Compress-Raw-Zlib-2.063/0000755000175000017500000000000012235214474013434 5ustar paulpaulCompress-Raw-Zlib-2.063/lib/0000755000175000017500000000000012235214474014202 5ustar paulpaulCompress-Raw-Zlib-2.063/lib/Compress/0000755000175000017500000000000012235214474015775 5ustar paulpaulCompress-Raw-Zlib-2.063/lib/Compress/Raw/0000755000175000017500000000000012235214474016526 5ustar paulpaulCompress-Raw-Zlib-2.063/lib/Compress/Raw/Zlib.pm0000644000175000017500000013433012230721562017764 0ustar paulpaul package Compress::Raw::Zlib; require 5.006 ; require Exporter; use Carp ; use strict ; use warnings ; use bytes ; our ($VERSION, $XS_VERSION, @ISA, @EXPORT, %EXPORT_TAGS, @EXPORT_OK, $AUTOLOAD, %DEFLATE_CONSTANTS, @DEFLATE_CONSTANTS ); $VERSION = '2.063'; $XS_VERSION = $VERSION; $VERSION = eval $VERSION; @ISA = qw(Exporter); %EXPORT_TAGS = ( flush => [qw{ Z_NO_FLUSH Z_PARTIAL_FLUSH Z_SYNC_FLUSH Z_FULL_FLUSH Z_FINISH Z_BLOCK }], level => [qw{ Z_NO_COMPRESSION Z_BEST_SPEED Z_BEST_COMPRESSION Z_DEFAULT_COMPRESSION }], strategy => [qw{ Z_FILTERED Z_HUFFMAN_ONLY Z_RLE Z_FIXED Z_DEFAULT_STRATEGY }], status => [qw{ Z_OK Z_STREAM_END Z_NEED_DICT Z_ERRNO Z_STREAM_ERROR Z_DATA_ERROR Z_MEM_ERROR Z_BUF_ERROR Z_VERSION_ERROR }], ); %DEFLATE_CONSTANTS = %EXPORT_TAGS; # Items to export into callers namespace by default. Note: do not export # names by default without a very good reason. Use EXPORT_OK instead. # Do not simply export all your public functions/methods/constants. @DEFLATE_CONSTANTS = @EXPORT = qw( ZLIB_VERSION ZLIB_VERNUM OS_CODE MAX_MEM_LEVEL MAX_WBITS Z_ASCII Z_BEST_COMPRESSION Z_BEST_SPEED Z_BINARY Z_BLOCK Z_BUF_ERROR Z_DATA_ERROR Z_DEFAULT_COMPRESSION Z_DEFAULT_STRATEGY Z_DEFLATED Z_ERRNO Z_FILTERED Z_FIXED Z_FINISH Z_FULL_FLUSH Z_HUFFMAN_ONLY Z_MEM_ERROR Z_NEED_DICT Z_NO_COMPRESSION Z_NO_FLUSH Z_NULL Z_OK Z_PARTIAL_FLUSH Z_RLE Z_STREAM_END Z_STREAM_ERROR Z_SYNC_FLUSH Z_TREES Z_UNKNOWN Z_VERSION_ERROR WANT_GZIP WANT_GZIP_OR_ZLIB ); push @EXPORT, qw(crc32 adler32 DEF_WBITS); use constant WANT_GZIP => 16; use constant WANT_GZIP_OR_ZLIB => 32; sub AUTOLOAD { my($constname); ($constname = $AUTOLOAD) =~ s/.*:://; my ($error, $val) = constant($constname); Carp::croak $error if $error; no strict 'refs'; *{$AUTOLOAD} = sub { $val }; goto &{$AUTOLOAD}; } use constant FLAG_APPEND => 1 ; use constant FLAG_CRC => 2 ; use constant FLAG_ADLER => 4 ; use constant FLAG_CONSUME_INPUT => 8 ; use constant FLAG_LIMIT_OUTPUT => 16 ; eval { require XSLoader; XSLoader::load('Compress::Raw::Zlib', $XS_VERSION); 1; } or do { require DynaLoader; local @ISA = qw(DynaLoader); bootstrap Compress::Raw::Zlib $XS_VERSION ; }; use constant Parse_any => 0x01; use constant Parse_unsigned => 0x02; use constant Parse_signed => 0x04; use constant Parse_boolean => 0x08; #use constant Parse_string => 0x10; #use constant Parse_custom => 0x12; #use constant Parse_store_ref => 0x100 ; use constant OFF_PARSED => 0 ; use constant OFF_TYPE => 1 ; use constant OFF_DEFAULT => 2 ; use constant OFF_FIXED => 3 ; use constant OFF_FIRST_ONLY => 4 ; use constant OFF_STICKY => 5 ; sub ParseParameters { my $level = shift || 0 ; my $sub = (caller($level + 1))[3] ; #local $Carp::CarpLevel = 1 ; my $p = new Compress::Raw::Zlib::Parameters() ; $p->parse(@_) or croak "$sub: $p->{Error}" ; return $p; } sub Compress::Raw::Zlib::Parameters::new { my $class = shift ; my $obj = { Error => '', Got => {}, } ; #return bless $obj, ref($class) || $class || __PACKAGE__ ; return bless $obj, 'Compress::Raw::Zlib::Parameters' ; } sub Compress::Raw::Zlib::Parameters::setError { my $self = shift ; my $error = shift ; my $retval = @_ ? shift : undef ; $self->{Error} = $error ; return $retval; } #sub getError #{ # my $self = shift ; # return $self->{Error} ; #} sub Compress::Raw::Zlib::Parameters::parse { my $self = shift ; my $default = shift ; my $got = $self->{Got} ; my $firstTime = keys %{ $got } == 0 ; my (@Bad) ; my @entered = () ; # Allow the options to be passed as a hash reference or # as the complete hash. if (@_ == 0) { @entered = () ; } elsif (@_ == 1) { my $href = $_[0] ; return $self->setError("Expected even number of parameters, got 1") if ! defined $href or ! ref $href or ref $href ne "HASH" ; foreach my $key (keys %$href) { push @entered, $key ; push @entered, \$href->{$key} ; } } else { my $count = @_; return $self->setError("Expected even number of parameters, got $count") if $count % 2 != 0 ; for my $i (0.. $count / 2 - 1) { push @entered, $_[2* $i] ; push @entered, \$_[2* $i+1] ; } } while (my ($key, $v) = each %$default) { croak "need 4 params [@$v]" if @$v != 4 ; my ($first_only, $sticky, $type, $value) = @$v ; my $x ; $self->_checkType($key, \$value, $type, 0, \$x) or return undef ; $key = lc $key; if ($firstTime || ! $sticky) { $got->{$key} = [0, $type, $value, $x, $first_only, $sticky] ; } $got->{$key}[OFF_PARSED] = 0 ; } for my $i (0.. @entered / 2 - 1) { my $key = $entered[2* $i] ; my $value = $entered[2* $i+1] ; #print "Key [$key] Value [$value]" ; #print defined $$value ? "[$$value]\n" : "[undef]\n"; $key =~ s/^-// ; my $canonkey = lc $key; if ($got->{$canonkey} && ($firstTime || ! $got->{$canonkey}[OFF_FIRST_ONLY] )) { my $type = $got->{$canonkey}[OFF_TYPE] ; my $s ; $self->_checkType($key, $value, $type, 1, \$s) or return undef ; #$value = $$value unless $type & Parse_store_ref ; $value = $$value ; $got->{$canonkey} = [1, $type, $value, $s] ; } else { push (@Bad, $key) } } if (@Bad) { my ($bad) = join(", ", @Bad) ; return $self->setError("unknown key value(s) @Bad") ; } return 1; } sub Compress::Raw::Zlib::Parameters::_checkType { my $self = shift ; my $key = shift ; my $value = shift ; my $type = shift ; my $validate = shift ; my $output = shift; #local $Carp::CarpLevel = $level ; #print "PARSE $type $key $value $validate $sub\n" ; # if ( $type & Parse_store_ref) # { # #$value = $$value # # if ref ${ $value } ; # # $$output = $value ; # return 1; # } $value = $$value ; if ($type & Parse_any) { $$output = $value ; return 1; } elsif ($type & Parse_unsigned) { return $self->setError("Parameter '$key' must be an unsigned int, got 'undef'") if $validate && ! defined $value ; return $self->setError("Parameter '$key' must be an unsigned int, got '$value'") if $validate && $value !~ /^\d+$/; $$output = defined $value ? $value : 0 ; return 1; } elsif ($type & Parse_signed) { return $self->setError("Parameter '$key' must be a signed int, got 'undef'") if $validate && ! defined $value ; return $self->setError("Parameter '$key' must be a signed int, got '$value'") if $validate && $value !~ /^-?\d+$/; $$output = defined $value ? $value : 0 ; return 1 ; } elsif ($type & Parse_boolean) { return $self->setError("Parameter '$key' must be an int, got '$value'") if $validate && defined $value && $value !~ /^\d*$/; $$output = defined $value ? $value != 0 : 0 ; return 1; } # elsif ($type & Parse_string) # { # $$output = defined $value ? $value : "" ; # return 1; # } $$output = $value ; return 1; } sub Compress::Raw::Zlib::Parameters::parsed { my $self = shift ; my $name = shift ; return $self->{Got}{lc $name}[OFF_PARSED] ; } sub Compress::Raw::Zlib::Parameters::value { my $self = shift ; my $name = shift ; if (@_) { $self->{Got}{lc $name}[OFF_PARSED] = 1; $self->{Got}{lc $name}[OFF_DEFAULT] = $_[0] ; $self->{Got}{lc $name}[OFF_FIXED] = $_[0] ; } return $self->{Got}{lc $name}[OFF_FIXED] ; } our $OPTIONS_deflate = { 'AppendOutput' => [1, 1, Parse_boolean, 0], 'CRC32' => [1, 1, Parse_boolean, 0], 'ADLER32' => [1, 1, Parse_boolean, 0], 'Bufsize' => [1, 1, Parse_unsigned, 4096], 'Level' => [1, 1, Parse_signed, Z_DEFAULT_COMPRESSION()], 'Method' => [1, 1, Parse_unsigned, Z_DEFLATED()], 'WindowBits' => [1, 1, Parse_signed, MAX_WBITS()], 'MemLevel' => [1, 1, Parse_unsigned, MAX_MEM_LEVEL()], 'Strategy' => [1, 1, Parse_unsigned, Z_DEFAULT_STRATEGY()], 'Dictionary' => [1, 1, Parse_any, ""], }; sub Compress::Raw::Zlib::Deflate::new { my $pkg = shift ; my ($got) = ParseParameters(0, $OPTIONS_deflate, @_); croak "Compress::Raw::Zlib::Deflate::new: Bufsize must be >= 1, you specified " . $got->value('Bufsize') unless $got->value('Bufsize') >= 1; my $flags = 0 ; $flags |= FLAG_APPEND if $got->value('AppendOutput') ; $flags |= FLAG_CRC if $got->value('CRC32') ; $flags |= FLAG_ADLER if $got->value('ADLER32') ; my $windowBits = $got->value('WindowBits'); $windowBits += MAX_WBITS() if ($windowBits & MAX_WBITS()) == 0 ; _deflateInit($flags, $got->value('Level'), $got->value('Method'), $windowBits, $got->value('MemLevel'), $got->value('Strategy'), $got->value('Bufsize'), $got->value('Dictionary')) ; } sub Compress::Raw::Zlib::deflateStream::STORABLE_freeze { my $type = ref shift; croak "Cannot freeze $type object\n"; } sub Compress::Raw::Zlib::deflateStream::STORABLE_thaw { my $type = ref shift; croak "Cannot thaw $type object\n"; } our $OPTIONS_inflate = { 'AppendOutput' => [1, 1, Parse_boolean, 0], 'LimitOutput' => [1, 1, Parse_boolean, 0], 'CRC32' => [1, 1, Parse_boolean, 0], 'ADLER32' => [1, 1, Parse_boolean, 0], 'ConsumeInput' => [1, 1, Parse_boolean, 1], 'Bufsize' => [1, 1, Parse_unsigned, 4096], 'WindowBits' => [1, 1, Parse_signed, MAX_WBITS()], 'Dictionary' => [1, 1, Parse_any, ""], } ; sub Compress::Raw::Zlib::Inflate::new { my $pkg = shift ; my ($got) = ParseParameters(0, $OPTIONS_inflate, @_); croak "Compress::Raw::Zlib::Inflate::new: Bufsize must be >= 1, you specified " . $got->value('Bufsize') unless $got->value('Bufsize') >= 1; my $flags = 0 ; $flags |= FLAG_APPEND if $got->value('AppendOutput') ; $flags |= FLAG_CRC if $got->value('CRC32') ; $flags |= FLAG_ADLER if $got->value('ADLER32') ; $flags |= FLAG_CONSUME_INPUT if $got->value('ConsumeInput') ; $flags |= FLAG_LIMIT_OUTPUT if $got->value('LimitOutput') ; my $windowBits = $got->value('WindowBits'); $windowBits += MAX_WBITS() if ($windowBits & MAX_WBITS()) == 0 ; _inflateInit($flags, $windowBits, $got->value('Bufsize'), $got->value('Dictionary')) ; } sub Compress::Raw::Zlib::inflateStream::STORABLE_freeze { my $type = ref shift; croak "Cannot freeze $type object\n"; } sub Compress::Raw::Zlib::inflateStream::STORABLE_thaw { my $type = ref shift; croak "Cannot thaw $type object\n"; } sub Compress::Raw::Zlib::InflateScan::new { my $pkg = shift ; my ($got) = ParseParameters(0, { 'CRC32' => [1, 1, Parse_boolean, 0], 'ADLER32' => [1, 1, Parse_boolean, 0], 'Bufsize' => [1, 1, Parse_unsigned, 4096], 'WindowBits' => [1, 1, Parse_signed, -MAX_WBITS()], 'Dictionary' => [1, 1, Parse_any, ""], }, @_) ; croak "Compress::Raw::Zlib::InflateScan::new: Bufsize must be >= 1, you specified " . $got->value('Bufsize') unless $got->value('Bufsize') >= 1; my $flags = 0 ; #$flags |= FLAG_APPEND if $got->value('AppendOutput') ; $flags |= FLAG_CRC if $got->value('CRC32') ; $flags |= FLAG_ADLER if $got->value('ADLER32') ; #$flags |= FLAG_CONSUME_INPUT if $got->value('ConsumeInput') ; _inflateScanInit($flags, $got->value('WindowBits'), $got->value('Bufsize'), '') ; } sub Compress::Raw::Zlib::inflateScanStream::createDeflateStream { my $pkg = shift ; my ($got) = ParseParameters(0, { 'AppendOutput' => [1, 1, Parse_boolean, 0], 'CRC32' => [1, 1, Parse_boolean, 0], 'ADLER32' => [1, 1, Parse_boolean, 0], 'Bufsize' => [1, 1, Parse_unsigned, 4096], 'Level' => [1, 1, Parse_signed, Z_DEFAULT_COMPRESSION()], 'Method' => [1, 1, Parse_unsigned, Z_DEFLATED()], 'WindowBits' => [1, 1, Parse_signed, - MAX_WBITS()], 'MemLevel' => [1, 1, Parse_unsigned, MAX_MEM_LEVEL()], 'Strategy' => [1, 1, Parse_unsigned, Z_DEFAULT_STRATEGY()], }, @_) ; croak "Compress::Raw::Zlib::InflateScan::createDeflateStream: Bufsize must be >= 1, you specified " . $got->value('Bufsize') unless $got->value('Bufsize') >= 1; my $flags = 0 ; $flags |= FLAG_APPEND if $got->value('AppendOutput') ; $flags |= FLAG_CRC if $got->value('CRC32') ; $flags |= FLAG_ADLER if $got->value('ADLER32') ; $pkg->_createDeflateStream($flags, $got->value('Level'), $got->value('Method'), $got->value('WindowBits'), $got->value('MemLevel'), $got->value('Strategy'), $got->value('Bufsize'), ) ; } sub Compress::Raw::Zlib::inflateScanStream::inflate { my $self = shift ; my $buffer = $_[1]; my $eof = $_[2]; my $status = $self->scan(@_); if ($status == Z_OK() && $_[2]) { my $byte = ' '; $status = $self->scan(\$byte, $_[1]) ; } return $status ; } sub Compress::Raw::Zlib::deflateStream::deflateParams { my $self = shift ; my ($got) = ParseParameters(0, { 'Level' => [1, 1, Parse_signed, undef], 'Strategy' => [1, 1, Parse_unsigned, undef], 'Bufsize' => [1, 1, Parse_unsigned, undef], }, @_) ; croak "Compress::Raw::Zlib::deflateParams needs Level and/or Strategy" unless $got->parsed('Level') + $got->parsed('Strategy') + $got->parsed('Bufsize'); croak "Compress::Raw::Zlib::Inflate::deflateParams: Bufsize must be >= 1, you specified " . $got->value('Bufsize') if $got->parsed('Bufsize') && $got->value('Bufsize') <= 1; my $flags = 0; $flags |= 1 if $got->parsed('Level') ; $flags |= 2 if $got->parsed('Strategy') ; $flags |= 4 if $got->parsed('Bufsize') ; $self->_deflateParams($flags, $got->value('Level'), $got->value('Strategy'), $got->value('Bufsize')); } 1; __END__ =head1 NAME Compress::Raw::Zlib - Low-Level Interface to zlib compression library =head1 SYNOPSIS use Compress::Raw::Zlib ; ($d, $status) = new Compress::Raw::Zlib::Deflate( [OPT] ) ; $status = $d->deflate($input, $output) ; $status = $d->flush($output [, $flush_type]) ; $d->deflateReset() ; $d->deflateParams(OPTS) ; $d->deflateTune(OPTS) ; $d->dict_adler() ; $d->crc32() ; $d->adler32() ; $d->total_in() ; $d->total_out() ; $d->msg() ; $d->get_Strategy(); $d->get_Level(); $d->get_BufSize(); ($i, $status) = new Compress::Raw::Zlib::Inflate( [OPT] ) ; $status = $i->inflate($input, $output [, $eof]) ; $status = $i->inflateSync($input) ; $i->inflateReset() ; $i->dict_adler() ; $d->crc32() ; $d->adler32() ; $i->total_in() ; $i->total_out() ; $i->msg() ; $d->get_BufSize(); $crc = adler32($buffer [,$crc]) ; $crc = crc32($buffer [,$crc]) ; $crc = adler32_combine($crc1, $crc2, $len2)l $crc = crc32_combine($adler1, $adler2, $len2) my $version = Compress::Raw::Zlib::zlib_version(); my $flags = Compress::Raw::Zlib::zlibCompileFlags(); =head1 DESCRIPTION The I module provides a Perl interface to the I compression library (see L for details about where to get I). =head1 Compress::Raw::Zlib::Deflate This section defines an interface that allows in-memory compression using the I interface provided by zlib. Here is a definition of the interface available: =head2 B<($d, $status) = new Compress::Raw::Zlib::Deflate( [OPT] ) > Initialises a deflation object. If you are familiar with the I library, it combines the features of the I functions C, C and C. If successful, it will return the initialised deflation object, C<$d> and a C<$status> of C in a list context. In scalar context it returns the deflation object, C<$d>, only. If not successful, the returned deflation object, C<$d>, will be I and C<$status> will hold the a I error code. The function optionally takes a number of named options specified as C<< Name => value >> pairs. This allows individual options to be tailored without having to specify them all in the parameter list. For backward compatibility, it is also possible to pass the parameters as a reference to a hash containing the name=>value pairs. Below is a list of the valid options: =over 5 =item B<-Level> Defines the compression level. Valid values are 0 through 9, C, C, C, and C. The default is C. =item B<-Method> Defines the compression method. The only valid value at present (and the default) is C. =item B<-WindowBits> To compress an RFC 1950 data stream, set C to a positive number between 8 and 15. To compress an RFC 1951 data stream, set C to C<-MAX_WBITS>. To compress an RFC 1952 data stream (i.e. gzip), set C to C. For a definition of the meaning and valid values for C refer to the I documentation for I. Defaults to C. =item B<-MemLevel> For a definition of the meaning and valid values for C refer to the I documentation for I. Defaults to MAX_MEM_LEVEL. =item B<-Strategy> Defines the strategy used to tune the compression. The valid values are C, C, C, C and C. The default is C. =item B<-Dictionary> When a dictionary is specified I will automatically call C directly after calling C. The Adler32 value for the dictionary can be obtained by calling the method C<$d-Edict_adler()>. The default is no dictionary. =item B<-Bufsize> Sets the initial size for the output buffer used by the C<$d-Edeflate> and C<$d-Eflush> methods. If the buffer has to be reallocated to increase the size, it will grow in increments of C. The default buffer size is 4096. =item B<-AppendOutput> This option controls how data is written to the output buffer by the C<$d-Edeflate> and C<$d-Eflush> methods. If the C option is set to false, the output buffers in the C<$d-Edeflate> and C<$d-Eflush> methods will be truncated before uncompressed data is written to them. If the option is set to true, uncompressed data will be appended to the output buffer in the C<$d-Edeflate> and C<$d-Eflush> methods. This option defaults to false. =item B<-CRC32> If set to true, a crc32 checksum of the uncompressed data will be calculated. Use the C<$d-Ecrc32> method to retrieve this value. This option defaults to false. =item B<-ADLER32> If set to true, an adler32 checksum of the uncompressed data will be calculated. Use the C<$d-Eadler32> method to retrieve this value. This option defaults to false. =back Here is an example of using the C optional parameter list to override the default buffer size and compression level. All other options will take their default values. my $d = new Compress::Raw::Zlib::Deflate ( -Bufsize => 300, -Level => Z_BEST_SPEED ) ; =head2 B<$status = $d-Edeflate($input, $output)> Deflates the contents of C<$input> and writes the compressed data to C<$output>. The C<$input> and C<$output> parameters can be either scalars or scalar references. When finished, C<$input> will be completely processed (assuming there were no errors). If the deflation was successful it writes the deflated data to C<$output> and returns a status value of C. On error, it returns a I error code. If the C option is set to true in the constructor for the C<$d> object, the compressed data will be appended to C<$output>. If it is false, C<$output> will be truncated before any compressed data is written to it. B: This method will not necessarily write compressed data to C<$output> every time it is called. So do not assume that there has been an error if the contents of C<$output> is empty on returning from this method. As long as the return code from the method is C, the deflate has succeeded. =head2 B<$status = $d-Eflush($output [, $flush_type]) > Typically used to finish the deflation. Any pending output will be written to C<$output>. Returns C if successful. Note that flushing can seriously degrade the compression ratio, so it should only be used to terminate a decompression (using C) or when you want to create a I (using C). By default the C used is C. Other valid values for C are C, C, C and C. It is strongly recommended that you only set the C parameter if you fully understand the implications of what it does. See the C documentation for details. If the C option is set to true in the constructor for the C<$d> object, the compressed data will be appended to C<$output>. If it is false, C<$output> will be truncated before any compressed data is written to it. =head2 B<$status = $d-EdeflateReset() > This method will reset the deflation object C<$d>. It can be used when you are compressing multiple data streams and want to use the same object to compress each of them. It should only be used once the previous data stream has been flushed successfully, i.e. a call to C<< $d->flush(Z_FINISH) >> has returned C. Returns C if successful. =head2 B<$status = $d-EdeflateParams([OPT])> Change settings for the deflate object C<$d>. The list of the valid options is shown below. Options not specified will remain unchanged. =over 5 =item B<-Level> Defines the compression level. Valid values are 0 through 9, C, C, C, and C. =item B<-Strategy> Defines the strategy used to tune the compression. The valid values are C, C and C. =item B<-BufSize> Sets the initial size for the output buffer used by the C<$d-Edeflate> and C<$d-Eflush> methods. If the buffer has to be reallocated to increase the size, it will grow in increments of C. =back =head2 B<$status = $d-EdeflateTune($good_length, $max_lazy, $nice_length, $max_chain)> Tune the internal settings for the deflate object C<$d>. This option is only available if you are running zlib 1.2.2.3 or better. Refer to the documentation in zlib.h for instructions on how to fly C. =head2 B<$d-Edict_adler()> Returns the adler32 value for the dictionary. =head2 B<$d-Ecrc32()> Returns the crc32 value for the uncompressed data to date. If the C option is not enabled in the constructor for this object, this method will always return 0; =head2 B<$d-Eadler32()> Returns the adler32 value for the uncompressed data to date. =head2 B<$d-Emsg()> Returns the last error message generated by zlib. =head2 B<$d-Etotal_in()> Returns the total number of bytes uncompressed bytes input to deflate. =head2 B<$d-Etotal_out()> Returns the total number of compressed bytes output from deflate. =head2 B<$d-Eget_Strategy()> Returns the deflation strategy currently used. Valid values are C, C and C. =head2 B<$d-Eget_Level()> Returns the compression level being used. =head2 B<$d-Eget_BufSize()> Returns the buffer size used to carry out the compression. =head2 Example Here is a trivial example of using C. It simply reads standard input, deflates it and writes it to standard output. use strict ; use warnings ; use Compress::Raw::Zlib ; binmode STDIN; binmode STDOUT; my $x = new Compress::Raw::Zlib::Deflate or die "Cannot create a deflation stream\n" ; my ($output, $status) ; while (<>) { $status = $x->deflate($_, $output) ; $status == Z_OK or die "deflation failed\n" ; print $output ; } $status = $x->flush($output) ; $status == Z_OK or die "deflation failed\n" ; print $output ; =head1 Compress::Raw::Zlib::Inflate This section defines an interface that allows in-memory uncompression using the I interface provided by zlib. Here is a definition of the interface: =head2 B< ($i, $status) = new Compress::Raw::Zlib::Inflate( [OPT] ) > Initialises an inflation object. In a list context it returns the inflation object, C<$i>, and the I status code (C<$status>). In a scalar context it returns the inflation object only. If successful, C<$i> will hold the inflation object and C<$status> will be C. If not successful, C<$i> will be I and C<$status> will hold the I error code. The function optionally takes a number of named options specified as C<< -Name => value >> pairs. This allows individual options to be tailored without having to specify them all in the parameter list. For backward compatibility, it is also possible to pass the parameters as a reference to a hash containing the C<< name=>value >> pairs. Here is a list of the valid options: =over 5 =item B<-WindowBits> To uncompress an RFC 1950 data stream, set C to a positive number between 8 and 15. To uncompress an RFC 1951 data stream, set C to C<-MAX_WBITS>. To uncompress an RFC 1952 data stream (i.e. gzip), set C to C. To auto-detect and uncompress an RFC 1950 or RFC 1952 data stream (i.e. gzip), set C to C. For a full definition of the meaning and valid values for C refer to the I documentation for I. Defaults to C. =item B<-Bufsize> Sets the initial size for the output buffer used by the C<$i-Einflate> method. If the output buffer in this method has to be reallocated to increase the size, it will grow in increments of C. Default is 4096. =item B<-Dictionary> The default is no dictionary. =item B<-AppendOutput> This option controls how data is written to the output buffer by the C<$i-Einflate> method. If the option is set to false, the output buffer in the C<$i-Einflate> method will be truncated before uncompressed data is written to it. If the option is set to true, uncompressed data will be appended to the output buffer by the C<$i-Einflate> method. This option defaults to false. =item B<-CRC32> If set to true, a crc32 checksum of the uncompressed data will be calculated. Use the C<$i-Ecrc32> method to retrieve this value. This option defaults to false. =item B<-ADLER32> If set to true, an adler32 checksum of the uncompressed data will be calculated. Use the C<$i-Eadler32> method to retrieve this value. This option defaults to false. =item B<-ConsumeInput> If set to true, this option will remove compressed data from the input buffer of the C<< $i->inflate >> method as the inflate progresses. This option can be useful when you are processing compressed data that is embedded in another file/buffer. In this case the data that immediately follows the compressed stream will be left in the input buffer. This option defaults to true. =item B<-LimitOutput> The C option changes the behavior of the C<< $i->inflate >> method so that the amount of memory used by the output buffer can be limited. When C is used the size of the output buffer used will either be the value of the C option or the amount of memory already allocated to C<$output>, whichever is larger. Predicting the output size available is tricky, so don't rely on getting an exact output buffer size. When C is not specified C<< $i->inflate >> will use as much memory as it takes to write all the uncompressed data it creates by uncompressing the input buffer. If C is enabled, the C option will also be enabled. This option defaults to false. See L for a discussion on why C is needed and how to use it. =back Here is an example of using an optional parameter to override the default buffer size. my ($i, $status) = new Compress::Raw::Zlib::Inflate( -Bufsize => 300 ) ; =head2 B< $status = $i-Einflate($input, $output [,$eof]) > Inflates the complete contents of C<$input> and writes the uncompressed data to C<$output>. The C<$input> and C<$output> parameters can either be scalars or scalar references. Returns C if successful and C if the end of the compressed data has been successfully reached. If not successful C<$status> will hold the I error code. If the C option has been set to true when the C object is created, the C<$input> parameter is modified by C. On completion it will contain what remains of the input buffer after inflation. In practice, this means that when the return status is C the C<$input> parameter will contain an empty string, and when the return status is C the C<$input> parameter will contains what (if anything) was stored in the input buffer after the deflated data stream. This feature is useful when processing a file format that encapsulates a compressed data stream (e.g. gzip, zip) and there is useful data immediately after the deflation stream. If the C option is set to true in the constructor for this object, the uncompressed data will be appended to C<$output>. If it is false, C<$output> will be truncated before any uncompressed data is written to it. The C<$eof> parameter needs a bit of explanation. Prior to version 1.2.0, zlib assumed that there was at least one trailing byte immediately after the compressed data stream when it was carrying out decompression. This normally isn't a problem because the majority of zlib applications guarantee that there will be data directly after the compressed data stream. For example, both gzip (RFC 1950) and zip both define trailing data that follows the compressed data stream. The C<$eof> parameter only needs to be used if B of the following conditions apply =over 5 =item 1 You are either using a copy of zlib that is older than version 1.2.0 or you want your application code to be able to run with as many different versions of zlib as possible. =item 2 You have set the C parameter to C<-MAX_WBITS> in the constructor for this object, i.e. you are uncompressing a raw deflated data stream (RFC 1951). =item 3 There is no data immediately after the compressed data stream. =back If B of these are the case, then you need to set the C<$eof> parameter to true on the final call (and only the final call) to C<$i-Einflate>. If you have built this module with zlib >= 1.2.0, the C<$eof> parameter is ignored. You can still set it if you want, but it won't be used behind the scenes. =head2 B<$status = $i-EinflateSync($input)> This method can be used to attempt to recover good data from a compressed data stream that is partially corrupt. It scans C<$input> until it reaches either a I or the end of the buffer. If a I is found, C is returned and C<$input> will be have all data up to the flush point removed. This data can then be passed to the C<$i-Einflate> method to be uncompressed. Any other return code means that a flush point was not found. If more data is available, C can be called repeatedly with more compressed data until the flush point is found. Note I are not present by default in compressed data streams. They must have been added explicitly when the data stream was created by calling C with C. =head2 B<$status = $i-EinflateReset() > This method will reset the inflation object C<$i>. It can be used when you are uncompressing multiple data streams and want to use the same object to uncompress each of them. Returns C if successful. =head2 B<$i-Edict_adler()> Returns the adler32 value for the dictionary. =head2 B<$i-Ecrc32()> Returns the crc32 value for the uncompressed data to date. If the C option is not enabled in the constructor for this object, this method will always return 0; =head2 B<$i-Eadler32()> Returns the adler32 value for the uncompressed data to date. If the C option is not enabled in the constructor for this object, this method will always return 0; =head2 B<$i-Emsg()> Returns the last error message generated by zlib. =head2 B<$i-Etotal_in()> Returns the total number of bytes compressed bytes input to inflate. =head2 B<$i-Etotal_out()> Returns the total number of uncompressed bytes output from inflate. =head2 B<$d-Eget_BufSize()> Returns the buffer size used to carry out the decompression. =head2 Examples Here is an example of using C. use strict ; use warnings ; use Compress::Raw::Zlib; my $x = new Compress::Raw::Zlib::Inflate() or die "Cannot create a inflation stream\n" ; my $input = '' ; binmode STDIN; binmode STDOUT; my ($output, $status) ; while (read(STDIN, $input, 4096)) { $status = $x->inflate($input, $output) ; print $output ; last if $status != Z_OK ; } die "inflation failed\n" unless $status == Z_STREAM_END ; The next example show how to use the C option. Notice the use of two nested loops in this case. The outer loop reads the data from the input source - STDIN and the inner loop repeatedly calls C until C<$input> is exhausted, we get an error, or the end of the stream is reached. One point worth remembering is by using the C option you also get C set as well - this makes the code below much simpler. use strict ; use warnings ; use Compress::Raw::Zlib; my $x = new Compress::Raw::Zlib::Inflate(LimitOutput => 1) or die "Cannot create a inflation stream\n" ; my $input = '' ; binmode STDIN; binmode STDOUT; my ($output, $status) ; OUTER: while (read(STDIN, $input, 4096)) { do { $status = $x->inflate($input, $output) ; print $output ; last OUTER unless $status == Z_OK || $status == Z_BUF_ERROR ; } while ($status == Z_OK && length $input); } die "inflation failed\n" unless $status == Z_STREAM_END ; =head1 CHECKSUM FUNCTIONS Two functions are provided by I to calculate checksums. For the Perl interface, the order of the two parameters in both functions has been reversed. This allows both running checksums and one off calculations to be done. $crc = adler32($buffer [,$crc]) ; $crc = crc32($buffer [,$crc]) ; The buffer parameters can either be a scalar or a scalar reference. If the $crc parameters is C, the crc value will be reset. If you have built this module with zlib 1.2.3 or better, two more CRC-related functions are available. $crc = adler32_combine($crc1, $crc2, $len2)l $crc = crc32_combine($adler1, $adler2, $len2) These functions allow checksums to be merged. =head1 Misc =head2 my $version = Compress::Raw::Zlib::zlib_version(); Returns the version of the zlib library. =head2 my $flags = Compress::Raw::Zlib::zlibCompileFlags(); Returns the flags indicating compile-time options that were used to build the zlib library. See the zlib documentation for a description of the flags returned by C. Note that when the zlib sources are built along with this module the C flags (bits 24, 25 and 26) should be ignored. If you are using zlib 1.2.0 or older, C will return 0. =head1 The LimitOutput option. By default C<< $i->inflate($input, $output) >> will uncompress I data in C<$input> and write I of the uncompressed data it has generated to C<$output>. This makes the interface to C much simpler - if the method has uncompressed C<$input> successfully I compressed data in C<$input> will have been dealt with. So if you are reading from an input source and uncompressing as you go the code will look something like this use strict ; use warnings ; use Compress::Raw::Zlib; my $x = new Compress::Raw::Zlib::Inflate() or die "Cannot create a inflation stream\n" ; my $input = '' ; my ($output, $status) ; while (read(STDIN, $input, 4096)) { $status = $x->inflate($input, $output) ; print $output ; last if $status != Z_OK ; } die "inflation failed\n" unless $status == Z_STREAM_END ; The points to note are =over 5 =item * The main processing loop in the code handles reading of compressed data from STDIN. =item * The status code returned from C will only trigger termination of the main processing loop if it isn't C. When C has not been used the C status means that the end of the compressed data stream has been reached or there has been an error in uncompression. =item * After the call to C I of the uncompressed data in C<$input> will have been processed. This means the subsequent call to C can overwrite it's contents without any problem. =back For most use-cases the behavior described above is acceptable (this module and it's predecessor, C, have used it for over 10 years without an issue), but in a few very specific use-cases the amount of memory required for C<$output> can prohibitively large. For example, if the compressed data stream contains the same pattern repeated thousands of times, a relatively small compressed data stream can uncompress into hundreds of megabytes. Remember C will keep allocating memory until I the uncompressed data has been written to the output buffer - the size of C<$output> is unbounded. The C option is designed to help with this use-case. The main difference in your code when using C is having to deal with cases where the C<$input> parameter still contains some uncompressed data that C hasn't processed yet. The status code returned from C will be C if uncompression took place and C if the output buffer is full. Below is typical code that shows how to use C. use strict ; use warnings ; use Compress::Raw::Zlib; my $x = new Compress::Raw::Zlib::Inflate(LimitOutput => 1) or die "Cannot create a inflation stream\n" ; my $input = '' ; binmode STDIN; binmode STDOUT; my ($output, $status) ; OUTER: while (read(STDIN, $input, 4096)) { do { $status = $x->inflate($input, $output) ; print $output ; last OUTER unless $status == Z_OK || $status == Z_BUF_ERROR ; } while ($status == Z_OK && length $input); } die "inflation failed\n" unless $status == Z_STREAM_END ; Points to note this time: =over 5 =item * There are now two nested loops in the code: the outer loop for reading the compressed data from STDIN, as before; and the inner loop to carry out the uncompression. =item * There are two exit points from the inner uncompression loop. Firstly when C has returned a status other than C or C. This means that either the end of the compressed data stream has been reached (C) or there is an error in the compressed data. In either of these cases there is no point in continuing with reading the compressed data, so both loops are terminated. The second exit point tests if there is any data left in the input buffer, C<$input> - remember that the C option is automatically enabled when C is used. When the input buffer has been exhausted, the outer loop can run again and overwrite a now empty C<$input>. =back =head1 ACCESSING ZIP FILES Although it is possible (with some effort on your part) to use this module to access .zip files, there are other perl modules available that will do all the hard work for you. Check out C, C, C and C. =head1 FAQ =head2 Compatibility with Unix compress/uncompress. This module is not compatible with Unix C. If you have the C program available, you can use this to read compressed files open F, "uncompress -c $filename |"; while () { ... Alternatively, if you have the C program available, you can use this to read compressed files open F, "gunzip -c $filename |"; while () { ... and this to write compress files, if you have the C program available open F, "| compress -c $filename "; print F "data"; ... close F ; =head2 Accessing .tar.Z files See previous FAQ item. If the C module is installed and either the C or C programs are available, you can use one of these workarounds to read C<.tar.Z> files. Firstly with C use strict; use warnings; use Archive::Tar; open F, "uncompress -c $filename |"; my $tar = Archive::Tar->new(*F); ... and this with C use strict; use warnings; use Archive::Tar; open F, "gunzip -c $filename |"; my $tar = Archive::Tar->new(*F); ... Similarly, if the C program is available, you can use this to write a C<.tar.Z> file use strict; use warnings; use Archive::Tar; use IO::File; my $fh = new IO::File "| compress -c >$filename"; my $tar = Archive::Tar->new(); ... $tar->write($fh); $fh->close ; =head2 Zlib Library Version Support By default C will build with a private copy of version 1.2.5 of the zlib library. (See the F file for details of how to override this behaviour) If you decide to use a different version of the zlib library, you need to be aware of the following issues =over 5 =item * First off, you must have zlib 1.0.5 or better. =item * You need to have zlib 1.2.1 or better if you want to use the C<-Merge> option with C, C and C. =back =head1 CONSTANTS All the I constants are automatically imported when you make use of I. =head1 SEE ALSO L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L, L L L, L, L, L For RFC 1950, 1951 and 1952 see F, F and F The I compression library was written by Jean-loup Gailly F and Mark Adler F. The primary site for the I compression library is F. The primary site for gzip is F. =head1 AUTHOR This module was written by Paul Marquess, F. =head1 MODIFICATION HISTORY See the Changes file. =head1 COPYRIGHT AND LICENSE Copyright (c) 2005-2013 Paul Marquess. All rights reserved. This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself. Compress-Raw-Zlib-2.063/MANIFEST0000644000175000017500000000164212235214474014570 0ustar paulpaulREADME Changes t/000prereq.t t/01version.t t/02zlib.t t/07bufsize.t t/09limitoutput.t t/18lvalue.t t/99pod.t t/Test/Builder.pm t/Test/More.pm t/Test/Simple.pm t/compress/CompTestUtils.pm Zlib.xs typemap Makefile.PL private/MakeUtil.pm MANIFEST ppport.h config.in zlib-src/adler32.c zlib-src/compress.c zlib-src/crc32.c zlib-src/crc32.h zlib-src/deflate.c zlib-src/deflate.h zlib-src/infback.c zlib-src/inffast.c zlib-src/inffast.h zlib-src/inffixed.h zlib-src/inflate.c zlib-src/inflate.h zlib-src/inftrees.c zlib-src/inftrees.h zlib-src/trees.c zlib-src/trees.h zlib-src/uncompr.c zlib-src/zconf.h zlib-src/zlib.h zlib-src/zutil.c zlib-src/zutil.h fallback/constants.h fallback/constants.xs lib/Compress/Raw/Zlib.pm examples/filtdef Perl examples/filtinf Perl META.yml Module meta-data (added by MakeMaker) META.json Module JSON meta-data (added by MakeMaker) Compress-Raw-Zlib-2.063/private/0000755000175000017500000000000012235214474015106 5ustar paulpaulCompress-Raw-Zlib-2.063/private/MakeUtil.pm0000644000175000017500000001753711506330301017160 0ustar paulpaulpackage MakeUtil ; package main ; use strict ; use Config qw(%Config); use File::Copy; my $VERSION = '1.0'; BEGIN { eval { require File::Spec::Functions ; File::Spec::Functions->import() } ; if ($@) { *catfile = sub { return "$_[0]/$_[1]" } } } require VMS::Filespec if $^O eq 'VMS'; unless($ENV{PERL_CORE}) { $ENV{PERL_CORE} = 1 if grep { $_ eq 'PERL_CORE=1' } @ARGV; } $ENV{SKIP_FOR_CORE} = 1 if $ENV{PERL_CORE} || $ENV{MY_PERL_CORE} ; sub MY::libscan { my $self = shift; my $path = shift; return undef if $path =~ /(~|\.bak|_bak)$/ || $path =~ /\..*\.sw(o|p)$/ || $path =~ /\B\.svn\b/; return $path; } sub MY::postamble { return '' if $ENV{PERL_CORE} ; my @files = getPerlFiles('MANIFEST'); # Note: Once you remove all the layers of shell/makefile escaping # the regular expression below reads # # /^\s*local\s*\(\s*\$^W\s*\)/ # my $postamble = ' MyTrebleCheck: @echo Checking for $$^W in files: '. "@files" . ' perl -ne \' \ exit 1 if /^\s*local\s*\(\s*\$$\^W\s*\)/; \' \ ' . " @files || " . ' \ (echo found unexpected $$^W ; exit 1) @echo All is ok. '; return $postamble; } sub getPerlFiles { my @manifests = @_ ; my @files = (); for my $manifest (@manifests) { my $prefix = './'; $prefix = $1 if $manifest =~ m#^(.*/)#; open M, "<$manifest" or die "Cannot open '$manifest': $!\n"; while () { chomp ; next if /^\s*#/ || /^\s*$/ ; s/^\s+//; s/\s+$//; /^(\S+)\s*(.*)$/; my ($file, $rest) = ($1, $2); if ($file =~ /\.(pm|pl|t)$/ and $file !~ /MakeUtil.pm/) { push @files, "$prefix$file"; } elsif ($rest =~ /perl/i) { push @files, "$prefix$file"; } } close M; } return @files; } sub UpDowngrade { return if defined $ENV{TipTop}; my @files = @_ ; # our and use bytes/utf8 is stable from 5.6.0 onward # warnings is stable from 5.6.1 onward # Note: this code assumes that each statement it modifies is not # split across multiple lines. my $warn_sub = ''; my $our_sub = '' ; my $upgrade ; my $downgrade ; my $do_downgrade ; my $caller = (caller(1))[3] || ''; if ($caller =~ /downgrade/) { $downgrade = 1; } elsif ($caller =~ /upgrade/) { $upgrade = 1; } else { $do_downgrade = 1 if $] < 5.006001 ; } # else # { # my $opt = shift @ARGV || '' ; # $upgrade = ($opt =~ /^-upgrade/i); # $downgrade = ($opt =~ /^-downgrade/i); # push @ARGV, $opt unless $downgrade || $upgrade; # } if ($downgrade || $do_downgrade) { # From: use|no warnings "blah" # To: local ($^W) = 1; # use|no warnings "blah" $warn_sub = sub { s/^(\s*)(no\s+warnings)/${1}local (\$^W) = 0; #$2/ ; s/^(\s*)(use\s+warnings)/${1}local (\$^W) = 1; #$2/ ; }; } #elsif ($] >= 5.006001 || $upgrade) { elsif ($upgrade) { # From: local ($^W) = 1; # use|no warnings "blah" # To: use|no warnings "blah" $warn_sub = sub { s/^(\s*)local\s*\(\$\^W\)\s*=\s*\d+\s*;\s*#\s*((no|use)\s+warnings.*)/$1$2/ ; }; } if ($downgrade || $do_downgrade) { $our_sub = sub { if ( /^(\s*)our\s+\(\s*([^)]+\s*)\)/ ) { my $indent = $1; my $vars = join ' ', split /\s*,\s*/, $2; $_ = "${indent}use vars qw($vars);\n"; } elsif ( /^(\s*)((use|no)\s+(bytes|utf8)\s*;.*)$/) { $_ = "$1# $2\n"; } }; } #elsif ($] >= 5.006000 || $upgrade) { elsif ($upgrade) { $our_sub = sub { if ( /^(\s*)use\s+vars\s+qw\((.*?)\)/ ) { my $indent = $1; my $vars = join ', ', split ' ', $2; $_ = "${indent}our ($vars);\n"; } elsif ( /^(\s*)#\s*((use|no)\s+(bytes|utf8)\s*;.*)$/) { $_ = "$1$2\n"; } }; } if (! $our_sub && ! $warn_sub) { warn "Up/Downgrade not needed.\n"; if ($upgrade || $downgrade) { exit 0 } else { return } } foreach (@files) { #if (-l $_ ) { doUpDown($our_sub, $warn_sub, $_) } #else #{ doUpDownViaCopy($our_sub, $warn_sub, $_) } } warn "Up/Downgrade complete.\n" ; exit 0 if $upgrade || $downgrade; } sub doUpDown { my $our_sub = shift; my $warn_sub = shift; return if -d $_[0]; local ($^I) = ($^O eq 'VMS') ? "_bak" : ".bak"; local (@ARGV) = shift; while (<>) { print, last if /^__(END|DATA)__/ ; &{ $our_sub }() if $our_sub ; &{ $warn_sub }() if $warn_sub ; print ; } return if eof ; while (<>) { print } } sub doUpDownViaCopy { my $our_sub = shift; my $warn_sub = shift; my $file = shift ; use File::Copy ; return if -d $file ; my $backup = $file . ($^O eq 'VMS') ? "_bak" : ".bak"; copy($file, $backup) or die "Cannot copy $file to $backup: $!"; my @keep = (); { open F, "<$file" or die "Cannot open $file: $!\n" ; while () { if (/^__(END|DATA)__/) { push @keep, $_; last ; } &{ $our_sub }() if $our_sub ; &{ $warn_sub }() if $warn_sub ; push @keep, $_; } if (! eof F) { while () { push @keep, $_ } } close F; } { open F, ">$file" or die "Cannot open $file: $!\n"; print F @keep ; close F; } } sub FindBrokenDependencies { my $version = shift ; my %thisModule = map { $_ => 1} @_; my @modules = qw( IO::Compress::Base IO::Compress::Base::Common IO::Uncompress::Base Compress::Raw::Zlib Compress::Raw::Bzip2 IO::Compress::RawDeflate IO::Uncompress::RawInflate IO::Compress::Deflate IO::Uncompress::Inflate IO::Compress::Gzip IO::Compress::Gzip::Constants IO::Uncompress::Gunzip IO::Compress::Zip IO::Uncompress::Unzip IO::Compress::Bzip2 IO::Uncompress::Bunzip2 IO::Compress::Lzf IO::Uncompress::UnLzf IO::Compress::Lzop IO::Uncompress::UnLzop Compress::Zlib ); my @broken = (); foreach my $module ( grep { ! $thisModule{$_} } @modules) { my $hasVersion = getInstalledVersion($module); # No need to upgrade if the module isn't installed at all next if ! defined $hasVersion; # If already have C::Z version 1, then an upgrade to any of the # IO::Compress modules will not break it. next if $module eq 'Compress::Zlib' && $hasVersion < 2; if ($hasVersion < $version) { push @broken, $module } } return @broken; } sub getInstalledVersion { my $module = shift; my $version; eval " require $module; "; if ($@ eq '') { no strict 'refs'; $version = ${ $module . "::VERSION" }; $version = 0 } return $version; } package MakeUtil ; 1; Compress-Raw-Zlib-2.063/README0000644000175000017500000003125012211042535014304 0ustar paulpaul Compress-Raw-Zlib Version 2.063 11th August 2013 Copyright (c) 2005-2013 Paul Marquess. All rights reserved. This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself. The directory zlib-src contains a subset of the source files copied directly from zlib version 1.2.8. These files are Copyright(C) 1995-2012 Jean-loup Gailly and Mark Adler. Full source for the zlib library is available at http://www.zlib.org DESCRIPTION ----------- This module provides a Perl interface to the zlib compression library. PREREQUISITES ------------- Before you can build Compress-Raw-Zlib you need to have the following installed on your system: * A C compiler * Perl 5.006 or better. By default, Compress-Raw-Zlib will build its own private copy of the zlib library. If you want to use a different version of zlib, follow the instructions in the section called "Controlling the version of zlib used by Compress-Raw-Zlib" later in this document. BUILDING THE MODULE ------------------- Assuming you have met all the prerequisites, the module can now be built using this sequence of commands: perl Makefile.PL make make test INSTALLATION ------------ To install Compress-Raw-Zlib, run the command below: make install Controlling the version of zlib used by Compress-Raw-Zlib ---------------------------------------------------------- Compress-Raw-Zlib interfaces to the zlib compression library. There are three options available to control which version/instance of the zlib library is used: 1. Build a private copy of the zlib library using the zlib library source that is included with this module. This is the default and recommended option. 2. Build a private copy of the zlib library using a standard zlib source distribution. 3. Use a pre-built zlib library. Note that if you intend to use either Option 2 or 3, you need to have zlib version 1.2.0 or better. The contents of the file config.in are used to control which of the three options is actually used. This file is read during the perl Makefile.PL step of the build, so remember to make any required changes to config.in before building this module. Option 1 -------- For option 1, edit the file config.in and set the variables in it as follows: BUILD_ZLIB = True INCLUDE = ./zlib-src LIB = ./zlib-src OLD_ZLIB = False GZIP_OS_CODE = AUTO_DETECT Option 2 -------- For option 2, fetch a copy of the zlib source distribution from http://www.zlib.org and unpack it into the Compress-Raw-Zlib source directory. Assuming you have fetched zlib 1.2.8, it will create a directory called zlib-1.2.8. Now set the variables in the file config.in as follows (if the version you have fetched isn't 1.2.8, change the INCLUDE and LIB variables appropriately): BUILD_ZLIB = True INCLUDE = ./zlib-1.2.8 LIB = ./zlib-1.2.8 OLD_ZLIB = False GZIP_OS_CODE = AUTO_DETECT Option 3 -------- For option 3, you need to find out where zlib is stored on your system. There are two parts to this. First, find the directory where the zlib library is stored (some common names for the library are libz.a and libz.so). Set the LIB variable in the config.in file to that directory. Secondly, find the directory where the file zlib.h is stored. Now set the INCLUDE variable in the config.in file to that directory. Next set BUILD_ZLIB to False. Finally, if you are running zlib 1.0.5 or older, set the OLD_ZLIB variable to True. Otherwise set it to False. As an example, if the zlib library on your system is in /usr/local/lib, zlib.h is in /usr/local/include and zlib is more recent than version 1.0.5, the variables in config.in should be set as follows: BUILD_ZLIB = False INCLUDE = /usr/local/include LIB = /usr/local/lib OLD_ZLIB = False GZIP_OS_CODE = AUTO_DETECT Setting the Gzip OS Code ------------------------ Every gzip stream stores a byte in its header to identify the Operating System that was used to create the gzip stream. When you build Compress-Raw-Zlib it will attempt to determine the value that is correct for your Operating System. This will then be used by IO::Compress::Gzip as the default value for the OS byte in all gzip headers it creates. The variable GZIP_OS_CODE in the config.in file controls the setting of this value when building Compress-Raw-Zlib. If GZIP_OS_CODE is set to AUTO_DETECT, Compress-Raw-Zlib will attempt to determine the correct value for your Operating System. Alternatively, you can override auto-detection of the default OS code and explicitly set it yourself. Set the GZIP_OS_CODE variable in the config.in file to be a number between 0 and 255. For example GZIP_OS_CODE = 3 See RFC 1952 for valid OS codes that can be used. If you are running one of the less popular Operating Systems, it is possible that the default value picked by this module is incorrect or the default value (3) is used when there is a better value available. When Compress-Raw-Zlib cannot determine what operating system you are running, it will use the default value 3 for the OS code. If you find you have to change this value, because you think the value auto detected is incorrect, please take a few moments to contact the author of this module. TROUBLESHOOTING --------------- Undefined Symbol gzsetparams ---------------------------- If you get the error shown below when you run the Compress-Raw-Zlib test harness it probably means you are running a copy of zlib that is version 1.0.5 or older. t/01version.........Can't load 'blib/arch/auto/Compress/Zlib/Zlib.so' for module Compress::Raw::Zlib: blib/arch/auto/Compress/Raw/Zlib/Zlib.so: undefined symbol: gzsetparams at ... There are two ways to fix this problem: 1. Upgrade to the latest version of zlib. 2. Edit config.in and set the OLD_ZLIB variable to True. Test Harness 01version fails ---------------------------- If the 01version test harness fails, and the problem isn't covered by the scenario above, it probably means that you have two versions of zlib installed on your system. Run the command below to see if this is indeed the case make test TEST_VERBOSE=1 TEST_FILES=t/01version.t Try removing the one you don't want to use and rebuild. Solaris build fails with "language optional software package not installed" --------------------------------------------------------------------------- If you are trying to build this module under Solaris and you get an error message like this /usr/ucb/cc: language optional software package not installed it means that Perl cannot find the C compiler on your system. The cryptic message is just Sun's way of telling you that you haven't bought their C compiler. When you build a Perl module that needs a C compiler, the Perl build system tries to use the same C compiler that was used to build perl itself. In this case your Perl binary was built with a C compiler that lived in /usr/ucb. To continue with building this module, you need to get a C compiler, or tell Perl where your C compiler is, if you already have one. Assuming you have now got a C compiler, what you do next will be dependent on what C compiler you have installed. If you have just installed Sun's C compiler, you shouldn't have to do anything. Just try rebuilding this module. If you have installed another C compiler, say gcc, you have to tell perl how to use it instead of /usr/ucb/cc. This set of options seems to work if you want to use gcc. Your mileage may vary. perl Makefile.PL CC=gcc CCCDLFLAGS=-fPIC OPTIMIZE=" " make test If that doesn't work for you, it's time to make changes to the Makefile by hand. Good luck! Solaris build fails with "gcc: unrecognized option `-KPIC'" ----------------------------------------------------------- You are running Solaris and you get an error like this when you try to build this Perl module gcc: unrecognized option `-KPIC' This symptom usually means that you are using a Perl binary that has been built with the Sun C compiler, but you are using gcc to build this module. When Perl builds modules that need a C compiler, it will attempt to use the same C compiler and command line options that was used to build perl itself. In this case "-KPIC" is a valid option for the Sun C compiler, but not for gcc. The equivalent option for gcc is "-fPIC". The solution is either: 1. Build both Perl and this module with the same C compiler, either by using the Sun C compiler for both or gcc for both. 2. Try generating the Makefile for this module like this perl perl Makefile.PL CC=gcc CCCDLFLAGS=-fPIC OPTIMIZE=" " LD=gcc make test This second option seems to work when mixing a Perl binary built with the Sun C compiler and this module built with gcc. Your mileage may vary. HP-UX Notes ----------- I've had a report that when building Compress-Raw-Zlib under HP-UX that it is necessary to have first built the zlib library with the -fpic option. Linux Notes ----------- Although most Linux distributions already come with zlib, some people report getting this error when they try to build this module: $ make cp Zlib.pm blib/lib/Compress/Zlib.pm AutoSplitting blib/lib/Compress/Zlib.pm (blib/lib/auto/Compress/Zlib) /usr/bin/perl -I/usr/lib/perl5/5.6.1/i386-linux -I/usr/lib/perl5/5.6.1 /usr/lib/perl5/5.6.1/ExtUtils/xsubpp -typemap /usr/lib/perl5/5.6.1/ExtUtils/typemap -typemap typemap Zlib.xs > Zlib.xsc && mv Zlib.xsc Zlib.c gcc -c -I/usr/local/include -fno-strict-aliasing -I/usr/local/include -O2 -march=i386 -mcpu=i686 -DVERSION=\"1.16\" -DXS_VERSION=\"1.16\" -fPIC -I/usr/lib/perl5/5.6.1/i386-linux/CORE Zlib.c Zlib.xs:25:19: zlib.h: No such file or directory make: *** [Zlib.o] Error 1 This usually means that you have not installed the development RPM for zlib. Check for an RPM that start with "zlib-devel" in your Linux distribution. Win32 Notes ----------- If you are running Activestate Perl (from http://www.activestate.com), it ships with a pre-compiled version of Compress-Raw-Zlib. To check if a newer version of Compress-Raw-Zlib is available run this from the command prompt C:\> ppm verify -upgrade Compress-Raw-Zlib If you are not running Activestate Perl and you don't have access to a C compiler, you will not be able to build and install this module. Win32 & Cygwin Notes -------------------- It is not possible to install Compress-Raw-Zlib using the CPAN shell. This is because the Compress-Raw-Zlib DLL is itself used by the CPAN shell and it is impossible to remove a DLL while it is already loaded under Windows. The workaround is to install Compress-Raw-Zlib manually using the instructions given at the start of this file. FEEDBACK -------- How to report a problem with Compress-Raw-Zlib. To help me help you, I need all of the following information: 1. The Versions of everything relevant. This includes: a. The *complete* output from running this perl -V Do not edit the output in any way. Note, I want you to run "perl -V" and NOT "perl -v". If your perl does not understand the "-V" option it is too old. This module needs Perl version 5.004 or better. b. The version of Compress-Raw-Zlib you have. If you have successfully installed Compress-Raw-Zlib, this one-liner will tell you: perl -MCompress::Raw::Zlib -e 'print qq[ver $Compress::Raw::Zlib::VERSION\n]' If you are running windows use this perl -MCompress::Raw::Zlib -e "print qq[ver $Compress::Raw::Zlib::VERSION\n]" If you haven't installed Compress-Raw-Zlib then search Compress::Raw::Zlib.pm for a line like this: $VERSION = "2.063" ; c. The version of zlib you have used. If you have successfully installed Compress-Raw-Zlib, this one-liner will tell you: perl -MCompress::Raw::Zlib -e "print q[zlib ver ]. Compress::Raw::Zlib::ZLIB_VERSION.qq[\n]" If not, look at the beginning of the file zlib.h. 2. If you are having problems building Compress-Raw-Zlib, send me a complete log of what happened. Start by unpacking the Compress-Raw-Zlib module into a fresh directory and keep a log of all the steps [edit config.in, if necessary] perl Makefile.PL make make test TEST_VERBOSE=1 Paul Marquess Compress-Raw-Zlib-2.063/ppport.h0000644000175000017500000055352212016633011015132 0ustar paulpaul#if 0 <<'SKIP'; #endif /* ---------------------------------------------------------------------- ppport.h -- Perl/Pollution/Portability Version 3.20_01 Automatically created by Devel::PPPort running under perl 5.016001. Do NOT edit this file directly! -- Edit PPPort_pm.PL and the includes in parts/inc/ instead. Use 'perldoc ppport.h' to view the documentation below. ---------------------------------------------------------------------- SKIP =pod =head1 NAME ppport.h - Perl/Pollution/Portability version 3.20_01 =head1 SYNOPSIS perl ppport.h [options] [source files] Searches current directory for files if no [source files] are given --help show short help --version show version --patch=file write one patch file with changes --copy=suffix write changed copies with suffix --diff=program use diff program and options --compat-version=version provide compatibility with Perl version --cplusplus accept C++ comments --quiet don't output anything except fatal errors --nodiag don't show diagnostics --nohints don't show hints --nochanges don't suggest changes --nofilter don't filter input files --strip strip all script and doc functionality from ppport.h --list-provided list provided API --list-unsupported list unsupported API --api-info=name show Perl API portability information =head1 COMPATIBILITY This version of F is designed to support operation with Perl installations back to 5.003, and has been tested up to 5.11.5. =head1 OPTIONS =head2 --help Display a brief usage summary. =head2 --version Display the version of F. =head2 --patch=I If this option is given, a single patch file will be created if any changes are suggested. This requires a working diff program to be installed on your system. =head2 --copy=I If this option is given, a copy of each file will be saved with the given suffix that contains the suggested changes. This does not require any external programs. Note that this does not automagially add a dot between the original filename and the suffix. If you want the dot, you have to include it in the option argument. If neither C<--patch> or C<--copy> are given, the default is to simply print the diffs for each file. This requires either C or a C program to be installed. =head2 --diff=I Manually set the diff program and options to use. The default is to use C, when installed, and output unified context diffs. =head2 --compat-version=I Tell F to check for compatibility with the given Perl version. The default is to check for compatibility with Perl version 5.003. You can use this option to reduce the output of F if you intend to be backward compatible only down to a certain Perl version. =head2 --cplusplus Usually, F will detect C++ style comments and replace them with C style comments for portability reasons. Using this option instructs F to leave C++ comments untouched. =head2 --quiet Be quiet. Don't print anything except fatal errors. =head2 --nodiag Don't output any diagnostic messages. Only portability alerts will be printed. =head2 --nohints Don't output any hints. Hints often contain useful portability notes. Warnings will still be displayed. =head2 --nochanges Don't suggest any changes. Only give diagnostic output and hints unless these are also deactivated. =head2 --nofilter Don't filter the list of input files. By default, files not looking like source code (i.e. not *.xs, *.c, *.cc, *.cpp or *.h) are skipped. =head2 --strip Strip all script and documentation functionality from F. This reduces the size of F dramatically and may be useful if you want to include F in smaller modules without increasing their distribution size too much. The stripped F will have a C<--unstrip> option that allows you to undo the stripping, but only if an appropriate C module is installed. =head2 --list-provided Lists the API elements for which compatibility is provided by F. Also lists if it must be explicitly requested, if it has dependencies, and if there are hints or warnings for it. =head2 --list-unsupported Lists the API elements that are known not to be supported by F and below which version of Perl they probably won't be available or work. =head2 --api-info=I Show portability information for API elements matching I. If I is surrounded by slashes, it is interpreted as a regular expression. =head1 DESCRIPTION In order for a Perl extension (XS) module to be as portable as possible across differing versions of Perl itself, certain steps need to be taken. =over 4 =item * Including this header is the first major one. This alone will give you access to a large part of the Perl API that hasn't been available in earlier Perl releases. Use perl ppport.h --list-provided to see which API elements are provided by ppport.h. =item * You should avoid using deprecated parts of the API. For example, using global Perl variables without the C prefix is deprecated. Also, some API functions used to have a C prefix. Using this form is also deprecated. You can safely use the supported API, as F will provide wrappers for older Perl versions. =item * If you use one of a few functions or variables that were not present in earlier versions of Perl, and that can't be provided using a macro, you have to explicitly request support for these functions by adding one or more C<#define>s in your source code before the inclusion of F. These functions or variables will be marked C in the list shown by C<--list-provided>. Depending on whether you module has a single or multiple files that use such functions or variables, you want either C or global variants. For a C function or variable (used only in a single source file), use: #define NEED_function #define NEED_variable For a global function or variable (used in multiple source files), use: #define NEED_function_GLOBAL #define NEED_variable_GLOBAL Note that you mustn't have more than one global request for the same function or variable in your project. Function / Variable Static Request Global Request ----------------------------------------------------------------------------------------- PL_parser NEED_PL_parser NEED_PL_parser_GLOBAL PL_signals NEED_PL_signals NEED_PL_signals_GLOBAL eval_pv() NEED_eval_pv NEED_eval_pv_GLOBAL grok_bin() NEED_grok_bin NEED_grok_bin_GLOBAL grok_hex() NEED_grok_hex NEED_grok_hex_GLOBAL grok_number() NEED_grok_number NEED_grok_number_GLOBAL grok_numeric_radix() NEED_grok_numeric_radix NEED_grok_numeric_radix_GLOBAL grok_oct() NEED_grok_oct NEED_grok_oct_GLOBAL load_module() NEED_load_module NEED_load_module_GLOBAL my_snprintf() NEED_my_snprintf NEED_my_snprintf_GLOBAL my_sprintf() NEED_my_sprintf NEED_my_sprintf_GLOBAL my_strlcat() NEED_my_strlcat NEED_my_strlcat_GLOBAL my_strlcpy() NEED_my_strlcpy NEED_my_strlcpy_GLOBAL newCONSTSUB() NEED_newCONSTSUB NEED_newCONSTSUB_GLOBAL newRV_noinc() NEED_newRV_noinc NEED_newRV_noinc_GLOBAL newSV_type() NEED_newSV_type NEED_newSV_type_GLOBAL newSVpvn_flags() NEED_newSVpvn_flags NEED_newSVpvn_flags_GLOBAL newSVpvn_share() NEED_newSVpvn_share NEED_newSVpvn_share_GLOBAL pv_display() NEED_pv_display NEED_pv_display_GLOBAL pv_escape() NEED_pv_escape NEED_pv_escape_GLOBAL pv_pretty() NEED_pv_pretty NEED_pv_pretty_GLOBAL sv_2pv_flags() NEED_sv_2pv_flags NEED_sv_2pv_flags_GLOBAL sv_2pvbyte() NEED_sv_2pvbyte NEED_sv_2pvbyte_GLOBAL sv_catpvf_mg() NEED_sv_catpvf_mg NEED_sv_catpvf_mg_GLOBAL sv_catpvf_mg_nocontext() NEED_sv_catpvf_mg_nocontext NEED_sv_catpvf_mg_nocontext_GLOBAL sv_pvn_force_flags() NEED_sv_pvn_force_flags NEED_sv_pvn_force_flags_GLOBAL sv_setpvf_mg() NEED_sv_setpvf_mg NEED_sv_setpvf_mg_GLOBAL sv_setpvf_mg_nocontext() NEED_sv_setpvf_mg_nocontext NEED_sv_setpvf_mg_nocontext_GLOBAL vload_module() NEED_vload_module NEED_vload_module_GLOBAL vnewSVpvf() NEED_vnewSVpvf NEED_vnewSVpvf_GLOBAL warner() NEED_warner NEED_warner_GLOBAL To avoid namespace conflicts, you can change the namespace of the explicitly exported functions / variables using the C macro. Just C<#define> the macro before including C: #define DPPP_NAMESPACE MyOwnNamespace_ #include "ppport.h" The default namespace is C. =back The good thing is that most of the above can be checked by running F on your source code. See the next section for details. =head1 EXAMPLES To verify whether F is needed for your module, whether you should make any changes to your code, and whether any special defines should be used, F can be run as a Perl script to check your source code. Simply say: perl ppport.h The result will usually be a list of patches suggesting changes that should at least be acceptable, if not necessarily the most efficient solution, or a fix for all possible problems. If you know that your XS module uses features only available in newer Perl releases, if you're aware that it uses C++ comments, and if you want all suggestions as a single patch file, you could use something like this: perl ppport.h --compat-version=5.6.0 --cplusplus --patch=test.diff If you only want your code to be scanned without any suggestions for changes, use: perl ppport.h --nochanges You can specify a different C program or options, using the C<--diff> option: perl ppport.h --diff='diff -C 10' This would output context diffs with 10 lines of context. If you want to create patched copies of your files instead, use: perl ppport.h --copy=.new To display portability information for the C function, use: perl ppport.h --api-info=newSVpvn Since the argument to C<--api-info> can be a regular expression, you can use perl ppport.h --api-info=/_nomg$/ to display portability information for all C<_nomg> functions or perl ppport.h --api-info=/./ to display information for all known API elements. =head1 BUGS If this version of F is causing failure during the compilation of this module, please check if newer versions of either this module or C are available on CPAN before sending a bug report. If F was generated using the latest version of C and is causing failure of this module, please file a bug report using the CPAN Request Tracker at L. Please include the following information: =over 4 =item 1. The complete output from running "perl -V" =item 2. This file. =item 3. The name and version of the module you were trying to build. =item 4. A full log of the build that failed. =item 5. Any other information that you think could be relevant. =back For the latest version of this code, please get the C module from CPAN. =head1 COPYRIGHT Version 3.x, Copyright (c) 2004-2012, Marcus Holland-Moritz. Version 2.x, Copyright (C) 2001, Paul Marquess. Version 1.x, Copyright (C) 1999, Kenneth Albanowski. This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself. =head1 SEE ALSO See L. =cut use strict; # Disable broken TRIE-optimization BEGIN { eval '${^RE_TRIE_MAXBUF} = -1' if $] >= 5.009004 && $] <= 5.009005 } my $VERSION = 3.20_01; my %opt = ( quiet => 0, diag => 1, hints => 1, changes => 1, cplusplus => 0, filter => 1, strip => 0, version => 0, ); my($ppport) = $0 =~ /([\w.]+)$/; my $LF = '(?:\r\n|[\r\n])'; # line feed my $HS = "[ \t]"; # horizontal whitespace # Never use C comments in this file! my $ccs = '/'.'*'; my $cce = '*'.'/'; my $rccs = quotemeta $ccs; my $rcce = quotemeta $cce; eval { require Getopt::Long; Getopt::Long::GetOptions(\%opt, qw( help quiet diag! filter! hints! changes! cplusplus strip version patch=s copy=s diff=s compat-version=s list-provided list-unsupported api-info=s )) or usage(); }; if ($@ and grep /^-/, @ARGV) { usage() if "@ARGV" =~ /^--?h(?:elp)?$/; die "Getopt::Long not found. Please don't use any options.\n"; } if ($opt{version}) { print "This is $0 $VERSION.\n"; exit 0; } usage() if $opt{help}; strip() if $opt{strip}; if (exists $opt{'compat-version'}) { my($r,$v,$s) = eval { parse_version($opt{'compat-version'}) }; if ($@) { die "Invalid version number format: '$opt{'compat-version'}'\n"; } die "Only Perl 5 is supported\n" if $r != 5; die "Invalid version number: $opt{'compat-version'}\n" if $v >= 1000 || $s >= 1000; $opt{'compat-version'} = sprintf "%d.%03d%03d", $r, $v, $s; } else { $opt{'compat-version'} = 5; } my %API = map { /^(\w+)\|([^|]*)\|([^|]*)\|(\w*)$/ ? ( $1 => { ($2 ? ( base => $2 ) : ()), ($3 ? ( todo => $3 ) : ()), (index($4, 'v') >= 0 ? ( varargs => 1 ) : ()), (index($4, 'p') >= 0 ? ( provided => 1 ) : ()), (index($4, 'n') >= 0 ? ( nothxarg => 1 ) : ()), } ) : die "invalid spec: $_" } qw( AvFILLp|5.004050||p AvFILL||| BhkDISABLE||5.017004| BhkENABLE||5.017004| BhkENTRY_set||5.017004| BhkENTRY||| BhkFLAGS||| CALL_BLOCK_HOOKS||| CLASS|||n CPERLscope|5.005000||p CX_CURPAD_SAVE||| CX_CURPAD_SV||| CopFILEAV|5.006000||p CopFILEGV_set|5.006000||p CopFILEGV|5.006000||p CopFILESV|5.006000||p CopFILE_set|5.006000||p CopFILE|5.006000||p CopSTASHPV_set|5.006000||p CopSTASHPV|5.006000||p CopSTASH_eq|5.006000||p CopSTASH_set|5.006000||p CopSTASH|5.006000||p CopyD|5.009002|5.004050|p Copy||| CvPADLIST||5.008001| CvSTASH||| CvWEAKOUTSIDE||| DEFSV_set|5.010001||p DEFSV|5.004050||p END_EXTERN_C|5.005000||p ENTER||| ERRSV|5.004050||p EXTEND||| EXTERN_C|5.005000||p F0convert|||n FREETMPS||| GIMME_V||5.004000|n GIMME|||n GROK_NUMERIC_RADIX|5.007002||p G_ARRAY||| G_DISCARD||| G_EVAL||| G_METHOD|5.006001||p G_NOARGS||| G_SCALAR||| G_VOID||5.004000| GetVars||| GvAV||| GvCV||| GvHV||| GvSVn|5.009003||p GvSV||| Gv_AMupdate||5.011000| HEf_SVKEY||5.004000| HeHASH||5.004000| HeKEY||5.004000| HeKLEN||5.004000| HePV||5.004000| HeSVKEY_force||5.004000| HeSVKEY_set||5.004000| HeSVKEY||5.004000| HeUTF8||5.010001| HeVAL||5.004000| HvENAMELEN||5.015004| HvENAMEUTF8||5.015004| HvENAME||5.013007| HvNAMELEN_get|5.009003||p HvNAMELEN||5.015004| HvNAMEUTF8||5.015004| HvNAME_get|5.009003||p HvNAME||| INT2PTR|5.006000||p IN_LOCALE_COMPILETIME|5.007002||p IN_LOCALE_RUNTIME|5.007002||p IN_LOCALE|5.007002||p IN_PERL_COMPILETIME|5.008001||p IS_NUMBER_GREATER_THAN_UV_MAX|5.007002||p IS_NUMBER_INFINITY|5.007002||p IS_NUMBER_IN_UV|5.007002||p IS_NUMBER_NAN|5.007003||p IS_NUMBER_NEG|5.007002||p IS_NUMBER_NOT_INT|5.007002||p IVSIZE|5.006000||p IVTYPE|5.006000||p IVdf|5.006000||p LEAVE||| LINKLIST||5.013006| LVRET||| MARK||| MULTICALL||5.017004| MY_CXT_CLONE|5.009002||p MY_CXT_INIT|5.007003||p MY_CXT|5.007003||p MoveD|5.009002|5.004050|p Move||| NOOP|5.005000||p NUM2PTR|5.006000||p NVTYPE|5.006000||p NVef|5.006001||p NVff|5.006001||p NVgf|5.006001||p Newxc|5.009003||p Newxz|5.009003||p Newx|5.009003||p Nullav||| Nullch||| Nullcv||| Nullhv||| Nullsv||| OP_CLASS||5.013007| OP_DESC||5.007003| OP_NAME||5.007003| ORIGMARK||| PAD_BASE_SV||| PAD_CLONE_VARS||| PAD_COMPNAME_FLAGS||| PAD_COMPNAME_GEN_set||| PAD_COMPNAME_GEN||| PAD_COMPNAME_OURSTASH||| PAD_COMPNAME_PV||| PAD_COMPNAME_TYPE||| PAD_RESTORE_LOCAL||| PAD_SAVE_LOCAL||| PAD_SAVE_SETNULLPAD||| PAD_SETSV||| PAD_SET_CUR_NOSAVE||| PAD_SET_CUR||| PAD_SVl||| PAD_SV||| PERLIO_FUNCS_CAST|5.009003||p PERLIO_FUNCS_DECL|5.009003||p PERL_ABS|5.008001||p PERL_BCDVERSION|5.017004||p PERL_GCC_BRACE_GROUPS_FORBIDDEN|5.008001||p PERL_HASH|5.004000||p PERL_INT_MAX|5.004000||p PERL_INT_MIN|5.004000||p PERL_LONG_MAX|5.004000||p PERL_LONG_MIN|5.004000||p PERL_MAGIC_arylen|5.007002||p PERL_MAGIC_backref|5.007002||p PERL_MAGIC_bm|5.007002||p PERL_MAGIC_collxfrm|5.007002||p PERL_MAGIC_dbfile|5.007002||p PERL_MAGIC_dbline|5.007002||p PERL_MAGIC_defelem|5.007002||p PERL_MAGIC_envelem|5.007002||p PERL_MAGIC_env|5.007002||p PERL_MAGIC_ext|5.007002||p PERL_MAGIC_fm|5.007002||p PERL_MAGIC_glob|5.017004||p PERL_MAGIC_isaelem|5.007002||p PERL_MAGIC_isa|5.007002||p PERL_MAGIC_mutex|5.017004||p PERL_MAGIC_nkeys|5.007002||p PERL_MAGIC_overload_elem|5.017004||p PERL_MAGIC_overload_table|5.007002||p PERL_MAGIC_overload|5.017004||p PERL_MAGIC_pos|5.007002||p PERL_MAGIC_qr|5.007002||p PERL_MAGIC_regdata|5.007002||p PERL_MAGIC_regdatum|5.007002||p PERL_MAGIC_regex_global|5.007002||p PERL_MAGIC_shared_scalar|5.007003||p PERL_MAGIC_shared|5.007003||p PERL_MAGIC_sigelem|5.007002||p PERL_MAGIC_sig|5.007002||p PERL_MAGIC_substr|5.007002||p PERL_MAGIC_sv|5.007002||p PERL_MAGIC_taint|5.007002||p PERL_MAGIC_tiedelem|5.007002||p PERL_MAGIC_tiedscalar|5.007002||p PERL_MAGIC_tied|5.007002||p PERL_MAGIC_utf8|5.008001||p PERL_MAGIC_uvar_elem|5.007003||p PERL_MAGIC_uvar|5.007002||p PERL_MAGIC_vec|5.007002||p PERL_MAGIC_vstring|5.008001||p PERL_PV_ESCAPE_ALL|5.009004||p PERL_PV_ESCAPE_FIRSTCHAR|5.009004||p PERL_PV_ESCAPE_NOBACKSLASH|5.009004||p PERL_PV_ESCAPE_NOCLEAR|5.009004||p PERL_PV_ESCAPE_QUOTE|5.009004||p PERL_PV_ESCAPE_RE|5.009005||p PERL_PV_ESCAPE_UNI_DETECT|5.009004||p PERL_PV_ESCAPE_UNI|5.009004||p PERL_PV_PRETTY_DUMP|5.009004||p PERL_PV_PRETTY_ELLIPSES|5.010000||p PERL_PV_PRETTY_LTGT|5.009004||p PERL_PV_PRETTY_NOCLEAR|5.010000||p PERL_PV_PRETTY_QUOTE|5.009004||p PERL_PV_PRETTY_REGPROP|5.009004||p PERL_QUAD_MAX|5.004000||p PERL_QUAD_MIN|5.004000||p PERL_REVISION|5.006000||p PERL_SCAN_ALLOW_UNDERSCORES|5.007003||p PERL_SCAN_DISALLOW_PREFIX|5.007003||p PERL_SCAN_GREATER_THAN_UV_MAX|5.007003||p PERL_SCAN_SILENT_ILLDIGIT|5.008001||p PERL_SHORT_MAX|5.004000||p PERL_SHORT_MIN|5.004000||p PERL_SIGNALS_UNSAFE_FLAG|5.008001||p PERL_SUBVERSION|5.006000||p PERL_SYS_INIT3||5.006000| PERL_SYS_INIT||| PERL_SYS_TERM||5.017004| PERL_UCHAR_MAX|5.004000||p PERL_UCHAR_MIN|5.004000||p PERL_UINT_MAX|5.004000||p PERL_UINT_MIN|5.004000||p PERL_ULONG_MAX|5.004000||p PERL_ULONG_MIN|5.004000||p PERL_UNUSED_ARG|5.009003||p PERL_UNUSED_CONTEXT|5.009004||p PERL_UNUSED_DECL|5.007002||p PERL_UNUSED_VAR|5.007002||p PERL_UQUAD_MAX|5.004000||p PERL_UQUAD_MIN|5.004000||p PERL_USE_GCC_BRACE_GROUPS|5.009004||p PERL_USHORT_MAX|5.004000||p PERL_USHORT_MIN|5.004000||p PERL_VERSION|5.006000||p PL_DBsignal|5.005000||p PL_DBsingle|||pn PL_DBsub|||pn PL_DBtrace|||pn PL_Sv|5.005000||p PL_bufend|5.017004||p PL_bufptr|5.017004||p PL_check||5.006000| PL_compiling|5.004050||p PL_comppad_name||5.017004| PL_comppad||5.008001| PL_copline|5.017004||p PL_curcop|5.004050||p PL_curpad||5.005000| PL_curstash|5.004050||p PL_debstash|5.004050||p PL_defgv|5.004050||p PL_diehook|5.004050||p PL_dirty|5.004050||p PL_dowarn|||pn PL_errgv|5.004050||p PL_error_count|5.017004||p PL_expect|5.017004||p PL_hexdigit|5.005000||p PL_hints|5.005000||p PL_in_my_stash|5.017004||p PL_in_my|5.017004||p PL_keyword_plugin||5.011002| PL_last_in_gv|||n PL_laststatval|5.005000||p PL_lex_state|5.017004||p PL_lex_stuff|5.017004||p PL_linestr|5.017004||p PL_modglobal||5.005000|n PL_na|5.004050||pn PL_no_modify|5.006000||p PL_ofsgv|||n PL_opfreehook||5.011000|n PL_parser|5.009005|5.009005|p PL_peepp||5.007003|n PL_perl_destruct_level|5.004050||p PL_perldb|5.004050||p PL_ppaddr|5.006000||p PL_rpeepp||5.013005|n PL_rsfp_filters|5.017004||p PL_rsfp|5.017004||p PL_rs|||n PL_signals|5.008001||p PL_stack_base|5.004050||p PL_stack_sp|5.004050||p PL_statcache|5.005000||p PL_stdingv|5.004050||p PL_sv_arenaroot|5.004050||p PL_sv_no|5.004050||pn PL_sv_undef|5.004050||pn PL_sv_yes|5.004050||pn PL_tainted|5.004050||p PL_tainting|5.004050||p PL_tokenbuf|5.017004||p POP_MULTICALL||5.017004| POPi|||n POPl|||n POPn|||n POPpbytex||5.007001|n POPpx||5.005030|n POPp|||n POPs|||n PTR2IV|5.006000||p PTR2NV|5.006000||p PTR2UV|5.006000||p PTR2nat|5.009003||p PTR2ul|5.007001||p PTRV|5.006000||p PUSHMARK||| PUSH_MULTICALL||5.017004| PUSHi||| PUSHmortal|5.009002||p PUSHn||| PUSHp||| PUSHs||| PUSHu|5.004000||p PUTBACK||| PadARRAY||5.017004| PadMAX||5.017004| PadlistARRAY||5.017004| PadlistMAX||5.017004| PadlistNAMESARRAY||5.017004| PadlistNAMESMAX||5.017004| PadlistNAMES||5.017004| PadlistREFCNT||5.017004| PadnameIsOUR||| PadnameIsSTATE||| PadnameLEN||5.017004| PadnameOURSTASH||| PadnameOUTER||| PadnamePV||5.017004| PadnameSV||5.017004| PadnameTYPE||| PadnameUTF8||5.017004| PadnamelistARRAY||5.017004| PadnamelistMAX||5.017004| PerlIO_clearerr||5.007003| PerlIO_close||5.007003| PerlIO_context_layers||5.009004| PerlIO_eof||5.007003| PerlIO_error||5.007003| PerlIO_fileno||5.007003| PerlIO_fill||5.007003| PerlIO_flush||5.007003| PerlIO_get_base||5.007003| PerlIO_get_bufsiz||5.007003| PerlIO_get_cnt||5.007003| PerlIO_get_ptr||5.007003| PerlIO_read||5.007003| PerlIO_seek||5.007003| PerlIO_set_cnt||5.007003| PerlIO_set_ptrcnt||5.007003| PerlIO_setlinebuf||5.007003| PerlIO_stderr||5.007003| PerlIO_stdin||5.007003| PerlIO_stdout||5.007003| PerlIO_tell||5.007003| PerlIO_unread||5.007003| PerlIO_write||5.007003| Perl_signbit||5.009005|n PoisonFree|5.009004||p PoisonNew|5.009004||p PoisonWith|5.009004||p Poison|5.008000||p RETVAL|||n Renewc||| Renew||| SAVECLEARSV||| SAVECOMPPAD||| SAVEPADSV||| SAVETMPS||| SAVE_DEFSV|5.004050||p SPAGAIN||| SP||| START_EXTERN_C|5.005000||p START_MY_CXT|5.007003||p STMT_END|||p STMT_START|||p STR_WITH_LEN|5.009003||p ST||| SV_CONST_RETURN|5.009003||p SV_COW_DROP_PV|5.008001||p SV_COW_SHARED_HASH_KEYS|5.009005||p SV_GMAGIC|5.007002||p SV_HAS_TRAILING_NUL|5.009004||p SV_IMMEDIATE_UNREF|5.007001||p SV_MUTABLE_RETURN|5.009003||p SV_NOSTEAL|5.009002||p SV_SMAGIC|5.009003||p SV_UTF8_NO_ENCODING|5.008001||p SVfARG|5.009005||p SVf_UTF8|5.006000||p SVf|5.006000||p SVt_IV||| SVt_NV||| SVt_PVAV||| SVt_PVCV||| SVt_PVHV||| SVt_PVMG||| SVt_PV||| Safefree||| Slab_Alloc||| Slab_Free||| Slab_to_ro||| Slab_to_rw||| StructCopy||| SvCUR_set||| SvCUR||| SvEND||| SvGAMAGIC||5.006001| SvGETMAGIC|5.004050||p SvGROW||| SvIOK_UV||5.006000| SvIOK_notUV||5.006000| SvIOK_off||| SvIOK_only_UV||5.006000| SvIOK_only||| SvIOK_on||| SvIOKp||| SvIOK||| SvIVX||| SvIV_nomg|5.009001||p SvIV_set||| SvIVx||| SvIV||| SvIsCOW_shared_hash||5.008003| SvIsCOW||5.008003| SvLEN_set||| SvLEN||| SvLOCK||5.007003| SvMAGIC_set|5.009003||p SvNIOK_off||| SvNIOKp||| SvNIOK||| SvNOK_off||| SvNOK_only||| SvNOK_on||| SvNOKp||| SvNOK||| SvNVX||| SvNV_nomg||5.013002| SvNV_set||| SvNVx||| SvNV||| SvOK||| SvOOK_offset||5.011000| SvOOK||| SvPOK_off||| SvPOK_only_UTF8||5.006000| SvPOK_only||| SvPOK_on||| SvPOKp||| SvPOK||| SvPVX_const|5.009003||p SvPVX_mutable|5.009003||p SvPVX||| SvPV_const|5.009003||p SvPV_flags_const_nolen|5.009003||p SvPV_flags_const|5.009003||p SvPV_flags_mutable|5.009003||p SvPV_flags|5.007002||p SvPV_force_flags_mutable|5.009003||p SvPV_force_flags_nolen|5.009003||p SvPV_force_flags|5.007002||p SvPV_force_mutable|5.009003||p SvPV_force_nolen|5.009003||p SvPV_force_nomg_nolen|5.009003||p SvPV_force_nomg|5.007002||p SvPV_force|||p SvPV_mutable|5.009003||p SvPV_nolen_const|5.009003||p SvPV_nolen|5.006000||p SvPV_nomg_const_nolen|5.009003||p SvPV_nomg_const|5.009003||p SvPV_nomg_nolen|5.013007|5.013007|p SvPV_nomg|5.007002||p SvPV_renew|5.009003||p SvPV_set||| SvPVbyte_force||5.009002| SvPVbyte_nolen||5.006000| SvPVbytex_force||5.006000| SvPVbytex||5.006000| SvPVbyte|5.006000||p SvPVutf8_force||5.006000| SvPVutf8_nolen||5.006000| SvPVutf8x_force||5.006000| SvPVutf8x||5.006000| SvPVutf8||5.006000| SvPVx||| SvPV||| SvREFCNT_dec||| SvREFCNT_inc_NN|5.009004||p SvREFCNT_inc_simple_NN|5.009004||p SvREFCNT_inc_simple_void_NN|5.009004||p SvREFCNT_inc_simple_void|5.009004||p SvREFCNT_inc_simple|5.009004||p SvREFCNT_inc_void_NN|5.009004||p SvREFCNT_inc_void|5.009004||p SvREFCNT_inc|||p SvREFCNT||| SvROK_off||| SvROK_on||| SvROK||| SvRV_set|5.009003||p SvRV||| SvRXOK||5.009005| SvRX||5.009005| SvSETMAGIC||| SvSHARED_HASH|5.009003||p SvSHARE||5.007003| SvSTASH_set|5.009003||p SvSTASH||| SvSetMagicSV_nosteal||5.004000| SvSetMagicSV||5.004000| SvSetSV_nosteal||5.004000| SvSetSV||| SvTAINTED_off||5.004000| SvTAINTED_on||5.004000| SvTAINTED||5.004000| SvTAINT||| SvTHINKFIRST||| SvTRUE_nomg||5.013006| SvTRUE||| SvTYPE||| SvUNLOCK||5.007003| SvUOK|5.007001|5.006000|p SvUPGRADE||| SvUTF8_off||5.006000| SvUTF8_on||5.006000| SvUTF8||5.006000| SvUVXx|5.004000||p SvUVX|5.004000||p SvUV_nomg|5.009001||p SvUV_set|5.009003||p SvUVx|5.004000||p SvUV|5.004000||p SvVOK||5.008001| SvVSTRING_mg|5.009004||p THIS|||n UNDERBAR|5.009002||p UTF8_MAXBYTES|5.009002||p UVSIZE|5.006000||p UVTYPE|5.006000||p UVXf|5.007001||p UVof|5.006000||p UVuf|5.006000||p UVxf|5.006000||p WARN_ALL|5.006000||p WARN_AMBIGUOUS|5.006000||p WARN_ASSERTIONS|5.017004||p WARN_BAREWORD|5.006000||p WARN_CLOSED|5.006000||p WARN_CLOSURE|5.006000||p WARN_DEBUGGING|5.006000||p WARN_DEPRECATED|5.006000||p WARN_DIGIT|5.006000||p WARN_EXEC|5.006000||p WARN_EXITING|5.006000||p WARN_GLOB|5.006000||p WARN_INPLACE|5.006000||p WARN_INTERNAL|5.006000||p WARN_IO|5.006000||p WARN_LAYER|5.008000||p WARN_MALLOC|5.006000||p WARN_MISC|5.006000||p WARN_NEWLINE|5.006000||p WARN_NUMERIC|5.006000||p WARN_ONCE|5.006000||p WARN_OVERFLOW|5.006000||p WARN_PACK|5.006000||p WARN_PARENTHESIS|5.006000||p WARN_PIPE|5.006000||p WARN_PORTABLE|5.006000||p WARN_PRECEDENCE|5.006000||p WARN_PRINTF|5.006000||p WARN_PROTOTYPE|5.006000||p WARN_QW|5.006000||p WARN_RECURSION|5.006000||p WARN_REDEFINE|5.006000||p WARN_REGEXP|5.006000||p WARN_RESERVED|5.006000||p WARN_SEMICOLON|5.006000||p WARN_SEVERE|5.006000||p WARN_SIGNAL|5.006000||p WARN_SUBSTR|5.006000||p WARN_SYNTAX|5.006000||p WARN_TAINT|5.006000||p WARN_THREADS|5.008000||p WARN_UNINITIALIZED|5.006000||p WARN_UNOPENED|5.006000||p WARN_UNPACK|5.006000||p WARN_UNTIE|5.006000||p WARN_UTF8|5.006000||p WARN_VOID|5.006000||p XCPT_CATCH|5.009002||p XCPT_RETHROW|5.009002||p XCPT_TRY_END|5.009002||p XCPT_TRY_START|5.009002||p XPUSHi||| XPUSHmortal|5.009002||p XPUSHn||| XPUSHp||| XPUSHs||| XPUSHu|5.004000||p XSPROTO|5.010000||p XSRETURN_EMPTY||| XSRETURN_IV||| XSRETURN_NO||| XSRETURN_NV||| XSRETURN_PV||| XSRETURN_UNDEF||| XSRETURN_UV|5.008001||p XSRETURN_YES||| XSRETURN|||p XST_mIV||| XST_mNO||| XST_mNV||| XST_mPV||| XST_mUNDEF||| XST_mUV|5.008001||p XST_mYES||| XS_APIVERSION_BOOTCHECK||5.013004| XS_EXTERNAL||5.017004| XS_INTERNAL||5.017004| XS_VERSION_BOOTCHECK||| XS_VERSION||| XSprePUSH|5.006000||p XS||| XopDISABLE||5.017004| XopENABLE||5.017004| XopENTRY_set||5.017004| XopENTRY||5.017004| XopFLAGS||5.013007| ZeroD|5.009002||p Zero||| _aMY_CXT|5.007003||p _add_range_to_invlist||| _append_range_to_invlist||| _core_swash_init||| _get_swash_invlist||| _invlist_array_init||| _invlist_contains_cp||| _invlist_contents||| _invlist_intersection_maybe_complement_2nd||| _invlist_intersection||| _invlist_invert_prop||| _invlist_invert||| _invlist_populate_swatch||| _invlist_search||| _invlist_subtract||| _invlist_union_maybe_complement_2nd||| _invlist_union||| _is_swash_user_defined||| _is_utf8__perl_idstart||| _is_utf8_quotemeta||| _new_invlist_C_array||| _new_invlist||| _pMY_CXT|5.007003||p _swash_inversion_hash||| _swash_to_invlist||| _to_fold_latin1||| _to_uni_fold_flags||5.013011| _to_upper_title_latin1||| _to_utf8_fold_flags||5.015006| _to_utf8_lower_flags||5.015006| _to_utf8_title_flags||5.015006| _to_utf8_upper_flags||5.015006| aMY_CXT_|5.007003||p aMY_CXT|5.007003||p aTHXR_|5.017004||p aTHXR|5.017004||p aTHX_|5.006000||p aTHX|5.006000||p aassign_common_vars||| add_alternate||| add_cp_to_invlist||| add_data|||n add_utf16_textfilter||| addmad||| adjust_stack_on_leave||| alloc_maybe_populate_EXACT||| alloccopstash||| allocmy||| amagic_call||| amagic_cmp_locale||| amagic_cmp||| amagic_deref_call||5.013007| amagic_i_ncmp||| amagic_is_enabled||| amagic_ncmp||| anonymise_cv_maybe||| any_dup||| ao||| append_madprops||| apply_attrs_my||| apply_attrs_string||5.006001| apply_attrs||| apply||| assert_uft8_cache_coherent||| atfork_lock||5.007003|n atfork_unlock||5.007003|n av_arylen_p||5.009003| av_clear||| av_create_and_push||5.009005| av_create_and_unshift_one||5.009005| av_delete||5.006000| av_exists||5.006000| av_extend_guts||| av_extend||| av_fetch||| av_fill||| av_iter_p||5.011000| av_len||| av_make||| av_pop||| av_push||| av_reify||| av_shift||| av_store||| av_undef||| av_unshift||| ax|||n bad_type_pv||| bad_type_sv||| bind_match||| block_end||| block_gimme||5.004000| block_start||| blockhook_register||5.013003| boolSV|5.004000||p boot_core_PerlIO||| boot_core_UNIVERSAL||| boot_core_mro||| bytes_cmp_utf8||5.013007| bytes_from_utf8||5.007001| bytes_to_uni|||n bytes_to_utf8||5.006001| call_argv|5.006000||p call_atexit||5.006000| call_list||5.004000| call_method|5.006000||p call_pv|5.006000||p call_sv|5.006000||p caller_cx||5.013005| calloc||5.007002|n cando||| cast_i32||5.006000| cast_iv||5.006000| cast_ulong||5.006000| cast_uv||5.006000| check_locale_boundary_crossing||| check_type_and_open||| check_uni||| check_utf8_print||| checkcomma||| checkposixcc||| ckWARN|5.006000||p ck_entersub_args_core||| ck_entersub_args_list||5.013006| ck_entersub_args_proto_or_list||5.013006| ck_entersub_args_proto||5.013006| ck_warner_d||5.011001|v ck_warner||5.011001|v ckwarn_common||| ckwarn_d||5.009003| ckwarn||5.009003| cl_and|||n cl_anything|||n cl_init|||n cl_is_anything|||n cl_or|||n clear_placeholders||| clone_params_del|||n clone_params_new|||n closest_cop||| compute_EXACTish||| convert||| cop_fetch_label||5.015001| cop_free||| cop_hints_2hv||5.013007| cop_hints_fetch_pvn||5.013007| cop_hints_fetch_pvs||5.013007| cop_hints_fetch_pv||5.013007| cop_hints_fetch_sv||5.013007| cop_store_label||5.015001| cophh_2hv||5.013007| cophh_copy||5.013007| cophh_delete_pvn||5.013007| cophh_delete_pvs||5.013007| cophh_delete_pv||5.013007| cophh_delete_sv||5.013007| cophh_fetch_pvn||5.013007| cophh_fetch_pvs||5.013007| cophh_fetch_pv||5.013007| cophh_fetch_sv||5.013007| cophh_free||5.013007| cophh_new_empty||5.017004| cophh_store_pvn||5.013007| cophh_store_pvs||5.013007| cophh_store_pv||5.013007| cophh_store_sv||5.013007| core_prototype||| core_regclass_swash||| coresub_op||| cr_textfilter||| create_eval_scope||| croak_no_modify||5.013003| croak_nocontext|||vn croak_sv||5.013001| croak_xs_usage||5.010001| croak|||v csighandler||5.009003|n curmad||| current_re_engine||| curse||| custom_op_desc||5.007003| custom_op_name||5.007003| custom_op_register||5.013007| custom_op_xop||5.013007| cv_ckproto_len_flags||| cv_clone||| cv_const_sv||5.004000| cv_dump||| cv_forget_slab||| cv_get_call_checker||5.013006| cv_set_call_checker||5.013006| cv_undef||| cvgv_set||| cvstash_set||| cx_dump||5.005000| cx_dup||| cxinc||| dAXMARK|5.009003||p dAX|5.007002||p dITEMS|5.007002||p dMARK||| dMULTICALL||5.009003| dMY_CXT_SV|5.007003||p dMY_CXT|5.007003||p dNOOP|5.006000||p dORIGMARK||| dSP||| dTHR|5.004050||p dTHXR|5.017004||p dTHXa|5.006000||p dTHXoa|5.006000||p dTHX|5.006000||p dUNDERBAR|5.009002||p dVAR|5.009003||p dXCPT|5.009002||p dXSARGS||| dXSI32||| dXSTARG|5.006000||p deb_curcv||| deb_nocontext|||vn deb_stack_all||| deb_stack_n||| debop||5.005000| debprofdump||5.005000| debprof||| debstackptrs||5.007003| debstack||5.007003| debug_start_match||| deb||5.007003|v del_sv||| delete_eval_scope||| delimcpy||5.004000|n deprecate_commaless_var_list||| despatch_signals||5.007001| destroy_matcher||| die_nocontext|||vn die_sv||5.013001| die_unwind||| die|||v dirp_dup||| div128||| djSP||| do_aexec5||| do_aexec||| do_aspawn||| do_binmode||5.004050| do_chomp||| do_close||| do_delete_local||| do_dump_pad||| do_eof||| do_exec3||| do_execfree||| do_exec||| do_gv_dump||5.006000| do_gvgv_dump||5.006000| do_hv_dump||5.006000| do_ipcctl||| do_ipcget||| do_join||| do_magic_dump||5.006000| do_msgrcv||| do_msgsnd||| do_ncmp||| do_oddball||| do_op_dump||5.006000| do_op_xmldump||| do_open9||5.006000| do_openn||5.007001| do_open||5.004000| do_pmop_dump||5.006000| do_pmop_xmldump||| do_print||| do_readline||| do_seek||| do_semop||| do_shmio||| do_smartmatch||| do_spawn_nowait||| do_spawn||| do_sprintf||| do_sv_dump||5.006000| do_sysseek||| do_tell||| do_trans_complex_utf8||| do_trans_complex||| do_trans_count_utf8||| do_trans_count||| do_trans_simple_utf8||| do_trans_simple||| do_trans||| do_vecget||| do_vecset||| do_vop||| docatch||| doeval||| dofile||| dofindlabel||| doform||| doing_taint||5.008001|n dooneliner||| doopen_pm||| doparseform||| dopoptoeval||| dopoptogiven||| dopoptolabel||| dopoptoloop||| dopoptosub_at||| dopoptowhen||| doref||5.009003| dounwind||| dowantarray||| dump_all_perl||| dump_all||5.006000| dump_eval||5.006000| dump_exec_pos||| dump_fds||| dump_form||5.006000| dump_indent||5.006000|v dump_mstats||| dump_packsubs_perl||| dump_packsubs||5.006000| dump_sub_perl||| dump_sub||5.006000| dump_sv_child||| dump_trie_interim_list||| dump_trie_interim_table||| dump_trie||| dump_vindent||5.006000| dumpuntil||| dup_attrlist||| emulate_cop_io||| eval_pv|5.006000||p eval_sv|5.006000||p exec_failed||| expect_number||| fbm_compile||5.005000| fbm_instr||5.005000| feature_is_enabled||| filter_add||| filter_del||| filter_gets||| filter_read||| finalize_optree||| finalize_op||| find_and_forget_pmops||| find_array_subscript||| find_beginning||| find_byclass||| find_hash_subscript||| find_in_my_stash||| find_runcv_where||| find_runcv||5.008001| find_rundefsv2||| find_rundefsvoffset||5.009002| find_rundefsv||5.013002| find_script||| find_uninit_var||| first_symbol|||n foldEQ_latin1||5.013008|n foldEQ_locale||5.013002|n foldEQ_utf8_flags||5.013010| foldEQ_utf8||5.013002| foldEQ||5.013002|n fold_constants||| forbid_setid||| force_ident||| force_list||| force_next||| force_strict_version||| force_version||| force_word||| forget_pmop||| form_nocontext|||vn form||5.004000|v fp_dup||| fprintf_nocontext|||vn free_global_struct||| free_tied_hv_pool||| free_tmps||| gen_constant_list||| get_aux_mg||| get_av|5.006000||p get_context||5.006000|n get_cvn_flags|5.009005||p get_cvs|5.011000||p get_cv|5.006000||p get_db_sub||| get_debug_opts||| get_hash_seed||| get_hv|5.006000||p get_invlist_iter_addr||| get_invlist_len_addr||| get_invlist_version_id_addr||| get_invlist_zero_addr||| get_mstats||| get_no_modify||| get_num||| get_op_descs||5.005000| get_op_names||5.005000| get_opargs||| get_ppaddr||5.006000| get_re_arg||| get_sv|5.006000||p get_vtbl||5.005030| getcwd_sv||5.007002| getenv_len||| glob_2number||| glob_assign_glob||| glob_assign_ref||| gp_dup||| gp_free||| gp_ref||| grok_bin|5.007003||p grok_bslash_N||| grok_bslash_c||| grok_bslash_o||| grok_bslash_x||| grok_hex|5.007003||p grok_number|5.007002||p grok_numeric_radix|5.007002||p grok_oct|5.007003||p group_end||| gv_AVadd||| gv_HVadd||| gv_IOadd||| gv_SVadd||| gv_add_by_type||5.011000| gv_autoload4||5.004000| gv_autoload_pvn||5.015004| gv_autoload_pv||5.015004| gv_autoload_sv||5.015004| gv_check||| gv_const_sv||5.009003| gv_dump||5.006000| gv_efullname3||5.004000| gv_efullname4||5.006001| gv_efullname||| gv_ename||| gv_fetchfile_flags||5.009005| gv_fetchfile||| gv_fetchmeth_autoload||5.007003| gv_fetchmeth_pv_autoload||5.015004| gv_fetchmeth_pvn_autoload||5.015004| gv_fetchmeth_pvn||5.015004| gv_fetchmeth_pv||5.015004| gv_fetchmeth_sv_autoload||5.015004| gv_fetchmeth_sv||5.015004| gv_fetchmethod_autoload||5.004000| gv_fetchmethod_pv_flags||5.015004| gv_fetchmethod_pvn_flags||5.015004| gv_fetchmethod_sv_flags||5.015004| gv_fetchmethod||| gv_fetchmeth||| gv_fetchpvn_flags|5.009002||p gv_fetchpvs|5.009004||p gv_fetchpv||| gv_fetchsv|5.009002||p gv_fullname3||5.004000| gv_fullname4||5.006001| gv_fullname||| gv_get_super_pkg||| gv_handler||5.007001| gv_init_pvn||5.015004| gv_init_pv||5.015004| gv_init_svtype||| gv_init_sv||5.015004| gv_init||| gv_magicalize_isa||| gv_name_set||5.009004| gv_stashpvn|5.004000||p gv_stashpvs|5.009003||p gv_stashpv||| gv_stashsv||| gv_try_downgrade||| he_dup||| hek_dup||| hfree_next_entry||| hfreeentries||| hsplit||| hv_assert||| hv_auxinit|||n hv_backreferences_p||| hv_clear_placeholders||5.009001| hv_clear||| hv_common_key_len||5.010000| hv_common||5.010000| hv_copy_hints_hv||5.009004| hv_delayfree_ent||5.004000| hv_delete_common||| hv_delete_ent||5.004000| hv_delete||| hv_eiter_p||5.009003| hv_eiter_set||5.009003| hv_ename_add||| hv_ename_delete||| hv_exists_ent||5.004000| hv_exists||| hv_fetch_ent||5.004000| hv_fetchs|5.009003||p hv_fetch||| hv_fill||5.013002| hv_free_ent_ret||| hv_free_ent||5.004000| hv_iterinit||| hv_iterkeysv||5.004000| hv_iterkey||| hv_iternext_flags||5.008000| hv_iternextsv||| hv_iternext||| hv_iterval||| hv_kill_backrefs||| hv_ksplit||5.004000| hv_magic_check|||n hv_magic||| hv_name_set||5.009003| hv_notallowed||| hv_placeholders_get||5.009003| hv_placeholders_p||5.009003| hv_placeholders_set||5.009003| hv_riter_p||5.009003| hv_riter_set||5.009003| hv_scalar||5.009001| hv_store_ent||5.004000| hv_store_flags||5.008000| hv_stores|5.009004||p hv_store||| hv_undef_flags||| hv_undef||| ibcmp_locale||5.004000| ibcmp_utf8||5.007003| ibcmp||| incline||| incpush_if_exists||| incpush_use_sep||| incpush||| ingroup||| init_argv_symbols||| init_constants||| init_dbargs||| init_debugger||| init_global_struct||| init_i18nl10n||5.006000| init_i18nl14n||5.006000| init_ids||| init_interp||| init_main_stash||| init_perllib||| init_postdump_symbols||| init_predump_symbols||| init_stacks||5.005000| init_tm||5.007002| inplace_aassign||| instr|||n intro_my||| intuit_method||| intuit_more||| invert||| invlist_array||| invlist_clone||| invlist_extend||| invlist_highest||| invlist_iterinit||| invlist_iternext||| invlist_len||| invlist_max||| invlist_set_len||| invlist_trim||| invoke_exception_hook||| io_close||| isALNUMC|5.006000||p isALPHA||| isASCII|5.006000||p isBLANK|5.006001||p isCNTRL|5.006000||p isDIGIT||| isGRAPH|5.006000||p isGV_with_GP|5.009004||p isLOWER||| isOCTAL||5.013005| isPRINT|5.004000||p isPSXSPC|5.006001||p isPUNCT|5.006000||p isSPACE||| isUPPER||| isWORDCHAR||5.013006| isXDIGIT|5.006000||p is_an_int||| is_ascii_string||5.011000|n is_handle_constructor|||n is_list_assignment||| is_lvalue_sub||5.007001| is_uni_alnum_lc||5.006000| is_uni_alnum||5.006000| is_uni_alpha_lc||5.006000| is_uni_alpha||5.006000| is_uni_ascii_lc||5.006000| is_uni_ascii||5.006000| is_uni_blank||5.017002| is_uni_cntrl_lc||5.006000| is_uni_cntrl||5.006000| is_uni_digit_lc||5.006000| is_uni_digit||5.006000| is_uni_graph_lc||5.006000| is_uni_graph||5.006000| is_uni_idfirst_lc||5.006000| is_uni_idfirst||5.006000| is_uni_lower_lc||5.006000| is_uni_lower||5.006000| is_uni_print_lc||5.006000| is_uni_print||5.006000| is_uni_punct_lc||5.006000| is_uni_punct||5.006000| is_uni_space_lc||5.006000| is_uni_space||5.006000| is_uni_upper_lc||5.006000| is_uni_upper||5.006000| is_uni_xdigit_lc||5.006000| is_uni_xdigit||5.006000| is_utf8_X_LVT||| is_utf8_X_LV_LVT_V||| is_utf8_X_LV||| is_utf8_X_L||| is_utf8_X_T||| is_utf8_X_V||| is_utf8_X_begin||| is_utf8_X_extend||| is_utf8_X_non_hangul||| is_utf8_X_prepend||| is_utf8_alnum||5.006000| is_utf8_alpha||5.006000| is_utf8_ascii||5.006000| is_utf8_blank||5.017002| is_utf8_char_buf||5.015008|n is_utf8_char_slow|||n is_utf8_char||5.006000|n is_utf8_cntrl||5.006000| is_utf8_common||| is_utf8_digit||5.006000| is_utf8_graph||5.006000| is_utf8_idcont||5.008000| is_utf8_idfirst||5.006000| is_utf8_lower||5.006000| is_utf8_mark||5.006000| is_utf8_perl_space||5.011001| is_utf8_perl_word||5.011001| is_utf8_posix_digit||5.011001| is_utf8_print||5.006000| is_utf8_punct||5.006000| is_utf8_space||5.006000| is_utf8_string_loclen||5.009003|n is_utf8_string_loc||5.008001|n is_utf8_string||5.006001|n is_utf8_upper||5.006000| is_utf8_xdigit||5.006000| is_utf8_xidcont||5.013010| is_utf8_xidfirst||5.013010| isa_lookup||| items|||n ix|||n jmaybe||| join_exact||| keyword_plugin_standard||| keyword||| leave_scope||| lex_bufutf8||5.011002| lex_discard_to||5.011002| lex_grow_linestr||5.011002| lex_next_chunk||5.011002| lex_peek_unichar||5.011002| lex_read_space||5.011002| lex_read_to||5.011002| lex_read_unichar||5.011002| lex_start||5.009005| lex_stuff_pvn||5.011002| lex_stuff_pvs||5.013005| lex_stuff_pv||5.013006| lex_stuff_sv||5.011002| lex_unstuff||5.011002| listkids||| list||| load_module_nocontext|||vn load_module|5.006000||pv localize||| looks_like_bool||| looks_like_number||| lop||| mPUSHi|5.009002||p mPUSHn|5.009002||p mPUSHp|5.009002||p mPUSHs|5.010001||p mPUSHu|5.009002||p mXPUSHi|5.009002||p mXPUSHn|5.009002||p mXPUSHp|5.009002||p mXPUSHs|5.010001||p mXPUSHu|5.009002||p mad_free||| madlex||| madparse||| magic_clear_all_env||| magic_cleararylen_p||| magic_clearenv||| magic_clearhints||| magic_clearhint||| magic_clearisa||| magic_clearpack||| magic_clearsig||| magic_copycallchecker||| magic_dump||5.006000| magic_existspack||| magic_freearylen_p||| magic_freeovrld||| magic_getarylen||| magic_getdefelem||| magic_getnkeys||| magic_getpack||| magic_getpos||| magic_getsig||| magic_getsubstr||| magic_gettaint||| magic_getuvar||| magic_getvec||| magic_get||| magic_killbackrefs||| magic_len||| magic_methcall1||| magic_methcall|||v magic_methpack||| magic_nextpack||| magic_regdata_cnt||| magic_regdatum_get||| magic_regdatum_set||| magic_scalarpack||| magic_set_all_env||| magic_setarylen||| magic_setcollxfrm||| magic_setdbline||| magic_setdefelem||| magic_setenv||| magic_sethint||| magic_setisa||| magic_setmglob||| magic_setnkeys||| magic_setpack||| magic_setpos||| magic_setregexp||| magic_setsig||| magic_setsubstr||| magic_settaint||| magic_setutf8||| magic_setuvar||| magic_setvec||| magic_set||| magic_sizepack||| magic_wipepack||| make_matcher||| make_trie_failtable||| make_trie||| malloc_good_size|||n malloced_size|||n malloc||5.007002|n markstack_grow||| matcher_matches_sv||| mayberelocate||| measure_struct||| memEQs|5.009005||p memEQ|5.004000||p memNEs|5.009005||p memNE|5.004000||p mem_collxfrm||| mem_log_common|||n mess_alloc||| mess_nocontext|||vn mess_sv||5.013001| mess||5.006000|v method_common||| mfree||5.007002|n mg_clear||| mg_copy||| mg_dup||| mg_findext||5.013008| mg_find||| mg_free_type||5.013006| mg_free||| mg_get||| mg_length||5.005000| mg_localize||| mg_magical||| mg_set||| mg_size||5.005000| mini_mktime||5.007002| minus_v||| missingterm||| mode_from_discipline||| modkids||| more_bodies||| more_sv||| moreswitches||| mro_clean_isarev||| mro_gather_and_rename||| mro_get_from_name||5.010001| mro_get_linear_isa_dfs||| mro_get_linear_isa||5.009005| mro_get_private_data||5.010001| mro_isa_changed_in||| mro_meta_dup||| mro_meta_init||| mro_method_changed_in||5.009005| mro_package_moved||| mro_register||5.010001| mro_set_mro||5.010001| mro_set_private_data||5.010001| mul128||| mulexp10|||n my_atof2||5.007002| my_atof||5.006000| my_attrs||| my_bcopy|||n my_betoh16|||n my_betoh32|||n my_betoh64|||n my_betohi|||n my_betohl|||n my_betohs|||n my_bzero|||n my_chsize||| my_clearenv||| my_cxt_index||| my_cxt_init||| my_dirfd||5.009005| my_exit_jump||| my_exit||| my_failure_exit||5.004000| my_fflush_all||5.006000| my_fork||5.007003|n my_htobe16|||n my_htobe32|||n my_htobe64|||n my_htobei|||n my_htobel|||n my_htobes|||n my_htole16|||n my_htole32|||n my_htole64|||n my_htolei|||n my_htolel|||n my_htoles|||n my_htonl||| my_kid||| my_letoh16|||n my_letoh32|||n my_letoh64|||n my_letohi|||n my_letohl|||n my_letohs|||n my_lstat_flags||| my_lstat||5.017004| my_memcmp|||n my_memset||5.004000|n my_ntohl||| my_pclose||5.004000| my_popen_list||5.007001| my_popen||5.004000| my_setenv||| my_snprintf|5.009004||pvn my_socketpair||5.007003|n my_sprintf|5.009003||pvn my_stat_flags||| my_stat||5.017004| my_strftime||5.007002| my_strlcat|5.009004||pn my_strlcpy|5.009004||pn my_swabn|||n my_swap||| my_unexec||| my_vsnprintf||5.009004|n need_utf8|||n newANONATTRSUB||5.006000| newANONHASH||| newANONLIST||| newANONSUB||| newASSIGNOP||| newATTRSUB_flags||| newATTRSUB||5.006000| newAVREF||| newAV||| newBINOP||| newCONDOP||| newCONSTSUB_flags||5.015006| newCONSTSUB|5.004050||p newCVREF||| newDEFSVOP||| newFORM||| newFOROP||5.013007| newGIVENOP||5.009003| newGIVWHENOP||| newGP||| newGVOP||| newGVREF||| newGVgen_flags||5.015004| newGVgen||| newHVREF||| newHVhv||5.005000| newHV||| newIO||| newLISTOP||| newLOGOP||| newLOOPEX||| newLOOPOP||| newMADPROP||| newMADsv||| newMYSUB||| newNULLLIST||| newOP||| newPADOP||| newPMOP||| newPROG||| newPVOP||| newRANGE||| newRV_inc|5.004000||p newRV_noinc|5.004000||p newRV||| newSLICEOP||| newSTATEOP||| newSTUB||| newSUB||| newSVOP||| newSVREF||| newSV_type|5.009005||p newSVhek||5.009003| newSViv||| newSVnv||| newSVpadname||5.017004| newSVpv_share||5.013006| newSVpvf_nocontext|||vn newSVpvf||5.004000|v newSVpvn_flags|5.010001||p newSVpvn_share|5.007001||p newSVpvn_utf8|5.010001||p newSVpvn|5.004050||p newSVpvs_flags|5.010001||p newSVpvs_share|5.009003||p newSVpvs|5.009003||p newSVpv||| newSVrv||| newSVsv||| newSVuv|5.006000||p newSV||| newTOKEN||| newUNOP||| newWHENOP||5.009003| newWHILEOP||5.013007| newXS_flags||5.009004| newXS_len_flags||| newXSproto||5.006000| newXS||5.006000| new_collate||5.006000| new_constant||| new_ctype||5.006000| new_he||| new_logop||| new_numeric||5.006000| new_stackinfo||5.005000| new_version||5.009000| new_warnings_bitfield||| next_symbol||| nextargv||| nextchar||| ninstr|||n no_bareword_allowed||| no_fh_allowed||| no_op||| not_a_number||| nothreadhook||5.008000| nuke_stacks||| num_overflow|||n oopsAV||| oopsHV||| op_append_elem||5.013006| op_append_list||5.013006| op_clear||| op_const_sv||| op_contextualize||5.013006| op_dump||5.006000| op_free||| op_getmad_weak||| op_getmad||| op_integerize||| op_linklist||5.013006| op_lvalue_flags||| op_lvalue||5.013007| op_null||5.007002| op_prepend_elem||5.013006| op_refcnt_dec||| op_refcnt_inc||| op_refcnt_lock||5.009002| op_refcnt_unlock||5.009002| op_scope||5.013007| op_std_init||| op_unscope||| op_xmldump||| open_script||| opslab_force_free||| opslab_free_nopad||| opslab_free||| opt_scalarhv||| pMY_CXT_|5.007003||p pMY_CXT|5.007003||p pTHX_|5.006000||p pTHX|5.006000||p packWARN|5.007003||p pack_cat||5.007003| pack_rec||| package_version||| package||| packlist||5.008001| pad_add_anon||5.008001| pad_add_name_pvn||5.015001| pad_add_name_pvs||5.015001| pad_add_name_pv||5.015001| pad_add_name_sv||5.015001| pad_alloc_name||| pad_alloc||| pad_block_start||| pad_check_dup||| pad_compname_type||5.009003| pad_findlex||| pad_findmy_pvn||5.015001| pad_findmy_pvs||5.015001| pad_findmy_pv||5.015001| pad_findmy_sv||5.015001| pad_fixup_inner_anons||| pad_free||| pad_leavemy||| pad_new||5.008001| pad_peg|||n pad_push||| pad_reset||| pad_setsv||| pad_sv||| pad_swipe||| pad_tidy||5.008001| padlist_dup||| padlist_store||| parse_arithexpr||5.013008| parse_barestmt||5.013007| parse_block||5.013007| parse_body||| parse_fullexpr||5.013008| parse_fullstmt||5.013005| parse_label||5.013007| parse_listexpr||5.013008| parse_stmtseq||5.013006| parse_termexpr||5.013008| parse_unicode_opts||| parser_dup||| parser_free||| path_is_absolute|||n peep||| perl_alloc_using|||n perl_alloc|||n perl_clone_using|||n perl_clone|||n perl_construct|||n perl_destruct||5.007003|n perl_free|||n perl_parse||5.006000|n perl_run|||n pidgone||| pm_description||| pmop_dump||5.006000| pmop_xmldump||| pmruntime||| pmtrans||| pop_scope||| populate_isa|||v pregcomp||5.009005| pregexec||| pregfree2||5.011000| pregfree||| prepend_madprops||| prescan_version||5.011004| printbuf||| printf_nocontext|||vn process_special_blocks||| ptr_table_clear||5.009005| ptr_table_fetch||5.009005| ptr_table_find|||n ptr_table_free||5.009005| ptr_table_new||5.009005| ptr_table_split||5.009005| ptr_table_store||5.009005| push_scope||| put_byte||| pv_display|5.006000||p pv_escape|5.009004||p pv_pretty|5.009004||p pv_uni_display||5.007003| qerror||| qsortsvu||| re_compile||5.009005| re_croak2||| re_dup_guts||| re_intuit_start||5.009005| re_intuit_string||5.006000| re_op_compile||| readpipe_override||| realloc||5.007002|n reentrant_free||5.017004| reentrant_init||5.017004| reentrant_retry||5.017004|vn reentrant_size||5.017004| ref_array_or_hash||| refcounted_he_chain_2hv||| refcounted_he_fetch_pvn||| refcounted_he_fetch_pvs||| refcounted_he_fetch_pv||| refcounted_he_fetch_sv||| refcounted_he_free||| refcounted_he_inc||| refcounted_he_new_pvn||| refcounted_he_new_pvs||| refcounted_he_new_pv||| refcounted_he_new_sv||| refcounted_he_value||| refkids||| refto||| ref||5.017004| reg_check_named_buff_matched||| reg_named_buff_all||5.009005| reg_named_buff_exists||5.009005| reg_named_buff_fetch||5.009005| reg_named_buff_firstkey||5.009005| reg_named_buff_iter||| reg_named_buff_nextkey||5.009005| reg_named_buff_scalar||5.009005| reg_named_buff||| reg_node||| reg_numbered_buff_fetch||| reg_numbered_buff_length||| reg_numbered_buff_store||| reg_qr_package||| reg_recode||| reg_scan_name||| reg_skipcomment||| reg_temp_copy||| reganode||| regatom||| regbranch||| regclass_swash||5.009004| regclass||| regcppop||| regcppush||| regcurly||| regdump_extflags||| regdump||5.005000| regdupe_internal||| regexec_flags||5.005000| regfree_internal||5.009005| reghop3|||n reghop4|||n reghopmaybe3|||n reginclass||| reginitcolors||5.006000| reginsert||| regmatch||| regnext||5.005000| regpiece||| regpposixcc||| regprop||| regrepeat||| regtail_study||| regtail||| regtry||| reguni||| regwhite|||n reg||| repeatcpy|||n report_evil_fh||| report_redefined_cv||| report_uninit||| report_wrongway_fh||| require_pv||5.006000| require_tie_mod||| restore_magic||| rninstr|||n rpeep||| rsignal_restore||| rsignal_save||| rsignal_state||5.004000| rsignal||5.004000| run_body||| run_user_filter||| runops_debug||5.005000| runops_standard||5.005000| rv2cv_op_cv||5.013006| rvpv_dup||| rxres_free||| rxres_restore||| rxres_save||| safesyscalloc||5.006000|n safesysfree||5.006000|n safesysmalloc||5.006000|n safesysrealloc||5.006000|n same_dirent||| save_I16||5.004000| save_I32||| save_I8||5.006000| save_adelete||5.011000| save_aelem_flags||5.011000| save_aelem||5.004050| save_alloc||5.006000| save_aptr||| save_ary||| save_bool||5.008001| save_clearsv||| save_delete||| save_destructor_x||5.006000| save_destructor||5.006000| save_freeop||| save_freepv||| save_freesv||| save_generic_pvref||5.006001| save_generic_svref||5.005030| save_gp||5.004000| save_hash||| save_hdelete||5.011000| save_hek_flags|||n save_helem_flags||5.011000| save_helem||5.004050| save_hints||5.010001| save_hptr||| save_int||| save_item||| save_iv||5.005000| save_lines||| save_list||| save_long||| save_magic||| save_mortalizesv||5.007001| save_nogv||| save_op||5.005000| save_padsv_and_mortalize||5.010001| save_pptr||| save_pushi32ptr||5.010001| save_pushptri32ptr||| save_pushptrptr||5.010001| save_pushptr||5.010001| save_re_context||5.006000| save_scalar_at||| save_scalar||| save_set_svflags||5.009000| save_shared_pvref||5.007003| save_sptr||| save_svref||| save_vptr||5.006000| savepvn||| savepvs||5.009003| savepv||| savesharedpvn||5.009005| savesharedpvs||5.013006| savesharedpv||5.007003| savesharedsvpv||5.013006| savestack_grow_cnt||5.008001| savestack_grow||| savesvpv||5.009002| sawparens||| scalar_mod_type|||n scalarboolean||| scalarkids||| scalarseq||| scalarvoid||| scalar||| scan_bin||5.006000| scan_commit||| scan_const||| scan_formline||| scan_heredoc||| scan_hex||| scan_ident||| scan_inputsymbol||| scan_num||5.007001| scan_oct||| scan_pat||| scan_str||| scan_subst||| scan_trans||| scan_version||5.009001| scan_vstring||5.009005| scan_word||| screaminstr||5.005000| search_const||| seed||5.008001| sequence_num||| set_context||5.006000|n set_numeric_local||5.006000| set_numeric_radix||5.006000| set_numeric_standard||5.006000| setdefout||| share_hek_flags||| share_hek||5.004000| si_dup||| sighandler|||n simplify_sort||| skipspace0||| skipspace1||| skipspace2||| skipspace||| softref2xv||| sortcv_stacked||| sortcv_xsub||| sortcv||| sortsv_flags||5.009003| sortsv||5.007003| space_join_names_mortal||| ss_dup||| stack_grow||| start_force||| start_glob||| start_subparse||5.004000| stdize_locale||| strEQ||| strGE||| strGT||| strLE||| strLT||| strNE||| str_to_version||5.006000| strip_return||| strnEQ||| strnNE||| study_chunk||| sub_crush_depth||| sublex_done||| sublex_push||| sublex_start||| sv_2bool_flags||5.013006| sv_2bool||| sv_2cv||| sv_2io||| sv_2iuv_common||| sv_2iuv_non_preserve||| sv_2iv_flags||5.009001| sv_2iv||| sv_2mortal||| sv_2num||| sv_2nv_flags||5.013001| sv_2pv_flags|5.007002||p sv_2pv_nolen|5.006000||p sv_2pvbyte_nolen|5.006000||p sv_2pvbyte|5.006000||p sv_2pvutf8_nolen||5.006000| sv_2pvutf8||5.006000| sv_2pv||| sv_2uv_flags||5.009001| sv_2uv|5.004000||p sv_add_arena||| sv_add_backref||| sv_backoff||| sv_bless||| sv_cat_decode||5.008001| sv_catpv_flags||5.013006| sv_catpv_mg|5.004050||p sv_catpv_nomg||5.013006| sv_catpvf_mg_nocontext|||pvn sv_catpvf_mg|5.006000|5.004000|pv sv_catpvf_nocontext|||vn sv_catpvf||5.004000|v sv_catpvn_flags||5.007002| sv_catpvn_mg|5.004050||p sv_catpvn_nomg|5.007002||p sv_catpvn||| sv_catpvs_flags||5.013006| sv_catpvs_mg||5.013006| sv_catpvs_nomg||5.013006| sv_catpvs|5.009003||p sv_catpv||| sv_catsv_flags||5.007002| sv_catsv_mg|5.004050||p sv_catsv_nomg|5.007002||p sv_catsv||| sv_catxmlpvn||| sv_catxmlpv||| sv_catxmlsv||| sv_chop||| sv_clean_all||| sv_clean_objs||| sv_clear||| sv_cmp_flags||5.013006| sv_cmp_locale_flags||5.013006| sv_cmp_locale||5.004000| sv_cmp||| sv_collxfrm_flags||5.013006| sv_collxfrm||| sv_copypv_flags||5.017002| sv_copypv_nomg||5.017002| sv_copypv||| sv_dec_nomg||5.013002| sv_dec||| sv_del_backref||| sv_derived_from_pvn||5.015004| sv_derived_from_pv||5.015004| sv_derived_from_sv||5.015004| sv_derived_from||5.004000| sv_destroyable||5.010000| sv_does_pvn||5.015004| sv_does_pv||5.015004| sv_does_sv||5.015004| sv_does||5.009004| sv_dump||| sv_dup_common||| sv_dup_inc_multiple||| sv_dup_inc||| sv_dup||| sv_eq_flags||5.013006| sv_eq||| sv_exp_grow||| sv_force_normal_flags||5.007001| sv_force_normal||5.006000| sv_free2||| sv_free_arenas||| sv_free||| sv_gets||5.004000| sv_grow||| sv_i_ncmp||| sv_inc_nomg||5.013002| sv_inc||| sv_insert_flags||5.010001| sv_insert||| sv_isa||| sv_isobject||| sv_iv||5.005000| sv_kill_backrefs||| sv_len_utf8||5.006000| sv_len||| sv_magic_portable|5.017004|5.004000|p sv_magicext||5.007003| sv_magic||| sv_mortalcopy||| sv_ncmp||| sv_newmortal||| sv_newref||| sv_nolocking||5.007003| sv_nosharing||5.007003| sv_nounlocking||| sv_nv||5.005000| sv_peek||5.005000| sv_pos_b2u_midway||| sv_pos_b2u||5.006000| sv_pos_u2b_cached||| sv_pos_u2b_flags||5.011005| sv_pos_u2b_forwards|||n sv_pos_u2b_midway|||n sv_pos_u2b||5.006000| sv_pvbyten_force||5.006000| sv_pvbyten||5.006000| sv_pvbyte||5.006000| sv_pvn_force_flags|5.007002||p sv_pvn_force||| sv_pvn_nomg|5.007003|5.005000|p sv_pvn||5.005000| sv_pvutf8n_force||5.006000| sv_pvutf8n||5.006000| sv_pvutf8||5.006000| sv_pv||5.006000| sv_recode_to_utf8||5.007003| sv_reftype||| sv_ref||| sv_release_COW||| sv_replace||| sv_report_used||| sv_reset||| sv_rvweaken||5.006000| sv_sethek||| sv_setiv_mg|5.004050||p sv_setiv||| sv_setnv_mg|5.006000||p sv_setnv||| sv_setpv_mg|5.004050||p sv_setpvf_mg_nocontext|||pvn sv_setpvf_mg|5.006000|5.004000|pv sv_setpvf_nocontext|||vn sv_setpvf||5.004000|v sv_setpviv_mg||5.008001| sv_setpviv||5.008001| sv_setpvn_mg|5.004050||p sv_setpvn||| sv_setpvs_mg||5.013006| sv_setpvs|5.009004||p sv_setpv||| sv_setref_iv||| sv_setref_nv||| sv_setref_pvn||| sv_setref_pvs||5.017004| sv_setref_pv||| sv_setref_uv||5.007001| sv_setsv_cow||| sv_setsv_flags||5.007002| sv_setsv_mg|5.004050||p sv_setsv_nomg|5.007002||p sv_setsv||| sv_setuv_mg|5.004050||p sv_setuv|5.004000||p sv_tainted||5.004000| sv_taint||5.004000| sv_true||5.005000| sv_unglob||| sv_uni_display||5.007003| sv_unmagicext||5.013008| sv_unmagic||| sv_unref_flags||5.007001| sv_unref||| sv_untaint||5.004000| sv_upgrade||| sv_usepvn_flags||5.009004| sv_usepvn_mg|5.004050||p sv_usepvn||| sv_utf8_decode||5.006000| sv_utf8_downgrade||5.006000| sv_utf8_encode||5.006000| sv_utf8_upgrade_flags_grow||5.011000| sv_utf8_upgrade_flags||5.007002| sv_utf8_upgrade_nomg||5.007002| sv_utf8_upgrade||5.007001| sv_uv|5.005000||p sv_vcatpvf_mg|5.006000|5.004000|p sv_vcatpvfn_flags||5.017002| sv_vcatpvfn||5.004000| sv_vcatpvf|5.006000|5.004000|p sv_vsetpvf_mg|5.006000|5.004000|p sv_vsetpvfn||5.004000| sv_vsetpvf|5.006000|5.004000|p sv_xmlpeek||| svtype||| swallow_bom||| swash_fetch||5.007002| swash_init||5.006000| swatch_get||| sys_init3||5.010000|n sys_init||5.010000|n sys_intern_clear||| sys_intern_dup||| sys_intern_init||| sys_term||5.010000|n taint_env||| taint_proper||| tied_method|||v tmps_grow||5.006000| toLOWER||| toUPPER||| to_byte_substr||| to_lower_latin1||| to_uni_fold||5.007003| to_uni_lower_lc||5.006000| to_uni_lower||5.007003| to_uni_title_lc||5.006000| to_uni_title||5.007003| to_uni_upper_lc||5.006000| to_uni_upper||5.007003| to_utf8_case||5.007003| to_utf8_fold||5.015007| to_utf8_lower||5.015007| to_utf8_substr||| to_utf8_title||5.015007| to_utf8_upper||5.015007| token_free||| token_getmad||| tokenize_use||| tokeq||| tokereport||| too_few_arguments_pv||| too_few_arguments_sv||| too_many_arguments_pv||| too_many_arguments_sv||| translate_substr_offsets||| try_amagic_bin||| try_amagic_un||| uiv_2buf|||n unlnk||| unpack_rec||| unpack_str||5.007003| unpackstring||5.008001| unreferenced_to_tmp_stack||| unshare_hek_or_pvn||| unshare_hek||| unsharepvn||5.004000| unwind_handler_stack||| update_debugger_info||| upg_version||5.009005| usage||| utf16_textfilter||| utf16_to_utf8_reversed||5.006001| utf16_to_utf8||5.006001| utf8_distance||5.006000| utf8_hop||5.006000| utf8_length||5.007001| utf8_mg_len_cache_update||| utf8_mg_pos_cache_update||| utf8_to_bytes||5.006001| utf8_to_uvchr_buf||5.015009| utf8_to_uvchr||5.007001| utf8_to_uvuni_buf||5.015009| utf8_to_uvuni||5.007001| utf8n_to_uvchr||| utf8n_to_uvuni||5.007001| utilize||| uvchr_to_utf8_flags||5.007003| uvchr_to_utf8||| uvuni_to_utf8_flags||5.007003| uvuni_to_utf8||5.007001| valid_utf8_to_uvchr||5.015009| valid_utf8_to_uvuni||5.015009| validate_suid||| varname||| vcmp||5.009000| vcroak||5.006000| vdeb||5.007003| vform||5.006000| visit||| vivify_defelem||| vivify_ref||| vload_module|5.006000||p vmess||5.006000| vnewSVpvf|5.006000|5.004000|p vnormal||5.009002| vnumify||5.009000| vstringify||5.009000| vverify||5.009003| vwarner||5.006000| vwarn||5.006000| wait4pid||| warn_nocontext|||vn warn_sv||5.013001| warner_nocontext|||vn warner|5.006000|5.004000|pv warn|||v was_lvalue_sub||| watch||| whichsig_pvn||5.015004| whichsig_pv||5.015004| whichsig_sv||5.015004| whichsig||| with_queued_errors||| wrap_op_checker||5.015008| write_no_mem||| write_to_stderr||| xmldump_all_perl||| xmldump_all||| xmldump_attr||| xmldump_eval||| xmldump_form||| xmldump_indent|||v xmldump_packsubs_perl||| xmldump_packsubs||| xmldump_sub_perl||| xmldump_sub||| xmldump_vindent||| xs_apiversion_bootcheck||| xs_version_bootcheck||| yyerror_pvn||| yyerror_pv||| yyerror||| yylex||| yyparse||| yyunlex||| yywarn||| ); if (exists $opt{'list-unsupported'}) { my $f; for $f (sort { lc $a cmp lc $b } keys %API) { next unless $API{$f}{todo}; print "$f ", '.'x(40-length($f)), " ", format_version($API{$f}{todo}), "\n"; } exit 0; } # Scan for possible replacement candidates my(%replace, %need, %hints, %warnings, %depends); my $replace = 0; my($hint, $define, $function); sub find_api { my $code = shift; $code =~ s{ / (?: \*[^*]*\*+(?:[^$ccs][^*]*\*+)* / | /[^\r\n]*) | "[^"\\]*(?:\\.[^"\\]*)*" | '[^'\\]*(?:\\.[^'\\]*)*' }{}egsx; grep { exists $API{$_} } $code =~ /(\w+)/mg; } while () { if ($hint) { my $h = $hint->[0] eq 'Hint' ? \%hints : \%warnings; if (m{^\s*\*\s(.*?)\s*$}) { for (@{$hint->[1]}) { $h->{$_} ||= ''; # suppress warning with older perls $h->{$_} .= "$1\n"; } } else { undef $hint } } $hint = [$1, [split /,?\s+/, $2]] if m{^\s*$rccs\s+(Hint|Warning):\s+(\w+(?:,?\s+\w+)*)\s*$}; if ($define) { if ($define->[1] =~ /\\$/) { $define->[1] .= $_; } else { if (exists $API{$define->[0]} && $define->[1] !~ /^DPPP_\(/) { my @n = find_api($define->[1]); push @{$depends{$define->[0]}}, @n if @n } undef $define; } } $define = [$1, $2] if m{^\s*#\s*define\s+(\w+)(?:\([^)]*\))?\s+(.*)}; if ($function) { if (/^}/) { if (exists $API{$function->[0]}) { my @n = find_api($function->[1]); push @{$depends{$function->[0]}}, @n if @n } undef $function; } else { $function->[1] .= $_; } } $function = [$1, ''] if m{^DPPP_\(my_(\w+)\)}; $replace = $1 if m{^\s*$rccs\s+Replace:\s+(\d+)\s+$rcce\s*$}; $replace{$2} = $1 if $replace and m{^\s*#\s*define\s+(\w+)(?:\([^)]*\))?\s+(\w+)}; $replace{$2} = $1 if m{^\s*#\s*define\s+(\w+)(?:\([^)]*\))?\s+(\w+).*$rccs\s+Replace\s+$rcce}; $replace{$1} = $2 if m{^\s*$rccs\s+Replace (\w+) with (\w+)\s+$rcce\s*$}; if (m{^\s*$rccs\s+(\w+(\s*,\s*\w+)*)\s+depends\s+on\s+(\w+(\s*,\s*\w+)*)\s+$rcce\s*$}) { my @deps = map { s/\s+//g; $_ } split /,/, $3; my $d; for $d (map { s/\s+//g; $_ } split /,/, $1) { push @{$depends{$d}}, @deps; } } $need{$1} = 1 if m{^#if\s+defined\(NEED_(\w+)(?:_GLOBAL)?\)}; } for (values %depends) { my %s; $_ = [sort grep !$s{$_}++, @$_]; } if (exists $opt{'api-info'}) { my $f; my $count = 0; my $match = $opt{'api-info'} =~ m!^/(.*)/$! ? $1 : "^\Q$opt{'api-info'}\E\$"; for $f (sort { lc $a cmp lc $b } keys %API) { next unless $f =~ /$match/; print "\n=== $f ===\n\n"; my $info = 0; if ($API{$f}{base} || $API{$f}{todo}) { my $base = format_version($API{$f}{base} || $API{$f}{todo}); print "Supported at least starting from perl-$base.\n"; $info++; } if ($API{$f}{provided}) { my $todo = $API{$f}{todo} ? format_version($API{$f}{todo}) : "5.003"; print "Support by $ppport provided back to perl-$todo.\n"; print "Support needs to be explicitly requested by NEED_$f.\n" if exists $need{$f}; print "Depends on: ", join(', ', @{$depends{$f}}), ".\n" if exists $depends{$f}; print "\n$hints{$f}" if exists $hints{$f}; print "\nWARNING:\n$warnings{$f}" if exists $warnings{$f}; $info++; } print "No portability information available.\n" unless $info; $count++; } $count or print "Found no API matching '$opt{'api-info'}'."; print "\n"; exit 0; } if (exists $opt{'list-provided'}) { my $f; for $f (sort { lc $a cmp lc $b } keys %API) { next unless $API{$f}{provided}; my @flags; push @flags, 'explicit' if exists $need{$f}; push @flags, 'depend' if exists $depends{$f}; push @flags, 'hint' if exists $hints{$f}; push @flags, 'warning' if exists $warnings{$f}; my $flags = @flags ? ' ['.join(', ', @flags).']' : ''; print "$f$flags\n"; } exit 0; } my @files; my @srcext = qw( .xs .c .h .cc .cpp -c.inc -xs.inc ); my $srcext = join '|', map { quotemeta $_ } @srcext; if (@ARGV) { my %seen; for (@ARGV) { if (-e) { if (-f) { push @files, $_ unless $seen{$_}++; } else { warn "'$_' is not a file.\n" } } else { my @new = grep { -f } glob $_ or warn "'$_' does not exist.\n"; push @files, grep { !$seen{$_}++ } @new; } } } else { eval { require File::Find; File::Find::find(sub { $File::Find::name =~ /($srcext)$/i and push @files, $File::Find::name; }, '.'); }; if ($@) { @files = map { glob "*$_" } @srcext; } } if (!@ARGV || $opt{filter}) { my(@in, @out); my %xsc = map { /(.*)\.xs$/ ? ("$1.c" => 1, "$1.cc" => 1) : () } @files; for (@files) { my $out = exists $xsc{$_} || /\b\Q$ppport\E$/i || !/($srcext)$/i; push @{ $out ? \@out : \@in }, $_; } if (@ARGV && @out) { warning("Skipping the following files (use --nofilter to avoid this):\n| ", join "\n| ", @out); } @files = @in; } die "No input files given!\n" unless @files; my(%files, %global, %revreplace); %revreplace = reverse %replace; my $filename; my $patch_opened = 0; for $filename (@files) { unless (open IN, "<$filename") { warn "Unable to read from $filename: $!\n"; next; } info("Scanning $filename ..."); my $c = do { local $/; }; close IN; my %file = (orig => $c, changes => 0); # Temporarily remove C/XS comments and strings from the code my @ccom; $c =~ s{ ( ^$HS*\#$HS*include\b[^\r\n]+\b(?:\Q$ppport\E|XSUB\.h)\b[^\r\n]* | ^$HS*\#$HS*(?:define|elif|if(?:def)?)\b[^\r\n]* ) | ( ^$HS*\#[^\r\n]* | "[^"\\]*(?:\\.[^"\\]*)*" | '[^'\\]*(?:\\.[^'\\]*)*' | / (?: \*[^*]*\*+(?:[^$ccs][^*]*\*+)* / | /[^\r\n]* ) ) }{ defined $2 and push @ccom, $2; defined $1 ? $1 : "$ccs$#ccom$cce" }mgsex; $file{ccom} = \@ccom; $file{code} = $c; $file{has_inc_ppport} = $c =~ /^$HS*#$HS*include[^\r\n]+\b\Q$ppport\E\b/m; my $func; for $func (keys %API) { my $match = $func; $match .= "|$revreplace{$func}" if exists $revreplace{$func}; if ($c =~ /\b(?:Perl_)?($match)\b/) { $file{uses_replace}{$1}++ if exists $revreplace{$func} && $1 eq $revreplace{$func}; $file{uses_Perl}{$func}++ if $c =~ /\bPerl_$func\b/; if (exists $API{$func}{provided}) { $file{uses_provided}{$func}++; if (!exists $API{$func}{base} || $API{$func}{base} > $opt{'compat-version'}) { $file{uses}{$func}++; my @deps = rec_depend($func); if (@deps) { $file{uses_deps}{$func} = \@deps; for (@deps) { $file{uses}{$_} = 0 unless exists $file{uses}{$_}; } } for ($func, @deps) { $file{needs}{$_} = 'static' if exists $need{$_}; } } } if (exists $API{$func}{todo} && $API{$func}{todo} > $opt{'compat-version'}) { if ($c =~ /\b$func\b/) { $file{uses_todo}{$func}++; } } } } while ($c =~ /^$HS*#$HS*define$HS+(NEED_(\w+?)(_GLOBAL)?)\b/mg) { if (exists $need{$2}) { $file{defined $3 ? 'needed_global' : 'needed_static'}{$2}++; } else { warning("Possibly wrong #define $1 in $filename") } } for (qw(uses needs uses_todo needed_global needed_static)) { for $func (keys %{$file{$_}}) { push @{$global{$_}{$func}}, $filename; } } $files{$filename} = \%file; } # Globally resolve NEED_'s my $need; for $need (keys %{$global{needs}}) { if (@{$global{needs}{$need}} > 1) { my @targets = @{$global{needs}{$need}}; my @t = grep $files{$_}{needed_global}{$need}, @targets; @targets = @t if @t; @t = grep /\.xs$/i, @targets; @targets = @t if @t; my $target = shift @targets; $files{$target}{needs}{$need} = 'global'; for (@{$global{needs}{$need}}) { $files{$_}{needs}{$need} = 'extern' if $_ ne $target; } } } for $filename (@files) { exists $files{$filename} or next; info("=== Analyzing $filename ==="); my %file = %{$files{$filename}}; my $func; my $c = $file{code}; my $warnings = 0; for $func (sort keys %{$file{uses_Perl}}) { if ($API{$func}{varargs}) { unless ($API{$func}{nothxarg}) { my $changes = ($c =~ s{\b(Perl_$func\s*\(\s*)(?!aTHX_?)(\)|[^\s)]*\))} { $1 . ($2 eq ')' ? 'aTHX' : 'aTHX_ ') . $2 }ge); if ($changes) { warning("Doesn't pass interpreter argument aTHX to Perl_$func"); $file{changes} += $changes; } } } else { warning("Uses Perl_$func instead of $func"); $file{changes} += ($c =~ s{\bPerl_$func(\s*)\((\s*aTHX_?)?\s*} {$func$1(}g); } } for $func (sort keys %{$file{uses_replace}}) { warning("Uses $func instead of $replace{$func}"); $file{changes} += ($c =~ s/\b$func\b/$replace{$func}/g); } for $func (sort keys %{$file{uses_provided}}) { if ($file{uses}{$func}) { if (exists $file{uses_deps}{$func}) { diag("Uses $func, which depends on ", join(', ', @{$file{uses_deps}{$func}})); } else { diag("Uses $func"); } } $warnings += hint($func); } unless ($opt{quiet}) { for $func (sort keys %{$file{uses_todo}}) { print "*** WARNING: Uses $func, which may not be portable below perl ", format_version($API{$func}{todo}), ", even with '$ppport'\n"; $warnings++; } } for $func (sort keys %{$file{needed_static}}) { my $message = ''; if (not exists $file{uses}{$func}) { $message = "No need to define NEED_$func if $func is never used"; } elsif (exists $file{needs}{$func} && $file{needs}{$func} ne 'static') { $message = "No need to define NEED_$func when already needed globally"; } if ($message) { diag($message); $file{changes} += ($c =~ s/^$HS*#$HS*define$HS+NEED_$func\b.*$LF//mg); } } for $func (sort keys %{$file{needed_global}}) { my $message = ''; if (not exists $global{uses}{$func}) { $message = "No need to define NEED_${func}_GLOBAL if $func is never used"; } elsif (exists $file{needs}{$func}) { if ($file{needs}{$func} eq 'extern') { $message = "No need to define NEED_${func}_GLOBAL when already needed globally"; } elsif ($file{needs}{$func} eq 'static') { $message = "No need to define NEED_${func}_GLOBAL when only used in this file"; } } if ($message) { diag($message); $file{changes} += ($c =~ s/^$HS*#$HS*define$HS+NEED_${func}_GLOBAL\b.*$LF//mg); } } $file{needs_inc_ppport} = keys %{$file{uses}}; if ($file{needs_inc_ppport}) { my $pp = ''; for $func (sort keys %{$file{needs}}) { my $type = $file{needs}{$func}; next if $type eq 'extern'; my $suffix = $type eq 'global' ? '_GLOBAL' : ''; unless (exists $file{"needed_$type"}{$func}) { if ($type eq 'global') { diag("Files [@{$global{needs}{$func}}] need $func, adding global request"); } else { diag("File needs $func, adding static request"); } $pp .= "#define NEED_$func$suffix\n"; } } if ($pp && ($c =~ s/^(?=$HS*#$HS*define$HS+NEED_\w+)/$pp/m)) { $pp = ''; $file{changes}++; } unless ($file{has_inc_ppport}) { diag("Needs to include '$ppport'"); $pp .= qq(#include "$ppport"\n) } if ($pp) { $file{changes} += ($c =~ s/^($HS*#$HS*define$HS+NEED_\w+.*?)^/$1$pp/ms) || ($c =~ s/^(?=$HS*#$HS*include.*\Q$ppport\E)/$pp/m) || ($c =~ s/^($HS*#$HS*include.*XSUB.*\s*?)^/$1$pp/m) || ($c =~ s/^/$pp/); } } else { if ($file{has_inc_ppport}) { diag("No need to include '$ppport'"); $file{changes} += ($c =~ s/^$HS*?#$HS*include.*\Q$ppport\E.*?$LF//m); } } # put back in our C comments my $ix; my $cppc = 0; my @ccom = @{$file{ccom}}; for $ix (0 .. $#ccom) { if (!$opt{cplusplus} && $ccom[$ix] =~ s!^//!!) { $cppc++; $file{changes} += $c =~ s/$rccs$ix$rcce/$ccs$ccom[$ix] $cce/; } else { $c =~ s/$rccs$ix$rcce/$ccom[$ix]/; } } if ($cppc) { my $s = $cppc != 1 ? 's' : ''; warning("Uses $cppc C++ style comment$s, which is not portable"); } my $s = $warnings != 1 ? 's' : ''; my $warn = $warnings ? " ($warnings warning$s)" : ''; info("Analysis completed$warn"); if ($file{changes}) { if (exists $opt{copy}) { my $newfile = "$filename$opt{copy}"; if (-e $newfile) { error("'$newfile' already exists, refusing to write copy of '$filename'"); } else { local *F; if (open F, ">$newfile") { info("Writing copy of '$filename' with changes to '$newfile'"); print F $c; close F; } else { error("Cannot open '$newfile' for writing: $!"); } } } elsif (exists $opt{patch} || $opt{changes}) { if (exists $opt{patch}) { unless ($patch_opened) { if (open PATCH, ">$opt{patch}") { $patch_opened = 1; } else { error("Cannot open '$opt{patch}' for writing: $!"); delete $opt{patch}; $opt{changes} = 1; goto fallback; } } mydiff(\*PATCH, $filename, $c); } else { fallback: info("Suggested changes:"); mydiff(\*STDOUT, $filename, $c); } } else { my $s = $file{changes} == 1 ? '' : 's'; info("$file{changes} potentially required change$s detected"); } } else { info("Looks good"); } } close PATCH if $patch_opened; exit 0; sub try_use { eval "use @_;"; return $@ eq '' } sub mydiff { local *F = shift; my($file, $str) = @_; my $diff; if (exists $opt{diff}) { $diff = run_diff($opt{diff}, $file, $str); } if (!defined $diff and try_use('Text::Diff')) { $diff = Text::Diff::diff($file, \$str, { STYLE => 'Unified' }); $diff = <
$tmp") { print F $str; close F; if (open F, "$prog $file $tmp |") { while () { s/\Q$tmp\E/$file.patched/; $diff .= $_; } close F; unlink $tmp; return $diff; } unlink $tmp; } else { error("Cannot open '$tmp' for writing: $!"); } return undef; } sub rec_depend { my($func, $seen) = @_; return () unless exists $depends{$func}; $seen = {%{$seen||{}}}; return () if $seen->{$func}++; my %s; grep !$s{$_}++, map { ($_, rec_depend($_, $seen)) } @{$depends{$func}}; } sub parse_version { my $ver = shift; if ($ver =~ /^(\d+)\.(\d+)\.(\d+)$/) { return ($1, $2, $3); } elsif ($ver !~ /^\d+\.[\d_]+$/) { die "cannot parse version '$ver'\n"; } $ver =~ s/_//g; $ver =~ s/$/000000/; my($r,$v,$s) = $ver =~ /(\d+)\.(\d{3})(\d{3})/; $v = int $v; $s = int $s; if ($r < 5 || ($r == 5 && $v < 6)) { if ($s % 10) { die "cannot parse version '$ver'\n"; } } return ($r, $v, $s); } sub format_version { my $ver = shift; $ver =~ s/$/000000/; my($r,$v,$s) = $ver =~ /(\d+)\.(\d{3})(\d{3})/; $v = int $v; $s = int $s; if ($r < 5 || ($r == 5 && $v < 6)) { if ($s % 10) { die "invalid version '$ver'\n"; } $s /= 10; $ver = sprintf "%d.%03d", $r, $v; $s > 0 and $ver .= sprintf "_%02d", $s; return $ver; } return sprintf "%d.%d.%d", $r, $v, $s; } sub info { $opt{quiet} and return; print @_, "\n"; } sub diag { $opt{quiet} and return; $opt{diag} and print @_, "\n"; } sub warning { $opt{quiet} and return; print "*** ", @_, "\n"; } sub error { print "*** ERROR: ", @_, "\n"; } my %given_hints; my %given_warnings; sub hint { $opt{quiet} and return; my $func = shift; my $rv = 0; if (exists $warnings{$func} && !$given_warnings{$func}++) { my $warn = $warnings{$func}; $warn =~ s!^!*** !mg; print "*** WARNING: $func\n", $warn; $rv++; } if ($opt{hints} && exists $hints{$func} && !$given_hints{$func}++) { my $hint = $hints{$func}; $hint =~ s/^/ /mg; print " --- hint for $func ---\n", $hint; } $rv; } sub usage { my($usage) = do { local(@ARGV,$/)=($0); <> } =~ /^=head\d$HS+SYNOPSIS\s*^(.*?)\s*^=/ms; my %M = ( 'I' => '*' ); $usage =~ s/^\s*perl\s+\S+/$^X $0/; $usage =~ s/([A-Z])<([^>]+)>/$M{$1}$2$M{$1}/g; print < }; my($copy) = $self =~ /^=head\d\s+COPYRIGHT\s*^(.*?)^=\w+/ms; $copy =~ s/^(?=\S+)/ /gms; $self =~ s/^$HS+Do NOT edit.*?(?=^-)/$copy/ms; $self =~ s/^SKIP.*(?=^__DATA__)/SKIP if (\@ARGV && \$ARGV[0] eq '--unstrip') { eval { require Devel::PPPort }; \$@ and die "Cannot require Devel::PPPort, please install.\\n"; if (eval \$Devel::PPPort::VERSION < $VERSION) { die "$0 was originally generated with Devel::PPPort $VERSION.\\n" . "Your Devel::PPPort is only version \$Devel::PPPort::VERSION.\\n" . "Please install a newer version, or --unstrip will not work.\\n"; } Devel::PPPort::WriteFile(\$0); exit 0; } print <$0" or die "cannot strip $0: $!\n"; print OUT "$pl$c\n"; exit 0; } __DATA__ */ #ifndef _P_P_PORTABILITY_H_ #define _P_P_PORTABILITY_H_ #ifndef DPPP_NAMESPACE # define DPPP_NAMESPACE DPPP_ #endif #define DPPP_CAT2(x,y) CAT2(x,y) #define DPPP_(name) DPPP_CAT2(DPPP_NAMESPACE, name) #ifndef PERL_REVISION # if !defined(__PATCHLEVEL_H_INCLUDED__) && !(defined(PATCHLEVEL) && defined(SUBVERSION)) # define PERL_PATCHLEVEL_H_IMPLICIT # include # endif # if !(defined(PERL_VERSION) || (defined(SUBVERSION) && defined(PATCHLEVEL))) # include # endif # ifndef PERL_REVISION # define PERL_REVISION (5) /* Replace: 1 */ # define PERL_VERSION PATCHLEVEL # define PERL_SUBVERSION SUBVERSION /* Replace PERL_PATCHLEVEL with PERL_VERSION */ /* Replace: 0 */ # endif #endif #define _dpppDEC2BCD(dec) ((((dec)/100)<<8)|((((dec)%100)/10)<<4)|((dec)%10)) #define PERL_BCDVERSION ((_dpppDEC2BCD(PERL_REVISION)<<24)|(_dpppDEC2BCD(PERL_VERSION)<<12)|_dpppDEC2BCD(PERL_SUBVERSION)) /* It is very unlikely that anyone will try to use this with Perl 6 (or greater), but who knows. */ #if PERL_REVISION != 5 # error ppport.h only works with Perl version 5 #endif /* PERL_REVISION != 5 */ #ifndef dTHR # define dTHR dNOOP #endif #ifndef dTHX # define dTHX dNOOP #endif #ifndef dTHXa # define dTHXa(x) dNOOP #endif #ifndef pTHX # define pTHX void #endif #ifndef pTHX_ # define pTHX_ #endif #ifndef aTHX # define aTHX #endif #ifndef aTHX_ # define aTHX_ #endif #if (PERL_BCDVERSION < 0x5006000) # ifdef USE_THREADS # define aTHXR thr # define aTHXR_ thr, # else # define aTHXR # define aTHXR_ # endif # define dTHXR dTHR #else # define aTHXR aTHX # define aTHXR_ aTHX_ # define dTHXR dTHX #endif #ifndef dTHXoa # define dTHXoa(x) dTHXa(x) #endif #ifdef I_LIMITS # include #endif #ifndef PERL_UCHAR_MIN # define PERL_UCHAR_MIN ((unsigned char)0) #endif #ifndef PERL_UCHAR_MAX # ifdef UCHAR_MAX # define PERL_UCHAR_MAX ((unsigned char)UCHAR_MAX) # else # ifdef MAXUCHAR # define PERL_UCHAR_MAX ((unsigned char)MAXUCHAR) # else # define PERL_UCHAR_MAX ((unsigned char)~(unsigned)0) # endif # endif #endif #ifndef PERL_USHORT_MIN # define PERL_USHORT_MIN ((unsigned short)0) #endif #ifndef PERL_USHORT_MAX # ifdef USHORT_MAX # define PERL_USHORT_MAX ((unsigned short)USHORT_MAX) # else # ifdef MAXUSHORT # define PERL_USHORT_MAX ((unsigned short)MAXUSHORT) # else # ifdef USHRT_MAX # define PERL_USHORT_MAX ((unsigned short)USHRT_MAX) # else # define PERL_USHORT_MAX ((unsigned short)~(unsigned)0) # endif # endif # endif #endif #ifndef PERL_SHORT_MAX # ifdef SHORT_MAX # define PERL_SHORT_MAX ((short)SHORT_MAX) # else # ifdef MAXSHORT /* Often used in */ # define PERL_SHORT_MAX ((short)MAXSHORT) # else # ifdef SHRT_MAX # define PERL_SHORT_MAX ((short)SHRT_MAX) # else # define PERL_SHORT_MAX ((short) (PERL_USHORT_MAX >> 1)) # endif # endif # endif #endif #ifndef PERL_SHORT_MIN # ifdef SHORT_MIN # define PERL_SHORT_MIN ((short)SHORT_MIN) # else # ifdef MINSHORT # define PERL_SHORT_MIN ((short)MINSHORT) # else # ifdef SHRT_MIN # define PERL_SHORT_MIN ((short)SHRT_MIN) # else # define PERL_SHORT_MIN (-PERL_SHORT_MAX - ((3 & -1) == 3)) # endif # endif # endif #endif #ifndef PERL_UINT_MAX # ifdef UINT_MAX # define PERL_UINT_MAX ((unsigned int)UINT_MAX) # else # ifdef MAXUINT # define PERL_UINT_MAX ((unsigned int)MAXUINT) # else # define PERL_UINT_MAX (~(unsigned int)0) # endif # endif #endif #ifndef PERL_UINT_MIN # define PERL_UINT_MIN ((unsigned int)0) #endif #ifndef PERL_INT_MAX # ifdef INT_MAX # define PERL_INT_MAX ((int)INT_MAX) # else # ifdef MAXINT /* Often used in */ # define PERL_INT_MAX ((int)MAXINT) # else # define PERL_INT_MAX ((int)(PERL_UINT_MAX >> 1)) # endif # endif #endif #ifndef PERL_INT_MIN # ifdef INT_MIN # define PERL_INT_MIN ((int)INT_MIN) # else # ifdef MININT # define PERL_INT_MIN ((int)MININT) # else # define PERL_INT_MIN (-PERL_INT_MAX - ((3 & -1) == 3)) # endif # endif #endif #ifndef PERL_ULONG_MAX # ifdef ULONG_MAX # define PERL_ULONG_MAX ((unsigned long)ULONG_MAX) # else # ifdef MAXULONG # define PERL_ULONG_MAX ((unsigned long)MAXULONG) # else # define PERL_ULONG_MAX (~(unsigned long)0) # endif # endif #endif #ifndef PERL_ULONG_MIN # define PERL_ULONG_MIN ((unsigned long)0L) #endif #ifndef PERL_LONG_MAX # ifdef LONG_MAX # define PERL_LONG_MAX ((long)LONG_MAX) # else # ifdef MAXLONG # define PERL_LONG_MAX ((long)MAXLONG) # else # define PERL_LONG_MAX ((long) (PERL_ULONG_MAX >> 1)) # endif # endif #endif #ifndef PERL_LONG_MIN # ifdef LONG_MIN # define PERL_LONG_MIN ((long)LONG_MIN) # else # ifdef MINLONG # define PERL_LONG_MIN ((long)MINLONG) # else # define PERL_LONG_MIN (-PERL_LONG_MAX - ((3 & -1) == 3)) # endif # endif #endif #if defined(HAS_QUAD) && (defined(convex) || defined(uts)) # ifndef PERL_UQUAD_MAX # ifdef ULONGLONG_MAX # define PERL_UQUAD_MAX ((unsigned long long)ULONGLONG_MAX) # else # ifdef MAXULONGLONG # define PERL_UQUAD_MAX ((unsigned long long)MAXULONGLONG) # else # define PERL_UQUAD_MAX (~(unsigned long long)0) # endif # endif # endif # ifndef PERL_UQUAD_MIN # define PERL_UQUAD_MIN ((unsigned long long)0L) # endif # ifndef PERL_QUAD_MAX # ifdef LONGLONG_MAX # define PERL_QUAD_MAX ((long long)LONGLONG_MAX) # else # ifdef MAXLONGLONG # define PERL_QUAD_MAX ((long long)MAXLONGLONG) # else # define PERL_QUAD_MAX ((long long) (PERL_UQUAD_MAX >> 1)) # endif # endif # endif # ifndef PERL_QUAD_MIN # ifdef LONGLONG_MIN # define PERL_QUAD_MIN ((long long)LONGLONG_MIN) # else # ifdef MINLONGLONG # define PERL_QUAD_MIN ((long long)MINLONGLONG) # else # define PERL_QUAD_MIN (-PERL_QUAD_MAX - ((3 & -1) == 3)) # endif # endif # endif #endif /* This is based on code from 5.003 perl.h */ #ifdef HAS_QUAD # ifdef cray #ifndef IVTYPE # define IVTYPE int #endif #ifndef IV_MIN # define IV_MIN PERL_INT_MIN #endif #ifndef IV_MAX # define IV_MAX PERL_INT_MAX #endif #ifndef UV_MIN # define UV_MIN PERL_UINT_MIN #endif #ifndef UV_MAX # define UV_MAX PERL_UINT_MAX #endif # ifdef INTSIZE #ifndef IVSIZE # define IVSIZE INTSIZE #endif # endif # else # if defined(convex) || defined(uts) #ifndef IVTYPE # define IVTYPE long long #endif #ifndef IV_MIN # define IV_MIN PERL_QUAD_MIN #endif #ifndef IV_MAX # define IV_MAX PERL_QUAD_MAX #endif #ifndef UV_MIN # define UV_MIN PERL_UQUAD_MIN #endif #ifndef UV_MAX # define UV_MAX PERL_UQUAD_MAX #endif # ifdef LONGLONGSIZE #ifndef IVSIZE # define IVSIZE LONGLONGSIZE #endif # endif # else #ifndef IVTYPE # define IVTYPE long #endif #ifndef IV_MIN # define IV_MIN PERL_LONG_MIN #endif #ifndef IV_MAX # define IV_MAX PERL_LONG_MAX #endif #ifndef UV_MIN # define UV_MIN PERL_ULONG_MIN #endif #ifndef UV_MAX # define UV_MAX PERL_ULONG_MAX #endif # ifdef LONGSIZE #ifndef IVSIZE # define IVSIZE LONGSIZE #endif # endif # endif # endif #ifndef IVSIZE # define IVSIZE 8 #endif #ifndef LONGSIZE # define LONGSIZE 8 #endif #ifndef PERL_QUAD_MIN # define PERL_QUAD_MIN IV_MIN #endif #ifndef PERL_QUAD_MAX # define PERL_QUAD_MAX IV_MAX #endif #ifndef PERL_UQUAD_MIN # define PERL_UQUAD_MIN UV_MIN #endif #ifndef PERL_UQUAD_MAX # define PERL_UQUAD_MAX UV_MAX #endif #else #ifndef IVTYPE # define IVTYPE long #endif #ifndef LONGSIZE # define LONGSIZE 4 #endif #ifndef IV_MIN # define IV_MIN PERL_LONG_MIN #endif #ifndef IV_MAX # define IV_MAX PERL_LONG_MAX #endif #ifndef UV_MIN # define UV_MIN PERL_ULONG_MIN #endif #ifndef UV_MAX # define UV_MAX PERL_ULONG_MAX #endif #endif #ifndef IVSIZE # ifdef LONGSIZE # define IVSIZE LONGSIZE # else # define IVSIZE 4 /* A bold guess, but the best we can make. */ # endif #endif #ifndef UVTYPE # define UVTYPE unsigned IVTYPE #endif #ifndef UVSIZE # define UVSIZE IVSIZE #endif #ifndef sv_setuv # define sv_setuv(sv, uv) \ STMT_START { \ UV TeMpUv = uv; \ if (TeMpUv <= IV_MAX) \ sv_setiv(sv, TeMpUv); \ else \ sv_setnv(sv, (double)TeMpUv); \ } STMT_END #endif #ifndef newSVuv # define newSVuv(uv) ((uv) <= IV_MAX ? newSViv((IV)uv) : newSVnv((NV)uv)) #endif #ifndef sv_2uv # define sv_2uv(sv) ((PL_Sv = (sv)), (UV) (SvNOK(PL_Sv) ? SvNV(PL_Sv) : sv_2nv(PL_Sv))) #endif #ifndef SvUVX # define SvUVX(sv) ((UV)SvIVX(sv)) #endif #ifndef SvUVXx # define SvUVXx(sv) SvUVX(sv) #endif #ifndef SvUV # define SvUV(sv) (SvIOK(sv) ? SvUVX(sv) : sv_2uv(sv)) #endif #ifndef SvUVx # define SvUVx(sv) ((PL_Sv = (sv)), SvUV(PL_Sv)) #endif /* Hint: sv_uv * Always use the SvUVx() macro instead of sv_uv(). */ #ifndef sv_uv # define sv_uv(sv) SvUVx(sv) #endif #if !defined(SvUOK) && defined(SvIOK_UV) # define SvUOK(sv) SvIOK_UV(sv) #endif #ifndef XST_mUV # define XST_mUV(i,v) (ST(i) = sv_2mortal(newSVuv(v)) ) #endif #ifndef XSRETURN_UV # define XSRETURN_UV(v) STMT_START { XST_mUV(0,v); XSRETURN(1); } STMT_END #endif #ifndef PUSHu # define PUSHu(u) STMT_START { sv_setuv(TARG, (UV)(u)); PUSHTARG; } STMT_END #endif #ifndef XPUSHu # define XPUSHu(u) STMT_START { sv_setuv(TARG, (UV)(u)); XPUSHTARG; } STMT_END #endif #ifdef HAS_MEMCMP #ifndef memNE # define memNE(s1,s2,l) (memcmp(s1,s2,l)) #endif #ifndef memEQ # define memEQ(s1,s2,l) (!memcmp(s1,s2,l)) #endif #else #ifndef memNE # define memNE(s1,s2,l) (bcmp(s1,s2,l)) #endif #ifndef memEQ # define memEQ(s1,s2,l) (!bcmp(s1,s2,l)) #endif #endif #ifndef memEQs # define memEQs(s1, l, s2) \ (sizeof(s2)-1 == l && memEQ(s1, (s2 ""), (sizeof(s2)-1))) #endif #ifndef memNEs # define memNEs(s1, l, s2) !memEQs(s1, l, s2) #endif #ifndef MoveD # define MoveD(s,d,n,t) memmove((char*)(d),(char*)(s), (n) * sizeof(t)) #endif #ifndef CopyD # define CopyD(s,d,n,t) memcpy((char*)(d),(char*)(s), (n) * sizeof(t)) #endif #ifdef HAS_MEMSET #ifndef ZeroD # define ZeroD(d,n,t) memzero((char*)(d), (n) * sizeof(t)) #endif #else #ifndef ZeroD # define ZeroD(d,n,t) ((void)memzero((char*)(d), (n) * sizeof(t)), d) #endif #endif #ifndef PoisonWith # define PoisonWith(d,n,t,b) (void)memset((char*)(d), (U8)(b), (n) * sizeof(t)) #endif #ifndef PoisonNew # define PoisonNew(d,n,t) PoisonWith(d,n,t,0xAB) #endif #ifndef PoisonFree # define PoisonFree(d,n,t) PoisonWith(d,n,t,0xEF) #endif #ifndef Poison # define Poison(d,n,t) PoisonFree(d,n,t) #endif #ifndef Newx # define Newx(v,n,t) New(0,v,n,t) #endif #ifndef Newxc # define Newxc(v,n,t,c) Newc(0,v,n,t,c) #endif #ifndef Newxz # define Newxz(v,n,t) Newz(0,v,n,t) #endif #ifndef PERL_UNUSED_DECL # ifdef HASATTRIBUTE # if (defined(__GNUC__) && defined(__cplusplus)) || defined(__INTEL_COMPILER) # define PERL_UNUSED_DECL # else # define PERL_UNUSED_DECL __attribute__((unused)) # endif # else # define PERL_UNUSED_DECL # endif #endif #ifndef PERL_UNUSED_ARG # if defined(lint) && defined(S_SPLINT_S) /* www.splint.org */ # include # define PERL_UNUSED_ARG(x) NOTE(ARGUNUSED(x)) # else # define PERL_UNUSED_ARG(x) ((void)x) # endif #endif #ifndef PERL_UNUSED_VAR # define PERL_UNUSED_VAR(x) ((void)x) #endif #ifndef PERL_UNUSED_CONTEXT # ifdef USE_ITHREADS # define PERL_UNUSED_CONTEXT PERL_UNUSED_ARG(my_perl) # else # define PERL_UNUSED_CONTEXT # endif #endif #ifndef NOOP # define NOOP /*EMPTY*/(void)0 #endif #ifndef dNOOP # define dNOOP extern int /*@unused@*/ Perl___notused PERL_UNUSED_DECL #endif #ifndef NVTYPE # if defined(USE_LONG_DOUBLE) && defined(HAS_LONG_DOUBLE) # define NVTYPE long double # else # define NVTYPE double # endif typedef NVTYPE NV; #endif #ifndef INT2PTR # if (IVSIZE == PTRSIZE) && (UVSIZE == PTRSIZE) # define PTRV UV # define INT2PTR(any,d) (any)(d) # else # if PTRSIZE == LONGSIZE # define PTRV unsigned long # else # define PTRV unsigned # endif # define INT2PTR(any,d) (any)(PTRV)(d) # endif #endif #ifndef PTR2ul # if PTRSIZE == LONGSIZE # define PTR2ul(p) (unsigned long)(p) # else # define PTR2ul(p) INT2PTR(unsigned long,p) # endif #endif #ifndef PTR2nat # define PTR2nat(p) (PTRV)(p) #endif #ifndef NUM2PTR # define NUM2PTR(any,d) (any)PTR2nat(d) #endif #ifndef PTR2IV # define PTR2IV(p) INT2PTR(IV,p) #endif #ifndef PTR2UV # define PTR2UV(p) INT2PTR(UV,p) #endif #ifndef PTR2NV # define PTR2NV(p) NUM2PTR(NV,p) #endif #undef START_EXTERN_C #undef END_EXTERN_C #undef EXTERN_C #ifdef __cplusplus # define START_EXTERN_C extern "C" { # define END_EXTERN_C } # define EXTERN_C extern "C" #else # define START_EXTERN_C # define END_EXTERN_C # define EXTERN_C extern #endif #if defined(PERL_GCC_PEDANTIC) # ifndef PERL_GCC_BRACE_GROUPS_FORBIDDEN # define PERL_GCC_BRACE_GROUPS_FORBIDDEN # endif #endif #if defined(__GNUC__) && !defined(PERL_GCC_BRACE_GROUPS_FORBIDDEN) && !defined(__cplusplus) # ifndef PERL_USE_GCC_BRACE_GROUPS # define PERL_USE_GCC_BRACE_GROUPS # endif #endif #undef STMT_START #undef STMT_END #ifdef PERL_USE_GCC_BRACE_GROUPS # define STMT_START (void)( /* gcc supports ``({ STATEMENTS; })'' */ # define STMT_END ) #else # if defined(VOIDFLAGS) && (VOIDFLAGS) && (defined(sun) || defined(__sun__)) && !defined(__GNUC__) # define STMT_START if (1) # define STMT_END else (void)0 # else # define STMT_START do # define STMT_END while (0) # endif #endif #ifndef boolSV # define boolSV(b) ((b) ? &PL_sv_yes : &PL_sv_no) #endif /* DEFSV appears first in 5.004_56 */ #ifndef DEFSV # define DEFSV GvSV(PL_defgv) #endif #ifndef SAVE_DEFSV # define SAVE_DEFSV SAVESPTR(GvSV(PL_defgv)) #endif #ifndef DEFSV_set # define DEFSV_set(sv) (DEFSV = (sv)) #endif /* Older perls (<=5.003) lack AvFILLp */ #ifndef AvFILLp # define AvFILLp AvFILL #endif #ifndef ERRSV # define ERRSV get_sv("@",FALSE) #endif /* Hint: gv_stashpvn * This function's backport doesn't support the length parameter, but * rather ignores it. Portability can only be ensured if the length * parameter is used for speed reasons, but the length can always be * correctly computed from the string argument. */ #ifndef gv_stashpvn # define gv_stashpvn(str,len,create) gv_stashpv(str,create) #endif /* Replace: 1 */ #ifndef get_cv # define get_cv perl_get_cv #endif #ifndef get_sv # define get_sv perl_get_sv #endif #ifndef get_av # define get_av perl_get_av #endif #ifndef get_hv # define get_hv perl_get_hv #endif /* Replace: 0 */ #ifndef dUNDERBAR # define dUNDERBAR dNOOP #endif #ifndef UNDERBAR # define UNDERBAR DEFSV #endif #ifndef dAX # define dAX I32 ax = MARK - PL_stack_base + 1 #endif #ifndef dITEMS # define dITEMS I32 items = SP - MARK #endif #ifndef dXSTARG # define dXSTARG SV * targ = sv_newmortal() #endif #ifndef dAXMARK # define dAXMARK I32 ax = POPMARK; \ register SV ** const mark = PL_stack_base + ax++ #endif #ifndef XSprePUSH # define XSprePUSH (sp = PL_stack_base + ax - 1) #endif #if (PERL_BCDVERSION < 0x5005000) # undef XSRETURN # define XSRETURN(off) \ STMT_START { \ PL_stack_sp = PL_stack_base + ax + ((off) - 1); \ return; \ } STMT_END #endif #ifndef XSPROTO # define XSPROTO(name) void name(pTHX_ CV* cv) #endif #ifndef SVfARG # define SVfARG(p) ((void*)(p)) #endif #ifndef PERL_ABS # define PERL_ABS(x) ((x) < 0 ? -(x) : (x)) #endif #ifndef dVAR # define dVAR dNOOP #endif #ifndef SVf # define SVf "_" #endif #ifndef UTF8_MAXBYTES # define UTF8_MAXBYTES UTF8_MAXLEN #endif #ifndef CPERLscope # define CPERLscope(x) x #endif #ifndef PERL_HASH # define PERL_HASH(hash,str,len) \ STMT_START { \ const char *s_PeRlHaSh = str; \ I32 i_PeRlHaSh = len; \ U32 hash_PeRlHaSh = 0; \ while (i_PeRlHaSh--) \ hash_PeRlHaSh = hash_PeRlHaSh * 33 + *s_PeRlHaSh++; \ (hash) = hash_PeRlHaSh; \ } STMT_END #endif #ifndef PERLIO_FUNCS_DECL # ifdef PERLIO_FUNCS_CONST # define PERLIO_FUNCS_DECL(funcs) const PerlIO_funcs funcs # define PERLIO_FUNCS_CAST(funcs) (PerlIO_funcs*)(funcs) # else # define PERLIO_FUNCS_DECL(funcs) PerlIO_funcs funcs # define PERLIO_FUNCS_CAST(funcs) (funcs) # endif #endif /* provide these typedefs for older perls */ #if (PERL_BCDVERSION < 0x5009003) # ifdef ARGSproto typedef OP* (CPERLscope(*Perl_ppaddr_t))(ARGSproto); # else typedef OP* (CPERLscope(*Perl_ppaddr_t))(pTHX); # endif typedef OP* (CPERLscope(*Perl_check_t)) (pTHX_ OP*); #endif #ifndef isPSXSPC # define isPSXSPC(c) (isSPACE(c) || (c) == '\v') #endif #ifndef isBLANK # define isBLANK(c) ((c) == ' ' || (c) == '\t') #endif #ifdef EBCDIC #ifndef isALNUMC # define isALNUMC(c) isalnum(c) #endif #ifndef isASCII # define isASCII(c) isascii(c) #endif #ifndef isCNTRL # define isCNTRL(c) iscntrl(c) #endif #ifndef isGRAPH # define isGRAPH(c) isgraph(c) #endif #ifndef isPRINT # define isPRINT(c) isprint(c) #endif #ifndef isPUNCT # define isPUNCT(c) ispunct(c) #endif #ifndef isXDIGIT # define isXDIGIT(c) isxdigit(c) #endif #else # if (PERL_BCDVERSION < 0x5010000) /* Hint: isPRINT * The implementation in older perl versions includes all of the * isSPACE() characters, which is wrong. The version provided by * Devel::PPPort always overrides a present buggy version. */ # undef isPRINT # endif #ifndef isALNUMC # define isALNUMC(c) (isALPHA(c) || isDIGIT(c)) #endif #ifndef isASCII # define isASCII(c) ((U8) (c) <= 127) #endif #ifndef isCNTRL # define isCNTRL(c) ((U8) (c) < ' ' || (c) == 127) #endif #ifndef isGRAPH # define isGRAPH(c) (isALNUM(c) || isPUNCT(c)) #endif #ifndef isPRINT # define isPRINT(c) (((c) >= 32 && (c) < 127)) #endif #ifndef isPUNCT # define isPUNCT(c) (((c) >= 33 && (c) <= 47) || ((c) >= 58 && (c) <= 64) || ((c) >= 91 && (c) <= 96) || ((c) >= 123 && (c) <= 126)) #endif #ifndef isXDIGIT # define isXDIGIT(c) (isDIGIT(c) || ((c) >= 'a' && (c) <= 'f') || ((c) >= 'A' && (c) <= 'F')) #endif #endif #ifndef PERL_SIGNALS_UNSAFE_FLAG #define PERL_SIGNALS_UNSAFE_FLAG 0x0001 #if (PERL_BCDVERSION < 0x5008000) # define D_PPP_PERL_SIGNALS_INIT PERL_SIGNALS_UNSAFE_FLAG #else # define D_PPP_PERL_SIGNALS_INIT 0 #endif #if defined(NEED_PL_signals) static U32 DPPP_(my_PL_signals) = D_PPP_PERL_SIGNALS_INIT; #elif defined(NEED_PL_signals_GLOBAL) U32 DPPP_(my_PL_signals) = D_PPP_PERL_SIGNALS_INIT; #else extern U32 DPPP_(my_PL_signals); #endif #define PL_signals DPPP_(my_PL_signals) #endif /* Hint: PL_ppaddr * Calling an op via PL_ppaddr requires passing a context argument * for threaded builds. Since the context argument is different for * 5.005 perls, you can use aTHXR (supplied by ppport.h), which will * automatically be defined as the correct argument. */ #if (PERL_BCDVERSION <= 0x5005005) /* Replace: 1 */ # define PL_ppaddr ppaddr # define PL_no_modify no_modify /* Replace: 0 */ #endif #if (PERL_BCDVERSION <= 0x5004005) /* Replace: 1 */ # define PL_DBsignal DBsignal # define PL_DBsingle DBsingle # define PL_DBsub DBsub # define PL_DBtrace DBtrace # define PL_Sv Sv # define PL_bufend bufend # define PL_bufptr bufptr # define PL_compiling compiling # define PL_copline copline # define PL_curcop curcop # define PL_curstash curstash # define PL_debstash debstash # define PL_defgv defgv # define PL_diehook diehook # define PL_dirty dirty # define PL_dowarn dowarn # define PL_errgv errgv # define PL_error_count error_count # define PL_expect expect # define PL_hexdigit hexdigit # define PL_hints hints # define PL_in_my in_my # define PL_laststatval laststatval # define PL_lex_state lex_state # define PL_lex_stuff lex_stuff # define PL_linestr linestr # define PL_na na # define PL_perl_destruct_level perl_destruct_level # define PL_perldb perldb # define PL_rsfp_filters rsfp_filters # define PL_rsfp rsfp # define PL_stack_base stack_base # define PL_stack_sp stack_sp # define PL_statcache statcache # define PL_stdingv stdingv # define PL_sv_arenaroot sv_arenaroot # define PL_sv_no sv_no # define PL_sv_undef sv_undef # define PL_sv_yes sv_yes # define PL_tainted tainted # define PL_tainting tainting # define PL_tokenbuf tokenbuf /* Replace: 0 */ #endif /* Warning: PL_parser * For perl versions earlier than 5.9.5, this is an always * non-NULL dummy. Also, it cannot be dereferenced. Don't * use it if you can avoid is and unless you absolutely know * what you're doing. * If you always check that PL_parser is non-NULL, you can * define DPPP_PL_parser_NO_DUMMY to avoid the creation of * a dummy parser structure. */ #if (PERL_BCDVERSION >= 0x5009005) # ifdef DPPP_PL_parser_NO_DUMMY # define D_PPP_my_PL_parser_var(var) ((PL_parser ? PL_parser : \ (croak("panic: PL_parser == NULL in %s:%d", \ __FILE__, __LINE__), (yy_parser *) NULL))->var) # else # ifdef DPPP_PL_parser_NO_DUMMY_WARNING # define D_PPP_parser_dummy_warning(var) # else # define D_PPP_parser_dummy_warning(var) \ warn("warning: dummy PL_" #var " used in %s:%d", __FILE__, __LINE__), # endif # define D_PPP_my_PL_parser_var(var) ((PL_parser ? PL_parser : \ (D_PPP_parser_dummy_warning(var) &DPPP_(dummy_PL_parser)))->var) #if defined(NEED_PL_parser) static yy_parser DPPP_(dummy_PL_parser); #elif defined(NEED_PL_parser_GLOBAL) yy_parser DPPP_(dummy_PL_parser); #else extern yy_parser DPPP_(dummy_PL_parser); #endif # endif /* PL_expect, PL_copline, PL_rsfp, PL_rsfp_filters, PL_linestr, PL_bufptr, PL_bufend, PL_lex_state, PL_lex_stuff, PL_tokenbuf depends on PL_parser */ /* Warning: PL_expect, PL_copline, PL_rsfp, PL_rsfp_filters, PL_linestr, PL_bufptr, PL_bufend, PL_lex_state, PL_lex_stuff, PL_tokenbuf * Do not use this variable unless you know exactly what you're * doint. It is internal to the perl parser and may change or even * be removed in the future. As of perl 5.9.5, you have to check * for (PL_parser != NULL) for this variable to have any effect. * An always non-NULL PL_parser dummy is provided for earlier * perl versions. * If PL_parser is NULL when you try to access this variable, a * dummy is being accessed instead and a warning is issued unless * you define DPPP_PL_parser_NO_DUMMY_WARNING. * If DPPP_PL_parser_NO_DUMMY is defined, the code trying to access * this variable will croak with a panic message. */ # define PL_expect D_PPP_my_PL_parser_var(expect) # define PL_copline D_PPP_my_PL_parser_var(copline) # define PL_rsfp D_PPP_my_PL_parser_var(rsfp) # define PL_rsfp_filters D_PPP_my_PL_parser_var(rsfp_filters) # define PL_linestr D_PPP_my_PL_parser_var(linestr) # define PL_bufptr D_PPP_my_PL_parser_var(bufptr) # define PL_bufend D_PPP_my_PL_parser_var(bufend) # define PL_lex_state D_PPP_my_PL_parser_var(lex_state) # define PL_lex_stuff D_PPP_my_PL_parser_var(lex_stuff) # define PL_tokenbuf D_PPP_my_PL_parser_var(tokenbuf) # define PL_in_my D_PPP_my_PL_parser_var(in_my) # define PL_in_my_stash D_PPP_my_PL_parser_var(in_my_stash) # define PL_error_count D_PPP_my_PL_parser_var(error_count) #else /* ensure that PL_parser != NULL and cannot be dereferenced */ # define PL_parser ((void *) 1) #endif #ifndef mPUSHs # define mPUSHs(s) PUSHs(sv_2mortal(s)) #endif #ifndef PUSHmortal # define PUSHmortal PUSHs(sv_newmortal()) #endif #ifndef mPUSHp # define mPUSHp(p,l) sv_setpvn(PUSHmortal, (p), (l)) #endif #ifndef mPUSHn # define mPUSHn(n) sv_setnv(PUSHmortal, (NV)(n)) #endif #ifndef mPUSHi # define mPUSHi(i) sv_setiv(PUSHmortal, (IV)(i)) #endif #ifndef mPUSHu # define mPUSHu(u) sv_setuv(PUSHmortal, (UV)(u)) #endif #ifndef mXPUSHs # define mXPUSHs(s) XPUSHs(sv_2mortal(s)) #endif #ifndef XPUSHmortal # define XPUSHmortal XPUSHs(sv_newmortal()) #endif #ifndef mXPUSHp # define mXPUSHp(p,l) STMT_START { EXTEND(sp,1); sv_setpvn(PUSHmortal, (p), (l)); } STMT_END #endif #ifndef mXPUSHn # define mXPUSHn(n) STMT_START { EXTEND(sp,1); sv_setnv(PUSHmortal, (NV)(n)); } STMT_END #endif #ifndef mXPUSHi # define mXPUSHi(i) STMT_START { EXTEND(sp,1); sv_setiv(PUSHmortal, (IV)(i)); } STMT_END #endif #ifndef mXPUSHu # define mXPUSHu(u) STMT_START { EXTEND(sp,1); sv_setuv(PUSHmortal, (UV)(u)); } STMT_END #endif /* Replace: 1 */ #ifndef call_sv # define call_sv perl_call_sv #endif #ifndef call_pv # define call_pv perl_call_pv #endif #ifndef call_argv # define call_argv perl_call_argv #endif #ifndef call_method # define call_method perl_call_method #endif #ifndef eval_sv # define eval_sv perl_eval_sv #endif /* Replace: 0 */ #ifndef PERL_LOADMOD_DENY # define PERL_LOADMOD_DENY 0x1 #endif #ifndef PERL_LOADMOD_NOIMPORT # define PERL_LOADMOD_NOIMPORT 0x2 #endif #ifndef PERL_LOADMOD_IMPORT_OPS # define PERL_LOADMOD_IMPORT_OPS 0x4 #endif #ifndef G_METHOD # define G_METHOD 64 # ifdef call_sv # undef call_sv # endif # if (PERL_BCDVERSION < 0x5006000) # define call_sv(sv, flags) ((flags) & G_METHOD ? perl_call_method((char *) SvPV_nolen_const(sv), \ (flags) & ~G_METHOD) : perl_call_sv(sv, flags)) # else # define call_sv(sv, flags) ((flags) & G_METHOD ? Perl_call_method(aTHX_ (char *) SvPV_nolen_const(sv), \ (flags) & ~G_METHOD) : Perl_call_sv(aTHX_ sv, flags)) # endif #endif /* Replace perl_eval_pv with eval_pv */ #ifndef eval_pv #if defined(NEED_eval_pv) static SV* DPPP_(my_eval_pv)(char *p, I32 croak_on_error); static #else extern SV* DPPP_(my_eval_pv)(char *p, I32 croak_on_error); #endif #ifdef eval_pv # undef eval_pv #endif #define eval_pv(a,b) DPPP_(my_eval_pv)(aTHX_ a,b) #define Perl_eval_pv DPPP_(my_eval_pv) #if defined(NEED_eval_pv) || defined(NEED_eval_pv_GLOBAL) SV* DPPP_(my_eval_pv)(char *p, I32 croak_on_error) { dSP; SV* sv = newSVpv(p, 0); PUSHMARK(sp); eval_sv(sv, G_SCALAR); SvREFCNT_dec(sv); SPAGAIN; sv = POPs; PUTBACK; if (croak_on_error && SvTRUE(GvSV(errgv))) croak(SvPVx(GvSV(errgv), na)); return sv; } #endif #endif #ifndef vload_module #if defined(NEED_vload_module) static void DPPP_(my_vload_module)(U32 flags, SV *name, SV *ver, va_list *args); static #else extern void DPPP_(my_vload_module)(U32 flags, SV *name, SV *ver, va_list *args); #endif #ifdef vload_module # undef vload_module #endif #define vload_module(a,b,c,d) DPPP_(my_vload_module)(aTHX_ a,b,c,d) #define Perl_vload_module DPPP_(my_vload_module) #if defined(NEED_vload_module) || defined(NEED_vload_module_GLOBAL) void DPPP_(my_vload_module)(U32 flags, SV *name, SV *ver, va_list *args) { dTHR; dVAR; OP *veop, *imop; OP * const modname = newSVOP(OP_CONST, 0, name); /* 5.005 has a somewhat hacky force_normal that doesn't croak on SvREADONLY() if PL_compling is true. Current perls take care in ck_require() to correctly turn off SvREADONLY before calling force_normal_flags(). This seems a better fix than fudging PL_compling */ SvREADONLY_off(((SVOP*)modname)->op_sv); modname->op_private |= OPpCONST_BARE; if (ver) { veop = newSVOP(OP_CONST, 0, ver); } else veop = NULL; if (flags & PERL_LOADMOD_NOIMPORT) { imop = sawparens(newNULLLIST()); } else if (flags & PERL_LOADMOD_IMPORT_OPS) { imop = va_arg(*args, OP*); } else { SV *sv; imop = NULL; sv = va_arg(*args, SV*); while (sv) { imop = append_elem(OP_LIST, imop, newSVOP(OP_CONST, 0, sv)); sv = va_arg(*args, SV*); } } { const line_t ocopline = PL_copline; COP * const ocurcop = PL_curcop; const int oexpect = PL_expect; #if (PERL_BCDVERSION >= 0x5004000) utilize(!(flags & PERL_LOADMOD_DENY), start_subparse(FALSE, 0), veop, modname, imop); #else utilize(!(flags & PERL_LOADMOD_DENY), start_subparse(), modname, imop); #endif PL_expect = oexpect; PL_copline = ocopline; PL_curcop = ocurcop; } } #endif #endif #ifndef load_module #if defined(NEED_load_module) static void DPPP_(my_load_module)(U32 flags, SV *name, SV *ver, ...); static #else extern void DPPP_(my_load_module)(U32 flags, SV *name, SV *ver, ...); #endif #ifdef load_module # undef load_module #endif #define load_module DPPP_(my_load_module) #define Perl_load_module DPPP_(my_load_module) #if defined(NEED_load_module) || defined(NEED_load_module_GLOBAL) void DPPP_(my_load_module)(U32 flags, SV *name, SV *ver, ...) { va_list args; va_start(args, ver); vload_module(flags, name, ver, &args); va_end(args); } #endif #endif #ifndef newRV_inc # define newRV_inc(sv) newRV(sv) /* Replace */ #endif #ifndef newRV_noinc #if defined(NEED_newRV_noinc) static SV * DPPP_(my_newRV_noinc)(SV *sv); static #else extern SV * DPPP_(my_newRV_noinc)(SV *sv); #endif #ifdef newRV_noinc # undef newRV_noinc #endif #define newRV_noinc(a) DPPP_(my_newRV_noinc)(aTHX_ a) #define Perl_newRV_noinc DPPP_(my_newRV_noinc) #if defined(NEED_newRV_noinc) || defined(NEED_newRV_noinc_GLOBAL) SV * DPPP_(my_newRV_noinc)(SV *sv) { SV *rv = (SV *)newRV(sv); SvREFCNT_dec(sv); return rv; } #endif #endif /* Hint: newCONSTSUB * Returns a CV* as of perl-5.7.1. This return value is not supported * by Devel::PPPort. */ /* newCONSTSUB from IO.xs is in the core starting with 5.004_63 */ #if (PERL_BCDVERSION < 0x5004063) && (PERL_BCDVERSION != 0x5004005) #if defined(NEED_newCONSTSUB) static void DPPP_(my_newCONSTSUB)(HV *stash, const char *name, SV *sv); static #else extern void DPPP_(my_newCONSTSUB)(HV *stash, const char *name, SV *sv); #endif #ifdef newCONSTSUB # undef newCONSTSUB #endif #define newCONSTSUB(a,b,c) DPPP_(my_newCONSTSUB)(aTHX_ a,b,c) #define Perl_newCONSTSUB DPPP_(my_newCONSTSUB) #if defined(NEED_newCONSTSUB) || defined(NEED_newCONSTSUB_GLOBAL) /* This is just a trick to avoid a dependency of newCONSTSUB on PL_parser */ /* (There's no PL_parser in perl < 5.005, so this is completely safe) */ #define D_PPP_PL_copline PL_copline void DPPP_(my_newCONSTSUB)(HV *stash, const char *name, SV *sv) { U32 oldhints = PL_hints; HV *old_cop_stash = PL_curcop->cop_stash; HV *old_curstash = PL_curstash; line_t oldline = PL_curcop->cop_line; PL_curcop->cop_line = D_PPP_PL_copline; PL_hints &= ~HINT_BLOCK_SCOPE; if (stash) PL_curstash = PL_curcop->cop_stash = stash; newSUB( #if (PERL_BCDVERSION < 0x5003022) start_subparse(), #elif (PERL_BCDVERSION == 0x5003022) start_subparse(0), #else /* 5.003_23 onwards */ start_subparse(FALSE, 0), #endif newSVOP(OP_CONST, 0, newSVpv((char *) name, 0)), newSVOP(OP_CONST, 0, &PL_sv_no), /* SvPV(&PL_sv_no) == "" -- GMB */ newSTATEOP(0, Nullch, newSVOP(OP_CONST, 0, sv)) ); PL_hints = oldhints; PL_curcop->cop_stash = old_cop_stash; PL_curstash = old_curstash; PL_curcop->cop_line = oldline; } #endif #endif /* * Boilerplate macros for initializing and accessing interpreter-local * data from C. All statics in extensions should be reworked to use * this, if you want to make the extension thread-safe. See ext/re/re.xs * for an example of the use of these macros. * * Code that uses these macros is responsible for the following: * 1. #define MY_CXT_KEY to a unique string, e.g. "DynaLoader_guts" * 2. Declare a typedef named my_cxt_t that is a structure that contains * all the data that needs to be interpreter-local. * 3. Use the START_MY_CXT macro after the declaration of my_cxt_t. * 4. Use the MY_CXT_INIT macro such that it is called exactly once * (typically put in the BOOT: section). * 5. Use the members of the my_cxt_t structure everywhere as * MY_CXT.member. * 6. Use the dMY_CXT macro (a declaration) in all the functions that * access MY_CXT. */ #if defined(MULTIPLICITY) || defined(PERL_OBJECT) || \ defined(PERL_CAPI) || defined(PERL_IMPLICIT_CONTEXT) #ifndef START_MY_CXT /* This must appear in all extensions that define a my_cxt_t structure, * right after the definition (i.e. at file scope). The non-threads * case below uses it to declare the data as static. */ #define START_MY_CXT #if (PERL_BCDVERSION < 0x5004068) /* Fetches the SV that keeps the per-interpreter data. */ #define dMY_CXT_SV \ SV *my_cxt_sv = get_sv(MY_CXT_KEY, FALSE) #else /* >= perl5.004_68 */ #define dMY_CXT_SV \ SV *my_cxt_sv = *hv_fetch(PL_modglobal, MY_CXT_KEY, \ sizeof(MY_CXT_KEY)-1, TRUE) #endif /* < perl5.004_68 */ /* This declaration should be used within all functions that use the * interpreter-local data. */ #define dMY_CXT \ dMY_CXT_SV; \ my_cxt_t *my_cxtp = INT2PTR(my_cxt_t*,SvUV(my_cxt_sv)) /* Creates and zeroes the per-interpreter data. * (We allocate my_cxtp in a Perl SV so that it will be released when * the interpreter goes away.) */ #define MY_CXT_INIT \ dMY_CXT_SV; \ /* newSV() allocates one more than needed */ \ my_cxt_t *my_cxtp = (my_cxt_t*)SvPVX(newSV(sizeof(my_cxt_t)-1));\ Zero(my_cxtp, 1, my_cxt_t); \ sv_setuv(my_cxt_sv, PTR2UV(my_cxtp)) /* This macro must be used to access members of the my_cxt_t structure. * e.g. MYCXT.some_data */ #define MY_CXT (*my_cxtp) /* Judicious use of these macros can reduce the number of times dMY_CXT * is used. Use is similar to pTHX, aTHX etc. */ #define pMY_CXT my_cxt_t *my_cxtp #define pMY_CXT_ pMY_CXT, #define _pMY_CXT ,pMY_CXT #define aMY_CXT my_cxtp #define aMY_CXT_ aMY_CXT, #define _aMY_CXT ,aMY_CXT #endif /* START_MY_CXT */ #ifndef MY_CXT_CLONE /* Clones the per-interpreter data. */ #define MY_CXT_CLONE \ dMY_CXT_SV; \ my_cxt_t *my_cxtp = (my_cxt_t*)SvPVX(newSV(sizeof(my_cxt_t)-1));\ Copy(INT2PTR(my_cxt_t*, SvUV(my_cxt_sv)), my_cxtp, 1, my_cxt_t);\ sv_setuv(my_cxt_sv, PTR2UV(my_cxtp)) #endif #else /* single interpreter */ #ifndef START_MY_CXT #define START_MY_CXT static my_cxt_t my_cxt; #define dMY_CXT_SV dNOOP #define dMY_CXT dNOOP #define MY_CXT_INIT NOOP #define MY_CXT my_cxt #define pMY_CXT void #define pMY_CXT_ #define _pMY_CXT #define aMY_CXT #define aMY_CXT_ #define _aMY_CXT #endif /* START_MY_CXT */ #ifndef MY_CXT_CLONE #define MY_CXT_CLONE NOOP #endif #endif #ifndef IVdf # if IVSIZE == LONGSIZE # define IVdf "ld" # define UVuf "lu" # define UVof "lo" # define UVxf "lx" # define UVXf "lX" # elif IVSIZE == INTSIZE # define IVdf "d" # define UVuf "u" # define UVof "o" # define UVxf "x" # define UVXf "X" # else # error "cannot define IV/UV formats" # endif #endif #ifndef NVef # if defined(USE_LONG_DOUBLE) && defined(HAS_LONG_DOUBLE) && \ defined(PERL_PRIfldbl) && (PERL_BCDVERSION != 0x5006000) /* Not very likely, but let's try anyway. */ # define NVef PERL_PRIeldbl # define NVff PERL_PRIfldbl # define NVgf PERL_PRIgldbl # else # define NVef "e" # define NVff "f" # define NVgf "g" # endif #endif #ifndef SvREFCNT_inc # ifdef PERL_USE_GCC_BRACE_GROUPS # define SvREFCNT_inc(sv) \ ({ \ SV * const _sv = (SV*)(sv); \ if (_sv) \ (SvREFCNT(_sv))++; \ _sv; \ }) # else # define SvREFCNT_inc(sv) \ ((PL_Sv=(SV*)(sv)) ? (++(SvREFCNT(PL_Sv)),PL_Sv) : NULL) # endif #endif #ifndef SvREFCNT_inc_simple # ifdef PERL_USE_GCC_BRACE_GROUPS # define SvREFCNT_inc_simple(sv) \ ({ \ if (sv) \ (SvREFCNT(sv))++; \ (SV *)(sv); \ }) # else # define SvREFCNT_inc_simple(sv) \ ((sv) ? (SvREFCNT(sv)++,(SV*)(sv)) : NULL) # endif #endif #ifndef SvREFCNT_inc_NN # ifdef PERL_USE_GCC_BRACE_GROUPS # define SvREFCNT_inc_NN(sv) \ ({ \ SV * const _sv = (SV*)(sv); \ SvREFCNT(_sv)++; \ _sv; \ }) # else # define SvREFCNT_inc_NN(sv) \ (PL_Sv=(SV*)(sv),++(SvREFCNT(PL_Sv)),PL_Sv) # endif #endif #ifndef SvREFCNT_inc_void # ifdef PERL_USE_GCC_BRACE_GROUPS # define SvREFCNT_inc_void(sv) \ ({ \ SV * const _sv = (SV*)(sv); \ if (_sv) \ (void)(SvREFCNT(_sv)++); \ }) # else # define SvREFCNT_inc_void(sv) \ (void)((PL_Sv=(SV*)(sv)) ? ++(SvREFCNT(PL_Sv)) : 0) # endif #endif #ifndef SvREFCNT_inc_simple_void # define SvREFCNT_inc_simple_void(sv) STMT_START { if (sv) SvREFCNT(sv)++; } STMT_END #endif #ifndef SvREFCNT_inc_simple_NN # define SvREFCNT_inc_simple_NN(sv) (++SvREFCNT(sv), (SV*)(sv)) #endif #ifndef SvREFCNT_inc_void_NN # define SvREFCNT_inc_void_NN(sv) (void)(++SvREFCNT((SV*)(sv))) #endif #ifndef SvREFCNT_inc_simple_void_NN # define SvREFCNT_inc_simple_void_NN(sv) (void)(++SvREFCNT((SV*)(sv))) #endif #ifndef newSV_type #if defined(NEED_newSV_type) static SV* DPPP_(my_newSV_type)(pTHX_ svtype const t); static #else extern SV* DPPP_(my_newSV_type)(pTHX_ svtype const t); #endif #ifdef newSV_type # undef newSV_type #endif #define newSV_type(a) DPPP_(my_newSV_type)(aTHX_ a) #define Perl_newSV_type DPPP_(my_newSV_type) #if defined(NEED_newSV_type) || defined(NEED_newSV_type_GLOBAL) SV* DPPP_(my_newSV_type)(pTHX_ svtype const t) { SV* const sv = newSV(0); sv_upgrade(sv, t); return sv; } #endif #endif #if (PERL_BCDVERSION < 0x5006000) # define D_PPP_CONSTPV_ARG(x) ((char *) (x)) #else # define D_PPP_CONSTPV_ARG(x) (x) #endif #ifndef newSVpvn # define newSVpvn(data,len) ((data) \ ? ((len) ? newSVpv((data), (len)) : newSVpv("", 0)) \ : newSV(0)) #endif #ifndef newSVpvn_utf8 # define newSVpvn_utf8(s, len, u) newSVpvn_flags((s), (len), (u) ? SVf_UTF8 : 0) #endif #ifndef SVf_UTF8 # define SVf_UTF8 0 #endif #ifndef newSVpvn_flags #if defined(NEED_newSVpvn_flags) static SV * DPPP_(my_newSVpvn_flags)(pTHX_ const char *s, STRLEN len, U32 flags); static #else extern SV * DPPP_(my_newSVpvn_flags)(pTHX_ const char *s, STRLEN len, U32 flags); #endif #ifdef newSVpvn_flags # undef newSVpvn_flags #endif #define newSVpvn_flags(a,b,c) DPPP_(my_newSVpvn_flags)(aTHX_ a,b,c) #define Perl_newSVpvn_flags DPPP_(my_newSVpvn_flags) #if defined(NEED_newSVpvn_flags) || defined(NEED_newSVpvn_flags_GLOBAL) SV * DPPP_(my_newSVpvn_flags)(pTHX_ const char *s, STRLEN len, U32 flags) { SV *sv = newSVpvn(D_PPP_CONSTPV_ARG(s), len); SvFLAGS(sv) |= (flags & SVf_UTF8); return (flags & SVs_TEMP) ? sv_2mortal(sv) : sv; } #endif #endif /* Backwards compatibility stuff... :-( */ #if !defined(NEED_sv_2pv_flags) && defined(NEED_sv_2pv_nolen) # define NEED_sv_2pv_flags #endif #if !defined(NEED_sv_2pv_flags_GLOBAL) && defined(NEED_sv_2pv_nolen_GLOBAL) # define NEED_sv_2pv_flags_GLOBAL #endif /* Hint: sv_2pv_nolen * Use the SvPV_nolen() or SvPV_nolen_const() macros instead of sv_2pv_nolen(). */ #ifndef sv_2pv_nolen # define sv_2pv_nolen(sv) SvPV_nolen(sv) #endif #ifdef SvPVbyte /* Hint: SvPVbyte * Does not work in perl-5.6.1, ppport.h implements a version * borrowed from perl-5.7.3. */ #if (PERL_BCDVERSION < 0x5007000) #if defined(NEED_sv_2pvbyte) static char * DPPP_(my_sv_2pvbyte)(pTHX_ SV *sv, STRLEN *lp); static #else extern char * DPPP_(my_sv_2pvbyte)(pTHX_ SV *sv, STRLEN *lp); #endif #ifdef sv_2pvbyte # undef sv_2pvbyte #endif #define sv_2pvbyte(a,b) DPPP_(my_sv_2pvbyte)(aTHX_ a,b) #define Perl_sv_2pvbyte DPPP_(my_sv_2pvbyte) #if defined(NEED_sv_2pvbyte) || defined(NEED_sv_2pvbyte_GLOBAL) char * DPPP_(my_sv_2pvbyte)(pTHX_ SV *sv, STRLEN *lp) { sv_utf8_downgrade(sv,0); return SvPV(sv,*lp); } #endif /* Hint: sv_2pvbyte * Use the SvPVbyte() macro instead of sv_2pvbyte(). */ #undef SvPVbyte #define SvPVbyte(sv, lp) \ ((SvFLAGS(sv) & (SVf_POK|SVf_UTF8)) == (SVf_POK) \ ? ((lp = SvCUR(sv)), SvPVX(sv)) : sv_2pvbyte(sv, &lp)) #endif #else # define SvPVbyte SvPV # define sv_2pvbyte sv_2pv #endif #ifndef sv_2pvbyte_nolen # define sv_2pvbyte_nolen(sv) sv_2pv_nolen(sv) #endif /* Hint: sv_pvn * Always use the SvPV() macro instead of sv_pvn(). */ /* Hint: sv_pvn_force * Always use the SvPV_force() macro instead of sv_pvn_force(). */ /* If these are undefined, they're not handled by the core anyway */ #ifndef SV_IMMEDIATE_UNREF # define SV_IMMEDIATE_UNREF 0 #endif #ifndef SV_GMAGIC # define SV_GMAGIC 0 #endif #ifndef SV_COW_DROP_PV # define SV_COW_DROP_PV 0 #endif #ifndef SV_UTF8_NO_ENCODING # define SV_UTF8_NO_ENCODING 0 #endif #ifndef SV_NOSTEAL # define SV_NOSTEAL 0 #endif #ifndef SV_CONST_RETURN # define SV_CONST_RETURN 0 #endif #ifndef SV_MUTABLE_RETURN # define SV_MUTABLE_RETURN 0 #endif #ifndef SV_SMAGIC # define SV_SMAGIC 0 #endif #ifndef SV_HAS_TRAILING_NUL # define SV_HAS_TRAILING_NUL 0 #endif #ifndef SV_COW_SHARED_HASH_KEYS # define SV_COW_SHARED_HASH_KEYS 0 #endif #if (PERL_BCDVERSION < 0x5007002) #if defined(NEED_sv_2pv_flags) static char * DPPP_(my_sv_2pv_flags)(pTHX_ SV *sv, STRLEN *lp, I32 flags); static #else extern char * DPPP_(my_sv_2pv_flags)(pTHX_ SV *sv, STRLEN *lp, I32 flags); #endif #ifdef sv_2pv_flags # undef sv_2pv_flags #endif #define sv_2pv_flags(a,b,c) DPPP_(my_sv_2pv_flags)(aTHX_ a,b,c) #define Perl_sv_2pv_flags DPPP_(my_sv_2pv_flags) #if defined(NEED_sv_2pv_flags) || defined(NEED_sv_2pv_flags_GLOBAL) char * DPPP_(my_sv_2pv_flags)(pTHX_ SV *sv, STRLEN *lp, I32 flags) { STRLEN n_a = (STRLEN) flags; return sv_2pv(sv, lp ? lp : &n_a); } #endif #if defined(NEED_sv_pvn_force_flags) static char * DPPP_(my_sv_pvn_force_flags)(pTHX_ SV *sv, STRLEN *lp, I32 flags); static #else extern char * DPPP_(my_sv_pvn_force_flags)(pTHX_ SV *sv, STRLEN *lp, I32 flags); #endif #ifdef sv_pvn_force_flags # undef sv_pvn_force_flags #endif #define sv_pvn_force_flags(a,b,c) DPPP_(my_sv_pvn_force_flags)(aTHX_ a,b,c) #define Perl_sv_pvn_force_flags DPPP_(my_sv_pvn_force_flags) #if defined(NEED_sv_pvn_force_flags) || defined(NEED_sv_pvn_force_flags_GLOBAL) char * DPPP_(my_sv_pvn_force_flags)(pTHX_ SV *sv, STRLEN *lp, I32 flags) { STRLEN n_a = (STRLEN) flags; return sv_pvn_force(sv, lp ? lp : &n_a); } #endif #endif #if (PERL_BCDVERSION < 0x5008008) || ( (PERL_BCDVERSION >= 0x5009000) && (PERL_BCDVERSION < 0x5009003) ) # define DPPP_SVPV_NOLEN_LP_ARG &PL_na #else # define DPPP_SVPV_NOLEN_LP_ARG 0 #endif #ifndef SvPV_const # define SvPV_const(sv, lp) SvPV_flags_const(sv, lp, SV_GMAGIC) #endif #ifndef SvPV_mutable # define SvPV_mutable(sv, lp) SvPV_flags_mutable(sv, lp, SV_GMAGIC) #endif #ifndef SvPV_flags # define SvPV_flags(sv, lp, flags) \ ((SvFLAGS(sv) & (SVf_POK)) == SVf_POK \ ? ((lp = SvCUR(sv)), SvPVX(sv)) : sv_2pv_flags(sv, &lp, flags)) #endif #ifndef SvPV_flags_const # define SvPV_flags_const(sv, lp, flags) \ ((SvFLAGS(sv) & (SVf_POK)) == SVf_POK \ ? ((lp = SvCUR(sv)), SvPVX_const(sv)) : \ (const char*) sv_2pv_flags(sv, &lp, flags|SV_CONST_RETURN)) #endif #ifndef SvPV_flags_const_nolen # define SvPV_flags_const_nolen(sv, flags) \ ((SvFLAGS(sv) & (SVf_POK)) == SVf_POK \ ? SvPVX_const(sv) : \ (const char*) sv_2pv_flags(sv, DPPP_SVPV_NOLEN_LP_ARG, flags|SV_CONST_RETURN)) #endif #ifndef SvPV_flags_mutable # define SvPV_flags_mutable(sv, lp, flags) \ ((SvFLAGS(sv) & (SVf_POK)) == SVf_POK \ ? ((lp = SvCUR(sv)), SvPVX_mutable(sv)) : \ sv_2pv_flags(sv, &lp, flags|SV_MUTABLE_RETURN)) #endif #ifndef SvPV_force # define SvPV_force(sv, lp) SvPV_force_flags(sv, lp, SV_GMAGIC) #endif #ifndef SvPV_force_nolen # define SvPV_force_nolen(sv) SvPV_force_flags_nolen(sv, SV_GMAGIC) #endif #ifndef SvPV_force_mutable # define SvPV_force_mutable(sv, lp) SvPV_force_flags_mutable(sv, lp, SV_GMAGIC) #endif #ifndef SvPV_force_nomg # define SvPV_force_nomg(sv, lp) SvPV_force_flags(sv, lp, 0) #endif #ifndef SvPV_force_nomg_nolen # define SvPV_force_nomg_nolen(sv) SvPV_force_flags_nolen(sv, 0) #endif #ifndef SvPV_force_flags # define SvPV_force_flags(sv, lp, flags) \ ((SvFLAGS(sv) & (SVf_POK|SVf_THINKFIRST)) == SVf_POK \ ? ((lp = SvCUR(sv)), SvPVX(sv)) : sv_pvn_force_flags(sv, &lp, flags)) #endif #ifndef SvPV_force_flags_nolen # define SvPV_force_flags_nolen(sv, flags) \ ((SvFLAGS(sv) & (SVf_POK|SVf_THINKFIRST)) == SVf_POK \ ? SvPVX(sv) : sv_pvn_force_flags(sv, DPPP_SVPV_NOLEN_LP_ARG, flags)) #endif #ifndef SvPV_force_flags_mutable # define SvPV_force_flags_mutable(sv, lp, flags) \ ((SvFLAGS(sv) & (SVf_POK|SVf_THINKFIRST)) == SVf_POK \ ? ((lp = SvCUR(sv)), SvPVX_mutable(sv)) \ : sv_pvn_force_flags(sv, &lp, flags|SV_MUTABLE_RETURN)) #endif #ifndef SvPV_nolen # define SvPV_nolen(sv) \ ((SvFLAGS(sv) & (SVf_POK)) == SVf_POK \ ? SvPVX(sv) : sv_2pv_flags(sv, DPPP_SVPV_NOLEN_LP_ARG, SV_GMAGIC)) #endif #ifndef SvPV_nolen_const # define SvPV_nolen_const(sv) \ ((SvFLAGS(sv) & (SVf_POK)) == SVf_POK \ ? SvPVX_const(sv) : sv_2pv_flags(sv, DPPP_SVPV_NOLEN_LP_ARG, SV_GMAGIC|SV_CONST_RETURN)) #endif #ifndef SvPV_nomg # define SvPV_nomg(sv, lp) SvPV_flags(sv, lp, 0) #endif #ifndef SvPV_nomg_const # define SvPV_nomg_const(sv, lp) SvPV_flags_const(sv, lp, 0) #endif #ifndef SvPV_nomg_const_nolen # define SvPV_nomg_const_nolen(sv) SvPV_flags_const_nolen(sv, 0) #endif #ifndef SvPV_nomg_nolen # define SvPV_nomg_nolen(sv) ((SvFLAGS(sv) & (SVf_POK)) == SVf_POK \ ? SvPVX(sv) : sv_2pv_flags(sv, DPPP_SVPV_NOLEN_LP_ARG, 0)) #endif #ifndef SvPV_renew # define SvPV_renew(sv,n) STMT_START { SvLEN_set(sv, n); \ SvPV_set((sv), (char *) saferealloc( \ (Malloc_t)SvPVX(sv), (MEM_SIZE)((n)))); \ } STMT_END #endif #ifndef SvMAGIC_set # define SvMAGIC_set(sv, val) \ STMT_START { assert(SvTYPE(sv) >= SVt_PVMG); \ (((XPVMG*) SvANY(sv))->xmg_magic = (val)); } STMT_END #endif #if (PERL_BCDVERSION < 0x5009003) #ifndef SvPVX_const # define SvPVX_const(sv) ((const char*) (0 + SvPVX(sv))) #endif #ifndef SvPVX_mutable # define SvPVX_mutable(sv) (0 + SvPVX(sv)) #endif #ifndef SvRV_set # define SvRV_set(sv, val) \ STMT_START { assert(SvTYPE(sv) >= SVt_RV); \ (((XRV*) SvANY(sv))->xrv_rv = (val)); } STMT_END #endif #else #ifndef SvPVX_const # define SvPVX_const(sv) ((const char*)((sv)->sv_u.svu_pv)) #endif #ifndef SvPVX_mutable # define SvPVX_mutable(sv) ((sv)->sv_u.svu_pv) #endif #ifndef SvRV_set # define SvRV_set(sv, val) \ STMT_START { assert(SvTYPE(sv) >= SVt_RV); \ ((sv)->sv_u.svu_rv = (val)); } STMT_END #endif #endif #ifndef SvSTASH_set # define SvSTASH_set(sv, val) \ STMT_START { assert(SvTYPE(sv) >= SVt_PVMG); \ (((XPVMG*) SvANY(sv))->xmg_stash = (val)); } STMT_END #endif #if (PERL_BCDVERSION < 0x5004000) #ifndef SvUV_set # define SvUV_set(sv, val) \ STMT_START { assert(SvTYPE(sv) == SVt_IV || SvTYPE(sv) >= SVt_PVIV); \ (((XPVIV*) SvANY(sv))->xiv_iv = (IV) (val)); } STMT_END #endif #else #ifndef SvUV_set # define SvUV_set(sv, val) \ STMT_START { assert(SvTYPE(sv) == SVt_IV || SvTYPE(sv) >= SVt_PVIV); \ (((XPVUV*) SvANY(sv))->xuv_uv = (val)); } STMT_END #endif #endif #if (PERL_BCDVERSION >= 0x5004000) && !defined(vnewSVpvf) #if defined(NEED_vnewSVpvf) static SV * DPPP_(my_vnewSVpvf)(pTHX_ const char *pat, va_list *args); static #else extern SV * DPPP_(my_vnewSVpvf)(pTHX_ const char *pat, va_list *args); #endif #ifdef vnewSVpvf # undef vnewSVpvf #endif #define vnewSVpvf(a,b) DPPP_(my_vnewSVpvf)(aTHX_ a,b) #define Perl_vnewSVpvf DPPP_(my_vnewSVpvf) #if defined(NEED_vnewSVpvf) || defined(NEED_vnewSVpvf_GLOBAL) SV * DPPP_(my_vnewSVpvf)(pTHX_ const char *pat, va_list *args) { register SV *sv = newSV(0); sv_vsetpvfn(sv, pat, strlen(pat), args, Null(SV**), 0, Null(bool*)); return sv; } #endif #endif #if (PERL_BCDVERSION >= 0x5004000) && !defined(sv_vcatpvf) # define sv_vcatpvf(sv, pat, args) sv_vcatpvfn(sv, pat, strlen(pat), args, Null(SV**), 0, Null(bool*)) #endif #if (PERL_BCDVERSION >= 0x5004000) && !defined(sv_vsetpvf) # define sv_vsetpvf(sv, pat, args) sv_vsetpvfn(sv, pat, strlen(pat), args, Null(SV**), 0, Null(bool*)) #endif #if (PERL_BCDVERSION >= 0x5004000) && !defined(sv_catpvf_mg) #if defined(NEED_sv_catpvf_mg) static void DPPP_(my_sv_catpvf_mg)(pTHX_ SV *sv, const char *pat, ...); static #else extern void DPPP_(my_sv_catpvf_mg)(pTHX_ SV *sv, const char *pat, ...); #endif #define Perl_sv_catpvf_mg DPPP_(my_sv_catpvf_mg) #if defined(NEED_sv_catpvf_mg) || defined(NEED_sv_catpvf_mg_GLOBAL) void DPPP_(my_sv_catpvf_mg)(pTHX_ SV *sv, const char *pat, ...) { va_list args; va_start(args, pat); sv_vcatpvfn(sv, pat, strlen(pat), &args, Null(SV**), 0, Null(bool*)); SvSETMAGIC(sv); va_end(args); } #endif #endif #ifdef PERL_IMPLICIT_CONTEXT #if (PERL_BCDVERSION >= 0x5004000) && !defined(sv_catpvf_mg_nocontext) #if defined(NEED_sv_catpvf_mg_nocontext) static void DPPP_(my_sv_catpvf_mg_nocontext)(SV *sv, const char *pat, ...); static #else extern void DPPP_(my_sv_catpvf_mg_nocontext)(SV *sv, const char *pat, ...); #endif #define sv_catpvf_mg_nocontext DPPP_(my_sv_catpvf_mg_nocontext) #define Perl_sv_catpvf_mg_nocontext DPPP_(my_sv_catpvf_mg_nocontext) #if defined(NEED_sv_catpvf_mg_nocontext) || defined(NEED_sv_catpvf_mg_nocontext_GLOBAL) void DPPP_(my_sv_catpvf_mg_nocontext)(SV *sv, const char *pat, ...) { dTHX; va_list args; va_start(args, pat); sv_vcatpvfn(sv, pat, strlen(pat), &args, Null(SV**), 0, Null(bool*)); SvSETMAGIC(sv); va_end(args); } #endif #endif #endif /* sv_catpvf_mg depends on sv_catpvf_mg_nocontext */ #ifndef sv_catpvf_mg # ifdef PERL_IMPLICIT_CONTEXT # define sv_catpvf_mg Perl_sv_catpvf_mg_nocontext # else # define sv_catpvf_mg Perl_sv_catpvf_mg # endif #endif #if (PERL_BCDVERSION >= 0x5004000) && !defined(sv_vcatpvf_mg) # define sv_vcatpvf_mg(sv, pat, args) \ STMT_START { \ sv_vcatpvfn(sv, pat, strlen(pat), args, Null(SV**), 0, Null(bool*)); \ SvSETMAGIC(sv); \ } STMT_END #endif #if (PERL_BCDVERSION >= 0x5004000) && !defined(sv_setpvf_mg) #if defined(NEED_sv_setpvf_mg) static void DPPP_(my_sv_setpvf_mg)(pTHX_ SV *sv, const char *pat, ...); static #else extern void DPPP_(my_sv_setpvf_mg)(pTHX_ SV *sv, const char *pat, ...); #endif #define Perl_sv_setpvf_mg DPPP_(my_sv_setpvf_mg) #if defined(NEED_sv_setpvf_mg) || defined(NEED_sv_setpvf_mg_GLOBAL) void DPPP_(my_sv_setpvf_mg)(pTHX_ SV *sv, const char *pat, ...) { va_list args; va_start(args, pat); sv_vsetpvfn(sv, pat, strlen(pat), &args, Null(SV**), 0, Null(bool*)); SvSETMAGIC(sv); va_end(args); } #endif #endif #ifdef PERL_IMPLICIT_CONTEXT #if (PERL_BCDVERSION >= 0x5004000) && !defined(sv_setpvf_mg_nocontext) #if defined(NEED_sv_setpvf_mg_nocontext) static void DPPP_(my_sv_setpvf_mg_nocontext)(SV *sv, const char *pat, ...); static #else extern void DPPP_(my_sv_setpvf_mg_nocontext)(SV *sv, const char *pat, ...); #endif #define sv_setpvf_mg_nocontext DPPP_(my_sv_setpvf_mg_nocontext) #define Perl_sv_setpvf_mg_nocontext DPPP_(my_sv_setpvf_mg_nocontext) #if defined(NEED_sv_setpvf_mg_nocontext) || defined(NEED_sv_setpvf_mg_nocontext_GLOBAL) void DPPP_(my_sv_setpvf_mg_nocontext)(SV *sv, const char *pat, ...) { dTHX; va_list args; va_start(args, pat); sv_vsetpvfn(sv, pat, strlen(pat), &args, Null(SV**), 0, Null(bool*)); SvSETMAGIC(sv); va_end(args); } #endif #endif #endif /* sv_setpvf_mg depends on sv_setpvf_mg_nocontext */ #ifndef sv_setpvf_mg # ifdef PERL_IMPLICIT_CONTEXT # define sv_setpvf_mg Perl_sv_setpvf_mg_nocontext # else # define sv_setpvf_mg Perl_sv_setpvf_mg # endif #endif #if (PERL_BCDVERSION >= 0x5004000) && !defined(sv_vsetpvf_mg) # define sv_vsetpvf_mg(sv, pat, args) \ STMT_START { \ sv_vsetpvfn(sv, pat, strlen(pat), args, Null(SV**), 0, Null(bool*)); \ SvSETMAGIC(sv); \ } STMT_END #endif /* Hint: newSVpvn_share * The SVs created by this function only mimic the behaviour of * shared PVs without really being shared. Only use if you know * what you're doing. */ #ifndef newSVpvn_share #if defined(NEED_newSVpvn_share) static SV * DPPP_(my_newSVpvn_share)(pTHX_ const char *src, I32 len, U32 hash); static #else extern SV * DPPP_(my_newSVpvn_share)(pTHX_ const char *src, I32 len, U32 hash); #endif #ifdef newSVpvn_share # undef newSVpvn_share #endif #define newSVpvn_share(a,b,c) DPPP_(my_newSVpvn_share)(aTHX_ a,b,c) #define Perl_newSVpvn_share DPPP_(my_newSVpvn_share) #if defined(NEED_newSVpvn_share) || defined(NEED_newSVpvn_share_GLOBAL) SV * DPPP_(my_newSVpvn_share)(pTHX_ const char *src, I32 len, U32 hash) { SV *sv; if (len < 0) len = -len; if (!hash) PERL_HASH(hash, (char*) src, len); sv = newSVpvn((char *) src, len); sv_upgrade(sv, SVt_PVIV); SvIVX(sv) = hash; SvREADONLY_on(sv); SvPOK_on(sv); return sv; } #endif #endif #ifndef SvSHARED_HASH # define SvSHARED_HASH(sv) (0 + SvUVX(sv)) #endif #ifndef HvNAME_get # define HvNAME_get(hv) HvNAME(hv) #endif #ifndef HvNAMELEN_get # define HvNAMELEN_get(hv) (HvNAME_get(hv) ? (I32)strlen(HvNAME_get(hv)) : 0) #endif #ifndef GvSVn # define GvSVn(gv) GvSV(gv) #endif #ifndef isGV_with_GP # define isGV_with_GP(gv) isGV(gv) #endif #ifndef gv_fetchpvn_flags # define gv_fetchpvn_flags(name, len, flags, svt) gv_fetchpv(name, flags, svt) #endif #ifndef gv_fetchsv # define gv_fetchsv(name, flags, svt) gv_fetchpv(SvPV_nolen_const(name), flags, svt) #endif #ifndef get_cvn_flags # define get_cvn_flags(name, namelen, flags) get_cv(name, flags) #endif #ifndef WARN_ALL # define WARN_ALL 0 #endif #ifndef WARN_CLOSURE # define WARN_CLOSURE 1 #endif #ifndef WARN_DEPRECATED # define WARN_DEPRECATED 2 #endif #ifndef WARN_EXITING # define WARN_EXITING 3 #endif #ifndef WARN_GLOB # define WARN_GLOB 4 #endif #ifndef WARN_IO # define WARN_IO 5 #endif #ifndef WARN_CLOSED # define WARN_CLOSED 6 #endif #ifndef WARN_EXEC # define WARN_EXEC 7 #endif #ifndef WARN_LAYER # define WARN_LAYER 8 #endif #ifndef WARN_NEWLINE # define WARN_NEWLINE 9 #endif #ifndef WARN_PIPE # define WARN_PIPE 10 #endif #ifndef WARN_UNOPENED # define WARN_UNOPENED 11 #endif #ifndef WARN_MISC # define WARN_MISC 12 #endif #ifndef WARN_NUMERIC # define WARN_NUMERIC 13 #endif #ifndef WARN_ONCE # define WARN_ONCE 14 #endif #ifndef WARN_OVERFLOW # define WARN_OVERFLOW 15 #endif #ifndef WARN_PACK # define WARN_PACK 16 #endif #ifndef WARN_PORTABLE # define WARN_PORTABLE 17 #endif #ifndef WARN_RECURSION # define WARN_RECURSION 18 #endif #ifndef WARN_REDEFINE # define WARN_REDEFINE 19 #endif #ifndef WARN_REGEXP # define WARN_REGEXP 20 #endif #ifndef WARN_SEVERE # define WARN_SEVERE 21 #endif #ifndef WARN_DEBUGGING # define WARN_DEBUGGING 22 #endif #ifndef WARN_INPLACE # define WARN_INPLACE 23 #endif #ifndef WARN_INTERNAL # define WARN_INTERNAL 24 #endif #ifndef WARN_MALLOC # define WARN_MALLOC 25 #endif #ifndef WARN_SIGNAL # define WARN_SIGNAL 26 #endif #ifndef WARN_SUBSTR # define WARN_SUBSTR 27 #endif #ifndef WARN_SYNTAX # define WARN_SYNTAX 28 #endif #ifndef WARN_AMBIGUOUS # define WARN_AMBIGUOUS 29 #endif #ifndef WARN_BAREWORD # define WARN_BAREWORD 30 #endif #ifndef WARN_DIGIT # define WARN_DIGIT 31 #endif #ifndef WARN_PARENTHESIS # define WARN_PARENTHESIS 32 #endif #ifndef WARN_PRECEDENCE # define WARN_PRECEDENCE 33 #endif #ifndef WARN_PRINTF # define WARN_PRINTF 34 #endif #ifndef WARN_PROTOTYPE # define WARN_PROTOTYPE 35 #endif #ifndef WARN_QW # define WARN_QW 36 #endif #ifndef WARN_RESERVED # define WARN_RESERVED 37 #endif #ifndef WARN_SEMICOLON # define WARN_SEMICOLON 38 #endif #ifndef WARN_TAINT # define WARN_TAINT 39 #endif #ifndef WARN_THREADS # define WARN_THREADS 40 #endif #ifndef WARN_UNINITIALIZED # define WARN_UNINITIALIZED 41 #endif #ifndef WARN_UNPACK # define WARN_UNPACK 42 #endif #ifndef WARN_UNTIE # define WARN_UNTIE 43 #endif #ifndef WARN_UTF8 # define WARN_UTF8 44 #endif #ifndef WARN_VOID # define WARN_VOID 45 #endif #ifndef WARN_ASSERTIONS # define WARN_ASSERTIONS 46 #endif #ifndef packWARN # define packWARN(a) (a) #endif #ifndef ckWARN # ifdef G_WARN_ON # define ckWARN(a) (PL_dowarn & G_WARN_ON) # else # define ckWARN(a) PL_dowarn # endif #endif #if (PERL_BCDVERSION >= 0x5004000) && !defined(warner) #if defined(NEED_warner) static void DPPP_(my_warner)(U32 err, const char *pat, ...); static #else extern void DPPP_(my_warner)(U32 err, const char *pat, ...); #endif #define Perl_warner DPPP_(my_warner) #if defined(NEED_warner) || defined(NEED_warner_GLOBAL) void DPPP_(my_warner)(U32 err, const char *pat, ...) { SV *sv; va_list args; PERL_UNUSED_ARG(err); va_start(args, pat); sv = vnewSVpvf(pat, &args); va_end(args); sv_2mortal(sv); warn("%s", SvPV_nolen(sv)); } #define warner Perl_warner #define Perl_warner_nocontext Perl_warner #endif #endif /* concatenating with "" ensures that only literal strings are accepted as argument * note that STR_WITH_LEN() can't be used as argument to macros or functions that * under some configurations might be macros */ #ifndef STR_WITH_LEN # define STR_WITH_LEN(s) (s ""), (sizeof(s)-1) #endif #ifndef newSVpvs # define newSVpvs(str) newSVpvn(str "", sizeof(str) - 1) #endif #ifndef newSVpvs_flags # define newSVpvs_flags(str, flags) newSVpvn_flags(str "", sizeof(str) - 1, flags) #endif #ifndef newSVpvs_share # define newSVpvs_share(str) newSVpvn_share(str "", sizeof(str) - 1, 0) #endif #ifndef sv_catpvs # define sv_catpvs(sv, str) sv_catpvn(sv, str "", sizeof(str) - 1) #endif #ifndef sv_setpvs # define sv_setpvs(sv, str) sv_setpvn(sv, str "", sizeof(str) - 1) #endif #ifndef hv_fetchs # define hv_fetchs(hv, key, lval) hv_fetch(hv, key "", sizeof(key) - 1, lval) #endif #ifndef hv_stores # define hv_stores(hv, key, val) hv_store(hv, key "", sizeof(key) - 1, val, 0) #endif #ifndef gv_fetchpvs # define gv_fetchpvs(name, flags, svt) gv_fetchpvn_flags(name "", sizeof(name) - 1, flags, svt) #endif #ifndef gv_stashpvs # define gv_stashpvs(name, flags) gv_stashpvn(name "", sizeof(name) - 1, flags) #endif #ifndef get_cvs # define get_cvs(name, flags) get_cvn_flags(name "", sizeof(name)-1, flags) #endif #ifndef SvGETMAGIC # define SvGETMAGIC(x) STMT_START { if (SvGMAGICAL(x)) mg_get(x); } STMT_END #endif #ifndef PERL_MAGIC_sv # define PERL_MAGIC_sv '\0' #endif #ifndef PERL_MAGIC_overload # define PERL_MAGIC_overload 'A' #endif #ifndef PERL_MAGIC_overload_elem # define PERL_MAGIC_overload_elem 'a' #endif #ifndef PERL_MAGIC_overload_table # define PERL_MAGIC_overload_table 'c' #endif #ifndef PERL_MAGIC_bm # define PERL_MAGIC_bm 'B' #endif #ifndef PERL_MAGIC_regdata # define PERL_MAGIC_regdata 'D' #endif #ifndef PERL_MAGIC_regdatum # define PERL_MAGIC_regdatum 'd' #endif #ifndef PERL_MAGIC_env # define PERL_MAGIC_env 'E' #endif #ifndef PERL_MAGIC_envelem # define PERL_MAGIC_envelem 'e' #endif #ifndef PERL_MAGIC_fm # define PERL_MAGIC_fm 'f' #endif #ifndef PERL_MAGIC_regex_global # define PERL_MAGIC_regex_global 'g' #endif #ifndef PERL_MAGIC_isa # define PERL_MAGIC_isa 'I' #endif #ifndef PERL_MAGIC_isaelem # define PERL_MAGIC_isaelem 'i' #endif #ifndef PERL_MAGIC_nkeys # define PERL_MAGIC_nkeys 'k' #endif #ifndef PERL_MAGIC_dbfile # define PERL_MAGIC_dbfile 'L' #endif #ifndef PERL_MAGIC_dbline # define PERL_MAGIC_dbline 'l' #endif #ifndef PERL_MAGIC_mutex # define PERL_MAGIC_mutex 'm' #endif #ifndef PERL_MAGIC_shared # define PERL_MAGIC_shared 'N' #endif #ifndef PERL_MAGIC_shared_scalar # define PERL_MAGIC_shared_scalar 'n' #endif #ifndef PERL_MAGIC_collxfrm # define PERL_MAGIC_collxfrm 'o' #endif #ifndef PERL_MAGIC_tied # define PERL_MAGIC_tied 'P' #endif #ifndef PERL_MAGIC_tiedelem # define PERL_MAGIC_tiedelem 'p' #endif #ifndef PERL_MAGIC_tiedscalar # define PERL_MAGIC_tiedscalar 'q' #endif #ifndef PERL_MAGIC_qr # define PERL_MAGIC_qr 'r' #endif #ifndef PERL_MAGIC_sig # define PERL_MAGIC_sig 'S' #endif #ifndef PERL_MAGIC_sigelem # define PERL_MAGIC_sigelem 's' #endif #ifndef PERL_MAGIC_taint # define PERL_MAGIC_taint 't' #endif #ifndef PERL_MAGIC_uvar # define PERL_MAGIC_uvar 'U' #endif #ifndef PERL_MAGIC_uvar_elem # define PERL_MAGIC_uvar_elem 'u' #endif #ifndef PERL_MAGIC_vstring # define PERL_MAGIC_vstring 'V' #endif #ifndef PERL_MAGIC_vec # define PERL_MAGIC_vec 'v' #endif #ifndef PERL_MAGIC_utf8 # define PERL_MAGIC_utf8 'w' #endif #ifndef PERL_MAGIC_substr # define PERL_MAGIC_substr 'x' #endif #ifndef PERL_MAGIC_defelem # define PERL_MAGIC_defelem 'y' #endif #ifndef PERL_MAGIC_glob # define PERL_MAGIC_glob '*' #endif #ifndef PERL_MAGIC_arylen # define PERL_MAGIC_arylen '#' #endif #ifndef PERL_MAGIC_pos # define PERL_MAGIC_pos '.' #endif #ifndef PERL_MAGIC_backref # define PERL_MAGIC_backref '<' #endif #ifndef PERL_MAGIC_ext # define PERL_MAGIC_ext '~' #endif /* That's the best we can do... */ #ifndef sv_catpvn_nomg # define sv_catpvn_nomg sv_catpvn #endif #ifndef sv_catsv_nomg # define sv_catsv_nomg sv_catsv #endif #ifndef sv_setsv_nomg # define sv_setsv_nomg sv_setsv #endif #ifndef sv_pvn_nomg # define sv_pvn_nomg sv_pvn #endif #ifndef SvIV_nomg # define SvIV_nomg SvIV #endif #ifndef SvUV_nomg # define SvUV_nomg SvUV #endif #ifndef sv_catpv_mg # define sv_catpv_mg(sv, ptr) \ STMT_START { \ SV *TeMpSv = sv; \ sv_catpv(TeMpSv,ptr); \ SvSETMAGIC(TeMpSv); \ } STMT_END #endif #ifndef sv_catpvn_mg # define sv_catpvn_mg(sv, ptr, len) \ STMT_START { \ SV *TeMpSv = sv; \ sv_catpvn(TeMpSv,ptr,len); \ SvSETMAGIC(TeMpSv); \ } STMT_END #endif #ifndef sv_catsv_mg # define sv_catsv_mg(dsv, ssv) \ STMT_START { \ SV *TeMpSv = dsv; \ sv_catsv(TeMpSv,ssv); \ SvSETMAGIC(TeMpSv); \ } STMT_END #endif #ifndef sv_setiv_mg # define sv_setiv_mg(sv, i) \ STMT_START { \ SV *TeMpSv = sv; \ sv_setiv(TeMpSv,i); \ SvSETMAGIC(TeMpSv); \ } STMT_END #endif #ifndef sv_setnv_mg # define sv_setnv_mg(sv, num) \ STMT_START { \ SV *TeMpSv = sv; \ sv_setnv(TeMpSv,num); \ SvSETMAGIC(TeMpSv); \ } STMT_END #endif #ifndef sv_setpv_mg # define sv_setpv_mg(sv, ptr) \ STMT_START { \ SV *TeMpSv = sv; \ sv_setpv(TeMpSv,ptr); \ SvSETMAGIC(TeMpSv); \ } STMT_END #endif #ifndef sv_setpvn_mg # define sv_setpvn_mg(sv, ptr, len) \ STMT_START { \ SV *TeMpSv = sv; \ sv_setpvn(TeMpSv,ptr,len); \ SvSETMAGIC(TeMpSv); \ } STMT_END #endif #ifndef sv_setsv_mg # define sv_setsv_mg(dsv, ssv) \ STMT_START { \ SV *TeMpSv = dsv; \ sv_setsv(TeMpSv,ssv); \ SvSETMAGIC(TeMpSv); \ } STMT_END #endif #ifndef sv_setuv_mg # define sv_setuv_mg(sv, i) \ STMT_START { \ SV *TeMpSv = sv; \ sv_setuv(TeMpSv,i); \ SvSETMAGIC(TeMpSv); \ } STMT_END #endif #ifndef sv_usepvn_mg # define sv_usepvn_mg(sv, ptr, len) \ STMT_START { \ SV *TeMpSv = sv; \ sv_usepvn(TeMpSv,ptr,len); \ SvSETMAGIC(TeMpSv); \ } STMT_END #endif #ifndef SvVSTRING_mg # define SvVSTRING_mg(sv) (SvMAGICAL(sv) ? mg_find(sv, PERL_MAGIC_vstring) : NULL) #endif /* Hint: sv_magic_portable * This is a compatibility function that is only available with * Devel::PPPort. It is NOT in the perl core. * Its purpose is to mimic the 5.8.0 behaviour of sv_magic() when * it is being passed a name pointer with namlen == 0. In that * case, perl 5.8.0 and later store the pointer, not a copy of it. * The compatibility can be provided back to perl 5.004. With * earlier versions, the code will not compile. */ #if (PERL_BCDVERSION < 0x5004000) /* code that uses sv_magic_portable will not compile */ #elif (PERL_BCDVERSION < 0x5008000) # define sv_magic_portable(sv, obj, how, name, namlen) \ STMT_START { \ SV *SvMp_sv = (sv); \ char *SvMp_name = (char *) (name); \ I32 SvMp_namlen = (namlen); \ if (SvMp_name && SvMp_namlen == 0) \ { \ MAGIC *mg; \ sv_magic(SvMp_sv, obj, how, 0, 0); \ mg = SvMAGIC(SvMp_sv); \ mg->mg_len = -42; /* XXX: this is the tricky part */ \ mg->mg_ptr = SvMp_name; \ } \ else \ { \ sv_magic(SvMp_sv, obj, how, SvMp_name, SvMp_namlen); \ } \ } STMT_END #else # define sv_magic_portable(a, b, c, d, e) sv_magic(a, b, c, d, e) #endif #ifdef USE_ITHREADS #ifndef CopFILE # define CopFILE(c) ((c)->cop_file) #endif #ifndef CopFILEGV # define CopFILEGV(c) (CopFILE(c) ? gv_fetchfile(CopFILE(c)) : Nullgv) #endif #ifndef CopFILE_set # define CopFILE_set(c,pv) ((c)->cop_file = savepv(pv)) #endif #ifndef CopFILESV # define CopFILESV(c) (CopFILE(c) ? GvSV(gv_fetchfile(CopFILE(c))) : Nullsv) #endif #ifndef CopFILEAV # define CopFILEAV(c) (CopFILE(c) ? GvAV(gv_fetchfile(CopFILE(c))) : Nullav) #endif #ifndef CopSTASHPV # define CopSTASHPV(c) ((c)->cop_stashpv) #endif #ifndef CopSTASHPV_set # define CopSTASHPV_set(c,pv) ((c)->cop_stashpv = ((pv) ? savepv(pv) : Nullch)) #endif #ifndef CopSTASH # define CopSTASH(c) (CopSTASHPV(c) ? gv_stashpv(CopSTASHPV(c),GV_ADD) : Nullhv) #endif #ifndef CopSTASH_set # define CopSTASH_set(c,hv) CopSTASHPV_set(c, (hv) ? HvNAME(hv) : Nullch) #endif #ifndef CopSTASH_eq # define CopSTASH_eq(c,hv) ((hv) && (CopSTASHPV(c) == HvNAME(hv) \ || (CopSTASHPV(c) && HvNAME(hv) \ && strEQ(CopSTASHPV(c), HvNAME(hv))))) #endif #else #ifndef CopFILEGV # define CopFILEGV(c) ((c)->cop_filegv) #endif #ifndef CopFILEGV_set # define CopFILEGV_set(c,gv) ((c)->cop_filegv = (GV*)SvREFCNT_inc(gv)) #endif #ifndef CopFILE_set # define CopFILE_set(c,pv) CopFILEGV_set((c), gv_fetchfile(pv)) #endif #ifndef CopFILESV # define CopFILESV(c) (CopFILEGV(c) ? GvSV(CopFILEGV(c)) : Nullsv) #endif #ifndef CopFILEAV # define CopFILEAV(c) (CopFILEGV(c) ? GvAV(CopFILEGV(c)) : Nullav) #endif #ifndef CopFILE # define CopFILE(c) (CopFILESV(c) ? SvPVX(CopFILESV(c)) : Nullch) #endif #ifndef CopSTASH # define CopSTASH(c) ((c)->cop_stash) #endif #ifndef CopSTASH_set # define CopSTASH_set(c,hv) ((c)->cop_stash = (hv)) #endif #ifndef CopSTASHPV # define CopSTASHPV(c) (CopSTASH(c) ? HvNAME(CopSTASH(c)) : Nullch) #endif #ifndef CopSTASHPV_set # define CopSTASHPV_set(c,pv) CopSTASH_set((c), gv_stashpv(pv,GV_ADD)) #endif #ifndef CopSTASH_eq # define CopSTASH_eq(c,hv) (CopSTASH(c) == (hv)) #endif #endif /* USE_ITHREADS */ #ifndef IN_PERL_COMPILETIME # define IN_PERL_COMPILETIME (PL_curcop == &PL_compiling) #endif #ifndef IN_LOCALE_RUNTIME # define IN_LOCALE_RUNTIME (PL_curcop->op_private & HINT_LOCALE) #endif #ifndef IN_LOCALE_COMPILETIME # define IN_LOCALE_COMPILETIME (PL_hints & HINT_LOCALE) #endif #ifndef IN_LOCALE # define IN_LOCALE (IN_PERL_COMPILETIME ? IN_LOCALE_COMPILETIME : IN_LOCALE_RUNTIME) #endif #ifndef IS_NUMBER_IN_UV # define IS_NUMBER_IN_UV 0x01 #endif #ifndef IS_NUMBER_GREATER_THAN_UV_MAX # define IS_NUMBER_GREATER_THAN_UV_MAX 0x02 #endif #ifndef IS_NUMBER_NOT_INT # define IS_NUMBER_NOT_INT 0x04 #endif #ifndef IS_NUMBER_NEG # define IS_NUMBER_NEG 0x08 #endif #ifndef IS_NUMBER_INFINITY # define IS_NUMBER_INFINITY 0x10 #endif #ifndef IS_NUMBER_NAN # define IS_NUMBER_NAN 0x20 #endif #ifndef GROK_NUMERIC_RADIX # define GROK_NUMERIC_RADIX(sp, send) grok_numeric_radix(sp, send) #endif #ifndef PERL_SCAN_GREATER_THAN_UV_MAX # define PERL_SCAN_GREATER_THAN_UV_MAX 0x02 #endif #ifndef PERL_SCAN_SILENT_ILLDIGIT # define PERL_SCAN_SILENT_ILLDIGIT 0x04 #endif #ifndef PERL_SCAN_ALLOW_UNDERSCORES # define PERL_SCAN_ALLOW_UNDERSCORES 0x01 #endif #ifndef PERL_SCAN_DISALLOW_PREFIX # define PERL_SCAN_DISALLOW_PREFIX 0x02 #endif #ifndef grok_numeric_radix #if defined(NEED_grok_numeric_radix) static bool DPPP_(my_grok_numeric_radix)(pTHX_ const char ** sp, const char * send); static #else extern bool DPPP_(my_grok_numeric_radix)(pTHX_ const char ** sp, const char * send); #endif #ifdef grok_numeric_radix # undef grok_numeric_radix #endif #define grok_numeric_radix(a,b) DPPP_(my_grok_numeric_radix)(aTHX_ a,b) #define Perl_grok_numeric_radix DPPP_(my_grok_numeric_radix) #if defined(NEED_grok_numeric_radix) || defined(NEED_grok_numeric_radix_GLOBAL) bool DPPP_(my_grok_numeric_radix)(pTHX_ const char **sp, const char *send) { #ifdef USE_LOCALE_NUMERIC #ifdef PL_numeric_radix_sv if (PL_numeric_radix_sv && IN_LOCALE) { STRLEN len; char* radix = SvPV(PL_numeric_radix_sv, len); if (*sp + len <= send && memEQ(*sp, radix, len)) { *sp += len; return TRUE; } } #else /* older perls don't have PL_numeric_radix_sv so the radix * must manually be requested from locale.h */ #include dTHR; /* needed for older threaded perls */ struct lconv *lc = localeconv(); char *radix = lc->decimal_point; if (radix && IN_LOCALE) { STRLEN len = strlen(radix); if (*sp + len <= send && memEQ(*sp, radix, len)) { *sp += len; return TRUE; } } #endif #endif /* USE_LOCALE_NUMERIC */ /* always try "." if numeric radix didn't match because * we may have data from different locales mixed */ if (*sp < send && **sp == '.') { ++*sp; return TRUE; } return FALSE; } #endif #endif #ifndef grok_number #if defined(NEED_grok_number) static int DPPP_(my_grok_number)(pTHX_ const char * pv, STRLEN len, UV * valuep); static #else extern int DPPP_(my_grok_number)(pTHX_ const char * pv, STRLEN len, UV * valuep); #endif #ifdef grok_number # undef grok_number #endif #define grok_number(a,b,c) DPPP_(my_grok_number)(aTHX_ a,b,c) #define Perl_grok_number DPPP_(my_grok_number) #if defined(NEED_grok_number) || defined(NEED_grok_number_GLOBAL) int DPPP_(my_grok_number)(pTHX_ const char *pv, STRLEN len, UV *valuep) { const char *s = pv; const char *send = pv + len; const UV max_div_10 = UV_MAX / 10; const char max_mod_10 = UV_MAX % 10; int numtype = 0; int sawinf = 0; int sawnan = 0; while (s < send && isSPACE(*s)) s++; if (s == send) { return 0; } else if (*s == '-') { s++; numtype = IS_NUMBER_NEG; } else if (*s == '+') s++; if (s == send) return 0; /* next must be digit or the radix separator or beginning of infinity */ if (isDIGIT(*s)) { /* UVs are at least 32 bits, so the first 9 decimal digits cannot overflow. */ UV value = *s - '0'; /* This construction seems to be more optimiser friendly. (without it gcc does the isDIGIT test and the *s - '0' separately) With it gcc on arm is managing 6 instructions (6 cycles) per digit. In theory the optimiser could deduce how far to unroll the loop before checking for overflow. */ if (++s < send) { int digit = *s - '0'; if (digit >= 0 && digit <= 9) { value = value * 10 + digit; if (++s < send) { digit = *s - '0'; if (digit >= 0 && digit <= 9) { value = value * 10 + digit; if (++s < send) { digit = *s - '0'; if (digit >= 0 && digit <= 9) { value = value * 10 + digit; if (++s < send) { digit = *s - '0'; if (digit >= 0 && digit <= 9) { value = value * 10 + digit; if (++s < send) { digit = *s - '0'; if (digit >= 0 && digit <= 9) { value = value * 10 + digit; if (++s < send) { digit = *s - '0'; if (digit >= 0 && digit <= 9) { value = value * 10 + digit; if (++s < send) { digit = *s - '0'; if (digit >= 0 && digit <= 9) { value = value * 10 + digit; if (++s < send) { digit = *s - '0'; if (digit >= 0 && digit <= 9) { value = value * 10 + digit; if (++s < send) { /* Now got 9 digits, so need to check each time for overflow. */ digit = *s - '0'; while (digit >= 0 && digit <= 9 && (value < max_div_10 || (value == max_div_10 && digit <= max_mod_10))) { value = value * 10 + digit; if (++s < send) digit = *s - '0'; else break; } if (digit >= 0 && digit <= 9 && (s < send)) { /* value overflowed. skip the remaining digits, don't worry about setting *valuep. */ do { s++; } while (s < send && isDIGIT(*s)); numtype |= IS_NUMBER_GREATER_THAN_UV_MAX; goto skip_value; } } } } } } } } } } } } } } } } } } numtype |= IS_NUMBER_IN_UV; if (valuep) *valuep = value; skip_value: if (GROK_NUMERIC_RADIX(&s, send)) { numtype |= IS_NUMBER_NOT_INT; while (s < send && isDIGIT(*s)) /* optional digits after the radix */ s++; } } else if (GROK_NUMERIC_RADIX(&s, send)) { numtype |= IS_NUMBER_NOT_INT | IS_NUMBER_IN_UV; /* valuep assigned below */ /* no digits before the radix means we need digits after it */ if (s < send && isDIGIT(*s)) { do { s++; } while (s < send && isDIGIT(*s)); if (valuep) { /* integer approximation is valid - it's 0. */ *valuep = 0; } } else return 0; } else if (*s == 'I' || *s == 'i') { s++; if (s == send || (*s != 'N' && *s != 'n')) return 0; s++; if (s == send || (*s != 'F' && *s != 'f')) return 0; s++; if (s < send && (*s == 'I' || *s == 'i')) { s++; if (s == send || (*s != 'N' && *s != 'n')) return 0; s++; if (s == send || (*s != 'I' && *s != 'i')) return 0; s++; if (s == send || (*s != 'T' && *s != 't')) return 0; s++; if (s == send || (*s != 'Y' && *s != 'y')) return 0; s++; } sawinf = 1; } else if (*s == 'N' || *s == 'n') { /* XXX TODO: There are signaling NaNs and quiet NaNs. */ s++; if (s == send || (*s != 'A' && *s != 'a')) return 0; s++; if (s == send || (*s != 'N' && *s != 'n')) return 0; s++; sawnan = 1; } else return 0; if (sawinf) { numtype &= IS_NUMBER_NEG; /* Keep track of sign */ numtype |= IS_NUMBER_INFINITY | IS_NUMBER_NOT_INT; } else if (sawnan) { numtype &= IS_NUMBER_NEG; /* Keep track of sign */ numtype |= IS_NUMBER_NAN | IS_NUMBER_NOT_INT; } else if (s < send) { /* we can have an optional exponent part */ if (*s == 'e' || *s == 'E') { /* The only flag we keep is sign. Blow away any "it's UV" */ numtype &= IS_NUMBER_NEG; numtype |= IS_NUMBER_NOT_INT; s++; if (s < send && (*s == '-' || *s == '+')) s++; if (s < send && isDIGIT(*s)) { do { s++; } while (s < send && isDIGIT(*s)); } else return 0; } } while (s < send && isSPACE(*s)) s++; if (s >= send) return numtype; if (len == 10 && memEQ(pv, "0 but true", 10)) { if (valuep) *valuep = 0; return IS_NUMBER_IN_UV; } return 0; } #endif #endif /* * The grok_* routines have been modified to use warn() instead of * Perl_warner(). Also, 'hexdigit' was the former name of PL_hexdigit, * which is why the stack variable has been renamed to 'xdigit'. */ #ifndef grok_bin #if defined(NEED_grok_bin) static UV DPPP_(my_grok_bin)(pTHX_ const char * start, STRLEN * len_p, I32 * flags, NV * result); static #else extern UV DPPP_(my_grok_bin)(pTHX_ const char * start, STRLEN * len_p, I32 * flags, NV * result); #endif #ifdef grok_bin # undef grok_bin #endif #define grok_bin(a,b,c,d) DPPP_(my_grok_bin)(aTHX_ a,b,c,d) #define Perl_grok_bin DPPP_(my_grok_bin) #if defined(NEED_grok_bin) || defined(NEED_grok_bin_GLOBAL) UV DPPP_(my_grok_bin)(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result) { const char *s = start; STRLEN len = *len_p; UV value = 0; NV value_nv = 0; const UV max_div_2 = UV_MAX / 2; bool allow_underscores = *flags & PERL_SCAN_ALLOW_UNDERSCORES; bool overflowed = FALSE; if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) { /* strip off leading b or 0b. for compatibility silently suffer "b" and "0b" as valid binary numbers. */ if (len >= 1) { if (s[0] == 'b') { s++; len--; } else if (len >= 2 && s[0] == '0' && s[1] == 'b') { s+=2; len-=2; } } } for (; len-- && *s; s++) { char bit = *s; if (bit == '0' || bit == '1') { /* Write it in this wonky order with a goto to attempt to get the compiler to make the common case integer-only loop pretty tight. With gcc seems to be much straighter code than old scan_bin. */ redo: if (!overflowed) { if (value <= max_div_2) { value = (value << 1) | (bit - '0'); continue; } /* Bah. We're just overflowed. */ warn("Integer overflow in binary number"); overflowed = TRUE; value_nv = (NV) value; } value_nv *= 2.0; /* If an NV has not enough bits in its mantissa to * represent a UV this summing of small low-order numbers * is a waste of time (because the NV cannot preserve * the low-order bits anyway): we could just remember when * did we overflow and in the end just multiply value_nv by the * right amount. */ value_nv += (NV)(bit - '0'); continue; } if (bit == '_' && len && allow_underscores && (bit = s[1]) && (bit == '0' || bit == '1')) { --len; ++s; goto redo; } if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT)) warn("Illegal binary digit '%c' ignored", *s); break; } if ( ( overflowed && value_nv > 4294967295.0) #if UVSIZE > 4 || (!overflowed && value > 0xffffffff ) #endif ) { warn("Binary number > 0b11111111111111111111111111111111 non-portable"); } *len_p = s - start; if (!overflowed) { *flags = 0; return value; } *flags = PERL_SCAN_GREATER_THAN_UV_MAX; if (result) *result = value_nv; return UV_MAX; } #endif #endif #ifndef grok_hex #if defined(NEED_grok_hex) static UV DPPP_(my_grok_hex)(pTHX_ const char * start, STRLEN * len_p, I32 * flags, NV * result); static #else extern UV DPPP_(my_grok_hex)(pTHX_ const char * start, STRLEN * len_p, I32 * flags, NV * result); #endif #ifdef grok_hex # undef grok_hex #endif #define grok_hex(a,b,c,d) DPPP_(my_grok_hex)(aTHX_ a,b,c,d) #define Perl_grok_hex DPPP_(my_grok_hex) #if defined(NEED_grok_hex) || defined(NEED_grok_hex_GLOBAL) UV DPPP_(my_grok_hex)(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result) { const char *s = start; STRLEN len = *len_p; UV value = 0; NV value_nv = 0; const UV max_div_16 = UV_MAX / 16; bool allow_underscores = *flags & PERL_SCAN_ALLOW_UNDERSCORES; bool overflowed = FALSE; const char *xdigit; if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) { /* strip off leading x or 0x. for compatibility silently suffer "x" and "0x" as valid hex numbers. */ if (len >= 1) { if (s[0] == 'x') { s++; len--; } else if (len >= 2 && s[0] == '0' && s[1] == 'x') { s+=2; len-=2; } } } for (; len-- && *s; s++) { xdigit = strchr((char *) PL_hexdigit, *s); if (xdigit) { /* Write it in this wonky order with a goto to attempt to get the compiler to make the common case integer-only loop pretty tight. With gcc seems to be much straighter code than old scan_hex. */ redo: if (!overflowed) { if (value <= max_div_16) { value = (value << 4) | ((xdigit - PL_hexdigit) & 15); continue; } warn("Integer overflow in hexadecimal number"); overflowed = TRUE; value_nv = (NV) value; } value_nv *= 16.0; /* If an NV has not enough bits in its mantissa to * represent a UV this summing of small low-order numbers * is a waste of time (because the NV cannot preserve * the low-order bits anyway): we could just remember when * did we overflow and in the end just multiply value_nv by the * right amount of 16-tuples. */ value_nv += (NV)((xdigit - PL_hexdigit) & 15); continue; } if (*s == '_' && len && allow_underscores && s[1] && (xdigit = strchr((char *) PL_hexdigit, s[1]))) { --len; ++s; goto redo; } if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT)) warn("Illegal hexadecimal digit '%c' ignored", *s); break; } if ( ( overflowed && value_nv > 4294967295.0) #if UVSIZE > 4 || (!overflowed && value > 0xffffffff ) #endif ) { warn("Hexadecimal number > 0xffffffff non-portable"); } *len_p = s - start; if (!overflowed) { *flags = 0; return value; } *flags = PERL_SCAN_GREATER_THAN_UV_MAX; if (result) *result = value_nv; return UV_MAX; } #endif #endif #ifndef grok_oct #if defined(NEED_grok_oct) static UV DPPP_(my_grok_oct)(pTHX_ const char * start, STRLEN * len_p, I32 * flags, NV * result); static #else extern UV DPPP_(my_grok_oct)(pTHX_ const char * start, STRLEN * len_p, I32 * flags, NV * result); #endif #ifdef grok_oct # undef grok_oct #endif #define grok_oct(a,b,c,d) DPPP_(my_grok_oct)(aTHX_ a,b,c,d) #define Perl_grok_oct DPPP_(my_grok_oct) #if defined(NEED_grok_oct) || defined(NEED_grok_oct_GLOBAL) UV DPPP_(my_grok_oct)(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result) { const char *s = start; STRLEN len = *len_p; UV value = 0; NV value_nv = 0; const UV max_div_8 = UV_MAX / 8; bool allow_underscores = *flags & PERL_SCAN_ALLOW_UNDERSCORES; bool overflowed = FALSE; for (; len-- && *s; s++) { /* gcc 2.95 optimiser not smart enough to figure that this subtraction out front allows slicker code. */ int digit = *s - '0'; if (digit >= 0 && digit <= 7) { /* Write it in this wonky order with a goto to attempt to get the compiler to make the common case integer-only loop pretty tight. */ redo: if (!overflowed) { if (value <= max_div_8) { value = (value << 3) | digit; continue; } /* Bah. We're just overflowed. */ warn("Integer overflow in octal number"); overflowed = TRUE; value_nv = (NV) value; } value_nv *= 8.0; /* If an NV has not enough bits in its mantissa to * represent a UV this summing of small low-order numbers * is a waste of time (because the NV cannot preserve * the low-order bits anyway): we could just remember when * did we overflow and in the end just multiply value_nv by the * right amount of 8-tuples. */ value_nv += (NV)digit; continue; } if (digit == ('_' - '0') && len && allow_underscores && (digit = s[1] - '0') && (digit >= 0 && digit <= 7)) { --len; ++s; goto redo; } /* Allow \octal to work the DWIM way (that is, stop scanning * as soon as non-octal characters are seen, complain only iff * someone seems to want to use the digits eight and nine). */ if (digit == 8 || digit == 9) { if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT)) warn("Illegal octal digit '%c' ignored", *s); } break; } if ( ( overflowed && value_nv > 4294967295.0) #if UVSIZE > 4 || (!overflowed && value > 0xffffffff ) #endif ) { warn("Octal number > 037777777777 non-portable"); } *len_p = s - start; if (!overflowed) { *flags = 0; return value; } *flags = PERL_SCAN_GREATER_THAN_UV_MAX; if (result) *result = value_nv; return UV_MAX; } #endif #endif #if !defined(my_snprintf) #if defined(NEED_my_snprintf) static int DPPP_(my_my_snprintf)(char * buffer, const Size_t len, const char * format, ...); static #else extern int DPPP_(my_my_snprintf)(char * buffer, const Size_t len, const char * format, ...); #endif #define my_snprintf DPPP_(my_my_snprintf) #define Perl_my_snprintf DPPP_(my_my_snprintf) #if defined(NEED_my_snprintf) || defined(NEED_my_snprintf_GLOBAL) int DPPP_(my_my_snprintf)(char *buffer, const Size_t len, const char *format, ...) { dTHX; int retval; va_list ap; va_start(ap, format); #ifdef HAS_VSNPRINTF retval = vsnprintf(buffer, len, format, ap); #else retval = vsprintf(buffer, format, ap); #endif va_end(ap); if (retval < 0 || (len > 0 && (Size_t)retval >= len)) Perl_croak(aTHX_ "panic: my_snprintf buffer overflow"); return retval; } #endif #endif #if !defined(my_sprintf) #if defined(NEED_my_sprintf) static int DPPP_(my_my_sprintf)(char * buffer, const char * pat, ...); static #else extern int DPPP_(my_my_sprintf)(char * buffer, const char * pat, ...); #endif #define my_sprintf DPPP_(my_my_sprintf) #define Perl_my_sprintf DPPP_(my_my_sprintf) #if defined(NEED_my_sprintf) || defined(NEED_my_sprintf_GLOBAL) int DPPP_(my_my_sprintf)(char *buffer, const char* pat, ...) { va_list args; va_start(args, pat); vsprintf(buffer, pat, args); va_end(args); return strlen(buffer); } #endif #endif #ifdef NO_XSLOCKS # ifdef dJMPENV # define dXCPT dJMPENV; int rEtV = 0 # define XCPT_TRY_START JMPENV_PUSH(rEtV); if (rEtV == 0) # define XCPT_TRY_END JMPENV_POP; # define XCPT_CATCH if (rEtV != 0) # define XCPT_RETHROW JMPENV_JUMP(rEtV) # else # define dXCPT Sigjmp_buf oldTOP; int rEtV = 0 # define XCPT_TRY_START Copy(top_env, oldTOP, 1, Sigjmp_buf); rEtV = Sigsetjmp(top_env, 1); if (rEtV == 0) # define XCPT_TRY_END Copy(oldTOP, top_env, 1, Sigjmp_buf); # define XCPT_CATCH if (rEtV != 0) # define XCPT_RETHROW Siglongjmp(top_env, rEtV) # endif #endif #if !defined(my_strlcat) #if defined(NEED_my_strlcat) static Size_t DPPP_(my_my_strlcat)(char * dst, const char * src, Size_t size); static #else extern Size_t DPPP_(my_my_strlcat)(char * dst, const char * src, Size_t size); #endif #define my_strlcat DPPP_(my_my_strlcat) #define Perl_my_strlcat DPPP_(my_my_strlcat) #if defined(NEED_my_strlcat) || defined(NEED_my_strlcat_GLOBAL) Size_t DPPP_(my_my_strlcat)(char *dst, const char *src, Size_t size) { Size_t used, length, copy; used = strlen(dst); length = strlen(src); if (size > 0 && used < size - 1) { copy = (length >= size - used) ? size - used - 1 : length; memcpy(dst + used, src, copy); dst[used + copy] = '\0'; } return used + length; } #endif #endif #if !defined(my_strlcpy) #if defined(NEED_my_strlcpy) static Size_t DPPP_(my_my_strlcpy)(char * dst, const char * src, Size_t size); static #else extern Size_t DPPP_(my_my_strlcpy)(char * dst, const char * src, Size_t size); #endif #define my_strlcpy DPPP_(my_my_strlcpy) #define Perl_my_strlcpy DPPP_(my_my_strlcpy) #if defined(NEED_my_strlcpy) || defined(NEED_my_strlcpy_GLOBAL) Size_t DPPP_(my_my_strlcpy)(char *dst, const char *src, Size_t size) { Size_t length, copy; length = strlen(src); if (size > 0) { copy = (length >= size) ? size - 1 : length; memcpy(dst, src, copy); dst[copy] = '\0'; } return length; } #endif #endif #ifndef PERL_PV_ESCAPE_QUOTE # define PERL_PV_ESCAPE_QUOTE 0x0001 #endif #ifndef PERL_PV_PRETTY_QUOTE # define PERL_PV_PRETTY_QUOTE PERL_PV_ESCAPE_QUOTE #endif #ifndef PERL_PV_PRETTY_ELLIPSES # define PERL_PV_PRETTY_ELLIPSES 0x0002 #endif #ifndef PERL_PV_PRETTY_LTGT # define PERL_PV_PRETTY_LTGT 0x0004 #endif #ifndef PERL_PV_ESCAPE_FIRSTCHAR # define PERL_PV_ESCAPE_FIRSTCHAR 0x0008 #endif #ifndef PERL_PV_ESCAPE_UNI # define PERL_PV_ESCAPE_UNI 0x0100 #endif #ifndef PERL_PV_ESCAPE_UNI_DETECT # define PERL_PV_ESCAPE_UNI_DETECT 0x0200 #endif #ifndef PERL_PV_ESCAPE_ALL # define PERL_PV_ESCAPE_ALL 0x1000 #endif #ifndef PERL_PV_ESCAPE_NOBACKSLASH # define PERL_PV_ESCAPE_NOBACKSLASH 0x2000 #endif #ifndef PERL_PV_ESCAPE_NOCLEAR # define PERL_PV_ESCAPE_NOCLEAR 0x4000 #endif #ifndef PERL_PV_ESCAPE_RE # define PERL_PV_ESCAPE_RE 0x8000 #endif #ifndef PERL_PV_PRETTY_NOCLEAR # define PERL_PV_PRETTY_NOCLEAR PERL_PV_ESCAPE_NOCLEAR #endif #ifndef PERL_PV_PRETTY_DUMP # define PERL_PV_PRETTY_DUMP PERL_PV_PRETTY_ELLIPSES|PERL_PV_PRETTY_QUOTE #endif #ifndef PERL_PV_PRETTY_REGPROP # define PERL_PV_PRETTY_REGPROP PERL_PV_PRETTY_ELLIPSES|PERL_PV_PRETTY_LTGT|PERL_PV_ESCAPE_RE #endif /* Hint: pv_escape * Note that unicode functionality is only backported to * those perl versions that support it. For older perl * versions, the implementation will fall back to bytes. */ #ifndef pv_escape #if defined(NEED_pv_escape) static char * DPPP_(my_pv_escape)(pTHX_ SV * dsv, char const * const str, const STRLEN count, const STRLEN max, STRLEN * const escaped, const U32 flags); static #else extern char * DPPP_(my_pv_escape)(pTHX_ SV * dsv, char const * const str, const STRLEN count, const STRLEN max, STRLEN * const escaped, const U32 flags); #endif #ifdef pv_escape # undef pv_escape #endif #define pv_escape(a,b,c,d,e,f) DPPP_(my_pv_escape)(aTHX_ a,b,c,d,e,f) #define Perl_pv_escape DPPP_(my_pv_escape) #if defined(NEED_pv_escape) || defined(NEED_pv_escape_GLOBAL) char * DPPP_(my_pv_escape)(pTHX_ SV *dsv, char const * const str, const STRLEN count, const STRLEN max, STRLEN * const escaped, const U32 flags) { const char esc = flags & PERL_PV_ESCAPE_RE ? '%' : '\\'; const char dq = flags & PERL_PV_ESCAPE_QUOTE ? '"' : esc; char octbuf[32] = "%123456789ABCDF"; STRLEN wrote = 0; STRLEN chsize = 0; STRLEN readsize = 1; #if defined(is_utf8_string) && defined(utf8_to_uvchr) bool isuni = flags & PERL_PV_ESCAPE_UNI ? 1 : 0; #endif const char *pv = str; const char * const end = pv + count; octbuf[0] = esc; if (!(flags & PERL_PV_ESCAPE_NOCLEAR)) sv_setpvs(dsv, ""); #if defined(is_utf8_string) && defined(utf8_to_uvchr) if ((flags & PERL_PV_ESCAPE_UNI_DETECT) && is_utf8_string((U8*)pv, count)) isuni = 1; #endif for (; pv < end && (!max || wrote < max) ; pv += readsize) { const UV u = #if defined(is_utf8_string) && defined(utf8_to_uvchr) isuni ? utf8_to_uvchr((U8*)pv, &readsize) : #endif (U8)*pv; const U8 c = (U8)u & 0xFF; if (u > 255 || (flags & PERL_PV_ESCAPE_ALL)) { if (flags & PERL_PV_ESCAPE_FIRSTCHAR) chsize = my_snprintf(octbuf, sizeof octbuf, "%"UVxf, u); else chsize = my_snprintf(octbuf, sizeof octbuf, "%cx{%"UVxf"}", esc, u); } else if (flags & PERL_PV_ESCAPE_NOBACKSLASH) { chsize = 1; } else { if (c == dq || c == esc || !isPRINT(c)) { chsize = 2; switch (c) { case '\\' : /* fallthrough */ case '%' : if (c == esc) octbuf[1] = esc; else chsize = 1; break; case '\v' : octbuf[1] = 'v'; break; case '\t' : octbuf[1] = 't'; break; case '\r' : octbuf[1] = 'r'; break; case '\n' : octbuf[1] = 'n'; break; case '\f' : octbuf[1] = 'f'; break; case '"' : if (dq == '"') octbuf[1] = '"'; else chsize = 1; break; default: chsize = my_snprintf(octbuf, sizeof octbuf, pv < end && isDIGIT((U8)*(pv+readsize)) ? "%c%03o" : "%c%o", esc, c); } } else { chsize = 1; } } if (max && wrote + chsize > max) { break; } else if (chsize > 1) { sv_catpvn(dsv, octbuf, chsize); wrote += chsize; } else { char tmp[2]; my_snprintf(tmp, sizeof tmp, "%c", c); sv_catpvn(dsv, tmp, 1); wrote++; } if (flags & PERL_PV_ESCAPE_FIRSTCHAR) break; } if (escaped != NULL) *escaped= pv - str; return SvPVX(dsv); } #endif #endif #ifndef pv_pretty #if defined(NEED_pv_pretty) static char * DPPP_(my_pv_pretty)(pTHX_ SV * dsv, char const * const str, const STRLEN count, const STRLEN max, char const * const start_color, char const * const end_color, const U32 flags); static #else extern char * DPPP_(my_pv_pretty)(pTHX_ SV * dsv, char const * const str, const STRLEN count, const STRLEN max, char const * const start_color, char const * const end_color, const U32 flags); #endif #ifdef pv_pretty # undef pv_pretty #endif #define pv_pretty(a,b,c,d,e,f,g) DPPP_(my_pv_pretty)(aTHX_ a,b,c,d,e,f,g) #define Perl_pv_pretty DPPP_(my_pv_pretty) #if defined(NEED_pv_pretty) || defined(NEED_pv_pretty_GLOBAL) char * DPPP_(my_pv_pretty)(pTHX_ SV *dsv, char const * const str, const STRLEN count, const STRLEN max, char const * const start_color, char const * const end_color, const U32 flags) { const U8 dq = (flags & PERL_PV_PRETTY_QUOTE) ? '"' : '%'; STRLEN escaped; if (!(flags & PERL_PV_PRETTY_NOCLEAR)) sv_setpvs(dsv, ""); if (dq == '"') sv_catpvs(dsv, "\""); else if (flags & PERL_PV_PRETTY_LTGT) sv_catpvs(dsv, "<"); if (start_color != NULL) sv_catpv(dsv, D_PPP_CONSTPV_ARG(start_color)); pv_escape(dsv, str, count, max, &escaped, flags | PERL_PV_ESCAPE_NOCLEAR); if (end_color != NULL) sv_catpv(dsv, D_PPP_CONSTPV_ARG(end_color)); if (dq == '"') sv_catpvs(dsv, "\""); else if (flags & PERL_PV_PRETTY_LTGT) sv_catpvs(dsv, ">"); if ((flags & PERL_PV_PRETTY_ELLIPSES) && escaped < count) sv_catpvs(dsv, "..."); return SvPVX(dsv); } #endif #endif #ifndef pv_display #if defined(NEED_pv_display) static char * DPPP_(my_pv_display)(pTHX_ SV * dsv, const char * pv, STRLEN cur, STRLEN len, STRLEN pvlim); static #else extern char * DPPP_(my_pv_display)(pTHX_ SV * dsv, const char * pv, STRLEN cur, STRLEN len, STRLEN pvlim); #endif #ifdef pv_display # undef pv_display #endif #define pv_display(a,b,c,d,e) DPPP_(my_pv_display)(aTHX_ a,b,c,d,e) #define Perl_pv_display DPPP_(my_pv_display) #if defined(NEED_pv_display) || defined(NEED_pv_display_GLOBAL) char * DPPP_(my_pv_display)(pTHX_ SV *dsv, const char *pv, STRLEN cur, STRLEN len, STRLEN pvlim) { pv_pretty(dsv, pv, cur, pvlim, NULL, NULL, PERL_PV_PRETTY_DUMP); if (len > cur && pv[cur] == '\0') sv_catpvs(dsv, "\\0"); return SvPVX(dsv); } #endif #endif #endif /* _P_P_PORTABILITY_H_ */ /* End of File ppport.h */ Compress-Raw-Zlib-2.063/Changes0000644000175000017500000001655212232043214014725 0ustar paulpaulCHANGES ------- 2.063 23 October 2013 * gcc -g3: final link failed: Memory exhausted [#88936] * Compress::Raw::Zlib uses AutoLoader for no reason [#88260] * Typo in Compress::Zlib _combine function documentation [#89305] 2.062 11 August 2013 * typo fix [#86417] 2.061 19 May 2013 * Include zlib 1.2.8 source. * typo fix [#85431] * silence compiler warning by making 2nd parameter to DispStream a const char* * Mishandling of BUILD_ZLIB=0 option [#85492] 2.060 7 January 2013 * Mention SimpleZip in POD 2.059 24 November 2012 * Copy-on-write support [#81353] 2.058 12 November 2012 * No Changes 2.057 10 November 2012 * Compress::Raw::Zlib needs to use PERL_NO_GET_CONTEXT [#80319] * Install to 'site' instead of 'perl' when perl version is 5.11+ [#79812] * update to ppport.h that includes SvPV_nomg_nolen [#78079] 2.056 10 August 2012 * Fix C++ build issue Thanks to Karl Williamson for supplying the patch. 2.055 4 August 2012 * Fix misuse of magic in API [#78079] 2.054 8 May 2012 * Build issue on Win32 [#77030] 2.053 6 May 2012 * Include zlib 1.2.7 source. 2.052 29 April 2012 * Fixed build issue when Perl is built with C++ 2.051 20 February 2012 * Bug in Compress::Raw::Zlib on Windows [#75222] 2.050 20 February 2012 * Build failure on Irix & Solaris. [RT #69985] 2.049 18 February 2012 * Include zlib 1.2.6 source. 2.048 29 January 2012 * Set minimum zlib version to 1.2.0 2.047 28 January 2012 * Allow flush to be called multiple times without any intermediate call to deflate and still return Z_OK. In the code below $status was Z_BUF_ERROR before this change. $def->flush(...); $status = $def->flush(...); * Added support for zlibCompileFlags * Set minimum Perl version to 5.6 2.045 3 December 2011 * Moved FAQ.pod into Zlib.pm 2.044 2 December 2011 * Moved FAQ.pod under the lib directory so it can get installed 2.043 20 November 2011 * No Changes 2.042 17 November 2011 * No Changes 2.040 28 October 2011 * No Changes 2.039 28 October 2011 * croak if attempt to freeze/thaw compression object [RT #69985] 2.037 22 June 2011 * No Changes 2.036 6 May 2011 * Added offset patramter to CRC32 2.035 6 May 2011 * No Changes 2.033 11 Jan 2011 * Fixed typos & spelling errors. [perl# 81782] 2.032 4 Jan 2011 * Document inflateReset [RT #61082] 2.030 22 July 2010 * Ran the zlib2ansi script against the files in zlib-src. Thanks to Nicholas Clark for the reminder. * Added "-DNO_VIZ" to DEFINE in Makefile.PL [RT #65293] 2.027 24 April 2010 * Updated to include zlib 1.2.5 2.026 7 April 2010 * Fixed definition of Z_TREES in Makefile.PL [RT #65293] * Fixed build issue with definition of off64_t not found on Solaris by modifying the zlib source - changed the symbol _LARGEFILE64_SOURCE to _LARGEFILE64_SOURCE_dummy in zconf.h, zlib.h and zutil.h [RT #56108] 2.025 27 March 2010 * Updated to include zlib 1.2.4 * Allow zlib version check to be disabled by setting TEST_SKIP_VERSION_CHECK environment variable. [RT #54510] 2.023 9 November 2009 * fixed instance where $[ should have been $] in t/02zlib.t Thanks to Robin Barker and zefram [RT #50765] for independently spotting the issue. 2.021 30 August 2009 * Changed test harness so that it can cope with PERL5OPT=-MCarp=verbose [RT# 47225] 2.020 3 June 2009 * Minor documentation update. 2.019 4 May 2009 * No Changes 2.018 3 May 2009 * No Changes 2.017 28 March 2009 * Added 'LimitOutput' option * Removed MAN3PODS from Makefile.PL * Fixed coring issue when LimitOutput was used. * Documented Compress::Raw::Zlib::zlib_version() * Documented Compress::Raw::Zlib::deflateReset() [RT #40566] 2.015 3 September 2008 * Makefile.PL Backout changes made in 2.014 2.014 2 September 2008 * Makefile.PL Updated to check for indirect dependencies. 2.012 15 July 2008 * Document the gzip flags that WindowBits can take. * Allow a dictionary to be used with a raw inflate. Needs zlib 1.2.2.1 or better. [RT #36046] 2.011 5 May 2008 * A C++-style comment sneaked in with the last update. Fixed. [core patch #33828] 2.010 5 May 2008 * No Changes 2.009 20 April 2008 * No Changes 2.008 2 November 2007 * Minor documentation changes in README 2.006 1 September 2007 * Makefile.PL Added INSTALLDIRS directive to install as a core module when built on a perl >= 5.9. 2.005 18 June 2007 * Only include ppport.h when not being built with perl. [core patch #30655] 2.004 3 March 2007 * Fixed lvalue substr issue * Remove redundant code from Zlib.xs 2.003 2 January 2007 * Added explicit version checking 2.002 29 December 2006 * Documentation updates. 2.001 1 November 2006 * Remove beta status. 2.000_14 26 October 2006 * Fixed memory leak on realloc. * Ticket #18986 says that ExtUtils::Install 1.39 fixes the in-use issue on win32/cygwin, so make the code that checks whether trying to install via the cpan shell conditional on the version of ExtUtils::Install. http://rt.cpan.org/Ticket/Display.html?id=18986 2.000_10 13 March 2006 * Fixed a potential NULL pointer dereference problem in Compress::Raw::Zlib::resetLastBlockByte. Issue highlighted by David Dyck and reproduced by Marcus Holland-Moritz. 2.000_09 3 March 2006 * Released onto CPAN * Documentation updates. 2.000_08 2 March 2006 * Moved the IO::* modules out into their own distributions. * Breakout zlib specific code into separate modules. * Limited support for reading/writing zip files added. 2.000_06 5 October 2005 * Added eof parameter to Compress::Zlib::inflate method. * Fixed issue with 64-bit 2.000_05 4 October 2005 * Renamed IO::* to IO::Compress::* & IO::Uncompress::* 2.000_04 23 September 2005 * Fixed some more non-portable test that were failing on VMS. * fixed problem where error messages in the oneshot interface were getting lost. 2.000_03 12 September 2005 * Fixed some non-portable test that were failing on VMS. * Fixed export of zlib constants from the IO::* classes 2.000_02 6 September 2005 * Split Append mode into Append and Merge * Fixed typos in the documentation. * Added pod/FAQ.pod * Added libscan to Makefile.PL * Added InputLength for IO::Gunzip et al 2.000_01 22 August 2005 * Fixed VERSION in Compress::Gzip::Constants * Removed Compress::Gzip::Info from the distribution. 2.000_00 21 August 2005 * First Beta relase of Compress::zlib rewrite. Compress-Raw-Zlib-2.063/config.in0000755000175000017500000000105212067300512015222 0ustar paulpaul# Filename: config.in # # written by Paul Marquess # last modified 28th October 2003 # version 2.000 # # # This file is used to control which zlib library will be used by # Compress::Zlib # # See to the sections below in the README file for details of how to # use this file. # # Controlling the version of zlib used by Compress::Zlib # # Setting the Gzip OS Code # BUILD_ZLIB = True INCLUDE = ./zlib-src LIB = ./zlib-src OLD_ZLIB = False GZIP_OS_CODE = AUTO_DETECT # end of file config.in Compress-Raw-Zlib-2.063/Makefile.PL0000644000175000017500000002540412232043010015372 0ustar paulpaul#! perl -w use strict ; require 5.006 ; use private::MakeUtil; use ExtUtils::MakeMaker 5.16 ; use ExtUtils::Install (); # only needed to check for version use Config; my $ZLIB_LIB ; my $ZLIB_INCLUDE ; my $BUILD_ZLIB = 0 ; my $OLD_ZLIB = '' ; my $WALL = '' ; my $GZIP_OS_CODE = -1 ; my $USE_PPPORT_H = ($ENV{PERL_CORE}) ? '' : '-DUSE_PPPORT_H'; my $OPTIMIZE = $Config{'optimize'}; if ($Config{'gccversion'} and $OPTIMIZE =~ /-g3/) { $OPTIMIZE =~ s/-g3/-g/; # [88936] out of memory with -g3 since 2.062 } #$WALL = ' -pedantic ' if $Config{'cc'} =~ /gcc/ ; #$WALL = ' -Wall -Wno-comment ' if $Config{'cc'} =~ /gcc/ ; # Ticket #18986 says that ExtUtils::Install 1.39 fixes the in-use issue # on win32/cygwin, so make the code below conditional on the version of # ExtUtils::Install. # Don't ask if MM_USE_DEFAULT is set -- enables perl core building on cygwin if ($^O =~ /cygwin/i and $ExtUtils::Install::VERSION < 1.39 and not ($ENV{PERL_MM_USE_DEFAULT} or $ENV{PERL_CORE})) { print < ; if ($answer =~ /^yes|y/i) { print "continuing...\n" } else { print "exiting...\n" ; exit 1 ; } } ParseCONFIG() ; UpDowngrade(getPerlFiles('MANIFEST')) unless $ENV{PERL_CORE}; WriteMakefile( NAME => 'Compress::Raw::Zlib', VERSION_FROM => 'lib/Compress/Raw/Zlib.pm', INC => "-I$ZLIB_INCLUDE" , DEFINE => "-DNO_VIZ -DZ_SOLO $OLD_ZLIB $WALL -DGZIP_OS_CODE=$GZIP_OS_CODE $USE_PPPORT_H" , XS => { 'Zlib.xs' => 'Zlib.c'}, 'depend' => { 'Makefile' => 'config.in' }, 'clean' => { FILES => '*.c constants.h constants.xs' }, 'dist' => { COMPRESS => 'gzip', TARFLAGS => '-chvf', SUFFIX => 'gz', DIST_DEFAULT => 'MyTrebleCheck tardist', }, ( $BUILD_ZLIB ? zlib_files($ZLIB_LIB) : (LIBS => [ "-L$ZLIB_LIB -lz " ]) ), OPTIMIZE => $OPTIMIZE, INSTALLDIRS => ($] >= 5.009 && $] < 5.011 ? 'perl' : 'site'), META_MERGE => { no_index => { directory => [ 't', 'private' ], }, }, ((ExtUtils::MakeMaker->VERSION() gt '6.30') ? ('LICENSE' => 'perl') : ()), ) ; sub version_Macro { my $ver = shift ; return [ "#if ZLIB_VERNUM >= 0x$ver\n", "#endif\n" ]; } my @names = qw( DEF_WBITS MAX_MEM_LEVEL MAX_WBITS OS_CODE Z_ASCII Z_BEST_COMPRESSION Z_BEST_SPEED Z_BINARY Z_BLOCK Z_BUF_ERROR Z_DATA_ERROR Z_DEFAULT_COMPRESSION Z_DEFAULT_STRATEGY Z_DEFLATED Z_ERRNO Z_FILTERED Z_FINISH Z_FIXED Z_FULL_FLUSH Z_HUFFMAN_ONLY Z_MEM_ERROR Z_NEED_DICT Z_NO_COMPRESSION Z_NO_FLUSH Z_NULL Z_OK Z_PARTIAL_FLUSH Z_RLE Z_STREAM_END Z_STREAM_ERROR Z_SYNC_FLUSH Z_UNKNOWN Z_VERSION_ERROR ); #ZLIB_VERNUM my %verSpecificNames = ( Z_TREES => '1240', ); if (eval {require ExtUtils::Constant; 1}) { # Check the constants above all appear in @EXPORT in Zlib.pm my %names = %verSpecificNames, map { $_, 1} @names, 'ZLIB_VERSION'; open F, ") { last if /^\s*\@EXPORT\s+=\s+qw\(/ ; } while () { last if /^\s*\)/ ; /(\S+)/ ; delete $names{$1} if defined $1 ; } close F ; if ( keys %names ) { my $missing = join ("\n\t", sort keys %names) ; die "The following names are missing from \@EXPORT in Zlib.pm\n" . "\t$missing\n" ; } push @names, { name => 'ZLIB_VERSION', type => 'PV' }; push @names, map { { name => $_, macro => version_Macro $verSpecificNames{$_} } } keys %verSpecificNames ; ExtUtils::Constant::WriteConstants( NAME => 'Zlib', NAMES => \@names, C_FILE => 'constants.h', XS_FILE => 'constants.xs', ); } else { foreach my $name (qw( constants.h constants.xs )) { my $from = catfile('fallback', $name); copy ($from, $name) or die "Can't copy $from to $name: $!"; } } sub ParseCONFIG { my ($k, $v) ; my @badkey = () ; my %Info = () ; my @Options = qw( INCLUDE LIB BUILD_ZLIB OLD_ZLIB GZIP_OS_CODE ) ; my %ValidOption = map {$_, 1} @Options ; my %Parsed = %ValidOption ; my $CONFIG = 'config.in' ; print "Parsing $CONFIG...\n" ; open(F, "<$CONFIG") or die "Cannot open file $CONFIG: $!\n" ; while () { s/^\s*|\s*$//g ; next if /^\s*$/ or /^\s*#/ ; s/\s*#\s*$// ; ($k, $v) = split(/\s+=\s+/, $_, 2) ; $k = uc $k ; if ($ValidOption{$k}) { delete $Parsed{$k} ; $Info{$k} = $v ; } else { push(@badkey, $k) ; } } close F ; print "Unknown keys in $CONFIG ignored [@badkey]\n" if @badkey ; # check parsed values my @missing = () ; die "The following keys are missing from $CONFIG [@missing]\n" if @missing = keys %Parsed ; $ZLIB_INCLUDE = defined $ENV{'ZLIB_INCLUDE'} ? $ENV{'ZLIB_INCLUDE'} : $Info{'INCLUDE'} ; $ZLIB_LIB = defined $ENV{'ZLIB_LIB'} ?$ENV{'ZLIB_LIB'} : $Info{'LIB'} ; if ($^O eq 'VMS') { $ZLIB_INCLUDE = VMS::Filespec::vmspath($ZLIB_INCLUDE); $ZLIB_LIB = VMS::Filespec::vmspath($ZLIB_LIB); } my $y = defined $ENV{'OLD_ZLIB'} ? $ENV{'OLD_ZLIB'} : $Info{'OLD_ZLIB'} ; $OLD_ZLIB = '-DOLD_ZLIB' if $y and $y =~ /^yes|on|true|1$/i; my $x = defined $ENV{'BUILD_ZLIB'} ? $ENV{'BUILD_ZLIB'} : $Info{'BUILD_ZLIB'} ; if ($x and $x =~ /^yes|on|true|1$/i ) { $BUILD_ZLIB = 1 ; # ZLIB_LIB & ZLIB_INCLUDE must point to the same place when # BUILD_ZLIB is specified. die "INCLUDE & LIB must be the same when BUILD_ZLIB is True\n" if $ZLIB_LIB ne $ZLIB_INCLUDE ; # Check the zlib source directory exists die "LIB/INCLUDE directory '$ZLIB_LIB' does not exits\n" unless -d $ZLIB_LIB ; # check for a well known file die "LIB/INCLUDE directory, '$ZLIB_LIB', doesn't seem to have the zlib source files\n" unless -e catfile($ZLIB_LIB, 'zlib.h') ; # write the Makefile print "Building Zlib enabled\n" ; } $GZIP_OS_CODE = defined $ENV{'GZIP_OS_CODE'} ? $ENV{'GZIP_OS_CODE'} : $Info{'GZIP_OS_CODE'} ; die "GZIP_OS_CODE not 'AUTO_DETECT' or a number between 0 and 255\n" unless uc $GZIP_OS_CODE eq 'AUTO_DETECT' || ( $GZIP_OS_CODE =~ /^(\d+)$/ && $1 >= 0 && $1 <= 255) ; if (uc $GZIP_OS_CODE eq 'AUTO_DETECT') { print "Auto Detect Gzip OS Code..\n" ; $GZIP_OS_CODE = getOSCode() ; } my $name = getOSname($GZIP_OS_CODE); print "Setting Gzip OS Code to $GZIP_OS_CODE [$name]\n" ; print < [ @h_files ], 'C' => [ @c_files ] , #'OBJECT' => qq[ @o_files ], 'OBJECT' => q[ $(O_FILES) ], ) ; } use vars qw ( @GZIP_OS_Names %OSnames) ; BEGIN { @GZIP_OS_Names = ( [ '' => 0, 'MS-DOS' ], [ 'amigaos' => 1, 'Amiga' ], [ 'VMS' => 2, 'VMS' ], [ '' => 3, 'Unix/Default' ], [ '' => 4, 'VM/CMS' ], [ '' => 5, 'Atari TOS' ], [ 'os2' => 6, 'HPFS (OS/2, NT)' ], [ 'MacOS' => 7, 'Macintosh' ], [ '' => 8, 'Z-System' ], [ '' => 9, 'CP/M' ], [ '' => 10, 'TOPS-20' ], [ '' => 11, 'NTFS (NT)' ], [ '' => 12, 'SMS QDOS' ], [ '' => 13, 'Acorn RISCOS' ], [ 'MSWin32' => 14, 'VFAT file system (Win95, NT)' ], [ '' => 15, 'MVS' ], [ 'beos' => 16, 'BeOS' ], [ '' => 17, 'Tandem/NSK' ], [ '' => 18, 'THEOS' ], [ '' => 255, 'Unknown OS' ], ); %OSnames = map { $$_[1] => $$_[2] } @GZIP_OS_Names ; } sub getOSCode { my $default = 3 ; # Unix is the default my $uname = $^O; for my $h (@GZIP_OS_Names) { my ($pattern, $code, $name) = @$h; return $code if $pattern && $uname eq $pattern ; } return $default ; } sub getOSname { my $code = shift ; return $OSnames{$code} || 'Unknown OS' ; } # end of file Makefile.PL Compress-Raw-Zlib-2.063/zlib-src/0000755000175000017500000000000012235214474015161 5ustar paulpaulCompress-Raw-Zlib-2.063/zlib-src/deflate.h0000644000175000017500000003074612146130230016734 0ustar paulpaul/* deflate.h -- internal compression state * Copyright (C) 1995-2012 Jean-loup Gailly * For conditions of distribution and use, see copyright notice in zlib.h */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ /* @(#) $Id$ */ #ifndef DEFLATE_H #define DEFLATE_H #include "zutil.h" /* define NO_GZIP when compiling if you want to disable gzip header and trailer creation by deflate(). NO_GZIP would be used to avoid linking in the crc code when it is not needed. For shared libraries, gzip encoding should be left enabled. */ #ifndef NO_GZIP # define GZIP #endif /* =========================================================================== * Internal compression state. */ #define LENGTH_CODES 29 /* number of length codes, not counting the special END_BLOCK code */ #define LITERALS 256 /* number of literal bytes 0..255 */ #define L_CODES (LITERALS+1+LENGTH_CODES) /* number of Literal or Length codes, including the END_BLOCK code */ #define D_CODES 30 /* number of distance codes */ #define BL_CODES 19 /* number of codes used to transfer the bit lengths */ #define HEAP_SIZE (2*L_CODES+1) /* maximum heap size */ #define MAX_BITS 15 /* All codes must not exceed MAX_BITS bits */ #define Buf_size 16 /* size of bit buffer in bi_buf */ #define INIT_STATE 42 #define EXTRA_STATE 69 #define NAME_STATE 73 #define COMMENT_STATE 91 #define HCRC_STATE 103 #define BUSY_STATE 113 #define FINISH_STATE 666 /* Stream status */ /* Data structure describing a single value and its code string. */ typedef struct ct_data_s { union { ush freq; /* frequency count */ ush code; /* bit string */ } fc; union { ush dad; /* father node in Huffman tree */ ush len; /* length of bit string */ } dl; } FAR ct_data; #define Freq fc.freq #define Code fc.code #define Dad dl.dad #define Len dl.len typedef struct static_tree_desc_s static_tree_desc; typedef struct tree_desc_s { ct_data *dyn_tree; /* the dynamic tree */ int max_code; /* largest code with non zero frequency */ static_tree_desc *stat_desc; /* the corresponding static tree */ } FAR tree_desc; typedef ush Pos; typedef Pos FAR Posf; typedef unsigned IPos; /* A Pos is an index in the character window. We use short instead of int to * save space in the various tables. IPos is used only for parameter passing. */ typedef struct internal_state { z_streamp strm; /* pointer back to this zlib stream */ int status; /* as the name implies */ Bytef *pending_buf; /* output still pending */ ulg pending_buf_size; /* size of pending_buf */ Bytef *pending_out; /* next pending byte to output to the stream */ uInt pending; /* nb of bytes in the pending buffer */ int wrap; /* bit 0 true for zlib, bit 1 true for gzip */ gz_headerp gzhead; /* gzip header information to write */ uInt gzindex; /* where in extra, name, or comment */ Byte method; /* can only be DEFLATED */ int last_flush; /* value of flush param for previous deflate call */ /* used by deflate.c: */ uInt w_size; /* LZ77 window size (32K by default) */ uInt w_bits; /* log2(w_size) (8..16) */ uInt w_mask; /* w_size - 1 */ Bytef *window; /* Sliding window. Input bytes are read into the second half of the window, * and move to the first half later to keep a dictionary of at least wSize * bytes. With this organization, matches are limited to a distance of * wSize-MAX_MATCH bytes, but this ensures that IO is always * performed with a length multiple of the block size. Also, it limits * the window size to 64K, which is quite useful on MSDOS. * To do: use the user input buffer as sliding window. */ ulg window_size; /* Actual size of window: 2*wSize, except when the user input buffer * is directly used as sliding window. */ Posf *prev; /* Link to older string with same hash index. To limit the size of this * array to 64K, this link is maintained only for the last 32K strings. * An index in this array is thus a window index modulo 32K. */ Posf *head; /* Heads of the hash chains or NIL. */ uInt ins_h; /* hash index of string to be inserted */ uInt hash_size; /* number of elements in hash table */ uInt hash_bits; /* log2(hash_size) */ uInt hash_mask; /* hash_size-1 */ uInt hash_shift; /* Number of bits by which ins_h must be shifted at each input * step. It must be such that after MIN_MATCH steps, the oldest * byte no longer takes part in the hash key, that is: * hash_shift * MIN_MATCH >= hash_bits */ long block_start; /* Window position at the beginning of the current output block. Gets * negative when the window is moved backwards. */ uInt match_length; /* length of best match */ IPos prev_match; /* previous match */ int match_available; /* set if previous match exists */ uInt strstart; /* start of string to insert */ uInt match_start; /* start of matching string */ uInt lookahead; /* number of valid bytes ahead in window */ uInt prev_length; /* Length of the best match at previous step. Matches not greater than this * are discarded. This is used in the lazy match evaluation. */ uInt max_chain_length; /* To speed up deflation, hash chains are never searched beyond this * length. A higher limit improves compression ratio but degrades the * speed. */ uInt max_lazy_match; /* Attempt to find a better match only when the current match is strictly * smaller than this value. This mechanism is used only for compression * levels >= 4. */ # define max_insert_length max_lazy_match /* Insert new strings in the hash table only if the match length is not * greater than this length. This saves time but degrades compression. * max_insert_length is used only for compression levels <= 3. */ int level; /* compression level (1..9) */ int strategy; /* favor or force Huffman coding*/ uInt good_match; /* Use a faster search when the previous match is longer than this */ int nice_match; /* Stop searching when current match exceeds this */ /* used by trees.c: */ /* Didn't use ct_data typedef below to suppress compiler warning */ struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */ struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */ struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */ struct tree_desc_s l_desc; /* desc. for literal tree */ struct tree_desc_s d_desc; /* desc. for distance tree */ struct tree_desc_s bl_desc; /* desc. for bit length tree */ ush bl_count[MAX_BITS+1]; /* number of codes at each bit length for an optimal tree */ int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */ int heap_len; /* number of elements in the heap */ int heap_max; /* element of largest frequency */ /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used. * The same heap array is used to build all trees. */ uch depth[2*L_CODES+1]; /* Depth of each subtree used as tie breaker for trees of equal frequency */ uchf *l_buf; /* buffer for literals or lengths */ uInt lit_bufsize; /* Size of match buffer for literals/lengths. There are 4 reasons for * limiting lit_bufsize to 64K: * - frequencies can be kept in 16 bit counters * - if compression is not successful for the first block, all input * data is still in the window so we can still emit a stored block even * when input comes from standard input. (This can also be done for * all blocks if lit_bufsize is not greater than 32K.) * - if compression is not successful for a file smaller than 64K, we can * even emit a stored file instead of a stored block (saving 5 bytes). * This is applicable only for zip (not gzip or zlib). * - creating new Huffman trees less frequently may not provide fast * adaptation to changes in the input data statistics. (Take for * example a binary file with poorly compressible code followed by * a highly compressible string table.) Smaller buffer sizes give * fast adaptation but have of course the overhead of transmitting * trees more frequently. * - I can't count above 4 */ uInt last_lit; /* running index in l_buf */ ushf *d_buf; /* Buffer for distances. To simplify the code, d_buf and l_buf have * the same number of elements. To use different lengths, an extra flag * array would be necessary. */ ulg opt_len; /* bit length of current block with optimal trees */ ulg static_len; /* bit length of current block with static trees */ uInt matches; /* number of string matches in current block */ uInt insert; /* bytes at end of window left to insert */ #ifdef DEBUG ulg compressed_len; /* total bit length of compressed file mod 2^32 */ ulg bits_sent; /* bit length of compressed data sent mod 2^32 */ #endif ush bi_buf; /* Output buffer. bits are inserted starting at the bottom (least * significant bits). */ int bi_valid; /* Number of valid bits in bi_buf. All bits above the last valid bit * are always zero. */ ulg high_water; /* High water mark offset in window for initialized bytes -- bytes above * this are set to zero in order to avoid memory check warnings when * longest match routines access bytes past the input. This is then * updated to the new high water mark. */ } FAR deflate_state; /* Output a byte on the stream. * IN assertion: there is enough room in pending_buf. */ #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);} #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1) /* Minimum amount of lookahead, except at the end of the input file. * See deflate.c for comments about the MIN_MATCH+1. */ #define MAX_DIST(s) ((s)->w_size-MIN_LOOKAHEAD) /* In order to simplify the code, particularly on 16 bit machines, match * distances are limited to MAX_DIST instead of WSIZE. */ #define WIN_INIT MAX_MATCH /* Number of bytes after end of data in window to initialize in order to avoid memory checker errors from longest match routines */ /* in trees.c */ void ZLIB_INTERNAL _tr_init OF((deflate_state *s)); int ZLIB_INTERNAL _tr_tally OF((deflate_state *s, unsigned dist, unsigned lc)); void ZLIB_INTERNAL _tr_flush_block OF((deflate_state *s, charf *buf, ulg stored_len, int last)); void ZLIB_INTERNAL _tr_flush_bits OF((deflate_state *s)); void ZLIB_INTERNAL _tr_align OF((deflate_state *s)); void ZLIB_INTERNAL _tr_stored_block OF((deflate_state *s, charf *buf, ulg stored_len, int last)); #define d_code(dist) \ ((dist) < 256 ? _dist_code[dist] : _dist_code[256+((dist)>>7)]) /* Mapping from a distance to a distance code. dist is the distance - 1 and * must not have side effects. _dist_code[256] and _dist_code[257] are never * used. */ #ifndef DEBUG /* Inline versions of _tr_tally for speed: */ #if defined(GEN_TREES_H) || !defined(STDC) extern uch ZLIB_INTERNAL _length_code[]; extern uch ZLIB_INTERNAL _dist_code[]; #else extern const uch ZLIB_INTERNAL _length_code[]; extern const uch ZLIB_INTERNAL _dist_code[]; #endif # define _tr_tally_lit(s, c, flush) \ { uch cc = (c); \ s->d_buf[s->last_lit] = 0; \ s->l_buf[s->last_lit++] = cc; \ s->dyn_ltree[cc].Freq++; \ flush = (s->last_lit == s->lit_bufsize-1); \ } # define _tr_tally_dist(s, distance, length, flush) \ { uch len = (length); \ ush dist = (distance); \ s->d_buf[s->last_lit] = dist; \ s->l_buf[s->last_lit++] = len; \ dist--; \ s->dyn_ltree[_length_code[len]+LITERALS+1].Freq++; \ s->dyn_dtree[d_code(dist)].Freq++; \ flush = (s->last_lit == s->lit_bufsize-1); \ } #else # define _tr_tally_lit(s, c, flush) flush = _tr_tally(s, 0, c) # define _tr_tally_dist(s, distance, length, flush) \ flush = _tr_tally(s, distance, length) #endif #endif /* DEFLATE_H */ Compress-Raw-Zlib-2.063/zlib-src/uncompr.c0000644000175000017500000000366212146130230017003 0ustar paulpaul/* uncompr.c -- decompress a memory buffer * Copyright (C) 1995-2003, 2010 Jean-loup Gailly. * For conditions of distribution and use, see copyright notice in zlib.h */ /* @(#) $Id$ */ #define ZLIB_INTERNAL #include "zlib.h" /* =========================================================================== Decompresses the source buffer into the destination buffer. sourceLen is the byte length of the source buffer. Upon entry, destLen is the total size of the destination buffer, which must be large enough to hold the entire uncompressed data. (The size of the uncompressed data must have been saved previously by the compressor and transmitted to the decompressor by some mechanism outside the scope of this compression library.) Upon exit, destLen is the actual size of the compressed buffer. uncompress returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if there was not enough room in the output buffer, or Z_DATA_ERROR if the input data was corrupted. */ int ZEXPORT uncompress ( Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen) { z_stream stream; int err; stream.next_in = (z_const Bytef *)source; stream.avail_in = (uInt)sourceLen; /* Check for source > 64K on 16-bit machine: */ if ((uLong)stream.avail_in != sourceLen) return Z_BUF_ERROR; stream.next_out = dest; stream.avail_out = (uInt)*destLen; if ((uLong)stream.avail_out != *destLen) return Z_BUF_ERROR; stream.zalloc = (alloc_func)0; stream.zfree = (free_func)0; err = inflateInit(&stream); if (err != Z_OK) return err; err = inflate(&stream, Z_FINISH); if (err != Z_STREAM_END) { inflateEnd(&stream); if (err == Z_NEED_DICT || (err == Z_BUF_ERROR && stream.avail_in == 0)) return Z_DATA_ERROR; return err; } *destLen = stream.total_out; err = inflateEnd(&stream); return err; } Compress-Raw-Zlib-2.063/zlib-src/infback.c0000644000175000017500000005421212146130230016712 0ustar paulpaul/* infback.c -- inflate using a call-back interface * Copyright (C) 1995-2011 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* This code is largely copied from inflate.c. Normally either infback.o or inflate.o would be linked into an application--not both. The interface with inffast.c is retained so that optimized assembler-coded versions of inflate_fast() can be used with either inflate.c or infback.c. */ #include "zutil.h" #include "inftrees.h" #include "inflate.h" #include "inffast.h" /* function prototypes */ local void fixedtables OF((struct inflate_state FAR *state)); /* strm provides memory allocation functions in zalloc and zfree, or Z_NULL to use the library memory allocation functions. windowBits is in the range 8..15, and window is a user-supplied window and output buffer that is 2**windowBits bytes. */ int ZEXPORT inflateBackInit_( z_streamp strm, int windowBits, unsigned char FAR *window, const char *version, int stream_size) { struct inflate_state FAR *state; if (version == Z_NULL || version[0] != ZLIB_VERSION[0] || stream_size != (int)(sizeof(z_stream))) return Z_VERSION_ERROR; if (strm == Z_NULL || window == Z_NULL || windowBits < 8 || windowBits > 15) return Z_STREAM_ERROR; strm->msg = Z_NULL; /* in case we return an error */ if (strm->zalloc == (alloc_func)0) { #ifdef Z_SOLO return Z_STREAM_ERROR; #else strm->zalloc = zcalloc; strm->opaque = (voidpf)0; #endif } if (strm->zfree == (free_func)0) #ifdef Z_SOLO return Z_STREAM_ERROR; #else strm->zfree = zcfree; #endif state = (struct inflate_state FAR *)ZALLOC(strm, 1, sizeof(struct inflate_state)); if (state == Z_NULL) return Z_MEM_ERROR; Tracev((stderr, "inflate: allocated\n")); strm->state = (struct internal_state FAR *)state; state->dmax = 32768U; state->wbits = windowBits; state->wsize = 1U << windowBits; state->window = window; state->wnext = 0; state->whave = 0; return Z_OK; } /* Return state with length and distance decoding tables and index sizes set to fixed code decoding. Normally this returns fixed tables from inffixed.h. If BUILDFIXED is defined, then instead this routine builds the tables the first time it's called, and returns those tables the first time and thereafter. This reduces the size of the code by about 2K bytes, in exchange for a little execution time. However, BUILDFIXED should not be used for threaded applications, since the rewriting of the tables and virgin may not be thread-safe. */ local void fixedtables( struct inflate_state FAR *state) { #ifdef BUILDFIXED static int virgin = 1; static code *lenfix, *distfix; static code fixed[544]; /* build fixed huffman tables if first call (may not be thread safe) */ if (virgin) { unsigned sym, bits; static code *next; /* literal/length table */ sym = 0; while (sym < 144) state->lens[sym++] = 8; while (sym < 256) state->lens[sym++] = 9; while (sym < 280) state->lens[sym++] = 7; while (sym < 288) state->lens[sym++] = 8; next = fixed; lenfix = next; bits = 9; inflate_table(LENS, state->lens, 288, &(next), &(bits), state->work); /* distance table */ sym = 0; while (sym < 32) state->lens[sym++] = 5; distfix = next; bits = 5; inflate_table(DISTS, state->lens, 32, &(next), &(bits), state->work); /* do this just once */ virgin = 0; } #else /* !BUILDFIXED */ # include "inffixed.h" #endif /* BUILDFIXED */ state->lencode = lenfix; state->lenbits = 9; state->distcode = distfix; state->distbits = 5; } /* Macros for inflateBack(): */ /* Load returned state from inflate_fast() */ #define LOAD() \ do { \ put = strm->next_out; \ left = strm->avail_out; \ next = strm->next_in; \ have = strm->avail_in; \ hold = state->hold; \ bits = state->bits; \ } while (0) /* Set state from registers for inflate_fast() */ #define RESTORE() \ do { \ strm->next_out = put; \ strm->avail_out = left; \ strm->next_in = next; \ strm->avail_in = have; \ state->hold = hold; \ state->bits = bits; \ } while (0) /* Clear the input bit accumulator */ #define INITBITS() \ do { \ hold = 0; \ bits = 0; \ } while (0) /* Assure that some input is available. If input is requested, but denied, then return a Z_BUF_ERROR from inflateBack(). */ #define PULL() \ do { \ if (have == 0) { \ have = in(in_desc, &next); \ if (have == 0) { \ next = Z_NULL; \ ret = Z_BUF_ERROR; \ goto inf_leave; \ } \ } \ } while (0) /* Get a byte of input into the bit accumulator, or return from inflateBack() with an error if there is no input available. */ #define PULLBYTE() \ do { \ PULL(); \ have--; \ hold += (unsigned long)(*next++) << bits; \ bits += 8; \ } while (0) /* Assure that there are at least n bits in the bit accumulator. If there is not enough available input to do that, then return from inflateBack() with an error. */ #define NEEDBITS(n) \ do { \ while (bits < (unsigned)(n)) \ PULLBYTE(); \ } while (0) /* Return the low n bits of the bit accumulator (n < 16) */ #define BITS(n) \ ((unsigned)hold & ((1U << (n)) - 1)) /* Remove n bits from the bit accumulator */ #define DROPBITS(n) \ do { \ hold >>= (n); \ bits -= (unsigned)(n); \ } while (0) /* Remove zero to seven bits as needed to go to a byte boundary */ #define BYTEBITS() \ do { \ hold >>= bits & 7; \ bits -= bits & 7; \ } while (0) /* Assure that some output space is available, by writing out the window if it's full. If the write fails, return from inflateBack() with a Z_BUF_ERROR. */ #define ROOM() \ do { \ if (left == 0) { \ put = state->window; \ left = state->wsize; \ state->whave = left; \ if (out(out_desc, put, left)) { \ ret = Z_BUF_ERROR; \ goto inf_leave; \ } \ } \ } while (0) /* strm provides the memory allocation functions and window buffer on input, and provides information on the unused input on return. For Z_DATA_ERROR returns, strm will also provide an error message. in() and out() are the call-back input and output functions. When inflateBack() needs more input, it calls in(). When inflateBack() has filled the window with output, or when it completes with data in the window, it calls out() to write out the data. The application must not change the provided input until in() is called again or inflateBack() returns. The application must not change the window/output buffer until inflateBack() returns. in() and out() are called with a descriptor parameter provided in the inflateBack() call. This parameter can be a structure that provides the information required to do the read or write, as well as accumulated information on the input and output such as totals and check values. in() should return zero on failure. out() should return non-zero on failure. If either in() or out() fails, than inflateBack() returns a Z_BUF_ERROR. strm->next_in can be checked for Z_NULL to see whether it was in() or out() that caused in the error. Otherwise, inflateBack() returns Z_STREAM_END on success, Z_DATA_ERROR for an deflate format error, or Z_MEM_ERROR if it could not allocate memory for the state. inflateBack() can also return Z_STREAM_ERROR if the input parameters are not correct, i.e. strm is Z_NULL or the state was not initialized. */ int ZEXPORT inflateBack( z_streamp strm, in_func in, void FAR *in_desc, out_func out, void FAR *out_desc) { struct inflate_state FAR *state; z_const unsigned char FAR *next; /* next input */ unsigned char FAR *put; /* next output */ unsigned have, left; /* available input and output */ unsigned long hold; /* bit buffer */ unsigned bits; /* bits in bit buffer */ unsigned copy; /* number of stored or match bytes to copy */ unsigned char FAR *from; /* where to copy match bytes from */ code here; /* current decoding table entry */ code last; /* parent table entry */ unsigned len; /* length to copy for repeats, bits to drop */ int ret; /* return code */ static const unsigned short order[19] = /* permutation of code lengths */ {16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; /* Check that the strm exists and that the state was initialized */ if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; /* Reset the state */ strm->msg = Z_NULL; state->mode = TYPE; state->last = 0; state->whave = 0; next = strm->next_in; have = next != Z_NULL ? strm->avail_in : 0; hold = 0; bits = 0; put = state->window; left = state->wsize; /* Inflate until end of block marked as last */ for (;;) switch (state->mode) { case TYPE: /* determine and dispatch block type */ if (state->last) { BYTEBITS(); state->mode = DONE; break; } NEEDBITS(3); state->last = BITS(1); DROPBITS(1); switch (BITS(2)) { case 0: /* stored block */ Tracev((stderr, "inflate: stored block%s\n", state->last ? " (last)" : "")); state->mode = STORED; break; case 1: /* fixed block */ fixedtables(state); Tracev((stderr, "inflate: fixed codes block%s\n", state->last ? " (last)" : "")); state->mode = LEN; /* decode codes */ break; case 2: /* dynamic block */ Tracev((stderr, "inflate: dynamic codes block%s\n", state->last ? " (last)" : "")); state->mode = TABLE; break; case 3: strm->msg = (char *)"invalid block type"; state->mode = BAD; } DROPBITS(2); break; case STORED: /* get and verify stored block length */ BYTEBITS(); /* go to byte boundary */ NEEDBITS(32); if ((hold & 0xffff) != ((hold >> 16) ^ 0xffff)) { strm->msg = (char *)"invalid stored block lengths"; state->mode = BAD; break; } state->length = (unsigned)hold & 0xffff; Tracev((stderr, "inflate: stored length %u\n", state->length)); INITBITS(); /* copy stored block from input to output */ while (state->length != 0) { copy = state->length; PULL(); ROOM(); if (copy > have) copy = have; if (copy > left) copy = left; zmemcpy(put, next, copy); have -= copy; next += copy; left -= copy; put += copy; state->length -= copy; } Tracev((stderr, "inflate: stored end\n")); state->mode = TYPE; break; case TABLE: /* get dynamic table entries descriptor */ NEEDBITS(14); state->nlen = BITS(5) + 257; DROPBITS(5); state->ndist = BITS(5) + 1; DROPBITS(5); state->ncode = BITS(4) + 4; DROPBITS(4); #ifndef PKZIP_BUG_WORKAROUND if (state->nlen > 286 || state->ndist > 30) { strm->msg = (char *)"too many length or distance symbols"; state->mode = BAD; break; } #endif Tracev((stderr, "inflate: table sizes ok\n")); /* get code length code lengths (not a typo) */ state->have = 0; while (state->have < state->ncode) { NEEDBITS(3); state->lens[order[state->have++]] = (unsigned short)BITS(3); DROPBITS(3); } while (state->have < 19) state->lens[order[state->have++]] = 0; state->next = state->codes; state->lencode = (code const FAR *)(state->next); state->lenbits = 7; ret = inflate_table(CODES, state->lens, 19, &(state->next), &(state->lenbits), state->work); if (ret) { strm->msg = (char *)"invalid code lengths set"; state->mode = BAD; break; } Tracev((stderr, "inflate: code lengths ok\n")); /* get length and distance code code lengths */ state->have = 0; while (state->have < state->nlen + state->ndist) { for (;;) { here = state->lencode[BITS(state->lenbits)]; if ((unsigned)(here.bits) <= bits) break; PULLBYTE(); } if (here.val < 16) { DROPBITS(here.bits); state->lens[state->have++] = here.val; } else { if (here.val == 16) { NEEDBITS(here.bits + 2); DROPBITS(here.bits); if (state->have == 0) { strm->msg = (char *)"invalid bit length repeat"; state->mode = BAD; break; } len = (unsigned)(state->lens[state->have - 1]); copy = 3 + BITS(2); DROPBITS(2); } else if (here.val == 17) { NEEDBITS(here.bits + 3); DROPBITS(here.bits); len = 0; copy = 3 + BITS(3); DROPBITS(3); } else { NEEDBITS(here.bits + 7); DROPBITS(here.bits); len = 0; copy = 11 + BITS(7); DROPBITS(7); } if (state->have + copy > state->nlen + state->ndist) { strm->msg = (char *)"invalid bit length repeat"; state->mode = BAD; break; } while (copy--) state->lens[state->have++] = (unsigned short)len; } } /* handle error breaks in while */ if (state->mode == BAD) break; /* check for end-of-block code (better have one) */ if (state->lens[256] == 0) { strm->msg = (char *)"invalid code -- missing end-of-block"; state->mode = BAD; break; } /* build code tables -- note: do not change the lenbits or distbits values here (9 and 6) without reading the comments in inftrees.h concerning the ENOUGH constants, which depend on those values */ state->next = state->codes; state->lencode = (code const FAR *)(state->next); state->lenbits = 9; ret = inflate_table(LENS, state->lens, state->nlen, &(state->next), &(state->lenbits), state->work); if (ret) { strm->msg = (char *)"invalid literal/lengths set"; state->mode = BAD; break; } state->distcode = (code const FAR *)(state->next); state->distbits = 6; ret = inflate_table(DISTS, state->lens + state->nlen, state->ndist, &(state->next), &(state->distbits), state->work); if (ret) { strm->msg = (char *)"invalid distances set"; state->mode = BAD; break; } Tracev((stderr, "inflate: codes ok\n")); state->mode = LEN; case LEN: /* use inflate_fast() if we have enough input and output */ if (have >= 6 && left >= 258) { RESTORE(); if (state->whave < state->wsize) state->whave = state->wsize - left; inflate_fast(strm, state->wsize); LOAD(); break; } /* get a literal, length, or end-of-block code */ for (;;) { here = state->lencode[BITS(state->lenbits)]; if ((unsigned)(here.bits) <= bits) break; PULLBYTE(); } if (here.op && (here.op & 0xf0) == 0) { last = here; for (;;) { here = state->lencode[last.val + (BITS(last.bits + last.op) >> last.bits)]; if ((unsigned)(last.bits + here.bits) <= bits) break; PULLBYTE(); } DROPBITS(last.bits); } DROPBITS(here.bits); state->length = (unsigned)here.val; /* process literal */ if (here.op == 0) { Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ? "inflate: literal '%c'\n" : "inflate: literal 0x%02x\n", here.val)); ROOM(); *put++ = (unsigned char)(state->length); left--; state->mode = LEN; break; } /* process end of block */ if (here.op & 32) { Tracevv((stderr, "inflate: end of block\n")); state->mode = TYPE; break; } /* invalid code */ if (here.op & 64) { strm->msg = (char *)"invalid literal/length code"; state->mode = BAD; break; } /* length code -- get extra bits, if any */ state->extra = (unsigned)(here.op) & 15; if (state->extra != 0) { NEEDBITS(state->extra); state->length += BITS(state->extra); DROPBITS(state->extra); } Tracevv((stderr, "inflate: length %u\n", state->length)); /* get distance code */ for (;;) { here = state->distcode[BITS(state->distbits)]; if ((unsigned)(here.bits) <= bits) break; PULLBYTE(); } if ((here.op & 0xf0) == 0) { last = here; for (;;) { here = state->distcode[last.val + (BITS(last.bits + last.op) >> last.bits)]; if ((unsigned)(last.bits + here.bits) <= bits) break; PULLBYTE(); } DROPBITS(last.bits); } DROPBITS(here.bits); if (here.op & 64) { strm->msg = (char *)"invalid distance code"; state->mode = BAD; break; } state->offset = (unsigned)here.val; /* get distance extra bits, if any */ state->extra = (unsigned)(here.op) & 15; if (state->extra != 0) { NEEDBITS(state->extra); state->offset += BITS(state->extra); DROPBITS(state->extra); } if (state->offset > state->wsize - (state->whave < state->wsize ? left : 0)) { strm->msg = (char *)"invalid distance too far back"; state->mode = BAD; break; } Tracevv((stderr, "inflate: distance %u\n", state->offset)); /* copy match from window to output */ do { ROOM(); copy = state->wsize - state->offset; if (copy < left) { from = put + copy; copy = left - copy; } else { from = put - state->offset; copy = left; } if (copy > state->length) copy = state->length; state->length -= copy; left -= copy; do { *put++ = *from++; } while (--copy); } while (state->length != 0); break; case DONE: /* inflate stream terminated properly -- write leftover output */ ret = Z_STREAM_END; if (left < state->wsize) { if (out(out_desc, state->window, state->wsize - left)) ret = Z_BUF_ERROR; } goto inf_leave; case BAD: ret = Z_DATA_ERROR; goto inf_leave; default: /* can't happen, but makes compilers happy */ ret = Z_STREAM_ERROR; goto inf_leave; } /* Return unused input */ inf_leave: strm->next_in = next; strm->avail_in = have; return ret; } int ZEXPORT inflateBackEnd( z_streamp strm) { if (strm == Z_NULL || strm->state == Z_NULL || strm->zfree == (free_func)0) return Z_STREAM_ERROR; ZFREE(strm, strm->state); strm->state = Z_NULL; Tracev((stderr, "inflate: end\n")); return Z_OK; } Compress-Raw-Zlib-2.063/zlib-src/trees.h0000644000175000017500000002043012146130230016437 0ustar paulpaul/* header created automatically with -DGEN_TREES_H */ local const ct_data static_ltree[L_CODES+2] = { {{ 12},{ 8}}, {{140},{ 8}}, {{ 76},{ 8}}, {{204},{ 8}}, {{ 44},{ 8}}, {{172},{ 8}}, {{108},{ 8}}, {{236},{ 8}}, {{ 28},{ 8}}, {{156},{ 8}}, {{ 92},{ 8}}, {{220},{ 8}}, {{ 60},{ 8}}, {{188},{ 8}}, {{124},{ 8}}, {{252},{ 8}}, {{ 2},{ 8}}, {{130},{ 8}}, {{ 66},{ 8}}, {{194},{ 8}}, {{ 34},{ 8}}, {{162},{ 8}}, {{ 98},{ 8}}, {{226},{ 8}}, {{ 18},{ 8}}, {{146},{ 8}}, {{ 82},{ 8}}, {{210},{ 8}}, {{ 50},{ 8}}, {{178},{ 8}}, {{114},{ 8}}, {{242},{ 8}}, {{ 10},{ 8}}, {{138},{ 8}}, {{ 74},{ 8}}, {{202},{ 8}}, {{ 42},{ 8}}, {{170},{ 8}}, {{106},{ 8}}, {{234},{ 8}}, {{ 26},{ 8}}, {{154},{ 8}}, {{ 90},{ 8}}, {{218},{ 8}}, {{ 58},{ 8}}, {{186},{ 8}}, {{122},{ 8}}, {{250},{ 8}}, {{ 6},{ 8}}, {{134},{ 8}}, {{ 70},{ 8}}, {{198},{ 8}}, {{ 38},{ 8}}, {{166},{ 8}}, {{102},{ 8}}, {{230},{ 8}}, {{ 22},{ 8}}, {{150},{ 8}}, {{ 86},{ 8}}, {{214},{ 8}}, {{ 54},{ 8}}, {{182},{ 8}}, {{118},{ 8}}, {{246},{ 8}}, {{ 14},{ 8}}, {{142},{ 8}}, {{ 78},{ 8}}, {{206},{ 8}}, {{ 46},{ 8}}, {{174},{ 8}}, {{110},{ 8}}, {{238},{ 8}}, {{ 30},{ 8}}, {{158},{ 8}}, {{ 94},{ 8}}, {{222},{ 8}}, {{ 62},{ 8}}, {{190},{ 8}}, {{126},{ 8}}, {{254},{ 8}}, {{ 1},{ 8}}, {{129},{ 8}}, {{ 65},{ 8}}, {{193},{ 8}}, {{ 33},{ 8}}, {{161},{ 8}}, {{ 97},{ 8}}, {{225},{ 8}}, {{ 17},{ 8}}, {{145},{ 8}}, {{ 81},{ 8}}, {{209},{ 8}}, {{ 49},{ 8}}, {{177},{ 8}}, {{113},{ 8}}, {{241},{ 8}}, {{ 9},{ 8}}, {{137},{ 8}}, {{ 73},{ 8}}, {{201},{ 8}}, {{ 41},{ 8}}, {{169},{ 8}}, {{105},{ 8}}, {{233},{ 8}}, {{ 25},{ 8}}, {{153},{ 8}}, {{ 89},{ 8}}, {{217},{ 8}}, {{ 57},{ 8}}, {{185},{ 8}}, {{121},{ 8}}, {{249},{ 8}}, {{ 5},{ 8}}, {{133},{ 8}}, {{ 69},{ 8}}, {{197},{ 8}}, {{ 37},{ 8}}, {{165},{ 8}}, {{101},{ 8}}, {{229},{ 8}}, {{ 21},{ 8}}, {{149},{ 8}}, {{ 85},{ 8}}, {{213},{ 8}}, {{ 53},{ 8}}, {{181},{ 8}}, {{117},{ 8}}, {{245},{ 8}}, {{ 13},{ 8}}, {{141},{ 8}}, {{ 77},{ 8}}, {{205},{ 8}}, {{ 45},{ 8}}, {{173},{ 8}}, {{109},{ 8}}, {{237},{ 8}}, {{ 29},{ 8}}, {{157},{ 8}}, {{ 93},{ 8}}, {{221},{ 8}}, {{ 61},{ 8}}, {{189},{ 8}}, {{125},{ 8}}, {{253},{ 8}}, {{ 19},{ 9}}, {{275},{ 9}}, {{147},{ 9}}, {{403},{ 9}}, {{ 83},{ 9}}, {{339},{ 9}}, {{211},{ 9}}, {{467},{ 9}}, {{ 51},{ 9}}, {{307},{ 9}}, {{179},{ 9}}, {{435},{ 9}}, {{115},{ 9}}, {{371},{ 9}}, {{243},{ 9}}, {{499},{ 9}}, {{ 11},{ 9}}, {{267},{ 9}}, {{139},{ 9}}, {{395},{ 9}}, {{ 75},{ 9}}, {{331},{ 9}}, {{203},{ 9}}, {{459},{ 9}}, {{ 43},{ 9}}, {{299},{ 9}}, {{171},{ 9}}, {{427},{ 9}}, {{107},{ 9}}, {{363},{ 9}}, {{235},{ 9}}, {{491},{ 9}}, {{ 27},{ 9}}, {{283},{ 9}}, {{155},{ 9}}, {{411},{ 9}}, {{ 91},{ 9}}, {{347},{ 9}}, {{219},{ 9}}, {{475},{ 9}}, {{ 59},{ 9}}, {{315},{ 9}}, {{187},{ 9}}, {{443},{ 9}}, {{123},{ 9}}, {{379},{ 9}}, {{251},{ 9}}, {{507},{ 9}}, {{ 7},{ 9}}, {{263},{ 9}}, {{135},{ 9}}, {{391},{ 9}}, {{ 71},{ 9}}, {{327},{ 9}}, {{199},{ 9}}, {{455},{ 9}}, {{ 39},{ 9}}, {{295},{ 9}}, {{167},{ 9}}, {{423},{ 9}}, {{103},{ 9}}, {{359},{ 9}}, {{231},{ 9}}, {{487},{ 9}}, {{ 23},{ 9}}, {{279},{ 9}}, {{151},{ 9}}, {{407},{ 9}}, {{ 87},{ 9}}, {{343},{ 9}}, {{215},{ 9}}, {{471},{ 9}}, {{ 55},{ 9}}, {{311},{ 9}}, {{183},{ 9}}, {{439},{ 9}}, {{119},{ 9}}, {{375},{ 9}}, {{247},{ 9}}, {{503},{ 9}}, {{ 15},{ 9}}, {{271},{ 9}}, {{143},{ 9}}, {{399},{ 9}}, {{ 79},{ 9}}, {{335},{ 9}}, {{207},{ 9}}, {{463},{ 9}}, {{ 47},{ 9}}, {{303},{ 9}}, {{175},{ 9}}, {{431},{ 9}}, {{111},{ 9}}, {{367},{ 9}}, {{239},{ 9}}, {{495},{ 9}}, {{ 31},{ 9}}, {{287},{ 9}}, {{159},{ 9}}, {{415},{ 9}}, {{ 95},{ 9}}, {{351},{ 9}}, {{223},{ 9}}, {{479},{ 9}}, {{ 63},{ 9}}, {{319},{ 9}}, {{191},{ 9}}, {{447},{ 9}}, {{127},{ 9}}, {{383},{ 9}}, {{255},{ 9}}, {{511},{ 9}}, {{ 0},{ 7}}, {{ 64},{ 7}}, {{ 32},{ 7}}, {{ 96},{ 7}}, {{ 16},{ 7}}, {{ 80},{ 7}}, {{ 48},{ 7}}, {{112},{ 7}}, {{ 8},{ 7}}, {{ 72},{ 7}}, {{ 40},{ 7}}, {{104},{ 7}}, {{ 24},{ 7}}, {{ 88},{ 7}}, {{ 56},{ 7}}, {{120},{ 7}}, {{ 4},{ 7}}, {{ 68},{ 7}}, {{ 36},{ 7}}, {{100},{ 7}}, {{ 20},{ 7}}, {{ 84},{ 7}}, {{ 52},{ 7}}, {{116},{ 7}}, {{ 3},{ 8}}, {{131},{ 8}}, {{ 67},{ 8}}, {{195},{ 8}}, {{ 35},{ 8}}, {{163},{ 8}}, {{ 99},{ 8}}, {{227},{ 8}} }; local const ct_data static_dtree[D_CODES] = { {{ 0},{ 5}}, {{16},{ 5}}, {{ 8},{ 5}}, {{24},{ 5}}, {{ 4},{ 5}}, {{20},{ 5}}, {{12},{ 5}}, {{28},{ 5}}, {{ 2},{ 5}}, {{18},{ 5}}, {{10},{ 5}}, {{26},{ 5}}, {{ 6},{ 5}}, {{22},{ 5}}, {{14},{ 5}}, {{30},{ 5}}, {{ 1},{ 5}}, {{17},{ 5}}, {{ 9},{ 5}}, {{25},{ 5}}, {{ 5},{ 5}}, {{21},{ 5}}, {{13},{ 5}}, {{29},{ 5}}, {{ 3},{ 5}}, {{19},{ 5}}, {{11},{ 5}}, {{27},{ 5}}, {{ 7},{ 5}}, {{23},{ 5}} }; const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = { 0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 16, 17, 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29 }; const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= { 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28 }; local const int base_length[LENGTH_CODES] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 0 }; local const int base_dist[D_CODES] = { 0, 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576 }; Compress-Raw-Zlib-2.063/zlib-src/zconf.h0000644000175000017500000003622412146130230016444 0ustar paulpaul/* zconf.h -- configuration of the zlib compression library * Copyright (C) 1995-2013 Jean-loup Gailly. * For conditions of distribution and use, see copyright notice in zlib.h */ /* @(#) $Id$ */ #ifndef ZCONF_H #define ZCONF_H /* * If you *really* need a unique prefix for all types and library functions, * compile with -DZ_PREFIX. The "standard" zlib should be compiled without it. * Even better than compiling with -DZ_PREFIX would be to use configure to set * this permanently in zconf.h using "./configure --zprefix". */ #ifdef Z_PREFIX /* may be set to #if 1 by ./configure */ # define Z_PREFIX_SET /* all linked symbols */ # define _dist_code z__dist_code # define _length_code z__length_code # define _tr_align z__tr_align # define _tr_flush_bits z__tr_flush_bits # define _tr_flush_block z__tr_flush_block # define _tr_init z__tr_init # define _tr_stored_block z__tr_stored_block # define _tr_tally z__tr_tally # define adler32 z_adler32 # define adler32_combine z_adler32_combine # define adler32_combine64 z_adler32_combine64 # ifndef Z_SOLO # define compress z_compress # define compress2 z_compress2 # define compressBound z_compressBound # endif # define crc32 z_crc32 # define crc32_combine z_crc32_combine # define crc32_combine64 z_crc32_combine64 # define deflate z_deflate # define deflateBound z_deflateBound # define deflateCopy z_deflateCopy # define deflateEnd z_deflateEnd # define deflateInit2_ z_deflateInit2_ # define deflateInit_ z_deflateInit_ # define deflateParams z_deflateParams # define deflatePending z_deflatePending # define deflatePrime z_deflatePrime # define deflateReset z_deflateReset # define deflateResetKeep z_deflateResetKeep # define deflateSetDictionary z_deflateSetDictionary # define deflateSetHeader z_deflateSetHeader # define deflateTune z_deflateTune # define deflate_copyright z_deflate_copyright # define get_crc_table z_get_crc_table # ifndef Z_SOLO # define gz_error z_gz_error # define gz_intmax z_gz_intmax # define gz_strwinerror z_gz_strwinerror # define gzbuffer z_gzbuffer # define gzclearerr z_gzclearerr # define gzclose z_gzclose # define gzclose_r z_gzclose_r # define gzclose_w z_gzclose_w # define gzdirect z_gzdirect # define gzdopen z_gzdopen # define gzeof z_gzeof # define gzerror z_gzerror # define gzflush z_gzflush # define gzgetc z_gzgetc # define gzgetc_ z_gzgetc_ # define gzgets z_gzgets # define gzoffset z_gzoffset # define gzoffset64 z_gzoffset64 # define gzopen z_gzopen # define gzopen64 z_gzopen64 # ifdef _WIN32 # define gzopen_w z_gzopen_w # endif # define gzprintf z_gzprintf # define gzvprintf z_gzvprintf # define gzputc z_gzputc # define gzputs z_gzputs # define gzread z_gzread # define gzrewind z_gzrewind # define gzseek z_gzseek # define gzseek64 z_gzseek64 # define gzsetparams z_gzsetparams # define gztell z_gztell # define gztell64 z_gztell64 # define gzungetc z_gzungetc # define gzwrite z_gzwrite # endif # define inflate z_inflate # define inflateBack z_inflateBack # define inflateBackEnd z_inflateBackEnd # define inflateBackInit_ z_inflateBackInit_ # define inflateCopy z_inflateCopy # define inflateEnd z_inflateEnd # define inflateGetHeader z_inflateGetHeader # define inflateInit2_ z_inflateInit2_ # define inflateInit_ z_inflateInit_ # define inflateMark z_inflateMark # define inflatePrime z_inflatePrime # define inflateReset z_inflateReset # define inflateReset2 z_inflateReset2 # define inflateSetDictionary z_inflateSetDictionary # define inflateGetDictionary z_inflateGetDictionary # define inflateSync z_inflateSync # define inflateSyncPoint z_inflateSyncPoint # define inflateUndermine z_inflateUndermine # define inflateResetKeep z_inflateResetKeep # define inflate_copyright z_inflate_copyright # define inflate_fast z_inflate_fast # define inflate_table z_inflate_table # ifndef Z_SOLO # define uncompress z_uncompress # endif # define zError z_zError # ifndef Z_SOLO # define zcalloc z_zcalloc # define zcfree z_zcfree # endif # define zlibCompileFlags z_zlibCompileFlags # define zlibVersion z_zlibVersion /* all zlib typedefs in zlib.h and zconf.h */ # define Byte z_Byte # define Bytef z_Bytef # define alloc_func z_alloc_func # define charf z_charf # define free_func z_free_func # ifndef Z_SOLO # define gzFile z_gzFile # endif # define gz_header z_gz_header # define gz_headerp z_gz_headerp # define in_func z_in_func # define intf z_intf # define out_func z_out_func # define uInt z_uInt # define uIntf z_uIntf # define uLong z_uLong # define uLongf z_uLongf # define voidp z_voidp # define voidpc z_voidpc # define voidpf z_voidpf /* all zlib structs in zlib.h and zconf.h */ # define gz_header_s z_gz_header_s # define internal_state z_internal_state #endif #if defined(__MSDOS__) && !defined(MSDOS) # define MSDOS #endif #if (defined(OS_2) || defined(__OS2__)) && !defined(OS2) # define OS2 #endif #if defined(_WINDOWS) && !defined(WINDOWS) # define WINDOWS #endif #if defined(_WIN32) || defined(_WIN32_WCE) || defined(__WIN32__) # ifndef WIN32 # define WIN32 # endif #endif #if (defined(MSDOS) || defined(OS2) || defined(WINDOWS)) && !defined(WIN32) # if !defined(__GNUC__) && !defined(__FLAT__) && !defined(__386__) # ifndef SYS16BIT # define SYS16BIT # endif # endif #endif /* * Compile with -DMAXSEG_64K if the alloc function cannot allocate more * than 64k bytes at a time (needed on systems with 16-bit int). */ #ifdef SYS16BIT # define MAXSEG_64K #endif #ifdef MSDOS # define UNALIGNED_OK #endif #ifdef __STDC_VERSION__ # ifndef STDC # define STDC # endif # if __STDC_VERSION__ >= 199901L # ifndef STDC99 # define STDC99 # endif # endif #endif #if !defined(STDC) && (defined(__STDC__) || defined(__cplusplus)) # define STDC #endif #if !defined(STDC) && (defined(__GNUC__) || defined(__BORLANDC__)) # define STDC #endif #if !defined(STDC) && (defined(MSDOS) || defined(WINDOWS) || defined(WIN32)) # define STDC #endif #if !defined(STDC) && (defined(OS2) || defined(__HOS_AIX__)) # define STDC #endif #if defined(__OS400__) && !defined(STDC) /* iSeries (formerly AS/400). */ # define STDC #endif #ifndef STDC # ifndef const /* cannot use !defined(STDC) && !defined(const) on Mac */ # define const /* note: need a more gentle solution here */ # endif #endif #if defined(ZLIB_CONST) && !defined(z_const) # define z_const const #else # define z_const #endif /* Some Mac compilers merge all .h files incorrectly: */ #if defined(__MWERKS__)||defined(applec)||defined(THINK_C)||defined(__SC__) # define NO_DUMMY_DECL #endif /* Maximum value for memLevel in deflateInit2 */ #ifndef MAX_MEM_LEVEL # ifdef MAXSEG_64K # define MAX_MEM_LEVEL 8 # else # define MAX_MEM_LEVEL 9 # endif #endif /* Maximum value for windowBits in deflateInit2 and inflateInit2. * WARNING: reducing MAX_WBITS makes minigzip unable to extract .gz files * created by gzip. (Files created by minigzip can still be extracted by * gzip.) */ #ifndef MAX_WBITS # define MAX_WBITS 15 /* 32K LZ77 window */ #endif /* The memory requirements for deflate are (in bytes): (1 << (windowBits+2)) + (1 << (memLevel+9)) that is: 128K for windowBits=15 + 128K for memLevel = 8 (default values) plus a few kilobytes for small objects. For example, if you want to reduce the default memory requirements from 256K to 128K, compile with make CFLAGS="-O -DMAX_WBITS=14 -DMAX_MEM_LEVEL=7" Of course this will generally degrade compression (there's no free lunch). The memory requirements for inflate are (in bytes) 1 << windowBits that is, 32K for windowBits=15 (default value) plus a few kilobytes for small objects. */ /* Type declarations */ #ifndef OF /* function prototypes */ # ifdef STDC # define OF(args) args # else # define OF(args) () # endif #endif #ifndef Z_ARG /* function prototypes for stdarg */ # if defined(STDC) || defined(Z_HAVE_STDARG_H) # define Z_ARG(args) args # else # define Z_ARG(args) () # endif #endif /* The following definitions for FAR are needed only for MSDOS mixed * model programming (small or medium model with some far allocations). * This was tested only with MSC; for other MSDOS compilers you may have * to define NO_MEMCPY in zutil.h. If you don't need the mixed model, * just define FAR to be empty. */ #ifdef SYS16BIT # if defined(M_I86SM) || defined(M_I86MM) /* MSC small or medium model */ # define SMALL_MEDIUM # ifdef _MSC_VER # define FAR _far # else # define FAR far # endif # endif # if (defined(__SMALL__) || defined(__MEDIUM__)) /* Turbo C small or medium model */ # define SMALL_MEDIUM # ifdef __BORLANDC__ # define FAR _far # else # define FAR far # endif # endif #endif #if defined(WINDOWS) || defined(WIN32) /* If building or using zlib as a DLL, define ZLIB_DLL. * This is not mandatory, but it offers a little performance increase. */ # ifdef ZLIB_DLL # if defined(WIN32) && (!defined(__BORLANDC__) || (__BORLANDC__ >= 0x500)) # ifdef ZLIB_INTERNAL # define ZEXTERN extern __declspec(dllexport) # else # define ZEXTERN extern __declspec(dllimport) # endif # endif # endif /* ZLIB_DLL */ /* If building or using zlib with the WINAPI/WINAPIV calling convention, * define ZLIB_WINAPI. * Caution: the standard ZLIB1.DLL is NOT compiled using ZLIB_WINAPI. */ # ifdef ZLIB_WINAPI # ifdef FAR # undef FAR # endif # include /* No need for _export, use ZLIB.DEF instead. */ /* For complete Windows compatibility, use WINAPI, not __stdcall. */ # define ZEXPORT WINAPI # ifdef WIN32 # define ZEXPORTVA WINAPIV # else # define ZEXPORTVA FAR CDECL # endif # endif #endif #if defined (__BEOS__) # ifdef ZLIB_DLL # ifdef ZLIB_INTERNAL # define ZEXPORT __declspec(dllexport) # define ZEXPORTVA __declspec(dllexport) # else # define ZEXPORT __declspec(dllimport) # define ZEXPORTVA __declspec(dllimport) # endif # endif #endif #ifndef ZEXTERN # define ZEXTERN extern #endif #ifndef ZEXPORT # define ZEXPORT #endif #ifndef ZEXPORTVA # define ZEXPORTVA #endif #ifndef FAR # define FAR #endif #if !defined(__MACTYPES__) typedef unsigned char Byte; /* 8 bits */ #endif typedef unsigned int uInt; /* 16 bits or more */ typedef unsigned long uLong; /* 32 bits or more */ #ifdef SMALL_MEDIUM /* Borland C/C++ and some old MSC versions ignore FAR inside typedef */ # define Bytef Byte FAR #else typedef Byte FAR Bytef; #endif typedef char FAR charf; typedef int FAR intf; typedef uInt FAR uIntf; typedef uLong FAR uLongf; #ifdef STDC typedef void const *voidpc; typedef void FAR *voidpf; typedef void *voidp; #else typedef Byte const *voidpc; typedef Byte FAR *voidpf; typedef Byte *voidp; #endif #if !defined(Z_U4) && !defined(Z_SOLO) && defined(STDC) # include # if (UINT_MAX == 0xffffffffUL) # define Z_U4 unsigned # elif (ULONG_MAX == 0xffffffffUL) # define Z_U4 unsigned long # elif (USHRT_MAX == 0xffffffffUL) # define Z_U4 unsigned short # endif #endif #ifdef Z_U4 typedef Z_U4 z_crc_t; #else typedef unsigned long z_crc_t; #endif #ifdef HAVE_UNISTD_H /* may be set to #if 1 by ./configure */ # define Z_HAVE_UNISTD_H #endif #ifdef HAVE_STDARG_H /* may be set to #if 1 by ./configure */ # define Z_HAVE_STDARG_H #endif #ifdef STDC # ifndef Z_SOLO # include /* for off_t */ # endif #endif #if defined(STDC) || defined(Z_HAVE_STDARG_H) # ifndef Z_SOLO # include /* for va_list */ # endif #endif #ifdef _WIN32 # ifndef Z_SOLO # include /* for wchar_t */ # endif #endif /* a little trick to accommodate both "#define _LARGEFILE64_SOURCE" and * "#define _LARGEFILE64_SOURCE 1" as requesting 64-bit operations, (even * though the former does not conform to the LFS document), but considering * both "#undef _LARGEFILE64_SOURCE" and "#define _LARGEFILE64_SOURCE 0" as * equivalently requesting no 64-bit operations */ #if defined(_LARGEFILE64_SOURCE) && -_LARGEFILE64_SOURCE - -1 == 1 # undef _LARGEFILE64_SOURCE #endif #if defined(__WATCOMC__) && !defined(Z_HAVE_UNISTD_H) # define Z_HAVE_UNISTD_H #endif #ifndef Z_SOLO # if defined(Z_HAVE_UNISTD_H) || defined(_LARGEFILE64_SOURCE) # include /* for SEEK_*, off_t, and _LFS64_LARGEFILE */ # ifdef VMS # include /* for off_t */ # endif # ifndef z_off_t # define z_off_t off_t # endif # endif #endif #if defined(_LFS64_LARGEFILE) && _LFS64_LARGEFILE-0 # define Z_LFS64 #endif #if defined(_LARGEFILE64_SOURCE) && defined(Z_LFS64) # define Z_LARGE64 #endif #if defined(_FILE_OFFSET_BITS) && _FILE_OFFSET_BITS-0 == 64 && defined(Z_LFS64) # define Z_WANT64 #endif #if !defined(SEEK_SET) && !defined(Z_SOLO) # define SEEK_SET 0 /* Seek from beginning of file. */ # define SEEK_CUR 1 /* Seek from current position. */ # define SEEK_END 2 /* Set file pointer to EOF plus "offset" */ #endif #ifndef z_off_t # define z_off_t long #endif #if !defined(_WIN32) && defined(Z_LARGE64) # define z_off64_t off64_t #else # if defined(_WIN32) && !defined(__GNUC__) && !defined(Z_SOLO) # define z_off64_t __int64 # else # define z_off64_t z_off_t # endif #endif /* MVS linker does not support external names larger than 8 bytes */ #if defined(__MVS__) #pragma map(deflateInit_,"DEIN") #pragma map(deflateInit2_,"DEIN2") #pragma map(deflateEnd,"DEEND") #pragma map(deflateBound,"DEBND") #pragma map(inflateInit_,"ININ") #pragma map(inflateInit2_,"ININ2") #pragma map(inflateEnd,"INEND") #pragma map(inflateSync,"INSY") #pragma map(inflateSetDictionary,"INSEDI") #pragma map(compressBound,"CMBND") #pragma map(inflate_table,"INTABL") #pragma map(inflate_fast,"INFA") #pragma map(inflate_copyright,"INCOPY") #endif #endif /* ZCONF_H */ Compress-Raw-Zlib-2.063/zlib-src/inftrees.h0000644000175000017500000000556012146130230017143 0ustar paulpaul/* inftrees.h -- header to use inftrees.c * Copyright (C) 1995-2005, 2010 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ /* Structure for decoding tables. Each entry provides either the information needed to do the operation requested by the code that indexed that table entry, or it provides a pointer to another table that indexes more bits of the code. op indicates whether the entry is a pointer to another table, a literal, a length or distance, an end-of-block, or an invalid code. For a table pointer, the low four bits of op is the number of index bits of that table. For a length or distance, the low four bits of op is the number of extra bits to get after the code. bits is the number of bits in this code or part of the code to drop off of the bit buffer. val is the actual byte to output in the case of a literal, the base length or distance, or the offset from the current table to the next table. Each entry is four bytes. */ typedef struct { unsigned char op; /* operation, extra bits, table bits */ unsigned char bits; /* bits in this part of the code */ unsigned short val; /* offset in table or code value */ } code; /* op values as set by inflate_table(): 00000000 - literal 0000tttt - table link, tttt != 0 is the number of table index bits 0001eeee - length or distance, eeee is the number of extra bits 01100000 - end of block 01000000 - invalid code */ /* Maximum size of the dynamic table. The maximum number of code structures is 1444, which is the sum of 852 for literal/length codes and 592 for distance codes. These values were found by exhaustive searches using the program examples/enough.c found in the zlib distribtution. The arguments to that program are the number of symbols, the initial root table size, and the maximum bit length of a code. "enough 286 9 15" for literal/length codes returns returns 852, and "enough 30 6 15" for distance codes returns 592. The initial root table size (9 or 6) is found in the fifth argument of the inflate_table() calls in inflate.c and infback.c. If the root table size is changed, then these maximum sizes would be need to be recalculated and updated. */ #define ENOUGH_LENS 852 #define ENOUGH_DISTS 592 #define ENOUGH (ENOUGH_LENS+ENOUGH_DISTS) /* Type of code to build for inflate_table() */ typedef enum { CODES, LENS, DISTS } codetype; int ZLIB_INTERNAL inflate_table OF((codetype type, unsigned short FAR *lens, unsigned codes, code FAR * FAR *table, unsigned FAR *bits, unsigned short FAR *work)); Compress-Raw-Zlib-2.063/zlib-src/zutil.c0000644000175000017500000001635612146131536016505 0ustar paulpaul/* zutil.c -- target dependent utility functions for the compression library * Copyright (C) 1995-2005, 2010, 2011, 2012 Jean-loup Gailly. * For conditions of distribution and use, see copyright notice in zlib.h */ /* @(#) $Id$ */ #include "zutil.h" #ifndef Z_SOLO # include "gzguts.h" #endif #ifndef NO_DUMMY_DECL struct internal_state {int dummy;}; /* for buggy compilers */ #endif z_const char * const z_errmsg[10] = { (char*)"need dictionary", /* Z_NEED_DICT 2 */ (char*)"stream end", /* Z_STREAM_END 1 */ (char*)"", /* Z_OK 0 */ (char*)"file error", /* Z_ERRNO (-1) */ (char*)"stream error", /* Z_STREAM_ERROR (-2) */ (char*)"data error", /* Z_DATA_ERROR (-3) */ (char*)"insufficient memory", /* Z_MEM_ERROR (-4) */ (char*)"buffer error", /* Z_BUF_ERROR (-5) */ (char*)"incompatible version",/* Z_VERSION_ERROR (-6) */ (char*)""}; const char * ZEXPORT zlibVersion() { return ZLIB_VERSION; } uLong ZEXPORT zlibCompileFlags() { uLong flags; flags = 0; switch ((int)(sizeof(uInt))) { case 2: break; case 4: flags += 1; break; case 8: flags += 2; break; default: flags += 3; } switch ((int)(sizeof(uLong))) { case 2: break; case 4: flags += 1 << 2; break; case 8: flags += 2 << 2; break; default: flags += 3 << 2; } switch ((int)(sizeof(voidpf))) { case 2: break; case 4: flags += 1 << 4; break; case 8: flags += 2 << 4; break; default: flags += 3 << 4; } switch ((int)(sizeof(z_off_t))) { case 2: break; case 4: flags += 1 << 6; break; case 8: flags += 2 << 6; break; default: flags += 3 << 6; } #ifdef DEBUG flags += 1 << 8; #endif #if defined(ASMV) || defined(ASMINF) flags += 1 << 9; #endif #ifdef ZLIB_WINAPI flags += 1 << 10; #endif #ifdef BUILDFIXED flags += 1 << 12; #endif #ifdef DYNAMIC_CRC_TABLE flags += 1 << 13; #endif #ifdef NO_GZCOMPRESS flags += 1L << 16; #endif #ifdef NO_GZIP flags += 1L << 17; #endif #ifdef PKZIP_BUG_WORKAROUND flags += 1L << 20; #endif #ifdef FASTEST flags += 1L << 21; #endif #if defined(STDC) || defined(Z_HAVE_STDARG_H) # ifdef NO_vsnprintf flags += 1L << 25; # ifdef HAS_vsprintf_void flags += 1L << 26; # endif # else # ifdef HAS_vsnprintf_void flags += 1L << 26; # endif # endif #else flags += 1L << 24; # ifdef NO_snprintf flags += 1L << 25; # ifdef HAS_sprintf_void flags += 1L << 26; # endif # else # ifdef HAS_snprintf_void flags += 1L << 26; # endif # endif #endif return flags; } #ifdef DEBUG # ifndef verbose # define verbose 0 # endif int ZLIB_INTERNAL z_verbose = verbose; void ZLIB_INTERNAL z_error ( char *m) { fprintf(stderr, "%s\n", m); exit(1); } #endif /* exported to allow conversion of error code to string for compress() and * uncompress() */ const char * ZEXPORT zError( int err) { return ERR_MSG(err); } #if defined(_WIN32_WCE) /* The Microsoft C Run-Time Library for Windows CE doesn't have * errno. We define it as a global variable to simplify porting. * Its value is always 0 and should not be used. */ int errno = 0; #endif #ifndef HAVE_MEMCPY void ZLIB_INTERNAL zmemcpy( Bytef* dest, const Bytef* source, uInt len) { if (len == 0) return; do { *dest++ = *source++; /* ??? to be unrolled */ } while (--len != 0); } int ZLIB_INTERNAL zmemcmp( const Bytef* s1, const Bytef* s2, uInt len) { uInt j; for (j = 0; j < len; j++) { if (s1[j] != s2[j]) return 2*(s1[j] > s2[j])-1; } return 0; } void ZLIB_INTERNAL zmemzero( Bytef* dest, uInt len) { if (len == 0) return; do { *dest++ = 0; /* ??? to be unrolled */ } while (--len != 0); } #endif #ifndef Z_SOLO #ifdef SYS16BIT #ifdef __TURBOC__ /* Turbo C in 16-bit mode */ # define MY_ZCALLOC /* Turbo C malloc() does not allow dynamic allocation of 64K bytes * and farmalloc(64K) returns a pointer with an offset of 8, so we * must fix the pointer. Warning: the pointer must be put back to its * original form in order to free it, use zcfree(). */ #define MAX_PTR 10 /* 10*64K = 640K */ local int next_ptr = 0; typedef struct ptr_table_s { voidpf org_ptr; voidpf new_ptr; } ptr_table; local ptr_table table[MAX_PTR]; /* This table is used to remember the original form of pointers * to large buffers (64K). Such pointers are normalized with a zero offset. * Since MSDOS is not a preemptive multitasking OS, this table is not * protected from concurrent access. This hack doesn't work anyway on * a protected system like OS/2. Use Microsoft C instead. */ voidpf ZLIB_INTERNAL zcalloc (voidpf opaque, unsigned items, unsigned size) { voidpf buf = opaque; /* just to make some compilers happy */ ulg bsize = (ulg)items*size; /* If we allocate less than 65520 bytes, we assume that farmalloc * will return a usable pointer which doesn't have to be normalized. */ if (bsize < 65520L) { buf = farmalloc(bsize); if (*(ush*)&buf != 0) return buf; } else { buf = farmalloc(bsize + 16L); } if (buf == NULL || next_ptr >= MAX_PTR) return NULL; table[next_ptr].org_ptr = buf; /* Normalize the pointer to seg:0 */ *((ush*)&buf+1) += ((ush)((uch*)buf-0) + 15) >> 4; *(ush*)&buf = 0; table[next_ptr++].new_ptr = buf; return buf; } void ZLIB_INTERNAL zcfree (voidpf opaque, voidpf ptr) { int n; if (*(ush*)&ptr != 0) { /* object < 64K */ farfree(ptr); return; } /* Find the original pointer */ for (n = 0; n < next_ptr; n++) { if (ptr != table[n].new_ptr) continue; farfree(table[n].org_ptr); while (++n < next_ptr) { table[n-1] = table[n]; } next_ptr--; return; } ptr = opaque; /* just to make some compilers happy */ Assert(0, "zcfree: ptr not found"); } #endif /* __TURBOC__ */ #ifdef M_I86 /* Microsoft C in 16-bit mode */ # define MY_ZCALLOC #if (!defined(_MSC_VER) || (_MSC_VER <= 600)) # define _halloc halloc # define _hfree hfree #endif voidpf ZLIB_INTERNAL zcalloc (voidpf opaque, uInt items, uInt size) { if (opaque) opaque = 0; /* to make compiler happy */ return _halloc((long)items, size); } void ZLIB_INTERNAL zcfree (voidpf opaque, voidpf ptr) { if (opaque) opaque = 0; /* to make compiler happy */ _hfree(ptr); } #endif /* M_I86 */ #endif /* SYS16BIT */ #ifndef MY_ZCALLOC /* Any system without a special alloc function */ #ifndef STDC extern voidp malloc OF((uInt size)); extern voidp calloc OF((uInt items, uInt size)); extern void free OF((voidpf ptr)); #endif voidpf ZLIB_INTERNAL zcalloc ( voidpf opaque, unsigned items, unsigned size) { if (opaque) items += size - size; /* make compiler happy */ return sizeof(uInt) > 2 ? (voidpf)malloc(items * size) : (voidpf)calloc(items, size); } void ZLIB_INTERNAL zcfree ( voidpf opaque, voidpf ptr) { free(ptr); if (opaque) return; /* make compiler happy */ } #endif /* MY_ZCALLOC */ #endif /* !Z_SOLO */ Compress-Raw-Zlib-2.063/zlib-src/crc32.h0000644000175000017500000007354212146130230016245 0ustar paulpaul/* crc32.h -- tables for rapid CRC calculation * Generated automatically by crc32.c */ local const z_crc_t FAR crc_table[TBLS][256] = { { 0x00000000UL, 0x77073096UL, 0xee0e612cUL, 0x990951baUL, 0x076dc419UL, 0x706af48fUL, 0xe963a535UL, 0x9e6495a3UL, 0x0edb8832UL, 0x79dcb8a4UL, 0xe0d5e91eUL, 0x97d2d988UL, 0x09b64c2bUL, 0x7eb17cbdUL, 0xe7b82d07UL, 0x90bf1d91UL, 0x1db71064UL, 0x6ab020f2UL, 0xf3b97148UL, 0x84be41deUL, 0x1adad47dUL, 0x6ddde4ebUL, 0xf4d4b551UL, 0x83d385c7UL, 0x136c9856UL, 0x646ba8c0UL, 0xfd62f97aUL, 0x8a65c9ecUL, 0x14015c4fUL, 0x63066cd9UL, 0xfa0f3d63UL, 0x8d080df5UL, 0x3b6e20c8UL, 0x4c69105eUL, 0xd56041e4UL, 0xa2677172UL, 0x3c03e4d1UL, 0x4b04d447UL, 0xd20d85fdUL, 0xa50ab56bUL, 0x35b5a8faUL, 0x42b2986cUL, 0xdbbbc9d6UL, 0xacbcf940UL, 0x32d86ce3UL, 0x45df5c75UL, 0xdcd60dcfUL, 0xabd13d59UL, 0x26d930acUL, 0x51de003aUL, 0xc8d75180UL, 0xbfd06116UL, 0x21b4f4b5UL, 0x56b3c423UL, 0xcfba9599UL, 0xb8bda50fUL, 0x2802b89eUL, 0x5f058808UL, 0xc60cd9b2UL, 0xb10be924UL, 0x2f6f7c87UL, 0x58684c11UL, 0xc1611dabUL, 0xb6662d3dUL, 0x76dc4190UL, 0x01db7106UL, 0x98d220bcUL, 0xefd5102aUL, 0x71b18589UL, 0x06b6b51fUL, 0x9fbfe4a5UL, 0xe8b8d433UL, 0x7807c9a2UL, 0x0f00f934UL, 0x9609a88eUL, 0xe10e9818UL, 0x7f6a0dbbUL, 0x086d3d2dUL, 0x91646c97UL, 0xe6635c01UL, 0x6b6b51f4UL, 0x1c6c6162UL, 0x856530d8UL, 0xf262004eUL, 0x6c0695edUL, 0x1b01a57bUL, 0x8208f4c1UL, 0xf50fc457UL, 0x65b0d9c6UL, 0x12b7e950UL, 0x8bbeb8eaUL, 0xfcb9887cUL, 0x62dd1ddfUL, 0x15da2d49UL, 0x8cd37cf3UL, 0xfbd44c65UL, 0x4db26158UL, 0x3ab551ceUL, 0xa3bc0074UL, 0xd4bb30e2UL, 0x4adfa541UL, 0x3dd895d7UL, 0xa4d1c46dUL, 0xd3d6f4fbUL, 0x4369e96aUL, 0x346ed9fcUL, 0xad678846UL, 0xda60b8d0UL, 0x44042d73UL, 0x33031de5UL, 0xaa0a4c5fUL, 0xdd0d7cc9UL, 0x5005713cUL, 0x270241aaUL, 0xbe0b1010UL, 0xc90c2086UL, 0x5768b525UL, 0x206f85b3UL, 0xb966d409UL, 0xce61e49fUL, 0x5edef90eUL, 0x29d9c998UL, 0xb0d09822UL, 0xc7d7a8b4UL, 0x59b33d17UL, 0x2eb40d81UL, 0xb7bd5c3bUL, 0xc0ba6cadUL, 0xedb88320UL, 0x9abfb3b6UL, 0x03b6e20cUL, 0x74b1d29aUL, 0xead54739UL, 0x9dd277afUL, 0x04db2615UL, 0x73dc1683UL, 0xe3630b12UL, 0x94643b84UL, 0x0d6d6a3eUL, 0x7a6a5aa8UL, 0xe40ecf0bUL, 0x9309ff9dUL, 0x0a00ae27UL, 0x7d079eb1UL, 0xf00f9344UL, 0x8708a3d2UL, 0x1e01f268UL, 0x6906c2feUL, 0xf762575dUL, 0x806567cbUL, 0x196c3671UL, 0x6e6b06e7UL, 0xfed41b76UL, 0x89d32be0UL, 0x10da7a5aUL, 0x67dd4accUL, 0xf9b9df6fUL, 0x8ebeeff9UL, 0x17b7be43UL, 0x60b08ed5UL, 0xd6d6a3e8UL, 0xa1d1937eUL, 0x38d8c2c4UL, 0x4fdff252UL, 0xd1bb67f1UL, 0xa6bc5767UL, 0x3fb506ddUL, 0x48b2364bUL, 0xd80d2bdaUL, 0xaf0a1b4cUL, 0x36034af6UL, 0x41047a60UL, 0xdf60efc3UL, 0xa867df55UL, 0x316e8eefUL, 0x4669be79UL, 0xcb61b38cUL, 0xbc66831aUL, 0x256fd2a0UL, 0x5268e236UL, 0xcc0c7795UL, 0xbb0b4703UL, 0x220216b9UL, 0x5505262fUL, 0xc5ba3bbeUL, 0xb2bd0b28UL, 0x2bb45a92UL, 0x5cb36a04UL, 0xc2d7ffa7UL, 0xb5d0cf31UL, 0x2cd99e8bUL, 0x5bdeae1dUL, 0x9b64c2b0UL, 0xec63f226UL, 0x756aa39cUL, 0x026d930aUL, 0x9c0906a9UL, 0xeb0e363fUL, 0x72076785UL, 0x05005713UL, 0x95bf4a82UL, 0xe2b87a14UL, 0x7bb12baeUL, 0x0cb61b38UL, 0x92d28e9bUL, 0xe5d5be0dUL, 0x7cdcefb7UL, 0x0bdbdf21UL, 0x86d3d2d4UL, 0xf1d4e242UL, 0x68ddb3f8UL, 0x1fda836eUL, 0x81be16cdUL, 0xf6b9265bUL, 0x6fb077e1UL, 0x18b74777UL, 0x88085ae6UL, 0xff0f6a70UL, 0x66063bcaUL, 0x11010b5cUL, 0x8f659effUL, 0xf862ae69UL, 0x616bffd3UL, 0x166ccf45UL, 0xa00ae278UL, 0xd70dd2eeUL, 0x4e048354UL, 0x3903b3c2UL, 0xa7672661UL, 0xd06016f7UL, 0x4969474dUL, 0x3e6e77dbUL, 0xaed16a4aUL, 0xd9d65adcUL, 0x40df0b66UL, 0x37d83bf0UL, 0xa9bcae53UL, 0xdebb9ec5UL, 0x47b2cf7fUL, 0x30b5ffe9UL, 0xbdbdf21cUL, 0xcabac28aUL, 0x53b39330UL, 0x24b4a3a6UL, 0xbad03605UL, 0xcdd70693UL, 0x54de5729UL, 0x23d967bfUL, 0xb3667a2eUL, 0xc4614ab8UL, 0x5d681b02UL, 0x2a6f2b94UL, 0xb40bbe37UL, 0xc30c8ea1UL, 0x5a05df1bUL, 0x2d02ef8dUL #ifdef BYFOUR }, { 0x00000000UL, 0x191b3141UL, 0x32366282UL, 0x2b2d53c3UL, 0x646cc504UL, 0x7d77f445UL, 0x565aa786UL, 0x4f4196c7UL, 0xc8d98a08UL, 0xd1c2bb49UL, 0xfaefe88aUL, 0xe3f4d9cbUL, 0xacb54f0cUL, 0xb5ae7e4dUL, 0x9e832d8eUL, 0x87981ccfUL, 0x4ac21251UL, 0x53d92310UL, 0x78f470d3UL, 0x61ef4192UL, 0x2eaed755UL, 0x37b5e614UL, 0x1c98b5d7UL, 0x05838496UL, 0x821b9859UL, 0x9b00a918UL, 0xb02dfadbUL, 0xa936cb9aUL, 0xe6775d5dUL, 0xff6c6c1cUL, 0xd4413fdfUL, 0xcd5a0e9eUL, 0x958424a2UL, 0x8c9f15e3UL, 0xa7b24620UL, 0xbea97761UL, 0xf1e8e1a6UL, 0xe8f3d0e7UL, 0xc3de8324UL, 0xdac5b265UL, 0x5d5daeaaUL, 0x44469febUL, 0x6f6bcc28UL, 0x7670fd69UL, 0x39316baeUL, 0x202a5aefUL, 0x0b07092cUL, 0x121c386dUL, 0xdf4636f3UL, 0xc65d07b2UL, 0xed705471UL, 0xf46b6530UL, 0xbb2af3f7UL, 0xa231c2b6UL, 0x891c9175UL, 0x9007a034UL, 0x179fbcfbUL, 0x0e848dbaUL, 0x25a9de79UL, 0x3cb2ef38UL, 0x73f379ffUL, 0x6ae848beUL, 0x41c51b7dUL, 0x58de2a3cUL, 0xf0794f05UL, 0xe9627e44UL, 0xc24f2d87UL, 0xdb541cc6UL, 0x94158a01UL, 0x8d0ebb40UL, 0xa623e883UL, 0xbf38d9c2UL, 0x38a0c50dUL, 0x21bbf44cUL, 0x0a96a78fUL, 0x138d96ceUL, 0x5ccc0009UL, 0x45d73148UL, 0x6efa628bUL, 0x77e153caUL, 0xbabb5d54UL, 0xa3a06c15UL, 0x888d3fd6UL, 0x91960e97UL, 0xded79850UL, 0xc7cca911UL, 0xece1fad2UL, 0xf5facb93UL, 0x7262d75cUL, 0x6b79e61dUL, 0x4054b5deUL, 0x594f849fUL, 0x160e1258UL, 0x0f152319UL, 0x243870daUL, 0x3d23419bUL, 0x65fd6ba7UL, 0x7ce65ae6UL, 0x57cb0925UL, 0x4ed03864UL, 0x0191aea3UL, 0x188a9fe2UL, 0x33a7cc21UL, 0x2abcfd60UL, 0xad24e1afUL, 0xb43fd0eeUL, 0x9f12832dUL, 0x8609b26cUL, 0xc94824abUL, 0xd05315eaUL, 0xfb7e4629UL, 0xe2657768UL, 0x2f3f79f6UL, 0x362448b7UL, 0x1d091b74UL, 0x04122a35UL, 0x4b53bcf2UL, 0x52488db3UL, 0x7965de70UL, 0x607eef31UL, 0xe7e6f3feUL, 0xfefdc2bfUL, 0xd5d0917cUL, 0xcccba03dUL, 0x838a36faUL, 0x9a9107bbUL, 0xb1bc5478UL, 0xa8a76539UL, 0x3b83984bUL, 0x2298a90aUL, 0x09b5fac9UL, 0x10aecb88UL, 0x5fef5d4fUL, 0x46f46c0eUL, 0x6dd93fcdUL, 0x74c20e8cUL, 0xf35a1243UL, 0xea412302UL, 0xc16c70c1UL, 0xd8774180UL, 0x9736d747UL, 0x8e2de606UL, 0xa500b5c5UL, 0xbc1b8484UL, 0x71418a1aUL, 0x685abb5bUL, 0x4377e898UL, 0x5a6cd9d9UL, 0x152d4f1eUL, 0x0c367e5fUL, 0x271b2d9cUL, 0x3e001cddUL, 0xb9980012UL, 0xa0833153UL, 0x8bae6290UL, 0x92b553d1UL, 0xddf4c516UL, 0xc4eff457UL, 0xefc2a794UL, 0xf6d996d5UL, 0xae07bce9UL, 0xb71c8da8UL, 0x9c31de6bUL, 0x852aef2aUL, 0xca6b79edUL, 0xd37048acUL, 0xf85d1b6fUL, 0xe1462a2eUL, 0x66de36e1UL, 0x7fc507a0UL, 0x54e85463UL, 0x4df36522UL, 0x02b2f3e5UL, 0x1ba9c2a4UL, 0x30849167UL, 0x299fa026UL, 0xe4c5aeb8UL, 0xfdde9ff9UL, 0xd6f3cc3aUL, 0xcfe8fd7bUL, 0x80a96bbcUL, 0x99b25afdUL, 0xb29f093eUL, 0xab84387fUL, 0x2c1c24b0UL, 0x350715f1UL, 0x1e2a4632UL, 0x07317773UL, 0x4870e1b4UL, 0x516bd0f5UL, 0x7a468336UL, 0x635db277UL, 0xcbfad74eUL, 0xd2e1e60fUL, 0xf9ccb5ccUL, 0xe0d7848dUL, 0xaf96124aUL, 0xb68d230bUL, 0x9da070c8UL, 0x84bb4189UL, 0x03235d46UL, 0x1a386c07UL, 0x31153fc4UL, 0x280e0e85UL, 0x674f9842UL, 0x7e54a903UL, 0x5579fac0UL, 0x4c62cb81UL, 0x8138c51fUL, 0x9823f45eUL, 0xb30ea79dUL, 0xaa1596dcUL, 0xe554001bUL, 0xfc4f315aUL, 0xd7626299UL, 0xce7953d8UL, 0x49e14f17UL, 0x50fa7e56UL, 0x7bd72d95UL, 0x62cc1cd4UL, 0x2d8d8a13UL, 0x3496bb52UL, 0x1fbbe891UL, 0x06a0d9d0UL, 0x5e7ef3ecUL, 0x4765c2adUL, 0x6c48916eUL, 0x7553a02fUL, 0x3a1236e8UL, 0x230907a9UL, 0x0824546aUL, 0x113f652bUL, 0x96a779e4UL, 0x8fbc48a5UL, 0xa4911b66UL, 0xbd8a2a27UL, 0xf2cbbce0UL, 0xebd08da1UL, 0xc0fdde62UL, 0xd9e6ef23UL, 0x14bce1bdUL, 0x0da7d0fcUL, 0x268a833fUL, 0x3f91b27eUL, 0x70d024b9UL, 0x69cb15f8UL, 0x42e6463bUL, 0x5bfd777aUL, 0xdc656bb5UL, 0xc57e5af4UL, 0xee530937UL, 0xf7483876UL, 0xb809aeb1UL, 0xa1129ff0UL, 0x8a3fcc33UL, 0x9324fd72UL }, { 0x00000000UL, 0x01c26a37UL, 0x0384d46eUL, 0x0246be59UL, 0x0709a8dcUL, 0x06cbc2ebUL, 0x048d7cb2UL, 0x054f1685UL, 0x0e1351b8UL, 0x0fd13b8fUL, 0x0d9785d6UL, 0x0c55efe1UL, 0x091af964UL, 0x08d89353UL, 0x0a9e2d0aUL, 0x0b5c473dUL, 0x1c26a370UL, 0x1de4c947UL, 0x1fa2771eUL, 0x1e601d29UL, 0x1b2f0bacUL, 0x1aed619bUL, 0x18abdfc2UL, 0x1969b5f5UL, 0x1235f2c8UL, 0x13f798ffUL, 0x11b126a6UL, 0x10734c91UL, 0x153c5a14UL, 0x14fe3023UL, 0x16b88e7aUL, 0x177ae44dUL, 0x384d46e0UL, 0x398f2cd7UL, 0x3bc9928eUL, 0x3a0bf8b9UL, 0x3f44ee3cUL, 0x3e86840bUL, 0x3cc03a52UL, 0x3d025065UL, 0x365e1758UL, 0x379c7d6fUL, 0x35dac336UL, 0x3418a901UL, 0x3157bf84UL, 0x3095d5b3UL, 0x32d36beaUL, 0x331101ddUL, 0x246be590UL, 0x25a98fa7UL, 0x27ef31feUL, 0x262d5bc9UL, 0x23624d4cUL, 0x22a0277bUL, 0x20e69922UL, 0x2124f315UL, 0x2a78b428UL, 0x2bbade1fUL, 0x29fc6046UL, 0x283e0a71UL, 0x2d711cf4UL, 0x2cb376c3UL, 0x2ef5c89aUL, 0x2f37a2adUL, 0x709a8dc0UL, 0x7158e7f7UL, 0x731e59aeUL, 0x72dc3399UL, 0x7793251cUL, 0x76514f2bUL, 0x7417f172UL, 0x75d59b45UL, 0x7e89dc78UL, 0x7f4bb64fUL, 0x7d0d0816UL, 0x7ccf6221UL, 0x798074a4UL, 0x78421e93UL, 0x7a04a0caUL, 0x7bc6cafdUL, 0x6cbc2eb0UL, 0x6d7e4487UL, 0x6f38fadeUL, 0x6efa90e9UL, 0x6bb5866cUL, 0x6a77ec5bUL, 0x68315202UL, 0x69f33835UL, 0x62af7f08UL, 0x636d153fUL, 0x612bab66UL, 0x60e9c151UL, 0x65a6d7d4UL, 0x6464bde3UL, 0x662203baUL, 0x67e0698dUL, 0x48d7cb20UL, 0x4915a117UL, 0x4b531f4eUL, 0x4a917579UL, 0x4fde63fcUL, 0x4e1c09cbUL, 0x4c5ab792UL, 0x4d98dda5UL, 0x46c49a98UL, 0x4706f0afUL, 0x45404ef6UL, 0x448224c1UL, 0x41cd3244UL, 0x400f5873UL, 0x4249e62aUL, 0x438b8c1dUL, 0x54f16850UL, 0x55330267UL, 0x5775bc3eUL, 0x56b7d609UL, 0x53f8c08cUL, 0x523aaabbUL, 0x507c14e2UL, 0x51be7ed5UL, 0x5ae239e8UL, 0x5b2053dfUL, 0x5966ed86UL, 0x58a487b1UL, 0x5deb9134UL, 0x5c29fb03UL, 0x5e6f455aUL, 0x5fad2f6dUL, 0xe1351b80UL, 0xe0f771b7UL, 0xe2b1cfeeUL, 0xe373a5d9UL, 0xe63cb35cUL, 0xe7fed96bUL, 0xe5b86732UL, 0xe47a0d05UL, 0xef264a38UL, 0xeee4200fUL, 0xeca29e56UL, 0xed60f461UL, 0xe82fe2e4UL, 0xe9ed88d3UL, 0xebab368aUL, 0xea695cbdUL, 0xfd13b8f0UL, 0xfcd1d2c7UL, 0xfe976c9eUL, 0xff5506a9UL, 0xfa1a102cUL, 0xfbd87a1bUL, 0xf99ec442UL, 0xf85cae75UL, 0xf300e948UL, 0xf2c2837fUL, 0xf0843d26UL, 0xf1465711UL, 0xf4094194UL, 0xf5cb2ba3UL, 0xf78d95faUL, 0xf64fffcdUL, 0xd9785d60UL, 0xd8ba3757UL, 0xdafc890eUL, 0xdb3ee339UL, 0xde71f5bcUL, 0xdfb39f8bUL, 0xddf521d2UL, 0xdc374be5UL, 0xd76b0cd8UL, 0xd6a966efUL, 0xd4efd8b6UL, 0xd52db281UL, 0xd062a404UL, 0xd1a0ce33UL, 0xd3e6706aUL, 0xd2241a5dUL, 0xc55efe10UL, 0xc49c9427UL, 0xc6da2a7eUL, 0xc7184049UL, 0xc25756ccUL, 0xc3953cfbUL, 0xc1d382a2UL, 0xc011e895UL, 0xcb4dafa8UL, 0xca8fc59fUL, 0xc8c97bc6UL, 0xc90b11f1UL, 0xcc440774UL, 0xcd866d43UL, 0xcfc0d31aUL, 0xce02b92dUL, 0x91af9640UL, 0x906dfc77UL, 0x922b422eUL, 0x93e92819UL, 0x96a63e9cUL, 0x976454abUL, 0x9522eaf2UL, 0x94e080c5UL, 0x9fbcc7f8UL, 0x9e7eadcfUL, 0x9c381396UL, 0x9dfa79a1UL, 0x98b56f24UL, 0x99770513UL, 0x9b31bb4aUL, 0x9af3d17dUL, 0x8d893530UL, 0x8c4b5f07UL, 0x8e0de15eUL, 0x8fcf8b69UL, 0x8a809decUL, 0x8b42f7dbUL, 0x89044982UL, 0x88c623b5UL, 0x839a6488UL, 0x82580ebfUL, 0x801eb0e6UL, 0x81dcdad1UL, 0x8493cc54UL, 0x8551a663UL, 0x8717183aUL, 0x86d5720dUL, 0xa9e2d0a0UL, 0xa820ba97UL, 0xaa6604ceUL, 0xaba46ef9UL, 0xaeeb787cUL, 0xaf29124bUL, 0xad6fac12UL, 0xacadc625UL, 0xa7f18118UL, 0xa633eb2fUL, 0xa4755576UL, 0xa5b73f41UL, 0xa0f829c4UL, 0xa13a43f3UL, 0xa37cfdaaUL, 0xa2be979dUL, 0xb5c473d0UL, 0xb40619e7UL, 0xb640a7beUL, 0xb782cd89UL, 0xb2cddb0cUL, 0xb30fb13bUL, 0xb1490f62UL, 0xb08b6555UL, 0xbbd72268UL, 0xba15485fUL, 0xb853f606UL, 0xb9919c31UL, 0xbcde8ab4UL, 0xbd1ce083UL, 0xbf5a5edaUL, 0xbe9834edUL }, { 0x00000000UL, 0xb8bc6765UL, 0xaa09c88bUL, 0x12b5afeeUL, 0x8f629757UL, 0x37def032UL, 0x256b5fdcUL, 0x9dd738b9UL, 0xc5b428efUL, 0x7d084f8aUL, 0x6fbde064UL, 0xd7018701UL, 0x4ad6bfb8UL, 0xf26ad8ddUL, 0xe0df7733UL, 0x58631056UL, 0x5019579fUL, 0xe8a530faUL, 0xfa109f14UL, 0x42acf871UL, 0xdf7bc0c8UL, 0x67c7a7adUL, 0x75720843UL, 0xcdce6f26UL, 0x95ad7f70UL, 0x2d111815UL, 0x3fa4b7fbUL, 0x8718d09eUL, 0x1acfe827UL, 0xa2738f42UL, 0xb0c620acUL, 0x087a47c9UL, 0xa032af3eUL, 0x188ec85bUL, 0x0a3b67b5UL, 0xb28700d0UL, 0x2f503869UL, 0x97ec5f0cUL, 0x8559f0e2UL, 0x3de59787UL, 0x658687d1UL, 0xdd3ae0b4UL, 0xcf8f4f5aUL, 0x7733283fUL, 0xeae41086UL, 0x525877e3UL, 0x40edd80dUL, 0xf851bf68UL, 0xf02bf8a1UL, 0x48979fc4UL, 0x5a22302aUL, 0xe29e574fUL, 0x7f496ff6UL, 0xc7f50893UL, 0xd540a77dUL, 0x6dfcc018UL, 0x359fd04eUL, 0x8d23b72bUL, 0x9f9618c5UL, 0x272a7fa0UL, 0xbafd4719UL, 0x0241207cUL, 0x10f48f92UL, 0xa848e8f7UL, 0x9b14583dUL, 0x23a83f58UL, 0x311d90b6UL, 0x89a1f7d3UL, 0x1476cf6aUL, 0xaccaa80fUL, 0xbe7f07e1UL, 0x06c36084UL, 0x5ea070d2UL, 0xe61c17b7UL, 0xf4a9b859UL, 0x4c15df3cUL, 0xd1c2e785UL, 0x697e80e0UL, 0x7bcb2f0eUL, 0xc377486bUL, 0xcb0d0fa2UL, 0x73b168c7UL, 0x6104c729UL, 0xd9b8a04cUL, 0x446f98f5UL, 0xfcd3ff90UL, 0xee66507eUL, 0x56da371bUL, 0x0eb9274dUL, 0xb6054028UL, 0xa4b0efc6UL, 0x1c0c88a3UL, 0x81dbb01aUL, 0x3967d77fUL, 0x2bd27891UL, 0x936e1ff4UL, 0x3b26f703UL, 0x839a9066UL, 0x912f3f88UL, 0x299358edUL, 0xb4446054UL, 0x0cf80731UL, 0x1e4da8dfUL, 0xa6f1cfbaUL, 0xfe92dfecUL, 0x462eb889UL, 0x549b1767UL, 0xec277002UL, 0x71f048bbUL, 0xc94c2fdeUL, 0xdbf98030UL, 0x6345e755UL, 0x6b3fa09cUL, 0xd383c7f9UL, 0xc1366817UL, 0x798a0f72UL, 0xe45d37cbUL, 0x5ce150aeUL, 0x4e54ff40UL, 0xf6e89825UL, 0xae8b8873UL, 0x1637ef16UL, 0x048240f8UL, 0xbc3e279dUL, 0x21e91f24UL, 0x99557841UL, 0x8be0d7afUL, 0x335cb0caUL, 0xed59b63bUL, 0x55e5d15eUL, 0x47507eb0UL, 0xffec19d5UL, 0x623b216cUL, 0xda874609UL, 0xc832e9e7UL, 0x708e8e82UL, 0x28ed9ed4UL, 0x9051f9b1UL, 0x82e4565fUL, 0x3a58313aUL, 0xa78f0983UL, 0x1f336ee6UL, 0x0d86c108UL, 0xb53aa66dUL, 0xbd40e1a4UL, 0x05fc86c1UL, 0x1749292fUL, 0xaff54e4aUL, 0x322276f3UL, 0x8a9e1196UL, 0x982bbe78UL, 0x2097d91dUL, 0x78f4c94bUL, 0xc048ae2eUL, 0xd2fd01c0UL, 0x6a4166a5UL, 0xf7965e1cUL, 0x4f2a3979UL, 0x5d9f9697UL, 0xe523f1f2UL, 0x4d6b1905UL, 0xf5d77e60UL, 0xe762d18eUL, 0x5fdeb6ebUL, 0xc2098e52UL, 0x7ab5e937UL, 0x680046d9UL, 0xd0bc21bcUL, 0x88df31eaUL, 0x3063568fUL, 0x22d6f961UL, 0x9a6a9e04UL, 0x07bda6bdUL, 0xbf01c1d8UL, 0xadb46e36UL, 0x15080953UL, 0x1d724e9aUL, 0xa5ce29ffUL, 0xb77b8611UL, 0x0fc7e174UL, 0x9210d9cdUL, 0x2aacbea8UL, 0x38191146UL, 0x80a57623UL, 0xd8c66675UL, 0x607a0110UL, 0x72cfaefeUL, 0xca73c99bUL, 0x57a4f122UL, 0xef189647UL, 0xfdad39a9UL, 0x45115eccUL, 0x764dee06UL, 0xcef18963UL, 0xdc44268dUL, 0x64f841e8UL, 0xf92f7951UL, 0x41931e34UL, 0x5326b1daUL, 0xeb9ad6bfUL, 0xb3f9c6e9UL, 0x0b45a18cUL, 0x19f00e62UL, 0xa14c6907UL, 0x3c9b51beUL, 0x842736dbUL, 0x96929935UL, 0x2e2efe50UL, 0x2654b999UL, 0x9ee8defcUL, 0x8c5d7112UL, 0x34e11677UL, 0xa9362eceUL, 0x118a49abUL, 0x033fe645UL, 0xbb838120UL, 0xe3e09176UL, 0x5b5cf613UL, 0x49e959fdUL, 0xf1553e98UL, 0x6c820621UL, 0xd43e6144UL, 0xc68bceaaUL, 0x7e37a9cfUL, 0xd67f4138UL, 0x6ec3265dUL, 0x7c7689b3UL, 0xc4caeed6UL, 0x591dd66fUL, 0xe1a1b10aUL, 0xf3141ee4UL, 0x4ba87981UL, 0x13cb69d7UL, 0xab770eb2UL, 0xb9c2a15cUL, 0x017ec639UL, 0x9ca9fe80UL, 0x241599e5UL, 0x36a0360bUL, 0x8e1c516eUL, 0x866616a7UL, 0x3eda71c2UL, 0x2c6fde2cUL, 0x94d3b949UL, 0x090481f0UL, 0xb1b8e695UL, 0xa30d497bUL, 0x1bb12e1eUL, 0x43d23e48UL, 0xfb6e592dUL, 0xe9dbf6c3UL, 0x516791a6UL, 0xccb0a91fUL, 0x740cce7aUL, 0x66b96194UL, 0xde0506f1UL }, { 0x00000000UL, 0x96300777UL, 0x2c610eeeUL, 0xba510999UL, 0x19c46d07UL, 0x8ff46a70UL, 0x35a563e9UL, 0xa395649eUL, 0x3288db0eUL, 0xa4b8dc79UL, 0x1ee9d5e0UL, 0x88d9d297UL, 0x2b4cb609UL, 0xbd7cb17eUL, 0x072db8e7UL, 0x911dbf90UL, 0x6410b71dUL, 0xf220b06aUL, 0x4871b9f3UL, 0xde41be84UL, 0x7dd4da1aUL, 0xebe4dd6dUL, 0x51b5d4f4UL, 0xc785d383UL, 0x56986c13UL, 0xc0a86b64UL, 0x7af962fdUL, 0xecc9658aUL, 0x4f5c0114UL, 0xd96c0663UL, 0x633d0ffaUL, 0xf50d088dUL, 0xc8206e3bUL, 0x5e10694cUL, 0xe44160d5UL, 0x727167a2UL, 0xd1e4033cUL, 0x47d4044bUL, 0xfd850dd2UL, 0x6bb50aa5UL, 0xfaa8b535UL, 0x6c98b242UL, 0xd6c9bbdbUL, 0x40f9bcacUL, 0xe36cd832UL, 0x755cdf45UL, 0xcf0dd6dcUL, 0x593dd1abUL, 0xac30d926UL, 0x3a00de51UL, 0x8051d7c8UL, 0x1661d0bfUL, 0xb5f4b421UL, 0x23c4b356UL, 0x9995bacfUL, 0x0fa5bdb8UL, 0x9eb80228UL, 0x0888055fUL, 0xb2d90cc6UL, 0x24e90bb1UL, 0x877c6f2fUL, 0x114c6858UL, 0xab1d61c1UL, 0x3d2d66b6UL, 0x9041dc76UL, 0x0671db01UL, 0xbc20d298UL, 0x2a10d5efUL, 0x8985b171UL, 0x1fb5b606UL, 0xa5e4bf9fUL, 0x33d4b8e8UL, 0xa2c90778UL, 0x34f9000fUL, 0x8ea80996UL, 0x18980ee1UL, 0xbb0d6a7fUL, 0x2d3d6d08UL, 0x976c6491UL, 0x015c63e6UL, 0xf4516b6bUL, 0x62616c1cUL, 0xd8306585UL, 0x4e0062f2UL, 0xed95066cUL, 0x7ba5011bUL, 0xc1f40882UL, 0x57c40ff5UL, 0xc6d9b065UL, 0x50e9b712UL, 0xeab8be8bUL, 0x7c88b9fcUL, 0xdf1ddd62UL, 0x492dda15UL, 0xf37cd38cUL, 0x654cd4fbUL, 0x5861b24dUL, 0xce51b53aUL, 0x7400bca3UL, 0xe230bbd4UL, 0x41a5df4aUL, 0xd795d83dUL, 0x6dc4d1a4UL, 0xfbf4d6d3UL, 0x6ae96943UL, 0xfcd96e34UL, 0x468867adUL, 0xd0b860daUL, 0x732d0444UL, 0xe51d0333UL, 0x5f4c0aaaUL, 0xc97c0dddUL, 0x3c710550UL, 0xaa410227UL, 0x10100bbeUL, 0x86200cc9UL, 0x25b56857UL, 0xb3856f20UL, 0x09d466b9UL, 0x9fe461ceUL, 0x0ef9de5eUL, 0x98c9d929UL, 0x2298d0b0UL, 0xb4a8d7c7UL, 0x173db359UL, 0x810db42eUL, 0x3b5cbdb7UL, 0xad6cbac0UL, 0x2083b8edUL, 0xb6b3bf9aUL, 0x0ce2b603UL, 0x9ad2b174UL, 0x3947d5eaUL, 0xaf77d29dUL, 0x1526db04UL, 0x8316dc73UL, 0x120b63e3UL, 0x843b6494UL, 0x3e6a6d0dUL, 0xa85a6a7aUL, 0x0bcf0ee4UL, 0x9dff0993UL, 0x27ae000aUL, 0xb19e077dUL, 0x44930ff0UL, 0xd2a30887UL, 0x68f2011eUL, 0xfec20669UL, 0x5d5762f7UL, 0xcb676580UL, 0x71366c19UL, 0xe7066b6eUL, 0x761bd4feUL, 0xe02bd389UL, 0x5a7ada10UL, 0xcc4add67UL, 0x6fdfb9f9UL, 0xf9efbe8eUL, 0x43beb717UL, 0xd58eb060UL, 0xe8a3d6d6UL, 0x7e93d1a1UL, 0xc4c2d838UL, 0x52f2df4fUL, 0xf167bbd1UL, 0x6757bca6UL, 0xdd06b53fUL, 0x4b36b248UL, 0xda2b0dd8UL, 0x4c1b0aafUL, 0xf64a0336UL, 0x607a0441UL, 0xc3ef60dfUL, 0x55df67a8UL, 0xef8e6e31UL, 0x79be6946UL, 0x8cb361cbUL, 0x1a8366bcUL, 0xa0d26f25UL, 0x36e26852UL, 0x95770cccUL, 0x03470bbbUL, 0xb9160222UL, 0x2f260555UL, 0xbe3bbac5UL, 0x280bbdb2UL, 0x925ab42bUL, 0x046ab35cUL, 0xa7ffd7c2UL, 0x31cfd0b5UL, 0x8b9ed92cUL, 0x1daede5bUL, 0xb0c2649bUL, 0x26f263ecUL, 0x9ca36a75UL, 0x0a936d02UL, 0xa906099cUL, 0x3f360eebUL, 0x85670772UL, 0x13570005UL, 0x824abf95UL, 0x147ab8e2UL, 0xae2bb17bUL, 0x381bb60cUL, 0x9b8ed292UL, 0x0dbed5e5UL, 0xb7efdc7cUL, 0x21dfdb0bUL, 0xd4d2d386UL, 0x42e2d4f1UL, 0xf8b3dd68UL, 0x6e83da1fUL, 0xcd16be81UL, 0x5b26b9f6UL, 0xe177b06fUL, 0x7747b718UL, 0xe65a0888UL, 0x706a0fffUL, 0xca3b0666UL, 0x5c0b0111UL, 0xff9e658fUL, 0x69ae62f8UL, 0xd3ff6b61UL, 0x45cf6c16UL, 0x78e20aa0UL, 0xeed20dd7UL, 0x5483044eUL, 0xc2b30339UL, 0x612667a7UL, 0xf71660d0UL, 0x4d476949UL, 0xdb776e3eUL, 0x4a6ad1aeUL, 0xdc5ad6d9UL, 0x660bdf40UL, 0xf03bd837UL, 0x53aebca9UL, 0xc59ebbdeUL, 0x7fcfb247UL, 0xe9ffb530UL, 0x1cf2bdbdUL, 0x8ac2bacaUL, 0x3093b353UL, 0xa6a3b424UL, 0x0536d0baUL, 0x9306d7cdUL, 0x2957de54UL, 0xbf67d923UL, 0x2e7a66b3UL, 0xb84a61c4UL, 0x021b685dUL, 0x942b6f2aUL, 0x37be0bb4UL, 0xa18e0cc3UL, 0x1bdf055aUL, 0x8def022dUL }, { 0x00000000UL, 0x41311b19UL, 0x82623632UL, 0xc3532d2bUL, 0x04c56c64UL, 0x45f4777dUL, 0x86a75a56UL, 0xc796414fUL, 0x088ad9c8UL, 0x49bbc2d1UL, 0x8ae8effaUL, 0xcbd9f4e3UL, 0x0c4fb5acUL, 0x4d7eaeb5UL, 0x8e2d839eUL, 0xcf1c9887UL, 0x5112c24aUL, 0x1023d953UL, 0xd370f478UL, 0x9241ef61UL, 0x55d7ae2eUL, 0x14e6b537UL, 0xd7b5981cUL, 0x96848305UL, 0x59981b82UL, 0x18a9009bUL, 0xdbfa2db0UL, 0x9acb36a9UL, 0x5d5d77e6UL, 0x1c6c6cffUL, 0xdf3f41d4UL, 0x9e0e5acdUL, 0xa2248495UL, 0xe3159f8cUL, 0x2046b2a7UL, 0x6177a9beUL, 0xa6e1e8f1UL, 0xe7d0f3e8UL, 0x2483dec3UL, 0x65b2c5daUL, 0xaaae5d5dUL, 0xeb9f4644UL, 0x28cc6b6fUL, 0x69fd7076UL, 0xae6b3139UL, 0xef5a2a20UL, 0x2c09070bUL, 0x6d381c12UL, 0xf33646dfUL, 0xb2075dc6UL, 0x715470edUL, 0x30656bf4UL, 0xf7f32abbUL, 0xb6c231a2UL, 0x75911c89UL, 0x34a00790UL, 0xfbbc9f17UL, 0xba8d840eUL, 0x79dea925UL, 0x38efb23cUL, 0xff79f373UL, 0xbe48e86aUL, 0x7d1bc541UL, 0x3c2ade58UL, 0x054f79f0UL, 0x447e62e9UL, 0x872d4fc2UL, 0xc61c54dbUL, 0x018a1594UL, 0x40bb0e8dUL, 0x83e823a6UL, 0xc2d938bfUL, 0x0dc5a038UL, 0x4cf4bb21UL, 0x8fa7960aUL, 0xce968d13UL, 0x0900cc5cUL, 0x4831d745UL, 0x8b62fa6eUL, 0xca53e177UL, 0x545dbbbaUL, 0x156ca0a3UL, 0xd63f8d88UL, 0x970e9691UL, 0x5098d7deUL, 0x11a9ccc7UL, 0xd2fae1ecUL, 0x93cbfaf5UL, 0x5cd76272UL, 0x1de6796bUL, 0xdeb55440UL, 0x9f844f59UL, 0x58120e16UL, 0x1923150fUL, 0xda703824UL, 0x9b41233dUL, 0xa76bfd65UL, 0xe65ae67cUL, 0x2509cb57UL, 0x6438d04eUL, 0xa3ae9101UL, 0xe29f8a18UL, 0x21cca733UL, 0x60fdbc2aUL, 0xafe124adUL, 0xeed03fb4UL, 0x2d83129fUL, 0x6cb20986UL, 0xab2448c9UL, 0xea1553d0UL, 0x29467efbUL, 0x687765e2UL, 0xf6793f2fUL, 0xb7482436UL, 0x741b091dUL, 0x352a1204UL, 0xf2bc534bUL, 0xb38d4852UL, 0x70de6579UL, 0x31ef7e60UL, 0xfef3e6e7UL, 0xbfc2fdfeUL, 0x7c91d0d5UL, 0x3da0cbccUL, 0xfa368a83UL, 0xbb07919aUL, 0x7854bcb1UL, 0x3965a7a8UL, 0x4b98833bUL, 0x0aa99822UL, 0xc9fab509UL, 0x88cbae10UL, 0x4f5def5fUL, 0x0e6cf446UL, 0xcd3fd96dUL, 0x8c0ec274UL, 0x43125af3UL, 0x022341eaUL, 0xc1706cc1UL, 0x804177d8UL, 0x47d73697UL, 0x06e62d8eUL, 0xc5b500a5UL, 0x84841bbcUL, 0x1a8a4171UL, 0x5bbb5a68UL, 0x98e87743UL, 0xd9d96c5aUL, 0x1e4f2d15UL, 0x5f7e360cUL, 0x9c2d1b27UL, 0xdd1c003eUL, 0x120098b9UL, 0x533183a0UL, 0x9062ae8bUL, 0xd153b592UL, 0x16c5f4ddUL, 0x57f4efc4UL, 0x94a7c2efUL, 0xd596d9f6UL, 0xe9bc07aeUL, 0xa88d1cb7UL, 0x6bde319cUL, 0x2aef2a85UL, 0xed796bcaUL, 0xac4870d3UL, 0x6f1b5df8UL, 0x2e2a46e1UL, 0xe136de66UL, 0xa007c57fUL, 0x6354e854UL, 0x2265f34dUL, 0xe5f3b202UL, 0xa4c2a91bUL, 0x67918430UL, 0x26a09f29UL, 0xb8aec5e4UL, 0xf99fdefdUL, 0x3accf3d6UL, 0x7bfde8cfUL, 0xbc6ba980UL, 0xfd5ab299UL, 0x3e099fb2UL, 0x7f3884abUL, 0xb0241c2cUL, 0xf1150735UL, 0x32462a1eUL, 0x73773107UL, 0xb4e17048UL, 0xf5d06b51UL, 0x3683467aUL, 0x77b25d63UL, 0x4ed7facbUL, 0x0fe6e1d2UL, 0xccb5ccf9UL, 0x8d84d7e0UL, 0x4a1296afUL, 0x0b238db6UL, 0xc870a09dUL, 0x8941bb84UL, 0x465d2303UL, 0x076c381aUL, 0xc43f1531UL, 0x850e0e28UL, 0x42984f67UL, 0x03a9547eUL, 0xc0fa7955UL, 0x81cb624cUL, 0x1fc53881UL, 0x5ef42398UL, 0x9da70eb3UL, 0xdc9615aaUL, 0x1b0054e5UL, 0x5a314ffcUL, 0x996262d7UL, 0xd85379ceUL, 0x174fe149UL, 0x567efa50UL, 0x952dd77bUL, 0xd41ccc62UL, 0x138a8d2dUL, 0x52bb9634UL, 0x91e8bb1fUL, 0xd0d9a006UL, 0xecf37e5eUL, 0xadc26547UL, 0x6e91486cUL, 0x2fa05375UL, 0xe836123aUL, 0xa9070923UL, 0x6a542408UL, 0x2b653f11UL, 0xe479a796UL, 0xa548bc8fUL, 0x661b91a4UL, 0x272a8abdUL, 0xe0bccbf2UL, 0xa18dd0ebUL, 0x62defdc0UL, 0x23efe6d9UL, 0xbde1bc14UL, 0xfcd0a70dUL, 0x3f838a26UL, 0x7eb2913fUL, 0xb924d070UL, 0xf815cb69UL, 0x3b46e642UL, 0x7a77fd5bUL, 0xb56b65dcUL, 0xf45a7ec5UL, 0x370953eeUL, 0x763848f7UL, 0xb1ae09b8UL, 0xf09f12a1UL, 0x33cc3f8aUL, 0x72fd2493UL }, { 0x00000000UL, 0x376ac201UL, 0x6ed48403UL, 0x59be4602UL, 0xdca80907UL, 0xebc2cb06UL, 0xb27c8d04UL, 0x85164f05UL, 0xb851130eUL, 0x8f3bd10fUL, 0xd685970dUL, 0xe1ef550cUL, 0x64f91a09UL, 0x5393d808UL, 0x0a2d9e0aUL, 0x3d475c0bUL, 0x70a3261cUL, 0x47c9e41dUL, 0x1e77a21fUL, 0x291d601eUL, 0xac0b2f1bUL, 0x9b61ed1aUL, 0xc2dfab18UL, 0xf5b56919UL, 0xc8f23512UL, 0xff98f713UL, 0xa626b111UL, 0x914c7310UL, 0x145a3c15UL, 0x2330fe14UL, 0x7a8eb816UL, 0x4de47a17UL, 0xe0464d38UL, 0xd72c8f39UL, 0x8e92c93bUL, 0xb9f80b3aUL, 0x3cee443fUL, 0x0b84863eUL, 0x523ac03cUL, 0x6550023dUL, 0x58175e36UL, 0x6f7d9c37UL, 0x36c3da35UL, 0x01a91834UL, 0x84bf5731UL, 0xb3d59530UL, 0xea6bd332UL, 0xdd011133UL, 0x90e56b24UL, 0xa78fa925UL, 0xfe31ef27UL, 0xc95b2d26UL, 0x4c4d6223UL, 0x7b27a022UL, 0x2299e620UL, 0x15f32421UL, 0x28b4782aUL, 0x1fdeba2bUL, 0x4660fc29UL, 0x710a3e28UL, 0xf41c712dUL, 0xc376b32cUL, 0x9ac8f52eUL, 0xada2372fUL, 0xc08d9a70UL, 0xf7e75871UL, 0xae591e73UL, 0x9933dc72UL, 0x1c259377UL, 0x2b4f5176UL, 0x72f11774UL, 0x459bd575UL, 0x78dc897eUL, 0x4fb64b7fUL, 0x16080d7dUL, 0x2162cf7cUL, 0xa4748079UL, 0x931e4278UL, 0xcaa0047aUL, 0xfdcac67bUL, 0xb02ebc6cUL, 0x87447e6dUL, 0xdefa386fUL, 0xe990fa6eUL, 0x6c86b56bUL, 0x5bec776aUL, 0x02523168UL, 0x3538f369UL, 0x087faf62UL, 0x3f156d63UL, 0x66ab2b61UL, 0x51c1e960UL, 0xd4d7a665UL, 0xe3bd6464UL, 0xba032266UL, 0x8d69e067UL, 0x20cbd748UL, 0x17a11549UL, 0x4e1f534bUL, 0x7975914aUL, 0xfc63de4fUL, 0xcb091c4eUL, 0x92b75a4cUL, 0xa5dd984dUL, 0x989ac446UL, 0xaff00647UL, 0xf64e4045UL, 0xc1248244UL, 0x4432cd41UL, 0x73580f40UL, 0x2ae64942UL, 0x1d8c8b43UL, 0x5068f154UL, 0x67023355UL, 0x3ebc7557UL, 0x09d6b756UL, 0x8cc0f853UL, 0xbbaa3a52UL, 0xe2147c50UL, 0xd57ebe51UL, 0xe839e25aUL, 0xdf53205bUL, 0x86ed6659UL, 0xb187a458UL, 0x3491eb5dUL, 0x03fb295cUL, 0x5a456f5eUL, 0x6d2fad5fUL, 0x801b35e1UL, 0xb771f7e0UL, 0xeecfb1e2UL, 0xd9a573e3UL, 0x5cb33ce6UL, 0x6bd9fee7UL, 0x3267b8e5UL, 0x050d7ae4UL, 0x384a26efUL, 0x0f20e4eeUL, 0x569ea2ecUL, 0x61f460edUL, 0xe4e22fe8UL, 0xd388ede9UL, 0x8a36abebUL, 0xbd5c69eaUL, 0xf0b813fdUL, 0xc7d2d1fcUL, 0x9e6c97feUL, 0xa90655ffUL, 0x2c101afaUL, 0x1b7ad8fbUL, 0x42c49ef9UL, 0x75ae5cf8UL, 0x48e900f3UL, 0x7f83c2f2UL, 0x263d84f0UL, 0x115746f1UL, 0x944109f4UL, 0xa32bcbf5UL, 0xfa958df7UL, 0xcdff4ff6UL, 0x605d78d9UL, 0x5737bad8UL, 0x0e89fcdaUL, 0x39e33edbUL, 0xbcf571deUL, 0x8b9fb3dfUL, 0xd221f5ddUL, 0xe54b37dcUL, 0xd80c6bd7UL, 0xef66a9d6UL, 0xb6d8efd4UL, 0x81b22dd5UL, 0x04a462d0UL, 0x33cea0d1UL, 0x6a70e6d3UL, 0x5d1a24d2UL, 0x10fe5ec5UL, 0x27949cc4UL, 0x7e2adac6UL, 0x494018c7UL, 0xcc5657c2UL, 0xfb3c95c3UL, 0xa282d3c1UL, 0x95e811c0UL, 0xa8af4dcbUL, 0x9fc58fcaUL, 0xc67bc9c8UL, 0xf1110bc9UL, 0x740744ccUL, 0x436d86cdUL, 0x1ad3c0cfUL, 0x2db902ceUL, 0x4096af91UL, 0x77fc6d90UL, 0x2e422b92UL, 0x1928e993UL, 0x9c3ea696UL, 0xab546497UL, 0xf2ea2295UL, 0xc580e094UL, 0xf8c7bc9fUL, 0xcfad7e9eUL, 0x9613389cUL, 0xa179fa9dUL, 0x246fb598UL, 0x13057799UL, 0x4abb319bUL, 0x7dd1f39aUL, 0x3035898dUL, 0x075f4b8cUL, 0x5ee10d8eUL, 0x698bcf8fUL, 0xec9d808aUL, 0xdbf7428bUL, 0x82490489UL, 0xb523c688UL, 0x88649a83UL, 0xbf0e5882UL, 0xe6b01e80UL, 0xd1dadc81UL, 0x54cc9384UL, 0x63a65185UL, 0x3a181787UL, 0x0d72d586UL, 0xa0d0e2a9UL, 0x97ba20a8UL, 0xce0466aaUL, 0xf96ea4abUL, 0x7c78ebaeUL, 0x4b1229afUL, 0x12ac6fadUL, 0x25c6adacUL, 0x1881f1a7UL, 0x2feb33a6UL, 0x765575a4UL, 0x413fb7a5UL, 0xc429f8a0UL, 0xf3433aa1UL, 0xaafd7ca3UL, 0x9d97bea2UL, 0xd073c4b5UL, 0xe71906b4UL, 0xbea740b6UL, 0x89cd82b7UL, 0x0cdbcdb2UL, 0x3bb10fb3UL, 0x620f49b1UL, 0x55658bb0UL, 0x6822d7bbUL, 0x5f4815baUL, 0x06f653b8UL, 0x319c91b9UL, 0xb48adebcUL, 0x83e01cbdUL, 0xda5e5abfUL, 0xed3498beUL }, { 0x00000000UL, 0x6567bcb8UL, 0x8bc809aaUL, 0xeeafb512UL, 0x5797628fUL, 0x32f0de37UL, 0xdc5f6b25UL, 0xb938d79dUL, 0xef28b4c5UL, 0x8a4f087dUL, 0x64e0bd6fUL, 0x018701d7UL, 0xb8bfd64aUL, 0xddd86af2UL, 0x3377dfe0UL, 0x56106358UL, 0x9f571950UL, 0xfa30a5e8UL, 0x149f10faUL, 0x71f8ac42UL, 0xc8c07bdfUL, 0xada7c767UL, 0x43087275UL, 0x266fcecdUL, 0x707fad95UL, 0x1518112dUL, 0xfbb7a43fUL, 0x9ed01887UL, 0x27e8cf1aUL, 0x428f73a2UL, 0xac20c6b0UL, 0xc9477a08UL, 0x3eaf32a0UL, 0x5bc88e18UL, 0xb5673b0aUL, 0xd00087b2UL, 0x6938502fUL, 0x0c5fec97UL, 0xe2f05985UL, 0x8797e53dUL, 0xd1878665UL, 0xb4e03addUL, 0x5a4f8fcfUL, 0x3f283377UL, 0x8610e4eaUL, 0xe3775852UL, 0x0dd8ed40UL, 0x68bf51f8UL, 0xa1f82bf0UL, 0xc49f9748UL, 0x2a30225aUL, 0x4f579ee2UL, 0xf66f497fUL, 0x9308f5c7UL, 0x7da740d5UL, 0x18c0fc6dUL, 0x4ed09f35UL, 0x2bb7238dUL, 0xc518969fUL, 0xa07f2a27UL, 0x1947fdbaUL, 0x7c204102UL, 0x928ff410UL, 0xf7e848a8UL, 0x3d58149bUL, 0x583fa823UL, 0xb6901d31UL, 0xd3f7a189UL, 0x6acf7614UL, 0x0fa8caacUL, 0xe1077fbeUL, 0x8460c306UL, 0xd270a05eUL, 0xb7171ce6UL, 0x59b8a9f4UL, 0x3cdf154cUL, 0x85e7c2d1UL, 0xe0807e69UL, 0x0e2fcb7bUL, 0x6b4877c3UL, 0xa20f0dcbUL, 0xc768b173UL, 0x29c70461UL, 0x4ca0b8d9UL, 0xf5986f44UL, 0x90ffd3fcUL, 0x7e5066eeUL, 0x1b37da56UL, 0x4d27b90eUL, 0x284005b6UL, 0xc6efb0a4UL, 0xa3880c1cUL, 0x1ab0db81UL, 0x7fd76739UL, 0x9178d22bUL, 0xf41f6e93UL, 0x03f7263bUL, 0x66909a83UL, 0x883f2f91UL, 0xed589329UL, 0x546044b4UL, 0x3107f80cUL, 0xdfa84d1eUL, 0xbacff1a6UL, 0xecdf92feUL, 0x89b82e46UL, 0x67179b54UL, 0x027027ecUL, 0xbb48f071UL, 0xde2f4cc9UL, 0x3080f9dbUL, 0x55e74563UL, 0x9ca03f6bUL, 0xf9c783d3UL, 0x176836c1UL, 0x720f8a79UL, 0xcb375de4UL, 0xae50e15cUL, 0x40ff544eUL, 0x2598e8f6UL, 0x73888baeUL, 0x16ef3716UL, 0xf8408204UL, 0x9d273ebcUL, 0x241fe921UL, 0x41785599UL, 0xafd7e08bUL, 0xcab05c33UL, 0x3bb659edUL, 0x5ed1e555UL, 0xb07e5047UL, 0xd519ecffUL, 0x6c213b62UL, 0x094687daUL, 0xe7e932c8UL, 0x828e8e70UL, 0xd49eed28UL, 0xb1f95190UL, 0x5f56e482UL, 0x3a31583aUL, 0x83098fa7UL, 0xe66e331fUL, 0x08c1860dUL, 0x6da63ab5UL, 0xa4e140bdUL, 0xc186fc05UL, 0x2f294917UL, 0x4a4ef5afUL, 0xf3762232UL, 0x96119e8aUL, 0x78be2b98UL, 0x1dd99720UL, 0x4bc9f478UL, 0x2eae48c0UL, 0xc001fdd2UL, 0xa566416aUL, 0x1c5e96f7UL, 0x79392a4fUL, 0x97969f5dUL, 0xf2f123e5UL, 0x05196b4dUL, 0x607ed7f5UL, 0x8ed162e7UL, 0xebb6de5fUL, 0x528e09c2UL, 0x37e9b57aUL, 0xd9460068UL, 0xbc21bcd0UL, 0xea31df88UL, 0x8f566330UL, 0x61f9d622UL, 0x049e6a9aUL, 0xbda6bd07UL, 0xd8c101bfUL, 0x366eb4adUL, 0x53090815UL, 0x9a4e721dUL, 0xff29cea5UL, 0x11867bb7UL, 0x74e1c70fUL, 0xcdd91092UL, 0xa8beac2aUL, 0x46111938UL, 0x2376a580UL, 0x7566c6d8UL, 0x10017a60UL, 0xfeaecf72UL, 0x9bc973caUL, 0x22f1a457UL, 0x479618efUL, 0xa939adfdUL, 0xcc5e1145UL, 0x06ee4d76UL, 0x6389f1ceUL, 0x8d2644dcUL, 0xe841f864UL, 0x51792ff9UL, 0x341e9341UL, 0xdab12653UL, 0xbfd69aebUL, 0xe9c6f9b3UL, 0x8ca1450bUL, 0x620ef019UL, 0x07694ca1UL, 0xbe519b3cUL, 0xdb362784UL, 0x35999296UL, 0x50fe2e2eUL, 0x99b95426UL, 0xfcdee89eUL, 0x12715d8cUL, 0x7716e134UL, 0xce2e36a9UL, 0xab498a11UL, 0x45e63f03UL, 0x208183bbUL, 0x7691e0e3UL, 0x13f65c5bUL, 0xfd59e949UL, 0x983e55f1UL, 0x2106826cUL, 0x44613ed4UL, 0xaace8bc6UL, 0xcfa9377eUL, 0x38417fd6UL, 0x5d26c36eUL, 0xb389767cUL, 0xd6eecac4UL, 0x6fd61d59UL, 0x0ab1a1e1UL, 0xe41e14f3UL, 0x8179a84bUL, 0xd769cb13UL, 0xb20e77abUL, 0x5ca1c2b9UL, 0x39c67e01UL, 0x80fea99cUL, 0xe5991524UL, 0x0b36a036UL, 0x6e511c8eUL, 0xa7166686UL, 0xc271da3eUL, 0x2cde6f2cUL, 0x49b9d394UL, 0xf0810409UL, 0x95e6b8b1UL, 0x7b490da3UL, 0x1e2eb11bUL, 0x483ed243UL, 0x2d596efbUL, 0xc3f6dbe9UL, 0xa6916751UL, 0x1fa9b0ccUL, 0x7ace0c74UL, 0x9461b966UL, 0xf10605deUL #endif } }; Compress-Raw-Zlib-2.063/zlib-src/inflate.h0000644000175000017500000001437712146130230016754 0ustar paulpaul/* inflate.h -- internal inflate state definition * Copyright (C) 1995-2009 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ /* define NO_GZIP when compiling if you want to disable gzip header and trailer decoding by inflate(). NO_GZIP would be used to avoid linking in the crc code when it is not needed. For shared libraries, gzip decoding should be left enabled. */ #ifndef NO_GZIP # define GUNZIP #endif /* Possible inflate modes between inflate() calls */ typedef enum { HEAD, /* i: waiting for magic header */ FLAGS, /* i: waiting for method and flags (gzip) */ TIME, /* i: waiting for modification time (gzip) */ OS, /* i: waiting for extra flags and operating system (gzip) */ EXLEN, /* i: waiting for extra length (gzip) */ EXTRA, /* i: waiting for extra bytes (gzip) */ NAME, /* i: waiting for end of file name (gzip) */ COMMENT, /* i: waiting for end of comment (gzip) */ HCRC, /* i: waiting for header crc (gzip) */ DICTID, /* i: waiting for dictionary check value */ DICT, /* waiting for inflateSetDictionary() call */ TYPE, /* i: waiting for type bits, including last-flag bit */ TYPEDO, /* i: same, but skip check to exit inflate on new block */ STORED, /* i: waiting for stored size (length and complement) */ COPY_, /* i/o: same as COPY below, but only first time in */ COPY, /* i/o: waiting for input or output to copy stored block */ TABLE, /* i: waiting for dynamic block table lengths */ LENLENS, /* i: waiting for code length code lengths */ CODELENS, /* i: waiting for length/lit and distance code lengths */ LEN_, /* i: same as LEN below, but only first time in */ LEN, /* i: waiting for length/lit/eob code */ LENEXT, /* i: waiting for length extra bits */ DIST, /* i: waiting for distance code */ DISTEXT, /* i: waiting for distance extra bits */ MATCH, /* o: waiting for output space to copy string */ LIT, /* o: waiting for output space to write literal */ CHECK, /* i: waiting for 32-bit check value */ LENGTH, /* i: waiting for 32-bit length (gzip) */ DONE, /* finished check, done -- remain here until reset */ BAD, /* got a data error -- remain here until reset */ MEM, /* got an inflate() memory error -- remain here until reset */ SYNC /* looking for synchronization bytes to restart inflate() */ } inflate_mode; /* State transitions between above modes - (most modes can go to BAD or MEM on error -- not shown for clarity) Process header: HEAD -> (gzip) or (zlib) or (raw) (gzip) -> FLAGS -> TIME -> OS -> EXLEN -> EXTRA -> NAME -> COMMENT -> HCRC -> TYPE (zlib) -> DICTID or TYPE DICTID -> DICT -> TYPE (raw) -> TYPEDO Read deflate blocks: TYPE -> TYPEDO -> STORED or TABLE or LEN_ or CHECK STORED -> COPY_ -> COPY -> TYPE TABLE -> LENLENS -> CODELENS -> LEN_ LEN_ -> LEN Read deflate codes in fixed or dynamic block: LEN -> LENEXT or LIT or TYPE LENEXT -> DIST -> DISTEXT -> MATCH -> LEN LIT -> LEN Process trailer: CHECK -> LENGTH -> DONE */ /* state maintained between inflate() calls. Approximately 10K bytes. */ struct inflate_state { inflate_mode mode; /* current inflate mode */ int last; /* true if processing last block */ int wrap; /* bit 0 true for zlib, bit 1 true for gzip */ int havedict; /* true if dictionary provided */ int flags; /* gzip header method and flags (0 if zlib) */ unsigned dmax; /* zlib header max distance (INFLATE_STRICT) */ unsigned long check; /* protected copy of check value */ unsigned long total; /* protected copy of output count */ gz_headerp head; /* where to save gzip header information */ /* sliding window */ unsigned wbits; /* log base 2 of requested window size */ unsigned wsize; /* window size or zero if not using window */ unsigned whave; /* valid bytes in the window */ unsigned wnext; /* window write index */ unsigned char FAR *window; /* allocated sliding window, if needed */ /* bit accumulator */ unsigned long hold; /* input bit accumulator */ unsigned bits; /* number of bits in "in" */ /* for string and stored block copying */ unsigned length; /* literal or length of data to copy */ unsigned offset; /* distance back to copy string from */ /* for table and code decoding */ unsigned extra; /* extra bits needed */ /* fixed and dynamic code tables */ code const FAR *lencode; /* starting table for length/literal codes */ code const FAR *distcode; /* starting table for distance codes */ unsigned lenbits; /* index bits for lencode */ unsigned distbits; /* index bits for distcode */ /* dynamic table building */ unsigned ncode; /* number of code length code lengths */ unsigned nlen; /* number of length code lengths */ unsigned ndist; /* number of distance code lengths */ unsigned have; /* number of code lengths in lens[] */ code FAR *next; /* next available space in codes[] */ unsigned short lens[320]; /* temporary storage for code lengths */ unsigned short work[288]; /* work area for code table building */ code codes[ENOUGH]; /* space for code tables */ int sane; /* if false, allow invalid distance too far */ int back; /* bits back of last unprocessed length/lit */ unsigned was; /* initial length of match */ }; Compress-Raw-Zlib-2.063/zlib-src/inffast.h0000644000175000017500000000065312146130230016754 0ustar paulpaul/* inffast.h -- header to use inffast.c * Copyright (C) 1995-2003, 2010 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ void ZLIB_INTERNAL inflate_fast OF((z_streamp strm, unsigned start)); Compress-Raw-Zlib-2.063/zlib-src/inflate.c0000644000175000017500000015022012146130671016744 0ustar paulpaul/* inflate.c -- zlib decompression * Copyright (C) 1995-2012 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* * Change history: * * 1.2.beta0 24 Nov 2002 * - First version -- complete rewrite of inflate to simplify code, avoid * creation of window when not needed, minimize use of window when it is * needed, make inffast.c even faster, implement gzip decoding, and to * improve code readability and style over the previous zlib inflate code * * 1.2.beta1 25 Nov 2002 * - Use pointers for available input and output checking in inffast.c * - Remove input and output counters in inffast.c * - Change inffast.c entry and loop from avail_in >= 7 to >= 6 * - Remove unnecessary second byte pull from length extra in inffast.c * - Unroll direct copy to three copies per loop in inffast.c * * 1.2.beta2 4 Dec 2002 * - Change external routine names to reduce potential conflicts * - Correct filename to inffixed.h for fixed tables in inflate.c * - Make hbuf[] unsigned char to match parameter type in inflate.c * - Change strm->next_out[-state->offset] to *(strm->next_out - state->offset) * to avoid negation problem on Alphas (64 bit) in inflate.c * * 1.2.beta3 22 Dec 2002 * - Add comments on state->bits assertion in inffast.c * - Add comments on op field in inftrees.h * - Fix bug in reuse of allocated window after inflateReset() * - Remove bit fields--back to byte structure for speed * - Remove distance extra == 0 check in inflate_fast()--only helps for lengths * - Change post-increments to pre-increments in inflate_fast(), PPC biased? * - Add compile time option, POSTINC, to use post-increments instead (Intel?) * - Make MATCH copy in inflate() much faster for when inflate_fast() not used * - Use local copies of stream next and avail values, as well as local bit * buffer and bit count in inflate()--for speed when inflate_fast() not used * * 1.2.beta4 1 Jan 2003 * - Split ptr - 257 statements in inflate_table() to avoid compiler warnings * - Move a comment on output buffer sizes from inffast.c to inflate.c * - Add comments in inffast.c to introduce the inflate_fast() routine * - Rearrange window copies in inflate_fast() for speed and simplification * - Unroll last copy for window match in inflate_fast() * - Use local copies of window variables in inflate_fast() for speed * - Pull out common wnext == 0 case for speed in inflate_fast() * - Make op and len in inflate_fast() unsigned for consistency * - Add FAR to lcode and dcode declarations in inflate_fast() * - Simplified bad distance check in inflate_fast() * - Added inflateBackInit(), inflateBack(), and inflateBackEnd() in new * source file infback.c to provide a call-back interface to inflate for * programs like gzip and unzip -- uses window as output buffer to avoid * window copying * * 1.2.beta5 1 Jan 2003 * - Improved inflateBack() interface to allow the caller to provide initial * input in strm. * - Fixed stored blocks bug in inflateBack() * * 1.2.beta6 4 Jan 2003 * - Added comments in inffast.c on effectiveness of POSTINC * - Typecasting all around to reduce compiler warnings * - Changed loops from while (1) or do {} while (1) to for (;;), again to * make compilers happy * - Changed type of window in inflateBackInit() to unsigned char * * * 1.2.beta7 27 Jan 2003 * - Changed many types to unsigned or unsigned short to avoid warnings * - Added inflateCopy() function * * 1.2.0 9 Mar 2003 * - Changed inflateBack() interface to provide separate opaque descriptors * for the in() and out() functions * - Changed inflateBack() argument and in_func typedef to swap the length * and buffer address return values for the input function * - Check next_in and next_out for Z_NULL on entry to inflate() * * The history for versions after 1.2.0 are in ChangeLog in zlib distribution. */ #include "zutil.h" #include "inftrees.h" #include "inflate.h" #include "inffast.h" #ifdef MAKEFIXED # ifndef BUILDFIXED # define BUILDFIXED # endif #endif /* function prototypes */ local void fixedtables OF((struct inflate_state FAR *state)); local int updatewindow OF((z_streamp strm, const unsigned char FAR *end, unsigned copy)); #ifdef BUILDFIXED void makefixed OF((void)); #endif local unsigned syncsearch OF((unsigned FAR *have, const unsigned char FAR *buf, unsigned len)); int ZEXPORT inflateResetKeep( z_streamp strm) { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; strm->total_in = strm->total_out = state->total = 0; strm->msg = Z_NULL; if (state->wrap) /* to support ill-conceived Java test suite */ strm->adler = state->wrap & 1; state->mode = HEAD; state->last = 0; state->havedict = 0; state->dmax = 32768U; state->head = Z_NULL; state->hold = 0; state->bits = 0; state->lencode = state->distcode = state->next = state->codes; state->sane = 1; state->back = -1; Tracev((stderr, "inflate: reset\n")); return Z_OK; } int ZEXPORT inflateReset( z_streamp strm) { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; state->wsize = 0; state->whave = 0; state->wnext = 0; return inflateResetKeep(strm); } int ZEXPORT inflateReset2( z_streamp strm, int windowBits) { int wrap; struct inflate_state FAR *state; /* get the state */ if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; /* extract wrap request from windowBits parameter */ if (windowBits < 0) { wrap = 0; windowBits = -windowBits; } else { wrap = (windowBits >> 4) + 1; #ifdef GUNZIP if (windowBits < 48) windowBits &= 15; #endif } /* set number of window bits, free window if different */ if (windowBits && (windowBits < 8 || windowBits > 15)) return Z_STREAM_ERROR; if (state->window != Z_NULL && state->wbits != (unsigned)windowBits) { ZFREE(strm, state->window); state->window = Z_NULL; } /* update state and reset the rest of it */ state->wrap = wrap; state->wbits = (unsigned)windowBits; return inflateReset(strm); } int ZEXPORT inflateInit2_( z_streamp strm, int windowBits, const char *version, int stream_size) { int ret; struct inflate_state FAR *state; if (version == Z_NULL || version[0] != ZLIB_VERSION[0] || stream_size != (int)(sizeof(z_stream))) return Z_VERSION_ERROR; if (strm == Z_NULL) return Z_STREAM_ERROR; strm->msg = Z_NULL; /* in case we return an error */ if (strm->zalloc == (alloc_func)0) { #ifdef Z_SOLO return Z_STREAM_ERROR; #else strm->zalloc = zcalloc; strm->opaque = (voidpf)0; #endif } if (strm->zfree == (free_func)0) #ifdef Z_SOLO return Z_STREAM_ERROR; #else strm->zfree = zcfree; #endif state = (struct inflate_state FAR *) ZALLOC(strm, 1, sizeof(struct inflate_state)); if (state == Z_NULL) return Z_MEM_ERROR; Tracev((stderr, "inflate: allocated\n")); strm->state = (struct internal_state FAR *)state; state->window = Z_NULL; ret = inflateReset2(strm, windowBits); if (ret != Z_OK) { ZFREE(strm, state); strm->state = Z_NULL; } return ret; } int ZEXPORT inflateInit_( z_streamp strm, const char *version, int stream_size) { return inflateInit2_(strm, DEF_WBITS, version, stream_size); } int ZEXPORT inflatePrime( z_streamp strm, int bits, int value) { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (bits < 0) { state->hold = 0; state->bits = 0; return Z_OK; } if (bits > 16 || state->bits + bits > 32) return Z_STREAM_ERROR; value &= (1L << bits) - 1; state->hold += value << state->bits; state->bits += bits; return Z_OK; } /* Return state with length and distance decoding tables and index sizes set to fixed code decoding. Normally this returns fixed tables from inffixed.h. If BUILDFIXED is defined, then instead this routine builds the tables the first time it's called, and returns those tables the first time and thereafter. This reduces the size of the code by about 2K bytes, in exchange for a little execution time. However, BUILDFIXED should not be used for threaded applications, since the rewriting of the tables and virgin may not be thread-safe. */ local void fixedtables( struct inflate_state FAR *state) { #ifdef BUILDFIXED static int virgin = 1; static code *lenfix, *distfix; static code fixed[544]; /* build fixed huffman tables if first call (may not be thread safe) */ if (virgin) { unsigned sym, bits; static code *next; /* literal/length table */ sym = 0; while (sym < 144) state->lens[sym++] = 8; while (sym < 256) state->lens[sym++] = 9; while (sym < 280) state->lens[sym++] = 7; while (sym < 288) state->lens[sym++] = 8; next = fixed; lenfix = next; bits = 9; inflate_table(LENS, state->lens, 288, &(next), &(bits), state->work); /* distance table */ sym = 0; while (sym < 32) state->lens[sym++] = 5; distfix = next; bits = 5; inflate_table(DISTS, state->lens, 32, &(next), &(bits), state->work); /* do this just once */ virgin = 0; } #else /* !BUILDFIXED */ # include "inffixed.h" #endif /* BUILDFIXED */ state->lencode = lenfix; state->lenbits = 9; state->distcode = distfix; state->distbits = 5; } #ifdef MAKEFIXED #include /* Write out the inffixed.h that is #include'd above. Defining MAKEFIXED also defines BUILDFIXED, so the tables are built on the fly. makefixed() writes those tables to stdout, which would be piped to inffixed.h. A small program can simply call makefixed to do this: void makefixed(void); int main(void) { makefixed(); return 0; } Then that can be linked with zlib built with MAKEFIXED defined and run: a.out > inffixed.h */ void makefixed() { unsigned low, size; struct inflate_state state; fixedtables(&state); puts(" /* inffixed.h -- table for decoding fixed codes"); puts(" * Generated automatically by makefixed()."); puts(" */"); puts(""); puts(" /* WARNING: this file should *not* be used by applications."); puts(" It is part of the implementation of this library and is"); puts(" subject to change. Applications should only use zlib.h."); puts(" */"); puts(""); size = 1U << 9; printf(" static const code lenfix[%u] = {", size); low = 0; for (;;) { if ((low % 7) == 0) printf("\n "); printf("{%u,%u,%d}", (low & 127) == 99 ? 64 : state.lencode[low].op, state.lencode[low].bits, state.lencode[low].val); if (++low == size) break; putchar(','); } puts("\n };"); size = 1U << 5; printf("\n static const code distfix[%u] = {", size); low = 0; for (;;) { if ((low % 6) == 0) printf("\n "); printf("{%u,%u,%d}", state.distcode[low].op, state.distcode[low].bits, state.distcode[low].val); if (++low == size) break; putchar(','); } puts("\n };"); } #endif /* MAKEFIXED */ /* Update the window with the last wsize (normally 32K) bytes written before returning. If window does not exist yet, create it. This is only called when a window is already in use, or when output has been written during this inflate call, but the end of the deflate stream has not been reached yet. It is also called to create a window for dictionary data when a dictionary is loaded. Providing output buffers larger than 32K to inflate() should provide a speed advantage, since only the last 32K of output is copied to the sliding window upon return from inflate(), and since all distances after the first 32K of output will fall in the output data, making match copies simpler and faster. The advantage may be dependent on the size of the processor's data caches. */ local int updatewindow( z_streamp strm, const Bytef *end, unsigned copy) { struct inflate_state FAR *state; unsigned dist; state = (struct inflate_state FAR *)strm->state; /* if it hasn't been done already, allocate space for the window */ if (state->window == Z_NULL) { state->window = (unsigned char FAR *) ZALLOC(strm, 1U << state->wbits, sizeof(unsigned char)); if (state->window == Z_NULL) return 1; } /* if window not in use yet, initialize */ if (state->wsize == 0) { state->wsize = 1U << state->wbits; state->wnext = 0; state->whave = 0; } /* copy state->wsize or less output bytes into the circular window */ if (copy >= state->wsize) { zmemcpy(state->window, end - state->wsize, state->wsize); state->wnext = 0; state->whave = state->wsize; } else { dist = state->wsize - state->wnext; if (dist > copy) dist = copy; zmemcpy(state->window + state->wnext, end - copy, dist); copy -= dist; if (copy) { zmemcpy(state->window, end - copy, copy); state->wnext = copy; state->whave = state->wsize; } else { state->wnext += dist; if (state->wnext == state->wsize) state->wnext = 0; if (state->whave < state->wsize) state->whave += dist; } } return 0; } /* Macros for inflate(): */ /* check function to use adler32() for zlib or crc32() for gzip */ #ifdef GUNZIP # define UPDATE(check, buf, len) \ (state->flags ? crc32(check, buf, len) : adler32(check, buf, len)) #else # define UPDATE(check, buf, len) adler32(check, buf, len) #endif /* check macros for header crc */ #ifdef GUNZIP # define CRC2(check, word) \ do { \ hbuf[0] = (unsigned char)(word); \ hbuf[1] = (unsigned char)((word) >> 8); \ check = crc32(check, hbuf, 2); \ } while (0) # define CRC4(check, word) \ do { \ hbuf[0] = (unsigned char)(word); \ hbuf[1] = (unsigned char)((word) >> 8); \ hbuf[2] = (unsigned char)((word) >> 16); \ hbuf[3] = (unsigned char)((word) >> 24); \ check = crc32(check, hbuf, 4); \ } while (0) #endif /* Load registers with state in inflate() for speed */ #define LOAD() \ do { \ put = strm->next_out; \ left = strm->avail_out; \ next = strm->next_in; \ have = strm->avail_in; \ hold = state->hold; \ bits = state->bits; \ } while (0) /* Restore state from registers in inflate() */ #define RESTORE() \ do { \ strm->next_out = put; \ strm->avail_out = left; \ strm->next_in = next; \ strm->avail_in = have; \ state->hold = hold; \ state->bits = bits; \ } while (0) /* Clear the input bit accumulator */ #define INITBITS() \ do { \ hold = 0; \ bits = 0; \ } while (0) /* Get a byte of input into the bit accumulator, or return from inflate() if there is no input available. */ #define PULLBYTE() \ do { \ if (have == 0) goto inf_leave; \ have--; \ hold += (unsigned long)(*next++) << bits; \ bits += 8; \ } while (0) /* Assure that there are at least n bits in the bit accumulator. If there is not enough available input to do that, then return from inflate(). */ #define NEEDBITS(n) \ do { \ while (bits < (unsigned)(n)) \ PULLBYTE(); \ } while (0) /* Return the low n bits of the bit accumulator (n < 16) */ #define BITS(n) \ ((unsigned)hold & ((1U << (n)) - 1)) /* Remove n bits from the bit accumulator */ #define DROPBITS(n) \ do { \ hold >>= (n); \ bits -= (unsigned)(n); \ } while (0) /* Remove zero to seven bits as needed to go to a byte boundary */ #define BYTEBITS() \ do { \ hold >>= bits & 7; \ bits -= bits & 7; \ } while (0) /* inflate() uses a state machine to process as much input data and generate as much output data as possible before returning. The state machine is structured roughly as follows: for (;;) switch (state) { ... case STATEn: if (not enough input data or output space to make progress) return; ... make progress ... state = STATEm; break; ... } so when inflate() is called again, the same case is attempted again, and if the appropriate resources are provided, the machine proceeds to the next state. The NEEDBITS() macro is usually the way the state evaluates whether it can proceed or should return. NEEDBITS() does the return if the requested bits are not available. The typical use of the BITS macros is: NEEDBITS(n); ... do something with BITS(n) ... DROPBITS(n); where NEEDBITS(n) either returns from inflate() if there isn't enough input left to load n bits into the accumulator, or it continues. BITS(n) gives the low n bits in the accumulator. When done, DROPBITS(n) drops the low n bits off the accumulator. INITBITS() clears the accumulator and sets the number of available bits to zero. BYTEBITS() discards just enough bits to put the accumulator on a byte boundary. After BYTEBITS() and a NEEDBITS(8), then BITS(8) would return the next byte in the stream. NEEDBITS(n) uses PULLBYTE() to get an available byte of input, or to return if there is no input available. The decoding of variable length codes uses PULLBYTE() directly in order to pull just enough bytes to decode the next code, and no more. Some states loop until they get enough input, making sure that enough state information is maintained to continue the loop where it left off if NEEDBITS() returns in the loop. For example, want, need, and keep would all have to actually be part of the saved state in case NEEDBITS() returns: case STATEw: while (want < need) { NEEDBITS(n); keep[want++] = BITS(n); DROPBITS(n); } state = STATEx; case STATEx: As shown above, if the next state is also the next case, then the break is omitted. A state may also return if there is not enough output space available to complete that state. Those states are copying stored data, writing a literal byte, and copying a matching string. When returning, a "goto inf_leave" is used to update the total counters, update the check value, and determine whether any progress has been made during that inflate() call in order to return the proper return code. Progress is defined as a change in either strm->avail_in or strm->avail_out. When there is a window, goto inf_leave will update the window with the last output written. If a goto inf_leave occurs in the middle of decompression and there is no window currently, goto inf_leave will create one and copy output to the window for the next call of inflate(). In this implementation, the flush parameter of inflate() only affects the return code (per zlib.h). inflate() always writes as much as possible to strm->next_out, given the space available and the provided input--the effect documented in zlib.h of Z_SYNC_FLUSH. Furthermore, inflate() always defers the allocation of and copying into a sliding window until necessary, which provides the effect documented in zlib.h for Z_FINISH when the entire input stream available. So the only thing the flush parameter actually does is: when flush is set to Z_FINISH, inflate() cannot return Z_OK. Instead it will return Z_BUF_ERROR if it has not reached the end of the stream. */ int ZEXPORT inflate( z_streamp strm, int flush) { struct inflate_state FAR *state; z_const unsigned char FAR *next; /* next input */ unsigned char FAR *put; /* next output */ unsigned have, left; /* available input and output */ unsigned long hold; /* bit buffer */ unsigned bits; /* bits in bit buffer */ unsigned in, out; /* save starting available input and output */ unsigned copy; /* number of stored or match bytes to copy */ unsigned char FAR *from; /* where to copy match bytes from */ code here; /* current decoding table entry */ code last; /* parent table entry */ unsigned len; /* length to copy for repeats, bits to drop */ int ret; /* return code */ #ifdef GUNZIP unsigned char hbuf[4]; /* buffer for gzip header crc calculation */ #endif static const unsigned short order[19] = /* permutation of code lengths */ {16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; if (strm == Z_NULL || strm->state == Z_NULL || strm->next_out == Z_NULL || (strm->next_in == Z_NULL && strm->avail_in != 0)) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (state->mode == TYPE) state->mode = TYPEDO; /* skip check */ LOAD(); in = have; out = left; ret = Z_OK; for (;;) switch (state->mode) { case HEAD: if (state->wrap == 0) { state->mode = TYPEDO; break; } NEEDBITS(16); #ifdef GUNZIP if ((state->wrap & 2) && hold == 0x8b1f) { /* gzip header */ state->check = crc32(0L, Z_NULL, 0); CRC2(state->check, hold); INITBITS(); state->mode = FLAGS; break; } state->flags = 0; /* expect zlib header */ if (state->head != Z_NULL) state->head->done = -1; if (!(state->wrap & 1) || /* check if zlib header allowed */ #else if ( #endif ((BITS(8) << 8) + (hold >> 8)) % 31) { strm->msg = (char *)"incorrect header check"; state->mode = BAD; break; } if (BITS(4) != Z_DEFLATED) { strm->msg = (char *)"unknown compression method"; state->mode = BAD; break; } DROPBITS(4); len = BITS(4) + 8; if (state->wbits == 0) state->wbits = len; else if (len > state->wbits) { strm->msg = (char *)"invalid window size"; state->mode = BAD; break; } state->dmax = 1U << len; Tracev((stderr, "inflate: zlib header ok\n")); strm->adler = state->check = adler32(0L, Z_NULL, 0); state->mode = hold & 0x200 ? DICTID : TYPE; INITBITS(); break; #ifdef GUNZIP case FLAGS: NEEDBITS(16); state->flags = (int)(hold); if ((state->flags & 0xff) != Z_DEFLATED) { strm->msg = (char *)"unknown compression method"; state->mode = BAD; break; } if (state->flags & 0xe000) { strm->msg = (char *)"unknown header flags set"; state->mode = BAD; break; } if (state->head != Z_NULL) state->head->text = (int)((hold >> 8) & 1); if (state->flags & 0x0200) CRC2(state->check, hold); INITBITS(); state->mode = TIME; case TIME: NEEDBITS(32); if (state->head != Z_NULL) state->head->time = hold; if (state->flags & 0x0200) CRC4(state->check, hold); INITBITS(); state->mode = OS; case OS: NEEDBITS(16); if (state->head != Z_NULL) { state->head->xflags = (int)(hold & 0xff); state->head->os = (int)(hold >> 8); } if (state->flags & 0x0200) CRC2(state->check, hold); INITBITS(); state->mode = EXLEN; case EXLEN: if (state->flags & 0x0400) { NEEDBITS(16); state->length = (unsigned)(hold); if (state->head != Z_NULL) state->head->extra_len = (unsigned)hold; if (state->flags & 0x0200) CRC2(state->check, hold); INITBITS(); } else if (state->head != Z_NULL) state->head->extra = Z_NULL; state->mode = EXTRA; case EXTRA: if (state->flags & 0x0400) { copy = state->length; if (copy > have) copy = have; if (copy) { if (state->head != Z_NULL && state->head->extra != Z_NULL) { len = state->head->extra_len - state->length; zmemcpy(state->head->extra + len, next, len + copy > state->head->extra_max ? state->head->extra_max - len : copy); } if (state->flags & 0x0200) state->check = crc32(state->check, next, copy); have -= copy; next += copy; state->length -= copy; } if (state->length) goto inf_leave; } state->length = 0; state->mode = NAME; case NAME: if (state->flags & 0x0800) { if (have == 0) goto inf_leave; copy = 0; do { len = (unsigned)(next[copy++]); if (state->head != Z_NULL && state->head->name != Z_NULL && state->length < state->head->name_max) state->head->name[state->length++] = len; } while (len && copy < have); if (state->flags & 0x0200) state->check = crc32(state->check, next, copy); have -= copy; next += copy; if (len) goto inf_leave; } else if (state->head != Z_NULL) state->head->name = Z_NULL; state->length = 0; state->mode = COMMENT; case COMMENT: if (state->flags & 0x1000) { if (have == 0) goto inf_leave; copy = 0; do { len = (unsigned)(next[copy++]); if (state->head != Z_NULL && state->head->comment != Z_NULL && state->length < state->head->comm_max) state->head->comment[state->length++] = len; } while (len && copy < have); if (state->flags & 0x0200) state->check = crc32(state->check, next, copy); have -= copy; next += copy; if (len) goto inf_leave; } else if (state->head != Z_NULL) state->head->comment = Z_NULL; state->mode = HCRC; case HCRC: if (state->flags & 0x0200) { NEEDBITS(16); if (hold != (state->check & 0xffff)) { strm->msg = (char *)"header crc mismatch"; state->mode = BAD; break; } INITBITS(); } if (state->head != Z_NULL) { state->head->hcrc = (int)((state->flags >> 9) & 1); state->head->done = 1; } strm->adler = state->check = crc32(0L, Z_NULL, 0); state->mode = TYPE; break; #endif case DICTID: NEEDBITS(32); strm->adler = state->check = ZSWAP32(hold); INITBITS(); state->mode = DICT; case DICT: if (state->havedict == 0) { RESTORE(); return Z_NEED_DICT; } strm->adler = state->check = adler32(0L, Z_NULL, 0); state->mode = TYPE; case TYPE: if (flush == Z_BLOCK || flush == Z_TREES) goto inf_leave; case TYPEDO: if (state->last) { BYTEBITS(); state->mode = CHECK; break; } NEEDBITS(3); state->last = BITS(1); DROPBITS(1); switch (BITS(2)) { case 0: /* stored block */ Tracev((stderr, "inflate: stored block%s\n", state->last ? " (last)" : "")); state->mode = STORED; break; case 1: /* fixed block */ fixedtables(state); Tracev((stderr, "inflate: fixed codes block%s\n", state->last ? " (last)" : "")); state->mode = LEN_; /* decode codes */ if (flush == Z_TREES) { DROPBITS(2); goto inf_leave; } break; case 2: /* dynamic block */ Tracev((stderr, "inflate: dynamic codes block%s\n", state->last ? " (last)" : "")); state->mode = TABLE; break; case 3: strm->msg = (char *)"invalid block type"; state->mode = BAD; } DROPBITS(2); break; case STORED: BYTEBITS(); /* go to byte boundary */ NEEDBITS(32); if ((hold & 0xffff) != ((hold >> 16) ^ 0xffff)) { strm->msg = (char *)"invalid stored block lengths"; state->mode = BAD; break; } state->length = (unsigned)hold & 0xffff; Tracev((stderr, "inflate: stored length %u\n", state->length)); INITBITS(); state->mode = COPY_; if (flush == Z_TREES) goto inf_leave; case COPY_: state->mode = COPY; case COPY: copy = state->length; if (copy) { if (copy > have) copy = have; if (copy > left) copy = left; if (copy == 0) goto inf_leave; zmemcpy(put, next, copy); have -= copy; next += copy; left -= copy; put += copy; state->length -= copy; break; } Tracev((stderr, "inflate: stored end\n")); state->mode = TYPE; break; case TABLE: NEEDBITS(14); state->nlen = BITS(5) + 257; DROPBITS(5); state->ndist = BITS(5) + 1; DROPBITS(5); state->ncode = BITS(4) + 4; DROPBITS(4); #ifndef PKZIP_BUG_WORKAROUND if (state->nlen > 286 || state->ndist > 30) { strm->msg = (char *)"too many length or distance symbols"; state->mode = BAD; break; } #endif Tracev((stderr, "inflate: table sizes ok\n")); state->have = 0; state->mode = LENLENS; case LENLENS: while (state->have < state->ncode) { NEEDBITS(3); state->lens[order[state->have++]] = (unsigned short)BITS(3); DROPBITS(3); } while (state->have < 19) state->lens[order[state->have++]] = 0; state->next = state->codes; state->lencode = (const code FAR *)(state->next); state->lenbits = 7; ret = inflate_table(CODES, state->lens, 19, &(state->next), &(state->lenbits), state->work); if (ret) { strm->msg = (char *)"invalid code lengths set"; state->mode = BAD; break; } Tracev((stderr, "inflate: code lengths ok\n")); state->have = 0; state->mode = CODELENS; case CODELENS: while (state->have < state->nlen + state->ndist) { for (;;) { here = state->lencode[BITS(state->lenbits)]; if ((unsigned)(here.bits) <= bits) break; PULLBYTE(); } if (here.val < 16) { DROPBITS(here.bits); state->lens[state->have++] = here.val; } else { if (here.val == 16) { NEEDBITS(here.bits + 2); DROPBITS(here.bits); if (state->have == 0) { strm->msg = (char *)"invalid bit length repeat"; state->mode = BAD; break; } len = state->lens[state->have - 1]; copy = 3 + BITS(2); DROPBITS(2); } else if (here.val == 17) { NEEDBITS(here.bits + 3); DROPBITS(here.bits); len = 0; copy = 3 + BITS(3); DROPBITS(3); } else { NEEDBITS(here.bits + 7); DROPBITS(here.bits); len = 0; copy = 11 + BITS(7); DROPBITS(7); } if (state->have + copy > state->nlen + state->ndist) { strm->msg = (char *)"invalid bit length repeat"; state->mode = BAD; break; } while (copy--) state->lens[state->have++] = (unsigned short)len; } } /* handle error breaks in while */ if (state->mode == BAD) break; /* check for end-of-block code (better have one) */ if (state->lens[256] == 0) { strm->msg = (char *)"invalid code -- missing end-of-block"; state->mode = BAD; break; } /* build code tables -- note: do not change the lenbits or distbits values here (9 and 6) without reading the comments in inftrees.h concerning the ENOUGH constants, which depend on those values */ state->next = state->codes; state->lencode = (const code FAR *)(state->next); state->lenbits = 9; ret = inflate_table(LENS, state->lens, state->nlen, &(state->next), &(state->lenbits), state->work); if (ret) { strm->msg = (char *)"invalid literal/lengths set"; state->mode = BAD; break; } state->distcode = (const code FAR *)(state->next); state->distbits = 6; ret = inflate_table(DISTS, state->lens + state->nlen, state->ndist, &(state->next), &(state->distbits), state->work); if (ret) { strm->msg = (char *)"invalid distances set"; state->mode = BAD; break; } Tracev((stderr, "inflate: codes ok\n")); state->mode = LEN_; if (flush == Z_TREES) goto inf_leave; case LEN_: state->mode = LEN; case LEN: if (have >= 6 && left >= 258) { RESTORE(); inflate_fast(strm, out); LOAD(); if (state->mode == TYPE) state->back = -1; break; } state->back = 0; for (;;) { here = state->lencode[BITS(state->lenbits)]; if ((unsigned)(here.bits) <= bits) break; PULLBYTE(); } if (here.op && (here.op & 0xf0) == 0) { last = here; for (;;) { here = state->lencode[last.val + (BITS(last.bits + last.op) >> last.bits)]; if ((unsigned)(last.bits + here.bits) <= bits) break; PULLBYTE(); } DROPBITS(last.bits); state->back += last.bits; } DROPBITS(here.bits); state->back += here.bits; state->length = (unsigned)here.val; if ((int)(here.op) == 0) { Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ? "inflate: literal '%c'\n" : "inflate: literal 0x%02x\n", here.val)); state->mode = LIT; break; } if (here.op & 32) { Tracevv((stderr, "inflate: end of block\n")); state->back = -1; state->mode = TYPE; break; } if (here.op & 64) { strm->msg = (char *)"invalid literal/length code"; state->mode = BAD; break; } state->extra = (unsigned)(here.op) & 15; state->mode = LENEXT; case LENEXT: if (state->extra) { NEEDBITS(state->extra); state->length += BITS(state->extra); DROPBITS(state->extra); state->back += state->extra; } Tracevv((stderr, "inflate: length %u\n", state->length)); state->was = state->length; state->mode = DIST; case DIST: for (;;) { here = state->distcode[BITS(state->distbits)]; if ((unsigned)(here.bits) <= bits) break; PULLBYTE(); } if ((here.op & 0xf0) == 0) { last = here; for (;;) { here = state->distcode[last.val + (BITS(last.bits + last.op) >> last.bits)]; if ((unsigned)(last.bits + here.bits) <= bits) break; PULLBYTE(); } DROPBITS(last.bits); state->back += last.bits; } DROPBITS(here.bits); state->back += here.bits; if (here.op & 64) { strm->msg = (char *)"invalid distance code"; state->mode = BAD; break; } state->offset = (unsigned)here.val; state->extra = (unsigned)(here.op) & 15; state->mode = DISTEXT; case DISTEXT: if (state->extra) { NEEDBITS(state->extra); state->offset += BITS(state->extra); DROPBITS(state->extra); state->back += state->extra; } #ifdef INFLATE_STRICT if (state->offset > state->dmax) { strm->msg = (char *)"invalid distance too far back"; state->mode = BAD; break; } #endif Tracevv((stderr, "inflate: distance %u\n", state->offset)); state->mode = MATCH; case MATCH: if (left == 0) goto inf_leave; copy = out - left; if (state->offset > copy) { /* copy from window */ copy = state->offset - copy; if (copy > state->whave) { if (state->sane) { strm->msg = (char *)"invalid distance too far back"; state->mode = BAD; break; } #ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR Trace((stderr, "inflate.c too far\n")); copy -= state->whave; if (copy > state->length) copy = state->length; if (copy > left) copy = left; left -= copy; state->length -= copy; do { *put++ = 0; } while (--copy); if (state->length == 0) state->mode = LEN; break; #endif } if (copy > state->wnext) { copy -= state->wnext; from = state->window + (state->wsize - copy); } else from = state->window + (state->wnext - copy); if (copy > state->length) copy = state->length; } else { /* copy from output */ from = put - state->offset; copy = state->length; } if (copy > left) copy = left; left -= copy; state->length -= copy; do { *put++ = *from++; } while (--copy); if (state->length == 0) state->mode = LEN; break; case LIT: if (left == 0) goto inf_leave; *put++ = (unsigned char)(state->length); left--; state->mode = LEN; break; case CHECK: if (state->wrap) { NEEDBITS(32); out -= left; strm->total_out += out; state->total += out; if (out) strm->adler = state->check = UPDATE(state->check, put - out, out); out = left; if (( #ifdef GUNZIP state->flags ? hold : #endif ZSWAP32(hold)) != state->check) { strm->msg = (char *)"incorrect data check"; state->mode = BAD; break; } INITBITS(); Tracev((stderr, "inflate: check matches trailer\n")); } #ifdef GUNZIP state->mode = LENGTH; case LENGTH: if (state->wrap && state->flags) { NEEDBITS(32); if (hold != (state->total & 0xffffffffUL)) { strm->msg = (char *)"incorrect length check"; state->mode = BAD; break; } INITBITS(); Tracev((stderr, "inflate: length matches trailer\n")); } #endif state->mode = DONE; case DONE: ret = Z_STREAM_END; goto inf_leave; case BAD: ret = Z_DATA_ERROR; goto inf_leave; case MEM: return Z_MEM_ERROR; case SYNC: default: return Z_STREAM_ERROR; } /* Return from inflate(), updating the total counts and the check value. If there was no progress during the inflate() call, return a buffer error. Call updatewindow() to create and/or update the window state. Note: a memory error from inflate() is non-recoverable. */ inf_leave: RESTORE(); if (state->wsize || (out != strm->avail_out && state->mode < BAD && (state->mode < CHECK || flush != Z_FINISH))) if (updatewindow(strm, strm->next_out, out - strm->avail_out)) { state->mode = MEM; return Z_MEM_ERROR; } in -= strm->avail_in; out -= strm->avail_out; strm->total_in += in; strm->total_out += out; state->total += out; if (state->wrap && out) strm->adler = state->check = UPDATE(state->check, strm->next_out - out, out); strm->data_type = state->bits + (state->last ? 64 : 0) + (state->mode == TYPE ? 128 : 0) + (state->mode == LEN_ || state->mode == COPY_ ? 256 : 0); if (((in == 0 && out == 0) || flush == Z_FINISH) && ret == Z_OK) ret = Z_BUF_ERROR; return ret; } int ZEXPORT inflateEnd( z_streamp strm) { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL || strm->zfree == (free_func)0) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (state->window != Z_NULL) ZFREE(strm, state->window); ZFREE(strm, strm->state); strm->state = Z_NULL; Tracev((stderr, "inflate: end\n")); return Z_OK; } int ZEXPORT inflateGetDictionary( z_streamp strm, Bytef *dictionary, uInt *dictLength) { struct inflate_state FAR *state; /* check state */ if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; /* copy dictionary */ if (state->whave && dictionary != Z_NULL) { zmemcpy(dictionary, state->window + state->wnext, state->whave - state->wnext); zmemcpy(dictionary + state->whave - state->wnext, state->window, state->wnext); } if (dictLength != Z_NULL) *dictLength = state->whave; return Z_OK; } int ZEXPORT inflateSetDictionary( z_streamp strm, const Bytef *dictionary, uInt dictLength) { struct inflate_state FAR *state; unsigned long dictid; int ret; /* check state */ if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (state->wrap != 0 && state->mode != DICT) return Z_STREAM_ERROR; /* check for correct dictionary identifier */ if (state->mode == DICT) { dictid = adler32(0L, Z_NULL, 0); dictid = adler32(dictid, dictionary, dictLength); if (dictid != state->check) return Z_DATA_ERROR; } /* copy dictionary to window using updatewindow(), which will amend the existing dictionary if appropriate */ ret = updatewindow(strm, dictionary + dictLength, dictLength); if (ret) { state->mode = MEM; return Z_MEM_ERROR; } state->havedict = 1; Tracev((stderr, "inflate: dictionary set\n")); return Z_OK; } int ZEXPORT inflateGetHeader( z_streamp strm, gz_headerp head) { struct inflate_state FAR *state; /* check state */ if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if ((state->wrap & 2) == 0) return Z_STREAM_ERROR; /* save header structure */ state->head = head; head->done = 0; return Z_OK; } /* Search buf[0..len-1] for the pattern: 0, 0, 0xff, 0xff. Return when found or when out of input. When called, *have is the number of pattern bytes found in order so far, in 0..3. On return *have is updated to the new state. If on return *have equals four, then the pattern was found and the return value is how many bytes were read including the last byte of the pattern. If *have is less than four, then the pattern has not been found yet and the return value is len. In the latter case, syncsearch() can be called again with more data and the *have state. *have is initialized to zero for the first call. */ local unsigned syncsearch( unsigned FAR *have, const unsigned char FAR *buf, unsigned len) { unsigned got; unsigned next; got = *have; next = 0; while (next < len && got < 4) { if ((int)(buf[next]) == (got < 2 ? 0 : 0xff)) got++; else if (buf[next]) got = 0; else got = 4 - got; next++; } *have = got; return next; } int ZEXPORT inflateSync( z_streamp strm) { unsigned len; /* number of bytes to look at or looked at */ unsigned long in, out; /* temporary to save total_in and total_out */ unsigned char buf[4]; /* to restore bit buffer to byte string */ struct inflate_state FAR *state; /* check parameters */ if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (strm->avail_in == 0 && state->bits < 8) return Z_BUF_ERROR; /* if first time, start search in bit buffer */ if (state->mode != SYNC) { state->mode = SYNC; state->hold <<= state->bits & 7; state->bits -= state->bits & 7; len = 0; while (state->bits >= 8) { buf[len++] = (unsigned char)(state->hold); state->hold >>= 8; state->bits -= 8; } state->have = 0; syncsearch(&(state->have), buf, len); } /* search available input */ len = syncsearch(&(state->have), strm->next_in, strm->avail_in); strm->avail_in -= len; strm->next_in += len; strm->total_in += len; /* return no joy or set up to restart inflate() on a new block */ if (state->have != 4) return Z_DATA_ERROR; in = strm->total_in; out = strm->total_out; inflateReset(strm); strm->total_in = in; strm->total_out = out; state->mode = TYPE; return Z_OK; } /* Returns true if inflate is currently at the end of a block generated by Z_SYNC_FLUSH or Z_FULL_FLUSH. This function is used by one PPP implementation to provide an additional safety check. PPP uses Z_SYNC_FLUSH but removes the length bytes of the resulting empty stored block. When decompressing, PPP checks that at the end of input packet, inflate is waiting for these length bytes. */ int ZEXPORT inflateSyncPoint( z_streamp strm) { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; return state->mode == STORED && state->bits == 0; } int ZEXPORT inflateCopy( z_streamp dest, z_streamp source) { struct inflate_state FAR *state; struct inflate_state FAR *copy; unsigned char FAR *window; unsigned wsize; /* check input */ if (dest == Z_NULL || source == Z_NULL || source->state == Z_NULL || source->zalloc == (alloc_func)0 || source->zfree == (free_func)0) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)source->state; /* allocate space */ copy = (struct inflate_state FAR *) ZALLOC(source, 1, sizeof(struct inflate_state)); if (copy == Z_NULL) return Z_MEM_ERROR; window = Z_NULL; if (state->window != Z_NULL) { window = (unsigned char FAR *) ZALLOC(source, 1U << state->wbits, sizeof(unsigned char)); if (window == Z_NULL) { ZFREE(source, copy); return Z_MEM_ERROR; } } /* copy state */ zmemcpy((Bytef*)dest, (Bytef*)source, sizeof(z_stream)); zmemcpy((Bytef*)copy, (Bytef*)state, sizeof(struct inflate_state)); if (state->lencode >= state->codes && state->lencode <= state->codes + ENOUGH - 1) { copy->lencode = copy->codes + (state->lencode - state->codes); copy->distcode = copy->codes + (state->distcode - state->codes); } copy->next = copy->codes + (state->next - state->codes); if (window != Z_NULL) { wsize = 1U << state->wbits; zmemcpy(window, state->window, wsize); } copy->window = window; dest->state = (struct internal_state FAR *)copy; return Z_OK; } int ZEXPORT inflateUndermine( z_streamp strm, int subvert) { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; state->sane = !subvert; #ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR return Z_OK; #else state->sane = 1; return Z_DATA_ERROR; #endif } long ZEXPORT inflateMark( z_streamp strm) { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL) return -1L << 16; state = (struct inflate_state FAR *)strm->state; return ((long)(state->back) << 16) + (state->mode == COPY ? state->length : (state->mode == MATCH ? state->was - state->length : 0)); } Compress-Raw-Zlib-2.063/zlib-src/deflate.c0000644000175000017500000021242212146130671016731 0ustar paulpaul/* deflate.c -- compress data using the deflation algorithm * Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* * ALGORITHM * * The "deflation" process depends on being able to identify portions * of the input text which are identical to earlier input (within a * sliding window trailing behind the input currently being processed). * * The most straightforward technique turns out to be the fastest for * most input files: try all possible matches and select the longest. * The key feature of this algorithm is that insertions into the string * dictionary are very simple and thus fast, and deletions are avoided * completely. Insertions are performed at each input character, whereas * string matches are performed only when the previous match ends. So it * is preferable to spend more time in matches to allow very fast string * insertions and avoid deletions. The matching algorithm for small * strings is inspired from that of Rabin & Karp. A brute force approach * is used to find longer strings when a small match has been found. * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze * (by Leonid Broukhis). * A previous version of this file used a more sophisticated algorithm * (by Fiala and Greene) which is guaranteed to run in linear amortized * time, but has a larger average cost, uses more memory and is patented. * However the F&G algorithm may be faster for some highly redundant * files if the parameter max_chain_length (described below) is too large. * * ACKNOWLEDGEMENTS * * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and * I found it in 'freeze' written by Leonid Broukhis. * Thanks to many people for bug reports and testing. * * REFERENCES * * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification". * Available in http://tools.ietf.org/html/rfc1951 * * A description of the Rabin and Karp algorithm is given in the book * "Algorithms" by R. Sedgewick, Addison-Wesley, p252. * * Fiala,E.R., and Greene,D.H. * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595 * */ /* @(#) $Id$ */ #include "deflate.h" const char deflate_copyright[] = " deflate 1.2.8 Copyright 1995-2013 Jean-loup Gailly and Mark Adler "; /* If you use the zlib library in a product, an acknowledgment is welcome in the documentation of your product. If for some reason you cannot include such an acknowledgment, I would appreciate that you keep this copyright string in the executable of your product. */ /* =========================================================================== * Function prototypes. */ typedef enum { need_more, /* block not completed, need more input or more output */ block_done, /* block flush performed */ finish_started, /* finish started, need only more output at next deflate */ finish_done /* finish done, accept no more input or output */ } block_state; typedef block_state (*compress_func) OF((deflate_state *s, int flush)); /* Compression function. Returns the block state after the call. */ local void fill_window OF((deflate_state *s)); local block_state deflate_stored OF((deflate_state *s, int flush)); local block_state deflate_fast OF((deflate_state *s, int flush)); #ifndef FASTEST local block_state deflate_slow OF((deflate_state *s, int flush)); #endif local block_state deflate_rle OF((deflate_state *s, int flush)); local block_state deflate_huff OF((deflate_state *s, int flush)); local void lm_init OF((deflate_state *s)); local void putShortMSB OF((deflate_state *s, uInt b)); local void flush_pending OF((z_streamp strm)); local int read_buf OF((z_streamp strm, Bytef *buf, unsigned size)); #ifdef ASMV void match_init OF((void)); /* asm code initialization */ uInt longest_match OF((deflate_state *s, IPos cur_match)); #else local uInt longest_match OF((deflate_state *s, IPos cur_match)); #endif #ifdef DEBUG local void check_match OF((deflate_state *s, IPos start, IPos match, int length)); #endif /* =========================================================================== * Local data */ #define NIL 0 /* Tail of hash chains */ #ifndef TOO_FAR # define TOO_FAR 4096 #endif /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */ /* Values for max_lazy_match, good_match and max_chain_length, depending on * the desired pack level (0..9). The values given below have been tuned to * exclude worst case performance for pathological files. Better values may be * found for specific files. */ typedef struct config_s { ush good_length; /* reduce lazy search above this match length */ ush max_lazy; /* do not perform lazy search above this match length */ ush nice_length; /* quit search above this match length */ ush max_chain; compress_func func; } config; #ifdef FASTEST local const config configuration_table[2] = { /* good lazy nice chain */ /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ /* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */ #else local const config configuration_table[10] = { /* good lazy nice chain */ /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ /* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */ /* 2 */ {4, 5, 16, 8, deflate_fast}, /* 3 */ {4, 6, 32, 32, deflate_fast}, /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */ /* 5 */ {8, 16, 32, 32, deflate_slow}, /* 6 */ {8, 16, 128, 128, deflate_slow}, /* 7 */ {8, 32, 128, 256, deflate_slow}, /* 8 */ {32, 128, 258, 1024, deflate_slow}, /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */ #endif /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different * meaning. */ #define EQUAL 0 /* result of memcmp for equal strings */ #ifndef NO_DUMMY_DECL struct static_tree_desc_s {int dummy;}; /* for buggy compilers */ #endif /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */ #define RANK(f) (((f) << 1) - ((f) > 4 ? 9 : 0)) /* =========================================================================== * Update a hash value with the given input byte * IN assertion: all calls to to UPDATE_HASH are made with consecutive * input characters, so that a running hash key can be computed from the * previous key instead of complete recalculation each time. */ #define UPDATE_HASH(s,h,c) (h = (((h)<hash_shift) ^ (c)) & s->hash_mask) /* =========================================================================== * Insert string str in the dictionary and set match_head to the previous head * of the hash chain (the most recent string with same hash key). Return * the previous length of the hash chain. * If this file is compiled with -DFASTEST, the compression level is forced * to 1, and no hash chains are maintained. * IN assertion: all calls to to INSERT_STRING are made with consecutive * input characters and the first MIN_MATCH bytes of str are valid * (except for the last MIN_MATCH-1 bytes of the input file). */ #ifdef FASTEST #define INSERT_STRING(s, str, match_head) \ (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ match_head = s->head[s->ins_h], \ s->head[s->ins_h] = (Pos)(str)) #else #define INSERT_STRING(s, str, match_head) \ (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \ s->head[s->ins_h] = (Pos)(str)) #endif /* =========================================================================== * Initialize the hash table (avoiding 64K overflow for 16 bit systems). * prev[] will be initialized on the fly. */ #define CLEAR_HASH(s) \ s->head[s->hash_size-1] = NIL; \ zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head)); /* ========================================================================= */ int ZEXPORT deflateInit_( z_streamp strm, int level, const char *version, int stream_size) { return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, Z_DEFAULT_STRATEGY, version, stream_size); /* To do: ignore strm->next_in if we use it as window */ } /* ========================================================================= */ int ZEXPORT deflateInit2_( z_streamp strm, int level, int method, int windowBits, int memLevel, int strategy, const char *version, int stream_size) { deflate_state *s; int wrap = 1; static const char my_version[] = ZLIB_VERSION; ushf *overlay; /* We overlay pending_buf and d_buf+l_buf. This works since the average * output size for (length,distance) codes is <= 24 bits. */ if (version == Z_NULL || version[0] != my_version[0] || stream_size != sizeof(z_stream)) { return Z_VERSION_ERROR; } if (strm == Z_NULL) return Z_STREAM_ERROR; strm->msg = Z_NULL; if (strm->zalloc == (alloc_func)0) { #ifdef Z_SOLO return Z_STREAM_ERROR; #else strm->zalloc = zcalloc; strm->opaque = (voidpf)0; #endif } if (strm->zfree == (free_func)0) #ifdef Z_SOLO return Z_STREAM_ERROR; #else strm->zfree = zcfree; #endif #ifdef FASTEST if (level != 0) level = 1; #else if (level == Z_DEFAULT_COMPRESSION) level = 6; #endif if (windowBits < 0) { /* suppress zlib wrapper */ wrap = 0; windowBits = -windowBits; } #ifdef GZIP else if (windowBits > 15) { wrap = 2; /* write gzip wrapper instead */ windowBits -= 16; } #endif if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED || windowBits < 8 || windowBits > 15 || level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) { return Z_STREAM_ERROR; } if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */ s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state)); if (s == Z_NULL) return Z_MEM_ERROR; strm->state = (struct internal_state FAR *)s; s->strm = strm; s->wrap = wrap; s->gzhead = Z_NULL; s->w_bits = windowBits; s->w_size = 1 << s->w_bits; s->w_mask = s->w_size - 1; s->hash_bits = memLevel + 7; s->hash_size = 1 << s->hash_bits; s->hash_mask = s->hash_size - 1; s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH); s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte)); s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos)); s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos)); s->high_water = 0; /* nothing written to s->window yet */ s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2); s->pending_buf = (uchf *) overlay; s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L); if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL || s->pending_buf == Z_NULL) { s->status = FINISH_STATE; strm->msg = ERR_MSG(Z_MEM_ERROR); deflateEnd (strm); return Z_MEM_ERROR; } s->d_buf = overlay + s->lit_bufsize/sizeof(ush); s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize; s->level = level; s->strategy = strategy; s->method = (Byte)method; return deflateReset(strm); } /* ========================================================================= */ int ZEXPORT deflateSetDictionary ( z_streamp strm, const Bytef *dictionary, uInt dictLength) { deflate_state *s; uInt str, n; int wrap; unsigned avail; z_const unsigned char *next; if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL) return Z_STREAM_ERROR; s = strm->state; wrap = s->wrap; if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead) return Z_STREAM_ERROR; /* when using zlib wrappers, compute Adler-32 for provided dictionary */ if (wrap == 1) strm->adler = adler32(strm->adler, dictionary, dictLength); s->wrap = 0; /* avoid computing Adler-32 in read_buf */ /* if dictionary would fill window, just replace the history */ if (dictLength >= s->w_size) { if (wrap == 0) { /* already empty otherwise */ CLEAR_HASH(s); s->strstart = 0; s->block_start = 0L; s->insert = 0; } dictionary += dictLength - s->w_size; /* use the tail */ dictLength = s->w_size; } /* insert dictionary into window and hash */ avail = strm->avail_in; next = strm->next_in; strm->avail_in = dictLength; strm->next_in = (z_const Bytef *)dictionary; fill_window(s); while (s->lookahead >= MIN_MATCH) { str = s->strstart; n = s->lookahead - (MIN_MATCH-1); do { UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); #ifndef FASTEST s->prev[str & s->w_mask] = s->head[s->ins_h]; #endif s->head[s->ins_h] = (Pos)str; str++; } while (--n); s->strstart = str; s->lookahead = MIN_MATCH-1; fill_window(s); } s->strstart += s->lookahead; s->block_start = (long)s->strstart; s->insert = s->lookahead; s->lookahead = 0; s->match_length = s->prev_length = MIN_MATCH-1; s->match_available = 0; strm->next_in = next; strm->avail_in = avail; s->wrap = wrap; return Z_OK; } /* ========================================================================= */ int ZEXPORT deflateResetKeep ( z_streamp strm) { deflate_state *s; if (strm == Z_NULL || strm->state == Z_NULL || strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) { return Z_STREAM_ERROR; } strm->total_in = strm->total_out = 0; strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */ strm->data_type = Z_UNKNOWN; s = (deflate_state *)strm->state; s->pending = 0; s->pending_out = s->pending_buf; if (s->wrap < 0) { s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */ } s->status = s->wrap ? INIT_STATE : BUSY_STATE; strm->adler = #ifdef GZIP s->wrap == 2 ? crc32(0L, Z_NULL, 0) : #endif adler32(0L, Z_NULL, 0); s->last_flush = Z_NO_FLUSH; _tr_init(s); return Z_OK; } /* ========================================================================= */ int ZEXPORT deflateReset ( z_streamp strm) { int ret; ret = deflateResetKeep(strm); if (ret == Z_OK) lm_init(strm->state); return ret; } /* ========================================================================= */ int ZEXPORT deflateSetHeader ( z_streamp strm, gz_headerp head) { if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; if (strm->state->wrap != 2) return Z_STREAM_ERROR; strm->state->gzhead = head; return Z_OK; } /* ========================================================================= */ int ZEXPORT deflatePending ( z_streamp strm, unsigned *pending, int *bits) { if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; if (pending != Z_NULL) *pending = strm->state->pending; if (bits != Z_NULL) *bits = strm->state->bi_valid; return Z_OK; } /* ========================================================================= */ int ZEXPORT deflatePrime ( z_streamp strm, int bits, int value) { deflate_state *s; int put; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; s = strm->state; if ((Bytef *)(s->d_buf) < s->pending_out + ((Buf_size + 7) >> 3)) return Z_BUF_ERROR; do { put = Buf_size - s->bi_valid; if (put > bits) put = bits; s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid); s->bi_valid += put; _tr_flush_bits(s); value >>= put; bits -= put; } while (bits); return Z_OK; } /* ========================================================================= */ int ZEXPORT deflateParams( z_streamp strm, int level, int strategy) { deflate_state *s; compress_func func; int err = Z_OK; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; s = strm->state; #ifdef FASTEST if (level != 0) level = 1; #else if (level == Z_DEFAULT_COMPRESSION) level = 6; #endif if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) { return Z_STREAM_ERROR; } func = configuration_table[s->level].func; if ((strategy != s->strategy || func != configuration_table[level].func) && strm->total_in != 0) { /* Flush the last buffer: */ err = deflate(strm, Z_BLOCK); if (err == Z_BUF_ERROR && s->pending == 0) err = Z_OK; } if (s->level != level) { s->level = level; s->max_lazy_match = configuration_table[level].max_lazy; s->good_match = configuration_table[level].good_length; s->nice_match = configuration_table[level].nice_length; s->max_chain_length = configuration_table[level].max_chain; } s->strategy = strategy; return err; } /* ========================================================================= */ int ZEXPORT deflateTune( z_streamp strm, int good_length, int max_lazy, int nice_length, int max_chain) { deflate_state *s; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; s = strm->state; s->good_match = good_length; s->max_lazy_match = max_lazy; s->nice_match = nice_length; s->max_chain_length = max_chain; return Z_OK; } /* ========================================================================= * For the default windowBits of 15 and memLevel of 8, this function returns * a close to exact, as well as small, upper bound on the compressed size. * They are coded as constants here for a reason--if the #define's are * changed, then this function needs to be changed as well. The return * value for 15 and 8 only works for those exact settings. * * For any setting other than those defaults for windowBits and memLevel, * the value returned is a conservative worst case for the maximum expansion * resulting from using fixed blocks instead of stored blocks, which deflate * can emit on compressed data for some combinations of the parameters. * * This function could be more sophisticated to provide closer upper bounds for * every combination of windowBits and memLevel. But even the conservative * upper bound of about 14% expansion does not seem onerous for output buffer * allocation. */ uLong ZEXPORT deflateBound( z_streamp strm, uLong sourceLen) { deflate_state *s; uLong complen, wraplen; Bytef *str; /* conservative upper bound for compressed data */ complen = sourceLen + ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5; /* if can't get parameters, return conservative bound plus zlib wrapper */ if (strm == Z_NULL || strm->state == Z_NULL) return complen + 6; /* compute wrapper length */ s = strm->state; switch (s->wrap) { case 0: /* raw deflate */ wraplen = 0; break; case 1: /* zlib wrapper */ wraplen = 6 + (s->strstart ? 4 : 0); break; case 2: /* gzip wrapper */ wraplen = 18; if (s->gzhead != Z_NULL) { /* user-supplied gzip header */ if (s->gzhead->extra != Z_NULL) wraplen += 2 + s->gzhead->extra_len; str = s->gzhead->name; if (str != Z_NULL) do { wraplen++; } while (*str++); str = s->gzhead->comment; if (str != Z_NULL) do { wraplen++; } while (*str++); if (s->gzhead->hcrc) wraplen += 2; } break; default: /* for compiler happiness */ wraplen = 6; } /* if not default parameters, return conservative bound */ if (s->w_bits != 15 || s->hash_bits != 8 + 7) return complen + wraplen; /* default settings: return tight bound for that case */ return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) + (sourceLen >> 25) + 13 - 6 + wraplen; } /* ========================================================================= * Put a short in the pending buffer. The 16-bit value is put in MSB order. * IN assertion: the stream state is correct and there is enough room in * pending_buf. */ local void putShortMSB ( deflate_state *s, uInt b) { put_byte(s, (Byte)(b >> 8)); put_byte(s, (Byte)(b & 0xff)); } /* ========================================================================= * Flush as much pending output as possible. All deflate() output goes * through this function so some applications may wish to modify it * to avoid allocating a large strm->next_out buffer and copying into it. * (See also read_buf()). */ local void flush_pending( z_streamp strm) { unsigned len; deflate_state *s = strm->state; _tr_flush_bits(s); len = s->pending; if (len > strm->avail_out) len = strm->avail_out; if (len == 0) return; zmemcpy(strm->next_out, s->pending_out, len); strm->next_out += len; s->pending_out += len; strm->total_out += len; strm->avail_out -= len; s->pending -= len; if (s->pending == 0) { s->pending_out = s->pending_buf; } } /* ========================================================================= */ int ZEXPORT deflate ( z_streamp strm, int flush) { int old_flush; /* value of flush param for previous deflate call */ deflate_state *s; if (strm == Z_NULL || strm->state == Z_NULL || flush > Z_BLOCK || flush < 0) { return Z_STREAM_ERROR; } s = strm->state; if (strm->next_out == Z_NULL || (strm->next_in == Z_NULL && strm->avail_in != 0) || (s->status == FINISH_STATE && flush != Z_FINISH)) { ERR_RETURN(strm, Z_STREAM_ERROR); } if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR); s->strm = strm; /* just in case */ old_flush = s->last_flush; s->last_flush = flush; /* Write the header */ if (s->status == INIT_STATE) { #ifdef GZIP if (s->wrap == 2) { strm->adler = crc32(0L, Z_NULL, 0); put_byte(s, 31); put_byte(s, 139); put_byte(s, 8); if (s->gzhead == Z_NULL) { put_byte(s, 0); put_byte(s, 0); put_byte(s, 0); put_byte(s, 0); put_byte(s, 0); put_byte(s, s->level == 9 ? 2 : (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? 4 : 0)); put_byte(s, OS_CODE); s->status = BUSY_STATE; } else { put_byte(s, (s->gzhead->text ? 1 : 0) + (s->gzhead->hcrc ? 2 : 0) + (s->gzhead->extra == Z_NULL ? 0 : 4) + (s->gzhead->name == Z_NULL ? 0 : 8) + (s->gzhead->comment == Z_NULL ? 0 : 16) ); put_byte(s, (Byte)(s->gzhead->time & 0xff)); put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff)); put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff)); put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff)); put_byte(s, s->level == 9 ? 2 : (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? 4 : 0)); put_byte(s, s->gzhead->os & 0xff); if (s->gzhead->extra != Z_NULL) { put_byte(s, s->gzhead->extra_len & 0xff); put_byte(s, (s->gzhead->extra_len >> 8) & 0xff); } if (s->gzhead->hcrc) strm->adler = crc32(strm->adler, s->pending_buf, s->pending); s->gzindex = 0; s->status = EXTRA_STATE; } } else #endif { uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8; uInt level_flags; if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2) level_flags = 0; else if (s->level < 6) level_flags = 1; else if (s->level == 6) level_flags = 2; else level_flags = 3; header |= (level_flags << 6); if (s->strstart != 0) header |= PRESET_DICT; header += 31 - (header % 31); s->status = BUSY_STATE; putShortMSB(s, header); /* Save the adler32 of the preset dictionary: */ if (s->strstart != 0) { putShortMSB(s, (uInt)(strm->adler >> 16)); putShortMSB(s, (uInt)(strm->adler & 0xffff)); } strm->adler = adler32(0L, Z_NULL, 0); } } #ifdef GZIP if (s->status == EXTRA_STATE) { if (s->gzhead->extra != Z_NULL) { uInt beg = s->pending; /* start of bytes to update crc */ while (s->gzindex < (s->gzhead->extra_len & 0xffff)) { if (s->pending == s->pending_buf_size) { if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); flush_pending(strm); beg = s->pending; if (s->pending == s->pending_buf_size) break; } put_byte(s, s->gzhead->extra[s->gzindex]); s->gzindex++; } if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); if (s->gzindex == s->gzhead->extra_len) { s->gzindex = 0; s->status = NAME_STATE; } } else s->status = NAME_STATE; } if (s->status == NAME_STATE) { if (s->gzhead->name != Z_NULL) { uInt beg = s->pending; /* start of bytes to update crc */ int val; do { if (s->pending == s->pending_buf_size) { if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); flush_pending(strm); beg = s->pending; if (s->pending == s->pending_buf_size) { val = 1; break; } } val = s->gzhead->name[s->gzindex++]; put_byte(s, val); } while (val != 0); if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); if (val == 0) { s->gzindex = 0; s->status = COMMENT_STATE; } } else s->status = COMMENT_STATE; } if (s->status == COMMENT_STATE) { if (s->gzhead->comment != Z_NULL) { uInt beg = s->pending; /* start of bytes to update crc */ int val; do { if (s->pending == s->pending_buf_size) { if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); flush_pending(strm); beg = s->pending; if (s->pending == s->pending_buf_size) { val = 1; break; } } val = s->gzhead->comment[s->gzindex++]; put_byte(s, val); } while (val != 0); if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); if (val == 0) s->status = HCRC_STATE; } else s->status = HCRC_STATE; } if (s->status == HCRC_STATE) { if (s->gzhead->hcrc) { if (s->pending + 2 > s->pending_buf_size) flush_pending(strm); if (s->pending + 2 <= s->pending_buf_size) { put_byte(s, (Byte)(strm->adler & 0xff)); put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); strm->adler = crc32(0L, Z_NULL, 0); s->status = BUSY_STATE; } } else s->status = BUSY_STATE; } #endif /* Flush as much pending output as possible */ if (s->pending != 0) { flush_pending(strm); if (strm->avail_out == 0) { /* Since avail_out is 0, deflate will be called again with * more output space, but possibly with both pending and * avail_in equal to zero. There won't be anything to do, * but this is not an error situation so make sure we * return OK instead of BUF_ERROR at next call of deflate: */ s->last_flush = -1; return Z_OK; } /* Make sure there is something to do and avoid duplicate consecutive * flushes. For repeated and useless calls with Z_FINISH, we keep * returning Z_STREAM_END instead of Z_BUF_ERROR. */ } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) && flush != Z_FINISH) { ERR_RETURN(strm, Z_BUF_ERROR); } /* User must not provide more input after the first FINISH: */ if (s->status == FINISH_STATE && strm->avail_in != 0) { ERR_RETURN(strm, Z_BUF_ERROR); } /* Start a new block or continue the current one. */ if (strm->avail_in != 0 || s->lookahead != 0 || (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) { block_state bstate; bstate = s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) : (s->strategy == Z_RLE ? deflate_rle(s, flush) : (*(configuration_table[s->level].func))(s, flush)); if (bstate == finish_started || bstate == finish_done) { s->status = FINISH_STATE; } if (bstate == need_more || bstate == finish_started) { if (strm->avail_out == 0) { s->last_flush = -1; /* avoid BUF_ERROR next call, see above */ } return Z_OK; /* If flush != Z_NO_FLUSH && avail_out == 0, the next call * of deflate should use the same flush parameter to make sure * that the flush is complete. So we don't have to output an * empty block here, this will be done at next call. This also * ensures that for a very small output buffer, we emit at most * one empty block. */ } if (bstate == block_done) { if (flush == Z_PARTIAL_FLUSH) { _tr_align(s); } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */ _tr_stored_block(s, (char*)0, 0L, 0); /* For a full flush, this empty block will be recognized * as a special marker by inflate_sync(). */ if (flush == Z_FULL_FLUSH) { CLEAR_HASH(s); /* forget history */ if (s->lookahead == 0) { s->strstart = 0; s->block_start = 0L; s->insert = 0; } } } flush_pending(strm); if (strm->avail_out == 0) { s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */ return Z_OK; } } } Assert(strm->avail_out > 0, "bug2"); if (flush != Z_FINISH) return Z_OK; if (s->wrap <= 0) return Z_STREAM_END; /* Write the trailer */ #ifdef GZIP if (s->wrap == 2) { put_byte(s, (Byte)(strm->adler & 0xff)); put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); put_byte(s, (Byte)((strm->adler >> 16) & 0xff)); put_byte(s, (Byte)((strm->adler >> 24) & 0xff)); put_byte(s, (Byte)(strm->total_in & 0xff)); put_byte(s, (Byte)((strm->total_in >> 8) & 0xff)); put_byte(s, (Byte)((strm->total_in >> 16) & 0xff)); put_byte(s, (Byte)((strm->total_in >> 24) & 0xff)); } else #endif { putShortMSB(s, (uInt)(strm->adler >> 16)); putShortMSB(s, (uInt)(strm->adler & 0xffff)); } flush_pending(strm); /* If avail_out is zero, the application will call deflate again * to flush the rest. */ if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */ return s->pending != 0 ? Z_OK : Z_STREAM_END; } /* ========================================================================= */ int ZEXPORT deflateEnd ( z_streamp strm) { int status; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; status = strm->state->status; if (status != INIT_STATE && status != EXTRA_STATE && status != NAME_STATE && status != COMMENT_STATE && status != HCRC_STATE && status != BUSY_STATE && status != FINISH_STATE) { return Z_STREAM_ERROR; } /* Deallocate in reverse order of allocations: */ TRY_FREE(strm, strm->state->pending_buf); TRY_FREE(strm, strm->state->head); TRY_FREE(strm, strm->state->prev); TRY_FREE(strm, strm->state->window); ZFREE(strm, strm->state); strm->state = Z_NULL; return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; } /* ========================================================================= * Copy the source state to the destination state. * To simplify the source, this is not supported for 16-bit MSDOS (which * doesn't have enough memory anyway to duplicate compression states). */ int ZEXPORT deflateCopy ( z_streamp dest, z_streamp source) { #ifdef MAXSEG_64K return Z_STREAM_ERROR; #else deflate_state *ds; deflate_state *ss; ushf *overlay; if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) { return Z_STREAM_ERROR; } ss = source->state; zmemcpy((Bytef*)dest, (Bytef*)source, sizeof(z_stream)); ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state)); if (ds == Z_NULL) return Z_MEM_ERROR; dest->state = (struct internal_state FAR *) ds; zmemcpy((Bytef*)ds, (Bytef*)ss, sizeof(deflate_state)); ds->strm = dest; ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte)); ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos)); ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos)); overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2); ds->pending_buf = (uchf *) overlay; if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL || ds->pending_buf == Z_NULL) { deflateEnd (dest); return Z_MEM_ERROR; } /* following zmemcpy do not work for 16-bit MSDOS */ zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte)); zmemcpy((Bytef*)ds->prev, (Bytef*)ss->prev, ds->w_size * sizeof(Pos)); zmemcpy((Bytef*)ds->head, (Bytef*)ss->head, ds->hash_size * sizeof(Pos)); zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size); ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf); ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush); ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize; ds->l_desc.dyn_tree = ds->dyn_ltree; ds->d_desc.dyn_tree = ds->dyn_dtree; ds->bl_desc.dyn_tree = ds->bl_tree; return Z_OK; #endif /* MAXSEG_64K */ } /* =========================================================================== * Read a new buffer from the current input stream, update the adler32 * and total number of bytes read. All deflate() input goes through * this function so some applications may wish to modify it to avoid * allocating a large strm->next_in buffer and copying from it. * (See also flush_pending()). */ local int read_buf( z_streamp strm, Bytef *buf, unsigned size) { unsigned len = strm->avail_in; if (len > size) len = size; if (len == 0) return 0; strm->avail_in -= len; zmemcpy(buf, strm->next_in, len); if (strm->state->wrap == 1) { strm->adler = adler32(strm->adler, buf, len); } #ifdef GZIP else if (strm->state->wrap == 2) { strm->adler = crc32(strm->adler, buf, len); } #endif strm->next_in += len; strm->total_in += len; return (int)len; } /* =========================================================================== * Initialize the "longest match" routines for a new zlib stream */ local void lm_init ( deflate_state *s) { s->window_size = (ulg)2L*s->w_size; CLEAR_HASH(s); /* Set the default configuration parameters: */ s->max_lazy_match = configuration_table[s->level].max_lazy; s->good_match = configuration_table[s->level].good_length; s->nice_match = configuration_table[s->level].nice_length; s->max_chain_length = configuration_table[s->level].max_chain; s->strstart = 0; s->block_start = 0L; s->lookahead = 0; s->insert = 0; s->match_length = s->prev_length = MIN_MATCH-1; s->match_available = 0; s->ins_h = 0; #ifndef FASTEST #ifdef ASMV match_init(); /* initialize the asm code */ #endif #endif } #ifndef FASTEST /* =========================================================================== * Set match_start to the longest match starting at the given string and * return its length. Matches shorter or equal to prev_length are discarded, * in which case the result is equal to prev_length and match_start is * garbage. * IN assertions: cur_match is the head of the hash chain for the current * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 * OUT assertion: the match length is not greater than s->lookahead. */ #ifndef ASMV /* For 80x86 and 680x0, an optimized version will be provided in match.asm or * match.S. The code will be functionally equivalent. */ local uInt longest_match( deflate_state *s, IPos cur_match) { unsigned chain_length = s->max_chain_length;/* max hash chain length */ register Bytef *scan = s->window + s->strstart; /* current string */ register Bytef *match; /* matched string */ register int len; /* length of current match */ int best_len = s->prev_length; /* best match length so far */ int nice_match = s->nice_match; /* stop if match long enough */ IPos limit = s->strstart > (IPos)MAX_DIST(s) ? s->strstart - (IPos)MAX_DIST(s) : NIL; /* Stop when cur_match becomes <= limit. To simplify the code, * we prevent matches with the string of window index 0. */ Posf *prev = s->prev; uInt wmask = s->w_mask; #ifdef UNALIGNED_OK /* Compare two bytes at a time. Note: this is not always beneficial. * Try with and without -DUNALIGNED_OK to check. */ register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1; register ush scan_start = *(ushf*)scan; register ush scan_end = *(ushf*)(scan+best_len-1); #else register Bytef *strend = s->window + s->strstart + MAX_MATCH; register Byte scan_end1 = scan[best_len-1]; register Byte scan_end = scan[best_len]; #endif /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. * It is easy to get rid of this optimization if necessary. */ Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); /* Do not waste too much time if we already have a good match: */ if (s->prev_length >= s->good_match) { chain_length >>= 2; } /* Do not look for matches beyond the end of the input. This is necessary * to make deflate deterministic. */ if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead; Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); do { Assert(cur_match < s->strstart, "no future"); match = s->window + cur_match; /* Skip to next match if the match length cannot increase * or if the match length is less than 2. Note that the checks below * for insufficient lookahead only occur occasionally for performance * reasons. Therefore uninitialized memory will be accessed, and * conditional jumps will be made that depend on those values. * However the length of the match is limited to the lookahead, so * the output of deflate is not affected by the uninitialized values. */ #if (defined(UNALIGNED_OK) && MAX_MATCH == 258) /* This code assumes sizeof(unsigned short) == 2. Do not use * UNALIGNED_OK if your compiler uses a different size. */ if (*(ushf*)(match+best_len-1) != scan_end || *(ushf*)match != scan_start) continue; /* It is not necessary to compare scan[2] and match[2] since they are * always equal when the other bytes match, given that the hash keys * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at * strstart+3, +5, ... up to strstart+257. We check for insufficient * lookahead only every 4th comparison; the 128th check will be made * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is * necessary to put more guard bytes at the end of the window, or * to check more often for insufficient lookahead. */ Assert(scan[2] == match[2], "scan[2]?"); scan++, match++; do { } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) && *(ushf*)(scan+=2) == *(ushf*)(match+=2) && *(ushf*)(scan+=2) == *(ushf*)(match+=2) && *(ushf*)(scan+=2) == *(ushf*)(match+=2) && scan < strend); /* The funny "do {}" generates better code on most compilers */ /* Here, scan <= window+strstart+257 */ Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); if (*scan == *match) scan++; len = (MAX_MATCH - 1) - (int)(strend-scan); scan = strend - (MAX_MATCH-1); #else /* UNALIGNED_OK */ if (match[best_len] != scan_end || match[best_len-1] != scan_end1 || *match != *scan || *++match != scan[1]) continue; /* The check at best_len-1 can be removed because it will be made * again later. (This heuristic is not always a win.) * It is not necessary to compare scan[2] and match[2] since they * are always equal when the other bytes match, given that * the hash keys are equal and that HASH_BITS >= 8. */ scan += 2, match++; Assert(*scan == *match, "match[2]?"); /* We check for insufficient lookahead only every 8th comparison; * the 256th check will be made at strstart+258. */ do { } while (*++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && scan < strend); Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); len = MAX_MATCH - (int)(strend - scan); scan = strend - MAX_MATCH; #endif /* UNALIGNED_OK */ if (len > best_len) { s->match_start = cur_match; best_len = len; if (len >= nice_match) break; #ifdef UNALIGNED_OK scan_end = *(ushf*)(scan+best_len-1); #else scan_end1 = scan[best_len-1]; scan_end = scan[best_len]; #endif } } while ((cur_match = prev[cur_match & wmask]) > limit && --chain_length != 0); if ((uInt)best_len <= s->lookahead) return (uInt)best_len; return s->lookahead; } #endif /* ASMV */ #else /* FASTEST */ /* --------------------------------------------------------------------------- * Optimized version for FASTEST only */ local uInt longest_match( deflate_state *s, IPos cur_match) { register Bytef *scan = s->window + s->strstart; /* current string */ register Bytef *match; /* matched string */ register int len; /* length of current match */ register Bytef *strend = s->window + s->strstart + MAX_MATCH; /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. * It is easy to get rid of this optimization if necessary. */ Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); Assert(cur_match < s->strstart, "no future"); match = s->window + cur_match; /* Return failure if the match length is less than 2: */ if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1; /* The check at best_len-1 can be removed because it will be made * again later. (This heuristic is not always a win.) * It is not necessary to compare scan[2] and match[2] since they * are always equal when the other bytes match, given that * the hash keys are equal and that HASH_BITS >= 8. */ scan += 2, match += 2; Assert(*scan == *match, "match[2]?"); /* We check for insufficient lookahead only every 8th comparison; * the 256th check will be made at strstart+258. */ do { } while (*++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && scan < strend); Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); len = MAX_MATCH - (int)(strend - scan); if (len < MIN_MATCH) return MIN_MATCH - 1; s->match_start = cur_match; return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead; } #endif /* FASTEST */ #ifdef DEBUG /* =========================================================================== * Check that the match at match_start is indeed a match. */ local void check_match( deflate_state *s, IPos start, IPos match, int length) { /* check that the match is indeed a match */ if (zmemcmp(s->window + match, s->window + start, length) != EQUAL) { fprintf(stderr, " start %u, match %u, length %d\n", start, match, length); do { fprintf(stderr, "%c%c", s->window[match++], s->window[start++]); } while (--length != 0); z_error("invalid match"); } if (z_verbose > 1) { fprintf(stderr,"\\[%d,%d]", start-match, length); do { putc(s->window[start++], stderr); } while (--length != 0); } } #else # define check_match(s, start, match, length) #endif /* DEBUG */ /* =========================================================================== * Fill the window when the lookahead becomes insufficient. * Updates strstart and lookahead. * * IN assertion: lookahead < MIN_LOOKAHEAD * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD * At least one byte has been read, or avail_in == 0; reads are * performed for at least two bytes (required for the zip translate_eol * option -- not supported here). */ local void fill_window( deflate_state *s) { register unsigned n, m; register Posf *p; unsigned more; /* Amount of free space at the end of the window. */ uInt wsize = s->w_size; Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead"); do { more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart); /* Deal with !@#$% 64K limit: */ if (sizeof(int) <= 2) { if (more == 0 && s->strstart == 0 && s->lookahead == 0) { more = wsize; } else if (more == (unsigned)(-1)) { /* Very unlikely, but possible on 16 bit machine if * strstart == 0 && lookahead == 1 (input done a byte at time) */ more--; } } /* If the window is almost full and there is insufficient lookahead, * move the upper half to the lower one to make room in the upper half. */ if (s->strstart >= wsize+MAX_DIST(s)) { zmemcpy(s->window, s->window+wsize, (unsigned)wsize); s->match_start -= wsize; s->strstart -= wsize; /* we now have strstart >= MAX_DIST */ s->block_start -= (long) wsize; /* Slide the hash table (could be avoided with 32 bit values at the expense of memory usage). We slide even when level == 0 to keep the hash table consistent if we switch back to level > 0 later. (Using level 0 permanently is not an optimal usage of zlib, so we don't care about this pathological case.) */ n = s->hash_size; p = &s->head[n]; do { m = *--p; *p = (Pos)(m >= wsize ? m-wsize : NIL); } while (--n); n = wsize; #ifndef FASTEST p = &s->prev[n]; do { m = *--p; *p = (Pos)(m >= wsize ? m-wsize : NIL); /* If n is not on any hash chain, prev[n] is garbage but * its value will never be used. */ } while (--n); #endif more += wsize; } if (s->strm->avail_in == 0) break; /* If there was no sliding: * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && * more == window_size - lookahead - strstart * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) * => more >= window_size - 2*WSIZE + 2 * In the BIG_MEM or MMAP case (not yet supported), * window_size == input_size + MIN_LOOKAHEAD && * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. * Otherwise, window_size == 2*WSIZE so more >= 2. * If there was sliding, more >= WSIZE. So in all cases, more >= 2. */ Assert(more >= 2, "more < 2"); n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more); s->lookahead += n; /* Initialize the hash value now that we have some input: */ if (s->lookahead + s->insert >= MIN_MATCH) { uInt str = s->strstart - s->insert; s->ins_h = s->window[str]; UPDATE_HASH(s, s->ins_h, s->window[str + 1]); #if MIN_MATCH != 3 Call UPDATE_HASH() MIN_MATCH-3 more times #endif while (s->insert) { UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); #ifndef FASTEST s->prev[str & s->w_mask] = s->head[s->ins_h]; #endif s->head[s->ins_h] = (Pos)str; str++; s->insert--; if (s->lookahead + s->insert < MIN_MATCH) break; } } /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, * but this is not important since only literal bytes will be emitted. */ } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0); /* If the WIN_INIT bytes after the end of the current data have never been * written, then zero those bytes in order to avoid memory check reports of * the use of uninitialized (or uninitialised as Julian writes) bytes by * the longest match routines. Update the high water mark for the next * time through here. WIN_INIT is set to MAX_MATCH since the longest match * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead. */ if (s->high_water < s->window_size) { ulg curr = s->strstart + (ulg)(s->lookahead); ulg init; if (s->high_water < curr) { /* Previous high water mark below current data -- zero WIN_INIT * bytes or up to end of window, whichever is less. */ init = s->window_size - curr; if (init > WIN_INIT) init = WIN_INIT; zmemzero(s->window + curr, (unsigned)init); s->high_water = curr + init; } else if (s->high_water < (ulg)curr + WIN_INIT) { /* High water mark at or above current data, but below current data * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up * to end of window, whichever is less. */ init = (ulg)curr + WIN_INIT - s->high_water; if (init > s->window_size - s->high_water) init = s->window_size - s->high_water; zmemzero(s->window + s->high_water, (unsigned)init); s->high_water += init; } } Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD, "not enough room for search"); } /* =========================================================================== * Flush the current block, with given end-of-file flag. * IN assertion: strstart is set to the end of the current match. */ #define FLUSH_BLOCK_ONLY(s, last) { \ _tr_flush_block(s, (s->block_start >= 0L ? \ (charf *)&s->window[(unsigned)s->block_start] : \ (charf *)Z_NULL), \ (ulg)((long)s->strstart - s->block_start), \ (last)); \ s->block_start = s->strstart; \ flush_pending(s->strm); \ Tracev((stderr,"[FLUSH]")); \ } /* Same but force premature exit if necessary. */ #define FLUSH_BLOCK(s, last) { \ FLUSH_BLOCK_ONLY(s, last); \ if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \ } /* =========================================================================== * Copy without compression as much as possible from the input stream, return * the current block state. * This function does not insert new strings in the dictionary since * uncompressible data is probably not useful. This function is used * only for the level=0 compression option. * NOTE: this function should be optimized to avoid extra copying from * window to pending_buf. */ local block_state deflate_stored( deflate_state *s, int flush) { /* Stored blocks are limited to 0xffff bytes, pending_buf is limited * to pending_buf_size, and each stored block has a 5 byte header: */ ulg max_block_size = 0xffff; ulg max_start; if (max_block_size > s->pending_buf_size - 5) { max_block_size = s->pending_buf_size - 5; } /* Copy as much as possible from input to output: */ for (;;) { /* Fill the window as much as possible: */ if (s->lookahead <= 1) { Assert(s->strstart < s->w_size+MAX_DIST(s) || s->block_start >= (long)s->w_size, "slide too late"); fill_window(s); if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more; if (s->lookahead == 0) break; /* flush the current block */ } Assert(s->block_start >= 0L, "block gone"); s->strstart += s->lookahead; s->lookahead = 0; /* Emit a stored block if pending_buf will be full: */ max_start = s->block_start + max_block_size; if (s->strstart == 0 || (ulg)s->strstart >= max_start) { /* strstart == 0 is possible when wraparound on 16-bit machine */ s->lookahead = (uInt)(s->strstart - max_start); s->strstart = (uInt)max_start; FLUSH_BLOCK(s, 0); } /* Flush if we may have to slide, otherwise block_start may become * negative and the data will be gone: */ if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) { FLUSH_BLOCK(s, 0); } } s->insert = 0; if (flush == Z_FINISH) { FLUSH_BLOCK(s, 1); return finish_done; } if ((long)s->strstart > s->block_start) FLUSH_BLOCK(s, 0); return block_done; } /* =========================================================================== * Compress as much as possible from the input stream, return the current * block state. * This function does not perform lazy evaluation of matches and inserts * new strings in the dictionary only for unmatched strings or for short * matches. It is used only for the fast compression options. */ local block_state deflate_fast( deflate_state *s, int flush) { IPos hash_head; /* head of the hash chain */ int bflush; /* set if current block must be flushed */ for (;;) { /* Make sure that we always have enough lookahead, except * at the end of the input file. We need MAX_MATCH bytes * for the next match, plus MIN_MATCH bytes to insert the * string following the next match. */ if (s->lookahead < MIN_LOOKAHEAD) { fill_window(s); if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { return need_more; } if (s->lookahead == 0) break; /* flush the current block */ } /* Insert the string window[strstart .. strstart+2] in the * dictionary, and set hash_head to the head of the hash chain: */ hash_head = NIL; if (s->lookahead >= MIN_MATCH) { INSERT_STRING(s, s->strstart, hash_head); } /* Find the longest match, discarding those <= prev_length. * At this point we have always match_length < MIN_MATCH */ if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) { /* To simplify the code, we prevent matches with the string * of window index 0 (in particular we have to avoid a match * of the string with itself at the start of the input file). */ s->match_length = longest_match (s, hash_head); /* longest_match() sets match_start */ } if (s->match_length >= MIN_MATCH) { check_match(s, s->strstart, s->match_start, s->match_length); _tr_tally_dist(s, s->strstart - s->match_start, s->match_length - MIN_MATCH, bflush); s->lookahead -= s->match_length; /* Insert new strings in the hash table only if the match length * is not too large. This saves time but degrades compression. */ #ifndef FASTEST if (s->match_length <= s->max_insert_length && s->lookahead >= MIN_MATCH) { s->match_length--; /* string at strstart already in table */ do { s->strstart++; INSERT_STRING(s, s->strstart, hash_head); /* strstart never exceeds WSIZE-MAX_MATCH, so there are * always MIN_MATCH bytes ahead. */ } while (--s->match_length != 0); s->strstart++; } else #endif { s->strstart += s->match_length; s->match_length = 0; s->ins_h = s->window[s->strstart]; UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); #if MIN_MATCH != 3 Call UPDATE_HASH() MIN_MATCH-3 more times #endif /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not * matter since it will be recomputed at next deflate call. */ } } else { /* No match, output a literal byte */ Tracevv((stderr,"%c", s->window[s->strstart])); _tr_tally_lit (s, s->window[s->strstart], bflush); s->lookahead--; s->strstart++; } if (bflush) FLUSH_BLOCK(s, 0); } s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1; if (flush == Z_FINISH) { FLUSH_BLOCK(s, 1); return finish_done; } if (s->last_lit) FLUSH_BLOCK(s, 0); return block_done; } #ifndef FASTEST /* =========================================================================== * Same as above, but achieves better compression. We use a lazy * evaluation for matches: a match is finally adopted only if there is * no better match at the next window position. */ local block_state deflate_slow( deflate_state *s, int flush) { IPos hash_head; /* head of hash chain */ int bflush; /* set if current block must be flushed */ /* Process the input block. */ for (;;) { /* Make sure that we always have enough lookahead, except * at the end of the input file. We need MAX_MATCH bytes * for the next match, plus MIN_MATCH bytes to insert the * string following the next match. */ if (s->lookahead < MIN_LOOKAHEAD) { fill_window(s); if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { return need_more; } if (s->lookahead == 0) break; /* flush the current block */ } /* Insert the string window[strstart .. strstart+2] in the * dictionary, and set hash_head to the head of the hash chain: */ hash_head = NIL; if (s->lookahead >= MIN_MATCH) { INSERT_STRING(s, s->strstart, hash_head); } /* Find the longest match, discarding those <= prev_length. */ s->prev_length = s->match_length, s->prev_match = s->match_start; s->match_length = MIN_MATCH-1; if (hash_head != NIL && s->prev_length < s->max_lazy_match && s->strstart - hash_head <= MAX_DIST(s)) { /* To simplify the code, we prevent matches with the string * of window index 0 (in particular we have to avoid a match * of the string with itself at the start of the input file). */ s->match_length = longest_match (s, hash_head); /* longest_match() sets match_start */ if (s->match_length <= 5 && (s->strategy == Z_FILTERED #if TOO_FAR <= 32767 || (s->match_length == MIN_MATCH && s->strstart - s->match_start > TOO_FAR) #endif )) { /* If prev_match is also MIN_MATCH, match_start is garbage * but we will ignore the current match anyway. */ s->match_length = MIN_MATCH-1; } } /* If there was a match at the previous step and the current * match is not better, output the previous match: */ if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) { uInt max_insert = s->strstart + s->lookahead - MIN_MATCH; /* Do not insert strings in hash table beyond this. */ check_match(s, s->strstart-1, s->prev_match, s->prev_length); _tr_tally_dist(s, s->strstart -1 - s->prev_match, s->prev_length - MIN_MATCH, bflush); /* Insert in hash table all strings up to the end of the match. * strstart-1 and strstart are already inserted. If there is not * enough lookahead, the last two strings are not inserted in * the hash table. */ s->lookahead -= s->prev_length-1; s->prev_length -= 2; do { if (++s->strstart <= max_insert) { INSERT_STRING(s, s->strstart, hash_head); } } while (--s->prev_length != 0); s->match_available = 0; s->match_length = MIN_MATCH-1; s->strstart++; if (bflush) FLUSH_BLOCK(s, 0); } else if (s->match_available) { /* If there was no match at the previous position, output a * single literal. If there was a match but the current match * is longer, truncate the previous match to a single literal. */ Tracevv((stderr,"%c", s->window[s->strstart-1])); _tr_tally_lit(s, s->window[s->strstart-1], bflush); if (bflush) { FLUSH_BLOCK_ONLY(s, 0); } s->strstart++; s->lookahead--; if (s->strm->avail_out == 0) return need_more; } else { /* There is no previous match to compare with, wait for * the next step to decide. */ s->match_available = 1; s->strstart++; s->lookahead--; } } Assert (flush != Z_NO_FLUSH, "no flush?"); if (s->match_available) { Tracevv((stderr,"%c", s->window[s->strstart-1])); _tr_tally_lit(s, s->window[s->strstart-1], bflush); s->match_available = 0; } s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1; if (flush == Z_FINISH) { FLUSH_BLOCK(s, 1); return finish_done; } if (s->last_lit) FLUSH_BLOCK(s, 0); return block_done; } #endif /* FASTEST */ /* =========================================================================== * For Z_RLE, simply look for runs of bytes, generate matches only of distance * one. Do not maintain a hash table. (It will be regenerated if this run of * deflate switches away from Z_RLE.) */ local block_state deflate_rle( deflate_state *s, int flush) { int bflush; /* set if current block must be flushed */ uInt prev; /* byte at distance one to match */ Bytef *scan, *strend; /* scan goes up to strend for length of run */ for (;;) { /* Make sure that we always have enough lookahead, except * at the end of the input file. We need MAX_MATCH bytes * for the longest run, plus one for the unrolled loop. */ if (s->lookahead <= MAX_MATCH) { fill_window(s); if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) { return need_more; } if (s->lookahead == 0) break; /* flush the current block */ } /* See how many times the previous byte repeats */ s->match_length = 0; if (s->lookahead >= MIN_MATCH && s->strstart > 0) { scan = s->window + s->strstart - 1; prev = *scan; if (prev == *++scan && prev == *++scan && prev == *++scan) { strend = s->window + s->strstart + MAX_MATCH; do { } while (prev == *++scan && prev == *++scan && prev == *++scan && prev == *++scan && prev == *++scan && prev == *++scan && prev == *++scan && prev == *++scan && scan < strend); s->match_length = MAX_MATCH - (int)(strend - scan); if (s->match_length > s->lookahead) s->match_length = s->lookahead; } Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan"); } /* Emit match if have run of MIN_MATCH or longer, else emit literal */ if (s->match_length >= MIN_MATCH) { check_match(s, s->strstart, s->strstart - 1, s->match_length); _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush); s->lookahead -= s->match_length; s->strstart += s->match_length; s->match_length = 0; } else { /* No match, output a literal byte */ Tracevv((stderr,"%c", s->window[s->strstart])); _tr_tally_lit (s, s->window[s->strstart], bflush); s->lookahead--; s->strstart++; } if (bflush) FLUSH_BLOCK(s, 0); } s->insert = 0; if (flush == Z_FINISH) { FLUSH_BLOCK(s, 1); return finish_done; } if (s->last_lit) FLUSH_BLOCK(s, 0); return block_done; } /* =========================================================================== * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table. * (It will be regenerated if this run of deflate switches away from Huffman.) */ local block_state deflate_huff( deflate_state *s, int flush) { int bflush; /* set if current block must be flushed */ for (;;) { /* Make sure that we have a literal to write. */ if (s->lookahead == 0) { fill_window(s); if (s->lookahead == 0) { if (flush == Z_NO_FLUSH) return need_more; break; /* flush the current block */ } } /* Output a literal byte */ s->match_length = 0; Tracevv((stderr,"%c", s->window[s->strstart])); _tr_tally_lit (s, s->window[s->strstart], bflush); s->lookahead--; s->strstart++; if (bflush) FLUSH_BLOCK(s, 0); } s->insert = 0; if (flush == Z_FINISH) { FLUSH_BLOCK(s, 1); return finish_done; } if (s->last_lit) FLUSH_BLOCK(s, 0); return block_done; } Compress-Raw-Zlib-2.063/zlib-src/crc32.c0000644000175000017500000003137112146130230016232 0ustar paulpaul/* crc32.c -- compute the CRC-32 of a data stream * Copyright (C) 1995-2006, 2010, 2011, 2012 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h * * Thanks to Rodney Brown for his contribution of faster * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing * tables for updating the shift register in one step with three exclusive-ors * instead of four steps with four exclusive-ors. This results in about a * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3. */ /* @(#) $Id$ */ /* Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore protection on the static variables used to control the first-use generation of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should first call get_crc_table() to initialize the tables before allowing more than one thread to use crc32(). DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h. */ #ifdef MAKECRCH # include # ifndef DYNAMIC_CRC_TABLE # define DYNAMIC_CRC_TABLE # endif /* !DYNAMIC_CRC_TABLE */ #endif /* MAKECRCH */ #include "zutil.h" /* for STDC and FAR definitions */ #define local static /* Definitions for doing the crc four data bytes at a time. */ #if !defined(NOBYFOUR) && defined(Z_U4) # define BYFOUR #endif #ifdef BYFOUR local unsigned long crc32_little OF((unsigned long, const unsigned char FAR *, unsigned)); local unsigned long crc32_big OF((unsigned long, const unsigned char FAR *, unsigned)); # define TBLS 8 #else # define TBLS 1 #endif /* BYFOUR */ /* Local functions for crc concatenation */ local unsigned long gf2_matrix_times OF((unsigned long *mat, unsigned long vec)); local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat)); local uLong crc32_combine_ OF((uLong crc1, uLong crc2, z_off64_t len2)); #ifdef DYNAMIC_CRC_TABLE local volatile int crc_table_empty = 1; local z_crc_t FAR crc_table[TBLS][256]; local void make_crc_table OF((void)); #ifdef MAKECRCH local void write_table OF((FILE *, const z_crc_t FAR *)); #endif /* MAKECRCH */ /* Generate tables for a byte-wise 32-bit CRC calculation on the polynomial: x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1. Polynomials over GF(2) are represented in binary, one bit per coefficient, with the lowest powers in the most significant bit. Then adding polynomials is just exclusive-or, and multiplying a polynomial by x is a right shift by one. If we call the above polynomial p, and represent a byte as the polynomial q, also with the lowest power in the most significant bit (so the byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p, where a mod b means the remainder after dividing a by b. This calculation is done using the shift-register method of multiplying and taking the remainder. The register is initialized to zero, and for each incoming bit, x^32 is added mod p to the register if the bit is a one (where x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by x (which is shifting right by one and adding x^32 mod p if the bit shifted out is a one). We start with the highest power (least significant bit) of q and repeat for all eight bits of q. The first table is simply the CRC of all possible eight bit values. This is all the information needed to generate CRCs on data a byte at a time for all combinations of CRC register values and incoming bytes. The remaining tables allow for word-at-a-time CRC calculation for both big-endian and little- endian machines, where a word is four bytes. */ local void make_crc_table() { z_crc_t c; int n, k; z_crc_t poly; /* polynomial exclusive-or pattern */ /* terms of polynomial defining this crc (except x^32): */ static volatile int first = 1; /* flag to limit concurrent making */ static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26}; /* See if another task is already doing this (not thread-safe, but better than nothing -- significantly reduces duration of vulnerability in case the advice about DYNAMIC_CRC_TABLE is ignored) */ if (first) { first = 0; /* make exclusive-or pattern from polynomial (0xedb88320UL) */ poly = 0; for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++) poly |= (z_crc_t)1 << (31 - p[n]); /* generate a crc for every 8-bit value */ for (n = 0; n < 256; n++) { c = (z_crc_t)n; for (k = 0; k < 8; k++) c = c & 1 ? poly ^ (c >> 1) : c >> 1; crc_table[0][n] = c; } #ifdef BYFOUR /* generate crc for each value followed by one, two, and three zeros, and then the byte reversal of those as well as the first table */ for (n = 0; n < 256; n++) { c = crc_table[0][n]; crc_table[4][n] = ZSWAP32(c); for (k = 1; k < 4; k++) { c = crc_table[0][c & 0xff] ^ (c >> 8); crc_table[k][n] = c; crc_table[k + 4][n] = ZSWAP32(c); } } #endif /* BYFOUR */ crc_table_empty = 0; } else { /* not first */ /* wait for the other guy to finish (not efficient, but rare) */ while (crc_table_empty) ; } #ifdef MAKECRCH /* write out CRC tables to crc32.h */ { FILE *out; out = fopen("crc32.h", "w"); if (out == NULL) return; fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n"); fprintf(out, " * Generated automatically by crc32.c\n */\n\n"); fprintf(out, "local const z_crc_t FAR "); fprintf(out, "crc_table[TBLS][256] =\n{\n {\n"); write_table(out, crc_table[0]); # ifdef BYFOUR fprintf(out, "#ifdef BYFOUR\n"); for (k = 1; k < 8; k++) { fprintf(out, " },\n {\n"); write_table(out, crc_table[k]); } fprintf(out, "#endif\n"); # endif /* BYFOUR */ fprintf(out, " }\n};\n"); fclose(out); } #endif /* MAKECRCH */ } #ifdef MAKECRCH local void write_table( FILE *out, const z_crc_t FAR *table) { int n; for (n = 0; n < 256; n++) fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : " ", (unsigned long)(table[n]), n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", ")); } #endif /* MAKECRCH */ #else /* !DYNAMIC_CRC_TABLE */ /* ======================================================================== * Tables of CRC-32s of all single-byte values, made by make_crc_table(). */ #include "crc32.h" #endif /* DYNAMIC_CRC_TABLE */ /* ========================================================================= * This function can be used by asm versions of crc32() */ const z_crc_t FAR * ZEXPORT get_crc_table() { #ifdef DYNAMIC_CRC_TABLE if (crc_table_empty) make_crc_table(); #endif /* DYNAMIC_CRC_TABLE */ return (const z_crc_t FAR *)crc_table; } /* ========================================================================= */ #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8) #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1 /* ========================================================================= */ unsigned long ZEXPORT crc32( unsigned long crc, const unsigned char FAR *buf, uInt len) { if (buf == Z_NULL) return 0UL; #ifdef DYNAMIC_CRC_TABLE if (crc_table_empty) make_crc_table(); #endif /* DYNAMIC_CRC_TABLE */ #ifdef BYFOUR if (sizeof(void *) == sizeof(ptrdiff_t)) { z_crc_t endian; endian = 1; if (*((unsigned char *)(&endian))) return crc32_little(crc, buf, len); else return crc32_big(crc, buf, len); } #endif /* BYFOUR */ crc = crc ^ 0xffffffffUL; while (len >= 8) { DO8; len -= 8; } if (len) do { DO1; } while (--len); return crc ^ 0xffffffffUL; } #ifdef BYFOUR /* ========================================================================= */ #define DOLIT4 c ^= *buf4++; \ c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \ crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24] #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4 /* ========================================================================= */ local unsigned long crc32_little( unsigned long crc, const unsigned char FAR *buf, unsigned len) { register z_crc_t c; register const z_crc_t FAR *buf4; c = (z_crc_t)crc; c = ~c; while (len && ((ptrdiff_t)buf & 3)) { c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); len--; } buf4 = (const z_crc_t FAR *)(const void FAR *)buf; while (len >= 32) { DOLIT32; len -= 32; } while (len >= 4) { DOLIT4; len -= 4; } buf = (const unsigned char FAR *)buf4; if (len) do { c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); } while (--len); c = ~c; return (unsigned long)c; } /* ========================================================================= */ #define DOBIG4 c ^= *++buf4; \ c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \ crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24] #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4 /* ========================================================================= */ local unsigned long crc32_big( unsigned long crc, const unsigned char FAR *buf, unsigned len) { register z_crc_t c; register const z_crc_t FAR *buf4; c = ZSWAP32((z_crc_t)crc); c = ~c; while (len && ((ptrdiff_t)buf & 3)) { c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); len--; } buf4 = (const z_crc_t FAR *)(const void FAR *)buf; buf4--; while (len >= 32) { DOBIG32; len -= 32; } while (len >= 4) { DOBIG4; len -= 4; } buf4++; buf = (const unsigned char FAR *)buf4; if (len) do { c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); } while (--len); c = ~c; return (unsigned long)(ZSWAP32(c)); } #endif /* BYFOUR */ #define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */ /* ========================================================================= */ local unsigned long gf2_matrix_times( unsigned long *mat, unsigned long vec) { unsigned long sum; sum = 0; while (vec) { if (vec & 1) sum ^= *mat; vec >>= 1; mat++; } return sum; } /* ========================================================================= */ local void gf2_matrix_square( unsigned long *square, unsigned long *mat) { int n; for (n = 0; n < GF2_DIM; n++) square[n] = gf2_matrix_times(mat, mat[n]); } /* ========================================================================= */ local uLong crc32_combine_( uLong crc1, uLong crc2, z_off64_t len2) { int n; unsigned long row; unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */ unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */ /* degenerate case (also disallow negative lengths) */ if (len2 <= 0) return crc1; /* put operator for one zero bit in odd */ odd[0] = 0xedb88320UL; /* CRC-32 polynomial */ row = 1; for (n = 1; n < GF2_DIM; n++) { odd[n] = row; row <<= 1; } /* put operator for two zero bits in even */ gf2_matrix_square(even, odd); /* put operator for four zero bits in odd */ gf2_matrix_square(odd, even); /* apply len2 zeros to crc1 (first square will put the operator for one zero byte, eight zero bits, in even) */ do { /* apply zeros operator for this bit of len2 */ gf2_matrix_square(even, odd); if (len2 & 1) crc1 = gf2_matrix_times(even, crc1); len2 >>= 1; /* if no more bits set, then done */ if (len2 == 0) break; /* another iteration of the loop with odd and even swapped */ gf2_matrix_square(odd, even); if (len2 & 1) crc1 = gf2_matrix_times(odd, crc1); len2 >>= 1; /* if no more bits set, then done */ } while (len2 != 0); /* return combined crc */ crc1 ^= crc2; return crc1; } /* ========================================================================= */ uLong ZEXPORT crc32_combine( uLong crc1, uLong crc2, z_off_t len2) { return crc32_combine_(crc1, crc2, len2); } uLong ZEXPORT crc32_combine64( uLong crc1, uLong crc2, z_off64_t len2) { return crc32_combine_(crc1, crc2, len2); } Compress-Raw-Zlib-2.063/zlib-src/zlib.h0000644000175000017500000025351312146130230016267 0ustar paulpaul/* zlib.h -- interface of the 'zlib' general purpose compression library version 1.2.8, April 28th, 2013 Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. Jean-loup Gailly Mark Adler jloup@gzip.org madler@alumni.caltech.edu The data format used by the zlib library is described by RFCs (Request for Comments) 1950 to 1952 in the files http://tools.ietf.org/html/rfc1950 (zlib format), rfc1951 (deflate format) and rfc1952 (gzip format). */ #ifndef ZLIB_H #define ZLIB_H #include "zconf.h" #ifdef __cplusplus extern "C" { #endif #define ZLIB_VERSION "1.2.8" #define ZLIB_VERNUM 0x1280 #define ZLIB_VER_MAJOR 1 #define ZLIB_VER_MINOR 2 #define ZLIB_VER_REVISION 8 #define ZLIB_VER_SUBREVISION 0 /* The 'zlib' compression library provides in-memory compression and decompression functions, including integrity checks of the uncompressed data. This version of the library supports only one compression method (deflation) but other algorithms will be added later and will have the same stream interface. Compression can be done in a single step if the buffers are large enough, or can be done by repeated calls of the compression function. In the latter case, the application must provide more input and/or consume the output (providing more output space) before each call. The compressed data format used by default by the in-memory functions is the zlib format, which is a zlib wrapper documented in RFC 1950, wrapped around a deflate stream, which is itself documented in RFC 1951. The library also supports reading and writing files in gzip (.gz) format with an interface similar to that of stdio using the functions that start with "gz". The gzip format is different from the zlib format. gzip is a gzip wrapper, documented in RFC 1952, wrapped around a deflate stream. This library can optionally read and write gzip streams in memory as well. The zlib format was designed to be compact and fast for use in memory and on communications channels. The gzip format was designed for single- file compression on file systems, has a larger header than zlib to maintain directory information, and uses a different, slower check method than zlib. The library does not install any signal handler. The decoder checks the consistency of the compressed data, so the library should never crash even in case of corrupted input. */ typedef voidpf (*alloc_func) OF((voidpf opaque, uInt items, uInt size)); typedef void (*free_func) OF((voidpf opaque, voidpf address)); struct internal_state; typedef struct z_stream_s { z_const Bytef *next_in; /* next input byte */ uInt avail_in; /* number of bytes available at next_in */ uLong total_in; /* total number of input bytes read so far */ Bytef *next_out; /* next output byte should be put there */ uInt avail_out; /* remaining free space at next_out */ uLong total_out; /* total number of bytes output so far */ z_const char *msg; /* last error message, NULL if no error */ struct internal_state FAR *state; /* not visible by applications */ alloc_func zalloc; /* used to allocate the internal state */ free_func zfree; /* used to free the internal state */ voidpf opaque; /* private data object passed to zalloc and zfree */ int data_type; /* best guess about the data type: binary or text */ uLong adler; /* adler32 value of the uncompressed data */ uLong reserved; /* reserved for future use */ } z_stream; typedef z_stream FAR *z_streamp; /* gzip header information passed to and from zlib routines. See RFC 1952 for more details on the meanings of these fields. */ typedef struct gz_header_s { int text; /* true if compressed data believed to be text */ uLong time; /* modification time */ int xflags; /* extra flags (not used when writing a gzip file) */ int os; /* operating system */ Bytef *extra; /* pointer to extra field or Z_NULL if none */ uInt extra_len; /* extra field length (valid if extra != Z_NULL) */ uInt extra_max; /* space at extra (only when reading header) */ Bytef *name; /* pointer to zero-terminated file name or Z_NULL */ uInt name_max; /* space at name (only when reading header) */ Bytef *comment; /* pointer to zero-terminated comment or Z_NULL */ uInt comm_max; /* space at comment (only when reading header) */ int hcrc; /* true if there was or will be a header crc */ int done; /* true when done reading gzip header (not used when writing a gzip file) */ } gz_header; typedef gz_header FAR *gz_headerp; /* The application must update next_in and avail_in when avail_in has dropped to zero. It must update next_out and avail_out when avail_out has dropped to zero. The application must initialize zalloc, zfree and opaque before calling the init function. All other fields are set by the compression library and must not be updated by the application. The opaque value provided by the application will be passed as the first parameter for calls of zalloc and zfree. This can be useful for custom memory management. The compression library attaches no meaning to the opaque value. zalloc must return Z_NULL if there is not enough memory for the object. If zlib is used in a multi-threaded application, zalloc and zfree must be thread safe. On 16-bit systems, the functions zalloc and zfree must be able to allocate exactly 65536 bytes, but will not be required to allocate more than this if the symbol MAXSEG_64K is defined (see zconf.h). WARNING: On MSDOS, pointers returned by zalloc for objects of exactly 65536 bytes *must* have their offset normalized to zero. The default allocation function provided by this library ensures this (see zutil.c). To reduce memory requirements and avoid any allocation of 64K objects, at the expense of compression ratio, compile the library with -DMAX_WBITS=14 (see zconf.h). The fields total_in and total_out can be used for statistics or progress reports. After compression, total_in holds the total size of the uncompressed data and may be saved for use in the decompressor (particularly if the decompressor wants to decompress everything in a single step). */ /* constants */ #define Z_NO_FLUSH 0 #define Z_PARTIAL_FLUSH 1 #define Z_SYNC_FLUSH 2 #define Z_FULL_FLUSH 3 #define Z_FINISH 4 #define Z_BLOCK 5 #define Z_TREES 6 /* Allowed flush values; see deflate() and inflate() below for details */ #define Z_OK 0 #define Z_STREAM_END 1 #define Z_NEED_DICT 2 #define Z_ERRNO (-1) #define Z_STREAM_ERROR (-2) #define Z_DATA_ERROR (-3) #define Z_MEM_ERROR (-4) #define Z_BUF_ERROR (-5) #define Z_VERSION_ERROR (-6) /* Return codes for the compression/decompression functions. Negative values * are errors, positive values are used for special but normal events. */ #define Z_NO_COMPRESSION 0 #define Z_BEST_SPEED 1 #define Z_BEST_COMPRESSION 9 #define Z_DEFAULT_COMPRESSION (-1) /* compression levels */ #define Z_FILTERED 1 #define Z_HUFFMAN_ONLY 2 #define Z_RLE 3 #define Z_FIXED 4 #define Z_DEFAULT_STRATEGY 0 /* compression strategy; see deflateInit2() below for details */ #define Z_BINARY 0 #define Z_TEXT 1 #define Z_ASCII Z_TEXT /* for compatibility with 1.2.2 and earlier */ #define Z_UNKNOWN 2 /* Possible values of the data_type field (though see inflate()) */ #define Z_DEFLATED 8 /* The deflate compression method (the only one supported in this version) */ #define Z_NULL 0 /* for initializing zalloc, zfree, opaque */ #define zlib_version zlibVersion() /* for compatibility with versions < 1.0.2 */ /* basic functions */ ZEXTERN const char * ZEXPORT zlibVersion OF((void)); /* The application can compare zlibVersion and ZLIB_VERSION for consistency. If the first character differs, the library code actually used is not compatible with the zlib.h header file used by the application. This check is automatically made by deflateInit and inflateInit. */ /* ZEXTERN int ZEXPORT deflateInit OF((z_streamp strm, int level)); Initializes the internal stream state for compression. The fields zalloc, zfree and opaque must be initialized before by the caller. If zalloc and zfree are set to Z_NULL, deflateInit updates them to use default allocation functions. The compression level must be Z_DEFAULT_COMPRESSION, or between 0 and 9: 1 gives best speed, 9 gives best compression, 0 gives no compression at all (the input data is simply copied a block at a time). Z_DEFAULT_COMPRESSION requests a default compromise between speed and compression (currently equivalent to level 6). deflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_STREAM_ERROR if level is not a valid compression level, or Z_VERSION_ERROR if the zlib library version (zlib_version) is incompatible with the version assumed by the caller (ZLIB_VERSION). msg is set to null if there is no error message. deflateInit does not perform any compression: this will be done by deflate(). */ ZEXTERN int ZEXPORT deflate OF((z_streamp strm, int flush)); /* deflate compresses as much data as possible, and stops when the input buffer becomes empty or the output buffer becomes full. It may introduce some output latency (reading input without producing any output) except when forced to flush. The detailed semantics are as follows. deflate performs one or both of the following actions: - Compress more input starting at next_in and update next_in and avail_in accordingly. If not all input can be processed (because there is not enough room in the output buffer), next_in and avail_in are updated and processing will resume at this point for the next call of deflate(). - Provide more output starting at next_out and update next_out and avail_out accordingly. This action is forced if the parameter flush is non zero. Forcing flush frequently degrades the compression ratio, so this parameter should be set only when necessary (in interactive applications). Some output may be provided even if flush is not set. Before the call of deflate(), the application should ensure that at least one of the actions is possible, by providing more input and/or consuming more output, and updating avail_in or avail_out accordingly; avail_out should never be zero before the call. The application can consume the compressed output when it wants, for example when the output buffer is full (avail_out == 0), or after each call of deflate(). If deflate returns Z_OK and with zero avail_out, it must be called again after making room in the output buffer because there might be more output pending. Normally the parameter flush is set to Z_NO_FLUSH, which allows deflate to decide how much data to accumulate before producing output, in order to maximize compression. If the parameter flush is set to Z_SYNC_FLUSH, all pending output is flushed to the output buffer and the output is aligned on a byte boundary, so that the decompressor can get all input data available so far. (In particular avail_in is zero after the call if enough output space has been provided before the call.) Flushing may degrade compression for some compression algorithms and so it should be used only when necessary. This completes the current deflate block and follows it with an empty stored block that is three bits plus filler bits to the next byte, followed by four bytes (00 00 ff ff). If flush is set to Z_PARTIAL_FLUSH, all pending output is flushed to the output buffer, but the output is not aligned to a byte boundary. All of the input data so far will be available to the decompressor, as for Z_SYNC_FLUSH. This completes the current deflate block and follows it with an empty fixed codes block that is 10 bits long. This assures that enough bytes are output in order for the decompressor to finish the block before the empty fixed code block. If flush is set to Z_BLOCK, a deflate block is completed and emitted, as for Z_SYNC_FLUSH, but the output is not aligned on a byte boundary, and up to seven bits of the current block are held to be written as the next byte after the next deflate block is completed. In this case, the decompressor may not be provided enough bits at this point in order to complete decompression of the data provided so far to the compressor. It may need to wait for the next block to be emitted. This is for advanced applications that need to control the emission of deflate blocks. If flush is set to Z_FULL_FLUSH, all output is flushed as with Z_SYNC_FLUSH, and the compression state is reset so that decompression can restart from this point if previous compressed data has been damaged or if random access is desired. Using Z_FULL_FLUSH too often can seriously degrade compression. If deflate returns with avail_out == 0, this function must be called again with the same value of the flush parameter and more output space (updated avail_out), until the flush is complete (deflate returns with non-zero avail_out). In the case of a Z_FULL_FLUSH or Z_SYNC_FLUSH, make sure that avail_out is greater than six to avoid repeated flush markers due to avail_out == 0 on return. If the parameter flush is set to Z_FINISH, pending input is processed, pending output is flushed and deflate returns with Z_STREAM_END if there was enough output space; if deflate returns with Z_OK, this function must be called again with Z_FINISH and more output space (updated avail_out) but no more input data, until it returns with Z_STREAM_END or an error. After deflate has returned Z_STREAM_END, the only possible operations on the stream are deflateReset or deflateEnd. Z_FINISH can be used immediately after deflateInit if all the compression is to be done in a single step. In this case, avail_out must be at least the value returned by deflateBound (see below). Then deflate is guaranteed to return Z_STREAM_END. If not enough output space is provided, deflate will not return Z_STREAM_END, and it must be called again as described above. deflate() sets strm->adler to the adler32 checksum of all input read so far (that is, total_in bytes). deflate() may update strm->data_type if it can make a good guess about the input data type (Z_BINARY or Z_TEXT). In doubt, the data is considered binary. This field is only for information purposes and does not affect the compression algorithm in any manner. deflate() returns Z_OK if some progress has been made (more input processed or more output produced), Z_STREAM_END if all input has been consumed and all output has been produced (only when flush is set to Z_FINISH), Z_STREAM_ERROR if the stream state was inconsistent (for example if next_in or next_out was Z_NULL), Z_BUF_ERROR if no progress is possible (for example avail_in or avail_out was zero). Note that Z_BUF_ERROR is not fatal, and deflate() can be called again with more input and more output space to continue compressing. */ ZEXTERN int ZEXPORT deflateEnd OF((z_streamp strm)); /* All dynamically allocated data structures for this stream are freed. This function discards any unprocessed input and does not flush any pending output. deflateEnd returns Z_OK if success, Z_STREAM_ERROR if the stream state was inconsistent, Z_DATA_ERROR if the stream was freed prematurely (some input or output was discarded). In the error case, msg may be set but then points to a static string (which must not be deallocated). */ /* ZEXTERN int ZEXPORT inflateInit OF((z_streamp strm)); Initializes the internal stream state for decompression. The fields next_in, avail_in, zalloc, zfree and opaque must be initialized before by the caller. If next_in is not Z_NULL and avail_in is large enough (the exact value depends on the compression method), inflateInit determines the compression method from the zlib header and allocates all data structures accordingly; otherwise the allocation will be deferred to the first call of inflate. If zalloc and zfree are set to Z_NULL, inflateInit updates them to use default allocation functions. inflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_VERSION_ERROR if the zlib library version is incompatible with the version assumed by the caller, or Z_STREAM_ERROR if the parameters are invalid, such as a null pointer to the structure. msg is set to null if there is no error message. inflateInit does not perform any decompression apart from possibly reading the zlib header if present: actual decompression will be done by inflate(). (So next_in and avail_in may be modified, but next_out and avail_out are unused and unchanged.) The current implementation of inflateInit() does not process any header information -- that is deferred until inflate() is called. */ ZEXTERN int ZEXPORT inflate OF((z_streamp strm, int flush)); /* inflate decompresses as much data as possible, and stops when the input buffer becomes empty or the output buffer becomes full. It may introduce some output latency (reading input without producing any output) except when forced to flush. The detailed semantics are as follows. inflate performs one or both of the following actions: - Decompress more input starting at next_in and update next_in and avail_in accordingly. If not all input can be processed (because there is not enough room in the output buffer), next_in is updated and processing will resume at this point for the next call of inflate(). - Provide more output starting at next_out and update next_out and avail_out accordingly. inflate() provides as much output as possible, until there is no more input data or no more space in the output buffer (see below about the flush parameter). Before the call of inflate(), the application should ensure that at least one of the actions is possible, by providing more input and/or consuming more output, and updating the next_* and avail_* values accordingly. The application can consume the uncompressed output when it wants, for example when the output buffer is full (avail_out == 0), or after each call of inflate(). If inflate returns Z_OK and with zero avail_out, it must be called again after making room in the output buffer because there might be more output pending. The flush parameter of inflate() can be Z_NO_FLUSH, Z_SYNC_FLUSH, Z_FINISH, Z_BLOCK, or Z_TREES. Z_SYNC_FLUSH requests that inflate() flush as much output as possible to the output buffer. Z_BLOCK requests that inflate() stop if and when it gets to the next deflate block boundary. When decoding the zlib or gzip format, this will cause inflate() to return immediately after the header and before the first block. When doing a raw inflate, inflate() will go ahead and process the first block, and will return when it gets to the end of that block, or when it runs out of data. The Z_BLOCK option assists in appending to or combining deflate streams. Also to assist in this, on return inflate() will set strm->data_type to the number of unused bits in the last byte taken from strm->next_in, plus 64 if inflate() is currently decoding the last block in the deflate stream, plus 128 if inflate() returned immediately after decoding an end-of-block code or decoding the complete header up to just before the first byte of the deflate stream. The end-of-block will not be indicated until all of the uncompressed data from that block has been written to strm->next_out. The number of unused bits may in general be greater than seven, except when bit 7 of data_type is set, in which case the number of unused bits will be less than eight. data_type is set as noted here every time inflate() returns for all flush options, and so can be used to determine the amount of currently consumed input in bits. The Z_TREES option behaves as Z_BLOCK does, but it also returns when the end of each deflate block header is reached, before any actual data in that block is decoded. This allows the caller to determine the length of the deflate block header for later use in random access within a deflate block. 256 is added to the value of strm->data_type when inflate() returns immediately after reaching the end of the deflate block header. inflate() should normally be called until it returns Z_STREAM_END or an error. However if all decompression is to be performed in a single step (a single call of inflate), the parameter flush should be set to Z_FINISH. In this case all pending input is processed and all pending output is flushed; avail_out must be large enough to hold all of the uncompressed data for the operation to complete. (The size of the uncompressed data may have been saved by the compressor for this purpose.) The use of Z_FINISH is not required to perform an inflation in one step. However it may be used to inform inflate that a faster approach can be used for the single inflate() call. Z_FINISH also informs inflate to not maintain a sliding window if the stream completes, which reduces inflate's memory footprint. If the stream does not complete, either because not all of the stream is provided or not enough output space is provided, then a sliding window will be allocated and inflate() can be called again to continue the operation as if Z_NO_FLUSH had been used. In this implementation, inflate() always flushes as much output as possible to the output buffer, and always uses the faster approach on the first call. So the effects of the flush parameter in this implementation are on the return value of inflate() as noted below, when inflate() returns early when Z_BLOCK or Z_TREES is used, and when inflate() avoids the allocation of memory for a sliding window when Z_FINISH is used. If a preset dictionary is needed after this call (see inflateSetDictionary below), inflate sets strm->adler to the Adler-32 checksum of the dictionary chosen by the compressor and returns Z_NEED_DICT; otherwise it sets strm->adler to the Adler-32 checksum of all output produced so far (that is, total_out bytes) and returns Z_OK, Z_STREAM_END or an error code as described below. At the end of the stream, inflate() checks that its computed adler32 checksum is equal to that saved by the compressor and returns Z_STREAM_END only if the checksum is correct. inflate() can decompress and check either zlib-wrapped or gzip-wrapped deflate data. The header type is detected automatically, if requested when initializing with inflateInit2(). Any information contained in the gzip header is not retained, so applications that need that information should instead use raw inflate, see inflateInit2() below, or inflateBack() and perform their own processing of the gzip header and trailer. When processing gzip-wrapped deflate data, strm->adler32 is set to the CRC-32 of the output producted so far. The CRC-32 is checked against the gzip trailer. inflate() returns Z_OK if some progress has been made (more input processed or more output produced), Z_STREAM_END if the end of the compressed data has been reached and all uncompressed output has been produced, Z_NEED_DICT if a preset dictionary is needed at this point, Z_DATA_ERROR if the input data was corrupted (input stream not conforming to the zlib format or incorrect check value), Z_STREAM_ERROR if the stream structure was inconsistent (for example next_in or next_out was Z_NULL), Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if no progress is possible or if there was not enough room in the output buffer when Z_FINISH is used. Note that Z_BUF_ERROR is not fatal, and inflate() can be called again with more input and more output space to continue decompressing. If Z_DATA_ERROR is returned, the application may then call inflateSync() to look for a good compression block if a partial recovery of the data is desired. */ ZEXTERN int ZEXPORT inflateEnd OF((z_streamp strm)); /* All dynamically allocated data structures for this stream are freed. This function discards any unprocessed input and does not flush any pending output. inflateEnd returns Z_OK if success, Z_STREAM_ERROR if the stream state was inconsistent. In the error case, msg may be set but then points to a static string (which must not be deallocated). */ /* Advanced functions */ /* The following functions are needed only in some special applications. */ /* ZEXTERN int ZEXPORT deflateInit2 OF((z_streamp strm, int level, int method, int windowBits, int memLevel, int strategy)); This is another version of deflateInit with more compression options. The fields next_in, zalloc, zfree and opaque must be initialized before by the caller. The method parameter is the compression method. It must be Z_DEFLATED in this version of the library. The windowBits parameter is the base two logarithm of the window size (the size of the history buffer). It should be in the range 8..15 for this version of the library. Larger values of this parameter result in better compression at the expense of memory usage. The default value is 15 if deflateInit is used instead. windowBits can also be -8..-15 for raw deflate. In this case, -windowBits determines the window size. deflate() will then generate raw deflate data with no zlib header or trailer, and will not compute an adler32 check value. windowBits can also be greater than 15 for optional gzip encoding. Add 16 to windowBits to write a simple gzip header and trailer around the compressed data instead of a zlib wrapper. The gzip header will have no file name, no extra data, no comment, no modification time (set to zero), no header crc, and the operating system will be set to 255 (unknown). If a gzip stream is being written, strm->adler is a crc32 instead of an adler32. The memLevel parameter specifies how much memory should be allocated for the internal compression state. memLevel=1 uses minimum memory but is slow and reduces compression ratio; memLevel=9 uses maximum memory for optimal speed. The default value is 8. See zconf.h for total memory usage as a function of windowBits and memLevel. The strategy parameter is used to tune the compression algorithm. Use the value Z_DEFAULT_STRATEGY for normal data, Z_FILTERED for data produced by a filter (or predictor), Z_HUFFMAN_ONLY to force Huffman encoding only (no string match), or Z_RLE to limit match distances to one (run-length encoding). Filtered data consists mostly of small values with a somewhat random distribution. In this case, the compression algorithm is tuned to compress them better. The effect of Z_FILTERED is to force more Huffman coding and less string matching; it is somewhat intermediate between Z_DEFAULT_STRATEGY and Z_HUFFMAN_ONLY. Z_RLE is designed to be almost as fast as Z_HUFFMAN_ONLY, but give better compression for PNG image data. The strategy parameter only affects the compression ratio but not the correctness of the compressed output even if it is not set appropriately. Z_FIXED prevents the use of dynamic Huffman codes, allowing for a simpler decoder for special applications. deflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_STREAM_ERROR if any parameter is invalid (such as an invalid method), or Z_VERSION_ERROR if the zlib library version (zlib_version) is incompatible with the version assumed by the caller (ZLIB_VERSION). msg is set to null if there is no error message. deflateInit2 does not perform any compression: this will be done by deflate(). */ ZEXTERN int ZEXPORT deflateSetDictionary OF((z_streamp strm, const Bytef *dictionary, uInt dictLength)); /* Initializes the compression dictionary from the given byte sequence without producing any compressed output. When using the zlib format, this function must be called immediately after deflateInit, deflateInit2 or deflateReset, and before any call of deflate. When doing raw deflate, this function must be called either before any call of deflate, or immediately after the completion of a deflate block, i.e. after all input has been consumed and all output has been delivered when using any of the flush options Z_BLOCK, Z_PARTIAL_FLUSH, Z_SYNC_FLUSH, or Z_FULL_FLUSH. The compressor and decompressor must use exactly the same dictionary (see inflateSetDictionary). The dictionary should consist of strings (byte sequences) that are likely to be encountered later in the data to be compressed, with the most commonly used strings preferably put towards the end of the dictionary. Using a dictionary is most useful when the data to be compressed is short and can be predicted with good accuracy; the data can then be compressed better than with the default empty dictionary. Depending on the size of the compression data structures selected by deflateInit or deflateInit2, a part of the dictionary may in effect be discarded, for example if the dictionary is larger than the window size provided in deflateInit or deflateInit2. Thus the strings most likely to be useful should be put at the end of the dictionary, not at the front. In addition, the current implementation of deflate will use at most the window size minus 262 bytes of the provided dictionary. Upon return of this function, strm->adler is set to the adler32 value of the dictionary; the decompressor may later use this value to determine which dictionary has been used by the compressor. (The adler32 value applies to the whole dictionary even if only a subset of the dictionary is actually used by the compressor.) If a raw deflate was requested, then the adler32 value is not computed and strm->adler is not set. deflateSetDictionary returns Z_OK if success, or Z_STREAM_ERROR if a parameter is invalid (e.g. dictionary being Z_NULL) or the stream state is inconsistent (for example if deflate has already been called for this stream or if not at a block boundary for raw deflate). deflateSetDictionary does not perform any compression: this will be done by deflate(). */ ZEXTERN int ZEXPORT deflateCopy OF((z_streamp dest, z_streamp source)); /* Sets the destination stream as a complete copy of the source stream. This function can be useful when several compression strategies will be tried, for example when there are several ways of pre-processing the input data with a filter. The streams that will be discarded should then be freed by calling deflateEnd. Note that deflateCopy duplicates the internal compression state which can be quite large, so this strategy is slow and can consume lots of memory. deflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc being Z_NULL). msg is left unchanged in both source and destination. */ ZEXTERN int ZEXPORT deflateReset OF((z_streamp strm)); /* This function is equivalent to deflateEnd followed by deflateInit, but does not free and reallocate all the internal compression state. The stream will keep the same compression level and any other attributes that may have been set by deflateInit2. deflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc or state being Z_NULL). */ ZEXTERN int ZEXPORT deflateParams OF((z_streamp strm, int level, int strategy)); /* Dynamically update the compression level and compression strategy. The interpretation of level and strategy is as in deflateInit2. This can be used to switch between compression and straight copy of the input data, or to switch to a different kind of input data requiring a different strategy. If the compression level is changed, the input available so far is compressed with the old level (and may be flushed); the new level will take effect only at the next call of deflate(). Before the call of deflateParams, the stream state must be set as for a call of deflate(), since the currently available input may have to be compressed and flushed. In particular, strm->avail_out must be non-zero. deflateParams returns Z_OK if success, Z_STREAM_ERROR if the source stream state was inconsistent or if a parameter was invalid, Z_BUF_ERROR if strm->avail_out was zero. */ ZEXTERN int ZEXPORT deflateTune OF((z_streamp strm, int good_length, int max_lazy, int nice_length, int max_chain)); /* Fine tune deflate's internal compression parameters. This should only be used by someone who understands the algorithm used by zlib's deflate for searching for the best matching string, and even then only by the most fanatic optimizer trying to squeeze out the last compressed bit for their specific input data. Read the deflate.c source code for the meaning of the max_lazy, good_length, nice_length, and max_chain parameters. deflateTune() can be called after deflateInit() or deflateInit2(), and returns Z_OK on success, or Z_STREAM_ERROR for an invalid deflate stream. */ ZEXTERN uLong ZEXPORT deflateBound OF((z_streamp strm, uLong sourceLen)); /* deflateBound() returns an upper bound on the compressed size after deflation of sourceLen bytes. It must be called after deflateInit() or deflateInit2(), and after deflateSetHeader(), if used. This would be used to allocate an output buffer for deflation in a single pass, and so would be called before deflate(). If that first deflate() call is provided the sourceLen input bytes, an output buffer allocated to the size returned by deflateBound(), and the flush value Z_FINISH, then deflate() is guaranteed to return Z_STREAM_END. Note that it is possible for the compressed size to be larger than the value returned by deflateBound() if flush options other than Z_FINISH or Z_NO_FLUSH are used. */ ZEXTERN int ZEXPORT deflatePending OF((z_streamp strm, unsigned *pending, int *bits)); /* deflatePending() returns the number of bytes and bits of output that have been generated, but not yet provided in the available output. The bytes not provided would be due to the available output space having being consumed. The number of bits of output not provided are between 0 and 7, where they await more bits to join them in order to fill out a full byte. If pending or bits are Z_NULL, then those values are not set. deflatePending returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent. */ ZEXTERN int ZEXPORT deflatePrime OF((z_streamp strm, int bits, int value)); /* deflatePrime() inserts bits in the deflate output stream. The intent is that this function is used to start off the deflate output with the bits leftover from a previous deflate stream when appending to it. As such, this function can only be used for raw deflate, and must be used before the first deflate() call after a deflateInit2() or deflateReset(). bits must be less than or equal to 16, and that many of the least significant bits of value will be inserted in the output. deflatePrime returns Z_OK if success, Z_BUF_ERROR if there was not enough room in the internal buffer to insert the bits, or Z_STREAM_ERROR if the source stream state was inconsistent. */ ZEXTERN int ZEXPORT deflateSetHeader OF((z_streamp strm, gz_headerp head)); /* deflateSetHeader() provides gzip header information for when a gzip stream is requested by deflateInit2(). deflateSetHeader() may be called after deflateInit2() or deflateReset() and before the first call of deflate(). The text, time, os, extra field, name, and comment information in the provided gz_header structure are written to the gzip header (xflag is ignored -- the extra flags are set according to the compression level). The caller must assure that, if not Z_NULL, name and comment are terminated with a zero byte, and that if extra is not Z_NULL, that extra_len bytes are available there. If hcrc is true, a gzip header crc is included. Note that the current versions of the command-line version of gzip (up through version 1.3.x) do not support header crc's, and will report that it is a "multi-part gzip file" and give up. If deflateSetHeader is not used, the default gzip header has text false, the time set to zero, and os set to 255, with no extra, name, or comment fields. The gzip header is returned to the default state by deflateReset(). deflateSetHeader returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent. */ /* ZEXTERN int ZEXPORT inflateInit2 OF((z_streamp strm, int windowBits)); This is another version of inflateInit with an extra parameter. The fields next_in, avail_in, zalloc, zfree and opaque must be initialized before by the caller. The windowBits parameter is the base two logarithm of the maximum window size (the size of the history buffer). It should be in the range 8..15 for this version of the library. The default value is 15 if inflateInit is used instead. windowBits must be greater than or equal to the windowBits value provided to deflateInit2() while compressing, or it must be equal to 15 if deflateInit2() was not used. If a compressed stream with a larger window size is given as input, inflate() will return with the error code Z_DATA_ERROR instead of trying to allocate a larger window. windowBits can also be zero to request that inflate use the window size in the zlib header of the compressed stream. windowBits can also be -8..-15 for raw inflate. In this case, -windowBits determines the window size. inflate() will then process raw deflate data, not looking for a zlib or gzip header, not generating a check value, and not looking for any check values for comparison at the end of the stream. This is for use with other formats that use the deflate compressed data format such as zip. Those formats provide their own check values. If a custom format is developed using the raw deflate format for compressed data, it is recommended that a check value such as an adler32 or a crc32 be applied to the uncompressed data as is done in the zlib, gzip, and zip formats. For most applications, the zlib format should be used as is. Note that comments above on the use in deflateInit2() applies to the magnitude of windowBits. windowBits can also be greater than 15 for optional gzip decoding. Add 32 to windowBits to enable zlib and gzip decoding with automatic header detection, or add 16 to decode only the gzip format (the zlib format will return a Z_DATA_ERROR). If a gzip stream is being decoded, strm->adler is a crc32 instead of an adler32. inflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_VERSION_ERROR if the zlib library version is incompatible with the version assumed by the caller, or Z_STREAM_ERROR if the parameters are invalid, such as a null pointer to the structure. msg is set to null if there is no error message. inflateInit2 does not perform any decompression apart from possibly reading the zlib header if present: actual decompression will be done by inflate(). (So next_in and avail_in may be modified, but next_out and avail_out are unused and unchanged.) The current implementation of inflateInit2() does not process any header information -- that is deferred until inflate() is called. */ ZEXTERN int ZEXPORT inflateSetDictionary OF((z_streamp strm, const Bytef *dictionary, uInt dictLength)); /* Initializes the decompression dictionary from the given uncompressed byte sequence. This function must be called immediately after a call of inflate, if that call returned Z_NEED_DICT. The dictionary chosen by the compressor can be determined from the adler32 value returned by that call of inflate. The compressor and decompressor must use exactly the same dictionary (see deflateSetDictionary). For raw inflate, this function can be called at any time to set the dictionary. If the provided dictionary is smaller than the window and there is already data in the window, then the provided dictionary will amend what's there. The application must insure that the dictionary that was used for compression is provided. inflateSetDictionary returns Z_OK if success, Z_STREAM_ERROR if a parameter is invalid (e.g. dictionary being Z_NULL) or the stream state is inconsistent, Z_DATA_ERROR if the given dictionary doesn't match the expected one (incorrect adler32 value). inflateSetDictionary does not perform any decompression: this will be done by subsequent calls of inflate(). */ ZEXTERN int ZEXPORT inflateGetDictionary OF((z_streamp strm, Bytef *dictionary, uInt *dictLength)); /* Returns the sliding dictionary being maintained by inflate. dictLength is set to the number of bytes in the dictionary, and that many bytes are copied to dictionary. dictionary must have enough space, where 32768 bytes is always enough. If inflateGetDictionary() is called with dictionary equal to Z_NULL, then only the dictionary length is returned, and nothing is copied. Similary, if dictLength is Z_NULL, then it is not set. inflateGetDictionary returns Z_OK on success, or Z_STREAM_ERROR if the stream state is inconsistent. */ ZEXTERN int ZEXPORT inflateSync OF((z_streamp strm)); /* Skips invalid compressed data until a possible full flush point (see above for the description of deflate with Z_FULL_FLUSH) can be found, or until all available input is skipped. No output is provided. inflateSync searches for a 00 00 FF FF pattern in the compressed data. All full flush points have this pattern, but not all occurrences of this pattern are full flush points. inflateSync returns Z_OK if a possible full flush point has been found, Z_BUF_ERROR if no more input was provided, Z_DATA_ERROR if no flush point has been found, or Z_STREAM_ERROR if the stream structure was inconsistent. In the success case, the application may save the current current value of total_in which indicates where valid compressed data was found. In the error case, the application may repeatedly call inflateSync, providing more input each time, until success or end of the input data. */ ZEXTERN int ZEXPORT inflateCopy OF((z_streamp dest, z_streamp source)); /* Sets the destination stream as a complete copy of the source stream. This function can be useful when randomly accessing a large stream. The first pass through the stream can periodically record the inflate state, allowing restarting inflate at those points when randomly accessing the stream. inflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc being Z_NULL). msg is left unchanged in both source and destination. */ ZEXTERN int ZEXPORT inflateReset OF((z_streamp strm)); /* This function is equivalent to inflateEnd followed by inflateInit, but does not free and reallocate all the internal decompression state. The stream will keep attributes that may have been set by inflateInit2. inflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc or state being Z_NULL). */ ZEXTERN int ZEXPORT inflateReset2 OF((z_streamp strm, int windowBits)); /* This function is the same as inflateReset, but it also permits changing the wrap and window size requests. The windowBits parameter is interpreted the same as it is for inflateInit2. inflateReset2 returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc or state being Z_NULL), or if the windowBits parameter is invalid. */ ZEXTERN int ZEXPORT inflatePrime OF((z_streamp strm, int bits, int value)); /* This function inserts bits in the inflate input stream. The intent is that this function is used to start inflating at a bit position in the middle of a byte. The provided bits will be used before any bytes are used from next_in. This function should only be used with raw inflate, and should be used before the first inflate() call after inflateInit2() or inflateReset(). bits must be less than or equal to 16, and that many of the least significant bits of value will be inserted in the input. If bits is negative, then the input stream bit buffer is emptied. Then inflatePrime() can be called again to put bits in the buffer. This is used to clear out bits leftover after feeding inflate a block description prior to feeding inflate codes. inflatePrime returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent. */ ZEXTERN long ZEXPORT inflateMark OF((z_streamp strm)); /* This function returns two values, one in the lower 16 bits of the return value, and the other in the remaining upper bits, obtained by shifting the return value down 16 bits. If the upper value is -1 and the lower value is zero, then inflate() is currently decoding information outside of a block. If the upper value is -1 and the lower value is non-zero, then inflate is in the middle of a stored block, with the lower value equaling the number of bytes from the input remaining to copy. If the upper value is not -1, then it is the number of bits back from the current bit position in the input of the code (literal or length/distance pair) currently being processed. In that case the lower value is the number of bytes already emitted for that code. A code is being processed if inflate is waiting for more input to complete decoding of the code, or if it has completed decoding but is waiting for more output space to write the literal or match data. inflateMark() is used to mark locations in the input data for random access, which may be at bit positions, and to note those cases where the output of a code may span boundaries of random access blocks. The current location in the input stream can be determined from avail_in and data_type as noted in the description for the Z_BLOCK flush parameter for inflate. inflateMark returns the value noted above or -1 << 16 if the provided source stream state was inconsistent. */ ZEXTERN int ZEXPORT inflateGetHeader OF((z_streamp strm, gz_headerp head)); /* inflateGetHeader() requests that gzip header information be stored in the provided gz_header structure. inflateGetHeader() may be called after inflateInit2() or inflateReset(), and before the first call of inflate(). As inflate() processes the gzip stream, head->done is zero until the header is completed, at which time head->done is set to one. If a zlib stream is being decoded, then head->done is set to -1 to indicate that there will be no gzip header information forthcoming. Note that Z_BLOCK or Z_TREES can be used to force inflate() to return immediately after header processing is complete and before any actual data is decompressed. The text, time, xflags, and os fields are filled in with the gzip header contents. hcrc is set to true if there is a header CRC. (The header CRC was valid if done is set to one.) If extra is not Z_NULL, then extra_max contains the maximum number of bytes to write to extra. Once done is true, extra_len contains the actual extra field length, and extra contains the extra field, or that field truncated if extra_max is less than extra_len. If name is not Z_NULL, then up to name_max characters are written there, terminated with a zero unless the length is greater than name_max. If comment is not Z_NULL, then up to comm_max characters are written there, terminated with a zero unless the length is greater than comm_max. When any of extra, name, or comment are not Z_NULL and the respective field is not present in the header, then that field is set to Z_NULL to signal its absence. This allows the use of deflateSetHeader() with the returned structure to duplicate the header. However if those fields are set to allocated memory, then the application will need to save those pointers elsewhere so that they can be eventually freed. If inflateGetHeader is not used, then the header information is simply discarded. The header is always checked for validity, including the header CRC if present. inflateReset() will reset the process to discard the header information. The application would need to call inflateGetHeader() again to retrieve the header from the next gzip stream. inflateGetHeader returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent. */ /* ZEXTERN int ZEXPORT inflateBackInit OF((z_streamp strm, int windowBits, unsigned char FAR *window)); Initialize the internal stream state for decompression using inflateBack() calls. The fields zalloc, zfree and opaque in strm must be initialized before the call. If zalloc and zfree are Z_NULL, then the default library- derived memory allocation routines are used. windowBits is the base two logarithm of the window size, in the range 8..15. window is a caller supplied buffer of that size. Except for special applications where it is assured that deflate was used with small window sizes, windowBits must be 15 and a 32K byte window must be supplied to be able to decompress general deflate streams. See inflateBack() for the usage of these routines. inflateBackInit will return Z_OK on success, Z_STREAM_ERROR if any of the parameters are invalid, Z_MEM_ERROR if the internal state could not be allocated, or Z_VERSION_ERROR if the version of the library does not match the version of the header file. */ typedef unsigned (*in_func) OF((void FAR *, z_const unsigned char FAR * FAR *)); typedef int (*out_func) OF((void FAR *, unsigned char FAR *, unsigned)); ZEXTERN int ZEXPORT inflateBack OF((z_streamp strm, in_func in, void FAR *in_desc, out_func out, void FAR *out_desc)); /* inflateBack() does a raw inflate with a single call using a call-back interface for input and output. This is potentially more efficient than inflate() for file i/o applications, in that it avoids copying between the output and the sliding window by simply making the window itself the output buffer. inflate() can be faster on modern CPUs when used with large buffers. inflateBack() trusts the application to not change the output buffer passed by the output function, at least until inflateBack() returns. inflateBackInit() must be called first to allocate the internal state and to initialize the state with the user-provided window buffer. inflateBack() may then be used multiple times to inflate a complete, raw deflate stream with each call. inflateBackEnd() is then called to free the allocated state. A raw deflate stream is one with no zlib or gzip header or trailer. This routine would normally be used in a utility that reads zip or gzip files and writes out uncompressed files. The utility would decode the header and process the trailer on its own, hence this routine expects only the raw deflate stream to decompress. This is different from the normal behavior of inflate(), which expects either a zlib or gzip header and trailer around the deflate stream. inflateBack() uses two subroutines supplied by the caller that are then called by inflateBack() for input and output. inflateBack() calls those routines until it reads a complete deflate stream and writes out all of the uncompressed data, or until it encounters an error. The function's parameters and return types are defined above in the in_func and out_func typedefs. inflateBack() will call in(in_desc, &buf) which should return the number of bytes of provided input, and a pointer to that input in buf. If there is no input available, in() must return zero--buf is ignored in that case--and inflateBack() will return a buffer error. inflateBack() will call out(out_desc, buf, len) to write the uncompressed data buf[0..len-1]. out() should return zero on success, or non-zero on failure. If out() returns non-zero, inflateBack() will return with an error. Neither in() nor out() are permitted to change the contents of the window provided to inflateBackInit(), which is also the buffer that out() uses to write from. The length written by out() will be at most the window size. Any non-zero amount of input may be provided by in(). For convenience, inflateBack() can be provided input on the first call by setting strm->next_in and strm->avail_in. If that input is exhausted, then in() will be called. Therefore strm->next_in must be initialized before calling inflateBack(). If strm->next_in is Z_NULL, then in() will be called immediately for input. If strm->next_in is not Z_NULL, then strm->avail_in must also be initialized, and then if strm->avail_in is not zero, input will initially be taken from strm->next_in[0 .. strm->avail_in - 1]. The in_desc and out_desc parameters of inflateBack() is passed as the first parameter of in() and out() respectively when they are called. These descriptors can be optionally used to pass any information that the caller- supplied in() and out() functions need to do their job. On return, inflateBack() will set strm->next_in and strm->avail_in to pass back any unused input that was provided by the last in() call. The return values of inflateBack() can be Z_STREAM_END on success, Z_BUF_ERROR if in() or out() returned an error, Z_DATA_ERROR if there was a format error in the deflate stream (in which case strm->msg is set to indicate the nature of the error), or Z_STREAM_ERROR if the stream was not properly initialized. In the case of Z_BUF_ERROR, an input or output error can be distinguished using strm->next_in which will be Z_NULL only if in() returned an error. If strm->next_in is not Z_NULL, then the Z_BUF_ERROR was due to out() returning non-zero. (in() will always be called before out(), so strm->next_in is assured to be defined if out() returns non-zero.) Note that inflateBack() cannot return Z_OK. */ ZEXTERN int ZEXPORT inflateBackEnd OF((z_streamp strm)); /* All memory allocated by inflateBackInit() is freed. inflateBackEnd() returns Z_OK on success, or Z_STREAM_ERROR if the stream state was inconsistent. */ ZEXTERN uLong ZEXPORT zlibCompileFlags OF((void)); /* Return flags indicating compile-time options. Type sizes, two bits each, 00 = 16 bits, 01 = 32, 10 = 64, 11 = other: 1.0: size of uInt 3.2: size of uLong 5.4: size of voidpf (pointer) 7.6: size of z_off_t Compiler, assembler, and debug options: 8: DEBUG 9: ASMV or ASMINF -- use ASM code 10: ZLIB_WINAPI -- exported functions use the WINAPI calling convention 11: 0 (reserved) One-time table building (smaller code, but not thread-safe if true): 12: BUILDFIXED -- build static block decoding tables when needed 13: DYNAMIC_CRC_TABLE -- build CRC calculation tables when needed 14,15: 0 (reserved) Library content (indicates missing functionality): 16: NO_GZCOMPRESS -- gz* functions cannot compress (to avoid linking deflate code when not needed) 17: NO_GZIP -- deflate can't write gzip streams, and inflate can't detect and decode gzip streams (to avoid linking crc code) 18-19: 0 (reserved) Operation variations (changes in library functionality): 20: PKZIP_BUG_WORKAROUND -- slightly more permissive inflate 21: FASTEST -- deflate algorithm with only one, lowest compression level 22,23: 0 (reserved) The sprintf variant used by gzprintf (zero is best): 24: 0 = vs*, 1 = s* -- 1 means limited to 20 arguments after the format 25: 0 = *nprintf, 1 = *printf -- 1 means gzprintf() not secure! 26: 0 = returns value, 1 = void -- 1 means inferred string length returned Remainder: 27-31: 0 (reserved) */ #ifndef Z_SOLO /* utility functions */ /* The following utility functions are implemented on top of the basic stream-oriented functions. To simplify the interface, some default options are assumed (compression level and memory usage, standard memory allocation functions). The source code of these utility functions can be modified if you need special options. */ ZEXTERN int ZEXPORT compress OF((Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen)); /* Compresses the source buffer into the destination buffer. sourceLen is the byte length of the source buffer. Upon entry, destLen is the total size of the destination buffer, which must be at least the value returned by compressBound(sourceLen). Upon exit, destLen is the actual size of the compressed buffer. compress returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if there was not enough room in the output buffer. */ ZEXTERN int ZEXPORT compress2 OF((Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen, int level)); /* Compresses the source buffer into the destination buffer. The level parameter has the same meaning as in deflateInit. sourceLen is the byte length of the source buffer. Upon entry, destLen is the total size of the destination buffer, which must be at least the value returned by compressBound(sourceLen). Upon exit, destLen is the actual size of the compressed buffer. compress2 returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if there was not enough room in the output buffer, Z_STREAM_ERROR if the level parameter is invalid. */ ZEXTERN uLong ZEXPORT compressBound OF((uLong sourceLen)); /* compressBound() returns an upper bound on the compressed size after compress() or compress2() on sourceLen bytes. It would be used before a compress() or compress2() call to allocate the destination buffer. */ ZEXTERN int ZEXPORT uncompress OF((Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen)); /* Decompresses the source buffer into the destination buffer. sourceLen is the byte length of the source buffer. Upon entry, destLen is the total size of the destination buffer, which must be large enough to hold the entire uncompressed data. (The size of the uncompressed data must have been saved previously by the compressor and transmitted to the decompressor by some mechanism outside the scope of this compression library.) Upon exit, destLen is the actual size of the uncompressed buffer. uncompress returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if there was not enough room in the output buffer, or Z_DATA_ERROR if the input data was corrupted or incomplete. In the case where there is not enough room, uncompress() will fill the output buffer with the uncompressed data up to that point. */ /* gzip file access functions */ /* This library supports reading and writing files in gzip (.gz) format with an interface similar to that of stdio, using the functions that start with "gz". The gzip format is different from the zlib format. gzip is a gzip wrapper, documented in RFC 1952, wrapped around a deflate stream. */ typedef struct gzFile_s *gzFile; /* semi-opaque gzip file descriptor */ /* ZEXTERN gzFile ZEXPORT gzopen OF((const char *path, const char *mode)); Opens a gzip (.gz) file for reading or writing. The mode parameter is as in fopen ("rb" or "wb") but can also include a compression level ("wb9") or a strategy: 'f' for filtered data as in "wb6f", 'h' for Huffman-only compression as in "wb1h", 'R' for run-length encoding as in "wb1R", or 'F' for fixed code compression as in "wb9F". (See the description of deflateInit2 for more information about the strategy parameter.) 'T' will request transparent writing or appending with no compression and not using the gzip format. "a" can be used instead of "w" to request that the gzip stream that will be written be appended to the file. "+" will result in an error, since reading and writing to the same gzip file is not supported. The addition of "x" when writing will create the file exclusively, which fails if the file already exists. On systems that support it, the addition of "e" when reading or writing will set the flag to close the file on an execve() call. These functions, as well as gzip, will read and decode a sequence of gzip streams in a file. The append function of gzopen() can be used to create such a file. (Also see gzflush() for another way to do this.) When appending, gzopen does not test whether the file begins with a gzip stream, nor does it look for the end of the gzip streams to begin appending. gzopen will simply append a gzip stream to the existing file. gzopen can be used to read a file which is not in gzip format; in this case gzread will directly read from the file without decompression. When reading, this will be detected automatically by looking for the magic two- byte gzip header. gzopen returns NULL if the file could not be opened, if there was insufficient memory to allocate the gzFile state, or if an invalid mode was specified (an 'r', 'w', or 'a' was not provided, or '+' was provided). errno can be checked to determine if the reason gzopen failed was that the file could not be opened. */ ZEXTERN gzFile ZEXPORT gzdopen OF((int fd, const char *mode)); /* gzdopen associates a gzFile with the file descriptor fd. File descriptors are obtained from calls like open, dup, creat, pipe or fileno (if the file has been previously opened with fopen). The mode parameter is as in gzopen. The next call of gzclose on the returned gzFile will also close the file descriptor fd, just like fclose(fdopen(fd, mode)) closes the file descriptor fd. If you want to keep fd open, use fd = dup(fd_keep); gz = gzdopen(fd, mode);. The duplicated descriptor should be saved to avoid a leak, since gzdopen does not close fd if it fails. If you are using fileno() to get the file descriptor from a FILE *, then you will have to use dup() to avoid double-close()ing the file descriptor. Both gzclose() and fclose() will close the associated file descriptor, so they need to have different file descriptors. gzdopen returns NULL if there was insufficient memory to allocate the gzFile state, if an invalid mode was specified (an 'r', 'w', or 'a' was not provided, or '+' was provided), or if fd is -1. The file descriptor is not used until the next gz* read, write, seek, or close operation, so gzdopen will not detect if fd is invalid (unless fd is -1). */ ZEXTERN int ZEXPORT gzbuffer OF((gzFile file, unsigned size)); /* Set the internal buffer size used by this library's functions. The default buffer size is 8192 bytes. This function must be called after gzopen() or gzdopen(), and before any other calls that read or write the file. The buffer memory allocation is always deferred to the first read or write. Two buffers are allocated, either both of the specified size when writing, or one of the specified size and the other twice that size when reading. A larger buffer size of, for example, 64K or 128K bytes will noticeably increase the speed of decompression (reading). The new buffer size also affects the maximum length for gzprintf(). gzbuffer() returns 0 on success, or -1 on failure, such as being called too late. */ ZEXTERN int ZEXPORT gzsetparams OF((gzFile file, int level, int strategy)); /* Dynamically update the compression level or strategy. See the description of deflateInit2 for the meaning of these parameters. gzsetparams returns Z_OK if success, or Z_STREAM_ERROR if the file was not opened for writing. */ ZEXTERN int ZEXPORT gzread OF((gzFile file, voidp buf, unsigned len)); /* Reads the given number of uncompressed bytes from the compressed file. If the input file is not in gzip format, gzread copies the given number of bytes into the buffer directly from the file. After reaching the end of a gzip stream in the input, gzread will continue to read, looking for another gzip stream. Any number of gzip streams may be concatenated in the input file, and will all be decompressed by gzread(). If something other than a gzip stream is encountered after a gzip stream, that remaining trailing garbage is ignored (and no error is returned). gzread can be used to read a gzip file that is being concurrently written. Upon reaching the end of the input, gzread will return with the available data. If the error code returned by gzerror is Z_OK or Z_BUF_ERROR, then gzclearerr can be used to clear the end of file indicator in order to permit gzread to be tried again. Z_OK indicates that a gzip stream was completed on the last gzread. Z_BUF_ERROR indicates that the input file ended in the middle of a gzip stream. Note that gzread does not return -1 in the event of an incomplete gzip stream. This error is deferred until gzclose(), which will return Z_BUF_ERROR if the last gzread ended in the middle of a gzip stream. Alternatively, gzerror can be used before gzclose to detect this case. gzread returns the number of uncompressed bytes actually read, less than len for end of file, or -1 for error. */ ZEXTERN int ZEXPORT gzwrite OF((gzFile file, voidpc buf, unsigned len)); /* Writes the given number of uncompressed bytes into the compressed file. gzwrite returns the number of uncompressed bytes written or 0 in case of error. */ ZEXTERN int ZEXPORTVA gzprintf Z_ARG((gzFile file, const char *format, ...)); /* Converts, formats, and writes the arguments to the compressed file under control of the format string, as in fprintf. gzprintf returns the number of uncompressed bytes actually written, or 0 in case of error. The number of uncompressed bytes written is limited to 8191, or one less than the buffer size given to gzbuffer(). The caller should assure that this limit is not exceeded. If it is exceeded, then gzprintf() will return an error (0) with nothing written. In this case, there may also be a buffer overflow with unpredictable consequences, which is possible only if zlib was compiled with the insecure functions sprintf() or vsprintf() because the secure snprintf() or vsnprintf() functions were not available. This can be determined using zlibCompileFlags(). */ ZEXTERN int ZEXPORT gzputs OF((gzFile file, const char *s)); /* Writes the given null-terminated string to the compressed file, excluding the terminating null character. gzputs returns the number of characters written, or -1 in case of error. */ ZEXTERN char * ZEXPORT gzgets OF((gzFile file, char *buf, int len)); /* Reads bytes from the compressed file until len-1 characters are read, or a newline character is read and transferred to buf, or an end-of-file condition is encountered. If any characters are read or if len == 1, the string is terminated with a null character. If no characters are read due to an end-of-file or len < 1, then the buffer is left untouched. gzgets returns buf which is a null-terminated string, or it returns NULL for end-of-file or in case of error. If there was an error, the contents at buf are indeterminate. */ ZEXTERN int ZEXPORT gzputc OF((gzFile file, int c)); /* Writes c, converted to an unsigned char, into the compressed file. gzputc returns the value that was written, or -1 in case of error. */ ZEXTERN int ZEXPORT gzgetc OF((gzFile file)); /* Reads one byte from the compressed file. gzgetc returns this byte or -1 in case of end of file or error. This is implemented as a macro for speed. As such, it does not do all of the checking the other functions do. I.e. it does not check to see if file is NULL, nor whether the structure file points to has been clobbered or not. */ ZEXTERN int ZEXPORT gzungetc OF((int c, gzFile file)); /* Push one character back onto the stream to be read as the first character on the next read. At least one character of push-back is allowed. gzungetc() returns the character pushed, or -1 on failure. gzungetc() will fail if c is -1, and may fail if a character has been pushed but not read yet. If gzungetc is used immediately after gzopen or gzdopen, at least the output buffer size of pushed characters is allowed. (See gzbuffer above.) The pushed character will be discarded if the stream is repositioned with gzseek() or gzrewind(). */ ZEXTERN int ZEXPORT gzflush OF((gzFile file, int flush)); /* Flushes all pending output into the compressed file. The parameter flush is as in the deflate() function. The return value is the zlib error number (see function gzerror below). gzflush is only permitted when writing. If the flush parameter is Z_FINISH, the remaining data is written and the gzip stream is completed in the output. If gzwrite() is called again, a new gzip stream will be started in the output. gzread() is able to read such concatented gzip streams. gzflush should be called only when strictly necessary because it will degrade compression if called too often. */ /* ZEXTERN z_off_t ZEXPORT gzseek OF((gzFile file, z_off_t offset, int whence)); Sets the starting position for the next gzread or gzwrite on the given compressed file. The offset represents a number of bytes in the uncompressed data stream. The whence parameter is defined as in lseek(2); the value SEEK_END is not supported. If the file is opened for reading, this function is emulated but can be extremely slow. If the file is opened for writing, only forward seeks are supported; gzseek then compresses a sequence of zeroes up to the new starting position. gzseek returns the resulting offset location as measured in bytes from the beginning of the uncompressed stream, or -1 in case of error, in particular if the file is opened for writing and the new starting position would be before the current position. */ ZEXTERN int ZEXPORT gzrewind OF((gzFile file)); /* Rewinds the given file. This function is supported only for reading. gzrewind(file) is equivalent to (int)gzseek(file, 0L, SEEK_SET) */ /* ZEXTERN z_off_t ZEXPORT gztell OF((gzFile file)); Returns the starting position for the next gzread or gzwrite on the given compressed file. This position represents a number of bytes in the uncompressed data stream, and is zero when starting, even if appending or reading a gzip stream from the middle of a file using gzdopen(). gztell(file) is equivalent to gzseek(file, 0L, SEEK_CUR) */ /* ZEXTERN z_off_t ZEXPORT gzoffset OF((gzFile file)); Returns the current offset in the file being read or written. This offset includes the count of bytes that precede the gzip stream, for example when appending or when using gzdopen() for reading. When reading, the offset does not include as yet unused buffered input. This information can be used for a progress indicator. On error, gzoffset() returns -1. */ ZEXTERN int ZEXPORT gzeof OF((gzFile file)); /* Returns true (1) if the end-of-file indicator has been set while reading, false (0) otherwise. Note that the end-of-file indicator is set only if the read tried to go past the end of the input, but came up short. Therefore, just like feof(), gzeof() may return false even if there is no more data to read, in the event that the last read request was for the exact number of bytes remaining in the input file. This will happen if the input file size is an exact multiple of the buffer size. If gzeof() returns true, then the read functions will return no more data, unless the end-of-file indicator is reset by gzclearerr() and the input file has grown since the previous end of file was detected. */ ZEXTERN int ZEXPORT gzdirect OF((gzFile file)); /* Returns true (1) if file is being copied directly while reading, or false (0) if file is a gzip stream being decompressed. If the input file is empty, gzdirect() will return true, since the input does not contain a gzip stream. If gzdirect() is used immediately after gzopen() or gzdopen() it will cause buffers to be allocated to allow reading the file to determine if it is a gzip file. Therefore if gzbuffer() is used, it should be called before gzdirect(). When writing, gzdirect() returns true (1) if transparent writing was requested ("wT" for the gzopen() mode), or false (0) otherwise. (Note: gzdirect() is not needed when writing. Transparent writing must be explicitly requested, so the application already knows the answer. When linking statically, using gzdirect() will include all of the zlib code for gzip file reading and decompression, which may not be desired.) */ ZEXTERN int ZEXPORT gzclose OF((gzFile file)); /* Flushes all pending output if necessary, closes the compressed file and deallocates the (de)compression state. Note that once file is closed, you cannot call gzerror with file, since its structures have been deallocated. gzclose must not be called more than once on the same file, just as free must not be called more than once on the same allocation. gzclose will return Z_STREAM_ERROR if file is not valid, Z_ERRNO on a file operation error, Z_MEM_ERROR if out of memory, Z_BUF_ERROR if the last read ended in the middle of a gzip stream, or Z_OK on success. */ ZEXTERN int ZEXPORT gzclose_r OF((gzFile file)); ZEXTERN int ZEXPORT gzclose_w OF((gzFile file)); /* Same as gzclose(), but gzclose_r() is only for use when reading, and gzclose_w() is only for use when writing or appending. The advantage to using these instead of gzclose() is that they avoid linking in zlib compression or decompression code that is not used when only reading or only writing respectively. If gzclose() is used, then both compression and decompression code will be included the application when linking to a static zlib library. */ ZEXTERN const char * ZEXPORT gzerror OF((gzFile file, int *errnum)); /* Returns the error message for the last error which occurred on the given compressed file. errnum is set to zlib error number. If an error occurred in the file system and not in the compression library, errnum is set to Z_ERRNO and the application may consult errno to get the exact error code. The application must not modify the returned string. Future calls to this function may invalidate the previously returned string. If file is closed, then the string previously returned by gzerror will no longer be available. gzerror() should be used to distinguish errors from end-of-file for those functions above that do not distinguish those cases in their return values. */ ZEXTERN void ZEXPORT gzclearerr OF((gzFile file)); /* Clears the error and end-of-file flags for file. This is analogous to the clearerr() function in stdio. This is useful for continuing to read a gzip file that is being written concurrently. */ #endif /* !Z_SOLO */ /* checksum functions */ /* These functions are not related to compression but are exported anyway because they might be useful in applications using the compression library. */ ZEXTERN uLong ZEXPORT adler32 OF((uLong adler, const Bytef *buf, uInt len)); /* Update a running Adler-32 checksum with the bytes buf[0..len-1] and return the updated checksum. If buf is Z_NULL, this function returns the required initial value for the checksum. An Adler-32 checksum is almost as reliable as a CRC32 but can be computed much faster. Usage example: uLong adler = adler32(0L, Z_NULL, 0); while (read_buffer(buffer, length) != EOF) { adler = adler32(adler, buffer, length); } if (adler != original_adler) error(); */ /* ZEXTERN uLong ZEXPORT adler32_combine OF((uLong adler1, uLong adler2, z_off_t len2)); Combine two Adler-32 checksums into one. For two sequences of bytes, seq1 and seq2 with lengths len1 and len2, Adler-32 checksums were calculated for each, adler1 and adler2. adler32_combine() returns the Adler-32 checksum of seq1 and seq2 concatenated, requiring only adler1, adler2, and len2. Note that the z_off_t type (like off_t) is a signed integer. If len2 is negative, the result has no meaning or utility. */ ZEXTERN uLong ZEXPORT crc32 OF((uLong crc, const Bytef *buf, uInt len)); /* Update a running CRC-32 with the bytes buf[0..len-1] and return the updated CRC-32. If buf is Z_NULL, this function returns the required initial value for the crc. Pre- and post-conditioning (one's complement) is performed within this function so it shouldn't be done by the application. Usage example: uLong crc = crc32(0L, Z_NULL, 0); while (read_buffer(buffer, length) != EOF) { crc = crc32(crc, buffer, length); } if (crc != original_crc) error(); */ /* ZEXTERN uLong ZEXPORT crc32_combine OF((uLong crc1, uLong crc2, z_off_t len2)); Combine two CRC-32 check values into one. For two sequences of bytes, seq1 and seq2 with lengths len1 and len2, CRC-32 check values were calculated for each, crc1 and crc2. crc32_combine() returns the CRC-32 check value of seq1 and seq2 concatenated, requiring only crc1, crc2, and len2. */ /* various hacks, don't look :) */ /* deflateInit and inflateInit are macros to allow checking the zlib version * and the compiler's view of z_stream: */ ZEXTERN int ZEXPORT deflateInit_ OF((z_streamp strm, int level, const char *version, int stream_size)); ZEXTERN int ZEXPORT inflateInit_ OF((z_streamp strm, const char *version, int stream_size)); ZEXTERN int ZEXPORT deflateInit2_ OF((z_streamp strm, int level, int method, int windowBits, int memLevel, int strategy, const char *version, int stream_size)); ZEXTERN int ZEXPORT inflateInit2_ OF((z_streamp strm, int windowBits, const char *version, int stream_size)); ZEXTERN int ZEXPORT inflateBackInit_ OF((z_streamp strm, int windowBits, unsigned char FAR *window, const char *version, int stream_size)); #define deflateInit(strm, level) \ deflateInit_((strm), (level), ZLIB_VERSION, (int)sizeof(z_stream)) #define inflateInit(strm) \ inflateInit_((strm), ZLIB_VERSION, (int)sizeof(z_stream)) #define deflateInit2(strm, level, method, windowBits, memLevel, strategy) \ deflateInit2_((strm),(level),(method),(windowBits),(memLevel),\ (strategy), ZLIB_VERSION, (int)sizeof(z_stream)) #define inflateInit2(strm, windowBits) \ inflateInit2_((strm), (windowBits), ZLIB_VERSION, \ (int)sizeof(z_stream)) #define inflateBackInit(strm, windowBits, window) \ inflateBackInit_((strm), (windowBits), (window), \ ZLIB_VERSION, (int)sizeof(z_stream)) #ifndef Z_SOLO /* gzgetc() macro and its supporting function and exposed data structure. Note * that the real internal state is much larger than the exposed structure. * This abbreviated structure exposes just enough for the gzgetc() macro. The * user should not mess with these exposed elements, since their names or * behavior could change in the future, perhaps even capriciously. They can * only be used by the gzgetc() macro. You have been warned. */ struct gzFile_s { unsigned have; unsigned char *next; z_off64_t pos; }; ZEXTERN int ZEXPORT gzgetc_ OF((gzFile file)); /* backward compatibility */ #ifdef Z_PREFIX_SET # undef z_gzgetc # define z_gzgetc(g) \ ((g)->have ? ((g)->have--, (g)->pos++, *((g)->next)++) : gzgetc(g)) #else # define gzgetc(g) \ ((g)->have ? ((g)->have--, (g)->pos++, *((g)->next)++) : gzgetc(g)) #endif /* provide 64-bit offset functions if _LARGEFILE64_SOURCE defined, and/or * change the regular functions to 64 bits if _FILE_OFFSET_BITS is 64 (if * both are true, the application gets the *64 functions, and the regular * functions are changed to 64 bits) -- in case these are set on systems * without large file support, _LFS64_LARGEFILE must also be true */ #ifdef Z_LARGE64 ZEXTERN gzFile ZEXPORT gzopen64 OF((const char *, const char *)); ZEXTERN z_off64_t ZEXPORT gzseek64 OF((gzFile, z_off64_t, int)); ZEXTERN z_off64_t ZEXPORT gztell64 OF((gzFile)); ZEXTERN z_off64_t ZEXPORT gzoffset64 OF((gzFile)); ZEXTERN uLong ZEXPORT adler32_combine64 OF((uLong, uLong, z_off64_t)); ZEXTERN uLong ZEXPORT crc32_combine64 OF((uLong, uLong, z_off64_t)); #endif #if !defined(ZLIB_INTERNAL) && defined(Z_WANT64) # ifdef Z_PREFIX_SET # define z_gzopen z_gzopen64 # define z_gzseek z_gzseek64 # define z_gztell z_gztell64 # define z_gzoffset z_gzoffset64 # define z_adler32_combine z_adler32_combine64 # define z_crc32_combine z_crc32_combine64 # else # define gzopen gzopen64 # define gzseek gzseek64 # define gztell gztell64 # define gzoffset gzoffset64 # define adler32_combine adler32_combine64 # define crc32_combine crc32_combine64 # endif # ifndef Z_LARGE64 ZEXTERN gzFile ZEXPORT gzopen64 OF((const char *, const char *)); ZEXTERN z_off_t ZEXPORT gzseek64 OF((gzFile, z_off_t, int)); ZEXTERN z_off_t ZEXPORT gztell64 OF((gzFile)); ZEXTERN z_off_t ZEXPORT gzoffset64 OF((gzFile)); ZEXTERN uLong ZEXPORT adler32_combine64 OF((uLong, uLong, z_off_t)); ZEXTERN uLong ZEXPORT crc32_combine64 OF((uLong, uLong, z_off_t)); # endif #else ZEXTERN gzFile ZEXPORT gzopen OF((const char *, const char *)); ZEXTERN z_off_t ZEXPORT gzseek OF((gzFile, z_off_t, int)); ZEXTERN z_off_t ZEXPORT gztell OF((gzFile)); ZEXTERN z_off_t ZEXPORT gzoffset OF((gzFile)); ZEXTERN uLong ZEXPORT adler32_combine OF((uLong, uLong, z_off_t)); ZEXTERN uLong ZEXPORT crc32_combine OF((uLong, uLong, z_off_t)); #endif #else /* Z_SOLO */ ZEXTERN uLong ZEXPORT adler32_combine OF((uLong, uLong, z_off_t)); ZEXTERN uLong ZEXPORT crc32_combine OF((uLong, uLong, z_off_t)); #endif /* !Z_SOLO */ /* hack for buggy compilers */ #if !defined(ZUTIL_H) && !defined(NO_DUMMY_DECL) struct internal_state {int dummy;}; #endif /* undocumented functions */ ZEXTERN const char * ZEXPORT zError OF((int)); ZEXTERN int ZEXPORT inflateSyncPoint OF((z_streamp)); ZEXTERN const z_crc_t FAR * ZEXPORT get_crc_table OF((void)); ZEXTERN int ZEXPORT inflateUndermine OF((z_streamp, int)); ZEXTERN int ZEXPORT inflateResetKeep OF((z_streamp)); ZEXTERN int ZEXPORT deflateResetKeep OF((z_streamp)); #if defined(_WIN32) && !defined(Z_SOLO) ZEXTERN gzFile ZEXPORT gzopen_w OF((const wchar_t *path, const char *mode)); #endif #if defined(STDC) || defined(Z_HAVE_STDARG_H) # ifndef Z_SOLO ZEXTERN int ZEXPORTVA gzvprintf Z_ARG((gzFile file, const char *format, va_list va)); # endif #endif #ifdef __cplusplus } #endif #endif /* ZLIB_H */ Compress-Raw-Zlib-2.063/zlib-src/inffixed.h0000644000175000017500000001427412146130230017122 0ustar paulpaul /* inffixed.h -- table for decoding fixed codes * Generated automatically by makefixed(). */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of this library and is subject to change. Applications should only use zlib.h. */ static const code lenfix[512] = { {96,7,0},{0,8,80},{0,8,16},{20,8,115},{18,7,31},{0,8,112},{0,8,48}, {0,9,192},{16,7,10},{0,8,96},{0,8,32},{0,9,160},{0,8,0},{0,8,128}, {0,8,64},{0,9,224},{16,7,6},{0,8,88},{0,8,24},{0,9,144},{19,7,59}, {0,8,120},{0,8,56},{0,9,208},{17,7,17},{0,8,104},{0,8,40},{0,9,176}, {0,8,8},{0,8,136},{0,8,72},{0,9,240},{16,7,4},{0,8,84},{0,8,20}, {21,8,227},{19,7,43},{0,8,116},{0,8,52},{0,9,200},{17,7,13},{0,8,100}, {0,8,36},{0,9,168},{0,8,4},{0,8,132},{0,8,68},{0,9,232},{16,7,8}, {0,8,92},{0,8,28},{0,9,152},{20,7,83},{0,8,124},{0,8,60},{0,9,216}, {18,7,23},{0,8,108},{0,8,44},{0,9,184},{0,8,12},{0,8,140},{0,8,76}, {0,9,248},{16,7,3},{0,8,82},{0,8,18},{21,8,163},{19,7,35},{0,8,114}, {0,8,50},{0,9,196},{17,7,11},{0,8,98},{0,8,34},{0,9,164},{0,8,2}, {0,8,130},{0,8,66},{0,9,228},{16,7,7},{0,8,90},{0,8,26},{0,9,148}, {20,7,67},{0,8,122},{0,8,58},{0,9,212},{18,7,19},{0,8,106},{0,8,42}, {0,9,180},{0,8,10},{0,8,138},{0,8,74},{0,9,244},{16,7,5},{0,8,86}, {0,8,22},{64,8,0},{19,7,51},{0,8,118},{0,8,54},{0,9,204},{17,7,15}, {0,8,102},{0,8,38},{0,9,172},{0,8,6},{0,8,134},{0,8,70},{0,9,236}, {16,7,9},{0,8,94},{0,8,30},{0,9,156},{20,7,99},{0,8,126},{0,8,62}, {0,9,220},{18,7,27},{0,8,110},{0,8,46},{0,9,188},{0,8,14},{0,8,142}, {0,8,78},{0,9,252},{96,7,0},{0,8,81},{0,8,17},{21,8,131},{18,7,31}, {0,8,113},{0,8,49},{0,9,194},{16,7,10},{0,8,97},{0,8,33},{0,9,162}, {0,8,1},{0,8,129},{0,8,65},{0,9,226},{16,7,6},{0,8,89},{0,8,25}, {0,9,146},{19,7,59},{0,8,121},{0,8,57},{0,9,210},{17,7,17},{0,8,105}, {0,8,41},{0,9,178},{0,8,9},{0,8,137},{0,8,73},{0,9,242},{16,7,4}, {0,8,85},{0,8,21},{16,8,258},{19,7,43},{0,8,117},{0,8,53},{0,9,202}, {17,7,13},{0,8,101},{0,8,37},{0,9,170},{0,8,5},{0,8,133},{0,8,69}, {0,9,234},{16,7,8},{0,8,93},{0,8,29},{0,9,154},{20,7,83},{0,8,125}, {0,8,61},{0,9,218},{18,7,23},{0,8,109},{0,8,45},{0,9,186},{0,8,13}, {0,8,141},{0,8,77},{0,9,250},{16,7,3},{0,8,83},{0,8,19},{21,8,195}, {19,7,35},{0,8,115},{0,8,51},{0,9,198},{17,7,11},{0,8,99},{0,8,35}, {0,9,166},{0,8,3},{0,8,131},{0,8,67},{0,9,230},{16,7,7},{0,8,91}, {0,8,27},{0,9,150},{20,7,67},{0,8,123},{0,8,59},{0,9,214},{18,7,19}, {0,8,107},{0,8,43},{0,9,182},{0,8,11},{0,8,139},{0,8,75},{0,9,246}, {16,7,5},{0,8,87},{0,8,23},{64,8,0},{19,7,51},{0,8,119},{0,8,55}, {0,9,206},{17,7,15},{0,8,103},{0,8,39},{0,9,174},{0,8,7},{0,8,135}, {0,8,71},{0,9,238},{16,7,9},{0,8,95},{0,8,31},{0,9,158},{20,7,99}, {0,8,127},{0,8,63},{0,9,222},{18,7,27},{0,8,111},{0,8,47},{0,9,190}, {0,8,15},{0,8,143},{0,8,79},{0,9,254},{96,7,0},{0,8,80},{0,8,16}, {20,8,115},{18,7,31},{0,8,112},{0,8,48},{0,9,193},{16,7,10},{0,8,96}, {0,8,32},{0,9,161},{0,8,0},{0,8,128},{0,8,64},{0,9,225},{16,7,6}, {0,8,88},{0,8,24},{0,9,145},{19,7,59},{0,8,120},{0,8,56},{0,9,209}, {17,7,17},{0,8,104},{0,8,40},{0,9,177},{0,8,8},{0,8,136},{0,8,72}, {0,9,241},{16,7,4},{0,8,84},{0,8,20},{21,8,227},{19,7,43},{0,8,116}, {0,8,52},{0,9,201},{17,7,13},{0,8,100},{0,8,36},{0,9,169},{0,8,4}, {0,8,132},{0,8,68},{0,9,233},{16,7,8},{0,8,92},{0,8,28},{0,9,153}, {20,7,83},{0,8,124},{0,8,60},{0,9,217},{18,7,23},{0,8,108},{0,8,44}, {0,9,185},{0,8,12},{0,8,140},{0,8,76},{0,9,249},{16,7,3},{0,8,82}, {0,8,18},{21,8,163},{19,7,35},{0,8,114},{0,8,50},{0,9,197},{17,7,11}, {0,8,98},{0,8,34},{0,9,165},{0,8,2},{0,8,130},{0,8,66},{0,9,229}, {16,7,7},{0,8,90},{0,8,26},{0,9,149},{20,7,67},{0,8,122},{0,8,58}, {0,9,213},{18,7,19},{0,8,106},{0,8,42},{0,9,181},{0,8,10},{0,8,138}, {0,8,74},{0,9,245},{16,7,5},{0,8,86},{0,8,22},{64,8,0},{19,7,51}, {0,8,118},{0,8,54},{0,9,205},{17,7,15},{0,8,102},{0,8,38},{0,9,173}, {0,8,6},{0,8,134},{0,8,70},{0,9,237},{16,7,9},{0,8,94},{0,8,30}, {0,9,157},{20,7,99},{0,8,126},{0,8,62},{0,9,221},{18,7,27},{0,8,110}, {0,8,46},{0,9,189},{0,8,14},{0,8,142},{0,8,78},{0,9,253},{96,7,0}, {0,8,81},{0,8,17},{21,8,131},{18,7,31},{0,8,113},{0,8,49},{0,9,195}, {16,7,10},{0,8,97},{0,8,33},{0,9,163},{0,8,1},{0,8,129},{0,8,65}, {0,9,227},{16,7,6},{0,8,89},{0,8,25},{0,9,147},{19,7,59},{0,8,121}, {0,8,57},{0,9,211},{17,7,17},{0,8,105},{0,8,41},{0,9,179},{0,8,9}, {0,8,137},{0,8,73},{0,9,243},{16,7,4},{0,8,85},{0,8,21},{16,8,258}, {19,7,43},{0,8,117},{0,8,53},{0,9,203},{17,7,13},{0,8,101},{0,8,37}, {0,9,171},{0,8,5},{0,8,133},{0,8,69},{0,9,235},{16,7,8},{0,8,93}, {0,8,29},{0,9,155},{20,7,83},{0,8,125},{0,8,61},{0,9,219},{18,7,23}, {0,8,109},{0,8,45},{0,9,187},{0,8,13},{0,8,141},{0,8,77},{0,9,251}, {16,7,3},{0,8,83},{0,8,19},{21,8,195},{19,7,35},{0,8,115},{0,8,51}, {0,9,199},{17,7,11},{0,8,99},{0,8,35},{0,9,167},{0,8,3},{0,8,131}, {0,8,67},{0,9,231},{16,7,7},{0,8,91},{0,8,27},{0,9,151},{20,7,67}, {0,8,123},{0,8,59},{0,9,215},{18,7,19},{0,8,107},{0,8,43},{0,9,183}, {0,8,11},{0,8,139},{0,8,75},{0,9,247},{16,7,5},{0,8,87},{0,8,23}, {64,8,0},{19,7,51},{0,8,119},{0,8,55},{0,9,207},{17,7,15},{0,8,103}, {0,8,39},{0,9,175},{0,8,7},{0,8,135},{0,8,71},{0,9,239},{16,7,9}, {0,8,95},{0,8,31},{0,9,159},{20,7,99},{0,8,127},{0,8,63},{0,9,223}, {18,7,27},{0,8,111},{0,8,47},{0,9,191},{0,8,15},{0,8,143},{0,8,79}, {0,9,255} }; static const code distfix[32] = { {16,5,1},{23,5,257},{19,5,17},{27,5,4097},{17,5,5},{25,5,1025}, {21,5,65},{29,5,16385},{16,5,3},{24,5,513},{20,5,33},{28,5,8193}, {18,5,9},{26,5,2049},{22,5,129},{64,5,0},{16,5,2},{23,5,385}, {19,5,25},{27,5,6145},{17,5,7},{25,5,1537},{21,5,97},{29,5,24577}, {16,5,4},{24,5,769},{20,5,49},{28,5,12289},{18,5,13},{26,5,3073}, {22,5,193},{64,5,0} }; Compress-Raw-Zlib-2.063/zlib-src/inftrees.c0000644000175000017500000003132712146130230017136 0ustar paulpaul/* inftrees.c -- generate Huffman trees for efficient decoding * Copyright (C) 1995-2013 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ #include "zutil.h" #include "inftrees.h" #define MAXBITS 15 const char inflate_copyright[] = " inflate 1.2.8 Copyright 1995-2013 Mark Adler "; /* If you use the zlib library in a product, an acknowledgment is welcome in the documentation of your product. If for some reason you cannot include such an acknowledgment, I would appreciate that you keep this copyright string in the executable of your product. */ /* Build a set of tables to decode the provided canonical Huffman code. The code lengths are lens[0..codes-1]. The result starts at *table, whose indices are 0..2^bits-1. work is a writable array of at least lens shorts, which is used as a work area. type is the type of code to be generated, CODES, LENS, or DISTS. On return, zero is success, -1 is an invalid code, and +1 means that ENOUGH isn't enough. table on return points to the next available entry's address. bits is the requested root table index bits, and on return it is the actual root table index bits. It will differ if the request is greater than the longest code or if it is less than the shortest code. */ int ZLIB_INTERNAL inflate_table( codetype type, unsigned short FAR *lens, unsigned codes, code FAR * FAR *table, unsigned FAR *bits, unsigned short FAR *work) { unsigned len; /* a code's length in bits */ unsigned sym; /* index of code symbols */ unsigned min, max; /* minimum and maximum code lengths */ unsigned root; /* number of index bits for root table */ unsigned curr; /* number of index bits for current table */ unsigned drop; /* code bits to drop for sub-table */ int left; /* number of prefix codes available */ unsigned used; /* code entries in table used */ unsigned huff; /* Huffman code */ unsigned incr; /* for incrementing code, index */ unsigned fill; /* index for replicating entries */ unsigned low; /* low bits for current root entry */ unsigned mask; /* mask for low root bits */ code here; /* table entry for duplication */ code FAR *next; /* next available space in table */ const unsigned short FAR *base; /* base value table to use */ const unsigned short FAR *extra; /* extra bits table to use */ int end; /* use base and extra for symbol > end */ unsigned short count[MAXBITS+1]; /* number of codes of each length */ unsigned short offs[MAXBITS+1]; /* offsets in table for each length */ static const unsigned short lbase[31] = { /* Length codes 257..285 base */ 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; static const unsigned short lext[31] = { /* Length codes 257..285 extra */ 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 72, 78}; static const unsigned short dbase[32] = { /* Distance codes 0..29 base */ 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577, 0, 0}; static const unsigned short dext[32] = { /* Distance codes 0..29 extra */ 16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 64, 64}; /* Process a set of code lengths to create a canonical Huffman code. The code lengths are lens[0..codes-1]. Each length corresponds to the symbols 0..codes-1. The Huffman code is generated by first sorting the symbols by length from short to long, and retaining the symbol order for codes with equal lengths. Then the code starts with all zero bits for the first code of the shortest length, and the codes are integer increments for the same length, and zeros are appended as the length increases. For the deflate format, these bits are stored backwards from their more natural integer increment ordering, and so when the decoding tables are built in the large loop below, the integer codes are incremented backwards. This routine assumes, but does not check, that all of the entries in lens[] are in the range 0..MAXBITS. The caller must assure this. 1..MAXBITS is interpreted as that code length. zero means that that symbol does not occur in this code. The codes are sorted by computing a count of codes for each length, creating from that a table of starting indices for each length in the sorted table, and then entering the symbols in order in the sorted table. The sorted table is work[], with that space being provided by the caller. The length counts are used for other purposes as well, i.e. finding the minimum and maximum length codes, determining if there are any codes at all, checking for a valid set of lengths, and looking ahead at length counts to determine sub-table sizes when building the decoding tables. */ /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */ for (len = 0; len <= MAXBITS; len++) count[len] = 0; for (sym = 0; sym < codes; sym++) count[lens[sym]]++; /* bound code lengths, force root to be within code lengths */ root = *bits; for (max = MAXBITS; max >= 1; max--) if (count[max] != 0) break; if (root > max) root = max; if (max == 0) { /* no symbols to code at all */ here.op = (unsigned char)64; /* invalid code marker */ here.bits = (unsigned char)1; here.val = (unsigned short)0; *(*table)++ = here; /* make a table to force an error */ *(*table)++ = here; *bits = 1; return 0; /* no symbols, but wait for decoding to report error */ } for (min = 1; min < max; min++) if (count[min] != 0) break; if (root < min) root = min; /* check for an over-subscribed or incomplete set of lengths */ left = 1; for (len = 1; len <= MAXBITS; len++) { left <<= 1; left -= count[len]; if (left < 0) return -1; /* over-subscribed */ } if (left > 0 && (type == CODES || max != 1)) return -1; /* incomplete set */ /* generate offsets into symbol table for each length for sorting */ offs[1] = 0; for (len = 1; len < MAXBITS; len++) offs[len + 1] = offs[len] + count[len]; /* sort symbols by length, by symbol order within each length */ for (sym = 0; sym < codes; sym++) if (lens[sym] != 0) work[offs[lens[sym]]++] = (unsigned short)sym; /* Create and fill in decoding tables. In this loop, the table being filled is at next and has curr index bits. The code being used is huff with length len. That code is converted to an index by dropping drop bits off of the bottom. For codes where len is less than drop + curr, those top drop + curr - len bits are incremented through all values to fill the table with replicated entries. root is the number of index bits for the root table. When len exceeds root, sub-tables are created pointed to by the root entry with an index of the low root bits of huff. This is saved in low to check for when a new sub-table should be started. drop is zero when the root table is being filled, and drop is root when sub-tables are being filled. When a new sub-table is needed, it is necessary to look ahead in the code lengths to determine what size sub-table is needed. The length counts are used for this, and so count[] is decremented as codes are entered in the tables. used keeps track of how many table entries have been allocated from the provided *table space. It is checked for LENS and DIST tables against the constants ENOUGH_LENS and ENOUGH_DISTS to guard against changes in the initial root table size constants. See the comments in inftrees.h for more information. sym increments through all symbols, and the loop terminates when all codes of length max, i.e. all codes, have been processed. This routine permits incomplete codes, so another loop after this one fills in the rest of the decoding tables with invalid code markers. */ /* set up for code type */ switch (type) { case CODES: base = extra = work; /* dummy value--not used */ end = 19; break; case LENS: base = lbase; base -= 257; extra = lext; extra -= 257; end = 256; break; default: /* DISTS */ base = dbase; extra = dext; end = -1; } /* initialize state for loop */ huff = 0; /* starting code */ sym = 0; /* starting code symbol */ len = min; /* starting code length */ next = *table; /* current table to fill in */ curr = root; /* current table index bits */ drop = 0; /* current bits to drop from code for index */ low = (unsigned)(-1); /* trigger new sub-table when len > root */ used = 1U << root; /* use root table entries */ mask = used - 1; /* mask for comparing low */ /* check available table space */ if ((type == LENS && used > ENOUGH_LENS) || (type == DISTS && used > ENOUGH_DISTS)) return 1; /* process all codes and make table entries */ for (;;) { /* create table entry */ here.bits = (unsigned char)(len - drop); if ((int)(work[sym]) < end) { here.op = (unsigned char)0; here.val = work[sym]; } else if ((int)(work[sym]) > end) { here.op = (unsigned char)(extra[work[sym]]); here.val = base[work[sym]]; } else { here.op = (unsigned char)(32 + 64); /* end of block */ here.val = 0; } /* replicate for those indices with low len bits equal to huff */ incr = 1U << (len - drop); fill = 1U << curr; min = fill; /* save offset to next table */ do { fill -= incr; next[(huff >> drop) + fill] = here; } while (fill != 0); /* backwards increment the len-bit code huff */ incr = 1U << (len - 1); while (huff & incr) incr >>= 1; if (incr != 0) { huff &= incr - 1; huff += incr; } else huff = 0; /* go to next symbol, update count, len */ sym++; if (--(count[len]) == 0) { if (len == max) break; len = lens[work[sym]]; } /* create new sub-table if needed */ if (len > root && (huff & mask) != low) { /* if first time, transition to sub-tables */ if (drop == 0) drop = root; /* increment past last table */ next += min; /* here min is 1 << curr */ /* determine length of next table */ curr = len - drop; left = (int)(1 << curr); while (curr + drop < max) { left -= count[curr + drop]; if (left <= 0) break; curr++; left <<= 1; } /* check for enough space */ used += 1U << curr; if ((type == LENS && used > ENOUGH_LENS) || (type == DISTS && used > ENOUGH_DISTS)) return 1; /* point entry in root table to sub-table */ low = huff & mask; (*table)[low].op = (unsigned char)curr; (*table)[low].bits = (unsigned char)root; (*table)[low].val = (unsigned short)(next - *table); } } /* fill in remaining table entry if code is incomplete (guaranteed to have at most one remaining entry, since if the code is incomplete, the maximum code length that was allowed to get this far is one bit) */ if (huff != 0) { here.op = (unsigned char)64; /* invalid code marker */ here.bits = (unsigned char)(len - drop); here.val = (unsigned short)0; next[huff] = here; } /* set return parameters */ *table += used; *bits = root; return 0; } Compress-Raw-Zlib-2.063/zlib-src/zutil.h0000644000175000017500000001526312146130551016502 0ustar paulpaul/* zutil.h -- internal interface and configuration of the compression library * Copyright (C) 1995-2013 Jean-loup Gailly. * For conditions of distribution and use, see copyright notice in zlib.h */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ /* @(#) $Id$ */ #ifndef ZUTIL_H #define ZUTIL_H #ifdef __cplusplus extern "C" { #endif #ifdef HAVE_HIDDEN # define ZLIB_INTERNAL __attribute__((visibility ("hidden"))) #else # define ZLIB_INTERNAL #endif #include "zlib.h" #if defined(STDC) && !defined(Z_SOLO) # if !(defined(_WIN32_WCE) && defined(_MSC_VER)) # include # endif # include # include #endif #ifdef Z_SOLO typedef long ptrdiff_t; /* guess -- will be caught if guess is wrong */ #endif #ifndef local # define local static #endif /* compile with -Dlocal if your debugger can't find static symbols */ typedef unsigned char uch; typedef uch FAR uchf; typedef unsigned short ush; typedef ush FAR ushf; typedef unsigned long ulg; extern z_const char * const z_errmsg[10]; /* indexed by 2-zlib_error */ /* (size given to avoid silly warnings with Visual C++) */ #define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)] #define ERR_RETURN(strm,err) \ return (strm->msg = ERR_MSG(err), (err)) /* To be used only when the state is known to be valid */ /* common constants */ #ifndef DEF_WBITS # define DEF_WBITS MAX_WBITS #endif /* default windowBits for decompression. MAX_WBITS is for compression only */ #if MAX_MEM_LEVEL >= 8 # define DEF_MEM_LEVEL 8 #else # define DEF_MEM_LEVEL MAX_MEM_LEVEL #endif /* default memLevel */ #define STORED_BLOCK 0 #define STATIC_TREES 1 #define DYN_TREES 2 /* The three kinds of block type */ #define MIN_MATCH 3 #define MAX_MATCH 258 /* The minimum and maximum match lengths */ #define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */ /* target dependencies */ #if defined(MSDOS) || (defined(WINDOWS) && !defined(WIN32)) # define OS_CODE 0x00 # ifndef Z_SOLO # if defined(__TURBOC__) || defined(__BORLANDC__) # if (__STDC__ == 1) && (defined(__LARGE__) || defined(__COMPACT__)) /* Allow compilation with ANSI keywords only enabled */ void _Cdecl farfree( void *block ); void *_Cdecl farmalloc( unsigned long nbytes ); # else # include # endif # else /* MSC or DJGPP */ # include # endif # endif #endif #ifdef AMIGA # define OS_CODE 0x01 #endif #if defined(VAXC) || defined(VMS) # define OS_CODE 0x02 # define F_OPEN(name, mode) \ fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512") #endif #if defined(ATARI) || defined(atarist) # define OS_CODE 0x05 #endif #ifdef OS2 # define OS_CODE 0x06 # if defined(M_I86) && !defined(Z_SOLO) # include # endif #endif #if defined(MACOS) || defined(TARGET_OS_MAC) # define OS_CODE 0x07 # ifndef Z_SOLO # if defined(__MWERKS__) && __dest_os != __be_os && __dest_os != __win32_os # include /* for fdopen */ # else # ifndef fdopen # define fdopen(fd,mode) NULL /* No fdopen() */ # endif # endif # endif #endif #ifdef TOPS20 # define OS_CODE 0x0a #endif #ifdef WIN32 # ifndef __CYGWIN__ /* Cygwin is Unix, not Win32 */ # define OS_CODE 0x0b # endif #endif #ifdef __50SERIES /* Prime/PRIMOS */ # define OS_CODE 0x0f #endif #if defined(_BEOS_) || defined(RISCOS) # define fdopen(fd,mode) NULL /* No fdopen() */ #endif #if (defined(_MSC_VER) && (_MSC_VER > 600)) && !defined __INTERIX # if defined(_WIN32_WCE) # define fdopen(fd,mode) NULL /* No fdopen() */ # ifndef _PTRDIFF_T_DEFINED typedef int ptrdiff_t; # define _PTRDIFF_T_DEFINED # endif # else # define fdopen(fd,type) _fdopen(fd,type) # endif #endif #if defined(__BORLANDC__) && !defined(MSDOS) #pragma warn -8004 #pragma warn -8008 #pragma warn -8066 #endif /* provide prototypes for these when building zlib without LFS */ #if !defined(_WIN32) && \ (!defined(_LARGEFILE64_SOURCE) || _LFS64_LARGEFILE-0 == 0) ZEXTERN uLong ZEXPORT adler32_combine64 OF((uLong, uLong, z_off_t)); ZEXTERN uLong ZEXPORT crc32_combine64 OF((uLong, uLong, z_off_t)); #endif /* common defaults */ #ifndef OS_CODE # define OS_CODE 0x03 /* assume Unix */ #endif #ifndef F_OPEN # define F_OPEN(name, mode) fopen((name), (mode)) #endif /* functions */ #if defined(pyr) || defined(Z_SOLO) # define NO_MEMCPY #endif #if defined(SMALL_MEDIUM) && !defined(_MSC_VER) && !defined(__SC__) /* Use our own functions for small and medium model with MSC <= 5.0. * You may have to use the same strategy for Borland C (untested). * The __SC__ check is for Symantec. */ # define NO_MEMCPY #endif #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY) # define HAVE_MEMCPY #endif #ifdef HAVE_MEMCPY # ifdef SMALL_MEDIUM /* MSDOS small or medium model */ # define zmemcpy _fmemcpy # define zmemcmp _fmemcmp # define zmemzero(dest, len) _fmemset(dest, 0, len) # else # define zmemcpy memcpy # define zmemcmp memcmp # define zmemzero(dest, len) memset(dest, 0, len) # endif #else void ZLIB_INTERNAL zmemcpy OF((Bytef* dest, const Bytef* source, uInt len)); int ZLIB_INTERNAL zmemcmp OF((const Bytef* s1, const Bytef* s2, uInt len)); void ZLIB_INTERNAL zmemzero OF((Bytef* dest, uInt len)); #endif /* Diagnostic functions */ #ifdef DEBUG # include extern int ZLIB_INTERNAL z_verbose; extern void ZLIB_INTERNAL z_error OF((char *m)); # define Assert(cond,msg) {if(!(cond)) z_error(msg);} # define Trace(x) {if (z_verbose>=0) fprintf x ;} # define Tracev(x) {if (z_verbose>0) fprintf x ;} # define Tracevv(x) {if (z_verbose>1) fprintf x ;} # define Tracec(c,x) {if (z_verbose>0 && (c)) fprintf x ;} # define Tracecv(c,x) {if (z_verbose>1 && (c)) fprintf x ;} #else # define Assert(cond,msg) # define Trace(x) # define Tracev(x) # define Tracevv(x) # define Tracec(c,x) # define Tracecv(c,x) #endif #ifndef Z_SOLO voidpf ZLIB_INTERNAL zcalloc OF((voidpf opaque, unsigned items, unsigned size)); void ZLIB_INTERNAL zcfree OF((voidpf opaque, voidpf ptr)); #endif #define ZALLOC(strm, items, size) \ (*((strm)->zalloc))((strm)->opaque, (items), (size)) #define ZFREE(strm, addr) (*((strm)->zfree))((strm)->opaque, (voidpf)(addr)) #define TRY_FREE(s, p) {if (p) ZFREE(s, p);} /* Reverse the bytes in a 32-bit value */ #define ZSWAP32(q) ((((q) >> 24) & 0xff) + (((q) >> 8) & 0xff00) + \ (((q) & 0xff00) << 8) + (((q) & 0xff) << 24)) #ifdef __cplusplus } #endif #endif /* ZUTIL_H */ Compress-Raw-Zlib-2.063/zlib-src/compress.c0000644000175000017500000000461612146130230017153 0ustar paulpaul/* compress.c -- compress a memory buffer * Copyright (C) 1995-2005 Jean-loup Gailly. * For conditions of distribution and use, see copyright notice in zlib.h */ /* @(#) $Id$ */ #define ZLIB_INTERNAL #include "zlib.h" /* =========================================================================== Compresses the source buffer into the destination buffer. The level parameter has the same meaning as in deflateInit. sourceLen is the byte length of the source buffer. Upon entry, destLen is the total size of the destination buffer, which must be at least 0.1% larger than sourceLen plus 12 bytes. Upon exit, destLen is the actual size of the compressed buffer. compress2 returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if there was not enough room in the output buffer, Z_STREAM_ERROR if the level parameter is invalid. */ int ZEXPORT compress2 ( Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen, int level) { z_stream stream; int err; stream.next_in = (z_const Bytef *)source; stream.avail_in = (uInt)sourceLen; #ifdef MAXSEG_64K /* Check for source > 64K on 16-bit machine: */ if ((uLong)stream.avail_in != sourceLen) return Z_BUF_ERROR; #endif stream.next_out = dest; stream.avail_out = (uInt)*destLen; if ((uLong)stream.avail_out != *destLen) return Z_BUF_ERROR; stream.zalloc = (alloc_func)0; stream.zfree = (free_func)0; stream.opaque = (voidpf)0; err = deflateInit(&stream, level); if (err != Z_OK) return err; err = deflate(&stream, Z_FINISH); if (err != Z_STREAM_END) { deflateEnd(&stream); return err == Z_OK ? Z_BUF_ERROR : err; } *destLen = stream.total_out; err = deflateEnd(&stream); return err; } /* =========================================================================== */ int ZEXPORT compress ( Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen) { return compress2(dest, destLen, source, sourceLen, Z_DEFAULT_COMPRESSION); } /* =========================================================================== If the default memLevel or windowBits for deflateInit() is changed, then this function needs to be updated. */ uLong ZEXPORT compressBound ( uLong sourceLen) { return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) + (sourceLen >> 25) + 13; } Compress-Raw-Zlib-2.063/zlib-src/inffast.c0000644000175000017500000003211612146130230016746 0ustar paulpaul/* inffast.c -- fast decoding * Copyright (C) 1995-2008, 2010, 2013 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ #include "zutil.h" #include "inftrees.h" #include "inflate.h" #include "inffast.h" #ifndef ASMINF /* Allow machine dependent optimization for post-increment or pre-increment. Based on testing to date, Pre-increment preferred for: - PowerPC G3 (Adler) - MIPS R5000 (Randers-Pehrson) Post-increment preferred for: - none No measurable difference: - Pentium III (Anderson) - M68060 (Nikl) */ #ifdef POSTINC # define OFF 0 # define PUP(a) *(a)++ #else # define OFF 1 # define PUP(a) *++(a) #endif /* Decode literal, length, and distance codes and write out the resulting literal and match bytes until either not enough input or output is available, an end-of-block is encountered, or a data error is encountered. When large enough input and output buffers are supplied to inflate(), for example, a 16K input buffer and a 64K output buffer, more than 95% of the inflate execution time is spent in this routine. Entry assumptions: state->mode == LEN strm->avail_in >= 6 strm->avail_out >= 258 start >= strm->avail_out state->bits < 8 On return, state->mode is one of: LEN -- ran out of enough output space or enough available input TYPE -- reached end of block code, inflate() to interpret next block BAD -- error in block data Notes: - The maximum input bits used by a length/distance pair is 15 bits for the length code, 5 bits for the length extra, 15 bits for the distance code, and 13 bits for the distance extra. This totals 48 bits, or six bytes. Therefore if strm->avail_in >= 6, then there is enough input to avoid checking for available input while decoding. - The maximum bytes that a single length/distance pair can output is 258 bytes, which is the maximum length that can be coded. inflate_fast() requires strm->avail_out >= 258 for each loop to avoid checking for output space. */ void ZLIB_INTERNAL inflate_fast( z_streamp strm, unsigned start) { struct inflate_state FAR *state; z_const unsigned char FAR *in; /* local strm->next_in */ z_const unsigned char FAR *last; /* have enough input while in < last */ unsigned char FAR *out; /* local strm->next_out */ unsigned char FAR *beg; /* inflate()'s initial strm->next_out */ unsigned char FAR *end; /* while out < end, enough space available */ #ifdef INFLATE_STRICT unsigned dmax; /* maximum distance from zlib header */ #endif unsigned wsize; /* window size or zero if not using window */ unsigned whave; /* valid bytes in the window */ unsigned wnext; /* window write index */ unsigned char FAR *window; /* allocated sliding window, if wsize != 0 */ unsigned long hold; /* local strm->hold */ unsigned bits; /* local strm->bits */ code const FAR *lcode; /* local strm->lencode */ code const FAR *dcode; /* local strm->distcode */ unsigned lmask; /* mask for first level of length codes */ unsigned dmask; /* mask for first level of distance codes */ code here; /* retrieved table entry */ unsigned op; /* code bits, operation, extra bits, or */ /* window position, window bytes to copy */ unsigned len; /* match length, unused bytes */ unsigned dist; /* match distance */ unsigned char FAR *from; /* where to copy match from */ /* copy state to local variables */ state = (struct inflate_state FAR *)strm->state; in = strm->next_in - OFF; last = in + (strm->avail_in - 5); out = strm->next_out - OFF; beg = out - (start - strm->avail_out); end = out + (strm->avail_out - 257); #ifdef INFLATE_STRICT dmax = state->dmax; #endif wsize = state->wsize; whave = state->whave; wnext = state->wnext; window = state->window; hold = state->hold; bits = state->bits; lcode = state->lencode; dcode = state->distcode; lmask = (1U << state->lenbits) - 1; dmask = (1U << state->distbits) - 1; /* decode literals and length/distances until end-of-block or not enough input data or output space */ do { if (bits < 15) { hold += (unsigned long)(PUP(in)) << bits; bits += 8; hold += (unsigned long)(PUP(in)) << bits; bits += 8; } here = lcode[hold & lmask]; dolen: op = (unsigned)(here.bits); hold >>= op; bits -= op; op = (unsigned)(here.op); if (op == 0) { /* literal */ Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ? "inflate: literal '%c'\n" : "inflate: literal 0x%02x\n", here.val)); PUP(out) = (unsigned char)(here.val); } else if (op & 16) { /* length base */ len = (unsigned)(here.val); op &= 15; /* number of extra bits */ if (op) { if (bits < op) { hold += (unsigned long)(PUP(in)) << bits; bits += 8; } len += (unsigned)hold & ((1U << op) - 1); hold >>= op; bits -= op; } Tracevv((stderr, "inflate: length %u\n", len)); if (bits < 15) { hold += (unsigned long)(PUP(in)) << bits; bits += 8; hold += (unsigned long)(PUP(in)) << bits; bits += 8; } here = dcode[hold & dmask]; dodist: op = (unsigned)(here.bits); hold >>= op; bits -= op; op = (unsigned)(here.op); if (op & 16) { /* distance base */ dist = (unsigned)(here.val); op &= 15; /* number of extra bits */ if (bits < op) { hold += (unsigned long)(PUP(in)) << bits; bits += 8; if (bits < op) { hold += (unsigned long)(PUP(in)) << bits; bits += 8; } } dist += (unsigned)hold & ((1U << op) - 1); #ifdef INFLATE_STRICT if (dist > dmax) { strm->msg = (char *)"invalid distance too far back"; state->mode = BAD; break; } #endif hold >>= op; bits -= op; Tracevv((stderr, "inflate: distance %u\n", dist)); op = (unsigned)(out - beg); /* max distance in output */ if (dist > op) { /* see if copy from window */ op = dist - op; /* distance back in window */ if (op > whave) { if (state->sane) { strm->msg = (char *)"invalid distance too far back"; state->mode = BAD; break; } #ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR if (len <= op - whave) { do { PUP(out) = 0; } while (--len); continue; } len -= op - whave; do { PUP(out) = 0; } while (--op > whave); if (op == 0) { from = out - dist; do { PUP(out) = PUP(from); } while (--len); continue; } #endif } from = window - OFF; if (wnext == 0) { /* very common case */ from += wsize - op; if (op < len) { /* some from window */ len -= op; do { PUP(out) = PUP(from); } while (--op); from = out - dist; /* rest from output */ } } else if (wnext < op) { /* wrap around window */ from += wsize + wnext - op; op -= wnext; if (op < len) { /* some from end of window */ len -= op; do { PUP(out) = PUP(from); } while (--op); from = window - OFF; if (wnext < len) { /* some from start of window */ op = wnext; len -= op; do { PUP(out) = PUP(from); } while (--op); from = out - dist; /* rest from output */ } } } else { /* contiguous in window */ from += wnext - op; if (op < len) { /* some from window */ len -= op; do { PUP(out) = PUP(from); } while (--op); from = out - dist; /* rest from output */ } } while (len > 2) { PUP(out) = PUP(from); PUP(out) = PUP(from); PUP(out) = PUP(from); len -= 3; } if (len) { PUP(out) = PUP(from); if (len > 1) PUP(out) = PUP(from); } } else { from = out - dist; /* copy direct from output */ do { /* minimum length is three */ PUP(out) = PUP(from); PUP(out) = PUP(from); PUP(out) = PUP(from); len -= 3; } while (len > 2); if (len) { PUP(out) = PUP(from); if (len > 1) PUP(out) = PUP(from); } } } else if ((op & 64) == 0) { /* 2nd level distance code */ here = dcode[here.val + (hold & ((1U << op) - 1))]; goto dodist; } else { strm->msg = (char *)"invalid distance code"; state->mode = BAD; break; } } else if ((op & 64) == 0) { /* 2nd level length code */ here = lcode[here.val + (hold & ((1U << op) - 1))]; goto dolen; } else if (op & 32) { /* end-of-block */ Tracevv((stderr, "inflate: end of block\n")); state->mode = TYPE; break; } else { strm->msg = (char *)"invalid literal/length code"; state->mode = BAD; break; } } while (in < last && out < end); /* return unused bytes (on entry, bits < 8, so in won't go too far back) */ len = bits >> 3; in -= len; bits -= len << 3; hold &= (1U << bits) - 1; /* update state and return */ strm->next_in = in + OFF; strm->next_out = out + OFF; strm->avail_in = (unsigned)(in < last ? 5 + (last - in) : 5 - (in - last)); strm->avail_out = (unsigned)(out < end ? 257 + (end - out) : 257 - (out - end)); state->hold = hold; state->bits = bits; return; } /* inflate_fast() speedups that turned out slower (on a PowerPC G3 750CXe): - Using bit fields for code structure - Different op definition to avoid & for extra bits (do & for table bits) - Three separate decoding do-loops for direct, window, and wnext == 0 - Special case for distance > 1 copies to do overlapped load and store copy - Explicit branch predictions (based on measured branch probabilities) - Deferring match copy and interspersed it with decoding subsequent codes - Swapping literal/length else - Swapping window/direct else - Larger unrolled copy loops (three is about right) - Moving len -= 3 statement into middle of loop */ #endif /* !ASMINF */ Compress-Raw-Zlib-2.063/zlib-src/trees.c0000644000175000017500000012375312146130230016446 0ustar paulpaul/* trees.c -- output deflated data using Huffman coding * Copyright (C) 1995-2012 Jean-loup Gailly * detect_data_type() function provided freely by Cosmin Truta, 2006 * For conditions of distribution and use, see copyright notice in zlib.h */ /* * ALGORITHM * * The "deflation" process uses several Huffman trees. The more * common source values are represented by shorter bit sequences. * * Each code tree is stored in a compressed form which is itself * a Huffman encoding of the lengths of all the code strings (in * ascending order by source values). The actual code strings are * reconstructed from the lengths in the inflate process, as described * in the deflate specification. * * REFERENCES * * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc * * Storer, James A. * Data Compression: Methods and Theory, pp. 49-50. * Computer Science Press, 1988. ISBN 0-7167-8156-5. * * Sedgewick, R. * Algorithms, p290. * Addison-Wesley, 1983. ISBN 0-201-06672-6. */ /* @(#) $Id$ */ /* #define GEN_TREES_H */ #include "deflate.h" #ifdef DEBUG # include #endif /* =========================================================================== * Constants */ #define MAX_BL_BITS 7 /* Bit length codes must not exceed MAX_BL_BITS bits */ #define END_BLOCK 256 /* end of block literal code */ #define REP_3_6 16 /* repeat previous bit length 3-6 times (2 bits of repeat count) */ #define REPZ_3_10 17 /* repeat a zero length 3-10 times (3 bits of repeat count) */ #define REPZ_11_138 18 /* repeat a zero length 11-138 times (7 bits of repeat count) */ local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; local const int extra_dbits[D_CODES] /* extra bits for each distance code */ = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */ = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; local const uch bl_order[BL_CODES] = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; /* The lengths of the bit length codes are sent in order of decreasing * probability, to avoid transmitting the lengths for unused bit length codes. */ /* =========================================================================== * Local data. These are initialized only once. */ #define DIST_CODE_LEN 512 /* see definition of array dist_code below */ #if defined(GEN_TREES_H) || !defined(STDC) /* non ANSI compilers may not accept trees.h */ local ct_data static_ltree[L_CODES+2]; /* The static literal tree. Since the bit lengths are imposed, there is no * need for the L_CODES extra codes used during heap construction. However * The codes 286 and 287 are needed to build a canonical tree (see _tr_init * below). */ local ct_data static_dtree[D_CODES]; /* The static distance tree. (Actually a trivial tree since all codes use * 5 bits.) */ uch _dist_code[DIST_CODE_LEN]; /* Distance codes. The first 256 values correspond to the distances * 3 .. 258, the last 256 values correspond to the top 8 bits of * the 15 bit distances. */ uch _length_code[MAX_MATCH-MIN_MATCH+1]; /* length code for each normalized match length (0 == MIN_MATCH) */ local int base_length[LENGTH_CODES]; /* First normalized length for each code (0 = MIN_MATCH) */ local int base_dist[D_CODES]; /* First normalized distance for each code (0 = distance of 1) */ #else # include "trees.h" #endif /* GEN_TREES_H */ struct static_tree_desc_s { const ct_data *static_tree; /* static tree or NULL */ const intf *extra_bits; /* extra bits for each code or NULL */ int extra_base; /* base index for extra_bits */ int elems; /* max number of elements in the tree */ int max_length; /* max bit length for the codes */ }; local static_tree_desc static_l_desc = {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; local static_tree_desc static_d_desc = {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS}; local static_tree_desc static_bl_desc = {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; /* =========================================================================== * Local (static) routines in this file. */ local void tr_static_init OF((void)); local void init_block OF((deflate_state *s)); local void pqdownheap OF((deflate_state *s, ct_data *tree, int k)); local void gen_bitlen OF((deflate_state *s, tree_desc *desc)); local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count)); local void build_tree OF((deflate_state *s, tree_desc *desc)); local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code)); local void send_tree OF((deflate_state *s, ct_data *tree, int max_code)); local int build_bl_tree OF((deflate_state *s)); local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes, int blcodes)); local void compress_block OF((deflate_state *s, const ct_data *ltree, const ct_data *dtree)); local int detect_data_type OF((deflate_state *s)); local unsigned bi_reverse OF((unsigned value, int length)); local void bi_windup OF((deflate_state *s)); local void bi_flush OF((deflate_state *s)); local void copy_block OF((deflate_state *s, charf *buf, unsigned len, int header)); #ifdef GEN_TREES_H local void gen_trees_header OF((void)); #endif #ifndef DEBUG # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) /* Send a code of the given tree. c and tree must not have side effects */ #else /* DEBUG */ # define send_code(s, c, tree) \ { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ send_bits(s, tree[c].Code, tree[c].Len); } #endif /* =========================================================================== * Output a short LSB first on the stream. * IN assertion: there is enough room in pendingBuf. */ #define put_short(s, w) { \ put_byte(s, (uch)((w) & 0xff)); \ put_byte(s, (uch)((ush)(w) >> 8)); \ } /* =========================================================================== * Send a value on a given number of bits. * IN assertion: length <= 16 and value fits in length bits. */ #ifdef DEBUG local void send_bits OF((deflate_state *s, int value, int length)); local void send_bits( deflate_state *s, int value, int length) { Tracevv((stderr," l %2d v %4x ", length, value)); Assert(length > 0 && length <= 15, "invalid length"); s->bits_sent += (ulg)length; /* If not enough room in bi_buf, use (valid) bits from bi_buf and * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) * unused bits in value. */ if (s->bi_valid > (int)Buf_size - length) { s->bi_buf |= (ush)value << s->bi_valid; put_short(s, s->bi_buf); s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); s->bi_valid += length - Buf_size; } else { s->bi_buf |= (ush)value << s->bi_valid; s->bi_valid += length; } } #else /* !DEBUG */ #define send_bits(s, value, length) \ { int len = length;\ if (s->bi_valid > (int)Buf_size - len) {\ int val = value;\ s->bi_buf |= (ush)val << s->bi_valid;\ put_short(s, s->bi_buf);\ s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ s->bi_valid += len - Buf_size;\ } else {\ s->bi_buf |= (ush)(value) << s->bi_valid;\ s->bi_valid += len;\ }\ } #endif /* DEBUG */ /* the arguments must not have side effects */ /* =========================================================================== * Initialize the various 'constant' tables. */ local void tr_static_init() { #if defined(GEN_TREES_H) || !defined(STDC) static int static_init_done = 0; int n; /* iterates over tree elements */ int bits; /* bit counter */ int length; /* length value */ int code; /* code value */ int dist; /* distance index */ ush bl_count[MAX_BITS+1]; /* number of codes at each bit length for an optimal tree */ if (static_init_done) return; /* For some embedded targets, global variables are not initialized: */ #ifdef NO_INIT_GLOBAL_POINTERS static_l_desc.static_tree = static_ltree; static_l_desc.extra_bits = extra_lbits; static_d_desc.static_tree = static_dtree; static_d_desc.extra_bits = extra_dbits; static_bl_desc.extra_bits = extra_blbits; #endif /* Initialize the mapping length (0..255) -> length code (0..28) */ length = 0; for (code = 0; code < LENGTH_CODES-1; code++) { base_length[code] = length; for (n = 0; n < (1< dist code (0..29) */ dist = 0; for (code = 0 ; code < 16; code++) { base_dist[code] = dist; for (n = 0; n < (1<>= 7; /* from now on, all distances are divided by 128 */ for ( ; code < D_CODES; code++) { base_dist[code] = dist << 7; for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { _dist_code[256 + dist++] = (uch)code; } } Assert (dist == 256, "tr_static_init: 256+dist != 512"); /* Construct the codes of the static literal tree */ for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; n = 0; while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; /* Codes 286 and 287 do not exist, but we must include them in the * tree construction to get a canonical Huffman tree (longest code * all ones) */ gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); /* The static distance tree is trivial: */ for (n = 0; n < D_CODES; n++) { static_dtree[n].Len = 5; static_dtree[n].Code = bi_reverse((unsigned)n, 5); } static_init_done = 1; # ifdef GEN_TREES_H gen_trees_header(); # endif #endif /* defined(GEN_TREES_H) || !defined(STDC) */ } /* =========================================================================== * Genererate the file trees.h describing the static trees. */ #ifdef GEN_TREES_H # ifndef DEBUG # include # endif # define SEPARATOR(i, last, width) \ ((i) == (last)? "\n};\n\n" : \ ((i) % (width) == (width)-1 ? ",\n" : ", ")) void gen_trees_header() { FILE *header = fopen("trees.h", "w"); int i; Assert (header != NULL, "Can't open trees.h"); fprintf(header, "/* header created automatically with -DGEN_TREES_H */\n\n"); fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n"); for (i = 0; i < L_CODES+2; i++) { fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code, static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5)); } fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n"); for (i = 0; i < D_CODES; i++) { fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code, static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5)); } fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n"); for (i = 0; i < DIST_CODE_LEN; i++) { fprintf(header, "%2u%s", _dist_code[i], SEPARATOR(i, DIST_CODE_LEN-1, 20)); } fprintf(header, "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n"); for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) { fprintf(header, "%2u%s", _length_code[i], SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20)); } fprintf(header, "local const int base_length[LENGTH_CODES] = {\n"); for (i = 0; i < LENGTH_CODES; i++) { fprintf(header, "%1u%s", base_length[i], SEPARATOR(i, LENGTH_CODES-1, 20)); } fprintf(header, "local const int base_dist[D_CODES] = {\n"); for (i = 0; i < D_CODES; i++) { fprintf(header, "%5u%s", base_dist[i], SEPARATOR(i, D_CODES-1, 10)); } fclose(header); } #endif /* GEN_TREES_H */ /* =========================================================================== * Initialize the tree data structures for a new zlib stream. */ void ZLIB_INTERNAL _tr_init( deflate_state *s) { tr_static_init(); s->l_desc.dyn_tree = s->dyn_ltree; s->l_desc.stat_desc = &static_l_desc; s->d_desc.dyn_tree = s->dyn_dtree; s->d_desc.stat_desc = &static_d_desc; s->bl_desc.dyn_tree = s->bl_tree; s->bl_desc.stat_desc = &static_bl_desc; s->bi_buf = 0; s->bi_valid = 0; #ifdef DEBUG s->compressed_len = 0L; s->bits_sent = 0L; #endif /* Initialize the first block of the first file: */ init_block(s); } /* =========================================================================== * Initialize a new block. */ local void init_block( deflate_state *s) { int n; /* iterates over tree elements */ /* Initialize the trees. */ for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0; for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0; for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; s->dyn_ltree[END_BLOCK].Freq = 1; s->opt_len = s->static_len = 0L; s->last_lit = s->matches = 0; } #define SMALLEST 1 /* Index within the heap array of least frequent node in the Huffman tree */ /* =========================================================================== * Remove the smallest element from the heap and recreate the heap with * one less element. Updates heap and heap_len. */ #define pqremove(s, tree, top) \ {\ top = s->heap[SMALLEST]; \ s->heap[SMALLEST] = s->heap[s->heap_len--]; \ pqdownheap(s, tree, SMALLEST); \ } /* =========================================================================== * Compares to subtrees, using the tree depth as tie breaker when * the subtrees have equal frequency. This minimizes the worst case length. */ #define smaller(tree, n, m, depth) \ (tree[n].Freq < tree[m].Freq || \ (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) /* =========================================================================== * Restore the heap property by moving down the tree starting at node k, * exchanging a node with the smallest of its two sons if necessary, stopping * when the heap property is re-established (each father smaller than its * two sons). */ local void pqdownheap( deflate_state *s, ct_data *tree, int k) { int v = s->heap[k]; int j = k << 1; /* left son of k */ while (j <= s->heap_len) { /* Set j to the smallest of the two sons: */ if (j < s->heap_len && smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { j++; } /* Exit if v is smaller than both sons */ if (smaller(tree, v, s->heap[j], s->depth)) break; /* Exchange v with the smallest son */ s->heap[k] = s->heap[j]; k = j; /* And continue down the tree, setting j to the left son of k */ j <<= 1; } s->heap[k] = v; } /* =========================================================================== * Compute the optimal bit lengths for a tree and update the total bit length * for the current block. * IN assertion: the fields freq and dad are set, heap[heap_max] and * above are the tree nodes sorted by increasing frequency. * OUT assertions: the field len is set to the optimal bit length, the * array bl_count contains the frequencies for each bit length. * The length opt_len is updated; static_len is also updated if stree is * not null. */ local void gen_bitlen( deflate_state *s, tree_desc *desc) { ct_data *tree = desc->dyn_tree; int max_code = desc->max_code; const ct_data *stree = desc->stat_desc->static_tree; const intf *extra = desc->stat_desc->extra_bits; int base = desc->stat_desc->extra_base; int max_length = desc->stat_desc->max_length; int h; /* heap index */ int n, m; /* iterate over the tree elements */ int bits; /* bit length */ int xbits; /* extra bits */ ush f; /* frequency */ int overflow = 0; /* number of elements with bit length too large */ for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; /* In a first pass, compute the optimal bit lengths (which may * overflow in the case of the bit length tree). */ tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ for (h = s->heap_max+1; h < HEAP_SIZE; h++) { n = s->heap[h]; bits = tree[tree[n].Dad].Len + 1; if (bits > max_length) bits = max_length, overflow++; tree[n].Len = (ush)bits; /* We overwrite tree[n].Dad which is no longer needed */ if (n > max_code) continue; /* not a leaf node */ s->bl_count[bits]++; xbits = 0; if (n >= base) xbits = extra[n-base]; f = tree[n].Freq; s->opt_len += (ulg)f * (bits + xbits); if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits); } if (overflow == 0) return; Trace((stderr,"\nbit length overflow\n")); /* This happens for example on obj2 and pic of the Calgary corpus */ /* Find the first bit length which could increase: */ do { bits = max_length-1; while (s->bl_count[bits] == 0) bits--; s->bl_count[bits]--; /* move one leaf down the tree */ s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ s->bl_count[max_length]--; /* The brother of the overflow item also moves one step up, * but this does not affect bl_count[max_length] */ overflow -= 2; } while (overflow > 0); /* Now recompute all bit lengths, scanning in increasing frequency. * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all * lengths instead of fixing only the wrong ones. This idea is taken * from 'ar' written by Haruhiko Okumura.) */ for (bits = max_length; bits != 0; bits--) { n = s->bl_count[bits]; while (n != 0) { m = s->heap[--h]; if (m > max_code) continue; if ((unsigned) tree[m].Len != (unsigned) bits) { Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); s->opt_len += ((long)bits - (long)tree[m].Len) *(long)tree[m].Freq; tree[m].Len = (ush)bits; } n--; } } } /* =========================================================================== * Generate the codes for a given tree and bit counts (which need not be * optimal). * IN assertion: the array bl_count contains the bit length statistics for * the given tree and the field len is set for all tree elements. * OUT assertion: the field code is set for all tree elements of non * zero code length. */ local void gen_codes ( ct_data *tree, int max_code, ushf *bl_count) { ush next_code[MAX_BITS+1]; /* next code value for each bit length */ ush code = 0; /* running code value */ int bits; /* bit index */ int n; /* code index */ /* The distribution counts are first used to generate the code values * without bit reversal. */ for (bits = 1; bits <= MAX_BITS; bits++) { next_code[bits] = code = (code + bl_count[bits-1]) << 1; } /* Check that the bit counts in bl_count are consistent. The last code * must be all ones. */ Assert (code + bl_count[MAX_BITS]-1 == (1<dyn_tree; const ct_data *stree = desc->stat_desc->static_tree; int elems = desc->stat_desc->elems; int n, m; /* iterate over heap elements */ int max_code = -1; /* largest code with non zero frequency */ int node; /* new node being created */ /* Construct the initial heap, with least frequent element in * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. * heap[0] is not used. */ s->heap_len = 0, s->heap_max = HEAP_SIZE; for (n = 0; n < elems; n++) { if (tree[n].Freq != 0) { s->heap[++(s->heap_len)] = max_code = n; s->depth[n] = 0; } else { tree[n].Len = 0; } } /* The pkzip format requires that at least one distance code exists, * and that at least one bit should be sent even if there is only one * possible code. So to avoid special checks later on we force at least * two codes of non zero frequency. */ while (s->heap_len < 2) { node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); tree[node].Freq = 1; s->depth[node] = 0; s->opt_len--; if (stree) s->static_len -= stree[node].Len; /* node is 0 or 1 so it does not have extra bits */ } desc->max_code = max_code; /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, * establish sub-heaps of increasing lengths: */ for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); /* Construct the Huffman tree by repeatedly combining the least two * frequent nodes. */ node = elems; /* next internal node of the tree */ do { pqremove(s, tree, n); /* n = node of least frequency */ m = s->heap[SMALLEST]; /* m = node of next least frequency */ s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ s->heap[--(s->heap_max)] = m; /* Create a new node father of n and m */ tree[node].Freq = tree[n].Freq + tree[m].Freq; s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ? s->depth[n] : s->depth[m]) + 1); tree[n].Dad = tree[m].Dad = (ush)node; #ifdef DUMP_BL_TREE if (tree == s->bl_tree) { fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); } #endif /* and insert the new node in the heap */ s->heap[SMALLEST] = node++; pqdownheap(s, tree, SMALLEST); } while (s->heap_len >= 2); s->heap[--(s->heap_max)] = s->heap[SMALLEST]; /* At this point, the fields freq and dad are set. We can now * generate the bit lengths. */ gen_bitlen(s, (tree_desc *)desc); /* The field len is now set, we can generate the bit codes */ gen_codes ((ct_data *)tree, max_code, s->bl_count); } /* =========================================================================== * Scan a literal or distance tree to determine the frequencies of the codes * in the bit length tree. */ local void scan_tree ( deflate_state *s, ct_data *tree, int max_code) { int n; /* iterates over all tree elements */ int prevlen = -1; /* last emitted length */ int curlen; /* length of current code */ int nextlen = tree[0].Len; /* length of next code */ int count = 0; /* repeat count of the current code */ int max_count = 7; /* max repeat count */ int min_count = 4; /* min repeat count */ if (nextlen == 0) max_count = 138, min_count = 3; tree[max_code+1].Len = (ush)0xffff; /* guard */ for (n = 0; n <= max_code; n++) { curlen = nextlen; nextlen = tree[n+1].Len; if (++count < max_count && curlen == nextlen) { continue; } else if (count < min_count) { s->bl_tree[curlen].Freq += count; } else if (curlen != 0) { if (curlen != prevlen) s->bl_tree[curlen].Freq++; s->bl_tree[REP_3_6].Freq++; } else if (count <= 10) { s->bl_tree[REPZ_3_10].Freq++; } else { s->bl_tree[REPZ_11_138].Freq++; } count = 0; prevlen = curlen; if (nextlen == 0) { max_count = 138, min_count = 3; } else if (curlen == nextlen) { max_count = 6, min_count = 3; } else { max_count = 7, min_count = 4; } } } /* =========================================================================== * Send a literal or distance tree in compressed form, using the codes in * bl_tree. */ local void send_tree ( deflate_state *s, ct_data *tree, int max_code) { int n; /* iterates over all tree elements */ int prevlen = -1; /* last emitted length */ int curlen; /* length of current code */ int nextlen = tree[0].Len; /* length of next code */ int count = 0; /* repeat count of the current code */ int max_count = 7; /* max repeat count */ int min_count = 4; /* min repeat count */ /* tree[max_code+1].Len = -1; */ /* guard already set */ if (nextlen == 0) max_count = 138, min_count = 3; for (n = 0; n <= max_code; n++) { curlen = nextlen; nextlen = tree[n+1].Len; if (++count < max_count && curlen == nextlen) { continue; } else if (count < min_count) { do { send_code(s, curlen, s->bl_tree); } while (--count != 0); } else if (curlen != 0) { if (curlen != prevlen) { send_code(s, curlen, s->bl_tree); count--; } Assert(count >= 3 && count <= 6, " 3_6?"); send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2); } else if (count <= 10) { send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3); } else { send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7); } count = 0; prevlen = curlen; if (nextlen == 0) { max_count = 138, min_count = 3; } else if (curlen == nextlen) { max_count = 6, min_count = 3; } else { max_count = 7, min_count = 4; } } } /* =========================================================================== * Construct the Huffman tree for the bit lengths and return the index in * bl_order of the last bit length code to send. */ local int build_bl_tree( deflate_state *s) { int max_blindex; /* index of last bit length code of non zero freq */ /* Determine the bit length frequencies for literal and distance trees */ scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); /* Build the bit length tree: */ build_tree(s, (tree_desc *)(&(s->bl_desc))); /* opt_len now includes the length of the tree representations, except * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. */ /* Determine the number of bit length codes to send. The pkzip format * requires that at least 4 bit length codes be sent. (appnote.txt says * 3 but the actual value used is 4.) */ for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; } /* Update opt_len to include the bit length tree and counts */ s->opt_len += 3*(max_blindex+1) + 5+5+4; Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", s->opt_len, s->static_len)); return max_blindex; } /* =========================================================================== * Send the header for a block using dynamic Huffman trees: the counts, the * lengths of the bit length codes, the literal tree and the distance tree. * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. */ local void send_all_trees( deflate_state *s, int lcodes, int dcodes, int blcodes) { int rank; /* index in bl_order */ Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, "too many codes"); Tracev((stderr, "\nbl counts: ")); send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */ send_bits(s, dcodes-1, 5); send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */ for (rank = 0; rank < blcodes; rank++) { Tracev((stderr, "\nbl code %2d ", bl_order[rank])); send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); } Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */ Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */ Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); } /* =========================================================================== * Send a stored block */ void ZLIB_INTERNAL _tr_stored_block( deflate_state *s, charf *buf, ulg stored_len, int last) { send_bits(s, (STORED_BLOCK<<1)+last, 3); /* send block type */ #ifdef DEBUG s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; s->compressed_len += (stored_len + 4) << 3; #endif copy_block(s, buf, (unsigned)stored_len, 1); /* with header */ } /* =========================================================================== * Flush the bits in the bit buffer to pending output (leaves at most 7 bits) */ void ZLIB_INTERNAL _tr_flush_bits( deflate_state *s) { bi_flush(s); } /* =========================================================================== * Send one empty static block to give enough lookahead for inflate. * This takes 10 bits, of which 7 may remain in the bit buffer. */ void ZLIB_INTERNAL _tr_align( deflate_state *s) { send_bits(s, STATIC_TREES<<1, 3); send_code(s, END_BLOCK, static_ltree); #ifdef DEBUG s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ #endif bi_flush(s); } /* =========================================================================== * Determine the best encoding for the current block: dynamic trees, static * trees or store, and output the encoded block to the zip file. */ void ZLIB_INTERNAL _tr_flush_block( deflate_state *s, charf *buf, ulg stored_len, int last) { ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ int max_blindex = 0; /* index of last bit length code of non zero freq */ /* Build the Huffman trees unless a stored block is forced */ if (s->level > 0) { /* Check if the file is binary or text */ if (s->strm->data_type == Z_UNKNOWN) s->strm->data_type = detect_data_type(s); /* Construct the literal and distance trees */ build_tree(s, (tree_desc *)(&(s->l_desc))); Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, s->static_len)); build_tree(s, (tree_desc *)(&(s->d_desc))); Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, s->static_len)); /* At this point, opt_len and static_len are the total bit lengths of * the compressed block data, excluding the tree representations. */ /* Build the bit length tree for the above two trees, and get the index * in bl_order of the last bit length code to send. */ max_blindex = build_bl_tree(s); /* Determine the best encoding. Compute the block lengths in bytes. */ opt_lenb = (s->opt_len+3+7)>>3; static_lenb = (s->static_len+3+7)>>3; Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, s->last_lit)); if (static_lenb <= opt_lenb) opt_lenb = static_lenb; } else { Assert(buf != (char*)0, "lost buf"); opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ } #ifdef FORCE_STORED if (buf != (char*)0) { /* force stored block */ #else if (stored_len+4 <= opt_lenb && buf != (char*)0) { /* 4: two words for the lengths */ #endif /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. * Otherwise we can't have processed more than WSIZE input bytes since * the last block flush, because compression would have been * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to * transform a block into a stored block. */ _tr_stored_block(s, buf, stored_len, last); #ifdef FORCE_STATIC } else if (static_lenb >= 0) { /* force static trees */ #else } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) { #endif send_bits(s, (STATIC_TREES<<1)+last, 3); compress_block(s, (const ct_data *)static_ltree, (const ct_data *)static_dtree); #ifdef DEBUG s->compressed_len += 3 + s->static_len; #endif } else { send_bits(s, (DYN_TREES<<1)+last, 3); send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, max_blindex+1); compress_block(s, (const ct_data *)s->dyn_ltree, (const ct_data *)s->dyn_dtree); #ifdef DEBUG s->compressed_len += 3 + s->opt_len; #endif } Assert (s->compressed_len == s->bits_sent, "bad compressed size"); /* The above check is made mod 2^32, for files larger than 512 MB * and uLong implemented on 32 bits. */ init_block(s); if (last) { bi_windup(s); #ifdef DEBUG s->compressed_len += 7; /* align on byte boundary */ #endif } Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, s->compressed_len-7*last)); } /* =========================================================================== * Save the match info and tally the frequency counts. Return true if * the current block must be flushed. */ int ZLIB_INTERNAL _tr_tally ( deflate_state *s, unsigned dist, unsigned lc) { s->d_buf[s->last_lit] = (ush)dist; s->l_buf[s->last_lit++] = (uch)lc; if (dist == 0) { /* lc is the unmatched char */ s->dyn_ltree[lc].Freq++; } else { s->matches++; /* Here, lc is the match length - MIN_MATCH */ dist--; /* dist = match distance - 1 */ Assert((ush)dist < (ush)MAX_DIST(s) && (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match"); s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++; s->dyn_dtree[d_code(dist)].Freq++; } #ifdef TRUNCATE_BLOCK /* Try to guess if it is profitable to stop the current block here */ if ((s->last_lit & 0x1fff) == 0 && s->level > 2) { /* Compute an upper bound for the compressed length */ ulg out_length = (ulg)s->last_lit*8L; ulg in_length = (ulg)((long)s->strstart - s->block_start); int dcode; for (dcode = 0; dcode < D_CODES; dcode++) { out_length += (ulg)s->dyn_dtree[dcode].Freq * (5L+extra_dbits[dcode]); } out_length >>= 3; Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", s->last_lit, in_length, out_length, 100L - out_length*100L/in_length)); if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1; } #endif return (s->last_lit == s->lit_bufsize-1); /* We avoid equality with lit_bufsize because of wraparound at 64K * on 16 bit machines and because stored blocks are restricted to * 64K-1 bytes. */ } /* =========================================================================== * Send the block data compressed using the given Huffman trees */ local void compress_block( deflate_state *s, const ct_data *ltree, const ct_data *dtree) { unsigned dist; /* distance of matched string */ int lc; /* match length or unmatched char (if dist == 0) */ unsigned lx = 0; /* running index in l_buf */ unsigned code; /* the code to send */ int extra; /* number of extra bits to send */ if (s->last_lit != 0) do { dist = s->d_buf[lx]; lc = s->l_buf[lx++]; if (dist == 0) { send_code(s, lc, ltree); /* send a literal byte */ Tracecv(isgraph(lc), (stderr," '%c' ", lc)); } else { /* Here, lc is the match length - MIN_MATCH */ code = _length_code[lc]; send_code(s, code+LITERALS+1, ltree); /* send the length code */ extra = extra_lbits[code]; if (extra != 0) { lc -= base_length[code]; send_bits(s, lc, extra); /* send the extra length bits */ } dist--; /* dist is now the match distance - 1 */ code = d_code(dist); Assert (code < D_CODES, "bad d_code"); send_code(s, code, dtree); /* send the distance code */ extra = extra_dbits[code]; if (extra != 0) { dist -= base_dist[code]; send_bits(s, dist, extra); /* send the extra distance bits */ } } /* literal or match pair ? */ /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx, "pendingBuf overflow"); } while (lx < s->last_lit); send_code(s, END_BLOCK, ltree); } /* =========================================================================== * Check if the data type is TEXT or BINARY, using the following algorithm: * - TEXT if the two conditions below are satisfied: * a) There are no non-portable control characters belonging to the * "black list" (0..6, 14..25, 28..31). * b) There is at least one printable character belonging to the * "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255). * - BINARY otherwise. * - The following partially-portable control characters form a * "gray list" that is ignored in this detection algorithm: * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}). * IN assertion: the fields Freq of dyn_ltree are set. */ local int detect_data_type( deflate_state *s) { /* black_mask is the bit mask of black-listed bytes * set bits 0..6, 14..25, and 28..31 * 0xf3ffc07f = binary 11110011111111111100000001111111 */ unsigned long black_mask = 0xf3ffc07fUL; int n; /* Check for non-textual ("black-listed") bytes. */ for (n = 0; n <= 31; n++, black_mask >>= 1) if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0)) return Z_BINARY; /* Check for textual ("white-listed") bytes. */ if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0 || s->dyn_ltree[13].Freq != 0) return Z_TEXT; for (n = 32; n < LITERALS; n++) if (s->dyn_ltree[n].Freq != 0) return Z_TEXT; /* There are no "black-listed" or "white-listed" bytes: * this stream either is empty or has tolerated ("gray-listed") bytes only. */ return Z_BINARY; } /* =========================================================================== * Reverse the first len bits of a code, using straightforward code (a faster * method would use a table) * IN assertion: 1 <= len <= 15 */ local unsigned bi_reverse( unsigned code, int len) { register unsigned res = 0; do { res |= code & 1; code >>= 1, res <<= 1; } while (--len > 0); return res >> 1; } /* =========================================================================== * Flush the bit buffer, keeping at most 7 bits in it. */ local void bi_flush( deflate_state *s) { if (s->bi_valid == 16) { put_short(s, s->bi_buf); s->bi_buf = 0; s->bi_valid = 0; } else if (s->bi_valid >= 8) { put_byte(s, (Byte)s->bi_buf); s->bi_buf >>= 8; s->bi_valid -= 8; } } /* =========================================================================== * Flush the bit buffer and align the output on a byte boundary */ local void bi_windup( deflate_state *s) { if (s->bi_valid > 8) { put_short(s, s->bi_buf); } else if (s->bi_valid > 0) { put_byte(s, (Byte)s->bi_buf); } s->bi_buf = 0; s->bi_valid = 0; #ifdef DEBUG s->bits_sent = (s->bits_sent+7) & ~7; #endif } /* =========================================================================== * Copy a stored block, storing first the length and its * one's complement if requested. */ local void copy_block( deflate_state *s, charf *buf, unsigned len, int header) { bi_windup(s); /* align on byte boundary */ if (header) { put_short(s, (ush)len); put_short(s, (ush)~len); #ifdef DEBUG s->bits_sent += 2*16; #endif } #ifdef DEBUG s->bits_sent += (ulg)len<<3; #endif while (len--) { put_byte(s, *buf++); } } Compress-Raw-Zlib-2.063/zlib-src/adler32.c0000644000175000017500000001143112146130230016545 0ustar paulpaul/* adler32.c -- compute the Adler-32 checksum of a data stream * Copyright (C) 1995-2011 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* @(#) $Id$ */ #include "zutil.h" #define local static local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2)); #define BASE 65521 /* largest prime smaller than 65536 */ #define NMAX 5552 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */ #define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;} #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1); #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2); #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4); #define DO16(buf) DO8(buf,0); DO8(buf,8); /* use NO_DIVIDE if your processor does not do division in hardware -- try it both ways to see which is faster */ #ifdef NO_DIVIDE /* note that this assumes BASE is 65521, where 65536 % 65521 == 15 (thank you to John Reiser for pointing this out) */ # define CHOP(a) \ do { \ unsigned long tmp = a >> 16; \ a &= 0xffffUL; \ a += (tmp << 4) - tmp; \ } while (0) # define MOD28(a) \ do { \ CHOP(a); \ if (a >= BASE) a -= BASE; \ } while (0) # define MOD(a) \ do { \ CHOP(a); \ MOD28(a); \ } while (0) # define MOD63(a) \ do { /* this assumes a is not negative */ \ z_off64_t tmp = a >> 32; \ a &= 0xffffffffL; \ a += (tmp << 8) - (tmp << 5) + tmp; \ tmp = a >> 16; \ a &= 0xffffL; \ a += (tmp << 4) - tmp; \ tmp = a >> 16; \ a &= 0xffffL; \ a += (tmp << 4) - tmp; \ if (a >= BASE) a -= BASE; \ } while (0) #else # define MOD(a) a %= BASE # define MOD28(a) a %= BASE # define MOD63(a) a %= BASE #endif /* ========================================================================= */ uLong ZEXPORT adler32( uLong adler, const Bytef *buf, uInt len) { unsigned long sum2; unsigned n; /* split Adler-32 into component sums */ sum2 = (adler >> 16) & 0xffff; adler &= 0xffff; /* in case user likes doing a byte at a time, keep it fast */ if (len == 1) { adler += buf[0]; if (adler >= BASE) adler -= BASE; sum2 += adler; if (sum2 >= BASE) sum2 -= BASE; return adler | (sum2 << 16); } /* initial Adler-32 value (deferred check for len == 1 speed) */ if (buf == Z_NULL) return 1L; /* in case short lengths are provided, keep it somewhat fast */ if (len < 16) { while (len--) { adler += *buf++; sum2 += adler; } if (adler >= BASE) adler -= BASE; MOD28(sum2); /* only added so many BASE's */ return adler | (sum2 << 16); } /* do length NMAX blocks -- requires just one modulo operation */ while (len >= NMAX) { len -= NMAX; n = NMAX / 16; /* NMAX is divisible by 16 */ do { DO16(buf); /* 16 sums unrolled */ buf += 16; } while (--n); MOD(adler); MOD(sum2); } /* do remaining bytes (less than NMAX, still just one modulo) */ if (len) { /* avoid modulos if none remaining */ while (len >= 16) { len -= 16; DO16(buf); buf += 16; } while (len--) { adler += *buf++; sum2 += adler; } MOD(adler); MOD(sum2); } /* return recombined sums */ return adler | (sum2 << 16); } /* ========================================================================= */ local uLong adler32_combine_( uLong adler1, uLong adler2, z_off64_t len2) { unsigned long sum1; unsigned long sum2; unsigned rem; /* for negative len, return invalid adler32 as a clue for debugging */ if (len2 < 0) return 0xffffffffUL; /* the derivation of this formula is left as an exercise for the reader */ MOD63(len2); /* assumes len2 >= 0 */ rem = (unsigned)len2; sum1 = adler1 & 0xffff; sum2 = rem * sum1; MOD(sum2); sum1 += (adler2 & 0xffff) + BASE - 1; sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem; if (sum1 >= BASE) sum1 -= BASE; if (sum1 >= BASE) sum1 -= BASE; if (sum2 >= (BASE << 1)) sum2 -= (BASE << 1); if (sum2 >= BASE) sum2 -= BASE; return sum1 | (sum2 << 16); } /* ========================================================================= */ uLong ZEXPORT adler32_combine( uLong adler1, uLong adler2, z_off_t len2) { return adler32_combine_(adler1, adler2, len2); } uLong ZEXPORT adler32_combine64( uLong adler1, uLong adler2, z_off64_t len2) { return adler32_combine_(adler1, adler2, len2); } Compress-Raw-Zlib-2.063/typemap0000644000175000017500000000253310666233357015050 0ustar paulpaulCompress::Raw::Zlib::gzFile T_PTROBJ Compress::Raw::Zlib::deflateStream T_PTROBJ Compress::Raw::Zlib::inflateStream T_PTROBJ Compress::Raw::Zlib::inflateScanStream T_PTROBJ #Compress::Raw::Zlib::gzFile T_PTROBJ_AV #Compress::Raw::Zlib::Deflate T_PTROBJ_AV #Compress::Raw::Zlib::Inflate T_PTROBJ_AV #Compress::Raw::Zlib::InflateScan T_PTROBJ_AV Bytef * T_PV #uInt T_IV #uLongf T_IV const char * T_PV char * T_PV uLong T_UV z_off_t T_UV DualType T_DUAL int_undef T_IV_undef ############################################################################# INPUT T_UV $var = (unsigned long)SvUV($arg) T_IV_undef if (SvOK($arg)) $var = SvIV($arg); else $var = 0 ; T_PV if (SvOK($arg)) $var = ($type)SvPVbyte_nolen($arg); else $var = NULL ; T_PTROBJ_AV if ($arg == &PL_sv_undef || $arg == NULL) $var = NULL ; else if (sv_derived_from($arg, \"${ntype}\")) { IV tmp = SvIV(getInnerObject($arg)) ; $var = INT2PTR($type, tmp); } else croak(\"$var is not of type ${ntype}\") ############################################################################# OUTPUT T_UV sv_setuv($arg, (IV)$var); T_DUAL setDUALstatus($arg, $var) ; T_PV sv_setpv((SV*)$arg, $var); Compress-Raw-Zlib-2.063/t/0000755000175000017500000000000012235214474013677 5ustar paulpaulCompress-Raw-Zlib-2.063/t/09limitoutput.t0000644000175000017500000000646211162411060016630 0ustar paulpaulBEGIN { if ($ENV{PERL_CORE}) { chdir 't' if -d 't'; @INC = ("../lib", "lib/compress"); } } use lib qw(t t/compress); use strict; use warnings; use bytes; use Test::More ; use CompTestUtils; BEGIN { # use Test::NoWarnings, if available my $extra = 0 ; $extra = 1 if eval { require Test::NoWarnings ; import Test::NoWarnings; 1 }; plan tests => 98 + $extra ; use_ok('Compress::Raw::Zlib', 2) ; } my $hello = "I am a HAL 9000 computer" x 2001; my $tmp = $hello ; my ($err, $x, $X, $status); ok( ($x, $err) = new Compress::Raw::Zlib::Deflate (-AppendOutput => 1)); ok $x ; cmp_ok $err, '==', Z_OK, " status is Z_OK" ; my $out ; $status = $x->deflate($tmp, $out) ; cmp_ok $status, '==', Z_OK, " status is Z_OK" ; cmp_ok $x->flush($out), '==', Z_OK, " flush returned Z_OK" ; sub getOut { my $x = ''; return \$x } for my $bufsize (1, 2, 3, 13, 4096, 1024*10) { print "#\n#Bufsize $bufsize\n#\n"; $tmp = $out; my $k; ok(($k, $err) = new Compress::Raw::Zlib::Inflate( AppendOutput => 1, LimitOutput => 1, Bufsize => $bufsize )); ok $k ; cmp_ok $err, '==', Z_OK, " status is Z_OK" ; ok ! defined $k->msg(), " no msg" ; is $k->total_in(), 0, " total_in == 0" ; is $k->total_out(), 0, " total_out == 0" ; my $GOT = getOut(); my $prev; my $deltaOK = 1; my $looped = 0; while (length $tmp) { ++ $looped; my $prev = length $GOT; $status = $k->inflate($tmp, $GOT) ; last if $status == Z_STREAM_END || $status == Z_DATA_ERROR || $status == Z_STREAM_ERROR ; $deltaOK = 0 if length($GOT) - $prev > $bufsize; } ok $deltaOK, " Output Delta never > $bufsize"; cmp_ok $looped, '>=', 1, " looped $looped"; is length($tmp), 0, " length of input buffer is zero"; cmp_ok $status, '==', Z_STREAM_END, " status is Z_STREAM_END" ; is $$GOT, $hello, " got expected output" ; ok ! defined $k->msg(), " no msg" ; is $k->total_in(), length $out, " length total_in ok" ; is $k->total_out(), length $hello, " length total_out ok " . $k->total_out() ; } sub getit { my $obj = shift ; my $input = shift; my $data ; 1 while $obj->inflate($input, $data) != Z_STREAM_END ; return \$data ; } { title "regression test"; my ($err, $x, $X, $status); ok( ($x, $err) = new Compress::Raw::Zlib::Deflate (-AppendOutput => 1)); ok $x ; cmp_ok $err, '==', Z_OK, " status is Z_OK" ; my $line1 = ("abcdefghijklmnopq" x 1000) . "\n" ; my $line2 = "second line\n" ; my $text = $line1 . $line2 ; my $tmp = $text; my $out ; $status = $x->deflate($tmp, $out) ; cmp_ok $status, '==', Z_OK, " status is Z_OK" ; cmp_ok $x->flush($out), '==', Z_OK, " flush returned Z_OK" ; my $k; ok(($k, $err) = new Compress::Raw::Zlib::Inflate( AppendOutput => 1, LimitOutput => 1 )); my $c = getit($k, $out); is $$c, $text; } Compress-Raw-Zlib-2.063/t/18lvalue.t0000644000175000017500000000300311347170763015526 0ustar paulpaulBEGIN { if ($ENV{PERL_CORE}) { chdir 't' if -d 't'; @INC = ("../lib", "lib/compress"); } } use lib qw(t t/compress); use strict; use warnings; use bytes; use Test::More ; use CompTestUtils; BEGIN { plan(skip_all => "lvalue sub tests need Perl ??") if $] < 5.006 ; # use Test::NoWarnings, if available my $extra = 0 ; $extra = 1 if eval { require Test::NoWarnings ; import Test::NoWarnings; 1 }; plan tests => 10 + $extra ; use_ok('Compress::Raw::Zlib', 2) ; } my $hello = < 1 ); cmp_ok $x->deflate(getData, getX), '==', Z_OK ; cmp_ok $x->flush(getX), '==', Z_OK ; my $append = "Appended" ; $X .= $append ; ok my $k = new Compress::Raw::Zlib::Inflate ( -AppendOutput => 1 ) ; cmp_ok $k->inflate(getX, getZ), '==', Z_STREAM_END ; ; ok $hello eq $Z ; is $X, $append; } Compress-Raw-Zlib-2.063/t/01version.t0000644000175000017500000000176511347170607015725 0ustar paulpaulBEGIN { if ($ENV{PERL_CORE}) { chdir 't' if -d 't'; @INC = ("../lib", "lib/compress"); } } use lib qw(t t/compress); use strict ; use warnings ; use Test::More ; BEGIN { # use Test::NoWarnings, if available my $extra = 0 ; $extra = 1 if eval { require Test::NoWarnings ; import Test::NoWarnings; 1 }; plan tests => 2 + $extra ; use_ok('Compress::Raw::Zlib', 2) ; } # Check zlib_version and ZLIB_VERSION are the same. SKIP: { skip "TEST_SKIP_VERSION_CHECK is set", 1 if $ENV{TEST_SKIP_VERSION_CHECK}; my $zlib_h = ZLIB_VERSION ; my $libz = Compress::Raw::Zlib::zlib_version; is($zlib_h, $libz, "ZLIB_VERSION ($zlib_h) matches Compress::Raw::Zlib::zlib_version") or diag <= 5.006) { $count = 317 ; } else { $count = 275 ; } plan tests => $count + $extra; use_ok('Compress::Raw::Zlib', 2) ; } my $Zlib_ver = Compress::Raw::Zlib::zlib_version ; my $hello = < 1) }; like $@, mkErr('^Compress::Raw::Zlib::Deflate::new: unknown key value\(s\) Joe'); eval { new Compress::Raw::Zlib::Inflate(-Joe => 1) }; like $@, mkErr('^Compress::Raw::Zlib::Inflate::new: unknown key value\(s\) Joe'); eval { new Compress::Raw::Zlib::Deflate(-Bufsize => 0) }; like $@, mkErr("^Compress::Raw::Zlib::Deflate::new: Bufsize must be >= 1, you specified 0"); eval { new Compress::Raw::Zlib::Inflate(-Bufsize => 0) }; like $@, mkErr("^Compress::Raw::Zlib::Inflate::new: Bufsize must be >= 1, you specified 0"); eval { new Compress::Raw::Zlib::Deflate(-Bufsize => -1) }; like $@, mkErr("^Compress::Raw::Zlib::Deflate::new: Parameter 'Bufsize' must be an unsigned int, got '-1'"); eval { new Compress::Raw::Zlib::Inflate(-Bufsize => -1) }; like $@, mkErr("^Compress::Raw::Zlib::Inflate::new: Parameter 'Bufsize' must be an unsigned int, got '-1'"); eval { new Compress::Raw::Zlib::Deflate(-Bufsize => "xxx") }; like $@, mkErr("^Compress::Raw::Zlib::Deflate::new: Parameter 'Bufsize' must be an unsigned int, got 'xxx'"); eval { new Compress::Raw::Zlib::Inflate(-Bufsize => "xxx") }; like $@, mkErr("^Compress::Raw::Zlib::Inflate::new: Parameter 'Bufsize' must be an unsigned int, got 'xxx'"); eval { new Compress::Raw::Zlib::Inflate(-Bufsize => 1, 2) }; like $@, mkErr("^Compress::Raw::Zlib::Inflate::new: Expected even number of parameters, got 3"); eval { new Compress::Raw::Zlib::Deflate(-Bufsize => 1, 2) }; like $@, mkErr("^Compress::Raw::Zlib::Deflate::new: Expected even number of parameters, got 3"); } { title "deflate/inflate - small buffer"; # ============================== my $hello = "I am a HAL 9000 computer" ; my @hello = split('', $hello) ; my ($err, $x, $X, $status); ok( ($x, $err) = new Compress::Raw::Zlib::Deflate ( -Bufsize => 1 ), "Create deflate object" ); ok $x, "Compress::Raw::Zlib::Deflate ok" ; cmp_ok $err, '==', Z_OK, "status is Z_OK" ; ok ! defined $x->msg() ; is $x->total_in(), 0, "total_in() == 0" ; is $x->total_out(), 0, "total_out() == 0" ; $X = "" ; my $Answer = ''; foreach (@hello) { $status = $x->deflate($_, $X) ; last unless $status == Z_OK ; $Answer .= $X ; } cmp_ok $status, '==', Z_OK, "deflate returned Z_OK" ; cmp_ok $x->flush($X), '==', Z_OK, "flush returned Z_OK" ; $Answer .= $X ; ok ! defined $x->msg() ; is $x->total_in(), length $hello, "total_in ok" ; is $x->total_out(), length $Answer, "total_out ok" ; my @Answer = split('', $Answer) ; my $k; ok(($k, $err) = new Compress::Raw::Zlib::Inflate( {-Bufsize => 1}) ); ok $k, "Compress::Raw::Zlib::Inflate ok" ; cmp_ok $err, '==', Z_OK, "status is Z_OK" ; ok ! defined $k->msg(), "No error messages" ; is $k->total_in(), 0, "total_in() == 0" ; is $k->total_out(), 0, "total_out() == 0" ; my $GOT = ''; my $Z; $Z = 1 ;#x 2000 ; foreach (@Answer) { $status = $k->inflate($_, $Z) ; $GOT .= $Z ; last if $status == Z_STREAM_END or $status != Z_OK ; } cmp_ok $status, '==', Z_STREAM_END, "Got Z_STREAM_END" ; is $GOT, $hello, "uncompressed data matches ok" ; ok ! defined $k->msg(), "No error messages" ; is $k->total_in(), length $Answer, "total_in ok" ; is $k->total_out(), length $hello , "total_out ok"; } { # deflate/inflate - small buffer with a number # ============================== my $hello = 6529 ; ok my ($x, $err) = new Compress::Raw::Zlib::Deflate ( -Bufsize => 1, -AppendOutput => 1 ) ; ok $x ; cmp_ok $err, '==', Z_OK ; my $status; my $Answer = ''; cmp_ok $x->deflate($hello, $Answer), '==', Z_OK ; cmp_ok $x->flush($Answer), '==', Z_OK ; my @Answer = split('', $Answer) ; my $k; ok(($k, $err) = new Compress::Raw::Zlib::Inflate( {-Bufsize => 1, -AppendOutput =>1}) ); ok $k ; cmp_ok $err, '==', Z_OK ; #my $GOT = ''; my $GOT ; foreach (@Answer) { $status = $k->inflate($_, $GOT) ; last if $status == Z_STREAM_END or $status != Z_OK ; } cmp_ok $status, '==', Z_STREAM_END ; is $GOT, $hello ; } { # deflate/inflate options - AppendOutput # ================================ # AppendOutput # CRC my $hello = "I am a HAL 9000 computer" ; my @hello = split('', $hello) ; ok my ($x, $err) = new Compress::Raw::Zlib::Deflate ( {-Bufsize => 1, -AppendOutput =>1} ) ; ok $x ; cmp_ok $err, '==', Z_OK ; my $status; my $X; foreach (@hello) { $status = $x->deflate($_, $X) ; last unless $status == Z_OK ; } cmp_ok $status, '==', Z_OK ; cmp_ok $x->flush($X), '==', Z_OK ; my @Answer = split('', $X) ; my $k; ok(($k, $err) = new Compress::Raw::Zlib::Inflate( {-Bufsize => 1, -AppendOutput =>1})); ok $k ; cmp_ok $err, '==', Z_OK ; my $Z; foreach (@Answer) { $status = $k->inflate($_, $Z) ; last if $status == Z_STREAM_END or $status != Z_OK ; } cmp_ok $status, '==', Z_STREAM_END ; is $Z, $hello ; } { title "deflate/inflate - larger buffer"; # ============================== # generate a long random string my $contents = '' ; foreach (1 .. 50000) { $contents .= chr int rand 255 } ok my ($x, $err) = new Compress::Raw::Zlib::Deflate() ; ok $x ; cmp_ok $err, '==', Z_OK ; my (%X, $Y, %Z, $X, $Z); #cmp_ok $x->deflate($contents, $X{key}), '==', Z_OK ; cmp_ok $x->deflate($contents, $X), '==', Z_OK ; #$Y = $X{key} ; $Y = $X ; #cmp_ok $x->flush($X{key}), '==', Z_OK ; #$Y .= $X{key} ; cmp_ok $x->flush($X), '==', Z_OK ; $Y .= $X ; my $keep = $Y ; my $k; ok(($k, $err) = new Compress::Raw::Zlib::Inflate() ); ok $k ; cmp_ok $err, '==', Z_OK ; #cmp_ok $k->inflate($Y, $Z{key}), '==', Z_STREAM_END ; #ok $contents eq $Z{key} ; cmp_ok $k->inflate($Y, $Z), '==', Z_STREAM_END ; ok $contents eq $Z ; # redo deflate with AppendOutput ok (($k, $err) = new Compress::Raw::Zlib::Inflate(-AppendOutput => 1)) ; ok $k ; cmp_ok $err, '==', Z_OK ; my $s ; my $out ; my @bits = split('', $keep) ; foreach my $bit (@bits) { $s = $k->inflate($bit, $out) ; } cmp_ok $s, '==', Z_STREAM_END ; ok $contents eq $out ; } { title "deflate/inflate - preset dictionary"; # =================================== my $dictionary = "hello" ; ok my $x = new Compress::Raw::Zlib::Deflate({-Level => Z_BEST_COMPRESSION, -Dictionary => $dictionary}) ; my $dictID = $x->dict_adler() ; my ($X, $Y, $Z); cmp_ok $x->deflate($hello, $X), '==', Z_OK; cmp_ok $x->flush($Y), '==', Z_OK; $X .= $Y ; ok my $k = new Compress::Raw::Zlib::Inflate(-Dictionary => $dictionary) ; cmp_ok $k->inflate($X, $Z), '==', Z_STREAM_END; is $k->dict_adler(), $dictID; is $hello, $Z ; } title 'inflate - check remaining buffer after Z_STREAM_END'; # and that ConsumeInput works. # =================================================== for my $consume ( 0 .. 1) { ok my $x = new Compress::Raw::Zlib::Deflate(-Level => Z_BEST_COMPRESSION ) ; my ($X, $Y, $Z); cmp_ok $x->deflate($hello, $X), '==', Z_OK; cmp_ok $x->flush($Y), '==', Z_OK; $X .= $Y ; ok my $k = new Compress::Raw::Zlib::Inflate( -ConsumeInput => $consume) ; my $first = substr($X, 0, 2) ; my $remember_first = $first ; my $last = substr($X, 2) ; cmp_ok $k->inflate($first, $Z), '==', Z_OK; if ($consume) { ok $first eq "" ; } else { ok $first eq $remember_first ; } my $T ; $last .= "appendage" ; my $remember_last = $last ; cmp_ok $k->inflate($last, $T), '==', Z_STREAM_END; is $hello, $Z . $T ; if ($consume) { is $last, "appendage" ; } else { is $last, $remember_last ; } } { title 'Check - MAX_WBITS'; # ================= my $hello = "Test test test test test"; my @hello = split('', $hello) ; ok my ($x, $err) = new Compress::Raw::Zlib::Deflate ( -Bufsize => 1, -WindowBits => -MAX_WBITS(), -AppendOutput => 1 ) ; ok $x ; cmp_ok $err, '==', Z_OK ; my $Answer = ''; my $status; foreach (@hello) { $status = $x->deflate($_, $Answer) ; last unless $status == Z_OK ; } cmp_ok $status, '==', Z_OK ; cmp_ok $x->flush($Answer), '==', Z_OK ; my @Answer = split('', $Answer) ; # Undocumented corner -- extra byte needed to get inflate to return # Z_STREAM_END when done. push @Answer, " " ; my $k; ok(($k, $err) = new Compress::Raw::Zlib::Inflate( {-Bufsize => 1, -AppendOutput =>1, -WindowBits => -MAX_WBITS()})) ; ok $k ; cmp_ok $err, '==', Z_OK ; my $GOT = ''; foreach (@Answer) { $status = $k->inflate($_, $GOT) ; last if $status == Z_STREAM_END or $status != Z_OK ; } cmp_ok $status, '==', Z_STREAM_END ; is $GOT, $hello ; } SKIP: { title 'inflateSync'; skip "inflateSync needs zlib 1.2.1 or better, you have $Zlib_ver", 22 if ZLIB_VERNUM() < 0x1210 ; # create a deflate stream with flush points my $hello = "I am a HAL 9000 computer" x 2001 ; my $goodbye = "Will I dream?" x 2010; my ($x, $err, $answer, $X, $Z, $status); my $Answer ; #use Devel::Peek ; ok(($x, $err) = new Compress::Raw::Zlib::Deflate(AppendOutput => 1)) ; ok $x ; cmp_ok $err, '==', Z_OK ; cmp_ok $x->deflate($hello, $Answer), '==', Z_OK; # create a flush point cmp_ok $x->flush($Answer, Z_FULL_FLUSH), '==', Z_OK ; my $len1 = length $Answer; cmp_ok $x->deflate($goodbye, $Answer), '==', Z_OK; cmp_ok $x->flush($Answer), '==', Z_OK ; my $len2 = length($Answer) - $len1 ; my ($first, @Answer) = split('', $Answer) ; my $k; ok(($k, $err) = new Compress::Raw::Zlib::Inflate()) ; ok $k ; cmp_ok $err, '==', Z_OK ; cmp_ok $k->inflate($first, $Z), '==', Z_OK; # skip to the first flush point. while (@Answer) { my $byte = shift @Answer; $status = $k->inflateSync($byte) ; last unless $status == Z_DATA_ERROR; } cmp_ok $status, '==', Z_OK; my $GOT = ''; foreach (@Answer) { my $Z = ''; $status = $k->inflate($_, $Z) ; $GOT .= $Z if defined $Z ; # print "x $status\n"; last if $status == Z_STREAM_END or $status != Z_OK ; } cmp_ok $status, '==', Z_DATA_ERROR ; is $GOT, $goodbye ; # Check inflateSync leaves good data in buffer my $rest = $Answer ; $rest =~ s/^(.)//; my $initial = $1 ; ok(($k, $err) = new Compress::Raw::Zlib::Inflate(ConsumeInput => 0)) ; ok $k ; cmp_ok $err, '==', Z_OK ; cmp_ok $k->inflate($initial, $Z), '==', Z_OK; # Skip to the flush point $status = $k->inflateSync($rest); cmp_ok $status, '==', Z_OK or diag "status '$status'\nlength rest is " . length($rest) . "\n" ; is length($rest), $len2, "expected compressed output"; $GOT = ''; cmp_ok $k->inflate($rest, $GOT), '==', Z_DATA_ERROR, "inflate returns Z_DATA_ERROR"; is $GOT, $goodbye ; } { title 'deflateParams'; my $hello = "I am a HAL 9000 computer" x 2001 ; my $goodbye = "Will I dream?" x 2010; my ($x, $input, $err, $answer, $X, $status, $Answer); ok(($x, $err) = new Compress::Raw::Zlib::Deflate( -AppendOutput => 1, -Level => Z_DEFAULT_COMPRESSION, -Strategy => Z_DEFAULT_STRATEGY)) ; ok $x ; cmp_ok $err, '==', Z_OK ; ok $x->get_Level() == Z_DEFAULT_COMPRESSION; ok $x->get_Strategy() == Z_DEFAULT_STRATEGY; $status = $x->deflate($hello, $Answer) ; cmp_ok $status, '==', Z_OK ; $input .= $hello; # error cases eval { $x->deflateParams() }; like $@, mkErr('^Compress::Raw::Zlib::deflateParams needs Level and\/or Strategy'); eval { $x->deflateParams(-Bufsize => 0) }; like $@, mkErr('^Compress::Raw::Zlib::Inflate::deflateParams: Bufsize must be >= 1, you specified 0'); eval { $x->deflateParams(-Joe => 3) }; like $@, mkErr('^Compress::Raw::Zlib::deflateStream::deflateParams: unknown key value\(s\) Joe'); is $x->get_Level(), Z_DEFAULT_COMPRESSION; is $x->get_Strategy(), Z_DEFAULT_STRATEGY; # change both Level & Strategy $status = $x->deflateParams(-Level => Z_BEST_SPEED, -Strategy => Z_HUFFMAN_ONLY, -Bufsize => 1234) ; cmp_ok $status, '==', Z_OK ; is $x->get_Level(), Z_BEST_SPEED; is $x->get_Strategy(), Z_HUFFMAN_ONLY; $status = $x->deflate($goodbye, $Answer) ; cmp_ok $status, '==', Z_OK ; $input .= $goodbye; # change only Level $status = $x->deflateParams(-Level => Z_NO_COMPRESSION) ; cmp_ok $status, '==', Z_OK ; is $x->get_Level(), Z_NO_COMPRESSION; is $x->get_Strategy(), Z_HUFFMAN_ONLY; $status = $x->deflate($goodbye, $Answer) ; cmp_ok $status, '==', Z_OK ; $input .= $goodbye; # change only Strategy $status = $x->deflateParams(-Strategy => Z_FILTERED) ; cmp_ok $status, '==', Z_OK ; is $x->get_Level(), Z_NO_COMPRESSION; is $x->get_Strategy(), Z_FILTERED; $status = $x->deflate($goodbye, $Answer) ; cmp_ok $status, '==', Z_OK ; $input .= $goodbye; cmp_ok $x->flush($Answer), '==', Z_OK ; my $k; ok(($k, $err) = new Compress::Raw::Zlib::Inflate()) ; ok $k ; cmp_ok $err, '==', Z_OK ; my $Z; $status = $k->inflate($Answer, $Z) ; cmp_ok $status, '==', Z_STREAM_END ; is $Z, $input ; } { title "ConsumeInput and a read-only buffer trapped" ; ok my $k = new Compress::Raw::Zlib::Inflate(-ConsumeInput => 1) ; my $Z; eval { $k->inflate("abc", $Z) ; }; like $@, mkErr("Compress::Raw::Zlib::Inflate::inflate input parameter cannot be read-only when ConsumeInput is specified"); } foreach (1 .. 2) { next if $] < 5.005 ; title 'test inflate/deflate with a substr'; my $contents = '' ; foreach (1 .. 5000) { $contents .= chr int rand 255 } ok my $x = new Compress::Raw::Zlib::Deflate(-AppendOutput => 1) ; my $X ; my $status = $x->deflate(substr($contents,0), $X); cmp_ok $status, '==', Z_OK ; cmp_ok $x->flush($X), '==', Z_OK ; my $append = "Appended" ; $X .= $append ; ok my $k = new Compress::Raw::Zlib::Inflate(-AppendOutput => 1) ; my $Z; my $keep = $X ; $status = $k->inflate(substr($X, 0), $Z) ; cmp_ok $status, '==', Z_STREAM_END ; #print "status $status X [$X]\n" ; is $contents, $Z ; ok $X eq $append; #is length($X), length($append); #ok $X eq $keep; #is length($X), length($keep); } title 'Looping Append test - checks that deRef_l resets the output buffer'; foreach (1 .. 2) { my $hello = "I am a HAL 9000 computer" ; my @hello = split('', $hello) ; my ($err, $x, $X, $status); ok( ($x, $err) = new Compress::Raw::Zlib::Deflate ( -Bufsize => 1 ) ); ok $x ; cmp_ok $err, '==', Z_OK ; $X = "" ; my $Answer = ''; foreach (@hello) { $status = $x->deflate($_, $X) ; last unless $status == Z_OK ; $Answer .= $X ; } cmp_ok $status, '==', Z_OK ; cmp_ok $x->flush($X), '==', Z_OK ; $Answer .= $X ; my @Answer = split('', $Answer) ; my $k; ok(($k, $err) = new Compress::Raw::Zlib::Inflate(-AppendOutput => 1) ); ok $k ; cmp_ok $err, '==', Z_OK ; my $GOT ; my $Z; $Z = 1 ;#x 2000 ; foreach (@Answer) { $status = $k->inflate($_, $GOT) ; last if $status == Z_STREAM_END or $status != Z_OK ; } cmp_ok $status, '==', Z_STREAM_END ; is $GOT, $hello ; } if ($] >= 5.005) { title 'test inflate input parameter via substr'; my $hello = "I am a HAL 9000 computer" ; my $data = $hello ; my($X, $Z); ok my $x = new Compress::Raw::Zlib::Deflate ( -AppendOutput => 1 ); cmp_ok $x->deflate($data, $X), '==', Z_OK ; cmp_ok $x->flush($X), '==', Z_OK ; my $append = "Appended" ; $X .= $append ; my $keep = $X ; ok my $k = new Compress::Raw::Zlib::Inflate ( -AppendOutput => 1, -ConsumeInput => 1 ) ; cmp_ok $k->inflate(substr($X, 0, -1), $Z), '==', Z_STREAM_END ; ; ok $hello eq $Z ; is $X, $append; $X = $keep ; $Z = ''; ok $k = new Compress::Raw::Zlib::Inflate ( -AppendOutput => 1, -ConsumeInput => 0 ) ; cmp_ok $k->inflate(substr($X, 0, -1), $Z), '==', Z_STREAM_END ; ; #cmp_ok $k->inflate(substr($X, 0), $Z), '==', Z_STREAM_END ; ; ok $hello eq $Z ; is $X, $keep; } SKIP: { skip "InflateScan needs zlib 1.2.1 or better, you have $Zlib_ver", 1 if ZLIB_VERNUM() < 0x1210 ; # regression - check that resetLastBlockByte can cope with a NULL # pointer. Compress::Raw::Zlib::InflateScan->new->resetLastBlockByte(undef); ok 1, "resetLastBlockByte(undef) is ok" ; } SKIP: { title "gzip mode"; # ================ skip "gzip mode needs zlib 1.2.1 or better, you have $Zlib_ver", 13 if ZLIB_VERNUM() < 0x1210 ; my $hello = "I am a HAL 9000 computer" ; my @hello = split('', $hello) ; my ($err, $x, $X, $status); ok( ($x, $err) = new Compress::Raw::Zlib::Deflate ( WindowBits => WANT_GZIP , AppendOutput => 1 ), "Create deflate object" ); ok $x, "Compress::Raw::Zlib::Deflate ok" ; cmp_ok $err, '==', Z_OK, "status is Z_OK" ; $status = $x->deflate($hello, $X) ; cmp_ok $status, '==', Z_OK, "deflate returned Z_OK" ; cmp_ok $x->flush($X), '==', Z_OK, "flush returned Z_OK" ; my ($k, $GOT); ($k, $err) = new Compress::Raw::Zlib::Inflate( WindowBits => WANT_GZIP , ConsumeInput => 0 , AppendOutput => 1); ok $k, "Compress::Raw::Zlib::Inflate WANT_GZIP ok" ; cmp_ok $err, '==', Z_OK, "status is Z_OK" ; $status = $k->inflate($X, $GOT) ; cmp_ok $status, '==', Z_STREAM_END, "Got Z_STREAM_END" ; is $GOT, $hello, "uncompressed data matches ok" ; $GOT = ''; ($k, $err) = new Compress::Raw::Zlib::Inflate( WindowBits => WANT_GZIP_OR_ZLIB , AppendOutput => 1); ok $k, "Compress::Raw::Zlib::Inflate WANT_GZIP_OR_ZLIB ok" ; cmp_ok $err, '==', Z_OK, "status is Z_OK" ; $status = $k->inflate($X, $GOT) ; cmp_ok $status, '==', Z_STREAM_END, "Got Z_STREAM_END" ; is $GOT, $hello, "uncompressed data matches ok" ; } SKIP: { title "gzip error mode"; # Create gzip - # read with no special windowbits setting - this will fail # then read with WANT_GZIP_OR_ZLIB - thi swill work # ================ skip "gzip mode needs zlib 1.2.1 or better, you have $Zlib_ver", 12 if ZLIB_VERNUM() < 0x1210 ; my $hello = "I am a HAL 9000 computer" ; my ($err, $x, $X, $status); ok( ($x, $err) = new Compress::Raw::Zlib::Deflate ( WindowBits => WANT_GZIP , AppendOutput => 1 ), "Create deflate object" ); ok $x, "Compress::Raw::Zlib::Deflate ok" ; cmp_ok $err, '==', Z_OK, "status is Z_OK" ; $status = $x->deflate($hello, $X) ; cmp_ok $status, '==', Z_OK, "deflate returned Z_OK" ; cmp_ok $x->flush($X), '==', Z_OK, "flush returned Z_OK" ; my ($k, $GOT); ($k, $err) = new Compress::Raw::Zlib::Inflate( WindowBits => MAX_WBITS , ConsumeInput => 0 , AppendOutput => 1); ok $k, "Compress::Raw::Zlib::Inflate WANT_GZIP ok" ; cmp_ok $err, '==', Z_OK, "status is Z_OK" ; $status = $k->inflate($X, $GOT) ; cmp_ok $status, '==', Z_DATA_ERROR, "Got Z_DATA_ERROR" ; $GOT = ''; ($k, $err) = new Compress::Raw::Zlib::Inflate( WindowBits => WANT_GZIP_OR_ZLIB , AppendOutput => 1); ok $k, "Compress::Raw::Zlib::Inflate WANT_GZIP_OR_ZLIB ok" ; cmp_ok $err, '==', Z_OK, "status is Z_OK" ; $status = $k->inflate($X, $GOT) ; cmp_ok $status, '==', Z_STREAM_END, "Got Z_STREAM_END" ; is $GOT, $hello, "uncompressed data matches ok" ; } SKIP: { title "gzip/zlib error mode"; # Create zlib - # read with no WANT_GZIP windowbits setting - this will fail # then read with WANT_GZIP_OR_ZLIB - thi swill work # ================ skip "gzip mode needs zlib 1.2.1 or better, you have $Zlib_ver", 12 if ZLIB_VERNUM() < 0x1210 ; my $hello = "I am a HAL 9000 computer" ; my ($err, $x, $X, $status); ok( ($x, $err) = new Compress::Raw::Zlib::Deflate ( AppendOutput => 1 ), "Create deflate object" ); ok $x, "Compress::Raw::Zlib::Deflate ok" ; cmp_ok $err, '==', Z_OK, "status is Z_OK" ; $status = $x->deflate($hello, $X) ; cmp_ok $status, '==', Z_OK, "deflate returned Z_OK" ; cmp_ok $x->flush($X), '==', Z_OK, "flush returned Z_OK" ; my ($k, $GOT); ($k, $err) = new Compress::Raw::Zlib::Inflate( WindowBits => WANT_GZIP , ConsumeInput => 0 , AppendOutput => 1); ok $k, "Compress::Raw::Zlib::Inflate WANT_GZIP ok" ; cmp_ok $err, '==', Z_OK, "status is Z_OK" ; $status = $k->inflate($X, $GOT) ; cmp_ok $status, '==', Z_DATA_ERROR, "Got Z_DATA_ERROR" ; $GOT = ''; ($k, $err) = new Compress::Raw::Zlib::Inflate( WindowBits => WANT_GZIP_OR_ZLIB , AppendOutput => 1); ok $k, "Compress::Raw::Zlib::Inflate WANT_GZIP_OR_ZLIB ok" ; cmp_ok $err, '==', Z_OK, "status is Z_OK" ; $status = $k->inflate($X, $GOT) ; cmp_ok $status, '==', Z_STREAM_END, "Got Z_STREAM_END" ; is $GOT, $hello, "uncompressed data matches ok" ; } { title "zlibCompileFlags"; my $flags = Compress::Raw::Zlib::zlibCompileFlags; if (ZLIB_VERNUM() < 0x1210) { is $flags, 0, "zlibCompileFlags == 0 if < 1.2.1"; } else { ok $flags, "zlibCompileFlags != 0 if < 1.2.1"; } } { title "repeated calls to flush after some compression"; my $hello = "I am a HAL 9000 computer" ; my ($err, $x, $X, $status); ok( ($x, $err) = new Compress::Raw::Zlib::Deflate ( ), "Create deflate object" ); isa_ok $x, "Compress::Raw::Zlib::deflateStream" ; cmp_ok $err, '==', Z_OK, "status is Z_OK" ; $status = $x->deflate($hello, $X) ; cmp_ok $status, '==', Z_OK, "deflate returned Z_OK" ; cmp_ok $x->flush($X, Z_SYNC_FLUSH), '==', Z_OK, "flush returned Z_OK" ; cmp_ok $x->flush($X, Z_SYNC_FLUSH), '==', Z_OK, "second flush returned Z_OK" ; is $X, "", "no output from second flush"; } { title "repeated calls to flush - no compression"; my $hello = "I am a HAL 9000 computer" ; my ($err, $x, $X, $status); ok( ($x, $err) = new Compress::Raw::Zlib::Deflate ( ), "Create deflate object" ); isa_ok $x, "Compress::Raw::Zlib::deflateStream" ; cmp_ok $err, '==', Z_OK, "status is Z_OK" ; cmp_ok $x->flush($X, Z_SYNC_FLUSH), '==', Z_OK, "flush returned Z_OK" ; cmp_ok $x->flush($X, Z_SYNC_FLUSH), '==', Z_OK, "second flush returned Z_OK" ; is $X, "", "no output from second flush"; } exit if $] < 5.006 ; title 'Looping Append test with substr output - substr the end of the string'; foreach (1 .. 2) { my $hello = "I am a HAL 9000 computer" ; my @hello = split('', $hello) ; my ($err, $x, $X, $status); ok( ($x, $err) = new Compress::Raw::Zlib::Deflate ( -Bufsize => 1, -AppendOutput => 1 ) ); ok $x ; cmp_ok $err, '==', Z_OK ; $X = "" ; my $Answer = ''; foreach (@hello) { $status = $x->deflate($_, substr($Answer, length($Answer))) ; last unless $status == Z_OK ; } cmp_ok $status, '==', Z_OK ; cmp_ok $x->flush(substr($Answer, length($Answer))), '==', Z_OK ; #cmp_ok length $Answer, ">", 0 ; my @Answer = split('', $Answer) ; my $k; ok(($k, $err) = new Compress::Raw::Zlib::Inflate(-AppendOutput => 1) ); ok $k ; cmp_ok $err, '==', Z_OK ; my $GOT = ''; my $Z; $Z = 1 ;#x 2000 ; foreach (@Answer) { $status = $k->inflate($_, substr($GOT, length($GOT))) ; last if $status == Z_STREAM_END or $status != Z_OK ; } cmp_ok $status, '==', Z_STREAM_END ; is $GOT, $hello ; } title 'Looping Append test with substr output - substr the complete string'; foreach (1 .. 2) { my $hello = "I am a HAL 9000 computer" ; my @hello = split('', $hello) ; my ($err, $x, $X, $status); ok( ($x, $err) = new Compress::Raw::Zlib::Deflate ( -Bufsize => 1, -AppendOutput => 1 ) ); ok $x ; cmp_ok $err, '==', Z_OK ; $X = "" ; my $Answer = ''; foreach (@hello) { $status = $x->deflate($_, substr($Answer, 0)) ; last unless $status == Z_OK ; } cmp_ok $status, '==', Z_OK ; cmp_ok $x->flush(substr($Answer, 0)), '==', Z_OK ; my @Answer = split('', $Answer) ; my $k; ok(($k, $err) = new Compress::Raw::Zlib::Inflate(-AppendOutput => 1) ); ok $k ; cmp_ok $err, '==', Z_OK ; my $GOT = ''; my $Z; $Z = 1 ;#x 2000 ; foreach (@Answer) { $status = $k->inflate($_, substr($GOT, 0)) ; last if $status == Z_STREAM_END or $status != Z_OK ; } cmp_ok $status, '==', Z_STREAM_END ; is $GOT, $hello ; } Compress-Raw-Zlib-2.063/t/Test/0000755000175000017500000000000012235214474014616 5ustar paulpaulCompress-Raw-Zlib-2.063/t/Test/Builder.pm0000644000175000017500000011054311162411062016534 0ustar paulpaulpackage Test::Builder; use 5.004; # $^C was only introduced in 5.005-ish. We do this to prevent # use of uninitialized value warnings in older perls. $^C ||= 0; use strict; our ($VERSION); $VERSION = '0.30'; $VERSION = eval $VERSION; # make the alpha version come out as a number # Make Test::Builder thread-safe for ithreads. BEGIN { use Config; # Load threads::shared when threads are turned on if( $] >= 5.008 && $Config{useithreads} && $INC{'threads.pm'}) { require threads::shared; # Hack around YET ANOTHER threads::shared bug. It would # occassionally forget the contents of the variable when sharing it. # So we first copy the data, then share, then put our copy back. *share = sub (\[$@%]) { my $type = ref $_[0]; my $data; if( $type eq 'HASH' ) { %$data = %{$_[0]}; } elsif( $type eq 'ARRAY' ) { @$data = @{$_[0]}; } elsif( $type eq 'SCALAR' ) { $$data = ${$_[0]}; } else { die "Unknown type: ".$type; } $_[0] = &threads::shared::share($_[0]); if( $type eq 'HASH' ) { %{$_[0]} = %$data; } elsif( $type eq 'ARRAY' ) { @{$_[0]} = @$data; } elsif( $type eq 'SCALAR' ) { ${$_[0]} = $$data; } else { die "Unknown type: ".$type; } return $_[0]; }; } # 5.8.0's threads::shared is busted when threads are off. # We emulate it here. else { *share = sub { return $_[0] }; *lock = sub { 0 }; } } =head1 NAME Test::Builder - Backend for building test libraries =head1 SYNOPSIS package My::Test::Module; use Test::Builder; require Exporter; @ISA = qw(Exporter); @EXPORT = qw(ok); my $Test = Test::Builder->new; $Test->output('my_logfile'); sub import { my($self) = shift; my $pack = caller; $Test->exported_to($pack); $Test->plan(@_); $self->export_to_level(1, $self, 'ok'); } sub ok { my($test, $name) = @_; $Test->ok($test, $name); } =head1 DESCRIPTION Test::Simple and Test::More have proven to be popular testing modules, but they're not always flexible enough. Test::Builder provides the a building block upon which to write your own test libraries I. =head2 Construction =over 4 =item B my $Test = Test::Builder->new; Returns a Test::Builder object representing the current state of the test. Since you only run one test per program C always returns the same Test::Builder object. No matter how many times you call new(), you're getting the same object. This is called a singleton. This is done so that multiple modules share such global information as the test counter and where test output is going. If you want a completely new Test::Builder object different from the singleton, use C. =cut my $Test = Test::Builder->new; sub new { my($class) = shift; $Test ||= $class->create; return $Test; } =item B my $Test = Test::Builder->create; Ok, so there can be more than one Test::Builder object and this is how you get it. You might use this instead of C if you're testing a Test::Builder based module, but otherwise you probably want C. B: the implementation is not complete. C, for example, is still shared amongst B Test::Builder objects, even ones created using this method. Also, the method name may change in the future. =cut sub create { my $class = shift; my $self = bless {}, $class; $self->reset; return $self; } =item B $Test->reset; Reinitializes the Test::Builder singleton to its original state. Mostly useful for tests run in persistent environments where the same test might be run multiple times in the same process. =cut our ($Level); sub reset { my ($self) = @_; # We leave this a global because it has to be localized and localizing # hash keys is just asking for pain. Also, it was documented. $Level = 1; $self->{Test_Died} = 0; $self->{Have_Plan} = 0; $self->{No_Plan} = 0; $self->{Original_Pid} = $$; share($self->{Curr_Test}); $self->{Curr_Test} = 0; $self->{Test_Results} = &share([]); $self->{Exported_To} = undef; $self->{Expected_Tests} = 0; $self->{Skip_All} = 0; $self->{Use_Nums} = 1; $self->{No_Header} = 0; $self->{No_Ending} = 0; $self->_dup_stdhandles unless $^C; return undef; } =back =head2 Setting up tests These methods are for setting up tests and declaring how many there are. You usually only want to call one of these methods. =over 4 =item B my $pack = $Test->exported_to; $Test->exported_to($pack); Tells Test::Builder what package you exported your functions to. This is important for getting TODO tests right. =cut sub exported_to { my($self, $pack) = @_; if( defined $pack ) { $self->{Exported_To} = $pack; } return $self->{Exported_To}; } =item B $Test->plan('no_plan'); $Test->plan( skip_all => $reason ); $Test->plan( tests => $num_tests ); A convenient way to set up your tests. Call this and Test::Builder will print the appropriate headers and take the appropriate actions. If you call plan(), don't call any of the other methods below. =cut sub plan { my($self, $cmd, $arg) = @_; return unless $cmd; if( $self->{Have_Plan} ) { die sprintf "You tried to plan twice! Second plan at %s line %d\n", ($self->caller)[1,2]; } if( $cmd eq 'no_plan' ) { $self->no_plan; } elsif( $cmd eq 'skip_all' ) { return $self->skip_all($arg); } elsif( $cmd eq 'tests' ) { if( $arg ) { return $self->expected_tests($arg); } elsif( !defined $arg ) { die "Got an undefined number of tests. Looks like you tried to ". "say how many tests you plan to run but made a mistake.\n"; } elsif( !$arg ) { die "You said to run 0 tests! You've got to run something.\n"; } } else { require Carp; my @args = grep { defined } ($cmd, $arg); Carp::croak("plan() doesn't understand @args"); } return 1; } =item B my $max = $Test->expected_tests; $Test->expected_tests($max); Gets/sets the # of tests we expect this test to run and prints out the appropriate headers. =cut sub expected_tests { my $self = shift; my($max) = @_; if( @_ ) { die "Number of tests must be a postive integer. You gave it '$max'.\n" unless $max =~ /^\+?\d+$/ and $max > 0; $self->{Expected_Tests} = $max; $self->{Have_Plan} = 1; $self->_print("1..$max\n") unless $self->no_header; } return $self->{Expected_Tests}; } =item B $Test->no_plan; Declares that this test will run an indeterminate # of tests. =cut sub no_plan { my $self = shift; $self->{No_Plan} = 1; $self->{Have_Plan} = 1; } =item B $plan = $Test->has_plan Find out whether a plan has been defined. $plan is either C (no plan has been set), C (indeterminate # of tests) or an integer (the number of expected tests). =cut sub has_plan { my $self = shift; return($self->{Expected_Tests}) if $self->{Expected_Tests}; return('no_plan') if $self->{No_Plan}; return(undef); }; =item B $Test->skip_all; $Test->skip_all($reason); Skips all the tests, using the given $reason. Exits immediately with 0. =cut sub skip_all { my($self, $reason) = @_; my $out = "1..0"; $out .= " # Skip $reason" if $reason; $out .= "\n"; $self->{Skip_All} = 1; $self->_print($out) unless $self->no_header; exit(0); } =back =head2 Running tests These actually run the tests, analogous to the functions in Test::More. $name is always optional. =over 4 =item B $Test->ok($test, $name); Your basic test. Pass if $test is true, fail if $test is false. Just like Test::Simple's ok(). =cut sub ok { my($self, $test, $name) = @_; # $test might contain an object which we don't want to accidentally # store, so we turn it into a boolean. $test = $test ? 1 : 0; unless( $self->{Have_Plan} ) { require Carp; Carp::croak("You tried to run a test without a plan! Gotta have a plan."); } lock $self->{Curr_Test}; $self->{Curr_Test}++; # In case $name is a string overloaded object, force it to stringify. $self->_unoverload(\$name); $self->diag(<caller; my $todo = $self->todo($pack); $self->_unoverload(\$todo); my $out; my $result = &share({}); unless( $test ) { $out .= "not "; @$result{ 'ok', 'actual_ok' } = ( ( $todo ? 1 : 0 ), 0 ); } else { @$result{ 'ok', 'actual_ok' } = ( 1, $test ); } $out .= "ok"; $out .= " $self->{Curr_Test}" if $self->use_numbers; if( defined $name ) { $name =~ s|#|\\#|g; # # in a name can confuse Test::Harness. $out .= " - $name"; $result->{name} = $name; } else { $result->{name} = ''; } if( $todo ) { $out .= " # TODO $todo"; $result->{reason} = $todo; $result->{type} = 'todo'; } else { $result->{reason} = ''; $result->{type} = ''; } $self->{Test_Results}[$self->{Curr_Test}-1] = $result; $out .= "\n"; $self->_print($out); unless( $test ) { my $msg = $todo ? "Failed (TODO)" : "Failed"; $self->_print_diag("\n") if $ENV{HARNESS_ACTIVE}; $self->diag(" $msg test ($file at line $line)\n"); } return $test ? 1 : 0; } sub _unoverload { my $self = shift; local($@,$!); eval { require overload } || return; foreach my $thing (@_) { eval { if( defined $$thing ) { if( my $string_meth = overload::Method($$thing, '""') ) { $$thing = $$thing->$string_meth(); } } }; } } =item B $Test->is_eq($got, $expected, $name); Like Test::More's is(). Checks if $got eq $expected. This is the string version. =item B $Test->is_num($got, $expected, $name); Like Test::More's is(). Checks if $got == $expected. This is the numeric version. =cut sub is_eq { my($self, $got, $expect, $name) = @_; local $Level = $Level + 1; if( !defined $got || !defined $expect ) { # undef only matches undef and nothing else my $test = !defined $got && !defined $expect; $self->ok($test, $name); $self->_is_diag($got, 'eq', $expect) unless $test; return $test; } return $self->cmp_ok($got, 'eq', $expect, $name); } sub is_num { my($self, $got, $expect, $name) = @_; local $Level = $Level + 1; if( !defined $got || !defined $expect ) { # undef only matches undef and nothing else my $test = !defined $got && !defined $expect; $self->ok($test, $name); $self->_is_diag($got, '==', $expect) unless $test; return $test; } return $self->cmp_ok($got, '==', $expect, $name); } sub _is_diag { my($self, $got, $type, $expect) = @_; foreach my $val (\$got, \$expect) { if( defined $$val ) { if( $type eq 'eq' ) { # quote and force string context $$val = "'$$val'" } else { # force numeric context $$val = $$val+0; } } else { $$val = 'undef'; } } return $self->diag(sprintf < $Test->isnt_eq($got, $dont_expect, $name); Like Test::More's isnt(). Checks if $got ne $dont_expect. This is the string version. =item B $Test->is_num($got, $dont_expect, $name); Like Test::More's isnt(). Checks if $got ne $dont_expect. This is the numeric version. =cut sub isnt_eq { my($self, $got, $dont_expect, $name) = @_; local $Level = $Level + 1; if( !defined $got || !defined $dont_expect ) { # undef only matches undef and nothing else my $test = defined $got || defined $dont_expect; $self->ok($test, $name); $self->_cmp_diag($got, 'ne', $dont_expect) unless $test; return $test; } return $self->cmp_ok($got, 'ne', $dont_expect, $name); } sub isnt_num { my($self, $got, $dont_expect, $name) = @_; local $Level = $Level + 1; if( !defined $got || !defined $dont_expect ) { # undef only matches undef and nothing else my $test = defined $got || defined $dont_expect; $self->ok($test, $name); $self->_cmp_diag($got, '!=', $dont_expect) unless $test; return $test; } return $self->cmp_ok($got, '!=', $dont_expect, $name); } =item B $Test->like($this, qr/$regex/, $name); $Test->like($this, '/$regex/', $name); Like Test::More's like(). Checks if $this matches the given $regex. You'll want to avoid qr// if you want your tests to work before 5.005. =item B $Test->unlike($this, qr/$regex/, $name); $Test->unlike($this, '/$regex/', $name); Like Test::More's unlike(). Checks if $this B the given $regex. =cut sub like { my($self, $this, $regex, $name) = @_; local $Level = $Level + 1; $self->_regex_ok($this, $regex, '=~', $name); } sub unlike { my($self, $this, $regex, $name) = @_; local $Level = $Level + 1; $self->_regex_ok($this, $regex, '!~', $name); } =item B $Test->maybe_regex(qr/$regex/); $Test->maybe_regex('/$regex/'); Convenience method for building testing functions that take regular expressions as arguments, but need to work before perl 5.005. Takes a quoted regular expression produced by qr//, or a string representing a regular expression. Returns a Perl value which may be used instead of the corresponding regular expression, or undef if it's argument is not recognised. For example, a version of like(), sans the useful diagnostic messages, could be written as: sub laconic_like { my ($self, $this, $regex, $name) = @_; my $usable_regex = $self->maybe_regex($regex); die "expecting regex, found '$regex'\n" unless $usable_regex; $self->ok($this =~ m/$usable_regex/, $name); } =cut sub maybe_regex { my ($self, $regex) = @_; my $usable_regex = undef; return $usable_regex unless defined $regex; my($re, $opts); # Check for qr/foo/ if( ref $regex eq 'Regexp' ) { $usable_regex = $regex; } # Check for '/foo/' or 'm,foo,' elsif( ($re, $opts) = $regex =~ m{^ /(.*)/ (\w*) $ }sx or (undef, $re, $opts) = $regex =~ m,^ m([^\w\s]) (.+) \1 (\w*) $,sx ) { $usable_regex = length $opts ? "(?$opts)$re" : $re; } return $usable_regex; }; sub _regex_ok { my($self, $this, $regex, $cmp, $name) = @_; local $Level = $Level + 1; my $ok = 0; my $usable_regex = $self->maybe_regex($regex); unless (defined $usable_regex) { $ok = $self->ok( 0, $name ); $self->diag(" '$regex' doesn't look much like a regex to me."); return $ok; } { local $^W = 0; my $test = $this =~ /$usable_regex/ ? 1 : 0; $test = !$test if $cmp eq '!~'; $ok = $self->ok( $test, $name ); } unless( $ok ) { $this = defined $this ? "'$this'" : 'undef'; my $match = $cmp eq '=~' ? "doesn't match" : "matches"; $self->diag(sprintf < $Test->cmp_ok($this, $type, $that, $name); Works just like Test::More's cmp_ok(). $Test->cmp_ok($big_num, '!=', $other_big_num); =cut sub cmp_ok { my($self, $got, $type, $expect, $name) = @_; my $test; { local $^W = 0; local($@,$!); # don't interfere with $@ # eval() sometimes resets $! $test = eval "\$got $type \$expect"; } local $Level = $Level + 1; my $ok = $self->ok($test, $name); unless( $ok ) { if( $type =~ /^(eq|==)$/ ) { $self->_is_diag($got, $type, $expect); } else { $self->_cmp_diag($got, $type, $expect); } } return $ok; } sub _cmp_diag { my($self, $got, $type, $expect) = @_; $got = defined $got ? "'$got'" : 'undef'; $expect = defined $expect ? "'$expect'" : 'undef'; return $self->diag(sprintf < $Test->BAILOUT($reason); Indicates to the Test::Harness that things are going so badly all testing should terminate. This includes running any additional test scripts. It will exit with 255. =cut sub BAILOUT { my($self, $reason) = @_; $self->_print("Bail out! $reason"); exit 255; } =item B $Test->skip; $Test->skip($why); Skips the current test, reporting $why. =cut sub skip { my($self, $why) = @_; $why ||= ''; $self->_unoverload(\$why); unless( $self->{Have_Plan} ) { require Carp; Carp::croak("You tried to run tests without a plan! Gotta have a plan."); } lock($self->{Curr_Test}); $self->{Curr_Test}++; $self->{Test_Results}[$self->{Curr_Test}-1] = &share({ 'ok' => 1, actual_ok => 1, name => '', type => 'skip', reason => $why, }); my $out = "ok"; $out .= " $self->{Curr_Test}" if $self->use_numbers; $out .= " # skip"; $out .= " $why" if length $why; $out .= "\n"; $self->_print($out); return 1; } =item B $Test->todo_skip; $Test->todo_skip($why); Like skip(), only it will declare the test as failing and TODO. Similar to print "not ok $tnum # TODO $why\n"; =cut sub todo_skip { my($self, $why) = @_; $why ||= ''; unless( $self->{Have_Plan} ) { require Carp; Carp::croak("You tried to run tests without a plan! Gotta have a plan."); } lock($self->{Curr_Test}); $self->{Curr_Test}++; $self->{Test_Results}[$self->{Curr_Test}-1] = &share({ 'ok' => 1, actual_ok => 0, name => '', type => 'todo_skip', reason => $why, }); my $out = "not ok"; $out .= " $self->{Curr_Test}" if $self->use_numbers; $out .= " # TODO & SKIP $why\n"; $self->_print($out); return 1; } =begin _unimplemented =item B $Test->skip_rest; $Test->skip_rest($reason); Like skip(), only it skips all the rest of the tests you plan to run and terminates the test. If you're running under no_plan, it skips once and terminates the test. =end _unimplemented =back =head2 Test style =over 4 =item B $Test->level($how_high); How far up the call stack should $Test look when reporting where the test failed. Defaults to 1. Setting $Test::Builder::Level overrides. This is typically useful localized: { local $Test::Builder::Level = 2; $Test->ok($test); } =cut sub level { my($self, $level) = @_; if( defined $level ) { $Level = $level; } return $Level; } =item B $Test->use_numbers($on_or_off); Whether or not the test should output numbers. That is, this if true: ok 1 ok 2 ok 3 or this if false ok ok ok Most useful when you can't depend on the test output order, such as when threads or forking is involved. Test::Harness will accept either, but avoid mixing the two styles. Defaults to on. =cut sub use_numbers { my($self, $use_nums) = @_; if( defined $use_nums ) { $self->{Use_Nums} = $use_nums; } return $self->{Use_Nums}; } =item B $Test->no_header($no_header); If set to true, no "1..N" header will be printed. =item B $Test->no_ending($no_ending); Normally, Test::Builder does some extra diagnostics when the test ends. It also changes the exit code as described below. If this is true, none of that will be done. =cut sub no_header { my($self, $no_header) = @_; if( defined $no_header ) { $self->{No_Header} = $no_header; } return $self->{No_Header}; } sub no_ending { my($self, $no_ending) = @_; if( defined $no_ending ) { $self->{No_Ending} = $no_ending; } return $self->{No_Ending}; } =back =head2 Output Controlling where the test output goes. It's ok for your test to change where STDOUT and STDERR point to, Test::Builder's default output settings will not be affected. =over 4 =item B $Test->diag(@msgs); Prints out the given @msgs. Like C, arguments are simply appended together. Normally, it uses the failure_output() handle, but if this is for a TODO test, the todo_output() handle is used. Output will be indented and marked with a # so as not to interfere with test output. A newline will be put on the end if there isn't one already. We encourage using this rather than calling print directly. Returns false. Why? Because diag() is often used in conjunction with a failing test (C) it "passes through" the failure. return ok(...) || diag(...); =for blame transfer Mark Fowler =cut sub diag { my($self, @msgs) = @_; return unless @msgs; # Prevent printing headers when compiling (i.e. -c) return if $^C; # Smash args together like print does. # Convert undef to 'undef' so its readable. my $msg = join '', map { defined($_) ? $_ : 'undef' } @msgs; # Escape each line with a #. $msg =~ s/^/# /gm; # Stick a newline on the end if it needs it. $msg .= "\n" unless $msg =~ /\n\Z/; local $Level = $Level + 1; $self->_print_diag($msg); return 0; } =begin _private =item B<_print> $Test->_print(@msgs); Prints to the output() filehandle. =end _private =cut sub _print { my($self, @msgs) = @_; # Prevent printing headers when only compiling. Mostly for when # tests are deparsed with B::Deparse return if $^C; my $msg = join '', @msgs; local($\, $", $,) = (undef, ' ', ''); my $fh = $self->output; # Escape each line after the first with a # so we don't # confuse Test::Harness. $msg =~ s/\n(.)/\n# $1/sg; # Stick a newline on the end if it needs it. $msg .= "\n" unless $msg =~ /\n\Z/; print $fh $msg; } =item B<_print_diag> $Test->_print_diag(@msg); Like _print, but prints to the current diagnostic filehandle. =cut sub _print_diag { my $self = shift; local($\, $", $,) = (undef, ' ', ''); my $fh = $self->todo ? $self->todo_output : $self->failure_output; print $fh @_; } =item B $Test->output($fh); $Test->output($file); Where normal "ok/not ok" test output should go. Defaults to STDOUT. =item B $Test->failure_output($fh); $Test->failure_output($file); Where diagnostic output on test failures and diag() should go. Defaults to STDERR. =item B $Test->todo_output($fh); $Test->todo_output($file); Where diagnostics about todo test failures and diag() should go. Defaults to STDOUT. =cut sub output { my($self, $fh) = @_; if( defined $fh ) { $self->{Out_FH} = _new_fh($fh); } return $self->{Out_FH}; } sub failure_output { my($self, $fh) = @_; if( defined $fh ) { $self->{Fail_FH} = _new_fh($fh); } return $self->{Fail_FH}; } sub todo_output { my($self, $fh) = @_; if( defined $fh ) { $self->{Todo_FH} = _new_fh($fh); } return $self->{Todo_FH}; } sub _new_fh { my($file_or_fh) = shift; my $fh; if( _is_fh($file_or_fh) ) { $fh = $file_or_fh; } else { $fh = do { local *FH }; open $fh, ">$file_or_fh" or die "Can't open test output log $file_or_fh: $!"; _autoflush($fh); } return $fh; } sub _is_fh { my $maybe_fh = shift; return 1 if ref \$maybe_fh eq 'GLOB'; # its a glob return UNIVERSAL::isa($maybe_fh, 'GLOB') || UNIVERSAL::isa($maybe_fh, 'IO::Handle') || # 5.5.4's tied() and can() doesn't like getting undef UNIVERSAL::can((tied($maybe_fh) || ''), 'TIEHANDLE'); } sub _autoflush { my($fh) = shift; my $old_fh = select $fh; $| = 1; select $old_fh; } sub _dup_stdhandles { my $self = shift; $self->_open_testhandles; # Set everything to unbuffered else plain prints to STDOUT will # come out in the wrong order from our own prints. _autoflush(\*TESTOUT); _autoflush(\*STDOUT); _autoflush(\*TESTERR); _autoflush(\*STDERR); $self->output(\*TESTOUT); $self->failure_output(\*TESTERR); $self->todo_output(\*TESTOUT); } my $Opened_Testhandles = 0; sub _open_testhandles { return if $Opened_Testhandles; # We dup STDOUT and STDERR so people can change them in their # test suites while still getting normal test output. open(TESTOUT, ">&STDOUT") or die "Can't dup STDOUT: $!"; open(TESTERR, ">&STDERR") or die "Can't dup STDERR: $!"; $Opened_Testhandles = 1; } =back =head2 Test Status and Info =over 4 =item B my $curr_test = $Test->current_test; $Test->current_test($num); Gets/sets the current test number we're on. You usually shouldn't have to set this. If set forward, the details of the missing tests are filled in as 'unknown'. if set backward, the details of the intervening tests are deleted. You can erase history if you really want to. =cut sub current_test { my($self, $num) = @_; lock($self->{Curr_Test}); if( defined $num ) { unless( $self->{Have_Plan} ) { require Carp; Carp::croak("Can't change the current test number without a plan!"); } $self->{Curr_Test} = $num; # If the test counter is being pushed forward fill in the details. my $test_results = $self->{Test_Results}; if( $num > @$test_results ) { my $start = @$test_results ? @$test_results : 0; for ($start..$num-1) { $test_results->[$_] = &share({ 'ok' => 1, actual_ok => undef, reason => 'incrementing test number', type => 'unknown', name => undef }); } } # If backward, wipe history. Its their funeral. elsif( $num < @$test_results ) { $#{$test_results} = $num - 1; } } return $self->{Curr_Test}; } =item B my @tests = $Test->summary; A simple summary of the tests so far. True for pass, false for fail. This is a logical pass/fail, so todos are passes. Of course, test #1 is $tests[0], etc... =cut sub summary { my($self) = shift; return map { $_->{'ok'} } @{ $self->{Test_Results} }; } =item B
my @tests = $Test->details; Like summary(), but with a lot more detail. $tests[$test_num - 1] = { 'ok' => is the test considered a pass? actual_ok => did it literally say 'ok'? name => name of the test (if any) type => type of test (if any, see below). reason => reason for the above (if any) }; 'ok' is true if Test::Harness will consider the test to be a pass. 'actual_ok' is a reflection of whether or not the test literally printed 'ok' or 'not ok'. This is for examining the result of 'todo' tests. 'name' is the name of the test. 'type' indicates if it was a special test. Normal tests have a type of ''. Type can be one of the following: skip see skip() todo see todo() todo_skip see todo_skip() unknown see below Sometimes the Test::Builder test counter is incremented without it printing any test output, for example, when current_test() is changed. In these cases, Test::Builder doesn't know the result of the test, so it's type is 'unkown'. These details for these tests are filled in. They are considered ok, but the name and actual_ok is left undef. For example "not ok 23 - hole count # TODO insufficient donuts" would result in this structure: $tests[22] = # 23 - 1, since arrays start from 0. { ok => 1, # logically, the test passed since it's todo actual_ok => 0, # in absolute terms, it failed name => 'hole count', type => 'todo', reason => 'insufficient donuts' }; =cut sub details { my $self = shift; return @{ $self->{Test_Results} }; } =item B my $todo_reason = $Test->todo; my $todo_reason = $Test->todo($pack); todo() looks for a $TODO variable in your tests. If set, all tests will be considered 'todo' (see Test::More and Test::Harness for details). Returns the reason (ie. the value of $TODO) if running as todo tests, false otherwise. todo() is about finding the right package to look for $TODO in. It uses the exported_to() package to find it. If that's not set, it's pretty good at guessing the right package to look at based on $Level. Sometimes there is some confusion about where todo() should be looking for the $TODO variable. If you want to be sure, tell it explicitly what $pack to use. =cut sub todo { my($self, $pack) = @_; $pack = $pack || $self->exported_to || $self->caller($Level); return 0 unless $pack; no strict 'refs'; return defined ${$pack.'::TODO'} ? ${$pack.'::TODO'} : 0; } =item B my $package = $Test->caller; my($pack, $file, $line) = $Test->caller; my($pack, $file, $line) = $Test->caller($height); Like the normal caller(), except it reports according to your level(). =cut sub caller { my($self, $height) = @_; $height ||= 0; my @caller = CORE::caller($self->level + $height + 1); return wantarray ? @caller : $caller[0]; } =back =cut =begin _private =over 4 =item B<_sanity_check> $self->_sanity_check(); Runs a bunch of end of test sanity checks to make sure reality came through ok. If anything is wrong it will die with a fairly friendly error message. =cut #'# sub _sanity_check { my $self = shift; _whoa($self->{Curr_Test} < 0, 'Says here you ran a negative number of tests!'); _whoa(!$self->{Have_Plan} and $self->{Curr_Test}, 'Somehow your tests ran without a plan!'); _whoa($self->{Curr_Test} != @{ $self->{Test_Results} }, 'Somehow you got a different number of results than tests ran!'); } =item B<_whoa> _whoa($check, $description); A sanity check, similar to assert(). If the $check is true, something has gone horribly wrong. It will die with the given $description and a note to contact the author. =cut sub _whoa { my($check, $desc) = @_; if( $check ) { die < _my_exit($exit_num); Perl seems to have some trouble with exiting inside an END block. 5.005_03 and 5.6.1 both seem to do odd things. Instead, this function edits $? directly. It should ONLY be called from inside an END block. It doesn't actually exit, that's your job. =cut sub _my_exit { $? = $_[0]; return 1; } =back =end _private =cut $SIG{__DIE__} = sub { # We don't want to muck with death in an eval, but $^S isn't # totally reliable. 5.005_03 and 5.6.1 both do the wrong thing # with it. Instead, we use caller. This also means it runs under # 5.004! my $in_eval = 0; for( my $stack = 1; my $sub = (CORE::caller($stack))[3]; $stack++ ) { $in_eval = 1 if $sub =~ /^\(eval\)/; } $Test->{Test_Died} = 1 unless $in_eval; }; sub _ending { my $self = shift; $self->_sanity_check(); # Don't bother with an ending if this is a forked copy. Only the parent # should do the ending. # Exit if plan() was never called. This is so "require Test::Simple" # doesn't puke. if( ($self->{Original_Pid} != $$) or (!$self->{Have_Plan} && !$self->{Test_Died}) ) { _my_exit($?); return; } # Figure out if we passed or failed and print helpful messages. my $test_results = $self->{Test_Results}; if( @$test_results ) { # The plan? We have no plan. if( $self->{No_Plan} ) { $self->_print("1..$self->{Curr_Test}\n") unless $self->no_header; $self->{Expected_Tests} = $self->{Curr_Test}; } # Auto-extended arrays and elements which aren't explicitly # filled in with a shared reference will puke under 5.8.0 # ithreads. So we have to fill them in by hand. :( my $empty_result = &share({}); for my $idx ( 0..$self->{Expected_Tests}-1 ) { $test_results->[$idx] = $empty_result unless defined $test_results->[$idx]; } my $num_failed = grep !$_->{'ok'}, @{$test_results}[0..$self->{Expected_Tests}-1]; $num_failed += abs($self->{Expected_Tests} - @$test_results); if( $self->{Curr_Test} < $self->{Expected_Tests} ) { my $s = $self->{Expected_Tests} == 1 ? '' : 's'; $self->diag(<<"FAIL"); Looks like you planned $self->{Expected_Tests} test$s but only ran $self->{Curr_Test}. FAIL } elsif( $self->{Curr_Test} > $self->{Expected_Tests} ) { my $num_extra = $self->{Curr_Test} - $self->{Expected_Tests}; my $s = $self->{Expected_Tests} == 1 ? '' : 's'; $self->diag(<<"FAIL"); Looks like you planned $self->{Expected_Tests} test$s but ran $num_extra extra. FAIL } elsif ( $num_failed ) { my $s = $num_failed == 1 ? '' : 's'; $self->diag(<<"FAIL"); Looks like you failed $num_failed test$s of $self->{Expected_Tests}. FAIL } if( $self->{Test_Died} ) { $self->diag(<<"FAIL"); Looks like your test died just after $self->{Curr_Test}. FAIL _my_exit( 255 ) && return; } _my_exit( $num_failed <= 254 ? $num_failed : 254 ) && return; } elsif ( $self->{Skip_All} ) { _my_exit( 0 ) && return; } elsif ( $self->{Test_Died} ) { $self->diag(<<'FAIL'); Looks like your test died before it could output anything. FAIL _my_exit( 255 ) && return; } else { $self->diag("No tests run!\n"); _my_exit( 255 ) && return; } } END { $Test->_ending if defined $Test and !$Test->no_ending; } =head1 EXIT CODES If all your tests passed, Test::Builder will exit with zero (which is normal). If anything failed it will exit with how many failed. If you run less (or more) tests than you planned, the missing (or extras) will be considered failures. If no tests were ever run Test::Builder will throw a warning and exit with 255. If the test died, even after having successfully completed all its tests, it will still be considered a failure and will exit with 255. So the exit codes are... 0 all tests successful 255 test died any other number how many failed (including missing or extras) If you fail more than 254 tests, it will be reported as 254. =head1 THREADS In perl 5.8.0 and later, Test::Builder is thread-safe. The test number is shared amongst all threads. This means if one thread sets the test number using current_test() they will all be effected. Test::Builder is only thread-aware if threads.pm is loaded I Test::Builder. =head1 EXAMPLES CPAN can provide the best examples. Test::Simple, Test::More, Test::Exception and Test::Differences all use Test::Builder. =head1 SEE ALSO Test::Simple, Test::More, Test::Harness =head1 AUTHORS Original code by chromatic, maintained by Michael G Schwern Eschwern@pobox.comE =head1 COPYRIGHT Copyright 2002, 2004 by chromatic Echromatic@wgz.orgE and Michael G Schwern Eschwern@pobox.comE. This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself. See F =cut 1; Compress-Raw-Zlib-2.063/t/Test/More.pm0000644000175000017500000011135311162411062016050 0ustar paulpaulpackage Test::More; use 5.004; use strict; use Test::Builder; # Can't use Carp because it might cause use_ok() to accidentally succeed # even though the module being used forgot to use Carp. Yes, this # actually happened. sub _carp { my($file, $line) = (caller(1))[1,2]; warn @_, " at $file line $line\n"; } require Exporter; our ($VERSION, @ISA, @EXPORT, %EXPORT_TAGS, $TODO); $VERSION = '0.60'; $VERSION = eval $VERSION; # make the alpha version come out as a number @ISA = qw(Exporter); @EXPORT = qw(ok use_ok require_ok is isnt like unlike is_deeply cmp_ok skip todo todo_skip pass fail eq_array eq_hash eq_set $TODO plan can_ok isa_ok diag ); my $Test = Test::Builder->new; my $Show_Diag = 1; # 5.004's Exporter doesn't have export_to_level. sub _export_to_level { my $pkg = shift; my $level = shift; (undef) = shift; # redundant arg my $callpkg = caller($level); $pkg->export($callpkg, @_); } =head1 NAME Test::More - yet another framework for writing test scripts =head1 SYNOPSIS use Test::More tests => $Num_Tests; # or use Test::More qw(no_plan); # or use Test::More skip_all => $reason; BEGIN { use_ok( 'Some::Module' ); } require_ok( 'Some::Module' ); # Various ways to say "ok" ok($this eq $that, $test_name); is ($this, $that, $test_name); isnt($this, $that, $test_name); # Rather than print STDERR "# here's what went wrong\n" diag("here's what went wrong"); like ($this, qr/that/, $test_name); unlike($this, qr/that/, $test_name); cmp_ok($this, '==', $that, $test_name); is_deeply($complex_structure1, $complex_structure2, $test_name); SKIP: { skip $why, $how_many unless $have_some_feature; ok( foo(), $test_name ); is( foo(42), 23, $test_name ); }; TODO: { local $TODO = $why; ok( foo(), $test_name ); is( foo(42), 23, $test_name ); }; can_ok($module, @methods); isa_ok($object, $class); pass($test_name); fail($test_name); # UNIMPLEMENTED!!! my @status = Test::More::status; # UNIMPLEMENTED!!! BAIL_OUT($why); =head1 DESCRIPTION B If you're just getting started writing tests, have a look at Test::Simple first. This is a drop in replacement for Test::Simple which you can switch to once you get the hang of basic testing. The purpose of this module is to provide a wide range of testing utilities. Various ways to say "ok" with better diagnostics, facilities to skip tests, test future features and compare complicated data structures. While you can do almost anything with a simple C function, it doesn't provide good diagnostic output. =head2 I love it when a plan comes together Before anything else, you need a testing plan. This basically declares how many tests your script is going to run to protect against premature failure. The preferred way to do this is to declare a plan when you C. use Test::More tests => $Num_Tests; There are rare cases when you will not know beforehand how many tests your script is going to run. In this case, you can declare that you have no plan. (Try to avoid using this as it weakens your test.) use Test::More qw(no_plan); B: using no_plan requires a Test::Harness upgrade else it will think everything has failed. See L) In some cases, you'll want to completely skip an entire testing script. use Test::More skip_all => $skip_reason; Your script will declare a skip with the reason why you skipped and exit immediately with a zero (success). See L for details. If you want to control what functions Test::More will export, you have to use the 'import' option. For example, to import everything but 'fail', you'd do: use Test::More tests => 23, import => ['!fail']; Alternatively, you can use the plan() function. Useful for when you have to calculate the number of tests. use Test::More; plan tests => keys %Stuff * 3; or for deciding between running the tests at all: use Test::More; if( $^O eq 'MacOS' ) { plan skip_all => 'Test irrelevant on MacOS'; } else { plan tests => 42; } =cut sub plan { my(@plan) = @_; my $idx = 0; my @cleaned_plan; while( $idx <= $#plan ) { my $item = $plan[$idx]; if( $item eq 'no_diag' ) { $Show_Diag = 0; } else { push @cleaned_plan, $item; } $idx++; } $Test->plan(@cleaned_plan); } sub import { my($class) = shift; my $caller = caller; $Test->exported_to($caller); my $idx = 0; my @plan; my @imports; while( $idx <= $#_ ) { my $item = $_[$idx]; if( $item eq 'import' ) { push @imports, @{$_[$idx+1]}; $idx++; } else { push @plan, $item; } $idx++; } plan(@plan); __PACKAGE__->_export_to_level(1, __PACKAGE__, @imports); } =head2 Test names By convention, each test is assigned a number in order. This is largely done automatically for you. However, it's often very useful to assign a name to each test. Which would you rather see: ok 4 not ok 5 ok 6 or ok 4 - basic multi-variable not ok 5 - simple exponential ok 6 - force == mass * acceleration The later gives you some idea of what failed. It also makes it easier to find the test in your script, simply search for "simple exponential". All test functions take a name argument. It's optional, but highly suggested that you use it. =head2 I'm ok, you're not ok. The basic purpose of this module is to print out either "ok #" or "not ok #" depending on if a given test succeeded or failed. Everything else is just gravy. All of the following print "ok" or "not ok" depending on if the test succeeded or failed. They all also return true or false, respectively. =over 4 =item B ok($this eq $that, $test_name); This simply evaluates any expression (C<$this eq $that> is just a simple example) and uses that to determine if the test succeeded or failed. A true expression passes, a false one fails. Very simple. For example: ok( $exp{9} == 81, 'simple exponential' ); ok( Film->can('db_Main'), 'set_db()' ); ok( $p->tests == 4, 'saw tests' ); ok( !grep !defined $_, @items, 'items populated' ); (Mnemonic: "This is ok.") $test_name is a very short description of the test that will be printed out. It makes it very easy to find a test in your script when it fails and gives others an idea of your intentions. $test_name is optional, but we B strongly encourage its use. Should an ok() fail, it will produce some diagnostics: not ok 18 - sufficient mucus # Failed test 18 (foo.t at line 42) This is actually Test::Simple's ok() routine. =cut sub ok ($;$) { my($test, $name) = @_; $Test->ok($test, $name); } =item B =item B is ( $this, $that, $test_name ); isnt( $this, $that, $test_name ); Similar to ok(), is() and isnt() compare their two arguments with C and C respectively and use the result of that to determine if the test succeeded or failed. So these: # Is the ultimate answer 42? is( ultimate_answer(), 42, "Meaning of Life" ); # $foo isn't empty isnt( $foo, '', "Got some foo" ); are similar to these: ok( ultimate_answer() eq 42, "Meaning of Life" ); ok( $foo ne '', "Got some foo" ); (Mnemonic: "This is that." "This isn't that.") So why use these? They produce better diagnostics on failure. ok() cannot know what you are testing for (beyond the name), but is() and isnt() know what the test was and why it failed. For example this test: my $foo = 'waffle'; my $bar = 'yarblokos'; is( $foo, $bar, 'Is foo the same as bar?' ); Will produce something like this: not ok 17 - Is foo the same as bar? # Failed test (foo.t at line 139) # got: 'waffle' # expected: 'yarblokos' So you can figure out what went wrong without rerunning the test. You are encouraged to use is() and isnt() over ok() where possible, however do not be tempted to use them to find out if something is true or false! # XXX BAD! is( exists $brooklyn{tree}, 1, 'A tree grows in Brooklyn' ); This does not check if C is true, it checks if it returns 1. Very different. Similar caveats exist for false and 0. In these cases, use ok(). ok( exists $brooklyn{tree}, 'A tree grows in Brooklyn' ); For those grammatical pedants out there, there's an C function which is an alias of isnt(). =cut sub is ($$;$) { $Test->is_eq(@_); } sub isnt ($$;$) { $Test->isnt_eq(@_); } *isn't = \&isnt; =item B like( $this, qr/that/, $test_name ); Similar to ok(), like() matches $this against the regex C. So this: like($this, qr/that/, 'this is like that'); is similar to: ok( $this =~ /that/, 'this is like that'); (Mnemonic "This is like that".) The second argument is a regular expression. It may be given as a regex reference (i.e. C) or (for better compatibility with older perls) as a string that looks like a regex (alternative delimiters are currently not supported): like( $this, '/that/', 'this is like that' ); Regex options may be placed on the end (C<'/that/i'>). Its advantages over ok() are similar to that of is() and isnt(). Better diagnostics on failure. =cut sub like ($$;$) { $Test->like(@_); } =item B unlike( $this, qr/that/, $test_name ); Works exactly as like(), only it checks if $this B match the given pattern. =cut sub unlike ($$;$) { $Test->unlike(@_); } =item B cmp_ok( $this, $op, $that, $test_name ); Halfway between ok() and is() lies cmp_ok(). This allows you to compare two arguments using any binary perl operator. # ok( $this eq $that ); cmp_ok( $this, 'eq', $that, 'this eq that' ); # ok( $this == $that ); cmp_ok( $this, '==', $that, 'this == that' ); # ok( $this && $that ); cmp_ok( $this, '&&', $that, 'this && that' ); ...etc... Its advantage over ok() is when the test fails you'll know what $this and $that were: not ok 1 # Failed test (foo.t at line 12) # '23' # && # undef It's also useful in those cases where you are comparing numbers and is()'s use of C will interfere: cmp_ok( $big_hairy_number, '==', $another_big_hairy_number ); =cut sub cmp_ok($$$;$) { $Test->cmp_ok(@_); } =item B can_ok($module, @methods); can_ok($object, @methods); Checks to make sure the $module or $object can do these @methods (works with functions, too). can_ok('Foo', qw(this that whatever)); is almost exactly like saying: ok( Foo->can('this') && Foo->can('that') && Foo->can('whatever') ); only without all the typing and with a better interface. Handy for quickly testing an interface. No matter how many @methods you check, a single can_ok() call counts as one test. If you desire otherwise, use: foreach my $meth (@methods) { can_ok('Foo', $meth); } =cut sub can_ok ($@) { my($proto, @methods) = @_; my $class = ref $proto || $proto; unless( @methods ) { my $ok = $Test->ok( 0, "$class->can(...)" ); $Test->diag(' can_ok() called with no methods'); return $ok; } my @nok = (); foreach my $method (@methods) { local($!, $@); # don't interfere with caller's $@ # eval sometimes resets $! eval { $proto->can($method) } || push @nok, $method; } my $name; $name = @methods == 1 ? "$class->can('$methods[0]')" : "$class->can(...)"; my $ok = $Test->ok( !@nok, $name ); $Test->diag(map " $class->can('$_') failed\n", @nok); return $ok; } =item B isa_ok($object, $class, $object_name); isa_ok($ref, $type, $ref_name); Checks to see if the given C<< $object->isa($class) >>. Also checks to make sure the object was defined in the first place. Handy for this sort of thing: my $obj = Some::Module->new; isa_ok( $obj, 'Some::Module' ); where you'd otherwise have to write my $obj = Some::Module->new; ok( defined $obj && $obj->isa('Some::Module') ); to safeguard against your test script blowing up. It works on references, too: isa_ok( $array_ref, 'ARRAY' ); The diagnostics of this test normally just refer to 'the object'. If you'd like them to be more specific, you can supply an $object_name (for example 'Test customer'). =cut sub isa_ok ($$;$) { my($object, $class, $obj_name) = @_; my $diag; $obj_name = 'The object' unless defined $obj_name; my $name = "$obj_name isa $class"; if( !defined $object ) { $diag = "$obj_name isn't defined"; } elsif( !ref $object ) { $diag = "$obj_name isn't a reference"; } else { # We can't use UNIVERSAL::isa because we want to honor isa() overrides local($@, $!); # eval sometimes resets $! my $rslt = eval { $object->isa($class) }; if( $@ ) { if( $@ =~ /^Can't call method "isa" on unblessed reference/ ) { if( !UNIVERSAL::isa($object, $class) ) { my $ref = ref $object; $diag = "$obj_name isn't a '$class' it's a '$ref'"; } } else { die <isa on your object and got some weird error. This should never happen. Please contact the author immediately. Here's the error. $@ WHOA } } elsif( !$rslt ) { my $ref = ref $object; $diag = "$obj_name isn't a '$class' it's a '$ref'"; } } my $ok; if( $diag ) { $ok = $Test->ok( 0, $name ); $Test->diag(" $diag\n"); } else { $ok = $Test->ok( 1, $name ); } return $ok; } =item B =item B pass($test_name); fail($test_name); Sometimes you just want to say that the tests have passed. Usually the case is you've got some complicated condition that is difficult to wedge into an ok(). In this case, you can simply use pass() (to declare the test ok) or fail (for not ok). They are synonyms for ok(1) and ok(0). Use these very, very, very sparingly. =cut sub pass (;$) { $Test->ok(1, @_); } sub fail (;$) { $Test->ok(0, @_); } =back =head2 Diagnostics If you pick the right test function, you'll usually get a good idea of what went wrong when it failed. But sometimes it doesn't work out that way. So here we have ways for you to write your own diagnostic messages which are safer than just C. =over 4 =item B diag(@diagnostic_message); Prints a diagnostic message which is guaranteed not to interfere with test output. Like C @diagnostic_message is simply concatinated together. Handy for this sort of thing: ok( grep(/foo/, @users), "There's a foo user" ) or diag("Since there's no foo, check that /etc/bar is set up right"); which would produce: not ok 42 - There's a foo user # Failed test (foo.t at line 52) # Since there's no foo, check that /etc/bar is set up right. You might remember C with the mnemonic C. All diag()s can be made silent by passing the "no_diag" option to Test::More. C 1, 'no_diag'>. This is useful if you have diagnostics for personal testing but then wish to make them silent for release without commenting out each individual statement. B The exact formatting of the diagnostic output is still changing, but it is guaranteed that whatever you throw at it it won't interfere with the test. =cut sub diag { return unless $Show_Diag; $Test->diag(@_); } =back =head2 Module tests You usually want to test if the module you're testing loads ok, rather than just vomiting if its load fails. For such purposes we have C and C. =over 4 =item B BEGIN { use_ok($module); } BEGIN { use_ok($module, @imports); } These simply use the given $module and test to make sure the load happened ok. It's recommended that you run use_ok() inside a BEGIN block so its functions are exported at compile-time and prototypes are properly honored. If @imports are given, they are passed through to the use. So this: BEGIN { use_ok('Some::Module', qw(foo bar)) } is like doing this: use Some::Module qw(foo bar); Version numbers can be checked like so: # Just like "use Some::Module 1.02" BEGIN { use_ok('Some::Module', 1.02) } Don't try to do this: BEGIN { use_ok('Some::Module'); ...some code that depends on the use... ...happening at compile time... } because the notion of "compile-time" is relative. Instead, you want: BEGIN { use_ok('Some::Module') } BEGIN { ...some code that depends on the use... } =cut sub use_ok ($;@) { my($module, @imports) = @_; @imports = () unless @imports; my($pack,$filename,$line) = caller; local($@,$!); # eval sometimes interferes with $! if( @imports == 1 and $imports[0] =~ /^\d+(?:\.\d+)?$/ ) { # probably a version check. Perl needs to see the bare number # for it to work with non-Exporter based modules. eval <ok( !$@, "use $module;" ); unless( $ok ) { chomp $@; $@ =~ s{^BEGIN failed--compilation aborted at .*$} {BEGIN failed--compilation aborted at $filename line $line.}m; $Test->diag(< require_ok($module); require_ok($file); Like use_ok(), except it requires the $module or $file. =cut sub require_ok ($) { my($module) = shift; my $pack = caller; # Try to deterine if we've been given a module name or file. # Module names must be barewords, files not. $module = qq['$module'] unless _is_module_name($module); local($!, $@); # eval sometimes interferes with $! eval <ok( !$@, "require $module;" ); unless( $ok ) { chomp $@; $Test->diag(<. The way Test::More handles this is with a named block. Basically, a block of tests which can be skipped over or made todo. It's best if I just show you... =over 4 =item B SKIP: { skip $why, $how_many if $condition; ...normal testing code goes here... } This declares a block of tests that might be skipped, $how_many tests there are, $why and under what $condition to skip them. An example is the easiest way to illustrate: SKIP: { eval { require HTML::Lint }; skip "HTML::Lint not installed", 2 if $@; my $lint = new HTML::Lint; isa_ok( $lint, "HTML::Lint" ); $lint->parse( $html ); is( $lint->errors, 0, "No errors found in HTML" ); } If the user does not have HTML::Lint installed, the whole block of code I. Test::More will output special ok's which Test::Harness interprets as skipped, but passing, tests. It's important that $how_many accurately reflects the number of tests in the SKIP block so the # of tests run will match up with your plan. If your plan is C $how_many is optional and will default to 1. It's perfectly safe to nest SKIP blocks. Each SKIP block must have the label C, or Test::More can't work its magic. You don't skip tests which are failing because there's a bug in your program, or for which you don't yet have code written. For that you use TODO. Read on. =cut #'# sub skip { my($why, $how_many) = @_; unless( defined $how_many ) { # $how_many can only be avoided when no_plan is in use. _carp "skip() needs to know \$how_many tests are in the block" unless $Test->has_plan eq 'no_plan'; $how_many = 1; } for( 1..$how_many ) { $Test->skip($why); } local $^W = 0; last SKIP; } =item B TODO: { local $TODO = $why if $condition; ...normal testing code goes here... } Declares a block of tests you expect to fail and $why. Perhaps it's because you haven't fixed a bug or haven't finished a new feature: TODO: { local $TODO = "URI::Geller not finished"; my $card = "Eight of clubs"; is( URI::Geller->your_card, $card, 'Is THIS your card?' ); my $spoon; URI::Geller->bend_spoon; is( $spoon, 'bent', "Spoon bending, that's original" ); } With a todo block, the tests inside are expected to fail. Test::More will run the tests normally, but print out special flags indicating they are "todo". Test::Harness will interpret failures as being ok. Should anything succeed, it will report it as an unexpected success. You then know the thing you had todo is done and can remove the TODO flag. The nice part about todo tests, as opposed to simply commenting out a block of tests, is it's like having a programmatic todo list. You know how much work is left to be done, you're aware of what bugs there are, and you'll know immediately when they're fixed. Once a todo test starts succeeding, simply move it outside the block. When the block is empty, delete it. B: TODO tests require a Test::Harness upgrade else it will treat it as a normal failure. See L) =item B TODO: { todo_skip $why, $how_many if $condition; ...normal testing code... } With todo tests, it's best to have the tests actually run. That way you'll know when they start passing. Sometimes this isn't possible. Often a failing test will cause the whole program to die or hang, even inside an C with and using C. In these extreme cases you have no choice but to skip over the broken tests entirely. The syntax and behavior is similar to a C except the tests will be marked as failing but todo. Test::Harness will interpret them as passing. =cut sub todo_skip { my($why, $how_many) = @_; unless( defined $how_many ) { # $how_many can only be avoided when no_plan is in use. _carp "todo_skip() needs to know \$how_many tests are in the block" unless $Test->has_plan eq 'no_plan'; $how_many = 1; } for( 1..$how_many ) { $Test->todo_skip($why); } local $^W = 0; last TODO; } =item When do I use SKIP vs. TODO? B, use SKIP. This includes optional modules that aren't installed, running under an OS that doesn't have some feature (like fork() or symlinks), or maybe you need an Internet connection and one isn't available. B, use TODO. This is for any code you haven't written yet, or bugs you have yet to fix, but want to put tests in your testing script (always a good idea). =back =head2 Complex data structures Not everything is a simple eq check or regex. There are times you need to see if two data structures are equivalent. For these instances Test::More provides a handful of useful functions. B I'm not quite sure what will happen with filehandles. =over 4 =item B is_deeply( $this, $that, $test_name ); Similar to is(), except that if $this and $that are hash or array references, it does a deep comparison walking each data structure to see if they are equivalent. If the two structures are different, it will display the place where they start differing. Test::Differences and Test::Deep provide more in-depth functionality along these lines. =back =cut our (@Data_Stack, %Refs_Seen); my $DNE = bless [], 'Does::Not::Exist'; sub is_deeply { unless( @_ == 2 or @_ == 3 ) { my $msg = <ok(0); } my($this, $that, $name) = @_; my $ok; if( !ref $this and !ref $that ) { # neither is a reference $ok = $Test->is_eq($this, $that, $name); } elsif( !ref $this xor !ref $that ) { # one's a reference, one isn't $ok = $Test->ok(0, $name); $Test->diag( _format_stack({ vals => [ $this, $that ] }) ); } else { # both references local @Data_Stack = (); if( _deep_check($this, $that) ) { $ok = $Test->ok(1, $name); } else { $ok = $Test->ok(0, $name); $Test->diag(_format_stack(@Data_Stack)); } } return $ok; } sub _format_stack { my(@Stack) = @_; my $var = '$FOO'; my $did_arrow = 0; foreach my $entry (@Stack) { my $type = $entry->{type} || ''; my $idx = $entry->{'idx'}; if( $type eq 'HASH' ) { $var .= "->" unless $did_arrow++; $var .= "{$idx}"; } elsif( $type eq 'ARRAY' ) { $var .= "->" unless $did_arrow++; $var .= "[$idx]"; } elsif( $type eq 'REF' ) { $var = "\${$var}"; } } my @vals = @{$Stack[-1]{vals}}[0,1]; my @vars = (); ($vars[0] = $var) =~ s/\$FOO/ \$got/; ($vars[1] = $var) =~ s/\$FOO/\$expected/; my $out = "Structures begin differing at:\n"; foreach my $idx (0..$#vals) { my $val = $vals[$idx]; $vals[$idx] = !defined $val ? 'undef' : $val eq $DNE ? "Does not exist" : ref $val ? "$val" : "'$val'"; } $out .= "$vars[0] = $vals[0]\n"; $out .= "$vars[1] = $vals[1]\n"; $out =~ s/^/ /msg; return $out; } sub _type { my $thing = shift; return '' if !ref $thing; for my $type (qw(ARRAY HASH REF SCALAR GLOB Regexp)) { return $type if UNIVERSAL::isa($thing, $type); } return ''; } =head2 Discouraged comparison functions The use of the following functions is discouraged as they are not actually testing functions and produce no diagnostics to help figure out what went wrong. They were written before is_deeply() existed because I couldn't figure out how to display a useful diff of two arbitrary data structures. These functions are usually used inside an ok(). ok( eq_array(\@this, \@that) ); C can do that better and with diagnostics. is_deeply( \@this, \@that ); They may be deprecated in future versions. =over 4 =item B my $is_eq = eq_array(\@this, \@that); Checks if two arrays are equivalent. This is a deep check, so multi-level structures are handled correctly. =cut #'# sub eq_array { local @Data_Stack; _deep_check(@_); } sub _eq_array { my($a1, $a2) = @_; if( grep !_type($_) eq 'ARRAY', $a1, $a2 ) { warn "eq_array passed a non-array ref"; return 0; } return 1 if $a1 eq $a2; my $ok = 1; my $max = $#$a1 > $#$a2 ? $#$a1 : $#$a2; for (0..$max) { my $e1 = $_ > $#$a1 ? $DNE : $a1->[$_]; my $e2 = $_ > $#$a2 ? $DNE : $a2->[$_]; push @Data_Stack, { type => 'ARRAY', idx => $_, vals => [$e1, $e2] }; $ok = _deep_check($e1,$e2); pop @Data_Stack if $ok; last unless $ok; } return $ok; } sub _deep_check { my($e1, $e2) = @_; my $ok = 0; # Effectively turn %Refs_Seen into a stack. This avoids picking up # the same referenced used twice (such as [\$a, \$a]) to be considered # circular. local %Refs_Seen = %Refs_Seen; { # Quiet uninitialized value warnings when comparing undefs. local $^W = 0; $Test->_unoverload(\$e1, \$e2); # Either they're both references or both not. my $same_ref = !(!ref $e1 xor !ref $e2); my $not_ref = (!ref $e1 and !ref $e2); if( defined $e1 xor defined $e2 ) { $ok = 0; } elsif ( $e1 == $DNE xor $e2 == $DNE ) { $ok = 0; } elsif ( $same_ref and ($e1 eq $e2) ) { $ok = 1; } elsif ( $not_ref ) { push @Data_Stack, { type => '', vals => [$e1, $e2] }; $ok = 0; } else { if( $Refs_Seen{$e1} ) { return $Refs_Seen{$e1} eq $e2; } else { $Refs_Seen{$e1} = "$e2"; } my $type = _type($e1); $type = 'DIFFERENT' unless _type($e2) eq $type; if( $type eq 'DIFFERENT' ) { push @Data_Stack, { type => $type, vals => [$e1, $e2] }; $ok = 0; } elsif( $type eq 'ARRAY' ) { $ok = _eq_array($e1, $e2); } elsif( $type eq 'HASH' ) { $ok = _eq_hash($e1, $e2); } elsif( $type eq 'REF' ) { push @Data_Stack, { type => $type, vals => [$e1, $e2] }; $ok = _deep_check($$e1, $$e2); pop @Data_Stack if $ok; } elsif( $type eq 'SCALAR' ) { push @Data_Stack, { type => 'REF', vals => [$e1, $e2] }; $ok = _deep_check($$e1, $$e2); pop @Data_Stack if $ok; } else { _whoa(1, "No type in _deep_check"); } } } return $ok; } sub _whoa { my($check, $desc) = @_; if( $check ) { die < my $is_eq = eq_hash(\%this, \%that); Determines if the two hashes contain the same keys and values. This is a deep check. =cut sub eq_hash { local @Data_Stack; return _deep_check(@_); } sub _eq_hash { my($a1, $a2) = @_; if( grep !_type($_) eq 'HASH', $a1, $a2 ) { warn "eq_hash passed a non-hash ref"; return 0; } return 1 if $a1 eq $a2; my $ok = 1; my $bigger = keys %$a1 > keys %$a2 ? $a1 : $a2; foreach my $k (keys %$bigger) { my $e1 = exists $a1->{$k} ? $a1->{$k} : $DNE; my $e2 = exists $a2->{$k} ? $a2->{$k} : $DNE; push @Data_Stack, { type => 'HASH', idx => $k, vals => [$e1, $e2] }; $ok = _deep_check($e1, $e2); pop @Data_Stack if $ok; last unless $ok; } return $ok; } =item B my $is_eq = eq_set(\@this, \@that); Similar to eq_array(), except the order of the elements is B important. This is a deep check, but the irrelevancy of order only applies to the top level. ok( eq_set(\@this, \@that) ); Is better written: is_deeply( [sort @this], [sort @that] ); B By historical accident, this is not a true set comparision. While the order of elements does not matter, duplicate elements do. Test::Deep contains much better set comparison functions. =cut sub eq_set { my($a1, $a2) = @_; return 0 unless @$a1 == @$a2; # There's faster ways to do this, but this is easiest. local $^W = 0; # We must make sure that references are treated neutrally. It really # doesn't matter how we sort them, as long as both arrays are sorted # with the same algorithm. # Have to inline the sort routine due to a threading/sort bug. # See [rt.cpan.org 6782] return eq_array( [sort { ref $a ? -1 : ref $b ? 1 : $a cmp $b } @$a1], [sort { ref $a ? -1 : ref $b ? 1 : $a cmp $b } @$a2] ); } =back =head2 Extending and Embedding Test::More Sometimes the Test::More interface isn't quite enough. Fortunately, Test::More is built on top of Test::Builder which provides a single, unified backend for any test library to use. This means two test libraries which both use Test::Builder B. If you simply want to do a little tweaking of how the tests behave, you can access the underlying Test::Builder object like so: =over 4 =item B my $test_builder = Test::More->builder; Returns the Test::Builder object underlying Test::More for you to play with. =cut sub builder { return Test::Builder->new; } =back =head1 EXIT CODES If all your tests passed, Test::Builder will exit with zero (which is normal). If anything failed it will exit with how many failed. If you run less (or more) tests than you planned, the missing (or extras) will be considered failures. If no tests were ever run Test::Builder will throw a warning and exit with 255. If the test died, even after having successfully completed all its tests, it will still be considered a failure and will exit with 255. So the exit codes are... 0 all tests successful 255 test died any other number how many failed (including missing or extras) If you fail more than 254 tests, it will be reported as 254. B This behavior may go away in future versions. =head1 CAVEATS and NOTES =over 4 =item Backwards compatibility Test::More works with Perls as old as 5.004_05. =item Overloaded objects String overloaded objects are compared B. This prevents Test::More from piercing an object's interface allowing better blackbox testing. So if a function starts returning overloaded objects instead of bare strings your tests won't notice the difference. This is good. However, it does mean that functions like is_deeply() cannot be used to test the internals of string overloaded objects. In this case I would suggest Test::Deep which contains more flexible testing functions for complex data structures. =item Threads Test::More will only be aware of threads if "use threads" has been done I Test::More is loaded. This is ok: use threads; use Test::More; This may cause problems: use Test::More use threads; =item Test::Harness upgrade no_plan and todo depend on new Test::Harness features and fixes. If you're going to distribute tests that use no_plan or todo your end-users will have to upgrade Test::Harness to the latest one on CPAN. If you avoid no_plan and TODO tests, the stock Test::Harness will work fine. Installing Test::More should also upgrade Test::Harness. =back =head1 HISTORY This is a case of convergent evolution with Joshua Pritikin's Test module. I was largely unaware of its existence when I'd first written my own ok() routines. This module exists because I can't figure out how to easily wedge test names into Test's interface (along with a few other problems). The goal here is to have a testing utility that's simple to learn, quick to use and difficult to trip yourself up with while still providing more flexibility than the existing Test.pm. As such, the names of the most common routines are kept tiny, special cases and magic side-effects are kept to a minimum. WYSIWYG. =head1 SEE ALSO L if all this confuses you and you just want to write some tests. You can upgrade to Test::More later (it's forward compatible). L is the old testing module. Its main benefit is that it has been distributed with Perl since 5.004_05. L for details on how your test results are interpreted by Perl. L for more ways to test complex data structures. And it plays well with Test::More. L is like XUnit but more perlish. L gives you more powerful complex data structure testing. L is XUnit style testing. L shows the idea of embedded testing. L installs a whole bunch of useful test modules. =head1 AUTHORS Michael G Schwern Eschwern@pobox.comE with much inspiration from Joshua Pritikin's Test module and lots of help from Barrie Slaymaker, Tony Bowden, blackstar.co.uk, chromatic, Fergal Daly and the perl-qa gang. =head1 BUGS See F to report and view bugs. =head1 COPYRIGHT Copyright 2001, 2002, 2004 by Michael G Schwern Eschwern@pobox.comE. This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself. See F =cut 1; Compress-Raw-Zlib-2.063/t/Test/Simple.pm0000644000175000017500000001470311162411062016400 0ustar paulpaulpackage Test::Simple; use 5.004; use strict 'vars'; our ($VERSION); $VERSION = '0.60'; $VERSION = eval $VERSION; # make the alpha version come out as a number use Test::Builder; my $Test = Test::Builder->new; sub import { my $self = shift; my $caller = caller; *{$caller.'::ok'} = \&ok; $Test->exported_to($caller); $Test->plan(@_); } =head1 NAME Test::Simple - Basic utilities for writing tests. =head1 SYNOPSIS use Test::Simple tests => 1; ok( $foo eq $bar, 'foo is bar' ); =head1 DESCRIPTION ** If you are unfamiliar with testing B first! ** This is an extremely simple, extremely basic module for writing tests suitable for CPAN modules and other pursuits. If you wish to do more complicated testing, use the Test::More module (a drop-in replacement for this one). The basic unit of Perl testing is the ok. For each thing you want to test your program will print out an "ok" or "not ok" to indicate pass or fail. You do this with the ok() function (see below). The only other constraint is you must pre-declare how many tests you plan to run. This is in case something goes horribly wrong during the test and your test program aborts, or skips a test or whatever. You do this like so: use Test::Simple tests => 23; You must have a plan. =over 4 =item B ok( $foo eq $bar, $name ); ok( $foo eq $bar ); ok() is given an expression (in this case C<$foo eq $bar>). If it's true, the test passed. If it's false, it didn't. That's about it. ok() prints out either "ok" or "not ok" along with a test number (it keeps track of that for you). # This produces "ok 1 - Hell not yet frozen over" (or not ok) ok( get_temperature($hell) > 0, 'Hell not yet frozen over' ); If you provide a $name, that will be printed along with the "ok/not ok" to make it easier to find your test when if fails (just search for the name). It also makes it easier for the next guy to understand what your test is for. It's highly recommended you use test names. All tests are run in scalar context. So this: ok( @stuff, 'I have some stuff' ); will do what you mean (fail if stuff is empty) =cut sub ok ($;$) { $Test->ok(@_); } =back Test::Simple will start by printing number of tests run in the form "1..M" (so "1..5" means you're going to run 5 tests). This strange format lets Test::Harness know how many tests you plan on running in case something goes horribly wrong. If all your tests passed, Test::Simple will exit with zero (which is normal). If anything failed it will exit with how many failed. If you run less (or more) tests than you planned, the missing (or extras) will be considered failures. If no tests were ever run Test::Simple will throw a warning and exit with 255. If the test died, even after having successfully completed all its tests, it will still be considered a failure and will exit with 255. So the exit codes are... 0 all tests successful 255 test died any other number how many failed (including missing or extras) If you fail more than 254 tests, it will be reported as 254. This module is by no means trying to be a complete testing system. It's just to get you started. Once you're off the ground its recommended you look at L. =head1 EXAMPLE Here's an example of a simple .t file for the fictional Film module. use Test::Simple tests => 5; use Film; # What you're testing. my $btaste = Film->new({ Title => 'Bad Taste', Director => 'Peter Jackson', Rating => 'R', NumExplodingSheep => 1 }); ok( defined($btaste) && ref $btaste eq 'Film, 'new() works' ); ok( $btaste->Title eq 'Bad Taste', 'Title() get' ); ok( $btaste->Director eq 'Peter Jackson', 'Director() get' ); ok( $btaste->Rating eq 'R', 'Rating() get' ); ok( $btaste->NumExplodingSheep == 1, 'NumExplodingSheep() get' ); It will produce output like this: 1..5 ok 1 - new() works ok 2 - Title() get ok 3 - Director() get not ok 4 - Rating() get # Failed test (t/film.t at line 14) ok 5 - NumExplodingSheep() get # Looks like you failed 1 tests of 5 Indicating the Film::Rating() method is broken. =head1 CAVEATS Test::Simple will only report a maximum of 254 failures in its exit code. If this is a problem, you probably have a huge test script. Split it into multiple files. (Otherwise blame the Unix folks for using an unsigned short integer as the exit status). Because VMS's exit codes are much, much different than the rest of the universe, and perl does horrible mangling to them that gets in my way, it works like this on VMS. 0 SS$_NORMAL all tests successful 4 SS$_ABORT something went wrong Unfortunately, I can't differentiate any further. =head1 NOTES Test::Simple is B tested all the way back to perl 5.004. Test::Simple is thread-safe in perl 5.8.0 and up. =head1 HISTORY This module was conceived while talking with Tony Bowden in his kitchen one night about the problems I was having writing some really complicated feature into the new Testing module. He observed that the main problem is not dealing with these edge cases but that people hate to write tests B. What was needed was a dead simple module that took all the hard work out of testing and was really, really easy to learn. Paul Johnson simultaneously had this idea (unfortunately, he wasn't in Tony's kitchen). This is it. =head1 SEE ALSO =over 4 =item L More testing functions! Once you outgrow Test::Simple, look at Test::More. Test::Simple is 100% forward compatible with Test::More (i.e. you can just use Test::More instead of Test::Simple in your programs and things will still work). =item L The original Perl testing module. =item L Elaborate unit testing. =item L, L Embed tests in your code! =item L Interprets the output of your test program. =back =head1 AUTHORS Idea by Tony Bowden and Paul Johnson, code by Michael G Schwern Eschwern@pobox.comE, wardrobe by Calvin Klein. =head1 COPYRIGHT Copyright 2001, 2002, 2004 by Michael G Schwern Eschwern@pobox.comE. This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself. See F =cut 1; Compress-Raw-Zlib-2.063/t/000prereq.t0000644000175000017500000000167612211042533015601 0ustar paulpaulBEGIN { if ($ENV{PERL_CORE}) { chdir 't' if -d 't'; @INC = ("../lib", "lib/compress"); } } use lib qw(t t/compress); use strict ; use warnings ; use Test::More ; BEGIN { # use Test::NoWarnings, if available my $extra = 0 ; $extra = 1 if eval { require Test::NoWarnings ; import Test::NoWarnings; 1 }; my $VERSION = '2.063'; my @NAMES = qw( ); my @OPT = qw( ); plan tests => 1 + @NAMES + @OPT + $extra ; ok 1; foreach my $name (@NAMES) { use_ok($name, $VERSION); } foreach my $name (@OPT) { eval " require $name " ; if ($@) { ok 1, "$name not available" } else { my $ver = eval("\$${name}::VERSION"); is $ver, $VERSION, "$name version should be $VERSION" or diag "$name version is $ver, need $VERSION" ; } } } Compress-Raw-Zlib-2.063/t/99pod.t0000644000175000017500000000040511162411060015013 0ustar paulpaulBEGIN { if ($ENV{PERL_CORE}) { chdir 't' if -d 't'; @INC = ("../lib", "lib/compress"); } } use lib qw(t t/compress); use Test::More; eval "use Test::Pod 1.00"; plan skip_all => "Test::Pod 1.00 required for testing POD" if $@; all_pod_files_ok(); Compress-Raw-Zlib-2.063/t/compress/0000755000175000017500000000000012235214474015532 5ustar paulpaulCompress-Raw-Zlib-2.063/t/compress/CompTestUtils.pm0000644000175000017500000004415511577412662020667 0ustar paulpaulpackage CompTestUtils; package main ; use strict ; use warnings; use bytes; #use lib qw(t t/compress); use Carp ; #use Test::More ; sub title { #diag "" ; ok(1, $_[0]) ; #diag "" ; } sub like_eval { like $@, @_ ; } BEGIN { eval { require File::Temp; } ; } { package LexFile ; our ($index); $index = '00000'; sub new { my $self = shift ; foreach (@_) { Carp::croak "NO!!!!" if defined $_; # autogenerate the name if none supplied $_ = "tst" . $$ . "X" . $index ++ . ".tmp" unless defined $_; } chmod 0777, @_; for (@_) { 1 while unlink $_ } ; bless [ @_ ], $self ; } sub DESTROY { my $self = shift ; chmod 0777, @{ $self } ; for (@$self) { 1 while unlink $_ } ; } } { package LexDir ; use File::Path; our ($index); $index = '00000'; our ($useTempFile) = defined &File::Temp::tempdir; our ($useTempDir) = defined &File::Temp::newdir; sub new { my $self = shift ; if ( $useTempDir) { foreach (@_) { Carp::croak "NO!!!!" if defined $_; $_ = File::Temp->newdir(DIR => '.'); # Subsequent manipulations assume Unix syntax, metacharacters, etc. if ($^O eq 'VMS') { $_->{DIRNAME} = VMS::Filespec::unixify($_->{DIRNAME}); $_->{DIRNAME} =~ s/\/$//; } } bless [ @_ ], $self ; } elsif ( $useTempFile) { foreach (@_) { Carp::croak "NO!!!!" if defined $_; $_ = File::Temp::tempdir(DIR => '.', CLEANUP => 1); # Subsequent manipulations assume Unix syntax, metacharacters, etc. if ($^O eq 'VMS') { $_ = VMS::Filespec::unixify($_); $_ =~ s/\/$//; } } bless [ @_ ], $self ; } else { foreach (@_) { Carp::croak "NO!!!!" if defined $_; # autogenerate the name if none supplied $_ = "tmpdir" . $$ . "X" . $index ++ . ".tmp" ; } foreach (@_) { rmtree $_; mkdir $_, 0777 } bless [ @_ ], $self ; } } sub DESTROY { if (! $useTempFile) { my $self = shift ; foreach (@$self) { rmtree $_ } } } } sub readFile { my $f = shift ; my @strings ; if (IO::Compress::Base::Common::isaFilehandle($f)) { my $pos = tell($f); seek($f, 0,0); @strings = <$f> ; seek($f, 0, $pos); } else { open (F, "<$f") or croak "Cannot open $f: $!\n" ; binmode F; @strings = ; close F ; } return @strings if wantarray ; return join "", @strings ; } sub touch { foreach (@_) { writeFile($_, '') } } sub writeFile { my($filename, @strings) = @_ ; 1 while unlink $filename ; open (F, ">$filename") or croak "Cannot open $filename: $!\n" ; binmode F; foreach (@strings) { no warnings ; print F $_ ; } close F ; } sub GZreadFile { my ($filename) = shift ; my ($uncomp) = "" ; my $line = "" ; my $fil = gzopen($filename, "rb") or croak "Cannopt open '$filename': $Compress::Zlib::gzerrno" ; $uncomp .= $line while $fil->gzread($line) > 0; $fil->gzclose ; return $uncomp ; } sub hexDump { my $d = shift ; if (IO::Compress::Base::Common::isaFilehandle($d)) { $d = readFile($d); } elsif (IO::Compress::Base::Common::isaFilename($d)) { $d = readFile($d); } else { $d = $$d ; } my $offset = 0 ; $d = '' unless defined $d ; #while (read(STDIN, $data, 16)) { while (my $data = substr($d, 0, 16)) { substr($d, 0, 16) = '' ; printf "# %8.8lx ", $offset; $offset += 16; my @array = unpack('C*', $data); foreach (@array) { printf('%2.2x ', $_); } print " " x (16 - @array) if @array < 16 ; $data =~ tr/\0-\37\177-\377/./; print " $data\n"; } } sub readHeaderInfo { my $name = shift ; my %opts = @_ ; my $string = <write($string) ; ok $x->close ; #is GZreadFile($name), $string ; ok my $gunz = new IO::Uncompress::Gunzip $name, Strict => 0 or diag "GunzipError is $IO::Uncompress::Gunzip::GunzipError" ; ok my $hdr = $gunz->getHeaderInfo(); my $uncomp ; ok $gunz->read($uncomp) ; ok $uncomp eq $string; ok $gunz->close ; return $hdr ; } sub cmpFile { my ($filename, $uue) = @_ ; return readFile($filename) eq unpack("u", $uue) ; } #sub isRawFormat #{ # my $class = shift; # # TODO -- add Lzma here? # my %raw = map { $_ => 1 } qw( RawDeflate ); # # return defined $raw{$class}; #} my %TOP = ( 'IO::Uncompress::AnyInflate' => { Inverse => 'IO::Compress::Gzip', Error => 'AnyInflateError', TopLevel => 'anyinflate', Raw => 0, }, 'IO::Uncompress::AnyUncompress' => { Inverse => 'IO::Compress::Gzip', Error => 'AnyUncompressError', TopLevel => 'anyuncompress', Raw => 0, }, 'IO::Compress::Gzip' => { Inverse => 'IO::Uncompress::Gunzip', Error => 'GzipError', TopLevel => 'gzip', Raw => 0, }, 'IO::Uncompress::Gunzip' => { Inverse => 'IO::Compress::Gzip', Error => 'GunzipError', TopLevel => 'gunzip', Raw => 0, }, 'IO::Compress::Deflate' => { Inverse => 'IO::Uncompress::Inflate', Error => 'DeflateError', TopLevel => 'deflate', Raw => 0, }, 'IO::Uncompress::Inflate' => { Inverse => 'IO::Compress::Deflate', Error => 'InflateError', TopLevel => 'inflate', Raw => 0, }, 'IO::Compress::RawDeflate' => { Inverse => 'IO::Uncompress::RawInflate', Error => 'RawDeflateError', TopLevel => 'rawdeflate', Raw => 1, }, 'IO::Uncompress::RawInflate' => { Inverse => 'IO::Compress::RawDeflate', Error => 'RawInflateError', TopLevel => 'rawinflate', Raw => 1, }, 'IO::Compress::Zip' => { Inverse => 'IO::Uncompress::Unzip', Error => 'ZipError', TopLevel => 'zip', Raw => 0, }, 'IO::Uncompress::Unzip' => { Inverse => 'IO::Compress::Zip', Error => 'UnzipError', TopLevel => 'unzip', Raw => 0, }, 'IO::Compress::Bzip2' => { Inverse => 'IO::Uncompress::Bunzip2', Error => 'Bzip2Error', TopLevel => 'bzip2', Raw => 0, }, 'IO::Uncompress::Bunzip2' => { Inverse => 'IO::Compress::Bzip2', Error => 'Bunzip2Error', TopLevel => 'bunzip2', Raw => 0, }, 'IO::Compress::Lzop' => { Inverse => 'IO::Uncompress::UnLzop', Error => 'LzopError', TopLevel => 'lzop', Raw => 0, }, 'IO::Uncompress::UnLzop' => { Inverse => 'IO::Compress::Lzop', Error => 'UnLzopError', TopLevel => 'unlzop', Raw => 0, }, 'IO::Compress::Lzf' => { Inverse => 'IO::Uncompress::UnLzf', Error => 'LzfError', TopLevel => 'lzf', Raw => 0, }, 'IO::Uncompress::UnLzf' => { Inverse => 'IO::Compress::Lzf', Error => 'UnLzfError', TopLevel => 'unlzf', Raw => 0, }, 'IO::Compress::Lzma' => { Inverse => 'IO::Uncompress::UnLzma', Error => 'LzmaError', TopLevel => 'lzma', Raw => 1, }, 'IO::Uncompress::UnLzma' => { Inverse => 'IO::Compress::Lzma', Error => 'UnLzmaError', TopLevel => 'unlzma', Raw => 1, }, 'IO::Compress::Xz' => { Inverse => 'IO::Uncompress::UnXz', Error => 'XzError', TopLevel => 'xz', Raw => 0, }, 'IO::Uncompress::UnXz' => { Inverse => 'IO::Compress::Xz', Error => 'UnXzError', TopLevel => 'unxz', Raw => 0, }, 'IO::Compress::PPMd' => { Inverse => 'IO::Uncompress::UnPPMd', Error => 'PPMdError', TopLevel => 'ppmd', Raw => 0, }, 'IO::Uncompress::UnPPMd' => { Inverse => 'IO::Compress::PPMd', Error => 'UnPPMdError', TopLevel => 'unppmd', Raw => 0, }, 'IO::Compress::DummyComp' => { Inverse => 'IO::Uncompress::DummyUnComp', Error => 'DummyCompError', TopLevel => 'dummycomp', Raw => 0, }, 'IO::Uncompress::DummyUnComp' => { Inverse => 'IO::Compress::DummyComp', Error => 'DummyUnCompError', TopLevel => 'dummyunComp', Raw => 0, }, ); for my $key (keys %TOP) { no strict; no warnings; $TOP{$key}{Error} = \${ $key . '::' . $TOP{$key}{Error} }; $TOP{$key}{TopLevel} = $key . '::' . $TOP{$key}{TopLevel} ; # Silence used once warning in really old perl my $dummy = \${ $key . '::' . $TOP{$key}{Error} }; #$TOP{$key . "::" . $TOP{$key}{TopLevel} } = $TOP{$key}; } sub uncompressBuffer { my $compWith = shift ; my $buffer = shift ; my $out ; my $obj = $TOP{$compWith}{Inverse}->new( \$buffer, -Append => 1); 1 while $obj->read($out) > 0 ; return $out ; } sub getInverse { my $class = shift ; return $TOP{$class}{Inverse}; } sub getErrorRef { my $class = shift ; return $TOP{$class}{Error}; } sub getTopFuncRef { my $class = shift ; die "Cannot find $class" if ! defined $TOP{$class}{TopLevel}; return \&{ $TOP{$class}{TopLevel} } ; } sub getTopFuncName { my $class = shift ; return $TOP{$class}{TopLevel} ; } sub compressBuffer { my $compWith = shift ; my $buffer = shift ; my $out ; die "Cannot find $compWith" if ! defined $TOP{$compWith}{Inverse}; my $obj = $TOP{$compWith}{Inverse}->new( \$out); $obj->write($buffer) ; $obj->close(); return $out ; } our ($AnyUncompressError); BEGIN { eval ' use IO::Uncompress::AnyUncompress qw($AnyUncompressError); '; } sub anyUncompress { my $buffer = shift ; my $already = shift; my @opts = (); if (ref $buffer && ref $buffer eq 'ARRAY') { @opts = @$buffer; $buffer = shift @opts; } if (ref $buffer) { croak "buffer is undef" unless defined $$buffer; croak "buffer is empty" unless length $$buffer; } my $data ; if (IO::Compress::Base::Common::isaFilehandle($buffer)) { $data = readFile($buffer); } elsif (IO::Compress::Base::Common::isaFilename($buffer)) { $data = readFile($buffer); } else { $data = $$buffer ; } if (defined $already && length $already) { my $got = substr($data, 0, length($already)); substr($data, 0, length($already)) = ''; is $got, $already, ' Already OK' ; } my $out = ''; my $o = new IO::Uncompress::AnyUncompress \$data, Append => 1, Transparent => 0, RawInflate => 1, UnLzma => 1, @opts or croak "Cannot open buffer/file: $AnyUncompressError" ; 1 while $o->read($out) > 0 ; croak "Error uncompressing -- " . $o->error() if $o->error() ; return $out ; } sub getHeaders { my $buffer = shift ; my $already = shift; my @opts = (); if (ref $buffer && ref $buffer eq 'ARRAY') { @opts = @$buffer; $buffer = shift @opts; } if (ref $buffer) { croak "buffer is undef" unless defined $$buffer; croak "buffer is empty" unless length $$buffer; } my $data ; if (IO::Compress::Base::Common::isaFilehandle($buffer)) { $data = readFile($buffer); } elsif (IO::Compress::Base::Common::isaFilename($buffer)) { $data = readFile($buffer); } else { $data = $$buffer ; } if (defined $already && length $already) { my $got = substr($data, 0, length($already)); substr($data, 0, length($already)) = ''; is $got, $already, ' Already OK' ; } my $out = ''; my $o = new IO::Uncompress::AnyUncompress \$data, MultiStream => 1, Append => 1, Transparent => 0, RawInflate => 1, UnLzma => 1, @opts or croak "Cannot open buffer/file: $AnyUncompressError" ; 1 while $o->read($out) > 0 ; croak "Error uncompressing -- " . $o->error() if $o->error() ; return ($o->getHeaderInfo()) ; } sub mkComplete { my $class = shift ; my $data = shift; my $Error = getErrorRef($class); my $buffer ; my %params = (); if ($class eq 'IO::Compress::Gzip') { %params = ( Name => "My name", Comment => "a comment", ExtraField => ['ab' => "extra"], HeaderCRC => 1); } elsif ($class eq 'IO::Compress::Zip'){ %params = ( Name => "My name", Comment => "a comment", ZipComment => "last comment", exTime => [100, 200, 300], ExtraFieldLocal => ["ab" => "extra1"], ExtraFieldCentral => ["cd" => "extra2"], ); } my $z = new $class( \$buffer, %params) or croak "Cannot create $class object: $$Error"; $z->write($data); $z->close(); my $unc = getInverse($class); anyUncompress(\$buffer) eq $data or die "bad bad bad"; my $u = new $unc( \$buffer); my $info = $u->getHeaderInfo() ; return wantarray ? ($info, $buffer) : $buffer ; } sub mkErr { my $string = shift ; my ($dummy, $file, $line) = caller ; -- $line ; $file = quotemeta($file); #return "/$string\\s+at $file line $line/" if $] >= 5.006 ; return "/$string\\s+at /" ; } sub mkEvalErr { my $string = shift ; #return "/$string\\s+at \\(eval /" if $] > 5.006 ; return "/$string\\s+at /" ; } sub dumpObj { my $obj = shift ; my ($dummy, $file, $line) = caller ; if (@_) { print "#\n# dumpOBJ from $file line $line @_\n" ; } else { print "#\n# dumpOBJ from $file line $line \n" ; } my $max = 0 ;; foreach my $k (keys %{ *$obj }) { $max = length $k if length $k > $max ; } foreach my $k (sort keys %{ *$obj }) { my $v = $obj->{$k} ; $v = '-undef-' unless defined $v; my $pad = ' ' x ($max - length($k) + 2) ; print "# $k$pad: [$v]\n"; } print "#\n" ; } sub getMultiValues { my $class = shift ; return (0,0) if $class =~ /lzf|lzma/i; return (1,0); } sub gotScalarUtilXS { eval ' use Scalar::Util "dualvar" '; return $@ ? 0 : 1 ; } package CompTestUtils; 1; __END__ t/Test/Builder.pm t/Test/More.pm t/Test/Simple.pm t/compress/CompTestUtils.pm t/compress/any.pl t/compress/anyunc.pl t/compress/destroy.pl t/compress/generic.pl t/compress/merge.pl t/compress/multi.pl t/compress/newtied.pl t/compress/oneshot.pl t/compress/prime.pl t/compress/tied.pl t/compress/truncate.pl t/compress/zlib-generic.plParsing config.in... Building Zlib enabled Auto Detect Gzip OS Code.. Setting Gzip OS Code to 3 [Unix/Default] Looks Good. Compress-Raw-Zlib-2.063/t/07bufsize.t0000644000175000017500000000520511347170763015711 0ustar paulpaulBEGIN { if ($ENV{PERL_CORE}) { chdir 't' if -d 't'; @INC = ("../lib", "lib/compress"); } } use lib qw(t t/compress); use strict; use warnings; use bytes; use Test::More ; use CompTestUtils; BEGIN { # use Test::NoWarnings, if available my $extra = 0 ; $extra = 1 if eval { require Test::NoWarnings ; import Test::NoWarnings; 1 }; plan tests => 288 + $extra ; use_ok('Compress::Raw::Zlib', 2) ; } my $hello = < 1)); ok $x ; cmp_ok $err, '==', Z_OK, " status is Z_OK" ; ok ! defined $x->msg(), " no msg" ; is $x->total_in(), 0, " total_in == 0" ; is $x->total_out(), 0, " total_out == 0" ; my $out ; foreach (@hello) { $status = $x->deflate($_, $out) ; last unless $status == Z_OK ; } cmp_ok $status, '==', Z_OK, " status is Z_OK" ; cmp_ok $x->flush($out), '==', Z_OK, " flush returned Z_OK" ; ok ! defined $x->msg(), " no msg" ; is $x->total_in(), length $hello, " length total_in" ; is $x->total_out(), length $out, " length total_out" ; my @Answer = (); $tmp = $out; push @Answer, $1 while $tmp =~ s/^(.{$i})//; push @Answer, $tmp if length $tmp ; my $k; ok(($k, $err) = new Compress::Raw::Zlib::Inflate( -AppendOutput => 1)); ok $k ; cmp_ok $err, '==', Z_OK, " status is Z_OK" ; ok ! defined $k->msg(), " no msg" ; is $k->total_in(), 0, " total_in == 0" ; is $k->total_out(), 0, " total_out == 0" ; my $GOT = ''; my $Z; $Z = 1 ;#x 2000 ; foreach (@Answer) { $status = $k->inflate($_, $GOT) ; last if $status == Z_STREAM_END or $status != Z_OK ; } cmp_ok $status, '==', Z_STREAM_END, " status is Z_STREAM_END" ; is $GOT, $hello, " got expected output" ; ok ! defined $k->msg(), " no msg" ; is $k->total_in(), length $out, " length total_in ok" ; is $k->total_out(), length $hello, " length total_out ok" ; } Compress-Raw-Zlib-2.063/Zlib.xs0000644000175000017500000014524012146132676014722 0ustar paulpaul/* Filename: Zlib.xs * Author : Paul Marquess, * Created : 22nd January 1996 * Version : 2.000 * * Copyright (c) 1995-2013 Paul Marquess. All rights reserved. * This program is free software; you can redistribute it and/or * modify it under the same terms as Perl itself. * */ /* Parts of this code are based on the files gzio.c and gzappend.c from * the standard zlib source distribution. Below are the copyright statements * from each. */ /* gzio.c -- IO on .gz files * Copyright (C) 1995 Jean-loup Gailly. * For conditions of distribution and use, see copyright notice in zlib.h */ /* gzappend -- command to append to a gzip file Copyright (C) 2003 Mark Adler, all rights reserved version 1.1, 4 Nov 2003 */ #define PERL_NO_GET_CONTEXT #include "EXTERN.h" #include "perl.h" #include "XSUB.h" #include "zlib.h" /* zlib prior to 1.06 doesn't know about z_off_t */ #ifndef z_off_t # define z_off_t long #endif #if ! defined(ZLIB_VERNUM) || ZLIB_VERNUM < 0x1200 # define NEED_DUMMY_BYTE_AT_END #endif #if defined(ZLIB_VERNUM) && ZLIB_VERNUM >= 0x1210 # define MAGIC_APPEND # define AT_LEAST_ZLIB_1_2_1 #endif #if defined(ZLIB_VERNUM) && ZLIB_VERNUM >= 0x1221 # define AT_LEAST_ZLIB_1_2_2_1 #endif #if defined(ZLIB_VERNUM) && ZLIB_VERNUM >= 0x1222 # define AT_LEAST_ZLIB_1_2_2_2 #endif #if defined(ZLIB_VERNUM) && ZLIB_VERNUM >= 0x1223 # define AT_LEAST_ZLIB_1_2_2_3 #endif #if defined(ZLIB_VERNUM) && ZLIB_VERNUM >= 0x1230 # define AT_LEAST_ZLIB_1_2_3 #endif #if defined(ZLIB_VERNUM) && ZLIB_VERNUM >= 0x1252 /* Use Z_SOLO to build source means need own malloc/free */ # define AT_LEAST_ZLIB_1_2_5_2 #endif #if defined(ZLIB_VERNUM) && ZLIB_VERNUM >= 0x1280 # define AT_LEAST_ZLIB_1_2_8 #endif #ifdef USE_PPPORT_H # define NEED_sv_2pvbyte # define NEED_sv_2pv_nolen # include "ppport.h" #endif #if PERL_REVISION == 5 && PERL_VERSION == 9 /* For Andreas */ # define sv_pvbyte_force(sv,lp) sv_pvbyten_force(sv,lp) #endif #if PERL_REVISION == 5 && (PERL_VERSION < 8 || (PERL_VERSION == 8 && PERL_SUBVERSION < 4 )) # ifdef SvPVbyte_force # undef SvPVbyte_force # endif # define SvPVbyte_force(sv,lp) SvPV_force(sv,lp) #endif #ifndef SvPVbyte_nolen # define SvPVbyte_nolen SvPV_nolen #endif #if 0 # ifndef SvPVbyte_nolen # define SvPVbyte_nolen SvPV_nolen # endif # ifndef SvPVbyte_force # define SvPVbyte_force(sv,lp) SvPV_force(sv,lp) # endif #endif #if PERL_REVISION == 5 && (PERL_VERSION >= 8 || (PERL_VERSION == 8 && PERL_SUBVERSION < 4 )) # define UTF8_AVAILABLE #endif typedef int DualType ; typedef int int_undef ; typedef struct di_stream { int flags ; #define FLAG_APPEND 1 #define FLAG_CRC32 2 #define FLAG_ADLER32 4 #define FLAG_CONSUME_INPUT 8 #define FLAG_LIMIT_OUTPUT 16 uLong crc32 ; uLong adler32 ; z_stream stream; uLong bufsize; SV * dictionary ; uLong dict_adler ; int last_error ; bool zip_mode ; #define SETP_BYTE #ifdef SETP_BYTE bool deflateParams_out_valid ; Bytef deflateParams_out_byte; #else #define deflateParams_BUFFER_SIZE 0x4000 uLong deflateParams_out_length; Bytef* deflateParams_out_buffer; #endif int Level; int Method; int WindowBits; int MemLevel; int Strategy; uLong bytesInflated ; uLong compressedBytes ; uLong uncompressedBytes ; #ifdef MAGIC_APPEND #define WINDOW_SIZE 32768U bool matchedEndBlock; Bytef* window ; int window_lastbit, window_left, window_full; unsigned window_have; off_t window_lastoff, window_end; off_t window_endOffset; uLong lastBlockOffset ; unsigned char window_lastByte ; #endif } di_stream; typedef di_stream * deflateStream ; typedef di_stream * Compress__Raw__Zlib__deflateStream ; typedef di_stream * inflateStream ; typedef di_stream * Compress__Raw__Zlib__inflateStream ; typedef di_stream * Compress__Raw__Zlib__inflateScanStream ; #define ZMALLOC(to, typ) ((to = (typ *)safemalloc(sizeof(typ))), \ Zero(to,1,typ)) /* Figure out the Operating System */ #ifdef MSDOS # define OS_CODE 0x00 #endif #if defined(AMIGA) || defined(AMIGAOS) # define OS_CODE 0x01 #endif #if defined(VAXC) || defined(VMS) # define OS_CODE 0x02 #endif #if 0 /* VM/CMS */ # define OS_CODE 0x04 #endif #if defined(ATARI) || defined(atarist) # define OS_CODE 0x05 #endif #ifdef OS2 # define OS_CODE 0x06 #endif #if defined(MACOS) || defined(TARGET_OS_MAC) # define OS_CODE 0x07 #endif #if 0 /* Z-System */ # define OS_CODE 0x08 #endif #if 0 /* CP/M */ # define OS_CODE 0x09 #endif #ifdef TOPS20 # define OS_CODE 0x0a #endif #ifdef WIN32 /* Window 95 & Windows NT */ # define OS_CODE 0x0b #endif #if 0 /* QDOS */ # define OS_CODE 0x0c #endif #if 0 /* Acorn RISCOS */ # define OS_CODE 0x0d #endif #if 0 /* ??? */ # define OS_CODE 0x0e #endif #ifdef __50SERIES /* Prime/PRIMOS */ # define OS_CODE 0x0F #endif /* Default to UNIX */ #ifndef OS_CODE # define OS_CODE 0x03 /* assume Unix */ #endif #ifndef GZIP_OS_CODE # define GZIP_OS_CODE OS_CODE #endif #define adlerInitial adler32(0L, Z_NULL, 0) #define crcInitial crc32(0L, Z_NULL, 0) /* static const char * const my_z_errmsg[] = { */ static const char my_z_errmsg[][32] = { "need dictionary", /* Z_NEED_DICT 2 */ "stream end", /* Z_STREAM_END 1 */ "", /* Z_OK 0 */ "file error", /* Z_ERRNO (-1) */ "stream error", /* Z_STREAM_ERROR (-2) */ "data error", /* Z_DATA_ERROR (-3) */ "insufficient memory", /* Z_MEM_ERROR (-4) */ "buffer error", /* Z_BUF_ERROR (-5) */ "incompatible version",/* Z_VERSION_ERROR(-6) */ ""}; #define setDUALstatus(var, err) \ sv_setnv(var, (double)err) ; \ sv_setpv(var, ((err) ? GetErrorString(err) : "")) ; \ SvNOK_on(var); #if defined(__SYMBIAN32__) # define NO_WRITEABLE_DATA #endif #define TRACE_DEFAULT 0 #ifdef NO_WRITEABLE_DATA # define trace TRACE_DEFAULT #else static int trace = TRACE_DEFAULT ; #endif /* Dodge PerlIO hiding of these functions. */ #undef printf static char * #ifdef CAN_PROTOTYPE GetErrorString(int error_no) #else GetErrorString(error_no) int error_no ; #endif { dTHX; char * errstr ; if (error_no == Z_ERRNO) { errstr = Strerror(errno) ; } else /* errstr = gzerror(fil, &error_no) ; */ errstr = (char*) my_z_errmsg[2 - error_no]; return errstr ; } #ifdef MAGIC_APPEND /* The following two functions are taken almost directly from examples/gzappend.c. Only cosmetic changes have been made to conform to the coding style of the rest of the code in this file. */ /* return the greatest common divisor of a and b using Euclid's algorithm, modified to be fast when one argument much greater than the other, and coded to avoid unnecessary swapping */ static unsigned #ifdef CAN_PROTOTYPE gcd(unsigned a, unsigned b) #else gcd(a, b) unsigned a; unsigned b; #endif { unsigned c; while (a && b) if (a > b) { c = b; while (a - c >= c) c <<= 1; a -= c; } else { c = a; while (b - c >= c) c <<= 1; b -= c; } return a + b; } /* rotate list[0..len-1] left by rot positions, in place */ static void #ifdef CAN_PROTOTYPE rotate(unsigned char *list, unsigned len, unsigned rot) #else rotate(list, len, rot) unsigned char *list; unsigned len ; unsigned rot; #endif { unsigned char tmp; unsigned cycles; unsigned char *start, *last, *to, *from; /* normalize rot and handle degenerate cases */ if (len < 2) return; if (rot >= len) rot %= len; if (rot == 0) return; /* pointer to last entry in list */ last = list + (len - 1); /* do simple left shift by one */ if (rot == 1) { tmp = *list; memcpy(list, list + 1, len - 1); *last = tmp; return; } /* do simple right shift by one */ if (rot == len - 1) { tmp = *last; memmove(list + 1, list, len - 1); *list = tmp; return; } /* otherwise do rotate as a set of cycles in place */ cycles = gcd(len, rot); /* number of cycles */ do { start = from = list + cycles; /* start index is arbitrary */ tmp = *from; /* save entry to be overwritten */ for (;;) { to = from; /* next step in cycle */ from += rot; /* go right rot positions */ if (from > last) from -= len; /* (pointer better not wrap) */ if (from == start) break; /* all but one shifted */ *to = *from; /* shift left */ } *to = tmp; /* complete the circle */ } while (--cycles); } #endif /* MAGIC_APPEND */ static void #ifdef CAN_PROTOTYPE DispHex(void * ptr, int length) #else DispHex(ptr, length) void * ptr; int length; #endif { char * p = (char*)ptr; int i; for (i = 0; i < length; ++i) { printf(" %02x", 0xFF & *(p+i)); } } static void #ifdef CAN_PROTOTYPE DispStream(di_stream * s, const char * message) #else DispStream(s, message) di_stream * s; const char * message; #endif { #if 0 if (! trace) return ; #endif #define EnDis(f) (s->flags & f ? "Enabled" : "Disabled") printf("DispStream %p", s) ; if (message) printf("- %s \n", message) ; printf("\n") ; if (!s) { printf(" stream pointer is NULL\n"); } else { printf(" stream %p\n", &(s->stream)); printf(" zalloc %p\n", s->stream.zalloc); printf(" zfree %p\n", s->stream.zfree); printf(" opaque %p\n", s->stream.opaque); printf(" state %p\n", s->stream.state); if (s->stream.msg) printf(" msg %s\n", s->stream.msg); else printf(" msg \n"); printf(" next_in %p", s->stream.next_in); if (s->stream.next_in){ printf(" =>"); DispHex(s->stream.next_in, 4); } printf("\n"); printf(" next_out %p", s->stream.next_out); if (s->stream.next_out){ printf(" =>"); DispHex(s->stream.next_out, 4); } printf("\n"); printf(" avail_in %lu\n", (unsigned long)s->stream.avail_in); printf(" avail_out %lu\n", (unsigned long)s->stream.avail_out); printf(" total_in %ld\n", s->stream.total_in); printf(" total_out %ld\n", s->stream.total_out); printf(" adler %ld\n", s->stream.adler ); printf(" bufsize %ld\n", s->bufsize); printf(" dictionary %p\n", s->dictionary); printf(" dict_adler 0x%ld\n",s->dict_adler); printf(" zip_mode %d\n", s->zip_mode); printf(" crc32 0x%x\n", (unsigned)s->crc32); printf(" adler32 0x%x\n", (unsigned)s->adler32); printf(" flags 0x%x\n", s->flags); printf(" APPEND %s\n", EnDis(FLAG_APPEND)); printf(" CRC32 %s\n", EnDis(FLAG_CRC32)); printf(" ADLER32 %s\n", EnDis(FLAG_ADLER32)); printf(" CONSUME %s\n", EnDis(FLAG_CONSUME_INPUT)); printf(" LIMIT %s\n", EnDis(FLAG_LIMIT_OUTPUT)); #ifdef MAGIC_APPEND printf(" window %p\n", s->window); #endif printf("\n"); } } #ifdef AT_LEAST_ZLIB_1_2_5_2 voidpf my_zcalloc (voidpf opaque, unsigned items, unsigned size) { return safemalloc(items * size); } void my_zcfree (voidpf opaque, voidpf ptr) { safefree(ptr); return; } #endif static di_stream * #ifdef CAN_PROTOTYPE InitStream(void) #else InitStream() #endif { di_stream *s ; ZMALLOC(s, di_stream) ; #ifdef AT_LEAST_ZLIB_1_2_5_2 s->stream.zalloc = my_zcalloc; s->stream.zfree = my_zcfree; #endif return s ; } static void #ifdef CAN_PROTOTYPE PostInitStream(di_stream * s, int flags, int bufsize, int windowBits) #else PostInitStream(s, flags, bufsize, windowBits) di_stream *s ; int flags ; int bufsize ; int windowBits ; #endif { s->bufsize = bufsize ; s->compressedBytes = s->uncompressedBytes = s->last_error = 0 ; s->flags = flags ; s->zip_mode = (windowBits < 0) ; if (flags & FLAG_CRC32) s->crc32 = crcInitial ; if (flags & FLAG_ADLER32) s->adler32 = adlerInitial ; } static SV* #ifdef CAN_PROTOTYPE deRef(SV * sv, const char * string) #else deRef(sv, string) SV * sv ; char * string; #endif { dTHX; SvGETMAGIC(sv); if (SvROK(sv)) { sv = SvRV(sv) ; SvGETMAGIC(sv); switch(SvTYPE(sv)) { case SVt_PVAV: case SVt_PVHV: case SVt_PVCV: croak("%s: buffer parameter is not a SCALAR reference", string); default: break; } if (SvROK(sv)) croak("%s: buffer parameter is a reference to a reference", string) ; } if (!SvOK(sv)) sv = sv_2mortal(newSVpv("", 0)); return sv ; } static SV* #ifdef CAN_PROTOTYPE deRef_l(SV * sv, const char * string) #else deRef_l(sv, string) SV * sv ; char * string ; #endif { dTHX; bool wipe = 0 ; STRLEN na; SvGETMAGIC(sv); wipe = ! SvOK(sv) ; if (SvROK(sv)) { sv = SvRV(sv) ; SvGETMAGIC(sv); wipe = ! SvOK(sv) ; switch(SvTYPE(sv)) { case SVt_PVAV: case SVt_PVHV: case SVt_PVCV: croak("%s: buffer parameter is not a SCALAR reference", string); default: break; } if (SvROK(sv)) croak("%s: buffer parameter is a reference to a reference", string) ; } if (SvREADONLY(sv) && PL_curcop != &PL_compiling) croak("%s: buffer parameter is read-only", string); SvUPGRADE(sv, SVt_PV); if (wipe) sv_setpv(sv, "") ; else (void)SvPVbyte_force(sv, na) ; return sv ; } #include "constants.h" MODULE = Compress::Raw::Zlib PACKAGE = Compress::Raw::Zlib PREFIX = Zip_ REQUIRE: 1.924 PROTOTYPES: DISABLE INCLUDE: constants.xs BOOT: /* Check this version of zlib is == 1 */ if (zlibVersion()[0] != '1') croak("Compress::Raw::Zlib needs zlib version 1.x\n") ; { /* Create the $os_code scalar */ SV * os_code_sv = perl_get_sv("Compress::Raw::Zlib::gzip_os_code", GV_ADDMULTI) ; sv_setiv(os_code_sv, GZIP_OS_CODE) ; } #define Zip_zlib_version() (const char*)zlib_version const char* Zip_zlib_version() unsigned ZLIB_VERNUM() CODE: #ifdef ZLIB_VERNUM RETVAL = ZLIB_VERNUM ; #else /* 1.1.4 => 0x1140 */ RETVAL = (ZLIB_VERSION[0] - '0') << 12 ; RETVAL += (ZLIB_VERSION[2] - '0') << 8 ; RETVAL += (ZLIB_VERSION[4] - '0') << 4 ; if (strlen(ZLIB_VERSION) > 5) RETVAL += (ZLIB_VERSION[6] - '0') ; #endif OUTPUT: RETVAL #ifndef AT_LEAST_ZLIB_1_2_1 #define zlibCompileFlags() 0 #endif uLong zlibCompileFlags() MODULE = Compress::Raw::Zlib PACKAGE = Compress::Raw::Zlib PREFIX = Zip_ #define Zip_adler32(buf, adler) adler32(adler, buf, (uInt)len) uLong Zip_adler32(buf, adler=adlerInitial) uLong adler = NO_INIT STRLEN len = NO_INIT Bytef * buf = NO_INIT SV * sv = ST(0) ; INIT: /* If the buffer is a reference, dereference it */ sv = deRef(sv, "adler32") ; #ifdef UTF8_AVAILABLE if (DO_UTF8(sv) && !sv_utf8_downgrade(sv, 1)) croak("Wide character in Compress::Raw::Zlib::adler32"); #endif buf = (Byte*)SvPVbyte(sv, len) ; if (items < 2) adler = adlerInitial; else if (SvOK(ST(1))) adler = SvUV(ST(1)) ; else adler = adlerInitial; OUTPUT: RETVAL #define Zip_crc32(buf, crc, offset) crc32(crc, buf+offset, (uInt)len-offset) uLong Zip_crc32(buf, crc=crcInitial, offset=0) uLong crc = NO_INIT STRLEN len = NO_INIT Bytef * buf = NO_INIT int offset SV * sv = ST(0) ; INIT: /* If the buffer is a reference, dereference it */ sv = deRef(sv, "crc32") ; #ifdef UTF8_AVAILABLE if (DO_UTF8(sv) && !sv_utf8_downgrade(sv, 1)) croak("Wide character in Compress::Raw::Zlib::crc32"); #endif buf = (Byte*)SvPVbyte(sv, len) ; if (items < 2) crc = crcInitial; else if (SvOK(ST(1))) crc = SvUV(ST(1)) ; else crc = crcInitial; uLong crc32_combine(crc1, crc2, len2) uLong crc1 uLong crc2 z_off_t len2 CODE: #ifndef AT_LEAST_ZLIB_1_2_2_1 crc1 = crc1; crc2 = crc2 ; len2 = len2; /* Silence -Wall */ croak("crc32_combine needs zlib 1.2.3 or better"); #else RETVAL = crc32_combine(crc1, crc2, len2); #endif OUTPUT: RETVAL uLong adler32_combine(adler1, adler2, len2) uLong adler1 uLong adler2 z_off_t len2 CODE: #ifndef AT_LEAST_ZLIB_1_2_2_1 adler1 = adler1; adler2 = adler2 ; len2 = len2; /* Silence -Wall */ croak("adler32_combine needs zlib 1.2.3 or better"); #else RETVAL = adler32_combine(adler1, adler2, len2); #endif OUTPUT: RETVAL MODULE = Compress::Raw::Zlib PACKAGE = Compress::Raw::Zlib void _deflateInit(flags,level, method, windowBits, memLevel, strategy, bufsize, dictionary) int flags int level int method int windowBits int memLevel int strategy uLong bufsize SV* dictionary PPCODE: int err ; deflateStream s ; if (trace) warn("in _deflateInit(level=%d, method=%d, windowBits=%d, memLevel=%d, strategy=%d, bufsize=%ld dictionary=%p)\n", level, method, windowBits, memLevel, strategy, bufsize, dictionary) ; if ((s = InitStream() )) { s->Level = level; s->Method = method; s->WindowBits = windowBits; s->MemLevel = memLevel; s->Strategy = strategy; err = deflateInit2(&(s->stream), level, method, windowBits, memLevel, strategy); if (trace) { warn(" _deflateInit2 returned %d (state %p)\n", err, s); DispStream(s, "INIT"); } /* Check if a dictionary has been specified */ SvGETMAGIC(dictionary); if (err == Z_OK && SvPOK(dictionary) && SvCUR(dictionary)) { #ifdef UTF8_AVAILABLE if (DO_UTF8(dictionary) && !sv_utf8_downgrade(dictionary, 1)) croak("Wide character in Compress::Raw::Zlib::Deflate::new dicrionary parameter"); #endif err = deflateSetDictionary(&(s->stream), (const Bytef*) SvPVX(dictionary), SvCUR(dictionary)) ; if (trace) warn("deflateSetDictionary returned %d\n", err); s->dict_adler = s->stream.adler ; } if (err != Z_OK) { Safefree(s) ; s = NULL ; } else PostInitStream(s, flags, bufsize, windowBits) ; } else err = Z_MEM_ERROR ; { SV* obj = sv_setref_pv(sv_newmortal(), "Compress::Raw::Zlib::deflateStream", (void*)s); XPUSHs(obj); } if (GIMME == G_ARRAY) { SV * sv = sv_2mortal(newSViv(err)) ; setDUALstatus(sv, err); XPUSHs(sv) ; } void _inflateInit(flags, windowBits, bufsize, dictionary) int flags int windowBits uLong bufsize SV * dictionary ALIAS: _inflateScanInit = 1 PPCODE: int err = Z_OK ; inflateStream s ; #ifndef MAGIC_APPEND if (ix == 1) croak("inflateScanInit needs zlib 1.2.1 or better"); #endif if (trace) warn("in _inflateInit(windowBits=%d, bufsize=%lu, dictionary=%lu\n", windowBits, bufsize, (unsigned long)SvCUR(dictionary)) ; if ((s = InitStream() )) { s->WindowBits = windowBits; err = inflateInit2(&(s->stream), windowBits); if (err != Z_OK) { Safefree(s) ; s = NULL ; } else if (SvCUR(dictionary)) { #ifdef AT_LEAST_ZLIB_1_2_2_1 /* Zlib 1.2.2.1 or better allows a dictionary with raw inflate */ if (s->WindowBits < 0) { err = inflateSetDictionary(&(s->stream), (const Bytef*)SvPVbyte_nolen(dictionary), SvCUR(dictionary)); if (err != Z_OK) { Safefree(s) ; s = NULL ; } } else #endif /* Dictionary specified - take a copy for use in inflate */ s->dictionary = newSVsv(dictionary) ; } if (s) { PostInitStream(s, flags, bufsize, windowBits) ; #ifdef MAGIC_APPEND if (ix == 1) { s->window = (unsigned char *)safemalloc(WINDOW_SIZE); } #endif } } else err = Z_MEM_ERROR ; { SV* obj = sv_setref_pv(sv_newmortal(), ix == 1 ? "Compress::Raw::Zlib::inflateScanStream" : "Compress::Raw::Zlib::inflateStream", (void*)s); XPUSHs(obj); } if (GIMME == G_ARRAY) { SV * sv = sv_2mortal(newSViv(err)) ; setDUALstatus(sv, err); XPUSHs(sv) ; } MODULE = Compress::Raw::Zlib PACKAGE = Compress::Raw::Zlib::deflateStream void DispStream(s, message=NULL) Compress::Raw::Zlib::deflateStream s const char * message DualType deflateReset(s) Compress::Raw::Zlib::deflateStream s CODE: RETVAL = deflateReset(&(s->stream)) ; if (RETVAL == Z_OK) { PostInitStream(s, s->flags, s->bufsize, s->WindowBits) ; } OUTPUT: RETVAL DualType deflate (s, buf, output) Compress::Raw::Zlib::deflateStream s SV * buf SV * output uInt cur_length = NO_INIT uInt increment = NO_INIT uInt prefix = NO_INIT int RETVAL = 0; uLong bufinc = NO_INIT CODE: bufinc = s->bufsize; /* If the input buffer is a reference, dereference it */ buf = deRef(buf, "deflate") ; /* initialise the input buffer */ #ifdef UTF8_AVAILABLE if (DO_UTF8(buf) && !sv_utf8_downgrade(buf, 1)) croak("Wide character in Compress::Raw::Zlib::Deflate::deflate input parameter"); #endif s->stream.next_in = (Bytef*)SvPV_nomg_nolen(buf) ; s->stream.avail_in = SvCUR(buf) ; if (s->flags & FLAG_CRC32) s->crc32 = crc32(s->crc32, s->stream.next_in, s->stream.avail_in) ; if (s->flags & FLAG_ADLER32) s->adler32 = adler32(s->adler32, s->stream.next_in, s->stream.avail_in) ; /* and retrieve the output buffer */ output = deRef_l(output, "deflate") ; #ifdef UTF8_AVAILABLE if (DO_UTF8(output) && !sv_utf8_downgrade(output, 1)) croak("Wide character in Compress::Raw::Zlib::Deflate::deflate output parameter"); #endif if((s->flags & FLAG_APPEND) != FLAG_APPEND) { SvCUR_set(output, 0); /* sv_setpvn(output, "", 0); */ } prefix = cur_length = SvCUR(output) ; s->stream.next_out = (Bytef*) SvPVX(output) + cur_length; increment = SvLEN(output) - cur_length; s->stream.avail_out = increment; #ifdef SETP_BYTE /* Check for saved output from deflateParams */ if (s->deflateParams_out_valid) { *(s->stream.next_out) = s->deflateParams_out_byte; ++ s->stream.next_out; -- s->stream.avail_out ; s->deflateParams_out_valid = FALSE; } #else /* Check for saved output from deflateParams */ if (s->deflateParams_out_length) { uLong plen = s->deflateParams_out_length ; /* printf("Copy %d bytes saved data\n", plen);*/ if (s->stream.avail_out < plen) { /*printf("GROW from %d to %d\n", s->stream.avail_out, SvLEN(output) + plen - s->stream.avail_out); */ Sv_Grow(output, SvLEN(output) + plen - s->stream.avail_out) ; } Copy(s->stream.next_out, s->deflateParams_out_buffer, plen, Bytef) ; cur_length = cur_length + plen; SvCUR_set(output, cur_length); s->stream.next_out += plen ; s->stream.avail_out = SvLEN(output) - cur_length ; increment = s->stream.avail_out; s->deflateParams_out_length = 0; } #endif RETVAL = Z_OK ; while (s->stream.avail_in != 0) { if (s->stream.avail_out == 0) { /* out of space in the output buffer so make it bigger */ s->stream.next_out = (Bytef*) Sv_Grow(output, SvLEN(output) + bufinc) ; cur_length += increment ; s->stream.next_out += cur_length ; increment = bufinc ; s->stream.avail_out = increment; bufinc *= 2 ; } if (trace) { printf("DEFLATE Avail In %d, Out %d\n", s->stream.avail_in, s->stream.avail_out); DispStream(s, "BEFORE"); /* Perl_sv_dump(output); */ } RETVAL = deflate(&(s->stream), Z_NO_FLUSH); if (trace) { printf("DEFLATE returned %d %s, avail in %d, out %d\n", RETVAL, GetErrorString(RETVAL), s->stream.avail_in, s->stream.avail_out); DispStream(s, "AFTER"); } if (RETVAL != Z_OK) break; } s->compressedBytes += cur_length + increment - prefix - s->stream.avail_out ; s->uncompressedBytes += SvCUR(buf) - s->stream.avail_in ; s->last_error = RETVAL ; if (RETVAL == Z_OK) { SvPOK_only(output); SvCUR_set(output, cur_length + increment - s->stream.avail_out) ; SvSETMAGIC(output); } OUTPUT: RETVAL void DESTROY(s) Compress::Raw::Zlib::deflateStream s CODE: if (trace) printf("Compress::Raw::Zlib::deflateStream::DESTROY %p\n", s); deflateEnd(&s->stream) ; if (s->dictionary) SvREFCNT_dec(s->dictionary) ; #ifndef SETP_BYTE if (s->deflateParams_out_buffer) Safefree(s->deflateParams_out_buffer); #endif Safefree(s) ; DualType flush(s, output, f=Z_FINISH) Compress::Raw::Zlib::deflateStream s SV * output int f uInt cur_length = NO_INIT uInt increment = NO_INIT uInt prefix = NO_INIT uLong bufinc = NO_INIT uLong availableout = NO_INIT CODE: bufinc = s->bufsize; s->stream.avail_in = 0; /* should be zero already anyway */ /* retrieve the output buffer */ output = deRef_l(output, "flush") ; #ifdef UTF8_AVAILABLE if (DO_UTF8(output) && !sv_utf8_downgrade(output, 1)) croak("Wide character in Compress::Raw::Zlib::Deflate::flush input parameter"); #endif if(! s->flags & FLAG_APPEND) { SvCUR_set(output, 0); /* sv_setpvn(output, "", 0); */ } prefix = cur_length = SvCUR(output) ; s->stream.next_out = (Bytef*) SvPVX(output) + cur_length; increment = SvLEN(output) - cur_length; s->stream.avail_out = increment; #ifdef SETP_BYTE /* Check for saved output from deflateParams */ if (s->deflateParams_out_valid) { *(s->stream.next_out) = s->deflateParams_out_byte; ++ s->stream.next_out; -- s->stream.avail_out ; s->deflateParams_out_valid = FALSE; } #else /* Check for saved output from deflateParams */ if (s->deflateParams_out_length) { uLong plen = s->deflateParams_out_length ; /* printf("Copy %d bytes saved data\n", plen); */ if (s->stream.avail_out < plen) { /* printf("GROW from %d to %d\n", s->stream.avail_out, SvLEN(output) + plen - s->stream.avail_out); */ Sv_Grow(output, SvLEN(output) + plen - s->stream.avail_out) ; } Copy(s->stream.next_out, s->deflateParams_out_buffer, plen, Bytef) ; cur_length = cur_length + plen; SvCUR_set(output, cur_length); s->stream.next_out += plen ; s->stream.avail_out = SvLEN(output) - cur_length ; increment = s->stream.avail_out; s->deflateParams_out_length = 0; } #endif for (;;) { if (s->stream.avail_out == 0) { /* consumed all the available output, so extend it */ s->stream.next_out = (Bytef*) Sv_Grow(output, SvLEN(output) + bufinc) ; cur_length += increment ; s->stream.next_out += cur_length ; increment = bufinc ; s->stream.avail_out = increment; bufinc *= 2 ; } availableout = s->stream.avail_out ; if (trace) { printf("flush (%d) DEFLATE Avail In %d, Out %d\n", f, s->stream.avail_in, s->stream.avail_out); DispStream(s, "BEFORE"); /* Perl_sv_dump(output); */ } RETVAL = deflate(&(s->stream), f); if (trace) { printf("flush DEFLATE returned %d %s, avail in %d, out %d\n", RETVAL, GetErrorString(RETVAL), s->stream.avail_in, s->stream.avail_out); DispStream(s, "AFTER"); } /* Ignore the second of two consecutive flushes: */ if (availableout == s->stream.avail_out && RETVAL == Z_BUF_ERROR) RETVAL = Z_OK; /* deflate has finished flushing only when it hasn't used up * all the available space in the output buffer: */ if (s->stream.avail_out != 0 || RETVAL != Z_OK ) break; } RETVAL = (RETVAL == Z_STREAM_END ? Z_OK : RETVAL) ; s->last_error = RETVAL ; s->compressedBytes += cur_length + increment - prefix - s->stream.avail_out ; if (RETVAL == Z_OK) { SvPOK_only(output); SvCUR_set(output, cur_length + increment - s->stream.avail_out) ; SvSETMAGIC(output); } OUTPUT: RETVAL DualType _deflateParams(s, flags, level, strategy, bufsize) Compress::Raw::Zlib::deflateStream s int flags int level int strategy uLong bufsize CODE: /* printf("_deflateParams(Flags %d Level %d Strategy %d Bufsize %d)\n", flags, level, strategy, bufsize); printf("Before -- Level %d, Strategy %d, Bufsize %d\n", s->Level, s->Strategy, s->bufsize); */ if (flags & 1) s->Level = level ; if (flags & 2) s->Strategy = strategy ; if (flags & 4) { s->bufsize = bufsize; } /* printf("After -- Level %d, Strategy %d, Bufsize %d\n", s->Level, s->Strategy, s->bufsize);*/ #ifdef SETP_BYTE s->stream.avail_in = 0; s->stream.next_out = &(s->deflateParams_out_byte) ; s->stream.avail_out = 1; RETVAL = deflateParams(&(s->stream), s->Level, s->Strategy); s->deflateParams_out_valid = (RETVAL == Z_OK && s->stream.avail_out == 0) ; /* printf("RETVAL %d, avail out %d, byte %c\n", RETVAL, s->stream.avail_out, s->deflateParams_out_byte); */ #else /* printf("Level %d Strategy %d, Prev Len %d\n", s->Level, s->Strategy, s->deflateParams_out_length); */ s->stream.avail_in = 0; if (s->deflateParams_out_buffer == NULL) s->deflateParams_out_buffer = safemalloc(deflateParams_BUFFER_SIZE); s->stream.next_out = s->deflateParams_out_buffer ; s->stream.avail_out = deflateParams_BUFFER_SIZE; RETVAL = deflateParams(&(s->stream), s->Level, s->Strategy); s->deflateParams_out_length = deflateParams_BUFFER_SIZE - s->stream.avail_out; /* printf("RETVAL %d, length out %d, avail %d\n", RETVAL, s->deflateParams_out_length, s->stream.avail_out ); */ #endif OUTPUT: RETVAL int get_Level(s) Compress::Raw::Zlib::deflateStream s CODE: RETVAL = s->Level ; OUTPUT: RETVAL int get_Strategy(s) Compress::Raw::Zlib::deflateStream s CODE: RETVAL = s->Strategy ; OUTPUT: RETVAL uLong get_Bufsize(s) Compress::Raw::Zlib::deflateStream s CODE: RETVAL = s->bufsize ; OUTPUT: RETVAL int status(s) Compress::Raw::Zlib::deflateStream s CODE: RETVAL = s->last_error ; OUTPUT: RETVAL uLong crc32(s) Compress::Raw::Zlib::deflateStream s CODE: RETVAL = s->crc32 ; OUTPUT: RETVAL uLong dict_adler(s) Compress::Raw::Zlib::deflateStream s CODE: RETVAL = s->dict_adler ; OUTPUT: RETVAL uLong adler32(s) Compress::Raw::Zlib::deflateStream s CODE: RETVAL = s->adler32 ; OUTPUT: RETVAL uLong compressedBytes(s) Compress::Raw::Zlib::deflateStream s CODE: RETVAL = s->compressedBytes; OUTPUT: RETVAL uLong uncompressedBytes(s) Compress::Raw::Zlib::deflateStream s CODE: RETVAL = s->uncompressedBytes; OUTPUT: RETVAL uLong total_in(s) Compress::Raw::Zlib::deflateStream s CODE: RETVAL = s->stream.total_in ; OUTPUT: RETVAL uLong total_out(s) Compress::Raw::Zlib::deflateStream s CODE: RETVAL = s->stream.total_out ; OUTPUT: RETVAL char* msg(s) Compress::Raw::Zlib::deflateStream s CODE: RETVAL = s->stream.msg; OUTPUT: RETVAL int deflateTune(s, good_length, max_lazy, nice_length, max_chain) Compress::Raw::Zlib::deflateStream s int good_length int max_lazy int nice_length int max_chain CODE: #ifndef AT_LEAST_ZLIB_1_2_2_3 good_length = good_length; max_lazy = max_lazy ; /* Silence -Wall */ nice_length = nice_length; max_chain = max_chain; /* Silence -Wall */ croak("deflateTune needs zlib 1.2.2.3 or better"); #else RETVAL = deflateTune(&(s->stream), good_length, max_lazy, nice_length, max_chain); #endif OUTPUT: RETVAL MODULE = Compress::Raw::Zlib PACKAGE = Compress::Raw::Zlib::inflateStream void DispStream(s, message=NULL) Compress::Raw::Zlib::inflateStream s const char * message DualType inflateReset(s) Compress::Raw::Zlib::inflateStream s CODE: RETVAL = inflateReset(&(s->stream)) ; if (RETVAL == Z_OK) { PostInitStream(s, s->flags, s->bufsize, s->WindowBits) ; } OUTPUT: RETVAL DualType inflate (s, buf, output, eof=FALSE) Compress::Raw::Zlib::inflateStream s SV * buf SV * output bool eof uInt cur_length = 0; uInt prefix_length = 0; int increment = 0; uLong bufinc = NO_INIT STRLEN na = NO_INIT ; PREINIT: #ifdef UTF8_AVAILABLE bool out_utf8 = FALSE; #endif CODE: bufinc = s->bufsize; /* If the buffer is a reference, dereference it */ buf = deRef(buf, "inflate") ; if (s->flags & FLAG_CONSUME_INPUT) { if (SvREADONLY(buf)) croak("Compress::Raw::Zlib::Inflate::inflate input parameter cannot be read-only when ConsumeInput is specified"); SvPV_force(buf, na); } #ifdef UTF8_AVAILABLE if (DO_UTF8(buf) && !sv_utf8_downgrade(buf, 1)) croak("Wide character in Compress::Raw::Zlib::Inflate::inflate input parameter"); #endif /* initialise the input buffer */ s->stream.next_in = (Bytef*)SvPV_nomg_nolen(buf) ; s->stream.avail_in = SvCUR(buf) ; /* and retrieve the output buffer */ output = deRef_l(output, "inflate") ; #ifdef UTF8_AVAILABLE if (DO_UTF8(output)) out_utf8 = TRUE ; if (DO_UTF8(output) && !sv_utf8_downgrade(output, 1)) croak("Wide character in Compress::Raw::Zlib::Inflate::inflate output parameter"); #endif if((s->flags & FLAG_APPEND) != FLAG_APPEND) { SvCUR_set(output, 0); } /* Assume no output buffer - the code below will update if there is any available */ s->stream.avail_out = 0; if (SvLEN(output)) { prefix_length = cur_length = SvCUR(output) ; if (s->flags & FLAG_LIMIT_OUTPUT && SvLEN(output) - cur_length - 1 < bufinc) { Sv_Grow(output, bufinc + cur_length + 1) ; } /* Only setup the stream output pointers if there is spare capacity in the outout SV */ if (SvLEN(output) > cur_length + 1) { s->stream.next_out = (Bytef*) SvPV_nomg_nolen(output) + cur_length; increment = SvLEN(output) - cur_length - 1; s->stream.avail_out = increment; } } s->bytesInflated = 0; RETVAL = Z_OK; while (RETVAL == Z_OK) { if (s->stream.avail_out == 0) { /* out of space in the output buffer so make it bigger */ s->stream.next_out = (Bytef*) Sv_Grow(output, SvLEN(output) + bufinc +1) ; cur_length += increment ; s->stream.next_out += cur_length ; increment = bufinc ; s->stream.avail_out = increment; bufinc *= 2 ; } /* printf("INFLATE Availl In %d, Out %d\n", s->stream.avail_in, s->stream.avail_out); DispStream(s, "BEFORE"); Perl_sv_dump(output); */ RETVAL = inflate(&(s->stream), Z_SYNC_FLUSH); /* printf("INFLATE returned %d %s, avail in %d, out %d\n", RETVAL, GetErrorString(RETVAL), s->stream.avail_in, s->stream.avail_out); */ if (RETVAL == Z_NEED_DICT && s->dictionary) { s->dict_adler = s->stream.adler ; RETVAL = inflateSetDictionary(&(s->stream), (const Bytef*)SvPVX(s->dictionary), SvCUR(s->dictionary)); if (RETVAL == Z_OK) continue; } if (s->flags & FLAG_LIMIT_OUTPUT && (RETVAL == Z_OK || RETVAL == Z_BUF_ERROR )) break; if (RETVAL == Z_STREAM_ERROR || RETVAL == Z_MEM_ERROR || RETVAL == Z_DATA_ERROR || RETVAL == Z_STREAM_END ) break ; if (RETVAL == Z_BUF_ERROR) { if (s->stream.avail_out == 0) continue ; if (s->stream.avail_in == 0) { RETVAL = Z_OK ; break ; } } } #ifdef NEED_DUMMY_BYTE_AT_END if (eof && RETVAL == Z_OK && s->flags & FLAG_LIMIT_OUTPUT == 0) { Bytef* nextIn = s->stream.next_in; uInt availIn = s->stream.avail_in; s->stream.next_in = (Bytef*) " "; s->stream.avail_in = 1; if (s->stream.avail_out == 0) { /* out of space in the output buffer so make it bigger */ s->stream.next_out = Sv_Grow(output, SvLEN(output) + bufinc) ; cur_length += increment ; s->stream.next_out += cur_length ; increment = bufinc ; s->stream.avail_out = increment; bufinc *= 2 ; } RETVAL = inflate(&(s->stream), Z_SYNC_FLUSH); s->stream.next_in = nextIn ; s->stream.avail_in = availIn ; } #endif s->last_error = RETVAL ; if (RETVAL == Z_OK || RETVAL == Z_STREAM_END || RETVAL == Z_BUF_ERROR || RETVAL == Z_DATA_ERROR) { unsigned in ; s->bytesInflated = cur_length + increment - s->stream.avail_out - prefix_length; s->uncompressedBytes += s->bytesInflated ; s->compressedBytes += SvCUR(buf) - s->stream.avail_in ; SvPOK_only(output); SvCUR_set(output, prefix_length + s->bytesInflated) ; *SvEND(output) = '\0'; #ifdef UTF8_AVAILABLE if (out_utf8) sv_utf8_upgrade(output); #endif SvSETMAGIC(output); if (s->flags & FLAG_CRC32 ) s->crc32 = crc32(s->crc32, (const Bytef*)SvPVX(output)+prefix_length, SvCUR(output)-prefix_length) ; if (s->flags & FLAG_ADLER32) s->adler32 = adler32(s->adler32, (const Bytef*)SvPVX(output)+prefix_length, SvCUR(output)-prefix_length) ; /* fix the input buffer */ if (s->flags & FLAG_CONSUME_INPUT || s->flags & FLAG_LIMIT_OUTPUT) { in = s->stream.avail_in ; SvCUR_set(buf, in) ; if (in) Move(s->stream.next_in, SvPVX(buf), in, char) ; *SvEND(buf) = '\0'; SvSETMAGIC(buf); } } OUTPUT: RETVAL uLong inflateCount(s) Compress::Raw::Zlib::inflateStream s CODE: RETVAL = s->bytesInflated; OUTPUT: RETVAL uLong compressedBytes(s) Compress::Raw::Zlib::inflateStream s CODE: RETVAL = s->compressedBytes; OUTPUT: RETVAL uLong uncompressedBytes(s) Compress::Raw::Zlib::inflateStream s CODE: RETVAL = s->uncompressedBytes; OUTPUT: RETVAL DualType inflateSync (s, buf) Compress::Raw::Zlib::inflateStream s SV * buf CODE: /* If the buffer is a reference, dereference it */ buf = deRef(buf, "inflateSync") ; #ifdef UTF8_AVAILABLE if (DO_UTF8(buf) && !sv_utf8_downgrade(buf, 1)) croak("Wide character in Compress::Raw::Zlib::Inflate::inflateSync"); #endif /* initialise the input buffer */ s->stream.next_in = (Bytef*)SvPV_nomg_nolen(buf) ; s->stream.avail_in = SvCUR(buf) ; /* inflateSync doesn't create any output */ s->stream.next_out = (Bytef*) NULL; s->stream.avail_out = 0; RETVAL = inflateSync(&(s->stream)); s->last_error = RETVAL ; /* fix the input buffer */ { unsigned in = s->stream.avail_in ; SvCUR_set(buf, in) ; if (in) Move(s->stream.next_in, SvPVX(buf), in, char) ; *SvEND(buf) = '\0'; SvSETMAGIC(buf); } OUTPUT: RETVAL void DESTROY(s) Compress::Raw::Zlib::inflateStream s CODE: inflateEnd(&s->stream) ; if (s->dictionary) SvREFCNT_dec(s->dictionary) ; #ifndef SETP_BYTE if (s->deflateParams_out_buffer) Safefree(s->deflateParams_out_buffer); #endif #ifdef MAGIC_APPEND if (s->window) Safefree(s->window); #endif Safefree(s) ; uLong status(s) Compress::Raw::Zlib::inflateStream s CODE: RETVAL = s->last_error ; OUTPUT: RETVAL uLong crc32(s) Compress::Raw::Zlib::inflateStream s CODE: RETVAL = s->crc32 ; OUTPUT: RETVAL uLong dict_adler(s) Compress::Raw::Zlib::inflateStream s CODE: RETVAL = s->dict_adler ; OUTPUT: RETVAL uLong total_in(s) Compress::Raw::Zlib::inflateStream s CODE: RETVAL = s->stream.total_in ; OUTPUT: RETVAL uLong adler32(s) Compress::Raw::Zlib::inflateStream s CODE: RETVAL = s->adler32 ; OUTPUT: RETVAL uLong total_out(s) Compress::Raw::Zlib::inflateStream s CODE: RETVAL = s->stream.total_out ; OUTPUT: RETVAL char* msg(s) Compress::Raw::Zlib::inflateStream s CODE: RETVAL = s->stream.msg; OUTPUT: RETVAL uLong get_Bufsize(s) Compress::Raw::Zlib::inflateStream s CODE: RETVAL = s->bufsize ; OUTPUT: RETVAL bool set_Append(s, mode) Compress::Raw::Zlib::inflateStream s bool mode CODE: RETVAL = ((s->flags & FLAG_APPEND) == FLAG_APPEND); if (mode) s->flags |= FLAG_APPEND ; else s->flags &= ~FLAG_APPEND ; OUTPUT: RETVAL MODULE = Compress::Raw::Zlib PACKAGE = Compress::Raw::Zlib::inflateScanStream void DESTROY(s) Compress::Raw::Zlib::inflateScanStream s CODE: inflateEnd(&s->stream) ; if (s->dictionary) SvREFCNT_dec(s->dictionary) ; #ifndef SETP_BYTE if (s->deflateParams_out_buffer) Safefree(s->deflateParams_out_buffer); #endif #ifdef MAGIC_APPEND if (s->window) Safefree(s->window); #endif Safefree(s) ; void DispStream(s, message=NULL) Compress::Raw::Zlib::inflateScanStream s const char * message DualType inflateReset(s) Compress::Raw::Zlib::inflateScanStream s CODE: RETVAL = inflateReset(&(s->stream)) ; if (RETVAL == Z_OK) { PostInitStream(s, s->flags, s->bufsize, s->WindowBits) ; } OUTPUT: RETVAL DualType scan(s, buf, out=NULL, eof=FALSE) Compress::Raw::Zlib::inflateScanStream s SV * buf SV * out bool eof bool eof_mode = FALSE; int start_len = NO_INIT CODE: /* If the input buffer is a reference, dereference it */ #ifndef MAGIC_APPEND buf = buf; croak("scan needs zlib 1.2.1 or better"); #else buf = deRef(buf, "inflateScan") ; #ifdef UTF8_AVAILABLE if (DO_UTF8(buf) && !sv_utf8_downgrade(buf, 1)) croak("Wide character in Compress::Raw::Zlib::InflateScan::scan input parameter"); #endif /* initialise the input buffer */ s->stream.next_in = (Bytef*)SvPV_nomg_nolen(buf) ; s->stream.avail_in = SvCUR(buf) ; start_len = s->stream.avail_in ; s->bytesInflated = 0 ; do { if (s->stream.avail_in == 0) { RETVAL = Z_OK ; break ; } /* set up output to next available section of sliding window */ s->stream.avail_out = WINDOW_SIZE - s->window_have; s->stream.next_out = s->window + s->window_have; /* DispStream(s, "before inflate\n"); */ /* inflate and check for errors */ RETVAL = inflate(&(s->stream), Z_BLOCK); if (start_len > 1 && ! eof_mode) s->window_lastByte = *(s->stream.next_in - 1 ) ; if (RETVAL == Z_STREAM_ERROR || RETVAL == Z_MEM_ERROR || RETVAL == Z_DATA_ERROR ) break ; if (s->flags & FLAG_CRC32 ) s->crc32 = crc32(s->crc32, s->window + s->window_have, WINDOW_SIZE - s->window_have - s->stream.avail_out); if (s->flags & FLAG_ADLER32) s->adler32 = adler32(s->adler32, s->window + s->window_have, WINDOW_SIZE - s->window_have - s->stream.avail_out); s->uncompressedBytes = s->bytesInflated += WINDOW_SIZE - s->window_have - s->stream.avail_out; if (s->stream.avail_out) s->window_have = WINDOW_SIZE - s->stream.avail_out; else { s->window_have = 0; s->window_full = 1; } /* process end of block */ if (s->stream.data_type & 128) { if (s->stream.data_type & 64) { s->window_left = s->stream.data_type & 0x1f; } else { s->window_lastbit = s->stream.data_type & 0x1f; s->lastBlockOffset = s->stream.total_in; } } } while (RETVAL != Z_STREAM_END); s->last_error = RETVAL ; s->window_lastoff = s->stream.total_in ; s->compressedBytes += SvCUR(buf) - s->stream.avail_in ; if (RETVAL == Z_STREAM_END) { s->matchedEndBlock = 1 ; /* save the location of the end of the compressed data */ s->window_end = SvCUR(buf) - s->stream.avail_in - 1 ; s->window_endOffset = s->stream.total_in ; if (s->window_left) { -- s->window_endOffset ; } /* if window wrapped, build dictionary from window by rotating */ if (s->window_full) { rotate(s->window, WINDOW_SIZE, s->window_have); s->window_have = WINDOW_SIZE; } /* if (s->flags & FLAG_CONSUME_INPUT) { */ if (1) { unsigned in = s->stream.avail_in ; SvCUR_set(buf, in) ; if (in) Move(s->stream.next_in, SvPVX(buf), in, char) ; *SvEND(buf) = '\0'; SvSETMAGIC(buf); } } #endif OUTPUT: RETVAL uLong getEndOffset(s) Compress::Raw::Zlib::inflateScanStream s CODE: #ifndef MAGIC_APPEND croak("getEndOffset needs zlib 1.2.1 or better"); #else RETVAL = s->window_endOffset; #endif OUTPUT: RETVAL uLong inflateCount(s) Compress::Raw::Zlib::inflateScanStream s CODE: #ifndef MAGIC_APPEND croak("inflateCount needs zlib 1.2.1 or better"); #else RETVAL = s->bytesInflated; #endif OUTPUT: RETVAL uLong compressedBytes(s) Compress::Raw::Zlib::inflateScanStream s CODE: RETVAL = s->compressedBytes; OUTPUT: RETVAL uLong uncompressedBytes(s) Compress::Raw::Zlib::inflateScanStream s CODE: RETVAL = s->uncompressedBytes; OUTPUT: RETVAL uLong getLastBlockOffset(s) Compress::Raw::Zlib::inflateScanStream s CODE: #ifndef MAGIC_APPEND croak("getLastBlockOffset needs zlib 1.2.1 or better"); #else RETVAL = s->lastBlockOffset - (s->window_lastbit != 0); #endif OUTPUT: RETVAL uLong getLastBufferOffset(s) Compress::Raw::Zlib::inflateScanStream s CODE: #ifndef MAGIC_APPEND croak("getLastBufferOffset needs zlib 1.2.1 or better"); #else RETVAL = s->window_lastoff; #endif OUTPUT: RETVAL void resetLastBlockByte(s, byte) Compress::Raw::Zlib::inflateScanStream s unsigned char* byte CODE: #ifndef MAGIC_APPEND croak("resetLastBlockByte needs zlib 1.2.1 or better"); #else if (byte != NULL) *byte = *byte ^ (1 << ((8 - s->window_lastbit) & 7)); #endif void _createDeflateStream(inf_s, flags,level, method, windowBits, memLevel, strategy, bufsize) Compress::Raw::Zlib::inflateScanStream inf_s int flags int level int method int windowBits int memLevel int strategy uLong bufsize PPCODE: { #ifndef MAGIC_APPEND flags = flags; level = level ; method = method; windowBits = windowBits; memLevel = memLevel; strategy = strategy; bufsize= bufsize; croak("_createDeflateStream needs zlib 1.2.1 or better"); #else int err ; deflateStream s ; if (trace) warn("in _createDeflateStream(level=%d, method=%d, windowBits=%d, memLevel=%d, strategy=%d, bufsize=%lu\n", level, method, windowBits, memLevel, strategy, bufsize) ; if ((s = InitStream() )) { s->Level = level; s->Method = method; s->WindowBits = windowBits; s->MemLevel = memLevel; s->Strategy = strategy; err = deflateInit2(&(s->stream), level, method, windowBits, memLevel, strategy); if (err == Z_OK) { err = deflateSetDictionary(&(s->stream), inf_s->window, inf_s->window_have); s->dict_adler = s->stream.adler ; } if (err != Z_OK) { Safefree(s) ; s = NULL ; } else { PostInitStream(s, flags, bufsize, windowBits) ; s->crc32 = inf_s->crc32; s->adler32 = inf_s->adler32; s->stream.adler = inf_s->stream.adler ; /* s->stream.total_out = inf_s->bytesInflated ; */ s->stream.total_in = inf_s->stream.total_out ; if (inf_s->window_left) { /* printf("** window_left %d, window_lastByte %d\n", inf_s->window_left, inf_s->window_lastByte); */ deflatePrime(&(s->stream), 8 - inf_s->window_left, inf_s->window_lastByte); } } } else err = Z_MEM_ERROR ; XPUSHs(sv_setref_pv(sv_newmortal(), "Compress::Raw::Zlib::deflateStream", (void*)s)); if (GIMME == G_ARRAY) { SV * sv = sv_2mortal(newSViv(err)) ; setDUALstatus(sv, err); XPUSHs(sv) ; } #endif } DualType status(s) Compress::Raw::Zlib::inflateScanStream s CODE: RETVAL = s->last_error ; OUTPUT: RETVAL uLong crc32(s) Compress::Raw::Zlib::inflateScanStream s CODE: RETVAL = s->crc32 ; OUTPUT: RETVAL uLong adler32(s) Compress::Raw::Zlib::inflateScanStream s CODE: RETVAL = s->adler32 ; OUTPUT: RETVAL Compress-Raw-Zlib-2.063/META.json0000644000175000017500000000147112235214474015060 0ustar paulpaul{ "abstract" : "unknown", "author" : [ "unknown" ], "dynamic_config" : 1, "generated_by" : "ExtUtils::MakeMaker version 6.62, CPAN::Meta::Converter version 2.112150", "license" : [ "perl_5" ], "meta-spec" : { "url" : "http://search.cpan.org/perldoc?CPAN::Meta::Spec", "version" : "2" }, "name" : "Compress-Raw-Zlib", "no_index" : { "directory" : [ "t", "inc", "t", "private" ] }, "prereqs" : { "build" : { "requires" : { "ExtUtils::MakeMaker" : 0 } }, "configure" : { "requires" : { "ExtUtils::MakeMaker" : 0 } }, "runtime" : { "requires" : {} } }, "release_status" : "stable", "version" : "2.063" } Compress-Raw-Zlib-2.063/META.yml0000644000175000017500000000070512235214474014707 0ustar paulpaul--- abstract: unknown author: - unknown build_requires: ExtUtils::MakeMaker: 0 configure_requires: ExtUtils::MakeMaker: 0 dynamic_config: 1 generated_by: 'ExtUtils::MakeMaker version 6.62, CPAN::Meta::Converter version 2.112150' license: perl meta-spec: url: http://module-build.sourceforge.net/META-spec-v1.4.html version: 1.4 name: Compress-Raw-Zlib no_index: directory: - t - inc - t - private requires: {} version: 2.063 Compress-Raw-Zlib-2.063/fallback/0000755000175000017500000000000012235214474015173 5ustar paulpaulCompress-Raw-Zlib-2.063/fallback/constants.h0000644000175000017500000003270411356460767017401 0ustar paulpaul#define PERL_constant_NOTFOUND 1 #define PERL_constant_NOTDEF 2 #define PERL_constant_ISIV 3 #define PERL_constant_ISNO 4 #define PERL_constant_ISNV 5 #define PERL_constant_ISPV 6 #define PERL_constant_ISPVN 7 #define PERL_constant_ISSV 8 #define PERL_constant_ISUNDEF 9 #define PERL_constant_ISUV 10 #define PERL_constant_ISYES 11 #ifndef NVTYPE typedef double NV; /* 5.6 and later define NVTYPE, and typedef NV to it. */ #endif #ifndef aTHX_ #define aTHX_ /* 5.6 or later define this for threading support. */ #endif #ifndef pTHX_ #define pTHX_ /* 5.6 or later define this for threading support. */ #endif static int constant_7 (pTHX_ const char *name, IV *iv_return) { /* When generated this function returned values for the list of names given here. However, subsequent manual editing may have added or removed some. OS_CODE Z_ASCII Z_BLOCK Z_ERRNO Z_FIXED Z_TREES */ /* Offset 6 gives the best switch position. */ switch (name[6]) { case 'D': if (memEQ(name, "Z_FIXE", 6)) { /* D */ #ifdef Z_FIXED *iv_return = Z_FIXED; return PERL_constant_ISIV; #else return PERL_constant_NOTDEF; #endif } break; case 'E': if (memEQ(name, "OS_COD", 6)) { /* E */ #ifdef OS_CODE *iv_return = OS_CODE; return PERL_constant_ISIV; #else return PERL_constant_NOTDEF; #endif } break; case 'I': if (memEQ(name, "Z_ASCI", 6)) { /* I */ #ifdef Z_ASCII *iv_return = Z_ASCII; return PERL_constant_ISIV; #else return PERL_constant_NOTDEF; #endif } break; case 'K': if (memEQ(name, "Z_BLOC", 6)) { /* K */ #ifdef Z_BLOCK *iv_return = Z_BLOCK; return PERL_constant_ISIV; #else return PERL_constant_NOTDEF; #endif } break; case 'O': if (memEQ(name, "Z_ERRN", 6)) { /* O */ #ifdef Z_ERRNO *iv_return = Z_ERRNO; return PERL_constant_ISIV; #else return PERL_constant_NOTDEF; #endif } break; case 'S': if (memEQ(name, "Z_TREE", 6)) { /* S */ #if ZLIB_VERNUM >= 0x1240 *iv_return = Z_TREES; return PERL_constant_ISIV; #else return PERL_constant_NOTDEF; #endif } break; } return PERL_constant_NOTFOUND; } static int constant_9 (pTHX_ const char *name, IV *iv_return) { /* When generated this function returned values for the list of names given here. However, subsequent manual editing may have added or removed some. DEF_WBITS MAX_WBITS Z_UNKNOWN */ /* Offset 2 gives the best switch position. */ switch (name[2]) { case 'F': if (memEQ(name, "DEF_WBITS", 9)) { /* ^ */ #ifdef DEF_WBITS *iv_return = DEF_WBITS; return PERL_constant_ISIV; #else return PERL_constant_NOTDEF; #endif } break; case 'U': if (memEQ(name, "Z_UNKNOWN", 9)) { /* ^ */ #ifdef Z_UNKNOWN *iv_return = Z_UNKNOWN; return PERL_constant_ISIV; #else return PERL_constant_NOTDEF; #endif } break; case 'X': if (memEQ(name, "MAX_WBITS", 9)) { /* ^ */ #ifdef MAX_WBITS *iv_return = MAX_WBITS; return PERL_constant_ISIV; #else return PERL_constant_NOTDEF; #endif } break; } return PERL_constant_NOTFOUND; } static int constant_10 (pTHX_ const char *name, IV *iv_return) { /* When generated this function returned values for the list of names given here. However, subsequent manual editing may have added or removed some. Z_DEFLATED Z_FILTERED Z_NO_FLUSH */ /* Offset 7 gives the best switch position. */ switch (name[7]) { case 'R': if (memEQ(name, "Z_FILTERED", 10)) { /* ^ */ #ifdef Z_FILTERED *iv_return = Z_FILTERED; return PERL_constant_ISIV; #else return PERL_constant_NOTDEF; #endif } break; case 'T': if (memEQ(name, "Z_DEFLATED", 10)) { /* ^ */ #ifdef Z_DEFLATED *iv_return = Z_DEFLATED; return PERL_constant_ISIV; #else return PERL_constant_NOTDEF; #endif } break; case 'U': if (memEQ(name, "Z_NO_FLUSH", 10)) { /* ^ */ #ifdef Z_NO_FLUSH *iv_return = Z_NO_FLUSH; return PERL_constant_ISIV; #else return PERL_constant_NOTDEF; #endif } break; } return PERL_constant_NOTFOUND; } static int constant_11 (pTHX_ const char *name, IV *iv_return) { /* When generated this function returned values for the list of names given here. However, subsequent manual editing may have added or removed some. Z_BUF_ERROR Z_MEM_ERROR Z_NEED_DICT */ /* Offset 4 gives the best switch position. */ switch (name[4]) { case 'E': if (memEQ(name, "Z_NEED_DICT", 11)) { /* ^ */ #ifdef Z_NEED_DICT *iv_return = Z_NEED_DICT; return PERL_constant_ISIV; #else return PERL_constant_NOTDEF; #endif } break; case 'F': if (memEQ(name, "Z_BUF_ERROR", 11)) { /* ^ */ #ifdef Z_BUF_ERROR *iv_return = Z_BUF_ERROR; return PERL_constant_ISIV; #else return PERL_constant_NOTDEF; #endif } break; case 'M': if (memEQ(name, "Z_MEM_ERROR", 11)) { /* ^ */ #ifdef Z_MEM_ERROR *iv_return = Z_MEM_ERROR; return PERL_constant_ISIV; #else return PERL_constant_NOTDEF; #endif } break; } return PERL_constant_NOTFOUND; } static int constant_12 (pTHX_ const char *name, IV *iv_return, const char **pv_return) { /* When generated this function returned values for the list of names given here. However, subsequent manual editing may have added or removed some. ZLIB_VERSION Z_BEST_SPEED Z_DATA_ERROR Z_FULL_FLUSH Z_STREAM_END Z_SYNC_FLUSH */ /* Offset 4 gives the best switch position. */ switch (name[4]) { case 'L': if (memEQ(name, "Z_FULL_FLUSH", 12)) { /* ^ */ #ifdef Z_FULL_FLUSH *iv_return = Z_FULL_FLUSH; return PERL_constant_ISIV; #else return PERL_constant_NOTDEF; #endif } break; case 'N': if (memEQ(name, "Z_SYNC_FLUSH", 12)) { /* ^ */ #ifdef Z_SYNC_FLUSH *iv_return = Z_SYNC_FLUSH; return PERL_constant_ISIV; #else return PERL_constant_NOTDEF; #endif } break; case 'R': if (memEQ(name, "Z_STREAM_END", 12)) { /* ^ */ #ifdef Z_STREAM_END *iv_return = Z_STREAM_END; return PERL_constant_ISIV; #else return PERL_constant_NOTDEF; #endif } break; case 'S': if (memEQ(name, "Z_BEST_SPEED", 12)) { /* ^ */ #ifdef Z_BEST_SPEED *iv_return = Z_BEST_SPEED; return PERL_constant_ISIV; #else return PERL_constant_NOTDEF; #endif } break; case 'T': if (memEQ(name, "Z_DATA_ERROR", 12)) { /* ^ */ #ifdef Z_DATA_ERROR *iv_return = Z_DATA_ERROR; return PERL_constant_ISIV; #else return PERL_constant_NOTDEF; #endif } break; case '_': if (memEQ(name, "ZLIB_VERSION", 12)) { /* ^ */ #ifdef ZLIB_VERSION *pv_return = ZLIB_VERSION; return PERL_constant_ISPV; #else return PERL_constant_NOTDEF; #endif } break; } return PERL_constant_NOTFOUND; } static int constant (pTHX_ const char *name, STRLEN len, IV *iv_return, const char **pv_return) { /* Initially switch on the length of the name. */ /* When generated this function returned values for the list of names given in this section of perl code. Rather than manually editing these functions to add or remove constants, which would result in this comment and section of code becoming inaccurate, we recommend that you edit this section of code, and use it to regenerate a new set of constant functions which you then use to replace the originals. Regenerate these constant functions by feeding this entire source file to perl -x #!/linux-shared/base/perl/install/bin/perl -w use ExtUtils::Constant qw (constant_types C_constant XS_constant); my $types = {map {($_, 1)} qw(IV PV)}; my @names = (qw(DEF_WBITS MAX_MEM_LEVEL MAX_WBITS OS_CODE Z_ASCII Z_BEST_COMPRESSION Z_BEST_SPEED Z_BINARY Z_BLOCK Z_BUF_ERROR Z_DATA_ERROR Z_DEFAULT_COMPRESSION Z_DEFAULT_STRATEGY Z_DEFLATED Z_ERRNO Z_FILTERED Z_FINISH Z_FIXED Z_FULL_FLUSH Z_HUFFMAN_ONLY Z_MEM_ERROR Z_NEED_DICT Z_NO_COMPRESSION Z_NO_FLUSH Z_NULL Z_OK Z_PARTIAL_FLUSH Z_RLE Z_STREAM_END Z_STREAM_ERROR Z_SYNC_FLUSH Z_UNKNOWN Z_VERSION_ERROR), {name=>"ZLIB_VERSION", type=>"PV"}, {name=>"Z_TREES", type=>"IV", macro=>["#if ZLIB_VERNUM >= 0x1240\n", "#endif\n"]}); print constant_types(), "\n"; # macro defs foreach (C_constant ("Zlib", 'constant', 'IV', $types, undef, 3, @names) ) { print $_, "\n"; # C constant subs } print "\n#### XS Section:\n"; print XS_constant ("Zlib", $types); __END__ */ switch (len) { case 4: if (memEQ(name, "Z_OK", 4)) { #ifdef Z_OK *iv_return = Z_OK; return PERL_constant_ISIV; #else return PERL_constant_NOTDEF; #endif } break; case 5: if (memEQ(name, "Z_RLE", 5)) { #ifdef Z_RLE *iv_return = Z_RLE; return PERL_constant_ISIV; #else return PERL_constant_NOTDEF; #endif } break; case 6: if (memEQ(name, "Z_NULL", 6)) { #ifdef Z_NULL *iv_return = Z_NULL; return PERL_constant_ISIV; #else return PERL_constant_NOTDEF; #endif } break; case 7: return constant_7 (aTHX_ name, iv_return); break; case 8: /* Names all of length 8. */ /* Z_BINARY Z_FINISH */ /* Offset 6 gives the best switch position. */ switch (name[6]) { case 'R': if (memEQ(name, "Z_BINARY", 8)) { /* ^ */ #ifdef Z_BINARY *iv_return = Z_BINARY; return PERL_constant_ISIV; #else return PERL_constant_NOTDEF; #endif } break; case 'S': if (memEQ(name, "Z_FINISH", 8)) { /* ^ */ #ifdef Z_FINISH *iv_return = Z_FINISH; return PERL_constant_ISIV; #else return PERL_constant_NOTDEF; #endif } break; } break; case 9: return constant_9 (aTHX_ name, iv_return); break; case 10: return constant_10 (aTHX_ name, iv_return); break; case 11: return constant_11 (aTHX_ name, iv_return); break; case 12: return constant_12 (aTHX_ name, iv_return, pv_return); break; case 13: if (memEQ(name, "MAX_MEM_LEVEL", 13)) { #ifdef MAX_MEM_LEVEL *iv_return = MAX_MEM_LEVEL; return PERL_constant_ISIV; #else return PERL_constant_NOTDEF; #endif } break; case 14: /* Names all of length 14. */ /* Z_HUFFMAN_ONLY Z_STREAM_ERROR */ /* Offset 3 gives the best switch position. */ switch (name[3]) { case 'T': if (memEQ(name, "Z_STREAM_ERROR", 14)) { /* ^ */ #ifdef Z_STREAM_ERROR *iv_return = Z_STREAM_ERROR; return PERL_constant_ISIV; #else return PERL_constant_NOTDEF; #endif } break; case 'U': if (memEQ(name, "Z_HUFFMAN_ONLY", 14)) { /* ^ */ #ifdef Z_HUFFMAN_ONLY *iv_return = Z_HUFFMAN_ONLY; return PERL_constant_ISIV; #else return PERL_constant_NOTDEF; #endif } break; } break; case 15: /* Names all of length 15. */ /* Z_PARTIAL_FLUSH Z_VERSION_ERROR */ /* Offset 5 gives the best switch position. */ switch (name[5]) { case 'S': if (memEQ(name, "Z_VERSION_ERROR", 15)) { /* ^ */ #ifdef Z_VERSION_ERROR *iv_return = Z_VERSION_ERROR; return PERL_constant_ISIV; #else return PERL_constant_NOTDEF; #endif } break; case 'T': if (memEQ(name, "Z_PARTIAL_FLUSH", 15)) { /* ^ */ #ifdef Z_PARTIAL_FLUSH *iv_return = Z_PARTIAL_FLUSH; return PERL_constant_ISIV; #else return PERL_constant_NOTDEF; #endif } break; } break; case 16: if (memEQ(name, "Z_NO_COMPRESSION", 16)) { #ifdef Z_NO_COMPRESSION *iv_return = Z_NO_COMPRESSION; return PERL_constant_ISIV; #else return PERL_constant_NOTDEF; #endif } break; case 18: /* Names all of length 18. */ /* Z_BEST_COMPRESSION Z_DEFAULT_STRATEGY */ /* Offset 14 gives the best switch position. */ switch (name[14]) { case 'S': if (memEQ(name, "Z_BEST_COMPRESSION", 18)) { /* ^ */ #ifdef Z_BEST_COMPRESSION *iv_return = Z_BEST_COMPRESSION; return PERL_constant_ISIV; #else return PERL_constant_NOTDEF; #endif } break; case 'T': if (memEQ(name, "Z_DEFAULT_STRATEGY", 18)) { /* ^ */ #ifdef Z_DEFAULT_STRATEGY *iv_return = Z_DEFAULT_STRATEGY; return PERL_constant_ISIV; #else return PERL_constant_NOTDEF; #endif } break; } break; case 21: if (memEQ(name, "Z_DEFAULT_COMPRESSION", 21)) { #ifdef Z_DEFAULT_COMPRESSION *iv_return = Z_DEFAULT_COMPRESSION; return PERL_constant_ISIV; #else return PERL_constant_NOTDEF; #endif } break; } return PERL_constant_NOTFOUND; } Compress-Raw-Zlib-2.063/fallback/constants.xs0000644000175000017500000000477611347514675017612 0ustar paulpaulvoid constant(sv) PREINIT: #ifdef dXSTARG dXSTARG; /* Faster if we have it. */ #else dTARGET; #endif STRLEN len; int type; IV iv; /* NV nv; Uncomment this if you need to return NVs */ const char *pv; INPUT: SV * sv; const char * s = SvPV(sv, len); PPCODE: /* Change this to constant(aTHX_ s, len, &iv, &nv); if you need to return both NVs and IVs */ type = constant(aTHX_ s, len, &iv, &pv); /* Return 1 or 2 items. First is error message, or undef if no error. Second, if present, is found value */ switch (type) { case PERL_constant_NOTFOUND: sv = sv_2mortal(newSVpvf("%s is not a valid Zlib macro", s)); PUSHs(sv); break; case PERL_constant_NOTDEF: sv = sv_2mortal(newSVpvf( "Your vendor has not defined Zlib macro %s, used", s)); PUSHs(sv); break; case PERL_constant_ISIV: EXTEND(SP, 1); PUSHs(&PL_sv_undef); PUSHi(iv); break; /* Uncomment this if you need to return NOs case PERL_constant_ISNO: EXTEND(SP, 1); PUSHs(&PL_sv_undef); PUSHs(&PL_sv_no); break; */ /* Uncomment this if you need to return NVs case PERL_constant_ISNV: EXTEND(SP, 1); PUSHs(&PL_sv_undef); PUSHn(nv); break; */ case PERL_constant_ISPV: EXTEND(SP, 1); PUSHs(&PL_sv_undef); PUSHp(pv, strlen(pv)); break; /* Uncomment this if you need to return PVNs case PERL_constant_ISPVN: EXTEND(SP, 1); PUSHs(&PL_sv_undef); PUSHp(pv, iv); break; */ /* Uncomment this if you need to return SVs case PERL_constant_ISSV: EXTEND(SP, 1); PUSHs(&PL_sv_undef); PUSHs(sv); break; */ /* Uncomment this if you need to return UNDEFs case PERL_constant_ISUNDEF: break; */ /* Uncomment this if you need to return UVs case PERL_constant_ISUV: EXTEND(SP, 1); PUSHs(&PL_sv_undef); PUSHu((UV)iv); break; */ /* Uncomment this if you need to return YESs case PERL_constant_ISYES: EXTEND(SP, 1); PUSHs(&PL_sv_undef); PUSHs(&PL_sv_yes); break; */ default: sv = sv_2mortal(newSVpvf( "Unexpected return type %d while processing Zlib macro %s, used", type, s)); PUSHs(sv); } Compress-Raw-Zlib-2.063/examples/0000755000175000017500000000000012235214474015252 5ustar paulpaulCompress-Raw-Zlib-2.063/examples/filtinf0000755000175000017500000000077111162411060016624 0ustar paulpaul#!/usr/local/bin/perl use Compress::Raw::Zlib ; use strict ; use warnings ; binmode STDIN; binmode STDOUT; my $x = new Compress::Raw::Zlib::Inflate or die "Cannot create a inflation stream\n" ; my $input = '' ; my $output = '' ; my $status ; while (read(STDIN, $input, 4096)) { $status = $x->inflate($input, $output) ; print $output if $status == Z_OK or $status == Z_STREAM_END ; last if $status != Z_OK ; } die "inflation failed\n" unless $status == Z_STREAM_END ; Compress-Raw-Zlib-2.063/examples/filtdef0000755000175000017500000000063011162411060016600 0ustar paulpaul#!/usr/local/bin/perl use Compress::Raw::Zlib ; use strict ; use warnings ; binmode STDIN; binmode STDOUT; my $x = new Compress::Raw::Zlib::Deflate() or die "Cannot create a deflation stream\n" ; my $output = '' ; while (<>) { $x->deflate($_, $output) == Z_OK or die "deflate failed\n" ; print $output ; } $x->flush($output) == Z_OK or die "flush failed\n" ; print $output ;