pax_global_header00006660000000000000000000000064142211112140014477gustar00rootroot0000000000000052 comment=4cde617f64c36058943f6ff8b0c59c66a7357f59 libpgf-7.21.7+ds/000077500000000000000000000000001422111121400134425ustar00rootroot00000000000000libpgf-7.21.7+ds/AUTHORS000066400000000000000000000000001422111121400145000ustar00rootroot00000000000000libpgf-7.21.7+ds/COPYING000066400000000000000000000604061422111121400145030ustar00rootroot00000000000000 GNU LESSER GENERAL PUBLIC LICENSE Version 2.1, February 1999 Copyright (C) 1991, 1999 Free Software Foundation, Inc. 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. [This is the first released version of the Lesser GPL. It also counts as the successor of the GNU Library Public License, version 2, hence the version number 2.1.] Preamble The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public Licenses are intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This license, the Lesser General Public License, applies to some specially designated software packages--typically libraries--of the Free Software Foundation and other authors who decide to use it. You can use it too, but we suggest you first think carefully about whether this license or the ordinary General Public License is the better strategy to use in any particular case, based on the explanations below. When we speak of free software, we are referring to freedom of use, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish); that you receive source code or can get it if you want it; that you can change the software and use pieces of it in new free programs; and that you are informed that you can do these things. To protect your rights, we need to make restrictions that forbid distributors to deny you these rights or to ask you to surrender these rights. These restrictions translate to certain responsibilities for you if you distribute copies of the library or if you modify it. For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipients all the rights that we gave you. You must make sure that they, too, receive or can get the source code. If you link other code with the library, you must provide complete object files to the recipients, so that they can relink them with the library after making changes to the library and recompiling it. And you must show them these terms so they know their rights. We protect your rights with a two-step method: (1) we copyright the library, and (2) we offer you this license, which gives you legal permission to copy, distribute and/or modify the library. To protect each distributor, we want to make it very clear that there is no warranty for the free library. Also, if the library is modified by someone else and passed on, the recipients should know that what they have is not the original version, so that the original author's reputation will not be affected by problems that might be introduced by others. Finally, software patents pose a constant threat to the existence of any free program. We wish to make sure that a company cannot effectively restrict the users of a free program by obtaining a restrictive license from a patent holder. Therefore, we insist that any patent license obtained for a version of the library must be consistent with the full freedom of use specified in this license. Most GNU software, including some libraries, is covered by the ordinary GNU General Public License. This license, the GNU Lesser General Public License, applies to certain designated libraries, and is quite different from the ordinary General Public License. We use this license for certain libraries in order to permit linking those libraries into non-free programs. When a program is linked with a library, whether statically or using a shared library, the combination of the two is legally speaking a combined work, a derivative of the original library. The ordinary General Public License therefore permits such linking only if the entire combination fits its criteria of freedom. The Lesser General Public License permits more lax criteria for linking other code with the library. We call this license the "Lesser" General Public License because it does Less to protect the user's freedom than the ordinary General Public License. It also provides other free software developers Less of an advantage over competing non-free programs. These disadvantages are the reason we use the ordinary General Public License for many libraries. However, the Lesser license provides advantages in certain special circumstances. For example, on rare occasions, there may be a special need to encourage the widest possible use of a certain library, so that it becomes a de-facto standard. To achieve this, non-free programs must be allowed to use the library. A more frequent case is that a free library does the same job as widely used non-free libraries. In this case, there is little to gain by limiting the free library to free software only, so we use the Lesser General Public License. In other cases, permission to use a particular library in non-free programs enables a greater number of people to use a large body of free software. For example, permission to use the GNU C Library in non-free programs enables many more people to use the whole GNU operating system, as well as its variant, the GNU/Linux operating system. Although the Lesser General Public License is Less protective of the users' freedom, it does ensure that the user of a program that is linked with the Library has the freedom and the wherewithal to run that program using a modified version of the Library. The precise terms and conditions for copying, distribution and modification follow. Pay close attention to the difference between a "work based on the library" and a "work that uses the library". The former contains code derived from the library, whereas the latter must be combined with the library in order to run. GNU LESSER GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 0. This License Agreement applies to any software library or other program which contains a notice placed by the copyright holder or other authorized party saying it may be distributed under the terms of this Lesser General Public License (also called "this License"). Each licensee is addressed as "you". A "library" means a collection of software functions and/or data prepared so as to be conveniently linked with application programs (which use some of those functions and data) to form executables. The "Library", below, refers to any such software library or work which has been distributed under these terms. A "work based on the Library" means either the Library or any derivative work under copyright law: that is to say, a work containing the Library or a portion of it, either verbatim or with modifications and/or translated straightforwardly into another language. (Hereinafter, translation is included without limitation in the term "modification".) "Source code" for a work means the preferred form of the work for making modifications to it. For a library, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the library. Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running a program using the Library is not restricted, and output from such a program is covered only if its contents constitute a work based on the Library (independent of the use of the Library in a tool for writing it). Whether that is true depends on what the Library does and what the program that uses the Library does. 1. You may copy and distribute verbatim copies of the Library's complete source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and distribute a copy of this License along with the Library. You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee. 2. You may modify your copy or copies of the Library or any portion of it, thus forming a work based on the Library, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions: a) The modified work must itself be a software library. b) You must cause the files modified to carry prominent notices stating that you changed the files and the date of any change. c) You must cause the whole of the work to be licensed at no charge to all third parties under the terms of this License. d) If a facility in the modified Library refers to a function or a table of data to be supplied by an application program that uses the facility, other than as an argument passed when the facility is invoked, then you must make a good faith effort to ensure that, in the event an application does not supply such function or table, the facility still operates, and performs whatever part of its purpose remains meaningful. (For example, a function in a library to compute square roots has a purpose that is entirely well-defined independent of the application. Therefore, Subsection 2d requires that any application-supplied function or table used by this function must be optional: if the application does not supply it, the square root function must still compute square roots.) These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Library, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Library, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it. Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Library. In addition, mere aggregation of another work not based on the Library with the Library (or with a work based on the Library) on a volume of a storage or distribution medium does not bring the other work under the scope of this License. 3. You may opt to apply the terms of the ordinary GNU General Public License instead of this License to a given copy of the Library. To do this, you must alter all the notices that refer to this License, so that they refer to the ordinary GNU General Public License, version 2, instead of to this License. (If a newer version than version 2 of the ordinary GNU General Public License has appeared, then you can specify that version instead if you wish.) Do not make any other change in these notices. Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General Public License applies to all subsequent copies and derivative works made from that copy. This option is useful when you wish to copy part of the code of the Library into a program that is not a library. 4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange. If distribution of object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place satisfies the requirement to distribute the source code, even though third parties are not compelled to copy the source along with the object code. 5. A program that contains no derivative of any portion of the Library, but is designed to work with the Library by being compiled or linked with it, is called a "work that uses the Library". Such a work, in isolation, is not a derivative work of the Library, and therefore falls outside the scope of this License. However, linking a "work that uses the Library" with the Library creates an executable that is a derivative of the Library (because it contains portions of the Library), rather than a "work that uses the library". The executable is therefore covered by this License. Section 6 states terms for distribution of such executables. When a "work that uses the Library" uses material from a header file that is part of the Library, the object code for the work may be a derivative work of the Library even though the source code is not. Whether this is true is especially significant if the work can be linked without the Library, or if the work is itself a library. The threshold for this to be true is not precisely defined by law. If such an object file uses only numerical parameters, data structure layouts and accessors, and small macros and small inline functions (ten lines or less in length), then the use of the object file is unrestricted, regardless of whether it is legally a derivative work. (Executables containing this object code plus portions of the Library will still fall under Section 6.) Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under the terms of Section 6. Any executables containing that work also fall under Section 6, whether or not they are linked directly with the Library itself. 6. As an exception to the Sections above, you may also combine or link a "work that uses the Library" with the Library to produce a work containing portions of the Library, and distribute that work under terms of your choice, provided that the terms permit modification of the work for the customer's own use and reverse engineering for debugging such modifications. You must give prominent notice with each copy of the work that the Library is used in it and that the Library and its use are covered by this License. You must supply a copy of this License. If the work during execution displays copyright notices, you must include the copyright notice for the Library among them, as well as a reference directing the user to the copy of this License. Also, you must do one of these things: a) Accompany the work with the complete corresponding machine-readable source code for the Library including whatever changes were used in the work (which must be distributed under Sections 1 and 2 above); and, if the work is an executable linked with the Library, with the complete machine-readable "work that uses the Library", as object code and/or source code, so that the user can modify the Library and then relink to produce a modified executable containing the modified Library. (It is understood that the user who changes the contents of definitions files in the Library will not necessarily be able to recompile the application to use the modified definitions.) b) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (1) uses at run time a copy of the library already present on the user's computer system, rather than copying library functions into the executable, and (2) will operate properly with a modified version of the library, if the user installs one, as long as the modified version is interface-compatible with the version that the work was made with. c) Accompany the work with a written offer, valid for at least three years, to give the same user the materials specified in Subsection 6a, above, for a charge no more than the cost of performing this distribution. d) If distribution of the work is made by offering access to copy from a designated place, offer equivalent access to copy the above specified materials from the same place. e) Verify that the user has already received a copy of these materials or that you have already sent this user a copy. For an executable, the required form of the "work that uses the Library" must include any data and utility programs needed for reproducing the executable from it. However, as a special exception, the materials to be distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable. It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do not normally accompany the operating system. Such a contradiction means you cannot use both them and the Library together in an executable that you distribute. 7. You may place library facilities that are a work based on the Library side-by-side in a single library together with other library facilities not covered by this License, and distribute such a combined library, provided that the separate distribution of the work based on the Library and of the other library facilities is otherwise permitted, and provided that you do these two things: a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities. This must be distributed under the terms of the Sections above. b) Give prominent notice with the combined library of the fact that part of it is a work based on the Library, and explaining where to find the accompanying uncombined form of the same work. 8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, link with, or distribute the Library is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. 9. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Library or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Library (or any work based on the Library), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Library or works based on it. 10. Each time you redistribute the Library (or any work based on the Library), the recipient automatically receives a license from the original licensor to copy, distribute, link with or modify the Library subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties with this License. 11. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Library at all. For example, if a patent license would not permit royalty-free redistribution of the Library by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Library. If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply, and the section as a whole is intended to apply in other circumstances. It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice. This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License. 12. If the distribution and/or use of the Library is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Library under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License. 13. The Free Software Foundation may publish revised and/or new versions of the Lesser General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Library specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Library does not specify a license version number, you may choose any version ever published by the Free Software Foundation. 14. If you wish to incorporate parts of the Library into other free programs whose distribution conditions are incompatible with these, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally. NO WARRANTY 15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. END OF TERMS AND CONDITIONSlibpgf-7.21.7+ds/INSTALL000066400000000000000000000034171422111121400145000ustar00rootroot00000000000000/* * The Progressive Graphics File; http://www.libpgf.org * * This file Copyright (C) 2000-2015 xeraina GmbH, Switzerland * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU LESSER GENERAL PUBLIC LICENSE * as published by the Free Software Foundation; either version 2.1 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ Remark: The make process uses autoconf / automake / libtool. To compile and install the library, do the following: 0.1 create folder 'm4' if not already available 0.2 dos2unix *.* helps, if configure stops with "cannot fine input file Makefile.in" 0.3 'autoreconf -i' : instead of calling libtoolize, aclocal, autoheader, autoconf, automake 1.1 './configure' 1.2 './configure --help' : gives you more information 2. 'make' : compiles a shared and a static library 3. 'sudo make install' : installs the library 4. 'sudo ldconfig' : makes the new library visible in the system Note: As this build process uses libtool there is a library interface created by libtool. This interface is libpgf.la, the static library itself is in libpgf.a and the shared library iteslf is in libpgf.so.x.y. All these files are needed. For more information see: http://www.gnu.org/software/libtool libpgf-7.21.7+ds/Makefile.am000066400000000000000000000026611422111121400155030ustar00rootroot00000000000000 SUBDIRS = src include if HAS_DOXYGEN SUBDIRS += doc endif PACKAGE = @PACKAGE@ VERSION = @VERSION@ EXTRA_DIST = autogen.sh FAQ PGFCodec.sln PGFCodec.vcproj \ pgf.spec #EXTRA_DIST = TODO BUGS README ChangeLog ReleaseNotes $(PACKAGE).spec \ # $(PACKAGE).spec.in $(PACKAGE).pc $(PACKAGE).pc.in ARCH = i386 RPM_DIR = $(HOME)/redhat DISTCLEANFILES = $(PACKAGE)-$(VERSION).tar.gz *~ RPMEXTRACONFOPT="--disable-dependency-tracking" RPMRELEASE=$(PACKAGE_RELEASE) ACLOCAL_AMFLAGS = -I m4 install-data-local:: $(PACKAGE).pc $(mkinstalldirs) $(DESTDIR)$(libdir)/pkgconfig $(INSTALL) -m 644 $(PACKAGE).pc $(DESTDIR)$(libdir)/pkgconfig/$(PACKAGE).pc .PHONY: ChangeLog ChangeLog: echo "ChangeLog generation disabled" # svn2cl.sh rpm: $(RPM_DIR) dist rpmbuild --clean --quiet \ --define='extra_configure_options $(RPMEXTRACONFOPT)' \ --define='user $(USER)' \ --define='_topdir $(RPM_DIR)' \ --define='rpm_release $(RPMRELEASE)' \ --define='rpm_testbuild 0' \ $(RPMEXTRADEFINES) \ $(RPMEXTRAARGS) \ -ta $(PACKAGE)-$(VERSION).tar.gz $(RPM_DIR): -mkdir $(RPM_DIR) -mkdir $(RPM_DIR)/BUILD -mkdir $(RPM_DIR)/SPECS -mkdir $(RPM_DIR)/SOURCES -mkdir $(RPM_DIR)/SRPMS -mkdir $(RPM_DIR)/RPMS -mkdir $(RPM_DIR)/RPMS/i386 -mkdir $(RPM_DIR)/RPMS/i486 -mkdir $(RPM_DIR)/RPMS/i686 -mkdir $(RPM_DIR)/RPMS/ia64 -mkdir $(RPM_DIR)/RPMS/noarch libpgf-7.21.7+ds/NEWS000066400000000000000000000000001422111121400141270ustar00rootroot00000000000000libpgf-7.21.7+ds/PGFCodec.sln000066400000000000000000000046371422111121400155440ustar00rootroot00000000000000 Microsoft Visual Studio Solution File, Format Version 12.00 # Visual Studio Version 16 VisualStudioVersion = 16.0.30907.101 MinimumVisualStudioVersion = 10.0.40219.1 Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "PGFCodec", "PGFCodec.vcxproj", "{5B490780-D7B3-4997-95E3-E9617E474649}" EndProject Global GlobalSection(SolutionConfigurationPlatforms) = preSolution Debug|x64 = Debug|x64 Debug16|x64 = Debug16|x64 Debug16OMP|x64 = Debug16OMP|x64 DebugOMP|x64 = DebugOMP|x64 Release|x64 = Release|x64 Release16|x64 = Release16|x64 Release16OMP|x64 = Release16OMP|x64 ReleaseNROI|x64 = ReleaseNROI|x64 ReleaseOMP|x64 = ReleaseOMP|x64 EndGlobalSection GlobalSection(ProjectConfigurationPlatforms) = postSolution {5B490780-D7B3-4997-95E3-E9617E474649}.Debug|x64.ActiveCfg = Debug|x64 {5B490780-D7B3-4997-95E3-E9617E474649}.Debug|x64.Build.0 = Debug|x64 {5B490780-D7B3-4997-95E3-E9617E474649}.Debug16|x64.ActiveCfg = Debug16|x64 {5B490780-D7B3-4997-95E3-E9617E474649}.Debug16|x64.Build.0 = Debug16|x64 {5B490780-D7B3-4997-95E3-E9617E474649}.Debug16OMP|x64.ActiveCfg = Debug16OMP|x64 {5B490780-D7B3-4997-95E3-E9617E474649}.Debug16OMP|x64.Build.0 = Debug16OMP|x64 {5B490780-D7B3-4997-95E3-E9617E474649}.DebugOMP|x64.ActiveCfg = DebugOMP|x64 {5B490780-D7B3-4997-95E3-E9617E474649}.DebugOMP|x64.Build.0 = DebugOMP|x64 {5B490780-D7B3-4997-95E3-E9617E474649}.Release|x64.ActiveCfg = Release|x64 {5B490780-D7B3-4997-95E3-E9617E474649}.Release|x64.Build.0 = Release|x64 {5B490780-D7B3-4997-95E3-E9617E474649}.Release16|x64.ActiveCfg = Release16|x64 {5B490780-D7B3-4997-95E3-E9617E474649}.Release16|x64.Build.0 = Release16|x64 {5B490780-D7B3-4997-95E3-E9617E474649}.Release16OMP|x64.ActiveCfg = Release16OMP|x64 {5B490780-D7B3-4997-95E3-E9617E474649}.Release16OMP|x64.Build.0 = Release16OMP|x64 {5B490780-D7B3-4997-95E3-E9617E474649}.ReleaseNROI|x64.ActiveCfg = ReleaseNROI|x64 {5B490780-D7B3-4997-95E3-E9617E474649}.ReleaseNROI|x64.Build.0 = ReleaseNROI|x64 {5B490780-D7B3-4997-95E3-E9617E474649}.ReleaseOMP|x64.ActiveCfg = ReleaseOMP|x64 {5B490780-D7B3-4997-95E3-E9617E474649}.ReleaseOMP|x64.Build.0 = ReleaseOMP|x64 EndGlobalSection GlobalSection(SolutionProperties) = preSolution HideSolutionNode = FALSE EndGlobalSection GlobalSection(ExtensibilityGlobals) = postSolution SolutionGuid = {4F950987-3FE4-4A38-9FCB-5D01056D3A33} EndGlobalSection EndGlobal libpgf-7.21.7+ds/PGFCodec.vcxproj000066400000000000000000000535071422111121400164430ustar00rootroot00000000000000 Debug16OMP x64 Debug16 x64 DebugOMP x64 Debug x64 Release16OMP x64 Release16 x64 ReleaseNROI x64 ReleaseOMP x64 Release x64 {5B490780-D7B3-4997-95E3-E9617E474649} PGFCodec SAK SAK SAK SAK 10.0 StaticLibrary v142 false StaticLibrary v142 false StaticLibrary v142 false StaticLibrary v142 false StaticLibrary v142 false StaticLibrary v142 false StaticLibrary v142 false StaticLibrary v142 false StaticLibrary v142 false <_ProjectFileVersion>11.0.50727.1 $(Platform)\$(Configuration)\ false lib\$(Platform)\ $(ProjectName)d $(Platform)\$(Configuration)\ lib\$(Platform)\ $(Platform)\$(Configuration)\ lib\$(Platform)\ $(ProjectName)NROI $(Platform)\$(Configuration)\ lib\$(Platform)\ $(ProjectName)16d $(Platform)\$(Configuration)\ lib\$(Platform)\ $(ProjectName)16 $(Platform)\$(Configuration)\ lib\$(Platform)\ $(ProjectName)OMP $(Platform)\$(Configuration)\ lib\$(Platform)\ $(ProjectName)16OMP $(Platform)\$(Configuration)\ false lib\$(Platform)\ $(ProjectName)OMPd $(Platform)\$(Configuration)\ lib\$(Platform)\ $(ProjectName)16OMPd Disabled include;%(AdditionalIncludeDirectories) WIN64;TRACE;_DEBUG;_LIB;%(PreprocessorDefinitions) EnableFastChecks MultiThreadedDebugDLL Level4 true ProgramDatabase _DEBUG;%(PreprocessorDefinitions) 0x0409 true true MaxSpeed AnySuitable true Speed true true include;%(AdditionalIncludeDirectories) WIN64;NDEBUG;_LIB;%(PreprocessorDefinitions) true MultiThreadedDLL NotSet false Level4 true NDEBUG;%(PreprocessorDefinitions) 0x0409 true true MaxSpeed AnySuitable true Speed true true include;%(AdditionalIncludeDirectories) NPGFROI;WIN64;NDEBUG;_LIB;%(PreprocessorDefinitions) true MultiThreadedDLL NotSet false Level4 true NDEBUG;%(PreprocessorDefinitions) 0x0409 true true Disabled include;%(AdditionalIncludeDirectories) WIN64;_DEBUG;_LIB;NPGF32;TRACE;%(PreprocessorDefinitions) EnableFastChecks MultiThreadedDebugDLL false Level4 true ProgramDatabase _DEBUG;%(PreprocessorDefinitions) 0x0409 true true MaxSpeed AnySuitable true Speed true true include;%(AdditionalIncludeDirectories) WIN64;NDEBUG;_LIB;NPGF32;%(PreprocessorDefinitions) true MultiThreadedDLL NotSet false Level4 true NDEBUG;%(PreprocessorDefinitions) 0x0409 true true MaxSpeed AnySuitable true Speed true true include;%(AdditionalIncludeDirectories) WIN64;NDEBUG;_LIB;%(PreprocessorDefinitions) true MultiThreadedDLL NotSet false true Level4 true NDEBUG;%(PreprocessorDefinitions) 0x0409 true true MaxSpeed AnySuitable true Speed true true include;%(AdditionalIncludeDirectories) WIN64;NDEBUG;_LIB;NPGF32;%(PreprocessorDefinitions) true MultiThreadedDLL NotSet false true Level4 true NDEBUG;%(PreprocessorDefinitions) 0x0409 true true Disabled include;%(AdditionalIncludeDirectories) WIN64;TRACE;_DEBUG;_LIB;%(PreprocessorDefinitions) EnableFastChecks MultiThreadedDebugDLL true Level4 true ProgramDatabase _DEBUG;%(PreprocessorDefinitions) 0x0409 true true Disabled include;%(AdditionalIncludeDirectories) WIN64;_DEBUG;_LIB;NPGF32;%(PreprocessorDefinitions) EnableFastChecks MultiThreadedDebugDLL false true Level4 true ProgramDatabase _DEBUG;%(PreprocessorDefinitions) 0x0409 true true libpgf-7.21.7+ds/PGFCodec.vcxproj.user000066400000000000000000000002501422111121400174030ustar00rootroot00000000000000 libpgf-7.21.7+ds/README.txt000066400000000000000000000133161422111121400151440ustar00rootroot00000000000000The Progressive Graphics File ============================= For more information see http://www.libpgf.org. There you can find some documents concerning this progressive graphic file codec. This project is hosted on the Sourceforge.net platform. For support and questions, please use the installed mailing list and forums there. The Sourceforge URL of our project is: http://sourceforge.net/projects/libpgf ============================= Release Notes Version 7.21.7, (Thu, 18 Feb 2021) ------------------------------------ 1. The new version is a minor bug fix of versions 7.15.25 to 7.21.2. 2. This bug fix for ROI decoding only. This bug fix is necessary if several Read() and ResetStreamPos() operations are called with the same PGFimage object after a single Open() call. Version 7.21.2, (Sun, 17 Jan 2021) ------------------------------------ 1. The new version is a documentation and build tool update of version 7.19.3. Version 7.19.3, (Tue, 15 Jan 2019) ------------------------------------ 1. The new version is a minor update of version 7.15.25. 2. This version fixes a compilation bug seen when ROI support is disabled. Version 7.15.32, (Thu, 6 Aug 2015) ------------------------------------ 1. The new version is a minor update of version 7.15.25. 2. This version improves the reuse of CPGFImage objects for several decoding operations. It clarifies the usage of CPGFImage::Close() and CPGFImage::Destroy() by deletion of Close(). Several reading operations can be performed in the following way: Open(), Read(), GetBitmap(), ResetStreamPos(), Read(), GetBitmap(), ResetStreamPos(), ... Calling Destroy() frees all allocated ressources and reinitializes the object to the same state as the constructor does. This allows the reuse of the CPGFImage object for encoding and decoding: SetHeader(), ImportBitmap(), Write(), ResetStreamPos(), Destroy(), Open(), Read(), GetBitmap() 3. Caching or skipping of user data (meta data) while opening a PGF image can be controlled by a new UserdataPolicy in ConfigureDecoder(). Version 7.15.25, (Sat, 20 June 2015) ------------------------------------ 1. This new version is a replacement of version 6.14.12. In case you use the ROI decoding, we strongly encourage using version 6.15.25 instead of an older version. 2. This version fixes some decoder bugs only seen in ROI decoding. ROI decoding is now also supported for Bitmap and RGB12 image modes. 3. This version introduces a new and more efficient data format for binary images (bitmaps). The new format allows ROI decoding. The decoder supports both the old and the new format, but ROI decoding works only with the new format. 4. The two reserverd bytes in PGFHeader are now used for a more detailled PGF version number. 5. The Visual Studio project files are in the VS12 format. Version 6.14.12, (Wed, 9 April 2014) ------------------------------------ 1. The new version is a minor update of version 6.12.24. 2. It mainly contains some fixes of memory leaks in the OpenMP part and some improvements suggested by cppcheck and Coverity. 3. The Visual Studio project files are in the VS11 format. Version 6.12.24, (Thu, 14 June 2012) ------------------------------------ 1. The new version is a replacement of version 6.11.42. In case you use the ROI encoding scheme, we strongly encourage using version 6.12.24 instead of version 6.11.42. 2. This version fixes some decoder bugs, sometimes seen in ROI decoding. 3. This version allows a simpler user-data handling, especially for uncached metadata. The following two methods in the class PGFimage are designed for this purpose: GetUserDataPos() returns in an opened PGF image the stream position of the user data area. WriteImage() encodes and writes the image at the current stream position. This method is called after WriteHeader(). In case you want to write uncached metadata into the stream, then do that after WriteHeader() and just before WriteImage(). If you are not interested in writing uncached metadata, then you usually use Write() instead of WriteImage(). WriteHeader() and WriteImage() are called inside of Write(). Version 6.11.42, (Sun, 23 Oct 2011) ----------------------------------- 1. The new version is a replacement of version 6.11.24. We strongly encourage using version 6.11.42 instead of version 6.11.24. 2. This version fixes some decoder bugs, only seen in lossless compression of large images. 3. The rarely used, but sometimes misused, background information (3 Bytes) in the PGFHeader has been replaced by UINT8 usedBitsPerChannel; // number of used bits per channel // in 16- and 32-bit per channel modes UINT8 reserved1, reserved2; // not used The value usedBitsPerChannel is helpful in case you have more than 8 (16) but less than 16 (32) significant bits per channel, stored in the most significant bits of a pixel. For example, you have a grayscale image with 14 bit significant data per pixel stored in the ImageModeGray16 pixel format. In case you have left shifted the 14 bits to be the most significant 14 bits, then you should set usedBitsPerChannel=14. This will increase the compression ratio without any drawbacks, because the 14 bits are internally right shifted. On the other side, if the 14 bits are the least significant bits in your 16 bit pixel format, then you shouldn't set usedBitsPerChannel. It will be automatically set to 16, but this is no problem, since the not used most significant bits per pixel are never encoded at all. So, in both cases the same compression ratio will result.libpgf-7.21.7+ds/autogen.sh000066400000000000000000000002041422111121400154340ustar00rootroot00000000000000#! /bin/sh touch NEWS && touch AUTHORS libtoolize --copy --force && aclocal && automake --gnu --add-missing --copy && autoconf libpgf-7.21.7+ds/config.h.in000066400000000000000000000032171422111121400154700ustar00rootroot00000000000000/* config.h.in. Generated from configure.ac by autoheader. */ /* Define to 1 if you have the header file. */ #undef HAVE_DLFCN_H /* Define to 1 if you have the header file. */ #undef HAVE_INTTYPES_H /* Define to 1 if you have the header file. */ #undef HAVE_MEMORY_H /* Define to 1 if you have the header file. */ #undef HAVE_STDINT_H /* Define to 1 if you have the header file. */ #undef HAVE_STDLIB_H /* Define to 1 if you have the header file. */ #undef HAVE_STRINGS_H /* Define to 1 if you have the header file. */ #undef HAVE_STRING_H /* Define to 1 if you have the header file. */ #undef HAVE_SYS_STAT_H /* Define to 1 if you have the header file. */ #undef HAVE_SYS_TYPES_H /* Define to 1 if you have the header file. */ #undef HAVE_UNISTD_H /* Define to the sub-directory in which libtool stores uninstalled libraries. */ #undef LT_OBJDIR /* Name of package */ #undef PACKAGE /* Define to the address where bug reports for this package should be sent. */ #undef PACKAGE_BUGREPORT /* Define to the full name of this package. */ #undef PACKAGE_NAME /* Define to the full name and version of this package. */ #undef PACKAGE_STRING /* Define to the one symbol short name of this package. */ #undef PACKAGE_TARNAME /* Define to the home page for this package. */ #undef PACKAGE_URL /* Define to the version of this package. */ #undef PACKAGE_VERSION /* Define to 1 if you have the ANSI C header files. */ #undef STDC_HEADERS /* Version number of package */ #undef VERSION libpgf-7.21.7+ds/configure.ac000066400000000000000000000022321422111121400157270ustar00rootroot00000000000000AC_INIT([libpgf], [7.15.32]) AC_CONFIG_SRCDIR([src/PGFimage.cpp]) dnl The library interface version dnl see documentation for versioning in the libtool manual dnl NOTE: these should only be updated before public releases dnl The current version of the interface. If interfaces has been dnl added removed changed bump this INTERFACE_CURRENT=7 dnl If the source has been changed bump this INTERFACE_REVISION=15 dnl If any interfaces has been added since last release, bump this dnl If any interfaces has been removed, set this to 0 dnl The age is always less than CURRENT INTERFACE_AGE=0 INTERFACE_VERSION=$INTERFACE_CURRENT:$INTERFACE_REVISION:$INTERFACE_AGE AC_SUBST(INTERFACE_VERSION) PACKAGE_RELEASE=2 AC_SUBST(PACKAGE_RELEASE) AM_INIT_AUTOMAKE AC_PROG_LIBTOOL AC_CONFIG_MACRO_DIR([m4]) AC_CONFIG_HEADERS( [config.h] ) AC_PROG_CXX dnl Check for doxygen support AC_PATH_PROG([DOXYGEN], [doxygen]) AC_PATH_PROG([DOT], [dot]) AM_CONDITIONAL(HAS_DOXYGEN, test $DOXYGEN && $DOT) # Generate output AC_OUTPUT(Makefile src/Makefile include/Makefile doc/Makefile doc/Doxyfile libpgf.spec libpgf.pc ) libpgf-7.21.7+ds/include/000077500000000000000000000000001422111121400150655ustar00rootroot00000000000000libpgf-7.21.7+ds/include/Makefile.am000066400000000000000000000003061422111121400171200ustar00rootroot00000000000000libpgfincdir = $(includedir)/libpgf install-exec-hook: $(mkinstalldirs) $(DESTDIR)/$(libpgfincdir) libpgfinc_HEADERS = \ PGFimage.h \ PGFplatform.h \ PGFtypes.h \ PGFstream.h libpgf-7.21.7+ds/include/PGFimage.h000066400000000000000000001023351422111121400166610ustar00rootroot00000000000000/* * The Progressive Graphics File; http://www.libpgf.org * * $Date: 2007-02-03 13:04:21 +0100 (Sa, 03 Feb 2007) $ * $Revision: 280 $ * * This file Copyright (C) 2006 xeraina GmbH, Switzerland * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU LESSER GENERAL PUBLIC LICENSE * as published by the Free Software Foundation; either version 2.1 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ ////////////////////////////////////////////////////////////////////// /// @file PGFimage.h /// @brief PGF image class /// @author C. Stamm #ifndef PGF_PGFIMAGE_H #define PGF_PGFIMAGE_H #include "PGFstream.h" ////////////////////////////////////////////////////////////////////// // prototypes class CDecoder; class CEncoder; class CWaveletTransform; ////////////////////////////////////////////////////////////////////// /// PGF image class is the main class. You always need a PGF object /// for encoding or decoding image data. /// Decoding: /// Open() /// Read() /// GetBitmap() /// Encoding: /// SetHeader() /// ImportBitmap() /// Write() /// @author C. Stamm, R. Spuler /// @brief PGF main class class CPGFImage { public: ////////////////////////////////////////////////////////////////////// /// Standard constructor CPGFImage(); ////////////////////////////////////////////////////////////////////// /// Destructor virtual ~CPGFImage(); ////////////////////////////////////////////////////////////////////// // Destroy internal data structures. Object state after this is the same as after CPGFImage(). void Destroy(); ////////////////////////////////////////////////////////////////////// /// Open a PGF image at current stream position: read pre-header, header, and ckeck image type. /// Precondition: The stream has been opened for reading. /// It might throw an IOException. /// @param stream A PGF stream void Open(CPGFStream* stream); ////////////////////////////////////////////////////////////////////// /// Returns true if the PGF has been opened for reading. bool IsOpen() const { return m_decoder != nullptr; } ////////////////////////////////////////////////////////////////////// /// Read and decode some levels of a PGF image at current stream position. /// A PGF image is structered in levels, numbered between 0 and Levels() - 1. /// Each level can be seen as a single image, containing the same content /// as all other levels, but in a different size (width, height). /// The image size at level i is double the size (width, height) of the image at level i+1. /// The image at level 0 contains the original size. /// Precondition: The PGF image has been opened with a call of Open(...). /// It might throw an IOException. /// @param level [0, nLevels) The image level of the resulting image in the internal image buffer. /// @param cb A pointer to a callback procedure. The procedure is called after reading a single level. If cb returns true, then it stops proceeding. /// @param data Data Pointer to C++ class container to host callback procedure. void Read(int level = 0, CallbackPtr cb = nullptr, void *data = nullptr); #ifdef __PGFROISUPPORT__ ////////////////////////////////////////////////////////////////////// /// Read a rectangular region of interest of a PGF image at current stream position. /// The origin of the coordinate axis is the top-left corner of the image. /// All coordinates are measured in pixels. /// It might throw an IOException. /// @param rect [inout] Rectangular region of interest (ROI) at level 0. The rect might be cropped. /// @param level [0, nLevels) The image level of the resulting image in the internal image buffer. /// @param cb A pointer to a callback procedure. The procedure is called after reading a single level. If cb returns true, then it stops proceeding. /// @param data Data Pointer to C++ class container to host callback procedure. void Read(PGFRect& rect, int level = 0, CallbackPtr cb = nullptr, void *data = nullptr); #endif ////////////////////////////////////////////////////////////////////// /// Read and decode smallest level of a PGF image at current stream position. /// For details, please refert to Read(...) /// Precondition: The PGF image has been opened with a call of Open(...). /// It might throw an IOException. void ReadPreview() { Read(Levels() - 1); } ////////////////////////////////////////////////////////////////////// /// After you've written a PGF image, you can call this method followed by GetBitmap/GetYUV /// to get a quick reconstruction (coded -> decoded image). /// It might throw an IOException. /// @param level The image level of the resulting image in the internal image buffer. void Reconstruct(int level = 0); ////////////////////////////////////////////////////////////////////// /// Get image data in interleaved format: (ordering of RGB data is BGR[A]) /// Upsampling, YUV to RGB transform and interleaving are done here to reduce the number /// of passes over the data. /// The absolute value of pitch is the number of bytes of an image row of the given image buffer. /// If pitch is negative, then the image buffer must point to the last row of a bottom-up image (first byte on last row). /// if pitch is positive, then the image buffer must point to the first row of a top-down image (first byte). /// The sequence of output channels in the output image buffer does not need to be the same as provided by PGF. In case of different sequences you have to /// provide a channelMap of size of expected channels (depending on image mode). For example, PGF provides a channel sequence BGR in RGB color mode. /// If your provided image buffer expects a channel sequence ARGB, then the channelMap looks like { 3, 2, 1, 0 }. /// It might throw an IOException. /// @param pitch The number of bytes of a row of the image buffer. /// @param buff An image buffer. /// @param bpp The number of bits per pixel used in image buffer. /// @param channelMap A integer array containing the mapping of PGF channel ordering to expected channel ordering. /// @param cb A pointer to a callback procedure. The procedure is called after each copied buffer row. If cb returns true, then it stops proceeding. /// @param data Data Pointer to C++ class container to host callback procedure. void GetBitmap(int pitch, UINT8* buff, BYTE bpp, int channelMap[] = nullptr, CallbackPtr cb = nullptr, void *data = nullptr) const; // throws IOException ////////////////////////////////////////////////////////////////////// /// Get YUV image data in interleaved format: (ordering is YUV[A]) /// The absolute value of pitch is the number of bytes of an image row of the given image buffer. /// If pitch is negative, then the image buffer must point to the last row of a bottom-up image (first byte on last row). /// if pitch is positive, then the image buffer must point to the first row of a top-down image (first byte). /// The sequence of output channels in the output image buffer does not need to be the same as provided by PGF. In case of different sequences you have to /// provide a channelMap of size of expected channels (depending on image mode). For example, PGF provides a channel sequence BGR in RGB color mode. /// If your provided image buffer expects a channel sequence VUY, then the channelMap looks like { 2, 1, 0 }. /// It might throw an IOException. /// @param pitch The number of bytes of a row of the image buffer. /// @param buff An image buffer. /// @param bpp The number of bits per pixel used in image buffer. /// @param channelMap A integer array containing the mapping of PGF channel ordering to expected channel ordering. /// @param cb A pointer to a callback procedure. The procedure is called after each copied buffer row. If cb returns true, then it stops proceeding. /// @param data Data Pointer to C++ class container to host callback procedure. void GetYUV(int pitch, DataT* buff, BYTE bpp, int channelMap[] = nullptr, CallbackPtr cb = nullptr, void *data = nullptr) const; // throws IOException ////////////////////////////////////////////////////////////////////// /// Import an image from a specified image buffer. /// This method is usually called before Write(...) and after SetHeader(...). /// The absolute value of pitch is the number of bytes of an image row. /// If pitch is negative, then buff points to the last row of a bottom-up image (first byte on last row). /// If pitch is positive, then buff points to the first row of a top-down image (first byte). /// The sequence of input channels in the input image buffer does not need to be the same as expected from PGF. In case of different sequences you have to /// provide a channelMap of size of expected channels (depending on image mode). For example, PGF expects in RGB color mode a channel sequence BGR. /// If your provided image buffer contains a channel sequence ARGB, then the channelMap looks like { 3, 2, 1, 0 }. /// It might throw an IOException. /// @param pitch The number of bytes of a row of the image buffer. /// @param buff An image buffer. /// @param bpp The number of bits per pixel used in image buffer. /// @param channelMap A integer array containing the mapping of input channel ordering to expected channel ordering. /// @param cb A pointer to a callback procedure. The procedure is called after each imported buffer row. If cb returns true, then it stops proceeding. /// @param data Data Pointer to C++ class container to host callback procedure. void ImportBitmap(int pitch, UINT8 *buff, BYTE bpp, int channelMap[] = nullptr, CallbackPtr cb = nullptr, void *data = nullptr); ////////////////////////////////////////////////////////////////////// /// Import a YUV image from a specified image buffer. /// The absolute value of pitch is the number of bytes of an image row. /// If pitch is negative, then buff points to the last row of a bottom-up image (first byte on last row). /// If pitch is positive, then buff points to the first row of a top-down image (first byte). /// The sequence of input channels in the input image buffer does not need to be the same as expected from PGF. In case of different sequences you have to /// provide a channelMap of size of expected channels (depending on image mode). For example, PGF expects in RGB color mode a channel sequence BGR. /// If your provided image buffer contains a channel sequence VUY, then the channelMap looks like { 2, 1, 0 }. /// It might throw an IOException. /// @param pitch The number of bytes of a row of the image buffer. /// @param buff An image buffer. /// @param bpp The number of bits per pixel used in image buffer. /// @param channelMap A integer array containing the mapping of input channel ordering to expected channel ordering. /// @param cb A pointer to a callback procedure. The procedure is called after each imported buffer row. If cb returns true, then it stops proceeding. /// @param data Data Pointer to C++ class container to host callback procedure. void ImportYUV(int pitch, DataT *buff, BYTE bpp, int channelMap[] = nullptr, CallbackPtr cb = nullptr, void *data = nullptr); ////////////////////////////////////////////////////////////////////// /// Encode and write an entire PGF image (header and image) at current stream position. /// A PGF image is structered in levels, numbered between 0 and Levels() - 1. /// Each level can be seen as a single image, containing the same content /// as all other levels, but in a different size (width, height). /// The image size at level i is double the size (width, height) of the image at level i+1. /// The image at level 0 contains the original size. /// Precondition: the PGF image contains a valid header (see also SetHeader(...)). /// It might throw an IOException. /// @param stream A PGF stream /// @param nWrittenBytes [in-out] The number of bytes written into stream are added to the input value. /// @param cb A pointer to a callback procedure. The procedure is called after writing a single level. If cb returns true, then it stops proceeding. /// @param data Data Pointer to C++ class container to host callback procedure. void Write(CPGFStream* stream, UINT32* nWrittenBytes = nullptr, CallbackPtr cb = nullptr, void *data = nullptr); ////////////////////////////////////////////////////////////////// /// Create wavelet transform channels and encoder. Write header at current stream position. /// Call this method before your first call of Write(int level) or WriteImage(), but after SetHeader(). /// This method is called inside of Write(stream, ...). /// It might throw an IOException. /// @param stream A PGF stream /// @return The number of bytes written into stream. UINT32 WriteHeader(CPGFStream* stream); ////////////////////////////////////////////////////////////////////// /// Encode and write an image at current stream position. /// Call this method after WriteHeader(). In case you want to write uncached metadata, /// then do that after WriteHeader() and before WriteImage(). /// This method is called inside of Write(stream, ...). /// It might throw an IOException. /// @param stream A PGF stream /// @param cb A pointer to a callback procedure. The procedure is called after writing a single level. If cb returns true, then it stops proceeding. /// @param data Data Pointer to C++ class container to host callback procedure. /// @return The number of bytes written into stream. UINT32 WriteImage(CPGFStream* stream, CallbackPtr cb = nullptr, void *data = nullptr); #ifdef __PGFROISUPPORT__ ////////////////////////////////////////////////////////////////// /// Encode and write down to given level at current stream position. /// A PGF image is structered in levels, numbered between 0 and Levels() - 1. /// Each level can be seen as a single image, containing the same content /// as all other levels, but in a different size (width, height). /// The image size at level i is double the size (width, height) of the image at level i+1. /// The image at level 0 contains the original size. /// Preconditions: the PGF image contains a valid header (see also SetHeader(...)) and /// WriteHeader() has been called before. Levels() > 0. /// The ROI encoding scheme must be used (see also SetHeader(...)). /// It might throw an IOException. /// @param level [0, nLevels) The image level of the resulting image in the internal image buffer. /// @param cb A pointer to a callback procedure. The procedure is called after writing a single level. If cb returns true, then it stops proceeding. /// @param data Data Pointer to C++ class container to host callback procedure. /// @return The number of bytes written into stream. UINT32 Write(int level, CallbackPtr cb = nullptr, void *data = nullptr); #endif ///////////////////////////////////////////////////////////////////// /// Configures the encoder. /// @param useOMP Use parallel threading with Open MP during encoding. Default value: true. Influences the encoding only if the codec has been compiled with OpenMP support. /// @param favorSpeedOverSize Favors encoding speed over compression ratio. Default value: false void ConfigureEncoder(bool useOMP = true, bool favorSpeedOverSize = false) { m_useOMPinEncoder = useOMP; m_favorSpeedOverSize = favorSpeedOverSize; } ///////////////////////////////////////////////////////////////////// /// Configures the decoder. /// @param useOMP Use parallel threading with Open MP during decoding. Default value: true. Influences the decoding only if the codec has been compiled with OpenMP support. /// @param policy The file might contain user data (e.g. metadata). The policy defines the behaviour during Open(). /// UP_CacheAll: User data is read and stored completely in a new allocated memory block. It can be accessed by GetUserData(). /// UP_CachePrefix: Only prefixSize bytes at the beginning of the user data are stored in a new allocated memory block. It can be accessed by GetUserData(). /// UP_Skip: User data is skipped and nothing is cached. /// @param prefixSize Is only used in combination with UP_CachePrefix. It defines the number of bytes cached. void ConfigureDecoder(bool useOMP = true, UserdataPolicy policy = UP_CacheAll, UINT32 prefixSize = 0) { ASSERT(prefixSize <= MaxUserDataSize); m_useOMPinDecoder = useOMP; m_userDataPolicy = (UP_CachePrefix) ? prefixSize : 0xFFFFFFFF - policy; } //////////////////////////////////////////////////////////////////// /// Reset stream position to start of PGF pre-header or start of data. Must not be called before Open() or before Write(). /// Use this method after Read() if you want to read the same image several times, e.g. reading different ROIs. /// @param startOfData true: you want to read the same image several times. false: resets stream position to the initial position void ResetStreamPos(bool startOfData); ////////////////////////////////////////////////////////////////////// /// Set internal PGF image buffer channel. /// @param channel A YUV data channel /// @param c A channel index void SetChannel(DataT* channel, int c = 0) { ASSERT(c >= 0 && c < MaxChannels); m_channel[c] = channel; } ////////////////////////////////////////////////////////////////////// /// Set PGF header and user data. /// Precondition: The PGF image has been never opened with Open(...). /// It might throw an IOException. /// @param header A valid and already filled in PGF header structure /// @param flags A combination of additional version flags. In case you use level-wise encoding then set flag = PGFROI. /// @param userData A user-defined memory block containing any kind of cached metadata. /// @param userDataLength The size of user-defined memory block in bytes void SetHeader(const PGFHeader& header, BYTE flags = 0, const UINT8* userData = 0, UINT32 userDataLength = 0); // throws IOException ////////////////////////////////////////////////////////////////////// /// Set maximum intensity value for image modes with more than eight bits per channel. /// Call this method after SetHeader, but before ImportBitmap. /// @param maxValue The maximum intensity value. void SetMaxValue(UINT32 maxValue); ////////////////////////////////////////////////////////////////////// /// Set progress mode used in Read and Write. /// Default mode is PM_Relative. /// This method must be called before Open() or SetHeader(). /// PM_Relative: 100% = level difference between current level and target level of Read/Write /// PM_Absolute: 100% = number of levels void SetProgressMode(ProgressMode pm) { m_progressMode = pm; } ////////////////////////////////////////////////////////////////////// /// Set refresh callback procedure and its parameter. /// The refresh callback is called during Read(...) after each level read. /// @param callback A refresh callback procedure /// @param arg A parameter of the refresh callback procedure void SetRefreshCallback(RefreshCB callback, void* arg) { m_cb = callback; m_cbArg = arg; } ////////////////////////////////////////////////////////////////////// /// Sets the red, green, blue (RGB) color values for a range of entries in the palette (clut). /// It might throw an IOException. /// @param iFirstColor The color table index of the first entry to set. /// @param nColors The number of color table entries to set. /// @param prgbColors A pointer to the array of RGBQUAD structures to set the color table entries. void SetColorTable(UINT32 iFirstColor, UINT32 nColors, const RGBQUAD* prgbColors); ////////////////////////////////////////////////////////////////////// /// Return an internal YUV image channel. /// @param c A channel index /// @return An internal YUV image channel DataT* GetChannel(int c = 0) { ASSERT(c >= 0 && c < MaxChannels); return m_channel[c]; } ////////////////////////////////////////////////////////////////////// /// Retrieves red, green, blue (RGB) color values from a range of entries in the palette of the DIB section. /// It might throw an IOException. /// @param iFirstColor The color table index of the first entry to retrieve. /// @param nColors The number of color table entries to retrieve. /// @param prgbColors A pointer to the array of RGBQUAD structures to retrieve the color table entries. void GetColorTable(UINT32 iFirstColor, UINT32 nColors, RGBQUAD* prgbColors) const; ////////////////////////////////////////////////////////////////////// // Returns address of internal color table /// @return Address of color table const RGBQUAD* GetColorTable() const { return m_postHeader.clut; } ////////////////////////////////////////////////////////////////////// /// Return the PGF header structure. /// @return A PGF header structure const PGFHeader* GetHeader() const { return &m_header; } ////////////////////////////////////////////////////////////////////// /// Get maximum intensity value for image modes with more than eight bits per channel. /// Don't call this method before the PGF header has been read. /// @return The maximum intensity value. UINT32 GetMaxValue() const { return (1 << m_header.usedBitsPerChannel) - 1; } ////////////////////////////////////////////////////////////////////// /// Return the stream position of the user data or 0. /// Precondition: The PGF image has been opened with a call of Open(...). UINT64 GetUserDataPos() const { return m_userDataPos; } ////////////////////////////////////////////////////////////////////// /// Return user data and size of user data. /// Precondition: The PGF image has been opened with a call of Open(...). /// @param cachedSize [out] Size of returned user data in bytes. /// @param pTotalSize [optional out] Pointer to return the size of user data stored in image header in bytes. /// @return A pointer to user data or nullptr if there is no user data available. const UINT8* GetUserData(UINT32& cachedSize, UINT32* pTotalSize = nullptr) const; ////////////////////////////////////////////////////////////////////// /// Return the length of all encoded headers in bytes. /// Precondition: The PGF image has been opened with a call of Open(...). /// @return The length of all encoded headers in bytes UINT32 GetEncodedHeaderLength() const; ////////////////////////////////////////////////////////////////////// /// Return the length of an encoded PGF level in bytes. /// Precondition: The PGF image has been opened with a call of Open(...). /// @param level The image level /// @return The length of a PGF level in bytes UINT32 GetEncodedLevelLength(int level) const { ASSERT(level >= 0 && level < m_header.nLevels); return m_levelLength[m_header.nLevels - level - 1]; } ////////////////////////////////////////////////////////////////////// /// Reads the encoded PGF header and copies it to a target buffer. /// Precondition: The PGF image has been opened with a call of Open(...). /// It might throw an IOException. /// @param target The target buffer /// @param targetLen The length of the target buffer in bytes /// @return The number of bytes copied to the target buffer UINT32 ReadEncodedHeader(UINT8* target, UINT32 targetLen) const; ////////////////////////////////////////////////////////////////////// /// Reads the data of an encoded PGF level and copies it to a target buffer /// without decoding. /// Precondition: The PGF image has been opened with a call of Open(...). /// It might throw an IOException. /// @param level The image level /// @param target The target buffer /// @param targetLen The length of the target buffer in bytes /// @return The number of bytes copied to the target buffer UINT32 ReadEncodedData(int level, UINT8* target, UINT32 targetLen) const; ////////////////////////////////////////////////////////////////////// /// Return current image width of given channel in pixels. /// The returned width depends on the levels read so far and on ROI. /// @param c A channel index /// @return Channel width in pixels UINT32 ChannelWidth(int c = 0) const { ASSERT(c >= 0 && c < MaxChannels); return m_width[c]; } ////////////////////////////////////////////////////////////////////// /// Return current image height of given channel in pixels. /// The returned height depends on the levels read so far and on ROI. /// @param c A channel index /// @return Channel height in pixels UINT32 ChannelHeight(int c = 0) const { ASSERT(c >= 0 && c < MaxChannels); return m_height[c]; } ////////////////////////////////////////////////////////////////////// /// Return bits per channel of the image's encoder. /// @return Bits per channel BYTE ChannelDepth() const { return MaxChannelDepth(m_preHeader.version); } ////////////////////////////////////////////////////////////////////// /// Return image width of channel 0 at given level in pixels. /// The returned width is independent of any Read-operations and ROI. /// @param level A level /// @return Image level width in pixels UINT32 Width(int level = 0) const { ASSERT(level >= 0); return LevelSizeL(m_header.width, level); } ////////////////////////////////////////////////////////////////////// /// Return image height of channel 0 at given level in pixels. /// The returned height is independent of any Read-operations and ROI. /// @param level A level /// @return Image level height in pixels UINT32 Height(int level = 0) const { ASSERT(level >= 0); return LevelSizeL(m_header.height, level); } ////////////////////////////////////////////////////////////////////// /// Return current image level. /// Since Read(...) can be used to read each image level separately, it is /// helpful to know the current level. The current level immediately after Open(...) is Levels(). /// @return Current image level BYTE Level() const { return (BYTE)m_currentLevel; } ////////////////////////////////////////////////////////////////////// /// Return the number of image levels. /// @return Number of image levels BYTE Levels() const { return m_header.nLevels; } ////////////////////////////////////////////////////////////////////// /// Return true if all levels have been read bool IsFullyRead() const { return m_currentLevel == 0; } ////////////////////////////////////////////////////////////////////// /// Return the PGF quality. The quality is inbetween 0 and MaxQuality. /// PGF quality 0 means lossless quality. /// @return PGF quality BYTE Quality() const { return m_header.quality; } ////////////////////////////////////////////////////////////////////// /// Return the number of image channels. /// An image of type RGB contains 3 image channels (B, G, R). /// @return Number of image channels BYTE Channels() const { return m_header.channels; } ////////////////////////////////////////////////////////////////////// /// Return the image mode. /// An image mode is a predefined constant value (see also PGFtypes.h) compatible with Adobe Photoshop. /// It represents an image type and format. /// @return Image mode BYTE Mode() const { return m_header.mode; } ////////////////////////////////////////////////////////////////////// /// Return the number of bits per pixel. /// Valid values can be 1, 8, 12, 16, 24, 32, 48, 64. /// @return Number of bits per pixel. BYTE BPP() const { return m_header.bpp; } ////////////////////////////////////////////////////////////////////// /// Return true if the pgf image supports Region Of Interest (ROI). /// @return true if the pgf image supports ROI. bool ROIisSupported() const { return (m_preHeader.version & PGFROI) == PGFROI; } #ifdef __PGFROISUPPORT__ /// Return ROI of channel 0 at current level in pixels. /// The returned rect is only valid after reading a ROI. /// @return ROI in pixels PGFRect ComputeLevelROI() const; #endif ////////////////////////////////////////////////////////////////////// /// Returns number of used bits per input/output image channel. /// Precondition: header must be initialized. /// @return number of used bits per input/output image channel. BYTE UsedBitsPerChannel() const; ////////////////////////////////////////////////////////////////////// /// Returns the used codec major version of a pgf image /// @return PGF codec major version of this image BYTE Version() const { BYTE ver = CodecMajorVersion(m_preHeader.version); return (ver <= 7) ? ver : (BYTE)m_header.version.major; } //class methods ////////////////////////////////////////////////////////////////////// /// Check for valid import image mode. /// @param mode Image mode /// @return True if an image of given mode can be imported with ImportBitmap(...) static bool ImportIsSupported(BYTE mode); ////////////////////////////////////////////////////////////////////// /// Compute and return image width/height of LL subband at given level. /// @param size Original image size (e.g. width or height at level 0) /// @param level An image level /// @return Image width/height at given level in pixels static UINT32 LevelSizeL(UINT32 size, int level) { ASSERT(level >= 0); UINT32 d = 1 << level; return (size + d - 1) >> level; } ////////////////////////////////////////////////////////////////////// /// Compute and return image width/height of HH subband at given level. /// @param size Original image size (e.g. width or height at level 0) /// @param level An image level /// @return high pass size at given level in pixels static UINT32 LevelSizeH(UINT32 size, int level) { ASSERT(level >= 0); UINT32 d = 1 << (level - 1); return (size + d - 1) >> level; } ////////////////////////////////////////////////////////////////////// /// Return codec major version. /// @param version pgf pre-header version number /// @return PGF major of given version static BYTE CodecMajorVersion(BYTE version = PGFVersion); ////////////////////////////////////////////////////////////////////// /// Return maximum channel depth. /// @param version pgf pre-header version number /// @return maximum channel depth in bit of given version (16 or 32 bit) static BYTE MaxChannelDepth(BYTE version = PGFVersion) { return (version & PGF32) ? 32 : 16; } protected: CWaveletTransform* m_wtChannel[MaxChannels]; ///< wavelet transformed color channels DataT* m_channel[MaxChannels]; ///< untransformed channels in YUV format CDecoder* m_decoder; ///< PGF decoder CEncoder* m_encoder; ///< PGF encoder UINT32* m_levelLength; ///< length of each level in bytes; first level starts immediately after this array UINT32 m_width[MaxChannels]; ///< width of each channel at current level UINT32 m_height[MaxChannels]; ///< height of each channel at current level PGFPreHeader m_preHeader; ///< PGF pre-header PGFHeader m_header; ///< PGF file header PGFPostHeader m_postHeader; ///< PGF post-header UINT64 m_userDataPos; ///< stream position of user data int m_currentLevel; ///< transform level of current image UINT32 m_userDataPolicy; ///< user data (metadata) policy during open BYTE m_quant; ///< quantization parameter bool m_downsample; ///< chrominance channels are downsampled bool m_favorSpeedOverSize; ///< favor encoding speed over compression ratio bool m_useOMPinEncoder; ///< use Open MP in encoder bool m_useOMPinDecoder; ///< use Open MP in decoder #ifdef __PGFROISUPPORT__ bool m_streamReinitialized; ///< stream has been reinitialized PGFRect m_roi; ///< region of interest #endif private: RefreshCB m_cb; ///< pointer to refresh callback procedure void *m_cbArg; ///< refresh callback argument double m_percent; ///< progress [0..1] ProgressMode m_progressMode; ///< progress mode used in Read and Write; PM_Relative is default mode void Init(); void ComputeLevels(); bool CompleteHeader(); void RgbToYuv(int pitch, UINT8* rgbBuff, BYTE bpp, int channelMap[], CallbackPtr cb, void *data); void Downsample(int nChannel); UINT32 UpdatePostHeaderSize(); void WriteLevel(); #ifdef __PGFROISUPPORT__ PGFRect GetAlignedROI(int c = 0) const; void SetROI(PGFRect rect); #endif UINT8 Clamp4(DataT v) const { if (v & 0xFFFFFFF0) return (v < 0) ? (UINT8)0: (UINT8)15; else return (UINT8)v; } UINT16 Clamp6(DataT v) const { if (v & 0xFFFFFFC0) return (v < 0) ? (UINT16)0: (UINT16)63; else return (UINT16)v; } UINT8 Clamp8(DataT v) const { // needs only one test in the normal case if (v & 0xFFFFFF00) return (v < 0) ? (UINT8)0 : (UINT8)255; else return (UINT8)v; } UINT16 Clamp16(DataT v) const { if (v & 0xFFFF0000) return (v < 0) ? (UINT16)0: (UINT16)65535; else return (UINT16)v; } UINT32 Clamp31(DataT v) const { return (v < 0) ? 0 : (UINT32)v; } }; #endif //PGF_PGFIMAGE_H libpgf-7.21.7+ds/include/PGFplatform.h000066400000000000000000000523351422111121400174270ustar00rootroot00000000000000/* * The Progressive Graphics File; http://www.libpgf.org * * $Date: 2007-06-12 19:27:47 +0200 (Di, 12 Jun 2007) $ * $Revision: 307 $ * * This file Copyright (C) 2006 xeraina GmbH, Switzerland * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU LESSER GENERAL PUBLIC LICENSE * as published by the Free Software Foundation; either version 2.1 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ ////////////////////////////////////////////////////////////////////// /// @file PGFplatform.h /// @brief PGF platform specific definitions /// @author C. Stamm #ifndef PGF_PGFPLATFORM_H #define PGF_PGFPLATFORM_H #include #include #include //------------------------------------------------------------------------------- // Endianess detection taken from lcms2 header. // This list can be endless, so only some checks are performed over here. //------------------------------------------------------------------------------- #if defined(_HOST_BIG_ENDIAN) || defined(__BIG_ENDIAN__) || defined(WORDS_BIGENDIAN) #define PGF_USE_BIG_ENDIAN 1 #endif #if defined(__sgi__) || defined(__sgi) || defined(__powerpc__) || defined(__sparc) || defined(__sparc__) #define PGF_USE_BIG_ENDIAN 1 #endif #if defined(__ppc__) || defined(__s390__) || defined(__s390x__) #define PGF_USE_BIG_ENDIAN 1 #endif #ifdef TARGET_CPU_PPC #define PGF_USE_BIG_ENDIAN 1 #endif //------------------------------------------------------------------------------- // ROI support //------------------------------------------------------------------------------- #ifndef NPGFROI #define __PGFROISUPPORT__ // without ROI support the program code gets simpler and smaller #endif //------------------------------------------------------------------------------- // 32 bit per channel support //------------------------------------------------------------------------------- #ifndef NPGF32 #define __PGF32SUPPORT__ // without 32 bit the memory consumption during encoding and decoding is much lesser #endif //------------------------------------------------------------------------------- // 32 Bit platform constants //------------------------------------------------------------------------------- #define WordWidth 32 ///< WordBytes*8 #define WordWidthLog 5 ///< ld of WordWidth #define WordMask 0xFFFFFFE0 ///< least WordWidthLog bits are zero #define WordBytes 4 ///< sizeof(UINT32) #define WordBytesMask 0xFFFFFFFC ///< least WordBytesLog bits are zero #define WordBytesLog 2 ///< ld of WordBytes //------------------------------------------------------------------------------- // Alignment macros (used in PGF based libraries) //------------------------------------------------------------------------------- #define DWWIDTHBITS(bits) (((bits) + WordWidth - 1) & WordMask) ///< aligns scanline width in bits to DWORD value #define DWWIDTH(bytes) (((bytes) + WordBytes - 1) & WordBytesMask) ///< aligns scanline width in bytes to DWORD value #define DWWIDTHREST(bytes) ((WordBytes - (bytes)%WordBytes)%WordBytes) ///< DWWIDTH(bytes) - bytes //------------------------------------------------------------------------------- // Min-Max macros //------------------------------------------------------------------------------- #ifndef __min #define __min(x, y) ((x) <= (y) ? (x) : (y)) #define __max(x, y) ((x) >= (y) ? (x) : (y)) #endif // __min //------------------------------------------------------------------------------- // Defines -- Adobe image modes. //------------------------------------------------------------------------------- #define ImageModeBitmap 0 #define ImageModeGrayScale 1 #define ImageModeIndexedColor 2 #define ImageModeRGBColor 3 #define ImageModeCMYKColor 4 #define ImageModeHSLColor 5 #define ImageModeHSBColor 6 #define ImageModeMultichannel 7 #define ImageModeDuotone 8 #define ImageModeLabColor 9 #define ImageModeGray16 10 // 565 #define ImageModeRGB48 11 #define ImageModeLab48 12 #define ImageModeCMYK64 13 #define ImageModeDeepMultichannel 14 #define ImageModeDuotone16 15 // pgf extension #define ImageModeRGBA 17 #define ImageModeGray32 18 // MSB is 0 (can be interpreted as signed 15.16 fixed point format) #define ImageModeRGB12 19 #define ImageModeRGB16 20 #define ImageModeUnknown 255 //------------------------------------------------------------------------------- // WINDOWS //------------------------------------------------------------------------------- #if defined(WIN32) || defined(WINCE) || defined(WIN64) #define VC_EXTRALEAN // Exclude rarely-used stuff from Windows headers //------------------------------------------------------------------------------- // MFC //------------------------------------------------------------------------------- #ifdef _MFC_VER #ifndef _WIN32_WINNT // Specifies that the minimum required platform is Windows Vista. #define _WIN32_WINNT 0x0600 // Change this to the appropriate value to target other versions of Windows. #endif #include #include // MFC core and standard components #include // MFC extensions #include // MFC support for Internet Explorer 4 Common Controls #ifndef _AFX_NO_AFXCMN_SUPPORT #include // MFC support for Windows Common Controls #endif // _AFX_NO_AFXCMN_SUPPORT #else #include #include #endif // _MFC_VER //------------------------------------------------------------------------------- #define DllExport __declspec( dllexport ) //------------------------------------------------------------------------------- // unsigned number type definitions //------------------------------------------------------------------------------- typedef unsigned char UINT8; typedef unsigned char BYTE; typedef unsigned short UINT16; typedef unsigned short WORD; typedef unsigned int UINT32; typedef unsigned long DWORD; typedef unsigned long ULONG; typedef unsigned __int64 UINT64; typedef unsigned __int64 ULONGLONG; //------------------------------------------------------------------------------- // signed number type definitions //------------------------------------------------------------------------------- typedef signed char INT8; typedef signed short INT16; typedef signed int INT32; typedef signed int BOOL; typedef signed long LONG; typedef signed __int64 INT64; typedef signed __int64 LONGLONG; //------------------------------------------------------------------------------- // other types //------------------------------------------------------------------------------- typedef int OSError; typedef bool (__cdecl *CallbackPtr)(double percent, bool escapeAllowed, void *data); //------------------------------------------------------------------------------- // struct type definitions //------------------------------------------------------------------------------- //------------------------------------------------------------------------------- // DEBUG macros //------------------------------------------------------------------------------- #ifndef ASSERT #ifdef _DEBUG #define ASSERT(x) assert(x) #else #if defined(__GNUC__) #define ASSERT(ignore)((void) 0) #elif _MSC_VER >= 1300 #define ASSERT __noop #else #define ASSERT ((void)0) #endif #endif //_DEBUG #endif //ASSERT //------------------------------------------------------------------------------- // Exception handling macros //------------------------------------------------------------------------------- #ifdef NEXCEPTIONS extern OSError _PGF_Error_; extern OSError GetLastPGFError(); #define ReturnWithError(err) { _PGF_Error_ = err; return; } #define ReturnWithError2(err, ret) { _PGF_Error_ = err; return ret; } #else #define ReturnWithError(err) throw IOException(err) #define ReturnWithError2(err, ret) throw IOException(err) #endif //NEXCEPTIONS //------------------------------------------------------------------------------- // constants //------------------------------------------------------------------------------- #define FSFromStart FILE_BEGIN // 0 #define FSFromCurrent FILE_CURRENT // 1 #define FSFromEnd FILE_END // 2 #define INVALID_SET_FILE_POINTER ((DWORD)-1) //------------------------------------------------------------------------------- // IO Error constants //------------------------------------------------------------------------------- #define NoError ERROR_SUCCESS ///< no error #define AppError 0x20000000 ///< all application error messages must be larger than this value #define InsufficientMemory 0x20000001 ///< memory allocation was not successfull #define InvalidStreamPos 0x20000002 ///< invalid memory stream position #define EscapePressed 0x20000003 ///< user break by ESC #define WrongVersion 0x20000004 ///< wrong PGF version #define FormatCannotRead 0x20000005 ///< wrong data file format #define ImageTooSmall 0x20000006 ///< image is too small #define ZlibError 0x20000007 ///< error in zlib functions #define ColorTableError 0x20000008 ///< errors related to color table size #define PNGError 0x20000009 ///< errors in png functions #define MissingData 0x2000000A ///< expected data cannot be read //------------------------------------------------------------------------------- // methods //------------------------------------------------------------------------------- inline OSError FileRead(HANDLE hFile, int *count, void *buffPtr) { if (ReadFile(hFile, buffPtr, *count, (ULONG *)count, nullptr)) { return NoError; } else { return GetLastError(); } } inline OSError FileWrite(HANDLE hFile, int *count, void *buffPtr) { if (WriteFile(hFile, buffPtr, *count, (ULONG *)count, nullptr)) { return NoError; } else { return GetLastError(); } } inline OSError GetFPos(HANDLE hFile, UINT64 *pos) { #ifdef WINCE LARGE_INTEGER li; li.QuadPart = 0; li.LowPart = SetFilePointer (hFile, li.LowPart, &li.HighPart, FILE_CURRENT); if (li.LowPart == INVALID_SET_FILE_POINTER) { OSError err = GetLastError(); if (err != NoError) { return err; } } *pos = li.QuadPart; return NoError; #else LARGE_INTEGER li; li.QuadPart = 0; if (SetFilePointerEx(hFile, li, (PLARGE_INTEGER)pos, FILE_CURRENT)) { return NoError; } else { return GetLastError(); } #endif } inline OSError SetFPos(HANDLE hFile, int posMode, INT64 posOff) { #ifdef WINCE LARGE_INTEGER li; li.QuadPart = posOff; if (SetFilePointer (hFile, li.LowPart, &li.HighPart, posMode) == INVALID_SET_FILE_POINTER) { OSError err = GetLastError(); if (err != NoError) { return err; } } return NoError; #else LARGE_INTEGER li; li.QuadPart = posOff; if (SetFilePointerEx(hFile, li, nullptr, posMode)) { return NoError; } else { return GetLastError(); } #endif } #endif //WIN32 //------------------------------------------------------------------------------- // Apple OSX //------------------------------------------------------------------------------- #ifdef __APPLE__ #define __POSIX__ #endif // __APPLE__ //------------------------------------------------------------------------------- // LINUX //------------------------------------------------------------------------------- #if defined(__linux__) || defined(__GLIBC__) #define __POSIX__ #endif // __linux__ or __GLIBC__ //------------------------------------------------------------------------------- // SOLARIS //------------------------------------------------------------------------------- #ifdef __sun #define __POSIX__ #endif // __sun //------------------------------------------------------------------------------- // *BSD //------------------------------------------------------------------------------- #if defined(__NetBSD__) || defined(__OpenBSD__) || defined(__FreeBSD__) #ifndef __POSIX__ #define __POSIX__ #endif #ifndef off64_t #define off64_t off_t #endif #ifndef lseek64 #define lseek64 lseek #endif #endif // __NetBSD__ or __OpenBSD__ or __FreeBSD__ //------------------------------------------------------------------------------- // POSIX *NIXes //------------------------------------------------------------------------------- #ifdef __POSIX__ #include #include #include // for int64_t and uint64_t #include // memcpy() #undef major //------------------------------------------------------------------------------- // unsigned number type definitions //------------------------------------------------------------------------------- typedef unsigned char UINT8; typedef unsigned char BYTE; typedef unsigned short UINT16; typedef unsigned short WORD; typedef unsigned int UINT32; typedef unsigned int DWORD; typedef unsigned long ULONG; typedef unsigned long long __Uint64; typedef __Uint64 UINT64; typedef __Uint64 ULONGLONG; //------------------------------------------------------------------------------- // signed number type definitions //------------------------------------------------------------------------------- typedef signed char INT8; typedef signed short INT16; typedef signed int INT32; typedef signed int BOOL; typedef signed long LONG; typedef int64_t INT64; typedef int64_t LONGLONG; //------------------------------------------------------------------------------- // other types //------------------------------------------------------------------------------- typedef int OSError; typedef int HANDLE; typedef unsigned long ULONG_PTR; typedef void* PVOID; typedef char* LPTSTR; typedef bool (*CallbackPtr)(double percent, bool escapeAllowed, void *data); //------------------------------------------------------------------------------- // struct type definitions //------------------------------------------------------------------------------- typedef struct tagRGBTRIPLE { BYTE rgbtBlue; BYTE rgbtGreen; BYTE rgbtRed; } RGBTRIPLE; typedef struct tagRGBQUAD { BYTE rgbBlue; BYTE rgbGreen; BYTE rgbRed; BYTE rgbReserved; } RGBQUAD; typedef union _LARGE_INTEGER { struct { DWORD LowPart; LONG HighPart; } u; LONGLONG QuadPart; } LARGE_INTEGER, *PLARGE_INTEGER; #endif // __POSIX__ #if defined(__POSIX__) || defined(WINCE) // CMYK macros #define GetKValue(cmyk) ((BYTE)(cmyk)) #define GetYValue(cmyk) ((BYTE)((cmyk)>> 8)) #define GetMValue(cmyk) ((BYTE)((cmyk)>>16)) #define GetCValue(cmyk) ((BYTE)((cmyk)>>24)) #define CMYK(c,m,y,k) ((COLORREF)((((BYTE)(k)|((WORD)((BYTE)(y))<<8))|(((DWORD)(BYTE)(m))<<16))|(((DWORD)(BYTE)(c))<<24))) //------------------------------------------------------------------------------- // methods //------------------------------------------------------------------------------- /* The MulDiv function multiplies two 32-bit values and then divides the 64-bit * result by a third 32-bit value. The return value is rounded up or down to * the nearest integer. * http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winprog/winprog/muldiv.asp * */ __inline int MulDiv(int nNumber, int nNumerator, int nDenominator) { INT64 multRes = nNumber*nNumerator; INT32 divRes = INT32(multRes/nDenominator); return divRes; } #endif // __POSIX__ or WINCE #ifdef __POSIX__ //------------------------------------------------------------------------------- // DEBUG macros //------------------------------------------------------------------------------- #ifndef ASSERT #ifdef _DEBUG #define ASSERT(x) assert(x) #else #define ASSERT(x) #endif //_DEBUG #endif //ASSERT //------------------------------------------------------------------------------- // Exception handling macros //------------------------------------------------------------------------------- #ifdef NEXCEPTIONS extern OSError _PGF_Error_; extern OSError GetLastPGFError(); #define ReturnWithError(err) { _PGF_Error_ = err; return; } #define ReturnWithError2(err, ret) { _PGF_Error_ = err; return ret; } #else #define ReturnWithError(err) throw IOException(err) #define ReturnWithError2(err, ret) throw IOException(err) #endif //NEXCEPTIONS #define THROW_ throw(IOException) #define CONST const //------------------------------------------------------------------------------- // constants //------------------------------------------------------------------------------- #define FSFromStart SEEK_SET #define FSFromCurrent SEEK_CUR #define FSFromEnd SEEK_END #if defined(__cplusplus) && __cplusplus < 201103L #define nullptr NULL #endif //------------------------------------------------------------------------------- // IO Error constants //------------------------------------------------------------------------------- #define NoError 0x0000 ///< no error #define AppError 0x2000 ///< all application error messages must be larger than this value #define InsufficientMemory 0x2001 ///< memory allocation wasn't successfull #define InvalidStreamPos 0x2002 ///< invalid memory stream position #define EscapePressed 0x2003 ///< user break by ESC #define WrongVersion 0x2004 ///< wrong pgf version #define FormatCannotRead 0x2005 ///< wrong data file format #define ImageTooSmall 0x2006 ///< image is too small #define ZlibError 0x2007 ///< error in zlib functions #define ColorTableError 0x2008 ///< errors related to color table size #define PNGError 0x2009 ///< errors in png functions #define MissingData 0x200A ///< expected data cannot be read //------------------------------------------------------------------------------- // methods //------------------------------------------------------------------------------- __inline OSError FileRead(HANDLE hFile, int *count, void *buffPtr) { *count = (int)read(hFile, buffPtr, *count); if (*count != -1) { return NoError; } else { return errno; } } __inline OSError FileWrite(HANDLE hFile, int *count, void *buffPtr) { *count = (int)write(hFile, buffPtr, (size_t)*count); if (*count != -1) { return NoError; } else { return errno; } } __inline OSError GetFPos(HANDLE hFile, UINT64 *pos) { #ifdef __APPLE__ off_t ret; if ((ret = lseek(hFile, 0, SEEK_CUR)) == -1) { return errno; } else { *pos = (UINT64)ret; return NoError; } #else off64_t ret; if ((ret = lseek64(hFile, 0, SEEK_CUR)) == -1) { return errno; } else { *pos = (UINT64)ret; return NoError; } #endif } __inline OSError SetFPos(HANDLE hFile, int posMode, INT64 posOff) { #ifdef __APPLE__ if ((lseek(hFile, (off_t)posOff, posMode)) == -1) { return errno; } else { return NoError; } #else if ((lseek64(hFile, (off64_t)posOff, posMode)) == -1) { return errno; } else { return NoError; } #endif } #endif /* __POSIX__ */ //------------------------------------------------------------------------------- //------------------------------------------------------------------------------- // Big Endian //------------------------------------------------------------------------------- #ifdef PGF_USE_BIG_ENDIAN #ifndef _lrotl #define _lrotl(x,n) (((x) << ((UINT32)(n))) | ((x) >> (32 - (UINT32)(n)))) #endif __inline UINT16 ByteSwap(UINT16 wX) { return ((wX & 0xFF00) >> 8) | ((wX & 0x00FF) << 8); } __inline UINT32 ByteSwap(UINT32 dwX) { #ifdef _X86_ _asm mov eax, dwX _asm bswap eax _asm mov dwX, eax return dwX; #else return _lrotl(((dwX & 0xFF00FF00) >> 8) | ((dwX & 0x00FF00FF) << 8), 16); #endif } #if defined(WIN32) || defined(WIN64) __inline UINT64 ByteSwap(UINT64 ui64) { return _byteswap_uint64(ui64); } #endif #define __VAL(x) ByteSwap(x) #else //PGF_USE_BIG_ENDIAN #define __VAL(x) (x) #endif //PGF_USE_BIG_ENDIAN // OpenMP rules (inspired from libraw project) // NOTE: Use LIBPGF_DISABLE_OPENMP to disable OpenMP support in whole libpgf #ifndef LIBPGF_DISABLE_OPENMP # if defined (_OPENMP) # if defined (WIN32) || defined(WIN64) # if defined (_MSC_VER) && (_MSC_VER >= 1500) // VS2008 SP1 and VS2010+ : OpenMP works OK # define LIBPGF_USE_OPENMP # elif defined (__INTEL_COMPILER) && (__INTEL_COMPILER >=910) // untested on 9.x and 10.x, Intel documentation claims OpenMP 2.5 support in 9.1 # define LIBPGF_USE_OPENMP # else # undef LIBPGF_USE_OPENMP # endif // Not Win32 # elif (defined(__APPLE__) || defined(__MACOSX__)) && defined(_REENTRANT) # undef LIBPGF_USE_OPENMP # else # define LIBPGF_USE_OPENMP # endif # endif // defined (_OPENMP) #endif // ifndef LIBPGF_DISABLE_OPENMP #ifdef LIBPGF_USE_OPENMP #include #endif #endif //PGF_PGFPLATFORM_H libpgf-7.21.7+ds/include/PGFstream.h000066400000000000000000000167471422111121400171050ustar00rootroot00000000000000/* * The Progressive Graphics File; http://www.libpgf.org * * $Date: 2007-06-11 10:56:17 +0200 (Mo, 11 Jun 2007) $ * $Revision: 299 $ * * This file Copyright (C) 2006 xeraina GmbH, Switzerland * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU LESSER GENERAL PUBLIC LICENSE * as published by the Free Software Foundation; either version 2.1 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ ////////////////////////////////////////////////////////////////////// /// @file PGFstream.h /// @brief PGF stream class /// @author C. Stamm #ifndef PGF_STREAM_H #define PGF_STREAM_H #include "PGFtypes.h" #include ///////////////////////////////////////////////////////////////////// /// Abstract stream base class. /// @author C. Stamm /// @brief Abstract stream base class class CPGFStream { public: ////////////////////////////////////////////////////////////////////// /// Standard constructor. CPGFStream() {} ////////////////////////////////////////////////////////////////////// /// Standard destructor. virtual ~CPGFStream() {} ////////////////////////////////////////////////////////////////////// /// Write some bytes out of a buffer into this stream. /// @param count A pointer to a value containing the number of bytes should be written. After this call it contains the number of written bytes. /// @param buffer A memory buffer virtual void Write(int *count, void *buffer)=0; ////////////////////////////////////////////////////////////////////// /// Read some bytes from this stream and stores them into a buffer. /// @param count A pointer to a value containing the number of bytes should be read. After this call it contains the number of read bytes. /// @param buffer A memory buffer virtual void Read(int *count, void *buffer)=0; ////////////////////////////////////////////////////////////////////// /// Set stream position either absolute or relative. /// @param posMode A position mode (FSFromStart, FSFromCurrent, FSFromEnd) /// @param posOff A new stream position (absolute positioning) or a position offset (relative positioning) virtual void SetPos(short posMode, INT64 posOff)=0; ////////////////////////////////////////////////////////////////////// /// Get current stream position. /// @return Current stream position virtual UINT64 GetPos() const=0; ////////////////////////////////////////////////////////////////////// /// Check stream validity. /// @return True if stream and current position is valid virtual bool IsValid() const=0; }; ///////////////////////////////////////////////////////////////////// /// A PGF stream subclass for external storage files. /// @author C. Stamm /// @brief File stream class class CPGFFileStream : public CPGFStream { protected: HANDLE m_hFile; ///< file handle public: CPGFFileStream() : m_hFile(0) {} /// Constructor /// @param hFile File handle CPGFFileStream(HANDLE hFile) : m_hFile(hFile) {} /// @return File handle HANDLE GetHandle() { return m_hFile; } virtual ~CPGFFileStream() { m_hFile = 0; } virtual void Write(int *count, void *buffer); // throws IOException virtual void Read(int *count, void *buffer); // throws IOException virtual void SetPos(short posMode, INT64 posOff); // throws IOException virtual UINT64 GetPos() const; // throws IOException virtual bool IsValid() const { return m_hFile != 0; } }; ///////////////////////////////////////////////////////////////////// /// A PGF stream subclass for internal memory. /// @author C. Stamm /// @brief Memory stream class class CPGFMemoryStream : public CPGFStream { protected: UINT8 *m_buffer, *m_pos;///< buffer start address and current buffer address UINT8 *m_eos; ///< end of stream (first address beyond written area) size_t m_size; ///< buffer size bool m_allocated; ///< indicates a new allocated buffer public: /// Constructor /// @param size Size of new allocated memory buffer CPGFMemoryStream(size_t size); /// Constructor. Use already allocated memory of given size /// @param pBuffer Memory location /// @param size Memory size CPGFMemoryStream(UINT8 *pBuffer, size_t size); /// Use already allocated memory of given size /// @param pBuffer Memory location /// @param size Memory size void Reinitialize(UINT8 *pBuffer, size_t size); virtual ~CPGFMemoryStream() { m_pos = 0; if (m_allocated) { // the memory buffer has been allocated inside of CPMFmemoryStream constructor delete[] m_buffer; m_buffer = 0; } } virtual void Write(int *count, void *buffer); // throws IOException virtual void Read(int *count, void *buffer); virtual void SetPos(short posMode, INT64 posOff); // throws IOException virtual UINT64 GetPos() const { ASSERT(IsValid()); return m_pos - m_buffer; } virtual bool IsValid() const { return m_buffer != 0; } /// @return Memory size size_t GetSize() const { return m_size; } /// @return Memory buffer const UINT8* GetBuffer() const { return m_buffer; } /// @return Memory buffer UINT8* GetBuffer() { return m_buffer; } /// @return relative position of end of stream (= stream length) UINT64 GetEOS() const { ASSERT(IsValid()); return m_eos - m_buffer; } /// @param length Stream length (= relative position of end of stream) void SetEOS(UINT64 length) { ASSERT(IsValid()); m_eos = m_buffer + length; } }; ///////////////////////////////////////////////////////////////////// /// A PGF stream subclass for internal memory files. Usable only with MFC. /// @author C. Stamm /// @brief Cached memory file stream class #ifdef _MFC_VER class CPGFMemFileStream : public CPGFStream { protected: CMemFile *m_memFile; ///< MFC memory file public: CPGFMemFileStream(CMemFile *memFile) : m_memFile(memFile) {} virtual bool IsValid() const { return m_memFile != nullptr; } virtual ~CPGFMemFileStream() {} virtual void Write(int *count, void *buffer); // throws IOException virtual void Read(int *count, void *buffer); // throws IOException virtual void SetPos(short posMode, INT64 posOff); // throws IOException virtual UINT64 GetPos() const; // throws IOException }; #endif ///////////////////////////////////////////////////////////////////// /// A PGF stream subclass for IStream. Usable only with COM. /// @author C. Stamm /// @brief COM IStream class #if defined(WIN32) || defined(WINCE) class CPGFIStream : public CPGFStream { protected: IStream *m_stream; ///< COM+ IStream public: CPGFIStream(IStream *stream) : m_stream(stream) { m_stream->AddRef(); } virtual bool IsValid() const { return m_stream != 0; } virtual ~CPGFIStream() { m_stream->Release(); } virtual void Write(int *count, void *buffer); // throws IOException virtual void Read(int *count, void *buffer); // throws IOException virtual void SetPos(short posMode, INT64 posOff); // throws IOException virtual UINT64 GetPos() const; // throws IOException IStream* GetIStream() const { return m_stream; } }; #endif #endif // PGF_STREAM_H libpgf-7.21.7+ds/include/PGFtypes.h000066400000000000000000000276771422111121400167620ustar00rootroot00000000000000/* * The Progressive Graphics File; http://www.libpgf.org * * $Date: 2007-06-11 10:56:17 +0200 (Mo, 11 Jun 2007) $ * $Revision: 299 $ * * This file Copyright (C) 2006 xeraina GmbH, Switzerland * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU LESSER GENERAL PUBLIC LICENSE * as published by the Free Software Foundation; either version 2.1 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ ////////////////////////////////////////////////////////////////////// /// @file PGFtypes.h /// @brief PGF definitions /// @author C. Stamm #ifndef PGF_PGFTYPES_H #define PGF_PGFTYPES_H #include "PGFplatform.h" //------------------------------------------------------------------------------- // Codec versions // // Version 2: modified data structure PGFHeader (backward compatibility assured) // Version 4: DataT: INT32 instead of INT16, allows 30 bit per pixel and channel (backward compatibility assured) // Version 5: ROI, new block-reordering scheme (backward compatibility assured) // Version 6: modified data structure PGFPreHeader: hSize (header size) is now a UINT32 instead of a UINT16 (backward compatibility assured) // Version 7: last two bytes in header are now used for extended version numbers; new data representation for bitmaps (backward compatibility assured) // //------------------------------------------------------------------------------- #define PGFMajorNumber 7 #define PGFYear 21 // leading zeros are possible #define PGFWeek 07 // leading zeros are possible #define PPCAT_NX(A, B) A ## B #define PPCAT(A, B) PPCAT_NX(A, B) #define STRINGIZE_NX(A) #A #define STRINGIZE(A) STRINGIZE_NX(A) //#define PGFCodecVersionID 0x072102 #define PGFCodecVersionID PPCAT(PPCAT(PPCAT(0x0, PGFMajorNumber), PGFYear), PGFWeek) //#define PGFCodecVersion "7.21.02" ///< Major number, Minor number: Year (2) Week (2) #define PGFCodecVersion STRINGIZE(PPCAT(PPCAT(PPCAT(PPCAT(PGFMajorNumber, .), PGFYear), .), PGFWeek)) //------------------------------------------------------------------------------- // Image constants //------------------------------------------------------------------------------- #define PGFMagic "PGF" ///< PGF identification #define MaxLevel 30 ///< maximum number of transform levels #define NSubbands 4 ///< number of subbands per level #define MaxChannels 8 ///< maximum number of (color) channels #define DownsampleThreshold 3 ///< if quality is larger than this threshold than downsampling is used #define ColorTableLen 256 ///< size of color lookup table (clut) // version flags #define Version2 2 ///< data structure PGFHeader of major version 2 #define PGF32 4 ///< 32 bit values are used -> allows at maximum 30 input bits, otherwise 16 bit values are used -> allows at maximum 14 input bits #define PGFROI 8 ///< supports Regions Of Interest #define Version5 16 ///< new coding scheme since major version 5 #define Version6 32 ///< hSize in PGFPreHeader uses 32 bits instead of 16 bits #define Version7 64 ///< Codec major and minor version number stored in PGFHeader // version numbers #ifdef __PGF32SUPPORT__ #define PGFVersion (Version2 | PGF32 | Version5 | Version6 | Version7) ///< current standard version #else #define PGFVersion (Version2 | Version5 | Version6 | Version7) ///< current standard version #endif //------------------------------------------------------------------------------- // Coder constants //------------------------------------------------------------------------------- #define BufferSize 16384 ///< must be a multiple of WordWidth, BufferSize <= UINT16_MAX #define RLblockSizeLen 15 ///< block size length (< 16): ld(BufferSize) < RLblockSizeLen <= 2*ld(BufferSize) #define LinBlockSize 8 ///< side length of a coefficient block in a HH or LL subband #define InterBlockSize 4 ///< side length of a coefficient block in a HL or LH subband #ifdef __PGF32SUPPORT__ #define MaxBitPlanes 31 ///< maximum number of bit planes of m_value: 32 minus sign bit #else #define MaxBitPlanes 15 ///< maximum number of bit planes of m_value: 16 minus sign bit #endif #define MaxBitPlanesLog 5 ///< number of bits to code the maximum number of bit planes (in 32 or 16 bit mode) #define MaxQuality MaxBitPlanes ///< maximum quality //------------------------------------------------------------------------------- // Types //------------------------------------------------------------------------------- enum Orientation { LL = 0, HL = 1, LH = 2, HH = 3 }; enum ProgressMode { PM_Relative, PM_Absolute }; enum UserdataPolicy { UP_Skip = 0, UP_CachePrefix = 1, UP_CacheAll = 2 }; /// general PGF file structure /// PGFPreHeader PGFHeader [PGFPostHeader] LevelLengths Level_n-1 Level_n-2 ... Level_0 /// PGFPostHeader ::= [ColorTable] [UserData] /// LevelLengths ::= UINT32[nLevels] #pragma pack(1) ///////////////////////////////////////////////////////////////////// /// PGF magic and version (part of PGF pre-header) /// @author C. Stamm /// @brief PGF identification and version struct PGFMagicVersion { char magic[3]; ///< PGF identification = "PGF" UINT8 version; ///< PGF version // total: 4 Bytes }; ///////////////////////////////////////////////////////////////////// /// PGF pre-header defined header length and PGF identification and version /// @author C. Stamm /// @brief PGF pre-header struct PGFPreHeader : PGFMagicVersion { UINT32 hSize; ///< total size of PGFHeader, [ColorTable], and [UserData] in bytes (since Version 6: 4 Bytes) // total: 8 Bytes }; ///////////////////////////////////////////////////////////////////// /// Version number since major version 7 /// @author C. Stamm /// @brief version number stored in header since major version 7 struct PGFVersionNumber { PGFVersionNumber(UINT8 _major, UINT8 _year, UINT8 _week) : major(_major), year(_year), week(_week) {} #ifdef PGF_USE_BIG_ENDIAN UINT16 week : 6; ///< week number in a year UINT16 year : 6; ///< year since 2000 (year 2001 = 1) UINT16 major : 4; ///< major version number #else UINT16 major : 4; ///< major version number UINT16 year : 6; ///< year since 2000 (year 2001 = 1) UINT16 week : 6; ///< week number in a year #endif // PGF_USE_BIG_ENDIAN // total: 2 Bytes }; ///////////////////////////////////////////////////////////////////// /// PGF header contains image information /// @author C. Stamm /// @brief PGF header struct PGFHeader { PGFHeader() : width(0), height(0), nLevels(0), quality(0), bpp(0), channels(0), mode(ImageModeUnknown), usedBitsPerChannel(0), version(0, 0, 0) {} UINT32 width; ///< image width in pixels UINT32 height; ///< image height in pixels UINT8 nLevels; ///< number of FWT transforms UINT8 quality; ///< quantization parameter: 0=lossless, 4=standard, 6=poor quality UINT8 bpp; ///< bits per pixel UINT8 channels; ///< number of channels UINT8 mode; ///< image mode according to Adobe's image modes UINT8 usedBitsPerChannel; ///< number of used bits per channel in 16- and 32-bit per channel modes PGFVersionNumber version; ///< codec version number: (since Version 7) // total: 16 Bytes }; ///////////////////////////////////////////////////////////////////// /// PGF post-header is optional. It contains color table and user data /// @author C. Stamm /// @brief Optional PGF post-header struct PGFPostHeader { RGBQUAD clut[ColorTableLen];///< color table for indexed color images (optional part of file header) UINT8 *userData; ///< user data of size userDataLen (optional part of file header) UINT32 userDataLen; ///< user data size in bytes (not part of file header) UINT32 cachedUserDataLen; ///< cached user data size in bytes (not part of file header) }; ///////////////////////////////////////////////////////////////////// /// ROI block header is used with ROI coding scheme. It contains block size and tile end flag /// @author C. Stamm /// @brief Block header used with ROI coding scheme union ROIBlockHeader { UINT16 val; ///< unstructured union value /// @brief Named ROI block header (part of the union) struct RBH { #ifdef PGF_USE_BIG_ENDIAN UINT16 tileEnd : 1; ///< 1: last part of a tile UINT16 bufferSize: RLblockSizeLen; ///< number of uncoded UINT32 values in a block #else UINT16 bufferSize: RLblockSizeLen; ///< number of uncoded UINT32 values in a block UINT16 tileEnd : 1; ///< 1: last part of a tile #endif // PGF_USE_BIG_ENDIAN } rbh; ///< ROI block header // total: 2 Bytes /// Constructor /// @param v Buffer size ROIBlockHeader(UINT16 v) { val = v; } /// Constructor /// @param size Buffer size /// @param end 0/1 Flag; 1: last part of a tile ROIBlockHeader(UINT32 size, bool end) { ASSERT(size < (1 << RLblockSizeLen)); rbh.bufferSize = size; rbh.tileEnd = end; } }; #pragma pack() ///////////////////////////////////////////////////////////////////// /// PGF I/O exception /// @author C. Stamm /// @brief PGF exception struct IOException { OSError error; ///< operating system error code /// Standard constructor IOException() : error(NoError) {} /// Constructor /// @param err Run-time error IOException(OSError err) : error(err) {} }; ///////////////////////////////////////////////////////////////////// /// Rectangle /// @author C. Stamm /// @brief Rectangle struct PGFRect { UINT32 left, top, right, bottom; /// Standard constructor PGFRect() : left(0), top(0), right(0), bottom(0) {} /// Constructor /// @param x Left offset /// @param y Top offset /// @param width Rectangle width /// @param height Rectangle height PGFRect(UINT32 x, UINT32 y, UINT32 width, UINT32 height) : left(x), top(y), right(x + width), bottom(y + height) {} #ifdef WIN32 PGFRect(const RECT& rect) : left(rect.left), top(rect.top), right(rect.right), bottom(rect.bottom) { ASSERT(rect.left >= 0 && rect.right >= 0 && rect.left <= rect.right); ASSERT(rect.top >= 0 && rect.bottom >= 0 && rect.top <= rect.bottom); } PGFRect& operator=(const RECT& rect) { left = rect.left; top = rect.top; right = rect.right; bottom = rect.bottom; return *this; } operator RECT() { RECT rect = { (LONG)left, (LONG)top, (LONG)right, (LONG)bottom }; return rect; } #endif /// @return Rectangle width UINT32 Width() const { return right - left; } /// @return Rectangle height UINT32 Height() const { return bottom - top; } /// Test if point (x,y) is inside this rectangle (inclusive top-left edges, exclusive bottom-right edges) /// @param x Point coordinate x /// @param y Point coordinate y /// @return True if point (x,y) is inside this rectangle (inclusive top-left edges, exclusive bottom-right edges) bool IsInside(UINT32 x, UINT32 y) const { return (x >= left && x < right && y >= top && y < bottom); } }; #ifdef __PGF32SUPPORT__ typedef INT32 DataT; #else typedef INT16 DataT; #endif typedef void (*RefreshCB)(void *p); //------------------------------------------------------------------------------- // Image constants //------------------------------------------------------------------------------- #define MagicVersionSize sizeof(PGFMagicVersion) #define PreHeaderSize sizeof(PGFPreHeader) #define HeaderSize sizeof(PGFHeader) #define ColorTableSize (ColorTableLen*sizeof(RGBQUAD)) #define DataTSize sizeof(DataT) #define MaxUserDataSize 0x7FFFFFFF #endif //PGF_PGFTYPES_H libpgf-7.21.7+ds/libpgf.pc.in000066400000000000000000000003741422111121400156420ustar00rootroot00000000000000prefix=@prefix@ exec_prefix=@exec_prefix@ libdir=@libdir@ includedir=@prefix@/include/@PACKAGE@ Name: @PACKAGE@ Description: libpgf - Progressive Graphics File (PGF) library Version: @VERSION@ Libs: -L${libdir} -lpgf Cflags: -I${includedir} libpgf-7.21.7+ds/libpgf.spec.in000066400000000000000000000040231422111121400161650ustar00rootroot00000000000000%define name @PACKAGE@ %define ver @VERSION@ %define prefix /usr %define datadir %{prefix}/share %define pkgname %{name}-%{ver} Summary: PGF (Progressive Graphics File) library Name: %{name} Version: %{ver} Vendor: TODO (www.libpgf.org) Release: %{rpm_release} License: LGPL Group: System Environment/Libraries URL: http://www.libpgf.org Source: ftp://www.libpgf.org/pub/%name/%{pkgname}.tar.gz BuildRoot: /var/tmp/%{pkgname}-%{user}/ Docdir: %{datadir}/doc/ %description libpgf is a library for working with PGF (Progresive Graphics File) images. # This is the summary for the devel rpm %package devel Summary: Include files, libraries and documentation for development Requires: %{name} = %{ver} Group: Development/Libraries # This is the description for the devel package %description devel libpgf is a library for working with PGF (Progresive Graphics File) images. %prep %setup CFLAGS=$RPM_OPT_FLAGS ./configure %{extra_configure_options} --prefix=%{prefix} %build make %install if test "/" != %{buildroot}; then rm -rf %{buildroot}; else echo "buildroot set to /, not deleting!"; fi; %makeinstall %clean if test "/" != %{buildroot}; then rm -rf %{buildroot}; else echo "buildroot set to /, not deleting!"; fi; # Since this is a library, we should run ldconfig # after installation and un-installation %post -p /sbin/ldconfig %postun -p /sbin/ldconfig # These are all files which make up the rpm # Shell globbing may be used %files %defattr(-, root, root) %{prefix}/lib/libpgf.so.* # The files which go in the devel package %files devel %defattr(-, root, root) %{prefix}/include/libpgf/* %{prefix}/lib/libpgf.a %{prefix}/lib/libpgf.so %{prefix}/lib/libpgf.la %{prefix}/lib/pkgconfig/@PACKAGE@.pc %{datadir}/doc/%{name}-%{ver}/html/* %{datadir}/man/man3/* # This is a changelog for the RPM ONLY! %changelog * Mon May 29 2005 Thomas Sondergaard initial spec file created from template libpgf-7.21.7+ds/src/000077500000000000000000000000001422111121400142315ustar00rootroot00000000000000libpgf-7.21.7+ds/src/BitStream.h000066400000000000000000000276671422111121400163160ustar00rootroot00000000000000/* * The Progressive Graphics File; http://www.libpgf.org * * $Date: 2006-06-04 22:05:59 +0200 (So, 04 Jun 2006) $ * $Revision: 229 $ * * This file Copyright (C) 2006 xeraina GmbH, Switzerland * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU LESSER GENERAL PUBLIC LICENSE * as published by the Free Software Foundation; either version 2.1 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ ////////////////////////////////////////////////////////////////////// /// @file Bitstream.h /// @brief PGF bit-stream operations /// @author C. Stamm #ifndef PGF_BITSTREAM_H #define PGF_BITSTREAM_H #include "PGFtypes.h" ////////////////////////////////////////////////////////////////////// // constants //static const WordWidth = 32; //static const WordWidthLog = 5; static const UINT32 Filled = 0xFFFFFFFF; /// @brief Make 64 bit unsigned integer from two 32 bit unsigned integers #define MAKEU64(a, b) ((UINT64) (((UINT32) (a)) | ((UINT64) ((UINT32) (b))) << 32)) /* static UINT8 lMask[] = { 0x00, // 00000000 0x80, // 10000000 0xc0, // 11000000 0xe0, // 11100000 0xf0, // 11110000 0xf8, // 11111000 0xfc, // 11111100 0xfe, // 11111110 0xff, // 11111111 }; */ // these procedures have to be inlined because of performance reasons ////////////////////////////////////////////////////////////////////// /// Set one bit of a bit stream to 1 /// @param stream A bit stream stored in array of unsigned integers /// @param pos A valid zero-based position in the bit stream inline void SetBit(UINT32* stream, UINT32 pos) { stream[pos >> WordWidthLog] |= (1 << (pos%WordWidth)); } ////////////////////////////////////////////////////////////////////// /// Set one bit of a bit stream to 0 /// @param stream A bit stream stored in array of unsigned integers /// @param pos A valid zero-based position in the bit stream inline void ClearBit(UINT32* stream, UINT32 pos) { stream[pos >> WordWidthLog] &= ~(1 << (pos%WordWidth)); } ////////////////////////////////////////////////////////////////////// /// Return one bit of a bit stream /// @param stream A bit stream stored in array of unsigned integers /// @param pos A valid zero-based position in the bit stream /// @return bit at position pos of bit stream stream inline bool GetBit(UINT32* stream, UINT32 pos) { return (stream[pos >> WordWidthLog] & (1 << (pos%WordWidth))) > 0; } ////////////////////////////////////////////////////////////////////// /// Compare k-bit binary representation of stream at position pos with val /// @param stream A bit stream stored in array of unsigned integers /// @param pos A valid zero-based position in the bit stream /// @param k Number of bits to compare /// @param val Value to compare with /// @return true if equal inline bool CompareBitBlock(UINT32* stream, UINT32 pos, UINT32 k, UINT32 val) { const UINT32 iLoInt = pos >> WordWidthLog; const UINT32 iHiInt = (pos + k - 1) >> WordWidthLog; ASSERT(iLoInt <= iHiInt); const UINT32 mask = (Filled >> (WordWidth - k)); if (iLoInt == iHiInt) { // fits into one integer val &= mask; val <<= (pos%WordWidth); return (stream[iLoInt] & val) == val; } else { // must be splitted over integer boundary UINT64 v1 = MAKEU64(stream[iLoInt], stream[iHiInt]); UINT64 v2 = UINT64(val & mask) << (pos%WordWidth); return (v1 & v2) == v2; } } ////////////////////////////////////////////////////////////////////// /// Store k-bit binary representation of val in stream at position pos /// @param stream A bit stream stored in array of unsigned integers /// @param pos A valid zero-based position in the bit stream /// @param val Value to store in stream at position pos /// @param k Number of bits of integer representation of val inline void SetValueBlock(UINT32* stream, UINT32 pos, UINT32 val, UINT32 k) { const UINT32 offset = pos%WordWidth; const UINT32 iLoInt = pos >> WordWidthLog; const UINT32 iHiInt = (pos + k - 1) >> WordWidthLog; ASSERT(iLoInt <= iHiInt); const UINT32 loMask = Filled << offset; const UINT32 hiMask = Filled >> (WordWidth - 1 - ((pos + k - 1)%WordWidth)); if (iLoInt == iHiInt) { // fits into one integer stream[iLoInt] &= ~(loMask & hiMask); // clear bits stream[iLoInt] |= val << offset; // write value } else { // must be splitted over integer boundary stream[iLoInt] &= ~loMask; // clear bits stream[iLoInt] |= val << offset; // write lower part of value stream[iHiInt] &= ~hiMask; // clear bits stream[iHiInt] |= val >> (WordWidth - offset); // write higher part of value } } ////////////////////////////////////////////////////////////////////// /// Read k-bit number from stream at position pos /// @param stream A bit stream stored in array of unsigned integers /// @param pos A valid zero-based position in the bit stream /// @param k Number of bits to read: 1 <= k <= 32 inline UINT32 GetValueBlock(UINT32* stream, UINT32 pos, UINT32 k) { UINT32 count, hiCount; const UINT32 iLoInt = pos >> WordWidthLog; // integer of first bit const UINT32 iHiInt = (pos + k - 1) >> WordWidthLog; // integer of last bit const UINT32 loMask = Filled << (pos%WordWidth); const UINT32 hiMask = Filled >> (WordWidth - 1 - ((pos + k - 1)%WordWidth)); if (iLoInt == iHiInt) { // inside integer boundary count = stream[iLoInt] & (loMask & hiMask); count >>= pos%WordWidth; } else { // overlapping integer boundary count = stream[iLoInt] & loMask; count >>= pos%WordWidth; hiCount = stream[iHiInt] & hiMask; hiCount <<= WordWidth - (pos%WordWidth); count |= hiCount; } return count; } ////////////////////////////////////////////////////////////////////// /// Clear block of size at least len at position pos in stream /// @param stream A bit stream stored in array of unsigned integers /// @param pos A valid zero-based position in the bit stream /// @param len Number of bits set to 0 inline void ClearBitBlock(UINT32* stream, UINT32 pos, UINT32 len) { ASSERT(len > 0); const UINT32 iFirstInt = pos >> WordWidthLog; const UINT32 iLastInt = (pos + len - 1) >> WordWidthLog; const UINT32 startMask = Filled << (pos%WordWidth); // const UINT32 endMask=Filled>>(WordWidth-1-((pos+len-1)%WordWidth)); if (iFirstInt == iLastInt) { stream[iFirstInt] &= ~(startMask /*& endMask*/); } else { stream[iFirstInt] &= ~startMask; for (UINT32 i = iFirstInt + 1; i <= iLastInt; i++) { // changed <= stream[i] = 0; } //stream[iLastInt] &= ~endMask; } } ////////////////////////////////////////////////////////////////////// /// Set block of size at least len at position pos in stream /// @param stream A bit stream stored in array of unsigned integers /// @param pos A valid zero-based position in the bit stream /// @param len Number of bits set to 1 inline void SetBitBlock(UINT32* stream, UINT32 pos, UINT32 len) { ASSERT(len > 0); const UINT32 iFirstInt = pos >> WordWidthLog; const UINT32 iLastInt = (pos + len - 1) >> WordWidthLog; const UINT32 startMask = Filled << (pos%WordWidth); // const UINT32 endMask=Filled>>(WordWidth-1-((pos+len-1)%WordWidth)); if (iFirstInt == iLastInt) { stream[iFirstInt] |= (startMask /*& endMask*/); } else { stream[iFirstInt] |= startMask; for (UINT32 i = iFirstInt + 1; i <= iLastInt; i++) { // changed <= stream[i] = Filled; } //stream[iLastInt] &= ~endMask; } } ////////////////////////////////////////////////////////////////////// /// Returns the distance to the next 1 in stream at position pos. /// If no 1 is found within len bits, then len is returned. /// @param stream A bit stream stored in array of unsigned integers /// @param pos A valid zero-based position in the bit stream /// @param len size of search area (in bits) /// return The distance to the next 1 in stream at position pos inline UINT32 SeekBitRange(UINT32* stream, UINT32 pos, UINT32 len) { UINT32 count = 0; UINT32 testMask = 1 << (pos%WordWidth); UINT32* word = stream + (pos >> WordWidthLog); while (((*word & testMask) == 0) && (count < len)) { count++; testMask <<= 1; if (!testMask) { word++; testMask = 1; // fast steps if all bits in a word are zero while ((count + WordWidth <= len) && (*word == 0)) { word++; count += WordWidth; } } } return count; } ////////////////////////////////////////////////////////////////////// /// Returns the distance to the next 0 in stream at position pos. /// If no 0 is found within len bits, then len is returned. /// @param stream A bit stream stored in array of unsigned integers /// @param pos A valid zero-based position in the bit stream /// @param len size of search area (in bits) /// return The distance to the next 0 in stream at position pos inline UINT32 SeekBit1Range(UINT32* stream, UINT32 pos, UINT32 len) { UINT32 count = 0; UINT32 testMask = 1 << (pos%WordWidth); UINT32* word = stream + (pos >> WordWidthLog); while (((*word & testMask) != 0) && (count < len)) { count++; testMask <<= 1; if (!testMask) { word++; testMask = 1; // fast steps if all bits in a word are one while ((count + WordWidth <= len) && (*word == Filled)) { word++; count += WordWidth; } } } return count; } /* ////////////////////////////////////////////////////////////////////// /// BitCopy: copies k bits from source to destination /// Note: only 8 bits are copied at a time, if speed is an issue, a more /// complicated but faster 64 bit algorithm should be used. inline void BitCopy(const UINT8 *sStream, UINT32 sPos, UINT8 *dStream, UINT32 dPos, UINT32 k) { ASSERT(k > 0); div_t divS = div(sPos, 8); div_t divD = div(dPos, 8); UINT32 sOff = divS.rem; UINT32 dOff = divD.rem; INT32 tmp = div(dPos + k - 1, 8).quot; const UINT8 *sAddr = sStream + divS.quot; UINT8 *dAddrS = dStream + divD.quot; UINT8 *dAddrE = dStream + tmp; UINT8 eMask; UINT8 destSB = *dAddrS; UINT8 destEB = *dAddrE; UINT8 *dAddr; UINT8 prec; INT32 shiftl, shiftr; if (dOff > sOff) { prec = 0; shiftr = dOff - sOff; shiftl = 8 - dOff + sOff; } else { prec = *sAddr << (sOff - dOff); shiftr = 8 - sOff + dOff; shiftl = sOff - dOff; sAddr++; } for (dAddr = dAddrS; dAddr < dAddrE; dAddr++, sAddr++) { *dAddr = prec | (*sAddr >> shiftr); prec = *sAddr << shiftl; } if ((sPos + k)%8 == 0) { *dAddr = prec; } else { *dAddr = prec | (*sAddr >> shiftr); } eMask = lMask[dOff]; *dAddrS = (destSB & eMask) | (*dAddrS & (~eMask)); INT32 mind = (dPos + k) % 8; eMask = (mind) ? lMask[mind] : lMask[8]; *dAddrE = (destEB & (~eMask)) | (*dAddrE & eMask); } */ ////////////////////////////////////////////////////////////////////// /// Compute bit position of the next 32-bit word /// @param pos current bit stream position /// @return bit position of next 32-bit word inline UINT32 AlignWordPos(UINT32 pos) { // return ((pos + WordWidth - 1) >> WordWidthLog) << WordWidthLog; return DWWIDTHBITS(pos); } ////////////////////////////////////////////////////////////////////// /// Compute number of the 32-bit words /// @param pos Current bit stream position /// @return Number of 32-bit words inline UINT32 NumberOfWords(UINT32 pos) { return (pos + WordWidth - 1) >> WordWidthLog; } #endif //PGF_BITSTREAM_H libpgf-7.21.7+ds/src/Decoder.cpp000066400000000000000000000767311422111121400163200ustar00rootroot00000000000000/* * The Progressive Graphics File; http://www.libpgf.org * * $Date: 2006-06-04 22:05:59 +0200 (So, 04 Jun 2006) $ * $Revision: 229 $ * * This file Copyright (C) 2006 xeraina GmbH, Switzerland * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU LESSER GENERAL PUBLIC LICENSE * as published by the Free Software Foundation; either version 2.1 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ ////////////////////////////////////////////////////////////////////// /// @file Decoder.cpp /// @brief PGF decoder class implementation /// @author C. Stamm, R. Spuler #include "Decoder.h" #ifdef TRACE #include #endif ////////////////////////////////////////////////////// // PGF: file structure // // PGFPreHeader PGFHeader [PGFPostHeader] LevelLengths Level_n-1 Level_n-2 ... Level_0 // PGFPostHeader ::= [ColorTable] [UserData] // LevelLengths ::= UINT32[nLevels] ////////////////////////////////////////////////////// // Decoding scheme // input: binary file // output: wavelet coefficients stored in subbands // // file (for each buffer: packedLength (16 bit), packed bits) // | // m_codeBuffer (for each plane: RLcodeLength (16 bit), RLcoded sigBits + m_sign, refBits) // | | | // m_sign sigBits refBits [BufferLen, BufferLen, BufferLen] // | | | // m_value [BufferSize] // | // subband // // Constants #define CodeBufferBitLen (CodeBufferLen*WordWidth) ///< max number of bits in m_codeBuffer #define MaxCodeLen ((1 << RLblockSizeLen) - 1) ///< max length of RL encoded block ///////////////////////////////////////////////////////////////////// /// Constructor /// Read pre-header, header, and levelLength /// It might throw an IOException. /// @param stream A PGF stream /// @param preHeader [out] A PGF pre-header /// @param header [out] A PGF header /// @param postHeader [out] A PGF post-header /// @param levelLength The location of the levelLength array. The array is allocated in this method. The caller has to delete this array. /// @param userDataPos The stream position of the user data (metadata) /// @param useOMP If true, then the decoder will use multi-threading based on openMP /// @param userDataPolicy Policy of user data (meta-data) handling while reading PGF headers. CDecoder::CDecoder(CPGFStream* stream, PGFPreHeader& preHeader, PGFHeader& header, PGFPostHeader& postHeader, UINT32*& levelLength, UINT64& userDataPos, bool useOMP, UINT32 userDataPolicy) : m_stream(stream) , m_startPos(0) , m_streamSizeEstimation(0) , m_encodedHeaderLength(0) , m_currentBlockIndex(0) , m_macroBlocksAvailable(0) #ifdef __PGFROISUPPORT__ , m_roi(false) #endif { ASSERT(m_stream); int count, expected; // store current stream position m_startPos = m_stream->GetPos(); // read magic and version count = expected = MagicVersionSize; m_stream->Read(&count, &preHeader); if (count != expected) ReturnWithError(MissingData); // read header size if (preHeader.version & Version6) { // 32 bit header size since version 6 count = expected = 4; } else { count = expected = 2; } m_stream->Read(&count, ((UINT8*)&preHeader) + MagicVersionSize); if (count != expected) ReturnWithError(MissingData); // make sure the values are correct read preHeader.hSize = __VAL(preHeader.hSize); // check magic number if (memcmp(preHeader.magic, PGFMagic, 3) != 0) { // error condition: wrong Magic number ReturnWithError(FormatCannotRead); } // read file header count = expected = (preHeader.hSize < HeaderSize) ? preHeader.hSize : HeaderSize; m_stream->Read(&count, &header); if (count != expected) ReturnWithError(MissingData); // make sure the values are correct read header.height = __VAL(UINT32(header.height)); header.width = __VAL(UINT32(header.width)); // be ready to read all versions including version 0 if (preHeader.version > 0) { #ifndef __PGFROISUPPORT__ // check ROI usage if (preHeader.version & PGFROI) ReturnWithError(FormatCannotRead); #endif UINT32 size = preHeader.hSize; if (size > HeaderSize) { size -= HeaderSize; count = 0; // read post-header if (header.mode == ImageModeIndexedColor) { if (size < ColorTableSize) ReturnWithError(FormatCannotRead); // read color table count = expected = ColorTableSize; m_stream->Read(&count, postHeader.clut); if (count != expected) ReturnWithError(MissingData); } if (size > (UINT32)count) { size -= count; // read/skip user data UserdataPolicy policy = (UserdataPolicy)((userDataPolicy <= MaxUserDataSize) ? UP_CachePrefix : 0xFFFFFFFF - userDataPolicy); userDataPos = m_stream->GetPos(); postHeader.userDataLen = size; if (policy == UP_Skip) { postHeader.cachedUserDataLen = 0; postHeader.userData = nullptr; Skip(size); } else { postHeader.cachedUserDataLen = (policy == UP_CachePrefix) ? __min(size, userDataPolicy) : size; // create user data memory block postHeader.userData = new(std::nothrow) UINT8[postHeader.cachedUserDataLen]; if (!postHeader.userData) ReturnWithError(InsufficientMemory); // read user data count = expected = postHeader.cachedUserDataLen; m_stream->Read(&count, postHeader.userData); if (count != expected) ReturnWithError(MissingData); // skip remaining user data if (postHeader.cachedUserDataLen < size) Skip(size - postHeader.cachedUserDataLen); } } } // create levelLength levelLength = new(std::nothrow) UINT32[header.nLevels]; if (!levelLength) ReturnWithError(InsufficientMemory); // read levelLength count = expected = header.nLevels*WordBytes; m_stream->Read(&count, levelLength); if (count != expected) ReturnWithError(MissingData); #ifdef PGF_USE_BIG_ENDIAN // make sure the values are correct read for (int i=0; i < header.nLevels; i++) { levelLength[i] = __VAL(levelLength[i]); } #endif // compute the total size in bytes; keep attention: level length information is optional for (int i=0; i < header.nLevels; i++) { m_streamSizeEstimation += levelLength[i]; } } // store current stream position m_encodedHeaderLength = UINT32(m_stream->GetPos() - m_startPos); // set number of threads #ifdef LIBPGF_USE_OPENMP m_macroBlockLen = omp_get_num_procs(); #else m_macroBlockLen = 1; #endif if (useOMP && m_macroBlockLen > 1) { #ifdef LIBPGF_USE_OPENMP omp_set_num_threads(m_macroBlockLen); #endif // create macro block array m_macroBlocks = new(std::nothrow) CMacroBlock*[m_macroBlockLen]; if (!m_macroBlocks) ReturnWithError(InsufficientMemory); for (int i = 0; i < m_macroBlockLen; i++) m_macroBlocks[i] = new CMacroBlock(); m_currentBlock = m_macroBlocks[m_currentBlockIndex]; } else { m_macroBlocks = 0; m_macroBlockLen = 1; // there is only one macro block m_currentBlock = new(std::nothrow) CMacroBlock(); if (!m_currentBlock) ReturnWithError(InsufficientMemory); } } ///////////////////////////////////////////////////////////////////// // Destructor CDecoder::~CDecoder() { if (m_macroBlocks) { for (int i=0; i < m_macroBlockLen; i++) delete m_macroBlocks[i]; delete[] m_macroBlocks; } else { delete m_currentBlock; } } ////////////////////////////////////////////////////////////////////// /// Copies data from the open stream to a target buffer. /// It might throw an IOException. /// @param target The target buffer /// @param len The number of bytes to read /// @return The number of bytes copied to the target buffer UINT32 CDecoder::ReadEncodedData(UINT8* target, UINT32 len) const { ASSERT(m_stream); int count = len; m_stream->Read(&count, target); return count; } ///////////////////////////////////////////////////////////////////// /// Unpartitions a rectangular region of a given subband. /// Partitioning scheme: The plane is partitioned in squares of side length LinBlockSize. /// Read wavelet coefficients from the output buffer of a macro block. /// It might throw an IOException. /// @param band A subband /// @param quantParam Dequantization value /// @param width The width of the rectangle /// @param height The height of the rectangle /// @param startPos The relative subband position of the top left corner of the rectangular region /// @param pitch The number of bytes in row of the subband void CDecoder::Partition(CSubband* band, int quantParam, int width, int height, int startPos, int pitch) { ASSERT(band); const div_t ww = div(width, LinBlockSize); const div_t hh = div(height, LinBlockSize); const int ws = pitch - LinBlockSize; const int wr = pitch - ww.rem; int pos, base = startPos, base2; // main height for (int i=0; i < hh.quot; i++) { // main width base2 = base; for (int j=0; j < ww.quot; j++) { pos = base2; for (int y=0; y < LinBlockSize; y++) { for (int x=0; x < LinBlockSize; x++) { DequantizeValue(band, pos, quantParam); pos++; } pos += ws; } base2 += LinBlockSize; } // rest of width pos = base2; for (int y=0; y < LinBlockSize; y++) { for (int x=0; x < ww.rem; x++) { DequantizeValue(band, pos, quantParam); pos++; } pos += wr; base += pitch; } } // main width base2 = base; for (int j=0; j < ww.quot; j++) { // rest of height pos = base2; for (int y=0; y < hh.rem; y++) { for (int x=0; x < LinBlockSize; x++) { DequantizeValue(band, pos, quantParam); pos++; } pos += ws; } base2 += LinBlockSize; } // rest of height pos = base2; for (int y=0; y < hh.rem; y++) { // rest of width for (int x=0; x < ww.rem; x++) { DequantizeValue(band, pos, quantParam); pos++; } pos += wr; } } //////////////////////////////////////////////////////////////////// // Decodes and dequantizes HL, and LH band of one level // LH and HH are interleaved in the codestream and must be split // Deccoding and dequantization of HL and LH Band (interleaved) using partitioning scheme // partitions the plane in squares of side length InterBlockSize // It might throw an IOException. void CDecoder::DecodeInterleaved(CWaveletTransform* wtChannel, int level, int quantParam) { CSubband* hlBand = wtChannel->GetSubband(level, HL); CSubband* lhBand = wtChannel->GetSubband(level, LH); const div_t lhH = div(lhBand->GetHeight(), InterBlockSize); const div_t hlW = div(hlBand->GetWidth(), InterBlockSize); const int hlws = hlBand->GetWidth() - InterBlockSize; const int hlwr = hlBand->GetWidth() - hlW.rem; const int lhws = lhBand->GetWidth() - InterBlockSize; const int lhwr = lhBand->GetWidth() - hlW.rem; int hlPos, lhPos; int hlBase = 0, lhBase = 0, hlBase2, lhBase2; ASSERT(lhBand->GetWidth() >= hlBand->GetWidth()); ASSERT(hlBand->GetHeight() >= lhBand->GetHeight()); if (!hlBand->AllocMemory()) ReturnWithError(InsufficientMemory); if (!lhBand->AllocMemory()) ReturnWithError(InsufficientMemory); // correct quantParam with normalization factor quantParam -= level; if (quantParam < 0) quantParam = 0; // main height for (int i=0; i < lhH.quot; i++) { // main width hlBase2 = hlBase; lhBase2 = lhBase; for (int j=0; j < hlW.quot; j++) { hlPos = hlBase2; lhPos = lhBase2; for (int y=0; y < InterBlockSize; y++) { for (int x=0; x < InterBlockSize; x++) { DequantizeValue(hlBand, hlPos, quantParam); DequantizeValue(lhBand, lhPos, quantParam); hlPos++; lhPos++; } hlPos += hlws; lhPos += lhws; } hlBase2 += InterBlockSize; lhBase2 += InterBlockSize; } // rest of width hlPos = hlBase2; lhPos = lhBase2; for (int y=0; y < InterBlockSize; y++) { for (int x=0; x < hlW.rem; x++) { DequantizeValue(hlBand, hlPos, quantParam); DequantizeValue(lhBand, lhPos, quantParam); hlPos++; lhPos++; } // width difference between HL and LH if (lhBand->GetWidth() > hlBand->GetWidth()) { DequantizeValue(lhBand, lhPos, quantParam); } hlPos += hlwr; lhPos += lhwr; hlBase += hlBand->GetWidth(); lhBase += lhBand->GetWidth(); } } // main width hlBase2 = hlBase; lhBase2 = lhBase; for (int j=0; j < hlW.quot; j++) { // rest of height hlPos = hlBase2; lhPos = lhBase2; for (int y=0; y < lhH.rem; y++) { for (int x=0; x < InterBlockSize; x++) { DequantizeValue(hlBand, hlPos, quantParam); DequantizeValue(lhBand, lhPos, quantParam); hlPos++; lhPos++; } hlPos += hlws; lhPos += lhws; } hlBase2 += InterBlockSize; lhBase2 += InterBlockSize; } // rest of height hlPos = hlBase2; lhPos = lhBase2; for (int y=0; y < lhH.rem; y++) { // rest of width for (int x=0; x < hlW.rem; x++) { DequantizeValue(hlBand, hlPos, quantParam); DequantizeValue(lhBand, lhPos, quantParam); hlPos++; lhPos++; } // width difference between HL and LH if (lhBand->GetWidth() > hlBand->GetWidth()) { DequantizeValue(lhBand, lhPos, quantParam); } hlPos += hlwr; lhPos += lhwr; hlBase += hlBand->GetWidth(); } // height difference between HL and LH if (hlBand->GetHeight() > lhBand->GetHeight()) { // total width hlPos = hlBase; for (int j=0; j < hlBand->GetWidth(); j++) { DequantizeValue(hlBand, hlPos, quantParam); hlPos++; } } } //////////////////////////////////////////////////////////////////// /// Skips a given number of bytes in the open stream. /// It might throw an IOException. void CDecoder::Skip(UINT64 offset) { m_stream->SetPos(FSFromCurrent, offset); } ////////////////////////////////////////////////////////////////////// /// Dequantization of a single value at given position in subband. /// If encoded data is available, then stores dequantized band value into /// buffer m_value at position m_valuePos. /// Otherwise reads encoded data block and decodes it. /// It might throw an IOException. /// @param band A subband /// @param bandPos A valid position in subband band /// @param quantParam The quantization parameter void CDecoder::DequantizeValue(CSubband* band, UINT32 bandPos, int quantParam) { ASSERT(m_currentBlock); if (m_currentBlock->IsCompletelyRead()) { // all data of current macro block has been read --> prepare next macro block GetNextMacroBlock(); } band->SetData(bandPos, m_currentBlock->m_value[m_currentBlock->m_valuePos] << quantParam); m_currentBlock->m_valuePos++; } ////////////////////////////////////////////////////////////////////// // Gets next macro block // It might throw an IOException. void CDecoder::GetNextMacroBlock() { // current block has been read --> prepare next current block m_macroBlocksAvailable--; if (m_macroBlocksAvailable > 0) { m_currentBlock = m_macroBlocks[++m_currentBlockIndex]; } else { DecodeBuffer(); } ASSERT(m_currentBlock); } ////////////////////////////////////////////////////////////////////// // Reads next block(s) from stream and decodes them // Decoding scheme: (16 bits) [ ROI ] data // ROI ::= (15 bits) (1 bit) // It might throw an IOException. void CDecoder::DecodeBuffer() { ASSERT(m_macroBlocksAvailable <= 0); // macro block management if (m_macroBlockLen == 1) { ASSERT(m_currentBlock); ReadMacroBlock(m_currentBlock); m_currentBlock->BitplaneDecode(); m_macroBlocksAvailable = 1; } else { m_macroBlocksAvailable = 0; for (int i=0; i < m_macroBlockLen; i++) { // read sequentially several blocks try { ReadMacroBlock(m_macroBlocks[i]); m_macroBlocksAvailable++; } catch(IOException& ex) { if (ex.error == MissingData || ex.error == FormatCannotRead) { break; // no further data available or the data isn't valid PGF data (might occur in streaming or PPPExt) } else { throw; } } } #ifdef LIBPGF_USE_OPENMP // decode in parallel #pragma omp parallel for default(shared) //no declared exceptions in next block #endif for (int i=0; i < m_macroBlocksAvailable; i++) { m_macroBlocks[i]->BitplaneDecode(); } // prepare current macro block m_currentBlockIndex = 0; m_currentBlock = m_macroBlocks[m_currentBlockIndex]; } } ////////////////////////////////////////////////////////////////////// // Reads next block from stream and stores it in the given macro block // It might throw an IOException. void CDecoder::ReadMacroBlock(CMacroBlock* block) { ASSERT(block); UINT16 wordLen; ROIBlockHeader h(BufferSize); int count, expected; #ifdef TRACE //UINT32 filePos = (UINT32)m_stream->GetPos(); //printf("DecodeBuffer: %d\n", filePos); #endif // read wordLen count = expected = sizeof(UINT16); m_stream->Read(&count, &wordLen); if (count != expected) ReturnWithError(MissingData); wordLen = __VAL(wordLen); // convert wordLen if (wordLen > BufferSize) ReturnWithError(FormatCannotRead); #ifdef __PGFROISUPPORT__ // read ROIBlockHeader if (m_roi) { count = expected = sizeof(ROIBlockHeader); m_stream->Read(&count, &h.val); if (count != expected) ReturnWithError(MissingData); h.val = __VAL(h.val); // convert ROIBlockHeader } #endif // save header block->m_header = h; // read data count = expected = wordLen*WordBytes; m_stream->Read(&count, block->m_codeBuffer); if (count != expected) ReturnWithError(MissingData); #ifdef PGF_USE_BIG_ENDIAN // convert data count /= WordBytes; for (int i=0; i < count; i++) { block->m_codeBuffer[i] = __VAL(block->m_codeBuffer[i]); } #endif #ifdef __PGFROISUPPORT__ ASSERT(m_roi && h.rbh.bufferSize <= BufferSize || h.rbh.bufferSize == BufferSize); #else ASSERT(h.rbh.bufferSize == BufferSize); #endif } #ifdef __PGFROISUPPORT__ ////////////////////////////////////////////////////////////////////// // Resets stream position to next tile. // Used with ROI encoding scheme only. // Reads several next blocks from stream but doesn't decode them into macro blocks // Encoding scheme: (16 bits) ROI data // ROI ::= (15 bits) (1 bit) // It might throw an IOException. void CDecoder::SkipTileBuffer() { ASSERT(m_roi); // current macro block belongs to the last tile, so go to the next macro block m_macroBlocksAvailable--; m_currentBlockIndex++; // check if pre-decoded data is available while (m_macroBlocksAvailable > 0 && !m_macroBlocks[m_currentBlockIndex]->m_header.rbh.tileEnd) { m_macroBlocksAvailable--; m_currentBlockIndex++; } if (m_macroBlocksAvailable > 0) { // set new current macro block m_currentBlock = m_macroBlocks[m_currentBlockIndex]; ASSERT(m_currentBlock->m_header.rbh.tileEnd); return; } ASSERT(m_macroBlocksAvailable <= 0); m_macroBlocksAvailable = 0; UINT16 wordLen; ROIBlockHeader h(0); int count, expected; // skips all blocks until tile end do { // read wordLen count = expected = sizeof(wordLen); m_stream->Read(&count, &wordLen); if (count != expected) ReturnWithError(MissingData); wordLen = __VAL(wordLen); // convert wordLen if (wordLen > BufferSize) ReturnWithError(FormatCannotRead); // read ROIBlockHeader count = expected = sizeof(ROIBlockHeader); m_stream->Read(&count, &h.val); if (count != expected) ReturnWithError(MissingData); h.val = __VAL(h.val); // convert ROIBlockHeader // skip data m_stream->SetPos(FSFromCurrent, wordLen*WordBytes); } while (!h.rbh.tileEnd); } #endif ////////////////////////////////////////////////////////////////////// // Decodes macro block into buffer of given size using bit plane coding. // A buffer contains bufferLen UINT32 values, thus, bufferSize bits per bit plane. // Following coding scheme is used: // Buffer ::= (5 bits) foreach(plane i): Plane[i] // Plane[i] ::= [ Sig1 | Sig2 ] [DWORD alignment] refBits // Sig1 ::= 1 (15 bits) codedSigAndSignBits // Sig2 ::= 0 (15 bits) [Sign1 | Sign2 ] [DWORD alignment] sigBits // Sign1 ::= 1 (15 bits) codedSignBits // Sign2 ::= 0 (15 bits) [DWORD alignment] signBits void CDecoder::CMacroBlock::BitplaneDecode() { UINT32 bufferSize = m_header.rbh.bufferSize; ASSERT(bufferSize <= BufferSize); // clear significance vector for (UINT32 k=0; k < bufferSize; k++) { m_sigFlagVector[k] = false; } m_sigFlagVector[bufferSize] = true; // sentinel // clear output buffer for (UINT32 k=0; k < BufferSize; k++) { m_value[k] = 0; } // read number of bit planes // UINT32 nPlanes = GetValueBlock(m_codeBuffer, 0, MaxBitPlanesLog); UINT32 codePos = MaxBitPlanesLog; // loop through all bit planes if (nPlanes == 0) nPlanes = MaxBitPlanes + 1; ASSERT(0 < nPlanes && nPlanes <= MaxBitPlanes + 1); DataT planeMask = 1 << (nPlanes - 1); for (int plane = nPlanes - 1; plane >= 0; plane--) { UINT32 sigLen = 0; // read RL code if (GetBit(m_codeBuffer, codePos)) { // RL coding of sigBits is used // <1>_ codePos++; // read codeLen UINT32 codeLen = GetValueBlock(m_codeBuffer, codePos, RLblockSizeLen); ASSERT(codeLen <= MaxCodeLen); // position of encoded sigBits and signBits UINT32 sigPos = codePos + RLblockSizeLen; ASSERT(sigPos < CodeBufferBitLen); // refinement bits codePos = AlignWordPos(sigPos + codeLen); ASSERT(codePos < CodeBufferBitLen); // run-length decode significant bits and signs from m_codeBuffer and // read refinement bits from m_codeBuffer and compose bit plane sigLen = ComposeBitplaneRLD(bufferSize, planeMask, sigPos, &m_codeBuffer[codePos >> WordWidthLog]); } else { // no RL coding is used for sigBits and signBits together // <0> codePos++; // read sigLen sigLen = GetValueBlock(m_codeBuffer, codePos, RLblockSizeLen); ASSERT(sigLen <= MaxCodeLen); codePos += RLblockSizeLen; ASSERT(codePos < CodeBufferBitLen); // read RL code for signBits if (GetBit(m_codeBuffer, codePos)) { // RL coding is used just for signBits // <1>__ codePos++; // read codeLen UINT32 codeLen = GetValueBlock(m_codeBuffer, codePos, RLblockSizeLen); ASSERT(codeLen <= MaxCodeLen); // sign bits UINT32 signPos = codePos + RLblockSizeLen; ASSERT(signPos < CodeBufferBitLen); // significant bits UINT32 sigPos = AlignWordPos(signPos + codeLen); ASSERT(sigPos < CodeBufferBitLen); // refinement bits codePos = AlignWordPos(sigPos + sigLen); ASSERT(codePos < CodeBufferBitLen); // read significant and refinement bitset from m_codeBuffer sigLen = ComposeBitplaneRLD(bufferSize, planeMask, &m_codeBuffer[sigPos >> WordWidthLog], &m_codeBuffer[codePos >> WordWidthLog], signPos); } else { // RL coding of signBits was not efficient and therefore not used // <0>___ codePos++; // read signLen UINT32 signLen = GetValueBlock(m_codeBuffer, codePos, RLblockSizeLen); ASSERT(signLen <= MaxCodeLen); // sign bits UINT32 signPos = AlignWordPos(codePos + RLblockSizeLen); ASSERT(signPos < CodeBufferBitLen); // significant bits UINT32 sigPos = AlignWordPos(signPos + signLen); ASSERT(sigPos < CodeBufferBitLen); // refinement bits codePos = AlignWordPos(sigPos + sigLen); ASSERT(codePos < CodeBufferBitLen); // read significant and refinement bitset from m_codeBuffer sigLen = ComposeBitplane(bufferSize, planeMask, &m_codeBuffer[sigPos >> WordWidthLog], &m_codeBuffer[codePos >> WordWidthLog], &m_codeBuffer[signPos >> WordWidthLog]); } } // start of next chunk codePos = AlignWordPos(codePos + bufferSize - sigLen); ASSERT(codePos < CodeBufferBitLen); // next plane planeMask >>= 1; } m_valuePos = 0; } //////////////////////////////////////////////////////////////////// // Reconstructs bitplane from significant bitset and refinement bitset // returns length [bits] of sigBits // input: sigBits, refBits, signBits // output: m_value UINT32 CDecoder::CMacroBlock::ComposeBitplane(UINT32 bufferSize, DataT planeMask, UINT32* sigBits, UINT32* refBits, UINT32* signBits) { ASSERT(sigBits); ASSERT(refBits); ASSERT(signBits); UINT32 valPos = 0, signPos = 0, refPos = 0, sigPos = 0; while (valPos < bufferSize) { // search next 1 in m_sigFlagVector using searching with sentinel UINT32 sigEnd = valPos; while(!m_sigFlagVector[sigEnd]) { sigEnd++; } sigEnd -= valPos; sigEnd += sigPos; // search 1's in sigBits[sigPos..sigEnd) // these 1's are significant bits while (sigPos < sigEnd) { // search 0's UINT32 zerocnt = SeekBitRange(sigBits, sigPos, sigEnd - sigPos); sigPos += zerocnt; valPos += zerocnt; if (sigPos < sigEnd) { // write bit to m_value SetBitAtPos(valPos, planeMask); // copy sign bit SetSign(valPos, GetBit(signBits, signPos++)); // update significance flag vector m_sigFlagVector[valPos++] = true; sigPos++; } } // refinement bit if (valPos < bufferSize) { // write one refinement bit if (GetBit(refBits, refPos)) { SetBitAtPos(valPos, planeMask); } refPos++; valPos++; } } ASSERT(sigPos <= bufferSize); ASSERT(refPos <= bufferSize); ASSERT(signPos <= bufferSize); ASSERT(valPos == bufferSize); return sigPos; } //////////////////////////////////////////////////////////////////// // Reconstructs bitplane from significant bitset and refinement bitset // returns length [bits] of decoded significant bits // input: RL encoded sigBits and signBits in m_codeBuffer, refBits // output: m_value // RLE: // - Decode run of 2^k zeros by a single 0. // - Decode run of count 0's followed by a 1 with codeword: 1x // - x is 0: if a positive sign has been stored, otherwise 1 // - Read each bit from m_codeBuffer[codePos] and increment codePos. UINT32 CDecoder::CMacroBlock::ComposeBitplaneRLD(UINT32 bufferSize, DataT planeMask, UINT32 codePos, UINT32* refBits) { ASSERT(refBits); UINT32 valPos = 0, refPos = 0; UINT32 sigPos = 0, sigEnd; UINT32 k = 3; UINT32 runlen = 1 << k; // = 2^k UINT32 count = 0, rest = 0; bool set1 = false; while (valPos < bufferSize) { // search next 1 in m_sigFlagVector using searching with sentinel sigEnd = valPos; while(!m_sigFlagVector[sigEnd]) { sigEnd++; } sigEnd -= valPos; sigEnd += sigPos; while (sigPos < sigEnd) { if (rest || set1) { // rest of last run sigPos += rest; valPos += rest; rest = 0; } else { // decode significant bits if (GetBit(m_codeBuffer, codePos++)) { // extract counter and generate zero run of length count if (k > 0) { // extract counter count = GetValueBlock(m_codeBuffer, codePos, k); codePos += k; if (count > 0) { sigPos += count; valPos += count; } // adapt k (half run-length interval) k--; runlen >>= 1; } set1 = true; } else { // generate zero run of length 2^k sigPos += runlen; valPos += runlen; // adapt k (double run-length interval) if (k < WordWidth) { k++; runlen <<= 1; } } } if (sigPos < sigEnd) { if (set1) { set1 = false; // write 1 bit SetBitAtPos(valPos, planeMask); // set sign bit SetSign(valPos, GetBit(m_codeBuffer, codePos++)); // update significance flag vector m_sigFlagVector[valPos++] = true; sigPos++; } } else { rest = sigPos - sigEnd; sigPos = sigEnd; valPos -= rest; } } // refinement bit if (valPos < bufferSize) { // write one refinement bit if (GetBit(refBits, refPos)) { SetBitAtPos(valPos, planeMask); } refPos++; valPos++; } } ASSERT(sigPos <= bufferSize); ASSERT(refPos <= bufferSize); ASSERT(valPos == bufferSize); return sigPos; } //////////////////////////////////////////////////////////////////// // Reconstructs bitplane from significant bitset, refinement bitset, and RL encoded sign bits // returns length [bits] of sigBits // input: sigBits, refBits, RL encoded signBits // output: m_value // RLE: // decode run of 2^k 1's by a single 1 // decode run of count 1's followed by a 0 with codeword: 0 UINT32 CDecoder::CMacroBlock::ComposeBitplaneRLD(UINT32 bufferSize, DataT planeMask, UINT32* sigBits, UINT32* refBits, UINT32 signPos) { ASSERT(sigBits); ASSERT(refBits); UINT32 valPos = 0, refPos = 0; UINT32 sigPos = 0, sigEnd; UINT32 zerocnt, count = 0; UINT32 k = 0; UINT32 runlen = 1 << k; // = 2^k bool signBit = false; bool zeroAfterRun = false; while (valPos < bufferSize) { // search next 1 in m_sigFlagVector using searching with sentinel sigEnd = valPos; while(!m_sigFlagVector[sigEnd]) { sigEnd++; } sigEnd -= valPos; sigEnd += sigPos; // search 1's in sigBits[sigPos..sigEnd) // these 1's are significant bits while (sigPos < sigEnd) { // search 0's zerocnt = SeekBitRange(sigBits, sigPos, sigEnd - sigPos); sigPos += zerocnt; valPos += zerocnt; if (sigPos < sigEnd) { // write bit to m_value SetBitAtPos(valPos, planeMask); // check sign bit if (count == 0) { // all 1's have been set if (zeroAfterRun) { // finish the run with a 0 signBit = false; zeroAfterRun = false; } else { // decode next sign bit if (GetBit(m_codeBuffer, signPos++)) { // generate 1's run of length 2^k count = runlen - 1; signBit = true; // adapt k (double run-length interval) if (k < WordWidth) { k++; runlen <<= 1; } } else { // extract counter and generate 1's run of length count if (k > 0) { // extract counter count = GetValueBlock(m_codeBuffer, signPos, k); signPos += k; // adapt k (half run-length interval) k--; runlen >>= 1; } if (count > 0) { count--; signBit = true; zeroAfterRun = true; } else { signBit = false; } } } } else { ASSERT(count > 0); ASSERT(signBit); count--; } // copy sign bit SetSign(valPos, signBit); // update significance flag vector m_sigFlagVector[valPos++] = true; sigPos++; } } // refinement bit if (valPos < bufferSize) { // write one refinement bit if (GetBit(refBits, refPos)) { SetBitAtPos(valPos, planeMask); } refPos++; valPos++; } } ASSERT(sigPos <= bufferSize); ASSERT(refPos <= bufferSize); ASSERT(valPos == bufferSize); return sigPos; } //////////////////////////////////////////////////////////////////// #ifdef TRACE void CDecoder::DumpBuffer() { //printf("\nDump\n"); //for (int i=0; i < BufferSize; i++) { // printf("%d", m_value[i]); //} } #endif //TRACE libpgf-7.21.7+ds/src/Decoder.h000066400000000000000000000231441422111121400157530ustar00rootroot00000000000000/* * The Progressive Graphics File; http://www.libpgf.org * * $Date: 2006-06-04 22:05:59 +0200 (So, 04 Jun 2006) $ * $Revision: 229 $ * * This file Copyright (C) 2006 xeraina GmbH, Switzerland * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU LESSER GENERAL PUBLIC LICENSE * as published by the Free Software Foundation; either version 2.1 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ ////////////////////////////////////////////////////////////////////// /// @file Decoder.h /// @brief PGF decoder class /// @author C. Stamm, R. Spuler #ifndef PGF_DECODER_H #define PGF_DECODER_H #include "PGFstream.h" #include "BitStream.h" #include "Subband.h" #include "WaveletTransform.h" ///////////////////////////////////////////////////////////////////// // Constants #define BufferLen (BufferSize/WordWidth) ///< number of words per buffer #define CodeBufferLen BufferSize ///< number of words in code buffer (CodeBufferLen > BufferLen) ///////////////////////////////////////////////////////////////////// /// PGF decoder class. /// @author C. Stamm, R. Spuler /// @brief PGF decoder class CDecoder { ////////////////////////////////////////////////////////////////////// /// PGF decoder macro block class. /// @author C. Stamm, I. Bauersachs /// @brief A macro block is a decoding unit of fixed size (uncoded) class CMacroBlock { public: ////////////////////////////////////////////////////////////////////// /// Constructor: Initializes new macro block. CMacroBlock() : m_header(0) // makes sure that IsCompletelyRead() returns true for an empty macro block #pragma warning( suppress : 4351 ) , m_value() , m_codeBuffer() , m_valuePos(0) , m_sigFlagVector() { } ////////////////////////////////////////////////////////////////////// /// Returns true if this macro block has been completely read. /// @return true if current value position is at block end bool IsCompletelyRead() const { return m_valuePos >= m_header.rbh.bufferSize; } ////////////////////////////////////////////////////////////////////// /// Decodes already read input data into this macro block. /// Several macro blocks can be decoded in parallel. /// Call CDecoder::ReadMacroBlock before this method. void BitplaneDecode(); ROIBlockHeader m_header; ///< block header DataT m_value[BufferSize]; ///< output buffer of values with index m_valuePos UINT32 m_codeBuffer[CodeBufferLen]; ///< input buffer for encoded bitstream UINT32 m_valuePos; ///< current position in m_value private: UINT32 ComposeBitplane(UINT32 bufferSize, DataT planeMask, UINT32* sigBits, UINT32* refBits, UINT32* signBits); UINT32 ComposeBitplaneRLD(UINT32 bufferSize, DataT planeMask, UINT32 sigPos, UINT32* refBits); UINT32 ComposeBitplaneRLD(UINT32 bufferSize, DataT planeMask, UINT32* sigBits, UINT32* refBits, UINT32 signPos); void SetBitAtPos(UINT32 pos, DataT planeMask) { (m_value[pos] >= 0) ? m_value[pos] |= planeMask : m_value[pos] -= planeMask; } void SetSign(UINT32 pos, bool sign) { m_value[pos] = -m_value[pos]*sign + m_value[pos]*(!sign); } bool m_sigFlagVector[BufferSize+1]; // see paper from Malvar, Fast Progressive Wavelet Coder }; public: ///////////////////////////////////////////////////////////////////// /// Constructor: Read pre-header, header, and levelLength at current stream position. /// It might throw an IOException. /// @param stream A PGF stream /// @param preHeader [out] A PGF pre-header /// @param header [out] A PGF header /// @param postHeader [out] A PGF post-header /// @param levelLength The location of the levelLength array. The array is allocated in this method. The caller has to delete this array. /// @param userDataPos The stream position of the user data (metadata) /// @param useOMP If true, then the decoder will use multi-threading based on openMP /// @param userDataPolicy Policy of user data (meta-data) handling while reading PGF headers. CDecoder(CPGFStream* stream, PGFPreHeader& preHeader, PGFHeader& header, PGFPostHeader& postHeader, UINT32*& levelLength, UINT64& userDataPos, bool useOMP, UINT32 userDataPolicy); // throws IOException ///////////////////////////////////////////////////////////////////// /// Destructor ~CDecoder(); ///////////////////////////////////////////////////////////////////// /// Unpartitions a rectangular region of a given subband. /// Partitioning scheme: The plane is partitioned in squares of side length LinBlockSize. /// Read wavelet coefficients from the output buffer of a macro block. /// It might throw an IOException. /// @param band A subband /// @param quantParam Dequantization value /// @param width The width of the rectangle /// @param height The height of the rectangle /// @param startPos The relative subband position of the top left corner of the rectangular region /// @param pitch The number of bytes in row of the subband void Partition(CSubband* band, int quantParam, int width, int height, int startPos, int pitch); ///////////////////////////////////////////////////////////////////// /// Deccoding and dequantization of HL and LH subband (interleaved) using partitioning scheme. /// Partitioning scheme: The plane is partitioned in squares of side length InterBlockSize. /// It might throw an IOException. /// @param wtChannel A wavelet transform channel containing the HL and HL band /// @param level Wavelet transform level /// @param quantParam Dequantization value void DecodeInterleaved(CWaveletTransform* wtChannel, int level, int quantParam); ////////////////////////////////////////////////////////////////////// /// Returns the length of all encoded headers in bytes. /// @return The length of all encoded headers in bytes UINT32 GetEncodedHeaderLength() const { return m_encodedHeaderLength; } //////////////////////////////////////////////////////////////////// /// Resets stream position to beginning of PGF pre-header void SetStreamPosToStart() { ASSERT(m_stream); m_stream->SetPos(FSFromStart, m_startPos); } //////////////////////////////////////////////////////////////////// /// Resets stream position to beginning of data block void SetStreamPosToData() { ASSERT(m_stream); m_stream->SetPos(FSFromStart, m_startPos + m_encodedHeaderLength); } //////////////////////////////////////////////////////////////////// /// Skips a given number of bytes in the open stream. /// It might throw an IOException. void Skip(UINT64 offset); ///////////////////////////////////////////////////////////////////// /// Dequantization of a single value at given position in subband. /// It might throw an IOException. /// @param band A subband /// @param bandPos A valid position in subband band /// @param quantParam The quantization parameter void DequantizeValue(CSubband* band, UINT32 bandPos, int quantParam); ////////////////////////////////////////////////////////////////////// /// Copies data from the open stream to a target buffer. /// It might throw an IOException. /// @param target The target buffer /// @param len The number of bytes to read /// @return The number of bytes copied to the target buffer UINT32 ReadEncodedData(UINT8* target, UINT32 len) const; ///////////////////////////////////////////////////////////////////// /// Reads next block(s) from stream and decodes them /// It might throw an IOException. void DecodeBuffer(); ///////////////////////////////////////////////////////////////////// /// @return Stream CPGFStream* GetStream() { return m_stream; } ///////////////////////////////////////////////////////////////////// /// Gets next macro block /// It might throw an IOException. void GetNextMacroBlock(); #ifdef __PGFROISUPPORT__ ///////////////////////////////////////////////////////////////////// /// Resets stream position to next tile. /// Used with ROI encoding scheme only. /// It might throw an IOException. void SkipTileBuffer(); ///////////////////////////////////////////////////////////////////// /// Enables region of interest (ROI) status. void SetROI() { m_roi = true; } #endif #ifdef TRACE void DumpBuffer(); #endif private: void ReadMacroBlock(CMacroBlock* block); ///< throws IOException CPGFStream *m_stream; ///< input PGF stream UINT64 m_startPos; ///< stream position at the beginning of the PGF pre-header UINT64 m_streamSizeEstimation; ///< estimation of stream size UINT32 m_encodedHeaderLength; ///< stream offset from startPos to the beginning of the data part (highest level) CMacroBlock **m_macroBlocks; ///< array of macroblocks int m_currentBlockIndex; ///< index of current macro block int m_macroBlockLen; ///< array length int m_macroBlocksAvailable; ///< number of decoded macro blocks (including currently used macro block) CMacroBlock *m_currentBlock; ///< current macro block (used by main thread) #ifdef __PGFROISUPPORT__ bool m_roi; ///< true: ensures region of interest (ROI) decoding #endif }; #endif //PGF_DECODER_H libpgf-7.21.7+ds/src/Encoder.cpp000066400000000000000000000620101422111121400163130ustar00rootroot00000000000000/* * The Progressive Graphics File; http://www.libpgf.org * * $Date: 2007-02-03 13:04:21 +0100 (Sa, 03 Feb 2007) $ * $Revision: 280 $ * * This file Copyright (C) 2006 xeraina GmbH, Switzerland * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU LESSER GENERAL PUBLIC LICENSE * as published by the Free Software Foundation; either version 2.1 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ ////////////////////////////////////////////////////////////////////// /// @file Encoder.cpp /// @brief PGF encoder class implementation /// @author C. Stamm, R. Spuler #include "Encoder.h" #ifdef TRACE #include #endif ////////////////////////////////////////////////////// // PGF: file structure // // PGFPreHeader PGFHeader [PGFPostHeader] LevelLengths Level_n-1 Level_n-2 ... Level_0 // PGFPostHeader ::= [ColorTable] [UserData] // LevelLengths ::= UINT32[nLevels] ////////////////////////////////////////////////////// // Encoding scheme // input: wavelet coefficients stored in subbands // output: binary file // // subband // | // m_value [BufferSize] // | | | // m_sign sigBits refBits [BufferSize, BufferLen, BufferLen] // | | | // m_codeBuffer (for each plane: RLcodeLength (16 bit), RLcoded sigBits + m_sign, refBits) // | // file (for each buffer: packedLength (16 bit), packed bits) // // Constants #define CodeBufferBitLen (CodeBufferLen*WordWidth) ///< max number of bits in m_codeBuffer #define MaxCodeLen ((1 << RLblockSizeLen) - 1) ///< max length of RL encoded block ////////////////////////////////////////////////////// /// Write pre-header, header, postHeader, and levelLength. /// It might throw an IOException. /// @param stream A PGF stream /// @param preHeader A already filled in PGF pre-header /// @param header An already filled in PGF header /// @param postHeader [in] An already filled in PGF post-header (containing color table, user data, ...) /// @param userDataPos [out] File position of user data /// @param useOMP If true, then the encoder will use multi-threading based on openMP CEncoder::CEncoder(CPGFStream* stream, PGFPreHeader preHeader, PGFHeader header, const PGFPostHeader& postHeader, UINT64& userDataPos, bool useOMP) : m_stream(stream) , m_bufferStartPos(0) , m_currLevelIndex(0) , m_nLevels(header.nLevels) , m_favorSpeed(false) , m_forceWriting(false) #ifdef __PGFROISUPPORT__ , m_roi(false) #endif { ASSERT(m_stream); int count; m_lastMacroBlock = 0; m_levelLength = nullptr; // set number of threads #ifdef LIBPGF_USE_OPENMP m_macroBlockLen = omp_get_num_procs(); #else m_macroBlockLen = 1; #endif if (useOMP && m_macroBlockLen > 1) { #ifdef LIBPGF_USE_OPENMP omp_set_num_threads(m_macroBlockLen); #endif // create macro block array m_macroBlocks = new(std::nothrow) CMacroBlock*[m_macroBlockLen]; if (!m_macroBlocks) ReturnWithError(InsufficientMemory); for (int i=0; i < m_macroBlockLen; i++) m_macroBlocks[i] = new CMacroBlock(this); m_currentBlock = m_macroBlocks[m_lastMacroBlock++]; } else { m_macroBlocks = 0; m_macroBlockLen = 1; m_currentBlock = new CMacroBlock(this); } // save file position m_startPosition = m_stream->GetPos(); // write preHeader preHeader.hSize = __VAL(preHeader.hSize); count = PreHeaderSize; m_stream->Write(&count, &preHeader); // write file header header.height = __VAL(header.height); header.width = __VAL(header.width); count = HeaderSize; m_stream->Write(&count, &header); // write postHeader if (header.mode == ImageModeIndexedColor) { // write color table count = ColorTableSize; m_stream->Write(&count, (void *)postHeader.clut); } // save user data file position userDataPos = m_stream->GetPos(); if (postHeader.userDataLen) { if (postHeader.userData) { // write user data count = postHeader.userDataLen; m_stream->Write(&count, postHeader.userData); } else { m_stream->SetPos(FSFromCurrent, count); } } // save level length file position m_levelLengthPos = m_stream->GetPos(); } ////////////////////////////////////////////////////// // Destructor CEncoder::~CEncoder() { if (m_macroBlocks) { for (int i=0; i < m_macroBlockLen; i++) delete m_macroBlocks[i]; delete[] m_macroBlocks; } else { delete m_currentBlock; } } ///////////////////////////////////////////////////////////////////// /// Increase post-header size and write new size into stream. /// @param preHeader An already filled in PGF pre-header /// It might throw an IOException. void CEncoder::UpdatePostHeaderSize(PGFPreHeader preHeader) { UINT64 curPos = m_stream->GetPos(); // end of user data int count = PreHeaderSize; // write preHeader SetStreamPosToStart(); preHeader.hSize = __VAL(preHeader.hSize); m_stream->Write(&count, &preHeader); m_stream->SetPos(FSFromStart, curPos); } ///////////////////////////////////////////////////////////////////// /// Create level length data structure and write a place holder into stream. /// It might throw an IOException. /// @param levelLength A reference to an integer array, large enough to save the relative file positions of all PGF levels /// @return number of bytes written into stream UINT32 CEncoder::WriteLevelLength(UINT32*& levelLength) { // renew levelLength delete[] levelLength; levelLength = new(std::nothrow) UINT32[m_nLevels]; if (!levelLength) ReturnWithError(InsufficientMemory); for (UINT8 l = 0; l < m_nLevels; l++) levelLength[l] = 0; m_levelLength = levelLength; // save level length file position m_levelLengthPos = m_stream->GetPos(); // write dummy levelLength int count = m_nLevels*WordBytes; m_stream->Write(&count, m_levelLength); // save current file position SetBufferStartPos(); return count; } ////////////////////////////////////////////////////// /// Write new levelLength into stream. /// It might throw an IOException. /// @return Written image bytes. UINT32 CEncoder::UpdateLevelLength() { UINT64 curPos = m_stream->GetPos(); // end of image // set file pos to levelLength m_stream->SetPos(FSFromStart, m_levelLengthPos); if (m_levelLength) { #ifdef PGF_USE_BIG_ENDIAN UINT32 levelLength; int count = WordBytes; for (int i=0; i < m_currLevelIndex; i++) { levelLength = __VAL(UINT32(m_levelLength[i])); m_stream->Write(&count, &levelLength); } #else int count = m_currLevelIndex*WordBytes; m_stream->Write(&count, m_levelLength); #endif //PGF_USE_BIG_ENDIAN } else { int count = m_currLevelIndex*WordBytes; m_stream->SetPos(FSFromCurrent, count); } // begin of image UINT32 retValue = UINT32(curPos - m_stream->GetPos()); // restore file position m_stream->SetPos(FSFromStart, curPos); return retValue; } ///////////////////////////////////////////////////////////////////// /// Partitions a rectangular region of a given subband. /// Partitioning scheme: The plane is partitioned in squares of side length LinBlockSize. /// Write wavelet coefficients from subband into the input buffer of a macro block. /// It might throw an IOException. /// @param band A subband /// @param width The width of the rectangle /// @param height The height of the rectangle /// @param startPos The absolute subband position of the top left corner of the rectangular region /// @param pitch The number of bytes in row of the subband void CEncoder::Partition(CSubband* band, int width, int height, int startPos, int pitch) { ASSERT(band); const div_t hh = div(height, LinBlockSize); const div_t ww = div(width, LinBlockSize); const int ws = pitch - LinBlockSize; const int wr = pitch - ww.rem; int pos, base = startPos, base2; // main height for (int i=0; i < hh.quot; i++) { // main width base2 = base; for (int j=0; j < ww.quot; j++) { pos = base2; for (int y=0; y < LinBlockSize; y++) { for (int x=0; x < LinBlockSize; x++) { WriteValue(band, pos); pos++; } pos += ws; } base2 += LinBlockSize; } // rest of width pos = base2; for (int y=0; y < LinBlockSize; y++) { for (int x=0; x < ww.rem; x++) { WriteValue(band, pos); pos++; } pos += wr; base += pitch; } } // main width base2 = base; for (int j=0; j < ww.quot; j++) { // rest of height pos = base2; for (int y=0; y < hh.rem; y++) { for (int x=0; x < LinBlockSize; x++) { WriteValue(band, pos); pos++; } pos += ws; } base2 += LinBlockSize; } // rest of height pos = base2; for (int y=0; y < hh.rem; y++) { // rest of width for (int x=0; x < ww.rem; x++) { WriteValue(band, pos); pos++; } pos += wr; } } ////////////////////////////////////////////////////// /// Pad buffer with zeros and encode buffer. /// It might throw an IOException. void CEncoder::Flush() { if (m_currentBlock->m_valuePos > 0) { // pad buffer with zeros memset(&(m_currentBlock->m_value[m_currentBlock->m_valuePos]), 0, (BufferSize - m_currentBlock->m_valuePos)*DataTSize); m_currentBlock->m_valuePos = BufferSize; // encode buffer m_forceWriting = true; // makes sure that the following EncodeBuffer is really written into the stream EncodeBuffer(ROIBlockHeader(m_currentBlock->m_valuePos, true)); } } ///////////////////////////////////////////////////////////////////// // Stores band value from given position bandPos into buffer m_value at position m_valuePos // If buffer is full encode it to file // It might throw an IOException. void CEncoder::WriteValue(CSubband* band, int bandPos) { if (m_currentBlock->m_valuePos == BufferSize) { EncodeBuffer(ROIBlockHeader(BufferSize, false)); } DataT val = m_currentBlock->m_value[m_currentBlock->m_valuePos++] = band->GetData(bandPos); UINT32 v = abs(val); if (v > m_currentBlock->m_maxAbsValue) m_currentBlock->m_maxAbsValue = v; } ///////////////////////////////////////////////////////////////////// // Encode buffer and write data into stream. // h contains buffer size and flag indicating end of tile. // Encoding scheme: (16 bits) [ ROI ] data // ROI ::= (15 bits) (1 bit) // It might throw an IOException. void CEncoder::EncodeBuffer(ROIBlockHeader h) { ASSERT(m_currentBlock); #ifdef __PGFROISUPPORT__ ASSERT(m_roi && h.rbh.bufferSize <= BufferSize || h.rbh.bufferSize == BufferSize); #else ASSERT(h.rbh.bufferSize == BufferSize); #endif m_currentBlock->m_header = h; // macro block management if (m_macroBlockLen == 1) { m_currentBlock->BitplaneEncode(); WriteMacroBlock(m_currentBlock); } else { // save last level index int lastLevelIndex = m_currentBlock->m_lastLevelIndex; if (m_forceWriting || m_lastMacroBlock == m_macroBlockLen) { // encode macro blocks /* volatile OSError error = NoError; #ifdef LIBPGF_USE_OPENMP #pragma omp parallel for ordered default(shared) #endif for (int i=0; i < m_lastMacroBlock; i++) { if (error == NoError) { m_macroBlocks[i]->BitplaneEncode(); #ifdef LIBPGF_USE_OPENMP #pragma omp ordered #endif { try { WriteMacroBlock(m_macroBlocks[i]); } catch (IOException& e) { error = e.error; } delete m_macroBlocks[i]; m_macroBlocks[i] = 0; } } } if (error != NoError) ReturnWithError(error); */ #ifdef LIBPGF_USE_OPENMP #pragma omp parallel for default(shared) //no declared exceptions in next block #endif for (int i=0; i < m_lastMacroBlock; i++) { m_macroBlocks[i]->BitplaneEncode(); } for (int i=0; i < m_lastMacroBlock; i++) { WriteMacroBlock(m_macroBlocks[i]); } // prepare for next round m_forceWriting = false; m_lastMacroBlock = 0; } // re-initialize macro block m_currentBlock = m_macroBlocks[m_lastMacroBlock++]; m_currentBlock->Init(lastLevelIndex); } } ///////////////////////////////////////////////////////////////////// // Write encoded macro block into stream. // It might throw an IOException. void CEncoder::WriteMacroBlock(CMacroBlock* block) { ASSERT(block); #ifdef __PGFROISUPPORT__ ROIBlockHeader h = block->m_header; #endif UINT16 wordLen = UINT16(NumberOfWords(block->m_codePos)); ASSERT(wordLen <= CodeBufferLen); int count = sizeof(UINT16); #ifdef TRACE //UINT32 filePos = (UINT32)m_stream->GetPos(); //printf("EncodeBuffer: %d\n", filePos); #endif #ifdef PGF_USE_BIG_ENDIAN // write wordLen UINT16 wl = __VAL(wordLen); m_stream->Write(&count, &wl); ASSERT(count == sizeof(UINT16)); #ifdef __PGFROISUPPORT__ // write ROIBlockHeader if (m_roi) { count = sizeof(ROIBlockHeader); h.val = __VAL(h.val); m_stream->Write(&count, &h.val); ASSERT(count == sizeof(ROIBlockHeader)); } #endif // __PGFROISUPPORT__ // convert data for (int i=0; i < wordLen; i++) { block->m_codeBuffer[i] = __VAL(block->m_codeBuffer[i]); } #else // write wordLen m_stream->Write(&count, &wordLen); ASSERT(count == sizeof(UINT16)); #ifdef __PGFROISUPPORT__ // write ROIBlockHeader if (m_roi) { count = sizeof(ROIBlockHeader); m_stream->Write(&count, &h.val); ASSERT(count == sizeof(ROIBlockHeader)); } #endif // __PGFROISUPPORT__ #endif // PGF_USE_BIG_ENDIAN // write encoded data into stream count = wordLen*WordBytes; m_stream->Write(&count, block->m_codeBuffer); // store levelLength if (m_levelLength) { // store level length // EncodeBuffer has been called after m_lastLevelIndex has been updated ASSERT(m_currLevelIndex < m_nLevels); m_levelLength[m_currLevelIndex] += (UINT32)ComputeBufferLength(); m_currLevelIndex = block->m_lastLevelIndex + 1; } // prepare for next buffer SetBufferStartPos(); // reset values block->m_valuePos = 0; block->m_maxAbsValue = 0; } //////////////////////////////////////////////////////// // Encode buffer of given size using bit plane coding. // A buffer contains bufferLen UINT32 values, thus, bufferSize bits per bit plane. // Following coding scheme is used: // Buffer ::= (5 bits) foreach(plane i): Plane[i] // Plane[i] ::= [ Sig1 | Sig2 ] [DWORD alignment] refBits // Sig1 ::= 1 (15 bits) codedSigAndSignBits // Sig2 ::= 0 (15 bits) [Sign1 | Sign2 ] [DWORD alignment] sigBits // Sign1 ::= 1 (15 bits) codedSignBits // Sign2 ::= 0 (15 bits) [DWORD alignment] signBits void CEncoder::CMacroBlock::BitplaneEncode() { UINT8 nPlanes; UINT32 sigLen, codeLen = 0, wordPos, refLen, signLen; UINT32 sigBits[BufferLen] = { 0 }; UINT32 refBits[BufferLen] = { 0 }; UINT32 signBits[BufferLen] = { 0 }; UINT32 planeMask; UINT32 bufferSize = m_header.rbh.bufferSize; ASSERT(bufferSize <= BufferSize); bool useRL; #ifdef TRACE //printf("which thread: %d\n", omp_get_thread_num()); #endif // clear significance vector for (UINT32 k=0; k < bufferSize; k++) { m_sigFlagVector[k] = false; } m_sigFlagVector[bufferSize] = true; // sentinel // clear output buffer for (UINT32 k=0; k < bufferSize; k++) { m_codeBuffer[k] = 0; } m_codePos = 0; // compute number of bit planes and split buffer into separate bit planes nPlanes = NumberOfBitplanes(); // write number of bit planes to m_codeBuffer // SetValueBlock(m_codeBuffer, 0, nPlanes, MaxBitPlanesLog); m_codePos += MaxBitPlanesLog; // loop through all bit planes if (nPlanes == 0) nPlanes = MaxBitPlanes + 1; planeMask = 1 << (nPlanes - 1); for (int plane = nPlanes - 1; plane >= 0; plane--) { // clear significant bitset for (UINT32 k=0; k < BufferLen; k++) { sigBits[k] = 0; } // split bitplane in significant bitset and refinement bitset sigLen = DecomposeBitplane(bufferSize, planeMask, m_codePos + RLblockSizeLen + 1, sigBits, refBits, signBits, signLen, codeLen); if (sigLen > 0 && codeLen <= MaxCodeLen && codeLen < AlignWordPos(sigLen) + AlignWordPos(signLen) + 2*RLblockSizeLen) { // set RL code bit // <1> SetBit(m_codeBuffer, m_codePos++); // write length codeLen to m_codeBuffer SetValueBlock(m_codeBuffer, m_codePos, codeLen, RLblockSizeLen); m_codePos += RLblockSizeLen + codeLen; } else { #ifdef TRACE //printf("new\n"); //for (UINT32 i=0; i < bufferSize; i++) { // printf("%s", (GetBit(sigBits, i)) ? "1" : "_"); // if (i%120 == 119) printf("\n"); //} //printf("\n"); #endif // TRACE // run-length coding wasn't efficient enough // we don't use RL coding for sigBits // <0> ClearBit(m_codeBuffer, m_codePos++); // write length sigLen to m_codeBuffer ASSERT(sigLen <= MaxCodeLen); SetValueBlock(m_codeBuffer, m_codePos, sigLen, RLblockSizeLen); m_codePos += RLblockSizeLen; if (m_encoder->m_favorSpeed || signLen == 0) { useRL = false; } else { // overwrite m_codeBuffer useRL = true; // run-length encode m_sign and append them to the m_codeBuffer codeLen = RLESigns(m_codePos + RLblockSizeLen + 1, signBits, signLen); } if (useRL && codeLen <= MaxCodeLen && codeLen < signLen) { // RL encoding of m_sign was efficient // <1>_ // write RL code bit SetBit(m_codeBuffer, m_codePos++); // write codeLen to m_codeBuffer SetValueBlock(m_codeBuffer, m_codePos, codeLen, RLblockSizeLen); // compute position of sigBits wordPos = NumberOfWords(m_codePos + RLblockSizeLen + codeLen); ASSERT(0 <= wordPos && wordPos < CodeBufferLen); } else { // RL encoding of signBits wasn't efficient // <0>__ // clear RL code bit ClearBit(m_codeBuffer, m_codePos++); // write signLen to m_codeBuffer ASSERT(signLen <= MaxCodeLen); SetValueBlock(m_codeBuffer, m_codePos, signLen, RLblockSizeLen); // write signBits to m_codeBuffer wordPos = NumberOfWords(m_codePos + RLblockSizeLen); ASSERT(0 <= wordPos && wordPos < CodeBufferLen); codeLen = NumberOfWords(signLen); for (UINT32 k=0; k < codeLen; k++) { m_codeBuffer[wordPos++] = signBits[k]; } } // write sigBits // _ ASSERT(0 <= wordPos && wordPos < CodeBufferLen); refLen = NumberOfWords(sigLen); for (UINT32 k=0; k < refLen; k++) { m_codeBuffer[wordPos++] = sigBits[k]; } m_codePos = wordPos << WordWidthLog; } // append refinement bitset (aligned to word boundary) // _ wordPos = NumberOfWords(m_codePos); ASSERT(0 <= wordPos && wordPos < CodeBufferLen); refLen = NumberOfWords(bufferSize - sigLen); for (UINT32 k=0; k < refLen; k++) { m_codeBuffer[wordPos++] = refBits[k]; } m_codePos = wordPos << WordWidthLog; planeMask >>= 1; } ASSERT(0 <= m_codePos && m_codePos <= CodeBufferBitLen); } ////////////////////////////////////////////////////////// // Split bitplane of length bufferSize into significant and refinement bitset // returns length [bits] of significant bits // input: bufferSize, planeMask, codePos // output: sigBits, refBits, signBits, signLen [bits], codeLen [bits] // RLE // - Encode run of 2^k zeros by a single 0. // - Encode run of count 0's followed by a 1 with codeword: 1x // - x is 0: if a positive sign is stored, otherwise 1 // - Store each bit in m_codeBuffer[codePos] and increment codePos. UINT32 CEncoder::CMacroBlock::DecomposeBitplane(UINT32 bufferSize, UINT32 planeMask, UINT32 codePos, UINT32* sigBits, UINT32* refBits, UINT32* signBits, UINT32& signLen, UINT32& codeLen) { ASSERT(sigBits); ASSERT(refBits); ASSERT(signBits); ASSERT(codePos < CodeBufferBitLen); UINT32 sigPos = 0; UINT32 valuePos = 0, valueEnd; UINT32 refPos = 0; // set output value signLen = 0; // prepare RLE of Sigs and Signs const UINT32 outStartPos = codePos; UINT32 k = 3; UINT32 runlen = 1 << k; // = 2^k UINT32 count = 0; while (valuePos < bufferSize) { // search next 1 in m_sigFlagVector using searching with sentinel valueEnd = valuePos; while(!m_sigFlagVector[valueEnd]) { valueEnd++; } // search 1's in m_value[plane][valuePos..valueEnd) // these 1's are significant bits while (valuePos < valueEnd) { if (GetBitAtPos(valuePos, planeMask)) { // RLE encoding // encode run of count 0's followed by a 1 // with codeword: 1(signBits[signPos]) SetBit(m_codeBuffer, codePos++); if (k > 0) { SetValueBlock(m_codeBuffer, codePos, count, k); codePos += k; // adapt k (half the zero run-length) k--; runlen >>= 1; } // copy and write sign bit if (m_value[valuePos] < 0) { SetBit(signBits, signLen++); SetBit(m_codeBuffer, codePos++); } else { ClearBit(signBits, signLen++); ClearBit(m_codeBuffer, codePos++); } // write a 1 to sigBits SetBit(sigBits, sigPos++); // update m_sigFlagVector m_sigFlagVector[valuePos] = true; // prepare for next run count = 0; } else { // RLE encoding count++; if (count == runlen) { // encode run of 2^k zeros by a single 0 ClearBit(m_codeBuffer, codePos++); // adapt k (double the zero run-length) if (k < WordWidth) { k++; runlen <<= 1; } // prepare for next run count = 0; } // write 0 to sigBits sigPos++; } valuePos++; } // refinement bit if (valuePos < bufferSize) { // write one refinement bit if (GetBitAtPos(valuePos++, planeMask)) { SetBit(refBits, refPos); } else { ClearBit(refBits, refPos); } refPos++; } } // RLE encoding of the rest of the plane // encode run of count 0's followed by a 1 // with codeword: 1(signBits[signPos]) SetBit(m_codeBuffer, codePos++); if (k > 0) { SetValueBlock(m_codeBuffer, codePos, count, k); codePos += k; } // write dmmy sign bit SetBit(m_codeBuffer, codePos++); // write word filler zeros ASSERT(sigPos <= bufferSize); ASSERT(refPos <= bufferSize); ASSERT(signLen <= bufferSize); ASSERT(valuePos == bufferSize); ASSERT(codePos >= outStartPos && codePos < CodeBufferBitLen); codeLen = codePos - outStartPos; return sigPos; } /////////////////////////////////////////////////////// // Compute number of bit planes needed UINT8 CEncoder::CMacroBlock::NumberOfBitplanes() { UINT8 cnt = 0; // determine number of bitplanes for max value if (m_maxAbsValue > 0) { while (m_maxAbsValue > 0) { m_maxAbsValue >>= 1; cnt++; } if (cnt == MaxBitPlanes + 1) cnt = 0; // end cs ASSERT(cnt <= MaxBitPlanes); ASSERT((cnt >> MaxBitPlanesLog) == 0); return cnt; } else { return 1; } } ////////////////////////////////////////////////////// // Adaptive Run-Length encoder for long sequences of ones. // Returns length of output in bits. // - Encode run of 2^k ones by a single 1. // - Encode run of count 1's followed by a 0 with codeword: 0. // - Store each bit in m_codeBuffer[codePos] and increment codePos. UINT32 CEncoder::CMacroBlock::RLESigns(UINT32 codePos, UINT32* signBits, UINT32 signLen) { ASSERT(signBits); ASSERT(0 <= codePos && codePos < CodeBufferBitLen); ASSERT(0 < signLen && signLen <= BufferSize); const UINT32 outStartPos = codePos; UINT32 k = 0; UINT32 runlen = 1 << k; // = 2^k UINT32 count = 0; UINT32 signPos = 0; while (signPos < signLen) { // search next 0 in signBits starting at position signPos count = SeekBit1Range(signBits, signPos, __min(runlen, signLen - signPos)); // count 1's found if (count == runlen) { // encode run of 2^k ones by a single 1 signPos += count; SetBit(m_codeBuffer, codePos++); // adapt k (double the 1's run-length) if (k < WordWidth) { k++; runlen <<= 1; } } else { // encode run of count 1's followed by a 0 // with codeword: 0(count) signPos += count + 1; ClearBit(m_codeBuffer, codePos++); if (k > 0) { SetValueBlock(m_codeBuffer, codePos, count, k); codePos += k; } // adapt k (half the 1's run-length) if (k > 0) { k--; runlen >>= 1; } } } ASSERT(signPos == signLen || signPos == signLen + 1); ASSERT(codePos >= outStartPos && codePos < CodeBufferBitLen); return codePos - outStartPos; } ////////////////////////////////////////////////////// #ifdef TRACE void CEncoder::DumpBuffer() const { //printf("\nDump\n"); //for (UINT32 i=0; i < BufferSize; i++) { // printf("%d", m_value[i]); //} //printf("\n"); } #endif //TRACE libpgf-7.21.7+ds/src/Encoder.h000066400000000000000000000243531422111121400157700ustar00rootroot00000000000000/* * The Progressive Graphics File; http://www.libpgf.org * * $Date: 2006-06-04 22:05:59 +0200 (So, 04 Jun 2006) $ * $Revision: 229 $ * * This file Copyright (C) 2006 xeraina GmbH, Switzerland * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU LESSER GENERAL PUBLIC LICENSE * as published by the Free Software Foundation; either version 2.1 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ ////////////////////////////////////////////////////////////////////// /// @file Encoder.h /// @brief PGF encoder class /// @author C. Stamm, R. Spuler #ifndef PGF_ENCODER_H #define PGF_ENCODER_H #include "PGFstream.h" #include "BitStream.h" #include "Subband.h" #include "WaveletTransform.h" ///////////////////////////////////////////////////////////////////// // Constants #define BufferLen (BufferSize/WordWidth) ///< number of words per buffer #define CodeBufferLen BufferSize ///< number of words in code buffer (CodeBufferLen > BufferLen) ///////////////////////////////////////////////////////////////////// /// PGF encoder class. /// @author C. Stamm /// @brief PGF encoder class CEncoder { ////////////////////////////////////////////////////////////////////// /// PGF encoder macro block class. /// @author C. Stamm, I. Bauersachs /// @brief A macro block is an encoding unit of fixed size (uncoded) class CMacroBlock { public: ////////////////////////////////////////////////////////////////////// /// Constructor: Initializes new macro block. /// @param encoder Pointer to outer class. CMacroBlock(CEncoder *encoder) #pragma warning( suppress : 4351 ) : m_value() , m_codeBuffer() , m_header(0) , m_encoder(encoder) , m_sigFlagVector() { ASSERT(m_encoder); Init(-1); } ////////////////////////////////////////////////////////////////////// /// Reinitialzes this macro block (allows reusage). /// @param lastLevelIndex Level length directory index of last encoded level: [0, nLevels) void Init(int lastLevelIndex) { // initialize for reusage m_valuePos = 0; m_maxAbsValue = 0; m_codePos = 0; m_lastLevelIndex = lastLevelIndex; } ////////////////////////////////////////////////////////////////////// /// Encodes this macro block into internal code buffer. /// Several macro blocks can be encoded in parallel. /// Call CEncoder::WriteMacroBlock after this method. void BitplaneEncode(); DataT m_value[BufferSize]; ///< input buffer of values with index m_valuePos UINT32 m_codeBuffer[CodeBufferLen]; ///< output buffer for encoded bitstream ROIBlockHeader m_header; ///< block header UINT32 m_valuePos; ///< current buffer position UINT32 m_maxAbsValue; ///< maximum absolute coefficient in each buffer UINT32 m_codePos; ///< current position in encoded bitstream int m_lastLevelIndex; ///< index of last encoded level: [0, nLevels); used because a level-end can occur before a buffer is full private: UINT32 RLESigns(UINT32 codePos, UINT32* signBits, UINT32 signLen); UINT32 DecomposeBitplane(UINT32 bufferSize, UINT32 planeMask, UINT32 codePos, UINT32* sigBits, UINT32* refBits, UINT32* signBits, UINT32& signLen, UINT32& codeLen); UINT8 NumberOfBitplanes(); bool GetBitAtPos(UINT32 pos, UINT32 planeMask) const { return (abs(m_value[pos]) & planeMask) > 0; } CEncoder *m_encoder; // encoder instance bool m_sigFlagVector[BufferSize+1]; // see paper from Malvar, Fast Progressive Wavelet Coder }; public: ///////////////////////////////////////////////////////////////////// /// Write pre-header, header, post-Header, and levelLength. /// It might throw an IOException. /// @param stream A PGF stream /// @param preHeader A already filled in PGF pre-header /// @param header An already filled in PGF header /// @param postHeader [in] An already filled in PGF post-header (containing color table, user data, ...) /// @param userDataPos [out] File position of user data /// @param useOMP If true, then the encoder will use multi-threading based on openMP CEncoder(CPGFStream* stream, PGFPreHeader preHeader, PGFHeader header, const PGFPostHeader& postHeader, UINT64& userDataPos, bool useOMP); // throws IOException ///////////////////////////////////////////////////////////////////// /// Destructor ~CEncoder(); ///////////////////////////////////////////////////////////////////// /// Encoder favors speed over compression size void FavorSpeedOverSize() { m_favorSpeed = true; } ///////////////////////////////////////////////////////////////////// /// Pad buffer with zeros and encode buffer. /// It might throw an IOException. void Flush(); ///////////////////////////////////////////////////////////////////// /// Increase post-header size and write new size into stream. /// @param preHeader An already filled in PGF pre-header /// It might throw an IOException. void UpdatePostHeaderSize(PGFPreHeader preHeader); ///////////////////////////////////////////////////////////////////// /// Create level length data structure and write a place holder into stream. /// It might throw an IOException. /// @param levelLength A reference to an integer array, large enough to save the relative file positions of all PGF levels /// @return number of bytes written into stream UINT32 WriteLevelLength(UINT32*& levelLength); ///////////////////////////////////////////////////////////////////// /// Write new levelLength into stream. /// It might throw an IOException. /// @return Written image bytes. UINT32 UpdateLevelLength(); ///////////////////////////////////////////////////////////////////// /// Partitions a rectangular region of a given subband. /// Partitioning scheme: The plane is partitioned in squares of side length LinBlockSize. /// Write wavelet coefficients from subband into the input buffer of a macro block. /// It might throw an IOException. /// @param band A subband /// @param width The width of the rectangle /// @param height The height of the rectangle /// @param startPos The absolute subband position of the top left corner of the rectangular region /// @param pitch The number of bytes in row of the subband void Partition(CSubband* band, int width, int height, int startPos, int pitch); ///////////////////////////////////////////////////////////////////// /// Informs the encoder about the encoded level. /// @param currentLevel encoded level [0, nLevels) void SetEncodedLevel(int currentLevel) { ASSERT(currentLevel >= 0); m_currentBlock->m_lastLevelIndex = m_nLevels - currentLevel - 1; m_forceWriting = true; } ///////////////////////////////////////////////////////////////////// /// Write a single value into subband at given position. /// It might throw an IOException. /// @param band A subband /// @param bandPos A valid position in subband band void WriteValue(CSubband* band, int bandPos); ///////////////////////////////////////////////////////////////////// /// Compute stream length of header. /// @return header length INT64 ComputeHeaderLength() const { return m_levelLengthPos - m_startPosition; } ///////////////////////////////////////////////////////////////////// /// Compute stream length of encoded buffer. /// @return encoded buffer length INT64 ComputeBufferLength() const { return m_stream->GetPos() - m_bufferStartPos; } ///////////////////////////////////////////////////////////////////// /// Compute file offset between real and expected levelLength position. /// @return file offset INT64 ComputeOffset() const { return m_stream->GetPos() - m_levelLengthPos; } //////////////////////////////////////////////////////////////////// /// Resets stream position to beginning of PGF pre-header void SetStreamPosToStart() { ASSERT(m_stream); m_stream->SetPos(FSFromStart, m_startPosition); } ///////////////////////////////////////////////////////////////////// /// Save current stream position as beginning of current level. void SetBufferStartPos() { m_bufferStartPos = m_stream->GetPos(); } #ifdef __PGFROISUPPORT__ ///////////////////////////////////////////////////////////////////// /// Encodes tile buffer and writes it into stream /// It might throw an IOException. void EncodeTileBuffer() { ASSERT(m_currentBlock && m_currentBlock->m_valuePos >= 0 && m_currentBlock->m_valuePos <= BufferSize); EncodeBuffer(ROIBlockHeader(m_currentBlock->m_valuePos, true)); } ///////////////////////////////////////////////////////////////////// /// Enables region of interest (ROI) status. void SetROI() { m_roi = true; } #endif #ifdef TRACE void DumpBuffer() const; #endif private: void EncodeBuffer(ROIBlockHeader h); // throws IOException void WriteMacroBlock(CMacroBlock* block); // throws IOException CPGFStream *m_stream; ///< output PMF stream UINT64 m_startPosition; ///< stream position of PGF start (PreHeader) UINT64 m_levelLengthPos; ///< stream position of Metadata UINT64 m_bufferStartPos; ///< stream position of encoded buffer CMacroBlock **m_macroBlocks; ///< array of macroblocks int m_macroBlockLen; ///< array length int m_lastMacroBlock; ///< array index of the last created macro block CMacroBlock *m_currentBlock; ///< current macro block (used by main thread) UINT32* m_levelLength; ///< temporary saves the level index int m_currLevelIndex; ///< counts where (=index) to save next value UINT8 m_nLevels; ///< number of levels bool m_favorSpeed; ///< favor speed over size bool m_forceWriting; ///< all macro blocks have to be written into the stream #ifdef __PGFROISUPPORT__ bool m_roi; ///< true: ensures region of interest (ROI) encoding #endif }; #endif //PGF_ENCODER libpgf-7.21.7+ds/src/Makefile.am000066400000000000000000000004311422111121400162630ustar00rootroot00000000000000AM_CPPFLAGS = -I$(top_srcdir)/include # @PGFCODEC_CFLAGS@ lib_LTLIBRARIES = libpgf.la libpgf_la_LDFLAGS = -version-info @INTERFACE_VERSION@ libpgf_la_SOURCES = \ Decoder.cpp \ Encoder.cpp \ PGFimage.cpp \ PGFstream.cpp \ Subband.cpp \ WaveletTransform.cpp libpgf-7.21.7+ds/src/PGFimage.cpp000066400000000000000000002602741422111121400163670ustar00rootroot00000000000000/* * The Progressive Graphics File; http://www.libpgf.org * * $Date: 2007-02-03 13:04:21 +0100 (Sa, 03 Feb 2007) $ * $Revision: 280 $ * * This file Copyright (C) 2006 xeraina GmbH, Switzerland * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU LESSER GENERAL PUBLIC LICENSE * as published by the Free Software Foundation; either version 2.1 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ ////////////////////////////////////////////////////////////////////// /// @file PGFimage.cpp /// @brief PGF image class implementation /// @author C. Stamm #include "PGFimage.h" #include "Decoder.h" #include "Encoder.h" #include "BitStream.h" #include #include #define YUVoffset4 8 // 2^3 #define YUVoffset6 32 // 2^5 #define YUVoffset8 128 // 2^7 #define YUVoffset16 32768 // 2^15 //#define YUVoffset31 1073741824 // 2^30 ////////////////////////////////////////////////////////////////////// // global methods and variables #ifdef NEXCEPTIONS OSError _PGF_Error_; OSError GetLastPGFError() { OSError tmp = _PGF_Error_; _PGF_Error_ = NoError; return tmp; } #endif #ifdef _DEBUG // allows RGB and RGBA image visualization inside Visual Studio Debugger struct DebugBGRImage { int width, height, pitch; BYTE *data; } roiimage; #endif ////////////////////////////////////////////////////////////////////// // Standard constructor CPGFImage::CPGFImage() { Init(); } ////////////////////////////////////////////////////////////////////// void CPGFImage::Init() { // init pointers m_decoder = nullptr; m_encoder = nullptr; m_levelLength = nullptr; // init members #ifdef __PGFROISUPPORT__ m_streamReinitialized = false; #endif m_currentLevel = 0; m_quant = 0; m_userDataPos = 0; m_downsample = false; m_favorSpeedOverSize = false; m_useOMPinEncoder = true; m_useOMPinDecoder = true; m_cb = nullptr; m_cbArg = nullptr; m_progressMode = PM_Relative; m_percent = 0; m_userDataPolicy = UP_CacheAll; // init preHeader memcpy(m_preHeader.magic, PGFMagic, 3); m_preHeader.version = PGFVersion; m_preHeader.hSize = 0; // init postHeader m_postHeader.userData = nullptr; m_postHeader.userDataLen = 0; m_postHeader.cachedUserDataLen = 0; // init channels for (int i = 0; i < MaxChannels; i++) { m_channel[i] = nullptr; m_wtChannel[i] = nullptr; } // set image width and height for (int i = 0; i < MaxChannels; i++) { m_width[0] = 0; m_height[0] = 0; } } ////////////////////////////////////////////////////////////////////// // Destructor: Destroy internal data structures. CPGFImage::~CPGFImage() { m_currentLevel = -100; // unusual value used as marker in Destroy() Destroy(); } ////////////////////////////////////////////////////////////////////// // Destroy internal data structures. Object state after this is the same as after CPGFImage(). void CPGFImage::Destroy() { for (int i = 0; i < m_header.channels; i++) { delete m_wtChannel[i]; // also deletes m_channel } delete[] m_postHeader.userData; delete[] m_levelLength; delete m_decoder; delete m_encoder; if (m_currentLevel != -100) Init(); } ///////////////////////////////////////////////////////////////////////////// // Open a PGF image at current stream position: read pre-header, header, levelLength, and ckeck image type. // Precondition: The stream has been opened for reading. // It might throw an IOException. // @param stream A PGF stream void CPGFImage::Open(CPGFStream *stream) { ASSERT(stream); // create decoder and read PGFPreHeader PGFHeader PGFPostHeader LevelLengths m_decoder = new CDecoder(stream, m_preHeader, m_header, m_postHeader, m_levelLength, m_userDataPos, m_useOMPinDecoder, m_userDataPolicy); if (m_header.nLevels > MaxLevel) ReturnWithError(FormatCannotRead); // set current level m_currentLevel = m_header.nLevels; // set image width and height m_width[0] = m_header.width; m_height[0] = m_header.height; // complete header if (!CompleteHeader()) ReturnWithError(FormatCannotRead); // interpret quant parameter if (m_header.quality > DownsampleThreshold && (m_header.mode == ImageModeRGBColor || m_header.mode == ImageModeRGBA || m_header.mode == ImageModeRGB48 || m_header.mode == ImageModeCMYKColor || m_header.mode == ImageModeCMYK64 || m_header.mode == ImageModeLabColor || m_header.mode == ImageModeLab48)) { m_downsample = true; m_quant = m_header.quality - 1; } else { m_downsample = false; m_quant = m_header.quality; } // set channel dimensions (chrominance is subsampled by factor 2) if (m_downsample) { for (int i=1; i < m_header.channels; i++) { m_width[i] = (m_width[0] + 1) >> 1; m_height[i] = (m_height[0] + 1) >> 1; } } else { for (int i=1; i < m_header.channels; i++) { m_width[i] = m_width[0]; m_height[i] = m_height[0]; } } if (m_header.nLevels > 0) { // init wavelet subbands for (int i=0; i < m_header.channels; i++) { m_wtChannel[i] = new CWaveletTransform(m_width[i], m_height[i], m_header.nLevels); } // used in Read when PM_Absolute m_percent = pow(0.25, m_header.nLevels); } else { // very small image: we don't use DWT and encoding // read channels for (int c=0; c < m_header.channels; c++) { const UINT32 size = m_width[c]*m_height[c]; m_channel[c] = new(std::nothrow) DataT[size]; if (!m_channel[c]) ReturnWithError(InsufficientMemory); // read channel data from stream for (UINT32 i=0; i < size; i++) { int count = DataTSize; stream->Read(&count, &m_channel[c][i]); if (count != DataTSize) ReturnWithError(MissingData); } } } } //////////////////////////////////////////////////////////// bool CPGFImage::CompleteHeader() { // set current codec version m_header.version = PGFVersionNumber(PGFMajorNumber, PGFYear, PGFWeek); if (m_header.mode == ImageModeUnknown) { // undefined mode switch(m_header.bpp) { case 1: m_header.mode = ImageModeBitmap; break; case 8: m_header.mode = ImageModeGrayScale; break; case 12: m_header.mode = ImageModeRGB12; break; case 16: m_header.mode = ImageModeRGB16; break; case 24: m_header.mode = ImageModeRGBColor; break; case 32: m_header.mode = ImageModeRGBA; break; case 48: m_header.mode = ImageModeRGB48; break; default: m_header.mode = ImageModeRGBColor; break; } } if (!m_header.bpp) { // undefined bpp switch(m_header.mode) { case ImageModeBitmap: m_header.bpp = 1; break; case ImageModeIndexedColor: case ImageModeGrayScale: m_header.bpp = 8; break; case ImageModeRGB12: m_header.bpp = 12; break; case ImageModeRGB16: case ImageModeGray16: m_header.bpp = 16; break; case ImageModeRGBColor: case ImageModeLabColor: m_header.bpp = 24; break; case ImageModeRGBA: case ImageModeCMYKColor: case ImageModeGray32: m_header.bpp = 32; break; case ImageModeRGB48: case ImageModeLab48: m_header.bpp = 48; break; case ImageModeCMYK64: m_header.bpp = 64; break; default: ASSERT(false); m_header.bpp = 24; } } if (m_header.mode == ImageModeRGBColor && m_header.bpp == 32) { // change mode m_header.mode = ImageModeRGBA; } if (m_header.mode == ImageModeBitmap && m_header.bpp != 1) return false; if (m_header.mode == ImageModeIndexedColor && m_header.bpp != 8) return false; if (m_header.mode == ImageModeGrayScale && m_header.bpp != 8) return false; if (m_header.mode == ImageModeGray16 && m_header.bpp != 16) return false; if (m_header.mode == ImageModeGray32 && m_header.bpp != 32) return false; if (m_header.mode == ImageModeRGBColor && m_header.bpp != 24) return false; if (m_header.mode == ImageModeRGBA && m_header.bpp != 32) return false; if (m_header.mode == ImageModeRGB12 && m_header.bpp != 12) return false; if (m_header.mode == ImageModeRGB16 && m_header.bpp != 16) return false; if (m_header.mode == ImageModeRGB48 && m_header.bpp != 48) return false; if (m_header.mode == ImageModeLabColor && m_header.bpp != 24) return false; if (m_header.mode == ImageModeLab48 && m_header.bpp != 48) return false; if (m_header.mode == ImageModeCMYKColor && m_header.bpp != 32) return false; if (m_header.mode == ImageModeCMYK64 && m_header.bpp != 64) return false; // set number of channels if (!m_header.channels) { switch(m_header.mode) { case ImageModeBitmap: case ImageModeIndexedColor: case ImageModeGrayScale: case ImageModeGray16: case ImageModeGray32: m_header.channels = 1; break; case ImageModeRGBColor: case ImageModeRGB12: case ImageModeRGB16: case ImageModeRGB48: case ImageModeLabColor: case ImageModeLab48: m_header.channels = 3; break; case ImageModeRGBA: case ImageModeCMYKColor: case ImageModeCMYK64: m_header.channels = 4; break; default: return false; } } // store used bits per channel UINT8 bpc = m_header.bpp/m_header.channels; if (bpc > 31) bpc = 31; if (!m_header.usedBitsPerChannel || m_header.usedBitsPerChannel > bpc) { m_header.usedBitsPerChannel = bpc; } return true; } ////////////////////////////////////////////////////////////////////// /// Return user data and size of user data. /// Precondition: The PGF image has been opened with a call of Open(...). /// In an encoder scenario don't call this method before WriteHeader(). /// @param cachedSize [out] Size of returned user data in bytes. /// @param pTotalSize [optional out] Pointer to return the size of user data stored in image header in bytes. /// @return A pointer to user data or nullptr if there is no user data available. const UINT8* CPGFImage::GetUserData(UINT32& cachedSize, UINT32* pTotalSize /*= nullptr*/) const { cachedSize = m_postHeader.cachedUserDataLen; if (pTotalSize) *pTotalSize = m_postHeader.userDataLen; return m_postHeader.userData; } ////////////////////////////////////////////////////////////////////// /// After you've written a PGF image, you can call this method followed by GetBitmap/GetYUV /// to get a quick reconstruction (coded -> decoded image). /// It might throw an IOException. /// @param level The image level of the resulting image in the internal image buffer. void CPGFImage::Reconstruct(int level /*= 0*/) { if (m_header.nLevels == 0) { // image didn't use wavelet transform if (level == 0) { for (int i=0; i < m_header.channels; i++) { ASSERT(m_wtChannel[i]); m_channel[i] = m_wtChannel[i]->GetSubband(0, LL)->GetBuffer(); } } } else { int currentLevel = m_header.nLevels; #ifdef __PGFROISUPPORT__ if (ROIisSupported()) { // enable ROI reading SetROI(PGFRect(0, 0, m_header.width, m_header.height)); } #endif while (currentLevel > level) { for (int i=0; i < m_header.channels; i++) { ASSERT(m_wtChannel[i]); // dequantize subbands if (currentLevel == m_header.nLevels) { // last level also has LL band m_wtChannel[i]->GetSubband(currentLevel, LL)->Dequantize(m_quant); } m_wtChannel[i]->GetSubband(currentLevel, HL)->Dequantize(m_quant); m_wtChannel[i]->GetSubband(currentLevel, LH)->Dequantize(m_quant); m_wtChannel[i]->GetSubband(currentLevel, HH)->Dequantize(m_quant); // inverse transform from m_wtChannel to m_channel OSError err = m_wtChannel[i]->InverseTransform(currentLevel, &m_width[i], &m_height[i], &m_channel[i]); if (err != NoError) ReturnWithError(err); ASSERT(m_channel[i]); } currentLevel--; } } } ////////////////////////////////////////////////////////////////////// // Read and decode some levels of a PGF image at current stream position. // A PGF image is structered in levels, numbered between 0 and Levels() - 1. // Each level can be seen as a single image, containing the same content // as all other levels, but in a different size (width, height). // The image size at level i is double the size (width, height) of the image at level i+1. // The image at level 0 contains the original size. // Precondition: The PGF image has been opened with a call of Open(...). // It might throw an IOException. // @param level The image level of the resulting image in the internal image buffer. // @param cb A pointer to a callback procedure. The procedure is called after reading a single level. If cb returns true, then it stops proceeding. // @param data Data Pointer to C++ class container to host callback procedure. void CPGFImage::Read(int level /*= 0*/, CallbackPtr cb /*= nullptr*/, void *data /*=nullptr*/) { ASSERT((level >= 0 && level < m_header.nLevels) || m_header.nLevels == 0); // m_header.nLevels == 0: image didn't use wavelet transform ASSERT(m_decoder); #ifdef __PGFROISUPPORT__ if (ROIisSupported() && m_header.nLevels > 0) { // new encoding scheme supporting ROI PGFRect rect(0, 0, m_header.width, m_header.height); Read(rect, level, cb, data); return; } #endif if (m_header.nLevels == 0) { if (level == 0) { // the data has already been read during open // now update progress if (cb) { if ((*cb)(1.0, true, data)) ReturnWithError(EscapePressed); } } } else { const int levelDiff = m_currentLevel - level; double percent = (m_progressMode == PM_Relative) ? pow(0.25, levelDiff) : m_percent; // encoding scheme without ROI while (m_currentLevel > level) { for (int i=0; i < m_header.channels; i++) { CWaveletTransform* wtChannel = m_wtChannel[i]; ASSERT(wtChannel); // decode file and write stream to m_wtChannel if (m_currentLevel == m_header.nLevels) { // last level also has LL band wtChannel->GetSubband(m_currentLevel, LL)->PlaceTile(*m_decoder, m_quant); } if (m_preHeader.version & Version5) { // since version 5 wtChannel->GetSubband(m_currentLevel, HL)->PlaceTile(*m_decoder, m_quant); wtChannel->GetSubband(m_currentLevel, LH)->PlaceTile(*m_decoder, m_quant); } else { // until version 4 m_decoder->DecodeInterleaved(wtChannel, m_currentLevel, m_quant); } wtChannel->GetSubband(m_currentLevel, HH)->PlaceTile(*m_decoder, m_quant); } volatile OSError error = NoError; // volatile prevents optimizations #ifdef LIBPGF_USE_OPENMP #pragma omp parallel for default(shared) #endif for (int i=0; i < m_header.channels; i++) { // inverse transform from m_wtChannel to m_channel if (error == NoError) { OSError err = m_wtChannel[i]->InverseTransform(m_currentLevel, &m_width[i], &m_height[i], &m_channel[i]); if (err != NoError) error = err; } ASSERT(m_channel[i]); } if (error != NoError) ReturnWithError(error); // set new level: must be done before refresh callback m_currentLevel--; // now we have to refresh the display if (m_cb) m_cb(m_cbArg); // now update progress if (cb) { percent *= 4; if (m_progressMode == PM_Absolute) m_percent = percent; if ((*cb)(percent, true, data)) ReturnWithError(EscapePressed); } } } } #ifdef __PGFROISUPPORT__ ////////////////////////////////////////////////////////////////////// /// Read and decode rectangular region of interest (ROI) of a PGF image at current stream position. /// The origin of the coordinate axis is the top-left corner of the image. /// All coordinates are measured in pixels. /// It might throw an IOException. /// @param rect [inout] Rectangular region of interest (ROI) at level 0. The rect might be cropped. /// @param level The image level of the resulting image in the internal image buffer. /// @param cb A pointer to a callback procedure. The procedure is called after reading a single level. If cb returns true, then it stops proceeding. /// @param data Data Pointer to C++ class container to host callback procedure. void CPGFImage::Read(PGFRect& rect, int level /*= 0*/, CallbackPtr cb /*= nullptr*/, void *data /*=nullptr*/) { ASSERT((level >= 0 && level < m_header.nLevels) || m_header.nLevels == 0); // m_header.nLevels == 0: image didn't use wavelet transform ASSERT(m_decoder); if (m_header.nLevels == 0 || !ROIisSupported()) { rect.left = rect.top = 0; rect.right = m_header.width; rect.bottom = m_header.height; Read(level, cb, data); } else { ASSERT(ROIisSupported()); // new encoding scheme supporting ROI ASSERT(rect.left < m_header.width && rect.top < m_header.height); // check rectangle if (rect.right == 0 || rect.right > m_header.width) rect.right = m_header.width; if (rect.bottom == 0 || rect.bottom > m_header.height) rect.bottom = m_header.height; const int levelDiff = m_currentLevel - level; double percent = (m_progressMode == PM_Relative) ? pow(0.25, levelDiff) : m_percent; // check level difference if (levelDiff <= 0) { // it is a new read call, probably with a new ROI m_currentLevel = m_header.nLevels; m_decoder->SetStreamPosToData(); } // enable ROI decoding and reading SetROI(rect); while (m_currentLevel > level) { for (int i=0; i < m_header.channels; i++) { CWaveletTransform* wtChannel = m_wtChannel[i]; ASSERT(wtChannel); // get number of tiles and tile indices const UINT32 nTiles = wtChannel->GetNofTiles(m_currentLevel); // independent of ROI // decode file and write stream to m_wtChannel if (m_currentLevel == m_header.nLevels) { // last level also has LL band ASSERT(nTiles == 1); m_decoder->GetNextMacroBlock(); wtChannel->GetSubband(m_currentLevel, LL)->PlaceTile(*m_decoder, m_quant); } for (UINT32 tileY=0; tileY < nTiles; tileY++) { for (UINT32 tileX=0; tileX < nTiles; tileX++) { // check relevance of tile if (wtChannel->TileIsRelevant(m_currentLevel, tileX, tileY)) { m_decoder->GetNextMacroBlock(); wtChannel->GetSubband(m_currentLevel, HL)->PlaceTile(*m_decoder, m_quant, true, tileX, tileY); wtChannel->GetSubband(m_currentLevel, LH)->PlaceTile(*m_decoder, m_quant, true, tileX, tileY); wtChannel->GetSubband(m_currentLevel, HH)->PlaceTile(*m_decoder, m_quant, true, tileX, tileY); } else { // skip tile m_decoder->SkipTileBuffer(); } } } } volatile OSError error = NoError; // volatile prevents optimizations #ifdef LIBPGF_USE_OPENMP #pragma omp parallel for default(shared) #endif for (int i=0; i < m_header.channels; i++) { // inverse transform from m_wtChannel to m_channel if (error == NoError) { OSError err = m_wtChannel[i]->InverseTransform(m_currentLevel, &m_width[i], &m_height[i], &m_channel[i]); if (err != NoError) error = err; } ASSERT(m_channel[i]); } if (error != NoError) ReturnWithError(error); // set new level: must be done before refresh callback m_currentLevel--; // now we have to refresh the display if (m_cb) m_cb(m_cbArg); // now update progress if (cb) { percent *= 4; if (m_progressMode == PM_Absolute) m_percent = percent; if ((*cb)(percent, true, data)) ReturnWithError(EscapePressed); } } } } ////////////////////////////////////////////////////////////////////// /// Return ROI of channel 0 at current level in pixels. /// The returned rect is only valid after reading a ROI. /// @return ROI in pixels PGFRect CPGFImage::ComputeLevelROI() const { if (m_currentLevel == 0) { return m_roi; } else { const UINT32 rLeft = LevelSizeL(m_roi.left, m_currentLevel); const UINT32 rRight = LevelSizeL(m_roi.right, m_currentLevel); const UINT32 rTop = LevelSizeL(m_roi.top, m_currentLevel); const UINT32 rBottom = LevelSizeL(m_roi.bottom, m_currentLevel); return PGFRect(rLeft, rTop, rRight - rLeft, rBottom - rTop); } } ////////////////////////////////////////////////////////////////////// /// Returns aligned ROI in pixels of current level of channel c /// @param c A channel index PGFRect CPGFImage::GetAlignedROI(int c /*= 0*/) const { PGFRect roi(0, 0, m_width[c], m_height[c]); if (ROIisSupported()) { ASSERT(m_wtChannel[c]); roi = m_wtChannel[c]->GetAlignedROI(m_currentLevel); } ASSERT(roi.Width() == m_width[c]); ASSERT(roi.Height() == m_height[c]); return roi; } ////////////////////////////////////////////////////////////////////// /// Compute ROIs for each channel and each level <= current level /// Called inside of Read(rect, ...). /// @param rect rectangular region of interest (ROI) at level 0 void CPGFImage::SetROI(PGFRect rect) { ASSERT(m_decoder); ASSERT(ROIisSupported()); ASSERT(m_wtChannel[0]); // store ROI for a later call of GetBitmap m_roi = rect; // enable ROI decoding m_decoder->SetROI(); // prepare wavelet channels for using ROI m_wtChannel[0]->SetROI(rect); if (m_downsample && m_header.channels > 1) { // all further channels are downsampled, therefore downsample ROI rect.left >>= 1; rect.top >>= 1; rect.right = (rect.right + 1) >> 1; rect.bottom = (rect.bottom + 1) >> 1; } for (int i=1; i < m_header.channels; i++) { ASSERT(m_wtChannel[i]); m_wtChannel[i]->SetROI(rect); } } #endif // __PGFROISUPPORT__ ////////////////////////////////////////////////////////////////////// /// Return the length of all encoded headers in bytes. /// Precondition: The PGF image has been opened with a call of Open(...). /// @return The length of all encoded headers in bytes UINT32 CPGFImage::GetEncodedHeaderLength() const { ASSERT(m_decoder); return m_decoder->GetEncodedHeaderLength(); } ////////////////////////////////////////////////////////////////////// /// Reads the encoded PGF header and copies it to a target buffer. /// Precondition: The PGF image has been opened with a call of Open(...). /// It might throw an IOException. /// @param target The target buffer /// @param targetLen The length of the target buffer in bytes /// @return The number of bytes copied to the target buffer UINT32 CPGFImage::ReadEncodedHeader(UINT8* target, UINT32 targetLen) const { ASSERT(target); ASSERT(targetLen > 0); ASSERT(m_decoder); // reset stream position m_decoder->SetStreamPosToStart(); // compute number of bytes to read UINT32 len = __min(targetLen, GetEncodedHeaderLength()); // read data len = m_decoder->ReadEncodedData(target, len); ASSERT(len >= 0 && len <= targetLen); return len; } //////////////////////////////////////////////////////////////////// /// Reset stream position to start of PGF pre-header or start of data. Must not be called before Open() or before Write(). /// Use this method after Read() if you want to read the same image several times, e.g. reading different ROIs. /// @param startOfData true: you want to read the same image several times. false: resets stream position to the initial position void CPGFImage::ResetStreamPos(bool startOfData) { m_currentLevel = 0; if (startOfData) { ASSERT(m_decoder); m_decoder->SetStreamPosToData(); } else { if (m_decoder) { m_decoder->SetStreamPosToStart(); } else if (m_encoder) { m_encoder->SetStreamPosToStart(); } else { ASSERT(false); } } } ////////////////////////////////////////////////////////////////////// /// Reads the data of an encoded PGF level and copies it to a target buffer /// without decoding. /// Precondition: The PGF image has been opened with a call of Open(...). /// It might throw an IOException. /// @param level The image level /// @param target The target buffer /// @param targetLen The length of the target buffer in bytes /// @return The number of bytes copied to the target buffer UINT32 CPGFImage::ReadEncodedData(int level, UINT8* target, UINT32 targetLen) const { ASSERT(level >= 0 && level < m_header.nLevels); ASSERT(target); ASSERT(targetLen > 0); ASSERT(m_decoder); // reset stream position m_decoder->SetStreamPosToData(); // position stream UINT64 offset = 0; for (int i=m_header.nLevels - 1; i > level; i--) { offset += m_levelLength[m_header.nLevels - 1 - i]; } m_decoder->Skip(offset); // compute number of bytes to read UINT32 len = __min(targetLen, GetEncodedLevelLength(level)); // read data len = m_decoder->ReadEncodedData(target, len); ASSERT(len >= 0 && len <= targetLen); return len; } ////////////////////////////////////////////////////////////////////// /// Set maximum intensity value for image modes with more than eight bits per channel. /// Call this method after SetHeader, but before ImportBitmap. /// @param maxValue The maximum intensity value. void CPGFImage::SetMaxValue(UINT32 maxValue) { const BYTE bpc = m_header.bpp/m_header.channels; BYTE pot = 0; while(maxValue > 0) { pot++; maxValue >>= 1; } // store bits per channel if (pot > bpc) pot = bpc; if (pot > 31) pot = 31; m_header.usedBitsPerChannel = pot; } ////////////////////////////////////////////////////////////////////// /// Returns number of used bits per input/output image channel. /// Precondition: header must be initialized. /// @return number of used bits per input/output image channel. BYTE CPGFImage::UsedBitsPerChannel() const { const BYTE bpc = m_header.bpp/m_header.channels; if (bpc > 8) { return m_header.usedBitsPerChannel; } else { return bpc; } } ////////////////////////////////////////////////////////////////////// /// Return major version BYTE CPGFImage::CodecMajorVersion(BYTE version) { if (version & Version7) return 7; if (version & Version6) return 6; if (version & Version5) return 5; if (version & Version2) return 2; return 1; } ////////////////////////////////////////////////////////////////// // Import an image from a specified image buffer. // This method is usually called before Write(...) and after SetHeader(...). // It might throw an IOException. // The absolute value of pitch is the number of bytes of an image row. // If pitch is negative, then buff points to the last row of a bottom-up image (first byte on last row). // If pitch is positive, then buff points to the first row of a top-down image (first byte). // The sequence of input channels in the input image buffer does not need to be the same as expected from PGF. In case of different sequences you have to // provide a channelMap of size of expected channels (depending on image mode). For example, PGF expects in RGB color mode a channel sequence BGR. // If your provided image buffer contains a channel sequence ARGB, then the channelMap looks like { 3, 2, 1 }. // @param pitch The number of bytes of a row of the image buffer. // @param buff An image buffer. // @param bpp The number of bits per pixel used in image buffer. // @param channelMap A integer array containing the mapping of input channel ordering to expected channel ordering. // @param cb A pointer to a callback procedure. The procedure is called after each imported buffer row. If cb returns true, then it stops proceeding. // @param data Data Pointer to C++ class container to host callback procedure. void CPGFImage::ImportBitmap(int pitch, UINT8 *buff, BYTE bpp, int channelMap[] /*= nullptr */, CallbackPtr cb /*= nullptr*/, void *data /*=nullptr*/) { ASSERT(buff); ASSERT(m_channel[0]); // color transform RgbToYuv(pitch, buff, bpp, channelMap, cb, data); if (m_downsample) { // Subsampling of the chrominance and alpha channels for (int i=1; i < m_header.channels; i++) { Downsample(i); } } } ///////////////////////////////////////////////////////////////// // Bilinerar Subsampling of channel ch by a factor 2 // Called before Write() void CPGFImage::Downsample(int ch) { ASSERT(ch > 0); const int w = m_width[0]; const int w2 = w/2; const int h2 = m_height[0]/2; const int oddW = w%2; // don't use bool -> problems with MaxSpeed optimization const int oddH = m_height[0]%2; // " int loPos = 0; int hiPos = w; int sampledPos = 0; DataT* buff = m_channel[ch]; ASSERT(buff); for (int i=0; i < h2; i++) { for (int j=0; j < w2; j++) { // compute average of pixel block buff[sampledPos] = (buff[loPos] + buff[loPos + 1] + buff[hiPos] + buff[hiPos + 1]) >> 2; loPos += 2; hiPos += 2; sampledPos++; } if (oddW) { buff[sampledPos] = (buff[loPos] + buff[hiPos]) >> 1; loPos++; hiPos++; sampledPos++; } loPos += w; hiPos += w; } if (oddH) { for (int j=0; j < w2; j++) { buff[sampledPos] = (buff[loPos] + buff[loPos+1]) >> 1; loPos += 2; hiPos += 2; sampledPos++; } if (oddW) { buff[sampledPos] = buff[loPos]; } } // downsampled image has half width and half height m_width[ch] = (m_width[ch] + 1)/2; m_height[ch] = (m_height[ch] + 1)/2; } ////////////////////////////////////////////////////////////////////// void CPGFImage::ComputeLevels() { const int maxThumbnailWidth = 20*FilterSize; const int m = __min(m_header.width, m_header.height); int s = m; if (m_header.nLevels < 1 || m_header.nLevels > MaxLevel) { m_header.nLevels = 1; // compute a good value depending on the size of the image while (s > maxThumbnailWidth) { m_header.nLevels++; s >>= 1; } } int levels = m_header.nLevels; // we need a signed value during level reduction // reduce number of levels if the image size is smaller than FilterSize*(2^levels) s = FilterSize*(1 << levels); // must be at least the double filter size because of subsampling while (m < s) { levels--; s >>= 1; } if (levels > MaxLevel) m_header.nLevels = MaxLevel; else if (levels < 0) m_header.nLevels = 0; else m_header.nLevels = (UINT8)levels; // used in Write when PM_Absolute m_percent = pow(0.25, m_header.nLevels); ASSERT(0 <= m_header.nLevels && m_header.nLevels <= MaxLevel); } ////////////////////////////////////////////////////////////////////// /// Set PGF header and user data. /// Precondition: The PGF image has been never opened with Open(...). /// It might throw an IOException. /// @param header A valid and already filled in PGF header structure /// @param flags A combination of additional version flags. In case you use level-wise encoding then set flag = PGFROI. /// @param userData A user-defined memory block containing any kind of cached metadata. /// @param userDataLength The size of user-defined memory block in bytes void CPGFImage::SetHeader(const PGFHeader& header, BYTE flags /*=0*/, const UINT8* userData /*= 0*/, UINT32 userDataLength /*= 0*/) { ASSERT(!m_decoder); // current image must be closed ASSERT(header.quality <= MaxQuality); ASSERT(userDataLength <= MaxUserDataSize); // init state #ifdef __PGFROISUPPORT__ m_streamReinitialized = false; #endif // init preHeader memcpy(m_preHeader.magic, PGFMagic, 3); m_preHeader.version = PGFVersion | flags; m_preHeader.hSize = HeaderSize; // copy header memcpy(&m_header, &header, HeaderSize); // check quality if (m_header.quality > MaxQuality) m_header.quality = MaxQuality; // complete header CompleteHeader(); // check and set number of levels ComputeLevels(); // check for downsample if (m_header.quality > DownsampleThreshold && (m_header.mode == ImageModeRGBColor || m_header.mode == ImageModeRGBA || m_header.mode == ImageModeRGB48 || m_header.mode == ImageModeCMYKColor || m_header.mode == ImageModeCMYK64 || m_header.mode == ImageModeLabColor || m_header.mode == ImageModeLab48)) { m_downsample = true; m_quant = m_header.quality - 1; } else { m_downsample = false; m_quant = m_header.quality; } // update header size and copy user data if (m_header.mode == ImageModeIndexedColor) { // update header size m_preHeader.hSize += ColorTableSize; } if (userDataLength && userData) { if (userDataLength > MaxUserDataSize) userDataLength = MaxUserDataSize; m_postHeader.userData = new(std::nothrow) UINT8[userDataLength]; if (!m_postHeader.userData) ReturnWithError(InsufficientMemory); m_postHeader.userDataLen = m_postHeader.cachedUserDataLen = userDataLength; memcpy(m_postHeader.userData, userData, userDataLength); // update header size m_preHeader.hSize += userDataLength; } // allocate channels for (int i=0; i < m_header.channels; i++) { // set current width and height m_width[i] = m_header.width; m_height[i] = m_header.height; // allocate channels ASSERT(!m_channel[i]); m_channel[i] = new(std::nothrow) DataT[m_header.width*m_header.height]; if (!m_channel[i]) { if (i) i--; while(i) { delete[] m_channel[i]; m_channel[i] = 0; i--; } ReturnWithError(InsufficientMemory); } } } ////////////////////////////////////////////////////////////////// /// Create wavelet transform channels and encoder. Write header at current stream position. /// Performs forward FWT. /// Call this method before your first call of Write(int level) or WriteImage(), but after SetHeader(). /// This method is called inside of Write(stream, ...). /// It might throw an IOException. /// @param stream A PGF stream /// @return The number of bytes written into stream. UINT32 CPGFImage::WriteHeader(CPGFStream* stream) { ASSERT(m_header.nLevels <= MaxLevel); ASSERT(m_header.quality <= MaxQuality); // quality is already initialized if (m_header.nLevels > 0) { volatile OSError error = NoError; // volatile prevents optimizations // create new wt channels #ifdef LIBPGF_USE_OPENMP #pragma omp parallel for default(shared) #endif for (int i=0; i < m_header.channels; i++) { DataT *temp = nullptr; if (error == NoError) { if (m_wtChannel[i]) { ASSERT(m_channel[i]); // copy m_channel to temp int size = m_height[i]*m_width[i]; temp = new(std::nothrow) DataT[size]; if (temp) { memcpy(temp, m_channel[i], size*DataTSize); delete m_wtChannel[i]; // also deletes m_channel m_channel[i] = nullptr; } else { error = InsufficientMemory; } } if (error == NoError) { if (temp) { ASSERT(!m_channel[i]); m_channel[i] = temp; } m_wtChannel[i] = new CWaveletTransform(m_width[i], m_height[i], m_header.nLevels, m_channel[i]); if (m_wtChannel[i]) { #ifdef __PGFROISUPPORT__ m_wtChannel[i]->SetROI(PGFRect(0, 0, m_width[i], m_height[i])); #endif // wavelet subband decomposition for (int l=0; error == NoError && l < m_header.nLevels; l++) { OSError err = m_wtChannel[i]->ForwardTransform(l, m_quant); if (err != NoError) error = err; } } else { delete[] m_channel[i]; error = InsufficientMemory; } } } } if (error != NoError) { // free already allocated memory for (int i=0; i < m_header.channels; i++) { delete m_wtChannel[i]; } ReturnWithError(error); } m_currentLevel = m_header.nLevels; // create encoder, write headers and user data, but not level-length area m_encoder = new CEncoder(stream, m_preHeader, m_header, m_postHeader, m_userDataPos, m_useOMPinEncoder); if (m_favorSpeedOverSize) m_encoder->FavorSpeedOverSize(); #ifdef __PGFROISUPPORT__ if (ROIisSupported()) { // new encoding scheme supporting ROI m_encoder->SetROI(); } #endif } else { // very small image: we don't use DWT and encoding // create encoder, write headers and user data, but not level-length area m_encoder = new CEncoder(stream, m_preHeader, m_header, m_postHeader, m_userDataPos, m_useOMPinEncoder); } INT64 nBytes = m_encoder->ComputeHeaderLength(); return (nBytes > 0) ? (UINT32)nBytes : 0; } ////////////////////////////////////////////////////////////////// // Encode and write next level of a PGF image at current stream position. // A PGF image is structered in levels, numbered between 0 and Levels() - 1. // Each level can be seen as a single image, containing the same content // as all other levels, but in a different size (width, height). // The image size at level i is double the size (width, height) of the image at level i+1. // The image at level 0 contains the original size. // It might throw an IOException. void CPGFImage::WriteLevel() { ASSERT(m_encoder); ASSERT(m_currentLevel > 0); ASSERT(m_header.nLevels > 0); #ifdef __PGFROISUPPORT__ if (ROIisSupported()) { const int lastChannel = m_header.channels - 1; for (int i=0; i < m_header.channels; i++) { // get number of tiles and tile indices const UINT32 nTiles = m_wtChannel[i]->GetNofTiles(m_currentLevel); const UINT32 lastTile = nTiles - 1; if (m_currentLevel == m_header.nLevels) { // last level also has LL band ASSERT(nTiles == 1); m_wtChannel[i]->GetSubband(m_currentLevel, LL)->ExtractTile(*m_encoder); m_encoder->EncodeTileBuffer(); // encode macro block with tile-end = true } for (UINT32 tileY=0; tileY < nTiles; tileY++) { for (UINT32 tileX=0; tileX < nTiles; tileX++) { // extract tile to macro block and encode already filled macro blocks with tile-end = false m_wtChannel[i]->GetSubband(m_currentLevel, HL)->ExtractTile(*m_encoder, true, tileX, tileY); m_wtChannel[i]->GetSubband(m_currentLevel, LH)->ExtractTile(*m_encoder, true, tileX, tileY); m_wtChannel[i]->GetSubband(m_currentLevel, HH)->ExtractTile(*m_encoder, true, tileX, tileY); if (i == lastChannel && tileY == lastTile && tileX == lastTile) { // all necessary data are buffered. next call of EncodeTileBuffer will write the last piece of data of the current level. m_encoder->SetEncodedLevel(--m_currentLevel); } m_encoder->EncodeTileBuffer(); // encode last macro block with tile-end = true } } } } else #endif { for (int i=0; i < m_header.channels; i++) { ASSERT(m_wtChannel[i]); if (m_currentLevel == m_header.nLevels) { // last level also has LL band m_wtChannel[i]->GetSubband(m_currentLevel, LL)->ExtractTile(*m_encoder); } //encoder.EncodeInterleaved(m_wtChannel[i], m_currentLevel, m_quant); // until version 4 m_wtChannel[i]->GetSubband(m_currentLevel, HL)->ExtractTile(*m_encoder); // since version 5 m_wtChannel[i]->GetSubband(m_currentLevel, LH)->ExtractTile(*m_encoder); // since version 5 m_wtChannel[i]->GetSubband(m_currentLevel, HH)->ExtractTile(*m_encoder); } // all necessary data are buffered. next call of EncodeBuffer will write the last piece of data of the current level. m_encoder->SetEncodedLevel(--m_currentLevel); } } ////////////////////////////////////////////////////////////////////// // Return written levelLength bytes UINT32 CPGFImage::UpdatePostHeaderSize() { ASSERT(m_encoder); INT64 offset = m_encoder->ComputeOffset(); ASSERT(offset >= 0); if (offset > 0) { // update post-header size and rewrite pre-header m_preHeader.hSize += (UINT32)offset; m_encoder->UpdatePostHeaderSize(m_preHeader); } // write dummy levelLength into stream return m_encoder->WriteLevelLength(m_levelLength); } ////////////////////////////////////////////////////////////////////// /// Encode and write an image at current stream position. /// Call this method after WriteHeader(). /// In case you want to write uncached metadata, /// then do that after WriteHeader() and before WriteImage(). /// This method is called inside of Write(stream, ...). /// It might throw an IOException. /// @param stream A PGF stream /// @param cb A pointer to a callback procedure. The procedure is called after writing a single level. If cb returns true, then it stops proceeding. /// @param data Data Pointer to C++ class container to host callback procedure. /// @return The number of bytes written into stream. UINT32 CPGFImage::WriteImage(CPGFStream* stream, CallbackPtr cb /*= nullptr*/, void *data /*= nullptr*/) { ASSERT(stream); ASSERT(m_preHeader.hSize); int levels = m_header.nLevels; double percent = pow(0.25, levels); // update post-header size, rewrite pre-header, and write dummy levelLength UINT32 nWrittenBytes = UpdatePostHeaderSize(); if (levels == 0) { // for very small images: write channels uncoded for (int c=0; c < m_header.channels; c++) { const UINT32 size = m_width[c]*m_height[c]; // write channel data into stream for (UINT32 i=0; i < size; i++) { int count = DataTSize; stream->Write(&count, &m_channel[c][i]); } } // now update progress if (cb) { if ((*cb)(1, true, data)) ReturnWithError(EscapePressed); } } else { // encode quantized wavelet coefficients and write to PGF file // encode subbands, higher levels first // color channels are interleaved // encode all levels for (m_currentLevel = levels; m_currentLevel > 0; ) { WriteLevel(); // decrements m_currentLevel // now update progress if (cb) { percent *= 4; if ((*cb)(percent, true, data)) ReturnWithError(EscapePressed); } } // flush encoder and write level lengths m_encoder->Flush(); } // update level lengths nWrittenBytes += m_encoder->UpdateLevelLength(); // return written image bytes // delete encoder delete m_encoder; m_encoder = nullptr; ASSERT(!m_encoder); return nWrittenBytes; } ////////////////////////////////////////////////////////////////// /// Encode and write an entire PGF image (header and image) at current stream position. /// A PGF image is structered in levels, numbered between 0 and Levels() - 1. /// Each level can be seen as a single image, containing the same content /// as all other levels, but in a different size (width, height). /// The image size at level i is double the size (width, height) of the image at level i+1. /// The image at level 0 contains the original size. /// Precondition: the PGF image contains a valid header (see also SetHeader(...)). /// It might throw an IOException. /// @param stream A PGF stream /// @param nWrittenBytes [in-out] The number of bytes written into stream are added to the input value. /// @param cb A pointer to a callback procedure. The procedure is called after writing a single level. If cb returns true, then it stops proceeding. /// @param data Data Pointer to C++ class container to host callback procedure. void CPGFImage::Write(CPGFStream* stream, UINT32* nWrittenBytes /*= nullptr*/, CallbackPtr cb /*= nullptr*/, void *data /*=nullptr*/) { ASSERT(stream); ASSERT(m_preHeader.hSize); // create wavelet transform channels and encoder UINT32 nBytes = WriteHeader(stream); // write image nBytes += WriteImage(stream, cb, data); // return written bytes if (nWrittenBytes) *nWrittenBytes += nBytes; } #ifdef __PGFROISUPPORT__ ////////////////////////////////////////////////////////////////// // Encode and write down to given level at current stream position. // A PGF image is structered in levels, numbered between 0 and Levels() - 1. // Each level can be seen as a single image, containing the same content // as all other levels, but in a different size (width, height). // The image size at level i is double the size (width, height) of the image at level i+1. // The image at level 0 contains the original size. // Precondition: the PGF image contains a valid header (see also SetHeader(...)) and WriteHeader() has been called before. // The ROI encoding scheme is used. // It might throw an IOException. // @param level The image level of the resulting image in the internal image buffer. // @param cb A pointer to a callback procedure. The procedure is called after writing a single level. If cb returns true, then it stops proceeding. // @param data Data Pointer to C++ class container to host callback procedure. // @return The number of bytes written into stream. UINT32 CPGFImage::Write(int level, CallbackPtr cb /*= nullptr*/, void *data /*=nullptr*/) { ASSERT(m_header.nLevels > 0); ASSERT(0 <= level && level < m_header.nLevels); ASSERT(m_encoder); ASSERT(ROIisSupported()); const int levelDiff = m_currentLevel - level; double percent = (m_progressMode == PM_Relative) ? pow(0.25, levelDiff) : m_percent; UINT32 nWrittenBytes = 0; if (m_currentLevel == m_header.nLevels) { // update post-header size, rewrite pre-header, and write dummy levelLength nWrittenBytes = UpdatePostHeaderSize(); } else { // prepare for next level: save current file position, because the stream might have been reinitialized if (m_encoder->ComputeBufferLength()) { m_streamReinitialized = true; } } // encoding scheme with ROI while (m_currentLevel > level) { WriteLevel(); // decrements m_currentLevel if (m_levelLength) { nWrittenBytes += m_levelLength[m_header.nLevels - m_currentLevel - 1]; } // now update progress if (cb) { percent *= 4; if (m_progressMode == PM_Absolute) m_percent = percent; if ((*cb)(percent, true, data)) ReturnWithError(EscapePressed); } } // automatically closing if (m_currentLevel == 0) { if (!m_streamReinitialized) { // don't write level lengths, if the stream position changed inbetween two Write operations m_encoder->UpdateLevelLength(); } // delete encoder delete m_encoder; m_encoder = nullptr; } return nWrittenBytes; } #endif // __PGFROISUPPORT__ ////////////////////////////////////////////////////////////////// // Check for valid import image mode. // @param mode Image mode // @return True if an image of given mode can be imported with ImportBitmap(...) bool CPGFImage::ImportIsSupported(BYTE mode) { size_t size = DataTSize; if (size >= 2) { switch(mode) { case ImageModeBitmap: case ImageModeIndexedColor: case ImageModeGrayScale: case ImageModeRGBColor: case ImageModeCMYKColor: case ImageModeHSLColor: case ImageModeHSBColor: //case ImageModeDuotone: case ImageModeLabColor: case ImageModeRGB12: case ImageModeRGB16: case ImageModeRGBA: return true; } } if (size >= 3) { switch(mode) { case ImageModeGray16: case ImageModeRGB48: case ImageModeLab48: case ImageModeCMYK64: //case ImageModeDuotone16: return true; } } if (size >=4) { switch(mode) { case ImageModeGray32: return true; } } return false; } ////////////////////////////////////////////////////////////////////// /// Retrieves red, green, blue (RGB) color values from a range of entries in the palette of the DIB section. /// It might throw an IOException. /// @param iFirstColor The color table index of the first entry to retrieve. /// @param nColors The number of color table entries to retrieve. /// @param prgbColors A pointer to the array of RGBQUAD structures to retrieve the color table entries. void CPGFImage::GetColorTable(UINT32 iFirstColor, UINT32 nColors, RGBQUAD* prgbColors) const { if (iFirstColor + nColors > ColorTableLen) ReturnWithError(ColorTableError); for (UINT32 i=iFirstColor, j=0; j < nColors; i++, j++) { prgbColors[j] = m_postHeader.clut[i]; } } ////////////////////////////////////////////////////////////////////// /// Sets the red, green, blue (RGB) color values for a range of entries in the palette (clut). /// It might throw an IOException. /// @param iFirstColor The color table index of the first entry to set. /// @param nColors The number of color table entries to set. /// @param prgbColors A pointer to the array of RGBQUAD structures to set the color table entries. void CPGFImage::SetColorTable(UINT32 iFirstColor, UINT32 nColors, const RGBQUAD* prgbColors) { if (iFirstColor + nColors > ColorTableLen) ReturnWithError(ColorTableError); for (UINT32 i=iFirstColor, j=0; j < nColors; i++, j++) { m_postHeader.clut[i] = prgbColors[j]; } } ////////////////////////////////////////////////////////////////// // Buffer transform from interleaved to channel seperated format // the absolute value of pitch is the number of bytes of an image row // if pitch is negative, then buff points to the last row of a bottom-up image (first byte on last row) // if pitch is positive, then buff points to the first row of a top-down image (first byte) // bpp is the number of bits per pixel used in image buffer buff // // RGB is transformed into YUV format (ordering of buffer data is BGR[A]) // Y = (R + 2*G + B)/4 -128 // U = R - G // V = B - G // // Since PGF Codec version 2.0 images are stored in top-down direction // // The sequence of input channels in the input image buffer does not need to be the same as expected from PGF. In case of different sequences you have to // provide a channelMap of size of expected channels (depending on image mode). For example, PGF expects in RGB color mode a channel sequence BGR. // If your provided image buffer contains a channel sequence ARGB, then the channelMap looks like { 3, 2, 1 }. void CPGFImage::RgbToYuv(int pitch, UINT8* buff, BYTE bpp, int channelMap[], CallbackPtr cb, void *data /*=nullptr*/) { ASSERT(buff); UINT32 yPos = 0, cnt = 0; double percent = 0; const double dP = 1.0/m_header.height; int defMap[] = { 0, 1, 2, 3, 4, 5, 6, 7 }; ASSERT(sizeof(defMap)/sizeof(defMap[0]) == MaxChannels); if (channelMap == nullptr) channelMap = defMap; switch(m_header.mode) { case ImageModeBitmap: { ASSERT(m_header.channels == 1); ASSERT(m_header.bpp == 1); ASSERT(bpp == 1); const UINT32 w = m_header.width; const UINT32 w2 = (m_header.width + 7)/8; DataT* y = m_channel[0]; ASSERT(y); // new unpacked version since version 7 for (UINT32 h = 0; h < m_header.height; h++) { if (cb) { if ((*cb)(percent, true, data)) ReturnWithError(EscapePressed); percent += dP; } cnt = 0; for (UINT32 j = 0; j < w2; j++) { UINT8 byte = buff[j]; for (int k = 0; k < 8; k++) { UINT8 bit = (byte & 0x80) >> 7; if (cnt < w) y[yPos++] = bit; byte <<= 1; cnt++; } } buff += pitch; } /* old version: packed values: 8 pixels in 1 byte for (UINT32 h = 0; h < m_header.height; h++) { if (cb) { if ((*cb)(percent, true, data)) ReturnWithError(EscapePressed); percent += dP; } for (UINT32 j = 0; j < w2; j++) { y[yPos++] = buff[j] - YUVoffset8; } // version 5 and 6 // for (UINT32 j = w2; j < w; j++) { // y[yPos++] = YUVoffset8; //} buff += pitch; } */ } break; case ImageModeIndexedColor: case ImageModeGrayScale: case ImageModeHSLColor: case ImageModeHSBColor: case ImageModeLabColor: { ASSERT(m_header.channels >= 1); ASSERT(m_header.bpp == m_header.channels*8); ASSERT(bpp%8 == 0); const int channels = bpp/8; ASSERT(channels >= m_header.channels); for (UINT32 h=0; h < m_header.height; h++) { if (cb) { if ((*cb)(percent, true, data)) ReturnWithError(EscapePressed); percent += dP; } cnt = 0; for (UINT32 w=0; w < m_header.width; w++) { for (int c=0; c < m_header.channels; c++) { m_channel[c][yPos] = buff[cnt + channelMap[c]] - YUVoffset8; } cnt += channels; yPos++; } buff += pitch; } } break; case ImageModeGray16: case ImageModeLab48: { ASSERT(m_header.channels >= 1); ASSERT(m_header.bpp == m_header.channels*16); ASSERT(bpp%16 == 0); UINT16 *buff16 = (UINT16 *)buff; const int pitch16 = pitch/2; const int channels = bpp/16; ASSERT(channels >= m_header.channels); const int shift = 16 - UsedBitsPerChannel(); ASSERT(shift >= 0); const DataT yuvOffset16 = 1 << (UsedBitsPerChannel() - 1); for (UINT32 h=0; h < m_header.height; h++) { if (cb) { if ((*cb)(percent, true, data)) ReturnWithError(EscapePressed); percent += dP; } cnt = 0; for (UINT32 w=0; w < m_header.width; w++) { for (int c=0; c < m_header.channels; c++) { m_channel[c][yPos] = (buff16[cnt + channelMap[c]] >> shift) - yuvOffset16; } cnt += channels; yPos++; } buff16 += pitch16; } } break; case ImageModeRGBColor: { ASSERT(m_header.channels == 3); ASSERT(m_header.bpp == m_header.channels*8); ASSERT(bpp%8 == 0); DataT* y = m_channel[0]; ASSERT(y); DataT* u = m_channel[1]; ASSERT(u); DataT* v = m_channel[2]; ASSERT(v); const int channels = bpp/8; ASSERT(channels >= m_header.channels); UINT8 b, g, r; for (UINT32 h=0; h < m_header.height; h++) { if (cb) { if ((*cb)(percent, true, data)) ReturnWithError(EscapePressed); percent += dP; } cnt = 0; for (UINT32 w=0; w < m_header.width; w++) { b = buff[cnt + channelMap[0]]; g = buff[cnt + channelMap[1]]; r = buff[cnt + channelMap[2]]; // Yuv y[yPos] = ((b + (g << 1) + r) >> 2) - YUVoffset8; u[yPos] = r - g; v[yPos] = b - g; yPos++; cnt += channels; } buff += pitch; } } break; case ImageModeRGB48: { ASSERT(m_header.channels == 3); ASSERT(m_header.bpp == m_header.channels*16); ASSERT(bpp%16 == 0); UINT16 *buff16 = (UINT16 *)buff; const int pitch16 = pitch/2; const int channels = bpp/16; ASSERT(channels >= m_header.channels); const int shift = 16 - UsedBitsPerChannel(); ASSERT(shift >= 0); const DataT yuvOffset16 = 1 << (UsedBitsPerChannel() - 1); DataT* y = m_channel[0]; ASSERT(y); DataT* u = m_channel[1]; ASSERT(u); DataT* v = m_channel[2]; ASSERT(v); UINT16 b, g, r; for (UINT32 h=0; h < m_header.height; h++) { if (cb) { if ((*cb)(percent, true, data)) ReturnWithError(EscapePressed); percent += dP; } cnt = 0; for (UINT32 w=0; w < m_header.width; w++) { b = buff16[cnt + channelMap[0]] >> shift; g = buff16[cnt + channelMap[1]] >> shift; r = buff16[cnt + channelMap[2]] >> shift; // Yuv y[yPos] = ((b + (g << 1) + r) >> 2) - yuvOffset16; u[yPos] = r - g; v[yPos] = b - g; yPos++; cnt += channels; } buff16 += pitch16; } } break; case ImageModeRGBA: case ImageModeCMYKColor: { ASSERT(m_header.channels == 4); ASSERT(m_header.bpp == m_header.channels*8); ASSERT(bpp%8 == 0); const int channels = bpp/8; ASSERT(channels >= m_header.channels); DataT* y = m_channel[0]; ASSERT(y); DataT* u = m_channel[1]; ASSERT(u); DataT* v = m_channel[2]; ASSERT(v); DataT* a = m_channel[3]; ASSERT(a); UINT8 b, g, r; for (UINT32 h=0; h < m_header.height; h++) { if (cb) { if ((*cb)(percent, true, data)) ReturnWithError(EscapePressed); percent += dP; } cnt = 0; for (UINT32 w=0; w < m_header.width; w++) { b = buff[cnt + channelMap[0]]; g = buff[cnt + channelMap[1]]; r = buff[cnt + channelMap[2]]; // Yuv y[yPos] = ((b + (g << 1) + r) >> 2) - YUVoffset8; u[yPos] = r - g; v[yPos] = b - g; a[yPos++] = buff[cnt + channelMap[3]] - YUVoffset8; cnt += channels; } buff += pitch; } } break; case ImageModeCMYK64: { ASSERT(m_header.channels == 4); ASSERT(m_header.bpp == m_header.channels*16); ASSERT(bpp%16 == 0); UINT16 *buff16 = (UINT16 *)buff; const int pitch16 = pitch/2; const int channels = bpp/16; ASSERT(channels >= m_header.channels); const int shift = 16 - UsedBitsPerChannel(); ASSERT(shift >= 0); const DataT yuvOffset16 = 1 << (UsedBitsPerChannel() - 1); DataT* y = m_channel[0]; ASSERT(y); DataT* u = m_channel[1]; ASSERT(u); DataT* v = m_channel[2]; ASSERT(v); DataT* a = m_channel[3]; ASSERT(a); UINT16 b, g, r; for (UINT32 h=0; h < m_header.height; h++) { if (cb) { if ((*cb)(percent, true, data)) ReturnWithError(EscapePressed); percent += dP; } cnt = 0; for (UINT32 w=0; w < m_header.width; w++) { b = buff16[cnt + channelMap[0]] >> shift; g = buff16[cnt + channelMap[1]] >> shift; r = buff16[cnt + channelMap[2]] >> shift; // Yuv y[yPos] = ((b + (g << 1) + r) >> 2) - yuvOffset16; u[yPos] = r - g; v[yPos] = b - g; a[yPos++] = (buff16[cnt + channelMap[3]] >> shift) - yuvOffset16; cnt += channels; } buff16 += pitch16; } } break; #ifdef __PGF32SUPPORT__ case ImageModeGray32: { ASSERT(m_header.channels == 1); ASSERT(m_header.bpp == 32); ASSERT(bpp == 32); ASSERT(DataTSize == sizeof(UINT32)); DataT* y = m_channel[0]; ASSERT(y); UINT32 *buff32 = (UINT32 *)buff; const int pitch32 = pitch/4; const int shift = 31 - UsedBitsPerChannel(); ASSERT(shift >= 0); const DataT yuvOffset31 = 1 << (UsedBitsPerChannel() - 1); for (UINT32 h=0; h < m_header.height; h++) { if (cb) { if ((*cb)(percent, true, data)) ReturnWithError(EscapePressed); percent += dP; } for (UINT32 w=0; w < m_header.width; w++) { y[yPos++] = (buff32[w] >> shift) - yuvOffset31; } buff32 += pitch32; } } break; #endif case ImageModeRGB12: { ASSERT(m_header.channels == 3); ASSERT(m_header.bpp == m_header.channels*4); ASSERT(bpp == m_header.channels*4); DataT* y = m_channel[0]; ASSERT(y); DataT* u = m_channel[1]; ASSERT(u); DataT* v = m_channel[2]; ASSERT(v); UINT8 rgb = 0, b, g, r; for (UINT32 h=0; h < m_header.height; h++) { if (cb) { if ((*cb)(percent, true, data)) ReturnWithError(EscapePressed); percent += dP; } cnt = 0; for (UINT32 w=0; w < m_header.width; w++) { if (w%2 == 0) { // even pixel position rgb = buff[cnt]; b = rgb & 0x0F; g = (rgb & 0xF0) >> 4; cnt++; rgb = buff[cnt]; r = rgb & 0x0F; } else { // odd pixel position b = (rgb & 0xF0) >> 4; cnt++; rgb = buff[cnt]; g = rgb & 0x0F; r = (rgb & 0xF0) >> 4; cnt++; } // Yuv y[yPos] = ((b + (g << 1) + r) >> 2) - YUVoffset4; u[yPos] = r - g; v[yPos] = b - g; yPos++; } buff += pitch; } } break; case ImageModeRGB16: { ASSERT(m_header.channels == 3); ASSERT(m_header.bpp == 16); ASSERT(bpp == 16); DataT* y = m_channel[0]; ASSERT(y); DataT* u = m_channel[1]; ASSERT(u); DataT* v = m_channel[2]; ASSERT(v); UINT16 *buff16 = (UINT16 *)buff; UINT16 rgb, b, g, r; const int pitch16 = pitch/2; for (UINT32 h=0; h < m_header.height; h++) { if (cb) { if ((*cb)(percent, true, data)) ReturnWithError(EscapePressed); percent += dP; } for (UINT32 w=0; w < m_header.width; w++) { rgb = buff16[w]; r = (rgb & 0xF800) >> 10; // highest 5 bits g = (rgb & 0x07E0) >> 5; // middle 6 bits b = (rgb & 0x001F) << 1; // lowest 5 bits // Yuv y[yPos] = ((b + (g << 1) + r) >> 2) - YUVoffset6; u[yPos] = r - g; v[yPos] = b - g; yPos++; } buff16 += pitch16; } } break; default: ASSERT(false); } } ////////////////////////////////////////////////////////////////// // Get image data in interleaved format: (ordering of RGB data is BGR[A]) // Upsampling, YUV to RGB transform and interleaving are done here to reduce the number // of passes over the data. // The absolute value of pitch is the number of bytes of an image row of the given image buffer. // If pitch is negative, then the image buffer must point to the last row of a bottom-up image (first byte on last row). // if pitch is positive, then the image buffer must point to the first row of a top-down image (first byte). // The sequence of output channels in the output image buffer does not need to be the same as provided by PGF. In case of different sequences you have to // provide a channelMap of size of expected channels (depending on image mode). For example, PGF provides a channel sequence BGR in RGB color mode. // If your provided image buffer expects a channel sequence ARGB, then the channelMap looks like { 3, 2, 1 }. // It might throw an IOException. // @param pitch The number of bytes of a row of the image buffer. // @param buff An image buffer. // @param bpp The number of bits per pixel used in image buffer. // @param channelMap A integer array containing the mapping of PGF channel ordering to expected channel ordering. // @param cb A pointer to a callback procedure. The procedure is called after each copied buffer row. If cb returns true, then it stops proceeding. // @param data Data Pointer to C++ class container to host callback procedure. void CPGFImage::GetBitmap(int pitch, UINT8* buff, BYTE bpp, int channelMap[] /*= nullptr */, CallbackPtr cb /*= nullptr*/, void *data /*=nullptr*/) const { ASSERT(buff); UINT32 w = m_width[0]; // width of decoded image UINT32 h = m_height[0]; // height of decoded image UINT32 yw = w; // y-channel width UINT32 uw = m_width[1]; // u-channel width UINT32 roiOffsetX = 0; UINT32 roiOffsetY = 0; UINT32 yOffset = 0; UINT32 uOffset = 0; #ifdef __PGFROISUPPORT__ const PGFRect& roi = GetAlignedROI(); // in pixels, roi is usually larger than levelRoi ASSERT(w == roi.Width() && h == roi.Height()); const PGFRect levelRoi = ComputeLevelROI(); ASSERT(roi.left <= levelRoi.left && levelRoi.right <= roi.right); ASSERT(roi.top <= levelRoi.top && levelRoi.bottom <= roi.bottom); if (ROIisSupported() && (levelRoi.Width() < w || levelRoi.Height() < h)) { // ROI is used w = levelRoi.Width(); h = levelRoi.Height(); roiOffsetX = levelRoi.left - roi.left; roiOffsetY = levelRoi.top - roi.top; yOffset = roiOffsetX + roiOffsetY*yw; if (m_downsample) { const PGFRect& downsampledRoi = GetAlignedROI(1); uOffset = levelRoi.left/2 - downsampledRoi.left + (levelRoi.top/2 - downsampledRoi.top)*m_width[1]; } else { uOffset = yOffset; } } #endif const double dP = 1.0/h; int defMap[] = { 0, 1, 2, 3, 4, 5, 6, 7 }; ASSERT(sizeof(defMap)/sizeof(defMap[0]) == MaxChannels); if (channelMap == nullptr) channelMap = defMap; DataT uAvg, vAvg; double percent = 0; UINT32 i, j; switch(m_header.mode) { case ImageModeBitmap: { ASSERT(m_header.channels == 1); ASSERT(m_header.bpp == 1); ASSERT(bpp == 1); const UINT32 w2 = (w + 7)/8; DataT* y = m_channel[0]; ASSERT(y); if (m_preHeader.version & Version7) { // new unpacked version has a little better compression ratio // since version 7 for (i = 0; i < h; i++) { UINT32 cnt = 0; for (j = 0; j < w2; j++) { UINT8 byte = 0; for (int k = 0; k < 8; k++) { byte <<= 1; UINT8 bit = 0; if (cnt < w) { bit = y[yOffset + cnt] & 1; } byte |= bit; cnt++; } buff[j] = byte; } yOffset += yw; buff += pitch; if (cb) { percent += dP; if ((*cb)(percent, true, data)) ReturnWithError(EscapePressed); } } } else { // old versions // packed pixels: 8 pixel in 1 byte of channel[0] if (!(m_preHeader.version & Version5)) yw = w2; // not version 5 or 6 yOffset = roiOffsetX/8 + roiOffsetY*yw; // 1 byte in y contains 8 pixel values for (i = 0; i < h; i++) { for (j = 0; j < w2; j++) { buff[j] = Clamp8(y[yOffset + j] + YUVoffset8); } yOffset += yw; buff += pitch; if (cb) { percent += dP; if ((*cb)(percent, true, data)) ReturnWithError(EscapePressed); } } } break; } case ImageModeIndexedColor: case ImageModeGrayScale: case ImageModeHSLColor: case ImageModeHSBColor: { ASSERT(m_header.channels >= 1); ASSERT(m_header.bpp == m_header.channels*8); ASSERT(bpp%8 == 0); UINT32 cnt, channels = bpp/8; ASSERT(channels >= m_header.channels); for (i=0; i < h; i++) { UINT32 yPos = yOffset; cnt = 0; for (j=0; j < w; j++) { for (UINT32 c=0; c < m_header.channels; c++) { buff[cnt + channelMap[c]] = Clamp8(m_channel[c][yPos] + YUVoffset8); } cnt += channels; yPos++; } yOffset += yw; buff += pitch; if (cb) { percent += dP; if ((*cb)(percent, true, data)) ReturnWithError(EscapePressed); } } break; } case ImageModeGray16: { ASSERT(m_header.channels >= 1); ASSERT(m_header.bpp == m_header.channels*16); const DataT yuvOffset16 = 1 << (UsedBitsPerChannel() - 1); UINT32 cnt, channels; if (bpp%16 == 0) { const int shift = 16 - UsedBitsPerChannel(); ASSERT(shift >= 0); UINT16 *buff16 = (UINT16 *)buff; int pitch16 = pitch/2; channels = bpp/16; ASSERT(channels >= m_header.channels); for (i=0; i < h; i++) { UINT32 yPos = yOffset; cnt = 0; for (j=0; j < w; j++) { for (UINT32 c=0; c < m_header.channels; c++) { buff16[cnt + channelMap[c]] = Clamp16((m_channel[c][yPos] + yuvOffset16) << shift); } cnt += channels; yPos++; } yOffset += yw; buff16 += pitch16; if (cb) { percent += dP; if ((*cb)(percent, true, data)) ReturnWithError(EscapePressed); } } } else { ASSERT(bpp%8 == 0); const int shift = __max(0, UsedBitsPerChannel() - 8); channels = bpp/8; ASSERT(channels >= m_header.channels); for (i=0; i < h; i++) { UINT32 yPos = yOffset; cnt = 0; for (j=0; j < w; j++) { for (UINT32 c=0; c < m_header.channels; c++) { buff[cnt + channelMap[c]] = Clamp8((m_channel[c][yPos] + yuvOffset16) >> shift); } cnt += channels; yPos++; } yOffset += yw; buff += pitch; if (cb) { percent += dP; if ((*cb)(percent, true, data)) ReturnWithError(EscapePressed); } } } break; } case ImageModeRGBColor: { ASSERT(m_header.channels == 3); ASSERT(m_header.bpp == m_header.channels*8); ASSERT(bpp%8 == 0); ASSERT(bpp >= m_header.bpp); DataT* y = m_channel[0]; ASSERT(y); DataT* u = m_channel[1]; ASSERT(u); DataT* v = m_channel[2]; ASSERT(v); UINT8 *buffg = &buff[channelMap[1]], *buffr = &buff[channelMap[2]], *buffb = &buff[channelMap[0]]; UINT8 g; UINT32 cnt, channels = bpp/8; if (m_downsample) { for (i=0; i < h; i++) { UINT32 uPos = uOffset; UINT32 yPos = yOffset; cnt = 0; for (j=0; j < w; j++) { // u and v are downsampled uAvg = u[uPos]; vAvg = v[uPos]; // Yuv buffg[cnt] = g = Clamp8(y[yPos] + YUVoffset8 - ((uAvg + vAvg ) >> 2)); // must be logical shift operator buffr[cnt] = Clamp8(uAvg + g); buffb[cnt] = Clamp8(vAvg + g); cnt += channels; if (j & 1) uPos++; yPos++; } if (i & 1) uOffset += uw; yOffset += yw; buffb += pitch; buffg += pitch; buffr += pitch; if (cb) { percent += dP; if ((*cb)(percent, true, data)) ReturnWithError(EscapePressed); } } } else { for (i=0; i < h; i++) { cnt = 0; UINT32 yPos = yOffset; for (j = 0; j < w; j++) { uAvg = u[yPos]; vAvg = v[yPos]; // Yuv buffg[cnt] = g = Clamp8(y[yPos] + YUVoffset8 - ((uAvg + vAvg ) >> 2)); // must be logical shift operator buffr[cnt] = Clamp8(uAvg + g); buffb[cnt] = Clamp8(vAvg + g); cnt += channels; yPos++; } yOffset += yw; buffb += pitch; buffg += pitch; buffr += pitch; if (cb) { percent += dP; if ((*cb)(percent, true, data)) ReturnWithError(EscapePressed); } } } break; } case ImageModeRGB48: { ASSERT(m_header.channels == 3); ASSERT(m_header.bpp == 48); const DataT yuvOffset16 = 1 << (UsedBitsPerChannel() - 1); DataT* y = m_channel[0]; ASSERT(y); DataT* u = m_channel[1]; ASSERT(u); DataT* v = m_channel[2]; ASSERT(v); UINT32 cnt, channels; DataT g; if (bpp >= 48 && bpp%16 == 0) { const int shift = 16 - UsedBitsPerChannel(); ASSERT(shift >= 0); UINT16 *buff16 = (UINT16 *)buff; int pitch16 = pitch/2; channels = bpp/16; ASSERT(channels >= m_header.channels); for (i=0; i < h; i++) { UINT32 uPos = uOffset; UINT32 yPos = yOffset; cnt = 0; for (j=0; j < w; j++) { uAvg = u[uPos]; vAvg = v[uPos]; // Yuv g = y[yPos] + yuvOffset16 - ((uAvg + vAvg ) >> 2); // must be logical shift operator buff16[cnt + channelMap[1]] = Clamp16(g << shift); buff16[cnt + channelMap[2]] = Clamp16((uAvg + g) << shift); buff16[cnt + channelMap[0]] = Clamp16((vAvg + g) << shift); cnt += channels; if (!m_downsample || (j & 1)) uPos++; yPos++; } if (!m_downsample || (i & 1)) uOffset += uw; yOffset += yw; buff16 += pitch16; if (cb) { percent += dP; if ((*cb)(percent, true, data)) ReturnWithError(EscapePressed); } } } else { ASSERT(bpp%8 == 0); const int shift = __max(0, UsedBitsPerChannel() - 8); channels = bpp/8; ASSERT(channels >= m_header.channels); for (i=0; i < h; i++) { UINT32 uPos = uOffset; UINT32 yPos = yOffset; cnt = 0; for (j=0; j < w; j++) { uAvg = u[uPos]; vAvg = v[uPos]; // Yuv g = y[yPos] + yuvOffset16 - ((uAvg + vAvg ) >> 2); // must be logical shift operator buff[cnt + channelMap[1]] = Clamp8(g >> shift); buff[cnt + channelMap[2]] = Clamp8((uAvg + g) >> shift); buff[cnt + channelMap[0]] = Clamp8((vAvg + g) >> shift); cnt += channels; if (!m_downsample || (j & 1)) uPos++; yPos++; } if (!m_downsample || (i & 1)) uOffset += uw; yOffset += yw; buff += pitch; if (cb) { percent += dP; if ((*cb)(percent, true, data)) ReturnWithError(EscapePressed); } } } break; } case ImageModeLabColor: { ASSERT(m_header.channels == 3); ASSERT(m_header.bpp == m_header.channels*8); ASSERT(bpp%8 == 0); DataT* l = m_channel[0]; ASSERT(l); DataT* a = m_channel[1]; ASSERT(a); DataT* b = m_channel[2]; ASSERT(b); UINT32 cnt, channels = bpp/8; ASSERT(channels >= m_header.channels); for (i=0; i < h; i++) { UINT32 uPos = uOffset; UINT32 yPos = yOffset; cnt = 0; for (j=0; j < w; j++) { uAvg = a[uPos]; vAvg = b[uPos]; buff[cnt + channelMap[0]] = Clamp8(l[yPos] + YUVoffset8); buff[cnt + channelMap[1]] = Clamp8(uAvg + YUVoffset8); buff[cnt + channelMap[2]] = Clamp8(vAvg + YUVoffset8); cnt += channels; if (!m_downsample || (j & 1)) uPos++; yPos++; } if (!m_downsample || (i & 1)) uOffset += uw; yOffset += yw; buff += pitch; if (cb) { percent += dP; if ((*cb)(percent, true, data)) ReturnWithError(EscapePressed); } } break; } case ImageModeLab48: { ASSERT(m_header.channels == 3); ASSERT(m_header.bpp == m_header.channels*16); const DataT yuvOffset16 = 1 << (UsedBitsPerChannel() - 1); DataT* l = m_channel[0]; ASSERT(l); DataT* a = m_channel[1]; ASSERT(a); DataT* b = m_channel[2]; ASSERT(b); UINT32 cnt, channels; if (bpp%16 == 0) { const int shift = 16 - UsedBitsPerChannel(); ASSERT(shift >= 0); UINT16 *buff16 = (UINT16 *)buff; int pitch16 = pitch/2; channels = bpp/16; ASSERT(channels >= m_header.channels); for (i=0; i < h; i++) { UINT32 uPos = uOffset; UINT32 yPos = yOffset; cnt = 0; for (j=0; j < w; j++) { uAvg = a[uPos]; vAvg = b[uPos]; buff16[cnt + channelMap[0]] = Clamp16((l[yPos] + yuvOffset16) << shift); buff16[cnt + channelMap[1]] = Clamp16((uAvg + yuvOffset16) << shift); buff16[cnt + channelMap[2]] = Clamp16((vAvg + yuvOffset16) << shift); cnt += channels; if (!m_downsample || (j & 1)) uPos++; yPos++; } if (!m_downsample || (i & 1)) uOffset += uw; yOffset += yw; buff16 += pitch16; if (cb) { percent += dP; if ((*cb)(percent, true, data)) ReturnWithError(EscapePressed); } } } else { ASSERT(bpp%8 == 0); const int shift = __max(0, UsedBitsPerChannel() - 8); channels = bpp/8; ASSERT(channels >= m_header.channels); for (i=0; i < h; i++) { UINT32 uPos = uOffset; UINT32 yPos = yOffset; cnt = 0; for (j=0; j < w; j++) { uAvg = a[uPos]; vAvg = b[uPos]; buff[cnt + channelMap[0]] = Clamp8((l[yPos] + yuvOffset16) >> shift); buff[cnt + channelMap[1]] = Clamp8((uAvg + yuvOffset16) >> shift); buff[cnt + channelMap[2]] = Clamp8((vAvg + yuvOffset16) >> shift); cnt += channels; if (!m_downsample || (j & 1)) uPos++; yPos++; } if (!m_downsample || (i & 1)) uOffset += uw; yOffset += yw; buff += pitch; if (cb) { percent += dP; if ((*cb)(percent, true, data)) ReturnWithError(EscapePressed); } } } break; } case ImageModeRGBA: case ImageModeCMYKColor: { ASSERT(m_header.channels == 4); ASSERT(m_header.bpp == m_header.channels*8); ASSERT(bpp%8 == 0); DataT* y = m_channel[0]; ASSERT(y); DataT* u = m_channel[1]; ASSERT(u); DataT* v = m_channel[2]; ASSERT(v); DataT* a = m_channel[3]; ASSERT(a); UINT8 g, aAvg; UINT32 cnt, channels = bpp/8; ASSERT(channels >= m_header.channels); for (i=0; i < h; i++) { UINT32 uPos = uOffset; UINT32 yPos = yOffset; cnt = 0; for (j=0; j < w; j++) { uAvg = u[uPos]; vAvg = v[uPos]; aAvg = Clamp8(a[uPos] + YUVoffset8); // Yuv buff[cnt + channelMap[1]] = g = Clamp8(y[yPos] + YUVoffset8 - ((uAvg + vAvg ) >> 2)); // must be logical shift operator buff[cnt + channelMap[2]] = Clamp8(uAvg + g); buff[cnt + channelMap[0]] = Clamp8(vAvg + g); buff[cnt + channelMap[3]] = aAvg; cnt += channels; if (!m_downsample || (j & 1)) uPos++; yPos++; } if (!m_downsample || (i & 1)) uOffset += uw; yOffset += yw; buff += pitch; if (cb) { percent += dP; if ((*cb)(percent, true, data)) ReturnWithError(EscapePressed); } } break; } case ImageModeCMYK64: { ASSERT(m_header.channels == 4); ASSERT(m_header.bpp == 64); const DataT yuvOffset16 = 1 << (UsedBitsPerChannel() - 1); DataT* y = m_channel[0]; ASSERT(y); DataT* u = m_channel[1]; ASSERT(u); DataT* v = m_channel[2]; ASSERT(v); DataT* a = m_channel[3]; ASSERT(a); DataT g, aAvg; UINT32 cnt, channels; if (bpp%16 == 0) { const int shift = 16 - UsedBitsPerChannel(); ASSERT(shift >= 0); UINT16 *buff16 = (UINT16 *)buff; int pitch16 = pitch/2; channels = bpp/16; ASSERT(channels >= m_header.channels); for (i=0; i < h; i++) { UINT32 uPos = uOffset; UINT32 yPos = yOffset; cnt = 0; for (j=0; j < w; j++) { uAvg = u[uPos]; vAvg = v[uPos]; aAvg = a[uPos] + yuvOffset16; // Yuv g = y[yPos] + yuvOffset16 - ((uAvg + vAvg ) >> 2); // must be logical shift operator buff16[cnt + channelMap[1]] = Clamp16(g << shift); buff16[cnt + channelMap[2]] = Clamp16((uAvg + g) << shift); buff16[cnt + channelMap[0]] = Clamp16((vAvg + g) << shift); buff16[cnt + channelMap[3]] = Clamp16(aAvg << shift); cnt += channels; if (!m_downsample || (j & 1)) uPos++; yPos++; } if (!m_downsample || (i & 1)) uOffset += uw; yOffset += yw; buff16 += pitch16; if (cb) { percent += dP; if ((*cb)(percent, true, data)) ReturnWithError(EscapePressed); } } } else { ASSERT(bpp%8 == 0); const int shift = __max(0, UsedBitsPerChannel() - 8); channels = bpp/8; ASSERT(channels >= m_header.channels); for (i=0; i < h; i++) { UINT32 uPos = uOffset; UINT32 yPos = yOffset; cnt = 0; for (j=0; j < w; j++) { uAvg = u[uPos]; vAvg = v[uPos]; aAvg = a[uPos] + yuvOffset16; // Yuv g = y[yPos] + yuvOffset16 - ((uAvg + vAvg ) >> 2); // must be logical shift operator buff[cnt + channelMap[1]] = Clamp8(g >> shift); buff[cnt + channelMap[2]] = Clamp8((uAvg + g) >> shift); buff[cnt + channelMap[0]] = Clamp8((vAvg + g) >> shift); buff[cnt + channelMap[3]] = Clamp8(aAvg >> shift); cnt += channels; if (!m_downsample || (j & 1)) uPos++; yPos++; } if (!m_downsample || (i & 1)) uOffset += uw; yOffset += yw; buff += pitch; if (cb) { percent += dP; if ((*cb)(percent, true, data)) ReturnWithError(EscapePressed); } } } break; } #ifdef __PGF32SUPPORT__ case ImageModeGray32: { ASSERT(m_header.channels == 1); ASSERT(m_header.bpp == 32); const int yuvOffset31 = 1 << (UsedBitsPerChannel() - 1); DataT* y = m_channel[0]; ASSERT(y); if (bpp == 32) { const int shift = 31 - UsedBitsPerChannel(); ASSERT(shift >= 0); UINT32 *buff32 = (UINT32 *)buff; int pitch32 = pitch/4; for (i=0; i < h; i++) { UINT32 yPos = yOffset; for (j = 0; j < w; j++) { buff32[j] = Clamp31((y[yPos++] + yuvOffset31) << shift); } yOffset += yw; buff32 += pitch32; if (cb) { percent += dP; if ((*cb)(percent, true, data)) ReturnWithError(EscapePressed); } } } else if (bpp == 16) { const int usedBits = UsedBitsPerChannel(); UINT16 *buff16 = (UINT16 *)buff; int pitch16 = pitch/2; if (usedBits < 16) { const int shift = 16 - usedBits; for (i=0; i < h; i++) { UINT32 yPos = yOffset; for (j = 0; j < w; j++) { buff16[j] = Clamp16((y[yPos++] + yuvOffset31) << shift); } yOffset += yw; buff16 += pitch16; if (cb) { percent += dP; if ((*cb)(percent, true, data)) ReturnWithError(EscapePressed); } } } else { const int shift = __max(0, usedBits - 16); for (i=0; i < h; i++) { UINT32 yPos = yOffset; for (j = 0; j < w; j++) { buff16[j] = Clamp16((y[yPos++] + yuvOffset31) >> shift); } yOffset += yw; buff16 += pitch16; if (cb) { percent += dP; if ((*cb)(percent, true, data)) ReturnWithError(EscapePressed); } } } } else { ASSERT(bpp == 8); const int shift = __max(0, UsedBitsPerChannel() - 8); for (i=0; i < h; i++) { UINT32 yPos = yOffset; for (j = 0; j < w; j++) { buff[j] = Clamp8((y[yPos++] + yuvOffset31) >> shift); } yOffset += yw; buff += pitch; if (cb) { percent += dP; if ((*cb)(percent, true, data)) ReturnWithError(EscapePressed); } } } break; } #endif case ImageModeRGB12: { ASSERT(m_header.channels == 3); ASSERT(m_header.bpp == m_header.channels*4); ASSERT(bpp == m_header.channels*4); ASSERT(!m_downsample); DataT* y = m_channel[0]; ASSERT(y); DataT* u = m_channel[1]; ASSERT(u); DataT* v = m_channel[2]; ASSERT(v); UINT16 yval; UINT32 cnt; for (i=0; i < h; i++) { UINT32 yPos = yOffset; cnt = 0; for (j=0; j < w; j++) { // Yuv uAvg = u[yPos]; vAvg = v[yPos]; yval = Clamp4(y[yPos] + YUVoffset4 - ((uAvg + vAvg ) >> 2)); // must be logical shift operator if (j%2 == 0) { buff[cnt] = UINT8(Clamp4(vAvg + yval) | (yval << 4)); cnt++; buff[cnt] = Clamp4(uAvg + yval); } else { buff[cnt] |= Clamp4(vAvg + yval) << 4; cnt++; buff[cnt] = UINT8(yval | (Clamp4(uAvg + yval) << 4)); cnt++; } yPos++; } yOffset += yw; buff += pitch; if (cb) { percent += dP; if ((*cb)(percent, true, data)) ReturnWithError(EscapePressed); } } break; } case ImageModeRGB16: { ASSERT(m_header.channels == 3); ASSERT(m_header.bpp == 16); ASSERT(bpp == 16); ASSERT(!m_downsample); DataT* y = m_channel[0]; ASSERT(y); DataT* u = m_channel[1]; ASSERT(u); DataT* v = m_channel[2]; ASSERT(v); UINT16 yval; UINT16 *buff16 = (UINT16 *)buff; int pitch16 = pitch/2; for (i=0; i < h; i++) { UINT32 yPos = yOffset; for (j = 0; j < w; j++) { // Yuv uAvg = u[yPos]; vAvg = v[yPos]; yval = Clamp6(y[yPos++] + YUVoffset6 - ((uAvg + vAvg ) >> 2)); // must be logical shift operator buff16[j] = (yval << 5) | ((Clamp6(uAvg + yval) >> 1) << 11) | (Clamp6(vAvg + yval) >> 1); } yOffset += yw; buff16 += pitch16; if (cb) { percent += dP; if ((*cb)(percent, true, data)) ReturnWithError(EscapePressed); } } break; } default: ASSERT(false); } #ifdef _DEBUG // display ROI (RGB) in debugger roiimage.width = w; roiimage.height = h; if (pitch > 0) { roiimage.pitch = pitch; roiimage.data = buff; } else { roiimage.pitch = -pitch; roiimage.data = buff + (h - 1)*pitch; } #endif } ////////////////////////////////////////////////////////////////////// /// Get YUV image data in interleaved format: (ordering is YUV[A]) /// The absolute value of pitch is the number of bytes of an image row of the given image buffer. /// If pitch is negative, then the image buffer must point to the last row of a bottom-up image (first byte on last row). /// if pitch is positive, then the image buffer must point to the first row of a top-down image (first byte). /// The sequence of output channels in the output image buffer does not need to be the same as provided by PGF. In case of different sequences you have to /// provide a channelMap of size of expected channels (depending on image mode). For example, PGF provides a channel sequence BGR in RGB color mode. /// If your provided image buffer expects a channel sequence VUY, then the channelMap looks like { 2, 1, 0 }. /// It might throw an IOException. /// @param pitch The number of bytes of a row of the image buffer. /// @param buff An image buffer. /// @param bpp The number of bits per pixel used in image buffer. /// @param channelMap A integer array containing the mapping of PGF channel ordering to expected channel ordering. /// @param cb A pointer to a callback procedure. The procedure is called after each copied buffer row. If cb returns true, then it stops proceeding. void CPGFImage::GetYUV(int pitch, DataT* buff, BYTE bpp, int channelMap[] /*= nullptr*/, CallbackPtr cb /*= nullptr*/, void *data /*=nullptr*/) const { ASSERT(buff); const UINT32 w = m_width[0]; const UINT32 h = m_height[0]; const bool wOdd = (1 == w%2); const int dataBits = DataTSize*8; ASSERT(dataBits == 16 || dataBits == 32); const int pitch2 = pitch/DataTSize; const int yuvOffset = (dataBits == 16) ? YUVoffset8 : YUVoffset16; const double dP = 1.0/h; int defMap[] = { 0, 1, 2, 3, 4, 5, 6, 7 }; ASSERT(sizeof(defMap)/sizeof(defMap[0]) == MaxChannels); if (channelMap == nullptr) channelMap = defMap; int sampledPos = 0, yPos = 0; DataT uAvg, vAvg; double percent = 0; UINT32 i, j; if (m_header.channels == 3) { ASSERT(bpp%dataBits == 0); DataT* y = m_channel[0]; ASSERT(y); DataT* u = m_channel[1]; ASSERT(u); DataT* v = m_channel[2]; ASSERT(v); int cnt, channels = bpp/dataBits; ASSERT(channels >= m_header.channels); for (i=0; i < h; i++) { if (i%2) sampledPos -= (w + 1)/2; cnt = 0; for (j=0; j < w; j++) { if (m_downsample) { // image was downsampled uAvg = u[sampledPos]; vAvg = v[sampledPos]; } else { uAvg = u[yPos]; vAvg = v[yPos]; } buff[cnt + channelMap[0]] = y[yPos]; buff[cnt + channelMap[1]] = uAvg; buff[cnt + channelMap[2]] = vAvg; yPos++; cnt += channels; if (j%2) sampledPos++; } buff += pitch2; if (wOdd) sampledPos++; if (cb) { percent += dP; if ((*cb)(percent, true, data)) ReturnWithError(EscapePressed); } } } else if (m_header.channels == 4) { ASSERT(m_header.bpp == m_header.channels*8); ASSERT(bpp%dataBits == 0); DataT* y = m_channel[0]; ASSERT(y); DataT* u = m_channel[1]; ASSERT(u); DataT* v = m_channel[2]; ASSERT(v); DataT* a = m_channel[3]; ASSERT(a); UINT8 aAvg; int cnt, channels = bpp/dataBits; ASSERT(channels >= m_header.channels); for (i=0; i < h; i++) { if (i%2) sampledPos -= (w + 1)/2; cnt = 0; for (j=0; j < w; j++) { if (m_downsample) { // image was downsampled uAvg = u[sampledPos]; vAvg = v[sampledPos]; aAvg = Clamp8(a[sampledPos] + yuvOffset); } else { uAvg = u[yPos]; vAvg = v[yPos]; aAvg = Clamp8(a[yPos] + yuvOffset); } // Yuv buff[cnt + channelMap[0]] = y[yPos]; buff[cnt + channelMap[1]] = uAvg; buff[cnt + channelMap[2]] = vAvg; buff[cnt + channelMap[3]] = aAvg; yPos++; cnt += channels; if (j%2) sampledPos++; } buff += pitch2; if (wOdd) sampledPos++; if (cb) { percent += dP; if ((*cb)(percent, true, data)) ReturnWithError(EscapePressed); } } } } ////////////////////////////////////////////////////////////////////// /// Import a YUV image from a specified image buffer. /// The absolute value of pitch is the number of bytes of an image row. /// If pitch is negative, then buff points to the last row of a bottom-up image (first byte on last row). /// If pitch is positive, then buff points to the first row of a top-down image (first byte). /// The sequence of input channels in the input image buffer does not need to be the same as expected from PGF. In case of different sequences you have to /// provide a channelMap of size of expected channels (depending on image mode). For example, PGF expects in RGB color mode a channel sequence BGR. /// If your provided image buffer contains a channel sequence VUY, then the channelMap looks like { 2, 1, 0 }. /// It might throw an IOException. /// @param pitch The number of bytes of a row of the image buffer. /// @param buff An image buffer. /// @param bpp The number of bits per pixel used in image buffer. /// @param channelMap A integer array containing the mapping of input channel ordering to expected channel ordering. /// @param cb A pointer to a callback procedure. The procedure is called after each imported buffer row. If cb returns true, then it stops proceeding. void CPGFImage::ImportYUV(int pitch, DataT *buff, BYTE bpp, int channelMap[] /*= nullptr*/, CallbackPtr cb /*= nullptr*/, void *data /*=nullptr*/) { ASSERT(buff); const double dP = 1.0/m_header.height; const int dataBits = DataTSize*8; ASSERT(dataBits == 16 || dataBits == 32); const int pitch2 = pitch/DataTSize; const int yuvOffset = (dataBits == 16) ? YUVoffset8 : YUVoffset16; int yPos = 0, cnt = 0; double percent = 0; int defMap[] = { 0, 1, 2, 3, 4, 5, 6, 7 }; ASSERT(sizeof(defMap)/sizeof(defMap[0]) == MaxChannels); if (channelMap == nullptr) channelMap = defMap; if (m_header.channels == 3) { ASSERT(bpp%dataBits == 0); DataT* y = m_channel[0]; ASSERT(y); DataT* u = m_channel[1]; ASSERT(u); DataT* v = m_channel[2]; ASSERT(v); const int channels = bpp/dataBits; ASSERT(channels >= m_header.channels); for (UINT32 h=0; h < m_header.height; h++) { if (cb) { if ((*cb)(percent, true, data)) ReturnWithError(EscapePressed); percent += dP; } cnt = 0; for (UINT32 w=0; w < m_header.width; w++) { y[yPos] = buff[cnt + channelMap[0]]; u[yPos] = buff[cnt + channelMap[1]]; v[yPos] = buff[cnt + channelMap[2]]; yPos++; cnt += channels; } buff += pitch2; } } else if (m_header.channels == 4) { ASSERT(bpp%dataBits == 0); DataT* y = m_channel[0]; ASSERT(y); DataT* u = m_channel[1]; ASSERT(u); DataT* v = m_channel[2]; ASSERT(v); DataT* a = m_channel[3]; ASSERT(a); const int channels = bpp/dataBits; ASSERT(channels >= m_header.channels); for (UINT32 h=0; h < m_header.height; h++) { if (cb) { if ((*cb)(percent, true, data)) ReturnWithError(EscapePressed); percent += dP; } cnt = 0; for (UINT32 w=0; w < m_header.width; w++) { y[yPos] = buff[cnt + channelMap[0]]; u[yPos] = buff[cnt + channelMap[1]]; v[yPos] = buff[cnt + channelMap[2]]; a[yPos] = buff[cnt + channelMap[3]] - yuvOffset; yPos++; cnt += channels; } buff += pitch2; } } if (m_downsample) { // Subsampling of the chrominance and alpha channels for (int i=1; i < m_header.channels; i++) { Downsample(i); } } } libpgf-7.21.7+ds/src/PGFstream.cpp000066400000000000000000000173661422111121400166020ustar00rootroot00000000000000/* * The Progressive Graphics File; http://www.libpgf.org * * $Date: 2007-01-19 11:51:24 +0100 (Fr, 19 Jan 2007) $ * $Revision: 268 $ * * This file Copyright (C) 2006 xeraina GmbH, Switzerland * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU LESSER GENERAL PUBLIC LICENSE * as published by the Free Software Foundation; either version 2.1 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ ////////////////////////////////////////////////////////////////////// /// @file PGFstream.cpp /// @brief PGF stream class implementation /// @author C. Stamm #include "PGFstream.h" #ifdef WIN32 #include #endif ////////////////////////////////////////////////////////////////////// // CPGFFileStream ////////////////////////////////////////////////////////////////////// void CPGFFileStream::Write(int *count, void *buffPtr) { ASSERT(count); ASSERT(buffPtr); ASSERT(IsValid()); OSError err; if ((err = FileWrite(m_hFile, count, buffPtr)) != NoError) ReturnWithError(err); } ////////////////////////////////////////////////////////////////////// void CPGFFileStream::Read(int *count, void *buffPtr) { ASSERT(count); ASSERT(buffPtr); ASSERT(IsValid()); OSError err; if ((err = FileRead(m_hFile, count, buffPtr)) != NoError) ReturnWithError(err); } ////////////////////////////////////////////////////////////////////// void CPGFFileStream::SetPos(short posMode, INT64 posOff) { ASSERT(IsValid()); OSError err; if ((err = SetFPos(m_hFile, posMode, posOff)) != NoError) ReturnWithError(err); } ////////////////////////////////////////////////////////////////////// UINT64 CPGFFileStream::GetPos() const { ASSERT(IsValid()); OSError err; UINT64 pos = 0; if ((err = GetFPos(m_hFile, &pos)) != NoError) ReturnWithError2(err, pos); return pos; } ////////////////////////////////////////////////////////////////////// // CPGFMemoryStream ////////////////////////////////////////////////////////////////////// /// Allocate memory block of given size /// @param size Memory size CPGFMemoryStream::CPGFMemoryStream(size_t size) : m_size(size) , m_allocated(true) { m_buffer = m_pos = m_eos = new(std::nothrow) UINT8[m_size]; if (!m_buffer) ReturnWithError(InsufficientMemory); } ////////////////////////////////////////////////////////////////////// /// Use already allocated memory of given size /// @param pBuffer Memory location /// @param size Memory size CPGFMemoryStream::CPGFMemoryStream(UINT8 *pBuffer, size_t size) : m_buffer(pBuffer) , m_pos(pBuffer) , m_eos(pBuffer + size) , m_size(size) , m_allocated(false) { ASSERT(IsValid()); } ////////////////////////////////////////////////////////////////////// /// Use already allocated memory of given size /// @param pBuffer Memory location /// @param size Memory size void CPGFMemoryStream::Reinitialize(UINT8 *pBuffer, size_t size) { if (!m_allocated) { m_buffer = m_pos = pBuffer; m_size = size; m_eos = m_buffer + size; } } ////////////////////////////////////////////////////////////////////// void CPGFMemoryStream::Write(int *count, void *buffPtr) { ASSERT(count); ASSERT(buffPtr); ASSERT(IsValid()); const size_t deltaSize = 0x4000 + *count; if (m_pos + *count <= m_buffer + m_size) { memcpy(m_pos, buffPtr, *count); m_pos += *count; if (m_pos > m_eos) m_eos = m_pos; } else if (m_allocated) { // memory block is too small -> reallocate a deltaSize larger block size_t offset = m_pos - m_buffer; UINT8 *buf_tmp = (UINT8 *)realloc(m_buffer, m_size + deltaSize); if (!buf_tmp) { delete[] m_buffer; m_buffer = 0; ReturnWithError(InsufficientMemory); } else { m_buffer = buf_tmp; } m_size += deltaSize; // reposition m_pos m_pos = m_buffer + offset; // write block memcpy(m_pos, buffPtr, *count); m_pos += *count; if (m_pos > m_eos) m_eos = m_pos; } else { ReturnWithError(InsufficientMemory); } ASSERT(m_pos <= m_eos); } ////////////////////////////////////////////////////////////////////// void CPGFMemoryStream::Read(int *count, void *buffPtr) { ASSERT(IsValid()); ASSERT(count); ASSERT(buffPtr); ASSERT(m_buffer + m_size >= m_eos); ASSERT(m_pos <= m_eos); if (m_pos + *count <= m_eos) { memcpy(buffPtr, m_pos, *count); m_pos += *count; } else { // end of memory block reached -> read only until end *count = (int)__max(0, m_eos - m_pos); memcpy(buffPtr, m_pos, *count); m_pos += *count; } ASSERT(m_pos <= m_eos); } ////////////////////////////////////////////////////////////////////// void CPGFMemoryStream::SetPos(short posMode, INT64 posOff) { ASSERT(IsValid()); switch(posMode) { case FSFromStart: m_pos = m_buffer + posOff; break; case FSFromCurrent: m_pos += posOff; break; case FSFromEnd: m_pos = m_eos + posOff; break; default: ASSERT(false); } if (m_pos > m_eos) ReturnWithError(InvalidStreamPos); } ////////////////////////////////////////////////////////////////////// // CPGFMemFileStream #ifdef _MFC_VER ////////////////////////////////////////////////////////////////////// void CPGFMemFileStream::Write(int *count, void *buffPtr) { ASSERT(count); ASSERT(buffPtr); ASSERT(IsValid()); m_memFile->Write(buffPtr, *count); } ////////////////////////////////////////////////////////////////////// void CPGFMemFileStream::Read(int *count, void *buffPtr) { ASSERT(count); ASSERT(buffPtr); ASSERT(IsValid()); m_memFile->Read(buffPtr, *count); } ////////////////////////////////////////////////////////////////////// void CPGFMemFileStream::SetPos(short posMode, INT64 posOff) { ASSERT(IsValid()); m_memFile->Seek(posOff, posMode); } ////////////////////////////////////////////////////////////////////// UINT64 CPGFMemFileStream::GetPos() const { return (UINT64)m_memFile->GetPosition(); } #endif // _MFC_VER ////////////////////////////////////////////////////////////////////// // CPGFIStream #if defined(WIN32) || defined(WINCE) ////////////////////////////////////////////////////////////////////// void CPGFIStream::Write(int *count, void *buffPtr) { ASSERT(count); ASSERT(buffPtr); ASSERT(IsValid()); HRESULT hr = m_stream->Write(buffPtr, *count, (ULONG *)count); if (FAILED(hr)) { ReturnWithError(hr); } } ////////////////////////////////////////////////////////////////////// void CPGFIStream::Read(int *count, void *buffPtr) { ASSERT(count); ASSERT(buffPtr); ASSERT(IsValid()); HRESULT hr = m_stream->Read(buffPtr, *count, (ULONG *)count); if (FAILED(hr)) { ReturnWithError(hr); } } ////////////////////////////////////////////////////////////////////// void CPGFIStream::SetPos(short posMode, INT64 posOff) { ASSERT(IsValid()); LARGE_INTEGER li; li.QuadPart = posOff; HRESULT hr = m_stream->Seek(li, posMode, nullptr); if (FAILED(hr)) { ReturnWithError(hr); } } ////////////////////////////////////////////////////////////////////// UINT64 CPGFIStream::GetPos() const { ASSERT(IsValid()); LARGE_INTEGER n; ULARGE_INTEGER pos; n.QuadPart = 0; HRESULT hr = m_stream->Seek(n, FSFromCurrent, &pos); if (SUCCEEDED(hr)) { return pos.QuadPart; } else { ReturnWithError2(hr, pos.QuadPart); } } #endif // WIN32 || WINCE libpgf-7.21.7+ds/src/Subband.cpp000066400000000000000000000254611422111121400163230ustar00rootroot00000000000000/* * The Progressive Graphics File; http://www.libpgf.org * * $Date: 2006-06-04 22:05:59 +0200 (So, 04 Jun 2006) $ * $Revision: 229 $ * * This file Copyright (C) 2006 xeraina GmbH, Switzerland * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU LESSER GENERAL PUBLIC LICENSE * as published by the Free Software Foundation; either version 2.1 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ ////////////////////////////////////////////////////////////////////// /// @file Subband.cpp /// @brief PGF wavelet subband class implementation /// @author C. Stamm #include "Subband.h" #include "Encoder.h" #include "Decoder.h" ///////////////////////////////////////////////////////////////////// // Default constructor CSubband::CSubband() : m_width(0) , m_height(0) , m_size(0) , m_level(0) , m_orientation(LL) , m_data(0) , m_dataPos(0) #ifdef __PGFROISUPPORT__ , m_nTiles(0) #endif { } ///////////////////////////////////////////////////////////////////// // Destructor CSubband::~CSubband() { FreeMemory(); } ///////////////////////////////////////////////////////////////////// // Initialize subband parameters void CSubband::Initialize(UINT32 width, UINT32 height, int level, Orientation orient) { m_width = width; m_height = height; m_size = m_width*m_height; m_level = level; m_orientation = orient; m_data = 0; m_dataPos = 0; #ifdef __PGFROISUPPORT__ m_ROI.left = 0; m_ROI.top = 0; m_ROI.right = m_width; m_ROI.bottom = m_height; m_nTiles = 0; #endif } ///////////////////////////////////////////////////////////////////// // Allocate a memory buffer to store all wavelet coefficients of this subband. // @return True if the allocation works without any problems bool CSubband::AllocMemory() { UINT32 oldSize = m_size; #ifdef __PGFROISUPPORT__ m_size = BufferWidth()*m_ROI.Height(); #endif ASSERT(m_size > 0); if (m_data) { if (oldSize >= m_size) { return true; } else { delete[] m_data; m_data = new(std::nothrow) DataT[m_size]; return (m_data != 0); } } else { m_data = new(std::nothrow) DataT[m_size]; return (m_data != 0); } } ///////////////////////////////////////////////////////////////////// // Delete the memory buffer of this subband. void CSubband::FreeMemory() { if (m_data) { delete[] m_data; m_data = 0; } } ///////////////////////////////////////////////////////////////////// // Perform subband quantization with given quantization parameter. // A scalar quantization (with dead-zone) is used. A large quantization value // results in strong quantization and therefore in big quality loss. // @param quantParam A quantization parameter (larger or equal to 0) void CSubband::Quantize(int quantParam) { if (m_orientation == LL) { quantParam -= (m_level + 1); // uniform rounding quantization if (quantParam > 0) { quantParam--; for (UINT32 i=0; i < m_size; i++) { if (m_data[i] < 0) { m_data[i] = -(((-m_data[i] >> quantParam) + 1) >> 1); } else { m_data[i] = ((m_data[i] >> quantParam) + 1) >> 1; } } } } else { if (m_orientation == HH) { quantParam -= (m_level - 1); } else { quantParam -= m_level; } // uniform deadzone quantization if (quantParam > 0) { int threshold = ((1 << quantParam) * 7)/5; // good value quantParam--; for (UINT32 i=0; i < m_size; i++) { if (m_data[i] < -threshold) { m_data[i] = -(((-m_data[i] >> quantParam) + 1) >> 1); } else if (m_data[i] > threshold) { m_data[i] = ((m_data[i] >> quantParam) + 1) >> 1; } else { m_data[i] = 0; } } } } } ////////////////////////////////////////////////////////////////////// /// Perform subband dequantization with given quantization parameter. /// A scalar quantization (with dead-zone) is used. A large quantization value /// results in strong quantization and therefore in big quality loss. /// @param quantParam A quantization parameter (larger or equal to 0) void CSubband::Dequantize(int quantParam) { if (m_orientation == LL) { quantParam -= m_level + 1; } else if (m_orientation == HH) { quantParam -= m_level - 1; } else { quantParam -= m_level; } if (quantParam > 0) { for (UINT32 i=0; i < m_size; i++) { m_data[i] <<= quantParam; } } } ///////////////////////////////////////////////////////////////////// /// Extracts a rectangular subregion of this subband. /// Write wavelet coefficients into buffer. /// It might throw an IOException. /// @param encoder An encoder instance /// @param tile True if just a rectangular region is extracted, false if the entire subband is extracted. /// @param tileX Tile index in x-direction /// @param tileY Tile index in y-direction void CSubband::ExtractTile(CEncoder& encoder, bool tile /*= false*/, UINT32 tileX /*= 0*/, UINT32 tileY /*= 0*/) { #ifdef __PGFROISUPPORT__ if (tile) { // compute tile position and size UINT32 xPos, yPos, w, h; TilePosition(tileX, tileY, xPos, yPos, w, h); // write values into buffer using partitiong scheme encoder.Partition(this, w, h, xPos + yPos*m_width, m_width); } else #endif { tileX; tileY; tile; // prevents from unreferenced formal parameter warning // write values into buffer using partitiong scheme encoder.Partition(this, m_width, m_height, 0, m_width); } } ///////////////////////////////////////////////////////////////////// /// Decoding and dequantization of this subband. /// It might throw an IOException. /// @param decoder A decoder instance /// @param quantParam Dequantization value /// @param tile True if just a rectangular region is placed, false if the entire subband is placed. /// @param tileX Tile index in x-direction /// @param tileY Tile index in y-direction void CSubband::PlaceTile(CDecoder& decoder, int quantParam, bool tile /*= false*/, UINT32 tileX /*= 0*/, UINT32 tileY /*= 0*/) { // allocate memory if (!AllocMemory()) ReturnWithError(InsufficientMemory); // correct quantParam with normalization factor if (m_orientation == LL) { quantParam -= m_level + 1; } else if (m_orientation == HH) { quantParam -= m_level - 1; } else { quantParam -= m_level; } if (quantParam < 0) quantParam = 0; #ifdef __PGFROISUPPORT__ if (tile) { UINT32 xPos, yPos, w, h; // compute tile position and size TilePosition(tileX, tileY, xPos, yPos, w, h); ASSERT(xPos >= m_ROI.left && yPos >= m_ROI.top); decoder.Partition(this, quantParam, w, h, (xPos - m_ROI.left) + (yPos - m_ROI.top)*BufferWidth(), BufferWidth()); } else #endif { tileX; tileY; tile; // prevents from unreferenced formal parameter warning // read values into buffer using partitiong scheme decoder.Partition(this, quantParam, m_width, m_height, 0, m_width); } } #ifdef __PGFROISUPPORT__ ////////////////////////////////////////////////////////////////////// /// Set ROI void CSubband::SetAlignedROI(const PGFRect& roi) { ASSERT(roi.left <= m_width); ASSERT(roi.top <= m_height); m_ROI = roi; if (m_ROI.right > m_width) m_ROI.right = m_width; if (m_ROI.bottom > m_height) m_ROI.bottom = m_height; } ////////////////////////////////////////////////////////////////////// /// Compute tile position and size. /// @param tileX Tile index in x-direction /// @param tileY Tile index in y-direction /// @param xPos [out] Offset to left /// @param yPos [out] Offset to top /// @param w [out] Tile width /// @param h [out] Tile height void CSubband::TilePosition(UINT32 tileX, UINT32 tileY, UINT32& xPos, UINT32& yPos, UINT32& w, UINT32& h) const { ASSERT(tileX < m_nTiles); ASSERT(tileY < m_nTiles); // example // band = HH, w = 30, ldTiles = 2 -> 4 tiles in a row/column // --> tile widths // 8 7 8 7 // // tile partitioning scheme // 0 1 2 3 // 4 5 6 7 // 8 9 A B // C D E F UINT32 nTiles = m_nTiles; UINT32 m; UINT32 left = 0, right = nTiles; UINT32 top = 0, bottom = nTiles; xPos = 0; yPos = 0; w = m_width; h = m_height; while (nTiles > 1) { // compute xPos and w with binary search m = left + ((right - left) >> 1); if (tileX >= m) { xPos += (w + 1) >> 1; w >>= 1; left = m; } else { w = (w + 1) >> 1; right = m; } // compute yPos and h with binary search m = top + ((bottom - top) >> 1); if (tileY >= m) { yPos += (h + 1) >> 1; h >>= 1; top = m; } else { h = (h + 1) >> 1; bottom = m; } nTiles >>= 1; } ASSERT(xPos < m_width && (xPos + w <= m_width)); ASSERT(yPos < m_height && (yPos + h <= m_height)); } ////////////////////////////////////////////////////////////////////// /// Compute tile index and extrem position (x,y) of given position (xPos, yPos). void CSubband::TileIndex(bool topLeft, UINT32 xPos, UINT32 yPos, UINT32& tileX, UINT32& tileY, UINT32& x, UINT32& y) const { UINT32 m; UINT32 left = 0, right = m_width; UINT32 top = 0, bottom = m_height; UINT32 nTiles = m_nTiles; if (xPos > m_width) xPos = m_width; if (yPos > m_height) yPos = m_height; if (topLeft) { // compute tileX with binary search tileX = 0; while (nTiles > 1) { nTiles >>= 1; m = left + ((right - left + 1) >> 1); if (xPos < m) { // exclusive m right = m; } else { tileX += nTiles; left = m; } } x = left; ASSERT(tileX >= 0 && tileX < m_nTiles); // compute tileY with binary search nTiles = m_nTiles; tileY = 0; while (nTiles > 1) { nTiles >>= 1; m = top + ((bottom - top + 1) >> 1); if (yPos < m) { // exclusive m bottom = m; } else { tileY += nTiles; top = m; } } y = top; ASSERT(tileY >= 0 && tileY < m_nTiles); } else { // compute tileX with binary search tileX = 1; while (nTiles > 1) { nTiles >>= 1; m = left + ((right - left + 1) >> 1); if (xPos <= m) { // inclusive m right = m; } else { tileX += nTiles; left = m; } } x = right; ASSERT(tileX > 0 && tileX <= m_nTiles); // compute tileY with binary search nTiles = m_nTiles; tileY = 1; while (nTiles > 1) { nTiles >>= 1; m = top + ((bottom - top + 1) >> 1); if (yPos <= m) { // inclusive m bottom = m; } else { tileY += nTiles; top = m; } } y = bottom; ASSERT(tileY > 0 && tileY <= m_nTiles); } } #endif libpgf-7.21.7+ds/src/Subband.h000066400000000000000000000166601422111121400157710ustar00rootroot00000000000000/* * The Progressive Graphics File; http://www.libpgf.org * * $Date: 2006-06-04 22:05:59 +0200 (So, 04 Jun 2006) $ * $Revision: 229 $ * * This file Copyright (C) 2006 xeraina GmbH, Switzerland * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU LESSER GENERAL PUBLIC LICENSE * as published by the Free Software Foundation; either version 2.1 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ ////////////////////////////////////////////////////////////////////// /// @file Subband.h /// @brief PGF wavelet subband class /// @author C. Stamm #ifndef PGF_SUBBAND_H #define PGF_SUBBAND_H #include "PGFtypes.h" class CEncoder; class CDecoder; class CRoiIndices; ////////////////////////////////////////////////////////////////////// /// PGF wavelet channel subband class. /// @author C. Stamm, R. Spuler /// @brief Wavelet channel class class CSubband { friend class CWaveletTransform; friend class CRoiIndices; public: ////////////////////////////////////////////////////////////////////// /// Standard constructor. CSubband(); ////////////////////////////////////////////////////////////////////// /// Destructor. ~CSubband(); ////////////////////////////////////////////////////////////////////// /// Allocate a memory buffer to store all wavelet coefficients of this subband. /// @return True if the allocation did work without any problems bool AllocMemory(); ////////////////////////////////////////////////////////////////////// /// Delete the memory buffer of this subband. void FreeMemory(); ///////////////////////////////////////////////////////////////////// /// Extracts a rectangular subregion of this subband. /// Write wavelet coefficients into buffer. /// It might throw an IOException. /// @param encoder An encoder instance /// @param tile True if just a rectangular region is extracted, false if the entire subband is extracted. /// @param tileX Tile index in x-direction /// @param tileY Tile index in y-direction void ExtractTile(CEncoder& encoder, bool tile = false, UINT32 tileX = 0, UINT32 tileY = 0); ///////////////////////////////////////////////////////////////////// /// Decoding and dequantization of this subband. /// It might throw an IOException. /// @param decoder A decoder instance /// @param quantParam Dequantization value /// @param tile True if just a rectangular region is placed, false if the entire subband is placed. /// @param tileX Tile index in x-direction /// @param tileY Tile index in y-direction void PlaceTile(CDecoder& decoder, int quantParam, bool tile = false, UINT32 tileX = 0, UINT32 tileY = 0); ////////////////////////////////////////////////////////////////////// /// Perform subband quantization with given quantization parameter. /// A scalar quantization (with dead-zone) is used. A large quantization value /// results in strong quantization and therefore in big quality loss. /// @param quantParam A quantization parameter (larger or equal to 0) void Quantize(int quantParam); ////////////////////////////////////////////////////////////////////// /// Perform subband dequantization with given quantization parameter. /// A scalar quantization (with dead-zone) is used. A large quantization value /// results in strong quantization and therefore in big quality loss. /// @param quantParam A quantization parameter (larger or equal to 0) void Dequantize(int quantParam); ////////////////////////////////////////////////////////////////////// /// Store wavelet coefficient in subband at given position. /// @param pos A subband position (>= 0) /// @param v A wavelet coefficient void SetData(UINT32 pos, DataT v) { ASSERT(pos < m_size); m_data[pos] = v; } ////////////////////////////////////////////////////////////////////// /// Get a pointer to an array of all wavelet coefficients of this subband. /// @return Pointer to array of wavelet coefficients DataT* GetBuffer() { return m_data; } ////////////////////////////////////////////////////////////////////// /// Return wavelet coefficient at given position. /// @param pos A subband position (>= 0) /// @return Wavelet coefficient DataT GetData(UINT32 pos) const { ASSERT(pos < m_size); return m_data[pos]; } ////////////////////////////////////////////////////////////////////// /// Return level of this subband. /// @return Level of this subband int GetLevel() const { return m_level; } ////////////////////////////////////////////////////////////////////// /// Return height of this subband. /// @return Height of this subband (in pixels) int GetHeight() const { return m_height; } ////////////////////////////////////////////////////////////////////// /// Return width of this subband. /// @return Width of this subband (in pixels) int GetWidth() const { return m_width; } ////////////////////////////////////////////////////////////////////// /// Return orientation of this subband. /// LL LH /// HL HH /// @return Orientation of this subband (LL, HL, LH, HH) Orientation GetOrientation() const { return m_orientation; } #ifdef __PGFROISUPPORT__ ///////////////////////////////////////////////////////////////////// /// Set data buffer position to given position + one row. /// @param pos Given position void IncBuffRow(UINT32 pos) { m_dataPos = pos + BufferWidth(); } #endif private: void Initialize(UINT32 width, UINT32 height, int level, Orientation orient); void WriteBuffer(DataT val) { ASSERT(m_dataPos < m_size); m_data[m_dataPos++] = val; } void SetBuffer(DataT* b) { ASSERT(b); m_data = b; } DataT ReadBuffer() { ASSERT(m_dataPos < m_size); return m_data[m_dataPos++]; } UINT32 GetBuffPos() const { return m_dataPos; } #ifdef __PGFROISUPPORT__ UINT32 BufferWidth() const { return m_ROI.Width(); } void TilePosition(UINT32 tileX, UINT32 tileY, UINT32& left, UINT32& top, UINT32& w, UINT32& h) const; void TileIndex(bool topLeft, UINT32 xPos, UINT32 yPos, UINT32& tileX, UINT32& tileY, UINT32& x, UINT32& y) const; const PGFRect& GetAlignedROI() const { return m_ROI; } void SetNTiles(UINT32 nTiles) { m_nTiles = nTiles; } void SetAlignedROI(const PGFRect& roi); void InitBuffPos(UINT32 left = 0, UINT32 top = 0) { m_dataPos = top*BufferWidth() + left; ASSERT(m_dataPos < m_size); } #else void InitBuffPos() { m_dataPos = 0; } #endif private: UINT32 m_width; ///< width in pixels UINT32 m_height; ///< height in pixels UINT32 m_size; ///< size of data buffer m_data int m_level; ///< recursion level Orientation m_orientation; ///< 0=LL, 1=HL, 2=LH, 3=HH L=lowpass filtered, H=highpass filterd UINT32 m_dataPos; ///< current position in m_data DataT* m_data; ///< buffer #ifdef __PGFROISUPPORT__ PGFRect m_ROI; ///< region of interest (block aligned) UINT32 m_nTiles; ///< number of tiles in one dimension in this subband #endif }; #endif //PGF_SUBBAND_H libpgf-7.21.7+ds/src/WaveletTransform.cpp000066400000000000000000000463271422111121400202540ustar00rootroot00000000000000/* * The Progressive Graphics File; http://www.libpgf.org * * $Date: 2006-05-18 16:03:32 +0200 (Do, 18 Mai 2006) $ * $Revision: 194 $ * * This file Copyright (C) 2006 xeraina GmbH, Switzerland * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU LESSER GENERAL PUBLIC LICENSE * as published by the Free Software Foundation; either version 2.1 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ ////////////////////////////////////////////////////////////////////// /// @file WaveletTransform.cpp /// @brief PGF wavelet transform class implementation /// @author C. Stamm #include "WaveletTransform.h" #define c1 1 // best value 1 #define c2 2 // best value 2 ////////////////////////////////////////////////////////////////////////// // Constructor: Constructs a wavelet transform pyramid of given size and levels. // @param width The width of the original image (at level 0) in pixels // @param height The height of the original image (at level 0) in pixels // @param levels The number of levels (>= 0) // @param data Input data of subband LL at level 0 CWaveletTransform::CWaveletTransform(UINT32 width, UINT32 height, int levels, DataT* data) : m_nLevels(levels + 1) // m_nLevels in CPGFImage determines the number of FWT steps; this.m_nLevels determines the number subband-planes , m_subband(nullptr) #ifdef __PGFROISUPPORT__ , m_indices(nullptr) #endif { ASSERT(m_nLevels > 0 && m_nLevels <= MaxLevel + 1); InitSubbands(width, height, data); } ///////////////////////////////////////////////////////////////////// // Initialize size subbands on all levels void CWaveletTransform::InitSubbands(UINT32 width, UINT32 height, DataT* data) { if (m_subband) Destroy(); // create subbands m_subband = new CSubband[m_nLevels][NSubbands]; // init subbands UINT32 loWidth = width; UINT32 hiWidth = width; UINT32 loHeight = height; UINT32 hiHeight = height; for (int level = 0; level < m_nLevels; level++) { m_subband[level][LL].Initialize(loWidth, loHeight, level, LL); // LL m_subband[level][HL].Initialize(hiWidth, loHeight, level, HL); // HL m_subband[level][LH].Initialize(loWidth, hiHeight, level, LH); // LH m_subband[level][HH].Initialize(hiWidth, hiHeight, level, HH); // HH hiWidth = loWidth >> 1; hiHeight = loHeight >> 1; loWidth = (loWidth + 1) >> 1; loHeight = (loHeight + 1) >> 1; } if (data) { m_subband[0][LL].SetBuffer(data); } } ////////////////////////////////////////////////////////////////////////// // Compute fast forward wavelet transform of LL subband at given level and // stores result in all 4 subbands of level + 1. // Wavelet transform used in writing a PGF file // Forward Transform of srcBand and split and store it into subbands on destLevel // low pass filter at even positions: 1/8[-1, 2, (6), 2, -1] // high pass filter at odd positions: 1/4[-2, (4), -2] // @param level A wavelet transform pyramid level (>= 0 && < Levels()) // @param quant A quantization value (linear scalar quantization) // @return error in case of a memory allocation problem OSError CWaveletTransform::ForwardTransform(int level, int quant) { ASSERT(level >= 0 && level < m_nLevels - 1); const int destLevel = level + 1; ASSERT(m_subband[destLevel]); CSubband* srcBand = &m_subband[level][LL]; ASSERT(srcBand); const UINT32 width = srcBand->GetWidth(); const UINT32 height = srcBand->GetHeight(); DataT* src = srcBand->GetBuffer(); ASSERT(src); DataT *row0, *row1, *row2, *row3; // Allocate memory for next transform level for (int i=0; i < NSubbands; i++) { if (!m_subband[destLevel][i].AllocMemory()) return InsufficientMemory; } if (height >= FilterSize) { // changed from FilterSizeH to FilterSize // top border handling row0 = src; row1 = row0 + width; row2 = row1 + width; ForwardRow(row0, width); ForwardRow(row1, width); ForwardRow(row2, width); for (UINT32 k=0; k < width; k++) { row1[k] -= ((row0[k] + row2[k] + c1) >> 1); // high pass row0[k] += ((row1[k] + c1) >> 1); // low pass } InterleavedToSubbands(destLevel, row0, row1, width); row0 = row1; row1 = row2; row2 += width; row3 = row2 + width; // middle part for (UINT32 i=3; i < height-1; i += 2) { ForwardRow(row2, width); ForwardRow(row3, width); for (UINT32 k=0; k < width; k++) { row2[k] -= ((row1[k] + row3[k] + c1) >> 1); // high pass filter row1[k] += ((row0[k] + row2[k] + c2) >> 2); // low pass filter } InterleavedToSubbands(destLevel, row1, row2, width); row0 = row2; row1 = row3; row2 = row3 + width; row3 = row2 + width; } // bottom border handling if (height & 1) { for (UINT32 k=0; k < width; k++) { row1[k] += ((row0[k] + c1) >> 1); // low pass } InterleavedToSubbands(destLevel, row1, nullptr, width); row0 = row1; row1 += width; } else { ForwardRow(row2, width); for (UINT32 k=0; k < width; k++) { row2[k] -= row1[k]; // high pass row1[k] += ((row0[k] + row2[k] + c2) >> 2); // low pass } InterleavedToSubbands(destLevel, row1, row2, width); row0 = row1; row1 = row2; row2 += width; } } else { // if height is too small row0 = src; row1 = row0 + width; // first part for (UINT32 k=0; k < height; k += 2) { ForwardRow(row0, width); ForwardRow(row1, width); InterleavedToSubbands(destLevel, row0, row1, width); row0 += width << 1; row1 += width << 1; } // bottom if (height & 1) { InterleavedToSubbands(destLevel, row0, nullptr, width); } } if (quant > 0) { // subband quantization (without LL) for (int i=1; i < NSubbands; i++) { m_subband[destLevel][i].Quantize(quant); } // LL subband quantization if (destLevel == m_nLevels - 1) { m_subband[destLevel][LL].Quantize(quant); } } // free source band srcBand->FreeMemory(); return NoError; } ////////////////////////////////////////////////////////////// // Forward transform one row // low pass filter at even positions: 1/8[-1, 2, (6), 2, -1] // high pass filter at odd positions: 1/4[-2, (4), -2] void CWaveletTransform::ForwardRow(DataT* src, UINT32 width) { if (width >= FilterSize) { UINT32 i = 3; // left border handling src[1] -= ((src[0] + src[2] + c1) >> 1); // high pass src[0] += ((src[1] + c1) >> 1); // low pass // middle part for (; i < width-1; i += 2) { src[i] -= ((src[i-1] + src[i+1] + c1) >> 1); // high pass src[i-1] += ((src[i-2] + src[i] + c2) >> 2); // low pass } // right border handling if (width & 1) { src[i-1] += ((src[i-2] + c1) >> 1); // low pass } else { src[i] -= src[i-1]; // high pass src[i-1] += ((src[i-2] + src[i] + c2) >> 2); // low pass } } } ///////////////////////////////////////////////////////////////// // Copy transformed and interleaved (L,H,L,H,...) rows loRow and hiRow to subbands LL,HL,LH,HH void CWaveletTransform::InterleavedToSubbands(int destLevel, DataT* loRow, DataT* hiRow, UINT32 width) { const UINT32 wquot = width >> 1; const bool wrem = (width & 1); CSubband &ll = m_subband[destLevel][LL], &hl = m_subband[destLevel][HL]; CSubband &lh = m_subband[destLevel][LH], &hh = m_subband[destLevel][HH]; if (hiRow) { for (UINT32 i=0; i < wquot; i++) { ll.WriteBuffer(*loRow++); // first access, than increment hl.WriteBuffer(*loRow++); lh.WriteBuffer(*hiRow++); // first access, than increment hh.WriteBuffer(*hiRow++); } if (wrem) { ll.WriteBuffer(*loRow); lh.WriteBuffer(*hiRow); } } else { for (UINT32 i=0; i < wquot; i++) { ll.WriteBuffer(*loRow++); // first access, than increment hl.WriteBuffer(*loRow++); } if (wrem) ll.WriteBuffer(*loRow); } } ////////////////////////////////////////////////////////////////////////// // Compute fast inverse wavelet transform of all 4 subbands of given level and // stores result in LL subband of level - 1. // Inverse wavelet transform used in reading a PGF file // Inverse Transform srcLevel and combine to destBand // low-pass coefficients at even positions, high-pass coefficients at odd positions // inverse filter for even positions: 1/4[-1, (4), -1] // inverse filter for odd positions: 1/8[-1, 4, (6), 4, -1] // @param srcLevel A wavelet transform pyramid level (> 0 && <= Levels()) // @param w [out] A pointer to the returned width of subband LL (in pixels) // @param h [out] A pointer to the returned height of subband LL (in pixels) // @param data [out] A pointer to the returned array of image data // @return error in case of a memory allocation problem OSError CWaveletTransform::InverseTransform(int srcLevel, UINT32* w, UINT32* h, DataT** data) { ASSERT(srcLevel > 0 && srcLevel < m_nLevels); const int destLevel = srcLevel - 1; ASSERT(m_subband[destLevel]); CSubband* destBand = &m_subband[destLevel][LL]; UINT32 width, height; // allocate memory for the results of the inverse transform if (!destBand->AllocMemory()) return InsufficientMemory; DataT *origin = destBand->GetBuffer(), *row0, *row1, *row2, *row3; #ifdef __PGFROISUPPORT__ PGFRect destROI = destBand->GetAlignedROI(); const UINT32 destWidth = destROI.Width(); // destination buffer width const UINT32 destHeight = destROI.Height(); // destination buffer height width = destWidth; // destination working width height = destHeight; // destination working height // update destination ROI if (destROI.top & 1) { destROI.top++; origin += destWidth; height--; } if (destROI.left & 1) { destROI.left++; origin++; width--; } // init source buffer position const UINT32 leftD = destROI.left >> 1; const UINT32 left0 = m_subband[srcLevel][LL].GetAlignedROI().left; const UINT32 left1 = m_subband[srcLevel][HL].GetAlignedROI().left; const UINT32 topD = destROI.top >> 1; const UINT32 top0 = m_subband[srcLevel][LL].GetAlignedROI().top; const UINT32 top1 = m_subband[srcLevel][LH].GetAlignedROI().top; ASSERT(m_subband[srcLevel][LH].GetAlignedROI().left == left0); ASSERT(m_subband[srcLevel][HH].GetAlignedROI().left == left1); ASSERT(m_subband[srcLevel][HL].GetAlignedROI().top == top0); ASSERT(m_subband[srcLevel][HH].GetAlignedROI().top == top1); UINT32 srcOffsetX[2] = { 0, 0 }; UINT32 srcOffsetY[2] = { 0, 0 }; if (leftD >= __max(left0, left1)) { srcOffsetX[0] = leftD - left0; srcOffsetX[1] = leftD - left1; } else { if (left0 <= left1) { const UINT32 dx = (left1 - leftD) << 1; destROI.left += dx; origin += dx; width -= dx; srcOffsetX[0] = left1 - left0; } else { const UINT32 dx = (left0 - leftD) << 1; destROI.left += dx; origin += dx; width -= dx; srcOffsetX[1] = left0 - left1; } } if (topD >= __max(top0, top1)) { srcOffsetY[0] = topD - top0; srcOffsetY[1] = topD - top1; } else { if (top0 <= top1) { const UINT32 dy = (top1 - topD) << 1; destROI.top += dy; origin += dy*destWidth; height -= dy; srcOffsetY[0] = top1 - top0; } else { const UINT32 dy = (top0 - topD) << 1; destROI.top += dy; origin += dy*destWidth; height -= dy; srcOffsetY[1] = top0 - top1; } } m_subband[srcLevel][LL].InitBuffPos(srcOffsetX[0], srcOffsetY[0]); m_subband[srcLevel][HL].InitBuffPos(srcOffsetX[1], srcOffsetY[0]); m_subband[srcLevel][LH].InitBuffPos(srcOffsetX[0], srcOffsetY[1]); m_subband[srcLevel][HH].InitBuffPos(srcOffsetX[1], srcOffsetY[1]); #else width = destBand->GetWidth(); height = destBand->GetHeight(); PGFRect destROI(0, 0, width, height); const UINT32 destWidth = width; // destination buffer width const UINT32 destHeight = height; // destination buffer height // init source buffer position for (int i = 0; i < NSubbands; i++) { m_subband[srcLevel][i].InitBuffPos(); } #endif if (destHeight >= FilterSize) { // changed from FilterSizeH to FilterSize // top border handling row0 = origin; row1 = row0 + destWidth; SubbandsToInterleaved(srcLevel, row0, row1, width); for (UINT32 k = 0; k < width; k++) { row0[k] -= ((row1[k] + c1) >> 1); // even } // middle part row2 = row1 + destWidth; row3 = row2 + destWidth; for (UINT32 i = destROI.top + 2; i < destROI.bottom - 1; i += 2) { SubbandsToInterleaved(srcLevel, row2, row3, width); for (UINT32 k = 0; k < width; k++) { row2[k] -= ((row1[k] + row3[k] + c2) >> 2); // even row1[k] += ((row0[k] + row2[k] + c1) >> 1); // odd } InverseRow(row0, width); InverseRow(row1, width); row0 = row2; row1 = row3; row2 = row1 + destWidth; row3 = row2 + destWidth; } // bottom border handling if (height & 1) { SubbandsToInterleaved(srcLevel, row2, nullptr, width); for (UINT32 k = 0; k < width; k++) { row2[k] -= ((row1[k] + c1) >> 1); // even row1[k] += ((row0[k] + row2[k] + c1) >> 1); // odd } InverseRow(row0, width); InverseRow(row1, width); InverseRow(row2, width); row0 = row1; row1 = row2; row2 += destWidth; } else { for (UINT32 k = 0; k < width; k++) { row1[k] += row0[k]; } InverseRow(row0, width); InverseRow(row1, width); row0 = row1; row1 += destWidth; } } else { // height is too small row0 = origin; row1 = row0 + destWidth; // first part for (UINT32 k = 0; k < height; k += 2) { SubbandsToInterleaved(srcLevel, row0, row1, width); InverseRow(row0, width); InverseRow(row1, width); row0 += destWidth << 1; row1 += destWidth << 1; } // bottom if (height & 1) { SubbandsToInterleaved(srcLevel, row0, nullptr, width); InverseRow(row0, width); } } // free memory of the current srcLevel for (int i = 0; i < NSubbands; i++) { m_subband[srcLevel][i].FreeMemory(); } // return info *w = destWidth; *h = destHeight; *data = destBand->GetBuffer(); return NoError; } ////////////////////////////////////////////////////////////////////// // Inverse Wavelet Transform of one row // low-pass coefficients at even positions, high-pass coefficients at odd positions // inverse filter for even positions: 1/4[-1, (4), -1] // inverse filter for odd positions: 1/8[-1, 4, (6), 4, -1] void CWaveletTransform::InverseRow(DataT* dest, UINT32 width) { if (width >= FilterSize) { UINT32 i = 2; // left border handling dest[0] -= ((dest[1] + c1) >> 1); // even // middle part for (; i < width - 1; i += 2) { dest[i] -= ((dest[i-1] + dest[i+1] + c2) >> 2); // even dest[i-1] += ((dest[i-2] + dest[i] + c1) >> 1); // odd } // right border handling if (width & 1) { dest[i] -= ((dest[i-1] + c1) >> 1); // even dest[i-1] += ((dest[i-2] + dest[i] + c1) >> 1); // odd } else { dest[i-1] += dest[i-2]; // odd } } } /////////////////////////////////////////////////////////////////// // Copy transformed coefficients from subbands LL,HL,LH,HH to interleaved format (L,H,L,H,...) void CWaveletTransform::SubbandsToInterleaved(int srcLevel, DataT* loRow, DataT* hiRow, UINT32 width) { const UINT32 wquot = width >> 1; const bool wrem = (width & 1); CSubband &ll = m_subband[srcLevel][LL], &hl = m_subband[srcLevel][HL]; CSubband &lh = m_subband[srcLevel][LH], &hh = m_subband[srcLevel][HH]; if (hiRow) { #ifdef __PGFROISUPPORT__ const bool storePos = wquot < ll.BufferWidth(); UINT32 llPos = 0, hlPos = 0, lhPos = 0, hhPos = 0; if (storePos) { // save current src buffer positions llPos = ll.GetBuffPos(); hlPos = hl.GetBuffPos(); lhPos = lh.GetBuffPos(); hhPos = hh.GetBuffPos(); } #endif for (UINT32 i=0; i < wquot; i++) { *loRow++ = ll.ReadBuffer();// first access, than increment *loRow++ = hl.ReadBuffer();// first access, than increment *hiRow++ = lh.ReadBuffer();// first access, than increment *hiRow++ = hh.ReadBuffer();// first access, than increment } if (wrem) { *loRow++ = ll.ReadBuffer();// first access, than increment *hiRow++ = lh.ReadBuffer();// first access, than increment } #ifdef __PGFROISUPPORT__ if (storePos) { // increment src buffer positions ll.IncBuffRow(llPos); hl.IncBuffRow(hlPos); lh.IncBuffRow(lhPos); hh.IncBuffRow(hhPos); } #endif } else { #ifdef __PGFROISUPPORT__ const bool storePos = wquot < ll.BufferWidth(); UINT32 llPos = 0, hlPos = 0; if (storePos) { // save current src buffer positions llPos = ll.GetBuffPos(); hlPos = hl.GetBuffPos(); } #endif for (UINT32 i=0; i < wquot; i++) { *loRow++ = ll.ReadBuffer();// first access, than increment *loRow++ = hl.ReadBuffer();// first access, than increment } if (wrem) *loRow++ = ll.ReadBuffer(); #ifdef __PGFROISUPPORT__ if (storePos) { // increment src buffer positions ll.IncBuffRow(llPos); hl.IncBuffRow(hlPos); } #endif } } #ifdef __PGFROISUPPORT__ ////////////////////////////////////////////////////////////////////// /// Compute and store ROIs for nLevels /// @param roi rectangular region of interest at level 0 void CWaveletTransform::SetROI(PGFRect roi) { const UINT32 delta = (FilterSize >> 1) << m_nLevels; // create tile indices delete[] m_indices; m_indices = new PGFRect[m_nLevels]; // enlarge rect: add margin roi.left = (roi.left > delta) ? roi.left - delta : 0; roi.top = (roi.top > delta) ? roi.top - delta : 0; roi.right += delta; roi.bottom += delta; for (int l = 0; l < m_nLevels; l++) { PGFRect alignedROI; PGFRect& indices = m_indices[l]; UINT32 nTiles = GetNofTiles(l); CSubband& subband = m_subband[l][LL]; // use roi to determine the necessary tile indices (for all subbands the same) and aligned ROI for LL subband subband.SetNTiles(nTiles); // must be called before TileIndex() subband.TileIndex(true, roi.left, roi.top, indices.left, indices.top, alignedROI.left, alignedROI.top); subband.TileIndex(false, roi.right, roi.bottom, indices.right, indices.bottom, alignedROI.right, alignedROI.bottom); subband.SetAlignedROI(alignedROI); ASSERT(l == 0 || (m_indices[l-1].left >= 2*m_indices[l].left && m_indices[l-1].top >= 2*m_indices[l].top && m_indices[l-1].right <= 2*m_indices[l].right && m_indices[l-1].bottom <= 2*m_indices[l].bottom)); // determine aligned ROI of other three subbands PGFRect aroi; UINT32 w, h; for (int b = 1; b < NSubbands; b++) { CSubband& sb = m_subband[l][b]; sb.SetNTiles(nTiles); // must be called before TilePosition() sb.TilePosition(indices.left, indices.top, aroi.left, aroi.top, w, h); sb.TilePosition(indices.right - 1, indices.bottom - 1, aroi.right, aroi.bottom, w, h); aroi.right += w; aroi.bottom += h; sb.SetAlignedROI(aroi); } // use aligned ROI of LL subband for next level roi.left = alignedROI.left >> 1; roi.top = alignedROI.top >> 1; roi.right = (alignedROI.right + 1) >> 1; roi.bottom = (alignedROI.bottom + 1) >> 1; } } #endif // __PGFROISUPPORT__ libpgf-7.21.7+ds/src/WaveletTransform.h000066400000000000000000000143441422111121400177130ustar00rootroot00000000000000/* * The Progressive Graphics File; http://www.libpgf.org * * $Date: 2006-05-18 16:03:32 +0200 (Do, 18 Mai 2006) $ * $Revision: 194 $ * * This file Copyright (C) 2006 xeraina GmbH, Switzerland * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU LESSER GENERAL PUBLIC LICENSE * as published by the Free Software Foundation; either version 2.1 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ ////////////////////////////////////////////////////////////////////// /// @file WaveletTransform.h /// @brief PGF wavelet transform class /// @author C. Stamm #ifndef PGF_WAVELETTRANSFORM_H #define PGF_WAVELETTRANSFORM_H #include "PGFtypes.h" #include "Subband.h" ////////////////////////////////////////////////////////////////////// // Constants const UINT32 FilterSizeL = 5; ///< number of coefficients of the low pass filter const UINT32 FilterSizeH = 3; ///< number of coefficients of the high pass filter const UINT32 FilterSize = __max(FilterSizeL, FilterSizeH); #ifdef __PGFROISUPPORT__ ////////////////////////////////////////////////////////////////////// /// PGF ROI and tile support. This is a helper class for CWaveletTransform. /// @author C. Stamm /// @brief ROI indices class CRoiIndices { }; #endif //__PGFROISUPPORT__ ////////////////////////////////////////////////////////////////////// /// PGF wavelet transform class. /// @author C. Stamm, R. Spuler /// @brief PGF wavelet transform class CWaveletTransform { friend class CSubband; public: ////////////////////////////////////////////////////////////////////// /// Constructor: Constructs a wavelet transform pyramid of given size and levels. /// @param width The width of the original image (at level 0) in pixels /// @param height The height of the original image (at level 0) in pixels /// @param levels The number of levels (>= 0) /// @param data Input data of subband LL at level 0 CWaveletTransform(UINT32 width, UINT32 height, int levels, DataT* data = nullptr); ////////////////////////////////////////////////////////////////////// /// Destructor ~CWaveletTransform() { Destroy(); } ////////////////////////////////////////////////////////////////////// /// Compute fast forward wavelet transform of LL subband at given level and /// stores result in all 4 subbands of level + 1. /// @param level A wavelet transform pyramid level (>= 0 && < Levels()) /// @param quant A quantization value (linear scalar quantization) /// @return error in case of a memory allocation problem OSError ForwardTransform(int level, int quant); ////////////////////////////////////////////////////////////////////// /// Compute fast inverse wavelet transform of all 4 subbands of given level and /// stores result in LL subband of level - 1. /// @param level A wavelet transform pyramid level (> 0 && <= Levels()) /// @param width A pointer to the returned width of subband LL (in pixels) /// @param height A pointer to the returned height of subband LL (in pixels) /// @param data A pointer to the returned array of image data /// @return error in case of a memory allocation problem OSError InverseTransform(int level, UINT32* width, UINT32* height, DataT** data); ////////////////////////////////////////////////////////////////////// /// Get pointer to one of the 4 subband at a given level. /// @param level A wavelet transform pyramid level (>= 0 && <= Levels()) /// @param orientation A quarter of the subband (LL, LH, HL, HH) CSubband* GetSubband(int level, Orientation orientation) { ASSERT(level >= 0 && level < m_nLevels); return &m_subband[level][orientation]; } #ifdef __PGFROISUPPORT__ ////////////////////////////////////////////////////////////////////// /// Compute and store ROIs for nLevels /// @param rect rectangular region of interest (ROI) at level 0 void SetROI(PGFRect rect); ////////////////////////////////////////////////////////////////////// /// Checks the relevance of a given tile at given level. /// @param level A valid subband level. /// @param tileX x-index of the given tile /// @param tileY y-index of the given tile const bool TileIsRelevant(int level, UINT32 tileX, UINT32 tileY) const { ASSERT(m_indices); ASSERT(level >= 0 && level < m_nLevels); return m_indices[level].IsInside(tileX, tileY); } ////////////////////////////////////////////////////////////////////// /// Get number of tiles in x- or y-direction at given level. /// This number is independent of the given ROI. /// @param level A valid subband level. UINT32 GetNofTiles(int level) const { ASSERT(level >= 0 && level < m_nLevels); return 1 << (m_nLevels - level - 1); } ////////////////////////////////////////////////////////////////////// /// Return ROI at given level. /// @param level A valid subband level. const PGFRect& GetAlignedROI(int level) const { return m_subband[level][LL].GetAlignedROI(); } #endif // __PGFROISUPPORT__ private: void Destroy() { delete[] m_subband; m_subband = nullptr; #ifdef __PGFROISUPPORT__ delete[] m_indices; m_indices = nullptr; #endif } void InitSubbands(UINT32 width, UINT32 height, DataT* data); void ForwardRow(DataT* buff, UINT32 width); void InverseRow(DataT* buff, UINT32 width); void InterleavedToSubbands(int destLevel, DataT* loRow, DataT* hiRow, UINT32 width); void SubbandsToInterleaved(int srcLevel, DataT* loRow, DataT* hiRow, UINT32 width); #ifdef __PGFROISUPPORT__ PGFRect *m_indices; ///< array of length m_nLevels of tile indices #endif //__PGFROISUPPORT__ int m_nLevels; ///< number of LL levels: one more than header.nLevels in PGFimage CSubband (*m_subband)[NSubbands]; ///< quadtree of subbands: LL HL LH HH }; #endif //PGF_WAVELETTRANSFORM_H