror(L,t,"index"); if(ttisfunction(tm)){ callTM(L,tm,t,key,val); return; } setobj(L,&temp,tm); t=&temp; } luaG_runerror(L,"loop in settable"); } static int call_binTM(lua_State*L,const TValue*p1,const TValue*p2, StkId res,TMS event){ const TValue*tm=luaT_gettmbyobj(L,p1,event); if(ttisnil(tm)) tm=luaT_gettmbyobj(L,p2,event); if(ttisnil(tm))return 0; callTMres(L,res,tm,p1,p2); return 1; } static const TValue*get_compTM(lua_State*L,Table*mt1,Table*mt2, TMS event){ const TValue*tm1=fasttm(L,mt1,event); const TValue*tm2; if(tm1==NULL)return NULL; if(mt1==mt2)return tm1; tm2=fasttm(L,mt2,event); if(tm2==NULL)return NULL; if(luaO_rawequalObj(tm1,tm2)) return tm1; return NULL; } static int call_orderTM(lua_State*L,const TValue*p1,const TValue*p2, TMS event){ const TValue*tm1=luaT_gettmbyobj(L,p1,event); const TValue*tm2; if(ttisnil(tm1))return-1; tm2=luaT_gettmbyobj(L,p2,event); if(!luaO_rawequalObj(tm1,tm2)) return-1; callTMres(L,L->top,tm1,p1,p2); return!l_isfalse(L->top); } static int l_strcmp(const TString*ls,const TString*rs){ const char*l=getstr(ls); size_t ll=ls->tsv.len; const char*r=getstr(rs); size_t lr=rs->tsv.len; for(;;){ int temp=strcoll(l,r); if(temp!=0)return temp; else{ size_t len=strlen(l); if(len==lr) return(len==ll)?0:1; else if(len==ll) return-1; len++; l+=len;ll-=len;r+=len;lr-=len; } } } static int luaV_lessthan(lua_State*L,const TValue*l,const TValue*r){ int res; if(ttype(l)!=ttype(r)) return luaG_ordererror(L,l,r); else if(ttisnumber(l)) return luai_numlt(nvalue(l),nvalue(r)); else if(ttisstring(l)) return l_strcmp(rawtsvalue(l),rawtsvalue(r))<0; else if((res=call_orderTM(L,l,r,TM_LT))!=-1) return res; return luaG_ordererror(L,l,r); } static int lessequal(lua_State*L,const TValue*l,const TValue*r){ int res; if(ttype(l)!=ttype(r)) return luaG_ordererror(L,l,r); else if(ttisnumber(l)) return luai_numle(nvalue(l),nvalue(r)); else if(ttisstring(l)) return l_strcmp(rawtsvalue(l),rawtsvalue(r))<=0; else if((res=call_orderTM(L,l,r,TM_LE))!=-1) return res; else if((res=call_orderTM(L,r,l,TM_LT))!=-1) return!res; return luaG_ordererror(L,l,r); } static int luaV_equalval(lua_State*L,const TValue*t1,const TValue*t2){ const TValue*tm; switch(ttype(t1)){ case 0:return 1; case 3:return luai_numeq(nvalue(t1),nvalue(t2)); case 1:return bvalue(t1)==bvalue(t2); case 2:return pvalue(t1)==pvalue(t2); case 7:{ if(uvalue(t1)==uvalue(t2))return 1; tm=get_compTM(L,uvalue(t1)->metatable,uvalue(t2)->metatable, TM_EQ); break; } case 5:{ if(hvalue(t1)==hvalue(t2))return 1; tm=get_compTM(L,hvalue(t1)->metatable,hvalue(t2)->metatable,TM_EQ); break; } default:return gcvalue(t1)==gcvalue(t2); } if(tm==NULL)return 0; callTMres(L,L->top,tm,t1,t2); return!l_isfalse(L->top); } static void luaV_concat(lua_State*L,int total,int last){ do{ StkId top=L->base+last+1; int n=2; if(!(ttisstring(top-2)||ttisnumber(top-2))||!tostring(L,top-1)){ if(!call_binTM(L,top-2,top-1,top-2,TM_CONCAT)) luaG_concaterror(L,top-2,top-1); }else if(tsvalue(top-1)->len==0) (void)tostring(L,top-2); else{ size_t tl=tsvalue(top-1)->len; char*buffer; int i; for(n=1;nlen; if(l>=((size_t)(~(size_t)0)-2)-tl)luaG_runerror(L,"string length overflow"); tl+=l; } buffer=luaZ_openspace(L,&G(L)->buff,tl); tl=0; for(i=n;i>0;i--){ size_t l=tsvalue(top-i)->len; memcpy(buffer+tl,svalue(top-i),l); tl+=l; } setsvalue(L,top-n,luaS_newlstr(L,buffer,tl)); } total-=n-1; last-=n-1; }while(total>1); } static void Arith(lua_State*L,StkId ra,const TValue*rb, const TValue*rc,TMS op){ TValue tempb,tempc; const TValue*b,*c; if((b=luaV_tonumber(rb,&tempb))!=NULL&& (c=luaV_tonumber(rc,&tempc))!=NULL){ lua_Number nb=nvalue(b),nc=nvalue(c); switch(op){ case TM_ADD:setnvalue(ra,luai_numadd(nb,nc));break; case TM_SUB:setnvalue(ra,luai_numsub(nb,nc));break; case TM_MUL:setnvalue(ra,luai_nummul(nb,nc));break; case TM_DIV:setnvalue(ra,luai_numdiv(nb,nc));break; case TM_MOD:setnvalue(ra,luai_nummod(nb,nc));break; case TM_POW:setnvalue(ra,luai_numpow(nb,nc));break; case TM_UNM:setnvalue(ra,luai_numunm(nb));break; default:break; } } else if(!call_binTM(L,rb,rc,ra,op)) luaG_aritherror(L,rb,rc); } #define runtime_check(L,c){if(!(c))break;} #define RA(i)(base+GETARG_A(i)) #define RB(i)check_exp(getBMode(GET_OPCODE(i))==OpArgR,base+GETARG_B(i)) #define RKB(i)check_exp(getBMode(GET_OPCODE(i))==OpArgK,ISK(GETARG_B(i))?k+INDEXK(GETARG_B(i)):base+GETARG_B(i)) #define RKC(i)check_exp(getCMode(GET_OPCODE(i))==OpArgK,ISK(GETARG_C(i))?k+INDEXK(GETARG_C(i)):base+GETARG_C(i)) #define KBx(i)check_exp(getBMode(GET_OPCODE(i))==OpArgK,k+GETARG_Bx(i)) #define dojump(L,pc,i){(pc)+=(i);} #define Protect(x){L->savedpc=pc;{x;};base=L->base;} #define arith_op(op,tm){TValue*rb=RKB(i);TValue*rc=RKC(i);if(ttisnumber(rb)&&ttisnumber(rc)){lua_Number nb=nvalue(rb),nc=nvalue(rc);setnvalue(ra,op(nb,nc));}else Protect(Arith(L,ra,rb,rc,tm));} static void luaV_execute(lua_State*L,int nexeccalls){ LClosure*cl; StkId base; TValue*k; const Instruction*pc; reentry: pc=L->savedpc; cl=&clvalue(L->ci->func)->l; base=L->base; k=cl->p->k; for(;;){ const Instruction i=*pc++; StkId ra; ra=RA(i); switch(GET_OPCODE(i)){ case OP_MOVE:{ setobj(L,ra,RB(i)); continue; } case OP_LOADK:{ setobj(L,ra,KBx(i)); continue; } case OP_LOADBOOL:{ setbvalue(ra,GETARG_B(i)); if(GETARG_C(i))pc++; continue; } case OP_LOADNIL:{ TValue*rb=RB(i); do{ setnilvalue(rb--); }while(rb>=ra); continue; } case OP_GETUPVAL:{ int b=GETARG_B(i); setobj(L,ra,cl->upvals[b]->v); continue; } case OP_GETGLOBAL:{ TValue g; TValue*rb=KBx(i); sethvalue(L,&g,cl->env); Protect(luaV_gettable(L,&g,rb,ra)); continue; } case OP_GETTABLE:{ Protect(luaV_gettable(L,RB(i),RKC(i),ra)); continue; } case OP_SETGLOBAL:{ TValue g; sethvalue(L,&g,cl->env); Protect(luaV_settable(L,&g,KBx(i),ra)); continue; } case OP_SETUPVAL:{ UpVal*uv=cl->upvals[GETARG_B(i)]; setobj(L,uv->v,ra); luaC_barrier(L,uv,ra); continue; } case OP_SETTABLE:{ Protect(luaV_settable(L,ra,RKB(i),RKC(i))); continue; } case OP_NEWTABLE:{ int b=GETARG_B(i); int c=GETARG_C(i); sethvalue(L,ra,luaH_new(L,luaO_fb2int(b),luaO_fb2int(c))); Protect(luaC_checkGC(L)); continue; } case OP_SELF:{ StkId rb=RB(i); setobj(L,ra+1,rb); Protect(luaV_gettable(L,rb,RKC(i),ra)); continue; } case OP_ADD:{ arith_op(luai_numadd,TM_ADD); continue; } case OP_SUB:{ arith_op(luai_numsub,TM_SUB); continue; } case OP_MUL:{ arith_op(luai_nummul,TM_MUL); continue; } case OP_DIV:{ arith_op(luai_numdiv,TM_DIV); continue; } case OP_MOD:{ arith_op(luai_nummod,TM_MOD); continue; } case OP_POW:{ arith_op(luai_numpow,TM_POW); continue; } case OP_UNM:{ TValue*rb=RB(i); if(ttisnumber(rb)){ lua_Number nb=nvalue(rb); setnvalue(ra,luai_numunm(nb)); } else{ Protect(Arith(L,ra,rb,rb,TM_UNM)); } continue; } case OP_NOT:{ int res=l_isfalse(RB(i)); setbvalue(ra,res); continue; } case OP_LEN:{ const TValue*rb=RB(i); switch(ttype(rb)){ case 5:{ setnvalue(ra,cast_num(luaH_getn(hvalue(rb)))); break; } case 4:{ setnvalue(ra,cast_num(tsvalue(rb)->len)); break; } default:{ Protect( if(!call_binTM(L,rb,(&luaO_nilobject_),ra,TM_LEN)) luaG_typeerror(L,rb,"get length of"); ) } } continue; } case OP_CONCAT:{ int b=GETARG_B(i); int c=GETARG_C(i); Protect(luaV_concat(L,c-b+1,c);luaC_checkGC(L)); setobj(L,RA(i),base+b); continue; } case OP_JMP:{ dojump(L,pc,GETARG_sBx(i)); continue; } case OP_EQ:{ TValue*rb=RKB(i); TValue*rc=RKC(i); Protect( if(equalobj(L,rb,rc)==GETARG_A(i)) dojump(L,pc,GETARG_sBx(*pc)); ) pc++; continue; } case OP_LT:{ Protect( if(luaV_lessthan(L,RKB(i),RKC(i))==GETARG_A(i)) dojump(L,pc,GETARG_sBx(*pc)); ) pc++; continue; } case OP_LE:{ Protect( if(lessequal(L,RKB(i),RKC(i))==GETARG_A(i)) dojump(L,pc,GETARG_sBx(*pc)); ) pc++; continue; } case OP_TEST:{ if(l_isfalse(ra)!=GETARG_C(i)) dojump(L,pc,GETARG_sBx(*pc)); pc++; continue; } case OP_TESTSET:{ TValue*rb=RB(i); if(l_isfalse(rb)!=GETARG_C(i)){ setobj(L,ra,rb); dojump(L,pc,GETARG_sBx(*pc)); } pc++; continue; } case OP_CALL:{ int b=GETARG_B(i); int nresults=GETARG_C(i)-1; if(b!=0)L->top=ra+b; L->savedpc=pc; switch(luaD_precall(L,ra,nresults)){ case 0:{ nexeccalls++; goto reentry; } case 1:{ if(nresults>=0)L->top=L->ci->top; base=L->base; continue; } default:{ return; } } } case OP_TAILCALL:{ int b=GETARG_B(i); if(b!=0)L->top=ra+b; L->savedpc=pc; switch(luaD_precall(L,ra,(-1))){ case 0:{ CallInfo*ci=L->ci-1; int aux; StkId func=ci->func; StkId pfunc=(ci+1)->func; if(L->openupval)luaF_close(L,ci->base); L->base=ci->base=ci->func+((ci+1)->base-pfunc); for(aux=0;pfunc+auxtop;aux++) setobj(L,func+aux,pfunc+aux); ci->top=L->top=func+aux; ci->savedpc=L->savedpc; ci->tailcalls++; L->ci--; goto reentry; } case 1:{ base=L->base; continue; } default:{ return; } } } case OP_RETURN:{ int b=GETARG_B(i); if(b!=0)L->top=ra+b-1; if(L->openupval)luaF_close(L,base); L->savedpc=pc; b=luaD_poscall(L,ra); if(--nexeccalls==0) return; else{ if(b)L->top=L->ci->top; goto reentry; } } case OP_FORLOOP:{ lua_Number step=nvalue(ra+2); lua_Number idx=luai_numadd(nvalue(ra),step); lua_Number limit=nvalue(ra+1); if(luai_numlt(0,step)?luai_numle(idx,limit) :luai_numle(limit,idx)){ dojump(L,pc,GETARG_sBx(i)); setnvalue(ra,idx); setnvalue(ra+3,idx); } continue; } case OP_FORPREP:{ const TValue*init=ra; const TValue*plimit=ra+1; const TValue*pstep=ra+2; L->savedpc=pc; if(!tonumber(init,ra)) luaG_runerror(L,LUA_QL("for")" initial value must be a number"); else if(!tonumber(plimit,ra+1)) luaG_runerror(L,LUA_QL("for")" limit must be a number"); else if(!tonumber(pstep,ra+2)) luaG_runerror(L,LUA_QL("for")" step must be a number"); setnvalue(ra,luai_numsub(nvalue(ra),nvalue(pstep))); dojump(L,pc,GETARG_sBx(i)); continue; } case OP_TFORLOOP:{ StkId cb=ra+3; setobj(L,cb+2,ra+2); setobj(L,cb+1,ra+1); setobj(L,cb,ra); L->top=cb+3; Protect(luaD_call(L,cb,GETARG_C(i))); L->top=L->ci->top; cb=RA(i)+3; if(!ttisnil(cb)){ setobj(L,cb-1,cb); dojump(L,pc,GETARG_sBx(*pc)); } pc++; continue; } case OP_SETLIST:{ int n=GETARG_B(i); int c=GETARG_C(i); int last; Table*h; if(n==0){ n=cast_int(L->top-ra)-1; L->top=L->ci->top; } if(c==0)c=cast_int(*pc++); runtime_check(L,ttistable(ra)); h=hvalue(ra); last=((c-1)*50)+n; if(last>h->sizearray) luaH_resizearray(L,h,last); for(;n>0;n--){ TValue*val=ra+n; setobj(L,luaH_setnum(L,h,last--),val); luaC_barriert(L,h,val); } continue; } case OP_CLOSE:{ luaF_close(L,ra); continue; } case OP_CLOSURE:{ Proto*p; Closure*ncl; int nup,j; p=cl->p->p[GETARG_Bx(i)]; nup=p->nups; ncl=luaF_newLclosure(L,nup,cl->env); ncl->l.p=p; for(j=0;jl.upvals[j]=cl->upvals[GETARG_B(*pc)]; else{ ncl->l.upvals[j]=luaF_findupval(L,base+GETARG_B(*pc)); } } setclvalue(L,ra,ncl); Protect(luaC_checkGC(L)); continue; } case OP_VARARG:{ int b=GETARG_B(i)-1; int j; CallInfo*ci=L->ci; int n=cast_int(ci->base-ci->func)-cl->p->numparams-1; if(b==(-1)){ Protect(luaD_checkstack(L,n)); ra=RA(i); b=n; L->top=ra+n; } for(j=0;jbase-n+j); } else{ setnilvalue(ra+j); } } continue; } } } } #define api_checknelems(L,n)luai_apicheck(L,(n)<=(L->top-L->base)) #define api_checkvalidindex(L,i)luai_apicheck(L,(i)!=(&luaO_nilobject_)) #define api_incr_top(L){luai_apicheck(L,L->topci->top);L->top++;} static TValue*index2adr(lua_State*L,int idx){ if(idx>0){ TValue*o=L->base+(idx-1); luai_apicheck(L,idx<=L->ci->top-L->base); if(o>=L->top)return cast(TValue*,(&luaO_nilobject_)); else return o; } else if(idx>(-10000)){ luai_apicheck(L,idx!=0&&-idx<=L->top-L->base); return L->top+idx; } else switch(idx){ case(-10000):return registry(L); case(-10001):{ Closure*func=curr_func(L); sethvalue(L,&L->env,func->c.env); return&L->env; } case(-10002):return gt(L); default:{ Closure*func=curr_func(L); idx=(-10002)-idx; return(idx<=func->c.nupvalues) ?&func->c.upvalue[idx-1] :cast(TValue*,(&luaO_nilobject_)); } } } static Table*getcurrenv(lua_State*L){ if(L->ci==L->base_ci) return hvalue(gt(L)); else{ Closure*func=curr_func(L); return func->c.env; } } static int lua_checkstack(lua_State*L,int size){ int res=1; if(size>8000||(L->top-L->base+size)>8000) res=0; else if(size>0){ luaD_checkstack(L,size); if(L->ci->toptop+size) L->ci->top=L->top+size; } return res; } static lua_CFunction lua_atpanic(lua_State*L,lua_CFunction panicf){ lua_CFunction old; old=G(L)->panic; G(L)->panic=panicf; return old; } static int lua_gettop(lua_State*L){ return cast_int(L->top-L->base); } static void lua_settop(lua_State*L,int idx){ if(idx>=0){ luai_apicheck(L,idx<=L->stack_last-L->base); while(L->topbase+idx) setnilvalue(L->top++); L->top=L->base+idx; } else{ luai_apicheck(L,-(idx+1)<=(L->top-L->base)); L->top+=idx+1; } } static void lua_remove(lua_State*L,int idx){ StkId p; p=index2adr(L,idx); api_checkvalidindex(L,p); while(++ptop)setobj(L,p-1,p); L->top--; } static void lua_insert(lua_State*L,int idx){ StkId p; StkId q; p=index2adr(L,idx); api_checkvalidindex(L,p); for(q=L->top;q>p;q--)setobj(L,q,q-1); setobj(L,p,L->top); } static void lua_replace(lua_State*L,int idx){ StkId o; if(idx==(-10001)&&L->ci==L->base_ci) luaG_runerror(L,"no calling environment"); api_checknelems(L,1); o=index2adr(L,idx); api_checkvalidindex(L,o); if(idx==(-10001)){ Closure*func=curr_func(L); luai_apicheck(L,ttistable(L->top-1)); func->c.env=hvalue(L->top-1); luaC_barrier(L,func,L->top-1); } else{ setobj(L,o,L->top-1); if(idx<(-10002)) luaC_barrier(L,curr_func(L),L->top-1); } L->top--; } static void lua_pushvalue(lua_State*L,int idx){ setobj(L,L->top,index2adr(L,idx)); api_incr_top(L); } static int lua_type(lua_State*L,int idx){ StkId o=index2adr(L,idx); return(o==(&luaO_nilobject_))?(-1):ttype(o); } static const char*lua_typename(lua_State*L,int t){ UNUSED(L); return(t==(-1))?"no value":luaT_typenames[t]; } static int lua_iscfunction(lua_State*L,int idx){ StkId o=index2adr(L,idx); return iscfunction(o); } static int lua_isnumber(lua_State*L,int idx){ TValue n; const TValue*o=index2adr(L,idx); return tonumber(o,&n); } static int lua_isstring(lua_State*L,int idx){ int t=lua_type(L,idx); return(t==4||t==3); } static int lua_rawequal(lua_State*L,int index1,int index2){ StkId o1=index2adr(L,index1); StkId o2=index2adr(L,index2); return(o1==(&luaO_nilobject_)||o2==(&luaO_nilobject_))?0 :luaO_rawequalObj(o1,o2); } static int lua_lessthan(lua_State*L,int index1,int index2){ StkId o1,o2; int i; o1=index2adr(L,index1); o2=index2adr(L,index2); i=(o1==(&luaO_nilobject_)||o2==(&luaO_nilobject_))?0 :luaV_lessthan(L,o1,o2); return i; } static lua_Number lua_tonumber(lua_State*L,int idx){ TValue n; const TValue*o=index2adr(L,idx); if(tonumber(o,&n)) return nvalue(o); else return 0; } static lua_Integer lua_tointeger(lua_State*L,int idx){ TValue n; const TValue*o=index2adr(L,idx); if(tonumber(o,&n)){ lua_Integer res; lua_Number num=nvalue(o); lua_number2integer(res,num); return res; } else return 0; } static int lua_toboolean(lua_State*L,int idx){ const TValue*o=index2adr(L,idx); return!l_isfalse(o); } static const char*lua_tolstring(lua_State*L,int idx,size_t*len){ StkId o=index2adr(L,idx); if(!ttisstring(o)){ if(!luaV_tostring(L,o)){ if(len!=NULL)*len=0; return NULL; } luaC_checkGC(L); o=index2adr(L,idx); } if(len!=NULL)*len=tsvalue(o)->len; return svalue(o); } static size_t lua_objlen(lua_State*L,int idx){ StkId o=index2adr(L,idx); switch(ttype(o)){ case 4:return tsvalue(o)->len; case 7:return uvalue(o)->len; case 5:return luaH_getn(hvalue(o)); case 3:{ size_t l; l=(luaV_tostring(L,o)?tsvalue(o)->len:0); return l; } default:return 0; } } static lua_CFunction lua_tocfunction(lua_State*L,int idx){ StkId o=index2adr(L,idx); return(!iscfunction(o))?NULL:clvalue(o)->c.f; } static void*lua_touserdata(lua_State*L,int idx){ StkId o=index2adr(L,idx); switch(ttype(o)){ case 7:return(rawuvalue(o)+1); case 2:return pvalue(o); default:return NULL; } } static void lua_pushnil(lua_State*L){ setnilvalue(L->top); api_incr_top(L); } static void lua_pushnumber(lua_State*L,lua_Number n){ setnvalue(L->top,n); api_incr_top(L); } static void lua_pushinteger(lua_State*L,lua_Integer n){ setnvalue(L->top,cast_num(n)); api_incr_top(L); } static void lua_pushlstring(lua_State*L,const char*s,size_t len){ luaC_checkGC(L); setsvalue(L,L->top,luaS_newlstr(L,s,len)); api_incr_top(L); } static void lua_pushstring(lua_State*L,const char*s){ if(s==NULL) lua_pushnil(L); else lua_pushlstring(L,s,strlen(s)); } static const char*lua_pushvfstring(lua_State*L,const char*fmt, va_list argp){ const char*ret; luaC_checkGC(L); ret=luaO_pushvfstring(L,fmt,argp); return ret; } static const char*lua_pushfstring(lua_State*L,const char*fmt,...){ const char*ret; va_list argp; luaC_checkGC(L); va_start(argp,fmt); ret=luaO_pushvfstring(L,fmt,argp); va_end(argp); return ret; } static void lua_pushcclosure(lua_State*L,lua_CFunction fn,int n){ Closure*cl; luaC_checkGC(L); api_checknelems(L,n); cl=luaF_newCclosure(L,n,getcurrenv(L)); cl->c.f=fn; L->top-=n; while(n--) setobj(L,&cl->c.upvalue[n],L->top+n); setclvalue(L,L->top,cl); api_incr_top(L); } static void lua_pushboolean(lua_State*L,int b){ setbvalue(L->top,(b!=0)); api_incr_top(L); } static int lua_pushthread(lua_State*L){ setthvalue(L,L->top,L); api_incr_top(L); return(G(L)->mainthread==L); } static void lua_gettable(lua_State*L,int idx){ StkId t; t=index2adr(L,idx); api_checkvalidindex(L,t); luaV_gettable(L,t,L->top-1,L->top-1); } static void lua_getfield(lua_State*L,int idx,const char*k){ StkId t; TValue key; t=index2adr(L,idx); api_checkvalidindex(L,t); setsvalue(L,&key,luaS_new(L,k)); luaV_gettable(L,t,&key,L->top); api_incr_top(L); } static void lua_rawget(lua_State*L,int idx){ StkId t; t=index2adr(L,idx); luai_apicheck(L,ttistable(t)); setobj(L,L->top-1,luaH_get(hvalue(t),L->top-1)); } static void lua_rawgeti(lua_State*L,int idx,int n){ StkId o; o=index2adr(L,idx); luai_apicheck(L,ttistable(o)); setobj(L,L->top,luaH_getnum(hvalue(o),n)); api_incr_top(L); } static void lua_createtable(lua_State*L,int narray,int nrec){ luaC_checkGC(L); sethvalue(L,L->top,luaH_new(L,narray,nrec)); api_incr_top(L); } static int lua_getmetatable(lua_State*L,int objindex){ const TValue*obj; Table*mt=NULL; int res; obj=index2adr(L,objindex); switch(ttype(obj)){ case 5: mt=hvalue(obj)->metatable; break; case 7: mt=uvalue(obj)->metatable; break; default: mt=G(L)->mt[ttype(obj)]; break; } if(mt==NULL) res=0; else{ sethvalue(L,L->top,mt); api_incr_top(L); res=1; } return res; } static void lua_getfenv(lua_State*L,int idx){ StkId o; o=index2adr(L,idx); api_checkvalidindex(L,o); switch(ttype(o)){ case 6: sethvalue(L,L->top,clvalue(o)->c.env); break; case 7: sethvalue(L,L->top,uvalue(o)->env); break; case 8: setobj(L,L->top,gt(thvalue(o))); break; default: setnilvalue(L->top); break; } api_incr_top(L); } static void lua_settable(lua_State*L,int idx){ StkId t; api_checknelems(L,2); t=index2adr(L,idx); api_checkvalidindex(L,t); luaV_settable(L,t,L->top-2,L->top-1); L->top-=2; } static void lua_setfield(lua_State*L,int idx,const char*k){ StkId t; TValue key; api_checknelems(L,1); t=index2adr(L,idx); api_checkvalidindex(L,t); setsvalue(L,&key,luaS_new(L,k)); luaV_settable(L,t,&key,L->top-1); L->top--; } static void lua_rawset(lua_State*L,int idx){ StkId t; api_checknelems(L,2); t=index2adr(L,idx); luai_apicheck(L,ttistable(t)); setobj(L,luaH_set(L,hvalue(t),L->top-2),L->top-1); luaC_barriert(L,hvalue(t),L->top-1); L->top-=2; } static void lua_rawseti(lua_State*L,int idx,int n){ StkId o; api_checknelems(L,1); o=index2adr(L,idx); luai_apicheck(L,ttistable(o)); setobj(L,luaH_setnum(L,hvalue(o),n),L->top-1); luaC_barriert(L,hvalue(o),L->top-1); L->top--; } static int lua_setmetatable(lua_State*L,int objindex){ TValue*obj; Table*mt; api_checknelems(L,1); obj=index2adr(L,objindex); api_checkvalidindex(L,obj); if(ttisnil(L->top-1)) mt=NULL; else{ luai_apicheck(L,ttistable(L->top-1)); mt=hvalue(L->top-1); } switch(ttype(obj)){ case 5:{ hvalue(obj)->metatable=mt; if(mt) luaC_objbarriert(L,hvalue(obj),mt); break; } case 7:{ uvalue(obj)->metatable=mt; if(mt) luaC_objbarrier(L,rawuvalue(obj),mt); break; } default:{ G(L)->mt[ttype(obj)]=mt; break; } } L->top--; return 1; } static int lua_setfenv(lua_State*L,int idx){ StkId o; int res=1; api_checknelems(L,1); o=index2adr(L,idx); api_checkvalidindex(L,o); luai_apicheck(L,ttistable(L->top-1)); switch(ttype(o)){ case 6: clvalue(o)->c.env=hvalue(L->top-1); break; case 7: uvalue(o)->env=hvalue(L->top-1); break; case 8: sethvalue(L,gt(thvalue(o)),hvalue(L->top-1)); break; default: res=0; break; } if(res)luaC_objbarrier(L,gcvalue(o),hvalue(L->top-1)); L->top--; return res; } #define adjustresults(L,nres){if(nres==(-1)&&L->top>=L->ci->top)L->ci->top=L->top;} #define checkresults(L,na,nr)luai_apicheck(L,(nr)==(-1)||(L->ci->top-L->top>=(nr)-(na))) static void lua_call(lua_State*L,int nargs,int nresults){ StkId func; api_checknelems(L,nargs+1); checkresults(L,nargs,nresults); func=L->top-(nargs+1); luaD_call(L,func,nresults); adjustresults(L,nresults); } struct CallS{ StkId func; int nresults; }; static void f_call(lua_State*L,void*ud){ struct CallS*c=cast(struct CallS*,ud); luaD_call(L,c->func,c->nresults); } static int lua_pcall(lua_State*L,int nargs,int nresults,int errfunc){ struct CallS c; int status; ptrdiff_t func; api_checknelems(L,nargs+1); checkresults(L,nargs,nresults); if(errfunc==0) func=0; else{ StkId o=index2adr(L,errfunc); api_checkvalidindex(L,o); func=savestack(L,o); } c.func=L->top-(nargs+1); c.nresults=nresults; status=luaD_pcall(L,f_call,&c,savestack(L,c.func),func); adjustresults(L,nresults); return status; } static int lua_load(lua_State*L,lua_Reader reader,void*data, const char*chunkname){ ZIO z; int status; if(!chunkname)chunkname="?"; luaZ_init(L,&z,reader,data); status=luaD_protectedparser(L,&z,chunkname); return status; } static int lua_error(lua_State*L){ api_checknelems(L,1); luaG_errormsg(L); return 0; } static int lua_next(lua_State*L,int idx){ StkId t; int more; t=index2adr(L,idx); luai_apicheck(L,ttistable(t)); more=luaH_next(L,hvalue(t),L->top-1); if(more){ api_incr_top(L); } else L->top-=1; return more; } static void lua_concat(lua_State*L,int n){ api_checknelems(L,n); if(n>=2){ luaC_checkGC(L); luaV_concat(L,n,cast_int(L->top-L->base)-1); L->top-=(n-1); } else if(n==0){ setsvalue(L,L->top,luaS_newlstr(L,"",0)); api_incr_top(L); } } static void*lua_newuserdata(lua_State*L,size_t size){ Udata*u; luaC_checkGC(L); u=luaS_newudata(L,size,getcurrenv(L)); setuvalue(L,L->top,u); api_incr_top(L); return u+1; } #define luaL_getn(L,i)((int)lua_objlen(L,i)) #define luaL_setn(L,i,j)((void)0) typedef struct luaL_Reg{ const char*name; lua_CFunction func; }luaL_Reg; static void luaI_openlib(lua_State*L,const char*libname, const luaL_Reg*l,int nup); static int luaL_argerror(lua_State*L,int numarg,const char*extramsg); static const char* luaL_checklstring(lua_State*L,int numArg, size_t*l); static const char* luaL_optlstring(lua_State*L,int numArg, const char*def,size_t*l); static lua_Integer luaL_checkinteger(lua_State*L,int numArg); static lua_Integer luaL_optinteger(lua_State*L,int nArg, lua_Integer def); static int luaL_error(lua_State*L,const char*fmt,...); static const char* luaL_findtable(lua_State*L,int idx, const char*fname,int szhint); #define luaL_argcheck(L,cond,numarg,extramsg)((void)((cond)||luaL_argerror(L,(numarg),(extramsg)))) #define luaL_checkstring(L,n)(luaL_checklstring(L,(n),NULL)) #define luaL_optstring(L,n,d)(luaL_optlstring(L,(n),(d),NULL)) #define luaL_checkint(L,n)((int)luaL_checkinteger(L,(n))) #define luaL_optint(L,n,d)((int)luaL_optinteger(L,(n),(d))) #define luaL_typename(L,i)lua_typename(L,lua_type(L,(i))) #define luaL_getmetatable(L,n)(lua_getfield(L,(-10000),(n))) #define luaL_opt(L,f,n,d)(lua_isnoneornil(L,(n))?(d):f(L,(n))) typedef struct luaL_Buffer{ char*p; int lvl; lua_State*L; char buffer[BUFSIZ]; }luaL_Buffer; #define luaL_addchar(B,c)((void)((B)->p<((B)->buffer+BUFSIZ)||luaL_prepbuffer(B)),(*(B)->p++=(char)(c))) #define luaL_addsize(B,n)((B)->p+=(n)) static char* luaL_prepbuffer(luaL_Buffer*B); static int luaL_argerror(lua_State*L,int narg,const char*extramsg){ lua_Debug ar; if(!lua_getstack(L,0,&ar)) return luaL_error(L,"bad argument #%d (%s)",narg,extramsg); lua_getinfo(L,"n",&ar); if(strcmp(ar.namewhat,"method")==0){ narg--; if(narg==0) return luaL_error(L,"calling "LUA_QL("%s")" on bad self (%s)", ar.name,extramsg); } if(ar.name==NULL) ar.name="?"; return luaL_error(L,"bad argument #%d to "LUA_QL("%s")" (%s)", narg,ar.name,extramsg); } static int luaL_typerror(lua_State*L,int narg,const char*tname){ const char*msg=lua_pushfstring(L,"%s expected, got %s", tname,luaL_typename(L,narg)); return luaL_argerror(L,narg,msg); } static void tag_error(lua_State*L,int narg,int tag){ luaL_typerror(L,narg,lua_typename(L,tag)); } static void luaL_where(lua_State*L,int level){ lua_Debug ar; if(lua_getstack(L,level,&ar)){ lua_getinfo(L,"Sl",&ar); if(ar.currentline>0){ lua_pushfstring(L,"%s:%d: ",ar.short_src,ar.currentline); return; } } lua_pushliteral(L,""); } static int luaL_error(lua_State*L,const char*fmt,...){ va_list argp; va_start(argp,fmt); luaL_where(L,1); lua_pushvfstring(L,fmt,argp); va_end(argp); lua_concat(L,2); return lua_error(L); } static int luaL_newmetatable(lua_State*L,const char*tname){ lua_getfield(L,(-10000),tname); if(!lua_isnil(L,-1)) return 0; lua_pop(L,1); lua_newtable(L); lua_pushvalue(L,-1); lua_setfield(L,(-10000),tname); return 1; } static void*luaL_checkudata(lua_State*L,int ud,const char*tname){ void*p=lua_touserdata(L,ud); if(p!=NULL){ if(lua_getmetatable(L,ud)){ lua_getfield(L,(-10000),tname); if(lua_rawequal(L,-1,-2)){ lua_pop(L,2); return p; } } } luaL_typerror(L,ud,tname); return NULL; } static void luaL_checkstack(lua_State*L,int space,const char*mes){ if(!lua_checkstack(L,space)) luaL_error(L,"stack overflow (%s)",mes); } static void luaL_checktype(lua_State*L,int narg,int t){ if(lua_type(L,narg)!=t) tag_error(L,narg,t); } static void luaL_checkany(lua_State*L,int narg){ if(lua_type(L,narg)==(-1)) luaL_argerror(L,narg,"value expected"); } static const char*luaL_checklstring(lua_State*L,int narg,size_t*len){ const char*s=lua_tolstring(L,narg,len); if(!s)tag_error(L,narg,4); return s; } static const char*luaL_optlstring(lua_State*L,int narg, const char*def,size_t*len){ if(lua_isnoneornil(L,narg)){ if(len) *len=(def?strlen(def):0); return def; } else return luaL_checklstring(L,narg,len); } static lua_Number luaL_checknumber(lua_State*L,int narg){ lua_Number d=lua_tonumber(L,narg); if(d==0&&!lua_isnumber(L,narg)) tag_error(L,narg,3); return d; } static lua_Integer luaL_checkinteger(lua_State*L,int narg){ lua_Integer d=lua_tointeger(L,narg); if(d==0&&!lua_isnumber(L,narg)) tag_error(L,narg,3); return d; } static lua_Integer luaL_optinteger(lua_State*L,int narg, lua_Integer def){ return luaL_opt(L,luaL_checkinteger,narg,def); } static int luaL_getmetafield(lua_State*L,int obj,const char*event){ if(!lua_getmetatable(L,obj)) return 0; lua_pushstring(L,event); lua_rawget(L,-2); if(lua_isnil(L,-1)){ lua_pop(L,2); return 0; } else{ lua_remove(L,-2); return 1; } } static void luaL_register(lua_State*L,const char*libname, const luaL_Reg*l){ luaI_openlib(L,libname,l,0); } static int libsize(const luaL_Reg*l){ int size=0; for(;l->name;l++)size++; return size; } static void luaI_openlib(lua_State*L,const char*libname, const luaL_Reg*l,int nup){ if(libname){ int size=libsize(l); luaL_findtable(L,(-10000),"_LOADED",1); lua_getfield(L,-1,libname); if(!lua_istable(L,-1)){ lua_pop(L,1); if(luaL_findtable(L,(-10002),libname,size)!=NULL) luaL_error(L,"name conflict for module "LUA_QL("%s"),libname); lua_pushvalue(L,-1); lua_setfield(L,-3,libname); } lua_remove(L,-2); lua_insert(L,-(nup+1)); } for(;l->name;l++){ int i; for(i=0;ifunc,nup); lua_setfield(L,-(nup+2),l->name); } lua_pop(L,nup); } static const char*luaL_findtable(lua_State*L,int idx, const char*fname,int szhint){ const char*e; lua_pushvalue(L,idx); do{ e=strchr(fname,'.'); if(e==NULL)e=fname+strlen(fname); lua_pushlstring(L,fname,e-fname); lua_rawget(L,-2); if(lua_isnil(L,-1)){ lua_pop(L,1); lua_createtable(L,0,(*e=='.'?1:szhint)); lua_pushlstring(L,fname,e-fname); lua_pushvalue(L,-2); lua_settable(L,-4); } else if(!lua_istable(L,-1)){ lua_pop(L,2); return fname; } lua_remove(L,-2); fname=e+1; }while(*e=='.'); return NULL; } #define bufflen(B)((B)->p-(B)->buffer) #define bufffree(B)((size_t)(BUFSIZ-bufflen(B))) static int emptybuffer(luaL_Buffer*B){ size_t l=bufflen(B); if(l==0)return 0; else{ lua_pushlstring(B->L,B->buffer,l); B->p=B->buffer; B->lvl++; return 1; } } static void adjuststack(luaL_Buffer*B){ if(B->lvl>1){ lua_State*L=B->L; int toget=1; size_t toplen=lua_strlen(L,-1); do{ size_t l=lua_strlen(L,-(toget+1)); if(B->lvl-toget+1>=(20/2)||toplen>l){ toplen+=l; toget++; } else break; }while(togetlvl); lua_concat(L,toget); B->lvl=B->lvl-toget+1; } } static char*luaL_prepbuffer(luaL_Buffer*B){ if(emptybuffer(B)) adjuststack(B); return B->buffer; } static void luaL_addlstring(luaL_Buffer*B,const char*s,size_t l){ while(l--) luaL_addchar(B,*s++); } static void luaL_pushresult(luaL_Buffer*B){ emptybuffer(B); lua_concat(B->L,B->lvl); B->lvl=1; } static void luaL_addvalue(luaL_Buffer*B){ lua_State*L=B->L; size_t vl; const char*s=lua_tolstring(L,-1,&vl); if(vl<=bufffree(B)){ memcpy(B->p,s,vl); B->p+=vl; lua_pop(L,1); } else{ if(emptybuffer(B)) lua_insert(L,-2); B->lvl++; adjuststack(B); } } static void luaL_buffinit(lua_State*L,luaL_Buffer*B){ B->L=L; B->p=B->buffer; B->lvl=0; } typedef struct LoadF{ int extraline; FILE*f; char buff[BUFSIZ]; }LoadF; static const char*getF(lua_State*L,void*ud,size_t*size){ LoadF*lf=(LoadF*)ud; (void)L; if(lf->extraline){ lf->extraline=0; *size=1; return"\n"; } if(feof(lf->f))return NULL; *size=fread(lf->buff,1,sizeof(lf->buff),lf->f); return(*size>0)?lf->buff:NULL; } static int errfile(lua_State*L,const char*what,int fnameindex){ const char*serr=strerror(errno); const char*filename=lua_tostring(L,fnameindex)+1; lua_pushfstring(L,"cannot %s %s: %s",what,filename,serr); lua_remove(L,fnameindex); return(5+1); } static int luaL_loadfile(lua_State*L,const char*filename){ LoadF lf; int status,readstatus; int c; int fnameindex=lua_gettop(L)+1; lf.extraline=0; if(filename==NULL){ lua_pushliteral(L,"=stdin"); lf.f=stdin; } else{ lua_pushfstring(L,"@%s",filename); lf.f=fopen(filename,"r"); if(lf.f==NULL)return errfile(L,"open",fnameindex); } c=getc(lf.f); if(c=='#'){ lf.extraline=1; while((c=getc(lf.f))!=EOF&&c!='\n'); if(c=='\n')c=getc(lf.f); } if(c=="\033Lua"[0]&&filename){ lf.f=freopen(filename,"rb",lf.f); if(lf.f==NULL)return errfile(L,"reopen",fnameindex); while((c=getc(lf.f))!=EOF&&c!="\033Lua"[0]); lf.extraline=0; } ungetc(c,lf.f); status=lua_load(L,getF,&lf,lua_tostring(L,-1)); readstatus=ferror(lf.f); if(filename)fclose(lf.f); if(readstatus){ lua_settop(L,fnameindex); return errfile(L,"read",fnameindex); } lua_remove(L,fnameindex); return status; } typedef struct LoadS{ const char*s; size_t size; }LoadS; static const char*getS(lua_State*L,void*ud,size_t*size){ LoadS*ls=(LoadS*)ud; (void)L; if(ls->size==0)return NULL; *size=ls->size; ls->size=0; return ls->s; } static int luaL_loadbuffer(lua_State*L,const char*buff,size_t size, const char*name){ LoadS ls; ls.s=buff; ls.size=size; return lua_load(L,getS,&ls,name); } static void*l_alloc(void*ud,void*ptr,size_t osize,size_t nsize){ (void)ud; (void)osize; if(nsize==0){ free(ptr); return NULL; } else return realloc(ptr,nsize); } static int panic(lua_State*L){ (void)L; fprintf(stderr,"PANIC: unprotected error in call to Lua API (%s)\n", lua_tostring(L,-1)); return 0; } static lua_State*luaL_newstate(void){ lua_State*L=lua_newstate(l_alloc,NULL); if(L)lua_atpanic(L,&panic); return L; } static int luaB_tonumber(lua_State*L){ int base=luaL_optint(L,2,10); if(base==10){ luaL_checkany(L,1); if(lua_isnumber(L,1)){ lua_pushnumber(L,lua_tonumber(L,1)); return 1; } } else{ const char*s1=luaL_checkstring(L,1); char*s2; unsigned long n; luaL_argcheck(L,2<=base&&base<=36,2,"base out of range"); n=strtoul(s1,&s2,base); if(s1!=s2){ while(isspace((unsigned char)(*s2)))s2++; if(*s2=='\0'){ lua_pushnumber(L,(lua_Number)n); return 1; } } } lua_pushnil(L); return 1; } static int luaB_error(lua_State*L){ int level=luaL_optint(L,2,1); lua_settop(L,1); if(lua_isstring(L,1)&&level>0){ luaL_where(L,level); lua_pushvalue(L,1); lua_concat(L,2); } return lua_error(L); } static int luaB_setmetatable(lua_State*L){ int t=lua_type(L,2); luaL_checktype(L,1,5); luaL_argcheck(L,t==0||t==5,2, "nil or table expected"); if(luaL_getmetafield(L,1,"__metatable")) luaL_error(L,"cannot change a protected metatable"); lua_settop(L,2); lua_setmetatable(L,1); return 1; } static void getfunc(lua_State*L,int opt){ if(lua_isfunction(L,1))lua_pushvalue(L,1); else{ lua_Debug ar; int level=opt?luaL_optint(L,1,1):luaL_checkint(L,1); luaL_argcheck(L,level>=0,1,"level must be non-negative"); if(lua_getstack(L,level,&ar)==0) luaL_argerror(L,1,"invalid level"); lua_getinfo(L,"f",&ar); if(lua_isnil(L,-1)) luaL_error(L,"no function environment for tail call at level %d", level); } } static int luaB_setfenv(lua_State*L){ luaL_checktype(L,2,5); getfunc(L,0); lua_pushvalue(L,2); if(lua_isnumber(L,1)&&lua_tonumber(L,1)==0){ lua_pushthread(L); lua_insert(L,-2); lua_setfenv(L,-2); return 0; } else if(lua_iscfunction(L,-2)||lua_setfenv(L,-2)==0) luaL_error(L, LUA_QL("setfenv")" cannot change environment of given object"); return 1; } static int luaB_rawget(lua_State*L){ luaL_checktype(L,1,5); luaL_checkany(L,2); lua_settop(L,2); lua_rawget(L,1); return 1; } static int luaB_type(lua_State*L){ luaL_checkany(L,1); lua_pushstring(L,luaL_typename(L,1)); return 1; } static int luaB_next(lua_State*L){ luaL_checktype(L,1,5); lua_settop(L,2); if(lua_next(L,1)) return 2; else{ lua_pushnil(L); return 1; } } static int luaB_pairs(lua_State*L){ luaL_checktype(L,1,5); lua_pushvalue(L,lua_upvalueindex(1)); lua_pushvalue(L,1); lua_pushnil(L); return 3; } static int ipairsaux(lua_State*L){ int i=luaL_checkint(L,2); luaL_checktype(L,1,5); i++; lua_pushinteger(L,i); lua_rawgeti(L,1,i); return(lua_isnil(L,-1))?0:2; } static int luaB_ipairs(lua_State*L){ luaL_checktype(L,1,5); lua_pushvalue(L,lua_upvalueindex(1)); lua_pushvalue(L,1); lua_pushinteger(L,0); return 3; } static int load_aux(lua_State*L,int status){ if(status==0) return 1; else{ lua_pushnil(L); lua_insert(L,-2); return 2; } } static int luaB_loadstring(lua_State*L){ size_t l; const char*s=luaL_checklstring(L,1,&l); const char*chunkname=luaL_optstring(L,2,s); return load_aux(L,luaL_loadbuffer(L,s,l,chunkname)); } static int luaB_loadfile(lua_State*L){ const char*fname=luaL_optstring(L,1,NULL); return load_aux(L,luaL_loadfile(L,fname)); } static int luaB_assert(lua_State*L){ luaL_checkany(L,1); if(!lua_toboolean(L,1)) return luaL_error(L,"%s",luaL_optstring(L,2,"assertion failed!")); return lua_gettop(L); } static int luaB_unpack(lua_State*L){ int i,e,n; luaL_checktype(L,1,5); i=luaL_optint(L,2,1); e=luaL_opt(L,luaL_checkint,3,luaL_getn(L,1)); if(i>e)return 0; n=e-i+1; if(n<=0||!lua_checkstack(L,n)) return luaL_error(L,"too many results to unpack"); lua_rawgeti(L,1,i); while(i++e)e=pos; for(i=e;i>pos;i--){ lua_rawgeti(L,1,i-1); lua_rawseti(L,1,i); } break; } default:{ return luaL_error(L,"wrong number of arguments to "LUA_QL("insert")); } } luaL_setn(L,1,e); lua_rawseti(L,1,pos); return 0; } static int tremove(lua_State*L){ int e=aux_getn(L,1); int pos=luaL_optint(L,2,e); if(!(1<=pos&&pos<=e)) return 0; luaL_setn(L,1,e-1); lua_rawgeti(L,1,pos); for(;posu)luaL_error(L,"invalid order function for sorting"); lua_pop(L,1); } while(lua_rawgeti(L,1,--j),sort_comp(L,-3,-1)){ if(j0); } l=strlen(p); if(l==0||p[l-1]!='\n') luaL_addsize(&b,l); else{ luaL_addsize(&b,l-1); luaL_pushresult(&b); return 1; } } } static int read_chars(lua_State*L,FILE*f,size_t n){ size_t rlen; size_t nr; luaL_Buffer b; luaL_buffinit(L,&b); rlen=BUFSIZ; do{ char*p=luaL_prepbuffer(&b); if(rlen>n)rlen=n; nr=fread(p,sizeof(char),rlen,f); luaL_addsize(&b,nr); n-=nr; }while(n>0&&nr==rlen); luaL_pushresult(&b); return(n==0||lua_objlen(L,-1)>0); } static int g_read(lua_State*L,FILE*f,int first){ int nargs=lua_gettop(L)-1; int success; int n; clearerr(f); if(nargs==0){ success=read_line(L,f); n=first+1; } else{ luaL_checkstack(L,nargs+20,"too many arguments"); success=1; for(n=first;nargs--&&success;n++){ if(lua_type(L,n)==3){ size_t l=(size_t)lua_tointeger(L,n); success=(l==0)?test_eof(L,f):read_chars(L,f,l); } else{ const char*p=lua_tostring(L,n); luaL_argcheck(L,p&&p[0]=='*',n,"invalid option"); switch(p[1]){ case'n': success=read_number(L,f); break; case'l': success=read_line(L,f); break; case'a': read_chars(L,f,~((size_t)0)); success=1; break; default: return luaL_argerror(L,n,"invalid format"); } } } } if(ferror(f)) return pushresult(L,0,NULL); if(!success){ lua_pop(L,1); lua_pushnil(L); } return n-first; } static int io_read(lua_State*L){ return g_read(L,getiofile(L,1),1); } static int f_read(lua_State*L){ return g_read(L,tofile(L),2); } static int io_readline(lua_State*L){ FILE*f=*(FILE**)lua_touserdata(L,lua_upvalueindex(1)); int sucess; if(f==NULL) luaL_error(L,"file is already closed"); sucess=read_line(L,f); if(ferror(f)) return luaL_error(L,"%s",strerror(errno)); if(sucess)return 1; else{ if(lua_toboolean(L,lua_upvalueindex(2))){ lua_settop(L,0); lua_pushvalue(L,lua_upvalueindex(1)); aux_close(L); } return 0; } } static int g_write(lua_State*L,FILE*f,int arg){ int nargs=lua_gettop(L)-1; int status=1; for(;nargs--;arg++){ if(lua_type(L,arg)==3){ status=status&& fprintf(f,"%.14g",lua_tonumber(L,arg))>0; } else{ size_t l; const char*s=luaL_checklstring(L,arg,&l); status=status&&(fwrite(s,sizeof(char),l,f)==l); } } return pushresult(L,status,NULL); } static int io_write(lua_State*L){ return g_write(L,getiofile(L,2),1); } static int f_write(lua_State*L){ return g_write(L,tofile(L),2); } static int io_flush(lua_State*L){ return pushresult(L,fflush(getiofile(L,2))==0,NULL); } static int f_flush(lua_State*L){ return pushresult(L,fflush(tofile(L))==0,NULL); } static const luaL_Reg iolib[]={ {"close",io_close}, {"flush",io_flush}, {"input",io_input}, {"lines",io_lines}, {"open",io_open}, {"output",io_output}, {"read",io_read}, {"type",io_type}, {"write",io_write}, {NULL,NULL} }; static const luaL_Reg flib[]={ {"close",io_close}, {"flush",f_flush}, {"lines",f_lines}, {"read",f_read}, {"write",f_write}, {"__gc",io_gc}, {NULL,NULL} }; static void createmeta(lua_State*L){ luaL_newmetatable(L,"FILE*"); lua_pushvalue(L,-1); lua_setfield(L,-2,"__index"); luaL_register(L,NULL,flib); } static void createstdfile(lua_State*L,FILE*f,int k,const char*fname){ *newfile(L)=f; if(k>0){ lua_pushvalue(L,-1); lua_rawseti(L,(-10001),k); } lua_pushvalue(L,-2); lua_setfenv(L,-2); lua_setfield(L,-3,fname); } static void newfenv(lua_State*L,lua_CFunction cls){ lua_createtable(L,0,1); lua_pushcfunction(L,cls); lua_setfield(L,-2,"__close"); } static int luaopen_io(lua_State*L){ createmeta(L); newfenv(L,io_fclose); lua_replace(L,(-10001)); luaL_register(L,"io",iolib); newfenv(L,io_noclose); createstdfile(L,stdin,1,"stdin"); createstdfile(L,stdout,2,"stdout"); createstdfile(L,stderr,0,"stderr"); lua_pop(L,1); lua_getfield(L,-1,"popen"); newfenv(L,io_pclose); lua_setfenv(L,-2); lua_pop(L,1); return 1; } static int os_pushresult(lua_State*L,int i,const char*filename){ int en=errno; if(i){ lua_pushboolean(L,1); return 1; } else{ lua_pushnil(L); lua_pushfstring(L,"%s: %s",filename,strerror(en)); lua_pushinteger(L,en); return 3; } } static int os_remove(lua_State*L){ const char*filename=luaL_checkstring(L,1); return os_pushresult(L,remove(filename)==0,filename); } static int os_exit(lua_State*L){ exit(luaL_optint(L,1,EXIT_SUCCESS)); } static const luaL_Reg syslib[]={ {"exit",os_exit}, {"remove",os_remove}, {NULL,NULL} }; static int luaopen_os(lua_State*L){ luaL_register(L,"os",syslib); return 1; } #define uchar(c)((unsigned char)(c)) static ptrdiff_t posrelat(ptrdiff_t pos,size_t len){ if(pos<0)pos+=(ptrdiff_t)len+1; return(pos>=0)?pos:0; } static int str_sub(lua_State*L){ size_t l; const char*s=luaL_checklstring(L,1,&l); ptrdiff_t start=posrelat(luaL_checkinteger(L,2),l); ptrdiff_t end=posrelat(luaL_optinteger(L,3,-1),l); if(start<1)start=1; if(end>(ptrdiff_t)l)end=(ptrdiff_t)l; if(start<=end) lua_pushlstring(L,s+start-1,end-start+1); else lua_pushliteral(L,""); return 1; } static int str_lower(lua_State*L){ size_t l; size_t i; luaL_Buffer b; const char*s=luaL_checklstring(L,1,&l); luaL_buffinit(L,&b); for(i=0;i0) luaL_addlstring(&b,s,l); luaL_pushresult(&b); return 1; } static int str_byte(lua_State*L){ size_t l; const char*s=luaL_checklstring(L,1,&l); ptrdiff_t posi=posrelat(luaL_optinteger(L,2,1),l); ptrdiff_t pose=posrelat(luaL_optinteger(L,3,posi),l); int n,i; if(posi<=0)posi=1; if((size_t)pose>l)pose=l; if(posi>pose)return 0; n=(int)(pose-posi+1); if(posi+n<=pose) luaL_error(L,"string slice too long"); luaL_checkstack(L,n,"string slice too long"); for(i=0;i=ms->level||ms->capture[l].len==(-1)) return luaL_error(ms->L,"invalid capture index"); return l; } static int capture_to_close(MatchState*ms){ int level=ms->level; for(level--;level>=0;level--) if(ms->capture[level].len==(-1))return level; return luaL_error(ms->L,"invalid pattern capture"); } static const char*classend(MatchState*ms,const char*p){ switch(*p++){ case'%':{ if(*p=='\0') luaL_error(ms->L,"malformed pattern (ends with "LUA_QL("%%")")"); return p+1; } case'[':{ if(*p=='^')p++; do{ if(*p=='\0') luaL_error(ms->L,"malformed pattern (missing "LUA_QL("]")")"); if(*(p++)=='%'&&*p!='\0') p++; }while(*p!=']'); return p+1; } default:{ return p; } } } static int match_class(int c,int cl){ int res; switch(tolower(cl)){ case'a':res=isalpha(c);break; case'c':res=iscntrl(c);break; case'd':res=isdigit(c);break; case'l':res=islower(c);break; case'p':res=ispunct(c);break; case's':res=isspace(c);break; case'u':res=isupper(c);break; case'w':res=isalnum(c);break; case'x':res=isxdigit(c);break; case'z':res=(c==0);break; default:return(cl==c); } return(islower(cl)?res:!res); } static int matchbracketclass(int c,const char*p,const char*ec){ int sig=1; if(*(p+1)=='^'){ sig=0; p++; } while(++pL,"unbalanced pattern"); if(*s!=*p)return NULL; else{ int b=*p; int e=*(p+1); int cont=1; while(++ssrc_end){ if(*s==e){ if(--cont==0)return s+1; } else if(*s==b)cont++; } } return NULL; } static const char*max_expand(MatchState*ms,const char*s, const char*p,const char*ep){ ptrdiff_t i=0; while((s+i)src_end&&singlematch(uchar(*(s+i)),p,ep)) i++; while(i>=0){ const char*res=match(ms,(s+i),ep+1); if(res)return res; i--; } return NULL; } static const char*min_expand(MatchState*ms,const char*s, const char*p,const char*ep){ for(;;){ const char*res=match(ms,s,ep+1); if(res!=NULL) return res; else if(ssrc_end&&singlematch(uchar(*s),p,ep)) s++; else return NULL; } } static const char*start_capture(MatchState*ms,const char*s, const char*p,int what){ const char*res; int level=ms->level; if(level>=32)luaL_error(ms->L,"too many captures"); ms->capture[level].init=s; ms->capture[level].len=what; ms->level=level+1; if((res=match(ms,s,p))==NULL) ms->level--; return res; } static const char*end_capture(MatchState*ms,const char*s, const char*p){ int l=capture_to_close(ms); const char*res; ms->capture[l].len=s-ms->capture[l].init; if((res=match(ms,s,p))==NULL) ms->capture[l].len=(-1); return res; } static const char*match_capture(MatchState*ms,const char*s,int l){ size_t len; l=check_capture(ms,l); len=ms->capture[l].len; if((size_t)(ms->src_end-s)>=len&& memcmp(ms->capture[l].init,s,len)==0) return s+len; else return NULL; } static const char*match(MatchState*ms,const char*s,const char*p){ init: switch(*p){ case'(':{ if(*(p+1)==')') return start_capture(ms,s,p+2,(-2)); else return start_capture(ms,s,p+1,(-1)); } case')':{ return end_capture(ms,s,p+1); } case'%':{ switch(*(p+1)){ case'b':{ s=matchbalance(ms,s,p+2); if(s==NULL)return NULL; p+=4;goto init; } case'f':{ const char*ep;char previous; p+=2; if(*p!='[') luaL_error(ms->L,"missing "LUA_QL("[")" after " LUA_QL("%%f")" in pattern"); ep=classend(ms,p); previous=(s==ms->src_init)?'\0':*(s-1); if(matchbracketclass(uchar(previous),p,ep-1)|| !matchbracketclass(uchar(*s),p,ep-1))return NULL; p=ep;goto init; } default:{ if(isdigit(uchar(*(p+1)))){ s=match_capture(ms,s,uchar(*(p+1))); if(s==NULL)return NULL; p+=2;goto init; } goto dflt; } } } case'\0':{ return s; } case'$':{ if(*(p+1)=='\0') return(s==ms->src_end)?s:NULL; else goto dflt; } default:dflt:{ const char*ep=classend(ms,p); int m=ssrc_end&&singlematch(uchar(*s),p,ep); switch(*ep){ case'?':{ const char*res; if(m&&((res=match(ms,s+1,ep+1))!=NULL)) return res; p=ep+1;goto init; } case'*':{ return max_expand(ms,s,p,ep); } case'+':{ return(m?max_expand(ms,s+1,p,ep):NULL); } case'-':{ return min_expand(ms,s,p,ep); } default:{ if(!m)return NULL; s++;p=ep;goto init; } } } } } static const char*lmemfind(const char*s1,size_t l1, const char*s2,size_t l2){ if(l2==0)return s1; else if(l2>l1)return NULL; else{ const char*init; l2--; l1=l1-l2; while(l1>0&&(init=(const char*)memchr(s1,*s2,l1))!=NULL){ init++; if(memcmp(init,s2+1,l2)==0) return init-1; else{ l1-=init-s1; s1=init; } } return NULL; } } static void push_onecapture(MatchState*ms,int i,const char*s, const char*e){ if(i>=ms->level){ if(i==0) lua_pushlstring(ms->L,s,e-s); else luaL_error(ms->L,"invalid capture index"); } else{ ptrdiff_t l=ms->capture[i].len; if(l==(-1))luaL_error(ms->L,"unfinished capture"); if(l==(-2)) lua_pushinteger(ms->L,ms->capture[i].init-ms->src_init+1); else lua_pushlstring(ms->L,ms->capture[i].init,l); } } static int push_captures(MatchState*ms,const char*s,const char*e){ int i; int nlevels=(ms->level==0&&s)?1:ms->level; luaL_checkstack(ms->L,nlevels,"too many captures"); for(i=0;il1)init=(ptrdiff_t)l1; if(find&&(lua_toboolean(L,4)|| strpbrk(p,"^$*+?.([%-")==NULL)){ const char*s2=lmemfind(s+init,l1-init,p,l2); if(s2){ lua_pushinteger(L,s2-s+1); lua_pushinteger(L,s2-s+l2); return 2; } } else{ MatchState ms; int anchor=(*p=='^')?(p++,1):0; const char*s1=s+init; ms.L=L; ms.src_init=s; ms.src_end=s+l1; do{ const char*res; ms.level=0; if((res=match(&ms,s1,p))!=NULL){ if(find){ lua_pushinteger(L,s1-s+1); lua_pushinteger(L,res-s); return push_captures(&ms,NULL,0)+2; } else return push_captures(&ms,s1,res); } }while(s1++L,3,&l); for(i=0;iL; switch(lua_type(L,3)){ case 3: case 4:{ add_s(ms,b,s,e); return; } case 6:{ int n; lua_pushvalue(L,3); n=push_captures(ms,s,e); lua_call(L,n,1); break; } case 5:{ push_onecapture(ms,0,s,e); lua_gettable(L,3); break; } } if(!lua_toboolean(L,-1)){ lua_pop(L,1); lua_pushlstring(L,s,e-s); } else if(!lua_isstring(L,-1)) luaL_error(L,"invalid replacement value (a %s)",luaL_typename(L,-1)); luaL_addvalue(b); } static int str_gsub(lua_State*L){ size_t srcl; const char*src=luaL_checklstring(L,1,&srcl); const char*p=luaL_checkstring(L,2); int tr=lua_type(L,3); int max_s=luaL_optint(L,4,srcl+1); int anchor=(*p=='^')?(p++,1):0; int n=0; MatchState ms; luaL_Buffer b; luaL_argcheck(L,tr==3||tr==4|| tr==6||tr==5,3, "string/function/table expected"); luaL_buffinit(L,&b); ms.L=L; ms.src_init=src; ms.src_end=src+srcl; while(nsrc) src=e; else if(src=sizeof("-+ #0")) luaL_error(L,"invalid format (repeated flags)"); if(isdigit(uchar(*p)))p++; if(isdigit(uchar(*p)))p++; if(*p=='.'){ p++; if(isdigit(uchar(*p)))p++; if(isdigit(uchar(*p)))p++; } if(isdigit(uchar(*p))) luaL_error(L,"invalid format (width or precision too long)"); *(form++)='%'; strncpy(form,strfrmt,p-strfrmt+1); form+=p-strfrmt+1; *form='\0'; return p; } static void addintlen(char*form){ size_t l=strlen(form); char spec=form[l-1]; strcpy(form+l-1,"l"); form[l+sizeof("l")-2]=spec; form[l+sizeof("l")-1]='\0'; } static int str_format(lua_State*L){ int top=lua_gettop(L); int arg=1; size_t sfl; const char*strfrmt=luaL_checklstring(L,arg,&sfl); const char*strfrmt_end=strfrmt+sfl; luaL_Buffer b; luaL_buffinit(L,&b); while(strfrmttop) luaL_argerror(L,arg,"no value"); strfrmt=scanformat(L,strfrmt,form); switch(*strfrmt++){ case'c':{ sprintf(buff,form,(int)luaL_checknumber(L,arg)); break; } case'd':case'i':{ addintlen(form); sprintf(buff,form,(long)luaL_checknumber(L,arg)); break; } case'o':case'u':case'x':case'X':{ addintlen(form); sprintf(buff,form,(unsigned long)luaL_checknumber(L,arg)); break; } case'e':case'E':case'f': case'g':case'G':{ sprintf(buff,form,(double)luaL_checknumber(L,arg)); break; } case'q':{ addquoted(L,&b,arg); continue; } case's':{ size_t l; const char*s=luaL_checklstring(L,arg,&l); if(!strchr(form,'.')&&l>=100){ lua_pushvalue(L,arg); luaL_addvalue(&b); continue; } else{ sprintf(buff,form,s); break; } } default:{ return luaL_error(L,"invalid option "LUA_QL("%%%c")" to " LUA_QL("format"),*(strfrmt-1)); } } luaL_addlstring(&b,buff,strlen(buff)); } } luaL_pushresult(&b); return 1; } static const luaL_Reg strlib[]={ {"byte",str_byte}, {"char",str_char}, {"find",str_find}, {"format",str_format}, {"gmatch",gmatch}, {"gsub",str_gsub}, {"lower",str_lower}, {"match",str_match}, {"rep",str_rep}, {"sub",str_sub}, {"upper",str_upper}, {NULL,NULL} }; static void createmetatable(lua_State*L){ lua_createtable(L,0,1); lua_pushliteral(L,""); lua_pushvalue(L,-2); lua_setmetatable(L,-2); lua_pop(L,1); lua_pushvalue(L,-2); lua_setfield(L,-2,"__index"); lua_pop(L,1); } static int luaopen_string(lua_State*L){ luaL_register(L,"string",strlib); createmetatable(L); return 1; } static const luaL_Reg lualibs[]={ {"",luaopen_base}, {"table",luaopen_table}, {"io",luaopen_io}, {"os",luaopen_os}, {"string",luaopen_string}, {NULL,NULL} }; static void luaL_openlibs(lua_State*L){ const luaL_Reg*lib=lualibs; for(;lib->func;lib++){ lua_pushcfunction(L,lib->func); lua_pushstring(L,lib->name); lua_call(L,1,0); } } typedef unsigned int UB; static UB barg(lua_State*L,int idx){ union{lua_Number n;U64 b;}bn; bn.n=lua_tonumber(L,idx)+6755399441055744.0; if(bn.n==0.0&&!lua_isnumber(L,idx))luaL_typerror(L,idx,"number"); return(UB)bn.b; } #define BRET(b)lua_pushnumber(L,(lua_Number)(int)(b));return 1; static int tobit(lua_State*L){ BRET(barg(L,1))} static int bnot(lua_State*L){ BRET(~barg(L,1))} static int band(lua_State*L){ int i;UB b=barg(L,1);for(i=lua_gettop(L);i>1;i--)b&=barg(L,i);BRET(b)} static int bor(lua_State*L){ int i;UB b=barg(L,1);for(i=lua_gettop(L);i>1;i--)b|=barg(L,i);BRET(b)} static int bxor(lua_State*L){ int i;UB b=barg(L,1);for(i=lua_gettop(L);i>1;i--)b^=barg(L,i);BRET(b)} static int lshift(lua_State*L){ UB b=barg(L,1),n=barg(L,2)&31;BRET(b<>n)} static int arshift(lua_State*L){ UB b=barg(L,1),n=barg(L,2)&31;BRET((int)b>>n)} static int rol(lua_State*L){ UB b=barg(L,1),n=barg(L,2)&31;BRET((b<>(32-n)))} static int ror(lua_State*L){ UB b=barg(L,1),n=barg(L,2)&31;BRET((b>>n)|(b<<(32-n)))} static int bswap(lua_State*L){ UB b=barg(L,1);b=(b>>24)|((b>>8)&0xff00)|((b&0xff00)<<8)|(b<<24);BRET(b)} static int tohex(lua_State*L){ UB b=barg(L,1); int n=lua_isnone(L,2)?8:(int)barg(L,2); const char*hexdigits="0123456789abcdef"; char buf[8]; int i; if(n<0){n=-n;hexdigits="0123456789ABCDEF";} if(n>8)n=8; for(i=(int)n;--i>=0;){buf[i]=hexdigits[b&15];b>>=4;} lua_pushlstring(L,buf,(size_t)n); return 1; } static const struct luaL_Reg bitlib[]={ {"tobit",tobit}, {"bnot",bnot}, {"band",band}, {"bor",bor}, {"bxor",bxor}, {"lshift",lshift}, {"rshift",rshift}, {"arshift",arshift}, {"rol",rol}, {"ror",ror}, {"bswap",bswap}, {"tohex",tohex}, {NULL,NULL} }; int main(int argc,char**argv){ lua_State*L=luaL_newstate(); int i; luaL_openlibs(L); luaL_register(L,"bit",bitlib); if(argc<2)return sizeof(void*); lua_createtable(L,0,1); lua_pushstring(L,argv[1]); lua_rawseti(L,-2,0); lua_setglobal(L,"arg"); if(luaL_loadfile(L,argv[1])) goto err; for(i=2;i= 128 then local sh = 7; v = v - 128 repeat local r = p[0] v = v + bit.lshift(bit.band(r, 127), sh) sh = sh + 7 p = p + 1 until r < 128 end return p, v end -- ORDER LJ_T local name2itype = { str = 5, func = 9, tab = 12, int = 14, num = 15 } local BC = {} for i=0,#bcnames/6-1 do BC[string.gsub(string.sub(bcnames, i*6+1, i*6+6), " ", "")] = i end local xop, xra = isbe and 3 or 0, isbe and 2 or 1 local xrc, xrb = isbe and 1 or 2, isbe and 0 or 3 local function fixup_dump(dump, fixup) local buf = ffi.new("uint8_t[?]", #dump+1, dump) local p = buf+5 local n, sizebc p, n = read_uleb128(p) local start = p p = p + 4 p = read_uleb128(p) p = read_uleb128(p) p, sizebc = read_uleb128(p) local rawtab = {} for i=0,sizebc-1 do local op = p[xop] if op == BC.KSHORT then local rd = p[xrc] + 256*p[xrb] rd = bit.arshift(bit.lshift(rd, 16), 16) local f = fixup[rd] if f then if f[1] == "CHECK" then local tp = f[2] if tp == "tab" then rawtab[p[xra]] = true end p[xop] = tp == "num" and BC.ISNUM or BC.ISTYPE p[xrb] = 0 p[xrc] = name2itype[tp] else error("unhandled fixup type: "..f[1]) end end elseif op == BC.TGETV then if rawtab[p[xrb]] then p[xop] = BC.TGETR end elseif op == BC.TSETV then if rawtab[p[xrb]] then p[xop] = BC.TSETR end elseif op == BC.ITERC then if fixup.PAIRS then p[xop] = BC.ITERN end end p = p + 4 end return ffi.string(start, n) end local function find_defs(src) local defs = {} for name, code in string.gmatch(src, "LJLIB_LUA%(([^)]*)%)%s*/%*(.-)%*/") do local env = {} local tcode, fixup = transform_lua(code) local func = assert(load(tcode, "", nil, env))() defs[name] = fixup_dump(string.dump(func, true), fixup) defs[#defs+1] = name end return defs end local function gen_header(defs) local t = {} local function w(x) t[#t+1] = x end w("/* This is a generated file. DO NOT EDIT! */\n\n") w("static const int libbc_endian = ") w(isbe and 1 or 0) w(";\n\n") local s = "" for _,name in ipairs(defs) do s = s .. defs[name] end w("static const uint8_t libbc_code[] = {\n") local n = 0 for i=1,#s do local x = string.byte(s, i) w(x); w(",") n = n + (x < 10 and 2 or (x < 100 and 3 or 4)) if n >= 75 then n = 0; w("\n") end end w("0\n};\n\n") w("static const struct { const char *name; int ofs; } libbc_map[] = {\n") local m = 0 for _,name in ipairs(defs) do w('{"'); w(name); w('",'); w(m) w('},\n') m = m + #defs[name] end w("{NULL,"); w(m); w("}\n};\n\n") return table.concat(t) end local function write_file(name, data) if name == "-" then assert(io.write(data)) assert(io.flush()) else local fp = io.open(name) if fp then local old = fp:read("*a") fp:close() if data == old then return end end fp = assert(io.open(name, "w")) assert(fp:write(data)) assert(fp:close()) end end local outfile = parse_arg(arg) local src = read_files(arg) local defs = find_defs(src) local hdr = gen_header(defs) write_file(outfile, hdr) luajit-2.1.0~beta3+dfsg.orig/src/host/README0000644000175100017510000000030113101703334017734 0ustar ondrejondrejThe files in this directory are only used during the build process of LuaJIT. For cross-compilation, they must be executed on the host, not on the target. These files should NOT be installed! luajit-2.1.0~beta3+dfsg.orig/src/host/buildvm.c0000644000175100017510000003135213101703334020674 0ustar ondrejondrej/* ** LuaJIT VM builder. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h ** ** This is a tool to build the hand-tuned assembler code required for ** LuaJIT's bytecode interpreter. It supports a variety of output formats ** to feed different toolchains (see usage() below). ** ** This tool is not particularly optimized because it's only used while ** _building_ LuaJIT. There's no point in distributing or installing it. ** Only the object code generated by this tool is linked into LuaJIT. ** ** Caveat: some memory is not free'd, error handling is lazy. ** It's a one-shot tool -- any effort fixing this would be wasted. */ #include "buildvm.h" #include "lj_obj.h" #include "lj_gc.h" #include "lj_bc.h" #include "lj_ir.h" #include "lj_ircall.h" #include "lj_frame.h" #include "lj_dispatch.h" #if LJ_HASFFI #include "lj_ctype.h" #include "lj_ccall.h" #endif #include "luajit.h" #if defined(_WIN32) #include #include #endif /* ------------------------------------------------------------------------ */ /* DynASM glue definitions. */ #define Dst ctx #define Dst_DECL BuildCtx *ctx #define Dst_REF (ctx->D) #define DASM_CHECKS 1 #include "../dynasm/dasm_proto.h" /* Glue macros for DynASM. */ static int collect_reloc(BuildCtx *ctx, uint8_t *addr, int idx, int type); #define DASM_EXTERN(ctx, addr, idx, type) \ collect_reloc(ctx, addr, idx, type) /* ------------------------------------------------------------------------ */ /* Avoid trouble if cross-compiling for an x86 target. Speed doesn't matter. */ #define DASM_ALIGNED_WRITES 1 /* Embed architecture-specific DynASM encoder. */ #if LJ_TARGET_X86ORX64 #include "../dynasm/dasm_x86.h" #elif LJ_TARGET_ARM #include "../dynasm/dasm_arm.h" #elif LJ_TARGET_ARM64 #include "../dynasm/dasm_arm64.h" #elif LJ_TARGET_PPC #include "../dynasm/dasm_ppc.h" #elif LJ_TARGET_MIPS #include "../dynasm/dasm_mips.h" #else #error "No support for this architecture (yet)" #endif /* Embed generated architecture-specific backend. */ #include "buildvm_arch.h" /* ------------------------------------------------------------------------ */ void owrite(BuildCtx *ctx, const void *ptr, size_t sz) { if (fwrite(ptr, 1, sz, ctx->fp) != sz) { fprintf(stderr, "Error: cannot write to output file: %s\n", strerror(errno)); exit(1); } } /* ------------------------------------------------------------------------ */ /* Emit code as raw bytes. Only used for DynASM debugging. */ static void emit_raw(BuildCtx *ctx) { owrite(ctx, ctx->code, ctx->codesz); } /* -- Build machine code -------------------------------------------------- */ static const char *sym_decorate(BuildCtx *ctx, const char *prefix, const char *suffix) { char name[256]; char *p; #if LJ_64 const char *symprefix = ctx->mode == BUILD_machasm ? "_" : ""; #elif LJ_TARGET_XBOX360 const char *symprefix = ""; #else const char *symprefix = ctx->mode != BUILD_elfasm ? "_" : ""; #endif sprintf(name, "%s%s%s", symprefix, prefix, suffix); p = strchr(name, '@'); if (p) { #if LJ_TARGET_X86ORX64 if (!LJ_64 && (ctx->mode == BUILD_coffasm || ctx->mode == BUILD_peobj)) name[0] = name[1] == 'R' ? '_' : '@'; /* Just for _RtlUnwind@16. */ else *p = '\0'; #elif LJ_TARGET_PPC && !LJ_TARGET_CONSOLE /* Keep @plt etc. */ #else *p = '\0'; #endif } p = (char *)malloc(strlen(name)+1); /* MSVC doesn't like strdup. */ strcpy(p, name); return p; } #define NRELOCSYM (sizeof(extnames)/sizeof(extnames[0])-1) static int relocmap[NRELOCSYM]; /* Collect external relocations. */ static int collect_reloc(BuildCtx *ctx, uint8_t *addr, int idx, int type) { if (ctx->nreloc >= BUILD_MAX_RELOC) { fprintf(stderr, "Error: too many relocations, increase BUILD_MAX_RELOC.\n"); exit(1); } if (relocmap[idx] < 0) { relocmap[idx] = ctx->nrelocsym; ctx->relocsym[ctx->nrelocsym] = sym_decorate(ctx, "", extnames[idx]); ctx->nrelocsym++; } ctx->reloc[ctx->nreloc].ofs = (int32_t)(addr - ctx->code); ctx->reloc[ctx->nreloc].sym = relocmap[idx]; ctx->reloc[ctx->nreloc].type = type; ctx->nreloc++; #if LJ_TARGET_XBOX360 return (int)(ctx->code - addr) + 4; /* Encode symbol offset of .text. */ #else return 0; /* Encode symbol offset of 0. */ #endif } /* Naive insertion sort. Performance doesn't matter here. */ static void sym_insert(BuildCtx *ctx, int32_t ofs, const char *prefix, const char *suffix) { ptrdiff_t i = ctx->nsym++; while (i > 0) { if (ctx->sym[i-1].ofs <= ofs) break; ctx->sym[i] = ctx->sym[i-1]; i--; } ctx->sym[i].ofs = ofs; ctx->sym[i].name = sym_decorate(ctx, prefix, suffix); } /* Build the machine code. */ static int build_code(BuildCtx *ctx) { int status; int i; /* Initialize DynASM structures. */ ctx->nglob = GLOB__MAX; ctx->glob = (void **)malloc(ctx->nglob*sizeof(void *)); memset(ctx->glob, 0, ctx->nglob*sizeof(void *)); ctx->nreloc = 0; ctx->globnames = globnames; ctx->extnames = extnames; ctx->relocsym = (const char **)malloc(NRELOCSYM*sizeof(const char *)); ctx->nrelocsym = 0; for (i = 0; i < (int)NRELOCSYM; i++) relocmap[i] = -1; ctx->dasm_ident = DASM_IDENT; ctx->dasm_arch = DASM_ARCH; dasm_init(Dst, DASM_MAXSECTION); dasm_setupglobal(Dst, ctx->glob, ctx->nglob); dasm_setup(Dst, build_actionlist); /* Call arch-specific backend to emit the code. */ ctx->npc = build_backend(ctx); /* Finalize the code. */ (void)dasm_checkstep(Dst, -1); if ((status = dasm_link(Dst, &ctx->codesz))) return status; ctx->code = (uint8_t *)malloc(ctx->codesz); if ((status = dasm_encode(Dst, (void *)ctx->code))) return status; /* Allocate symbol table and bytecode offsets. */ ctx->beginsym = sym_decorate(ctx, "", LABEL_PREFIX "vm_asm_begin"); ctx->sym = (BuildSym *)malloc((ctx->npc+ctx->nglob+1)*sizeof(BuildSym)); ctx->nsym = 0; ctx->bc_ofs = (int32_t *)malloc(ctx->npc*sizeof(int32_t)); /* Collect the opcodes (PC labels). */ for (i = 0; i < ctx->npc; i++) { int32_t ofs = dasm_getpclabel(Dst, i); if (ofs < 0) return 0x22000000|i; ctx->bc_ofs[i] = ofs; if ((LJ_HASJIT || !(i == BC_JFORI || i == BC_JFORL || i == BC_JITERL || i == BC_JLOOP || i == BC_IFORL || i == BC_IITERL || i == BC_ILOOP)) && (LJ_HASFFI || i != BC_KCDATA)) sym_insert(ctx, ofs, LABEL_PREFIX_BC, bc_names[i]); } /* Collect the globals (named labels). */ for (i = 0; i < ctx->nglob; i++) { const char *gl = globnames[i]; int len = (int)strlen(gl); if (!ctx->glob[i]) { fprintf(stderr, "Error: undefined global %s\n", gl); exit(2); } /* Skip the _Z symbols. */ if (!(len >= 2 && gl[len-2] == '_' && gl[len-1] == 'Z')) sym_insert(ctx, (int32_t)((uint8_t *)(ctx->glob[i]) - ctx->code), LABEL_PREFIX, globnames[i]); } /* Close the address range. */ sym_insert(ctx, (int32_t)ctx->codesz, "", ""); ctx->nsym--; dasm_free(Dst); return 0; } /* -- Generate VM enums --------------------------------------------------- */ const char *const bc_names[] = { #define BCNAME(name, ma, mb, mc, mt) #name, BCDEF(BCNAME) #undef BCNAME NULL }; const char *const ir_names[] = { #define IRNAME(name, m, m1, m2) #name, IRDEF(IRNAME) #undef IRNAME NULL }; const char *const irt_names[] = { #define IRTNAME(name, size) #name, IRTDEF(IRTNAME) #undef IRTNAME NULL }; const char *const irfpm_names[] = { #define FPMNAME(name) #name, IRFPMDEF(FPMNAME) #undef FPMNAME NULL }; const char *const irfield_names[] = { #define FLNAME(name, ofs) #name, IRFLDEF(FLNAME) #undef FLNAME NULL }; const char *const ircall_names[] = { #define IRCALLNAME(cond, name, nargs, kind, type, flags) #name, IRCALLDEF(IRCALLNAME) #undef IRCALLNAME NULL }; static const char *const trace_errors[] = { #define TREDEF(name, msg) msg, #include "lj_traceerr.h" NULL }; static const char *lower(char *buf, const char *s) { char *p = buf; while (*s) { *p++ = (*s >= 'A' && *s <= 'Z') ? *s+0x20 : *s; s++; } *p = '\0'; return buf; } /* Emit C source code for bytecode-related definitions. */ static void emit_bcdef(BuildCtx *ctx) { int i; fprintf(ctx->fp, "/* This is a generated file. DO NOT EDIT! */\n\n"); fprintf(ctx->fp, "LJ_DATADEF const uint16_t lj_bc_ofs[] = {\n"); for (i = 0; i < ctx->npc; i++) { if (i != 0) fprintf(ctx->fp, ",\n"); fprintf(ctx->fp, "%d", ctx->bc_ofs[i]); } } /* Emit VM definitions as Lua code for debug modules. */ static void emit_vmdef(BuildCtx *ctx) { char buf[80]; int i; fprintf(ctx->fp, "-- This is a generated file. DO NOT EDIT!\n\n"); fprintf(ctx->fp, "return {\n\n"); fprintf(ctx->fp, "bcnames = \""); for (i = 0; bc_names[i]; i++) fprintf(ctx->fp, "%-6s", bc_names[i]); fprintf(ctx->fp, "\",\n\n"); fprintf(ctx->fp, "irnames = \""); for (i = 0; ir_names[i]; i++) fprintf(ctx->fp, "%-6s", ir_names[i]); fprintf(ctx->fp, "\",\n\n"); fprintf(ctx->fp, "irfpm = { [0]="); for (i = 0; irfpm_names[i]; i++) fprintf(ctx->fp, "\"%s\", ", lower(buf, irfpm_names[i])); fprintf(ctx->fp, "},\n\n"); fprintf(ctx->fp, "irfield = { [0]="); for (i = 0; irfield_names[i]; i++) { char *p; lower(buf, irfield_names[i]); p = strchr(buf, '_'); if (p) *p = '.'; fprintf(ctx->fp, "\"%s\", ", buf); } fprintf(ctx->fp, "},\n\n"); fprintf(ctx->fp, "ircall = {\n[0]="); for (i = 0; ircall_names[i]; i++) fprintf(ctx->fp, "\"%s\",\n", ircall_names[i]); fprintf(ctx->fp, "},\n\n"); fprintf(ctx->fp, "traceerr = {\n[0]="); for (i = 0; trace_errors[i]; i++) fprintf(ctx->fp, "\"%s\",\n", trace_errors[i]); fprintf(ctx->fp, "},\n\n"); } /* -- Argument parsing ---------------------------------------------------- */ /* Build mode names. */ static const char *const modenames[] = { #define BUILDNAME(name) #name, BUILDDEF(BUILDNAME) #undef BUILDNAME NULL }; /* Print usage information and exit. */ static void usage(void) { int i; fprintf(stderr, LUAJIT_VERSION " VM builder.\n"); fprintf(stderr, LUAJIT_COPYRIGHT ", " LUAJIT_URL "\n"); fprintf(stderr, "Target architecture: " LJ_ARCH_NAME "\n\n"); fprintf(stderr, "Usage: buildvm -m mode [-o outfile] [infiles...]\n\n"); fprintf(stderr, "Available modes:\n"); for (i = 0; i < BUILD__MAX; i++) fprintf(stderr, " %s\n", modenames[i]); exit(1); } /* Parse the output mode name. */ static BuildMode parsemode(const char *mode) { int i; for (i = 0; modenames[i]; i++) if (!strcmp(mode, modenames[i])) return (BuildMode)i; usage(); return (BuildMode)-1; } /* Parse arguments. */ static void parseargs(BuildCtx *ctx, char **argv) { const char *a; int i; ctx->mode = (BuildMode)-1; ctx->outname = "-"; for (i = 1; (a = argv[i]) != NULL; i++) { if (a[0] != '-') break; switch (a[1]) { case '-': if (a[2]) goto err; i++; goto ok; case '\0': goto ok; case 'm': i++; if (a[2] || argv[i] == NULL) goto err; ctx->mode = parsemode(argv[i]); break; case 'o': i++; if (a[2] || argv[i] == NULL) goto err; ctx->outname = argv[i]; break; default: err: usage(); break; } } ok: ctx->args = argv+i; if (ctx->mode == (BuildMode)-1) goto err; } int main(int argc, char **argv) { BuildCtx ctx_; BuildCtx *ctx = &ctx_; int status, binmode; if (sizeof(void *) != 4*LJ_32+8*LJ_64) { fprintf(stderr,"Error: pointer size mismatch in cross-build.\n"); fprintf(stderr,"Try: make HOST_CC=\"gcc -m32\" CROSS=...\n\n"); return 1; } UNUSED(argc); parseargs(ctx, argv); if ((status = build_code(ctx))) { fprintf(stderr,"Error: DASM error %08x\n", status); return 1; } switch (ctx->mode) { case BUILD_peobj: case BUILD_raw: binmode = 1; break; default: binmode = 0; break; } if (ctx->outname[0] == '-' && ctx->outname[1] == '\0') { ctx->fp = stdout; #if defined(_WIN32) if (binmode) _setmode(_fileno(stdout), _O_BINARY); /* Yuck. */ #endif } else if (!(ctx->fp = fopen(ctx->outname, binmode ? "wb" : "w"))) { fprintf(stderr, "Error: cannot open output file '%s': %s\n", ctx->outname, strerror(errno)); exit(1); } switch (ctx->mode) { case BUILD_elfasm: case BUILD_coffasm: case BUILD_machasm: emit_asm(ctx); emit_asm_debug(ctx); break; case BUILD_peobj: emit_peobj(ctx); break; case BUILD_raw: emit_raw(ctx); break; case BUILD_bcdef: emit_bcdef(ctx); emit_lib(ctx); break; case BUILD_vmdef: emit_vmdef(ctx); emit_lib(ctx); fprintf(ctx->fp, "}\n\n"); break; case BUILD_ffdef: case BUILD_libdef: case BUILD_recdef: emit_lib(ctx); break; case BUILD_folddef: emit_fold(ctx); break; default: break; } fflush(ctx->fp); if (ferror(ctx->fp)) { fprintf(stderr, "Error: cannot write to output file: %s\n", strerror(errno)); exit(1); } fclose(ctx->fp); return 0; } luajit-2.1.0~beta3+dfsg.orig/src/host/buildvm_fold.c0000644000175100017510000001451613101703334021703 0ustar ondrejondrej/* ** LuaJIT VM builder: IR folding hash table generator. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #include "buildvm.h" #include "lj_obj.h" #include "lj_ir.h" /* Context for the folding hash table generator. */ static int lineno; static uint32_t funcidx; static uint32_t foldkeys[BUILD_MAX_FOLD]; static uint32_t nkeys; /* Try to fill the hash table with keys using the hash parameters. */ static int tryhash(uint32_t *htab, uint32_t sz, uint32_t r, int dorol) { uint32_t i; if (dorol && ((r & 31) == 0 || (r>>5) == 0)) return 0; /* Avoid zero rotates. */ memset(htab, 0xff, (sz+1)*sizeof(uint32_t)); for (i = 0; i < nkeys; i++) { uint32_t key = foldkeys[i]; uint32_t k = key & 0xffffff; uint32_t h = (dorol ? lj_rol(lj_rol(k, r>>5) - k, r&31) : (((k << (r>>5)) - k) << (r&31))) % sz; if (htab[h] != 0xffffffff) { /* Collision on primary slot. */ if (htab[h+1] != 0xffffffff) { /* Collision on secondary slot. */ /* Try to move the colliding key, if possible. */ if (h < sz-1 && htab[h+2] == 0xffffffff) { uint32_t k2 = htab[h+1] & 0xffffff; uint32_t h2 = (dorol ? lj_rol(lj_rol(k2, r>>5) - k2, r&31) : (((k2 << (r>>5)) - k2) << (r&31))) % sz; if (h2 != h+1) return 0; /* Cannot resolve collision. */ htab[h+2] = htab[h+1]; /* Move colliding key to secondary slot. */ } else { return 0; /* Collision. */ } } htab[h+1] = key; } else { htab[h] = key; } } return 1; /* Success, all keys could be stored. */ } /* Print the generated hash table. */ static void printhash(BuildCtx *ctx, uint32_t *htab, uint32_t sz) { uint32_t i; fprintf(ctx->fp, "static const uint32_t fold_hash[%d] = {\n0x%08x", sz+1, htab[0]); for (i = 1; i < sz+1; i++) fprintf(ctx->fp, ",\n0x%08x", htab[i]); fprintf(ctx->fp, "\n};\n\n"); } /* Exhaustive search for the shortest semi-perfect hash table. */ static void makehash(BuildCtx *ctx) { uint32_t htab[BUILD_MAX_FOLD*2+1]; uint32_t sz, r; /* Search for the smallest hash table with an odd size. */ for (sz = (nkeys|1); sz < BUILD_MAX_FOLD*2; sz += 2) { /* First try all shift hash combinations. */ for (r = 0; r < 32*32; r++) { if (tryhash(htab, sz, r, 0)) { printhash(ctx, htab, sz); fprintf(ctx->fp, "#define fold_hashkey(k)\t(((((k)<<%u)-(k))<<%u)%%%u)\n\n", r>>5, r&31, sz); return; } } /* Then try all rotate hash combinations. */ for (r = 0; r < 32*32; r++) { if (tryhash(htab, sz, r, 1)) { printhash(ctx, htab, sz); fprintf(ctx->fp, "#define fold_hashkey(k)\t(lj_rol(lj_rol((k),%u)-(k),%u)%%%u)\n\n", r>>5, r&31, sz); return; } } } fprintf(stderr, "Error: search for perfect hash failed\n"); exit(1); } /* Parse one token of a fold rule. */ static uint32_t nexttoken(char **pp, int allowlit, int allowany) { char *p = *pp; if (p) { uint32_t i; char *q = strchr(p, ' '); if (q) *q++ = '\0'; *pp = q; if (allowlit && !strncmp(p, "IRFPM_", 6)) { for (i = 0; irfpm_names[i]; i++) if (!strcmp(irfpm_names[i], p+6)) return i; } else if (allowlit && !strncmp(p, "IRFL_", 5)) { for (i = 0; irfield_names[i]; i++) if (!strcmp(irfield_names[i], p+5)) return i; } else if (allowlit && !strncmp(p, "IRCALL_", 7)) { for (i = 0; ircall_names[i]; i++) if (!strcmp(ircall_names[i], p+7)) return i; } else if (allowlit && !strncmp(p, "IRCONV_", 7)) { for (i = 0; irt_names[i]; i++) { const char *r = strchr(p+7, '_'); if (r && !strncmp(irt_names[i], p+7, r-(p+7))) { uint32_t j; for (j = 0; irt_names[j]; j++) if (!strcmp(irt_names[j], r+1)) return (i << 5) + j; } } } else if (allowlit && *p >= '0' && *p <= '9') { for (i = 0; *p >= '0' && *p <= '9'; p++) i = i*10 + (*p - '0'); if (*p == '\0') return i; } else if (allowany && !strcmp("any", p)) { return allowany; } else { for (i = 0; ir_names[i]; i++) if (!strcmp(ir_names[i], p)) return i; } fprintf(stderr, "Error: bad fold definition token \"%s\" at line %d\n", p, lineno); exit(1); } return 0; } /* Parse a fold rule. */ static void foldrule(char *p) { uint32_t op = nexttoken(&p, 0, 0); uint32_t left = nexttoken(&p, 0, 0x7f); uint32_t right = nexttoken(&p, 1, 0x3ff); uint32_t key = (funcidx << 24) | (op << 17) | (left << 10) | right; uint32_t i; if (nkeys >= BUILD_MAX_FOLD) { fprintf(stderr, "Error: too many fold rules, increase BUILD_MAX_FOLD.\n"); exit(1); } /* Simple insertion sort to detect duplicates. */ for (i = nkeys; i > 0; i--) { if ((foldkeys[i-1]&0xffffff) < (key & 0xffffff)) break; if ((foldkeys[i-1]&0xffffff) == (key & 0xffffff)) { fprintf(stderr, "Error: duplicate fold definition at line %d\n", lineno); exit(1); } foldkeys[i] = foldkeys[i-1]; } foldkeys[i] = key; nkeys++; } /* Emit C source code for IR folding hash table. */ void emit_fold(BuildCtx *ctx) { char buf[256]; /* We don't care about analyzing lines longer than that. */ const char *fname = ctx->args[0]; FILE *fp; if (fname == NULL) { fprintf(stderr, "Error: missing input filename\n"); exit(1); } if (fname[0] == '-' && fname[1] == '\0') { fp = stdin; } else { fp = fopen(fname, "r"); if (!fp) { fprintf(stderr, "Error: cannot open input file '%s': %s\n", fname, strerror(errno)); exit(1); } } fprintf(ctx->fp, "/* This is a generated file. DO NOT EDIT! */\n\n"); fprintf(ctx->fp, "static const FoldFunc fold_func[] = {\n"); lineno = 0; funcidx = 0; nkeys = 0; while (fgets(buf, sizeof(buf), fp) != NULL) { lineno++; /* The prefix must be at the start of a line, otherwise it's ignored. */ if (!strncmp(buf, FOLDDEF_PREFIX, sizeof(FOLDDEF_PREFIX)-1)) { char *p = buf+sizeof(FOLDDEF_PREFIX)-1; char *q = strchr(p, ')'); if (p[0] == '(' && q) { p++; *q = '\0'; foldrule(p); } else if ((p[0] == 'F' || p[0] == 'X') && p[1] == '(' && q) { p += 2; *q = '\0'; if (funcidx) fprintf(ctx->fp, ",\n"); if (p[-2] == 'X') fprintf(ctx->fp, " %s", p); else fprintf(ctx->fp, " fold_%s", p); funcidx++; } else { buf[strlen(buf)-1] = '\0'; fprintf(stderr, "Error: unknown fold definition tag %s%s at line %d\n", FOLDDEF_PREFIX, p, lineno); exit(1); } } } fclose(fp); fprintf(ctx->fp, "\n};\n\n"); makehash(ctx); } luajit-2.1.0~beta3+dfsg.orig/src/host/buildvm_peobj.c0000644000175100017510000002757213101703334022064 0ustar ondrejondrej/* ** LuaJIT VM builder: PE object emitter. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h ** ** Only used for building on Windows, since we cannot assume the presence ** of a suitable assembler. The host and target byte order must match. */ #include "buildvm.h" #include "lj_bc.h" #if LJ_TARGET_X86ORX64 || LJ_TARGET_PPC /* Context for PE object emitter. */ static char *strtab; static size_t strtabofs; /* -- PE object definitions ----------------------------------------------- */ /* PE header. */ typedef struct PEheader { uint16_t arch; uint16_t nsects; uint32_t time; uint32_t symtabofs; uint32_t nsyms; uint16_t opthdrsz; uint16_t flags; } PEheader; /* PE section. */ typedef struct PEsection { char name[8]; uint32_t vsize; uint32_t vaddr; uint32_t size; uint32_t ofs; uint32_t relocofs; uint32_t lineofs; uint16_t nreloc; uint16_t nline; uint32_t flags; } PEsection; /* PE relocation. */ typedef struct PEreloc { uint32_t vaddr; uint32_t symidx; uint16_t type; } PEreloc; /* Cannot use sizeof, because it pads up to the max. alignment. */ #define PEOBJ_RELOC_SIZE (4+4+2) /* PE symbol table entry. */ typedef struct PEsym { union { char name[8]; uint32_t nameref[2]; } n; uint32_t value; int16_t sect; uint16_t type; uint8_t scl; uint8_t naux; } PEsym; /* PE symbol table auxiliary entry for a section. */ typedef struct PEsymaux { uint32_t size; uint16_t nreloc; uint16_t nline; uint32_t cksum; uint16_t assoc; uint8_t comdatsel; uint8_t unused[3]; } PEsymaux; /* Cannot use sizeof, because it pads up to the max. alignment. */ #define PEOBJ_SYM_SIZE (8+4+2+2+1+1) /* PE object CPU specific defines. */ #if LJ_TARGET_X86 #define PEOBJ_ARCH_TARGET 0x014c #define PEOBJ_RELOC_REL32 0x14 /* MS: REL32, GNU: DISP32. */ #define PEOBJ_RELOC_DIR32 0x06 #define PEOBJ_RELOC_OFS 0 #define PEOBJ_TEXT_FLAGS 0x60500020 /* 60=r+x, 50=align16, 20=code. */ #elif LJ_TARGET_X64 #define PEOBJ_ARCH_TARGET 0x8664 #define PEOBJ_RELOC_REL32 0x04 /* MS: REL32, GNU: DISP32. */ #define PEOBJ_RELOC_DIR32 0x02 #define PEOBJ_RELOC_ADDR32NB 0x03 #define PEOBJ_RELOC_OFS 0 #define PEOBJ_TEXT_FLAGS 0x60500020 /* 60=r+x, 50=align16, 20=code. */ #elif LJ_TARGET_PPC #define PEOBJ_ARCH_TARGET 0x01f2 #define PEOBJ_RELOC_REL32 0x06 #define PEOBJ_RELOC_DIR32 0x02 #define PEOBJ_RELOC_OFS (-4) #define PEOBJ_TEXT_FLAGS 0x60400020 /* 60=r+x, 40=align8, 20=code. */ #endif /* Section numbers (0-based). */ enum { PEOBJ_SECT_ABS = -2, PEOBJ_SECT_UNDEF = -1, PEOBJ_SECT_TEXT, #if LJ_TARGET_X64 PEOBJ_SECT_PDATA, PEOBJ_SECT_XDATA, #elif LJ_TARGET_X86 PEOBJ_SECT_SXDATA, #endif PEOBJ_SECT_RDATA_Z, PEOBJ_NSECTIONS }; /* Symbol types. */ #define PEOBJ_TYPE_NULL 0 #define PEOBJ_TYPE_FUNC 0x20 /* Symbol storage class. */ #define PEOBJ_SCL_EXTERN 2 #define PEOBJ_SCL_STATIC 3 /* -- PE object emitter --------------------------------------------------- */ /* Emit PE object symbol. */ static void emit_peobj_sym(BuildCtx *ctx, const char *name, uint32_t value, int sect, int type, int scl) { PEsym sym; size_t len = strlen(name); if (!strtab) { /* Pass 1: only calculate string table length. */ if (len > 8) strtabofs += len+1; return; } if (len <= 8) { memcpy(sym.n.name, name, len); memset(sym.n.name+len, 0, 8-len); } else { sym.n.nameref[0] = 0; sym.n.nameref[1] = (uint32_t)strtabofs; memcpy(strtab + strtabofs, name, len); strtab[strtabofs+len] = 0; strtabofs += len+1; } sym.value = value; sym.sect = (int16_t)(sect+1); /* 1-based section number. */ sym.type = (uint16_t)type; sym.scl = (uint8_t)scl; sym.naux = 0; owrite(ctx, &sym, PEOBJ_SYM_SIZE); } /* Emit PE object section symbol. */ static void emit_peobj_sym_sect(BuildCtx *ctx, PEsection *pesect, int sect) { PEsym sym; PEsymaux aux; if (!strtab) return; /* Pass 1: no output. */ memcpy(sym.n.name, pesect[sect].name, 8); sym.value = 0; sym.sect = (int16_t)(sect+1); /* 1-based section number. */ sym.type = PEOBJ_TYPE_NULL; sym.scl = PEOBJ_SCL_STATIC; sym.naux = 1; owrite(ctx, &sym, PEOBJ_SYM_SIZE); memset(&aux, 0, sizeof(PEsymaux)); aux.size = pesect[sect].size; aux.nreloc = pesect[sect].nreloc; owrite(ctx, &aux, PEOBJ_SYM_SIZE); } /* Emit Windows PE object file. */ void emit_peobj(BuildCtx *ctx) { PEheader pehdr; PEsection pesect[PEOBJ_NSECTIONS]; uint32_t sofs; int i, nrsym; union { uint8_t b; uint32_t u; } host_endian; sofs = sizeof(PEheader) + PEOBJ_NSECTIONS*sizeof(PEsection); /* Fill in PE sections. */ memset(&pesect, 0, PEOBJ_NSECTIONS*sizeof(PEsection)); memcpy(pesect[PEOBJ_SECT_TEXT].name, ".text", sizeof(".text")-1); pesect[PEOBJ_SECT_TEXT].ofs = sofs; sofs += (pesect[PEOBJ_SECT_TEXT].size = (uint32_t)ctx->codesz); pesect[PEOBJ_SECT_TEXT].relocofs = sofs; sofs += (pesect[PEOBJ_SECT_TEXT].nreloc = (uint16_t)ctx->nreloc) * PEOBJ_RELOC_SIZE; /* Flags: 60 = read+execute, 50 = align16, 20 = code. */ pesect[PEOBJ_SECT_TEXT].flags = PEOBJ_TEXT_FLAGS; #if LJ_TARGET_X64 memcpy(pesect[PEOBJ_SECT_PDATA].name, ".pdata", sizeof(".pdata")-1); pesect[PEOBJ_SECT_PDATA].ofs = sofs; sofs += (pesect[PEOBJ_SECT_PDATA].size = 6*4); pesect[PEOBJ_SECT_PDATA].relocofs = sofs; sofs += (pesect[PEOBJ_SECT_PDATA].nreloc = 6) * PEOBJ_RELOC_SIZE; /* Flags: 40 = read, 30 = align4, 40 = initialized data. */ pesect[PEOBJ_SECT_PDATA].flags = 0x40300040; memcpy(pesect[PEOBJ_SECT_XDATA].name, ".xdata", sizeof(".xdata")-1); pesect[PEOBJ_SECT_XDATA].ofs = sofs; sofs += (pesect[PEOBJ_SECT_XDATA].size = 8*2+4+6*2); /* See below. */ pesect[PEOBJ_SECT_XDATA].relocofs = sofs; sofs += (pesect[PEOBJ_SECT_XDATA].nreloc = 1) * PEOBJ_RELOC_SIZE; /* Flags: 40 = read, 30 = align4, 40 = initialized data. */ pesect[PEOBJ_SECT_XDATA].flags = 0x40300040; #elif LJ_TARGET_X86 memcpy(pesect[PEOBJ_SECT_SXDATA].name, ".sxdata", sizeof(".sxdata")-1); pesect[PEOBJ_SECT_SXDATA].ofs = sofs; sofs += (pesect[PEOBJ_SECT_SXDATA].size = 4); pesect[PEOBJ_SECT_SXDATA].relocofs = sofs; /* Flags: 40 = read, 30 = align4, 02 = lnk_info, 40 = initialized data. */ pesect[PEOBJ_SECT_SXDATA].flags = 0x40300240; #endif memcpy(pesect[PEOBJ_SECT_RDATA_Z].name, ".rdata$Z", sizeof(".rdata$Z")-1); pesect[PEOBJ_SECT_RDATA_Z].ofs = sofs; sofs += (pesect[PEOBJ_SECT_RDATA_Z].size = (uint32_t)strlen(ctx->dasm_ident)+1); /* Flags: 40 = read, 30 = align4, 40 = initialized data. */ pesect[PEOBJ_SECT_RDATA_Z].flags = 0x40300040; /* Fill in PE header. */ pehdr.arch = PEOBJ_ARCH_TARGET; pehdr.nsects = PEOBJ_NSECTIONS; pehdr.time = 0; /* Timestamp is optional. */ pehdr.symtabofs = sofs; pehdr.opthdrsz = 0; pehdr.flags = 0; /* Compute the size of the symbol table: ** @feat.00 + nsections*2 ** + asm_start + nsym ** + nrsym */ nrsym = ctx->nrelocsym; pehdr.nsyms = 1+PEOBJ_NSECTIONS*2 + 1+ctx->nsym + nrsym; #if LJ_TARGET_X64 pehdr.nsyms += 1; /* Symbol for lj_err_unwind_win. */ #endif /* Write PE object header and all sections. */ owrite(ctx, &pehdr, sizeof(PEheader)); owrite(ctx, &pesect, sizeof(PEsection)*PEOBJ_NSECTIONS); /* Write .text section. */ host_endian.u = 1; if (host_endian.b != LJ_ENDIAN_SELECT(1, 0)) { #if LJ_TARGET_PPC uint32_t *p = (uint32_t *)ctx->code; int n = (int)(ctx->codesz >> 2); for (i = 0; i < n; i++, p++) *p = lj_bswap(*p); /* Byteswap .text section. */ #else fprintf(stderr, "Error: different byte order for host and target\n"); exit(1); #endif } owrite(ctx, ctx->code, ctx->codesz); for (i = 0; i < ctx->nreloc; i++) { PEreloc reloc; reloc.vaddr = (uint32_t)ctx->reloc[i].ofs + PEOBJ_RELOC_OFS; reloc.symidx = 1+2+ctx->reloc[i].sym; /* Reloc syms are after .text sym. */ reloc.type = ctx->reloc[i].type ? PEOBJ_RELOC_REL32 : PEOBJ_RELOC_DIR32; owrite(ctx, &reloc, PEOBJ_RELOC_SIZE); } #if LJ_TARGET_X64 { /* Write .pdata section. */ uint32_t fcofs = (uint32_t)ctx->sym[ctx->nsym-1].ofs; uint32_t pdata[3]; /* Start of .text, end of .text and .xdata. */ PEreloc reloc; pdata[0] = 0; pdata[1] = fcofs; pdata[2] = 0; owrite(ctx, &pdata, sizeof(pdata)); pdata[0] = fcofs; pdata[1] = (uint32_t)ctx->codesz; pdata[2] = 20; owrite(ctx, &pdata, sizeof(pdata)); reloc.vaddr = 0; reloc.symidx = 1+2+nrsym+2+2+1; reloc.type = PEOBJ_RELOC_ADDR32NB; owrite(ctx, &reloc, PEOBJ_RELOC_SIZE); reloc.vaddr = 4; reloc.symidx = 1+2+nrsym+2+2+1; reloc.type = PEOBJ_RELOC_ADDR32NB; owrite(ctx, &reloc, PEOBJ_RELOC_SIZE); reloc.vaddr = 8; reloc.symidx = 1+2+nrsym+2; reloc.type = PEOBJ_RELOC_ADDR32NB; owrite(ctx, &reloc, PEOBJ_RELOC_SIZE); reloc.vaddr = 12; reloc.symidx = 1+2+nrsym+2+2+1; reloc.type = PEOBJ_RELOC_ADDR32NB; owrite(ctx, &reloc, PEOBJ_RELOC_SIZE); reloc.vaddr = 16; reloc.symidx = 1+2+nrsym+2+2+1; reloc.type = PEOBJ_RELOC_ADDR32NB; owrite(ctx, &reloc, PEOBJ_RELOC_SIZE); reloc.vaddr = 20; reloc.symidx = 1+2+nrsym+2; reloc.type = PEOBJ_RELOC_ADDR32NB; owrite(ctx, &reloc, PEOBJ_RELOC_SIZE); } { /* Write .xdata section. */ uint16_t xdata[8+2+6]; PEreloc reloc; xdata[0] = 0x01|0x08|0x10; /* Ver. 1, uhandler/ehandler, prolog size 0. */ xdata[1] = 0x0005; /* Number of unwind codes, no frame pointer. */ xdata[2] = 0x4200; /* Stack offset 4*8+8 = aword*5. */ xdata[3] = 0x3000; /* Push rbx. */ xdata[4] = 0x6000; /* Push rsi. */ xdata[5] = 0x7000; /* Push rdi. */ xdata[6] = 0x5000; /* Push rbp. */ xdata[7] = 0; /* Alignment. */ xdata[8] = xdata[9] = 0; /* Relocated address of exception handler. */ xdata[10] = 0x01; /* Ver. 1, no handler, prolog size 0. */ xdata[11] = 0x1504; /* Number of unwind codes, fp = rbp, fpofs = 16. */ xdata[12] = 0x0300; /* set_fpreg. */ xdata[13] = 0x0200; /* stack offset 0*8+8 = aword*1. */ xdata[14] = 0x3000; /* Push rbx. */ xdata[15] = 0x5000; /* Push rbp. */ owrite(ctx, &xdata, sizeof(xdata)); reloc.vaddr = 2*8; reloc.symidx = 1+2+nrsym+2+2; reloc.type = PEOBJ_RELOC_ADDR32NB; owrite(ctx, &reloc, PEOBJ_RELOC_SIZE); } #elif LJ_TARGET_X86 /* Write .sxdata section. */ for (i = 0; i < nrsym; i++) { if (!strcmp(ctx->relocsym[i], "_lj_err_unwind_win")) { uint32_t symidx = 1+2+i; owrite(ctx, &symidx, 4); break; } } if (i == nrsym) { fprintf(stderr, "Error: extern lj_err_unwind_win not used\n"); exit(1); } #endif /* Write .rdata$Z section. */ owrite(ctx, ctx->dasm_ident, strlen(ctx->dasm_ident)+1); /* Write symbol table. */ strtab = NULL; /* 1st pass: collect string sizes. */ for (;;) { strtabofs = 4; /* Mark as SafeSEH compliant. */ emit_peobj_sym(ctx, "@feat.00", 1, PEOBJ_SECT_ABS, PEOBJ_TYPE_NULL, PEOBJ_SCL_STATIC); emit_peobj_sym_sect(ctx, pesect, PEOBJ_SECT_TEXT); for (i = 0; i < nrsym; i++) emit_peobj_sym(ctx, ctx->relocsym[i], 0, PEOBJ_SECT_UNDEF, PEOBJ_TYPE_FUNC, PEOBJ_SCL_EXTERN); #if LJ_TARGET_X64 emit_peobj_sym_sect(ctx, pesect, PEOBJ_SECT_PDATA); emit_peobj_sym_sect(ctx, pesect, PEOBJ_SECT_XDATA); emit_peobj_sym(ctx, "lj_err_unwind_win", 0, PEOBJ_SECT_UNDEF, PEOBJ_TYPE_FUNC, PEOBJ_SCL_EXTERN); #elif LJ_TARGET_X86 emit_peobj_sym_sect(ctx, pesect, PEOBJ_SECT_SXDATA); #endif emit_peobj_sym(ctx, ctx->beginsym, 0, PEOBJ_SECT_TEXT, PEOBJ_TYPE_NULL, PEOBJ_SCL_EXTERN); for (i = 0; i < ctx->nsym; i++) emit_peobj_sym(ctx, ctx->sym[i].name, (uint32_t)ctx->sym[i].ofs, PEOBJ_SECT_TEXT, PEOBJ_TYPE_FUNC, PEOBJ_SCL_EXTERN); emit_peobj_sym_sect(ctx, pesect, PEOBJ_SECT_RDATA_Z); if (strtab) break; /* 2nd pass: alloc strtab, write syms and copy strings. */ strtab = (char *)malloc(strtabofs); *(uint32_t *)strtab = (uint32_t)strtabofs; } /* Write string table. */ owrite(ctx, strtab, strtabofs); } #else void emit_peobj(BuildCtx *ctx) { UNUSED(ctx); fprintf(stderr, "Error: no PE object support for this target\n"); exit(1); } #endif luajit-2.1.0~beta3+dfsg.orig/src/host/buildvm_lib.c0000644000175100017510000002755313101703334021532 0ustar ondrejondrej/* ** LuaJIT VM builder: library definition compiler. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #include "buildvm.h" #include "lj_obj.h" #include "lj_bc.h" #include "lj_lib.h" #include "buildvm_libbc.h" /* Context for library definitions. */ static uint8_t obuf[8192]; static uint8_t *optr; static char modname[80]; static size_t modnamelen; static char funcname[80]; static int modstate, regfunc; static int ffid, recffid, ffasmfunc; enum { REGFUNC_OK, REGFUNC_NOREG, REGFUNC_NOREGUV }; static void libdef_name(const char *p, int kind) { size_t n = strlen(p); if (kind != LIBINIT_STRING) { if (n > modnamelen && p[modnamelen] == '_' && !strncmp(p, modname, modnamelen)) { p += modnamelen+1; n -= modnamelen+1; } } if (n > LIBINIT_MAXSTR) { fprintf(stderr, "Error: string too long: '%s'\n", p); exit(1); } if (optr+1+n+2 > obuf+sizeof(obuf)) { /* +2 for caller. */ fprintf(stderr, "Error: output buffer overflow\n"); exit(1); } *optr++ = (uint8_t)(n | kind); memcpy(optr, p, n); optr += n; } static void libdef_endmodule(BuildCtx *ctx) { if (modstate != 0) { char line[80]; const uint8_t *p; int n; if (modstate == 1) fprintf(ctx->fp, " (lua_CFunction)0"); fprintf(ctx->fp, "\n};\n"); fprintf(ctx->fp, "static const uint8_t %s%s[] = {\n", LABEL_PREFIX_LIBINIT, modname); line[0] = '\0'; for (n = 0, p = obuf; p < optr; p++) { n += sprintf(line+n, "%d,", *p); if (n >= 75) { fprintf(ctx->fp, "%s\n", line); n = 0; line[0] = '\0'; } } fprintf(ctx->fp, "%s%d\n};\n#endif\n\n", line, LIBINIT_END); } } static void libdef_module(BuildCtx *ctx, char *p, int arg) { UNUSED(arg); if (ctx->mode == BUILD_libdef) { libdef_endmodule(ctx); optr = obuf; *optr++ = (uint8_t)ffid; *optr++ = (uint8_t)ffasmfunc; *optr++ = 0; /* Hash table size. */ modstate = 1; fprintf(ctx->fp, "#ifdef %sMODULE_%s\n", LIBDEF_PREFIX, p); fprintf(ctx->fp, "#undef %sMODULE_%s\n", LIBDEF_PREFIX, p); fprintf(ctx->fp, "static const lua_CFunction %s%s[] = {\n", LABEL_PREFIX_LIBCF, p); } modnamelen = strlen(p); if (modnamelen > sizeof(modname)-1) { fprintf(stderr, "Error: module name too long: '%s'\n", p); exit(1); } strcpy(modname, p); } static int find_ffofs(BuildCtx *ctx, const char *name) { int i; for (i = 0; i < ctx->nglob; i++) { const char *gl = ctx->globnames[i]; if (gl[0] == 'f' && gl[1] == 'f' && gl[2] == '_' && !strcmp(gl+3, name)) { return (int)((uint8_t *)ctx->glob[i] - ctx->code); } } fprintf(stderr, "Error: undefined fast function %s%s\n", LABEL_PREFIX_FF, name); exit(1); } static void libdef_func(BuildCtx *ctx, char *p, int arg) { if (arg != LIBINIT_CF) ffasmfunc++; if (ctx->mode == BUILD_libdef) { if (modstate == 0) { fprintf(stderr, "Error: no module for function definition %s\n", p); exit(1); } if (regfunc == REGFUNC_NOREG) { if (optr+1 > obuf+sizeof(obuf)) { fprintf(stderr, "Error: output buffer overflow\n"); exit(1); } *optr++ = LIBINIT_FFID; } else { if (arg != LIBINIT_ASM_) { if (modstate != 1) fprintf(ctx->fp, ",\n"); modstate = 2; fprintf(ctx->fp, " %s%s", arg ? LABEL_PREFIX_FFH : LABEL_PREFIX_CF, p); } if (regfunc != REGFUNC_NOREGUV) obuf[2]++; /* Bump hash table size. */ libdef_name(regfunc == REGFUNC_NOREGUV ? "" : p, arg); } } else if (ctx->mode == BUILD_ffdef) { fprintf(ctx->fp, "FFDEF(%s)\n", p); } else if (ctx->mode == BUILD_recdef) { if (strlen(p) > sizeof(funcname)-1) { fprintf(stderr, "Error: function name too long: '%s'\n", p); exit(1); } strcpy(funcname, p); } else if (ctx->mode == BUILD_vmdef) { int i; for (i = 1; p[i] && modname[i-1]; i++) if (p[i] == '_') p[i] = '.'; fprintf(ctx->fp, "\"%s\",\n", p); } else if (ctx->mode == BUILD_bcdef) { if (arg != LIBINIT_CF) fprintf(ctx->fp, ",\n%d", find_ffofs(ctx, p)); } ffid++; regfunc = REGFUNC_OK; } static uint8_t *libdef_uleb128(uint8_t *p, uint32_t *vv) { uint32_t v = *p++; if (v >= 0x80) { int sh = 0; v &= 0x7f; do { v |= ((*p & 0x7f) << (sh += 7)); } while (*p++ >= 0x80); } *vv = v; return p; } static void libdef_fixupbc(uint8_t *p) { uint32_t i, sizebc; p += 4; p = libdef_uleb128(p, &sizebc); p = libdef_uleb128(p, &sizebc); p = libdef_uleb128(p, &sizebc); for (i = 0; i < sizebc; i++, p += 4) { uint8_t op = p[libbc_endian ? 3 : 0]; uint8_t ra = p[libbc_endian ? 2 : 1]; uint8_t rc = p[libbc_endian ? 1 : 2]; uint8_t rb = p[libbc_endian ? 0 : 3]; if (!LJ_DUALNUM && op == BC_ISTYPE && rc == ~LJ_TNUMX+1) { op = BC_ISNUM; rc++; } p[LJ_ENDIAN_SELECT(0, 3)] = op; p[LJ_ENDIAN_SELECT(1, 2)] = ra; p[LJ_ENDIAN_SELECT(2, 1)] = rc; p[LJ_ENDIAN_SELECT(3, 0)] = rb; } } static void libdef_lua(BuildCtx *ctx, char *p, int arg) { UNUSED(arg); if (ctx->mode == BUILD_libdef) { int i; for (i = 0; libbc_map[i].name != NULL; i++) { if (!strcmp(libbc_map[i].name, p)) { int ofs = libbc_map[i].ofs; int len = libbc_map[i+1].ofs - ofs; obuf[2]++; /* Bump hash table size. */ *optr++ = LIBINIT_LUA; libdef_name(p, 0); memcpy(optr, libbc_code + ofs, len); libdef_fixupbc(optr); optr += len; return; } } fprintf(stderr, "Error: missing libbc definition for %s\n", p); exit(1); } } static uint32_t find_rec(char *name) { char *p = (char *)obuf; uint32_t n; for (n = 2; *p; n++) { if (strcmp(p, name) == 0) return n; p += strlen(p)+1; } if (p+strlen(name)+1 >= (char *)obuf+sizeof(obuf)) { fprintf(stderr, "Error: output buffer overflow\n"); exit(1); } strcpy(p, name); return n; } static void libdef_rec(BuildCtx *ctx, char *p, int arg) { UNUSED(arg); if (ctx->mode == BUILD_recdef) { char *q; uint32_t n; for (; recffid+1 < ffid; recffid++) fprintf(ctx->fp, ",\n0"); recffid = ffid; if (*p == '.') p = funcname; q = strchr(p, ' '); if (q) *q++ = '\0'; n = find_rec(p); if (q) fprintf(ctx->fp, ",\n0x%02x00+(%s)", n, q); else fprintf(ctx->fp, ",\n0x%02x00", n); } } static void memcpy_endian(void *dst, void *src, size_t n) { union { uint8_t b; uint32_t u; } host_endian; host_endian.u = 1; if (host_endian.b == LJ_ENDIAN_SELECT(1, 0)) { memcpy(dst, src, n); } else { size_t i; for (i = 0; i < n; i++) ((uint8_t *)dst)[i] = ((uint8_t *)src)[n-i-1]; } } static void libdef_push(BuildCtx *ctx, char *p, int arg) { UNUSED(arg); if (ctx->mode == BUILD_libdef) { int len = (int)strlen(p); if (*p == '"') { if (len > 1 && p[len-1] == '"') { p[len-1] = '\0'; libdef_name(p+1, LIBINIT_STRING); return; } } else if (*p >= '0' && *p <= '9') { char *ep; double d = strtod(p, &ep); if (*ep == '\0') { if (optr+1+sizeof(double) > obuf+sizeof(obuf)) { fprintf(stderr, "Error: output buffer overflow\n"); exit(1); } *optr++ = LIBINIT_NUMBER; memcpy_endian(optr, &d, sizeof(double)); optr += sizeof(double); return; } } else if (!strcmp(p, "lastcl")) { if (optr+1 > obuf+sizeof(obuf)) { fprintf(stderr, "Error: output buffer overflow\n"); exit(1); } *optr++ = LIBINIT_LASTCL; return; } else if (len > 4 && !strncmp(p, "top-", 4)) { if (optr+2 > obuf+sizeof(obuf)) { fprintf(stderr, "Error: output buffer overflow\n"); exit(1); } *optr++ = LIBINIT_COPY; *optr++ = (uint8_t)atoi(p+4); return; } fprintf(stderr, "Error: bad value for %sPUSH(%s)\n", LIBDEF_PREFIX, p); exit(1); } } static void libdef_set(BuildCtx *ctx, char *p, int arg) { UNUSED(arg); if (ctx->mode == BUILD_libdef) { if (p[0] == '!' && p[1] == '\0') p[0] = '\0'; /* Set env. */ libdef_name(p, LIBINIT_STRING); *optr++ = LIBINIT_SET; obuf[2]++; /* Bump hash table size. */ } } static void libdef_regfunc(BuildCtx *ctx, char *p, int arg) { UNUSED(ctx); UNUSED(p); regfunc = arg; } typedef void (*LibDefFunc)(BuildCtx *ctx, char *p, int arg); typedef struct LibDefHandler { const char *suffix; const char *stop; const LibDefFunc func; const int arg; } LibDefHandler; static const LibDefHandler libdef_handlers[] = { { "MODULE_", " \t\r\n", libdef_module, 0 }, { "CF(", ")", libdef_func, LIBINIT_CF }, { "ASM(", ")", libdef_func, LIBINIT_ASM }, { "ASM_(", ")", libdef_func, LIBINIT_ASM_ }, { "LUA(", ")", libdef_lua, 0 }, { "REC(", ")", libdef_rec, 0 }, { "PUSH(", ")", libdef_push, 0 }, { "SET(", ")", libdef_set, 0 }, { "NOREGUV", NULL, libdef_regfunc, REGFUNC_NOREGUV }, { "NOREG", NULL, libdef_regfunc, REGFUNC_NOREG }, { NULL, NULL, (LibDefFunc)0, 0 } }; /* Emit C source code for library function definitions. */ void emit_lib(BuildCtx *ctx) { const char *fname; if (ctx->mode == BUILD_ffdef || ctx->mode == BUILD_libdef || ctx->mode == BUILD_recdef) fprintf(ctx->fp, "/* This is a generated file. DO NOT EDIT! */\n\n"); else if (ctx->mode == BUILD_vmdef) fprintf(ctx->fp, "ffnames = {\n[0]=\"Lua\",\n\"C\",\n"); if (ctx->mode == BUILD_recdef) fprintf(ctx->fp, "static const uint16_t recff_idmap[] = {\n0,\n0x0100"); recffid = ffid = FF_C+1; ffasmfunc = 0; while ((fname = *ctx->args++)) { char buf[256]; /* We don't care about analyzing lines longer than that. */ FILE *fp; if (fname[0] == '-' && fname[1] == '\0') { fp = stdin; } else { fp = fopen(fname, "r"); if (!fp) { fprintf(stderr, "Error: cannot open input file '%s': %s\n", fname, strerror(errno)); exit(1); } } modstate = 0; regfunc = REGFUNC_OK; while (fgets(buf, sizeof(buf), fp) != NULL) { char *p; /* Simplistic pre-processor. Only handles top-level #if/#endif. */ if (buf[0] == '#' && buf[1] == 'i' && buf[2] == 'f') { int ok = 1; if (!strcmp(buf, "#if LJ_52\n")) ok = LJ_52; else if (!strcmp(buf, "#if LJ_HASJIT\n")) ok = LJ_HASJIT; else if (!strcmp(buf, "#if LJ_HASFFI\n")) ok = LJ_HASFFI; if (!ok) { int lvl = 1; while (fgets(buf, sizeof(buf), fp) != NULL) { if (buf[0] == '#' && buf[1] == 'e' && buf[2] == 'n') { if (--lvl == 0) break; } else if (buf[0] == '#' && buf[1] == 'i' && buf[2] == 'f') { lvl++; } } continue; } } for (p = buf; (p = strstr(p, LIBDEF_PREFIX)) != NULL; ) { const LibDefHandler *ldh; p += sizeof(LIBDEF_PREFIX)-1; for (ldh = libdef_handlers; ldh->suffix != NULL; ldh++) { size_t n, len = strlen(ldh->suffix); if (!strncmp(p, ldh->suffix, len)) { p += len; n = ldh->stop ? strcspn(p, ldh->stop) : 0; if (!p[n]) break; p[n] = '\0'; ldh->func(ctx, p, ldh->arg); p += n+1; break; } } if (ldh->suffix == NULL) { buf[strlen(buf)-1] = '\0'; fprintf(stderr, "Error: unknown library definition tag %s%s\n", LIBDEF_PREFIX, p); exit(1); } } } fclose(fp); if (ctx->mode == BUILD_libdef) { libdef_endmodule(ctx); } } if (ctx->mode == BUILD_ffdef) { fprintf(ctx->fp, "\n#undef FFDEF\n\n"); fprintf(ctx->fp, "#ifndef FF_NUM_ASMFUNC\n#define FF_NUM_ASMFUNC %d\n#endif\n\n", ffasmfunc); } else if (ctx->mode == BUILD_vmdef) { fprintf(ctx->fp, "},\n\n"); } else if (ctx->mode == BUILD_bcdef) { int i; fprintf(ctx->fp, "\n};\n\n"); fprintf(ctx->fp, "LJ_DATADEF const uint16_t lj_bc_mode[] = {\n"); fprintf(ctx->fp, "BCDEF(BCMODE)\n"); for (i = ffasmfunc-1; i > 0; i--) fprintf(ctx->fp, "BCMODE_FF,\n"); fprintf(ctx->fp, "BCMODE_FF\n};\n\n"); } else if (ctx->mode == BUILD_recdef) { char *p = (char *)obuf; fprintf(ctx->fp, "\n};\n\n"); fprintf(ctx->fp, "static const RecordFunc recff_func[] = {\n" "recff_nyi,\n" "recff_c"); while (*p) { fprintf(ctx->fp, ",\nrecff_%s", p); p += strlen(p)+1; } fprintf(ctx->fp, "\n};\n\n"); } } luajit-2.1.0~beta3+dfsg.orig/src/lib_jit.c0000644000175100017510000005016613101703334017675 0ustar ondrejondrej/* ** JIT library. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #define lib_jit_c #define LUA_LIB #include "lua.h" #include "lauxlib.h" #include "lualib.h" #include "lj_obj.h" #include "lj_gc.h" #include "lj_err.h" #include "lj_debug.h" #include "lj_str.h" #include "lj_tab.h" #include "lj_state.h" #include "lj_bc.h" #if LJ_HASFFI #include "lj_ctype.h" #endif #if LJ_HASJIT #include "lj_ir.h" #include "lj_jit.h" #include "lj_ircall.h" #include "lj_iropt.h" #include "lj_target.h" #endif #include "lj_trace.h" #include "lj_dispatch.h" #include "lj_vm.h" #include "lj_vmevent.h" #include "lj_lib.h" #include "luajit.h" /* -- jit.* functions ----------------------------------------------------- */ #define LJLIB_MODULE_jit static int setjitmode(lua_State *L, int mode) { int idx = 0; if (L->base == L->top || tvisnil(L->base)) { /* jit.on/off/flush([nil]) */ mode |= LUAJIT_MODE_ENGINE; } else { /* jit.on/off/flush(func|proto, nil|true|false) */ if (tvisfunc(L->base) || tvisproto(L->base)) idx = 1; else if (!tvistrue(L->base)) /* jit.on/off/flush(true, nil|true|false) */ goto err; if (L->base+1 < L->top && tvisbool(L->base+1)) mode |= boolV(L->base+1) ? LUAJIT_MODE_ALLFUNC : LUAJIT_MODE_ALLSUBFUNC; else mode |= LUAJIT_MODE_FUNC; } if (luaJIT_setmode(L, idx, mode) != 1) { if ((mode & LUAJIT_MODE_MASK) == LUAJIT_MODE_ENGINE) lj_err_caller(L, LJ_ERR_NOJIT); err: lj_err_argt(L, 1, LUA_TFUNCTION); } return 0; } LJLIB_CF(jit_on) { return setjitmode(L, LUAJIT_MODE_ON); } LJLIB_CF(jit_off) { return setjitmode(L, LUAJIT_MODE_OFF); } LJLIB_CF(jit_flush) { #if LJ_HASJIT if (L->base < L->top && tvisnumber(L->base)) { int traceno = lj_lib_checkint(L, 1); luaJIT_setmode(L, traceno, LUAJIT_MODE_FLUSH|LUAJIT_MODE_TRACE); return 0; } #endif return setjitmode(L, LUAJIT_MODE_FLUSH); } #if LJ_HASJIT /* Push a string for every flag bit that is set. */ static void flagbits_to_strings(lua_State *L, uint32_t flags, uint32_t base, const char *str) { for (; *str; base <<= 1, str += 1+*str) if (flags & base) setstrV(L, L->top++, lj_str_new(L, str+1, *(uint8_t *)str)); } #endif LJLIB_CF(jit_status) { #if LJ_HASJIT jit_State *J = L2J(L); L->top = L->base; setboolV(L->top++, (J->flags & JIT_F_ON) ? 1 : 0); flagbits_to_strings(L, J->flags, JIT_F_CPU_FIRST, JIT_F_CPUSTRING); flagbits_to_strings(L, J->flags, JIT_F_OPT_FIRST, JIT_F_OPTSTRING); return (int)(L->top - L->base); #else setboolV(L->top++, 0); return 1; #endif } LJLIB_CF(jit_attach) { #ifdef LUAJIT_DISABLE_VMEVENT luaL_error(L, "vmevent API disabled"); #else GCfunc *fn = lj_lib_checkfunc(L, 1); GCstr *s = lj_lib_optstr(L, 2); luaL_findtable(L, LUA_REGISTRYINDEX, LJ_VMEVENTS_REGKEY, LJ_VMEVENTS_HSIZE); if (s) { /* Attach to given event. */ const uint8_t *p = (const uint8_t *)strdata(s); uint32_t h = s->len; while (*p) h = h ^ (lj_rol(h, 6) + *p++); lua_pushvalue(L, 1); lua_rawseti(L, -2, VMEVENT_HASHIDX(h)); G(L)->vmevmask = VMEVENT_NOCACHE; /* Invalidate cache. */ } else { /* Detach if no event given. */ setnilV(L->top++); while (lua_next(L, -2)) { L->top--; if (tvisfunc(L->top) && funcV(L->top) == fn) { setnilV(lj_tab_set(L, tabV(L->top-2), L->top-1)); } } } #endif return 0; } LJLIB_PUSH(top-5) LJLIB_SET(os) LJLIB_PUSH(top-4) LJLIB_SET(arch) LJLIB_PUSH(top-3) LJLIB_SET(version_num) LJLIB_PUSH(top-2) LJLIB_SET(version) #include "lj_libdef.h" /* -- jit.util.* functions ------------------------------------------------ */ #define LJLIB_MODULE_jit_util /* -- Reflection API for Lua functions ------------------------------------ */ /* Return prototype of first argument (Lua function or prototype object) */ static GCproto *check_Lproto(lua_State *L, int nolua) { TValue *o = L->base; if (L->top > o) { if (tvisproto(o)) { return protoV(o); } else if (tvisfunc(o)) { if (isluafunc(funcV(o))) return funcproto(funcV(o)); else if (nolua) return NULL; } } lj_err_argt(L, 1, LUA_TFUNCTION); return NULL; /* unreachable */ } static void setintfield(lua_State *L, GCtab *t, const char *name, int32_t val) { setintV(lj_tab_setstr(L, t, lj_str_newz(L, name)), val); } /* local info = jit.util.funcinfo(func [,pc]) */ LJLIB_CF(jit_util_funcinfo) { GCproto *pt = check_Lproto(L, 1); if (pt) { BCPos pc = (BCPos)lj_lib_optint(L, 2, 0); GCtab *t; lua_createtable(L, 0, 16); /* Increment hash size if fields are added. */ t = tabV(L->top-1); setintfield(L, t, "linedefined", pt->firstline); setintfield(L, t, "lastlinedefined", pt->firstline + pt->numline); setintfield(L, t, "stackslots", pt->framesize); setintfield(L, t, "params", pt->numparams); setintfield(L, t, "bytecodes", (int32_t)pt->sizebc); setintfield(L, t, "gcconsts", (int32_t)pt->sizekgc); setintfield(L, t, "nconsts", (int32_t)pt->sizekn); setintfield(L, t, "upvalues", (int32_t)pt->sizeuv); if (pc < pt->sizebc) setintfield(L, t, "currentline", lj_debug_line(pt, pc)); lua_pushboolean(L, (pt->flags & PROTO_VARARG)); lua_setfield(L, -2, "isvararg"); lua_pushboolean(L, (pt->flags & PROTO_CHILD)); lua_setfield(L, -2, "children"); setstrV(L, L->top++, proto_chunkname(pt)); lua_setfield(L, -2, "source"); lj_debug_pushloc(L, pt, pc); lua_setfield(L, -2, "loc"); setprotoV(L, lj_tab_setstr(L, t, lj_str_newlit(L, "proto")), pt); } else { GCfunc *fn = funcV(L->base); GCtab *t; lua_createtable(L, 0, 4); /* Increment hash size if fields are added. */ t = tabV(L->top-1); if (!iscfunc(fn)) setintfield(L, t, "ffid", fn->c.ffid); setintptrV(lj_tab_setstr(L, t, lj_str_newlit(L, "addr")), (intptr_t)(void *)fn->c.f); setintfield(L, t, "upvalues", fn->c.nupvalues); } return 1; } /* local ins, m = jit.util.funcbc(func, pc) */ LJLIB_CF(jit_util_funcbc) { GCproto *pt = check_Lproto(L, 0); BCPos pc = (BCPos)lj_lib_checkint(L, 2); if (pc < pt->sizebc) { BCIns ins = proto_bc(pt)[pc]; BCOp op = bc_op(ins); lua_assert(op < BC__MAX); setintV(L->top, ins); setintV(L->top+1, lj_bc_mode[op]); L->top += 2; return 2; } return 0; } /* local k = jit.util.funck(func, idx) */ LJLIB_CF(jit_util_funck) { GCproto *pt = check_Lproto(L, 0); ptrdiff_t idx = (ptrdiff_t)lj_lib_checkint(L, 2); if (idx >= 0) { if (idx < (ptrdiff_t)pt->sizekn) { copyTV(L, L->top-1, proto_knumtv(pt, idx)); return 1; } } else { if (~idx < (ptrdiff_t)pt->sizekgc) { GCobj *gc = proto_kgc(pt, idx); setgcV(L, L->top-1, gc, ~gc->gch.gct); return 1; } } return 0; } /* local name = jit.util.funcuvname(func, idx) */ LJLIB_CF(jit_util_funcuvname) { GCproto *pt = check_Lproto(L, 0); uint32_t idx = (uint32_t)lj_lib_checkint(L, 2); if (idx < pt->sizeuv) { setstrV(L, L->top-1, lj_str_newz(L, lj_debug_uvname(pt, idx))); return 1; } return 0; } /* -- Reflection API for traces ------------------------------------------- */ #if LJ_HASJIT /* Check trace argument. Must not throw for non-existent trace numbers. */ static GCtrace *jit_checktrace(lua_State *L) { TraceNo tr = (TraceNo)lj_lib_checkint(L, 1); jit_State *J = L2J(L); if (tr > 0 && tr < J->sizetrace) return traceref(J, tr); return NULL; } /* Names of link types. ORDER LJ_TRLINK */ static const char *const jit_trlinkname[] = { "none", "root", "loop", "tail-recursion", "up-recursion", "down-recursion", "interpreter", "return", "stitch" }; /* local info = jit.util.traceinfo(tr) */ LJLIB_CF(jit_util_traceinfo) { GCtrace *T = jit_checktrace(L); if (T) { GCtab *t; lua_createtable(L, 0, 8); /* Increment hash size if fields are added. */ t = tabV(L->top-1); setintfield(L, t, "nins", (int32_t)T->nins - REF_BIAS - 1); setintfield(L, t, "nk", REF_BIAS - (int32_t)T->nk); setintfield(L, t, "link", T->link); setintfield(L, t, "nexit", T->nsnap); setstrV(L, L->top++, lj_str_newz(L, jit_trlinkname[T->linktype])); lua_setfield(L, -2, "linktype"); /* There are many more fields. Add them only when needed. */ return 1; } return 0; } /* local m, ot, op1, op2, prev = jit.util.traceir(tr, idx) */ LJLIB_CF(jit_util_traceir) { GCtrace *T = jit_checktrace(L); IRRef ref = (IRRef)lj_lib_checkint(L, 2) + REF_BIAS; if (T && ref >= REF_BIAS && ref < T->nins) { IRIns *ir = &T->ir[ref]; int32_t m = lj_ir_mode[ir->o]; setintV(L->top-2, m); setintV(L->top-1, ir->ot); setintV(L->top++, (int32_t)ir->op1 - (irm_op1(m)==IRMref ? REF_BIAS : 0)); setintV(L->top++, (int32_t)ir->op2 - (irm_op2(m)==IRMref ? REF_BIAS : 0)); setintV(L->top++, ir->prev); return 5; } return 0; } /* local k, t [, slot] = jit.util.tracek(tr, idx) */ LJLIB_CF(jit_util_tracek) { GCtrace *T = jit_checktrace(L); IRRef ref = (IRRef)lj_lib_checkint(L, 2) + REF_BIAS; if (T && ref >= T->nk && ref < REF_BIAS) { IRIns *ir = &T->ir[ref]; int32_t slot = -1; if (ir->o == IR_KSLOT) { slot = ir->op2; ir = &T->ir[ir->op1]; } #if LJ_HASFFI if (ir->o == IR_KINT64 && !ctype_ctsG(G(L))) { ptrdiff_t oldtop = savestack(L, L->top); luaopen_ffi(L); /* Load FFI library on-demand. */ L->top = restorestack(L, oldtop); } #endif lj_ir_kvalue(L, L->top-2, ir); setintV(L->top-1, (int32_t)irt_type(ir->t)); if (slot == -1) return 2; setintV(L->top++, slot); return 3; } return 0; } /* local snap = jit.util.tracesnap(tr, sn) */ LJLIB_CF(jit_util_tracesnap) { GCtrace *T = jit_checktrace(L); SnapNo sn = (SnapNo)lj_lib_checkint(L, 2); if (T && sn < T->nsnap) { SnapShot *snap = &T->snap[sn]; SnapEntry *map = &T->snapmap[snap->mapofs]; MSize n, nent = snap->nent; GCtab *t; lua_createtable(L, nent+2, 0); t = tabV(L->top-1); setintV(lj_tab_setint(L, t, 0), (int32_t)snap->ref - REF_BIAS); setintV(lj_tab_setint(L, t, 1), (int32_t)snap->nslots); for (n = 0; n < nent; n++) setintV(lj_tab_setint(L, t, (int32_t)(n+2)), (int32_t)map[n]); setintV(lj_tab_setint(L, t, (int32_t)(nent+2)), (int32_t)SNAP(255, 0, 0)); return 1; } return 0; } /* local mcode, addr, loop = jit.util.tracemc(tr) */ LJLIB_CF(jit_util_tracemc) { GCtrace *T = jit_checktrace(L); if (T && T->mcode != NULL) { setstrV(L, L->top-1, lj_str_new(L, (const char *)T->mcode, T->szmcode)); setintptrV(L->top++, (intptr_t)(void *)T->mcode); setintV(L->top++, T->mcloop); return 3; } return 0; } /* local addr = jit.util.traceexitstub([tr,] exitno) */ LJLIB_CF(jit_util_traceexitstub) { #ifdef EXITSTUBS_PER_GROUP ExitNo exitno = (ExitNo)lj_lib_checkint(L, 1); jit_State *J = L2J(L); if (exitno < EXITSTUBS_PER_GROUP*LJ_MAX_EXITSTUBGR) { setintptrV(L->top-1, (intptr_t)(void *)exitstub_addr(J, exitno)); return 1; } #else if (L->top > L->base+1) { /* Don't throw for one-argument variant. */ GCtrace *T = jit_checktrace(L); ExitNo exitno = (ExitNo)lj_lib_checkint(L, 2); ExitNo maxexit = T->root ? T->nsnap+1 : T->nsnap; if (T && T->mcode != NULL && exitno < maxexit) { setintptrV(L->top-1, (intptr_t)(void *)exitstub_trace_addr(T, exitno)); return 1; } } #endif return 0; } /* local addr = jit.util.ircalladdr(idx) */ LJLIB_CF(jit_util_ircalladdr) { uint32_t idx = (uint32_t)lj_lib_checkint(L, 1); if (idx < IRCALL__MAX) { setintptrV(L->top-1, (intptr_t)(void *)lj_ir_callinfo[idx].func); return 1; } return 0; } #endif #include "lj_libdef.h" static int luaopen_jit_util(lua_State *L) { LJ_LIB_REG(L, NULL, jit_util); return 1; } /* -- jit.opt module ------------------------------------------------------ */ #if LJ_HASJIT #define LJLIB_MODULE_jit_opt /* Parse optimization level. */ static int jitopt_level(jit_State *J, const char *str) { if (str[0] >= '0' && str[0] <= '9' && str[1] == '\0') { uint32_t flags; if (str[0] == '0') flags = JIT_F_OPT_0; else if (str[0] == '1') flags = JIT_F_OPT_1; else if (str[0] == '2') flags = JIT_F_OPT_2; else flags = JIT_F_OPT_3; J->flags = (J->flags & ~JIT_F_OPT_MASK) | flags; return 1; /* Ok. */ } return 0; /* No match. */ } /* Parse optimization flag. */ static int jitopt_flag(jit_State *J, const char *str) { const char *lst = JIT_F_OPTSTRING; uint32_t opt; int set = 1; if (str[0] == '+') { str++; } else if (str[0] == '-') { str++; set = 0; } else if (str[0] == 'n' && str[1] == 'o') { str += str[2] == '-' ? 3 : 2; set = 0; } for (opt = JIT_F_OPT_FIRST; ; opt <<= 1) { size_t len = *(const uint8_t *)lst; if (len == 0) break; if (strncmp(str, lst+1, len) == 0 && str[len] == '\0') { if (set) J->flags |= opt; else J->flags &= ~opt; return 1; /* Ok. */ } lst += 1+len; } return 0; /* No match. */ } /* Parse optimization parameter. */ static int jitopt_param(jit_State *J, const char *str) { const char *lst = JIT_P_STRING; int i; for (i = 0; i < JIT_P__MAX; i++) { size_t len = *(const uint8_t *)lst; lua_assert(len != 0); if (strncmp(str, lst+1, len) == 0 && str[len] == '=') { int32_t n = 0; const char *p = &str[len+1]; while (*p >= '0' && *p <= '9') n = n*10 + (*p++ - '0'); if (*p) return 0; /* Malformed number. */ J->param[i] = n; if (i == JIT_P_hotloop) lj_dispatch_init_hotcount(J2G(J)); return 1; /* Ok. */ } lst += 1+len; } return 0; /* No match. */ } /* jit.opt.start(flags...) */ LJLIB_CF(jit_opt_start) { jit_State *J = L2J(L); int nargs = (int)(L->top - L->base); if (nargs == 0) { J->flags = (J->flags & ~JIT_F_OPT_MASK) | JIT_F_OPT_DEFAULT; } else { int i; for (i = 1; i <= nargs; i++) { const char *str = strdata(lj_lib_checkstr(L, i)); if (!jitopt_level(J, str) && !jitopt_flag(J, str) && !jitopt_param(J, str)) lj_err_callerv(L, LJ_ERR_JITOPT, str); } } return 0; } #include "lj_libdef.h" #endif /* -- jit.profile module -------------------------------------------------- */ #if LJ_HASPROFILE #define LJLIB_MODULE_jit_profile /* Not loaded by default, use: local profile = require("jit.profile") */ static const char KEY_PROFILE_THREAD = 't'; static const char KEY_PROFILE_FUNC = 'f'; static void jit_profile_callback(lua_State *L2, lua_State *L, int samples, int vmstate) { TValue key; cTValue *tv; setlightudV(&key, (void *)&KEY_PROFILE_FUNC); tv = lj_tab_get(L, tabV(registry(L)), &key); if (tvisfunc(tv)) { char vmst = (char)vmstate; int status; setfuncV(L2, L2->top++, funcV(tv)); setthreadV(L2, L2->top++, L); setintV(L2->top++, samples); setstrV(L2, L2->top++, lj_str_new(L2, &vmst, 1)); status = lua_pcall(L2, 3, 0, 0); /* callback(thread, samples, vmstate) */ if (status) { if (G(L2)->panic) G(L2)->panic(L2); exit(EXIT_FAILURE); } lj_trace_abort(G(L2)); } } /* profile.start(mode, cb) */ LJLIB_CF(jit_profile_start) { GCtab *registry = tabV(registry(L)); GCstr *mode = lj_lib_optstr(L, 1); GCfunc *func = lj_lib_checkfunc(L, 2); lua_State *L2 = lua_newthread(L); /* Thread that runs profiler callback. */ TValue key; /* Anchor thread and function in registry. */ setlightudV(&key, (void *)&KEY_PROFILE_THREAD); setthreadV(L, lj_tab_set(L, registry, &key), L2); setlightudV(&key, (void *)&KEY_PROFILE_FUNC); setfuncV(L, lj_tab_set(L, registry, &key), func); lj_gc_anybarriert(L, registry); luaJIT_profile_start(L, mode ? strdata(mode) : "", (luaJIT_profile_callback)jit_profile_callback, L2); return 0; } /* profile.stop() */ LJLIB_CF(jit_profile_stop) { GCtab *registry; TValue key; luaJIT_profile_stop(L); registry = tabV(registry(L)); setlightudV(&key, (void *)&KEY_PROFILE_THREAD); setnilV(lj_tab_set(L, registry, &key)); setlightudV(&key, (void *)&KEY_PROFILE_FUNC); setnilV(lj_tab_set(L, registry, &key)); lj_gc_anybarriert(L, registry); return 0; } /* dump = profile.dumpstack([thread,] fmt, depth) */ LJLIB_CF(jit_profile_dumpstack) { lua_State *L2 = L; int arg = 0; size_t len; int depth; GCstr *fmt; const char *p; if (L->top > L->base && tvisthread(L->base)) { L2 = threadV(L->base); arg = 1; } fmt = lj_lib_checkstr(L, arg+1); depth = lj_lib_checkint(L, arg+2); p = luaJIT_profile_dumpstack(L2, strdata(fmt), depth, &len); lua_pushlstring(L, p, len); return 1; } #include "lj_libdef.h" static int luaopen_jit_profile(lua_State *L) { LJ_LIB_REG(L, NULL, jit_profile); return 1; } #endif /* -- JIT compiler initialization ----------------------------------------- */ #if LJ_HASJIT /* Default values for JIT parameters. */ static const int32_t jit_param_default[JIT_P__MAX+1] = { #define JIT_PARAMINIT(len, name, value) (value), JIT_PARAMDEF(JIT_PARAMINIT) #undef JIT_PARAMINIT 0 }; #endif #if LJ_TARGET_ARM && LJ_TARGET_LINUX #include #endif /* Arch-dependent CPU detection. */ static uint32_t jit_cpudetect(lua_State *L) { uint32_t flags = 0; #if LJ_TARGET_X86ORX64 uint32_t vendor[4]; uint32_t features[4]; if (lj_vm_cpuid(0, vendor) && lj_vm_cpuid(1, features)) { #if !LJ_HASJIT #define JIT_F_SSE2 2 #endif flags |= ((features[3] >> 26)&1) * JIT_F_SSE2; #if LJ_HASJIT flags |= ((features[2] >> 0)&1) * JIT_F_SSE3; flags |= ((features[2] >> 19)&1) * JIT_F_SSE4_1; if (vendor[2] == 0x6c65746e) { /* Intel. */ if ((features[0] & 0x0fff0ff0) == 0x000106c0) /* Atom. */ flags |= JIT_F_LEA_AGU; } else if (vendor[2] == 0x444d4163) { /* AMD. */ uint32_t fam = (features[0] & 0x0ff00f00); if (fam >= 0x00000f00) /* K8, K10. */ flags |= JIT_F_PREFER_IMUL; } if (vendor[0] >= 7) { uint32_t xfeatures[4]; lj_vm_cpuid(7, xfeatures); flags |= ((xfeatures[1] >> 8)&1) * JIT_F_BMI2; } #endif } /* Check for required instruction set support on x86 (unnecessary on x64). */ #if LJ_TARGET_X86 if (!(flags & JIT_F_SSE2)) luaL_error(L, "CPU with SSE2 required"); #endif #elif LJ_TARGET_ARM #if LJ_HASJIT int ver = LJ_ARCH_VERSION; /* Compile-time ARM CPU detection. */ #if LJ_TARGET_LINUX if (ver < 70) { /* Runtime ARM CPU detection. */ struct utsname ut; uname(&ut); if (strncmp(ut.machine, "armv", 4) == 0) { if (ut.machine[4] >= '7') ver = 70; else if (ut.machine[4] == '6') ver = 60; } } #endif flags |= ver >= 70 ? JIT_F_ARMV7 : ver >= 61 ? JIT_F_ARMV6T2_ : ver >= 60 ? JIT_F_ARMV6_ : 0; flags |= LJ_ARCH_HASFPU == 0 ? 0 : ver >= 70 ? JIT_F_VFPV3 : JIT_F_VFPV2; #endif #elif LJ_TARGET_ARM64 /* No optional CPU features to detect (for now). */ #elif LJ_TARGET_PPC #if LJ_HASJIT #if LJ_ARCH_SQRT flags |= JIT_F_SQRT; #endif #if LJ_ARCH_ROUND flags |= JIT_F_ROUND; #endif #endif #elif LJ_TARGET_MIPS #if LJ_HASJIT /* Compile-time MIPS CPU detection. */ #if LJ_ARCH_VERSION >= 20 flags |= JIT_F_MIPSXXR2; #endif /* Runtime MIPS CPU detection. */ #if defined(__GNUC__) if (!(flags & JIT_F_MIPSXXR2)) { int x; #ifdef __mips16 x = 0; /* Runtime detection is difficult. Ensure optimal -march flags. */ #else /* On MIPS32R1 rotr is treated as srl. rotr r2,r2,1 -> srl r2,r2,1. */ __asm__("li $2, 1\n\t.long 0x00221042\n\tmove %0, $2" : "=r"(x) : : "$2"); #endif if (x) flags |= JIT_F_MIPSXXR2; /* Either 0x80000000 (R2) or 0 (R1). */ } #endif #endif #else #error "Missing CPU detection for this architecture" #endif UNUSED(L); return flags; } /* Initialize JIT compiler. */ static void jit_init(lua_State *L) { uint32_t flags = jit_cpudetect(L); #if LJ_HASJIT jit_State *J = L2J(L); J->flags = flags | JIT_F_ON | JIT_F_OPT_DEFAULT; memcpy(J->param, jit_param_default, sizeof(J->param)); lj_dispatch_update(G(L)); #else UNUSED(flags); #endif } LUALIB_API int luaopen_jit(lua_State *L) { jit_init(L); lua_pushliteral(L, LJ_OS_NAME); lua_pushliteral(L, LJ_ARCH_NAME); lua_pushinteger(L, LUAJIT_VERSION_NUM); lua_pushliteral(L, LUAJIT_VERSION); LJ_LIB_REG(L, LUA_JITLIBNAME, jit); #if LJ_HASPROFILE lj_lib_prereg(L, LUA_JITLIBNAME ".profile", luaopen_jit_profile, tabref(L->env)); #endif #ifndef LUAJIT_DISABLE_JITUTIL lj_lib_prereg(L, LUA_JITLIBNAME ".util", luaopen_jit_util, tabref(L->env)); #endif #if LJ_HASJIT LJ_LIB_REG(L, "jit.opt", jit_opt); #endif L->top -= 2; return 1; } luajit-2.1.0~beta3+dfsg.orig/src/lj_cconv.c0000644000175100017510000005764213101703334020064 0ustar ondrejondrej/* ** C type conversions. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #include "lj_obj.h" #if LJ_HASFFI #include "lj_err.h" #include "lj_tab.h" #include "lj_ctype.h" #include "lj_cdata.h" #include "lj_cconv.h" #include "lj_ccallback.h" /* -- Conversion errors --------------------------------------------------- */ /* Bad conversion. */ LJ_NORET static void cconv_err_conv(CTState *cts, CType *d, CType *s, CTInfo flags) { const char *dst = strdata(lj_ctype_repr(cts->L, ctype_typeid(cts, d), NULL)); const char *src; if ((flags & CCF_FROMTV)) src = lj_obj_typename[1+(ctype_isnum(s->info) ? LUA_TNUMBER : ctype_isarray(s->info) ? LUA_TSTRING : LUA_TNIL)]; else src = strdata(lj_ctype_repr(cts->L, ctype_typeid(cts, s), NULL)); if (CCF_GETARG(flags)) lj_err_argv(cts->L, CCF_GETARG(flags), LJ_ERR_FFI_BADCONV, src, dst); else lj_err_callerv(cts->L, LJ_ERR_FFI_BADCONV, src, dst); } /* Bad conversion from TValue. */ LJ_NORET static void cconv_err_convtv(CTState *cts, CType *d, TValue *o, CTInfo flags) { const char *dst = strdata(lj_ctype_repr(cts->L, ctype_typeid(cts, d), NULL)); const char *src = lj_typename(o); if (CCF_GETARG(flags)) lj_err_argv(cts->L, CCF_GETARG(flags), LJ_ERR_FFI_BADCONV, src, dst); else lj_err_callerv(cts->L, LJ_ERR_FFI_BADCONV, src, dst); } /* Initializer overflow. */ LJ_NORET static void cconv_err_initov(CTState *cts, CType *d) { const char *dst = strdata(lj_ctype_repr(cts->L, ctype_typeid(cts, d), NULL)); lj_err_callerv(cts->L, LJ_ERR_FFI_INITOV, dst); } /* -- C type compatibility checks ----------------------------------------- */ /* Get raw type and qualifiers for a child type. Resolves enums, too. */ static CType *cconv_childqual(CTState *cts, CType *ct, CTInfo *qual) { ct = ctype_child(cts, ct); for (;;) { if (ctype_isattrib(ct->info)) { if (ctype_attrib(ct->info) == CTA_QUAL) *qual |= ct->size; } else if (!ctype_isenum(ct->info)) { break; } ct = ctype_child(cts, ct); } *qual |= (ct->info & CTF_QUAL); return ct; } /* Check for compatible types when converting to a pointer. ** Note: these checks are more relaxed than what C99 mandates. */ int lj_cconv_compatptr(CTState *cts, CType *d, CType *s, CTInfo flags) { if (!((flags & CCF_CAST) || d == s)) { CTInfo dqual = 0, squal = 0; d = cconv_childqual(cts, d, &dqual); if (!ctype_isstruct(s->info)) s = cconv_childqual(cts, s, &squal); if ((flags & CCF_SAME)) { if (dqual != squal) return 0; /* Different qualifiers. */ } else if (!(flags & CCF_IGNQUAL)) { if ((dqual & squal) != squal) return 0; /* Discarded qualifiers. */ if (ctype_isvoid(d->info) || ctype_isvoid(s->info)) return 1; /* Converting to/from void * is always ok. */ } if (ctype_type(d->info) != ctype_type(s->info) || d->size != s->size) return 0; /* Different type or different size. */ if (ctype_isnum(d->info)) { if (((d->info ^ s->info) & (CTF_BOOL|CTF_FP))) return 0; /* Different numeric types. */ } else if (ctype_ispointer(d->info)) { /* Check child types for compatibility. */ return lj_cconv_compatptr(cts, d, s, flags|CCF_SAME); } else if (ctype_isstruct(d->info)) { if (d != s) return 0; /* Must be exact same type for struct/union. */ } else if (ctype_isfunc(d->info)) { /* NYI: structural equality of functions. */ } } return 1; /* Types are compatible. */ } /* -- C type to C type conversion ----------------------------------------- */ /* Convert C type to C type. Caveat: expects to get the raw CType! ** ** Note: This is only used by the interpreter and not optimized at all. ** The JIT compiler will do a much better job specializing for each case. */ void lj_cconv_ct_ct(CTState *cts, CType *d, CType *s, uint8_t *dp, uint8_t *sp, CTInfo flags) { CTSize dsize = d->size, ssize = s->size; CTInfo dinfo = d->info, sinfo = s->info; void *tmpptr; lua_assert(!ctype_isenum(dinfo) && !ctype_isenum(sinfo)); lua_assert(!ctype_isattrib(dinfo) && !ctype_isattrib(sinfo)); if (ctype_type(dinfo) > CT_MAYCONVERT || ctype_type(sinfo) > CT_MAYCONVERT) goto err_conv; /* Some basic sanity checks. */ lua_assert(!ctype_isnum(dinfo) || dsize > 0); lua_assert(!ctype_isnum(sinfo) || ssize > 0); lua_assert(!ctype_isbool(dinfo) || dsize == 1 || dsize == 4); lua_assert(!ctype_isbool(sinfo) || ssize == 1 || ssize == 4); lua_assert(!ctype_isinteger(dinfo) || (1u< ssize) { /* Zero-extend or sign-extend LSB. */ #if LJ_LE uint8_t fill = (!(sinfo & CTF_UNSIGNED) && (sp[ssize-1]&0x80)) ? 0xff : 0; memcpy(dp, sp, ssize); memset(dp + ssize, fill, dsize-ssize); #else uint8_t fill = (!(sinfo & CTF_UNSIGNED) && (sp[0]&0x80)) ? 0xff : 0; memset(dp, fill, dsize-ssize); memcpy(dp + (dsize-ssize), sp, ssize); #endif } else { /* Copy LSB. */ #if LJ_LE memcpy(dp, sp, dsize); #else memcpy(dp, sp + (ssize-dsize), dsize); #endif } break; case CCX(I, F): { double n; /* Always convert via double. */ conv_I_F: /* Convert source to double. */ if (ssize == sizeof(double)) n = *(double *)sp; else if (ssize == sizeof(float)) n = (double)*(float *)sp; else goto err_conv; /* NYI: long double. */ /* Then convert double to integer. */ /* The conversion must exactly match the semantics of JIT-compiled code! */ if (dsize < 4 || (dsize == 4 && !(dinfo & CTF_UNSIGNED))) { int32_t i = (int32_t)n; if (dsize == 4) *(int32_t *)dp = i; else if (dsize == 2) *(int16_t *)dp = (int16_t)i; else *(int8_t *)dp = (int8_t)i; } else if (dsize == 4) { *(uint32_t *)dp = (uint32_t)n; } else if (dsize == 8) { if (!(dinfo & CTF_UNSIGNED)) *(int64_t *)dp = (int64_t)n; else *(uint64_t *)dp = lj_num2u64(n); } else { goto err_conv; /* NYI: conversion to >64 bit integers. */ } break; } case CCX(I, C): s = ctype_child(cts, s); sinfo = s->info; ssize = s->size; goto conv_I_F; /* Just convert re. */ case CCX(I, P): if (!(flags & CCF_CAST)) goto err_conv; sinfo = CTINFO(CT_NUM, CTF_UNSIGNED); goto conv_I_I; case CCX(I, A): if (!(flags & CCF_CAST)) goto err_conv; sinfo = CTINFO(CT_NUM, CTF_UNSIGNED); ssize = CTSIZE_PTR; tmpptr = sp; sp = (uint8_t *)&tmpptr; goto conv_I_I; /* Destination is a floating-point number. */ case CCX(F, B): case CCX(F, I): { double n; /* Always convert via double. */ conv_F_I: /* First convert source to double. */ /* The conversion must exactly match the semantics of JIT-compiled code! */ if (ssize < 4 || (ssize == 4 && !(sinfo & CTF_UNSIGNED))) { int32_t i; if (ssize == 4) { i = *(int32_t *)sp; } else if (!(sinfo & CTF_UNSIGNED)) { if (ssize == 2) i = *(int16_t *)sp; else i = *(int8_t *)sp; } else { if (ssize == 2) i = *(uint16_t *)sp; else i = *(uint8_t *)sp; } n = (double)i; } else if (ssize == 4) { n = (double)*(uint32_t *)sp; } else if (ssize == 8) { if (!(sinfo & CTF_UNSIGNED)) n = (double)*(int64_t *)sp; else n = (double)*(uint64_t *)sp; } else { goto err_conv; /* NYI: conversion from >64 bit integers. */ } /* Convert double to destination. */ if (dsize == sizeof(double)) *(double *)dp = n; else if (dsize == sizeof(float)) *(float *)dp = (float)n; else goto err_conv; /* NYI: long double. */ break; } case CCX(F, F): { double n; /* Always convert via double. */ conv_F_F: if (ssize == dsize) goto copyval; /* Convert source to double. */ if (ssize == sizeof(double)) n = *(double *)sp; else if (ssize == sizeof(float)) n = (double)*(float *)sp; else goto err_conv; /* NYI: long double. */ /* Convert double to destination. */ if (dsize == sizeof(double)) *(double *)dp = n; else if (dsize == sizeof(float)) *(float *)dp = (float)n; else goto err_conv; /* NYI: long double. */ break; } case CCX(F, C): s = ctype_child(cts, s); sinfo = s->info; ssize = s->size; goto conv_F_F; /* Ignore im, and convert from re. */ /* Destination is a complex number. */ case CCX(C, I): d = ctype_child(cts, d); dinfo = d->info; dsize = d->size; memset(dp + dsize, 0, dsize); /* Clear im. */ goto conv_F_I; /* Convert to re. */ case CCX(C, F): d = ctype_child(cts, d); dinfo = d->info; dsize = d->size; memset(dp + dsize, 0, dsize); /* Clear im. */ goto conv_F_F; /* Convert to re. */ case CCX(C, C): if (dsize != ssize) { /* Different types: convert re/im separately. */ CType *dc = ctype_child(cts, d); CType *sc = ctype_child(cts, s); lj_cconv_ct_ct(cts, dc, sc, dp, sp, flags); lj_cconv_ct_ct(cts, dc, sc, dp + dc->size, sp + sc->size, flags); return; } goto copyval; /* Otherwise this is easy. */ /* Destination is a vector. */ case CCX(V, I): case CCX(V, F): case CCX(V, C): { CType *dc = ctype_child(cts, d); CTSize esize; /* First convert the scalar to the first element. */ lj_cconv_ct_ct(cts, dc, s, dp, sp, flags); /* Then replicate it to the other elements (splat). */ for (sp = dp, esize = dc->size; dsize > esize; dsize -= esize) { dp += esize; memcpy(dp, sp, esize); } break; } case CCX(V, V): /* Copy same-sized vectors, even for different lengths/element-types. */ if (dsize != ssize) goto err_conv; goto copyval; /* Destination is a pointer. */ case CCX(P, I): if (!(flags & CCF_CAST)) goto err_conv; dinfo = CTINFO(CT_NUM, CTF_UNSIGNED); goto conv_I_I; case CCX(P, F): if (!(flags & CCF_CAST) || !(flags & CCF_FROMTV)) goto err_conv; /* The signed conversion is cheaper. x64 really has 47 bit pointers. */ dinfo = CTINFO(CT_NUM, (LJ_64 && dsize == 8) ? 0 : CTF_UNSIGNED); goto conv_I_F; case CCX(P, P): if (!lj_cconv_compatptr(cts, d, s, flags)) goto err_conv; cdata_setptr(dp, dsize, cdata_getptr(sp, ssize)); break; case CCX(P, A): case CCX(P, S): if (!lj_cconv_compatptr(cts, d, s, flags)) goto err_conv; cdata_setptr(dp, dsize, sp); break; /* Destination is an array. */ case CCX(A, A): if ((flags & CCF_CAST) || (d->info & CTF_VLA) || dsize != ssize || d->size == CTSIZE_INVALID || !lj_cconv_compatptr(cts, d, s, flags)) goto err_conv; goto copyval; /* Destination is a struct/union. */ case CCX(S, S): if ((flags & CCF_CAST) || (d->info & CTF_VLA) || d != s) goto err_conv; /* Must be exact same type. */ copyval: /* Copy value. */ lua_assert(dsize == ssize); memcpy(dp, sp, dsize); break; default: err_conv: cconv_err_conv(cts, d, s, flags); } } /* -- C type to TValue conversion ----------------------------------------- */ /* Convert C type to TValue. Caveat: expects to get the raw CType! */ int lj_cconv_tv_ct(CTState *cts, CType *s, CTypeID sid, TValue *o, uint8_t *sp) { CTInfo sinfo = s->info; if (ctype_isnum(sinfo)) { if (!ctype_isbool(sinfo)) { if (ctype_isinteger(sinfo) && s->size > 4) goto copyval; if (LJ_DUALNUM && ctype_isinteger(sinfo)) { int32_t i; lj_cconv_ct_ct(cts, ctype_get(cts, CTID_INT32), s, (uint8_t *)&i, sp, 0); if ((sinfo & CTF_UNSIGNED) && i < 0) setnumV(o, (lua_Number)(uint32_t)i); else setintV(o, i); } else { lj_cconv_ct_ct(cts, ctype_get(cts, CTID_DOUBLE), s, (uint8_t *)&o->n, sp, 0); /* Numbers are NOT canonicalized here! Beware of uninitialized data. */ lua_assert(tvisnum(o)); } } else { uint32_t b = s->size == 1 ? (*sp != 0) : (*(int *)sp != 0); setboolV(o, b); setboolV(&cts->g->tmptv2, b); /* Remember for trace recorder. */ } return 0; } else if (ctype_isrefarray(sinfo) || ctype_isstruct(sinfo)) { /* Create reference. */ setcdataV(cts->L, o, lj_cdata_newref(cts, sp, sid)); return 1; /* Need GC step. */ } else { GCcdata *cd; CTSize sz; copyval: /* Copy value. */ sz = s->size; lua_assert(sz != CTSIZE_INVALID); /* Attributes are stripped, qualifiers are kept (but mostly ignored). */ cd = lj_cdata_new(cts, ctype_typeid(cts, s), sz); setcdataV(cts->L, o, cd); memcpy(cdataptr(cd), sp, sz); return 1; /* Need GC step. */ } } /* Convert bitfield to TValue. */ int lj_cconv_tv_bf(CTState *cts, CType *s, TValue *o, uint8_t *sp) { CTInfo info = s->info; CTSize pos, bsz; uint32_t val; lua_assert(ctype_isbitfield(info)); /* NYI: packed bitfields may cause misaligned reads. */ switch (ctype_bitcsz(info)) { case 4: val = *(uint32_t *)sp; break; case 2: val = *(uint16_t *)sp; break; case 1: val = *(uint8_t *)sp; break; default: lua_assert(0); val = 0; break; } /* Check if a packed bitfield crosses a container boundary. */ pos = ctype_bitpos(info); bsz = ctype_bitbsz(info); lua_assert(pos < 8*ctype_bitcsz(info)); lua_assert(bsz > 0 && bsz <= 8*ctype_bitcsz(info)); if (pos + bsz > 8*ctype_bitcsz(info)) lj_err_caller(cts->L, LJ_ERR_FFI_NYIPACKBIT); if (!(info & CTF_BOOL)) { CTSize shift = 32 - bsz; if (!(info & CTF_UNSIGNED)) { setintV(o, (int32_t)(val << (shift-pos)) >> shift); } else { val = (val << (shift-pos)) >> shift; if (!LJ_DUALNUM || (int32_t)val < 0) setnumV(o, (lua_Number)(uint32_t)val); else setintV(o, (int32_t)val); } } else { uint32_t b = (val >> pos) & 1; lua_assert(bsz == 1); setboolV(o, b); setboolV(&cts->g->tmptv2, b); /* Remember for trace recorder. */ } return 0; /* No GC step needed. */ } /* -- TValue to C type conversion ----------------------------------------- */ /* Convert table to array. */ static void cconv_array_tab(CTState *cts, CType *d, uint8_t *dp, GCtab *t, CTInfo flags) { int32_t i; CType *dc = ctype_rawchild(cts, d); /* Array element type. */ CTSize size = d->size, esize = dc->size, ofs = 0; for (i = 0; ; i++) { TValue *tv = (TValue *)lj_tab_getint(t, i); if (!tv || tvisnil(tv)) { if (i == 0) continue; /* Try again for 1-based tables. */ break; /* Stop at first nil. */ } if (ofs >= size) cconv_err_initov(cts, d); lj_cconv_ct_tv(cts, dc, dp + ofs, tv, flags); ofs += esize; } if (size != CTSIZE_INVALID) { /* Only fill up arrays with known size. */ if (ofs == esize) { /* Replicate a single element. */ for (; ofs < size; ofs += esize) memcpy(dp + ofs, dp, esize); } else { /* Otherwise fill the remainder with zero. */ memset(dp + ofs, 0, size - ofs); } } } /* Convert table to sub-struct/union. */ static void cconv_substruct_tab(CTState *cts, CType *d, uint8_t *dp, GCtab *t, int32_t *ip, CTInfo flags) { CTypeID id = d->sib; while (id) { CType *df = ctype_get(cts, id); id = df->sib; if (ctype_isfield(df->info) || ctype_isbitfield(df->info)) { TValue *tv; int32_t i = *ip, iz = i; if (!gcref(df->name)) continue; /* Ignore unnamed fields. */ if (i >= 0) { retry: tv = (TValue *)lj_tab_getint(t, i); if (!tv || tvisnil(tv)) { if (i == 0) { i = 1; goto retry; } /* 1-based tables. */ if (iz == 0) { *ip = i = -1; goto tryname; } /* Init named fields. */ break; /* Stop at first nil. */ } *ip = i + 1; } else { tryname: tv = (TValue *)lj_tab_getstr(t, gco2str(gcref(df->name))); if (!tv || tvisnil(tv)) continue; } if (ctype_isfield(df->info)) lj_cconv_ct_tv(cts, ctype_rawchild(cts, df), dp+df->size, tv, flags); else lj_cconv_bf_tv(cts, df, dp+df->size, tv); if ((d->info & CTF_UNION)) break; } else if (ctype_isxattrib(df->info, CTA_SUBTYPE)) { cconv_substruct_tab(cts, ctype_rawchild(cts, df), dp+df->size, t, ip, flags); } /* Ignore all other entries in the chain. */ } } /* Convert table to struct/union. */ static void cconv_struct_tab(CTState *cts, CType *d, uint8_t *dp, GCtab *t, CTInfo flags) { int32_t i = 0; memset(dp, 0, d->size); /* Much simpler to clear the struct first. */ cconv_substruct_tab(cts, d, dp, t, &i, flags); } /* Convert TValue to C type. Caveat: expects to get the raw CType! */ void lj_cconv_ct_tv(CTState *cts, CType *d, uint8_t *dp, TValue *o, CTInfo flags) { CTypeID sid = CTID_P_VOID; CType *s; void *tmpptr; uint8_t tmpbool, *sp = (uint8_t *)&tmpptr; if (LJ_LIKELY(tvisint(o))) { sp = (uint8_t *)&o->i; sid = CTID_INT32; flags |= CCF_FROMTV; } else if (LJ_LIKELY(tvisnum(o))) { sp = (uint8_t *)&o->n; sid = CTID_DOUBLE; flags |= CCF_FROMTV; } else if (tviscdata(o)) { sp = cdataptr(cdataV(o)); sid = cdataV(o)->ctypeid; s = ctype_get(cts, sid); if (ctype_isref(s->info)) { /* Resolve reference for value. */ lua_assert(s->size == CTSIZE_PTR); sp = *(void **)sp; sid = ctype_cid(s->info); } s = ctype_raw(cts, sid); if (ctype_isfunc(s->info)) { sid = lj_ctype_intern(cts, CTINFO(CT_PTR, CTALIGN_PTR|sid), CTSIZE_PTR); } else { if (ctype_isenum(s->info)) s = ctype_child(cts, s); goto doconv; } } else if (tvisstr(o)) { GCstr *str = strV(o); if (ctype_isenum(d->info)) { /* Match string against enum constant. */ CTSize ofs; CType *cct = lj_ctype_getfield(cts, d, str, &ofs); if (!cct || !ctype_isconstval(cct->info)) goto err_conv; lua_assert(d->size == 4); sp = (uint8_t *)&cct->size; sid = ctype_cid(cct->info); } else if (ctype_isrefarray(d->info)) { /* Copy string to array. */ CType *dc = ctype_rawchild(cts, d); CTSize sz = str->len+1; if (!ctype_isinteger(dc->info) || dc->size != 1) goto err_conv; if (d->size != 0 && d->size < sz) sz = d->size; memcpy(dp, strdata(str), sz); return; } else { /* Otherwise pass it as a const char[]. */ sp = (uint8_t *)strdata(str); sid = CTID_A_CCHAR; flags |= CCF_FROMTV; } } else if (tvistab(o)) { if (ctype_isarray(d->info)) { cconv_array_tab(cts, d, dp, tabV(o), flags); return; } else if (ctype_isstruct(d->info)) { cconv_struct_tab(cts, d, dp, tabV(o), flags); return; } else { goto err_conv; } } else if (tvisbool(o)) { tmpbool = boolV(o); sp = &tmpbool; sid = CTID_BOOL; } else if (tvisnil(o)) { tmpptr = (void *)0; flags |= CCF_FROMTV; } else if (tvisudata(o)) { GCudata *ud = udataV(o); tmpptr = uddata(ud); if (ud->udtype == UDTYPE_IO_FILE) tmpptr = *(void **)tmpptr; } else if (tvislightud(o)) { tmpptr = lightudV(o); } else if (tvisfunc(o)) { void *p = lj_ccallback_new(cts, d, funcV(o)); if (p) { *(void **)dp = p; return; } goto err_conv; } else { err_conv: cconv_err_convtv(cts, d, o, flags); } s = ctype_get(cts, sid); doconv: if (ctype_isenum(d->info)) d = ctype_child(cts, d); lj_cconv_ct_ct(cts, d, s, dp, sp, flags); } /* Convert TValue to bitfield. */ void lj_cconv_bf_tv(CTState *cts, CType *d, uint8_t *dp, TValue *o) { CTInfo info = d->info; CTSize pos, bsz; uint32_t val, mask; lua_assert(ctype_isbitfield(info)); if ((info & CTF_BOOL)) { uint8_t tmpbool; lua_assert(ctype_bitbsz(info) == 1); lj_cconv_ct_tv(cts, ctype_get(cts, CTID_BOOL), &tmpbool, o, 0); val = tmpbool; } else { CTypeID did = (info & CTF_UNSIGNED) ? CTID_UINT32 : CTID_INT32; lj_cconv_ct_tv(cts, ctype_get(cts, did), (uint8_t *)&val, o, 0); } pos = ctype_bitpos(info); bsz = ctype_bitbsz(info); lua_assert(pos < 8*ctype_bitcsz(info)); lua_assert(bsz > 0 && bsz <= 8*ctype_bitcsz(info)); /* Check if a packed bitfield crosses a container boundary. */ if (pos + bsz > 8*ctype_bitcsz(info)) lj_err_caller(cts->L, LJ_ERR_FFI_NYIPACKBIT); mask = ((1u << bsz) - 1u) << pos; val = (val << pos) & mask; /* NYI: packed bitfields may cause misaligned reads/writes. */ switch (ctype_bitcsz(info)) { case 4: *(uint32_t *)dp = (*(uint32_t *)dp & ~mask) | (uint32_t)val; break; case 2: *(uint16_t *)dp = (*(uint16_t *)dp & ~mask) | (uint16_t)val; break; case 1: *(uint8_t *)dp = (*(uint8_t *)dp & ~mask) | (uint8_t)val; break; default: lua_assert(0); break; } } /* -- Initialize C type with TValues -------------------------------------- */ /* Initialize an array with TValues. */ static void cconv_array_init(CTState *cts, CType *d, CTSize sz, uint8_t *dp, TValue *o, MSize len) { CType *dc = ctype_rawchild(cts, d); /* Array element type. */ CTSize ofs, esize = dc->size; MSize i; if (len*esize > sz) cconv_err_initov(cts, d); for (i = 0, ofs = 0; i < len; i++, ofs += esize) lj_cconv_ct_tv(cts, dc, dp + ofs, o + i, 0); if (ofs == esize) { /* Replicate a single element. */ for (; ofs < sz; ofs += esize) memcpy(dp + ofs, dp, esize); } else { /* Otherwise fill the remainder with zero. */ memset(dp + ofs, 0, sz - ofs); } } /* Initialize a sub-struct/union with TValues. */ static void cconv_substruct_init(CTState *cts, CType *d, uint8_t *dp, TValue *o, MSize len, MSize *ip) { CTypeID id = d->sib; while (id) { CType *df = ctype_get(cts, id); id = df->sib; if (ctype_isfield(df->info) || ctype_isbitfield(df->info)) { MSize i = *ip; if (!gcref(df->name)) continue; /* Ignore unnamed fields. */ if (i >= len) break; *ip = i + 1; if (ctype_isfield(df->info)) lj_cconv_ct_tv(cts, ctype_rawchild(cts, df), dp+df->size, o + i, 0); else lj_cconv_bf_tv(cts, df, dp+df->size, o + i); if ((d->info & CTF_UNION)) break; } else if (ctype_isxattrib(df->info, CTA_SUBTYPE)) { cconv_substruct_init(cts, ctype_rawchild(cts, df), dp+df->size, o, len, ip); if ((d->info & CTF_UNION)) break; } /* Ignore all other entries in the chain. */ } } /* Initialize a struct/union with TValues. */ static void cconv_struct_init(CTState *cts, CType *d, CTSize sz, uint8_t *dp, TValue *o, MSize len) { MSize i = 0; memset(dp, 0, sz); /* Much simpler to clear the struct first. */ cconv_substruct_init(cts, d, dp, o, len, &i); if (i < len) cconv_err_initov(cts, d); } /* Check whether to use a multi-value initializer. ** This is true if an aggregate is to be initialized with a value. ** Valarrays are treated as values here so ct_tv handles (V|C, I|F). */ int lj_cconv_multi_init(CTState *cts, CType *d, TValue *o) { if (!(ctype_isrefarray(d->info) || ctype_isstruct(d->info))) return 0; /* Destination is not an aggregate. */ if (tvistab(o) || (tvisstr(o) && !ctype_isstruct(d->info))) return 0; /* Initializer is not a value. */ if (tviscdata(o) && lj_ctype_rawref(cts, cdataV(o)->ctypeid) == d) return 0; /* Source and destination are identical aggregates. */ return 1; /* Otherwise the initializer is a value. */ } /* Initialize C type with TValues. Caveat: expects to get the raw CType! */ void lj_cconv_ct_init(CTState *cts, CType *d, CTSize sz, uint8_t *dp, TValue *o, MSize len) { if (len == 0) memset(dp, 0, sz); else if (len == 1 && !lj_cconv_multi_init(cts, d, o)) lj_cconv_ct_tv(cts, d, dp, o, 0); else if (ctype_isarray(d->info)) /* Also handles valarray init with len>1. */ cconv_array_init(cts, d, sz, dp, o, len); else if (ctype_isstruct(d->info)) cconv_struct_init(cts, d, sz, dp, o, len); else cconv_err_initov(cts, d); } #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_bcdef.h0000644000175100017510000000336213101703334020012 0ustar ondrejondrej/* This is a generated file. DO NOT EDIT! */ LJ_DATADEF const uint16_t lj_bc_ofs[] = { 0, 72, 144, 216, 288, 427, 569, 632, 695, 764, 833, 886, 938, 989, 1040, 1081, 1122, 1148, 1180, 1240, 1314, 1368, 1422, 1476, 1530, 1589, 1643, 1697, 1751, 1805, 1841, 1908, 1975, 2042, 2109, 2158, 2230, 2306, 2342, 2378, 2408, 2437, 2462, 2505, 2541, 2628, 2710, 2748, 2782, 2833, 2897, 3006, 3099, 3117, 3135, 3283, 3407, 3506, 3679, 3908, 4032, 4174, 4220, 4262, 4266, 4414, 4482, 4647, 4838, 4926, 4930, 5066, 5158, 5263, 5360, 5465, 5485, 5555, 5622, 5642, 5686, 5725, 5745, 5763, 5810, 5835, 5855, 5918, 5972, 5972, 6097, 6098, 6177, 7841, 7908, 8419, 8522, 8579, 8710, 7974, 8136, 8228, 8280, 8311, 8768, 8809, 9417, 8864, 9167, 9469, 9596, 9620, 9647, 9711, 9744, 9778, 9809, 9840, 9873, 9914, 9957, 9990, 10030, 10070, 10245, 10393, 10110, 10110, 9678, 10149, 10549, 10492, 10196, 10603, 10662, 11596, 11994, 11941, 12063, 12142, 12224, 12306, 12388, 11650, 11747, 11844, 10721, 10752, 10799, 10921, 11090, 11217, 11327, 11442, 11557 }; LJ_DATADEF const uint16_t lj_bc_mode[] = { BCDEF(BCMODE) BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF, BCMODE_FF }; luajit-2.1.0~beta3+dfsg.orig/src/lj_arch.h0000644000175100017510000003467213101703334017674 0ustar ondrejondrej/* ** Target architecture selection. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_ARCH_H #define _LJ_ARCH_H #include "lua.h" /* Target endianess. */ #define LUAJIT_LE 0 #define LUAJIT_BE 1 /* Target architectures. */ #define LUAJIT_ARCH_X86 1 #define LUAJIT_ARCH_x86 1 #define LUAJIT_ARCH_X64 2 #define LUAJIT_ARCH_x64 2 #define LUAJIT_ARCH_ARM 3 #define LUAJIT_ARCH_arm 3 #define LUAJIT_ARCH_ARM64 4 #define LUAJIT_ARCH_arm64 4 #define LUAJIT_ARCH_PPC 5 #define LUAJIT_ARCH_ppc 5 #define LUAJIT_ARCH_MIPS 6 #define LUAJIT_ARCH_mips 6 #define LUAJIT_ARCH_MIPS32 6 #define LUAJIT_ARCH_mips32 6 #define LUAJIT_ARCH_MIPS64 7 #define LUAJIT_ARCH_mips64 7 /* Target OS. */ #define LUAJIT_OS_OTHER 0 #define LUAJIT_OS_WINDOWS 1 #define LUAJIT_OS_LINUX 2 #define LUAJIT_OS_OSX 3 #define LUAJIT_OS_BSD 4 #define LUAJIT_OS_POSIX 5 /* Select native target if no target defined. */ #ifndef LUAJIT_TARGET #if defined(__i386) || defined(__i386__) || defined(_M_IX86) #define LUAJIT_TARGET LUAJIT_ARCH_X86 #elif defined(__x86_64__) || defined(__x86_64) || defined(_M_X64) || defined(_M_AMD64) #define LUAJIT_TARGET LUAJIT_ARCH_X64 #elif defined(__arm__) || defined(__arm) || defined(__ARM__) || defined(__ARM) #define LUAJIT_TARGET LUAJIT_ARCH_ARM #elif defined(__aarch64__) #define LUAJIT_TARGET LUAJIT_ARCH_ARM64 #elif defined(__ppc__) || defined(__ppc) || defined(__PPC__) || defined(__PPC) || defined(__powerpc__) || defined(__powerpc) || defined(__POWERPC__) || defined(__POWERPC) || defined(_M_PPC) #define LUAJIT_TARGET LUAJIT_ARCH_PPC #elif defined(__mips64__) || defined(__mips64) || defined(__MIPS64__) || defined(__MIPS64) #define LUAJIT_TARGET LUAJIT_ARCH_MIPS64 #elif defined(__mips__) || defined(__mips) || defined(__MIPS__) || defined(__MIPS) #define LUAJIT_TARGET LUAJIT_ARCH_MIPS32 #else #error "No support for this architecture (yet)" #endif #endif /* Select native OS if no target OS defined. */ #ifndef LUAJIT_OS #if defined(_WIN32) && !defined(_XBOX_VER) #define LUAJIT_OS LUAJIT_OS_WINDOWS #elif defined(__linux__) #define LUAJIT_OS LUAJIT_OS_LINUX #elif defined(__MACH__) && defined(__APPLE__) #define LUAJIT_OS LUAJIT_OS_OSX #elif (defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || \ defined(__NetBSD__) || defined(__OpenBSD__) || \ defined(__DragonFly__)) && !defined(__ORBIS__) #define LUAJIT_OS LUAJIT_OS_BSD #elif (defined(__sun__) && defined(__svr4__)) || defined(__HAIKU__) #define LUAJIT_OS LUAJIT_OS_POSIX #elif defined(__CYGWIN__) #define LJ_TARGET_CYGWIN 1 #define LUAJIT_OS LUAJIT_OS_POSIX #else #define LUAJIT_OS LUAJIT_OS_OTHER #endif #endif /* Set target OS properties. */ #if LUAJIT_OS == LUAJIT_OS_WINDOWS #define LJ_OS_NAME "Windows" #elif LUAJIT_OS == LUAJIT_OS_LINUX #define LJ_OS_NAME "Linux" #elif LUAJIT_OS == LUAJIT_OS_OSX #define LJ_OS_NAME "OSX" #elif LUAJIT_OS == LUAJIT_OS_BSD #define LJ_OS_NAME "BSD" #elif LUAJIT_OS == LUAJIT_OS_POSIX #define LJ_OS_NAME "POSIX" #else #define LJ_OS_NAME "Other" #endif #define LJ_TARGET_WINDOWS (LUAJIT_OS == LUAJIT_OS_WINDOWS) #define LJ_TARGET_LINUX (LUAJIT_OS == LUAJIT_OS_LINUX) #define LJ_TARGET_OSX (LUAJIT_OS == LUAJIT_OS_OSX) #define LJ_TARGET_IOS (LJ_TARGET_OSX && (LUAJIT_TARGET == LUAJIT_ARCH_ARM || LUAJIT_TARGET == LUAJIT_ARCH_ARM64)) #define LJ_TARGET_POSIX (LUAJIT_OS > LUAJIT_OS_WINDOWS) #define LJ_TARGET_DLOPEN LJ_TARGET_POSIX #ifdef __CELLOS_LV2__ #define LJ_TARGET_PS3 1 #define LJ_TARGET_CONSOLE 1 #endif #ifdef __ORBIS__ #define LJ_TARGET_PS4 1 #define LJ_TARGET_CONSOLE 1 #undef NULL #define NULL ((void*)0) #endif #ifdef __psp2__ #define LJ_TARGET_PSVITA 1 #define LJ_TARGET_CONSOLE 1 #endif #if _XBOX_VER >= 200 #define LJ_TARGET_XBOX360 1 #define LJ_TARGET_CONSOLE 1 #endif #ifdef _DURANGO #define LJ_TARGET_XBOXONE 1 #define LJ_TARGET_CONSOLE 1 #define LJ_TARGET_GC64 1 #endif #define LJ_NUMMODE_SINGLE 0 /* Single-number mode only. */ #define LJ_NUMMODE_SINGLE_DUAL 1 /* Default to single-number mode. */ #define LJ_NUMMODE_DUAL 2 /* Dual-number mode only. */ #define LJ_NUMMODE_DUAL_SINGLE 3 /* Default to dual-number mode. */ /* Set target architecture properties. */ #if LUAJIT_TARGET == LUAJIT_ARCH_X86 #define LJ_ARCH_NAME "x86" #define LJ_ARCH_BITS 32 #define LJ_ARCH_ENDIAN LUAJIT_LE #if LJ_TARGET_WINDOWS || LJ_TARGET_CYGWIN #define LJ_ABI_WIN 1 #else #define LJ_ABI_WIN 0 #endif #define LJ_TARGET_X86 1 #define LJ_TARGET_X86ORX64 1 #define LJ_TARGET_EHRETREG 0 #define LJ_TARGET_MASKSHIFT 1 #define LJ_TARGET_MASKROT 1 #define LJ_TARGET_UNALIGNED 1 #define LJ_ARCH_NUMMODE LJ_NUMMODE_SINGLE_DUAL #elif LUAJIT_TARGET == LUAJIT_ARCH_X64 #define LJ_ARCH_NAME "x64" #define LJ_ARCH_BITS 64 #define LJ_ARCH_ENDIAN LUAJIT_LE #if LJ_TARGET_WINDOWS || LJ_TARGET_CYGWIN #define LJ_ABI_WIN 1 #else #define LJ_ABI_WIN 0 #endif #define LJ_TARGET_X64 1 #define LJ_TARGET_X86ORX64 1 #define LJ_TARGET_EHRETREG 0 #define LJ_TARGET_JUMPRANGE 31 /* +-2^31 = +-2GB */ #define LJ_TARGET_MASKSHIFT 1 #define LJ_TARGET_MASKROT 1 #define LJ_TARGET_UNALIGNED 1 #define LJ_ARCH_NUMMODE LJ_NUMMODE_SINGLE_DUAL #ifdef LUAJIT_ENABLE_GC64 #define LJ_TARGET_GC64 1 #endif #elif LUAJIT_TARGET == LUAJIT_ARCH_ARM #define LJ_ARCH_NAME "arm" #define LJ_ARCH_BITS 32 #define LJ_ARCH_ENDIAN LUAJIT_LE #if !defined(LJ_ARCH_HASFPU) && __SOFTFP__ #define LJ_ARCH_HASFPU 0 #endif #if !defined(LJ_ABI_SOFTFP) && !__ARM_PCS_VFP #define LJ_ABI_SOFTFP 1 #endif #define LJ_ABI_EABI 1 #define LJ_TARGET_ARM 1 #define LJ_TARGET_EHRETREG 0 #define LJ_TARGET_JUMPRANGE 25 /* +-2^25 = +-32MB */ #define LJ_TARGET_MASKSHIFT 0 #define LJ_TARGET_MASKROT 1 #define LJ_TARGET_UNIFYROT 2 /* Want only IR_BROR. */ #define LJ_ARCH_NUMMODE LJ_NUMMODE_DUAL #if __ARM_ARCH____ARM_ARCH_8__ || __ARM_ARCH_8A__ #define LJ_ARCH_VERSION 80 #elif __ARM_ARCH_7__ || __ARM_ARCH_7A__ || __ARM_ARCH_7R__ || __ARM_ARCH_7S__ || __ARM_ARCH_7VE__ #define LJ_ARCH_VERSION 70 #elif __ARM_ARCH_6T2__ #define LJ_ARCH_VERSION 61 #elif __ARM_ARCH_6__ || __ARM_ARCH_6J__ || __ARM_ARCH_6K__ || __ARM_ARCH_6Z__ || __ARM_ARCH_6ZK__ #define LJ_ARCH_VERSION 60 #else #define LJ_ARCH_VERSION 50 #endif #elif LUAJIT_TARGET == LUAJIT_ARCH_ARM64 #define LJ_ARCH_BITS 64 #if defined(__AARCH64EB__) #define LJ_ARCH_NAME "arm64be" #define LJ_ARCH_ENDIAN LUAJIT_BE #else #define LJ_ARCH_NAME "arm64" #define LJ_ARCH_ENDIAN LUAJIT_LE #endif #define LJ_TARGET_ARM64 1 #define LJ_TARGET_EHRETREG 0 #define LJ_TARGET_JUMPRANGE 27 /* +-2^27 = +-128MB */ #define LJ_TARGET_MASKSHIFT 1 #define LJ_TARGET_MASKROT 1 #define LJ_TARGET_UNIFYROT 2 /* Want only IR_BROR. */ #define LJ_TARGET_GC64 1 #define LJ_ARCH_NUMMODE LJ_NUMMODE_DUAL #define LJ_ARCH_VERSION 80 #elif LUAJIT_TARGET == LUAJIT_ARCH_PPC #ifndef LJ_ARCH_ENDIAN #if __BYTE_ORDER__ != __ORDER_BIG_ENDIAN__ #define LJ_ARCH_ENDIAN LUAJIT_LE #else #define LJ_ARCH_ENDIAN LUAJIT_BE #endif #endif #if _LP64 #define LJ_ARCH_BITS 64 #if LJ_ARCH_ENDIAN == LUAJIT_LE #define LJ_ARCH_NAME "ppc64le" #else #define LJ_ARCH_NAME "ppc64" #endif #else #define LJ_ARCH_BITS 32 #define LJ_ARCH_NAME "ppc" #endif #define LJ_TARGET_PPC 1 #define LJ_TARGET_EHRETREG 3 #define LJ_TARGET_JUMPRANGE 25 /* +-2^25 = +-32MB */ #define LJ_TARGET_MASKSHIFT 0 #define LJ_TARGET_MASKROT 1 #define LJ_TARGET_UNIFYROT 1 /* Want only IR_BROL. */ #define LJ_ARCH_NUMMODE LJ_NUMMODE_DUAL_SINGLE #if LJ_TARGET_CONSOLE #define LJ_ARCH_PPC32ON64 1 #define LJ_ARCH_NOFFI 1 #elif LJ_ARCH_BITS == 64 #define LJ_ARCH_PPC64 1 #define LJ_TARGET_GC64 1 #define LJ_ARCH_NOJIT 1 /* NYI */ #endif #if _ARCH_PWR7 #define LJ_ARCH_VERSION 70 #elif _ARCH_PWR6 #define LJ_ARCH_VERSION 60 #elif _ARCH_PWR5X #define LJ_ARCH_VERSION 51 #elif _ARCH_PWR5 #define LJ_ARCH_VERSION 50 #elif _ARCH_PWR4 #define LJ_ARCH_VERSION 40 #else #define LJ_ARCH_VERSION 0 #endif #if _ARCH_PPCSQ #define LJ_ARCH_SQRT 1 #endif #if _ARCH_PWR5X #define LJ_ARCH_ROUND 1 #endif #if __PPU__ #define LJ_ARCH_CELL 1 #endif #if LJ_TARGET_XBOX360 #define LJ_ARCH_XENON 1 #endif #elif LUAJIT_TARGET == LUAJIT_ARCH_MIPS32 || LUAJIT_TARGET == LUAJIT_ARCH_MIPS64 #if defined(__MIPSEL__) || defined(__MIPSEL) || defined(_MIPSEL) #if LUAJIT_TARGET == LUAJIT_ARCH_MIPS32 #define LJ_ARCH_NAME "mipsel" #else #define LJ_ARCH_NAME "mips64el" #endif #define LJ_ARCH_ENDIAN LUAJIT_LE #else #if LUAJIT_TARGET == LUAJIT_ARCH_MIPS32 #define LJ_ARCH_NAME "mips" #else #define LJ_ARCH_NAME "mips64" #endif #define LJ_ARCH_ENDIAN LUAJIT_BE #endif #if !defined(LJ_ARCH_HASFPU) #ifdef __mips_soft_float #define LJ_ARCH_HASFPU 0 #else #define LJ_ARCH_HASFPU 1 #endif #endif #if !defined(LJ_ABI_SOFTFP) #ifdef __mips_soft_float #define LJ_ABI_SOFTFP 1 #else #define LJ_ABI_SOFTFP 0 #endif #endif #if LUAJIT_TARGET == LUAJIT_ARCH_MIPS32 #define LJ_ARCH_BITS 32 #define LJ_TARGET_MIPS32 1 #else #if LJ_ABI_SOFTFP || !LJ_ARCH_HASFPU #define LJ_ARCH_NOJIT 1 /* NYI */ #endif #define LJ_ARCH_BITS 64 #define LJ_TARGET_MIPS64 1 #define LJ_TARGET_GC64 1 #endif #define LJ_TARGET_MIPS 1 #define LJ_TARGET_EHRETREG 4 #define LJ_TARGET_JUMPRANGE 27 /* 2*2^27 = 256MB-aligned region */ #define LJ_TARGET_MASKSHIFT 1 #define LJ_TARGET_MASKROT 1 #define LJ_TARGET_UNIFYROT 2 /* Want only IR_BROR. */ #define LJ_ARCH_NUMMODE LJ_NUMMODE_DUAL #if _MIPS_ARCH_MIPS32R2 || _MIPS_ARCH_MIPS64R2 #define LJ_ARCH_VERSION 20 #else #define LJ_ARCH_VERSION 10 #endif #else #error "No target architecture defined" #endif #ifndef LJ_PAGESIZE #define LJ_PAGESIZE 4096 #endif /* Check for minimum required compiler versions. */ #if defined(__GNUC__) #if LJ_TARGET_X86 #if (__GNUC__ < 3) || ((__GNUC__ == 3) && __GNUC_MINOR__ < 4) #error "Need at least GCC 3.4 or newer" #endif #elif LJ_TARGET_X64 #if __GNUC__ < 4 #error "Need at least GCC 4.0 or newer" #endif #elif LJ_TARGET_ARM #if (__GNUC__ < 4) || ((__GNUC__ == 4) && __GNUC_MINOR__ < 2) #error "Need at least GCC 4.2 or newer" #endif #elif LJ_TARGET_ARM64 #if __clang__ #if ((__clang_major__ < 3) || ((__clang_major__ == 3) && __clang_minor__ < 5)) && !defined(__NX_TOOLCHAIN_MAJOR__) #error "Need at least Clang 3.5 or newer" #endif #else #if (__GNUC__ < 4) || ((__GNUC__ == 4) && __GNUC_MINOR__ < 8) #error "Need at least GCC 4.8 or newer" #endif #endif #elif !LJ_TARGET_PS3 #if (__GNUC__ < 4) || ((__GNUC__ == 4) && __GNUC_MINOR__ < 3) #error "Need at least GCC 4.3 or newer" #endif #endif #endif /* Check target-specific constraints. */ #ifndef _BUILDVM_H #if LJ_TARGET_X64 #if __USING_SJLJ_EXCEPTIONS__ #error "Need a C compiler with native exception handling on x64" #endif #elif LJ_TARGET_ARM #if defined(__ARMEB__) #error "No support for big-endian ARM" #endif #if __ARM_ARCH_6M__ || __ARM_ARCH_7M__ || __ARM_ARCH_7EM__ #error "No support for Cortex-M CPUs" #endif #if !(__ARM_EABI__ || LJ_TARGET_IOS) #error "Only ARM EABI or iOS 3.0+ ABI is supported" #endif #elif LJ_TARGET_ARM64 #if defined(_ILP32) #error "No support for ILP32 model on ARM64" #endif #elif LJ_TARGET_PPC #if defined(_SOFT_FLOAT) || defined(_SOFT_DOUBLE) #error "No support for PowerPC CPUs without double-precision FPU" #endif #if !LJ_ARCH_PPC64 && LJ_ARCH_ENDIAN == LUAJIT_LE #error "No support for little-endian PPC32" #endif #if LJ_ARCH_PPC64 #error "No support for PowerPC 64 bit mode (yet)" #endif #ifdef __NO_FPRS__ #error "No support for PPC/e500 anymore (use LuaJIT 2.0)" #endif #elif LJ_TARGET_MIPS32 #if !((defined(_MIPS_SIM_ABI32) && _MIPS_SIM == _MIPS_SIM_ABI32) || (defined(_ABIO32) && _MIPS_SIM == _ABIO32)) #error "Only o32 ABI supported for MIPS32" #endif #elif LJ_TARGET_MIPS64 #if !((defined(_MIPS_SIM_ABI64) && _MIPS_SIM == _MIPS_SIM_ABI64) || (defined(_ABI64) && _MIPS_SIM == _ABI64)) #error "Only n64 ABI supported for MIPS64" #endif #endif #endif /* Enable or disable the dual-number mode for the VM. */ #if (LJ_ARCH_NUMMODE == LJ_NUMMODE_SINGLE && LUAJIT_NUMMODE == 2) || \ (LJ_ARCH_NUMMODE == LJ_NUMMODE_DUAL && LUAJIT_NUMMODE == 1) #error "No support for this number mode on this architecture" #endif #if LJ_ARCH_NUMMODE == LJ_NUMMODE_DUAL || \ (LJ_ARCH_NUMMODE == LJ_NUMMODE_DUAL_SINGLE && LUAJIT_NUMMODE != 1) || \ (LJ_ARCH_NUMMODE == LJ_NUMMODE_SINGLE_DUAL && LUAJIT_NUMMODE == 2) #define LJ_DUALNUM 1 #else #define LJ_DUALNUM 0 #endif #if LJ_TARGET_IOS || LJ_TARGET_CONSOLE /* Runtime code generation is restricted on iOS. Complain to Apple, not me. */ /* Ditto for the consoles. Complain to Sony or MS, not me. */ #ifndef LUAJIT_ENABLE_JIT #define LJ_OS_NOJIT 1 #endif #endif /* 64 bit GC references. */ #if LJ_TARGET_GC64 #define LJ_GC64 1 #else #define LJ_GC64 0 #endif /* 2-slot frame info. */ #if LJ_GC64 #define LJ_FR2 1 #else #define LJ_FR2 0 #endif /* Disable or enable the JIT compiler. */ #if defined(LUAJIT_DISABLE_JIT) || defined(LJ_ARCH_NOJIT) || defined(LJ_OS_NOJIT) #define LJ_HASJIT 0 #else #define LJ_HASJIT 1 #endif /* Disable or enable the FFI extension. */ #if defined(LUAJIT_DISABLE_FFI) || defined(LJ_ARCH_NOFFI) #define LJ_HASFFI 0 #else #define LJ_HASFFI 1 #endif #if defined(LUAJIT_DISABLE_PROFILE) #define LJ_HASPROFILE 0 #elif LJ_TARGET_POSIX #define LJ_HASPROFILE 1 #define LJ_PROFILE_SIGPROF 1 #elif LJ_TARGET_PS3 #define LJ_HASPROFILE 1 #define LJ_PROFILE_PTHREAD 1 #elif LJ_TARGET_WINDOWS || LJ_TARGET_XBOX360 #define LJ_HASPROFILE 1 #define LJ_PROFILE_WTHREAD 1 #else #define LJ_HASPROFILE 0 #endif #ifndef LJ_ARCH_HASFPU #define LJ_ARCH_HASFPU 1 #endif #ifndef LJ_ABI_SOFTFP #define LJ_ABI_SOFTFP 0 #endif #define LJ_SOFTFP (!LJ_ARCH_HASFPU) #if LJ_ARCH_ENDIAN == LUAJIT_BE #define LJ_LE 0 #define LJ_BE 1 #define LJ_ENDIAN_SELECT(le, be) be #define LJ_ENDIAN_LOHI(lo, hi) hi lo #else #define LJ_LE 1 #define LJ_BE 0 #define LJ_ENDIAN_SELECT(le, be) le #define LJ_ENDIAN_LOHI(lo, hi) lo hi #endif #if LJ_ARCH_BITS == 32 #define LJ_32 1 #define LJ_64 0 #else #define LJ_32 0 #define LJ_64 1 #endif #ifndef LJ_TARGET_UNALIGNED #define LJ_TARGET_UNALIGNED 0 #endif /* Various workarounds for embedded operating systems or weak C runtimes. */ #if defined(__ANDROID__) || defined(__symbian__) || LJ_TARGET_XBOX360 || LJ_TARGET_WINDOWS #define LUAJIT_NO_LOG2 #endif #if defined(__symbian__) || LJ_TARGET_WINDOWS #define LUAJIT_NO_EXP2 #endif #if LJ_TARGET_CONSOLE || (LJ_TARGET_IOS && __IPHONE_OS_VERSION_MIN_REQUIRED >= __IPHONE_8_0) #define LJ_NO_SYSTEM 1 #endif #if !defined(LUAJIT_NO_UNWIND) && __GNU_COMPACT_EH__ /* NYI: no support for compact unwind specification, yet. */ #define LUAJIT_NO_UNWIND 1 #endif #if defined(LUAJIT_NO_UNWIND) || defined(__symbian__) || LJ_TARGET_IOS || LJ_TARGET_PS3 || LJ_TARGET_PS4 #define LJ_NO_UNWIND 1 #endif /* Compatibility with Lua 5.1 vs. 5.2. */ #ifdef LUAJIT_ENABLE_LUA52COMPAT #define LJ_52 1 #else #define LJ_52 0 #endif #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_jit.h0000644000175100017510000004144113101703334017535 0ustar ondrejondrej/* ** Common definitions for the JIT compiler. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_JIT_H #define _LJ_JIT_H #include "lj_obj.h" #include "lj_ir.h" /* JIT engine flags. */ #define JIT_F_ON 0x00000001 /* CPU-specific JIT engine flags. */ #if LJ_TARGET_X86ORX64 #define JIT_F_SSE2 0x00000010 #define JIT_F_SSE3 0x00000020 #define JIT_F_SSE4_1 0x00000040 #define JIT_F_PREFER_IMUL 0x00000080 #define JIT_F_LEA_AGU 0x00000100 #define JIT_F_BMI2 0x00000200 /* Names for the CPU-specific flags. Must match the order above. */ #define JIT_F_CPU_FIRST JIT_F_SSE2 #define JIT_F_CPUSTRING "\4SSE2\4SSE3\6SSE4.1\3AMD\4ATOM\4BMI2" #elif LJ_TARGET_ARM #define JIT_F_ARMV6_ 0x00000010 #define JIT_F_ARMV6T2_ 0x00000020 #define JIT_F_ARMV7 0x00000040 #define JIT_F_VFPV2 0x00000080 #define JIT_F_VFPV3 0x00000100 #define JIT_F_ARMV6 (JIT_F_ARMV6_|JIT_F_ARMV6T2_|JIT_F_ARMV7) #define JIT_F_ARMV6T2 (JIT_F_ARMV6T2_|JIT_F_ARMV7) #define JIT_F_VFP (JIT_F_VFPV2|JIT_F_VFPV3) /* Names for the CPU-specific flags. Must match the order above. */ #define JIT_F_CPU_FIRST JIT_F_ARMV6_ #define JIT_F_CPUSTRING "\5ARMv6\7ARMv6T2\5ARMv7\5VFPv2\5VFPv3" #elif LJ_TARGET_PPC #define JIT_F_SQRT 0x00000010 #define JIT_F_ROUND 0x00000020 /* Names for the CPU-specific flags. Must match the order above. */ #define JIT_F_CPU_FIRST JIT_F_SQRT #define JIT_F_CPUSTRING "\4SQRT\5ROUND" #elif LJ_TARGET_MIPS #define JIT_F_MIPSXXR2 0x00000010 /* Names for the CPU-specific flags. Must match the order above. */ #define JIT_F_CPU_FIRST JIT_F_MIPSXXR2 #if LJ_TARGET_MIPS32 #define JIT_F_CPUSTRING "\010MIPS32R2" #else #define JIT_F_CPUSTRING "\010MIPS64R2" #endif #else #define JIT_F_CPU_FIRST 0 #define JIT_F_CPUSTRING "" #endif /* Optimization flags. */ #define JIT_F_OPT_MASK 0x0fff0000 #define JIT_F_OPT_FOLD 0x00010000 #define JIT_F_OPT_CSE 0x00020000 #define JIT_F_OPT_DCE 0x00040000 #define JIT_F_OPT_FWD 0x00080000 #define JIT_F_OPT_DSE 0x00100000 #define JIT_F_OPT_NARROW 0x00200000 #define JIT_F_OPT_LOOP 0x00400000 #define JIT_F_OPT_ABC 0x00800000 #define JIT_F_OPT_SINK 0x01000000 #define JIT_F_OPT_FUSE 0x02000000 /* Optimizations names for -O. Must match the order above. */ #define JIT_F_OPT_FIRST JIT_F_OPT_FOLD #define JIT_F_OPTSTRING \ "\4fold\3cse\3dce\3fwd\3dse\6narrow\4loop\3abc\4sink\4fuse" /* Optimization levels set a fixed combination of flags. */ #define JIT_F_OPT_0 0 #define JIT_F_OPT_1 (JIT_F_OPT_FOLD|JIT_F_OPT_CSE|JIT_F_OPT_DCE) #define JIT_F_OPT_2 (JIT_F_OPT_1|JIT_F_OPT_NARROW|JIT_F_OPT_LOOP) #define JIT_F_OPT_3 (JIT_F_OPT_2|\ JIT_F_OPT_FWD|JIT_F_OPT_DSE|JIT_F_OPT_ABC|JIT_F_OPT_SINK|JIT_F_OPT_FUSE) #define JIT_F_OPT_DEFAULT JIT_F_OPT_3 #if LJ_TARGET_WINDOWS || LJ_64 /* See: http://blogs.msdn.com/oldnewthing/archive/2003/10/08/55239.aspx */ #define JIT_P_sizemcode_DEFAULT 64 #else /* Could go as low as 4K, but the mmap() overhead would be rather high. */ #define JIT_P_sizemcode_DEFAULT 32 #endif /* Optimization parameters and their defaults. Length is a char in octal! */ #define JIT_PARAMDEF(_) \ _(\010, maxtrace, 1000) /* Max. # of traces in cache. */ \ _(\011, maxrecord, 4000) /* Max. # of recorded IR instructions. */ \ _(\012, maxirconst, 500) /* Max. # of IR constants of a trace. */ \ _(\007, maxside, 100) /* Max. # of side traces of a root trace. */ \ _(\007, maxsnap, 500) /* Max. # of snapshots for a trace. */ \ _(\011, minstitch, 0) /* Min. # of IR ins for a stitched trace. */ \ \ _(\007, hotloop, 56) /* # of iter. to detect a hot loop/call. */ \ _(\007, hotexit, 10) /* # of taken exits to start a side trace. */ \ _(\007, tryside, 4) /* # of attempts to compile a side trace. */ \ \ _(\012, instunroll, 4) /* Max. unroll for instable loops. */ \ _(\012, loopunroll, 15) /* Max. unroll for loop ops in side traces. */ \ _(\012, callunroll, 3) /* Max. unroll for recursive calls. */ \ _(\011, recunroll, 2) /* Min. unroll for true recursion. */ \ \ /* Size of each machine code area (in KBytes). */ \ _(\011, sizemcode, JIT_P_sizemcode_DEFAULT) \ /* Max. total size of all machine code areas (in KBytes). */ \ _(\010, maxmcode, 512) \ /* End of list. */ enum { #define JIT_PARAMENUM(len, name, value) JIT_P_##name, JIT_PARAMDEF(JIT_PARAMENUM) #undef JIT_PARAMENUM JIT_P__MAX }; #define JIT_PARAMSTR(len, name, value) #len #name #define JIT_P_STRING JIT_PARAMDEF(JIT_PARAMSTR) /* Trace compiler state. */ typedef enum { LJ_TRACE_IDLE, /* Trace compiler idle. */ LJ_TRACE_ACTIVE = 0x10, LJ_TRACE_RECORD, /* Bytecode recording active. */ LJ_TRACE_START, /* New trace started. */ LJ_TRACE_END, /* End of trace. */ LJ_TRACE_ASM, /* Assemble trace. */ LJ_TRACE_ERR /* Trace aborted with error. */ } TraceState; /* Post-processing action. */ typedef enum { LJ_POST_NONE, /* No action. */ LJ_POST_FIXCOMP, /* Fixup comparison and emit pending guard. */ LJ_POST_FIXGUARD, /* Fixup and emit pending guard. */ LJ_POST_FIXGUARDSNAP, /* Fixup and emit pending guard and snapshot. */ LJ_POST_FIXBOOL, /* Fixup boolean result. */ LJ_POST_FIXCONST, /* Fixup constant results. */ LJ_POST_FFRETRY /* Suppress recording of retried fast functions. */ } PostProc; /* Machine code type. */ #if LJ_TARGET_X86ORX64 typedef uint8_t MCode; #else typedef uint32_t MCode; #endif /* Stack snapshot header. */ typedef struct SnapShot { uint16_t mapofs; /* Offset into snapshot map. */ IRRef1 ref; /* First IR ref for this snapshot. */ uint8_t nslots; /* Number of valid slots. */ uint8_t topslot; /* Maximum frame extent. */ uint8_t nent; /* Number of compressed entries. */ uint8_t count; /* Count of taken exits for this snapshot. */ } SnapShot; #define SNAPCOUNT_DONE 255 /* Already compiled and linked a side trace. */ /* Compressed snapshot entry. */ typedef uint32_t SnapEntry; #define SNAP_FRAME 0x010000 /* Frame slot. */ #define SNAP_CONT 0x020000 /* Continuation slot. */ #define SNAP_NORESTORE 0x040000 /* No need to restore slot. */ #define SNAP_SOFTFPNUM 0x080000 /* Soft-float number. */ LJ_STATIC_ASSERT(SNAP_FRAME == TREF_FRAME); LJ_STATIC_ASSERT(SNAP_CONT == TREF_CONT); #define SNAP(slot, flags, ref) (((SnapEntry)(slot) << 24) + (flags) + (ref)) #define SNAP_TR(slot, tr) \ (((SnapEntry)(slot) << 24) + ((tr) & (TREF_CONT|TREF_FRAME|TREF_REFMASK))) #if !LJ_FR2 #define SNAP_MKPC(pc) ((SnapEntry)u32ptr(pc)) #endif #define SNAP_MKFTSZ(ftsz) ((SnapEntry)(ftsz)) #define snap_ref(sn) ((sn) & 0xffff) #define snap_slot(sn) ((BCReg)((sn) >> 24)) #define snap_isframe(sn) ((sn) & SNAP_FRAME) #define snap_setref(sn, ref) (((sn) & (0xffff0000&~SNAP_NORESTORE)) | (ref)) static LJ_AINLINE const BCIns *snap_pc(SnapEntry *sn) { #if LJ_FR2 uint64_t pcbase; memcpy(&pcbase, sn, sizeof(uint64_t)); return (const BCIns *)(pcbase >> 8); #else return (const BCIns *)(uintptr_t)*sn; #endif } /* Snapshot and exit numbers. */ typedef uint32_t SnapNo; typedef uint32_t ExitNo; /* Trace number. */ typedef uint32_t TraceNo; /* Used to pass around trace numbers. */ typedef uint16_t TraceNo1; /* Stored trace number. */ /* Type of link. ORDER LJ_TRLINK */ typedef enum { LJ_TRLINK_NONE, /* Incomplete trace. No link, yet. */ LJ_TRLINK_ROOT, /* Link to other root trace. */ LJ_TRLINK_LOOP, /* Loop to same trace. */ LJ_TRLINK_TAILREC, /* Tail-recursion. */ LJ_TRLINK_UPREC, /* Up-recursion. */ LJ_TRLINK_DOWNREC, /* Down-recursion. */ LJ_TRLINK_INTERP, /* Fallback to interpreter. */ LJ_TRLINK_RETURN, /* Return to interpreter. */ LJ_TRLINK_STITCH /* Trace stitching. */ } TraceLink; /* Trace object. */ typedef struct GCtrace { GCHeader; uint8_t topslot; /* Top stack slot already checked to be allocated. */ uint8_t linktype; /* Type of link. */ IRRef nins; /* Next IR instruction. Biased with REF_BIAS. */ #if LJ_GC64 uint32_t unused_gc64; #endif GCRef gclist; IRIns *ir; /* IR instructions/constants. Biased with REF_BIAS. */ IRRef nk; /* Lowest IR constant. Biased with REF_BIAS. */ uint16_t nsnap; /* Number of snapshots. */ uint16_t nsnapmap; /* Number of snapshot map elements. */ SnapShot *snap; /* Snapshot array. */ SnapEntry *snapmap; /* Snapshot map. */ GCRef startpt; /* Starting prototype. */ MRef startpc; /* Bytecode PC of starting instruction. */ BCIns startins; /* Original bytecode of starting instruction. */ MSize szmcode; /* Size of machine code. */ MCode *mcode; /* Start of machine code. */ MSize mcloop; /* Offset of loop start in machine code. */ uint16_t nchild; /* Number of child traces (root trace only). */ uint16_t spadjust; /* Stack pointer adjustment (offset in bytes). */ TraceNo1 traceno; /* Trace number. */ TraceNo1 link; /* Linked trace (or self for loops). */ TraceNo1 root; /* Root trace of side trace (or 0 for root traces). */ TraceNo1 nextroot; /* Next root trace for same prototype. */ TraceNo1 nextside; /* Next side trace of same root trace. */ uint8_t sinktags; /* Trace has SINK tags. */ uint8_t unused1; #ifdef LUAJIT_USE_GDBJIT void *gdbjit_entry; /* GDB JIT entry. */ #endif } GCtrace; #define gco2trace(o) check_exp((o)->gch.gct == ~LJ_TTRACE, (GCtrace *)(o)) #define traceref(J, n) \ check_exp((n)>0 && (MSize)(n)sizetrace, (GCtrace *)gcref(J->trace[(n)])) LJ_STATIC_ASSERT(offsetof(GChead, gclist) == offsetof(GCtrace, gclist)); static LJ_AINLINE MSize snap_nextofs(GCtrace *T, SnapShot *snap) { if (snap+1 == &T->snap[T->nsnap]) return T->nsnapmap; else return (snap+1)->mapofs; } /* Round-robin penalty cache for bytecodes leading to aborted traces. */ typedef struct HotPenalty { MRef pc; /* Starting bytecode PC. */ uint16_t val; /* Penalty value, i.e. hotcount start. */ uint16_t reason; /* Abort reason (really TraceErr). */ } HotPenalty; #define PENALTY_SLOTS 64 /* Penalty cache slot. Must be a power of 2. */ #define PENALTY_MIN (36*2) /* Minimum penalty value. */ #define PENALTY_MAX 60000 /* Maximum penalty value. */ #define PENALTY_RNDBITS 4 /* # of random bits to add to penalty value. */ /* Round-robin backpropagation cache for narrowing conversions. */ typedef struct BPropEntry { IRRef1 key; /* Key: original reference. */ IRRef1 val; /* Value: reference after conversion. */ IRRef mode; /* Mode for this entry (currently IRCONV_*). */ } BPropEntry; /* Number of slots for the backpropagation cache. Must be a power of 2. */ #define BPROP_SLOTS 16 /* Scalar evolution analysis cache. */ typedef struct ScEvEntry { MRef pc; /* Bytecode PC of FORI. */ IRRef1 idx; /* Index reference. */ IRRef1 start; /* Constant start reference. */ IRRef1 stop; /* Constant stop reference. */ IRRef1 step; /* Constant step reference. */ IRType1 t; /* Scalar type. */ uint8_t dir; /* Direction. 1: +, 0: -. */ } ScEvEntry; /* Reverse bytecode map (IRRef -> PC). Only for selected instructions. */ typedef struct RBCHashEntry { MRef pc; /* Bytecode PC. */ GCRef pt; /* Prototype. */ IRRef ref; /* IR reference. */ } RBCHashEntry; /* Number of slots in the reverse bytecode hash table. Must be a power of 2. */ #define RBCHASH_SLOTS 8 /* 128 bit SIMD constants. */ enum { LJ_KSIMD_ABS, LJ_KSIMD_NEG, LJ_KSIMD__MAX }; enum { #if LJ_TARGET_X86ORX64 LJ_K64_TOBIT, /* 2^52 + 2^51 */ LJ_K64_2P64, /* 2^64 */ LJ_K64_M2P64, /* -2^64 */ #if LJ_32 LJ_K64_M2P64_31, /* -2^64 or -2^31 */ #else LJ_K64_M2P64_31 = LJ_K64_M2P64, #endif #endif #if LJ_TARGET_MIPS LJ_K64_2P31, /* 2^31 */ #if LJ_64 LJ_K64_2P63, /* 2^63 */ LJ_K64_M2P64, /* -2^64 */ #endif #endif LJ_K64__MAX, }; enum { #if LJ_TARGET_X86ORX64 LJ_K32_M2P64_31, /* -2^64 or -2^31 */ #endif #if LJ_TARGET_PPC LJ_K32_2P52_2P31, /* 2^52 + 2^31 */ LJ_K32_2P52, /* 2^52 */ #endif #if LJ_TARGET_PPC || LJ_TARGET_MIPS LJ_K32_2P31, /* 2^31 */ #endif #if LJ_TARGET_MIPS64 LJ_K32_2P63, /* 2^63 */ LJ_K32_M2P64, /* -2^64 */ #endif LJ_K32__MAX }; /* Get 16 byte aligned pointer to SIMD constant. */ #define LJ_KSIMD(J, n) \ ((TValue *)(((intptr_t)&J->ksimd[2*(n)] + 15) & ~(intptr_t)15)) /* Set/reset flag to activate the SPLIT pass for the current trace. */ #if LJ_SOFTFP || (LJ_32 && LJ_HASFFI) #define lj_needsplit(J) (J->needsplit = 1) #define lj_resetsplit(J) (J->needsplit = 0) #else #define lj_needsplit(J) UNUSED(J) #define lj_resetsplit(J) UNUSED(J) #endif /* Fold state is used to fold instructions on-the-fly. */ typedef struct FoldState { IRIns ins; /* Currently emitted instruction. */ IRIns left[2]; /* Instruction referenced by left operand. */ IRIns right[2]; /* Instruction referenced by right operand. */ } FoldState; /* JIT compiler state. */ typedef struct jit_State { GCtrace cur; /* Current trace. */ GCtrace *curfinal; /* Final address of current trace (set during asm). */ lua_State *L; /* Current Lua state. */ const BCIns *pc; /* Current PC. */ GCfunc *fn; /* Current function. */ GCproto *pt; /* Current prototype. */ TRef *base; /* Current frame base, points into J->slots. */ uint32_t flags; /* JIT engine flags. */ BCReg maxslot; /* Relative to baseslot. */ BCReg baseslot; /* Current frame base, offset into J->slots. */ uint8_t mergesnap; /* Allowed to merge with next snapshot. */ uint8_t needsnap; /* Need snapshot before recording next bytecode. */ IRType1 guardemit; /* Accumulated IRT_GUARD for emitted instructions. */ uint8_t bcskip; /* Number of bytecode instructions to skip. */ FoldState fold; /* Fold state. */ const BCIns *bc_min; /* Start of allowed bytecode range for root trace. */ MSize bc_extent; /* Extent of the range. */ TraceState state; /* Trace compiler state. */ int32_t instunroll; /* Unroll counter for instable loops. */ int32_t loopunroll; /* Unroll counter for loop ops in side traces. */ int32_t tailcalled; /* Number of successive tailcalls. */ int32_t framedepth; /* Current frame depth. */ int32_t retdepth; /* Return frame depth (count of RETF). */ TValue ksimd[LJ_KSIMD__MAX*2+1]; /* 16 byte aligned SIMD constants. */ TValue k64[LJ_K64__MAX]; /* Common 8 byte constants used by backends. */ uint32_t k32[LJ_K32__MAX]; /* Ditto for 4 byte constants. */ IRIns *irbuf; /* Temp. IR instruction buffer. Biased with REF_BIAS. */ IRRef irtoplim; /* Upper limit of instuction buffer (biased). */ IRRef irbotlim; /* Lower limit of instuction buffer (biased). */ IRRef loopref; /* Last loop reference or ref of final LOOP (or 0). */ MSize sizesnap; /* Size of temp. snapshot buffer. */ SnapShot *snapbuf; /* Temp. snapshot buffer. */ SnapEntry *snapmapbuf; /* Temp. snapshot map buffer. */ MSize sizesnapmap; /* Size of temp. snapshot map buffer. */ PostProc postproc; /* Required post-processing after execution. */ #if LJ_SOFTFP || (LJ_32 && LJ_HASFFI) uint8_t needsplit; /* Need SPLIT pass. */ #endif uint8_t retryrec; /* Retry recording. */ GCRef *trace; /* Array of traces. */ TraceNo freetrace; /* Start of scan for next free trace. */ MSize sizetrace; /* Size of trace array. */ IRRef1 ktrace; /* Reference to KGC with GCtrace. */ IRRef1 chain[IR__MAX]; /* IR instruction skip-list chain anchors. */ TRef slot[LJ_MAX_JSLOTS+LJ_STACK_EXTRA]; /* Stack slot map. */ int32_t param[JIT_P__MAX]; /* JIT engine parameters. */ MCode *exitstubgroup[LJ_MAX_EXITSTUBGR]; /* Exit stub group addresses. */ HotPenalty penalty[PENALTY_SLOTS]; /* Penalty slots. */ uint32_t penaltyslot; /* Round-robin index into penalty slots. */ uint32_t prngstate; /* PRNG state. */ #ifdef LUAJIT_ENABLE_TABLE_BUMP RBCHashEntry rbchash[RBCHASH_SLOTS]; /* Reverse bytecode map. */ #endif BPropEntry bpropcache[BPROP_SLOTS]; /* Backpropagation cache slots. */ uint32_t bpropslot; /* Round-robin index into bpropcache slots. */ ScEvEntry scev; /* Scalar evolution analysis cache slots. */ const BCIns *startpc; /* Bytecode PC of starting instruction. */ TraceNo parent; /* Parent of current side trace (0 for root traces). */ ExitNo exitno; /* Exit number in parent of current side trace. */ BCIns *patchpc; /* PC for pending re-patch. */ BCIns patchins; /* Instruction for pending re-patch. */ int mcprot; /* Protection of current mcode area. */ MCode *mcarea; /* Base of current mcode area. */ MCode *mctop; /* Top of current mcode area. */ MCode *mcbot; /* Bottom of current mcode area. */ size_t szmcarea; /* Size of current mcode area. */ size_t szallmcarea; /* Total size of all allocated mcode areas. */ TValue errinfo; /* Additional info element for trace errors. */ #if LJ_HASPROFILE GCproto *prev_pt; /* Previous prototype. */ BCLine prev_line; /* Previous line. */ int prof_mode; /* Profiling mode: 0, 'f', 'l'. */ #endif } #if LJ_TARGET_ARM LJ_ALIGN(16) /* For DISPATCH-relative addresses in assembler part. */ #endif jit_State; /* Trivial PRNG e.g. used for penalty randomization. */ static LJ_AINLINE uint32_t LJ_PRNG_BITS(jit_State *J, int bits) { /* Yes, this LCG is very weak, but that doesn't matter for our use case. */ J->prngstate = J->prngstate * 1103515245 + 12345; return J->prngstate >> (32-bits); } #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_emit_mips.h0000644000175100017510000002032613101703334020734 0ustar ondrejondrej/* ** MIPS instruction emitter. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #if LJ_64 static intptr_t get_k64val(IRIns *ir) { if (ir->o == IR_KINT64) { return (intptr_t)ir_kint64(ir)->u64; } else if (ir->o == IR_KGC) { return (intptr_t)ir_kgc(ir); } else if (ir->o == IR_KPTR || ir->o == IR_KKPTR) { return (intptr_t)ir_kptr(ir); } else { lua_assert(ir->o == IR_KINT || ir->o == IR_KNULL); return ir->i; /* Sign-extended. */ } } #endif #if LJ_64 #define get_kval(ir) get_k64val(ir) #else #define get_kval(ir) ((ir)->i) #endif /* -- Emit basic instructions --------------------------------------------- */ static void emit_dst(ASMState *as, MIPSIns mi, Reg rd, Reg rs, Reg rt) { *--as->mcp = mi | MIPSF_D(rd) | MIPSF_S(rs) | MIPSF_T(rt); } static void emit_dta(ASMState *as, MIPSIns mi, Reg rd, Reg rt, uint32_t a) { *--as->mcp = mi | MIPSF_D(rd) | MIPSF_T(rt) | MIPSF_A(a); } #define emit_ds(as, mi, rd, rs) emit_dst(as, (mi), (rd), (rs), 0) #define emit_tg(as, mi, rt, rg) emit_dst(as, (mi), (rg)&31, 0, (rt)) static void emit_tsi(ASMState *as, MIPSIns mi, Reg rt, Reg rs, int32_t i) { *--as->mcp = mi | MIPSF_T(rt) | MIPSF_S(rs) | (i & 0xffff); } #define emit_ti(as, mi, rt, i) emit_tsi(as, (mi), (rt), 0, (i)) #define emit_hsi(as, mi, rh, rs, i) emit_tsi(as, (mi), (rh) & 31, (rs), (i)) static void emit_fgh(ASMState *as, MIPSIns mi, Reg rf, Reg rg, Reg rh) { *--as->mcp = mi | MIPSF_F(rf&31) | MIPSF_G(rg&31) | MIPSF_H(rh&31); } #define emit_fg(as, mi, rf, rg) emit_fgh(as, (mi), (rf), (rg), 0) static void emit_rotr(ASMState *as, Reg dest, Reg src, Reg tmp, uint32_t shift) { if (LJ_64 || (as->flags & JIT_F_MIPSXXR2)) { emit_dta(as, MIPSI_ROTR, dest, src, shift); } else { emit_dst(as, MIPSI_OR, dest, dest, tmp); emit_dta(as, MIPSI_SLL, dest, src, (-shift)&31); emit_dta(as, MIPSI_SRL, tmp, src, shift); } } #if LJ_64 static void emit_tsml(ASMState *as, MIPSIns mi, Reg rt, Reg rs, uint32_t msb, uint32_t lsb) { *--as->mcp = mi | MIPSF_T(rt) | MIPSF_S(rs) | MIPSF_M(msb) | MIPSF_L(lsb); } #endif /* -- Emit loads/stores --------------------------------------------------- */ /* Prefer rematerialization of BASE/L from global_State over spills. */ #define emit_canremat(ref) ((ref) <= REF_BASE) /* Try to find a one step delta relative to another constant. */ static int emit_kdelta1(ASMState *as, Reg t, intptr_t i) { RegSet work = ~as->freeset & RSET_GPR; while (work) { Reg r = rset_picktop(work); IRRef ref = regcost_ref(as->cost[r]); lua_assert(r != t); if (ref < ASMREF_L) { intptr_t delta = (intptr_t)((uintptr_t)i - (uintptr_t)(ra_iskref(ref) ? ra_krefk(as, ref) : get_kval(IR(ref)))); if (checki16(delta)) { emit_tsi(as, MIPSI_AADDIU, t, r, delta); return 1; } } rset_clear(work, r); } return 0; /* Failed. */ } /* Load a 32 bit constant into a GPR. */ static void emit_loadi(ASMState *as, Reg r, int32_t i) { if (checki16(i)) { emit_ti(as, MIPSI_LI, r, i); } else { if ((i & 0xffff)) { intptr_t jgl = (intptr_t)(void *)J2G(as->J); if ((uintptr_t)(i-jgl) < 65536) { emit_tsi(as, MIPSI_ADDIU, r, RID_JGL, i-jgl-32768); return; } else if (emit_kdelta1(as, r, i)) { return; } else if ((i >> 16) == 0) { emit_tsi(as, MIPSI_ORI, r, RID_ZERO, i); return; } emit_tsi(as, MIPSI_ORI, r, r, i); } emit_ti(as, MIPSI_LUI, r, (i >> 16)); } } #if LJ_64 /* Load a 64 bit constant into a GPR. */ static void emit_loadu64(ASMState *as, Reg r, uint64_t u64) { if (checki32((int64_t)u64)) { emit_loadi(as, r, (int32_t)u64); } else { uint64_t delta = u64 - (uint64_t)(void *)J2G(as->J); if (delta < 65536) { emit_tsi(as, MIPSI_DADDIU, r, RID_JGL, (int32_t)(delta-32768)); } else if (emit_kdelta1(as, r, (intptr_t)u64)) { return; } else { if ((u64 & 0xffff)) { emit_tsi(as, MIPSI_ORI, r, r, u64 & 0xffff); } if (((u64 >> 16) & 0xffff)) { emit_dta(as, MIPSI_DSLL, r, r, 16); emit_tsi(as, MIPSI_ORI, r, r, (u64 >> 16) & 0xffff); emit_dta(as, MIPSI_DSLL, r, r, 16); } else { emit_dta(as, MIPSI_DSLL32, r, r, 0); } emit_loadi(as, r, (int32_t)(u64 >> 32)); } /* TODO: There are probably more optimization opportunities. */ } } #define emit_loada(as, r, addr) emit_loadu64(as, (r), u64ptr((addr))) #else #define emit_loada(as, r, addr) emit_loadi(as, (r), i32ptr((addr))) #endif static Reg ra_allock(ASMState *as, intptr_t k, RegSet allow); static void ra_allockreg(ASMState *as, intptr_t k, Reg r); /* Get/set from constant pointer. */ static void emit_lsptr(ASMState *as, MIPSIns mi, Reg r, void *p, RegSet allow) { intptr_t jgl = (intptr_t)(J2G(as->J)); intptr_t i = (intptr_t)(p); Reg base; if ((uint32_t)(i-jgl) < 65536) { i = i-jgl-32768; base = RID_JGL; } else { base = ra_allock(as, i-(int16_t)i, allow); } emit_tsi(as, mi, r, base, i); } #if LJ_64 static void emit_loadk64(ASMState *as, Reg r, IRIns *ir) { const uint64_t *k = &ir_k64(ir)->u64; Reg r64 = r; if (rset_test(RSET_FPR, r)) { r64 = RID_TMP; emit_tg(as, MIPSI_DMTC1, r64, r); } if ((uint32_t)((intptr_t)k-(intptr_t)J2G(as->J)) < 65536) emit_lsptr(as, MIPSI_LD, r64, (void *)k, 0); else emit_loadu64(as, r64, *k); } #else #define emit_loadk64(as, r, ir) \ emit_lsptr(as, MIPSI_LDC1, ((r) & 31), (void *)&ir_knum((ir))->u64, RSET_GPR) #endif /* Get/set global_State fields. */ static void emit_lsglptr(ASMState *as, MIPSIns mi, Reg r, int32_t ofs) { emit_tsi(as, mi, r, RID_JGL, ofs-32768); } #define emit_getgl(as, r, field) \ emit_lsglptr(as, MIPSI_AL, (r), (int32_t)offsetof(global_State, field)) #define emit_setgl(as, r, field) \ emit_lsglptr(as, MIPSI_AS, (r), (int32_t)offsetof(global_State, field)) /* Trace number is determined from per-trace exit stubs. */ #define emit_setvmstate(as, i) UNUSED(i) /* -- Emit control-flow instructions -------------------------------------- */ /* Label for internal jumps. */ typedef MCode *MCLabel; /* Return label pointing to current PC. */ #define emit_label(as) ((as)->mcp) static void emit_branch(ASMState *as, MIPSIns mi, Reg rs, Reg rt, MCode *target) { MCode *p = as->mcp; ptrdiff_t delta = target - p; lua_assert(((delta + 0x8000) >> 16) == 0); *--p = mi | MIPSF_S(rs) | MIPSF_T(rt) | ((uint32_t)delta & 0xffffu); as->mcp = p; } static void emit_jmp(ASMState *as, MCode *target) { *--as->mcp = MIPSI_NOP; emit_branch(as, MIPSI_B, RID_ZERO, RID_ZERO, (target)); } static void emit_call(ASMState *as, void *target, int needcfa) { MCode *p = as->mcp; *--p = MIPSI_NOP; if ((((uintptr_t)target ^ (uintptr_t)p) >> 28) == 0) { *--p = (((uintptr_t)target & 1) ? MIPSI_JALX : MIPSI_JAL) | (((uintptr_t)target >>2) & 0x03ffffffu); } else { /* Target out of range: need indirect call. */ *--p = MIPSI_JALR | MIPSF_S(RID_CFUNCADDR); needcfa = 1; } as->mcp = p; if (needcfa) ra_allockreg(as, (intptr_t)target, RID_CFUNCADDR); } /* -- Emit generic operations --------------------------------------------- */ #define emit_move(as, dst, src) \ emit_ds(as, MIPSI_MOVE, (dst), (src)) /* Generic move between two regs. */ static void emit_movrr(ASMState *as, IRIns *ir, Reg dst, Reg src) { if (dst < RID_MAX_GPR) emit_move(as, dst, src); else emit_fg(as, irt_isnum(ir->t) ? MIPSI_MOV_D : MIPSI_MOV_S, dst, src); } /* Generic load of register with base and (small) offset address. */ static void emit_loadofs(ASMState *as, IRIns *ir, Reg r, Reg base, int32_t ofs) { if (r < RID_MAX_GPR) emit_tsi(as, irt_is64(ir->t) ? MIPSI_LD : MIPSI_LW, r, base, ofs); else emit_tsi(as, irt_isnum(ir->t) ? MIPSI_LDC1 : MIPSI_LWC1, (r & 31), base, ofs); } /* Generic store of register with base and (small) offset address. */ static void emit_storeofs(ASMState *as, IRIns *ir, Reg r, Reg base, int32_t ofs) { if (r < RID_MAX_GPR) emit_tsi(as, irt_is64(ir->t) ? MIPSI_SD : MIPSI_SW, r, base, ofs); else emit_tsi(as, irt_isnum(ir->t) ? MIPSI_SDC1 : MIPSI_SWC1, (r&31), base, ofs); } /* Add offset to pointer. */ static void emit_addptr(ASMState *as, Reg r, int32_t ofs) { if (ofs) { lua_assert(checki16(ofs)); emit_tsi(as, MIPSI_AADDIU, r, r, ofs); } } #define emit_spsub(as, ofs) emit_addptr(as, RID_SP, -(ofs)) luajit-2.1.0~beta3+dfsg.orig/src/lj_load.c0000644000175100017510000000777513101703334017675 0ustar ondrejondrej/* ** Load and dump code. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #include #include #define lj_load_c #define LUA_CORE #include "lua.h" #include "lauxlib.h" #include "lj_obj.h" #include "lj_gc.h" #include "lj_err.h" #include "lj_buf.h" #include "lj_func.h" #include "lj_frame.h" #include "lj_vm.h" #include "lj_lex.h" #include "lj_bcdump.h" #include "lj_parse.h" /* -- Load Lua source code and bytecode ----------------------------------- */ static TValue *cpparser(lua_State *L, lua_CFunction dummy, void *ud) { LexState *ls = (LexState *)ud; GCproto *pt; GCfunc *fn; int bc; UNUSED(dummy); cframe_errfunc(L->cframe) = -1; /* Inherit error function. */ bc = lj_lex_setup(L, ls); if (ls->mode && !strchr(ls->mode, bc ? 'b' : 't')) { setstrV(L, L->top++, lj_err_str(L, LJ_ERR_XMODE)); lj_err_throw(L, LUA_ERRSYNTAX); } pt = bc ? lj_bcread(ls) : lj_parse(ls); fn = lj_func_newL_empty(L, pt, tabref(L->env)); /* Don't combine above/below into one statement. */ setfuncV(L, L->top++, fn); return NULL; } LUA_API int lua_loadx(lua_State *L, lua_Reader reader, void *data, const char *chunkname, const char *mode) { LexState ls; int status; ls.rfunc = reader; ls.rdata = data; ls.chunkarg = chunkname ? chunkname : "?"; ls.mode = mode; lj_buf_init(L, &ls.sb); status = lj_vm_cpcall(L, NULL, &ls, cpparser); lj_lex_cleanup(L, &ls); lj_gc_check(L); return status; } LUA_API int lua_load(lua_State *L, lua_Reader reader, void *data, const char *chunkname) { return lua_loadx(L, reader, data, chunkname, NULL); } typedef struct FileReaderCtx { FILE *fp; char buf[LUAL_BUFFERSIZE]; } FileReaderCtx; static const char *reader_file(lua_State *L, void *ud, size_t *size) { FileReaderCtx *ctx = (FileReaderCtx *)ud; UNUSED(L); if (feof(ctx->fp)) return NULL; *size = fread(ctx->buf, 1, sizeof(ctx->buf), ctx->fp); return *size > 0 ? ctx->buf : NULL; } LUALIB_API int luaL_loadfilex(lua_State *L, const char *filename, const char *mode) { FileReaderCtx ctx; int status; const char *chunkname; if (filename) { ctx.fp = fopen(filename, "rb"); if (ctx.fp == NULL) { lua_pushfstring(L, "cannot open %s: %s", filename, strerror(errno)); return LUA_ERRFILE; } chunkname = lua_pushfstring(L, "@%s", filename); } else { ctx.fp = stdin; chunkname = "=stdin"; } status = lua_loadx(L, reader_file, &ctx, chunkname, mode); if (ferror(ctx.fp)) { L->top -= filename ? 2 : 1; lua_pushfstring(L, "cannot read %s: %s", chunkname+1, strerror(errno)); if (filename) fclose(ctx.fp); return LUA_ERRFILE; } if (filename) { L->top--; copyTV(L, L->top-1, L->top); fclose(ctx.fp); } return status; } LUALIB_API int luaL_loadfile(lua_State *L, const char *filename) { return luaL_loadfilex(L, filename, NULL); } typedef struct StringReaderCtx { const char *str; size_t size; } StringReaderCtx; static const char *reader_string(lua_State *L, void *ud, size_t *size) { StringReaderCtx *ctx = (StringReaderCtx *)ud; UNUSED(L); if (ctx->size == 0) return NULL; *size = ctx->size; ctx->size = 0; return ctx->str; } LUALIB_API int luaL_loadbufferx(lua_State *L, const char *buf, size_t size, const char *name, const char *mode) { StringReaderCtx ctx; ctx.str = buf; ctx.size = size; return lua_loadx(L, reader_string, &ctx, name, mode); } LUALIB_API int luaL_loadbuffer(lua_State *L, const char *buf, size_t size, const char *name) { return luaL_loadbufferx(L, buf, size, name, NULL); } LUALIB_API int luaL_loadstring(lua_State *L, const char *s) { return luaL_loadbuffer(L, s, strlen(s), s); } /* -- Dump bytecode ------------------------------------------------------- */ LUA_API int lua_dump(lua_State *L, lua_Writer writer, void *data) { cTValue *o = L->top-1; api_check(L, L->top > L->base); if (tvisfunc(o) && isluafunc(funcV(o))) return lj_bcwrite(L, funcproto(funcV(o)), writer, data, 0); else return 1; } luajit-2.1.0~beta3+dfsg.orig/src/lj_target_ppc.h0000644000175100017510000001653613101703334021106 0ustar ondrejondrej/* ** Definitions for PPC CPUs. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_TARGET_PPC_H #define _LJ_TARGET_PPC_H /* -- Registers IDs ------------------------------------------------------- */ #define GPRDEF(_) \ _(R0) _(SP) _(SYS1) _(R3) _(R4) _(R5) _(R6) _(R7) \ _(R8) _(R9) _(R10) _(R11) _(R12) _(SYS2) _(R14) _(R15) \ _(R16) _(R17) _(R18) _(R19) _(R20) _(R21) _(R22) _(R23) \ _(R24) _(R25) _(R26) _(R27) _(R28) _(R29) _(R30) _(R31) #define FPRDEF(_) \ _(F0) _(F1) _(F2) _(F3) _(F4) _(F5) _(F6) _(F7) \ _(F8) _(F9) _(F10) _(F11) _(F12) _(F13) _(F14) _(F15) \ _(F16) _(F17) _(F18) _(F19) _(F20) _(F21) _(F22) _(F23) \ _(F24) _(F25) _(F26) _(F27) _(F28) _(F29) _(F30) _(F31) #define VRIDDEF(_) #define RIDENUM(name) RID_##name, enum { GPRDEF(RIDENUM) /* General-purpose registers (GPRs). */ FPRDEF(RIDENUM) /* Floating-point registers (FPRs). */ RID_MAX, RID_TMP = RID_R0, /* Calling conventions. */ RID_RET = RID_R3, RID_RETHI = RID_R3, RID_RETLO = RID_R4, RID_FPRET = RID_F1, /* These definitions must match with the *.dasc file(s): */ RID_BASE = RID_R14, /* Interpreter BASE. */ RID_LPC = RID_R16, /* Interpreter PC. */ RID_DISPATCH = RID_R17, /* Interpreter DISPATCH table. */ RID_LREG = RID_R18, /* Interpreter L. */ RID_JGL = RID_R31, /* On-trace: global_State + 32768. */ /* Register ranges [min, max) and number of registers. */ RID_MIN_GPR = RID_R0, RID_MAX_GPR = RID_R31+1, RID_MIN_FPR = RID_F0, RID_MAX_FPR = RID_F31+1, RID_NUM_GPR = RID_MAX_GPR - RID_MIN_GPR, RID_NUM_FPR = RID_MAX_FPR - RID_MIN_FPR }; #define RID_NUM_KREF RID_NUM_GPR #define RID_MIN_KREF RID_R0 /* -- Register sets ------------------------------------------------------- */ /* Make use of all registers, except TMP, SP, SYS1, SYS2 and JGL. */ #define RSET_FIXED \ (RID2RSET(RID_TMP)|RID2RSET(RID_SP)|RID2RSET(RID_SYS1)|\ RID2RSET(RID_SYS2)|RID2RSET(RID_JGL)) #define RSET_GPR (RSET_RANGE(RID_MIN_GPR, RID_MAX_GPR) - RSET_FIXED) #define RSET_FPR RSET_RANGE(RID_MIN_FPR, RID_MAX_FPR) #define RSET_ALL (RSET_GPR|RSET_FPR) #define RSET_INIT RSET_ALL #define RSET_SCRATCH_GPR (RSET_RANGE(RID_R3, RID_R12+1)) #define RSET_SCRATCH_FPR (RSET_RANGE(RID_F0, RID_F13+1)) #define RSET_SCRATCH (RSET_SCRATCH_GPR|RSET_SCRATCH_FPR) #define REGARG_FIRSTGPR RID_R3 #define REGARG_LASTGPR RID_R10 #define REGARG_NUMGPR 8 #define REGARG_FIRSTFPR RID_F1 #define REGARG_LASTFPR RID_F8 #define REGARG_NUMFPR 8 /* -- Spill slots --------------------------------------------------------- */ /* Spill slots are 32 bit wide. An even/odd pair is used for FPRs. ** ** SPS_FIXED: Available fixed spill slots in interpreter frame. ** This definition must match with the *.dasc file(s). ** ** SPS_FIRST: First spill slot for general use. ** [sp+12] tmplo word \ ** [sp+ 8] tmphi word / tmp dword, parameter area for callee ** [sp+ 4] tmpw, LR of callee ** [sp+ 0] stack chain */ #define SPS_FIXED 7 #define SPS_FIRST 4 /* Stack offsets for temporary slots. Used for FP<->int conversions etc. */ #define SPOFS_TMPW 4 #define SPOFS_TMP 8 #define SPOFS_TMPHI 8 #define SPOFS_TMPLO 12 #define sps_scale(slot) (4 * (int32_t)(slot)) #define sps_align(slot) (((slot) - SPS_FIXED + 3) & ~3) /* -- Exit state ---------------------------------------------------------- */ /* This definition must match with the *.dasc file(s). */ typedef struct { lua_Number fpr[RID_NUM_FPR]; /* Floating-point registers. */ intptr_t gpr[RID_NUM_GPR]; /* General-purpose registers. */ int32_t spill[256]; /* Spill slots. */ } ExitState; /* Highest exit + 1 indicates stack check. */ #define EXITSTATE_CHECKEXIT 1 /* Return the address of a per-trace exit stub. */ static LJ_AINLINE uint32_t *exitstub_trace_addr_(uint32_t *p, uint32_t exitno) { while (*p == 0x60000000) p++; /* Skip PPCI_NOP. */ return p + 3 + exitno; } /* Avoid dependence on lj_jit.h if only including lj_target.h. */ #define exitstub_trace_addr(T, exitno) \ exitstub_trace_addr_((MCode *)((char *)(T)->mcode + (T)->szmcode), (exitno)) /* -- Instructions -------------------------------------------------------- */ /* Instruction fields. */ #define PPCF_CC(cc) ((((cc) & 3) << 16) | (((cc) & 4) << 22)) #define PPCF_T(r) ((r) << 21) #define PPCF_A(r) ((r) << 16) #define PPCF_B(r) ((r) << 11) #define PPCF_C(r) ((r) << 6) #define PPCF_MB(n) ((n) << 6) #define PPCF_ME(n) ((n) << 1) #define PPCF_Y 0x00200000 #define PPCF_DOT 0x00000001 typedef enum PPCIns { /* Integer instructions. */ PPCI_MR = 0x7c000378, PPCI_NOP = 0x60000000, PPCI_LI = 0x38000000, PPCI_LIS = 0x3c000000, PPCI_ADD = 0x7c000214, PPCI_ADDC = 0x7c000014, PPCI_ADDO = 0x7c000614, PPCI_ADDE = 0x7c000114, PPCI_ADDZE = 0x7c000194, PPCI_ADDME = 0x7c0001d4, PPCI_ADDI = 0x38000000, PPCI_ADDIS = 0x3c000000, PPCI_ADDIC = 0x30000000, PPCI_ADDICDOT = 0x34000000, PPCI_SUBF = 0x7c000050, PPCI_SUBFC = 0x7c000010, PPCI_SUBFO = 0x7c000450, PPCI_SUBFE = 0x7c000110, PPCI_SUBFZE = 0x7c000190, PPCI_SUBFME = 0x7c0001d0, PPCI_SUBFIC = 0x20000000, PPCI_NEG = 0x7c0000d0, PPCI_AND = 0x7c000038, PPCI_ANDC = 0x7c000078, PPCI_NAND = 0x7c0003b8, PPCI_ANDIDOT = 0x70000000, PPCI_ANDISDOT = 0x74000000, PPCI_OR = 0x7c000378, PPCI_NOR = 0x7c0000f8, PPCI_ORI = 0x60000000, PPCI_ORIS = 0x64000000, PPCI_XOR = 0x7c000278, PPCI_EQV = 0x7c000238, PPCI_XORI = 0x68000000, PPCI_XORIS = 0x6c000000, PPCI_CMPW = 0x7c000000, PPCI_CMPLW = 0x7c000040, PPCI_CMPWI = 0x2c000000, PPCI_CMPLWI = 0x28000000, PPCI_MULLW = 0x7c0001d6, PPCI_MULLI = 0x1c000000, PPCI_MULLWO = 0x7c0005d6, PPCI_EXTSB = 0x7c000774, PPCI_EXTSH = 0x7c000734, PPCI_SLW = 0x7c000030, PPCI_SRW = 0x7c000430, PPCI_SRAW = 0x7c000630, PPCI_SRAWI = 0x7c000670, PPCI_RLWNM = 0x5c000000, PPCI_RLWINM = 0x54000000, PPCI_RLWIMI = 0x50000000, PPCI_B = 0x48000000, PPCI_BL = 0x48000001, PPCI_BC = 0x40800000, PPCI_BCL = 0x40800001, PPCI_BCTR = 0x4e800420, PPCI_BCTRL = 0x4e800421, PPCI_CRANDC = 0x4c000102, PPCI_CRXOR = 0x4c000182, PPCI_CRAND = 0x4c000202, PPCI_CREQV = 0x4c000242, PPCI_CRORC = 0x4c000342, PPCI_CROR = 0x4c000382, PPCI_MFLR = 0x7c0802a6, PPCI_MTCTR = 0x7c0903a6, PPCI_MCRXR = 0x7c000400, /* Load/store instructions. */ PPCI_LWZ = 0x80000000, PPCI_LBZ = 0x88000000, PPCI_STW = 0x90000000, PPCI_STB = 0x98000000, PPCI_LHZ = 0xa0000000, PPCI_LHA = 0xa8000000, PPCI_STH = 0xb0000000, PPCI_STWU = 0x94000000, PPCI_LFS = 0xc0000000, PPCI_LFD = 0xc8000000, PPCI_STFS = 0xd0000000, PPCI_STFD = 0xd8000000, PPCI_LWZX = 0x7c00002e, PPCI_LBZX = 0x7c0000ae, PPCI_STWX = 0x7c00012e, PPCI_STBX = 0x7c0001ae, PPCI_LHZX = 0x7c00022e, PPCI_LHAX = 0x7c0002ae, PPCI_STHX = 0x7c00032e, PPCI_LWBRX = 0x7c00042c, PPCI_STWBRX = 0x7c00052c, PPCI_LFSX = 0x7c00042e, PPCI_LFDX = 0x7c0004ae, PPCI_STFSX = 0x7c00052e, PPCI_STFDX = 0x7c0005ae, /* FP instructions. */ PPCI_FMR = 0xfc000090, PPCI_FNEG = 0xfc000050, PPCI_FABS = 0xfc000210, PPCI_FRSP = 0xfc000018, PPCI_FCTIWZ = 0xfc00001e, PPCI_FADD = 0xfc00002a, PPCI_FSUB = 0xfc000028, PPCI_FMUL = 0xfc000032, PPCI_FDIV = 0xfc000024, PPCI_FSQRT = 0xfc00002c, PPCI_FMADD = 0xfc00003a, PPCI_FMSUB = 0xfc000038, PPCI_FNMSUB = 0xfc00003c, PPCI_FCMPU = 0xfc000000, PPCI_FSEL = 0xfc00002e, } PPCIns; typedef enum PPCCC { CC_GE, CC_LE, CC_NE, CC_NS, CC_LT, CC_GT, CC_EQ, CC_SO } PPCCC; #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_record.h0000644000175100017510000000316613101703334020227 0ustar ondrejondrej/* ** Trace recorder (bytecode -> SSA IR). ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_RECORD_H #define _LJ_RECORD_H #include "lj_obj.h" #include "lj_jit.h" #if LJ_HASJIT /* Context for recording an indexed load/store. */ typedef struct RecordIndex { TValue tabv; /* Runtime value of table (or indexed object). */ TValue keyv; /* Runtime value of key. */ TValue valv; /* Runtime value of stored value. */ TValue mobjv; /* Runtime value of metamethod object. */ GCtab *mtv; /* Runtime value of metatable object. */ cTValue *oldv; /* Runtime value of previously stored value. */ TRef tab; /* Table (or indexed object) reference. */ TRef key; /* Key reference. */ TRef val; /* Value reference for a store or 0 for a load. */ TRef mt; /* Metatable reference. */ TRef mobj; /* Metamethod object reference. */ int idxchain; /* Index indirections left or 0 for raw lookup. */ } RecordIndex; LJ_FUNC int lj_record_objcmp(jit_State *J, TRef a, TRef b, cTValue *av, cTValue *bv); LJ_FUNC void lj_record_stop(jit_State *J, TraceLink linktype, TraceNo lnk); LJ_FUNC TRef lj_record_constify(jit_State *J, cTValue *o); LJ_FUNC void lj_record_call(jit_State *J, BCReg func, ptrdiff_t nargs); LJ_FUNC void lj_record_tailcall(jit_State *J, BCReg func, ptrdiff_t nargs); LJ_FUNC void lj_record_ret(jit_State *J, BCReg rbase, ptrdiff_t gotresults); LJ_FUNC int lj_record_mm_lookup(jit_State *J, RecordIndex *ix, MMS mm); LJ_FUNC TRef lj_record_idx(jit_State *J, RecordIndex *ix); LJ_FUNC void lj_record_ins(jit_State *J); LJ_FUNC void lj_record_setup(jit_State *J); #endif #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_asm_x86.h0000644000175100017510000031210213101703334020227 0ustar ondrejondrej/* ** x86/x64 IR assembler (SSA IR -> machine code). ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ /* -- Guard handling ------------------------------------------------------ */ /* Generate an exit stub group at the bottom of the reserved MCode memory. */ static MCode *asm_exitstub_gen(ASMState *as, ExitNo group) { ExitNo i, groupofs = (group*EXITSTUBS_PER_GROUP) & 0xff; MCode *mxp = as->mcbot; MCode *mxpstart = mxp; if (mxp + (2+2)*EXITSTUBS_PER_GROUP+8+5 >= as->mctop) asm_mclimit(as); /* Push low byte of exitno for each exit stub. */ *mxp++ = XI_PUSHi8; *mxp++ = (MCode)groupofs; for (i = 1; i < EXITSTUBS_PER_GROUP; i++) { *mxp++ = XI_JMPs; *mxp++ = (MCode)((2+2)*(EXITSTUBS_PER_GROUP - i) - 2); *mxp++ = XI_PUSHi8; *mxp++ = (MCode)(groupofs + i); } /* Push the high byte of the exitno for each exit stub group. */ *mxp++ = XI_PUSHi8; *mxp++ = (MCode)((group*EXITSTUBS_PER_GROUP)>>8); #if !LJ_GC64 /* Store DISPATCH at original stack slot 0. Account for the two push ops. */ *mxp++ = XI_MOVmi; *mxp++ = MODRM(XM_OFS8, 0, RID_ESP); *mxp++ = MODRM(XM_SCALE1, RID_ESP, RID_ESP); *mxp++ = 2*sizeof(void *); *(int32_t *)mxp = ptr2addr(J2GG(as->J)->dispatch); mxp += 4; #endif /* Jump to exit handler which fills in the ExitState. */ *mxp++ = XI_JMP; mxp += 4; *((int32_t *)(mxp-4)) = jmprel(mxp, (MCode *)(void *)lj_vm_exit_handler); /* Commit the code for this group (even if assembly fails later on). */ lj_mcode_commitbot(as->J, mxp); as->mcbot = mxp; as->mclim = as->mcbot + MCLIM_REDZONE; return mxpstart; } /* Setup all needed exit stubs. */ static void asm_exitstub_setup(ASMState *as, ExitNo nexits) { ExitNo i; if (nexits >= EXITSTUBS_PER_GROUP*LJ_MAX_EXITSTUBGR) lj_trace_err(as->J, LJ_TRERR_SNAPOV); for (i = 0; i < (nexits+EXITSTUBS_PER_GROUP-1)/EXITSTUBS_PER_GROUP; i++) if (as->J->exitstubgroup[i] == NULL) as->J->exitstubgroup[i] = asm_exitstub_gen(as, i); } /* Emit conditional branch to exit for guard. ** It's important to emit this *after* all registers have been allocated, ** because rematerializations may invalidate the flags. */ static void asm_guardcc(ASMState *as, int cc) { MCode *target = exitstub_addr(as->J, as->snapno); MCode *p = as->mcp; if (LJ_UNLIKELY(p == as->invmcp)) { as->loopinv = 1; *(int32_t *)(p+1) = jmprel(p+5, target); target = p; cc ^= 1; if (as->realign) { if (LJ_GC64 && LJ_UNLIKELY(as->mrm.base == RID_RIP)) as->mrm.ofs += 2; /* Fixup RIP offset for pending fused load. */ emit_sjcc(as, cc, target); return; } } if (LJ_GC64 && LJ_UNLIKELY(as->mrm.base == RID_RIP)) as->mrm.ofs += 6; /* Fixup RIP offset for pending fused load. */ emit_jcc(as, cc, target); } /* -- Memory operand fusion ----------------------------------------------- */ /* Limit linear search to this distance. Avoids O(n^2) behavior. */ #define CONFLICT_SEARCH_LIM 31 /* Check if a reference is a signed 32 bit constant. */ static int asm_isk32(ASMState *as, IRRef ref, int32_t *k) { if (irref_isk(ref)) { IRIns *ir = IR(ref); #if LJ_GC64 if (ir->o == IR_KNULL || !irt_is64(ir->t)) { *k = ir->i; return 1; } else if (checki32((int64_t)ir_k64(ir)->u64)) { *k = (int32_t)ir_k64(ir)->u64; return 1; } #else if (ir->o != IR_KINT64) { *k = ir->i; return 1; } else if (checki32((int64_t)ir_kint64(ir)->u64)) { *k = (int32_t)ir_kint64(ir)->u64; return 1; } #endif } return 0; } /* Check if there's no conflicting instruction between curins and ref. ** Also avoid fusing loads if there are multiple references. */ static int noconflict(ASMState *as, IRRef ref, IROp conflict, int noload) { IRIns *ir = as->ir; IRRef i = as->curins; if (i > ref + CONFLICT_SEARCH_LIM) return 0; /* Give up, ref is too far away. */ while (--i > ref) { if (ir[i].o == conflict) return 0; /* Conflict found. */ else if (!noload && (ir[i].op1 == ref || ir[i].op2 == ref)) return 0; } return 1; /* Ok, no conflict. */ } /* Fuse array base into memory operand. */ static IRRef asm_fuseabase(ASMState *as, IRRef ref) { IRIns *irb = IR(ref); as->mrm.ofs = 0; if (irb->o == IR_FLOAD) { IRIns *ira = IR(irb->op1); lua_assert(irb->op2 == IRFL_TAB_ARRAY); /* We can avoid the FLOAD of t->array for colocated arrays. */ if (ira->o == IR_TNEW && ira->op1 <= LJ_MAX_COLOSIZE && !neverfuse(as) && noconflict(as, irb->op1, IR_NEWREF, 1)) { as->mrm.ofs = (int32_t)sizeof(GCtab); /* Ofs to colocated array. */ return irb->op1; /* Table obj. */ } } else if (irb->o == IR_ADD && irref_isk(irb->op2)) { /* Fuse base offset (vararg load). */ as->mrm.ofs = IR(irb->op2)->i; return irb->op1; } return ref; /* Otherwise use the given array base. */ } /* Fuse array reference into memory operand. */ static void asm_fusearef(ASMState *as, IRIns *ir, RegSet allow) { IRIns *irx; lua_assert(ir->o == IR_AREF); as->mrm.base = (uint8_t)ra_alloc1(as, asm_fuseabase(as, ir->op1), allow); irx = IR(ir->op2); if (irref_isk(ir->op2)) { as->mrm.ofs += 8*irx->i; as->mrm.idx = RID_NONE; } else { rset_clear(allow, as->mrm.base); as->mrm.scale = XM_SCALE8; /* Fuse a constant ADD (e.g. t[i+1]) into the offset. ** Doesn't help much without ABCelim, but reduces register pressure. */ if (!LJ_64 && /* Has bad effects with negative index on x64. */ mayfuse(as, ir->op2) && ra_noreg(irx->r) && irx->o == IR_ADD && irref_isk(irx->op2)) { as->mrm.ofs += 8*IR(irx->op2)->i; as->mrm.idx = (uint8_t)ra_alloc1(as, irx->op1, allow); } else { as->mrm.idx = (uint8_t)ra_alloc1(as, ir->op2, allow); } } } /* Fuse array/hash/upvalue reference into memory operand. ** Caveat: this may allocate GPRs for the base/idx registers. Be sure to ** pass the final allow mask, excluding any GPRs used for other inputs. ** In particular: 2-operand GPR instructions need to call ra_dest() first! */ static void asm_fuseahuref(ASMState *as, IRRef ref, RegSet allow) { IRIns *ir = IR(ref); if (ra_noreg(ir->r)) { switch ((IROp)ir->o) { case IR_AREF: if (mayfuse(as, ref)) { asm_fusearef(as, ir, allow); return; } break; case IR_HREFK: if (mayfuse(as, ref)) { as->mrm.base = (uint8_t)ra_alloc1(as, ir->op1, allow); as->mrm.ofs = (int32_t)(IR(ir->op2)->op2 * sizeof(Node)); as->mrm.idx = RID_NONE; return; } break; case IR_UREFC: if (irref_isk(ir->op1)) { GCfunc *fn = ir_kfunc(IR(ir->op1)); GCupval *uv = &gcref(fn->l.uvptr[(ir->op2 >> 8)])->uv; #if LJ_GC64 int64_t ofs = dispofs(as, &uv->tv); if (checki32(ofs) && checki32(ofs+4)) { as->mrm.ofs = (int32_t)ofs; as->mrm.base = RID_DISPATCH; as->mrm.idx = RID_NONE; return; } #else as->mrm.ofs = ptr2addr(&uv->tv); as->mrm.base = as->mrm.idx = RID_NONE; return; #endif } break; default: lua_assert(ir->o == IR_HREF || ir->o == IR_NEWREF || ir->o == IR_UREFO || ir->o == IR_KKPTR); break; } } as->mrm.base = (uint8_t)ra_alloc1(as, ref, allow); as->mrm.ofs = 0; as->mrm.idx = RID_NONE; } /* Fuse FLOAD/FREF reference into memory operand. */ static void asm_fusefref(ASMState *as, IRIns *ir, RegSet allow) { lua_assert(ir->o == IR_FLOAD || ir->o == IR_FREF); as->mrm.idx = RID_NONE; if (ir->op1 == REF_NIL) { #if LJ_GC64 as->mrm.ofs = (int32_t)(ir->op2 << 2) - GG_OFS(dispatch); as->mrm.base = RID_DISPATCH; #else as->mrm.ofs = (int32_t)(ir->op2 << 2) + ptr2addr(J2GG(as->J)); as->mrm.base = RID_NONE; #endif return; } as->mrm.ofs = field_ofs[ir->op2]; if (irref_isk(ir->op1)) { IRIns *op1 = IR(ir->op1); #if LJ_GC64 if (ir->op1 == REF_NIL) { as->mrm.ofs -= GG_OFS(dispatch); as->mrm.base = RID_DISPATCH; return; } else if (op1->o == IR_KPTR || op1->o == IR_KKPTR) { intptr_t ofs = dispofs(as, ir_kptr(op1)); if (checki32(as->mrm.ofs + ofs)) { as->mrm.ofs += (int32_t)ofs; as->mrm.base = RID_DISPATCH; return; } } #else as->mrm.ofs += op1->i; as->mrm.base = RID_NONE; return; #endif } as->mrm.base = (uint8_t)ra_alloc1(as, ir->op1, allow); } /* Fuse string reference into memory operand. */ static void asm_fusestrref(ASMState *as, IRIns *ir, RegSet allow) { IRIns *irr; lua_assert(ir->o == IR_STRREF); as->mrm.base = as->mrm.idx = RID_NONE; as->mrm.scale = XM_SCALE1; as->mrm.ofs = sizeof(GCstr); if (!LJ_GC64 && irref_isk(ir->op1)) { as->mrm.ofs += IR(ir->op1)->i; } else { Reg r = ra_alloc1(as, ir->op1, allow); rset_clear(allow, r); as->mrm.base = (uint8_t)r; } irr = IR(ir->op2); if (irref_isk(ir->op2)) { as->mrm.ofs += irr->i; } else { Reg r; /* Fuse a constant add into the offset, e.g. string.sub(s, i+10). */ if (!LJ_64 && /* Has bad effects with negative index on x64. */ mayfuse(as, ir->op2) && irr->o == IR_ADD && irref_isk(irr->op2)) { as->mrm.ofs += IR(irr->op2)->i; r = ra_alloc1(as, irr->op1, allow); } else { r = ra_alloc1(as, ir->op2, allow); } if (as->mrm.base == RID_NONE) as->mrm.base = (uint8_t)r; else as->mrm.idx = (uint8_t)r; } } static void asm_fusexref(ASMState *as, IRRef ref, RegSet allow) { IRIns *ir = IR(ref); as->mrm.idx = RID_NONE; if (ir->o == IR_KPTR || ir->o == IR_KKPTR) { #if LJ_GC64 intptr_t ofs = dispofs(as, ir_kptr(ir)); if (checki32(ofs)) { as->mrm.ofs = (int32_t)ofs; as->mrm.base = RID_DISPATCH; return; } } if (0) { #else as->mrm.ofs = ir->i; as->mrm.base = RID_NONE; } else if (ir->o == IR_STRREF) { asm_fusestrref(as, ir, allow); #endif } else { as->mrm.ofs = 0; if (canfuse(as, ir) && ir->o == IR_ADD && ra_noreg(ir->r)) { /* Gather (base+idx*sz)+ofs as emitted by cdata ptr/array indexing. */ IRIns *irx; IRRef idx; Reg r; if (asm_isk32(as, ir->op2, &as->mrm.ofs)) { /* Recognize x+ofs. */ ref = ir->op1; ir = IR(ref); if (!(ir->o == IR_ADD && canfuse(as, ir) && ra_noreg(ir->r))) goto noadd; } as->mrm.scale = XM_SCALE1; idx = ir->op1; ref = ir->op2; irx = IR(idx); if (!(irx->o == IR_BSHL || irx->o == IR_ADD)) { /* Try other operand. */ idx = ir->op2; ref = ir->op1; irx = IR(idx); } if (canfuse(as, irx) && ra_noreg(irx->r)) { if (irx->o == IR_BSHL && irref_isk(irx->op2) && IR(irx->op2)->i <= 3) { /* Recognize idx<op1; as->mrm.scale = (uint8_t)(IR(irx->op2)->i << 6); } else if (irx->o == IR_ADD && irx->op1 == irx->op2) { /* FOLD does idx*2 ==> idx<<1 ==> idx+idx. */ idx = irx->op1; as->mrm.scale = XM_SCALE2; } } r = ra_alloc1(as, idx, allow); rset_clear(allow, r); as->mrm.idx = (uint8_t)r; } noadd: as->mrm.base = (uint8_t)ra_alloc1(as, ref, allow); } } /* Fuse load of 64 bit IR constant into memory operand. */ static Reg asm_fuseloadk64(ASMState *as, IRIns *ir) { const uint64_t *k = &ir_k64(ir)->u64; if (!LJ_GC64 || checki32((intptr_t)k)) { as->mrm.ofs = ptr2addr(k); as->mrm.base = RID_NONE; #if LJ_GC64 } else if (checki32(dispofs(as, k))) { as->mrm.ofs = (int32_t)dispofs(as, k); as->mrm.base = RID_DISPATCH; } else if (checki32(mcpofs(as, k)) && checki32(mcpofs(as, k+1)) && checki32(mctopofs(as, k)) && checki32(mctopofs(as, k+1))) { as->mrm.ofs = (int32_t)mcpofs(as, k); as->mrm.base = RID_RIP; } else { if (ir->i) { lua_assert(*k == *(uint64_t*)(as->mctop - ir->i)); } else { while ((uintptr_t)as->mcbot & 7) *as->mcbot++ = XI_INT3; *(uint64_t*)as->mcbot = *k; ir->i = (int32_t)(as->mctop - as->mcbot); as->mcbot += 8; as->mclim = as->mcbot + MCLIM_REDZONE; } as->mrm.ofs = (int32_t)mcpofs(as, as->mctop - ir->i); as->mrm.base = RID_RIP; #endif } as->mrm.idx = RID_NONE; return RID_MRM; } /* Fuse load into memory operand. ** ** Important caveat: this may emit RIP-relative loads! So don't place any ** code emitters between this function and the use of its result. ** The only permitted exception is asm_guardcc(). */ static Reg asm_fuseload(ASMState *as, IRRef ref, RegSet allow) { IRIns *ir = IR(ref); if (ra_hasreg(ir->r)) { if (allow != RSET_EMPTY) { /* Fast path. */ ra_noweak(as, ir->r); return ir->r; } fusespill: /* Force a spill if only memory operands are allowed (asm_x87load). */ as->mrm.base = RID_ESP; as->mrm.ofs = ra_spill(as, ir); as->mrm.idx = RID_NONE; return RID_MRM; } if (ir->o == IR_KNUM) { RegSet avail = as->freeset & ~as->modset & RSET_FPR; lua_assert(allow != RSET_EMPTY); if (!(avail & (avail-1))) /* Fuse if less than two regs available. */ return asm_fuseloadk64(as, ir); } else if (ref == REF_BASE || ir->o == IR_KINT64) { RegSet avail = as->freeset & ~as->modset & RSET_GPR; lua_assert(allow != RSET_EMPTY); if (!(avail & (avail-1))) { /* Fuse if less than two regs available. */ if (ref == REF_BASE) { #if LJ_GC64 as->mrm.ofs = (int32_t)dispofs(as, &J2G(as->J)->jit_base); as->mrm.base = RID_DISPATCH; #else as->mrm.ofs = ptr2addr(&J2G(as->J)->jit_base); as->mrm.base = RID_NONE; #endif as->mrm.idx = RID_NONE; return RID_MRM; } else { return asm_fuseloadk64(as, ir); } } } else if (mayfuse(as, ref)) { RegSet xallow = (allow & RSET_GPR) ? allow : RSET_GPR; if (ir->o == IR_SLOAD) { if (!(ir->op2 & (IRSLOAD_PARENT|IRSLOAD_CONVERT)) && noconflict(as, ref, IR_RETF, 0) && !(LJ_GC64 && irt_isaddr(ir->t))) { as->mrm.base = (uint8_t)ra_alloc1(as, REF_BASE, xallow); as->mrm.ofs = 8*((int32_t)ir->op1-1-LJ_FR2) + (!LJ_FR2 && (ir->op2 & IRSLOAD_FRAME) ? 4 : 0); as->mrm.idx = RID_NONE; return RID_MRM; } } else if (ir->o == IR_FLOAD) { /* Generic fusion is only ok for 32 bit operand (but see asm_comp). */ if ((irt_isint(ir->t) || irt_isu32(ir->t) || irt_isaddr(ir->t)) && noconflict(as, ref, IR_FSTORE, 0)) { asm_fusefref(as, ir, xallow); return RID_MRM; } } else if (ir->o == IR_ALOAD || ir->o == IR_HLOAD || ir->o == IR_ULOAD) { if (noconflict(as, ref, ir->o + IRDELTA_L2S, 0) && !(LJ_GC64 && irt_isaddr(ir->t))) { asm_fuseahuref(as, ir->op1, xallow); return RID_MRM; } } else if (ir->o == IR_XLOAD) { /* Generic fusion is not ok for 8/16 bit operands (but see asm_comp). ** Fusing unaligned memory operands is ok on x86 (except for SIMD types). */ if ((!irt_typerange(ir->t, IRT_I8, IRT_U16)) && noconflict(as, ref, IR_XSTORE, 0)) { asm_fusexref(as, ir->op1, xallow); return RID_MRM; } } else if (ir->o == IR_VLOAD && !(LJ_GC64 && irt_isaddr(ir->t))) { asm_fuseahuref(as, ir->op1, xallow); return RID_MRM; } } if (ir->o == IR_FLOAD && ir->op1 == REF_NIL) { asm_fusefref(as, ir, RSET_EMPTY); return RID_MRM; } if (!(as->freeset & allow) && !emit_canremat(ref) && (allow == RSET_EMPTY || ra_hasspill(ir->s) || iscrossref(as, ref))) goto fusespill; return ra_allocref(as, ref, allow); } #if LJ_64 /* Don't fuse a 32 bit load into a 64 bit operation. */ static Reg asm_fuseloadm(ASMState *as, IRRef ref, RegSet allow, int is64) { if (is64 && !irt_is64(IR(ref)->t)) return ra_alloc1(as, ref, allow); return asm_fuseload(as, ref, allow); } #else #define asm_fuseloadm(as, ref, allow, is64) asm_fuseload(as, (ref), (allow)) #endif /* -- Calls --------------------------------------------------------------- */ /* Count the required number of stack slots for a call. */ static int asm_count_call_slots(ASMState *as, const CCallInfo *ci, IRRef *args) { uint32_t i, nargs = CCI_XNARGS(ci); int nslots = 0; #if LJ_64 if (LJ_ABI_WIN) { nslots = (int)(nargs*2); /* Only matters for more than four args. */ } else { int ngpr = REGARG_NUMGPR, nfpr = REGARG_NUMFPR; for (i = 0; i < nargs; i++) if (args[i] && irt_isfp(IR(args[i])->t)) { if (nfpr > 0) nfpr--; else nslots += 2; } else { if (ngpr > 0) ngpr--; else nslots += 2; } } #else int ngpr = 0; if ((ci->flags & CCI_CC_MASK) == CCI_CC_FASTCALL) ngpr = 2; else if ((ci->flags & CCI_CC_MASK) == CCI_CC_THISCALL) ngpr = 1; for (i = 0; i < nargs; i++) if (args[i] && irt_isfp(IR(args[i])->t)) { nslots += irt_isnum(IR(args[i])->t) ? 2 : 1; } else { if (ngpr > 0) ngpr--; else nslots++; } #endif return nslots; } /* Generate a call to a C function. */ static void asm_gencall(ASMState *as, const CCallInfo *ci, IRRef *args) { uint32_t n, nargs = CCI_XNARGS(ci); int32_t ofs = STACKARG_OFS; #if LJ_64 uint32_t gprs = REGARG_GPRS; Reg fpr = REGARG_FIRSTFPR; #if !LJ_ABI_WIN MCode *patchnfpr = NULL; #endif #else uint32_t gprs = 0; if ((ci->flags & CCI_CC_MASK) != CCI_CC_CDECL) { if ((ci->flags & CCI_CC_MASK) == CCI_CC_THISCALL) gprs = (REGARG_GPRS & 31); else if ((ci->flags & CCI_CC_MASK) == CCI_CC_FASTCALL) gprs = REGARG_GPRS; } #endif if ((void *)ci->func) emit_call(as, ci->func); #if LJ_64 if ((ci->flags & CCI_VARARG)) { /* Special handling for vararg calls. */ #if LJ_ABI_WIN for (n = 0; n < 4 && n < nargs; n++) { IRIns *ir = IR(args[n]); if (irt_isfp(ir->t)) /* Duplicate FPRs in GPRs. */ emit_rr(as, XO_MOVDto, (irt_isnum(ir->t) ? REX_64 : 0) | (fpr+n), ((gprs >> (n*5)) & 31)); /* Either MOVD or MOVQ. */ } #else patchnfpr = --as->mcp; /* Indicate number of used FPRs in register al. */ *--as->mcp = XI_MOVrib | RID_EAX; #endif } #endif for (n = 0; n < nargs; n++) { /* Setup args. */ IRRef ref = args[n]; IRIns *ir = IR(ref); Reg r; #if LJ_64 && LJ_ABI_WIN /* Windows/x64 argument registers are strictly positional. */ r = irt_isfp(ir->t) ? (fpr <= REGARG_LASTFPR ? fpr : 0) : (gprs & 31); fpr++; gprs >>= 5; #elif LJ_64 /* POSIX/x64 argument registers are used in order of appearance. */ if (irt_isfp(ir->t)) { r = fpr <= REGARG_LASTFPR ? fpr++ : 0; } else { r = gprs & 31; gprs >>= 5; } #else if (ref && irt_isfp(ir->t)) { r = 0; } else { r = gprs & 31; gprs >>= 5; if (!ref) continue; } #endif if (r) { /* Argument is in a register. */ if (r < RID_MAX_GPR && ref < ASMREF_TMP1) { #if LJ_64 if (LJ_GC64 ? !(ir->o == IR_KINT || ir->o == IR_KNULL) : ir->o == IR_KINT64) emit_loadu64(as, r, ir_k64(ir)->u64); else #endif emit_loadi(as, r, ir->i); } else { lua_assert(rset_test(as->freeset, r)); /* Must have been evicted. */ if (ra_hasreg(ir->r)) { ra_noweak(as, ir->r); emit_movrr(as, ir, r, ir->r); } else { ra_allocref(as, ref, RID2RSET(r)); } } } else if (irt_isfp(ir->t)) { /* FP argument is on stack. */ lua_assert(!(irt_isfloat(ir->t) && irref_isk(ref))); /* No float k. */ if (LJ_32 && (ofs & 4) && irref_isk(ref)) { /* Split stores for unaligned FP consts. */ emit_movmroi(as, RID_ESP, ofs, (int32_t)ir_knum(ir)->u32.lo); emit_movmroi(as, RID_ESP, ofs+4, (int32_t)ir_knum(ir)->u32.hi); } else { r = ra_alloc1(as, ref, RSET_FPR); emit_rmro(as, irt_isnum(ir->t) ? XO_MOVSDto : XO_MOVSSto, r, RID_ESP, ofs); } ofs += (LJ_32 && irt_isfloat(ir->t)) ? 4 : 8; } else { /* Non-FP argument is on stack. */ if (LJ_32 && ref < ASMREF_TMP1) { emit_movmroi(as, RID_ESP, ofs, ir->i); } else { r = ra_alloc1(as, ref, RSET_GPR); emit_movtomro(as, REX_64 + r, RID_ESP, ofs); } ofs += sizeof(intptr_t); } checkmclim(as); } #if LJ_64 && !LJ_ABI_WIN if (patchnfpr) *patchnfpr = fpr - REGARG_FIRSTFPR; #endif } /* Setup result reg/sp for call. Evict scratch regs. */ static void asm_setupresult(ASMState *as, IRIns *ir, const CCallInfo *ci) { RegSet drop = RSET_SCRATCH; int hiop = (LJ_32 && (ir+1)->o == IR_HIOP && !irt_isnil((ir+1)->t)); if ((ci->flags & CCI_NOFPRCLOBBER)) drop &= ~RSET_FPR; if (ra_hasreg(ir->r)) rset_clear(drop, ir->r); /* Dest reg handled below. */ if (hiop && ra_hasreg((ir+1)->r)) rset_clear(drop, (ir+1)->r); /* Dest reg handled below. */ ra_evictset(as, drop); /* Evictions must be performed first. */ if (ra_used(ir)) { if (irt_isfp(ir->t)) { int32_t ofs = sps_scale(ir->s); /* Use spill slot or temp slots. */ #if LJ_64 if ((ci->flags & CCI_CASTU64)) { Reg dest = ir->r; if (ra_hasreg(dest)) { ra_free(as, dest); ra_modified(as, dest); emit_rr(as, XO_MOVD, dest|REX_64, RID_RET); /* Really MOVQ. */ } if (ofs) emit_movtomro(as, RID_RET|REX_64, RID_ESP, ofs); } else { ra_destreg(as, ir, RID_FPRET); } #else /* Number result is in x87 st0 for x86 calling convention. */ Reg dest = ir->r; if (ra_hasreg(dest)) { ra_free(as, dest); ra_modified(as, dest); emit_rmro(as, irt_isnum(ir->t) ? XO_MOVSD : XO_MOVSS, dest, RID_ESP, ofs); } if ((ci->flags & CCI_CASTU64)) { emit_movtomro(as, RID_RETLO, RID_ESP, ofs); emit_movtomro(as, RID_RETHI, RID_ESP, ofs+4); } else { emit_rmro(as, irt_isnum(ir->t) ? XO_FSTPq : XO_FSTPd, irt_isnum(ir->t) ? XOg_FSTPq : XOg_FSTPd, RID_ESP, ofs); } #endif #if LJ_32 } else if (hiop) { ra_destpair(as, ir); #endif } else { lua_assert(!irt_ispri(ir->t)); ra_destreg(as, ir, RID_RET); } } else if (LJ_32 && irt_isfp(ir->t) && !(ci->flags & CCI_CASTU64)) { emit_x87op(as, XI_FPOP); /* Pop unused result from x87 st0. */ } } /* Return a constant function pointer or NULL for indirect calls. */ static void *asm_callx_func(ASMState *as, IRIns *irf, IRRef func) { #if LJ_32 UNUSED(as); if (irref_isk(func)) return (void *)irf->i; #else if (irref_isk(func)) { MCode *p; if (irf->o == IR_KINT64) p = (MCode *)(void *)ir_k64(irf)->u64; else p = (MCode *)(void *)(uintptr_t)(uint32_t)irf->i; if (p - as->mcp == (int32_t)(p - as->mcp)) return p; /* Call target is still in +-2GB range. */ /* Avoid the indirect case of emit_call(). Try to hoist func addr. */ } #endif return NULL; } static void asm_callx(ASMState *as, IRIns *ir) { IRRef args[CCI_NARGS_MAX*2]; CCallInfo ci; IRRef func; IRIns *irf; int32_t spadj = 0; ci.flags = asm_callx_flags(as, ir); asm_collectargs(as, ir, &ci, args); asm_setupresult(as, ir, &ci); #if LJ_32 /* Have to readjust stack after non-cdecl calls due to callee cleanup. */ if ((ci.flags & CCI_CC_MASK) != CCI_CC_CDECL) spadj = 4 * asm_count_call_slots(as, &ci, args); #endif func = ir->op2; irf = IR(func); if (irf->o == IR_CARG) { func = irf->op1; irf = IR(func); } ci.func = (ASMFunction)asm_callx_func(as, irf, func); if (!(void *)ci.func) { /* Use a (hoistable) non-scratch register for indirect calls. */ RegSet allow = (RSET_GPR & ~RSET_SCRATCH); Reg r = ra_alloc1(as, func, allow); if (LJ_32) emit_spsub(as, spadj); /* Above code may cause restores! */ emit_rr(as, XO_GROUP5, XOg_CALL, r); } else if (LJ_32) { emit_spsub(as, spadj); } asm_gencall(as, &ci, args); } /* -- Returns ------------------------------------------------------------- */ /* Return to lower frame. Guard that it goes to the right spot. */ static void asm_retf(ASMState *as, IRIns *ir) { Reg base = ra_alloc1(as, REF_BASE, RSET_GPR); #if LJ_FR2 Reg rpc = ra_scratch(as, rset_exclude(RSET_GPR, base)); #endif void *pc = ir_kptr(IR(ir->op2)); int32_t delta = 1+LJ_FR2+bc_a(*((const BCIns *)pc - 1)); as->topslot -= (BCReg)delta; if ((int32_t)as->topslot < 0) as->topslot = 0; irt_setmark(IR(REF_BASE)->t); /* Children must not coalesce with BASE reg. */ emit_setgl(as, base, jit_base); emit_addptr(as, base, -8*delta); asm_guardcc(as, CC_NE); #if LJ_FR2 emit_rmro(as, XO_CMP, rpc|REX_GC64, base, -8); emit_loadu64(as, rpc, u64ptr(pc)); #else emit_gmroi(as, XG_ARITHi(XOg_CMP), base, -4, ptr2addr(pc)); #endif } /* -- Type conversions ---------------------------------------------------- */ static void asm_tointg(ASMState *as, IRIns *ir, Reg left) { Reg tmp = ra_scratch(as, rset_exclude(RSET_FPR, left)); Reg dest = ra_dest(as, ir, RSET_GPR); asm_guardcc(as, CC_P); asm_guardcc(as, CC_NE); emit_rr(as, XO_UCOMISD, left, tmp); emit_rr(as, XO_CVTSI2SD, tmp, dest); emit_rr(as, XO_XORPS, tmp, tmp); /* Avoid partial register stall. */ emit_rr(as, XO_CVTTSD2SI, dest, left); /* Can't fuse since left is needed twice. */ } static void asm_tobit(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg tmp = ra_noreg(IR(ir->op1)->r) ? ra_alloc1(as, ir->op1, RSET_FPR) : ra_scratch(as, RSET_FPR); Reg right; emit_rr(as, XO_MOVDto, tmp, dest); right = asm_fuseload(as, ir->op2, rset_exclude(RSET_FPR, tmp)); emit_mrm(as, XO_ADDSD, tmp, right); ra_left(as, tmp, ir->op1); } static void asm_conv(ASMState *as, IRIns *ir) { IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK); int st64 = (st == IRT_I64 || st == IRT_U64 || (LJ_64 && st == IRT_P64)); int stfp = (st == IRT_NUM || st == IRT_FLOAT); IRRef lref = ir->op1; lua_assert(irt_type(ir->t) != st); lua_assert(!(LJ_32 && (irt_isint64(ir->t) || st64))); /* Handled by SPLIT. */ if (irt_isfp(ir->t)) { Reg dest = ra_dest(as, ir, RSET_FPR); if (stfp) { /* FP to FP conversion. */ Reg left = asm_fuseload(as, lref, RSET_FPR); emit_mrm(as, st == IRT_NUM ? XO_CVTSD2SS : XO_CVTSS2SD, dest, left); if (left == dest) return; /* Avoid the XO_XORPS. */ } else if (LJ_32 && st == IRT_U32) { /* U32 to FP conversion on x86. */ /* number = (2^52+2^51 .. u32) - (2^52+2^51) */ cTValue *k = &as->J->k64[LJ_K64_TOBIT]; Reg bias = ra_scratch(as, rset_exclude(RSET_FPR, dest)); if (irt_isfloat(ir->t)) emit_rr(as, XO_CVTSD2SS, dest, dest); emit_rr(as, XO_SUBSD, dest, bias); /* Subtract 2^52+2^51 bias. */ emit_rr(as, XO_XORPS, dest, bias); /* Merge bias and integer. */ emit_rma(as, XO_MOVSD, bias, k); emit_mrm(as, XO_MOVD, dest, asm_fuseload(as, lref, RSET_GPR)); return; } else { /* Integer to FP conversion. */ Reg left = (LJ_64 && (st == IRT_U32 || st == IRT_U64)) ? ra_alloc1(as, lref, RSET_GPR) : asm_fuseloadm(as, lref, RSET_GPR, st64); if (LJ_64 && st == IRT_U64) { MCLabel l_end = emit_label(as); cTValue *k = &as->J->k64[LJ_K64_2P64]; emit_rma(as, XO_ADDSD, dest, k); /* Add 2^64 to compensate. */ emit_sjcc(as, CC_NS, l_end); emit_rr(as, XO_TEST, left|REX_64, left); /* Check if u64 >= 2^63. */ } emit_mrm(as, irt_isnum(ir->t) ? XO_CVTSI2SD : XO_CVTSI2SS, dest|((LJ_64 && (st64 || st == IRT_U32)) ? REX_64 : 0), left); } emit_rr(as, XO_XORPS, dest, dest); /* Avoid partial register stall. */ } else if (stfp) { /* FP to integer conversion. */ if (irt_isguard(ir->t)) { /* Checked conversions are only supported from number to int. */ lua_assert(irt_isint(ir->t) && st == IRT_NUM); asm_tointg(as, ir, ra_alloc1(as, lref, RSET_FPR)); } else { Reg dest = ra_dest(as, ir, RSET_GPR); x86Op op = st == IRT_NUM ? XO_CVTTSD2SI : XO_CVTTSS2SI; if (LJ_64 ? irt_isu64(ir->t) : irt_isu32(ir->t)) { /* LJ_64: For inputs >= 2^63 add -2^64, convert again. */ /* LJ_32: For inputs >= 2^31 add -2^31, convert again and add 2^31. */ Reg tmp = ra_noreg(IR(lref)->r) ? ra_alloc1(as, lref, RSET_FPR) : ra_scratch(as, RSET_FPR); MCLabel l_end = emit_label(as); if (LJ_32) emit_gri(as, XG_ARITHi(XOg_ADD), dest, (int32_t)0x80000000); emit_rr(as, op, dest|REX_64, tmp); if (st == IRT_NUM) emit_rma(as, XO_ADDSD, tmp, &as->J->k64[LJ_K64_M2P64_31]); else emit_rma(as, XO_ADDSS, tmp, &as->J->k32[LJ_K32_M2P64_31]); emit_sjcc(as, CC_NS, l_end); emit_rr(as, XO_TEST, dest|REX_64, dest); /* Check if dest negative. */ emit_rr(as, op, dest|REX_64, tmp); ra_left(as, tmp, lref); } else { if (LJ_64 && irt_isu32(ir->t)) emit_rr(as, XO_MOV, dest, dest); /* Zero hiword. */ emit_mrm(as, op, dest|((LJ_64 && (irt_is64(ir->t) || irt_isu32(ir->t))) ? REX_64 : 0), asm_fuseload(as, lref, RSET_FPR)); } } } else if (st >= IRT_I8 && st <= IRT_U16) { /* Extend to 32 bit integer. */ Reg left, dest = ra_dest(as, ir, RSET_GPR); RegSet allow = RSET_GPR; x86Op op; lua_assert(irt_isint(ir->t) || irt_isu32(ir->t)); if (st == IRT_I8) { op = XO_MOVSXb; allow = RSET_GPR8; dest |= FORCE_REX; } else if (st == IRT_U8) { op = XO_MOVZXb; allow = RSET_GPR8; dest |= FORCE_REX; } else if (st == IRT_I16) { op = XO_MOVSXw; } else { op = XO_MOVZXw; } left = asm_fuseload(as, lref, allow); /* Add extra MOV if source is already in wrong register. */ if (!LJ_64 && left != RID_MRM && !rset_test(allow, left)) { Reg tmp = ra_scratch(as, allow); emit_rr(as, op, dest, tmp); emit_rr(as, XO_MOV, tmp, left); } else { emit_mrm(as, op, dest, left); } } else { /* 32/64 bit integer conversions. */ if (LJ_32) { /* Only need to handle 32/32 bit no-op (cast) on x86. */ Reg dest = ra_dest(as, ir, RSET_GPR); ra_left(as, dest, lref); /* Do nothing, but may need to move regs. */ } else if (irt_is64(ir->t)) { Reg dest = ra_dest(as, ir, RSET_GPR); if (st64 || !(ir->op2 & IRCONV_SEXT)) { /* 64/64 bit no-op (cast) or 32 to 64 bit zero extension. */ ra_left(as, dest, lref); /* Do nothing, but may need to move regs. */ } else { /* 32 to 64 bit sign extension. */ Reg left = asm_fuseload(as, lref, RSET_GPR); emit_mrm(as, XO_MOVSXd, dest|REX_64, left); } } else { Reg dest = ra_dest(as, ir, RSET_GPR); if (st64) { Reg left = asm_fuseload(as, lref, RSET_GPR); /* This is either a 32 bit reg/reg mov which zeroes the hiword ** or a load of the loword from a 64 bit address. */ emit_mrm(as, XO_MOV, dest, left); } else { /* 32/32 bit no-op (cast). */ ra_left(as, dest, lref); /* Do nothing, but may need to move regs. */ } } } } #if LJ_32 && LJ_HASFFI /* No SSE conversions to/from 64 bit on x86, so resort to ugly x87 code. */ /* 64 bit integer to FP conversion in 32 bit mode. */ static void asm_conv_fp_int64(ASMState *as, IRIns *ir) { Reg hi = ra_alloc1(as, ir->op1, RSET_GPR); Reg lo = ra_alloc1(as, (ir-1)->op1, rset_exclude(RSET_GPR, hi)); int32_t ofs = sps_scale(ir->s); /* Use spill slot or temp slots. */ Reg dest = ir->r; if (ra_hasreg(dest)) { ra_free(as, dest); ra_modified(as, dest); emit_rmro(as, irt_isnum(ir->t) ? XO_MOVSD : XO_MOVSS, dest, RID_ESP, ofs); } emit_rmro(as, irt_isnum(ir->t) ? XO_FSTPq : XO_FSTPd, irt_isnum(ir->t) ? XOg_FSTPq : XOg_FSTPd, RID_ESP, ofs); if (((ir-1)->op2 & IRCONV_SRCMASK) == IRT_U64) { /* For inputs in [2^63,2^64-1] add 2^64 to compensate. */ MCLabel l_end = emit_label(as); emit_rma(as, XO_FADDq, XOg_FADDq, &as->J->k64[LJ_K64_2P64]); emit_sjcc(as, CC_NS, l_end); emit_rr(as, XO_TEST, hi, hi); /* Check if u64 >= 2^63. */ } else { lua_assert(((ir-1)->op2 & IRCONV_SRCMASK) == IRT_I64); } emit_rmro(as, XO_FILDq, XOg_FILDq, RID_ESP, 0); /* NYI: Avoid narrow-to-wide store-to-load forwarding stall. */ emit_rmro(as, XO_MOVto, hi, RID_ESP, 4); emit_rmro(as, XO_MOVto, lo, RID_ESP, 0); } /* FP to 64 bit integer conversion in 32 bit mode. */ static void asm_conv_int64_fp(ASMState *as, IRIns *ir) { IRType st = (IRType)((ir-1)->op2 & IRCONV_SRCMASK); IRType dt = (((ir-1)->op2 & IRCONV_DSTMASK) >> IRCONV_DSH); Reg lo, hi; lua_assert(st == IRT_NUM || st == IRT_FLOAT); lua_assert(dt == IRT_I64 || dt == IRT_U64); hi = ra_dest(as, ir, RSET_GPR); lo = ra_dest(as, ir-1, rset_exclude(RSET_GPR, hi)); if (ra_used(ir-1)) emit_rmro(as, XO_MOV, lo, RID_ESP, 0); /* NYI: Avoid wide-to-narrow store-to-load forwarding stall. */ if (!(as->flags & JIT_F_SSE3)) { /* Set FPU rounding mode to default. */ emit_rmro(as, XO_FLDCW, XOg_FLDCW, RID_ESP, 4); emit_rmro(as, XO_MOVto, lo, RID_ESP, 4); emit_gri(as, XG_ARITHi(XOg_AND), lo, 0xf3ff); } if (dt == IRT_U64) { /* For inputs in [2^63,2^64-1] add -2^64 and convert again. */ MCLabel l_pop, l_end = emit_label(as); emit_x87op(as, XI_FPOP); l_pop = emit_label(as); emit_sjmp(as, l_end); emit_rmro(as, XO_MOV, hi, RID_ESP, 4); if ((as->flags & JIT_F_SSE3)) emit_rmro(as, XO_FISTTPq, XOg_FISTTPq, RID_ESP, 0); else emit_rmro(as, XO_FISTPq, XOg_FISTPq, RID_ESP, 0); emit_rma(as, XO_FADDq, XOg_FADDq, &as->J->k64[LJ_K64_M2P64]); emit_sjcc(as, CC_NS, l_pop); emit_rr(as, XO_TEST, hi, hi); /* Check if out-of-range (2^63). */ } emit_rmro(as, XO_MOV, hi, RID_ESP, 4); if ((as->flags & JIT_F_SSE3)) { /* Truncation is easy with SSE3. */ emit_rmro(as, XO_FISTTPq, XOg_FISTTPq, RID_ESP, 0); } else { /* Otherwise set FPU rounding mode to truncate before the store. */ emit_rmro(as, XO_FISTPq, XOg_FISTPq, RID_ESP, 0); emit_rmro(as, XO_FLDCW, XOg_FLDCW, RID_ESP, 0); emit_rmro(as, XO_MOVtow, lo, RID_ESP, 0); emit_rmro(as, XO_ARITHw(XOg_OR), lo, RID_ESP, 0); emit_loadi(as, lo, 0xc00); emit_rmro(as, XO_FNSTCW, XOg_FNSTCW, RID_ESP, 0); } if (dt == IRT_U64) emit_x87op(as, XI_FDUP); emit_mrm(as, st == IRT_NUM ? XO_FLDq : XO_FLDd, st == IRT_NUM ? XOg_FLDq: XOg_FLDd, asm_fuseload(as, ir->op1, RSET_EMPTY)); } static void asm_conv64(ASMState *as, IRIns *ir) { if (irt_isfp(ir->t)) asm_conv_fp_int64(as, ir); else asm_conv_int64_fp(as, ir); } #endif static void asm_strto(ASMState *as, IRIns *ir) { /* Force a spill slot for the destination register (if any). */ const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_strscan_num]; IRRef args[2]; RegSet drop = RSET_SCRATCH; if ((drop & RSET_FPR) != RSET_FPR && ra_hasreg(ir->r)) rset_set(drop, ir->r); /* WIN64 doesn't spill all FPRs. */ ra_evictset(as, drop); asm_guardcc(as, CC_E); emit_rr(as, XO_TEST, RID_RET, RID_RET); /* Test return status. */ args[0] = ir->op1; /* GCstr *str */ args[1] = ASMREF_TMP1; /* TValue *n */ asm_gencall(as, ci, args); /* Store the result to the spill slot or temp slots. */ emit_rmro(as, XO_LEA, ra_releasetmp(as, ASMREF_TMP1)|REX_64, RID_ESP, sps_scale(ir->s)); } /* -- Memory references --------------------------------------------------- */ /* Get pointer to TValue. */ static void asm_tvptr(ASMState *as, Reg dest, IRRef ref) { IRIns *ir = IR(ref); if (irt_isnum(ir->t)) { /* For numbers use the constant itself or a spill slot as a TValue. */ if (irref_isk(ref)) emit_loada(as, dest, ir_knum(ir)); else emit_rmro(as, XO_LEA, dest|REX_64, RID_ESP, ra_spill(as, ir)); } else { /* Otherwise use g->tmptv to hold the TValue. */ #if LJ_GC64 if (irref_isk(ref)) { TValue k; lj_ir_kvalue(as->J->L, &k, ir); emit_movmroi(as, dest, 4, k.u32.hi); emit_movmroi(as, dest, 0, k.u32.lo); } else { /* TODO: 64 bit store + 32 bit load-modify-store is suboptimal. */ Reg src = ra_alloc1(as, ref, rset_exclude(RSET_GPR, dest)); if (irt_is64(ir->t)) { emit_u32(as, irt_toitype(ir->t) << 15); emit_rmro(as, XO_ARITHi, XOg_OR, dest, 4); } else { /* Currently, no caller passes integers that might end up here. */ emit_movmroi(as, dest, 4, (irt_toitype(ir->t) << 15)); } emit_movtomro(as, REX_64IR(ir, src), dest, 0); } #else if (!irref_isk(ref)) { Reg src = ra_alloc1(as, ref, rset_exclude(RSET_GPR, dest)); emit_movtomro(as, REX_64IR(ir, src), dest, 0); } else if (!irt_ispri(ir->t)) { emit_movmroi(as, dest, 0, ir->i); } if (!(LJ_64 && irt_islightud(ir->t))) emit_movmroi(as, dest, 4, irt_toitype(ir->t)); #endif emit_loada(as, dest, &J2G(as->J)->tmptv); } } static void asm_aref(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); asm_fusearef(as, ir, RSET_GPR); if (!(as->mrm.idx == RID_NONE && as->mrm.ofs == 0)) emit_mrm(as, XO_LEA, dest|REX_GC64, RID_MRM); else if (as->mrm.base != dest) emit_rr(as, XO_MOV, dest|REX_GC64, as->mrm.base); } /* Inlined hash lookup. Specialized for key type and for const keys. ** The equivalent C code is: ** Node *n = hashkey(t, key); ** do { ** if (lj_obj_equal(&n->key, key)) return &n->val; ** } while ((n = nextnode(n))); ** return niltv(L); */ static void asm_href(ASMState *as, IRIns *ir, IROp merge) { RegSet allow = RSET_GPR; int destused = ra_used(ir); Reg dest = ra_dest(as, ir, allow); Reg tab = ra_alloc1(as, ir->op1, rset_clear(allow, dest)); Reg key = RID_NONE, tmp = RID_NONE; IRIns *irkey = IR(ir->op2); int isk = irref_isk(ir->op2); IRType1 kt = irkey->t; uint32_t khash; MCLabel l_end, l_loop, l_next; if (!isk) { rset_clear(allow, tab); key = ra_alloc1(as, ir->op2, irt_isnum(kt) ? RSET_FPR : allow); if (LJ_GC64 || !irt_isstr(kt)) tmp = ra_scratch(as, rset_exclude(allow, key)); } /* Key not found in chain: jump to exit (if merged) or load niltv. */ l_end = emit_label(as); if (merge == IR_NE) asm_guardcc(as, CC_E); /* XI_JMP is not found by lj_asm_patchexit. */ else if (destused) emit_loada(as, dest, niltvg(J2G(as->J))); /* Follow hash chain until the end. */ l_loop = emit_sjcc_label(as, CC_NZ); emit_rr(as, XO_TEST, dest|REX_GC64, dest); emit_rmro(as, XO_MOV, dest|REX_GC64, dest, offsetof(Node, next)); l_next = emit_label(as); /* Type and value comparison. */ if (merge == IR_EQ) asm_guardcc(as, CC_E); else emit_sjcc(as, CC_E, l_end); if (irt_isnum(kt)) { if (isk) { /* Assumes -0.0 is already canonicalized to +0.0. */ emit_gmroi(as, XG_ARITHi(XOg_CMP), dest, offsetof(Node, key.u32.lo), (int32_t)ir_knum(irkey)->u32.lo); emit_sjcc(as, CC_NE, l_next); emit_gmroi(as, XG_ARITHi(XOg_CMP), dest, offsetof(Node, key.u32.hi), (int32_t)ir_knum(irkey)->u32.hi); } else { emit_sjcc(as, CC_P, l_next); emit_rmro(as, XO_UCOMISD, key, dest, offsetof(Node, key.n)); emit_sjcc(as, CC_AE, l_next); /* The type check avoids NaN penalties and complaints from Valgrind. */ #if LJ_64 && !LJ_GC64 emit_u32(as, LJ_TISNUM); emit_rmro(as, XO_ARITHi, XOg_CMP, dest, offsetof(Node, key.it)); #else emit_i8(as, LJ_TISNUM); emit_rmro(as, XO_ARITHi8, XOg_CMP, dest, offsetof(Node, key.it)); #endif } #if LJ_64 && !LJ_GC64 } else if (irt_islightud(kt)) { emit_rmro(as, XO_CMP, key|REX_64, dest, offsetof(Node, key.u64)); #endif #if LJ_GC64 } else if (irt_isaddr(kt)) { if (isk) { TValue k; k.u64 = ((uint64_t)irt_toitype(irkey->t) << 47) | irkey[1].tv.u64; emit_gmroi(as, XG_ARITHi(XOg_CMP), dest, offsetof(Node, key.u32.lo), k.u32.lo); emit_sjcc(as, CC_NE, l_next); emit_gmroi(as, XG_ARITHi(XOg_CMP), dest, offsetof(Node, key.u32.hi), k.u32.hi); } else { emit_rmro(as, XO_CMP, tmp|REX_64, dest, offsetof(Node, key.u64)); } } else { lua_assert(irt_ispri(kt) && !irt_isnil(kt)); emit_u32(as, (irt_toitype(kt)<<15)|0x7fff); emit_rmro(as, XO_ARITHi, XOg_CMP, dest, offsetof(Node, key.it)); #else } else { if (!irt_ispri(kt)) { lua_assert(irt_isaddr(kt)); if (isk) emit_gmroi(as, XG_ARITHi(XOg_CMP), dest, offsetof(Node, key.gcr), ptr2addr(ir_kgc(irkey))); else emit_rmro(as, XO_CMP, key, dest, offsetof(Node, key.gcr)); emit_sjcc(as, CC_NE, l_next); } lua_assert(!irt_isnil(kt)); emit_i8(as, irt_toitype(kt)); emit_rmro(as, XO_ARITHi8, XOg_CMP, dest, offsetof(Node, key.it)); #endif } emit_sfixup(as, l_loop); checkmclim(as); #if LJ_GC64 if (!isk && irt_isaddr(kt)) { emit_rr(as, XO_OR, tmp|REX_64, key); emit_loadu64(as, tmp, (uint64_t)irt_toitype(kt) << 47); } #endif /* Load main position relative to tab->node into dest. */ khash = isk ? ir_khash(irkey) : 1; if (khash == 0) { emit_rmro(as, XO_MOV, dest|REX_GC64, tab, offsetof(GCtab, node)); } else { emit_rmro(as, XO_ARITH(XOg_ADD), dest|REX_GC64, tab, offsetof(GCtab,node)); if ((as->flags & JIT_F_PREFER_IMUL)) { emit_i8(as, sizeof(Node)); emit_rr(as, XO_IMULi8, dest, dest); } else { emit_shifti(as, XOg_SHL, dest, 3); emit_rmrxo(as, XO_LEA, dest, dest, dest, XM_SCALE2, 0); } if (isk) { emit_gri(as, XG_ARITHi(XOg_AND), dest, (int32_t)khash); emit_rmro(as, XO_MOV, dest, tab, offsetof(GCtab, hmask)); } else if (irt_isstr(kt)) { emit_rmro(as, XO_ARITH(XOg_AND), dest, key, offsetof(GCstr, hash)); emit_rmro(as, XO_MOV, dest, tab, offsetof(GCtab, hmask)); } else { /* Must match with hashrot() in lj_tab.c. */ emit_rmro(as, XO_ARITH(XOg_AND), dest, tab, offsetof(GCtab, hmask)); emit_rr(as, XO_ARITH(XOg_SUB), dest, tmp); emit_shifti(as, XOg_ROL, tmp, HASH_ROT3); emit_rr(as, XO_ARITH(XOg_XOR), dest, tmp); emit_shifti(as, XOg_ROL, dest, HASH_ROT2); emit_rr(as, XO_ARITH(XOg_SUB), tmp, dest); emit_shifti(as, XOg_ROL, dest, HASH_ROT1); emit_rr(as, XO_ARITH(XOg_XOR), tmp, dest); if (irt_isnum(kt)) { emit_rr(as, XO_ARITH(XOg_ADD), dest, dest); #if LJ_64 emit_shifti(as, XOg_SHR|REX_64, dest, 32); emit_rr(as, XO_MOV, tmp, dest); emit_rr(as, XO_MOVDto, key|REX_64, dest); #else emit_rmro(as, XO_MOV, dest, RID_ESP, ra_spill(as, irkey)+4); emit_rr(as, XO_MOVDto, key, tmp); #endif } else { emit_rr(as, XO_MOV, tmp, key); #if LJ_GC64 checkmclim(as); emit_gri(as, XG_ARITHi(XOg_XOR), dest, irt_toitype(kt) << 15); if ((as->flags & JIT_F_BMI2)) { emit_i8(as, 32); emit_mrm(as, XV_RORX|VEX_64, dest, key); } else { emit_shifti(as, XOg_SHR|REX_64, dest, 32); emit_rr(as, XO_MOV, dest|REX_64, key|REX_64); } #else emit_rmro(as, XO_LEA, dest, key, HASH_BIAS); #endif } } } } static void asm_hrefk(ASMState *as, IRIns *ir) { IRIns *kslot = IR(ir->op2); IRIns *irkey = IR(kslot->op1); int32_t ofs = (int32_t)(kslot->op2 * sizeof(Node)); Reg dest = ra_used(ir) ? ra_dest(as, ir, RSET_GPR) : RID_NONE; Reg node = ra_alloc1(as, ir->op1, RSET_GPR); #if !LJ_64 MCLabel l_exit; #endif lua_assert(ofs % sizeof(Node) == 0); if (ra_hasreg(dest)) { if (ofs != 0) { if (dest == node && !(as->flags & JIT_F_LEA_AGU)) emit_gri(as, XG_ARITHi(XOg_ADD), dest|REX_GC64, ofs); else emit_rmro(as, XO_LEA, dest|REX_GC64, node, ofs); } else if (dest != node) { emit_rr(as, XO_MOV, dest|REX_GC64, node); } } asm_guardcc(as, CC_NE); #if LJ_64 if (!irt_ispri(irkey->t)) { Reg key = ra_scratch(as, rset_exclude(RSET_GPR, node)); emit_rmro(as, XO_CMP, key|REX_64, node, ofs + (int32_t)offsetof(Node, key.u64)); lua_assert(irt_isnum(irkey->t) || irt_isgcv(irkey->t)); /* Assumes -0.0 is already canonicalized to +0.0. */ emit_loadu64(as, key, irt_isnum(irkey->t) ? ir_knum(irkey)->u64 : #if LJ_GC64 ((uint64_t)irt_toitype(irkey->t) << 47) | (uint64_t)ir_kgc(irkey)); #else ((uint64_t)irt_toitype(irkey->t) << 32) | (uint64_t)(uint32_t)ptr2addr(ir_kgc(irkey))); #endif } else { lua_assert(!irt_isnil(irkey->t)); #if LJ_GC64 emit_i32(as, (irt_toitype(irkey->t)<<15)|0x7fff); emit_rmro(as, XO_ARITHi, XOg_CMP, node, ofs + (int32_t)offsetof(Node, key.it)); #else emit_i8(as, irt_toitype(irkey->t)); emit_rmro(as, XO_ARITHi8, XOg_CMP, node, ofs + (int32_t)offsetof(Node, key.it)); #endif } #else l_exit = emit_label(as); if (irt_isnum(irkey->t)) { /* Assumes -0.0 is already canonicalized to +0.0. */ emit_gmroi(as, XG_ARITHi(XOg_CMP), node, ofs + (int32_t)offsetof(Node, key.u32.lo), (int32_t)ir_knum(irkey)->u32.lo); emit_sjcc(as, CC_NE, l_exit); emit_gmroi(as, XG_ARITHi(XOg_CMP), node, ofs + (int32_t)offsetof(Node, key.u32.hi), (int32_t)ir_knum(irkey)->u32.hi); } else { if (!irt_ispri(irkey->t)) { lua_assert(irt_isgcv(irkey->t)); emit_gmroi(as, XG_ARITHi(XOg_CMP), node, ofs + (int32_t)offsetof(Node, key.gcr), ptr2addr(ir_kgc(irkey))); emit_sjcc(as, CC_NE, l_exit); } lua_assert(!irt_isnil(irkey->t)); emit_i8(as, irt_toitype(irkey->t)); emit_rmro(as, XO_ARITHi8, XOg_CMP, node, ofs + (int32_t)offsetof(Node, key.it)); } #endif } static void asm_uref(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); if (irref_isk(ir->op1)) { GCfunc *fn = ir_kfunc(IR(ir->op1)); MRef *v = &gcref(fn->l.uvptr[(ir->op2 >> 8)])->uv.v; emit_rma(as, XO_MOV, dest|REX_GC64, v); } else { Reg uv = ra_scratch(as, RSET_GPR); Reg func = ra_alloc1(as, ir->op1, RSET_GPR); if (ir->o == IR_UREFC) { emit_rmro(as, XO_LEA, dest|REX_GC64, uv, offsetof(GCupval, tv)); asm_guardcc(as, CC_NE); emit_i8(as, 1); emit_rmro(as, XO_ARITHib, XOg_CMP, uv, offsetof(GCupval, closed)); } else { emit_rmro(as, XO_MOV, dest|REX_GC64, uv, offsetof(GCupval, v)); } emit_rmro(as, XO_MOV, uv|REX_GC64, func, (int32_t)offsetof(GCfuncL, uvptr) + (int32_t)sizeof(MRef) * (int32_t)(ir->op2 >> 8)); } } static void asm_fref(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); asm_fusefref(as, ir, RSET_GPR); emit_mrm(as, XO_LEA, dest, RID_MRM); } static void asm_strref(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); asm_fusestrref(as, ir, RSET_GPR); if (as->mrm.base == RID_NONE) emit_loadi(as, dest, as->mrm.ofs); else if (as->mrm.base == dest && as->mrm.idx == RID_NONE) emit_gri(as, XG_ARITHi(XOg_ADD), dest|REX_GC64, as->mrm.ofs); else emit_mrm(as, XO_LEA, dest|REX_GC64, RID_MRM); } /* -- Loads and stores ---------------------------------------------------- */ static void asm_fxload(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, irt_isfp(ir->t) ? RSET_FPR : RSET_GPR); x86Op xo; if (ir->o == IR_FLOAD) asm_fusefref(as, ir, RSET_GPR); else asm_fusexref(as, ir->op1, RSET_GPR); /* ir->op2 is ignored -- unaligned loads are ok on x86. */ switch (irt_type(ir->t)) { case IRT_I8: xo = XO_MOVSXb; break; case IRT_U8: xo = XO_MOVZXb; break; case IRT_I16: xo = XO_MOVSXw; break; case IRT_U16: xo = XO_MOVZXw; break; case IRT_NUM: xo = XO_MOVSD; break; case IRT_FLOAT: xo = XO_MOVSS; break; default: if (LJ_64 && irt_is64(ir->t)) dest |= REX_64; else lua_assert(irt_isint(ir->t) || irt_isu32(ir->t) || irt_isaddr(ir->t)); xo = XO_MOV; break; } emit_mrm(as, xo, dest, RID_MRM); } #define asm_fload(as, ir) asm_fxload(as, ir) #define asm_xload(as, ir) asm_fxload(as, ir) static void asm_fxstore(ASMState *as, IRIns *ir) { RegSet allow = RSET_GPR; Reg src = RID_NONE, osrc = RID_NONE; int32_t k = 0; if (ir->r == RID_SINK) return; /* The IRT_I16/IRT_U16 stores should never be simplified for constant ** values since mov word [mem], imm16 has a length-changing prefix. */ if (irt_isi16(ir->t) || irt_isu16(ir->t) || irt_isfp(ir->t) || !asm_isk32(as, ir->op2, &k)) { RegSet allow8 = irt_isfp(ir->t) ? RSET_FPR : (irt_isi8(ir->t) || irt_isu8(ir->t)) ? RSET_GPR8 : RSET_GPR; src = osrc = ra_alloc1(as, ir->op2, allow8); if (!LJ_64 && !rset_test(allow8, src)) { /* Already in wrong register. */ rset_clear(allow, osrc); src = ra_scratch(as, allow8); } rset_clear(allow, src); } if (ir->o == IR_FSTORE) { asm_fusefref(as, IR(ir->op1), allow); } else { asm_fusexref(as, ir->op1, allow); if (LJ_32 && ir->o == IR_HIOP) as->mrm.ofs += 4; } if (ra_hasreg(src)) { x86Op xo; switch (irt_type(ir->t)) { case IRT_I8: case IRT_U8: xo = XO_MOVtob; src |= FORCE_REX; break; case IRT_I16: case IRT_U16: xo = XO_MOVtow; break; case IRT_NUM: xo = XO_MOVSDto; break; case IRT_FLOAT: xo = XO_MOVSSto; break; #if LJ_64 && !LJ_GC64 case IRT_LIGHTUD: lua_assert(0); /* NYI: mask 64 bit lightuserdata. */ #endif default: if (LJ_64 && irt_is64(ir->t)) src |= REX_64; else lua_assert(irt_isint(ir->t) || irt_isu32(ir->t) || irt_isaddr(ir->t)); xo = XO_MOVto; break; } emit_mrm(as, xo, src, RID_MRM); if (!LJ_64 && src != osrc) { ra_noweak(as, osrc); emit_rr(as, XO_MOV, src, osrc); } } else { if (irt_isi8(ir->t) || irt_isu8(ir->t)) { emit_i8(as, k); emit_mrm(as, XO_MOVmib, 0, RID_MRM); } else { lua_assert(irt_is64(ir->t) || irt_isint(ir->t) || irt_isu32(ir->t) || irt_isaddr(ir->t)); emit_i32(as, k); emit_mrm(as, XO_MOVmi, REX_64IR(ir, 0), RID_MRM); } } } #define asm_fstore(as, ir) asm_fxstore(as, ir) #define asm_xstore(as, ir) asm_fxstore(as, ir) #if LJ_64 && !LJ_GC64 static Reg asm_load_lightud64(ASMState *as, IRIns *ir, int typecheck) { if (ra_used(ir) || typecheck) { Reg dest = ra_dest(as, ir, RSET_GPR); if (typecheck) { Reg tmp = ra_scratch(as, rset_exclude(RSET_GPR, dest)); asm_guardcc(as, CC_NE); emit_i8(as, -2); emit_rr(as, XO_ARITHi8, XOg_CMP, tmp); emit_shifti(as, XOg_SAR|REX_64, tmp, 47); emit_rr(as, XO_MOV, tmp|REX_64, dest); } return dest; } else { return RID_NONE; } } #endif static void asm_ahuvload(ASMState *as, IRIns *ir) { #if LJ_GC64 Reg tmp = RID_NONE; #endif lua_assert(irt_isnum(ir->t) || irt_ispri(ir->t) || irt_isaddr(ir->t) || (LJ_DUALNUM && irt_isint(ir->t))); #if LJ_64 && !LJ_GC64 if (irt_islightud(ir->t)) { Reg dest = asm_load_lightud64(as, ir, 1); if (ra_hasreg(dest)) { asm_fuseahuref(as, ir->op1, RSET_GPR); emit_mrm(as, XO_MOV, dest|REX_64, RID_MRM); } return; } else #endif if (ra_used(ir)) { RegSet allow = irt_isnum(ir->t) ? RSET_FPR : RSET_GPR; Reg dest = ra_dest(as, ir, allow); asm_fuseahuref(as, ir->op1, RSET_GPR); #if LJ_GC64 if (irt_isaddr(ir->t)) { emit_shifti(as, XOg_SHR|REX_64, dest, 17); asm_guardcc(as, CC_NE); emit_i8(as, irt_toitype(ir->t)); emit_rr(as, XO_ARITHi8, XOg_CMP, dest); emit_i8(as, XI_O16); if ((as->flags & JIT_F_BMI2)) { emit_i8(as, 47); emit_mrm(as, XV_RORX|VEX_64, dest, RID_MRM); } else { emit_shifti(as, XOg_ROR|REX_64, dest, 47); emit_mrm(as, XO_MOV, dest|REX_64, RID_MRM); } return; } else #endif emit_mrm(as, dest < RID_MAX_GPR ? XO_MOV : XO_MOVSD, dest, RID_MRM); } else { RegSet gpr = RSET_GPR; #if LJ_GC64 if (irt_isaddr(ir->t)) { tmp = ra_scratch(as, RSET_GPR); gpr = rset_exclude(gpr, tmp); } #endif asm_fuseahuref(as, ir->op1, gpr); } /* Always do the type check, even if the load result is unused. */ as->mrm.ofs += 4; asm_guardcc(as, irt_isnum(ir->t) ? CC_AE : CC_NE); if (LJ_64 && irt_type(ir->t) >= IRT_NUM) { lua_assert(irt_isinteger(ir->t) || irt_isnum(ir->t)); #if LJ_GC64 emit_u32(as, LJ_TISNUM << 15); #else emit_u32(as, LJ_TISNUM); #endif emit_mrm(as, XO_ARITHi, XOg_CMP, RID_MRM); #if LJ_GC64 } else if (irt_isaddr(ir->t)) { as->mrm.ofs -= 4; emit_i8(as, irt_toitype(ir->t)); emit_mrm(as, XO_ARITHi8, XOg_CMP, tmp); emit_shifti(as, XOg_SAR|REX_64, tmp, 47); emit_mrm(as, XO_MOV, tmp|REX_64, RID_MRM); } else if (irt_isnil(ir->t)) { as->mrm.ofs -= 4; emit_i8(as, -1); emit_mrm(as, XO_ARITHi8, XOg_CMP|REX_64, RID_MRM); } else { emit_u32(as, (irt_toitype(ir->t) << 15) | 0x7fff); emit_mrm(as, XO_ARITHi, XOg_CMP, RID_MRM); #else } else { emit_i8(as, irt_toitype(ir->t)); emit_mrm(as, XO_ARITHi8, XOg_CMP, RID_MRM); #endif } } static void asm_ahustore(ASMState *as, IRIns *ir) { if (ir->r == RID_SINK) return; if (irt_isnum(ir->t)) { Reg src = ra_alloc1(as, ir->op2, RSET_FPR); asm_fuseahuref(as, ir->op1, RSET_GPR); emit_mrm(as, XO_MOVSDto, src, RID_MRM); #if LJ_64 && !LJ_GC64 } else if (irt_islightud(ir->t)) { Reg src = ra_alloc1(as, ir->op2, RSET_GPR); asm_fuseahuref(as, ir->op1, rset_exclude(RSET_GPR, src)); emit_mrm(as, XO_MOVto, src|REX_64, RID_MRM); #endif #if LJ_GC64 } else if (irref_isk(ir->op2)) { TValue k; lj_ir_kvalue(as->J->L, &k, IR(ir->op2)); asm_fuseahuref(as, ir->op1, RSET_GPR); if (tvisnil(&k)) { emit_i32(as, -1); emit_mrm(as, XO_MOVmi, REX_64, RID_MRM); } else { emit_u32(as, k.u32.lo); emit_mrm(as, XO_MOVmi, 0, RID_MRM); as->mrm.ofs += 4; emit_u32(as, k.u32.hi); emit_mrm(as, XO_MOVmi, 0, RID_MRM); } #endif } else { IRIns *irr = IR(ir->op2); RegSet allow = RSET_GPR; Reg src = RID_NONE; if (!irref_isk(ir->op2)) { src = ra_alloc1(as, ir->op2, allow); rset_clear(allow, src); } asm_fuseahuref(as, ir->op1, allow); if (ra_hasreg(src)) { #if LJ_GC64 if (!(LJ_DUALNUM && irt_isinteger(ir->t))) { /* TODO: 64 bit store + 32 bit load-modify-store is suboptimal. */ as->mrm.ofs += 4; emit_u32(as, irt_toitype(ir->t) << 15); emit_mrm(as, XO_ARITHi, XOg_OR, RID_MRM); as->mrm.ofs -= 4; emit_mrm(as, XO_MOVto, src|REX_64, RID_MRM); return; } #endif emit_mrm(as, XO_MOVto, src, RID_MRM); } else if (!irt_ispri(irr->t)) { lua_assert(irt_isaddr(ir->t) || (LJ_DUALNUM && irt_isinteger(ir->t))); emit_i32(as, irr->i); emit_mrm(as, XO_MOVmi, 0, RID_MRM); } as->mrm.ofs += 4; #if LJ_GC64 lua_assert(LJ_DUALNUM && irt_isinteger(ir->t)); emit_i32(as, LJ_TNUMX << 15); #else emit_i32(as, (int32_t)irt_toitype(ir->t)); #endif emit_mrm(as, XO_MOVmi, 0, RID_MRM); } } static void asm_sload(ASMState *as, IRIns *ir) { int32_t ofs = 8*((int32_t)ir->op1-1-LJ_FR2) + (!LJ_FR2 && (ir->op2 & IRSLOAD_FRAME) ? 4 : 0); IRType1 t = ir->t; Reg base; lua_assert(!(ir->op2 & IRSLOAD_PARENT)); /* Handled by asm_head_side(). */ lua_assert(irt_isguard(t) || !(ir->op2 & IRSLOAD_TYPECHECK)); lua_assert(LJ_DUALNUM || !irt_isint(t) || (ir->op2 & (IRSLOAD_CONVERT|IRSLOAD_FRAME))); if ((ir->op2 & IRSLOAD_CONVERT) && irt_isguard(t) && irt_isint(t)) { Reg left = ra_scratch(as, RSET_FPR); asm_tointg(as, ir, left); /* Frees dest reg. Do this before base alloc. */ base = ra_alloc1(as, REF_BASE, RSET_GPR); emit_rmro(as, XO_MOVSD, left, base, ofs); t.irt = IRT_NUM; /* Continue with a regular number type check. */ #if LJ_64 && !LJ_GC64 } else if (irt_islightud(t)) { Reg dest = asm_load_lightud64(as, ir, (ir->op2 & IRSLOAD_TYPECHECK)); if (ra_hasreg(dest)) { base = ra_alloc1(as, REF_BASE, RSET_GPR); emit_rmro(as, XO_MOV, dest|REX_64, base, ofs); } return; #endif } else if (ra_used(ir)) { RegSet allow = irt_isnum(t) ? RSET_FPR : RSET_GPR; Reg dest = ra_dest(as, ir, allow); base = ra_alloc1(as, REF_BASE, RSET_GPR); lua_assert(irt_isnum(t) || irt_isint(t) || irt_isaddr(t)); if ((ir->op2 & IRSLOAD_CONVERT)) { t.irt = irt_isint(t) ? IRT_NUM : IRT_INT; /* Check for original type. */ emit_rmro(as, irt_isint(t) ? XO_CVTSI2SD : XO_CVTTSD2SI, dest, base, ofs); } else { #if LJ_GC64 if (irt_isaddr(t)) { /* LJ_GC64 type check + tag removal without BMI2 and with BMI2: ** ** mov r64, [addr] rorx r64, [addr], 47 ** ror r64, 47 ** cmp r16, itype cmp r16, itype ** jne ->exit jne ->exit ** shr r64, 16 shr r64, 16 */ emit_shifti(as, XOg_SHR|REX_64, dest, 17); if ((ir->op2 & IRSLOAD_TYPECHECK)) { asm_guardcc(as, CC_NE); emit_i8(as, irt_toitype(t)); emit_rr(as, XO_ARITHi8, XOg_CMP, dest); emit_i8(as, XI_O16); } if ((as->flags & JIT_F_BMI2)) { emit_i8(as, 47); emit_rmro(as, XV_RORX|VEX_64, dest, base, ofs); } else { if ((ir->op2 & IRSLOAD_TYPECHECK)) emit_shifti(as, XOg_ROR|REX_64, dest, 47); else emit_shifti(as, XOg_SHL|REX_64, dest, 17); emit_rmro(as, XO_MOV, dest|REX_64, base, ofs); } return; } else #endif emit_rmro(as, irt_isnum(t) ? XO_MOVSD : XO_MOV, dest, base, ofs); } } else { if (!(ir->op2 & IRSLOAD_TYPECHECK)) return; /* No type check: avoid base alloc. */ base = ra_alloc1(as, REF_BASE, RSET_GPR); } if ((ir->op2 & IRSLOAD_TYPECHECK)) { /* Need type check, even if the load result is unused. */ asm_guardcc(as, irt_isnum(t) ? CC_AE : CC_NE); if (LJ_64 && irt_type(t) >= IRT_NUM) { lua_assert(irt_isinteger(t) || irt_isnum(t)); #if LJ_GC64 emit_u32(as, LJ_TISNUM << 15); #else emit_u32(as, LJ_TISNUM); #endif emit_rmro(as, XO_ARITHi, XOg_CMP, base, ofs+4); #if LJ_GC64 } else if (irt_isnil(t)) { /* LJ_GC64 type check for nil: ** ** cmp qword [addr], -1 ** jne ->exit */ emit_i8(as, -1); emit_rmro(as, XO_ARITHi8, XOg_CMP|REX_64, base, ofs); } else if (irt_ispri(t)) { emit_u32(as, (irt_toitype(t) << 15) | 0x7fff); emit_rmro(as, XO_ARITHi, XOg_CMP, base, ofs+4); } else { /* LJ_GC64 type check only: ** ** mov r64, [addr] ** sar r64, 47 ** cmp r32, itype ** jne ->exit */ Reg tmp = ra_scratch(as, rset_exclude(RSET_GPR, base)); emit_i8(as, irt_toitype(t)); emit_rr(as, XO_ARITHi8, XOg_CMP, tmp); emit_shifti(as, XOg_SAR|REX_64, tmp, 47); emit_rmro(as, XO_MOV, tmp|REX_64, base, ofs+4); #else } else { emit_i8(as, irt_toitype(t)); emit_rmro(as, XO_ARITHi8, XOg_CMP, base, ofs+4); #endif } } } /* -- Allocations --------------------------------------------------------- */ #if LJ_HASFFI static void asm_cnew(ASMState *as, IRIns *ir) { CTState *cts = ctype_ctsG(J2G(as->J)); CTypeID id = (CTypeID)IR(ir->op1)->i; CTSize sz; CTInfo info = lj_ctype_info(cts, id, &sz); const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_mem_newgco]; IRRef args[4]; lua_assert(sz != CTSIZE_INVALID || (ir->o == IR_CNEW && ir->op2 != REF_NIL)); as->gcsteps++; asm_setupresult(as, ir, ci); /* GCcdata * */ /* Initialize immutable cdata object. */ if (ir->o == IR_CNEWI) { RegSet allow = (RSET_GPR & ~RSET_SCRATCH); #if LJ_64 Reg r64 = sz == 8 ? REX_64 : 0; if (irref_isk(ir->op2)) { IRIns *irk = IR(ir->op2); uint64_t k = (irk->o == IR_KINT64 || (LJ_GC64 && (irk->o == IR_KPTR || irk->o == IR_KKPTR))) ? ir_k64(irk)->u64 : (uint64_t)(uint32_t)irk->i; if (sz == 4 || checki32((int64_t)k)) { emit_i32(as, (int32_t)k); emit_rmro(as, XO_MOVmi, r64, RID_RET, sizeof(GCcdata)); } else { emit_movtomro(as, RID_ECX + r64, RID_RET, sizeof(GCcdata)); emit_loadu64(as, RID_ECX, k); } } else { Reg r = ra_alloc1(as, ir->op2, allow); emit_movtomro(as, r + r64, RID_RET, sizeof(GCcdata)); } #else int32_t ofs = sizeof(GCcdata); if (sz == 8) { ofs += 4; ir++; lua_assert(ir->o == IR_HIOP); } do { if (irref_isk(ir->op2)) { emit_movmroi(as, RID_RET, ofs, IR(ir->op2)->i); } else { Reg r = ra_alloc1(as, ir->op2, allow); emit_movtomro(as, r, RID_RET, ofs); rset_clear(allow, r); } if (ofs == sizeof(GCcdata)) break; ofs -= 4; ir--; } while (1); #endif lua_assert(sz == 4 || sz == 8); } else if (ir->op2 != REF_NIL) { /* Create VLA/VLS/aligned cdata. */ ci = &lj_ir_callinfo[IRCALL_lj_cdata_newv]; args[0] = ASMREF_L; /* lua_State *L */ args[1] = ir->op1; /* CTypeID id */ args[2] = ir->op2; /* CTSize sz */ args[3] = ASMREF_TMP1; /* CTSize align */ asm_gencall(as, ci, args); emit_loadi(as, ra_releasetmp(as, ASMREF_TMP1), (int32_t)ctype_align(info)); return; } /* Combine initialization of marked, gct and ctypeid. */ emit_movtomro(as, RID_ECX, RID_RET, offsetof(GCcdata, marked)); emit_gri(as, XG_ARITHi(XOg_OR), RID_ECX, (int32_t)((~LJ_TCDATA<<8)+(id<<16))); emit_gri(as, XG_ARITHi(XOg_AND), RID_ECX, LJ_GC_WHITES); emit_opgl(as, XO_MOVZXb, RID_ECX, gc.currentwhite); args[0] = ASMREF_L; /* lua_State *L */ args[1] = ASMREF_TMP1; /* MSize size */ asm_gencall(as, ci, args); emit_loadi(as, ra_releasetmp(as, ASMREF_TMP1), (int32_t)(sz+sizeof(GCcdata))); } #else #define asm_cnew(as, ir) ((void)0) #endif /* -- Write barriers ------------------------------------------------------ */ static void asm_tbar(ASMState *as, IRIns *ir) { Reg tab = ra_alloc1(as, ir->op1, RSET_GPR); Reg tmp = ra_scratch(as, rset_exclude(RSET_GPR, tab)); MCLabel l_end = emit_label(as); emit_movtomro(as, tmp|REX_GC64, tab, offsetof(GCtab, gclist)); emit_setgl(as, tab, gc.grayagain); emit_getgl(as, tmp, gc.grayagain); emit_i8(as, ~LJ_GC_BLACK); emit_rmro(as, XO_ARITHib, XOg_AND, tab, offsetof(GCtab, marked)); emit_sjcc(as, CC_Z, l_end); emit_i8(as, LJ_GC_BLACK); emit_rmro(as, XO_GROUP3b, XOg_TEST, tab, offsetof(GCtab, marked)); } static void asm_obar(ASMState *as, IRIns *ir) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_gc_barrieruv]; IRRef args[2]; MCLabel l_end; Reg obj; /* No need for other object barriers (yet). */ lua_assert(IR(ir->op1)->o == IR_UREFC); ra_evictset(as, RSET_SCRATCH); l_end = emit_label(as); args[0] = ASMREF_TMP1; /* global_State *g */ args[1] = ir->op1; /* TValue *tv */ asm_gencall(as, ci, args); emit_loada(as, ra_releasetmp(as, ASMREF_TMP1), J2G(as->J)); obj = IR(ir->op1)->r; emit_sjcc(as, CC_Z, l_end); emit_i8(as, LJ_GC_WHITES); if (irref_isk(ir->op2)) { GCobj *vp = ir_kgc(IR(ir->op2)); emit_rma(as, XO_GROUP3b, XOg_TEST, &vp->gch.marked); } else { Reg val = ra_alloc1(as, ir->op2, rset_exclude(RSET_SCRATCH&RSET_GPR, obj)); emit_rmro(as, XO_GROUP3b, XOg_TEST, val, (int32_t)offsetof(GChead, marked)); } emit_sjcc(as, CC_Z, l_end); emit_i8(as, LJ_GC_BLACK); emit_rmro(as, XO_GROUP3b, XOg_TEST, obj, (int32_t)offsetof(GCupval, marked)-(int32_t)offsetof(GCupval, tv)); } /* -- FP/int arithmetic and logic operations ------------------------------ */ /* Load reference onto x87 stack. Force a spill to memory if needed. */ static void asm_x87load(ASMState *as, IRRef ref) { IRIns *ir = IR(ref); if (ir->o == IR_KNUM) { cTValue *tv = ir_knum(ir); if (tvispzero(tv)) /* Use fldz only for +0. */ emit_x87op(as, XI_FLDZ); else if (tvispone(tv)) emit_x87op(as, XI_FLD1); else emit_rma(as, XO_FLDq, XOg_FLDq, tv); } else if (ir->o == IR_CONV && ir->op2 == IRCONV_NUM_INT && !ra_used(ir) && !irref_isk(ir->op1) && mayfuse(as, ir->op1)) { IRIns *iri = IR(ir->op1); emit_rmro(as, XO_FILDd, XOg_FILDd, RID_ESP, ra_spill(as, iri)); } else { emit_mrm(as, XO_FLDq, XOg_FLDq, asm_fuseload(as, ref, RSET_EMPTY)); } } static void asm_fpmath(ASMState *as, IRIns *ir) { IRFPMathOp fpm = (IRFPMathOp)ir->op2; if (fpm == IRFPM_SQRT) { Reg dest = ra_dest(as, ir, RSET_FPR); Reg left = asm_fuseload(as, ir->op1, RSET_FPR); emit_mrm(as, XO_SQRTSD, dest, left); } else if (fpm <= IRFPM_TRUNC) { if (as->flags & JIT_F_SSE4_1) { /* SSE4.1 has a rounding instruction. */ Reg dest = ra_dest(as, ir, RSET_FPR); Reg left = asm_fuseload(as, ir->op1, RSET_FPR); /* ROUNDSD has a 4-byte opcode which doesn't fit in x86Op. ** Let's pretend it's a 3-byte opcode, and compensate afterwards. ** This is atrocious, but the alternatives are much worse. */ /* Round down/up/trunc == 1001/1010/1011. */ emit_i8(as, 0x09 + fpm); emit_mrm(as, XO_ROUNDSD, dest, left); if (LJ_64 && as->mcp[1] != (MCode)(XO_ROUNDSD >> 16)) { as->mcp[0] = as->mcp[1]; as->mcp[1] = 0x0f; /* Swap 0F and REX. */ } *--as->mcp = 0x66; /* 1st byte of ROUNDSD opcode. */ } else { /* Call helper functions for SSE2 variant. */ /* The modified regs must match with the *.dasc implementation. */ RegSet drop = RSET_RANGE(RID_XMM0, RID_XMM3+1)|RID2RSET(RID_EAX); if (ra_hasreg(ir->r)) rset_clear(drop, ir->r); /* Dest reg handled below. */ ra_evictset(as, drop); ra_destreg(as, ir, RID_XMM0); emit_call(as, fpm == IRFPM_FLOOR ? lj_vm_floor_sse : fpm == IRFPM_CEIL ? lj_vm_ceil_sse : lj_vm_trunc_sse); ra_left(as, RID_XMM0, ir->op1); } } else if (fpm == IRFPM_EXP2 && asm_fpjoin_pow(as, ir)) { /* Rejoined to pow(). */ } else { asm_callid(as, ir, IRCALL_lj_vm_floor + fpm); } } #define asm_atan2(as, ir) asm_callid(as, ir, IRCALL_atan2) static void asm_ldexp(ASMState *as, IRIns *ir) { int32_t ofs = sps_scale(ir->s); /* Use spill slot or temp slots. */ Reg dest = ir->r; if (ra_hasreg(dest)) { ra_free(as, dest); ra_modified(as, dest); emit_rmro(as, XO_MOVSD, dest, RID_ESP, ofs); } emit_rmro(as, XO_FSTPq, XOg_FSTPq, RID_ESP, ofs); emit_x87op(as, XI_FPOP1); emit_x87op(as, XI_FSCALE); asm_x87load(as, ir->op1); asm_x87load(as, ir->op2); } static void asm_fppowi(ASMState *as, IRIns *ir) { /* The modified regs must match with the *.dasc implementation. */ RegSet drop = RSET_RANGE(RID_XMM0, RID_XMM1+1)|RID2RSET(RID_EAX); if (ra_hasreg(ir->r)) rset_clear(drop, ir->r); /* Dest reg handled below. */ ra_evictset(as, drop); ra_destreg(as, ir, RID_XMM0); emit_call(as, lj_vm_powi_sse); ra_left(as, RID_XMM0, ir->op1); ra_left(as, RID_EAX, ir->op2); } static void asm_pow(ASMState *as, IRIns *ir) { #if LJ_64 && LJ_HASFFI if (!irt_isnum(ir->t)) asm_callid(as, ir, irt_isi64(ir->t) ? IRCALL_lj_carith_powi64 : IRCALL_lj_carith_powu64); else #endif asm_fppowi(as, ir); } static int asm_swapops(ASMState *as, IRIns *ir) { IRIns *irl = IR(ir->op1); IRIns *irr = IR(ir->op2); lua_assert(ra_noreg(irr->r)); if (!irm_iscomm(lj_ir_mode[ir->o])) return 0; /* Can't swap non-commutative operations. */ if (irref_isk(ir->op2)) return 0; /* Don't swap constants to the left. */ if (ra_hasreg(irl->r)) return 1; /* Swap if left already has a register. */ if (ra_samehint(ir->r, irr->r)) return 1; /* Swap if dest and right have matching hints. */ if (as->curins > as->loopref) { /* In variant part? */ if (ir->op2 < as->loopref && !irt_isphi(irr->t)) return 0; /* Keep invariants on the right. */ if (ir->op1 < as->loopref && !irt_isphi(irl->t)) return 1; /* Swap invariants to the right. */ } if (opisfusableload(irl->o)) return 1; /* Swap fusable loads to the right. */ return 0; /* Otherwise don't swap. */ } static void asm_fparith(ASMState *as, IRIns *ir, x86Op xo) { IRRef lref = ir->op1; IRRef rref = ir->op2; RegSet allow = RSET_FPR; Reg dest; Reg right = IR(rref)->r; if (ra_hasreg(right)) { rset_clear(allow, right); ra_noweak(as, right); } dest = ra_dest(as, ir, allow); if (lref == rref) { right = dest; } else if (ra_noreg(right)) { if (asm_swapops(as, ir)) { IRRef tmp = lref; lref = rref; rref = tmp; } right = asm_fuseload(as, rref, rset_clear(allow, dest)); } emit_mrm(as, xo, dest, right); ra_left(as, dest, lref); } static void asm_intarith(ASMState *as, IRIns *ir, x86Arith xa) { IRRef lref = ir->op1; IRRef rref = ir->op2; RegSet allow = RSET_GPR; Reg dest, right; int32_t k = 0; if (as->flagmcp == as->mcp) { /* Drop test r,r instruction. */ MCode *p = as->mcp + ((LJ_64 && *as->mcp < XI_TESTb) ? 3 : 2); if ((p[1] & 15) < 14) { if ((p[1] & 15) >= 12) p[1] -= 4; /* L <->S, NL <-> NS */ as->flagmcp = NULL; as->mcp = p; } /* else: cannot transform LE/NLE to cc without use of OF. */ } right = IR(rref)->r; if (ra_hasreg(right)) { rset_clear(allow, right); ra_noweak(as, right); } dest = ra_dest(as, ir, allow); if (lref == rref) { right = dest; } else if (ra_noreg(right) && !asm_isk32(as, rref, &k)) { if (asm_swapops(as, ir)) { IRRef tmp = lref; lref = rref; rref = tmp; } right = asm_fuseloadm(as, rref, rset_clear(allow, dest), irt_is64(ir->t)); } if (irt_isguard(ir->t)) /* For IR_ADDOV etc. */ asm_guardcc(as, CC_O); if (xa != XOg_X_IMUL) { if (ra_hasreg(right)) emit_mrm(as, XO_ARITH(xa), REX_64IR(ir, dest), right); else emit_gri(as, XG_ARITHi(xa), REX_64IR(ir, dest), k); } else if (ra_hasreg(right)) { /* IMUL r, mrm. */ emit_mrm(as, XO_IMUL, REX_64IR(ir, dest), right); } else { /* IMUL r, r, k. */ /* NYI: use lea/shl/add/sub (FOLD only does 2^k) depending on CPU. */ Reg left = asm_fuseloadm(as, lref, RSET_GPR, irt_is64(ir->t)); x86Op xo; if (checki8(k)) { emit_i8(as, k); xo = XO_IMULi8; } else { emit_i32(as, k); xo = XO_IMULi; } emit_mrm(as, xo, REX_64IR(ir, dest), left); return; } ra_left(as, dest, lref); } /* LEA is really a 4-operand ADD with an independent destination register, ** up to two source registers and an immediate. One register can be scaled ** by 1, 2, 4 or 8. This can be used to avoid moves or to fuse several ** instructions. ** ** Currently only a few common cases are supported: ** - 3-operand ADD: y = a+b; y = a+k with a and b already allocated ** - Left ADD fusion: y = (a+b)+k; y = (a+k)+b ** - Right ADD fusion: y = a+(b+k) ** The ommited variants have already been reduced by FOLD. ** ** There are more fusion opportunities, like gathering shifts or joining ** common references. But these are probably not worth the trouble, since ** array indexing is not decomposed and already makes use of all fields ** of the ModRM operand. */ static int asm_lea(ASMState *as, IRIns *ir) { IRIns *irl = IR(ir->op1); IRIns *irr = IR(ir->op2); RegSet allow = RSET_GPR; Reg dest; as->mrm.base = as->mrm.idx = RID_NONE; as->mrm.scale = XM_SCALE1; as->mrm.ofs = 0; if (ra_hasreg(irl->r)) { rset_clear(allow, irl->r); ra_noweak(as, irl->r); as->mrm.base = irl->r; if (irref_isk(ir->op2) || ra_hasreg(irr->r)) { /* The PHI renaming logic does a better job in some cases. */ if (ra_hasreg(ir->r) && ((irt_isphi(irl->t) && as->phireg[ir->r] == ir->op1) || (irt_isphi(irr->t) && as->phireg[ir->r] == ir->op2))) return 0; if (irref_isk(ir->op2)) { as->mrm.ofs = irr->i; } else { rset_clear(allow, irr->r); ra_noweak(as, irr->r); as->mrm.idx = irr->r; } } else if (irr->o == IR_ADD && mayfuse(as, ir->op2) && irref_isk(irr->op2)) { Reg idx = ra_alloc1(as, irr->op1, allow); rset_clear(allow, idx); as->mrm.idx = (uint8_t)idx; as->mrm.ofs = IR(irr->op2)->i; } else { return 0; } } else if (ir->op1 != ir->op2 && irl->o == IR_ADD && mayfuse(as, ir->op1) && (irref_isk(ir->op2) || irref_isk(irl->op2))) { Reg idx, base = ra_alloc1(as, irl->op1, allow); rset_clear(allow, base); as->mrm.base = (uint8_t)base; if (irref_isk(ir->op2)) { as->mrm.ofs = irr->i; idx = ra_alloc1(as, irl->op2, allow); } else { as->mrm.ofs = IR(irl->op2)->i; idx = ra_alloc1(as, ir->op2, allow); } rset_clear(allow, idx); as->mrm.idx = (uint8_t)idx; } else { return 0; } dest = ra_dest(as, ir, allow); emit_mrm(as, XO_LEA, dest, RID_MRM); return 1; /* Success. */ } static void asm_add(ASMState *as, IRIns *ir) { if (irt_isnum(ir->t)) asm_fparith(as, ir, XO_ADDSD); else if ((as->flags & JIT_F_LEA_AGU) || as->flagmcp == as->mcp || irt_is64(ir->t) || !asm_lea(as, ir)) asm_intarith(as, ir, XOg_ADD); } static void asm_sub(ASMState *as, IRIns *ir) { if (irt_isnum(ir->t)) asm_fparith(as, ir, XO_SUBSD); else /* Note: no need for LEA trick here. i-k is encoded as i+(-k). */ asm_intarith(as, ir, XOg_SUB); } static void asm_mul(ASMState *as, IRIns *ir) { if (irt_isnum(ir->t)) asm_fparith(as, ir, XO_MULSD); else asm_intarith(as, ir, XOg_X_IMUL); } static void asm_div(ASMState *as, IRIns *ir) { #if LJ_64 && LJ_HASFFI if (!irt_isnum(ir->t)) asm_callid(as, ir, irt_isi64(ir->t) ? IRCALL_lj_carith_divi64 : IRCALL_lj_carith_divu64); else #endif asm_fparith(as, ir, XO_DIVSD); } static void asm_mod(ASMState *as, IRIns *ir) { #if LJ_64 && LJ_HASFFI if (!irt_isint(ir->t)) asm_callid(as, ir, irt_isi64(ir->t) ? IRCALL_lj_carith_modi64 : IRCALL_lj_carith_modu64); else #endif asm_callid(as, ir, IRCALL_lj_vm_modi); } static void asm_neg_not(ASMState *as, IRIns *ir, x86Group3 xg) { Reg dest = ra_dest(as, ir, RSET_GPR); emit_rr(as, XO_GROUP3, REX_64IR(ir, xg), dest); ra_left(as, dest, ir->op1); } static void asm_neg(ASMState *as, IRIns *ir) { if (irt_isnum(ir->t)) asm_fparith(as, ir, XO_XORPS); else asm_neg_not(as, ir, XOg_NEG); } #define asm_abs(as, ir) asm_fparith(as, ir, XO_ANDPS) static void asm_intmin_max(ASMState *as, IRIns *ir, int cc) { Reg right, dest = ra_dest(as, ir, RSET_GPR); IRRef lref = ir->op1, rref = ir->op2; if (irref_isk(rref)) { lref = rref; rref = ir->op1; } right = ra_alloc1(as, rref, rset_exclude(RSET_GPR, dest)); emit_rr(as, XO_CMOV + (cc<<24), REX_64IR(ir, dest), right); emit_rr(as, XO_CMP, REX_64IR(ir, dest), right); ra_left(as, dest, lref); } static void asm_min(ASMState *as, IRIns *ir) { if (irt_isnum(ir->t)) asm_fparith(as, ir, XO_MINSD); else asm_intmin_max(as, ir, CC_G); } static void asm_max(ASMState *as, IRIns *ir) { if (irt_isnum(ir->t)) asm_fparith(as, ir, XO_MAXSD); else asm_intmin_max(as, ir, CC_L); } /* Note: don't use LEA for overflow-checking arithmetic! */ #define asm_addov(as, ir) asm_intarith(as, ir, XOg_ADD) #define asm_subov(as, ir) asm_intarith(as, ir, XOg_SUB) #define asm_mulov(as, ir) asm_intarith(as, ir, XOg_X_IMUL) #define asm_bnot(as, ir) asm_neg_not(as, ir, XOg_NOT) static void asm_bswap(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); as->mcp = emit_op(XO_BSWAP + ((dest&7) << 24), REX_64IR(ir, 0), dest, 0, as->mcp, 1); ra_left(as, dest, ir->op1); } #define asm_band(as, ir) asm_intarith(as, ir, XOg_AND) #define asm_bor(as, ir) asm_intarith(as, ir, XOg_OR) #define asm_bxor(as, ir) asm_intarith(as, ir, XOg_XOR) static void asm_bitshift(ASMState *as, IRIns *ir, x86Shift xs, x86Op xv) { IRRef rref = ir->op2; IRIns *irr = IR(rref); Reg dest; if (irref_isk(rref)) { /* Constant shifts. */ int shift; dest = ra_dest(as, ir, RSET_GPR); shift = irr->i & (irt_is64(ir->t) ? 63 : 31); if (!xv && shift && (as->flags & JIT_F_BMI2)) { Reg left = asm_fuseloadm(as, ir->op1, RSET_GPR, irt_is64(ir->t)); if (left != dest) { /* BMI2 rotate right by constant. */ emit_i8(as, xs == XOg_ROL ? -shift : shift); emit_mrm(as, VEX_64IR(ir, XV_RORX), dest, left); return; } } switch (shift) { case 0: break; case 1: emit_rr(as, XO_SHIFT1, REX_64IR(ir, xs), dest); break; default: emit_shifti(as, REX_64IR(ir, xs), dest, shift); break; } } else if ((as->flags & JIT_F_BMI2) && xv) { /* BMI2 variable shifts. */ Reg left, right; dest = ra_dest(as, ir, RSET_GPR); right = ra_alloc1(as, rref, RSET_GPR); left = asm_fuseloadm(as, ir->op1, rset_exclude(RSET_GPR, right), irt_is64(ir->t)); emit_mrm(as, VEX_64IR(ir, xv) ^ (right << 19), dest, left); return; } else { /* Variable shifts implicitly use register cl (i.e. ecx). */ Reg right; dest = ra_dest(as, ir, rset_exclude(RSET_GPR, RID_ECX)); if (dest == RID_ECX) { dest = ra_scratch(as, rset_exclude(RSET_GPR, RID_ECX)); emit_rr(as, XO_MOV, RID_ECX, dest); } right = irr->r; if (ra_noreg(right)) right = ra_allocref(as, rref, RID2RSET(RID_ECX)); else if (right != RID_ECX) ra_scratch(as, RID2RSET(RID_ECX)); emit_rr(as, XO_SHIFTcl, REX_64IR(ir, xs), dest); ra_noweak(as, right); if (right != RID_ECX) emit_rr(as, XO_MOV, RID_ECX, right); } ra_left(as, dest, ir->op1); /* ** Note: avoid using the flags resulting from a shift or rotate! ** All of them cause a partial flag stall, except for r,1 shifts ** (but not rotates). And a shift count of 0 leaves the flags unmodified. */ } #define asm_bshl(as, ir) asm_bitshift(as, ir, XOg_SHL, XV_SHLX) #define asm_bshr(as, ir) asm_bitshift(as, ir, XOg_SHR, XV_SHRX) #define asm_bsar(as, ir) asm_bitshift(as, ir, XOg_SAR, XV_SARX) #define asm_brol(as, ir) asm_bitshift(as, ir, XOg_ROL, 0) #define asm_bror(as, ir) asm_bitshift(as, ir, XOg_ROR, 0) /* -- Comparisons --------------------------------------------------------- */ /* Virtual flags for unordered FP comparisons. */ #define VCC_U 0x1000 /* Unordered. */ #define VCC_P 0x2000 /* Needs extra CC_P branch. */ #define VCC_S 0x4000 /* Swap avoids CC_P branch. */ #define VCC_PS (VCC_P|VCC_S) /* Map of comparisons to flags. ORDER IR. */ #define COMPFLAGS(ci, cin, cu, cf) ((ci)+((cu)<<4)+((cin)<<8)+(cf)) static const uint16_t asm_compmap[IR_ABC+1] = { /* signed non-eq unsigned flags */ /* LT */ COMPFLAGS(CC_GE, CC_G, CC_AE, VCC_PS), /* GE */ COMPFLAGS(CC_L, CC_L, CC_B, 0), /* LE */ COMPFLAGS(CC_G, CC_G, CC_A, VCC_PS), /* GT */ COMPFLAGS(CC_LE, CC_L, CC_BE, 0), /* ULT */ COMPFLAGS(CC_AE, CC_A, CC_AE, VCC_U), /* UGE */ COMPFLAGS(CC_B, CC_B, CC_B, VCC_U|VCC_PS), /* ULE */ COMPFLAGS(CC_A, CC_A, CC_A, VCC_U), /* UGT */ COMPFLAGS(CC_BE, CC_B, CC_BE, VCC_U|VCC_PS), /* EQ */ COMPFLAGS(CC_NE, CC_NE, CC_NE, VCC_P), /* NE */ COMPFLAGS(CC_E, CC_E, CC_E, VCC_U|VCC_P), /* ABC */ COMPFLAGS(CC_BE, CC_B, CC_BE, VCC_U|VCC_PS) /* Same as UGT. */ }; /* FP and integer comparisons. */ static void asm_comp(ASMState *as, IRIns *ir) { uint32_t cc = asm_compmap[ir->o]; if (irt_isnum(ir->t)) { IRRef lref = ir->op1; IRRef rref = ir->op2; Reg left, right; MCLabel l_around; /* ** An extra CC_P branch is required to preserve ordered/unordered ** semantics for FP comparisons. This can be avoided by swapping ** the operands and inverting the condition (except for EQ and UNE). ** So always try to swap if possible. ** ** Another option would be to swap operands to achieve better memory ** operand fusion. But it's unlikely that this outweighs the cost ** of the extra branches. */ if (cc & VCC_S) { /* Swap? */ IRRef tmp = lref; lref = rref; rref = tmp; cc ^= (VCC_PS|(5<<4)); /* A <-> B, AE <-> BE, PS <-> none */ } left = ra_alloc1(as, lref, RSET_FPR); l_around = emit_label(as); asm_guardcc(as, cc >> 4); if (cc & VCC_P) { /* Extra CC_P branch required? */ if (!(cc & VCC_U)) { asm_guardcc(as, CC_P); /* Branch to exit for ordered comparisons. */ } else if (l_around != as->invmcp) { emit_sjcc(as, CC_P, l_around); /* Branch around for unordered. */ } else { /* Patched to mcloop by asm_loop_fixup. */ as->loopinv = 2; if (as->realign) emit_sjcc(as, CC_P, as->mcp); else emit_jcc(as, CC_P, as->mcp); } } right = asm_fuseload(as, rref, rset_exclude(RSET_FPR, left)); emit_mrm(as, XO_UCOMISD, left, right); } else { IRRef lref = ir->op1, rref = ir->op2; IROp leftop = (IROp)(IR(lref)->o); Reg r64 = REX_64IR(ir, 0); int32_t imm = 0; lua_assert(irt_is64(ir->t) || irt_isint(ir->t) || irt_isu32(ir->t) || irt_isaddr(ir->t) || irt_isu8(ir->t)); /* Swap constants (only for ABC) and fusable loads to the right. */ if (irref_isk(lref) || (!irref_isk(rref) && opisfusableload(leftop))) { if ((cc & 0xc) == 0xc) cc ^= 0x53; /* L <-> G, LE <-> GE */ else if ((cc & 0xa) == 0x2) cc ^= 0x55; /* A <-> B, AE <-> BE */ lref = ir->op2; rref = ir->op1; } if (asm_isk32(as, rref, &imm)) { IRIns *irl = IR(lref); /* Check wether we can use test ins. Not for unsigned, since CF=0. */ int usetest = (imm == 0 && (cc & 0xa) != 0x2); if (usetest && irl->o == IR_BAND && irl+1 == ir && !ra_used(irl)) { /* Combine comp(BAND(ref, r/imm), 0) into test mrm, r/imm. */ Reg right, left = RID_NONE; RegSet allow = RSET_GPR; if (!asm_isk32(as, irl->op2, &imm)) { left = ra_alloc1(as, irl->op2, allow); rset_clear(allow, left); } else { /* Try to Fuse IRT_I8/IRT_U8 loads, too. See below. */ IRIns *irll = IR(irl->op1); if (opisfusableload((IROp)irll->o) && (irt_isi8(irll->t) || irt_isu8(irll->t))) { IRType1 origt = irll->t; /* Temporarily flip types. */ irll->t.irt = (irll->t.irt & ~IRT_TYPE) | IRT_INT; as->curins--; /* Skip to BAND to avoid failing in noconflict(). */ right = asm_fuseload(as, irl->op1, RSET_GPR); as->curins++; irll->t = origt; if (right != RID_MRM) goto test_nofuse; /* Fusion succeeded, emit test byte mrm, imm8. */ asm_guardcc(as, cc); emit_i8(as, (imm & 0xff)); emit_mrm(as, XO_GROUP3b, XOg_TEST, RID_MRM); return; } } as->curins--; /* Skip to BAND to avoid failing in noconflict(). */ right = asm_fuseloadm(as, irl->op1, allow, r64); as->curins++; /* Undo the above. */ test_nofuse: asm_guardcc(as, cc); if (ra_noreg(left)) { emit_i32(as, imm); emit_mrm(as, XO_GROUP3, r64 + XOg_TEST, right); } else { emit_mrm(as, XO_TEST, r64 + left, right); } } else { Reg left; if (opisfusableload((IROp)irl->o) && ((irt_isu8(irl->t) && checku8(imm)) || ((irt_isi8(irl->t) || irt_isi16(irl->t)) && checki8(imm)) || (irt_isu16(irl->t) && checku16(imm) && checki8((int16_t)imm)))) { /* Only the IRT_INT case is fused by asm_fuseload. ** The IRT_I8/IRT_U8 loads and some IRT_I16/IRT_U16 loads ** are handled here. ** Note that cmp word [mem], imm16 should not be generated, ** since it has a length-changing prefix. Compares of a word ** against a sign-extended imm8 are ok, however. */ IRType1 origt = irl->t; /* Temporarily flip types. */ irl->t.irt = (irl->t.irt & ~IRT_TYPE) | IRT_INT; left = asm_fuseload(as, lref, RSET_GPR); irl->t = origt; if (left == RID_MRM) { /* Fusion succeeded? */ if (irt_isu8(irl->t) || irt_isu16(irl->t)) cc >>= 4; /* Need unsigned compare. */ asm_guardcc(as, cc); emit_i8(as, imm); emit_mrm(as, (irt_isi8(origt) || irt_isu8(origt)) ? XO_ARITHib : XO_ARITHiw8, r64 + XOg_CMP, RID_MRM); return; } /* Otherwise handle register case as usual. */ } else { left = asm_fuseloadm(as, lref, irt_isu8(ir->t) ? RSET_GPR8 : RSET_GPR, r64); } asm_guardcc(as, cc); if (usetest && left != RID_MRM) { /* Use test r,r instead of cmp r,0. */ x86Op xo = XO_TEST; if (irt_isu8(ir->t)) { lua_assert(ir->o == IR_EQ || ir->o == IR_NE); xo = XO_TESTb; if (!rset_test(RSET_RANGE(RID_EAX, RID_EBX+1), left)) { if (LJ_64) { left |= FORCE_REX; } else { emit_i32(as, 0xff); emit_mrm(as, XO_GROUP3, XOg_TEST, left); return; } } } emit_rr(as, xo, r64 + left, left); if (irl+1 == ir) /* Referencing previous ins? */ as->flagmcp = as->mcp; /* Set flag to drop test r,r if possible. */ } else { emit_gmrmi(as, XG_ARITHi(XOg_CMP), r64 + left, imm); } } } else { Reg left = ra_alloc1(as, lref, RSET_GPR); Reg right = asm_fuseloadm(as, rref, rset_exclude(RSET_GPR, left), r64); asm_guardcc(as, cc); emit_mrm(as, XO_CMP, r64 + left, right); } } } #define asm_equal(as, ir) asm_comp(as, ir) #if LJ_32 && LJ_HASFFI /* 64 bit integer comparisons in 32 bit mode. */ static void asm_comp_int64(ASMState *as, IRIns *ir) { uint32_t cc = asm_compmap[(ir-1)->o]; RegSet allow = RSET_GPR; Reg lefthi = RID_NONE, leftlo = RID_NONE; Reg righthi = RID_NONE, rightlo = RID_NONE; MCLabel l_around; x86ModRM mrm; as->curins--; /* Skip loword ins. Avoids failing in noconflict(), too. */ /* Allocate/fuse hiword operands. */ if (irref_isk(ir->op2)) { lefthi = asm_fuseload(as, ir->op1, allow); } else { lefthi = ra_alloc1(as, ir->op1, allow); rset_clear(allow, lefthi); righthi = asm_fuseload(as, ir->op2, allow); if (righthi == RID_MRM) { if (as->mrm.base != RID_NONE) rset_clear(allow, as->mrm.base); if (as->mrm.idx != RID_NONE) rset_clear(allow, as->mrm.idx); } else { rset_clear(allow, righthi); } } mrm = as->mrm; /* Save state for hiword instruction. */ /* Allocate/fuse loword operands. */ if (irref_isk((ir-1)->op2)) { leftlo = asm_fuseload(as, (ir-1)->op1, allow); } else { leftlo = ra_alloc1(as, (ir-1)->op1, allow); rset_clear(allow, leftlo); rightlo = asm_fuseload(as, (ir-1)->op2, allow); } /* All register allocations must be performed _before_ this point. */ l_around = emit_label(as); as->invmcp = as->flagmcp = NULL; /* Cannot use these optimizations. */ /* Loword comparison and branch. */ asm_guardcc(as, cc >> 4); /* Always use unsigned compare for loword. */ if (ra_noreg(rightlo)) { int32_t imm = IR((ir-1)->op2)->i; if (imm == 0 && ((cc >> 4) & 0xa) != 0x2 && leftlo != RID_MRM) emit_rr(as, XO_TEST, leftlo, leftlo); else emit_gmrmi(as, XG_ARITHi(XOg_CMP), leftlo, imm); } else { emit_mrm(as, XO_CMP, leftlo, rightlo); } /* Hiword comparison and branches. */ if ((cc & 15) != CC_NE) emit_sjcc(as, CC_NE, l_around); /* Hiword unequal: skip loword compare. */ if ((cc & 15) != CC_E) asm_guardcc(as, cc >> 8); /* Hiword compare without equality check. */ as->mrm = mrm; /* Restore state. */ if (ra_noreg(righthi)) { int32_t imm = IR(ir->op2)->i; if (imm == 0 && (cc & 0xa) != 0x2 && lefthi != RID_MRM) emit_rr(as, XO_TEST, lefthi, lefthi); else emit_gmrmi(as, XG_ARITHi(XOg_CMP), lefthi, imm); } else { emit_mrm(as, XO_CMP, lefthi, righthi); } } #endif /* -- Support for 64 bit ops in 32 bit mode ------------------------------- */ /* Hiword op of a split 64 bit op. Previous op must be the loword op. */ static void asm_hiop(ASMState *as, IRIns *ir) { #if LJ_32 && LJ_HASFFI /* HIOP is marked as a store because it needs its own DCE logic. */ int uselo = ra_used(ir-1), usehi = ra_used(ir); /* Loword/hiword used? */ if (LJ_UNLIKELY(!(as->flags & JIT_F_OPT_DCE))) uselo = usehi = 1; if ((ir-1)->o == IR_CONV) { /* Conversions to/from 64 bit. */ as->curins--; /* Always skip the CONV. */ if (usehi || uselo) asm_conv64(as, ir); return; } else if ((ir-1)->o <= IR_NE) { /* 64 bit integer comparisons. ORDER IR. */ asm_comp_int64(as, ir); return; } else if ((ir-1)->o == IR_XSTORE) { if ((ir-1)->r != RID_SINK) asm_fxstore(as, ir); return; } if (!usehi) return; /* Skip unused hiword op for all remaining ops. */ switch ((ir-1)->o) { case IR_ADD: as->flagmcp = NULL; as->curins--; asm_intarith(as, ir, XOg_ADC); asm_intarith(as, ir-1, XOg_ADD); break; case IR_SUB: as->flagmcp = NULL; as->curins--; asm_intarith(as, ir, XOg_SBB); asm_intarith(as, ir-1, XOg_SUB); break; case IR_NEG: { Reg dest = ra_dest(as, ir, RSET_GPR); emit_rr(as, XO_GROUP3, XOg_NEG, dest); emit_i8(as, 0); emit_rr(as, XO_ARITHi8, XOg_ADC, dest); ra_left(as, dest, ir->op1); as->curins--; asm_neg_not(as, ir-1, XOg_NEG); break; } case IR_CALLN: case IR_CALLXS: if (!uselo) ra_allocref(as, ir->op1, RID2RSET(RID_RETLO)); /* Mark lo op as used. */ break; case IR_CNEWI: /* Nothing to do here. Handled by CNEWI itself. */ break; default: lua_assert(0); break; } #else UNUSED(as); UNUSED(ir); lua_assert(0); /* Unused on x64 or without FFI. */ #endif } /* -- Profiling ----------------------------------------------------------- */ static void asm_prof(ASMState *as, IRIns *ir) { UNUSED(ir); asm_guardcc(as, CC_NE); emit_i8(as, HOOK_PROFILE); emit_rma(as, XO_GROUP3b, XOg_TEST, &J2G(as->J)->hookmask); } /* -- Stack handling ------------------------------------------------------ */ /* Check Lua stack size for overflow. Use exit handler as fallback. */ static void asm_stack_check(ASMState *as, BCReg topslot, IRIns *irp, RegSet allow, ExitNo exitno) { /* Try to get an unused temp. register, otherwise spill/restore eax. */ Reg pbase = irp ? irp->r : RID_BASE; Reg r = allow ? rset_pickbot(allow) : RID_EAX; emit_jcc(as, CC_B, exitstub_addr(as->J, exitno)); if (allow == RSET_EMPTY) /* Restore temp. register. */ emit_rmro(as, XO_MOV, r|REX_64, RID_ESP, 0); else ra_modified(as, r); emit_gri(as, XG_ARITHi(XOg_CMP), r|REX_GC64, (int32_t)(8*topslot)); if (ra_hasreg(pbase) && pbase != r) emit_rr(as, XO_ARITH(XOg_SUB), r|REX_GC64, pbase); else #if LJ_GC64 emit_rmro(as, XO_ARITH(XOg_SUB), r|REX_64, RID_DISPATCH, (int32_t)dispofs(as, &J2G(as->J)->jit_base)); #else emit_rmro(as, XO_ARITH(XOg_SUB), r, RID_NONE, ptr2addr(&J2G(as->J)->jit_base)); #endif emit_rmro(as, XO_MOV, r|REX_GC64, r, offsetof(lua_State, maxstack)); emit_getgl(as, r, cur_L); if (allow == RSET_EMPTY) /* Spill temp. register. */ emit_rmro(as, XO_MOVto, r|REX_64, RID_ESP, 0); } /* Restore Lua stack from on-trace state. */ static void asm_stack_restore(ASMState *as, SnapShot *snap) { SnapEntry *map = &as->T->snapmap[snap->mapofs]; #if !LJ_FR2 || defined(LUA_USE_ASSERT) SnapEntry *flinks = &as->T->snapmap[snap_nextofs(as->T, snap)-1-LJ_FR2]; #endif MSize n, nent = snap->nent; /* Store the value of all modified slots to the Lua stack. */ for (n = 0; n < nent; n++) { SnapEntry sn = map[n]; BCReg s = snap_slot(sn); int32_t ofs = 8*((int32_t)s-1-LJ_FR2); IRRef ref = snap_ref(sn); IRIns *ir = IR(ref); if ((sn & SNAP_NORESTORE)) continue; if (irt_isnum(ir->t)) { Reg src = ra_alloc1(as, ref, RSET_FPR); emit_rmro(as, XO_MOVSDto, src, RID_BASE, ofs); } else { lua_assert(irt_ispri(ir->t) || irt_isaddr(ir->t) || (LJ_DUALNUM && irt_isinteger(ir->t))); if (!irref_isk(ref)) { Reg src = ra_alloc1(as, ref, rset_exclude(RSET_GPR, RID_BASE)); #if LJ_GC64 if (irt_is64(ir->t)) { /* TODO: 64 bit store + 32 bit load-modify-store is suboptimal. */ emit_u32(as, irt_toitype(ir->t) << 15); emit_rmro(as, XO_ARITHi, XOg_OR, RID_BASE, ofs+4); } else if (LJ_DUALNUM && irt_isinteger(ir->t)) { emit_movmroi(as, RID_BASE, ofs+4, LJ_TISNUM << 15); } else { emit_movmroi(as, RID_BASE, ofs+4, (irt_toitype(ir->t)<<15)|0x7fff); } #endif emit_movtomro(as, REX_64IR(ir, src), RID_BASE, ofs); #if LJ_GC64 } else { TValue k; lj_ir_kvalue(as->J->L, &k, ir); if (tvisnil(&k)) { emit_i32(as, -1); emit_rmro(as, XO_MOVmi, REX_64, RID_BASE, ofs); } else { emit_movmroi(as, RID_BASE, ofs+4, k.u32.hi); emit_movmroi(as, RID_BASE, ofs, k.u32.lo); } #else } else if (!irt_ispri(ir->t)) { emit_movmroi(as, RID_BASE, ofs, ir->i); #endif } if ((sn & (SNAP_CONT|SNAP_FRAME))) { #if !LJ_FR2 if (s != 0) /* Do not overwrite link to previous frame. */ emit_movmroi(as, RID_BASE, ofs+4, (int32_t)(*flinks--)); #endif #if !LJ_GC64 } else { if (!(LJ_64 && irt_islightud(ir->t))) emit_movmroi(as, RID_BASE, ofs+4, irt_toitype(ir->t)); #endif } } checkmclim(as); } lua_assert(map + nent == flinks); } /* -- GC handling --------------------------------------------------------- */ /* Check GC threshold and do one or more GC steps. */ static void asm_gc_check(ASMState *as) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_gc_step_jit]; IRRef args[2]; MCLabel l_end; Reg tmp; ra_evictset(as, RSET_SCRATCH); l_end = emit_label(as); /* Exit trace if in GCSatomic or GCSfinalize. Avoids syncing GC objects. */ asm_guardcc(as, CC_NE); /* Assumes asm_snap_prep() already done. */ emit_rr(as, XO_TEST, RID_RET, RID_RET); args[0] = ASMREF_TMP1; /* global_State *g */ args[1] = ASMREF_TMP2; /* MSize steps */ asm_gencall(as, ci, args); tmp = ra_releasetmp(as, ASMREF_TMP1); #if LJ_GC64 emit_rmro(as, XO_LEA, tmp|REX_64, RID_DISPATCH, GG_DISP2G); #else emit_loada(as, tmp, J2G(as->J)); #endif emit_loadi(as, ra_releasetmp(as, ASMREF_TMP2), as->gcsteps); /* Jump around GC step if GC total < GC threshold. */ emit_sjcc(as, CC_B, l_end); emit_opgl(as, XO_ARITH(XOg_CMP), tmp|REX_GC64, gc.threshold); emit_getgl(as, tmp, gc.total); as->gcsteps = 0; checkmclim(as); } /* -- Loop handling ------------------------------------------------------- */ /* Fixup the loop branch. */ static void asm_loop_fixup(ASMState *as) { MCode *p = as->mctop; MCode *target = as->mcp; if (as->realign) { /* Realigned loops use short jumps. */ as->realign = NULL; /* Stop another retry. */ lua_assert(((intptr_t)target & 15) == 0); if (as->loopinv) { /* Inverted loop branch? */ p -= 5; p[0] = XI_JMP; lua_assert(target - p >= -128); p[-1] = (MCode)(target - p); /* Patch sjcc. */ if (as->loopinv == 2) p[-3] = (MCode)(target - p + 2); /* Patch opt. short jp. */ } else { lua_assert(target - p >= -128); p[-1] = (MCode)(int8_t)(target - p); /* Patch short jmp. */ p[-2] = XI_JMPs; } } else { MCode *newloop; p[-5] = XI_JMP; if (as->loopinv) { /* Inverted loop branch? */ /* asm_guardcc already inverted the jcc and patched the jmp. */ p -= 5; newloop = target+4; *(int32_t *)(p-4) = (int32_t)(target - p); /* Patch jcc. */ if (as->loopinv == 2) { *(int32_t *)(p-10) = (int32_t)(target - p + 6); /* Patch opt. jp. */ newloop = target+8; } } else { /* Otherwise just patch jmp. */ *(int32_t *)(p-4) = (int32_t)(target - p); newloop = target+3; } /* Realign small loops and shorten the loop branch. */ if (newloop >= p - 128) { as->realign = newloop; /* Force a retry and remember alignment. */ as->curins = as->stopins; /* Abort asm_trace now. */ as->T->nins = as->orignins; /* Remove any added renames. */ } } } /* -- Head of trace ------------------------------------------------------- */ /* Coalesce BASE register for a root trace. */ static void asm_head_root_base(ASMState *as) { IRIns *ir = IR(REF_BASE); Reg r = ir->r; if (ra_hasreg(r)) { ra_free(as, r); if (rset_test(as->modset, r) || irt_ismarked(ir->t)) ir->r = RID_INIT; /* No inheritance for modified BASE register. */ if (r != RID_BASE) emit_rr(as, XO_MOV, r|REX_GC64, RID_BASE); } } /* Coalesce or reload BASE register for a side trace. */ static RegSet asm_head_side_base(ASMState *as, IRIns *irp, RegSet allow) { IRIns *ir = IR(REF_BASE); Reg r = ir->r; if (ra_hasreg(r)) { ra_free(as, r); if (rset_test(as->modset, r) || irt_ismarked(ir->t)) ir->r = RID_INIT; /* No inheritance for modified BASE register. */ if (irp->r == r) { rset_clear(allow, r); /* Mark same BASE register as coalesced. */ } else if (ra_hasreg(irp->r) && rset_test(as->freeset, irp->r)) { /* Move from coalesced parent reg. */ rset_clear(allow, irp->r); emit_rr(as, XO_MOV, r|REX_GC64, irp->r); } else { emit_getgl(as, r, jit_base); /* Otherwise reload BASE. */ } } return allow; } /* -- Tail of trace ------------------------------------------------------- */ /* Fixup the tail code. */ static void asm_tail_fixup(ASMState *as, TraceNo lnk) { /* Note: don't use as->mcp swap + emit_*: emit_op overwrites more bytes. */ MCode *p = as->mctop; MCode *target, *q; int32_t spadj = as->T->spadjust; if (spadj == 0) { p -= ((as->flags & JIT_F_LEA_AGU) ? 7 : 6) + (LJ_64 ? 1 : 0); } else { MCode *p1; /* Patch stack adjustment. */ if (checki8(spadj)) { p -= 3; p1 = p-6; *p1 = (MCode)spadj; } else { p1 = p-9; *(int32_t *)p1 = spadj; } if ((as->flags & JIT_F_LEA_AGU)) { #if LJ_64 p1[-4] = 0x48; #endif p1[-3] = (MCode)XI_LEA; p1[-2] = MODRM(checki8(spadj) ? XM_OFS8 : XM_OFS32, RID_ESP, RID_ESP); p1[-1] = MODRM(XM_SCALE1, RID_ESP, RID_ESP); } else { #if LJ_64 p1[-3] = 0x48; #endif p1[-2] = (MCode)(checki8(spadj) ? XI_ARITHi8 : XI_ARITHi); p1[-1] = MODRM(XM_REG, XOg_ADD, RID_ESP); } } /* Patch exit branch. */ target = lnk ? traceref(as->J, lnk)->mcode : (MCode *)lj_vm_exit_interp; *(int32_t *)(p-4) = jmprel(p, target); p[-5] = XI_JMP; /* Drop unused mcode tail. Fill with NOPs to make the prefetcher happy. */ for (q = as->mctop-1; q >= p; q--) *q = XI_NOP; as->mctop = p; } /* Prepare tail of code. */ static void asm_tail_prep(ASMState *as) { MCode *p = as->mctop; /* Realign and leave room for backwards loop branch or exit branch. */ if (as->realign) { int i = ((int)(intptr_t)as->realign) & 15; /* Fill unused mcode tail with NOPs to make the prefetcher happy. */ while (i-- > 0) *--p = XI_NOP; as->mctop = p; p -= (as->loopinv ? 5 : 2); /* Space for short/near jmp. */ } else { p -= 5; /* Space for exit branch (near jmp). */ } if (as->loopref) { as->invmcp = as->mcp = p; } else { /* Leave room for ESP adjustment: add esp, imm or lea esp, [esp+imm] */ as->mcp = p - (((as->flags & JIT_F_LEA_AGU) ? 7 : 6) + (LJ_64 ? 1 : 0)); as->invmcp = NULL; } } /* -- Trace setup --------------------------------------------------------- */ /* Ensure there are enough stack slots for call arguments. */ static Reg asm_setup_call_slots(ASMState *as, IRIns *ir, const CCallInfo *ci) { IRRef args[CCI_NARGS_MAX*2]; int nslots; asm_collectargs(as, ir, ci, args); nslots = asm_count_call_slots(as, ci, args); if (nslots > as->evenspill) /* Leave room for args in stack slots. */ as->evenspill = nslots; #if LJ_64 return irt_isfp(ir->t) ? REGSP_HINT(RID_FPRET) : REGSP_HINT(RID_RET); #else return irt_isfp(ir->t) ? REGSP_INIT : REGSP_HINT(RID_RET); #endif } /* Target-specific setup. */ static void asm_setup_target(ASMState *as) { asm_exitstub_setup(as, as->T->nsnap); as->mrm.base = 0; } /* -- Trace patching ------------------------------------------------------ */ static const uint8_t map_op1[256] = { 0x92,0x92,0x92,0x92,0x52,0x45,0x51,0x51,0x92,0x92,0x92,0x92,0x52,0x45,0x51,0x20, 0x92,0x92,0x92,0x92,0x52,0x45,0x51,0x51,0x92,0x92,0x92,0x92,0x52,0x45,0x51,0x51, 0x92,0x92,0x92,0x92,0x52,0x45,0x10,0x51,0x92,0x92,0x92,0x92,0x52,0x45,0x10,0x51, 0x92,0x92,0x92,0x92,0x52,0x45,0x10,0x51,0x92,0x92,0x92,0x92,0x52,0x45,0x10,0x51, #if LJ_64 0x10,0x10,0x10,0x10,0x10,0x10,0x10,0x10,0x14,0x14,0x14,0x14,0x14,0x14,0x14,0x14, #else 0x51,0x51,0x51,0x51,0x51,0x51,0x51,0x51,0x51,0x51,0x51,0x51,0x51,0x51,0x51,0x51, #endif 0x51,0x51,0x51,0x51,0x51,0x51,0x51,0x51,0x51,0x51,0x51,0x51,0x51,0x51,0x51,0x51, 0x51,0x51,0x92,0x92,0x10,0x10,0x12,0x11,0x45,0x86,0x52,0x93,0x51,0x51,0x51,0x51, 0x52,0x52,0x52,0x52,0x52,0x52,0x52,0x52,0x52,0x52,0x52,0x52,0x52,0x52,0x52,0x52, 0x93,0x86,0x93,0x93,0x92,0x92,0x92,0x92,0x92,0x92,0x92,0x92,0x92,0x92,0x92,0x92, 0x51,0x51,0x51,0x51,0x51,0x51,0x51,0x51,0x51,0x51,0x47,0x51,0x51,0x51,0x51,0x51, #if LJ_64 0x59,0x59,0x59,0x59,0x51,0x51,0x51,0x51,0x52,0x45,0x51,0x51,0x51,0x51,0x51,0x51, #else 0x55,0x55,0x55,0x55,0x51,0x51,0x51,0x51,0x52,0x45,0x51,0x51,0x51,0x51,0x51,0x51, #endif 0x52,0x52,0x52,0x52,0x52,0x52,0x52,0x52,0x05,0x05,0x05,0x05,0x05,0x05,0x05,0x05, 0x93,0x93,0x53,0x51,0x70,0x71,0x93,0x86,0x54,0x51,0x53,0x51,0x51,0x52,0x51,0x51, 0x92,0x92,0x92,0x92,0x52,0x52,0x51,0x51,0x92,0x92,0x92,0x92,0x92,0x92,0x92,0x92, 0x52,0x52,0x52,0x52,0x52,0x52,0x52,0x52,0x45,0x45,0x47,0x52,0x51,0x51,0x51,0x51, 0x10,0x51,0x10,0x10,0x51,0x51,0x63,0x66,0x51,0x51,0x51,0x51,0x51,0x51,0x92,0x92 }; static const uint8_t map_op2[256] = { 0x93,0x93,0x93,0x93,0x52,0x52,0x52,0x52,0x52,0x52,0x51,0x52,0x51,0x93,0x52,0x94, 0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93, 0x53,0x53,0x53,0x53,0x53,0x53,0x53,0x53,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93, 0x52,0x52,0x52,0x52,0x52,0x52,0x52,0x52,0x34,0x51,0x35,0x51,0x51,0x51,0x51,0x51, 0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93, 0x53,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93, 0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93, 0x94,0x54,0x54,0x54,0x93,0x93,0x93,0x52,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93, 0x46,0x46,0x46,0x46,0x46,0x46,0x46,0x46,0x46,0x46,0x46,0x46,0x46,0x46,0x46,0x46, 0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93, 0x52,0x52,0x52,0x93,0x94,0x93,0x51,0x51,0x52,0x52,0x52,0x93,0x94,0x93,0x93,0x93, 0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x94,0x93,0x93,0x93,0x93,0x93, 0x93,0x93,0x94,0x93,0x94,0x94,0x94,0x93,0x52,0x52,0x52,0x52,0x52,0x52,0x52,0x52, 0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93, 0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93, 0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x93,0x52 }; static uint32_t asm_x86_inslen(const uint8_t* p) { uint32_t result = 0; uint32_t prefixes = 0; uint32_t x = map_op1[*p]; for (;;) { switch (x >> 4) { case 0: return result + x + (prefixes & 4); case 1: prefixes |= x; x = map_op1[*++p]; result++; break; case 2: x = map_op2[*++p]; break; case 3: p++; goto mrm; case 4: result -= (prefixes & 2); /* fallthrough */ case 5: return result + (x & 15); case 6: /* Group 3. */ if (p[1] & 0x38) x = 2; else if ((prefixes & 2) && (x == 0x66)) x = 4; goto mrm; case 7: /* VEX c4/c5. */ if (LJ_32 && p[1] < 0xc0) { x = 2; goto mrm; } if (x == 0x70) { x = *++p & 0x1f; result++; if (x >= 2) { p += 2; result += 2; goto mrm; } } p++; result++; x = map_op2[*++p]; break; case 8: result -= (prefixes & 2); /* fallthrough */ case 9: mrm: /* ModR/M and possibly SIB. */ result += (x & 15); x = *++p; switch (x >> 6) { case 0: if ((x & 7) == 5) return result + 4; break; case 1: result++; break; case 2: result += 4; break; case 3: return result; } if ((x & 7) == 4) { result++; if (x < 0x40 && (p[1] & 7) == 5) result += 4; } return result; } } } /* Patch exit jumps of existing machine code to a new target. */ void lj_asm_patchexit(jit_State *J, GCtrace *T, ExitNo exitno, MCode *target) { MCode *p = T->mcode; MCode *mcarea = lj_mcode_patch(J, p, 0); MSize len = T->szmcode; MCode *px = exitstub_addr(J, exitno) - 6; MCode *pe = p+len-6; #if LJ_GC64 uint32_t statei = (uint32_t)(GG_OFS(g.vmstate) - GG_OFS(dispatch)); #else uint32_t statei = u32ptr(&J2G(J)->vmstate); #endif if (len > 5 && p[len-5] == XI_JMP && p+len-6 + *(int32_t *)(p+len-4) == px) *(int32_t *)(p+len-4) = jmprel(p+len, target); /* Do not patch parent exit for a stack check. Skip beyond vmstate update. */ for (; p < pe; p += asm_x86_inslen(p)) { intptr_t ofs = LJ_GC64 ? (p[0] & 0xf0) == 0x40 : LJ_64; if (*(uint32_t *)(p+2+ofs) == statei && p[ofs+LJ_GC64-LJ_64] == XI_MOVmi) break; } lua_assert(p < pe); for (; p < pe; p += asm_x86_inslen(p)) if ((*(uint16_t *)p & 0xf0ff) == 0x800f && p + *(int32_t *)(p+2) == px) *(int32_t *)(p+2) = jmprel(p+6, target); lj_mcode_sync(T->mcode, T->mcode + T->szmcode); lj_mcode_patch(J, mcarea, 1); } luajit-2.1.0~beta3+dfsg.orig/src/lj_alloc.c0000644000175100017510000012260513101703334020036 0ustar ondrejondrej/* ** Bundled memory allocator. ** ** Beware: this is a HEAVILY CUSTOMIZED version of dlmalloc. ** The original bears the following remark: ** ** This is a version (aka dlmalloc) of malloc/free/realloc written by ** Doug Lea and released to the public domain, as explained at ** http://creativecommons.org/licenses/publicdomain. ** ** * Version pre-2.8.4 Wed Mar 29 19:46:29 2006 (dl at gee) ** ** No additional copyright is claimed over the customizations. ** Please do NOT bother the original author about this version here! ** ** If you want to use dlmalloc in another project, you should get ** the original from: ftp://gee.cs.oswego.edu/pub/misc/ ** For thread-safe derivatives, take a look at: ** - ptmalloc: http://www.malloc.de/ ** - nedmalloc: http://www.nedprod.com/programs/portable/nedmalloc/ */ #define lj_alloc_c #define LUA_CORE /* To get the mremap prototype. Must be defined before any system includes. */ #if defined(__linux__) && !defined(_GNU_SOURCE) #define _GNU_SOURCE #endif #include "lj_def.h" #include "lj_arch.h" #include "lj_alloc.h" #ifndef LUAJIT_USE_SYSMALLOC #define MAX_SIZE_T (~(size_t)0) #define MALLOC_ALIGNMENT ((size_t)8U) #define DEFAULT_GRANULARITY ((size_t)128U * (size_t)1024U) #define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U) #define DEFAULT_MMAP_THRESHOLD ((size_t)128U * (size_t)1024U) #define MAX_RELEASE_CHECK_RATE 255 /* ------------------- size_t and alignment properties -------------------- */ /* The byte and bit size of a size_t */ #define SIZE_T_SIZE (sizeof(size_t)) #define SIZE_T_BITSIZE (sizeof(size_t) << 3) /* Some constants coerced to size_t */ /* Annoying but necessary to avoid errors on some platforms */ #define SIZE_T_ZERO ((size_t)0) #define SIZE_T_ONE ((size_t)1) #define SIZE_T_TWO ((size_t)2) #define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1) #define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2) #define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES) /* The bit mask value corresponding to MALLOC_ALIGNMENT */ #define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE) /* the number of bytes to offset an address to align it */ #define align_offset(A)\ ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\ ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK)) /* -------------------------- MMAP support ------------------------------- */ #define MFAIL ((void *)(MAX_SIZE_T)) #define CMFAIL ((char *)(MFAIL)) /* defined for convenience */ #define IS_DIRECT_BIT (SIZE_T_ONE) /* Determine system-specific block allocation method. */ #if LJ_TARGET_WINDOWS #define WIN32_LEAN_AND_MEAN #include #define LJ_ALLOC_VIRTUALALLOC 1 #if LJ_64 && !LJ_GC64 #define LJ_ALLOC_NTAVM 1 #endif #else #include /* If this include fails, then rebuild with: -DLUAJIT_USE_SYSMALLOC */ #include #define LJ_ALLOC_MMAP 1 #if LJ_64 #define LJ_ALLOC_MMAP_PROBE 1 #if LJ_GC64 #define LJ_ALLOC_MBITS 47 /* 128 TB in LJ_GC64 mode. */ #elif LJ_TARGET_X64 && LJ_HASJIT /* Due to limitations in the x64 compiler backend. */ #define LJ_ALLOC_MBITS 31 /* 2 GB on x64 with !LJ_GC64. */ #else #define LJ_ALLOC_MBITS 32 /* 4 GB on other archs with !LJ_GC64. */ #endif #endif #if LJ_64 && !LJ_GC64 && defined(MAP_32BIT) #define LJ_ALLOC_MMAP32 1 #endif #if LJ_TARGET_LINUX #define LJ_ALLOC_MREMAP 1 #endif #endif #if LJ_ALLOC_VIRTUALALLOC #if LJ_ALLOC_NTAVM /* Undocumented, but hey, that's what we all love so much about Windows. */ typedef long (*PNTAVM)(HANDLE handle, void **addr, ULONG zbits, size_t *size, ULONG alloctype, ULONG prot); static PNTAVM ntavm; /* Number of top bits of the lower 32 bits of an address that must be zero. ** Apparently 0 gives us full 64 bit addresses and 1 gives us the lower 2GB. */ #define NTAVM_ZEROBITS 1 static void init_mmap(void) { ntavm = (PNTAVM)GetProcAddress(GetModuleHandleA("ntdll.dll"), "NtAllocateVirtualMemory"); } #define INIT_MMAP() init_mmap() /* Win64 32 bit MMAP via NtAllocateVirtualMemory. */ static void *CALL_MMAP(size_t size) { DWORD olderr = GetLastError(); void *ptr = NULL; long st = ntavm(INVALID_HANDLE_VALUE, &ptr, NTAVM_ZEROBITS, &size, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE); SetLastError(olderr); return st == 0 ? ptr : MFAIL; } /* For direct MMAP, use MEM_TOP_DOWN to minimize interference */ static void *DIRECT_MMAP(size_t size) { DWORD olderr = GetLastError(); void *ptr = NULL; long st = ntavm(INVALID_HANDLE_VALUE, &ptr, NTAVM_ZEROBITS, &size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN, PAGE_READWRITE); SetLastError(olderr); return st == 0 ? ptr : MFAIL; } #else /* Win32 MMAP via VirtualAlloc */ static void *CALL_MMAP(size_t size) { DWORD olderr = GetLastError(); void *ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE); SetLastError(olderr); return ptr ? ptr : MFAIL; } /* For direct MMAP, use MEM_TOP_DOWN to minimize interference */ static void *DIRECT_MMAP(size_t size) { DWORD olderr = GetLastError(); void *ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN, PAGE_READWRITE); SetLastError(olderr); return ptr ? ptr : MFAIL; } #endif /* This function supports releasing coalesed segments */ static int CALL_MUNMAP(void *ptr, size_t size) { DWORD olderr = GetLastError(); MEMORY_BASIC_INFORMATION minfo; char *cptr = (char *)ptr; while (size) { if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0) return -1; if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr || minfo.State != MEM_COMMIT || minfo.RegionSize > size) return -1; if (VirtualFree(cptr, 0, MEM_RELEASE) == 0) return -1; cptr += minfo.RegionSize; size -= minfo.RegionSize; } SetLastError(olderr); return 0; } #elif LJ_ALLOC_MMAP #define MMAP_PROT (PROT_READ|PROT_WRITE) #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON) #define MAP_ANONYMOUS MAP_ANON #endif #define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS) #if LJ_ALLOC_MMAP_PROBE #ifdef MAP_TRYFIXED #define MMAP_FLAGS_PROBE (MMAP_FLAGS|MAP_TRYFIXED) #else #define MMAP_FLAGS_PROBE MMAP_FLAGS #endif #define LJ_ALLOC_MMAP_PROBE_MAX 30 #define LJ_ALLOC_MMAP_PROBE_LINEAR 5 #define LJ_ALLOC_MMAP_PROBE_LOWER ((uintptr_t)0x4000) /* No point in a giant ifdef mess. Just try to open /dev/urandom. ** It doesn't really matter if this fails, since we get some ASLR bits from ** every unsuitable allocation, too. And we prefer linear allocation, anyway. */ #include #include static uintptr_t mmap_probe_seed(void) { uintptr_t val; int fd = open("/dev/urandom", O_RDONLY); if (fd != -1) { int ok = ((size_t)read(fd, &val, sizeof(val)) == sizeof(val)); (void)close(fd); if (ok) return val; } return 1; /* Punt. */ } static void *mmap_probe(size_t size) { /* Hint for next allocation. Doesn't need to be thread-safe. */ static uintptr_t hint_addr = 0; static uintptr_t hint_prng = 0; int olderr = errno; int retry; for (retry = 0; retry < LJ_ALLOC_MMAP_PROBE_MAX; retry++) { void *p = mmap((void *)hint_addr, size, MMAP_PROT, MMAP_FLAGS_PROBE, -1, 0); uintptr_t addr = (uintptr_t)p; if ((addr >> LJ_ALLOC_MBITS) == 0 && addr >= LJ_ALLOC_MMAP_PROBE_LOWER) { /* We got a suitable address. Bump the hint address. */ hint_addr = addr + size; errno = olderr; return p; } if (p != MFAIL) { munmap(p, size); } else if (errno == ENOMEM) { return MFAIL; } if (hint_addr) { /* First, try linear probing. */ if (retry < LJ_ALLOC_MMAP_PROBE_LINEAR) { hint_addr += 0x1000000; if (((hint_addr + size) >> LJ_ALLOC_MBITS) != 0) hint_addr = 0; continue; } else if (retry == LJ_ALLOC_MMAP_PROBE_LINEAR) { /* Next, try a no-hint probe to get back an ASLR address. */ hint_addr = 0; continue; } } /* Finally, try pseudo-random probing. */ if (LJ_UNLIKELY(hint_prng == 0)) { hint_prng = mmap_probe_seed(); } /* The unsuitable address we got has some ASLR PRNG bits. */ hint_addr ^= addr & ~((uintptr_t)(LJ_PAGESIZE-1)); do { /* The PRNG itself is very weak, but see above. */ hint_prng = hint_prng * 1103515245 + 12345; hint_addr ^= hint_prng * (uintptr_t)LJ_PAGESIZE; hint_addr &= (((uintptr_t)1 << LJ_ALLOC_MBITS)-1); } while (hint_addr < LJ_ALLOC_MMAP_PROBE_LOWER); } errno = olderr; return MFAIL; } #endif #if LJ_ALLOC_MMAP32 #if defined(__sun__) #define LJ_ALLOC_MMAP32_START ((uintptr_t)0x1000) #else #define LJ_ALLOC_MMAP32_START ((uintptr_t)0) #endif static void *mmap_map32(size_t size) { #if LJ_ALLOC_MMAP_PROBE static int fallback = 0; if (fallback) return mmap_probe(size); #endif { int olderr = errno; void *ptr = mmap((void *)LJ_ALLOC_MMAP32_START, size, MMAP_PROT, MAP_32BIT|MMAP_FLAGS, -1, 0); errno = olderr; /* This only allows 1GB on Linux. So fallback to probing to get 2GB. */ #if LJ_ALLOC_MMAP_PROBE if (ptr == MFAIL) { fallback = 1; return mmap_probe(size); } #endif return ptr; } } #endif #if LJ_ALLOC_MMAP32 #define CALL_MMAP(size) mmap_map32(size) #elif LJ_ALLOC_MMAP_PROBE #define CALL_MMAP(size) mmap_probe(size) #else static void *CALL_MMAP(size_t size) { int olderr = errno; void *ptr = mmap(NULL, size, MMAP_PROT, MMAP_FLAGS, -1, 0); errno = olderr; return ptr; } #endif #if (defined(__FreeBSD__) || defined(__FreeBSD_kernel__)) && !LJ_TARGET_PS4 #include static void init_mmap(void) { struct rlimit rlim; rlim.rlim_cur = rlim.rlim_max = 0x10000; setrlimit(RLIMIT_DATA, &rlim); /* Ignore result. May fail later. */ } #define INIT_MMAP() init_mmap() #endif static int CALL_MUNMAP(void *ptr, size_t size) { int olderr = errno; int ret = munmap(ptr, size); errno = olderr; return ret; } #if LJ_ALLOC_MREMAP /* Need to define _GNU_SOURCE to get the mremap prototype. */ static void *CALL_MREMAP_(void *ptr, size_t osz, size_t nsz, int flags) { int olderr = errno; ptr = mremap(ptr, osz, nsz, flags); errno = olderr; return ptr; } #define CALL_MREMAP(addr, osz, nsz, mv) CALL_MREMAP_((addr), (osz), (nsz), (mv)) #define CALL_MREMAP_NOMOVE 0 #define CALL_MREMAP_MAYMOVE 1 #if LJ_64 && !LJ_GC64 #define CALL_MREMAP_MV CALL_MREMAP_NOMOVE #else #define CALL_MREMAP_MV CALL_MREMAP_MAYMOVE #endif #endif #endif #ifndef INIT_MMAP #define INIT_MMAP() ((void)0) #endif #ifndef DIRECT_MMAP #define DIRECT_MMAP(s) CALL_MMAP(s) #endif #ifndef CALL_MREMAP #define CALL_MREMAP(addr, osz, nsz, mv) ((void)osz, MFAIL) #endif /* ----------------------- Chunk representations ------------------------ */ struct malloc_chunk { size_t prev_foot; /* Size of previous chunk (if free). */ size_t head; /* Size and inuse bits. */ struct malloc_chunk *fd; /* double links -- used only if free. */ struct malloc_chunk *bk; }; typedef struct malloc_chunk mchunk; typedef struct malloc_chunk *mchunkptr; typedef struct malloc_chunk *sbinptr; /* The type of bins of chunks */ typedef size_t bindex_t; /* Described below */ typedef unsigned int binmap_t; /* Described below */ typedef unsigned int flag_t; /* The type of various bit flag sets */ /* ------------------- Chunks sizes and alignments ----------------------- */ #define MCHUNK_SIZE (sizeof(mchunk)) #define CHUNK_OVERHEAD (SIZE_T_SIZE) /* Direct chunks need a second word of overhead ... */ #define DIRECT_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES) /* ... and additional padding for fake next-chunk at foot */ #define DIRECT_FOOT_PAD (FOUR_SIZE_T_SIZES) /* The smallest size we can malloc is an aligned minimal chunk */ #define MIN_CHUNK_SIZE\ ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK) /* conversion from malloc headers to user pointers, and back */ #define chunk2mem(p) ((void *)((char *)(p) + TWO_SIZE_T_SIZES)) #define mem2chunk(mem) ((mchunkptr)((char *)(mem) - TWO_SIZE_T_SIZES)) /* chunk associated with aligned address A */ #define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A))) /* Bounds on request (not chunk) sizes. */ #define MAX_REQUEST ((~MIN_CHUNK_SIZE+1) << 2) #define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE) /* pad request bytes into a usable size */ #define pad_request(req) \ (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK) /* pad request, checking for minimum (but not maximum) */ #define request2size(req) \ (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req)) /* ------------------ Operations on head and foot fields ----------------- */ #define PINUSE_BIT (SIZE_T_ONE) #define CINUSE_BIT (SIZE_T_TWO) #define INUSE_BITS (PINUSE_BIT|CINUSE_BIT) /* Head value for fenceposts */ #define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE) /* extraction of fields from head words */ #define cinuse(p) ((p)->head & CINUSE_BIT) #define pinuse(p) ((p)->head & PINUSE_BIT) #define chunksize(p) ((p)->head & ~(INUSE_BITS)) #define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT) #define clear_cinuse(p) ((p)->head &= ~CINUSE_BIT) /* Treat space at ptr +/- offset as a chunk */ #define chunk_plus_offset(p, s) ((mchunkptr)(((char *)(p)) + (s))) #define chunk_minus_offset(p, s) ((mchunkptr)(((char *)(p)) - (s))) /* Ptr to next or previous physical malloc_chunk. */ #define next_chunk(p) ((mchunkptr)(((char *)(p)) + ((p)->head & ~INUSE_BITS))) #define prev_chunk(p) ((mchunkptr)(((char *)(p)) - ((p)->prev_foot) )) /* extract next chunk's pinuse bit */ #define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT) /* Get/set size at footer */ #define get_foot(p, s) (((mchunkptr)((char *)(p) + (s)))->prev_foot) #define set_foot(p, s) (((mchunkptr)((char *)(p) + (s)))->prev_foot = (s)) /* Set size, pinuse bit, and foot */ #define set_size_and_pinuse_of_free_chunk(p, s)\ ((p)->head = (s|PINUSE_BIT), set_foot(p, s)) /* Set size, pinuse bit, foot, and clear next pinuse */ #define set_free_with_pinuse(p, s, n)\ (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s)) #define is_direct(p)\ (!((p)->head & PINUSE_BIT) && ((p)->prev_foot & IS_DIRECT_BIT)) /* Get the internal overhead associated with chunk p */ #define overhead_for(p)\ (is_direct(p)? DIRECT_CHUNK_OVERHEAD : CHUNK_OVERHEAD) /* ---------------------- Overlaid data structures ----------------------- */ struct malloc_tree_chunk { /* The first four fields must be compatible with malloc_chunk */ size_t prev_foot; size_t head; struct malloc_tree_chunk *fd; struct malloc_tree_chunk *bk; struct malloc_tree_chunk *child[2]; struct malloc_tree_chunk *parent; bindex_t index; }; typedef struct malloc_tree_chunk tchunk; typedef struct malloc_tree_chunk *tchunkptr; typedef struct malloc_tree_chunk *tbinptr; /* The type of bins of trees */ /* A little helper macro for trees */ #define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1]) /* ----------------------------- Segments -------------------------------- */ struct malloc_segment { char *base; /* base address */ size_t size; /* allocated size */ struct malloc_segment *next; /* ptr to next segment */ }; typedef struct malloc_segment msegment; typedef struct malloc_segment *msegmentptr; /* ---------------------------- malloc_state ----------------------------- */ /* Bin types, widths and sizes */ #define NSMALLBINS (32U) #define NTREEBINS (32U) #define SMALLBIN_SHIFT (3U) #define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT) #define TREEBIN_SHIFT (8U) #define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT) #define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE) #define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD) struct malloc_state { binmap_t smallmap; binmap_t treemap; size_t dvsize; size_t topsize; mchunkptr dv; mchunkptr top; size_t trim_check; size_t release_checks; mchunkptr smallbins[(NSMALLBINS+1)*2]; tbinptr treebins[NTREEBINS]; msegment seg; }; typedef struct malloc_state *mstate; #define is_initialized(M) ((M)->top != 0) /* -------------------------- system alloc setup ------------------------- */ /* page-align a size */ #define page_align(S)\ (((S) + (LJ_PAGESIZE - SIZE_T_ONE)) & ~(LJ_PAGESIZE - SIZE_T_ONE)) /* granularity-align a size */ #define granularity_align(S)\ (((S) + (DEFAULT_GRANULARITY - SIZE_T_ONE))\ & ~(DEFAULT_GRANULARITY - SIZE_T_ONE)) #if LJ_TARGET_WINDOWS #define mmap_align(S) granularity_align(S) #else #define mmap_align(S) page_align(S) #endif /* True if segment S holds address A */ #define segment_holds(S, A)\ ((char *)(A) >= S->base && (char *)(A) < S->base + S->size) /* Return segment holding given address */ static msegmentptr segment_holding(mstate m, char *addr) { msegmentptr sp = &m->seg; for (;;) { if (addr >= sp->base && addr < sp->base + sp->size) return sp; if ((sp = sp->next) == 0) return 0; } } /* Return true if segment contains a segment link */ static int has_segment_link(mstate m, msegmentptr ss) { msegmentptr sp = &m->seg; for (;;) { if ((char *)sp >= ss->base && (char *)sp < ss->base + ss->size) return 1; if ((sp = sp->next) == 0) return 0; } } /* TOP_FOOT_SIZE is padding at the end of a segment, including space that may be needed to place segment records and fenceposts when new noncontiguous segments are added. */ #define TOP_FOOT_SIZE\ (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE) /* ---------------------------- Indexing Bins ---------------------------- */ #define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS) #define small_index(s) ((s) >> SMALLBIN_SHIFT) #define small_index2size(i) ((i) << SMALLBIN_SHIFT) #define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE)) /* addressing by index. See above about smallbin repositioning */ #define smallbin_at(M, i) ((sbinptr)((char *)&((M)->smallbins[(i)<<1]))) #define treebin_at(M,i) (&((M)->treebins[i])) /* assign tree index for size S to variable I */ #define compute_tree_index(S, I)\ {\ unsigned int X = (unsigned int)(S >> TREEBIN_SHIFT);\ if (X == 0) {\ I = 0;\ } else if (X > 0xFFFF) {\ I = NTREEBINS-1;\ } else {\ unsigned int K = lj_fls(X);\ I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\ }\ } /* Bit representing maximum resolved size in a treebin at i */ #define bit_for_tree_index(i) \ (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2) /* Shift placing maximum resolved bit in a treebin at i as sign bit */ #define leftshift_for_tree_index(i) \ ((i == NTREEBINS-1)? 0 : \ ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2))) /* The size of the smallest chunk held in bin with index i */ #define minsize_for_tree_index(i) \ ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \ (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1))) /* ------------------------ Operations on bin maps ----------------------- */ /* bit corresponding to given index */ #define idx2bit(i) ((binmap_t)(1) << (i)) /* Mark/Clear bits with given index */ #define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i)) #define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i)) #define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i)) #define mark_treemap(M,i) ((M)->treemap |= idx2bit(i)) #define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i)) #define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i)) /* mask with all bits to left of least bit of x on */ #define left_bits(x) ((x<<1) | (~(x<<1)+1)) /* Set cinuse bit and pinuse bit of next chunk */ #define set_inuse(M,p,s)\ ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\ ((mchunkptr)(((char *)(p)) + (s)))->head |= PINUSE_BIT) /* Set cinuse and pinuse of this chunk and pinuse of next chunk */ #define set_inuse_and_pinuse(M,p,s)\ ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ ((mchunkptr)(((char *)(p)) + (s)))->head |= PINUSE_BIT) /* Set size, cinuse and pinuse bit of this chunk */ #define set_size_and_pinuse_of_inuse_chunk(M, p, s)\ ((p)->head = (s|PINUSE_BIT|CINUSE_BIT)) /* ----------------------- Operations on smallbins ----------------------- */ /* Link a free chunk into a smallbin */ #define insert_small_chunk(M, P, S) {\ bindex_t I = small_index(S);\ mchunkptr B = smallbin_at(M, I);\ mchunkptr F = B;\ if (!smallmap_is_marked(M, I))\ mark_smallmap(M, I);\ else\ F = B->fd;\ B->fd = P;\ F->bk = P;\ P->fd = F;\ P->bk = B;\ } /* Unlink a chunk from a smallbin */ #define unlink_small_chunk(M, P, S) {\ mchunkptr F = P->fd;\ mchunkptr B = P->bk;\ bindex_t I = small_index(S);\ if (F == B) {\ clear_smallmap(M, I);\ } else {\ F->bk = B;\ B->fd = F;\ }\ } /* Unlink the first chunk from a smallbin */ #define unlink_first_small_chunk(M, B, P, I) {\ mchunkptr F = P->fd;\ if (B == F) {\ clear_smallmap(M, I);\ } else {\ B->fd = F;\ F->bk = B;\ }\ } /* Replace dv node, binning the old one */ /* Used only when dvsize known to be small */ #define replace_dv(M, P, S) {\ size_t DVS = M->dvsize;\ if (DVS != 0) {\ mchunkptr DV = M->dv;\ insert_small_chunk(M, DV, DVS);\ }\ M->dvsize = S;\ M->dv = P;\ } /* ------------------------- Operations on trees ------------------------- */ /* Insert chunk into tree */ #define insert_large_chunk(M, X, S) {\ tbinptr *H;\ bindex_t I;\ compute_tree_index(S, I);\ H = treebin_at(M, I);\ X->index = I;\ X->child[0] = X->child[1] = 0;\ if (!treemap_is_marked(M, I)) {\ mark_treemap(M, I);\ *H = X;\ X->parent = (tchunkptr)H;\ X->fd = X->bk = X;\ } else {\ tchunkptr T = *H;\ size_t K = S << leftshift_for_tree_index(I);\ for (;;) {\ if (chunksize(T) != S) {\ tchunkptr *C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\ K <<= 1;\ if (*C != 0) {\ T = *C;\ } else {\ *C = X;\ X->parent = T;\ X->fd = X->bk = X;\ break;\ }\ } else {\ tchunkptr F = T->fd;\ T->fd = F->bk = X;\ X->fd = F;\ X->bk = T;\ X->parent = 0;\ break;\ }\ }\ }\ } #define unlink_large_chunk(M, X) {\ tchunkptr XP = X->parent;\ tchunkptr R;\ if (X->bk != X) {\ tchunkptr F = X->fd;\ R = X->bk;\ F->bk = R;\ R->fd = F;\ } else {\ tchunkptr *RP;\ if (((R = *(RP = &(X->child[1]))) != 0) ||\ ((R = *(RP = &(X->child[0]))) != 0)) {\ tchunkptr *CP;\ while ((*(CP = &(R->child[1])) != 0) ||\ (*(CP = &(R->child[0])) != 0)) {\ R = *(RP = CP);\ }\ *RP = 0;\ }\ }\ if (XP != 0) {\ tbinptr *H = treebin_at(M, X->index);\ if (X == *H) {\ if ((*H = R) == 0) \ clear_treemap(M, X->index);\ } else {\ if (XP->child[0] == X) \ XP->child[0] = R;\ else \ XP->child[1] = R;\ }\ if (R != 0) {\ tchunkptr C0, C1;\ R->parent = XP;\ if ((C0 = X->child[0]) != 0) {\ R->child[0] = C0;\ C0->parent = R;\ }\ if ((C1 = X->child[1]) != 0) {\ R->child[1] = C1;\ C1->parent = R;\ }\ }\ }\ } /* Relays to large vs small bin operations */ #define insert_chunk(M, P, S)\ if (is_small(S)) { insert_small_chunk(M, P, S)\ } else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); } #define unlink_chunk(M, P, S)\ if (is_small(S)) { unlink_small_chunk(M, P, S)\ } else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); } /* ----------------------- Direct-mmapping chunks ----------------------- */ static void *direct_alloc(size_t nb) { size_t mmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK); if (LJ_LIKELY(mmsize > nb)) { /* Check for wrap around 0 */ char *mm = (char *)(DIRECT_MMAP(mmsize)); if (mm != CMFAIL) { size_t offset = align_offset(chunk2mem(mm)); size_t psize = mmsize - offset - DIRECT_FOOT_PAD; mchunkptr p = (mchunkptr)(mm + offset); p->prev_foot = offset | IS_DIRECT_BIT; p->head = psize|CINUSE_BIT; chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD; chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0; return chunk2mem(p); } } return NULL; } static mchunkptr direct_resize(mchunkptr oldp, size_t nb) { size_t oldsize = chunksize(oldp); if (is_small(nb)) /* Can't shrink direct regions below small size */ return NULL; /* Keep old chunk if big enough but not too big */ if (oldsize >= nb + SIZE_T_SIZE && (oldsize - nb) <= (DEFAULT_GRANULARITY >> 1)) { return oldp; } else { size_t offset = oldp->prev_foot & ~IS_DIRECT_BIT; size_t oldmmsize = oldsize + offset + DIRECT_FOOT_PAD; size_t newmmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK); char *cp = (char *)CALL_MREMAP((char *)oldp - offset, oldmmsize, newmmsize, CALL_MREMAP_MV); if (cp != CMFAIL) { mchunkptr newp = (mchunkptr)(cp + offset); size_t psize = newmmsize - offset - DIRECT_FOOT_PAD; newp->head = psize|CINUSE_BIT; chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD; chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0; return newp; } } return NULL; } /* -------------------------- mspace management -------------------------- */ /* Initialize top chunk and its size */ static void init_top(mstate m, mchunkptr p, size_t psize) { /* Ensure alignment */ size_t offset = align_offset(chunk2mem(p)); p = (mchunkptr)((char *)p + offset); psize -= offset; m->top = p; m->topsize = psize; p->head = psize | PINUSE_BIT; /* set size of fake trailing chunk holding overhead space only once */ chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE; m->trim_check = DEFAULT_TRIM_THRESHOLD; /* reset on each update */ } /* Initialize bins for a new mstate that is otherwise zeroed out */ static void init_bins(mstate m) { /* Establish circular links for smallbins */ bindex_t i; for (i = 0; i < NSMALLBINS; i++) { sbinptr bin = smallbin_at(m,i); bin->fd = bin->bk = bin; } } /* Allocate chunk and prepend remainder with chunk in successor base. */ static void *prepend_alloc(mstate m, char *newbase, char *oldbase, size_t nb) { mchunkptr p = align_as_chunk(newbase); mchunkptr oldfirst = align_as_chunk(oldbase); size_t psize = (size_t)((char *)oldfirst - (char *)p); mchunkptr q = chunk_plus_offset(p, nb); size_t qsize = psize - nb; set_size_and_pinuse_of_inuse_chunk(m, p, nb); /* consolidate remainder with first chunk of old base */ if (oldfirst == m->top) { size_t tsize = m->topsize += qsize; m->top = q; q->head = tsize | PINUSE_BIT; } else if (oldfirst == m->dv) { size_t dsize = m->dvsize += qsize; m->dv = q; set_size_and_pinuse_of_free_chunk(q, dsize); } else { if (!cinuse(oldfirst)) { size_t nsize = chunksize(oldfirst); unlink_chunk(m, oldfirst, nsize); oldfirst = chunk_plus_offset(oldfirst, nsize); qsize += nsize; } set_free_with_pinuse(q, qsize, oldfirst); insert_chunk(m, q, qsize); } return chunk2mem(p); } /* Add a segment to hold a new noncontiguous region */ static void add_segment(mstate m, char *tbase, size_t tsize) { /* Determine locations and sizes of segment, fenceposts, old top */ char *old_top = (char *)m->top; msegmentptr oldsp = segment_holding(m, old_top); char *old_end = oldsp->base + oldsp->size; size_t ssize = pad_request(sizeof(struct malloc_segment)); char *rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK); size_t offset = align_offset(chunk2mem(rawsp)); char *asp = rawsp + offset; char *csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp; mchunkptr sp = (mchunkptr)csp; msegmentptr ss = (msegmentptr)(chunk2mem(sp)); mchunkptr tnext = chunk_plus_offset(sp, ssize); mchunkptr p = tnext; /* reset top to new space */ init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE); /* Set up segment record */ set_size_and_pinuse_of_inuse_chunk(m, sp, ssize); *ss = m->seg; /* Push current record */ m->seg.base = tbase; m->seg.size = tsize; m->seg.next = ss; /* Insert trailing fenceposts */ for (;;) { mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE); p->head = FENCEPOST_HEAD; if ((char *)(&(nextp->head)) < old_end) p = nextp; else break; } /* Insert the rest of old top into a bin as an ordinary free chunk */ if (csp != old_top) { mchunkptr q = (mchunkptr)old_top; size_t psize = (size_t)(csp - old_top); mchunkptr tn = chunk_plus_offset(q, psize); set_free_with_pinuse(q, psize, tn); insert_chunk(m, q, psize); } } /* -------------------------- System allocation -------------------------- */ static void *alloc_sys(mstate m, size_t nb) { char *tbase = CMFAIL; size_t tsize = 0; /* Directly map large chunks */ if (LJ_UNLIKELY(nb >= DEFAULT_MMAP_THRESHOLD)) { void *mem = direct_alloc(nb); if (mem != 0) return mem; } { size_t req = nb + TOP_FOOT_SIZE + SIZE_T_ONE; size_t rsize = granularity_align(req); if (LJ_LIKELY(rsize > nb)) { /* Fail if wraps around zero */ char *mp = (char *)(CALL_MMAP(rsize)); if (mp != CMFAIL) { tbase = mp; tsize = rsize; } } } if (tbase != CMFAIL) { msegmentptr sp = &m->seg; /* Try to merge with an existing segment */ while (sp != 0 && tbase != sp->base + sp->size) sp = sp->next; if (sp != 0 && segment_holds(sp, m->top)) { /* append */ sp->size += tsize; init_top(m, m->top, m->topsize + tsize); } else { sp = &m->seg; while (sp != 0 && sp->base != tbase + tsize) sp = sp->next; if (sp != 0) { char *oldbase = sp->base; sp->base = tbase; sp->size += tsize; return prepend_alloc(m, tbase, oldbase, nb); } else { add_segment(m, tbase, tsize); } } if (nb < m->topsize) { /* Allocate from new or extended top space */ size_t rsize = m->topsize -= nb; mchunkptr p = m->top; mchunkptr r = m->top = chunk_plus_offset(p, nb); r->head = rsize | PINUSE_BIT; set_size_and_pinuse_of_inuse_chunk(m, p, nb); return chunk2mem(p); } } return NULL; } /* ----------------------- system deallocation -------------------------- */ /* Unmap and unlink any mmapped segments that don't contain used chunks */ static size_t release_unused_segments(mstate m) { size_t released = 0; size_t nsegs = 0; msegmentptr pred = &m->seg; msegmentptr sp = pred->next; while (sp != 0) { char *base = sp->base; size_t size = sp->size; msegmentptr next = sp->next; nsegs++; { mchunkptr p = align_as_chunk(base); size_t psize = chunksize(p); /* Can unmap if first chunk holds entire segment and not pinned */ if (!cinuse(p) && (char *)p + psize >= base + size - TOP_FOOT_SIZE) { tchunkptr tp = (tchunkptr)p; if (p == m->dv) { m->dv = 0; m->dvsize = 0; } else { unlink_large_chunk(m, tp); } if (CALL_MUNMAP(base, size) == 0) { released += size; /* unlink obsoleted record */ sp = pred; sp->next = next; } else { /* back out if cannot unmap */ insert_large_chunk(m, tp, psize); } } } pred = sp; sp = next; } /* Reset check counter */ m->release_checks = nsegs > MAX_RELEASE_CHECK_RATE ? nsegs : MAX_RELEASE_CHECK_RATE; return released; } static int alloc_trim(mstate m, size_t pad) { size_t released = 0; if (pad < MAX_REQUEST && is_initialized(m)) { pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */ if (m->topsize > pad) { /* Shrink top space in granularity-size units, keeping at least one */ size_t unit = DEFAULT_GRANULARITY; size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit - SIZE_T_ONE) * unit; msegmentptr sp = segment_holding(m, (char *)m->top); if (sp->size >= extra && !has_segment_link(m, sp)) { /* can't shrink if pinned */ size_t newsize = sp->size - extra; /* Prefer mremap, fall back to munmap */ if ((CALL_MREMAP(sp->base, sp->size, newsize, CALL_MREMAP_NOMOVE) != MFAIL) || (CALL_MUNMAP(sp->base + newsize, extra) == 0)) { released = extra; } } if (released != 0) { sp->size -= released; init_top(m, m->top, m->topsize - released); } } /* Unmap any unused mmapped segments */ released += release_unused_segments(m); /* On failure, disable autotrim to avoid repeated failed future calls */ if (released == 0 && m->topsize > m->trim_check) m->trim_check = MAX_SIZE_T; } return (released != 0)? 1 : 0; } /* ---------------------------- malloc support --------------------------- */ /* allocate a large request from the best fitting chunk in a treebin */ static void *tmalloc_large(mstate m, size_t nb) { tchunkptr v = 0; size_t rsize = ~nb+1; /* Unsigned negation */ tchunkptr t; bindex_t idx; compute_tree_index(nb, idx); if ((t = *treebin_at(m, idx)) != 0) { /* Traverse tree for this bin looking for node with size == nb */ size_t sizebits = nb << leftshift_for_tree_index(idx); tchunkptr rst = 0; /* The deepest untaken right subtree */ for (;;) { tchunkptr rt; size_t trem = chunksize(t) - nb; if (trem < rsize) { v = t; if ((rsize = trem) == 0) break; } rt = t->child[1]; t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]; if (rt != 0 && rt != t) rst = rt; if (t == 0) { t = rst; /* set t to least subtree holding sizes > nb */ break; } sizebits <<= 1; } } if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */ binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap; if (leftbits != 0) t = *treebin_at(m, lj_ffs(leftbits)); } while (t != 0) { /* find smallest of tree or subtree */ size_t trem = chunksize(t) - nb; if (trem < rsize) { rsize = trem; v = t; } t = leftmost_child(t); } /* If dv is a better fit, return NULL so malloc will use it */ if (v != 0 && rsize < (size_t)(m->dvsize - nb)) { mchunkptr r = chunk_plus_offset(v, nb); unlink_large_chunk(m, v); if (rsize < MIN_CHUNK_SIZE) { set_inuse_and_pinuse(m, v, (rsize + nb)); } else { set_size_and_pinuse_of_inuse_chunk(m, v, nb); set_size_and_pinuse_of_free_chunk(r, rsize); insert_chunk(m, r, rsize); } return chunk2mem(v); } return NULL; } /* allocate a small request from the best fitting chunk in a treebin */ static void *tmalloc_small(mstate m, size_t nb) { tchunkptr t, v; mchunkptr r; size_t rsize; bindex_t i = lj_ffs(m->treemap); v = t = *treebin_at(m, i); rsize = chunksize(t) - nb; while ((t = leftmost_child(t)) != 0) { size_t trem = chunksize(t) - nb; if (trem < rsize) { rsize = trem; v = t; } } r = chunk_plus_offset(v, nb); unlink_large_chunk(m, v); if (rsize < MIN_CHUNK_SIZE) { set_inuse_and_pinuse(m, v, (rsize + nb)); } else { set_size_and_pinuse_of_inuse_chunk(m, v, nb); set_size_and_pinuse_of_free_chunk(r, rsize); replace_dv(m, r, rsize); } return chunk2mem(v); } /* ----------------------------------------------------------------------- */ void *lj_alloc_create(void) { size_t tsize = DEFAULT_GRANULARITY; char *tbase; INIT_MMAP(); tbase = (char *)(CALL_MMAP(tsize)); if (tbase != CMFAIL) { size_t msize = pad_request(sizeof(struct malloc_state)); mchunkptr mn; mchunkptr msp = align_as_chunk(tbase); mstate m = (mstate)(chunk2mem(msp)); memset(m, 0, msize); msp->head = (msize|PINUSE_BIT|CINUSE_BIT); m->seg.base = tbase; m->seg.size = tsize; m->release_checks = MAX_RELEASE_CHECK_RATE; init_bins(m); mn = next_chunk(mem2chunk(m)); init_top(m, mn, (size_t)((tbase + tsize) - (char *)mn) - TOP_FOOT_SIZE); return m; } return NULL; } void lj_alloc_destroy(void *msp) { mstate ms = (mstate)msp; msegmentptr sp = &ms->seg; while (sp != 0) { char *base = sp->base; size_t size = sp->size; sp = sp->next; CALL_MUNMAP(base, size); } } static LJ_NOINLINE void *lj_alloc_malloc(void *msp, size_t nsize) { mstate ms = (mstate)msp; void *mem; size_t nb; if (nsize <= MAX_SMALL_REQUEST) { bindex_t idx; binmap_t smallbits; nb = (nsize < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(nsize); idx = small_index(nb); smallbits = ms->smallmap >> idx; if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */ mchunkptr b, p; idx += ~smallbits & 1; /* Uses next bin if idx empty */ b = smallbin_at(ms, idx); p = b->fd; unlink_first_small_chunk(ms, b, p, idx); set_inuse_and_pinuse(ms, p, small_index2size(idx)); mem = chunk2mem(p); return mem; } else if (nb > ms->dvsize) { if (smallbits != 0) { /* Use chunk in next nonempty smallbin */ mchunkptr b, p, r; size_t rsize; binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx)); bindex_t i = lj_ffs(leftbits); b = smallbin_at(ms, i); p = b->fd; unlink_first_small_chunk(ms, b, p, i); rsize = small_index2size(i) - nb; /* Fit here cannot be remainderless if 4byte sizes */ if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE) { set_inuse_and_pinuse(ms, p, small_index2size(i)); } else { set_size_and_pinuse_of_inuse_chunk(ms, p, nb); r = chunk_plus_offset(p, nb); set_size_and_pinuse_of_free_chunk(r, rsize); replace_dv(ms, r, rsize); } mem = chunk2mem(p); return mem; } else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) { return mem; } } } else if (nsize >= MAX_REQUEST) { nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */ } else { nb = pad_request(nsize); if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) { return mem; } } if (nb <= ms->dvsize) { size_t rsize = ms->dvsize - nb; mchunkptr p = ms->dv; if (rsize >= MIN_CHUNK_SIZE) { /* split dv */ mchunkptr r = ms->dv = chunk_plus_offset(p, nb); ms->dvsize = rsize; set_size_and_pinuse_of_free_chunk(r, rsize); set_size_and_pinuse_of_inuse_chunk(ms, p, nb); } else { /* exhaust dv */ size_t dvs = ms->dvsize; ms->dvsize = 0; ms->dv = 0; set_inuse_and_pinuse(ms, p, dvs); } mem = chunk2mem(p); return mem; } else if (nb < ms->topsize) { /* Split top */ size_t rsize = ms->topsize -= nb; mchunkptr p = ms->top; mchunkptr r = ms->top = chunk_plus_offset(p, nb); r->head = rsize | PINUSE_BIT; set_size_and_pinuse_of_inuse_chunk(ms, p, nb); mem = chunk2mem(p); return mem; } return alloc_sys(ms, nb); } static LJ_NOINLINE void *lj_alloc_free(void *msp, void *ptr) { if (ptr != 0) { mchunkptr p = mem2chunk(ptr); mstate fm = (mstate)msp; size_t psize = chunksize(p); mchunkptr next = chunk_plus_offset(p, psize); if (!pinuse(p)) { size_t prevsize = p->prev_foot; if ((prevsize & IS_DIRECT_BIT) != 0) { prevsize &= ~IS_DIRECT_BIT; psize += prevsize + DIRECT_FOOT_PAD; CALL_MUNMAP((char *)p - prevsize, psize); return NULL; } else { mchunkptr prev = chunk_minus_offset(p, prevsize); psize += prevsize; p = prev; /* consolidate backward */ if (p != fm->dv) { unlink_chunk(fm, p, prevsize); } else if ((next->head & INUSE_BITS) == INUSE_BITS) { fm->dvsize = psize; set_free_with_pinuse(p, psize, next); return NULL; } } } if (!cinuse(next)) { /* consolidate forward */ if (next == fm->top) { size_t tsize = fm->topsize += psize; fm->top = p; p->head = tsize | PINUSE_BIT; if (p == fm->dv) { fm->dv = 0; fm->dvsize = 0; } if (tsize > fm->trim_check) alloc_trim(fm, 0); return NULL; } else if (next == fm->dv) { size_t dsize = fm->dvsize += psize; fm->dv = p; set_size_and_pinuse_of_free_chunk(p, dsize); return NULL; } else { size_t nsize = chunksize(next); psize += nsize; unlink_chunk(fm, next, nsize); set_size_and_pinuse_of_free_chunk(p, psize); if (p == fm->dv) { fm->dvsize = psize; return NULL; } } } else { set_free_with_pinuse(p, psize, next); } if (is_small(psize)) { insert_small_chunk(fm, p, psize); } else { tchunkptr tp = (tchunkptr)p; insert_large_chunk(fm, tp, psize); if (--fm->release_checks == 0) release_unused_segments(fm); } } return NULL; } static LJ_NOINLINE void *lj_alloc_realloc(void *msp, void *ptr, size_t nsize) { if (nsize >= MAX_REQUEST) { return NULL; } else { mstate m = (mstate)msp; mchunkptr oldp = mem2chunk(ptr); size_t oldsize = chunksize(oldp); mchunkptr next = chunk_plus_offset(oldp, oldsize); mchunkptr newp = 0; size_t nb = request2size(nsize); /* Try to either shrink or extend into top. Else malloc-copy-free */ if (is_direct(oldp)) { newp = direct_resize(oldp, nb); /* this may return NULL. */ } else if (oldsize >= nb) { /* already big enough */ size_t rsize = oldsize - nb; newp = oldp; if (rsize >= MIN_CHUNK_SIZE) { mchunkptr rem = chunk_plus_offset(newp, nb); set_inuse(m, newp, nb); set_inuse(m, rem, rsize); lj_alloc_free(m, chunk2mem(rem)); } } else if (next == m->top && oldsize + m->topsize > nb) { /* Expand into top */ size_t newsize = oldsize + m->topsize; size_t newtopsize = newsize - nb; mchunkptr newtop = chunk_plus_offset(oldp, nb); set_inuse(m, oldp, nb); newtop->head = newtopsize |PINUSE_BIT; m->top = newtop; m->topsize = newtopsize; newp = oldp; } if (newp != 0) { return chunk2mem(newp); } else { void *newmem = lj_alloc_malloc(m, nsize); if (newmem != 0) { size_t oc = oldsize - overhead_for(oldp); memcpy(newmem, ptr, oc < nsize ? oc : nsize); lj_alloc_free(m, ptr); } return newmem; } } } void *lj_alloc_f(void *msp, void *ptr, size_t osize, size_t nsize) { (void)osize; if (nsize == 0) { return lj_alloc_free(msp, ptr); } else if (ptr == NULL) { return lj_alloc_malloc(msp, nsize); } else { return lj_alloc_realloc(msp, ptr, nsize); } } #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_lib.h0000644000175100017510000000731113101703334017513 0ustar ondrejondrej/* ** Library function support. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_LIB_H #define _LJ_LIB_H #include "lj_obj.h" /* ** A fallback handler is called by the assembler VM if the fast path fails: ** ** - too few arguments: unrecoverable. ** - wrong argument type: recoverable, if coercion succeeds. ** - bad argument value: unrecoverable. ** - stack overflow: recoverable, if stack reallocation succeeds. ** - extra handling: recoverable. ** ** The unrecoverable cases throw an error with lj_err_arg(), lj_err_argtype(), ** lj_err_caller() or lj_err_callermsg(). ** The recoverable cases return 0 or the number of results + 1. ** The assembler VM retries the fast path only if 0 is returned. ** This time the fallback must not be called again or it gets stuck in a loop. */ /* Return values from fallback handler. */ #define FFH_RETRY 0 #define FFH_UNREACHABLE FFH_RETRY #define FFH_RES(n) ((n)+1) #define FFH_TAILCALL (-1) LJ_FUNC TValue *lj_lib_checkany(lua_State *L, int narg); LJ_FUNC GCstr *lj_lib_checkstr(lua_State *L, int narg); LJ_FUNC GCstr *lj_lib_optstr(lua_State *L, int narg); #if LJ_DUALNUM LJ_FUNC void lj_lib_checknumber(lua_State *L, int narg); #else #define lj_lib_checknumber(L, narg) lj_lib_checknum((L), (narg)) #endif LJ_FUNC lua_Number lj_lib_checknum(lua_State *L, int narg); LJ_FUNC int32_t lj_lib_checkint(lua_State *L, int narg); LJ_FUNC int32_t lj_lib_optint(lua_State *L, int narg, int32_t def); LJ_FUNC GCfunc *lj_lib_checkfunc(lua_State *L, int narg); LJ_FUNC GCtab *lj_lib_checktab(lua_State *L, int narg); LJ_FUNC GCtab *lj_lib_checktabornil(lua_State *L, int narg); LJ_FUNC int lj_lib_checkopt(lua_State *L, int narg, int def, const char *lst); /* Avoid including lj_frame.h. */ #if LJ_GC64 #define lj_lib_upvalue(L, n) \ (&gcval(L->base-2)->fn.c.upvalue[(n)-1]) #elif LJ_FR2 #define lj_lib_upvalue(L, n) \ (&gcref((L->base-2)->gcr)->fn.c.upvalue[(n)-1]) #else #define lj_lib_upvalue(L, n) \ (&gcref((L->base-1)->fr.func)->fn.c.upvalue[(n)-1]) #endif #if LJ_TARGET_WINDOWS #define lj_lib_checkfpu(L) \ do { setnumV(L->top++, (lua_Number)1437217655); \ if (lua_tointeger(L, -1) != 1437217655) lj_err_caller(L, LJ_ERR_BADFPU); \ L->top--; } while (0) #else #define lj_lib_checkfpu(L) UNUSED(L) #endif LJ_FUNC GCfunc *lj_lib_pushcc(lua_State *L, lua_CFunction f, int id, int n); #define lj_lib_pushcf(L, fn, id) (lj_lib_pushcc(L, (fn), (id), 0)) /* Library function declarations. Scanned by buildvm. */ #define LJLIB_CF(name) static int lj_cf_##name(lua_State *L) #define LJLIB_ASM(name) static int lj_ffh_##name(lua_State *L) #define LJLIB_ASM_(name) #define LJLIB_LUA(name) #define LJLIB_SET(name) #define LJLIB_PUSH(arg) #define LJLIB_REC(handler) #define LJLIB_NOREGUV #define LJLIB_NOREG #define LJ_LIB_REG(L, regname, name) \ lj_lib_register(L, regname, lj_lib_init_##name, lj_lib_cf_##name) LJ_FUNC void lj_lib_register(lua_State *L, const char *libname, const uint8_t *init, const lua_CFunction *cf); LJ_FUNC void lj_lib_prereg(lua_State *L, const char *name, lua_CFunction f, GCtab *env); LJ_FUNC int lj_lib_postreg(lua_State *L, lua_CFunction cf, int id, const char *name); /* Library init data tags. */ #define LIBINIT_LENMASK 0x3f #define LIBINIT_TAGMASK 0xc0 #define LIBINIT_CF 0x00 #define LIBINIT_ASM 0x40 #define LIBINIT_ASM_ 0x80 #define LIBINIT_STRING 0xc0 #define LIBINIT_MAXSTR 0x38 #define LIBINIT_LUA 0xf9 #define LIBINIT_SET 0xfa #define LIBINIT_NUMBER 0xfb #define LIBINIT_COPY 0xfc #define LIBINIT_LASTCL 0xfd #define LIBINIT_FFID 0xfe #define LIBINIT_END 0xff /* Exported library functions. */ typedef struct RandomState RandomState; LJ_FUNC uint64_t LJ_FASTCALL lj_math_random_step(RandomState *rs); #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_snap.h0000644000175100017510000000163113101703334017705 0ustar ondrejondrej/* ** Snapshot handling. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_SNAP_H #define _LJ_SNAP_H #include "lj_obj.h" #include "lj_jit.h" #if LJ_HASJIT LJ_FUNC void lj_snap_add(jit_State *J); LJ_FUNC void lj_snap_purge(jit_State *J); LJ_FUNC void lj_snap_shrink(jit_State *J); LJ_FUNC IRIns *lj_snap_regspmap(GCtrace *T, SnapNo snapno, IRIns *ir); LJ_FUNC void lj_snap_replay(jit_State *J, GCtrace *T); LJ_FUNC const BCIns *lj_snap_restore(jit_State *J, void *exptr); LJ_FUNC void lj_snap_grow_buf_(jit_State *J, MSize need); LJ_FUNC void lj_snap_grow_map_(jit_State *J, MSize need); static LJ_AINLINE void lj_snap_grow_buf(jit_State *J, MSize need) { if (LJ_UNLIKELY(need > J->sizesnap)) lj_snap_grow_buf_(J, need); } static LJ_AINLINE void lj_snap_grow_map(jit_State *J, MSize need) { if (LJ_UNLIKELY(need > J->sizesnapmap)) lj_snap_grow_map_(J, need); } #endif #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_dispatch.c0000644000175100017510000004052513101703334020543 0ustar ondrejondrej/* ** Instruction dispatch handling. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #define lj_dispatch_c #define LUA_CORE #include "lj_obj.h" #include "lj_err.h" #include "lj_buf.h" #include "lj_func.h" #include "lj_str.h" #include "lj_tab.h" #include "lj_meta.h" #include "lj_debug.h" #include "lj_state.h" #include "lj_frame.h" #include "lj_bc.h" #include "lj_ff.h" #include "lj_strfmt.h" #if LJ_HASJIT #include "lj_jit.h" #endif #if LJ_HASFFI #include "lj_ccallback.h" #endif #include "lj_trace.h" #include "lj_dispatch.h" #if LJ_HASPROFILE #include "lj_profile.h" #endif #include "lj_vm.h" #include "luajit.h" /* Bump GG_NUM_ASMFF in lj_dispatch.h as needed. Ugly. */ LJ_STATIC_ASSERT(GG_NUM_ASMFF == FF_NUM_ASMFUNC); /* -- Dispatch table management ------------------------------------------- */ #if LJ_TARGET_MIPS #include LJ_FUNCA_NORET void LJ_FASTCALL lj_ffh_coroutine_wrap_err(lua_State *L, lua_State *co); #if !LJ_HASJIT #define lj_dispatch_stitch lj_dispatch_ins #endif #if !LJ_HASPROFILE #define lj_dispatch_profile lj_dispatch_ins #endif #define GOTFUNC(name) (ASMFunction)name, static const ASMFunction dispatch_got[] = { GOTDEF(GOTFUNC) }; #undef GOTFUNC #endif /* Initialize instruction dispatch table and hot counters. */ void lj_dispatch_init(GG_State *GG) { uint32_t i; ASMFunction *disp = GG->dispatch; for (i = 0; i < GG_LEN_SDISP; i++) disp[GG_LEN_DDISP+i] = disp[i] = makeasmfunc(lj_bc_ofs[i]); for (i = GG_LEN_SDISP; i < GG_LEN_DDISP; i++) disp[i] = makeasmfunc(lj_bc_ofs[i]); /* The JIT engine is off by default. luaopen_jit() turns it on. */ disp[BC_FORL] = disp[BC_IFORL]; disp[BC_ITERL] = disp[BC_IITERL]; disp[BC_LOOP] = disp[BC_ILOOP]; disp[BC_FUNCF] = disp[BC_IFUNCF]; disp[BC_FUNCV] = disp[BC_IFUNCV]; GG->g.bc_cfunc_ext = GG->g.bc_cfunc_int = BCINS_AD(BC_FUNCC, LUA_MINSTACK, 0); for (i = 0; i < GG_NUM_ASMFF; i++) GG->bcff[i] = BCINS_AD(BC__MAX+i, 0, 0); #if LJ_TARGET_MIPS memcpy(GG->got, dispatch_got, LJ_GOT__MAX*sizeof(ASMFunction *)); #endif } #if LJ_HASJIT /* Initialize hotcount table. */ void lj_dispatch_init_hotcount(global_State *g) { int32_t hotloop = G2J(g)->param[JIT_P_hotloop]; HotCount start = (HotCount)(hotloop*HOTCOUNT_LOOP - 1); HotCount *hotcount = G2GG(g)->hotcount; uint32_t i; for (i = 0; i < HOTCOUNT_SIZE; i++) hotcount[i] = start; } #endif /* Internal dispatch mode bits. */ #define DISPMODE_CALL 0x01 /* Override call dispatch. */ #define DISPMODE_RET 0x02 /* Override return dispatch. */ #define DISPMODE_INS 0x04 /* Override instruction dispatch. */ #define DISPMODE_JIT 0x10 /* JIT compiler on. */ #define DISPMODE_REC 0x20 /* Recording active. */ #define DISPMODE_PROF 0x40 /* Profiling active. */ /* Update dispatch table depending on various flags. */ void lj_dispatch_update(global_State *g) { uint8_t oldmode = g->dispatchmode; uint8_t mode = 0; #if LJ_HASJIT mode |= (G2J(g)->flags & JIT_F_ON) ? DISPMODE_JIT : 0; mode |= G2J(g)->state != LJ_TRACE_IDLE ? (DISPMODE_REC|DISPMODE_INS|DISPMODE_CALL) : 0; #endif #if LJ_HASPROFILE mode |= (g->hookmask & HOOK_PROFILE) ? (DISPMODE_PROF|DISPMODE_INS) : 0; #endif mode |= (g->hookmask & (LUA_MASKLINE|LUA_MASKCOUNT)) ? DISPMODE_INS : 0; mode |= (g->hookmask & LUA_MASKCALL) ? DISPMODE_CALL : 0; mode |= (g->hookmask & LUA_MASKRET) ? DISPMODE_RET : 0; if (oldmode != mode) { /* Mode changed? */ ASMFunction *disp = G2GG(g)->dispatch; ASMFunction f_forl, f_iterl, f_loop, f_funcf, f_funcv; g->dispatchmode = mode; /* Hotcount if JIT is on, but not while recording. */ if ((mode & (DISPMODE_JIT|DISPMODE_REC)) == DISPMODE_JIT) { f_forl = makeasmfunc(lj_bc_ofs[BC_FORL]); f_iterl = makeasmfunc(lj_bc_ofs[BC_ITERL]); f_loop = makeasmfunc(lj_bc_ofs[BC_LOOP]); f_funcf = makeasmfunc(lj_bc_ofs[BC_FUNCF]); f_funcv = makeasmfunc(lj_bc_ofs[BC_FUNCV]); } else { /* Otherwise use the non-hotcounting instructions. */ f_forl = disp[GG_LEN_DDISP+BC_IFORL]; f_iterl = disp[GG_LEN_DDISP+BC_IITERL]; f_loop = disp[GG_LEN_DDISP+BC_ILOOP]; f_funcf = makeasmfunc(lj_bc_ofs[BC_IFUNCF]); f_funcv = makeasmfunc(lj_bc_ofs[BC_IFUNCV]); } /* Init static counting instruction dispatch first (may be copied below). */ disp[GG_LEN_DDISP+BC_FORL] = f_forl; disp[GG_LEN_DDISP+BC_ITERL] = f_iterl; disp[GG_LEN_DDISP+BC_LOOP] = f_loop; /* Set dynamic instruction dispatch. */ if ((oldmode ^ mode) & (DISPMODE_PROF|DISPMODE_REC|DISPMODE_INS)) { /* Need to update the whole table. */ if (!(mode & DISPMODE_INS)) { /* No ins dispatch? */ /* Copy static dispatch table to dynamic dispatch table. */ memcpy(&disp[0], &disp[GG_LEN_DDISP], GG_LEN_SDISP*sizeof(ASMFunction)); /* Overwrite with dynamic return dispatch. */ if ((mode & DISPMODE_RET)) { disp[BC_RETM] = lj_vm_rethook; disp[BC_RET] = lj_vm_rethook; disp[BC_RET0] = lj_vm_rethook; disp[BC_RET1] = lj_vm_rethook; } } else { /* The recording dispatch also checks for hooks. */ ASMFunction f = (mode & DISPMODE_PROF) ? lj_vm_profhook : (mode & DISPMODE_REC) ? lj_vm_record : lj_vm_inshook; uint32_t i; for (i = 0; i < GG_LEN_SDISP; i++) disp[i] = f; } } else if (!(mode & DISPMODE_INS)) { /* Otherwise set dynamic counting ins. */ disp[BC_FORL] = f_forl; disp[BC_ITERL] = f_iterl; disp[BC_LOOP] = f_loop; /* Set dynamic return dispatch. */ if ((mode & DISPMODE_RET)) { disp[BC_RETM] = lj_vm_rethook; disp[BC_RET] = lj_vm_rethook; disp[BC_RET0] = lj_vm_rethook; disp[BC_RET1] = lj_vm_rethook; } else { disp[BC_RETM] = disp[GG_LEN_DDISP+BC_RETM]; disp[BC_RET] = disp[GG_LEN_DDISP+BC_RET]; disp[BC_RET0] = disp[GG_LEN_DDISP+BC_RET0]; disp[BC_RET1] = disp[GG_LEN_DDISP+BC_RET1]; } } /* Set dynamic call dispatch. */ if ((oldmode ^ mode) & DISPMODE_CALL) { /* Update the whole table? */ uint32_t i; if ((mode & DISPMODE_CALL) == 0) { /* No call hooks? */ for (i = GG_LEN_SDISP; i < GG_LEN_DDISP; i++) disp[i] = makeasmfunc(lj_bc_ofs[i]); } else { for (i = GG_LEN_SDISP; i < GG_LEN_DDISP; i++) disp[i] = lj_vm_callhook; } } if (!(mode & DISPMODE_CALL)) { /* Overwrite dynamic counting ins. */ disp[BC_FUNCF] = f_funcf; disp[BC_FUNCV] = f_funcv; } #if LJ_HASJIT /* Reset hotcounts for JIT off to on transition. */ if ((mode & DISPMODE_JIT) && !(oldmode & DISPMODE_JIT)) lj_dispatch_init_hotcount(g); #endif } } /* -- JIT mode setting ---------------------------------------------------- */ #if LJ_HASJIT /* Set JIT mode for a single prototype. */ static void setptmode(global_State *g, GCproto *pt, int mode) { if ((mode & LUAJIT_MODE_ON)) { /* (Re-)enable JIT compilation. */ pt->flags &= ~PROTO_NOJIT; lj_trace_reenableproto(pt); /* Unpatch all ILOOP etc. bytecodes. */ } else { /* Flush and/or disable JIT compilation. */ if (!(mode & LUAJIT_MODE_FLUSH)) pt->flags |= PROTO_NOJIT; lj_trace_flushproto(g, pt); /* Flush all traces of prototype. */ } } /* Recursively set the JIT mode for all children of a prototype. */ static void setptmode_all(global_State *g, GCproto *pt, int mode) { ptrdiff_t i; if (!(pt->flags & PROTO_CHILD)) return; for (i = -(ptrdiff_t)pt->sizekgc; i < 0; i++) { GCobj *o = proto_kgc(pt, i); if (o->gch.gct == ~LJ_TPROTO) { setptmode(g, gco2pt(o), mode); setptmode_all(g, gco2pt(o), mode); } } } #endif /* Public API function: control the JIT engine. */ int luaJIT_setmode(lua_State *L, int idx, int mode) { global_State *g = G(L); int mm = mode & LUAJIT_MODE_MASK; lj_trace_abort(g); /* Abort recording on any state change. */ /* Avoid pulling the rug from under our own feet. */ if ((g->hookmask & HOOK_GC)) lj_err_caller(L, LJ_ERR_NOGCMM); switch (mm) { #if LJ_HASJIT case LUAJIT_MODE_ENGINE: if ((mode & LUAJIT_MODE_FLUSH)) { lj_trace_flushall(L); } else { if (!(mode & LUAJIT_MODE_ON)) G2J(g)->flags &= ~(uint32_t)JIT_F_ON; #if LJ_TARGET_X86ORX64 else if ((G2J(g)->flags & JIT_F_SSE2)) G2J(g)->flags |= (uint32_t)JIT_F_ON; else return 0; /* Don't turn on JIT compiler without SSE2 support. */ #else else G2J(g)->flags |= (uint32_t)JIT_F_ON; #endif lj_dispatch_update(g); } break; case LUAJIT_MODE_FUNC: case LUAJIT_MODE_ALLFUNC: case LUAJIT_MODE_ALLSUBFUNC: { cTValue *tv = idx == 0 ? frame_prev(L->base-1)-LJ_FR2 : idx > 0 ? L->base + (idx-1) : L->top + idx; GCproto *pt; if ((idx == 0 || tvisfunc(tv)) && isluafunc(&gcval(tv)->fn)) pt = funcproto(&gcval(tv)->fn); /* Cannot use funcV() for frame slot. */ else if (tvisproto(tv)) pt = protoV(tv); else return 0; /* Failed. */ if (mm != LUAJIT_MODE_ALLSUBFUNC) setptmode(g, pt, mode); if (mm != LUAJIT_MODE_FUNC) setptmode_all(g, pt, mode); break; } case LUAJIT_MODE_TRACE: if (!(mode & LUAJIT_MODE_FLUSH)) return 0; /* Failed. */ lj_trace_flush(G2J(g), idx); break; #else case LUAJIT_MODE_ENGINE: case LUAJIT_MODE_FUNC: case LUAJIT_MODE_ALLFUNC: case LUAJIT_MODE_ALLSUBFUNC: UNUSED(idx); if ((mode & LUAJIT_MODE_ON)) return 0; /* Failed. */ break; #endif case LUAJIT_MODE_WRAPCFUNC: if ((mode & LUAJIT_MODE_ON)) { if (idx != 0) { cTValue *tv = idx > 0 ? L->base + (idx-1) : L->top + idx; if (tvislightud(tv)) g->wrapf = (lua_CFunction)lightudV(tv); else return 0; /* Failed. */ } else { return 0; /* Failed. */ } g->bc_cfunc_ext = BCINS_AD(BC_FUNCCW, 0, 0); } else { g->bc_cfunc_ext = BCINS_AD(BC_FUNCC, 0, 0); } break; default: return 0; /* Failed. */ } return 1; /* OK. */ } /* Enforce (dynamic) linker error for version mismatches. See luajit.c. */ LUA_API void LUAJIT_VERSION_SYM(void) { } /* -- Hooks --------------------------------------------------------------- */ /* This function can be called asynchronously (e.g. during a signal). */ LUA_API int lua_sethook(lua_State *L, lua_Hook func, int mask, int count) { global_State *g = G(L); mask &= HOOK_EVENTMASK; if (func == NULL || mask == 0) { mask = 0; func = NULL; } /* Consistency. */ g->hookf = func; g->hookcount = g->hookcstart = (int32_t)count; g->hookmask = (uint8_t)((g->hookmask & ~HOOK_EVENTMASK) | mask); lj_trace_abort(g); /* Abort recording on any hook change. */ lj_dispatch_update(g); return 1; } LUA_API lua_Hook lua_gethook(lua_State *L) { return G(L)->hookf; } LUA_API int lua_gethookmask(lua_State *L) { return G(L)->hookmask & HOOK_EVENTMASK; } LUA_API int lua_gethookcount(lua_State *L) { return (int)G(L)->hookcstart; } /* Call a hook. */ static void callhook(lua_State *L, int event, BCLine line) { global_State *g = G(L); lua_Hook hookf = g->hookf; if (hookf && !hook_active(g)) { lua_Debug ar; lj_trace_abort(g); /* Abort recording on any hook call. */ ar.event = event; ar.currentline = line; /* Top frame, nextframe = NULL. */ ar.i_ci = (int)((L->base-1) - tvref(L->stack)); lj_state_checkstack(L, 1+LUA_MINSTACK); #if LJ_HASPROFILE && !LJ_PROFILE_SIGPROF lj_profile_hook_enter(g); #else hook_enter(g); #endif hookf(L, &ar); lua_assert(hook_active(g)); setgcref(g->cur_L, obj2gco(L)); #if LJ_HASPROFILE && !LJ_PROFILE_SIGPROF lj_profile_hook_leave(g); #else hook_leave(g); #endif } } /* -- Dispatch callbacks -------------------------------------------------- */ /* Calculate number of used stack slots in the current frame. */ static BCReg cur_topslot(GCproto *pt, const BCIns *pc, uint32_t nres) { BCIns ins = pc[-1]; if (bc_op(ins) == BC_UCLO) ins = pc[bc_j(ins)]; switch (bc_op(ins)) { case BC_CALLM: case BC_CALLMT: return bc_a(ins) + bc_c(ins) + nres-1+1+LJ_FR2; case BC_RETM: return bc_a(ins) + bc_d(ins) + nres-1; case BC_TSETM: return bc_a(ins) + nres-1; default: return pt->framesize; } } /* Instruction dispatch. Used by instr/line/return hooks or when recording. */ void LJ_FASTCALL lj_dispatch_ins(lua_State *L, const BCIns *pc) { ERRNO_SAVE GCfunc *fn = curr_func(L); GCproto *pt = funcproto(fn); void *cf = cframe_raw(L->cframe); const BCIns *oldpc = cframe_pc(cf); global_State *g = G(L); BCReg slots; setcframe_pc(cf, pc); slots = cur_topslot(pt, pc, cframe_multres_n(cf)); L->top = L->base + slots; /* Fix top. */ #if LJ_HASJIT { jit_State *J = G2J(g); if (J->state != LJ_TRACE_IDLE) { #ifdef LUA_USE_ASSERT ptrdiff_t delta = L->top - L->base; #endif J->L = L; lj_trace_ins(J, pc-1); /* The interpreter bytecode PC is offset by 1. */ lua_assert(L->top - L->base == delta); } } #endif if ((g->hookmask & LUA_MASKCOUNT) && g->hookcount == 0) { g->hookcount = g->hookcstart; callhook(L, LUA_HOOKCOUNT, -1); L->top = L->base + slots; /* Fix top again. */ } if ((g->hookmask & LUA_MASKLINE)) { BCPos npc = proto_bcpos(pt, pc) - 1; BCPos opc = proto_bcpos(pt, oldpc) - 1; BCLine line = lj_debug_line(pt, npc); if (pc <= oldpc || opc >= pt->sizebc || line != lj_debug_line(pt, opc)) { callhook(L, LUA_HOOKLINE, line); L->top = L->base + slots; /* Fix top again. */ } } if ((g->hookmask & LUA_MASKRET) && bc_isret(bc_op(pc[-1]))) callhook(L, LUA_HOOKRET, -1); ERRNO_RESTORE } /* Initialize call. Ensure stack space and return # of missing parameters. */ static int call_init(lua_State *L, GCfunc *fn) { if (isluafunc(fn)) { GCproto *pt = funcproto(fn); int numparams = pt->numparams; int gotparams = (int)(L->top - L->base); int need = pt->framesize; if ((pt->flags & PROTO_VARARG)) need += 1+gotparams; lj_state_checkstack(L, (MSize)need); numparams -= gotparams; return numparams >= 0 ? numparams : 0; } else { lj_state_checkstack(L, LUA_MINSTACK); return 0; } } /* Call dispatch. Used by call hooks, hot calls or when recording. */ ASMFunction LJ_FASTCALL lj_dispatch_call(lua_State *L, const BCIns *pc) { ERRNO_SAVE GCfunc *fn = curr_func(L); BCOp op; global_State *g = G(L); #if LJ_HASJIT jit_State *J = G2J(g); #endif int missing = call_init(L, fn); #if LJ_HASJIT J->L = L; if ((uintptr_t)pc & 1) { /* Marker for hot call. */ #ifdef LUA_USE_ASSERT ptrdiff_t delta = L->top - L->base; #endif pc = (const BCIns *)((uintptr_t)pc & ~(uintptr_t)1); lj_trace_hot(J, pc); lua_assert(L->top - L->base == delta); goto out; } else if (J->state != LJ_TRACE_IDLE && !(g->hookmask & (HOOK_GC|HOOK_VMEVENT))) { #ifdef LUA_USE_ASSERT ptrdiff_t delta = L->top - L->base; #endif /* Record the FUNC* bytecodes, too. */ lj_trace_ins(J, pc-1); /* The interpreter bytecode PC is offset by 1. */ lua_assert(L->top - L->base == delta); } #endif if ((g->hookmask & LUA_MASKCALL)) { int i; for (i = 0; i < missing; i++) /* Add missing parameters. */ setnilV(L->top++); callhook(L, LUA_HOOKCALL, -1); /* Preserve modifications of missing parameters by lua_setlocal(). */ while (missing-- > 0 && tvisnil(L->top - 1)) L->top--; } #if LJ_HASJIT out: #endif op = bc_op(pc[-1]); /* Get FUNC* op. */ #if LJ_HASJIT /* Use the non-hotcounting variants if JIT is off or while recording. */ if ((!(J->flags & JIT_F_ON) || J->state != LJ_TRACE_IDLE) && (op == BC_FUNCF || op == BC_FUNCV)) op = (BCOp)((int)op+(int)BC_IFUNCF-(int)BC_FUNCF); #endif ERRNO_RESTORE return makeasmfunc(lj_bc_ofs[op]); /* Return static dispatch target. */ } #if LJ_HASJIT /* Stitch a new trace. */ void LJ_FASTCALL lj_dispatch_stitch(jit_State *J, const BCIns *pc) { ERRNO_SAVE lua_State *L = J->L; void *cf = cframe_raw(L->cframe); const BCIns *oldpc = cframe_pc(cf); setcframe_pc(cf, pc); /* Before dispatch, have to bias PC by 1. */ L->top = L->base + cur_topslot(curr_proto(L), pc+1, cframe_multres_n(cf)); lj_trace_stitch(J, pc-1); /* Point to the CALL instruction. */ setcframe_pc(cf, oldpc); ERRNO_RESTORE } #endif #if LJ_HASPROFILE /* Profile dispatch. */ void LJ_FASTCALL lj_dispatch_profile(lua_State *L, const BCIns *pc) { ERRNO_SAVE GCfunc *fn = curr_func(L); GCproto *pt = funcproto(fn); void *cf = cframe_raw(L->cframe); const BCIns *oldpc = cframe_pc(cf); global_State *g; setcframe_pc(cf, pc); L->top = L->base + cur_topslot(pt, pc, cframe_multres_n(cf)); lj_profile_interpreter(L); setcframe_pc(cf, oldpc); g = G(L); setgcref(g->cur_L, obj2gco(L)); setvmstate(g, INTERP); ERRNO_RESTORE } #endif luajit-2.1.0~beta3+dfsg.orig/src/vm_mips.dasc0000644000175100017510000043117313101703334020424 0ustar ondrejondrej|// Low-level VM code for MIPS CPUs. |// Bytecode interpreter, fast functions and helper functions. |// Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h |// |// MIPS soft-float support contributed by Djordje Kovacevic and |// Stefan Pejic from RT-RK.com, sponsored by Cisco Systems, Inc. | |.arch mips |.section code_op, code_sub | |.actionlist build_actionlist |.globals GLOB_ |.globalnames globnames |.externnames extnames | |// Note: The ragged indentation of the instructions is intentional. |// The starting columns indicate data dependencies. | |//----------------------------------------------------------------------- | |// Fixed register assignments for the interpreter. |// Don't use: r0 = 0, r26/r27 = reserved, r28 = gp, r29 = sp, r31 = ra | |.macro .FPU, a, b |.if FPU | a, b |.endif |.endmacro | |// The following must be C callee-save (but BASE is often refetched). |.define BASE, r16 // Base of current Lua stack frame. |.define KBASE, r17 // Constants of current Lua function. |.define PC, r18 // Next PC. |.define DISPATCH, r19 // Opcode dispatch table. |.define LREG, r20 // Register holding lua_State (also in SAVE_L). |.define MULTRES, r21 // Size of multi-result: (nresults+1)*8. | |.define JGL, r30 // On-trace: global_State + 32768. | |// Constants for type-comparisons, stores and conversions. C callee-save. |.define TISNUM, r22 |.define TISNIL, r30 |.if FPU |.define TOBIT, f30 // 2^52 + 2^51. |.endif | |// The following temporaries are not saved across C calls, except for RA. |.define RA, r23 // Callee-save. |.define RB, r8 |.define RC, r9 |.define RD, r10 |.define INS, r11 | |.define AT, r1 // Assembler temporary. |.define TMP0, r12 |.define TMP1, r13 |.define TMP2, r14 |.define TMP3, r15 | |// MIPS o32 calling convention. |.define CFUNCADDR, r25 |.define CARG1, r4 |.define CARG2, r5 |.define CARG3, r6 |.define CARG4, r7 | |.define CRET1, r2 |.define CRET2, r3 | |.if ENDIAN_LE |.define SFRETLO, CRET1 |.define SFRETHI, CRET2 |.define SFARG1LO, CARG1 |.define SFARG1HI, CARG2 |.define SFARG2LO, CARG3 |.define SFARG2HI, CARG4 |.else |.define SFRETLO, CRET2 |.define SFRETHI, CRET1 |.define SFARG1LO, CARG2 |.define SFARG1HI, CARG1 |.define SFARG2LO, CARG4 |.define SFARG2HI, CARG3 |.endif | |.if FPU |.define FARG1, f12 |.define FARG2, f14 | |.define FRET1, f0 |.define FRET2, f2 |.endif | |// Stack layout while in interpreter. Must match with lj_frame.h. |.if FPU // MIPS32 hard-float. | |.define CFRAME_SPACE, 112 // Delta for sp. | |.define SAVE_ERRF, 124(sp) // 32 bit C frame info. |.define SAVE_NRES, 120(sp) |.define SAVE_CFRAME, 116(sp) |.define SAVE_L, 112(sp) |//----- 8 byte aligned, ^^^^ 16 byte register save area, owned by interpreter. |.define SAVE_GPR_, 72 // .. 72+10*4: 32 bit GPR saves. |.define SAVE_FPR_, 24 // .. 24+6*8: 64 bit FPR saves. | |.else // MIPS32 soft-float | |.define CFRAME_SPACE, 64 // Delta for sp. | |.define SAVE_ERRF, 76(sp) // 32 bit C frame info. |.define SAVE_NRES, 72(sp) |.define SAVE_CFRAME, 68(sp) |.define SAVE_L, 64(sp) |//----- 8 byte aligned, ^^^^ 16 byte register save area, owned by interpreter. |.define SAVE_GPR_, 24 // .. 24+10*4: 32 bit GPR saves. | |.endif | |.define SAVE_PC, 20(sp) |.define ARG5, 16(sp) |.define CSAVE_4, 12(sp) |.define CSAVE_3, 8(sp) |.define CSAVE_2, 4(sp) |.define CSAVE_1, 0(sp) |//----- 8 byte aligned, ^^^^ 16 byte register save area, owned by callee. | |.define ARG5_OFS, 16 |.define SAVE_MULTRES, ARG5 | |//----------------------------------------------------------------------- | |.macro saveregs | addiu sp, sp, -CFRAME_SPACE | sw ra, SAVE_GPR_+9*4(sp) | sw r30, SAVE_GPR_+8*4(sp) | .FPU sdc1 f30, SAVE_FPR_+5*8(sp) | sw r23, SAVE_GPR_+7*4(sp) | sw r22, SAVE_GPR_+6*4(sp) | .FPU sdc1 f28, SAVE_FPR_+4*8(sp) | sw r21, SAVE_GPR_+5*4(sp) | sw r20, SAVE_GPR_+4*4(sp) | .FPU sdc1 f26, SAVE_FPR_+3*8(sp) | sw r19, SAVE_GPR_+3*4(sp) | sw r18, SAVE_GPR_+2*4(sp) | .FPU sdc1 f24, SAVE_FPR_+2*8(sp) | sw r17, SAVE_GPR_+1*4(sp) | sw r16, SAVE_GPR_+0*4(sp) | .FPU sdc1 f22, SAVE_FPR_+1*8(sp) | .FPU sdc1 f20, SAVE_FPR_+0*8(sp) |.endmacro | |.macro restoreregs_ret | lw ra, SAVE_GPR_+9*4(sp) | lw r30, SAVE_GPR_+8*4(sp) | .FPU ldc1 f30, SAVE_FPR_+5*8(sp) | lw r23, SAVE_GPR_+7*4(sp) | lw r22, SAVE_GPR_+6*4(sp) | .FPU ldc1 f28, SAVE_FPR_+4*8(sp) | lw r21, SAVE_GPR_+5*4(sp) | lw r20, SAVE_GPR_+4*4(sp) | .FPU ldc1 f26, SAVE_FPR_+3*8(sp) | lw r19, SAVE_GPR_+3*4(sp) | lw r18, SAVE_GPR_+2*4(sp) | .FPU ldc1 f24, SAVE_FPR_+2*8(sp) | lw r17, SAVE_GPR_+1*4(sp) | lw r16, SAVE_GPR_+0*4(sp) | .FPU ldc1 f22, SAVE_FPR_+1*8(sp) | .FPU ldc1 f20, SAVE_FPR_+0*8(sp) | jr ra | addiu sp, sp, CFRAME_SPACE |.endmacro | |// Type definitions. Some of these are only used for documentation. |.type L, lua_State, LREG |.type GL, global_State |.type TVALUE, TValue |.type GCOBJ, GCobj |.type STR, GCstr |.type TAB, GCtab |.type LFUNC, GCfuncL |.type CFUNC, GCfuncC |.type PROTO, GCproto |.type UPVAL, GCupval |.type NODE, Node |.type NARGS8, int |.type TRACE, GCtrace |.type SBUF, SBuf | |//----------------------------------------------------------------------- | |// Trap for not-yet-implemented parts. |.macro NYI; .long 0xf0f0f0f0; .endmacro | |// Macros to mark delay slots. |.macro ., a; a; .endmacro |.macro ., a,b; a,b; .endmacro |.macro ., a,b,c; a,b,c; .endmacro | |//----------------------------------------------------------------------- | |// Endian-specific defines. |.if ENDIAN_LE |.define FRAME_PC, -4 |.define FRAME_FUNC, -8 |.define HI, 4 |.define LO, 0 |.define OFS_RD, 2 |.define OFS_RA, 1 |.define OFS_OP, 0 |.else |.define FRAME_PC, -8 |.define FRAME_FUNC, -4 |.define HI, 0 |.define LO, 4 |.define OFS_RD, 0 |.define OFS_RA, 2 |.define OFS_OP, 3 |.endif | |// Instruction decode. |.macro decode_OP1, dst, ins; andi dst, ins, 0xff; .endmacro |.macro decode_OP4a, dst, ins; andi dst, ins, 0xff; .endmacro |.macro decode_OP4b, dst; sll dst, dst, 2; .endmacro |.macro decode_RC4a, dst, ins; srl dst, ins, 14; .endmacro |.macro decode_RC4b, dst; andi dst, dst, 0x3fc; .endmacro |.macro decode_RD4b, dst; sll dst, dst, 2; .endmacro |.macro decode_RA8a, dst, ins; srl dst, ins, 5; .endmacro |.macro decode_RA8b, dst; andi dst, dst, 0x7f8; .endmacro |.macro decode_RB8a, dst, ins; srl dst, ins, 21; .endmacro |.macro decode_RB8b, dst; andi dst, dst, 0x7f8; .endmacro |.macro decode_RD8a, dst, ins; srl dst, ins, 16; .endmacro |.macro decode_RD8b, dst; sll dst, dst, 3; .endmacro |.macro decode_RDtoRC8, dst, src; andi dst, src, 0x7f8; .endmacro | |// Instruction fetch. |.macro ins_NEXT1 | lw INS, 0(PC) | addiu PC, PC, 4 |.endmacro |// Instruction decode+dispatch. |.macro ins_NEXT2 | decode_OP4a TMP1, INS | decode_OP4b TMP1 | addu TMP0, DISPATCH, TMP1 | decode_RD8a RD, INS | lw AT, 0(TMP0) | decode_RA8a RA, INS | decode_RD8b RD | jr AT | decode_RA8b RA |.endmacro |.macro ins_NEXT | ins_NEXT1 | ins_NEXT2 |.endmacro | |// Instruction footer. |.if 1 | // Replicated dispatch. Less unpredictable branches, but higher I-Cache use. | .define ins_next, ins_NEXT | .define ins_next_, ins_NEXT | .define ins_next1, ins_NEXT1 | .define ins_next2, ins_NEXT2 |.else | // Common dispatch. Lower I-Cache use, only one (very) unpredictable branch. | // Affects only certain kinds of benchmarks (and only with -j off). | .macro ins_next | b ->ins_next | .endmacro | .macro ins_next1 | .endmacro | .macro ins_next2 | b ->ins_next | .endmacro | .macro ins_next_ | ->ins_next: | ins_NEXT | .endmacro |.endif | |// Call decode and dispatch. |.macro ins_callt | // BASE = new base, RB = LFUNC/CFUNC, RC = nargs*8, FRAME_PC(BASE) = PC | lw PC, LFUNC:RB->pc | lw INS, 0(PC) | addiu PC, PC, 4 | decode_OP4a TMP1, INS | decode_RA8a RA, INS | decode_OP4b TMP1 | decode_RA8b RA | addu TMP0, DISPATCH, TMP1 | lw TMP0, 0(TMP0) | jr TMP0 | addu RA, RA, BASE |.endmacro | |.macro ins_call | // BASE = new base, RB = LFUNC/CFUNC, RC = nargs*8, PC = caller PC | sw PC, FRAME_PC(BASE) | ins_callt |.endmacro | |//----------------------------------------------------------------------- | |.macro branch_RD | srl TMP0, RD, 1 | lui AT, (-(BCBIAS_J*4 >> 16) & 65535) | addu TMP0, TMP0, AT | addu PC, PC, TMP0 |.endmacro | |// Assumes DISPATCH is relative to GL. #define DISPATCH_GL(field) (GG_DISP2G + (int)offsetof(global_State, field)) #define DISPATCH_J(field) (GG_DISP2J + (int)offsetof(jit_State, field)) #define GG_DISP2GOT (GG_OFS(got) - GG_OFS(dispatch)) #define DISPATCH_GOT(name) (GG_DISP2GOT + 4*LJ_GOT_##name) | #define PC2PROTO(field) ((int)offsetof(GCproto, field)-(int)sizeof(GCproto)) | |.macro load_got, func | lw CFUNCADDR, DISPATCH_GOT(func)(DISPATCH) |.endmacro |// Much faster. Sadly, there's no easy way to force the required code layout. |// .macro call_intern, func; bal extern func; .endmacro |.macro call_intern, func; jalr CFUNCADDR; .endmacro |.macro call_extern; jalr CFUNCADDR; .endmacro |.macro jmp_extern; jr CFUNCADDR; .endmacro | |.macro hotcheck, delta, target | srl TMP1, PC, 1 | andi TMP1, TMP1, 126 | addu TMP1, TMP1, DISPATCH | lhu TMP2, GG_DISP2HOT(TMP1) | addiu TMP2, TMP2, -delta | bltz TMP2, target |. sh TMP2, GG_DISP2HOT(TMP1) |.endmacro | |.macro hotloop | hotcheck HOTCOUNT_LOOP, ->vm_hotloop |.endmacro | |.macro hotcall | hotcheck HOTCOUNT_CALL, ->vm_hotcall |.endmacro | |// Set current VM state. Uses TMP0. |.macro li_vmstate, st; li TMP0, ~LJ_VMST_..st; .endmacro |.macro st_vmstate; sw TMP0, DISPATCH_GL(vmstate)(DISPATCH); .endmacro | |// Move table write barrier back. Overwrites mark and tmp. |.macro barrierback, tab, mark, tmp, target | lw tmp, DISPATCH_GL(gc.grayagain)(DISPATCH) | andi mark, mark, ~LJ_GC_BLACK & 255 // black2gray(tab) | sw tab, DISPATCH_GL(gc.grayagain)(DISPATCH) | sb mark, tab->marked | b target |. sw tmp, tab->gclist |.endmacro | |//----------------------------------------------------------------------- /* Generate subroutines used by opcodes and other parts of the VM. */ /* The .code_sub section should be last to help static branch prediction. */ static void build_subroutines(BuildCtx *ctx) { |.code_sub | |//----------------------------------------------------------------------- |//-- Return handling ---------------------------------------------------- |//----------------------------------------------------------------------- | |->vm_returnp: | // See vm_return. Also: TMP2 = previous base. | andi AT, PC, FRAME_P | beqz AT, ->cont_dispatch |. li TMP1, LJ_TTRUE | | // Return from pcall or xpcall fast func. | lw PC, FRAME_PC(TMP2) // Fetch PC of previous frame. | move BASE, TMP2 // Restore caller base. | // Prepending may overwrite the pcall frame, so do it at the end. | sw TMP1, FRAME_PC(RA) // Prepend true to results. | addiu RA, RA, -8 | |->vm_returnc: | addiu RD, RD, 8 // RD = (nresults+1)*8. | andi TMP0, PC, FRAME_TYPE | beqz RD, ->vm_unwind_c_eh |. li CRET1, LUA_YIELD | beqz TMP0, ->BC_RET_Z // Handle regular return to Lua. |. move MULTRES, RD | |->vm_return: | // BASE = base, RA = resultptr, RD/MULTRES = (nresults+1)*8, PC = return | // TMP0 = PC & FRAME_TYPE | li TMP2, -8 | xori AT, TMP0, FRAME_C | and TMP2, PC, TMP2 | bnez AT, ->vm_returnp | subu TMP2, BASE, TMP2 // TMP2 = previous base. | | addiu TMP1, RD, -8 | sw TMP2, L->base | li_vmstate C | lw TMP2, SAVE_NRES | addiu BASE, BASE, -8 | st_vmstate | beqz TMP1, >2 |. sll TMP2, TMP2, 3 |1: | addiu TMP1, TMP1, -8 | lw SFRETHI, HI(RA) | lw SFRETLO, LO(RA) | addiu RA, RA, 8 | sw SFRETHI, HI(BASE) | sw SFRETLO, LO(BASE) | bnez TMP1, <1 |. addiu BASE, BASE, 8 | |2: | bne TMP2, RD, >6 |3: |. sw BASE, L->top // Store new top. | |->vm_leave_cp: | lw TMP0, SAVE_CFRAME // Restore previous C frame. | move CRET1, r0 // Ok return status for vm_pcall. | sw TMP0, L->cframe | |->vm_leave_unw: | restoreregs_ret | |6: | lw TMP1, L->maxstack | slt AT, TMP2, RD | bnez AT, >7 // Less results wanted? | // More results wanted. Check stack size and fill up results with nil. |. slt AT, BASE, TMP1 | beqz AT, >8 |. nop | sw TISNIL, HI(BASE) | addiu RD, RD, 8 | b <2 |. addiu BASE, BASE, 8 | |7: // Less results wanted. | subu TMP0, RD, TMP2 | subu TMP0, BASE, TMP0 // Either keep top or shrink it. | b <3 |. movn BASE, TMP0, TMP2 // LUA_MULTRET+1 case? | |8: // Corner case: need to grow stack for filling up results. | // This can happen if: | // - A C function grows the stack (a lot). | // - The GC shrinks the stack in between. | // - A return back from a lua_call() with (high) nresults adjustment. | load_got lj_state_growstack | move MULTRES, RD | srl CARG2, TMP2, 3 | call_intern lj_state_growstack // (lua_State *L, int n) |. move CARG1, L | lw TMP2, SAVE_NRES | lw BASE, L->top // Need the (realloced) L->top in BASE. | move RD, MULTRES | b <2 |. sll TMP2, TMP2, 3 | |->vm_unwind_c: // Unwind C stack, return from vm_pcall. | // (void *cframe, int errcode) | move sp, CARG1 | move CRET1, CARG2 |->vm_unwind_c_eh: // Landing pad for external unwinder. | lw L, SAVE_L | li TMP0, ~LJ_VMST_C | lw GL:TMP1, L->glref | b ->vm_leave_unw |. sw TMP0, GL:TMP1->vmstate | |->vm_unwind_ff: // Unwind C stack, return from ff pcall. | // (void *cframe) | li AT, -4 | and sp, CARG1, AT |->vm_unwind_ff_eh: // Landing pad for external unwinder. | lw L, SAVE_L | .FPU lui TMP3, 0x59c0 // TOBIT = 2^52 + 2^51 (float). | li TISNUM, LJ_TISNUM // Setup type comparison constants. | li TISNIL, LJ_TNIL | lw BASE, L->base | lw DISPATCH, L->glref // Setup pointer to dispatch table. | .FPU mtc1 TMP3, TOBIT | li TMP1, LJ_TFALSE | li_vmstate INTERP | lw PC, FRAME_PC(BASE) // Fetch PC of previous frame. | .FPU cvt.d.s TOBIT, TOBIT | addiu RA, BASE, -8 // Results start at BASE-8. | addiu DISPATCH, DISPATCH, GG_G2DISP | sw TMP1, HI(RA) // Prepend false to error message. | st_vmstate | b ->vm_returnc |. li RD, 16 // 2 results: false + error message. | |//----------------------------------------------------------------------- |//-- Grow stack for calls ----------------------------------------------- |//----------------------------------------------------------------------- | |->vm_growstack_c: // Grow stack for C function. | b >2 |. li CARG2, LUA_MINSTACK | |->vm_growstack_l: // Grow stack for Lua function. | // BASE = new base, RA = BASE+framesize*8, RC = nargs*8, PC = first PC | addu RC, BASE, RC | subu RA, RA, BASE | sw BASE, L->base | addiu PC, PC, 4 // Must point after first instruction. | sw RC, L->top | srl CARG2, RA, 3 |2: | // L->base = new base, L->top = top | load_got lj_state_growstack | sw PC, SAVE_PC | call_intern lj_state_growstack // (lua_State *L, int n) |. move CARG1, L | lw BASE, L->base | lw RC, L->top | lw LFUNC:RB, FRAME_FUNC(BASE) | subu RC, RC, BASE | // BASE = new base, RB = LFUNC/CFUNC, RC = nargs*8, FRAME_PC(BASE) = PC | ins_callt // Just retry the call. | |//----------------------------------------------------------------------- |//-- Entry points into the assembler VM --------------------------------- |//----------------------------------------------------------------------- | |->vm_resume: // Setup C frame and resume thread. | // (lua_State *L, TValue *base, int nres1 = 0, ptrdiff_t ef = 0) | saveregs | move L, CARG1 | lw DISPATCH, L->glref // Setup pointer to dispatch table. | move BASE, CARG2 | lbu TMP1, L->status | sw L, SAVE_L | li PC, FRAME_CP | addiu TMP0, sp, CFRAME_RESUME | addiu DISPATCH, DISPATCH, GG_G2DISP | sw r0, SAVE_NRES | sw r0, SAVE_ERRF | sw CARG1, SAVE_PC // Any value outside of bytecode is ok. | sw r0, SAVE_CFRAME | beqz TMP1, >3 |. sw TMP0, L->cframe | | // Resume after yield (like a return). | sw L, DISPATCH_GL(cur_L)(DISPATCH) | move RA, BASE | lw BASE, L->base | li TISNUM, LJ_TISNUM // Setup type comparison constants. | lw TMP1, L->top | lw PC, FRAME_PC(BASE) | .FPU lui TMP3, 0x59c0 // TOBIT = 2^52 + 2^51 (float). | subu RD, TMP1, BASE | .FPU mtc1 TMP3, TOBIT | sb r0, L->status | .FPU cvt.d.s TOBIT, TOBIT | li_vmstate INTERP | addiu RD, RD, 8 | st_vmstate | move MULTRES, RD | andi TMP0, PC, FRAME_TYPE | beqz TMP0, ->BC_RET_Z |. li TISNIL, LJ_TNIL | b ->vm_return |. nop | |->vm_pcall: // Setup protected C frame and enter VM. | // (lua_State *L, TValue *base, int nres1, ptrdiff_t ef) | saveregs | sw CARG4, SAVE_ERRF | b >1 |. li PC, FRAME_CP | |->vm_call: // Setup C frame and enter VM. | // (lua_State *L, TValue *base, int nres1) | saveregs | li PC, FRAME_C | |1: // Entry point for vm_pcall above (PC = ftype). | lw TMP1, L:CARG1->cframe | move L, CARG1 | sw CARG3, SAVE_NRES | lw DISPATCH, L->glref // Setup pointer to dispatch table. | sw CARG1, SAVE_L | move BASE, CARG2 | addiu DISPATCH, DISPATCH, GG_G2DISP | sw CARG1, SAVE_PC // Any value outside of bytecode is ok. | sw TMP1, SAVE_CFRAME | sw sp, L->cframe // Add our C frame to cframe chain. | |3: // Entry point for vm_cpcall/vm_resume (BASE = base, PC = ftype). | sw L, DISPATCH_GL(cur_L)(DISPATCH) | lw TMP2, L->base // TMP2 = old base (used in vmeta_call). | li TISNUM, LJ_TISNUM // Setup type comparison constants. | .FPU lui TMP3, 0x59c0 // TOBIT = 2^52 + 2^51 (float). | lw TMP1, L->top | .FPU mtc1 TMP3, TOBIT | addu PC, PC, BASE | subu NARGS8:RC, TMP1, BASE | subu PC, PC, TMP2 // PC = frame delta + frame type | .FPU cvt.d.s TOBIT, TOBIT | li_vmstate INTERP | li TISNIL, LJ_TNIL | st_vmstate | |->vm_call_dispatch: | // TMP2 = old base, BASE = new base, RC = nargs*8, PC = caller PC | lw TMP0, FRAME_PC(BASE) | li AT, LJ_TFUNC | bne TMP0, AT, ->vmeta_call |. lw LFUNC:RB, FRAME_FUNC(BASE) | |->vm_call_dispatch_f: | ins_call | // BASE = new base, RB = func, RC = nargs*8, PC = caller PC | |->vm_cpcall: // Setup protected C frame, call C. | // (lua_State *L, lua_CFunction func, void *ud, lua_CPFunction cp) | saveregs | move L, CARG1 | lw TMP0, L:CARG1->stack | sw CARG1, SAVE_L | lw TMP1, L->top | lw DISPATCH, L->glref // Setup pointer to dispatch table. | sw CARG1, SAVE_PC // Any value outside of bytecode is ok. | subu TMP0, TMP0, TMP1 // Compute -savestack(L, L->top). | lw TMP1, L->cframe | addiu DISPATCH, DISPATCH, GG_G2DISP | sw TMP0, SAVE_NRES // Neg. delta means cframe w/o frame. | sw r0, SAVE_ERRF // No error function. | sw TMP1, SAVE_CFRAME | sw sp, L->cframe // Add our C frame to cframe chain. | sw L, DISPATCH_GL(cur_L)(DISPATCH) | jalr CARG4 // (lua_State *L, lua_CFunction func, void *ud) |. move CFUNCADDR, CARG4 | move BASE, CRET1 | bnez CRET1, <3 // Else continue with the call. |. li PC, FRAME_CP | b ->vm_leave_cp // No base? Just remove C frame. |. nop | |//----------------------------------------------------------------------- |//-- Metamethod handling ------------------------------------------------ |//----------------------------------------------------------------------- | |// The lj_meta_* functions (except for lj_meta_cat) don't reallocate the |// stack, so BASE doesn't need to be reloaded across these calls. | |//-- Continuation dispatch ---------------------------------------------- | |->cont_dispatch: | // BASE = meta base, RA = resultptr, RD = (nresults+1)*8 | lw TMP0, -16+LO(BASE) // Continuation. | move RB, BASE | move BASE, TMP2 // Restore caller BASE. | lw LFUNC:TMP1, FRAME_FUNC(TMP2) |.if FFI | sltiu AT, TMP0, 2 |.endif | lw PC, -16+HI(RB) // Restore PC from [cont|PC]. | addu TMP2, RA, RD | lw TMP1, LFUNC:TMP1->pc |.if FFI | bnez AT, >1 |.endif |. sw TISNIL, -8+HI(TMP2) // Ensure one valid arg. | // BASE = base, RA = resultptr, RB = meta base | jr TMP0 // Jump to continuation. |. lw KBASE, PC2PROTO(k)(TMP1) | |.if FFI |1: | bnez TMP0, ->cont_ffi_callback // cont = 1: return from FFI callback. | // cont = 0: tailcall from C function. |. addiu TMP1, RB, -16 | b ->vm_call_tail |. subu RC, TMP1, BASE |.endif | |->cont_cat: // RA = resultptr, RB = meta base | lw INS, -4(PC) | addiu CARG2, RB, -16 | lw SFRETHI, HI(RA) | lw SFRETLO, LO(RA) | decode_RB8a MULTRES, INS | decode_RA8a RA, INS | decode_RB8b MULTRES | decode_RA8b RA | addu TMP1, BASE, MULTRES | sw BASE, L->base | subu CARG3, CARG2, TMP1 | sw SFRETHI, HI(CARG2) | bne TMP1, CARG2, ->BC_CAT_Z |. sw SFRETLO, LO(CARG2) | addu RA, BASE, RA | sw SFRETHI, HI(RA) | b ->cont_nop |. sw SFRETLO, LO(RA) | |//-- Table indexing metamethods ----------------------------------------- | |->vmeta_tgets1: | addiu CARG3, DISPATCH, DISPATCH_GL(tmptv) | li TMP0, LJ_TSTR | sw STR:RC, LO(CARG3) | b >1 |. sw TMP0, HI(CARG3) | |->vmeta_tgets: | addiu CARG2, DISPATCH, DISPATCH_GL(tmptv) | li TMP0, LJ_TTAB | sw TAB:RB, LO(CARG2) | addiu CARG3, DISPATCH, DISPATCH_GL(tmptv2) | sw TMP0, HI(CARG2) | li TMP1, LJ_TSTR | sw STR:RC, LO(CARG3) | b >1 |. sw TMP1, HI(CARG3) | |->vmeta_tgetb: // TMP0 = index | addiu CARG3, DISPATCH, DISPATCH_GL(tmptv) | sw TMP0, LO(CARG3) | sw TISNUM, HI(CARG3) | |->vmeta_tgetv: |1: | load_got lj_meta_tget | sw BASE, L->base | sw PC, SAVE_PC | call_intern lj_meta_tget // (lua_State *L, TValue *o, TValue *k) |. move CARG1, L | // Returns TValue * (finished) or NULL (metamethod). | beqz CRET1, >3 |. addiu TMP1, BASE, -FRAME_CONT | lw SFARG1HI, HI(CRET1) | lw SFARG2HI, LO(CRET1) | ins_next1 | sw SFARG1HI, HI(RA) | sw SFARG2HI, LO(RA) | ins_next2 | |3: // Call __index metamethod. | // BASE = base, L->top = new base, stack = cont/func/t/k | lw BASE, L->top | sw PC, -16+HI(BASE) // [cont|PC] | subu PC, BASE, TMP1 | lw LFUNC:RB, FRAME_FUNC(BASE) // Guaranteed to be a function here. | b ->vm_call_dispatch_f |. li NARGS8:RC, 16 // 2 args for func(t, k). | |->vmeta_tgetr: | load_got lj_tab_getinth | call_intern lj_tab_getinth // (GCtab *t, int32_t key) |. nop | // Returns cTValue * or NULL. | beqz CRET1, ->BC_TGETR_Z |. move SFARG2HI, TISNIL | lw SFARG2HI, HI(CRET1) | b ->BC_TGETR_Z |. lw SFARG2LO, LO(CRET1) | |//----------------------------------------------------------------------- | |->vmeta_tsets1: | addiu CARG3, DISPATCH, DISPATCH_GL(tmptv) | li TMP0, LJ_TSTR | sw STR:RC, LO(CARG3) | b >1 |. sw TMP0, HI(CARG3) | |->vmeta_tsets: | addiu CARG2, DISPATCH, DISPATCH_GL(tmptv) | li TMP0, LJ_TTAB | sw TAB:RB, LO(CARG2) | addiu CARG3, DISPATCH, DISPATCH_GL(tmptv2) | sw TMP0, HI(CARG2) | li TMP1, LJ_TSTR | sw STR:RC, LO(CARG3) | b >1 |. sw TMP1, HI(CARG3) | |->vmeta_tsetb: // TMP0 = index | addiu CARG3, DISPATCH, DISPATCH_GL(tmptv) | sw TMP0, LO(CARG3) | sw TISNUM, HI(CARG3) | |->vmeta_tsetv: |1: | load_got lj_meta_tset | sw BASE, L->base | sw PC, SAVE_PC | call_intern lj_meta_tset // (lua_State *L, TValue *o, TValue *k) |. move CARG1, L | // Returns TValue * (finished) or NULL (metamethod). | lw SFARG1HI, HI(RA) | beqz CRET1, >3 |. lw SFARG1LO, LO(RA) | // NOBARRIER: lj_meta_tset ensures the table is not black. | ins_next1 | sw SFARG1HI, HI(CRET1) | sw SFARG1LO, LO(CRET1) | ins_next2 | |3: // Call __newindex metamethod. | // BASE = base, L->top = new base, stack = cont/func/t/k/(v) | addiu TMP1, BASE, -FRAME_CONT | lw BASE, L->top | sw PC, -16+HI(BASE) // [cont|PC] | subu PC, BASE, TMP1 | lw LFUNC:RB, FRAME_FUNC(BASE) // Guaranteed to be a function here. | sw SFARG1HI, 16+HI(BASE) // Copy value to third argument. | sw SFARG1LO, 16+LO(BASE) | b ->vm_call_dispatch_f |. li NARGS8:RC, 24 // 3 args for func(t, k, v) | |->vmeta_tsetr: | load_got lj_tab_setinth | sw BASE, L->base | sw PC, SAVE_PC | call_intern lj_tab_setinth // (lua_State *L, GCtab *t, int32_t key) |. move CARG1, L | // Returns TValue *. | b ->BC_TSETR_Z |. nop | |//-- Comparison metamethods --------------------------------------------- | |->vmeta_comp: | // RA/RD point to o1/o2. | move CARG2, RA | move CARG3, RD | load_got lj_meta_comp | addiu PC, PC, -4 | sw BASE, L->base | sw PC, SAVE_PC | decode_OP1 CARG4, INS | call_intern lj_meta_comp // (lua_State *L, TValue *o1, *o2, int op) |. move CARG1, L | // Returns 0/1 or TValue * (metamethod). |3: | sltiu AT, CRET1, 2 | beqz AT, ->vmeta_binop | negu TMP2, CRET1 |4: | lhu RD, OFS_RD(PC) | addiu PC, PC, 4 | lui TMP1, (-(BCBIAS_J*4 >> 16) & 65535) | sll RD, RD, 2 | addu RD, RD, TMP1 | and RD, RD, TMP2 | addu PC, PC, RD |->cont_nop: | ins_next | |->cont_ra: // RA = resultptr | lbu TMP1, -4+OFS_RA(PC) | lw SFRETHI, HI(RA) | lw SFRETLO, LO(RA) | sll TMP1, TMP1, 3 | addu TMP1, BASE, TMP1 | sw SFRETHI, HI(TMP1) | b ->cont_nop |. sw SFRETLO, LO(TMP1) | |->cont_condt: // RA = resultptr | lw TMP0, HI(RA) | sltiu AT, TMP0, LJ_TISTRUECOND | b <4 |. negu TMP2, AT // Branch if result is true. | |->cont_condf: // RA = resultptr | lw TMP0, HI(RA) | sltiu AT, TMP0, LJ_TISTRUECOND | b <4 |. addiu TMP2, AT, -1 // Branch if result is false. | |->vmeta_equal: | // SFARG1LO/SFARG2LO point to o1/o2. TMP0 is set to 0/1. | load_got lj_meta_equal | move CARG2, SFARG1LO | move CARG3, SFARG2LO | move CARG4, TMP0 | addiu PC, PC, -4 | sw BASE, L->base | sw PC, SAVE_PC | call_intern lj_meta_equal // (lua_State *L, GCobj *o1, *o2, int ne) |. move CARG1, L | // Returns 0/1 or TValue * (metamethod). | b <3 |. nop | |->vmeta_equal_cd: |.if FFI | load_got lj_meta_equal_cd | move CARG2, INS | addiu PC, PC, -4 | sw BASE, L->base | sw PC, SAVE_PC | call_intern lj_meta_equal_cd // (lua_State *L, BCIns op) |. move CARG1, L | // Returns 0/1 or TValue * (metamethod). | b <3 |. nop |.endif | |->vmeta_istype: | load_got lj_meta_istype | addiu PC, PC, -4 | sw BASE, L->base | srl CARG2, RA, 3 | srl CARG3, RD, 3 | sw PC, SAVE_PC | call_intern lj_meta_istype // (lua_State *L, BCReg ra, BCReg tp) |. move CARG1, L | b ->cont_nop |. nop | |//-- Arithmetic metamethods --------------------------------------------- | |->vmeta_unm: | move RC, RB | |->vmeta_arith: | load_got lj_meta_arith | decode_OP1 TMP0, INS | sw BASE, L->base | move CARG2, RA | sw PC, SAVE_PC | move CARG3, RB | move CARG4, RC | sw TMP0, ARG5 | call_intern lj_meta_arith // (lua_State *L, TValue *ra,*rb,*rc, BCReg op) |. move CARG1, L | // Returns NULL (finished) or TValue * (metamethod). | beqz CRET1, ->cont_nop |. nop | | // Call metamethod for binary op. |->vmeta_binop: | // BASE = old base, CRET1 = new base, stack = cont/func/o1/o2 | subu TMP1, CRET1, BASE | sw PC, -16+HI(CRET1) // [cont|PC] | move TMP2, BASE | addiu PC, TMP1, FRAME_CONT | move BASE, CRET1 | b ->vm_call_dispatch |. li NARGS8:RC, 16 // 2 args for func(o1, o2). | |->vmeta_len: | // CARG2 already set by BC_LEN. #if LJ_52 | move MULTRES, CARG1 #endif | load_got lj_meta_len | sw BASE, L->base | sw PC, SAVE_PC | call_intern lj_meta_len // (lua_State *L, TValue *o) |. move CARG1, L | // Returns NULL (retry) or TValue * (metamethod base). #if LJ_52 | bnez CRET1, ->vmeta_binop // Binop call for compatibility. |. nop | b ->BC_LEN_Z |. move CARG1, MULTRES #else | b ->vmeta_binop // Binop call for compatibility. |. nop #endif | |//-- Call metamethod ---------------------------------------------------- | |->vmeta_call: // Resolve and call __call metamethod. | // TMP2 = old base, BASE = new base, RC = nargs*8 | load_got lj_meta_call | sw TMP2, L->base // This is the callers base! | addiu CARG2, BASE, -8 | sw PC, SAVE_PC | addu CARG3, BASE, RC | move MULTRES, NARGS8:RC | call_intern lj_meta_call // (lua_State *L, TValue *func, TValue *top) |. move CARG1, L | lw LFUNC:RB, FRAME_FUNC(BASE) // Guaranteed to be a function here. | addiu NARGS8:RC, MULTRES, 8 // Got one more argument now. | ins_call | |->vmeta_callt: // Resolve __call for BC_CALLT. | // BASE = old base, RA = new base, RC = nargs*8 | load_got lj_meta_call | sw BASE, L->base | addiu CARG2, RA, -8 | sw PC, SAVE_PC | addu CARG3, RA, RC | move MULTRES, NARGS8:RC | call_intern lj_meta_call // (lua_State *L, TValue *func, TValue *top) |. move CARG1, L | lw TMP1, FRAME_PC(BASE) | lw LFUNC:RB, FRAME_FUNC(RA) // Guaranteed to be a function here. | b ->BC_CALLT_Z |. addiu NARGS8:RC, MULTRES, 8 // Got one more argument now. | |//-- Argument coercion for 'for' statement ------------------------------ | |->vmeta_for: | load_got lj_meta_for | sw BASE, L->base | move CARG2, RA | sw PC, SAVE_PC | move MULTRES, INS | call_intern lj_meta_for // (lua_State *L, TValue *base) |. move CARG1, L |.if JIT | decode_OP1 TMP0, MULTRES | li AT, BC_JFORI |.endif | decode_RA8a RA, MULTRES | decode_RD8a RD, MULTRES | decode_RA8b RA |.if JIT | beq TMP0, AT, =>BC_JFORI |. decode_RD8b RD | b =>BC_FORI |. nop |.else | b =>BC_FORI |. decode_RD8b RD |.endif | |//----------------------------------------------------------------------- |//-- Fast functions ----------------------------------------------------- |//----------------------------------------------------------------------- | |.macro .ffunc, name |->ff_ .. name: |.endmacro | |.macro .ffunc_1, name |->ff_ .. name: | lw SFARG1HI, HI(BASE) | beqz NARGS8:RC, ->fff_fallback |. lw SFARG1LO, LO(BASE) |.endmacro | |.macro .ffunc_2, name |->ff_ .. name: | sltiu AT, NARGS8:RC, 16 | lw SFARG1HI, HI(BASE) | bnez AT, ->fff_fallback |. lw SFARG2HI, 8+HI(BASE) | lw SFARG1LO, LO(BASE) | lw SFARG2LO, 8+LO(BASE) |.endmacro | |.macro .ffunc_n, name // Caveat: has delay slot! |->ff_ .. name: | lw SFARG1HI, HI(BASE) |.if FPU | ldc1 FARG1, 0(BASE) |.else | lw SFARG1LO, LO(BASE) |.endif | beqz NARGS8:RC, ->fff_fallback |. sltiu AT, SFARG1HI, LJ_TISNUM | beqz AT, ->fff_fallback |.endmacro | |.macro .ffunc_nn, name // Caveat: has delay slot! |->ff_ .. name: | sltiu AT, NARGS8:RC, 16 | lw SFARG1HI, HI(BASE) | bnez AT, ->fff_fallback |. lw SFARG2HI, 8+HI(BASE) | sltiu TMP0, SFARG1HI, LJ_TISNUM |.if FPU | ldc1 FARG1, 0(BASE) |.else | lw SFARG1LO, LO(BASE) |.endif | sltiu TMP1, SFARG2HI, LJ_TISNUM |.if FPU | ldc1 FARG2, 8(BASE) |.else | lw SFARG2LO, 8+LO(BASE) |.endif | and TMP0, TMP0, TMP1 | beqz TMP0, ->fff_fallback |.endmacro | |// Inlined GC threshold check. Caveat: uses TMP0 and TMP1 and has delay slot! |.macro ffgccheck | lw TMP0, DISPATCH_GL(gc.total)(DISPATCH) | lw TMP1, DISPATCH_GL(gc.threshold)(DISPATCH) | subu AT, TMP0, TMP1 | bgezal AT, ->fff_gcstep |.endmacro | |//-- Base library: checks ----------------------------------------------- | |.ffunc_1 assert | sltiu AT, SFARG1HI, LJ_TISTRUECOND | beqz AT, ->fff_fallback |. addiu RA, BASE, -8 | lw PC, FRAME_PC(BASE) | addiu RD, NARGS8:RC, 8 // Compute (nresults+1)*8. | addu TMP2, RA, NARGS8:RC | sw SFARG1HI, HI(RA) | addiu TMP1, BASE, 8 | beq BASE, TMP2, ->fff_res // Done if exactly 1 argument. |. sw SFARG1LO, LO(RA) |1: | lw SFRETHI, HI(TMP1) | lw SFRETLO, LO(TMP1) | sw SFRETHI, -8+HI(TMP1) | sw SFRETLO, -8+LO(TMP1) | bne TMP1, TMP2, <1 |. addiu TMP1, TMP1, 8 | b ->fff_res |. nop | |.ffunc type | lw SFARG1HI, HI(BASE) | beqz NARGS8:RC, ->fff_fallback |. sltiu TMP0, SFARG1HI, LJ_TISNUM | movn SFARG1HI, TISNUM, TMP0 | not TMP1, SFARG1HI | sll TMP1, TMP1, 3 | addu TMP1, CFUNC:RB, TMP1 | lw SFARG1HI, CFUNC:TMP1->upvalue[0].u32.hi | b ->fff_restv |. lw SFARG1LO, CFUNC:TMP1->upvalue[0].u32.lo | |//-- Base library: getters and setters --------------------------------- | |.ffunc_1 getmetatable | li AT, LJ_TTAB | bne SFARG1HI, AT, >6 |. li AT, LJ_TUDATA |1: // Field metatable must be at same offset for GCtab and GCudata! | lw TAB:SFARG1LO, TAB:SFARG1LO->metatable |2: | lw STR:RC, DISPATCH_GL(gcroot[GCROOT_MMNAME+MM_metatable])(DISPATCH) | beqz TAB:SFARG1LO, ->fff_restv |. li SFARG1HI, LJ_TNIL | lw TMP0, TAB:SFARG1LO->hmask | li SFARG1HI, LJ_TTAB // Use metatable as default result. | lw TMP1, STR:RC->hash | lw NODE:TMP2, TAB:SFARG1LO->node | and TMP1, TMP1, TMP0 // idx = str->hash & tab->hmask | sll TMP0, TMP1, 5 | sll TMP1, TMP1, 3 | subu TMP1, TMP0, TMP1 | addu NODE:TMP2, NODE:TMP2, TMP1 // node = tab->node + (idx*32-idx*8) | li AT, LJ_TSTR |3: // Rearranged logic, because we expect _not_ to find the key. | lw CARG4, offsetof(Node, key)+HI(NODE:TMP2) | lw TMP0, offsetof(Node, key)+LO(NODE:TMP2) | lw NODE:TMP3, NODE:TMP2->next | bne CARG4, AT, >4 |. lw CARG3, offsetof(Node, val)+HI(NODE:TMP2) | beq TMP0, STR:RC, >5 |. lw TMP1, offsetof(Node, val)+LO(NODE:TMP2) |4: | beqz NODE:TMP3, ->fff_restv // Not found, keep default result. |. move NODE:TMP2, NODE:TMP3 | b <3 |. nop |5: | beq CARG3, TISNIL, ->fff_restv // Ditto for nil value. |. nop | move SFARG1HI, CARG3 // Return value of mt.__metatable. | b ->fff_restv |. move SFARG1LO, TMP1 | |6: | beq SFARG1HI, AT, <1 |. sltu AT, TISNUM, SFARG1HI | movz SFARG1HI, TISNUM, AT | not TMP1, SFARG1HI | sll TMP1, TMP1, 2 | addu TMP1, DISPATCH, TMP1 | b <2 |. lw TAB:SFARG1LO, DISPATCH_GL(gcroot[GCROOT_BASEMT])(TMP1) | |.ffunc_2 setmetatable | // Fast path: no mt for table yet and not clearing the mt. | li AT, LJ_TTAB | bne SFARG1HI, AT, ->fff_fallback |. addiu SFARG2HI, SFARG2HI, -LJ_TTAB | lw TAB:TMP1, TAB:SFARG1LO->metatable | lbu TMP3, TAB:SFARG1LO->marked | or AT, SFARG2HI, TAB:TMP1 | bnez AT, ->fff_fallback |. andi AT, TMP3, LJ_GC_BLACK // isblack(table) | beqz AT, ->fff_restv |. sw TAB:SFARG2LO, TAB:SFARG1LO->metatable | barrierback TAB:SFARG1LO, TMP3, TMP0, ->fff_restv | |.ffunc rawget | lw CARG4, HI(BASE) | sltiu AT, NARGS8:RC, 16 | lw TAB:CARG2, LO(BASE) | load_got lj_tab_get | addiu CARG4, CARG4, -LJ_TTAB | or AT, AT, CARG4 | bnez AT, ->fff_fallback | addiu CARG3, BASE, 8 | call_intern lj_tab_get // (lua_State *L, GCtab *t, cTValue *key) |. move CARG1, L | // Returns cTValue *. | lw SFARG1HI, HI(CRET1) | b ->fff_restv |. lw SFARG1LO, LO(CRET1) | |//-- Base library: conversions ------------------------------------------ | |.ffunc tonumber | // Only handles the number case inline (without a base argument). | lw CARG1, HI(BASE) | xori AT, NARGS8:RC, 8 // Exactly one number argument. | sltu TMP0, TISNUM, CARG1 | or AT, AT, TMP0 | bnez AT, ->fff_fallback |. lw SFARG1HI, HI(BASE) | b ->fff_restv |. lw SFARG1LO, LO(BASE) | |.ffunc_1 tostring | // Only handles the string or number case inline. | li AT, LJ_TSTR | // A __tostring method in the string base metatable is ignored. | beq SFARG1HI, AT, ->fff_restv // String key? | // Handle numbers inline, unless a number base metatable is present. |. lw TMP1, DISPATCH_GL(gcroot[GCROOT_BASEMT_NUM])(DISPATCH) | sltu TMP0, TISNUM, SFARG1HI | or TMP0, TMP0, TMP1 | bnez TMP0, ->fff_fallback |. sw BASE, L->base // Add frame since C call can throw. | ffgccheck |. sw PC, SAVE_PC // Redundant (but a defined value). | load_got lj_strfmt_number | move CARG1, L | call_intern lj_strfmt_number // (lua_State *L, cTValue *o) |. move CARG2, BASE | // Returns GCstr *. | li SFARG1HI, LJ_TSTR | b ->fff_restv |. move SFARG1LO, CRET1 | |//-- Base library: iterators ------------------------------------------- | |.ffunc next | lw CARG1, HI(BASE) | lw TAB:CARG2, LO(BASE) | beqz NARGS8:RC, ->fff_fallback |. addu TMP2, BASE, NARGS8:RC | li AT, LJ_TTAB | sw TISNIL, HI(TMP2) // Set missing 2nd arg to nil. | bne CARG1, AT, ->fff_fallback |. lw PC, FRAME_PC(BASE) | load_got lj_tab_next | sw BASE, L->base // Add frame since C call can throw. | sw BASE, L->top // Dummy frame length is ok. | addiu CARG3, BASE, 8 | sw PC, SAVE_PC | call_intern lj_tab_next // (lua_State *L, GCtab *t, TValue *key) |. move CARG1, L | // Returns 0 at end of traversal. | beqz CRET1, ->fff_restv // End of traversal: return nil. |. li SFARG1HI, LJ_TNIL | lw TMP0, 8+HI(BASE) | lw TMP1, 8+LO(BASE) | addiu RA, BASE, -8 | lw TMP2, 16+HI(BASE) | lw TMP3, 16+LO(BASE) | sw TMP0, HI(RA) | sw TMP1, LO(RA) | sw TMP2, 8+HI(RA) | sw TMP3, 8+LO(RA) | b ->fff_res |. li RD, (2+1)*8 | |.ffunc_1 pairs | li AT, LJ_TTAB | bne SFARG1HI, AT, ->fff_fallback |. lw PC, FRAME_PC(BASE) #if LJ_52 | lw TAB:TMP2, TAB:SFARG1LO->metatable | lw TMP0, CFUNC:RB->upvalue[0].u32.hi | lw TMP1, CFUNC:RB->upvalue[0].u32.lo | bnez TAB:TMP2, ->fff_fallback #else | lw TMP0, CFUNC:RB->upvalue[0].u32.hi | lw TMP1, CFUNC:RB->upvalue[0].u32.lo #endif |. addiu RA, BASE, -8 | sw TISNIL, 8+HI(BASE) | sw TMP0, HI(RA) | sw TMP1, LO(RA) | b ->fff_res |. li RD, (3+1)*8 | |.ffunc ipairs_aux | sltiu AT, NARGS8:RC, 16 | lw CARG3, HI(BASE) | lw TAB:CARG1, LO(BASE) | lw CARG4, 8+HI(BASE) | bnez AT, ->fff_fallback |. addiu CARG3, CARG3, -LJ_TTAB | xor CARG4, CARG4, TISNUM | and AT, CARG3, CARG4 | bnez AT, ->fff_fallback |. lw PC, FRAME_PC(BASE) | lw TMP2, 8+LO(BASE) | lw TMP0, TAB:CARG1->asize | lw TMP1, TAB:CARG1->array | addiu TMP2, TMP2, 1 | sw TISNUM, -8+HI(BASE) | sltu AT, TMP2, TMP0 | sw TMP2, -8+LO(BASE) | beqz AT, >2 // Not in array part? |. addiu RA, BASE, -8 | sll TMP3, TMP2, 3 | addu TMP3, TMP1, TMP3 | lw TMP1, HI(TMP3) | lw TMP2, LO(TMP3) |1: | beq TMP1, TISNIL, ->fff_res // End of iteration, return 0 results. |. li RD, (0+1)*8 | sw TMP1, 8+HI(RA) | sw TMP2, 8+LO(RA) | b ->fff_res |. li RD, (2+1)*8 | |2: // Check for empty hash part first. Otherwise call C function. | lw TMP0, TAB:CARG1->hmask | load_got lj_tab_getinth | beqz TMP0, ->fff_res |. li RD, (0+1)*8 | call_intern lj_tab_getinth // (GCtab *t, int32_t key) |. move CARG2, TMP2 | // Returns cTValue * or NULL. | beqz CRET1, ->fff_res |. li RD, (0+1)*8 | lw TMP1, HI(CRET1) | b <1 |. lw TMP2, LO(CRET1) | |.ffunc_1 ipairs | li AT, LJ_TTAB | bne SFARG1HI, AT, ->fff_fallback |. lw PC, FRAME_PC(BASE) #if LJ_52 | lw TAB:TMP2, TAB:SFARG1LO->metatable | lw TMP0, CFUNC:RB->upvalue[0].u32.hi | lw TMP1, CFUNC:RB->upvalue[0].u32.lo | bnez TAB:TMP2, ->fff_fallback #else | lw TMP0, CFUNC:RB->upvalue[0].u32.hi | lw TMP1, CFUNC:RB->upvalue[0].u32.lo #endif |. addiu RA, BASE, -8 | sw TISNUM, 8+HI(BASE) | sw r0, 8+LO(BASE) | sw TMP0, HI(RA) | sw TMP1, LO(RA) | b ->fff_res |. li RD, (3+1)*8 | |//-- Base library: catch errors ---------------------------------------- | |.ffunc pcall | lbu TMP3, DISPATCH_GL(hookmask)(DISPATCH) | beqz NARGS8:RC, ->fff_fallback | move TMP2, BASE | addiu BASE, BASE, 8 | // Remember active hook before pcall. | srl TMP3, TMP3, HOOK_ACTIVE_SHIFT | andi TMP3, TMP3, 1 | addiu PC, TMP3, 8+FRAME_PCALL | b ->vm_call_dispatch |. addiu NARGS8:RC, NARGS8:RC, -8 | |.ffunc xpcall | sltiu AT, NARGS8:RC, 16 | lw CARG4, 8+HI(BASE) | bnez AT, ->fff_fallback |. lw CARG3, 8+LO(BASE) | lw CARG1, LO(BASE) | lw CARG2, HI(BASE) | lbu TMP1, DISPATCH_GL(hookmask)(DISPATCH) | li AT, LJ_TFUNC | move TMP2, BASE | bne CARG4, AT, ->fff_fallback // Traceback must be a function. | addiu BASE, BASE, 16 | // Remember active hook before pcall. | srl TMP3, TMP3, HOOK_ACTIVE_SHIFT | sw CARG3, LO(TMP2) // Swap function and traceback. | sw CARG4, HI(TMP2) | andi TMP3, TMP3, 1 | sw CARG1, 8+LO(TMP2) | sw CARG2, 8+HI(TMP2) | addiu PC, TMP3, 16+FRAME_PCALL | b ->vm_call_dispatch |. addiu NARGS8:RC, NARGS8:RC, -16 | |//-- Coroutine library -------------------------------------------------- | |.macro coroutine_resume_wrap, resume |.if resume |.ffunc coroutine_resume | lw CARG3, HI(BASE) | beqz NARGS8:RC, ->fff_fallback |. lw CARG1, LO(BASE) | li AT, LJ_TTHREAD | bne CARG3, AT, ->fff_fallback |.else |.ffunc coroutine_wrap_aux | lw L:CARG1, CFUNC:RB->upvalue[0].gcr |.endif | lbu TMP0, L:CARG1->status | lw TMP1, L:CARG1->cframe | lw CARG2, L:CARG1->top | lw TMP2, L:CARG1->base | addiu TMP3, TMP0, -LUA_YIELD | bgtz TMP3, ->fff_fallback // st > LUA_YIELD? |. xor TMP2, TMP2, CARG2 | bnez TMP1, ->fff_fallback // cframe != 0? |. or AT, TMP2, TMP0 | lw TMP0, L:CARG1->maxstack | beqz AT, ->fff_fallback // base == top && st == 0? |. lw PC, FRAME_PC(BASE) | addu TMP2, CARG2, NARGS8:RC | sltu AT, TMP0, TMP2 | bnez AT, ->fff_fallback // Stack overflow? |. sw PC, SAVE_PC | sw BASE, L->base |1: |.if resume | addiu BASE, BASE, 8 // Keep resumed thread in stack for GC. | addiu NARGS8:RC, NARGS8:RC, -8 | addiu TMP2, TMP2, -8 |.endif | sw TMP2, L:CARG1->top | addu TMP1, BASE, NARGS8:RC | move CARG3, CARG2 | sw BASE, L->top |2: // Move args to coroutine. | lw SFRETHI, HI(BASE) | lw SFRETLO, LO(BASE) | sltu AT, BASE, TMP1 | beqz AT, >3 |. addiu BASE, BASE, 8 | sw SFRETHI, HI(CARG3) | sw SFRETLO, LO(CARG3) | b <2 |. addiu CARG3, CARG3, 8 |3: | bal ->vm_resume // (lua_State *L, TValue *base, 0, 0) |. move L:RA, L:CARG1 | // Returns thread status. |4: | lw TMP2, L:RA->base | sltiu AT, CRET1, LUA_YIELD+1 | lw TMP3, L:RA->top | li_vmstate INTERP | lw BASE, L->base | sw L, DISPATCH_GL(cur_L)(DISPATCH) | st_vmstate | beqz AT, >8 |. subu RD, TMP3, TMP2 | lw TMP0, L->maxstack | beqz RD, >6 // No results? |. addu TMP1, BASE, RD | sltu AT, TMP0, TMP1 | bnez AT, >9 // Need to grow stack? |. addu TMP3, TMP2, RD | sw TMP2, L:RA->top // Clear coroutine stack. | move TMP1, BASE |5: // Move results from coroutine. | lw SFRETHI, HI(TMP2) | lw SFRETLO, LO(TMP2) | addiu TMP2, TMP2, 8 | sltu AT, TMP2, TMP3 | sw SFRETHI, HI(TMP1) | sw SFRETLO, LO(TMP1) | bnez AT, <5 |. addiu TMP1, TMP1, 8 |6: | andi TMP0, PC, FRAME_TYPE |.if resume | li TMP1, LJ_TTRUE | addiu RA, BASE, -8 | sw TMP1, -8+HI(BASE) // Prepend true to results. | addiu RD, RD, 16 |.else | move RA, BASE | addiu RD, RD, 8 |.endif |7: | sw PC, SAVE_PC | beqz TMP0, ->BC_RET_Z |. move MULTRES, RD | b ->vm_return |. nop | |8: // Coroutine returned with error (at co->top-1). |.if resume | addiu TMP3, TMP3, -8 | li TMP1, LJ_TFALSE | lw SFRETHI, HI(TMP3) | lw SFRETLO, LO(TMP3) | sw TMP3, L:RA->top // Remove error from coroutine stack. | li RD, (2+1)*8 | sw TMP1, -8+HI(BASE) // Prepend false to results. | addiu RA, BASE, -8 | sw SFRETHI, HI(BASE) // Copy error message. | sw SFRETLO, LO(BASE) | b <7 |. andi TMP0, PC, FRAME_TYPE |.else | load_got lj_ffh_coroutine_wrap_err | move CARG2, L:RA | call_intern lj_ffh_coroutine_wrap_err // (lua_State *L, lua_State *co) |. move CARG1, L |.endif | |9: // Handle stack expansion on return from yield. | load_got lj_state_growstack | srl CARG2, RD, 3 | call_intern lj_state_growstack // (lua_State *L, int n) |. move CARG1, L | b <4 |. li CRET1, 0 |.endmacro | | coroutine_resume_wrap 1 // coroutine.resume | coroutine_resume_wrap 0 // coroutine.wrap | |.ffunc coroutine_yield | lw TMP0, L->cframe | addu TMP1, BASE, NARGS8:RC | sw BASE, L->base | andi TMP0, TMP0, CFRAME_RESUME | sw TMP1, L->top | beqz TMP0, ->fff_fallback |. li CRET1, LUA_YIELD | sw r0, L->cframe | b ->vm_leave_unw |. sb CRET1, L->status | |//-- Math library ------------------------------------------------------- | |.ffunc_1 math_abs | bne SFARG1HI, TISNUM, >1 |. sra TMP0, SFARG1LO, 31 | xor TMP1, SFARG1LO, TMP0 | subu SFARG1LO, TMP1, TMP0 | bgez SFARG1LO, ->fff_restv |. nop | lui SFARG1HI, 0x41e0 // 2^31 as a double. | b ->fff_restv |. li SFARG1LO, 0 |1: | sltiu AT, SFARG1HI, LJ_TISNUM | beqz AT, ->fff_fallback |. sll SFARG1HI, SFARG1HI, 1 | srl SFARG1HI, SFARG1HI, 1 |// fallthrough | |->fff_restv: | // SFARG1LO/SFARG1HI = TValue result. | lw PC, FRAME_PC(BASE) | sw SFARG1HI, -8+HI(BASE) | addiu RA, BASE, -8 | sw SFARG1LO, -8+LO(BASE) |->fff_res1: | // RA = results, PC = return. | li RD, (1+1)*8 |->fff_res: | // RA = results, RD = (nresults+1)*8, PC = return. | andi TMP0, PC, FRAME_TYPE | bnez TMP0, ->vm_return |. move MULTRES, RD | lw INS, -4(PC) | decode_RB8a RB, INS | decode_RB8b RB |5: | sltu AT, RD, RB | bnez AT, >6 // More results expected? |. decode_RA8a TMP0, INS | decode_RA8b TMP0 | ins_next1 | // Adjust BASE. KBASE is assumed to be set for the calling frame. | subu BASE, RA, TMP0 | ins_next2 | |6: // Fill up results with nil. | addu TMP1, RA, RD | addiu RD, RD, 8 | b <5 |. sw TISNIL, -8+HI(TMP1) | |.macro math_extern, func | .ffunc math_ .. func | lw SFARG1HI, HI(BASE) | beqz NARGS8:RC, ->fff_fallback |. load_got func | sltiu AT, SFARG1HI, LJ_TISNUM | beqz AT, ->fff_fallback |.if FPU |. ldc1 FARG1, 0(BASE) |.else |. lw SFARG1LO, LO(BASE) |.endif | call_extern |. nop | b ->fff_resn |. nop |.endmacro | |.macro math_extern2, func | .ffunc_nn math_ .. func |. load_got func | call_extern |. nop | b ->fff_resn |. nop |.endmacro | |// TODO: Return integer type if result is integer (own sf implementation). |.macro math_round, func |->ff_math_ .. func: | lw SFARG1HI, HI(BASE) | beqz NARGS8:RC, ->fff_fallback |. lw SFARG1LO, LO(BASE) | beq SFARG1HI, TISNUM, ->fff_restv |. sltu AT, SFARG1HI, TISNUM | beqz AT, ->fff_fallback |.if FPU |. ldc1 FARG1, 0(BASE) | bal ->vm_ .. func |.else |. load_got func | call_extern |.endif |. nop | b ->fff_resn |. nop |.endmacro | | math_round floor | math_round ceil | |.ffunc math_log | li AT, 8 | bne NARGS8:RC, AT, ->fff_fallback // Exactly 1 argument. |. lw SFARG1HI, HI(BASE) | sltiu AT, SFARG1HI, LJ_TISNUM | beqz AT, ->fff_fallback |. load_got log |.if FPU | call_extern |. ldc1 FARG1, 0(BASE) |.else | call_extern |. lw SFARG1LO, LO(BASE) |.endif | b ->fff_resn |. nop | | math_extern log10 | math_extern exp | math_extern sin | math_extern cos | math_extern tan | math_extern asin | math_extern acos | math_extern atan | math_extern sinh | math_extern cosh | math_extern tanh | math_extern2 pow | math_extern2 atan2 | math_extern2 fmod | |.if FPU |.ffunc_n math_sqrt |. sqrt.d FRET1, FARG1 |// fallthrough to ->fff_resn |.else | math_extern sqrt |.endif | |->fff_resn: | lw PC, FRAME_PC(BASE) | addiu RA, BASE, -8 |.if FPU | b ->fff_res1 |. sdc1 FRET1, -8(BASE) |.else | sw SFRETHI, -8+HI(BASE) | b ->fff_res1 |. sw SFRETLO, -8+LO(BASE) |.endif | | |.ffunc math_ldexp | sltiu AT, NARGS8:RC, 16 | lw SFARG1HI, HI(BASE) | bnez AT, ->fff_fallback |. lw CARG4, 8+HI(BASE) | bne CARG4, TISNUM, ->fff_fallback | load_got ldexp |. sltu AT, SFARG1HI, TISNUM | beqz AT, ->fff_fallback |.if FPU |. ldc1 FARG1, 0(BASE) |.else |. lw SFARG1LO, LO(BASE) |.endif | call_extern |. lw CARG3, 8+LO(BASE) | b ->fff_resn |. nop | |.ffunc_n math_frexp | load_got frexp | lw PC, FRAME_PC(BASE) | call_extern |. addiu CARG3, DISPATCH, DISPATCH_GL(tmptv) | lw TMP1, DISPATCH_GL(tmptv)(DISPATCH) | addiu RA, BASE, -8 |.if FPU | mtc1 TMP1, FARG2 | sdc1 FRET1, 0(RA) | cvt.d.w FARG2, FARG2 | sdc1 FARG2, 8(RA) |.else | sw SFRETLO, LO(RA) | sw SFRETHI, HI(RA) | sw TMP1, 8+LO(RA) | sw TISNUM, 8+HI(RA) |.endif | b ->fff_res |. li RD, (2+1)*8 | |.ffunc_n math_modf | load_got modf | lw PC, FRAME_PC(BASE) | call_extern |. addiu CARG3, BASE, -8 | addiu RA, BASE, -8 |.if FPU | sdc1 FRET1, 0(BASE) |.else | sw SFRETLO, LO(BASE) | sw SFRETHI, HI(BASE) |.endif | b ->fff_res |. li RD, (2+1)*8 | |.macro math_minmax, name, intins, fpins | .ffunc_1 name | addu TMP3, BASE, NARGS8:RC | bne SFARG1HI, TISNUM, >5 |. addiu TMP2, BASE, 8 |1: // Handle integers. |. lw SFARG2HI, HI(TMP2) | beq TMP2, TMP3, ->fff_restv |. lw SFARG2LO, LO(TMP2) | bne SFARG2HI, TISNUM, >3 |. slt AT, SFARG1LO, SFARG2LO | intins SFARG1LO, SFARG2LO, AT | b <1 |. addiu TMP2, TMP2, 8 | |3: // Convert intermediate result to number and continue with number loop. | sltiu AT, SFARG2HI, LJ_TISNUM | beqz AT, ->fff_fallback |.if FPU |. mtc1 SFARG1LO, FRET1 | cvt.d.w FRET1, FRET1 | b >7 |. ldc1 FARG1, 0(TMP2) |.else |. nop | bal ->vm_sfi2d_1 |. nop | b >7 |. nop |.endif | |5: |. sltiu AT, SFARG1HI, LJ_TISNUM | beqz AT, ->fff_fallback |.if FPU |. ldc1 FRET1, 0(BASE) |.endif | |6: // Handle numbers. |. lw SFARG2HI, HI(TMP2) |.if FPU | beq TMP2, TMP3, ->fff_resn |.else | beq TMP2, TMP3, ->fff_restv |.endif |. sltiu AT, SFARG2HI, LJ_TISNUM | beqz AT, >8 |.if FPU |. ldc1 FARG1, 0(TMP2) |.else |. lw SFARG2LO, LO(TMP2) |.endif |7: |.if FPU | c.olt.d FRET1, FARG1 | fpins FRET1, FARG1 |.else | bal ->vm_sfcmpolt |. nop | intins SFARG1LO, SFARG2LO, CRET1 | intins SFARG1HI, SFARG2HI, CRET1 |.endif | b <6 |. addiu TMP2, TMP2, 8 | |8: // Convert integer to number and continue with number loop. | bne SFARG2HI, TISNUM, ->fff_fallback |.if FPU |. lwc1 FARG1, LO(TMP2) | b <7 |. cvt.d.w FARG1, FARG1 |.else |. nop | bal ->vm_sfi2d_2 |. nop | b <7 |. nop |.endif | |.endmacro | | math_minmax math_min, movz, movf.d | math_minmax math_max, movn, movt.d | |//-- String library ----------------------------------------------------- | |.ffunc string_byte // Only handle the 1-arg case here. | lw CARG3, HI(BASE) | lw STR:CARG1, LO(BASE) | xori AT, NARGS8:RC, 8 | addiu CARG3, CARG3, -LJ_TSTR | or AT, AT, CARG3 | bnez AT, ->fff_fallback // Need exactly 1 string argument. |. nop | lw TMP0, STR:CARG1->len | addiu RA, BASE, -8 | lw PC, FRAME_PC(BASE) | sltu RD, r0, TMP0 | lbu TMP1, STR:CARG1[1] // Access is always ok (NUL at end). | addiu RD, RD, 1 | sll RD, RD, 3 // RD = ((str->len != 0)+1)*8 | sw TISNUM, HI(RA) | b ->fff_res |. sw TMP1, LO(RA) | |.ffunc string_char // Only handle the 1-arg case here. | ffgccheck |. nop | lw CARG3, HI(BASE) | lw CARG1, LO(BASE) | li TMP1, 255 | xori AT, NARGS8:RC, 8 // Exactly 1 argument. | xor TMP0, CARG3, TISNUM // Integer. | sltu TMP1, TMP1, CARG1 // !(255 < n). | or AT, AT, TMP0 | or AT, AT, TMP1 | bnez AT, ->fff_fallback |. li CARG3, 1 | addiu CARG2, sp, ARG5_OFS | sb CARG1, ARG5 |->fff_newstr: | load_got lj_str_new | sw BASE, L->base | sw PC, SAVE_PC | call_intern lj_str_new // (lua_State *L, char *str, size_t l) |. move CARG1, L | // Returns GCstr *. | lw BASE, L->base |->fff_resstr: | move SFARG1LO, CRET1 | b ->fff_restv |. li SFARG1HI, LJ_TSTR | |.ffunc string_sub | ffgccheck |. nop | addiu AT, NARGS8:RC, -16 | lw CARG3, 16+HI(BASE) | lw TMP0, HI(BASE) | lw STR:CARG1, LO(BASE) | bltz AT, ->fff_fallback |. lw CARG2, 8+HI(BASE) | beqz AT, >1 |. li CARG4, -1 | bne CARG3, TISNUM, ->fff_fallback |. lw CARG4, 16+LO(BASE) |1: | bne CARG2, TISNUM, ->fff_fallback |. li AT, LJ_TSTR | bne TMP0, AT, ->fff_fallback |. lw CARG3, 8+LO(BASE) | lw CARG2, STR:CARG1->len | // STR:CARG1 = str, CARG2 = str->len, CARG3 = start, CARG4 = end | slt AT, CARG4, r0 | addiu TMP0, CARG2, 1 | addu TMP1, CARG4, TMP0 | slt TMP3, CARG3, r0 | movn CARG4, TMP1, AT // if (end < 0) end += len+1 | addu TMP1, CARG3, TMP0 | movn CARG3, TMP1, TMP3 // if (start < 0) start += len+1 | li TMP2, 1 | slt AT, CARG4, r0 | slt TMP3, r0, CARG3 | movn CARG4, r0, AT // if (end < 0) end = 0 | movz CARG3, TMP2, TMP3 // if (start < 1) start = 1 | slt AT, CARG2, CARG4 | movn CARG4, CARG2, AT // if (end > len) end = len | addu CARG2, STR:CARG1, CARG3 | subu CARG3, CARG4, CARG3 // len = end - start | addiu CARG2, CARG2, sizeof(GCstr)-1 | bgez CARG3, ->fff_newstr |. addiu CARG3, CARG3, 1 // len++ |->fff_emptystr: // Return empty string. | addiu STR:SFARG1LO, DISPATCH, DISPATCH_GL(strempty) | b ->fff_restv |. li SFARG1HI, LJ_TSTR | |.macro ffstring_op, name | .ffunc string_ .. name | ffgccheck |. nop | lw CARG3, HI(BASE) | lw STR:CARG2, LO(BASE) | beqz NARGS8:RC, ->fff_fallback |. li AT, LJ_TSTR | bne CARG3, AT, ->fff_fallback |. addiu SBUF:CARG1, DISPATCH, DISPATCH_GL(tmpbuf) | load_got lj_buf_putstr_ .. name | lw TMP0, SBUF:CARG1->b | sw L, SBUF:CARG1->L | sw BASE, L->base | sw TMP0, SBUF:CARG1->p | call_intern extern lj_buf_putstr_ .. name |. sw PC, SAVE_PC | load_got lj_buf_tostr | call_intern lj_buf_tostr |. move SBUF:CARG1, SBUF:CRET1 | b ->fff_resstr |. lw BASE, L->base |.endmacro | |ffstring_op reverse |ffstring_op lower |ffstring_op upper | |//-- Bit library -------------------------------------------------------- | |->vm_tobit_fb: | beqz TMP1, ->fff_fallback |.if FPU |. ldc1 FARG1, 0(BASE) | add.d FARG1, FARG1, TOBIT | jr ra |. mfc1 CRET1, FARG1 |.else |// FP number to bit conversion for soft-float. |->vm_tobit: | sll TMP0, SFARG1HI, 1 | lui AT, 0x0020 | addu TMP0, TMP0, AT | slt AT, TMP0, r0 | movz SFARG1LO, r0, AT | beqz AT, >2 |. li TMP1, 0x3e0 | not TMP1, TMP1 | sra TMP0, TMP0, 21 | subu TMP0, TMP1, TMP0 | slt AT, TMP0, r0 | bnez AT, >1 |. sll TMP1, SFARG1HI, 11 | lui AT, 0x8000 | or TMP1, TMP1, AT | srl AT, SFARG1LO, 21 | or TMP1, TMP1, AT | slt AT, SFARG1HI, r0 | beqz AT, >2 |. srlv SFARG1LO, TMP1, TMP0 | subu SFARG1LO, r0, SFARG1LO |2: | jr ra |. move CRET1, SFARG1LO |1: | addiu TMP0, TMP0, 21 | srlv TMP1, SFARG1LO, TMP0 | li AT, 20 | subu TMP0, AT, TMP0 | sll SFARG1LO, SFARG1HI, 12 | sllv AT, SFARG1LO, TMP0 | or SFARG1LO, TMP1, AT | slt AT, SFARG1HI, r0 | beqz AT, <2 |. nop | jr ra |. subu CRET1, r0, SFARG1LO |.endif | |.macro .ffunc_bit, name | .ffunc_1 bit_..name | beq SFARG1HI, TISNUM, >6 |. move CRET1, SFARG1LO | bal ->vm_tobit_fb |. sltu TMP1, SFARG1HI, TISNUM |6: |.endmacro | |.macro .ffunc_bit_op, name, ins | .ffunc_bit name | addiu TMP2, BASE, 8 | addu TMP3, BASE, NARGS8:RC |1: | lw SFARG1HI, HI(TMP2) | beq TMP2, TMP3, ->fff_resi |. lw SFARG1LO, LO(TMP2) |.if FPU | bne SFARG1HI, TISNUM, >2 |. addiu TMP2, TMP2, 8 | b <1 |. ins CRET1, CRET1, SFARG1LO |2: | ldc1 FARG1, -8(TMP2) | sltu TMP1, SFARG1HI, TISNUM | beqz TMP1, ->fff_fallback |. add.d FARG1, FARG1, TOBIT | mfc1 SFARG1LO, FARG1 | b <1 |. ins CRET1, CRET1, SFARG1LO |.else | beq SFARG1HI, TISNUM, >2 |. move CRET2, CRET1 | bal ->vm_tobit_fb |. sltu TMP1, SFARG1HI, TISNUM | move SFARG1LO, CRET2 |2: | ins CRET1, CRET1, SFARG1LO | b <1 |. addiu TMP2, TMP2, 8 |.endif |.endmacro | |.ffunc_bit_op band, and |.ffunc_bit_op bor, or |.ffunc_bit_op bxor, xor | |.ffunc_bit bswap | srl TMP0, CRET1, 24 | srl TMP2, CRET1, 8 | sll TMP1, CRET1, 24 | andi TMP2, TMP2, 0xff00 | or TMP0, TMP0, TMP1 | andi CRET1, CRET1, 0xff00 | or TMP0, TMP0, TMP2 | sll CRET1, CRET1, 8 | b ->fff_resi |. or CRET1, TMP0, CRET1 | |.ffunc_bit bnot | b ->fff_resi |. not CRET1, CRET1 | |.macro .ffunc_bit_sh, name, ins, shmod | .ffunc_2 bit_..name | beq SFARG1HI, TISNUM, >1 |. nop | bal ->vm_tobit_fb |. sltu TMP1, SFARG1HI, TISNUM | move SFARG1LO, CRET1 |1: | bne SFARG2HI, TISNUM, ->fff_fallback |. nop |.if shmod == 1 | li AT, 32 | subu TMP0, AT, SFARG2LO | sllv SFARG2LO, SFARG1LO, SFARG2LO | srlv SFARG1LO, SFARG1LO, TMP0 |.elif shmod == 2 | li AT, 32 | subu TMP0, AT, SFARG2LO | srlv SFARG2LO, SFARG1LO, SFARG2LO | sllv SFARG1LO, SFARG1LO, TMP0 |.endif | b ->fff_resi |. ins CRET1, SFARG1LO, SFARG2LO |.endmacro | |.ffunc_bit_sh lshift, sllv, 0 |.ffunc_bit_sh rshift, srlv, 0 |.ffunc_bit_sh arshift, srav, 0 |// Can't use rotrv, since it's only in MIPS32R2. |.ffunc_bit_sh rol, or, 1 |.ffunc_bit_sh ror, or, 2 | |.ffunc_bit tobit |->fff_resi: | lw PC, FRAME_PC(BASE) | addiu RA, BASE, -8 | sw TISNUM, -8+HI(BASE) | b ->fff_res1 |. sw CRET1, -8+LO(BASE) | |//----------------------------------------------------------------------- | |->fff_fallback: // Call fast function fallback handler. | // BASE = new base, RB = CFUNC, RC = nargs*8 | lw TMP3, CFUNC:RB->f | addu TMP1, BASE, NARGS8:RC | lw PC, FRAME_PC(BASE) // Fallback may overwrite PC. | addiu TMP0, TMP1, 8*LUA_MINSTACK | lw TMP2, L->maxstack | sw PC, SAVE_PC // Redundant (but a defined value). | sltu AT, TMP2, TMP0 | sw BASE, L->base | sw TMP1, L->top | bnez AT, >5 // Need to grow stack. |. move CFUNCADDR, TMP3 | jalr TMP3 // (lua_State *L) |. move CARG1, L | // Either throws an error, or recovers and returns -1, 0 or nresults+1. | lw BASE, L->base | sll RD, CRET1, 3 | bgtz CRET1, ->fff_res // Returned nresults+1? |. addiu RA, BASE, -8 |1: // Returned 0 or -1: retry fast path. | lw TMP0, L->top | lw LFUNC:RB, FRAME_FUNC(BASE) | bnez CRET1, ->vm_call_tail // Returned -1? |. subu NARGS8:RC, TMP0, BASE | ins_callt // Returned 0: retry fast path. | |// Reconstruct previous base for vmeta_call during tailcall. |->vm_call_tail: | andi TMP0, PC, FRAME_TYPE | li AT, -4 | bnez TMP0, >3 |. and TMP1, PC, AT | lbu TMP1, OFS_RA(PC) | sll TMP1, TMP1, 3 | addiu TMP1, TMP1, 8 |3: | b ->vm_call_dispatch // Resolve again for tailcall. |. subu TMP2, BASE, TMP1 | |5: // Grow stack for fallback handler. | load_got lj_state_growstack | li CARG2, LUA_MINSTACK | call_intern lj_state_growstack // (lua_State *L, int n) |. move CARG1, L | lw BASE, L->base | b <1 |. li CRET1, 0 // Force retry. | |->fff_gcstep: // Call GC step function. | // BASE = new base, RC = nargs*8 | move MULTRES, ra | load_got lj_gc_step | sw BASE, L->base | addu TMP0, BASE, NARGS8:RC | sw PC, SAVE_PC // Redundant (but a defined value). | sw TMP0, L->top | call_intern lj_gc_step // (lua_State *L) |. move CARG1, L | lw BASE, L->base | move ra, MULTRES | lw TMP0, L->top | lw CFUNC:RB, FRAME_FUNC(BASE) | jr ra |. subu NARGS8:RC, TMP0, BASE | |//----------------------------------------------------------------------- |//-- Special dispatch targets ------------------------------------------- |//----------------------------------------------------------------------- | |->vm_record: // Dispatch target for recording phase. |.if JIT | lbu TMP3, DISPATCH_GL(hookmask)(DISPATCH) | andi AT, TMP3, HOOK_VMEVENT // No recording while in vmevent. | bnez AT, >5 | // Decrement the hookcount for consistency, but always do the call. |. lw TMP2, DISPATCH_GL(hookcount)(DISPATCH) | andi AT, TMP3, HOOK_ACTIVE | bnez AT, >1 |. addiu TMP2, TMP2, -1 | andi AT, TMP3, LUA_MASKLINE|LUA_MASKCOUNT | beqz AT, >1 |. nop | b >1 |. sw TMP2, DISPATCH_GL(hookcount)(DISPATCH) |.endif | |->vm_rethook: // Dispatch target for return hooks. | lbu TMP3, DISPATCH_GL(hookmask)(DISPATCH) | andi AT, TMP3, HOOK_ACTIVE // Hook already active? | beqz AT, >1 |5: // Re-dispatch to static ins. |. lw AT, GG_DISP2STATIC(TMP0) // Assumes TMP0 holds DISPATCH+OP*4. | jr AT |. nop | |->vm_inshook: // Dispatch target for instr/line hooks. | lbu TMP3, DISPATCH_GL(hookmask)(DISPATCH) | lw TMP2, DISPATCH_GL(hookcount)(DISPATCH) | andi AT, TMP3, HOOK_ACTIVE // Hook already active? | bnez AT, <5 |. andi AT, TMP3, LUA_MASKLINE|LUA_MASKCOUNT | beqz AT, <5 |. addiu TMP2, TMP2, -1 | beqz TMP2, >1 |. sw TMP2, DISPATCH_GL(hookcount)(DISPATCH) | andi AT, TMP3, LUA_MASKLINE | beqz AT, <5 |1: |. load_got lj_dispatch_ins | sw MULTRES, SAVE_MULTRES | move CARG2, PC | sw BASE, L->base | // SAVE_PC must hold the _previous_ PC. The callee updates it with PC. | call_intern lj_dispatch_ins // (lua_State *L, const BCIns *pc) |. move CARG1, L |3: | lw BASE, L->base |4: // Re-dispatch to static ins. | lw INS, -4(PC) | decode_OP4a TMP1, INS | decode_OP4b TMP1 | addu TMP0, DISPATCH, TMP1 | decode_RD8a RD, INS | lw AT, GG_DISP2STATIC(TMP0) | decode_RA8a RA, INS | decode_RD8b RD | jr AT | decode_RA8b RA | |->cont_hook: // Continue from hook yield. | addiu PC, PC, 4 | b <4 |. lw MULTRES, -24+LO(RB) // Restore MULTRES for *M ins. | |->vm_hotloop: // Hot loop counter underflow. |.if JIT | lw LFUNC:TMP1, FRAME_FUNC(BASE) | addiu CARG1, DISPATCH, GG_DISP2J | sw PC, SAVE_PC | lw TMP1, LFUNC:TMP1->pc | move CARG2, PC | sw L, DISPATCH_J(L)(DISPATCH) | lbu TMP1, PC2PROTO(framesize)(TMP1) | load_got lj_trace_hot | sw BASE, L->base | sll TMP1, TMP1, 3 | addu TMP1, BASE, TMP1 | call_intern lj_trace_hot // (jit_State *J, const BCIns *pc) |. sw TMP1, L->top | b <3 |. nop |.endif | |->vm_callhook: // Dispatch target for call hooks. |.if JIT | b >1 |.endif |. move CARG2, PC | |->vm_hotcall: // Hot call counter underflow. |.if JIT | ori CARG2, PC, 1 |1: |.endif | load_got lj_dispatch_call | addu TMP0, BASE, RC | sw PC, SAVE_PC | sw BASE, L->base | subu RA, RA, BASE | sw TMP0, L->top | call_intern lj_dispatch_call // (lua_State *L, const BCIns *pc) |. move CARG1, L | // Returns ASMFunction. | lw BASE, L->base | lw TMP0, L->top | sw r0, SAVE_PC // Invalidate for subsequent line hook. | subu NARGS8:RC, TMP0, BASE | addu RA, BASE, RA | lw LFUNC:RB, FRAME_FUNC(BASE) | jr CRET1 |. lw INS, -4(PC) | |->cont_stitch: // Trace stitching. |.if JIT | // RA = resultptr, RB = meta base | lw INS, -4(PC) | lw TMP2, -24+LO(RB) // Save previous trace. | decode_RA8a RC, INS | addiu AT, MULTRES, -8 | decode_RA8b RC | beqz AT, >2 |. addu RC, BASE, RC // Call base. |1: // Move results down. | lw SFRETHI, HI(RA) | lw SFRETLO, LO(RA) | addiu AT, AT, -8 | addiu RA, RA, 8 | sw SFRETHI, HI(RC) | sw SFRETLO, LO(RC) | bnez AT, <1 |. addiu RC, RC, 8 |2: | decode_RA8a RA, INS | decode_RB8a RB, INS | decode_RA8b RA | decode_RB8b RB | addu RA, RA, RB | addu RA, BASE, RA |3: | sltu AT, RC, RA | bnez AT, >9 // More results wanted? |. nop | | lhu TMP3, TRACE:TMP2->traceno | lhu RD, TRACE:TMP2->link | beq RD, TMP3, ->cont_nop // Blacklisted. |. load_got lj_dispatch_stitch | bnez RD, =>BC_JLOOP // Jump to stitched trace. |. sll RD, RD, 3 | | // Stitch a new trace to the previous trace. | sw TMP3, DISPATCH_J(exitno)(DISPATCH) | sw L, DISPATCH_J(L)(DISPATCH) | sw BASE, L->base | addiu CARG1, DISPATCH, GG_DISP2J | call_intern lj_dispatch_stitch // (jit_State *J, const BCIns *pc) |. move CARG2, PC | b ->cont_nop |. lw BASE, L->base | |9: | sw TISNIL, HI(RC) | b <3 |. addiu RC, RC, 8 |.endif | |->vm_profhook: // Dispatch target for profiler hook. #if LJ_HASPROFILE | load_got lj_dispatch_profile | sw MULTRES, SAVE_MULTRES | move CARG2, PC | sw BASE, L->base | call_intern lj_dispatch_profile // (lua_State *L, const BCIns *pc) |. move CARG1, L | // HOOK_PROFILE is off again, so re-dispatch to dynamic instruction. | addiu PC, PC, -4 | b ->cont_nop |. lw BASE, L->base #endif | |//----------------------------------------------------------------------- |//-- Trace exit handler ------------------------------------------------- |//----------------------------------------------------------------------- | |.macro savex_, a, b |.if FPU | sdc1 f..a, 16+a*8(sp) | sw r..a, 16+32*8+a*4(sp) | sw r..b, 16+32*8+b*4(sp) |.else | sw r..a, 16+a*4(sp) | sw r..b, 16+b*4(sp) |.endif |.endmacro | |->vm_exit_handler: |.if JIT |.if FPU | addiu sp, sp, -(16+32*8+32*4) |.else | addiu sp, sp, -(16+32*4) |.endif | savex_ 0, 1 | savex_ 2, 3 | savex_ 4, 5 | savex_ 6, 7 | savex_ 8, 9 | savex_ 10, 11 | savex_ 12, 13 | savex_ 14, 15 | savex_ 16, 17 | savex_ 18, 19 | savex_ 20, 21 | savex_ 22, 23 | savex_ 24, 25 | savex_ 26, 27 |.if FPU | sdc1 f28, 16+28*8(sp) | sdc1 f30, 16+30*8(sp) | sw r28, 16+32*8+28*4(sp) | sw r30, 16+32*8+30*4(sp) | sw r0, 16+32*8+31*4(sp) // Clear RID_TMP. | addiu TMP2, sp, 16+32*8+32*4 // Recompute original value of sp. | sw TMP2, 16+32*8+29*4(sp) // Store sp in RID_SP |.else | sw r28, 16+28*4(sp) | sw r30, 16+30*4(sp) | sw r0, 16+31*4(sp) // Clear RID_TMP. | addiu TMP2, sp, 16+32*4 // Recompute original value of sp. | sw TMP2, 16+29*4(sp) // Store sp in RID_SP |.endif | li_vmstate EXIT | addiu DISPATCH, JGL, -GG_DISP2G-32768 | lw TMP1, 0(TMP2) // Load exit number. | st_vmstate | lw L, DISPATCH_GL(cur_L)(DISPATCH) | lw BASE, DISPATCH_GL(jit_base)(DISPATCH) | load_got lj_trace_exit | sw L, DISPATCH_J(L)(DISPATCH) | sw ra, DISPATCH_J(parent)(DISPATCH) // Store trace number. | sw BASE, L->base | sw TMP1, DISPATCH_J(exitno)(DISPATCH) // Store exit number. | addiu CARG1, DISPATCH, GG_DISP2J | sw r0, DISPATCH_GL(jit_base)(DISPATCH) | call_intern lj_trace_exit // (jit_State *J, ExitState *ex) |. addiu CARG2, sp, 16 | // Returns MULTRES (unscaled) or negated error code. | lw TMP1, L->cframe | li AT, -4 | lw BASE, L->base | and sp, TMP1, AT | lw PC, SAVE_PC // Get SAVE_PC. | b >1 |. sw L, SAVE_L // Set SAVE_L (on-trace resume/yield). |.endif |->vm_exit_interp: |.if JIT | // CRET1 = MULTRES or negated error code, BASE, PC and JGL set. | lw L, SAVE_L | addiu DISPATCH, JGL, -GG_DISP2G-32768 | sw BASE, L->base |1: | bltz CRET1, >9 // Check for error from exit. |. lw LFUNC:RB, FRAME_FUNC(BASE) | .FPU lui TMP3, 0x59c0 // TOBIT = 2^52 + 2^51 (float). | sll MULTRES, CRET1, 3 | li TISNIL, LJ_TNIL | li TISNUM, LJ_TISNUM // Setup type comparison constants. | sw MULTRES, SAVE_MULTRES | .FPU mtc1 TMP3, TOBIT | lw TMP1, LFUNC:RB->pc | sw r0, DISPATCH_GL(jit_base)(DISPATCH) | lw KBASE, PC2PROTO(k)(TMP1) | .FPU cvt.d.s TOBIT, TOBIT | // Modified copy of ins_next which handles function header dispatch, too. | lw INS, 0(PC) | addiu PC, PC, 4 | // Assumes TISNIL == ~LJ_VMST_INTERP == -1 | sw TISNIL, DISPATCH_GL(vmstate)(DISPATCH) | decode_OP4a TMP1, INS | decode_OP4b TMP1 | sltiu TMP2, TMP1, BC_FUNCF*4 | addu TMP0, DISPATCH, TMP1 | decode_RD8a RD, INS | lw AT, 0(TMP0) | decode_RA8a RA, INS | beqz TMP2, >2 |. decode_RA8b RA | jr AT |. decode_RD8b RD |2: | sltiu TMP2, TMP1, (BC_FUNCC+2)*4 // Fast function? | bnez TMP2, >3 |. lw TMP1, FRAME_PC(BASE) | // Check frame below fast function. | andi TMP0, TMP1, FRAME_TYPE | bnez TMP0, >3 // Trace stitching continuation? |. nop | // Otherwise set KBASE for Lua function below fast function. | lw TMP2, -4(TMP1) | decode_RA8a TMP0, TMP2 | decode_RA8b TMP0 | subu TMP1, BASE, TMP0 | lw LFUNC:TMP2, -8+FRAME_FUNC(TMP1) | lw TMP1, LFUNC:TMP2->pc | lw KBASE, PC2PROTO(k)(TMP1) |3: | addiu RC, MULTRES, -8 | jr AT |. addu RA, RA, BASE | |9: // Rethrow error from the right C frame. | load_got lj_err_throw | negu CARG2, CRET1 | call_intern lj_err_throw // (lua_State *L, int errcode) |. move CARG1, L |.endif | |//----------------------------------------------------------------------- |//-- Math helper functions ---------------------------------------------- |//----------------------------------------------------------------------- | |// Hard-float round to integer. |// Modifies AT, TMP0, FRET1, FRET2, f4. Keeps all others incl. FARG1. |.macro vm_round_hf, func | lui TMP0, 0x4330 // Hiword of 2^52 (double). | mtc1 r0, f4 | mtc1 TMP0, f5 | abs.d FRET2, FARG1 // |x| | mfc1 AT, f13 | c.olt.d 0, FRET2, f4 | add.d FRET1, FRET2, f4 // (|x| + 2^52) - 2^52 | bc1f 0, >1 // Truncate only if |x| < 2^52. |. sub.d FRET1, FRET1, f4 | slt AT, AT, r0 |.if "func" == "ceil" | lui TMP0, 0xbff0 // Hiword of -1 (double). Preserves -0. |.else | lui TMP0, 0x3ff0 // Hiword of +1 (double). |.endif |.if "func" == "trunc" | mtc1 TMP0, f5 | c.olt.d 0, FRET2, FRET1 // |x| < result? | sub.d FRET2, FRET1, f4 | movt.d FRET1, FRET2, 0 // If yes, subtract +1. | neg.d FRET2, FRET1 | jr ra |. movn.d FRET1, FRET2, AT // Merge sign bit back in. |.else | neg.d FRET2, FRET1 | mtc1 TMP0, f5 | movn.d FRET1, FRET2, AT // Merge sign bit back in. |.if "func" == "ceil" | c.olt.d 0, FRET1, FARG1 // x > result? |.else | c.olt.d 0, FARG1, FRET1 // x < result? |.endif | sub.d FRET2, FRET1, f4 // If yes, subtract +-1. | jr ra |. movt.d FRET1, FRET2, 0 |.endif |1: | jr ra |. mov.d FRET1, FARG1 |.endmacro | |.macro vm_round, func |.if FPU | vm_round_hf, func |.endif |.endmacro | |->vm_floor: | vm_round floor |->vm_ceil: | vm_round ceil |->vm_trunc: |.if JIT | vm_round trunc |.endif | |// Soft-float integer to number conversion. |.macro sfi2d, AHI, ALO |.if not FPU | beqz ALO, >9 // Handle zero first. |. sra TMP0, ALO, 31 | xor TMP1, ALO, TMP0 | subu TMP1, TMP1, TMP0 // Absolute value in TMP1. | clz AHI, TMP1 | andi TMP0, TMP0, 0x800 // Mask sign bit. | li AT, 0x3ff+31-1 | sllv TMP1, TMP1, AHI // Align mantissa left with leading 1. | subu AHI, AT, AHI // Exponent - 1 in AHI. | sll ALO, TMP1, 21 | or AHI, AHI, TMP0 // Sign | Exponent. | srl TMP1, TMP1, 11 | sll AHI, AHI, 20 // Align left. | jr ra |. addu AHI, AHI, TMP1 // Add mantissa, increment exponent. |9: | jr ra |. li AHI, 0 |.endif |.endmacro | |// Input SFARG1LO. Output: SFARG1*. Temporaries: AT, TMP0, TMP1. |->vm_sfi2d_1: | sfi2d SFARG1HI, SFARG1LO | |// Input SFARG2LO. Output: SFARG2*. Temporaries: AT, TMP0, TMP1. |->vm_sfi2d_2: | sfi2d SFARG2HI, SFARG2LO | |// Soft-float comparison. Equivalent to c.eq.d. |// Input: SFARG*. Output: CRET1. Temporaries: AT, TMP0, TMP1. |->vm_sfcmpeq: |.if not FPU | sll AT, SFARG1HI, 1 | sll TMP0, SFARG2HI, 1 | or CRET1, SFARG1LO, SFARG2LO | or TMP1, AT, TMP0 | or TMP1, TMP1, CRET1 | beqz TMP1, >8 // Both args +-0: return 1. |. sltu CRET1, r0, SFARG1LO | lui TMP1, 0xffe0 | addu AT, AT, CRET1 | sltu CRET1, r0, SFARG2LO | sltu AT, TMP1, AT | addu TMP0, TMP0, CRET1 | sltu TMP0, TMP1, TMP0 | or TMP1, AT, TMP0 | bnez TMP1, >9 // Either arg is NaN: return 0; |. xor TMP0, SFARG1HI, SFARG2HI | xor TMP1, SFARG1LO, SFARG2LO | or AT, TMP0, TMP1 | jr ra |. sltiu CRET1, AT, 1 // Same values: return 1. |8: | jr ra |. li CRET1, 1 |9: | jr ra |. li CRET1, 0 |.endif | |// Soft-float comparison. Equivalent to c.ult.d and c.olt.d. |// Input: SFARG*. Output: CRET1. Temporaries: AT, TMP0, TMP1, CRET2. |->vm_sfcmpult: |.if not FPU | b >1 |. li CRET2, 1 |.endif | |->vm_sfcmpolt: |.if not FPU | li CRET2, 0 |1: | sll AT, SFARG1HI, 1 | sll TMP0, SFARG2HI, 1 | or CRET1, SFARG1LO, SFARG2LO | or TMP1, AT, TMP0 | or TMP1, TMP1, CRET1 | beqz TMP1, >8 // Both args +-0: return 0. |. sltu CRET1, r0, SFARG1LO | lui TMP1, 0xffe0 | addu AT, AT, CRET1 | sltu CRET1, r0, SFARG2LO | sltu AT, TMP1, AT | addu TMP0, TMP0, CRET1 | sltu TMP0, TMP1, TMP0 | or TMP1, AT, TMP0 | bnez TMP1, >9 // Either arg is NaN: return 0 or 1; |. and AT, SFARG1HI, SFARG2HI | bltz AT, >5 // Both args negative? |. nop | beq SFARG1HI, SFARG2HI, >8 |. sltu CRET1, SFARG1LO, SFARG2LO | jr ra |. slt CRET1, SFARG1HI, SFARG2HI |5: // Swap conditions if both operands are negative. | beq SFARG1HI, SFARG2HI, >8 |. sltu CRET1, SFARG2LO, SFARG1LO | jr ra |. slt CRET1, SFARG2HI, SFARG1HI |8: | jr ra |. nop |9: | jr ra |. move CRET1, CRET2 |.endif | |// Soft-float comparison. Equivalent to c.ole.d a, b or c.ole.d b, a. |// Input: SFARG*, TMP3. Output: CRET1. Temporaries: AT, TMP0, TMP1. |->vm_sfcmpolex: |.if not FPU | sll AT, SFARG1HI, 1 | sll TMP0, SFARG2HI, 1 | or CRET1, SFARG1LO, SFARG2LO | or TMP1, AT, TMP0 | or TMP1, TMP1, CRET1 | beqz TMP1, >8 // Both args +-0: return 1. |. sltu CRET1, r0, SFARG1LO | lui TMP1, 0xffe0 | addu AT, AT, CRET1 | sltu CRET1, r0, SFARG2LO | sltu AT, TMP1, AT | addu TMP0, TMP0, CRET1 | sltu TMP0, TMP1, TMP0 | or TMP1, AT, TMP0 | bnez TMP1, >9 // Either arg is NaN: return 0; |. and AT, SFARG1HI, SFARG2HI | xor AT, AT, TMP3 | bltz AT, >5 // Both args negative? |. nop | beq SFARG1HI, SFARG2HI, >6 |. sltu CRET1, SFARG2LO, SFARG1LO | jr ra |. slt CRET1, SFARG2HI, SFARG1HI |5: // Swap conditions if both operands are negative. | beq SFARG1HI, SFARG2HI, >6 |. sltu CRET1, SFARG1LO, SFARG2LO | slt CRET1, SFARG1HI, SFARG2HI |6: | jr ra |. nop |8: | jr ra |. li CRET1, 1 |9: | jr ra |. li CRET1, 0 |.endif | |.macro sfmin_max, name, intins |->vm_sf .. name: |.if JIT and not FPU | move TMP2, ra | bal ->vm_sfcmpolt |. nop | move TMP0, CRET1 | move SFRETHI, SFARG1HI | move SFRETLO, SFARG1LO | move ra, TMP2 | intins SFRETHI, SFARG2HI, TMP0 | jr ra |. intins SFRETLO, SFARG2LO, TMP0 |.endif |.endmacro | | sfmin_max min, movz | sfmin_max max, movn | |//----------------------------------------------------------------------- |//-- Miscellaneous functions -------------------------------------------- |//----------------------------------------------------------------------- | |//----------------------------------------------------------------------- |//-- FFI helper functions ----------------------------------------------- |//----------------------------------------------------------------------- | |// Handler for callback functions. Callback slot number in r1, g in r2. |->vm_ffi_callback: |.if FFI |.type CTSTATE, CTState, PC | saveregs | lw CTSTATE, GL:r2->ctype_state | addiu DISPATCH, r2, GG_G2DISP | load_got lj_ccallback_enter | sw r1, CTSTATE->cb.slot | sw CARG1, CTSTATE->cb.gpr[0] | sw CARG2, CTSTATE->cb.gpr[1] | .FPU sdc1 FARG1, CTSTATE->cb.fpr[0] | sw CARG3, CTSTATE->cb.gpr[2] | sw CARG4, CTSTATE->cb.gpr[3] | .FPU sdc1 FARG2, CTSTATE->cb.fpr[1] | addiu TMP0, sp, CFRAME_SPACE+16 | sw TMP0, CTSTATE->cb.stack | sw r0, SAVE_PC // Any value outside of bytecode is ok. | move CARG2, sp | call_intern lj_ccallback_enter // (CTState *cts, void *cf) |. move CARG1, CTSTATE | // Returns lua_State *. | lw BASE, L:CRET1->base | lw RC, L:CRET1->top | li TISNUM, LJ_TISNUM // Setup type comparison constants. | move L, CRET1 | .FPU lui TMP3, 0x59c0 // TOBIT = 2^52 + 2^51 (float). | lw LFUNC:RB, FRAME_FUNC(BASE) | .FPU mtc1 TMP3, TOBIT | li_vmstate INTERP | li TISNIL, LJ_TNIL | subu RC, RC, BASE | st_vmstate | .FPU cvt.d.s TOBIT, TOBIT | ins_callt |.endif | |->cont_ffi_callback: // Return from FFI callback. |.if FFI | load_got lj_ccallback_leave | lw CTSTATE, DISPATCH_GL(ctype_state)(DISPATCH) | sw BASE, L->base | sw RB, L->top | sw L, CTSTATE->L | move CARG2, RA | call_intern lj_ccallback_leave // (CTState *cts, TValue *o) |. move CARG1, CTSTATE | .FPU ldc1 FRET1, CTSTATE->cb.fpr[0] | lw CRET1, CTSTATE->cb.gpr[0] | .FPU ldc1 FRET2, CTSTATE->cb.fpr[1] | b ->vm_leave_unw |. lw CRET2, CTSTATE->cb.gpr[1] |.endif | |->vm_ffi_call: // Call C function via FFI. | // Caveat: needs special frame unwinding, see below. |.if FFI | .type CCSTATE, CCallState, CARG1 | lw TMP1, CCSTATE->spadj | lbu CARG2, CCSTATE->nsp | move TMP2, sp | subu sp, sp, TMP1 | sw ra, -4(TMP2) | sll CARG2, CARG2, 2 | sw r16, -8(TMP2) | sw CCSTATE, -12(TMP2) | move r16, TMP2 | addiu TMP1, CCSTATE, offsetof(CCallState, stack) | addiu TMP2, sp, 16 | beqz CARG2, >2 |. addu TMP3, TMP1, CARG2 |1: | lw TMP0, 0(TMP1) | addiu TMP1, TMP1, 4 | sltu AT, TMP1, TMP3 | sw TMP0, 0(TMP2) | bnez AT, <1 |. addiu TMP2, TMP2, 4 |2: | lw CFUNCADDR, CCSTATE->func | lw CARG2, CCSTATE->gpr[1] | lw CARG3, CCSTATE->gpr[2] | lw CARG4, CCSTATE->gpr[3] | .FPU ldc1 FARG1, CCSTATE->fpr[0] | .FPU ldc1 FARG2, CCSTATE->fpr[1] | jalr CFUNCADDR |. lw CARG1, CCSTATE->gpr[0] // Do this last, since CCSTATE is CARG1. | lw CCSTATE:TMP1, -12(r16) | lw TMP2, -8(r16) | lw ra, -4(r16) | sw CRET1, CCSTATE:TMP1->gpr[0] | sw CRET2, CCSTATE:TMP1->gpr[1] |.if FPU | sdc1 FRET1, CCSTATE:TMP1->fpr[0] | sdc1 FRET2, CCSTATE:TMP1->fpr[1] |.else | sw CARG1, CCSTATE:TMP1->gpr[2] // Soft-float: complex double .im part. | sw CARG2, CCSTATE:TMP1->gpr[3] |.endif | move sp, r16 | jr ra |. move r16, TMP2 |.endif |// Note: vm_ffi_call must be the last function in this object file! | |//----------------------------------------------------------------------- } /* Generate the code for a single instruction. */ static void build_ins(BuildCtx *ctx, BCOp op, int defop) { int vk = 0; |=>defop: switch (op) { /* -- Comparison ops ---------------------------------------------------- */ /* Remember: all ops branch for a true comparison, fall through otherwise. */ case BC_ISLT: case BC_ISGE: case BC_ISLE: case BC_ISGT: | // RA = src1*8, RD = src2*8, JMP with RD = target |.macro bc_comp, FRA, FRD, RAHI, RALO, RDHI, RDLO, movop, fmovop, fcomp, sfcomp | addu RA, BASE, RA | addu RD, BASE, RD | lw RAHI, HI(RA) | lw RDHI, HI(RD) | lhu TMP2, OFS_RD(PC) | addiu PC, PC, 4 | bne RAHI, TISNUM, >2 |. lw RALO, LO(RA) | lui TMP3, (-(BCBIAS_J*4 >> 16) & 65535) | lw RDLO, LO(RD) | bne RDHI, TISNUM, >5 |. decode_RD4b TMP2 | slt AT, SFARG1LO, SFARG2LO | addu TMP2, TMP2, TMP3 | movop TMP2, r0, AT |1: | addu PC, PC, TMP2 | ins_next | |2: // RA is not an integer. | sltiu AT, RAHI, LJ_TISNUM | beqz AT, ->vmeta_comp |. lui TMP3, (-(BCBIAS_J*4 >> 16) & 65535) | sltiu AT, RDHI, LJ_TISNUM |.if FPU | ldc1 FRA, 0(RA) | ldc1 FRD, 0(RD) |.else | lw RDLO, LO(RD) |.endif | beqz AT, >4 |. decode_RD4b TMP2 |3: // RA and RD are both numbers. |.if FPU | fcomp f20, f22 | addu TMP2, TMP2, TMP3 | b <1 |. fmovop TMP2, r0 |.else | bal sfcomp |. addu TMP2, TMP2, TMP3 | b <1 |. movop TMP2, r0, CRET1 |.endif | |4: // RA is a number, RD is not a number. | bne RDHI, TISNUM, ->vmeta_comp | // RA is a number, RD is an integer. Convert RD to a number. |.if FPU |. lwc1 FRD, LO(RD) | b <3 |. cvt.d.w FRD, FRD |.else |. nop |.if "RDHI" == "SFARG1HI" | bal ->vm_sfi2d_1 |.else | bal ->vm_sfi2d_2 |.endif |. nop | b <3 |. nop |.endif | |5: // RA is an integer, RD is not an integer | sltiu AT, RDHI, LJ_TISNUM | beqz AT, ->vmeta_comp | // RA is an integer, RD is a number. Convert RA to a number. |.if FPU |. mtc1 RALO, FRA | ldc1 FRD, 0(RD) | b <3 | cvt.d.w FRA, FRA |.else |. nop |.if "RAHI" == "SFARG1HI" | bal ->vm_sfi2d_1 |.else | bal ->vm_sfi2d_2 |.endif |. nop | b <3 |. nop |.endif |.endmacro | if (op == BC_ISLT) { | bc_comp f20, f22, SFARG1HI, SFARG1LO, SFARG2HI, SFARG2LO, movz, movf, c.olt.d, ->vm_sfcmpolt } else if (op == BC_ISGE) { | bc_comp f20, f22, SFARG1HI, SFARG1LO, SFARG2HI, SFARG2LO, movn, movt, c.olt.d, ->vm_sfcmpolt } else if (op == BC_ISLE) { | bc_comp f22, f20, SFARG2HI, SFARG2LO, SFARG1HI, SFARG1LO, movn, movt, c.ult.d, ->vm_sfcmpult } else { | bc_comp f22, f20, SFARG2HI, SFARG2LO, SFARG1HI, SFARG1LO, movz, movf, c.ult.d, ->vm_sfcmpult } break; case BC_ISEQV: case BC_ISNEV: vk = op == BC_ISEQV; | // RA = src1*8, RD = src2*8, JMP with RD = target | addu RA, BASE, RA | addiu PC, PC, 4 | addu RD, BASE, RD | lw SFARG1HI, HI(RA) | lhu TMP2, -4+OFS_RD(PC) | lw SFARG2HI, HI(RD) | lui TMP3, (-(BCBIAS_J*4 >> 16) & 65535) | sltu AT, TISNUM, SFARG1HI | sltu TMP0, TISNUM, SFARG2HI | or AT, AT, TMP0 if (vk) { | beqz AT, ->BC_ISEQN_Z } else { | beqz AT, ->BC_ISNEN_Z } |. decode_RD4b TMP2 | // Either or both types are not numbers. | lw SFARG1LO, LO(RA) | lw SFARG2LO, LO(RD) | addu TMP2, TMP2, TMP3 |.if FFI | li TMP3, LJ_TCDATA | beq SFARG1HI, TMP3, ->vmeta_equal_cd |.endif |. sltiu AT, SFARG1HI, LJ_TISPRI // Not a primitive? |.if FFI | beq SFARG2HI, TMP3, ->vmeta_equal_cd |.endif |. xor TMP3, SFARG1LO, SFARG2LO // Same tv? | xor SFARG2HI, SFARG2HI, SFARG1HI // Same type? | sltiu TMP0, SFARG1HI, LJ_TISTABUD+1 // Table or userdata? | movz TMP3, r0, AT // Ignore tv if primitive. | movn TMP0, r0, SFARG2HI // Tab/ud and same type? | or AT, SFARG2HI, TMP3 // Same type && (pri||same tv). | movz TMP0, r0, AT | beqz TMP0, >1 // Done if not tab/ud or not same type or same tv. if (vk) { |. movn TMP2, r0, AT } else { |. movz TMP2, r0, AT } | // Different tables or userdatas. Need to check __eq metamethod. | // Field metatable must be at same offset for GCtab and GCudata! | lw TAB:TMP1, TAB:SFARG1LO->metatable | beqz TAB:TMP1, >1 // No metatable? |. nop | lbu TMP1, TAB:TMP1->nomm | andi TMP1, TMP1, 1<1 // Or 'no __eq' flag set? |. nop | b ->vmeta_equal // Handle __eq metamethod. |. li TMP0, 1-vk // ne = 0 or 1. |1: | addu PC, PC, TMP2 | ins_next break; case BC_ISEQS: case BC_ISNES: vk = op == BC_ISEQS; | // RA = src*8, RD = str_const*8 (~), JMP with RD = target | addu RA, BASE, RA | addiu PC, PC, 4 | lw TMP0, HI(RA) | srl RD, RD, 1 | lw STR:TMP3, LO(RA) | subu RD, KBASE, RD | lhu TMP2, -4+OFS_RD(PC) |.if FFI | li AT, LJ_TCDATA | beq TMP0, AT, ->vmeta_equal_cd |.endif |. lw STR:TMP1, -4(RD) // KBASE-4-str_const*4 | addiu TMP0, TMP0, -LJ_TSTR | decode_RD4b TMP2 | xor TMP1, STR:TMP1, STR:TMP3 | or TMP0, TMP0, TMP1 | lui TMP3, (-(BCBIAS_J*4 >> 16) & 65535) | addu TMP2, TMP2, TMP3 if (vk) { | movn TMP2, r0, TMP0 } else { | movz TMP2, r0, TMP0 } | addu PC, PC, TMP2 | ins_next break; case BC_ISEQN: case BC_ISNEN: vk = op == BC_ISEQN; | // RA = src*8, RD = num_const*8, JMP with RD = target | addu RA, BASE, RA | addu RD, KBASE, RD | lw SFARG1HI, HI(RA) | lw SFARG2HI, HI(RD) | lhu TMP2, OFS_RD(PC) | addiu PC, PC, 4 | lui TMP3, (-(BCBIAS_J*4 >> 16) & 65535) | decode_RD4b TMP2 if (vk) { |->BC_ISEQN_Z: } else { |->BC_ISNEN_Z: } | bne SFARG1HI, TISNUM, >3 |. lw SFARG1LO, LO(RA) | lw SFARG2LO, LO(RD) | addu TMP2, TMP2, TMP3 | bne SFARG2HI, TISNUM, >6 |. xor AT, SFARG1LO, SFARG2LO if (vk) { | movn TMP2, r0, AT |1: | addu PC, PC, TMP2 |2: } else { | movz TMP2, r0, AT |1: |2: | addu PC, PC, TMP2 } | ins_next | |3: // RA is not an integer. | sltiu AT, SFARG1HI, LJ_TISNUM |.if FFI | beqz AT, >8 |.else | beqz AT, <2 |.endif |. addu TMP2, TMP2, TMP3 | sltiu AT, SFARG2HI, LJ_TISNUM |.if FPU | ldc1 f20, 0(RA) | ldc1 f22, 0(RD) |.endif | beqz AT, >5 |. lw SFARG2LO, LO(RD) |4: // RA and RD are both numbers. |.if FPU | c.eq.d f20, f22 | b <1 if (vk) { |. movf TMP2, r0 } else { |. movt TMP2, r0 } |.else | bal ->vm_sfcmpeq |. nop | b <1 if (vk) { |. movz TMP2, r0, CRET1 } else { |. movn TMP2, r0, CRET1 } |.endif | |5: // RA is a number, RD is not a number. |.if FFI | bne SFARG2HI, TISNUM, >9 |.else | bne SFARG2HI, TISNUM, <2 |.endif | // RA is a number, RD is an integer. Convert RD to a number. |.if FPU |. lwc1 f22, LO(RD) | b <4 |. cvt.d.w f22, f22 |.else |. nop | bal ->vm_sfi2d_2 |. nop | b <4 |. nop |.endif | |6: // RA is an integer, RD is not an integer | sltiu AT, SFARG2HI, LJ_TISNUM |.if FFI | beqz AT, >9 |.else | beqz AT, <2 |.endif | // RA is an integer, RD is a number. Convert RA to a number. |.if FPU |. mtc1 SFARG1LO, f20 | ldc1 f22, 0(RD) | b <4 | cvt.d.w f20, f20 |.else |. nop | bal ->vm_sfi2d_1 |. nop | b <4 |. nop |.endif | |.if FFI |8: | li AT, LJ_TCDATA | bne SFARG1HI, AT, <2 |. nop | b ->vmeta_equal_cd |. nop |9: | li AT, LJ_TCDATA | bne SFARG2HI, AT, <2 |. nop | b ->vmeta_equal_cd |. nop |.endif break; case BC_ISEQP: case BC_ISNEP: vk = op == BC_ISEQP; | // RA = src*8, RD = primitive_type*8 (~), JMP with RD = target | addu RA, BASE, RA | srl TMP1, RD, 3 | lw TMP0, HI(RA) | lhu TMP2, OFS_RD(PC) | not TMP1, TMP1 | addiu PC, PC, 4 |.if FFI | li AT, LJ_TCDATA | beq TMP0, AT, ->vmeta_equal_cd |.endif |. xor TMP0, TMP0, TMP1 | decode_RD4b TMP2 | lui TMP3, (-(BCBIAS_J*4 >> 16) & 65535) | addu TMP2, TMP2, TMP3 if (vk) { | movn TMP2, r0, TMP0 } else { | movz TMP2, r0, TMP0 } | addu PC, PC, TMP2 | ins_next break; /* -- Unary test and copy ops ------------------------------------------- */ case BC_ISTC: case BC_ISFC: case BC_IST: case BC_ISF: | // RA = dst*8 or unused, RD = src*8, JMP with RD = target | addu RD, BASE, RD | lhu TMP2, OFS_RD(PC) | lw TMP0, HI(RD) | addiu PC, PC, 4 if (op == BC_IST || op == BC_ISF) { | sltiu TMP0, TMP0, LJ_TISTRUECOND | decode_RD4b TMP2 | lui TMP3, (-(BCBIAS_J*4 >> 16) & 65535) | addu TMP2, TMP2, TMP3 if (op == BC_IST) { | movz TMP2, r0, TMP0 } else { | movn TMP2, r0, TMP0 } | addu PC, PC, TMP2 } else { | sltiu TMP0, TMP0, LJ_TISTRUECOND | lw SFRETHI, HI(RD) | lw SFRETLO, LO(RD) if (op == BC_ISTC) { | beqz TMP0, >1 } else { | bnez TMP0, >1 } |. addu RA, BASE, RA | decode_RD4b TMP2 | lui TMP3, (-(BCBIAS_J*4 >> 16) & 65535) | addu TMP2, TMP2, TMP3 | sw SFRETHI, HI(RA) | sw SFRETLO, LO(RA) | addu PC, PC, TMP2 |1: } | ins_next break; case BC_ISTYPE: | // RA = src*8, RD = -type*8 | addu TMP2, BASE, RA | srl TMP1, RD, 3 | lw TMP0, HI(TMP2) | ins_next1 | addu AT, TMP0, TMP1 | bnez AT, ->vmeta_istype |. ins_next2 break; case BC_ISNUM: | // RA = src*8, RD = -(TISNUM-1)*8 | addu TMP2, BASE, RA | lw TMP0, HI(TMP2) | ins_next1 | sltiu AT, TMP0, LJ_TISNUM | beqz AT, ->vmeta_istype |. ins_next2 break; /* -- Unary ops --------------------------------------------------------- */ case BC_MOV: | // RA = dst*8, RD = src*8 | addu RD, BASE, RD | addu RA, BASE, RA | lw SFRETHI, HI(RD) | lw SFRETLO, LO(RD) | ins_next1 | sw SFRETHI, HI(RA) | sw SFRETLO, LO(RA) | ins_next2 break; case BC_NOT: | // RA = dst*8, RD = src*8 | addu RD, BASE, RD | addu RA, BASE, RA | lw TMP0, HI(RD) | li TMP1, LJ_TFALSE | sltiu TMP0, TMP0, LJ_TISTRUECOND | addiu TMP1, TMP0, LJ_TTRUE | ins_next1 | sw TMP1, HI(RA) | ins_next2 break; case BC_UNM: | // RA = dst*8, RD = src*8 | addu RB, BASE, RD | lw SFARG1HI, HI(RB) | addu RA, BASE, RA | bne SFARG1HI, TISNUM, >2 |. lw SFARG1LO, LO(RB) | lui TMP1, 0x8000 | beq SFARG1LO, TMP1, ->vmeta_unm // Meta handler deals with -2^31. |. negu SFARG1LO, SFARG1LO |1: | ins_next1 | sw SFARG1HI, HI(RA) | sw SFARG1LO, LO(RA) | ins_next2 |2: | sltiu AT, SFARG1HI, LJ_TISNUM | beqz AT, ->vmeta_unm |. lui TMP1, 0x8000 | b <1 |. xor SFARG1HI, SFARG1HI, TMP1 break; case BC_LEN: | // RA = dst*8, RD = src*8 | addu CARG2, BASE, RD | addu RA, BASE, RA | lw TMP0, HI(CARG2) | lw CARG1, LO(CARG2) | li AT, LJ_TSTR | bne TMP0, AT, >2 |. li AT, LJ_TTAB | lw CRET1, STR:CARG1->len |1: | ins_next1 | sw TISNUM, HI(RA) | sw CRET1, LO(RA) | ins_next2 |2: | bne TMP0, AT, ->vmeta_len |. nop #if LJ_52 | lw TAB:TMP2, TAB:CARG1->metatable | bnez TAB:TMP2, >9 |. nop |3: #endif |->BC_LEN_Z: | load_got lj_tab_len | call_intern lj_tab_len // (GCtab *t) |. nop | // Returns uint32_t (but less than 2^31). | b <1 |. nop #if LJ_52 |9: | lbu TMP0, TAB:TMP2->nomm | andi TMP0, TMP0, 1<vmeta_len |. nop #endif break; /* -- Binary ops -------------------------------------------------------- */ |.macro fpmod, a, b, c | bal ->vm_floor // floor(b/c) |. div.d FARG1, b, c | mul.d a, FRET1, c | sub.d a, b, a // b - floor(b/c)*c |.endmacro |.macro sfpmod | addiu sp, sp, -16 | | load_got __divdf3 | sw SFARG1HI, HI(sp) | sw SFARG1LO, LO(sp) | sw SFARG2HI, 8+HI(sp) | call_extern |. sw SFARG2LO, 8+LO(sp) | | load_got floor | move SFARG1HI, SFRETHI | call_extern |. move SFARG1LO, SFRETLO | | load_got __muldf3 | move SFARG1HI, SFRETHI | move SFARG1LO, SFRETLO | lw SFARG2HI, 8+HI(sp) | call_extern |. lw SFARG2LO, 8+LO(sp) | | load_got __subdf3 | lw SFARG1HI, HI(sp) | lw SFARG1LO, LO(sp) | move SFARG2HI, SFRETHI | call_extern |. move SFARG2LO, SFRETLO | | addiu sp, sp, 16 |.endmacro |.macro ins_arithpre, label ||vk = ((int)op - BC_ADDVN) / (BC_ADDNV-BC_ADDVN); | // RA = dst*8, RB = src1*8, RC = src2*8 | num_const*8 ||switch (vk) { ||case 0: | decode_RB8a RB, INS | decode_RB8b RB | decode_RDtoRC8 RC, RD | // RA = dst*8, RB = src1*8, RC = num_const*8 | addu RB, BASE, RB |.if "label" ~= "none" | b label |.endif |. addu RC, KBASE, RC || break; ||case 1: | decode_RB8a RC, INS | decode_RB8b RC | decode_RDtoRC8 RB, RD | // RA = dst*8, RB = num_const*8, RC = src1*8 | addu RC, BASE, RC |.if "label" ~= "none" | b label |.endif |. addu RB, KBASE, RB || break; ||default: | decode_RB8a RB, INS | decode_RB8b RB | decode_RDtoRC8 RC, RD | // RA = dst*8, RB = src1*8, RC = src2*8 | addu RB, BASE, RB |.if "label" ~= "none" | b label |.endif |. addu RC, BASE, RC || break; ||} |.endmacro | |.macro ins_arith, intins, fpins, fpcall, label | ins_arithpre none | |.if "label" ~= "none" |label: |.endif | | lw SFARG1HI, HI(RB) | lw SFARG2HI, HI(RC) | |.if "intins" ~= "div" | | // Check for two integers. | lw SFARG1LO, LO(RB) | bne SFARG1HI, TISNUM, >5 |. lw SFARG2LO, LO(RC) | bne SFARG2HI, TISNUM, >5 | |.if "intins" == "addu" |. intins CRET1, SFARG1LO, SFARG2LO | xor TMP1, CRET1, SFARG1LO // ((y^a) & (y^b)) < 0: overflow. | xor TMP2, CRET1, SFARG2LO | and TMP1, TMP1, TMP2 | bltz TMP1, ->vmeta_arith |. addu RA, BASE, RA |.elif "intins" == "subu" |. intins CRET1, SFARG1LO, SFARG2LO | xor TMP1, CRET1, SFARG1LO // ((y^a) & (a^b)) < 0: overflow. | xor TMP2, SFARG1LO, SFARG2LO | and TMP1, TMP1, TMP2 | bltz TMP1, ->vmeta_arith |. addu RA, BASE, RA |.elif "intins" == "mult" |. intins SFARG1LO, SFARG2LO | mflo CRET1 | mfhi TMP2 | sra TMP1, CRET1, 31 | bne TMP1, TMP2, ->vmeta_arith |. addu RA, BASE, RA |.else |. load_got lj_vm_modi | beqz SFARG2LO, ->vmeta_arith |. addu RA, BASE, RA |.if ENDIAN_BE | move CARG1, SFARG1LO |.endif | call_extern |. move CARG2, SFARG2LO |.endif | | ins_next1 | sw TISNUM, HI(RA) | sw CRET1, LO(RA) |3: | ins_next2 | |.elif not FPU | | lw SFARG1LO, LO(RB) | lw SFARG2LO, LO(RC) | |.endif | |5: // Check for two numbers. | .FPU ldc1 f20, 0(RB) | sltiu AT, SFARG1HI, LJ_TISNUM | sltiu TMP0, SFARG2HI, LJ_TISNUM | .FPU ldc1 f22, 0(RC) | and AT, AT, TMP0 | beqz AT, ->vmeta_arith |. addu RA, BASE, RA | |.if FPU | fpins FRET1, f20, f22 |.elif "fpcall" == "sfpmod" | sfpmod |.else | load_got fpcall | call_extern |. nop |.endif | | ins_next1 |.if not FPU | sw SFRETHI, HI(RA) |.endif |.if "intins" ~= "div" | b <3 |.endif |.if FPU |. sdc1 FRET1, 0(RA) |.else |. sw SFRETLO, LO(RA) |.endif |.if "intins" == "div" | ins_next2 |.endif | |.endmacro case BC_ADDVN: case BC_ADDNV: case BC_ADDVV: | ins_arith addu, add.d, __adddf3, none break; case BC_SUBVN: case BC_SUBNV: case BC_SUBVV: | ins_arith subu, sub.d, __subdf3, none break; case BC_MULVN: case BC_MULNV: case BC_MULVV: | ins_arith mult, mul.d, __muldf3, none break; case BC_DIVVN: | ins_arith div, div.d, __divdf3, ->BC_DIVVN_Z break; case BC_DIVNV: case BC_DIVVV: | ins_arithpre ->BC_DIVVN_Z break; case BC_MODVN: | ins_arith modi, fpmod, sfpmod, ->BC_MODVN_Z break; case BC_MODNV: case BC_MODVV: | ins_arithpre ->BC_MODVN_Z break; case BC_POW: | ins_arithpre none | lw SFARG1HI, HI(RB) | lw SFARG2HI, HI(RC) | sltiu AT, SFARG1HI, LJ_TISNUM | sltiu TMP0, SFARG2HI, LJ_TISNUM | and AT, AT, TMP0 | load_got pow | beqz AT, ->vmeta_arith |. addu RA, BASE, RA |.if FPU | ldc1 FARG1, 0(RB) | ldc1 FARG2, 0(RC) |.else | lw SFARG1LO, LO(RB) | lw SFARG2LO, LO(RC) |.endif | call_extern |. nop | ins_next1 |.if FPU | sdc1 FRET1, 0(RA) |.else | sw SFRETHI, HI(RA) | sw SFRETLO, LO(RA) |.endif | ins_next2 break; case BC_CAT: | // RA = dst*8, RB = src_start*8, RC = src_end*8 | decode_RB8a RB, INS | decode_RB8b RB | decode_RDtoRC8 RC, RD | subu CARG3, RC, RB | sw BASE, L->base | addu CARG2, BASE, RC | move MULTRES, RB |->BC_CAT_Z: | load_got lj_meta_cat | srl CARG3, CARG3, 3 | sw PC, SAVE_PC | call_intern lj_meta_cat // (lua_State *L, TValue *top, int left) |. move CARG1, L | // Returns NULL (finished) or TValue * (metamethod). | bnez CRET1, ->vmeta_binop |. lw BASE, L->base | addu RB, BASE, MULTRES | lw SFRETHI, HI(RB) | lw SFRETLO, LO(RB) | addu RA, BASE, RA | ins_next1 | sw SFRETHI, HI(RA) | sw SFRETLO, LO(RA) | ins_next2 break; /* -- Constant ops ------------------------------------------------------ */ case BC_KSTR: | // RA = dst*8, RD = str_const*8 (~) | srl TMP1, RD, 1 | subu TMP1, KBASE, TMP1 | ins_next1 | lw TMP0, -4(TMP1) // KBASE-4-str_const*4 | addu RA, BASE, RA | li TMP2, LJ_TSTR | sw TMP0, LO(RA) | sw TMP2, HI(RA) | ins_next2 break; case BC_KCDATA: |.if FFI | // RA = dst*8, RD = cdata_const*8 (~) | srl TMP1, RD, 1 | subu TMP1, KBASE, TMP1 | ins_next1 | lw TMP0, -4(TMP1) // KBASE-4-cdata_const*4 | addu RA, BASE, RA | li TMP2, LJ_TCDATA | sw TMP0, LO(RA) | sw TMP2, HI(RA) | ins_next2 |.endif break; case BC_KSHORT: | // RA = dst*8, RD = int16_literal*8 | sra RD, INS, 16 | addu RA, BASE, RA | ins_next1 | sw TISNUM, HI(RA) | sw RD, LO(RA) | ins_next2 break; case BC_KNUM: | // RA = dst*8, RD = num_const*8 | addu RD, KBASE, RD | addu RA, BASE, RA | lw SFRETHI, HI(RD) | lw SFRETLO, LO(RD) | ins_next1 | sw SFRETHI, HI(RA) | sw SFRETLO, LO(RA) | ins_next2 break; case BC_KPRI: | // RA = dst*8, RD = primitive_type*8 (~) | srl TMP1, RD, 3 | addu RA, BASE, RA | not TMP0, TMP1 | ins_next1 | sw TMP0, HI(RA) | ins_next2 break; case BC_KNIL: | // RA = base*8, RD = end*8 | addu RA, BASE, RA | sw TISNIL, HI(RA) | addiu RA, RA, 8 | addu RD, BASE, RD |1: | sw TISNIL, HI(RA) | slt AT, RA, RD | bnez AT, <1 |. addiu RA, RA, 8 | ins_next_ break; /* -- Upvalue and function ops ------------------------------------------ */ case BC_UGET: | // RA = dst*8, RD = uvnum*8 | lw LFUNC:RB, FRAME_FUNC(BASE) | srl RD, RD, 1 | addu RD, RD, LFUNC:RB | lw UPVAL:RB, LFUNC:RD->uvptr | ins_next1 | lw TMP1, UPVAL:RB->v | lw SFRETHI, HI(TMP1) | lw SFRETLO, LO(TMP1) | addu RA, BASE, RA | sw SFRETHI, HI(RA) | sw SFRETLO, LO(RA) | ins_next2 break; case BC_USETV: | // RA = uvnum*8, RD = src*8 | lw LFUNC:RB, FRAME_FUNC(BASE) | srl RA, RA, 1 | addu RD, BASE, RD | addu RA, RA, LFUNC:RB | lw UPVAL:RB, LFUNC:RA->uvptr | lw SFRETHI, HI(RD) | lw SFRETLO, LO(RD) | lbu TMP3, UPVAL:RB->marked | lw CARG2, UPVAL:RB->v | andi TMP3, TMP3, LJ_GC_BLACK // isblack(uv) | lbu TMP0, UPVAL:RB->closed | sw SFRETHI, HI(CARG2) | sw SFRETLO, LO(CARG2) | li AT, LJ_GC_BLACK|1 | or TMP3, TMP3, TMP0 | beq TMP3, AT, >2 // Upvalue is closed and black? |. addiu TMP2, SFRETHI, -(LJ_TNUMX+1) |1: | ins_next | |2: // Check if new value is collectable. | sltiu AT, TMP2, LJ_TISGCV - (LJ_TNUMX+1) | beqz AT, <1 // tvisgcv(v) |. nop | lbu TMP3, GCOBJ:SFRETLO->gch.marked | andi TMP3, TMP3, LJ_GC_WHITES // iswhite(v) | beqz TMP3, <1 |. load_got lj_gc_barrieruv | // Crossed a write barrier. Move the barrier forward. | call_intern lj_gc_barrieruv // (global_State *g, TValue *tv) |. addiu CARG1, DISPATCH, GG_DISP2G | b <1 |. nop break; case BC_USETS: | // RA = uvnum*8, RD = str_const*8 (~) | lw LFUNC:RB, FRAME_FUNC(BASE) | srl RA, RA, 1 | srl TMP1, RD, 1 | addu RA, RA, LFUNC:RB | subu TMP1, KBASE, TMP1 | lw UPVAL:RB, LFUNC:RA->uvptr | lw STR:TMP1, -4(TMP1) // KBASE-4-str_const*4 | lbu TMP2, UPVAL:RB->marked | lw CARG2, UPVAL:RB->v | lbu TMP3, STR:TMP1->marked | andi AT, TMP2, LJ_GC_BLACK // isblack(uv) | lbu TMP2, UPVAL:RB->closed | li TMP0, LJ_TSTR | sw STR:TMP1, LO(CARG2) | bnez AT, >2 |. sw TMP0, HI(CARG2) |1: | ins_next | |2: // Check if string is white and ensure upvalue is closed. | beqz TMP2, <1 |. andi AT, TMP3, LJ_GC_WHITES // iswhite(str) | beqz AT, <1 |. load_got lj_gc_barrieruv | // Crossed a write barrier. Move the barrier forward. | call_intern lj_gc_barrieruv // (global_State *g, TValue *tv) |. addiu CARG1, DISPATCH, GG_DISP2G | b <1 |. nop break; case BC_USETN: | // RA = uvnum*8, RD = num_const*8 | lw LFUNC:RB, FRAME_FUNC(BASE) | srl RA, RA, 1 | addu RD, KBASE, RD | addu RA, RA, LFUNC:RB | lw UPVAL:RB, LFUNC:RA->uvptr | lw SFRETHI, HI(RD) | lw SFRETLO, LO(RD) | lw TMP1, UPVAL:RB->v | ins_next1 | sw SFRETHI, HI(TMP1) | sw SFRETLO, LO(TMP1) | ins_next2 break; case BC_USETP: | // RA = uvnum*8, RD = primitive_type*8 (~) | lw LFUNC:RB, FRAME_FUNC(BASE) | srl RA, RA, 1 | srl TMP0, RD, 3 | addu RA, RA, LFUNC:RB | not TMP0, TMP0 | lw UPVAL:RB, LFUNC:RA->uvptr | ins_next1 | lw TMP1, UPVAL:RB->v | sw TMP0, HI(TMP1) | ins_next2 break; case BC_UCLO: | // RA = level*8, RD = target | lw TMP2, L->openupval | branch_RD // Do this first since RD is not saved. | load_got lj_func_closeuv | sw BASE, L->base | beqz TMP2, >1 |. move CARG1, L | call_intern lj_func_closeuv // (lua_State *L, TValue *level) |. addu CARG2, BASE, RA | lw BASE, L->base |1: | ins_next break; case BC_FNEW: | // RA = dst*8, RD = proto_const*8 (~) (holding function prototype) | srl TMP1, RD, 1 | load_got lj_func_newL_gc | subu TMP1, KBASE, TMP1 | lw CARG3, FRAME_FUNC(BASE) | lw CARG2, -4(TMP1) // KBASE-4-tab_const*4 | sw BASE, L->base | sw PC, SAVE_PC | // (lua_State *L, GCproto *pt, GCfuncL *parent) | call_intern lj_func_newL_gc |. move CARG1, L | // Returns GCfuncL *. | lw BASE, L->base | li TMP0, LJ_TFUNC | ins_next1 | addu RA, BASE, RA | sw LFUNC:CRET1, LO(RA) | sw TMP0, HI(RA) | ins_next2 break; /* -- Table ops --------------------------------------------------------- */ case BC_TNEW: case BC_TDUP: | // RA = dst*8, RD = (hbits|asize)*8 | tab_const*8 (~) | lw TMP0, DISPATCH_GL(gc.total)(DISPATCH) | lw TMP1, DISPATCH_GL(gc.threshold)(DISPATCH) | sw BASE, L->base | sw PC, SAVE_PC | sltu AT, TMP0, TMP1 | beqz AT, >5 |1: if (op == BC_TNEW) { | load_got lj_tab_new | srl CARG2, RD, 3 | andi CARG2, CARG2, 0x7ff | li TMP0, 0x801 | addiu AT, CARG2, -0x7ff | srl CARG3, RD, 14 | movz CARG2, TMP0, AT | // (lua_State *L, int32_t asize, uint32_t hbits) | call_intern lj_tab_new |. move CARG1, L | // Returns Table *. } else { | load_got lj_tab_dup | srl TMP1, RD, 1 | subu TMP1, KBASE, TMP1 | move CARG1, L | call_intern lj_tab_dup // (lua_State *L, Table *kt) |. lw CARG2, -4(TMP1) // KBASE-4-str_const*4 | // Returns Table *. } | lw BASE, L->base | ins_next1 | addu RA, BASE, RA | li TMP0, LJ_TTAB | sw TAB:CRET1, LO(RA) | sw TMP0, HI(RA) | ins_next2 |5: | load_got lj_gc_step_fixtop | move MULTRES, RD | call_intern lj_gc_step_fixtop // (lua_State *L) |. move CARG1, L | b <1 |. move RD, MULTRES break; case BC_GGET: | // RA = dst*8, RD = str_const*8 (~) case BC_GSET: | // RA = src*8, RD = str_const*8 (~) | lw LFUNC:TMP2, FRAME_FUNC(BASE) | srl TMP1, RD, 1 | subu TMP1, KBASE, TMP1 | lw TAB:RB, LFUNC:TMP2->env | lw STR:RC, -4(TMP1) // KBASE-4-str_const*4 if (op == BC_GGET) { | b ->BC_TGETS_Z } else { | b ->BC_TSETS_Z } |. addu RA, BASE, RA break; case BC_TGETV: | // RA = dst*8, RB = table*8, RC = key*8 | decode_RB8a RB, INS | decode_RB8b RB | decode_RDtoRC8 RC, RD | addu CARG2, BASE, RB | addu CARG3, BASE, RC | lw TMP1, HI(CARG2) | lw TMP2, HI(CARG3) | lw TAB:RB, LO(CARG2) | li AT, LJ_TTAB | bne TMP1, AT, ->vmeta_tgetv |. addu RA, BASE, RA | bne TMP2, TISNUM, >5 |. lw RC, LO(CARG3) | lw TMP0, TAB:RB->asize | lw TMP1, TAB:RB->array | sltu AT, RC, TMP0 | sll TMP2, RC, 3 | beqz AT, ->vmeta_tgetv // Integer key and in array part? |. addu TMP2, TMP1, TMP2 | lw SFRETHI, HI(TMP2) | beq SFRETHI, TISNIL, >2 |. lw SFRETLO, LO(TMP2) |1: | ins_next1 | sw SFRETHI, HI(RA) | sw SFRETLO, LO(RA) | ins_next2 | |2: // Check for __index if table value is nil. | lw TAB:TMP2, TAB:RB->metatable | beqz TAB:TMP2, <1 // No metatable: done. |. nop | lbu TMP0, TAB:TMP2->nomm | andi TMP0, TMP0, 1<vmeta_tgetv |. nop | |5: | li AT, LJ_TSTR | bne TMP2, AT, ->vmeta_tgetv |. nop | b ->BC_TGETS_Z // String key? |. nop break; case BC_TGETS: | // RA = dst*8, RB = table*8, RC = str_const*4 (~) | decode_RB8a RB, INS | decode_RB8b RB | addu CARG2, BASE, RB | decode_RC4a RC, INS | lw TMP0, HI(CARG2) | decode_RC4b RC | li AT, LJ_TTAB | lw TAB:RB, LO(CARG2) | subu CARG3, KBASE, RC | lw STR:RC, -4(CARG3) // KBASE-4-str_const*4 | bne TMP0, AT, ->vmeta_tgets1 |. addu RA, BASE, RA |->BC_TGETS_Z: | // TAB:RB = GCtab *, STR:RC = GCstr *, RA = dst*8 | lw TMP0, TAB:RB->hmask | lw TMP1, STR:RC->hash | lw NODE:TMP2, TAB:RB->node | and TMP1, TMP1, TMP0 // idx = str->hash & tab->hmask | sll TMP0, TMP1, 5 | sll TMP1, TMP1, 3 | subu TMP1, TMP0, TMP1 | addu NODE:TMP2, NODE:TMP2, TMP1 // node = tab->node + (idx*32-idx*8) |1: | lw CARG1, offsetof(Node, key)+HI(NODE:TMP2) | lw TMP0, offsetof(Node, key)+LO(NODE:TMP2) | lw NODE:TMP1, NODE:TMP2->next | lw SFRETHI, offsetof(Node, val)+HI(NODE:TMP2) | addiu CARG1, CARG1, -LJ_TSTR | xor TMP0, TMP0, STR:RC | or AT, CARG1, TMP0 | bnez AT, >4 |. lw TAB:TMP3, TAB:RB->metatable | beq SFRETHI, TISNIL, >5 // Key found, but nil value? |. lw SFRETLO, offsetof(Node, val)+LO(NODE:TMP2) |3: | ins_next1 | sw SFRETHI, HI(RA) | sw SFRETLO, LO(RA) | ins_next2 | |4: // Follow hash chain. | bnez NODE:TMP1, <1 |. move NODE:TMP2, NODE:TMP1 | // End of hash chain: key not found, nil result. | |5: // Check for __index if table value is nil. | beqz TAB:TMP3, <3 // No metatable: done. |. li SFRETHI, LJ_TNIL | lbu TMP0, TAB:TMP3->nomm | andi TMP0, TMP0, 1<vmeta_tgets |. nop break; case BC_TGETB: | // RA = dst*8, RB = table*8, RC = index*8 | decode_RB8a RB, INS | decode_RB8b RB | addu CARG2, BASE, RB | decode_RDtoRC8 RC, RD | lw CARG1, HI(CARG2) | li AT, LJ_TTAB | lw TAB:RB, LO(CARG2) | addu RA, BASE, RA | bne CARG1, AT, ->vmeta_tgetb |. srl TMP0, RC, 3 | lw TMP1, TAB:RB->asize | lw TMP2, TAB:RB->array | sltu AT, TMP0, TMP1 | beqz AT, ->vmeta_tgetb |. addu RC, TMP2, RC | lw SFRETHI, HI(RC) | beq SFRETHI, TISNIL, >5 |. lw SFRETLO, LO(RC) |1: | ins_next1 | sw SFRETHI, HI(RA) | sw SFRETLO, LO(RA) | ins_next2 | |5: // Check for __index if table value is nil. | lw TAB:TMP2, TAB:RB->metatable | beqz TAB:TMP2, <1 // No metatable: done. |. nop | lbu TMP1, TAB:TMP2->nomm | andi TMP1, TMP1, 1<vmeta_tgetb // Caveat: preserve TMP0 and CARG2! |. nop break; case BC_TGETR: | // RA = dst*8, RB = table*8, RC = key*8 | decode_RB8a RB, INS | decode_RB8b RB | decode_RDtoRC8 RC, RD | addu RB, BASE, RB | addu RC, BASE, RC | lw TAB:CARG1, LO(RB) | lw CARG2, LO(RC) | addu RA, BASE, RA | lw TMP0, TAB:CARG1->asize | lw TMP1, TAB:CARG1->array | sltu AT, CARG2, TMP0 | sll TMP2, CARG2, 3 | beqz AT, ->vmeta_tgetr // In array part? |. addu CRET1, TMP1, TMP2 | lw SFARG2HI, HI(CRET1) | lw SFARG2LO, LO(CRET1) |->BC_TGETR_Z: | ins_next1 | sw SFARG2HI, HI(RA) | sw SFARG2LO, LO(RA) | ins_next2 break; case BC_TSETV: | // RA = src*8, RB = table*8, RC = key*8 | decode_RB8a RB, INS | decode_RB8b RB | decode_RDtoRC8 RC, RD | addu CARG2, BASE, RB | addu CARG3, BASE, RC | lw TMP1, HI(CARG2) | lw TMP2, HI(CARG3) | lw TAB:RB, LO(CARG2) | li AT, LJ_TTAB | bne TMP1, AT, ->vmeta_tsetv |. addu RA, BASE, RA | bne TMP2, TISNUM, >5 |. lw RC, LO(CARG3) | lw TMP0, TAB:RB->asize | lw TMP1, TAB:RB->array | sltu AT, RC, TMP0 | sll TMP2, RC, 3 | beqz AT, ->vmeta_tsetv // Integer key and in array part? |. addu TMP1, TMP1, TMP2 | lw TMP0, HI(TMP1) | lbu TMP3, TAB:RB->marked | lw SFRETHI, HI(RA) | beq TMP0, TISNIL, >3 |. lw SFRETLO, LO(RA) |1: | andi AT, TMP3, LJ_GC_BLACK // isblack(table) | sw SFRETHI, HI(TMP1) | bnez AT, >7 |. sw SFRETLO, LO(TMP1) |2: | ins_next | |3: // Check for __newindex if previous value is nil. | lw TAB:TMP2, TAB:RB->metatable | beqz TAB:TMP2, <1 // No metatable: done. |. nop | lbu TMP2, TAB:TMP2->nomm | andi TMP2, TMP2, 1<vmeta_tsetv |. nop | |5: | li AT, LJ_TSTR | bne TMP2, AT, ->vmeta_tsetv |. nop | b ->BC_TSETS_Z // String key? |. nop | |7: // Possible table write barrier for the value. Skip valiswhite check. | barrierback TAB:RB, TMP3, TMP0, <2 break; case BC_TSETS: | // RA = src*8, RB = table*8, RC = str_const*8 (~) | decode_RB8a RB, INS | decode_RB8b RB | addu CARG2, BASE, RB | decode_RC4a RC, INS | lw TMP0, HI(CARG2) | decode_RC4b RC | li AT, LJ_TTAB | subu CARG3, KBASE, RC | lw TAB:RB, LO(CARG2) | lw STR:RC, -4(CARG3) // KBASE-4-str_const*4 | bne TMP0, AT, ->vmeta_tsets1 |. addu RA, BASE, RA |->BC_TSETS_Z: | // TAB:RB = GCtab *, STR:RC = GCstr *, RA = BASE+src*8 | lw TMP0, TAB:RB->hmask | lw TMP1, STR:RC->hash | lw NODE:TMP2, TAB:RB->node | sb r0, TAB:RB->nomm // Clear metamethod cache. | and TMP1, TMP1, TMP0 // idx = str->hash & tab->hmask | sll TMP0, TMP1, 5 | sll TMP1, TMP1, 3 | subu TMP1, TMP0, TMP1 | addu NODE:TMP2, NODE:TMP2, TMP1 // node = tab->node + (idx*32-idx*8) |.if FPU | ldc1 f20, 0(RA) |.else | lw SFRETHI, HI(RA) | lw SFRETLO, LO(RA) |.endif |1: | lw CARG1, offsetof(Node, key)+HI(NODE:TMP2) | lw TMP0, offsetof(Node, key)+LO(NODE:TMP2) | li AT, LJ_TSTR | lw NODE:TMP1, NODE:TMP2->next | bne CARG1, AT, >5 |. lw CARG2, offsetof(Node, val)+HI(NODE:TMP2) | bne TMP0, STR:RC, >5 |. lbu TMP3, TAB:RB->marked | beq CARG2, TISNIL, >4 // Key found, but nil value? |. lw TAB:TMP0, TAB:RB->metatable |2: | andi AT, TMP3, LJ_GC_BLACK // isblack(table) |.if FPU | bnez AT, >7 |. sdc1 f20, NODE:TMP2->val |.else | sw SFRETHI, NODE:TMP2->val.u32.hi | bnez AT, >7 |. sw SFRETLO, NODE:TMP2->val.u32.lo |.endif |3: | ins_next | |4: // Check for __newindex if previous value is nil. | beqz TAB:TMP0, <2 // No metatable: done. |. nop | lbu TMP0, TAB:TMP0->nomm | andi TMP0, TMP0, 1<vmeta_tsets |. nop | |5: // Follow hash chain. | bnez NODE:TMP1, <1 |. move NODE:TMP2, NODE:TMP1 | // End of hash chain: key not found, add a new one | | // But check for __newindex first. | lw TAB:TMP2, TAB:RB->metatable | beqz TAB:TMP2, >6 // No metatable: continue. |. addiu CARG3, DISPATCH, DISPATCH_GL(tmptv) | lbu TMP0, TAB:TMP2->nomm | andi TMP0, TMP0, 1<vmeta_tsets // 'no __newindex' flag NOT set: check. |. li AT, LJ_TSTR |6: | load_got lj_tab_newkey | sw STR:RC, LO(CARG3) | sw AT, HI(CARG3) | sw BASE, L->base | move CARG2, TAB:RB | sw PC, SAVE_PC | call_intern lj_tab_newkey // (lua_State *L, GCtab *t, TValue *k |. move CARG1, L | // Returns TValue *. | lw BASE, L->base |.if FPU | b <3 // No 2nd write barrier needed. |. sdc1 f20, 0(CRET1) |.else | lw SFARG1HI, HI(RA) | lw SFARG1LO, LO(RA) | sw SFARG1HI, HI(CRET1) | b <3 // No 2nd write barrier needed. |. sw SFARG1LO, LO(CRET1) |.endif | |7: // Possible table write barrier for the value. Skip valiswhite check. | barrierback TAB:RB, TMP3, TMP0, <3 break; case BC_TSETB: | // RA = src*8, RB = table*8, RC = index*8 | decode_RB8a RB, INS | decode_RB8b RB | addu CARG2, BASE, RB | decode_RDtoRC8 RC, RD | lw CARG1, HI(CARG2) | li AT, LJ_TTAB | lw TAB:RB, LO(CARG2) | addu RA, BASE, RA | bne CARG1, AT, ->vmeta_tsetb |. srl TMP0, RC, 3 | lw TMP1, TAB:RB->asize | lw TMP2, TAB:RB->array | sltu AT, TMP0, TMP1 | beqz AT, ->vmeta_tsetb |. addu RC, TMP2, RC | lw TMP1, HI(RC) | lbu TMP3, TAB:RB->marked | beq TMP1, TISNIL, >5 |1: |. lw SFRETHI, HI(RA) | lw SFRETLO, LO(RA) | andi AT, TMP3, LJ_GC_BLACK // isblack(table) | sw SFRETHI, HI(RC) | bnez AT, >7 |. sw SFRETLO, LO(RC) |2: | ins_next | |5: // Check for __newindex if previous value is nil. | lw TAB:TMP2, TAB:RB->metatable | beqz TAB:TMP2, <1 // No metatable: done. |. nop | lbu TMP1, TAB:TMP2->nomm | andi TMP1, TMP1, 1<vmeta_tsetb // Caveat: preserve TMP0 and CARG2! |. nop | |7: // Possible table write barrier for the value. Skip valiswhite check. | barrierback TAB:RB, TMP3, TMP0, <2 break; case BC_TSETR: | // RA = dst*8, RB = table*8, RC = key*8 | decode_RB8a RB, INS | decode_RB8b RB | decode_RDtoRC8 RC, RD | addu CARG1, BASE, RB | addu CARG3, BASE, RC | lw TAB:CARG2, LO(CARG1) | lw CARG3, LO(CARG3) | lbu TMP3, TAB:CARG2->marked | lw TMP0, TAB:CARG2->asize | lw TMP1, TAB:CARG2->array | andi AT, TMP3, LJ_GC_BLACK // isblack(table) | bnez AT, >7 |. addu RA, BASE, RA |2: | sltu AT, CARG3, TMP0 | sll TMP2, CARG3, 3 | beqz AT, ->vmeta_tsetr // In array part? |. addu CRET1, TMP1, TMP2 |->BC_TSETR_Z: | lw SFARG1HI, HI(RA) | lw SFARG1LO, LO(RA) | ins_next1 | sw SFARG1HI, HI(CRET1) | sw SFARG1LO, LO(CRET1) | ins_next2 | |7: // Possible table write barrier for the value. Skip valiswhite check. | barrierback TAB:CARG2, TMP3, TMP0, <2 break; case BC_TSETM: | // RA = base*8 (table at base-1), RD = num_const*8 (start index) | addu RA, BASE, RA |1: | addu TMP3, KBASE, RD | lw TAB:CARG2, -8+LO(RA) // Guaranteed to be a table. | addiu TMP0, MULTRES, -8 | lw TMP3, LO(TMP3) // Integer constant is in lo-word. | beqz TMP0, >4 // Nothing to copy? |. srl CARG3, TMP0, 3 | addu CARG3, CARG3, TMP3 | lw TMP2, TAB:CARG2->asize | sll TMP1, TMP3, 3 | lbu TMP3, TAB:CARG2->marked | lw CARG1, TAB:CARG2->array | sltu AT, TMP2, CARG3 | bnez AT, >5 |. addu TMP2, RA, TMP0 | addu TMP1, TMP1, CARG1 | andi TMP0, TMP3, LJ_GC_BLACK // isblack(table) |3: // Copy result slots to table. | lw SFRETHI, HI(RA) | lw SFRETLO, LO(RA) | addiu RA, RA, 8 | sltu AT, RA, TMP2 | sw SFRETHI, HI(TMP1) | sw SFRETLO, LO(TMP1) | bnez AT, <3 |. addiu TMP1, TMP1, 8 | bnez TMP0, >7 |. nop |4: | ins_next | |5: // Need to resize array part. | load_got lj_tab_reasize | sw BASE, L->base | sw PC, SAVE_PC | move BASE, RD | call_intern lj_tab_reasize // (lua_State *L, GCtab *t, int nasize) |. move CARG1, L | // Must not reallocate the stack. | move RD, BASE | b <1 |. lw BASE, L->base // Reload BASE for lack of a saved register. | |7: // Possible table write barrier for any value. Skip valiswhite check. | barrierback TAB:CARG2, TMP3, TMP0, <4 break; /* -- Calls and vararg handling ----------------------------------------- */ case BC_CALLM: | // RA = base*8, (RB = (nresults+1)*8,) RC = extra_nargs*8 | decode_RDtoRC8 NARGS8:RC, RD | b ->BC_CALL_Z |. addu NARGS8:RC, NARGS8:RC, MULTRES break; case BC_CALL: | // RA = base*8, (RB = (nresults+1)*8,) RC = (nargs+1)*8 | decode_RDtoRC8 NARGS8:RC, RD |->BC_CALL_Z: | move TMP2, BASE | addu BASE, BASE, RA | li AT, LJ_TFUNC | lw TMP0, HI(BASE) | lw LFUNC:RB, LO(BASE) | addiu BASE, BASE, 8 | bne TMP0, AT, ->vmeta_call |. addiu NARGS8:RC, NARGS8:RC, -8 | ins_call break; case BC_CALLMT: | // RA = base*8, (RB = 0,) RC = extra_nargs*8 | addu NARGS8:RD, NARGS8:RD, MULTRES // BC_CALLT gets RC from RD. | // Fall through. Assumes BC_CALLT follows. break; case BC_CALLT: | // RA = base*8, (RB = 0,) RC = (nargs+1)*8 | addu RA, BASE, RA | li AT, LJ_TFUNC | lw TMP0, HI(RA) | lw LFUNC:RB, LO(RA) | move NARGS8:RC, RD | lw TMP1, FRAME_PC(BASE) | addiu RA, RA, 8 | bne TMP0, AT, ->vmeta_callt |. addiu NARGS8:RC, NARGS8:RC, -8 |->BC_CALLT_Z: | andi TMP0, TMP1, FRAME_TYPE // Caveat: preserve TMP0 until the 'or'. | lbu TMP3, LFUNC:RB->ffid | bnez TMP0, >7 |. xori TMP2, TMP1, FRAME_VARG |1: | sw LFUNC:RB, FRAME_FUNC(BASE) // Copy function down, but keep PC. | sltiu AT, TMP3, 2 // (> FF_C) Calling a fast function? | move TMP2, BASE | beqz NARGS8:RC, >3 |. move TMP3, NARGS8:RC |2: | lw SFRETHI, HI(RA) | lw SFRETLO, LO(RA) | addiu RA, RA, 8 | addiu TMP3, TMP3, -8 | sw SFRETHI, HI(TMP2) | sw SFRETLO, LO(TMP2) | bnez TMP3, <2 |. addiu TMP2, TMP2, 8 |3: | or TMP0, TMP0, AT | beqz TMP0, >5 |. nop |4: | ins_callt | |5: // Tailcall to a fast function with a Lua frame below. | lw INS, -4(TMP1) | decode_RA8a RA, INS | decode_RA8b RA | subu TMP1, BASE, RA | lw LFUNC:TMP1, -8+FRAME_FUNC(TMP1) | lw TMP1, LFUNC:TMP1->pc | b <4 |. lw KBASE, PC2PROTO(k)(TMP1) // Need to prepare KBASE. | |7: // Tailcall from a vararg function. | andi AT, TMP2, FRAME_TYPEP | bnez AT, <1 // Vararg frame below? |. subu TMP2, BASE, TMP2 // Relocate BASE down. | move BASE, TMP2 | lw TMP1, FRAME_PC(TMP2) | b <1 |. andi TMP0, TMP1, FRAME_TYPE break; case BC_ITERC: | // RA = base*8, (RB = (nresults+1)*8, RC = (nargs+1)*8 ((2+1)*8)) | move TMP2, BASE | addu BASE, BASE, RA | li AT, LJ_TFUNC | lw TMP1, -24+HI(BASE) | lw LFUNC:RB, -24+LO(BASE) | lw SFARG1HI, -16+HI(BASE) | lw SFARG1LO, -16+LO(BASE) | lw SFARG2HI, -8+HI(BASE) | lw SFARG2LO, -8+LO(BASE) | sw TMP1, HI(BASE) // Copy callable. | sw LFUNC:RB, LO(BASE) | sw SFARG1HI, 8+HI(BASE) // Copy state. | sw SFARG1LO, 8+LO(BASE) | sw SFARG2HI, 16+HI(BASE) // Copy control var. | sw SFARG2LO, 16+LO(BASE) | addiu BASE, BASE, 8 | bne TMP1, AT, ->vmeta_call |. li NARGS8:RC, 16 // Iterators get 2 arguments. | ins_call break; case BC_ITERN: | // RA = base*8, (RB = (nresults+1)*8, RC = (nargs+1)*8 (2+1)*8) |.if JIT | // NYI: add hotloop, record BC_ITERN. |.endif | addu RA, BASE, RA | lw TAB:RB, -16+LO(RA) | lw RC, -8+LO(RA) // Get index from control var. | lw TMP0, TAB:RB->asize | lw TMP1, TAB:RB->array | addiu PC, PC, 4 |1: // Traverse array part. | sltu AT, RC, TMP0 | beqz AT, >5 // Index points after array part? |. sll TMP3, RC, 3 | addu TMP3, TMP1, TMP3 | lw SFARG1HI, HI(TMP3) | lw SFARG1LO, LO(TMP3) | lhu RD, -4+OFS_RD(PC) | sw TISNUM, HI(RA) | sw RC, LO(RA) | beq SFARG1HI, TISNIL, <1 // Skip holes in array part. |. addiu RC, RC, 1 | sw SFARG1HI, 8+HI(RA) | sw SFARG1LO, 8+LO(RA) | lui TMP3, (-(BCBIAS_J*4 >> 16) & 65535) | decode_RD4b RD | addu RD, RD, TMP3 | sw RC, -8+LO(RA) // Update control var. | addu PC, PC, RD |3: | ins_next | |5: // Traverse hash part. | lw TMP1, TAB:RB->hmask | subu RC, RC, TMP0 | lw TMP2, TAB:RB->node |6: | sltu AT, TMP1, RC // End of iteration? Branch to ITERL+1. | bnez AT, <3 |. sll TMP3, RC, 5 | sll RB, RC, 3 | subu TMP3, TMP3, RB | addu NODE:TMP3, TMP3, TMP2 | lw SFARG1HI, NODE:TMP3->val.u32.hi | lw SFARG1LO, NODE:TMP3->val.u32.lo | lhu RD, -4+OFS_RD(PC) | beq SFARG1HI, TISNIL, <6 // Skip holes in hash part. |. addiu RC, RC, 1 | lw SFARG2HI, NODE:TMP3->key.u32.hi | lw SFARG2LO, NODE:TMP3->key.u32.lo | lui TMP3, (-(BCBIAS_J*4 >> 16) & 65535) | sw SFARG1HI, 8+HI(RA) | sw SFARG1LO, 8+LO(RA) | addu RC, RC, TMP0 | decode_RD4b RD | addu RD, RD, TMP3 | sw SFARG2HI, HI(RA) | sw SFARG2LO, LO(RA) | addu PC, PC, RD | b <3 |. sw RC, -8+LO(RA) // Update control var. break; case BC_ISNEXT: | // RA = base*8, RD = target (points to ITERN) | addu RA, BASE, RA | srl TMP0, RD, 1 | lw CARG1, -24+HI(RA) | lw CFUNC:CARG2, -24+LO(RA) | addu TMP0, PC, TMP0 | lw CARG3, -16+HI(RA) | lw CARG4, -8+HI(RA) | li AT, LJ_TFUNC | bne CARG1, AT, >5 |. lui TMP2, (-(BCBIAS_J*4 >> 16) & 65535) | lbu CARG2, CFUNC:CARG2->ffid | addiu CARG3, CARG3, -LJ_TTAB | addiu CARG4, CARG4, -LJ_TNIL | or CARG3, CARG3, CARG4 | addiu CARG2, CARG2, -FF_next_N | or CARG2, CARG2, CARG3 | bnez CARG2, >5 |. lui TMP1, 0xfffe | addu PC, TMP0, TMP2 | ori TMP1, TMP1, 0x7fff | sw r0, -8+LO(RA) // Initialize control var. | sw TMP1, -8+HI(RA) |1: | ins_next |5: // Despecialize bytecode if any of the checks fail. | li TMP3, BC_JMP | li TMP1, BC_ITERC | sb TMP3, -4+OFS_OP(PC) | addu PC, TMP0, TMP2 | b <1 |. sb TMP1, OFS_OP(PC) break; case BC_VARG: | // RA = base*8, RB = (nresults+1)*8, RC = numparams*8 | lw TMP0, FRAME_PC(BASE) | decode_RDtoRC8 RC, RD | decode_RB8a RB, INS | addu RC, BASE, RC | decode_RB8b RB | addu RA, BASE, RA | addiu RC, RC, FRAME_VARG | addu TMP2, RA, RB | addiu TMP3, BASE, -8 // TMP3 = vtop | subu RC, RC, TMP0 // RC = vbase | // Note: RC may now be even _above_ BASE if nargs was < numparams. | beqz RB, >5 // Copy all varargs? |. subu TMP1, TMP3, RC | addiu TMP2, TMP2, -16 |1: // Copy vararg slots to destination slots. | lw CARG1, HI(RC) | sltu AT, RC, TMP3 | lw CARG2, LO(RC) | addiu RC, RC, 8 | movz CARG1, TISNIL, AT | sw CARG1, HI(RA) | sw CARG2, LO(RA) | sltu AT, RA, TMP2 | bnez AT, <1 |. addiu RA, RA, 8 |3: | ins_next | |5: // Copy all varargs. | lw TMP0, L->maxstack | blez TMP1, <3 // No vararg slots? |. li MULTRES, 8 // MULTRES = (0+1)*8 | addu TMP2, RA, TMP1 | sltu AT, TMP0, TMP2 | bnez AT, >7 |. addiu MULTRES, TMP1, 8 |6: | lw SFRETHI, HI(RC) | lw SFRETLO, LO(RC) | addiu RC, RC, 8 | sw SFRETHI, HI(RA) | sw SFRETLO, LO(RA) | sltu AT, RC, TMP3 | bnez AT, <6 // More vararg slots? |. addiu RA, RA, 8 | b <3 |. nop | |7: // Grow stack for varargs. | load_got lj_state_growstack | sw RA, L->top | subu RA, RA, BASE | sw BASE, L->base | subu BASE, RC, BASE // Need delta, because BASE may change. | sw PC, SAVE_PC | srl CARG2, TMP1, 3 | call_intern lj_state_growstack // (lua_State *L, int n) |. move CARG1, L | move RC, BASE | lw BASE, L->base | addu RA, BASE, RA | addu RC, BASE, RC | b <6 |. addiu TMP3, BASE, -8 break; /* -- Returns ----------------------------------------------------------- */ case BC_RETM: | // RA = results*8, RD = extra_nresults*8 | addu RD, RD, MULTRES // MULTRES >= 8, so RD >= 8. | // Fall through. Assumes BC_RET follows. break; case BC_RET: | // RA = results*8, RD = (nresults+1)*8 | lw PC, FRAME_PC(BASE) | addu RA, BASE, RA | move MULTRES, RD |1: | andi TMP0, PC, FRAME_TYPE | bnez TMP0, ->BC_RETV_Z |. xori TMP1, PC, FRAME_VARG | |->BC_RET_Z: | // BASE = base, RA = resultptr, RD = (nresults+1)*8, PC = return | lw INS, -4(PC) | addiu TMP2, BASE, -8 | addiu RC, RD, -8 | decode_RA8a TMP0, INS | decode_RB8a RB, INS | decode_RA8b TMP0 | decode_RB8b RB | addu TMP3, TMP2, RB | beqz RC, >3 |. subu BASE, TMP2, TMP0 |2: | lw SFRETHI, HI(RA) | lw SFRETLO, LO(RA) | addiu RA, RA, 8 | addiu RC, RC, -8 | sw SFRETHI, HI(TMP2) | sw SFRETLO, LO(TMP2) | bnez RC, <2 |. addiu TMP2, TMP2, 8 |3: | addiu TMP3, TMP3, -8 |5: | sltu AT, TMP2, TMP3 | bnez AT, >6 |. lw LFUNC:TMP1, FRAME_FUNC(BASE) | ins_next1 | lw TMP1, LFUNC:TMP1->pc | lw KBASE, PC2PROTO(k)(TMP1) | ins_next2 | |6: // Fill up results with nil. | sw TISNIL, HI(TMP2) | b <5 |. addiu TMP2, TMP2, 8 | |->BC_RETV_Z: // Non-standard return case. | andi TMP2, TMP1, FRAME_TYPEP | bnez TMP2, ->vm_return |. nop | // Return from vararg function: relocate BASE down. | subu BASE, BASE, TMP1 | b <1 |. lw PC, FRAME_PC(BASE) break; case BC_RET0: case BC_RET1: | // RA = results*8, RD = (nresults+1)*8 | lw PC, FRAME_PC(BASE) | addu RA, BASE, RA | move MULTRES, RD | andi TMP0, PC, FRAME_TYPE | bnez TMP0, ->BC_RETV_Z |. xori TMP1, PC, FRAME_VARG | | lw INS, -4(PC) | addiu TMP2, BASE, -8 if (op == BC_RET1) { | lw SFRETHI, HI(RA) | lw SFRETLO, LO(RA) } | decode_RB8a RB, INS | decode_RA8a RA, INS | decode_RB8b RB | decode_RA8b RA if (op == BC_RET1) { | sw SFRETHI, HI(TMP2) | sw SFRETLO, LO(TMP2) } | subu BASE, TMP2, RA |5: | sltu AT, RD, RB | bnez AT, >6 |. lw LFUNC:TMP1, FRAME_FUNC(BASE) | ins_next1 | lw TMP1, LFUNC:TMP1->pc | lw KBASE, PC2PROTO(k)(TMP1) | ins_next2 | |6: // Fill up results with nil. | addiu TMP2, TMP2, 8 | addiu RD, RD, 8 | b <5 if (op == BC_RET1) { |. sw TISNIL, HI(TMP2) } else { |. sw TISNIL, -8+HI(TMP2) } break; /* -- Loops and branches ------------------------------------------------ */ case BC_FORL: |.if JIT | hotloop |.endif | // Fall through. Assumes BC_IFORL follows. break; case BC_JFORI: case BC_JFORL: #if !LJ_HASJIT break; #endif case BC_FORI: case BC_IFORL: | // RA = base*8, RD = target (after end of loop or start of loop) vk = (op == BC_IFORL || op == BC_JFORL); | addu RA, BASE, RA | lw SFARG1HI, FORL_IDX*8+HI(RA) | lw SFARG1LO, FORL_IDX*8+LO(RA) if (op != BC_JFORL) { | srl RD, RD, 1 | lui TMP2, (-(BCBIAS_J*4 >> 16) & 65535) | addu TMP2, RD, TMP2 } if (!vk) { | lw SFARG2HI, FORL_STOP*8+HI(RA) | lw SFARG2LO, FORL_STOP*8+LO(RA) | bne SFARG1HI, TISNUM, >5 |. lw SFRETHI, FORL_STEP*8+HI(RA) | xor AT, SFARG2HI, TISNUM | lw SFRETLO, FORL_STEP*8+LO(RA) | xor TMP0, SFRETHI, TISNUM | or AT, AT, TMP0 | bnez AT, ->vmeta_for |. slt AT, SFRETLO, r0 | slt CRET1, SFARG2LO, SFARG1LO | slt TMP1, SFARG1LO, SFARG2LO | movn CRET1, TMP1, AT } else { | bne SFARG1HI, TISNUM, >5 |. lw SFARG2LO, FORL_STEP*8+LO(RA) | lw SFRETLO, FORL_STOP*8+LO(RA) | move TMP3, SFARG1LO | addu SFARG1LO, SFARG1LO, SFARG2LO | xor TMP0, SFARG1LO, TMP3 | xor TMP1, SFARG1LO, SFARG2LO | and TMP0, TMP0, TMP1 | slt TMP1, SFARG1LO, SFRETLO | slt CRET1, SFRETLO, SFARG1LO | slt AT, SFARG2LO, r0 | slt TMP0, TMP0, r0 // ((y^a) & (y^b)) < 0: overflow. | movn CRET1, TMP1, AT | or CRET1, CRET1, TMP0 } |1: if (op == BC_FORI) { | movz TMP2, r0, CRET1 | addu PC, PC, TMP2 } else if (op == BC_JFORI) { | addu PC, PC, TMP2 | lhu RD, -4+OFS_RD(PC) } else if (op == BC_IFORL) { | movn TMP2, r0, CRET1 | addu PC, PC, TMP2 } if (vk) { | sw SFARG1HI, FORL_IDX*8+HI(RA) | sw SFARG1LO, FORL_IDX*8+LO(RA) } | ins_next1 | sw SFARG1HI, FORL_EXT*8+HI(RA) | sw SFARG1LO, FORL_EXT*8+LO(RA) |2: if (op == BC_JFORI) { | beqz CRET1, =>BC_JLOOP |. decode_RD8b RD } else if (op == BC_JFORL) { | beqz CRET1, =>BC_JLOOP } | ins_next2 | |5: // FP loop. |.if FPU if (!vk) { | ldc1 f0, FORL_IDX*8(RA) | ldc1 f2, FORL_STOP*8(RA) | sltiu TMP0, SFARG1HI, LJ_TISNUM | sltiu TMP1, SFARG2HI, LJ_TISNUM | sltiu AT, SFRETHI, LJ_TISNUM | and TMP0, TMP0, TMP1 | and AT, AT, TMP0 | beqz AT, ->vmeta_for |. slt TMP3, SFRETHI, r0 | c.ole.d 0, f0, f2 | c.ole.d 1, f2, f0 | li CRET1, 1 | movt CRET1, r0, 0 | movt AT, r0, 1 | b <1 |. movn CRET1, AT, TMP3 } else { | ldc1 f0, FORL_IDX*8(RA) | ldc1 f4, FORL_STEP*8(RA) | ldc1 f2, FORL_STOP*8(RA) | lw SFARG2HI, FORL_STEP*8+HI(RA) | add.d f0, f0, f4 | c.ole.d 0, f0, f2 | c.ole.d 1, f2, f0 | slt TMP3, SFARG2HI, r0 | li CRET1, 1 | li AT, 1 | movt CRET1, r0, 0 | movt AT, r0, 1 | movn CRET1, AT, TMP3 if (op == BC_IFORL) { | movn TMP2, r0, CRET1 | addu PC, PC, TMP2 } | sdc1 f0, FORL_IDX*8(RA) | ins_next1 | b <2 |. sdc1 f0, FORL_EXT*8(RA) } |.else if (!vk) { | sltiu TMP0, SFARG1HI, LJ_TISNUM | sltiu TMP1, SFARG2HI, LJ_TISNUM | sltiu AT, SFRETHI, LJ_TISNUM | and TMP0, TMP0, TMP1 | and AT, AT, TMP0 | beqz AT, ->vmeta_for |. nop | bal ->vm_sfcmpolex |. move TMP3, SFRETHI | b <1 |. nop } else { | lw SFARG2HI, FORL_STEP*8+HI(RA) | load_got __adddf3 | call_extern |. sw TMP2, ARG5 | lw SFARG2HI, FORL_STOP*8+HI(RA) | lw SFARG2LO, FORL_STOP*8+LO(RA) | move SFARG1HI, SFRETHI | move SFARG1LO, SFRETLO | bal ->vm_sfcmpolex |. lw TMP3, FORL_STEP*8+HI(RA) if ( op == BC_JFORL ) { | lhu RD, -4+OFS_RD(PC) | lw TMP2, ARG5 | b <1 |. decode_RD8b RD } else { | b <1 |. lw TMP2, ARG5 } } |.endif break; case BC_ITERL: |.if JIT | hotloop |.endif | // Fall through. Assumes BC_IITERL follows. break; case BC_JITERL: #if !LJ_HASJIT break; #endif case BC_IITERL: | // RA = base*8, RD = target | addu RA, BASE, RA | lw TMP1, HI(RA) | beq TMP1, TISNIL, >1 // Stop if iterator returned nil. |. lw TMP2, LO(RA) if (op == BC_JITERL) { | sw TMP1, -8+HI(RA) | b =>BC_JLOOP |. sw TMP2, -8+LO(RA) } else { | branch_RD // Otherwise save control var + branch. | sw TMP1, -8+HI(RA) | sw TMP2, -8+LO(RA) } |1: | ins_next break; case BC_LOOP: | // RA = base*8, RD = target (loop extent) | // Note: RA/RD is only used by trace recorder to determine scope/extent | // This opcode does NOT jump, it's only purpose is to detect a hot loop. |.if JIT | hotloop |.endif | // Fall through. Assumes BC_ILOOP follows. break; case BC_ILOOP: | // RA = base*8, RD = target (loop extent) | ins_next break; case BC_JLOOP: |.if JIT | // RA = base*8 (ignored), RD = traceno*8 | lw TMP1, DISPATCH_J(trace)(DISPATCH) | srl RD, RD, 1 | li AT, 0 | addu TMP1, TMP1, RD | // Traces on MIPS don't store the trace number, so use 0. | sw AT, DISPATCH_GL(vmstate)(DISPATCH) | lw TRACE:TMP2, 0(TMP1) | sw BASE, DISPATCH_GL(jit_base)(DISPATCH) | lw TMP2, TRACE:TMP2->mcode | sw L, DISPATCH_GL(tmpbuf.L)(DISPATCH) | jr TMP2 |. addiu JGL, DISPATCH, GG_DISP2G+32768 |.endif break; case BC_JMP: | // RA = base*8 (only used by trace recorder), RD = target | branch_RD | ins_next break; /* -- Function headers -------------------------------------------------- */ case BC_FUNCF: |.if JIT | hotcall |.endif case BC_FUNCV: /* NYI: compiled vararg functions. */ | // Fall through. Assumes BC_IFUNCF/BC_IFUNCV follow. break; case BC_JFUNCF: #if !LJ_HASJIT break; #endif case BC_IFUNCF: | // BASE = new base, RA = BASE+framesize*8, RB = LFUNC, RC = nargs*8 | lw TMP2, L->maxstack | lbu TMP1, -4+PC2PROTO(numparams)(PC) | lw KBASE, -4+PC2PROTO(k)(PC) | sltu AT, TMP2, RA | bnez AT, ->vm_growstack_l |. sll TMP1, TMP1, 3 if (op != BC_JFUNCF) { | ins_next1 } |2: | sltu AT, NARGS8:RC, TMP1 // Check for missing parameters. | bnez AT, >3 |. addu AT, BASE, NARGS8:RC if (op == BC_JFUNCF) { | decode_RD8a RD, INS | b =>BC_JLOOP |. decode_RD8b RD } else { | ins_next2 } | |3: // Clear missing parameters. | sw TISNIL, HI(AT) | b <2 |. addiu NARGS8:RC, NARGS8:RC, 8 break; case BC_JFUNCV: #if !LJ_HASJIT break; #endif | NYI // NYI: compiled vararg functions break; /* NYI: compiled vararg functions. */ case BC_IFUNCV: | // BASE = new base, RA = BASE+framesize*8, RB = LFUNC, RC = nargs*8 | addu TMP1, BASE, RC | lw TMP2, L->maxstack | addu TMP0, RA, RC | sw LFUNC:RB, LO(TMP1) // Store copy of LFUNC. | addiu TMP3, RC, 8+FRAME_VARG | sltu AT, TMP0, TMP2 | lw KBASE, -4+PC2PROTO(k)(PC) | beqz AT, ->vm_growstack_l |. sw TMP3, HI(TMP1) // Store delta + FRAME_VARG. | lbu TMP2, -4+PC2PROTO(numparams)(PC) | move RA, BASE | move RC, TMP1 | ins_next1 | beqz TMP2, >3 |. addiu BASE, TMP1, 8 |1: | lw TMP0, HI(RA) | lw TMP3, LO(RA) | sltu AT, RA, RC // Less args than parameters? | move CARG1, TMP0 | movz TMP0, TISNIL, AT // Clear missing parameters. | movn CARG1, TISNIL, AT // Clear old fixarg slot (help the GC). | sw TMP3, 8+LO(TMP1) | addiu TMP2, TMP2, -1 | sw TMP0, 8+HI(TMP1) | addiu TMP1, TMP1, 8 | sw CARG1, HI(RA) | bnez TMP2, <1 |. addiu RA, RA, 8 |3: | ins_next2 break; case BC_FUNCC: case BC_FUNCCW: | // BASE = new base, RA = BASE+framesize*8, RB = CFUNC, RC = nargs*8 if (op == BC_FUNCC) { | lw CFUNCADDR, CFUNC:RB->f } else { | lw CFUNCADDR, DISPATCH_GL(wrapf)(DISPATCH) } | addu TMP1, RA, NARGS8:RC | lw TMP2, L->maxstack | addu RC, BASE, NARGS8:RC | sw BASE, L->base | sltu AT, TMP2, TMP1 | sw RC, L->top | li_vmstate C if (op == BC_FUNCCW) { | lw CARG2, CFUNC:RB->f } | bnez AT, ->vm_growstack_c // Need to grow stack. |. move CARG1, L | jalr CFUNCADDR // (lua_State *L [, lua_CFunction f]) |. st_vmstate | // Returns nresults. | lw BASE, L->base | sll RD, CRET1, 3 | lw TMP1, L->top | li_vmstate INTERP | lw PC, FRAME_PC(BASE) // Fetch PC of caller. | subu RA, TMP1, RD // RA = L->top - nresults*8 | sw L, DISPATCH_GL(cur_L)(DISPATCH) | b ->vm_returnc |. st_vmstate break; /* ---------------------------------------------------------------------- */ default: fprintf(stderr, "Error: undefined opcode BC_%s\n", bc_names[op]); exit(2); break; } } static int build_backend(BuildCtx *ctx) { int op; dasm_growpc(Dst, BC__MAX); build_subroutines(ctx); |.code_op for (op = 0; op < BC__MAX; op++) build_ins(ctx, (BCOp)op, op); return BC__MAX; } /* Emit pseudo frame-info for all assembler functions. */ static void emit_asm_debug(BuildCtx *ctx) { int fcofs = (int)((uint8_t *)ctx->glob[GLOB_vm_ffi_call] - ctx->code); int i; switch (ctx->mode) { case BUILD_elfasm: fprintf(ctx->fp, "\t.section .debug_frame,\"\",@progbits\n"); fprintf(ctx->fp, ".Lframe0:\n" "\t.4byte .LECIE0-.LSCIE0\n" ".LSCIE0:\n" "\t.4byte 0xffffffff\n" "\t.byte 0x1\n" "\t.string \"\"\n" "\t.uleb128 0x1\n" "\t.sleb128 -4\n" "\t.byte 31\n" "\t.byte 0xc\n\t.uleb128 29\n\t.uleb128 0\n" "\t.align 2\n" ".LECIE0:\n\n"); fprintf(ctx->fp, ".LSFDE0:\n" "\t.4byte .LEFDE0-.LASFDE0\n" ".LASFDE0:\n" "\t.4byte .Lframe0\n" "\t.4byte .Lbegin\n" "\t.4byte %d\n" "\t.byte 0xe\n\t.uleb128 %d\n" "\t.byte 0x9f\n\t.sleb128 1\n" "\t.byte 0x9e\n\t.sleb128 2\n", fcofs, CFRAME_SIZE); for (i = 23; i >= 16; i--) fprintf(ctx->fp, "\t.byte %d\n\t.uleb128 %d\n", 0x80+i, 26-i); #if !LJ_SOFTFP for (i = 30; i >= 20; i -= 2) fprintf(ctx->fp, "\t.byte %d\n\t.uleb128 %d\n", 0x80+32+i, 42-i); #endif fprintf(ctx->fp, "\t.align 2\n" ".LEFDE0:\n\n"); #if LJ_HASFFI fprintf(ctx->fp, ".LSFDE1:\n" "\t.4byte .LEFDE1-.LASFDE1\n" ".LASFDE1:\n" "\t.4byte .Lframe0\n" "\t.4byte lj_vm_ffi_call\n" "\t.4byte %d\n" "\t.byte 0x9f\n\t.uleb128 1\n" "\t.byte 0x90\n\t.uleb128 2\n" "\t.byte 0xd\n\t.uleb128 0x10\n" "\t.align 2\n" ".LEFDE1:\n\n", (int)ctx->codesz - fcofs); #endif #if !LJ_NO_UNWIND fprintf(ctx->fp, "\t.section .eh_frame,\"aw\",@progbits\n"); fprintf(ctx->fp, "\t.globl lj_err_unwind_dwarf\n" ".Lframe1:\n" "\t.4byte .LECIE1-.LSCIE1\n" ".LSCIE1:\n" "\t.4byte 0\n" "\t.byte 0x1\n" "\t.string \"zPR\"\n" "\t.uleb128 0x1\n" "\t.sleb128 -4\n" "\t.byte 31\n" "\t.uleb128 6\n" /* augmentation length */ "\t.byte 0\n" "\t.4byte lj_err_unwind_dwarf\n" "\t.byte 0\n" "\t.byte 0xc\n\t.uleb128 29\n\t.uleb128 0\n" "\t.align 2\n" ".LECIE1:\n\n"); fprintf(ctx->fp, ".LSFDE2:\n" "\t.4byte .LEFDE2-.LASFDE2\n" ".LASFDE2:\n" "\t.4byte .LASFDE2-.Lframe1\n" "\t.4byte .Lbegin\n" "\t.4byte %d\n" "\t.uleb128 0\n" /* augmentation length */ "\t.byte 0xe\n\t.uleb128 %d\n" "\t.byte 0x9f\n\t.sleb128 1\n" "\t.byte 0x9e\n\t.sleb128 2\n", fcofs, CFRAME_SIZE); for (i = 23; i >= 16; i--) fprintf(ctx->fp, "\t.byte %d\n\t.uleb128 %d\n", 0x80+i, 26-i); #if !LJ_SOFTFP for (i = 30; i >= 20; i -= 2) fprintf(ctx->fp, "\t.byte %d\n\t.uleb128 %d\n", 0x80+32+i, 42-i); #endif fprintf(ctx->fp, "\t.align 2\n" ".LEFDE2:\n\n"); #if LJ_HASFFI fprintf(ctx->fp, ".Lframe2:\n" "\t.4byte .LECIE2-.LSCIE2\n" ".LSCIE2:\n" "\t.4byte 0\n" "\t.byte 0x1\n" "\t.string \"zR\"\n" "\t.uleb128 0x1\n" "\t.sleb128 -4\n" "\t.byte 31\n" "\t.uleb128 1\n" /* augmentation length */ "\t.byte 0\n" "\t.byte 0xc\n\t.uleb128 29\n\t.uleb128 0\n" "\t.align 2\n" ".LECIE2:\n\n"); fprintf(ctx->fp, ".LSFDE3:\n" "\t.4byte .LEFDE3-.LASFDE3\n" ".LASFDE3:\n" "\t.4byte .LASFDE3-.Lframe2\n" "\t.4byte lj_vm_ffi_call\n" "\t.4byte %d\n" "\t.uleb128 0\n" /* augmentation length */ "\t.byte 0x9f\n\t.uleb128 1\n" "\t.byte 0x90\n\t.uleb128 2\n" "\t.byte 0xd\n\t.uleb128 0x10\n" "\t.align 2\n" ".LEFDE3:\n\n", (int)ctx->codesz - fcofs); #endif #endif break; default: break; } } luajit-2.1.0~beta3+dfsg.orig/src/lj_clib.c0000644000175100017510000002474413101703334017662 0ustar ondrejondrej/* ** FFI C library loader. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #include "lj_obj.h" #if LJ_HASFFI #include "lj_gc.h" #include "lj_err.h" #include "lj_tab.h" #include "lj_str.h" #include "lj_udata.h" #include "lj_ctype.h" #include "lj_cconv.h" #include "lj_cdata.h" #include "lj_clib.h" #include "lj_strfmt.h" /* -- OS-specific functions ----------------------------------------------- */ #if LJ_TARGET_DLOPEN #include #include #if defined(RTLD_DEFAULT) #define CLIB_DEFHANDLE RTLD_DEFAULT #elif LJ_TARGET_OSX || LJ_TARGET_BSD #define CLIB_DEFHANDLE ((void *)(intptr_t)-2) #else #define CLIB_DEFHANDLE NULL #endif LJ_NORET LJ_NOINLINE static void clib_error_(lua_State *L) { lj_err_callermsg(L, dlerror()); } #define clib_error(L, fmt, name) clib_error_(L) #if LJ_TARGET_CYGWIN #define CLIB_SOPREFIX "cyg" #else #define CLIB_SOPREFIX "lib" #endif #if LJ_TARGET_OSX #define CLIB_SOEXT "%s.dylib" #elif LJ_TARGET_CYGWIN #define CLIB_SOEXT "%s.dll" #else #define CLIB_SOEXT "%s.so" #endif static const char *clib_extname(lua_State *L, const char *name) { if (!strchr(name, '/') #if LJ_TARGET_CYGWIN && !strchr(name, '\\') #endif ) { if (!strchr(name, '.')) { name = lj_strfmt_pushf(L, CLIB_SOEXT, name); L->top--; #if LJ_TARGET_CYGWIN } else { return name; #endif } if (!(name[0] == CLIB_SOPREFIX[0] && name[1] == CLIB_SOPREFIX[1] && name[2] == CLIB_SOPREFIX[2])) { name = lj_strfmt_pushf(L, CLIB_SOPREFIX "%s", name); L->top--; } } return name; } /* Check for a recognized ld script line. */ static const char *clib_check_lds(lua_State *L, const char *buf) { char *p, *e; if ((!strncmp(buf, "GROUP", 5) || !strncmp(buf, "INPUT", 5)) && (p = strchr(buf, '('))) { while (*++p == ' ') ; for (e = p; *e && *e != ' ' && *e != ')'; e++) ; return strdata(lj_str_new(L, p, e-p)); } return NULL; } /* Quick and dirty solution to resolve shared library name from ld script. */ static const char *clib_resolve_lds(lua_State *L, const char *name) { FILE *fp = fopen(name, "r"); const char *p = NULL; if (fp) { char buf[256]; if (fgets(buf, sizeof(buf), fp)) { if (!strncmp(buf, "/* GNU ld script", 16)) { /* ld script magic? */ while (fgets(buf, sizeof(buf), fp)) { /* Check all lines. */ p = clib_check_lds(L, buf); if (p) break; } } else { /* Otherwise check only the first line. */ p = clib_check_lds(L, buf); } } fclose(fp); } return p; } static void *clib_loadlib(lua_State *L, const char *name, int global) { void *h = dlopen(clib_extname(L, name), RTLD_LAZY | (global?RTLD_GLOBAL:RTLD_LOCAL)); if (!h) { const char *e, *err = dlerror(); if (*err == '/' && (e = strchr(err, ':')) && (name = clib_resolve_lds(L, strdata(lj_str_new(L, err, e-err))))) { h = dlopen(name, RTLD_LAZY | (global?RTLD_GLOBAL:RTLD_LOCAL)); if (h) return h; err = dlerror(); } lj_err_callermsg(L, err); } return h; } static void clib_unloadlib(CLibrary *cl) { if (cl->handle && cl->handle != CLIB_DEFHANDLE) dlclose(cl->handle); } static void *clib_getsym(CLibrary *cl, const char *name) { void *p = dlsym(cl->handle, name); return p; } #elif LJ_TARGET_WINDOWS #define WIN32_LEAN_AND_MEAN #include #ifndef GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS #define GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS 4 #define GET_MODULE_HANDLE_EX_FLAG_UNCHANGED_REFCOUNT 2 BOOL WINAPI GetModuleHandleExA(DWORD, LPCSTR, HMODULE*); #endif #define CLIB_DEFHANDLE ((void *)-1) /* Default libraries. */ enum { CLIB_HANDLE_EXE, CLIB_HANDLE_DLL, CLIB_HANDLE_CRT, CLIB_HANDLE_KERNEL32, CLIB_HANDLE_USER32, CLIB_HANDLE_GDI32, CLIB_HANDLE_MAX }; static void *clib_def_handle[CLIB_HANDLE_MAX]; LJ_NORET LJ_NOINLINE static void clib_error(lua_State *L, const char *fmt, const char *name) { DWORD err = GetLastError(); #if LJ_TARGET_XBOXONE wchar_t wbuf[128]; char buf[128*2]; if (!FormatMessageW(FORMAT_MESSAGE_IGNORE_INSERTS|FORMAT_MESSAGE_FROM_SYSTEM, NULL, err, 0, wbuf, sizeof(wbuf)/sizeof(wchar_t), NULL) || !WideCharToMultiByte(CP_ACP, 0, wbuf, 128, buf, 128*2, NULL, NULL)) #else char buf[128]; if (!FormatMessageA(FORMAT_MESSAGE_IGNORE_INSERTS|FORMAT_MESSAGE_FROM_SYSTEM, NULL, err, 0, buf, sizeof(buf), NULL)) #endif buf[0] = '\0'; lj_err_callermsg(L, lj_strfmt_pushf(L, fmt, name, buf)); } static int clib_needext(const char *s) { while (*s) { if (*s == '/' || *s == '\\' || *s == '.') return 0; s++; } return 1; } static const char *clib_extname(lua_State *L, const char *name) { if (clib_needext(name)) { name = lj_strfmt_pushf(L, "%s.dll", name); L->top--; } return name; } static void *clib_loadlib(lua_State *L, const char *name, int global) { DWORD oldwerr = GetLastError(); void *h = (void *)LoadLibraryExA(clib_extname(L, name), NULL, 0); if (!h) clib_error(L, "cannot load module " LUA_QS ": %s", name); SetLastError(oldwerr); UNUSED(global); return h; } static void clib_unloadlib(CLibrary *cl) { if (cl->handle == CLIB_DEFHANDLE) { MSize i; for (i = CLIB_HANDLE_KERNEL32; i < CLIB_HANDLE_MAX; i++) { void *h = clib_def_handle[i]; if (h) { clib_def_handle[i] = NULL; FreeLibrary((HINSTANCE)h); } } } else if (cl->handle) { FreeLibrary((HINSTANCE)cl->handle); } } static void *clib_getsym(CLibrary *cl, const char *name) { void *p = NULL; if (cl->handle == CLIB_DEFHANDLE) { /* Search default libraries. */ MSize i; for (i = 0; i < CLIB_HANDLE_MAX; i++) { HINSTANCE h = (HINSTANCE)clib_def_handle[i]; if (!(void *)h) { /* Resolve default library handles (once). */ switch (i) { case CLIB_HANDLE_EXE: GetModuleHandleExA(GET_MODULE_HANDLE_EX_FLAG_UNCHANGED_REFCOUNT, NULL, &h); break; case CLIB_HANDLE_DLL: GetModuleHandleExA(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS|GET_MODULE_HANDLE_EX_FLAG_UNCHANGED_REFCOUNT, (const char *)clib_def_handle, &h); break; case CLIB_HANDLE_CRT: GetModuleHandleExA(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS|GET_MODULE_HANDLE_EX_FLAG_UNCHANGED_REFCOUNT, (const char *)&_fmode, &h); break; case CLIB_HANDLE_KERNEL32: h = LoadLibraryExA("kernel32.dll", NULL, 0); break; case CLIB_HANDLE_USER32: h = LoadLibraryExA("user32.dll", NULL, 0); break; case CLIB_HANDLE_GDI32: h = LoadLibraryExA("gdi32.dll", NULL, 0); break; } if (!h) continue; clib_def_handle[i] = (void *)h; } p = (void *)GetProcAddress(h, name); if (p) break; } } else { p = (void *)GetProcAddress((HINSTANCE)cl->handle, name); } return p; } #else #define CLIB_DEFHANDLE NULL LJ_NORET LJ_NOINLINE static void clib_error(lua_State *L, const char *fmt, const char *name) { lj_err_callermsg(L, lj_strfmt_pushf(L, fmt, name, "no support for this OS")); } static void *clib_loadlib(lua_State *L, const char *name, int global) { lj_err_callermsg(L, "no support for loading dynamic libraries for this OS"); UNUSED(name); UNUSED(global); return NULL; } static void clib_unloadlib(CLibrary *cl) { UNUSED(cl); } static void *clib_getsym(CLibrary *cl, const char *name) { UNUSED(cl); UNUSED(name); return NULL; } #endif /* -- C library indexing -------------------------------------------------- */ #if LJ_TARGET_X86 && LJ_ABI_WIN /* Compute argument size for fastcall/stdcall functions. */ static CTSize clib_func_argsize(CTState *cts, CType *ct) { CTSize n = 0; while (ct->sib) { CType *d; ct = ctype_get(cts, ct->sib); if (ctype_isfield(ct->info)) { d = ctype_rawchild(cts, ct); n += ((d->size + 3) & ~3); } } return n; } #endif /* Get redirected or mangled external symbol. */ static const char *clib_extsym(CTState *cts, CType *ct, GCstr *name) { if (ct->sib) { CType *ctf = ctype_get(cts, ct->sib); if (ctype_isxattrib(ctf->info, CTA_REDIR)) return strdata(gco2str(gcref(ctf->name))); } return strdata(name); } /* Index a C library by name. */ TValue *lj_clib_index(lua_State *L, CLibrary *cl, GCstr *name) { TValue *tv = lj_tab_setstr(L, cl->cache, name); if (LJ_UNLIKELY(tvisnil(tv))) { CTState *cts = ctype_cts(L); CType *ct; CTypeID id = lj_ctype_getname(cts, &ct, name, CLNS_INDEX); if (!id) lj_err_callerv(L, LJ_ERR_FFI_NODECL, strdata(name)); if (ctype_isconstval(ct->info)) { CType *ctt = ctype_child(cts, ct); lua_assert(ctype_isinteger(ctt->info) && ctt->size <= 4); if ((ctt->info & CTF_UNSIGNED) && (int32_t)ct->size < 0) setnumV(tv, (lua_Number)(uint32_t)ct->size); else setintV(tv, (int32_t)ct->size); } else { const char *sym = clib_extsym(cts, ct, name); #if LJ_TARGET_WINDOWS DWORD oldwerr = GetLastError(); #endif void *p = clib_getsym(cl, sym); GCcdata *cd; lua_assert(ctype_isfunc(ct->info) || ctype_isextern(ct->info)); #if LJ_TARGET_X86 && LJ_ABI_WIN /* Retry with decorated name for fastcall/stdcall functions. */ if (!p && ctype_isfunc(ct->info)) { CTInfo cconv = ctype_cconv(ct->info); if (cconv == CTCC_FASTCALL || cconv == CTCC_STDCALL) { CTSize sz = clib_func_argsize(cts, ct); const char *symd = lj_strfmt_pushf(L, cconv == CTCC_FASTCALL ? "@%s@%d" : "_%s@%d", sym, sz); L->top--; p = clib_getsym(cl, symd); } } #endif if (!p) clib_error(L, "cannot resolve symbol " LUA_QS ": %s", sym); #if LJ_TARGET_WINDOWS SetLastError(oldwerr); #endif cd = lj_cdata_new(cts, id, CTSIZE_PTR); *(void **)cdataptr(cd) = p; setcdataV(L, tv, cd); } } return tv; } /* -- C library management ------------------------------------------------ */ /* Create a new CLibrary object and push it on the stack. */ static CLibrary *clib_new(lua_State *L, GCtab *mt) { GCtab *t = lj_tab_new(L, 0, 0); GCudata *ud = lj_udata_new(L, sizeof(CLibrary), t); CLibrary *cl = (CLibrary *)uddata(ud); cl->cache = t; ud->udtype = UDTYPE_FFI_CLIB; /* NOBARRIER: The GCudata is new (marked white). */ setgcref(ud->metatable, obj2gco(mt)); setudataV(L, L->top++, ud); return cl; } /* Load a C library. */ void lj_clib_load(lua_State *L, GCtab *mt, GCstr *name, int global) { void *handle = clib_loadlib(L, strdata(name), global); CLibrary *cl = clib_new(L, mt); cl->handle = handle; } /* Unload a C library. */ void lj_clib_unload(CLibrary *cl) { clib_unloadlib(cl); cl->handle = NULL; } /* Create the default C library object. */ void lj_clib_default(lua_State *L, GCtab *mt) { CLibrary *cl = clib_new(L, mt); cl->handle = CLIB_DEFHANDLE; } #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_ccallback.h0000644000175100017510000000116713101703334020647 0ustar ondrejondrej/* ** FFI C callback handling. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_CCALLBACK_H #define _LJ_CCALLBACK_H #include "lj_obj.h" #include "lj_ctype.h" #if LJ_HASFFI /* Really belongs to lj_vm.h. */ LJ_ASMF void lj_vm_ffi_callback(void); LJ_FUNC MSize lj_ccallback_ptr2slot(CTState *cts, void *p); LJ_FUNCA lua_State * LJ_FASTCALL lj_ccallback_enter(CTState *cts, void *cf); LJ_FUNCA void LJ_FASTCALL lj_ccallback_leave(CTState *cts, TValue *o); LJ_FUNC void *lj_ccallback_new(CTState *cts, CType *ct, GCfunc *fn); LJ_FUNC void lj_ccallback_mcode_free(CTState *cts); #endif #endif luajit-2.1.0~beta3+dfsg.orig/src/xb1build.bat0000644000175100017510000000614513101703334020315 0ustar ondrejondrej@rem Script to build LuaJIT with the Xbox One SDK. @rem Donated to the public domain. @rem @rem Open a "Visual Studio .NET Command Prompt" (64 bit host compiler) @rem Then cd to this directory and run this script. @if not defined INCLUDE goto :FAIL @if not defined DurangoXDK goto :FAIL @setlocal @echo ---- Host compiler ---- @set LJCOMPILE=cl /nologo /c /MD /O2 /W3 /D_CRT_SECURE_NO_DEPRECATE /DLUAJIT_ENABLE_GC64 @set LJLINK=link /nologo @set LJMT=mt /nologo @set DASMDIR=..\dynasm @set DASM=%DASMDIR%\dynasm.lua @set ALL_LIB=lib_base.c lib_math.c lib_bit.c lib_string.c lib_table.c lib_io.c lib_os.c lib_package.c lib_debug.c lib_jit.c lib_ffi.c %LJCOMPILE% host\minilua.c @if errorlevel 1 goto :BAD %LJLINK% /out:minilua.exe minilua.obj @if errorlevel 1 goto :BAD if exist minilua.exe.manifest^ %LJMT% -manifest minilua.exe.manifest -outputresource:minilua.exe @rem Error out for 64 bit host compiler @minilua @if not errorlevel 8 goto :FAIL @set DASMFLAGS=-D WIN -D FFI -D P64 minilua %DASM% -LN %DASMFLAGS% -o host\buildvm_arch.h vm_x64.dasc @if errorlevel 1 goto :BAD %LJCOMPILE% /I "." /I %DASMDIR% /D_DURANGO host\buildvm*.c @if errorlevel 1 goto :BAD %LJLINK% /out:buildvm.exe buildvm*.obj @if errorlevel 1 goto :BAD if exist buildvm.exe.manifest^ %LJMT% -manifest buildvm.exe.manifest -outputresource:buildvm.exe buildvm -m peobj -o lj_vm.obj @if errorlevel 1 goto :BAD buildvm -m bcdef -o lj_bcdef.h %ALL_LIB% @if errorlevel 1 goto :BAD buildvm -m ffdef -o lj_ffdef.h %ALL_LIB% @if errorlevel 1 goto :BAD buildvm -m libdef -o lj_libdef.h %ALL_LIB% @if errorlevel 1 goto :BAD buildvm -m recdef -o lj_recdef.h %ALL_LIB% @if errorlevel 1 goto :BAD buildvm -m vmdef -o jit\vmdef.lua %ALL_LIB% @if errorlevel 1 goto :BAD buildvm -m folddef -o lj_folddef.h lj_opt_fold.c @if errorlevel 1 goto :BAD @echo ---- Cross compiler ---- @set CWD=%cd% @call "%DurangoXDK%\xdk\DurangoVars.cmd" XDK @cd /D "%CWD%" @shift @set LJCOMPILE="cl" /nologo /c /W3 /GF /Gm- /GR- /GS- /Gy /openmp- /D_CRT_SECURE_NO_DEPRECATE /D_LIB /D_UNICODE /D_DURANGO @set LJLIB="lib" /nologo @if "%1"=="debug" ( @shift @set LJCOMPILE=%LJCOMPILE% /Zi /MDd /Od @set LJLINK=%LJLINK% /debug ) else ( @set LJCOMPILE=%LJCOMPILE% /MD /O2 /DNDEBUG ) @if "%1"=="amalg" goto :AMALG %LJCOMPILE% /DLUA_BUILD_AS_DLL lj_*.c lib_*.c @if errorlevel 1 goto :BAD %LJLIB% /OUT:luajit.lib lj_*.obj lib_*.obj @if errorlevel 1 goto :BAD @goto :NOAMALG :AMALG %LJCOMPILE% /DLUA_BUILD_AS_DLL ljamalg.c @if errorlevel 1 goto :BAD %LJLIB% /OUT:luajit.lib ljamalg.obj lj_vm.obj @if errorlevel 1 goto :BAD :NOAMALG @del *.obj *.manifest minilua.exe buildvm.exe @echo. @echo === Successfully built LuaJIT for Xbox One === @goto :END :BAD @echo. @echo ******************************************************* @echo *** Build FAILED -- Please check the error messages *** @echo ******************************************************* @goto :END :FAIL @echo To run this script you must open a "Visual Studio .NET Command Prompt" @echo (64 bit host compiler). The Xbox One SDK must be installed, too. :END luajit-2.1.0~beta3+dfsg.orig/src/luaconf.h0000644000175100017510000001075413101703334017714 0ustar ondrejondrej/* ** Configuration header. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef luaconf_h #define luaconf_h #ifndef WINVER #define WINVER 0x0501 #endif #include #include /* Default path for loading Lua and C modules with require(). */ #if defined(_WIN32) /* ** In Windows, any exclamation mark ('!') in the path is replaced by the ** path of the directory of the executable file of the current process. */ #define LUA_LDIR "!\\lua\\" #define LUA_CDIR "!\\" #define LUA_PATH_DEFAULT \ ".\\?.lua;" LUA_LDIR"?.lua;" LUA_LDIR"?\\init.lua;" #define LUA_CPATH_DEFAULT \ ".\\?.dll;" LUA_CDIR"?.dll;" LUA_CDIR"loadall.dll" #else /* ** Note to distribution maintainers: do NOT patch the following lines! ** Please read ../doc/install.html#distro and pass PREFIX=/usr instead. */ #ifndef LUA_MULTILIB #define LUA_MULTILIB "lib" #endif #ifndef LUA_LMULTILIB #define LUA_LMULTILIB "lib" #endif #define LUA_LROOT "/usr/local" #define LUA_LUADIR "/lua/5.1/" #define LUA_LJDIR "/luajit-2.1.0-beta3/" #ifdef LUA_ROOT #define LUA_JROOT LUA_ROOT #define LUA_RLDIR LUA_ROOT "/share" LUA_LUADIR #define LUA_RCDIR LUA_ROOT "/" LUA_MULTILIB LUA_LUADIR #define LUA_RLPATH ";" LUA_RLDIR "?.lua;" LUA_RLDIR "?/init.lua" #define LUA_RCPATH ";" LUA_RCDIR "?.so" #else #define LUA_JROOT LUA_LROOT #define LUA_RLPATH #define LUA_RCPATH #endif #define LUA_JPATH ";" LUA_JROOT "/share" LUA_LJDIR "?.lua" #define LUA_LLDIR LUA_LROOT "/share" LUA_LUADIR #define LUA_LCDIR LUA_LROOT "/" LUA_LMULTILIB LUA_LUADIR #define LUA_LLPATH ";" LUA_LLDIR "?.lua;" LUA_LLDIR "?/init.lua" #define LUA_LCPATH1 ";" LUA_LCDIR "?.so" #define LUA_LCPATH2 ";" LUA_LCDIR "loadall.so" #define LUA_PATH_DEFAULT "./?.lua" LUA_JPATH LUA_LLPATH LUA_RLPATH #define LUA_CPATH_DEFAULT "./?.so" LUA_LCPATH1 LUA_RCPATH LUA_LCPATH2 #endif /* Environment variable names for path overrides and initialization code. */ #define LUA_PATH "LUA_PATH" #define LUA_CPATH "LUA_CPATH" #define LUA_INIT "LUA_INIT" /* Special file system characters. */ #if defined(_WIN32) #define LUA_DIRSEP "\\" #else #define LUA_DIRSEP "/" #endif #define LUA_PATHSEP ";" #define LUA_PATH_MARK "?" #define LUA_EXECDIR "!" #define LUA_IGMARK "-" #define LUA_PATH_CONFIG \ LUA_DIRSEP "\n" LUA_PATHSEP "\n" LUA_PATH_MARK "\n" \ LUA_EXECDIR "\n" LUA_IGMARK "\n" /* Quoting in error messages. */ #define LUA_QL(x) "'" x "'" #define LUA_QS LUA_QL("%s") /* Various tunables. */ #define LUAI_MAXSTACK 65500 /* Max. # of stack slots for a thread (<64K). */ #define LUAI_MAXCSTACK 8000 /* Max. # of stack slots for a C func (<10K). */ #define LUAI_GCPAUSE 200 /* Pause GC until memory is at 200%. */ #define LUAI_GCMUL 200 /* Run GC at 200% of allocation speed. */ #define LUA_MAXCAPTURES 32 /* Max. pattern captures. */ /* Configuration for the frontend (the luajit executable). */ #if defined(luajit_c) #define LUA_PROGNAME "luajit" /* Fallback frontend name. */ #define LUA_PROMPT "> " /* Interactive prompt. */ #define LUA_PROMPT2 ">> " /* Continuation prompt. */ #define LUA_MAXINPUT 512 /* Max. input line length. */ #endif /* Note: changing the following defines breaks the Lua 5.1 ABI. */ #define LUA_INTEGER ptrdiff_t #define LUA_IDSIZE 60 /* Size of lua_Debug.short_src. */ /* ** Size of lauxlib and io.* on-stack buffers. Weird workaround to avoid using ** unreasonable amounts of stack space, but still retain ABI compatibility. ** Blame Lua for depending on BUFSIZ in the ABI, blame **** for wrecking it. */ #define LUAL_BUFFERSIZE (BUFSIZ > 16384 ? 8192 : BUFSIZ) /* The following defines are here only for compatibility with luaconf.h ** from the standard Lua distribution. They must not be changed for LuaJIT. */ #define LUA_NUMBER_DOUBLE #define LUA_NUMBER double #define LUAI_UACNUMBER double #define LUA_NUMBER_SCAN "%lf" #define LUA_NUMBER_FMT "%.14g" #define lua_number2str(s, n) sprintf((s), LUA_NUMBER_FMT, (n)) #define LUAI_MAXNUMBER2STR 32 #define LUA_INTFRMLEN "l" #define LUA_INTFRM_T long /* Linkage of public API functions. */ #if defined(LUA_BUILD_AS_DLL) #if defined(LUA_CORE) || defined(LUA_LIB) #define LUA_API __declspec(dllexport) #else #define LUA_API __declspec(dllimport) #endif #else #define LUA_API extern #endif #define LUALIB_API LUA_API /* Support for internal assertions. */ #if defined(LUA_USE_ASSERT) || defined(LUA_USE_APICHECK) #include #endif #ifdef LUA_USE_ASSERT #define lua_assert(x) assert(x) #endif #ifdef LUA_USE_APICHECK #define luai_apicheck(L, o) { (void)L; assert(o); } #else #define luai_apicheck(L, o) { (void)L; } #endif #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_parse.c0000644000175100017510000023354113101703334020060 0ustar ondrejondrej/* ** Lua parser (source code -> bytecode). ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h ** ** Major portions taken verbatim or adapted from the Lua interpreter. ** Copyright (C) 1994-2008 Lua.org, PUC-Rio. See Copyright Notice in lua.h */ #define lj_parse_c #define LUA_CORE #include "lj_obj.h" #include "lj_gc.h" #include "lj_err.h" #include "lj_debug.h" #include "lj_buf.h" #include "lj_str.h" #include "lj_tab.h" #include "lj_func.h" #include "lj_state.h" #include "lj_bc.h" #if LJ_HASFFI #include "lj_ctype.h" #endif #include "lj_strfmt.h" #include "lj_lex.h" #include "lj_parse.h" #include "lj_vm.h" #include "lj_vmevent.h" /* -- Parser structures and definitions ----------------------------------- */ /* Expression kinds. */ typedef enum { /* Constant expressions must be first and in this order: */ VKNIL, VKFALSE, VKTRUE, VKSTR, /* sval = string value */ VKNUM, /* nval = number value */ VKLAST = VKNUM, VKCDATA, /* nval = cdata value, not treated as a constant expression */ /* Non-constant expressions follow: */ VLOCAL, /* info = local register, aux = vstack index */ VUPVAL, /* info = upvalue index, aux = vstack index */ VGLOBAL, /* sval = string value */ VINDEXED, /* info = table register, aux = index reg/byte/string const */ VJMP, /* info = instruction PC */ VRELOCABLE, /* info = instruction PC */ VNONRELOC, /* info = result register */ VCALL, /* info = instruction PC, aux = base */ VVOID } ExpKind; /* Expression descriptor. */ typedef struct ExpDesc { union { struct { uint32_t info; /* Primary info. */ uint32_t aux; /* Secondary info. */ } s; TValue nval; /* Number value. */ GCstr *sval; /* String value. */ } u; ExpKind k; BCPos t; /* True condition jump list. */ BCPos f; /* False condition jump list. */ } ExpDesc; /* Macros for expressions. */ #define expr_hasjump(e) ((e)->t != (e)->f) #define expr_isk(e) ((e)->k <= VKLAST) #define expr_isk_nojump(e) (expr_isk(e) && !expr_hasjump(e)) #define expr_isnumk(e) ((e)->k == VKNUM) #define expr_isnumk_nojump(e) (expr_isnumk(e) && !expr_hasjump(e)) #define expr_isstrk(e) ((e)->k == VKSTR) #define expr_numtv(e) check_exp(expr_isnumk((e)), &(e)->u.nval) #define expr_numberV(e) numberVnum(expr_numtv((e))) /* Initialize expression. */ static LJ_AINLINE void expr_init(ExpDesc *e, ExpKind k, uint32_t info) { e->k = k; e->u.s.info = info; e->f = e->t = NO_JMP; } /* Check number constant for +-0. */ static int expr_numiszero(ExpDesc *e) { TValue *o = expr_numtv(e); return tvisint(o) ? (intV(o) == 0) : tviszero(o); } /* Per-function linked list of scope blocks. */ typedef struct FuncScope { struct FuncScope *prev; /* Link to outer scope. */ MSize vstart; /* Start of block-local variables. */ uint8_t nactvar; /* Number of active vars outside the scope. */ uint8_t flags; /* Scope flags. */ } FuncScope; #define FSCOPE_LOOP 0x01 /* Scope is a (breakable) loop. */ #define FSCOPE_BREAK 0x02 /* Break used in scope. */ #define FSCOPE_GOLA 0x04 /* Goto or label used in scope. */ #define FSCOPE_UPVAL 0x08 /* Upvalue in scope. */ #define FSCOPE_NOCLOSE 0x10 /* Do not close upvalues. */ #define NAME_BREAK ((GCstr *)(uintptr_t)1) /* Index into variable stack. */ typedef uint16_t VarIndex; #define LJ_MAX_VSTACK (65536 - LJ_MAX_UPVAL) /* Variable/goto/label info. */ #define VSTACK_VAR_RW 0x01 /* R/W variable. */ #define VSTACK_GOTO 0x02 /* Pending goto. */ #define VSTACK_LABEL 0x04 /* Label. */ /* Per-function state. */ typedef struct FuncState { GCtab *kt; /* Hash table for constants. */ LexState *ls; /* Lexer state. */ lua_State *L; /* Lua state. */ FuncScope *bl; /* Current scope. */ struct FuncState *prev; /* Enclosing function. */ BCPos pc; /* Next bytecode position. */ BCPos lasttarget; /* Bytecode position of last jump target. */ BCPos jpc; /* Pending jump list to next bytecode. */ BCReg freereg; /* First free register. */ BCReg nactvar; /* Number of active local variables. */ BCReg nkn, nkgc; /* Number of lua_Number/GCobj constants */ BCLine linedefined; /* First line of the function definition. */ BCInsLine *bcbase; /* Base of bytecode stack. */ BCPos bclim; /* Limit of bytecode stack. */ MSize vbase; /* Base of variable stack for this function. */ uint8_t flags; /* Prototype flags. */ uint8_t numparams; /* Number of parameters. */ uint8_t framesize; /* Fixed frame size. */ uint8_t nuv; /* Number of upvalues */ VarIndex varmap[LJ_MAX_LOCVAR]; /* Map from register to variable idx. */ VarIndex uvmap[LJ_MAX_UPVAL]; /* Map from upvalue to variable idx. */ VarIndex uvtmp[LJ_MAX_UPVAL]; /* Temporary upvalue map. */ } FuncState; /* Binary and unary operators. ORDER OPR */ typedef enum BinOpr { OPR_ADD, OPR_SUB, OPR_MUL, OPR_DIV, OPR_MOD, OPR_POW, /* ORDER ARITH */ OPR_CONCAT, OPR_NE, OPR_EQ, OPR_LT, OPR_GE, OPR_LE, OPR_GT, OPR_AND, OPR_OR, OPR_NOBINOPR } BinOpr; LJ_STATIC_ASSERT((int)BC_ISGE-(int)BC_ISLT == (int)OPR_GE-(int)OPR_LT); LJ_STATIC_ASSERT((int)BC_ISLE-(int)BC_ISLT == (int)OPR_LE-(int)OPR_LT); LJ_STATIC_ASSERT((int)BC_ISGT-(int)BC_ISLT == (int)OPR_GT-(int)OPR_LT); LJ_STATIC_ASSERT((int)BC_SUBVV-(int)BC_ADDVV == (int)OPR_SUB-(int)OPR_ADD); LJ_STATIC_ASSERT((int)BC_MULVV-(int)BC_ADDVV == (int)OPR_MUL-(int)OPR_ADD); LJ_STATIC_ASSERT((int)BC_DIVVV-(int)BC_ADDVV == (int)OPR_DIV-(int)OPR_ADD); LJ_STATIC_ASSERT((int)BC_MODVV-(int)BC_ADDVV == (int)OPR_MOD-(int)OPR_ADD); /* -- Error handling ------------------------------------------------------ */ LJ_NORET LJ_NOINLINE static void err_syntax(LexState *ls, ErrMsg em) { lj_lex_error(ls, ls->tok, em); } LJ_NORET LJ_NOINLINE static void err_token(LexState *ls, LexToken tok) { lj_lex_error(ls, ls->tok, LJ_ERR_XTOKEN, lj_lex_token2str(ls, tok)); } LJ_NORET static void err_limit(FuncState *fs, uint32_t limit, const char *what) { if (fs->linedefined == 0) lj_lex_error(fs->ls, 0, LJ_ERR_XLIMM, limit, what); else lj_lex_error(fs->ls, 0, LJ_ERR_XLIMF, fs->linedefined, limit, what); } #define checklimit(fs, v, l, m) if ((v) >= (l)) err_limit(fs, l, m) #define checklimitgt(fs, v, l, m) if ((v) > (l)) err_limit(fs, l, m) #define checkcond(ls, c, em) { if (!(c)) err_syntax(ls, em); } /* -- Management of constants --------------------------------------------- */ /* Return bytecode encoding for primitive constant. */ #define const_pri(e) check_exp((e)->k <= VKTRUE, (e)->k) #define tvhaskslot(o) ((o)->u32.hi == 0) #define tvkslot(o) ((o)->u32.lo) /* Add a number constant. */ static BCReg const_num(FuncState *fs, ExpDesc *e) { lua_State *L = fs->L; TValue *o; lua_assert(expr_isnumk(e)); o = lj_tab_set(L, fs->kt, &e->u.nval); if (tvhaskslot(o)) return tvkslot(o); o->u64 = fs->nkn; return fs->nkn++; } /* Add a GC object constant. */ static BCReg const_gc(FuncState *fs, GCobj *gc, uint32_t itype) { lua_State *L = fs->L; TValue key, *o; setgcV(L, &key, gc, itype); /* NOBARRIER: the key is new or kept alive. */ o = lj_tab_set(L, fs->kt, &key); if (tvhaskslot(o)) return tvkslot(o); o->u64 = fs->nkgc; return fs->nkgc++; } /* Add a string constant. */ static BCReg const_str(FuncState *fs, ExpDesc *e) { lua_assert(expr_isstrk(e) || e->k == VGLOBAL); return const_gc(fs, obj2gco(e->u.sval), LJ_TSTR); } /* Anchor string constant to avoid GC. */ GCstr *lj_parse_keepstr(LexState *ls, const char *str, size_t len) { /* NOBARRIER: the key is new or kept alive. */ lua_State *L = ls->L; GCstr *s = lj_str_new(L, str, len); TValue *tv = lj_tab_setstr(L, ls->fs->kt, s); if (tvisnil(tv)) setboolV(tv, 1); lj_gc_check(L); return s; } #if LJ_HASFFI /* Anchor cdata to avoid GC. */ void lj_parse_keepcdata(LexState *ls, TValue *tv, GCcdata *cd) { /* NOBARRIER: the key is new or kept alive. */ lua_State *L = ls->L; setcdataV(L, tv, cd); setboolV(lj_tab_set(L, ls->fs->kt, tv), 1); } #endif /* -- Jump list handling -------------------------------------------------- */ /* Get next element in jump list. */ static BCPos jmp_next(FuncState *fs, BCPos pc) { ptrdiff_t delta = bc_j(fs->bcbase[pc].ins); if ((BCPos)delta == NO_JMP) return NO_JMP; else return (BCPos)(((ptrdiff_t)pc+1)+delta); } /* Check if any of the instructions on the jump list produce no value. */ static int jmp_novalue(FuncState *fs, BCPos list) { for (; list != NO_JMP; list = jmp_next(fs, list)) { BCIns p = fs->bcbase[list >= 1 ? list-1 : list].ins; if (!(bc_op(p) == BC_ISTC || bc_op(p) == BC_ISFC || bc_a(p) == NO_REG)) return 1; } return 0; } /* Patch register of test instructions. */ static int jmp_patchtestreg(FuncState *fs, BCPos pc, BCReg reg) { BCInsLine *ilp = &fs->bcbase[pc >= 1 ? pc-1 : pc]; BCOp op = bc_op(ilp->ins); if (op == BC_ISTC || op == BC_ISFC) { if (reg != NO_REG && reg != bc_d(ilp->ins)) { setbc_a(&ilp->ins, reg); } else { /* Nothing to store or already in the right register. */ setbc_op(&ilp->ins, op+(BC_IST-BC_ISTC)); setbc_a(&ilp->ins, 0); } } else if (bc_a(ilp->ins) == NO_REG) { if (reg == NO_REG) { ilp->ins = BCINS_AJ(BC_JMP, bc_a(fs->bcbase[pc].ins), 0); } else { setbc_a(&ilp->ins, reg); if (reg >= bc_a(ilp[1].ins)) setbc_a(&ilp[1].ins, reg+1); } } else { return 0; /* Cannot patch other instructions. */ } return 1; } /* Drop values for all instructions on jump list. */ static void jmp_dropval(FuncState *fs, BCPos list) { for (; list != NO_JMP; list = jmp_next(fs, list)) jmp_patchtestreg(fs, list, NO_REG); } /* Patch jump instruction to target. */ static void jmp_patchins(FuncState *fs, BCPos pc, BCPos dest) { BCIns *jmp = &fs->bcbase[pc].ins; BCPos offset = dest-(pc+1)+BCBIAS_J; lua_assert(dest != NO_JMP); if (offset > BCMAX_D) err_syntax(fs->ls, LJ_ERR_XJUMP); setbc_d(jmp, offset); } /* Append to jump list. */ static void jmp_append(FuncState *fs, BCPos *l1, BCPos l2) { if (l2 == NO_JMP) { return; } else if (*l1 == NO_JMP) { *l1 = l2; } else { BCPos list = *l1; BCPos next; while ((next = jmp_next(fs, list)) != NO_JMP) /* Find last element. */ list = next; jmp_patchins(fs, list, l2); } } /* Patch jump list and preserve produced values. */ static void jmp_patchval(FuncState *fs, BCPos list, BCPos vtarget, BCReg reg, BCPos dtarget) { while (list != NO_JMP) { BCPos next = jmp_next(fs, list); if (jmp_patchtestreg(fs, list, reg)) jmp_patchins(fs, list, vtarget); /* Jump to target with value. */ else jmp_patchins(fs, list, dtarget); /* Jump to default target. */ list = next; } } /* Jump to following instruction. Append to list of pending jumps. */ static void jmp_tohere(FuncState *fs, BCPos list) { fs->lasttarget = fs->pc; jmp_append(fs, &fs->jpc, list); } /* Patch jump list to target. */ static void jmp_patch(FuncState *fs, BCPos list, BCPos target) { if (target == fs->pc) { jmp_tohere(fs, list); } else { lua_assert(target < fs->pc); jmp_patchval(fs, list, target, NO_REG, target); } } /* -- Bytecode register allocator ----------------------------------------- */ /* Bump frame size. */ static void bcreg_bump(FuncState *fs, BCReg n) { BCReg sz = fs->freereg + n; if (sz > fs->framesize) { if (sz >= LJ_MAX_SLOTS) err_syntax(fs->ls, LJ_ERR_XSLOTS); fs->framesize = (uint8_t)sz; } } /* Reserve registers. */ static void bcreg_reserve(FuncState *fs, BCReg n) { bcreg_bump(fs, n); fs->freereg += n; } /* Free register. */ static void bcreg_free(FuncState *fs, BCReg reg) { if (reg >= fs->nactvar) { fs->freereg--; lua_assert(reg == fs->freereg); } } /* Free register for expression. */ static void expr_free(FuncState *fs, ExpDesc *e) { if (e->k == VNONRELOC) bcreg_free(fs, e->u.s.info); } /* -- Bytecode emitter ---------------------------------------------------- */ /* Emit bytecode instruction. */ static BCPos bcemit_INS(FuncState *fs, BCIns ins) { BCPos pc = fs->pc; LexState *ls = fs->ls; jmp_patchval(fs, fs->jpc, pc, NO_REG, pc); fs->jpc = NO_JMP; if (LJ_UNLIKELY(pc >= fs->bclim)) { ptrdiff_t base = fs->bcbase - ls->bcstack; checklimit(fs, ls->sizebcstack, LJ_MAX_BCINS, "bytecode instructions"); lj_mem_growvec(fs->L, ls->bcstack, ls->sizebcstack, LJ_MAX_BCINS,BCInsLine); fs->bclim = (BCPos)(ls->sizebcstack - base); fs->bcbase = ls->bcstack + base; } fs->bcbase[pc].ins = ins; fs->bcbase[pc].line = ls->lastline; fs->pc = pc+1; return pc; } #define bcemit_ABC(fs, o, a, b, c) bcemit_INS(fs, BCINS_ABC(o, a, b, c)) #define bcemit_AD(fs, o, a, d) bcemit_INS(fs, BCINS_AD(o, a, d)) #define bcemit_AJ(fs, o, a, j) bcemit_INS(fs, BCINS_AJ(o, a, j)) #define bcptr(fs, e) (&(fs)->bcbase[(e)->u.s.info].ins) /* -- Bytecode emitter for expressions ------------------------------------ */ /* Discharge non-constant expression to any register. */ static void expr_discharge(FuncState *fs, ExpDesc *e) { BCIns ins; if (e->k == VUPVAL) { ins = BCINS_AD(BC_UGET, 0, e->u.s.info); } else if (e->k == VGLOBAL) { ins = BCINS_AD(BC_GGET, 0, const_str(fs, e)); } else if (e->k == VINDEXED) { BCReg rc = e->u.s.aux; if ((int32_t)rc < 0) { ins = BCINS_ABC(BC_TGETS, 0, e->u.s.info, ~rc); } else if (rc > BCMAX_C) { ins = BCINS_ABC(BC_TGETB, 0, e->u.s.info, rc-(BCMAX_C+1)); } else { bcreg_free(fs, rc); ins = BCINS_ABC(BC_TGETV, 0, e->u.s.info, rc); } bcreg_free(fs, e->u.s.info); } else if (e->k == VCALL) { e->u.s.info = e->u.s.aux; e->k = VNONRELOC; return; } else if (e->k == VLOCAL) { e->k = VNONRELOC; return; } else { return; } e->u.s.info = bcemit_INS(fs, ins); e->k = VRELOCABLE; } /* Emit bytecode to set a range of registers to nil. */ static void bcemit_nil(FuncState *fs, BCReg from, BCReg n) { if (fs->pc > fs->lasttarget) { /* No jumps to current position? */ BCIns *ip = &fs->bcbase[fs->pc-1].ins; BCReg pto, pfrom = bc_a(*ip); switch (bc_op(*ip)) { /* Try to merge with the previous instruction. */ case BC_KPRI: if (bc_d(*ip) != ~LJ_TNIL) break; if (from == pfrom) { if (n == 1) return; } else if (from == pfrom+1) { from = pfrom; n++; } else { break; } *ip = BCINS_AD(BC_KNIL, from, from+n-1); /* Replace KPRI. */ return; case BC_KNIL: pto = bc_d(*ip); if (pfrom <= from && from <= pto+1) { /* Can we connect both ranges? */ if (from+n-1 > pto) setbc_d(ip, from+n-1); /* Patch previous instruction range. */ return; } break; default: break; } } /* Emit new instruction or replace old instruction. */ bcemit_INS(fs, n == 1 ? BCINS_AD(BC_KPRI, from, VKNIL) : BCINS_AD(BC_KNIL, from, from+n-1)); } /* Discharge an expression to a specific register. Ignore branches. */ static void expr_toreg_nobranch(FuncState *fs, ExpDesc *e, BCReg reg) { BCIns ins; expr_discharge(fs, e); if (e->k == VKSTR) { ins = BCINS_AD(BC_KSTR, reg, const_str(fs, e)); } else if (e->k == VKNUM) { #if LJ_DUALNUM cTValue *tv = expr_numtv(e); if (tvisint(tv) && checki16(intV(tv))) ins = BCINS_AD(BC_KSHORT, reg, (BCReg)(uint16_t)intV(tv)); else #else lua_Number n = expr_numberV(e); int32_t k = lj_num2int(n); if (checki16(k) && n == (lua_Number)k) ins = BCINS_AD(BC_KSHORT, reg, (BCReg)(uint16_t)k); else #endif ins = BCINS_AD(BC_KNUM, reg, const_num(fs, e)); #if LJ_HASFFI } else if (e->k == VKCDATA) { fs->flags |= PROTO_FFI; ins = BCINS_AD(BC_KCDATA, reg, const_gc(fs, obj2gco(cdataV(&e->u.nval)), LJ_TCDATA)); #endif } else if (e->k == VRELOCABLE) { setbc_a(bcptr(fs, e), reg); goto noins; } else if (e->k == VNONRELOC) { if (reg == e->u.s.info) goto noins; ins = BCINS_AD(BC_MOV, reg, e->u.s.info); } else if (e->k == VKNIL) { bcemit_nil(fs, reg, 1); goto noins; } else if (e->k <= VKTRUE) { ins = BCINS_AD(BC_KPRI, reg, const_pri(e)); } else { lua_assert(e->k == VVOID || e->k == VJMP); return; } bcemit_INS(fs, ins); noins: e->u.s.info = reg; e->k = VNONRELOC; } /* Forward declaration. */ static BCPos bcemit_jmp(FuncState *fs); /* Discharge an expression to a specific register. */ static void expr_toreg(FuncState *fs, ExpDesc *e, BCReg reg) { expr_toreg_nobranch(fs, e, reg); if (e->k == VJMP) jmp_append(fs, &e->t, e->u.s.info); /* Add it to the true jump list. */ if (expr_hasjump(e)) { /* Discharge expression with branches. */ BCPos jend, jfalse = NO_JMP, jtrue = NO_JMP; if (jmp_novalue(fs, e->t) || jmp_novalue(fs, e->f)) { BCPos jval = (e->k == VJMP) ? NO_JMP : bcemit_jmp(fs); jfalse = bcemit_AD(fs, BC_KPRI, reg, VKFALSE); bcemit_AJ(fs, BC_JMP, fs->freereg, 1); jtrue = bcemit_AD(fs, BC_KPRI, reg, VKTRUE); jmp_tohere(fs, jval); } jend = fs->pc; fs->lasttarget = jend; jmp_patchval(fs, e->f, jend, reg, jfalse); jmp_patchval(fs, e->t, jend, reg, jtrue); } e->f = e->t = NO_JMP; e->u.s.info = reg; e->k = VNONRELOC; } /* Discharge an expression to the next free register. */ static void expr_tonextreg(FuncState *fs, ExpDesc *e) { expr_discharge(fs, e); expr_free(fs, e); bcreg_reserve(fs, 1); expr_toreg(fs, e, fs->freereg - 1); } /* Discharge an expression to any register. */ static BCReg expr_toanyreg(FuncState *fs, ExpDesc *e) { expr_discharge(fs, e); if (e->k == VNONRELOC) { if (!expr_hasjump(e)) return e->u.s.info; /* Already in a register. */ if (e->u.s.info >= fs->nactvar) { expr_toreg(fs, e, e->u.s.info); /* Discharge to temp. register. */ return e->u.s.info; } } expr_tonextreg(fs, e); /* Discharge to next register. */ return e->u.s.info; } /* Partially discharge expression to a value. */ static void expr_toval(FuncState *fs, ExpDesc *e) { if (expr_hasjump(e)) expr_toanyreg(fs, e); else expr_discharge(fs, e); } /* Emit store for LHS expression. */ static void bcemit_store(FuncState *fs, ExpDesc *var, ExpDesc *e) { BCIns ins; if (var->k == VLOCAL) { fs->ls->vstack[var->u.s.aux].info |= VSTACK_VAR_RW; expr_free(fs, e); expr_toreg(fs, e, var->u.s.info); return; } else if (var->k == VUPVAL) { fs->ls->vstack[var->u.s.aux].info |= VSTACK_VAR_RW; expr_toval(fs, e); if (e->k <= VKTRUE) ins = BCINS_AD(BC_USETP, var->u.s.info, const_pri(e)); else if (e->k == VKSTR) ins = BCINS_AD(BC_USETS, var->u.s.info, const_str(fs, e)); else if (e->k == VKNUM) ins = BCINS_AD(BC_USETN, var->u.s.info, const_num(fs, e)); else ins = BCINS_AD(BC_USETV, var->u.s.info, expr_toanyreg(fs, e)); } else if (var->k == VGLOBAL) { BCReg ra = expr_toanyreg(fs, e); ins = BCINS_AD(BC_GSET, ra, const_str(fs, var)); } else { BCReg ra, rc; lua_assert(var->k == VINDEXED); ra = expr_toanyreg(fs, e); rc = var->u.s.aux; if ((int32_t)rc < 0) { ins = BCINS_ABC(BC_TSETS, ra, var->u.s.info, ~rc); } else if (rc > BCMAX_C) { ins = BCINS_ABC(BC_TSETB, ra, var->u.s.info, rc-(BCMAX_C+1)); } else { /* Free late alloced key reg to avoid assert on free of value reg. */ /* This can only happen when called from expr_table(). */ lua_assert(e->k != VNONRELOC || ra < fs->nactvar || rc < ra || (bcreg_free(fs, rc),1)); ins = BCINS_ABC(BC_TSETV, ra, var->u.s.info, rc); } } bcemit_INS(fs, ins); expr_free(fs, e); } /* Emit method lookup expression. */ static void bcemit_method(FuncState *fs, ExpDesc *e, ExpDesc *key) { BCReg idx, func, obj = expr_toanyreg(fs, e); expr_free(fs, e); func = fs->freereg; bcemit_AD(fs, BC_MOV, func+1+LJ_FR2, obj); /* Copy object to 1st argument. */ lua_assert(expr_isstrk(key)); idx = const_str(fs, key); if (idx <= BCMAX_C) { bcreg_reserve(fs, 2+LJ_FR2); bcemit_ABC(fs, BC_TGETS, func, obj, idx); } else { bcreg_reserve(fs, 3+LJ_FR2); bcemit_AD(fs, BC_KSTR, func+2+LJ_FR2, idx); bcemit_ABC(fs, BC_TGETV, func, obj, func+2+LJ_FR2); fs->freereg--; } e->u.s.info = func; e->k = VNONRELOC; } /* -- Bytecode emitter for branches --------------------------------------- */ /* Emit unconditional branch. */ static BCPos bcemit_jmp(FuncState *fs) { BCPos jpc = fs->jpc; BCPos j = fs->pc - 1; BCIns *ip = &fs->bcbase[j].ins; fs->jpc = NO_JMP; if ((int32_t)j >= (int32_t)fs->lasttarget && bc_op(*ip) == BC_UCLO) { setbc_j(ip, NO_JMP); fs->lasttarget = j+1; } else { j = bcemit_AJ(fs, BC_JMP, fs->freereg, NO_JMP); } jmp_append(fs, &j, jpc); return j; } /* Invert branch condition of bytecode instruction. */ static void invertcond(FuncState *fs, ExpDesc *e) { BCIns *ip = &fs->bcbase[e->u.s.info - 1].ins; setbc_op(ip, bc_op(*ip)^1); } /* Emit conditional branch. */ static BCPos bcemit_branch(FuncState *fs, ExpDesc *e, int cond) { BCPos pc; if (e->k == VRELOCABLE) { BCIns *ip = bcptr(fs, e); if (bc_op(*ip) == BC_NOT) { *ip = BCINS_AD(cond ? BC_ISF : BC_IST, 0, bc_d(*ip)); return bcemit_jmp(fs); } } if (e->k != VNONRELOC) { bcreg_reserve(fs, 1); expr_toreg_nobranch(fs, e, fs->freereg-1); } bcemit_AD(fs, cond ? BC_ISTC : BC_ISFC, NO_REG, e->u.s.info); pc = bcemit_jmp(fs); expr_free(fs, e); return pc; } /* Emit branch on true condition. */ static void bcemit_branch_t(FuncState *fs, ExpDesc *e) { BCPos pc; expr_discharge(fs, e); if (e->k == VKSTR || e->k == VKNUM || e->k == VKTRUE) pc = NO_JMP; /* Never jump. */ else if (e->k == VJMP) invertcond(fs, e), pc = e->u.s.info; else if (e->k == VKFALSE || e->k == VKNIL) expr_toreg_nobranch(fs, e, NO_REG), pc = bcemit_jmp(fs); else pc = bcemit_branch(fs, e, 0); jmp_append(fs, &e->f, pc); jmp_tohere(fs, e->t); e->t = NO_JMP; } /* Emit branch on false condition. */ static void bcemit_branch_f(FuncState *fs, ExpDesc *e) { BCPos pc; expr_discharge(fs, e); if (e->k == VKNIL || e->k == VKFALSE) pc = NO_JMP; /* Never jump. */ else if (e->k == VJMP) pc = e->u.s.info; else if (e->k == VKSTR || e->k == VKNUM || e->k == VKTRUE) expr_toreg_nobranch(fs, e, NO_REG), pc = bcemit_jmp(fs); else pc = bcemit_branch(fs, e, 1); jmp_append(fs, &e->t, pc); jmp_tohere(fs, e->f); e->f = NO_JMP; } /* -- Bytecode emitter for operators -------------------------------------- */ /* Try constant-folding of arithmetic operators. */ static int foldarith(BinOpr opr, ExpDesc *e1, ExpDesc *e2) { TValue o; lua_Number n; if (!expr_isnumk_nojump(e1) || !expr_isnumk_nojump(e2)) return 0; n = lj_vm_foldarith(expr_numberV(e1), expr_numberV(e2), (int)opr-OPR_ADD); setnumV(&o, n); if (tvisnan(&o) || tvismzero(&o)) return 0; /* Avoid NaN and -0 as consts. */ if (LJ_DUALNUM) { int32_t k = lj_num2int(n); if ((lua_Number)k == n) { setintV(&e1->u.nval, k); return 1; } } setnumV(&e1->u.nval, n); return 1; } /* Emit arithmetic operator. */ static void bcemit_arith(FuncState *fs, BinOpr opr, ExpDesc *e1, ExpDesc *e2) { BCReg rb, rc, t; uint32_t op; if (foldarith(opr, e1, e2)) return; if (opr == OPR_POW) { op = BC_POW; rc = expr_toanyreg(fs, e2); rb = expr_toanyreg(fs, e1); } else { op = opr-OPR_ADD+BC_ADDVV; /* Must discharge 2nd operand first since VINDEXED might free regs. */ expr_toval(fs, e2); if (expr_isnumk(e2) && (rc = const_num(fs, e2)) <= BCMAX_C) op -= BC_ADDVV-BC_ADDVN; else rc = expr_toanyreg(fs, e2); /* 1st operand discharged by bcemit_binop_left, but need KNUM/KSHORT. */ lua_assert(expr_isnumk(e1) || e1->k == VNONRELOC); expr_toval(fs, e1); /* Avoid two consts to satisfy bytecode constraints. */ if (expr_isnumk(e1) && !expr_isnumk(e2) && (t = const_num(fs, e1)) <= BCMAX_B) { rb = rc; rc = t; op -= BC_ADDVV-BC_ADDNV; } else { rb = expr_toanyreg(fs, e1); } } /* Using expr_free might cause asserts if the order is wrong. */ if (e1->k == VNONRELOC && e1->u.s.info >= fs->nactvar) fs->freereg--; if (e2->k == VNONRELOC && e2->u.s.info >= fs->nactvar) fs->freereg--; e1->u.s.info = bcemit_ABC(fs, op, 0, rb, rc); e1->k = VRELOCABLE; } /* Emit comparison operator. */ static void bcemit_comp(FuncState *fs, BinOpr opr, ExpDesc *e1, ExpDesc *e2) { ExpDesc *eret = e1; BCIns ins; expr_toval(fs, e1); if (opr == OPR_EQ || opr == OPR_NE) { BCOp op = opr == OPR_EQ ? BC_ISEQV : BC_ISNEV; BCReg ra; if (expr_isk(e1)) { e1 = e2; e2 = eret; } /* Need constant in 2nd arg. */ ra = expr_toanyreg(fs, e1); /* First arg must be in a reg. */ expr_toval(fs, e2); switch (e2->k) { case VKNIL: case VKFALSE: case VKTRUE: ins = BCINS_AD(op+(BC_ISEQP-BC_ISEQV), ra, const_pri(e2)); break; case VKSTR: ins = BCINS_AD(op+(BC_ISEQS-BC_ISEQV), ra, const_str(fs, e2)); break; case VKNUM: ins = BCINS_AD(op+(BC_ISEQN-BC_ISEQV), ra, const_num(fs, e2)); break; default: ins = BCINS_AD(op, ra, expr_toanyreg(fs, e2)); break; } } else { uint32_t op = opr-OPR_LT+BC_ISLT; BCReg ra, rd; if ((op-BC_ISLT) & 1) { /* GT -> LT, GE -> LE */ e1 = e2; e2 = eret; /* Swap operands. */ op = ((op-BC_ISLT)^3)+BC_ISLT; expr_toval(fs, e1); } rd = expr_toanyreg(fs, e2); ra = expr_toanyreg(fs, e1); ins = BCINS_AD(op, ra, rd); } /* Using expr_free might cause asserts if the order is wrong. */ if (e1->k == VNONRELOC && e1->u.s.info >= fs->nactvar) fs->freereg--; if (e2->k == VNONRELOC && e2->u.s.info >= fs->nactvar) fs->freereg--; bcemit_INS(fs, ins); eret->u.s.info = bcemit_jmp(fs); eret->k = VJMP; } /* Fixup left side of binary operator. */ static void bcemit_binop_left(FuncState *fs, BinOpr op, ExpDesc *e) { if (op == OPR_AND) { bcemit_branch_t(fs, e); } else if (op == OPR_OR) { bcemit_branch_f(fs, e); } else if (op == OPR_CONCAT) { expr_tonextreg(fs, e); } else if (op == OPR_EQ || op == OPR_NE) { if (!expr_isk_nojump(e)) expr_toanyreg(fs, e); } else { if (!expr_isnumk_nojump(e)) expr_toanyreg(fs, e); } } /* Emit binary operator. */ static void bcemit_binop(FuncState *fs, BinOpr op, ExpDesc *e1, ExpDesc *e2) { if (op <= OPR_POW) { bcemit_arith(fs, op, e1, e2); } else if (op == OPR_AND) { lua_assert(e1->t == NO_JMP); /* List must be closed. */ expr_discharge(fs, e2); jmp_append(fs, &e2->f, e1->f); *e1 = *e2; } else if (op == OPR_OR) { lua_assert(e1->f == NO_JMP); /* List must be closed. */ expr_discharge(fs, e2); jmp_append(fs, &e2->t, e1->t); *e1 = *e2; } else if (op == OPR_CONCAT) { expr_toval(fs, e2); if (e2->k == VRELOCABLE && bc_op(*bcptr(fs, e2)) == BC_CAT) { lua_assert(e1->u.s.info == bc_b(*bcptr(fs, e2))-1); expr_free(fs, e1); setbc_b(bcptr(fs, e2), e1->u.s.info); e1->u.s.info = e2->u.s.info; } else { expr_tonextreg(fs, e2); expr_free(fs, e2); expr_free(fs, e1); e1->u.s.info = bcemit_ABC(fs, BC_CAT, 0, e1->u.s.info, e2->u.s.info); } e1->k = VRELOCABLE; } else { lua_assert(op == OPR_NE || op == OPR_EQ || op == OPR_LT || op == OPR_GE || op == OPR_LE || op == OPR_GT); bcemit_comp(fs, op, e1, e2); } } /* Emit unary operator. */ static void bcemit_unop(FuncState *fs, BCOp op, ExpDesc *e) { if (op == BC_NOT) { /* Swap true and false lists. */ { BCPos temp = e->f; e->f = e->t; e->t = temp; } jmp_dropval(fs, e->f); jmp_dropval(fs, e->t); expr_discharge(fs, e); if (e->k == VKNIL || e->k == VKFALSE) { e->k = VKTRUE; return; } else if (expr_isk(e) || (LJ_HASFFI && e->k == VKCDATA)) { e->k = VKFALSE; return; } else if (e->k == VJMP) { invertcond(fs, e); return; } else if (e->k == VRELOCABLE) { bcreg_reserve(fs, 1); setbc_a(bcptr(fs, e), fs->freereg-1); e->u.s.info = fs->freereg-1; e->k = VNONRELOC; } else { lua_assert(e->k == VNONRELOC); } } else { lua_assert(op == BC_UNM || op == BC_LEN); if (op == BC_UNM && !expr_hasjump(e)) { /* Constant-fold negations. */ #if LJ_HASFFI if (e->k == VKCDATA) { /* Fold in-place since cdata is not interned. */ GCcdata *cd = cdataV(&e->u.nval); int64_t *p = (int64_t *)cdataptr(cd); if (cd->ctypeid == CTID_COMPLEX_DOUBLE) p[1] ^= (int64_t)U64x(80000000,00000000); else *p = -*p; return; } else #endif if (expr_isnumk(e) && !expr_numiszero(e)) { /* Avoid folding to -0. */ TValue *o = expr_numtv(e); if (tvisint(o)) { int32_t k = intV(o); if (k == -k) setnumV(o, -(lua_Number)k); else setintV(o, -k); return; } else { o->u64 ^= U64x(80000000,00000000); return; } } } expr_toanyreg(fs, e); } expr_free(fs, e); e->u.s.info = bcemit_AD(fs, op, 0, e->u.s.info); e->k = VRELOCABLE; } /* -- Lexer support ------------------------------------------------------- */ /* Check and consume optional token. */ static int lex_opt(LexState *ls, LexToken tok) { if (ls->tok == tok) { lj_lex_next(ls); return 1; } return 0; } /* Check and consume token. */ static void lex_check(LexState *ls, LexToken tok) { if (ls->tok != tok) err_token(ls, tok); lj_lex_next(ls); } /* Check for matching token. */ static void lex_match(LexState *ls, LexToken what, LexToken who, BCLine line) { if (!lex_opt(ls, what)) { if (line == ls->linenumber) { err_token(ls, what); } else { const char *swhat = lj_lex_token2str(ls, what); const char *swho = lj_lex_token2str(ls, who); lj_lex_error(ls, ls->tok, LJ_ERR_XMATCH, swhat, swho, line); } } } /* Check for string token. */ static GCstr *lex_str(LexState *ls) { GCstr *s; if (ls->tok != TK_name && (LJ_52 || ls->tok != TK_goto)) err_token(ls, TK_name); s = strV(&ls->tokval); lj_lex_next(ls); return s; } /* -- Variable handling --------------------------------------------------- */ #define var_get(ls, fs, i) ((ls)->vstack[(fs)->varmap[(i)]]) /* Define a new local variable. */ static void var_new(LexState *ls, BCReg n, GCstr *name) { FuncState *fs = ls->fs; MSize vtop = ls->vtop; checklimit(fs, fs->nactvar+n, LJ_MAX_LOCVAR, "local variables"); if (LJ_UNLIKELY(vtop >= ls->sizevstack)) { if (ls->sizevstack >= LJ_MAX_VSTACK) lj_lex_error(ls, 0, LJ_ERR_XLIMC, LJ_MAX_VSTACK); lj_mem_growvec(ls->L, ls->vstack, ls->sizevstack, LJ_MAX_VSTACK, VarInfo); } lua_assert((uintptr_t)name < VARNAME__MAX || lj_tab_getstr(fs->kt, name) != NULL); /* NOBARRIER: name is anchored in fs->kt and ls->vstack is not a GCobj. */ setgcref(ls->vstack[vtop].name, obj2gco(name)); fs->varmap[fs->nactvar+n] = (uint16_t)vtop; ls->vtop = vtop+1; } #define var_new_lit(ls, n, v) \ var_new(ls, (n), lj_parse_keepstr(ls, "" v, sizeof(v)-1)) #define var_new_fixed(ls, n, vn) \ var_new(ls, (n), (GCstr *)(uintptr_t)(vn)) /* Add local variables. */ static void var_add(LexState *ls, BCReg nvars) { FuncState *fs = ls->fs; BCReg nactvar = fs->nactvar; while (nvars--) { VarInfo *v = &var_get(ls, fs, nactvar); v->startpc = fs->pc; v->slot = nactvar++; v->info = 0; } fs->nactvar = nactvar; } /* Remove local variables. */ static void var_remove(LexState *ls, BCReg tolevel) { FuncState *fs = ls->fs; while (fs->nactvar > tolevel) var_get(ls, fs, --fs->nactvar).endpc = fs->pc; } /* Lookup local variable name. */ static BCReg var_lookup_local(FuncState *fs, GCstr *n) { int i; for (i = fs->nactvar-1; i >= 0; i--) { if (n == strref(var_get(fs->ls, fs, i).name)) return (BCReg)i; } return (BCReg)-1; /* Not found. */ } /* Lookup or add upvalue index. */ static MSize var_lookup_uv(FuncState *fs, MSize vidx, ExpDesc *e) { MSize i, n = fs->nuv; for (i = 0; i < n; i++) if (fs->uvmap[i] == vidx) return i; /* Already exists. */ /* Otherwise create a new one. */ checklimit(fs, fs->nuv, LJ_MAX_UPVAL, "upvalues"); lua_assert(e->k == VLOCAL || e->k == VUPVAL); fs->uvmap[n] = (uint16_t)vidx; fs->uvtmp[n] = (uint16_t)(e->k == VLOCAL ? vidx : LJ_MAX_VSTACK+e->u.s.info); fs->nuv = n+1; return n; } /* Forward declaration. */ static void fscope_uvmark(FuncState *fs, BCReg level); /* Recursively lookup variables in enclosing functions. */ static MSize var_lookup_(FuncState *fs, GCstr *name, ExpDesc *e, int first) { if (fs) { BCReg reg = var_lookup_local(fs, name); if ((int32_t)reg >= 0) { /* Local in this function? */ expr_init(e, VLOCAL, reg); if (!first) fscope_uvmark(fs, reg); /* Scope now has an upvalue. */ return (MSize)(e->u.s.aux = (uint32_t)fs->varmap[reg]); } else { MSize vidx = var_lookup_(fs->prev, name, e, 0); /* Var in outer func? */ if ((int32_t)vidx >= 0) { /* Yes, make it an upvalue here. */ e->u.s.info = (uint8_t)var_lookup_uv(fs, vidx, e); e->k = VUPVAL; return vidx; } } } else { /* Not found in any function, must be a global. */ expr_init(e, VGLOBAL, 0); e->u.sval = name; } return (MSize)-1; /* Global. */ } /* Lookup variable name. */ #define var_lookup(ls, e) \ var_lookup_((ls)->fs, lex_str(ls), (e), 1) /* -- Goto an label handling ---------------------------------------------- */ /* Add a new goto or label. */ static MSize gola_new(LexState *ls, GCstr *name, uint8_t info, BCPos pc) { FuncState *fs = ls->fs; MSize vtop = ls->vtop; if (LJ_UNLIKELY(vtop >= ls->sizevstack)) { if (ls->sizevstack >= LJ_MAX_VSTACK) lj_lex_error(ls, 0, LJ_ERR_XLIMC, LJ_MAX_VSTACK); lj_mem_growvec(ls->L, ls->vstack, ls->sizevstack, LJ_MAX_VSTACK, VarInfo); } lua_assert(name == NAME_BREAK || lj_tab_getstr(fs->kt, name) != NULL); /* NOBARRIER: name is anchored in fs->kt and ls->vstack is not a GCobj. */ setgcref(ls->vstack[vtop].name, obj2gco(name)); ls->vstack[vtop].startpc = pc; ls->vstack[vtop].slot = (uint8_t)fs->nactvar; ls->vstack[vtop].info = info; ls->vtop = vtop+1; return vtop; } #define gola_isgoto(v) ((v)->info & VSTACK_GOTO) #define gola_islabel(v) ((v)->info & VSTACK_LABEL) #define gola_isgotolabel(v) ((v)->info & (VSTACK_GOTO|VSTACK_LABEL)) /* Patch goto to jump to label. */ static void gola_patch(LexState *ls, VarInfo *vg, VarInfo *vl) { FuncState *fs = ls->fs; BCPos pc = vg->startpc; setgcrefnull(vg->name); /* Invalidate pending goto. */ setbc_a(&fs->bcbase[pc].ins, vl->slot); jmp_patch(fs, pc, vl->startpc); } /* Patch goto to close upvalues. */ static void gola_close(LexState *ls, VarInfo *vg) { FuncState *fs = ls->fs; BCPos pc = vg->startpc; BCIns *ip = &fs->bcbase[pc].ins; lua_assert(gola_isgoto(vg)); lua_assert(bc_op(*ip) == BC_JMP || bc_op(*ip) == BC_UCLO); setbc_a(ip, vg->slot); if (bc_op(*ip) == BC_JMP) { BCPos next = jmp_next(fs, pc); if (next != NO_JMP) jmp_patch(fs, next, pc); /* Jump to UCLO. */ setbc_op(ip, BC_UCLO); /* Turn into UCLO. */ setbc_j(ip, NO_JMP); } } /* Resolve pending forward gotos for label. */ static void gola_resolve(LexState *ls, FuncScope *bl, MSize idx) { VarInfo *vg = ls->vstack + bl->vstart; VarInfo *vl = ls->vstack + idx; for (; vg < vl; vg++) if (gcrefeq(vg->name, vl->name) && gola_isgoto(vg)) { if (vg->slot < vl->slot) { GCstr *name = strref(var_get(ls, ls->fs, vg->slot).name); lua_assert((uintptr_t)name >= VARNAME__MAX); ls->linenumber = ls->fs->bcbase[vg->startpc].line; lua_assert(strref(vg->name) != NAME_BREAK); lj_lex_error(ls, 0, LJ_ERR_XGSCOPE, strdata(strref(vg->name)), strdata(name)); } gola_patch(ls, vg, vl); } } /* Fixup remaining gotos and labels for scope. */ static void gola_fixup(LexState *ls, FuncScope *bl) { VarInfo *v = ls->vstack + bl->vstart; VarInfo *ve = ls->vstack + ls->vtop; for (; v < ve; v++) { GCstr *name = strref(v->name); if (name != NULL) { /* Only consider remaining valid gotos/labels. */ if (gola_islabel(v)) { VarInfo *vg; setgcrefnull(v->name); /* Invalidate label that goes out of scope. */ for (vg = v+1; vg < ve; vg++) /* Resolve pending backward gotos. */ if (strref(vg->name) == name && gola_isgoto(vg)) { if ((bl->flags&FSCOPE_UPVAL) && vg->slot > v->slot) gola_close(ls, vg); gola_patch(ls, vg, v); } } else if (gola_isgoto(v)) { if (bl->prev) { /* Propagate goto or break to outer scope. */ bl->prev->flags |= name == NAME_BREAK ? FSCOPE_BREAK : FSCOPE_GOLA; v->slot = bl->nactvar; if ((bl->flags & FSCOPE_UPVAL)) gola_close(ls, v); } else { /* No outer scope: undefined goto label or no loop. */ ls->linenumber = ls->fs->bcbase[v->startpc].line; if (name == NAME_BREAK) lj_lex_error(ls, 0, LJ_ERR_XBREAK); else lj_lex_error(ls, 0, LJ_ERR_XLUNDEF, strdata(name)); } } } } } /* Find existing label. */ static VarInfo *gola_findlabel(LexState *ls, GCstr *name) { VarInfo *v = ls->vstack + ls->fs->bl->vstart; VarInfo *ve = ls->vstack + ls->vtop; for (; v < ve; v++) if (strref(v->name) == name && gola_islabel(v)) return v; return NULL; } /* -- Scope handling ------------------------------------------------------ */ /* Begin a scope. */ static void fscope_begin(FuncState *fs, FuncScope *bl, int flags) { bl->nactvar = (uint8_t)fs->nactvar; bl->flags = flags; bl->vstart = fs->ls->vtop; bl->prev = fs->bl; fs->bl = bl; lua_assert(fs->freereg == fs->nactvar); } /* End a scope. */ static void fscope_end(FuncState *fs) { FuncScope *bl = fs->bl; LexState *ls = fs->ls; fs->bl = bl->prev; var_remove(ls, bl->nactvar); fs->freereg = fs->nactvar; lua_assert(bl->nactvar == fs->nactvar); if ((bl->flags & (FSCOPE_UPVAL|FSCOPE_NOCLOSE)) == FSCOPE_UPVAL) bcemit_AJ(fs, BC_UCLO, bl->nactvar, 0); if ((bl->flags & FSCOPE_BREAK)) { if ((bl->flags & FSCOPE_LOOP)) { MSize idx = gola_new(ls, NAME_BREAK, VSTACK_LABEL, fs->pc); ls->vtop = idx; /* Drop break label immediately. */ gola_resolve(ls, bl, idx); } else { /* Need the fixup step to propagate the breaks. */ gola_fixup(ls, bl); return; } } if ((bl->flags & FSCOPE_GOLA)) { gola_fixup(ls, bl); } } /* Mark scope as having an upvalue. */ static void fscope_uvmark(FuncState *fs, BCReg level) { FuncScope *bl; for (bl = fs->bl; bl && bl->nactvar > level; bl = bl->prev) ; if (bl) bl->flags |= FSCOPE_UPVAL; } /* -- Function state management ------------------------------------------- */ /* Fixup bytecode for prototype. */ static void fs_fixup_bc(FuncState *fs, GCproto *pt, BCIns *bc, MSize n) { BCInsLine *base = fs->bcbase; MSize i; pt->sizebc = n; bc[0] = BCINS_AD((fs->flags & PROTO_VARARG) ? BC_FUNCV : BC_FUNCF, fs->framesize, 0); for (i = 1; i < n; i++) bc[i] = base[i].ins; } /* Fixup upvalues for child prototype, step #2. */ static void fs_fixup_uv2(FuncState *fs, GCproto *pt) { VarInfo *vstack = fs->ls->vstack; uint16_t *uv = proto_uv(pt); MSize i, n = pt->sizeuv; for (i = 0; i < n; i++) { VarIndex vidx = uv[i]; if (vidx >= LJ_MAX_VSTACK) uv[i] = vidx - LJ_MAX_VSTACK; else if ((vstack[vidx].info & VSTACK_VAR_RW)) uv[i] = vstack[vidx].slot | PROTO_UV_LOCAL; else uv[i] = vstack[vidx].slot | PROTO_UV_LOCAL | PROTO_UV_IMMUTABLE; } } /* Fixup constants for prototype. */ static void fs_fixup_k(FuncState *fs, GCproto *pt, void *kptr) { GCtab *kt; TValue *array; Node *node; MSize i, hmask; checklimitgt(fs, fs->nkn, BCMAX_D+1, "constants"); checklimitgt(fs, fs->nkgc, BCMAX_D+1, "constants"); setmref(pt->k, kptr); pt->sizekn = fs->nkn; pt->sizekgc = fs->nkgc; kt = fs->kt; array = tvref(kt->array); for (i = 0; i < kt->asize; i++) if (tvhaskslot(&array[i])) { TValue *tv = &((TValue *)kptr)[tvkslot(&array[i])]; if (LJ_DUALNUM) setintV(tv, (int32_t)i); else setnumV(tv, (lua_Number)i); } node = noderef(kt->node); hmask = kt->hmask; for (i = 0; i <= hmask; i++) { Node *n = &node[i]; if (tvhaskslot(&n->val)) { ptrdiff_t kidx = (ptrdiff_t)tvkslot(&n->val); lua_assert(!tvisint(&n->key)); if (tvisnum(&n->key)) { TValue *tv = &((TValue *)kptr)[kidx]; if (LJ_DUALNUM) { lua_Number nn = numV(&n->key); int32_t k = lj_num2int(nn); lua_assert(!tvismzero(&n->key)); if ((lua_Number)k == nn) setintV(tv, k); else *tv = n->key; } else { *tv = n->key; } } else { GCobj *o = gcV(&n->key); setgcref(((GCRef *)kptr)[~kidx], o); lj_gc_objbarrier(fs->L, pt, o); if (tvisproto(&n->key)) fs_fixup_uv2(fs, gco2pt(o)); } } } } /* Fixup upvalues for prototype, step #1. */ static void fs_fixup_uv1(FuncState *fs, GCproto *pt, uint16_t *uv) { setmref(pt->uv, uv); pt->sizeuv = fs->nuv; memcpy(uv, fs->uvtmp, fs->nuv*sizeof(VarIndex)); } #ifndef LUAJIT_DISABLE_DEBUGINFO /* Prepare lineinfo for prototype. */ static size_t fs_prep_line(FuncState *fs, BCLine numline) { return (fs->pc-1) << (numline < 256 ? 0 : numline < 65536 ? 1 : 2); } /* Fixup lineinfo for prototype. */ static void fs_fixup_line(FuncState *fs, GCproto *pt, void *lineinfo, BCLine numline) { BCInsLine *base = fs->bcbase + 1; BCLine first = fs->linedefined; MSize i = 0, n = fs->pc-1; pt->firstline = fs->linedefined; pt->numline = numline; setmref(pt->lineinfo, lineinfo); if (LJ_LIKELY(numline < 256)) { uint8_t *li = (uint8_t *)lineinfo; do { BCLine delta = base[i].line - first; lua_assert(delta >= 0 && delta < 256); li[i] = (uint8_t)delta; } while (++i < n); } else if (LJ_LIKELY(numline < 65536)) { uint16_t *li = (uint16_t *)lineinfo; do { BCLine delta = base[i].line - first; lua_assert(delta >= 0 && delta < 65536); li[i] = (uint16_t)delta; } while (++i < n); } else { uint32_t *li = (uint32_t *)lineinfo; do { BCLine delta = base[i].line - first; lua_assert(delta >= 0); li[i] = (uint32_t)delta; } while (++i < n); } } /* Prepare variable info for prototype. */ static size_t fs_prep_var(LexState *ls, FuncState *fs, size_t *ofsvar) { VarInfo *vs =ls->vstack, *ve; MSize i, n; BCPos lastpc; lj_buf_reset(&ls->sb); /* Copy to temp. string buffer. */ /* Store upvalue names. */ for (i = 0, n = fs->nuv; i < n; i++) { GCstr *s = strref(vs[fs->uvmap[i]].name); MSize len = s->len+1; char *p = lj_buf_more(&ls->sb, len); p = lj_buf_wmem(p, strdata(s), len); setsbufP(&ls->sb, p); } *ofsvar = sbuflen(&ls->sb); lastpc = 0; /* Store local variable names and compressed ranges. */ for (ve = vs + ls->vtop, vs += fs->vbase; vs < ve; vs++) { if (!gola_isgotolabel(vs)) { GCstr *s = strref(vs->name); BCPos startpc; char *p; if ((uintptr_t)s < VARNAME__MAX) { p = lj_buf_more(&ls->sb, 1 + 2*5); *p++ = (char)(uintptr_t)s; } else { MSize len = s->len+1; p = lj_buf_more(&ls->sb, len + 2*5); p = lj_buf_wmem(p, strdata(s), len); } startpc = vs->startpc; p = lj_strfmt_wuleb128(p, startpc-lastpc); p = lj_strfmt_wuleb128(p, vs->endpc-startpc); setsbufP(&ls->sb, p); lastpc = startpc; } } lj_buf_putb(&ls->sb, '\0'); /* Terminator for varinfo. */ return sbuflen(&ls->sb); } /* Fixup variable info for prototype. */ static void fs_fixup_var(LexState *ls, GCproto *pt, uint8_t *p, size_t ofsvar) { setmref(pt->uvinfo, p); setmref(pt->varinfo, (char *)p + ofsvar); memcpy(p, sbufB(&ls->sb), sbuflen(&ls->sb)); /* Copy from temp. buffer. */ } #else /* Initialize with empty debug info, if disabled. */ #define fs_prep_line(fs, numline) (UNUSED(numline), 0) #define fs_fixup_line(fs, pt, li, numline) \ pt->firstline = pt->numline = 0, setmref((pt)->lineinfo, NULL) #define fs_prep_var(ls, fs, ofsvar) (UNUSED(ofsvar), 0) #define fs_fixup_var(ls, pt, p, ofsvar) \ setmref((pt)->uvinfo, NULL), setmref((pt)->varinfo, NULL) #endif /* Check if bytecode op returns. */ static int bcopisret(BCOp op) { switch (op) { case BC_CALLMT: case BC_CALLT: case BC_RETM: case BC_RET: case BC_RET0: case BC_RET1: return 1; default: return 0; } } /* Fixup return instruction for prototype. */ static void fs_fixup_ret(FuncState *fs) { BCPos lastpc = fs->pc; if (lastpc <= fs->lasttarget || !bcopisret(bc_op(fs->bcbase[lastpc-1].ins))) { if ((fs->bl->flags & FSCOPE_UPVAL)) bcemit_AJ(fs, BC_UCLO, 0, 0); bcemit_AD(fs, BC_RET0, 0, 1); /* Need final return. */ } fs->bl->flags |= FSCOPE_NOCLOSE; /* Handled above. */ fscope_end(fs); lua_assert(fs->bl == NULL); /* May need to fixup returns encoded before first function was created. */ if (fs->flags & PROTO_FIXUP_RETURN) { BCPos pc; for (pc = 1; pc < lastpc; pc++) { BCIns ins = fs->bcbase[pc].ins; BCPos offset; switch (bc_op(ins)) { case BC_CALLMT: case BC_CALLT: case BC_RETM: case BC_RET: case BC_RET0: case BC_RET1: offset = bcemit_INS(fs, ins); /* Copy original instruction. */ fs->bcbase[offset].line = fs->bcbase[pc].line; offset = offset-(pc+1)+BCBIAS_J; if (offset > BCMAX_D) err_syntax(fs->ls, LJ_ERR_XFIXUP); /* Replace with UCLO plus branch. */ fs->bcbase[pc].ins = BCINS_AD(BC_UCLO, 0, offset); break; case BC_UCLO: return; /* We're done. */ default: break; } } } } /* Finish a FuncState and return the new prototype. */ static GCproto *fs_finish(LexState *ls, BCLine line) { lua_State *L = ls->L; FuncState *fs = ls->fs; BCLine numline = line - fs->linedefined; size_t sizept, ofsk, ofsuv, ofsli, ofsdbg, ofsvar; GCproto *pt; /* Apply final fixups. */ fs_fixup_ret(fs); /* Calculate total size of prototype including all colocated arrays. */ sizept = sizeof(GCproto) + fs->pc*sizeof(BCIns) + fs->nkgc*sizeof(GCRef); sizept = (sizept + sizeof(TValue)-1) & ~(sizeof(TValue)-1); ofsk = sizept; sizept += fs->nkn*sizeof(TValue); ofsuv = sizept; sizept += ((fs->nuv+1)&~1)*2; ofsli = sizept; sizept += fs_prep_line(fs, numline); ofsdbg = sizept; sizept += fs_prep_var(ls, fs, &ofsvar); /* Allocate prototype and initialize its fields. */ pt = (GCproto *)lj_mem_newgco(L, (MSize)sizept); pt->gct = ~LJ_TPROTO; pt->sizept = (MSize)sizept; pt->trace = 0; pt->flags = (uint8_t)(fs->flags & ~(PROTO_HAS_RETURN|PROTO_FIXUP_RETURN)); pt->numparams = fs->numparams; pt->framesize = fs->framesize; setgcref(pt->chunkname, obj2gco(ls->chunkname)); /* Close potentially uninitialized gap between bc and kgc. */ *(uint32_t *)((char *)pt + ofsk - sizeof(GCRef)*(fs->nkgc+1)) = 0; fs_fixup_bc(fs, pt, (BCIns *)((char *)pt + sizeof(GCproto)), fs->pc); fs_fixup_k(fs, pt, (void *)((char *)pt + ofsk)); fs_fixup_uv1(fs, pt, (uint16_t *)((char *)pt + ofsuv)); fs_fixup_line(fs, pt, (void *)((char *)pt + ofsli), numline); fs_fixup_var(ls, pt, (uint8_t *)((char *)pt + ofsdbg), ofsvar); lj_vmevent_send(L, BC, setprotoV(L, L->top++, pt); ); L->top--; /* Pop table of constants. */ ls->vtop = fs->vbase; /* Reset variable stack. */ ls->fs = fs->prev; lua_assert(ls->fs != NULL || ls->tok == TK_eof); return pt; } /* Initialize a new FuncState. */ static void fs_init(LexState *ls, FuncState *fs) { lua_State *L = ls->L; fs->prev = ls->fs; ls->fs = fs; /* Append to list. */ fs->ls = ls; fs->vbase = ls->vtop; fs->L = L; fs->pc = 0; fs->lasttarget = 0; fs->jpc = NO_JMP; fs->freereg = 0; fs->nkgc = 0; fs->nkn = 0; fs->nactvar = 0; fs->nuv = 0; fs->bl = NULL; fs->flags = 0; fs->framesize = 1; /* Minimum frame size. */ fs->kt = lj_tab_new(L, 0, 0); /* Anchor table of constants in stack to avoid being collected. */ settabV(L, L->top, fs->kt); incr_top(L); } /* -- Expressions --------------------------------------------------------- */ /* Forward declaration. */ static void expr(LexState *ls, ExpDesc *v); /* Return string expression. */ static void expr_str(LexState *ls, ExpDesc *e) { expr_init(e, VKSTR, 0); e->u.sval = lex_str(ls); } /* Return index expression. */ static void expr_index(FuncState *fs, ExpDesc *t, ExpDesc *e) { /* Already called: expr_toval(fs, e). */ t->k = VINDEXED; if (expr_isnumk(e)) { #if LJ_DUALNUM if (tvisint(expr_numtv(e))) { int32_t k = intV(expr_numtv(e)); if (checku8(k)) { t->u.s.aux = BCMAX_C+1+(uint32_t)k; /* 256..511: const byte key */ return; } } #else lua_Number n = expr_numberV(e); int32_t k = lj_num2int(n); if (checku8(k) && n == (lua_Number)k) { t->u.s.aux = BCMAX_C+1+(uint32_t)k; /* 256..511: const byte key */ return; } #endif } else if (expr_isstrk(e)) { BCReg idx = const_str(fs, e); if (idx <= BCMAX_C) { t->u.s.aux = ~idx; /* -256..-1: const string key */ return; } } t->u.s.aux = expr_toanyreg(fs, e); /* 0..255: register */ } /* Parse index expression with named field. */ static void expr_field(LexState *ls, ExpDesc *v) { FuncState *fs = ls->fs; ExpDesc key; expr_toanyreg(fs, v); lj_lex_next(ls); /* Skip dot or colon. */ expr_str(ls, &key); expr_index(fs, v, &key); } /* Parse index expression with brackets. */ static void expr_bracket(LexState *ls, ExpDesc *v) { lj_lex_next(ls); /* Skip '['. */ expr(ls, v); expr_toval(ls->fs, v); lex_check(ls, ']'); } /* Get value of constant expression. */ static void expr_kvalue(TValue *v, ExpDesc *e) { if (e->k <= VKTRUE) { setpriV(v, ~(uint32_t)e->k); } else if (e->k == VKSTR) { setgcVraw(v, obj2gco(e->u.sval), LJ_TSTR); } else { lua_assert(tvisnumber(expr_numtv(e))); *v = *expr_numtv(e); } } /* Parse table constructor expression. */ static void expr_table(LexState *ls, ExpDesc *e) { FuncState *fs = ls->fs; BCLine line = ls->linenumber; GCtab *t = NULL; int vcall = 0, needarr = 0, fixt = 0; uint32_t narr = 1; /* First array index. */ uint32_t nhash = 0; /* Number of hash entries. */ BCReg freg = fs->freereg; BCPos pc = bcemit_AD(fs, BC_TNEW, freg, 0); expr_init(e, VNONRELOC, freg); bcreg_reserve(fs, 1); freg++; lex_check(ls, '{'); while (ls->tok != '}') { ExpDesc key, val; vcall = 0; if (ls->tok == '[') { expr_bracket(ls, &key); /* Already calls expr_toval. */ if (!expr_isk(&key)) expr_index(fs, e, &key); if (expr_isnumk(&key) && expr_numiszero(&key)) needarr = 1; else nhash++; lex_check(ls, '='); } else if ((ls->tok == TK_name || (!LJ_52 && ls->tok == TK_goto)) && lj_lex_lookahead(ls) == '=') { expr_str(ls, &key); lex_check(ls, '='); nhash++; } else { expr_init(&key, VKNUM, 0); setintV(&key.u.nval, (int)narr); narr++; needarr = vcall = 1; } expr(ls, &val); if (expr_isk(&key) && key.k != VKNIL && (key.k == VKSTR || expr_isk_nojump(&val))) { TValue k, *v; if (!t) { /* Create template table on demand. */ BCReg kidx; t = lj_tab_new(fs->L, needarr ? narr : 0, hsize2hbits(nhash)); kidx = const_gc(fs, obj2gco(t), LJ_TTAB); fs->bcbase[pc].ins = BCINS_AD(BC_TDUP, freg-1, kidx); } vcall = 0; expr_kvalue(&k, &key); v = lj_tab_set(fs->L, t, &k); lj_gc_anybarriert(fs->L, t); if (expr_isk_nojump(&val)) { /* Add const key/value to template table. */ expr_kvalue(v, &val); } else { /* Otherwise create dummy string key (avoids lj_tab_newkey). */ settabV(fs->L, v, t); /* Preserve key with table itself as value. */ fixt = 1; /* Fix this later, after all resizes. */ goto nonconst; } } else { nonconst: if (val.k != VCALL) { expr_toanyreg(fs, &val); vcall = 0; } if (expr_isk(&key)) expr_index(fs, e, &key); bcemit_store(fs, e, &val); } fs->freereg = freg; if (!lex_opt(ls, ',') && !lex_opt(ls, ';')) break; } lex_match(ls, '}', '{', line); if (vcall) { BCInsLine *ilp = &fs->bcbase[fs->pc-1]; ExpDesc en; lua_assert(bc_a(ilp->ins) == freg && bc_op(ilp->ins) == (narr > 256 ? BC_TSETV : BC_TSETB)); expr_init(&en, VKNUM, 0); en.u.nval.u32.lo = narr-1; en.u.nval.u32.hi = 0x43300000; /* Biased integer to avoid denormals. */ if (narr > 256) { fs->pc--; ilp--; } ilp->ins = BCINS_AD(BC_TSETM, freg, const_num(fs, &en)); setbc_b(&ilp[-1].ins, 0); } if (pc == fs->pc-1) { /* Make expr relocable if possible. */ e->u.s.info = pc; fs->freereg--; e->k = VRELOCABLE; } else { e->k = VNONRELOC; /* May have been changed by expr_index. */ } if (!t) { /* Construct TNEW RD: hhhhhaaaaaaaaaaa. */ BCIns *ip = &fs->bcbase[pc].ins; if (!needarr) narr = 0; else if (narr < 3) narr = 3; else if (narr > 0x7ff) narr = 0x7ff; setbc_d(ip, narr|(hsize2hbits(nhash)<<11)); } else { if (needarr && t->asize < narr) lj_tab_reasize(fs->L, t, narr-1); if (fixt) { /* Fix value for dummy keys in template table. */ Node *node = noderef(t->node); uint32_t i, hmask = t->hmask; for (i = 0; i <= hmask; i++) { Node *n = &node[i]; if (tvistab(&n->val)) { lua_assert(tabV(&n->val) == t); setnilV(&n->val); /* Turn value into nil. */ } } } lj_gc_check(fs->L); } } /* Parse function parameters. */ static BCReg parse_params(LexState *ls, int needself) { FuncState *fs = ls->fs; BCReg nparams = 0; lex_check(ls, '('); if (needself) var_new_lit(ls, nparams++, "self"); if (ls->tok != ')') { do { if (ls->tok == TK_name || (!LJ_52 && ls->tok == TK_goto)) { var_new(ls, nparams++, lex_str(ls)); } else if (ls->tok == TK_dots) { lj_lex_next(ls); fs->flags |= PROTO_VARARG; break; } else { err_syntax(ls, LJ_ERR_XPARAM); } } while (lex_opt(ls, ',')); } var_add(ls, nparams); lua_assert(fs->nactvar == nparams); bcreg_reserve(fs, nparams); lex_check(ls, ')'); return nparams; } /* Forward declaration. */ static void parse_chunk(LexState *ls); /* Parse body of a function. */ static void parse_body(LexState *ls, ExpDesc *e, int needself, BCLine line) { FuncState fs, *pfs = ls->fs; FuncScope bl; GCproto *pt; ptrdiff_t oldbase = pfs->bcbase - ls->bcstack; fs_init(ls, &fs); fscope_begin(&fs, &bl, 0); fs.linedefined = line; fs.numparams = (uint8_t)parse_params(ls, needself); fs.bcbase = pfs->bcbase + pfs->pc; fs.bclim = pfs->bclim - pfs->pc; bcemit_AD(&fs, BC_FUNCF, 0, 0); /* Placeholder. */ parse_chunk(ls); if (ls->tok != TK_end) lex_match(ls, TK_end, TK_function, line); pt = fs_finish(ls, (ls->lastline = ls->linenumber)); pfs->bcbase = ls->bcstack + oldbase; /* May have been reallocated. */ pfs->bclim = (BCPos)(ls->sizebcstack - oldbase); /* Store new prototype in the constant array of the parent. */ expr_init(e, VRELOCABLE, bcemit_AD(pfs, BC_FNEW, 0, const_gc(pfs, obj2gco(pt), LJ_TPROTO))); #if LJ_HASFFI pfs->flags |= (fs.flags & PROTO_FFI); #endif if (!(pfs->flags & PROTO_CHILD)) { if (pfs->flags & PROTO_HAS_RETURN) pfs->flags |= PROTO_FIXUP_RETURN; pfs->flags |= PROTO_CHILD; } lj_lex_next(ls); } /* Parse expression list. Last expression is left open. */ static BCReg expr_list(LexState *ls, ExpDesc *v) { BCReg n = 1; expr(ls, v); while (lex_opt(ls, ',')) { expr_tonextreg(ls->fs, v); expr(ls, v); n++; } return n; } /* Parse function argument list. */ static void parse_args(LexState *ls, ExpDesc *e) { FuncState *fs = ls->fs; ExpDesc args; BCIns ins; BCReg base; BCLine line = ls->linenumber; if (ls->tok == '(') { #if !LJ_52 if (line != ls->lastline) err_syntax(ls, LJ_ERR_XAMBIG); #endif lj_lex_next(ls); if (ls->tok == ')') { /* f(). */ args.k = VVOID; } else { expr_list(ls, &args); if (args.k == VCALL) /* f(a, b, g()) or f(a, b, ...). */ setbc_b(bcptr(fs, &args), 0); /* Pass on multiple results. */ } lex_match(ls, ')', '(', line); } else if (ls->tok == '{') { expr_table(ls, &args); } else if (ls->tok == TK_string) { expr_init(&args, VKSTR, 0); args.u.sval = strV(&ls->tokval); lj_lex_next(ls); } else { err_syntax(ls, LJ_ERR_XFUNARG); return; /* Silence compiler. */ } lua_assert(e->k == VNONRELOC); base = e->u.s.info; /* Base register for call. */ if (args.k == VCALL) { ins = BCINS_ABC(BC_CALLM, base, 2, args.u.s.aux - base - 1 - LJ_FR2); } else { if (args.k != VVOID) expr_tonextreg(fs, &args); ins = BCINS_ABC(BC_CALL, base, 2, fs->freereg - base - LJ_FR2); } expr_init(e, VCALL, bcemit_INS(fs, ins)); e->u.s.aux = base; fs->bcbase[fs->pc - 1].line = line; fs->freereg = base+1; /* Leave one result by default. */ } /* Parse primary expression. */ static void expr_primary(LexState *ls, ExpDesc *v) { FuncState *fs = ls->fs; /* Parse prefix expression. */ if (ls->tok == '(') { BCLine line = ls->linenumber; lj_lex_next(ls); expr(ls, v); lex_match(ls, ')', '(', line); expr_discharge(ls->fs, v); } else if (ls->tok == TK_name || (!LJ_52 && ls->tok == TK_goto)) { var_lookup(ls, v); } else { err_syntax(ls, LJ_ERR_XSYMBOL); } for (;;) { /* Parse multiple expression suffixes. */ if (ls->tok == '.') { expr_field(ls, v); } else if (ls->tok == '[') { ExpDesc key; expr_toanyreg(fs, v); expr_bracket(ls, &key); expr_index(fs, v, &key); } else if (ls->tok == ':') { ExpDesc key; lj_lex_next(ls); expr_str(ls, &key); bcemit_method(fs, v, &key); parse_args(ls, v); } else if (ls->tok == '(' || ls->tok == TK_string || ls->tok == '{') { expr_tonextreg(fs, v); if (LJ_FR2) bcreg_reserve(fs, 1); parse_args(ls, v); } else { break; } } } /* Parse simple expression. */ static void expr_simple(LexState *ls, ExpDesc *v) { switch (ls->tok) { case TK_number: expr_init(v, (LJ_HASFFI && tviscdata(&ls->tokval)) ? VKCDATA : VKNUM, 0); copyTV(ls->L, &v->u.nval, &ls->tokval); break; case TK_string: expr_init(v, VKSTR, 0); v->u.sval = strV(&ls->tokval); break; case TK_nil: expr_init(v, VKNIL, 0); break; case TK_true: expr_init(v, VKTRUE, 0); break; case TK_false: expr_init(v, VKFALSE, 0); break; case TK_dots: { /* Vararg. */ FuncState *fs = ls->fs; BCReg base; checkcond(ls, fs->flags & PROTO_VARARG, LJ_ERR_XDOTS); bcreg_reserve(fs, 1); base = fs->freereg-1; expr_init(v, VCALL, bcemit_ABC(fs, BC_VARG, base, 2, fs->numparams)); v->u.s.aux = base; break; } case '{': /* Table constructor. */ expr_table(ls, v); return; case TK_function: lj_lex_next(ls); parse_body(ls, v, 0, ls->linenumber); return; default: expr_primary(ls, v); return; } lj_lex_next(ls); } /* Manage syntactic levels to avoid blowing up the stack. */ static void synlevel_begin(LexState *ls) { if (++ls->level >= LJ_MAX_XLEVEL) lj_lex_error(ls, 0, LJ_ERR_XLEVELS); } #define synlevel_end(ls) ((ls)->level--) /* Convert token to binary operator. */ static BinOpr token2binop(LexToken tok) { switch (tok) { case '+': return OPR_ADD; case '-': return OPR_SUB; case '*': return OPR_MUL; case '/': return OPR_DIV; case '%': return OPR_MOD; case '^': return OPR_POW; case TK_concat: return OPR_CONCAT; case TK_ne: return OPR_NE; case TK_eq: return OPR_EQ; case '<': return OPR_LT; case TK_le: return OPR_LE; case '>': return OPR_GT; case TK_ge: return OPR_GE; case TK_and: return OPR_AND; case TK_or: return OPR_OR; default: return OPR_NOBINOPR; } } /* Priorities for each binary operator. ORDER OPR. */ static const struct { uint8_t left; /* Left priority. */ uint8_t right; /* Right priority. */ } priority[] = { {6,6}, {6,6}, {7,7}, {7,7}, {7,7}, /* ADD SUB MUL DIV MOD */ {10,9}, {5,4}, /* POW CONCAT (right associative) */ {3,3}, {3,3}, /* EQ NE */ {3,3}, {3,3}, {3,3}, {3,3}, /* LT GE GT LE */ {2,2}, {1,1} /* AND OR */ }; #define UNARY_PRIORITY 8 /* Priority for unary operators. */ /* Forward declaration. */ static BinOpr expr_binop(LexState *ls, ExpDesc *v, uint32_t limit); /* Parse unary expression. */ static void expr_unop(LexState *ls, ExpDesc *v) { BCOp op; if (ls->tok == TK_not) { op = BC_NOT; } else if (ls->tok == '-') { op = BC_UNM; } else if (ls->tok == '#') { op = BC_LEN; } else { expr_simple(ls, v); return; } lj_lex_next(ls); expr_binop(ls, v, UNARY_PRIORITY); bcemit_unop(ls->fs, op, v); } /* Parse binary expressions with priority higher than the limit. */ static BinOpr expr_binop(LexState *ls, ExpDesc *v, uint32_t limit) { BinOpr op; synlevel_begin(ls); expr_unop(ls, v); op = token2binop(ls->tok); while (op != OPR_NOBINOPR && priority[op].left > limit) { ExpDesc v2; BinOpr nextop; lj_lex_next(ls); bcemit_binop_left(ls->fs, op, v); /* Parse binary expression with higher priority. */ nextop = expr_binop(ls, &v2, priority[op].right); bcemit_binop(ls->fs, op, v, &v2); op = nextop; } synlevel_end(ls); return op; /* Return unconsumed binary operator (if any). */ } /* Parse expression. */ static void expr(LexState *ls, ExpDesc *v) { expr_binop(ls, v, 0); /* Priority 0: parse whole expression. */ } /* Assign expression to the next register. */ static void expr_next(LexState *ls) { ExpDesc e; expr(ls, &e); expr_tonextreg(ls->fs, &e); } /* Parse conditional expression. */ static BCPos expr_cond(LexState *ls) { ExpDesc v; expr(ls, &v); if (v.k == VKNIL) v.k = VKFALSE; bcemit_branch_t(ls->fs, &v); return v.f; } /* -- Assignments --------------------------------------------------------- */ /* List of LHS variables. */ typedef struct LHSVarList { ExpDesc v; /* LHS variable. */ struct LHSVarList *prev; /* Link to previous LHS variable. */ } LHSVarList; /* Eliminate write-after-read hazards for local variable assignment. */ static void assign_hazard(LexState *ls, LHSVarList *lh, const ExpDesc *v) { FuncState *fs = ls->fs; BCReg reg = v->u.s.info; /* Check against this variable. */ BCReg tmp = fs->freereg; /* Rename to this temp. register (if needed). */ int hazard = 0; for (; lh; lh = lh->prev) { if (lh->v.k == VINDEXED) { if (lh->v.u.s.info == reg) { /* t[i], t = 1, 2 */ hazard = 1; lh->v.u.s.info = tmp; } if (lh->v.u.s.aux == reg) { /* t[i], i = 1, 2 */ hazard = 1; lh->v.u.s.aux = tmp; } } } if (hazard) { bcemit_AD(fs, BC_MOV, tmp, reg); /* Rename conflicting variable. */ bcreg_reserve(fs, 1); } } /* Adjust LHS/RHS of an assignment. */ static void assign_adjust(LexState *ls, BCReg nvars, BCReg nexps, ExpDesc *e) { FuncState *fs = ls->fs; int32_t extra = (int32_t)nvars - (int32_t)nexps; if (e->k == VCALL) { extra++; /* Compensate for the VCALL itself. */ if (extra < 0) extra = 0; setbc_b(bcptr(fs, e), extra+1); /* Fixup call results. */ if (extra > 1) bcreg_reserve(fs, (BCReg)extra-1); } else { if (e->k != VVOID) expr_tonextreg(fs, e); /* Close last expression. */ if (extra > 0) { /* Leftover LHS are set to nil. */ BCReg reg = fs->freereg; bcreg_reserve(fs, (BCReg)extra); bcemit_nil(fs, reg, (BCReg)extra); } } if (nexps > nvars) ls->fs->freereg -= nexps - nvars; /* Drop leftover regs. */ } /* Recursively parse assignment statement. */ static void parse_assignment(LexState *ls, LHSVarList *lh, BCReg nvars) { ExpDesc e; checkcond(ls, VLOCAL <= lh->v.k && lh->v.k <= VINDEXED, LJ_ERR_XSYNTAX); if (lex_opt(ls, ',')) { /* Collect LHS list and recurse upwards. */ LHSVarList vl; vl.prev = lh; expr_primary(ls, &vl.v); if (vl.v.k == VLOCAL) assign_hazard(ls, lh, &vl.v); checklimit(ls->fs, ls->level + nvars, LJ_MAX_XLEVEL, "variable names"); parse_assignment(ls, &vl, nvars+1); } else { /* Parse RHS. */ BCReg nexps; lex_check(ls, '='); nexps = expr_list(ls, &e); if (nexps == nvars) { if (e.k == VCALL) { if (bc_op(*bcptr(ls->fs, &e)) == BC_VARG) { /* Vararg assignment. */ ls->fs->freereg--; e.k = VRELOCABLE; } else { /* Multiple call results. */ e.u.s.info = e.u.s.aux; /* Base of call is not relocatable. */ e.k = VNONRELOC; } } bcemit_store(ls->fs, &lh->v, &e); return; } assign_adjust(ls, nvars, nexps, &e); } /* Assign RHS to LHS and recurse downwards. */ expr_init(&e, VNONRELOC, ls->fs->freereg-1); bcemit_store(ls->fs, &lh->v, &e); } /* Parse call statement or assignment. */ static void parse_call_assign(LexState *ls) { FuncState *fs = ls->fs; LHSVarList vl; expr_primary(ls, &vl.v); if (vl.v.k == VCALL) { /* Function call statement. */ setbc_b(bcptr(fs, &vl.v), 1); /* No results. */ } else { /* Start of an assignment. */ vl.prev = NULL; parse_assignment(ls, &vl, 1); } } /* Parse 'local' statement. */ static void parse_local(LexState *ls) { if (lex_opt(ls, TK_function)) { /* Local function declaration. */ ExpDesc v, b; FuncState *fs = ls->fs; var_new(ls, 0, lex_str(ls)); expr_init(&v, VLOCAL, fs->freereg); v.u.s.aux = fs->varmap[fs->freereg]; bcreg_reserve(fs, 1); var_add(ls, 1); parse_body(ls, &b, 0, ls->linenumber); /* bcemit_store(fs, &v, &b) without setting VSTACK_VAR_RW. */ expr_free(fs, &b); expr_toreg(fs, &b, v.u.s.info); /* The upvalue is in scope, but the local is only valid after the store. */ var_get(ls, fs, fs->nactvar - 1).startpc = fs->pc; } else { /* Local variable declaration. */ ExpDesc e; BCReg nexps, nvars = 0; do { /* Collect LHS. */ var_new(ls, nvars++, lex_str(ls)); } while (lex_opt(ls, ',')); if (lex_opt(ls, '=')) { /* Optional RHS. */ nexps = expr_list(ls, &e); } else { /* Or implicitly set to nil. */ e.k = VVOID; nexps = 0; } assign_adjust(ls, nvars, nexps, &e); var_add(ls, nvars); } } /* Parse 'function' statement. */ static void parse_func(LexState *ls, BCLine line) { FuncState *fs; ExpDesc v, b; int needself = 0; lj_lex_next(ls); /* Skip 'function'. */ /* Parse function name. */ var_lookup(ls, &v); while (ls->tok == '.') /* Multiple dot-separated fields. */ expr_field(ls, &v); if (ls->tok == ':') { /* Optional colon to signify method call. */ needself = 1; expr_field(ls, &v); } parse_body(ls, &b, needself, line); fs = ls->fs; bcemit_store(fs, &v, &b); fs->bcbase[fs->pc - 1].line = line; /* Set line for the store. */ } /* -- Control transfer statements ----------------------------------------- */ /* Check for end of block. */ static int parse_isend(LexToken tok) { switch (tok) { case TK_else: case TK_elseif: case TK_end: case TK_until: case TK_eof: return 1; default: return 0; } } /* Parse 'return' statement. */ static void parse_return(LexState *ls) { BCIns ins; FuncState *fs = ls->fs; lj_lex_next(ls); /* Skip 'return'. */ fs->flags |= PROTO_HAS_RETURN; if (parse_isend(ls->tok) || ls->tok == ';') { /* Bare return. */ ins = BCINS_AD(BC_RET0, 0, 1); } else { /* Return with one or more values. */ ExpDesc e; /* Receives the _last_ expression in the list. */ BCReg nret = expr_list(ls, &e); if (nret == 1) { /* Return one result. */ if (e.k == VCALL) { /* Check for tail call. */ BCIns *ip = bcptr(fs, &e); /* It doesn't pay off to add BC_VARGT just for 'return ...'. */ if (bc_op(*ip) == BC_VARG) goto notailcall; fs->pc--; ins = BCINS_AD(bc_op(*ip)-BC_CALL+BC_CALLT, bc_a(*ip), bc_c(*ip)); } else { /* Can return the result from any register. */ ins = BCINS_AD(BC_RET1, expr_toanyreg(fs, &e), 2); } } else { if (e.k == VCALL) { /* Append all results from a call. */ notailcall: setbc_b(bcptr(fs, &e), 0); ins = BCINS_AD(BC_RETM, fs->nactvar, e.u.s.aux - fs->nactvar); } else { expr_tonextreg(fs, &e); /* Force contiguous registers. */ ins = BCINS_AD(BC_RET, fs->nactvar, nret+1); } } } if (fs->flags & PROTO_CHILD) bcemit_AJ(fs, BC_UCLO, 0, 0); /* May need to close upvalues first. */ bcemit_INS(fs, ins); } /* Parse 'break' statement. */ static void parse_break(LexState *ls) { ls->fs->bl->flags |= FSCOPE_BREAK; gola_new(ls, NAME_BREAK, VSTACK_GOTO, bcemit_jmp(ls->fs)); } /* Parse 'goto' statement. */ static void parse_goto(LexState *ls) { FuncState *fs = ls->fs; GCstr *name = lex_str(ls); VarInfo *vl = gola_findlabel(ls, name); if (vl) /* Treat backwards goto within same scope like a loop. */ bcemit_AJ(fs, BC_LOOP, vl->slot, -1); /* No BC range check. */ fs->bl->flags |= FSCOPE_GOLA; gola_new(ls, name, VSTACK_GOTO, bcemit_jmp(fs)); } /* Parse label. */ static void parse_label(LexState *ls) { FuncState *fs = ls->fs; GCstr *name; MSize idx; fs->lasttarget = fs->pc; fs->bl->flags |= FSCOPE_GOLA; lj_lex_next(ls); /* Skip '::'. */ name = lex_str(ls); if (gola_findlabel(ls, name)) lj_lex_error(ls, 0, LJ_ERR_XLDUP, strdata(name)); idx = gola_new(ls, name, VSTACK_LABEL, fs->pc); lex_check(ls, TK_label); /* Recursively parse trailing statements: labels and ';' (Lua 5.2 only). */ for (;;) { if (ls->tok == TK_label) { synlevel_begin(ls); parse_label(ls); synlevel_end(ls); } else if (LJ_52 && ls->tok == ';') { lj_lex_next(ls); } else { break; } } /* Trailing label is considered to be outside of scope. */ if (parse_isend(ls->tok) && ls->tok != TK_until) ls->vstack[idx].slot = fs->bl->nactvar; gola_resolve(ls, fs->bl, idx); } /* -- Blocks, loops and conditional statements ---------------------------- */ /* Parse a block. */ static void parse_block(LexState *ls) { FuncState *fs = ls->fs; FuncScope bl; fscope_begin(fs, &bl, 0); parse_chunk(ls); fscope_end(fs); } /* Parse 'while' statement. */ static void parse_while(LexState *ls, BCLine line) { FuncState *fs = ls->fs; BCPos start, loop, condexit; FuncScope bl; lj_lex_next(ls); /* Skip 'while'. */ start = fs->lasttarget = fs->pc; condexit = expr_cond(ls); fscope_begin(fs, &bl, FSCOPE_LOOP); lex_check(ls, TK_do); loop = bcemit_AD(fs, BC_LOOP, fs->nactvar, 0); parse_block(ls); jmp_patch(fs, bcemit_jmp(fs), start); lex_match(ls, TK_end, TK_while, line); fscope_end(fs); jmp_tohere(fs, condexit); jmp_patchins(fs, loop, fs->pc); } /* Parse 'repeat' statement. */ static void parse_repeat(LexState *ls, BCLine line) { FuncState *fs = ls->fs; BCPos loop = fs->lasttarget = fs->pc; BCPos condexit; FuncScope bl1, bl2; fscope_begin(fs, &bl1, FSCOPE_LOOP); /* Breakable loop scope. */ fscope_begin(fs, &bl2, 0); /* Inner scope. */ lj_lex_next(ls); /* Skip 'repeat'. */ bcemit_AD(fs, BC_LOOP, fs->nactvar, 0); parse_chunk(ls); lex_match(ls, TK_until, TK_repeat, line); condexit = expr_cond(ls); /* Parse condition (still inside inner scope). */ if (!(bl2.flags & FSCOPE_UPVAL)) { /* No upvalues? Just end inner scope. */ fscope_end(fs); } else { /* Otherwise generate: cond: UCLO+JMP out, !cond: UCLO+JMP loop. */ parse_break(ls); /* Break from loop and close upvalues. */ jmp_tohere(fs, condexit); fscope_end(fs); /* End inner scope and close upvalues. */ condexit = bcemit_jmp(fs); } jmp_patch(fs, condexit, loop); /* Jump backwards if !cond. */ jmp_patchins(fs, loop, fs->pc); fscope_end(fs); /* End loop scope. */ } /* Parse numeric 'for'. */ static void parse_for_num(LexState *ls, GCstr *varname, BCLine line) { FuncState *fs = ls->fs; BCReg base = fs->freereg; FuncScope bl; BCPos loop, loopend; /* Hidden control variables. */ var_new_fixed(ls, FORL_IDX, VARNAME_FOR_IDX); var_new_fixed(ls, FORL_STOP, VARNAME_FOR_STOP); var_new_fixed(ls, FORL_STEP, VARNAME_FOR_STEP); /* Visible copy of index variable. */ var_new(ls, FORL_EXT, varname); lex_check(ls, '='); expr_next(ls); lex_check(ls, ','); expr_next(ls); if (lex_opt(ls, ',')) { expr_next(ls); } else { bcemit_AD(fs, BC_KSHORT, fs->freereg, 1); /* Default step is 1. */ bcreg_reserve(fs, 1); } var_add(ls, 3); /* Hidden control variables. */ lex_check(ls, TK_do); loop = bcemit_AJ(fs, BC_FORI, base, NO_JMP); fscope_begin(fs, &bl, 0); /* Scope for visible variables. */ var_add(ls, 1); bcreg_reserve(fs, 1); parse_block(ls); fscope_end(fs); /* Perform loop inversion. Loop control instructions are at the end. */ loopend = bcemit_AJ(fs, BC_FORL, base, NO_JMP); fs->bcbase[loopend].line = line; /* Fix line for control ins. */ jmp_patchins(fs, loopend, loop+1); jmp_patchins(fs, loop, fs->pc); } /* Try to predict whether the iterator is next() and specialize the bytecode. ** Detecting next() and pairs() by name is simplistic, but quite effective. ** The interpreter backs off if the check for the closure fails at runtime. */ static int predict_next(LexState *ls, FuncState *fs, BCPos pc) { BCIns ins = fs->bcbase[pc].ins; GCstr *name; cTValue *o; switch (bc_op(ins)) { case BC_MOV: name = gco2str(gcref(var_get(ls, fs, bc_d(ins)).name)); break; case BC_UGET: name = gco2str(gcref(ls->vstack[fs->uvmap[bc_d(ins)]].name)); break; case BC_GGET: /* There's no inverse index (yet), so lookup the strings. */ o = lj_tab_getstr(fs->kt, lj_str_newlit(ls->L, "pairs")); if (o && tvhaskslot(o) && tvkslot(o) == bc_d(ins)) return 1; o = lj_tab_getstr(fs->kt, lj_str_newlit(ls->L, "next")); if (o && tvhaskslot(o) && tvkslot(o) == bc_d(ins)) return 1; return 0; default: return 0; } return (name->len == 5 && !strcmp(strdata(name), "pairs")) || (name->len == 4 && !strcmp(strdata(name), "next")); } /* Parse 'for' iterator. */ static void parse_for_iter(LexState *ls, GCstr *indexname) { FuncState *fs = ls->fs; ExpDesc e; BCReg nvars = 0; BCLine line; BCReg base = fs->freereg + 3; BCPos loop, loopend, exprpc = fs->pc; FuncScope bl; int isnext; /* Hidden control variables. */ var_new_fixed(ls, nvars++, VARNAME_FOR_GEN); var_new_fixed(ls, nvars++, VARNAME_FOR_STATE); var_new_fixed(ls, nvars++, VARNAME_FOR_CTL); /* Visible variables returned from iterator. */ var_new(ls, nvars++, indexname); while (lex_opt(ls, ',')) var_new(ls, nvars++, lex_str(ls)); lex_check(ls, TK_in); line = ls->linenumber; assign_adjust(ls, 3, expr_list(ls, &e), &e); /* The iterator needs another 3 [4] slots (func [pc] | state ctl). */ bcreg_bump(fs, 3+LJ_FR2); isnext = (nvars <= 5 && predict_next(ls, fs, exprpc)); var_add(ls, 3); /* Hidden control variables. */ lex_check(ls, TK_do); loop = bcemit_AJ(fs, isnext ? BC_ISNEXT : BC_JMP, base, NO_JMP); fscope_begin(fs, &bl, 0); /* Scope for visible variables. */ var_add(ls, nvars-3); bcreg_reserve(fs, nvars-3); parse_block(ls); fscope_end(fs); /* Perform loop inversion. Loop control instructions are at the end. */ jmp_patchins(fs, loop, fs->pc); bcemit_ABC(fs, isnext ? BC_ITERN : BC_ITERC, base, nvars-3+1, 2+1); loopend = bcemit_AJ(fs, BC_ITERL, base, NO_JMP); fs->bcbase[loopend-1].line = line; /* Fix line for control ins. */ fs->bcbase[loopend].line = line; jmp_patchins(fs, loopend, loop+1); } /* Parse 'for' statement. */ static void parse_for(LexState *ls, BCLine line) { FuncState *fs = ls->fs; GCstr *varname; FuncScope bl; fscope_begin(fs, &bl, FSCOPE_LOOP); lj_lex_next(ls); /* Skip 'for'. */ varname = lex_str(ls); /* Get first variable name. */ if (ls->tok == '=') parse_for_num(ls, varname, line); else if (ls->tok == ',' || ls->tok == TK_in) parse_for_iter(ls, varname); else err_syntax(ls, LJ_ERR_XFOR); lex_match(ls, TK_end, TK_for, line); fscope_end(fs); /* Resolve break list. */ } /* Parse condition and 'then' block. */ static BCPos parse_then(LexState *ls) { BCPos condexit; lj_lex_next(ls); /* Skip 'if' or 'elseif'. */ condexit = expr_cond(ls); lex_check(ls, TK_then); parse_block(ls); return condexit; } /* Parse 'if' statement. */ static void parse_if(LexState *ls, BCLine line) { FuncState *fs = ls->fs; BCPos flist; BCPos escapelist = NO_JMP; flist = parse_then(ls); while (ls->tok == TK_elseif) { /* Parse multiple 'elseif' blocks. */ jmp_append(fs, &escapelist, bcemit_jmp(fs)); jmp_tohere(fs, flist); flist = parse_then(ls); } if (ls->tok == TK_else) { /* Parse optional 'else' block. */ jmp_append(fs, &escapelist, bcemit_jmp(fs)); jmp_tohere(fs, flist); lj_lex_next(ls); /* Skip 'else'. */ parse_block(ls); } else { jmp_append(fs, &escapelist, flist); } jmp_tohere(fs, escapelist); lex_match(ls, TK_end, TK_if, line); } /* -- Parse statements ---------------------------------------------------- */ /* Parse a statement. Returns 1 if it must be the last one in a chunk. */ static int parse_stmt(LexState *ls) { BCLine line = ls->linenumber; switch (ls->tok) { case TK_if: parse_if(ls, line); break; case TK_while: parse_while(ls, line); break; case TK_do: lj_lex_next(ls); parse_block(ls); lex_match(ls, TK_end, TK_do, line); break; case TK_for: parse_for(ls, line); break; case TK_repeat: parse_repeat(ls, line); break; case TK_function: parse_func(ls, line); break; case TK_local: lj_lex_next(ls); parse_local(ls); break; case TK_return: parse_return(ls); return 1; /* Must be last. */ case TK_break: lj_lex_next(ls); parse_break(ls); return !LJ_52; /* Must be last in Lua 5.1. */ #if LJ_52 case ';': lj_lex_next(ls); break; #endif case TK_label: parse_label(ls); break; case TK_goto: if (LJ_52 || lj_lex_lookahead(ls) == TK_name) { lj_lex_next(ls); parse_goto(ls); break; } /* else: fallthrough */ default: parse_call_assign(ls); break; } return 0; } /* A chunk is a list of statements optionally separated by semicolons. */ static void parse_chunk(LexState *ls) { int islast = 0; synlevel_begin(ls); while (!islast && !parse_isend(ls->tok)) { islast = parse_stmt(ls); lex_opt(ls, ';'); lua_assert(ls->fs->framesize >= ls->fs->freereg && ls->fs->freereg >= ls->fs->nactvar); ls->fs->freereg = ls->fs->nactvar; /* Free registers after each stmt. */ } synlevel_end(ls); } /* Entry point of bytecode parser. */ GCproto *lj_parse(LexState *ls) { FuncState fs; FuncScope bl; GCproto *pt; lua_State *L = ls->L; #ifdef LUAJIT_DISABLE_DEBUGINFO ls->chunkname = lj_str_newlit(L, "="); #else ls->chunkname = lj_str_newz(L, ls->chunkarg); #endif setstrV(L, L->top, ls->chunkname); /* Anchor chunkname string. */ incr_top(L); ls->level = 0; fs_init(ls, &fs); fs.linedefined = 0; fs.numparams = 0; fs.bcbase = NULL; fs.bclim = 0; fs.flags |= PROTO_VARARG; /* Main chunk is always a vararg func. */ fscope_begin(&fs, &bl, 0); bcemit_AD(&fs, BC_FUNCV, 0, 0); /* Placeholder. */ lj_lex_next(ls); /* Read-ahead first token. */ parse_chunk(ls); if (ls->tok != TK_eof) err_token(ls, TK_eof); pt = fs_finish(ls, ls->linenumber); L->top--; /* Drop chunkname. */ lua_assert(fs.prev == NULL); lua_assert(ls->fs == NULL); lua_assert(pt->sizeuv == 0); return pt; } luajit-2.1.0~beta3+dfsg.orig/src/lj_asm.c0000644000175100017510000021504313101703334017523 0ustar ondrejondrej/* ** IR assembler (SSA IR -> machine code). ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #define lj_asm_c #define LUA_CORE #include "lj_obj.h" #if LJ_HASJIT #include "lj_gc.h" #include "lj_str.h" #include "lj_tab.h" #include "lj_frame.h" #if LJ_HASFFI #include "lj_ctype.h" #endif #include "lj_ir.h" #include "lj_jit.h" #include "lj_ircall.h" #include "lj_iropt.h" #include "lj_mcode.h" #include "lj_iropt.h" #include "lj_trace.h" #include "lj_snap.h" #include "lj_asm.h" #include "lj_dispatch.h" #include "lj_vm.h" #include "lj_target.h" #ifdef LUA_USE_ASSERT #include #endif /* -- Assembler state and common macros ----------------------------------- */ /* Assembler state. */ typedef struct ASMState { RegCost cost[RID_MAX]; /* Reference and blended allocation cost for regs. */ MCode *mcp; /* Current MCode pointer (grows down). */ MCode *mclim; /* Lower limit for MCode memory + red zone. */ #ifdef LUA_USE_ASSERT MCode *mcp_prev; /* Red zone overflow check. */ #endif IRIns *ir; /* Copy of pointer to IR instructions/constants. */ jit_State *J; /* JIT compiler state. */ #if LJ_TARGET_X86ORX64 x86ModRM mrm; /* Fused x86 address operand. */ #endif RegSet freeset; /* Set of free registers. */ RegSet modset; /* Set of registers modified inside the loop. */ RegSet weakset; /* Set of weakly referenced registers. */ RegSet phiset; /* Set of PHI registers. */ uint32_t flags; /* Copy of JIT compiler flags. */ int loopinv; /* Loop branch inversion (0:no, 1:yes, 2:yes+CC_P). */ int32_t evenspill; /* Next even spill slot. */ int32_t oddspill; /* Next odd spill slot (or 0). */ IRRef curins; /* Reference of current instruction. */ IRRef stopins; /* Stop assembly before hitting this instruction. */ IRRef orignins; /* Original T->nins. */ IRRef snapref; /* Current snapshot is active after this reference. */ IRRef snaprename; /* Rename highwater mark for snapshot check. */ SnapNo snapno; /* Current snapshot number. */ SnapNo loopsnapno; /* Loop snapshot number. */ IRRef fuseref; /* Fusion limit (loopref, 0 or FUSE_DISABLED). */ IRRef sectref; /* Section base reference (loopref or 0). */ IRRef loopref; /* Reference of LOOP instruction (or 0). */ BCReg topslot; /* Number of slots for stack check (unless 0). */ int32_t gcsteps; /* Accumulated number of GC steps (per section). */ GCtrace *T; /* Trace to assemble. */ GCtrace *parent; /* Parent trace (or NULL). */ MCode *mcbot; /* Bottom of reserved MCode. */ MCode *mctop; /* Top of generated MCode. */ MCode *mcloop; /* Pointer to loop MCode (or NULL). */ MCode *invmcp; /* Points to invertible loop branch (or NULL). */ MCode *flagmcp; /* Pending opportunity to merge flag setting ins. */ MCode *realign; /* Realign loop if not NULL. */ #ifdef RID_NUM_KREF intptr_t krefk[RID_NUM_KREF]; #endif IRRef1 phireg[RID_MAX]; /* PHI register references. */ uint16_t parentmap[LJ_MAX_JSLOTS]; /* Parent instruction to RegSP map. */ } ASMState; #define IR(ref) (&as->ir[(ref)]) #define ASMREF_TMP1 REF_TRUE /* Temp. register. */ #define ASMREF_TMP2 REF_FALSE /* Temp. register. */ #define ASMREF_L REF_NIL /* Stores register for L. */ /* Check for variant to invariant references. */ #define iscrossref(as, ref) ((ref) < as->sectref) /* Inhibit memory op fusion from variant to invariant references. */ #define FUSE_DISABLED (~(IRRef)0) #define mayfuse(as, ref) ((ref) > as->fuseref) #define neverfuse(as) (as->fuseref == FUSE_DISABLED) #define canfuse(as, ir) (!neverfuse(as) && !irt_isphi((ir)->t)) #define opisfusableload(o) \ ((o) == IR_ALOAD || (o) == IR_HLOAD || (o) == IR_ULOAD || \ (o) == IR_FLOAD || (o) == IR_XLOAD || (o) == IR_SLOAD || (o) == IR_VLOAD) /* Sparse limit checks using a red zone before the actual limit. */ #define MCLIM_REDZONE 64 static LJ_NORET LJ_NOINLINE void asm_mclimit(ASMState *as) { lj_mcode_limiterr(as->J, (size_t)(as->mctop - as->mcp + 4*MCLIM_REDZONE)); } static LJ_AINLINE void checkmclim(ASMState *as) { #ifdef LUA_USE_ASSERT if (as->mcp + MCLIM_REDZONE < as->mcp_prev) { IRIns *ir = IR(as->curins+1); fprintf(stderr, "RED ZONE OVERFLOW: %p IR %04d %02d %04d %04d\n", as->mcp, as->curins+1-REF_BIAS, ir->o, ir->op1-REF_BIAS, ir->op2-REF_BIAS); lua_assert(0); } #endif if (LJ_UNLIKELY(as->mcp < as->mclim)) asm_mclimit(as); #ifdef LUA_USE_ASSERT as->mcp_prev = as->mcp; #endif } #ifdef RID_NUM_KREF #define ra_iskref(ref) ((ref) < RID_NUM_KREF) #define ra_krefreg(ref) ((Reg)(RID_MIN_KREF + (Reg)(ref))) #define ra_krefk(as, ref) (as->krefk[(ref)]) static LJ_AINLINE void ra_setkref(ASMState *as, Reg r, intptr_t k) { IRRef ref = (IRRef)(r - RID_MIN_KREF); as->krefk[ref] = k; as->cost[r] = REGCOST(ref, ref); } #else #define ra_iskref(ref) 0 #define ra_krefreg(ref) RID_MIN_GPR #define ra_krefk(as, ref) 0 #endif /* Arch-specific field offsets. */ static const uint8_t field_ofs[IRFL__MAX+1] = { #define FLOFS(name, ofs) (uint8_t)(ofs), IRFLDEF(FLOFS) #undef FLOFS 0 }; /* -- Target-specific instruction emitter --------------------------------- */ #if LJ_TARGET_X86ORX64 #include "lj_emit_x86.h" #elif LJ_TARGET_ARM #include "lj_emit_arm.h" #elif LJ_TARGET_ARM64 #include "lj_emit_arm64.h" #elif LJ_TARGET_PPC #include "lj_emit_ppc.h" #elif LJ_TARGET_MIPS #include "lj_emit_mips.h" #else #error "Missing instruction emitter for target CPU" #endif /* Generic load/store of register from/to stack slot. */ #define emit_spload(as, ir, r, ofs) \ emit_loadofs(as, ir, (r), RID_SP, (ofs)) #define emit_spstore(as, ir, r, ofs) \ emit_storeofs(as, ir, (r), RID_SP, (ofs)) /* -- Register allocator debugging ---------------------------------------- */ /* #define LUAJIT_DEBUG_RA */ #ifdef LUAJIT_DEBUG_RA #include #include #define RIDNAME(name) #name, static const char *const ra_regname[] = { GPRDEF(RIDNAME) FPRDEF(RIDNAME) VRIDDEF(RIDNAME) NULL }; #undef RIDNAME static char ra_dbg_buf[65536]; static char *ra_dbg_p; static char *ra_dbg_merge; static MCode *ra_dbg_mcp; static void ra_dstart(void) { ra_dbg_p = ra_dbg_buf; ra_dbg_merge = NULL; ra_dbg_mcp = NULL; } static void ra_dflush(void) { fwrite(ra_dbg_buf, 1, (size_t)(ra_dbg_p-ra_dbg_buf), stdout); ra_dstart(); } static void ra_dprintf(ASMState *as, const char *fmt, ...) { char *p; va_list argp; va_start(argp, fmt); p = ra_dbg_mcp == as->mcp ? ra_dbg_merge : ra_dbg_p; ra_dbg_mcp = NULL; p += sprintf(p, "%08x \e[36m%04d ", (uintptr_t)as->mcp, as->curins-REF_BIAS); for (;;) { const char *e = strchr(fmt, '$'); if (e == NULL) break; memcpy(p, fmt, (size_t)(e-fmt)); p += e-fmt; if (e[1] == 'r') { Reg r = va_arg(argp, Reg) & RID_MASK; if (r <= RID_MAX) { const char *q; for (q = ra_regname[r]; *q; q++) *p++ = *q >= 'A' && *q <= 'Z' ? *q + 0x20 : *q; } else { *p++ = '?'; lua_assert(0); } } else if (e[1] == 'f' || e[1] == 'i') { IRRef ref; if (e[1] == 'f') ref = va_arg(argp, IRRef); else ref = va_arg(argp, IRIns *) - as->ir; if (ref >= REF_BIAS) p += sprintf(p, "%04d", ref - REF_BIAS); else p += sprintf(p, "K%03d", REF_BIAS - ref); } else if (e[1] == 's') { uint32_t slot = va_arg(argp, uint32_t); p += sprintf(p, "[sp+0x%x]", sps_scale(slot)); } else if (e[1] == 'x') { p += sprintf(p, "%08x", va_arg(argp, int32_t)); } else { lua_assert(0); } fmt = e+2; } va_end(argp); while (*fmt) *p++ = *fmt++; *p++ = '\e'; *p++ = '['; *p++ = 'm'; *p++ = '\n'; if (p > ra_dbg_buf+sizeof(ra_dbg_buf)-256) { fwrite(ra_dbg_buf, 1, (size_t)(p-ra_dbg_buf), stdout); p = ra_dbg_buf; } ra_dbg_p = p; } #define RA_DBG_START() ra_dstart() #define RA_DBG_FLUSH() ra_dflush() #define RA_DBG_REF() \ do { char *_p = ra_dbg_p; ra_dprintf(as, ""); \ ra_dbg_merge = _p; ra_dbg_mcp = as->mcp; } while (0) #define RA_DBGX(x) ra_dprintf x #else #define RA_DBG_START() ((void)0) #define RA_DBG_FLUSH() ((void)0) #define RA_DBG_REF() ((void)0) #define RA_DBGX(x) ((void)0) #endif /* -- Register allocator -------------------------------------------------- */ #define ra_free(as, r) rset_set(as->freeset, (r)) #define ra_modified(as, r) rset_set(as->modset, (r)) #define ra_weak(as, r) rset_set(as->weakset, (r)) #define ra_noweak(as, r) rset_clear(as->weakset, (r)) #define ra_used(ir) (ra_hasreg((ir)->r) || ra_hasspill((ir)->s)) /* Setup register allocator. */ static void ra_setup(ASMState *as) { Reg r; /* Initially all regs (except the stack pointer) are free for use. */ as->freeset = RSET_INIT; as->modset = RSET_EMPTY; as->weakset = RSET_EMPTY; as->phiset = RSET_EMPTY; memset(as->phireg, 0, sizeof(as->phireg)); for (r = RID_MIN_GPR; r < RID_MAX; r++) as->cost[r] = REGCOST(~0u, 0u); } /* Rematerialize constants. */ static Reg ra_rematk(ASMState *as, IRRef ref) { IRIns *ir; Reg r; if (ra_iskref(ref)) { r = ra_krefreg(ref); lua_assert(!rset_test(as->freeset, r)); ra_free(as, r); ra_modified(as, r); #if LJ_64 emit_loadu64(as, r, ra_krefk(as, ref)); #else emit_loadi(as, r, ra_krefk(as, ref)); #endif return r; } ir = IR(ref); r = ir->r; lua_assert(ra_hasreg(r) && !ra_hasspill(ir->s)); ra_free(as, r); ra_modified(as, r); ir->r = RID_INIT; /* Do not keep any hint. */ RA_DBGX((as, "remat $i $r", ir, r)); #if !LJ_SOFTFP if (ir->o == IR_KNUM) { emit_loadk64(as, r, ir); } else #endif if (emit_canremat(REF_BASE) && ir->o == IR_BASE) { ra_sethint(ir->r, RID_BASE); /* Restore BASE register hint. */ emit_getgl(as, r, jit_base); } else if (emit_canremat(ASMREF_L) && ir->o == IR_KPRI) { lua_assert(irt_isnil(ir->t)); /* REF_NIL stores ASMREF_L register. */ emit_getgl(as, r, cur_L); #if LJ_64 } else if (ir->o == IR_KINT64) { emit_loadu64(as, r, ir_kint64(ir)->u64); #if LJ_GC64 } else if (ir->o == IR_KGC) { emit_loadu64(as, r, (uintptr_t)ir_kgc(ir)); } else if (ir->o == IR_KPTR || ir->o == IR_KKPTR) { emit_loadu64(as, r, (uintptr_t)ir_kptr(ir)); #endif #endif } else { lua_assert(ir->o == IR_KINT || ir->o == IR_KGC || ir->o == IR_KPTR || ir->o == IR_KKPTR || ir->o == IR_KNULL); emit_loadi(as, r, ir->i); } return r; } /* Force a spill. Allocate a new spill slot if needed. */ static int32_t ra_spill(ASMState *as, IRIns *ir) { int32_t slot = ir->s; lua_assert(ir >= as->ir + REF_TRUE); if (!ra_hasspill(slot)) { if (irt_is64(ir->t)) { slot = as->evenspill; as->evenspill += 2; } else if (as->oddspill) { slot = as->oddspill; as->oddspill = 0; } else { slot = as->evenspill; as->oddspill = slot+1; as->evenspill += 2; } if (as->evenspill > 256) lj_trace_err(as->J, LJ_TRERR_SPILLOV); ir->s = (uint8_t)slot; } return sps_scale(slot); } /* Release the temporarily allocated register in ASMREF_TMP1/ASMREF_TMP2. */ static Reg ra_releasetmp(ASMState *as, IRRef ref) { IRIns *ir = IR(ref); Reg r = ir->r; lua_assert(ra_hasreg(r) && !ra_hasspill(ir->s)); ra_free(as, r); ra_modified(as, r); ir->r = RID_INIT; return r; } /* Restore a register (marked as free). Rematerialize or force a spill. */ static Reg ra_restore(ASMState *as, IRRef ref) { if (emit_canremat(ref)) { return ra_rematk(as, ref); } else { IRIns *ir = IR(ref); int32_t ofs = ra_spill(as, ir); /* Force a spill slot. */ Reg r = ir->r; lua_assert(ra_hasreg(r)); ra_sethint(ir->r, r); /* Keep hint. */ ra_free(as, r); if (!rset_test(as->weakset, r)) { /* Only restore non-weak references. */ ra_modified(as, r); RA_DBGX((as, "restore $i $r", ir, r)); emit_spload(as, ir, r, ofs); } return r; } } /* Save a register to a spill slot. */ static void ra_save(ASMState *as, IRIns *ir, Reg r) { RA_DBGX((as, "save $i $r", ir, r)); emit_spstore(as, ir, r, sps_scale(ir->s)); } #define MINCOST(name) \ if (rset_test(RSET_ALL, RID_##name) && \ LJ_LIKELY(allow&RID2RSET(RID_##name)) && as->cost[RID_##name] < cost) \ cost = as->cost[RID_##name]; /* Evict the register with the lowest cost, forcing a restore. */ static Reg ra_evict(ASMState *as, RegSet allow) { IRRef ref; RegCost cost = ~(RegCost)0; lua_assert(allow != RSET_EMPTY); if (RID_NUM_FPR == 0 || allow < RID2RSET(RID_MAX_GPR)) { GPRDEF(MINCOST) } else { FPRDEF(MINCOST) } ref = regcost_ref(cost); lua_assert(ra_iskref(ref) || (ref >= as->T->nk && ref < as->T->nins)); /* Preferably pick any weak ref instead of a non-weak, non-const ref. */ if (!irref_isk(ref) && (as->weakset & allow)) { IRIns *ir = IR(ref); if (!rset_test(as->weakset, ir->r)) ref = regcost_ref(as->cost[rset_pickbot((as->weakset & allow))]); } return ra_restore(as, ref); } /* Pick any register (marked as free). Evict on-demand. */ static Reg ra_pick(ASMState *as, RegSet allow) { RegSet pick = as->freeset & allow; if (!pick) return ra_evict(as, allow); else return rset_picktop(pick); } /* Get a scratch register (marked as free). */ static Reg ra_scratch(ASMState *as, RegSet allow) { Reg r = ra_pick(as, allow); ra_modified(as, r); RA_DBGX((as, "scratch $r", r)); return r; } /* Evict all registers from a set (if not free). */ static void ra_evictset(ASMState *as, RegSet drop) { RegSet work; as->modset |= drop; #if !LJ_SOFTFP work = (drop & ~as->freeset) & RSET_FPR; while (work) { Reg r = rset_pickbot(work); ra_restore(as, regcost_ref(as->cost[r])); rset_clear(work, r); checkmclim(as); } #endif work = (drop & ~as->freeset); while (work) { Reg r = rset_pickbot(work); ra_restore(as, regcost_ref(as->cost[r])); rset_clear(work, r); checkmclim(as); } } /* Evict (rematerialize) all registers allocated to constants. */ static void ra_evictk(ASMState *as) { RegSet work; #if !LJ_SOFTFP work = ~as->freeset & RSET_FPR; while (work) { Reg r = rset_pickbot(work); IRRef ref = regcost_ref(as->cost[r]); if (emit_canremat(ref) && irref_isk(ref)) { ra_rematk(as, ref); checkmclim(as); } rset_clear(work, r); } #endif work = ~as->freeset & RSET_GPR; while (work) { Reg r = rset_pickbot(work); IRRef ref = regcost_ref(as->cost[r]); if (emit_canremat(ref) && irref_isk(ref)) { ra_rematk(as, ref); checkmclim(as); } rset_clear(work, r); } } #ifdef RID_NUM_KREF /* Allocate a register for a constant. */ static Reg ra_allock(ASMState *as, intptr_t k, RegSet allow) { /* First try to find a register which already holds the same constant. */ RegSet pick, work = ~as->freeset & RSET_GPR; Reg r; while (work) { IRRef ref; r = rset_pickbot(work); ref = regcost_ref(as->cost[r]); #if LJ_64 if (ref < ASMREF_L) { if (ra_iskref(ref)) { if (k == ra_krefk(as, ref)) return r; } else { IRIns *ir = IR(ref); if ((ir->o == IR_KINT64 && k == (int64_t)ir_kint64(ir)->u64) || #if LJ_GC64 (ir->o == IR_KINT && k == ir->i) || (ir->o == IR_KGC && k == (intptr_t)ir_kgc(ir)) || ((ir->o == IR_KPTR || ir->o == IR_KKPTR) && k == (intptr_t)ir_kptr(ir)) #else (ir->o != IR_KINT64 && k == ir->i) #endif ) return r; } } #else if (ref < ASMREF_L && k == (ra_iskref(ref) ? ra_krefk(as, ref) : IR(ref)->i)) return r; #endif rset_clear(work, r); } pick = as->freeset & allow; if (pick) { /* Constants should preferably get unmodified registers. */ if ((pick & ~as->modset)) pick &= ~as->modset; r = rset_pickbot(pick); /* Reduce conflicts with inverse allocation. */ } else { r = ra_evict(as, allow); } RA_DBGX((as, "allock $x $r", k, r)); ra_setkref(as, r, k); rset_clear(as->freeset, r); ra_noweak(as, r); return r; } /* Allocate a specific register for a constant. */ static void ra_allockreg(ASMState *as, intptr_t k, Reg r) { Reg kr = ra_allock(as, k, RID2RSET(r)); if (kr != r) { IRIns irdummy; irdummy.t.irt = IRT_INT; ra_scratch(as, RID2RSET(r)); emit_movrr(as, &irdummy, r, kr); } } #else #define ra_allockreg(as, k, r) emit_loadi(as, (r), (k)) #endif /* Allocate a register for ref from the allowed set of registers. ** Note: this function assumes the ref does NOT have a register yet! ** Picks an optimal register, sets the cost and marks the register as non-free. */ static Reg ra_allocref(ASMState *as, IRRef ref, RegSet allow) { IRIns *ir = IR(ref); RegSet pick = as->freeset & allow; Reg r; lua_assert(ra_noreg(ir->r)); if (pick) { /* First check register hint from propagation or PHI. */ if (ra_hashint(ir->r)) { r = ra_gethint(ir->r); if (rset_test(pick, r)) /* Use hint register if possible. */ goto found; /* Rematerialization is cheaper than missing a hint. */ if (rset_test(allow, r) && emit_canremat(regcost_ref(as->cost[r]))) { ra_rematk(as, regcost_ref(as->cost[r])); goto found; } RA_DBGX((as, "hintmiss $f $r", ref, r)); } /* Invariants should preferably get unmodified registers. */ if (ref < as->loopref && !irt_isphi(ir->t)) { if ((pick & ~as->modset)) pick &= ~as->modset; r = rset_pickbot(pick); /* Reduce conflicts with inverse allocation. */ } else { /* We've got plenty of regs, so get callee-save regs if possible. */ if (RID_NUM_GPR > 8 && (pick & ~RSET_SCRATCH)) pick &= ~RSET_SCRATCH; r = rset_picktop(pick); } } else { r = ra_evict(as, allow); } found: RA_DBGX((as, "alloc $f $r", ref, r)); ir->r = (uint8_t)r; rset_clear(as->freeset, r); ra_noweak(as, r); as->cost[r] = REGCOST_REF_T(ref, irt_t(ir->t)); return r; } /* Allocate a register on-demand. */ static Reg ra_alloc1(ASMState *as, IRRef ref, RegSet allow) { Reg r = IR(ref)->r; /* Note: allow is ignored if the register is already allocated. */ if (ra_noreg(r)) r = ra_allocref(as, ref, allow); ra_noweak(as, r); return r; } /* Add a register rename to the IR. */ static void ra_addrename(ASMState *as, Reg down, IRRef ref, SnapNo snapno) { IRRef ren; lj_ir_set(as->J, IRT(IR_RENAME, IRT_NIL), ref, snapno); ren = tref_ref(lj_ir_emit(as->J)); as->J->cur.ir[ren].r = (uint8_t)down; as->J->cur.ir[ren].s = SPS_NONE; } /* Rename register allocation and emit move. */ static void ra_rename(ASMState *as, Reg down, Reg up) { IRRef ref = regcost_ref(as->cost[up] = as->cost[down]); IRIns *ir = IR(ref); ir->r = (uint8_t)up; as->cost[down] = 0; lua_assert((down < RID_MAX_GPR) == (up < RID_MAX_GPR)); lua_assert(!rset_test(as->freeset, down) && rset_test(as->freeset, up)); ra_free(as, down); /* 'down' is free ... */ ra_modified(as, down); rset_clear(as->freeset, up); /* ... and 'up' is now allocated. */ ra_noweak(as, up); RA_DBGX((as, "rename $f $r $r", regcost_ref(as->cost[up]), down, up)); emit_movrr(as, ir, down, up); /* Backwards codegen needs inverse move. */ if (!ra_hasspill(IR(ref)->s)) { /* Add the rename to the IR. */ ra_addrename(as, down, ref, as->snapno); } } /* Pick a destination register (marked as free). ** Caveat: allow is ignored if there's already a destination register. ** Use ra_destreg() to get a specific register. */ static Reg ra_dest(ASMState *as, IRIns *ir, RegSet allow) { Reg dest = ir->r; if (ra_hasreg(dest)) { ra_free(as, dest); ra_modified(as, dest); } else { if (ra_hashint(dest) && rset_test((as->freeset&allow), ra_gethint(dest))) { dest = ra_gethint(dest); ra_modified(as, dest); RA_DBGX((as, "dest $r", dest)); } else { dest = ra_scratch(as, allow); } ir->r = dest; } if (LJ_UNLIKELY(ra_hasspill(ir->s))) ra_save(as, ir, dest); return dest; } /* Force a specific destination register (marked as free). */ static void ra_destreg(ASMState *as, IRIns *ir, Reg r) { Reg dest = ra_dest(as, ir, RID2RSET(r)); if (dest != r) { lua_assert(rset_test(as->freeset, r)); ra_modified(as, r); emit_movrr(as, ir, dest, r); } } #if LJ_TARGET_X86ORX64 /* Propagate dest register to left reference. Emit moves as needed. ** This is a required fixup step for all 2-operand machine instructions. */ static void ra_left(ASMState *as, Reg dest, IRRef lref) { IRIns *ir = IR(lref); Reg left = ir->r; if (ra_noreg(left)) { if (irref_isk(lref)) { if (ir->o == IR_KNUM) { /* FP remat needs a load except for +0. Still better than eviction. */ if (tvispzero(ir_knum(ir)) || !(as->freeset & RSET_FPR)) { emit_loadk64(as, dest, ir); return; } #if LJ_64 } else if (ir->o == IR_KINT64) { emit_loadk64(as, dest, ir); return; #if LJ_GC64 } else if (ir->o == IR_KGC || ir->o == IR_KPTR || ir->o == IR_KKPTR) { emit_loadk64(as, dest, ir); return; #endif #endif } else if (ir->o != IR_KPRI) { lua_assert(ir->o == IR_KINT || ir->o == IR_KGC || ir->o == IR_KPTR || ir->o == IR_KKPTR || ir->o == IR_KNULL); emit_loadi(as, dest, ir->i); return; } } if (!ra_hashint(left) && !iscrossref(as, lref)) ra_sethint(ir->r, dest); /* Propagate register hint. */ left = ra_allocref(as, lref, dest < RID_MAX_GPR ? RSET_GPR : RSET_FPR); } ra_noweak(as, left); /* Move needed for true 3-operand instruction: y=a+b ==> y=a; y+=b. */ if (dest != left) { /* Use register renaming if dest is the PHI reg. */ if (irt_isphi(ir->t) && as->phireg[dest] == lref) { ra_modified(as, left); ra_rename(as, left, dest); } else { emit_movrr(as, ir, dest, left); } } } #else /* Similar to ra_left, except we override any hints. */ static void ra_leftov(ASMState *as, Reg dest, IRRef lref) { IRIns *ir = IR(lref); Reg left = ir->r; if (ra_noreg(left)) { ra_sethint(ir->r, dest); /* Propagate register hint. */ left = ra_allocref(as, lref, (LJ_SOFTFP || dest < RID_MAX_GPR) ? RSET_GPR : RSET_FPR); } ra_noweak(as, left); if (dest != left) { /* Use register renaming if dest is the PHI reg. */ if (irt_isphi(ir->t) && as->phireg[dest] == lref) { ra_modified(as, left); ra_rename(as, left, dest); } else { emit_movrr(as, ir, dest, left); } } } #endif #if !LJ_64 /* Force a RID_RETLO/RID_RETHI destination register pair (marked as free). */ static void ra_destpair(ASMState *as, IRIns *ir) { Reg destlo = ir->r, desthi = (ir+1)->r; /* First spill unrelated refs blocking the destination registers. */ if (!rset_test(as->freeset, RID_RETLO) && destlo != RID_RETLO && desthi != RID_RETLO) ra_restore(as, regcost_ref(as->cost[RID_RETLO])); if (!rset_test(as->freeset, RID_RETHI) && destlo != RID_RETHI && desthi != RID_RETHI) ra_restore(as, regcost_ref(as->cost[RID_RETHI])); /* Next free the destination registers (if any). */ if (ra_hasreg(destlo)) { ra_free(as, destlo); ra_modified(as, destlo); } else { destlo = RID_RETLO; } if (ra_hasreg(desthi)) { ra_free(as, desthi); ra_modified(as, desthi); } else { desthi = RID_RETHI; } /* Check for conflicts and shuffle the registers as needed. */ if (destlo == RID_RETHI) { if (desthi == RID_RETLO) { #if LJ_TARGET_X86 *--as->mcp = XI_XCHGa + RID_RETHI; #else emit_movrr(as, ir, RID_RETHI, RID_TMP); emit_movrr(as, ir, RID_RETLO, RID_RETHI); emit_movrr(as, ir, RID_TMP, RID_RETLO); #endif } else { emit_movrr(as, ir, RID_RETHI, RID_RETLO); if (desthi != RID_RETHI) emit_movrr(as, ir, desthi, RID_RETHI); } } else if (desthi == RID_RETLO) { emit_movrr(as, ir, RID_RETLO, RID_RETHI); if (destlo != RID_RETLO) emit_movrr(as, ir, destlo, RID_RETLO); } else { if (desthi != RID_RETHI) emit_movrr(as, ir, desthi, RID_RETHI); if (destlo != RID_RETLO) emit_movrr(as, ir, destlo, RID_RETLO); } /* Restore spill slots (if any). */ if (ra_hasspill((ir+1)->s)) ra_save(as, ir+1, RID_RETHI); if (ra_hasspill(ir->s)) ra_save(as, ir, RID_RETLO); } #endif /* -- Snapshot handling --------- ----------------------------------------- */ /* Can we rematerialize a KNUM instead of forcing a spill? */ static int asm_snap_canremat(ASMState *as) { Reg r; for (r = RID_MIN_FPR; r < RID_MAX_FPR; r++) if (irref_isk(regcost_ref(as->cost[r]))) return 1; return 0; } /* Check whether a sunk store corresponds to an allocation. */ static int asm_sunk_store(ASMState *as, IRIns *ira, IRIns *irs) { if (irs->s == 255) { if (irs->o == IR_ASTORE || irs->o == IR_HSTORE || irs->o == IR_FSTORE || irs->o == IR_XSTORE) { IRIns *irk = IR(irs->op1); if (irk->o == IR_AREF || irk->o == IR_HREFK) irk = IR(irk->op1); return (IR(irk->op1) == ira); } return 0; } else { return (ira + irs->s == irs); /* Quick check. */ } } /* Allocate register or spill slot for a ref that escapes to a snapshot. */ static void asm_snap_alloc1(ASMState *as, IRRef ref) { IRIns *ir = IR(ref); if (!irref_isk(ref) && (!(ra_used(ir) || ir->r == RID_SUNK))) { if (ir->r == RID_SINK) { ir->r = RID_SUNK; #if LJ_HASFFI if (ir->o == IR_CNEWI) { /* Allocate CNEWI value. */ asm_snap_alloc1(as, ir->op2); if (LJ_32 && (ir+1)->o == IR_HIOP) asm_snap_alloc1(as, (ir+1)->op2); } else #endif { /* Allocate stored values for TNEW, TDUP and CNEW. */ IRIns *irs; lua_assert(ir->o == IR_TNEW || ir->o == IR_TDUP || ir->o == IR_CNEW); for (irs = IR(as->snapref-1); irs > ir; irs--) if (irs->r == RID_SINK && asm_sunk_store(as, ir, irs)) { lua_assert(irs->o == IR_ASTORE || irs->o == IR_HSTORE || irs->o == IR_FSTORE || irs->o == IR_XSTORE); asm_snap_alloc1(as, irs->op2); if (LJ_32 && (irs+1)->o == IR_HIOP) asm_snap_alloc1(as, (irs+1)->op2); } } } else { RegSet allow; if (ir->o == IR_CONV && ir->op2 == IRCONV_NUM_INT) { IRIns *irc; for (irc = IR(as->curins); irc > ir; irc--) if ((irc->op1 == ref || irc->op2 == ref) && !(irc->r == RID_SINK || irc->r == RID_SUNK)) goto nosink; /* Don't sink conversion if result is used. */ asm_snap_alloc1(as, ir->op1); return; } nosink: allow = (!LJ_SOFTFP && irt_isfp(ir->t)) ? RSET_FPR : RSET_GPR; if ((as->freeset & allow) || (allow == RSET_FPR && asm_snap_canremat(as))) { /* Get a weak register if we have a free one or can rematerialize. */ Reg r = ra_allocref(as, ref, allow); /* Allocate a register. */ if (!irt_isphi(ir->t)) ra_weak(as, r); /* But mark it as weakly referenced. */ checkmclim(as); RA_DBGX((as, "snapreg $f $r", ref, ir->r)); } else { ra_spill(as, ir); /* Otherwise force a spill slot. */ RA_DBGX((as, "snapspill $f $s", ref, ir->s)); } } } } /* Allocate refs escaping to a snapshot. */ static void asm_snap_alloc(ASMState *as) { SnapShot *snap = &as->T->snap[as->snapno]; SnapEntry *map = &as->T->snapmap[snap->mapofs]; MSize n, nent = snap->nent; for (n = 0; n < nent; n++) { SnapEntry sn = map[n]; IRRef ref = snap_ref(sn); if (!irref_isk(ref)) { asm_snap_alloc1(as, ref); if (LJ_SOFTFP && (sn & SNAP_SOFTFPNUM)) { lua_assert(irt_type(IR(ref+1)->t) == IRT_SOFTFP); asm_snap_alloc1(as, ref+1); } } } } /* All guards for a snapshot use the same exitno. This is currently the ** same as the snapshot number. Since the exact origin of the exit cannot ** be determined, all guards for the same snapshot must exit with the same ** RegSP mapping. ** A renamed ref which has been used in a prior guard for the same snapshot ** would cause an inconsistency. The easy way out is to force a spill slot. */ static int asm_snap_checkrename(ASMState *as, IRRef ren) { SnapShot *snap = &as->T->snap[as->snapno]; SnapEntry *map = &as->T->snapmap[snap->mapofs]; MSize n, nent = snap->nent; for (n = 0; n < nent; n++) { SnapEntry sn = map[n]; IRRef ref = snap_ref(sn); if (ref == ren || (LJ_SOFTFP && (sn & SNAP_SOFTFPNUM) && ++ref == ren)) { IRIns *ir = IR(ref); ra_spill(as, ir); /* Register renamed, so force a spill slot. */ RA_DBGX((as, "snaprensp $f $s", ref, ir->s)); return 1; /* Found. */ } } return 0; /* Not found. */ } /* Prepare snapshot for next guard instruction. */ static void asm_snap_prep(ASMState *as) { if (as->curins < as->snapref) { do { if (as->snapno == 0) return; /* Called by sunk stores before snap #0. */ as->snapno--; as->snapref = as->T->snap[as->snapno].ref; } while (as->curins < as->snapref); asm_snap_alloc(as); as->snaprename = as->T->nins; } else { /* Process any renames above the highwater mark. */ for (; as->snaprename < as->T->nins; as->snaprename++) { IRIns *ir = &as->T->ir[as->snaprename]; if (asm_snap_checkrename(as, ir->op1)) ir->op2 = REF_BIAS-1; /* Kill rename. */ } } } /* -- Miscellaneous helpers ----------------------------------------------- */ /* Calculate stack adjustment. */ static int32_t asm_stack_adjust(ASMState *as) { if (as->evenspill <= SPS_FIXED) return 0; return sps_scale(sps_align(as->evenspill)); } /* Must match with hash*() in lj_tab.c. */ static uint32_t ir_khash(IRIns *ir) { uint32_t lo, hi; if (irt_isstr(ir->t)) { return ir_kstr(ir)->hash; } else if (irt_isnum(ir->t)) { lo = ir_knum(ir)->u32.lo; hi = ir_knum(ir)->u32.hi << 1; } else if (irt_ispri(ir->t)) { lua_assert(!irt_isnil(ir->t)); return irt_type(ir->t)-IRT_FALSE; } else { lua_assert(irt_isgcv(ir->t)); lo = u32ptr(ir_kgc(ir)); hi = lo + HASH_BIAS; } return hashrot(lo, hi); } /* -- Allocations --------------------------------------------------------- */ static void asm_gencall(ASMState *as, const CCallInfo *ci, IRRef *args); static void asm_setupresult(ASMState *as, IRIns *ir, const CCallInfo *ci); static void asm_snew(ASMState *as, IRIns *ir) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_str_new]; IRRef args[3]; args[0] = ASMREF_L; /* lua_State *L */ args[1] = ir->op1; /* const char *str */ args[2] = ir->op2; /* size_t len */ as->gcsteps++; asm_setupresult(as, ir, ci); /* GCstr * */ asm_gencall(as, ci, args); } static void asm_tnew(ASMState *as, IRIns *ir) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_tab_new1]; IRRef args[2]; args[0] = ASMREF_L; /* lua_State *L */ args[1] = ASMREF_TMP1; /* uint32_t ahsize */ as->gcsteps++; asm_setupresult(as, ir, ci); /* GCtab * */ asm_gencall(as, ci, args); ra_allockreg(as, ir->op1 | (ir->op2 << 24), ra_releasetmp(as, ASMREF_TMP1)); } static void asm_tdup(ASMState *as, IRIns *ir) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_tab_dup]; IRRef args[2]; args[0] = ASMREF_L; /* lua_State *L */ args[1] = ir->op1; /* const GCtab *kt */ as->gcsteps++; asm_setupresult(as, ir, ci); /* GCtab * */ asm_gencall(as, ci, args); } static void asm_gc_check(ASMState *as); /* Explicit GC step. */ static void asm_gcstep(ASMState *as, IRIns *ir) { IRIns *ira; for (ira = IR(as->stopins+1); ira < ir; ira++) if ((ira->o == IR_TNEW || ira->o == IR_TDUP || (LJ_HASFFI && (ira->o == IR_CNEW || ira->o == IR_CNEWI))) && ra_used(ira)) as->gcsteps++; if (as->gcsteps) asm_gc_check(as); as->gcsteps = 0x80000000; /* Prevent implicit GC check further up. */ } /* -- Buffer operations --------------------------------------------------- */ static void asm_tvptr(ASMState *as, Reg dest, IRRef ref); static void asm_bufhdr(ASMState *as, IRIns *ir) { Reg sb = ra_dest(as, ir, RSET_GPR); if ((ir->op2 & IRBUFHDR_APPEND)) { /* Rematerialize const buffer pointer instead of likely spill. */ IRIns *irp = IR(ir->op1); if (!(ra_hasreg(irp->r) || irp == ir-1 || (irp == ir-2 && !ra_used(ir-1)))) { while (!(irp->o == IR_BUFHDR && !(irp->op2 & IRBUFHDR_APPEND))) irp = IR(irp->op1); if (irref_isk(irp->op1)) { ra_weak(as, ra_allocref(as, ir->op1, RSET_GPR)); ir = irp; } } } else { Reg tmp = ra_scratch(as, rset_exclude(RSET_GPR, sb)); /* Passing ir isn't strictly correct, but it's an IRT_PGC, too. */ emit_storeofs(as, ir, tmp, sb, offsetof(SBuf, p)); emit_loadofs(as, ir, tmp, sb, offsetof(SBuf, b)); } #if LJ_TARGET_X86ORX64 ra_left(as, sb, ir->op1); #else ra_leftov(as, sb, ir->op1); #endif } static void asm_bufput(ASMState *as, IRIns *ir) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_buf_putstr]; IRRef args[3]; IRIns *irs; int kchar = -1; args[0] = ir->op1; /* SBuf * */ args[1] = ir->op2; /* GCstr * */ irs = IR(ir->op2); lua_assert(irt_isstr(irs->t)); if (irs->o == IR_KGC) { GCstr *s = ir_kstr(irs); if (s->len == 1) { /* Optimize put of single-char string constant. */ kchar = strdata(s)[0]; args[1] = ASMREF_TMP1; /* int, truncated to char */ ci = &lj_ir_callinfo[IRCALL_lj_buf_putchar]; } } else if (mayfuse(as, ir->op2) && ra_noreg(irs->r)) { if (irs->o == IR_TOSTR) { /* Fuse number to string conversions. */ if (irs->op2 == IRTOSTR_NUM) { args[1] = ASMREF_TMP1; /* TValue * */ ci = &lj_ir_callinfo[IRCALL_lj_strfmt_putnum]; } else { lua_assert(irt_isinteger(IR(irs->op1)->t)); args[1] = irs->op1; /* int */ if (irs->op2 == IRTOSTR_INT) ci = &lj_ir_callinfo[IRCALL_lj_strfmt_putint]; else ci = &lj_ir_callinfo[IRCALL_lj_buf_putchar]; } } else if (irs->o == IR_SNEW) { /* Fuse string allocation. */ args[1] = irs->op1; /* const void * */ args[2] = irs->op2; /* MSize */ ci = &lj_ir_callinfo[IRCALL_lj_buf_putmem]; } } asm_setupresult(as, ir, ci); /* SBuf * */ asm_gencall(as, ci, args); if (args[1] == ASMREF_TMP1) { Reg tmp = ra_releasetmp(as, ASMREF_TMP1); if (kchar == -1) asm_tvptr(as, tmp, irs->op1); else ra_allockreg(as, kchar, tmp); } } static void asm_bufstr(ASMState *as, IRIns *ir) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_buf_tostr]; IRRef args[1]; args[0] = ir->op1; /* SBuf *sb */ as->gcsteps++; asm_setupresult(as, ir, ci); /* GCstr * */ asm_gencall(as, ci, args); } /* -- Type conversions ---------------------------------------------------- */ static void asm_tostr(ASMState *as, IRIns *ir) { const CCallInfo *ci; IRRef args[2]; args[0] = ASMREF_L; as->gcsteps++; if (ir->op2 == IRTOSTR_NUM) { args[1] = ASMREF_TMP1; /* cTValue * */ ci = &lj_ir_callinfo[IRCALL_lj_strfmt_num]; } else { args[1] = ir->op1; /* int32_t k */ if (ir->op2 == IRTOSTR_INT) ci = &lj_ir_callinfo[IRCALL_lj_strfmt_int]; else ci = &lj_ir_callinfo[IRCALL_lj_strfmt_char]; } asm_setupresult(as, ir, ci); /* GCstr * */ asm_gencall(as, ci, args); if (ir->op2 == IRTOSTR_NUM) asm_tvptr(as, ra_releasetmp(as, ASMREF_TMP1), ir->op1); } #if LJ_32 && LJ_HASFFI && !LJ_SOFTFP && !LJ_TARGET_X86 static void asm_conv64(ASMState *as, IRIns *ir) { IRType st = (IRType)((ir-1)->op2 & IRCONV_SRCMASK); IRType dt = (((ir-1)->op2 & IRCONV_DSTMASK) >> IRCONV_DSH); IRCallID id; IRRef args[2]; lua_assert((ir-1)->o == IR_CONV && ir->o == IR_HIOP); args[LJ_BE] = (ir-1)->op1; args[LJ_LE] = ir->op1; if (st == IRT_NUM || st == IRT_FLOAT) { id = IRCALL_fp64_d2l + ((st == IRT_FLOAT) ? 2 : 0) + (dt - IRT_I64); ir--; } else { id = IRCALL_fp64_l2d + ((dt == IRT_FLOAT) ? 2 : 0) + (st - IRT_I64); } { #if LJ_TARGET_ARM && !LJ_ABI_SOFTFP CCallInfo cim = lj_ir_callinfo[id], *ci = &cim; cim.flags |= CCI_VARARG; /* These calls don't use the hard-float ABI! */ #else const CCallInfo *ci = &lj_ir_callinfo[id]; #endif asm_setupresult(as, ir, ci); asm_gencall(as, ci, args); } } #endif /* -- Memory references --------------------------------------------------- */ static void asm_newref(ASMState *as, IRIns *ir) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_tab_newkey]; IRRef args[3]; if (ir->r == RID_SINK) return; args[0] = ASMREF_L; /* lua_State *L */ args[1] = ir->op1; /* GCtab *t */ args[2] = ASMREF_TMP1; /* cTValue *key */ asm_setupresult(as, ir, ci); /* TValue * */ asm_gencall(as, ci, args); asm_tvptr(as, ra_releasetmp(as, ASMREF_TMP1), ir->op2); } static void asm_lref(ASMState *as, IRIns *ir) { Reg r = ra_dest(as, ir, RSET_GPR); #if LJ_TARGET_X86ORX64 ra_left(as, r, ASMREF_L); #else ra_leftov(as, r, ASMREF_L); #endif } /* -- Calls --------------------------------------------------------------- */ /* Collect arguments from CALL* and CARG instructions. */ static void asm_collectargs(ASMState *as, IRIns *ir, const CCallInfo *ci, IRRef *args) { uint32_t n = CCI_XNARGS(ci); lua_assert(n <= CCI_NARGS_MAX*2); /* Account for split args. */ if ((ci->flags & CCI_L)) { *args++ = ASMREF_L; n--; } while (n-- > 1) { ir = IR(ir->op1); lua_assert(ir->o == IR_CARG); args[n] = ir->op2 == REF_NIL ? 0 : ir->op2; } args[0] = ir->op1 == REF_NIL ? 0 : ir->op1; lua_assert(IR(ir->op1)->o != IR_CARG); } /* Reconstruct CCallInfo flags for CALLX*. */ static uint32_t asm_callx_flags(ASMState *as, IRIns *ir) { uint32_t nargs = 0; if (ir->op1 != REF_NIL) { /* Count number of arguments first. */ IRIns *ira = IR(ir->op1); nargs++; while (ira->o == IR_CARG) { nargs++; ira = IR(ira->op1); } } #if LJ_HASFFI if (IR(ir->op2)->o == IR_CARG) { /* Copy calling convention info. */ CTypeID id = (CTypeID)IR(IR(ir->op2)->op2)->i; CType *ct = ctype_get(ctype_ctsG(J2G(as->J)), id); nargs |= ((ct->info & CTF_VARARG) ? CCI_VARARG : 0); #if LJ_TARGET_X86 nargs |= (ctype_cconv(ct->info) << CCI_CC_SHIFT); #endif } #endif return (nargs | (ir->t.irt << CCI_OTSHIFT)); } static void asm_callid(ASMState *as, IRIns *ir, IRCallID id) { const CCallInfo *ci = &lj_ir_callinfo[id]; IRRef args[2]; args[0] = ir->op1; args[1] = ir->op2; asm_setupresult(as, ir, ci); asm_gencall(as, ci, args); } static void asm_call(ASMState *as, IRIns *ir) { IRRef args[CCI_NARGS_MAX]; const CCallInfo *ci = &lj_ir_callinfo[ir->op2]; asm_collectargs(as, ir, ci, args); asm_setupresult(as, ir, ci); asm_gencall(as, ci, args); } #if !LJ_SOFTFP static void asm_fppow(ASMState *as, IRIns *ir, IRRef lref, IRRef rref) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_pow]; IRRef args[2]; args[0] = lref; args[1] = rref; asm_setupresult(as, ir, ci); asm_gencall(as, ci, args); } static int asm_fpjoin_pow(ASMState *as, IRIns *ir) { IRIns *irp = IR(ir->op1); if (irp == ir-1 && irp->o == IR_MUL && !ra_used(irp)) { IRIns *irpp = IR(irp->op1); if (irpp == ir-2 && irpp->o == IR_FPMATH && irpp->op2 == IRFPM_LOG2 && !ra_used(irpp)) { asm_fppow(as, ir, irpp->op1, irp->op2); return 1; } } return 0; } #endif /* -- PHI and loop handling ----------------------------------------------- */ /* Break a PHI cycle by renaming to a free register (evict if needed). */ static void asm_phi_break(ASMState *as, RegSet blocked, RegSet blockedby, RegSet allow) { RegSet candidates = blocked & allow; if (candidates) { /* If this register file has candidates. */ /* Note: the set for ra_pick cannot be empty, since each register file ** has some registers never allocated to PHIs. */ Reg down, up = ra_pick(as, ~blocked & allow); /* Get a free register. */ if (candidates & ~blockedby) /* Optimize shifts, else it's a cycle. */ candidates = candidates & ~blockedby; down = rset_picktop(candidates); /* Pick candidate PHI register. */ ra_rename(as, down, up); /* And rename it to the free register. */ } } /* PHI register shuffling. ** ** The allocator tries hard to preserve PHI register assignments across ** the loop body. Most of the time this loop does nothing, since there ** are no register mismatches. ** ** If a register mismatch is detected and ... ** - the register is currently free: rename it. ** - the register is blocked by an invariant: restore/remat and rename it. ** - Otherwise the register is used by another PHI, so mark it as blocked. ** ** The renames are order-sensitive, so just retry the loop if a register ** is marked as blocked, but has been freed in the meantime. A cycle is ** detected if all of the blocked registers are allocated. To break the ** cycle rename one of them to a free register and retry. ** ** Note that PHI spill slots are kept in sync and don't need to be shuffled. */ static void asm_phi_shuffle(ASMState *as) { RegSet work; /* Find and resolve PHI register mismatches. */ for (;;) { RegSet blocked = RSET_EMPTY; RegSet blockedby = RSET_EMPTY; RegSet phiset = as->phiset; while (phiset) { /* Check all left PHI operand registers. */ Reg r = rset_pickbot(phiset); IRIns *irl = IR(as->phireg[r]); Reg left = irl->r; if (r != left) { /* Mismatch? */ if (!rset_test(as->freeset, r)) { /* PHI register blocked? */ IRRef ref = regcost_ref(as->cost[r]); /* Blocked by other PHI (w/reg)? */ if (!ra_iskref(ref) && irt_ismarked(IR(ref)->t)) { rset_set(blocked, r); if (ra_hasreg(left)) rset_set(blockedby, left); left = RID_NONE; } else { /* Otherwise grab register from invariant. */ ra_restore(as, ref); checkmclim(as); } } if (ra_hasreg(left)) { ra_rename(as, left, r); checkmclim(as); } } rset_clear(phiset, r); } if (!blocked) break; /* Finished. */ if (!(as->freeset & blocked)) { /* Break cycles if none are free. */ asm_phi_break(as, blocked, blockedby, RSET_GPR); if (!LJ_SOFTFP) asm_phi_break(as, blocked, blockedby, RSET_FPR); checkmclim(as); } /* Else retry some more renames. */ } /* Restore/remat invariants whose registers are modified inside the loop. */ #if !LJ_SOFTFP work = as->modset & ~(as->freeset | as->phiset) & RSET_FPR; while (work) { Reg r = rset_pickbot(work); ra_restore(as, regcost_ref(as->cost[r])); rset_clear(work, r); checkmclim(as); } #endif work = as->modset & ~(as->freeset | as->phiset); while (work) { Reg r = rset_pickbot(work); ra_restore(as, regcost_ref(as->cost[r])); rset_clear(work, r); checkmclim(as); } /* Allocate and save all unsaved PHI regs and clear marks. */ work = as->phiset; while (work) { Reg r = rset_picktop(work); IRRef lref = as->phireg[r]; IRIns *ir = IR(lref); if (ra_hasspill(ir->s)) { /* Left PHI gained a spill slot? */ irt_clearmark(ir->t); /* Handled here, so clear marker now. */ ra_alloc1(as, lref, RID2RSET(r)); ra_save(as, ir, r); /* Save to spill slot inside the loop. */ checkmclim(as); } rset_clear(work, r); } } /* Copy unsynced left/right PHI spill slots. Rarely needed. */ static void asm_phi_copyspill(ASMState *as) { int need = 0; IRIns *ir; for (ir = IR(as->orignins-1); ir->o == IR_PHI; ir--) if (ra_hasspill(ir->s) && ra_hasspill(IR(ir->op1)->s)) need |= irt_isfp(ir->t) ? 2 : 1; /* Unsynced spill slot? */ if ((need & 1)) { /* Copy integer spill slots. */ #if !LJ_TARGET_X86ORX64 Reg r = RID_TMP; #else Reg r = RID_RET; if ((as->freeset & RSET_GPR)) r = rset_pickbot((as->freeset & RSET_GPR)); else emit_spload(as, IR(regcost_ref(as->cost[r])), r, SPOFS_TMP); #endif for (ir = IR(as->orignins-1); ir->o == IR_PHI; ir--) { if (ra_hasspill(ir->s)) { IRIns *irl = IR(ir->op1); if (ra_hasspill(irl->s) && !irt_isfp(ir->t)) { emit_spstore(as, irl, r, sps_scale(irl->s)); emit_spload(as, ir, r, sps_scale(ir->s)); checkmclim(as); } } } #if LJ_TARGET_X86ORX64 if (!rset_test(as->freeset, r)) emit_spstore(as, IR(regcost_ref(as->cost[r])), r, SPOFS_TMP); #endif } #if !LJ_SOFTFP if ((need & 2)) { /* Copy FP spill slots. */ #if LJ_TARGET_X86 Reg r = RID_XMM0; #else Reg r = RID_FPRET; #endif if ((as->freeset & RSET_FPR)) r = rset_pickbot((as->freeset & RSET_FPR)); if (!rset_test(as->freeset, r)) emit_spload(as, IR(regcost_ref(as->cost[r])), r, SPOFS_TMP); for (ir = IR(as->orignins-1); ir->o == IR_PHI; ir--) { if (ra_hasspill(ir->s)) { IRIns *irl = IR(ir->op1); if (ra_hasspill(irl->s) && irt_isfp(ir->t)) { emit_spstore(as, irl, r, sps_scale(irl->s)); emit_spload(as, ir, r, sps_scale(ir->s)); checkmclim(as); } } } if (!rset_test(as->freeset, r)) emit_spstore(as, IR(regcost_ref(as->cost[r])), r, SPOFS_TMP); } #endif } /* Emit renames for left PHIs which are only spilled outside the loop. */ static void asm_phi_fixup(ASMState *as) { RegSet work = as->phiset; while (work) { Reg r = rset_picktop(work); IRRef lref = as->phireg[r]; IRIns *ir = IR(lref); if (irt_ismarked(ir->t)) { irt_clearmark(ir->t); /* Left PHI gained a spill slot before the loop? */ if (ra_hasspill(ir->s)) { ra_addrename(as, r, lref, as->loopsnapno); } } rset_clear(work, r); } } /* Setup right PHI reference. */ static void asm_phi(ASMState *as, IRIns *ir) { RegSet allow = ((!LJ_SOFTFP && irt_isfp(ir->t)) ? RSET_FPR : RSET_GPR) & ~as->phiset; RegSet afree = (as->freeset & allow); IRIns *irl = IR(ir->op1); IRIns *irr = IR(ir->op2); if (ir->r == RID_SINK) /* Sink PHI. */ return; /* Spill slot shuffling is not implemented yet (but rarely needed). */ if (ra_hasspill(irl->s) || ra_hasspill(irr->s)) lj_trace_err(as->J, LJ_TRERR_NYIPHI); /* Leave at least one register free for non-PHIs (and PHI cycle breaking). */ if ((afree & (afree-1))) { /* Two or more free registers? */ Reg r; if (ra_noreg(irr->r)) { /* Get a register for the right PHI. */ r = ra_allocref(as, ir->op2, allow); } else { /* Duplicate right PHI, need a copy (rare). */ r = ra_scratch(as, allow); emit_movrr(as, irr, r, irr->r); } ir->r = (uint8_t)r; rset_set(as->phiset, r); as->phireg[r] = (IRRef1)ir->op1; irt_setmark(irl->t); /* Marks left PHIs _with_ register. */ if (ra_noreg(irl->r)) ra_sethint(irl->r, r); /* Set register hint for left PHI. */ } else { /* Otherwise allocate a spill slot. */ /* This is overly restrictive, but it triggers only on synthetic code. */ if (ra_hasreg(irl->r) || ra_hasreg(irr->r)) lj_trace_err(as->J, LJ_TRERR_NYIPHI); ra_spill(as, ir); irr->s = ir->s; /* Set right PHI spill slot. Sync left slot later. */ } } static void asm_loop_fixup(ASMState *as); /* Middle part of a loop. */ static void asm_loop(ASMState *as) { MCode *mcspill; /* LOOP is a guard, so the snapno is up to date. */ as->loopsnapno = as->snapno; if (as->gcsteps) asm_gc_check(as); /* LOOP marks the transition from the variant to the invariant part. */ as->flagmcp = as->invmcp = NULL; as->sectref = 0; if (!neverfuse(as)) as->fuseref = 0; asm_phi_shuffle(as); mcspill = as->mcp; asm_phi_copyspill(as); asm_loop_fixup(as); as->mcloop = as->mcp; RA_DBGX((as, "===== LOOP =====")); if (!as->realign) RA_DBG_FLUSH(); if (as->mcp != mcspill) emit_jmp(as, mcspill); } /* -- Target-specific assembler ------------------------------------------- */ #if LJ_TARGET_X86ORX64 #include "lj_asm_x86.h" #elif LJ_TARGET_ARM #include "lj_asm_arm.h" #elif LJ_TARGET_ARM64 #include "lj_asm_arm64.h" #elif LJ_TARGET_PPC #include "lj_asm_ppc.h" #elif LJ_TARGET_MIPS #include "lj_asm_mips.h" #else #error "Missing assembler for target CPU" #endif /* -- Instruction dispatch ------------------------------------------------ */ /* Assemble a single instruction. */ static void asm_ir(ASMState *as, IRIns *ir) { switch ((IROp)ir->o) { /* Miscellaneous ops. */ case IR_LOOP: asm_loop(as); break; case IR_NOP: case IR_XBAR: lua_assert(!ra_used(ir)); break; case IR_USE: ra_alloc1(as, ir->op1, irt_isfp(ir->t) ? RSET_FPR : RSET_GPR); break; case IR_PHI: asm_phi(as, ir); break; case IR_HIOP: asm_hiop(as, ir); break; case IR_GCSTEP: asm_gcstep(as, ir); break; case IR_PROF: asm_prof(as, ir); break; /* Guarded assertions. */ case IR_LT: case IR_GE: case IR_LE: case IR_GT: case IR_ULT: case IR_UGE: case IR_ULE: case IR_UGT: case IR_ABC: asm_comp(as, ir); break; case IR_EQ: case IR_NE: if ((ir-1)->o == IR_HREF && ir->op1 == as->curins-1) { as->curins--; asm_href(as, ir-1, (IROp)ir->o); } else { asm_equal(as, ir); } break; case IR_RETF: asm_retf(as, ir); break; /* Bit ops. */ case IR_BNOT: asm_bnot(as, ir); break; case IR_BSWAP: asm_bswap(as, ir); break; case IR_BAND: asm_band(as, ir); break; case IR_BOR: asm_bor(as, ir); break; case IR_BXOR: asm_bxor(as, ir); break; case IR_BSHL: asm_bshl(as, ir); break; case IR_BSHR: asm_bshr(as, ir); break; case IR_BSAR: asm_bsar(as, ir); break; case IR_BROL: asm_brol(as, ir); break; case IR_BROR: asm_bror(as, ir); break; /* Arithmetic ops. */ case IR_ADD: asm_add(as, ir); break; case IR_SUB: asm_sub(as, ir); break; case IR_MUL: asm_mul(as, ir); break; case IR_MOD: asm_mod(as, ir); break; case IR_NEG: asm_neg(as, ir); break; #if LJ_SOFTFP case IR_DIV: case IR_POW: case IR_ABS: case IR_ATAN2: case IR_LDEXP: case IR_FPMATH: case IR_TOBIT: lua_assert(0); /* Unused for LJ_SOFTFP. */ break; #else case IR_DIV: asm_div(as, ir); break; case IR_POW: asm_pow(as, ir); break; case IR_ABS: asm_abs(as, ir); break; case IR_ATAN2: asm_atan2(as, ir); break; case IR_LDEXP: asm_ldexp(as, ir); break; case IR_FPMATH: asm_fpmath(as, ir); break; case IR_TOBIT: asm_tobit(as, ir); break; #endif case IR_MIN: asm_min(as, ir); break; case IR_MAX: asm_max(as, ir); break; /* Overflow-checking arithmetic ops. */ case IR_ADDOV: asm_addov(as, ir); break; case IR_SUBOV: asm_subov(as, ir); break; case IR_MULOV: asm_mulov(as, ir); break; /* Memory references. */ case IR_AREF: asm_aref(as, ir); break; case IR_HREF: asm_href(as, ir, 0); break; case IR_HREFK: asm_hrefk(as, ir); break; case IR_NEWREF: asm_newref(as, ir); break; case IR_UREFO: case IR_UREFC: asm_uref(as, ir); break; case IR_FREF: asm_fref(as, ir); break; case IR_STRREF: asm_strref(as, ir); break; case IR_LREF: asm_lref(as, ir); break; /* Loads and stores. */ case IR_ALOAD: case IR_HLOAD: case IR_ULOAD: case IR_VLOAD: asm_ahuvload(as, ir); break; case IR_FLOAD: asm_fload(as, ir); break; case IR_XLOAD: asm_xload(as, ir); break; case IR_SLOAD: asm_sload(as, ir); break; case IR_ASTORE: case IR_HSTORE: case IR_USTORE: asm_ahustore(as, ir); break; case IR_FSTORE: asm_fstore(as, ir); break; case IR_XSTORE: asm_xstore(as, ir); break; /* Allocations. */ case IR_SNEW: case IR_XSNEW: asm_snew(as, ir); break; case IR_TNEW: asm_tnew(as, ir); break; case IR_TDUP: asm_tdup(as, ir); break; case IR_CNEW: case IR_CNEWI: asm_cnew(as, ir); break; /* Buffer operations. */ case IR_BUFHDR: asm_bufhdr(as, ir); break; case IR_BUFPUT: asm_bufput(as, ir); break; case IR_BUFSTR: asm_bufstr(as, ir); break; /* Write barriers. */ case IR_TBAR: asm_tbar(as, ir); break; case IR_OBAR: asm_obar(as, ir); break; /* Type conversions. */ case IR_CONV: asm_conv(as, ir); break; case IR_TOSTR: asm_tostr(as, ir); break; case IR_STRTO: asm_strto(as, ir); break; /* Calls. */ case IR_CALLA: as->gcsteps++; /* fallthrough */ case IR_CALLN: case IR_CALLL: case IR_CALLS: asm_call(as, ir); break; case IR_CALLXS: asm_callx(as, ir); break; case IR_CARG: break; default: setintV(&as->J->errinfo, ir->o); lj_trace_err_info(as->J, LJ_TRERR_NYIIR); break; } } /* -- Head of trace ------------------------------------------------------- */ /* Head of a root trace. */ static void asm_head_root(ASMState *as) { int32_t spadj; asm_head_root_base(as); emit_setvmstate(as, (int32_t)as->T->traceno); spadj = asm_stack_adjust(as); as->T->spadjust = (uint16_t)spadj; emit_spsub(as, spadj); /* Root traces assume a checked stack for the starting proto. */ as->T->topslot = gcref(as->T->startpt)->pt.framesize; } /* Head of a side trace. ** ** The current simplistic algorithm requires that all slots inherited ** from the parent are live in a register between pass 2 and pass 3. This ** avoids the complexity of stack slot shuffling. But of course this may ** overflow the register set in some cases and cause the dreaded error: ** "NYI: register coalescing too complex". A refined algorithm is needed. */ static void asm_head_side(ASMState *as) { IRRef1 sloadins[RID_MAX]; RegSet allow = RSET_ALL; /* Inverse of all coalesced registers. */ RegSet live = RSET_EMPTY; /* Live parent registers. */ IRIns *irp = &as->parent->ir[REF_BASE]; /* Parent base. */ int32_t spadj, spdelta; int pass2 = 0; int pass3 = 0; IRRef i; if (as->snapno && as->topslot > as->parent->topslot) { /* Force snap #0 alloc to prevent register overwrite in stack check. */ as->snapno = 0; asm_snap_alloc(as); } allow = asm_head_side_base(as, irp, allow); /* Scan all parent SLOADs and collect register dependencies. */ for (i = as->stopins; i > REF_BASE; i--) { IRIns *ir = IR(i); RegSP rs; lua_assert((ir->o == IR_SLOAD && (ir->op2 & IRSLOAD_PARENT)) || (LJ_SOFTFP && ir->o == IR_HIOP) || ir->o == IR_PVAL); rs = as->parentmap[i - REF_FIRST]; if (ra_hasreg(ir->r)) { rset_clear(allow, ir->r); if (ra_hasspill(ir->s)) { ra_save(as, ir, ir->r); checkmclim(as); } } else if (ra_hasspill(ir->s)) { irt_setmark(ir->t); pass2 = 1; } if (ir->r == rs) { /* Coalesce matching registers right now. */ ra_free(as, ir->r); } else if (ra_hasspill(regsp_spill(rs))) { if (ra_hasreg(ir->r)) pass3 = 1; } else if (ra_used(ir)) { sloadins[rs] = (IRRef1)i; rset_set(live, rs); /* Block live parent register. */ } } /* Calculate stack frame adjustment. */ spadj = asm_stack_adjust(as); spdelta = spadj - (int32_t)as->parent->spadjust; if (spdelta < 0) { /* Don't shrink the stack frame. */ spadj = (int32_t)as->parent->spadjust; spdelta = 0; } as->T->spadjust = (uint16_t)spadj; /* Reload spilled target registers. */ if (pass2) { for (i = as->stopins; i > REF_BASE; i--) { IRIns *ir = IR(i); if (irt_ismarked(ir->t)) { RegSet mask; Reg r; RegSP rs; irt_clearmark(ir->t); rs = as->parentmap[i - REF_FIRST]; if (!ra_hasspill(regsp_spill(rs))) ra_sethint(ir->r, rs); /* Hint may be gone, set it again. */ else if (sps_scale(regsp_spill(rs))+spdelta == sps_scale(ir->s)) continue; /* Same spill slot, do nothing. */ mask = ((!LJ_SOFTFP && irt_isfp(ir->t)) ? RSET_FPR : RSET_GPR) & allow; if (mask == RSET_EMPTY) lj_trace_err(as->J, LJ_TRERR_NYICOAL); r = ra_allocref(as, i, mask); ra_save(as, ir, r); rset_clear(allow, r); if (r == rs) { /* Coalesce matching registers right now. */ ra_free(as, r); rset_clear(live, r); } else if (ra_hasspill(regsp_spill(rs))) { pass3 = 1; } checkmclim(as); } } } /* Store trace number and adjust stack frame relative to the parent. */ emit_setvmstate(as, (int32_t)as->T->traceno); emit_spsub(as, spdelta); #if !LJ_TARGET_X86ORX64 /* Restore BASE register from parent spill slot. */ if (ra_hasspill(irp->s)) emit_spload(as, IR(REF_BASE), IR(REF_BASE)->r, sps_scale(irp->s)); #endif /* Restore target registers from parent spill slots. */ if (pass3) { RegSet work = ~as->freeset & RSET_ALL; while (work) { Reg r = rset_pickbot(work); IRRef ref = regcost_ref(as->cost[r]); RegSP rs = as->parentmap[ref - REF_FIRST]; rset_clear(work, r); if (ra_hasspill(regsp_spill(rs))) { int32_t ofs = sps_scale(regsp_spill(rs)); ra_free(as, r); emit_spload(as, IR(ref), r, ofs); checkmclim(as); } } } /* Shuffle registers to match up target regs with parent regs. */ for (;;) { RegSet work; /* Repeatedly coalesce free live registers by moving to their target. */ while ((work = as->freeset & live) != RSET_EMPTY) { Reg rp = rset_pickbot(work); IRIns *ir = IR(sloadins[rp]); rset_clear(live, rp); rset_clear(allow, rp); ra_free(as, ir->r); emit_movrr(as, ir, ir->r, rp); checkmclim(as); } /* We're done if no live registers remain. */ if (live == RSET_EMPTY) break; /* Break cycles by renaming one target to a temp. register. */ if (live & RSET_GPR) { RegSet tmpset = as->freeset & ~live & allow & RSET_GPR; if (tmpset == RSET_EMPTY) lj_trace_err(as->J, LJ_TRERR_NYICOAL); ra_rename(as, rset_pickbot(live & RSET_GPR), rset_pickbot(tmpset)); } if (!LJ_SOFTFP && (live & RSET_FPR)) { RegSet tmpset = as->freeset & ~live & allow & RSET_FPR; if (tmpset == RSET_EMPTY) lj_trace_err(as->J, LJ_TRERR_NYICOAL); ra_rename(as, rset_pickbot(live & RSET_FPR), rset_pickbot(tmpset)); } checkmclim(as); /* Continue with coalescing to fix up the broken cycle(s). */ } /* Inherit top stack slot already checked by parent trace. */ as->T->topslot = as->parent->topslot; if (as->topslot > as->T->topslot) { /* Need to check for higher slot? */ #ifdef EXITSTATE_CHECKEXIT /* Highest exit + 1 indicates stack check. */ ExitNo exitno = as->T->nsnap; #else /* Reuse the parent exit in the context of the parent trace. */ ExitNo exitno = as->J->exitno; #endif as->T->topslot = (uint8_t)as->topslot; /* Remember for child traces. */ asm_stack_check(as, as->topslot, irp, allow & RSET_GPR, exitno); } } /* -- Tail of trace ------------------------------------------------------- */ /* Get base slot for a snapshot. */ static BCReg asm_baseslot(ASMState *as, SnapShot *snap, int *gotframe) { SnapEntry *map = &as->T->snapmap[snap->mapofs]; MSize n; for (n = snap->nent; n > 0; n--) { SnapEntry sn = map[n-1]; if ((sn & SNAP_FRAME)) { *gotframe = 1; return snap_slot(sn) - LJ_FR2; } } return 0; } /* Link to another trace. */ static void asm_tail_link(ASMState *as) { SnapNo snapno = as->T->nsnap-1; /* Last snapshot. */ SnapShot *snap = &as->T->snap[snapno]; int gotframe = 0; BCReg baseslot = asm_baseslot(as, snap, &gotframe); as->topslot = snap->topslot; checkmclim(as); ra_allocref(as, REF_BASE, RID2RSET(RID_BASE)); if (as->T->link == 0) { /* Setup fixed registers for exit to interpreter. */ const BCIns *pc = snap_pc(&as->T->snapmap[snap->mapofs + snap->nent]); int32_t mres; if (bc_op(*pc) == BC_JLOOP) { /* NYI: find a better way to do this. */ BCIns *retpc = &traceref(as->J, bc_d(*pc))->startins; if (bc_isret(bc_op(*retpc))) pc = retpc; } #if LJ_GC64 emit_loadu64(as, RID_LPC, u64ptr(pc)); #else ra_allockreg(as, i32ptr(J2GG(as->J)->dispatch), RID_DISPATCH); ra_allockreg(as, i32ptr(pc), RID_LPC); #endif mres = (int32_t)(snap->nslots - baseslot - LJ_FR2); switch (bc_op(*pc)) { case BC_CALLM: case BC_CALLMT: mres -= (int32_t)(1 + LJ_FR2 + bc_a(*pc) + bc_c(*pc)); break; case BC_RETM: mres -= (int32_t)(bc_a(*pc) + bc_d(*pc)); break; case BC_TSETM: mres -= (int32_t)bc_a(*pc); break; default: if (bc_op(*pc) < BC_FUNCF) mres = 0; break; } ra_allockreg(as, mres, RID_RET); /* Return MULTRES or 0. */ } else if (baseslot) { /* Save modified BASE for linking to trace with higher start frame. */ emit_setgl(as, RID_BASE, jit_base); } emit_addptr(as, RID_BASE, 8*(int32_t)baseslot); if (as->J->ktrace) { /* Patch ktrace slot with the final GCtrace pointer. */ setgcref(IR(as->J->ktrace)[LJ_GC64].gcr, obj2gco(as->J->curfinal)); IR(as->J->ktrace)->o = IR_KGC; } /* Sync the interpreter state with the on-trace state. */ asm_stack_restore(as, snap); /* Root traces that add frames need to check the stack at the end. */ if (!as->parent && gotframe) asm_stack_check(as, as->topslot, NULL, as->freeset & RSET_GPR, snapno); } /* -- Trace setup --------------------------------------------------------- */ /* Clear reg/sp for all instructions and add register hints. */ static void asm_setup_regsp(ASMState *as) { GCtrace *T = as->T; int sink = T->sinktags; IRRef nins = T->nins; IRIns *ir, *lastir; int inloop; #if LJ_TARGET_ARM uint32_t rload = 0xa6402a64; #endif ra_setup(as); /* Clear reg/sp for constants. */ for (ir = IR(T->nk), lastir = IR(REF_BASE); ir < lastir; ir++) { ir->prev = REGSP_INIT; if (irt_is64(ir->t) && ir->o != IR_KNULL) { #if LJ_GC64 ir->i = 0; /* Will become non-zero only for RIP-relative addresses. */ #else /* Make life easier for backends by putting address of constant in i. */ ir->i = (int32_t)(intptr_t)(ir+1); #endif ir++; } } /* REF_BASE is used for implicit references to the BASE register. */ lastir->prev = REGSP_HINT(RID_BASE); as->snaprename = nins; as->snapref = nins; as->snapno = T->nsnap; as->stopins = REF_BASE; as->orignins = nins; as->curins = nins; /* Setup register hints for parent link instructions. */ ir = IR(REF_FIRST); if (as->parent) { uint16_t *p; lastir = lj_snap_regspmap(as->parent, as->J->exitno, ir); if (lastir - ir > LJ_MAX_JSLOTS) lj_trace_err(as->J, LJ_TRERR_NYICOAL); as->stopins = (IRRef)((lastir-1) - as->ir); for (p = as->parentmap; ir < lastir; ir++) { RegSP rs = ir->prev; *p++ = (uint16_t)rs; /* Copy original parent RegSP to parentmap. */ if (!ra_hasspill(regsp_spill(rs))) ir->prev = (uint16_t)REGSP_HINT(regsp_reg(rs)); else ir->prev = REGSP_INIT; } } inloop = 0; as->evenspill = SPS_FIRST; for (lastir = IR(nins); ir < lastir; ir++) { if (sink) { if (ir->r == RID_SINK) continue; if (ir->r == RID_SUNK) { /* Revert after ASM restart. */ ir->r = RID_SINK; continue; } } switch (ir->o) { case IR_LOOP: inloop = 1; break; #if LJ_TARGET_ARM case IR_SLOAD: if (!((ir->op2 & IRSLOAD_TYPECHECK) || (ir+1)->o == IR_HIOP)) break; /* fallthrough */ case IR_ALOAD: case IR_HLOAD: case IR_ULOAD: case IR_VLOAD: if (!LJ_SOFTFP && irt_isnum(ir->t)) break; ir->prev = (uint16_t)REGSP_HINT((rload & 15)); rload = lj_ror(rload, 4); continue; #endif case IR_CALLXS: { CCallInfo ci; ci.flags = asm_callx_flags(as, ir); ir->prev = asm_setup_call_slots(as, ir, &ci); if (inloop) as->modset |= RSET_SCRATCH; continue; } case IR_CALLN: case IR_CALLA: case IR_CALLL: case IR_CALLS: { const CCallInfo *ci = &lj_ir_callinfo[ir->op2]; ir->prev = asm_setup_call_slots(as, ir, ci); if (inloop) as->modset |= (ci->flags & CCI_NOFPRCLOBBER) ? (RSET_SCRATCH & ~RSET_FPR) : RSET_SCRATCH; continue; } #if LJ_SOFTFP || (LJ_32 && LJ_HASFFI) case IR_HIOP: switch ((ir-1)->o) { #if LJ_SOFTFP && LJ_TARGET_ARM case IR_SLOAD: case IR_ALOAD: case IR_HLOAD: case IR_ULOAD: case IR_VLOAD: if (ra_hashint((ir-1)->r)) { ir->prev = (ir-1)->prev + 1; continue; } break; #endif #if !LJ_SOFTFP && LJ_NEED_FP64 case IR_CONV: if (irt_isfp((ir-1)->t)) { ir->prev = REGSP_HINT(RID_FPRET); continue; } /* fallthrough */ #endif case IR_CALLN: case IR_CALLXS: #if LJ_SOFTFP case IR_MIN: case IR_MAX: #endif (ir-1)->prev = REGSP_HINT(RID_RETLO); ir->prev = REGSP_HINT(RID_RETHI); continue; default: break; } break; #endif #if LJ_SOFTFP case IR_MIN: case IR_MAX: if ((ir+1)->o != IR_HIOP) break; /* fallthrough */ #endif /* C calls evict all scratch regs and return results in RID_RET. */ case IR_SNEW: case IR_XSNEW: case IR_NEWREF: case IR_BUFPUT: if (REGARG_NUMGPR < 3 && as->evenspill < 3) as->evenspill = 3; /* lj_str_new and lj_tab_newkey need 3 args. */ #if LJ_TARGET_X86 && LJ_HASFFI if (0) { case IR_CNEW: if (ir->op2 != REF_NIL && as->evenspill < 4) as->evenspill = 4; /* lj_cdata_newv needs 4 args. */ } #else case IR_CNEW: #endif case IR_TNEW: case IR_TDUP: case IR_CNEWI: case IR_TOSTR: case IR_BUFSTR: ir->prev = REGSP_HINT(RID_RET); if (inloop) as->modset = RSET_SCRATCH; continue; case IR_STRTO: case IR_OBAR: if (inloop) as->modset = RSET_SCRATCH; break; #if !LJ_SOFTFP case IR_ATAN2: #if LJ_TARGET_X86 if (as->evenspill < 4) /* Leave room to call atan2(). */ as->evenspill = 4; #endif #if !LJ_TARGET_X86ORX64 case IR_LDEXP: #endif #endif case IR_POW: if (!LJ_SOFTFP && irt_isnum(ir->t)) { if (inloop) as->modset |= RSET_SCRATCH; #if LJ_TARGET_X86 break; #else ir->prev = REGSP_HINT(RID_FPRET); continue; #endif } /* fallthrough for integer POW */ case IR_DIV: case IR_MOD: if (!irt_isnum(ir->t)) { ir->prev = REGSP_HINT(RID_RET); if (inloop) as->modset |= (RSET_SCRATCH & RSET_GPR); continue; } break; case IR_FPMATH: #if LJ_TARGET_X86ORX64 if (ir->op2 <= IRFPM_TRUNC) { if (!(as->flags & JIT_F_SSE4_1)) { ir->prev = REGSP_HINT(RID_XMM0); if (inloop) as->modset |= RSET_RANGE(RID_XMM0, RID_XMM3+1)|RID2RSET(RID_EAX); continue; } break; } else if (ir->op2 == IRFPM_EXP2 && !LJ_64) { if (as->evenspill < 4) /* Leave room to call pow(). */ as->evenspill = 4; } #endif if (inloop) as->modset |= RSET_SCRATCH; #if LJ_TARGET_X86 break; #else ir->prev = REGSP_HINT(RID_FPRET); continue; #endif #if LJ_TARGET_X86ORX64 /* Non-constant shift counts need to be in RID_ECX on x86/x64. */ case IR_BSHL: case IR_BSHR: case IR_BSAR: if ((as->flags & JIT_F_BMI2)) /* Except if BMI2 is available. */ break; case IR_BROL: case IR_BROR: if (!irref_isk(ir->op2) && !ra_hashint(IR(ir->op2)->r)) { IR(ir->op2)->r = REGSP_HINT(RID_ECX); if (inloop) rset_set(as->modset, RID_ECX); } break; #endif /* Do not propagate hints across type conversions or loads. */ case IR_TOBIT: case IR_XLOAD: #if !LJ_TARGET_ARM case IR_ALOAD: case IR_HLOAD: case IR_ULOAD: case IR_VLOAD: #endif break; case IR_CONV: if (irt_isfp(ir->t) || (ir->op2 & IRCONV_SRCMASK) == IRT_NUM || (ir->op2 & IRCONV_SRCMASK) == IRT_FLOAT) break; /* fallthrough */ default: /* Propagate hints across likely 'op reg, imm' or 'op reg'. */ if (irref_isk(ir->op2) && !irref_isk(ir->op1) && ra_hashint(regsp_reg(IR(ir->op1)->prev))) { ir->prev = IR(ir->op1)->prev; continue; } break; } ir->prev = REGSP_INIT; } if ((as->evenspill & 1)) as->oddspill = as->evenspill++; else as->oddspill = 0; } /* -- Assembler core ------------------------------------------------------ */ /* Assemble a trace. */ void lj_asm_trace(jit_State *J, GCtrace *T) { ASMState as_; ASMState *as = &as_; MCode *origtop; /* Remove nops/renames left over from ASM restart due to LJ_TRERR_MCODELM. */ { IRRef nins = T->nins; IRIns *ir = &T->ir[nins-1]; if (ir->o == IR_NOP || ir->o == IR_RENAME) { do { ir--; nins--; } while (ir->o == IR_NOP || ir->o == IR_RENAME); T->nins = nins; } } /* Ensure an initialized instruction beyond the last one for HIOP checks. */ /* This also allows one RENAME to be added without reallocating curfinal. */ as->orignins = lj_ir_nextins(J); J->cur.ir[as->orignins].o = IR_NOP; /* Setup initial state. Copy some fields to reduce indirections. */ as->J = J; as->T = T; J->curfinal = lj_trace_alloc(J->L, T); /* This copies the IR, too. */ as->flags = J->flags; as->loopref = J->loopref; as->realign = NULL; as->loopinv = 0; as->parent = J->parent ? traceref(J, J->parent) : NULL; /* Reserve MCode memory. */ as->mctop = origtop = lj_mcode_reserve(J, &as->mcbot); as->mcp = as->mctop; as->mclim = as->mcbot + MCLIM_REDZONE; asm_setup_target(as); /* ** This is a loop, because the MCode may have to be (re-)assembled ** multiple times: ** ** 1. as->realign is set (and the assembly aborted), if the arch-specific ** backend wants the MCode to be aligned differently. ** ** This is currently only the case on x86/x64, where small loops get ** an aligned loop body plus a short branch. Not much effort is wasted, ** because the abort happens very quickly and only once. ** ** 2. The IR is immovable, since the MCode embeds pointers to various ** constants inside the IR. But RENAMEs may need to be added to the IR ** during assembly, which might grow and reallocate the IR. We check ** at the end if the IR (in J->cur.ir) has actually grown, resize the ** copy (in J->curfinal.ir) and try again. ** ** 95% of all traces have zero RENAMEs, 3% have one RENAME, 1.5% have ** 2 RENAMEs and only 0.5% have more than that. That's why we opt to ** always have one spare slot in the IR (see above), which means we ** have to redo the assembly for only ~2% of all traces. ** ** Very, very rarely, this needs to be done repeatedly, since the ** location of constants inside the IR (actually, reachability from ** a global pointer) may affect register allocation and thus the ** number of RENAMEs. */ for (;;) { as->mcp = as->mctop; #ifdef LUA_USE_ASSERT as->mcp_prev = as->mcp; #endif as->ir = J->curfinal->ir; /* Use the copied IR. */ as->curins = J->cur.nins = as->orignins; RA_DBG_START(); RA_DBGX((as, "===== STOP =====")); /* General trace setup. Emit tail of trace. */ asm_tail_prep(as); as->mcloop = NULL; as->flagmcp = NULL; as->topslot = 0; as->gcsteps = 0; as->sectref = as->loopref; as->fuseref = (as->flags & JIT_F_OPT_FUSE) ? as->loopref : FUSE_DISABLED; asm_setup_regsp(as); if (!as->loopref) asm_tail_link(as); /* Assemble a trace in linear backwards order. */ for (as->curins--; as->curins > as->stopins; as->curins--) { IRIns *ir = IR(as->curins); lua_assert(!(LJ_32 && irt_isint64(ir->t))); /* Handled by SPLIT. */ if (!ra_used(ir) && !ir_sideeff(ir) && (as->flags & JIT_F_OPT_DCE)) continue; /* Dead-code elimination can be soooo easy. */ if (irt_isguard(ir->t)) asm_snap_prep(as); RA_DBG_REF(); checkmclim(as); asm_ir(as, ir); } if (as->realign && J->curfinal->nins >= T->nins) continue; /* Retry in case only the MCode needs to be realigned. */ /* Emit head of trace. */ RA_DBG_REF(); checkmclim(as); if (as->gcsteps > 0) { as->curins = as->T->snap[0].ref; asm_snap_prep(as); /* The GC check is a guard. */ asm_gc_check(as); as->curins = as->stopins; } ra_evictk(as); if (as->parent) asm_head_side(as); else asm_head_root(as); asm_phi_fixup(as); if (J->curfinal->nins >= T->nins) { /* IR didn't grow? */ lua_assert(J->curfinal->nk == T->nk); memcpy(J->curfinal->ir + as->orignins, T->ir + as->orignins, (T->nins - as->orignins) * sizeof(IRIns)); /* Copy RENAMEs. */ T->nins = J->curfinal->nins; break; /* Done. */ } /* Otherwise try again with a bigger IR. */ lj_trace_free(J2G(J), J->curfinal); J->curfinal = NULL; /* In case lj_trace_alloc() OOMs. */ J->curfinal = lj_trace_alloc(J->L, T); as->realign = NULL; } RA_DBGX((as, "===== START ====")); RA_DBG_FLUSH(); if (as->freeset != RSET_ALL) lj_trace_err(as->J, LJ_TRERR_BADRA); /* Ouch! Should never happen. */ /* Set trace entry point before fixing up tail to allow link to self. */ T->mcode = as->mcp; T->mcloop = as->mcloop ? (MSize)((char *)as->mcloop - (char *)as->mcp) : 0; if (!as->loopref) asm_tail_fixup(as, T->link); /* Note: this may change as->mctop! */ T->szmcode = (MSize)((char *)as->mctop - (char *)as->mcp); #if LJ_TARGET_MCODE_FIXUP asm_mcode_fixup(T->mcode, T->szmcode); #endif lj_mcode_sync(T->mcode, origtop); } #undef IR #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_func.h0000644000175100017510000000141013101703334017672 0ustar ondrejondrej/* ** Function handling (prototypes, functions and upvalues). ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_FUNC_H #define _LJ_FUNC_H #include "lj_obj.h" /* Prototypes. */ LJ_FUNC void LJ_FASTCALL lj_func_freeproto(global_State *g, GCproto *pt); /* Upvalues. */ LJ_FUNCA void LJ_FASTCALL lj_func_closeuv(lua_State *L, TValue *level); LJ_FUNC void LJ_FASTCALL lj_func_freeuv(global_State *g, GCupval *uv); /* Functions (closures). */ LJ_FUNC GCfunc *lj_func_newC(lua_State *L, MSize nelems, GCtab *env); LJ_FUNC GCfunc *lj_func_newL_empty(lua_State *L, GCproto *pt, GCtab *env); LJ_FUNCA GCfunc *lj_func_newL_gc(lua_State *L, GCproto *pt, GCfuncL *parent); LJ_FUNC void LJ_FASTCALL lj_func_free(global_State *g, GCfunc *c); #endif luajit-2.1.0~beta3+dfsg.orig/src/lj_tab.h0000644000175100017510000000501213101703334017507 0ustar ondrejondrej/* ** Table handling. ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h */ #ifndef _LJ_TAB_H #define _LJ_TAB_H #include "lj_obj.h" /* Hash constants. Tuned using a brute force search. */ #define HASH_BIAS (-0x04c11db7) #define HASH_ROT1 14 #define HASH_ROT2 5 #define HASH_ROT3 13 /* Scramble the bits of numbers and pointers. */ static LJ_AINLINE uint32_t hashrot(uint32_t lo, uint32_t hi) { #if LJ_TARGET_X86ORX64 /* Prefer variant that compiles well for a 2-operand CPU. */ lo ^= hi; hi = lj_rol(hi, HASH_ROT1); lo -= hi; hi = lj_rol(hi, HASH_ROT2); hi ^= lo; hi -= lj_rol(lo, HASH_ROT3); #else lo ^= hi; lo = lo - lj_rol(hi, HASH_ROT1); hi = lo ^ lj_rol(hi, HASH_ROT1 + HASH_ROT2); hi = hi - lj_rol(lo, HASH_ROT3); #endif return hi; } #define hsize2hbits(s) ((s) ? ((s)==1 ? 1 : 1+lj_fls((uint32_t)((s)-1))) : 0) LJ_FUNCA GCtab *lj_tab_new(lua_State *L, uint32_t asize, uint32_t hbits); LJ_FUNC GCtab *lj_tab_new_ah(lua_State *L, int32_t a, int32_t h); #if LJ_HASJIT LJ_FUNC GCtab * LJ_FASTCALL lj_tab_new1(lua_State *L, uint32_t ahsize); #endif LJ_FUNCA GCtab * LJ_FASTCALL lj_tab_dup(lua_State *L, const GCtab *kt); LJ_FUNC void LJ_FASTCALL lj_tab_clear(GCtab *t); LJ_FUNC void LJ_FASTCALL lj_tab_free(global_State *g, GCtab *t); #if LJ_HASFFI LJ_FUNC void lj_tab_rehash(lua_State *L, GCtab *t); #endif LJ_FUNC void lj_tab_resize(lua_State *L, GCtab *t, uint32_t asize, uint32_t hbits); LJ_FUNCA void lj_tab_reasize(lua_State *L, GCtab *t, uint32_t nasize); /* Caveat: all getters except lj_tab_get() can return NULL! */ LJ_FUNCA cTValue * LJ_FASTCALL lj_tab_getinth(GCtab *t, int32_t key); LJ_FUNC cTValue *lj_tab_getstr(GCtab *t, GCstr *key); LJ_FUNCA cTValue *lj_tab_get(lua_State *L, GCtab *t, cTValue *key); /* Caveat: all setters require a write barrier for the stored value. */ LJ_FUNCA TValue *lj_tab_newkey(lua_State *L, GCtab *t, cTValue *key); LJ_FUNCA TValue *lj_tab_setinth(lua_State *L, GCtab *t, int32_t key); LJ_FUNC TValue *lj_tab_setstr(lua_State *L, GCtab *t, GCstr *key); LJ_FUNC TValue *lj_tab_set(lua_State *L, GCtab *t, cTValue *key); #define inarray(t, key) ((MSize)(key) < (MSize)(t)->asize) #define arrayslot(t, i) (&tvref((t)->array)[(i)]) #define lj_tab_getint(t, key) \ (inarray((t), (key)) ? arrayslot((t), (key)) : lj_tab_getinth((t), (key))) #define lj_tab_setint(L, t, key) \ (inarray((t), (key)) ? arrayslot((t), (key)) : lj_tab_setinth(L, (t), (key))) LJ_FUNCA int lj_tab_next(lua_State *L, GCtab *t, TValue *key); LJ_FUNCA MSize LJ_FASTCALL lj_tab_len(GCtab *t); #endif luajit-2.1.0~beta3+dfsg.orig/etc/0000755000175100017510000000000013101703334016071 5ustar ondrejondrejluajit-2.1.0~beta3+dfsg.orig/etc/luajit.10000644000175100017510000000444313101703334017450 0ustar ondrejondrej.TH luajit 1 "" "" "LuaJIT documentation" .SH NAME luajit \- Just-In-Time Compiler for the Lua Language \fB .SH SYNOPSIS .B luajit [\fIoptions\fR]... [\fIscript\fR [\fIargs\fR]...] .SH "WEB SITE" .IR http://luajit.org .SH DESCRIPTION .PP This is the command-line program to run Lua programs with \fBLuaJIT\fR. .PP \fBLuaJIT\fR is a just-in-time (JIT) compiler for the Lua language. The virtual machine (VM) is based on a fast interpreter combined with a trace compiler. It can significantly improve the performance of Lua programs. .PP \fBLuaJIT\fR is API\- and ABI-compatible with the VM of the standard Lua\ 5.1 interpreter. When embedding the VM into an application, the built library can be used as a drop-in replacement. .SH OPTIONS .TP .BI "\-e " chunk Run the given chunk of Lua code. .TP .BI "\-l " library Load the named library, just like \fBrequire("\fR\fIlibrary\fR\fB")\fR. .TP .BI "\-b " ... Save or list bytecode. Run without arguments to get help on options. .TP .BI "\-j " command Perform LuaJIT control command (optional space after \fB\-j\fR). .TP .BI "\-O" [opt] Control LuaJIT optimizations. .TP .B "\-i" Run in interactive mode. .TP .B "\-v" Show \fBLuaJIT\fR version. .TP .B "\-E" Ignore environment variables. .TP .B "\-\-" Stop processing options. .TP .B "\-" Read script from stdin instead. .PP After all options are processed, the given \fIscript\fR is run. The arguments are passed in the global \fIarg\fR table. .PP Interactive mode is only entered, if no \fIscript\fR and no \fB\-e\fR option is given. Interactive mode can be left with EOF (\fICtrl\-Z\fB). .SH EXAMPLES .TP luajit hello.lua world Prints "Hello world", assuming \fIhello.lua\fR contains: .br print("Hello", arg[1]) .TP luajit \-e "local x=0; for i=1,1e9 do x=x+i end; print(x)" Calculates the sum of the numbers from 1 to 1000000000. .br And finishes in a reasonable amount of time, too. .TP luajit \-jv \-e "for i=1,10 do for j=1,10 do for k=1,100 do end end end" Runs some nested loops and shows the resulting traces. .SH COPYRIGHT .PP \fBLuaJIT\fR is Copyright \(co 2005-2017 Mike Pall. .br \fBLuaJIT\fR is open source software, released under the MIT license. .SH SEE ALSO .PP More details in the provided HTML docs or at: .IR http://luajit.org .br More about the Lua language can be found at: .IR http://lua.org/docs.html .PP lua(1) luajit-2.1.0~beta3+dfsg.orig/etc/luajit.pc0000644000175100017510000000112613101703334017705 0ustar ondrejondrej# Package information for LuaJIT to be used by pkg-config. majver=2 minver=1 relver=0 version=${majver}.${minver}.${relver}-beta3 abiver=5.1 prefix=/usr/local multilib=lib exec_prefix=${prefix} libdir=${exec_prefix}/${multilib} libname=luajit-${abiver} includedir=${prefix}/include/luajit-${majver}.${minver} INSTALL_LMOD=${prefix}/share/lua/${abiver} INSTALL_CMOD=${prefix}/${multilib}/lua/${abiver} Name: LuaJIT Description: Just-in-time compiler for Lua URL: http://luajit.org Version: ${version} Requires: Libs: -L${libdir} -l${libname} Libs.private: -Wl,-E -lm -ldl Cflags: -I${includedir}