DateTime-Astro-Sunrise-0.01_01/ 40777 0 0 0 7636156607 11161 5DateTime-Astro-Sunrise-0.01_01/Changes100666 0 0 220 7636156506 12441 Revision history for Perl extension DateTime::Astro::Sunrise. 0.01_01 Mon Mar 17 10:01:50 2003 - original version; created by Ron Hill DateTime-Astro-Sunrise-0.01_01/Makefile.PL100666 0 0 506 7636151673 13127 use ExtUtils::MakeMaker; # See lib/ExtUtils/MakeMaker.pm for details of how to influence # the contents of the Makefile that is written. WriteMakefile( 'NAME' => 'DateTime::Astro::Sunrise', 'VERSION_FROM' => 'Sunrise.pm', # finds $VERSION 'PREREQ_PM' => {DateTime =>0.07}, # e.g., Module::Name => 1.1 ); DateTime-Astro-Sunrise-0.01_01/MANIFEST100666 0 0 115 7636151761 12300 Changes Makefile.PL MANIFEST README Sunrise.pm t/00load.t t/01basic.t DateTime-Astro-Sunrise-0.01_01/README100666 0 0 1065 7636152536 12055 DateTime/Astro/Sunrise version 0.01 =================================== This module will return a DateTime Object for sunrise and sunset for a given day. To install this module type the following: perl Makefile.PL make make test make install DEPENDENCIES This module requires these other modules and libraries: DateTime.pm version 0.07 COPYRIGHT AND LICENCE Same as perl Copyright (C) 2003 Ron Hill This library is free software; you can redistribute it and/or modify it under the same terms as Perl itself. DateTime-Astro-Sunrise-0.01_01/Sunrise.pm100666 0 0 40347 7636152206 13203 package DateTime::Astro::Sunrise; use strict; require Exporter; use POSIX; use Math::Trig; use Carp; use DateTime; use vars qw( $VERSION $RADEG $DEGRAD @ISA ); @ISA = qw( Exporter ); $VERSION = qw($Revision: 0.01_01 $) [1]; $RADEG = ( 180 / pi ); $DEGRAD = ( pi / 180 ); my $INV360 = ( 1.0 / 360.0 ); my $upper_limb = '1'; sub new { my $class = shift; my %args; $args{LON} = shift; $args{LAT} = shift; $args{ALT} = shift; $args{ITER} = shift; unless ( $args{LON} ) { croak "You need to have a longitude\n"; } unless ( $args{LAT} ) { croak "You need to have a latitude\n"; } return bless \%args, $class; } sub sunrise { my ( $self, $dt ) = @_; my ( $year, $month, $day ) = ( $dt->year, $dt->month, $dt->day ); my $altit = $self->{ALT} || -0.833; my $iteration = defined( $self->{ITER} ) ? $self->{ITER} : 0; if ($iteration) { # This is the initial start my $d = days_since_2000_Jan_0( $year, $month, $day ) + 0.5 - $self->{LON} / 360.0; my ( $tmp_rise_1, $tmp_set_1 ) = sun_rise_set( $d, $self->{LON}, $self->{LAT}, $altit, 15.04107 ); # Now we have the initial rise/set times next recompute d using the exact moment # recompute sunrise my $tmp_rise_2 = 9; my $tmp_rise_3 = 0; until ( equal( $tmp_rise_2, $tmp_rise_3, 8 ) ) { my $d_sunrise_1 = $d + $tmp_rise_1 / 24.0; ( $tmp_rise_2, undef ) = sun_rise_set( $d_sunrise_1, $self->{LON}, $self->{LAT}, $altit, 15.04107 ); $tmp_rise_1 = $tmp_rise_3; my $d_sunrise_2 = $d + $tmp_rise_2 / 24.0; ( $tmp_rise_3, undef ) = sun_rise_set( $d_sunrise_2, $self->{LON}, $self->{LAT}, $altit, 15.04107 ); #print "tmp_rise2 is: $tmp_rise_2 tmp_rise_3 is:$tmp_rise_3\n"; } ################################################################################### # end sunrise ################################################################################### my $tmp_set_2 = 9; my $tmp_set_3 = 0; until ( equal( $tmp_set_2, $tmp_set_3, 8 ) ) { my $d_sunset_1 = $d + $tmp_set_1 / 24.0; ( undef, $tmp_set_2 ) = sun_rise_set( $d_sunset_1, $self->{LON}, $self->{LAT}, $altit, 15.04107 ); $tmp_set_1 = $tmp_set_3; my $d_sunset_2 = $d + $tmp_set_2 / 24.0; ( undef, $tmp_set_3 ) = sun_rise_set( $d_sunset_2, $self->{LON}, $self->{LAT}, $altit, 15.04107 ); #print "tmp_set_1 is: $tmp_set_1 tmp_set_3 is:$tmp_set_3\n"; } my ( $hour_rise, $min_rise, $hour_set, $min_set ) = convert_hour($tmp_rise_3,$tmp_set_3); my $rise_time = DateTime->new( year => $dt->year, month => $dt->month, day => $dt->day, hour => $hour_rise, minute => $min_rise, time_zone => 'UTC' ); my $set_time = DateTime->new( year => $dt->year, month => $dt->month, day => $dt->day, hour => $hour_set, minute => $min_set, time_zone => 'UTC' ); return ($rise_time, $set_time); } else { my $d = days_since_2000_Jan_0( $year, $month, $day ) + 0.5 - $self->{LON} / 360.0; my ( $h1, $h2 ) = sun_rise_set( $d, $self->{LON}, $self->{LAT}, $altit, 15.0 ); my ( $hour_rise, $min_rise, $hour_set, $min_set ) = convert_hour( $h1, $h2 ); my $rise_time = DateTime->new( year => $dt->year, month => $dt->month, day => $dt->day, hour => $hour_rise, minute => $min_rise, time_zone => 'UTC' ); my $set_time = DateTime->new( year => $dt->year, month => $dt->month, day => $dt->day, hour => $hour_set, minute => $min_set, time_zone => 'UTC' ); return ($rise_time, $set_time); } } sub sun_rise_set { my ( $d, $lon, $lat, $altit, $h ) = @_; my $sidtime = revolution( GMST0($d) + 180.0 + $lon ); my ( $sRA, $sdec ) = sun_RA_dec($d); my $tsouth = 12.0 - rev180( $sidtime - $sRA ) /$h ; my $sradius = 0.2666 / $sRA; if ($upper_limb) { $altit -= $sradius; } # Compute the diurnal arc that the Sun traverses to reach # the specified altitude altit: my $cost = ( sind($altit) - sind($lat) * sind($sdec) ) / ( cosd($lat) * cosd($sdec) ); my $t; if ( $cost >= 1.0 ) { carp "Sun never rises!!\n"; $t = 0.0; # Sun always below altit } elsif ( $cost <= -1.0 ) { carp "Sun never sets!!\n"; $t = 12.0; # Sun always above altit } else { $t = acosd($cost) / 15.0; # The diurnal arc, hours } # Store rise and set times - in hours UT my $hour_rise_ut = $tsouth - $t; my $hour_set_ut = $tsouth + $t; return ( $hour_rise_ut, $hour_set_ut ); } ######################################################################################################### sub GMST0 { # # # FUNCTIONAL SEQUENCE for GMST0 # # _GIVEN # Day number # # _THEN # # computes GMST0, the Greenwich Mean Sidereal Time # at 0h UT (i.e. the sidereal time at the Greenwhich meridian at # 0h UT). GMST is then the sidereal time at Greenwich at any # time of the day.. # # # _RETURN # # Sidtime # my ($d) = @_; my $sidtim0 = revolution( ( 180.0 + 356.0470 + 282.9404 ) + ( 0.9856002585 + 4.70935E-5 ) * $d ); return $sidtim0; } sub sunpos { # # # FUNCTIONAL SEQUENCE for sunpos # # _GIVEN # day number # # _THEN # # Computes the Sun's ecliptic longitude and distance */ # at an instant given in d, number of days since */ # 2000 Jan 0.0. # # # _RETURN # # ecliptic longitude and distance # ie. $True_solar_longitude, $Solar_distance # my ($d) = @_; # Mean anomaly of the Sun # Mean longitude of perihelion # Note: Sun's mean longitude = M + w # Eccentricity of Earth's orbit # Eccentric anomaly # x, y coordinates in orbit # True anomaly # Compute mean elements my $Mean_anomaly_of_sun = revolution( 356.0470 + 0.9856002585 * $d ); my $Mean_longitude_of_perihelion = 282.9404 + 4.70935E-5 * $d; my $Eccentricity_of_Earth_orbit = 0.016709 - 1.151E-9 * $d; # Compute true longitude and radius vector my $Eccentric_anomaly = $Mean_anomaly_of_sun + $Eccentricity_of_Earth_orbit * $RADEG * sind($Mean_anomaly_of_sun) * ( 1.0 + $Eccentricity_of_Earth_orbit * cosd($Mean_anomaly_of_sun) ); my $x = cosd($Eccentric_anomaly) - $Eccentricity_of_Earth_orbit; my $y = sqrt( 1.0 - $Eccentricity_of_Earth_orbit * $Eccentricity_of_Earth_orbit ) * sind($Eccentric_anomaly); my $Solar_distance = sqrt( $x * $x + $y * $y ); # Solar distance my $True_anomaly = atan2d( $y, $x ); # True anomaly my $True_solar_longitude = $True_anomaly + $Mean_longitude_of_perihelion; # True solar longitude if ( $True_solar_longitude >= 360.0 ) { $True_solar_longitude -= 360.0; # Make it 0..360 degrees } return ( $Solar_distance, $True_solar_longitude ); } sub sun_RA_dec { # # # FUNCTIONAL SEQUENCE for sun_RA_dec # # _GIVEN # day number, $r and $lon (from sunpos) # # _THEN # # compute RA and dec # # # _RETURN # # Sun's Right Ascension (RA) and Declination (dec) # # my ($d) = @_; # Compute Sun's ecliptical coordinates my ( $r, $lon ) = sunpos($d); # Compute ecliptic rectangular coordinates (z=0) my $x = $r * cosd($lon); my $y = $r * sind($lon); # Compute obliquity of ecliptic (inclination of Earth's axis) my $obl_ecl = 23.4393 - 3.563E-7 * $d; # Convert to equatorial rectangular coordinates - x is unchanged my $z = $y * sind($obl_ecl); $y = $y * cosd($obl_ecl); # Convert to spherical coordinates my $RA = atan2d( $y, $x ); my $dec = atan2d( $z, sqrt( $x * $x + $y * $y ) ); return ( $RA, $dec ); } # sun_RA_dec sub days_since_2000_Jan_0 { # # # FUNCTIONAL SEQUENCE for days_since_2000_Jan_0 # # _GIVEN # year, month, day # # _THEN # # process the year month and day (counted in days) # Day 0.0 is at Jan 1 2000 0.0 UT # Note that ALL divisions here should be INTEGER divisions # # _RETURN # # day number # use integer; my ( $year, $month, $day ) = @_; my $d = ( 367 * ($year) - int( ( 7 * ( ($year) + ( ( ($month) + 9 ) / 12 ) ) ) / 4 ) + int( ( 275 * ($month) ) / 9 ) + ($day) - 730530 ); return $d; } sub sind { sin( ( $_[0] ) * $DEGRAD ); } sub cosd { cos( ( $_[0] ) * $DEGRAD ); } sub tand { tan( ( $_[0] ) * $DEGRAD ); } sub atand { ( $RADEG * atan( $_[0] ) ); } sub asind { ( $RADEG * asin( $_[0] ) ); } sub acosd { ( $RADEG * acos( $_[0] ) ); } sub atan2d { ( $RADEG * atan2( $_[0], $_[1] ) ); } sub revolution { # # # FUNCTIONAL SEQUENCE for revolution # # _GIVEN # any angle # # _THEN # # reduces any angle to within the first revolution # by subtracting or adding even multiples of 360.0 # # # _RETURN # # the value of the input is >= 0.0 and < 360.0 # my $x = $_[0]; return ( $x - 360.0 * floor( $x * $INV360 ) ); } sub rev180 { # # # FUNCTIONAL SEQUENCE for rev180 # # _GIVEN # # any angle # # _THEN # # Reduce input to within +180..+180 degrees # # # _RETURN # # angle that was reduced # my ($x) = @_; return ( $x - 360.0 * floor( $x * $INV360 + 0.5 ) ); } sub equal { my ( $A, $B, $dp ) = @_; return sprintf( "%.${dp}g", $A ) eq sprintf( "%.${dp}g", $B ); } sub convert_hour { # # # FUNCTIONAL SEQUENCE for convert_hour # # _GIVEN # Hour_rise, Hour_set # hours are in UT # # _THEN # # split out the hours and minites # # # _RETURN # # hour:min rise and set # my ( $hour_rise_ut, $hour_set_ut ) = @_; my $min_rise = int( ( $hour_rise_ut - int($hour_rise_ut) ) * 60 ); my $min_set = int( ( $hour_set_ut - int($hour_set_ut) ) * 60 ); my $hour_rise = int($hour_rise_ut); my $hour_set = int($hour_set_ut); if ( $min_rise < 10 ) { $min_rise = sprintf( "%02d", $min_rise ); } if ( $min_set < 10 ) { $min_set = sprintf( "%02d", $min_set ); } return ( $hour_rise, $min_rise, $hour_set, $min_set ); } =head1 NAME DateTime::Astro::Sunrise - Perl DateTime extension for computing the sunrise/sunset on a given day =head1 SYNOPSIS use DateTime; use DateTime::Astro::Sunrise; my $dt = DateTime->new( year => 2000, month => 6, day => 20, ); my $sunrise = DateTime::Astro::Sunrise ->new('-118','33',undef,1); my ($tmp_rise, $tmp_set) = $sunrise->sunrise($dt); =head1 DESCRIPTION This module will return a DateTime Object for sunrise and sunset for a given day. =head1 USAGE =over =item Bnew(longitutide,latatude,ALT,Iteration);> =over Eastern longitude is entered as a positive number Western longitude is entered as a negative number Northern latitude is entered as a positive number Southern latitude is entered as a negative number inter is set to either 0 or 1. If set to 0 no Iteration will occur. If set to 1 Iteration will occur. Default is 0. There are a number of sun altitides to chose from. The default is -0.833 because this is what most countries use. Feel free to specify it if you need to. Here is the list of values to specify altitude (ALT) with: =over =item B<0> degrees Center of Sun's disk touches a mathematical horizon =item B<-0.25> degrees Sun's upper limb touches a mathematical horizon =item B<-0.583> degrees Center of Sun's disk touches the horizon; atmospheric refraction accounted for =item B<-0.833> degrees Sun's supper limb touches the horizon; atmospheric refraction accounted for =item B<-6> degrees Civil twilight (one can no longer read outside without artificial illumination) =item B<-12> degrees Nautical twilight (navigation using a sea horizon no longer possible) =item B<-15> degrees Amateur astronomical twilight (the sky is dark enough for most astronomical observations) =item B<-18> degrees Astronomical twilight (the sky is completely dark) =item F =over The orginal method only gives an approximate value of the Sun's rise/set times. The error rarely exceeds one or two minutes, but at high latitudes, when the Midnight Sun soon will start or just has ended, the errors may be much larger. If you want higher accuracy, you must then use the iteration feature. This feature is new as of version 0.7. Here is what I have tried to accomplish with this. a) Compute sunrise or sunset as always, with one exception: to convert LHA from degrees to hours, divide by 15.04107 instead of 15.0 (this accounts for the difference between the solar day and the sidereal day. b) Re-do the computation but compute the Sun's RA and Decl, and also GMST0, for the moment of sunrise or sunset last computed. c) Iterate b) until the computed sunrise or sunset no longer changes significantly. Usually 2 iterations are enough, in rare cases 3 or 4 iterations may be needed. =back =back =head1 ($sunrise, $sunset) = $sunrise->($dt); Returns two DateTime objects sunrise and sunset. Please note that the time zone for these objects is set to UTC. So don't forget to set your timezone!! =head1 AUTHOR Ron Hill rkhill@firstlight.net =head1 CREDITS =item Paul Schlyer, Stockholm, Sweden for his excellent web page on the subject. =item Rich Bowen (rbowen@rbowen.com) for suggestions =head1 COPYRIGHT and LICENSE Here is the copyright information provided by Paul Schlyer: Written as DAYLEN.C, 1989-08-16 Modified to SUNRISET.C, 1992-12-01 (c) Paul Schlyter, 1989, 1992 Released to the public domain by Paul Schlyter, December 1992 Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. =head1 BUGS =head1 SEE ALSO perl(1). =cut 1; DateTime-Astro-Sunrise-0.01_01/t/ 40777 0 0 0 7636156607 11424 5DateTime-Astro-Sunrise-0.01_01/t/00load.t100666 0 0 213 7636135515 12654 use strict; use Test; BEGIN {$| = 1; plan tests => 1 } use DateTime; use DateTime::Astro::Sunrise; my $loaded = 1; ok($loaded); DateTime-Astro-Sunrise-0.01_01/t/01basic.t100666 0 0 774 7636151437 13034 use strict; use Test; use DateTime; use DateTime::Astro::Sunrise; BEGIN { plan tests => 2 } my $dt = DateTime->new( year => 2000, month => 6, day => 20, ); my $sunrise = DateTime::Astro::Sunrise ->new('-118','33'); my ($tmp_rise, $tmp_set) = $sunrise->sunrise($dt); $tmp_rise->set_time_zone( 'America/Los_Angeles' ); $tmp_set->set_time_zone('America/Los_Angeles' ); # test 1 ok ($tmp_rise->hms eq '05:43:00'); # test 2 ok ($tmp_set->hms eq '20:03:00');