MatchIt/0000755000176200001440000000000012163141375011606 5ustar liggesusersMatchIt/MD50000644000176200001440000001034412163141375012120 0ustar liggesusers1d6ec647adf3b150e99efc85bc3fcefe *DESCRIPTION dc204a70f2b67992241ee0e5408ebd23 *NAMESPACE bc8a6a1ff969b14f81e943ddf3e4cb83 *R/discard.R 105f86dfd4e75ca99cc84145f77724f4 *R/distance2GAM.R 7609f0509313c85eebe66fe1493f1389 *R/distance2glm.R 144da2b6b682f5c41a9482dd487b53b9 *R/distance2mahalanobis.R ce14dad890ce5071548cbde4d3b7aee4 *R/distance2nnet.R 931e8cd4c0ae35bd58e396468ea2b340 *R/distance2rpart.R 5f580ff3918496a1a445853fdc6b8fe0 *R/eqqplot.R ebea74fac3a3c58bebf5271051968aec *R/help.matchit.R 52e4ed5c0327fbcc2b668b3f1af53a84 *R/hist.pscore.R 3c36d8f77d3aec21fca511bd1eef4f16 *R/jitter.pscore.R 00a4040ed1dd52f712af0d0b30b52db5 *R/match.data.R 6cbef71c72b30938dd82993e06398ca3 *R/match.qoi.R 1ccd1a4b57991395229239054b9b9a3e *R/matchit.R 4b04e5ff6fc50b37773b4cb1aecbf2cf *R/matchit.qqplot.R cd4e84995fff9f7b96662135b79bf786 *R/matchit2cem.R 21a14b702e7d501cdf4161af256b2e7c *R/matchit2exact.R 07fd880f983711d3b2e4dd7be94cc73c *R/matchit2full.R 914addf1d6c24a82fbc36d838ddd012e *R/matchit2genetic.R aa55850e4a029db31a1c57328d5a785b *R/matchit2nearest.R faff750b898c0e464fd0bb0527fd2ac6 *R/matchit2optimal.R 8991d0cf380be259b3f76d8d12de7378 *R/matchit2subclass.R 0aea9be3857a1615224574d3bb070c17 *R/plot.matchit.R 42df7223665e64039685c04df289ec02 *R/plot.matchit.subclass.R 56f6332707c706c90031deba83c11997 *R/plot.summary.matchit.R a37cc8fc172ab18faabc3b51e279e6f7 *R/print.matchit.R f33bb649fdd5f26dd8612daa7b647cb9 *R/print.matchit.exact.R 62f401588a49e15e9d1896f480f86b26 *R/print.matchit.full.R ea652f0bcd9ec680649bc663642737ee *R/print.matchit.subclass.R 8bf365dfaf6270ea240a9814ded6ed08 *R/print.summary.matchit.R 74d977ab1c54520426a26f7de57eb7a3 *R/print.summary.matchit.exact.R 350d6d6bad592afa2e6b8daa53892e52 *R/print.summary.matchit.subclass.R 1dd4a4ccfab350865e0d5e218c156a8a *R/qqsum.R d61583cd5d64abb1c548dc7ca0ce6abf *R/summary.matchit.R abd44066b7992377acccebb825bb9fb2 *R/summary.matchit.exact.R b8eb4fe3ac4a5aa02a3f03c5fcf1cbc0 *R/summary.matchit.full.R 0e20487a85c99769f8b0e63368091c35 *R/summary.matchit.subclass.R 950b76a8b5b742dc4714ce93e730ff5f *R/user.prompt.R dc1fdc9ceaf5b35d0a69cc189db06dc2 *R/weights.matrix.R 5d82fa6c1ae051325128757a29e38c55 *R/weights.subclass.R a1a7a516af5ac0a8d1967cb29eb4acfe *data/lalonde.tab.gz 870d0ee00f3fd621950dc7cfe268317a *demo/00Index da045e6883d634901d49484ab0dfcb1d *demo/analysis.R cd3f75d34843736106323d8a41b601af *demo/cem.R fa999a9d842aba5b03f2c4e008c0bcea *demo/exact.R 37d86eff76f06c83cddea70da20e4795 *demo/full.R a6aa059e34c6673ff254a08726f2264d *demo/genetic.R 8985a35d629f63c965fc833677d8394a *demo/match.data.R c959726a30ddc8b1883717eedbc7c912 *demo/nearest.R 878dbcbd1c485d1b3e71a72f73960385 *demo/optimal.R e08c2401c4a03d9e5f37456be103572a *demo/subclass.R 3eda425777172d9aaa9d907061df3387 *inst/CITATION 6312a97d096669571c74667ef6cc078a *man/help.matchit.Rd 2406dec35f1350b6ddbe61a3e3a2e6f7 *man/lalonde.Rd d3b0d22dad0e64fcf5b84f3303f7bc7a *man/match.data.Rd 605af5ede3b2290c6233be639f85cb58 *man/matchit.Rd 4cc2194b9b06d3765105272f7618dff5 *man/user.prompt.Rd 74af268b63206f2e4d8f5a2fb2524294 *vignettes/Makefile c3c7f26c2e84a1eecfb3ec0c0b37159d *vignettes/asa.bst f87006e9491e7a4177175b7520a8910b *vignettes/balance.tex d816267de5c98f628c5f66e3ad65f1f1 *vignettes/dcolumn.sty a3707e9f4be0b8ab99cc8a31bf591a90 *vignettes/face_off.jpg ac28f0dbf93b6d593a6b3719497ac133 *vignettes/faq.tex 20775eb895fffe614893f4f1b2ae19e5 *vignettes/gk.bib a35da60f3f139a9a7cd6749353eb430f *vignettes/gkpubs.bib 1d64d9435ec019005bcd4768cd64d5bb *vignettes/graphics.R d66fa8f1c8db29c2d11842496bf29064 *vignettes/html.sty bb062f81aba5fc15b3dd7b8b95c6f950 *vignettes/index.shtml d3d0a275f38ef9a70cc29ea6891ab5f6 *vignettes/intro.tex fe44cc2288769a96718c4a3377af2e6a *vignettes/makematchH 27ebdf9a173b6210592f5ef7ff5518b9 *vignettes/matchit.pdf 4cd51e387b66c3183da2cdd8f1eb309c *vignettes/matchit.tex a627a20fb6aab7beddaedf6d317ab080 *vignettes/matchit2zelig.tex d1e3ba947a8ba3d434096bd4677e1eba *vignettes/matchitref.tex f50b58f9f778170f752e6924022993b2 *vignettes/mdataref.tex 9301a74af38f9e7259e75be6594541d3 *vignettes/notation.tex b54051c8d51f38cf128c09e50841081a *vignettes/overview.tex 77e2abd6da40f9154ee2683e4f280b41 *vignettes/plotref.tex 662649fb68f014608424bc21b49237f6 *vignettes/preprocess.tex f6e303070a59b15096f3bcda0e871258 *vignettes/summaryref.tex MatchIt/vignettes/0000755000176200001440000000000012163124614013613 5ustar liggesusersMatchIt/vignettes/summaryref.tex0000644000176200001440000001422112162551623016532 0ustar liggesusers\section{\texttt{summary()}: Numerical Summaries of Balance} The \texttt{summary()} command returns numerical summaries of balance diagnostics. \subsubsection{Syntax} \begin{verbatim} summary(object, interactions = FALSE, addlvariables = NULL, standardize = FALSE, ...) \end{verbatim} \subsubsection{Arguments} \begin{itemize} \item \texttt{object}: the output from {\tt matchit()}. \item \texttt{interactions}: an option to calculate summary statistics in \texttt{sum.all} and \texttt{sum.matched} for all covariates, their squares, and two-way interactions when \texttt{interactions = TRUE} and only the covariates themselves when \texttt{interactions = FALSE}, (DEFAULT = {\tt FALSE}). \item \texttt{addlvariables}: additional variables on which to calculate the diagnostic statistics (in addition to the variables included in the matching procedure) (DEFAULT = {\tt NULL}). \texttt{addlvariables}: a data frame containing additional variables whose balance is examined. The data should come with the same number of units and units in the same order as in the data set used for {\tt matchit()}. \item \texttt{standardize}: a logical variable indicating whether to standardize balance measures, i.e., whether the difference in means should be divided by the standard deviation in the original treated group. (DEFAULT = {\tt FALSE}) \end{itemize} \subsubsection{Output Values} The output from the \texttt{summary()} command includes the following elements, when applicable: \begin{itemize} \item The original assignment model call. \item \texttt{sum.all}: a data frame that contains variable names and interactions down the row names, and summary statistics on \emph{all observations} in each of the columns. The columns in \texttt{sum.all} contain: %\footnote{The output for full matching is % slightly different from that described here; see Section % \ref{subsubsec:full} for details.} \begin{itemize} \item means of all covariates $X$ for treated and control units, where \texttt{Means Treated}$= \mu_{X|T=1} = \frac{1}{n_1} \sum_{T=1} X_i$ and \texttt{Means Control}$= \mu_{X|T=0} = \frac{1}{n_0} \sum_{T=0} X_i$, \item standard deviation in the control group for all covariates $X$, where applicable, $$\quad s_{x|T=0} = \sqrt{\frac{\sum_{i \in \{i: T_i=0\}} (X_i - \mu_{X|T=0})^2}{n_0-1} }.$$ \item balance statistics of the original data (before matching), which compare treated and control covariate distributions. If {\tt standardize = FALSE}, balance measures will be presented on the original scale. Specifically, mean differences (\texttt{Mean Diff.}) as well as the median, mean, and maximum value of differences in empirical quantile functions for each covariate will be given (\texttt{eQQ Med}, \texttt{eQQ Mean}, and \texttt{eQQ Max}, respectively). If {\tt standardize = TRUE}, the balance measures will be standardized. Standardized mean differences (\texttt{Std.\ Mean Diff.}), defined as $\frac{\mu_{X|T=1} - \mu_{X|T=0}}{s_{x|T=1}}$, as well as the median, mean, and maximum value of differences in empirical cumulative distribution functions for each covariate will be given (\texttt{eCDF Med}, \texttt{eCDF Mean}, and \texttt{eCDF Max}, respectively). \end{itemize} \item \texttt{sum.matched}: a data frame which contains variable names down the row names, and summary statistics on only the \emph{matched observations} in each of the columns. Specifically, the columns in \texttt{sum.matched} contain the following elements: %\footnote{The % values output for full matching are slightly different from that % described here; see Section \ref{subsubsec:full} for details}: \begin{itemize} \item weighted means for matched treatment units and matched control units of all covariates $X$ and their interactions, where \texttt{Means Treated}$= \mu_{wX|T=1} = \frac{1}{n_1} \sum_{T=1} w_iX_i$ and \texttt{Means Control}$=\mu_{wX|T=0} = \frac{1}{n_0} \sum_{T=0} w_iX_i$, \item weighted standard deviations in the matched control group for all covariates $X$, where applicable, where \texttt{SD} $= s_{wX} = \sqrt{\frac{1}{n} \sum_{i} (w_iX_i - \overline{X}^*)^2}$, where $\overline{X}^*$ is the weighted mean of $X$ in the matched control group, and \item balance statistics of the matched data (after matching), which compare treated and control covariate distributions. If {\tt standardize = FALSE}, balance measures will be presented on the original scale. Specifically, mean differences (\texttt{Mean Diff.}) as well as the median, mean, and maximum value of differences in empirical quantile functions for each covariate will be given (\texttt{eQQ Med}, \texttt{eQQ Mean}, and \texttt{eQQ Max}, respectively). If {\tt standardize = TRUE}, the balance measures will be standardized. Standardized mean differences (\texttt{Std.\ Mean Diff.}), defined as $\frac{\mu_{wX|T=1} - \mu_{wX|T=0}}{s_{x|T=1}}$, as well as the median, mean, and maximum value of differences in empirical cumulative distribution functions for each covariate will be given (\texttt{eCDF Med}, \texttt{eCDF Mean}, and \texttt{eCDF Max}, respectively). \end{itemize} where $w$ represents the vector of \texttt{weights}. \item \texttt{reduction}: the percent reduction in the difference in means achieved in each of the balance measures in \texttt{sum.all} and \texttt{sum.matched}, defined as $100(|a|-|b|)/|a|$, where $a$ was the value of the balance measure before matching and $b$ is the value of the balance measure after matching. \item \texttt{nn}: the sample sizes in the full and matched samples and the number of discarded units, by treatment and control. \item \texttt{q.table}: an array that contains the same information as \texttt{sum.matched} by subclass. \item \texttt{qn}: the sample sizes in the full and matched samples and the number of discarded units, by subclass and by treatment and control. \item \texttt{match.matrix}: the same object is contained in the output of {\tt matchit()}. \end{itemize} %%% Local Variables: %%% mode: latex %%% TeX-master: "matchit" %%% End: MatchIt/vignettes/preprocess.tex0000644000176200001440000002520212162551623016526 0ustar liggesusers\section{Preprocessing via Matching} \label{sec:matching} \subsection{Quick Overview} The main command \texttt{matchit()} implements the matching procedures. A general syntax is: \begin{verbatim} > m.out <- matchit(treat ~ x1 + x2, data = mydata) \end{verbatim} where {\tt treat} is the dichotomous treatment variable, and {\tt x1} and {\tt x2} are pre-treatment covariates, all of which are contained in the data frame {\tt mydata}. The dependent variable (or variables) may be included in \texttt{mydata} for convenience but is never used by \MatchIt\ or included in the formula. This command creates the \MatchIt\ object called \texttt{m.out}. Name the output object to see a quick summary of the results: \begin{verbatim} > m.out \end{verbatim} \subsection{Examples} To run any of the examples below, you first must load the library and and data: \begin{verbatim} > library(MatchIt) > data(lalonde) \end{verbatim} Our example data set is a subset of the job training program analyzed in \citet{lalonde86} and \citet{DehWah99}. \MatchIt\ includes a subsample of the original data consisting of the National Supported Work Demonstration (NSW) treated group and the comparison sample from the Population Survey of Income Dynamics (PSID).\footnote{This data set, \texttt{lalonde}, was created using NSWRE74$\_$TREATED.TXT and CPS3$\_$CONTROLS.TXT from http://www.columbia.edu/$\sim$rd247/nswdata.} The variables in this data set include participation in the job training program (\texttt{treat}, which is equal to 1 if participated in the program, and 0 otherwise), age ({\tt age}), years of education ({\tt educ}), race (\texttt{black} which is equal to 1 if black, and 0 otherwise; \texttt{hispan} which is equal to 1 if hispanic, and 0 otherwise), marital status (\texttt{married}, which is equal to 1 if married, 0 otherwise), high school degree (\texttt{nodegree}, which is equal to 1 if no degree, 0 otherwise), 1974 real earnings (\texttt{re74}), 1975 real earnings (\texttt{re75}), and the main outcome variable, 1978 real earnings (\texttt{re78}). \subsubsection{Exact Matching} \label{subsubsec:exact} The simplest version of matching is exact. This technique matches \emph{each} treated unit to \emph{all} possible control units with exactly the same values on all the covariates, forming subclasses such that within each subclass all units (treatment and control) have the same covariate values. Exact matching is implemented in \MatchIt\ using \texttt{method = "exact"}. Exact matching will be done on all covariates included on the right-hand side of the \texttt{formula} specified in the \MatchIt\ call. There are no additional options for exact matching. (Exact restrictions on a subset of covariates can also be specified in nearest neighbor matching; see Section~\ref{subsubsec:nearest}.) The following example can be run by typing {\tt demo(exact)} at the R prompt, \begin{verbatim} > m.out <- matchit(treat ~ educ + black + hispan, data = lalonde, method = "exact") \end{verbatim} \subsubsection{Subclassification} \label{subsubsec:subclass} When there are many covariates (or some covariates can take a large number of values), finding sufficient exact matches will often be impossible. The goal of subclassification is to form subclasses, such that in each the distribution (rather than the exact values) of covariates for the treated and control groups are as similar as possible. Various subclassification schemes exist, including the one based on a scalar distance measure such as the propensity score estimated using the \texttt{distance} option (see Section~\ref{subsubsec:inputs-all}). Subclassification is implemented in \MatchIt\ using \texttt{method = "subclass"}. The following example script can be run by typing {\tt demo(subclass)} at the R prompt, \begin{verbatim} > m.out <- matchit(treat ~ re74 + re75 + educ + black + hispan + age, data = lalonde, method = "subclass") \end{verbatim} The above syntax forms 6 subclasses, which is the default number of subclasses, based on a distance measure (the propensity score) estimated using logistic regression. By default, each subclass will have approximately the same number of treated units. Subclassification may also be used in conjunction with nearest neighbor matching described below, by leaving the default of \texttt{method = "nearest"} but adding the option \texttt{subclass}. When you choose this option, \MatchIt\ selects matches using nearest neighbor matching, but after the nearest neighbor matches are chosen it places them into subclasses, and adds a variable to the output object indicating subclass membership. \subsubsection{Nearest Neighbor Matching} \label{subsubsec:nearest} Nearest neighbor matching selects the $r$ (default=1) best control matches for each individual in the treatment group (excluding those discarded using the \texttt{discard} option). Matching is done using a distance measure specified by the {\tt distance} option (default=logit). Matches are chosen for each treated unit one at a time, with the order specified by the \texttt{m.order} command (default=largest to smallest). At each matching step we choose the control unit that is not yet matched but is closest to the treated unit on the distance measure. Nearest neighbor matching is implemented in \MatchIt\ using the \texttt{method = "nearest"} option. The following example script can be run by typing {\tt demo(nearest)}: \begin{verbatim} > m.out <- matchit(treat ~ re74 + re75 + educ + black + hispan + age, data = lalonde, method = "nearest") \end{verbatim} \subsubsection{Optimal Matching} \label{subsubsec:optimal} The default nearest neighbor matching method in \MatchIt\ is ``greedy'' matching, where the closest control match for each treated unit is chosen one at a time, without trying to minimize a global distance measure. In contrast, ``optimal'' matching finds the matched samples with the smallest average absolute distance across all the matched pairs. \citet{GuRos93} find that greedy and optimal matching approaches generally choose the same sets of controls for the overall matched samples, but optimal matching does a better job of minimizing the distance within each pair. In addition, optimal matching can be helpful when there are not many appropriate control matches for the treated units. Optimal matching is performed with \MatchIt\ by setting \texttt{method = "optimal"}, which automatically loads an add-on package called \texttt{optmatch} \citep{Hansen04}. The following example can also be run by typing {\tt demo(optimal)} at the R prompt. We conduct 2:1 optimal ratio matching based on the propensity score from the logistic regression. \begin{verbatim} > m.out <- matchit(treat ~ re74 + re75 + age + educ, data = lalonde, method = "optimal", ratio = 2) \end{verbatim} \subsubsection{Full Matching} \label{subsubsec:full} Full matching is a particular type of subclassification that forms the subclasses in an optimal way \citep{Rosenbaum02, Hansen04}. A fully matched sample is composed of matched sets, where each matched set contains one treated unit and one or more controls (or one control unit and one or more treated units). As with subclassification, the only units not placed into a subclass will be those discarded (if a \texttt{discard} option is specified) because they are outside the range of common support. Full matching is optimal in terms of minimizing a weighted average of the estimated distance measure between each treated subject and each control subject within each subclass. Full matching can be performed with \MatchIt\ by setting \texttt{method = "full"}. Just as with optimal matching, we use the \texttt{optmatch} package \citep{Hansen04}, which automatically loads when needed. The following example with full matching (using the default propensity score based on logistic regression) can also be run by typing {\tt demo(full)} at the R prompt: \begin{verbatim} > m.out <- matchit(treat ~ age + educ + black + hispan + married + nodegree + re74 + re75, data = lalonde, method = "full") \end{verbatim} \subsubsection{Genetic Matching} \label{subsub:genetic} Genetic matching automates the process of finding a good matching solution \citep{DiaSek05}. The idea is to use a genetic search algorithm to find a set of weights for each covariate such that the a version of optimal balance is achieved after matching. As currently implemented, matching is done with replacement using the matching method of \citet{AbaImb07} and balance is determined by two univariate tests, paired t-tests for dichotomous variables and a Kolmogorov-Smirnov test for multinomial and continuous variables, but these options can be changed. Genetic matching can be performed with \MatchIt\ by setting \texttt{method = "genetic"}, which automatically loads the \texttt{Matching} \citep{Sekhon04} package. The following example of genetic matching (using the estimated propensity score based on logistic regression as one of the covariates) can also be run by typing {\tt demo(genetic)}: \begin{verbatim} > m.out <- matchit(treat ~ age + educ + black + hispan + married + nodegree + re74 + re75, data = lalonde, method = "genetic") \end{verbatim} \subsubsection{Coarsened Exact Matching} \label{subsub:cem} Coarsened Exact Matching (CEM) is a Monotonoic Imbalance Bounding (MIB) matching method --- which means that the balance between the treated and control groups is chosen by the user ex ante rather than discovered through the usual laborious process of checking after the fact and repeatedly reestimating, and so that adjusting the imbalance on one variable has no effect on the maximum imbalance of any other. CEM also strictly bounds through ex ante user choice both the degree of model dependence and the average treatment effect estimation error, eliminates the need for a separate procedure to restrict data to common empirical support, meets the congruence principle, is robust to measurement error, works well with multiple imputation methods for missing data, and is extremely fast computationally even with very large data sets. CEM also works well for multicategory treatments, determining blocks in experimental designs, and evaluating extreme counterfactuals \citep{IacKinPor08}. CEM can be performed with \MatchIt\ by setting \texttt{method = "cem"}, which automatically loads the \texttt{cem} package. The following examples of CEM (with automatic coarsening) can also be run by typing \texttt{demo(cem)}: \begin{verbatim} m.out <- matchit(treat ~ age + educ + black + hispan + married + nodegree + re74 + re75, data = lalonde, method = "cem") \end{verbatim} %%% Local Variables: %%% mode: latex %%% TeX-master: "matchit" %%% End: MatchIt/vignettes/plotref.tex0000644000176200001440000000762012162551623016020 0ustar liggesusers\section{\texttt{plot()}: Graphical Summaries of Balance} \subsection{Plot options for the matchit object} The \texttt{plot()} command allows you to check the distributions of propensity scores and covariates in the assignment model, squares, and interactions, and within each subclasses if specified. \subsubsection{Syntax} \begin{verbatim} > plot(m.out, discrete.cutoff = 5, type = "QQ", numdraws = 5000, interactive = TRUE, which.xs = NULL, ...) \end{verbatim} \subsubsection{Arguments} \begin{itemize} \item {\tt type}: type of output graph. \texttt{type = "QQ"} (default) outputs empirical quantile-quantile plots of each covariate to check balance of marginal distributions. Alternatively, \texttt{type = "jitter"} outputs jitter plots of the propensity score for treated and control units. Finally, \texttt{type="hist"} outputs histograms of the propensity score in the original treated and control groups and weighted histograms of the propensity score in the matched treated and control groups. \item {\tt discrete.cutoff}: For quantile-quantile plots, discrete covariates that take 5 or fewer values are jittered for visibility. This may be changed by setting this argument to any other positive integer. \item {\tt interactive}: If \texttt{TRUE} (default), users can identify individual units by clicking on the graph with the left mouse button, and (when applicable) choose subclasses to plot. \item {\tt which.xs}: For quantitle-quantile plots, specifies particular covariate names in a character vector to plot only a subset of the covariates. \item {\tt subclass}: If \texttt{interactive = FALSE}, users can specify which subclass to plot. \end{itemize} \subsubsection{Output Values} \begin{itemize} \item Empirical quantile-quantile plot: This graph plots covariate values that fall in (approximately) the same quantile of treated and control distributions. Control unit quantile values are plotted on the x-axis, and treated unit quantile values are plotted on the y-axis. If values fall below the 45 degree line, control units generally take lower values of the covariate. Data points that fall exactly on the 45 degree line indicate that the marginal distributions are identical. \item Jitter plots: This graph plots jittered estimated propensity scores of treated and control units. Dark diamonds indicate matched units and grey diamonds indicate unmatched or discarded units. The area of the diamond is proportional to the weights. Vertical lines are plotted if subclassification is used. \item Histograms: This graph plots histograms of the estimated propensity scores in the original treated and control groups and weighted histograms of the estimated propensity scores in the matched treated and control groups. Plots can be compared vertically to quickly check the balance before and after matching. \end{itemize} \subsection{Plot options for the matchit summary object} You can also send a matchit summary object to the \texttt{plot()} command, to obtain a summary of the balance on each covariate before and after matching. The summary() object must have been created using the option \texttt{standardize=TRUE}. The idea for this plot came from the ``twang" package by McCaffrey, Ridgeway, and Morral. \subsubsection{Syntax} \begin{verbatim} > s.out <- summary(object, standardize=TRUE, ...) > plot(s.out, ...) \end{verbatim} \subsubsection{Arguments} \begin{itemize} \item {\tt interactive}: If \texttt{TRUE} (default), users can identify individual variables by clicking on the graph with the left mouse button. \end{itemize} \subsubsection{Output Values} \begin{itemize} \item Line plot of standardized differences in means before and after matching. Numbers plotted are those output by the summary() command in the sum.all and sum.matched objects. \end{itemize} %%% Local Variables: %%% mode: latex %%% TeX-master: "matchit" %%% End: MatchIt/vignettes/overview.tex0000644000176200001440000002603312162551623016212 0ustar liggesusers \MatchIt\ is designed for causal inference with a dichotomous treatment variable and a set of pretreatment control variables. Any number or type of dependent variables can be used. (If you are interested in the causal effect of more than one variable in your data set, run \MatchIt\ separately for each one; it is unlikely in any event that any one parametric model will produce valid causal inferences for more than one treatment variable at a time.) \MatchIt\ can be used for other types of causal variables by dichotomizing them, perhaps in multiple ways \citep[see also][]{ImaDyk04}. \MatchIt\ works for experimental data, but is usually used for observational studies where the treatment variable is not randomly assigned by the investigator, or the random assignment goes awry. We adopt the same notation as in \citet*{HoImaKin07}. Unless otherwise noted, let $i$ index the $n$ units in the data set, $n_1$ denote the number of treated units, $n_0$ denote the number of control units (such that $n=n_0+n_1$), and $x_i$ indicate a vector of pretreatment (or control) variables for unit $i$. Let $t_i=1$ when unit $i$ is assigned treatment, and $t_i=0$ when unit $i$ is assigned control. (The labels ``treatment'' and ``control'' and values 1 and 0 respectively are arbitrary and can be switched for convenience, except that some methods of matching are keyed to the definition of the treated group.) Denote $y_i(1)$ as the potential outcome of unit $i$ under treatment --- the value the outcome variable would take if $t_i$ were equal to 1, whether or not $t_i$ in fact is 0 or 1 -- and $y_i(0)$ the potential outcome of unit $i$ under control --- the value the outcome variable would take if $t_i$ were equal to 0, regardless of its value in fact. The variables $y_i(1)$ and $y_i(0)$ are jointly unobservable, and for each $i$, we observe one $y_i=t_iy_i(1)+(1-t_i)y_i(0)$, and not the other. Also denote a fixed vector of exogenous, pretreatment measured confounders as $X_i$. These variables are defined in the hope or under the assumption that conditioning on them appropriately will make inferences ignorable. Measures of balance should be computed with respect to all of $X$, even if some methods of matching only use some components. \section{Preprocessing via Matching} If $t_i$ and $X_i$ were independent, we would not need to control for $X_i$, and any parametric analysis would effectively reduce to a difference in means of $Y$ for the treated and control groups. The goal of matching is to preprocess the data prior to the parametric analysis so that the actual relationship between $t_i$ and $X_i$ is eliminated or reduced without introducing bias and or increasing inefficiency too much. When matching we select, duplicate, or selectively drop observations from our data, and we do so without inducing bias as long as we use a rule that is a function only of $t_i$ and $X_i$ and does not depend on the outcome variable $Y_i$. Many methods that offer this preprocessing are included here, including exact, subclassification, nearest neighbor, optimal, and genetic matching. For many of these methods the propensity score--defined as the probability of receiving the treatment given the covariates--is a key tool. In order to avoid changing the quantity of interest, most \MatchIt\ routines work by retaining all treated units and selecting (or weighting) control units to include in the final data set; this enables one to estimate the average treatment effect on the treated (the purpose of which is described in Section \ref{s:qoi}). \MatchIt\ implements and evaluates the choice of the rules for matching. Matching sometimes increases efficiency by eliminating heterogeneity or deleting observations outside of an area where a model can reasonably be used to extrapolate, but one needs to be careful not to lose too many observations in matching or efficiency will drop more than the reduction in bias that is achieved. The simplest way to obtain good matches (as defined above) is to use one-to-one exact matching, which pairs each treated unit with one control unit for which the values of $X_i$ are identical. However, with many covariates and finite numbers of potential matches, sufficient exact matches often cannot be found. Indeed, many of the other methods implemented in \MatchIt\ attempt to balance the overall covariate distributions as much as possible, when sufficient one-to-one exact matches are not available. A key point in \citet*{HoImaKin07} is that matching methods by themselves are not methods of estimation: Every use of matching in the literature involves an analysis step following the matching procedure, but almost all analyses use a simple difference in means. This procedure is appropriate only if exact matching was conducted. In almost all other cases, some adjustment is required, and there is no reason to degrade your inferences by using an inferior method of analysis such as a difference in means even when improving your inferences via preprocessing. Thus, with \MatchIt, you can improve your analyses in two ways. \MatchIt\ analyses are ``doubly robust'' in that if \emph{either} the matching analysis \emph{or} the analysis model is correct (but not necessarily both) your inferences will be statistically consistent. In practice, the modeling choices you make at the analysis stage will be much less consequential if you match first. \section{Checking Balance} \label{sec:balance-sum} The goal of matching is to create a data set that looks closer to one that would result from a perfectly blocked (and possibly randomized) experiment. When we get close, we break the link between the treatment variable and the pretreatment controls, which makes the parametric form of the analysis model less relevant or irrelevant entirely. To break this link, we need the distribution of covariates to be the same within the matched treated and control groups. A crucial part of any matching procedure is, therefore, to assess how close the (empirical) covariate distributions are in the two groups, which is known as ``balance.'' Because the outcome variable is not used in the matching procedure, any number of matching methods can be tried and evaluated, and the one matching procedure that leads to the best balance can be chosen. \MatchIt\ provides a number of ways to assess the balance of covariates after matching, including numerical summaries such as the ``mean Diff.'' (difference in means) or the difference in means divided by the treated group standard deviation, and summaries based on quantile-quantile plots that compare the empirical distributions of each covariate. The widely used procedure of doing t-tests of the difference in means is highly misleading and should never be used to assess balance; see \citet{ImaKinStu08}. These balance diagnostics should be performed on all variables in $X$, even if some are excluded from one of the matching procedures. \section{Conducting Analyses after Matching}\label{s:qoi} The most common way that parametric analyses are used to compute quantities of interest (without matching) is by (statistically) holding constant some explanatory variables, changing others, and computing predicted or expected values and taking the difference or ratio, all by using the parametric functional form. In the case of causal inference, this would mean looking at the effect on the expected value of the outcome variable when changing $T$ from 0 to 1, while holding constant the pretreatment control variables $X$ at their means or medians. This, and indeed any other appropriate analysis procedure, would be a perfectly reasonable way to proceed with analysis after matching. If it is the chosen way to proceed, then either treated or control units may be deleted during the matching stage, since the same parametric structure is assumed to apply to all observations. In other instances, researchers wish to reduce the assumptions inherent in their statistical model and so want to allow for the possibility that their treatment effect to vary over observations. In this situation, one popular quantity of interest used is the \emph{average treatment effect on the treated} (ATT). For example, for the treated group, the potential outcomes under control, $Y_i(0)$, are missing, whereas the outcomes under treatment, $Y_i(1)$, are observed, and the goal of the analysis is to impute the missing outcomes, $Y_i(0)$ for observations with $T_i=1$. We do this via simulation using a parametric statistical model such as regression, logit, or others (as described below). Once those potential outcomes are imputed from the model, the estimate of individual $i$'s treatment effect is $Y_i(1)-\widehat{Y}_i(0)$ where $\widehat{Y}_i(0)$ is a predicted value of the dependent variable for unit $i$ under the counterfactual condition where $T_i=0$. The in-sample average treatment effect for the treated individuals can then be obtained by averaging this difference over all observations $i$ where in fact $T_i=1$. Most \MatchIt\ algorithms retain all treated units, and choose some subset of or repeated units from the control group, so that estimating the ATT is straightforward. If one chooses options that allow matching with replacement, or any solution that has different numbers of controls (or treateds) within each subclass or strata (such as full matching), then the parametric analysis following matching must accomodate these procedures, such as by using fixed effects or weights, as appropriate. (Similar procedures can also be used to estimate various other quantities of interest such as the average treatment effect by computing it for all observations, but then one must be aware that the quantity of interest may change during the matching procedure as some control units may be dropped.) The imputation from the model can be done in at least two ways. Recall that the model is used to impute \emph{the value that the outcome variable would take among the treated units if those treated units were actually controls}. Thus, one reasonable approach would be to fit a model to the matched data and create simulated predicted values of the dependent variable for the treated units with $T_i$ switched counterfactually from 1 to 0. An alternative approach would be to fit a model without $T$ by using only the outcomes of the matched control units (i.e., using only observations where $T_i=0$). Then, given this fitted model, the missing outcomes $Y_i(0)$ are imputed for the matched treated units by using the values of the explanatory variables for the treated units. The first approach will usually have lower variance, since all observations are used, and the second may have less bias, since no assumption of constant parameters across the models of the potential outcomes under treatment and control is needed. See \citet*{HoImaKin07} for more details. Other quantities of interest can also be computed at the parametric stage, following any procedures you would have followed in the absence of matching. The advantage is that if matching is done well your answers will be more robust to many small changes in parametric specification. %%% Local Variables: %%% mode: latex %%% TeX-master: "matchit" %%% End: MatchIt/vignettes/notation.tex0000644000176200001440000001736712162551623016211 0ustar liggesusers\documentclass[oneside,letterpaper,titlepage,12pt]{article} %\usepackage[ae,hyper]{/usr/lib/R/share/texmf/Rd} \usepackage{makeidx} \usepackage{graphicx} \usepackage{natbib} \usepackage[reqno]{amsmath} \usepackage{amssymb} \usepackage{verbatim} \usepackage{epsf} \usepackage{url} \usepackage{html} \usepackage{dcolumn} \usepackage{longtable} \usepackage{vmargin} \setpapersize{USletter} \newcolumntype{.}{D{.}{.}{-1}} \newcolumntype{d}[1]{D{.}{.}{#1}} %\pagestyle{myheadings} \htmladdtonavigation{ \htmladdnormallink{% \htmladdimg{http://gking.harvard.edu/pics/home.gif}} {http://gking.harvard.edu/}} \newcommand{\hlink}{\htmladdnormallink} \bodytext{ BACKGROUND="http://gking.harvard.edu/pics/temple.setcounter"} \setcounter{tocdepth}{3} \parindent=0cm \newcommand{\MatchIt}{\textsc{MatchIt}} \begin{document} \begin{center} Notation for \MatchIt \\ Elizabeth Stuart \\ \end{center} This document details the notation to be used in the matching paper to accompany \MatchIt, as discussed in conference call on April 27, 2004 and emails on April 27-29, 2004. \\ We first provide a general idea of the notation and ideas. Formal notation follows. \begin{enumerate} \item There exists in nature fixed values, $\theta_{1i}$ and $\theta_{0i}$, the potential outcomes under treatment and control, respectively. They, or more usually their difference, are our quantities of interest and hence the inferential target in this exercise. They are not generally known. There also exist in nature a vector of fixed values $X_i$ that are known and will play the role of covariates to condition on. Note that the use of $X_i$ in matching assumes that they are not affected by treatment assignment: $X_{1i}=X_{0i}=X_i$. If a researcher is interested in adjusting for a variable potentially affected by treatment assignment, then methods such as principal stratification should be used. [We can write a paragraph on that somewhere.] \item Then (i.e., only after step 1) $T_i$ is created, preferably by the experimenter, who assigns its values randomly, but in some cases $T_i$ is created by the world and we hope that it was created effectively randomly (or randomly conditional on the observed $X_i$). This is what is known as the assumption of unconfounded treatment assignment: That treatment assignment is independent of the potential outcomes given the covariates $X_i$. \item Finally, the observed outcome variable $Y_i$ is calculated deterministically as $Y_i = \theta_{1i}T_i + \theta_{0i}(1-T_i)$. This is an accounting identity, not a regression equation with an error term; i.e., it is just true, not really an assumption. \end{enumerate} The accounting identity in 3 implies that we observe $\theta_{1i}=Y_i$ (but not $\theta_{0i}$) when $T_i=1$, and we observe $\theta_{0i}=Y_i$ (but not $\theta_{1i}$) when $T_i=0$. Since the fundamental problem of causal inference indicates that either $\theta_{0i}$ or $\theta_{1i}$ will be unobserved for each $i$, we will need to infer their values, for which we define $\tilde\theta_{1i} \sim p(\theta_{1i})$ and $\tilde\theta_{0i} \sim p(\theta_{0i})$ as draws of the potential outcomes under treatment and control, respectively, from their respective predictive posterior distributions.\\ We now detail the notation utilized. Fixed, but sometimes unknown values are represented by Greek letters. Draws from the posterior distribution of these unknown values are represented by a tilde over the variable of interest. Fixed, but always known values are represented by capital Roman letters. We first define notation for individual $i$: \begin{itemize} \item $\theta_{1i}=$ individual $i$'s potential outcome under treatment \item $\theta_{0i}=$ individual $i$'s potential outcome under control \item $T_i=$ individual $i$'s observed treatment assignment \begin{itemize} \item $T_i=1$ means individual $i$ receives treatment \item $T_i=0$ means individual $i$ receives control \end{itemize} \item $\theta_{0i}$ and $\theta_{1i}$ are considered fixed quantities. Which one is observed depends on the random variable $T_i$. \item $Y_i=T_i \theta_{1i} + (1-T_i) \theta_{0i}$ is individual $i$'s observed outcome \item Let $Y_{1i}=(\theta_{1i}|T_i=1)$. Similarly, $Y_{0i}=(\theta_{0i}|T_i=0)$. One of these is observed for individual $i$. [Do we actually want this notation? It's not quite right since the capital Roman letter would imply that $Y_{1i}$ is always observed, but the notation may be handy (see below).] \item Let $\tilde{\theta}_{0i}$ be a draw from the posterior distribution of $\theta_{0i}$: $\tilde{\theta}_{0i} \sim p(\theta_{0i})$. Similarly, let $\tilde{\theta}_{1i}$ be a draw from the posterior distribution of $\theta_{1i}$: $\tilde{\theta}_{1i} \sim p(\theta_{1i})$. \item Consider variables $X_i$. If $X_{0i}=X_{1i}=X_i$ then $X$ is a ``proper covariate'' in that it is not affected by treatment assignment. Only proper covariates should be used in the matching procedure. That $X_i$ is not affected by treatment assignment is always an assumption (sometimes more reasonable than other times)--we never observe $X_{0i}$ and $X_{1i}$ for individual $i$. \end{itemize} For individual $i$, the potentially observed values can be represented by the following 2x2 table: \begin{center} \begin{tabular}{cc|c|c|} \multicolumn{4}{c}{\hspace*{4cm} Actual treatment assignment} \\ \\ \multicolumn{2}{c}{} & \multicolumn{2}{c}{Control \hfill Treatment} \\ \cline{3-4} & & & \phantom{abcd} \\ & Control & $\theta_{0i}$, $X_i$ & $\tilde{\theta}_{0i}$, $X_i$ \\ Potential & & & \phantom{abcd} \\ \cline{3-4} outcomes under & & & \phantom{abcd} \\ & Treatment & $\tilde{\theta}_{1i}$, $X_i$ & $\theta_{1i}$, $X_i$ \\ & & & \phantom{abcd} \\ \cline{3-4} \end{tabular} \end{center} For each individual, we are in either Column 1 or Column 2 (depending on treatment assignment). Within each column, 1 number will be observed and 1 will be a drawn value from the posterior distribution (i.e., the true value for that cell is missing). Thus, for each individual we are in the situation of one of the following two vectors of potential outcomes: \begin{center} \begin{tabular}{rl} If $T_i=1$: & $(\tilde\theta_{0i}, \theta_{1i})$ \\ If $T_i=0$: & $(\theta_{0i}, \tilde\theta_{1i})$ \\ \end{tabular} \end{center} Now consider $n$ individuals observed, with $n_1$ in the treated group and $n_0$ in the control group ($n=n_0+n_1$). Then we have the following notation: \begin{itemize} \item $n_1=\sum_{i=1}^n T_i$, $n_0=\sum_{i=1}^n (1-T_i)$ \item ${\bf Y_0} = \{Y_{i}|T_i=0\}$. ${\bf Y_0}$ is of length $n_0$. \item ${\bf Y_1} = \{Y_{i}|T_i=1\}$. ${\bf Y_1}$ is of length $n_1$. \item ${\bf Y} = \{ {\bf Y_0}, {\bf Y_1}\}$. ${\bf Y}$ is of length $n$. \item $\overline{Y}_1 = \frac{\sum_{i=1}^n T_i \theta_{1i}}{\sum_{i=1}^n T_i}=\frac{\sum_{i=1}^{n_1} Y_{1i}}{n_1}$ \item $\overline{Y}_0 = \frac{\sum_{i=1}^n (1-T_i) \theta_{0i}}{\sum_{i=1}^n (1-T_i)}=\frac{\sum_{i=1}^{n_0} Y_{0i}}{n_0}$ \item Observed sample variances would be calculated in a similar way (using ${\bf Y_0}$ and ${\bf Y_1}$). \end{itemize} Throughout, we will use $p()$ to represent pdf's and $g()$ for functional forms of models. One point to make sure we mention in the write-up is to say what OLS assumes. OLS with a treatment indicator does: $$Y_i|X_i, T_i \sim N(\alpha + \beta_0 T_i + {\boldsymbol \beta} {\bf X_i}, \sigma^2)$$ which assumes that the models of the potential outcomes follow parallel lines with equal residual variance: $$\theta_{1i}|X_i \sim N(\alpha + \beta_0 + {\boldsymbol \beta} {\bf X_i}, \sigma^2)$$ $$\theta_{0i}|X_i \sim N(\alpha + {\boldsymbol \beta} {\bf X_i}, \sigma^2).$$ We can also have a graphical representation of this, perhaps with some examples of outcomes that clearly don't have that nice parallel linear relationship, and show that this would be a very special case of what we're advocating. \end{document} MatchIt/vignettes/mdataref.tex0000644000176200001440000000660412162551623016131 0ustar liggesusers\section{\texttt{match.data()}: Extracting the Matched Data Set} \label{sec:match.data} \subsection{Usage} To extract the matched data set for subsequent analyses from the output object (see Section~\ref{sec:analysis}), we provide the function {\tt match.data()}. This is used as follows: \begin{verbatim} > m.data <- match.data(object, group = "all", distance = "distance", weights = "weights", subclass = "subclass") \end{verbatim} The output of the function {\tt match.data()} is the original data frame where additional information about matching (i.e., distance measure as well as resulting weights and subclasses) is added, restricted to units that were matched. \subsection{Arguments} {\tt match.data()} takes the following inputs: \begin{enumerate} \item {\tt object} is the output object from {\tt matchit()}. This is a required input. \item {\tt group} specifies for which matched group the user wants to extract the data. Available options are {\tt "all"} (all matched units), {\tt "treat"} (matched units in the treatment group), and {\tt "control"} (matched units in the control group). The default is {\tt "all"}. \item {\tt distance} specifies the variable name used to store the distance measure. The default is {\tt "distance"}. \item {\tt weights} specifies the variable name used to store the resulting weights from matching. The default is {\tt "weights"}. See Section~\ref{subsec:weights} for more details on the weights. \item {\tt subclass} specifies the variable name used to store the subclass indicator. The default is {\tt "subclass"}. \end{enumerate} \subsection{Examples} Here, we present examples for using {\tt match.data()}. Users can run these commands by typing {\tt demo(match.data)} at the R prompt. First, we load the Lalonde data, \begin{verbatim} > data(lalonde) \end{verbatim} The next line performs nearest neighbor matching based on the estimated propensity score from the logistic regression, \begin{verbatim} > m.out1 <- matchit(treat ~ re74 + re75 + age + educ, data = lalonde, + method = "nearest", distance = "logit") \end{verbatim} To obtain matched data, type the following command, \begin{verbatim} > m.data1 <- match.data(m.out1) \end{verbatim} It is easy to summarize the resulting matched data, \begin{verbatim} > summary(m.data1) \end{verbatim} To obtain matched data for the treatment or control group, specify the option {\tt group} as follows, \begin{verbatim} > m.data2 <- match.data(m.out1, group = "treat") > summary(m.data2) > m.data3 <- match.data(m.out1, group = "control") > summary(m.data3) \end{verbatim} We can also use the function to return unmatched data: \begin{verbatim} > unmatched.data <- lalonde[!row.names(lalonde)%in%row.names(match.data(m.out1)),] \end{verbatim} We can also specify different names for the subclass indicator, the weight variable, and the estimated distance measure. The following example first does a subclassification method, obtains the matched data with specified names for those three variables, and then print out the names of all variables in the resulting matched data. \begin{verbatim} > m.out2 <- matchit(treat ~ re74 + re75 + age + educ, data = lalonde, + method = "subclass") > m.data4 <- match.data(m.out2, subclass = "block", weights = "w", + distance = "pscore") > names(m.data4) \end{verbatim} %%% Local Variables: %%% mode: latex %%% TeX-master: "matchit" %%% End: MatchIt/vignettes/matchitref.tex0000644000176200001440000004345312162551623016477 0ustar liggesusers\subsubsection{Syntax} \begin{verbatim} > m.out <- matchit(formula, data, method = "nearest", verbose = FALSE, ...) \end{verbatim} \subsubsection{Arguments} \paragraph{Arguments for All Matching Methods} \begin{itemize} \item \texttt{formula}: formula used to calculate the distance measure for matching (e.g., the propensity score model). It takes the usual syntax of R formulas, {\tt treat \~\ x1 + x2}, where {\tt treat} is a binary treatment indicator, and {\tt x1} and {\tt x2} are the pre-treatment covariates. Both the treatment indicator and pre-treatment covariates must be contained in the same data frame, which is specified as {\tt data} (see below). All of the usual R syntax for formulas work here. For example, {\tt x1:x2} represents the first order interaction term between {\tt x1} and {\tt x2}, and {\tt I(x1 \^\ 2)} represents the square term of {\tt x1}. See {\tt help(formula)} for details. \item \texttt{data}: the data frame containing the variables called in {\tt formula}. \item \texttt{method}: the matching method (default = \texttt{"nearest"}, nearest neighbor matching). Currently, \texttt{"exact"} (exact matching), \texttt{"full"} (full matching), \texttt{"nearest"} (nearest neighbor matching), \texttt{"optimal"} (optimal matching), \texttt{"subclass"} (subclassification), \texttt{"genetic"} (genetic matching), and \texttt{"cem"} (coarsened exact matching) are available. Note that within each of these matching methods, \MatchIt\ offers a variety of options. See below for more details. \item \texttt{verbose}: a logical value indicating whether to print the status of the matching algorithm (default = \texttt{FALSE}). \end{itemize} \paragraph{Additional Arguments for Specification of Distance Measures} \label{subsubsec:inputs-all} The following arguments specify distance measures that are used for matching methods. These arguments apply to all matching methods {\it except exact matching}. \begin{itemize} \item \texttt{distance}: the method used to estimate the distance measure (default = {\tt "logit"}, logistic regression) or a numerical vector of user's own distance measure. Before using any of these techniques, it is best to understand the theoretical groundings of these techniques and to evaluate the results. Most of these methods (such as logistic or probit regression) define the distance by first estimating the propensity score, defined as the probability of receiving treatment, conditional on the covariates. Available methods include: \begin{itemize} \item {\tt "mahalanobis"}: the Mahalanobis distance measure. \item binomial generalized linear models with one of the following link functions: \begin{itemize} \item \texttt{"logit"}: logistic link \item {\tt "linear.logit"}: logistic link with linear propensity score\footnote{The linear propensity scores are obtained by transforming back onto a linear scale.} \item \texttt{"probit"}: probit link \item {\tt "linear.probit"}: probit link with linear propensity score \item {\tt "cloglog"}: complementary log-log link \item {\tt "linear.cloglog"}: complementary log-log link with linear propensity score \item {\tt "log"}: log link \item {\tt "linear.log"}: log link with linear propensity score \item {\tt "cauchit"} Cauchy CDF link \item {\tt "linear.cauchit"} Cauchy CDF link with linear propensity score \end{itemize} \item Choose one of the following generalized additive models (see {\tt help(gam)} for more options). \begin{itemize} \item \texttt{"GAMlogit"}: logistic link \item {\tt "GAMlinear.logit"}: logistic link with linear propensity score \item \texttt{"GAMprobit"}: probit link \item {\tt "GAMlinear.probit"}: probit link with linear propensity score \item {\tt "GAMcloglog"}: complementary log-log link \item {\tt "GAMlinear.cloglog"}: complementary log-log link with linear propensity score \item {\tt "GAMlog"}: log link \item {\tt "GAMlinear.log"}: log link with linear propensity score, \item {\tt "GAMcauchit"}: Cauchy CDF link \item {\tt "GAMlinear.cauchit"}: Cauchy CDF link with linear propensity score \end{itemize} \item \texttt{"nnet"}: neural network model. See {\tt help(nnet)} for more options. \item \texttt{"rpart"}: classification trees. See {\tt help(rpart)} for more options. \end{itemize} \item \texttt{distance.options}: optional arguments for estimating the distance measure. The input to this argument should be a list. For example, if the distance measure is estimated with a logistic regression, users can increase the maximum IWLS iterations by \texttt{distance.options = list(maxit = 5000)}. Find additional options for general linear models using {\tt help(glm)} or {\tt help(family)}, for general additive models using {\tt help(gam)}, for neutral network models {\tt help(nnet)}, and for classification trees {\tt help(rpart)}. \item \texttt{discard}: specifies whether to discard units that fall outside some measure of support of the distance measure (default = \texttt{"none"}, discard no units). Discarding units may change the quantity of interest being estimated by changing the observations left in the analysis. Enter a logical vector indicating which unit should be discarded or choose from the following options: \begin{itemize} \item \texttt{"none"}: no units will be discarded before matching. Use this option when the units to be matched are substantially similar, such as in the case of matching treatment and control units from a field experiment that was close to (but not fully) randomized (e.g., \citealt{Imai05}), when caliper matching will restrict the donor pool, or when you do not wish to change the quantity of interest and the parametric methods to be used post-matching can be trusted to extrapolate. \item \texttt{"hull.both"}: all units that are not within the convex hull will be discarded. See \citet{KinZen06,KinZen07} for information about the convex hull in this context and as a measure of model dependence. \item \texttt{"both"}: all units (treated and control) that are outside the support of the distance measure will be discarded. \item \texttt{"hull.control"}: only control units that are not within the convex hull of the treated units will be discarded. \item \texttt{"control"}: only control units outside the support of the distance measure of the treated units will be discarded. Use this option when the average treatment effect on the treated is of most interest and when you are unwilling to discard non-overlapping treatment units (which would change the quantity of interest). \item \texttt{"hull.treat"}: only treated units that are not within the convex hull of the control units will be discarded. \item \texttt{"treat"}: only treated units outside the support of the distance measure of the control units will be discarded. Use this option when the average treatment effect on the control units is of most interest and when unwilling to discard control units. \end{itemize} \item \texttt{reestimate}: If {\tt FALSE} (default), the model for the distance measure will not be re-estimated after units are discarded. The input must be a logical value. Re-estimation may be desirable for efficiency reasons, especially if many units were discarded and so the post-discard samples are quite different from the original samples. \end{itemize} \paragraph{Additional Arguments for Subclassification} \label{subsubsec:inputs-subclass} \begin{itemize} \item \texttt{sub.by}: criteria for subclassification. Choose from: \texttt{"treat"} (default), the number of treatment units; \texttt{"control"}, the number of control units; or \texttt{"all"}, the total number of units. Changing the default will likely also signal a change in your quantity of interest from the average treatment effect on the treated to other quantities. \item \texttt{subclass}: either a scalar specifying the number of subclasses, or a vector of probabilities bounded between 0 and 1, which create quantiles of the distance measure using the units in the group specified by \texttt{sub.by} (default = \texttt{subclass = 6}). \end{itemize} \paragraph{Additional Arguments for Nearest Neighbor Matching} \label{subsubsec:inputs-nearest} \begin{itemize} \item \texttt{m.order}: the order in which to match treatment units with control units. \begin{itemize} \item {\tt "largest"} (default): matches from the largest value of the distance measure to the smallest. \item {\tt "smallest"}: matches from the smallest value of the distance measure to the largest. \item {\tt "random"}: matches in random order. \end{itemize} \item \texttt{replace}: logical value indicating whether each control unit can be matched to more than one treated unit (default = {\tt replace = FALSE}, each control unit is used at most once -- i.e., sampling without replacement). For matching with replacement, use \texttt{replace = TRUE}. After matching with replacement, the weights can be used to reflect the frequency with which each control unit was matched. \item \texttt{ratio}: the number of control units to match to each treated unit (default = {\tt 1}). If matching is done without replacement and there are fewer control units than {\tt ratio} times the number of eligible treated units (i.e., there are not enough control units for the specified method), then the higher ratios will have \texttt{NA} in place of the matching unit number in \texttt{match.matrix}. \item \texttt{exact}: variables on which to perform exact matching within the nearest neighbor matching (default = {\tt NULL}, no exact matching). If \texttt{exact} is specified, only matches that exactly match on the covariates in \texttt{exact} will be allowed. Within the matches that match on the variables in \texttt{exact}, the match with the closest distance measure will be chosen. \texttt{exact} should be entered as a vector of variable names (e.g., \texttt{exact = c("X1", "X2")}). \item \texttt{caliper}: the number of standard deviations of the distance measure within which to draw control units (default = {\tt 0}, no caliper matching). If a caliper is specified, a control unit within the caliper for a treated unit is randomly selected as the match for that treated unit. If \texttt{caliper != 0}, there are two additional options: \begin{itemize} \item \texttt{calclosest}: whether to take the nearest available match if no matches are available within the \texttt{caliper} (default = {\tt FALSE}). \item \texttt{mahvars}: variables on which to perform Mahalanobis-metric matching within each caliper (default = {\tt NULL}). Variables should be entered as a vector of variable names (e.g., \texttt{mahvars = c("X1", "X2")}). If \texttt{mahvars} is specified without \texttt{caliper}, the caliper is set to 0.25. \end{itemize} \item \texttt{subclass} and \texttt{sub.by}: See the options for subclassification for more details on these options. If a \texttt{subclass} is specified within \texttt{method = "nearest"}, the matched units will be placed into subclasses after the nearest neighbor matching is completed. \end{itemize} \paragraph{Additional Arguments for Optimal Matching} \label{subsubsec:inputs-optimal} \begin{itemize} \item {\tt ratio}: the number of control units to be matched to each treatment unit (default = {\tt 1}). \item {\tt ...}: additional inputs that can be passed to the {\tt fullmatch()} function in the {\tt optmatch} package. See {\tt help(fullmatch)} or \hlink{http://www.stat.lsa.umich.edu/\~{}bbh/optmatch.html}{http://www.stat.lsa.umich.edu/~bbh/optmatch.html} for details. \end{itemize} \paragraph{Additional Arguments for Full Matching} \label{subsubsec:inputs-full} See {\tt help(fullmatch)} (part of this information is copied below) or \hlink{http://www.stat.lsa.umich.edu/\~{}bbh/optmatch.html}{http://www.stat.lsa.umich.edu/~bbh/optmatch.html} for details. \begin{itemize} \item {\tt min.controls}: The minimum ratio of controls to treatments that is to be permitted within a matched set: should be nonnegative and finite. If {\tt min.controls} is not a whole number, the reciprocal of a whole number, or zero, then it is rounded down to the nearest whole number or reciprocal of a whole number. \item {\tt max.controls}: The maximum ratio of controls to treatments that is to be permitted within a matched set: should be positive and numeric. If {\tt max.controls} is not a whole number, the reciprocal of a whole number, or {\tt Inf}, then it is rounded up to the nearest whole number or reciprocal of a whole number. \item {\tt omit.fraction}: Optionally, specify what fraction of controls or treated subjects are to be rejected. If {\tt omit.fraction} is a positive fraction less than one, then {\tt fullmatch()} leaves up to that fraction of the control reservoir unmatched. If {\tt omit.fraction} is a negative number greater than $-1$, then {\tt fullmatch()} leaves up to $|{\rm omit.fraction}|$ of the treated group unmatched. Positive values are only accepted if ${\rm max.controls} >= 1$; negative values, only if ${\rm min.controls} <= 1$. If {\tt omit.fraction} is not specified, then only those treated and control subjects without permissible matches among the control and treated subjects, respectively, are omitted. \item {\tt ...}: Additional inputs that can be passed to the {\tt fullmatch()} function in the {\tt optmatch} package. \end{itemize} \paragraph{Additional Arguments for Genetic Matching} \label{subsubsec:inputs-genetic} The available options are listed below. \begin{itemize} \item {\tt ratio}: the number of control units to be matched to each treatment unit (default = {\tt 1}). \item {\tt ...}: additional minor inputs that can be passed to the {\tt GenMatch()} function in the {\tt Matching} package. See {\tt help(GenMatch)} or\\ \hlink{http://sekhon.polisci.berkeley.edu/library/Matching/html/GenMatch.html}{http://sekhon.polisci.berkeley.edu/library/Matching/html/GenMatch.html} for details. \end{itemize} \paragraph{Additional Arguments for Coarsened Exact Matching} \label{subsubsec:inputs-cem} The available options are listed here: \begin{itemize} \item{cutpoints} named list each describing the cutpoints for the variables. Each list element is either a vector of cutpoints, a number of cutpoints, a method for automatic bin contruction. \item{k2k} return k-to-k matching? \item{verbose} controls level of verbosity \item{dist} user defined distance function \item {\tt ...}: additional minor inputs that can be passed to the {\tt cem()} function in the {\tt cem} package. See {\tt help(cem)} or \hlink{http://gking.harvard.edu/cem}{http://gking.harvard.edu/cem} for details. \end{itemize} \subsubsection{Output Values} \label{sec:outputs} Regardless of the type of matching performed, the \texttt{matchit} output object contains the following elements:\footnote{When inapplicable or unnecessary, these elements may equal {\tt NULL}. For example, when exact matching, {\tt match.matrix = NULL}.} \begin{itemize} \item \texttt{call}: the original {\tt matchit()} call. \item \texttt{formula}: the formula used to specify the model for estimating the distance measure. \item \texttt{model}: the output of the model used to estimate the distance measure. \texttt{summary(m.out\$model)} will give the summary of the model where \texttt{m.out} is the output object from \texttt{matchit()}. \item \texttt{match.matrix}: an $n_1 \times$ \texttt{ratio} matrix where: \begin{itemize} \item the row names represent the names of the treatment units (which match the row names of the data frame specified in \texttt{data}). \item each column stores the name(s) of the control unit(s) matched to the treatment unit of that row. For example, when the \texttt{ratio} input for nearest neighbor or optimal matching is specified as 3, the three columns of \texttt{match.matrix} represent the three control units matched to one treatment unit). \item \texttt{NA} indicates that the treatment unit was not matched. \end{itemize} \item \texttt{discarded}: a vector of length $n$ that displays whether the units were ineligible for matching due to common support restrictions. It equals \texttt{TRUE} if unit $i$ was discarded, and it is set to \texttt{FALSE} otherwise. \item \texttt{distance}: a vector of length $n$ with the estimated distance measure for each unit. \item \texttt{weights}: a vector of length $n$ with the weights assigned to each unit in the matching process. Unmatched units have weights equal to $0$. Matched treated units have weight $1$. Each matched control unit has weight proportional to the number of treatment units to which it was matched, and the sum of the control weights is equal to the number of uniquely matched control units. \item \texttt{subclass}: the subclass index in an ordinal scale from 1 to the total number of subclasses as specified in \texttt{subclass} (or the total number of subclasses from full or exact matching). Unmatched units have \texttt{NA}. \item \texttt{q.cut}: the subclass cut-points that classify the distance measure. \item \texttt{treat}: the treatment indicator from \texttt{data} (the left-hand side of \texttt{formula}). \item \texttt{X}: the covariates used for estimating the distance measure (the right-hand side of \texttt{formula}). When applicable, \texttt{X} is augmented by covariates contained in \texttt{mahvars} and \texttt{exact}. \item \texttt{nn}: A basic summary table of matched data (e.g., the number of matched units) \end{itemize} %%% Local Variables: %%% mode: latex %%% TeX-master: "matchit" %%% End: MatchIt/vignettes/matchit2zelig.tex0000644000176200001440000003030312162551623017105 0ustar liggesusers\section{Conducting Analyses after Matching} \label{sec:analysis} Any software package may be used for parametric analysis following \MatchIt. This includes any of the relevant R packages, or other statistical software by exporting the resulting matched data sets using R commands such as {\tt write.csv()} and {\tt write.table()} for ASCII files or {\tt write.dta()} in the {\tt foreign} package for a STATA binary file. When variable numbers of treated and control units have been matched to each other (e.g., through exact matching, full matching, or k:1 matching with replacement), the weights created by MatchIt should be used (e.g., in a weighted regression) to ensure that the matched treated and control groups are weighted up to be similar. Users should also remember that the weights created by MatchIt estimate the average treatment effect on the treated, with the control units weighted to resemble the treated units. See below for more detail on the weights. With subclassification, estimates should be obtained within each subclass and then aggregated across subclasses. When it is not possible to calculate an effect within each subclass, again the weights can be used to weight the matched units. In this section, we show how to use \hlink{Zelig}{http://gking.harvard.edu/zelig/} with \MatchIt. Zelig \citep{ImaKinLau06} is an R package that implements a large variety of statistical models (using numerous existing R packages) with a single easy-to-use interface, gives easily interpretable results by simulating quantities of interest, provides numerical and graphical summaries, and is easily extensible to include new methods. \subsection{Quick Overview} The general syntax is as follows. First, we use \texttt{match.data()} to create the matched data from the \MatchIt\ output object (\texttt{m.out}) by excluding unmatched units from the original data, and including information produced by the particular matching procedure (i.e., primarily a new data set, but also information that may result such as weights, subclasses, or the distance measure). \begin{verbatim} > m.data <- match.data(m.out) \end{verbatim} where {\tt m.data} is the resulting matched data. Zelig analyses all use three commands --- \texttt{zelig}, \texttt{setx}, and \texttt{sim}. For example, the basic statistical analysis is performed first: \begin{verbatim} > z.out <- zelig(Y ~ treat + x1 + x2, model = mymodel, data = m.data) \end{verbatim} where {\tt Y} is the outcome variable, {\tt mymodel} is the selected model, and {\tt z.out} is the output object from {\tt zelig}. This output object includes estimated coefficients, standard errors, and other typical outputs from your chosen statistical model. Its contents can be examined via \texttt{summary(z.out)} or \texttt{plot(z.out)}, but the idea of Zelig is that these statistical results are typically only intermediate quantities needed to compute your ultimate quantities of interest, which in the case of matching are usually causal inferences. To get these causal quantities, we use Zelig's other two commands. Thus, we can set the explanatory variables at their means (the default) and change the treatment variable from a 0 to a 1: \begin{verbatim} > x.out <- setx(z.out, treat=0) > x1.out <- setx(z.out, treat=1) \end{verbatim} and finally compute the resulting estimates of the causal effects and examine a summary: \begin{verbatim} > s.out <- sim(z.out, x = x.out, x1 = x1.out) > summary(s.out) \end{verbatim} \subsection{Examples} We now give four examples using the Lalonde data. They are meant to be read sequentially. You can run these example commands by typing {\tt demo(analysis)}. Although we use the linear least squares model in these examples, a wide range of other models are available in Zelig (for the list of supported models, see \hlink{\url{http://gking.harvard.edu/zelig/docs/Models_Zelig_Can.html}} {http://gking.harvard.edu/zelig/docs/Models_Zelig_Can.html}. To load the Zelig package after installing it, type \begin{verbatim} > library(Zelig) \end{verbatim} \begin{description} \item[Model-Based Estimates] In our first example, we conduct a standard parametric analysis and compute quantities of interest in the most common way. We begin with nearest neighbor matching with a logistic regression-based propensity score, discarding control units outside the convex hull of the treated units \citep{KinZen06,KinZen07}: \begin{verbatim} > m.out <- matchit(treat ~ age + educ + black + hispan + nodegree + married + re74 + re75, method = "nearest", discard = "hull.control", data = lalonde) \end{verbatim} Then we check balance using the summary and plot procedures (which we don't show here). When the best balance is achieved, we run the parametric analysis: \begin{verbatim} > z.out <- zelig(re78 ~ treat + age + educ + black + hispan + nodegree + married + re74 + re75, data = match.data(m.out), model = "ls") \end{verbatim} and then set the explanatory variables at their means (the default) and change the treatment variable from a 0 to a 1: \begin{verbatim} > x.out <- setx(z.out, treat=0) > x1.out <- setx(z.out, treat=1) \end{verbatim} and finally compute the result and examine a summary: \begin{verbatim} > s.out <- sim(z.out, x = x.out, x1 = x1.out) > summary(s.out) \end{verbatim} \item[Average Treatment Effect on the Treated] We illustrate now how to estimate the average treatment effect on the treated in a way that is quite robust. We do this by estimating the coefficients in the control group alone. We begin by conducting nearest neighbor matching with a logistic regression-based propensity score: \begin{verbatim} > m.out1 <- matchit(treat ~ age + educ + black + hispan + nodegree + married + re74 + re75, method = "nearest", data = lalonde) \end{verbatim} Then we check balance using the summary and plot procedures (which we don't show here). We reestimate the matching procedure until we achieve the best balance possible. (The running examples here are meant merely to illustrate, not to suggest that we've achieved the best balance.) Then we go to Zelig, and in this case choose to fit a linear least squares model to the control group only: \begin{verbatim} > z.out1 <- zelig(re78 ~ age + educ + black + hispan + nodegree + married + re74 + re75, data = match.data(m.out1, "control"), model = "ls") \end{verbatim} where the {\tt "control"} option in {\tt match.data()} extracts only the matched control units and {\tt ls} specifies least squares regression. In a smaller data set, this example should probably be changed to include all the data in this estimation (using \texttt{data = match.data(m.out1)} for the data) and by including the treatment indicator (which is excluded in the example since its a constant in the control group.) Next, we use the coefficients estimated in this way from the control group, and combine them with the values of the covariates set to the values of the treated units. We do this by choosing conditional prediction (which means use the observed values) in \texttt{setx()}. The {\tt sim()} command does the imputation. \begin{verbatim} > x.out1 <- setx(z.out1, data = match.data(m.out1, "treat"), cond = TRUE) > s.out1 <- sim(z.out1, x = x.out1) \end{verbatim} Finally, we obtain a summary of the results by \begin{verbatim} > summary(s.out1) \end{verbatim} \item[Average Treatment Effect (Overall)] To estimate the average treatment effect, we continue with the previous example and fit the linear model to the {\it treatment group}: \begin{verbatim} > z.out2 <- zelig(re78 ~ age + educ + black + hispan + nodegree + married + re74 + re75, data = match.data(m.out1, "treat"), model = "ls") \end{verbatim} We then conduct the same simulation procedure in order to impute the counterfactual outcome for the {\it control group}, \begin{verbatim} > x.out2 <- setx(z.out2, data = match.data(m.out1, "control"), cond = TRUE) > s.out2 <- sim(z.out2, x = x.out2) \end{verbatim} In this calculation, Zelig is computing the difference between observed and the expected values. This means that the treatment effect for the control units is the effect of control (observed control outcome minus the imputed outcome under treatment from the model). Hence, to combine treatment effects just reverse the signs of the estimated treatment effect of controls. \begin{verbatim} > ate.all <- c(s.out1$qi$att.ev, -s.out2$qi$att.ev) \end{verbatim} The point estimate, its standard error, and the $95\%$ confidence interval is given by \begin{verbatim} > mean(ate.all) > sd(ate.all) > quantile(ate.all, c(0.025, 0.975)) \end{verbatim} \item[Subclassification] In subclassification, the average treatment effect estimates are obtained separately for each subclass, and then aggregated for an overall estimate. Estimating the treatment effects separately for each subclass, and then aggregating across subclasses, can increase the robustness of the ultimate results since the parametric analysis within each subclass requires only local rather than global assumptions. However, fewer observations are obviously available within each subclass, and so this option is normally chosen for larger data sets. We begin this example by conducting subclassification with four subclasses, \begin{verbatim} > m.out2 <- matchit(treat ~ age + educ + black + hispan + nodegree + married + re74 + re75, data = lalonde, method = "subclass", subclass = 4) \end{verbatim} When balance is as good as we can get it, we then fit a linear regression within each subclass by controlling for the estimated propensity score (called \texttt{distance}) and other covariates. In most software, this would involve running four separate regressions and then combining the results. In Zelig, however, all we need to do is to use the {\tt by} option: \begin{verbatim} > z.out3 <- zelig(re78 ~ re74 + re75 + distance, data = match.data(m.out2, "control"), model = "ls", by = "subclass") \end{verbatim} The same set of commands as in the first example are used to do the imputation of the counterfactual outcomes for the treated units: \begin{verbatim} > x.out3 <- setx(z.out3, data = match.data(m.out2, "treat"), fn = NULL, cond = TRUE) > s.out3 <- sim(z.out3, x = x.out3) > summary(s.out3) \end{verbatim} It is also possible to get the summary result for each subclass. For example, the following command summarizes the result for the second subclass. \begin{verbatim} > summary(s.out3, subset = 2) \end{verbatim} \item[How Adjustment After Exact Matching Has No Effect] Regression adjustment after exact one-to-one exact matching gives the identical answer as a simple, unadjusted difference in means. General exact matching, as implemented in MatchIt, allows one-to-many matches, so to see the same result we must weight when adjusting. In other words: weighted regression adjustment after general exact matching gives the identical answer as a simple, unadjusted weighted difference in means. For example: \begin{verbatim} > m.out <- matchit(treat ~ educ + black + hispan, data = lalonde, method = "exact") > m.data <- match.data(m.out) > ## weighted diff in means > weighted.mean(mdata$re78[mdata$treat == 1], mdata$weights[mdata$treat==1]) - weighted.mean(mdata$re78[mdata$treat==0], mdata$weights[mdata$treat==0]) [1] 807 > ## weighted least squares without covariates > zelig(re78 ~ treat, data = m.data, model = "ls", weights = "weights") Call: zelig(formula = re78 ~ treat, model = "ls", data = m.data, weights = "weights") Coefficients: (Intercept) treat 5524 807 > ## weighted least squares with covariates > zelig(re78 ~ treat + black + hispan + educ, data = m.data, model = "ls", weights = "weights") Call: zelig(formula = re78 ~ treat + black + hispan + educ, model = "ls", data = m.data, weights = "weights") Coefficients: (Intercept) treat black hispan educ 314 807 -1882 258 657 \end{verbatim} \end{description} %%% Local Variables: %%% mode: latex %%% TeX-master: "matchit" %%% End: MatchIt/vignettes/matchit.tex0000644000176200001440000002047712162551623016003 0ustar liggesusers\documentclass[oneside,letterpaper,12pt]{book} \usepackage{bibentry} \usepackage{graphicx} \usepackage{natbib} \usepackage[reqno]{amsmath} \usepackage{amssymb} \usepackage{verbatim} \usepackage{epsf} \usepackage{url} \usepackage{html} \usepackage{dcolumn} \usepackage{fullpage} \bibpunct{(}{)}{;}{a}{}{,} \newcolumntype{.}{D{.}{.}{-1}} \newcolumntype{d}[1]{D{.}{.}{#1}} %\pagestyle{myheadings} \htmladdtonavigation{ \htmladdnormallink{% \htmladdimg{http://gking.harvard.edu/pics/home.gif}} {http://gking.harvard.edu/}} \newcommand{\hlink}{\htmladdnormallink} %\bodytext{ BACKGROUND="http://gking.harvard.edu/pics/temple.jpg"} \setcounter{tocdepth}{3} \setcounter{secnumdepth}{4} \newcommand{\MatchIt}{\textsc{MatchIt}} \title{\MatchIt: Nonparametric Preprocessing for Parametric Causal Inference\thanks{We thank Olivia Lau for helpful suggestions about incorporating \MatchIt\, into Zelig.}} \author{Daniel E. Ho,\thanks{Assistant Professor of Law \& Robert E.\ Paradise Faculty Scholar, Stanford Law School (559 Nathan Abbott Way, Stanford CA 94305; \texttt{http://dho.stanford.edu}, \texttt{dho@law.stanford.edu}, (650) 723-9560).} \and % Kosuke Imai,\thanks{Assistant Professor, Department of Politics, Princeton University (Corwin Hall 041, Department of Politics, Princeton University, Princeton NJ 08544, USA; \texttt{http://imai.princeton.edu}, \texttt{kimai@Princeton.Edu}).} \and % Gary King,\thanks{David Florence Professor of Government, Harvard University (Institute for Quantitative Social Science, 1737 Cambridge Street, Harvard University, Cambridge MA 02138; \texttt{http://GKing.Harvard.Edu}, \texttt{King@Harvard.Edu}, (617) 495-2027).} \and % Elizabeth A. Stuart\thanks{Assistant Professor, Departments of Mental Health and Biostatistics, Johns Hopkins Bloomberg School of Public Health (624 N Broadway, Room 804, Baltimore, MD 21205; \texttt{http://www.biostat.jhsph.edu/$\sim$estuart}, \texttt{estuart@jhsph.edu}).}} %\makeindex \begin{document} \maketitle \begin{rawhtml}

[Also available is a downloadable PDF version of this entire document] \end{rawhtml} \tableofcontents \nobibliography* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \clearpage \chapter{Introduction} \input{intro} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{Statistical Overview} \input{overview} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{User's Guide to \MatchIt} \label{methods} \input{preprocess} \input{balance} \input{matchit2zelig} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{Reference Manual} \label{chap:reference} \section{\texttt{matchit()}: Implementation of Matching Methods} \label{sec:matchit} Use \texttt{matchit()} to implement a variety of matching procedures including exact matching, nearest neighbor matching, subclassification, optimal matching, genetic matching, and full matching. The output of {\tt matchit()} can be analyzed via any standard R package, by exporting the data for use in another program, or most simply via \hlink{Zelig}{http://gking.harvard.edu/zelig} in R. \input{matchitref} \input{summaryref} \input{plotref} \input{mdataref} \input{faq} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{What's New?} \begin{itemize} \item \textbf{2.4-20} (October 24, 2011): bug fix for GAM models (thanks to Felix Thoemmes) \item \textbf{2.4-18} (April 26, 2011): JSS version, no change in code. \item \textbf{2.4-17} (April 2, 2011): a minor documentation fix. \item \textbf{2.4-16} (January 8, 2011): a bug fix for user defined distance. \item \textbf{2.4-15} (December 11, 2010): a bug fix in the mahalanobis matching. \item \textbf{2.4-14} (August 12, 2010): a bug fix in {\tt match.data()} so that it can be called within a function (thanks to Ajay Shah, George Baah, and Ben Dominique); \MatchIt now does not specify digits for printing (thanks to Chris Hane); A summary table of matched data is now stored in the output (thanks to George Baah) \item \textbf{2.4-11} (June 25, 2009): More flexible inputs in plotting. \item \textbf{2.4-10} (February 2, 2009): Minor documentation fixes \item \textbf{2.4-8,2.4-9} (January 29, 2009): Minor documentation fixes \item \textbf{2.4-7} (August 4, 2008): Fixed minor bug in subclassification (thanks to Ben Domingue) \item \textbf{2.4-6} (July 21, 2008): Improved summary object for exact matching (thanks to Andrew Stokes) \item \textbf{2.4-5} (July 20, 2008): Fixed a minor bug. \item \textbf{2.4-4} (July 18, 2008): Fixed another bug with regard to the discard option (thanks to Ben Dominique). \item \textbf{2.4-3} (July 18, 2008): Fixed a bug in full matching regarding the discard option (thanks to Ben Dominique). Some updates of documentation regarding coarsened exact matching (2.4-1 and 2.4-2). \item \textbf{2.4} (June 12, 2008): Included coarsened exact matching; documentation bug fixes (thanks to Will Lowe) \item \textbf{2.3-1} (October 11, 2007): Stable release for R 2.6. Documentation improved. Some minor bug fixes and improvements. \item \textbf{2.2-14} (September 2, 2007): Stable release for R 2.5. Documentation improved for full matching. (Thanks to Langche Zeng) \item \textbf{2.2-13} (April 10, 2007): Stable release for R 2.4. Additional fix to package dependencies. Bug fix for summary(). \item \textbf{2.2-12} (April 6, 2007): Stable release for R 2.4. Fix to package dependencies. \item \textbf{2.2-11} (July 13, 2006): Stable release for R 2.3. Fix to ensure summary() command works with character variables in dataframe (thanks to Daniel Gerlanc). \item \textbf{2.2-10} (May 9, 2006): Stable release for R 2.3. A bug fix in {\tt demo(analysis)} (thanks to Julia Gray). \item \textbf{2.2-9} (May 3, 2006): Stable release for R 2.3. A minor change to DESCRIPTION file. \item \textbf{2.2-8} (May 1, 2006): Stable release for R 2.3. Removed dependency on Zelig (thanks to Dave Kane). \item \textbf{2.2-7} (April 11, 2006): Stable release for R 2.2. Error message for missing values in the data frame added (thanks to Olivia Lau). \item \textbf{2.2-6} (April 4, 2006): Stable release for R 2.2. Bug fixes related to {\tt reestimate} in {\tt matchit()} and {\tt match.data()} (thanks to Ani Ruhil and Claire Aussems). \item \textbf{2.2-5} (December 7, 2005): Stable release for R 2.2. Changed URL of {\tt WhatIf} to CRAN. \item \textbf{2.2-4} (December 3, 2005): Stable release for R 2.2. User's own distance measure can be used with \MatchIt\, (thanks to Nelson Lim). \item \textbf{2.2-3} (November 18, 2005): Stable release for R 2.2. standardize option added to full matching and subclass (thanks to Jeronimo Cortina). \item \textbf{2.2-2} (November 9, 2005): Stable release for R 2.2. {\tt optmatch} package now on CRAN. Changed URL for that package. \item \textbf{2.2-1} (November 1, 2005): Stable release for R 2.2. balance measures based on empirical CDF are added as a new option {\tt standardize} in {\tt summary()}. \item \textbf{2.1-4} (October 14, 2005): Stable release for R 2.2. strictly empirical (no interpolation) quantile-quantile functions and plots are used. \item \textbf{2.1-3} (September 27, 2005): Stable release for R 2.1. automated the installation of optional packages. fixed a coding error in {\tt summary()}, the documentation edited. \item \textbf{2.1-2} (September 27, 2005): Stable release for R 2.1. minor changes to file names, the option {\tt "whichxs"} added to the {\tt plot()}, major editing of the documentation. \item \textbf{2.1-1} (September 16, 2005): Stable release for R 2.1. Genetic matching added. \item \textbf{2.0-1} (August 29, 2005): Stable release for R 2.1. Major revisions including some syntax changes. Statistical tests are no longer used for balance checking, which are now based on the empirical covariate distributions (e.g., quantile-quantile plot). \item \textbf{1.0-2} (August 10, 2005): Stable release for R 2.1. Minor bug fixes (Thanks to Bart Bonikowski). \item \textbf{1.0-1} (January 3, 2005): Stable release for R 2.0. The first official version of \MatchIt \end{itemize} \clearpage \bibliographystyle{asa} \bibliography{gk,gkpubs} \end{document} MatchIt/vignettes/matchit.pdf0000644000176200001440000222521412162551623015752 0ustar liggesusers%PDF-1.4 3 0 obj << /Length 1508 /Filter /FlateDecode >> stream xÚWKsÛF ¾çWðÔ¡f¢õ¾éÅvìÆvj×mœéLZ¢-Ö´¨¡Vñ¤¿¾–”©†r2¹HûÀ~À€åñÍ«ƒŸ„Ë$gÖJ“ÝÜeBx¦×™1–9¯]v3ÿ3¿,&Öæq¶8“¿o.àòi)eÆIøÍdª¹Í¯šåª˜ˆ¼-Ë8™Â ‚Ùl2U\å×m¹j›ÉTÚ|Vâæz¿(±¼G™ßÁ¸iQ]6•’Yï 4 ÜZÒs=ÓE‹:ñpÛj–ξÅÅ Aâ¨N«çˆ~W¶¤p zÓU|&4SÚJ¼ŠTšñ tæ˜^’"‘ŒPš3ïT6µœíí þ²"HT&²ôÖ¼N|X°Ò’«ó^ºÌ0É­ 9f‡Ìã³é@ð}³Þ»`ò“eÀú1Gÿj™6~šxðólSGýœ?Pñ¸: .ZäQ@\ 1Äp>bÊ:þÅ 7&¤Ú"³Ê‚¿ <¹Žž¸*"ü©Ö*?ºM÷ibL Ä´Ñ?ã ÒŽï¤5ã$´âæÇ³ c£l_À1®ÞÌ à +监ð Hs',|=î™°Êt€yXO_Å…¬6`û’Ò;@Zïz ýh ‡?‘2ÄI5 ÆÒÊ;ö-v¸©¾Ÿ›Á÷Üœˆ|ÐˤÆDèü„Ö1·‹6>–óÄ`Â66u«Ùº;uݦ̦ñY¢ Ë?.qõB$f¯«-OÝñ–t?m;jÚ9+ê:AÀíÇ ›¾ÀÅÇÔ4· )“áð?4e(/Ðx,u`|2Áðdõ³Å‰µ*˜äB*[³ÔËûSWéŸ{ D'üÓêh”Ê š…óAïR¹‚NÉVmgÎ>ÒiÅ„çê%2ïáà*8¼Þ*8WÀ=ó¢/§ûè9 @8!Ã?õ·ñó„jϧ 2ß) … úHÓ–D!§eÈR,¢¸Š‘DñwT£ œtaZn_V)îà}âgEK4&§Q§l$¼´Ž„<_B ‹Ô²:Kî’r›ÿºI%T±x‰ƒ±êYAҚ*ê¬*êçµYOûޱ=£Ðzà¾íIømñˆ—½%æÍ±aöȱ헱;—†ã{¯ ¼ýˆÈÕ û&RQ§e<¾W×åQ‚ãR(?Êh¾ë„ŽÑïð}ÆÐ*°hßH³¿…,Ý!ÙR)©Óä*í·M1§vÀŰ.;màÕÛBžënãP«¾@4Û„¡]_ž$RÈ=oŽqZ?==±[p,8•ý³X¯X«:î˜r[˸‡q_M}h¯C'éMÑŽ½tá{ãà›S¥C:ÜÚ8–+Ž)ü„ù_¹uzóê?„›ÆÉendstream endobj 2 0 obj << /Type /Page /Contents 3 0 R /Resources 1 0 R /MediaBox [0 0 612 792] /Parent 25 0 R >> endobj 1 0 obj << /Font << /F17 6 0 R /F16 9 0 R /F18 12 0 R /F8 15 0 R /F40 18 0 R /F58 21 0 R /F45 24 0 R >> /ProcSet [ /PDF /Text ] >> endobj 28 0 obj << /Length 1037 /Filter /FlateDecode >> stream xÚí™K“ÚFÇïû)¸etÐdÞcŒµ©¬dqùç ìQY"‰uüíÓó³ eÙJ• ¬½f¤þM÷¿{FÏF?¿TdÀÖFÓÁèf Ù@1ƒ¹àz0šü…†ó,§¨Î8EK» u~¯ÍþýÚSŠ­”Ì·'ƒ\)L¡9ÍrK4ºüÚªa²‡Ã2õŸsb™@<öIÍfŸTc)í § !MìC×”‚ÞM‹.µÒ›­¤ÅZQoäï¿*2¥P7ž^v}+Alºù9¼ÓȵðöÜ œåtœÂÚÇ5 F²ÈˆR‰a|›-Kl¯ç7]Æ úœŽ¢q~èúÓý³,7sµ?ÝeÞriÌ)Qx(² ˆ'@—uÛUUÖû\Pl„ч¹ âXhµºù¨}H®'æLŠY›ÈŠDö·9øU1¹,ÔZs Y‚­VâœÉöæ«Ø¶ëÊøí"ˆÜ¤èîcl1%Æ콌*õ4¼w;éå’1œ™)L%¬YL~×]S]Û•þ\T £Z¢7·>­ºæ6œvŸýxD$M‚loÜ¢‰YkìÚ6<FäZ¢Û²ˆº}Utc¯ØÓpÉRvâÚ¬ú´™­“×pꂹŸ …žUQïEŸKÈ?HIߥd¥UÎk_‹­ýR ¼Õ—ÖW?ܧý›Î5k‚k>d¬>zÓwƒ5EÒf¨òªo}-ã­¥è§6é«eˆÎ‰‹‡!’çqÿ*ÆõØ×¶^s–0d _þ´Ã7pÀ(XÆÍ.ŠÊúcYÆHŽ @7¡&õºé5S(yº ¢Cz¹°ÄåÅ¿ÅlQù@5òÜ´ë!2\c3zWÖV|‚ç0yÅêRùÀò'6‰YuõÊ W Q²Ï;‚x믗püL4h\qž›ò=¡b´¼œ×ÞyøÙ˜Î“鯷·qm³ØkW~„S?î‚ÐΛ>YÕP‘}o é^ E²ð .ºrÒu4r'?kËOaHi_‰²6X&ƒ_f†¡eUõ Wú”‚øí’õ¯\í:Hƒ{„̨²šíµZ'«‡a iÁøIôñ&½Gb^®æ†íÔ}?¦(wiñ¾RЮa=áRpÙõ¢Zð¹ëв‚/„9kyÓVex—Öº2M]šò­…E"ÕêC@ë ¨Ù,hl¾¼'’Àö~B°˜)»ZeÎg!3×^¶,;Õ]­ûsŠ!|ø=ŒØc-*h4÷…Ç>:‚`¯p¬túXÁû­–RµÆLr±­L羆0¨}Ót~|ÚüͤgéótçéM\y¤Fai ¸Ž‚É‹P,}†k/Fÿú{Ñendstream endobj 27 0 obj << /Type /Page /Contents 28 0 R /Resources 26 0 R /MediaBox [0 0 612 792] /Parent 25 0 R >> endobj 26 0 obj << /Font << /F60 31 0 R /F18 12 0 R /F17 6 0 R /F63 34 0 R >> /ProcSet [ /PDF /Text ] >> endobj 37 0 obj << /Length 1343 /Filter /FlateDecode >> stream xÚíYËVãFÝÏWx—ÖÂõ[ ‡gBÎ!ƒ',’,„Ý`¿"ÉþûTu·@¶Å+g€É¶Znµº®ªnÝ*íô>|д¹*Õ±”¦Ó¥"B†•cê§*ÞœÊTlO;‰›4Î"Jª>| s<ú#‘ |hÛM¤Œ¹Ò"\ùcÔ\’Ãñldq_c¸ÜL"–’*«òi„ƒ.gŠL/ðWƒMþvp8Ì'—þÏ#[ §h#”°($Žº2IþãÊ#ÌÁ ÀéØ$)_G’8Ÿ.e"!§ gì´BCn`ÿ”7–ƼÌÞ_–¤ÆÃ,ãÁÛŒ/çcë1)ї͆™¾â <˜þ †ój6¯¼ÿ¥Œd£¹ R­ÞžÕÚÇ1OÙ“°Ç™¤œ"cd ½bñl&9?*ò>Ò"z:ÝJ¹c•²I$Šìà9ŒÁQæÓpþý°KäæG¼;IÛ9$à!7™CL;‡ÓÕ†rˆyCøã2"Ó ¾b×Pª–Ùã§"› =¼ÖpÃ"·¥?ƒ‚$‘,âu¡Èa“‰²6t Hð"”$”%äd4 î3ɬ½ÀAáÒ¡õÇ㦫¯=‡Mò—S }8©uzï6_Œ¡< ®c ºJ&‹÷'Ð8mg˜€Ç& ´GLßP¬î®ÄÁ’ñì›rB‰dPsèb™'lÿĉоˆõìQ`ïØ‘À6›6}SI€=¨°Ä³ú=1| 2d Õ–]­‚Kó8eœ- ®ý›ªÀÅúÕm#§òt¢ÈQ]J±O3{x3J_àYÔ°Ò‹„ä~µA+<"šÂêKYq V¥F¿WxaýuO¤‰fÆÙ.îø%rÅ:3üˆ" ڿɰUŠÌ#ß‘÷ÔUßR¼+œ”¥.°•Ô&}+ü 2‚ø^øßsëzàÕ‡ ßßF»Š8óíæ?û+z•ã‰)ŠÆ4vˆ=,ûùt±ŸÀîžbûÚ“Ö`êùêÐwóÊÖt—‡®ÔY”RW]W[ÈòÍ?Qÿðd[Gº¨G˜Î†YH¬ùEƒøƒV¸•¶ (mAmîä!ad“ÁÒ_ŠôÉì Û~uVù2óWõ0yû÷á‰Í}ziÜÛŽÝcXl¡è£Ï3¯öÞæ¾ýjLs’Ø®Ëè3Ü¢Í/‡µÐÂÉ»…Í*;€))_çsVí@ˆ6 öšáÖ!êEýîÇ=òð(?—¶øA¹àÎÞ½ÒäÏŒ}_p1¼)\d.»Ùd‰'NmüêOoߎ­ô±Û•’"'8ÊòáQLw$t;¨'xȾ{)XÎëÿlg£¼Ÿç#¨4áªSÛeài½¤^ˆÇ4­åëQ) Þþð°ºç½‚‰ “Ú·µ:9·T ïÙ¯x;šÎ¶þEVnyŒÆ 3zÕUôòJ³–Î ?+—ëÉlÎK_qƒ·ø¾%¾MµÙ¬×y5lEP³ØP£žˆ •Ix˜Œ,Êå·ìl¸`ñJÌZN×2Ë VõCærAêÒn]ß¹hÊËò6wìùäìx7mgs‹ òBˆ˜“ÂÎ ŸûÖ\*ùfV( |Öäd­æšjRy5‰žôCM¼Zc{£-¬P å^"š¶P`BêSX^&1WJ¸uÖÿ°ßûðíè”endstream endobj 36 0 obj << /Type /Page /Contents 37 0 R /Resources 35 0 R /MediaBox [0 0 612 792] /Parent 25 0 R >> endobj 35 0 obj << /Font << /F60 31 0 R /F18 12 0 R /F63 34 0 R /F17 6 0 R >> /ProcSet [ /PDF /Text ] >> endobj 40 0 obj << /Length 2123 /Filter /FlateDecode >> stream xÚ­XK“ÜÆ ¾ëWÌ-œ*—Ý|;'YI*JJNÕjSN9öKöÌPâ4'|h½úõÁ€óXM*²Ë—!îF£À|÷ðêî/Y´²I˜¹Y=lW¹]e¶ã$ÎWÍ¿ƒ7ûê8­7&pÃzçY`Ö??üm­6I&¶,õÖ¯cL{’3A3×¼¬íñ뱈2yhMšà(Ú#3až ïaµ¡Ý7ÆØ4øa_Ñh‘ið®šhPãˆý[åýIŽq£ìlò•1a™¦Vw¶Yh‹Dîð®ZgY0ÕX,ÒÅ¥tš…&‹JZáöpìÜÁùµÍƒiÄaQ0íã¼#MvnœÚÞëdOœ-Hüô7D&x{¨Z&£àïl¿;Oâr¾‘õï§¹–ËFÁOQYFýä42ÂßbïAhÒqè×¶>aW¼Çf¹ÄÆ$a’¤%ßåÈW7 m½Þ$QŒÐ欦–nQWðdOºq㺌2¨ fGo‰s˜ÍrÉa]Û¸#1‹ÀùÆùÚ‰à# ø,ÇÁAaP»q.ƒŽýÔȶ÷c;µk~ÜÏŒ™©—u×,á Ûñöã|8ÂÞ8 Š$· I„ð"×4´7Ôa3$–š³Ÿå”¿ï³È>µ¼ã^F‹ì†ýQU¸+8S“F|ù‚IHD¬¸‡¢Ó‘~¾½£Ÿ»ÝG(ŽgÙ…{x2^åºAv!¯2Á|÷dQ@òÝ-G1%¹UT.žòG$›’1T8¼‚Iƒª …°Œ×™ ¶’?HzœG÷ŸY“ŠÈP¬A±N‘?iÕ=nüF½¡LC›Y{m› Mfn±•-ƒv”oãÆvç9t¬Ú›¾‚Í2¨ÍXñßžî^v[´ù¬höjÅeXÒÏWF^fY¡² ãO%çŒnCÎs7I )~ýœ¶œZ œ š˜(Œl_TX.ˆÈQ-ÙæeÐoåË Qª.…9‡8Çú¨+€¹ù…½‡Þ#c€y¨à.(KwÀÛWC³™ ɹîÃLÉyû¼.l ’ã$ð³$mœòe,_ER©ÞÂ!-1 õbKuCÂHe¢«ƒ[ /ûÊ48§IU˜R<ýÑ÷"s<ú-Òy\¸e±âóNÒX–ž­îf1Ý(œC?NB¹_p=ÆF!ýcy%w[R§®â8Ãj­RÏU–2DcG5QÇy\ý±cÿ¤1aâ $mwãFU-µEœæ/L§ÙuÍÊñ¦ñ‹ŒF\*UvRFéÚiÏÉeÞíuÙ¤ã¹jíà®q–³çLèËõHØUãó…ûãoÜ¢U ‡-®_³‘c(p~±’‡$Åp~Y¼@áëT>(G ®§Éù›8™0‰òüë1$¥&H„GÅP.@8qÃ#I?~_¢½{ zý˧·WÏ$¹UA™qȦyeÉ‹z]ú «¶ç`˜Ö|I{Q/-ˆŸi&È¥ðµìÂÄ©[Ð…eVÜÁ/ÆCAÊò§“­¯.ÎèA’r2U ¿:g¦záv›‡LÇÙ¹Í³Úæ½×;rl¸ƒtÒâÝSÊlöëXjòߣÙCŽÈ–÷•êîóQ3E«~X÷þÃìkø¡º¡Úê\ゾ—Iiv’Ñê*‡Ï\íÔ%^ì6LÒ çÃ…µ–‹âרÎÕ8užOmÇ9ÁÃì…Õë·:!, Žƒô¶ºP*´S¿#XKûÜË|;ʰõ”€ºÎéy(Ï~h}£ 4äÊlõæþõ÷ÚË#l5Šö ‡pƒã·ww5g'7/Ì=fš\=…ì²»»ðV> endobj 38 0 obj << /Font << /F60 31 0 R /F17 6 0 R /F18 12 0 R /F63 34 0 R >> /ProcSet [ /PDF /Text ] >> endobj 43 0 obj << /Length 1446 /Filter /FlateDecode >> stream xÚ­WÛnÜ6}÷W,ü$-^t нH#Eê -š>È×+X+-$ªÎþ}çB­w]9X}¡H9Ξýxwq}“Æ+™ %³º[¯2µÊâ\ÄÆä«»ú¯@ŠP:Œ¤TIðúÝèʾmƒƒ‡0ÒEÜ–® µ 6¸Â…ßýz}#󕔢H…zãU¤R¡r¯ö.ÌeÐÃf•M›F8"p%*nýþìx¢„‘izpûm¦iàªÍÛÅÃ’D¤&.üâu?ðAl7ö³`×âYdÛñŠÅ.„ùý.ŒàcýçE?ñ?ZÛƒ‚í¶ìjžÛ 4±sWlRªMŠ$z5É2ðƒ&βíû0J¤ñ.pД-)vØ­±}€ÆŽÐ|Ž“øò§paž¾d|Íçt–¡³ÐÒÏ*-² Ì9ϳ©H“lÃSÖFF*¸À8ÇnŽ©m×8îêп8ßóÄÇý4ðhÜÎn¹_NŽ|Yº¦b­{Ä‹£À†~øf§¡AüáŠÏ©ä¤…[¬¢<FCD" 1 ƒ#†Á®ì¦j£½I¨›ÇÛ’0ØŽXPÛª©-÷]ÏßÇPå¸óŽgPÓ¼¡«r¨Yà fÉÜ–¡ˆ¶ÒäçXšÖ*Mnf&ºHξ¿–±ò‹û°IGô]e1f± î'ÇÇïlUlÑûÓèEmöx3ÇKvCƒd…ÝÙr[ÎáÇ…ÓháèÉ…é•tܯ{†<Ä@ä¦È^¢¿Îmð*€Ä@ß›%‹ù‹’Áý€Ü4ì=U1SUáœ^c)ÀK’äÅ)WýÐ:;tü.þÁû[¤\áƒ53uÀ &,;îßxþ®š5Æ%Ux-zâÁ.¸~™ cH2±:7É€{SÀ9/ʶlrU¶‹”Èš-§îIß{fÁ¾­G\F†B<–Ü[ä*“§ö3ež5Æ µ‹¦j+@›ÊüÁ–ˆBf@bK⮚MÇ_œg€Ä‰ í1' å–—ŒÓ=)©›Xˆ8oŽ•V U<ˆ¥ )àœ,3³U?½×°A=©Z)ql)ß]/ݬÈ×¥WqÅf®çä<°}ŸšÞ<Ä'Œü:tä¡!|'¯ƒ“>™>«H^‹IЕ4~‡Æ÷kÌ=¯Ä¢RgÅb‘r,RŒ…­ùX>QŽö7ýÖ²Ôûܳl}dòÇ®ùrý4Àŧ/,'–ðº,[±ì=tçîž@4&{ý"iz]quÐèûuM8f^™™¦m:‚Ö9„Òïè…T/@´Ij¼=º´œ°8r¿QqÍã\ }ÇŸ ·ÀôƒÅµïôyÁå²¾ÓbëéêŠ5buë‹.hÞºY~fáuCT=¼t ³AÙ=xþu¾¦Dõ>W¡ä<Ÿä}­zR¨@—3Þ±–ÁBÆÜLíX=-dèx!5'>5 ‰M!×¥[®öÏ)õ?áí-› €í·[;—ÌnCtɲC®¤$Ä,éÐS‹gT”M,¬=g-–´JäÒ|ÓßÂWÒ"—÷<œéûèÇ‘ÿ È#•Q%Érõ?!Fkr…ÅìèY>–3ˆGÜnÏE^þ%á¯ð¨èT:fâ¤ÂG/üsòðk…}ò.l›û/14øDQÔtU;E,EM5&ÙÙÙ×ê4D‰A*ýÀÀµO<Ã¥Ä0R­ÀÔ –Hx:9» ”"ÓùlŠ`òTZ‹4Fþ= íËTƒÒ‹_î.þSÝÔendstream endobj 42 0 obj << /Type /Page /Contents 43 0 R /Resources 41 0 R /MediaBox [0 0 612 792] /Parent 25 0 R >> endobj 41 0 obj << /Font << /F60 31 0 R /F18 12 0 R /F17 6 0 R /F63 34 0 R >> /ProcSet [ /PDF /Text ] >> endobj 46 0 obj << /Length 2833 /Filter /FlateDecode >> stream xÚµZKs䶾ﯘò‰SÞ¡ñ"VÊçáÊÆqå`¥’ªlÔ µbv†œð±’ÿøôàgWqÉl€èF£¿~~{óæ›ï­Ø(“:ïäæænãÔÆ*Ÿj£Ýææðäw÷ŹßîdR¶Ûv6QÛÞüi#6;“§^jE«~ê ZTuüØG\%ù´Õü­L>ma†¶zÀ=¾ù^º”iže 9Ö™IUn mùc±µ6é÷÷ïú°ÚOWg.UÎ*ø WÝvg¬N%îßU€U]h’»ÞZ^°ÇùÞ‡EDRUß•mYïK^ýPõ÷6y/2ñøéL€,ðA3ð í_ò¸bîp›]—hôìïâ=ß~´ƒ#SË÷Bj²Í}Ï”p@žšÈ¡¿Ço–M¨ ¥Ï³´È³e¡À+ønûíüè9½ê5Œ(z­þK±©´B†Å]y.Z²¢òø„à ÉæIY°‰3¹!ðü^r•T=aøêcõ }Ü…êø&¢‰á{ùiËærA’Y…ýú7ÌšÇAÜX? ã|*Ðs+95dA‡¯R ð1ŒÎm˜ÜHá›:V~Ýà‚hAž€1½Gá«J£-DƒÓt–šG£àHE¯@’ÏÎ®× E³†y4 •'}u*S°xyÅMNOÿð& 6@ ÓN]/3ñ)L€KË´å ® ŸSýÁëÂéu‘W¼_yñ¥¨ŸæTý§ª?D62¹'…¡?} Do’Àµ%“9wÁk†#ÍÔ@F(»3ôkǾ:“†ø€Ä"º±Ž‰èQ:bˆ«DfÑ5<õîTp¨ÂrÚ8àË ð‡÷ß?}ä•@5taèm×pkAh©^ Ü ¦lXLÒ7h“ƒè|MÀ™Ä¼¸æ¶¢öFñW¢³Aë*ØÇ€qÉ4ËŒŸûšÛÍÏzÆ8<‡n(ŽoëÐ:˧b,ÅqsÛ•-k¥¯Äfº~8TeØíL©ä!;a< hH ð@ÝsМ U7aÎÃ¥P$!WâFÑA@á_+{±?³0àPñiKFÝS¾PPpoÑô‚Çng¹g¦lOcʱ€<|ü¡¹ ‡­4Ò>m½bKÙHW’Ïð7œF¦ôAü0Ã7–]q¢‘AÅ.«¦fBÑñÂ<ÿØDedÚMžüØ C¶qøô§~ ýnˆ¯dà ±ÉEò×:äåFpÏUÇ‘|·v¬š`̉D2:KŽe’ )"ª5œø4×#L*È>aG©IIk;êÔ9…××k;âPÙ¸d¨«¾ã-Q—qk@ÇüP*¾ÿÆ—,¥´Y¸<ظ4w‚n ÝYPTêr­i™\-O­“Ùf² ²­¨P#ÍE4ÎíNhi·Á/ðDÌÙp1E±‚Ò$œ¢£®!שÌUþ¥#¸ÙÄÚ0÷M•uèTj3¸»å9” ç€ÁxŽ1AÅs(É™1,x–Ã\¼3˜&?Ä̆·&œ¯S8Ïò¢Æ¡Re|4ŽoW•eRm³ü¥×­®ë 2›ÉÍdÙ׫ UšAõÿ1\µ/(µÒS†ˆwÄ(:!p+ܵKÅ»žq‡k–3îW lÌO—Õ,»(øÁY%Õq”D´LfÛæ(ÁVdÆÍÏj¥5;9Îî²…EQD'úÕR'ïpã…¶d‚«&¦À¥å|Æ¥é4ϵ +R®ÿ¼î ÔßvôUýŠò¡šVNÍp¹ÊÔ¦ÞçùÔµ| xËuNÿp½];žCÆ£)^¹e!FLÔµŒ¡cº¼–7ó˜ oX- +FªT*³ìuôä„’K=9†‡E=Õ<ºª£,µàn?§#—*ŸÛ‰Žp?Îh.Áˆ÷2šXAõ·›#ÚŒôdÔ7xmøõ±þó¶{/µ‰`ƒL¾ ÌpËÃe%¼.Yáðø‹Qĵ¡¸ʨcðÒÎ/ M*x¼äœ´‡$¨ÚC¾¿ï+ÎÌ(ÅÕ”@ÒÑWõ- â,e/0›;5¿ßƆ¾tÔ™êé4ÊÀž³iü|< s¯+ì ½å€Y>îI÷”ˆåvRÆâÞÍ©\«â¡v½%(%Jº´Q U= Â5‘—^,ø8ÏO4:0¹oxi,—vÀæ…‹ã$œ‰±}aTÌ%¦¼“L>Ð%g.4wÆCEƒx5u2"O…ÜO+ Êc >çá´—jgVNÁÝ]Bž¬ ¬ŠÿÜ,¼:i¤æœ»â ô<ôS³¥\Ù^´Ãk•:Kskôçý˜ÆÎgÌT+[9©ü/eL~f†¡ø‘œ„î' ý¾9]ÖÍ{ˆHäjp8ÂÇ8ÿq;vÐ@9àÍÐ ÏËã»õì4Õî5#|¡…›:F“ë>^ëßClø¶y(Ce’›d.}Ô©;‘¸º¦2cõ$‚¡óù—Î"_x?= ÕQÀþÏ@íA/9zÁS<“R2å¿üÎt5u©PÞ½Sú ˜ÒS™Sâ‚)?ñ^ÎPîŸãåÔ9Ôj“Ú\,`Ç yD:O¥Ô_ÀQy¾Àl¹Lê‘ö3?)nŽ )½AÉ#ܹ!•Íäær¬—" ˆëXѼeÒÉWA‹—îZ£%œÜ½‰ˆ‰ÏR ™Ï¢Y\~ C (ÇŸçÑÑáB^ O§rO–Ï»8÷=æÊ&œ;äþyOïJbk„}µè ¯GéJžgDšg5!Ä\ˆ6(è_M5,æ+HêIo ´†.N˜)¡¾!å ûTÞ@ýFÒ]c;~M×6Õ`/®!Þrê!xhmÝr×¢=úH¯Wÿw ¥y Oµ–B¯—µFeÙ/rç Ü>s¯ïh'æ •è×üà f•ÍìΦG;}/„¸›aøîfUf¹Š 4âê׎Go/½Ó:ôh¹¹;mÐÒ/i@‰t©ñÊÏQòõë•ÖÓ’Òè­à Í#f»¸„3ú}¹>NbCzùØ`Ñ  È¥2Å‚Xj-úøÉ©+Ö¡–d0Ç%ÄØ °ÖñTÑ­Êê=“°¿¯(=OÌ~Ñ=£/·¾œÑi•CŠãÅóóŽÁ£s½Uò8”Ô1–;¢"t¤qpßœã¯J8?þ‚œÅèŽÔ˜…Ðæ]7œÎcÕ2N=™À!5T#!±¹°=ñ¨8ïÖj¯3Õ7g8ÑØt¦rÒ»„+Aú•Ð{.ÅÆÀûé?p‚4jM4í¤ûƒ?«+‘üXÝЖa%Fð¼¥|· Mð.€þ…€ï'¿Áùœ çt¸<ƒYú7„•ß6.U2iøI\w¾šÊx™Ëç&·huŠÔ^¼Oˆ!%ÿŒšYTw<Óqͨx·tбè%áùgu/b½>†ßgèÇ&\×i¼@62Ö±?Äå^~BÑ65Xî 7ÂHÅæŸáä›?ܼùÔˆendstream endobj 45 0 obj << /Type /Page /Contents 46 0 R /Resources 44 0 R /MediaBox [0 0 612 792] /Parent 25 0 R >> endobj 44 0 obj << /Font << /F60 31 0 R /F17 6 0 R /F18 12 0 R /F21 49 0 R /F40 18 0 R /F43 52 0 R /F45 24 0 R >> /ProcSet [ /PDF /Text ] >> endobj 55 0 obj << /Length 3271 /Filter /FlateDecode >> stream xÚ­ZYã¸~ß_aäÉÚZ‰¤®ä)v° @€m 2y%ºÍ¬,yuL¯±>uQ‡G™æ¥M‹W±ê«Cý——ï¾ÿ„»( T›ÝËy—ª]fAhL¶{©þ³WÁ!ÚG‡c©xÿhwÐÞÛ[׎:Ú—¶ïP›Wè¦ñþv nÿ½ʃVû‹ƒÑÿ¾üõûQ¶‹¢ c…[…»£J•ÉNÏgfRÑ’)RAª5ð"ËÀFïÒ OÃL úi®±¹­Ý²@GÆìlESmí¨4°¨L¶üׯ–yFñ×n/·|;¨to;{8šHï]SÙÛáˆ$h586<Á6ÂÈlÔnA®c]1¥il¨}c­†–)e ëdû¡kk&œÛnó–iDq¨¾Á5u ³H/¯)—@Ó ºÛ;·¢C¹Ú¡s%®·;ê8 ´ÑìecâLÞ§ÆúÞ»*AtšìíÇ0Ò¤åà>á­-öê;w¶KË3Q:H+¸[ÁºnšÝÙÆó¹†¯·ndßvS3u‘•b þ{K4‘²<õê‹OAÇ.þ\m4ØŠû$1ä gÄq…—d)©<U”®¥ôJ,ã­ÇXEûZ;Ž÷¯¨2E͸ý^i»×&³$"Ú,^5†“ábL½ulå NCrê{üU1ˆµ»kˆ‡13/¼:n-¯N¤õû¡ÇmZºl¸¾äp¡s#äø5#Xhå0ÒÞÙš¸\Ûôwcâ‰íkÀ³Q¡máL–y4ÙÑF¿o`X:Íw ¶÷FI”è¯5Áßµ%ÉîÏ&á®®™ Ȥ‰$34!¾¹áÒŽ"eÇ ˆOÚ’ Q€p[ÃÉŒ™T1§=O®À]AaX¡AûÀ¯kJVuzcÖ<"£'¥¼3iàÝZî]ñ#ëk@{ƒ¯Ša¿•züóbÑpÃ|C¿ÃlSlÓþ¶ÈxÂ{*¸Ö­v%i2ÉJÈ^—WSQ«9o¼;6O=£U~:€L*Éü箽r«e}1#Ù˜€§b1oÝuº xß ¥¤Ã}ßrŸÅÀ}p0ühÄ%Ï££½<6ëÖûÁåcoý âéÆZ³Eâ>ýŠë<6%^™‰x †Ä%M45* b•ÄßÄþ48”¯³¿,2Ñ7°¿£I Ør†F«xÚ÷¨bE…Rí±kÀ³ìT¬÷‹€ (7üE¥@¤Ã ü¨e{µ<šð‡:æŠ<ÉfB䔨µ{ZÝ.[EÙ—o·tðÌ + Â÷ߎçx¿Zôr ¯'t5hÎn—E3\œ°N'¥°ÒŽ ƒ<ÌõpH¨ƒ©²+‚21'xu4(“È[#ÿ Ž!8ú‘½DYÍ 9<±\¼¢06ÖÓ;Û¼ScÝëEpÜ‚Aaooø†îZÔBÛ¦y¯¶±ƒ@ÞîJ€0;òý‡CyX2àè¯EzwÇ_pŽh³F©é1z ¤ –¶o¸H÷XÚÃbÁ¾doŒwý­B˜6 ›0VôÓfÜàÅNÅÉÕ«E8rz¼_gKë>ñ‹dfRtÅìol1\%FªÞ¿.€·yœdörRà»pìëèR¿Ÿ2Cø??O‹ÝyýÉç‚´åçÅ^$„ –vnyR¤sµ®òÁ'£W~•ëiÒ†~'ã&™š DRS|°Em{B#È´õNT âÁUÀBXïQì3Z^ž‡-»Ž³Bí¢c—Üóîn£‰ýÌ„“·tÃ# x~×Ð=‘RÔ570¨¥@;cãYÏk?¶{ô§|‹…•G™ Ò8Sk+ÿÆ¡wÇõ±"£ƒ<æÂxÄ1‹š)h‘¨P€3éå(´!¨`"…ü‘ja”4cJ qQ“ aÏŽ«ÿ ¹`òY ¯Š¥ß6v½'¼ »ú(Ãï·¡«1¥‰¸ä+²û;­ CI äÉ×ÕV¦\üôe¢}”éA û·±4Èh‰^è”7À²oÇÊÍd'q^Å6VvNâìÊÇuÌ÷M‹#)h,ØÔÞxçK:œ* }¶î®·Úz!H%fR;l[ˆzœ© c‰·_<¯+…D¸šè™C žiç !yè1øŒÐOf&åJˆ§’¦§&ÈtþðöàßAKH‡´’˜¹÷]R¾U´ Do’[Í¡>z·Aâ>ÖVÛ)2m_}Ü—\âuø­À>çZj;<§œ ²…ÞUŠÌV‹‚S9'i4Q ©õv¡"ÓÏU<_‚iåb.J¢#»3IT; Fª“ Ìs3;ú¡+n3¾4¡7a! “q+6°œÒ/WYm‚êìy¬·ì–J2ªÑDT=µeÂÀ7”áÙ{coSÀ8à(Ä<Ÿt‘×PTØ1Ó*‡B›#,ƽko²!»r9Ë¥h|KH” zcݸ ›t²Hò`†ƒ”r>£e «ÞOÚ¤PáYmïA,ˆ/¼Z.Ë p§¡ ãp•CÒEÔfYÆOV x…´Ñ Õ!|äæý¹ËÍÖàœHNÒØ#ÛG0Ø_Y ÞY?&tùV´÷$9ëpCˆ ×IÒ‚j˱¶ÃèˆGpw %D7Àép¡Y dp4S¦i)UAãáì0B=ç¶õhûyõíÜNÇA’äÉ7¨5¦A¦«Z£ä$^«@ç°ùZs}mÕ `„g û#EŒMˆÃ%Ù'K™E ê>ÇÑa‚cE™3°%JÙ¤_n°¼ z¼ÎI‚íz‘X›QÓr\ B`µ¥_a;¡ƒÆ¸ˆås°ŠÏ¹eº ‡%¾k¶”ßÚž*Ÿ$pÏMqd?;·cSa‘’¶ç†ÚVO\ë_K)‘‚c’ÌAH ÔqÓ¶*I‘¸rà¤Ð àF°þ¾8!ÒTùZ™Ü`¯7*`H}~O•¹¬3Qw½‡Ž]$niT® &—Þ2›Ë.Ùª®ÅS¸ü’z=ü÷„ ;Õ¥0(¿pýrwô7ZÉ–Fp\è‘ E~äðÈE6,·b©XËë„—\Q$Õbp5– ÞÇù?cÄŸaÒªtçÎì}™‘Èäíà÷GÁ„‚ªçká¤ù7ª¤ÇÅàþ ï4,"¡­Â?aÊP® ǬÊ䬑…0V/$â*qÆ9§)?#¸BúÂÑ¿_¨›Š:ÑióP Á!Ðô>j¢:< ªí„ºó2R—3Ó[u}mØekŸÚ’sP_W' °ü9îD#|MÍ‚+õøÒXÃÂ|ÿÜÖ5Ã*bU#øìˆT8˜ëË% T´u96£RÀµí—ÝZÚþû•òÆØ[Ï?¡ÔšQ˜\Ñ7ÿ½)®Ù ]¯¶hèsJ”A”Â!€ÙßVçdš+nRNéÜ”ãÅñ¢ô‰¼gþõh›­¯1Æ?òIfªn`š­ä`Ïl-ÒÑÞo†§­ÇaN£uPßϾõÞos +ªÿý2ßÔ’÷Áog]çsˆJ–`÷‡pŠ /ÊŸM“š–wæP~ ¼’½Rº[ÉæwþÔ'guÍyJ]ÙJ»©‰S:dÐF¤æ7«²‰i©ùKÉóȤ̬ôÓG‹žÇ©3C7Pºiu×jÆ›ú½¦ÏŠÐ“¨CÆÞ.¾K9¦Ï.zŸ¾ w,ûm‘ËøD®‰ÙÞ©±R¦jR³A UVÆI9Œ¢ [>Xé?a™¯¬7Aئ³\˜Ÿ¸n{'èùxeÑÈu®xÌ©ÂÖÎkÛÂü5W˸VœåX߃gœ¿RfGŸÕ3.âÝûÍjD ³1˜ ¿2¾PfÄêl˜Œ>ù‚öÇHTõv”TVsíí4Nøÿ&“?ÌÍÂe!Qbì$Y•Nr¸4<…²z´Á­b¾rÀ ÿ…Ò?XõºÎ.s½¥ÿ[û‚ŒC6¯×vÛŸGbÜó0{üªK›¯ü «ÚŒÀXÙv“’ŠÏ'— Xþh}Û¢š#NÉõ†‹äx&{°%ö$ÖË(l0O@Ôõr9ýôjà³{ŸdÀ~f IÜqLE$ÏFò,ÛÇà|ÆHUŠÜg\0|”²µ”–ÃU½Š?Ñ3}¾‘L-|É[gò]ƒ¦Å×ßâ³pq©WaᢶæÛãÚËHvãÊ5ÿß\üÆ”ÝHÞ‰åD©2®Î Í¥dL¬º~àhSé(€l0† CDqÑŽ ~÷ÃËwÿì\Ôendstream endobj 54 0 obj << /Type /Page /Contents 55 0 R /Resources 53 0 R /MediaBox [0 0 612 792] /Parent 59 0 R >> endobj 53 0 obj << /Font << /F60 31 0 R /F18 12 0 R /F21 49 0 R /F43 52 0 R /F17 6 0 R /F66 58 0 R >> /ProcSet [ /PDF /Text ] >> endobj 62 0 obj << /Length 3378 /Filter /FlateDecode >> stream xÚµZKä¶¾ûW r‰˜‘%QO9ØI l#—œ ›ƒFÒL£nµ%õì®}ê«*RR66øÒ¢Èb©HV}õ`ÿøÍ·?äÑ]\„Iœ¥wÏwErWDe¥iy÷Øþ;HÂC$‡‡8N²à/Ô>vÍÁÄÁ«¥öùåð`Š,ø¾¦—¾>7Ýá?ÿö‡¸¼‹ã°Ê²,£»‡$“R9>;š•ÁË@³ê^^Ð~–橞é¥9PóhùÔ²“<çÏÖÚê‰>øJ¤Ê´e¦ÍQçè·†³~…˜€¿¼|:¨Ø×¾•ž±›®½Ž>:a?°q¦i&@â¥q\X ý/ž¤mæþ‹ ?©œ¼¯‡¤ÒVF?FYTŸÛ5§ašì“ÌN‚‚žÛádéZ"Ž…’Y|>ÈâˆÛ÷žñ‰9<<äUütìΈWÙIûå fáÖôÃÔÝSÛ˜ Ý ‘¾î-~ÆécBoϯh¹lÄ|p›ÚñljF‰“`ÆiŸ:‘QÆÞYԣŗžze*[‚ î3—±›±J7¿ùIÐ ò†Á¡Ÿ°Œ¬ >­(žÌ>Õ²óÓ"ÏΚ.5˜Ô'úÍ~0Q<ãIZóÆ&}ò>*üÃá¡ Þﻦ¾NÝòù…®¢Oª!P?C"ÐRSY…­|ÐÉÖ“ÁyP'A}Ä¿•^¬=‚i¾ãæRµ;g:cœ¢Éb5ë/BÁªr=áWd”št£?Ä_ù6…s;í©vSCÑy‡jŠÒ‹CTí 0¥v÷°1‰·b1/Ìõk§öVAÈzCOÒá³Îµú<Ú—£HJÃv"Ìc ÚKä°)¿9šz;_¬p ©ˆú Äc(€¼ˆIg8Èàýø“~¡óJŸNµ•V7»¤‹v7”6l™"~¢’í ñæû8©r‡59Þe¹†k~om c8Ól›Iú˜þ¸$\e¹Z&½¸”F" S§4¬ãôä/ôÒ¾qßú:Fò$^#9ùî0ÎËD¡üŸ{hGaže±’‹µB&ÁBIJ²RJЋZ£,åÒ¡)“”í>OݺÄÒgÍ.9]eЊ2{1Frëp'uvÛ2霩ŠüóR0«*Àpn¯ Ã…ØG|wæ&7åÌCúë癵²È‚ZÎ\B8j á·– hÊitN_‘w’‚²Ô± b º9;ƒ¼ôÖN\/«‰ƒÅbg5Frýäåêj&VÔ$›·3;0ôqF´V€“Œš÷Œæ‚†Õ Aõî°$kÇ0OçHÐV{óÉyØŠhù—eîq cÑcÂ;¥½äX<²Kç4p^E­îóEp žÙŒôk7É6õ^rE‘—ç¼<ì-U5Dhä(ˆãMi–XQRB:]Ú^OM‰{k›Yð:ÏLOPŒ~òÖÜ_Å‹' ®¡^å‹qP㟖P¿3ª‹½ß…`I¤'B†|d“K XÐwS@×óõܨû«{íÄâìÜÎÒë™4>{ÓÎñØuªU{–/è^NrzPJFÅÐ âUè²¹"Ù²s‘@è,M­f¶ñ6Z2Q!€»!¹9²È¹s>/¼Jd5EÌ¢aµ\èWÅt²ŸçBÞÖzhªl¡œòòLŒ†§( ¹wE²€Åe&æÖ'"L|xB;ëS'úè“ÚK6+ï7Rš)±]’‹Üoyq®ºÎò‰ì€Å¦¸F†ê$KßÕÖ¸Ø*C׳E ''ú—œœFÚ®ï<_‰ÒÅšˆP ÓÙÿ­‹f4*†öÂ@˜SÌe%&r—ºr"µ§kŽÉ§wΘÒŠw|–°º`pÖl¶k·»\D‘¶Ñ7G¢¸ZxšºQÐÍåD_/.²gÈ—³ámFbl±é¤˜à&¢«G-ƒŽ“Lûd§£´¯2\XP×ißQ”\O—%CCŸ=ýEÅ‚I™$×:Ûª,»!É×k‡'-K¡új<ÌUüRÓYTËRõ×ß”RÜt3úÞÿÒ*R‡ªT\<€/^nIlog…š”ÝuíXòÆZ7UsôÕÅõŠÇƒdͬóUõRÊUk¢rͲWkX=ÔzÀÑ?¤q|P«C–%²Z³ì,õ6"æ“.}Àåeï³/×¾…ÁÏÀ½vÜ¿6»Œs¶éŽì/6ê†Ü‚zÊhËŒí~Z‡eâKv™¿ÃÕÇã#ÖçsÔ‡$‚øNd”—î3£Á¥gô ~v0¦ι -á-2•¯Uë¼ÙéÑÌ«KÛhh‰u&鸒Wte7·‚›rû:¸ßu¬¬ÜÊÿ%$©¹+ªˆbPäaQÑv=Äô4F"õ½M$_^ÆænE†}Dî ¼_€nt9§&)âí.%jÆÊlÉKµ¬.kF‡¬YÀ“y­®ë4¿]bR Õró»­1þúÕvý¥ì½¬¨u–‡tvÕÎÝ'ÔÂß|ã…í0[JGŒÁë;BÆÙIJ‘Û"WêÖJFDðƒV Âꋵv}e³°4yù»kŠˆøìcƒÂ °[‡Ã÷{;âÆINj^mCøqË<þuiiUx/d–x¬alšæašW7…«Ÿ€Ђ< Zuè¹qw§Ôz³ˆ%ó„΀ëú„Ä ï2®i"šJx{}L#¼¨ÿì¥Ï_sQSé|½\øIò›ãæø…b€IüR[þwËï×™îN ³‰-äfDä¿h»í¦Æ Û' ˜[ÒЭ_.âMã4ø‡Ä`9ªÇîß I»8.Ë­i°h\ÅÌKä¬m1•AR6þ†3(lž¿A¥@ƒ]g¶¹òËœÿC›~òÿ-ñÙ)‚¬Ö¾Ùöêšwʉ¬ŒK¿b$Ue.ÿqÒ¼÷òø{ïSk»›ßÅQANÂç¬_5áJ"ùNîVdk TÆÙæãEgqâ]l©ˆÅMV]æEAü£Dø>í­„ä3EV~zº_¤ä·R²H\D€Ú93aVUñï!òÿ¡Yþ¥!ÿyŠŠM¡ì¶´ÂÞE#‰<̹paH–TE-0øÍß¿ù/åu«âendstream endobj 61 0 obj << /Type /Page /Contents 62 0 R /Resources 60 0 R /MediaBox [0 0 612 792] /Parent 59 0 R >> endobj 60 0 obj << /Font << /F60 31 0 R /F18 12 0 R /F17 6 0 R /F21 49 0 R /F66 58 0 R /F43 52 0 R /F45 24 0 R /F27 65 0 R >> /ProcSet [ /PDF /Text ] >> endobj 68 0 obj << /Length 2552 /Filter /FlateDecode >> stream xÚ­YK㸾ϯðQ LkE‘’¨C ‹L‚E€Œ/‹ll›n ÑëÇôö¿O½HÉnM.›K›,‘ÅbÕW/öŸŸ~øIÙƒRi]ùáx9Tù¡ÊlšcÇó¿’ù꟞µÑÉÙßžžó*ñýÙ÷O0˜™þí©(7>©¤q/­,¾ #òdé›ùéßÇ¿ýðS®¶Ç¨Ò¤¹ÊÌ!£S^s/ HQgVV,pìÈÌg8+HuÆôÓ¼¸6|‚ynæfèY˜7Ü¥”Õï •«2ÍuYË‘G^cô¡Jë*S¸¤Lm©Ï*­j­¿/z•fÚT‡Í²?Y‘déÓ³±&9† 4ý328<›,OÖ˜›Ô˜‚Õ?¹î†JÍA|‡ýö”ÛÄî•.tÐÇèñêsí‚«ý¯™Òx] dSÀÎÙŸyÒ€®¾5çyµ³>¹>n‘Ñ üØD /h ×ôÌDÃWøøÎc‡ão(’G•»×¦¥»f÷wœ¯ WÙäÜ Ð~ôýÉ3eØò ‰×Ê×—É @°2š{Ú›ÍR]Tö­Jµ2¹¬ Œ"@ÓóïÅv\ÚÔªªüã)Ó*CÖwÉ«*QU'?“H ªíÆ¢HËÌÐþìžÊ2™O×/óÞ)°8+ê  ×"Œ†±Aø\;±Âèg°(£Rƒêª\é`±ZöLV®2Y.ŠA`ž>à æz¡ŸÐ|×¢iòLŸHèay!šŸ™ûpa:âçcA¸ˆ ¿ çòð2KžÒI†A|Üh™öJø³ÜDd‘h£t_&~š›Î!/D4‘Ø¥`ðã“Í“ã‘'Œë’ùÒÙ®ÁS¯$ ú£JÞpìÆ3YÙ&_.¼eè…ážöT"Œ‘pÃ's NÄdOpÿS:ºsы䭙¯{Wm·RÉ$!¸€¦òšM’×lúðÎó %j޹HX%ª3LL]=D¬šøØdéò²Úu$»ø{oLùøkVdæõ\ç_ñªäÐ K«cO€G’ƒ4@º˜&ŒÚ6áôf“i¦È6;œV$ôCZàdÃei[=Ú€$W V]h ³¸Lò®MnŽpÓy:ª9!µf½»ö•£itΰ1:™å°®Þ]”ý™t¾Ld‡"‰F§ Ú1ô΄wÄd-0ó쫼ç6â²RÀr^8Ç"PñfüFµÐÿ¾Dèp>C²6 e~§”tbCp9ͲlØwèûƭ‰á w»¡4Ãml8f¤{¶FÓ}mº†ÌLñ¦–KýñBx]£2N‰ø5äIŒDˆ ÅÉÂÚ9ól–%käðÌMª'J^‹œ0P4ö"Äo‹‹h‡ZÆo]xØÄï›òU?3‡¨úk£’ {E†)LBèZ‹ \íÅ.¼&$ürº„´(NÙ@øå(Ê"0ØIã-àc™£|½,îEÒÚkEShdÊÃ,¦ÆˆÎ¡þ¶Äˆ6ƒÌ|ü úÖEIú¶XqúI¶wn³’•ízQ’>싨Èpã`Œ‘ø?Âcû:®š†Îïùñc–ÓÀIR#;'UEèÝì!’^Ï)…L<@UiQ@qq§].^3“4hcN„Tc)¦_œÌaa"¾å99V)`r&ÛcùLÃÖ»I†d2èÀ1.Ú`Â< ƒúá‹×KŠÏÕxÇÊF±¨ÚÙ½mCgjäUèÑJ³G+QÁÚP”å¶ÚªË´,¡ÈÖVÊhpzG e‘éL²ñHB*N†‚v¿TiÛ6]Þ†¥=ËN÷!ºn §#vBç-/pƒŒˆ?gþÀà »YïïŽ!Æ !ªÚ ‚"ûÀ >„ †o^„øŸ4e°´}ç|±žå¾Sªæ9¶6 …-ص‚Žãxe·Ç!nI!¯1ÝOCa )Ä~wBp\™ÈÈaÕ564ø MÉàs<ÿÎÅ05Í¢iÖòÛ¤ìA~hFçwIß‹î9£:áÕ õ$ÍœXŽ“{G•Q+¥6o£?7§8åØ €šxN…³V+¶Í;rä¶9CBŠjÔº”v^‡8©ËMyÅB”O¡žüÐ…U6­•ú¿t׺ÎËm«4Á¡«vQ ~°ü0€¤ºè]îƒL”\mà_,"1†”:ù±g’k kn¸•pQëT•EñRæÖÚ"E8!O›‚I(`Ê6Ô}ðÄùa‚à1b÷!#/Shõ½ªï•¨4ˆŸWB!ÆŽÓ6 ‡¾"C IËêCîÝ&¾L,HŠum¬;Á*ìSºN+eÕ½Æ>4gJŽÿm¥¸oRŸ¢ãë9Ç–“'ÒE†’‚ÓÓÄß¹µßÓYQƒ»çù‡§…›éÇÇ“ë$£´Jð*ëœÓ(ˆN7ÒÉkÃeWÏ‚ò«Žìë0[ÑðYtZ™´¶åCœbO-ë¤k&V•.-å”`µ=¶Š¯r¿ìê ª•%äßW‚NµUú°Y†6̤ÝaÑb9cÊ£ä¼0 U"Žå"öLüeƒ`Ax[¹Zˆ, \cP.F´±_CäÏŒ~ðk ªa·üïÐ ÷Ôÿ‘¼ïL~x˜J!ônû õõ)ƒo1‡®€bK ~C$ŒáãÌüvà ¬}k¨¼Fޤ_òX~ݼÊíÅÿvˆÅ•t°Õ]ZèO![ =Ô|œ¤Ó`åÞ›¯kãj©³ð Žg&³nŒ\ÐË .‹56NînA;ZnGå¬Òþt'æÎe{jË@´iZº?ZàœžÂr|½q±õ577:ò$È /3dª¼Aéè¹Áì­,‘s»öß{fi¸Hõ­ìØ‹Á@çGòÆàã1¶Ttà`¯o  öÞŸ=½NA&üê¥@Å>óàKçþœìó÷¯}G)äaŠq Ç@U òPa`2„ @AŽŸ—Û)]»‘‡òü\gávHý  <—iÅvÅUœ’‡n\âÚiàÑÚš(AB QJÇÎDmþãÝ”^kè©ø¬ðyE¿Ñ /C+~Æ1 Ï•W´µy¸ç‡Çmq}¨)x¾)mqzï&HYO&¢¬£vËÊs)81¹6NHk¶zlX1‹©JšAÜsf¯P ÏÚZF‡Ç^öœòC_ N^R±E”‚'k”âÔ&9úWبŸxÉ(»9&â(_@;z7¦T¾ðcXÅeòê\|æ„Ù´[ÿaî»~9Žÿw`6¡A±ãžÓæ]û„O£æÄÕæÐ3ðs­Ò¬ÂŒ”›2ͲÊÐ>‹?ýåøé¿‘Ìendstream endobj 67 0 obj << /Type /Page /Contents 68 0 R /Resources 66 0 R /MediaBox [0 0 612 792] /Parent 59 0 R >> endobj 66 0 obj << /Font << /F18 12 0 R /F21 49 0 R /F43 52 0 R /F17 6 0 R /F66 58 0 R >> /ProcSet [ /PDF /Text ] >> endobj 71 0 obj << /Length 2115 /Filter /FlateDecode >> stream xÚ­X[oÛF~ׯÐ[)l4æÜÉ`·@{‹MÒÄ*R í-ÑITx±¬>ìoßsR”K^`Ĝ˙sùæÜF?.&ÿvñTá/§‹Û©WS§¡öÓÅê÷èÕ:Û7³¹Œòj6×ÞEzöçâÍ4žÎM*©QýZÏ€ɪïðo´&ú Çm±Êqj#âSòø-Ž38E‹Ë™–Ñúuƒ¼I#é…’Ö F ÊIá]bH”pHÂ!©lô Œ+Òn_!cà”×u«»;–s“,È̤¢u»½$Æ:$©Tx/}' 8Kþ~h‹^ß/läû{œä¤Æ=#‚üÀd2•R¤Öö”Î¥$`±F`”¶D±ãɲ„Év›íVAG=d!c'œ5x! : VzhhóGlcø/ǤÛT(—šp²Øî7ù6ßÍ@dƒ÷¥\Ôœ)laH`Ñ.A ß%¸j«¼lŒ¶Ñ|ê`—WÙ†ÔGæŽÌx©¨ñðË1ËæÒY‘*HF˜8Ü÷÷³¹•&Úâµ—-;Œ•6ú' ça/k`²\#ˆ8Bš •ÉNôÿaÚöþƒ7pE½à¥Èxò¯Àýkaã)hãNgK:Öy•Ù¨pœ¯`¨ãSm…•qwÓˆœN“ ¤k‚ñªà+BiÊ-~ÚŽ¬ê"’øw›ÜÔÚ(« ܺÙ` \w<¡a|§ÍÃ( µ±5>Ð<áÁJ w2ëA=ƒQ°íÚWù¼©rºñs£–œ]Ð+0C͵õB{éÀ±àjŒMˆ×Ðô&¯_pRË6è²ÎFå-~Ü`€–§H]å<^–'¯.vùŠW)z]B0è] ÙÞVÙvÔ!T 1Ý…óÀ×F]‰TÊŽ¢ÏZ-Ðð^l¾‡ õ‡«:°Îv£EFWŽ‹(%¥PF ³.ü{18ILq07Ð)Tqâ£Í;ÅŽndÓ®#^Íh.‰Jü3!0JÄ'÷¹-+ænåµÉwE΃*7mà báÂ.¿Gê<nkNi·ŽA¶?S5õ€¿ïT}›ÍðÆ—}áz”oH´Oq@6à–6ß s)°PçÎÆ·{W[Ô¯Ý Dä erξxð¼Êƒ§ŸÜsÄ0å¡,)cžm˜”²C¡„[>çËàjKˆ¦|4ô]*¬íÝw˜ÒÇ|=Þ¦þÜ×ß…8¡KaÎ5T0|›=Þ:Ñsñ|§$–º2Ô¨<ø N2þ|m9ø¿’Åtä2‡ìnyØ‹ƒZØnšz´°=*#m¼¡b1Ò‹¨Ð‹\áä!ƒ:N&Ôßì8žÅ,á UÆjzJûìöŒØí£† @lj^¡¾)ñÔá“gž–‰þˆ¥A1^xöÞ:Ì6H­IÛ7x,«‚:ìÎÊu剈BŽø ß`‹Ôsæ>á-θz(Ùu¸CÇúþ¼AàÃddÛYH‹ãåÌÚô\§÷-$•¡Åyr*¸Yç 0Àq·[ooú-¼,5è pü£7©ÈŠuq¸€]œŒîhyËKÙŽì8þE±° wüý9ë $Îh7öPi]×¼³qßtÞ—ù:ÿ\„6¼_ý„Þˆ¢×è7aHXLÓ4@*Fs1¤,h¿ŸŸ‹•êwȶu(þ,!Íøpµ‹rßù%”UqGUŸ:\XXQô È.t R”‹Õ£Uuzê´—¢ãÎûSÈqÈ´(ùVxóºÝÃK{ÂE ¡ZÔŸ8¤aé /\æÔîBÐÁFÇ÷ßwן¸„ã£V±c|GŽriB0=©¹,·ó±HÙS®äFŸrðž¼§·Ä}Ëæi ¼ç0칸5¬2,_·ö#Ów¨Áðõô§/»l[,kž¡¿\¿F5.ÏÉÄS¨ã>¦/\°Ð‰3SȽ:¼9Fƒ8 8&ž?à@‹Ð#¡Ý÷H¸Êý$òÄ màyÉoBÑ6ÃVÑpÄã 8)OÔ¦Xû p °Cßi8òieùÚiŒü;r‡-P$=R´FùÌWÊY™¦~ZGjIŽSmø ÝpþËÅêY²z!hõÊëäÜ©  8ó½³jË0蜌E•tWC`'æOÙ¥KI•4.êݤ;qº/mŸÄJùD¤iU82Va¬íšÁª™yÊ$Ê¢â Â{9¸ìoh!¥:î¹(¸Ë15 ¹¸Ïƒ5ªlIzO®´šü-HÂõ¶š.·“¯“ßÿŒ§«I<}3Õ Ù&±iª¦Û‰L< áPXÙL®'zfsñÇ'?… Þ6˜Æi3•бÀy? ÅdšŠÔ)G/ K!©â;ÒvH} ïªçO –^ðy;dàœˆÓþ‡ 8¬n“-MñɳBÏÆv)ÃîºéЦ‰mÔvÍø#Y¦zw ãO¯¼y 0¤Qxú@+e ÅÌëçÀ à$IòÈ=Çù%A}fšV"‘äDŠPüxõÃ,å(|)¿-Ø 4ïþÞv­›a°ºÆúÿgEÇðÛF@"…Óäß#^½·øˆ—ôtýùš¬YØ3ù¼|@bà•[ޏ5™ÃþåÅÅáp\Ó7OÔ¸ÞPŠš0¸åÄ”‚¼ YKÉ>ÂtüwÏò›¤‹Ö ]V±«ÐOdb´øH‘$px®!H°Ç“iwÿöE|endstream endobj 70 0 obj << /Type /Page /Contents 71 0 R /Resources 69 0 R /MediaBox [0 0 612 792] /Parent 59 0 R >> endobj 69 0 obj << /Font << /F60 31 0 R /F18 12 0 R /F63 34 0 R /F17 6 0 R /F40 18 0 R /F7 74 0 R /F8 15 0 R /F58 21 0 R /F45 24 0 R >> /ProcSet [ /PDF /Text ] >> endobj 77 0 obj << /Length 2900 /Filter /FlateDecode >> stream xÚµYK㸾ϯhÌI´¹$%R6Éa] ö’i$‡l²-·µ#É^=¦»/ûÛS/Ê’[ži,,¾YU¬ÇWä¾ûÉdwƨÜ9{÷x¸Kí]ª3¥“$»{Üÿ;úE;}ÿŸÇ¿÷“çã…øNÓ m}o¢bŸyìrÍ8Q>62öùXíîmï7±M¢ªçoùÛXÀüškà ¿qddпÛÇÐôÏÜT´{.hžqŽ0¤¼ß˜¨ƒÂ3ª¾ü~[ÃO(;V0¡?#+í‰VifóÿǪ?mµ{Àmî6±±Êæ¹»Û˜D%‰cÉ3gÚgZ#ge÷ ¼À‘ä^û¨)ºj@‚kÚVG$FÛ›‡gR£tæa¥AŠ;WUÂß~•ùXi;™!ÛÏe  ˶ÉZIð52èÀ_ w­Ê½,¦¹ØœÜŒÛcõtd‰Y”I²|)±ž‰ýàsÂí=pS>á>e‰ÕÛ"I½Ê³Ä í å€ÂxBZ`òšHre›‹$Õ ‘x |Q$BÉÃk’‡yÀ·=Mô±²šæ¡oŽ>Åé&ÊÓ„teX½$±¶UûÔ³¨ŒõÊäyD•¿ß¬;l±Â»“Öi*…,›ºÈä8ÇA„ÝSu°>ñ8˜@tSIu®¼÷ ZÜmZ²·´á >.4EÕré4äJ€8<ë¦dê¾Ü;˜×UHä¶.'¦R¨gÂÉK kä½ϾŊM­2.q ^²÷ÉUÉ‚z>l“x §êÑw(“&) ²cèßrþŒuÑXy)vꎋ~/±Aîc‹^ŠÀÅ 5, (÷ž•æÅ'.ê«æ\—ýÀµ/÷6»xÜžìeÚr7\$G3°} à Q<'t–HP f ;…Ö¡äámõÛX¾]¥ìE<~p2~6„œòÞiOÇU§ÊÄ:x¡#õÊ=o5¶ÕÀT‚Õ®l”æ*Ïm˜z;ÕkûlçÀüÒ¥Ç:³«êû ”CÅîÔ"g¨ù0k‰Œž»Ÿ«áÈ%jðP¿rge‘¾h¤Ä ]¥ÌÅ¢–å‡ã´7n-6€á ÊþûÁTº†&öãÈ¢Åe:ùžOUgášÇàm†’”¹‚‘Uf–Ã|äÕhgYÌî¤æ",’ù:Ä¡)[TKÙƒ=A63xr‡ÅÍŒÇ]0é ö•BªH•ˆ ®¬‘†5yqˆ}³”›œª9J6KÂNH(¬ÕÃ$36¢-ЭŽKYE©1`•tá<óTeqð#?÷ÞƒÉÿ6¬é¦âÜÛǾ ÞàÊ‹?Ö.øÙ­PâLý…?±ã…Ðàðqm»Mº ýý‘Ž`sd½‚æ¾ÚÏv»ã¡)pÜ¥qú²‚ P†í^Ps ž ü®¢ÔÜ;ÁB®]aejã ‰%¢`([®],*€5ØÿLÀ!*ºß<‰@=B¢Vã"öt~üA~à¢Zž\ = ­¯ù…˜ÐÀqº\Œð¨iQT3d>¢#À EBø.%Ž¢H…}Õ³çǃގ“ëÄ>T’®˜ë4£w)ÚÙ^´Ð\âØ3icn±)šŽÑ‡¬£ßÌqï‘h/T»EJ- бbJ™ˆ ±mÍ“ŸÈŽç^Ɔeiƒ„®"‡Ò]Ö“®3áï“ o VÔ@›èŸ÷­;ÜVZI Äþ§ÃG¢zN@I/›õœ¡|©zðÛ9yAe¤ý€YX  —Äyi;’Ì^ºÄXcC¶ -=`a« CÑîdf.Ø~ì¤ù’¸à”×lpÓ(Ì“ù–Äq/l9¥Må*ýP5pAG˜ §â i´V©ŽßÓÕåÀW— ×Õû*‡Å4\¨CÕãóÈIãû’4Z ’ž„a„V–ÐßIfÿô®³Î9e¯ó¾ŸrVyo®€Ù¬&VÞ½7©qÊ'S–q3©’æ±ýfRƒ1yÜî(f³-˜h5»‘H™Mé s™ç*1— Ë?„½ú]Wè,pX 깅àŒ÷Ú· ˜¦Ü¯B±7Œßd¹Vzºÿ£x /¦cÐÑÿ'£f¼ÐKxŒ›Ý‹1tÛ-Úæ—vÑÞ ÝÚŤà©ü>û ¾#ÇÎøŽe ¥ûéÙx}$·…×–|VHI¿ÄtW7RZæÂd?¸ç?»‰­fSnQpä OˆçÛsÍËð7—8 i¾W²Ëw-ï(&(‚ÛC1Ö÷^á)ÐûŽ;8qÊ.xav+%Ûm‹ž³0M "3ºz/Á/œš²à€Ò-¾J®@5ˆááÀ¹ówLqTN°=?Eph .Šõé‰U) ÛñV]Éâh úS>l¢ø@hz© &ÂST9¯^ωÈpètJ1y#¾%ôt7–N—½ØWœÏtK‰í/ŸúõÊò·f8à bzŠqt‘t;÷ë`óHïCϞդʹ«w OoÑg1Á»Äà³YÈ Bv† lÜ—‰+L¡óŸ‰ ÕÆL”Èç“óǵ-˜5Ì …=õ º|BkŒ_Ãyªlœ|3T¶÷áªìo^ˆåqìÃ=ào¦o‹®Èd’•Ñ*eP¶zйs7ȪüÍ×; ÓIªùBá 8½¡â1ŽXI¢Åkc_rãÀ/ÞMD·«PÆeʦ־Ìx¥sˆíK>Õ= xŠ~³XsH@µåG·ày¤mM7«ñÛÖÃåÉ5öÙÕ[œ€AÙq‘-?™ÙWÞÞk%~%AM9÷– 39€û–§U²ê¹.v<öm$³œžPNܵþP!ÁÙ)y"6öûÕ\¤`ïtõ<(~êpVx€á´yΣÀ liá¯rlÜXA:¿#?0!¾[á‹{›ò­Ó”ÇêLÑI·6S_š2­\’xbÀÐÃä‡?ü2‚mendstream endobj 76 0 obj << /Type /Page /Contents 77 0 R /Resources 75 0 R /MediaBox [0 0 612 792] /Parent 59 0 R >> endobj 75 0 obj << /Font << /F18 12 0 R /F63 34 0 R /F60 31 0 R /F66 58 0 R /F17 6 0 R >> /ProcSet [ /PDF /Text ] >> endobj 80 0 obj << /Length 2918 /Filter /FlateDecode >> stream xÚÍYKܸ¾ûW |R#3Z‘¢(ip€8Þ’ŒrˆsàHšíª¥†{ùí©õèV;Þä’‹D–ø(ëñUéO÷¯¾{g£¥ÂÄ*xš :$ôüù¯nÄ^_ŸëöéðÏû¿{§²õîÑÍÖ¡²6§Íq Z^Û4h«–Ö). Ï®gòÑT0øV%â@Œ5U1HÈ‚=W¼¥Vë-Už„‘† #Ú²ßc+ Ó<72âc”Deõè¦}£ ¯xWf¬¢Í…é¢k¶ï»Æ³‹³˜Ý LÄvw iaŸ¾¹y(Ÿ¢nËúÐêrr 2 âŠâ0Ó6¾¹S&4&á[«[yã3Œ®¤ÝWnÓÎÐh¦’¤›VCY¯¬é 2Ù—UÉÔiàá¸áJæÀàJž1ðªµò-k\¶€‡C†Ê½+0i¨ 4yFwÂÅë®EáƒV&é—×ø&<$¦ØªÐXk·b*»“f3ÛÐtøÊñx#­-*&+7L½Œ§£Ÿø¾‹úc¤ †= _xÔ¸|m²P«7ÇÇ9伨öΟÄaj¢üüü¼¨¤WÐÌ7ðjº§‡yåd´KåE©0ËRµ ÝÖ¯‚ݺCýG´=lT®@mzæ)˜W ’iS‹‡¹CÒÆ†[hNæâqŽ4ó(6^êѯû,Ó:Ö4Ù|ñ“ÎW€_ü]»£M˜Ç6yC4R¾Šlpçîæ9"(öQEw$ÔâýÛhíè\ÿtðN>¿šÔ4Þ[,×Ûà-@&Tk'€„£[{»8ÉAwª{9°D°-·ÆÎr"É’¾®.75’BD[EŸå¶bX‡4•›mG4 ‚†u*ñyHX{d² ôÙ“|¬~ ð4¬f‘`ðÍ^ƒf½W'ZÒ/6¡¸ka •¢•á«©‹ùR(ÎØ„C:§JÃîpsØ%àäÖœŒüz6;çÜnœ8ÇœœO¦sÑñÔTäg™#o4¦ÍJ7þ 6aœØL”ŒÔ‚ŠçÆ]O„:‹” Ç…‹_Qõ$ #›Ç^ÓQ¿),tÀS¢Lð†_¯Ñ÷TlöŽy½kqŽØBg#·Ù›8 îý5<‚z¡'Ba¼°ÂÂ=TŸñjPNÂDYBcÿÈ’eç2±%* þÍ;ùÆš„÷á}uÄZï–ñÿâ±DNáa˜ü»59áŽÐð åTlhx£ì/+zÐÞ(J~59xªnÙX”… aÓ³øILº5Ž/="²q+e½ë(¾/ã“à5ެ|ì¯(¾^îb‹Nï>bªô*H5R:è¬äDšÿ‰²BgàWÀµsˆÅ>: ïžØq0í©"ù©±ÉG[ ®¸‹ˆ)ÿVaÑŸx“'— +T±yš=jU~AI{ÖV|qŽTð•§0VÐQ˜dV‡NnÄ©Ò騯l˜¶vœLYã^줘¿"¤˜=?ô'vûТCá.+lÈá@Øq2ÖÉbŒ1ðp GzA!£›F¿t¿ðÝ`·Û ˆÇº­õ¯ˆIbB‹øz"@ Ã.EBŽØ›ÃÎ]šªà‡–©^>xv7Œ{ø’p©ÓX3Bx-kÐ e¢9HAÄÓ–vò9ôaû,þîapè{Q‚© …­9~Bð ‚“‘{·þDà¢g·àépèÁ_a3B¿Œ¾`v®è»aX&6lë÷¼@;!­îDF™ þ2-óÛ³³±¥~ð9  Þn:búbÈ·*ø˜çðˆ9mc: ’Û ÚÎS_¡•P{†xÐîæËáþ"3qàN§¾cw+P›¬Z_Ó|áQ—8¨®\ Ð ž’ZhuøŽ8QcDGw!c«ëDÍÂAŸ´!/üu>ÊvY"4tnÑCYFq8œ$p`Š£/“pL»9Æ1Ž_’$c%Œýì¹Ø;7ž1¶Æ[KØÆÈš•©a•™’_»q%ÐEB=2!R]YÖ]nQ³âíåZs‰õÈ >ÁÎsÕœ§fïàJÏ@ª÷«Dt«vÛ-x›3‹äAÅBzêkvŒ<®8¿ýÕôq¥ƒ„Èú= ]mvKR!ËÞCËlj?1ê;R\÷D‹£H(ÙZûW¨‡Ú z*×]uò͸8…DFÏ8Ö‹ç0Ž“02‰ùàX\òAT½ÙÇJEÀ‚ñA ’¹—çZôB¨Aà.ì,ÝžPt_X]ˆHS@R®¸éZ_ É•w‹Ñõ4牿Þø.W•»•ˆ8M¥sY·'ÃXz¥GÙªöž´”kn-óª#,%ŸÓf¹ (àæ‘t“À„êó´òkCÉ™||² ¹àÔrÛ5¥j-h²¬I†, ƒÆ„!£„aW”ÍCEv7[8W€kÙB†å¸Ø+!-% äà¿Øˆ§‘ò¥8øû!SžyÄ‚ÞŨý^qcåXZ‰sm¶ÂêY‹:ŸŽŸ[%¦Qnð¶~%涪±´CÍòã¸øGÈÍçz4ãx¹TÓ=QŽŠÍ„„>1n¦µjb$Ü»™èÿ%¯òVµNµJä 4§$Û¹žáš_˨~‹’Ü*!NG±Íý?§Q‰¤Qïy 96ª´RîDzñ-ùÓ»C¦yÄ[À¤mÂÅ›H€îÉõt²‰ØóTÎùE3Éà‘ŠÂy”ÒÿÄ1¹hÜ0PY°pc-JN+<»‘[ä‰úãàéÕÎ •0VËl·,tf‹çub0:çÂà¼ØkC L5¸F¾2Ò¿çÞ{×R6ƒsø‹YªƒFÇÁ[þH£‘¥Ï3Òã³a—«S+¬xý”“ó¹Z²äjXÿãŸðï½j2À/¡ÀŒ<ãsrIcÈyÛ4’Ä”‡ý´Á|Ïd)± ¾úóý«‡;endstream endobj 79 0 obj << /Type /Page /Contents 80 0 R /Resources 78 0 R /MediaBox [0 0 612 792] /Parent 59 0 R >> endobj 78 0 obj << /Font << /F60 31 0 R /F18 12 0 R /F21 49 0 R /F63 34 0 R /F17 6 0 R >> /ProcSet [ /PDF /Text ] >> endobj 83 0 obj << /Length 2785 /Filter /FlateDecode >> stream xÚÝYÉ’ÜÆ½ó+&xB‡§!v8d;DšRÐŽ¹Xs“t@5Ó0±t`á }»óeVaéÁ¦¾4jÍÊÊÊíe¿¹õÝ*½QÊ͢ȿ¹¸Iü›ÄK]/ Ó›ûò§îòƒrÊáp ”ïÊþ”7—ÚÌ?UãÙ¬œêZZM>?qÎf‹çüêEÞ4ÌFK½ÔùTÒ¹ô1v9i+ÍGC5âèχßîÿqãÝUè†a$׊®?vNù K4ZiÖh?VÃX²¬×½†ªk‰%cEÞJ#¯‡ÎP³ €HO4&Cð$¼p[øºàFÄÛw?ÆÁZät7JBŸx«¥&* Ø@’DÅ=%Û·/Gnè«ÀìÎGáK„FÉGÄÕ\Æ?ï±p ’ØÍ¨wsôIj^1±¿Ž‘ Æ¥­ÝD?#"ç{jͨœâL?Õhx!/ëÿµyÔÒþ“|è%è~Åfì„ÛæÅ‡Í๢Áá‚™v3Ñ€jßcÏ*3Ð¥b7Mãd«-ÄÀ"~d.·ìô:¡Ápg,º•^É×Ê¥óùÔcj™²YÚ =žùÀÕúÈy}€þcnúzyØØÛ<Êrƒ@¹*1¸ÐvÅ¿>ÿÆô£üÈù Ýê_Öã$rîrî²Óó¬["cñ}WűœðÑÀ¼'“ñžY©ç9ù„ùŽå?êA–‰Úybž°Œ‚lHFºùþê©°-22úZ¼C~K{,¨_àzýžÔùÌécÁ¾úã!Ûì+yK™p ™&­0ËÇ3t)TÎ-¦%˜zIYÈš:~W¤$XŸÛô9ÝÝ¢“äÆÔÕ2öÈ~qº&*ó5©Ö`éŸ^¬²³i\ÔKKÂ7€]-96&úœV÷2I×m¥UVÖsÆ9óN;ø^}7A³Ïfh9p2ø½:étìE9;İ`R“31.Å(œ2Ž–kjËÙLÐÂ"güñâ­Ã€G\Á—ÍI!Ú½Õf“*™gA&°™Ös¸¢ÃoÁo¸¡×ÃHfâÑÉËOÃ(Üòœ–ÅU9^Ã-,éZû5kxªÍà9ßÍY[ð@Ë5Õ€‰òi„ÉFöa(59,¶’´¹‘±…+Ñæ(²xÍÜ&Ο—)¨Š+±ó-»;9F"!ZƒÍ_ûªY¨4(É0+u‹$ 䯳hùãÙÜáÓÕ±£Þ3c£Ñ±u7]ŬǾ1DáRVÈåcG)môÚ¬¶¥f#ÚXêZú¥6ªÑ–ºµÔç§§ölØ<¾ˆ||6<Ö5Æ…r½‚g´ø-Ècadiœ-¨ì zYPBu%(0çÒOh+ލJ 4,CŒšÐ˜‹—¼Ÿk >`‘µ…¢rêõU)eØaÄ“J¯ÌG&EÏhæ‹®iVÅÝ\ª~›kï–ƒ§ËÅxˆÑ }бÖ#cûÄ‚ô~’ßoÒ³ù`øÂ‡ÈPµ”n—ZVõÝib™ÍwB“|ý@w]Wbr¿ðÂ.>bâä¹jž-àêúf3>E†Ëe÷nà2âS` A”®ÃÒ #µöf…¸bS¸ Sú8M$Á0_–ÑŸÆÙ‰5š - š³¨E/µpËk»ÈzÚ=Ã3…Ry£íŸ¥Ç.­‡Ú£WÚ” a³|rQè/ŽKL M-4h± íˆ:l-gfáù\ ‘ ‚aŠત4úþ€BͳTAÞîTS°ágľ2y½¶ .}Õ̰‰ ‹ìRøÔê‘SŠ[¡2W(p;õd9`ó„uP ´)õâÁl¤›H”²ò%ˆ$¾ëGžú&)Å ªr½Ð¿BÙ”Þ_lê~ì-•tVõˆÙ–2õRYB…‰ëÅIü_–%B7 “ìª,ú_*K®gÑWË@öºÙ-F¤±«üd.EYmRÉØ[ªÂVD˜QꦉwUüYÕ ¼ÈBÓgœû®§R+›‚â{>Ý0‹m©dS#à …Rmbþ0Äq{5/45«q†5[SöbQŒAçÄC ‡3V——ÁÂb ˜äí<œÏáî˜Dn ¢pëxvQvlQö·üÁ§Tà&Ê‹wa¶¼õKà:"Îâ$ü"¸VqæzIjÁu(ʵEÕ¡óýq…hÇ+H-nkYü‡€ÎoƒÔˆU²Ï¢jœñTékTÍÖ°þ{Žá´ºQêgÛÚ è]Tmÿ³Û@êhþÛŽÁžüm·†Ô_5Ë—ÿ‹U¤ÿQª›c»^–Š…)k_½»õfÞéendstream endobj 82 0 obj << /Type /Page /Contents 83 0 R /Resources 81 0 R /MediaBox [0 0 612 792] /Parent 84 0 R >> endobj 81 0 obj << /Font << /F18 12 0 R /F63 34 0 R /F60 31 0 R /F17 6 0 R >> /ProcSet [ /PDF /Text ] >> endobj 87 0 obj << /Length 2729 /Filter /FlateDecode >> stream xÚ­YIݸ¾ûW4|ÒüqÓ2A.¶3À‚F¹Ä9¨%u·b-/Zº§ç×§6jyV;#—÷È"Y,Öò±Šúx÷î?ÇÑJB­œ½¹{¸IôM¥admzsWþ30áIútVJ»à´ŸªâdTðµ†v÷x:›Äsè4yWT§Ýý…YÚÐØX#Ëèæ¬³0ITâ9ž%ý*a|;רeÎÈÓ{ÆN5 ýØÓ„ê…7PéRaæÜ²Ug´ÁÝ)UA:k“GÈð÷•I÷‹°€àâ`½ØfËU©(´©Ž=rgXÖ¶ð“ðóú%röÂ~æ ºêH¶4 ³Øy&ýÀBt(ÐÜVC]8HMa¶%îu52%ïÊCÙ,˜ÈY#l/ ¬é'øY¥Bqß”*‰BeéµT¸w~y:ãš›³U°‹Òææ Ö´Ö±G€Ä ®Ñ±ˆ ²†o˜ÝØ0ŽÌîýé3ÙtÂßÜ›¸WfošxÇlçIwØy:4h’…Q¤Íw칪k¿»ËÂÔEÞˆŸzÜ–¢ØÞ>{ýž•Ia‰Î®<óX0íB¥³äw ¶ß'ŽBcb¿²èÁ–å l¨Ógô4t'¤´U>΃ï¡ç>psɨ±F‡ôÁ3´ü¾«ªÛ-qÁ4TùT•ÜÉýær'7Ÿ†ž\œ|*u¡c»w)ò»~¾ \QÔ¸C”È@x˜›†I¨ œ;Ôt¸.oH54«Ì1rîŒìZâ‘*ª§i1>8éóÉ43 nðÐìfؤ£!t¬GCrÝ•ŒƒSÅïuŠŽóáÐh[87Ú›ðo-ç2¿÷÷#Ì„‰Nâˆ0øm¬°~FÝ]à®´O¥èx÷I73 _4ù8Ö_"e ò˺ïxRОe¬‹ež¾­x$g5ó$RËñv=°&Åç+ÊÆšÃ™£ÌzàÿÅAÝU…Z«ktïñZLóøõ„·2†Ò…Ç_%J$r°±… ìͪǩ.F&åƒ}é¤[]òß¼2éÁÚUÎRóîßh˜„]|'mÃø7°Ã¹+Æ®.ª-*¸5J(¸¯ÁmÌvi*\#ÁYÌ J¦ß³…¨#x=þåm„”£„` `7h‚ ò†¸‘ Î/à ÕÑùVšØ Ÿ•·Ù Gjúw‚HõãjÄGªgrCC²˜Ó±Ïö!͹«§“lâH¹øï•‹í·ŽHëlüÌé9nºøe^LLÙA¯ >p9=]©#“K§2FQª•è€ú™†~2ûøAòK==Ñ]ÃÝ:#»Ê޾È$ä0ËÇ™zyǺ$¶¨Ð@¸çÿ{°8Ÿ5‹|óÓSq H3G^í'z;ÎxœJ¤€¨ÿ¾®SËv×cP§&à„–AºœBc¯x¤\)þ8¸…2põ†Æ6 B…—’Äõo”çÂj—öX£ÝOÚkÉŒ$~Ü£‰$¡Öíå$´ÆBº¡“Ðd‰!-('Gi4S³¤yý=k’ðŒ¢}ªÙ1AþbüéèÒPÐŽ0 Ž–K n±ì‘$ú9¸³2ê8R?rge¡ÎTvÐÔeùËÅÑa îŠf.EÔ–ƒ®¡;CÇ&tYª÷^Å ïÒ2&={þÐ ‡Èô¸ÇúèÊ|(™PVÏõz["ÏÉÐFÝüri U¸o(@èËÜ•¬Â ¯^C9T`F9ÁU<€e;C ¾ˆ ²Cªã3! Ö-· ”:>-j«²Î;ç ìxÂ:Xç¿Ö-jdn9oEâíœ/©rÝTgè³Ö s$4îx +Î(Ó-}ÀÊA6ê AèÄߪ5ƒkñ—Ž'çeY‹®Anðï8£†2&Δû‘E…V/¥êÖQˆ—S{l ÞŠœÂâO<$:ÎýAãܰÐs·ÀãBC(E.e=¤¹ÒKWÎÁ½p`óéØ,* “µþ+ñMf,¼U+S‡Îz`ê/›Ì”c­¬Æb¨åR*™~¿æ” ƒ­¢ý’y ƒ‚5Š]Ép—¤t(*ör¦Ö-A‘OÑÚÍ`Äî(¼$¡LɌǡNÒä­|ÇFWMQæ©l½…!Ò|5BXFÁ´½ãr(òé864£HÞYÈ…îmÁ%#åï‘ó­¶sLhtä:?â‡ÊÚlá D§…Í¡•3ÅŒ7îýWfI¢ö’íd'ÙÓû,T^ËKÊŸŽ6raêÌÿU¿GV1à’ #w&Θý®×wwÿ2Æù¼÷p€ûÝKç ¤ŸqhÊ®Ò,ö÷µ^£|eóš·—ÊÅøF˜íívõŒº(œ*H`ÇñåI€6y ª›[\‚-ÄJAcB­ƒ^¦l®”‹}lPÑÿ‚|ØDw§÷‹ú‘/xÚÌGº)0«RÂÓ…&]“†æå•Æ`Fȯ4t¯BµK©6 ¬0‹˜†µ ÃÈc3¯*¹—•÷ Êõ-I½$–8Ì sjwRòÒ€$âEÆèH_ìØ4|G¼ñÄÙá)ÉG­bI¯â%ׯ÷ |€•?ñcF&™ÃDF©#† -–fÁeì_!+ANpMß¡ùÑí=R”Ô0„3a›ÍäO½À*&^Ì—Ëά×>µ7ŠÇ\_ wÉk„3©—ûµø(%/ ÀÆ%WèÌ’êxŸ"a}äç‰eu¾˜…«õF!ÿÌïRŸFh¡÷L¤ÀUv}KÛdzòÈU-_ ­ï%s„%œ'åf öÉ¿‹Õ2c}?³W.LòÇXÍÖÊüJ#”Òú÷–äö;j0W~Á ü,ù^ï™R‹ëɳ[²Mh+ÿô¶<Èu2{sÝOtÛó³/ö»?´‹b³ÈK©IJ+RRùc¡"§[U>wXªÐ—œfÐf3·ÝȺº“º»~!yåþ¦VÅ%øÜÍŸ~2šü•G—¸Ì—Ìó­ò·÷ö|‹°`!Çî¹þ3Pz }GÔ vDq’#1ªg\Öö>þ3|:£3e_8ÁÿƒrG™&[üæyŽmÊìyÔ²ÃÓ³ÎpÅæÉÿ­4’î*WÐçñÆ´l~i.oå8-Çz¿nå‡h»Nû Jë·>h½n¹úRÏ„ª½ÔÂ’Þ/`à?û‚èè sW êð؊ͰA Å‚40Xìi‹ãŠj­ÑÁ?Vý»µ|>A”õ>:ðR~íxNÄ4~À–™Hß²ãÑ3ԱŒIW4†öæÃˆ1¬ø°o+¦\(&&ûW7dò$²@›ô,_íLBöƒ ÐÃªÐÆéòáŒÙ6½´3œ Õ]*1¡Ò)$=Æ„i’ð‰z`ðÝŸïÞý7O¢endstream endobj 86 0 obj << /Type /Page /Contents 87 0 R /Resources 85 0 R /MediaBox [0 0 612 792] /Parent 84 0 R >> endobj 85 0 obj << /Font << /F60 31 0 R /F18 12 0 R /F63 34 0 R /F45 24 0 R /F21 49 0 R >> /ProcSet [ /PDF /Text ] >> endobj 93 0 obj << /Length 2976 /Filter /FlateDecode >> stream xÚYKãÆ¾ûW |¢€Íæ›rˆ°A€`1|ˆsàˆ-‰E*$µãÙ_ïúªªùÐpcćÑô³º»ê«'¿{þê›'“?ãI><L˜ùÉÍCä~ÇùÃsõ/oÜ…™÷ŠŸn·óܳ»½ñ.׺߯>” F ï¿·²Ý…¹7Ö -‹À;ÞÚÃXw´ªddÊ"àN'½W8׌1{×’Èõ£tð–£4éi°G.²K¯ìkìu¶ª‡‘^uS>Èà¹Üìωlo[¦buXŸ=3ÞÚv>uãY+Eaêpiœx» ìc×7Oq²7Qô“<Êö!Ñ ò„iÑ2Y+p?‚”ŽÆª?WU=‚2½‹~[¼™€›Âë®Ë‰&¾zw`3…Ÿ%t¨|>÷o]%MÈj%ñøa”nç¹c=ä8Öp4&‰±ŽÊXw”ÿeÓHc û‡×[Þ;± 6b²«A’:–Že0=Ö1ŒñÇFhÇF/‡L5/±ˆª.G'WÝr¸WI¯nï0¬G1kŒ*ÌÂ|îÉVd+ÛM+ÆbŸå÷w>ëdeõ†©Ò£6ìÑ™Œ,`B q t+&¬#úpwæK÷~Ì߆±õM:%Í üËÙ² ¶•fE®h²²X9žùÕÚQBûÊ–Qm¡B £*„¦S!Ûl=°flåKÑè4÷.VµŒäÂ`øñTkm5HS¬Z挽t>r· F€xÛŠ’$…÷ÏúR3û†• ÊïÜTЈt) jèç“bˆ~_Ч#7T#}ºeòNÐqú¡Éã5K¾¤ŸaJn&Mþ˜}6EêÎ×Ê…ÁÚóc`eT©±Î® 7æ)aGð_XQqê¶0ºT¯—Æíi;ÁÚu{hnbé /òÄϲ<[ëö(XKýõ©n9L¢wªˆÁk?¡zKc“{Ž 5Hîo+dÀJÜ·—î{£w:Êÿe¼"/6ž@³îåBI_¾RÁ¨±‰‚ÝwÏOVæÒ˜Z8èðýÅsÊz–"Mž–QÒ£øÎºÝo=,‰%¹D²å(;FÊ ŽIk'ËCíÖ õWå-­[˜îÏ”iÓ°¸T¦ñ §;± r1mìoÍ8]xfÏÖÛB,~µîÞÄAâ}g%ûš°Ð fáHá“öu/¯à¤Ázÿ®¨M¤*. Ë/ìã–zB³â² $¤ öqýѼr-;.ÆÀ'1¼×A°ÖŽgÅÜ Ë$Ñvò$º²‘,ôJÄn+Æwí$ Æ–BTÌþj¹gŽ÷¢ÛÕÊÔÑbyFç<Žmá-8†„¯h§‰KÀ¶¢è8÷ó4Í•Æ3Kàµb+S!žûl%ˆs±Ü4öãv g(& ¦˜|ÈEIæ yW\KÒ(ÝMp§îàÏÖ…QiäçYT¬ù!àï‡)ь‚%ÿ¢ûÔXq- ØÜûá-~=O‰½£C¾½•Ö" RšµN—çà¯ÔËó lsU*ÕÔÚnÉØõ„F=:]ò‹àž©Î†slü–»;2ÉXÆŽˆgz+a¤R“”ñvõ·’?Ò>?$No2- DìžBÿô—~ ™‰gΣ7q–ŒÐëW Ý(¬X„ëÓcãGEì ùN,)‚€ô$ľ‡ßÞ„m!üíÃÐ7i*¶á'DMàG‘KÚî¼Bâõf\žR¿–—ºµÒ6ùGÔ?±s½¢f ô8rÅÔmN·oFEH̘Ò/1cý6bFšfÑ»œõqBJØËEî" @°4ˆ"EQä§™IïŠ./¤žðv,S”síƒÂ¯†møð-,ñ~©ÇÑ>vÒÔ8H“u0uºCÛ8Jž˜—!J+¶ãûˆò4µ?N¤ø”wÇsx=×h‚ÿ•)íE6ö.UÆîäòÖ ¬tnÜia¨¡ÎƒEžÞÝ—šÇÓN7õ2;ÜĬ3*1ZŸŽw‘5|”²Õ`¯eïŠFØýqÿ»'nbLœ½Hx £,^çm¾ïØA2Q2[»‰sQzwO˜üapAgyÏ,:Z7‰˜Ú*éLä%ÝQjÍ” .Š™ì?mbC9ã„k0ïµSN³åÆ9—öd»öJ#Žm7‚‚»`âQBjW¿¡t&p^PvÀ©XÌ(Ðü„m?JÕ«2ƒLj ºsµž¢p%„f0†·q/wïæ„Ø1?%(ÿ„tj"óûÐÅÚt*žáþüÎÈ‹1/—æQ¡1š•kKQA·)¼Q¶$wþƒÆ~éBGv# Ùjã ,ÄÃ8ÆÖm‹€§~Y15lOVÂsUŒo] pp -ú®‘çáWå‚;`\š;Ž•…ý ÒE™n±ö\kØFœ;qã2¸²ÙT³Kµ†Ëü“Úó°ý`‡wZÒKbjFqØ¥àÐ,+'<ñ.œu«9— 3 ³#Ř–ˆðÿv%dÓ›9x0™Ÿ$ÅZ•´N‹<$û¬©Eƒ“¶äý¹æWwè—yÑ–k4Ÿ%QþÿºÆ,Oãr.Wä/h»R_+ÝZ+ŒOõéÖë’ˆVûºHF÷ÃQCÐ,ðƒ¢· JB·ø*¢ÆÁ÷Å ɘY2ÆÌ(¡öP^” oÆÙ$,ã«—‚qTq[m0Æ3™ïôÔIÉñ|»-kêËã6pÉ î¨7sô[ÐYÍõN©…RºS;Á+Ý3ÑŽ¡VÙÓ„¤†-´ ^ýÜ#q½.°Gi­žÔ)ÔžX¹fÙùF£k•ß_í§Úù Må#L^Äõ»oT!‡˜š‰ »ë¢-×űù“ëWYÁàÖ8º}¦ìP"×cãˆëÅv¸^ܨ—Õ‚´¸)•Ì —w-‰IZx¤…MÉÙYøW­n©ÞÞ¢ŒÐ;Ibüýç+,>º*ܪ¨3Š 9ÔQ–A f|•éPd “åªÃ`Óu„6Îcû½!Á­“JQ{[baœ„Q¶ “£x ÐÆ¹(ë&7œMωµ%ý]°eÔ’‚²“©ß ¼uNýõ/;.á ùõ–£´"A¥ò¸Š¥(«?kË…ÌþÊåkï ä¤+idwÅ=è»ÉV¢îzEêôÍO> "û˜Ýd“×sŸ[1Ï!„à¬Õn'KкµõˆOä_ÿâ“ðµ—ŠÎüAˆV¶d1õ‚î[Ú“ðÐÑúÁú0Ö¿Q‚¶UǬ¬ðC‹îPC3 íC#˜ù|Bqúƒ)lé‡Q:—ŽKd¼ý6Ž.” C²[¥ä˜›6ãÁˆI2§ö¼‹Öä÷¶1äZëYj(¿càôK­ ÌŸ½¾*bº*?(ª9cÙFµIs?ЦO›¨†å©ñ)xÜtVøE–¸j‘¯¾6@æNIj‘úYBž31&¿úþù«ß@bÖendstream endobj 92 0 obj << /Type /Page /Contents 93 0 R /Resources 91 0 R /MediaBox [0 0 612 792] /Parent 84 0 R >> endobj 91 0 obj << /Font << /F18 12 0 R /F45 24 0 R /F60 31 0 R /F63 34 0 R >> /ProcSet [ /PDF /Text ] >> endobj 96 0 obj << /Length 1085 /Filter /FlateDecode >> stream xÚµVKÛ6¾ûWè(1Í¡H=z,šEÓK±€oMZI^«°‘¨lößw†CIë]o ‡œ~óú$$þ €D Èó4й‰ÖYP¶»àk E’§³­ðä뼡ß8|j!ø£ßÝï‚ûõlŸ*Fª`¯ yž¨ÕëêôÇ>ÕŸ r‘K0¬ò+¾â·øb™ŠÜàB¥£ÎRýý¸;ÜAà™QÁñ¤*P„Ò‚cõOx×<ÎcaíãÄ„±~‹ö üí!üŽrÑ—zbå/íÙYi\Œµw`#•…ÏC„8ÂÕäÄjýl‡Ùòú4’£vsôåø×á.‰_bA‰,• FHP‡ Zô–5¯£R™Èãõʾm Tí*öîÃpš/¶é¯ 7Ìž‘Å& ö …Ö&sŽÚ¢Ja(g¶Ë0ˆŽž(„.~\lýdk/tñ¥ï*R‘l 6DmYx(¦ºb%⽎µsÀB]ŒÝ dI×¢å)þi–?K#o&0ÍE–«%c&©¾™@-™¦^ý£¬šoMµà| Ló …Îc½d>_Ôo^U2j¹üÜP/ 4ÑÝ-1R@òª d¸N®Û‚橱5išsSSóvžXåÝòALí˜{ÿnHGç YÝB¤c!“ø%"Ü”›ð¿EÆà½ 9Ï—(¨·g†É\…û[Ò.ŒPña±‡ÚL…¸.IGYG.äXS%õuó?R(ý> endobj 88 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./figs/jitterplotnn.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 97 0 R /Matrix [1.00000000 0.00000000 0.00000000 1.00000000 0.00000000 0.00000000] /BBox [0.00000000 0.00000000 432.00000000 288.00000000] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 98 0 R /F2 99 0 R /F3 100 0 R >> /ExtGState << /GS1 101 0 R /GS2 102 0 R /GS257 103 0 R /GS258 104 0 R >>>> /Length 105 0 R >> stream q Q q BT 0.000 0.000 0.000 rg /F3 1 Tf 17.00 0.00 -0.00 17.00 81.26 261.16 Tm (Distribution of Propensity Scores) Tj /F2 1 Tf 16.00 0.00 -0.00 16.00 155.09 6.91 Tm (Propensity Score) Tj ET Q q 17.28 43.20 397.44 203.33 re W n /GS257 gs 0.000 0.000 1.000 rg /GS1 gs 0.000 0.000 1.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 139.75 168.26 m 139.75 169.33 140.62 170.21 141.69 170.21 c 142.76 170.21 143.63 169.33 143.63 168.26 c 143.63 167.19 142.76 166.32 141.69 166.32 c 140.62 166.32 139.75 167.19 139.75 168.26 c B 156.77 170.62 m 156.77 171.69 157.64 172.56 158.71 172.56 c 159.78 172.56 160.65 171.69 160.65 170.62 c 160.65 169.55 159.78 168.67 158.71 168.67 c 157.64 168.67 156.77 169.55 156.77 170.62 c B 286.07 171.06 m 286.07 172.13 286.95 173.01 288.02 173.01 c 289.08 173.01 289.96 172.13 289.96 171.06 c 289.96 169.99 289.08 169.12 288.02 169.12 c 286.95 169.12 286.07 169.99 286.07 171.06 c B 285.68 165.18 m 285.68 166.25 286.56 167.12 287.63 167.12 c 288.70 167.12 289.57 166.25 289.57 165.18 c 289.57 164.11 288.70 163.23 287.63 163.23 c 286.56 163.23 285.68 164.11 285.68 165.18 c B 284.52 164.78 m 284.52 165.85 285.40 166.72 286.47 166.72 c 287.54 166.72 288.41 165.85 288.41 164.78 c 288.41 163.71 287.54 162.84 286.47 162.84 c 285.40 162.84 284.52 163.71 284.52 164.78 c B 284.91 166.59 m 284.91 167.66 285.78 168.54 286.85 168.54 c 287.92 168.54 288.80 167.66 288.80 166.59 c 288.80 165.52 287.92 164.65 286.85 164.65 c 285.78 164.65 284.91 165.52 284.91 166.59 c B 286.07 166.37 m 286.07 167.44 286.95 168.31 288.02 168.31 c 289.08 168.31 289.96 167.44 289.96 166.37 c 289.96 165.30 289.08 164.42 288.02 164.42 c 286.95 164.42 286.07 165.30 286.07 166.37 c B 285.68 170.43 m 285.68 171.50 286.56 172.38 287.63 172.38 c 288.70 172.38 289.57 171.50 289.57 170.43 c 289.57 169.36 288.70 168.49 287.63 168.49 c 286.56 168.49 285.68 169.36 285.68 170.43 c B 287.62 167.05 m 287.62 168.12 288.50 168.99 289.57 168.99 c 290.64 168.99 291.51 168.12 291.51 167.05 c 291.51 165.98 290.64 165.11 289.57 165.11 c 288.50 165.11 287.62 165.98 287.62 167.05 c B 140.00 171.03 m 140.00 172.10 140.88 172.97 141.95 172.97 c 143.02 172.97 143.89 172.10 143.89 171.03 c 143.89 169.96 143.02 169.09 141.95 169.09 c 140.88 169.09 140.00 169.96 140.00 171.03 c B 284.91 173.27 m 284.91 174.34 285.78 175.22 286.85 175.22 c 287.92 175.22 288.80 174.34 288.80 173.27 c 288.80 172.20 287.92 171.33 286.85 171.33 c 285.78 171.33 284.91 172.20 284.91 173.27 c B 286.46 164.38 m 286.46 165.45 287.33 166.33 288.40 166.33 c 289.47 166.33 290.35 165.45 290.35 164.38 c 290.35 163.31 289.47 162.44 288.40 162.44 c 287.33 162.44 286.46 163.31 286.46 164.38 c B 284.52 163.63 m 284.52 164.70 285.40 165.58 286.47 165.58 c 287.54 165.58 288.41 164.70 288.41 163.63 c 288.41 162.56 287.54 161.69 286.47 161.69 c 285.40 161.69 284.52 162.56 284.52 163.63 c B 139.49 172.66 m 139.49 173.73 140.37 174.60 141.43 174.60 c 142.50 174.60 143.38 173.73 143.38 172.66 c 143.38 171.59 142.50 170.72 141.43 170.72 c 140.37 170.72 139.49 171.59 139.49 172.66 c B 284.14 168.27 m 284.14 169.34 285.01 170.21 286.08 170.21 c 287.15 170.21 288.02 169.34 288.02 168.27 c 288.02 167.20 287.15 166.33 286.08 166.33 c 285.01 166.33 284.14 167.20 284.14 168.27 c B 285.30 163.80 m 285.30 164.87 286.17 165.74 287.24 165.74 c 288.31 165.74 289.18 164.87 289.18 163.80 c 289.18 162.73 288.31 161.85 287.24 161.85 c 286.17 161.85 285.30 162.73 285.30 163.80 c B 286.46 165.12 m 286.46 166.18 287.33 167.06 288.40 167.06 c 289.47 167.06 290.35 166.18 290.35 165.12 c 290.35 164.05 289.47 163.17 288.40 163.17 c 287.33 163.17 286.46 164.05 286.46 165.12 c B 285.30 172.78 m 285.30 173.85 286.17 174.73 287.24 174.73 c 288.31 174.73 289.18 173.85 289.18 172.78 c 289.18 171.71 288.31 170.84 287.24 170.84 c 286.17 170.84 285.30 171.71 285.30 172.78 c B 286.07 172.83 m 286.07 173.90 286.95 174.78 288.02 174.78 c 289.08 174.78 289.96 173.90 289.96 172.83 c 289.96 171.76 289.08 170.89 288.02 170.89 c 286.95 170.89 286.07 171.76 286.07 172.83 c B 286.07 169.47 m 286.07 170.54 286.95 171.42 288.02 171.42 c 289.08 171.42 289.96 170.54 289.96 169.47 c 289.96 168.41 289.08 167.53 288.02 167.53 c 286.95 167.53 286.07 168.41 286.07 169.47 c B 285.68 169.97 m 285.68 171.04 286.56 171.91 287.63 171.91 c 288.70 171.91 289.57 171.04 289.57 169.97 c 289.57 168.90 288.70 168.03 287.63 168.03 c 286.56 168.03 285.68 168.90 285.68 169.97 c B 286.85 168.20 m 286.85 169.27 287.72 170.15 288.79 170.15 c 289.86 170.15 290.73 169.27 290.73 168.20 c 290.73 167.13 289.86 166.26 288.79 166.26 c 287.72 166.26 286.85 167.13 286.85 168.20 c B 284.91 172.17 m 284.91 173.24 285.78 174.12 286.85 174.12 c 287.92 174.12 288.80 173.24 288.80 172.17 c 288.80 171.10 287.92 170.23 286.85 170.23 c 285.78 170.23 284.91 171.10 284.91 172.17 c B 285.68 171.94 m 285.68 173.01 286.56 173.88 287.63 173.88 c 288.70 173.88 289.57 173.01 289.57 171.94 c 289.57 170.87 288.70 169.99 287.63 169.99 c 286.56 169.99 285.68 170.87 285.68 171.94 c B 285.30 169.53 m 285.30 170.60 286.17 171.47 287.24 171.47 c 288.31 171.47 289.18 170.60 289.18 169.53 c 289.18 168.46 288.31 167.59 287.24 167.59 c 286.17 167.59 285.30 168.46 285.30 169.53 c B 139.75 170.24 m 139.75 171.31 140.62 172.19 141.69 172.19 c 142.76 172.19 143.63 171.31 143.63 170.24 c 143.63 169.17 142.76 168.30 141.69 168.30 c 140.62 168.30 139.75 169.17 139.75 170.24 c B 285.68 172.03 m 285.68 173.10 286.56 173.98 287.63 173.98 c 288.70 173.98 289.57 173.10 289.57 172.03 c 289.57 170.97 288.70 170.09 287.63 170.09 c 286.56 170.09 285.68 170.97 285.68 172.03 c B 157.05 166.43 m 157.05 167.50 157.92 168.37 158.99 168.37 c 160.06 168.37 160.94 167.50 160.94 166.43 c 160.94 165.36 160.06 164.48 158.99 164.48 c 157.92 164.48 157.05 165.36 157.05 166.43 c B 285.30 165.14 m 285.30 166.21 286.17 167.08 287.24 167.08 c 288.31 167.08 289.18 166.21 289.18 165.14 c 289.18 164.07 288.31 163.20 287.24 163.20 c 286.17 163.20 285.30 164.07 285.30 165.14 c B 285.68 164.22 m 285.68 165.29 286.56 166.16 287.63 166.16 c 288.70 166.16 289.57 165.29 289.57 164.22 c 289.57 163.15 288.70 162.27 287.63 162.27 c 286.56 162.27 285.68 163.15 285.68 164.22 c B 285.30 164.11 m 285.30 165.18 286.17 166.05 287.24 166.05 c 288.31 166.05 289.18 165.18 289.18 164.11 c 289.18 163.04 288.31 162.17 287.24 162.17 c 286.17 162.17 285.30 163.04 285.30 164.11 c B 282.97 170.31 m 282.97 171.38 283.85 172.25 284.92 172.25 c 285.99 172.25 286.86 171.38 286.86 170.31 c 286.86 169.24 285.99 168.36 284.92 168.36 c 283.85 168.36 282.97 169.24 282.97 170.31 c B 139.75 165.37 m 139.75 166.44 140.62 167.32 141.69 167.32 c 142.76 167.32 143.63 166.44 143.63 165.37 c 143.63 164.31 142.76 163.43 141.69 163.43 c 140.62 163.43 139.75 164.31 139.75 165.37 c B 286.07 169.58 m 286.07 170.65 286.95 171.52 288.02 171.52 c 289.08 171.52 289.96 170.65 289.96 169.58 c 289.96 168.51 289.08 167.63 288.02 167.63 c 286.95 167.63 286.07 168.51 286.07 169.58 c B 286.07 172.34 m 286.07 173.41 286.95 174.28 288.02 174.28 c 289.08 174.28 289.96 173.41 289.96 172.34 c 289.96 171.27 289.08 170.40 288.02 170.40 c 286.95 170.40 286.07 171.27 286.07 172.34 c B 286.85 169.79 m 286.85 170.86 287.72 171.73 288.79 171.73 c 289.86 171.73 290.73 170.86 290.73 169.79 c 290.73 168.72 289.86 167.85 288.79 167.85 c 287.72 167.85 286.85 168.72 286.85 169.79 c B 283.36 170.74 m 283.36 171.81 284.24 172.69 285.31 172.69 c 286.37 172.69 287.25 171.81 287.25 170.74 c 287.25 169.68 286.37 168.80 285.31 168.80 c 284.24 168.80 283.36 169.68 283.36 170.74 c B 140.00 163.20 m 140.00 164.27 140.88 165.14 141.95 165.14 c 143.02 165.14 143.89 164.27 143.89 163.20 c 143.89 162.13 143.02 161.25 141.95 161.25 c 140.88 161.25 140.00 162.13 140.00 163.20 c B 138.98 169.63 m 138.98 170.69 139.85 171.57 140.92 171.57 c 141.99 171.57 142.87 170.69 142.87 169.63 c 142.87 168.56 141.99 167.68 140.92 167.68 c 139.85 167.68 138.98 168.56 138.98 169.63 c B 285.30 171.12 m 285.30 172.19 286.17 173.06 287.24 173.06 c 288.31 173.06 289.18 172.19 289.18 171.12 c 289.18 170.05 288.31 169.17 287.24 169.17 c 286.17 169.17 285.30 170.05 285.30 171.12 c B 286.07 171.22 m 286.07 172.29 286.95 173.17 288.02 173.17 c 289.08 173.17 289.96 172.29 289.96 171.22 c 289.96 170.15 289.08 169.28 288.02 169.28 c 286.95 169.28 286.07 170.15 286.07 171.22 c B 284.91 163.67 m 284.91 164.74 285.78 165.61 286.85 165.61 c 287.92 165.61 288.80 164.74 288.80 163.67 c 288.80 162.60 287.92 161.72 286.85 161.72 c 285.78 161.72 284.91 162.60 284.91 163.67 c B 284.52 162.78 m 284.52 163.85 285.40 164.72 286.47 164.72 c 287.54 164.72 288.41 163.85 288.41 162.78 c 288.41 161.71 287.54 160.83 286.47 160.83 c 285.40 160.83 284.52 161.71 284.52 162.78 c B 71.30 166.57 m 71.30 167.64 72.18 168.51 73.25 168.51 c 74.32 168.51 75.19 167.64 75.19 166.57 c 75.19 165.50 74.32 164.63 73.25 164.63 c 72.18 164.63 71.30 165.50 71.30 166.57 c B 285.68 173.00 m 285.68 174.07 286.56 174.94 287.63 174.94 c 288.70 174.94 289.57 174.07 289.57 173.00 c 289.57 171.93 288.70 171.05 287.63 171.05 c 286.56 171.05 285.68 171.93 285.68 173.00 c B 139.75 173.47 m 139.75 174.54 140.62 175.41 141.69 175.41 c 142.76 175.41 143.63 174.54 143.63 173.47 c 143.63 172.40 142.76 171.53 141.69 171.53 c 140.62 171.53 139.75 172.40 139.75 173.47 c B 284.52 173.78 m 284.52 174.85 285.40 175.73 286.47 175.73 c 287.54 175.73 288.41 174.85 288.41 173.78 c 288.41 172.71 287.54 171.84 286.47 171.84 c 285.40 171.84 284.52 172.71 284.52 173.78 c B 284.91 172.62 m 284.91 173.69 285.78 174.56 286.85 174.56 c 287.92 174.56 288.80 173.69 288.80 172.62 c 288.80 171.55 287.92 170.67 286.85 170.67 c 285.78 170.67 284.91 171.55 284.91 172.62 c B 283.36 165.02 m 283.36 166.09 284.24 166.97 285.31 166.97 c 286.37 166.97 287.25 166.09 287.25 165.02 c 287.25 163.95 286.37 163.08 285.31 163.08 c 284.24 163.08 283.36 163.95 283.36 165.02 c B 286.07 169.00 m 286.07 170.07 286.95 170.94 288.02 170.94 c 289.08 170.94 289.96 170.07 289.96 169.00 c 289.96 167.93 289.08 167.05 288.02 167.05 c 286.95 167.05 286.07 167.93 286.07 169.00 c B 284.52 162.96 m 284.52 164.03 285.40 164.90 286.47 164.90 c 287.54 164.90 288.41 164.03 288.41 162.96 c 288.41 161.89 287.54 161.01 286.47 161.01 c 285.40 161.01 284.52 161.89 284.52 162.96 c B 139.75 168.39 m 139.75 169.46 140.62 170.33 141.69 170.33 c 142.76 170.33 143.63 169.46 143.63 168.39 c 143.63 167.32 142.76 166.44 141.69 166.44 c 140.62 166.44 139.75 167.32 139.75 168.39 c B 285.68 169.75 m 285.68 170.82 286.56 171.69 287.63 171.69 c 288.70 171.69 289.57 170.82 289.57 169.75 c 289.57 168.68 288.70 167.80 287.63 167.80 c 286.56 167.80 285.68 168.68 285.68 169.75 c B 286.07 170.79 m 286.07 171.86 286.95 172.73 288.02 172.73 c 289.08 172.73 289.96 171.86 289.96 170.79 c 289.96 169.72 289.08 168.85 288.02 168.85 c 286.95 168.85 286.07 169.72 286.07 170.79 c B 139.75 165.92 m 139.75 166.98 140.62 167.86 141.69 167.86 c 142.76 167.86 143.63 166.98 143.63 165.92 c 143.63 164.85 142.76 163.97 141.69 163.97 c 140.62 163.97 139.75 164.85 139.75 165.92 c B 285.30 164.91 m 285.30 165.98 286.17 166.86 287.24 166.86 c 288.31 166.86 289.18 165.98 289.18 164.91 c 289.18 163.85 288.31 162.97 287.24 162.97 c 286.17 162.97 285.30 163.85 285.30 164.91 c B 284.91 167.28 m 284.91 168.35 285.78 169.23 286.85 169.23 c 287.92 169.23 288.80 168.35 288.80 167.28 c 288.80 166.22 287.92 165.34 286.85 165.34 c 285.78 165.34 284.91 166.22 284.91 167.28 c B 137.96 173.05 m 137.96 174.12 138.84 174.99 139.91 174.99 c 140.98 174.99 141.85 174.12 141.85 173.05 c 141.85 171.98 140.98 171.10 139.91 171.10 c 138.84 171.10 137.96 171.98 137.96 173.05 c B 140.52 164.29 m 140.52 165.36 141.39 166.23 142.46 166.23 c 143.53 166.23 144.41 165.36 144.41 164.29 c 144.41 163.22 143.53 162.35 142.46 162.35 c 141.39 162.35 140.52 163.22 140.52 164.29 c B 285.68 166.06 m 285.68 167.12 286.56 168.00 287.63 168.00 c 288.70 168.00 289.57 167.12 289.57 166.06 c 289.57 164.99 288.70 164.11 287.63 164.11 c 286.56 164.11 285.68 164.99 285.68 166.06 c B 284.52 166.69 m 284.52 167.76 285.40 168.64 286.47 168.64 c 287.54 168.64 288.41 167.76 288.41 166.69 c 288.41 165.62 287.54 164.75 286.47 164.75 c 285.40 164.75 284.52 165.62 284.52 166.69 c B 284.52 167.30 m 284.52 168.37 285.40 169.24 286.47 169.24 c 287.54 169.24 288.41 168.37 288.41 167.30 c 288.41 166.23 287.54 165.35 286.47 165.35 c 285.40 165.35 284.52 166.23 284.52 167.30 c B 285.30 170.40 m 285.30 171.47 286.17 172.35 287.24 172.35 c 288.31 172.35 289.18 171.47 289.18 170.40 c 289.18 169.33 288.31 168.46 287.24 168.46 c 286.17 168.46 285.30 169.33 285.30 170.40 c B 285.68 164.57 m 285.68 165.64 286.56 166.51 287.63 166.51 c 288.70 166.51 289.57 165.64 289.57 164.57 c 289.57 163.50 288.70 162.63 287.63 162.63 c 286.56 162.63 285.68 163.50 285.68 164.57 c B 282.97 171.93 m 282.97 173.00 283.85 173.87 284.92 173.87 c 285.99 173.87 286.86 173.00 286.86 171.93 c 286.86 170.86 285.99 169.99 284.92 169.99 c 283.85 169.99 282.97 170.86 282.97 171.93 c B 284.91 173.37 m 284.91 174.44 285.78 175.31 286.85 175.31 c 287.92 175.31 288.80 174.44 288.80 173.37 c 288.80 172.30 287.92 171.42 286.85 171.42 c 285.78 171.42 284.91 172.30 284.91 173.37 c B 285.68 171.08 m 285.68 172.15 286.56 173.02 287.63 173.02 c 288.70 173.02 289.57 172.15 289.57 171.08 c 289.57 170.01 288.70 169.13 287.63 169.13 c 286.56 169.13 285.68 170.01 285.68 171.08 c B 284.14 163.22 m 284.14 164.29 285.01 165.16 286.08 165.16 c 287.15 165.16 288.02 164.29 288.02 163.22 c 288.02 162.15 287.15 161.27 286.08 161.27 c 285.01 161.27 284.14 162.15 284.14 163.22 c B 138.22 167.81 m 138.22 168.87 139.09 169.75 140.16 169.75 c 141.23 169.75 142.10 168.87 142.10 167.81 c 142.10 166.74 141.23 165.86 140.16 165.86 c 139.09 165.86 138.22 166.74 138.22 167.81 c B 286.46 163.07 m 286.46 164.14 287.33 165.02 288.40 165.02 c 289.47 165.02 290.35 164.14 290.35 163.07 c 290.35 162.00 289.47 161.13 288.40 161.13 c 287.33 161.13 286.46 162.00 286.46 163.07 c B 284.91 165.20 m 284.91 166.26 285.78 167.14 286.85 167.14 c 287.92 167.14 288.80 166.26 288.80 165.20 c 288.80 164.13 287.92 163.25 286.85 163.25 c 285.78 163.25 284.91 164.13 284.91 165.20 c B 286.46 170.23 m 286.46 171.30 287.33 172.18 288.40 172.18 c 289.47 172.18 290.35 171.30 290.35 170.23 c 290.35 169.16 289.47 168.29 288.40 168.29 c 287.33 168.29 286.46 169.16 286.46 170.23 c B 283.75 172.52 m 283.75 173.59 284.62 174.47 285.69 174.47 c 286.76 174.47 287.64 173.59 287.64 172.52 c 287.64 171.45 286.76 170.58 285.69 170.58 c 284.62 170.58 283.75 171.45 283.75 172.52 c B 286.07 172.94 m 286.07 174.01 286.95 174.88 288.02 174.88 c 289.08 174.88 289.96 174.01 289.96 172.94 c 289.96 171.87 289.08 170.99 288.02 170.99 c 286.95 170.99 286.07 171.87 286.07 172.94 c B 287.23 173.33 m 287.23 174.40 288.11 175.28 289.18 175.28 c 290.25 175.28 291.12 174.40 291.12 173.33 c 291.12 172.27 290.25 171.39 289.18 171.39 c 288.11 171.39 287.23 172.27 287.23 173.33 c B 285.68 169.71 m 285.68 170.78 286.56 171.65 287.63 171.65 c 288.70 171.65 289.57 170.78 289.57 169.71 c 289.57 168.64 288.70 167.76 287.63 167.76 c 286.56 167.76 285.68 168.64 285.68 169.71 c B 286.07 165.76 m 286.07 166.83 286.95 167.71 288.02 167.71 c 289.08 167.71 289.96 166.83 289.96 165.76 c 289.96 164.69 289.08 163.82 288.02 163.82 c 286.95 163.82 286.07 164.69 286.07 165.76 c B 284.91 165.27 m 284.91 166.34 285.78 167.21 286.85 167.21 c 287.92 167.21 288.80 166.34 288.80 165.27 c 288.80 164.20 287.92 163.32 286.85 163.32 c 285.78 163.32 284.91 164.20 284.91 165.27 c B 285.68 165.31 m 285.68 166.37 286.56 167.25 287.63 167.25 c 288.70 167.25 289.57 166.37 289.57 165.31 c 289.57 164.24 288.70 163.36 287.63 163.36 c 286.56 163.36 285.68 164.24 285.68 165.31 c B 285.68 164.13 m 285.68 165.20 286.56 166.08 287.63 166.08 c 288.70 166.08 289.57 165.20 289.57 164.13 c 289.57 163.06 288.70 162.19 287.63 162.19 c 286.56 162.19 285.68 163.06 285.68 164.13 c B 286.07 170.94 m 286.07 172.01 286.95 172.88 288.02 172.88 c 289.08 172.88 289.96 172.01 289.96 170.94 c 289.96 169.87 289.08 168.99 288.02 168.99 c 286.95 168.99 286.07 169.87 286.07 170.94 c B 286.07 169.24 m 286.07 170.31 286.95 171.19 288.02 171.19 c 289.08 171.19 289.96 170.31 289.96 169.24 c 289.96 168.17 289.08 167.30 288.02 167.30 c 286.95 167.30 286.07 168.17 286.07 169.24 c B 286.07 162.99 m 286.07 164.06 286.95 164.93 288.02 164.93 c 289.08 164.93 289.96 164.06 289.96 162.99 c 289.96 161.92 289.08 161.04 288.02 161.04 c 286.95 161.04 286.07 161.92 286.07 162.99 c B 286.46 163.61 m 286.46 164.68 287.33 165.55 288.40 165.55 c 289.47 165.55 290.35 164.68 290.35 163.61 c 290.35 162.54 289.47 161.66 288.40 161.66 c 287.33 161.66 286.46 162.54 286.46 163.61 c B 284.52 171.58 m 284.52 172.65 285.40 173.53 286.47 173.53 c 287.54 173.53 288.41 172.65 288.41 171.58 c 288.41 170.52 287.54 169.64 286.47 169.64 c 285.40 169.64 284.52 170.52 284.52 171.58 c B 285.68 167.53 m 285.68 168.60 286.56 169.47 287.63 169.47 c 288.70 169.47 289.57 168.60 289.57 167.53 c 289.57 166.46 288.70 165.59 287.63 165.59 c 286.56 165.59 285.68 166.46 285.68 167.53 c B 156.48 166.00 m 156.48 167.07 157.36 167.94 158.43 167.94 c 159.50 167.94 160.37 167.07 160.37 166.00 c 160.37 164.93 159.50 164.05 158.43 164.05 c 157.36 164.05 156.48 164.93 156.48 166.00 c B 285.68 165.61 m 285.68 166.68 286.56 167.55 287.63 167.55 c 288.70 167.55 289.57 166.68 289.57 165.61 c 289.57 164.54 288.70 163.67 287.63 163.67 c 286.56 163.67 285.68 164.54 285.68 165.61 c B 286.07 162.85 m 286.07 163.92 286.95 164.79 288.02 164.79 c 289.08 164.79 289.96 163.92 289.96 162.85 c 289.96 161.78 289.08 160.90 288.02 160.90 c 286.95 160.90 286.07 161.78 286.07 162.85 c B 284.52 166.62 m 284.52 167.69 285.40 168.56 286.47 168.56 c 287.54 168.56 288.41 167.69 288.41 166.62 c 288.41 165.55 287.54 164.67 286.47 164.67 c 285.40 164.67 284.52 165.55 284.52 166.62 c B 139.75 170.04 m 139.75 171.11 140.62 171.99 141.69 171.99 c 142.76 171.99 143.63 171.11 143.63 170.04 c 143.63 168.97 142.76 168.10 141.69 168.10 c 140.62 168.10 139.75 168.97 139.75 170.04 c B 285.30 169.28 m 285.30 170.35 286.17 171.22 287.24 171.22 c 288.31 171.22 289.18 170.35 289.18 169.28 c 289.18 168.21 288.31 167.34 287.24 167.34 c 286.17 167.34 285.30 168.21 285.30 169.28 c B 285.68 170.75 m 285.68 171.82 286.56 172.70 287.63 172.70 c 288.70 172.70 289.57 171.82 289.57 170.75 c 289.57 169.68 288.70 168.81 287.63 168.81 c 286.56 168.81 285.68 169.68 285.68 170.75 c B 286.07 172.13 m 286.07 173.20 286.95 174.07 288.02 174.07 c 289.08 174.07 289.96 173.20 289.96 172.13 c 289.96 171.06 289.08 170.19 288.02 170.19 c 286.95 170.19 286.07 171.06 286.07 172.13 c B 285.68 170.88 m 285.68 171.95 286.56 172.82 287.63 172.82 c 288.70 172.82 289.57 171.95 289.57 170.88 c 289.57 169.81 288.70 168.94 287.63 168.94 c 286.56 168.94 285.68 169.81 285.68 170.88 c B 286.07 165.57 m 286.07 166.64 286.95 167.52 288.02 167.52 c 289.08 167.52 289.96 166.64 289.96 165.57 c 289.96 164.50 289.08 163.63 288.02 163.63 c 286.95 163.63 286.07 164.50 286.07 165.57 c B 284.91 169.67 m 284.91 170.74 285.78 171.61 286.85 171.61 c 287.92 171.61 288.80 170.74 288.80 169.67 c 288.80 168.60 287.92 167.73 286.85 167.73 c 285.78 167.73 284.91 168.60 284.91 169.67 c B 286.07 162.83 m 286.07 163.90 286.95 164.77 288.02 164.77 c 289.08 164.77 289.96 163.90 289.96 162.83 c 289.96 161.76 289.08 160.88 288.02 160.88 c 286.95 160.88 286.07 161.76 286.07 162.83 c B 285.30 172.23 m 285.30 173.30 286.17 174.17 287.24 174.17 c 288.31 174.17 289.18 173.30 289.18 172.23 c 289.18 171.16 288.31 170.29 287.24 170.29 c 286.17 170.29 285.30 171.16 285.30 172.23 c B 156.77 163.49 m 156.77 164.56 157.64 165.43 158.71 165.43 c 159.78 165.43 160.65 164.56 160.65 163.49 c 160.65 162.42 159.78 161.55 158.71 161.55 c 157.64 161.55 156.77 162.42 156.77 163.49 c B 285.30 169.92 m 285.30 170.98 286.17 171.86 287.24 171.86 c 288.31 171.86 289.18 170.98 289.18 169.92 c 289.18 168.85 288.31 167.97 287.24 167.97 c 286.17 167.97 285.30 168.85 285.30 169.92 c B 285.30 172.16 m 285.30 173.23 286.17 174.11 287.24 174.11 c 288.31 174.11 289.18 173.23 289.18 172.16 c 289.18 171.09 288.31 170.22 287.24 170.22 c 286.17 170.22 285.30 171.09 285.30 172.16 c B 285.68 170.89 m 285.68 171.96 286.56 172.84 287.63 172.84 c 288.70 172.84 289.57 171.96 289.57 170.89 c 289.57 169.83 288.70 168.95 287.63 168.95 c 286.56 168.95 285.68 169.83 285.68 170.89 c B 285.68 167.08 m 285.68 168.15 286.56 169.02 287.63 169.02 c 288.70 169.02 289.57 168.15 289.57 167.08 c 289.57 166.01 288.70 165.14 287.63 165.14 c 286.56 165.14 285.68 166.01 285.68 167.08 c B 285.68 164.82 m 285.68 165.89 286.56 166.76 287.63 166.76 c 288.70 166.76 289.57 165.89 289.57 164.82 c 289.57 163.75 288.70 162.87 287.63 162.87 c 286.56 162.87 285.68 163.75 285.68 164.82 c B 284.91 169.73 m 284.91 170.80 285.78 171.68 286.85 171.68 c 287.92 171.68 288.80 170.80 288.80 169.73 c 288.80 168.66 287.92 167.79 286.85 167.79 c 285.78 167.79 284.91 168.66 284.91 169.73 c B 286.46 168.27 m 286.46 169.34 287.33 170.22 288.40 170.22 c 289.47 170.22 290.35 169.34 290.35 168.27 c 290.35 167.20 289.47 166.33 288.40 166.33 c 287.33 166.33 286.46 167.20 286.46 168.27 c B 284.91 164.71 m 284.91 165.78 285.78 166.66 286.85 166.66 c 287.92 166.66 288.80 165.78 288.80 164.71 c 288.80 163.64 287.92 162.77 286.85 162.77 c 285.78 162.77 284.91 163.64 284.91 164.71 c B 285.68 164.77 m 285.68 165.84 286.56 166.72 287.63 166.72 c 288.70 166.72 289.57 165.84 289.57 164.77 c 289.57 163.70 288.70 162.83 287.63 162.83 c 286.56 162.83 285.68 163.70 285.68 164.77 c B 121.61 172.06 m 121.61 173.12 122.49 174.00 123.56 174.00 c 124.63 174.00 125.50 173.12 125.50 172.06 c 125.50 170.99 124.63 170.11 123.56 170.11 c 122.49 170.11 121.61 170.99 121.61 172.06 c B 202.65 166.99 m 202.65 168.06 203.52 168.94 204.59 168.94 c 205.66 168.94 206.54 168.06 206.54 166.99 c 206.54 165.92 205.66 165.05 204.59 165.05 c 203.52 165.05 202.65 165.92 202.65 166.99 c B 152.74 172.97 m 152.74 174.04 153.62 174.91 154.68 174.91 c 155.75 174.91 156.63 174.04 156.63 172.97 c 156.63 171.90 155.75 171.03 154.68 171.03 c 153.62 171.03 152.74 171.90 152.74 172.97 c B 273.73 168.46 m 273.73 169.52 274.61 170.40 275.68 170.40 c 276.75 170.40 277.62 169.52 277.62 168.46 c 277.62 167.39 276.75 166.51 275.68 166.51 c 274.61 166.51 273.73 167.39 273.73 168.46 c B 275.70 171.20 m 275.70 172.27 276.57 173.14 277.64 173.14 c 278.71 173.14 279.58 172.27 279.58 171.20 c 279.58 170.13 278.71 169.25 277.64 169.25 c 276.57 169.25 275.70 170.13 275.70 171.20 c B 110.98 172.28 m 110.98 173.35 111.86 174.22 112.93 174.22 c 113.99 174.22 114.87 173.35 114.87 172.28 c 114.87 171.21 113.99 170.34 112.93 170.34 c 111.86 170.34 110.98 171.21 110.98 172.28 c B 238.25 169.14 m 238.25 170.21 239.12 171.08 240.19 171.08 c 241.26 171.08 242.14 170.21 242.14 169.14 c 242.14 168.07 241.26 167.19 240.19 167.19 c 239.12 167.19 238.25 168.07 238.25 169.14 c B 259.47 171.64 m 259.47 172.70 260.35 173.58 261.42 173.58 c 262.49 173.58 263.36 172.70 263.36 171.64 c 263.36 170.57 262.49 169.69 261.42 169.69 c 260.35 169.69 259.47 170.57 259.47 171.64 c B 289.91 166.77 m 289.91 167.84 290.79 168.72 291.85 168.72 c 292.92 168.72 293.80 167.84 293.80 166.77 c 293.80 165.70 292.92 164.83 291.85 164.83 c 290.79 164.83 289.91 165.70 289.91 166.77 c B 289.21 173.88 m 289.21 174.95 290.09 175.83 291.16 175.83 c 292.23 175.83 293.10 174.95 293.10 173.88 c 293.10 172.81 292.23 171.94 291.16 171.94 c 290.09 171.94 289.21 172.81 289.21 173.88 c B 215.55 172.74 m 215.55 173.81 216.43 174.69 217.50 174.69 c 218.57 174.69 219.44 173.81 219.44 172.74 c 219.44 171.67 218.57 170.80 217.50 170.80 c 216.43 170.80 215.55 171.67 215.55 172.74 c B 293.76 173.71 m 293.76 174.78 294.64 175.66 295.71 175.66 c 296.77 175.66 297.65 174.78 297.65 173.71 c 297.65 172.64 296.77 171.77 295.71 171.77 c 294.64 171.77 293.76 172.64 293.76 173.71 c B 293.42 168.83 m 293.42 169.90 294.30 170.77 295.37 170.77 c 296.44 170.77 297.31 169.90 297.31 168.83 c 297.31 167.76 296.44 166.89 295.37 166.89 c 294.30 166.89 293.42 167.76 293.42 168.83 c B 293.03 170.13 m 293.03 171.20 293.91 172.07 294.98 172.07 c 296.05 172.07 296.92 171.20 296.92 170.13 c 296.92 169.06 296.05 168.18 294.98 168.18 c 293.91 168.18 293.03 169.06 293.03 170.13 c B 78.11 163.33 m 78.11 164.40 78.99 165.28 80.06 165.28 c 81.13 165.28 82.00 164.40 82.00 163.33 c 82.00 162.26 81.13 161.39 80.06 161.39 c 78.99 161.39 78.11 162.26 78.11 163.33 c B 243.47 163.51 m 243.47 164.57 244.34 165.45 245.41 165.45 c 246.48 165.45 247.35 164.57 247.35 163.51 c 247.35 162.44 246.48 161.56 245.41 161.56 c 244.34 161.56 243.47 162.44 243.47 163.51 c B 145.63 172.89 m 145.63 173.96 146.50 174.84 147.57 174.84 c 148.64 174.84 149.51 173.96 149.51 172.89 c 149.51 171.82 148.64 170.95 147.57 170.95 c 146.50 170.95 145.63 171.82 145.63 172.89 c B 218.29 167.64 m 218.29 168.71 219.17 169.59 220.24 169.59 c 221.31 169.59 222.18 168.71 222.18 167.64 c 222.18 166.57 221.31 165.70 220.24 165.70 c 219.17 165.70 218.29 166.57 218.29 167.64 c B 145.91 170.42 m 145.91 171.49 146.78 172.36 147.85 172.36 c 148.92 172.36 149.79 171.49 149.79 170.42 c 149.79 169.35 148.92 168.47 147.85 168.47 c 146.78 168.47 145.91 169.35 145.91 170.42 c B 88.52 169.85 m 88.52 170.92 89.40 171.80 90.47 171.80 c 91.54 171.80 92.41 170.92 92.41 169.85 c 92.41 168.78 91.54 167.91 90.47 167.91 c 89.40 167.91 88.52 168.78 88.52 169.85 c B 246.97 169.06 m 246.97 170.13 247.84 171.01 248.91 171.01 c 249.98 171.01 250.86 170.13 250.86 169.06 c 250.86 168.00 249.98 167.12 248.91 167.12 c 247.84 167.12 246.97 168.00 246.97 169.06 c B 273.30 170.48 m 273.30 171.55 274.17 172.42 275.24 172.42 c 276.31 172.42 277.18 171.55 277.18 170.48 c 277.18 169.41 276.31 168.53 275.24 168.53 c 274.17 168.53 273.30 169.41 273.30 170.48 c B 298.75 171.82 m 298.75 172.89 299.63 173.76 300.70 173.76 c 301.76 173.76 302.64 172.89 302.64 171.82 c 302.64 170.75 301.76 169.88 300.70 169.88 c 299.63 169.88 298.75 170.75 298.75 171.82 c B 149.40 167.67 m 149.40 168.74 150.27 169.61 151.34 169.61 c 152.41 169.61 153.28 168.74 153.28 167.67 c 153.28 166.60 152.41 165.72 151.34 165.72 c 150.27 165.72 149.40 166.60 149.40 167.67 c B 111.09 169.87 m 111.09 170.94 111.96 171.81 113.03 171.81 c 114.10 171.81 114.97 170.94 114.97 169.87 c 114.97 168.80 114.10 167.93 113.03 167.93 c 111.96 167.93 111.09 168.80 111.09 169.87 c B 143.24 173.27 m 143.24 174.34 144.11 175.22 145.18 175.22 c 146.25 175.22 147.13 174.34 147.13 173.27 c 147.13 172.20 146.25 171.33 145.18 171.33 c 144.11 171.33 143.24 172.20 143.24 173.27 c B 302.20 170.82 m 302.20 171.89 303.07 172.76 304.14 172.76 c 305.21 172.76 306.09 171.89 306.09 170.82 c 306.09 169.75 305.21 168.87 304.14 168.87 c 303.07 168.87 302.20 169.75 302.20 170.82 c B 150.87 169.86 m 150.87 170.93 151.74 171.80 152.81 171.80 c 153.88 171.80 154.76 170.93 154.76 169.86 c 154.76 168.79 153.88 167.91 152.81 167.91 c 151.74 167.91 150.87 168.79 150.87 169.86 c B 273.01 170.60 m 273.01 171.66 273.89 172.54 274.96 172.54 c 276.03 172.54 276.90 171.66 276.90 170.60 c 276.90 169.53 276.03 168.65 274.96 168.65 c 273.89 168.65 273.01 169.53 273.01 170.60 c B 162.99 167.08 m 162.99 168.15 163.86 169.03 164.93 169.03 c 166.00 169.03 166.88 168.15 166.88 167.08 c 166.88 166.01 166.00 165.14 164.93 165.14 c 163.86 165.14 162.99 166.01 162.99 167.08 c B 308.35 164.99 m 308.35 166.06 309.22 166.93 310.29 166.93 c 311.36 166.93 312.23 166.06 312.23 164.99 c 312.23 163.92 311.36 163.05 310.29 163.05 c 309.22 163.05 308.35 163.92 308.35 164.99 c B 185.27 163.31 m 185.27 164.38 186.15 165.26 187.22 165.26 c 188.29 165.26 189.16 164.38 189.16 163.31 c 189.16 162.25 188.29 161.37 187.22 161.37 c 186.15 161.37 185.27 162.25 185.27 163.31 c B 132.31 173.80 m 132.31 174.87 133.18 175.74 134.25 175.74 c 135.32 175.74 136.20 174.87 136.20 173.80 c 136.20 172.73 135.32 171.86 134.25 171.86 c 133.18 171.86 132.31 172.73 132.31 173.80 c B 249.97 167.41 m 249.97 168.48 250.85 169.35 251.92 169.35 c 252.99 169.35 253.86 168.48 253.86 167.41 c 253.86 166.34 252.99 165.46 251.92 165.46 c 250.85 165.46 249.97 166.34 249.97 167.41 c B 266.02 169.36 m 266.02 170.43 266.89 171.31 267.96 171.31 c 269.03 171.31 269.91 170.43 269.91 169.36 c 269.91 168.29 269.03 167.42 267.96 167.42 c 266.89 167.42 266.02 168.29 266.02 169.36 c B 312.65 162.84 m 312.65 163.91 313.53 164.79 314.59 164.79 c 315.66 164.79 316.54 163.91 316.54 162.84 c 316.54 161.77 315.66 160.90 314.59 160.90 c 313.53 160.90 312.65 161.77 312.65 162.84 c B 279.52 163.25 m 279.52 164.31 280.39 165.19 281.46 165.19 c 282.53 165.19 283.40 164.31 283.40 163.25 c 283.40 162.18 282.53 161.30 281.46 161.30 c 280.39 161.30 279.52 162.18 279.52 163.25 c B 311.57 164.99 m 311.57 166.06 312.44 166.94 313.51 166.94 c 314.58 166.94 315.45 166.06 315.45 164.99 c 315.45 163.93 314.58 163.05 313.51 163.05 c 312.44 163.05 311.57 163.93 311.57 164.99 c B 281.42 168.78 m 281.42 169.85 282.30 170.72 283.37 170.72 c 284.44 170.72 285.31 169.85 285.31 168.78 c 285.31 167.71 284.44 166.83 283.37 166.83 c 282.30 166.83 281.42 167.71 281.42 168.78 c B 159.37 170.46 m 159.37 171.53 160.25 172.41 161.31 172.41 c 162.38 172.41 163.26 171.53 163.26 170.46 c 163.26 169.39 162.38 168.52 161.31 168.52 c 160.25 168.52 159.37 169.39 159.37 170.46 c B 243.11 172.75 m 243.11 173.82 243.98 174.70 245.05 174.70 c 246.12 174.70 247.00 173.82 247.00 172.75 c 247.00 171.68 246.12 170.81 245.05 170.81 c 243.98 170.81 243.11 171.68 243.11 172.75 c B 314.17 167.00 m 314.17 168.07 315.04 168.95 316.11 168.95 c 317.18 168.95 318.05 168.07 318.05 167.00 c 318.05 165.93 317.18 165.06 316.11 165.06 c 315.04 165.06 314.17 165.93 314.17 167.00 c B 141.26 173.04 m 141.26 174.11 142.14 174.99 143.21 174.99 c 144.28 174.99 145.15 174.11 145.15 173.04 c 145.15 171.97 144.28 171.10 143.21 171.10 c 142.14 171.10 141.26 171.97 141.26 173.04 c B 276.93 173.66 m 276.93 174.73 277.80 175.61 278.87 175.61 c 279.94 175.61 280.82 174.73 280.82 173.66 c 280.82 172.59 279.94 171.72 278.87 171.72 c 277.80 171.72 276.93 172.59 276.93 173.66 c B 229.35 163.05 m 229.35 164.11 230.22 164.99 231.29 164.99 c 232.36 164.99 233.24 164.11 233.24 163.05 c 233.24 161.98 232.36 161.10 231.29 161.10 c 230.22 161.10 229.35 161.98 229.35 163.05 c B 161.09 166.51 m 161.09 167.58 161.96 168.46 163.03 168.46 c 164.10 168.46 164.98 167.58 164.98 166.51 c 164.98 165.44 164.10 164.57 163.03 164.57 c 161.96 164.57 161.09 165.44 161.09 166.51 c B 157.26 170.02 m 157.26 171.09 158.13 171.97 159.20 171.97 c 160.27 171.97 161.14 171.09 161.14 170.02 c 161.14 168.96 160.27 168.08 159.20 168.08 c 158.13 168.08 157.26 168.96 157.26 170.02 c B 318.36 172.62 m 318.36 173.69 319.23 174.56 320.30 174.56 c 321.37 174.56 322.24 173.69 322.24 172.62 c 322.24 171.55 321.37 170.68 320.30 170.68 c 319.23 170.68 318.36 171.55 318.36 172.62 c B 229.41 164.47 m 229.41 165.54 230.29 166.42 231.36 166.42 c 232.43 166.42 233.30 165.54 233.30 164.47 c 233.30 163.40 232.43 162.53 231.36 162.53 c 230.29 162.53 229.41 163.40 229.41 164.47 c B 307.18 170.25 m 307.18 171.32 308.06 172.19 309.13 172.19 c 310.20 172.19 311.07 171.32 311.07 170.25 c 311.07 169.18 310.20 168.30 309.13 168.30 c 308.06 168.30 307.18 169.18 307.18 170.25 c B 308.06 172.54 m 308.06 173.61 308.94 174.48 310.00 174.48 c 311.07 174.48 311.95 173.61 311.95 172.54 c 311.95 171.47 311.07 170.60 310.00 170.60 c 308.94 170.60 308.06 171.47 308.06 172.54 c B 292.74 169.05 m 292.74 170.12 293.62 170.99 294.69 170.99 c 295.76 170.99 296.63 170.12 296.63 169.05 c 296.63 167.98 295.76 167.11 294.69 167.11 c 293.62 167.11 292.74 167.98 292.74 169.05 c B 206.49 167.26 m 206.49 168.33 207.37 169.21 208.44 169.21 c 209.51 169.21 210.38 168.33 210.38 167.26 c 210.38 166.20 209.51 165.32 208.44 165.32 c 207.37 165.32 206.49 166.20 206.49 167.26 c B 77.63 162.97 m 77.63 164.04 78.51 164.92 79.57 164.92 c 80.64 164.92 81.52 164.04 81.52 162.97 c 81.52 161.90 80.64 161.03 79.57 161.03 c 78.51 161.03 77.63 161.90 77.63 162.97 c B 329.98 165.38 m 329.98 166.45 330.85 167.32 331.92 167.32 c 332.99 167.32 333.86 166.45 333.86 165.38 c 333.86 164.31 332.99 163.44 331.92 163.44 c 330.85 163.44 329.98 164.31 329.98 165.38 c B 201.48 163.12 m 201.48 164.19 202.36 165.06 203.43 165.06 c 204.50 165.06 205.37 164.19 205.37 163.12 c 205.37 162.05 204.50 161.17 203.43 161.17 c 202.36 161.17 201.48 162.05 201.48 163.12 c B 65.38 166.01 m 65.38 167.08 66.25 167.96 67.32 167.96 c 68.39 167.96 69.26 167.08 69.26 166.01 c 69.26 164.94 68.39 164.07 67.32 164.07 c 66.25 164.07 65.38 164.94 65.38 166.01 c B 194.20 168.16 m 194.20 169.23 195.07 170.10 196.14 170.10 c 197.21 170.10 198.09 169.23 198.09 168.16 c 198.09 167.09 197.21 166.22 196.14 166.22 c 195.07 166.22 194.20 167.09 194.20 168.16 c B 165.03 165.02 m 165.03 166.09 165.91 166.96 166.98 166.96 c 168.05 166.96 168.92 166.09 168.92 165.02 c 168.92 163.95 168.05 163.07 166.98 163.07 c 165.91 163.07 165.03 163.95 165.03 165.02 c B 252.54 163.51 m 252.54 164.58 253.42 165.46 254.49 165.46 c 255.56 165.46 256.43 164.58 256.43 163.51 c 256.43 162.44 255.56 161.57 254.49 161.57 c 253.42 161.57 252.54 162.44 252.54 163.51 c B 325.83 166.55 m 325.83 167.62 326.71 168.50 327.77 168.50 c 328.84 168.50 329.72 167.62 329.72 166.55 c 329.72 165.48 328.84 164.61 327.77 164.61 c 326.71 164.61 325.83 165.48 325.83 166.55 c B 104.91 166.08 m 104.91 167.15 105.78 168.03 106.85 168.03 c 107.92 168.03 108.80 167.15 108.80 166.08 c 108.80 165.01 107.92 164.14 106.85 164.14 c 105.78 164.14 104.91 165.01 104.91 166.08 c B 91.16 173.88 m 91.16 174.95 92.03 175.82 93.10 175.82 c 94.17 175.82 95.05 174.95 95.05 173.88 c 95.05 172.81 94.17 171.93 93.10 171.93 c 92.03 171.93 91.16 172.81 91.16 173.88 c B 288.27 167.77 m 288.27 168.84 289.15 169.71 290.21 169.71 c 291.28 169.71 292.16 168.84 292.16 167.77 c 292.16 166.70 291.28 165.83 290.21 165.83 c 289.15 165.83 288.27 166.70 288.27 167.77 c B 75.59 171.30 m 75.59 172.37 76.46 173.25 77.53 173.25 c 78.60 173.25 79.48 172.37 79.48 171.30 c 79.48 170.23 78.60 169.36 77.53 169.36 c 76.46 169.36 75.59 170.23 75.59 171.30 c B 328.10 169.77 m 328.10 170.84 328.97 171.71 330.04 171.71 c 331.11 171.71 331.98 170.84 331.98 169.77 c 331.98 168.70 331.11 167.82 330.04 167.82 c 328.97 167.82 328.10 168.70 328.10 169.77 c B 96.32 168.21 m 96.32 169.28 97.19 170.16 98.26 170.16 c 99.33 170.16 100.21 169.28 100.21 168.21 c 100.21 167.14 99.33 166.27 98.26 166.27 c 97.19 166.27 96.32 167.14 96.32 168.21 c B 275.96 165.83 m 275.96 166.90 276.83 167.77 277.90 167.77 c 278.97 167.77 279.85 166.90 279.85 165.83 c 279.85 164.76 278.97 163.89 277.90 163.89 c 276.83 163.89 275.96 164.76 275.96 165.83 c B 233.10 164.09 m 233.10 165.15 233.98 166.03 235.05 166.03 c 236.12 166.03 236.99 165.15 236.99 164.09 c 236.99 163.02 236.12 162.14 235.05 162.14 c 233.98 162.14 233.10 163.02 233.10 164.09 c B 62.31 163.11 m 62.31 164.18 63.19 165.05 64.25 165.05 c 65.32 165.05 66.20 164.18 66.20 163.11 c 66.20 162.04 65.32 161.17 64.25 161.17 c 63.19 161.17 62.31 162.04 62.31 163.11 c B 33.96 171.89 m 33.96 172.96 34.84 173.83 35.91 173.83 c 36.97 173.83 37.85 172.96 37.85 171.89 c 37.85 170.82 36.97 169.95 35.91 169.95 c 34.84 169.95 33.96 170.82 33.96 171.89 c B 108.30 172.58 m 108.30 173.64 109.17 174.52 110.24 174.52 c 111.31 174.52 112.19 173.64 112.19 172.58 c 112.19 171.51 111.31 170.63 110.24 170.63 c 109.17 170.63 108.30 171.51 108.30 172.58 c B 130.99 167.28 m 130.99 168.35 131.86 169.22 132.93 169.22 c 134.00 169.22 134.88 168.35 134.88 167.28 c 134.88 166.21 134.00 165.33 132.93 165.33 c 131.86 165.33 130.99 166.21 130.99 167.28 c B 174.05 163.94 m 174.05 165.01 174.93 165.88 176.00 165.88 c 177.07 165.88 177.94 165.01 177.94 163.94 c 177.94 162.87 177.07 162.00 176.00 162.00 c 174.93 162.00 174.05 162.87 174.05 163.94 c B 65.46 118.02 m 65.46 119.09 66.34 119.96 67.41 119.96 c 68.48 119.96 69.35 119.09 69.35 118.02 c 69.35 116.95 68.48 116.07 67.41 116.07 c 66.34 116.07 65.46 116.95 65.46 118.02 c B 307.03 120.16 m 307.03 121.23 307.91 122.10 308.97 122.10 c 310.04 122.10 310.92 121.23 310.92 120.16 c 310.92 119.09 310.04 118.21 308.97 118.21 c 307.91 118.21 307.03 119.09 307.03 120.16 c B 88.60 126.48 m 88.60 127.55 89.48 128.42 90.55 128.42 c 91.61 128.42 92.49 127.55 92.49 126.48 c 92.49 125.41 91.61 124.53 90.55 124.53 c 89.48 124.53 88.60 125.41 88.60 126.48 c B 61.79 126.72 m 61.79 127.79 62.66 128.66 63.73 128.66 c 64.80 128.66 65.67 127.79 65.67 126.72 c 65.67 125.65 64.80 124.78 63.73 124.78 c 62.66 124.78 61.79 125.65 61.79 126.72 c B 91.42 116.75 m 91.42 117.82 92.30 118.69 93.37 118.69 c 94.44 118.69 95.31 117.82 95.31 116.75 c 95.31 115.68 94.44 114.81 93.37 114.81 c 92.30 114.81 91.42 115.68 91.42 116.75 c B 146.31 118.27 m 146.31 119.34 147.19 120.22 148.26 120.22 c 149.33 120.22 150.20 119.34 150.20 118.27 c 150.20 117.20 149.33 116.33 148.26 116.33 c 147.19 116.33 146.31 117.20 146.31 118.27 c B 152.76 120.43 m 152.76 121.50 153.64 122.38 154.70 122.38 c 155.77 122.38 156.65 121.50 156.65 120.43 c 156.65 119.36 155.77 118.49 154.70 118.49 c 153.64 118.49 152.76 119.36 152.76 120.43 c B 133.68 116.01 m 133.68 117.08 134.56 117.96 135.63 117.96 c 136.69 117.96 137.57 117.08 137.57 116.01 c 137.57 114.94 136.69 114.07 135.63 114.07 c 134.56 114.07 133.68 114.94 133.68 116.01 c B 137.90 123.44 m 137.90 124.51 138.78 125.38 139.85 125.38 c 140.92 125.38 141.79 124.51 141.79 123.44 c 141.79 122.37 140.92 121.50 139.85 121.50 c 138.78 121.50 137.90 122.37 137.90 123.44 c B 214.55 124.22 m 214.55 125.29 215.42 126.17 216.49 126.17 c 217.56 126.17 218.43 125.29 218.43 124.22 c 218.43 123.15 217.56 122.28 216.49 122.28 c 215.42 122.28 214.55 123.15 214.55 124.22 c B 295.37 122.28 m 295.37 123.35 296.25 124.23 297.32 124.23 c 298.39 124.23 299.26 123.35 299.26 122.28 c 299.26 121.21 298.39 120.34 297.32 120.34 c 296.25 120.34 295.37 121.21 295.37 122.28 c B 165.11 125.37 m 165.11 126.44 165.98 127.31 167.05 127.31 c 168.12 127.31 168.99 126.44 168.99 125.37 c 168.99 124.30 168.12 123.42 167.05 123.42 c 165.98 123.42 165.11 124.30 165.11 125.37 c B 289.07 124.62 m 289.07 125.69 289.95 126.57 291.01 126.57 c 292.08 126.57 292.96 125.69 292.96 124.62 c 292.96 123.56 292.08 122.68 291.01 122.68 c 289.95 122.68 289.07 123.56 289.07 124.62 c B 71.21 122.60 m 71.21 123.67 72.08 124.54 73.15 124.54 c 74.22 124.54 75.10 123.67 75.10 122.60 c 75.10 121.53 74.22 120.65 73.15 120.65 c 72.08 120.65 71.21 121.53 71.21 122.60 c B 143.89 118.28 m 143.89 119.35 144.76 120.22 145.83 120.22 c 146.90 120.22 147.77 119.35 147.77 118.28 c 147.77 117.21 146.90 116.34 145.83 116.34 c 144.76 116.34 143.89 117.21 143.89 118.28 c B 216.68 125.97 m 216.68 127.04 217.55 127.91 218.62 127.91 c 219.69 127.91 220.56 127.04 220.56 125.97 c 220.56 124.90 219.69 124.03 218.62 124.03 c 217.55 124.03 216.68 124.90 216.68 125.97 c B 195.75 124.45 m 195.75 125.52 196.62 126.39 197.69 126.39 c 198.76 126.39 199.64 125.52 199.64 124.45 c 199.64 123.38 198.76 122.50 197.69 122.50 c 196.62 122.50 195.75 123.38 195.75 124.45 c B 287.12 117.50 m 287.12 118.57 288.00 119.45 289.07 119.45 c 290.13 119.45 291.01 118.57 291.01 117.50 c 291.01 116.43 290.13 115.56 289.07 115.56 c 288.00 115.56 287.12 116.43 287.12 117.50 c B 253.02 119.76 m 253.02 120.83 253.89 121.70 254.96 121.70 c 256.03 121.70 256.91 120.83 256.91 119.76 c 256.91 118.69 256.03 117.81 254.96 117.81 c 253.89 117.81 253.02 118.69 253.02 119.76 c B 323.76 125.93 m 323.76 127.00 324.64 127.88 325.71 127.88 c 326.77 127.88 327.65 127.00 327.65 125.93 c 327.65 124.87 326.77 123.99 325.71 123.99 c 324.64 123.99 323.76 124.87 323.76 125.93 c B 250.66 119.88 m 250.66 120.95 251.54 121.82 252.61 121.82 c 253.68 121.82 254.55 120.95 254.55 119.88 c 254.55 118.81 253.68 117.93 252.61 117.93 c 251.54 117.93 250.66 118.81 250.66 119.88 c B 158.69 125.79 m 158.69 126.86 159.57 127.73 160.63 127.73 c 161.70 127.73 162.58 126.86 162.58 125.79 c 162.58 124.72 161.70 123.85 160.63 123.85 c 159.57 123.85 158.69 124.72 158.69 125.79 c B 111.79 123.27 m 111.79 124.34 112.67 125.21 113.74 125.21 c 114.81 125.21 115.68 124.34 115.68 123.27 c 115.68 122.20 114.81 121.33 113.74 121.33 c 112.67 121.33 111.79 122.20 111.79 123.27 c B 321.08 121.69 m 321.08 122.76 321.96 123.63 323.03 123.63 c 324.10 123.63 324.97 122.76 324.97 121.69 c 324.97 120.62 324.10 119.75 323.03 119.75 c 321.96 119.75 321.08 120.62 321.08 121.69 c B 121.77 117.76 m 121.77 118.83 122.65 119.71 123.72 119.71 c 124.78 119.71 125.66 118.83 125.66 117.76 c 125.66 116.70 124.78 115.82 123.72 115.82 c 122.65 115.82 121.77 116.70 121.77 117.76 c B 318.51 119.60 m 318.51 120.67 319.38 121.54 320.45 121.54 c 321.52 121.54 322.40 120.67 322.40 119.60 c 322.40 118.53 321.52 117.65 320.45 117.65 c 319.38 117.65 318.51 118.53 318.51 119.60 c B 316.93 126.97 m 316.93 128.04 317.81 128.91 318.88 128.91 c 319.95 128.91 320.82 128.04 320.82 126.97 c 320.82 125.90 319.95 125.03 318.88 125.03 c 317.81 125.03 316.93 125.90 316.93 126.97 c B 238.00 116.09 m 238.00 117.16 238.87 118.04 239.94 118.04 c 241.01 118.04 241.89 117.16 241.89 116.09 c 241.89 115.03 241.01 114.15 239.94 114.15 c 238.87 114.15 238.00 115.03 238.00 116.09 c B 204.38 117.83 m 204.38 118.90 205.26 119.77 206.33 119.77 c 207.40 119.77 208.27 118.90 208.27 117.83 c 208.27 116.76 207.40 115.88 206.33 115.88 c 205.26 115.88 204.38 116.76 204.38 117.83 c B 298.79 119.77 m 298.79 120.84 299.66 121.71 300.73 121.71 c 301.80 121.71 302.67 120.84 302.67 119.77 c 302.67 118.70 301.80 117.82 300.73 117.82 c 299.66 117.82 298.79 118.70 298.79 119.77 c B 285.48 117.10 m 285.48 118.17 286.36 119.04 287.43 119.04 c 288.49 119.04 289.37 118.17 289.37 117.10 c 289.37 116.03 288.49 115.15 287.43 115.15 c 286.36 115.15 285.48 116.03 285.48 117.10 c B 108.39 123.56 m 108.39 124.63 109.27 125.51 110.34 125.51 c 111.41 125.51 112.28 124.63 112.28 123.56 c 112.28 122.49 111.41 121.62 110.34 121.62 c 109.27 121.62 108.39 122.49 108.39 123.56 c B 306.92 126.04 m 306.92 127.11 307.79 127.99 308.86 127.99 c 309.93 127.99 310.81 127.11 310.81 126.04 c 310.81 124.97 309.93 124.10 308.86 124.10 c 307.79 124.10 306.92 124.97 306.92 126.04 c B 269.84 125.02 m 269.84 126.09 270.72 126.97 271.79 126.97 c 272.86 126.97 273.73 126.09 273.73 125.02 c 273.73 123.95 272.86 123.08 271.79 123.08 c 270.72 123.08 269.84 123.95 269.84 125.02 c B 310.41 121.90 m 310.41 122.97 311.28 123.84 312.35 123.84 c 313.42 123.84 314.30 122.97 314.30 121.90 c 314.30 120.83 313.42 119.95 312.35 119.95 c 311.28 119.95 310.41 120.83 310.41 121.90 c B 292.39 118.30 m 292.39 119.37 293.27 120.24 294.34 120.24 c 295.41 120.24 296.28 119.37 296.28 118.30 c 296.28 117.23 295.41 116.35 294.34 116.35 c 293.27 116.35 292.39 117.23 292.39 118.30 c B 304.12 123.62 m 304.12 124.69 304.99 125.56 306.06 125.56 c 307.13 125.56 308.00 124.69 308.00 123.62 c 308.00 122.55 307.13 121.68 306.06 121.68 c 304.99 121.68 304.12 122.55 304.12 123.62 c B 172.22 125.57 m 172.22 126.64 173.09 127.52 174.16 127.52 c 175.23 127.52 176.11 126.64 176.11 125.57 c 176.11 124.51 175.23 123.63 174.16 123.63 c 173.09 123.63 172.22 124.51 172.22 125.57 c B 304.95 116.93 m 304.95 118.00 305.83 118.88 306.89 118.88 c 307.96 118.88 308.84 118.00 308.84 116.93 c 308.84 115.86 307.96 114.99 306.89 114.99 c 305.83 114.99 304.95 115.86 304.95 116.93 c B 304.52 124.07 m 304.52 125.14 305.40 126.01 306.47 126.01 c 307.54 126.01 308.41 125.14 308.41 124.07 c 308.41 123.00 307.54 122.12 306.47 122.12 c 305.40 122.12 304.52 123.00 304.52 124.07 c B 286.61 118.11 m 286.61 119.18 287.49 120.06 288.56 120.06 c 289.63 120.06 290.50 119.18 290.50 118.11 c 290.50 117.04 289.63 116.17 288.56 116.17 c 287.49 116.17 286.61 117.04 286.61 118.11 c B 270.27 120.29 m 270.27 121.35 271.14 122.23 272.21 122.23 c 273.28 122.23 274.16 121.35 274.16 120.29 c 274.16 119.22 273.28 118.34 272.21 118.34 c 271.14 118.34 270.27 119.22 270.27 120.29 c B 302.92 116.31 m 302.92 117.38 303.80 118.25 304.87 118.25 c 305.94 118.25 306.81 117.38 306.81 116.31 c 306.81 115.24 305.94 114.37 304.87 114.37 c 303.80 114.37 302.92 115.24 302.92 116.31 c B 272.83 118.29 m 272.83 119.36 273.70 120.23 274.77 120.23 c 275.84 120.23 276.72 119.36 276.72 118.29 c 276.72 117.22 275.84 116.34 274.77 116.34 c 273.70 116.34 272.83 117.22 272.83 118.29 c B 276.02 124.62 m 276.02 125.69 276.89 126.57 277.96 126.57 c 279.03 126.57 279.91 125.69 279.91 124.62 c 279.91 123.55 279.03 122.68 277.96 122.68 c 276.89 122.68 276.02 123.55 276.02 124.62 c B 283.16 123.74 m 283.16 124.81 284.04 125.69 285.11 125.69 c 286.18 125.69 287.05 124.81 287.05 123.74 c 287.05 122.67 286.18 121.80 285.11 121.80 c 284.04 121.80 283.16 122.67 283.16 123.74 c B 292.73 116.47 m 292.73 117.54 293.60 118.41 294.67 118.41 c 295.74 118.41 296.62 117.54 296.62 116.47 c 296.62 115.40 295.74 114.52 294.67 114.52 c 293.60 114.52 292.73 115.40 292.73 116.47 c B 283.79 125.06 m 283.79 126.13 284.66 127.01 285.73 127.01 c 286.80 127.01 287.67 126.13 287.67 125.06 c 287.67 123.99 286.80 123.12 285.73 123.12 c 284.66 123.12 283.79 123.99 283.79 125.06 c B 277.97 121.45 m 277.97 122.52 278.84 123.39 279.91 123.39 c 280.98 123.39 281.85 122.52 281.85 121.45 c 281.85 120.38 280.98 119.51 279.91 119.51 c 278.84 119.51 277.97 120.38 277.97 121.45 c B 292.09 121.77 m 292.09 122.84 292.96 123.71 294.03 123.71 c 295.10 123.71 295.98 122.84 295.98 121.77 c 295.98 120.70 295.10 119.83 294.03 119.83 c 292.96 119.83 292.09 120.70 292.09 121.77 c B 228.78 121.17 m 228.78 122.24 229.66 123.11 230.73 123.11 c 231.80 123.11 232.67 122.24 232.67 121.17 c 232.67 120.10 231.80 119.23 230.73 119.23 c 229.66 119.23 228.78 120.10 228.78 121.17 c B 187.04 119.84 m 187.04 120.91 187.91 121.79 188.98 121.79 c 190.05 121.79 190.93 120.91 190.93 119.84 c 190.93 118.77 190.05 117.90 188.98 117.90 c 187.91 117.90 187.04 118.77 187.04 119.84 c B 259.50 119.33 m 259.50 120.40 260.38 121.27 261.45 121.27 c 262.52 121.27 263.39 120.40 263.39 119.33 c 263.39 118.26 262.52 117.38 261.45 117.38 c 260.38 117.38 259.50 118.26 259.50 119.33 c B 75.63 122.30 m 75.63 123.37 76.50 124.24 77.57 124.24 c 78.64 124.24 79.52 123.37 79.52 122.30 c 79.52 121.23 78.64 120.35 77.57 120.35 c 76.50 120.35 75.63 121.23 75.63 122.30 c B 283.15 126.82 m 283.15 127.88 284.03 128.76 285.10 128.76 c 286.17 128.76 287.04 127.88 287.04 126.82 c 287.04 125.75 286.17 124.87 285.10 124.87 c 284.03 124.87 283.15 125.75 283.15 126.82 c B 286.71 117.57 m 286.71 118.64 287.59 119.52 288.66 119.52 c 289.73 119.52 290.60 118.64 290.60 117.57 c 290.60 116.51 289.73 115.63 288.66 115.63 c 287.59 115.63 286.71 116.51 286.71 117.57 c B 289.15 125.47 m 289.15 126.54 290.02 127.42 291.09 127.42 c 292.16 127.42 293.04 126.54 293.04 125.47 c 293.04 124.40 292.16 123.53 291.09 123.53 c 290.02 123.53 289.15 124.40 289.15 125.47 c B 105.07 117.04 m 105.07 118.11 105.94 118.99 107.01 118.99 c 108.08 118.99 108.96 118.11 108.96 117.04 c 108.96 115.98 108.08 115.10 107.01 115.10 c 105.94 115.10 105.07 115.98 105.07 117.04 c B 294.89 118.83 m 294.89 119.90 295.76 120.78 296.83 120.78 c 297.90 120.78 298.78 119.90 298.78 118.83 c 298.78 117.76 297.90 116.89 296.83 116.89 c 295.76 116.89 294.89 117.76 294.89 118.83 c B 294.06 119.64 m 294.06 120.71 294.93 121.59 296.00 121.59 c 297.07 121.59 297.95 120.71 297.95 119.64 c 297.95 118.57 297.07 117.70 296.00 117.70 c 294.93 117.70 294.06 118.57 294.06 119.64 c B 290.12 118.69 m 290.12 119.76 290.99 120.63 292.06 120.63 c 293.13 120.63 294.01 119.76 294.01 118.69 c 294.01 117.62 293.13 116.75 292.06 116.75 c 290.99 116.75 290.12 117.62 290.12 118.69 c B 284.30 117.82 m 284.30 118.89 285.17 119.77 286.24 119.77 c 287.31 119.77 288.18 118.89 288.18 117.82 c 288.18 116.75 287.31 115.88 286.24 115.88 c 285.17 115.88 284.30 116.75 284.30 117.82 c B 295.15 124.09 m 295.15 125.16 296.03 126.03 297.10 126.03 c 298.17 126.03 299.04 125.16 299.04 124.09 c 299.04 123.02 298.17 122.14 297.10 122.14 c 296.03 122.14 295.15 123.02 295.15 124.09 c B 163.28 119.92 m 163.28 120.99 164.16 121.86 165.23 121.86 c 166.30 121.86 167.17 120.99 167.17 119.92 c 167.17 118.85 166.30 117.98 165.23 117.98 c 164.16 117.98 163.28 118.85 163.28 119.92 c B 282.34 121.17 m 282.34 122.24 283.22 123.12 284.29 123.12 c 285.36 123.12 286.23 122.24 286.23 121.17 c 286.23 120.10 285.36 119.23 284.29 119.23 c 283.22 119.23 282.34 120.10 282.34 121.17 c B 290.82 119.16 m 290.82 120.23 291.70 121.10 292.77 121.10 c 293.83 121.10 294.71 120.23 294.71 119.16 c 294.71 118.09 293.83 117.22 292.77 117.22 c 291.70 117.22 290.82 118.09 290.82 119.16 c B 285.88 118.86 m 285.88 119.93 286.76 120.81 287.83 120.81 c 288.90 120.81 289.77 119.93 289.77 118.86 c 289.77 117.79 288.90 116.92 287.83 116.92 c 286.76 116.92 285.88 117.79 285.88 118.86 c B 146.06 115.96 m 146.06 117.03 146.93 117.91 148.00 117.91 c 149.07 117.91 149.95 117.03 149.95 115.96 c 149.95 114.89 149.07 114.02 148.00 114.02 c 146.93 114.02 146.06 114.89 146.06 115.96 c B 270.15 123.47 m 270.15 124.54 271.03 125.41 272.10 125.41 c 273.17 125.41 274.04 124.54 274.04 123.47 c 274.04 122.40 273.17 121.52 272.10 121.52 c 271.03 121.52 270.15 122.40 270.15 123.47 c B 280.80 123.48 m 280.80 124.55 281.67 125.42 282.74 125.42 c 283.81 125.42 284.68 124.55 284.68 123.48 c 284.68 122.41 283.81 121.54 282.74 121.54 c 281.67 121.54 280.80 122.41 280.80 123.48 c B 161.79 124.45 m 161.79 125.52 162.66 126.39 163.73 126.39 c 164.80 126.39 165.68 125.52 165.68 124.45 c 165.68 123.38 164.80 122.50 163.73 122.50 c 162.66 122.50 161.79 123.38 161.79 124.45 c B 230.12 123.06 m 230.12 124.13 230.99 125.01 232.06 125.01 c 233.13 125.01 234.00 124.13 234.00 123.06 c 234.00 122.00 233.13 121.12 232.06 121.12 c 230.99 121.12 230.12 122.00 230.12 123.06 c B 285.04 120.14 m 285.04 121.21 285.92 122.08 286.99 122.08 c 288.05 122.08 288.93 121.21 288.93 120.14 c 288.93 119.07 288.05 118.20 286.99 118.20 c 285.92 118.20 285.04 119.07 285.04 120.14 c B 282.82 124.04 m 282.82 125.11 283.70 125.98 284.77 125.98 c 285.84 125.98 286.71 125.11 286.71 124.04 c 286.71 122.97 285.84 122.09 284.77 122.09 c 283.70 122.09 282.82 122.97 282.82 124.04 c B 149.09 120.61 m 149.09 121.68 149.96 122.55 151.03 122.55 c 152.10 122.55 152.97 121.68 152.97 120.61 c 152.97 119.54 152.10 118.66 151.03 118.66 c 149.96 118.66 149.09 119.54 149.09 120.61 c B 289.84 121.34 m 289.84 122.41 290.72 123.28 291.79 123.28 c 292.85 123.28 293.73 122.41 293.73 121.34 c 293.73 120.27 292.85 119.39 291.79 119.39 c 290.72 119.39 289.84 120.27 289.84 121.34 c B 279.67 121.90 m 279.67 122.97 280.54 123.84 281.61 123.84 c 282.68 123.84 283.55 122.97 283.55 121.90 c 283.55 120.83 282.68 119.95 281.61 119.95 c 280.54 119.95 279.67 120.83 279.67 121.90 c B 275.08 124.70 m 275.08 125.77 275.95 126.65 277.02 126.65 c 278.09 126.65 278.97 125.77 278.97 124.70 c 278.97 123.63 278.09 122.76 277.02 122.76 c 275.95 122.76 275.08 123.63 275.08 124.70 c B 289.11 123.33 m 289.11 124.40 289.98 125.28 291.05 125.28 c 292.12 125.28 293.00 124.40 293.00 123.33 c 293.00 122.26 292.12 121.39 291.05 121.39 c 289.98 121.39 289.11 122.26 289.11 123.33 c B 96.36 121.53 m 96.36 122.60 97.24 123.48 98.31 123.48 c 99.38 123.48 100.25 122.60 100.25 121.53 c 100.25 120.46 99.38 119.59 98.31 119.59 c 97.24 119.59 96.36 120.46 96.36 121.53 c B 289.23 117.20 m 289.23 118.27 290.10 119.15 291.17 119.15 c 292.24 119.15 293.12 118.27 293.12 117.20 c 293.12 116.14 292.24 115.26 291.17 115.26 c 290.10 115.26 289.23 116.14 289.23 117.20 c B 77.75 122.19 m 77.75 123.26 78.62 124.13 79.69 124.13 c 80.76 124.13 81.64 123.26 81.64 122.19 c 81.64 121.12 80.76 120.24 79.69 120.24 c 78.62 120.24 77.75 121.12 77.75 122.19 c B 288.17 118.12 m 288.17 119.18 289.04 120.06 290.11 120.06 c 291.18 120.06 292.05 119.18 292.05 118.12 c 292.05 117.05 291.18 116.17 290.11 116.17 c 289.04 116.17 288.17 117.05 288.17 118.12 c B 154.90 125.40 m 154.90 126.47 155.78 127.34 156.85 127.34 c 157.91 127.34 158.79 126.47 158.79 125.40 c 158.79 124.33 157.91 123.46 156.85 123.46 c 155.78 123.46 154.90 124.33 154.90 125.40 c B 287.93 125.31 m 287.93 126.38 288.80 127.25 289.87 127.25 c 290.94 127.25 291.82 126.38 291.82 125.31 c 291.82 124.24 290.94 123.37 289.87 123.37 c 288.80 123.37 287.93 124.24 287.93 125.31 c B 288.30 125.07 m 288.30 126.14 289.17 127.02 290.24 127.02 c 291.31 127.02 292.19 126.14 292.19 125.07 c 292.19 124.00 291.31 123.13 290.24 123.13 c 289.17 123.13 288.30 124.00 288.30 125.07 c B 287.73 122.12 m 287.73 123.19 288.60 124.06 289.67 124.06 c 290.74 124.06 291.62 123.19 291.62 122.12 c 291.62 121.05 290.74 120.17 289.67 120.17 c 288.60 120.17 287.73 121.05 287.73 122.12 c B 286.77 121.79 m 286.77 122.86 287.65 123.73 288.72 123.73 c 289.79 123.73 290.66 122.86 290.66 121.79 c 290.66 120.72 289.79 119.84 288.72 119.84 c 287.65 119.84 286.77 120.72 286.77 121.79 c B 281.65 126.97 m 281.65 128.04 282.53 128.92 283.59 128.92 c 284.66 128.92 285.54 128.04 285.54 126.97 c 285.54 125.90 284.66 125.03 283.59 125.03 c 282.53 125.03 281.65 125.90 281.65 126.97 c B 150.93 122.50 m 150.93 123.57 151.81 124.45 152.88 124.45 c 153.95 124.45 154.82 123.57 154.82 122.50 c 154.82 121.43 153.95 120.56 152.88 120.56 c 151.81 120.56 150.93 121.43 150.93 122.50 c B 271.32 119.50 m 271.32 120.57 272.19 121.44 273.26 121.44 c 274.33 121.44 275.20 120.57 275.20 119.50 c 275.20 118.43 274.33 117.55 273.26 117.55 c 272.19 117.55 271.32 118.43 271.32 119.50 c B 286.04 119.87 m 286.04 120.94 286.91 121.81 287.98 121.81 c 289.05 121.81 289.93 120.94 289.93 119.87 c 289.93 118.80 289.05 117.93 287.98 117.93 c 286.91 117.93 286.04 118.80 286.04 119.87 c B 272.43 122.87 m 272.43 123.94 273.31 124.81 274.37 124.81 c 275.44 124.81 276.32 123.94 276.32 122.87 c 276.32 121.80 275.44 120.93 274.37 120.93 c 273.31 120.93 272.43 121.80 272.43 122.87 c B 284.33 121.85 m 284.33 122.92 285.21 123.80 286.28 123.80 c 287.35 123.80 288.22 122.92 288.22 121.85 c 288.22 120.79 287.35 119.91 286.28 119.91 c 285.21 119.91 284.33 120.79 284.33 121.85 c B 287.23 126.11 m 287.23 127.18 288.10 128.06 289.17 128.06 c 290.24 128.06 291.11 127.18 291.11 126.11 c 291.11 125.04 290.24 124.17 289.17 124.17 c 288.10 124.17 287.23 125.04 287.23 126.11 c B 287.15 116.97 m 287.15 118.04 288.03 118.92 289.10 118.92 c 290.17 118.92 291.04 118.04 291.04 116.97 c 291.04 115.91 290.17 115.03 289.10 115.03 c 288.03 115.03 287.15 115.91 287.15 116.97 c B 287.04 123.93 m 287.04 125.00 287.92 125.87 288.99 125.87 c 290.06 125.87 290.93 125.00 290.93 123.93 c 290.93 122.86 290.06 121.98 288.99 121.98 c 287.92 121.98 287.04 122.86 287.04 123.93 c B 139.78 122.14 m 139.78 123.21 140.66 124.08 141.73 124.08 c 142.80 124.08 143.67 123.21 143.67 122.14 c 143.67 121.07 142.80 120.20 141.73 120.20 c 140.66 120.20 139.78 121.07 139.78 122.14 c B 286.84 124.03 m 286.84 125.10 287.72 125.97 288.79 125.97 c 289.86 125.97 290.73 125.10 290.73 124.03 c 290.73 122.96 289.86 122.08 288.79 122.08 c 287.72 122.08 286.84 122.96 286.84 124.03 c B 265.34 123.20 m 265.34 124.27 266.22 125.15 267.29 125.15 c 268.36 125.15 269.23 124.27 269.23 123.20 c 269.23 122.13 268.36 121.26 267.29 121.26 c 266.22 121.26 265.34 122.13 265.34 123.20 c B 284.20 120.50 m 284.20 121.57 285.08 122.45 286.15 122.45 c 287.22 122.45 288.09 121.57 288.09 120.50 c 288.09 119.43 287.22 118.56 286.15 118.56 c 285.08 118.56 284.20 119.43 284.20 120.50 c B 34.72 122.79 m 34.72 123.86 35.59 124.73 36.66 124.73 c 37.73 124.73 38.60 123.86 38.60 122.79 c 38.60 121.72 37.73 120.85 36.66 120.85 c 35.59 120.85 34.72 121.72 34.72 122.79 c B 77.16 118.77 m 77.16 119.84 78.03 120.71 79.10 120.71 c 80.17 120.71 81.04 119.84 81.04 118.77 c 81.04 117.70 80.17 116.83 79.10 116.83 c 78.03 116.83 77.16 117.70 77.16 118.77 c B 202.77 121.16 m 202.77 122.23 203.64 123.10 204.71 123.10 c 205.78 123.10 206.66 122.23 206.66 121.16 c 206.66 120.09 205.78 119.22 204.71 119.22 c 203.64 119.22 202.77 120.09 202.77 121.16 c B 207.27 116.52 m 207.27 117.59 208.14 118.47 209.21 118.47 c 210.28 118.47 211.15 117.59 211.15 116.52 c 211.15 115.45 210.28 114.58 209.21 114.58 c 208.14 114.58 207.27 115.45 207.27 116.52 c B 233.21 116.68 m 233.21 117.75 234.08 118.62 235.15 118.62 c 236.22 118.62 237.09 117.75 237.09 116.68 c 237.09 115.61 236.22 114.74 235.15 114.74 c 234.08 114.74 233.21 115.61 233.21 116.68 c B 110.32 119.28 m 110.32 120.35 111.19 121.23 112.26 121.23 c 113.33 121.23 114.21 120.35 114.21 119.28 c 114.21 118.22 113.33 117.34 112.26 117.34 c 111.19 117.34 110.32 118.22 110.32 119.28 c B 238.48 125.46 m 238.48 126.53 239.36 127.41 240.43 127.41 c 241.50 127.41 242.37 126.53 242.37 125.46 c 242.37 124.39 241.50 123.52 240.43 123.52 c 239.36 123.52 238.48 124.39 238.48 125.46 c B 238.57 117.75 m 238.57 118.82 239.44 119.70 240.51 119.70 c 241.58 119.70 242.45 118.82 242.45 117.75 c 242.45 116.68 241.58 115.81 240.51 115.81 c 239.44 115.81 238.57 116.68 238.57 117.75 c B 250.33 118.09 m 250.33 119.16 251.20 120.03 252.27 120.03 c 253.34 120.03 254.21 119.16 254.21 118.09 c 254.21 117.02 253.34 116.14 252.27 116.14 c 251.20 116.14 250.33 117.02 250.33 118.09 c B 262.35 119.72 m 262.35 120.79 263.23 121.66 264.30 121.66 c 265.37 121.66 266.24 120.79 266.24 119.72 c 266.24 118.65 265.37 117.77 264.30 117.77 c 263.23 117.77 262.35 118.65 262.35 119.72 c B 263.06 119.94 m 263.06 121.01 263.94 121.88 265.01 121.88 c 266.08 121.88 266.95 121.01 266.95 119.94 c 266.95 118.87 266.08 117.99 265.01 117.99 c 263.94 117.99 263.06 118.87 263.06 119.94 c B 262.71 124.54 m 262.71 125.61 263.58 126.49 264.65 126.49 c 265.72 126.49 266.60 125.61 266.60 124.54 c 266.60 123.47 265.72 122.60 264.65 122.60 c 263.58 122.60 262.71 123.47 262.71 124.54 c B 141.23 118.24 m 141.23 119.31 142.11 120.18 143.17 120.18 c 144.24 120.18 145.12 119.31 145.12 118.24 c 145.12 117.17 144.24 116.29 143.17 116.29 c 142.11 116.29 141.23 117.17 141.23 118.24 c B 264.82 118.25 m 264.82 119.32 265.70 120.20 266.76 120.20 c 267.83 120.20 268.71 119.32 268.71 118.25 c 268.71 117.18 267.83 116.31 266.76 116.31 c 265.70 116.31 264.82 117.18 264.82 118.25 c B 265.35 124.69 m 265.35 125.76 266.22 126.63 267.29 126.63 c 268.36 126.63 269.24 125.76 269.24 124.69 c 269.24 123.62 268.36 122.74 267.29 122.74 c 266.22 122.74 265.35 123.62 265.35 124.69 c B 267.63 117.88 m 267.63 118.94 268.51 119.82 269.58 119.82 c 270.64 119.82 271.52 118.94 271.52 117.88 c 271.52 116.81 270.64 115.93 269.58 115.93 c 268.51 115.93 267.63 116.81 267.63 117.88 c B 265.53 120.61 m 265.53 121.68 266.40 122.55 267.47 122.55 c 268.54 122.55 269.42 121.68 269.42 120.61 c 269.42 119.54 268.54 118.66 267.47 118.66 c 266.40 118.66 265.53 119.54 265.53 120.61 c B 130.84 117.60 m 130.84 118.67 131.72 119.54 132.79 119.54 c 133.86 119.54 134.73 118.67 134.73 117.60 c 134.73 116.53 133.86 115.65 132.79 115.65 c 131.72 115.65 130.84 116.53 130.84 117.60 c B 276.13 117.89 m 276.13 118.96 277.01 119.84 278.08 119.84 c 279.15 119.84 280.02 118.96 280.02 117.89 c 280.02 116.82 279.15 115.95 278.08 115.95 c 277.01 115.95 276.13 116.82 276.13 117.89 c B 278.04 119.27 m 278.04 120.34 278.92 121.21 279.99 121.21 c 281.05 121.21 281.93 120.34 281.93 119.27 c 281.93 118.20 281.05 117.32 279.99 117.32 c 278.92 117.32 278.04 118.20 278.04 119.27 c B 278.02 119.99 m 278.02 121.06 278.89 121.93 279.96 121.93 c 281.03 121.93 281.90 121.06 281.90 119.99 c 281.90 118.92 281.03 118.05 279.96 118.05 c 278.89 118.05 278.02 118.92 278.02 119.99 c B 279.46 126.26 m 279.46 127.33 280.34 128.21 281.41 128.21 c 282.48 128.21 283.35 127.33 283.35 126.26 c 283.35 125.19 282.48 124.32 281.41 124.32 c 280.34 124.32 279.46 125.19 279.46 126.26 c B 276.87 120.81 m 276.87 121.88 277.75 122.75 278.82 122.75 c 279.89 122.75 280.76 121.88 280.76 120.81 c 280.76 119.74 279.89 118.87 278.82 118.87 c 277.75 118.87 276.87 119.74 276.87 120.81 c B 281.12 120.91 m 281.12 121.98 282.00 122.85 283.07 122.85 c 284.14 122.85 285.01 121.98 285.01 120.91 c 285.01 119.84 284.14 118.96 283.07 118.96 c 282.00 118.96 281.12 119.84 281.12 120.91 c B 285.38 123.71 m 285.38 124.78 286.25 125.65 287.32 125.65 c 288.39 125.65 289.26 124.78 289.26 123.71 c 289.26 122.64 288.39 121.77 287.32 121.77 c 286.25 121.77 285.38 122.64 285.38 123.71 c B 284.52 118.08 m 284.52 119.15 285.40 120.02 286.47 120.02 c 287.54 120.02 288.41 119.15 288.41 118.08 c 288.41 117.01 287.54 116.14 286.47 116.14 c 285.40 116.14 284.52 117.01 284.52 118.08 c B 156.77 122.03 m 156.77 123.09 157.64 123.97 158.71 123.97 c 159.78 123.97 160.65 123.09 160.65 122.03 c 160.65 120.96 159.78 120.08 158.71 120.08 c 157.64 120.08 156.77 120.96 156.77 122.03 c B 285.30 124.31 m 285.30 125.38 286.17 126.26 287.24 126.26 c 288.31 126.26 289.18 125.38 289.18 124.31 c 289.18 123.24 288.31 122.37 287.24 122.37 c 286.17 122.37 285.30 123.24 285.30 124.31 c B 139.75 126.70 m 139.75 127.77 140.62 128.64 141.69 128.64 c 142.76 128.64 143.63 127.77 143.63 126.70 c 143.63 125.63 142.76 124.76 141.69 124.76 c 140.62 124.76 139.75 125.63 139.75 126.70 c B 284.52 122.65 m 284.52 123.72 285.40 124.60 286.47 124.60 c 287.54 124.60 288.41 123.72 288.41 122.65 c 288.41 121.58 287.54 120.71 286.47 120.71 c 285.40 120.71 284.52 121.58 284.52 122.65 c B 284.91 124.96 m 284.91 126.03 285.78 126.91 286.85 126.91 c 287.92 126.91 288.80 126.03 288.80 124.96 c 288.80 123.89 287.92 123.02 286.85 123.02 c 285.78 123.02 284.91 123.89 284.91 124.96 c B 286.85 125.78 m 286.85 126.85 287.72 127.73 288.79 127.73 c 289.86 127.73 290.73 126.85 290.73 125.78 c 290.73 124.71 289.86 123.84 288.79 123.84 c 287.72 123.84 286.85 124.71 286.85 125.78 c B 284.91 126.97 m 284.91 128.04 285.78 128.92 286.85 128.92 c 287.92 128.92 288.80 128.04 288.80 126.97 c 288.80 125.90 287.92 125.03 286.85 125.03 c 285.78 125.03 284.91 125.90 284.91 126.97 c B 286.07 116.80 m 286.07 117.87 286.95 118.74 288.02 118.74 c 289.08 118.74 289.96 117.87 289.96 116.80 c 289.96 115.73 289.08 114.85 288.02 114.85 c 286.95 114.85 286.07 115.73 286.07 116.80 c B 285.68 124.57 m 285.68 125.64 286.56 126.51 287.63 126.51 c 288.70 126.51 289.57 125.64 289.57 124.57 c 289.57 123.50 288.70 122.62 287.63 122.62 c 286.56 122.62 285.68 123.50 285.68 124.57 c B 139.75 126.20 m 139.75 127.27 140.62 128.15 141.69 128.15 c 142.76 128.15 143.63 127.27 143.63 126.20 c 143.63 125.13 142.76 124.26 141.69 124.26 c 140.62 124.26 139.75 125.13 139.75 126.20 c B 284.52 123.60 m 284.52 124.66 285.40 125.54 286.47 125.54 c 287.54 125.54 288.41 124.66 288.41 123.60 c 288.41 122.53 287.54 121.65 286.47 121.65 c 285.40 121.65 284.52 122.53 284.52 123.60 c B 284.91 119.93 m 284.91 120.99 285.78 121.87 286.85 121.87 c 287.92 121.87 288.80 120.99 288.80 119.93 c 288.80 118.86 287.92 117.98 286.85 117.98 c 285.78 117.98 284.91 118.86 284.91 119.93 c B 139.49 122.53 m 139.49 123.60 140.37 124.47 141.43 124.47 c 142.50 124.47 143.38 123.60 143.38 122.53 c 143.38 121.46 142.50 120.58 141.43 120.58 c 140.37 120.58 139.49 121.46 139.49 122.53 c B 286.46 118.13 m 286.46 119.20 287.33 120.07 288.40 120.07 c 289.47 120.07 290.35 119.20 290.35 118.13 c 290.35 117.06 289.47 116.19 288.40 116.19 c 287.33 116.19 286.46 117.06 286.46 118.13 c B 139.75 124.64 m 139.75 125.71 140.62 126.58 141.69 126.58 c 142.76 126.58 143.63 125.71 143.63 124.64 c 143.63 123.57 142.76 122.70 141.69 122.70 c 140.62 122.70 139.75 123.57 139.75 124.64 c B 286.07 117.01 m 286.07 118.08 286.95 118.95 288.02 118.95 c 289.08 118.95 289.96 118.08 289.96 117.01 c 289.96 115.94 289.08 115.07 288.02 115.07 c 286.95 115.07 286.07 115.94 286.07 117.01 c B 155.36 118.95 m 155.36 120.02 156.23 120.90 157.30 120.90 c 158.37 120.90 159.24 120.02 159.24 118.95 c 159.24 117.88 158.37 117.01 157.30 117.01 c 156.23 117.01 155.36 117.88 155.36 118.95 c B 157.62 125.26 m 157.62 126.33 158.49 127.20 159.56 127.20 c 160.63 127.20 161.50 126.33 161.50 125.26 c 161.50 124.19 160.63 123.31 159.56 123.31 c 158.49 123.31 157.62 124.19 157.62 125.26 c B 286.07 119.40 m 286.07 120.47 286.95 121.35 288.02 121.35 c 289.08 121.35 289.96 120.47 289.96 119.40 c 289.96 118.33 289.08 117.46 288.02 117.46 c 286.95 117.46 286.07 118.33 286.07 119.40 c B 282.97 125.59 m 282.97 126.66 283.85 127.54 284.92 127.54 c 285.99 127.54 286.86 126.66 286.86 125.59 c 286.86 124.53 285.99 123.65 284.92 123.65 c 283.85 123.65 282.97 124.53 282.97 125.59 c B 285.68 117.83 m 285.68 118.90 286.56 119.77 287.63 119.77 c 288.70 119.77 289.57 118.90 289.57 117.83 c 289.57 116.76 288.70 115.88 287.63 115.88 c 286.56 115.88 285.68 116.76 285.68 117.83 c B 285.68 123.68 m 285.68 124.75 286.56 125.63 287.63 125.63 c 288.70 125.63 289.57 124.75 289.57 123.68 c 289.57 122.62 288.70 121.74 287.63 121.74 c 286.56 121.74 285.68 122.62 285.68 123.68 c B 285.30 116.88 m 285.30 117.95 286.17 118.82 287.24 118.82 c 288.31 118.82 289.18 117.95 289.18 116.88 c 289.18 115.81 288.31 114.94 287.24 114.94 c 286.17 114.94 285.30 115.81 285.30 116.88 c B 140.00 116.30 m 140.00 117.37 140.88 118.24 141.95 118.24 c 143.02 118.24 143.89 117.37 143.89 116.30 c 143.89 115.23 143.02 114.35 141.95 114.35 c 140.88 114.35 140.00 115.23 140.00 116.30 c B 138.98 124.13 m 138.98 125.20 139.85 126.08 140.92 126.08 c 141.99 126.08 142.87 125.20 142.87 124.13 c 142.87 123.06 141.99 122.19 140.92 122.19 c 139.85 122.19 138.98 123.06 138.98 124.13 c B 286.07 121.43 m 286.07 122.50 286.95 123.37 288.02 123.37 c 289.08 123.37 289.96 122.50 289.96 121.43 c 289.96 120.36 289.08 119.48 288.02 119.48 c 286.95 119.48 286.07 120.36 286.07 121.43 c B 140.52 115.72 m 140.52 116.79 141.39 117.67 142.46 117.67 c 143.53 117.67 144.41 116.79 144.41 115.72 c 144.41 114.65 143.53 113.78 142.46 113.78 c 141.39 113.78 140.52 114.65 140.52 115.72 c B 284.91 120.88 m 284.91 121.95 285.78 122.82 286.85 122.82 c 287.92 122.82 288.80 121.95 288.80 120.88 c 288.80 119.81 287.92 118.93 286.85 118.93 c 285.78 118.93 284.91 119.81 284.91 120.88 c B 284.52 121.34 m 284.52 122.41 285.40 123.29 286.47 123.29 c 287.54 123.29 288.41 122.41 288.41 121.34 c 288.41 120.27 287.54 119.40 286.47 119.40 c 285.40 119.40 284.52 120.27 284.52 121.34 c B 286.85 120.52 m 286.85 121.59 287.72 122.47 288.79 122.47 c 289.86 122.47 290.73 121.59 290.73 120.52 c 290.73 119.45 289.86 118.58 288.79 118.58 c 287.72 118.58 286.85 119.45 286.85 120.52 c B 284.52 117.00 m 284.52 118.07 285.40 118.94 286.47 118.94 c 287.54 118.94 288.41 118.07 288.41 117.00 c 288.41 115.93 287.54 115.05 286.47 115.05 c 285.40 115.05 284.52 115.93 284.52 117.00 c B 285.30 118.79 m 285.30 119.86 286.17 120.73 287.24 120.73 c 288.31 120.73 289.18 119.86 289.18 118.79 c 289.18 117.72 288.31 116.84 287.24 116.84 c 286.17 116.84 285.30 117.72 285.30 118.79 c B 284.52 120.96 m 284.52 122.03 285.40 122.91 286.47 122.91 c 287.54 122.91 288.41 122.03 288.41 120.96 c 288.41 119.89 287.54 119.02 286.47 119.02 c 285.40 119.02 284.52 119.89 284.52 120.96 c B 140.00 118.56 m 140.00 119.63 140.88 120.51 141.95 120.51 c 143.02 120.51 143.89 119.63 143.89 118.56 c 143.89 117.49 143.02 116.62 141.95 116.62 c 140.88 116.62 140.00 117.49 140.00 118.56 c B 284.14 117.67 m 284.14 118.74 285.01 119.62 286.08 119.62 c 287.15 119.62 288.02 118.74 288.02 117.67 c 288.02 116.60 287.15 115.73 286.08 115.73 c 285.01 115.73 284.14 116.60 284.14 117.67 c B 287.23 125.45 m 287.23 126.52 288.11 127.40 289.18 127.40 c 290.25 127.40 291.12 126.52 291.12 125.45 c 291.12 124.38 290.25 123.51 289.18 123.51 c 288.11 123.51 287.23 124.38 287.23 125.45 c B 285.30 126.25 m 285.30 127.32 286.17 128.19 287.24 128.19 c 288.31 128.19 289.18 127.32 289.18 126.25 c 289.18 125.18 288.31 124.31 287.24 124.31 c 286.17 124.31 285.30 125.18 285.30 126.25 c B 286.07 124.11 m 286.07 125.18 286.95 126.06 288.02 126.06 c 289.08 126.06 289.96 125.18 289.96 124.11 c 289.96 123.05 289.08 122.17 288.02 122.17 c 286.95 122.17 286.07 123.05 286.07 124.11 c B 139.75 126.35 m 139.75 127.42 140.62 128.30 141.69 128.30 c 142.76 128.30 143.63 127.42 143.63 126.35 c 143.63 125.28 142.76 124.41 141.69 124.41 c 140.62 124.41 139.75 125.28 139.75 126.35 c B 285.30 117.29 m 285.30 118.36 286.17 119.23 287.24 119.23 c 288.31 119.23 289.18 118.36 289.18 117.29 c 289.18 116.22 288.31 115.35 287.24 115.35 c 286.17 115.35 285.30 116.22 285.30 117.29 c B 287.62 121.62 m 287.62 122.68 288.50 123.56 289.57 123.56 c 290.64 123.56 291.51 122.68 291.51 121.62 c 291.51 120.55 290.64 119.67 289.57 119.67 c 288.50 119.67 287.62 120.55 287.62 121.62 c B 285.30 116.62 m 285.30 117.69 286.17 118.57 287.24 118.57 c 288.31 118.57 289.18 117.69 289.18 116.62 c 289.18 115.55 288.31 114.68 287.24 114.68 c 286.17 114.68 285.30 115.55 285.30 116.62 c B 286.07 119.61 m 286.07 120.68 286.95 121.55 288.02 121.55 c 289.08 121.55 289.96 120.68 289.96 119.61 c 289.96 118.54 289.08 117.66 288.02 117.66 c 286.95 117.66 286.07 118.54 286.07 119.61 c B 139.49 120.81 m 139.49 121.88 140.37 122.75 141.43 122.75 c 142.50 122.75 143.38 121.88 143.38 120.81 c 143.38 119.74 142.50 118.87 141.43 118.87 c 140.37 118.87 139.49 119.74 139.49 120.81 c B 283.75 116.04 m 283.75 117.11 284.62 117.99 285.69 117.99 c 286.76 117.99 287.64 117.11 287.64 116.04 c 287.64 114.97 286.76 114.10 285.69 114.10 c 284.62 114.10 283.75 114.97 283.75 116.04 c B 286.07 123.29 m 286.07 124.36 286.95 125.24 288.02 125.24 c 289.08 125.24 289.96 124.36 289.96 123.29 c 289.96 122.23 289.08 121.35 288.02 121.35 c 286.95 121.35 286.07 122.23 286.07 123.29 c B 156.48 118.24 m 156.48 119.31 157.36 120.19 158.43 120.19 c 159.50 120.19 160.37 119.31 160.37 118.24 c 160.37 117.18 159.50 116.30 158.43 116.30 c 157.36 116.30 156.48 117.18 156.48 118.24 c B 282.97 120.36 m 282.97 121.43 283.85 122.30 284.92 122.30 c 285.99 122.30 286.86 121.43 286.86 120.36 c 286.86 119.29 285.99 118.41 284.92 118.41 c 283.85 118.41 282.97 119.29 282.97 120.36 c B 138.98 124.79 m 138.98 125.86 139.85 126.73 140.92 126.73 c 141.99 126.73 142.87 125.86 142.87 124.79 c 142.87 123.72 141.99 122.84 140.92 122.84 c 139.85 122.84 138.98 123.72 138.98 124.79 c B 284.91 124.75 m 284.91 125.82 285.78 126.70 286.85 126.70 c 287.92 126.70 288.80 125.82 288.80 124.75 c 288.80 123.68 287.92 122.81 286.85 122.81 c 285.78 122.81 284.91 123.68 284.91 124.75 c B 285.30 124.30 m 285.30 125.37 286.17 126.25 287.24 126.25 c 288.31 126.25 289.18 125.37 289.18 124.30 c 289.18 123.23 288.31 122.36 287.24 122.36 c 286.17 122.36 285.30 123.23 285.30 124.30 c B 286.85 118.03 m 286.85 119.09 287.72 119.97 288.79 119.97 c 289.86 119.97 290.73 119.09 290.73 118.03 c 290.73 116.96 289.86 116.08 288.79 116.08 c 287.72 116.08 286.85 116.96 286.85 118.03 c B 285.68 125.18 m 285.68 126.24 286.56 127.12 287.63 127.12 c 288.70 127.12 289.57 126.24 289.57 125.18 c 289.57 124.11 288.70 123.23 287.63 123.23 c 286.56 123.23 285.68 124.11 285.68 125.18 c B 288.40 122.30 m 288.40 123.37 289.27 124.25 290.34 124.25 c 291.41 124.25 292.29 123.37 292.29 122.30 c 292.29 121.23 291.41 120.36 290.34 120.36 c 289.27 120.36 288.40 121.23 288.40 122.30 c B 138.22 122.96 m 138.22 124.03 139.09 124.91 140.16 124.91 c 141.23 124.91 142.10 124.03 142.10 122.96 c 142.10 121.89 141.23 121.02 140.16 121.02 c 139.09 121.02 138.22 121.89 138.22 122.96 c B 284.91 126.26 m 284.91 127.33 285.78 128.21 286.85 128.21 c 287.92 128.21 288.80 127.33 288.80 126.26 c 288.80 125.19 287.92 124.32 286.85 124.32 c 285.78 124.32 284.91 125.19 284.91 126.26 c B 339.25 211.48 m 339.25 212.55 340.13 213.42 341.20 213.42 c 342.26 213.42 343.14 212.55 343.14 211.48 c 343.14 210.41 342.26 209.53 341.20 209.53 c 340.13 209.53 339.25 210.41 339.25 211.48 c B 364.60 214.15 m 364.60 215.22 365.48 216.10 366.55 216.10 c 367.61 216.10 368.49 215.22 368.49 214.15 c 368.49 213.08 367.61 212.21 366.55 212.21 c 365.48 212.21 364.60 213.08 364.60 214.15 c B 87.17 78.86 m 87.17 79.93 88.04 80.81 89.11 80.81 c 90.18 80.81 91.06 79.93 91.06 78.86 c 91.06 77.79 90.18 76.92 89.11 76.92 c 88.04 76.92 87.17 77.79 87.17 78.86 c B 59.96 74.24 m 59.96 75.31 60.83 76.19 61.90 76.19 c 62.97 76.19 63.85 75.31 63.85 74.24 c 63.85 73.18 62.97 72.30 61.90 72.30 c 60.83 72.30 59.96 73.18 59.96 74.24 c B 54.70 75.59 m 54.70 76.66 55.57 77.53 56.64 77.53 c 57.71 77.53 58.59 76.66 58.59 75.59 c 58.59 74.52 57.71 73.65 56.64 73.65 c 55.57 73.65 54.70 74.52 54.70 75.59 c B 99.45 79.33 m 99.45 80.40 100.32 81.27 101.39 81.27 c 102.46 81.27 103.34 80.40 103.34 79.33 c 103.34 78.26 102.46 77.39 101.39 77.39 c 100.32 77.39 99.45 78.26 99.45 79.33 c B 102.25 76.06 m 102.25 77.13 103.13 78.00 104.20 78.00 c 105.27 78.00 106.14 77.13 106.14 76.06 c 106.14 74.99 105.27 74.11 104.20 74.11 c 103.13 74.11 102.25 74.99 102.25 76.06 c B 72.02 70.44 m 72.02 71.51 72.89 72.38 73.96 72.38 c 75.03 72.38 75.90 71.51 75.90 70.44 c 75.90 69.37 75.03 68.50 73.96 68.50 c 72.89 68.50 72.02 69.37 72.02 70.44 c B 45.81 76.25 m 45.81 77.32 46.68 78.20 47.75 78.20 c 48.82 78.20 49.70 77.32 49.70 76.25 c 49.70 75.19 48.82 74.31 47.75 74.31 c 46.68 74.31 45.81 75.19 45.81 76.25 c B 80.75 75.51 m 80.75 76.58 81.62 77.45 82.69 77.45 c 83.76 77.45 84.64 76.58 84.64 75.51 c 84.64 74.44 83.76 73.57 82.69 73.57 c 81.62 73.57 80.75 74.44 80.75 75.51 c B 119.01 79.33 m 119.01 80.40 119.88 81.28 120.95 81.28 c 122.02 81.28 122.90 80.40 122.90 79.33 c 122.90 78.26 122.02 77.39 120.95 77.39 c 119.88 77.39 119.01 78.26 119.01 79.33 c B 74.44 69.30 m 74.44 70.36 75.31 71.24 76.38 71.24 c 77.45 71.24 78.33 70.36 78.33 69.30 c 78.33 68.23 77.45 67.35 76.38 67.35 c 75.31 67.35 74.44 68.23 74.44 69.30 c B 140.07 77.31 m 140.07 78.38 140.95 79.25 142.02 79.25 c 143.09 79.25 143.96 78.38 143.96 77.31 c 143.96 76.24 143.09 75.36 142.02 75.36 c 140.95 75.36 140.07 76.24 140.07 77.31 c B 222.44 73.67 m 222.44 74.74 223.32 75.62 224.39 75.62 c 225.46 75.62 226.33 74.74 226.33 73.67 c 226.33 72.60 225.46 71.73 224.39 71.73 c 223.32 71.73 222.44 72.60 222.44 73.67 c B 97.21 75.56 m 97.21 76.63 98.08 77.50 99.15 77.50 c 100.22 77.50 101.10 76.63 101.10 75.56 c 101.10 74.49 100.22 73.62 99.15 73.62 c 98.08 73.62 97.21 74.49 97.21 75.56 c B 179.91 79.43 m 179.91 80.49 180.79 81.37 181.85 81.37 c 182.92 81.37 183.80 80.49 183.80 79.43 c 183.80 78.36 182.92 77.48 181.85 77.48 c 180.79 77.48 179.91 78.36 179.91 79.43 c B 108.50 74.11 m 108.50 75.18 109.37 76.05 110.44 76.05 c 111.51 76.05 112.38 75.18 112.38 74.11 c 112.38 73.04 111.51 72.16 110.44 72.16 c 109.37 72.16 108.50 73.04 108.50 74.11 c B 180.04 76.51 m 180.04 77.58 180.91 78.45 181.98 78.45 c 183.05 78.45 183.92 77.58 183.92 76.51 c 183.92 75.44 183.05 74.56 181.98 74.56 c 180.91 74.56 180.04 75.44 180.04 76.51 c B 100.94 69.46 m 100.94 70.53 101.82 71.41 102.89 71.41 c 103.96 71.41 104.83 70.53 104.83 69.46 c 104.83 68.39 103.96 67.52 102.89 67.52 c 101.82 67.52 100.94 68.39 100.94 69.46 c B 43.92 76.03 m 43.92 77.10 44.79 77.98 45.86 77.98 c 46.93 77.98 47.81 77.10 47.81 76.03 c 47.81 74.97 46.93 74.09 45.86 74.09 c 44.79 74.09 43.92 74.97 43.92 76.03 c B 65.52 69.84 m 65.52 70.91 66.39 71.78 67.46 71.78 c 68.53 71.78 69.41 70.91 69.41 69.84 c 69.41 68.77 68.53 67.90 67.46 67.90 c 66.39 67.90 65.52 68.77 65.52 69.84 c B 43.98 77.27 m 43.98 78.34 44.86 79.22 45.93 79.22 c 47.00 79.22 47.87 78.34 47.87 77.27 c 47.87 76.20 47.00 75.33 45.93 75.33 c 44.86 75.33 43.98 76.20 43.98 77.27 c B 112.17 77.05 m 112.17 78.12 113.04 78.99 114.11 78.99 c 115.18 78.99 116.06 78.12 116.06 77.05 c 116.06 75.98 115.18 75.10 114.11 75.10 c 113.04 75.10 112.17 75.98 112.17 77.05 c B 55.25 72.41 m 55.25 73.48 56.12 74.36 57.19 74.36 c 58.26 74.36 59.14 73.48 59.14 72.41 c 59.14 71.34 58.26 70.47 57.19 70.47 c 56.12 70.47 55.25 71.34 55.25 72.41 c B 169.14 75.47 m 169.14 76.54 170.01 77.42 171.08 77.42 c 172.15 77.42 173.03 76.54 173.03 75.47 c 173.03 74.40 172.15 73.53 171.08 73.53 c 170.01 73.53 169.14 74.40 169.14 75.47 c B 85.79 72.68 m 85.79 73.75 86.66 74.62 87.73 74.62 c 88.80 74.62 89.68 73.75 89.68 72.68 c 89.68 71.61 88.80 70.73 87.73 70.73 c 86.66 70.73 85.79 71.61 85.79 72.68 c B 47.76 73.58 m 47.76 74.65 48.63 75.53 49.70 75.53 c 50.77 75.53 51.65 74.65 51.65 73.58 c 51.65 72.51 50.77 71.64 49.70 71.64 c 48.63 71.64 47.76 72.51 47.76 73.58 c B 98.51 76.08 m 98.51 77.15 99.38 78.03 100.45 78.03 c 101.52 78.03 102.40 77.15 102.40 76.08 c 102.40 75.02 101.52 74.14 100.45 74.14 c 99.38 74.14 98.51 75.02 98.51 76.08 c B 97.08 70.38 m 97.08 71.45 97.95 72.33 99.02 72.33 c 100.09 72.33 100.97 71.45 100.97 70.38 c 100.97 69.31 100.09 68.44 99.02 68.44 c 97.95 68.44 97.08 69.31 97.08 70.38 c B 150.05 76.34 m 150.05 77.41 150.93 78.28 152.00 78.28 c 153.06 78.28 153.94 77.41 153.94 76.34 c 153.94 75.27 153.06 74.39 152.00 74.39 c 150.93 74.39 150.05 75.27 150.05 76.34 c B 81.32 74.53 m 81.32 75.60 82.19 76.48 83.26 76.48 c 84.33 76.48 85.20 75.60 85.20 74.53 c 85.20 73.46 84.33 72.59 83.26 72.59 c 82.19 72.59 81.32 73.46 81.32 74.53 c B 88.83 72.62 m 88.83 73.69 89.71 74.57 90.78 74.57 c 91.85 74.57 92.72 73.69 92.72 72.62 c 92.72 71.55 91.85 70.68 90.78 70.68 c 89.71 70.68 88.83 71.55 88.83 72.62 c B 48.76 70.81 m 48.76 71.87 49.63 72.75 50.70 72.75 c 51.77 72.75 52.64 71.87 52.64 70.81 c 52.64 69.74 51.77 68.86 50.70 68.86 c 49.63 68.86 48.76 69.74 48.76 70.81 c B 171.52 74.51 m 171.52 75.58 172.40 76.45 173.47 76.45 c 174.54 76.45 175.41 75.58 175.41 74.51 c 175.41 73.44 174.54 72.56 173.47 72.56 c 172.40 72.56 171.52 73.44 171.52 74.51 c B 103.76 69.91 m 103.76 70.98 104.64 71.85 105.71 71.85 c 106.77 71.85 107.65 70.98 107.65 69.91 c 107.65 68.84 106.77 67.97 105.71 67.97 c 104.64 67.97 103.76 68.84 103.76 69.91 c B 87.00 69.62 m 87.00 70.69 87.87 71.57 88.94 71.57 c 90.01 71.57 90.89 70.69 90.89 69.62 c 90.89 68.55 90.01 67.68 88.94 67.68 c 87.87 67.68 87.00 68.55 87.00 69.62 c B 93.14 78.45 m 93.14 79.52 94.02 80.40 95.09 80.40 c 96.16 80.40 97.03 79.52 97.03 78.45 c 97.03 77.38 96.16 76.51 95.09 76.51 c 94.02 76.51 93.14 77.38 93.14 78.45 c B 128.63 79.54 m 128.63 80.61 129.51 81.49 130.58 81.49 c 131.65 81.49 132.52 80.61 132.52 79.54 c 132.52 78.47 131.65 77.60 130.58 77.60 c 129.51 77.60 128.63 78.47 128.63 79.54 c B 103.55 75.88 m 103.55 76.95 104.43 77.82 105.50 77.82 c 106.57 77.82 107.44 76.95 107.44 75.88 c 107.44 74.81 106.57 73.93 105.50 73.93 c 104.43 73.93 103.55 74.81 103.55 75.88 c B 115.31 78.44 m 115.31 79.51 116.19 80.39 117.26 80.39 c 118.32 80.39 119.20 79.51 119.20 78.44 c 119.20 77.38 118.32 76.50 117.26 76.50 c 116.19 76.50 115.31 77.38 115.31 78.44 c B 79.59 69.44 m 79.59 70.51 80.46 71.39 81.53 71.39 c 82.60 71.39 83.48 70.51 83.48 69.44 c 83.48 68.37 82.60 67.50 81.53 67.50 c 80.46 67.50 79.59 68.37 79.59 69.44 c B 48.76 79.83 m 48.76 80.89 49.63 81.77 50.70 81.77 c 51.77 81.77 52.65 80.89 52.65 79.83 c 52.65 78.76 51.77 77.88 50.70 77.88 c 49.63 77.88 48.76 78.76 48.76 79.83 c B 103.19 77.08 m 103.19 78.15 104.07 79.02 105.14 79.02 c 106.20 79.02 107.08 78.15 107.08 77.08 c 107.08 76.01 106.20 75.14 105.14 75.14 c 104.07 75.14 103.19 76.01 103.19 77.08 c B 190.05 76.21 m 190.05 77.28 190.93 78.16 192.00 78.16 c 193.07 78.16 193.94 77.28 193.94 76.21 c 193.94 75.15 193.07 74.27 192.00 74.27 c 190.93 74.27 190.05 75.15 190.05 76.21 c B 70.66 77.87 m 70.66 78.94 71.54 79.82 72.61 79.82 c 73.68 79.82 74.55 78.94 74.55 77.87 c 74.55 76.81 73.68 75.93 72.61 75.93 c 71.54 75.93 70.66 76.81 70.66 77.87 c B 57.10 71.50 m 57.10 72.57 57.98 73.45 59.05 73.45 c 60.11 73.45 60.99 72.57 60.99 71.50 c 60.99 70.43 60.11 69.56 59.05 69.56 c 57.98 69.56 57.10 70.43 57.10 71.50 c B 55.66 72.73 m 55.66 73.80 56.54 74.68 57.61 74.68 c 58.67 74.68 59.55 73.80 59.55 72.73 c 59.55 71.66 58.67 70.79 57.61 70.79 c 56.54 70.79 55.66 71.66 55.66 72.73 c B 40.89 71.63 m 40.89 72.70 41.77 73.57 42.84 73.57 c 43.91 73.57 44.78 72.70 44.78 71.63 c 44.78 70.56 43.91 69.68 42.84 69.68 c 41.77 69.68 40.89 70.56 40.89 71.63 c B 46.31 70.28 m 46.31 71.35 47.19 72.23 48.26 72.23 c 49.33 72.23 50.20 71.35 50.20 70.28 c 50.20 69.21 49.33 68.34 48.26 68.34 c 47.19 68.34 46.31 69.21 46.31 70.28 c B 91.78 71.53 m 91.78 72.60 92.65 73.47 93.72 73.47 c 94.79 73.47 95.67 72.60 95.67 71.53 c 95.67 70.46 94.79 69.58 93.72 69.58 c 92.65 69.58 91.78 70.46 91.78 71.53 c B 101.63 75.60 m 101.63 76.67 102.51 77.54 103.58 77.54 c 104.65 77.54 105.52 76.67 105.52 75.60 c 105.52 74.53 104.65 73.66 103.58 73.66 c 102.51 73.66 101.63 74.53 101.63 75.60 c B 92.06 70.29 m 92.06 71.36 92.93 72.24 94.00 72.24 c 95.07 72.24 95.94 71.36 95.94 70.29 c 95.94 69.22 95.07 68.35 94.00 68.35 c 92.93 68.35 92.06 69.22 92.06 70.29 c B 44.21 77.18 m 44.21 78.25 45.08 79.12 46.15 79.12 c 47.22 79.12 48.10 78.25 48.10 77.18 c 48.10 76.11 47.22 75.24 46.15 75.24 c 45.08 75.24 44.21 76.11 44.21 77.18 c B 89.81 74.42 m 89.81 75.49 90.69 76.37 91.76 76.37 c 92.83 76.37 93.70 75.49 93.70 74.42 c 93.70 73.35 92.83 72.48 91.76 72.48 c 90.69 72.48 89.81 73.35 89.81 74.42 c B 127.61 74.29 m 127.61 75.36 128.49 76.23 129.56 76.23 c 130.63 76.23 131.50 75.36 131.50 74.29 c 131.50 73.22 130.63 72.34 129.56 72.34 c 128.49 72.34 127.61 73.22 127.61 74.29 c B 90.37 69.64 m 90.37 70.71 91.24 71.58 92.31 71.58 c 93.38 71.58 94.25 70.71 94.25 69.64 c 94.25 68.57 93.38 67.69 92.31 67.69 c 91.24 67.69 90.37 68.57 90.37 69.64 c B 126.96 71.70 m 126.96 72.77 127.84 73.65 128.91 73.65 c 129.98 73.65 130.85 72.77 130.85 71.70 c 130.85 70.64 129.98 69.76 128.91 69.76 c 127.84 69.76 126.96 70.64 126.96 71.70 c B 75.13 76.06 m 75.13 77.13 76.00 78.01 77.07 78.01 c 78.14 78.01 79.02 77.13 79.02 76.06 c 79.02 74.99 78.14 74.12 77.07 74.12 c 76.00 74.12 75.13 74.99 75.13 76.06 c B 89.82 74.57 m 89.82 75.64 90.70 76.51 91.77 76.51 c 92.83 76.51 93.71 75.64 93.71 74.57 c 93.71 73.50 92.83 72.63 91.77 72.63 c 90.70 72.63 89.82 73.50 89.82 74.57 c B 99.41 76.08 m 99.41 77.15 100.28 78.03 101.35 78.03 c 102.42 78.03 103.30 77.15 103.30 76.08 c 103.30 75.01 102.42 74.14 101.35 74.14 c 100.28 74.14 99.41 75.01 99.41 76.08 c B 167.46 79.49 m 167.46 80.56 168.34 81.44 169.41 81.44 c 170.48 81.44 171.35 80.56 171.35 79.49 c 171.35 78.42 170.48 77.55 169.41 77.55 c 168.34 77.55 167.46 78.42 167.46 79.49 c B 87.68 69.78 m 87.68 70.85 88.56 71.72 89.63 71.72 c 90.70 71.72 91.57 70.85 91.57 69.78 c 91.57 68.71 90.70 67.83 89.63 67.83 c 88.56 67.83 87.68 68.71 87.68 69.78 c B 129.91 79.04 m 129.91 80.11 130.79 80.98 131.86 80.98 c 132.93 80.98 133.80 80.11 133.80 79.04 c 133.80 77.97 132.93 77.10 131.86 77.10 c 130.79 77.10 129.91 77.97 129.91 79.04 c B 123.47 79.54 m 123.47 80.61 124.35 81.49 125.42 81.49 c 126.48 81.49 127.36 80.61 127.36 79.54 c 127.36 78.47 126.48 77.60 125.42 77.60 c 124.35 77.60 123.47 78.47 123.47 79.54 c B 90.33 72.08 m 90.33 73.15 91.20 74.03 92.27 74.03 c 93.34 74.03 94.22 73.15 94.22 72.08 c 94.22 71.02 93.34 70.14 92.27 70.14 c 91.20 70.14 90.33 71.02 90.33 72.08 c B 67.95 75.67 m 67.95 76.74 68.82 77.62 69.89 77.62 c 70.96 77.62 71.83 76.74 71.83 75.67 c 71.83 74.60 70.96 73.73 69.89 73.73 c 68.82 73.73 67.95 74.60 67.95 75.67 c B 224.25 76.57 m 224.25 77.64 225.12 78.51 226.19 78.51 c 227.26 78.51 228.14 77.64 228.14 76.57 c 228.14 75.50 227.26 74.62 226.19 74.62 c 225.12 74.62 224.25 75.50 224.25 76.57 c B 36.89 69.40 m 36.89 70.47 37.76 71.34 38.83 71.34 c 39.90 71.34 40.77 70.47 40.77 69.40 c 40.77 68.33 39.90 67.45 38.83 67.45 c 37.76 67.45 36.89 68.33 36.89 69.40 c B 83.80 75.24 m 83.80 76.31 84.67 77.18 85.74 77.18 c 86.81 77.18 87.68 76.31 87.68 75.24 c 87.68 74.17 86.81 73.30 85.74 73.30 c 84.67 73.30 83.80 74.17 83.80 75.24 c B 117.90 75.04 m 117.90 76.11 118.78 76.99 119.85 76.99 c 120.91 76.99 121.79 76.11 121.79 75.04 c 121.79 73.97 120.91 73.10 119.85 73.10 c 118.78 73.10 117.90 73.97 117.90 75.04 c B 236.25 74.11 m 236.25 75.18 237.12 76.06 238.19 76.06 c 239.26 76.06 240.13 75.18 240.13 74.11 c 240.13 73.04 239.26 72.17 238.19 72.17 c 237.12 72.17 236.25 73.04 236.25 74.11 c B 31.93 78.55 m 31.93 79.62 32.81 80.50 33.88 80.50 c 34.95 80.50 35.82 79.62 35.82 78.55 c 35.82 77.48 34.95 76.61 33.88 76.61 c 32.81 76.61 31.93 77.48 31.93 78.55 c B 337.45 71.21 m 337.45 72.28 338.32 73.15 339.39 73.15 c 340.46 73.15 341.34 72.28 341.34 71.21 c 341.34 70.14 340.46 69.26 339.39 69.26 c 338.32 69.26 337.45 70.14 337.45 71.21 c B 80.44 74.44 m 80.44 75.50 81.32 76.38 82.39 76.38 c 83.46 76.38 84.33 75.50 84.33 74.44 c 84.33 73.37 83.46 72.49 82.39 72.49 c 81.32 72.49 80.44 73.37 80.44 74.44 c B 52.91 76.32 m 52.91 77.39 53.79 78.26 54.86 78.26 c 55.93 78.26 56.80 77.39 56.80 76.32 c 56.80 75.25 55.93 74.38 54.86 74.38 c 53.79 74.38 52.91 75.25 52.91 76.32 c B 107.41 73.09 m 107.41 74.16 108.28 75.04 109.35 75.04 c 110.42 75.04 111.30 74.16 111.30 73.09 c 111.30 72.02 110.42 71.15 109.35 71.15 c 108.28 71.15 107.41 72.02 107.41 73.09 c B 188.08 70.07 m 188.08 71.14 188.96 72.02 190.02 72.02 c 191.09 72.02 191.97 71.14 191.97 70.07 c 191.97 69.00 191.09 68.13 190.02 68.13 c 188.96 68.13 188.08 69.00 188.08 70.07 c B 54.02 68.87 m 54.02 69.94 54.89 70.81 55.96 70.81 c 57.03 70.81 57.91 69.94 57.91 68.87 c 57.91 67.80 57.03 66.92 55.96 66.92 c 54.89 66.92 54.02 67.80 54.02 68.87 c B 251.11 78.27 m 251.11 79.34 251.98 80.22 253.05 80.22 c 254.12 80.22 254.99 79.34 254.99 78.27 c 254.99 77.20 254.12 76.33 253.05 76.33 c 251.98 76.33 251.11 77.20 251.11 78.27 c B 71.54 71.08 m 71.54 72.15 72.41 73.03 73.48 73.03 c 74.55 73.03 75.42 72.15 75.42 71.08 c 75.42 70.01 74.55 69.14 73.48 69.14 c 72.41 69.14 71.54 70.01 71.54 71.08 c B 95.94 69.43 m 95.94 70.50 96.81 71.37 97.88 71.37 c 98.95 71.37 99.82 70.50 99.82 69.43 c 99.82 68.36 98.95 67.49 97.88 67.49 c 96.81 67.49 95.94 68.36 95.94 69.43 c B 119.75 68.99 m 119.75 70.06 120.62 70.93 121.69 70.93 c 122.76 70.93 123.63 70.06 123.63 68.99 c 123.63 67.92 122.76 67.05 121.69 67.05 c 120.62 67.05 119.75 67.92 119.75 68.99 c B 75.70 70.53 m 75.70 71.60 76.58 72.48 77.65 72.48 c 78.72 72.48 79.59 71.60 79.59 70.53 c 79.59 69.46 78.72 68.59 77.65 68.59 c 76.58 68.59 75.70 69.46 75.70 70.53 c B 87.35 70.01 m 87.35 71.08 88.22 71.95 89.29 71.95 c 90.36 71.95 91.24 71.08 91.24 70.01 c 91.24 68.94 90.36 68.06 89.29 68.06 c 88.22 68.06 87.35 68.94 87.35 70.01 c B 96.54 73.32 m 96.54 74.39 97.41 75.26 98.48 75.26 c 99.55 75.26 100.43 74.39 100.43 73.32 c 100.43 72.25 99.55 71.37 98.48 71.37 c 97.41 71.37 96.54 72.25 96.54 73.32 c B 123.84 78.77 m 123.84 79.84 124.72 80.71 125.79 80.71 c 126.86 80.71 127.73 79.84 127.73 78.77 c 127.73 77.70 126.86 76.82 125.79 76.82 c 124.72 76.82 123.84 77.70 123.84 78.77 c B 84.77 70.99 m 84.77 72.06 85.64 72.94 86.71 72.94 c 87.78 72.94 88.66 72.06 88.66 70.99 c 88.66 69.93 87.78 69.05 86.71 69.05 c 85.64 69.05 84.77 69.93 84.77 70.99 c B 297.16 74.43 m 297.16 75.50 298.03 76.37 299.10 76.37 c 300.17 76.37 301.05 75.50 301.05 74.43 c 301.05 73.36 300.17 72.48 299.10 72.48 c 298.03 72.48 297.16 73.36 297.16 74.43 c B 41.00 74.00 m 41.00 75.07 41.87 75.94 42.94 75.94 c 44.01 75.94 44.88 75.07 44.88 74.00 c 44.88 72.93 44.01 72.05 42.94 72.05 c 41.87 72.05 41.00 72.93 41.00 74.00 c B 169.04 74.70 m 169.04 75.77 169.91 76.65 170.98 76.65 c 172.05 76.65 172.92 75.77 172.92 74.70 c 172.92 73.63 172.05 72.76 170.98 72.76 c 169.91 72.76 169.04 73.63 169.04 74.70 c B 114.16 79.32 m 114.16 80.39 115.04 81.26 116.11 81.26 c 117.18 81.26 118.05 80.39 118.05 79.32 c 118.05 78.25 117.18 77.38 116.11 77.38 c 115.04 77.38 114.16 78.25 114.16 79.32 c B 98.32 73.29 m 98.32 74.36 99.19 75.23 100.26 75.23 c 101.33 75.23 102.21 74.36 102.21 73.29 c 102.21 72.22 101.33 71.34 100.26 71.34 c 99.19 71.34 98.32 72.22 98.32 73.29 c B 106.11 75.31 m 106.11 76.38 106.99 77.25 108.06 77.25 c 109.13 77.25 110.00 76.38 110.00 75.31 c 110.00 74.24 109.13 73.37 108.06 73.37 c 106.99 73.37 106.11 74.24 106.11 75.31 c B 51.80 77.02 m 51.80 78.09 52.67 78.96 53.74 78.96 c 54.81 78.96 55.69 78.09 55.69 77.02 c 55.69 75.95 54.81 75.07 53.74 75.07 c 52.67 75.07 51.80 75.95 51.80 77.02 c B 64.81 75.48 m 64.81 76.54 65.68 77.42 66.75 77.42 c 67.82 77.42 68.69 76.54 68.69 75.48 c 68.69 74.41 67.82 73.53 66.75 73.53 c 65.68 73.53 64.81 74.41 64.81 75.48 c B 64.52 78.83 m 64.52 79.90 65.40 80.78 66.47 80.78 c 67.54 80.78 68.41 79.90 68.41 78.83 c 68.41 77.76 67.54 76.89 66.47 76.89 c 65.40 76.89 64.52 77.76 64.52 78.83 c B 122.39 70.15 m 122.39 71.22 123.27 72.09 124.34 72.09 c 125.41 72.09 126.28 71.22 126.28 70.15 c 126.28 69.08 125.41 68.20 124.34 68.20 c 123.27 68.20 122.39 69.08 122.39 70.15 c B 64.52 78.27 m 64.52 79.34 65.40 80.21 66.46 80.21 c 67.53 80.21 68.41 79.34 68.41 78.27 c 68.41 77.20 67.53 76.32 66.46 76.32 c 65.40 76.32 64.52 77.20 64.52 78.27 c B 79.35 77.65 m 79.35 78.72 80.23 79.59 81.30 79.59 c 82.37 79.59 83.24 78.72 83.24 77.65 c 83.24 76.58 82.37 75.70 81.30 75.70 c 80.23 75.70 79.35 76.58 79.35 77.65 c B 44.53 73.95 m 44.53 75.02 45.40 75.90 46.47 75.90 c 47.54 75.90 48.41 75.02 48.41 73.95 c 48.41 72.88 47.54 72.01 46.47 72.01 c 45.40 72.01 44.53 72.88 44.53 73.95 c B 253.06 75.28 m 253.06 76.35 253.93 77.23 255.00 77.23 c 256.07 77.23 256.94 76.35 256.94 75.28 c 256.94 74.22 256.07 73.34 255.00 73.34 c 253.93 73.34 253.06 74.22 253.06 75.28 c B 37.55 70.98 m 37.55 72.05 38.42 72.93 39.49 72.93 c 40.56 72.93 41.44 72.05 41.44 70.98 c 41.44 69.91 40.56 69.04 39.49 69.04 c 38.42 69.04 37.55 69.91 37.55 70.98 c B 124.53 79.89 m 124.53 80.96 125.40 81.83 126.47 81.83 c 127.54 81.83 128.42 80.96 128.42 79.89 c 128.42 78.82 127.54 77.95 126.47 77.95 c 125.40 77.95 124.53 78.82 124.53 79.89 c B 95.29 77.45 m 95.29 78.52 96.16 79.39 97.23 79.39 c 98.30 79.39 99.18 78.52 99.18 77.45 c 99.18 76.38 98.30 75.50 97.23 75.50 c 96.16 75.50 95.29 76.38 95.29 77.45 c B 96.18 72.90 m 96.18 73.97 97.06 74.84 98.13 74.84 c 99.20 74.84 100.07 73.97 100.07 72.90 c 100.07 71.83 99.20 70.96 98.13 70.96 c 97.06 70.96 96.18 71.83 96.18 72.90 c B 47.42 74.90 m 47.42 75.97 48.29 76.84 49.36 76.84 c 50.43 76.84 51.31 75.97 51.31 74.90 c 51.31 73.83 50.43 72.96 49.36 72.96 c 48.29 72.96 47.42 73.83 47.42 74.90 c B 58.34 78.25 m 58.34 79.32 59.21 80.20 60.28 80.20 c 61.35 80.20 62.23 79.32 62.23 78.25 c 62.23 77.18 61.35 76.31 60.28 76.31 c 59.21 76.31 58.34 77.18 58.34 78.25 c B 45.08 75.64 m 45.08 76.71 45.95 77.58 47.02 77.58 c 48.09 77.58 48.97 76.71 48.97 75.64 c 48.97 74.57 48.09 73.69 47.02 73.69 c 45.95 73.69 45.08 74.57 45.08 75.64 c B 130.60 69.56 m 130.60 70.63 131.48 71.50 132.54 71.50 c 133.61 71.50 134.49 70.63 134.49 69.56 c 134.49 68.49 133.61 67.61 132.54 67.61 c 131.48 67.61 130.60 68.49 130.60 69.56 c B 149.73 75.11 m 149.73 76.18 150.60 77.06 151.67 77.06 c 152.74 77.06 153.62 76.18 153.62 75.11 c 153.62 74.05 152.74 73.17 151.67 73.17 c 150.60 73.17 149.73 74.05 149.73 75.11 c B 160.07 73.78 m 160.07 74.85 160.95 75.72 162.02 75.72 c 163.09 75.72 163.96 74.85 163.96 73.78 c 163.96 72.71 163.09 71.84 162.02 71.84 c 160.95 71.84 160.07 72.71 160.07 73.78 c B 258.59 76.72 m 258.59 77.78 259.47 78.66 260.54 78.66 c 261.60 78.66 262.48 77.78 262.48 76.72 c 262.48 75.65 261.60 74.77 260.54 74.77 c 259.47 74.77 258.59 75.65 258.59 76.72 c B 69.35 76.37 m 69.35 77.44 70.22 78.32 71.29 78.32 c 72.36 78.32 73.23 77.44 73.23 76.37 c 73.23 75.31 72.36 74.43 71.29 74.43 c 70.22 74.43 69.35 75.31 69.35 76.37 c B 114.48 75.89 m 114.48 76.95 115.36 77.83 116.43 77.83 c 117.50 77.83 118.37 76.95 118.37 75.89 c 118.37 74.82 117.50 73.94 116.43 73.94 c 115.36 73.94 114.48 74.82 114.48 75.89 c B 144.54 69.38 m 144.54 70.45 145.42 71.33 146.49 71.33 c 147.56 71.33 148.43 70.45 148.43 69.38 c 148.43 68.32 147.56 67.44 146.49 67.44 c 145.42 67.44 144.54 68.32 144.54 69.38 c B 300.97 73.90 m 300.97 74.97 301.84 75.85 302.91 75.85 c 303.98 75.85 304.85 74.97 304.85 73.90 c 304.85 72.84 303.98 71.96 302.91 71.96 c 301.84 71.96 300.97 72.84 300.97 73.90 c B 50.04 70.13 m 50.04 71.20 50.91 72.08 51.98 72.08 c 53.05 72.08 53.92 71.20 53.92 70.13 c 53.92 69.06 53.05 68.19 51.98 68.19 c 50.91 68.19 50.04 69.06 50.04 70.13 c B 49.98 73.53 m 49.98 74.60 50.85 75.47 51.92 75.47 c 52.99 75.47 53.86 74.60 53.86 73.53 c 53.86 72.46 52.99 71.59 51.92 71.59 c 50.85 71.59 49.98 72.46 49.98 73.53 c B 114.74 73.53 m 114.74 74.60 115.62 75.48 116.69 75.48 c 117.76 75.48 118.63 74.60 118.63 73.53 c 118.63 72.46 117.76 71.59 116.69 71.59 c 115.62 71.59 114.74 72.46 114.74 73.53 c B 87.08 71.34 m 87.08 72.41 87.96 73.29 89.03 73.29 c 90.10 73.29 90.97 72.41 90.97 71.34 c 90.97 70.27 90.10 69.40 89.03 69.40 c 87.96 69.40 87.08 70.27 87.08 71.34 c B 74.94 74.41 m 74.94 75.48 75.82 76.35 76.89 76.35 c 77.96 76.35 78.83 75.48 78.83 74.41 c 78.83 73.34 77.96 72.46 76.89 72.46 c 75.82 72.46 74.94 73.34 74.94 74.41 c B 179.93 73.02 m 179.93 74.09 180.81 74.96 181.87 74.96 c 182.94 74.96 183.82 74.09 183.82 73.02 c 183.82 71.95 182.94 71.08 181.87 71.08 c 180.81 71.08 179.93 71.95 179.93 73.02 c B 134.14 70.52 m 134.14 71.59 135.01 72.46 136.08 72.46 c 137.15 72.46 138.03 71.59 138.03 70.52 c 138.03 69.45 137.15 68.58 136.08 68.58 c 135.01 68.58 134.14 69.45 134.14 70.52 c B 221.74 68.77 m 221.74 69.84 222.61 70.72 223.68 70.72 c 224.75 70.72 225.63 69.84 225.63 68.77 c 225.63 67.70 224.75 66.83 223.68 66.83 c 222.61 66.83 221.74 67.70 221.74 68.77 c B 71.94 77.57 m 71.94 78.64 72.81 79.51 73.88 79.51 c 74.95 79.51 75.82 78.64 75.82 77.57 c 75.82 76.50 74.95 75.63 73.88 75.63 c 72.81 75.63 71.94 76.50 71.94 77.57 c B 71.09 69.39 m 71.09 70.46 71.97 71.34 73.04 71.34 c 74.11 71.34 74.98 70.46 74.98 69.39 c 74.98 68.32 74.11 67.45 73.04 67.45 c 71.97 67.45 71.09 68.32 71.09 69.39 c B 123.91 76.36 m 123.91 77.43 124.79 78.31 125.86 78.31 c 126.93 78.31 127.80 77.43 127.80 76.36 c 127.80 75.30 126.93 74.42 125.86 74.42 c 124.79 74.42 123.91 75.30 123.91 76.36 c B 55.15 75.29 m 55.15 76.36 56.03 77.24 57.10 77.24 c 58.16 77.24 59.04 76.36 59.04 75.29 c 59.04 74.22 58.16 73.35 57.10 73.35 c 56.03 73.35 55.15 74.22 55.15 75.29 c B 94.28 77.79 m 94.28 78.86 95.15 79.73 96.22 79.73 c 97.29 79.73 98.16 78.86 98.16 77.79 c 98.16 76.72 97.29 75.84 96.22 75.84 c 95.15 75.84 94.28 76.72 94.28 77.79 c B 147.00 69.31 m 147.00 70.38 147.88 71.25 148.95 71.25 c 150.02 71.25 150.89 70.38 150.89 69.31 c 150.89 68.24 150.02 67.37 148.95 67.37 c 147.88 67.37 147.00 68.24 147.00 69.31 c B 125.28 69.51 m 125.28 70.58 126.15 71.46 127.22 71.46 c 128.29 71.46 129.16 70.58 129.16 69.51 c 129.16 68.44 128.29 67.57 127.22 67.57 c 126.15 67.57 125.28 68.44 125.28 69.51 c B 71.61 78.55 m 71.61 79.62 72.49 80.49 73.56 80.49 c 74.63 80.49 75.50 79.62 75.50 78.55 c 75.50 77.48 74.63 76.61 73.56 76.61 c 72.49 76.61 71.61 77.48 71.61 78.55 c B 39.35 77.88 m 39.35 78.95 40.22 79.83 41.29 79.83 c 42.36 79.83 43.24 78.95 43.24 77.88 c 43.24 76.81 42.36 75.94 41.29 75.94 c 40.22 75.94 39.35 76.81 39.35 77.88 c B 197.24 78.61 m 197.24 79.67 198.11 80.55 199.18 80.55 c 200.25 80.55 201.12 79.67 201.12 78.61 c 201.12 77.54 200.25 76.66 199.18 76.66 c 198.11 76.66 197.24 77.54 197.24 78.61 c B 126.80 72.61 m 126.80 73.68 127.67 74.56 128.74 74.56 c 129.81 74.56 130.68 73.68 130.68 72.61 c 130.68 71.54 129.81 70.67 128.74 70.67 c 127.67 70.67 126.80 71.54 126.80 72.61 c B 128.90 78.56 m 128.90 79.63 129.77 80.50 130.84 80.50 c 131.91 80.50 132.78 79.63 132.78 78.56 c 132.78 77.49 131.91 76.62 130.84 76.62 c 129.77 76.62 128.90 77.49 128.90 78.56 c B 170.02 75.57 m 170.02 76.64 170.89 77.52 171.96 77.52 c 173.03 77.52 173.91 76.64 173.91 75.57 c 173.91 74.50 173.03 73.63 171.96 73.63 c 170.89 73.63 170.02 74.50 170.02 75.57 c B 90.14 72.31 m 90.14 73.38 91.01 74.26 92.08 74.26 c 93.15 74.26 94.03 73.38 94.03 72.31 c 94.03 71.24 93.15 70.37 92.08 70.37 c 91.01 70.37 90.14 71.24 90.14 72.31 c B 300.60 71.16 m 300.60 72.23 301.48 73.10 302.55 73.10 c 303.62 73.10 304.49 72.23 304.49 71.16 c 304.49 70.09 303.62 69.22 302.55 69.22 c 301.48 69.22 300.60 70.09 300.60 71.16 c B 300.47 77.29 m 300.47 78.36 301.35 79.23 302.42 79.23 c 303.49 79.23 304.36 78.36 304.36 77.29 c 304.36 76.22 303.49 75.34 302.42 75.34 c 301.35 75.34 300.47 76.22 300.47 77.29 c B 99.23 78.67 m 99.23 79.74 100.10 80.61 101.17 80.61 c 102.24 80.61 103.12 79.74 103.12 78.67 c 103.12 77.60 102.24 76.72 101.17 76.72 c 100.10 76.72 99.23 77.60 99.23 78.67 c B 168.15 79.16 m 168.15 80.23 169.03 81.10 170.10 81.10 c 171.17 81.10 172.04 80.23 172.04 79.16 c 172.04 78.09 171.17 77.21 170.10 77.21 c 169.03 77.21 168.15 78.09 168.15 79.16 c B 300.81 75.27 m 300.81 76.34 301.69 77.21 302.76 77.21 c 303.83 77.21 304.70 76.34 304.70 75.27 c 304.70 74.20 303.83 73.32 302.76 73.32 c 301.69 73.32 300.81 74.20 300.81 75.27 c B 63.07 76.83 m 63.07 77.90 63.94 78.77 65.01 78.77 c 66.08 78.77 66.96 77.90 66.96 76.83 c 66.96 75.76 66.08 74.88 65.01 74.88 c 63.94 74.88 63.07 75.76 63.07 76.83 c B 89.51 69.22 m 89.51 70.28 90.38 71.16 91.45 71.16 c 92.52 71.16 93.40 70.28 93.40 69.22 c 93.40 68.15 92.52 67.27 91.45 67.27 c 90.38 67.27 89.51 68.15 89.51 69.22 c B 147.40 76.79 m 147.40 77.86 148.28 78.73 149.35 78.73 c 150.41 78.73 151.29 77.86 151.29 76.79 c 151.29 75.72 150.41 74.84 149.35 74.84 c 148.28 74.84 147.40 75.72 147.40 76.79 c B 299.60 70.05 m 299.60 71.12 300.48 71.99 301.55 71.99 c 302.62 71.99 303.49 71.12 303.49 70.05 c 303.49 68.98 302.62 68.10 301.55 68.10 c 300.48 68.10 299.60 68.98 299.60 70.05 c B 134.11 70.39 m 134.11 71.46 134.98 72.33 136.05 72.33 c 137.12 72.33 138.00 71.46 138.00 70.39 c 138.00 69.32 137.12 68.44 136.05 68.44 c 134.98 68.44 134.11 69.32 134.11 70.39 c B 130.29 72.50 m 130.29 73.56 131.16 74.44 132.23 74.44 c 133.30 74.44 134.17 73.56 134.17 72.50 c 134.17 71.43 133.30 70.55 132.23 70.55 c 131.16 70.55 130.29 71.43 130.29 72.50 c B 45.87 69.89 m 45.87 70.96 46.75 71.84 47.82 71.84 c 48.89 71.84 49.76 70.96 49.76 69.89 c 49.76 68.82 48.89 67.95 47.82 67.95 c 46.75 67.95 45.87 68.82 45.87 69.89 c B 120.63 71.85 m 120.63 72.92 121.50 73.79 122.57 73.79 c 123.64 73.79 124.51 72.92 124.51 71.85 c 124.51 70.78 123.64 69.91 122.57 69.91 c 121.50 69.91 120.63 70.78 120.63 71.85 c B 52.31 70.11 m 52.31 71.17 53.18 72.05 54.25 72.05 c 55.32 72.05 56.20 71.17 56.20 70.11 c 56.20 69.04 55.32 68.16 54.25 68.16 c 53.18 68.16 52.31 69.04 52.31 70.11 c B 75.71 79.59 m 75.71 80.66 76.59 81.53 77.66 81.53 c 78.73 81.53 79.60 80.66 79.60 79.59 c 79.60 78.52 78.73 77.65 77.66 77.65 c 76.59 77.65 75.71 78.52 75.71 79.59 c B 297.00 72.48 m 297.00 73.55 297.88 74.42 298.95 74.42 c 300.02 74.42 300.89 73.55 300.89 72.48 c 300.89 71.41 300.02 70.54 298.95 70.54 c 297.88 70.54 297.00 71.41 297.00 72.48 c B 42.02 69.64 m 42.02 70.71 42.89 71.59 43.96 71.59 c 45.03 71.59 45.90 70.71 45.90 69.64 c 45.90 68.58 45.03 67.70 43.96 67.70 c 42.89 67.70 42.02 68.58 42.02 69.64 c B 297.75 71.06 m 297.75 72.13 298.62 73.00 299.69 73.00 c 300.76 73.00 301.64 72.13 301.64 71.06 c 301.64 69.99 300.76 69.11 299.69 69.11 c 298.62 69.11 297.75 69.99 297.75 71.06 c B 146.39 73.59 m 146.39 74.66 147.27 75.53 148.33 75.53 c 149.40 75.53 150.28 74.66 150.28 73.59 c 150.28 72.52 149.40 71.64 148.33 71.64 c 147.27 71.64 146.39 72.52 146.39 73.59 c B 295.85 73.24 m 295.85 74.31 296.72 75.18 297.79 75.18 c 298.86 75.18 299.74 74.31 299.74 73.24 c 299.74 72.17 298.86 71.29 297.79 71.29 c 296.72 71.29 295.85 72.17 295.85 73.24 c B 124.06 71.21 m 124.06 72.28 124.94 73.15 126.01 73.15 c 127.08 73.15 127.95 72.28 127.95 71.21 c 127.95 70.14 127.08 69.26 126.01 69.26 c 124.94 69.26 124.06 70.14 124.06 71.21 c B 70.03 78.81 m 70.03 79.88 70.91 80.76 71.98 80.76 c 73.05 80.76 73.92 79.88 73.92 78.81 c 73.92 77.74 73.05 76.87 71.98 76.87 c 70.91 76.87 70.03 77.74 70.03 78.81 c B 103.79 76.90 m 103.79 77.97 104.67 78.84 105.74 78.84 c 106.81 78.84 107.68 77.97 107.68 76.90 c 107.68 75.83 106.81 74.96 105.74 74.96 c 104.67 74.96 103.79 75.83 103.79 76.90 c B 50.97 78.01 m 50.97 79.07 51.85 79.95 52.91 79.95 c 53.98 79.95 54.86 79.07 54.86 78.01 c 54.86 76.94 53.98 76.06 52.91 76.06 c 51.85 76.06 50.97 76.94 50.97 78.01 c B 68.21 72.50 m 68.21 73.57 69.09 74.44 70.16 74.44 c 71.23 74.44 72.10 73.57 72.10 72.50 c 72.10 71.43 71.23 70.56 70.16 70.56 c 69.09 70.56 68.21 71.43 68.21 72.50 c B 163.94 71.10 m 163.94 72.17 164.82 73.04 165.89 73.04 c 166.96 73.04 167.83 72.17 167.83 71.10 c 167.83 70.03 166.96 69.15 165.89 69.15 c 164.82 69.15 163.94 70.03 163.94 71.10 c B 260.56 76.29 m 260.56 77.36 261.43 78.23 262.50 78.23 c 263.57 78.23 264.44 77.36 264.44 76.29 c 264.44 75.22 263.57 74.34 262.50 74.34 c 261.43 74.34 260.56 75.22 260.56 76.29 c B 295.96 73.03 m 295.96 74.09 296.84 74.97 297.90 74.97 c 298.97 74.97 299.85 74.09 299.85 73.03 c 299.85 71.96 298.97 71.08 297.90 71.08 c 296.84 71.08 295.96 71.96 295.96 73.03 c B 65.59 76.58 m 65.59 77.64 66.47 78.52 67.54 78.52 c 68.61 78.52 69.48 77.64 69.48 76.58 c 69.48 75.51 68.61 74.63 67.54 74.63 c 66.47 74.63 65.59 75.51 65.59 76.58 c B 142.10 72.49 m 142.10 73.56 142.98 74.44 144.05 74.44 c 145.12 74.44 145.99 73.56 145.99 72.49 c 145.99 71.43 145.12 70.55 144.05 70.55 c 142.98 70.55 142.10 71.43 142.10 72.49 c B 109.10 73.69 m 109.10 74.76 109.98 75.64 111.05 75.64 c 112.11 75.64 112.99 74.76 112.99 73.69 c 112.99 72.62 112.11 71.75 111.05 71.75 c 109.98 71.75 109.10 72.62 109.10 73.69 c B 99.26 78.51 m 99.26 79.58 100.14 80.45 101.21 80.45 c 102.28 80.45 103.15 79.58 103.15 78.51 c 103.15 77.44 102.28 76.56 101.21 76.56 c 100.14 76.56 99.26 77.44 99.26 78.51 c B 162.08 77.41 m 162.08 78.48 162.95 79.36 164.02 79.36 c 165.09 79.36 165.97 78.48 165.97 77.41 c 165.97 76.35 165.09 75.47 164.02 75.47 c 162.95 75.47 162.08 76.35 162.08 77.41 c B 162.37 73.06 m 162.37 74.12 163.24 75.00 164.31 75.00 c 165.38 75.00 166.26 74.12 166.26 73.06 c 166.26 71.99 165.38 71.11 164.31 71.11 c 163.24 71.11 162.37 71.99 162.37 73.06 c B 166.81 69.78 m 166.81 70.84 167.69 71.72 168.75 71.72 c 169.82 71.72 170.70 70.84 170.70 69.78 c 170.70 68.71 169.82 67.83 168.75 67.83 c 167.69 67.83 166.81 68.71 166.81 69.78 c B 118.97 75.04 m 118.97 76.11 119.85 76.98 120.92 76.98 c 121.99 76.98 122.86 76.11 122.86 75.04 c 122.86 73.97 121.99 73.10 120.92 73.10 c 119.85 73.10 118.97 73.97 118.97 75.04 c B 44.01 69.63 m 44.01 70.70 44.88 71.57 45.95 71.57 c 47.02 71.57 47.89 70.70 47.89 69.63 c 47.89 68.56 47.02 67.69 45.95 67.69 c 44.88 67.69 44.01 68.56 44.01 69.63 c B 141.32 71.09 m 141.32 72.16 142.19 73.03 143.26 73.03 c 144.33 73.03 145.20 72.16 145.20 71.09 c 145.20 70.02 144.33 69.15 143.26 69.15 c 142.19 69.15 141.32 70.02 141.32 71.09 c B 63.42 71.72 m 63.42 72.79 64.30 73.66 65.37 73.66 c 66.44 73.66 67.31 72.79 67.31 71.72 c 67.31 70.65 66.44 69.77 65.37 69.77 c 64.30 69.77 63.42 70.65 63.42 71.72 c B 64.89 76.48 m 64.89 77.55 65.77 78.43 66.84 78.43 c 67.91 78.43 68.78 77.55 68.78 76.48 c 68.78 75.41 67.91 74.54 66.84 74.54 c 65.77 74.54 64.89 75.41 64.89 76.48 c B 45.13 77.05 m 45.13 78.12 46.01 78.99 47.08 78.99 c 48.14 78.99 49.02 78.12 49.02 77.05 c 49.02 75.98 48.14 75.10 47.08 75.10 c 46.01 75.10 45.13 75.98 45.13 77.05 c B 106.78 73.23 m 106.78 74.30 107.65 75.18 108.72 75.18 c 109.79 75.18 110.67 74.30 110.67 73.23 c 110.67 72.16 109.79 71.29 108.72 71.29 c 107.65 71.29 106.78 72.16 106.78 73.23 c B 135.26 74.61 m 135.26 75.68 136.14 76.55 137.21 76.55 c 138.28 76.55 139.15 75.68 139.15 74.61 c 139.15 73.54 138.28 72.66 137.21 72.66 c 136.14 72.66 135.26 73.54 135.26 74.61 c B 93.69 77.35 m 93.69 78.42 94.56 79.30 95.63 79.30 c 96.70 79.30 97.58 78.42 97.58 77.35 c 97.58 76.28 96.70 75.41 95.63 75.41 c 94.56 75.41 93.69 76.28 93.69 77.35 c B 154.66 79.53 m 154.66 80.60 155.53 81.47 156.60 81.47 c 157.67 81.47 158.55 80.60 158.55 79.53 c 158.55 78.46 157.67 77.58 156.60 77.58 c 155.53 77.58 154.66 78.46 154.66 79.53 c B 106.58 75.43 m 106.58 76.50 107.46 77.38 108.53 77.38 c 109.60 77.38 110.47 76.50 110.47 75.43 c 110.47 74.36 109.60 73.49 108.53 73.49 c 107.46 73.49 106.58 74.36 106.58 75.43 c B 72.48 69.60 m 72.48 70.66 73.35 71.54 74.42 71.54 c 75.49 71.54 76.36 70.66 76.36 69.60 c 76.36 68.53 75.49 67.65 74.42 67.65 c 73.35 67.65 72.48 68.53 72.48 69.60 c B 140.92 76.28 m 140.92 77.35 141.79 78.22 142.86 78.22 c 143.93 78.22 144.80 77.35 144.80 76.28 c 144.80 75.21 143.93 74.33 142.86 74.33 c 141.79 74.33 140.92 75.21 140.92 76.28 c B 126.18 72.57 m 126.18 73.64 127.05 74.51 128.12 74.51 c 129.19 74.51 130.07 73.64 130.07 72.57 c 130.07 71.50 129.19 70.62 128.12 70.62 c 127.05 70.62 126.18 71.50 126.18 72.57 c B 55.51 74.77 m 55.51 75.84 56.39 76.71 57.45 76.71 c 58.52 76.71 59.40 75.84 59.40 74.77 c 59.40 73.70 58.52 72.83 57.45 72.83 c 56.39 72.83 55.51 73.70 55.51 74.77 c B 55.00 78.88 m 55.00 79.95 55.88 80.83 56.95 80.83 c 58.02 80.83 58.89 79.95 58.89 78.88 c 58.89 77.81 58.02 76.94 56.95 76.94 c 55.88 76.94 55.00 77.81 55.00 78.88 c B 90.23 70.67 m 90.23 71.74 91.10 72.62 92.17 72.62 c 93.24 72.62 94.11 71.74 94.11 70.67 c 94.11 69.60 93.24 68.73 92.17 68.73 c 91.10 68.73 90.23 69.60 90.23 70.67 c B 141.81 69.26 m 141.81 70.33 142.69 71.21 143.76 71.21 c 144.83 71.21 145.70 70.33 145.70 69.26 c 145.70 68.19 144.83 67.32 143.76 67.32 c 142.69 67.32 141.81 68.19 141.81 69.26 c B 259.19 78.72 m 259.19 79.79 260.07 80.66 261.14 80.66 c 262.20 80.66 263.08 79.79 263.08 78.72 c 263.08 77.65 262.20 76.77 261.14 76.77 c 260.07 76.77 259.19 77.65 259.19 78.72 c B 138.28 73.85 m 138.28 74.92 139.15 75.80 140.22 75.80 c 141.29 75.80 142.17 74.92 142.17 73.85 c 142.17 72.79 141.29 71.91 140.22 71.91 c 139.15 71.91 138.28 72.79 138.28 73.85 c B 140.29 76.70 m 140.29 77.77 141.17 78.64 142.24 78.64 c 143.31 78.64 144.18 77.77 144.18 76.70 c 144.18 75.63 143.31 74.75 142.24 74.75 c 141.17 74.75 140.29 75.63 140.29 76.70 c B 103.41 77.83 m 103.41 78.90 104.29 79.77 105.36 79.77 c 106.43 79.77 107.30 78.90 107.30 77.83 c 107.30 76.76 106.43 75.88 105.36 75.88 c 104.29 75.88 103.41 76.76 103.41 77.83 c B 151.25 77.90 m 151.25 78.97 152.13 79.85 153.20 79.85 c 154.26 79.85 155.14 78.97 155.14 77.90 c 155.14 76.83 154.26 75.96 153.20 75.96 c 152.13 75.96 151.25 76.83 151.25 77.90 c B 34.80 74.59 m 34.80 75.66 35.67 76.53 36.74 76.53 c 37.81 76.53 38.68 75.66 38.68 74.59 c 38.68 73.52 37.81 72.64 36.74 72.64 c 35.67 72.64 34.80 73.52 34.80 74.59 c B 34.85 75.25 m 34.85 76.32 35.73 77.19 36.79 77.19 c 37.86 77.19 38.74 76.32 38.74 75.25 c 38.74 74.18 37.86 73.30 36.79 73.30 c 35.73 73.30 34.85 74.18 34.85 75.25 c B 30.06 79.57 m 30.06 80.64 30.93 81.51 32.00 81.51 c 33.07 81.51 33.94 80.64 33.94 79.57 c 33.94 78.50 33.07 77.62 32.00 77.62 c 30.93 77.62 30.06 78.50 30.06 79.57 c B 48.74 70.52 m 48.74 71.59 49.62 72.46 50.69 72.46 c 51.76 72.46 52.63 71.59 52.63 70.52 c 52.63 69.45 51.76 68.58 50.69 68.58 c 49.62 68.58 48.74 69.45 48.74 70.52 c B 52.70 71.10 m 52.70 72.17 53.58 73.05 54.65 73.05 c 55.71 73.05 56.59 72.17 56.59 71.10 c 56.59 70.03 55.71 69.16 54.65 69.16 c 53.58 69.16 52.70 70.03 52.70 71.10 c B 54.21 72.09 m 54.21 73.16 55.09 74.04 56.16 74.04 c 57.23 74.04 58.10 73.16 58.10 72.09 c 58.10 71.03 57.23 70.15 56.16 70.15 c 55.09 70.15 54.21 71.03 54.21 72.09 c B 54.76 69.89 m 54.76 70.96 55.63 71.83 56.70 71.83 c 57.77 71.83 58.64 70.96 58.64 69.89 c 58.64 68.82 57.77 67.95 56.70 67.95 c 55.63 67.95 54.76 68.82 54.76 69.89 c B 59.31 69.15 m 59.31 70.22 60.19 71.09 61.26 71.09 c 62.32 71.09 63.20 70.22 63.20 69.15 c 63.20 68.08 62.32 67.20 61.26 67.20 c 60.19 67.20 59.31 68.08 59.31 69.15 c B 38.10 69.52 m 38.10 70.59 38.97 71.46 40.04 71.46 c 41.11 71.46 41.99 70.59 41.99 69.52 c 41.99 68.45 41.11 67.58 40.04 67.58 c 38.97 67.58 38.10 68.45 38.10 69.52 c B 163.76 78.87 m 163.76 79.94 164.64 80.82 165.70 80.82 c 166.77 80.82 167.65 79.94 167.65 78.87 c 167.65 77.80 166.77 76.93 165.70 76.93 c 164.64 76.93 163.76 77.80 163.76 78.87 c B 75.52 75.83 m 75.52 76.90 76.40 77.78 77.47 77.78 c 78.54 77.78 79.41 76.90 79.41 75.83 c 79.41 74.76 78.54 73.89 77.47 73.89 c 76.40 73.89 75.52 74.76 75.52 75.83 c B 76.48 71.56 m 76.48 72.63 77.36 73.50 78.42 73.50 c 79.49 73.50 80.37 72.63 80.37 71.56 c 80.37 70.49 79.49 69.61 78.42 69.61 c 77.36 69.61 76.48 70.49 76.48 71.56 c B 76.75 72.64 m 76.75 73.71 77.62 74.58 78.69 74.58 c 79.76 74.58 80.63 73.71 80.63 72.64 c 80.63 71.57 79.76 70.70 78.69 70.70 c 77.62 70.70 76.75 71.57 76.75 72.64 c B 77.01 74.18 m 77.01 75.25 77.88 76.12 78.95 76.12 c 80.02 76.12 80.89 75.25 80.89 74.18 c 80.89 73.11 80.02 72.23 78.95 72.23 c 77.88 72.23 77.01 73.11 77.01 74.18 c B 176.52 78.86 m 176.52 79.93 177.40 80.81 178.46 80.81 c 179.53 80.81 180.41 79.93 180.41 78.86 c 180.41 77.79 179.53 76.92 178.46 76.92 c 177.40 76.92 176.52 77.79 176.52 78.86 c B 179.17 78.08 m 179.17 79.14 180.04 80.02 181.11 80.02 c 182.18 80.02 183.06 79.14 183.06 78.08 c 183.06 77.01 182.18 76.13 181.11 76.13 c 180.04 76.13 179.17 77.01 179.17 78.08 c B 180.14 73.88 m 180.14 74.95 181.01 75.82 182.08 75.82 c 183.15 75.82 184.03 74.95 184.03 73.88 c 184.03 72.81 183.15 71.93 182.08 71.93 c 181.01 71.93 180.14 72.81 180.14 73.88 c B 96.06 77.33 m 96.06 78.40 96.94 79.28 98.01 79.28 c 99.08 79.28 99.95 78.40 99.95 77.33 c 99.95 76.27 99.08 75.39 98.01 75.39 c 96.94 75.39 96.06 76.27 96.06 77.33 c B 97.38 69.23 m 97.38 70.30 98.25 71.18 99.32 71.18 c 100.39 71.18 101.26 70.30 101.26 69.23 c 101.26 68.17 100.39 67.29 99.32 67.29 c 98.25 67.29 97.38 68.17 97.38 69.23 c B 97.79 79.12 m 97.79 80.19 98.66 81.07 99.73 81.07 c 100.80 81.07 101.68 80.19 101.68 79.12 c 101.68 78.05 100.80 77.18 99.73 77.18 c 98.66 77.18 97.79 78.05 97.79 79.12 c B 101.75 72.23 m 101.75 73.30 102.62 74.18 103.69 74.18 c 104.76 74.18 105.64 73.30 105.64 72.23 c 105.64 71.16 104.76 70.29 103.69 70.29 c 102.62 70.29 101.75 71.16 101.75 72.23 c B 106.78 74.91 m 106.78 75.98 107.66 76.85 108.72 76.85 c 109.79 76.85 110.67 75.98 110.67 74.91 c 110.67 73.84 109.79 72.97 108.72 72.97 c 107.66 72.97 106.78 73.84 106.78 74.91 c B 232.05 75.77 m 232.05 76.84 232.92 77.72 233.99 77.72 c 235.06 77.72 235.94 76.84 235.94 75.77 c 235.94 74.71 235.06 73.83 233.99 73.83 c 232.92 73.83 232.05 74.71 232.05 75.77 c B 128.99 70.52 m 128.99 71.59 129.87 72.47 130.94 72.47 c 132.01 72.47 132.88 71.59 132.88 70.52 c 132.88 69.45 132.01 68.58 130.94 68.58 c 129.87 68.58 128.99 69.45 128.99 70.52 c B 116.21 70.16 m 116.21 71.23 117.08 72.10 118.15 72.10 c 119.22 72.10 120.09 71.23 120.09 70.16 c 120.09 69.09 119.22 68.21 118.15 68.21 c 117.08 68.21 116.21 69.09 116.21 70.16 c B 251.59 77.71 m 251.59 78.78 252.47 79.66 253.54 79.66 c 254.61 79.66 255.48 78.78 255.48 77.71 c 255.48 76.64 254.61 75.77 253.54 75.77 c 252.47 75.77 251.59 76.64 251.59 77.71 c B 119.39 69.18 m 119.39 70.25 120.26 71.13 121.33 71.13 c 122.40 71.13 123.27 70.25 123.27 69.18 c 123.27 68.11 122.40 67.24 121.33 67.24 c 120.26 67.24 119.39 68.11 119.39 69.18 c B 255.75 70.85 m 255.75 71.92 256.62 72.79 257.69 72.79 c 258.76 72.79 259.63 71.92 259.63 70.85 c 259.63 69.78 258.76 68.91 257.69 68.91 c 256.62 68.91 255.75 69.78 255.75 70.85 c B 256.25 79.30 m 256.25 80.37 257.13 81.24 258.20 81.24 c 259.27 81.24 260.14 80.37 260.14 79.30 c 260.14 78.23 259.27 77.36 258.20 77.36 c 257.13 77.36 256.25 78.23 256.25 79.30 c B 138.79 74.80 m 138.79 75.87 139.67 76.75 140.74 76.75 c 141.81 76.75 142.68 75.87 142.68 74.80 c 142.68 73.73 141.81 72.86 140.74 72.86 c 139.67 72.86 138.79 73.73 138.79 74.80 c B 124.27 72.56 m 124.27 73.63 125.14 74.51 126.21 74.51 c 127.28 74.51 128.15 73.63 128.15 72.56 c 128.15 71.49 127.28 70.62 126.21 70.62 c 125.14 70.62 124.27 71.49 124.27 72.56 c B 141.83 75.42 m 141.83 76.49 142.70 77.36 143.77 77.36 c 144.84 77.36 145.71 76.49 145.71 75.42 c 145.71 74.35 144.84 73.48 143.77 73.48 c 142.70 73.48 141.83 74.35 141.83 75.42 c B 127.09 74.76 m 127.09 75.83 127.97 76.71 129.04 76.71 c 130.11 76.71 130.98 75.83 130.98 74.76 c 130.98 73.70 130.11 72.82 129.04 72.82 c 127.97 72.82 127.09 73.70 127.09 74.76 c B 128.33 72.70 m 128.33 73.77 129.21 74.64 130.27 74.64 c 131.34 74.64 132.22 73.77 132.22 72.70 c 132.22 71.63 131.34 70.76 130.27 70.76 c 129.21 70.76 128.33 71.63 128.33 72.70 c B 128.13 75.55 m 128.13 76.62 129.01 77.50 130.08 77.50 c 131.15 77.50 132.02 76.62 132.02 75.55 c 132.02 74.48 131.15 73.61 130.08 73.61 c 129.01 73.61 128.13 74.48 128.13 75.55 c B 146.90 75.91 m 146.90 76.98 147.78 77.86 148.85 77.86 c 149.92 77.86 150.79 76.98 150.79 75.91 c 150.79 74.84 149.92 73.97 148.85 73.97 c 147.78 73.97 146.90 74.84 146.90 75.91 c B 129.98 75.31 m 129.98 76.38 130.86 77.25 131.93 77.25 c 133.00 77.25 133.87 76.38 133.87 75.31 c 133.87 74.24 133.00 73.36 131.93 73.36 c 130.86 73.36 129.98 74.24 129.98 75.31 c B 134.43 77.60 m 134.43 78.67 135.31 79.55 136.38 79.55 c 137.45 79.55 138.32 78.67 138.32 77.60 c 138.32 76.53 137.45 75.66 136.38 75.66 c 135.31 75.66 134.43 76.53 134.43 77.60 c B 153.22 69.88 m 153.22 70.95 154.10 71.83 155.17 71.83 c 156.24 71.83 157.11 70.95 157.11 69.88 c 157.11 68.81 156.24 67.94 155.17 67.94 c 154.10 67.94 153.22 68.81 153.22 69.88 c B 137.44 79.36 m 137.44 80.43 138.32 81.31 139.39 81.31 c 140.46 81.31 141.33 80.43 141.33 79.36 c 141.33 78.30 140.46 77.42 139.39 77.42 c 138.32 77.42 137.44 78.30 137.44 79.36 c B 137.43 74.59 m 137.43 75.66 138.31 76.54 139.38 76.54 c 140.45 76.54 141.32 75.66 141.32 74.59 c 141.32 73.53 140.45 72.65 139.38 72.65 c 138.31 72.65 137.43 73.53 137.43 74.59 c B 71.58 70.47 m 71.58 71.54 72.45 72.42 73.52 72.42 c 74.59 72.42 75.47 71.54 75.47 70.47 c 75.47 69.40 74.59 68.53 73.52 68.53 c 72.45 68.53 71.58 69.40 71.58 70.47 c B 140.00 74.83 m 140.00 75.90 140.88 76.77 141.95 76.77 c 143.02 76.77 143.89 75.90 143.89 74.83 c 143.89 73.76 143.02 72.88 141.95 72.88 c 140.88 72.88 140.00 73.76 140.00 74.83 c B 140.00 79.14 m 140.00 80.21 140.88 81.09 141.95 81.09 c 143.02 81.09 143.89 80.21 143.89 79.14 c 143.89 78.08 143.02 77.20 141.95 77.20 c 140.88 77.20 140.00 78.08 140.00 79.14 c B 71.79 69.86 m 71.79 70.93 72.66 71.80 73.73 71.80 c 74.80 71.80 75.67 70.93 75.67 69.86 c 75.67 68.79 74.80 67.92 73.73 67.92 c 72.66 67.92 71.79 68.79 71.79 69.86 c B 140.00 77.91 m 140.00 78.98 140.88 79.85 141.95 79.85 c 143.02 79.85 143.89 78.98 143.89 77.91 c 143.89 76.84 143.02 75.97 141.95 75.97 c 140.88 75.97 140.00 76.84 140.00 77.91 c B 140.26 72.10 m 140.26 73.17 141.14 74.04 142.20 74.04 c 143.27 74.04 144.15 73.17 144.15 72.10 c 144.15 71.03 143.27 70.15 142.20 70.15 c 141.14 70.15 140.26 71.03 140.26 72.10 c B 71.42 70.30 m 71.42 71.37 72.30 72.24 73.37 72.24 c 74.44 72.24 75.31 71.37 75.31 70.30 c 75.31 69.23 74.44 68.35 73.37 68.35 c 72.30 68.35 71.42 69.23 71.42 70.30 c B 138.47 79.66 m 138.47 80.73 139.34 81.60 140.41 81.60 c 141.48 81.60 142.36 80.73 142.36 79.66 c 142.36 78.59 141.48 77.72 140.41 77.72 c 139.34 77.72 138.47 78.59 138.47 79.66 c B 140.00 72.65 m 140.00 73.72 140.88 74.59 141.95 74.59 c 143.02 74.59 143.89 73.72 143.89 72.65 c 143.89 71.58 143.02 70.70 141.95 70.70 c 140.88 70.70 140.00 71.58 140.00 72.65 c B 137.46 72.62 m 137.46 73.69 138.33 74.57 139.40 74.57 c 140.47 74.57 141.34 73.69 141.34 72.62 c 141.34 71.55 140.47 70.68 139.40 70.68 c 138.33 70.68 137.46 71.55 137.46 72.62 c B 70.47 71.76 m 70.47 72.83 71.35 73.70 72.42 73.70 c 73.49 73.70 74.36 72.83 74.36 71.76 c 74.36 70.69 73.49 69.81 72.42 69.81 c 71.35 69.81 70.47 70.69 70.47 71.76 c B Q q /GS2 gs 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 26.92 43.20 m 412.19 43.20 l S 26.92 43.20 m 26.92 39.74 l S 81.96 43.20 m 81.96 39.74 l S 137.00 43.20 m 137.00 39.74 l S 192.04 43.20 m 192.04 39.74 l S 247.08 43.20 m 247.08 39.74 l S 302.11 43.20 m 302.11 39.74 l S 357.15 43.20 m 357.15 39.74 l S 412.19 43.20 m 412.19 39.74 l S BT /GS258 gs 0.000 0.000 0.000 rg /F2 1 Tf 14.00 0.00 -0.00 14.00 17.19 25.92 Tm (0.0) Tj /F2 1 Tf 14.00 0.00 -0.00 14.00 72.23 25.92 Tm (0.1) Tj /F2 1 Tf 14.00 0.00 -0.00 14.00 127.27 25.92 Tm (0.2) Tj /F2 1 Tf 14.00 0.00 -0.00 14.00 182.31 25.92 Tm (0.3) Tj /F2 1 Tf 14.00 0.00 -0.00 14.00 237.35 25.92 Tm (0.4) Tj /F2 1 Tf 14.00 0.00 -0.00 14.00 292.38 25.92 Tm (0.5) Tj /F2 1 Tf 14.00 0.00 -0.00 14.00 347.42 25.92 Tm (0.6) Tj /F2 1 Tf 14.00 0.00 -0.00 14.00 402.46 25.92 Tm (0.7) Tj ET Q q 17.28 43.20 397.44 203.33 re W n BT /GS258 gs 0.000 0.000 0.000 rg /F2 1 Tf 14.00 0.00 -0.00 14.00 112.93 234.10 Tm (Unmatched Treatment Units) Tj /F2 1 Tf 14.00 0.00 -0.00 14.00 121.88 187.04 Tm (Matched Treatment Units) Tj /F2 1 Tf 14.00 0.00 -0.00 14.00 130.03 139.84 Tm (Matched Control Units) Tj /F2 1 Tf 14.00 0.00 -0.00 14.00 121.08 92.77 Tm (Unmatched Control Units) Tj ET Q q /GS2 gs 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 17.28 43.20 m 414.72 43.20 l 414.72 246.53 l 17.28 246.53 l 17.28 43.20 l S Q endstream endobj 97 0 obj << /CreationDate (D:20090625200152) /ModDate (D:20090625200152) /Title (R Graphics Output) /Producer (R 2.7.0) /Creator (R) >> endobj 98 0 obj << /Type /Font /Subtype /Type1 /Name /F1 /BaseFont /ZapfDingbats >> endobj 99 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 106 0 R >> endobj 100 0 obj << /Type /Font /Subtype /Type1 /Name /F3 /BaseFont /Helvetica-Bold /Encoding 106 0 R >> endobj 101 0 obj << /Type /ExtGState /CA 0.4 >> endobj 102 0 obj << /Type /ExtGState /CA 1 >> endobj 103 0 obj << /Type /ExtGState /ca 0.4 >> endobj 104 0 obj << /Type /ExtGState /ca 1 >> endobj 105 0 obj 122012 endobj 106 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi/grave/acute/circumflex/tilde/macron/breve/dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut/ogonek/caron/space] >> endobj 89 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./figs/qqplotnn1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 107 0 R /Matrix [1.00000000 0.00000000 0.00000000 1.00000000 0.00000000 0.00000000] /BBox [0.00000000 0.00000000 288.00000000 288.00000000] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 108 0 R /F2 109 0 R /F3 110 0 R >> /ExtGState << /GS1 111 0 R /GS2 112 0 R /GS257 113 0 R /GS258 114 0 R >>>> /Length 115 0 R >> stream q Q q 0.00 175.37 91.25 76.99 re W n BT 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 35.96 144.00 Tm (Index) Tj ET Q q BT 0.000 0.000 0.000 rg /F3 1 Tf 13.00 0.00 -0.00 13.00 109.06 273.27 Tm (QQ Plots) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 130.21 256.64 Tm (All) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 204.20 256.64 Tm (Matched) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 147.82 13.78 Tm (Control Units) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 281.35 101.58 Tm (Treated Units) Tj ET Q q 4.75 180.12 81.74 67.49 re W n BT 0.000 0.000 0.000 rg /F2 1 Tf 11.00 0.00 -0.00 11.00 15.67 210.95 Tm (I\(re74/1000\)) Tj ET Q q 96.00 180.12 81.74 67.49 re W n Q q 96.00 180.12 81.74 67.49 re W n /GS257 gs 0.000 0.000 1.000 rg /GS1 gs 0.000 0.000 1.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.78 182.62 m 97.78 183.31 98.34 183.87 99.03 183.87 c 99.71 183.87 100.27 183.31 100.27 182.62 c 100.27 181.93 99.71 181.37 99.03 181.37 c 98.34 181.37 97.78 181.93 97.78 182.62 c B 97.86 182.62 m 97.86 183.31 98.43 183.87 99.11 183.87 c 99.80 183.87 100.36 183.31 100.36 182.62 c 100.36 181.93 99.80 181.37 99.11 181.37 c 98.43 181.37 97.86 181.93 97.86 182.62 c B 97.89 182.62 m 97.89 183.31 98.45 183.87 99.13 183.87 c 99.82 183.87 100.38 183.31 100.38 182.62 c 100.38 181.93 99.82 181.37 99.13 181.37 c 98.45 181.37 97.89 181.93 97.89 182.62 c B 97.99 182.62 m 97.99 183.31 98.55 183.87 99.23 183.87 c 99.92 183.87 100.48 183.31 100.48 182.62 c 100.48 181.93 99.92 181.37 99.23 181.37 c 98.55 181.37 97.99 181.93 97.99 182.62 c B 98.01 182.62 m 98.01 183.31 98.57 183.87 99.26 183.87 c 99.94 183.87 100.50 183.31 100.50 182.62 c 100.50 181.93 99.94 181.37 99.26 181.37 c 98.57 181.37 98.01 181.93 98.01 182.62 c B 98.06 182.62 m 98.06 183.31 98.63 183.87 99.31 183.87 c 100.00 183.87 100.56 183.31 100.56 182.62 c 100.56 181.93 100.00 181.37 99.31 181.37 c 98.63 181.37 98.06 181.93 98.06 182.62 c B 98.15 182.62 m 98.15 183.31 98.71 183.87 99.40 183.87 c 100.09 183.87 100.65 183.31 100.65 182.62 c 100.65 181.93 100.09 181.37 99.40 181.37 c 98.71 181.37 98.15 181.93 98.15 182.62 c B 98.31 182.62 m 98.31 183.31 98.87 183.87 99.56 183.87 c 100.25 183.87 100.81 183.31 100.81 182.62 c 100.81 181.93 100.25 181.37 99.56 181.37 c 98.87 181.37 98.31 181.93 98.31 182.62 c B 98.45 182.62 m 98.45 183.31 99.01 183.87 99.70 183.87 c 100.39 183.87 100.95 183.31 100.95 182.62 c 100.95 181.93 100.39 181.37 99.70 181.37 c 99.01 181.37 98.45 181.93 98.45 182.62 c B 98.51 182.62 m 98.51 183.31 99.07 183.87 99.76 183.87 c 100.44 183.87 101.00 183.31 101.00 182.62 c 101.00 181.93 100.44 181.37 99.76 181.37 c 99.07 181.37 98.51 181.93 98.51 182.62 c B 98.58 182.62 m 98.58 183.31 99.14 183.87 99.82 183.87 c 100.51 183.87 101.07 183.31 101.07 182.62 c 101.07 181.93 100.51 181.37 99.82 181.37 c 99.14 181.37 98.58 181.93 98.58 182.62 c B 98.67 182.62 m 98.67 183.31 99.23 183.87 99.92 183.87 c 100.60 183.87 101.16 183.31 101.16 182.62 c 101.16 181.93 100.60 181.37 99.92 181.37 c 99.23 181.37 98.67 181.93 98.67 182.62 c B 98.84 182.62 m 98.84 183.31 99.40 183.87 100.09 183.87 c 100.77 183.87 101.33 183.31 101.33 182.62 c 101.33 181.93 100.77 181.37 100.09 181.37 c 99.40 181.37 98.84 181.93 98.84 182.62 c B 98.89 182.62 m 98.89 183.31 99.45 183.87 100.14 183.87 c 100.82 183.87 101.38 183.31 101.38 182.62 c 101.38 181.93 100.82 181.37 100.14 181.37 c 99.45 181.37 98.89 181.93 98.89 182.62 c B 99.01 182.62 m 99.01 183.31 99.57 183.87 100.25 183.87 c 100.94 183.87 101.50 183.31 101.50 182.62 c 101.50 181.93 100.94 181.37 100.25 181.37 c 99.57 181.37 99.01 181.93 99.01 182.62 c B 99.02 182.62 m 99.02 183.31 99.58 183.87 100.27 183.87 c 100.95 183.87 101.51 183.31 101.51 182.62 c 101.51 181.93 100.95 181.37 100.27 181.37 c 99.58 181.37 99.02 181.93 99.02 182.62 c B 99.08 182.62 m 99.08 183.31 99.64 183.87 100.33 183.87 c 101.01 183.87 101.57 183.31 101.57 182.62 c 101.57 181.93 101.01 181.37 100.33 181.37 c 99.64 181.37 99.08 181.93 99.08 182.62 c B 99.12 182.62 m 99.12 183.31 99.68 183.87 100.37 183.87 c 101.06 183.87 101.62 183.31 101.62 182.62 c 101.62 181.93 101.06 181.37 100.37 181.37 c 99.68 181.37 99.12 181.93 99.12 182.62 c B 99.18 182.62 m 99.18 183.31 99.74 183.87 100.42 183.87 c 101.11 183.87 101.67 183.31 101.67 182.62 c 101.67 181.93 101.11 181.37 100.42 181.37 c 99.74 181.37 99.18 181.93 99.18 182.62 c B 99.32 182.62 m 99.32 183.31 99.88 183.87 100.57 183.87 c 101.25 183.87 101.82 183.31 101.82 182.62 c 101.82 181.93 101.25 181.37 100.57 181.37 c 99.88 181.37 99.32 181.93 99.32 182.62 c B 99.45 182.62 m 99.45 183.31 100.01 183.87 100.70 183.87 c 101.39 183.87 101.95 183.31 101.95 182.62 c 101.95 181.93 101.39 181.37 100.70 181.37 c 100.01 181.37 99.45 181.93 99.45 182.62 c B 99.54 182.62 m 99.54 183.31 100.10 183.87 100.79 183.87 c 101.47 183.87 102.04 183.31 102.04 182.62 c 102.04 181.93 101.47 181.37 100.79 181.37 c 100.10 181.37 99.54 181.93 99.54 182.62 c B 99.60 182.62 m 99.60 183.31 100.17 183.87 100.85 183.87 c 101.54 183.87 102.10 183.31 102.10 182.62 c 102.10 181.93 101.54 181.37 100.85 181.37 c 100.17 181.37 99.60 181.93 99.60 182.62 c B 99.86 182.62 m 99.86 183.31 100.42 183.87 101.11 183.87 c 101.80 183.87 102.36 183.31 102.36 182.62 c 102.36 181.93 101.80 181.37 101.11 181.37 c 100.42 181.37 99.86 181.93 99.86 182.62 c B 100.00 182.62 m 100.00 183.31 100.56 183.87 101.25 183.87 c 101.93 183.87 102.49 183.31 102.49 182.62 c 102.49 181.93 101.93 181.37 101.25 181.37 c 100.56 181.37 100.00 181.93 100.00 182.62 c B 100.06 182.62 m 100.06 183.31 100.62 183.87 101.30 183.87 c 101.99 183.87 102.55 183.31 102.55 182.62 c 102.55 181.93 101.99 181.37 101.30 181.37 c 100.62 181.37 100.06 181.93 100.06 182.62 c B 100.11 182.62 m 100.11 183.31 100.67 183.87 101.36 183.87 c 102.05 183.87 102.61 183.31 102.61 182.62 c 102.61 181.93 102.05 181.37 101.36 181.37 c 100.67 181.37 100.11 181.93 100.11 182.62 c B 100.34 182.62 m 100.34 183.31 100.90 183.87 101.58 183.87 c 102.27 183.87 102.83 183.31 102.83 182.62 c 102.83 181.93 102.27 181.37 101.58 181.37 c 100.90 181.37 100.34 181.93 100.34 182.62 c B 100.38 182.62 m 100.38 183.31 100.94 183.87 101.63 183.87 c 102.31 183.87 102.87 183.31 102.87 182.62 c 102.87 181.93 102.31 181.37 101.63 181.37 c 100.94 181.37 100.38 181.93 100.38 182.62 c B 100.53 182.62 m 100.53 183.31 101.09 183.87 101.78 183.87 c 102.46 183.87 103.03 183.31 103.03 182.62 c 103.03 181.93 102.46 181.37 101.78 181.37 c 101.09 181.37 100.53 181.93 100.53 182.62 c B 100.81 182.62 m 100.81 183.31 101.38 183.87 102.06 183.87 c 102.75 183.87 103.31 183.31 103.31 182.62 c 103.31 181.93 102.75 181.37 102.06 181.37 c 101.38 181.37 100.81 181.93 100.81 182.62 c B 100.95 182.62 m 100.95 183.31 101.52 183.87 102.20 183.87 c 102.89 183.87 103.45 183.31 103.45 182.62 c 103.45 181.93 102.89 181.37 102.20 181.37 c 101.52 181.37 100.95 181.93 100.95 182.62 c B 101.03 182.62 m 101.03 183.31 101.59 183.87 102.28 183.87 c 102.96 183.87 103.53 183.31 103.53 182.62 c 103.53 181.93 102.96 181.37 102.28 181.37 c 101.59 181.37 101.03 181.93 101.03 182.62 c B 101.12 182.62 m 101.12 183.31 101.68 183.87 102.36 183.87 c 103.05 183.87 103.61 183.31 103.61 182.62 c 103.61 181.93 103.05 181.37 102.36 181.37 c 101.68 181.37 101.12 181.93 101.12 182.62 c B 101.18 182.62 m 101.18 183.31 101.74 183.87 102.43 183.87 c 103.11 183.87 103.67 183.31 103.67 182.62 c 103.67 181.93 103.11 181.37 102.43 181.37 c 101.74 181.37 101.18 181.93 101.18 182.62 c B 101.36 182.62 m 101.36 183.31 101.92 183.87 102.60 183.87 c 103.29 183.87 103.85 183.31 103.85 182.62 c 103.85 181.93 103.29 181.37 102.60 181.37 c 101.92 181.37 101.36 181.93 101.36 182.62 c B 101.41 182.62 m 101.41 183.31 101.97 183.87 102.66 183.87 c 103.34 183.87 103.91 183.31 103.91 182.62 c 103.91 181.93 103.34 181.37 102.66 181.37 c 101.97 181.37 101.41 181.93 101.41 182.62 c B 101.60 182.62 m 101.60 183.31 102.16 183.87 102.84 183.87 c 103.53 183.87 104.09 183.31 104.09 182.62 c 104.09 181.93 103.53 181.37 102.84 181.37 c 102.16 181.37 101.60 181.93 101.60 182.62 c B 101.96 182.62 m 101.96 183.31 102.52 183.87 103.20 183.87 c 103.89 183.87 104.45 183.31 104.45 182.62 c 104.45 181.93 103.89 181.37 103.20 181.37 c 102.52 181.37 101.96 181.93 101.96 182.62 c B 102.25 182.62 m 102.25 183.31 102.81 183.87 103.50 183.87 c 104.18 183.87 104.74 183.31 104.74 182.62 c 104.74 181.93 104.18 181.37 103.50 181.37 c 102.81 181.37 102.25 181.93 102.25 182.62 c B 102.57 182.62 m 102.57 183.31 103.13 183.87 103.82 183.87 c 104.50 183.87 105.07 183.31 105.07 182.62 c 105.07 181.93 104.50 181.37 103.82 181.37 c 103.13 181.37 102.57 181.93 102.57 182.62 c B 102.85 182.62 m 102.85 183.31 103.41 183.87 104.09 183.87 c 104.78 183.87 105.34 183.31 105.34 182.62 c 105.34 181.93 104.78 181.37 104.09 181.37 c 103.41 181.37 102.85 181.93 102.85 182.62 c B 102.88 182.62 m 102.88 183.31 103.44 183.87 104.13 183.87 c 104.81 183.87 105.37 183.31 105.37 182.62 c 105.37 181.93 104.81 181.37 104.13 181.37 c 103.44 181.37 102.88 181.93 102.88 182.62 c B 103.02 182.62 m 103.02 183.31 103.58 183.87 104.27 183.87 c 104.95 183.87 105.51 183.31 105.51 182.62 c 105.51 181.93 104.95 181.37 104.27 181.37 c 103.58 181.37 103.02 181.93 103.02 182.62 c B 103.28 182.62 m 103.28 183.31 103.84 183.87 104.53 183.87 c 105.22 183.87 105.78 183.31 105.78 182.62 c 105.78 181.93 105.22 181.37 104.53 181.37 c 103.84 181.37 103.28 181.93 103.28 182.62 c B 103.46 182.62 m 103.46 183.31 104.02 183.87 104.71 183.87 c 105.39 183.87 105.95 183.31 105.95 182.62 c 105.95 181.93 105.39 181.37 104.71 181.37 c 104.02 181.37 103.46 181.93 103.46 182.62 c B 103.54 182.62 m 103.54 183.31 104.10 183.87 104.79 183.87 c 105.47 183.87 106.03 183.31 106.03 182.62 c 106.03 181.93 105.47 181.37 104.79 181.37 c 104.10 181.37 103.54 181.93 103.54 182.62 c B 103.66 182.62 m 103.66 183.31 104.22 183.87 104.91 183.87 c 105.59 183.87 106.15 183.31 106.15 182.62 c 106.15 181.93 105.59 181.37 104.91 181.37 c 104.22 181.37 103.66 181.93 103.66 182.62 c B 103.89 182.62 m 103.89 183.31 104.45 183.87 105.13 183.87 c 105.82 183.87 106.38 183.31 106.38 182.62 c 106.38 181.93 105.82 181.37 105.13 181.37 c 104.45 181.37 103.89 181.93 103.89 182.62 c B 104.05 182.62 m 104.05 183.31 104.61 183.87 105.30 183.87 c 105.99 183.87 106.55 183.31 106.55 182.62 c 106.55 181.93 105.99 181.37 105.30 181.37 c 104.61 181.37 104.05 181.93 104.05 182.62 c B 104.33 182.62 m 104.33 183.31 104.89 183.87 105.57 183.87 c 106.26 183.87 106.82 183.31 106.82 182.62 c 106.82 181.93 106.26 181.37 105.57 181.37 c 104.89 181.37 104.33 181.93 104.33 182.62 c B 104.48 182.62 m 104.48 183.31 105.04 183.87 105.72 183.87 c 106.41 183.87 106.97 183.31 106.97 182.62 c 106.97 181.93 106.41 181.37 105.72 181.37 c 105.04 181.37 104.48 181.93 104.48 182.62 c B 104.62 182.62 m 104.62 183.31 105.18 183.87 105.87 183.87 c 106.56 183.87 107.12 183.31 107.12 182.62 c 107.12 181.93 106.56 181.37 105.87 181.37 c 105.18 181.37 104.62 181.93 104.62 182.62 c B 104.85 182.62 m 104.85 183.31 105.41 183.87 106.10 183.87 c 106.79 183.87 107.35 183.31 107.35 182.62 c 107.35 181.93 106.79 181.37 106.10 181.37 c 105.41 181.37 104.85 181.93 104.85 182.62 c B 105.21 182.62 m 105.21 183.31 105.77 183.87 106.45 183.87 c 107.14 183.87 107.70 183.31 107.70 182.62 c 107.70 181.93 107.14 181.37 106.45 181.37 c 105.77 181.37 105.21 181.93 105.21 182.62 c B 105.51 182.62 m 105.51 183.31 106.07 183.87 106.76 183.87 c 107.44 183.87 108.00 183.31 108.00 182.62 c 108.00 181.93 107.44 181.37 106.76 181.37 c 106.07 181.37 105.51 181.93 105.51 182.62 c B 105.84 182.62 m 105.84 183.31 106.40 183.87 107.09 183.87 c 107.78 183.87 108.34 183.31 108.34 182.62 c 108.34 181.93 107.78 181.37 107.09 181.37 c 106.40 181.37 105.84 181.93 105.84 182.62 c B 106.19 182.62 m 106.19 183.31 106.75 183.87 107.44 183.87 c 108.12 183.87 108.68 183.31 108.68 182.62 c 108.68 181.93 108.12 181.37 107.44 181.37 c 106.75 181.37 106.19 181.93 106.19 182.62 c B 106.52 182.62 m 106.52 183.31 107.08 183.87 107.76 183.87 c 108.45 183.87 109.01 183.31 109.01 182.62 c 109.01 181.93 108.45 181.37 107.76 181.37 c 107.08 181.37 106.52 181.93 106.52 182.62 c B 106.90 182.62 m 106.90 183.31 107.46 183.87 108.15 183.87 c 108.83 183.87 109.40 183.31 109.40 182.62 c 109.40 181.93 108.83 181.37 108.15 181.37 c 107.46 181.37 106.90 181.93 106.90 182.62 c B 107.12 182.62 m 107.12 183.31 107.68 183.87 108.37 183.87 c 109.05 183.87 109.62 183.31 109.62 182.62 c 109.62 181.93 109.05 181.37 108.37 181.37 c 107.68 181.37 107.12 181.93 107.12 182.62 c B 107.44 182.62 m 107.44 183.31 108.00 183.87 108.69 183.87 c 109.38 183.87 109.94 183.31 109.94 182.62 c 109.94 181.93 109.38 181.37 108.69 181.37 c 108.00 181.37 107.44 181.93 107.44 182.62 c B 107.74 182.62 m 107.74 183.31 108.30 183.87 108.99 183.87 c 109.67 183.87 110.23 183.31 110.23 182.62 c 110.23 181.93 109.67 181.37 108.99 181.37 c 108.30 181.37 107.74 181.93 107.74 182.62 c B 108.48 182.62 m 108.48 183.31 109.04 183.87 109.73 183.87 c 110.42 183.87 110.98 183.31 110.98 182.62 c 110.98 181.93 110.42 181.37 109.73 181.37 c 109.04 181.37 108.48 181.93 108.48 182.62 c B 108.63 182.62 m 108.63 183.31 109.19 183.87 109.88 183.87 c 110.56 183.87 111.13 183.31 111.13 182.62 c 111.13 181.93 110.56 181.37 109.88 181.37 c 109.19 181.37 108.63 181.93 108.63 182.62 c B 109.08 182.62 m 109.08 183.31 109.64 183.87 110.32 183.87 c 111.01 183.87 111.57 183.31 111.57 182.62 c 111.57 181.93 111.01 181.37 110.32 181.37 c 109.64 181.37 109.08 181.93 109.08 182.62 c B 109.56 182.62 m 109.56 183.31 110.12 183.87 110.81 183.87 c 111.50 183.87 112.06 183.31 112.06 182.62 c 112.06 181.93 111.50 181.37 110.81 181.37 c 110.12 181.37 109.56 181.93 109.56 182.62 c B 109.71 182.62 m 109.71 183.31 110.27 183.87 110.96 183.87 c 111.64 183.87 112.21 183.31 112.21 182.62 c 112.21 181.93 111.64 181.37 110.96 181.37 c 110.27 181.37 109.71 181.93 109.71 182.62 c B 109.89 182.62 m 109.89 183.31 110.45 183.87 111.14 183.87 c 111.83 183.87 112.39 183.31 112.39 182.62 c 112.39 181.93 111.83 181.37 111.14 181.37 c 110.45 181.37 109.89 181.93 109.89 182.62 c B 110.26 182.62 m 110.26 183.31 110.82 183.87 111.51 183.87 c 112.19 183.87 112.76 183.31 112.76 182.62 c 112.76 181.93 112.19 181.37 111.51 181.37 c 110.82 181.37 110.26 181.93 110.26 182.62 c B 110.35 182.62 m 110.35 183.31 110.91 183.87 111.59 183.87 c 112.28 183.87 112.84 183.31 112.84 182.62 c 112.84 181.93 112.28 181.37 111.59 181.37 c 110.91 181.37 110.35 181.93 110.35 182.62 c B 111.08 182.62 m 111.08 183.31 111.64 183.87 112.32 183.87 c 113.01 183.87 113.57 183.31 113.57 182.62 c 113.57 181.93 113.01 181.37 112.32 181.37 c 111.64 181.37 111.08 181.93 111.08 182.62 c B 111.73 182.62 m 111.73 183.31 112.29 183.87 112.98 183.87 c 113.67 183.87 114.23 183.31 114.23 182.62 c 114.23 181.93 113.67 181.37 112.98 181.37 c 112.29 181.37 111.73 181.93 111.73 182.62 c B 112.80 182.62 m 112.80 183.31 113.36 183.87 114.04 183.87 c 114.73 183.87 115.29 183.31 115.29 182.62 c 115.29 181.93 114.73 181.37 114.04 181.37 c 113.36 181.37 112.80 181.93 112.80 182.62 c B 113.64 182.62 m 113.64 183.31 114.20 183.87 114.89 183.87 c 115.57 183.87 116.13 183.31 116.13 182.62 c 116.13 181.93 115.57 181.37 114.89 181.37 c 114.20 181.37 113.64 181.93 113.64 182.62 c B 113.75 182.62 m 113.75 183.31 114.31 183.87 115.00 183.87 c 115.68 183.87 116.24 183.31 116.24 182.62 c 116.24 181.93 115.68 181.37 115.00 181.37 c 114.31 181.37 113.75 181.93 113.75 182.62 c B 114.15 182.62 m 114.15 183.31 114.71 183.87 115.40 183.87 c 116.08 183.87 116.64 183.31 116.64 182.62 c 116.64 181.93 116.08 181.37 115.40 181.37 c 114.71 181.37 114.15 181.93 114.15 182.62 c B 114.60 182.62 m 114.60 183.31 115.16 183.87 115.85 183.87 c 116.53 183.87 117.09 183.31 117.09 182.62 c 117.09 181.93 116.53 181.37 115.85 181.37 c 115.16 181.37 114.60 181.93 114.60 182.62 c B 114.76 182.62 m 114.76 183.31 115.32 183.87 116.01 183.87 c 116.69 183.87 117.25 183.31 117.25 182.62 c 117.25 181.93 116.69 181.37 116.01 181.37 c 115.32 181.37 114.76 181.93 114.76 182.62 c B 114.83 182.62 m 114.83 183.31 115.39 183.87 116.07 183.87 c 116.76 183.87 117.32 183.31 117.32 182.62 c 117.32 181.93 116.76 181.37 116.07 181.37 c 115.39 181.37 114.83 181.93 114.83 182.62 c B 115.09 182.62 m 115.09 183.31 115.65 183.87 116.34 183.87 c 117.02 183.87 117.58 183.31 117.58 182.62 c 117.58 181.93 117.02 181.37 116.34 181.37 c 115.65 181.37 115.09 181.93 115.09 182.62 c B 115.19 182.62 m 115.19 183.31 115.75 183.87 116.44 183.87 c 117.12 183.87 117.69 183.31 117.69 182.62 c 117.69 181.93 117.12 181.37 116.44 181.37 c 115.75 181.37 115.19 181.93 115.19 182.62 c B 115.34 182.62 m 115.34 183.31 115.90 183.87 116.59 183.87 c 117.27 183.87 117.83 183.31 117.83 182.62 c 117.83 181.93 117.27 181.37 116.59 181.37 c 115.90 181.37 115.34 181.93 115.34 182.62 c B 115.72 183.41 m 115.72 184.10 116.28 184.66 116.97 184.66 c 117.65 184.66 118.22 184.10 118.22 183.41 c 118.22 182.73 117.65 182.17 116.97 182.17 c 116.28 182.17 115.72 182.73 115.72 183.41 c B 116.21 183.50 m 116.21 184.18 116.77 184.74 117.45 184.74 c 118.14 184.74 118.70 184.18 118.70 183.50 c 118.70 182.81 118.14 182.25 117.45 182.25 c 116.77 182.25 116.21 182.81 116.21 183.50 c B 116.30 184.09 m 116.30 184.78 116.86 185.34 117.55 185.34 c 118.23 185.34 118.79 184.78 118.79 184.09 c 118.79 183.40 118.23 182.84 117.55 182.84 c 116.86 182.84 116.30 183.40 116.30 184.09 c B 116.71 184.15 m 116.71 184.84 117.27 185.40 117.95 185.40 c 118.64 185.40 119.20 184.84 119.20 184.15 c 119.20 183.46 118.64 182.90 117.95 182.90 c 117.27 182.90 116.71 183.46 116.71 184.15 c B 117.10 184.38 m 117.10 185.07 117.67 185.63 118.35 185.63 c 119.04 185.63 119.60 185.07 119.60 184.38 c 119.60 183.70 119.04 183.14 118.35 183.14 c 117.67 183.14 117.10 183.70 117.10 184.38 c B 117.32 184.38 m 117.32 185.07 117.89 185.63 118.57 185.63 c 119.26 185.63 119.82 185.07 119.82 184.38 c 119.82 183.70 119.26 183.14 118.57 183.14 c 117.89 183.14 117.32 183.70 117.32 184.38 c B 117.33 184.40 m 117.33 185.09 117.89 185.65 118.58 185.65 c 119.27 185.65 119.83 185.09 119.83 184.40 c 119.83 183.72 119.27 183.16 118.58 183.16 c 117.89 183.16 117.33 183.72 117.33 184.40 c B 117.82 184.92 m 117.82 185.61 118.38 186.17 119.07 186.17 c 119.75 186.17 120.31 185.61 120.31 184.92 c 120.31 184.24 119.75 183.68 119.07 183.68 c 118.38 183.68 117.82 184.24 117.82 184.92 c B 118.42 185.24 m 118.42 185.92 118.98 186.49 119.67 186.49 c 120.35 186.49 120.92 185.92 120.92 185.24 c 120.92 184.55 120.35 183.99 119.67 183.99 c 118.98 183.99 118.42 184.55 118.42 185.24 c B 118.75 185.68 m 118.75 186.37 119.31 186.93 120.00 186.93 c 120.68 186.93 121.25 186.37 121.25 185.68 c 121.25 184.99 120.68 184.43 120.00 184.43 c 119.31 184.43 118.75 184.99 118.75 185.68 c B 118.92 186.06 m 118.92 186.75 119.48 187.31 120.16 187.31 c 120.85 187.31 121.41 186.75 121.41 186.06 c 121.41 185.37 120.85 184.81 120.16 184.81 c 119.48 184.81 118.92 185.37 118.92 186.06 c B 119.73 186.24 m 119.73 186.92 120.29 187.48 120.98 187.48 c 121.67 187.48 122.23 186.92 122.23 186.24 c 122.23 185.55 121.67 184.99 120.98 184.99 c 120.29 184.99 119.73 185.55 119.73 186.24 c B 120.85 186.44 m 120.85 187.13 121.41 187.69 122.10 187.69 c 122.78 187.69 123.34 187.13 123.34 186.44 c 123.34 185.76 122.78 185.19 122.10 185.19 c 121.41 185.19 120.85 185.76 120.85 186.44 c B 121.08 186.44 m 121.08 187.13 121.64 187.69 122.33 187.69 c 123.01 187.69 123.57 187.13 123.57 186.44 c 123.57 185.76 123.01 185.19 122.33 185.19 c 121.64 185.19 121.08 185.76 121.08 186.44 c B 121.47 186.53 m 121.47 187.22 122.03 187.78 122.72 187.78 c 123.41 187.78 123.97 187.22 123.97 186.53 c 123.97 185.84 123.41 185.28 122.72 185.28 c 122.03 185.28 121.47 185.84 121.47 186.53 c B 121.63 186.56 m 121.63 187.24 122.19 187.80 122.88 187.80 c 123.56 187.80 124.12 187.24 124.12 186.56 c 124.12 185.87 123.56 185.31 122.88 185.31 c 122.19 185.31 121.63 185.87 121.63 186.56 c B 121.88 186.73 m 121.88 187.42 122.44 187.98 123.13 187.98 c 123.81 187.98 124.37 187.42 124.37 186.73 c 124.37 186.04 123.81 185.48 123.13 185.48 c 122.44 185.48 121.88 186.04 121.88 186.73 c B 122.06 187.32 m 122.06 188.01 122.63 188.57 123.31 188.57 c 124.00 188.57 124.56 188.01 124.56 187.32 c 124.56 186.64 124.00 186.07 123.31 186.07 c 122.63 186.07 122.06 186.64 122.06 187.32 c B 122.56 188.27 m 122.56 188.95 123.12 189.51 123.81 189.51 c 124.50 189.51 125.06 188.95 125.06 188.27 c 125.06 187.58 124.50 187.02 123.81 187.02 c 123.12 187.02 122.56 187.58 122.56 188.27 c B 122.61 189.11 m 122.61 189.79 123.17 190.35 123.85 190.35 c 124.54 190.35 125.10 189.79 125.10 189.11 c 125.10 188.42 124.54 187.86 123.85 187.86 c 123.17 187.86 122.61 188.42 122.61 189.11 c B 123.41 189.17 m 123.41 189.85 123.98 190.41 124.66 190.41 c 125.35 190.41 125.91 189.85 125.91 189.17 c 125.91 188.48 125.35 187.92 124.66 187.92 c 123.98 187.92 123.41 188.48 123.41 189.17 c B 123.91 189.17 m 123.91 189.85 124.47 190.41 125.16 190.41 c 125.84 190.41 126.40 189.85 126.40 189.17 c 126.40 188.48 125.84 187.92 125.16 187.92 c 124.47 187.92 123.91 188.48 123.91 189.17 c B 124.29 189.18 m 124.29 189.87 124.85 190.43 125.53 190.43 c 126.22 190.43 126.78 189.87 126.78 189.18 c 126.78 188.49 126.22 187.93 125.53 187.93 c 124.85 187.93 124.29 188.49 124.29 189.18 c B 125.31 189.97 m 125.31 190.66 125.88 191.22 126.56 191.22 c 127.25 191.22 127.81 190.66 127.81 189.97 c 127.81 189.28 127.25 188.72 126.56 188.72 c 125.88 188.72 125.31 189.28 125.31 189.97 c B 126.04 190.20 m 126.04 190.89 126.60 191.45 127.29 191.45 c 127.97 191.45 128.53 190.89 128.53 190.20 c 128.53 189.51 127.97 188.95 127.29 188.95 c 126.60 188.95 126.04 189.51 126.04 190.20 c B 126.47 191.55 m 126.47 192.23 127.03 192.79 127.71 192.79 c 128.40 192.79 128.96 192.23 128.96 191.55 c 128.96 190.86 128.40 190.30 127.71 190.30 c 127.03 190.30 126.47 190.86 126.47 191.55 c B 126.57 192.29 m 126.57 192.98 127.13 193.54 127.81 193.54 c 128.50 193.54 129.06 192.98 129.06 192.29 c 129.06 191.61 128.50 191.05 127.81 191.05 c 127.13 191.05 126.57 191.61 126.57 192.29 c B 127.19 192.44 m 127.19 193.13 127.75 193.69 128.44 193.69 c 129.13 193.69 129.69 193.13 129.69 192.44 c 129.69 191.75 129.13 191.19 128.44 191.19 c 127.75 191.19 127.19 191.75 127.19 192.44 c B 127.34 192.62 m 127.34 193.30 127.90 193.86 128.59 193.86 c 129.28 193.86 129.84 193.30 129.84 192.62 c 129.84 191.93 129.28 191.37 128.59 191.37 c 127.90 191.37 127.34 191.93 127.34 192.62 c B 128.77 193.47 m 128.77 194.16 129.33 194.72 130.02 194.72 c 130.71 194.72 131.27 194.16 131.27 193.47 c 131.27 192.78 130.71 192.22 130.02 192.22 c 129.33 192.22 128.77 192.78 128.77 193.47 c B 129.50 193.80 m 129.50 194.49 130.06 195.05 130.75 195.05 c 131.43 195.05 131.99 194.49 131.99 193.80 c 131.99 193.11 131.43 192.55 130.75 192.55 c 130.06 192.55 129.50 193.11 129.50 193.80 c B 129.68 194.06 m 129.68 194.75 130.24 195.31 130.93 195.31 c 131.62 195.31 132.18 194.75 132.18 194.06 c 132.18 193.38 131.62 192.81 130.93 192.81 c 130.24 192.81 129.68 193.38 129.68 194.06 c B 130.00 194.16 m 130.00 194.85 130.56 195.41 131.24 195.41 c 131.93 195.41 132.49 194.85 132.49 194.16 c 132.49 193.48 131.93 192.92 131.24 192.92 c 130.56 192.92 130.00 193.48 130.00 194.16 c B 131.28 194.68 m 131.28 195.36 131.84 195.92 132.53 195.92 c 133.22 195.92 133.78 195.36 133.78 194.68 c 133.78 193.99 133.22 193.43 132.53 193.43 c 131.84 193.43 131.28 193.99 131.28 194.68 c B 131.93 197.62 m 131.93 198.30 132.49 198.86 133.18 198.86 c 133.87 198.86 134.43 198.30 134.43 197.62 c 134.43 196.93 133.87 196.37 133.18 196.37 c 132.49 196.37 131.93 196.93 131.93 197.62 c B 133.55 197.81 m 133.55 198.50 134.11 199.06 134.80 199.06 c 135.48 199.06 136.05 198.50 136.05 197.81 c 136.05 197.12 135.48 196.56 134.80 196.56 c 134.11 196.56 133.55 197.12 133.55 197.81 c B 134.00 198.95 m 134.00 199.63 134.56 200.19 135.25 200.19 c 135.93 200.19 136.49 199.63 136.49 198.95 c 136.49 198.26 135.93 197.70 135.25 197.70 c 134.56 197.70 134.00 198.26 134.00 198.95 c B 134.18 199.35 m 134.18 200.04 134.74 200.60 135.43 200.60 c 136.11 200.60 136.68 200.04 136.68 199.35 c 136.68 198.66 136.11 198.10 135.43 198.10 c 134.74 198.10 134.18 198.66 134.18 199.35 c B 134.79 199.36 m 134.79 200.04 135.36 200.61 136.04 200.61 c 136.73 200.61 137.29 200.04 137.29 199.36 c 137.29 198.67 136.73 198.11 136.04 198.11 c 135.36 198.11 134.79 198.67 134.79 199.36 c B 135.81 200.00 m 135.81 200.69 136.37 201.25 137.05 201.25 c 137.74 201.25 138.30 200.69 138.30 200.00 c 138.30 199.32 137.74 198.76 137.05 198.76 c 136.37 198.76 135.81 199.32 135.81 200.00 c B 136.30 201.73 m 136.30 202.42 136.86 202.98 137.54 202.98 c 138.23 202.98 138.79 202.42 138.79 201.73 c 138.79 201.05 138.23 200.48 137.54 200.48 c 136.86 200.48 136.30 201.05 136.30 201.73 c B 137.50 202.03 m 137.50 202.71 138.06 203.27 138.75 203.27 c 139.44 203.27 140.00 202.71 140.00 202.03 c 140.00 201.34 139.44 200.78 138.75 200.78 c 138.06 200.78 137.50 201.34 137.50 202.03 c B 138.97 203.49 m 138.97 204.18 139.53 204.74 140.21 204.74 c 140.90 204.74 141.46 204.18 141.46 203.49 c 141.46 202.80 140.90 202.24 140.21 202.24 c 139.53 202.24 138.97 202.80 138.97 203.49 c B 139.38 204.48 m 139.38 205.17 139.94 205.73 140.63 205.73 c 141.32 205.73 141.88 205.17 141.88 204.48 c 141.88 203.80 141.32 203.24 140.63 203.24 c 139.94 203.24 139.38 203.80 139.38 204.48 c B 141.34 204.67 m 141.34 205.35 141.90 205.91 142.59 205.91 c 143.28 205.91 143.84 205.35 143.84 204.67 c 143.84 203.98 143.28 203.42 142.59 203.42 c 141.90 203.42 141.34 203.98 141.34 204.67 c B 142.59 206.88 m 142.59 207.56 143.15 208.12 143.83 208.12 c 144.52 208.12 145.08 207.56 145.08 206.88 c 145.08 206.19 144.52 205.63 143.83 205.63 c 143.15 205.63 142.59 206.19 142.59 206.88 c B 144.16 207.11 m 144.16 207.79 144.72 208.36 145.40 208.36 c 146.09 208.36 146.65 207.79 146.65 207.11 c 146.65 206.42 146.09 205.86 145.40 205.86 c 144.72 205.86 144.16 206.42 144.16 207.11 c B 145.73 207.17 m 145.73 207.85 146.29 208.42 146.98 208.42 c 147.66 208.42 148.23 207.85 148.23 207.17 c 148.23 206.48 147.66 205.92 146.98 205.92 c 146.29 205.92 145.73 206.48 145.73 207.17 c B 146.61 208.35 m 146.61 209.03 147.17 209.60 147.86 209.60 c 148.54 209.60 149.11 209.03 149.11 208.35 c 149.11 207.66 148.54 207.10 147.86 207.10 c 147.17 207.10 146.61 207.66 146.61 208.35 c B 148.28 208.76 m 148.28 209.45 148.84 210.01 149.53 210.01 c 150.21 210.01 150.77 209.45 150.77 208.76 c 150.77 208.08 150.21 207.52 149.53 207.52 c 148.84 207.52 148.28 208.08 148.28 208.76 c B 152.94 211.72 m 152.94 212.41 153.50 212.97 154.19 212.97 c 154.87 212.97 155.43 212.41 155.43 211.72 c 155.43 211.04 154.87 210.47 154.19 210.47 c 153.50 210.47 152.94 211.04 152.94 211.72 c B 153.64 218.79 m 153.64 219.47 154.21 220.03 154.89 220.03 c 155.58 220.03 156.14 219.47 156.14 218.79 c 156.14 218.10 155.58 217.54 154.89 217.54 c 154.21 217.54 153.64 218.10 153.64 218.79 c B 153.64 228.86 m 153.64 229.55 154.21 230.11 154.89 230.11 c 155.58 230.11 156.14 229.55 156.14 228.86 c 156.14 228.18 155.58 227.61 154.89 227.61 c 154.21 227.61 153.64 228.18 153.64 228.86 c B 153.64 245.11 m 153.64 245.79 154.21 246.36 154.89 246.36 c 155.58 246.36 156.14 245.79 156.14 245.11 c 156.14 244.42 155.58 243.86 154.89 243.86 c 154.21 243.86 153.64 244.42 153.64 245.11 c B Q q 91.25 175.37 91.25 76.99 re W n Q q 96.00 180.12 81.74 67.49 re W n /GS2 gs 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 96.00 180.12 m 177.74 247.61 l S 0.75 w [ 3.00 5.00] 0 d 96.00 186.37 m 177.74 253.86 l S 96.00 173.87 m 177.74 241.36 l S Q q /GS2 gs 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 96.00 182.62 m 96.00 245.04 l S 96.00 182.62 m 91.25 182.62 l S 96.00 191.54 m 91.25 191.54 l S 96.00 200.45 m 91.25 200.45 l S 96.00 209.37 m 91.25 209.37 l S 96.00 218.29 m 91.25 218.29 l S 96.00 227.20 m 91.25 227.20 l S 96.00 236.12 m 91.25 236.12 l S 96.00 245.04 m 91.25 245.04 l S BT /GS258 gs 0.000 0.000 0.000 rg /F2 1 Tf 0.00 8.00 -8.00 0.00 84.60 180.40 Tm (0) Tj /F2 1 Tf 0.00 8.00 -8.00 0.00 84.60 196.01 Tm (10) Tj /F2 1 Tf 0.00 8.00 -8.00 0.00 84.60 213.84 Tm (20) Tj /F2 1 Tf 0.00 8.00 -8.00 0.00 84.60 231.67 Tm (30) Tj ET 96.00 180.12 m 177.74 180.12 l 177.74 247.61 l 96.00 247.61 l 96.00 180.12 l S Q q 187.25 180.12 81.74 67.49 re W n Q q 187.25 180.12 81.74 67.49 re W n /GS257 gs 0.000 0.000 1.000 rg /GS1 gs 0.000 0.000 1.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.03 182.62 m 189.03 183.31 189.59 183.87 190.28 183.87 c 190.96 183.87 191.52 183.31 191.52 182.62 c 191.52 181.93 190.96 181.37 190.28 181.37 c 189.59 181.37 189.03 181.93 189.03 182.62 c B 189.10 182.62 m 189.10 183.31 189.66 183.87 190.35 183.87 c 191.03 183.87 191.59 183.31 191.59 182.62 c 191.59 181.93 191.03 181.37 190.35 181.37 c 189.66 181.37 189.10 181.93 189.10 182.62 c B 189.13 182.62 m 189.13 183.31 189.70 183.87 190.38 183.87 c 191.07 183.87 191.63 183.31 191.63 182.62 c 191.63 181.93 191.07 181.37 190.38 181.37 c 189.70 181.37 189.13 181.93 189.13 182.62 c B 189.13 182.62 m 189.13 183.31 189.70 183.87 190.38 183.87 c 191.07 183.87 191.63 183.31 191.63 182.62 c 191.63 181.93 191.07 181.37 190.38 181.37 c 189.70 181.37 189.13 181.93 189.13 182.62 c B 189.20 182.62 m 189.20 183.31 189.76 183.87 190.45 183.87 c 191.14 183.87 191.70 183.31 191.70 182.62 c 191.70 181.93 191.14 181.37 190.45 181.37 c 189.76 181.37 189.20 181.93 189.20 182.62 c B 189.24 182.62 m 189.24 183.31 189.80 183.87 190.48 183.87 c 191.17 183.87 191.73 183.31 191.73 182.62 c 191.73 181.93 191.17 181.37 190.48 181.37 c 189.80 181.37 189.24 181.93 189.24 182.62 c B 189.24 182.62 m 189.24 183.31 189.81 183.87 190.49 183.87 c 191.18 183.87 191.74 183.31 191.74 182.62 c 191.74 181.93 191.18 181.37 190.49 181.37 c 189.81 181.37 189.24 181.93 189.24 182.62 c B 189.26 182.62 m 189.26 183.31 189.82 183.87 190.51 183.87 c 191.19 183.87 191.76 183.31 191.76 182.62 c 191.76 181.93 191.19 181.37 190.51 181.37 c 189.82 181.37 189.26 181.93 189.26 182.62 c B 189.31 182.62 m 189.31 183.31 189.87 183.87 190.56 183.87 c 191.25 183.87 191.81 183.31 191.81 182.62 c 191.81 181.93 191.25 181.37 190.56 181.37 c 189.87 181.37 189.31 181.93 189.31 182.62 c B 189.32 182.62 m 189.32 183.31 189.88 183.87 190.56 183.87 c 191.25 183.87 191.81 183.31 191.81 182.62 c 191.81 181.93 191.25 181.37 190.56 181.37 c 189.88 181.37 189.32 181.93 189.32 182.62 c B 189.40 182.62 m 189.40 183.31 189.96 183.87 190.65 183.87 c 191.33 183.87 191.90 183.31 191.90 182.62 c 191.90 181.93 191.33 181.37 190.65 181.37 c 189.96 181.37 189.40 181.93 189.40 182.62 c B 189.70 182.62 m 189.70 183.31 190.26 183.87 190.95 183.87 c 191.63 183.87 192.20 183.31 192.20 182.62 c 192.20 181.93 191.63 181.37 190.95 181.37 c 190.26 181.37 189.70 181.93 189.70 182.62 c B 189.72 182.62 m 189.72 183.31 190.28 183.87 190.97 183.87 c 191.66 183.87 192.22 183.31 192.22 182.62 c 192.22 181.93 191.66 181.37 190.97 181.37 c 190.28 181.37 189.72 181.93 189.72 182.62 c B 189.76 182.62 m 189.76 183.31 190.32 183.87 191.00 183.87 c 191.69 183.87 192.25 183.31 192.25 182.62 c 192.25 181.93 191.69 181.37 191.00 181.37 c 190.32 181.37 189.76 181.93 189.76 182.62 c B 189.78 182.62 m 189.78 183.31 190.34 183.87 191.03 183.87 c 191.71 183.87 192.28 183.31 192.28 182.62 c 192.28 181.93 191.71 181.37 191.03 181.37 c 190.34 181.37 189.78 181.93 189.78 182.62 c B 189.82 182.62 m 189.82 183.31 190.39 183.87 191.07 183.87 c 191.76 183.87 192.32 183.31 192.32 182.62 c 192.32 181.93 191.76 181.37 191.07 181.37 c 190.39 181.37 189.82 181.93 189.82 182.62 c B 189.86 182.62 m 189.86 183.31 190.42 183.87 191.11 183.87 c 191.79 183.87 192.35 183.31 192.35 182.62 c 192.35 181.93 191.79 181.37 191.11 181.37 c 190.42 181.37 189.86 181.93 189.86 182.62 c B 189.92 182.62 m 189.92 183.31 190.48 183.87 191.16 183.87 c 191.85 183.87 192.41 183.31 192.41 182.62 c 192.41 181.93 191.85 181.37 191.16 181.37 c 190.48 181.37 189.92 181.93 189.92 182.62 c B 190.09 182.62 m 190.09 183.31 190.65 183.87 191.33 183.87 c 192.02 183.87 192.58 183.31 192.58 182.62 c 192.58 181.93 192.02 181.37 191.33 181.37 c 190.65 181.37 190.09 181.93 190.09 182.62 c B 190.09 182.62 m 190.09 183.31 190.65 183.87 191.34 183.87 c 192.02 183.87 192.59 183.31 192.59 182.62 c 192.59 181.93 192.02 181.37 191.34 181.37 c 190.65 181.37 190.09 181.93 190.09 182.62 c B 190.14 182.62 m 190.14 183.31 190.70 183.87 191.38 183.87 c 192.07 183.87 192.63 183.31 192.63 182.62 c 192.63 181.93 192.07 181.37 191.38 181.37 c 190.70 181.37 190.14 181.93 190.14 182.62 c B 190.20 182.62 m 190.20 183.31 190.76 183.87 191.44 183.87 c 192.13 183.87 192.69 183.31 192.69 182.62 c 192.69 181.93 192.13 181.37 191.44 181.37 c 190.76 181.37 190.20 181.93 190.20 182.62 c B 190.25 182.62 m 190.25 183.31 190.81 183.87 191.50 183.87 c 192.18 183.87 192.75 183.31 192.75 182.62 c 192.75 181.93 192.18 181.37 191.50 181.37 c 190.81 181.37 190.25 181.93 190.25 182.62 c B 190.26 182.62 m 190.26 183.31 190.82 183.87 191.50 183.87 c 192.19 183.87 192.75 183.31 192.75 182.62 c 192.75 181.93 192.19 181.37 191.50 181.37 c 190.82 181.37 190.26 181.93 190.26 182.62 c B 190.27 182.62 m 190.27 183.31 190.83 183.87 191.52 183.87 c 192.20 183.87 192.76 183.31 192.76 182.62 c 192.76 181.93 192.20 181.37 191.52 181.37 c 190.83 181.37 190.27 181.93 190.27 182.62 c B 190.30 182.62 m 190.30 183.31 190.86 183.87 191.55 183.87 c 192.23 183.87 192.79 183.31 192.79 182.62 c 192.79 181.93 192.23 181.37 191.55 181.37 c 190.86 181.37 190.30 181.93 190.30 182.62 c B 190.33 182.62 m 190.33 183.31 190.89 183.87 191.57 183.87 c 192.26 183.87 192.82 183.31 192.82 182.62 c 192.82 181.93 192.26 181.37 191.57 181.37 c 190.89 181.37 190.33 181.93 190.33 182.62 c B 190.42 182.62 m 190.42 183.31 190.99 183.87 191.67 183.87 c 192.36 183.87 192.92 183.31 192.92 182.62 c 192.92 181.93 192.36 181.37 191.67 181.37 c 190.99 181.37 190.42 181.93 190.42 182.62 c B 190.45 182.62 m 190.45 183.31 191.01 183.87 191.70 183.87 c 192.38 183.87 192.94 183.31 192.94 182.62 c 192.94 181.93 192.38 181.37 191.70 181.37 c 191.01 181.37 190.45 181.93 190.45 182.62 c B 190.57 182.62 m 190.57 183.31 191.13 183.87 191.82 183.87 c 192.50 183.87 193.06 183.31 193.06 182.62 c 193.06 181.93 192.50 181.37 191.82 181.37 c 191.13 181.37 190.57 181.93 190.57 182.62 c B 190.70 182.62 m 190.70 183.31 191.26 183.87 191.95 183.87 c 192.63 183.87 193.19 183.31 193.19 182.62 c 193.19 181.93 192.63 181.37 191.95 181.37 c 191.26 181.37 190.70 181.93 190.70 182.62 c B 190.76 182.62 m 190.76 183.31 191.32 183.87 192.01 183.87 c 192.70 183.87 193.26 183.31 193.26 182.62 c 193.26 181.93 192.70 181.37 192.01 181.37 c 191.32 181.37 190.76 181.93 190.76 182.62 c B 190.79 182.62 m 190.79 183.31 191.35 183.87 192.04 183.87 c 192.72 183.87 193.28 183.31 193.28 182.62 c 193.28 181.93 192.72 181.37 192.04 181.37 c 191.35 181.37 190.79 181.93 190.79 182.62 c B 190.80 182.62 m 190.80 183.31 191.36 183.87 192.04 183.87 c 192.73 183.87 193.29 183.31 193.29 182.62 c 193.29 181.93 192.73 181.37 192.04 181.37 c 191.36 181.37 190.80 181.93 190.80 182.62 c B 190.85 182.62 m 190.85 183.31 191.41 183.87 192.10 183.87 c 192.79 183.87 193.35 183.31 193.35 182.62 c 193.35 181.93 192.79 181.37 192.10 181.37 c 191.41 181.37 190.85 181.93 190.85 182.62 c B 191.02 182.62 m 191.02 183.31 191.58 183.87 192.26 183.87 c 192.95 183.87 193.51 183.31 193.51 182.62 c 193.51 181.93 192.95 181.37 192.26 181.37 c 191.58 181.37 191.02 181.93 191.02 182.62 c B 191.25 182.62 m 191.25 183.31 191.81 183.87 192.49 183.87 c 193.18 183.87 193.74 183.31 193.74 182.62 c 193.74 181.93 193.18 181.37 192.49 181.37 c 191.81 181.37 191.25 181.93 191.25 182.62 c B 191.25 182.62 m 191.25 183.31 191.82 183.87 192.50 183.87 c 193.19 183.87 193.75 183.31 193.75 182.62 c 193.75 181.93 193.19 181.37 192.50 181.37 c 191.82 181.37 191.25 181.93 191.25 182.62 c B 191.31 182.62 m 191.31 183.31 191.87 183.87 192.55 183.87 c 193.24 183.87 193.80 183.31 193.80 182.62 c 193.80 181.93 193.24 181.37 192.55 181.37 c 191.87 181.37 191.31 181.93 191.31 182.62 c B 191.31 182.62 m 191.31 183.31 191.87 183.87 192.56 183.87 c 193.24 183.87 193.80 183.31 193.80 182.62 c 193.80 181.93 193.24 181.37 192.56 181.37 c 191.87 181.37 191.31 181.93 191.31 182.62 c B 191.36 182.62 m 191.36 183.31 191.92 183.87 192.61 183.87 c 193.29 183.87 193.85 183.31 193.85 182.62 c 193.85 181.93 193.29 181.37 192.61 181.37 c 191.92 181.37 191.36 181.93 191.36 182.62 c B 191.36 182.62 m 191.36 183.31 191.93 183.87 192.61 183.87 c 193.30 183.87 193.86 183.31 193.86 182.62 c 193.86 181.93 193.30 181.37 192.61 181.37 c 191.93 181.37 191.36 181.93 191.36 182.62 c B 191.58 182.62 m 191.58 183.31 192.15 183.87 192.83 183.87 c 193.52 183.87 194.08 183.31 194.08 182.62 c 194.08 181.93 193.52 181.37 192.83 181.37 c 192.15 181.37 191.58 181.93 191.58 182.62 c B 191.60 182.62 m 191.60 183.31 192.16 183.87 192.85 183.87 c 193.53 183.87 194.10 183.31 194.10 182.62 c 194.10 181.93 193.53 181.37 192.85 181.37 c 192.16 181.37 191.60 181.93 191.60 182.62 c B 191.64 182.62 m 191.64 183.31 192.20 183.87 192.89 183.87 c 193.57 183.87 194.13 183.31 194.13 182.62 c 194.13 181.93 193.57 181.37 192.89 181.37 c 192.20 181.37 191.64 181.93 191.64 182.62 c B 191.67 182.62 m 191.67 183.31 192.23 183.87 192.92 183.87 c 193.60 183.87 194.16 183.31 194.16 182.62 c 194.16 181.93 193.60 181.37 192.92 181.37 c 192.23 181.37 191.67 181.93 191.67 182.62 c B 191.78 182.62 m 191.78 183.31 192.34 183.87 193.03 183.87 c 193.71 183.87 194.27 183.31 194.27 182.62 c 194.27 181.93 193.71 181.37 193.03 181.37 c 192.34 181.37 191.78 181.93 191.78 182.62 c B 192.08 182.62 m 192.08 183.31 192.64 183.87 193.33 183.87 c 194.01 183.87 194.57 183.31 194.57 182.62 c 194.57 181.93 194.01 181.37 193.33 181.37 c 192.64 181.37 192.08 181.93 192.08 182.62 c B 192.23 182.62 m 192.23 183.31 192.79 183.87 193.48 183.87 c 194.16 183.87 194.72 183.31 194.72 182.62 c 194.72 181.93 194.16 181.37 193.48 181.37 c 192.79 181.37 192.23 181.93 192.23 182.62 c B 192.28 183.41 m 192.28 184.10 192.84 184.66 193.53 184.66 c 194.21 184.66 194.77 184.10 194.77 183.41 c 194.77 182.73 194.21 182.17 193.53 182.17 c 192.84 182.17 192.28 182.73 192.28 183.41 c B 192.41 183.50 m 192.41 184.18 192.97 184.74 193.65 184.74 c 194.34 184.74 194.90 184.18 194.90 183.50 c 194.90 182.81 194.34 182.25 193.65 182.25 c 192.97 182.25 192.41 182.81 192.41 183.50 c B 192.44 184.09 m 192.44 184.78 193.00 185.34 193.69 185.34 c 194.37 185.34 194.93 184.78 194.93 184.09 c 194.93 183.40 194.37 182.84 193.69 182.84 c 193.00 182.84 192.44 183.40 192.44 184.09 c B 192.60 184.15 m 192.60 184.84 193.17 185.40 193.85 185.40 c 194.54 185.40 195.10 184.84 195.10 184.15 c 195.10 183.46 194.54 182.90 193.85 182.90 c 193.17 182.90 192.60 183.46 192.60 184.15 c B 192.61 184.38 m 192.61 185.07 193.17 185.63 193.86 185.63 c 194.54 185.63 195.10 185.07 195.10 184.38 c 195.10 183.70 194.54 183.14 193.86 183.14 c 193.17 183.14 192.61 183.70 192.61 184.38 c B 192.66 184.38 m 192.66 185.07 193.22 185.63 193.91 185.63 c 194.59 185.63 195.15 185.07 195.15 184.38 c 195.15 183.70 194.59 183.14 193.91 183.14 c 193.22 183.14 192.66 183.70 192.66 184.38 c B 192.73 184.40 m 192.73 185.09 193.29 185.65 193.98 185.65 c 194.66 185.65 195.23 185.09 195.23 184.40 c 195.23 183.72 194.66 183.16 193.98 183.16 c 193.29 183.16 192.73 183.72 192.73 184.40 c B 192.85 184.92 m 192.85 185.61 193.41 186.17 194.09 186.17 c 194.78 186.17 195.34 185.61 195.34 184.92 c 195.34 184.24 194.78 183.68 194.09 183.68 c 193.41 183.68 192.85 184.24 192.85 184.92 c B 193.14 185.24 m 193.14 185.92 193.70 186.49 194.38 186.49 c 195.07 186.49 195.63 185.92 195.63 185.24 c 195.63 184.55 195.07 183.99 194.38 183.99 c 193.70 183.99 193.14 184.55 193.14 185.24 c B 193.50 185.68 m 193.50 186.37 194.06 186.93 194.74 186.93 c 195.43 186.93 195.99 186.37 195.99 185.68 c 195.99 184.99 195.43 184.43 194.74 184.43 c 194.06 184.43 193.50 184.99 193.50 185.68 c B 194.14 186.06 m 194.14 186.75 194.70 187.31 195.39 187.31 c 196.07 187.31 196.64 186.75 196.64 186.06 c 196.64 185.37 196.07 184.81 195.39 184.81 c 194.70 184.81 194.14 185.37 194.14 186.06 c B 194.51 186.24 m 194.51 186.92 195.07 187.48 195.76 187.48 c 196.45 187.48 197.01 186.92 197.01 186.24 c 197.01 185.55 196.45 184.99 195.76 184.99 c 195.07 184.99 194.51 185.55 194.51 186.24 c B 194.71 186.44 m 194.71 187.13 195.27 187.69 195.96 187.69 c 196.64 187.69 197.20 187.13 197.20 186.44 c 197.20 185.76 196.64 185.19 195.96 185.19 c 195.27 185.19 194.71 185.76 194.71 186.44 c B 194.75 186.44 m 194.75 187.13 195.31 187.69 196.00 187.69 c 196.68 187.69 197.24 187.13 197.24 186.44 c 197.24 185.76 196.68 185.19 196.00 185.19 c 195.31 185.19 194.75 185.76 194.75 186.44 c B 194.79 186.53 m 194.79 187.22 195.35 187.78 196.04 187.78 c 196.72 187.78 197.28 187.22 197.28 186.53 c 197.28 185.84 196.72 185.28 196.04 185.28 c 195.35 185.28 194.79 185.84 194.79 186.53 c B 195.14 186.56 m 195.14 187.24 195.70 187.80 196.38 187.80 c 197.07 187.80 197.63 187.24 197.63 186.56 c 197.63 185.87 197.07 185.31 196.38 185.31 c 195.70 185.31 195.14 185.87 195.14 186.56 c B 195.30 186.73 m 195.30 187.42 195.86 187.98 196.55 187.98 c 197.23 187.98 197.79 187.42 197.79 186.73 c 197.79 186.04 197.23 185.48 196.55 185.48 c 195.86 185.48 195.30 186.04 195.30 186.73 c B 195.71 187.32 m 195.71 188.01 196.27 188.57 196.96 188.57 c 197.64 188.57 198.21 188.01 198.21 187.32 c 198.21 186.64 197.64 186.07 196.96 186.07 c 196.27 186.07 195.71 186.64 195.71 187.32 c B 196.16 188.27 m 196.16 188.95 196.72 189.51 197.40 189.51 c 198.09 189.51 198.65 188.95 198.65 188.27 c 198.65 187.58 198.09 187.02 197.40 187.02 c 196.72 187.02 196.16 187.58 196.16 188.27 c B 196.29 189.11 m 196.29 189.79 196.85 190.35 197.53 190.35 c 198.22 190.35 198.78 189.79 198.78 189.11 c 198.78 188.42 198.22 187.86 197.53 187.86 c 196.85 187.86 196.29 188.42 196.29 189.11 c B 196.46 189.17 m 196.46 189.85 197.02 190.41 197.70 190.41 c 198.39 190.41 198.95 189.85 198.95 189.17 c 198.95 188.48 198.39 187.92 197.70 187.92 c 197.02 187.92 196.46 188.48 196.46 189.17 c B 196.71 189.17 m 196.71 189.85 197.28 190.41 197.96 190.41 c 198.65 190.41 199.21 189.85 199.21 189.17 c 199.21 188.48 198.65 187.92 197.96 187.92 c 197.28 187.92 196.71 188.48 196.71 189.17 c B 196.79 189.18 m 196.79 189.87 197.36 190.43 198.04 190.43 c 198.73 190.43 199.29 189.87 199.29 189.18 c 199.29 188.49 198.73 187.93 198.04 187.93 c 197.36 187.93 196.79 188.49 196.79 189.18 c B 197.13 189.97 m 197.13 190.66 197.69 191.22 198.38 191.22 c 199.07 191.22 199.63 190.66 199.63 189.97 c 199.63 189.28 199.07 188.72 198.38 188.72 c 197.69 188.72 197.13 189.28 197.13 189.97 c B 198.33 190.20 m 198.33 190.89 198.89 191.45 199.58 191.45 c 200.26 191.45 200.83 190.89 200.83 190.20 c 200.83 189.51 200.26 188.95 199.58 188.95 c 198.89 188.95 198.33 189.51 198.33 190.20 c B 198.39 191.55 m 198.39 192.23 198.96 192.79 199.64 192.79 c 200.33 192.79 200.89 192.23 200.89 191.55 c 200.89 190.86 200.33 190.30 199.64 190.30 c 198.96 190.30 198.39 190.86 198.39 191.55 c B 198.69 192.29 m 198.69 192.98 199.25 193.54 199.94 193.54 c 200.62 193.54 201.18 192.98 201.18 192.29 c 201.18 191.61 200.62 191.05 199.94 191.05 c 199.25 191.05 198.69 191.61 198.69 192.29 c B 199.75 192.44 m 199.75 193.13 200.31 193.69 201.00 193.69 c 201.69 193.69 202.25 193.13 202.25 192.44 c 202.25 191.75 201.69 191.19 201.00 191.19 c 200.31 191.19 199.75 191.75 199.75 192.44 c B 199.88 192.62 m 199.88 193.30 200.44 193.86 201.13 193.86 c 201.81 193.86 202.37 193.30 202.37 192.62 c 202.37 191.93 201.81 191.37 201.13 191.37 c 200.44 191.37 199.88 191.93 199.88 192.62 c B 200.04 193.47 m 200.04 194.16 200.61 194.72 201.29 194.72 c 201.98 194.72 202.54 194.16 202.54 193.47 c 202.54 192.78 201.98 192.22 201.29 192.22 c 200.61 192.22 200.04 192.78 200.04 193.47 c B 200.39 193.80 m 200.39 194.49 200.95 195.05 201.64 195.05 c 202.32 195.05 202.89 194.49 202.89 193.80 c 202.89 193.11 202.32 192.55 201.64 192.55 c 200.95 192.55 200.39 193.11 200.39 193.80 c B 201.14 194.06 m 201.14 194.75 201.70 195.31 202.39 195.31 c 203.07 195.31 203.64 194.75 203.64 194.06 c 203.64 193.38 203.07 192.81 202.39 192.81 c 201.70 192.81 201.14 193.38 201.14 194.06 c B 201.34 194.16 m 201.34 194.85 201.90 195.41 202.59 195.41 c 203.27 195.41 203.83 194.85 203.83 194.16 c 203.83 193.48 203.27 192.92 202.59 192.92 c 201.90 192.92 201.34 193.48 201.34 194.16 c B 201.55 194.68 m 201.55 195.36 202.11 195.92 202.80 195.92 c 203.48 195.92 204.05 195.36 204.05 194.68 c 204.05 193.99 203.48 193.43 202.80 193.43 c 202.11 193.43 201.55 193.99 201.55 194.68 c B 201.61 197.62 m 201.61 198.30 202.17 198.86 202.85 198.86 c 203.54 198.86 204.10 198.30 204.10 197.62 c 204.10 196.93 203.54 196.37 202.85 196.37 c 202.17 196.37 201.61 196.93 201.61 197.62 c B 202.33 197.81 m 202.33 198.50 202.89 199.06 203.57 199.06 c 204.26 199.06 204.82 198.50 204.82 197.81 c 204.82 197.12 204.26 196.56 203.57 196.56 c 202.89 196.56 202.33 197.12 202.33 197.81 c B 204.89 198.95 m 204.89 199.63 205.45 200.19 206.13 200.19 c 206.82 200.19 207.38 199.63 207.38 198.95 c 207.38 198.26 206.82 197.70 206.13 197.70 c 205.45 197.70 204.89 198.26 204.89 198.95 c B 205.00 199.35 m 205.00 200.04 205.56 200.60 206.24 200.60 c 206.93 200.60 207.49 200.04 207.49 199.35 c 207.49 198.66 206.93 198.10 206.24 198.10 c 205.56 198.10 205.00 198.66 205.00 199.35 c B 205.39 199.36 m 205.39 200.04 205.96 200.61 206.64 200.61 c 207.33 200.61 207.89 200.04 207.89 199.36 c 207.89 198.67 207.33 198.11 206.64 198.11 c 205.96 198.11 205.39 198.67 205.39 199.36 c B 206.44 200.00 m 206.44 200.69 207.00 201.25 207.69 201.25 c 208.37 201.25 208.93 200.69 208.93 200.00 c 208.93 199.32 208.37 198.76 207.69 198.76 c 207.00 198.76 206.44 199.32 206.44 200.00 c B 206.59 201.73 m 206.59 202.42 207.15 202.98 207.83 202.98 c 208.52 202.98 209.08 202.42 209.08 201.73 c 209.08 201.05 208.52 200.48 207.83 200.48 c 207.15 200.48 206.59 201.05 206.59 201.73 c B 207.29 202.03 m 207.29 202.71 207.86 203.27 208.54 203.27 c 209.23 203.27 209.79 202.71 209.79 202.03 c 209.79 201.34 209.23 200.78 208.54 200.78 c 207.86 200.78 207.29 201.34 207.29 202.03 c B 207.45 203.49 m 207.45 204.18 208.02 204.74 208.70 204.74 c 209.39 204.74 209.95 204.18 209.95 203.49 c 209.95 202.80 209.39 202.24 208.70 202.24 c 208.02 202.24 207.45 202.80 207.45 203.49 c B 208.28 204.48 m 208.28 205.17 208.84 205.73 209.52 205.73 c 210.21 205.73 210.77 205.17 210.77 204.48 c 210.77 203.80 210.21 203.24 209.52 203.24 c 208.84 203.24 208.28 203.80 208.28 204.48 c B 208.58 204.67 m 208.58 205.35 209.14 205.91 209.83 205.91 c 210.51 205.91 211.08 205.35 211.08 204.67 c 211.08 203.98 210.51 203.42 209.83 203.42 c 209.14 203.42 208.58 203.98 208.58 204.67 c B 209.91 206.88 m 209.91 207.56 210.47 208.12 211.15 208.12 c 211.84 208.12 212.40 207.56 212.40 206.88 c 212.40 206.19 211.84 205.63 211.15 205.63 c 210.47 205.63 209.91 206.19 209.91 206.88 c B 213.29 207.11 m 213.29 207.79 213.85 208.36 214.53 208.36 c 215.22 208.36 215.78 207.79 215.78 207.11 c 215.78 206.42 215.22 205.86 214.53 205.86 c 213.85 205.86 213.29 206.42 213.29 207.11 c B 213.90 207.17 m 213.90 207.85 214.47 208.42 215.15 208.42 c 215.84 208.42 216.40 207.85 216.40 207.17 c 216.40 206.48 215.84 205.92 215.15 205.92 c 214.47 205.92 213.90 206.48 213.90 207.17 c B 216.56 208.35 m 216.56 209.03 217.12 209.60 217.81 209.60 c 218.50 209.60 219.06 209.03 219.06 208.35 c 219.06 207.66 218.50 207.10 217.81 207.10 c 217.12 207.10 216.56 207.66 216.56 208.35 c B 217.78 208.76 m 217.78 209.45 218.34 210.01 219.03 210.01 c 219.71 210.01 220.28 209.45 220.28 208.76 c 220.28 208.08 219.71 207.52 219.03 207.52 c 218.34 207.52 217.78 208.08 217.78 208.76 c B 220.93 211.72 m 220.93 212.41 221.49 212.97 222.18 212.97 c 222.86 212.97 223.42 212.41 223.42 211.72 c 223.42 211.04 222.86 210.47 222.18 210.47 c 221.49 210.47 220.93 211.04 220.93 211.72 c B 224.47 218.79 m 224.47 219.47 225.03 220.03 225.72 220.03 c 226.40 220.03 226.96 219.47 226.96 218.79 c 226.96 218.10 226.40 217.54 225.72 217.54 c 225.03 217.54 224.47 218.10 224.47 218.79 c B 236.09 228.86 m 236.09 229.55 236.65 230.11 237.34 230.11 c 238.02 230.11 238.58 229.55 238.58 228.86 c 238.58 228.18 238.02 227.61 237.34 227.61 c 236.65 227.61 236.09 228.18 236.09 228.86 c B 244.89 245.11 m 244.89 245.79 245.45 246.36 246.14 246.36 c 246.83 246.36 247.39 245.79 247.39 245.11 c 247.39 244.42 246.83 243.86 246.14 243.86 c 245.45 243.86 244.89 244.42 244.89 245.11 c B Q q 182.50 175.37 91.25 76.99 re W n Q q 187.25 180.12 81.74 67.49 re W n /GS2 gs 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 187.25 180.12 m 268.99 247.61 l S 0.75 w [ 3.00 5.00] 0 d 187.25 186.37 m 268.99 253.86 l S 187.25 173.87 m 268.99 241.36 l S Q q /GS2 gs 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 187.25 180.12 m 268.99 180.12 l 268.99 247.61 l 187.25 247.61 l 187.25 180.12 l S Q q 4.75 103.13 81.74 67.49 re W n Q q 0.00 98.38 91.25 76.99 re W n BT /GS258 gs 0.000 0.000 0.000 rg /F2 1 Tf 8.00 0.00 -0.00 8.00 35.96 67.01 Tm (Index) Tj ET Q q 4.75 103.13 81.74 67.49 re W n BT /GS258 gs 0.000 0.000 0.000 rg /F2 1 Tf 11.00 0.00 -0.00 11.00 15.67 133.96 Tm (I\(re75/1000\)) Tj ET Q q 96.00 103.13 81.74 67.49 re W n Q q 96.00 103.13 81.74 67.49 re W n /GS257 gs 0.000 0.000 1.000 rg /GS1 gs 0.000 0.000 1.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.78 105.63 m 97.78 106.31 98.34 106.87 99.03 106.87 c 99.71 106.87 100.27 106.31 100.27 105.63 c 100.27 104.94 99.71 104.38 99.03 104.38 c 98.34 104.38 97.78 104.94 97.78 105.63 c B 97.81 105.63 m 97.81 106.31 98.37 106.87 99.06 106.87 c 99.75 106.87 100.31 106.31 100.31 105.63 c 100.31 104.94 99.75 104.38 99.06 104.38 c 98.37 104.38 97.81 104.94 97.81 105.63 c B 97.91 105.63 m 97.91 106.31 98.47 106.87 99.16 106.87 c 99.84 106.87 100.40 106.31 100.40 105.63 c 100.40 104.94 99.84 104.38 99.16 104.38 c 98.47 104.38 97.91 104.94 97.91 105.63 c B 97.95 105.63 m 97.95 106.31 98.51 106.87 99.20 106.87 c 99.89 106.87 100.45 106.31 100.45 105.63 c 100.45 104.94 99.89 104.38 99.20 104.38 c 98.51 104.38 97.95 104.94 97.95 105.63 c B 98.13 105.63 m 98.13 106.31 98.69 106.87 99.37 106.87 c 100.06 106.87 100.62 106.31 100.62 105.63 c 100.62 104.94 100.06 104.38 99.37 104.38 c 98.69 104.38 98.13 104.94 98.13 105.63 c B 98.24 105.63 m 98.24 106.31 98.80 106.87 99.49 106.87 c 100.17 106.87 100.73 106.31 100.73 105.63 c 100.73 104.94 100.17 104.38 99.49 104.38 c 98.80 104.38 98.24 104.94 98.24 105.63 c B 98.28 105.63 m 98.28 106.31 98.84 106.87 99.53 106.87 c 100.21 106.87 100.78 106.31 100.78 105.63 c 100.78 104.94 100.21 104.38 99.53 104.38 c 98.84 104.38 98.28 104.94 98.28 105.63 c B 98.33 105.63 m 98.33 106.31 98.89 106.87 99.58 106.87 c 100.26 106.87 100.82 106.31 100.82 105.63 c 100.82 104.94 100.26 104.38 99.58 104.38 c 98.89 104.38 98.33 104.94 98.33 105.63 c B 98.40 105.63 m 98.40 106.31 98.96 106.87 99.65 106.87 c 100.33 106.87 100.89 106.31 100.89 105.63 c 100.89 104.94 100.33 104.38 99.65 104.38 c 98.96 104.38 98.40 104.94 98.40 105.63 c B 98.42 105.63 m 98.42 106.31 98.98 106.87 99.66 106.87 c 100.35 106.87 100.91 106.31 100.91 105.63 c 100.91 104.94 100.35 104.38 99.66 104.38 c 98.98 104.38 98.42 104.94 98.42 105.63 c B 98.44 105.63 m 98.44 106.31 99.00 106.87 99.69 106.87 c 100.37 106.87 100.93 106.31 100.93 105.63 c 100.93 104.94 100.37 104.38 99.69 104.38 c 99.00 104.38 98.44 104.94 98.44 105.63 c B 98.53 105.63 m 98.53 106.31 99.09 106.87 99.78 106.87 c 100.46 106.87 101.02 106.31 101.02 105.63 c 101.02 104.94 100.46 104.38 99.78 104.38 c 99.09 104.38 98.53 104.94 98.53 105.63 c B 98.60 105.63 m 98.60 106.31 99.16 106.87 99.85 106.87 c 100.53 106.87 101.09 106.31 101.09 105.63 c 101.09 104.94 100.53 104.38 99.85 104.38 c 99.16 104.38 98.60 104.94 98.60 105.63 c B 98.66 105.63 m 98.66 106.31 99.23 106.87 99.91 106.87 c 100.60 106.87 101.16 106.31 101.16 105.63 c 101.16 104.94 100.60 104.38 99.91 104.38 c 99.23 104.38 98.66 104.94 98.66 105.63 c B 98.69 105.63 m 98.69 106.31 99.25 106.87 99.93 106.87 c 100.62 106.87 101.18 106.31 101.18 105.63 c 101.18 104.94 100.62 104.38 99.93 104.38 c 99.25 104.38 98.69 104.94 98.69 105.63 c B 98.70 105.63 m 98.70 106.31 99.26 106.87 99.95 106.87 c 100.64 106.87 101.20 106.31 101.20 105.63 c 101.20 104.94 100.64 104.38 99.95 104.38 c 99.26 104.38 98.70 104.94 98.70 105.63 c B 98.74 105.63 m 98.74 106.31 99.31 106.87 99.99 106.87 c 100.68 106.87 101.24 106.31 101.24 105.63 c 101.24 104.94 100.68 104.38 99.99 104.38 c 99.31 104.38 98.74 104.94 98.74 105.63 c B 98.95 105.63 m 98.95 106.31 99.51 106.87 100.20 106.87 c 100.88 106.87 101.44 106.31 101.44 105.63 c 101.44 104.94 100.88 104.38 100.20 104.38 c 99.51 104.38 98.95 104.94 98.95 105.63 c B 99.19 105.63 m 99.19 106.31 99.75 106.87 100.44 106.87 c 101.13 106.87 101.69 106.31 101.69 105.63 c 101.69 104.94 101.13 104.38 100.44 104.38 c 99.75 104.38 99.19 104.94 99.19 105.63 c B 99.20 105.63 m 99.20 106.31 99.76 106.87 100.45 106.87 c 101.13 106.87 101.69 106.31 101.69 105.63 c 101.69 104.94 101.13 104.38 100.45 104.38 c 99.76 104.38 99.20 104.94 99.20 105.63 c B 99.36 105.63 m 99.36 106.31 99.92 106.87 100.61 106.87 c 101.29 106.87 101.85 106.31 101.85 105.63 c 101.85 104.94 101.29 104.38 100.61 104.38 c 99.92 104.38 99.36 104.94 99.36 105.63 c B 99.40 105.63 m 99.40 106.31 99.96 106.87 100.64 106.87 c 101.33 106.87 101.89 106.31 101.89 105.63 c 101.89 104.94 101.33 104.38 100.64 104.38 c 99.96 104.38 99.40 104.94 99.40 105.63 c B 99.48 105.63 m 99.48 106.31 100.04 106.87 100.73 106.87 c 101.42 106.87 101.98 106.31 101.98 105.63 c 101.98 104.94 101.42 104.38 100.73 104.38 c 100.04 104.38 99.48 104.94 99.48 105.63 c B 99.57 105.63 m 99.57 106.31 100.13 106.87 100.82 106.87 c 101.50 106.87 102.06 106.31 102.06 105.63 c 102.06 104.94 101.50 104.38 100.82 104.38 c 100.13 104.38 99.57 104.94 99.57 105.63 c B 99.68 105.63 m 99.68 106.31 100.24 106.87 100.92 106.87 c 101.61 106.87 102.17 106.31 102.17 105.63 c 102.17 104.94 101.61 104.38 100.92 104.38 c 100.24 104.38 99.68 104.94 99.68 105.63 c B 99.68 105.63 m 99.68 106.31 100.24 106.87 100.92 106.87 c 101.61 106.87 102.17 106.31 102.17 105.63 c 102.17 104.94 101.61 104.38 100.92 104.38 c 100.24 104.38 99.68 104.94 99.68 105.63 c B 100.04 105.63 m 100.04 106.31 100.61 106.87 101.29 106.87 c 101.98 106.87 102.54 106.31 102.54 105.63 c 102.54 104.94 101.98 104.38 101.29 104.38 c 100.61 104.38 100.04 104.94 100.04 105.63 c B 100.15 105.63 m 100.15 106.31 100.71 106.87 101.39 106.87 c 102.08 106.87 102.64 106.31 102.64 105.63 c 102.64 104.94 102.08 104.38 101.39 104.38 c 100.71 104.38 100.15 104.94 100.15 105.63 c B 100.21 105.63 m 100.21 106.31 100.77 106.87 101.45 106.87 c 102.14 106.87 102.70 106.31 102.70 105.63 c 102.70 104.94 102.14 104.38 101.45 104.38 c 100.77 104.38 100.21 104.94 100.21 105.63 c B 100.37 105.63 m 100.37 106.31 100.93 106.87 101.62 106.87 c 102.31 106.87 102.87 106.31 102.87 105.63 c 102.87 104.94 102.31 104.38 101.62 104.38 c 100.93 104.38 100.37 104.94 100.37 105.63 c B 100.41 105.63 m 100.41 106.31 100.97 106.87 101.66 106.87 c 102.34 106.87 102.91 106.31 102.91 105.63 c 102.91 104.94 102.34 104.38 101.66 104.38 c 100.97 104.38 100.41 104.94 100.41 105.63 c B 100.50 105.63 m 100.50 106.31 101.06 106.87 101.74 106.87 c 102.43 106.87 102.99 106.31 102.99 105.63 c 102.99 104.94 102.43 104.38 101.74 104.38 c 101.06 104.38 100.50 104.94 100.50 105.63 c B 100.67 105.63 m 100.67 106.31 101.24 106.87 101.92 106.87 c 102.61 106.87 103.17 106.31 103.17 105.63 c 103.17 104.94 102.61 104.38 101.92 104.38 c 101.24 104.38 100.67 104.94 100.67 105.63 c B 100.70 105.63 m 100.70 106.31 101.26 106.87 101.94 106.87 c 102.63 106.87 103.19 106.31 103.19 105.63 c 103.19 104.94 102.63 104.38 101.94 104.38 c 101.26 104.38 100.70 104.94 100.70 105.63 c B 100.73 105.63 m 100.73 106.31 101.30 106.87 101.98 106.87 c 102.67 106.87 103.23 106.31 103.23 105.63 c 103.23 104.94 102.67 104.38 101.98 104.38 c 101.30 104.38 100.73 104.94 100.73 105.63 c B 101.05 105.63 m 101.05 106.31 101.61 106.87 102.30 106.87 c 102.99 106.87 103.55 106.31 103.55 105.63 c 103.55 104.94 102.99 104.38 102.30 104.38 c 101.61 104.38 101.05 104.94 101.05 105.63 c B 101.13 105.63 m 101.13 106.31 101.69 106.87 102.38 106.87 c 103.07 106.87 103.63 106.31 103.63 105.63 c 103.63 104.94 103.07 104.38 102.38 104.38 c 101.69 104.38 101.13 104.94 101.13 105.63 c B 101.23 105.63 m 101.23 106.31 101.80 106.87 102.48 106.87 c 103.17 106.87 103.73 106.31 103.73 105.63 c 103.73 104.94 103.17 104.38 102.48 104.38 c 101.80 104.38 101.23 104.94 101.23 105.63 c B 101.34 105.63 m 101.34 106.31 101.90 106.87 102.58 106.87 c 103.27 106.87 103.83 106.31 103.83 105.63 c 103.83 104.94 103.27 104.38 102.58 104.38 c 101.90 104.38 101.34 104.94 101.34 105.63 c B 101.42 105.63 m 101.42 106.31 101.98 106.87 102.67 106.87 c 103.35 106.87 103.91 106.31 103.91 105.63 c 103.91 104.94 103.35 104.38 102.67 104.38 c 101.98 104.38 101.42 104.94 101.42 105.63 c B 101.59 105.63 m 101.59 106.31 102.15 106.87 102.84 106.87 c 103.52 106.87 104.09 106.31 104.09 105.63 c 104.09 104.94 103.52 104.38 102.84 104.38 c 102.15 104.38 101.59 104.94 101.59 105.63 c B 101.64 105.63 m 101.64 106.31 102.21 106.87 102.89 106.87 c 103.58 106.87 104.14 106.31 104.14 105.63 c 104.14 104.94 103.58 104.38 102.89 104.38 c 102.21 104.38 101.64 104.94 101.64 105.63 c B 101.76 105.63 m 101.76 106.31 102.32 106.87 103.01 106.87 c 103.70 106.87 104.26 106.31 104.26 105.63 c 104.26 104.94 103.70 104.38 103.01 104.38 c 102.32 104.38 101.76 104.94 101.76 105.63 c B 101.82 105.63 m 101.82 106.31 102.38 106.87 103.07 106.87 c 103.76 106.87 104.32 106.31 104.32 105.63 c 104.32 104.94 103.76 104.38 103.07 104.38 c 102.38 104.38 101.82 104.94 101.82 105.63 c B 101.93 105.63 m 101.93 106.31 102.49 106.87 103.18 106.87 c 103.86 106.87 104.42 106.31 104.42 105.63 c 104.42 104.94 103.86 104.38 103.18 104.38 c 102.49 104.38 101.93 104.94 101.93 105.63 c B 101.98 105.63 m 101.98 106.31 102.54 106.87 103.23 106.87 c 103.91 106.87 104.47 106.31 104.47 105.63 c 104.47 104.94 103.91 104.38 103.23 104.38 c 102.54 104.38 101.98 104.94 101.98 105.63 c B 102.10 105.63 m 102.10 106.31 102.66 106.87 103.34 106.87 c 104.03 106.87 104.59 106.31 104.59 105.63 c 104.59 104.94 104.03 104.38 103.34 104.38 c 102.66 104.38 102.10 104.94 102.10 105.63 c B 102.16 105.63 m 102.16 106.31 102.72 106.87 103.40 106.87 c 104.09 106.87 104.65 106.31 104.65 105.63 c 104.65 104.94 104.09 104.38 103.40 104.38 c 102.72 104.38 102.16 104.94 102.16 105.63 c B 102.27 105.63 m 102.27 106.31 102.83 106.87 103.52 106.87 c 104.20 106.87 104.76 106.31 104.76 105.63 c 104.76 104.94 104.20 104.38 103.52 104.38 c 102.83 104.38 102.27 104.94 102.27 105.63 c B 102.37 105.63 m 102.37 106.31 102.93 106.87 103.62 106.87 c 104.31 106.87 104.87 106.31 104.87 105.63 c 104.87 104.94 104.31 104.38 103.62 104.38 c 102.93 104.38 102.37 104.94 102.37 105.63 c B 102.44 105.63 m 102.44 106.31 103.00 106.87 103.68 106.87 c 104.37 106.87 104.93 106.31 104.93 105.63 c 104.93 104.94 104.37 104.38 103.68 104.38 c 103.00 104.38 102.44 104.94 102.44 105.63 c B 102.84 105.63 m 102.84 106.31 103.40 106.87 104.08 106.87 c 104.77 106.87 105.33 106.31 105.33 105.63 c 105.33 104.94 104.77 104.38 104.08 104.38 c 103.40 104.38 102.84 104.94 102.84 105.63 c B 102.93 105.63 m 102.93 106.31 103.49 106.87 104.17 106.87 c 104.86 106.87 105.42 106.31 105.42 105.63 c 105.42 104.94 104.86 104.38 104.17 104.38 c 103.49 104.38 102.93 104.94 102.93 105.63 c B 103.06 105.63 m 103.06 106.31 103.62 106.87 104.31 106.87 c 105.00 106.87 105.56 106.31 105.56 105.63 c 105.56 104.94 105.00 104.38 104.31 104.38 c 103.62 104.38 103.06 104.94 103.06 105.63 c B 103.47 105.81 m 103.47 106.50 104.03 107.06 104.71 107.06 c 105.40 107.06 105.96 106.50 105.96 105.81 c 105.96 105.13 105.40 104.56 104.71 104.56 c 104.03 104.56 103.47 105.13 103.47 105.81 c B 103.50 106.04 m 103.50 106.72 104.07 107.29 104.75 107.29 c 105.44 107.29 106.00 106.72 106.00 106.04 c 106.00 105.35 105.44 104.79 104.75 104.79 c 104.07 104.79 103.50 105.35 103.50 106.04 c B 103.73 106.16 m 103.73 106.85 104.29 107.41 104.98 107.41 c 105.66 107.41 106.23 106.85 106.23 106.16 c 106.23 105.47 105.66 104.91 104.98 104.91 c 104.29 104.91 103.73 105.47 103.73 106.16 c B 104.05 106.46 m 104.05 107.14 104.61 107.71 105.30 107.71 c 105.98 107.71 106.54 107.14 106.54 106.46 c 106.54 105.77 105.98 105.21 105.30 105.21 c 104.61 105.21 104.05 105.77 104.05 106.46 c B 104.41 106.46 m 104.41 107.14 104.98 107.71 105.66 107.71 c 106.35 107.71 106.91 107.14 106.91 106.46 c 106.91 105.77 106.35 105.21 105.66 105.21 c 104.98 105.21 104.41 105.77 104.41 106.46 c B 104.52 106.52 m 104.52 107.20 105.08 107.76 105.77 107.76 c 106.46 107.76 107.02 107.20 107.02 106.52 c 107.02 105.83 106.46 105.27 105.77 105.27 c 105.08 105.27 104.52 105.83 104.52 106.52 c B 104.66 106.57 m 104.66 107.25 105.22 107.81 105.91 107.81 c 106.60 107.81 107.16 107.25 107.16 106.57 c 107.16 105.88 106.60 105.32 105.91 105.32 c 105.22 105.32 104.66 105.88 104.66 106.57 c B 105.00 106.59 m 105.00 107.27 105.56 107.83 106.25 107.83 c 106.94 107.83 107.50 107.27 107.50 106.59 c 107.50 105.90 106.94 105.34 106.25 105.34 c 105.56 105.34 105.00 105.90 105.00 106.59 c B 105.17 106.87 m 105.17 107.56 105.74 108.12 106.42 108.12 c 107.11 108.12 107.67 107.56 107.67 106.87 c 107.67 106.19 107.11 105.63 106.42 105.63 c 105.74 105.63 105.17 106.19 105.17 106.87 c B 105.41 107.32 m 105.41 108.00 105.97 108.56 106.66 108.56 c 107.35 108.56 107.91 108.00 107.91 107.32 c 107.91 106.63 107.35 106.07 106.66 106.07 c 105.97 106.07 105.41 106.63 105.41 107.32 c B 105.50 107.61 m 105.50 108.30 106.06 108.86 106.75 108.86 c 107.44 108.86 108.00 108.30 108.00 107.61 c 108.00 106.93 107.44 106.37 106.75 106.37 c 106.06 106.37 105.50 106.93 105.50 107.61 c B 105.83 107.61 m 105.83 108.30 106.39 108.86 107.08 108.86 c 107.77 108.86 108.33 108.30 108.33 107.61 c 108.33 106.93 107.77 106.37 107.08 106.37 c 106.39 106.37 105.83 106.93 105.83 107.61 c B 106.12 107.75 m 106.12 108.44 106.68 109.00 107.37 109.00 c 108.06 109.00 108.62 108.44 108.62 107.75 c 108.62 107.06 108.06 106.50 107.37 106.50 c 106.68 106.50 106.12 107.06 106.12 107.75 c B 106.31 107.91 m 106.31 108.60 106.87 109.16 107.55 109.16 c 108.24 109.16 108.80 108.60 108.80 107.91 c 108.80 107.23 108.24 106.67 107.55 106.67 c 106.87 106.67 106.31 107.23 106.31 107.91 c B 106.43 107.95 m 106.43 108.64 106.99 109.20 107.68 109.20 c 108.36 109.20 108.93 108.64 108.93 107.95 c 108.93 107.26 108.36 106.70 107.68 106.70 c 106.99 106.70 106.43 107.26 106.43 107.95 c B 106.72 107.95 m 106.72 108.64 107.28 109.20 107.96 109.20 c 108.65 109.20 109.21 108.64 109.21 107.95 c 109.21 107.27 108.65 106.71 107.96 106.71 c 107.28 106.71 106.72 107.27 106.72 107.95 c B 106.97 107.95 m 106.97 108.64 107.54 109.20 108.22 109.20 c 108.91 109.20 109.47 108.64 109.47 107.95 c 109.47 107.27 108.91 106.71 108.22 106.71 c 107.54 106.71 106.97 107.27 106.97 107.95 c B 107.25 108.40 m 107.25 109.09 107.81 109.65 108.50 109.65 c 109.18 109.65 109.74 109.09 109.74 108.40 c 109.74 107.72 109.18 107.16 108.50 107.16 c 107.81 107.16 107.25 107.72 107.25 108.40 c B 107.45 108.66 m 107.45 109.35 108.02 109.91 108.70 109.91 c 109.39 109.91 109.95 109.35 109.95 108.66 c 109.95 107.98 109.39 107.41 108.70 107.41 c 108.02 107.41 107.45 107.98 107.45 108.66 c B 107.49 108.74 m 107.49 109.43 108.05 109.99 108.74 109.99 c 109.43 109.99 109.99 109.43 109.99 108.74 c 109.99 108.06 109.43 107.50 108.74 107.50 c 108.05 107.50 107.49 108.06 107.49 108.74 c B 107.58 108.82 m 107.58 109.51 108.14 110.07 108.83 110.07 c 109.51 110.07 110.07 109.51 110.07 108.82 c 110.07 108.13 109.51 107.57 108.83 107.57 c 108.14 107.57 107.58 108.13 107.58 108.82 c B 108.05 109.09 m 108.05 109.78 108.61 110.34 109.29 110.34 c 109.98 110.34 110.54 109.78 110.54 109.09 c 110.54 108.40 109.98 107.84 109.29 107.84 c 108.61 107.84 108.05 108.40 108.05 109.09 c B 108.18 109.32 m 108.18 110.00 108.74 110.57 109.42 110.57 c 110.11 110.57 110.67 110.00 110.67 109.32 c 110.67 108.63 110.11 108.07 109.42 108.07 c 108.74 108.07 108.18 108.63 108.18 109.32 c B 108.26 109.77 m 108.26 110.45 108.82 111.02 109.51 111.02 c 110.19 111.02 110.75 110.45 110.75 109.77 c 110.75 109.08 110.19 108.52 109.51 108.52 c 108.82 108.52 108.26 109.08 108.26 109.77 c B 108.41 109.85 m 108.41 110.54 108.98 111.10 109.66 111.10 c 110.35 111.10 110.91 110.54 110.91 109.85 c 110.91 109.16 110.35 108.60 109.66 108.60 c 108.98 108.60 108.41 109.16 108.41 109.85 c B 109.05 109.89 m 109.05 110.57 109.61 111.13 110.30 111.13 c 110.98 111.13 111.54 110.57 111.54 109.89 c 111.54 109.20 110.98 108.64 110.30 108.64 c 109.61 108.64 109.05 109.20 109.05 109.89 c B 109.26 110.06 m 109.26 110.75 109.82 111.31 110.51 111.31 c 111.19 111.31 111.75 110.75 111.75 110.06 c 111.75 109.38 111.19 108.81 110.51 108.81 c 109.82 108.81 109.26 109.38 109.26 110.06 c B 109.46 110.14 m 109.46 110.83 110.03 111.39 110.71 111.39 c 111.40 111.39 111.96 110.83 111.96 110.14 c 111.96 109.46 111.40 108.90 110.71 108.90 c 110.03 108.90 109.46 109.46 109.46 110.14 c B 109.85 111.16 m 109.85 111.85 110.41 112.41 111.10 112.41 c 111.79 112.41 112.35 111.85 112.35 111.16 c 112.35 110.47 111.79 109.91 111.10 109.91 c 110.41 109.91 109.85 110.47 109.85 111.16 c B 110.11 111.32 m 110.11 112.00 110.67 112.56 111.36 112.56 c 112.05 112.56 112.61 112.00 112.61 111.32 c 112.61 110.63 112.05 110.07 111.36 110.07 c 110.67 110.07 110.11 110.63 110.11 111.32 c B 110.40 111.62 m 110.40 112.30 110.96 112.86 111.64 112.86 c 112.33 112.86 112.89 112.30 112.89 111.62 c 112.89 110.93 112.33 110.37 111.64 110.37 c 110.96 110.37 110.40 110.93 110.40 111.62 c B 110.59 111.65 m 110.59 112.33 111.15 112.89 111.83 112.89 c 112.52 112.89 113.08 112.33 113.08 111.65 c 113.08 110.96 112.52 110.40 111.83 110.40 c 111.15 110.40 110.59 110.96 110.59 111.65 c B 110.70 112.08 m 110.70 112.76 111.27 113.32 111.95 113.32 c 112.64 113.32 113.20 112.76 113.20 112.08 c 113.20 111.39 112.64 110.83 111.95 110.83 c 111.27 110.83 110.70 111.39 110.70 112.08 c B 110.91 112.12 m 110.91 112.80 111.47 113.36 112.16 113.36 c 112.84 113.36 113.40 112.80 113.40 112.12 c 113.40 111.43 112.84 110.87 112.16 110.87 c 111.47 110.87 110.91 111.43 110.91 112.12 c B 111.22 112.13 m 111.22 112.81 111.78 113.38 112.46 113.38 c 113.15 113.38 113.71 112.81 113.71 112.13 c 113.71 111.44 113.15 110.88 112.46 110.88 c 111.78 110.88 111.22 111.44 111.22 112.13 c B 111.45 112.23 m 111.45 112.92 112.01 113.48 112.70 113.48 c 113.39 113.48 113.95 112.92 113.95 112.23 c 113.95 111.55 113.39 110.98 112.70 110.98 c 112.01 110.98 111.45 111.55 111.45 112.23 c B 111.69 112.25 m 111.69 112.94 112.25 113.50 112.94 113.50 c 113.62 113.50 114.19 112.94 114.19 112.25 c 114.19 111.57 113.62 111.01 112.94 111.01 c 112.25 111.01 111.69 111.57 111.69 112.25 c B 111.90 112.47 m 111.90 113.16 112.46 113.72 113.14 113.72 c 113.83 113.72 114.39 113.16 114.39 112.47 c 114.39 111.79 113.83 111.23 113.14 111.23 c 112.46 111.23 111.90 111.79 111.90 112.47 c B 112.05 112.53 m 112.05 113.22 112.61 113.78 113.29 113.78 c 113.98 113.78 114.54 113.22 114.54 112.53 c 114.54 111.84 113.98 111.28 113.29 111.28 c 112.61 111.28 112.05 111.84 112.05 112.53 c B 112.12 112.68 m 112.12 113.36 112.68 113.92 113.37 113.92 c 114.06 113.92 114.62 113.36 114.62 112.68 c 114.62 111.99 114.06 111.43 113.37 111.43 c 112.68 111.43 112.12 111.99 112.12 112.68 c B 112.77 112.69 m 112.77 113.38 113.33 113.94 114.02 113.94 c 114.70 113.94 115.26 113.38 115.26 112.69 c 115.26 112.01 114.70 111.45 114.02 111.45 c 113.33 111.45 112.77 112.01 112.77 112.69 c B 113.16 112.93 m 113.16 113.61 113.72 114.18 114.41 114.18 c 115.10 114.18 115.66 113.61 115.66 112.93 c 115.66 112.24 115.10 111.68 114.41 111.68 c 113.72 111.68 113.16 112.24 113.16 112.93 c B 113.38 113.18 m 113.38 113.87 113.94 114.43 114.63 114.43 c 115.31 114.43 115.87 113.87 115.87 113.18 c 115.87 112.50 115.31 111.94 114.63 111.94 c 113.94 111.94 113.38 112.50 113.38 113.18 c B 113.73 113.23 m 113.73 113.92 114.29 114.48 114.98 114.48 c 115.67 114.48 116.23 113.92 116.23 113.23 c 116.23 112.54 115.67 111.98 114.98 111.98 c 114.29 111.98 113.73 112.54 113.73 113.23 c B 114.48 113.31 m 114.48 114.00 115.04 114.56 115.72 114.56 c 116.41 114.56 116.97 114.00 116.97 113.31 c 116.97 112.62 116.41 112.06 115.72 112.06 c 115.04 112.06 114.48 112.62 114.48 113.31 c B 115.26 113.80 m 115.26 114.48 115.82 115.05 116.51 115.05 c 117.19 115.05 117.75 114.48 117.75 113.80 c 117.75 113.11 117.19 112.55 116.51 112.55 c 115.82 112.55 115.26 113.11 115.26 113.80 c B 115.61 113.91 m 115.61 114.60 116.17 115.16 116.86 115.16 c 117.54 115.16 118.10 114.60 118.10 113.91 c 118.10 113.22 117.54 112.66 116.86 112.66 c 116.17 112.66 115.61 113.22 115.61 113.91 c B 115.96 114.45 m 115.96 115.14 116.52 115.70 117.21 115.70 c 117.89 115.70 118.45 115.14 118.45 114.45 c 118.45 113.76 117.89 113.20 117.21 113.20 c 116.52 113.20 115.96 113.76 115.96 114.45 c B 116.14 114.81 m 116.14 115.50 116.70 116.06 117.39 116.06 c 118.08 116.06 118.64 115.50 118.64 114.81 c 118.64 114.13 118.08 113.57 117.39 113.57 c 116.70 113.57 116.14 114.13 116.14 114.81 c B 116.68 115.16 m 116.68 115.85 117.24 116.41 117.92 116.41 c 118.61 116.41 119.17 115.85 119.17 115.16 c 119.17 114.48 118.61 113.92 117.92 113.92 c 117.24 113.92 116.68 114.48 116.68 115.16 c B 116.96 115.63 m 116.96 116.31 117.52 116.87 118.20 116.87 c 118.89 116.87 119.45 116.31 119.45 115.63 c 119.45 114.94 118.89 114.38 118.20 114.38 c 117.52 114.38 116.96 114.94 116.96 115.63 c B 117.54 115.76 m 117.54 116.45 118.10 117.01 118.79 117.01 c 119.47 117.01 120.03 116.45 120.03 115.76 c 120.03 115.08 119.47 114.52 118.79 114.52 c 118.10 114.52 117.54 115.08 117.54 115.76 c B 118.24 116.56 m 118.24 117.25 118.81 117.81 119.49 117.81 c 120.18 117.81 120.74 117.25 120.74 116.56 c 120.74 115.87 120.18 115.31 119.49 115.31 c 118.81 115.31 118.24 115.87 118.24 116.56 c B 118.68 117.75 m 118.68 118.44 119.24 119.00 119.93 119.00 c 120.61 119.00 121.18 118.44 121.18 117.75 c 121.18 117.07 120.61 116.51 119.93 116.51 c 119.24 116.51 118.68 117.07 118.68 117.75 c B 119.02 118.86 m 119.02 119.55 119.58 120.11 120.27 120.11 c 120.95 120.11 121.52 119.55 121.52 118.86 c 121.52 118.17 120.95 117.61 120.27 117.61 c 119.58 117.61 119.02 118.17 119.02 118.86 c B 119.65 119.21 m 119.65 119.89 120.21 120.45 120.89 120.45 c 121.58 120.45 122.14 119.89 122.14 119.21 c 122.14 118.52 121.58 117.96 120.89 117.96 c 120.21 117.96 119.65 118.52 119.65 119.21 c B 119.97 119.34 m 119.97 120.03 120.54 120.59 121.22 120.59 c 121.91 120.59 122.47 120.03 122.47 119.34 c 122.47 118.66 121.91 118.09 121.22 118.09 c 120.54 118.09 119.97 118.66 119.97 119.34 c B 120.15 119.52 m 120.15 120.20 120.71 120.77 121.40 120.77 c 122.09 120.77 122.65 120.20 122.65 119.52 c 122.65 118.83 122.09 118.27 121.40 118.27 c 120.71 118.27 120.15 118.83 120.15 119.52 c B 120.35 119.92 m 120.35 120.60 120.91 121.16 121.59 121.16 c 122.28 121.16 122.84 120.60 122.84 119.92 c 122.84 119.23 122.28 118.67 121.59 118.67 c 120.91 118.67 120.35 119.23 120.35 119.92 c B 120.77 120.03 m 120.77 120.71 121.33 121.28 122.01 121.28 c 122.70 121.28 123.26 120.71 123.26 120.03 c 123.26 119.34 122.70 118.78 122.01 118.78 c 121.33 118.78 120.77 119.34 120.77 120.03 c B 121.24 120.03 m 121.24 120.72 121.80 121.28 122.49 121.28 c 123.17 121.28 123.74 120.72 123.74 120.03 c 123.74 119.34 123.17 118.78 122.49 118.78 c 121.80 118.78 121.24 119.34 121.24 120.03 c B 123.19 120.23 m 123.19 120.92 123.75 121.48 124.44 121.48 c 125.13 121.48 125.69 120.92 125.69 120.23 c 125.69 119.54 125.13 118.98 124.44 118.98 c 123.75 118.98 123.19 119.54 123.19 120.23 c B 123.24 120.68 m 123.24 121.37 123.80 121.93 124.49 121.93 c 125.17 121.93 125.74 121.37 125.74 120.68 c 125.74 120.00 125.17 119.43 124.49 119.43 c 123.80 119.43 123.24 120.00 123.24 120.68 c B 123.38 122.50 m 123.38 123.19 123.94 123.75 124.62 123.75 c 125.31 123.75 125.87 123.19 125.87 122.50 c 125.87 121.81 125.31 121.25 124.62 121.25 c 123.94 121.25 123.38 121.81 123.38 122.50 c B 125.09 122.71 m 125.09 123.39 125.65 123.95 126.34 123.95 c 127.02 123.95 127.58 123.39 127.58 122.71 c 127.58 122.02 127.02 121.46 126.34 121.46 c 125.65 121.46 125.09 122.02 125.09 122.71 c B 126.07 123.16 m 126.07 123.85 126.63 124.41 127.32 124.41 c 128.00 124.41 128.57 123.85 128.57 123.16 c 128.57 122.48 128.00 121.92 127.32 121.92 c 126.63 121.92 126.07 122.48 126.07 123.16 c B 128.96 125.18 m 128.96 125.87 129.52 126.43 130.21 126.43 c 130.89 126.43 131.45 125.87 131.45 125.18 c 131.45 124.50 130.89 123.94 130.21 123.94 c 129.52 123.94 128.96 124.50 128.96 125.18 c B 131.21 126.64 m 131.21 127.33 131.77 127.89 132.46 127.89 c 133.15 127.89 133.71 127.33 133.71 126.64 c 133.71 125.96 133.15 125.40 132.46 125.40 c 131.77 125.40 131.21 125.96 131.21 126.64 c B 132.11 127.63 m 132.11 128.32 132.67 128.88 133.36 128.88 c 134.05 128.88 134.61 128.32 134.61 127.63 c 134.61 126.95 134.05 126.39 133.36 126.39 c 132.67 126.39 132.11 126.95 132.11 127.63 c B 133.88 132.82 m 133.88 133.51 134.44 134.07 135.13 134.07 c 135.81 134.07 136.37 133.51 136.37 132.82 c 136.37 132.14 135.81 131.57 135.13 131.57 c 134.44 131.57 133.88 132.14 133.88 132.82 c B 135.10 134.30 m 135.10 134.99 135.66 135.55 136.35 135.55 c 137.03 135.55 137.59 134.99 137.59 134.30 c 137.59 133.61 137.03 133.05 136.35 133.05 c 135.66 133.05 135.10 133.61 135.10 134.30 c B 136.18 140.00 m 136.18 140.69 136.74 141.25 137.43 141.25 c 138.11 141.25 138.68 140.69 138.68 140.00 c 138.68 139.32 138.11 138.76 137.43 138.76 c 136.74 138.76 136.18 139.32 136.18 140.00 c B 140.72 150.31 m 140.72 150.99 141.29 151.55 141.97 151.55 c 142.66 151.55 143.22 150.99 143.22 150.31 c 143.22 149.62 142.66 149.06 141.97 149.06 c 141.29 149.06 140.72 149.62 140.72 150.31 c B 153.01 168.12 m 153.01 168.80 153.57 169.36 154.26 169.36 c 154.95 169.36 155.51 168.80 155.51 168.12 c 155.51 167.43 154.95 166.87 154.26 166.87 c 153.57 166.87 153.01 167.43 153.01 168.12 c B Q q 91.25 98.38 91.25 76.99 re W n Q q 96.00 103.13 81.74 67.49 re W n /GS2 gs 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 96.00 103.13 m 177.74 170.62 l S 0.75 w [ 3.00 5.00] 0 d 96.00 109.38 m 177.74 176.86 l S 96.00 96.88 m 177.74 164.37 l S Q q /GS2 gs 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 96.00 105.63 m 96.00 167.76 l S 96.00 105.63 m 91.25 105.63 l S 96.00 118.05 m 91.25 118.05 l S 96.00 130.48 m 91.25 130.48 l S 96.00 142.91 m 91.25 142.91 l S 96.00 155.34 m 91.25 155.34 l S 96.00 167.76 m 91.25 167.76 l S BT /GS258 gs 0.000 0.000 0.000 rg /F2 1 Tf 0.00 8.00 -8.00 0.00 84.60 103.40 Tm (0) Tj /F2 1 Tf 0.00 8.00 -8.00 0.00 84.60 115.83 Tm (5) Tj /F2 1 Tf 0.00 8.00 -8.00 0.00 84.60 138.46 Tm (15) Tj /F2 1 Tf 0.00 8.00 -8.00 0.00 84.60 163.31 Tm (25) Tj ET 96.00 103.13 m 177.74 103.13 l 177.74 170.62 l 96.00 170.62 l 96.00 103.13 l S Q q 187.25 103.13 81.74 67.49 re W n Q q 187.25 103.13 81.74 67.49 re W n /GS257 gs 0.000 0.000 1.000 rg /GS1 gs 0.000 0.000 1.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.03 105.63 m 189.03 106.31 189.59 106.87 190.28 106.87 c 190.96 106.87 191.52 106.31 191.52 105.63 c 191.52 104.94 190.96 104.38 190.28 104.38 c 189.59 104.38 189.03 104.94 189.03 105.63 c B 189.16 105.63 m 189.16 106.31 189.72 106.87 190.41 106.87 c 191.10 106.87 191.66 106.31 191.66 105.63 c 191.66 104.94 191.10 104.38 190.41 104.38 c 189.72 104.38 189.16 104.94 189.16 105.63 c B 189.20 105.63 m 189.20 106.31 189.76 106.87 190.45 106.87 c 191.13 106.87 191.70 106.31 191.70 105.63 c 191.70 104.94 191.13 104.38 190.45 104.38 c 189.76 104.38 189.20 104.94 189.20 105.63 c B 189.49 105.63 m 189.49 106.31 190.05 106.87 190.73 106.87 c 191.42 106.87 191.98 106.31 191.98 105.63 c 191.98 104.94 191.42 104.38 190.73 104.38 c 190.05 104.38 189.49 104.94 189.49 105.63 c B 189.53 105.63 m 189.53 106.31 190.09 106.87 190.78 106.87 c 191.46 106.87 192.02 106.31 192.02 105.63 c 192.02 104.94 191.46 104.38 190.78 104.38 c 190.09 104.38 189.53 104.94 189.53 105.63 c B 189.55 105.63 m 189.55 106.31 190.11 106.87 190.79 106.87 c 191.48 106.87 192.04 106.31 192.04 105.63 c 192.04 104.94 191.48 104.38 190.79 104.38 c 190.11 104.38 189.55 104.94 189.55 105.63 c B 189.58 105.63 m 189.58 106.31 190.14 106.87 190.83 106.87 c 191.51 106.87 192.07 106.31 192.07 105.63 c 192.07 104.94 191.51 104.38 190.83 104.38 c 190.14 104.38 189.58 104.94 189.58 105.63 c B 189.60 105.63 m 189.60 106.31 190.16 106.87 190.85 106.87 c 191.53 106.87 192.09 106.31 192.09 105.63 c 192.09 104.94 191.53 104.38 190.85 104.38 c 190.16 104.38 189.60 104.94 189.60 105.63 c B 189.65 105.63 m 189.65 106.31 190.21 106.87 190.90 106.87 c 191.58 106.87 192.14 106.31 192.14 105.63 c 192.14 104.94 191.58 104.38 190.90 104.38 c 190.21 104.38 189.65 104.94 189.65 105.63 c B 189.65 105.63 m 189.65 106.31 190.21 106.87 190.90 106.87 c 191.58 106.87 192.14 106.31 192.14 105.63 c 192.14 104.94 191.58 104.38 190.90 104.38 c 190.21 104.38 189.65 104.94 189.65 105.63 c B 189.69 105.63 m 189.69 106.31 190.25 106.87 190.93 106.87 c 191.62 106.87 192.18 106.31 192.18 105.63 c 192.18 104.94 191.62 104.38 190.93 104.38 c 190.25 104.38 189.69 104.94 189.69 105.63 c B 189.77 105.63 m 189.77 106.31 190.33 106.87 191.01 106.87 c 191.70 106.87 192.26 106.31 192.26 105.63 c 192.26 104.94 191.70 104.38 191.01 104.38 c 190.33 104.38 189.77 104.94 189.77 105.63 c B 189.78 105.63 m 189.78 106.31 190.34 106.87 191.02 106.87 c 191.71 106.87 192.27 106.31 192.27 105.63 c 192.27 104.94 191.71 104.38 191.02 104.38 c 190.34 104.38 189.78 104.94 189.78 105.63 c B 189.79 105.63 m 189.79 106.31 190.35 106.87 191.04 106.87 c 191.73 106.87 192.29 106.31 192.29 105.63 c 192.29 104.94 191.73 104.38 191.04 104.38 c 190.35 104.38 189.79 104.94 189.79 105.63 c B 189.85 105.63 m 189.85 106.31 190.41 106.87 191.09 106.87 c 191.78 106.87 192.34 106.31 192.34 105.63 c 192.34 104.94 191.78 104.38 191.09 104.38 c 190.41 104.38 189.85 104.94 189.85 105.63 c B 189.86 105.63 m 189.86 106.31 190.42 106.87 191.11 106.87 c 191.80 106.87 192.36 106.31 192.36 105.63 c 192.36 104.94 191.80 104.38 191.11 104.38 c 190.42 104.38 189.86 104.94 189.86 105.63 c B 189.91 105.63 m 189.91 106.31 190.47 106.87 191.16 106.87 c 191.85 106.87 192.41 106.31 192.41 105.63 c 192.41 104.94 191.85 104.38 191.16 104.38 c 190.47 104.38 189.91 104.94 189.91 105.63 c B 189.92 105.63 m 189.92 106.31 190.48 106.87 191.17 106.87 c 191.86 106.87 192.42 106.31 192.42 105.63 c 192.42 104.94 191.86 104.38 191.17 104.38 c 190.48 104.38 189.92 104.94 189.92 105.63 c B 189.93 105.63 m 189.93 106.31 190.49 106.87 191.18 106.87 c 191.87 106.87 192.43 106.31 192.43 105.63 c 192.43 104.94 191.87 104.38 191.18 104.38 c 190.49 104.38 189.93 104.94 189.93 105.63 c B 189.99 105.63 m 189.99 106.31 190.55 106.87 191.24 106.87 c 191.93 106.87 192.49 106.31 192.49 105.63 c 192.49 104.94 191.93 104.38 191.24 104.38 c 190.55 104.38 189.99 104.94 189.99 105.63 c B 190.01 105.63 m 190.01 106.31 190.58 106.87 191.26 106.87 c 191.95 106.87 192.51 106.31 192.51 105.63 c 192.51 104.94 191.95 104.38 191.26 104.38 c 190.58 104.38 190.01 104.94 190.01 105.63 c B 190.19 105.63 m 190.19 106.31 190.75 106.87 191.44 106.87 c 192.13 106.87 192.69 106.31 192.69 105.63 c 192.69 104.94 192.13 104.38 191.44 104.38 c 190.75 104.38 190.19 104.94 190.19 105.63 c B 190.20 105.63 m 190.20 106.31 190.76 106.87 191.45 106.87 c 192.13 106.87 192.69 106.31 192.69 105.63 c 192.69 104.94 192.13 104.38 191.45 104.38 c 190.76 104.38 190.20 104.94 190.20 105.63 c B 190.39 105.63 m 190.39 106.31 190.95 106.87 191.63 106.87 c 192.32 106.87 192.88 106.31 192.88 105.63 c 192.88 104.94 192.32 104.38 191.63 104.38 c 190.95 104.38 190.39 104.94 190.39 105.63 c B 190.45 105.63 m 190.45 106.31 191.01 106.87 191.69 106.87 c 192.38 106.87 192.94 106.31 192.94 105.63 c 192.94 104.94 192.38 104.38 191.69 104.38 c 191.01 104.38 190.45 104.94 190.45 105.63 c B 190.47 105.63 m 190.47 106.31 191.03 106.87 191.72 106.87 c 192.41 106.87 192.97 106.31 192.97 105.63 c 192.97 104.94 192.41 104.38 191.72 104.38 c 191.03 104.38 190.47 104.94 190.47 105.63 c B 190.49 105.63 m 190.49 106.31 191.05 106.87 191.74 106.87 c 192.42 106.87 192.98 106.31 192.98 105.63 c 192.98 104.94 192.42 104.38 191.74 104.38 c 191.05 104.38 190.49 104.94 190.49 105.63 c B 190.65 105.63 m 190.65 106.31 191.21 106.87 191.89 106.87 c 192.58 106.87 193.14 106.31 193.14 105.63 c 193.14 104.94 192.58 104.38 191.89 104.38 c 191.21 104.38 190.65 104.94 190.65 105.63 c B 190.71 105.63 m 190.71 106.31 191.27 106.87 191.96 106.87 c 192.64 106.87 193.20 106.31 193.20 105.63 c 193.20 104.94 192.64 104.38 191.96 104.38 c 191.27 104.38 190.71 104.94 190.71 105.63 c B 190.77 105.63 m 190.77 106.31 191.33 106.87 192.02 106.87 c 192.70 106.87 193.26 106.31 193.26 105.63 c 193.26 104.94 192.70 104.38 192.02 104.38 c 191.33 104.38 190.77 104.94 190.77 105.63 c B 190.86 105.81 m 190.86 106.50 191.42 107.06 192.11 107.06 c 192.79 107.06 193.36 106.50 193.36 105.81 c 193.36 105.13 192.79 104.56 192.11 104.56 c 191.42 104.56 190.86 105.13 190.86 105.81 c B 190.93 106.04 m 190.93 106.72 191.49 107.29 192.17 107.29 c 192.86 107.29 193.42 106.72 193.42 106.04 c 193.42 105.35 192.86 104.79 192.17 104.79 c 191.49 104.79 190.93 105.35 190.93 106.04 c B 191.07 106.16 m 191.07 106.85 191.63 107.41 192.31 107.41 c 193.00 107.41 193.56 106.85 193.56 106.16 c 193.56 105.47 193.00 104.91 192.31 104.91 c 191.63 104.91 191.07 105.47 191.07 106.16 c B 191.39 106.46 m 191.39 107.14 191.96 107.71 192.64 107.71 c 193.33 107.71 193.89 107.14 193.89 106.46 c 193.89 105.77 193.33 105.21 192.64 105.21 c 191.96 105.21 191.39 105.77 191.39 106.46 c B 191.45 106.46 m 191.45 107.14 192.01 107.71 192.70 107.71 c 193.39 107.71 193.95 107.14 193.95 106.46 c 193.95 105.77 193.39 105.21 192.70 105.21 c 192.01 105.21 191.45 105.77 191.45 106.46 c B 191.56 106.52 m 191.56 107.20 192.12 107.76 192.81 107.76 c 193.49 107.76 194.06 107.20 194.06 106.52 c 194.06 105.83 193.49 105.27 192.81 105.27 c 192.12 105.27 191.56 105.83 191.56 106.52 c B 191.64 106.57 m 191.64 107.25 192.20 107.81 192.89 107.81 c 193.58 107.81 194.14 107.25 194.14 106.57 c 194.14 105.88 193.58 105.32 192.89 105.32 c 192.20 105.32 191.64 105.88 191.64 106.57 c B 191.71 106.59 m 191.71 107.27 192.27 107.83 192.95 107.83 c 193.64 107.83 194.20 107.27 194.20 106.59 c 194.20 105.90 193.64 105.34 192.95 105.34 c 192.27 105.34 191.71 105.90 191.71 106.59 c B 191.74 106.87 m 191.74 107.56 192.31 108.12 192.99 108.12 c 193.68 108.12 194.24 107.56 194.24 106.87 c 194.24 106.19 193.68 105.63 192.99 105.63 c 192.31 105.63 191.74 106.19 191.74 106.87 c B 191.83 107.32 m 191.83 108.00 192.39 108.56 193.08 108.56 c 193.76 108.56 194.33 108.00 194.33 107.32 c 194.33 106.63 193.76 106.07 193.08 106.07 c 192.39 106.07 191.83 106.63 191.83 107.32 c B 191.93 107.61 m 191.93 108.30 192.49 108.86 193.18 108.86 c 193.87 108.86 194.43 108.30 194.43 107.61 c 194.43 106.93 193.87 106.37 193.18 106.37 c 192.49 106.37 191.93 106.93 191.93 107.61 c B 191.94 107.61 m 191.94 108.30 192.51 108.86 193.19 108.86 c 193.88 108.86 194.44 108.30 194.44 107.61 c 194.44 106.93 193.88 106.37 193.19 106.37 c 192.51 106.37 191.94 106.93 191.94 107.61 c B 191.97 107.75 m 191.97 108.44 192.53 109.00 193.21 109.00 c 193.90 109.00 194.46 108.44 194.46 107.75 c 194.46 107.06 193.90 106.50 193.21 106.50 c 192.53 106.50 191.97 107.06 191.97 107.75 c B 191.98 107.91 m 191.98 108.60 192.54 109.16 193.23 109.16 c 193.92 109.16 194.48 108.60 194.48 107.91 c 194.48 107.23 193.92 106.67 193.23 106.67 c 192.54 106.67 191.98 107.23 191.98 107.91 c B 192.30 107.95 m 192.30 108.64 192.86 109.20 193.55 109.20 c 194.23 109.20 194.79 108.64 194.79 107.95 c 194.79 107.26 194.23 106.70 193.55 106.70 c 192.86 106.70 192.30 107.26 192.30 107.95 c B 192.59 107.95 m 192.59 108.64 193.15 109.20 193.83 109.20 c 194.52 109.20 195.08 108.64 195.08 107.95 c 195.08 107.27 194.52 106.71 193.83 106.71 c 193.15 106.71 192.59 107.27 192.59 107.95 c B 192.67 107.95 m 192.67 108.64 193.23 109.20 193.91 109.20 c 194.60 109.20 195.16 108.64 195.16 107.95 c 195.16 107.27 194.60 106.71 193.91 106.71 c 193.23 106.71 192.67 107.27 192.67 107.95 c B 192.71 108.40 m 192.71 109.09 193.28 109.65 193.96 109.65 c 194.65 109.65 195.21 109.09 195.21 108.40 c 195.21 107.72 194.65 107.16 193.96 107.16 c 193.28 107.16 192.71 107.72 192.71 108.40 c B 192.89 108.66 m 192.89 109.35 193.45 109.91 194.14 109.91 c 194.83 109.91 195.39 109.35 195.39 108.66 c 195.39 107.98 194.83 107.41 194.14 107.41 c 193.45 107.41 192.89 107.98 192.89 108.66 c B 193.01 108.74 m 193.01 109.43 193.57 109.99 194.25 109.99 c 194.94 109.99 195.50 109.43 195.50 108.74 c 195.50 108.06 194.94 107.50 194.25 107.50 c 193.57 107.50 193.01 108.06 193.01 108.74 c B 193.03 108.82 m 193.03 109.51 193.59 110.07 194.28 110.07 c 194.97 110.07 195.53 109.51 195.53 108.82 c 195.53 108.13 194.97 107.57 194.28 107.57 c 193.59 107.57 193.03 108.13 193.03 108.82 c B 193.22 109.09 m 193.22 109.78 193.78 110.34 194.46 110.34 c 195.15 110.34 195.71 109.78 195.71 109.09 c 195.71 108.40 195.15 107.84 194.46 107.84 c 193.78 107.84 193.22 108.40 193.22 109.09 c B 193.23 109.32 m 193.23 110.00 193.79 110.57 194.47 110.57 c 195.16 110.57 195.72 110.00 195.72 109.32 c 195.72 108.63 195.16 108.07 194.47 108.07 c 193.79 108.07 193.23 108.63 193.23 109.32 c B 193.27 109.77 m 193.27 110.45 193.83 111.02 194.52 111.02 c 195.20 111.02 195.76 110.45 195.76 109.77 c 195.76 109.08 195.20 108.52 194.52 108.52 c 193.83 108.52 193.27 109.08 193.27 109.77 c B 193.48 109.85 m 193.48 110.54 194.04 111.10 194.73 111.10 c 195.41 111.10 195.97 110.54 195.97 109.85 c 195.97 109.16 195.41 108.60 194.73 108.60 c 194.04 108.60 193.48 109.16 193.48 109.85 c B 193.62 109.89 m 193.62 110.57 194.18 111.13 194.87 111.13 c 195.55 111.13 196.11 110.57 196.11 109.89 c 196.11 109.20 195.55 108.64 194.87 108.64 c 194.18 108.64 193.62 109.20 193.62 109.89 c B 193.64 110.06 m 193.64 110.75 194.20 111.31 194.89 111.31 c 195.58 111.31 196.14 110.75 196.14 110.06 c 196.14 109.38 195.58 108.81 194.89 108.81 c 194.20 108.81 193.64 109.38 193.64 110.06 c B 193.71 110.14 m 193.71 110.83 194.27 111.39 194.96 111.39 c 195.65 111.39 196.21 110.83 196.21 110.14 c 196.21 109.46 195.65 108.90 194.96 108.90 c 194.27 108.90 193.71 109.46 193.71 110.14 c B 193.92 111.16 m 193.92 111.85 194.48 112.41 195.16 112.41 c 195.85 112.41 196.41 111.85 196.41 111.16 c 196.41 110.47 195.85 109.91 195.16 109.91 c 194.48 109.91 193.92 110.47 193.92 111.16 c B 194.13 111.32 m 194.13 112.00 194.69 112.56 195.37 112.56 c 196.06 112.56 196.62 112.00 196.62 111.32 c 196.62 110.63 196.06 110.07 195.37 110.07 c 194.69 110.07 194.13 110.63 194.13 111.32 c B 194.18 111.62 m 194.18 112.30 194.74 112.86 195.42 112.86 c 196.11 112.86 196.67 112.30 196.67 111.62 c 196.67 110.93 196.11 110.37 195.42 110.37 c 194.74 110.37 194.18 110.93 194.18 111.62 c B 194.51 111.65 m 194.51 112.33 195.08 112.89 195.76 112.89 c 196.45 112.89 197.01 112.33 197.01 111.65 c 197.01 110.96 196.45 110.40 195.76 110.40 c 195.08 110.40 194.51 110.96 194.51 111.65 c B 194.71 112.08 m 194.71 112.76 195.28 113.32 195.96 113.32 c 196.65 113.32 197.21 112.76 197.21 112.08 c 197.21 111.39 196.65 110.83 195.96 110.83 c 195.28 110.83 194.71 111.39 194.71 112.08 c B 194.72 112.12 m 194.72 112.80 195.28 113.36 195.97 113.36 c 196.65 113.36 197.21 112.80 197.21 112.12 c 197.21 111.43 196.65 110.87 195.97 110.87 c 195.28 110.87 194.72 111.43 194.72 112.12 c B 195.30 112.13 m 195.30 112.81 195.86 113.38 196.54 113.38 c 197.23 113.38 197.79 112.81 197.79 112.13 c 197.79 111.44 197.23 110.88 196.54 110.88 c 195.86 110.88 195.30 111.44 195.30 112.13 c B 195.91 112.23 m 195.91 112.92 196.47 113.48 197.15 113.48 c 197.84 113.48 198.40 112.92 198.40 112.23 c 198.40 111.55 197.84 110.98 197.15 110.98 c 196.47 110.98 195.91 111.55 195.91 112.23 c B 195.91 112.25 m 195.91 112.94 196.47 113.50 197.16 113.50 c 197.84 113.50 198.41 112.94 198.41 112.25 c 198.41 111.57 197.84 111.01 197.16 111.01 c 196.47 111.01 195.91 111.57 195.91 112.25 c B 196.11 112.47 m 196.11 113.16 196.67 113.72 197.36 113.72 c 198.04 113.72 198.60 113.16 198.60 112.47 c 198.60 111.79 198.04 111.23 197.36 111.23 c 196.67 111.23 196.11 111.79 196.11 112.47 c B 196.42 112.53 m 196.42 113.22 196.98 113.78 197.67 113.78 c 198.36 113.78 198.92 113.22 198.92 112.53 c 198.92 111.84 198.36 111.28 197.67 111.28 c 196.98 111.28 196.42 111.84 196.42 112.53 c B 196.61 112.68 m 196.61 113.36 197.17 113.92 197.86 113.92 c 198.54 113.92 199.11 113.36 199.11 112.68 c 199.11 111.99 198.54 111.43 197.86 111.43 c 197.17 111.43 196.61 111.99 196.61 112.68 c B 196.66 112.69 m 196.66 113.38 197.22 113.94 197.91 113.94 c 198.59 113.94 199.15 113.38 199.15 112.69 c 199.15 112.01 198.59 111.45 197.91 111.45 c 197.22 111.45 196.66 112.01 196.66 112.69 c B 197.44 112.93 m 197.44 113.61 198.00 114.18 198.68 114.18 c 199.37 114.18 199.93 113.61 199.93 112.93 c 199.93 112.24 199.37 111.68 198.68 111.68 c 198.00 111.68 197.44 112.24 197.44 112.93 c B 197.68 113.18 m 197.68 113.87 198.24 114.43 198.93 114.43 c 199.61 114.43 200.17 113.87 200.17 113.18 c 200.17 112.50 199.61 111.94 198.93 111.94 c 198.24 111.94 197.68 112.50 197.68 113.18 c B 197.88 113.23 m 197.88 113.92 198.44 114.48 199.13 114.48 c 199.81 114.48 200.37 113.92 200.37 113.23 c 200.37 112.54 199.81 111.98 199.13 111.98 c 198.44 111.98 197.88 112.54 197.88 113.23 c B 198.22 113.31 m 198.22 114.00 198.78 114.56 199.47 114.56 c 200.16 114.56 200.72 114.00 200.72 113.31 c 200.72 112.62 200.16 112.06 199.47 112.06 c 198.78 112.06 198.22 112.62 198.22 113.31 c B 198.58 113.80 m 198.58 114.48 199.14 115.05 199.83 115.05 c 200.51 115.05 201.07 114.48 201.07 113.80 c 201.07 113.11 200.51 112.55 199.83 112.55 c 199.14 112.55 198.58 113.11 198.58 113.80 c B 198.74 113.91 m 198.74 114.60 199.30 115.16 199.99 115.16 c 200.67 115.16 201.24 114.60 201.24 113.91 c 201.24 113.22 200.67 112.66 199.99 112.66 c 199.30 112.66 198.74 113.22 198.74 113.91 c B 199.34 114.45 m 199.34 115.14 199.91 115.70 200.59 115.70 c 201.28 115.70 201.84 115.14 201.84 114.45 c 201.84 113.76 201.28 113.20 200.59 113.20 c 199.91 113.20 199.34 113.76 199.34 114.45 c B 199.51 114.81 m 199.51 115.50 200.07 116.06 200.75 116.06 c 201.44 116.06 202.00 115.50 202.00 114.81 c 202.00 114.13 201.44 113.57 200.75 113.57 c 200.07 113.57 199.51 114.13 199.51 114.81 c B 199.66 115.16 m 199.66 115.85 200.22 116.41 200.91 116.41 c 201.60 116.41 202.16 115.85 202.16 115.16 c 202.16 114.48 201.60 113.92 200.91 113.92 c 200.22 113.92 199.66 114.48 199.66 115.16 c B 200.30 115.63 m 200.30 116.31 200.86 116.87 201.55 116.87 c 202.23 116.87 202.79 116.31 202.79 115.63 c 202.79 114.94 202.23 114.38 201.55 114.38 c 200.86 114.38 200.30 114.94 200.30 115.63 c B 200.44 115.76 m 200.44 116.45 201.00 117.01 201.69 117.01 c 202.37 117.01 202.93 116.45 202.93 115.76 c 202.93 115.08 202.37 114.52 201.69 114.52 c 201.00 114.52 200.44 115.08 200.44 115.76 c B 200.51 116.56 m 200.51 117.25 201.07 117.81 201.76 117.81 c 202.44 117.81 203.00 117.25 203.00 116.56 c 203.00 115.87 202.44 115.31 201.76 115.31 c 201.07 115.31 200.51 115.87 200.51 116.56 c B 200.59 117.75 m 200.59 118.44 201.16 119.00 201.84 119.00 c 202.53 119.00 203.09 118.44 203.09 117.75 c 203.09 117.07 202.53 116.51 201.84 116.51 c 201.16 116.51 200.59 117.07 200.59 117.75 c B 201.24 119.21 m 201.24 119.89 201.80 120.45 202.49 120.45 c 203.17 120.45 203.74 119.89 203.74 119.21 c 203.74 118.52 203.17 117.96 202.49 117.96 c 201.80 117.96 201.24 118.52 201.24 119.21 c B 201.40 119.34 m 201.40 120.03 201.96 120.59 202.65 120.59 c 203.34 120.59 203.90 120.03 203.90 119.34 c 203.90 118.66 203.34 118.09 202.65 118.09 c 201.96 118.09 201.40 118.66 201.40 119.34 c B 201.77 119.52 m 201.77 120.20 202.33 120.77 203.02 120.77 c 203.70 120.77 204.26 120.20 204.26 119.52 c 204.26 118.83 203.70 118.27 203.02 118.27 c 202.33 118.27 201.77 118.83 201.77 119.52 c B 201.89 119.92 m 201.89 120.60 202.45 121.16 203.14 121.16 c 203.83 121.16 204.39 120.60 204.39 119.92 c 204.39 119.23 203.83 118.67 203.14 118.67 c 202.45 118.67 201.89 119.23 201.89 119.92 c B 202.27 120.03 m 202.27 120.71 202.83 121.28 203.51 121.28 c 204.20 121.28 204.76 120.71 204.76 120.03 c 204.76 119.34 204.20 118.78 203.51 118.78 c 202.83 118.78 202.27 119.34 202.27 120.03 c B 202.48 120.03 m 202.48 120.72 203.04 121.28 203.73 121.28 c 204.41 121.28 204.98 120.72 204.98 120.03 c 204.98 119.34 204.41 118.78 203.73 118.78 c 203.04 118.78 202.48 119.34 202.48 120.03 c B 202.70 120.23 m 202.70 120.92 203.26 121.48 203.95 121.48 c 204.64 121.48 205.20 120.92 205.20 120.23 c 205.20 119.54 204.64 118.98 203.95 118.98 c 203.26 118.98 202.70 119.54 202.70 120.23 c B 202.81 120.68 m 202.81 121.37 203.38 121.93 204.06 121.93 c 204.75 121.93 205.31 121.37 205.31 120.68 c 205.31 120.00 204.75 119.43 204.06 119.43 c 203.38 119.43 202.81 120.00 202.81 120.68 c B 202.94 122.50 m 202.94 123.19 203.50 123.75 204.19 123.75 c 204.87 123.75 205.43 123.19 205.43 122.50 c 205.43 121.81 204.87 121.25 204.19 121.25 c 203.50 121.25 202.94 121.81 202.94 122.50 c B 203.68 122.71 m 203.68 123.39 204.24 123.95 204.92 123.95 c 205.61 123.95 206.17 123.39 206.17 122.71 c 206.17 122.02 205.61 121.46 204.92 121.46 c 204.24 121.46 203.68 122.02 203.68 122.71 c B 204.63 123.16 m 204.63 123.85 205.19 124.41 205.87 124.41 c 206.56 124.41 207.12 123.85 207.12 123.16 c 207.12 122.48 206.56 121.92 205.87 121.92 c 205.19 121.92 204.63 122.48 204.63 123.16 c B 209.49 126.64 m 209.49 127.33 210.05 127.89 210.74 127.89 c 211.43 127.89 211.99 127.33 211.99 126.64 c 211.99 125.96 211.43 125.40 210.74 125.40 c 210.05 125.40 209.49 125.96 209.49 126.64 c B 210.04 127.63 m 210.04 128.32 210.60 128.88 211.28 128.88 c 211.97 128.88 212.53 128.32 212.53 127.63 c 212.53 126.95 211.97 126.39 211.28 126.39 c 210.60 126.39 210.04 126.95 210.04 127.63 c B 210.89 132.82 m 210.89 133.51 211.46 134.07 212.14 134.07 c 212.83 134.07 213.39 133.51 213.39 132.82 c 213.39 132.14 212.83 131.57 212.14 131.57 c 211.46 131.57 210.89 132.14 210.89 132.82 c B 211.38 134.30 m 211.38 134.99 211.95 135.55 212.63 135.55 c 213.32 135.55 213.88 134.99 213.88 134.30 c 213.88 133.61 213.32 133.05 212.63 133.05 c 211.95 133.05 211.38 133.61 211.38 134.30 c B 222.58 140.00 m 222.58 140.69 223.15 141.25 223.83 141.25 c 224.52 141.25 225.08 140.69 225.08 140.00 c 225.08 139.32 224.52 138.76 223.83 138.76 c 223.15 138.76 222.58 139.32 222.58 140.00 c B 226.35 150.31 m 226.35 150.99 226.91 151.55 227.59 151.55 c 228.28 151.55 228.84 150.99 228.84 150.31 c 228.84 149.62 228.28 149.06 227.59 149.06 c 226.91 149.06 226.35 149.62 226.35 150.31 c B 231.97 168.12 m 231.97 168.80 232.53 169.36 233.22 169.36 c 233.91 169.36 234.47 168.80 234.47 168.12 c 234.47 167.43 233.91 166.87 233.22 166.87 c 232.53 166.87 231.97 167.43 231.97 168.12 c B Q q 182.50 98.38 91.25 76.99 re W n Q q 187.25 103.13 81.74 67.49 re W n /GS2 gs 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 187.25 103.13 m 268.99 170.62 l S 0.75 w [ 3.00 5.00] 0 d 187.25 109.38 m 268.99 176.86 l S 187.25 96.88 m 268.99 164.37 l S Q q /GS2 gs 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 187.25 103.13 m 268.99 103.13 l 268.99 170.62 l 187.25 170.62 l 187.25 103.13 l S Q q 4.75 26.14 81.74 67.49 re W n Q q 0.00 21.38 91.25 76.99 re W n Q q 4.75 26.14 81.74 67.49 re W n BT /GS258 gs 0.000 0.000 0.000 rg /F2 1 Tf 11.00 0.00 -0.00 11.00 33.70 56.01 Tm (educ) Tj ET Q q 96.00 26.14 81.74 67.49 re W n Q q 96.00 26.14 81.74 67.49 re W n /GS257 gs 0.000 0.000 1.000 rg /GS1 gs 0.000 0.000 1.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 97.78 42.52 m 97.78 43.21 98.34 43.77 99.03 43.77 c 99.71 43.77 100.27 43.21 100.27 42.52 c 100.27 41.84 99.71 41.27 99.03 41.27 c 98.34 41.27 97.78 41.84 97.78 42.52 c B 97.78 42.52 m 97.78 43.21 98.34 43.77 99.03 43.77 c 99.71 43.77 100.27 43.21 100.27 42.52 c 100.27 41.84 99.71 41.27 99.03 41.27 c 98.34 41.27 97.78 41.84 97.78 42.52 c B 101.99 42.52 m 101.99 43.21 102.55 43.77 103.23 43.77 c 103.92 43.77 104.48 43.21 104.48 42.52 c 104.48 41.84 103.92 41.27 103.23 41.27 c 102.55 41.27 101.99 41.84 101.99 42.52 c B 106.19 42.52 m 106.19 43.21 106.75 43.77 107.44 43.77 c 108.12 43.77 108.68 43.21 108.68 42.52 c 108.68 41.84 108.12 41.27 107.44 41.27 c 106.75 41.27 106.19 41.84 106.19 42.52 c B 110.39 45.99 m 110.39 46.68 110.96 47.24 111.64 47.24 c 112.33 47.24 112.89 46.68 112.89 45.99 c 112.89 45.31 112.33 44.75 111.64 44.75 c 110.96 44.75 110.39 45.31 110.39 45.99 c B 110.39 45.99 m 110.39 46.68 110.96 47.24 111.64 47.24 c 112.33 47.24 112.89 46.68 112.89 45.99 c 112.89 45.31 112.33 44.75 111.64 44.75 c 110.96 44.75 110.39 45.31 110.39 45.99 c B 114.60 45.99 m 114.60 46.68 115.16 47.24 115.85 47.24 c 116.53 47.24 117.09 46.68 117.09 45.99 c 117.09 45.31 116.53 44.75 115.85 44.75 c 115.16 44.75 114.60 45.31 114.60 45.99 c B 114.60 49.47 m 114.60 50.15 115.16 50.71 115.85 50.71 c 116.53 50.71 117.09 50.15 117.09 49.47 c 117.09 48.78 116.53 48.22 115.85 48.22 c 115.16 48.22 114.60 48.78 114.60 49.47 c B 118.80 52.94 m 118.80 53.62 119.37 54.18 120.05 54.18 c 120.74 54.18 121.30 53.62 121.30 52.94 c 121.30 52.25 120.74 51.69 120.05 51.69 c 119.37 51.69 118.80 52.25 118.80 52.94 c B 118.80 52.94 m 118.80 53.62 119.37 54.18 120.05 54.18 c 120.74 54.18 121.30 53.62 121.30 52.94 c 121.30 52.25 120.74 51.69 120.05 51.69 c 119.37 51.69 118.80 52.25 118.80 52.94 c B 118.80 56.41 m 118.80 57.09 119.37 57.66 120.05 57.66 c 120.74 57.66 121.30 57.09 121.30 56.41 c 121.30 55.72 120.74 55.16 120.05 55.16 c 119.37 55.16 118.80 55.72 118.80 56.41 c B 118.80 56.41 m 118.80 57.09 119.37 57.66 120.05 57.66 c 120.74 57.66 121.30 57.09 121.30 56.41 c 121.30 55.72 120.74 55.16 120.05 55.16 c 119.37 55.16 118.80 55.72 118.80 56.41 c B 123.01 56.41 m 123.01 57.09 123.57 57.66 124.26 57.66 c 124.94 57.66 125.50 57.09 125.50 56.41 c 125.50 55.72 124.94 55.16 124.26 55.16 c 123.57 55.16 123.01 55.72 123.01 56.41 c B 123.01 56.41 m 123.01 57.09 123.57 57.66 124.26 57.66 c 124.94 57.66 125.50 57.09 125.50 56.41 c 125.50 55.72 124.94 55.16 124.26 55.16 c 123.57 55.16 123.01 55.72 123.01 56.41 c B 123.01 56.41 m 123.01 57.09 123.57 57.66 124.26 57.66 c 124.94 57.66 125.50 57.09 125.50 56.41 c 125.50 55.72 124.94 55.16 124.26 55.16 c 123.57 55.16 123.01 55.72 123.01 56.41 c B 123.01 56.41 m 123.01 57.09 123.57 57.66 124.26 57.66 c 124.94 57.66 125.50 57.09 125.50 56.41 c 125.50 55.72 124.94 55.16 124.26 55.16 c 123.57 55.16 123.01 55.72 123.01 56.41 c B 127.21 56.41 m 127.21 57.09 127.78 57.66 128.46 57.66 c 129.15 57.66 129.71 57.09 129.71 56.41 c 129.71 55.72 129.15 55.16 128.46 55.16 c 127.78 55.16 127.21 55.72 127.21 56.41 c B 127.21 56.41 m 127.21 57.09 127.78 57.66 128.46 57.66 c 129.15 57.66 129.71 57.09 129.71 56.41 c 129.71 55.72 129.15 55.16 128.46 55.16 c 127.78 55.16 127.21 55.72 127.21 56.41 c B 127.21 56.41 m 127.21 57.09 127.78 57.66 128.46 57.66 c 129.15 57.66 129.71 57.09 129.71 56.41 c 129.71 55.72 129.15 55.16 128.46 55.16 c 127.78 55.16 127.21 55.72 127.21 56.41 c B 127.21 56.41 m 127.21 57.09 127.78 57.66 128.46 57.66 c 129.15 57.66 129.71 57.09 129.71 56.41 c 129.71 55.72 129.15 55.16 128.46 55.16 c 127.78 55.16 127.21 55.72 127.21 56.41 c B 127.21 56.41 m 127.21 57.09 127.78 57.66 128.46 57.66 c 129.15 57.66 129.71 57.09 129.71 56.41 c 129.71 55.72 129.15 55.16 128.46 55.16 c 127.78 55.16 127.21 55.72 127.21 56.41 c B 127.21 56.41 m 127.21 57.09 127.78 57.66 128.46 57.66 c 129.15 57.66 129.71 57.09 129.71 56.41 c 129.71 55.72 129.15 55.16 128.46 55.16 c 127.78 55.16 127.21 55.72 127.21 56.41 c B 127.21 56.41 m 127.21 57.09 127.78 57.66 128.46 57.66 c 129.15 57.66 129.71 57.09 129.71 56.41 c 129.71 55.72 129.15 55.16 128.46 55.16 c 127.78 55.16 127.21 55.72 127.21 56.41 c B 127.21 56.41 m 127.21 57.09 127.78 57.66 128.46 57.66 c 129.15 57.66 129.71 57.09 129.71 56.41 c 129.71 55.72 129.15 55.16 128.46 55.16 c 127.78 55.16 127.21 55.72 127.21 56.41 c B 127.21 56.41 m 127.21 57.09 127.78 57.66 128.46 57.66 c 129.15 57.66 129.71 57.09 129.71 56.41 c 129.71 55.72 129.15 55.16 128.46 55.16 c 127.78 55.16 127.21 55.72 127.21 56.41 c B 127.21 56.41 m 127.21 57.09 127.78 57.66 128.46 57.66 c 129.15 57.66 129.71 57.09 129.71 56.41 c 129.71 55.72 129.15 55.16 128.46 55.16 c 127.78 55.16 127.21 55.72 127.21 56.41 c B 127.21 56.41 m 127.21 57.09 127.78 57.66 128.46 57.66 c 129.15 57.66 129.71 57.09 129.71 56.41 c 129.71 55.72 129.15 55.16 128.46 55.16 c 127.78 55.16 127.21 55.72 127.21 56.41 c B 131.42 56.41 m 131.42 57.09 131.98 57.66 132.67 57.66 c 133.35 57.66 133.91 57.09 133.91 56.41 c 133.91 55.72 133.35 55.16 132.67 55.16 c 131.98 55.16 131.42 55.72 131.42 56.41 c B 131.42 59.88 m 131.42 60.57 131.98 61.13 132.67 61.13 c 133.35 61.13 133.91 60.57 133.91 59.88 c 133.91 59.19 133.35 58.63 132.67 58.63 c 131.98 58.63 131.42 59.19 131.42 59.88 c B 131.42 59.88 m 131.42 60.57 131.98 61.13 132.67 61.13 c 133.35 61.13 133.91 60.57 133.91 59.88 c 133.91 59.19 133.35 58.63 132.67 58.63 c 131.98 58.63 131.42 59.19 131.42 59.88 c B 131.42 59.88 m 131.42 60.57 131.98 61.13 132.67 61.13 c 133.35 61.13 133.91 60.57 133.91 59.88 c 133.91 59.19 133.35 58.63 132.67 58.63 c 131.98 58.63 131.42 59.19 131.42 59.88 c B 131.42 59.88 m 131.42 60.57 131.98 61.13 132.67 61.13 c 133.35 61.13 133.91 60.57 133.91 59.88 c 133.91 59.19 133.35 58.63 132.67 58.63 c 131.98 58.63 131.42 59.19 131.42 59.88 c B 131.42 59.88 m 131.42 60.57 131.98 61.13 132.67 61.13 c 133.35 61.13 133.91 60.57 133.91 59.88 c 133.91 59.19 133.35 58.63 132.67 58.63 c 131.98 58.63 131.42 59.19 131.42 59.88 c B 131.42 59.88 m 131.42 60.57 131.98 61.13 132.67 61.13 c 133.35 61.13 133.91 60.57 133.91 59.88 c 133.91 59.19 133.35 58.63 132.67 58.63 c 131.98 58.63 131.42 59.19 131.42 59.88 c B 131.42 59.88 m 131.42 60.57 131.98 61.13 132.67 61.13 c 133.35 61.13 133.91 60.57 133.91 59.88 c 133.91 59.19 133.35 58.63 132.67 58.63 c 131.98 58.63 131.42 59.19 131.42 59.88 c B 131.42 59.88 m 131.42 60.57 131.98 61.13 132.67 61.13 c 133.35 61.13 133.91 60.57 133.91 59.88 c 133.91 59.19 133.35 58.63 132.67 58.63 c 131.98 58.63 131.42 59.19 131.42 59.88 c B 131.42 59.88 m 131.42 60.57 131.98 61.13 132.67 61.13 c 133.35 61.13 133.91 60.57 133.91 59.88 c 133.91 59.19 133.35 58.63 132.67 58.63 c 131.98 58.63 131.42 59.19 131.42 59.88 c B 131.42 59.88 m 131.42 60.57 131.98 61.13 132.67 61.13 c 133.35 61.13 133.91 60.57 133.91 59.88 c 133.91 59.19 133.35 58.63 132.67 58.63 c 131.98 58.63 131.42 59.19 131.42 59.88 c B 131.42 59.88 m 131.42 60.57 131.98 61.13 132.67 61.13 c 133.35 61.13 133.91 60.57 133.91 59.88 c 133.91 59.19 133.35 58.63 132.67 58.63 c 131.98 58.63 131.42 59.19 131.42 59.88 c B 131.42 59.88 m 131.42 60.57 131.98 61.13 132.67 61.13 c 133.35 61.13 133.91 60.57 133.91 59.88 c 133.91 59.19 133.35 58.63 132.67 58.63 c 131.98 58.63 131.42 59.19 131.42 59.88 c B 131.42 59.88 m 131.42 60.57 131.98 61.13 132.67 61.13 c 133.35 61.13 133.91 60.57 133.91 59.88 c 133.91 59.19 133.35 58.63 132.67 58.63 c 131.98 58.63 131.42 59.19 131.42 59.88 c B 131.42 59.88 m 131.42 60.57 131.98 61.13 132.67 61.13 c 133.35 61.13 133.91 60.57 133.91 59.88 c 133.91 59.19 133.35 58.63 132.67 58.63 c 131.98 58.63 131.42 59.19 131.42 59.88 c B 131.42 59.88 m 131.42 60.57 131.98 61.13 132.67 61.13 c 133.35 61.13 133.91 60.57 133.91 59.88 c 133.91 59.19 133.35 58.63 132.67 58.63 c 131.98 58.63 131.42 59.19 131.42 59.88 c B 131.42 59.88 m 131.42 60.57 131.98 61.13 132.67 61.13 c 133.35 61.13 133.91 60.57 133.91 59.88 c 133.91 59.19 133.35 58.63 132.67 58.63 c 131.98 58.63 131.42 59.19 131.42 59.88 c B 131.42 59.88 m 131.42 60.57 131.98 61.13 132.67 61.13 c 133.35 61.13 133.91 60.57 133.91 59.88 c 133.91 59.19 133.35 58.63 132.67 58.63 c 131.98 58.63 131.42 59.19 131.42 59.88 c B 131.42 59.88 m 131.42 60.57 131.98 61.13 132.67 61.13 c 133.35 61.13 133.91 60.57 133.91 59.88 c 133.91 59.19 133.35 58.63 132.67 58.63 c 131.98 58.63 131.42 59.19 131.42 59.88 c B 135.62 59.88 m 135.62 60.57 136.19 61.13 136.87 61.13 c 137.56 61.13 138.12 60.57 138.12 59.88 c 138.12 59.19 137.56 58.63 136.87 58.63 c 136.19 58.63 135.62 59.19 135.62 59.88 c B 135.62 59.88 m 135.62 60.57 136.19 61.13 136.87 61.13 c 137.56 61.13 138.12 60.57 138.12 59.88 c 138.12 59.19 137.56 58.63 136.87 58.63 c 136.19 58.63 135.62 59.19 135.62 59.88 c B 135.62 59.88 m 135.62 60.57 136.19 61.13 136.87 61.13 c 137.56 61.13 138.12 60.57 138.12 59.88 c 138.12 59.19 137.56 58.63 136.87 58.63 c 136.19 58.63 135.62 59.19 135.62 59.88 c B 135.62 59.88 m 135.62 60.57 136.19 61.13 136.87 61.13 c 137.56 61.13 138.12 60.57 138.12 59.88 c 138.12 59.19 137.56 58.63 136.87 58.63 c 136.19 58.63 135.62 59.19 135.62 59.88 c B 135.62 59.88 m 135.62 60.57 136.19 61.13 136.87 61.13 c 137.56 61.13 138.12 60.57 138.12 59.88 c 138.12 59.19 137.56 58.63 136.87 58.63 c 136.19 58.63 135.62 59.19 135.62 59.88 c B 135.62 59.88 m 135.62 60.57 136.19 61.13 136.87 61.13 c 137.56 61.13 138.12 60.57 138.12 59.88 c 138.12 59.19 137.56 58.63 136.87 58.63 c 136.19 58.63 135.62 59.19 135.62 59.88 c B 135.62 59.88 m 135.62 60.57 136.19 61.13 136.87 61.13 c 137.56 61.13 138.12 60.57 138.12 59.88 c 138.12 59.19 137.56 58.63 136.87 58.63 c 136.19 58.63 135.62 59.19 135.62 59.88 c B 135.62 59.88 m 135.62 60.57 136.19 61.13 136.87 61.13 c 137.56 61.13 138.12 60.57 138.12 59.88 c 138.12 59.19 137.56 58.63 136.87 58.63 c 136.19 58.63 135.62 59.19 135.62 59.88 c B 135.62 59.88 m 135.62 60.57 136.19 61.13 136.87 61.13 c 137.56 61.13 138.12 60.57 138.12 59.88 c 138.12 59.19 137.56 58.63 136.87 58.63 c 136.19 58.63 135.62 59.19 135.62 59.88 c B 135.62 59.88 m 135.62 60.57 136.19 61.13 136.87 61.13 c 137.56 61.13 138.12 60.57 138.12 59.88 c 138.12 59.19 137.56 58.63 136.87 58.63 c 136.19 58.63 135.62 59.19 135.62 59.88 c B 135.62 63.35 m 135.62 64.04 136.19 64.60 136.87 64.60 c 137.56 64.60 138.12 64.04 138.12 63.35 c 138.12 62.67 137.56 62.10 136.87 62.10 c 136.19 62.10 135.62 62.67 135.62 63.35 c B 135.62 63.35 m 135.62 64.04 136.19 64.60 136.87 64.60 c 137.56 64.60 138.12 64.04 138.12 63.35 c 138.12 62.67 137.56 62.10 136.87 62.10 c 136.19 62.10 135.62 62.67 135.62 63.35 c B 135.62 63.35 m 135.62 64.04 136.19 64.60 136.87 64.60 c 137.56 64.60 138.12 64.04 138.12 63.35 c 138.12 62.67 137.56 62.10 136.87 62.10 c 136.19 62.10 135.62 62.67 135.62 63.35 c B 135.62 63.35 m 135.62 64.04 136.19 64.60 136.87 64.60 c 137.56 64.60 138.12 64.04 138.12 63.35 c 138.12 62.67 137.56 62.10 136.87 62.10 c 136.19 62.10 135.62 62.67 135.62 63.35 c B 135.62 63.35 m 135.62 64.04 136.19 64.60 136.87 64.60 c 137.56 64.60 138.12 64.04 138.12 63.35 c 138.12 62.67 137.56 62.10 136.87 62.10 c 136.19 62.10 135.62 62.67 135.62 63.35 c B 135.62 63.35 m 135.62 64.04 136.19 64.60 136.87 64.60 c 137.56 64.60 138.12 64.04 138.12 63.35 c 138.12 62.67 137.56 62.10 136.87 62.10 c 136.19 62.10 135.62 62.67 135.62 63.35 c B 135.62 63.35 m 135.62 64.04 136.19 64.60 136.87 64.60 c 137.56 64.60 138.12 64.04 138.12 63.35 c 138.12 62.67 137.56 62.10 136.87 62.10 c 136.19 62.10 135.62 62.67 135.62 63.35 c B 135.62 63.35 m 135.62 64.04 136.19 64.60 136.87 64.60 c 137.56 64.60 138.12 64.04 138.12 63.35 c 138.12 62.67 137.56 62.10 136.87 62.10 c 136.19 62.10 135.62 62.67 135.62 63.35 c B 135.62 63.35 m 135.62 64.04 136.19 64.60 136.87 64.60 c 137.56 64.60 138.12 64.04 138.12 63.35 c 138.12 62.67 137.56 62.10 136.87 62.10 c 136.19 62.10 135.62 62.67 135.62 63.35 c B 139.83 63.35 m 139.83 64.04 140.39 64.60 141.08 64.60 c 141.76 64.60 142.32 64.04 142.32 63.35 c 142.32 62.67 141.76 62.10 141.08 62.10 c 140.39 62.10 139.83 62.67 139.83 63.35 c B 139.83 63.35 m 139.83 64.04 140.39 64.60 141.08 64.60 c 141.76 64.60 142.32 64.04 142.32 63.35 c 142.32 62.67 141.76 62.10 141.08 62.10 c 140.39 62.10 139.83 62.67 139.83 63.35 c B 139.83 63.35 m 139.83 64.04 140.39 64.60 141.08 64.60 c 141.76 64.60 142.32 64.04 142.32 63.35 c 142.32 62.67 141.76 62.10 141.08 62.10 c 140.39 62.10 139.83 62.67 139.83 63.35 c B 139.83 63.35 m 139.83 64.04 140.39 64.60 141.08 64.60 c 141.76 64.60 142.32 64.04 142.32 63.35 c 142.32 62.67 141.76 62.10 141.08 62.10 c 140.39 62.10 139.83 62.67 139.83 63.35 c B 139.83 63.35 m 139.83 64.04 140.39 64.60 141.08 64.60 c 141.76 64.60 142.32 64.04 142.32 63.35 c 142.32 62.67 141.76 62.10 141.08 62.10 c 140.39 62.10 139.83 62.67 139.83 63.35 c B 139.83 63.35 m 139.83 64.04 140.39 64.60 141.08 64.60 c 141.76 64.60 142.32 64.04 142.32 63.35 c 142.32 62.67 141.76 62.10 141.08 62.10 c 140.39 62.10 139.83 62.67 139.83 63.35 c B 139.83 63.35 m 139.83 64.04 140.39 64.60 141.08 64.60 c 141.76 64.60 142.32 64.04 142.32 63.35 c 142.32 62.67 141.76 62.10 141.08 62.10 c 140.39 62.10 139.83 62.67 139.83 63.35 c B 139.83 63.35 m 139.83 64.04 140.39 64.60 141.08 64.60 c 141.76 64.60 142.32 64.04 142.32 63.35 c 142.32 62.67 141.76 62.10 141.08 62.10 c 140.39 62.10 139.83 62.67 139.83 63.35 c B 139.83 63.35 m 139.83 64.04 140.39 64.60 141.08 64.60 c 141.76 64.60 142.32 64.04 142.32 63.35 c 142.32 62.67 141.76 62.10 141.08 62.10 c 140.39 62.10 139.83 62.67 139.83 63.35 c B 139.83 63.35 m 139.83 64.04 140.39 64.60 141.08 64.60 c 141.76 64.60 142.32 64.04 142.32 63.35 c 142.32 62.67 141.76 62.10 141.08 62.10 c 140.39 62.10 139.83 62.67 139.83 63.35 c B 139.83 63.35 m 139.83 64.04 140.39 64.60 141.08 64.60 c 141.76 64.60 142.32 64.04 142.32 63.35 c 142.32 62.67 141.76 62.10 141.08 62.10 c 140.39 62.10 139.83 62.67 139.83 63.35 c B 139.83 63.35 m 139.83 64.04 140.39 64.60 141.08 64.60 c 141.76 64.60 142.32 64.04 142.32 63.35 c 142.32 62.67 141.76 62.10 141.08 62.10 c 140.39 62.10 139.83 62.67 139.83 63.35 c B 139.83 63.35 m 139.83 64.04 140.39 64.60 141.08 64.60 c 141.76 64.60 142.32 64.04 142.32 63.35 c 142.32 62.67 141.76 62.10 141.08 62.10 c 140.39 62.10 139.83 62.67 139.83 63.35 c B 139.83 63.35 m 139.83 64.04 140.39 64.60 141.08 64.60 c 141.76 64.60 142.32 64.04 142.32 63.35 c 142.32 62.67 141.76 62.10 141.08 62.10 c 140.39 62.10 139.83 62.67 139.83 63.35 c B 139.83 63.35 m 139.83 64.04 140.39 64.60 141.08 64.60 c 141.76 64.60 142.32 64.04 142.32 63.35 c 142.32 62.67 141.76 62.10 141.08 62.10 c 140.39 62.10 139.83 62.67 139.83 63.35 c B 139.83 63.35 m 139.83 64.04 140.39 64.60 141.08 64.60 c 141.76 64.60 142.32 64.04 142.32 63.35 c 142.32 62.67 141.76 62.10 141.08 62.10 c 140.39 62.10 139.83 62.67 139.83 63.35 c B 139.83 63.35 m 139.83 64.04 140.39 64.60 141.08 64.60 c 141.76 64.60 142.32 64.04 142.32 63.35 c 142.32 62.67 141.76 62.10 141.08 62.10 c 140.39 62.10 139.83 62.67 139.83 63.35 c B 139.83 63.35 m 139.83 64.04 140.39 64.60 141.08 64.60 c 141.76 64.60 142.32 64.04 142.32 63.35 c 142.32 62.67 141.76 62.10 141.08 62.10 c 140.39 62.10 139.83 62.67 139.83 63.35 c B 139.83 63.35 m 139.83 64.04 140.39 64.60 141.08 64.60 c 141.76 64.60 142.32 64.04 142.32 63.35 c 142.32 62.67 141.76 62.10 141.08 62.10 c 140.39 62.10 139.83 62.67 139.83 63.35 c B 139.83 63.35 m 139.83 64.04 140.39 64.60 141.08 64.60 c 141.76 64.60 142.32 64.04 142.32 63.35 c 142.32 62.67 141.76 62.10 141.08 62.10 c 140.39 62.10 139.83 62.67 139.83 63.35 c B 139.83 63.35 m 139.83 64.04 140.39 64.60 141.08 64.60 c 141.76 64.60 142.32 64.04 142.32 63.35 c 142.32 62.67 141.76 62.10 141.08 62.10 c 140.39 62.10 139.83 62.67 139.83 63.35 c B 139.83 63.35 m 139.83 64.04 140.39 64.60 141.08 64.60 c 141.76 64.60 142.32 64.04 142.32 63.35 c 142.32 62.67 141.76 62.10 141.08 62.10 c 140.39 62.10 139.83 62.67 139.83 63.35 c B 139.83 66.82 m 139.83 67.51 140.39 68.07 141.08 68.07 c 141.76 68.07 142.32 67.51 142.32 66.82 c 142.32 66.14 141.76 65.58 141.08 65.58 c 140.39 65.58 139.83 66.14 139.83 66.82 c B 139.83 66.82 m 139.83 67.51 140.39 68.07 141.08 68.07 c 141.76 68.07 142.32 67.51 142.32 66.82 c 142.32 66.14 141.76 65.58 141.08 65.58 c 140.39 65.58 139.83 66.14 139.83 66.82 c B 144.03 66.82 m 144.03 67.51 144.60 68.07 145.28 68.07 c 145.97 68.07 146.53 67.51 146.53 66.82 c 146.53 66.14 145.97 65.58 145.28 65.58 c 144.60 65.58 144.03 66.14 144.03 66.82 c B 144.03 66.82 m 144.03 67.51 144.60 68.07 145.28 68.07 c 145.97 68.07 146.53 67.51 146.53 66.82 c 146.53 66.14 145.97 65.58 145.28 65.58 c 144.60 65.58 144.03 66.14 144.03 66.82 c B 144.03 66.82 m 144.03 67.51 144.60 68.07 145.28 68.07 c 145.97 68.07 146.53 67.51 146.53 66.82 c 146.53 66.14 145.97 65.58 145.28 65.58 c 144.60 65.58 144.03 66.14 144.03 66.82 c B 144.03 66.82 m 144.03 67.51 144.60 68.07 145.28 68.07 c 145.97 68.07 146.53 67.51 146.53 66.82 c 146.53 66.14 145.97 65.58 145.28 65.58 c 144.60 65.58 144.03 66.14 144.03 66.82 c B 144.03 66.82 m 144.03 67.51 144.60 68.07 145.28 68.07 c 145.97 68.07 146.53 67.51 146.53 66.82 c 146.53 66.14 145.97 65.58 145.28 65.58 c 144.60 65.58 144.03 66.14 144.03 66.82 c B 144.03 66.82 m 144.03 67.51 144.60 68.07 145.28 68.07 c 145.97 68.07 146.53 67.51 146.53 66.82 c 146.53 66.14 145.97 65.58 145.28 65.58 c 144.60 65.58 144.03 66.14 144.03 66.82 c B 144.03 66.82 m 144.03 67.51 144.60 68.07 145.28 68.07 c 145.97 68.07 146.53 67.51 146.53 66.82 c 146.53 66.14 145.97 65.58 145.28 65.58 c 144.60 65.58 144.03 66.14 144.03 66.82 c B 144.03 66.82 m 144.03 67.51 144.60 68.07 145.28 68.07 c 145.97 68.07 146.53 67.51 146.53 66.82 c 146.53 66.14 145.97 65.58 145.28 65.58 c 144.60 65.58 144.03 66.14 144.03 66.82 c B 144.03 66.82 m 144.03 67.51 144.60 68.07 145.28 68.07 c 145.97 68.07 146.53 67.51 146.53 66.82 c 146.53 66.14 145.97 65.58 145.28 65.58 c 144.60 65.58 144.03 66.14 144.03 66.82 c B 144.03 66.82 m 144.03 67.51 144.60 68.07 145.28 68.07 c 145.97 68.07 146.53 67.51 146.53 66.82 c 146.53 66.14 145.97 65.58 145.28 65.58 c 144.60 65.58 144.03 66.14 144.03 66.82 c B 144.03 66.82 m 144.03 67.51 144.60 68.07 145.28 68.07 c 145.97 68.07 146.53 67.51 146.53 66.82 c 146.53 66.14 145.97 65.58 145.28 65.58 c 144.60 65.58 144.03 66.14 144.03 66.82 c B 144.03 66.82 m 144.03 67.51 144.60 68.07 145.28 68.07 c 145.97 68.07 146.53 67.51 146.53 66.82 c 146.53 66.14 145.97 65.58 145.28 65.58 c 144.60 65.58 144.03 66.14 144.03 66.82 c B 144.03 66.82 m 144.03 67.51 144.60 68.07 145.28 68.07 c 145.97 68.07 146.53 67.51 146.53 66.82 c 146.53 66.14 145.97 65.58 145.28 65.58 c 144.60 65.58 144.03 66.14 144.03 66.82 c B 144.03 66.82 m 144.03 67.51 144.60 68.07 145.28 68.07 c 145.97 68.07 146.53 67.51 146.53 66.82 c 146.53 66.14 145.97 65.58 145.28 65.58 c 144.60 65.58 144.03 66.14 144.03 66.82 c B 144.03 66.82 m 144.03 67.51 144.60 68.07 145.28 68.07 c 145.97 68.07 146.53 67.51 146.53 66.82 c 146.53 66.14 145.97 65.58 145.28 65.58 c 144.60 65.58 144.03 66.14 144.03 66.82 c B 144.03 66.82 m 144.03 67.51 144.60 68.07 145.28 68.07 c 145.97 68.07 146.53 67.51 146.53 66.82 c 146.53 66.14 145.97 65.58 145.28 65.58 c 144.60 65.58 144.03 66.14 144.03 66.82 c B 144.03 66.82 m 144.03 67.51 144.60 68.07 145.28 68.07 c 145.97 68.07 146.53 67.51 146.53 66.82 c 146.53 66.14 145.97 65.58 145.28 65.58 c 144.60 65.58 144.03 66.14 144.03 66.82 c B 144.03 66.82 m 144.03 67.51 144.60 68.07 145.28 68.07 c 145.97 68.07 146.53 67.51 146.53 66.82 c 146.53 66.14 145.97 65.58 145.28 65.58 c 144.60 65.58 144.03 66.14 144.03 66.82 c B 144.03 66.82 m 144.03 67.51 144.60 68.07 145.28 68.07 c 145.97 68.07 146.53 67.51 146.53 66.82 c 146.53 66.14 145.97 65.58 145.28 65.58 c 144.60 65.58 144.03 66.14 144.03 66.82 c B 144.03 66.82 m 144.03 67.51 144.60 68.07 145.28 68.07 c 145.97 68.07 146.53 67.51 146.53 66.82 c 146.53 66.14 145.97 65.58 145.28 65.58 c 144.60 65.58 144.03 66.14 144.03 66.82 c B 144.03 66.82 m 144.03 67.51 144.60 68.07 145.28 68.07 c 145.97 68.07 146.53 67.51 146.53 66.82 c 146.53 66.14 145.97 65.58 145.28 65.58 c 144.60 65.58 144.03 66.14 144.03 66.82 c B 144.03 66.82 m 144.03 67.51 144.60 68.07 145.28 68.07 c 145.97 68.07 146.53 67.51 146.53 66.82 c 146.53 66.14 145.97 65.58 145.28 65.58 c 144.60 65.58 144.03 66.14 144.03 66.82 c B 148.24 66.82 m 148.24 67.51 148.80 68.07 149.49 68.07 c 150.17 68.07 150.73 67.51 150.73 66.82 c 150.73 66.14 150.17 65.58 149.49 65.58 c 148.80 65.58 148.24 66.14 148.24 66.82 c B 148.24 66.82 m 148.24 67.51 148.80 68.07 149.49 68.07 c 150.17 68.07 150.73 67.51 150.73 66.82 c 150.73 66.14 150.17 65.58 149.49 65.58 c 148.80 65.58 148.24 66.14 148.24 66.82 c B 148.24 66.82 m 148.24 67.51 148.80 68.07 149.49 68.07 c 150.17 68.07 150.73 67.51 150.73 66.82 c 150.73 66.14 150.17 65.58 149.49 65.58 c 148.80 65.58 148.24 66.14 148.24 66.82 c B 148.24 66.82 m 148.24 67.51 148.80 68.07 149.49 68.07 c 150.17 68.07 150.73 67.51 150.73 66.82 c 150.73 66.14 150.17 65.58 149.49 65.58 c 148.80 65.58 148.24 66.14 148.24 66.82 c B 148.24 66.82 m 148.24 67.51 148.80 68.07 149.49 68.07 c 150.17 68.07 150.73 67.51 150.73 66.82 c 150.73 66.14 150.17 65.58 149.49 65.58 c 148.80 65.58 148.24 66.14 148.24 66.82 c B 148.24 66.82 m 148.24 67.51 148.80 68.07 149.49 68.07 c 150.17 68.07 150.73 67.51 150.73 66.82 c 150.73 66.14 150.17 65.58 149.49 65.58 c 148.80 65.58 148.24 66.14 148.24 66.82 c B 148.24 66.82 m 148.24 67.51 148.80 68.07 149.49 68.07 c 150.17 68.07 150.73 67.51 150.73 66.82 c 150.73 66.14 150.17 65.58 149.49 65.58 c 148.80 65.58 148.24 66.14 148.24 66.82 c B 148.24 66.82 m 148.24 67.51 148.80 68.07 149.49 68.07 c 150.17 68.07 150.73 67.51 150.73 66.82 c 150.73 66.14 150.17 65.58 149.49 65.58 c 148.80 65.58 148.24 66.14 148.24 66.82 c B 148.24 66.82 m 148.24 67.51 148.80 68.07 149.49 68.07 c 150.17 68.07 150.73 67.51 150.73 66.82 c 150.73 66.14 150.17 65.58 149.49 65.58 c 148.80 65.58 148.24 66.14 148.24 66.82 c B 148.24 66.82 m 148.24 67.51 148.80 68.07 149.49 68.07 c 150.17 68.07 150.73 67.51 150.73 66.82 c 150.73 66.14 150.17 65.58 149.49 65.58 c 148.80 65.58 148.24 66.14 148.24 66.82 c B 148.24 66.82 m 148.24 67.51 148.80 68.07 149.49 68.07 c 150.17 68.07 150.73 67.51 150.73 66.82 c 150.73 66.14 150.17 65.58 149.49 65.58 c 148.80 65.58 148.24 66.14 148.24 66.82 c B 148.24 66.82 m 148.24 67.51 148.80 68.07 149.49 68.07 c 150.17 68.07 150.73 67.51 150.73 66.82 c 150.73 66.14 150.17 65.58 149.49 65.58 c 148.80 65.58 148.24 66.14 148.24 66.82 c B 148.24 66.82 m 148.24 67.51 148.80 68.07 149.49 68.07 c 150.17 68.07 150.73 67.51 150.73 66.82 c 150.73 66.14 150.17 65.58 149.49 65.58 c 148.80 65.58 148.24 66.14 148.24 66.82 c B 148.24 66.82 m 148.24 67.51 148.80 68.07 149.49 68.07 c 150.17 68.07 150.73 67.51 150.73 66.82 c 150.73 66.14 150.17 65.58 149.49 65.58 c 148.80 65.58 148.24 66.14 148.24 66.82 c B 148.24 66.82 m 148.24 67.51 148.80 68.07 149.49 68.07 c 150.17 68.07 150.73 67.51 150.73 66.82 c 150.73 66.14 150.17 65.58 149.49 65.58 c 148.80 65.58 148.24 66.14 148.24 66.82 c B 148.24 66.82 m 148.24 67.51 148.80 68.07 149.49 68.07 c 150.17 68.07 150.73 67.51 150.73 66.82 c 150.73 66.14 150.17 65.58 149.49 65.58 c 148.80 65.58 148.24 66.14 148.24 66.82 c B 148.24 66.82 m 148.24 67.51 148.80 68.07 149.49 68.07 c 150.17 68.07 150.73 67.51 150.73 66.82 c 150.73 66.14 150.17 65.58 149.49 65.58 c 148.80 65.58 148.24 66.14 148.24 66.82 c B 148.24 66.82 m 148.24 67.51 148.80 68.07 149.49 68.07 c 150.17 68.07 150.73 67.51 150.73 66.82 c 150.73 66.14 150.17 65.58 149.49 65.58 c 148.80 65.58 148.24 66.14 148.24 66.82 c B 148.24 66.82 m 148.24 67.51 148.80 68.07 149.49 68.07 c 150.17 68.07 150.73 67.51 150.73 66.82 c 150.73 66.14 150.17 65.58 149.49 65.58 c 148.80 65.58 148.24 66.14 148.24 66.82 c B 148.24 66.82 m 148.24 67.51 148.80 68.07 149.49 68.07 c 150.17 68.07 150.73 67.51 150.73 66.82 c 150.73 66.14 150.17 65.58 149.49 65.58 c 148.80 65.58 148.24 66.14 148.24 66.82 c B 148.24 70.29 m 148.24 70.98 148.80 71.54 149.49 71.54 c 150.17 71.54 150.73 70.98 150.73 70.29 c 150.73 69.61 150.17 69.05 149.49 69.05 c 148.80 69.05 148.24 69.61 148.24 70.29 c B 148.24 70.29 m 148.24 70.98 148.80 71.54 149.49 71.54 c 150.17 71.54 150.73 70.98 150.73 70.29 c 150.73 69.61 150.17 69.05 149.49 69.05 c 148.80 69.05 148.24 69.61 148.24 70.29 c B 148.24 70.29 m 148.24 70.98 148.80 71.54 149.49 71.54 c 150.17 71.54 150.73 70.98 150.73 70.29 c 150.73 69.61 150.17 69.05 149.49 69.05 c 148.80 69.05 148.24 69.61 148.24 70.29 c B 148.24 70.29 m 148.24 70.98 148.80 71.54 149.49 71.54 c 150.17 71.54 150.73 70.98 150.73 70.29 c 150.73 69.61 150.17 69.05 149.49 69.05 c 148.80 69.05 148.24 69.61 148.24 70.29 c B 148.24 70.29 m 148.24 70.98 148.80 71.54 149.49 71.54 c 150.17 71.54 150.73 70.98 150.73 70.29 c 150.73 69.61 150.17 69.05 149.49 69.05 c 148.80 69.05 148.24 69.61 148.24 70.29 c B 148.24 70.29 m 148.24 70.98 148.80 71.54 149.49 71.54 c 150.17 71.54 150.73 70.98 150.73 70.29 c 150.73 69.61 150.17 69.05 149.49 69.05 c 148.80 69.05 148.24 69.61 148.24 70.29 c B 148.24 70.29 m 148.24 70.98 148.80 71.54 149.49 71.54 c 150.17 71.54 150.73 70.98 150.73 70.29 c 150.73 69.61 150.17 69.05 149.49 69.05 c 148.80 69.05 148.24 69.61 148.24 70.29 c B 148.24 70.29 m 148.24 70.98 148.80 71.54 149.49 71.54 c 150.17 71.54 150.73 70.98 150.73 70.29 c 150.73 69.61 150.17 69.05 149.49 69.05 c 148.80 69.05 148.24 69.61 148.24 70.29 c B 148.24 70.29 m 148.24 70.98 148.80 71.54 149.49 71.54 c 150.17 71.54 150.73 70.98 150.73 70.29 c 150.73 69.61 150.17 69.05 149.49 69.05 c 148.80 69.05 148.24 69.61 148.24 70.29 c B 148.24 70.29 m 148.24 70.98 148.80 71.54 149.49 71.54 c 150.17 71.54 150.73 70.98 150.73 70.29 c 150.73 69.61 150.17 69.05 149.49 69.05 c 148.80 69.05 148.24 69.61 148.24 70.29 c B 148.24 70.29 m 148.24 70.98 148.80 71.54 149.49 71.54 c 150.17 71.54 150.73 70.98 150.73 70.29 c 150.73 69.61 150.17 69.05 149.49 69.05 c 148.80 69.05 148.24 69.61 148.24 70.29 c B 148.24 70.29 m 148.24 70.98 148.80 71.54 149.49 71.54 c 150.17 71.54 150.73 70.98 150.73 70.29 c 150.73 69.61 150.17 69.05 149.49 69.05 c 148.80 69.05 148.24 69.61 148.24 70.29 c B 148.24 70.29 m 148.24 70.98 148.80 71.54 149.49 71.54 c 150.17 71.54 150.73 70.98 150.73 70.29 c 150.73 69.61 150.17 69.05 149.49 69.05 c 148.80 69.05 148.24 69.61 148.24 70.29 c B 148.24 70.29 m 148.24 70.98 148.80 71.54 149.49 71.54 c 150.17 71.54 150.73 70.98 150.73 70.29 c 150.73 69.61 150.17 69.05 149.49 69.05 c 148.80 69.05 148.24 69.61 148.24 70.29 c B 148.24 70.29 m 148.24 70.98 148.80 71.54 149.49 71.54 c 150.17 71.54 150.73 70.98 150.73 70.29 c 150.73 69.61 150.17 69.05 149.49 69.05 c 148.80 69.05 148.24 69.61 148.24 70.29 c B 148.24 70.29 m 148.24 70.98 148.80 71.54 149.49 71.54 c 150.17 71.54 150.73 70.98 150.73 70.29 c 150.73 69.61 150.17 69.05 149.49 69.05 c 148.80 69.05 148.24 69.61 148.24 70.29 c B 148.24 70.29 m 148.24 70.98 148.80 71.54 149.49 71.54 c 150.17 71.54 150.73 70.98 150.73 70.29 c 150.73 69.61 150.17 69.05 149.49 69.05 c 148.80 69.05 148.24 69.61 148.24 70.29 c B 148.24 70.29 m 148.24 70.98 148.80 71.54 149.49 71.54 c 150.17 71.54 150.73 70.98 150.73 70.29 c 150.73 69.61 150.17 69.05 149.49 69.05 c 148.80 69.05 148.24 69.61 148.24 70.29 c B 148.24 70.29 m 148.24 70.98 148.80 71.54 149.49 71.54 c 150.17 71.54 150.73 70.98 150.73 70.29 c 150.73 69.61 150.17 69.05 149.49 69.05 c 148.80 69.05 148.24 69.61 148.24 70.29 c B 148.24 70.29 m 148.24 70.98 148.80 71.54 149.49 71.54 c 150.17 71.54 150.73 70.98 150.73 70.29 c 150.73 69.61 150.17 69.05 149.49 69.05 c 148.80 69.05 148.24 69.61 148.24 70.29 c B 148.24 70.29 m 148.24 70.98 148.80 71.54 149.49 71.54 c 150.17 71.54 150.73 70.98 150.73 70.29 c 150.73 69.61 150.17 69.05 149.49 69.05 c 148.80 69.05 148.24 69.61 148.24 70.29 c B 148.24 70.29 m 148.24 70.98 148.80 71.54 149.49 71.54 c 150.17 71.54 150.73 70.98 150.73 70.29 c 150.73 69.61 150.17 69.05 149.49 69.05 c 148.80 69.05 148.24 69.61 148.24 70.29 c B 148.24 70.29 m 148.24 70.98 148.80 71.54 149.49 71.54 c 150.17 71.54 150.73 70.98 150.73 70.29 c 150.73 69.61 150.17 69.05 149.49 69.05 c 148.80 69.05 148.24 69.61 148.24 70.29 c B 148.24 70.29 m 148.24 70.98 148.80 71.54 149.49 71.54 c 150.17 71.54 150.73 70.98 150.73 70.29 c 150.73 69.61 150.17 69.05 149.49 69.05 c 148.80 69.05 148.24 69.61 148.24 70.29 c B 148.24 70.29 m 148.24 70.98 148.80 71.54 149.49 71.54 c 150.17 71.54 150.73 70.98 150.73 70.29 c 150.73 69.61 150.17 69.05 149.49 69.05 c 148.80 69.05 148.24 69.61 148.24 70.29 c B 148.24 70.29 m 148.24 70.98 148.80 71.54 149.49 71.54 c 150.17 71.54 150.73 70.98 150.73 70.29 c 150.73 69.61 150.17 69.05 149.49 69.05 c 148.80 69.05 148.24 69.61 148.24 70.29 c B 148.24 70.29 m 148.24 70.98 148.80 71.54 149.49 71.54 c 150.17 71.54 150.73 70.98 150.73 70.29 c 150.73 69.61 150.17 69.05 149.49 69.05 c 148.80 69.05 148.24 69.61 148.24 70.29 c B 148.24 70.29 m 148.24 70.98 148.80 71.54 149.49 71.54 c 150.17 71.54 150.73 70.98 150.73 70.29 c 150.73 69.61 150.17 69.05 149.49 69.05 c 148.80 69.05 148.24 69.61 148.24 70.29 c B 148.24 70.29 m 148.24 70.98 148.80 71.54 149.49 71.54 c 150.17 71.54 150.73 70.98 150.73 70.29 c 150.73 69.61 150.17 69.05 149.49 69.05 c 148.80 69.05 148.24 69.61 148.24 70.29 c B 148.24 70.29 m 148.24 70.98 148.80 71.54 149.49 71.54 c 150.17 71.54 150.73 70.98 150.73 70.29 c 150.73 69.61 150.17 69.05 149.49 69.05 c 148.80 69.05 148.24 69.61 148.24 70.29 c B 152.44 70.29 m 152.44 70.98 153.01 71.54 153.69 71.54 c 154.38 71.54 154.94 70.98 154.94 70.29 c 154.94 69.61 154.38 69.05 153.69 69.05 c 153.01 69.05 152.44 69.61 152.44 70.29 c B 152.44 70.29 m 152.44 70.98 153.01 71.54 153.69 71.54 c 154.38 71.54 154.94 70.98 154.94 70.29 c 154.94 69.61 154.38 69.05 153.69 69.05 c 153.01 69.05 152.44 69.61 152.44 70.29 c B 152.44 70.29 m 152.44 70.98 153.01 71.54 153.69 71.54 c 154.38 71.54 154.94 70.98 154.94 70.29 c 154.94 69.61 154.38 69.05 153.69 69.05 c 153.01 69.05 152.44 69.61 152.44 70.29 c B 152.44 70.29 m 152.44 70.98 153.01 71.54 153.69 71.54 c 154.38 71.54 154.94 70.98 154.94 70.29 c 154.94 69.61 154.38 69.05 153.69 69.05 c 153.01 69.05 152.44 69.61 152.44 70.29 c B 152.44 70.29 m 152.44 70.98 153.01 71.54 153.69 71.54 c 154.38 71.54 154.94 70.98 154.94 70.29 c 154.94 69.61 154.38 69.05 153.69 69.05 c 153.01 69.05 152.44 69.61 152.44 70.29 c B 152.44 70.29 m 152.44 70.98 153.01 71.54 153.69 71.54 c 154.38 71.54 154.94 70.98 154.94 70.29 c 154.94 69.61 154.38 69.05 153.69 69.05 c 153.01 69.05 152.44 69.61 152.44 70.29 c B 152.44 70.29 m 152.44 70.98 153.01 71.54 153.69 71.54 c 154.38 71.54 154.94 70.98 154.94 70.29 c 154.94 69.61 154.38 69.05 153.69 69.05 c 153.01 69.05 152.44 69.61 152.44 70.29 c B 152.44 70.29 m 152.44 70.98 153.01 71.54 153.69 71.54 c 154.38 71.54 154.94 70.98 154.94 70.29 c 154.94 69.61 154.38 69.05 153.69 69.05 c 153.01 69.05 152.44 69.61 152.44 70.29 c B 156.65 70.29 m 156.65 70.98 157.21 71.54 157.90 71.54 c 158.58 71.54 159.14 70.98 159.14 70.29 c 159.14 69.61 158.58 69.05 157.90 69.05 c 157.21 69.05 156.65 69.61 156.65 70.29 c B 156.65 73.77 m 156.65 74.45 157.21 75.01 157.90 75.01 c 158.58 75.01 159.14 74.45 159.14 73.77 c 159.14 73.08 158.58 72.52 157.90 72.52 c 157.21 72.52 156.65 73.08 156.65 73.77 c B 156.65 73.77 m 156.65 74.45 157.21 75.01 157.90 75.01 c 158.58 75.01 159.14 74.45 159.14 73.77 c 159.14 73.08 158.58 72.52 157.90 72.52 c 157.21 72.52 156.65 73.08 156.65 73.77 c B 156.65 73.77 m 156.65 74.45 157.21 75.01 157.90 75.01 c 158.58 75.01 159.14 74.45 159.14 73.77 c 159.14 73.08 158.58 72.52 157.90 72.52 c 157.21 72.52 156.65 73.08 156.65 73.77 c B 156.65 73.77 m 156.65 74.45 157.21 75.01 157.90 75.01 c 158.58 75.01 159.14 74.45 159.14 73.77 c 159.14 73.08 158.58 72.52 157.90 72.52 c 157.21 72.52 156.65 73.08 156.65 73.77 c B 156.65 73.77 m 156.65 74.45 157.21 75.01 157.90 75.01 c 158.58 75.01 159.14 74.45 159.14 73.77 c 159.14 73.08 158.58 72.52 157.90 72.52 c 157.21 72.52 156.65 73.08 156.65 73.77 c B 156.65 73.77 m 156.65 74.45 157.21 75.01 157.90 75.01 c 158.58 75.01 159.14 74.45 159.14 73.77 c 159.14 73.08 158.58 72.52 157.90 72.52 c 157.21 72.52 156.65 73.08 156.65 73.77 c B 160.85 73.77 m 160.85 74.45 161.42 75.01 162.10 75.01 c 162.79 75.01 163.35 74.45 163.35 73.77 c 163.35 73.08 162.79 72.52 162.10 72.52 c 161.42 72.52 160.85 73.08 160.85 73.77 c B 160.85 73.77 m 160.85 74.45 161.42 75.01 162.10 75.01 c 162.79 75.01 163.35 74.45 163.35 73.77 c 163.35 73.08 162.79 72.52 162.10 72.52 c 161.42 72.52 160.85 73.08 160.85 73.77 c B 160.85 77.24 m 160.85 77.92 161.42 78.49 162.10 78.49 c 162.79 78.49 163.35 77.92 163.35 77.24 c 163.35 76.55 162.79 75.99 162.10 75.99 c 161.42 75.99 160.85 76.55 160.85 77.24 c B 160.85 77.24 m 160.85 77.92 161.42 78.49 162.10 78.49 c 162.79 78.49 163.35 77.92 163.35 77.24 c 163.35 76.55 162.79 75.99 162.10 75.99 c 161.42 75.99 160.85 76.55 160.85 77.24 c B 165.06 77.24 m 165.06 77.92 165.62 78.49 166.31 78.49 c 166.99 78.49 167.55 77.92 167.55 77.24 c 167.55 76.55 166.99 75.99 166.31 75.99 c 165.62 75.99 165.06 76.55 165.06 77.24 c B 165.06 77.24 m 165.06 77.92 165.62 78.49 166.31 78.49 c 166.99 78.49 167.55 77.92 167.55 77.24 c 167.55 76.55 166.99 75.99 166.31 75.99 c 165.62 75.99 165.06 76.55 165.06 77.24 c B 165.06 77.24 m 165.06 77.92 165.62 78.49 166.31 78.49 c 166.99 78.49 167.55 77.92 167.55 77.24 c 167.55 76.55 166.99 75.99 166.31 75.99 c 165.62 75.99 165.06 76.55 165.06 77.24 c B 169.26 80.71 m 169.26 81.40 169.83 81.96 170.51 81.96 c 171.20 81.96 171.76 81.40 171.76 80.71 c 171.76 80.02 171.20 79.46 170.51 79.46 c 169.83 79.46 169.26 80.02 169.26 80.71 c B 173.47 84.18 m 173.47 84.87 174.03 85.43 174.72 85.43 c 175.40 85.43 175.96 84.87 175.96 84.18 c 175.96 83.50 175.40 82.93 174.72 82.93 c 174.03 82.93 173.47 83.50 173.47 84.18 c B Q q 91.25 21.38 91.25 76.99 re W n Q q 96.00 26.14 81.74 67.49 re W n /GS2 gs 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 96.00 26.14 m 177.74 93.62 l S 0.75 w [ 3.00 5.00] 0 d 96.00 32.38 m 177.74 99.87 l S 96.00 19.89 m 177.74 87.38 l S Q q /GS2 gs 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 96.00 28.64 m 96.00 80.71 l S 96.00 28.64 m 91.25 28.64 l S 96.00 45.99 m 91.25 45.99 l S 96.00 63.35 m 91.25 63.35 l S 96.00 80.71 m 91.25 80.71 l S BT /GS258 gs 0.000 0.000 0.000 rg /F2 1 Tf 0.00 8.00 -8.00 0.00 84.60 26.41 Tm (0) Tj /F2 1 Tf 0.00 8.00 -8.00 0.00 84.60 43.77 Tm (5) Tj /F2 1 Tf 0.00 8.00 -8.00 0.00 84.60 58.90 Tm (10) Tj /F2 1 Tf 0.00 8.00 -8.00 0.00 84.60 76.26 Tm (15) Tj ET 96.00 26.14 m 177.74 26.14 l 177.74 93.62 l 96.00 93.62 l 96.00 26.14 l S Q q 187.25 26.14 81.74 67.49 re W n Q q 187.25 26.14 81.74 67.49 re W n /GS257 gs 0.000 0.000 1.000 rg /GS1 gs 0.000 0.000 1.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 193.23 42.52 m 193.23 43.21 193.79 43.77 194.48 43.77 c 195.17 43.77 195.73 43.21 195.73 42.52 c 195.73 41.84 195.17 41.27 194.48 41.27 c 193.79 41.27 193.23 41.84 193.23 42.52 c B 201.64 42.52 m 201.64 43.21 202.20 43.77 202.89 43.77 c 203.58 43.77 204.14 43.21 204.14 42.52 c 204.14 41.84 203.58 41.27 202.89 41.27 c 202.20 41.27 201.64 41.84 201.64 42.52 c B 201.64 42.52 m 201.64 43.21 202.20 43.77 202.89 43.77 c 203.58 43.77 204.14 43.21 204.14 42.52 c 204.14 41.84 203.58 41.27 202.89 41.27 c 202.20 41.27 201.64 41.84 201.64 42.52 c B 205.85 42.52 m 205.85 43.21 206.41 43.77 207.10 43.77 c 207.78 43.77 208.34 43.21 208.34 42.52 c 208.34 41.84 207.78 41.27 207.10 41.27 c 206.41 41.27 205.85 41.84 205.85 42.52 c B 205.85 45.99 m 205.85 46.68 206.41 47.24 207.10 47.24 c 207.78 47.24 208.34 46.68 208.34 45.99 c 208.34 45.31 207.78 44.75 207.10 44.75 c 206.41 44.75 205.85 45.31 205.85 45.99 c B 205.85 45.99 m 205.85 46.68 206.41 47.24 207.10 47.24 c 207.78 47.24 208.34 46.68 208.34 45.99 c 208.34 45.31 207.78 44.75 207.10 44.75 c 206.41 44.75 205.85 45.31 205.85 45.99 c B 210.05 45.99 m 210.05 46.68 210.61 47.24 211.30 47.24 c 211.99 47.24 212.55 46.68 212.55 45.99 c 212.55 45.31 211.99 44.75 211.30 44.75 c 210.61 44.75 210.05 45.31 210.05 45.99 c B 210.05 49.47 m 210.05 50.15 210.61 50.71 211.30 50.71 c 211.99 50.71 212.55 50.15 212.55 49.47 c 212.55 48.78 211.99 48.22 211.30 48.22 c 210.61 48.22 210.05 48.78 210.05 49.47 c B 214.26 52.94 m 214.26 53.62 214.82 54.18 215.51 54.18 c 216.19 54.18 216.75 53.62 216.75 52.94 c 216.75 52.25 216.19 51.69 215.51 51.69 c 214.82 51.69 214.26 52.25 214.26 52.94 c B 214.26 52.94 m 214.26 53.62 214.82 54.18 215.51 54.18 c 216.19 54.18 216.75 53.62 216.75 52.94 c 216.75 52.25 216.19 51.69 215.51 51.69 c 214.82 51.69 214.26 52.25 214.26 52.94 c B 214.26 56.41 m 214.26 57.09 214.82 57.66 215.51 57.66 c 216.19 57.66 216.75 57.09 216.75 56.41 c 216.75 55.72 216.19 55.16 215.51 55.16 c 214.82 55.16 214.26 55.72 214.26 56.41 c B 218.46 56.41 m 218.46 57.09 219.02 57.66 219.71 57.66 c 220.40 57.66 220.96 57.09 220.96 56.41 c 220.96 55.72 220.40 55.16 219.71 55.16 c 219.02 55.16 218.46 55.72 218.46 56.41 c B 218.46 56.41 m 218.46 57.09 219.02 57.66 219.71 57.66 c 220.40 57.66 220.96 57.09 220.96 56.41 c 220.96 55.72 220.40 55.16 219.71 55.16 c 219.02 55.16 218.46 55.72 218.46 56.41 c B 218.46 56.41 m 218.46 57.09 219.02 57.66 219.71 57.66 c 220.40 57.66 220.96 57.09 220.96 56.41 c 220.96 55.72 220.40 55.16 219.71 55.16 c 219.02 55.16 218.46 55.72 218.46 56.41 c B 218.46 56.41 m 218.46 57.09 219.02 57.66 219.71 57.66 c 220.40 57.66 220.96 57.09 220.96 56.41 c 220.96 55.72 220.40 55.16 219.71 55.16 c 219.02 55.16 218.46 55.72 218.46 56.41 c B 218.46 56.41 m 218.46 57.09 219.02 57.66 219.71 57.66 c 220.40 57.66 220.96 57.09 220.96 56.41 c 220.96 55.72 220.40 55.16 219.71 55.16 c 219.02 55.16 218.46 55.72 218.46 56.41 c B 218.46 56.41 m 218.46 57.09 219.02 57.66 219.71 57.66 c 220.40 57.66 220.96 57.09 220.96 56.41 c 220.96 55.72 220.40 55.16 219.71 55.16 c 219.02 55.16 218.46 55.72 218.46 56.41 c B 218.46 56.41 m 218.46 57.09 219.02 57.66 219.71 57.66 c 220.40 57.66 220.96 57.09 220.96 56.41 c 220.96 55.72 220.40 55.16 219.71 55.16 c 219.02 55.16 218.46 55.72 218.46 56.41 c B 218.46 56.41 m 218.46 57.09 219.02 57.66 219.71 57.66 c 220.40 57.66 220.96 57.09 220.96 56.41 c 220.96 55.72 220.40 55.16 219.71 55.16 c 219.02 55.16 218.46 55.72 218.46 56.41 c B 218.46 56.41 m 218.46 57.09 219.02 57.66 219.71 57.66 c 220.40 57.66 220.96 57.09 220.96 56.41 c 220.96 55.72 220.40 55.16 219.71 55.16 c 219.02 55.16 218.46 55.72 218.46 56.41 c B 222.67 56.41 m 222.67 57.09 223.23 57.66 223.92 57.66 c 224.60 57.66 225.16 57.09 225.16 56.41 c 225.16 55.72 224.60 55.16 223.92 55.16 c 223.23 55.16 222.67 55.72 222.67 56.41 c B 222.67 56.41 m 222.67 57.09 223.23 57.66 223.92 57.66 c 224.60 57.66 225.16 57.09 225.16 56.41 c 225.16 55.72 224.60 55.16 223.92 55.16 c 223.23 55.16 222.67 55.72 222.67 56.41 c B 222.67 56.41 m 222.67 57.09 223.23 57.66 223.92 57.66 c 224.60 57.66 225.16 57.09 225.16 56.41 c 225.16 55.72 224.60 55.16 223.92 55.16 c 223.23 55.16 222.67 55.72 222.67 56.41 c B 222.67 56.41 m 222.67 57.09 223.23 57.66 223.92 57.66 c 224.60 57.66 225.16 57.09 225.16 56.41 c 225.16 55.72 224.60 55.16 223.92 55.16 c 223.23 55.16 222.67 55.72 222.67 56.41 c B 222.67 56.41 m 222.67 57.09 223.23 57.66 223.92 57.66 c 224.60 57.66 225.16 57.09 225.16 56.41 c 225.16 55.72 224.60 55.16 223.92 55.16 c 223.23 55.16 222.67 55.72 222.67 56.41 c B 222.67 56.41 m 222.67 57.09 223.23 57.66 223.92 57.66 c 224.60 57.66 225.16 57.09 225.16 56.41 c 225.16 55.72 224.60 55.16 223.92 55.16 c 223.23 55.16 222.67 55.72 222.67 56.41 c B 222.67 56.41 m 222.67 57.09 223.23 57.66 223.92 57.66 c 224.60 57.66 225.16 57.09 225.16 56.41 c 225.16 55.72 224.60 55.16 223.92 55.16 c 223.23 55.16 222.67 55.72 222.67 56.41 c B 222.67 56.41 m 222.67 57.09 223.23 57.66 223.92 57.66 c 224.60 57.66 225.16 57.09 225.16 56.41 c 225.16 55.72 224.60 55.16 223.92 55.16 c 223.23 55.16 222.67 55.72 222.67 56.41 c B 222.67 59.88 m 222.67 60.57 223.23 61.13 223.92 61.13 c 224.60 61.13 225.16 60.57 225.16 59.88 c 225.16 59.19 224.60 58.63 223.92 58.63 c 223.23 58.63 222.67 59.19 222.67 59.88 c B 222.67 59.88 m 222.67 60.57 223.23 61.13 223.92 61.13 c 224.60 61.13 225.16 60.57 225.16 59.88 c 225.16 59.19 224.60 58.63 223.92 58.63 c 223.23 58.63 222.67 59.19 222.67 59.88 c B 222.67 59.88 m 222.67 60.57 223.23 61.13 223.92 61.13 c 224.60 61.13 225.16 60.57 225.16 59.88 c 225.16 59.19 224.60 58.63 223.92 58.63 c 223.23 58.63 222.67 59.19 222.67 59.88 c B 222.67 59.88 m 222.67 60.57 223.23 61.13 223.92 61.13 c 224.60 61.13 225.16 60.57 225.16 59.88 c 225.16 59.19 224.60 58.63 223.92 58.63 c 223.23 58.63 222.67 59.19 222.67 59.88 c B 222.67 59.88 m 222.67 60.57 223.23 61.13 223.92 61.13 c 224.60 61.13 225.16 60.57 225.16 59.88 c 225.16 59.19 224.60 58.63 223.92 58.63 c 223.23 58.63 222.67 59.19 222.67 59.88 c B 222.67 59.88 m 222.67 60.57 223.23 61.13 223.92 61.13 c 224.60 61.13 225.16 60.57 225.16 59.88 c 225.16 59.19 224.60 58.63 223.92 58.63 c 223.23 58.63 222.67 59.19 222.67 59.88 c B 222.67 59.88 m 222.67 60.57 223.23 61.13 223.92 61.13 c 224.60 61.13 225.16 60.57 225.16 59.88 c 225.16 59.19 224.60 58.63 223.92 58.63 c 223.23 58.63 222.67 59.19 222.67 59.88 c B 222.67 59.88 m 222.67 60.57 223.23 61.13 223.92 61.13 c 224.60 61.13 225.16 60.57 225.16 59.88 c 225.16 59.19 224.60 58.63 223.92 58.63 c 223.23 58.63 222.67 59.19 222.67 59.88 c B 222.67 59.88 m 222.67 60.57 223.23 61.13 223.92 61.13 c 224.60 61.13 225.16 60.57 225.16 59.88 c 225.16 59.19 224.60 58.63 223.92 58.63 c 223.23 58.63 222.67 59.19 222.67 59.88 c B 226.87 59.88 m 226.87 60.57 227.43 61.13 228.12 61.13 c 228.81 61.13 229.37 60.57 229.37 59.88 c 229.37 59.19 228.81 58.63 228.12 58.63 c 227.43 58.63 226.87 59.19 226.87 59.88 c B 226.87 59.88 m 226.87 60.57 227.43 61.13 228.12 61.13 c 228.81 61.13 229.37 60.57 229.37 59.88 c 229.37 59.19 228.81 58.63 228.12 58.63 c 227.43 58.63 226.87 59.19 226.87 59.88 c B 226.87 59.88 m 226.87 60.57 227.43 61.13 228.12 61.13 c 228.81 61.13 229.37 60.57 229.37 59.88 c 229.37 59.19 228.81 58.63 228.12 58.63 c 227.43 58.63 226.87 59.19 226.87 59.88 c B 226.87 59.88 m 226.87 60.57 227.43 61.13 228.12 61.13 c 228.81 61.13 229.37 60.57 229.37 59.88 c 229.37 59.19 228.81 58.63 228.12 58.63 c 227.43 58.63 226.87 59.19 226.87 59.88 c B 226.87 59.88 m 226.87 60.57 227.43 61.13 228.12 61.13 c 228.81 61.13 229.37 60.57 229.37 59.88 c 229.37 59.19 228.81 58.63 228.12 58.63 c 227.43 58.63 226.87 59.19 226.87 59.88 c B 226.87 59.88 m 226.87 60.57 227.43 61.13 228.12 61.13 c 228.81 61.13 229.37 60.57 229.37 59.88 c 229.37 59.19 228.81 58.63 228.12 58.63 c 227.43 58.63 226.87 59.19 226.87 59.88 c B 226.87 59.88 m 226.87 60.57 227.43 61.13 228.12 61.13 c 228.81 61.13 229.37 60.57 229.37 59.88 c 229.37 59.19 228.81 58.63 228.12 58.63 c 227.43 58.63 226.87 59.19 226.87 59.88 c B 226.87 59.88 m 226.87 60.57 227.43 61.13 228.12 61.13 c 228.81 61.13 229.37 60.57 229.37 59.88 c 229.37 59.19 228.81 58.63 228.12 58.63 c 227.43 58.63 226.87 59.19 226.87 59.88 c B 226.87 59.88 m 226.87 60.57 227.43 61.13 228.12 61.13 c 228.81 61.13 229.37 60.57 229.37 59.88 c 229.37 59.19 228.81 58.63 228.12 58.63 c 227.43 58.63 226.87 59.19 226.87 59.88 c B 226.87 59.88 m 226.87 60.57 227.43 61.13 228.12 61.13 c 228.81 61.13 229.37 60.57 229.37 59.88 c 229.37 59.19 228.81 58.63 228.12 58.63 c 227.43 58.63 226.87 59.19 226.87 59.88 c B 226.87 59.88 m 226.87 60.57 227.43 61.13 228.12 61.13 c 228.81 61.13 229.37 60.57 229.37 59.88 c 229.37 59.19 228.81 58.63 228.12 58.63 c 227.43 58.63 226.87 59.19 226.87 59.88 c B 226.87 59.88 m 226.87 60.57 227.43 61.13 228.12 61.13 c 228.81 61.13 229.37 60.57 229.37 59.88 c 229.37 59.19 228.81 58.63 228.12 58.63 c 227.43 58.63 226.87 59.19 226.87 59.88 c B 226.87 59.88 m 226.87 60.57 227.43 61.13 228.12 61.13 c 228.81 61.13 229.37 60.57 229.37 59.88 c 229.37 59.19 228.81 58.63 228.12 58.63 c 227.43 58.63 226.87 59.19 226.87 59.88 c B 226.87 59.88 m 226.87 60.57 227.43 61.13 228.12 61.13 c 228.81 61.13 229.37 60.57 229.37 59.88 c 229.37 59.19 228.81 58.63 228.12 58.63 c 227.43 58.63 226.87 59.19 226.87 59.88 c B 226.87 59.88 m 226.87 60.57 227.43 61.13 228.12 61.13 c 228.81 61.13 229.37 60.57 229.37 59.88 c 229.37 59.19 228.81 58.63 228.12 58.63 c 227.43 58.63 226.87 59.19 226.87 59.88 c B 226.87 59.88 m 226.87 60.57 227.43 61.13 228.12 61.13 c 228.81 61.13 229.37 60.57 229.37 59.88 c 229.37 59.19 228.81 58.63 228.12 58.63 c 227.43 58.63 226.87 59.19 226.87 59.88 c B 226.87 59.88 m 226.87 60.57 227.43 61.13 228.12 61.13 c 228.81 61.13 229.37 60.57 229.37 59.88 c 229.37 59.19 228.81 58.63 228.12 58.63 c 227.43 58.63 226.87 59.19 226.87 59.88 c B 226.87 59.88 m 226.87 60.57 227.43 61.13 228.12 61.13 c 228.81 61.13 229.37 60.57 229.37 59.88 c 229.37 59.19 228.81 58.63 228.12 58.63 c 227.43 58.63 226.87 59.19 226.87 59.88 c B 226.87 59.88 m 226.87 60.57 227.43 61.13 228.12 61.13 c 228.81 61.13 229.37 60.57 229.37 59.88 c 229.37 59.19 228.81 58.63 228.12 58.63 c 227.43 58.63 226.87 59.19 226.87 59.88 c B 226.87 63.35 m 226.87 64.04 227.43 64.60 228.12 64.60 c 228.81 64.60 229.37 64.04 229.37 63.35 c 229.37 62.67 228.81 62.10 228.12 62.10 c 227.43 62.10 226.87 62.67 226.87 63.35 c B 226.87 63.35 m 226.87 64.04 227.43 64.60 228.12 64.60 c 228.81 64.60 229.37 64.04 229.37 63.35 c 229.37 62.67 228.81 62.10 228.12 62.10 c 227.43 62.10 226.87 62.67 226.87 63.35 c B 226.87 63.35 m 226.87 64.04 227.43 64.60 228.12 64.60 c 228.81 64.60 229.37 64.04 229.37 63.35 c 229.37 62.67 228.81 62.10 228.12 62.10 c 227.43 62.10 226.87 62.67 226.87 63.35 c B 226.87 63.35 m 226.87 64.04 227.43 64.60 228.12 64.60 c 228.81 64.60 229.37 64.04 229.37 63.35 c 229.37 62.67 228.81 62.10 228.12 62.10 c 227.43 62.10 226.87 62.67 226.87 63.35 c B 226.87 63.35 m 226.87 64.04 227.43 64.60 228.12 64.60 c 228.81 64.60 229.37 64.04 229.37 63.35 c 229.37 62.67 228.81 62.10 228.12 62.10 c 227.43 62.10 226.87 62.67 226.87 63.35 c B 226.87 63.35 m 226.87 64.04 227.43 64.60 228.12 64.60 c 228.81 64.60 229.37 64.04 229.37 63.35 c 229.37 62.67 228.81 62.10 228.12 62.10 c 227.43 62.10 226.87 62.67 226.87 63.35 c B 226.87 63.35 m 226.87 64.04 227.43 64.60 228.12 64.60 c 228.81 64.60 229.37 64.04 229.37 63.35 c 229.37 62.67 228.81 62.10 228.12 62.10 c 227.43 62.10 226.87 62.67 226.87 63.35 c B 231.08 63.35 m 231.08 64.04 231.64 64.60 232.32 64.60 c 233.01 64.60 233.57 64.04 233.57 63.35 c 233.57 62.67 233.01 62.10 232.32 62.10 c 231.64 62.10 231.08 62.67 231.08 63.35 c B 231.08 63.35 m 231.08 64.04 231.64 64.60 232.32 64.60 c 233.01 64.60 233.57 64.04 233.57 63.35 c 233.57 62.67 233.01 62.10 232.32 62.10 c 231.64 62.10 231.08 62.67 231.08 63.35 c B 231.08 63.35 m 231.08 64.04 231.64 64.60 232.32 64.60 c 233.01 64.60 233.57 64.04 233.57 63.35 c 233.57 62.67 233.01 62.10 232.32 62.10 c 231.64 62.10 231.08 62.67 231.08 63.35 c B 231.08 63.35 m 231.08 64.04 231.64 64.60 232.32 64.60 c 233.01 64.60 233.57 64.04 233.57 63.35 c 233.57 62.67 233.01 62.10 232.32 62.10 c 231.64 62.10 231.08 62.67 231.08 63.35 c B 231.08 63.35 m 231.08 64.04 231.64 64.60 232.32 64.60 c 233.01 64.60 233.57 64.04 233.57 63.35 c 233.57 62.67 233.01 62.10 232.32 62.10 c 231.64 62.10 231.08 62.67 231.08 63.35 c B 231.08 63.35 m 231.08 64.04 231.64 64.60 232.32 64.60 c 233.01 64.60 233.57 64.04 233.57 63.35 c 233.57 62.67 233.01 62.10 232.32 62.10 c 231.64 62.10 231.08 62.67 231.08 63.35 c B 231.08 63.35 m 231.08 64.04 231.64 64.60 232.32 64.60 c 233.01 64.60 233.57 64.04 233.57 63.35 c 233.57 62.67 233.01 62.10 232.32 62.10 c 231.64 62.10 231.08 62.67 231.08 63.35 c B 231.08 63.35 m 231.08 64.04 231.64 64.60 232.32 64.60 c 233.01 64.60 233.57 64.04 233.57 63.35 c 233.57 62.67 233.01 62.10 232.32 62.10 c 231.64 62.10 231.08 62.67 231.08 63.35 c B 231.08 63.35 m 231.08 64.04 231.64 64.60 232.32 64.60 c 233.01 64.60 233.57 64.04 233.57 63.35 c 233.57 62.67 233.01 62.10 232.32 62.10 c 231.64 62.10 231.08 62.67 231.08 63.35 c B 231.08 63.35 m 231.08 64.04 231.64 64.60 232.32 64.60 c 233.01 64.60 233.57 64.04 233.57 63.35 c 233.57 62.67 233.01 62.10 232.32 62.10 c 231.64 62.10 231.08 62.67 231.08 63.35 c B 231.08 63.35 m 231.08 64.04 231.64 64.60 232.32 64.60 c 233.01 64.60 233.57 64.04 233.57 63.35 c 233.57 62.67 233.01 62.10 232.32 62.10 c 231.64 62.10 231.08 62.67 231.08 63.35 c B 231.08 63.35 m 231.08 64.04 231.64 64.60 232.32 64.60 c 233.01 64.60 233.57 64.04 233.57 63.35 c 233.57 62.67 233.01 62.10 232.32 62.10 c 231.64 62.10 231.08 62.67 231.08 63.35 c B 231.08 63.35 m 231.08 64.04 231.64 64.60 232.32 64.60 c 233.01 64.60 233.57 64.04 233.57 63.35 c 233.57 62.67 233.01 62.10 232.32 62.10 c 231.64 62.10 231.08 62.67 231.08 63.35 c B 231.08 63.35 m 231.08 64.04 231.64 64.60 232.32 64.60 c 233.01 64.60 233.57 64.04 233.57 63.35 c 233.57 62.67 233.01 62.10 232.32 62.10 c 231.64 62.10 231.08 62.67 231.08 63.35 c B 231.08 63.35 m 231.08 64.04 231.64 64.60 232.32 64.60 c 233.01 64.60 233.57 64.04 233.57 63.35 c 233.57 62.67 233.01 62.10 232.32 62.10 c 231.64 62.10 231.08 62.67 231.08 63.35 c B 231.08 63.35 m 231.08 64.04 231.64 64.60 232.32 64.60 c 233.01 64.60 233.57 64.04 233.57 63.35 c 233.57 62.67 233.01 62.10 232.32 62.10 c 231.64 62.10 231.08 62.67 231.08 63.35 c B 231.08 63.35 m 231.08 64.04 231.64 64.60 232.32 64.60 c 233.01 64.60 233.57 64.04 233.57 63.35 c 233.57 62.67 233.01 62.10 232.32 62.10 c 231.64 62.10 231.08 62.67 231.08 63.35 c B 231.08 63.35 m 231.08 64.04 231.64 64.60 232.32 64.60 c 233.01 64.60 233.57 64.04 233.57 63.35 c 233.57 62.67 233.01 62.10 232.32 62.10 c 231.64 62.10 231.08 62.67 231.08 63.35 c B 231.08 63.35 m 231.08 64.04 231.64 64.60 232.32 64.60 c 233.01 64.60 233.57 64.04 233.57 63.35 c 233.57 62.67 233.01 62.10 232.32 62.10 c 231.64 62.10 231.08 62.67 231.08 63.35 c B 231.08 63.35 m 231.08 64.04 231.64 64.60 232.32 64.60 c 233.01 64.60 233.57 64.04 233.57 63.35 c 233.57 62.67 233.01 62.10 232.32 62.10 c 231.64 62.10 231.08 62.67 231.08 63.35 c B 231.08 63.35 m 231.08 64.04 231.64 64.60 232.32 64.60 c 233.01 64.60 233.57 64.04 233.57 63.35 c 233.57 62.67 233.01 62.10 232.32 62.10 c 231.64 62.10 231.08 62.67 231.08 63.35 c B 231.08 63.35 m 231.08 64.04 231.64 64.60 232.32 64.60 c 233.01 64.60 233.57 64.04 233.57 63.35 c 233.57 62.67 233.01 62.10 232.32 62.10 c 231.64 62.10 231.08 62.67 231.08 63.35 c B 231.08 63.35 m 231.08 64.04 231.64 64.60 232.32 64.60 c 233.01 64.60 233.57 64.04 233.57 63.35 c 233.57 62.67 233.01 62.10 232.32 62.10 c 231.64 62.10 231.08 62.67 231.08 63.35 c B 231.08 66.82 m 231.08 67.51 231.64 68.07 232.32 68.07 c 233.01 68.07 233.57 67.51 233.57 66.82 c 233.57 66.14 233.01 65.58 232.32 65.58 c 231.64 65.58 231.08 66.14 231.08 66.82 c B 231.08 66.82 m 231.08 67.51 231.64 68.07 232.32 68.07 c 233.01 68.07 233.57 67.51 233.57 66.82 c 233.57 66.14 233.01 65.58 232.32 65.58 c 231.64 65.58 231.08 66.14 231.08 66.82 c B 231.08 66.82 m 231.08 67.51 231.64 68.07 232.32 68.07 c 233.01 68.07 233.57 67.51 233.57 66.82 c 233.57 66.14 233.01 65.58 232.32 65.58 c 231.64 65.58 231.08 66.14 231.08 66.82 c B 231.08 66.82 m 231.08 67.51 231.64 68.07 232.32 68.07 c 233.01 68.07 233.57 67.51 233.57 66.82 c 233.57 66.14 233.01 65.58 232.32 65.58 c 231.64 65.58 231.08 66.14 231.08 66.82 c B 231.08 66.82 m 231.08 67.51 231.64 68.07 232.32 68.07 c 233.01 68.07 233.57 67.51 233.57 66.82 c 233.57 66.14 233.01 65.58 232.32 65.58 c 231.64 65.58 231.08 66.14 231.08 66.82 c B 231.08 66.82 m 231.08 67.51 231.64 68.07 232.32 68.07 c 233.01 68.07 233.57 67.51 233.57 66.82 c 233.57 66.14 233.01 65.58 232.32 65.58 c 231.64 65.58 231.08 66.14 231.08 66.82 c B 231.08 66.82 m 231.08 67.51 231.64 68.07 232.32 68.07 c 233.01 68.07 233.57 67.51 233.57 66.82 c 233.57 66.14 233.01 65.58 232.32 65.58 c 231.64 65.58 231.08 66.14 231.08 66.82 c B 231.08 66.82 m 231.08 67.51 231.64 68.07 232.32 68.07 c 233.01 68.07 233.57 67.51 233.57 66.82 c 233.57 66.14 233.01 65.58 232.32 65.58 c 231.64 65.58 231.08 66.14 231.08 66.82 c B 235.28 66.82 m 235.28 67.51 235.84 68.07 236.53 68.07 c 237.22 68.07 237.78 67.51 237.78 66.82 c 237.78 66.14 237.22 65.58 236.53 65.58 c 235.84 65.58 235.28 66.14 235.28 66.82 c B 235.28 66.82 m 235.28 67.51 235.84 68.07 236.53 68.07 c 237.22 68.07 237.78 67.51 237.78 66.82 c 237.78 66.14 237.22 65.58 236.53 65.58 c 235.84 65.58 235.28 66.14 235.28 66.82 c B 235.28 66.82 m 235.28 67.51 235.84 68.07 236.53 68.07 c 237.22 68.07 237.78 67.51 237.78 66.82 c 237.78 66.14 237.22 65.58 236.53 65.58 c 235.84 65.58 235.28 66.14 235.28 66.82 c B 235.28 66.82 m 235.28 67.51 235.84 68.07 236.53 68.07 c 237.22 68.07 237.78 67.51 237.78 66.82 c 237.78 66.14 237.22 65.58 236.53 65.58 c 235.84 65.58 235.28 66.14 235.28 66.82 c B 235.28 66.82 m 235.28 67.51 235.84 68.07 236.53 68.07 c 237.22 68.07 237.78 67.51 237.78 66.82 c 237.78 66.14 237.22 65.58 236.53 65.58 c 235.84 65.58 235.28 66.14 235.28 66.82 c B 235.28 66.82 m 235.28 67.51 235.84 68.07 236.53 68.07 c 237.22 68.07 237.78 67.51 237.78 66.82 c 237.78 66.14 237.22 65.58 236.53 65.58 c 235.84 65.58 235.28 66.14 235.28 66.82 c B 235.28 66.82 m 235.28 67.51 235.84 68.07 236.53 68.07 c 237.22 68.07 237.78 67.51 237.78 66.82 c 237.78 66.14 237.22 65.58 236.53 65.58 c 235.84 65.58 235.28 66.14 235.28 66.82 c B 235.28 66.82 m 235.28 67.51 235.84 68.07 236.53 68.07 c 237.22 68.07 237.78 67.51 237.78 66.82 c 237.78 66.14 237.22 65.58 236.53 65.58 c 235.84 65.58 235.28 66.14 235.28 66.82 c B 235.28 66.82 m 235.28 67.51 235.84 68.07 236.53 68.07 c 237.22 68.07 237.78 67.51 237.78 66.82 c 237.78 66.14 237.22 65.58 236.53 65.58 c 235.84 65.58 235.28 66.14 235.28 66.82 c B 235.28 66.82 m 235.28 67.51 235.84 68.07 236.53 68.07 c 237.22 68.07 237.78 67.51 237.78 66.82 c 237.78 66.14 237.22 65.58 236.53 65.58 c 235.84 65.58 235.28 66.14 235.28 66.82 c B 235.28 66.82 m 235.28 67.51 235.84 68.07 236.53 68.07 c 237.22 68.07 237.78 67.51 237.78 66.82 c 237.78 66.14 237.22 65.58 236.53 65.58 c 235.84 65.58 235.28 66.14 235.28 66.82 c B 235.28 66.82 m 235.28 67.51 235.84 68.07 236.53 68.07 c 237.22 68.07 237.78 67.51 237.78 66.82 c 237.78 66.14 237.22 65.58 236.53 65.58 c 235.84 65.58 235.28 66.14 235.28 66.82 c B 235.28 66.82 m 235.28 67.51 235.84 68.07 236.53 68.07 c 237.22 68.07 237.78 67.51 237.78 66.82 c 237.78 66.14 237.22 65.58 236.53 65.58 c 235.84 65.58 235.28 66.14 235.28 66.82 c B 235.28 66.82 m 235.28 67.51 235.84 68.07 236.53 68.07 c 237.22 68.07 237.78 67.51 237.78 66.82 c 237.78 66.14 237.22 65.58 236.53 65.58 c 235.84 65.58 235.28 66.14 235.28 66.82 c B 235.28 66.82 m 235.28 67.51 235.84 68.07 236.53 68.07 c 237.22 68.07 237.78 67.51 237.78 66.82 c 237.78 66.14 237.22 65.58 236.53 65.58 c 235.84 65.58 235.28 66.14 235.28 66.82 c B 235.28 66.82 m 235.28 67.51 235.84 68.07 236.53 68.07 c 237.22 68.07 237.78 67.51 237.78 66.82 c 237.78 66.14 237.22 65.58 236.53 65.58 c 235.84 65.58 235.28 66.14 235.28 66.82 c B 235.28 66.82 m 235.28 67.51 235.84 68.07 236.53 68.07 c 237.22 68.07 237.78 67.51 237.78 66.82 c 237.78 66.14 237.22 65.58 236.53 65.58 c 235.84 65.58 235.28 66.14 235.28 66.82 c B 235.28 66.82 m 235.28 67.51 235.84 68.07 236.53 68.07 c 237.22 68.07 237.78 67.51 237.78 66.82 c 237.78 66.14 237.22 65.58 236.53 65.58 c 235.84 65.58 235.28 66.14 235.28 66.82 c B 235.28 66.82 m 235.28 67.51 235.84 68.07 236.53 68.07 c 237.22 68.07 237.78 67.51 237.78 66.82 c 237.78 66.14 237.22 65.58 236.53 65.58 c 235.84 65.58 235.28 66.14 235.28 66.82 c B 235.28 66.82 m 235.28 67.51 235.84 68.07 236.53 68.07 c 237.22 68.07 237.78 67.51 237.78 66.82 c 237.78 66.14 237.22 65.58 236.53 65.58 c 235.84 65.58 235.28 66.14 235.28 66.82 c B 235.28 66.82 m 235.28 67.51 235.84 68.07 236.53 68.07 c 237.22 68.07 237.78 67.51 237.78 66.82 c 237.78 66.14 237.22 65.58 236.53 65.58 c 235.84 65.58 235.28 66.14 235.28 66.82 c B 235.28 66.82 m 235.28 67.51 235.84 68.07 236.53 68.07 c 237.22 68.07 237.78 67.51 237.78 66.82 c 237.78 66.14 237.22 65.58 236.53 65.58 c 235.84 65.58 235.28 66.14 235.28 66.82 c B 235.28 66.82 m 235.28 67.51 235.84 68.07 236.53 68.07 c 237.22 68.07 237.78 67.51 237.78 66.82 c 237.78 66.14 237.22 65.58 236.53 65.58 c 235.84 65.58 235.28 66.14 235.28 66.82 c B 235.28 66.82 m 235.28 67.51 235.84 68.07 236.53 68.07 c 237.22 68.07 237.78 67.51 237.78 66.82 c 237.78 66.14 237.22 65.58 236.53 65.58 c 235.84 65.58 235.28 66.14 235.28 66.82 c B 235.28 66.82 m 235.28 67.51 235.84 68.07 236.53 68.07 c 237.22 68.07 237.78 67.51 237.78 66.82 c 237.78 66.14 237.22 65.58 236.53 65.58 c 235.84 65.58 235.28 66.14 235.28 66.82 c B 235.28 66.82 m 235.28 67.51 235.84 68.07 236.53 68.07 c 237.22 68.07 237.78 67.51 237.78 66.82 c 237.78 66.14 237.22 65.58 236.53 65.58 c 235.84 65.58 235.28 66.14 235.28 66.82 c B 235.28 66.82 m 235.28 67.51 235.84 68.07 236.53 68.07 c 237.22 68.07 237.78 67.51 237.78 66.82 c 237.78 66.14 237.22 65.58 236.53 65.58 c 235.84 65.58 235.28 66.14 235.28 66.82 c B 235.28 66.82 m 235.28 67.51 235.84 68.07 236.53 68.07 c 237.22 68.07 237.78 67.51 237.78 66.82 c 237.78 66.14 237.22 65.58 236.53 65.58 c 235.84 65.58 235.28 66.14 235.28 66.82 c B 235.28 66.82 m 235.28 67.51 235.84 68.07 236.53 68.07 c 237.22 68.07 237.78 67.51 237.78 66.82 c 237.78 66.14 237.22 65.58 236.53 65.58 c 235.84 65.58 235.28 66.14 235.28 66.82 c B 239.49 66.82 m 239.49 67.51 240.05 68.07 240.73 68.07 c 241.42 68.07 241.98 67.51 241.98 66.82 c 241.98 66.14 241.42 65.58 240.73 65.58 c 240.05 65.58 239.49 66.14 239.49 66.82 c B 239.49 66.82 m 239.49 67.51 240.05 68.07 240.73 68.07 c 241.42 68.07 241.98 67.51 241.98 66.82 c 241.98 66.14 241.42 65.58 240.73 65.58 c 240.05 65.58 239.49 66.14 239.49 66.82 c B 239.49 66.82 m 239.49 67.51 240.05 68.07 240.73 68.07 c 241.42 68.07 241.98 67.51 241.98 66.82 c 241.98 66.14 241.42 65.58 240.73 65.58 c 240.05 65.58 239.49 66.14 239.49 66.82 c B 239.49 66.82 m 239.49 67.51 240.05 68.07 240.73 68.07 c 241.42 68.07 241.98 67.51 241.98 66.82 c 241.98 66.14 241.42 65.58 240.73 65.58 c 240.05 65.58 239.49 66.14 239.49 66.82 c B 239.49 66.82 m 239.49 67.51 240.05 68.07 240.73 68.07 c 241.42 68.07 241.98 67.51 241.98 66.82 c 241.98 66.14 241.42 65.58 240.73 65.58 c 240.05 65.58 239.49 66.14 239.49 66.82 c B 239.49 66.82 m 239.49 67.51 240.05 68.07 240.73 68.07 c 241.42 68.07 241.98 67.51 241.98 66.82 c 241.98 66.14 241.42 65.58 240.73 65.58 c 240.05 65.58 239.49 66.14 239.49 66.82 c B 239.49 70.29 m 239.49 70.98 240.05 71.54 240.73 71.54 c 241.42 71.54 241.98 70.98 241.98 70.29 c 241.98 69.61 241.42 69.05 240.73 69.05 c 240.05 69.05 239.49 69.61 239.49 70.29 c B 239.49 70.29 m 239.49 70.98 240.05 71.54 240.73 71.54 c 241.42 71.54 241.98 70.98 241.98 70.29 c 241.98 69.61 241.42 69.05 240.73 69.05 c 240.05 69.05 239.49 69.61 239.49 70.29 c B 239.49 70.29 m 239.49 70.98 240.05 71.54 240.73 71.54 c 241.42 71.54 241.98 70.98 241.98 70.29 c 241.98 69.61 241.42 69.05 240.73 69.05 c 240.05 69.05 239.49 69.61 239.49 70.29 c B 239.49 70.29 m 239.49 70.98 240.05 71.54 240.73 71.54 c 241.42 71.54 241.98 70.98 241.98 70.29 c 241.98 69.61 241.42 69.05 240.73 69.05 c 240.05 69.05 239.49 69.61 239.49 70.29 c B 239.49 70.29 m 239.49 70.98 240.05 71.54 240.73 71.54 c 241.42 71.54 241.98 70.98 241.98 70.29 c 241.98 69.61 241.42 69.05 240.73 69.05 c 240.05 69.05 239.49 69.61 239.49 70.29 c B 239.49 70.29 m 239.49 70.98 240.05 71.54 240.73 71.54 c 241.42 71.54 241.98 70.98 241.98 70.29 c 241.98 69.61 241.42 69.05 240.73 69.05 c 240.05 69.05 239.49 69.61 239.49 70.29 c B 239.49 70.29 m 239.49 70.98 240.05 71.54 240.73 71.54 c 241.42 71.54 241.98 70.98 241.98 70.29 c 241.98 69.61 241.42 69.05 240.73 69.05 c 240.05 69.05 239.49 69.61 239.49 70.29 c B 239.49 70.29 m 239.49 70.98 240.05 71.54 240.73 71.54 c 241.42 71.54 241.98 70.98 241.98 70.29 c 241.98 69.61 241.42 69.05 240.73 69.05 c 240.05 69.05 239.49 69.61 239.49 70.29 c B 239.49 70.29 m 239.49 70.98 240.05 71.54 240.73 71.54 c 241.42 71.54 241.98 70.98 241.98 70.29 c 241.98 69.61 241.42 69.05 240.73 69.05 c 240.05 69.05 239.49 69.61 239.49 70.29 c B 239.49 70.29 m 239.49 70.98 240.05 71.54 240.73 71.54 c 241.42 71.54 241.98 70.98 241.98 70.29 c 241.98 69.61 241.42 69.05 240.73 69.05 c 240.05 69.05 239.49 69.61 239.49 70.29 c B 239.49 70.29 m 239.49 70.98 240.05 71.54 240.73 71.54 c 241.42 71.54 241.98 70.98 241.98 70.29 c 241.98 69.61 241.42 69.05 240.73 69.05 c 240.05 69.05 239.49 69.61 239.49 70.29 c B 239.49 70.29 m 239.49 70.98 240.05 71.54 240.73 71.54 c 241.42 71.54 241.98 70.98 241.98 70.29 c 241.98 69.61 241.42 69.05 240.73 69.05 c 240.05 69.05 239.49 69.61 239.49 70.29 c B 239.49 70.29 m 239.49 70.98 240.05 71.54 240.73 71.54 c 241.42 71.54 241.98 70.98 241.98 70.29 c 241.98 69.61 241.42 69.05 240.73 69.05 c 240.05 69.05 239.49 69.61 239.49 70.29 c B 239.49 70.29 m 239.49 70.98 240.05 71.54 240.73 71.54 c 241.42 71.54 241.98 70.98 241.98 70.29 c 241.98 69.61 241.42 69.05 240.73 69.05 c 240.05 69.05 239.49 69.61 239.49 70.29 c B 239.49 70.29 m 239.49 70.98 240.05 71.54 240.73 71.54 c 241.42 71.54 241.98 70.98 241.98 70.29 c 241.98 69.61 241.42 69.05 240.73 69.05 c 240.05 69.05 239.49 69.61 239.49 70.29 c B 239.49 70.29 m 239.49 70.98 240.05 71.54 240.73 71.54 c 241.42 71.54 241.98 70.98 241.98 70.29 c 241.98 69.61 241.42 69.05 240.73 69.05 c 240.05 69.05 239.49 69.61 239.49 70.29 c B 239.49 70.29 m 239.49 70.98 240.05 71.54 240.73 71.54 c 241.42 71.54 241.98 70.98 241.98 70.29 c 241.98 69.61 241.42 69.05 240.73 69.05 c 240.05 69.05 239.49 69.61 239.49 70.29 c B 239.49 70.29 m 239.49 70.98 240.05 71.54 240.73 71.54 c 241.42 71.54 241.98 70.98 241.98 70.29 c 241.98 69.61 241.42 69.05 240.73 69.05 c 240.05 69.05 239.49 69.61 239.49 70.29 c B 239.49 70.29 m 239.49 70.98 240.05 71.54 240.73 71.54 c 241.42 71.54 241.98 70.98 241.98 70.29 c 241.98 69.61 241.42 69.05 240.73 69.05 c 240.05 69.05 239.49 69.61 239.49 70.29 c B 239.49 70.29 m 239.49 70.98 240.05 71.54 240.73 71.54 c 241.42 71.54 241.98 70.98 241.98 70.29 c 241.98 69.61 241.42 69.05 240.73 69.05 c 240.05 69.05 239.49 69.61 239.49 70.29 c B 239.49 70.29 m 239.49 70.98 240.05 71.54 240.73 71.54 c 241.42 71.54 241.98 70.98 241.98 70.29 c 241.98 69.61 241.42 69.05 240.73 69.05 c 240.05 69.05 239.49 69.61 239.49 70.29 c B 239.49 70.29 m 239.49 70.98 240.05 71.54 240.73 71.54 c 241.42 71.54 241.98 70.98 241.98 70.29 c 241.98 69.61 241.42 69.05 240.73 69.05 c 240.05 69.05 239.49 69.61 239.49 70.29 c B 239.49 70.29 m 239.49 70.98 240.05 71.54 240.73 71.54 c 241.42 71.54 241.98 70.98 241.98 70.29 c 241.98 69.61 241.42 69.05 240.73 69.05 c 240.05 69.05 239.49 69.61 239.49 70.29 c B 239.49 70.29 m 239.49 70.98 240.05 71.54 240.73 71.54 c 241.42 71.54 241.98 70.98 241.98 70.29 c 241.98 69.61 241.42 69.05 240.73 69.05 c 240.05 69.05 239.49 69.61 239.49 70.29 c B 239.49 70.29 m 239.49 70.98 240.05 71.54 240.73 71.54 c 241.42 71.54 241.98 70.98 241.98 70.29 c 241.98 69.61 241.42 69.05 240.73 69.05 c 240.05 69.05 239.49 69.61 239.49 70.29 c B 239.49 70.29 m 239.49 70.98 240.05 71.54 240.73 71.54 c 241.42 71.54 241.98 70.98 241.98 70.29 c 241.98 69.61 241.42 69.05 240.73 69.05 c 240.05 69.05 239.49 69.61 239.49 70.29 c B 239.49 70.29 m 239.49 70.98 240.05 71.54 240.73 71.54 c 241.42 71.54 241.98 70.98 241.98 70.29 c 241.98 69.61 241.42 69.05 240.73 69.05 c 240.05 69.05 239.49 69.61 239.49 70.29 c B 239.49 70.29 m 239.49 70.98 240.05 71.54 240.73 71.54 c 241.42 71.54 241.98 70.98 241.98 70.29 c 241.98 69.61 241.42 69.05 240.73 69.05 c 240.05 69.05 239.49 69.61 239.49 70.29 c B 239.49 70.29 m 239.49 70.98 240.05 71.54 240.73 71.54 c 241.42 71.54 241.98 70.98 241.98 70.29 c 241.98 69.61 241.42 69.05 240.73 69.05 c 240.05 69.05 239.49 69.61 239.49 70.29 c B 243.69 70.29 m 243.69 70.98 244.25 71.54 244.94 71.54 c 245.63 71.54 246.19 70.98 246.19 70.29 c 246.19 69.61 245.63 69.05 244.94 69.05 c 244.25 69.05 243.69 69.61 243.69 70.29 c B 243.69 70.29 m 243.69 70.98 244.25 71.54 244.94 71.54 c 245.63 71.54 246.19 70.98 246.19 70.29 c 246.19 69.61 245.63 69.05 244.94 69.05 c 244.25 69.05 243.69 69.61 243.69 70.29 c B 243.69 70.29 m 243.69 70.98 244.25 71.54 244.94 71.54 c 245.63 71.54 246.19 70.98 246.19 70.29 c 246.19 69.61 245.63 69.05 244.94 69.05 c 244.25 69.05 243.69 69.61 243.69 70.29 c B 243.69 70.29 m 243.69 70.98 244.25 71.54 244.94 71.54 c 245.63 71.54 246.19 70.98 246.19 70.29 c 246.19 69.61 245.63 69.05 244.94 69.05 c 244.25 69.05 243.69 69.61 243.69 70.29 c B 243.69 70.29 m 243.69 70.98 244.25 71.54 244.94 71.54 c 245.63 71.54 246.19 70.98 246.19 70.29 c 246.19 69.61 245.63 69.05 244.94 69.05 c 244.25 69.05 243.69 69.61 243.69 70.29 c B 243.69 70.29 m 243.69 70.98 244.25 71.54 244.94 71.54 c 245.63 71.54 246.19 70.98 246.19 70.29 c 246.19 69.61 245.63 69.05 244.94 69.05 c 244.25 69.05 243.69 69.61 243.69 70.29 c B 243.69 70.29 m 243.69 70.98 244.25 71.54 244.94 71.54 c 245.63 71.54 246.19 70.98 246.19 70.29 c 246.19 69.61 245.63 69.05 244.94 69.05 c 244.25 69.05 243.69 69.61 243.69 70.29 c B 243.69 70.29 m 243.69 70.98 244.25 71.54 244.94 71.54 c 245.63 71.54 246.19 70.98 246.19 70.29 c 246.19 69.61 245.63 69.05 244.94 69.05 c 244.25 69.05 243.69 69.61 243.69 70.29 c B 243.69 70.29 m 243.69 70.98 244.25 71.54 244.94 71.54 c 245.63 71.54 246.19 70.98 246.19 70.29 c 246.19 69.61 245.63 69.05 244.94 69.05 c 244.25 69.05 243.69 69.61 243.69 70.29 c B 243.69 70.29 m 243.69 70.98 244.25 71.54 244.94 71.54 c 245.63 71.54 246.19 70.98 246.19 70.29 c 246.19 69.61 245.63 69.05 244.94 69.05 c 244.25 69.05 243.69 69.61 243.69 70.29 c B 247.90 73.77 m 247.90 74.45 248.46 75.01 249.14 75.01 c 249.83 75.01 250.39 74.45 250.39 73.77 c 250.39 73.08 249.83 72.52 249.14 72.52 c 248.46 72.52 247.90 73.08 247.90 73.77 c B 247.90 73.77 m 247.90 74.45 248.46 75.01 249.14 75.01 c 249.83 75.01 250.39 74.45 250.39 73.77 c 250.39 73.08 249.83 72.52 249.14 72.52 c 248.46 72.52 247.90 73.08 247.90 73.77 c B 247.90 73.77 m 247.90 74.45 248.46 75.01 249.14 75.01 c 249.83 75.01 250.39 74.45 250.39 73.77 c 250.39 73.08 249.83 72.52 249.14 72.52 c 248.46 72.52 247.90 73.08 247.90 73.77 c B 247.90 73.77 m 247.90 74.45 248.46 75.01 249.14 75.01 c 249.83 75.01 250.39 74.45 250.39 73.77 c 250.39 73.08 249.83 72.52 249.14 72.52 c 248.46 72.52 247.90 73.08 247.90 73.77 c B 247.90 73.77 m 247.90 74.45 248.46 75.01 249.14 75.01 c 249.83 75.01 250.39 74.45 250.39 73.77 c 250.39 73.08 249.83 72.52 249.14 72.52 c 248.46 72.52 247.90 73.08 247.90 73.77 c B 247.90 73.77 m 247.90 74.45 248.46 75.01 249.14 75.01 c 249.83 75.01 250.39 74.45 250.39 73.77 c 250.39 73.08 249.83 72.52 249.14 72.52 c 248.46 72.52 247.90 73.08 247.90 73.77 c B 247.90 73.77 m 247.90 74.45 248.46 75.01 249.14 75.01 c 249.83 75.01 250.39 74.45 250.39 73.77 c 250.39 73.08 249.83 72.52 249.14 72.52 c 248.46 72.52 247.90 73.08 247.90 73.77 c B 247.90 73.77 m 247.90 74.45 248.46 75.01 249.14 75.01 c 249.83 75.01 250.39 74.45 250.39 73.77 c 250.39 73.08 249.83 72.52 249.14 72.52 c 248.46 72.52 247.90 73.08 247.90 73.77 c B 252.10 77.24 m 252.10 77.92 252.66 78.49 253.35 78.49 c 254.04 78.49 254.60 77.92 254.60 77.24 c 254.60 76.55 254.04 75.99 253.35 75.99 c 252.66 75.99 252.10 76.55 252.10 77.24 c B 252.10 77.24 m 252.10 77.92 252.66 78.49 253.35 78.49 c 254.04 78.49 254.60 77.92 254.60 77.24 c 254.60 76.55 254.04 75.99 253.35 75.99 c 252.66 75.99 252.10 76.55 252.10 77.24 c B 252.10 77.24 m 252.10 77.92 252.66 78.49 253.35 78.49 c 254.04 78.49 254.60 77.92 254.60 77.24 c 254.60 76.55 254.04 75.99 253.35 75.99 c 252.66 75.99 252.10 76.55 252.10 77.24 c B 252.10 77.24 m 252.10 77.92 252.66 78.49 253.35 78.49 c 254.04 78.49 254.60 77.92 254.60 77.24 c 254.60 76.55 254.04 75.99 253.35 75.99 c 252.66 75.99 252.10 76.55 252.10 77.24 c B 256.31 77.24 m 256.31 77.92 256.87 78.49 257.55 78.49 c 258.24 78.49 258.80 77.92 258.80 77.24 c 258.80 76.55 258.24 75.99 257.55 75.99 c 256.87 75.99 256.31 76.55 256.31 77.24 c B 256.31 80.71 m 256.31 81.40 256.87 81.96 257.55 81.96 c 258.24 81.96 258.80 81.40 258.80 80.71 c 258.80 80.02 258.24 79.46 257.55 79.46 c 256.87 79.46 256.31 80.02 256.31 80.71 c B 264.72 84.18 m 264.72 84.87 265.28 85.43 265.96 85.43 c 266.65 85.43 267.21 84.87 267.21 84.18 c 267.21 83.50 266.65 82.93 265.96 82.93 c 265.28 82.93 264.72 83.50 264.72 84.18 c B Q q 182.50 21.38 91.25 76.99 re W n Q q 187.25 26.14 81.74 67.49 re W n /GS2 gs 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 187.25 26.14 m 268.99 93.62 l S 0.75 w [ 3.00 5.00] 0 d 187.25 32.38 m 268.99 99.87 l S 187.25 19.89 m 268.99 87.38 l S Q q /GS2 gs 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 187.25 26.14 m 268.99 26.14 l 268.99 93.62 l 187.25 93.62 l 187.25 26.14 l S Q endstream endobj 107 0 obj << /CreationDate (D:20090625200155) /ModDate (D:20090625200155) /Title (R Graphics Output) /Producer (R 2.7.0) /Creator (R) >> endobj 108 0 obj << /Type /Font /Subtype /Type1 /Name /F1 /BaseFont /ZapfDingbats >> endobj 109 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 116 0 R >> endobj 110 0 obj << /Type /Font /Subtype /Type1 /Name /F3 /BaseFont /Helvetica-Bold /Encoding 116 0 R >> endobj 111 0 obj << /Type /ExtGState /CA 0.4 >> endobj 112 0 obj << /Type /ExtGState /CA 1 >> endobj 113 0 obj << /Type /ExtGState /ca 0.4 >> endobj 114 0 obj << /Type /ExtGState /ca 1 >> endobj 115 0 obj 224858 endobj 116 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi/grave/acute/circumflex/tilde/macron/breve/dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut/ogonek/caron/space] >> endobj 90 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./figs/hist.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 117 0 R /Matrix [1.00000000 0.00000000 0.00000000 1.00000000 0.00000000 0.00000000] /BBox [0.00000000 0.00000000 288.00000000 288.00000000] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 118 0 R /F2 119 0 R /F3 120 0 R >> /ExtGState << /GS1 121 0 R /GS2 122 0 R /GS257 123 0 R /GS258 124 0 R >>>> /Length 125 0 R >> stream q Q q 0.00 144.00 144.00 144.00 re W n BT 0.000 0.000 0.000 rg /F3 1 Tf 12.00 0.00 -0.00 12.00 46.46 267.26 Tm (Raw Treated) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 35.28 154.76 Tm (Propensity Score) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 17.93 197.49 Tm (Density) Tj ET Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 37.93 179.86 m 120.39 179.86 l S 37.93 179.86 m 37.93 177.47 l S 51.67 179.86 m 51.67 177.47 l S 65.41 179.86 m 65.41 177.47 l S 79.16 179.86 m 79.16 177.47 l S 92.90 179.86 m 92.90 177.47 l S 106.64 179.86 m 106.64 177.47 l S 120.39 179.86 m 120.39 177.47 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 10.00 0.00 -0.00 10.00 30.98 167.90 Tm (0.0) Tj /F2 1 Tf 10.00 0.00 -0.00 10.00 58.46 167.90 Tm (0.2) Tj /F2 1 Tf 10.00 0.00 -0.00 10.00 85.95 167.90 Tm (0.4) Tj /F2 1 Tf 10.00 0.00 -0.00 10.00 113.44 167.90 Tm (0.6) Tj ET 35.86 182.64 m 35.86 243.47 l S 35.86 182.64 m 33.47 182.64 l S 35.86 194.81 m 33.47 194.81 l S 35.86 206.97 m 33.47 206.97 l S 35.86 219.14 m 33.47 219.14 l S 35.86 231.30 m 33.47 231.30 l S 35.86 243.47 m 33.47 243.47 l S BT /F2 1 Tf 0.00 10.00 -10.00 0.00 31.08 179.86 Tm (0) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 31.08 204.19 Tm (4) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 31.08 228.52 Tm (8) Tj ET Q q 35.86 179.86 90.22 75.28 re W n /GS257 gs 0.000 0.000 0.000 rg /GS1 gs 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 37.93 182.64 6.87 0.66 re B 44.80 182.64 6.87 3.95 re B 51.67 182.64 6.87 2.63 re B 58.54 182.64 6.87 3.95 re B 65.41 182.64 6.87 18.41 re B 72.29 182.64 6.87 2.63 re B 79.16 182.64 6.87 3.29 re B 86.03 182.64 6.87 4.60 re B 92.90 182.64 6.87 3.29 re B 99.77 182.64 6.87 69.70 re B 106.64 182.64 6.87 5.92 re B 113.51 182.64 6.87 1.97 re B 120.39 182.64 6.87 0.66 re B Q q 179.86 179.86 90.22 75.28 re W n Q q 144.00 144.00 144.00 144.00 re W n BT /GS258 gs 0.000 0.000 0.000 rg /F3 1 Tf 12.00 0.00 -0.00 12.00 178.43 267.26 Tm (Matched Treated) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 179.28 154.76 Tm (Propensity Score) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 161.93 197.49 Tm (Density) Tj ET Q q /GS2 gs 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 181.93 179.86 m 264.39 179.86 l S 181.93 179.86 m 181.93 177.47 l S 195.67 179.86 m 195.67 177.47 l S 209.41 179.86 m 209.41 177.47 l S 223.16 179.86 m 223.16 177.47 l S 236.90 179.86 m 236.90 177.47 l S 250.64 179.86 m 250.64 177.47 l S 264.39 179.86 m 264.39 177.47 l S BT /GS258 gs 0.000 0.000 0.000 rg /F2 1 Tf 10.00 0.00 -0.00 10.00 174.98 167.90 Tm (0.0) Tj /F2 1 Tf 10.00 0.00 -0.00 10.00 202.46 167.90 Tm (0.2) Tj /F2 1 Tf 10.00 0.00 -0.00 10.00 229.95 167.90 Tm (0.4) Tj /F2 1 Tf 10.00 0.00 -0.00 10.00 257.44 167.90 Tm (0.6) Tj ET 179.86 182.64 m 179.86 254.84 l S 179.86 182.64 m 177.47 182.64 l S 179.86 194.68 m 177.47 194.68 l S 179.86 206.71 m 177.47 206.71 l S 179.86 218.74 m 177.47 218.74 l S 179.86 230.78 m 177.47 230.78 l S 179.86 242.81 m 177.47 242.81 l S 179.86 254.84 m 177.47 254.84 l S BT /F2 1 Tf 0.00 10.00 -10.00 0.00 175.08 179.86 Tm (0) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 175.08 203.93 Tm (4) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 175.08 228.00 Tm (8) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 175.08 249.28 Tm (12) Tj ET Q q 179.86 179.86 90.22 75.28 re W n /GS257 gs 0.000 0.000 0.000 rg /GS1 gs 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 181.93 182.64 6.87 0.66 re B 188.80 182.64 6.87 3.95 re B 195.67 182.64 6.87 2.63 re B 202.54 182.64 6.87 3.95 re B 209.41 182.64 6.87 18.41 re B 216.29 182.64 6.87 2.63 re B 223.16 182.64 6.87 3.29 re B 230.03 182.64 6.87 4.60 re B 236.90 182.64 6.87 3.29 re B 243.77 182.64 6.87 69.70 re B 250.64 182.64 6.87 5.92 re B 257.51 182.64 6.87 1.32 re B Q q 35.86 35.86 90.22 75.28 re W n Q q 0.00 0.00 144.00 144.00 re W n BT /GS258 gs 0.000 0.000 0.000 rg /F3 1 Tf 12.00 0.00 -0.00 12.00 45.84 123.26 Tm (Raw Control) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 35.28 10.76 Tm (Propensity Score) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 17.93 53.49 Tm (Density) Tj ET Q q /GS2 gs 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 37.93 35.86 m 120.39 35.86 l S 37.93 35.86 m 37.93 33.47 l S 51.67 35.86 m 51.67 33.47 l S 65.41 35.86 m 65.41 33.47 l S 79.16 35.86 m 79.16 33.47 l S 92.90 35.86 m 92.90 33.47 l S 106.64 35.86 m 106.64 33.47 l S 120.39 35.86 m 120.39 33.47 l S BT /GS258 gs 0.000 0.000 0.000 rg /F2 1 Tf 10.00 0.00 -0.00 10.00 30.98 23.90 Tm (0.0) Tj /F2 1 Tf 10.00 0.00 -0.00 10.00 58.46 23.90 Tm (0.2) Tj /F2 1 Tf 10.00 0.00 -0.00 10.00 85.95 23.90 Tm (0.4) Tj /F2 1 Tf 10.00 0.00 -0.00 10.00 113.44 23.90 Tm (0.6) Tj ET 35.86 38.64 m 35.86 98.45 l S 35.86 38.64 m 33.47 38.64 l S 35.86 53.59 m 33.47 53.59 l S 35.86 68.55 m 33.47 68.55 l S 35.86 83.50 m 33.47 83.50 l S 35.86 98.45 m 33.47 98.45 l S BT /F2 1 Tf 0.00 10.00 -10.00 0.00 31.08 35.86 Tm (0) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 31.08 50.81 Tm (1) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 31.08 65.77 Tm (2) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 31.08 80.72 Tm (3) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 31.08 95.67 Tm (4) Tj ET Q q 35.86 35.86 90.22 75.28 re W n /GS257 gs 0.000 0.000 0.000 rg /GS1 gs 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 37.93 38.64 6.87 22.30 re B 44.80 38.64 6.87 38.34 re B 51.67 38.64 6.87 39.73 re B 58.54 38.64 6.87 31.37 re B 65.41 38.64 6.87 41.82 re B 72.29 38.64 6.87 14.64 re B 79.16 38.64 6.87 4.88 re B 86.03 38.64 6.87 7.67 re B 92.90 38.64 6.87 17.43 re B 99.77 38.64 6.87 69.70 re B 106.64 38.64 6.87 10.46 re B 113.51 38.64 6.87 0.70 re B Q q 179.86 35.86 90.22 75.28 re W n Q q 144.00 0.00 144.00 144.00 re W n BT /GS258 gs 0.000 0.000 0.000 rg /F3 1 Tf 12.00 0.00 -0.00 12.00 177.81 123.26 Tm (Matched Control) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 179.28 10.76 Tm (Propensity Score) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 161.93 53.49 Tm (Density) Tj ET Q q /GS2 gs 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 181.93 35.86 m 264.39 35.86 l S 181.93 35.86 m 181.93 33.47 l S 195.67 35.86 m 195.67 33.47 l S 209.41 35.86 m 209.41 33.47 l S 223.16 35.86 m 223.16 33.47 l S 236.90 35.86 m 236.90 33.47 l S 250.64 35.86 m 250.64 33.47 l S 264.39 35.86 m 264.39 33.47 l S BT /GS258 gs 0.000 0.000 0.000 rg /F2 1 Tf 10.00 0.00 -0.00 10.00 174.98 23.90 Tm (0.0) Tj /F2 1 Tf 10.00 0.00 -0.00 10.00 202.46 23.90 Tm (0.2) Tj /F2 1 Tf 10.00 0.00 -0.00 10.00 229.95 23.90 Tm (0.4) Tj /F2 1 Tf 10.00 0.00 -0.00 10.00 257.44 23.90 Tm (0.6) Tj ET 179.86 38.64 m 179.86 106.49 l S 179.86 38.64 m 177.47 38.64 l S 179.86 52.21 m 177.47 52.21 l S 179.86 65.78 m 177.47 65.78 l S 179.86 79.35 m 177.47 79.35 l S 179.86 92.92 m 177.47 92.92 l S 179.86 106.49 m 177.47 106.49 l S BT /F2 1 Tf 0.00 10.00 -10.00 0.00 175.08 35.86 Tm (0) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 175.08 63.00 Tm (4) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 175.08 90.14 Tm (8) Tj ET Q q 179.86 35.86 90.22 75.28 re W n /GS257 gs 0.000 0.000 0.000 rg /GS1 gs 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 181.93 38.64 6.87 0.74 re B 188.80 38.64 6.87 4.45 re B 195.67 38.64 6.87 2.97 re B 202.54 38.64 6.87 4.45 re B 209.41 38.64 6.87 20.76 re B 216.29 38.64 6.87 2.97 re B 223.16 38.64 6.87 4.45 re B 230.03 38.64 6.87 4.45 re B 236.90 38.64 6.87 12.61 re B 243.77 38.64 6.87 69.70 re B 250.64 38.64 6.87 8.16 re B Q endstream endobj 117 0 obj << /CreationDate (D:20090625200302) /ModDate (D:20090625200302) /Title (R Graphics Output) /Producer (R 2.7.0) /Creator (R) >> endobj 118 0 obj << /Type /Font /Subtype /Type1 /Name /F1 /BaseFont /ZapfDingbats >> endobj 119 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 126 0 R >> endobj 120 0 obj << /Type /Font /Subtype /Type1 /Name /F3 /BaseFont /Helvetica-Bold /Encoding 126 0 R >> endobj 121 0 obj << /Type /ExtGState /CA 0.4 >> endobj 122 0 obj << /Type /ExtGState /CA 1 >> endobj 123 0 obj << /Type /ExtGState /ca 0.4 >> endobj 124 0 obj << /Type /ExtGState /ca 1 >> endobj 125 0 obj 7143 endobj 126 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi/grave/acute/circumflex/tilde/macron/breve/dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut/ogonek/caron/space] >> endobj 94 0 obj << /Font << /F18 12 0 R /F63 34 0 R >> /XObject << /Im1 88 0 R /Im2 89 0 R /Im3 90 0 R >> /ProcSet [ /PDF /Text ] >> endobj 129 0 obj << /Length 3219 /Filter /FlateDecode >> stream xÚ¥koä¶ñ{~…¿U‹zQ¤^ARàô8͹’¦ä]Ú«ž¤Ýèq¶E{çEJ»–ïúøp^rH‡óžÑýñö«¯ßfñ•ÎU¢S{u{•'Wy\¨ØÚâêvÿ·È¨ŽÌf«u’FßÃøØí§Ýƒº{ØlMn£7]Óæy€¿vFëûÑõ8L£wÆ]ãnctt¨aÇÿ~ûç¯ßêâJkU¦i‚÷ÇWÛ$SI!׿é6I=o¶VÞãý¸IŠèaUïzªv8ÿ°IÓ¨z`¬N¢vƒWΧï6[˜È¡i@ŠÜžg÷ÇÞã‚C}Õº±Çî» X~Ó™’-2ÖýcòåcLf”Éà)1=æ]µÉ2`Ááf\{zªUnŠR6«Í6+ãèöà/­»-žº‚Iªtlò«­¶ÊÚ”9µk¦½ð),OO@Ç{þŽ7àë\CÂúH|ëð5#ïú‘Öø 2¸†ÕPö‚z<ø% # ºÆzW5#Éå"9ä±r‡÷ •„ä O$©c?’Š%¹¹ œè˜ZFŽÄçœh+TO"þ€6ÆD{¢©ÂI nx4 ¬Å0ü‘vǶ%öíe )ÊÄØ‚Ë 03K&¦TþˆI‡‡F´>Âß_ã4†zMr­2›$r¼êö«—$ª0q¶~ÇXÝ¡)º/\TUÚL Ò~|Ø›÷ßßëo¼¢å*µIqÎÞ_cmÔ4ƒBBY®‘ir•Ö¬“¹'ù+ÒÜøã`ap[Fj°v—Q…ΓðÖ/¸ð¡[Ãm3Uf©çà™š£!;~£áqÅ׿¿ÝÀ%ü# #ßÕ]Õ?󘙣˜@“J m=ÿJºð§ƒÃç”9šžek¨«;´F’ÝN-þÕ¼‚VŒ¿cïHÃÉö c•Åq*ìÍìqØð–©«IíaÇ¡B³û¸aˆ‹r¡êZñ×ÁŒJôxÙUÁ&6\9ˆÇ«^|¡:iìÔƒB’— Îþ8!ËI’‘{ªv#—6 &JN'Žî§¦ùܺˆ 7|øF¯îdàc=ʽ;5ÕεŽ†ú¨CŸ“•ì´\.ð@›†5¯³C© Ÿ[Ìn Æï*aâ ¾ÍæìQHëÔ„ý›p2 ^²8Cž‘Ý0Û2KÖ€x*ÞàÉ; ÷ôî¡wÃP;21:0yÍuÃÔËeãÄì'½ýÊsQ q;ØdV@ò¡ÌL”ƵBþ©ât¯Z‰#Çñâ|((¶Á¼ iÇyàù溭2 ˆ–6ÕÑ_QANBpËáH\ƳU3–Ž[äY@ÉöËž)gïfë%™…Vª)ë‰Y–€½w‹qünÁZÔ<ã V2Ë9ß+ Cíƒw Â~¯· uà~ %6;»%ÂÅA·m2`3d kæö¥4æ} Ïù@êPüÎñÚ±Kkk@ÿ› zæ¨Æ<(|OërF$†9æã(ƒVü?LÒhï(ÔÔB7³Ãú@rùæsSP©ýÄÎ’±aâ›wM¦…¾~W5¹[´MôŠD3¥Çàx(Ãs k‡élí%û¬»±ª;²Ü¢”œ’ü)Y:ì™}-nTàFRÿAîÁ”¶ŒcVHy8üaoe1íÈ8‹…(xöJç…PèBBîúà×DµœéŽìE¦oEä1Â[H踂Z§v¾hvSS²ZuüKZLŒ³ vÐ\¸²b¦ë<ÒÑ5‡iâCµL+hp®Ëw•l›]FèT=a¯º<ÂÄòœë‘e<…E²#ÎÖâå ÞlQ]‘ÏÆ6 àMP:"oEUãÂg‡`!p–…_Š/¸ú !kê†{OpYÅ$6QŒé¬bl‘G¿Ì·`<»i«šIp#C«Fñ Á`g´À/·RÓPjaຠ`çÌ’~5Ÿƒ €4¨ySÝžšóÞ ÅÇ“žŒH}íFïÅa²ÿž×/ë\n¤+{×r|õ¢Ø$ÏqP”=î qÌõÈŠý¾|Ü œÒ©$58ªø‡î£r¦YDŽxÞzuÜJÌ»ëàæ])*ع†Ú§Ò¤ý™¡ÿâú4‚5;Í~Ï?ض׌gI®ÅìQ{Ç>÷|'p€ê†>ôkU vï³å~Ý(Taƒk8¡b?ðfRÞ<™ô4 1ª݇\Ÿ' ‚¦bWˆßeŒŠK}¡kÒÛ B4 }º€\­ó£P^·¡U[‡âÈæÑoÈù*X‚Ôè¸Ò9·Ÿ¿gdò"í¬°‚aVS\ů»íÙg€¹Bï/Ȥ.ÀJzù%½ÿl…Í%ÑL–Œ]t&}Ì ÈÚ³¢«l\ùf35ÖˆíœW={ýŸ†ªñ·ÝeÜR©[düñȆùà[a@ËpIÍŒãE'äúõF6ºÿœS;Ìí>ýn`Ønëy8ÿ׊#vsÒôæTÞRÊ?Q*oʳ[©Ï|¡=È÷tj8)ozf°´×P¢3….ªN4%Ru¿ú‘ßUÝàS 4-\Öµ{bZ3ú”s@nç’üªÎwø’|îÿ®|UèËÏ´ÿŠ˜ù'Ç3¨†c”›]%I¡´Í!6fÊdEF¯Ð®}õ§Û¯þ F~ñqendstream endobj 128 0 obj << /Type /Page /Contents 129 0 R /Resources 127 0 R /MediaBox [0 0 612 792] /Parent 84 0 R >> endobj 127 0 obj << /Font << /F60 31 0 R /F18 12 0 R /F17 6 0 R /F63 34 0 R >> /ProcSet [ /PDF /Text ] >> endobj 132 0 obj << /Length 1810 /Filter /FlateDecode >> stream xÚÝXYoÛF~ϯ0üR h-oI¦H^o‚¦-š¤¥Ex(R@^ƒÍâËÏVgK¸AÎYÂqz ½@^NŒÀÿNH¬îEšÑG‘òŠfdtñ½IŽu$¾žï®"ßc¾i/–¾UÔ8^–{@b'ƒÕnè ù†[]·E7”½­7r¸èz[1æZvúñD†í¡KK=±XBãY¯G€0JÃÛP6­l],•W‡­¡bvíþ…è8÷ãÕ¶ÝçÜh«™eÙjÙ;y½z Ï'ŸÍŽ\øÞî@¦ç´Ý+ÿîàÙƒ £Õ÷ƒhTÏ'b>“ò]ØCž=Œ:oØziµ+± —<žk¢hÍdÞ.V÷Ö¾S7 rÇ->î)ÛÿŠ2ð20¾“Á@¾I4èš¡¤ã%)˹Pê·¤FEÉÓ à 6Úë9^ï`±éEÆÃÄX&GZW:Ÿ%¡1Îq`»§²8‰\ãÅ#²g´ŽœoË~Û ¤©Hr»cAÓóF?à#˜†â(v“„hÎLTRÎ¥äçÀ²H»^–ÝÇA¥ýbÃyQʾ­å=ŽPŽ gœŽ2†b™ ¼[›+ZËŠo £vð›©VÒV‘Sèx³Cv£-Ó«²˜»]\„‹œwl†ÒnäS ÷5 ðB+`b,JËvëå«ÔÀ)ww;–©i¹îå®4VGY¹‘/e«(N†D¹¡¿ Ô›[Äp¿£Ç‹ z\l>@±šw˵‚7ì‰ňXSÐ^ p‹¸È!k†(ºWO\f®þh„%p߿㥳÷ßø2Û¾*OE¢ñÖ®Y¯¢)™™!ŒÈ7ÑœÙå"aë ŒsaHóY—˜yŸ;h™ÁÃaÀÞŒÝàºGp`ikõêM95%‹ÍÔAõu§Õã„–&vC •SƒÍqÕÎÊô;¶6Ûi^¦ç6t£•Ž–&i$[¨ï¼¹aãÇZ±©‰âU¥½dËIsÉ9&þÔ^â;R•©®¡‹·ÈW@¹DÃ…Æ¡·6SMBÖÔù)v*¦¬s‰1ÙÞqØ¥UÑ·6OpµÚw¶½º^ÍO&Œ(‘Z{3V<®d¨~¶×Ä?š³ÿ“àŽµ ë¯å%…9›Á®P¡Óìà ¸EévRn7j©Î² G”*?yPce.†'rRé±ìq0ã!°ðpe©øJ³mÆÓ:Ù†Î9\ÁצڹÊY…Œ7óSq¤Óñ9Œ9À¥ ìýEÃïü ƒŠ3öl¹r<“OÍFK5L<÷7M›ÈlO%kÉÎB{ ƒ®Ò’ƒ.S™œ$ ÍÂM€°Þ^¾¥ÐÆ®lzíÚiÈ8¥9"x€òM2·[+b</oꯔVG¡¿=e\𓨮ÌDoEÕw6-p\ ñÉ—½TÔD»¯aZ°Šqî'©µ‘N’ѺN°à~Ýr“@fJQî•è_˜÷ŸIÌûàJ'²÷éÑ}ø(ÜÖ§<“?§ }"OÍÊý ù·óôqŽÌ*–Ëí»OÕFÕƒ{%Èœˆ¤ê0>Ê}žÏŸN»IÏcorVèC/Vøg2]Cô~µ“œK{îŸ{Ù¿‡¾Öb¬×»–úT ØV zmT®Ô[½íäÄ×ü¢í®¢ZØ­›7¤æé[ ©j¼mr.ˉQ±Ôt¸n›jöïb¥]°™AáŒ/HŒÿÝ輻ÑòwG©Q§Hw'~qÍÞ™ÁÿÃ?Ž\Ö Ýö=CZ®iË€nbà>{sùìO Ê-'endstream endobj 131 0 obj << /Type /Page /Contents 132 0 R /Resources 130 0 R /MediaBox [0 0 612 792] /Parent 84 0 R >> endobj 130 0 obj << /Font << /F63 34 0 R /F18 12 0 R /F60 31 0 R >> /ProcSet [ /PDF /Text ] >> endobj 135 0 obj << /Length 2232 /Filter /FlateDecode >> stream xÚíÉnäÆõ>_!èb6¢¦YÅÝH$À  hÃ@bØdM7a.=\4Òòíy[I‰‚`r³jÖ«W¯Þ¾Ô_Oï¾ýwJùyë»ÓÇ»TߥAæQ”ݪ{y<„Ú3ÃᨼâbÇ0M¼Ó!<™bjé·;„Ê›p;öÞ#ä§@…¦œø@ßñ΄;Wà  zƒ!ÊÅ{¦:ü|úû·T¶fJG¹Ÿ¦Y|O?2` ˆ$Ê«›f§(ðºþ Sï3/®ëÅÔ󯧺]ŽàÝÂV‚¼èÌ{<"wG­?Va|wT‘E1+Å ÅNÀHeÞ4€`Ù’(ŸxÇ H¬R ý1øØu}§E-»þ ãÀ}ÿž9-„Z=òï§¹ž„Ø€7œA%þᘪuå­ú >›{gä÷™¤ ^HIZB亻€ntÂ<‡ÀM ¤àLʬ‹id$qœR ŸQ4ô ã]XõóWECº!úŽÜ4¸äÚê8Ú™o¿¶Â…` Á^Itª¹œˆmÜîL1€4vWÔhÀ+cZýÀ»ì%n\ÝùÏõteâˆ×K *0˜ Ü0Ö}w<#{ñK}ÞÈ6 .(Ütc=±æI?cÙìQÊûŽC ×!´tî‡Yδþ|8Æ*òZŸTˆ,+†üñ(;"Z¿~ ‴oàú"ý‡¬3Ç*öþÀ ÄòB`g€5’üeA‹ =D+Ø»Wt:ä¯BjdmcìIÔÒ¡„Y²Uq> vM\lè‘4ÚðŰþ?ˆì†\¯·§#ïOLäž= @jí^U¤°b…´(2û%ª½üt\$Yét5 6Œ ³oúù…Aç‚nêJA™GrQŠ:e£àãܶŠûÌ뢫ãÖôƒnTäÒ%ySë|·3” ÀçkÍl¼f¯ê»o„ÖˆÉ3ƒÝg¾šÁ : Í„yîÒ äKÏ9ò&ÍâÎt=8,È,‚HŠÀ ÷Õ<îì’GÝ0ÄrŒßxƒ¬y\ÁmþÁoI¤WNcâ[)îæ<A|nŒ¿'3*ïD¶’rî:6R³ÄOè[í­!uj‰¿ Ž=ún  ÉD‡¹t8Å5Ï ¦z¿Rä(rÍÂ2¬r\p ÅgŒä ¥:‚_%ØqÓªLyß<¢YÍVÄœD,VŠÌ°à  r§ÆI–¨Ð§Ð8F:·^Ûέàû†%jËç¿LS_P ¥IC\Xw *U*\”X勘d?A5X8é!@/W‘°X0¤©;Rú°gׯ$T¡ñÓ\83H=kù¢Ê4K]ë_×CkQÊò‚z¡zgKá4ÏÿC~ÿòf~ÿ‚ù¨ÁÔ~‘˜L ÿ³UfI§³É–†‹ÌÞ Ÿ¸Ìî²-gönv›ä|’Ö-.­«ÀOCè¿rZ¯¨ÙfhîOJdÔ·œòtÐ"ȪNhp`[ÙV*ù.¢ìøFë$m^•’ft§w‹‚ÓÃÚ²Ÿ9'è\‘÷ì¸BúPORivïÑ,=ÖQJ}s¿wYœùY¤mƒÜß(Wb×÷@4í\=µÖ@%XÌÃýúœèZ\ë-ÓÔ×y¦…„yâ>¼ÄFïí»†k•–>Ö&„í„‚ç®Z܈‡™e‰ÞZ àŽhPã8N„¯fÜã]%~‚3rö§°/kÌ”Âa@±É!×UO>Å`·±ñCG¥=ìÿÐíÇîß:F)V§Ñ+‹¦Áy ·\ÓáÌžQέå ó„XXUx eyn¸ÃL”4Þ&qn4ÏÅëˆV¶ÅEýC Àš/:jú*†aâDĺ+›¹DJî õ°=(]Æ•-›£q!3C-sŽ^ZŽ¥§Ù1X)?Šk½^lí —µÅA[/œ¤ÞŒGwÉÆ…>b篳PDÌ¢•ï+Þ¡6 wì˜@Vw.ëÓË4h }Ë_|k°Ù*¹Ä‹Èv’¸öƒÑ[š ëÎ8BB’GÁ ñÇC •¶™0Ô|u;Rc4*€ÐÅ î£ÊNFñèB"Áä\“È5É‚ƒžGÍvÅkÊž>ÚG»áYÇ)M½=[ 5çÚp립ÙÅE뢻+¬aö øöòÚúö^U5EG]u /¤Ñäw’3ï «V4[)›aûõM¥ ÔÑÈVkøô$ÝÁ[I"„ª ”=㻎v7ii_+ }ìÅÚ_)˜!è Ll™7k—®—ßgdJÙ(£no3E*jÞßcŽå~’å»MäÓ›MäV'_v;¦%×núŸÖ‚Ké6½×êFiÞîmÃÙq鹈šëq¶óú ÿüþ½· }éH"âø¶ˆk³H;MeBøzÚ™§Â[6|Ñ©¨;(èÏ_Üæ»±G¦“óTÔ!e*4Ö£¼æh~ùhMÆÜØW5 Ðß<:Œ¨–Ì4<‹]Æ­… ·oÀHNƒ—nÈ~‡`äâˆ"”8À¿·Ô­UìG‰¶}ê pú÷°ã> endobj 133 0 obj << /Font << /F60 31 0 R /F18 12 0 R /F63 34 0 R /F66 58 0 R >> /ProcSet [ /PDF /Text ] >> endobj 139 0 obj << /Length 2193 /Filter /FlateDecode >> stream xÚXK㸾ϯh46€Œmkõ ²9˜ÅfI/H6Yb»•È’Gžî9ä·§¾ª¢,y4™¹ØT±Xd½¾*ò/ï~ø)ÌïÂÐ?$It÷øt¡¥É]ä~`L~÷XýÓûm—GžÝí£CæÏ¶•QÙµÕ.ô¦r·½´³294uvõyeÞÔcÝ]\zw4&YBª ]T+ô•íu{]†óe¯üóÖe7ñ$v´ýSQŽÓìþõøË]p·oL"šu,5èôÀ1­{âMe M‹ø)M—¶ÊŸ§yL2!ªÜ%×µcÏÿ -¦ÿ}‘èé"ë×¶NS?M‚L×?èñ’e&¡Ÿ„‡;ÒÌóƒœúÏ»}ïÕ‡1 ì åO{ù,ˆ¯ôó{Ÿèßw|!mD<‰ßP®5? ùìÈå3ÄW0ÝX¨¤óuÇðA–݃•:²;ú¹'^7_‚ØB’ÈÿQÈDùÛ¯ïEn¸åUrø²’5<†cÑÿ'aÃÁ#Ýùu¡×l,fp[Þ:$X›ù¯ˆÀØHÔƒ|”ES"‰Vw-m%‘÷ÛÔ'ÌÇÞÌ×! ¥¿ã#b½ }Q,Ùk ýœùee_Á•Çg-3’¬8B½2 Ìq5æƒP9O°j`8n«¢¯”¿ç8êd^fejt[ˆ˜üa6,ÝT‚?˜­çZ Mb¼B“,ƒ,>Õ’JSL:bñÛ·»ç Ë­ºaí¬¯×ƒÊ­cãÈ:ó+ë>LnÓ±¿ÕÂQŒ8Ïš6×êè‚,~—' L9d ð–K·§Áªx“îè¥V6øûD`¤5 ·ˆ+*d{H MÉJá‹ú$6ðF4…AäLJPÛ©v™¤ˆ0 730ôÕW¹R¯âÐ…2¾Ô|ÏIéxÆ·¹J|‹œTb¯"}9T‘€”ðÎ>‹ý0J×>ì¥èELóˆKµ‚'lQâÏBžÕlŠa mLœK4¢V+#ÖåÄJœ$-Å ‡2w7Ff€n©h¤Á¹@¨í³ öÞ¯²s¿Þ5J¾IÔÎ&É6ì‰ée„$åêÙ}¡ÖHܱ±äj û™5òƒZ#™­Al,qê]zŸ8ìçCb¯²ï(\6²çKaey»ôà•Î& ½Ks3*bL8W Œ®ŽTqZ1ñ ËA}Rna èÎ0˜zY2!WÙh ÄH†éy¡”t5lþºÜR°hÙåo7nyì}¬Çg¾{Ðøjm|­¬-¤Þ~˜j>¾¸­€ËðÑè͆Љ¾#¸ó™o19Z‰Bw€/šî¨@ ɞν(±®(úQàýÜq{¸ßÒÂÕlôä”'ÖZ:IlIMß²ZÂ;PaN]æ=rFÔÝ4°6˜“ÑEuSežíEãÙë³Ùˆ(þšM· …2èY¥‹_'ÿ£ôÚ8‡3Ãf’i9l¹ö%qß„&Ûw~s¡â,€OÑŸ¬~VÑ(ýozðM”…«›06ѦýT·®Öº#ÙW½K3s’ñÜÑX¡j*%yÇo‚ná…µUwiúÅÁQå -_™Ùúíåù‹7.IÄ’¯C¡@ ²É¥‘™þ«=ØIPÅô{!«Âs>”v„Û ˆüÏ‚žPì„ðpè]_rPÄ»ÊΘfÝJ8,Œb?ˆó›Ã'ïÁ]Ûë]Tå±Ì¬Î%´Ä5æ#‹;eÇÜníÃV^r«3>óWKï¡Ût,wWÓ½Y÷Ø‹%„Kƒ°º¡›ÿÓiîUýlíÙ߸Ä”RÇ‚· ¶Bã°EŽëÿ©Ó¾”/:'Lj©^¬¹,TîÉŽ*lD‘F+¶qÞ!=:‘ü×P{Pô2¦jÍá$QëÞŠ0ó‘Bnâ­œÃ.€æ›+Wt0®_¥q|swl8'Ag¨À@Ÿ•âÛ®¼Yò†¥·îv¨Ç…lւ󕸑0¥ •Ü‘n32Ž#Ò@š» i6Œ®s-í–Ï u™a’èŽ Þ^€•n¾â<ôSÆk(-¹²ÈÛçux 0±‘þ2Šé:ðõ$µ¸V_ß+йæ?»ÃXæ§šJ(rÛxqôæÅE ÍAÎÔ¶ŠðÃäžâbó ÌÑ»ž€ÙÅÌ • ½m]Båù2 徜á¾\ö'¡êe—ƒz¶B˜ÉSP¦=RÄŸ¹o”0_”_šá['„¸À¸µ3Ø£“ÿJÿ¹Ü-è“Ãm{=ÓV¬äÅJhÔñÇ·ÍËBâ'&q Ý+ÒnC{ǰ/Ûž±¨Y¢99fù¡Ôù¿èyî‡&£|5¹Ÿ™,â­ÃXß½|÷?Lì­endstream endobj 138 0 obj << /Type /Page /Contents 139 0 R /Resources 137 0 R /MediaBox [0 0 612 792] /Parent 136 0 R >> endobj 137 0 obj << /Font << /F18 12 0 R /F66 58 0 R /F63 34 0 R /F60 31 0 R >> /ProcSet [ /PDF /Text ] >> endobj 142 0 obj << /Length 1652 /Filter /FlateDecode >> stream xÚµXM“ÓF½ó+¶ ¹²ú´d RER|l 8Pæ{ÐZ㵈%m4ëì!¿=óºg¤‘ð*[šééé~ó^OÛ¿m<~dgAà­“$<ÛìÎ?ðÂUr–ú™çÇqv¶)>:›½XºQ92¯è)täÒ ÑñK³ãém³ œªÊëBò@®ÞõcYów§†Œ»O~·R;ðxT³yusãúV?÷R£‹†‹†w{WYÝô]‹²Ñ;"¨ÝòróÇ™æ±Ç §Å‹Â•Š»¯—aêt¢ÝaË-B>?°EÓwœœ@:Êt×´<38éZAûRõuÙÉ'ØûñËUdã¬B 3/Œ“”Bùué&Aì=¤Ö«.â‘§.KAÀóÉOü;õí»À9‡M¢6Uà!„œ×<ãáÊ o÷p_ Ã.מªqÇðœ—-ðÒ"ZµPfÁ¸ÉN=Ö–ÿØy÷á{sN~ì%Y˜M‘&ìêb²ló^}xÁq´Ø¯^ÛàÈûÁ)q4HG}ß±BtFÇÉÆGË`ØzF ³eO„€íß19ÅÞx˜ ivÀŠåq;¥äoà ¿Ü,]E©†Å¢>Ê+3šêx¼^²àÌð^›ÐŽAª±HiFömKLÅ È· ùžßxÙí¼=äÃÞÞÒÍÒÔy¹„®ÍÊ#i’Ðô‰ñ' Û5‡C³ 3綬¯®TLúä!Ùó{[Þ‘JäDB©Óùpô˜ûZg’,F±ß!©øn¹}ÇñžË+ D"dh2… ¬|{S7\S-lýºYFs«Oçyñ¹—쵟õ2 ñ¥+ç9*͉–G^ómÇkßæ4³…ý¾¤¥×<ó:—üðNJ,Tµ6bäºStU0zA–* ä{qM•WÓ±a͇Q@¼->wdW .›˜òijg*'mÕ²ªÃuê­ÃpJÁ™ÄŠ0M-Ü®qi:\Û³UÞ1o‰VAlåŒ!@˜90U:¤r‹Ò¡¼–·dÛ²­¦:?’…,5»ã$V%;Ç¡tê²™œKQQŽ­¨· c´â{-RUV¨”xâUè¼â“-©œçÇë+ìĈiQ” W&\#,ƒ1]~j•Ùï-üQ)g'9HÜÈÐ(Lá“7 0w‰|¤SxR%$Šã1:!á8^;¨VQœ ׯz”Bè1R§Z¦;5djFùx¼Âs/g3êDÂ^ó‰¦öZôƧÂPæµï\Ôì±árØžÊü7(,‘ù‰Zz[kKÀ¦ë±iТAéZ  —†è–Ruz»<Ããµü¢ùŒÇŠïâ‘Òd<ò¯'v³ùL\:‘¢MpÈ\—Õ\×Ë’û)f5% Ý«HôL™ï•ñPÍ ¼W4S—F@טŽdÚÒÝ×E¾·öÓ•]˜­®„«íSæ)Íé^E ÓE[·+£ý?l‹z]ôÜÑaøF-?¨Û0pþä=¾/QŒoH ºð›nÉn è¶<¨öR9¤\ê|‚•—e«tZ0*º2l3m˜8RÝbÚÍe_!3 êé€ Åh¶¡NP7E•‡cé;{£Ó-ÏÇü} DY D}Vk·ã—R7‚¡_Såºßó-2Öé`<’¡mÂäCèHÓL}~¬ÆœÙÍ©Æ30˜—çc@,Ð;ã:IÇV™ óþìzÝˤX]áA’LÕýY aõá_ŽýöÌÔÞSŽ®¬Tæ®FbÍráÃùHùrBBNÿ?9£eˆÇ¿zê¯ßk´º$MhFÒµs_¸7$ÄÄéØ^jÆV}dýwüûžõyØR„Þø³È¾¹8L…{@h‹s „AHÈÉ/¯Å‰[ØúSa¶¸1üª œ?9•÷,a¨®µª§b6 ‘RN3~1PŒ7"ùFv÷ý¨L¦˜ ä6hh(XhÚï‰dld»˜¦ 0à†ÀïÎVlK$RÚ'‘<ÆD£­¸Á.´®ÿ•c_$óÈóWÑLI¢æÃ˜òHlq¸ƒ¹çÏÐÈDˆ¹¤˜¸:&×à]pÛù݈=c^O&XÐo¼¾N”_ÝÓY’2ˆ ÄdÍÙ4´57ÖÀoHï«ÿÄÖÊ6 úA—e)_¡Û/6þWb·ùendstream endobj 141 0 obj << /Type /Page /Contents 142 0 R /Resources 140 0 R /MediaBox [0 0 612 792] /Parent 136 0 R >> endobj 140 0 obj << /Font << /F18 12 0 R /F63 34 0 R /F60 31 0 R >> /ProcSet [ /PDF /Text ] >> endobj 145 0 obj << /Length 335 /Filter /FlateDecode >> stream xÚmRMOÃ0 ½÷WD;e‚fq§“àÜpèÚn«Ø—¶N“8ðÛ±“V¢=ØÉ³ól?÷©Hf — 5G4¢X РŒC‘k¯´µ^õ»ün¦ ·-™õ‡FM~u8‘Ý]/§)‚•Ñ87÷ñò]À²‹·»è–[Æ*2_ à€oiÏdŽå~ô © ¼ðƒûìŒ4ÛQý Óž'!ë³xZ¤`•µG©KŠtã–wа>ÐS_™8 ¼é˜ïO>J&¿òDíšÌ¦ãf'$ W~y(ø|`ªkÆ|UË÷ôá¿Yà×!¥a•«æÈ­…©p¤'ÇBÃÉå2.‚’IÌÌis#£u™&y_U¨jçÊÚqí (nìNz:뼯˜rÄ3dú°¡3Æ5£tÈKgâÙüè¢BŽ>‘¢Ë”Œª˜ UòR$¿H‘”Xendstream endobj 144 0 obj << /Type /Page /Contents 145 0 R /Resources 143 0 R /MediaBox [0 0 612 792] /Parent 136 0 R >> endobj 143 0 obj << /Font << /F63 34 0 R /F18 12 0 R >> /ProcSet [ /PDF /Text ] >> endobj 148 0 obj << /Length 2268 /Filter /FlateDecode >> stream xÚXKo举ϯ0|R#nF|ˆ¤Ù³‹`‚fœK² «ÙnaÔHjC~{êAJj¯z6³»)²È*Öã«*þpÿæïl~£ŒpÞÉ›ûíS7Vy¡v7÷›d?îªÓ°ZË,t«µv63«Þÿå&¿Y›Rx©Q} [\ªC˜îCuXi•«7é„’…A6°ßJá¬7´ßˆ•Ìd$ÔsBc„”¦€ H·¯€n¨áß®àÿ/y‘ß\báJáT7~·Zyž½‡=ûS ÿJ»Ou¨ðÈæ¸Âo¸C‘·øk²HC«õJ#o$ydšaØa˜g›žÅþFJQ…B1ÖRiá.nÖÊ å ëõo}˜®;Q­±R.\G—×½äcs¡4˜ƒw ’ÉmÖÀmÃ>ÞQùlÀi—Uüó´*ЬêðÖD2 É ¯áÝñ7É —ÆÉî0Y‡Í¹ =Îû¬9ÔíyÉlž«zX<掼híµ°¥Ñ $#Œ)J’ý*8öiëá£yÜá®â†ÆAG´å¯“ÙZ¤Ìz¼Ê™éë©h¦o~É¥©£‘‘øxÂSš=¸)ñÛWéH²q¤z ‡04õk’9×ê°áåí¹mSŒðµ|4&;PÜ)VëR™ì~š79ãòé<ÄÏí’{H£Enœÿ=þ!!2lò¢“ø°šP†2Ïð¸CÕ¾ÀÏ(š7LôÔT< ¼Á ÷Ílª.R~äŸS•®úyUÚö@Q„Éï'û«ÜeÍ¥¢Âó‰mÝ‘i(ДÍÔ”†ùÍ ƒ±âÙí±ãÁ¹ËMŒ_åXÜ#lŒ4§ýç±ÃùýÓ$‚åý‘¼Fä0 #Å Ó=¡ÛD¦'å´M”¬9ðïG1áФxp ЊLP›%ýÏy ÿ¤*²O/D—¡z^2=£”Örü”)M¶Gà<žQQ8Qd‚á:®±ÃíPð–[º.âÞ™"ãŽI7äHUü"XpßqÃ3ßóÏíW#vÜNG<4מ–˜íz÷æ~þôÓD+„`yäïR˜Š {K)çñ¼çÌCÊëSèÍ•µpÄ…æ—"xgÿ‚|†—hq½¸_QZ¬1s@ô­ç°”²‚³ä°y ;a´1Â(ÇYðÉ-F½^ç6†îÜ„ KÁŽ0au1%?í%^e±‡–_+é1d68*)]àL¶mkPò!D‚]`ŠM1OI§÷¡êýy‰T…ƒ €¤t½ -¸€2è®ZñK zÚ_34¤+\¤†™ÑG[õõykË.ËùhZt,°oa\ö~`Ò¡úŒ¹ ó’3–ÀàÜŸ+6,~õ/n(!m¤–>ògR~TcL-wKVÓ¹³©1#w)v‚ÿrÀ>SåC3˜fÔ’UK%”K ¥}p[¬$ ëJ(¤¾×¹ ,4”[f¬"šm¢±\ÀŸ‡æ@±ÿŸ|•FxÜ>DåÑbsØ4äMñC“—’2ä’wûBä¹N÷z^Ì^²Ö;i®œ!¯ŒNÅÓ³ú?ŠW€²lòHŸâÖÇ_»e}D¯zJ9®kr9…ˆ)Î)¨sMyi† +1®°+:8² ¯8àì\¼ ‹0’l}UHÜ@áœÅz¯áÈîùvæ>òëü¨\4VÍ!l’<“Ø EN_a±©¥K)…?¶œr±Ðð_v ¯¢›áoJÌW©Z#®’y¿è<¥˜61]0<65e‘¼ ©QÔ‡‰mKzú"!{Û¶L…‘¿å!ÛL:‚¸Œ!í!(Ès¼úS”JƒÀc´R‡Îƒ$ó&tüհ󄚀ÔUÑö&¡gŠ_§‚Ð ›—êh!wÒJI–°V Û~ BtYú߀Ú¯C0˵ŸpBüêyú9“àæ=º:FüñºV³¸[ëk¦(R^†Aÿï3×eqžu\\o$J¡¥—_רÅEÑë¤Î>…p墲ÌS‚TK§TtbržU,×®»ÖpaW”¯°r,ñ7ªi'|}]W­S­´†N:÷Ò|Caõ5ð0à•ÎMõôó©!¹¦n$â· 3øœº˜˜e¸¥˜àø¡%<Æ]UÛîqg±¤kèõ 5&ºo/—U§M.r…™êÛu·Gƒ§–a T¬(¥´“]a|áÁ*8’Jhjøh]i¶Õ¹xâûåŒÊ)T²Õ¼eÁ$-ËR 6ر*¸ÃnØf‡1¡òsJŠÏhÁÙ‹DŽlï9ƒ0¦yª’îÒ«,¨Be_ša‡å6Ά*̸‚M)Ó†>n{%VœŒjñbêSŠæÙ¤Àê0Oü¡ZYHSõîýbƒÄÎ&ÅÁKtèzæV±p)«…ÔªÏ%Ž~~<ôQ#âGB%r©‘O!¦ÈX!ƲœçÆz`Œ½ þº8 îÀ{q¯J8öNEUÝ›ŸîßüŸ3/endstream endobj 147 0 obj << /Type /Page /Contents 148 0 R /Resources 146 0 R /MediaBox [0 0 612 792] /Parent 136 0 R >> endobj 146 0 obj << /Font << /F60 31 0 R /F63 34 0 R /F18 12 0 R /F45 24 0 R /F17 6 0 R >> /ProcSet [ /PDF /Text ] >> endobj 151 0 obj << /Length 2178 /Filter /FlateDecode >> stream xÚÅYIÛF¾ëW¾„"ºV.æ`;ñÁø0pß’(ª$¦H…¤Üqòçç-EŠlSÝé%™ U¬õ-ßûÞ+êÝÍâõc—R†©µjy³[&ih´1ËX$¡0&YÞl~2^ýzóÓë‘O†f¢E´4ë‹[É ÙÀ£nááx…LÆ+ŒE¤­_ñfµ6‰²ÕZ[”5¬Úy?%w}YYdåÙñkQmy¸+ª=v‰àö຃kx¼Ã³¹yjV8¥b襙0‡Ú޶8·üZïîŒi8Ç¥‡áœ¬ÜãækTj¹îÕXKcÙJMÑŽ0[E`0+¶n—ËŽ;þ5g>´µ±7Ƈ·pÀ>ÁãÇ9ËiÆ6ím ÈÐï)ÆÓ@¢EÒ˵–¡2¢ù&\­e é)è©ø ©lðv»-ð½£g]eàkM€25ص?ñÇU+ ³ZÕÁ®Æ¾†_>PÕÀåÀÅäY‡cͨxµwÜþ¡hiںʟöÑõ]í™Nuí,ˆL ¸K{ÃÝœ÷JßïÝ’Òð®.Y* n½3c:¡ã£åÞ€W—“໯ܻ-/$¤¶Ip$l_ät-÷#øY7:ÁqK¶ü¶« ¬ÀlŠ1è¡miŸšDÙ¶à$ 8¸–SÜeõ©6€¸ìt*¿r³«}FLûä èèäNöàŠÆ†W2ÓTox÷{¾‚Ðp'aî÷,÷MTŽöqŸ„6„½ßÄ£xÊB€]ô³QBa£Ç°àCY|ž†ÒPI;¢¡ÌO`ôœ°é| -Š3]Û *#‚¾A°!ÈùÜyt=fø}B¸ß,Mh`\ì¥}U"!xð«‡iöûž´,ÚÝLÑSòV Hª¥šß{ÂpÛú8†@ÖÁI* ÃoÆ?„<@`ô\r× 9Ú'ïjfZ¸ãSÎh2Mó]ë‡p“ÛŠ_Ø~sðvœ\ˆÆ’Á;·#²êC wm=æ.1Â$®q0Ò„e€ßŽ"Š›ŽC¡*~;»ö{8@Fh_,ZþÝ0?´¾›Â*½«­cô*1ø¶Ã!¾xr‰;o+"K×°OˆÙ·sbÎþThN'̧[n£€ `æú4J1ïüàÁ7Èß$7ÂЫ€&6øX£²8 eÞ +[¿¶' ¤*> !ÝžY./‘éÖ[ñF;7<~jê Æn7§jãö.Û¶¨ÑNlSNåø-®ïR7tlP¬¯ÜÆ#A_äÍ@ÂAT3-êè²!µOU ø¸ì׿5IØÑF "my4ã“zñf4õaÎ&Û%îëÁªzÃcs°@îŠ/,]Êâ6.ëzþ‡WįH‚¼Duº 5Lí~Ãö¢°c„4#ÓN¤Eðº É^”Ù¦ô+fÒÔ\ÈU^ž·îÍ\•"u(c¬Q” E¬5-øs–ÜUhã8鹓ovÀGIAF6#ÆŸåÁ8 ÓØÊQ¹©­W’ÜÇžTYI8¶œ·¨z"RƒS´ î˜/ÄRܪŒ’†"Ur¬ã„8ÑqST5ªYË@̽«\“•Å&è(‹jàÃÆgnï Wzn¡塺ò꟨ΠK*˜w‡"vÿ̭ݹÊ>Uûf.GK©9µ½~>E ýpŠ~|󞛣T„Dž+#¬ “ÔH1 ã(I+$ñ1¹¼ GBÏJœD¡T±|„Äd䋣Э™÷'³2M2eC¦ñUK¨Èb!¹:Ó¡…¢É„Z'†¤WŠ+(À" u²’¡±yŒYN”«ú°›7Å7åšÂ%Õû|Áµ¤{Ÿ„½Š4ˆS§ßȺax>Ò[13{Œ9\]rì¾RpÜ잢p¾êïÍ ÏY ­ u›©Šy}<•®Od./Æìõà­G¼0ë°8”iâÅ–»FÚÐsÞ_Ih´˜8L\ÓF’6ëA 9øR¾”#_Ê{"ON#ïŽ U$í“QK6uýâË+÷{Å@RI…~Yê›O²:L”V÷ øwÅNbÃÈê'a±–á-$?\çt D¥}ä¼ÏúÂö"Þû><àˆ8öE¼0’ø:õJ¡€þUú—EžqÍÚ<4SòNÑÝP: !’G?ï}IY×C8J_ÄÀ¤/‡E_ÇAc¦Ž%\6áHñÇðú³-Åýõ×O‹'èÀKÌ €›½“C¼§IÔÄ8à§ÏòÄ—‘’éz2)1Ð ©Ž”C‚Ž nM±>ßêUP¾þ½XMöoØûíÇ€¯çKÈÏV¦ú™•†6iú”ȽHŠaPùè Éï¯)1ÓÚD¥ÿl‰v7QD¡‘úi‰bМ/¢÷T`“£Xê§U`pk²B¦Ïñ®sN˜Bcm’ÿc%¦€‹"kžÊœ“åRæËUdÓ´øBÌÇuæÕƒ“$U+Qã7 r¨Áðýœ>Éu*i ¸–6^Sá`LŸp„]Ms¼«±}«‰DQ&$z_d²žÅH×ËÖÙ;ÑÃeÜsnCå_¾ ½|-·–üQzñãÍoÌP=,cr¨01Q²Ì‹ß?ÿ*–Û…Xþ´¡N»¼…w HlÇ…LðÚ‹|O¹ø´øï°ÙÖãíÞá_ñ2‚Û2^×-ܵ¤`íü'(Ÿ°“%äßHEä7˜àZ‡Pޛ᧵Ö&à Õ×zôypȬ:ŒQzAìµ¼4£OÖ0PoºŒ«<œ±åÎÍJ¥ýʮɪvG†£¿àÈ—{?/ËñŒÏ¼g]á2ú,'ð”Þ÷ÍXެ¸š"@áUF°ŸJ!€b†œÒ½¿þøm¶endstream endobj 150 0 obj << /Type /Page /Contents 151 0 R /Resources 149 0 R /MediaBox [0 0 612 792] /Parent 136 0 R >> endobj 149 0 obj << /Font << /F45 24 0 R /F63 34 0 R /F18 12 0 R /F60 31 0 R /F66 58 0 R /F40 18 0 R /F7 74 0 R /F8 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 154 0 obj << /Length 2743 /Filter /FlateDecode >> stream xÚµYI“ܶ¾ëWLéÄ©RÓ$¤«|Hl+åÄ9yR©J”‡DO³Ì&Û\4£äÏçmàÒâH—uacyÞúáõŸï^}óV§7qæiªnîŽ7qbÃÈZsc£,Œ´Înîªï¢(¹ýÏÝ_¿yk’ ufIdn"¢zý—Û8øÓßáSð™Ê|ë>¯yqœ­Û$ÌT¢dñ··¤Á÷ÅTÞ*œðóáö(|ÿÃ[n4uû+ï´eú¥¡I“ìæ›Pe‰ý]L75|Z‡¬÷!]bÂï§/ÉYfìKoA­Çzãî æpËí[7õEÃ<µŽ8|ÄO‡wÛ;ºBåšýâÜ.;: seb9ᄬ4ø¼‹Òˆ™¹ïñgÒP«8‘ÕÇ®ŸOV‹Û—±îÚ!Üž2`‹‰É^.¼w&Í=k": #“¤[–M1 õ»(ÖeŒá-™Õw¶á3|FnI‚ØÌ®Ü˜/üŽÏ ÎÆp“Ùÿ¾PpWާ2êLA# ã(¿‹íçý®BoPhê¸tèr²/âöxγP'Q¾ÈÒÆñÂ$êŒR›4 •< ŸI˜í­Ê‚qàÉcÇ®¦fQc}.èèö‡Ç«É«zq¶-I-LpvÅ0õÀõ!Óypw"Ý<ƒ‡X‡Z§>ëö2 ÐNèä÷TØRžÓ³kÑ„l8uSSqûÜ(Ãc±Sð¢X‚£Moo3AÏSî w<_÷8² >òÄxrÜXî#rî0_bƒÃ®mïã¥åˆÃÌDZÜ2{κŒš Ö’)z÷@V5Ц¬`d/6Á4¸~àe$ßB|VÕmÙSXDðH$×Èâá©>£Ø¦3OþôÏŸáV=º¾X›Òõ%î9¬îª aÿê!uðÿ439º¡ðˆÄ+ª4Ha$Šðóœw*eC£b6PÙ ç·5òP¡bs’TUÕ†cTwwYøÂþeç ú®ɧÅ*†‘Šâ­t(!ÁŠT%È rÜ©xpÐWö¤å¡l´–Ð šó³¡<Æ+{´·½TŸç»»QIg”vóác <À S«6bÂû­ÄDý‚$ýþ–]1Uú9±D¬p»k.‘`Wf* mlͳ"+žYš†‰±z¹‹N“%¾³©Ñ)[k°øM¶Æüð+/ÙzØ{Šˤ¿7IC®‰ódË&yzÅl®Y†Üˆ>DN/)’½­eVÇÞ¹]&*O %FÙÖ–_œ ¸ž!Å~æ³y˜F`«œùTþâÔW¢^{òæ/ :.œ J’ ÓD¥ÁãÉAL칃JÀöYÕ$A^_ñôÔ”••ã©™öX4 ·ºiêÊqgðNqv¼bÉHzäÁaº0Z%{Ùþý6š 6“m*²9àãý$H‡Qq(*wô)bjFÞâ»]Ë@Y“¯1n‡÷÷ '@à­,HppJ‹Bµ–8 Ý@@Nó(ø‰(,?0)‘pÂ?èëƒD¥Â8ËÒmDàwBÑ>ÈeólÉp¿á= Áô ‘—Ì¡VŽ>M…ƒô:ròÈ@hûŽÎè‘eå©–í„ TÅülf»h-*åýmªï“’»š= ÀÒnÀý€§‚¡Ú‡¡&Œ ñG!ÀŸqúÊŒ ž}´®;¡®ÛjCÆ0gOµ<ĨKæO-°°}ÏO-îˆÖÌù#xŽøÝàönwì»3Ch–4Ž]Óth,S\¼JÏ18öÎs$†ˆbÓdª¿ô!÷ÅFþ-¦=Ãv›ÙhAw5Å\!OsN\µXÈîØõϲ¸j²j„.ÚÿØ€8l‘Èù'×®¨X{î7"®1i °ÆßY™Zåfœdš¢wÜà C–-Axh…5Ù`¦«ÏuSô”´ÀpüËž7“ÓëV¸8ÉÉå¶â †>ü7\„³ç#ŒxÇõ{¦âFÙñK¦ï˜§½æša¸(K4²Ò=]¼hØ‹ëõˈi$!@‹ðÜ!Éñ½ŠVÏDß=î'¡o»9ô_»Å’¤L éYi+Ê(õ},ÂaÜÌ…áìæÁOç¢ÆV(”SÜC¦OÂ:­-‹¦–»õ¼èÚ‰ì‘ðD#a¨0^öu9rOŒÚU×2Ù¹¤:þ6˜+Vï/{óµ„VyAOÛot!(EÙmÀ¨¨î´*_5”¸H¤]³«›ÌÀþ6^î`ZóAë6¡§KBŸßgy:‹Øœ>r3Ǧv«-½¯°áÓ8û‹„"\=¿!ØÑHòžÝM&ð ÄGöõ3rŒj Æ‘=”í~JøÛòß`–l¹BtÐZ¯ƒ©@ëd†•zõÆŽOœØfôxYr\?Ê *Ñ{â+ÈpÊyöA¶jZ|d-x¾?~>%:#ulÒ¡^^Ú‡~l-úÐÛПF1ršÈW`:s1]öb4ã©d=k9ùPì኱ ²Ü ¸iB4ˆ¾tdªíDðu$ ݶÃD=ð8áhø=£Ò‡‘;+¼ÃP–Ìõ¥È?*°õI»IHz9njù™Ö4ü@4$»*¥ì`¥¶kÝJ*C.—ÞìJ†f¼âGçÕ‹•ÂaHþ/QÒ0TvÑ ´÷᜹vÅ™ù«†H¸:>­¾ü`ç µÉ¶†`fC§)ŠØòñQ›|Ž8îã#ŽÏÞ m‰º3~BÚN`ìÌdK`ôln ù:zljü“£ÙA¶ìTÓú£##Kì“2ÿ¨¼˜&™OJÖ²µºj©gI°·Ùª>¸®ã­2ýÈ[|¢ÔçëX Û+÷e›ÅÏW¯…¯à!æ±N¦<ÎâÎÔŽ8 â„G|Í- ÚˆbN0`ÉÔn$‚]7ÇòÊq/xPðƒŒ0ç‹ (¸ÊHõðQž9s ºm)çæ ¨µ‚ZS¸³«p‡‡wü;—=±Sú0ïÛwóÿFÑN%†ìø&O‰VÆó0Ë,_Qiœ{õãÝ«ÿê¾¥˜endstream endobj 153 0 obj << /Type /Page /Contents 154 0 R /Resources 152 0 R /MediaBox [0 0 612 792] /Parent 155 0 R >> endobj 152 0 obj << /Font << /F45 24 0 R /F63 34 0 R /F18 12 0 R /F60 31 0 R >> /ProcSet [ /PDF /Text ] >> endobj 158 0 obj << /Length 2809 /Filter /FlateDecode >> stream xÚ­YK¯Û6Þ÷W\d%±JФ$¶˜E¦h€:Y´·˜ÓYèZ²-Œ,ÝHr“`þüœIK¾tÆ fcóÍÃóøÎC}üæÛ·ÚY.÷å25Ò*·ï»Í6"ùi»"S©ƺ¥oßÀ‘?ÿ ??ÆÎU&͵ò‹ÿFÔ;:wHôäëÍVg6™ 4„MNÃf›IÝtØ/“ýf+“<ûüÚºæªßùMs®?ôLþÐv·úaæ3Ÿè 7?6[¤ûa+3‘f¹•ÐÒ©Ö†ùÜLsëÙ'×›­ÊLRíçfÄfžœûvæ{±WÇ©´íª±nê®Q&y<º‰¶>Ï|Êidœ§™'Ut¯è†œÝîðj|]dzn ÐÐwø/Ͷ¡‡#%Hn‹ëé]býžSµÉÊäž#–W `ùÔŽÕS‡]iWŒÇé4.ßµM¿s›Ç ¿é¶é5Ž;>MÏ|ô®­ºîŸØîyã©êñánù7ñÄnFOqN®çayÕ»†»xõDKOœ=«™†aš·p.ß!Å#ɰH&윞»fâ~å”ÛïÏí|éÕ-¼]aD·×~NÜ ÷ cKâê+'§ÉË®I1‰¥}l3 ZgàM©,tA/Ð)n”ô+è7£_?ÔâM]·$núø¾ÆÇ©ÿ‰8ÖoT†Ô²rÂô~ƒÛ²H¡ÿëù éLv]5MøF½«ü‘LëˆdÁ@´Í€Û¢4_DÓî~JñçS&òÔJ™_àGkר‚™µd å•B: cAÌ%>«cx cèÑH´N~82´àJL "Jç»8̉´Ì2]¯ð4ÂS:÷UìºH…òs`‡·:…D" p¦èÞ6ì“èu¡t¾¶á™Mo>…Ì´]‘L¾=¨4©Òþ5» INAµºè{ ìÈ ¿¨ÏrÍÔã…Qêqyºçæ.ÀQÊw]è¾ÇƉ5¦E¹Ju©Ù‚Ý-þƒÄ cóôÎò§ê®¨_øÒ­L—þ+ ‡K½æ?QŽZ»~8"Iý¡íÁô”ðÂ[,zý€‡“'Â^×þ› ŽQ8hŸîLí¡÷XOs´e‡ŽUp°$gøÿÓÆiõyä÷ç*ptÂá=L û°Á¶À»Å4‚mžö'nkÆêpÁÆyô®ñJ%qSC¸IÈëFXx§?Õ™ÐÖó<\ÖÂ"çgáQLu;·K×ø´õ˜ãJ1@¡U0ŽLQû¬–Æ,P Ù:"!²¨øâF½3$F´ûONW< `EDé$Gœyœ š}=‚‰™.¯&¡Ûý°³El>ÃRõÔv.äñïY Ÿø ;roù¯I6a¤™ñv×MÏ3‚ÿHóÜb»¢L>[V_Þ¡¼n¯Tµó÷Ò«áŸù Šôp!ቌ|*\™¿‘Ð'(\9 ¶¡¥žÈ#œŸ]ŒÂô(^AŸ8|‰éT) 6¶æN¯§ÁÃH•GüÑò—Ø<¥Ðò¦Ún®`'ýå±K nMe—Ke<0Qð+ò¡IùÙÐDÿC“w „c(jŠŽi€<7Š<¾Z¯ÿ{E§íðÜ#­dˆ‡0êkâ„r\@ÜÕ•@U*rµˆÎñaíѬu ¸4 TC}'ÓÕŒIÏ?DB>b™€À€F¼c7¬}nÐü›qhY–Ù:¸ûO”-YjŠ¢ô.½1ÅÎdË4Ç# i`inFFÈ*kWï&00ÖÇhØñˆ®œÛRÚcˆ}F³/=7¼×£ße'd†l‰óG\p ^l:nlæcëÉã vâÐ6Î_ϵ­„t>+²»ù;mÂá6ˆÑÏ‹¾pÍQgI“Zœx€³ohL§ŠžÀ½frQyµz‘Cà˜Gkü'ÿÍôÄ­8Ø9½¹“gònž$Y4UÒW÷9s°UNõ»<>-ì•®½FºÀ í:‘”yZX›}MÊD¹Æ3Y×îVÕæÞY†¢A/øÉ…±Ûöuër#ŠCrtЋa C^u寯Æt U$¡6ѯ"碯ÙYó&Â9œ8©âhÄ=æÊÈüÙÊ% ·9ƒ@¢æ¤ÊQ­µ…¨•¸7x÷‚ÛÀJãýè[ys»Æe³4+ì%ëÀ;›*°z/X¸"ÑŸtžüc*7s\€™Œ‚K²+î d}&“`ðG¥M ˜B$Su¢÷”q º nfîÍsDzFGë#wDcD§.¤…§—؆*7Iܙ¹›Û§m(NEràq11\eŸÃ#Œüò[T`g‚eàÊbo¸JçìzA9„Žrœ#Êwä×K”S9†¹%ÇîTÝ9Ò¢‰·îd¨q))–#¹þÁ_á"nOçJŠ€¦Ù9wî œØÞÍû³¯¸åÁ·¿ʶpüh KÇïÁ¹jòq†w õ]ÕáWåËÎÃí\½X@WáÊÀÊÞJˆ¬K lùò‘¶ q½-`lyH-f<ÃÑuKvhÌAk *0Èv ¾´¾\!£n:•à Wá÷67ÒÛ¥I•‘×eÛ 2l[ŸaÁŠ0²4qìß0JÚÅ•TKš>ºý¡ í=±ÃÕdyå ƒe‹ðz×}Œ1Z©-Œ¾O7¶aùÚ´' •Wu«„¦,+ ü7]{h¹ªû"rV—"44QÐE•¾0f*ß  tvOÌ>¹KìA]bˆ_–ä”É>T¹¢™)¸H¾‰£§fvµËÚU³Zÿ”çÊË)GªPЂ9ÇðaâüQ'Ž‹ÂN´ Z©È ï&ß½‰É 46WÚÛrÛó%NõQ(ü÷øF»Öj$¦±ÏÇšçY¶v7Ц£ÅóåÌ(O›Ç ! ÄFTÄÿ;W¾‘:8ô9eóÑ{ºù.Œ,DyÉrÆ¿ÖPL¯°–Kÿ πݙójl:Õ÷Ãxâ‘æ# hæÞ aÐq(­;Ú+œÎ5DaDAH¿ÐcöM{8^Ä2Œ®†ê±âËËdN¦¾÷ìñB[œŠ‡pЖyøjðî7üùsŒ‘ ™\Å%DÃ3{d DÀâ¼ ¤GçB¨ä'¢)J…‚wæ^‘š´P›"8’²®²í#• ^UbGÜunâlb`I3}ñž¨™ Δg/|¢õUYÊ×ÁŒsüƒh9ñš¸¡eІ,<»›FiŸ°ù´ËO’@$£";¡š¥IþA Êj¹¤ø2§¥Ín±G–Ž%¼°C:LÅÆÒê°äÖùì'ã ‘9Ê%d_dë¯ù X¸~ù6á/ ĉ+RÉÙwü™+ا\Q~çié )wçá’V¥®Æ"R&sßÛî0Iƒ/Ä6}ýôÙ¿µöNNh`[0‘é8œ»úrsáo^ÂÀEÓ •¸Š07áO® â°-”„”WnÌ‘Üwo˜ï+2 ‰xÔ¤¢ŽÑ¦!ÉÈ›\ –Ó‚o,äU}ç îÕïð#_¹, l›¿g8CyXÌ%Y4vy]¾…%%º!ªÖàµi:38÷Íßü§Ž|Iendstream endobj 157 0 obj << /Type /Page /Contents 158 0 R /Resources 156 0 R /MediaBox [0 0 612 792] /Parent 155 0 R >> endobj 156 0 obj << /Font << /F45 24 0 R /F63 34 0 R /F18 12 0 R /F60 31 0 R >> /ProcSet [ /PDF /Text ] >> endobj 161 0 obj << /Length 3006 /Filter /FlateDecode >> stream xÚ­ZYÛÈ~ß_1ñ“°zØ'›ÀÖÀë$À:ÁI85¢—"‘ò¬ ¿=utóд|Ìæ…ênöY]õÕWEýñýwwo½‘RÖª›÷»_£¹É3/2cüÍûí?VÿÌd~û¯÷º{ëô¼3½ÎÜMF½6å­\55<Žïo×ð¬Nü¢ƒùv\쇲ÝâJ§-7l«u9@Cݵ}èúb+ÏíW[ìï%µ–í&¬y¨Êþ| •ÇzØ×m(ïë îdæêð<7ëx‚µ4ÂËÚžÊ[åW°igV›®ÅÚpÂm7Üvnë¡Ç¢iÚl[íÊs3pÃë¤lm&rëò ª,%M'¤•Eèñ%æVmÇ“nʦ>ŽBÄ–C9ðêö6Û.@šÕ;ÞdymhÝs‡>4£75¨…©¶aÝ8v<{Ãò’Ö‰"ón)0ÈÕg“ȡ̊…å°e×…Bº¢TåPm¹>Mˆ{Åßè ^À¡ùÄ }ÕðÆÇA¨FÔ[NKH—ƛǥqPGv ]ðlYµ€F4*òiÀŽ”v(å…)ÈÜÁ“¨\~­vð”ûˆÍ'2˯ñÚ”¾a%¯QÈxIÊ’·\œ9VIu”YE|d9pË;4tÚFIÒv÷u¿ÆÆß8ûŽLG3Í¡1•W ׋Vq°þur¹6»ðмÃB %óx‡þÞá)Ñ­º,_ÞMû÷[*]“@ñYÿ¾;7[îq1+t$†x@˜-÷8ÊE€….‡l†.œ&8pìÁÖ‚w\³Qàû¶êÿxßx­Q~kÚ7S±Ýmˆ•úÎI ×k¤îû)BêÂ'¾hn‹›îpl* ¦W|v!”‡¤¥yù nM ÆI°\|*zZxHpso€8’C¤g`9´Ÿ°á|Ž€jÀRϯwx…X?qý/Gz[ÈS†9Þ•Ô¸ÁÁ{š”@ ™s¬ú Ð8S¯i7_d;hÛÞOѤÕW"U«8ô´Ë8ˆ^„ß ,,Nêc5{‰™*^ô­Êy`‚ïBÀq¨XѦ…ø=QˆÈ\vØ• ¡½r®ã±º.¿yÎØà¬Ã `÷7$ÅN)kh°ÖÏY ' ‚± 2!êí©Ûãyä5#7(Ë– ÷ K\9§Ñ!ÂÐòEz'‡#@íd¼Ä}à×øDž„39o7¸u^’è#m7¹tîÀ\]ôìÝ‘T©!À>µyo¸°‹(üX’:ýBŒ ?T`ãº(È%Vv¹Pãž÷ˆÉÍ1œsGÚõTÉÃFxŸEAQæŒjâøêî~QoEO®nM_Šó!yQmÏwÿEt¿¿ã˜uŽ‚g;Ä,„S"óòÆw=çÞtԺ߀’îs(é²Õöê ñ3!0ªZÏo õ··…á’ßà–wè±`A} ¿ ¶’f°+ש2ጷÿ‡ût"“~Ù‘ü‚ 0 &ÿü@xèåÂè9 ¨Û‰ôðºl–Ó:>lºc]Í"0Þ¦£´펣uu‚©îY•H[.TéþñýŽùÑH P<é­¾ë"{ž²?!*„þd¡B):¨r¡‹\ˆN $nˆ!ÈxºæZ,±Ì ‘ÿ2«÷ì¼àpu[‚ƒL•1'ä×1ÙJžÝ1Õ”Lh`Ôpоeá…b/Š£îZ_ Q+ž”‰Âô©J<ÃñâèôCM έž¼êÇ`Îî´_Ñ¥p¸Ô„>£ëÅJÛ!‘liØaiý1$–h©vË‹!yÿŠ8™›ìJì§ÁCà”žyw88_ðgÚàÀ;(/-rásˆy—âÙwM¸d¢K†ò’C‡!êÁx›úxbÌA²H µÔƒ’oj9= /“§wÌH¡ó¿+†0˜h\8.صx²¨ÔùÜn™ü€CgÃnGåIØ]àʹr$ÊŽ]Ýw©ôyD„ 9ÏP4ï©•+õÓa †Êsð@yM©'¯–x€7´åv¶†WíŽ .x3q@˜…³“F¹âì8§³Â2ˆ[.+¨Nõ³Aêj6¨Àì‘|î"í2sD µpû%×£º3>8/\a‹¥¸a ~¾)<›¦»AÿA÷gŠ1}WðjÐ2®Æ¹ršýæû¢›NÙMy§Ë´‹(óQEh#]ø<ñŸ6Þò–ê!ü†<=éh@¬Ÿá›%ö³xd5²Ivàè…Öf™€ŒØ‡H“ þ”ƒñ¥ 9ÑjúŒI0ÎòÙY¿ ;Ì7`G‡q•B‚w*7cÜ&5¯Enå <² cvNS•Mó ³Çô0›¥xvŸ-Í’Â.LiÁŠcŽKÙ|Ê çO¹† ÎçßÖ°3%S¬Y} £Þ ¡{yªBÿðµ6`q•Ú wõ¡ÚPj„HRÚ~Á33&çRDÿ’½™+ä<³k®´QŸÇì·#<á!Žhª>LÁ°Úr¥ º[ãØ2’´„b3õÜÐu­s‰™â‹TpS…Ol¨É829ü%ÞçlÀ±´ÐìmÃÅô–*Ám#ié«­ÕÕ'žòÜÎypÖêkMC]¨g\§6~qÎE^f(¨Ê.xY[=°S‹.( #øâaI¬cs¼íTda þÈ#°,ù©"Øð‚;IJƒÚÖJjŠ 4÷Ù9%œ”¯/õÿx€úAGëR§r@qýŸ~HºBƒ:Y‡o!J^äõœPrÀü(=VÍÙõ/w¥ñcÓˆ‰É]y¡œŒrîÆÐfV¥è«”Ë@ýÝבk—ºmt¶úëíg€CÆmÍ™ŒQªéFÿŠáó䆴"ßH™ð~ Ç_æ+)ÑjÄÆåú‹Â©ˆK”OÌiàRýøáiE–™‰÷õ'_Éßï 4A+å1w/r8‡”÷ß}ÿþ»ÿâüWendstream endobj 160 0 obj << /Type /Page /Contents 161 0 R /Resources 159 0 R /MediaBox [0 0 612 792] /Parent 155 0 R >> endobj 159 0 obj << /Font << /F45 24 0 R /F63 34 0 R /F18 12 0 R /F60 31 0 R /F21 49 0 R >> /ProcSet [ /PDF /Text ] >> endobj 164 0 obj << /Length 2429 /Filter /FlateDecode >> stream xÚÅYI“ÛÆ¾Ï¯à!²Êl¡74 Š+e§,U\VR‰'ÉÁö6‡ðE£ù÷yK7HÌ€’¢$•F¯oýÞ{Íooo^½‘ÙJJ‘[«V·û•L¤P©]¹$‰1Ùêv÷Óºñ÷ÅF®‡êýF¹µßlM¢×ï7Ö¬±û8ú~³•믠_©uÛŸxFµÇ·Y×U³ùåöûWo”œeŒ:±«„yÍsæäh¡¬LÃŒ²mðüÎìÚc¿´'l™Û$ ~¿´e.db\˜ñ5R˜¯%l)6Û4uë?íyQªgûj‘æÊ„Um ó+¤C쑘¢$éÀ£m–ŽÌŒpy®Âêªg±4-®âvÚlQ´eõs"ß‘,õz8xÚpµÕ*¹‚=¶Òc,+†e­REB9´½Ç/Í"òÅàw– ie䃎x¯œÈ3e#^™ÿ ^Y—¬ Ä+4@psðK òhø:×za÷p(8ÊáGY4Ü8ë>¶ÈƒH¸ªå®Á–KEêlÌÞzÄwgð@m0r-K4 ¶xZL{¤Û/ë-•B[@™âÞs"¿¾æÖVî¸Hôjm¶ëɆOO3‘ƒÝ…Èöñ ú-Zß3!,rš¨\Fàí%”TàØ0s†2vÜïôúÕ«¨&ÿp €.8à¶€%e%îÎÑø¥ŠGOñWP÷nÄ-ŽÕAB÷ôêÝ…VÍ=Žò‰õÛ@ß1C4KÄq8 ò£=¡2n†ßf½óCcÿ‘`òg1€ÿe È>ìõ`)°hÞé£èzˆ$žó¶? ¾Ê{²‹Øp%.ä™P𸌠Æ&Ëq±?®˜g§à¾=§NçD)…˜ZEJ±ûà;ÿúzTÐ×¢Â3,™aN9Áz*Fo¤2ñ¦¨ ’ŒBwúbÂbèßù¾ŒVVÝ¡¬¨›²Mœ}mk ̳™ï£óuʬGT9kf`n¤sJ… U ¹,¥øàËÒh W %Ø^\B•Cº1Šá{Nµ›å·&•qùb4ģРöÜ|)ÚCÅ=jÉ=MØqÇ>SŒåÅÅ@ù ôÜqíöœÁËRl$øü¢,úcò E(C¡Š`»† òaÍ´Ý>pW]œqúÿð9Ôü;öÊjëXæí„„|øó”‰¬$T!çšcÏMîfŒÛf¼-„V~úoÓ¿cóºF¦¼ã¯Ç‚³‰©à®Š¬6e¨–B¤ÂãÿW-¥Á]©`š²£Ó˜}`“²æÂhwN@pŒlLÁ §<«›pzs"º”ƒdJ(c'<Ã`\"ñÐVäÎ艓N\>.Ó"Môü´ÅÉ(¬ÉòϨ‘þ“lS__ãÓb˜ÍÍ9Åà0}dÉÄý;«8èSëvÂC®Pú:_ˆðl¯Ñõ‹«Q^ZˆKiž~ªÔÓ!Àÿe¤Øf³Õήÿ±£<wß/1h¨”iÊ[ÿÍ#E·ƒ‚f—¥ ë™åXƒÁ­%ݦëã0OKgõE4<Í3ªs²SÓ‘UµO‡ÁYG%Ôó uXâÊdX(N%9y …b˜ûùÕ—¡ïâ^§¨šþÌq¸²J ´œ[â¾=†B“#70ñ, ö1×HVPÓ¸DRÖ ?äå+€1ð©E$r`{ Wùæó¨,øöcA2€jiâ.‹TT‹ô·]…ú¯03\ºéHD–Mw,—Š>q½2÷£²8¯DY¨hl®ó/)þعjªXш C‹$Õö ûvIÉɱˆÆÇ½–ß}°ý²Ú?…‘C05&$ѽa㈾ªšª€Éf¦…Øf¡ªöE?v~YRÖˆ,7òKU#‹;¯/?yW{| 58yµ÷ç;9º!«C2æÃíߨÇìûò ÏO¹9ÊÂ?ÛƒÄÐPÎÊy ŽÖÓ-ê…Dæ$-ÒjšõÏC¬*1‰ü¨ÐZ‹Ó‰®Êp—©SN`|Äñ†/ûÙöû,"3t›Ï™Ò”„kŠ"5_LEŸ¦À _OaÊoc„h{I®‚T'qÀýùï?üð’'È«r%õ¤"òÍ&ÓÅ~ªè‰âÌÇ¿(àøÇç"ðŠð_}žkºCújR(@AxyµL„ìi(ž]õ‹lák™•<Ú¥öÒ¤^äÞ*Îa U9„/Ǭ\4¿ Úá¥endstream endobj 163 0 obj << /Type /Page /Contents 164 0 R /Resources 162 0 R /MediaBox [0 0 612 792] /Parent 155 0 R >> endobj 162 0 obj << /Font << /F18 12 0 R /F21 49 0 R /F63 34 0 R /F45 24 0 R /F60 31 0 R /F40 18 0 R /F7 74 0 R /F8 15 0 R /F58 21 0 R >> /ProcSet [ /PDF /Text ] >> endobj 167 0 obj << /Length 2518 /Filter /FlateDecode >> stream xÚYIÛ8¾çWÔQb¶¸‰T}H 0ƒž&Ì“>¨lUYKv,)•šþóó’’mU–ºXÅåñ-ßûýûí«_Þ{#¥(­U7·÷7¾Fsãr/rcüÍíö?Ù§\ºÕŸ·ÿå]¡çƒ¡éu^Üä4ª­V26ð³ðÓVüžøùÊ“¥ŸOvZx¥U˜üëjm´ÍªŽ‡*9ªŒpRÅ}“ß8Qº\âˆB”Þ7k)\©5 “aØÙñ`!­à Ó°Oy®Ϧ…Êsö<ÑÙð,‡¥³h#ŠBNŠà“]­µ*²Ç]½ZÃ;ôQã×°]>_a-¥Qöf §5¹·´Ô_K»I%¬s>ì6àòZ–´Áa¥\öˆï>몶îçúxªûºÃ¯MÓ:{O~ _pV¤_ãÓÅÀOÙêÐd Q¶ûE•y8\š‚¸ÖûèÏç0CŠÐE!Œôê\! ‹$.LXrXx!OâóÂÛ™¯n¹o8´Àùa1’\uW0"8¿\¡Û-‚pÏÈjÈ(rÈïß,{)ÄNþµm6$~ÂZR@5œ\±µAöO°· éйǶõV,%¿µÕÂù²ˆ)ÆüDrߢ ôèæ™-(áÄÖ ]83åôBÁˆ€ü/+òæ¢ÞÙ#×FåÙ¾î†ÝRæ—y)d~™ú¯0r¸Jé0â ,¼múã¾B¬yê¹D •ccä$FHÌSøÐtõ¾yhîö5½ŸÅ¸tàÚN©sä›{(Ç´†¼5¢mµg_Õèì-FסãW—ñÈO[ ü!Aáfh]€i Ÿý-@Žª?xè}¿à¥ÊçÑ oÿ #?¾]Ìw^ØQð×{™oÁ4€ž}(Œ^Z(¤Š!2y-ê£é Ö]Á—^G°€ŒkÑAç`Qu1Ÿ?o‚ï÷u ÃÒÁ[óî ìõÇøyû}wˆ —iÛcCV¨—£J*ðzyÉÜ~&¬p· #yS/ÉfJ¡¤µL™ž¢ŠS§þsÏM ,Œ†gbK!ÈéoÆV̦ŒÒ>6Ãî‚‘ÕýÐpΈp ¶°£Û„!m]õã)€¥Vl̸O@·g´ë `Š~ f=Ö˜m)Ys YÒ­y¡çº5žt«Õ•nµfšÏï*Ö{m¾£Ø²H6 Š……Óƒ6CQó@TƒH6tRò'w¤“u¤vœx`¡gz…Þ5 ¿é¸g l§„@Řf¡’’ÊœcÚ2"Ó¦î ~”É>vsò‚BÎÌ’5¾íyY‹ÜOùÓFÖŸ¡gDZ¤JIGÁgN{éì*Îv“LFãK€plâ¾÷õ—ûî+ƒŒÄ½ò2{›Ô§l~E7°€ëš«à'Ö6¶v£)+¯ÍCŽ43@þ  —¬ÂJ¤2vÐfc;‘NÌaø!D;ntMzp VÌ‘ÉcroV²Á+9LÄŽT3WÙ¹½‘wæüà9—`drROD"è A™‡ VûÙVÉôf_!"`Ìúklò“LÄÍQ·†¼ŒØTû°Ö=ycË/Xº)ÎL˜„í{X`Ñ+q*á$‹¸fd‰G9³INEn‘39€g*|¸èIiù\A+æ¥û½¶Så‡õpÄø"궈²Š|ÁטÐP.¿Ë@ä’Y8zà'žqR3¾Œû°ölw(|Ñ%Cù$ ' )Ësµ]pL¾™ Vp Ë×5Ô,/éˆS™'øLm£„†J;ŒYŽ _Pî%áñ«ÏÍHT~‰®åÂÙdó@‰Rua…>ÔZ„Ü#jb­‰m7]ʰšRUFÓ‘ Ë,`FІÈuÑ)"ÑYV†‚±ÌõKt1ÐÕaõ2] ×e0W¢¸\$cÑ-—DÁ› /Ý\—ya§8Ä JBìëût¾K ù{³­ÓEߢ þ¸öºiÜc\~ŸÎÍ®ì.¬¡=Ôæ6w/¡•ÿ^Ú¸Ò¦;E´60¾À« Š8Ëh|jø ç¯cqŠ-¾w‚™«¦r¶˜EŸ‹%!»Îlë„5c¸hÆn6Âô~š±õŽ +\’ – ±§;#…/5ÇÚš"û׮ƜT€BŽÇ}ChHÞÞú-ÿ‘È­þ–€U›2Ý?ƒ(XçãCŒÅBˆÃÛ·7fŒê*°•3ar¤UÓÅ™ËiHa­T–~~‘¶û/L–Ó»ßKWohŽ%åY ï¬9ÏæaéÍ·A¡ø&>3$©—@R×=ŸÊs$zÃÁ~G L“Cl[ÒËÓ„¹ݲL÷þ.»ÎeP¼ÿG玷iýZ¼žxïÇCñ”µ=3”Ù ‹·ß‘õÑeaº(tÈ`L°‰°…‡ˆÐ€ŽZt`ƒ9kögÒ4Þ,åŒúµ-¹ÆüâAžÛɕ©¹FË2{?¶õ <°cX‹ŠÂ,ÚÙ@Âlö;±‹£­¥ÒÂ,@ÑÇ÷DÏܰ×*7˜Ÿy~’ ΰHξ9´í<¤ÇÐã©K×›DºÒML“`b?Oõ¼Ö©©û«+ò»}•n#¶ÞÝ!âå–í—/…½ZC\k)¤ ‰‚­a†¢ßœ~ üHe³OÝ ÿ¤¨¾.é/Ç¿‹„,ŠòY¢dwÿE}lP6pjàª:ˆJ§õ\0öüõ7~Ì.¹Â´j‹”ú íЈåÓϦ¾ÿøÎ Ó¦+©-ßÑ¡_ý¯þÎf@<ç ‚ïZ[‹ç²›)C_½½}õ #`endstream endobj 166 0 obj << /Type /Page /Contents 167 0 R /Resources 165 0 R /MediaBox [0 0 612 792] /Parent 155 0 R >> endobj 165 0 obj << /Font << /F45 24 0 R /F63 34 0 R /F18 12 0 R /F21 49 0 R /F40 18 0 R /F60 31 0 R >> /ProcSet [ /PDF /Text ] >> endobj 170 0 obj << /Length 3424 /Filter /FlateDecode >> stream xÚÕZYoä6~÷¯èÇ6àfx‰Çó0Éf€,fdœÅ™<È-ÙVЇÓÇÙ?¿u-©Íži;ÁnK%ªHÖùUQ___|õÚɉR"V•ž\ßN¼žx„´6L®›Ÿ¦V\ÎÔTÓ¯¤ß ~”®¦¯6xw·_â¿vuiÔt·½üùúÏ_½¶Õ¥òÂk'3­…r.ßwRyìÌh°ÁH7‘4j}s©¦¿´ð3ßñh†£Q©<úÅåÌšjº»o/gF»éz¿{Øïøúv³.ËÒ”Ñ §IL–5ŒÛÍáç¾Ã«w²’ð§JÓW•0ÎÛô¦(m~¦bÞèÛ·BE]=aûÝ W€ÛßÔ$\щÛÒr¼AÝKÄ8­W—3mìtýߦÛÝšÿÏëÅ|¿¨aºÝî—Ëzó)ÝìHÝv×Í·HªpE…Uk…Wyâí%-à§^ÀÏ¢´T[‰à\~£^5E¶JÀûˆmRÑ=ü¶M‰ûÌx%¤3Äo…µÛòíLVûëZàEœÎ×—ÚOß_VÕyn:Äö ž…€fÔmxØö×}½ÁÙÐÔós\4=Ý]ê0ý€ŒÖ3úWãÏ'ž 7»–ˆïïà¢[¯¶üò‡û¶(R›6˜3,aV©júÿÙé5P~ø~¾-Ë%sÉ…w¢`ý«Å'¾"Ò*„B’ˆ‡V±åG0f¹mïqƒ™vj;ZZ!½ÕOÜÎk ¼z?o‹ûQÚi‚O\¯x è±ðÊŸ¾…·e˜¾Â üøæ2(mîei…>Šè³¸_¿oÞž’£‘ÂW1O‹Ñ¡ìûÖFá<˜ù3|¿n`öè}2Mø½Áû¶ìü¸þJ B¡2dÔMÓíÀÞjrE°\µ‰vXß,Hu@Åø¸âË÷ݵz·Šcüϱ‚=²™À£¦«ïVÈc?;Ž@BÍp™ÌòzÇ–ˆ‹eÿ€ HžšþãDVê‘%ÂÚÉ!yH·"÷Zì›ì©M~À¯&?v¼½nuÇ”‡ nѱƒ¶Í~ÓRȧg¸h¶¥ˆ¶äÉ–4Ú2-Ú’•N˜>¥üòÍ›’ÖÀ.œôá±%B^“"õH\¿×F,$ÈFO›z—®n7õ3¨1àý¾0–w+’{³B›(OÔ#Õl‘jÁ–ÖìÖ¤wS/pÈjÞòˆnËôö#’—³¢}Ä7Ú@ˆ—ÊR4«Ú‚S7d—5Þ8žŽ&Þ/&‘j ¤>t»{~Ć‘_«ch÷€p ‚Ü`¼f»ÚðhdvËãö«n·e*S¼8Ð<[੉p·r¬×5úf“çBøR³ ffHJ0wŽ~V3uÛ&À³g‘7 þËRÈqAô!ç†>D%ís¢ß–”‰ v·ipA¿µ¥•81V™Þ¨+ÉFíÌt:ºëæd¢Î<ŽÆý¡16Ý<ëdÇvÃ!›”7|ƒ¡ÿs\[5uZT¶lwdÙÀyÙÖÛý8eçTÞ‰V\aH‘ƒYC³pÑt 9C“mZž!Tl Á°M“Ðü[&n{ÀÛƒ3»÷]CÖ77 °Œ&„}®’ðÓ+í{ÀG]Êiö‚õöø{ÓÝa0ç&»iA4l¹øt³Þ?îi)çÂFJy¼,#EfísÓwâ)Çæë½Ð €»!0©OÔC.ÕCÃRR U¾šþã2ZDÀ@ۗñ—DלL –Tº`Ö¼å8ÑkÉÏÑ7îÛ¢A馌u#ÈŒ¶AÙþÓgÊ[e€6_/—læ<%$WH¬ LNû°´õb±fø;SŒêîxH»h—-'ÌQ16¤‡õÃÜ’ðE¹lèUaÞÉãàqGÁã:GÆ5%Å».ƒCà<‘b#ç*¯’­k¹&'iÚd±‡ °Xœ(ïÒÌωqçÔIM¯7,_`m1ôon79o™ÙBê?š³Çâ&!‰o™˜#!ràHÄ$þôœÒ^`¨€™'ßO#ª>¬øŽ.6É(ÔååâÍ‚6QÙéÁÆŒKµ'Úiº?.?–,V7n0hÃAJès•$°ëÀn¶í†ÒŽª®‚:¡êKšªå‚-¡`œû–K`6~ Ì׋ýrµÅà…x¤'£2ñ Ë@CªT°ù£x_,“”®òO±'¢«ªƒ×áÚ‹bT³áJ’•«+Qù6…\FšÉ&àcªìLÓ\\ìrÜÓjÌXŠ*ê¼Ï'·à*‡ÊŽ*w`3§˜0O~Øúf„,cÏ+$9ŒA›rä AX/ónÿÒfü±M…õ†(»“=‡1¶~YÚ7؉Áû£ÔÿNj—b‹™xà"1ÒâH0W á}8ª ?xÖ_ l´0•Îèè: ƒN(éræ|©N(Ù>ׯåe“V6¸‰^zEÈÝÅ·×(0DðÕ€ÀÑL dU@~2_^üzñÓÏrÒ\ÈÉŸ/$¨!èɸ‘B›¨&Ë‹(tˆ:ß/.Þ^|`8;pœ Y~­Í‘ ú™ÁòC ¼Àä†VM*é¥BÈ¡°=H&öû}ú‘Ê…Áõ(t$GÃþ^P¸‘S5©…­Œ}š"Ž<Ç(a †±M gÄf\Eë÷ŠP 7E“±ÂóÁ°S8 )øÐf}äßPçfGeñLß@áèC ûŸr yÚ%üy.Q}Ö%¨[UõǹÄã\¢Ÿù.!¯KØ3]Â)âÙ.a¾ìÀ,(=t‰«b…\$*lì)PÀÿs³è¸¨€yTT…ë{ß—QRÐîè8cÿªûÜÛÈÝ‚E†¯Ã”|èÞ¤¨#$$YÙϦd àäàÅW<ÿû6¹°‡àþª˜Ué¡·C – Ùî¶½UÌÈã?<¼Ëý‡<¾”Ç.#Ô-Ê×omèóFJ0[Cr7à¤ç¸¼2à6´Ê¢Óg–³!OòùñúŒT¢’“t„¤OsÓ® -B0Ù0ômÑÿ‚Ù º‚F,^œ«B;QVD#)DiU©“Äú Ø~TV÷hK`ìAËŒ?ïŠØÏõ†‡ önEÕ/ýi {\m:<í§wR–ƒ"]ªÿŸlªÀtCúVß§1K²4hnÓ­ojÃHt¬Ô½„J°eâ臎iæ$†ÇW8p¾^>PÊMÓí6ÃféŽË¹¾‰û3Qãªa÷„rî"‘9å>:å§ ìwÓÝìûމš ËP1w[,?#¶»ñæTû›àv>ý|“Sô Á ÎFqacõ8¬ês… ®cÛDIsTÐX±ÝÝÞ^ª|¨qtÚq«¹qï!78ŒŽîè€â4@+#á…Ÿz¹t½l›®^áæ|E›K—|>/-ëFáG7úpž±Ø'©1ƒ—‰ZÒtÔÝNíò¡Ûð¹Þþº¯W³b/¿£Þ ®cîWóþó>WêQç¨c–Ñ'ù‡í¿®`flDfhD„j‘7O°â§4¨ „EësIÚ~o~Ï $m6§›©î९°UçOq­WE¶XJ׫þÀîD1 X(V¦4¾ôñÌ•£Én0ÒŒøáCTÉêb‘.>ñù29Øwø´ŠÌUÉø„HtýÐ~<…$¬Ñ†Á:æh!¡S×äµxÏfd¬p—CM$+ Ó4¨x× ø¦ð¡òp‰Ë$dövðÊoÔ>ŒþèÌŒiÃ@²eÒ)Tk{•·ö…‡Ó¤Id}fD‰ZhᵦÅзʫ­û¯¾Æ(@¼Ö ì1Þ³£^âFxÏF9aêú¥ÀVë¢>‚{ãV1ñ¨‹5B”`µV©I¿ŒÐŒvæy:Bÿí=ÉG œªÂþ˜(*hwàtP¤¹Oup2ËÙg¡ƒã+¡5 /e±"ͨ’îP«‚A’J5ßÇ‚¨¬P^}QVæ ² ñ³ýdÀÚV|)@A›#}±Ö°2 ;áríÉi”?ÞsœB½ïS(\÷)4¸C .¬çøÊ¢ž³(Њ©÷‡DêE$Q…÷(x`és)Pç{f¾¨g%`¹ÃẖŒ¸€"o1Í#QøËE̱‡#)_nïð )tú!Jò]š> endobj 168 0 obj << /Font << /F60 31 0 R /F45 24 0 R /F63 34 0 R /F18 12 0 R /F66 58 0 R /F21 49 0 R /F43 52 0 R /F46 173 0 R /F40 18 0 R /F41 176 0 R /F27 65 0 R /F44 179 0 R /F47 182 0 R >> /ProcSet [ /PDF /Text ] >> endobj 185 0 obj << /Length 3577 /Filter /FlateDecode >> stream xÚíZKã6¾÷¯ðQ Œ¾I˜ÃæµH° $;½@€Lj[=­¬_cÙóÈþù­b‘eÓ=ž¤sÛ‹-QT±XϯŠúêîæ‹ï´™ Ájcäìîaæk¦•Ö3Ç=ãZûÙÝò—ê5îö×»¾øÎª|2\zÅ팇YýñVTk†? üðÛ.éEáó­cÖ _üòv®¯šÛ9¬\-ÃËñæawë–îÞ?v‹[éªGº]l7xwÀ)ݦ§Áw·FW8²ïšûU|qCTÂS-··ÒWï7ôìð'íi8½Ó_൯šMØÄlžØž Í´6>n{½nö@ÿ#Îæ,üÃ}sèúC·èix»‰ÿðd³Šsqm’«ÈÕ*Æ…rQ>ëdÙÞ^-á5«ªí}ßâŠï`‰-l¼ a!3ºö‘DWo›Q€ÄË^Š$B]×›ž¡Nlõjw;‡ùí7Õè9‰B:ËŒUf*‹E³‚­yY¡ä¤TÀ— „éø)Ù¯™’ܾA9ÁŒS*¾˜ •vž³òXYmqÆûnó†·«vÝÒ[ý—‘7ž¯0 }'¼‡½+¦`8,õߢð%pãÒ6Þ#Õ¶{óˆæuhQ‡\56A\¢ DÐÅžîQßAK4WV‡}Û¢€õ:Då¸éðAOwh¨‰ŒF"øNϳ߮h IÄ÷“= ©Õ*½BçSMƒ›™ªCŴѥȥ %±ÐQ ?¥˜4ÖÄ)})êªÛÓeG ·!,’k¡Õƒ‰I°×÷í¾-“¶`L:9Ñ?[´† Ë]ÝíÃÈá²MÕ¬v&©—¥-‚¢µ4‰ÿ×\Zš¥ÕÌÁË\:He âcÞÔ.šzU‰¶Ùdˆw>-ú[œdÊÈ$Õ»8g,Ü&Wx)Šr×Ì*à%cée’RÚ›™fŽ;¦r7ßÞÝXd¦gÖy«5ãVØÙb}óöæ—_ùlyÃg?Üp¦qCïá†3©j1[ßÔLúZ¦ûÕÍ«›Ÿ‚óâ<'ùUÈU¹ Æ••cé!ƒ1°h130ÓYœi˜PÃ6J¦÷êt3…ü€tDmô ¥[Qk Ú7Jž"N B „ê™bÚ'Ó8_Ñ3e]° WC ½D ˆy –Mû¹@­†0fd‰ÚÔHæZ@¾RÏ—ÎNZð6)™CM]p¶¯·xsÀ¤q碳‰gq6õ¼¾¦>åkÉ_ò˾f¯ó5û¤¯Éºfó£•ðb œýY_(Îs’ç¾–­ Nt§Ñ^ù'M\ëiæJOãÏäiò:O“×yš¼ìiçÔ^!ˆ4`š#èòL -þ1¾êàÌ*ÇeûŽz@•a(À'ã"|‚"´€ ‹b(aGO¯¼ p㸣‰´O›ÇèzPYÄ˜ç› ØB=ò19—Á‡ô0„”„[5@L'ˆÐÔ’¢7ˆ¹®ëªÙíVÝKFË'†’?¾xõM‘Ϥ­ŸÆà=:qÙ¬È0ˆ #š„´é‚àžR ³³_–™jD!Eµ)4R°|Š`6oŒYe1„¶gr…-IäåšH~R®ÃÚÏ(WœZ²ÊÛõÍcƒdä!X{‡Æ Ö'µ½”aKsê PA\ð‡BJûdúA-:‘7`ò6DliŒu><<Í¡¡SAÓ)‡ÂÏq÷‚Fðý‹Ÿ´*$èиÏÇ ÷Í*] “^ BåöÐÓê‹==MíŸÚG^œo ÆÆŽžç!T5PÐÓíÐëÀNŒû«§Í> ²Ø®w«Ä…dÜÀ µ –Ó.E=v”5Ô:‘*“ÀAùÓ~=]výaßÝáÛA ̈êû‡""T¢5O ?¤*(¢¬~o©"zIßý Æþñ ~¾-·ñ,˜­uˆ ŒMÔd-,•Z`ƒXúhøÛ NOÛ7ï;„\`ÁÕ=5øèf·o•v38cïR&ã•Ñ/öÝ›.ôU#¡~‘”±j±{ÈåØ= ÃñùÐ#?ŒÞ†–8MÚ  Âá1¹M¥­´eµàê¤æ býmõááVê? ÀTµJIŠÂˆÁ_$ka5Ȉ•1Z gAx0BOTp ‹½e×lps΄ÍÅKênYlÎ}èÖ(ßãšÞ Û[#èVx™I$¨%.‡Á)µë]·°¹y{l6ÅfÝ¡ pi|7‹ÔD£¸óà86B›ÞÇ ”üch«"12"•Þ w64ñ’¥‚BP»FÛŸàÍŸHA›Å¶œe•Íaý)]¥ôÐø;£ÚlŠd¡NCw!ö¯'1vÊ:ÔõQ¥5ð¥Wr>)H²À~¸K2uF‘®>¢¹FûŸC‘‡µ ¯?#Ýý Æþ}! qàQûQ8RÖ)ԎЩ›àµxFßC$Á»jê`%¾Š“ú ·‰Ìû^2 ø&sÞ@N‡:Å©ˆr_e¯üb“u1ömè¦è/î¢ý ˆØßŒ iÉ¢1Œ^M B‘®Î‚Iðx,§‘ }âÖbÀ8‡Í*<(4×ÊëÓî–ž´Wx­©T¾ÐÝrÙ\dP{qÒÝʩɼ6½+vs”ªOú—”¦ŠÈäOwÈŒ·…ÎÝ_¼7õ‰½ùzÒ2š d<=ðÜδÈêê«P²¢Ž_ìk'’óœf©¯-0*`žŽ[?é ä›Tÿ u«”£Àñ¡ -¨O¨ŸÛNJR˜Ì¡š3Ì[n†0áꊠ a‘fIO ܦÖ9¥Õ$œ¥”êܘRËRª·CJ…KJ©ðR@!«:ʪ06d,J¬@&%V7 m\0$Ux/Oªp»8ÕUs!µ¾»A- F|À|;@È0²Ýǵ†ãذTÞý(¾c¨Ëá ¿‰‹Ç….¦ÙPÎéÛ¯ò7ßeqnyMB,%:ë/’-'Zc°ç ŸÎ‚þú³†³u›Wç÷wL• Vó1–#1%Aa ÊééoÖ<é—(æ…;鼜W^à¾qʾEìN OjÅ‘«Å!ƒjÛr"¡ðNk#äé“=’'–Ib…•Z6³ÁµÁ’’ôg|NZ—xšŸ€ç§ ãKP¨Š ‚[ÒÑ~e„£(/è\ºíâÿðÖ´¤À‘4%¿Ãet®%„µÌiÕä£> a¸K5¯Ëz ‰ñ‰íNj4ÍãÙ}†„pðÒg;çßÕ@LÂr«¤A€¼r°·Ë~SËAÍøsðU Ô&-!›tÊjâ¶R| G'Ÿ”¼òÓ|tÖn”xmÊ-D€øcN£>ÂU‘¨°ç†4v_¢ª1ãÀгÖëÈÙØ¾{¢íú²´øÒP<<>ÅkÔÚigð¼ó ©ÞL×==V¹«L*–ÅCòö~LÞÞŸæaÙ>ÄYiJî+x ˆø<6J“²ƒ¨ðæÛ‰ö! ¯ôTýÓ­a³lÀ„]Âe^¦ç»ÈöŠÁ]ÚáŽq.OrÚ°·P_ÆF˜´§Û)áV'I躼Ù\HBuë1æZ(×ÓŽ´”U¾œÛ­Ò-^ØZ•"ÄGü?ÐT{ Tð.j"\O>h¾A’‘P“¦åënbƒÞº á=>äAôøÀ­¡©´_Æà<íi"öð•Ó‹Ô­zcŽ>­ÒŠŒÀ²Ô‘ §šÏ®›·Œ¤¢º_ŽùTŽÆO&•©RŸ:–î›|_!¨§Î釒2èbã®YÇ«n3zÙ:ÇúbF1€sÆo¬þð{¹Fú#)|±jú¾,j¨¢˜¬¥ø#Xäíÿý ä$uRO­äþÄNÝ5|Ém&ß>»¿¤C[X¨»Ôwsh¤JN]g4ÿ$¹uDÛhþ÷Øæ¯~ƒ’ zFŸ¾cÍ¿,Mç6t¸“¹Ôöˆ3vÇÃH±ˆÕ%xµuµ9ßnæ€jÄO¡e6ž9¬s4ej.žLCá ™ÓY«Æ6–¹çk<ÈÖ‰™†¢íª Œé„‘.“m]W6Ú쩌VNW¯Žë5 mßìë̈¤MõU¶)sÒš)mÉR ô’î$‰NP3P3\D…_?öÇU_¡6%ìá«åmøh¶'>¶ÑpÝX&PòÅêêVIýœ"g`rŒÁJ2†‚"8ÖFLØøaáÝc[Ž”øý„lOB¾d|l,.¶ëõL<~¡K¬÷tÿ s{¤$½¥ËqÂßƧ`jjY`^]‹M$•ƒ—»ý6Ö^›¾;Ä€úÅ6;l"ž2þÒ‡ÃøÕ¼âÚ<ýý0˜h,¹êäG5âɾ{³É‚ Œ­·›e»‚0¦…©ú·Çÿ¨–ƒ‰“H6œf훡fÙl–Ãn#H!ˆ†øð'g!00ÉM×Áµ¡ºò€È]°Rïc;N Åÿƒ‰ºÉendstream endobj 184 0 obj << /Type /Page /Contents 185 0 R /Resources 183 0 R /MediaBox [0 0 612 792] /Parent 186 0 R >> endobj 183 0 obj << /Font << /F45 24 0 R /F63 34 0 R /F18 12 0 R /F66 58 0 R /F60 31 0 R /F21 49 0 R /F43 52 0 R /F46 173 0 R /F40 18 0 R /F41 176 0 R /F27 65 0 R /F44 179 0 R /F47 182 0 R >> /ProcSet [ /PDF /Text ] >> endobj 189 0 obj << /Length 2411 /Filter /FlateDecode >> stream xÚµYY“Û6~÷¯˜òUe1@ðتl•w×S›T*‰“ɾ$ûÀ)‰1EÊ}‡†c'[Þ Ghôñu7ô»W_ݪäF)?µVßÜíob}‰„ars—ÿêuçÍVÇ^±Ù*oWþ¨°ÈýÍï¾ýê6 æ ƒ›­ ü82¼.ôq…¡¯â/|”¶ÞÏ—zc”×gO²¹ÚFk_EQJÛü}³µ*ôÎÕFyMŸßœ|ì ðéßð|^B§ÛÁ§-ª@ŠÝ€ÍfŸ=“}?Ö³0" ûËÉgÓ¡÷úý{{ýÙ» DÆÞlU臡åËÕxö)Çã2øL¸´@úQÇBø·ÍÖ$ §N¼Ëh‹ZT,ÿý4Mí‰ù|ô×9Hý01抅¥êaìýë5¶âÀ7& e1ša^쳡êäçÌ€1b?ôŠÓ¹lËj¾â‘вzé˪Ø~prì“Ñm5Z› Â¥Ù«F¶6@÷7:òŠl‡‹ÜÛ5ØyØXëe-—ØÍôPuA?xè>«€#°6Ò8¹íOY‹R-ë¬â¼ìú¶¼ú²AÆ;°ÐDÞ[’áž[g}ù€J+ªË&AK]ÑH·S:6ÏŒÖÍ-Dàôô;²„öž¶ª±Èú‘ÓWCJÕ ðBëý^ö¸Ú!‰U†Æ löÇ‚g< Ó«;¼ zfò»0I·kZ¾<öölÜ·E6 %籬Ιj׌jo6ê²ï|_`qÿ[ÔJT¿$Qß@k)Oå}ýš¥C¾_²îH§ÑŠ´t˜àÊy<„dT„…M–cÖ$©Ò‰':²­†š×”5ÏŒk›¶œ,f–ò#™(d:Q‘ ƒK5MAª,R<§©xì@òÎÀv¹[ÎíG$.ÊÃ-µ/dôùuq”¶#~q`Í0§˜Fvîʸ¯¼Øâ„ôâ‘|Ã`©p”™yÎ^ï¸Çöš A‡@°Î >Ö°{ëðx«)ó°{l‰5¶Ø”`»b`©öuœN jåÝ¢£³è4ñ®pp‹œÏ±-£BKùÇâi„?ID¤Ã²1M< Itm9YTÇ÷G°t²Z¼Øò ©›{ZÉfÓ²EÊÍZcü­†qE Üfè!}*ieWÞ—•³ õÀª¼;ô[¢kë‚ν‹…Øa "ÜÎ÷ `ó®èû²>p§7$‰@ /DÄ<Ýð/Ëý²f”†Ž‚õØ gr͈ÿÌ!ü€é“‹ŠöKÛcY“>˰ÖBBìG±233 Sï›ýÚZùYH]†¶–¯$¾M•~11@#5ì]Ñ¢ØMèíØÒ©]æÅdß{”ªÌÎóò¡Ìм0D±›£r¡½«Jæ¬a>Uó ⌠&¤ji¼Ôâ’%ÖàcÙYUN¹Ø®Š}/y@7àÁ{ }S¿á)F_hàåE=AÕù Ìe÷UÁ)Ò”4Kƒ‘¤£Ь¸Ræfº¢›Ø’#ö—¶¢GÌ´KDµ#âÙS·¦ë0õµ²vf?&AS#Œ¾B2äº"Oy–éñÊt:–[Rj L!9k_î’œõRº—@†±k¾C9ê…—Ž˜Ñn%å’Û-¬$Ûq¢bhDï;%–”žrîˆ÷¬.³ã,+s¸$Zæ—½3µúÿÂ:ŒV÷¨l6´?«lûX”¤Égi^iܾÅîgø¬‚ŠR‘Ÿ$‘«‚ÄÑöÂô¤¬·9“×€Õì/âÍH(튃XÜ+F÷êœW5¬ž™K]UX1ª»Ï”FÊǰ£ìvŽ­÷ŸM ­HýÅ'êHóRy-™¹"ßI}…£Mÿ|®šB½Z¢,Ž»’w”â› _+9+ã%óp”RôÜÚC¶Î-Jw1’pRe4ø§íZ„-OlýÕE€P=]v’ÖsHAô—"%ig05fÐv©2e±µ ªáÚÎjïŸ GïÖÑa$–BxÎÕ®Á'2¡$2¡„e»¨’„CÌAÚOÛì©D„ W@ Åx7è5ׄÔy.|Æ‹¤æŽ—1φ>ó‘Œ!ôêZb‰2´ÀûùG‰+s•ù1£´Ç‘­¨Hë<Ë*…Fh™(/m!cUYèø*ZÍôÕ”(~ù 9ÖNEð‹G`ïƒËÄp[a€SØk¦weO$¤¶J˜µjÕ|„µÀûõ2¦“¤°}yµzʸ‘H­â b ±m9žÖBîLÚ$'€œèŠ(S(.^[BÞ´syþ³_Ðè‰,óPÖÙTI9wÀÅè’î´’­Œ¹Ðÿ¢>…lßÊ …6Á˜$ÐcXìݸ^Á䔯 i/S¡=¤äØ'v"_­×aŸ4 Ùˆ^Úà÷ú=Ç¢h£V¬tEÎòÀ™·fki?p>’—Ù‰6È;Î…D’ÏÓcLÎøu:+ŠSGqáNNÖyj®öèÆ¡þ| N%Zd©ÎÌÚœˆÆ§š­µÂîE‚)SçD˜ãˆ-FÑìšÜ§Z ~ç¯ ôš„çl1’,+rïR‘¿]€À™ Ñ6Á ¡woŽ+þŒŽÒM)z+ù—™¼4DT> endobj 187 0 obj << /Font << /F18 12 0 R /F60 31 0 R /F63 34 0 R /F45 24 0 R >> /ProcSet [ /PDF /Text ] >> endobj 192 0 obj << /Length 1891 /Filter /FlateDecode >> stream xÚ¥XYÜÆ~ׯè‰4möÅðäQX£A”.Ù3C›C®yhµþõ©£{†Ü¥6Jò°Üîê«ºŽ¯¾žß^}óCšì¤Ú¤jw8î2µË’\$Æä»CýÏȈx/#M_©lô·{ýïu–Fýý„ݦÇo7¢ÐDGê Ø±Ñtv<õRÒÔ*Ö*:7ØœxÆ8_°w)ü÷È{Ðwñ>UÑO®šâþôÍ2ßI) kIÛd·WJÈ4-HÙĹŠú9Þ«<ª2}¸]¶c­,©Ys¯äá NªXe Öä'â¼ùr‘rxdYÚXÚÐ-üÄÉ$S½TQ¥VH-5èŠ*Þ·1™NF›ÀŸÜº—I„¶×5U! »ú U¤.ïYõšwSÙt« =i(»ïö:±Âä*ÝíÁÕÆXömŒ÷&áíÐE&É¢;\Ö–]åx¬g#b“nÃl(V=v>ÅÖ‚™`¬)'¿l#îØ^ÀWðíãän®Œß Á–‚ÿg¿0¸‚otµŒÙç.Aá7›G Œ‘å¥Ïe¬rPuCc%AQÜÀu,ªGZ¹šû3©€ÚÁÔ‚åû [hÃó2+ÀèÖx/Žh沃OM©øþêàóýáGø~x» E.ŒN ¿‡àcáü¦öN!µÀÔ,žÎÍÈ­ûÕ›ü­Ê‹_wúK˜ ㎣De™($\be°R› mö€6+ÉC¯!CUÝ—ä¶ŸÉû'ÚäD(}ä9ïªß—©÷ˆÙù†gà…›úäxOÜ}9"Ûïz «¡l…·qò´2ÛB+úJYï»Xƒ%ÊÏ[®z‚#¿˜’&æÙÌ´ÒFßAsïÇfD†dœÍ‹#ñŸ†‹ù:ìt¼·w:|~üŸ·~®ÀãD€Ò)98d©Ó?nnò_›+@üo ˆO ËŽM7òŽÆ®ƒâÓ˜µýÀßÙfFH‘ë$õÁÜt”bä]²&Ä'·•i&ÒL*¿ð[ÈòTGø®D…§”Ç\d ª—þ0ªðç~ôMòÙD†U…½FNàg?ÍI%.’>ŽyøÆ!¸O„¡ðÜŒÖÏQ¶-KË0 ¥Ë ºnÔÔk®¦qL™PÊß*˜ Qh†`’‘¹åðmº1BJ¼·» ÄÏ’ éò†'Ê$Àzô 2l’Do?ãZ¶²Â&§ ÏQmô޶¯ñð¶$û- cYðÞM·Coäy/m"Œ, ºp–ÉŒ/ŠË…YÕ£cyr_AiqN\Ogyä>O)±_ âÕ–±ÎŒ©äenâÁA{n^€ƒïà~Á0óxÆCeG0ö8h!¿@ˆäa¥À"FCCÂ2q'•+çç¿gº¶ß ¦À¨£4¦”p öà‰Þ“.Ì?%s!_Áï8w£>O¾ÀѬ°y‘m„µíP[{,Ó"WZÝ(šÑ(R0T‡ÿ§žC’{ WzéÕmK7y¿ÝÒs¯ I©0²2¡‹L/IÁEV‰>GÉwž¦¼x¡þî'DœjANC ÷Ly¾gùk\†Ô£}íg“¹qZU‡ùχ5¾!Kƒ%ŠÁÊí8£A=O\kŸÿàœ¯N#ïæ™F[…Ê•cXé±´òÙŒ×/xs/•Œ²vmi¦ÜâÜsjìùÿÆ1è^z¦61ÿWÀ^Ib–¨þRÊîæÔtž… ŒÑ@Hýù‡³|§ÖuŠ/W5ÝÞ¿ ´V&rí2(¬ÈX¬¬äÜW¹”ªu•$‰¿c# ¾lXëÆoJ\ç»rœßÁÄÁs¨`-¤¾„¢Ï[â“Ḁ!ÆçF¿˜ª4¸†rÑ®Úrä[ÒñåÝCv³á\í_.·ó'z _ñ‡„>÷ñB„®ñ¡Î°UÆW¦vSw¸=«Ö…XlU $øF¤i¨Õ€€" ø!É-m)Åf–hf!C–ï²/üÚ’K.ò‰Tóä ÛËúj=ûÑßÔ›¯…ε|žñŸÓK?Y+tz}¢|±²”üop¿ÌÍ ™N„ŸDš+È^«„- F4­pðÕÛëS¢æ;endstream endobj 191 0 obj << /Type /Page /Contents 192 0 R /Resources 190 0 R /MediaBox [0 0 612 792] /Parent 186 0 R >> endobj 190 0 obj << /Font << /F60 31 0 R /F18 12 0 R /F63 34 0 R /F45 24 0 R >> /ProcSet [ /PDF /Text ] >> endobj 195 0 obj << /Length 1769 /Filter /FlateDecode >> stream xÚµXIÛ6¾çW¸ÈèXIQKÑhmÑS㢇$ıh1$¹“é¡¿½o!eÉÑÌxPôbsç{ßûÞBý´{õæ½HVBø©Örµ»[%‘¯‚X­â ñƒ0LV»â£'ýÍçݯoÞGjºT„ÐŒ£U@köÝFxí ~޼x~® }%tb÷ÇÍVÆžÙl…——ŸšFÒÄ»kᄎÛ÷‡2ßÀ²vc¯Î˜ãÚYð¸½ùȽçp÷©7Ýã–¬Á_<ÁÞ4´ØC­”Œ˜.8#s™d6+žêMd“ÒÞÕæ‘W˜;ìâ•§jà±²_T.~ªäJÂ~¬SÇ.ß26M}•J°˜A¢iR]ááE‰Ú#š›E(•/‚T>éçØ´7ºUW’[Ñl“Yn`¹°›ZÞÓ-ZÓÌŽË~ÀMŽ÷Ùó™a8ÜŸ:ãàzBÈ©0cÛ²= ÇÂY£@¯ï)hæ1ÃDàtbä›5L’øâíÌ,áf¹ÇkJ¤Ùé¹ä³„¥ŸŽ¾I`c4¾² 6Ym[l™rê–Ñ*æâœÎô€kÙì¹K‘ذ°ä)ö^29hÍÍr Øjñq:Ì̲sކ̞qžXû"Nêë{dRz@“õË‘Aû*ŠÏ–"ö|0öÒ& Ìó¥Ú‡c·I›É°_2L¸!++ëíe ù«¼€¨«Î顯 G)ùÃ`EN°È A3‰ŸËΩË)òC{ZÌñG¯ÅΩ'',ìFKhM8ÉÌOìO·tk^e½½­lŠ2Ïx9eáˆísÎÞì±Vü{,:+Ü jbÅ‹ŸôX5õX89@¬UÑ’­¤¯5dF¬ "ÌAäƒ޼%v1év¾dõ±"ŒM€©¥/¢(¥c~6¹ ÒÈ’ÚÔZaœ] a ¢!C+²`Ï+§”ÄE§½r ¡4öS;]]&F"Á JÛæHø§¤¶ |¬üDŽUèž„Âû ²ž/Ï!ƒTÝ©áW€¼Æ®AaëÒ¼Ýt‹*>Ø’aÑ`@d°}D7…1$Fκe=‚šªžE5Dc+%S{T6\ä¢ßùïH¥@}lèx_výpÃsÎŽèøU‹0áà7ÊïmS¸à‘QfY¬ä¶«$ õ!€ ˆ‚ý°ÙjºZÖªZñ¹˜¤ƒG•ŒÐ©;Pž#n(ÁÛ¡pÆVâUec¸…#ñLÇU|Ý»•\Síž¢Ü Ê^ßv<Ìq?Ƹ‘™o3J7x×XÔöRw.Ä"ØÎ+DÞ†±¦/-18”Z¥¦Äéó1@ÏRÑÌØj x•ÐLgö T`Ñ"Á¢%jß½“Á#ßoíÌÙÓ0- h©i=N‹þá?‹Cî|ëÆbÔ³±lof}ƒ5Ê)'Yb͹óÿ´G±°r…sa¸ æÁRÇðî0äº-Ó·¿åÃÖh*„¥Âqín”’9Wr“û׎{Âa}=åÝ&¡LCé3‘ž‹õØ[*ë­kX§(ÈŒ Œ>}×V Ìß#G¨¨Áás zÄ1¼hJ+€ct¶ŒCíÞa9V(þ܇g<ºÖ…£_Îe)h²þaZ`GŒAÊî¥ô$¸YWÆü;Áaô]W®[n]ƒÊÌE¨d©Iûîa'ˆ…¬)'nI¦§ a];wmwÎOWûEFÇb‚㧆®½xÞp×UXyIáæáâŠñÂrõ|Œ™çùï.Q4VvYoki 0É4ž»ô™ßdÞ—5kùŸx|Ã[/ŒUÇIhÝ :a=¡ýetºžIò™#¦ª©ÿU5þT1¸éjýµdé •S/q“?7‰t1 4ädVõíø ·°qŸ.À=NÍä ä‡}œsR>uû~‚ò. ”ô»— {¹/bO™mTýÒN“”†ëÌGøù†<çd_.½«.VÛo7¯©(yÍÛð6÷à\v® ¯×ü‰KxŸ—,$eâ‹> endobj 193 0 obj << /Font << /F18 12 0 R /F63 34 0 R /F60 31 0 R >> /ProcSet [ /PDF /Text ] >> endobj 198 0 obj << /Length 678 /Filter /FlateDecode >> stream xÚ}T;Û0 Þó+ŒL2îì³l)¶»zCçz[I„úXJÓ.ýí%E9/]lòŸ)}^/^ÞyqžÖRæÑzUu*e•Y•fBTѺýξÅUÎtœ²fMœp¦bÎÒQì,‚#³‡8ÉK4ç¬1Û?„¶æ#ãbzÒC ŽÕkK¡¶ãD˜Û‡dö¸ñÁšNÙ`d†Ö4ÊvzhU^ÌOW›œíÏ)jö+–’© P£6^¾‡6þ±þ%¼ôM'\¤BHjÚGÍ%4néÑÚé–ÖX§†&œ÷ZÙã¤Ó8…"ådÜž¤yÈ͹–Ùað-ú2Bp+Ï!ËhõœpÒA„é?ŒÉOÇâxøjÏ\Þ@Òa2çå·àèn;¬/Ó+òÕy¿À ­·$ú­íH¾[`lò?š´'þØ!u~¤ˆÞ@«<µ)õò¾*®ïÔ˜—iQ—¹¯ñSœH.XŸ‚ÃxDžsB^“pâÉopš¥Lf}Ҙ‘Ñ_úy¬¤<ÍX  ¼ÁÔNßèP74…9ž  ò†?É:Dð«ÆY«.Õna‰÷!ìX’û[âöbŸ›Æ´¨/¡)þh‚×ì„- ݽ‚’P䞈€—fŸtÞVΪbC’aV¸T•pÎBxÒaíÍÏå…”²kv˜ÄÝ9œ[þ—x.æ²ü£qí ØÁ"û#. ~ÀFuÍÆ|» nß¡oÚs€bö¾Ôó¼J¹(£DfðÒå+ŠY´]|Y/þ€Ý}$endstream endobj 197 0 obj << /Type /Page /Contents 198 0 R /Resources 196 0 R /MediaBox [0 0 612 792] /Parent 186 0 R >> endobj 196 0 obj << /Font << /F18 12 0 R /F63 34 0 R >> /ProcSet [ /PDF /Text ] >> endobj 201 0 obj << /Length 2114 /Filter /FlateDecode >> stream xÚX[sÛº~ϯÐô š‰âF=™Ä9I|2nÓc·™iÓ˜¢,Ö©CBNÜ_ß½€”dSž¾¸.öÛ]àýÍ«7³t¦L’¹œÝ¬f¹šeªH´Ñùìfù/q±ö»0_HQuó…Î3açÿ¾ùm–ÎÆ%…ÔŠF}œ;#:öǾjæZ š´yÄIV¼›KÑßcsµä–¿í«>Ô8¦mzIŠÈ·¿@!“âKÛïïQ÷ ;rq¹õuìú4,Ó=ò¤/usû|³ä¶_7õ‡q·ó(S…5‹ºж÷]à‘ßS›*hISøäP“°!£ø.µ¦«AL(ç f ‹Ñžà´­¶dlA[ò€°1Fü¥mv¤¢ßV¡ƒB]b‡_»j×µ¤PYõ= £ +2&œÁõß«å¾{¯xƲڰ”ÕŽ÷Ô,«¦¬¸±nxðWTÓw¸üb0÷cQ#TGÛ\\ø}7\½lVÌ”úúOѲ³ã³—Ú¢•ñð¿¶›:€4› Brtkhü汯û)ëq&QFé(@ZXÏ@#ôPþ3ìÂå‹ÎÑ@#< ÁçuÔIK,TbòA£5oØ¡¤7ðyswð7ð¹KØ5NÕ™`q<Îë>l™TøÝ£ˆ’pƒõEúÛ[·X£b½c=b{Ãî?ë°%p'PP`ÈeµŽª) V¡Ó Ts‰QèÕЪÀª‡ƒ¤f5É8væO^ˆ/ƒ=r¢°i Œ8¥ô! JÝŽzˆLÐ3A&¬"Ðkqö$*põ”S·t²Ü9å2:ñ‘OOèt |¶ã¢d¾Fkf¹S&HvÕv\`J0çR<tì#pÚ%Ö›ÕKtкH¤Öƒ/ü­Ýw'–æ¢]E{Æœìí:øP÷ÇÜÿu» ?Àþ XMr@½ô$òDZý\X–þ@À,1DA|¢eçÄAux3iÀ©NR©‹SÖ:‡Öü‰§¿D×d5a»\‚Ãht²…WM2Ú%RÉÕ ¹AjV?‘Zkdåf’V9(Uh'.ë¾ôZ±U¢ÝÁº(ˆu©ûøßBäÚBØ Õ’q­Ús™Ì|RK•BÄ…Wû¶p»\MéfT¢ÕØÎîçÖ.w1TL`”+N­õ%Æ} '”ÿI{èaÖ±§ä¤`šÿµëÐ2tT‹<En’ã96:dhÌ‹L|ª&ãÁ!Tn6è›1öw,>†& Ôõý¾«bp¤aÕThzv”ð ´ÍÎÙŠL]’¹l`E†S˜Œ>¾ReÍùC 5îÌ ÀúÛ *Ž­”] &¿× ç#72⊣˜°,„¿O|(9. ëq²'<ÄäEX© HfÑðO` tÞ%'o ´9Š5ßÅæçøA#ãwžkJê$+Ü@¶-F´»‡IÊ»D¥²x »ÂvPýìÁ¹E½8(ÜÔ·ädɯt¾©¹Yb wéÃ,uâfÙBR8 ÙI¼nª}7¤.™†j@m~P¾ÛÝc£b+<Á#v\A/€ÓŸ#ŒÎ!çl¢Óјt¬ÕdÆ œvÚ©—%"r£uÁÊŒLvd]@§­0—2Ù©¹”Að{*MéG—§-r·â(‰-DÓ!2[qØ è&±q‚šz ¦>–ib–qßÝnˆ9“ AFäŠL¾HMC ½ïªzëÐI ¿±‰Íð`ÌÂÀ4`f‘æ{t‰Êl© ƒ7D‹m´/ìØr@¯<š=•Ÿ„R ì}!ˆ@LOÓ1¡n£p§.`*‘yþ’9ᚈÔgB‰ï} ë¤(+3 AD Âm¡OÁü}ˆ·]Há]¤lÐs²û!ÅZò˜è€Òó#^¦—Oºl`Zî&Ðp»ÎÜ‹®ˆïjJÛ&j}‘׃š˜­Û†[Ç´Õw’:­N=ÐEKçß“æxÓªŸ¾ \Ü>¹=R#-gƒ1 œ:ù”·’W©o(ÛI÷™‡Í_tÜŠƒÞá1ã(oôU™!§|;ùü U’§jð„#tOßEÀÔÀt ÜkÚK„Lu|Qñ}äÝÄ0-IÁ¾Vü¿zäÿÒß§ð=·¿CšTŠ÷5ì\| €–wœ•Ьßà3Š¿¶E³ÿ¾£s†à+¥±pÞ°1™3`¸Æ †Né›[qµ/ñ1hkÕ¶Vx„ÂÛ©“ZDÓ#M¼‰ŸZzÀ ¤kÊà]¢]:&¶|ã¡@ç¢i1ÀSÄK „Á‡xñÃV´ º¤5};d€XÁ÷ú‡(…îÃnûÛ[Œ>â?eðÙG;q;t×ñÿDµÞ£c¶£ñFãxó]ý3J_%Î > m-KCË¥gª>™B<“p0^GH£©-É·úoÏAžp#ÒÊ5†í2Qv•LŪçß1É)> endobj 199 0 obj << /Font << /F60 31 0 R /F18 12 0 R /F17 6 0 R /F66 58 0 R /F63 34 0 R >> /ProcSet [ /PDF /Text ] >> endobj 204 0 obj << /Length 2604 /Filter /FlateDecode >> stream xÚË’Û¸ñî¯PÍ%T•Å%€W•Äö®WR•Ì–ë=p(j†e‰Ô’”dz_Ÿ~9œì^D ô»ÝÐßn_}÷^¥âÒÚts{Øäé&OŠ81¦ØÜîŠöÕ´UQµÝé,‹ÆfâÁÔã×Fãv‡‹i}ݦyÔðê©9õphxâiÛñ÷?ü¹ÃíOÛŸoÿñÝûL‡´Unã<³å&!Òà |NlÒ!8i`¦øäœkSÆ©²V¾By=>4C³FǤq¢Ä»» 0Ÿš5´i—…Nec;Šð"gWd„âp˜G¨.·”WŠj&âÌFÕaj$¸Ù¥e'IRnvÊÄÆXÖz]mw¿Æ¼Îã$+œŽNÈüT#Í~ÄZ¨4Öݪ¶r©+* èµhpËN©$.ÊTmvºŒK­3Úk‘ˆYTj£`Üou=²Tï¾U5’?>‰”CÃV >mKƒN¢¢öÝ?lµ"}¼üwtR‰A÷Y“ ÅeqZˆ“¾«jt¿‡í.µ0Âø œa^ „öþžª‰7#  b-2x6¬î^³ÃFžß…§4ûÄHÑì3*Õ(¥udîQ@:t¦uë÷_ºv’#¤â…÷‰yíØ8†FG°#ÏE„4]<ÖìâlÝ~ÖÚj”!â£AÝw¨ÓÐç( 4B<3¬Ðx»3*>¸Õo¼´óÜ_Uß¡&^£¦“h¼Ü‘Êëc5ŽíçD™T†ZêdGÏ~H—ãqMÞyŒÇþšYÇÑõJÝ_õŽSöÍÒù& <Èð£hä •‡~àŸðË¥•HÂYÅŸ;´£)@šð‚‡Ä½ƒã~š,[&lY<×yÃÍ8ñá®i1 1®,†ç©=UGFôÌ!f‚–ìɨW‰5° É !ÏK²§ˆÎmÙ"i°xÜ^#¥DZkà0´n$kà`pZ‡aèq젥¬%Ø Þ¥l©®c¾ <¥C aÆdàD 9Yýa&þÆŠdÚ>„ù”aÌ8r><;²î†‹“˜ð»H tÖ¥dàð ”¹ST‘¶¨¢Š]IÛœ´AÙÏGZWÜmç\†€|áR<ÃìªÄëó5.‘<4ž›×X*<¡Hxáè#Òê@ÞÀôÈ!ü9¾À+U:€c©‘Ñï1J{ÒÜiÑ·4±”YçkXG MÝ´× ËFRU< $ö›x©?ð7!:ú+©Ïý–áá4=yKä‰È×­hÖg,ˆûNkLœ()ÀŽW„N¢[Ä&¹V¹¯$½²”?NÃ¥fþ@%¨J(?óÕ ye’ÝœŒÕ¬6Ý½Û ÒžšÎ)MQ}©tã®,ÄÞw „Óà"I´õzͺíq SW,bF}Næ’àræÝÜ9ÞÑZ(Ÿxm®iRnêyõˆu ¢_dÚ~qîre"ãTÀG³ÀQ(þ¬]”¡·ŽyGÛ;ÙÈðƒ¤*c>óa ±Ì#HðÈKοîíì1žœxr ñÊ„Ęßpí¬ãÔªJA`9),±¬ÐÅŠ2ú p,Àc}yˆ3§q¼Ã½Xœe|Hb(r.ÿ3ž—`üÎÞ5Ží©¥¶‚Z ¢x®?ChPq evXái¬ ¨Ã¥?á=Foò¸Ì…[2èKò Œç%òtO¶k¸²Øèú‡ë¾?­áSi\˜dްnW{h K"=>rL»ŽkÎìHâܳ¸÷~K4=mÎ 4(nšM°s÷ õ4…¶Re¿WŸúÿˆDK«ÔŒ¨˜¢ÑÚzˆzX‰D¾s0^–WL(ÒI‡IcMØÜα¤i]“BÇe©MÐ-§xÇPê93·õä“=5tP¼ÅtVÅ*Kô<ìR »XR%‹Ê­Oáƒ+{.2`ÄI׆æ|¬êÆ%cª®Ë•º"QÏ4„0Ðæâ?…ÅuPç+e¿§BžùëJPƒ)!Ð9EØW9‡ýaËà›CëÓ ‚§ w¹,,dš½hÖ «E±”ŠSS¼Tšá’ã‰gk·jjJŸmqÏèÜ#uŠÂ …–À{€ø6V}¤¤F"`’_ç?„aVâ,>Ûú6gUëNKzÉBIŸØ“@Ñ+ͤ¿«ÛJc¾ u¼Ÿ; AÒÂÓHž’rºÇñWÄÝœ«o}”ArËàøz‘\)f”Pâ‚›…ÁK·(ŸùUP›c ßÍ=]­\ùh2°V†½v@w%°”(f®ŽjŒq•ù·)lêøÐÜI7”8ºo:¨›¸i×o¥2ÒAi,RJzRw—ɳõ´Þ±ó; ${m\pÈö<:pá/m?Œoá=&ì!ì‹=Ä‚öÀgX6èà‹+c\æÈ ž½H1g]ÉþÏËÊ­ Sœv¹-¸¤ô÷lö¡e»®¾Ý%‹7;¬»Í ovo{þ~xéRÿ}7ºÊføºÍÀ/'L¸TáÑól3þž—ºÿ¶]-혨»ˆö-Uæä\ãÔÖÒLI6áÚžˆwAèË[lÂÆfvÄ5xøŽ ëŸH$H¿ÉoË¢Ô)f,æÁ+8LHûšÛŸ'ôþâsOÛKÀLDoyJ—Bš#{Ç386)Ëp”G˺=<ñ s߸ëÉû €gðzäÍ1ãl =í­„twƬ<ÑS]ý8Ê&ܽöÖlÁ¬l&WÄ'`y3×,n‹8Sþ¿îO§0ãUÄ6o˜§£¿Yó ï<ÖeνÀŸ·; 7´áüB“?îøKoªBãí'øQo k7ü¼8‚1t=ŠÖQþr¤äߎÅZoÞ’Þ\IݰU/˜Hšþ›»_CÈ÷ÒÇ÷ÊÒzÂ#õôN7gŽÍÉŸ3:N2mçÒ%ß0Š5s©yrG«¿ðì‘l«,·Ûß[zÅÁ]”D÷T0 ¢¹&‡‰qç¼*IKJ'M^ðê"—m> endobj 202 0 obj << /Font << /F18 12 0 R /F63 34 0 R /F60 31 0 R /F21 49 0 R /F43 52 0 R >> /ProcSet [ /PDF /Text ] >> endobj 208 0 obj << /Length 2504 /Filter /FlateDecode >> stream xÚ•XÛrÜF}÷W¨¶ReN•†âýâ­Ô–ÖN²Þµì”-'Ž8ÃM—9$Cr$k¿>8È™‘èDyaßÐ  øïëg?&á™ï»yg×›³48K½Ìõ¢(;».?9ÿk¾ÓïéóÅ,–¾äN@ƒ`± ¼8srjã4t<û‹e˜x>Æ¡—¥ó¼wh™GH<â<¡Q… [ææ/>_ÿ÷Ì;[ú‘E±hòÆÒžÿ+ö{¼+"jÑGvNrNôðëû‘D´7÷½¿£ÇOíé‘)âÿ…"ß2H ƒxjº*ïÌOÝ€–pU¤W˜»^ž³Z± ´Ïbç?ÔoaàÜ‘Ø4v^Ò¸¨¥ÿZš¸NÇÈàÝ~ Šu³[ðÝ8æ#§ÙÈúUÁë‹Ðw¶¦”¹ŸÁ¿°]ÿ/QÎÏŽýˆ” 7ÈÔ®4‚ œf5À„úx¹Óì‡5œl7 ÆäFÚ(‡õ"HU°ï9-CrÏ1 nÔy Úª"è»%­™Ë°5ÊWgolͤBY‚kÔ³EtÏVg@²¯íï4ÚvÍ"ÈØ´DW;ÓÏùɺé&Õú–.2eñuiëÚÅÎÐHk 6.Έ‰„é6Jêëܪgn`{»ˆ#‡c›ºwË(÷ë‘ø !± ¹KfG:‰ùÐÏÝ,&ý¡öhq2бÆt—¬•,Cw¶B‡NݨÜéPl9Êìª2ª†¶²X›;¾¼¿’Ö˺¼‹Ó³<ÄæÔØa¦-ñl;»ñ (Yê¤;ò#­Ñ\‚M[ÒBgÚŠ2Ê0ž˜£Æ£8a/ Ó㺛Í 'ª²úDX%E?såXá£Y¬–êzË™!‹&ÈpêìiàÆI=ÙÙýÈ#c:=Ä©½ÄgiLÏV)=[K;%0êŸø½3ð|ßy‡'±;âgV½tËh(\…tUÒŠ@ g£ ,DP¤ÄB@(Å‹ÂScµû]B‰–©Ì;JxÉ•± ù‘ö§odi`LŠ¡ Sè%­æˆ^ê‘»8ÇByc¦ßWC/óUÎÒg3q¦i §Ûжe Bþª oÆ z«+F™>ò#ʹkûu¹*zÁ8äý3£õ”bµ7FÖ¶lò¡}qA$Ÿ/”¼\¾üN<¶+]Sî/FëAÁõň›u®.þ ¶™3©pgë²Á]>³"Ÿ¡ËGî~q7t²-FùÀ7®æ>ò¡ ò‰ @蹨 # ¸äˆIæ‰_“Ñ¢Tâ·,- 9Üx„cš}@3eg ~óü6J)|™ÛšªÝì+ –y±î‡±ÌÁ|[°}áóàFÙ‹ wјì/à”_jÖÒ7àñáàK3`’dxÑø’'ôÃêª_#þbäð3ù!OÜ8ò§b·›}œÊAfäfž›úþ7ĺ\#¢ˆùRÜ^“›¹•pʃ²ILÀùÃB UÍà¶“¾„Ú®­ =Ÿ¸TgF]'ç;Rè¹>Èïå!ïêÙþìÄ6J·#Da~ä!D¬|kF#E)“Þ …ná ¹-#ëG‰H&6•øÜk4ib÷IÒÄbQ«v7ö5•6q]PŸByŒÉ¤ªÆ£wžfù¢L¯øäO)^žpóR©pEË…E*ÄÝX1=µêyþe…ÌXè°÷ûaÒŠS0áÓZ9>Çÿ(P·¼ñù%Çåó£‚ç³f ÉT¾¹q<+—K ”`?s2ÝŽ ëÞO>Š›s+h…4°°KkRõB_¾§ÏåÛïéûö#}Þ¼9*ŽÎ–YêzA˜VÌGD1öòŠH_Iÿõ[DÂõ¥p˜‰ž,t³4#°·;Kàº)ònºú“šTဎ’ñ_YÛ (îµ,Æñ¬’>zœh(Kig³ÓÒ÷| òäê_.QÏN¹iÙò;ú®ss.o§ëq⌨èr=Ï ™¦e4ÚÔŠÈ/7ð'Ðú–!á-ãð Ó±ñ0òÉ£ŒHŸ¡¦bDá9%ö„T/èSþ Ε¼>j|b F>‘¯h! Á 7\ÜídmäŠ "^S‚`Õi¡èe®6kÓ÷#˜!pœŒÖ¼ÔùÀŽ"‰¤üVÞÚµr;-`W1nz(ñ1˜áiÆ þvm1û›îظâL‚6¨ó^ÄðC yíf„ÓµÓU¥Ç{Ú¿‡tîßy ÿ{ öµ4%QQ?v®îeîݸ>“[Iz\ÅaâŠh¡,hbtïoþi¸BÍO ð ?K¿ó{?¦# ÊõÀ–G%ÿĨ´KM @Tµ,•V@ 뎉ÝBïµZÁ4ÿÌ Žë> öµËqIÝ’úSáßÜK¬(¤»g|TSĨ3Ú½.ë{?“F"?sÓ,J4ÒK;=:x~ÖfÞpã¦Ó`³„¸–­çäÅžë¥qòø—,ßéô:Ì×Za’F¦á‡'PÅŽàÇ‹8c˜bíÙ×Ïþ%Ìxíendstream endobj 207 0 obj << /Type /Page /Contents 208 0 R /Resources 206 0 R /MediaBox [0 0 612 792] /Parent 205 0 R >> endobj 206 0 obj << /Font << /F63 34 0 R /F60 31 0 R /F18 12 0 R /F17 6 0 R >> /ProcSet [ /PDF /Text ] >> endobj 211 0 obj << /Length 1463 /Filter /FlateDecode >> stream xÚ…WKoã6¾çW=Q@¬èm©—E‹6@Z,P`ôÐíkѽ–”×›þúÎK’ èÅ"‡Ã™ožÿü|÷ðXD»ø&qžížO»C²;DeeY¹{®ÿRyĪ öqœäêÏFÃn öé!W¿ ü}ºÞfJo¢`< çG ïñ·n=ÁNþ~þíá1>ìâ8¬ò-iV©áÄß#j&Ï:o@uû<ÊÔžç‘B‰ Á u:Y/&¡40)Wì-¶¿•‚ëš®™Á“h<¾ÇÓ\Ùn ®[=Š4"¼– – ÂZîˆ7ëõ]œÒ¤P™š²²ö÷Lâ:6¼ù]ª¬PFª˜&äµÄ*‰ð7&Ç*ävû>’´ «4-Öç©Zž§^ž7~aþpftì©} ©h¼Ç>Õc|ØzHÞ=;ÏÔ"²Lg7rõ{¡ ©#çäm=qÅHcM•õÌG} öz„ôÀBún9"G÷ü5ßYq¶“—Ŷ"Å@Õò5tl†E‰ýÔ8³ôkXw×`6"‡@PÕžîG%ÁäÁ{€,¢Vg_ZáÇÃW¶È£³”f¼#;#®{è}Ðñ˜¼ôB¿˜ÆJçjó#ÒwÄØ£—„ƒÚyÄùêjóN×JÝ7ûçusFss¾nXèIÉÅTVUäKgô5تœ+ÖÇOÈe-Өʇóè!‹9*àHŠãŒR°äûM,ú4·>Ô5S›¹ ´£Ü|å’ùüØbúÑWeXEE~ë‚‘”…z¤-âFšpRÞù))ó5cnkïQüpñßRÇ›/Ž-„Š¢çÊÇ ~¥iHŽìÄä–ì§•eËhìB õÒy#VÀ|ëxu±m»]ÛºþFªÜüÏEâãy–Aô•)2ÊÔ<¢.çžéV^èÆ A†¢™CO: x>æY-IÊ0Î;öÃCÆOnZâÙݯÏwÿª0©‰endstream endobj 210 0 obj << /Type /Page /Contents 211 0 R /Resources 209 0 R /MediaBox [0 0 612 792] /Parent 205 0 R >> endobj 209 0 obj << /Font << /F60 31 0 R /F17 6 0 R /F18 12 0 R >> /ProcSet [ /PDF /Text ] >> endobj 214 0 obj << /Length 1522 /Filter /FlateDecode >> stream xÚµWKsÛ6¾çWèVj&B æÐ±ã:M¦éŞɡé¦(‰‰Dª|Ôö¿ï>@™¢˜Äc/$,ûáÛo—çׯÞ\ÆáLi‘ØDήW³DÍbeE¤£dv½ü;x·I÷í|!ƒ¼ž/¢$âù?×gál¡°2Rdõy“¶¿ UƒF&økðûö74s©ÍLJáŒQ¸‰L„Ž´ž-ŒÊÅšÖøÊ„áDCc)lư%Z)Ëê…Ä—e{i‡ö‘¡ #oÿ%4áÙ¾.¶p0 ¿öíP— ùë|¡#|¼ºâ¡ÿæ*›¢‹’ì“ ¬x0ÃÁMŠ#ëœ»Š’M20×2Sn/L(¬ Ýl¡"aœ}²ßÉ“üön`3”èúÀó”ÍvEYÕÜ\²+Y·ËKt¸… iË€ðBpp}Ÿ/ëkü8_?Ò}àA»´†æ=ŸÑŽýݸ÷û¦[sƒ}¢æªG¢kò“ÇKböÒwM›–°jFAò(,ÌS±0Ãâ"ÏòBqCWØŸ^Êñ…p’SHôìF lrnïïMº%ß«›¢t·!E¹~qvèID¬ˆI†‘ÐáQº§€š)gÙ‡D¨z@ h *D@@›œàÁ>„3…s  ¼oÀ$à±L)‚ð4ø©£'‰ˆâƒ«MÅûðië7÷á˜õ|P¾lþÈÒí6_rû¶h7…7JI½Á0¡ŒÌl!µÐÚXÚnÕ•D8šj:bزÌ}k°KmÅCg_S¼á{þºÚ¤R¼§ @¨QqÎyJL!Çç]úŠ#¿ÛEÚSü‹·”#8o=:ÉÑÅj)¤t=<ŸÒy àd›í–FŠ$²Îƒz+ÜòÖ^Üò†áˆœ:ÚeHG’Úž­³b…'¾çÞeœ*Zd¾U è5·÷¨@Ë&FÙžt‘„'v!žø~·© ¿Ì„‡`¡CœùCt»]Zû½[´ºÙæ<w^qspÿ>U³W޼ò<ô‘ÝRƒƒMK®äKþäèœ7>ÙU]»ïÚ^%ŽB;Ÿ&ßçU½æ:—lX?’ƒ>Ÿ+ò‘É¢+½/ÊŒDèŽeñSUçA4ù]Á¨.ˆ—<˜öÛªméú×/+}áã|½œ-ò›ú(-ŽË”$7ôzTĬ6?¯r._( Z|½VøŸ 7B tWæçźî†9ñäòq€ÂGöTUDÑDšyHšù´ÿI,”1Ïâøt݇YG»d;™@ž¤ W:ônÊ"žTøß¥ýи~z@s‰MåY¹¬ó[ŸÅ¼GGIìŠÄü³y¬þ>%6§kSÿwÆœ€Üÿ’„‡èÃð³ƒÐ;&$Ú ~Qúxdj~¯ÆÔZHËç0G‡9NNÇé@ÚAQÙ ëÁ-éÐ-.Ë —BdÕšç M¬×¸«ÎפW~]:tS&ÆøùÈÒÚ"*û‡(¤Šõ˜7¼DÏôáˆ*‡z a¾Àu¨$ãØ/•·£IˆµcwбN06R yÃ…{©cÐO ¾n:]s5 ß«n»åÖIÌá.=Òlyè!ÔÑþ€:~ô¨—Wð£’kt´X…ï(8§‚¹äÎSÌ6±ÁuçlÓq- U\î—ªVüþñû´Oަu“—ãb‘)ᕉânŒR_þ!ÏÕ$¥¥W%0ç,Ð?åÅó¥84Å ¥D¬ôiѧA‰‘+ ¤mâóþ@Þc§‚Ù¶[‘`JVr õP° FBØ3Bè-RÔýìZŒáÀÇÆi x?Ž®eD¨aÕý¹ØnYÿ¤„ [ÿ^ûgÒYa­B]tÐà#*¤^ý~ýê »Ãèendstream endobj 213 0 obj << /Type /Page /Contents 214 0 R /Resources 212 0 R /MediaBox [0 0 612 792] /Parent 205 0 R >> endobj 212 0 obj << /Font << /F60 31 0 R /F45 24 0 R /F18 12 0 R /F63 34 0 R /F17 6 0 R >> /ProcSet [ /PDF /Text ] >> endobj 217 0 obj << /Length 2366 /Filter /FlateDecode >> stream xÚµYÛrã6}Ÿ¯ðÛRUC\Iî›cgR“Ù’=µUÙì-B6+å%);“¯ß¾¼X”3±Ë/"@ Чûôið‡ëwß¿×æLˆ87Fž]oβ<ÖJë³4ÉâDëììºüOôk"Òůþþ½Mƃ¡™©Äž%4JÆ‹¥ˆÔRðP‘‡*‰Cs?ô×Ä$Ÿ"Zã4ö7‹¥L#×,–*‘pï;hg*’ÐLøIá)ñ÷ÅÒH]áCÅÍÖñøÆm]ÑúÎ'ÝÃÿ~²_pžØÂMšD—øNzåú°sõ]sVûš‡W»ûf¿Yô€º´ytµß9ÜßÙ2ìh)t¬µaKíª:¼žº9ÜbâõïpßáÒZ¾WÔ%7ž¼),§ÙŽS|–ÁæK ¯M2ó—’\ô,Jyœ+}@éÊÝwn‡ Ò £i)#‰à$„4 ,€Û£ƒÍžfK˜(6°2kuty„ üÛ&8-EÀÁ_h1²gÉó`g|ü^&ølÛ-c³CêÖ8Õ]Ußâ*`ei×л¾+êß‚4ìå -ë#(I£9'¹)ÞÛW†öЧ•±ö–’yt^–€ƒ6)ükÙÑé 2ܺ/È^¿-Œ‰ŠÛE?{éîÙ£ðuéê¥ÇÍok‚Ûºr´2ÂÈD?L‹šäXØh»]Ñ|åí&¸å·$y"’™¨p`…Öc»gvc£Ý ÆF¦#vÃmŽÙ ú+¾0Þ6ï«ß§^{_Ó2:ÂÞ­ŸŒ1€8Bû£ç-e’83Hul)ýRK‰–‚„#F–úù°ý ë3*Ê[Ê&àÅèÆv 'KÁÞŽ¼æ˜ ú+¾ÈX!¥ ë ·È`puu{hüŒìLðô×àLpIk­œ'¿Ÿ\³¥;”€½I¿)J^Œ}r‚Â2™ŽUÁ? äu„_$QN¦ `{K'Æ"ôø‚ß1ñ1%ÀŸ+¾P®Q'ItÎ÷8GC#P 4Áм95^¬LE ÿ¦~µ¥ƒÙv{O3…gAp”eD;ä„é–A`eʦ£-dø0¸ˆ÷$H\©QSW @BlT7jØVßÌp/Á.Ÿ… † £æ`“™À&síóŽq›0½0À=±ag§Ø_ñù/f©qÎ÷PeùQ>Œ(/û‰ÐTxE÷#Nzu±‚ælþëúÃçOü7â½uó†Ó*¶hùW¤†ì„ VÚÎû»B~d¶SrÆvZOØNU¯ ¾®Ø×áÂü >ÂͻݱhÂQÓð•o’†)qÛê–›Gì$0mg’ªG”Ú–Þˆ¬ó¢vošŽÓ6O31—‰mJhò4¤â‘É19wÅÁƒ½mêímYYôSÉÊȘ”Ýé¹ £v½úo{„³Œ“«ÚÕ(uH2m(}°Ï´Df§MÍ~rzÑy‚Ø4è.!A`»,]9¤ $Еûy[= …AôþJ‚x nv7‹,³Ç¸é«_~$Ç‘b²I}ˆÃGÈ´>ÄþŠ/®Èšœ&Þ¥¬€øiŠÎ•ÜsÍ$ %¡€N½7˜#\KE ýÌn­…Ü–åçæl7‹ó,OjN’k³ÂV/Tf^còXÚ<Ô «—£DþeE°ühz¤â’öPxB8õž4S ͹,7q¶óºb‡D–:Ü…ÜÇi•ªñ~~ y׺]û ›@²6™Í^ã–æDî“vrqéÖO+d©“(e•&ô‹ñ.ªr9vQ>äBè¹H•SÔÉà› ª ˆÙÛ@'%û²úÈ#ѯ7³Ž)llL¿ðßwü°9¡ÊÓ^˜QF…·\¬Î?Í›E‹–B¿Fjèì­yÞÚ ö ­|¡`F…‚•£©ÑxOÔ"}ÌÅÚ'Ò|dûÔD_Z¨ýo-£ÄúXs§¬ÚŽ…µŸt r1u108îj¢ðnB5ŒÑph€G|_ETíí“NxêÙ€š€TÔ­ï>t³ÑŸÆ&—êÏ£ò“Û¶Á¾èøˆ!¸{&à°n×™z¨”5^ô§ñiÙW:Y(¯<3.¯§2 Æ4!–žÔŽ0•?SÐ\ecÑHŽsÌ5ÕaMYýáGïïýiÏ;N¸Ú›Vó TpÚØÄ v“ñԔ ÛouݳbÛŽòùÌ”ÏU}Õàš}]í|¼«êâ­+?yªz€õ} 2Ë¢Ü3inƱ}TOds·§•EÆ•EÚö\ñat_¥íï1ö |}7\2¶ðŒdrêåO\ðÝ5mõ‘;(´q%”ä0zzßYœ(=õžø½†û‚|äöftì̺® §?OßÞ°Î?v>9R~í\õEP’ÌD¯N–qì‰ÐÅ¿‚A°½âËÀä‡7øÀ¶ ¢Æ?=Q·Ü»¦+ùŽllºÝ}Õ„ÓJ¿½ PÕºð:æâò½á ^Š@ Ðlƒ2§ní¹1ðÈŒk‚& (ã·¤"jfÌFðûǬÄDE”*õ¬ÄPøšàöíËrûé Øœ÷›J”°ª"A‹XãÊ‹}Lœ °3«ä7|\’ÖDÂ2Qf:у‡ÁàA–A‡e4С¬é@hv•ŽÎíÖž^â(òöìâºê=?Yñç ×ðøž|Ñ£LLÎEûš8×ÿÄòô|µuKèst82Þê5}7éOûr¿Ýw£Û>„‚èx#r'r»ŠAšÛ?ùÞ„jYz9­“üXà›M’z®ŽO‚s9x9}¢©cÎK«øìõÐí¹è¡@…ɸ¶†¡U y»¾JáÍýÆ£å73A b™¿*ݰgä[|Ïg9a†5+{AàúÖôçÂs9L>G|m0çµaøâU’sxõê(7V#½èʪóît¶LAïZô­@ó@yŒój:~÷ãõ»ÿ™Ã:zendstream endobj 216 0 obj << /Type /Page /Contents 217 0 R /Resources 215 0 R /MediaBox [0 0 612 792] /Parent 205 0 R >> endobj 215 0 obj << /Font << /F45 24 0 R /F60 31 0 R /F18 12 0 R /F63 34 0 R /F17 6 0 R >> /ProcSet [ /PDF /Text ] >> endobj 220 0 obj << /Length 933 /Filter /FlateDecode >> stream xÚµUMÓ0½ï¯¨89ÒÆø; 7VÒ^JoÀ!mÝ6l›”ÆÝ]þ=3§MQWH+q‰'öÌxæù=ûnvóö£±)ye­šÌV“²âF3)DÉ…1åd¶üƾ Yd?f_Þ~tbì f©…›ˆè¥x–K&sE®²»j4åàú]XñÕïƒßeª`ó,‡¯?ÀPL·Y®…f*“L _p—ï²Ü(ɾ†&æ[Î%;ø­¯ûô³ê`é@ö4%ãæ8Æ:¶kÚ‘Ç·Þ`¶ví{š ðב =Ú¥`m½ó}¬Ê°°-Nò¡©\nŒ%°º=fiº6!¦/`pÜÈr€áÍxnø,0ësÿæt¶âÊU&ÅÔË¥_B)ÐOèÒ¸ñ×ör%¯4˜·ßboЈèÕcr¼’§cº¥ü»:Ë­a?»ýûešvM?Ýê\["€Ž-Ž;|h3¸Ö¡Aè[N›^r.WRsí¬ €¥}ë®·£¸û¬Ãò¥ƒòn©"|ì@b´&@pvzÎÄ%TXÍîq‹R¤GŒ9D]ÁÒ#Ê'ÖAœéi½iÛã2â†)ûn7¨0õr¡Âþw‹8ÇC{†aÿ<ã -„¦‡óÁù-9߇žÌ:U…6\qÜv”ë† CMââp¡=9ëváÇø8<@#­2ìiÓÐJÚPkâ²'(´ôDŒÉO[G%¶Jt„ænß`H@ÉR“¸ÿcÂÇÌb£ .†AÄ€I ›A¹xƒ<ñ|ÍÓ½ðëX“º›­Ï1Ý/dPMÀcð –ýv¸xäušÌ}Íe¢¹zAÿ•Pêešë¤/°Ÿ9>½í"Á2ì£H¯Í vœ+’öÁ˜R6ynË‚ÝÃs“ÖæÇ5­â«òŒ¯ ¦Ãz ÛlS·=9Æ+Æ»H¼žº¸ Ã]×6ˆ4‘¢hþ+¼ò…GÝè¢Áû%Ê Ë:Æ~Ã% ìÒt¹Â3öȺª.žtð=?éÖº nŠ) Š‹t³JÀyšET} .2MºHð&1¨¨‰Ãp†tÁœãV©Ëâ¢Kk¹µåÀ¢û:s ²Åæs¸†I.Ë’K o™)wªp1ÊDo>Ìnþ,=Dßendstream endobj 219 0 obj << /Type /Page /Contents 220 0 R /Resources 218 0 R /MediaBox [0 0 612 792] /Parent 205 0 R >> endobj 218 0 obj << /Font << /F45 24 0 R /F60 31 0 R /F18 12 0 R /F63 34 0 R /F17 6 0 R >> /ProcSet [ /PDF /Text ] >> endobj 223 0 obj << /Length 2128 /Filter /FlateDecode >> stream xÚXM“Û6½ûWLíaCU8$~å²¥ù´;žò¨6›÷À‘039ERvœüùí× RÒ eWå"€@£t¿~ÝÐùüÕÙuœ(ã'ižÌNu«Ô×F''óåoÞyq_N¦¡WÔø]5øÍŸÖ­¼¯“ÿÍßž]‡éIúY)¬N¦‘ñU^>»Ï—…=L ¼™Om@ë'¡W-¥ÿ 7•z÷“)ýÚªuÒ7Nú×~ ¢@´4H¨RÇ ~ µ9/òvzQ7]tÖ©~Ÿw‹‰J¼uQ­0xW-vëhi±É»šÚ¦ÅŒòøCÖÍ>c•mpÌ•Å%qÁ$ˆO¦¡ñ‰R¾Ú|’bIèY¶ uº­°´›LµŠ½«OA¨yr-yïÓÈÜ7ÏÎhê±]­q€õ×yóyE^ÍKŸ—/·gXEƒù=ö!‹ž5¶µy#÷óEÛ¦ôù°Óþ´äÖ0P±ø±±tç &Ó™÷Ž´ø®Ýߣ°ËÄ[X=Œ½×½Ø’(ùk+B©÷Ñ Íz¡œÝJ#wlÝʺñ L­ð%<˜¥ôcàÎSSïƒI'±o¢ %TáeÞ¶YÕ,&Qàå]QWЯy_¾ºŽ ÊÆ¤‡®úq‹0º¤K5õç“$¢ëG¡Øv Õ)+Óî§âßÙ9_äãWX‘Aô8LóT‚)åÕÍ#MþˆãÆÞÅn|"k‹è?¥y—½ ³Ø£P÷>”X¼´kû{‘æiF—"R7JÈIhcg~êü‚-ó5ÐÁˆqKîœ<ÌO£a–Áb~H9”.òm›—¢G ¼è£¦•åE%³?וýã‰ÂÑRôàÇ~¥ÞaÑ–à -]>Î"+¾áX*·9Ç)‡n¬¼nm¥s(R0Ìd¦~v̼¨†õ·¨W<¼i) G঒ÀOÃmoëmS±! ¬;1î40›Pˆ£n%ZïóíFøÒ·ˆ^!ÜŽ–©šyBïÒ.„™+êÍT7E >…<"íê·eW¸Ó3;+GÀžÙ™WØŽ{Kvk+£ÈW™zÆÛ™ë€¬ƒ N‹N©sš¢º™(V=w€Ë(zs.Ÿúâ,íË­Ô›÷íºhòªp’ÄPheÁàØ±ÌGÖJÕcþÆVVP\rY„}4²úË‚¢yPï=ciËQX‡&öƒ(w–ÀáÞQbžCE@×¹àªr(‰¤3U@Ñ€÷ÌY£üV‘ûº7å]ú®óf“®ûvéÇ"ˆ¹îŒéG*€2¯uNèÊ—ñ].¤ŸÄ (ïéû¬¦È„­´T, UæÄs r$FoûÔHF"ÎbÒÂÊcd'ñ@| ·ËíB"…Þ»´fKù¾´®0ãô¼ìó3ç0ÌsÐR{‹ÓæR¹sa˜‹@¯ôɯ´êÁ6–ŒÇ6xD¦¡sõm]û‘“$g†_Ûb¼ÈNý,Ž÷°¢©Æ£}Ô~™äÐ&’œN µP|:¼°yaÑàxÿ‘Œå3ÌúŒJéo+FhJ©Rñ™ß·g›=g>MiÄoEåæ»Œã—À,%à¸yèBiÁ#„Á~ÊÝßModÒ06dÞÈã3×”×Ãû£[/ê 2\µrø„âçø|ÓQð%I¶‡Ë±+a×#Á; 6öø]€·Ù47¼¢!÷X~QØñ膆çtŹê”êV™µzäjõèe%Îo–»ú¡û’»÷ÞcQÉFÉB^¤ýÀ(ó"n„áUvìt»,×}Hޏ´I 'hÍxøö²F_uwSl‡ ¼í¦œ(×½U§ÿæ§(ª0(¼ 6m¥Ûó ›\†æœö›ªÞâÈÿ’✓¦!FØ¿ä¤6Æ*WO£+öÿFåV,˜Êó®¯Ë[Ù'àûº°åRÞÓW/ßœÇ*¹Œ’ˆÒ‘óæÑDË›òÿ¢ ¾“ÿx@þGø\гb :IìGÚ„GÒ>\—jð”öj5&¾Žõ¸ûzÌ ykø(+1‰+³Àqœzïò­[ðÁ—‘]…ïÀƒeü—=_+ù—" )/_¹?¾Nœ£+ûC u™¼ì]xÁ\Øâ®KÑ;K¥Þ—ì®Z¥—¿Hâ¬bBƤ+$fÄ ‰è¤z˜æ^]Í_ý>…þendstream endobj 222 0 obj << /Type /Page /Contents 223 0 R /Resources 221 0 R /MediaBox [0 0 612 792] /Parent 224 0 R >> endobj 221 0 obj << /Font << /F60 31 0 R /F18 12 0 R /F66 58 0 R >> /ProcSet [ /PDF /Text ] >> endobj 227 0 obj << /Length 1900 /Filter /FlateDecode >> stream xÚ¥X[sÛ¶~ϯðœ'j&‚ ÁÌt:Jì&N›ÆÇvÛéiú@K”ÅcŠÔT%ýñg/eÉt§3çEXÜ»ß~»Ôë›§?Hw"¥ÈŒQ'7Ë“T¤±±ÖîäfñGt±ÎË—“©rYô£BYßMdä{o'S‰}?¯ ¤YtÝoóÆ{?q.°£O±‰aXÅøë 'i‹>ÉD(»m½(Ú®‡søžŽ·ÍÖ téäó/¢¢-×E=©‡uyUv½_œCôøóæ=>.íÉTj¡µáW}¼íŠöóĘ(ÇeS›3å·tz³Eåq(‰ÞàÛŸŠRÅ£õ²h‹z^¼ü^uúƒµm©”R{Ó¥ï›m ÷L¦‰Ì¢f‰­‹úUÁW £;žw`¼¼ÊùÄÀkü¦ë{ó²èw`²D™èLPtôÎépÝÁSg¬Ù¡—°.K½^t”d*Ù‰ØÙämÏ’ò#ÚÁ¬ü?ì=?¼"ë÷›W§0xŠîº¯‰ZÉ[¸]ˆb±ÅùO±ÔUFì°›ßv§k\ØÏñ”UWLƒoÉÔ¢[ç®+á_‹$3)ðÈØ™Ç(M(ÅÖ2 Q`%jîœíîý#“,:óKg¾=¦öÀÄ3˜ä X‹®Gà$ xæ¡ìW,½-êaMØw3q~SÞØ 3*j äšœ(ȳ ¾*ÐÜd«W“©Všîl ¢åWÆš&qâÂeP©ñATÓþ²ÇÛv¸FG×óý÷®“TÄ6~Škåq -_Âl0]LÉ5>…7.í:ð©÷u¸èàݰ³©ÇP­¬ˆcuë,óâ×h°³ðc=žà ¼#Ón?KP…IÄBÌÅ’‚„q w3ºµÚ}eOÂò‹zÞ¬7UÑÜ¿Ä3›ª$&›ï)ê9Ü\ZµN¢3Â[è±6f5Ϊ¾héâ¾d•q\Áø]ƒÐˆ¯yå’€Âò‡mÕ—›Ê¯½@MÖ›-.CFÇSb2‘%ÄðsÑ@Ãè“ßVEÍË(yù'EâŽû¯ n?n[WeÛ5§\ò=¸Ry^zΗÑ2¯Ðe8Hä ›ßP a¾Û{Ÿ‹Ã¸eKŒ †ˆ\>êï1º¨{ 3Kží‹è¤Ñ¿¡väEÕn ÒáR™íŸ'‘ääx%cv=ÿ¿EÊüÐ>; *f§Û.¸]!ŒžwÿO. ”»/¹j½Â µ iæ)–ΈsV¸Ú2=SMl}!‰›ÏçÁ{u³.zO£<…3¼oÞZîxš¢Ú¡FÉËz8ÿ²mÐpm¾îÆ­#ŒÎÔS÷öÒ*N'êÐ^êhϩ׀æ¨3Ó6ÔÅÏÒ¶Ä£€üy;µ^@ÆŽ)ç[ °à ¨d–e‡î¸ÂܵÃ*Ìï~Í_6$.Éì£GŒi¡2¸-ï1>N?TÞÐñç®.©–¡\+€ðsAÊ"ê÷ë÷£t¨¤O2×›WÖˆÄÛ¶\Üq¡ŠLøKIÝáçS×ãüŽ7]¶œ£ºPÅP~I¬¤ÙJˆ˜n_ŸÞæÛ5\jd œâÈ^:MÊØîk…F£˜c ˆtð¯àï³´3èª,Rh,&H/ÊçJBéa³,Ù[ý™Ô` G­©Š¹Ó¿c1B¼¡è©ïÆliÀÖfùŒNý13TúU~7ól¾ë¯ª* èÔEïè›’Þ¡XçŒ SoÃP[sœÕa eu˜Ùg³¯ q/gªñ¨[¾âÌrÝ,ÉóøC4Hìa‡zåQ¦1˜÷ùËäiÒÿ ;úfÀXXrûô£AÓHÁá;æa£Eâ{ô1kÒ;êïÓû¹þAü·ëÉ,]`Ëe/šm{Z#›Öß3eÂs›ê;*‚s-|m¸ìȽ{(Põ|ë«>ò†Š~#wÀ°5ᯨG(õàä™o…ÒßQB;«,Pâbšç[þ#f¶ÙT%QÑ‚ÿx ßñþ„¥™ñÜ«…UnoqÔb…eú+ÆSá#ÁWg‰MEbäQÜh´ÿŠ9©X°]•´°«]å„I' àä‹ó›ÿZeœendstream endobj 226 0 obj << /Type /Page /Contents 227 0 R /Resources 225 0 R /MediaBox [0 0 612 792] /Parent 224 0 R >> endobj 225 0 obj << /Font << /F18 12 0 R /F66 58 0 R >> /ProcSet [ /PDF /Text ] >> endobj 181 0 obj << /Length1 744 /Length2 581 /Length3 532 /Length 1114 /Filter /FlateDecode >> stream xÚSU ÖuLÉOJuËÏ+Ñ5Ô3´Rpö Ž4S0Ô3àRUu.JM,ÉÌÏsI,IµR0´´4Tp,MW04U00·22´26áRUpÎ/¨,ÊLÏ(QÐpÖ)2WpÌM-ÊLNÌSðM,ÉHÍš‘œ˜£œŸœ™ZR©§à˜“£ÒQ¬”ZœZT–š¢Çeh¨’™\¢”šž™Ç¥rg^Z¾‚9D8¥´&U–ZT t”‚Бš @'¦äçåT*¤¤¦qéûåíJº„ŽB7Ü­4'Ç/1d<(0¤s3s*¡ òs JKR‹|óSR‹òЕ†§BÜæ›š’Yš‹.ëY’˜“™ì˜—ž“ª kh¢g`l ‘È,vˬHM È,IÎPHKÌ)N‹§æ¥ ;z`‡èû¸ùG„hCb,˜™WRYª`€P æ"øÀ0*ʬPˆ6Ð300*B+Í.×¼äü”̼t#S3…Ä¢¢ÄJ. QF¦¦ Õ† ™y)© ©@ëëåå—µ(C¦V!-¿ˆ ©†f úI‰E Q.L_89åWTëš(èZšX(Y*˜[˜Õ¢¨K.-*JÍ+'`PÀøi™ÀàKM­HMæºy-?Ùº%kú¶¶•u®‹/¬bÕçüybíË›ì"vÔÍÎL© 6¨˜^²äÕÂG[û‹g_”ðJ¶ž*\´E²×¯'îË"á5[»,‹˜Ð`º_ïF°xes×4ÞÚê¯<†Í˜ÓúHÚjÑãYÊ:7¿(×Ÿà™—òÂ)jñ¾ï÷®q iMÒR’2¿¹‚ý.£˜xåÝçWÿH+r6Ï‹º¿=!¶ziøÓkžß^§J7— ˜ìâ±¼Ý딥b÷%hžî䉪[EKš2ú&¸RÑ÷úåã1wz ÓÄò³)Ó_•ÿ¸$>HÊÇÁù¼]Ùûh£‰+#ìÔïëž$(¡É‘çõ'é¾iðÝ~jTwUa~ªëÞö’ßÿEO “Õ•ÞyZ?‘ýu5“Ëý¹4ÂöNÛÍfÂ&›Ù¾’q‡YâÔ#ÚË4?l9`çøöÖ–t§Gm3íIŽŸwôðë; j¼æ×Ó7hþ:ùG(¡ÑW苳í—ãiÓ5„jÿ‹”ç{oÉ/[vãØnÑõŠ«?u¸{ô\óT¦ jR7% (\£ ’sR‹Jòs‹²¹ŠØqÚendstream endobj 182 0 obj << /Type /Font /Subtype /Type1 /Encoding 228 0 R /FirstChar 106 /LastChar 106 /Widths 229 0 R /BaseFont /LFLSXT+CMSY6 /FontDescriptor 180 0 R >> endobj 180 0 obj << /Ascent 750 /CapHeight 683 /Descent -194 /FontName /LFLSXT+CMSY6 /ItalicAngle -14.035 /StemV 93 /XHeight 431 /FontBBox [-4 -948 1329 786] /Flags 4 /CharSet (/bar) /FontFile 181 0 R >> endobj 229 0 obj [380 ] endobj 228 0 obj << /Type /Encoding /Differences [ 0 /.notdef 106/bar 107/.notdef] >> endobj 178 0 obj << /Length1 803 /Length2 2229 /Length3 532 /Length 2810 /Filter /FlateDecode >> stream xÚíRy<ÔÝެ£…ì¿B–03û›¬cÄXÇÌcV3CãµÊZ ¥±oåU*‰Dh¢R2d oIvJEîT÷½}nïŸ÷þu?÷œÎóý>ç9ÏyÎQÙíì¦eŽ£€62C ® 7,‘H;}€»„Á **–4ÃÀSÈVh ÀŒôCaD@G€#t:À’B áƒ‚€š¥ú7’`Nix,† 1Œ`ÄÕÀbˆ€‹Ú€9‘¸~ÛA\A:H qÚ8Àᱠ“!Ðo–ìÈÀàGFý«Òè\S€Úw›ê×$ŽB&F80u¤pO¹^þ¶~· #1¤oòß‚ú[CÂ#þI ¨a  )8Fþ•züá âða¤_»v 5'A@ ®§ ÓûQÇÓmðLçŒg`ƒ@ ‘~¯ƒdܯN¸ñ}÷u÷D{¢löýxØï=g žÌ@EPAö“üÃbnD4<ð‚iÃ`p.‘;ÿZùür–5KÁáÉA€BÀÐh˜Œ+¥ƒ@‘pOÆLdr CµÉw À &¤Ð ß^ÕP€¢¾•~ Cêñ/‡!(þ'„У?¡ €2¿Ã¿ßÞ‚Œä~*-׎0@À¢ÿ‡ £Ñ@2ãûÿâFøÄsSA&ˆ…ô¿¤`MN„œ¯K¬Œ±.~ZůN—Ë-?ñø^Â\íéañ´[OP Â¢X‚Xþ²è¹ûj(.1*]gÕéMàˆµoÝ©^˜ç&8‡ööåí`=lÙNÊO~Ó¯8A½µon@ie$üÃÜ Hz&…¯²ïåúR !¶k´_$§4yâÃjpÈÝߎd°?¿?H)¦ô—vHyç­ìøÚ/Ý2ÔCÜšktŠ…Üü²bÞë`MöœZeæÕ`NkÔŠ«3¼ô”>¹n]â7cÑ-Uâã½ýFôØT’^dÌ efçˆoÂí5‰üm9/TÒÛ˜YCózš…B‚–áBÙñ!/¿hµÞ7Œ•bž Ÿ8ÁAv¬ñ/3»:ÌØë½ yéuÆ‚Lv?èщÁm”‹]““{Û¾w©½AÔª¡'>¯$èÈÁ̬ÔW=ªt~—†™ø'!ôâÊf[ÑPÚ£•†1ª'óÎÙUûí¢è:o¿’[¨×Ø-¾ûý¶§ãž“ï|1®”éŒ[a¬Æûw¡æf[ã­%…øªrVŸV¡n•{#aè’èfåø*âtŒäÃdùÌ®$ДÔä‹ÁSïö7cëLÜÀ&ãÅ4–ÁÃõ¢¸ðzþëÖSèáÙóA}|/\ä›J.I’P¦ë—ºRü>)q±.£'»ÔUë×bˆ_úD¶OáW3 Åìž¿@ZhêRí|*³efin%,ã³V]™s)uV¬’Î׫ŸÉœ»¿—'ï¾Ð²¨úÜÄ«Ýï¦Éá>å²òŒYâšìõh~'Tµûão^fM¬ÌËÕÌÆ¬Ù*ÓåDz߉¼RyVxé$E]-î]/&ߦg³T±u?|yÃñɪ»TeüŽTwšï>`C´?³FÛF¨Ð) >‚IvÏŸKµBO÷X¶ÊXÅ%—Í{¯DìL½/^ü8&}Uôöý‚KüË皦‹õ&´ù„w¦ûᛉ¡MÍEKWr]ž4ì4 ürâSëŒê5ñŒëKÙÞ1 !Áó·£ÂþÜì‰òu¡©ßŠ:æT*Ž®,ÈÚâldþ¦EYZ/°¯:=¥=ê¿×ñáÌ)ØG‘žבwÜÙ¹gžJh›oâ„L4z @ýíkvô¸oÚ?=?‰Ù}üѾ½Û›É‹ƒ~Š™áEÅ9›ÎË=˜Äê<¡µý9ÚáÜùq u¨u”°æMžß 9³GÖ)…"Ï_™#Éx0Pªw݇1£ ’Öt~ÊÃ&"¯™îú:Ka¹@ãÙZÛÎY“D^¬ðšÏ޽Y°áôju_UêƒB@u¡î-lv“‡­8ÿeÕ¤D¸úåª`¯‹ïØÖ7–éÏ%m©WdøVµ9¢«L×à—Ðþ›²tsêdÂÃHÇ\ì6£Sº–éK |Éù:Ý}¦•éB }öp(‰jibˆ×*8W’^ÑkÊa¿F—ÄE-Z士‡Ìß9FçjØ{kM§Ô°¶e_¯…Q»6¨jOkÛ$ Å›ÂJÇNT?Ãð °ÄŠõ½v«l‡?é$™d”øt ‹²NYePBÐóT-Ùü¾C0ëè+þ! ÔG¯¤>þÅuÏ/«“¡Šx·iS·þŒH1ýÃ|ð+õ÷BŸ=)Ê è/Ý¥åÆ®N” †l{J¥Eÿ°à¥Ò^ìÜÎËÃfã²ìäŠ ºÖ’¦¯rú2‡™““7 -)¦ìçó›\4=iB›íàO»åÙõyPL5:g}•³8€~KîX¾öi=J)ëF]Þ¿Ûöl VyC?COLêc´Ô– ÿPï#‚(¦ß¸–7Ëlh¸rÏdߦÌ~ósn2™JC±w ÒiÂ4u<‹ðÙÉ“C 8]LÙ´šß¹«´àZFªGyQv¬…¦ä¨€%bI¸š|ôX‡ذåñ¤ŽÐ ˜taÊŠ''È£oQLLÒ¹ÞŸ.´¦`WH€Û•Ñx5$*&+žïe Z˜èi½,ÿx|,^ÅOAþòWkcç€m¨á)—mù¬teŸƒÄp¡(pqâ(GcVvúcd©mìðœkãÓŒ©!v䌕MÉ쌃C!Õö­[ªDª—8Þ2‰Òm­…²Ìv¡²=oÓæ-WFs/b"ŒƒÂ/ D¯\o kŸ Mw¸¥Qq~ì³»Áxe0x¿Ê]hˆWÞömc¹®~ÏÔq¾Ã,©‚úÆDUÞŽÃÉikšìb$ØMä@>Þ4e·$>º] ™£VŽ©•N3Þ¯ -éÁ³¬yÀriÁt[­ÉŸç}Úò2;¤`w¨içi¢ šbÃ,ŠVfDô,ŸE®ÉølôÞwÛw×ÞKÔ˜¨ÇÞ‰AþöA`aÁjäùãžJ±8©¾6Dï ÷šÃ¶Uì‹8aµ>¤<]_T÷lÐÃÓUõô¼^ª´o_Úþ)F‘xõ~çÜ4Ö¾¡#|ñ[ÓYÙÂ3ÊuöHÖJKëz÷j”zu¼½¸¨Óˆ©ÁÛÙv{42¡§¤ÒÝFq>}†uÊPü¦¾çÓ£[møßm øÂʬ˜E'ýþ€,{‡Ëç›âø¥$‰ìvb{2ø´«…#¯ïg\U öø‹’‡xËXScççÞ½ö¢0zGgiýIþÓ— “sæs0Í ÛºU\[¢+ÏJM3$®àá¬fÖëk‚àöÕCY›oŒ¹þ²’Dk·½ížâ¿“ÿ <Ç02ôt­ÈUÙ££¼]<Î _•Ýl•"£Î»“üsÕí»Ó"keIî:Q‡Ebž4ûÍ\hÚZ‡+Ñ=~Jî<áu‡=ÂçÀ¹öæ¤ÙŒ–ó³Ì†ë“b÷^ÀÂþÃù¿Àÿ„–bh C#@þ¼¼¯ûendstream endobj 179 0 obj << /Type /Font /Subtype /Type1 /Encoding 230 0 R /FirstChar 84 /LastChar 120 /Widths 231 0 R /BaseFont /VYZYTF+CMMI6 /FontDescriptor 177 0 R >> endobj 177 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /VYZYTF+CMMI6 /ItalicAngle -14.04 /StemV 85 /XHeight 431 /FontBBox [11 -250 1241 750] /Flags 4 /CharSet (/T/X/i/w/x) /FontFile 178 0 R >> endobj 231 0 obj [731 0 0 0 1001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 446 0 0 0 0 0 0 0 0 0 0 0 0 0 893 698 ] endobj 230 0 obj << /Type /Encoding /Differences [ 0 /.notdef 84/T 85/.notdef 88/X 89/.notdef 105/i 106/.notdef 119/w/x 121/.notdef] >> endobj 175 0 obj << /Length1 770 /Length2 1296 /Length3 532 /Length 1865 /Filter /FlateDecode >> stream xÚíRiXSg+KƒÈ@eÑ~À K ö"«ð°…EÅ JHn Ü„,@X‚ EP¶)ÈRe“‚² EFpAV5"Ë`™€£€aq.X;ÏП3¿úô~îyÏùÞó~ï9Zê}[2#rbÀ}¬ÖØ»{ãÖƒÒÒ²gAD•;9Àš›c-7aoaln1Bi{“Ç¢‡p€Ž½îf‘)°¥C,*‰w"'¢#$" ø0HTˆÃ3¶4ðÞ¼ÁÞbE@d ÈTAÁTe¸©Ç¦0€é'˜Ìe~NE@,6" è "u"‘Ì€i<@†((CÒ B”ü?Dm'wâÒhDú&=âÑo²D:•Æû%Ï 3¹ˆÜdˆo/=}’æ‘©\úö¬ ‡H£’lá`0Ÿ *Û‰‘ T)Pˆ46´…C0y»Ķ- †‡ur>ŒÞšæVŠ@¤Â_óWÒÍÚ­ûŸñ†E'0 )DÎç¿€m­aƒL…‘u0Á"‹E䡽@"ƒT˜ E( Ñkh38È€X( js˜83` ±›è'À2`è׆P8™Ñ&òÛgÚÙ1¢bô‘]Ô72AcÍ© &î¿ I\ ‚9[„˜õ9¦Pk!( "¡Æ†$ËÄÐÜÆ¤J¾ci•¸ž˜]pS†ÇOío“NÍ£]}è®÷¢ÞOt-_aÏŒøÌבkªìó­±^½NÂ3áyC33ùÑͪ~oóÝyÿ`j,'ÌÉÞj|÷ÆDÌsàEOeÎñ²®¢…î¹b‚Žƒï+Éçê;:ND4t$âMýœòiGÎ}WÐXÝ[./¼2wN)—“µKð8zNê&úÙ"£•»WT*u%{ÃÿÝìÀ¡J…Cø¸oh$d˜N !¦¦9£q_§•^(hnYUÚô7Ìȃ­ ³‰xÇ›šYC'TbŠøgŸ~×S§òñÃ)»??æ÷Mûßiº/V㊎5þMÏÊ®ÞÎ ‚–HFüQ—°ýî ¿g^A0~7½ë]x·ÀÀÞx?ûç‚ÖðWw’/eól„ß>˜f-MEãݘ™ÎöËUX…~#3¶´Š_´û}ÿ¤'áO^zßL –'<ý=÷þk­,n¬×*úuº¢—Xœ¦‚Ú—órnâÀ×{gH™ÈŠdÖB[t³žjyûÚDžv ŠœØÿ10bƒ|ÿÇ¿Ù^®à¶&i؈l{j ­sòÇ$óŸÇz,°¿ø`&%¨\òZR}´ü—#âù=µ‰òô<)+¡Ÿ¦Œoµ3s·äØÓâqæYåþòÜò¥ÓÓœê•;™å_†ž¦7z< à+rô8ÙM¸ÐBד³>=V§«H®k:UÙiL×§éwŸ˜x=Ú@k'ÞN}ï¸s®²v°€§Sx+NhÅÌÊ¥ÖÁ×¹¡e3ÉÂÉ+U;z¥?ª6¶]Yè–ʳ“C(ÇŠ }dõõ;YÏøuO‹[”‡Í‚áÂÅã×ÙZ¯š—=¤ÐBî {OLMVt©)·Ï·ÀßQ3½_$»4`|ª£¿0v äYÚK)ó]WÇB†j,ŸïW§¯$¯Ú^þUw˜}.8=&ð´Ìµ*_gÒî¿w_ý/b:¿hn2ÒGuè"ö›6í)KaQáÞY•ÔVËËã)Eü*éËÜÚ×]_Ì©¸xÀ©äÑšž6ÌÝ™bxðæ#±ÄxHsº$%65—_!Ž=Ù¤˜¾ä¢Ö™äa·NeÝÇÝzf¦51(´œOiÜýÆj-3ekîØ)5ÞVïFqQ žÔ*ëêwŒñ\ý§î"h|P FÔBÏ;x³Ê =(G¦a¯V¦‚™Y5ظª¡p¶#wÅóÈ’èý)ÿ¤L‰±¹rå¨0]®â:ñ£ôšM¤%ÅfôûÙ†ÇÚ{’ GbïwKFÿpµ½>ñ<áDlÒOžÈ[wªHtýð²±ø¡¶¶eš’e ÆØéÑ¥×¢xžGŸ‰!“oãõóó”â!ÅáQÑr£Å¡Š·Þ2uªn’.Mx ‰„ ™ôy܈žª`ŗꆮ^·Ê¸8z» ï9:¢Ý[ùÒp΢ßÏ]«å¢ó傚 qûÊjèBÞ Á½[Ú4qåî8íû“3•×bzÊöMë¼;›Ït¥h¾ätpâWëB¸jZ™â˜†Y…R/Ô™3â_+;¨Kâ-Òv+ïÏ©˜Q‰Q©-˜§`ŸF•>\m9Ð=ÇM²µà;³nÿ3¥–n|[Ñç[%üÕ¥©6úè¡ä[³¦üI 7S婿q'²‡¦Óƾugï×qWgfÐEFe·Q玧|ç{®*}7†Ï‹Vü0ÿã‡úƒàwA@¢AD‡A'²ÂPÿ!ëqendstream endobj 176 0 obj << /Type /Font /Subtype /Type1 /Encoding 232 0 R /FirstChar 48 /LastChar 61 /Widths 233 0 R /BaseFont /GGVFHG+CMR6 /FontDescriptor 174 0 R >> endobj 174 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /GGVFHG+CMR6 /ItalicAngle 0 /StemV 83 /XHeight 431 /FontBBox [-20 -250 1193 750] /Flags 4 /CharSet (/zero/one/equal) /FontFile 175 0 R >> endobj 233 0 obj [611 611 0 0 0 0 0 0 0 0 0 0 0 935 ] endobj 232 0 obj << /Type /Encoding /Differences [ 0 /.notdef 48/zero/one 50/.notdef 61/equal 62/.notdef] >> endobj 172 0 obj << /Length1 853 /Length2 1387 /Length3 532 /Length 1988 /Filter /FlateDecode >> stream xÚíR{ßÏ÷÷Ð,xAöîBI$â-Á{ˆq€çò Õ‹DgRh4O T‚-ƒ „ ¸Ë¢ä˜Î‹‘"à)‰—ãht l<Nˆœ»ÁQŒå0ƒˆI,AŠr:p‰@àÄ )D¤ž€éBT@€H$Å(Œ‰@\,JœßÁBYü{*Á¥d(`C†\ȈB &’!EaHÈ»2Éÿ#ÔÇæÞ2‘(OØO”ô£"ù‰8^F 8X."8ö±ô ä]¶åˆ•‰?f¹,BîX´öÉv|G Ro4òPB¢`‘™ÄLøq²½É Œ`ß`¿žÝ»©Nr<ň`y<˜Ä“{èÞìGŸIg2!RH®÷áÝå… $B‹,G'ã8,§0I+–£#ø(&D’HfÐ1 Ad3I J‚S&†Ê 1ŠÉ¤è$À XJV‡JãÈ!Åü‰;’JD„ˆŒøƒ˜,ÀˆÄaIDý'Ìþ~÷>àN$ã“À_óð$~iÏf{2<-vÎÎ.Iÿ%ÈpœL0ù&ÉÞßï£PrV’ˆ(Ý×$‚%[c¿9•^±É«¤ãˆ&Cçeó±ßºµ›VÕn*@…IAŽE+-¢‰Ò‡ßõ)r~6Žë4ñ,Ù3 ¯ž³=`ÛÚáâYGYËWíLql¤wË·díþÆÎú!÷çõ¡ù…i}fœFüöþLê¢îajró´"á5%§G{®éØæÚZš:wÖV©Í6–«î_3³ÐÙRÄì­³ýÊ,«“<£¾ØMæu_Õ§ý9GUPÞÓòËñrîÅIBµŸ´ÙÚe‰Öi³CÓ[6쪙 ל?PÉŽ¬êp€ˆ1¿½úÛ 9½ ž[ÿ]›a>—œ_ºy¼Z¯l£[rä‡7—ñ´•ç¶¢`ë-âû‹ :Hóllçš#ƒÑ¦Í´"FUêùk+*­ã¦øeà+R·š¢žU¡7§tòyŸ^Ýl½z^yóB S#Z\v©q‹—bÑÁGRVèõ"Ûý÷ßb£ ŸH*|YñvíÏŽŸ›ï¿·ÐòA¶­gj¸KY—ssyãáã#éûÒÖ=›Z¿ƒ6h4Ó6þüÖélÞW!”اƒò +ðÓ¾±þƃ>Pu¯Í¬îäØV.¦ƒùªGƒ¹ÝZçuxÕ.2Qƒ›ß”ï4Þ®jD;߈’Ö—š–ñoÜ,Öƒbòå­#YuA5 ~ÖCJž¾`cÏowz{ˆ-§’Q¡¼9“ÁNý¼ÅGs°W?t½ˆØ—o|¿‘öDTl´¬,¸Á)!<¯ä‚I×µêm‹ÖÛ¬³Ôw¾ 8övüXéþ§î•S-Ì…ePjZþéΖa¾á¨{`½G|Owå÷\þ'@o[ìc|{rD‹_ó̼)–æ¾ÎHö)ÀLæÞVV»‰ì»†ÅŠëF±Z± Îìɨ©WžÐ,=~[Õßx¼¡µÂus°§¤ÐïÕpß«êKZ7¤þȦÿ³LF‹a¥‡pI¡r9{ÙˆI¼oÞ‰4r¦FÏÉØðg½¾)ÕÒ”œðä±x§nØ&P×­û‡õË,rÃ%~jË4½*v…Ûkü*˜åEÍÖ/3ô’ö*©â)·¾ú6¶qéÚ°#vÓ‡V ÷‹ÆGÓÁö/FŠ5†öÀõ™ì„ép„¨Àñ¾;ÃÊ5õ…ûð®’6]Ks%"D9P?eýXÜk•Ö0d¢¥i5üÚäTa–µVa©‡YçW<]×úR¿îõžKÔ M=Jëh*{þ:×ôŽokBf°h_Ý+TY§˜®æ¾ô¢çfö^ÁøM!Ô6õÊ ëy ¶S=w¬:ùp-Qw‘ò|íbAª¥¨ä-ßGÛ Ž'8@Ë{u¯i¾Ÿ£Uj4h¯8jð* ï5ÏÔ4»=³UpfÚ4$½³GV»,IxJ¬²pµ5{­}9—WÕÆ£p4µ?»ªÛkè_òsKŠö5,}Õ\{»oγ„üÇÜõ7?h0ÿÇòÁßÂ@ B`œˆa<Žò;îa{endstream endobj 173 0 obj << /Type /Font /Subtype /Type1 /Encoding 234 0 R /FirstChar 0 /LastChar 106 /Widths 235 0 R /BaseFont /TJTKNP+CMSY8 /FontDescriptor 171 0 R >> endobj 171 0 obj << /Ascent 750 /CapHeight 683 /Descent -194 /FontName /TJTKNP+CMSY8 /ItalicAngle -14.035 /StemV 89 /XHeight 431 /FontBBox [-30 -955 1185 779] /Flags 4 /CharSet (/minus/asteriskmath/element/braceleft/braceright/bar) /FontFile 172 0 R >> endobj 235 0 obj [826 0 0 531 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 708 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 531 531 0 0 295 ] endobj 234 0 obj << /Type /Encoding /Differences [ 0 /minus 1/.notdef 3/asteriskmath 4/.notdef 50/element 51/.notdef 102/braceleft/braceright 104/.notdef 106/bar 107/.notdef] >> endobj 73 0 obj << /Length1 751 /Length2 1203 /Length3 532 /Length 1759 /Filter /FlateDecode >> stream xÚíRiXSW†Q#†u„V Y IHˆ”𤍬ÊV)’ ܘäB¸!¤7Ūq4R‘E”eZ‹ÆŠ¨ÈŠ:0²ˆ:ð¨àR¤½à8ó ý9ó«OÏýsÞï{Ï{ÞûžÏÆ*`ë:‰Xˆ]G"èÀÛ7ˆH"ÎÆÆ[ qP}ÁA!: ¹¹‘CÈD@r¥»¸ÑÉ$œ ðFdb8.vÞös$`!1Ì刀/‡„˜—#[. ¡2` hîD‚’ q2Ä#àH$Àƒ¹(ˆâ`ÎyÎ(´ež$ác+'a¦€fÒ`yˆH <(çì‡`wA˜“ÿ‡©…â,‰@àÇÎÉcý¦ËÂÙ¿úˆ0A‚Bbà‹ð ±h!5ú`ÍâÁá®ÊÀ\†(N⇜Ă¥/F¹ñ –#H‚æëˆ·ÐÛ¼ç@&ÃÅpœÍùV¡Ûd ÿãÎcÒ0––‚íD‘HˆØ÷q÷õ‚«˜".ƒEØ8P]G,æÈpØ\`ˆ v’,âARI1¿Î‚bGIˆEĸ¹Ç¤¸gDÍç1•œÑdÿöŸ¼¼éÎudXGƈ$™ hTbÚ¹±¡óã‚%óÇÂXŽ$…¸¸ûw®»‚ô{eI:óL{ém¯¸òüª¯ui–eõæk ÎÞÞœèÐ_6]¦2Á,±L™Y™´÷Ê®ÀÖ‹Ìļc=³#ÉÑ#ªÔW†M¨|e¬'³F .ßýzŒªíßÙß\R^Ôpòeãèé»/¶=Ñý»•VÝö䚺 WZK%Îþ¦j­‹Uá±Ä’Jv_ŠaÁ¡Å}mYéül½KŽÇ‘+ãé3z§ÏF¼¹tûrጠ~üYy‚2=›6äs¤²ü— ¯\µ~n÷û¤¡Ã£Ýxüù„k9©L‹•ŸÞdWô3òï<ÜÇ¡Dµ'¼'Þx%éeèc²íÕÕo?«Ø•#_ï%×ÐáéóÙ~;”?mni[$_Qrû1Ä–V)'VÛMT(^˜o6úË綉jŸÒºémTg×Qƒ* £oj-÷ø‰iâ1ÅVoöWðÎzüS{LQjý^+U¤k{íˆÏ;òiZÇ\ù›waã–M/ñƒÈó]Üã¹§Éûn)V…Þ\Êê¼>“I‰ñ9ËûYOݪàÚZL-¼m‘wí­²þ²íóifÏ—“Ý-#ø¾Vcá3úÖ5&t©«31÷ÀŒ>}ŸZË­r½Ú¡CòA~ªïþ?Ÿ82a«Q«3/”<}eàQ¥g¬6j+5"\WyVk6ff6ÚS²‹™‘Õ—d5Vcåšõß®e[7‡› æñÓŸÍöèDš_¥¿µÖê‘».6jUìct\> endobj 72 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /QEANFA+CMR7 /ItalicAngle 0 /StemV 79 /XHeight 431 /FontBBox [-27 -250 1122 750] /Flags 4 /CharSet (/one/two) /FontFile 73 0 R >> endobj 237 0 obj [569 569 ] endobj 236 0 obj << /Type /Encoding /Differences [ 0 /.notdef 49/one/two 51/.notdef] >> endobj 64 0 obj << /Length1 823 /Length2 1366 /Length3 532 /Length 1958 /Filter /FlateDecode >> stream xÚíRiXSg•M (Eà/{D!$„UDöˆhY¥zIn•,Ü„°¯²‰HAeQ¶²•MQD„B"TTPZѲ( ¬nl6`ítèÏ™_óÌýþÜ÷œ÷;ßyÎûª)¹Ó2'1|!ÑÂjcKgk¬€ÕÖÑA©©Y2!t+Œ¬‘p`Sœ.€ÃãpÆxC”`ÉfÂ?@[îÛh2Ìi&‚tÀDü OƒRc " !ÁÚ€9• ¸nÜ`® br ’6 ‹H0|! LGa6,ÙÓÉ Àà3Lb|¡8“Å3 7\îxI :5 Ad†Àà=ñ¬ü7\m·aS©¶!¿™ÓßxSƒÿè`ÐØÄœ$ˆIßÚê}6ç ‘`6m+k€T˜hN§P!@ç3³l`.Dr¢@©,h‡è¤­&xÉmZÀ±w¾<º¨¯BH“Ï‚r+PÛòèŽXìà·|ÔÒnÇ@͑˕9RB{ƒVXÉMaG{mf£Ó²Ö'8§&rBþ©à±ã< ü>vzÇíúþ¥=¾#Gî•_ð,þ1w®cºÐmu|RxHi[«7çfëå8}›ê× gn¨ë*¹îÌ ,OÄ' í¼.8|?6ât‚HÃþ§óŒ&öWËE"ë'Þ6tw”5×õ)sÆ%?]Ó|.·sD˜¡ŠÝs¡/¬ªMeñTb¤b¡ÂpYzä"Î3~­¦òYWª£ÙdV’ÒÀÑÊt·U‹›ûÜз¦¡:‚%‹ÏuCá„õ&ëI]C´–j÷ˆ´ÃB}"W#ÑøyVÝ›qÊÍýñFßÝ"8‰,Lî|á½h;ºdä4A¨ª³w§' \§š=½"IÓrSöWî°'.î “?$›Ô)Ð)$OxùLp¹ÊVO1¦{4Ø¡>@rõKFÊJ˪Eʹ&*ß´N)¹©+œ¯ÅÆZ`½é­µƒõ¡º*ïÁ©¥Tn+99ùo×R@ïu1ïóÃæÛK Årg=‹°)Þ?¹Å-Dz*´<¸Qì©)¹Èn“k¨²¹J·kULLµJð‹uyU킼±³ÓØ=VÕv.¥éü¡Z´Ôð@­ùµ2Z¾ÑÐ!ól–1qµÝ£ï·¦‰µX‰Ñš§Y!þÄ[6†«ùJ%)~¶yòg”Ýž\¯ z[~¡;@ìäŽù‘¦k£*Ñzs¹@›\ÖuÍQ2§Íw—|EÑÅÞY”ýè®=ºžÐŠy–}föÏ=]>j®$®Ó#”iÌÅÄÔ•¶£†Ÿ4¶{½yÓû)ÄöûTxÐ)Ï]]¦µ .r<).þò áY¾Ãˆ@‚Ÿ¨êàÀ-Ó9Bu¤ufØ÷Õ¬þaë9rQƒÚnx'=¨auÑ.‰K*ãw§{"©Yï÷TåÕóö.¢ñ6$ãóç~¦ÈH>Åø˜–ELâ6?VùÈšˆ;W­xÀD<ìü õ~îõ5i¿véüfÉkшäÙó†‘ܤ6£vá° ³ž„1˜¨?EùtiÂÿþÐK¥ù‚îe³5Ïù£“.ƒšïíJ’w'<¥˜ÇñŸMág*Ɉö,5Þõ~­lU厕]:w s•˜+öxNYÖI+¼ƒV:-5˜æ’ARˆã‹yèñãà{Í”†ý…é_óûb½2îXki/“*<+¸RàseÕ•ò:‹A¸,wOy1¦±©XŸëïæäU^:òBÜ7|AÏÞ=µg¨¦ÎÈlAá„ÞQ-\«V¦_5<„]”9vï+ïWÌŠñ¯„—Gï$†Ä äÚ¬œŠ¦ŠG%¾>ªÅûòGe¨àÏ‘t’MÝ¥àÏ–Þ%TGƇõ®_KxwÓ~Û»N‰ëYó˜» Šgº“;‹Ñ'Ð'Zë8²T¾Ä=RÕ%ze(Käh†6—=ývù Nvy"y^¸z¦â+åcÏ‹Z8$½˜ê_:²ðA|kè°òòpFtÜù4NøX‹ÓrTŠªpÿa_/[“hÛÑèHýéú’ºìI â²^ÉΤP½ìâ½ì®àÙFºíPeA\^§ÙÕð¯ðcÍóJ“ö¸Ä¯1×+ëVy“¶¥.B9€Ëÿ´PP/* îîsÉ Ùšô^œYg=š8]H7MÊæoÿ¦;åà¨ÓJ@‚®rÝXw”Šæö¡™º¸}½á]À“ŽE–C^1±KZëvˆhIɇÛƒE¯,Úÿ„§-q÷>öMv³;Ö}xØlßÝñ&Âá=>w>DýÆ/«;ª¡ó~¨ÿ üO©ÈD4éú8Þendstream endobj 65 0 obj << /Type /Font /Subtype /Type1 /Encoding 238 0 R /FirstChar 80 /LastChar 115 /Widths 239 0 R /BaseFont /OIKOBF+CMEX10 /FontDescriptor 63 0 R >> endobj 63 0 obj << /Ascent 40 /CapHeight 0 /Descent -600 /FontName /OIKOBF+CMEX10 /ItalicAngle 0 /StemV 47 /XHeight 431 /FontBBox [-24 -2960 1454 772] /Flags 4 /CharSet (/summationtext/hatwide/radicalBig/radicalBigg) /FontFile 64 0 R >> endobj 239 0 obj [1056 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 556 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000 0 1000 ] endobj 238 0 obj << /Type /Encoding /Differences [ 0 /.notdef 80/summationtext 81/.notdef 98/hatwide 99/.notdef 113/radicalBig 114/.notdef 115/radicalBigg 116/.notdef] >> endobj 57 0 obj << /Length1 1366 /Length2 9549 /Length3 532 /Length 10378 /Filter /FlateDecode >> stream xÚí—UX[Ѻ®i¡@q‡à.ÁÝ]Š»,hâZ Hâ.ÅŠ»—âÖâî^¼èa­µ÷jÏÚ—ç\ç$7yÇøçÿ½sŒ9’'4ª,â03ˆ ÌÁ•Ä J*kʃ8€ Vv ¤3ì …9H]!@??(îfñ9@ì<Üœ $ÌÑÓjeí ¤—døG/PÜâ 5;•Á®Öûçæ`; Ì qõdŠÛÙÕÿq… Pâq~±`€@@ ¨¹+Ð bu°ýÃHÞÁäý×°…›ãO½ƒ8»kØÿAг†Ã_ø¬û Ÿ5ÿÂç\ç¿ð9×å/äyÞпðYÃí/|Öx÷>k¸ÿõüwÿÍ–Ðç£ x@Ìs?`æ‚Á6Iõ¡Å¾Òyã%ˆ .$)…ÁÃí!µ)‚¬Ë‚XÓÎ cš²3ÌLè×7‰GŠel–Ü«„õâÞý^l!³˜ýh8 9©H'æ†Æ/²úº0ì3ÂwæÈ7˜Næ©.WÞµ#V(íxs "Šþx8÷µõYCM¶ ÚJeµ(%@´wW> ÝÊÂò`s_ð S/±ç»–&mÑRø?f)Ãÿ(:5­H8¡/î/,&÷x_ª«ÂŸ/l}CªÞ±løí³ä½zÜ ïÑG÷;ŽÉf!¢÷=çãôÉK"Ǫõ&ÎeS6Œk«Ã™® | Ù´×SÖ¥0šáÆÀ/Imp\›µ/¶<¥^` ;ÝT½¼ ZCá¶A`“?ÕTº_yÀ—™F«ì»ˆì…AÜÄ"žRO¸«¶áÕW9L8!χa§Ÿ¢~,K·=I"íÚ‘èkã#áÝŽœ×MíΪrÎ3 tldI÷ÎvõÖ†Nìzó„W]«çkto¾¤Áz ©»AË‘¡¸ Œ]†3NŠvw8'è¿ÈªØQÚ›U¸ô„íSh¿v5ÿ\À¦‡IzÝ ÉÌ{™Q$šÞóDžO9*— Ô‚»bœð ßä¯Hñ“ ïpt¾ù1‡Ñ(€bxõã"¶SW´ûr’2ÄèòÉGüèÅ£“O\D˜ ¬`ls²Ãß/Ú/Þo5ñh"¯ÙÊŸ‰\Aþ ºX0›Û>c¨yz¾¦7Ó1ßQ÷’Â|Â}sâÆ[@a‡*WèÁ3ô^¥?^vïò³¹æ*ö¬é½”Í*’Ôå<ݰ»wbYMØÄ.÷ÒÐÕÚ;Ϧ†c}á¥~jÜ ÝQÊ}­† Gv$ŒÎó£ØõZÌH«=å\`cI#"BÄh+â*BÓ…q;‹ FÔAwV¨-7´ ìúPÖÅ/ <lIZµÁÂU$ö ¥2ÜnÀ¡ŠÚõ ÈÞ`# 4±S-ÿ¨¸áW jV¶Š·ëß&§„uL/Gៈ•Ÿû”–XäPŸúFé«„%?ÛåÝÉi€ßØÌ~4¡ç»«_cÌ>tƳç®"T–ï?åé;³™KbÒ„ƒÍˆ=ü‡jú •¹”ýªº>ùú:©ÖÜ& üÔ$ؾ’Ɇ®l}>Rþ½”ãÎ žÜS·Yäè,À—£líè!¡úà‹!R°Ë†%µn-ìôI²êÉ[}[ûЫÒc]®TḢIÎ2§ýˆ(ÎÔ$_×·,²lŠvަnW¬]ôMùí÷¦°¸®©ÓöÇÇàŽ‡ÛÎ$‘¼!º&Ϧ8GŸ¼ëLi.;PÈ6& „‚>éNñõ¡JoƒÜEÖÛÿ5F«xT§ƒÎŲÐȇT(dNgE%¥÷,ÈÄÄŽ¨‘1“¸GZáj­f†ôùjÌÍc‹Ô¡ÌÛ¢XM*øã¶/Ðêí §ûvµ¸lÏ Çv_ƒ–¬ël”Sq¥XŠðV&:À[†ÖqJë¡øòeç ›Âý$e¬#渖|ÂL98Ìò’m¼[ø¯ŠrnQ—ØNCÕ9ÖH¯øì([2Õ>ðn\u¯a¢ò y›¿?З§—ÀÌò‘D-áo×#1¶TëEe÷äÑ‹(h ±ò|  ½%ñŸÒ¢áòØbøî\ªßã‰Ç\næ ó ÿÒ7þTÐ~Øžóà€ ``C•Ë =f±ë6z§Ò:×hz¥åÆ­b1á\Ñ^}ÏK-&5ùG©Öæ,½^è\£Oq EQßømÜo!ŒUÜtä9æÍ¼ví¸œ·­&J«v4ž5é}æç¨½Õx¦gžÍKÙGpWâ¦(ŒyË¬ÃØ3ž(Ie\þ^¯Ü×3U<*9ˆURªY ·ºìpµ‘q9ê÷*§¹zAx¿£z–ζî9ÚŽ£bøwR—àX— •®4Œ úr:“?gîÇÄRÅz3ö‹Ãfº sAžÐ²ƒ˜ý‡i cÕfÓÎ1²•l±Ä”+gÔ ÌÓ×ýx³˜KÕËDfŠ×®Ý|=âÒì‡^Ȥ4D$ÊM¥é ?+õcÌ íµŒb¹Ù›êü˜–¹ð¸¢vm ×»ÊäTîî>ô¥sâ±ÇGþ®»Zò—4hcm³5Uõx~D/,ô¼ZBÓõ$_×½>¼ÈHœ©Ùyìí K,s{UÔóÝWʆ~Sü¼ªÏ±qFƒÑî.Ý—ÓNñ­˜¼>mŠ•vwñõä!™Ñ┵¾;†óTàpBXîϼÐp¾'<…Áô ›/3EÞÙzœ>Lë•‚¼œ±¼\€× ùÉx¤°ú——ÌØXøˆƒxfJ½ºJ6ÁF0š½jW.Mqôß»R^æf¢-yâk3„Z[oès‡+&Ä•Ü7@¾­Wæü™Ovâ+®ý²Ò†î˜‡ZbJ´Ko§9.Í´PåbBs2B,ã?KLkÛH¾K¦Î¢È‹€®N1ræSŸ¢zht±jJý>âPlûË9Ì¡`5ćs‹Àà„Åýüèócd­šÆKt gÌWȃ¦¢“Q°~=Ë: Ëﯷ?ÇEש|¾6 IËð;O´ˆK·Â(xNò÷  í“­\ë&µ]»õ¡bêÕ_©Dð²O{Èß0 Ù, Òô5QL6Ë¡³ua_HоKƪòFÞ~Þ(Ö×òo?¢ñ¢2—#ñÝI y-Í Ò¿Llˆ@ˆpPëä5†*Ñù!(Ã9Q¦š²¦rn-0ûkÝYS·ERä›-(Æ^wEHÉ(A*ƒ±Ë”ï…½h, ®U‡ã¡î&o^¾|Ãë1µznH(ìGtÛ›^)LÅmÅbùÀÁFŸ‡ÐÊ*4a“@L{Þ ø^¸}W¹ *…ÿ˜Kº "oGM»ÕJ— â5Tý©ˆ–qæ¥F„ ¨àÐEqÿYyäm J?u&ÉòŠ'ýÐÎwkäB¡É'dOÚbÅC»—6t²q¦Ö´kÛÓ.êNy« ?•͵ÂQ§ gÞQõÏ0ºî£DçúÉ :Æ’õ›y­_g7xpv£œùðcÁ?åÌH‰Ù®Ÿ˜Þóû¼ç‘͊ɻˉ“Á/'¦L¸¥­[»R²´ßMx i4© ¢8mp[vŒû!yArg´>/ª“€C_âû±0 ǰ3$›Í&켞Š2?èA“ 0N*ð΢û{‹¸úÀýCŠá쯉ec¨{Ãy+n‰,\î=ë:æo¼(h¯g$ʼÚ›‡^ªîž½B¬w B "ñ­/œ%«žp0{¸¿M²k’$%{Ï6“NéÈ…«ã4Üu9](j­ý;Ä1[¡Lžð2šé÷‡(´ˆMÑõ½¼ÒFã÷¹:ñöRâ·c”ÁåbQuˆ}ßÃpœ Ò'¦qmt. ï9Š?í.(n>ˆˆâ7?ÐPãP:›Å2¥—!I%¸ÏϺ¸³T+„ñVF“Úm^Ÿ :þênÀJÓ˰åÖËñ«¨èY¡-­ÁâÎ`Ý%ÓmZ`—ŸÑãRV)¦$ß"ñ!ûQÁõ•ø¬p&å!èq(YˆŸ °ãr1† “$0r¢dʦz6 VMØÅVâ¤~&es“i#G1£gk–\O̵"©fÇô©k‹bþ¶ù -9#ðØÏrÞ#ŸÖÑ»:^³ª›Ž× ö&},ÉïŸTà]Óe‰l„Ä?4þ(úRÇ!¾×{—m¯EÌá½tIºV¢BM]¾ôô^ñÕÕ=¥¸Æ¥(Šxˆ0B­ :pè]ûmoŠçûYnŽä7Í_˜›ÔËV]ƒƒô•”¢«&ƒ$¤¤À°}‚/V§ùlnLkq†òËãÊkœô¬ 3ÔÄŒû9Ûò¡·Ÿ¥^58+÷«§¯®l (¬ã,æ\·QZ[-âg:Ä6qê¸?™š;\1é.|mÕüÈÁ r4:%G©+·_0à^øÖ.Ц†ÐÏ6vz*KG_œxã”# òö(Â0Rå8èëü>7žÞ˯Æ%6Þ_fÇì‚£È;,ƒíwp¹Í8ÿ[_XÿÓž[’ð!6¼G9® ØÖÃR¯"…Ñ¢²VO%ä‹Z0êU£Ð8{ž`§Rqãïøulv‘#²T-'fºê±rΑÅês4zFÁöˆÏ:¶8ÐW5©{csHh9ö³6¿ñ·»y¹5\D¯`xêî Ó¥ƒpB÷çZ^×£ìz±ÈBTšâe"/ð·Úðl_£ùË÷àpä%±¼Ïž¼{éBÞòö,‡gá’üHÔ®Ñ(]FKÖ >È¡x8\.dÙÎ/J®ì>ŒK¨Â%yÿ=¶#Æ©ÈIHD½G ‰£3›~«w3dÚ×¾—j³†ž4£¤¸$ ¥UžTÚ“d^/;\þƒC+¥Ö§ð¨sõ‚CéR,Ÿù¯­!(hfدc§’{’ÔÃh/·â½­•O>#>n üÒh¶%þ„BN…_WBØEºpþÑÌr r´|-c7‰iz´Ï[Éa¹VÇÀÝ¡J–/DÆ÷Y8ôx‘«Ý›M—Ä$Ńº§Rý¯TTœ%^«Ê½­9K§Mti³Ý+bóÅèò<ƒ Ù£}Säu]Š*¥”#¦øÞêMnVã,K0—ºˆRö‚?±T2íè!CO¡6!çûRi}tÐãÃk¢ÌsKý(Â:Þ4´ŒúuÞ8u‡oäÔœ2.¨?u™Á‡‚‰Š–\ëá ÏdÆö‹lÏ3bã*µÂìZŸJòƯùø ñTJ%¬Þá›lî²Ái=ÛÊý ×E}ž¸­«²~G#ž^†£÷çz‰ËEõjJ¤ˆýÝ0*Ö«„%mS>£G0°66uåâÊ=wßðÊJƒ*ïk­U°jùøQs:GØ»zåB@îï\µÌˆúâàéæë/ îè>@GÇÅúŽ‚§KlÚ‚ò¬ß&œM —vÂe5kƒ[—{ž¥W³Z+ŽØ–úDÖI÷©1öfEÛ†ï¾ïó[æàƒŽ Š—°0u„…«Z™>FµPbÇ­ BËê ¬ û9ZV¾ŠÔdËvU%ßKšë¨ŒÚò+Qa{´wƒ®ñ©ÓrUã'v"6g_-û@,9…4ãÓÖö ì…0öý2K¦CYPgÌOçãÅê©Ú;ðë/—ÔëœI:òäÅ=ÐŒJ•ò÷«0†´²Å8‚.œ×^­´ ô™eÒ5Ge>‰ÇÄr§Q‘̱©¤‡èŠvú)˜ª3ñŽÞÃê#ÜéßÅrvøÜÜÝ¢ë*=Év˜5F­ïù†Õ Âɽsƒöaí_®UQ^•ÔÐÕN;N ¡4Êœ™câU\ž4ÅlÙ»"Si_¸ˆ)«ºRš_!Í ÛNwòS$ºøÞû|†úì;]ÏòÖÅ3ËÈð+0_ãšî–‘£ÞÒ/ît×pô ‡\î^?¤~Y™^Æ/Îʶ®Âœãz5ù$~süÌú‚W‚Њˆ]áð•]Jùéo&ªÂˆYÅg¢ÃšœKß÷t{Y‡(v4°âLÆ%MJ ©·qlÞ¨¬§ à o„uˆ¿"º¡Ôòv$¿d¼¿ikðQÃûðñФsoCÏi_Âkaý]ôKÓŠQl¯Tê€Þ3„÷UÈ}È)$’a,ds»êÞO8Ó$#˜Ém9·:_&SÊ&¾mÞ'Àêg÷s>B¢hW+UXàB%uÎÑgÇ |¡'äˆ×#§ÆÚEÆNy‘¢,º”¼iÔç¾zM›žlÊ~SH;ÀÌ4ƒ–öekxCømÔÊ|‘ª)µ™pT&ÕJ÷óÒÎåN@eMgÇZ¶·‹ñâåš¹ð+‹zsIéÜÏË3³›_ó¿Ö·ñáƒïË_6ÕÑìN©nXŸÍPÉ*a¨:lŸ€2‰M’ËÍþ%!=»ˆKroOMªó_™›«™òŠ“Ù½ªœ{¡P4s£‡÷MËõZn¬ŒõbIÝ5‘ ‚;Üø)óðÓŠæµC®>YWú¥öKÿË«^+ï–ŒMH •„%g¡aŽæßÅ\¢GPYÞ¼œ¬–«KqÎS²Ö´þ=òæD¡p!ž_á¢ÀRt3A§PA«Ÿ¢t-O×ÐR£.F4u6™bUAÖ,pêõ¤»õD¢`ð ¼&ŸŒÚG= R:OI…ïxÐî³Ïͳ^óËÛ×ì»ý±qpçóãEEY¸å¼c¡óv’]i„:¾?wíž¹‰Ë:yÂÄÇù°‹s®@!âÄ\¤Ú™´óÈÑCIXìPø=cŽK{y}7x#…Kù÷Þ-à à ftß鱨}wMwðŽz>…OÍÕ~1acõK‚•£x-êÝså˜dÛ+âÇFAó#oR]Õ­;ÎïÐ;û²Ao¯/ûƒ9ï:&ÏÉÆE¹WeA€ A‡˜*ZOß^kS°xÇ‚¾÷I ®äpv7Çç¦Â×ö€•¦ÒSÕHÃýÖã’[½«¹9í]T{›ÆŽwŸª#&©„«xsÉâÏâ´âIÂα—럼"ØÉÎäE9Þº7g‹‹ašSꨬžNj —1>}ÒøbÛk,¾gdýKò½}|µ™«É`¦Íá]B ÕCss=U¼p›•D9øµô sr} jA÷>§`üLD›Ab VµSÏî6Òvæ^¨üK;Dú|ß2‰V8eQŽ Ï×É娲®r¼ÒŒÂX³ù£%’Zò”â;ãŒH.» â¥E¸§¸üÆV‡óˆâ11Ù{ën×ßÙ¼¡^ VYeØÞí³Ãe)3¯©:L­.tïÀ^?‰_¯H„#\šÆÆâh~¼:.Öe`1gÎ$àMܬ–Ý…·ÝYÂ>&es:S‡366¾‘‡¹‹õ2aTjÊMZzŠ0ÇÎÞ~½¢)òëp û’¾½èT8z,"÷%›B»&Œü¼‚Î6#LDkWVk¯Ðz0·ZÉîOB£†M ãKÀãqT‹®¾2µ)ú;§ ßà’­ç‡¯Nò²á£Vwì®Ú<·:I¸Bh¦ÐZ³å"ö'‘ ìoÅõ´ÒO¼Ÿ]?žç}Í»0çg†ªmÀžˆ#•'ÌZÞ…"í¿ Ø(ÌYÚa’mÚøB†|s`ã\j2$ª’eñYیģt¼ýK¸åíS +bå]·Ý•êÓ ¹ýoG!êF»q8uœZ+ã)&£Ì ô¥ªÃ}oŒ¨FĆɬÒçþ)Ÿc0aÔ {Q’„l“8å7Û©*BhëßߨEV€Øaá™Ã?©ˆÜာÕò5ìDÚ‚o>ÙÜ?Í^DKè à®À‚ãzÛýÛÚ/^‡ÁPlÃGö(ÄÊB™Äº á•›ñKÐ-†°e Í.>ë\ã£_¡{|•².8Ng¿ìGŸê«{Ò¯rÐc~;›ŸsÈúÐЋƕR(uQÖ3S3h]y¡×ÔM‡ÁÐk:§hwVCÓõ`{‚³¾w~ ‘ó›g`šR]'÷°å6»bÚ²Æw66ÕÌy7"­½u]Qû`s«¼ŸYçô¦QZ~³P«m$ï̈6 ˆ&_v¿’M°$F0¥GTÙ\á”îð–Uͬãð vœñ¹¼ã×u2i ßcVEÉÔå ¹dƒ[y4Óµð\1uÖöTvU‚{¼ÓǾDãŠÙZ.áQ}ª,ŠôÅ P; àìVœæ¾âÝY¡NÒEã ª"~÷dC¨ÿîýjˆjLg‡¤¢í@JRýnþiƒ¸;p_X¡Æ+‚ñ=æQñž1B?Jw Yë Ž*’7l›BqŒ•h‚?jÏ †pn;‹”z:Ah¸gÊi–oï÷¢HÈhª“oL³ð 5’ãÑ›UH†VÔÑv˦5‡¬ªLûy„%ÏÄžJ®K–\JqÅATlµs·I‹ç)ƒ!Ȳag™n‰&#ÎS}FÎþuƒkCzÝ£'ûD†P4r‰zrîX±W œöõ‹fˆÅŸÓ½GæW#&žßPGŽx'iFb\y±ÙxÙÚf,ˆhZ1œßif(…‘Š&I÷vEì{.¸µ~ „œ7r[|›Êœÿª÷a¨!£­õ<¼vûÀ©lûô;ùÅ»ѯSA¶©Yûþ&nëy€®% »gV·çž&Q†uêšÚ7NŸœìtë™dÃOZŽ…oñ`i:DSùi.4£kï½?x[åF2+_tô³Fi5Ÿé#™N†½$ò~­³Â‰fœÙ„ó¾DI² Ó=ûYÙÕh¤Ã"ó3Žß¹zТíi"qCék dŠfcDe("×Â$\Á€çÕ ^’L3 ¸'3å»Âð 6BÒ‡Žî›·Œx‹[A5ß…[ÚÛ"KÞ¦/Á_<]q®r±¥Ù0™pmdåÚö²®YÔãq<óØ…d·wãK’ïÕ‰ôÍ%\®9å°ayújê~Ô±ú`ÿ™P ݱ×ÝJáEkþšM»AõZ4y<†Ú·&ÛVWÆjG퀚&-P;|~LMŽ#§´ú HÏîïµmÛÁZ’3ÀWôj•°Æ„.pCa1K4¾ÆüŒýt’/9’A¯,Жھ«¯‹î(´þ6"F±ŸWÊÑÌG~_“  éœ~`¦[jÔ Ý§"-GñM¨˜úè¡qò¥eÚoJÿµM-L•µWå` ~ržƒ—-#V½uL¯’˜o8Í“ªõÊ4È“øŠÝ]û ú5eRÊ-X(vÈ4ì…‹hïˆ3khÙ§sЦi«ÄŒlø7õtjêHeýÆOŽöNR_ÙRç~Ãsä×~] Ít íü¸æ¯~x„Çô2{ðú¦X$ršßõ]s`¹5©9èj:%((׋îØ}²3¢Zéi¨ˆ´MpÂ/É ñ›÷2nÄí!¸NP¤AúÛr3€’tùGìöÁy(‡y] „æíù (R¼ŠYÈz zÞóúl$¹ËëYwZQJ„â¾+O C𛥓Š7ä jÀ²nQ÷€ÊyÞÓôÜÓX¦Ý˜ñv>ÏN«Nàþôë;¼WÆ5BFjlö½ˆ$.¼“ts÷ôÐÁª–*aØNˆøþcÙŸ‹Ú/’{ÿNÜ£Š<”Äm·þEfaá£"<#žRAœ™Y]ôfênXèép?ä]ñ·f¡ŒŸû%)PÝÞŠT»C¸â/•8KœOD´|=‘…£¯lÇQˆg~Õ_Ê<0gµÂ‡bÏÎ6 óêâ§[öpnüÖÂyjòwQÀÞ¡iöD=˜{âxG³š}KUHœ]?Ãy?Ùø½5¿l-MZBEMu5ŒÀJ^ñÛp±Ý"´eœ·^³§óNoÂð0¢›¶ÊöPqå± ³`Ö/#«ó–ÑevËÍÈÐX,Þ”h‰ØÀ“ >ïœ<mK Z1¨ëdÆ÷ª†Lejî§©™ÀªÔÐ$zþâ˜?—˜‰ô„…Y¹¡Ïmrkgý~µ„÷í·>™…¤YÛ7~î뤼ÐÑ:9M2·ƒé{Rv;Û]ê¦3“y™‡òïï˜Б± ±ÕÈeŽ"5è‹¶ý­cñó+3¸ý¤–WQ&NÎL¶ Ã(‘‹f p|@8Ý«ÒHÁ§:bQDd÷ÊH t]´~Ä@Þþô‘½%¨.–yw³ÜTͯ£Ü÷®|&„†f;¦s*…ðŒ»Ÿ­ö… \î¦ü¡…h8š()¥¢ˆ†®”õ~·þ …-H’~ö¥£/9‚S)eW_$QL³oë¥1ìí Þ¢ äóe%î¯ÝN¬´mP>cyÓÒ‚&€„³ä=~gâ‹­ºHÜÍÆ%uÝð8NMb¨^ú¯‚=Q¸óÞõŒ‹kkaŸÖdQô4ÉÄ‘ÕË7eS=RX%FªrÇxM¿dÚ¨Õ¤Ò¼gý;›‚‰¡~Eo çþ¹‘î)Ðʶøì‚Šz`<*ï°ì´(2YƒN¦Ãع¨pCBÕ{è”\JEþ"#7ÏB€&Ý1,÷í5ž¢›Ý€îgÎ*Ài¦6>rAøÒb˜¿½¦Ä ië‰DÅœ}唉J¢d$Ãf#*é¸}Ö¤ý–‚uû‚°{æüAoö·ˆª+œÖ÷íªJ-õ¿Þ?/*¨ QtÍó„°<’‡§íˆ,k›;š4œ¦Bn÷çn ”9‰„•ïÕáÂ_x@ÏæÅ_ÎF»L¥lå|È$ßÎ Žˆ…Ò¥AÝv²à;‘¢CB‚;{ý°°`™ì·y A¯Œ?NU¼þœZNk1‰ZQ°ÙiæiÜç Þ,ŒO¥Ÿ,¿ŸT‰FsšBçN=ÿU܃kW­Ä¨J$‹Lðm‰¨(ׯáöaýf_Îón¡(]}ûëýÛºœ—[ÈqûI7¸1IÕ"t^ýØÉŒ¤MoK…óvçVÝ•Ö2M‘Iþ¾ËÞϲÏêSuÕ4×E7ß=cÿå⃅ì/i—Ì7I眞ã‹ìð3Ówñ~RšÁ?6{¢é"—hÑÊLÐg1—Ò·c’x2ò>XpÞ\àTÆÌ›.h ã£<¯[݆§}_m:O'ó°ù{2Øò´bíìe}6µvShæ&à ˆ4ážL )™fÀË…"&g˜û"QÞQ [Øî ž1dÆ­»R¢Ž¢úØ;²o|oþE+0ɽ1Šݨ0]òǘQióÐÎ;PúMí¹^¹(7;à(—;4Þ?N\Í+¬ñlÒ”œŽ¡.çÁ‰R{Ÿ_‰Ð¥‹1Ƚõùÿ¹1áW2÷Y½?6¦¾Ú‚tLUBmßy\#0ÀE²cLwצ»˜ÝýVé÷ þiºsšñ ÎèWTÊ/ý£îsFm‰1”ÉŒOÌ—ÝŽ+ÍF”-óB¬+ÖFÖ™¸ 5d™>¡> endobj 56 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /WYPYMX+CMTI12 /ItalicAngle -14.04 /StemV 63 /XHeight 431 /FontBBox [-36 -251 1103 750] /Flags 4 /CharSet (/ff/fi/comma/hyphen/two/A/C/E/G/I/J/M/N/O/P/Q/R/S/T/a/b/c/d/e/f/g/h/i/k/l/m/n/o/p/r/s/t/u/v/w/x/y/z) /FontFile 57 0 R >> endobj 241 0 obj [600 550 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 300 350 0 0 0 0 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 727 0 700 0 663 0 757 0 377 513 0 0 877 727 750 663 750 713 550 700 0 0 0 0 0 0 0 0 0 0 0 0 500 450 450 500 450 300 450 500 300 0 450 250 800 550 500 500 0 413 400 325 525 450 650 450 475 400 ] endobj 240 0 obj << /Type /Encoding /Differences [ 0 /.notdef 11/ff/fi 13/.notdef 44/comma/hyphen 46/.notdef 50/two 51/.notdef 65/A 66/.notdef 67/C 68/.notdef 69/E 70/.notdef 71/G 72/.notdef 73/I/J 75/.notdef 77/M/N/O/P/Q/R/S/T 85/.notdef 97/a/b/c/d/e/f/g/h/i 106/.notdef 107/k/l/m/n/o/p 113/.notdef 114/r/s/t/u/v/w/x/y/z 123/.notdef] >> endobj 51 0 obj << /Length1 878 /Length2 3122 /Length3 532 /Length 3753 /Filter /FlateDecode >> stream xÚí•gXSÛ¶†‰HSŠT Rz/¤H ½¨!, ’Bï%(Az©ÁBQÜt&E”"EBS@Tš4·‚žè¾û¸¯ç罿îs×ú3ß1Æüæ·ÆXÏ3%D­rpœ;hŒÃåä4CKK3u€¾„ÁX%$ ’ˆÆaDPPÐÐPÎ`E%¦¦©¢¤©¢Ì*âð!´—72”þQ¤À}A…Ä–H¢7èK×@!1‡BƒÄyŽÁç~ìðÎþ !ôgUP<Ð("àz¡±¬Ð–̰ž8@í¯°GþïT H𧛤~Ú”è&=pXLàz²B­pôÓ@º—ÿ [¿‹`0VHßò?õi¤/ò_8_|$–8€ý½ÔüË›%èðý=kFDbÐ(8Ö r Êò0å¿âhct0èa&¢¼O$Æü±¿;¡·ï§¨“â´Ã©¿û3gDc‰¶!x€ý*þÉ ¿˜Þ":pÉÃ` ôBúû÷Êí·³NcQ84Ö PTQ2„F—RTQÂ4Ö À`ºa¨<G¤oè‰gÍpLpQ[³Ç«£ÉÉ^æÎ=?JÓ¸îuMÑW9,rÊ0µ÷•#©n—7ïeD"åIpÚôÂCvôd©OÿN{0Xp$;ã­ïP…ì)­®oOòÜqᣕ7m»wRÜ;pfÕí oe¾ÚO}¸läÌ]jÐvæ­Àз£\¥eÇ‘aNäÈeÞ5˜ÍœÔäÔ¿—s¾iÒÍü–¿84ø8§Ì-(âÊáþK^+‘2ßM¨ËÇN?¬b™F!d‰ó-çŸØijô©>›ðÒOþP.!+î¡NÔ*×Y¿ÍçëžIgzŠšJ@×ÓÔ7¾WfN¼é4wXJúlå0bo̬h=.knÝ×È¦š£ˆŒcØpâÔBT÷¾4«fàý–Ç Œœ4J?`Øüç—o«žù\rþA3ÄBÑÌñ|wþ1^'ÕoŠ´M1CÄf FÅqMwé!•©aç\ËŠj§›ÏÚÊGÛ†ðÆ;ˆ°>ÎåvN%ÍÄDUx)œ¶ßTQi g8”2•.YL˜ß>}kɃÿBk.¯ÝôkƘÒ^‰8ã*ƒSìYf´MGB½XÂm#(ü÷4ÃûO Ž$p”@nø™Ä´Þ»f^®çÕè¥AÐfª„ü9ïrJ¶¾û²×Y‡"R½6dzR½è,uK¿âSjwOÝ}Û,¡+ê÷$3à´[˘ãsJ3ã…Þw%+e>¿p-‰Vh7(3ÔýИÔ`žËŸÐqµâm²Ž[!©šÄ}Ö¸¦WØäø„|/ÍB"¹ùÁ8K®¥]iRòÃ?æ²ôv>÷twU¬×u‹¿ÜrÜÁ¯¥*<ár>À8GJœÎ„Hœ\ë-h«$É¥Ep¹sZ©ƒ?ce,6€ìc1ؤfk^½ ^Ñ !ðfAÎ.ÌÌ™¾É<Ÿ¬ñ>®ð}LèrXåã”oÞÍâ8Äô¾j…ÖÚÝÏ×ùô†kÍHRqË.^öÝGfcý© QÑÒ1>n¥=­—a:U ©ä=ç©">¼*1¯ˆ]o°¹Ã[¸÷šjLÝc²¥@±l›ÀNkúød …¢f8Ðq/_%9hߟÕî?Ï¡†2ÇÕ¯½pZS ’Ù3í$ª‡H eh‘Ψf—;6f>,üÂÉí.g3p‹½Üù•çƒI‰qaÍ{r÷8£Ï¢Ýî©­¹ ¾uRë…Ö× ,î•Úb:ûhq6Fé<ï$—ôL8n>ÔÔ¿ir§É9Ã#lÅåB9*IÑBgÕRm×K’Ç5³®¾ƒ™¯x‡c•"ž3ÂSúmüojˆvÕÈ.aÝó\M GZݤÆÞ3rïÄ+—¼¯êGyRNÜ\‡h‡êhàð¹³ ¥•ÚH×5Á©Î o“®îÄýÀÎÜî™%HwÌB§-wÎíK™é}´ã§ÂvD¹yŸÎ„Š:åm==qx6²ÉóMè†êYd˜³”Œ¸ÏŒÇÄkrMóŒ™&š`cœí…Þø’a+D[SÐ9=š$ÜñŽÝq (•ÁYz‹^ç/îiÑP…ý\§tã5j©Òõ7̉/ûñ;G•êÛ—4§&–Å/ÚÜýs3ŒvŤ@.UíäæÛé·Íóù&D½êÑŒ/²ëuníb#.ödZKÁ,ùî :ü½&¦Ìçû˵cÖbº«¡º"YÞ[þ/ {“¾K9|7éç7eõ6?RÔ¶½Ña—cÛ—¼~R0@Ý£ B…ªëißÎ.—[u\™á‘.©wóÙ²Ý{äà9ý*ª!×WÐ?ùP—èÖµ»QÍ¢iÌ’—uæXûÝ)LJҥLòU_½“5Žíolì¬ògÁ9< xd¨¾£:…Ò31Û$³Ð&“¢æý#¿ kr¥ìZô$çhýz1âÞÔMîk‡¿ -î¿[¡útœMý³î%áz—ѧ؀ZÂÇw¦¥á1gP‰^\e„޺;÷==:HjëY¿ÄÁñÇãq”DjýhâÙ’“cß>+M÷ø$­‰À BvµS;Á‚¸cºTãc]["º0Ý‘ºtcÂÖ®©”˜gØLkÍž¢ÖUœâ&¾Íxæ1Ÿ ¸aQz×[þ”V5± õ•"Ý8(éÌ|ÕÊuo¸0ÿѰ9S>›kZlj·Yr/u|þÍhMNL0ËÁ5vŠVp´;rÚs¶o_ßN£PÂ$Š%Ê‚¯$½É]å“¥ö5ØóènÆgdÖç‘òû”öT8Î1½åN­Ë‘6•”¢,}ÅšŒ4q® oW3Wp¾ÔÓEô ì0ƒëTí£ÎfZ‡q¸V¥}jZõôtúb¶Áû„ÃN {6o,Þž'ÉsÇaÀï8׿¼cúˆ­6h+ë'{øBïvk´Â«MŽQa´˜éû×TÉD•£ï¦J²mdIüÅn5äɆûþW›úsH_;³6©*EÛp¡kZþ ×<>ÇöÝM`qíèjÉ X‚‹!Hº·^Ÿ™Ä‡ûˆ7&~{,6p@ÛM$ìhª°|‰Eý§´„2Ü&çœëŸ’àÜÛ[*5-æß]ƒâv¶¿¸KÙ-He‰ñÌ—nqÂÈÅ%¬º^¼-ÇmN6[²4&ž€?NŽ6>ôI}C, 3ÀC™Aä»õú8öTa%ˆw÷È ´ÁŒ# ·ªö±‡CÏüaS·^Ð:çuV«¾Ñ>a’Zâoã¸)°;qö©Vôz Aÿ¦²ÎKë£;KO°ˆ+Df5gµòBŸóÛ J1üRÞ‘–¼Jc”˜ƒôûYˆ“²<ÇÖÓ?ÚRë:gÍzûÅd)Ôo'Sa(10Šú´[S5[Ö~Òæˆb"½»àªnW§gÕBœLëº.ß“Ý0ȶƦåX£"¿Â½[¼Ð(†OG?ÆëµNC÷ƒKåúc$6BPOäÔ‡j´A˜íŸ}&MoˆU-ñÍëM϶ !> êÐ;œ‰PV¾xwµwd_þé/ƒ…UËùfM[ñoÄðûûŒ&¬êô7/Î_EÇ»G¿«Æçn]`ˆÏRa˜~v¯Cg VN¹·pÙ­Ä—JŒ°‘§žÅÆÆ:ñÏLr-töW}¬•<\+?dµô¡ú²“%WÆÖø0›L° MOÄ[ý²B0üyܱçÜ 57³sÚt‘÷c6‚wŸ)§‹Aì|¦¦J¯“g3ö„BQ¯/S%.˜SÂv ´>=¹zé%Q×»”œ,g MJu‘³äž(/4©ÄâÿPÌp?û>¬ÿ/ðB…‘"ÎI¸Äú/·-Ëendstream endobj 52 0 obj << /Type /Font /Subtype /Type1 /Encoding 242 0 R /FirstChar 22 /LastChar 120 /Widths 243 0 R /BaseFont /YLSEQW+CMMI8 /FontDescriptor 50 0 R >> endobj 50 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /YLSEQW+CMMI8 /ItalicAngle -14.04 /StemV 78 /XHeight 431 /FontBBox [-24 -250 1110 750] /Flags 4 /CharSet (/mu/T/X/c/i/n/s/t/w/x) /FontFile 51 0 R >> endobj 243 0 obj [639 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 619 0 0 0 874 0 0 0 0 0 0 0 0 0 0 460 0 0 0 0 0 362 0 0 0 0 645 0 0 0 0 491 384 0 0 762 598 ] endobj 242 0 obj << /Type /Encoding /Differences [ 0 /.notdef 22/mu 23/.notdef 84/T 85/.notdef 88/X 89/.notdef 99/c 100/.notdef 105/i 106/.notdef 110/n 111/.notdef 115/s/t 117/.notdef 119/w/x 121/.notdef] >> endobj 48 0 obj << /Length1 1013 /Length2 5185 /Length3 532 /Length 5886 /Filter /FlateDecode >> stream xÚí“g<œ]×ö%zïD ‰ ʆè¨Q2z3ƒÁÌè5Dô(Aˆ.Aô"z‹-$zI”è"ÚëÊýÜw®÷z>¾ï§ç÷œç—ý_kícçÚëäåÖ3VDbmQjX¼0X,PÖÑÑC—kˆœ—WÙÇ£±.*p®(èOõoÿáË&¹£½æ |Yxùþ{eùÃT]X$ÚÅŠàîîprÐ¥ øh$Ê€ò¾t qÁâ/·.;°Ãº“ÿu¯ˆñø+ö¡w@×Ë›Â"ÿ€Î(îO âœá8‡?‘Kû¿æõ²ãÿŽÝü¡K]“?$ šþ‡.§ÿC—•¶ÿ!0 ¢ÿ øÒŒËßðò÷¿áe1îo(âÿ†—§zýAÈ¥”÷ßðò«|~ã¿L%%¬·Ÿ°( ^6H@AÿW!ÂÃÝå‚ÿýÃ\ŽÄ¿Ù}9E(”7 A>5ŽEH?r|^ó¸(P5w¨˜Xw=õÕ£þwaU©Ò"ë_¥é?¹×~|€º±KFçˆ~M›¼©U DÚAçØjý»ü a“t]TŒÙi†$?ëVÝ™m4˜ŒÈÕ)®%×ZÁŸoÌz¾#.Óþ–ÈaÛŒ"*š?Û t ˜›¢HAÞ\N&·ÌlÔNB­ÍÆ÷ýÚPÇæb§ò»Y,ÒΧØÚ¾Œ8ÍP¥JFgêŽn›«—%ýà/ê€OϤ´ûè]ådû&îRsÆ$+EKYlK¿86% Š…`Äüg”Ÿö̪„Õ2eP§|âëð~6ÓäC¨ò’äéýw/íe˜Ú˜d®Ý¨V-Qóæì/—©µ‰}4½s}mï%GöÛüD¨‘Äž9°Tçùûvaj•røüY‚DꬠO,–O[åjA΄ô=Ù[– iPMÙ"^,¥}²S"?žûSfTW$ÛäêІnò8jÂï<~oßOˆžyU4÷ß±©: ¶8ï¨glÝ#·—=6 JXòÿn ùÂ2¢¼Oõüß@°%&LV!¥ƒ É ûȸhF›‹YÅBh"•PöË=IL¼àÏyãŒ$T [f¯¶vœøckGÛå×ÅÀdf¦'‡‡×70˜-²ýuš *¯;Ñä:é ëÕµ ¦‡ëH¬-ÎYE|esÅËWÒ¡¦¯ê% à)oœ•I “7áé»™?i&{Éo›Sä$úœz …δñÖÀ8›éV¿w®Y ´…𿑝8::FØö±<4W\ËSÿ*JaÁ¹‚d¡6’Æ)ʻ܉•aE¾V„‘ ÒDŸ}H)—ŒÓ{¨÷¢Ù‘S‚ñ¾kàgÚ­Û)ªèQ˜N±—êÌ`b_ÊbêâÈX!éÀ¯Òƒ†¶Kd” ß‹ìç¸F}›$äÝ¡;çÝÔ,g¾rFS° fF°ô8´Õ<­WçvÛäìýö~[iP¹ç§Ç7"ëå„v±˜m·ÔVé|5lîæ ¯sXÓ Û˜¤Wª!R”NæÌ@̼ÙégÐüXHíØPõ/Á`aÒ[T[÷Hâ!¼“ùÓZª±7®ˆ°(^O”‡~àÚ§äV˜È´~ýÓp²fsØëhãÑØ¶IjœÅtÀ™ñ¸ Ì-¸W•õÅdnôÜU¯àKÂxv£“F¹FåAáÙÂr$oV U«Øç©÷ɨõbñQ}x庳tÁï†Ð˜a8­×lº£óXŠX¡aãTX¥:l] AÚaûví̿ݱÕtù¶µy^ª¨.õ7f3W¤Áó÷Tß5V#kóƒw> éÏmóÿL)"õºjèm˜‘l¨ã¶*¡ëŠÞÛý vj¾s¸qº)?ÊBÆ!´¨é§š ⱡÔñ¹\ý€á¹kÏÞY^¹æKž±€å¾¢ñ$ZÊ–6ÙœÃh„ÇÌZÃ?Ó¤¡ärÑCn‡#n:|B­ ‘…²a“ Üd1MrÄ­ò®÷ŠHo¾è=fÙ3_‹½À‡[>é\æÛê:YèÏ“ä;áR[o-3`JRýò#ŠÚö:z6¿vx¼}h“Ö"g¦{Zf oId¥á»…¯º"ÿ½f³ˆ>5<–c…úÌ™?1ãävså1ñ¶éÜžÔð} »¾`}ZÒ¡H÷Ї $oÐìÈá5ªáõÓgÔ†å£ákÙºšß$Öëf³<òˆ ¥íßì“ÚÐð±íÀgäM9.| œTIÊ/#¸nPÓÈ¥GߺΙ\Xí*OtðDÓ©8òñÜ\еZ`X.Þ¨jØP”±“ÙøpàDRÄt O)'Âq‚‡ÖÎÕ(G™/³C9½pW?%êDl­¢Þï)¹¹vØ®$5Ûì´¬6¾yòcáÊbj©˜=TÓÞ —tå­xÝ*E«7èïUå»=·o³jr‹H³ºL™.Ò?>óùµ¥dÊÂ{Õn–¡–ù—øé _jíé€mÕ„9"‹Dïõ¯ÊOª z²R¯l¾Ñ|ÀSîsQ,œŽ,Tþ’Ç& BfhßC†x8#œ^¡Ž$ü€XH—*Ãü!]ǵJúµ†ÙFÃØª{Ì:#¿ûØ3q* %¤ úv;½ƒÊè•$ciÿ«†‰™ŽŽþÚ=,A, éïñ;•±›ŽóÎ_„¢ŽgÖ+¿¼­×ÈUV"â28ÊþÆ}ãÍIE#*`§xï5¾’‘ů¯Ñt;òt.V‹0Y”o7—YpTµ»aÓÕ1j"ÑXÛ wâ(ržsy0Þ£ÒŠhÒ›v‡äz°l¡šµ"¡˜Ý¡»oíÊäÓS7Ò™8— Znk1„ã:OcCü|ηXê¸Î­Ò¾¿Z¥´hqk pïw˜÷,<®u€g/°è´—=¦å;fCx¿«¼'{̇T8 Än—jTí+´gÞ¼–³;nMËÕnn@¾Üá^”Öçúýº—ï X€}û  cåŠÀpâŠÒ-N˜ž°CH«Pæ©M‚íëtˆ9ÉS-ˆÛ6°„8ewoÙskŒþ†±šÂÕ'ëÛ{kKU_¬èÞ/mH_}û½”‹d‚#£­b¨a£À¬âœ~hãŸÔ!XýÜ/LQRÈ¥1qúÑÌÿ»:akÀÏ)ño²”X@‘c–kLu„ 7P'[k•¯Ýâ”wèR’ßK ž7Ic*8kaÞH¡ÏÛš¯¢|Ó»¢Ø¹¸œ%!"47¬mF=¼í]g ²™ºíÌ¡À?@íŸÈ/>È¡|Ùmm3¼È²Þ²´è)…bÕF ™g½yßOñ‘‰î¡/©“`+熦£¬m CL lj]óUqAjõ2 EÍJ›æyL‘Phyæ‹ËÉ"[ZwßôurÎbÊJÒ_E|B¾úC±•Ö.FÇgiÁ*ï~gHï@Žs|6OÕëÝÝhë>Ïdxs€Å\]%âé³šÉ †i˜£ƒƒ³¦šW¶çiÎïÄÅ1ï)Ä5v4”ÝLhö[âëGï•S{Æ‹†²ø|v^2x{q·‘©áÌÑuE,Tðãu.¸Äòd¸D4På†V^ãÝËJÄRª|êÛsyú‹÷:ÖÚñ†§#tW®EMf±M ¶ŠÎ Gxoh¬ ØÆŠÏË´‰7,팹"¶¼u¨®v€|σxYïx)®}Ø+m/Weoúx' %­ú¬÷‰Ñ¦„`¦jÆËmNq. kjø¹ÔüÈla¤Ë µ‚¸]¿|W±Ìb<58,?QLdo:SÁ© &‰í¢o'úv.c“Eæd¢(c½g59ÂqÅ”w+FSB¿¦ßýËH;u±šýÐq¾É5ê: ïj¸-a­‰µn˜šÉ›§ÎºèI…Xô<Æ×mÞ{kßø´ˆ2š™ÑSݬ]‹Êh<#ç~0à÷ð4|å#ìnhfؤ×Qÿ³…¦·‰©3´ëÚÏéxnˆTÍα(=ªûîõÎ|hNýþÂ|Ôn_lׯ¾8>ûgIþK…5ÈTf]„XµxúÞòSÍ'Þƒ±ü1cT„Ä:e¥{Dû+NôDäÞ±ø\ð³‘+bk Nܰãex®Úsëpß­ö.N]Ψxÿ‚e•÷ÎÖ©FJ¬¦Jr*ýÆ*ÐH-ÕQæ½vãýñ1Fb „;Væ= ÖÉRhókßWqnt­ùò8§IRÕ¹pälƒ*»o£_NîÁØ}oåü¥äpü·ÛØ–ÅlûžWlÚ°Íë…Ùª%T^°äWLXúÌnuv äÊÆ!f”(Dv´"ø—'ýÄ)Ÿ¥ÍŒ:l7ÎMd=±YPGvåNtº¸Ã+CçmQ§#méŸ=Ï„‰­O?¤JûÀbm˼·kßµ0øÆ3®M5©ˆ<˜ø¡š}âÞ—ÑMRzRYa4´ð kLvüõ…Ä öÓê²5+VŠܕVqå+dWŸ–l“ÚÏ(5¢°¬ƒåRW»\7´„ÐÇ~!&‚3y#ë AvžŠTãõíaè4¾--ðŠÂé(#wg¢#4Ãô­Ö&`ß#ÔõtâÅ@ŸðÂfúöXh¦¸¢w-ˆ¡¡†’4>ˆdî;“> endobj 47 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /FNNGXI+CMMI12 /ItalicAngle -14.04 /StemV 65 /XHeight 431 /FontBBox [-30 -250 1026 750] /Flags 4 /CharSet (/mu/period/less/slash/greater/T/X/Y/a/b/i/n/r/s/t/w/x/y) /FontFile 48 0 R >> endobj 245 0 obj [589 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 272 0 762 490 762 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 574 0 0 0 813 568 0 0 0 0 0 0 0 514 416 0 0 0 0 0 0 334 0 0 0 0 584 0 0 0 441 461 354 0 0 700 556 477 ] endobj 244 0 obj << /Type /Encoding /Differences [ 0 /.notdef 22/mu 23/.notdef 58/period 59/.notdef 60/less/slash/greater 63/.notdef 84/T 85/.notdef 88/X/Y 90/.notdef 97/a/b 99/.notdef 105/i 106/.notdef 110/n 111/.notdef 114/r/s/t 117/.notdef 119/w/x/y 122/.notdef] >> endobj 33 0 obj << /Length1 2055 /Length2 12737 /Length3 532 /Length 13878 /Filter /FlateDecode >> stream xÚí·UX\Ͷ°‹»wh4¸; îwk‡ÆÝ%œ` w nAƒ» î®Áýïo­½Ùû¿<çê<nxGÕ¬ñÖ¨1k>ÐRªª³ˆ›ƒÍ@Ò`WVA€„’†'€ƒ•…–VÂdêj v4u 88ân–Nv¯ 7 7/ -@ìèålmiå  —`øg@Üäl 4u(™ºZì!kMíê` 5ÈÕ‹ ngPûç €Èäì2gEáà˜[]f Kk¶Œä,À¾‡ÍÝÿ{Èäì‘ÐC$Es°ƒÀd¦ †äALþßúß‹K»ÙÙ)›Úÿ³ü¿ªô›Ú[Ûyý× °½£›+È 69;üï©Ú Ë)Ì­Ýìÿ÷¨œ«©5PÜÁÒ`ÿwÈÚEÚÚd®jí ´¸:»þ9˜ÿoHÝþeÀ¦© ¬¢¨Êô_ú¯AUSkW /Çÿ¬úÏì1Ç+CÊãlí Ðggegç€L„üþ÷_†ÿ+™”lníé^€©³³© ¤5 ÄðáX;˜ƒ< Oˆ0«ØòR?€ØåŸóäâ°A†íLíÿ‰ÿ;Ä `sr»‚ÌÍì^ƒ<67{³ÎÝÒá5Ì `3ÛÙ™:¿†ølŽ g ÈÁõ5&ð_Kþ»þ;ÌÍ™jê r°Yüåø¯èÿš 1u´ssy @<`{{Ó×DÒÊËÑ ô*ÈÍû/k°ùk"èbgêbõá°yƒœÁ¯ˆ/Øô戺z¼Žó@]­œAÍà°Y€Ý^ËÀѵ°vÿkD×r¨ÿaˆ¬ Èý/WȲþÇžy ªÖ‹ðÿ³g;ðëC¼5;ËkYx!n '7Ó׳ㅸYþs€^õx!ÙÅ_ ’Gâ• I$_ R ©ÿ$ô+ArɼdËr¯É ðJ½)¾$ŸÒ+Aò)¿$ŸÊˆ’Oõ• ù>¼d_j¯É®þJjk¼ÄEó• .Z¯qÑ~%ˆ‹Î+A\tÿC½W‚¸˜9›mA®ÿ£}¸þÿŸ ,Q2uZ[­n¯ï›DÎ òž:»ÁίG ¹.Ù^[[âeöJ/àˆƒ"fþþÓá?­ùBü,ÿBˆ•Õ_‘±þ !¥²ù !N¶!DÊî/„X½n‹ƒbåðB¬À!ÄÊñ/„X9ý…+ç¿ðŸwå/„X¹þ…+·¿båþB¬<^òádóü !V^!ÄÊû/äý¯#sµ¶3ÿwIÿï«þý{°§ €…rsòprCÞ¿ÿ1 èæ ¹Î\ÿõ…|.þ›-¬!ßÈDù=  …Ú¤6|,ñ—Ê›(…g„~oÙ¯\Û9݆2ŸmW8¤àĸR£s_–†ƒ±¿CáñHâÙêûaTú4È)þËÌóŽ»ÉNšw3‰ÎŸ4%¯mGª›CÌ ¿.x U¦V†K’tó{3ÎúsTé%5v—(¡ºôÝëºÒCyùt¤Óì4ÃÃjè¸(ÕÞ|q*‰à_öx“ôny<Äß&©‰iñÜê†}Ÿ‡”øl k>ªeòŒóÝ Àû&‹:Š1@¦ÿhq&—¸ìrÖŽR-ª^Ýâõll©bÉ„ßi»IK.4¬›~a"þ0£#£î8›X¢K›F÷µÅ!u\LB?6Rá=Pb]jw;žþ×Zq=ߦÍÎèÚAÚ-l$§I6OÌLõ¢ºz™÷ ÃxL òç™içÕ;<—‹˜ô'bíuÓm–œ:\®*Ó­¯¯~×°‰†Œ„ÞÉ7¹†¸qµ?J9m¿0söÕèX†“ÏÕÆâAqä­hEÇðqy|G.7ØéÍaèÁõ׊` ´ZåôuÇO:ç°¹ázñGe£ }Ë3†žå3†c‹p’âÝŽóGi¸ãk¸ Ì1-“e€˜omŠçHØò#›T¯ZKŠ¿¸¾Ñ$ø¨g“±gºö0Pzi™omõü µéÔ O§¬!ª-¼©CLËåúEÈ Ýúf>ŽÈKëÑ e›L7¹f8t"s³É+›¥x)µ}¹¾lô§1ù<ôHÿ½¯Ç¯o×|åÇo¢|~Á¿?aÊ>÷í›ø"u5iaMeïõPâ2›ëK^‹³0¬(€Q×{¬ð~Ç©R9ŒÖða ®úl_ àwU=.`$ˆÃ¡\ÌY/›î²õ$ 8æzƒ»pER…”ɧV#â¤É:‡«õœ3Íc¯® õ³–{ÉÛ”ˆÛŒ'P3¨ü™û_&¼ØÛPàÌO;}Wª5´ÈAÌá?ð¼l,ü¿Å¬$‡%åÔ÷á$ S¥N-fYl1õëD¦5?î8`â½›Rû-qmtô¿£n››+ v‚óZGÕXºØ¤Û¾&zJ§`©áOìÉæG•›ø:W±¿jr”}â €ÃK™}^B*‘ºAåœÎ}7ÕŽòã]RÆxÓ»±°H€’zWÍjßÊgÚ(´4;ñ£szC@½K/ eQTYL‹>sß,…*\ä2׎hjî¨Ãû©—ÃãwnWüœû¹ÇŠþqzÂjõÁÁP¿V qó³úe9D´ó?ÆÏNž”¬OKú¦y¾1 ¿-<ŒIF×0·%ò“rfJïÃEª?5=¾º„ÃvÿfniÕâB³Š;k ×J•K9Ýu[ Án#Ë'ïxž:©kçÍʽ(wuWá íÙmgr¨NG(¾ãCß“#çïZ\5†¿'6èd±ñZ™ä°hP®üÎÆòƒèÙú§*ÁAÍÓGfD½.œA·ŸúûÚô£e–Kûæ+A348-+Zü]È.­Û³Ê—±]€Œò%ZjÚ'Ÿ»?Éï=>0©[‹¤¶-¥xkŽi@ý˜BwEŸŒ궈¨€iάU¸Üx)°–9¨÷G3lõÇcÁ›É¼bŠa¦ñýû‘–e¹G‹Ë¹øH‰€ Ðã…uqå„ÞEzŸ'𳔑ءJÆRÅ8Ú Á¡G#§&´{,ä` Yád£ØäÁæ{Xø~?ÖH¢ æâ5°ÆÀÂlOø!/Ù)“)>pU°Ç±UŸ”`oôQo÷½-ûxÏÄtžkºû-Úr÷H$'ÍEÀm²à“]X°!ùÚ`åÕJ]RÜ3ãК_îqmºúf¸GaOQ¯qÒ¼+<‚Ëýýf©á'ƒ4ý˜"nì ÷ØV—*ßSír§_øû%oØãVÔ-rŽI 9c-U–Îhz<Þ_[„_—<*:°[_G‰Óð®Óå=ÄN@‹’ ͬ˜Ý÷MQ®ÃlFw’{¬}ÀtVÂr×L+d»â¢ì›±¯QOIÄ)ªÕÎ h£=Cl%îZ#q1·¯¥*C2Ý|y‘ÝD­ÉêK‰«@ ¬îÈ7)JH°[ÐÐH©kÄvgÊÎpÍyœò)ì²fhîâ&Cpм"úÚQ#—‰Rê!0êLkN4#–Á±{UÐÉ’æcNÐZç¬(·½ÜJŽ ·Ä)]Nþü~53€Ä)¡¨Ñ¨9©¦øÖ'(ûòÓãÇöDGdS$Ñ}A÷ãOo¿žbûáðýF¡ŽÎ³]áhouó6Ÿß´>Üu¿?/wQÓ47Tþy,Œ&qÐè÷$ÿpÆêQ~àc¤|SŸ ÆšÂInIÈ8M”†{¡Ù­ž«¸0½O##ªÜ]Ãqîˆê]1 ëµ2*ی޾M‚ GIªµÑ„ýZî$“„ñYÇxìê}`{~veê¾réÝÚãRG0O— mRcxžÇ"Ë審Ì›´š¨0EíVBnyïæŸÊÍ÷k²Þ{Ÿ»è6˜‘÷~%ô ãP0ûD2ò†ÒŒaмÐÂÍ:'!¤mái*ÒÊAßÖ8‡àÎk‚ZÍ„v˜ lîÿ=OèŠéöm)Ô¼CØ;—Çí¢¶…¹©rƒhR`ž§ÿüÙ˜šéPh8™žm8á%˜øäœ©0ü*ê øc ÒM€€­ÊI'b4ž•PöºF#þhö}QÑ.˜¿Š‘ËÊ)òa¾ j\¥È ÷ ðSªÍoc+)ÌJ@ôu„°oÿ9'³ôædÊֳƷ¡ªÕ‘ÑÐRå¹¹Ä8eâìοuLå‹:Åç J©1=L¢?ý¾ÂÅ•`xƒ #׌Y3ž´%¦ˆ€¸j©¦ :'{ZVc²w`©™ÞNJÈÞ=Ïâm¶D†ŸztùjŠÐN©êùó ülyºL9¬8rôúÄ…ów·?×´ÔZå§ìðì!Zó·oRÉìo†‰¯LáŒáçJ¸“Ô&û¶Ä¯ª÷î-GÛ¿ökLðð3¿¯§ÿÓdN³7{x~éZy<êçÍaŸ,싾àJEllqWü ¯¸³ÔøBZ¥”¸ì«˜SÉÅ„7{éLÀ¢ÔË]MBE'3–¢Ôâ{—†ö¨¦_Ä“V¿ãŽìY)Õ6JéÈk(-ö9-üûD¼è’N oŠÏÉwx±iÇÈløuñŠ·Ã j†§÷5f5KJç8dÄ[Œ‘sZ}4â~5‡£cª‹¡ø=ùµ£7™Â“žXn$¶Å%ÖQÝÈS(®Œ–tÇüXÒmÿ‚™ç»ägˆ>lR¦N­öí…?âAd¡JÎŒVâÉóé4œ‰„rÝ÷;ìq䲯'{cáÍp iYs\ýâeùTd¥óF½ Ô¢°Ÿ§"Üh…òfµè‰Òýi ÅU"X¡ÆS&Á¯M;2y=PGEÛwÃö‡¼üG;â[ƒ…ÑJAãŠÖãßßx9"@ɾ[7²ü®î9ÌÁ(„P•ž-ŒÛî0Jðì HSˆ¸¸ÔÂ>´oErW½[V}Füó ²0‘*ˆÓIïúÑcJ¬­F"‹vТn=±|ê|Ch/ ‚¦ŒŠpZ)úÕK\ý}‘ŤO°…Jô¢BãT…Ÿ±ÉTãß44OOu®?(KRž¥ö£žû~ËÅq†ï3[MPû§¾Æ½x„¢ú÷º©#~DvD{ ×þÞwªŒ»ã˜¡FƒM+sP|ë#£Áü½åv1ϘAˆåQò9e¥¬Â{ïÉþ —ç*(å¤c¢$í÷«h‡½¯ùìsÙÒu"Õ;8C%­ôÏêAÙpC‹Ž%PnMŸ9Ë?v¾Y~—\rb¿O ¥ÜîAõ„Þ5¼áœ¨[Êœ ì™ù0¸ÿá×›¬° 2ýv.‰d?iã¹@ž;Iò:»ËpMDÂq j¿èøJ@/¨")^¬pb*±KõŠBhÞ:<áɰ ™2OEÐŒŠá;ëf ßö‘$#]“˜ ƒ[ü5»DŸ%Ð(ØP¤',úÑ'›#ÄZ¼*ì1‰©fD)øEMVvwRõ0yÝ£¥þã '²»a”K9°n§êú$2ÉòìíM²Ä]\îS]’Ÿ8C†Íš’"”¡¹L‘kî.˪zðön_ÆóŒðiž]9G' \^)M)ÈÌZNì‹‚}ÛÓÔJœ_Ñi™+º=Æf,ÒÚWÛBÚ©¬d€’âȘŒ€[Ïê¦:SLÁG±!Tùjÿ`;bcŒŽnŸ°RX†wƒ ¯ókd ¨tS~:HïêÚÇ¿iÞ¨/–çhbSÖÅípBw3óž°êϼoˆGü2ï¶C‰¼è³sÜK²mÉæq‡þøI½ýÖJ]z½Ç{Ú+¼Û#A rÂÁxâo'’™*¼K–ÃæcãZКX 6ðKAéöÆò]Ö\`Äœ QY}Lé»F èßýÅnaPÖô~GòË vS@LáA¯_™-¿6ÆnyùC˜w©“ÚiB Óò⻤ sØ-IR1 ÿ4ëzþš{¦¹ÒêFëÛÞ³ÞIâ'7=Äÿái¦nÕ zLe˜l-;¤ HEd+saþ¶Õ@–™ÿ3µ4ëÖ^æ°ßC?}Cø°º½p^ïR,ʵåNáËÅÑç´Hé Tv¸úˆÎ‰Ÿqü3÷iÆO³™çöoH³£o­o½œjÅš§×‘ 4Š‘s†Róî%‹ &6%O˜] ~È”ˆâ½Häd8QþâÇ\ÒN ~Óè„ 2! §ñÙˆvJ<Ab ‡é¸Û­€Q¦e]•á‘$w…uÏCt—ˆ¾#Ý ˜/Ͷ׮3`‘‡mêç&†jUtb¡Jíh¾/Opÿ²A[Ïw¡i« j…rÚeh±åÕ%0JÊ‚žÄÉ á?3%;ZªR³”ÒíÍgÆQÓ…ƒµÕQì…¥ÓqgR5/ð6¬7O½¿òÜãs:x*3½œ‚Ä .ƒü5´V„<Û*/"¢|*¾1Õ¸ô#ÍÏ7É}G> [Y¶ëÊã|¨ŒGÛƒÑÑtdÉ«8Bé~„†Ìú©å‘‹>£+’Û™_¼Jë”mÏ-òzÛ?yî>R)yóEØTê Š–û®/èâä&G„]1ÂdR¢&K«©Õ]øx¿[Ì•îŸ_°±G”›ªÆª˜B)_h{6Dò8¦¿}ßDaLФúS££NÙ ýÄtÄzÆ¿åÚ¾öJÙY».öí FZVÀ¯ƒáô_PcÓêžlÙŒnž"õ¢€æÔN*‰NP—ê7¸ÜŒBxÓäz©ÎÓŽç¥êbg×4–³7xµŸF2¿Þ,ž½õœz³³Dm¡V§;³´>&¹ŸG8½U$eÍÝGçR}2™&æÞÓžúÊůƒæ¹Ëb)kUµªqx¦cc]xùMƒÙ8ñu#—°ÏdêÑl^¶}‰Ž~!¿àR²Óâõîº÷m+n]ñ[›+(BNé Më=ýñ—-F„¿¸]6Vû”Oˆ½eé a'S)[Þ>~[wc0ÖñäýÊ9ÿ…çÏ @òçÜ;”åôEB­âÇï mÎݿը˜¥PŸ´ôj=³"_dø,¥£eÇ<ºÙŽR—nx"t&'ããȈât6Ô˜“âñ›Pû¡zÃKˆòêøøw”ñÙ>¤‘f¿ÜIî±SÄÏÍ3™°gÌô}îÎc?u¾‹ˆ«üL£@ÅÇS]FÒ_æÑ‹¥>,ô­v„STùïÖq³Èðè$ìÐurÖ¨wqÖB÷• PÊ _xÙ9‰8Gf ‹Ó Aú×R »«oziöŸ[ññí\ÂÈ+Õ?ï^ˆÇTP÷¥p·Ò†úrÖ¢† ¿®ÏÙá¼ô%F Mxq79û»B¥t>Õú¡mŠ$ÆqêíG´VåÇ–âð=YÂE¢ϘòÛZ¾ùŽwþ´¢ñ´Ó#3àÌGC¸+ÅÛ ¤úSö'tÛX~J â¶ AŠíѬNù¡­<šJĆ¡¬Ìƒ82Ù¬®5ZeIëµ±§Ú?Ü.î«@ŸêÀú—ÞñFå»õO*ó‰carpô4Í‘È÷ÅÝÄ.ðÅ# RSŒskSi\zïô'’g£+›fÿY3ü­áœgÙ6¨’­ÎÕ?Īlpm¡gbï]/9?à7жŽòûÀ2ê´ÁãF¸æGõwLCîcKåÆ{õ˜(nº6Ezè͵û«ãȯ–î¾Uåâ0ÛËÃ¥Pª³PÕ  å3øyøGòr6÷c~?©™%ã@¬xŠZþ¥3òDBÿ¹€µ_Ÿ=–-0RbÁüRÞñ`Yu'‘Wgj‘ÎÇúœuöx§Ïdú6¼Ó,]¢Ú¥(Œ6{Šu¶?¶Æç ·'ñNÉ@L ¹gH8¶¶w£[ŽÁ*´"kfÀ]¶°ø‹Ç|ìH#R/k@+êÓ LŸf°ì¯ ”î™ìÃï¸ÝÚßüx jš¶r’9 éÛCÏdÌð­‹KŽí‡–·EtK±ùE;õ¶#ïé"O™,‰UÊ " pÒÖ&,„,•œý6Ñí?PÒwŽcÀhÕS{V¯´˜ÉNw©®÷©Éàiº–íD×L°b´rhžŽhÒ.2zVüPã‹.„²ÈÛ·Ûi¸Ù¸(¡„à lu ùnÈ,Ydzàó«Y¿ÅWÎ¥ï×yvõ[þÐÐT oÊaR¶sÕó:(,À Y’H³ž4àmiÉ¨ŠƒNå Ú;¨Òp¢Ìè ܱ/Ó3Â^~Ê«Ç?÷ól}hú¸öT;ögËfòIÍ_³ƒH“É?¼zÚ~¡p>ß_Z?ÛA㜔ýX¿ûÔ¶®u¬ÝC›$øÀèV_i~<ËI¶Ù‡Ï>ÿK³?9°D0è“JüÝN žYV@°8zóÇþ# à%'uß»¸?‹–$"õœ¤p^š F؃Âß—…Þ¢G§$;q±›œã°««­Ó°^°P]B¿1“ŠÙÊttÌ¥?XŒ*[Ö¢ÄàO ¢TW‚`d4Êl Yýà0nʲ B<Æ÷1UÉÙ4;R?E-wÜøç7‰ZÑ›Í&ÌM×(ÿ þ iAÚV¸m¡f£à7Óc’X‹ÖÞÇß7 <ì8lCº2~Ž¡Ð Á÷wjnya¥]báDhrYlyþ ´Î,gÜóé"¦&â%B8YÿýiÏHRiÔ㺱&k)8wé°Ù¼€©E#d"ßÜŸ¡¾.–ÿ5%˜À¿CP:a@@óûäÜtùè ”€bö]f@ã€<{$rŸS†Ca î×/":º#¤÷‚`1©èFXu¡‡±ouFˆ/F&­„ ÐoºFBÌô«’§2i<ïÇŽ´O¦óéóÆžî”Pw…Ï ò_S—J,¸L[­íÙw2BÖŠgΨ?éj% Èab`1¿49ѵFùn » +„ÐåFõ÷?ÃV­…hbX¶–TÃG9¨¡²ë«µ¡n·º>uÁ£ïÄØOÕ€É:Ñýñ[?é¾¼»+û9´DØOçÝd ÁB{œJGù3†¯ºöì{u„2±Öò‹µDåÛÉå³¶v~%‰þ_’E½¦ï3lÙ õ…€~Gkïz¯ñèj⃢Ñö z´|øC•Ø<Ô¿½H2?è±&³ «á£U¡Î‹…¤ûüdMQ úÐÔa5ŒpZ§³»ÂÕl|S©<+š¶Èq2ßäèÖCû<ÄSÁaR‡ü.¾^=ê·fŸªµ}Ö»}íƒsBÛh<‹ŽìÚÒCýM;ã¥MZ_;–WÇ@=ØëE?ÍR‹ë#þkè8«·ÞœîŸ+#\:ëÄý8oéÌižpÎ?*ˆE< ÷$à%Šv¢ãçâÚA¨(>=ú¥S3Î#ר ߺH*࿜ÒÀyß_O”r34Ôˆ+»Tek]k6½Ýëi)Ô¸ÙÜûM!<ë| L_(ÅX]w °^b7_Ií—®¥š©¤òf2zn´¬V»Z9qÁÊènÛša@Erîp‰è™+ zÚ Š0ŒmÍÂQ̸áBù ŸPQt6ëfG Ð_†3äî=wXº_·’„{Ït¼eÄúýgÄ)é9–HVîlŒ–3_®ÝÜxíuC"¶;Û=jÒ‘ì©sÎgƒ©V^õ»_–lŠÏŸ¯C½ `¼íOe[𯃕£`‰:u×8÷?zuUäìr |Zv9Æáü”ÛϧãCÄÂÄ(ºâ61è¼À®þ¹¡b¨Z‹&Tîd¬{¦âïþ)¼.QBΫ—ÝŸFxŒ¤µ¨I騪Èúà[‚3‰hEõæ4k‘³ z¦ò¦#4§G„20Ö÷þذt y%GUÝ×cÓ_×›aƒé<¾bÆ”ìª\)À}*¬Û]°ýš¼f“ /…]-âK¦¯Zv#è|?ÑOÃfØÅØÏMR ;_üø>Ù0‰Æ|¡9é#n»Lˆù#áÂ{ǾķvŒ`üB%§€Dþ.¡–y¹è¶—Þ“¢Š.|°¼ºö UKö¬ß$¹—ªÞ_AóÚ»–oˆùáN¿“ž-…²×$—ãg(dú¿V@§š¹óG³IÝ6¤w惛J¼O–+Ð%/&nS+z†¶wY}Ù=¨Ö ¹°w³Ã^Œ°=×;TXª`CárhÔd£æ°´n> ]µÏÛ;qN¬ :…ý>Õ™ˆà´éÞ­‘¶Ó§Zµˆ,wÇ©™ híKeÊ æîÜÙ^ÌÏ壆=X½PÓÛmb­SòWL†ø*Õ*gÎ5]R¡7VÞ×a?OÏõ!h¦þ<ÔMW½l³µíš5,ªÁzR”Šß“èa bá¢ÐO®ä.èñAâÄ Œ:ßdCiË&£U™ìÈß®ÿf„îdÙiöGŠCÿ|Õá­MÌ/^T–Y·Ò{zî†e»–]è1(ް£‘ ¹l±ƒì#5AÂ0`Kê@·žM¹sžŠ7œ~ÿWpnðã9ox^Ð^˱p妑«Ýw‚ÈôŒûá¡;X¹\MLqÐb{’œ×DA_4'ì¶Ô‘²o“ÃEK™:ëá{±Í—0€ˆÁ²X§3˦á}ˆú§ôÕcåë`t¶ÀÌŽ¢%üh€“ðç²åÅ:t¾Ç<­Tó×ä_ûûÿ°FH[W2ûÏa8G¤ °ÖÜzÄÍGõ‘öÃ(¯LFâ8„¦÷>}úk-£Ÿæ£ZqÊõòM¢‚GCŸ Á`å0´ï2 àå˽âB^9À½¬x …E#ú¸ 8ªÆs±{‰U¸.Û»xÊ Kˆì.v+”;]ÇoÍ Z•u× +†…ÚEÚ&aI¨w&ˆ˜ els¶„é ¯jØùqHÕÃ"0UDn°Je„m»Êž#½Ù‘]îú¦“J•K»zÃÑ«C8ݹ5Tí_‘ÑcÈTœºH¿X4:“}© J¿»2nGƒš:Â/êä<(]¢?ó²&ó’³oùiI,fx£¹\ý&æ»f<Ó[ P5ÿ±uÁCõË%÷.bùñ ”¡{M¥yܲ‹ ‰dÏxê÷g.6Šjñ©t§lž‚¾âŸ6ØŸxRâ߯«½)˜1‘¼¾rUðñ-´W‘Nzš7…Ç»ú¾þf¡ýئ™RÚÚ–_'¥FÎR‘Lž…"¤ð÷jŠéôa–uJÔ+Ši7õ•±_½_¹E=†hy£û\Q,„Æ'ž ßEÙ}Œ‘,™¿6áFç‘^< ‡G²—´¿×«‰T!ÍÇl"˜›íNâ„Æ6e`B}þ@Å×/åÔ& õ®Žó«3àÍ$ѲÂIÍ&.-:mÈà‹7‡¡îï“… ¥K²Ne ÃdS»VÇ;ïûTNìÜMxU\LJÒSçÅÎdÏ„¡ÏÙ¡®}8JÅô¾®Rœ‘ûl0„‹Ê®Î§TðE(sÓ¤(z"2Û(YÜ56ϨS[±;¨Òë»:Ï‘kF´Æì³ð`»L‚Çâ×P\2üf²&ÇÜ/弄´Ç²«5™˜/³mq‡[M½Î­å7¢qÚ ¢Ï¹záÈG\ѵñX«a럞à£nHitäçöÎÇ”îªü>¼èèMÜ+׃—îÔf¥×gY}0Á‹Ò8çøVçQÓlª½àLxÓÑ Ë®eXCîÑbŒ–/Ï-H6\¸y—™øý)Zd•²ñyÒŠ’. ©^²\&4ø±48š ,6œ¡òÃ=üüü{‚Qí÷–õÏ61oËxÓˆ ß[99£•»*!`9î7a²R©cŽnhœ6~\ú÷K_ú“ß`Âö4e[Cb‘swdc¯èá…®-SSµ â6tlmü1bjÄZË ¼pêO§üI2avÉlƒˆù2’Ö ¦MŽÌza€Wã¤3׆Yà=O˜§"“CIq™OsÙÏ“±¤ì)ì#ÍeeSm¾Y§²‰€ ì\s²ò’ÅÚ~º5ÿËAÁM‰9Ž.u =©Ý}WÖHÔ¦•óŠžkrWYê˜T’¥ÀÙ:rÙ`ÅRlnð;4¦À·œá£Åáíª¦D—’‹ùYœ˜b(;¾ëi^¶]`èõk¶.ÛŒt±êv/‘5ÑSîˆl}]ºFì_¢ýec£5›‚n“åãý•±L‡gt(šcÊsw›×¾±¼Ì”¯nÿP¤Oéû©ât1æ…®;sQG²ž;•I ÿÀP\ ÷‰3«$â×§`ݸp»Í½*“8ê/;ˆÅWm@ïĤé¬Mn›kÁ|m¢û§ 1”Ú'ƒ˜cpâç­@PÕ‰`|†Z떾Ψ³öêÆÉ>ÎùÇ8€‘»ŠÇÆ(rSÊ ùgqæq`¹"9í÷„}¸Ã»ò¼âdzñ6Ö`wóÊGô* mÿ­.ÚÑô¦Íµv=v¡ï£´7 `Œõ‰WìÑ™Wÿä¿I1*¿KkÆ×½ôsÜ4¸žªàCjO{DHˆž4iµ¹T“L¼Ñ{40޼‚¸Aí`én² þ>{Óíéò)ùÑîì·‰Õ8„ðiªBÜåÙz„óg€ÒÌI­C­u1UÙÌW„Ñ­\m\ Ù7ýVÍÀ£§’ßÞ]ع­ûþòÁ¸nú EZ8—¼MÜ=ÞôàvèX1gîq•s&9î" Šw•4:óÉ?y³mú0òþp®6.¿»Nw(ÜÚï°ÏžÖÀ&`?æÚQ û ýq}>Ì:é\oÔBß1M¥¦DÁXョK#úGFqm¨º’Rlj‹“©öK=phø+s[ÙñÕöYgKN¸6JOSJõ\Ì'›ƒÃÖ@æS‹V¦ùÕ­Þv€m”ÿw‚_^| ÌA¸¾ q Þ³§Q}Û^8 2x«é»Øƒu#ƒ&¶õôQK1”‹Ñ\Å5a·öóJdÙîð-ŒöÛ’«•½›@ò ®|}»æ+”1úùU1kôÀ¥ÅÝ*Dá—ïð&MRäjó¥!ßéKZ°¡ʉd%3NvàB_~ºOÃ3ó;¶¼€XÁe©Ëª™õ=ÑÆRñž©ùK‹ÇÚ:3‹N«Äªt[8•FcÖ—õ¬âõÂL¢”ŸEÕ/”±% à:÷©I¸+XgØä¿¸&™§KJtÿœC#έ3]~•ab*“Bx?ôò3 (—û&‹Uâçg&ó ¯æH"Ú*j£¾ÿçÔŽi0Gâ|l͵*wn7  ·ûoßñpñý²PZº,yçïRÅ‹µÉûȱ¯ÐÅD‰Ü~–@Åd×@4ÒM:æq¸vÏJfÍ’’Ô¼åÌеg¦–iÖŒÈ'B²Ú»…§›”øþËH†£_ƒÄ}}© ùu¹_v]­.ÒÛÚ«Ó¬:®œ"9¡º_†³Ð?•ŠUgùg—NÆï`fQíîü¨Ìä:ÞÕëƒýº1ìñÑh6öøósº7îSÔñ. Üýó¸U«þ"JƒJÀ*?û —õÒnW*8{ûØm0¾UfxS¹„ê#;jwŸ¨ì„¡w¡Û£¹­¤³Ñ‚ì2ßz{--4öó0høÆ^>Š÷¤3¼>úÊpV¨Jßæ3Ášÿb(÷ïã¢ÚU¬B¶>Zé"µÔjüÏbézi ±=SÆ8ªÜîAmöæÄÆ ëT;Z  $"-$d~@Y?èK7îÃðüªAËG*ÄïÎþ|±Å-z­¿ì køD`h-Uk0»j®D¦ K2©q+VzO(ÇÖl"Ufä8|)þŽëçGÆ ¸˜Äˆª7W­[ø”S)Ä‹\qƬƒ)ÝË¿ÊÛ£èÙÞjßR©Wš­>Ó‚H-ÁüÞs®xg—Qãµc"oC[KÌxò—}Ö(Õp›WŒ¾¸ù•üÐs²GÀ |Á(ZËãcxæ–ŽKdð³Ì›µšhQ›ùƒ!h°ÁGæVÔûÜ•¶/Sâ¤ùƒé=ïO¤ÅAk«X.ØtWÉë¤÷W/ÑaáïÔÎûndé_.ì{%6 H¥ÖxOJ’fô<ÃýSÐ:T&›hÄ…À½Ëâd.mW|%äߣ|Ô'䯾8ÆKò¯ºíZ9~t:øËˆÏñDk4\'û¤r§ZPÍHvŸmj© ÇŒ³fœ*a-ô~J{éOÃUmR_öôtgÿHéìKû¥{ûÙt…›.Z¶³*Eähø²jñ$õ˜· ÂHÂ[T¥ÁZg~¹¥I&¼Â‚,:=©zl,yÔáŸq}m×Ö—©WñÕ{â ê‹Et ¨ÓÁMú GÅÒ¼¥I‰ÀdîÍœ¡U’8ÅHcTç«k±˜µÑ~rjnzÆc§/hÇó’!c}&.duðÆûж_·WžóŒÞ¼Ñ@0J…»(³oU M¯Ë¸¥Ã|P깞ßrÃÜǯïkìy©ã’}Mÿƒš¼"]ÎÐLͬˆ\ 8b±ê÷òÇ%Ðâ{<;¶v1í}ÇQP¢zVfVQ}â”À¯{WÚbª$ÛZÝà•Lâ}²²9¼ÀMÌ=N‘A8ÿ”p¾gÆÒêúãÌo¶N…'òC7Ùs9ÍD4×åÏmœš"‚ÜF¾Ôj±\!ñXqlÞØ0'½\Ò÷Iã gmÕ¹ ©ÖÙçÄ“!ûZ¹Á\¡4É7g¶óž ÉʆQ[ìz椇&»8R—o¶ðžÖ tÐnã͘UJê×Iüo¹ÉY¡¡`{$ìKå'éš«Z½t4q¸¿®ÝS垥¨©iÕ¥ Z­¼q"°ªQm"¬ —. öÍ$T¬/½Ñ2Bá½GlàæWõT©3\„ãÈë¥É?W‹óÅo‰”-Ë2àmDöŸæXcɧsŒå_øþ=jylÄlILèÃPÜ …C…»”æ1ɧíhEm ±ù&œB$@̽SzYj<–\õbËiˆ5¢ÒïŠö[SA=““møÏϧJÉ|y-Ê8@ŽdÈÜ€ÙêÙÅççLB‹‰'Âc3³13¬wÆà¼÷zôT Æ)m¬ö^A_˜ùDXMöÿ‡?(ÿÿÿŸXh2uvÛ›:Û¢üŒÌSendstream endobj 34 0 obj << /Type /Font /Subtype /Type1 /Encoding 246 0 R /FirstChar 33 /LastChar 126 /Widths 247 0 R /BaseFont /UKNOLP+CMTT12 /FontDescriptor 32 0 R >> endobj 32 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /UKNOLP+CMTT12 /ItalicAngle 0 /StemV 65 /XHeight 431 /FontBBox [-1 -234 524 695] /Flags 4 /CharSet (/exclam/quotedbl/numbersign/dollar/percent/quoteright/parenleft/parenright/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/less/equal/greater/A/C/D/E/F/G/I/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/bracketright/asciicircum/underscore/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/asciitilde) /FontFile 33 0 R >> endobj 247 0 obj [515 515 515 515 515 0 515 515 515 0 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 0 515 515 515 0 0 515 0 515 515 515 515 515 0 515 0 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 0 515 515 515 0 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 515 0 0 0 515 ] endobj 246 0 obj << /Type /Encoding /Differences [ 0 /.notdef 33/exclam/quotedbl/numbersign/dollar/percent 38/.notdef 39/quoteright/parenleft/parenright 42/.notdef 43/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon 59/.notdef 60/less/equal/greater 63/.notdef 65/A 66/.notdef 67/C/D/E/F/G 72/.notdef 73/I 74/.notdef 75/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft 92/.notdef 93/bracketright/asciicircum/underscore 96/.notdef 97/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z 123/.notdef 126/asciitilde 127/.notdef] >> endobj 30 0 obj << /Length1 1772 /Length2 10956 /Length3 532 /Length 11947 /Filter /FlateDecode >> stream xÚí·UX\ݲ°‹»»Ó¸w ww× . î4¸»;'¸[ ÁÝ‚ëßßZ{¯äßûòœ«ó¸á­Y³ê5ǘÝÐQ©i²Š[9YeœÝX9Ù8…’Êzœ\N6::I ¹ÈÉQÊÜ (à䈻۸8œ|BÜ:ÊWc”ÒÚC\£‚ê3ôhêË áãדÉk‡‡6ÐsSi`}~_Á¾î‰•œ·>ìgŽÔƲzáÔéŽóPˆ”—ôb k5©cv«xšê¾eð0q‹S`\µåž§œ®Wýda¸F™Åi¾ŒÉ\`øýÆÍ(½¦Ûù{ÍBN‘Á½*1O…l¤?:(êKW•6T}B-½ÿtëzA§­™Ê ÅDá"™­¢ìks„ðÉFÓlaÌ·¡sðâÅ–­<ðÈñà=—m­å€esDO3°ó´üG‘L‹,If³ø6ôã8Óþ¥ŽÚÓßÎ\júX3RÝiÉ|ÞsÚ³áÅn滲ð1`åÉŒsatlîNžGb°¹´¼Çå õ§ áþà¾ÇäL‘ô­»×mÍ_%Å…ûùžpgÌYÄ/)ÿ3†kˆØyöሬ)ËëQAh{|þ„‰Õ\u{à®,Óûõéõ› á ºƒª8ŽºW®Eïc†ªêÐ!A•’[,š³Óˆ·Ñ6¶üGEÛ,e¿’B ˜ä_ËÏ÷£è9îqPm»'ÌÎ.]ê ¼c™%¸CuæžäoÞÕªZÄÄNÕgr< ÷),òŒ è Ç |—nhÝòoÚU)B@‰òý¼KI?Âéýî&ƒàŽ‘0^ü…ÿÛ!!¶¤~)A[ºøÜ‰&kAP~FWÖøK[fþþ†¡YOT~…z+N–‚Cl.(L8ouz™Ñå?Ù¨rl{ ãò;7ÝFì‹…]HÌ»P${(ò ™ÊL˜\¥ûÎáJoý*þ è³+µø:^¡Ëlš*¯ÊW>†GþÏð“\ò¢—þV7ÛûgûᾌÇë´–b󃮹ôHd}¾z¢ZZ¡«ïbÍ%¢F©ÖO]9s¥¯Ð—È¢ Ø*¸P»cÙó`Þ –Þ0Rœ`˜¨QvÊnbPZufÊIØ5YtmD3<Þö»*½qÁ28ÜnØ~^-¸t}BMÊØLñ:X—S¹–±O™è+„¡¸¢°g¦ñyÝm÷U?)šµ„ê3Â"¦„fej«xw„Î]ƒ¿Ù¦D¿ÁfépÛ¨eÃÐÙÛï#NM|5 þu2@Ì.ýEÇ}é÷ör6^´­zI{õɧþ-þÛo þ^Ù´ , Äš7ŠLŸªd+%Û¡ ™ÇZœ †°.ªÊWwàŸ™³Z6]Ǫ»ƒðÅ—ÜôéñÿÙÔûåM«=®§’¨sØƒÚÆ©ŒÆü/B2Ã-³ (ò}ZrÒ¢ÏStícX(•Þ.éžß„r‡Úk«ÌéU3ùJ÷KÎiUs‹2!¢û¦ò-]·È˜­A¾JZÖÅš~u°0LÎ&O¢“s—ßçIÔ¼ÐÆ¬û‚IB·ŸÑFkfím%}Æã+0o¯ï£Â›]åª[zÔù£_qï †t­bH#…\—ÈiÒÖû2jÚð¡OúJîìl?)Ф‚GªÃ_i_bazìO"v¼C€"ú·÷»0•ø5é¬ÎI©ü ê«S¸“ìãɪfÒâÛó¾ú5oº¨¬’Nç²ÌÍÄ"ÄÃ2õKôu`§˜-AG‚K]•ªRc¢ÜÖØ—¤ý/3ŠS“÷¨±¯‹{Cåöt}ݳñ›¥+ –‰gétžò8»äUÌàc$Œ˜«¨WceÞÊ»¤ÁÞ\99ßäb*Ͱ/íû8 ¶“Võ×9 ŠLPñ3Š”Áx‡á7ë’qðHPô,Ê´C+ÁÆžªîJðÇÅV8TžýšŸKàªÇ,…5€ô<Ä!!ýæ÷Ô $¥ü´Ê· ñð :–sîM_—PH½Ù¯ "‹9™ÔÃ>±¿ìÒ–“0”]nl„:{=·|1—ËÛ=–ë¸fbòŽºÞI¢S¡ï3ú‚“–òh„Cåo,ÂéÚ¸õLGŸYÊ–È*?¥kXJ‡ú®L(K qvÏÁjáI¿êÿÀd“±!þâLéú´ÀKçmòù(Y! ¼›^óE»ó\˜A‡beñˆìÞè¼mÒ S¹,hýòz MXÄ/Ì%ôWQM1¼‡ ÓÒXCUð`8ƳÓôµt5d‘ó<õìÅû/hdáÊòåxX¯Ÿ4ÊV³7ðov:ãµb𢵳~¬§É•kÒG:J5˜Ñš ˆHÚ .¥4‰\8ÉɘƒÄ9ƒ©!òÀ·ÅTÉEŠÌB#b{6yöÒþHíG;ÄJ 7jáN o.òÍ„$TÁš3ŒESÞ+±"²QɾÙÙ¹¿GN¿*à⑉œZ =s‚¨«ú‹·Ø|^\3£·äs»…Sn»Y’ ÷ãü5#ÓႱ§1pTØ3ŽðØßµºŠ£Ú–Ü8ÿÈíàñ>Éw)»üÔTÀÁÌ+à¿Nkæ\v7¼µ¯> …ù¡½1xÓúLœÇ¦~§èNl­NZò“!<&¢þe= ’eúÁq}Ö4ÿÕºnOv¡üç Úô!]Lê²ðx›be ת.V|¬Œ5¨l§éã]FnÎü7Úƒa¾@*áã#Õ—bz?”Í$”¹A%4Œ½à`È@ßÒA9þ– H%2Bú ÏÅ=J|pyÞ‡©¯¶?ö¸ž>H_0"¿¤’vdé%Gr+)jmºÝ§êCÿb¦Õµ£®ù¾Û;’Ñ;¯Ç<ëÕ)ÑàBÛþù[Šv6PÒÆÑð\ãý&,RsT+B7U§·¼þçtþÕš#$¯îW*/„ù.Ö¬0<嫞S¨m·ÁÌ+`XÏa. ب ÐËðßõzí©ï"7?ü*ÈÑùkfëA"· ¾ÇÐ 4h^*: ›Ø]äÓ3¬y2{ïý˜Ò£á Ã3nYǬB D‡ß~OÂJ_ß»°³mËBþýø©çy|ÑØÚ eÂÆO­òkáó O9pòm¨OÌØ‚Ù@Ææ>¯683Æ,—ñ±Ÿ›°ü4 Ï+)ã[ï]ðƒªùà”7µç§ÀþweK…%³s¥‹f8ßkvà,èwùM2$ \éQ€ƒŽg¯Ål$f}Å…B)…çÆ–Q&¢Çž„Vµ™YB9|ÁÎÑ0øeì©0¾J¸:d-³SØPis7’ÑÛEœêÑñ“ì›dG}cÕ©’™”„Rܤê¬-£ÉØ9)¯{\Ò '­= Øþ?¤*ÈMÑrŠ,”£UTå× û¢þšCX]¾ïÎã‹€=[8¢oÆ2ÎÑñíØÂ=‡ÜÃr/8%ë i꼞&‘)wÙK¥ CèH?QÉièh¥WÎ("^®ÉÛ¹„ŸHk3S¨§rûÎGZuãŒ( —öØlo¬,÷1ôó¦­—ßç{ƒSqݸ¶”^Ó«sPî”î°'Ey_»¢QЬPfÒ)˜"ò[`Ö™^Á­´=;2íN«¹ SXØoÁùªŒsüïÉVÖ2?ôcÑΈ«?hRíÈ­yÑz“²×Õìš/@ØÇ}ÍPVÌ兀4#Epo¹òÝ—$ õ™6ûmÙæ³ ÀÙžº'³Ž¬dÅd¡L-²RJ"‚&[kô[&V~Rnþ”)*'ªý”tÚ»ä&$åYp§>Çxaó3š3ŒÈÐÄ’(Éò8K8u…´hM08»‘Qe"Îø¦‰[zâóÎÊØHI»•~Õ¬ÓûvwKl}¬s)b-Ê×U ΀´äˆRÂöáãAÚgVßÖÕûð[•¹#µìéÖ;?åCåŠz©yÈų‘VàÚO‡–¢áEןsªý”DÍ$ÐbÇüÁ¥ãkÃÛ™‘˜~½Ä©°õ=µ-ÄÐæ6¼èíuí¨— gü˜Ç^â_"o¡ðÖ7oŠ\ M>’‘-a‹Q)f ùC¸Ò¼'ݪ‚‘<1ž½–2/ÕÊdaÈjò37bÈÇÑr¥.:Ò ´Ä]ã³:Ê!Œ‡u×G.²íà•ö3´$1N03ã&j8+Á›LOv”‹”÷M‡aÊr”xç:JËVÁÄôr³³øÛ0á+¤W:íªÑùe¾ïT;-‹©mkt¢ä®c ÝkckßS‰ÔÈ¥ÐS¤žÚig©Žt/\Ä‹©µ›@qR–ÃOã1+ˆj}ãÎæ ¯zD{»¯Çfv»´-zÆ‹OIRâHeN_B¼ÂјcÜ8‘•ÏPKÜ8J~&±äo€uNŽkE­ ŸW[K¾»1w'½ª«À÷ïìj†Ž•4–GÈ{ºs~gFÞÕäŒQ@F$uP¹!¢=  j*ï%ÞœR”\S¯]D§y\¿TìÔŒœãÑ“¥fÅúȦc’þæ±U,©""zL²/€x±µ4yjìnE|+ÍØïZÐÇ AÜ`âwRöÒY‰0V~­Pðt>NC!0b¦tJ ôGyŽ9£Y°¼ïœ Yø±ði÷i1•$ùLZû:‹ ±ž}[Bk"§qÇ4ø±ÏýñM»’¹MÍð‹}×®W×@¾2ˆòz-'(_¸>1Óõ#‰BОœç”Ø3`êˆ]Ï\ «îíõªÑèRHµ¿F´žìž1P©Ó‰?¤)‘áÃÀ¤­¤Mû>Ìλ·ôÀª”qeû»ê¼!_÷tÖѤ€a?!£âÌXu#ú‡Rß Éi¼oÑرéq¥Ô5{Áí–@ÊÃ[_¡ëø–&’˜Š"~F(N³ÕÒ|]ûØ™L§,Ã@’ ‚`~ŽˆKIub²„‡#vn râ=¾ó| ö—eÅCkÈØ«À˜§MèúÒ\ƒü®“¯ g?›fŽ öÇ“•zhH©«¯žf~V\&î€îRk[´[åc1fë ®s0þ{~/.ÔOõƒ¼zB`à´•,…ž’ï0`_ã´m­ÚöhA¯Ù¶£çy4‡ •rbâ±^Ðм½áZáJ,ü‰G››Å'Px:VwV|þÓ×°ªóµÜŸ-ƒ²zVóú%å~×®ÏYu¢Iò¹8ò~Îdf¿¤ºÒp^J¦¹§±èêÈ<ÉÈA¿è®iÊæF˜ O†,¤µliöÞì¶{Ÿwçé½h؃¯ýˆ¨FRæA0óNWÜeUè™êò4Š8ÊDŒýuFA›R½q!4`•dí`{;ûƒdÛèk2[P~e)¹œä€môi >%U/MÚ:àñHå ¿{›‡||@ &ó2oÌPë4Dg;Øš^ A/ϯƒ ‡ÖÇrfÀáµÇ¢p`LíòÉšŽ¡”i™Dæ®Ã"—I |©Á)Öº8jš·ÇÀ7py$©é¸…ÓMö|ß6Ô‚õÝ,|üJñ™9štîô¦9å¨ó,™‡½³#<º]›¹`¬qÜ.ÁªˆZ·§{ÅÉa?-íÌßL|ª\åÛžO!§ºzVŸ&ìÕg6…ËÓß?c'×ÈR‚b80 .Jê|¤ïx´ãÎqóÃ2¡¢}ðaªÀ=¢éxFPL Û„h™¹ GìiN{Ø,GR£`”\À¨¹Þ þ•5™BvÌOòÝB´ˆ“}-¦”ù–â_+PR×éj'1Àòž­w;Ò¿òû;<ˆø‚ë}®àΡgšÍU2 Sæè/Ù‘ïmìV*°ÃXÈQp©Ùªó|%Á§Ü˜é‘ü¹Âu¶žjÁ÷R#bÔ³,Ö†Ûh(ê–aº6¥«ÐºU‡ñxïÝÈ‘m®Ì# ¶G*¸„|»*u•C¶#BRã1Âã¾Jâ6úöÁ½©cËó¬{ ýZÚ.[+Œ¡÷ƒ?97$Tµfß—Uâ¢[iÎÏA=ó¢l—n¼€á±¿x™y„”¾é=É¿Èg®·í'#ûHŠ(xè(xÆ(äRù·Jvg©Q4SŒ×ýz`_¯FÃv]0‘ÅkÞÅ3QxúD—âÐJmãP“ø!%7+?>pÓ>3Æ?ŽP‘ jç×™6ýf6ÄÓåk–CÉÔvñ¡¡ìHPÞ]ŠdØŒ:÷æSF7£–*1{Γï>°p¼Äi ŒšÒ®{uûÞhÈöJb…Ø uZÝåúe¨” X³x€t1œo‹W¥£­Ž¢Ü³ö%Oê«\“kÞxŠª¼ÄI"¸úÞ»dÐÇJ)`î9½×^PÍùTí_ŽL¾ã”®M¨½á¥‹âÄ1Þ¤¡e——ÆE#[¥Éa1nø˜—ûœÊ°xXgn’V_ï¹0­ÿ N$Ëz·ÌÇ“¨lü}pÁÑù ¿³ù¾x#´Im•¢N)êÚf•LÒþ£šd(´tT…ýÕ!ÉbµH>c¬ è—«¯VcÛ-@Ï0ÈB~cÐÉSµÄ,.‘ùáHúAL½Èúû®S̨h|W/©SÅ‘¥œ®ðÂnÊòi]b½-þGQú×]‡ÍéÏ‘„úàª~µ„O­B³ì42P§?ôÝ_G#_qÓfÍ~n‡®f¿_•ù>f¿è…ò}áI?£SRFH)¹hï(³+I{ì⣾×ù)æ7phºb,Ñóûìžñ‰¥’=˜R¯R‹ŠøØ„ÙÁ=uÎмe¾³»±ÎITŠÄiUT¿'×xCXÛЂ£â.ËŒñe-›á­¶mYÕZçìÀåº ## ûC«g2­Ÿý±ôÜÏïÕjÖg”¼}‰$Æ÷&cb¤Ù&SR6q«Ñh$îq{ÁÙ.À. öŸ¸ÙpðÍ%ÝÇSG‡š‹.äAÇlhJžé"H0”Ö‡Dv§Qü">R΄oõžëæÌöW™ ¥ekæZ,Æ@+¦D”Fgb´kι\‘XhÂ!oÊ78§ãuDz1¾ý¾Æî ÎOä ÷[è°ãh‚9;>x •ò¦h®%%ÕöR“.“SYõFÕâGáï(u2‚Kø±±ƒ—Kl—|«ò)-~'RMÆò÷|nº“Ú™úˆñŒLaf”I~áz´äXÕȆ[‡ÄÃåØkRš xn¡ª¤Âyñœ6V8Ùàc/„@<},q‘ùªc,+–Ó·[ZÍÈ_ÓÞaÄx¬ÛO‰cÓjÉåPeuLSˆ«º>UZ™e<–’<é:h;ÖÙ6ÄÆ'€ ”Ç(W‹‰~‰<¯ÜºÔì¯LÓ A_™/]ÍÔ}Û.ETÎ:¿B¼åzÐ:^”‘šÊë•”Èv_5H¶8„BÙ Á~ÒŸmi€Sì+äìDy'-ßqŽ”‡uvûU¹Äê@ëi¦Ùr„æWirejI%·X¡sâ±Ã~‚ r‘'ŠÝÁÍ3ü®–'{4«+fR’Mv¦ÕeX2S|Bè€üýÜå—ìdm]ûNÓSÍÛ\ßÓ‡ôdb¹íaÞ>±åÔ° œ![fÕ«®KŽ˜á1SUÜ=ýd ?½ØÙ§WÍvâ¼Oë÷A_hé½ZÓÃÂçVµ=Q©’ìæ¿«ßò›ÕÎ1ñêçÆMh)kñ1iD4Hêø¯Rª ÒáY fÔvËqjv‰_jPôW]n‚„¹ä+ö¥ôêèë³Çeá½Ao~‘³É]²uѾdPV×½¨)/ñsõöòÓÁœÜÖZÌÿ ë±¶ rLì)‰ Pÿv×D,qbû&§ÔGð!ÿ"z‹Åψ×ÛFZkhƒ‰ë yÚ飿“|‹y>öËzÍàõíĦ8•Çù¦’ÓU‡j~’,nž®EÇи³8S„—ÀÒëdKz–I'ãß !PË•’ò~º˜5æÕ´x&«´”L¬:ßXós]?%Ñ©±hÐ&FaÌe‡{WGзᲖäP‘Öß/—¶ÆÖ´§4ðd{ˆòo~~GXç”Qá!h°lxÍa"„ ÙYÌⵦÌeªÂ×¾FDQ®ÊÐ…öï$.•ÛïÜu2O.å¡3?¹šÒFp}‡a³Ð¾”¾g ñÞÏZ"Þó-î}y½ñ릯ˆ'‰ÃW~#þYÉxžÈ¸fÿzììsÛ+¨Þ)íL²ºÃ÷Bã4—R¼Í*ˆBhvtØè`êŽë n¶öPºÁ²ç9Žtàèh¥{=hØZI‚_Z+ÛšgHý’ç%m]-ž¸P‡„‘¯ÚÕË$$‡Ç÷ÏÔx¯Ðûêᵩ€\w>5<Ìeðh%û© ‰)‡Ìdw”¸ð“‡Í:R¿|EQ“Ý~€;KF8ÛЙN c¿â#2 |l?S:#¯–¿ñësm>ûÑcRÞÒ}Žù>ãUÂ]÷Öœ}ðÔ§w»rG‰É€ö=TT^(æhÌÎŽÝÑMøªÂ [¥¡óÅï vã–Ûµw¢ÒŨb4D¹ œï5º‡g³û¡Ízý+7|¸Ê“¸“œ»àµåe¤g7y:C?¤–öŽS®k+Ø÷W?k°i1j"†BýÒŒ®L;lðœÄW"FáJõÞpvV^µ_’2Än!yÜSë]B­;ÄÏ¼Û wzY—Sˆ³Ü`8ïVhKÁrg4#µ³Ô³0Æ@ yø‡Ò%ä϶Y!ï br|VÝH­…Sû”YV¹ó>UCσGÒG$óƒÒϼСb,­ë)Ýùüc7)q7Z@KÕçÒ¥öýÆž,–bS1%:Ýä‹ç†R_m€Éˆ"ÀÅ#ož˜ÜÍœ3õjmÏb›j·¶¸LÖú|ìxæòÉ †ˆsýõ&›üt[ÀZÍà ýøY(wJ‰±ŒSß_éœ"óµ:dÎLÚü¤Í'—¶†7ÑVs2kÖÇ.¸ð0Ù I(ºÑä&ðû«LìHL!¼[ÈJü§M%Âõ'Ú¢cøö³Ú‚(äq§vKɨÊÏŠ¡l½j>ÙEGžãâVû`7‚Œ¢áçr$µƒ b$¢--1ºÆêÐ6Å»9¨6â’›–ÃvxÕàxcž1±ÑfC íc#&|ºýR*Ùù·U Ɇ)3Ì‹ðajª¤þ•{ò i˜¼9¬¿ˆ3dAøª^®o3§”¬‡HÙwZââ,8ëßaÅÔ¿< ¿¦vÒPóÉÜ¡•zR’ˆFrà€Œ yß÷ï_\e`20×d|Ò2¡á~ÅøHE>êurôy¢qékr@á°j+Ñ´_/νF$‘¹q!ÒÊfuYq_PTÚ;4Lì#´ñ…Ɉ¨1V»ŠBÅt¤kæMù0¨ˆù¸ Ì¶×I’VÈÄÌ'†±D9?º~0»ýe{W=ç'9QA„ûí‘ Ý·!Uß‘|8ƒ±'ˆEå{2 ôCw›N2<4þ‡å•ÛÌVÐËÿÃb1ws×ÃÚž\¾kýõ©ûÚâ<<ýGFÎ\ì¬z®ÑD}Œx¾Ñªöù©»bhq«l;MÙŒ†»HG¼²S‡5ö§ñL!_bUȧ1³×Ô•`P¨“¤‹áù,N<Ô[Vq e»¬Ÿ ¥Ž'ïyã'3_aùþ¯SóËÞÔx 8¶ÝZÜ0rÊ1OW;ñ×Y´'Ó)^Íî rßÌÓf†Ia×Zí´ÏWˆn³ö¡Õ¸òÅÚIO0Àêé»Ü×™ÃCö 9úb²+EÕO¨MæùÃ+ÝI2NqmF‡ŒSEƒ…wÚ—OöºcâÎkäóX$p‰kary›Á“À×*¹KYS›²€\ ©*Sàgò’FšùÑX¡r)rîú3 *éEí<,PŽ—r«öµi•¾9+> wú:Šuy¼qéôw8¡5¯¬çŽ'ÔCt×(åˆÜ½•Ò«WêQ½ešÝ»`Ù‹k]Lç•Ï`KÔÎFg"Áˆ[RŠ&y§ü[C} CVøðGRh´S•¿Ê¯;ì/Š\9±ÜlŸX#ÒÒPuAÈd_°}KvZ²({ùñ§‡ëP®/ÄÑ]µB—fótô^Ÿß!âänw‘“ h¸XÄg›õJí±™pñŽÊòd.%‹Î5¡R›ìþæÛr~˜ðþ7þ‡-îÀíyÃËwD¤ï4³_Wë׺ؗf¼J&û_Uã¬P»#÷ÓG¾zI1h³¼VðÚÔ Ô+ ¤;+†…:Íb}‘õj̺ í<¤‘QîÀ…9ú$Gôµ™²aœëÃ~­Ý ž¤lÒвòË3¥þ±ݼ×^*Íõ^¹86@ÞPQ´AÑWÀì@¶-«kgwP:Ex Ž Uç7ãZ·‚15×0LAb4 þEUÔíóv{Ë'ÕF 7«¨)¢}¦#Û¢JÜʨ;ÂhÂéâ(O`ر³yÿ”‘‹:¡ÃC—kd(™»ÙS­E Z¼ØçaBá&èK2¯÷v\‚^zµªµf‰$¾*Ž”*…’j@ ¹dŠˆìÇGF"æFyï¼?òˆ¤uØË=ÃÒgXÿ$vXùxЪú‚«—°À|Š\~çýüÚž'æ^C„¼ç°5á%ôÕÈPÿå¶9VÜV©ÉKVChRìy:ݾ&k+_?æÌ1•ô—}ïÌ£ŒcZ]$IMý±Â2GqSÛ¨‘È|šL†øç$‘‰¦ÓCìˆbç­æÁ÷¤*ìÚÔíQÔBß7’§èÞ!-³ÑÓ×7åÚÅWŠù’<ˇÝåëï':Ÿê`ðxþŠlÇ^;W@’Ö<ŹKÚS‘¦îw{u-Rw–d0¥þs]b0‘X6²ÔƒŠSh‡ZõîWÈãÛ{¡Îwy"ÐOü)½s1SGóÛm-ûÃÿPþÿÿŸ(` š»¸99˜»Ø£üž7¹endstream endobj 31 0 obj << /Type /Font /Subtype /Type1 /Encoding 248 0 R /FirstChar 11 /LastChar 123 /Widths 249 0 R /BaseFont /ICIIQL+CMBX12 /FontDescriptor 29 0 R >> endobj 29 0 obj << /Ascent 694 /CapHeight 686 /Descent -194 /FontName /ICIIQL+CMBX12 /ItalicAngle 0 /StemV 109 /XHeight 444 /FontBBox [-53 -251 1139 750] /Flags 4 /CharSet (/ff/fi/quoteright/parenleft/parenright/comma/hyphen/period/zero/one/two/three/four/five/six/seven/eight/nine/colon/question/A/B/C/D/E/F/G/H/I/L/M/N/O/P/Q/R/S/T/U/V/W/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/endash) /FontFile 30 0 R >> endobj 249 0 obj [656 625 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 312 437 437 0 0 312 375 312 0 562 562 562 562 562 562 562 562 562 562 312 0 0 0 0 531 0 850 800 812 862 738 707 884 880 419 0 0 676 1067 880 845 769 845 839 625 782 865 850 1162 0 0 0 0 0 0 0 0 0 547 625 500 625 513 344 562 625 312 344 594 312 937 625 562 625 594 459 444 437 625 594 812 594 594 0 562 ] endobj 248 0 obj << /Type /Encoding /Differences [ 0 /.notdef 11/ff/fi 13/.notdef 39/quoteright/parenleft/parenright 42/.notdef 44/comma/hyphen/period 47/.notdef 48/zero/one/two/three/four/five/six/seven/eight/nine/colon 59/.notdef 63/question 64/.notdef 65/A/B/C/D/E/F/G/H/I 74/.notdef 76/L/M/N/O/P/Q/R/S/T/U/V/W 88/.notdef 97/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y 122/.notdef 123/endash 124/.notdef] >> endobj 23 0 obj << /Length1 848 /Length2 1214 /Length3 532 /Length 1819 /Filter /FlateDecode >> stream xÚíR}Ïóý|ŸÇ”æíÇàÁâÄMŒ Ú.ž~ ™lŠ©© Ž@*Æ>…Äíì@€' @ÀæÚ[±í9\Š)à"ŽáhX8˜»l^$qžÁQ>„žŽˆÈ|Hø‰ù(BȘO(|+$€/"Að(fR@€Q>„ a(Fa-*rÇBÅ÷- K#Þ§¢\BŠÌI‘›R",Æ„2FB),/19 !•ü7D-oî& ½ Ñbû%—þ‡D¨PöŽ!EH <Å0‚cË©Ÿ#oÅy"0*-Ϻåó°0!0@&Ûšó6JÜÐöF ~8 %ÈŽ`ðr)¤}KBXÎ;=ü¼|-ßíu)é ¡±Gìì¥ü“.áh ð›Éfƒ$‘|ïÿ‚– sÅøbÅÂ+Ž-á8$£DF P Fb$†TÌbbb‚,HkâP1NY\+`‰PL*YD—+ 4‚ð³X„ô•ÈÕ…ÿ 'o‘Bî!>”Û, J®Â?ÐØ¶$ïðG«œÅ1± +;€agKJA[€ËåÄÿ‘/Åq#–®‘4ü}Š’KB„Oééó·ùòtùWE ®îÄRŸoýûHê{+þŠÂñ~œ³>´0"ÿÙyùµŒFª s½ÛwºøÕ é^iÁ3yº»–z®`ï×Iœ:æ/~TÙáÔS«_[š=soŒ ÈÊ>*ßh_‡?þþ˜ñ–žãÄVͳð°ó¾ µÏº5t,|3-èúÜžBÕ~¥uTYÿP—ÑteâéŸð'nõîr÷¦JÜRÍ:C5Bf 9%(4ª³ÓÒç)¯þÞ°¶_Ðoµô:õq{Àzå•§•Ú¾Tø_.“ß «ê_LxQ ²+N~:v òRõ'Ïý©éñÌåY“ùÕÝÕz ®Ó½—ó¹ê^í*©VžÒks§*Ã3FYÔ'ã6íÝwvä?N­ÐÜçTAIß ¹½VI¯2p¼9ÂJ~ê>×À,8`Á}U–$Ï|ý}4fbðéÙ&Xe›8Rú&-ž(ù“ÉŠïœàm±-Ê/hùíÍâ&…–ÆöʶCç\'¯^Ÿ;8^£dÑè:rR‰ æ°•Z:Ïê¦(·°nO÷ß).q´Ðq¯®ºöíŠÏÿaÙ¬eË­š×¸ˆ˜ö¹§žÖÿ,ŠÚ»2£÷Æ‹šYúŸ±-üONIMÍ+_ë•ÝwSí3‡­æÎ¿”nÁa³àdoõ’QcÇ,ý4Û3"ÍâCaYFÊuÎi>!¶´+±±ñþ›ú2£´·ó”×]š:9À6ÿº…ÀÑZt‡—;“ÖäåDyÛÍGxv †²8ù{³1þó‰}ý®…{ £&N·¨ýªXå­úØfÐhþbÀٽݰʦð²§4þÈÁ‡÷<9<ÁÂVJ‘uWÊ…¦‰¶NÆx‡ Õ‰8§;ýbaS}…ïÝÊ dƒrïk«ÒîºT_¥z¨Œ^‘^ùË-³àܺi»˜'_øõÍÂg—“áµ9_iÓ‚,¹ZB9’Ó'pé=tMÿ.Õ©¹g—Ò8Wh’v¯\¾ .»]ܞ̽[n®ê¶õe¹r,.Úša¤ãkãaRu?íÌm®~ˆM“ß‘êØP1ÝB3µ¯U¦½5~}¶J¢rus¿…·¥÷*~"RõíþÀBfÓ¬¨ÁE§VšLݹgø>˜¥¦7Âr8)äŒf4ÐBfŒb›¡3)= kšqó:=ÃN—®ìÔjÿ¤ûƒû\,ì+)jšÊY§W2:_¯¤ñÛ”öoÌVô?8 ^°q¦í6’Ð[ä´;n Ùç›L¾ò#§> endobj 22 0 obj << /Ascent 750 /CapHeight 683 /Descent -194 /FontName /BKJSNR+CMSY10 /ItalicAngle -14.035 /StemV 85 /XHeight 431 /FontBBox [-29 -960 1116 775] /Flags 4 /CharSet (/minus/multiply/asteriskmath/bullet/similar/bar) /FontFile 23 0 R >> endobj 251 0 obj [778 0 778 500 0 0 0 0 0 0 0 0 0 0 0 500 0 0 0 0 0 0 0 0 778 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 278 ] endobj 250 0 obj << /Type /Encoding /Differences [ 0 /minus 1/.notdef 2/multiply/asteriskmath 4/.notdef 15/bullet 16/.notdef 24/similar 25/.notdef 106/bar 107/.notdef] >> endobj 20 0 obj << /Length1 1268 /Length2 6837 /Length3 532 /Length 7623 /Filter /FlateDecode >> stream xÚí•eX[[·¨¡¸;V¬ww·(PŠ’àÅ]Š;ww(V 8—B± §HÑÂÍÞßùv{¿óóÞ_ç9Yù±Þ1Çó]sÌ•°0hérI[ÂÍ! p˜+˜,U×Óƒ`nH›…EÖbæ …ÃäÌ\!"°°0@ÚÑÀ#ƒDøx_l€,ÜÑÓjmã `“eÿ+I íq†Z˜Áêf®6D 3{€.Ü qõäHÛÛtþšáи@œÝ!–ÜØ`0Àjá 0‡XCaØÀ¿œ”aVp€à¿Â–nŽÿr‡8» ¤lk²’–p˜½'Àb… Ô€#Vƒ \þhýgq7{{ 3‡¿Êÿ½SÿmÜÌjïù_pG7Wˆ3@n q†ýgª>ä_rêK¨›ÃŽ*»šÙC-¤aÖöè_!¨‹Ôb©uµ°¸:»AþC`–ÿ逨¹¿ €º:Ï^pþWSÿÔ2ƒÂ\õ<ÿ©úWöß þ͈íq†zŒ@ˆý#׿ïLþc1y˜Ü ³ðð ÌœÍ<±ÇAüo0 ³„x a 7 @ì‰/À îŒýWGù@GDSà–Åÿ]ìÍ\lþ‰ð €p{DÇÿ€'7Dóþ‰ð€f®¿Q”ÿ‡銿‰TúMü êoBø¨ý&ÄÂÿÔúMˆyÏþ!Äášý&Ä<óß„p±ø‡À DË?ð¯GùrV /hý"žÒæD8@ÿ@„¼íˆp²ûRö ÂÊá7"Îö"¬à ÂÊñDh8ÿ —?¡áú"4Üþ@„†ûˆÐxýyã?Ó22po.>/?@ŒhÈ÷ÿJ³psv†À\ÿþ½@¼ÿf+(â%‚@< Ø‹Ÿá¢!¶iÍaå~ò…ShÈ2Ö-ñÝŸ:q‚íKFT8V n*3Hð·Ñ¶é_ßQ»Dvøh+:Å¿»ßvµáÕFmpš¡î¹åÈx¼OÐÞ<{~À¬9³:ZžlX4}2¸Ÿ¯Å&§·ƒñ…©ÇÈý]Ofˆ€ B†ý³ðІ'¼ :„oÊßð…¯¼&LND]™ ö³ Çlå\þïp#¾)ÄÌKº7Eº¶@ â‘ÉYh™´Ïà¢Z1–³¾^‰6¡ 5–tYÌ3kzÒk¢fßÃÛ/—º¦Öuß×÷x"ÍÞm`™sŒSî ©±aL »èbT*àé î‹È·T©Ú¹ T+…‚xJåÏ)’%35!œÁ/ŠÒXËÞy=ЪNÓ56‡R¤N}€µXFžö>­Z‘O:•ëÑ8Àá£ÒÏ”xEƒÜ!£O\Ë{Þµ—€ù@4™FªþùÀ± ¿çÛ[þ>Ë7~–[:òn?¶1þìŸô2v¾Ò{¶¸!+¬º)Å(»˜ë¹„r§9¾CÓ=sü™Ë“¹óñk^cYc}À#ª˜Q-ÂÈŠi±oE g¾VÅôäT¿;¿Dšß,‡§{tP :ò-ŠcâÊ&lyöi^ß1yŽåÒ}(§Ú à³| ãœ²°C½Ã9Âës°:qh`’gcÝ;‘ØÝ+Žc…u/rø·yôx -U|o‹áŸkÃ÷4‘WãFnk!¾6}y`â}‰ÊЍâî*¶`¨‰rg}åñwhöæaè»ÈQFÆ2sÞôañE~•¥%/Ró¢Y•9‰B#ý­©¦;¥Ç€o<ŒË±wsŸðɮ߃4Ë<…¹¿vt¯—й6æß‰ˆS/м 5»ãvB g¡¾“iÅa÷¯["‰tg,/±‹âºb…Wíž–pµÅ…zˆ!›K~2{ê§ò+IÎÚ±oÅ|ý¬øÌE îô$À–oöiQ]*êú¹Ô$„Ûeæ|æÓ앦Çjß4ÔÝq”ðŒæ‹NÃÎÈqaI¿ÍIÿ\ÞZvÔ¸[¶¸#G(˜Æuo'z* ?þ*‡iBГÄ<… áåÁÏ`ÃfÜÓÎRÚvÊ:Àƒ÷ö•l½šÅ^UL`ßD¡Ç„…ƒ ‘ NÑBÐá¶ÂÌÏËZüæH¿H¡ñßç’~jÓ!›8•d‹Rò%·§èÆbpÓ»zÎN'øÊ¤›Ùp~# i¢‹ÕXW6~i¿§Íd˜ïe‹«Oc¼ßùtYå6ß”7¦B¡æ6ûÑLæ[/ÝóUù-ŠˆÆÁÏìðfÚˆ$r3–M!wF© 6¦õÛFÝGfª&ÄA“§è–•Ijñ䬉ûvX€Ã¶ Ï^Ïœãçõ‘ڽ쟰ȓOew$›¡Ôl‚ÞnjÒ•;LAç¨^…83ò§¥À ™‡yaã"㑌†¨ÐG¡¿6 ù¯[Jz6(ÑB7îvЧæÅ%ÚB¬yuÏÍ žŸIÄȰós4U\85—d¿{ÑD…s‰Ü)|Áïš~>»vêø0¾ùÅ#ƒXœËHðÃ/TÒ>àî]¦¡<‹ìã#*kÙ÷«IX…‚fO”*¬¹ë¾mÍ~ZýdÛgÑÅEo· ÂÛëáo·ÖéY½ûÙLÊé-CqÎÝ©Ž$ø¦™ømȧd&ªn‚-R0kvÅàc5Õ¿ÂÄ}EÁ•‚ÍH ´Ó Étçà¬ñ’úÜ2ñhƒ2ñàÌ6÷2ŃkÅëUVšÈÐdõÌð8W-‚kù¼Xƒ@9y׋>VTÎD÷SŸ‚ÁøCw['à›H–½qç¨ÂÓªµz/_ÞꀒÖgY`QãM¡Ž<6Œ¼À_MñÛû$M(|ð€ÏtÞ‚;œ¾1A 5Ã…k—^9ž„ÙÓxU)&A0\Îⷣ☰•|Œ5»ú¬sÆޭȲ=­nþ Ü&Öm»ö‹¦DCÿ¶Þ×’é<™ô¸Llâ¸úÐ|Ûò¡úÅÈi‡‡Ø¸?k°Ì³[c|¶ãx×EífÏ6 |Ÿlã-áH­Žñ\mºQsÒÓTôLǽï¢í®>qƒØoSxj‘$Kÿ+A÷W9šp场ZûD9¶h"k¸ÐödÊÁ ~@vAòÍ›ðÍÚ¬Ìb>uª¡µóâEŽãCá—ÎöÍþyÚ5¬¤Ôn'!J$Ñízú1Ú²¼»sýÔ¥-+&·üVªm/KŠÚXO q•Þ5í‚eªc›^œ>áGôxfÍ‹¶NWG¨¡ù–¨ PiMËÕg²›ŽëN€ ~,7#‹¸]êš±áøkßl'CézHŸÝa“e„y½Ði QÕá8©hy, „ÔìUÁ*I™á›X¼R/vJvzÚž»/¢æyúŽÆš…7d>À1ÿgÝr*øQ‡1™º"=¶RÛ×e&jµàáœH &RÖ q˜ T«eç’BÛjËÝJ™þ ™Yã7ΔƒI#//05+´6ÉWífaŠ#eÓ…¸†ú½Ç Ãô]d¡›ìh$åóc†÷qú»>aùÁOáGl>“ýJªëÈAºÒº0ÕÔÉènV¬“!©[†,™îä+~EåhAZÿì8APÝÌ ¸<7üq%ãÛNê¹J<ÿR"5ÊBJâ1-ƒxš6õÎmÔª! 4Ìûs²É½ÃptäÔóþ0^ãò`rBZoHài²p{V“寸éCû…BÃÁjQÕ&nâ®o?·± Ôn<”øËݾ÷hiÞH°£Ò˜÷Á1û¶I‹¤(Ç"F|©EŒƒhyy{œÁ›Þë;e~i¨=açó6ÌXÎßéÓŸ”b"E$#R%Zü¶e¯€âÖ\Ö÷‚ÍfÌ ‹X¯´Á“ÐþÖ®œ!’¿ö3Ô¨3x¨ÁNGD‡Ûo>>ÆcàVlö""Ûm4JÞ}naºÃdá…ß3Љeäw!K [þ,QònýjáèÀ®Ê<îI·8pÄßš_´ù‘4“€0½bÖIAL^ÞƒbTæ™~œ¯¼"|w½uéKrõÒ31-àRþy˜ßÕÁ0ƒ_3”~bE çMØ2ï¸Â× J!2Xží±œíT¶¯SêW·Löøv‹x:ø…K?S–3oÜÕ©é6<îÁbfJY­"Ä?þ`™íuñ.Q¼hýîã{Àëj‹¯±0Mý(âgÔ)ånóØÝ,xÕdx¼¥ùÚþ’)RA^7}‹a[AûrØ%ž„Š{*¬ú—„W1Ëšúy’ÓœÍo*NŽ®h|žì¥?è‡o—±á/Ån­^šÿªžŽBâ6ÿßúKÅÄúr5; KEƒy¿¸êÌðu"¡À l—yÅuż!8¦D8r.Ԥ꽦—\ Fr-ã£QvùÈ™^SD÷Ôzðû¾Br½9(›ç\=˜ÜÛOÍØá»ßù€SÂp¢µÏëxö<ÁïÛËÖ¯?ÚðëvA•öýsÃf6áa¹œ#ÅCßMœHÃ<Ðdêò{²ú¶!¿Ãÿš˜‰}w‡Ž$á]ü$tgúRo‡  Q5-¯q×y˜0kÊvæZ­éÕõ%z³¸¡L‚%;Äç› ’¿®ÄEeÏÉâ°ñ/F]ƒño*¦ÓüRÖÅHãØ£»fËfí½™ýi ¹±ê['þt"ýªÏlÀZ53ÝP,­‚»nK›FPŽtiÔÌâ—ͲÀÒëY]^²ïÞ¨æµÒõ$œ9Å20vúˆzØ9—IDVÀóç½ÌÜKÄgBþ|ŸÏZJöViÒƒìß{·,‚_ Ãбê6Ú…5wëzŒrhf TF=$n*8yÓ-®¿²ŠPÑ/Y ùÚ ÏgêãÌ|›2>ÛªÆBœfA²xz)¢‘ÐñÎp\Rzrµþ›z!%ð=¦À–I¼pUƒC.™#ÊÑA~=YCwãÜPt&i|€‚Ψ†#+qZ¤aYò*'!±–mµ–O£½˜!ÃÓi»¦_Kí“3qwî@TémxA:f|¯QL‚à%)¯0êc¤iZÚíÝ/€vʼfR¨~”¹Žš”êýëî§~´ÓE¦¨"þN4?AXSÍ@Éœ)WiÖïíáý—KB¹¸¦‚;ÖÝ_×Ü7UXÀzî¿êL—ÞpãÞGhkd¿²«|íÏ{ze›6)Êξ¥Åê})>Kþ3Ó¯Ô’¾Pq°ÕV)Uï¦_*ý0¨nÄòÎG= ŠÃlpU:׳Hd»©)Q™¢RÑyúös¢ ï±Eù‡SÒ’6ÎfW¨µyçÓݵ÷§êÈvYLA¤=\sWOÝ@èêóSutõÂÛg©?5Êu]”ú÷WLyÙ]Ÿ Š,¡OØ„\¸Ò#!ùfÞ@¡õSÀ’tÚd¹½A§óµ2\ïnD¶ûÏþëpÛ$ú\îʃâ,ê ‘%gA»áäÌlsñêóbŒ»ïh§ºW#”ÜÏÑîøº#´.@d@©³ƒ>Ž\fæØ%3áUíþo'¯Î3†¦"ÄâýUļ½Šmø†DÊqìY3Fì¿<˜Œ¯…`„DLoCÇ£i=h»)H9¡CÙß´ž~9ðÉ£Þd·»‘_nQ—œovÙu/$d}p€k¥c©&·ÜsJ±½”¥,|~2Ò«ÍAþ–̪%7<\Öxõò©}a¾QžÕEáI&­lO푈–JgN6€«Fñœ£HºöѲ‚s°‹6ֽĘÉ4µ†:Ç2õòÙêEÎúWAŽttâÚ‚î‡. Óûad˜qt6`¹ÔûX‰„Ùu%ÏÏ=·È=ìAd2©—‰11—ús+?f#¬('ª‰ÉÎãÞ³ûõãåÁrQ§Q4\y“Ü6fŸ^6Ïõ&SOMY”ã-KÏ» Õk».‡¸'¼76Y{rZ¿h8¤ìz IMdyRA±õòWv½Êr_¬où6‡iU ¤·îº*êm×méùäÌÝ…| ãB¹Èq9}±º‰í7®ð¤Ía¼âzn±-Ä £Uµ!•š_íÙ\“Š·Â ™¡²ö™\¸U²fG «.o»3û–qíÚ³aÒ™vVŒ$ß‹V1¤%QSR‹‰¿( y“‚s^¨Ž`·£™–^Ti`x(ãŘ'à'Uq¤~ü©¬£GÒi]!)x¡@U2D©†Â¥Q³”¦öÕ6*ΪrdØ}bê„ÀKlf)”GrxNË//Ì¢Ö²q}eSEôvÌOe§±,)èGCw3µP ‘}.äèäÅrìC;Óyìs$ vúpjâ¸^þÒÁ°žd÷}Zì+©Ù× ‰Ž‘ʱüiTÁ®-¼÷þíIÕÄ¡ûN†Ê'íG–(î¶8 î6xÉÍQ†>oÝ#ͲýZô¯Óµ¾&'»rAüAí¥È{t‘9æX©©o>®I{§†Þr7nñÕ_çЖí ­OªT¥Æ¬~)S’““gDêh±üE€26Ó_†ïj|¡F=o…:¦-²Ž†®þ5`íÕ[$MyX·dBóŠû¾5ߙȒ”6Ãfàñ—íUeà%„ñ›æµ×>úgÞ“èr.Qs(]ããsp•Ìd«L{Ft=qVׄ>òïSdyg˜Û~°¦æCõ`v•ÿ£LÖ[73BNÌ®j‚2—¸•7ì&nHf6êC?ÁCÄVgi‡ß™1|Ü>̪ñ5¡­,…‘*ÀO݉óu™¿v£Þ%5CºéXÛ™‡‚VJ×b<÷psÇvH&^ä8êy´7‚3ö>¦5H–/¿iJ6Ì©:{n”žGÈ©±ððÜØ*6KE ÆÜž-/êlå.cÉìX0ëOþYÅ wcŸ\ߦœsäº/*©ƒ Jî•âæä¥$0R{Gõó´ÊÈØUÞû—:eL&æ]ޛˉxwöÛÑ=·‹üvc…ÿuç³Äùp¶e ÌðÀó ;öý=D¼@Èì\€tklDß“§~Ì”ø Š(`"¿Ž=Û„eïÞQwMoòêÿdЧzôºÓ7[pGêícÞñØØô`üÆ 7§J„½6ñ3ÍQÓɾŸËsÎ65ä—%q†ãFŽiD“¹–û0®h V¯ÒÄ@,ž§”³Gtþò+ÅÁ¼( ¶û•Û;l ƒÅx­›w›ê¨/¹¥YŽ’’9Bò@åÕò…l&Éü¥o]`åäÕÔw¦DBðZ''áe›`qäùúìu˜)rðOŸ¡HIÁVíðä‡þŠ,ð®[÷Á\ÛÚ‚­©Uº|ÄñÌåæîùÅrÝ$i”¦ªi•¦BšˆÏš(|L§œV–rº´àȦ؛%a½&údiÆ~"¶Ô‹Hå,íkg½ü"¸`ÓÚ~à$QÙ1ïÑ!ÊU“4;j‡*œè†[éµ´Wy—úúœÅè¬<´ 5üZøº‚ëãÕ˜ç<ÊcPQL,›Bkx-c[]2Õ¨JéK‹(ÉTÌÑ•Þvo"UïS÷°GÄÔÁÛ.3d%í'ñ§?Pƒ˜›wažùx“–'ŠÌl|ø®oc‰(ÔëP4ÈW¥²•?¬ÕO—>6RM3¦±D*€þ?Øÿ[àD {ˆ™³+ÜÁÌÙûÿt´&½endstream endobj 21 0 obj << /Type /Font /Subtype /Type1 /Encoding 252 0 R /FirstChar 46 /LastChar 120 /Widths 253 0 R /BaseFont /SRNNUZ+CMTT10 /FontDescriptor 19 0 R >> endobj 19 0 obj << /Ascent 611 /CapHeight 611 /Descent -222 /FontName /SRNNUZ+CMTT10 /ItalicAngle 0 /StemV 69 /XHeight 431 /FontBBox [-4 -235 731 800] /Flags 4 /CharSet (/period/slash/colon/equal/at/E/G/H/K/L/N/P/U/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/r/s/t/u/v/w/x) /FontFile 20 0 R >> endobj 253 0 obj [525 525 0 0 0 0 0 0 0 0 0 0 525 0 0 525 0 0 525 0 0 0 0 525 0 525 525 0 0 525 525 0 525 0 525 0 0 0 0 525 0 0 0 0 0 0 0 0 0 0 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 525 525 525 525 525 525 525 ] endobj 252 0 obj << /Type /Encoding /Differences [ 0 /.notdef 46/period/slash 48/.notdef 58/colon 59/.notdef 61/equal 62/.notdef 64/at 65/.notdef 69/E 70/.notdef 71/G/H 73/.notdef 75/K/L 77/.notdef 78/N 79/.notdef 80/P 81/.notdef 85/U 86/.notdef 97/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p 113/.notdef 114/r/s/t/u/v/w/x 121/.notdef] >> endobj 17 0 obj << /Length1 856 /Length2 2107 /Length3 532 /Length 2717 /Filter /FlateDecode >> stream xÚíRy<”k&¦4"Q”cy)²Îb7H Y#[ ó2Ã,Œ±/ÉNB“CÈvp”ìÙ…„,Ù÷-)*¤HŽåŒú:ç|?¿ï¯ï÷½Ï?ïuÝ×s=×ï¾o!ã‹ÒX²¨C&Q¥‘0$ @˜*H*"‚¦€*žLÒÂPA€TVF @* d•Qrt€&»xSðŽ8* †ß)D‚·Ç éöp‘l©Þ0@ƒ@L÷n¸¦ Hñ±0( `ñöTÀtÄ“ ð½<º$2 øÆº»|/y€7z(@ŒR GÄ’Io :@á†dú[ =É#Ôæ:î‚!†¸gOïÑ?ª"žàý¯:™èâN)€ RH?J-ÀoÑ @,ÞøcU—Š!àí5HŽ@|£ðn:x/kŒ§Úã Á üʃ$ì!èmûn¡«a¦k"ùuš_KÆ<‰jæíò§éžö+Fþ…齡འ@Ò…ôóýïÊOi“ìÉX<‰¾ò †BÁxCé{AGò€/À“° zÑóÂa$2•~ ·Äp S {ÔSà> …¼Ç~#”8™þ‰åœêùW]IÇ8 ø7… w »Sþ"déÞão ú#öd}Y¾3 tÐÕ>ù=æŸÍÓÔ${ùJË*Ò2ôH„"P”Gøÿ›ÐÞBIÔ¯{IÁw쀧 ½@{èÈ Ù^%Ä)©<,/@;³'"Á¨éXgXÒÐWË<|‹‘Ó®ï*1Yl¹YÌÅ>™ôÜúÉ-ªÆÏ¤Sgùºkm`gÞãê|²ÏãŸ,W“ ¼_¹~{¸º¼ÿÓ;yF£ÞÉŽ¼«¬–Ô•§o3ŒÅ´Ì^bh´ñ(mü%DAÑR'™`Z,*+dÊAsÍ‹ ŸðäH¸Í<ÑàÎR)9ö\ãι™É’¿sùÓBïYî”…+¤®!Ü ‘€Ã܈>/)'óË㪭͸zl¹hÔ¯–QЮcëTº*£ÞK8¢ÂÌñ,J´ôÂAµ69ΪªN:&¡[©Ù8×kÙÖ+Ôcá%g‡äfͼ»¯¤euu‚­Âær·Á¿v׳ûÞ_Ó£v¾xŲÐnØ1ÚŽØšùÑô˜ÔݪÄ3_l£^ðWõ™Ayæž´Xß+× Ä_Q2i—–šŽ™$:Q•–Õ—4¥ˆ†Y`à·Ö2É÷4ýÍB…åT€zÒã;§¡gŸd"ÒKÙV÷˜çØÝP@­3%Z²¸µdIºlÞh­ÄC> vÌßîs[ >_ù\ÜùæÌx7§ñ¶E;Óå€Q†ÛïØÓÍâa-†‡leøÃ2‚j>ˆ¢îk4,Æñ𤹤!Ð!¶¹çW!F…É>èþEMïãµF ’ËùjÓ9?™º¥¤²è§'DŸZÀùµPÛ­‘œ+¤Qlýi6>¿k$§¶53ʧydz~<ô³]±ÕùÂé§¶e¯’æN©°G=S†ûŸj ¢j‚Òr²ÍÖ?…­j>N^sþp73»Hó.»Øê·6Ê šÚòd¿dÕñäcŒ˜iÇ6ßÕéd|T—ÿÉ,/š88 _îi»Ñ9vªoEIµQ±žï!¯€“²Üüái![„Û€ƒ²ûچ̜êàȺjh½Ãõ¥[yô 9úŠ”§Yî™÷ä0ËçÕ‘š×#õOß)µn'/Œ ˜ÕslqRz¿Zèä–G¨\h‹Vz&QÝ6­µæ³m×/¤—¸pÛ¶]Ÿ&ÙwJ'±Ú·BÐd@Æai‹,×Z¥²±,–}_|RçBð%êûg¤›o¬ï*_w=jëð¼è–ÍÝas»¶¨—»<¸–Ö‚¼W„÷¹¾;ñQo7”ßhœè¼3)!•>ä#›-UDK±ãêdé9¡Ÿ9Òs'°õ‘éúiÌ@}ËnœµuµéÊÖò-ƒ“q¸WÍjG\èÜÁ™9´^Ò0_/wêóî ýyÁ—Ì]Cvn“¢¡%ræÎÁ’¡Ëj¿IÎA.[”Þ8^”èãÔ;Í5a®$ç¼Ð¤·Ð™¥,„Ü©’A2l‹?ÅßÃ0¾fψa똬wN‘/€9Úph 8ð/±j¯žÿt,v…G²-Œ¯LÐ`“Ú”S¥ê—:`>Y¹Ò#•£B=2®Xx¶+õȅϽM¦<¬²[zoš·šŠ2"D¡aç¯ïÈÖU—ž•NÄu­0c®]./´ÒÙ„‘$ÊăÙI­[Y`ÝEÉåY‘¾j,| ¤"¤™¡×Óº4žsA_!µ»ëW#3g6üžÞá'.­Ÿ!ú侤Z9téè½¥›\}!íÑ<ª-JŽ_©‹7¹^]ONKäÃÅ:z; 2_i/jM§ zkü—4‹8;nAø|kÕBñ7ŸÒ(¸W ÂN^/ßxÔ÷º¨›í‹6-æÀô}!Ôé9°2{¿wÞJmY!RÏŸ!Ë‹«b£TâlŸdnÇ -Ö¤‚øzfŒ÷m²¦Á—7ugq:⽨?«SäSRкûö®IRÉÎPÝÍ÷D…œ:kÖI±ÖöBéIä“Ȇ¤ï¬:N£x¢ç8Ž k+—3n<Ÿù©3vWÈ=“´îJ8ËtgZ|Ú}§=vAÜ,m~ Q:ò ‘ ꬩ›MØ¿-"yî7¿Íß ‰4Ø­w[þù²O[Ãå«5ß0ñÙ¸Ž—2K¡ÓØçZ˜~7b³Ê}¹]ŸÌ•xM+«­.ÕÜÏyºYÐ(U )[œ/¾ŸVËY¾©S–›Zom©WiÊGô~Ìžº½3gg,Ú¿ žã*[c»wŸeâ oÂpÔð Ôñ6§¤ó],ŠH£uTÓl0Ì-¿2ü±Ïе£‚GÂ/5X¿ð\Ç›HUµÔa1üûê~¹ûX·^Éùèña54ì{ô‚Zo;å|ù‚˜ ®¿f)½:B,–öQÜy4$uëaA´á óˆ ϳý„t[ˆfrZÝ]å«×îh&uñpbRVnzó0rXùÓâP¢—¼µ”3—˜¼.dgq'šfdh®½»gŒ„®sóm;º´?+©iÁǮϣÓSÒl¡Û\=Ì"ã¨ÃÜÆ~¸@ÆÅaróñ…wÕÝ‚ bqHÌI3/ŸkÞ¬Œ'c^ +žœ)áÁ$Ô]¿Äžpc8'×õ­ú´s «ÈÒ·áÍGc$> ÁUÇ~ÄøAÿoð?a`O1*™ˆ¡8Cÿ“•€endstream endobj 18 0 obj << /Type /Font /Subtype /Type1 /Encoding 254 0 R /FirstChar 48 /LastChar 61 /Widths 255 0 R /BaseFont /WIATIQ+CMR8 /FontDescriptor 16 0 R >> endobj 16 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /WIATIQ+CMR8 /ItalicAngle 0 /StemV 76 /XHeight 431 /FontBBox [-36 -250 1070 750] /Flags 4 /CharSet (/zero/one/two/three/four/five/colon/equal) /FontFile 17 0 R >> endobj 255 0 obj [531 531 531 531 531 531 0 0 0 0 295 0 0 826 ] endobj 254 0 obj << /Type /Encoding /Differences [ 0 /.notdef 48/zero/one/two/three/four/five 54/.notdef 58/colon 59/.notdef 61/equal 62/.notdef] >> endobj 14 0 obj << /Length1 1757 /Length2 12676 /Length3 532 /Length 13669 /Filter /FlateDecode >> stream xÚí·eT\Ͷ¨ w è ÁÝÝ!¸»Ó@ã®àîîšàî‚»kpwîvûÝûžœs~߯;nÓ£G?³fÍùTÕZ«Uè…MíŒv¶ÎôÌ Ì<Q9ef&3“"…¨#ÐÈdg+fä ä0ss³$€Æà/à7;; "@ÔÎÞÃdná ø$JýO'@Øè21²È9[mÀ5LŒ¬*v&  ³@ØÚ üÏ '€2Ð èè 4e@df˜‚LœÆ@s-"ã?JÒ¶fv·M]ìÿkÈèè–|ú—&5,ijgkí0š!2ÊÛ»Á.ÿhýÏâ.ÖÖòF6ÿ”ÿg£þa#µÇÿN°³±wq:äìL޶ÿ3Uøo79 )ÈÅæŽJ;YƒL„mÍ­¦‡@N w ©"ÈÙÄ`fdíüWhkú?%À;÷/F Ea9 1ÚŸé¿Æ@¶Îªöÿ©úOò¿˜ùƒwÇäÐao/38ü÷_ßôþG/q[;S­9€…`äèhä¾zÀÄðb€lMî ;X˜‘ÁÖÎ<Þo€™#â?ÊÊ`4²±Ÿ§xà¡EÙ˜ŒöFŽ@[k ™óŸ(óÿŽþûPÿf0šØÙØý‰°-<ì-€¶Bà¹à³·û« '€ÑÉÚÈÉâO,ã t´ûà0ÚÙÿÃì`/g·?ãì`#g Gà_,F3;Ç?VpäúWX× ¼¹ÿa°¬Ðõ/WðF2ÿÛÙÁª¶ ¿E¸þY³µÝ_“¸ÿ)cúïQpqá?.,ò‡ÀEEÿ¸¢ØWÿq‚—-ñ‡À‹–üCàKý!ðj¥ÿx©Ÿÿ¸»ìw—ûCàîòÜ]á?Äî®ø‡ÀÝ•þ¸»òwWùCàjÜ]ã»kþ‡¸Áý´ÿ8óϕŠÎ4þC`O“ÿ3x¢é_6þ…ÿ\!ØÕü/ËZü…`[Ð_–°ú ÁÖ!XÃæ‚ïtFÛ¿¬a÷‚5ìÿB°†Ã_Öpü ÿ¹6ÿBð :ÿ…`+—¿låú‚­Üþ ØÊý/[yü ÿÏG—ˆˆ»= øæ0ý³¯Ünnïÿ–iââ~8ÿë—üü/6Ÿ—@ ;ÐqqÞ΄7Ð2¥1¸ÄG¼`²†Rļ)V¾®sæRÀ¯8HëÂašµZÍDzt,Ô=˜=·gB§ðö/Jcg~±©s¯{®†{éž-„š—ér»ö¤wÇhm³×'ì Ók#%‰Zßú²Îûó?‰©îí|„èÒq­ïÊäàÔ”H·V ª¥dý¨ŒžêPʲꆞ½:àcßL»|a×î‚ùXŸ›ðª{‡ƒaÒNª¼Eƒ­¼/xRü-­æ­w°J(`®â؃Y‚W–ÈÆ ®Êò$7˜:Ç•s=£ki×üøBÁ¡·V¸cÀJk`ñíó¯ïLçñvåQTðž¯G€ä{îüv™„¯ä¾g_Мó¢Ôu©µa>¢´X’áj÷¥gLb{2£^gªû ’Ú &¾y¹¥ë {:!‚¶Ñ-E¨Ÿ}Œ‘Ðzûù³q³ˆeez•q‰£….6E¢=ª6tµg"•1äž§åT¡¾ü¤À\Űƒ6YR.ªPiÎ÷ñÛñKtg7#”ÆÌËF¤ Fö2R v`âß«„-F•GÅ…uuÝk«§I'/o¨öòä}-V8å}²QÕ©mïÍÖŸb W–•¨f={O~¦‘aѸÂSˆ$ØïÿÉ‘#šWÄyv˜£*ÆD¢‹PtÀq”œ‘÷#Ìd”C^‘lzâ)DÂ÷' Æõ† ºdÕ õ¤²¹Ò-•3y×ï[Zi]Çš%Ÿé¥ ÁE›«a?…¦¬‹ 6— íù/Ë¡yù:I±õ(ó¢åËÏÑdéèÑ„\ôF{ ÷!Y¡Örˆ¶6¢¬Ó§ýí‡o¼ÐÚÀXQHqävœßG;‘c&¡Wϼg¿{! u€hŒ*6ïÔ)kÞA ,y6&ºLV§¢TNöÔ»­šL-áBä=,–ÓW ’ ’Üõ¡fiwS¸G²ŸOÄ„~Ú”B¤­½°³'뚘z|ô¸ zÒEVX»7îUÃ¥tÐ ³Ô«¹ÜJjMݲK8˜g+U·s“¡¹½úÕÏû‰3¹¤"Й¼~O1H¢Ç˜¬ Æ§™F]‹‘ê™êb6ËອsÓ˜Ù×ón3©Ôr@ÝXT,‚”^£ãho-Áþ^à=Ô1À\a(ô’á«'›oÚÄÌñPÅÆýÿö»èÜìÂËêå™Ò®†¶2úZ×h¹ˆîjÑüa„»G-ÉŠ{kÝXûÊ|¡Žùˆ1JŸãÉÇdöi(® P°)I?ñxjÏ÷V Ãì´F}í‹ô÷§ôŒ$'qÒBÞ£<-aÊ›Šr æ @ɲDØdåŒ\ ¸ ¾~8óY©ŠdTµ?Z¿Ê4ä’¯_ JI›ß)÷ÄÛ’ÐÈ0øåZÔYU¿È^ÃQ$†™ä±¹¤ºÔO–­æ\Ræ¶òÙú©Šì„I#ã»;uvaÒ³N†|©_Eƒ_¹†1G—BL”ºM/UÛ~o~ é•© ?sá2H‰¦üQB%RèÕÀ†#Õa6I²q,%HÇppÆMº’´¢¹{ùUr1™”ûÝP.cJ=·ÉŪm鎠¾èE†êsÁ1†ìs¸•lJ_ˆ!ôW3ŽP:áÍ*e©¯•ÓJþÏÛïí'Ròo®l3ïñNã q&BùY™³’2Ž„â¨?TÊ/"`iùº-ú®Äé‡àÑeqÈ0Èò×4÷’Å(uíñQä.¢^ÌNÕÏѼb„1ÒMP®u\N†§Nâò¯§Š¹.®\Âõ•vƒ,j×0g¬Ë`ôž½au­÷—6/ª2;T²;­Ëú¥“†°ÆQ¿Û‡ÞqQ_Ýge•1–½¥ÅBÇ‘ZämŸWáûnÂΡ!Œü©ú[I%h­ó!¤ªxCÓÔ›AðF©>N«º¡µšSºÉR†7ñR¡†¯é·ÅÕ…’¨?ÙgGù•îPÎÔІ–y¡iÌ@Já4Äýð‡E¤&ìl>–Š2Ðbûx¢ŒåŒ;Ýs‘ÖmtJÜTæÉ¥!¼Û^;ðÄÿ†Ðïò$WÀ ¬æ½×4©Öš˜ 9ÆöœaܰOHê×vJ +ÙÕøâ.—¹þv«Nñc üñ‡ŽŒê}•¯ ½4¬pÅVø§á@&|¥&—̺Â]_«ÿzeï {쮂„;^»jÒÏaid{7_=‡¦–îA¹o¶ªVoèðe<Ú×:õÕR´ñÞTϽR2/²±FÞÎ;K3®AÈ2ù  ÁúVU#ó|x‚|¿)õURXÅ·žcJi,c´:°‰ÙWÐ߯€f‡IE¥Ì× ï[<±#ƒyÚ&€IgîCµ  @†NbÁ¦~!(_©%¢áESßÕOõÃîçÆôpá5Ã;#bXÖ…mé á&?Èœ! ßçle‰àvö÷`Éå°¶EÁŠ:‹ëý(8ÑJÚZ ¢KÔ¿}ØÅØÃ |vsÞDBÿ,E¨ùV“4¥ÒzJhPáaÊgM ¦Ç?¿)½EÉÏOò´¨gòðã<{ý裱5B·—Q’R¢û-Lé—Õ°‹æ„`8Ð} ì9–f6tPÆ ‹”ùÉ׀›ÁzbY)”ïYG Ô£ ?žÜµpï)=†NC‹c/V:´*‰glÕ%B? °1‡¹³Ç{ò˜™±œè¸­†@§u´w¨/ÉVÐÐe³ÌË£U ÙýXÃ6×ͳҺƒóðòÏu#ŒF·T‡„VÃümíËXW™9(˜šjz­”›È×ê¿ …Œ,qVÏj]k™8´‚„`j"²=ºoÞ1°¨§»ôâŸÂFFê‰XÛÊÐa^ûÀMµÕ‡Ðnù¸åu§:#º…9m脟/ «´/ÞŽW󔄈gl²FEicùÙA~üùåб½D:‰-üg˜úLÉ—#æŽOgKÓ¬¾þ“øðÖFäß±-£[ßÌÓÍ6®Ú^MKê#|óÐÖ YàÍõ”ùnŠÍ°$e-JØ?QW­eÎOxïZ·³—8nôy×V¬1°»‘~¬kD&0MD„I¿÷hàkÖR“wø[UC§‚'{Ä:.daO'°®÷A±0`ÃZiN¸ð½†¡ÙuîÈ\à~øUƒ‘G ‚SB¬ÕÎ.‡Ô<¿ò£_A·°¥QwS0 ÐM,ô²]2×~ÁXµ¢þ&(Ú3íª~ªL™Úã>;çåÙ㟛]0n1]ƒ¬¯-MÍü B}ü·]üï ¡Á‹„yOjõ|¼µ4Ý.0´áØ‘šìÃËÞ÷Þ(ÇéC¸Nà䕜1ó§þPʉgM‹#áìhWù†Ž.z/]SUºˆ#üÒFD]Äò"ÔwAÅ<–x5Ÿ7,|<0ô*·™ç_˜EœoÓ?sóQ6ÜÅÒŽY] û^*Ãë/ %{4‘í…û WÑÖPÚÙ)ƒ‘RI$âánø`t Š›èÕû‘P ÖÓÛ2-IíRV†¼Áê×}6m´ŸÝ!Ùw%hóWNBÊoªØœÔé]ùwqSr^îÏœxC¦Ÿ(8tLCjÊP[׆ÉøZöeÎAÇ„kH'=†RÏ 4VX¼´…ý4Šõ÷¹ºÏYõÑýCÄ­ƒ PÅ¸å „šüU;.„Ù>©µËX—>?§†o¦h+‘g~/~3š²Ü `8š¥·^À„ýðdþL†7ÈôúÂA¹lN9áËx•jäUʽåðâA#¬U¯‰ -ÑÒ-/ )£M&/¡Ãº@}ÔrUkpdg  òÛ§}9KË;Yƒ¯½mwh¿î,£Ó8¾Eÿ¸ŸÓ>Š¥­Ò}>7vÀ5¡3‡-‰PS…~—ÖΰN¢ù'îÊ!â9&ïÞ%ÞC(¶ãÕîßCP·¯íÛUì¹càiæ;{"µ‘¡u“„Õ«lIPÃÜ´RßP`8ßÄ0|uö´AhÑ^î§¾šhL4)AÕ€µ6dÛÇòKB·]‚ݘî—c¦o‹!².17ve-QC¦î¸‰ÆÊ@QyBU0±¾òJ‡GáSÄ+œë¢M5¦‰„³»1Z¦Šq¬¯}Dg$A’S~;‘,÷T¤Aµ#R‡N%n½KqÉZÞ|-×Yl´ƒjŠ Ómºf£Òȧ¢ùLÖ¢~ûËp…Y BojO|ÛkÀPØøÀZÉIãbkLÊ|ÆŽ)²Ç¸I®æ<þúžÂËIn|h{’Å»ú8½i ¶  {‘h~º­6à•æ‚qéÚÒ¸J9ñêî\×TÌIJ­0«#ìsŸÖúµ/æV´ßÂÉß°ôS'zt•‰¡‘7;]ˆa4òmŸ<ÉbÇYnH°°†AÑ—ákl7Yû°—m2Ä 6`‘ޝ¡îy¥Ñ˜¦(¥¡Ðâ—Ïß»³³4àO[,æ¸ ùþ–;Ø´<ÀhEtóÏ’Ü~ü0˜i¤…iµóÁc¼!L¢ž†vœ¦s…Ù§†vJ¢ŽGÓý]qiê‘Я®zÇsUíº“ÇçÌwì¨(çRìu\R’ÞÛ¤·,4&¥»<±´eݹé:ùŸ ÍãËeSU†s.ÝvÌxkö¶âlù,gÌ4$ÁDŽêS&Éß—ñ‰ñ(ö܈à°Êf·ùŒJŒ‡Û¹QŒ< Ë4/gÖI©ì7Iêªì£$dlCO{á¿ ùPƒÿÝÌ#:ê3"œºœE•RD m½L>³fMoÁ¦W  zOZŸ“AkéYµJV¸µz<âò ª’cÏÚueÀMZŽG<°s· šš`S"µ¥°!*ÖzÜr­§;¼KÙU}@=c„ô‡EÖ̺ãz!Ä1W89à÷Caã˜I@çvµ)È÷áÆ¨_mïª9ídß…»gs–ŸìÝ}è‹vò ¬ø9ÔõI5¹ß¢`… [½—õÍÏoHhÛ,l¨ë2Ü )Ájˆô ¦Åmÿ@Å;Ï‘Ùî''ͦêKUÂé Á j_¤XÉëÙ~ëh4Sƒ¨ïl?G"0’´V«?þŠÊÙDåkãnüF¸Žù1»»bÀ‰ÒV[–­åy>Ž6y3¯¿=;JŸ.*Ž÷ô¾IYíÝüö¥ êŽn§ZHL–•2mrÚ Ã—> y•Ÿpï̱ãÈjIü"kçë&ÍèW0…"¦±£xP—?UVÁÃל‘$BFb —}ó§ ðÓ'A(œÖ‹€ÚRoy ×¢ÐÿÂtØÕ#â‚‹%×M×ÜÜì¬(ˆ7m žº¹Uv•Eí4[IXï è1¥ˆD9| Ã“z^#Ø Ä>µFt_÷…‰ ¶qŠ–d^Ÿ¡FïB)m2óqÝfúáaÿ cuó:ßDÅ…:åë•>S¤¤07N2«ø!„n;»ä\ýU‰w¬ud7ƒfmNM."]8JpvM‹й?pÙR/‰¯|oTð?ëõ{¾+…Á“éXäƒÈë*JGúƲ®Û(‚8'd2dõ^oôCX†ŠºübåVùž³e»%™Ð×CtÎ=]¤a½†xh|Ö&^L_²°‡â>îõ‰¿pΖ×ëþs´>ýJXœFéÕù5b¬iÁÀ~í>_0oz[DÖìÑ·[ùb)î¹(mu:×kô ÈEäGµè±ô+ÌÁ~?qCæ¬.4sS(£½ø£Ž€tý»èeÔîÔ£MwÒž’Þ “öI±Ÿ„©½Þ[ ¼ÖÍ@¶Ø[29“Kk}wÚ 8mÀ‘¦¾O®äûj‚<ëö].ƒo>{×=†¾o31˜áÐô[ýýܳR§J Gaø¨`îc!'ävÍxaØnÖ_Ž1E9*„ýÃ6ÍÚ,g :DÉL9ô%Ìt²=Ïqè<Å£»[Ê‹ú>­¬Oi£AðŒAuB²f=lòÆ1ç'Ñ|zCv q)°^ŸcDýç§ö¶^ö —+xŠúê¸Ö³ÆÓõÉ#³Ž å·zÅ Ž5Šì(FLušt:?ޝÚÝù»#܆*£hCRôøÂN HmVnK÷â,ð¸.Ê…pǤܾ|3x¸2s_í³F2c¾mï>žD¾¢ïf’êc”§~ e†7fEøìV¨Ô†b Óº/èïÀùmÆŠMû^:†@iX‘àGR´³ˆ–¯ìú§m¡`ÉOzѶY±ËrŒèBÏg—?}Þ’d¨Ò¬ž¾ä¡_²—óJkëm_8øÎkt(ÜÖ1ùÇV[NDï™ñ›ê¬¶”T2é|D*%Ü C_ÄcÄ[ˆ®¿qñË×Lìï%®M*XNýçãn§ù»M¤WÝ‹)ÄÅZƒ<Æ›ñ} 8‘MÌ­/óŽ5 '—wˆBݲkéÇÉôЂ“$Z±óf߇µ%{B)ãh¬Ìùãþ`÷ÀôA1•ªšÑÈÂE¹ Zç ßI믒ÜÃeþŠ¥ :öi'2ãŒËØçr8ÄÈJOSpÊú×AS)CƒÛïÌTàñIZRIEü|ä’šû€yÁÊÁ, Vð>b´µß]—r~âß—×Ì|wÅ%¦± ¿² þHØ)Gõ3O¥©ƒô`e¸yÁ1£èó*ÔjdÚ¾ åïË·Øp…§C¾uH¸zŽß| «‰tâùs L¢FÞzÌ“½¼zSÈî~ Že‚Xz†~{|•ܬo¹#ðPPˆÇ4+-[Å€¶#Na+t𭂆#Íñ˜fi˜Â¿ë:é!I0 „“ÈÑG±0<÷šÖªep™1JÉ%œ­%ä(b\)š1MÈÁQ”)Äd &Z{`ÿwŽcÅÍìzW½3;&í €‰@êg„Ç÷«ñ/éžÓÉ\Cuïô ˜o§C2¥Qû b+S ¼»ú2à¢õñ¼0ê Zj?Šr8Ú›à)Ž˜]!I—q§ø:zóPl õÿ<ÊI9 ,nx1FÅg­Éëp8 ±ÜÂ{7)h糪Ä7;¤§O3…Yþa0ó~ªÕÐËa96S•¸yÃGíÁ`æqRs¢´¨9Y+ËB˜Ôç›S¿uëͽï2ÅPð¦2§¨q“J†¡jé-·çÔ®f¨å¶Æ·½<‡Ë=o t<©¥jZm@µ{©–Lõ#ÂóˆŠT¯¶9·²LQÇRÂÑïvÒ–;ö3" tî÷ð'¸ôlW4iy) Ñ¥¸WŽÏØ×>(Îê´ZIJ$ŠÔ™ mf†ÇiÝk ÖÄr9M!øhb[”?µe6ï*Àb¬¡ÞHSxÇ‹ºñ„¥¡9æÑðô›„PaX„´ƒåæ™tÈÈhÐ9VBJ蹦6Æ|yĵÎÂw£yÛiÅ3RhwyEÝGõï-꟞¥BßSÈ:ëV°»K¿ªj9°Á6œ´%M¬e+Nš¸YªV } ¯^ÉNŽ(0»"ÆsÛ¼u £V­W¦˜µJÑ™½AÊli«¢êšO Ú`?³Òå˱”©:–„@9æÇ¾)=žÐ7^9yö¡uÔSì˜9?~²"»îlºÚnfâ½òÖ¾óA[3F}¡öøR ¬Å§šxD¦™}OwCH±?s—¬{ÖVâ™»”¼ÕE{jˆÏؼh¥ÖhMm½ÝäÿD|äSºº¡¶j¿:eãœ"=#ÄäëÞsÁººå*ÙšaÈÇÖ\#”¦úIŒAä·‚AbOˆÞ%³gÞsÓTù‹í¡ÝrgîÙËŠ’á MÛOÞýÉ3ªÁéô† ˜˜ŸfßÉoÒžðÛ…^¯H¸M˜å Tkª;U R¶CLè«É:NÑšNKƵ Êëšô驨‚¼ÏþùD<Ù„Ýi,Mâš 1·«!9pa ‚X@Ó]Ójx(¿_ükwkHÝœal<ãÌK˜m”w¾h{ˆ”ŸrŠa˜gÜ @_ð™“sͤت 8n’Vj_¦•Ö›zУVø{|Õ 9Œµb\¡;l»`ýNRVm e3Š*æ±û³–}*áð ½8ð·h.ä\Íù¬oP3Kê·¸$ÿ å\êÜ´“™Kîħy´z(!t*J¢¼õ;Òµ ¯à]ÔmÚµzÛ–6’ûióW·É`z±¬ëÅCo„5þ[hø/òR<éô;×R°_¢“?ƪ5ü³¢*£È ;t]ÖEŒÐ| ö0ªÿWòÝÄú"NŒ®”ôà “JOͧØSÝ0.ª«>j7µ{Ö Ã€C颬roÿs‚AjÒÿJ¡—#„h!iP|NÝ’œ]ά¢sH½¦÷墾ã“^8^|{Å¥Å6©@ÝðFƒ“0m‚Ÿýgûy¥˜4vvã°«·Æ5u8:â .ôµm”÷8’ƒøW¾I9ŠÖ'MT" ~M¿ìÍÍxåVÂE6´ý‘·*®¤ù1‘ä]– Û²Ž¬ÃGôºLJ²U|4:QßÚpœÞ¼ J¤-4Zû6ÖyÕ'{‘#‡Z…S{R²µNʶLä†p@/¦MJF¤ÅÊœ ÓXV³v A‰MÆW¾+j>Ha3'RH`Ë;bP\vÈ^ücvÄMP>Ü/¨n~eY‹'‰%ú# ÷ïR’uÛ²üñžcGý–‰\Æ~Ÿ½p®ƒŠûè) ×[ýßèã¢óÉžQ ãyìI²]¹~%qgɪŸ¢’˜x;|Y˜õÖz]Íõ¥§¡&ÒUÐÕ= ÜdGóÔÙ«]Ô–Biï§M†nÍIQGãC³%HW÷E7¡ù£ðNXuN¹Ë ™p}þèeem¥DÕ¹zЇŒé1º¦~¤ý>wZ3‚öVÇ•b›aTÆËPÖÝýÍÈ[ —ç–é‹ÙÞAœy³7š¥²Ç€ÒaÛqo³)ÃÎlh,–¡Iœž¶-¦ âaâ¶åj:]k^˜ê°¤)õ2MÀ÷i=v4|z›£ì›LÉ:7Yî¾÷ ©ÐþTEfÅ/)?> ÚèZJ,œŠé²slä"UM(áÉéÞ}þr²ªJ`÷KþfI *_ ~=йn:®'·˜[2\rŒ‹.Pk€àFcªµ†} Ob„¯BÎ>¦_¾?v;=M1–pé¡`‹†Jü™:Y@8ÁOãÊü³%Á'º.g‘=¼Ú÷j4ãñ$7¼¥5ƒðm¹’¿Ê›~&A9‰p¯–빦ÿªÒ*K¾!ÙSy8ã^S˜®6¨$¬l(5)<m¬Ü ÷îqóÑø°®D¡Ñßz>Ú‘ ¾¾,ÒU…‹&pC¸¸ø<Èúiä„›¢ÛN6ÄÄè÷Ì,0”[„áë[¤&Òt!ã4xÊ€é~܌Ԋ‹Y†–$,U]Wç¡ó¬cÒF²Ð—Á¨ŒãénLDÉð¿^O°©(KPY_£{ÚàoyfmLµ¶%»ðã¦öˬèù72ÊÎï­ã ®ô6°÷Ðü_òAõƒ«Ø;yëÏÝøë#äq—%!›)ú¶ˆ0yJ¿wË֬ЂŒäZW‹´~åY^^†Ÿ¨v`B(Œù Va¯bt½äIõ³XF´Õ¹wŸñXN¤E¿œ×’Z~D­AÇ‚™Ç‡iúâ“Ŧ󫢗Êc)äu‰E™­5y‡¨Fq‰ª­O[ÆÐÁ@èŸQdÁmkJެ ¾.…l47H£gêXç™3§&E¥wöHh#ÚpH*H_­óñ¬¾òT¥ÝW°]wY! :ËÉÐ=|klÌaö¸tÔN…Юl”b­›Åj•*Û÷sV<óK¹”ÆKS¥]æ‚í~_x"1£‚^¸ºtÈž[ÿUÄ×¹•A~]ï‘bu~Ìíd1nN7PÅ5b~QŽ2  BMýnQב.«¦y\Ì35áD13ñßÒ#ÜïÖG5Ç÷4ªåNœÕ÷·œþr†Yô§9H=)˜¬0Ëœ–WÛ}û£7%óP˜p¬®Öîµw[©X Ž vŸŠ‹^.Áhu’*ßþ~."µ8*ÈØ†‡2¨ë³å¼L¯RÞèhWC¼•zÙ:ΔÇü±•@¢er„Ò{…ì±™@=§µø\@ü°ÿ[CÑ_~OLµ¯K÷Ëvì÷ôÐóh«™6ý}ÊÂþðÕ È£ŸX .Ç.Ÿ´ä¥ÑϽ8ûDô£g¼M`v¯t{$¼q3ôÆ.§¢«N:ë7±…BÃï±´jÒQ¹ºR]ÎFå>fWå H'çq¿¢©»&s½ªçJVûÃJ¯©fÜ芘kOŸ8ô E8) x®QX34 >[&³Æþ|[ÙÕÿͽPÓT‡/áöü#¥´GOßK’+ÛÁ± b 9ð Ķ¢èM·ô8Þäõª6fTÙ~7»éZ´è{)%÷µ„ÉL³™aÔ 4%cS³•Ã)G .2{j¨V:ËzŠñ”*¿'apîÚãhk²!éÀ{"­_VÏoêqA™þúWÌÃLoø/!9[CïÑM瘣ß(¿q;ë×§)–öîv%~ühÍSÀ±w(tªùZ~(xxm¡9ßE)$#Ëð±c¼ ¤5ŒþóQï¥ú°ã'²$Yq¥Xeg‰&£áBœÖäG§ÌîÁîö˜ Ñ³)ë’çÅtP§¹$ô3AxAC¯€É¯´õ€€ïB\TFãØ‘ã‚«†e8A)Š·"<7}®~›FTžš÷/´»î ²BêØ¹5ŸL@Vàøj=:(*í¥ݪ¿çŠí¤¥F÷¥¹ÎCã$ð€ŸŠ£$’íÂW·xØË&SoÙK"Û’hÊ>ï )ˆ,îUU‹,8äSU #êvÎ =£ôáj5ê#@ýh©„T*FþR1ûS*Õ[=ž¾Ü3itjFۘŕ†ö¤$hí¦gíöF«¤¿Õ>œL–½ÃÞÚW±1õ|&Dóùh¨æcfÝ{1,¦ëNõ>׌Q§YûáÉ|%Dßd9¾ƒeV!Í—‚Oñ‚É¢,ó¡Î:"µ²ä×y”_̸å^ù†tucX¢ä¨jéc²„(ÍIñ~%-•uÎPÞ£*;m'? r+Õ;ËÉáŽÂ——ê6ÇÐX^ôÿÀ—ª“÷ÁerVd2X:…ŒëìÝPØOs ‹jÙÀž™ÉÏšèÝ÷l8Bƒ’;„¤á6hŸüÊÂD$ÅÃP4M÷SýðŠ‰¿ê  žÕMÏ´]quËtõ-©^o\v$% ªle¹WZU> «[<ó©}ï¹Åò¥r?eÖòׂHO¹¢|leøÈÏ¡Ÿhf´^椌¾ƒv‡FïŒÅb‹DÜÍDMÖR^Ú‚00Úùcrš²þÐPóIëÜ£ |Ñ5 ×|9ÑnyDòÙB/˜ò Uq}½gƒa’øùÏ*V¾äÉ$ÞñcÚÌÍk^'X›Íê€dëX²BþͲ"*ƒ'e]\@[Ö æÊY¢tÁá²vÖvïÖì:êÔ2] Êåa]\Î6+–ßG‹8vT IyƒÜ Á#Zè.Z…ó PÄmQÉŽf„÷:ü¶:V\KçxÒ¦@{¹n ú¯©ÖyŽpšH×B&T¸Àâ ïEMÿ¼±LNû øÖót”ß\×tÅßömÉ-ÌBΛÞ@¸Ý†cOPÍeßRr±~¾àÒ»–úb¡ài$->ΑÉ8>#„Oyáü¶•’äéîâBhWK³ùŽà£4ÙïØÒ’‚Ãj»¼³ÜߎEI+d°ö­ "=rlb…Z¨tÖJÊlꎇ°#¼Û‹²Þ!2‡cë–»M‹¬6†3fWœ²sãY¦ÅË¿hú)¦“²E¡!™ ÕŸßL]ó·ÁÛ+ûf!ªkAˆÉ<’ô&Ù¤;’HµÆ‚v^7†ƒøiÍÕìÙîÚŽÇ»Ÿä\Ÿ,Q_ÍHÍe¸·¹“ìJ?Bt׬¿Q;ñH#ì:?O¤ÈuIæï×ÊüN—ø±õ»TÈ\¤¨0Ï7‘&ÓyŸiñT½ŠˆÆîœ=º¿•4©FE©IóõʽT¦¨6<®á?7ãjUP¦ÇË×… ©Œ)ãsüø ¡Ëq¤d¡Š 9´$|aBÐDN}h1{ØÉÍ3ê+'2}„¨M¨N0g~§ÜÁ}“TO+¤!¢fb€£Úd”r¢òxoù*§eRV®ˆBa'×ôô¢ª¶½Ë¿ð·dI›qÛ ÂáÙ°“%iü Á*øòH»·Ú¤Ûo÷OÝáp»ñv@T…{†ðHmVOëáwb뉌œ›)ñu*¿U•ËOa¡/¼Qº†Èø®3õmDX]Oµ¤â°—„ÄÜ1ßšÚ*!ÎÏö`xô§˜fMF£eâým e†fJ%×d7²?-Á;èó¢g°/¦ÙZv•#û0æc‘|F'^sϺ„­Z’Š%ûºÿ'jf/jǪºžq@%ÿEÃ4ñùÚwbhñQEt!瓇Hf%·¦­^'BäK+Y9VÀš¼ó§h‡t~5ò,iñ¼÷^2ÞÓØmÓE¶`l¬J?MÓ‡[¡î½™®Q¿Co·y²¼ˆ´Ö"^>Ÿq%sú/•;å#·7NEà­u™Ü©:FSVŠùy^¥edy¯«³jb ?2Éík.ò'ÀÇÎf6_ؾ Qowùwé±ç b­¦f¤Iâ°àKÄP{ÃÕÙÙ¥N¬º©;P”FñY3Í9ˆã~'òõgMŸ–1ÌnÑ(GAÛ2 p¿¸ fJ¯$Í+C×DEr±?€ÐÄ'ç;Èn™DSÖ@†0bà^sý¬~Þк—$a;Ù|~h©Ÿïž$h¡€U A3Ø¢ô%œÙÅ2*LδnŽÍÙ«!k®$¿Àd¾ÐÅA&!}@¼©-ˆO2£3*YÂa«Ñ ªYi„ÏáÂrjg#ÎJ‡_ÃêGÔ¾aíKÆX«œ°ÔB—„!t°Ÿtj{:sWösK¼æ#ø“Ì.îµ~ëç üŽIa~=uìoYÞ·ûвã±F"e'€wÝ$Å‚ÏÈçåú5ÀµêêÑ-a ÚÄkïΟù7¥91cdÁØ‹.4™ ’œ_â =^‘M‰±ÉÍcU8‹ דÖ;Ë^&¬_›wÅÏŽæ0ž€V믺ƒRgÒ11ô¢Pj/+›‚ËF†…æ†G¯Ú¬%ZâÍ Ê;i{¿ÜX’¥Bè¡S—<´H.â*ØWó1¢[c’$—Áë²,媯9/ú›ÛlÓ°_³HÌ›ØQ¬¡BÔ¨LbÚ"º®ìQÑ~¨Æšš]r­ì%x9²o´Kèî_ГীyÝ´Õ‘Ê÷oh´•°H*µØøž©¤4Ѱ§=²—Ïl)h¾Áްç£Éš}¦7V€à…>ès ÁÚÉ2Lp¿ÜF%4òÅÝÙ{?»nΪø°R:THKãÂîØb¥<Íݼ[èvw#fÍ6`R“[Û}ìNñ> Ökðîé¾ßÈ,ËÉ]=ƒütël¾ô ˆöMåî‹ysðõ弟=s¦¿.§§?|GÒ·“†¼Éb"¡Oä1++Uyü×ÄÞCïIýv>É%éÀYv;$ Møà_V¶óY{j¦6^ÆÅ!Î[S¶£ ÙÜ g´Û=ÛòÑJ`ß›I•Áx·¿ ´c ÕýæuNƒUÄ|G‚™Ãä$d{ÁÖd…† lï»§¹k B»!ôëž;d…—ä~Ñ#¿TúȲ§ÒrYèãHð»ØKò´ï¸íû³Nÿî¼µÈóÏ ~£©ïjߙګ¨S/~೫*!îEœO¦¢¿&Ù¤Ò0”¥o{BÂ1aàÊ(E”òÙÊ[>z)×–±ùY›B¾Ó.ôœ¼}"F9^d1hY¸uøBám~“´ÒR’¼\~_p»Í’_NÞ\wtOEž§|c#È."(öJžùFûÞ¥EUÑiïV³ý¬íŒûõåJ¸Ç P™°pËËØX÷ð¡p‹‰ÍüR$¶Ë”}jÏ"ܦ5µ‡'X‹¢-ZÕZ%˜-ˆêÅæZÞš*v¸‡ý¹ènw< #SÀù€ÝÌL:F=ÕI}Œ®Ò ŸaB³ïC“£3ŠÃpŸÃ[)¹†äÚ*H]¡ ÒZ5+Í%É~@#ô¤¢Ž¬cË£¢u¹mªä©Ì˜™Þ}­J~ÐÖÜ=Xлª¢cX¹ «˜©i_%óØB•¦5‰ÚK'¨Ëå5g|Îãß­óƒ`sßæq_÷*áÌ ‡’Xu¶>8Oÿ&«}7¹Ïêum³=ÇÍ¿ûƒ­î’ø;a¶'ÞÕKúãƒÍwL%ÝÇa>?*8ˆ…ÌŒ’rØòJМ…àÜb³ÝÚTs!°èv^Bî°—ù2â»×•â ’#©`E-« µfýá‚D›ÌÛy6×IW(±vN~’Ø o\© . ëܨ×{nH–•ë\Ãtô¦KaY1»÷)Yžzûî»Í#j ”̺ì Ú.‘"èì¿vÔ䯄³3LYH.Zº¼y“æá1㎎ï43¥gŸõ£Î§Î»Tqy¡~`N~Š|W°‹ü. Å>hÏ>¥VŸ¦æ¸‡ò³°£´¦%‹5©ëÜ×[a&SOV¡^HBúz©äÒþWèÝÃVåÉ“Òhúï,RqN.ý¦B¿|ýÞɱc}1H–#u„}11 ¯îe˜Š$=~ânXŸ‡‚”²Ò}S*—n¾ÿ°XÄ]ÚJuaÛœ‹zôc©è}å{ T"€4P*ùø è\¼Ø# eöøæþ%§«3нÔÐÝI°EG…0gžEŽ yíôýçË16Ñ^Š89®Ã&æ GîP Òå –•8•TšJûDí)*„Nãõ³`ÄQ/ܦë²èƒÈ¿mWCcÐt*‡.±WŒ£^'îµ OÑ¡WkJ!Tï±v€ÏðÛ ê)“³"«{Á•É(ÞwvWåÔEˆ…øb².òÖ³#rWãY‚ŠõjÛæÝ;èªÖùqT9¸°\É©IÄv“”KΛ˾W5¾5K8eU½ÝÜô X´.áW¿-“’Í¢f¸ûÑfo4öÕÞ)=¼R)“eÆù"E‚¬pÃêhG `@þ¦©Ó–)ä~P|ŸÞÁš½ãsȦÒk¾âþÍ…´!Æ §«þá¶H:I¹’~ãà|%6J±? †ßý½‘8tŽG‰ÿ€Üº²a=éÁ8è kXÔÚGŠ hñU9›i2­Q4¾ÐVWꔣ‚_µú-»ÞMæÇ—©RošQ¢qÂ1ÏkÙJøwã Sm³,j%ZV0ú8¬–¿Q”ŽÈ3êªD^¶=ç~hû÷äG–êϬöo~N'ßZ(£÷ MçL´ ñŽ;˜þ?¾ÿ_ÿ+ ˜XílŒ­ÿ3}" endstream endobj 15 0 obj << /Type /Font /Subtype /Type1 /Encoding 256 0 R /FirstChar 38 /LastChar 121 /Widths 257 0 R /BaseFont /FPAMFD+CMR10 /FontDescriptor 13 0 R >> endobj 13 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /FPAMFD+CMR10 /ItalicAngle 0 /StemV 69 /XHeight 431 /FontBBox [-251 -250 1009 969] /Flags 4 /CharSet (/ampersand/parenleft/parenright/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/A/B/C/D/E/F/G/H/I/J/L/M/N/O/P/Q/R/S/T/U/W/X/Z/a/b/c/d/e/f/g/h/i/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y) /FontFile 14 0 R >> endobj 257 0 obj [778 0 389 389 0 0 278 333 278 500 500 500 500 500 500 500 500 500 500 500 278 278 0 0 0 0 0 750 708 722 764 681 653 785 750 361 514 0 625 917 750 778 681 778 736 556 722 750 0 1028 750 0 611 0 0 0 0 0 0 500 556 444 556 444 306 500 556 278 0 528 278 833 556 500 556 528 392 394 389 556 528 722 528 528 ] endobj 256 0 obj << /Type /Encoding /Differences [ 0 /.notdef 38/ampersand 39/.notdef 40/parenleft/parenright 42/.notdef 44/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon 60/.notdef 65/A/B/C/D/E/F/G/H/I/J 75/.notdef 76/L/M/N/O/P/Q/R/S/T/U 86/.notdef 87/W/X 89/.notdef 90/Z 91/.notdef 97/a/b/c/d/e/f/g/h/i 106/.notdef 107/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y 122/.notdef] >> endobj 11 0 obj << /Length1 2093 /Length2 14572 /Length3 532 /Length 15701 /Filter /FlateDecode >> stream xÚí·UX\ÍÖ¨‹÷à$¸»†ÜÝÝiœÆÝÝÝÝÝ5HînÁàîÎîo­½Wò¯}yÎÕyÜðŽª9ê­Q5G7äŸå•èŒm ¢6@Gzfæ/ÄB2ŠÌ,ÄÌ LðääBöGs °#à 13773±€“)1 13ÇV®/LìðäÄB6¶nöæ¦fŽÄTBÔÿLâ$°Ø›‰e ÍÖ FVÄJ6FæG7b++bÅžp V8ìÆ ðÌÌÄÆæFŽÄ†Ss <ã?B@b·lÿÏ3ÀÞ$EL’¤&)ۭ܈&ðŒ²6 µ “ÿ7¤þ;¹¨“••¬õ?éÿ)Òÿ5l`mnåö¿'ØXÛ:9ì‰elŒöÀÿžªø·› ÀØÜÉú¿G% ¬Ì€¦Vb¦‡ÌDÍ]ÆòæŽFfÄ&V€Å@ãÿ–Õí_ Œbªrªj²´ÿ>Ïɘ•Ýlÿ“õŸÉÿbæ? ªŽ½¹+±3h"è÷ÿü¥ó_k‰lŒÍ  ÁÎAl`ooຠb'ö`&6\‰® aF #èbPM¼ˆMlìáÿ9NЉ3šü+öod¡ùd¡ÕdûgòŸaVÛ9Ù8Œ ­þ}Ðÿá$f´Ø€Ÿˆ ¬AQPÅþåþß9þg6&P{Ð `òW”ùGÿk2HÓÖÊÉáO$fdcmmð'ÂNÌhæfkþ qüËÑÜæ HÛÁÊÀÁìO$í°·ùùÚÿav¨£ËŸqv¢£™=à¯ÿÔÔÆÉþOàŸªš;ÿ5¤ë:ïÿ0HÖàü—+èlÿcÏì U ùß"\ÿìÙÊæ¯‡¸ÿIcmþ?£ A€“ÁŸcå`ýçÿt™?AƒÀ­/ø‡@k ý!д¨ÈˆTÑ?ZZìê"þ‡@TÉ?r‘úC é?r‘ùC Ù?r‘ûq\äÿÈEá\ÿÈEé\”ÿÈEå\TÿÈEí\ÔÿÈEã?Ä rÑüC,Þ£ÿqßA“ñÏæ%4üC „F^M&PFã¿ðŸSþ ÿ¹ƒ!hƒ¦!h‡f!h‹õ&Ð-þB“å_’ú«C0¬¬ÿ 3È ø‚¬lþB•í_øÏ=ü AVöá?/Å_²rü AVN!ÈÊù/Y¹üÕä@V®!ÈÊí/Y¹ÿ… +P‹ÿ»)0³€ÔÖÿûGÈÜÊøßUÿ¿?m\=èA-“žÔ#¸A·ƒ“ÉëÌ3r²õ6Ç}Ö‚–ü?lbú \FðK¿lŒx-RšƒË¼E ¦Ê¡hÀM¿ÇÊ6tÍv ,Æ[HÙѬ׫?U¤£#ïAí¹¼à;„ÿðT=÷³‹MÛsÖßKwoÅW¿J—qûmKrpŒÒÞZ–¨QØŸu1pœ'O%¬¼³ú¬[˹±;#ƒS]4ÝJ%$¨ž‚õ³"jª]Y([Èš jbü‡µÉo‹ØÚ•K›NŸ `sÞ´ogøµ°2ç9t€ó f¿¬­Ì ""ÅiÙˆ" ¢3ZÛ^žª2ù¦X›)bSs¼™ "-¤ñó#[xžYÞ þ«sA£¹Ò., õ{%Y«¸²ÝÄùËí÷ tWªkÀ&Ù“6u?ðŠ%Ö&σ‚ÜiK*… 98ë[žU“ö‡ä¦d!f/=Ä%ؘT‰6¤k›L÷õ.kiPÚh™Õ™i˜á}[òã/t&§ñÇcp4å0‘[†by¬š³,Ëeò3I%\Ò¬ïöGxZaÎ@#=‘¾.³*ïSîH¿ZÏVêw8/÷4ƒé¤2ñEOfÂø¤"ëÏ!Z©1îXyê¶ò½ƒø²B*íœW*¿ê9'’¯”MïQò²Q‚\õnbÍ3ÇÜ®ªÕæï3Zû'uOuRÕZ“½2’Ç'æéÝk>µ›8ðã´mkØåL;¸Q8K&@L¹6#ScG†ÄüB…9Ë_«Ã­í÷ž<—²ÛÅ€gK"Xe7+•&µ+ ƒÀCý‚Çf+ÿZ|rËg:ƒN€è)&« Ì ÝÓ5gi )á>ªO{ÁL…ëK%tg:Md¨G«Eê¼ý1H|³íÜËšÁÜ|Ô^ë*„l×ÎéÅd@Ø’Ü¢ï}òÃ> )稢ò°ƒK#ˆô5Éx¸õp9*5“.`©†QFüØøÈmÆ'Ú–ùÐ'™j÷–J©27 ¶ åçn`Y,ùéÒXψ^¦èâtâ ˆ(`U@STÕfH¶ý¨iÙ+Ù¨ Í¸s«SI“‡GÖ4ÏiÞ¨Zñ©(·wûŒesNÑvRçxx8èYIç ýVBùþï*N›ŸìW=Xi"ŠZ&™»qçø´©ƒÔó}F8;Á"îœwÞ~Ý épYãYh²†¡ ·°ÁŠá¤ÁǪ™JÏU¢ØGÙO-Œ4±" Pü` )r.T2¢I†.Kˆ:‹QXŠI¢î^n™ñ­zå¤ôǨlZÁY·ýRHµ“ °K|¾®‹ 1™ç¯bÕè=Ýõ>Å#…gÅÒpŽÎ`T>SÌq#zz…¨‹Å@±X™C —¤çÔTb‰alPæ0ÂÉãZL¢;~ÃR”>Ú¯$$ƒk¼ ìIEódÙ˜ êª:›ô@rYÉšÔ!Õ ì2á¾ n<õ/:+²àäïÂçå\z›› •Êv$>:·gÙNÏgŠGi­¨ÖÀ Õ±ðä½Áv¸6°ÖÐsçš‹$,“9ìßc»¨8F\¦“*W ˆ`™Å 8ôൂ9áÚ*?Ý{^ÖuϹáw.Ö›’Îê{bž$^Æ×Ág¤!,#¹vo1&þô1#¾êdàë`i#¯ÿöá%×´; ÙÊ ²w±_ú¼³ç›_z ‚å7·jÀ Œj«òþ¥°N¼1šB8 SpÞW*8q&iŒ½Çñ¸õ»éÆÄõ#”Ì+émƒaY‰&›0ŸJÕÓåQRÄðÐîÅz(ó†^u¹YħåC^Ó_ŸH>rÀO—X°æ×”Ü[ïšvdÿ™Ô¼ØWW ?sÈ”ru²—°=¶>¢KÛüi=g`#ÁB}!ÌÊ/<ÛcSRb>gâ2êˢjí‹BúǼX“HÌëtUCPs¨Ti0„ˆQ°¦!¦?>ÏÜväÜGJG÷²„'˜>a¥±.á¥í׿óȵÎç !ù”7Ì™RoåSïÞ+]wr;IŠeA_­E÷‘ŸU¾Ù¾Ï4úžP‘bçR 5‚—bµß:o BXvŒÊXM?A¾HŽØ#H;ó1ò¡æº±]¡Vø$}®íî[‹àƒeÛ6ÿý¤q†¬b/rp¦ÏVÇ­0×°3ùìLõê`x¥‹p4ÌMñâdêħ.ò,¨0‹)±®· ýÐ>Øj#„ãÖiÅJ1(ÿ°öå;î8'KöÜæ±Ѭ˜:¤X+5ð"'óóö~Ybéþ0/²K?:ÄÀYÔ†+v_Tú¢£é¢^g¨Š¾t9S¸šmòâ4k*GK–†6`>z¨)Ÿ!kû{]âe ûé3Å@ëFs{ÄËE¾ N|¤:ºûîNÎÖìWØŽ–³ ãÎÇ §¤áhz±°ÁŒÄÛò­pý×*¶_r,ÞPp(oÆ×q|çéõŽSÃ&ÆûÌ'êÉÆ^í¥ûJHmÂY>#ɨ4Cõø÷°:Š1€Oåñ/Ä©1aöQM;LH˜Þ¾$†!5ÓTÁáN¥DòÉ¡2?¿…«òb×Lz¤2> g½]ÔM¿~FÛ¦<ž¼'{½1ég Qx’±é›MÉscŽÛMˆïiÞÝJ*¦{9ì“X8ÕV*Ûè7O¬ŸóÖha.»¸}í ;°ææ|Ísó7ç »|‹ aýоœà_Ó|UŒ§CeÛÀv·“\ øîNܾéÉÎ[ˆ¾O¾£Œ ÿéÞQ5©Â%ü²ýËý.ŸðÁm¡ñ8õ'Ç/‡ú‹ÕG8__¶„ˆ¡®ªÁ'¿!SÒ"Ââ!ƒ i$e¥>¤d#ðrGÃ]þçÇ' ¯þäˆ ò½‰ª‘*ÇÃaYq¼Œ¯Ø(˜Po‘¶±P…‘dÌZáÓÆ «Õ˜YIíˆ$¢ß³êŠ<:ˆ×+ä0ŸïÊj ú ^0Ôš‘Xý%3ºÈˆFÓ-~ðó'‘—\ÚÒÕ«¬m÷=àÆO5ÍP§äñ¦Ä–šÒÑ!zÈ«kù2íDˆ;1™!G™REÃr»C  eŒG(I¨¯–·*鸸ïˆ}–ƒc©6%äη¶Sú»_A Ú[¤€Cá¶ÂÖ§}3{æT0·1´™Ÿ$7q(†rSqÕþº3üD2š"e¢Þ÷:4ÑGF–æ_›jdE…ÑÕ4.ëÿe¿¯Éás°ýKÞ_© }¦­GOúnÊgn‡oµó®×>F c"@.—š#KÏY #ªµ'wo*-´M餯”Etl©–ÅÜ}YHn RX³»îǺ|äÐ0÷®Žú2ÁŠæE޳±^&]…TSG®-” #ù½·Ú¿2©¿(jytx÷+Ù\üdÒÛF«]Ïl²*XíÄÙ¼ð8ÿ䀽†aÏõžh¾À¡E›íAc”Ý£Ëk—º<„¯kfö4ÜÚÁ }}¾ËR†Š%™Á:¢"©R;ú±õhÝ«¢Î¹ÞœñÛ¡Ãà FPgíúçœÍæ€ÿ´¿G‡•?×NÝ5Ÿ•<ïÈoÈEä;­@‹â]ýIeiC`i7·?¹Çk"~cÌï$ÅL1å± ]†Þ€ùN-£%„}¸–z”›î[£‚Ä­Âcÿ…r?áðåRØiN¯1Ã…Ï‘Õá¼fÁ%ÍHUœB»D(ß¾Ôî •Ž@àW4؞њöç,­ú8÷áwp­q—Ë¢I7ÒŸB>ËMBº8Z¿V¤ÐëæHó}IžÅPù¼,êÈcDÇ›fÀ–¬Mï¿Îwh­Ÿê¹\õ(†ÆÉ‹Ô:C…÷VªS±"½·iÓ³¹<ÉR&†×¡b«e5ÊŸxÆë8iJ©;8>3ÿàØœm÷Äk»µW%MŸN˜«2’Õ²¼Tp"žšRåÓáÙFeãi<;fw(jó^÷i²7MšJcŒÙ„ìo³bOü}n5&îX”ü©ž¥Í¡HK#‘túVcùBUCÁ¤ƒdtyàÒra³ô‰‰€2—õp]R ÿÛ`e‡9ô"TàÄîq nô¹zŸØg×禈e» À;cÑ1éç’†jLùƒûz7„Ü@ŒØQ’q"®îZ¬]õ|Ÿ~‰2œþ­H(ÒŠ±Ó¯¿$c}úº{}¹× ·ˆßÓ*µ•¨8‘U²B Î0°|ƒ™ïña}2gŸœððÜÍ‹ÝÒPÙÉ2š ”ƒ®Ö¦ÑcŠm%£¾Ñµ_1™|ymM; ™)Þ „&/}¾<£“ÐõoÛ4ˆ±â§ LŨ $N†A>™ßö'Ôß„8 ¹Ö?8î+Úͦßò’åÙ@Àv&—ƒk$ëý<áõ2e›Bñ«Eá˜5ïç¯SXîE± C;VÞ4²/di²?on`3 W7œ'´¨Z¼æODL_Ɖ‰ÎàªjÃwòÀ»åVû;¾÷ÀMxXç)CT¯–«ßÔ¸±,cN7Å~– °°ÐkGœ™lä„s Â3ðßœÅü ÆJ!Ï[ ÑÎÖcFÕîÆ}WAŒø±þ|òЩ6j0­CkLýÊÐ?hA¶O¢Xùõê ÒxåËky'ýË•Œƒ·v×u¹klïsÉ„Ý úâF—à8£8j]i±ù9ü'y„*]BŠý´÷-ðXÚìC» ÊYÜH“tÝ®4hÛ\ÞÐ*¦6‰WGz(7øséÙåõ²¯êŠ¢gø—VxKéu—¬®^W1pqTÃi7'ÜÙ˜#[¢êŒÕ‡`ºÆš9ÁÞ_Ì÷¿|ñðød¸dÒœÆ?ã£ÛÞœû»Õ`B=¸¡©ÀsG˞صšˆœ¥NIJ#ñk ’Íñ–DFî<#hÇ+Æ•GP,”âv OkÜ$©e›¿/,g«@íehÒS9t—Ç~€Ã@X¨`wS²-ù_rº¹Ò!Ã%ðÐÜgn¦½Ò  Ã&ü‰»ôL¾_öAì ZY¥Ã}Jâ¸bô&¬ çkî> Çâ“^l+—.‹IŠ5YÆÿˆm@Ç·©Hø„ØÈ[yiKñ l meg7 $žËÚa!”'³É祇à)œA4ŸSÚÒ :U[°²W&PÛÓ};o,Ë›ž^d©H?5{Ä8}özDÃh*6”Ý­ùñ‹S­£R¾ CÀu:Rgë8oñ¨Ç<[Ç€ÇÈÇ}÷aÇb ›‹ä0åƒSDMË $Ô–$"|W,›!ã'‹‚5YŒÖ}ÛéPåO‚L<å?°ì±oà^ï„üt[‚=c³!êœ"§`}Àäœ)ë ¾Ž„OÖÈi‘cÌUqDÆ"âÝE÷¦bâ𕲅ñ]S[3 '>6ÆÑï…Î̺} ÌùdÇ7áë&¬ƒWC·VÒ³3RZbt7ÔV]õ¨™mÅäþœW)؆\ãJ£}…Ä%Ejè‡2®6´ç{b™;æ·v”ƒ ,¶á`Òdúž2Ú5ª‘T2Ì"Ø*Ìj¨"ÕìÐã3"KL€.›N¶rDö.|—!Rû[ñžÜ·¥Á@Þ9ž‘yeÖ!|ú4'0ºà¤íMh±ãúd«[]»Ä¹:ž¾ã&ÜÅ·S¼æ,ipøÌà î  DI$%ue]@6jòý¶74'{x>cíÙð,ë`Å(/|‹ð™Ë“ #%Â2pwÛOxO§w —¿ÏãäÕYû.Ic^ïøW-˧#/XRqE½Êê¦×ðvÿ[õ×=ü²;mó^ u¼Fæ/L‡ãÐÛªgy5÷ÚY$–ýezX°(ó(¶Æ&ž›ßášÌ´ u»ÃÌÓˆVŠ{8¢ô5©cO*¡^ªyIŸR*r¬oÉ 6Íy%íùlr{âaM? ¸Î|cT#_ÑÅLéÇUÛ°Qß8ýn['% ùGN‹:SÝ"QÐ2’ ϲ³þyTä[^SÚû"á\‰ýrô×ìøg;³F*u9¯Î·‡ªã…,½`½Ú C²ÔàÈ;ÅßRùÈå%^¤†$²Ä¥þÛ¡^ì.™ßJ¢MiÉÙxdìð?³æXóŒ xiêëòȨ6§éÊ)WOG㖮堀çÉ6ÔØÝW=´GJM¶sïB €ñDàRª¨;ÚÒÊVc/ñ û¥=„q4Ùi^/–:V+éÛüecíììÒå£ËÜ0´¯3Á°Ú0Ös•”"í*%Vô¾ 7pÛó©& *"lŒZ¨ð;åv3wíƒp²Ð&ºSä¤Ý_•rÒÚ ?€ðS4nœ’³¦i#àâš,x%ÂóøÃÌ*óÏåÚ•Òð£|I÷Šù ­/M^+¶]Î~±KßaÌü%ÜT„—4^7‡FCv/–4—igà¿)  Fé¾éréQ |å ˜¨Êä8z#b7ï…Í ƒiÞÂ#ŽÁKà $E0ùޱÍúŽä“!Ù,úz´šx2Ü× ²ÃÊŸ© ·µ[?þÌ‘„´ÓÑ«5(8BkNŽKxÞËE¢¢ÖãŽß ´çßÖ+LOè¿ê94ä$ì)„å%KtCò$+ [ÌÿHþ® ¦áB¬!¦ f ÑRNòÜÝW`œí1JãÜþ,±L…MûêW›É]JÃ.MœŽ6…”d‚dÅŠê 6«ocã¢3}1^Bb´5!Ís¾q¡a8ûÖôßܵq![–UmËS‰Êy¯V ú_SÈŠ–\?¢CÕ!k`ë´ºÛ£uCP„•9ÿÄÝŒ,YýÝ©je¤Ë}ƒBãÍ 7°ÎE×OûÞJ¾É–š»ÑfBžY“/p'±‡£Ý©)K!bâÔƒ-±´ŽÌ¸•µÃqžGDój'Î_?“¬õ+BpÑ‚yìUø -hFt;½Ò×>~ÁSË€ÎH€ažZÙ©Ã(sÌ'é"Á§jÑ#>‚}¯'e#ԃ¯1ž#…A×=îåRˆž7»_/ÀòInq½»ÙWψ{×Ó ï›ÚI¯±ম$éC·t$: “@h$Öö´òº­`WmåÈvOÜp×YÀ~‘TÍÏq îQ“V¥H‡S„ãÙ}¹Áï~Õ°üväÁ§Ò¢ÅîxÍ¢^l©^e¾B:'›#k’Êí7£r—QŸàÂ`WíÁÒ×p8“{¢sÃk°‚¶MŒîŸš*mêxÌèÞ{àk'Kìù„¸Ï¢8•¤õaXC]Žòî—‚XHG*r‡òNòª–xr­÷qzV´ÃŒÅ°dœBæ‘бL"1c…û`bq»tòÒdÒ#8â·¬õözgÑCA÷ðZ,ÆfjÄøÀÞÀ Ó•-þ½‚°=g°›fÊsŸ¹Ìém<«Û©Œö£Cu›.”šá<7ê[öí† ƒ­Æ®áÊ­'Ö—ÈÉ$¸ h¶fV¸Ü§?eõ„ƒ<\S•»ä´Óï¼òö}NluÓØ3@ŠûrW¨®0 Î’†¢Ï)jÉ5<›ªh¼':E…$ÿ¬„™êäñÚ%­X¾2÷ÚÆã­JÄu­ÅD¾ z¬Uù!f€]‘Xó Vø5Õ|…Cæv6÷OÝ©ú4”ôÔ÷ äç¼ËæëßúL=/Ï¡gµX2zvP'9µ'ÈUÛ½ 1»pÁ/ùµ ¿€MZæ¬íÒ ©†;k”„Ò¾ü0.F•ÆY })’,µ Ðÿ\‡M¨“iLžžb iÚÏ7%6’o" $¥ú¡såÍ6Žª1ª{ŠèÉ|±brI7FÀ1Ey¾ÌÙáBå˜ø˜€K6TÜ¡à½t •·(x°;xfûó¥éé@—vHÞIÕëž9'óš)b<¥¿’íI5§Ão×/ÿ­É+”cÿ]ï(Ø_—1O ÓœÈKôFý³­ÛŒª‰QòÊtl\u4’ ,ÕgžmÛ¨Á ã<Ó€­i“öŠé hÃVš i(")3Ñé+g“K\›êÇŸa$Ì5u /*„ ´šíÚÊúX³$²C¦Íe®ÑÐã3„J˜àP•õ‘²“]Ôw_=Ùjuçž6Ë’åeP×;Þ«wÇ6­åÄb·WpmÌã†êª&Õ‡<С~Ä—[Éó¡ ¾9Dá˜ä ¤ K)ißueÑuá>Úœp†üwr£ÇdIIÆW÷JeÍÖu%ÿ޷ɶ~–IöM~Ép“ð%"ºÒk•×Ãí\šPMƒÝ’7$Ç£Ä*ël‰ÐžRrÛÁmª+tá‡j¬hE‹‡ýn‰ƒG²QÊʃá>#‡ËÛTüN¯ÜWɃð³ùÖ$L|ò°U2Àœ'Äu¶åqƒ·õw±Ø[ø'&7†´L(¿–×Û´r©–ÂÃSÞ'e´K²p3vYóŸ<ø5K® 9eZ ‚Àzg“b¸ÛW•pšÆJ‚^Oø øXtÒ´bÃ`wEUÙæ†,Ò$`{¨£¸Ÿ›JÞœ¯MɶôÃo †š[ª2³eì§²–¶t#ûʼnúª×‡ó>#à€ôA¿áÉc¥|ûahõc–§¡i·#â›úµT«IÒ› Gbâ1O M§kQ•e6Ú,Eö„}؆ íd€ Ù¥ð—øk—/~BMÖh‡ñ¶> 6$¥nSlÆpýƒEÅK‹"r‹ã׎²©K­à77>@"a§=þ€Úȼ¼†šäÆã#wá'‰=è¿=ê›À’´»®8¹û_æ/;µúGçwúäÝÓŸ?äù‡³ÌˆÝ–©»YŽªß·Êé–QYïæ6ØþÀ¤e¼»±| Ô¥  …dQ̨;m%Râ½4'‚RÁú{zl×4eøï¯» >¾îQ¥Úëûc@õX•öΧögôr Ƨ½8€Ñ­ŠH»]È8&Alï4ÆÍ} q?aëñ+](ŠÜ$JŠæqµ„áéÌ—À=Bͳ6¶*oøvBYЧ-OªéÈãpÆÛPÈö %ÄÃ~Õ[,iØ<ûRÙ0ᘽ§òH{{Fä’ÿ(³]غñ%öb&Øñ0›þ£ç›%øú ÜXÞ‰d­‹î¸)Ç…W¨¤Ï+ÆWâ jŽùQô˜PUXô¡;ƒ* ¡´Þà%I|ŒQ¶pÜ×tɹbzY:Û¯(0ù•NJÔŽ½~ªèHM>ºh;.ÒiN=à´ŠSx,Ä·H¢,“¨_Žm†¸\ÖÝ(äl^ :jWpš/È£5Q2}EøŠ‹ÑiO™ÿ3Ç>7H#y6ö &•G< €ðµ:€q…ÇK­„ãÁgû@¸ ,£í_Î\ºêqiÛöRtLÅBéD%pÜänêXWÀç¬wÙÿF\ðî r²Mâ¹Á=Ûß2pIö ækùé­ü|æx˜à¡µ7„«(Zù5¦7;<¾£ú“ù á½ë¶]¥UÉØùoœõ¦Á7žY¹Í·›_s܇Ž9;v5miöýÑK”< Xßún©?n¡Á±3÷‡­ éÛuº¬S¼èì?/|ëÉü< þQ@~&ý:E©‚Щƒ?C3Àõs`¦¼§ %MJBBïòÁ‘‰àþuæbàO"±öþ€\¾ äÖ'x%‹Ì±Ûr$‹€çPª=ƒ(!ј{ áÏß IUa ²Ž’$cý(ü ˆ(?(EšÆ-qßiœþþäcRÑ–¡Ì9n#Ú‘²ƒÌçÏ =Ldw‹Žøä“š*{èÖ Q§$? «¤åA3Âm- §‰ËÏò:ÓOz\G—} hÚÝÄ: tÞŠQ#fÙæÉÃe˜/í½<à=DD-:) ¤”›üþF`×±Ë>D#›÷ ; 37wÉÐðQ|êY–sQBŒÁ„ñúÆ~‚g½),LƒNU'+ÓdkB± ¼f Iܦ¦ Tn\Ó:Ü·¥*×SL½eÈP’FÀ>«’­ïôÝ ŸR,£L3}A£¿úËbŽüÝØÍxè‰ÅÊÝúúÄ«.#ÕúÈ óŠH뎆]CnÝCàªHp-¤]ÐÒL3Íæbòç3Š£[´R*…è¹Úý)òà×ôßOdÐø¸¡ÄÏÈ>%ÐKÄÍ£A·OþúMá„BLß@¶LÔ \ÓÌÌü«h´»|ÒÕ'1ÏõÄT✖ãÃjÙÝÝ'_¦6Æc‡~=œ¢õç >H¼ˆ^°ÁËËåŸ× `³ØC Áé­³õ‹¹V@!º6aˆÏ!††Qb=—‰bé5H>…¥¯½Û=à¯>LÛgðsä3^ýüö³l{šÙz(Ð9È„o‰4Ð!íÔ< [1Å9¾¿ñó”K §êÓö?ÂW©* 7Þò@F€Ï÷rnM›n0o¬ÌËø"й/É©R†uó±ì]æÍM.­ÓÇfó‹éÓ8–{mà'ê-8_aùïmQ"ü†ëƒÿxcèã"M©>Á ôºê¬øÎ@CrN#T;ÈV‡?ø©f¢>Áƒ[…DGOgü r ·çÖç1E6ÃCbû´OU|Á¡ýب2h¥·&¼o vWY³""[2“‰1:Idj¹¸–´à5ë­:¬[þm1ž¹ŠDÉXGç¿ïçzë“:B;q”z&ܦ&>³)J ¶7 ®0 ³ªÇáÚí<…ú‘ÿ¼ªïqfL¯(°Gýš`ÀM.„·;Þ‡VFË®J{kîüõž:-;„Ãm®În…õäî±}fggÕsrŸÆcYƒÀ­OÑ?U—ßɸ|Çînu>8@) È¥û¥Í‡At$Æ &`¸t\¸º{ CR‹âyQöí•QÙžÆ:x¶< †«8Âö¦.w‚Õ&V»¾9Æ=`¼†£ôž¥mZ@ãçš1¬<Û©ô]‘éï_L“ycç…ß0ßý]†Ã‚{„*†‰/“2ô4­UPoÄ5Èoô.0v»ÚÇ|õ“}ïLJØB¬mTG¼NâêˆÌ‚õŸ»s°ƒ×Ohèñ#ot³·InßᨓKzï_ɵm åI>ÂØWeud ºŸ/¢SÀ?†‰ç¸”‰ùnç%Âqÿ@¾*Mp³§9U œâ‘4³éÑ…œþt}Ô?J‘”9ÞÒ@Åêí÷œäѼcÄÒwó¥”*{È÷A½QÄ—pe§ƒ{¨H-ªQøáOŠë’Æ`¸"­¥hîP$˜ú^Jô«Òϼ“vâvE8bRÐåRãTpòV4ÎÀkáï}æ~D˜lê«Q⯕û gŽÆCV늠^^„ëNî>òŸšˆiàï%k°9p ÂÑ$Ç*þಷ2ñ eyèîÇÚÿ”#PO–U·÷D'!ÑÇÎÿ>t D€¸7+aõýmñs6 ™!•é×AáZðp‹Û ††øÃþôxî¯o3§wŠáFÊ@ž4íÑ —ÍNo´vmùï Žô4Þ”¬ Æ{¤¯ãÝ ˆyÛcrÑÆ7óvkßXuð¨öȧ‡5‚_oÞß6 w¯/Þôg½¹MótCÃ[oºe•óð ;JáD“z.à(";®ƒú¬–ÖÖ¡ :¡œ®¤T—nè/¿¹Mq×ÂÕº¬Ÿ¸>ÝpBmu+×~×½"‰Ý'8 áÿí¦ª¦jrQÌ‘Mbm@jW2/T¶Ñóà©§aWâ"Å0RÔæþ î«´²9”(ä ?úi®ûuÆm£UöR‹oü4ýÐOÅH712"“ <ŸÁž<4Ç=Î —F»ÀÏ4êª<׈£ŽìbBO¾w¶©ÝǃK0Þ20¡>æÊÝ”Ò:صK†A.ò¿qxÆ­ÃfõÁüdþ¤¡‚¯xþ¦é¦‚¨¤ƒ¯JrEœpwùíV S¸BÁíSn±™Ë @Áï®U‰¡!”¤üçú70ÕËJÛYR²Œ;Zr³€²Ê€>BxH× !ŠÁ äF›àu$$œ´ØV.Äs1´ÃQ`ò³ÆÊ»¬š•߃ ö3—‰yä¸o¢:xK¥§¡PÄÐË:Bw4F²5Nwq$JViå¸x“¦øë"ð# f2¾žÚ沕’–uYͪîmyªÛ²˜,,Ó†Ã6Ÿ\œãÑ{øÜ+®Z|ŽnŒ•SÏ-q{_pg¬*!€1•OJ`÷ÅøøN)£À‰y‚„àÉæ7ƒÕا¿Œj6jç¬d9ÂLõQ«ø6Ï á©«î0ÜŠ©Û€¦Ó³'ÿj¦[5"(ZפDZà¶üc;•¯nƒ¿|¿FšvEÈÌûÛøÅ׳0¬€3ýP.Ò!ê1i_D…ǃ~¤'í‘4‹åóLŒêGœIË1"Ÿ‚ÆSÝœ´×þ󥕖CL ±{a+äúì€!S¥OȪ%,M:õé Aæ8¡Äfó- Ü=ö:–Ò‰qJ2&‘ŸøâˆÝº‘;ýÉü´r—Ë~ D: 1tײP»‘:‡ùþ^µ¼ k%=—þÉ´CcðÂ/¢;jGlhBØÐ"Æz­(- ¨Tû‡Kàªs™q߆4…™"‹CØÇêD²CX¯‚äHöe€Èމpó+[!žIúK¹8NLó…Ú6¤0"±]÷eå—}‡¡KRx™…vÉ|k‹ÒøÙjFÕ£J#Ê×øìIfÁäT4ĵîBsÜvÒRdÓà1ÔAß«Ìq0«2œæ6i³xz¼Ùº-ŸçÊ÷ç íù_}cVl¹Îù’•¥oÌ ½yœëÓÛæý›c÷Nðè £›R´(lœr7'ß×€SË]è"ç—oªï«ý 9°·ç¶¾þE¹—îêp0*7ÀÏôÑ^t\DÈ@Âé-›ãìÓj¹YDÞÆ—+ÌÀï¹»å[ÊxÍ+[;4bó_ˆO 8‡OGI㸂-¤GxSÈ88ȾéOr(j/o±ÒÑ®#½…îqh+p·")fóu·’/åÒ7Î*¡#‰çÙÈŠEò”OÔ»-«dBãÈsx¾o'V_ª“×à]V½ª4ià\útôæùB Žñh»ðˆui|ëeÈk’P=².[|¼8z9gpÞÊ8b ”iæùž~jçYìÊŒ{°Ç•·½7î‘@¯¤ãÉQ_%e&ØM64b—/+¢JmôSbÉ#Þ£D·;ÞTåÑYr+_€ˆ™8ΟŽ.Ão,¦c÷U¬#À,ÎN«–Z^.êØ 3xè²ûŒœ±ôv(“EnzÜ»!4<,B=zgº¼&ºØ2åŠ×šàyBÌ¥'ö4û+Bl ×lªÊÊ6„ãqJ wR2ÓGÁ ”z­.¦Ÿ<ë¸ý]&¼f\™.¸ëäZ“Í/+6]ói˜ô ¶“rFfJ"¿jF!÷exv~TsbY„w8®éÛY%—3 à\Ê“ìï*P´Ä‘;îã«UP<)h;Ú:rX×›Œ„Hwâá'Åyåi-7êÁfتÈ2ct… âõòsÇO/¬MJU˜n»õ Â|aûP¯×Ögdšð¾D'vövž„ÖBt‡š¿м%ˆó’¤×°_Å‘\êqF R~<Ñc æÊ1üÂ@(Tòù¢Y½%iŽ}_?Sbéóº ö)¥gÅ|y,õ¯ƒþŒÝ¥â¦¸œe££Zûãš…ƒ'A^Wó‡kÅô¬”ÉÊSz”dÙæÜF–zñ/W} û¸ˆAœ÷è ÚND Ò轪L·ÐÝÞ~å&[îÛ›˜‹‹{Fym£Ëô1%“Â%¯n[(HO§ŒÄ~¶î[Q,­jiÌÁÝ´•€ËRæg&¿ì,Æ @2ŽlGëGnEÇŠ!ó½HI3Ÿ'óí]ÏCÅÆüíOÇ´­ ¥FŽ®EÎÅ Õ<“оD9XçûEƒ†¶„ª1Y7{rorVã;Œ)å,¢ÇFñ®…«-`¦åòíô3J¾sSgî“°¿îöæm"΃¿§üXä_ß×èQîp©_˜:Qį='h¦ Åøh1o-zOËúÐ#"Ç]V%l—0+Ž™½ÈYçÎaÀâÅsºå°áB£Ýàèö)¥ U–šÂÑB´ö½îFH$ê·v»¼R E·aÙ ¼÷×nå%ÕÓ,Ãk 8ÎýË¢tcü§Ô•/†´_¾¯ìÅ”;Ï U)'}}QyÔŽÈ^€›åÞ~¬µ“q¿ÅŠ8º†àÑÌ;Têô‘u¢¼;$ ÕÖí]m†µ· .ýÚ`ÏQ¬ÿézýG³à:éùSùòÛ:wŸÝìšü §×h'ÉFG=?ïé:wP /µ~Þ‘jmÅçÆC”Ë_7[Æø49 èœóŸóØ3PÚÂ~ž*”9üŹpEiÛå“TÙbš^PMéƒt…M§ MÝ¢°?ôDˆ1¿1nÀhÈü+¨®÷¬í"÷¹$ñs_j[/ýµe{a”(°Æôù8qœ~èK©åéÄ71öýQ‡[A'Ç(ØQ6’¥yéVkšÛº9†™ÚŽüE8 *óï|žG߯[szv8%™'wV²°b¼R~ÍúEc;¥<:ò²û(X«·@ø  ãQ$RQÜä=ç[ç•cZçŸT²±À¿èpšàä(¬ä†"‰ƒÃM¦»¶„+üÞØ~YÚ!&W¯¥á~¿nA8OR¿‰-DµÀ"¦³CmìoEdÀ„}L]ëÝù…‘ûï)âΉŠ}jªóG6ÞËÀˆëÖúk^Ð!HbÊ…öŒðÛµç ›>Ú¨li?^­d{í‰Olè4¦ê]õÿ@ü`¦™ˆÎ'7ÿaÄ›ZCìx/év$ã‘t›/,¬ DIz×D›·Äý"Ü `iš£u]:A¦çä[ùáÈqÉx‘]TòB…覎–¡°P)n£8y›du²LõRsÚC˜ž‘ÆÎ[Æ»95;;C"Š=æ*|¡áé™VCÝœ÷ùît¨Äøè0Î\Óþ¶hv]måvÏÚþyÃ#ûê+4”öºóò0 Æâ/tQ·ùtð’¤çA²ÄàÖ[S©­qåÉU,mßõÖú5¹og‚H(KáPQ&Zb¾Nᯥ$ðTÀeg¢ÄNÇ{<ÿ^³yú¾oÛ+ÜW‹.]Ù·>÷FyÆyf3éÊE¬X»E,éI‡bЖºû©â‰®×KõÂW64^é‰O ¨ÖÍenþêybi¡«rÏÈI•k"H‰hò•Iq²ŽºSZkxÄ£SMš×?‘Åxh­ãy'mèk2SôiRùÙ‹@Q öq*„XæŠöhAD)YWÕè5‡wùw]zÈZ=Í£7|ðÇp«þìŒØþ3üM² ³ê•V‘‚O¡ž–*ï^2¡SÅX\_kÀ(Ý,yަóP\®%Q½eW¦¹dSÂtøéœîИeÓ•GŒçËM-U&.m hÜçƒ5'm¸9¥¾æ³Ôº$ˆaÇWÇèX1ž*ܺ†¸™À?Ëù!ûkätPøqí>q¨ÿê¢÷c$Ú*<ìoH’k2ÚN(Œç©|¢qÀË{9À‹­nn•5ço8À”fµ+'›GÄׂƧ¨ZžÿíM¿t½yO =Š›j(0üÐûvLc©ÒŒRxþ•[úÝ5ñ€OøA ó¶¯{ÉùæÚ£‰]w^ùìµIO!è²)‘avzF¡ÉI¢wŸúWª}µó—QO…å‘.¬ø¥ÁÏñëóUûW¯¹ŒÑ#Ÿ×5é'sÚ'&?PFZ"&Ÿ r¿‘ššèJÑ i0V»Õ òA÷K&â;έåw¾7ÛÍ®˜þþÀÿÿ þ?‘ÀÈ ``ïhcm`o ÿ¿`¯áendstream endobj 12 0 obj << /Type /Font /Subtype /Type1 /Encoding 258 0 R /FirstChar 11 /LastChar 126 /Widths 259 0 R /BaseFont /GVOVWN+CMR12 /FontDescriptor 10 0 R >> endobj 10 0 obj << /Ascent 694 /CapHeight 683 /Descent -194 /FontName /GVOVWN+CMR12 /ItalicAngle 0 /StemV 65 /XHeight 431 /FontBBox [-34 -251 988 750] /Flags 4 /CharSet (/ff/fi/fl/ffi/quotedblright/percent/ampersand/quoteright/parenleft/parenright/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/equal/question/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/quotedblleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash/emdash/tilde) /FontFile 11 0 R >> endobj 259 0 obj [571 544 544 816 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 490 0 0 816 762 272 381 381 0 762 272 326 272 490 490 490 490 490 490 490 490 490 490 490 272 272 0 762 0 462 0 734 693 707 748 666 639 768 734 353 503 761 612 897 734 762 666 762 721 544 707 734 734 1006 734 734 598 0 490 0 0 0 0 490 544 435 544 435 299 490 544 272 299 517 272 816 544 490 544 517 381 386 381 544 517 707 517 517 435 490 979 0 490 ] endobj 258 0 obj << /Type /Encoding /Differences [ 0 /.notdef 11/ff/fi/fl/ffi 15/.notdef 34/quotedblright 35/.notdef 37/percent/ampersand/quoteright/parenleft/parenright 42/.notdef 43/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon 60/.notdef 61/equal 62/.notdef 63/question 64/.notdef 65/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z 91/.notdef 92/quotedblleft 93/.notdef 97/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash/emdash 125/.notdef 126/tilde 127/.notdef] >> endobj 8 0 obj << /Length1 1018 /Length2 3919 /Length3 532 /Length 4598 /Filter /FlateDecode >> stream xÚí“g\ë¶Æ)Ò‚AD7¢H/!¡ƒôÞ‘®(I€@H „é¡ *R¤H‘"(½HQz¯J/ RBNtß³·wŸ÷~º¿;óeþë]ó¬gÖZÃËeb&ª ÇÜFhaÐ8QˆDP74…È1q/¯:Ã!1h !@ää €ª— Òò²òPI/ ŽqÇc‘NÎ8@@]ðg’  ê†À"`hÀ†sF¸‘4`(À ã€Dàðb€* ˜þ|Ã0Ex"°Þ¸àHpá„DƒÀ? é¢1€ÌŸa¸—û¿¼XO’)@€dR Y„cÐ(<G8‚ÀFR-ÉÉÿ†©Šky¡PF0·Ÿò?›ôÇ07$ ÿ_ 7w/ bà,úŸ©Vˆ?½"àH/·žêâ`(¤ƒ*Ú …Äÿ !=µ¾¸ çà 8ÂPžˆ_qþO¤¾ý²ÖÓQ7²4þsž¿ÎL`H4Îïþ—êÏä_ ù›IÝÁ"}q1qq)‘tÿûéÖ?ji¢0p$š´RÒ ‹…áA¤Í ‘àh8Â@ø’ ƒÅÐé€Ô“Àƒý§”,vÀ H“$…E¤e°ú_$#€uÿ&R¶Ñ_$+€Mþ"ÒtÁ°¿IޤûAHÞÁˆß €CR§ßP #CRQÔoHRvû!$èßTó’ ¹ÿ†’û’ yþ†Ò÷’>ÈëþçtÕÔ0¾~¢€(TJ“”d$åþ[žƒ‹@ã~ý8¤ù7;"I …@ø"@£C…0—Ç•š9=/¨„ÈÕœªb^7õ7ЇŽÄ‘£ž½×÷šze}P˜Êʸ@µpÙçˆÃ3ºÞÿZ·Ö·ØäÁãoû…Ô;5ÖßS ñóîÜÄÐU¦ºÊí5)r㾩®‚„ë¹íé«OM4Ìi&¸Èšm¼Ë›Ó¤e¬µRQ‘á¯ø$¸L™“= îJFNú0'ÄŸšüèI[-<¾‰©÷b9È¡ÍztlGc›õÄVºN5H™žË-C'æ||Ì›+øÚ¦d9‚ÆÈ ìcÞyÉŸµ½lƒöÈJÓÒh]ÇÖ?…ý¡ô²cGÀxýªƒJx­ÑÌ‘ :)iÐÂK‡ƒÌoÿj®éWeå¯G§&…&µ‡1–ØÌO<â^â<±åeX•E³äf¾;Ü/o¹ Ýú˜¯Oð}Zšž¿\b\û’g}'g&@Nö–)›vë‹Â˜**]/tm̶æK=]ÿ‚+E511"Ò .6›Fb‰É‰Äwƺ¬XË7Zz<aƒüñ<:È•Ùg#ÅÛ³²U ؾª ƒ'áÐ-«ê)®Ån||#ÃÃßȪ³î¢žkÏ--¶6Zž®8/Ð_½³ny’Úª‹ªAŠöR\@ú‰ ð¶&´Ù3xÏh¶Ã¸Ð·dÙ±ê­g#ï Ÿ¶ˆ)¬Áþ›Ï>—æÏg°Ûš^7­caðÏd$sŸXPÞäÕzÌúµ¯Ÿ±°l‹’îRý™<™4–:e[¶ yJC0Ü:oö¼¹ÃšGß\“¾ÜBK"Œý-¯håáÙB¸™¾~·å½+nÕɲ݋|÷q•¥ÍÁq³e{Ð!ŒaOï&ƒt=Q¨é²§ü Yh·óáí»y}Ô‰!\† šZ‰Ád¬\r>DóþÇqñÕ‘kw•ÊLLœù8ÛÈ¢ü€ [7îš×®\ÐÊëb)ìès¾ñ9š/VjW`ìáGü„SA”rÃiç"DeÊËcŒ¸ps‡›P³'Uö>å$b7gu.¦ôé{s“_‰enáÊ ÛUA9³I•ÅæŠY ,/k© ˆÝ½%m®…ñÂûøÇ:–W>3;Ý^{üqåõòxEWþ!Ùs!ŽG{,¢Ä%úÀœœW}Í–FÍivE`{_•ÐXÇ/úékßéþp©Oø£—â¸Gƒˆ_Ëóyž¨+i匰¦ {k‘¥+ &<ºí(‹?sÊäë>)ó…øÎ7 öZ̰ʴ"ÛÞZçò¸±Q¯Ô¢S¸³G4¤Ø¦„“Ù³ßiÊ¡§ÒP¤|&[çÛÛ ¶U¿ák¬þ¡Õµ¦ˆ+C=ÿÕ"çM¾V:mpW’Fmë *ïqÑ»?®cY ¸Éåë¨,JÆähù©©Þ‰¤Þ][ájÂ;)ZüÛ#µFÝY+Ë”OeäøöE¤÷ΣsŽÍTAb’ìWõœ\öLÓñg@LÖ èÝo²[¡ê …ë³!Lš5i»B,hšÒÁpÒõp«Å†¦’˜ìàU>ט=°"TRcê•j†Sím_“2B™—Ùý<MU ]›ã÷3/ƒ,¸ Õ‡‡iU*1jÍNÐmÈ §V¶÷ðÎ>¡Ý§×eÕ¾qsá]ÍP)Ô»îì‡ç'ï¼¶­Û%8nžÏöl‘Õ¹9EirµÜv±j?-Ù,úázS¯}´¿J«LÅ$Ð펑¤Ùò'MžsÑÆFÂs8=2ùwí.kÁKA¼§¹lUµ¢º™4>ðõ÷öRG7 yì½4 ÒO²ýjL IoŠÎ÷#ÃÚй^‚‰ìá¡SG* hQÅMŸ ç'[÷k5§Ò^–»o¡KëÙdÄÐä{ûßί·¯ð¢þÁžêj²™y2ÿ†jdÒX[eA½—xÖ»èˆûXó»A=5þ°˜r2ï3gJ¥TZ0oþ3±”ÎaÁ€ÈüKÇGl8…hMþå©9ì'nJ«®wTOØ-Ê&'° ¤ªæÜ¬—~~šÑÕ™}qcø$Y^=SSA%km+¡u‰ “¨„Î&hA!UÚW¤HÉZÎòøä†JP9—³ÐBÜ>~b`¿èu«ü=oØÚCž }gÈè<ñ3îÁ‡¿)és‹²jß×e¯¦-cÚƒP&ŠHÛ€fhz º„B{YfAŰðõÁ˜íB¾­A*´ü]äÃ(Ëç*®ÑME©S,ã½q cä û6F÷òXw[9—Ék ÖiÐËf ö§…ˆ5ªÁÅTiž9Ùywªg©:Ðr§nRDPL0ÛnzN—]swg3]tÞç=±È¶~3¤7šêÕq J“Áo}*xkŒió²¸5dâà§ IkeíÐì3øPÓõ#œÅNlà·¸Qb±®}5qL§§¶î yCy™y.}ߢðq?ü‡UA˜sÊâ>6u Nü+ó<ÛKlS¸7Ìä÷!œç ‘[c±• Û5±=‚mÛ1ïê;µ®Áû™RŸ‹j%¸`Rú^n„fÉo ´…pî©C1{ >ÙŠ˜`Þ%ÉÛñC^§‘€Qî4¯‡yØô W˰-K+î9ü6¾ò•gIÏÝ‚šú(1ABvŒ†êìörkïíbùUÛ»qM ¡¬79áyõ¾–…L"æZÎqÞôx?Zêþö^ ”7$ž}SÏqXh‡–Ù„Å-_·µÀŽ`¼)'r·PRÂÑGæ5ãÀc\̼ÿƒ¶„±H°,d™cš‹Öý´‘ÚÜ;žgA2IIú>Èö¼#X€3“_ u Õ§YÜcŠ4ÖO˜§?”/•¾HÊïŸLµõ7Á“•Å\8i¥šèÿα•Qêt¾ª¦ˆÆ5û$¾"°òÝî²ð&žp£RÕ8·˜½0IÇ* ¤FÆ|$ÞÌ]µæ?míÙ§ íóÀ|qàMz rÚ2¢Að¼ØÐ)þ;ÔL7s€W}>ôwd( MtÅ•²eXøJfíiCÂÀj«À¥U÷¯3ò£ÏlkÐ ‘;“¼÷é:%Ê!#±{°c5õJé0sN2S/B»g uâ}Âr•WDûšrKw~.|dc&îy´Ó՗ϧYk„„0Ÿ™5œS…è5‹ˆ³â½µ„'óVᙥÁGÒG-wÚkÀµ¥Íª}ˆ²—ed*Ïöͧ^ò_ 9<Ò„ä,6lÚ%GÁQ•5ví /•\v”^ÝñËçÓu.Ã9ZÏVc†•w¥_Ý *e\ÌfʼÁ¬“Ÿ¿©§tåc>Œ×à3[bÎÅÿR§=vIñã·ˆ…rbFbÛØ;¨ÈÈìñ«¢™¶µÏ=îV~J¤[jš­`T(`íÂËŒ%NížçÝÙ’·Ð–ŒŠÐ¥ô:å{&¹ GyŒîïžš6¹O½CgÓxñ­eåNsII\N ÄvŽØïJ¤Á Ï6 ˜wпxÐ[ã&è °Wi^hµœÍc寶+„°AÃ;§GjWŸ_÷•Œ&Tɳ†!\uDž‚éü»ï¿b³ØrÈýª}±ós¯k—ZØ0£óùQ6íÔ•­.šlÉWS@bþÚYV–*¿“:–,^î]#³}¦ã{Ϙ³ª¶žŸ~{ùyù~ËÜ¥0gÎö÷à ¡]f($íÒ #qïSä çY³ò9ûLjÁ\楦o€¬ZQƒ„غáÕóóBMRóï/JÅd¥*ê2—„â+ŠA˃cn_ùÜÌ`…á·íkÿj¾IhtwÍÞdDµ«ôM=½rZò¹®{¹q%é´Z’uñD‘ºßØ}eGñÛ•ù±¹[|ÄòÕÂ달Oo,šÅ> endobj 7 0 obj << /Ascent 694 /CapHeight 683 /Descent -195 /FontName /JHCNVO+CMR17 /ItalicAngle 0 /StemV 53 /XHeight 430 /FontBBox [-33 -250 945 749] /Flags 4 /CharSet (/colon/C/I/N/P/a/c/e/f/g/i/l/m/n/o/p/r/s/t/u) /FontFile 8 0 R >> endobj 261 0 obj [250 0 0 0 0 0 0 0 0 668 0 0 0 0 0 328 0 0 0 0 693 0 628 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 459 0 406 0 406 276 459 0 250 0 0 250 772 511 459 511 0 354 359 354 511 ] endobj 260 0 obj << /Type /Encoding /Differences [ 0 /.notdef 58/colon 59/.notdef 67/C 68/.notdef 73/I 74/.notdef 78/N 79/.notdef 80/P 81/.notdef 97/a 98/.notdef 99/c 100/.notdef 101/e/f/g 104/.notdef 105/i 106/.notdef 108/l/m/n/o/p 113/.notdef 114/r/s/t/u 118/.notdef] >> endobj 5 0 obj << /Length1 813 /Length2 1838 /Length3 532 /Length 2418 /Filter /FlateDecode >> stream xÚíRi8”mN&„”=ÙeLcka,©w4e©×VÓ31™­™ÁÈ’¡dIB¶„·d+) eH"”Ú%²eK”zG}Õñõþü¾_ßñ=÷Ÿç¼®ó>¯ó8¯[Cï oA¤†lè4¶> Ž2°8¬…Pp$LCË„l2fE`C¦ÊÄXø”1€Â˜m152iX:ßI&y±m¬Î2 XP!&$ÐíQù 8ÐA2Äö‡ °où ر ¦/D„ÃP(€HÙÀaˆD¦ÁË–ìhžtó½LôaühùBLß Í7©ð-é4Š?@„öZf]™²æ¬òþî:e"-i´\úæn¸sT¯*2ªZóLî€FslÁÕÝœl—wFŒQ¦_o'™¹…ê-Šîa=§a<Ù 8–ºNÆHÈ0~Z°¥\ë<û4So‰má8T7X/¹‰jኣ2˜?xÈÛÝÓ“ %éT;MÕodÄÑò’üž¹¼µÉCîjV¯8ÞR¸*²Èø’À§÷Šírò'òåwL½^ØèÞØ„oÞÐÅЗ‹u~$Óðm]³¯àE¼d¿ºq{ÕÌÐå5+JVa9ÒM ã:ççQ®_z#üÕ@+´ÛcÕzïëê\7P )RWrfù˜c+…IÏÜ­•ŒÅcnÔ¿<1¼Ÿ6’¨1nÞ­áL}9g‘õ\Q©ŽûN òÜð!þX¤Šbe÷‘…a /+•j¬Òf8ª¿m##q)®¥¤µãÄé¥ @A+6vt P#nà¸> õ ôò«½Ñ®.¸Ãž˜­pûBÜ+:3u[üæb[ç#—7q“mI…¯G4–ßõiR#Õ ÜÚ²î(G‘߆ñÌìŠýX5ÖŸˆ¶lt0Ô(«ú’êzˆÒxV}iîÑjû;<“Â"Χ͎2›!½®4Ê,¨˜?T“\óz²J`:à3a¼œu$š:°ó–àb탕º ¬N€#£Ée!"óšg]O°–•mۺǫ®ö¶èKsºÙß?±€ÛE—ÈQMÝõjäF^¬—¡FÚô*ÁÝMž=G‚AÞ—äÛ׳‚O¹poÎ •Éqëy¬|Æ÷ýPd$8ÇC:Ž€[Ø d2ú vjR^«º ÆÈq²–˜.Žßè!B×K@Ƴ’eçí†×™ÏÜ ©%Y7ï¼52 Üáï¦o75ÅÏÞÚ8f^"7ÑÞRZ×sžŠµ‘ƇkWÅ`·m§ô&ÍëßÔ~‘ôønS{·ÿ¶ÒHpo_¡_ Sê{ÏÅL#f¯ œ±C¶ ÔCÈe¼<\ðs5ÀëÌDÈùk‹+‰˜ZiS–Æ»4C¿JW”–ÓÌŽXö±&ÞÐdê$–,1–¹¹¾…8¯fÛ½Gyû¥´©öðÙ˜ë2öÏ©¹ùò𚼇Ìp¥Ë/0‡aˆ§YQ¯öÍo‡> ÊJ¤HôÝ´’Õáåf½ƒ=ÅîëƒéŽ7RÇE6Pà“æŠ¨—²¶¡ÁFzö†&‚‚ctî4E+léã(ÄÜ™ãméäÇ2©íØÕdãÖ¥­Ä¨úât f¦pf‡‹W½­äxñåy.{¿ŠX¢sªx§”댽„vŽ/òOŒÛBiwDÏ2õYв.ánƒ°Èi[ÆL}š®òÕ;¦öW;ÝÕ{­«î´w}ÑÕª­Å:á§ró¼*:%ÓyÏo„ÀÚÖ^Mú˜RM¹Ú/³éàŠI‘®WT•“¾{?-Ý\™§?cƒ™3?ÑNDE$æŸ$s>v.Ɇ> ŠÍ¨”p­x¶ãÁµ÷ÒI}W "6ÜÒF/2dGL|Ýââ6à]\Q+_KýS·A–xybÝ£„Ö4py]³jI¬®Ã^c;æþé”l'~h…yèuŸ]s⦌þÉsjµì²!Ü¢`(aÂì\¿ó`ÅÄ“3nïg¹êsZƒIº§C…ÊF¶œ>Sþ¸/»JçÊɶػèîý y%G‘ªô°]&Œ²)k†¦PÇáNu'Üj¤xLüÍØÝ‘ZÙO[9¥a£#héW­t“[Õ]Z)}I{¯ƒ¢ÃU—$´7è7ôù ½žòÆ`T/:‹Ð´ö8X½Éº\ÌÔ_íCþ½Í* ¼òÕÎ)o6õº8Ô},îÇ9›íFW54{Y W"Íe„ʨ:f—)&3úOJ¶v,Ôg¸·nôHë³ÜºÇu§z\™`ÖäµÂ)’’7—wN-{> endobj 4 0 obj << /Ascent 514 /CapHeight 683 /Descent 0 /FontName /GQPTGJ+CMCSC10 /ItalicAngle 0 /StemV 72 /XHeight 431 /FontBBox [14 -250 1077 750] /Flags 4 /CharSet (/I/M/a/c/h/t) /FontFile 5 0 R >> endobj 263 0 obj [406 0 0 0 989 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 613 0 591 0 0 0 0 613 0 0 0 0 0 0 0 0 0 0 0 591 ] endobj 262 0 obj << /Type /Encoding /Differences [ 0 /.notdef 73/I 74/.notdef 77/M 78/.notdef 97/a 98/.notdef 99/c 100/.notdef 104/h 105/.notdef 116/t 117/.notdef] >> endobj 25 0 obj << /Type /Pages /Count 6 /Parent 264 0 R /Kids [2 0 R 27 0 R 36 0 R 39 0 R 42 0 R 45 0 R] >> endobj 59 0 obj << /Type /Pages /Count 6 /Parent 264 0 R /Kids [54 0 R 61 0 R 67 0 R 70 0 R 76 0 R 79 0 R] >> endobj 84 0 obj << /Type /Pages /Count 6 /Parent 264 0 R /Kids [82 0 R 86 0 R 92 0 R 95 0 R 128 0 R 131 0 R] >> endobj 136 0 obj << /Type /Pages /Count 6 /Parent 264 0 R /Kids [134 0 R 138 0 R 141 0 R 144 0 R 147 0 R 150 0 R] >> endobj 155 0 obj << /Type /Pages /Count 6 /Parent 264 0 R /Kids [153 0 R 157 0 R 160 0 R 163 0 R 166 0 R 169 0 R] >> endobj 186 0 obj << /Type /Pages /Count 6 /Parent 264 0 R /Kids [184 0 R 188 0 R 191 0 R 194 0 R 197 0 R 200 0 R] >> endobj 205 0 obj << /Type /Pages /Count 6 /Parent 265 0 R /Kids [203 0 R 207 0 R 210 0 R 213 0 R 216 0 R 219 0 R] >> endobj 224 0 obj << /Type /Pages /Count 2 /Parent 265 0 R /Kids [222 0 R 226 0 R] >> endobj 264 0 obj << /Type /Pages /Count 36 /Parent 266 0 R /Kids [25 0 R 59 0 R 84 0 R 136 0 R 155 0 R 186 0 R] >> endobj 265 0 obj << /Type /Pages /Count 8 /Parent 266 0 R /Kids [205 0 R 224 0 R] >> endobj 266 0 obj << /Type /Pages /Count 44 /Kids [264 0 R 265 0 R] >> endobj 267 0 obj << /Type /Catalog /Pages 266 0 R >> endobj 268 0 obj << /Producer (pdfeTeX-1.21a) /Creator (TeX) /CreationDate (D:20110628093627-04'00') /PTEX.Fullbanner (This is pdfeTeX, Version 3.141592-1.21a-2.2 (Web2C 7.5.4) kpathsea version 3.5.4) >> endobj xref 0 269 0000000000 65535 f 0000001700 00000 n 0000001595 00000 n 0000000009 00000 n 0000593275 00000 n 0000590580 00000 n 0000593116 00000 n 0000589893 00000 n 0000585019 00000 n 0000589736 00000 n 0000583543 00000 n 0000567562 00000 n 0000583384 00000 n 0000566418 00000 n 0000552469 00000 n 0000566259 00000 n 0000552023 00000 n 0000549030 00000 n 0000551866 00000 n 0000548179 00000 n 0000540276 00000 n 0000548019 00000 n 0000539612 00000 n 0000537515 00000 n 0000539453 00000 n 0000593763 00000 n 0000003062 00000 n 0000002954 00000 n 0000001838 00000 n 0000536299 00000 n 0000524071 00000 n 0000536139 00000 n 0000522612 00000 n 0000508453 00000 n 0000522452 00000 n 0000004697 00000 n 0000004589 00000 n 0000003167 00000 n 0000007112 00000 n 0000007004 00000 n 0000004802 00000 n 0000008850 00000 n 0000008742 00000 n 0000007217 00000 n 0000011975 00000 n 0000011867 00000 n 0000008955 00000 n 0000507674 00000 n 0000501508 00000 n 0000507514 00000 n 0000500843 00000 n 0000496812 00000 n 0000500684 00000 n 0000015574 00000 n 0000015466 00000 n 0000012116 00000 n 0000495846 00000 n 0000485188 00000 n 0000495686 00000 n 0000593872 00000 n 0000019268 00000 n 0000019160 00000 n 0000015703 00000 n 0000484677 00000 n 0000482440 00000 n 0000484517 00000 n 0000022160 00000 n 0000022052 00000 n 0000019421 00000 n 0000024579 00000 n 0000024471 00000 n 0000022277 00000 n 0000482124 00000 n 0000480089 00000 n 0000481967 00000 n 0000027829 00000 n 0000027721 00000 n 0000024742 00000 n 0000031051 00000 n 0000030943 00000 n 0000027946 00000 n 0000034140 00000 n 0000034032 00000 n 0000031168 00000 n 0000593982 00000 n 0000037161 00000 n 0000037053 00000 n 0000034245 00000 n 0000041820 00000 n 0000165189 00000 n 0000391407 00000 n 0000040442 00000 n 0000040334 00000 n 0000037279 00000 n 0000399903 00000 n 0000041712 00000 n 0000040548 00000 n 0000164303 00000 n 0000164446 00000 n 0000164530 00000 n 0000164629 00000 n 0000164734 00000 n 0000164782 00000 n 0000164828 00000 n 0000164876 00000 n 0000164922 00000 n 0000164946 00000 n 0000390518 00000 n 0000390662 00000 n 0000390747 00000 n 0000390847 00000 n 0000390952 00000 n 0000391000 00000 n 0000391046 00000 n 0000391094 00000 n 0000391140 00000 n 0000391164 00000 n 0000399016 00000 n 0000399160 00000 n 0000399245 00000 n 0000399345 00000 n 0000399450 00000 n 0000399498 00000 n 0000399544 00000 n 0000399592 00000 n 0000399638 00000 n 0000399660 00000 n 0000403446 00000 n 0000403335 00000 n 0000400036 00000 n 0000405553 00000 n 0000405442 00000 n 0000403552 00000 n 0000408072 00000 n 0000407960 00000 n 0000405648 00000 n 0000594094 00000 n 0000410564 00000 n 0000410452 00000 n 0000408179 00000 n 0000412515 00000 n 0000412403 00000 n 0000410671 00000 n 0000413137 00000 n 0000413025 00000 n 0000412610 00000 n 0000415680 00000 n 0000415568 00000 n 0000413220 00000 n 0000418168 00000 n 0000418056 00000 n 0000415798 00000 n 0000421256 00000 n 0000421144 00000 n 0000418321 00000 n 0000594211 00000 n 0000424364 00000 n 0000424252 00000 n 0000421363 00000 n 0000427669 00000 n 0000427557 00000 n 0000424471 00000 n 0000430409 00000 n 0000430297 00000 n 0000427788 00000 n 0000433284 00000 n 0000433172 00000 n 0000430574 00000 n 0000437031 00000 n 0000436919 00000 n 0000433415 00000 n 0000479412 00000 n 0000477144 00000 n 0000479252 00000 n 0000476772 00000 n 0000474628 00000 n 0000476613 00000 n 0000474178 00000 n 0000471087 00000 n 0000474017 00000 n 0000470773 00000 n 0000469378 00000 n 0000470611 00000 n 0000441019 00000 n 0000440907 00000 n 0000437250 00000 n 0000594328 00000 n 0000443841 00000 n 0000443729 00000 n 0000441238 00000 n 0000446031 00000 n 0000445919 00000 n 0000443948 00000 n 0000448099 00000 n 0000447987 00000 n 0000446138 00000 n 0000449064 00000 n 0000448952 00000 n 0000448194 00000 n 0000451453 00000 n 0000451341 00000 n 0000449147 00000 n 0000454367 00000 n 0000454255 00000 n 0000451571 00000 n 0000594445 00000 n 0000457182 00000 n 0000457070 00000 n 0000454486 00000 n 0000458943 00000 n 0000458831 00000 n 0000457288 00000 n 0000460751 00000 n 0000460639 00000 n 0000459037 00000 n 0000463427 00000 n 0000463315 00000 n 0000460869 00000 n 0000464670 00000 n 0000464558 00000 n 0000463545 00000 n 0000467108 00000 n 0000466996 00000 n 0000464788 00000 n 0000594562 00000 n 0000469295 00000 n 0000469183 00000 n 0000467203 00000 n 0000471001 00000 n 0000470977 00000 n 0000474492 00000 n 0000474387 00000 n 0000477035 00000 n 0000476981 00000 n 0000479911 00000 n 0000479665 00000 n 0000482352 00000 n 0000482324 00000 n 0000485017 00000 n 0000484914 00000 n 0000496474 00000 n 0000496144 00000 n 0000501300 00000 n 0000501062 00000 n 0000508184 00000 n 0000507928 00000 n 0000523511 00000 n 0000523141 00000 n 0000537098 00000 n 0000536716 00000 n 0000540105 00000 n 0000539859 00000 n 0000548703 00000 n 0000548461 00000 n 0000552320 00000 n 0000552256 00000 n 0000567150 00000 n 0000566829 00000 n 0000584484 00000 n 0000584061 00000 n 0000590307 00000 n 0000590127 00000 n 0000593596 00000 n 0000593476 00000 n 0000594647 00000 n 0000594762 00000 n 0000594847 00000 n 0000594917 00000 n 0000594970 00000 n trailer << /Size 269 /Root 267 0 R /Info 268 0 R /ID [ ] >> startxref 595174 %%EOF MatchIt/vignettes/makematchH0000755000176200001440000000010512162551623015602 0ustar liggesusers#!/bin/tcsh latex matchit bibtex matchit latex matchit latex matchit MatchIt/vignettes/intro.tex0000644000176200001440000000661712162551623015505 0ustar liggesusers \section{What \MatchIt\ Does} \MatchIt\ implements the suggestions of \citet*{HoImaKin07} for improving parametric statistical models and reducing model dependence by preprocessing data with semi-parametric and non-parametric matching methods. After appropriately preprocessing with \MatchIt, researchers can use whatever parametric model and software they would have used without \MatchIt, without other modification, and produce inferences that are more robust and less sensitive to modeling assumptions. (In addition, you may wish to use Zelig (\hlink{\url{http://gking.harvard.edu/zelig/}}{http://gking.harvard.edu/zelig/}; \citealt{ImaKinLau06} for subsequent parametric analyses, as it is designed to be convenient in analyzing \MatchIt\ data sets.) \MatchIt\ reduces the dependence of causal inferences on commonly made, but hard-to-justify, statistical modeling assumptions via the largest range of sophisticated matching methods of any software we know of. The program includes most existing approaches to matching and even enables users to access methods implemented in other programs through its single, unified, and easy-to-use interface. In addition, we have written \MatchIt\ so that adding new matching methods to the software is as easy for anyone with the inclination as it is for us. \section{Software Requirements} \label{sec:require} \MatchIt\ works in conjunction with the R programming language and statistical software, and will run on any platform where R is installed (Windows, Unix, or Mac OS X). R is available free for download at the Comprehensive R Archive Network (CRAN) at \hlink{http://cran.r-project.org/}{http://cran.r-project.org/}. \MatchIt\ has been tested on the most recent version of R. A good way to learn R, if you don't know it already, is to learn Zelig (available at \hlink{http://gking.harvard.edu/zelig}{http://gking.harvard.edu/zelig}) which includes a self-contained introduction to R and can be used to analyze the matched data after running \MatchIt. \section{Installing \MatchIt} \label{sec:install} To install \MatchIt\ for all platforms, type at the R command prompt, \begin{verbatim} > install.packages("MatchIt") \end{verbatim} and \MatchIt\ will install itself onto your system automatically. (During the installation process you may either decide to keep or discard the installation files, which will not affect the way \MatchIt\ runs.) \section{Loading \MatchIt} \label{sec:load} You need to install \MatchIt\ only once, but you must load it prior to each use. You can do this at the R prompt: \begin{verbatim} > library(MatchIt) \end{verbatim} Alternatively, you can specify R to load \MatchIt\ automatically at launch by editing the {\tt Rprofile} file located in the R program subdirectory, e.g. \texttt{C:/R/rw2011/etc/}, for Windows systems or the {\tt .Rprofile} file located in the home directory for Unix/Linux and Mac OS X systems, and adding this line: \begin{verbatim} options(defaultPackages = c(getOption("defaultPackages"), "MatchIt")) \end{verbatim} For this change to take effect, you need to restart R. \section{Updating \MatchIt} We recommend that you periodically update \MatchIt\ at the R prompt by typing: \begin{verbatim} > update.packages() > library(MatchIt) \end{verbatim} which will update all the libraries including \MatchIt\ and load the new version of \MatchIt. %%% Local Variables: %%% mode: pdflatex %%% TeX-master: "matchit" %%% TeX-master: t %%% End: MatchIt/vignettes/index.shtml0000755000176200001440000000637412162551623016013 0ustar liggesusers MatchIt Software Website

Daniel Ho, Kosuke Imai, Gary King, Elizabeth Stuart

"At MatchIt, we don't make parametric models, we make parametric models work better."

Version:2.2-3

MatchIt implements the suggestions of Ho, Imai, King, and Stuart (2007) for improving parametric statistical models by preprocessing data with nonparametric matching methods. MatchIt implements a wide range of sophisticated matching methods, making it possible to greatly reduce the dependence of causal inferences on hard-to-justify, but commonly made, statistical modeling assumptions. The software also easily fits into existing research practices since, after preprocessing data with MatchIt, researchers can use whatever parametric model they would have used without MatchIt, but produce inferences with substantially more robustness and less sensitivity to modeling assumptions. MatchIt is an R program, and also works seamlessly with Zelig. We're pleased to report that the article on which MatchIt is based won the Warren Miller Prize for the best paper in Political Analysis that year and, separately, has been named a Fast Breaking Paper by Thomson Reuters' ScienceWatch, for being the article with the largest percentage increase in citations among those in the top 1% of total citations across the social sciences in the last two years. (You may be interested in this interview: HTML | PDF)
MatchIt/vignettes/html.sty0000644000176200001440000003031412162551623015324 0ustar liggesusers% LaTeX2HTML Version 95.1 : html.sty % % WARNING: This file requires LaTeX2e. A LaTeX 2.09 version % is also provided, but with restricted functionality. % % This file contains definitions of LaTeX commands which are % processed in a special way by the translator. % For example, there are commands for embedding external hypertext links, % for cross-references between documents or for including % raw HTML. % This file includes the comments.sty file v2.0 by Victor Eijkhout % In most cases these commands do nothing when processed by LaTeX. % Modifications: % % nd = Nikos Drakos % jz = Jelle van Zeijl % hs = Herb Swan % hs 31-JAN-96 - Added support for document segmentation % hs 10-OCT-95 - Added \htmlrule command % jz 22-APR-94 - Added support for htmlref % nd - Created %%%%MG added \NeedsTeXFormat{LaTeX2e} \ProvidesPackage{html} [1996/02/01 v1.0 hypertext commands for latex2html (nd, hs)] %%%%MG % Exit if the style file is already loaded % (suggested by Lee Shombert \ifx \htmlstyloaded\relax \endinput\else\let\htmlstyloaded\relax\fi %%% LINKS TO EXTERNAL DOCUMENTS % % This can be used to provide links to arbitrary documents. % The first argumment should be the text that is going to be % highlighted and the second argument a URL. % The hyperlink will appear as a hyperlink in the HTML % document and as a footnote in the dvi or ps files. % \newcommand{\htmladdnormallinkfoot}[2]{#1\footnote{#2}} % This is an alternative definition of the command above which % will ignore the URL in the dvi or ps files. \newcommand{\htmladdnormallink}[2]{#1} % This command takes as argument a URL pointing to an image. % The image will be embedded in the HTML document but will % be ignored in the dvi and ps files. % \newcommand{\htmladdimg}[1]{} %%% CROSS-REFERENCES BETWEEN (LOCAL OR REMOTE) DOCUMENTS % % This can be used to refer to symbolic labels in other Latex % documents that have already been processed by the translator. % The arguments should be: % #1 : the URL to the directory containing the external document % #2 : the path to the labels.pl file of the external document. % If the external document lives on a remote machine then labels.pl % must be copied on the local machine. % %e.g. \externallabels{http://cbl.leeds.ac.uk/nikos/WWW/doc/tex2html/latex2html} % {/usr/cblelca/nikos/tmp/labels.pl} % The arguments are ignored in the dvi and ps files. % \newcommand{\externallabels}[2]{} % % This complements the \externallabels command above. The argument % should be a label defined in another latex document and will be % ignored in the dvi and ps files. % \newcommand{\externalref}[1]{} % This command adds a horizontal rule and is valid even within % a figure caption. % \newcommand{\htmlrule}{} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % The following commands pertain to document segmentation, and % were added by Herbert Swan (with help from % Michel Goossens ): % % % This command inputs internal latex2html tables so that large % documents can to partitioned into smaller (more manageable) % segments. % \newcommand{\internal}[2][internals]{} % % Define a dummy stub \htmlhead{}. This command causes latex2html % to define the title of the start of a new segment. It is not % normally placed in the user's document. Rather, it is passed to % latex2html via a .ptr file written by \segment. % \newcommand{\htmlhead}[2]{} % % The dummy command \endpreamble is needed by latex2html to % mark the end of the preamble in document segments that do % not contain a \begin{document} % \newcommand{\startdocument}{} % % Allocate a new set of section counters, which will get incremented % for "*" forms of sectioning commands, and for a few miscellaneous % commands. % \newcounter{lpart} \newcounter{lchapter}[part] \ifx\chapter\undefined\newcounter{lsection}[part]\else\newcounter{lsection}[chapter]\fi \newcounter{lsubsection}[section] \newcounter{lsubsubsection}[subsection] \newcounter{lparagraph}[subsubsection] \newcounter{lsubparagraph}[paragraph] \newcounter{lsubsubparagraph}[subparagraph] \newcounter{lequation} % % Redefine "*" forms of sectioning commands to increment their % respective counters. % \let\Hpart=\part \let\Hchapter=\chapter \let\Hsection=\section \let\Hsubsection=\subsection \let\Hsubsubsection=\subsubsection \let\Hparagraph=\paragraph \let\Hsubparagraph=\subparagraph \let\Hsubsubparagraph=\subsubparagraph % % The following definitions are specific to LaTeX2e: % (They must be commented out for LaTeX 2.09) % \def\part{\@ifstar{\stepcounter{lpart}\Hpart*}{\Hpart}} \def\chapter{\@ifstar{\stepcounter{lchapter}\Hchapter*}{\Hchapter}} \def\section{\@ifstar{\stepcounter{lsection}\Hsection*}{\Hsection}} \def\subsection{\@ifstar{\stepcounter{lsubsection}\Hsubsection*}{\Hsubsection}} \def\subsubsection{\@ifstar{\stepcounter{lsubsubsection}\Hsubsubsection*}{\Hsubsubsection}} \def\paragraph{\@ifstar{\stepcounter{lparagraph}\Hparagraph*}{\Hparagraph}} \def\subparagraph{\@ifstar{\stepcounter{lsubparagraph}\Hsubparagraph*}{\Hsubparagraph}} \def\subsubparagraph{\@ifstar{\stepcounter{lsubsubparagraph}\Hsubsubparagraph*}{\Hsubsubparagraph}} % % Define a helper macro to dump a single \secounter command to a file. % \newcommand{\DumpPtr}[2]{% \count255=\arabic{#1} \advance\count255 by \arabic{#2} \immediate\write\ptrfile{% \noexpand\setcounter{#1}{\number\count255}}} % % Define a helper macro to dump all counters to the file. % The value for each counter will be the sum of the l-counter % actual LaTeX section counter. % Also dump an \htmlhead{section-command}{section title} command % to the file. % \def\DumpCounters#1#2#3{\newwrite\ptrfile \immediate\openout\ptrfile = #1.ptr \DumpPtr{part}{lpart} \ifx\Hchapter\undefined\relax\else\DumpPtr{chapter}{lchapter}\fi \DumpPtr{section}{lsection} \DumpPtr{subsection}{lsubsection} \DumpPtr{subsubsection}{lsubsubsection} \DumpPtr{paragraph}{lparagraph} \DumpPtr{subparagraph}{lsubparagraph} \DumpPtr{equation}{lequation} \immediate\write\ptrfile{\noexpand\htmlhead{#2}{#3}} \immediate\closeout\ptrfile} % % Define the \segment{file}{section-command}{section-title} command, % and its helper macros. This command does four things: % 1) Begins a new LaTeX section; % 2) Writes a list of section counters to file.ptr, each % of which represents the sum of the LaTeX section % counters, and the l-counters, defined above; % 3) Write an \htmlhead{section-title} command to file.ptr; % 4) Inputs file.tex. % %%%%MG changed \def\segment{\@ifstar{\@@htmls}{\@@html}} \def\@@htmls#1#2#3{\csname #2\endcsname* {#3}% \DumpCounters{#1}{#2*}{#3}\input{#1}} \def\@@html#1#2#3{\csname #2\endcsname {#3}% \DumpCounters{#1}{#2}{#3}\input{#1}} %%%%MG %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Comment.sty version 2.0, 19 June 1992 % selectively in/exclude pieces of text: the user can define new % comment versions, and each is controlled separately. % This style can be used with plain TeX or LaTeX, and probably % most other packages too. % % Examples of use in LaTeX and TeX follow \endinput % % Author % Victor Eijkhout % Department of Computer Science % University Tennessee at Knoxville % 104 Ayres Hall % Knoxville, TN 37996 % USA % % eijkhout@cs.utk.edu % % Usage: all text included in between % \comment ... \endcomment % or \begin{comment} ... \end{comment} % is discarded. The closing command should appear on a line % of its own. No starting spaces, nothing after it. % This environment should work with arbitrary amounts % of comment. % % Other 'comment' environments are defined by % and are selected/deselected with % \includecomment{versiona} % \excludecoment{versionb} % % These environments are used as % \versiona ... \endversiona % or \begin{versiona} ... \end{versiona} % with the closing command again on a line of its own. % % Basic approach: % to comment something out, scoop up every line in verbatim mode % as macro argument, then throw it away. % For inclusions, both the opening and closing comands % are defined as noop % % Changed \next to \html@next to prevent clashes with other sty files % (mike@emn.fr) % Changed \html@next to \htmlnext so the \makeatletter and % \makeatother commands could be removed (they were causing other % style files - changebar.sty - to crash) (nikos@cbl.leeds.ac.uk) % Changed \htmlnext back to \html@next... \makeatletter \def\makeinnocent#1{\catcode`#1=12 } \def\csarg#1#2{\expandafter#1\csname#2\endcsname} \def\ThrowAwayComment#1{\begingroup \def\CurrentComment{#1}% \let\do\makeinnocent \dospecials \makeinnocent\^^L% and whatever other special cases \endlinechar`\^^M \catcode`\^^M=12 \xComment} {\catcode`\^^M=12 \endlinechar=-1 % \gdef\xComment#1^^M{\def\test{#1} \csarg\ifx{PlainEnd\CurrentComment Test}\test \let\html@next\endgroup \else \csarg\ifx{LaLaEnd\CurrentComment Test}\test \edef\html@next{\endgroup\noexpand\end{\CurrentComment}} \else \let\html@next\xComment \fi \fi \html@next} } \makeatother \def\includecomment #1{\expandafter\def\csname#1\endcsname{}% \expandafter\def\csname end#1\endcsname{}} \def\excludecomment #1{\expandafter\def\csname#1\endcsname{\ThrowAwayComment{#1}}% {\escapechar=-1\relax \csarg\xdef{PlainEnd#1Test}{\string\\end#1}% \csarg\xdef{LaLaEnd#1Test}{\string\\end\string\{#1\string\}}% }} \excludecomment{comment} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% RAW HTML % % Enclose raw HTML between a \begin{rawhtml} and \end{rawhtml}. % The html environment ignores its body % \excludecomment{rawhtml} %%% HTML ONLY % % Enclose LaTeX constructs which will only appear in the % HTML output and will be ignored by LaTeX with % \begin{htmlonly} and \end{htmlonly} % \excludecomment{htmlonly} % Shorter version \newcommand{\html}[1]{} %%% LaTeX ONLY % Enclose LaTeX constructs which will only appear in the % DVI output and will be ignored by latex2html with %\begin{latexonly} and \end{latexonly} % \newenvironment{latexonly}{}{} % Shorter version \newcommand{\latex}[1]{#1} %%% HYPERREF % Suggested by Eric M. Carol % Similar to \ref but accepts conditional text. % The first argument is HTML text which will become ``hyperized'' % (underlined). % The second and third arguments are text which will appear only in the paper % version (DVI file), enclosing the fourth argument which is a reference to a label. % %e.g. \hyperref{using the tracer}{using the tracer (see Section}{)}{trace} % where there is a corresponding \label{trace} % \newcommand{\hyperref}[4]{#2\ref{#4}#3} %%% HTMLREF % Reference in HTML version only. % Mix between \htmladdnormallink and \hyperref. % First arg is text for in both versions, second is label for use in HTML % version. \newcommand{\htmlref}[2]{#1} %%% HTMLIMAGE % This command can be used inside any environment that is converted % into an inlined image (eg a "figure" environment) in order to change % the way the image will be translated. The argument of \htmlimage % is really a string of options separated by commas ie % [scale=],[external],[thumbnail= % The scale option allows control over the size of the final image. % The ``external'' option will cause the image not to be inlined % (images are inlined by default). External images will be accessible % via a hypertext link. % The ``thumbnail'' option will cause a small inlined image to be % placed in the caption. The size of the thumbnail depends on the % reduction factor. The use of the ``thumbnail'' option implies % the ``external'' option. % % Example: % \htmlimage{scale=1.5,external,thumbnail=0.2} % will cause a small thumbnail image 1/5th of the original size to be % placed in the final document, pointing to an external image 1.5 % times bigger than the original. % \newcommand{\htmlimage}[1]{} %%% HTMLADDTONAVIGATION % This command appends its argument to the buttons in the navigation % panel. It is ignored by LaTeX. % % Example: % \htmladdtonavigation{\htmladdnormallink % {\htmladdimg{http://server/path/to/gif}} % {http://server/path}} \newcommand{\htmladdtonavigation}[1]{} \endinputMatchIt/vignettes/graphics.R0000644000176200001440000000365712162551623015554 0ustar liggesusers# File to create sample graphics and output for documentation library(MatchIt) library(lattice) data(lalonde) m.out <- matchit(treat ~ re74+re75+educ+black+hispan+age, data=lalonde, method="nearest") print(summary(m.out)) ps.options(family = c("Times"), pointsize = 8) postscript(file="figs/qqplotnn1.eps", horizontal=FALSE, paper="special", width=2.75, height=2.75) par(mar=c(2, 2, 2, 2) + 0.1, cex.lab=0.7, cex.axis=0.5, mgp=c(1,0.5,0), cex.main=0.8, cex=1, bg="white", mfrow=c(1,2)) plot(m.out, which.xs=c("re74", "re75", "educ"), interactive=FALSE) dev.off() pdf(file="figs/qqplotnn1.pdf", width=2.75, height=2.75, pointsize=8, family="Times") par(mar=c(2, 2, 2, 2) + 0.1, cex.lab=0.7, cex.axis=0.5, mgp=c(1,0.5,0), cex.main=0.8, cex=1, bg="white", mfrow=c(1,2)) plot(m.out, which.xs=c("re74", "re75", "educ"), interactive=FALSE) dev.off() postscript(file="figs/qqplotnn2.eps", horizontal=FALSE, paper="special", width=2.75, height=2.75) par(mar=c(2, 2, 2, 2) + 0.1, cex.lab=0.7, cex.axis=0.5, mgp=c(1,0.5,0), cex.main=0.8, cex=1, bg="white", mfrow=c(1,2)) plot(m.out, which.xs=c("black", "hispan", "educ"), interactive=FALSE) dev.off() pdf(file="figs/qqplotnn2.pdf", width=2.75, height=2.75, pointsize=8, family="Times") par(mar=c(2, 2, 2, 2) + 0.1, cex.lab=0.7, cex.axis=0.5, mgp=c(1,0.5,0), cex.main=0.8, cex=1, bg="white", mfrow=c(1,2)) plot(m.out, which.xs=c("black", "hispan", "educ"), interactive=FALSE) dev.off() postscript(file="figs/jitterplotnn.eps", horizontal=FALSE, paper="special", width=5.5, height=3.5) par(mar=c(2, 2, 2, 2) + 0.1, cex.lab=0.7, cex.axis=0.5, mgp=c(1,0.5,0), cex.main=0.8, cex=1, bg="white") plot(m.out, type="jitter", interactive=FALSE) dev.off() pdf(file="figs/jitterplotnn.pdf", width=5.5, height=3.5, pointsize=8, family="Times") par(mar=c(2, 2, 2, 2) + 0.1, cex.lab=0.7, cex.axis=0.5, mgp=c(1,0.5,0), cex.main=0.8, cex=1, bg="white") plot(m.out, type="jitter", interactive=FALSE) dev.off() MatchIt/vignettes/gkpubs.bib0000644000176200001440000021174612162551623015602 0ustar liggesusers% A bibtex-format file for papers by or coauthored with Gary King % % rules used for abbreviations: % % -if one author: use last name and last 2 digits of the year: King99. % -if multiple authors, use 1st 3 letters of each of UP TO the first three % authors and the last 2 digits of the year: KinTomWit00. % -if necessary add lower-case letters for multiple entries in a year: % King02, King02b (the first one should NOT have an 'a' afterwards) % -No string abbreviations are used % % entries are in separate sections (books, articles, software, data) % in reverse chronical order % % copies of all papers, articles, data, and software, and some books, % are available at http://gking.harvard.edu/ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Books %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @book{KinSchNie09, editor = {Gary King and Kay Schlozman and Norman Nie}, title = {The Future of Political Science: 100 Perspectives}, publisher = {Routledge Press}, address = {New York}, year = {2009} } @book{GirKin08, author = {Federico Girosi and Gary King}, title = {Demographic Forecasting}, publisher = {Princeton University Press}, year = {2008}, address = {Princeton}, note = {{http://gking.harvard.edu/files/smooth/}} } @book{KinRosTan04, editor = {Gary King and Ori Rosen and Martin A. Tanner}, title = {Ecological Inference: New Methodological Strategies}, publisher = {Cambridge University Press}, year = {2004}, address = {New York}, note = {{http://gking.harvard.edu/files/abs/ecinf04-abs.shtml}} } @book{King97, author = {Gary King}, title = {A Solution to the Ecological Inference Problem: Reconstructing Individual Behavior from Aggregate Data}, publisher = {Princeton University Press}, year = {1997}, address = {Princeton}, note = {{http://gking.harvard.edu/eicamera/kinroot.html}} } @book{KinKeoVer94, author = {Gary King and Robert O. Keohane and Sidney Verba}, title = {Designing Social Inquiry: Scientific Inference in Qualitative Research}, publisher = {Princeton University Press}, year = {1994}, address = {Princeton}, note = {{http://www.pupress.princeton.edu/titles/5458.html}} } @book{King89, author = {Gary King}, title = {Unifying Political Methodology: The Likelihood Theory of Statistical Inference}, publisher = {Michigan University Press}, year = 1989, address = {Ann Arbor} } @book{KinRag88, author = {Gary King and Lyn Ragsdale}, title = {The Elusive Executive: Discovering Statistical Patterns in the Presidency}, publisher = {Congressional Quarterly Press}, year = {1988}, address = {Washington, D.C} } @book{BraHarKin89, author = {Paul Brace and Christine Harrington and Gary King}, title = {The Presidency in American Politics}, publisher = {New York University Press}, year = {1989}, address = {New York and London} } %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Articles %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @Article{SonKin11, author = {Samir Soneji and Gary King}, title = {Statistical Security for Social Security}, journal = {Demography}, year = 2011, note = {{http://gking.harvard.edu/files/abs/ssc-abs.shtml}} } @Article{, author = {Gary King and Richard Nielsen and Carter Coberley and James Pope and Aaron Wells}, title = {Avoiding Randomization Failure in Program Evaluation}, journal = {Population Health Management}, year = 2011, volume = 14, number = 1, pages = {S11-S22}, note = {{http://gking.harvard.edu/gking/files/mhs.pdf}} } @Article{KinNieCob11, author = {Gary King and Richard Nielsen and Carter Coberley and James Pope and Aaron Wells}, title = {Comparative Effectiveness of Matching Methods for Causal Inference}, journal = { }, year = {2011}, OPTkey = {}, OPTvolume = {}, OPTnumber = {}, OPTpages = {}, OPTmonth = {}, OPTnote = {{http://gking.harvard.edu/files/abs/psparadox-abs.shtml}}, OPTannote = {} } @Article{SteKinShi10, author = {Gretchen Stevens, Gary King, and Kenji Shibuya}, title = {Deaths From Heart Failure: Using Coarsened Exact Matching to Correct Cause of Death Statistics}, journal = {Population Health Metrics}, year = 2010, volume = 8, number = 6, note = {{http://gking.harvard.edu/files/abs/heartfcem-abs.shtml}} } @Article{GriKin10, author = {Justin Grimmer and Gary King}, title = {Quantitative Discovery from Qualitative Information: A General-Purpose Document Clustering Methodology}, journal = { }, year = {2010}, note = {{http://gking.harvard.edu/files/abs/discov-abs.shtml}} } @Article{GriKin10b, author = {Justin Grimmer and Gary King}, title = {A General Purpose Computer-Assisted Document Clustering Methodology}, journal = { }, year = {2010}, note = {{http://gking.harvard.edu/files/abs/discovm-abs.shtml}} } @Article{IacKinPor11, author = {Stefano M. Iacus and Gary King and Giuseppe Porro}, title = {Multivariate Matching Methods That are Monotonic Imbalance Bounding}, journal = {Journal of the American Statistical Association}, year = {In press}, note = {{http://gking.harvard.edu/files/abs/cem-math-abs.shtml}} } @article{HopKin10, author = {Daniel Hopkins and Gary King}, title = {Improving Anchoring Vignettes: Designing Surveys to Correct Interpersonal Incomparability}, journal = {Public Opinion Quarterly}, year = {2010}, pages = {1-22}, note = {{http://gking.harvard.edu/files/abs/implement-abs.shtml}} } @Article{KinLuShi10, author = {Gary King and Ying Lu and Kenji Shibuya}, title = {Designing Verbal Autopsy Studies}, journal = {Population Health Metrics}, year = 2010, volume = 8, number = 19, note = {http://gking.harvard.edu/files/abs/desva-abs.shtml} } @article{LazPenAda09, author = {Lazer, David and Pentland, Alex and Adamic, Lada and Aral, Sinan and Barabasi, Albert-Laszlo and Brewer, Devon and Christakis, Nicholas and Contractor, Noshir and Fowler, James and Gutmann, Myron and Jebara, Tony and King, Gary and Macy, Michael and Roy, Deb and Van Alstyne, Marshall}, title = {{SOCIAL SCIENCE: Computational Social Science}}, journal = {Science}, volume = {323}, number = {5915}, pages = {721-723}, year = {2009}, note = {{http://gking.harvard.edu/files/abs/LazPenAda09-abs.shtml}} } @Article{AbrBolGut09, author = {Mark Abrahamson and Kenneth A. Bollen and Myron Gutmann and Gary King and Amy M. Pienta}, title = {Preserving Data for Long Term Analyses}, journal = {Historical Social Research}, year = {2009}, OPTkey = {}, OPTvolume = {}, OPTnumber = {}, OPTpages = {}, OPTmonth = {Summer, forthcoming}, OPTnote = {}, OPTannote = {} } @article{KinGakIma09, Author = {Gary King and Emmanuela Gakidou and Kosuke Imai and Jason Lakin and Ryan T. Moore and Clayton Nall and Nirmala Ravishankar and Manett Vargas and Martha Mar{\'i}a T{\'e}llez-Rojo and Juan Eugenio Hern{\'a}ndez {\'A}vila and Mauricio Hern{\'a}ndez {\'A}vila and H{\'e}ctor Hern{\'a}ndez Llamas}, title = {Public Policy for the Poor? A Randomised Assessment of the Mexican Universal Health Insurance Programme}, journal = {The Lancet}, volumne = {373}, year = {2009}, note = {{http://gking.harvard.edu/files/abs/spi-abs.shtml}} } @Article{KinSon09, author = {Gary King and Samir Soneji}, title = {The Future of Death in America}, journal = {}, year = 2009, note = {{http://gking.harvard.edu/files/abs/mort-abs.shtml}} } @Article{IacKinPor11, author = {Stefano M. Iacus and Gary King and Giuseppe Porro}, title = {Causal Inference Without Balance Checking: Coarsened Exact Matching}, journal = {Political Analysis}, year = {2011, in press}, note = {{http://gking.harvard.edu/files/abs/cem-plus-abs.shtml}} } @article{ImaKinStu08, author = {Kosuke Imai and Gary King and Elizabeth Stuart}, title = {Misunderstandings Among Experimentalists and Observationalists about Causal Inference}, journal = {Journal of the Royal Statistical Society, {S}eries {A}}, volume = {171, part 2}, year = {2008}, pages = {481--502}, note = {{http://gking.harvard.edu/files/abs/matchse-abs.shtml}} } @article{uImaKinStu08, author = {Kosuke Imai and Gary King and Elizabeth Stuart}, title = {Misunderstandings Among Experimentalists and Observationalists about Causal Inference}, journal = {Journal of the Royal Statistical Society, {S}eries {A}}, volume = {171, part 2}, year = {2008}, pages = {481--502} } @article{KinLu08, author = {Gary King and Ying Lu}, title = {Verbal Autopsy Methods with Multiple Causes of Death}, journal = {Statistical Science}, volume = {23}, number = {1}, year = {2008}, pages = {78--91}, note = {{http://gking.harvard.edu/files/abs/vamc-abs.shtml}} } @article{AltKin07, author = {Micah Altman and Gary King}, title = {A Proposed Standard for the Scholarly Citation of Quantitative Data }, journal = {D-Lib Magazine}, volume = {13}, year = {2007}, month = {March / April}, number = {3/4}, note = {{http://gking.harvard.edu/files/abs/cite-abs.shtml}} } @article{GroKin07, author = {Bernard Grofman and Gary King}, title = {The Future of Partisan Symmetry as a Judicial Test for Partisan Gerrymandering after LULAC v. Perry}, journal = {Election Law Journal}, volume = {6}, year = {2007}, pages = {2-35}, month = {January}, number = {1}, note = {{http://gking.harvard.edu/files/abs/jp-abs.shtml}} } @article{uHoImaKin07, author = {Daniel Ho and Kosuke Imai and Gary King and Elizabeth Stuart}, title = {Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference}, journal = {Political Analysis}, year = {2007}, volume = {15}, pages = {199--236} } @article{HoImaKin07, author = {Daniel Ho and Kosuke Imai and Gary King and Elizabeth Stuart}, title = {Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference}, journal = {Political Analysis}, year = {2007}, volume = {15}, pages = {199--236}, note = {{http://gking.harvard.edu/files/abs/matchp-abs.shtml}} } @article{HopKin10b, author = {Daniel Hopkins and Gary King}, title = {A Method of Automated Nonparametric Content Analysis for Social Science}, journal = {American Journal of Political Science}, year = {2010}, volume = {54}, number = {1}, month = {January}, pages = {229--247}, note = {http://gking.harvard.edu/files/abs/words-abs.shtml} } @article{ImaKinLau07, author = {Kosuke Imai and Gary King and Olivia Lau}, title = {Toward A Common Framework for Statistical Analysis and Development}, journal = {Journal of Computational Graphics and Statistics}, volume = 17, number = 4, pages = {1--22}, year = 2008, note = {{http://gking.harvard.edu/files/abs/z-abs.shtml}} } @article{ImaKinNal09d, author = {Kosuke Imai and Gary King and Clayton Nall}, title = {Matched Pairs and the Future of Cluster-Randomized Experiments: A Rejoinder}, journal = {Statistical Science}, volume = {24}, number = {1}, pages = {64--72}, year = {2009}, note = {{http://gking.harvard.edu/files/abs/cluster-abs.shtml}} } @article{ImaKinNal09, author = {Kosuke Imai and Gary King and Clayton Nall}, title = {The Essential Role of Pair Matching in Cluster-Randomized Experiments, with Application to the Mexican Universal Health Insurance Evaluation}, journal = {Statistical Science}, volume = {24}, number = {1}, pages = {29--53}, year = {2009}, note = {{http://gking.harvard.edu/files/abs/cluster-abs.shtml}} } @article{uImaKinNal09, author = {Kosuke Imai and Gary King and Clayton Nall}, title = {The Essential Role of Pair Matching in Cluster-Randomized Experiments, with Application to the Mexican Universal Health Insurance Evaluation}, journal = {Statistical Science}, volume = {24}, number = {1}, pages = {29--53}, year = {2009} } @article{King07, author = {Gary King}, title = {An Introduction to the Dataverse Network as an Infrastructure for Data Sharing}, journal = {Sociological Methods and Research}, year = {2007}, volume = {36}, number = {2}, pages = {173--199}, note = {{http://gking.harvard.edu/files/abs/dvn-abs.shtml}} } @inbook{King09b, author = {Gary King}, chapter = {The Changing Evidence Base of Political Science Research}, title = {The Future of Political Science: 100 Perspectives}, publisher = {Routledge Press}, address = {New York}, year = {2009, forthcoming}, editor = {Gary King and Kay Schlozman and Norman Nie}, note = {{http://gking.harvard.edu/files/abs/evbase-abs.shtml}} } @inbook{King09c, author = {Gary King and Kay Schlozman and Norman Nie}, chapter = {An Introduction to the Future of Political Science}, title = {The Future of Political Science: 100 Perspectives}, publisher = {Routledge Press}, address = {New York}, year = {2009, forthcoming}, editor = {Gary King and Kay Schlozman and Norman Nie} } @article{KinGakRav07, Author = {Gary King and Emmanuela Gakidou and Nirmala Ravishankar and Ryan T. Moore and Jason Lakin and Manett Vargas and Martha Mar{\'i}a T{\'e}llez-Rojo and Juan Eugenio Hern{\'a}ndez {\'A}vila and Mauricio Hern{\'a}ndez {\'A}vila and H{\'e}ctor Hern{\'a}ndez Llamas}, title = {A `Politically Robust' Experimental Design for Public Policy Evaluation, with Application to the Mexican Universal Health Insurance Program}, journal = {Journal of Policy Analysis and Management}, volume = {26}, year = {2007}, pages = {479-506}, number = {3}, note = {{http://gking.harvard.edu/files/abs/spd-abs.shtml}} } @article{KinWan07, author = {Gary King and Jonathan Wand}, title = {Comparing Incomparable Survey Responses: New Tools for Anchoring Vignettes}, journal = {Political Analysis}, volume = {15}, year = {2007}, pages = {46-66}, month = {Winter}, number = {1}, note = {{http://gking.harvard.edu/files/abs/c-abs.shtml}} } @article{KinZen07, author = {Gary King and Langche Zeng}, title = {When Can History Be Our Guide? The Pitfalls of Counterfactual Inference}, journal = {International Studies Quarterly}, year = {2007}, pages = {183-210}, month = {March}, note = {{http://gking.harvard.edu/files/abs/counterf-abs.shtml}} } @article{uKinZen07, author = {Gary King and Langche Zeng}, title = {When Can History Be Our Guide? The Pitfalls of Counterfactual Inference}, journal = {International Studies Quarterly}, year = {2007}, pages = {183-210}, month = {March} } @article{KinZen07b, author = {Gary King and Langche Zeng}, title = {Detecting Model Dependence in Statistical Inference: A Response}, journal = {International Studies Quarterly}, volume = {51}, year = {2007}, pages = {231-241}, month = {March}, note = {{http://gking.harvard.edu/files/abs/counterf-abs.shtml}} } @article{WanKinLau07, author = {Jonathan Wand and Gary King and Olivia Lau}, title = {Anchors: Software for Anchoring Vignettes Data}, journal = {Journal of Statistical Software}, year = {2007, forthcoming} } @inbook{EpsHoKin06, author = {Lee Epstein and Daniel E. Ho and Gary King and Jeffrey A. Segal}, title = {Principles and Practice in American Politics: Classic and Contemporary Readings}, chapter = {The Effect of War on the Supreme Court}, year = {2006}, publisher = {Congressional Quarterly Press}, edition = {3rd}, address = {Washington, D.C.}, editor = {Samuel Kernell and Steven S. Smith}, note = {{http://gking.harvard.edu/files/abs/crisis-abs.shtml}} } @article{GakKin06, author = {Emmanuela Gakidou and Gary King}, title = {Death by Survey: Estimating Adult Mortality without Selection Bias from Sibling Survival Data from Sibling Survival Data}, journal = {Demography}, volume = 43, year = 2006, pages = {569--585}, month = {August}, number = 3, note = {{http://gking.harvard.edu/files/abs/deathbys-abs.shtml}} } @article{HonKin10, author = {James Honaker and Gary King}, title = {What to do About Missing Values in Time Series Cross-Section Data}, journal = {American Journal of Political Science}, year = {2010}, volume = {54}, number = {2}, month = {April}, pages = {561--581}, note = {{http://gking.harvard.edu/files/abs/pr-abs.shtml}} } @article{King06, author = {Gary King}, title = {{Publication, Publication}}, journal = {PS: Political Science and Politics}, volume = {39}, year = {2006}, pages = {119--125}, month = {January}, number = {01}, note = {{http://gking.harvard.edu/files/abs/paperspub-abs.shtml}} } @inbook{KinRosTan06, author = {Gary King and Ori Rosen and Martin Tanner}, title = {The New Palgrave Dictionary of Economics}, chapter = {Ecological Inference}, year = {2006}, edition = {2nd}, editor = {Larry Blume and Steven N. Durlauf}, note = {{http://gking.harvard.edu/files/abs/newintro-abs.shtml}} } @article{KinZen06, author = {Gary King and Langche Zeng}, title = {The Dangers of Extreme Counterfactuals}, journal = {Political Analysis}, volume = {14}, year = 2006, pages = {131--159}, number = {2}, note = {{http://gking.harvard.edu/files/abs/counterft-abs.shtml}} } @article{GirKin07, author = {Federico Girosi and Gary King}, title = {Understanding the Lee-Carter Mortality Forecasting Method}, year = 2007, note = {{http://gking.harvard.edu/files/abs/lc-abs.shtml}} } @article{EpsHoKin05, author = {Lee Epstein and Daniel E. Ho and Gary King, and Jeffrey A. Segal}, title = {The Supreme Court During Crisis: How War Affects only Non-War Cases}, journal = {New York University Law Review}, volume = {80}, year = {2005}, pages = {1--116}, month = {April}, number = {1}, note = {{http://gking.harvard.edu/files/abs/crisis-abs.shtml}} } @article{StoKinZen05, author = {Heather Stoll and Gary King and Langchee Zeng}, title = {WhatIf: Software for Evaluating Counterfactuals}, journal = {Journal of Statistical Software}, volume = {15}, year = {2005}, number = {4}, note = {{http://www.jstatsoft.org/index.php?vol=15}} } @article{BecKinZen04, author = {Nathaniel Beck and Gary King and Langche Zeng}, title = {Theory and Evidence in International Conflict: Response to de Marchi, Gelpi, and Grynaviski}, journal = apsr, volume = {98}, year = {2004}, pages = {379-389}, month = {May}, number = {2}, note = {{http://gking.harvard.edu/files/abs/toe-resp-abs.shtml}} } @inbook{GelKatKin04, author = {Andrew Gelman and Jonathan Katz and Gary King}, title = {Rethinking the Vote: The Politics and Prospects of American Electoreal Reform}, chapter = {Chapter 5, Empirically Evaluating the Electoral College}, year = {2004}, publisher = {Oxford University Press}, pages = {75-88}, address = {New York}, editor = {Ann N. Crigler and Marion R. Just and Edward J. McCaffery}, note = {{http://gking.harvard.edu/files/abs/rethink-abs.shtml}} } @article{GilKin04, author = {Jeff Gill and Gary King}, title = {What to do When Your Hessian is Not Invertible: Alternatives to Model Respecification in Nonlinear Estimation}, journal = {Sociological Methods and Research}, volume = {32}, year = {2004}, pages = {54-87}, month = {August}, number = {1}, note = {{http://gking.harvard.edu/files/abs/help-abs.shtml}} } @article{ImaKin04, author = {Kosuke Imai and Gary King}, title = {Did Illegal Overseas Absentee Ballots Decide the 2000 U.S. Presidential Election?}, journal = {Perspectives on Politics}, volume = {2}, year = {2004}, pages = {537--549}, month = {September}, number = {3}, note = {{http://gking.harvard.edu/files/abs/ballots-abs.shtml}} } @article{King04, author = {Gary King}, title = {EI: A Program for Ecological Inference}, journal = {Journal of Statistical Software}, volume = {11}, year = {2004}, number = {7} } @article{King04b, author = {Gary King}, title = {Finding New Information for Ecological Inference Models: A Comment on Jon Wakefield, "Ecological Inference in 2 X 2 Tables"}, journal = {Journal of the Royal Statistical Society}, volume = {167}, year = {2004}, pages = {437}, number = {Series A} } @inbook{KinRosTan04b, author = {Gary King and Ori Rosen and Martin Tanner}, title = {Ecological Inference: New Methodological Strategies}, chapter = {Information in Ecological Inference: An Introduction}, year = {2004}, publisher = {Cambridge University Press}, address = {New York}, editor = {Gary King and Ori Rosen and Martin Tanner} } @inbook{KinZen04, author = {Gary King and Langche Zeng}, title = {Encyclopedia of Biopharmaceutical Statistics}, chapter = {Inference in Case-Control Studies}, year = {2004}, publisher = {Marcel Dekker}, edition = {2nd}, address = {New York}, editor = {Shein-Chung Chow}, note = {{http://gking.harvard.edu/files/abs/1s-enc-abs.shtml}} } @article{AdoKin03, author = {Christopher Adolph and Gary King}, title = {Analyzing Second Stage Ecological Regressions}, journal = {Political Analysis}, volume = {11}, year = {2003}, pages = {65-76}, month = {Winter}, number = {1} } @article{AdoKinHer03, author = {Christopher Adolph and Gary King, with Michael C. Herron and Kenneth W. Shotts}, title = {A Consensus on Second Stage Analyses in Ecological Inference Models}, journal = {Political Analysis}, volume = {11}, year = {2003}, pages = {86--94}, month = {Winter}, number = {1}, note = {{http://gking.harvard.edu/files/abs/akhs-abs.shtml}} } @article{EpsKin03, author = {Lee Epstein and Gary King}, title = {Building An Infrastructure for Empirical Research in the Law [with comments from four law school deans]}, journal = {Journal of Legal Education}, volume = {53}, year = {2003}, pages = {311--320}, number = {311}, note = {{http://gking.harvard.edu/files/abs/infra-abs.shtml}} } @inbook{GakKin03, author = {Emmanuela Gakidou and Gary King}, title = {Health Systems Performance Assessment: Debates, Methods and Empiricism}, chapter = {Chapter 36, Determinants of Inequality in Child Survival: Results from 39 Countries}, publisher = {World Health Organization}, pages = {497-502}, address = {Geneva}, editor = {Chrisopher Murray and David B. Evans} } @inbook{GilKin03, author = {Jeff Gill and Gary King}, title = {Numerical Issues in Statistical Computing for the Social Scientist}, chapter = {Chapter 6, Numerical Issues Involved in Inverting Hessian Matrices}, year = {2003}, publisher = {John Wiley and Sons, Inc.}, pages = {143-176}, address = {Hoboken, NJ}, editor = {Micah Altman and Jeff Gill and Michael P. McDonald} } @article{King03, author = {Gary King}, title = {The Future of Replication}, journal = {International Studies Perspectives}, volume = {4}, year = {2003}, pages = {443--499}, month = {February}, number = 1, note = {{http://gking.harvard.edu/files/abs/replvdc-abs.shtml}} } @article{KinLow03, author = {Gary King and Will Lowe}, title = {An Automated Information Extraction Tool For International Conflict Data with Performance as Good as Human Coders: A Rare Events Evaluation Design}, journal = {International Organization}, volume = {57}, year = {2003}, pages = {617-642}, month = {July}, number = {3}, note = {{http://gking.harvard.edu/files/abs/infoex-abs.shtml}} } @article{KinMurSal04, author = {Gary King and Christopher J.L. Murray and Joshua A. Salomon and Ajay Tandon}, title = {Enhancing the Validity and Cross-cultural Comparability of Measurement in Survey Research}, journal = {American Political Science Review}, volume = {98}, year = {2004}, pages = {191--207}, month = {February}, number = {1}, note = {{http://gking.harvard.edu/files/abs/vign-abs.shtml}} } @article{KinRosTan07, author = {Gary King and Ori Rosen and Martin Tanner and Alexander F. Wagner.}, title = {Ordinary Economic Voting Behavior in the Extraordinary Election of Adolf Hitler}, year = {2007}, note = {{http://gking.harvard.edu/files/abs/naziV-abs.shtml}} } @inbook{KinZen03, author = {Gary King and Langche Zeng}, title = {Inference in Case-Control Studies}, year = {2003}, publisher = {Marcel Dekker}, volume = {2nd edition}, address = {New York}, editor = {Shein-Chung Chow, ed.}, journal = {Encyclopedia of Biopharmaceutical Statistics} } @article{LowKin03, author = {Will Lowe and Gary King }, title = {Some Statistical Methods for Evaluating Information Extraction Systems}, journal = {Proceedings of the 10th Conference of the European Chapter of the Association for Computational Linguistics}, year = {2003}, pages = {19-26} } @article{TomKinZen03, author = {Michael Tomz and Gary King and Langche Zeng}, title = {ReLogit: Rare Events Logistic Regression}, journal = {Journal of Statistical Software}, volume = {8}, year = {2003}, number = {2}, note = {{http://gking.harvard.edu/stats.shtml#relogit}} } @article{TomWitKin03, author = {Michael Tomz and Jason Wittenberg and Gary King}, title = {CLARIFY: Software for Interpreting and Presenting Statistical Results}, journal = {Journal of Statistical Software}, volume = {8}, year = {2003}, number = {1}, note = {{http://gking.harvard.edu/stats.shtml}} } @article{EpsKin02, author = {Lee Epstein and Gary King}, title = {The Rules of Inference}, journal = {University of Chicago Law Review}, volume = {69}, year = {2002}, pages = {1--209}, month = {Winter}, number = {1}, note = {{http://gking.harvard.edu/files/abs/rules-abs.shtml}} } @article{EpsKin02b, author = {Lee Epstein and Gary King}, title = {Empirical Research and The Goals of Legal Scholarship: A Response}, journal = {University of Chicago Law Review}, volume = {69}, year = {2002}, pages = {1--209}, month = {Winter}, number = {1}, note = {{http://gking.harvard.edu/files/abs/rules-abs.shtml}} } @article{GakKin02, author = {Emmanuela Gakidou and Gary King}, title = {Measuring Total Health Inequality: Adding Individual Variation to Group-Level Differences}, journal = {BioMed Central: International Journal for Equity in Health}, volume = {1}, year = 2002, month = {August}, number = 3, note = {{http://gking.harvard.edu/files/abs/ebb-abs.shtml}} } @article{HonKinKat02, author = {James Honaker and Gary King and Jonathan N. Katz}, title = {A Fast, Easy, and Efficient Estimator for Multiparty Electoral Data}, journal = {Political Analysis}, volume = {10}, year = {2002}, pages = {84--100}, month = {Winter}, number = {1}, note = {{http://gking.harvard.edu/files/abs/trip-abs.shtml}} } @article{King02b, author = {Gary King}, title = {Isolating Spatial Autocorrelation, Aggregation Bias, and Distributional Violations in Ecological Inference}, journal = {Political Analysis}, volume = {10}, year = {2002}, pages = {298--300}, month = {Summer}, number = {3}, note = {{http://gking.harvard.edu/files/abs/ac-abs.shtml}} } @article{KinMur02, author = {Gary King and Christopher J.L. Murray}, title = {Rethinking Human Security}, journal = {Political Science Quarterly}, volume = {116}, year = {2002}, pages = {585--610}, month = {Winter}, number = {4}, note = {{http://gking.harvard.edu/files/abs/hs-abs.shtml}} } @article{KinZen02, author = {Gary King and Langche Zeng}, title = {Improving Forecasts of State Failure}, journal = {World Politics}, volume = 53, year = 2002, pages = {623--658}, month = {July}, number = 4 , note = {{http://gking.harvard.edu/files/abs/civil-abs.shtml}} } @article{KinZen02b, author = {Gary King and Langche Zeng}, title = {Estimating Risk and Rate Levels, Ratios, and Differences in Case-Control Studies}, journal = {Statistics in Medicine}, volume = 21, year = 2002, pages = {1409--1427}, note = {{http://gking.harvard.edu/files/abs/1s-abs.shtml}} } @article{MurKinLop02, author = {Christopher J.L. Murray and Gary King and Alan D. Lopez and Niels Tomijima and Etienne Krug}, title = {Armed Conflict as a Public Health Problem}, journal = {BMJ (British Medical Journal)}, volume = {324}, year = {2002}, pages = {346--349}, month = {February 9}, note = {{http://gking.harvard.edu/files/abs/armedph-abs.shtml}} } @article{AltAndDig01a, author = {Micah Altman and Leonid Andreev and Mark Diggory and Gary King and Daniel L. Kiskis and Elizabeth Kolster and M. Krot and Sidney Verba}, title = {A Digital Library for the Dissemination and Replication of Quantitative Social Science Research: The Virtual Data Center}, journal = {Social Science Computer Review}, volume = 19, year = 2001, pages = {458--470}, month = {Winter}, number = 4, note = {{http://gking.harvard.edu/files/abs/vdcwhitepaper-abs.shtml}} } @article{AltAndDig01b, author = {Micah Altman and Leonid Andreev and Mark Diggory and Gary King and Daniel L. Kiskis and Elizabeth Kolster and M. Krot and Sidney Verba}, title = {An Overview of the Virtual Data Center Project and Software}, journal = {JCDL '01: First Joint Conference on Digital Libraries}, year = 2001, pages = {203-204}, note = {{http://gking.harvard.edu/files/abs/jcdl01-abs.shtml}} } @article{AltKinSig01, author = {James E. Alt and Gary King and Curtis Signorino}, title = {Aggregation Among Binary, Count, and Duration Models: Estimating the Same Quantities from Different Levels of Data}, journal = {Political Analysis}, volume = {9}, year = {2001}, pages = {21--44}, month = {Winter}, number = {1}, note = {{http://gking.harvard.edu/files/abs/abcd-abs.shtml}} } @article{King01, author = {Gary King}, title = {Proper Nouns and Methodological Propriety: Pooling Dyads in International Relations Data}, journal = {International Organization}, volume = {55}, year = {2001}, pages = {497--507}, month = {Fall}, number = {2}, note = {{http://gking.harvard.edu/files/abs/pool-abs.shtml}} } @article{KinHonJos01, author = {Gary King and James Honaker and Anne Joseph and Kenneth Scheve}, title = {Analyzing Incomplete Political Science Data: An Alternative Algorithm for Multiple Imputation}, journal = {American Political Science Review}, volume = 95, year = 2001, pages = {49--69}, month = {March}, number = 1 , note = {{http://gking.harvard.edu/files/abs/evil-abs.shtml}} } @article{KinZen01, author = {Gary King and Langche Zeng}, title = {Logistic Regression in Rare Events Data}, journal = {Political Analysis}, volume = 9, year = 2001, pages = {137--163}, month = {Spring}, number = 2 , note = {{http://gking.harvard.edu/files/abs/0s-abs.shtml}} } @article{KinZen01b, author = {Gary King and Langche Zeng}, title = {Explaining Rare Events in International Relations}, journal = {International Organization}, volume = 55, year = 2001, pages = {693--715}, month = {Summer}, number = 3 , note = {{http://gking.harvard.edu/files/abs/baby0s-abs.shtml}} } @article{RosJiaKin01, author = {Ori Rosen and Wenxin Jiang and Gary King and Martin A. Tanner}, title = {Bayesian and Frequentist Inference for Ecological Inference: The $R \times C$ Case}, journal = {Statistica Neerlandica}, volume = 55, year = 2001, pages = {134--156}, number = 2 , note = {{http://gking.harvard.edu/files/abs/rosen-abs.shtml}} } @article{BecKinZen00, author = {Nathaniel Beck and Gary King and Langche Zeng}, title = {Improving Quantitative Studies of International Conflict}, journal = {American Political Science Review}, volume = 94, year = 2000, pages = {21--36}, month = {March}, number = 1 , note = {{http://gking.harvard.edu/files/abs/improv-abs.shtml}} } @article{King00, author = {Gary King}, title = {Geography, Statistics, and Ecological Inference}, journal = {Annals of the Association of American Geographers}, volume = {90}, year = {2000}, pages = {601--606}, month = {September}, number = {3}, note = {{http://gking.harvard.edu/files/abs/geog-abs.shtml}} } @article{KinTomWit00, author = {Gary King and Michael Tomz and Jason Wittenberg}, title = {Making the Most of Statistical Analyses: Improving Interpretation and Presentation}, journal = {American Journal of Political Science}, volume = 44, year = 2000, pages = {341--355}, month = {April}, number = 2, note = {{http://gking.harvard.edu/files/abs/making-abs.shtml}} } @article{GelKinLiu99, author = {Andrew Gelman and Gary King and Chuanhai Liu}, title = {Not Asked and Not Answered: Multiple Imputation for Multiple Surveys}, journal = {Journal of the American Statistical Association}, volume = 93, year = 1999, pages = {846--857}, month = {September}, number = 433 , note = {{http://gking.harvard.edu/files/abs/not-abs.shtml}} } @article{GelKinLiu99b, author = {Andrew Gelman and Gary King and Chuanhai Liu}, title = {Rejoinder}, journal = {Journal of the American Statistical Association}, volume = 93, year = 1999, pages = {869--874}, month = {September}, number = 433 , note = {{http://gking.harvard.edu/files/abs/not-abs.shtml}} } @article{KatKin99, author = {Jonathan Katz and Gary King}, title = {A Statistical Model for Multiparty Electoral Data}, journal = {American Political Science Review}, volume = 93, year = 1999, pages = {15--32}, month = {March}, number = {1}, note = {{http://gking.harvard.edu/files/abs/multiparty-abs.shtml}} } @article{King99, author = {Gary King}, title = {The Future of Ecological Inference Research: A Reply to Freedman et al.}, journal = {Journal of the American Statistical Association}, volume = {94}, year = {1999}, pages = {352-355}, month = {March}, number = {445}, note = {{http://gking.harvard.edu/files/abs/reply-abs.shtml}} } @article{KinLav99, author = {Gary King and Michael Laver}, title = {Many Publications, but Still No Evidence}, journal = {Electoral Studies}, volume = {18}, year = {1999}, pages = {597--598}, month = {December}, number = {4}, note = {{http://gking.harvard.edu/files/abs/manypub-abs.shtml}} } @article{KinRosTan99, author = {Gary King and Ori Rosen and Martin A. Tanner}, title = {Binomial-Beta Hierarchical Models for Ecological Inference}, journal = {Sociological Methods and Research}, volume = 28, year = 1999, pages = {61--90}, month = {August}, number = 1 , note = {{http://gking.harvard.edu/files/abs/binom-abs.shtml}} } @article{LewKin99, author = {Jeffrey Lewis and Gary King}, title = {No Evidence on Directional vs. Proximity Voting}, journal = {Political Analysis}, volume = {8}, year = {1999}, pages = {21--33}, month = {August}, number = {1}, note = {{http://gking.harvard.edu/files/abs/spatial-abs.shtml}} } @article{GelKinBos98, author = {Andrew Gelman and Gary King and John Boscardin}, title = {Estimating the Probability of Events that Have Never Occurred: When Is Your Vote Decisive?}, journal = {Journal of the American Statistical Association}, volume = {93}, year = {1998}, pages = {1--9}, month = {March}, number = {441}, note = {{http://gking.harvard.edu/files/abs/estimatprob-abs.shtml}} } @article{KinPal98, author = {Gary King and Bradley Palmquist}, title = {The Record of American Democracy, 1984-1990}, journal = {Sociological Methods and Research}, volume = {26}, year = {1998}, pages = {424--427}, month = {February}, number = {3}, note = {{http://www.hmdc.harvard.edu/ROAD/}} } @article{BenKin96, author = {Kenneth Benoit and Gary King}, title = {A Preview of EI and EzI: Programs for Ecological Inference}, journal = {Social Science Computer Review}, volume = {14}, year = {1996}, pages = {433--438}, month = {Winter}, number = {4}, note = {{http://gking.harvard.edu/files/abs/preview-abs.shtml}} } @inbook{GelKin96, author = {Andrew Gelman and Gary King}, title = {Advantages of Conflictual Redistricting}, year = {1996}, publisher = {Dartmouth Publishing Company}, pages = {207--218 }, address = {Aldershot, England}, editor = {Iain McLean and David Butler, eds}, note = {{http://gking.harvard.edu/files/abs/advant-abs.shtml}}, journal = {Fixing the Boundary: Defining and Redefining Single-Member Electoral Districts} } @inbook{KinBruGel96, author = {Gary King and John Bruce and Andrew Gelman}, title = {Racial Fairness in Legislative Redistricting}, year = {1996}, publisher = {Princeton University Press}, editor = {Paul E. Peterson, ed.}, note = {{http://gking.harvard.edu/files/abs/racial-abs.shtml}}, journal = {Classifying by Race} } @article{King96, author = {Gary King}, title = {Why Context Should Not Count}, journal = {Political Geography }, volume = {15}, year = {1996}, pages = {159--164}, month = {February}, number = {2}, note = {{http://gking.harvard.edu/files/abs/contxt-abs.shtml}} } @article{KinSig96, author = {Gary King and Curtis S. Signorino}, title = {The Generalization in the Generalized Event Count Model}, journal = {Political Analysis}, volume = 6, year = 1996, pages = {225--252}, note = {{http://gking.harvard.edu/files/abs/generaliz-abs.shtml}} } @article{King95, author = {Gary King}, title = {Replication, Replication}, journal = {PS: Political Science and Politics}, volume = {28}, year = 1995, pages = {443--499}, month = {September}, number = 3, note = {{http://gking.harvard.edu/files/abs/replication-abs.shtml}} } @article{King95b, author = {Gary King}, title = {A Revised Proposal, Proposal}, journal = {PS: Political Science and Politics}, volume = {XXVIII}, year = 1995, pages = {494--499}, month = {September}, number = 3, note = {{http://gking.harvard.edu/files/abs/replication-abs.shtml}} } @article{KinKeoVer95, author = {Gary King and Robert O. Keohane and Sidney Verba}, title = {The Importance of Research Design in Political Science}, journal = {American Political Science Review}, volume = {89}, year = {1995}, pages = {454--481 }, month = {June}, number = {2}, note = {{http://gking.harvard.edu/files/abs/kkvresp-abs.shtml}} } @article{VosGelKin95, author = {D. Steven Voss and Andrew Gelman and Gary King}, title = {Pre-Election Survey Methodology: Details From Nine Polling Organizations, 1988 and 1992}, journal = {Public Opinion Quarterly}, volume = {59}, year = {1995}, pages = {98--132}, month = {Spring}, number = {1}, note = {{http://gking.harvard.edu/files/abs/preelection-abs.shtml}} } @article{WinSigKin95, author = {Rainer Winkelmann and Curtis Signorino and Gary King}, title = {A Correction for an Underdispersed Event Count Probability Distribution}, journal = {Political Analysis}, year = {1995}, pages = {215--228}, note = {{http://gking.harvard.edu/files/abs/correction-abs.shtml}} } @article{AltKin94, author = {James E. Alt and Gary King}, title = {Transfers of Governmental Power: The Meaning of Time Dependence}, journal = {Comparative Political Studies}, volume = {27}, year = {1994}, pages = {190--210}, month = {July}, number = {2}, note = {{http://gking.harvard.edu/files/abs/transfers-abs.shtml}} } @article{GelKin94, author = {Andrew Gelman and Gary King}, title = {A Unified Method of Evaluating Electoral Systems and Redistricting Plans}, journal = {American Journal of Political Science}, volume = 38, year = 1994, pages = {514--554}, month = {May}, number = 2, note = {{http://gking.harvard.edu/files/abs/writeit-abs.shtml}} } @article{GelKin94b, author = {Andrew Gelman and Gary King}, title = {Enhancing Democracy Through Legislative Redistricting}, journal = {American Political Science Review}, volume = {88}, year = {1994}, pages = {541--559}, month = {September}, number = {3}, note = {{http://gking.harvard.edu/files/abs/red-abs.shtml}} } @incollection{GelKin94c, author = {Andrew Gelman and Gary King}, title = {Party Competition and Media Messages in U.S. Presidential Election Campaigns}, booktitle = {The Parties Respond: Changes in the American Party System}, publisher = {Westview Press}, year = 1994, address = {Boulder, Colorado}, editor = {L. Sandy Maisel}, pages = {255-295}, note = {{http://gking.harvard.edu/files/abs/partycomp-abs.shtml}} } @article{GelKin93, author = {Andrew Gelman and Gary King}, title = {Why are American Presidential Election Campaign Polls so Variable when Votes are so Predictable?}, journal = {British Journal of Political Science}, volume = 23, year = 1993, pages = {409--451}, month = {October}, number = 1, note = {{http://gking.harvard.edu/files/abs/variable-abs.shtml}} } @inbook{King93, author = {Gary King}, title = {The Methodology of Presidential Research}, year = {1993}, publisher = {University of Pittsburgh}, pages = {387--412}, address = {Pittsburgh}, editor = {George Edwards, III, John H. Kessel, and Bert A. Rockman, eds.}, note = {{http://gking.harvard.edu/files/abs/methpres-abs.shtml}}, journal = {Researching the Presidency: Vital Questions, New Approaches} } @article{KingBruGil93, author = {Gary King and John M. Bruce and Michael Gilligan}, title = {The Science of Political Science Graduate Admissions}, journal = {PS: Political Science and Politics}, volume = {XXVI}, year = {1993}, pages = {772--778}, month = {December}, number = {4}, note = {{http://gking.harvard.edu/files/abs/admis-abs.shtml}} } @article{KinLav93, author = {Gary King and Michael Laver}, title = {On Party Platforms, Mandates, and Government Spending}, journal = {American Political Science Review}, volume = {87}, year = {1993}, pages = {744--750}, month = {September}, number = {3}, note = {{http://gking.harvard.edu/files/abs/hoff-abs.shtml}} } @article{KinWal93, author = {Gary King and Daniel J. Walsh}, title = {Good Research and Bad Research: Extending Zimile's Criticism}, journal = {Early Childhood Research Quarterly}, volume = {8}, year = {1993}, pages = {397--401}, month = {September}, number = {3}, note = {{http://gking.harvard.edu/files/abs/good-abs.shtml}} } @article{King91, author = {Gary King}, title = {'Truth' is Stranger than Prediction, More Questionable Than Causal Inference}, journal = {American Journal of Political Science}, volume = {35}, year = {1991}, pages = {1047--1053}, month = {November}, number = {4}, note = {{http://gking.harvard.edu/files/abs/truth-abs.shtml}} } @article{King91b, author = {Gary King}, title = {Constituency Service and Incumbency Advantage}, journal = {British Journal of Political Science}, volume = {21}, year = {1991}, pages = {119--128}, month = {January}, number = {1}, note = {{http://gking.harvard.edu/files/abs/constit-abs.shtml}} } @article{King91c, author = {Gary King}, title = {On Political Methodology}, journal = {Political Analysis}, volume = {2}, year = {1991}, pages = {1--30}, note = {{http://gking.harvard.edu/files/abs/polmeth-abs.shtml}} } @article{King91d, author = {Gary King}, title = {Stochastic Variation: A Comment on Lewis-Beck and Skalaban's `The R-Square'}, journal = {Political Analysis}, volume = {2}, year = {1991}, pages = {185--200}, note = {{http://gking.harvard.edu/files/abs/stoch-abs.shtml}} } @article{King91e, author = {Gary King}, title = {Calculating Standard Errors of Predicted Values based on Nonlinear Functional Forms}, journal = {The Political Methodologist}, volume = {4}, year = {1991}, month = {Fall}, number = {2} } @article{KinGel91, author = {Gary King and Andrew Gelman}, title = {Systemic Consequences of Incumbency Advantage in the U.S. House}, journal = {American Journal of Political Science}, volume = 35, year = 1991, pages = {110--138}, month = {February}, number = 1 , note = {{http://gking.harvard.edu/files/abs/sysconseq-abs.shtml}} } @article{AnsKin90, author = {Stephen Ansolabehere and Gary King}, title = {Measuring the Consequences of Delegate Selection Rules in Presidential Nominations}, journal = {Journal of Politics}, volume = {52}, year = {1990}, pages = {609--621}, month = {May}, number = {2}, note = {{http://gking.harvard.edu/files/abs/pri-abs.shtml}} } @article{GelKin90, author = {Andrew Gelman and Gary King}, title = {Estimating the Electoral Consequences of Legislative Redistricting}, journal = {Journal of the American Statistical Association}, volume = {85}, year = {1990}, pages = {274--282}, month = {June}, number = {410}, note = {{http://gking.harvard.edu/files/abs/svstat-abs.shtml}} } @article{GelKin90b, author = {Andrew Gelman and Gary King}, title = {Estimating Incumbency Advantage Without Bias}, journal = {American Journal of Political Science}, volume = {34}, year = {1990}, pages = {1142--1164}, month = {November}, number = {4}, note = {{http://gking.harvard.edu/files/abs/inc-abs.shtml}} } @article{KinAltBur90, author = {Gary King and James Alt and Nancy Burns and Michael Laver}, title = {A Unified Model of Cabinet Dissolution in Parliamentary Democracies}, journal = {American Journal of Political Science}, volume = {34}, year = {1990}, pages = {846--871}, month = {August}, number = {3}, note = {{http://gking.harvard.edu/files/abs/coal-abs.shtml}} } @article{King90, author = {Gary King}, title = {Electoral Responsiveness and Partisan Bias in Multiparty Democracies}, journal = {Legislative Studies Quarterly}, volume = {XV}, year = {1990}, pages = {159--181}, month = {May}, number = {2}, note = {{http://gking.harvard.edu/files/abs/electresp-abs.shtml}} } @article{GelKin89, author = {Andrew Gelman and Gary King}, title = {Electoral Responsiveness in U.S. Congressional Elections, 1946-1986}, journal = {Proceedings of the Social Statistics Section, American Statistical Association}, year = {1989}, pages = {208} } @article{King89b, author = {Gary King}, title = {Representation Through Legislative Redistricting: A Stochastic Model}, journal = {American Journal of Political Science}, volume = {33}, year = {1989}, pages = {787--824}, month = {November}, number = {4}, note = {{http://gking.harvard.edu/files/abs/repstoch-abs.shtml}} } @article{King89c, author = {Gary King}, title = {Event Count Models for International Relations: Generalizations and Applications}, journal = {International Studies Quarterly}, volume = {33}, year = {1989}, pages = {123--147}, month = {June}, number = {2}, note = {{http://gking.harvard.edu/files/abs/ISQ33-abs.shtml}} } @article{King89d, author = {Gary King}, title = {Variance Specification in Event Count Models: From Restrictive Assumptions to a Generalized Estimator}, journal = {American Journal of Political Science}, volume = 33, year = 1989, pages = {762--784}, month = {August}, number = 3 , note = {{http://gking.harvard.edu/files/abs/varspecec-abs.shtml}} } @article{King89e, author = {Gary King}, title = {A Seemingly Unrelated Poisson Regression Model}, journal = {Sociological Methods and Research}, volume = {17}, year = {1989}, pages = {235--255}, month = {February}, number = {3}, note = {{http://gking.harvard.edu/files/abs/SMR17-abs.shtml}} } @article{King88, author = {Gary King}, title = {Statistical Models for Political Science Event Counts: Bias in Conventional Procedures and Evidence for The Exponential Poisson Regression Model}, journal = {American Journal of Political Science}, volume = 32, year = 1988, pages = {838-863}, month = {August}, number = 3 , note = {{http://gking.harvard.edu/files/abs/epr-abs.shtml}} } @article{BroKin87, author = {Robert X Browning and Gary King}, title = {Seats, Votes, and Gerrymandering: Measuring Bias and Representation in Legislative Redistricting}, journal = {Law and Policy}, volume = {9}, year = {1987}, pages = {305--322}, month = {July}, number = {3}, note = {{http://gking.harvard.edu/files/abs/LP9-abs.shtml}} } @article{KinBro87, author = {Gary King and Robert X Browning}, title = {Democratic Representation and Partisan Bias in Congressional Elections}, journal = {American Political Science Review}, volume = {81}, year = {1987}, pages = {1252--1273}, month = {December}, number = {4}, note = {{http://gking.harvard.edu/files/abs/sv-abs.shtml}} } @article{King87, author = {Gary King}, title = {Presidential Appointments to the Supreme Court: Adding Systematic Explanation to Probabilistic Description}, journal = {American Politics Quarterly}, volume = {15}, year = {1987}, pages = {373--386}, month = {July}, number = {3}, note = {{http://gking.harvard.edu/files/abs/sct-abs.shtml}} } @article{King86, author = {Gary King}, title = {How Not to Lie With Statistics: Avoiding Common Mistakes in Quantitative Political Science}, journal = {American Journal of Political Science}, volume = {30}, year = {1986}, pages = {666--687}, month = {August}, number = {3}, note = {{http://gking.harvard.edu/files/abs/mist-abs.shtml}} } @article{King86b, author = {Gary King}, title = {The Significance of Roll Calls in Voting Bodies: A Model and Statistical Estimation}, journal = {Social Science Research}, volume = {15}, year = {1986}, pages = {135--152}, month = {June}, note = {{http://gking.harvard.edu/files/abs/SSR15-abs.shtml}} } @article{King86c, author = {Gary King}, title = {Political Parties and Foreign Policy: A Structuralist Approach}, journal = {Political Psychology}, volume = {7}, year = {1986}, pages = {83--101}, month = {March}, number = {1}, note = {{http://gking.harvard.edu/files/abs/PP7-abs.shtml}} } @article{KinMer86, author = {Gary King and Richard Merelman}, title = {The Development of Political Activists: A Model of Early Learning}, journal = {Social Science Quarterly}, volume = {67}, year = {1986}, pages = {473--490}, month = {September}, number = {3}, note = {{http://gking.harvard.edu/files/abs/poliactiv-abs.shtml}} } %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @Article{IacKinPor11b, author = {Stefano M. Iacus and Gary King and Giuseppe Porro}, title = {Replication data for: Causal Inference Without Balance Checking: Coarsened Exact Matching}, journal = { }, year = 2011, note = {http://hdl.handle.net/1902.1/15601 Murray Research Archive [Distributor] V1 [Version]} } @article{HopKin09b, author = {Daniel Hopkins and Gary King}, title = {Replication Data for: A Method of Automated Nonparametric Content Analysis for Social Science}, journal = { }, year = 2009, note = {\underline{UNF:3:xlE5stLgKvpeMvxzlLxzEQ==} hdl:1902.1/12898 Murray Research Archive [Distributor]} } @article{KinGakIma09b, Author = {Gary King and Emmanuela Gakidou and Kosuke Imai and Jason Lakin and Clayton Nall and Ryan T. Moore and Nirmala Ravishankar and Manett Vargas and Martha Mar{\'i}a T{\'e}llez-Rojo and Juan Eugenio Hern{\'a}ndez {\'A}vila and Mauricio Hern{\'a}ndez {\'A}vila and H{\'e}ctor Hern{\'a}ndez Llamas}, title = {Replication Data for: Public Policy for the Poor? A Randomized Ten-Month Evaluation of the Mexican Universal Health Insurance Program}, journal = { }, year = {2009}, note = {\underline{hdl:1902.1/11044} UNF:3:jeUN9XODtYUp2iUbe8gWZQ== Murray Research Archive [Distributor]} } @article{ImaKinNal09c, author = {Kosuke Imai and Gary King and Clayton Nall}, title = {Replication Data for: The Essential Role of Pair-Matching in Cluster-Randomized Experiments, with Application to the Mexican Universal Health Insurance Evaluation: Rejoinder}, journal = { }, year = {2009}, note = {\underline{hdl:1902.1/12730} UNF:3:CKs4T0iVYxP36LQSMgAkuw== Murray Research Archive [Distributor]} } @article{ImaKinNal09b, author = {Kosuke Imai and Gary King and Clayton Nall}, title = {Replication Data for: The Essential Role of Pair Matching in Cluster-Randomized Experiments, with Application to the Mexican Universal Health Insurance Evaluation}, journal = { }, year = {2009}, note = {\underline{hdl:1902.1/11047} UNF:3:jeUN9XODtYUp2iUbe8gWZQ== Murray Research Archive [Distributor]} } @Article{KinZen08, author = {Gary King and Langche Zeng}, title = {Replication data for: Empirical vs. Theoretical Claims about Extreme Counterfactuals: A Response}, journal = { }, year = 2008, note = {\underline{hdl:1902.1/11903}, Murray Research Archive [Distributor]} } @article{GakKin06b, author = {Emmanuela Gakidou and Gary King}, title = {Replication data for: Death by Survey: Estimating Adult Mortality without Selection Bias from Sibling Survival Data}, year = 2006, note = {{\underline{hdl:1902.1/ZMESWNECZW} Murray Research Archive [Distributor]}} } @article{GirKin06, author = {Federico Girosi and Gary King}, title = {Cause of Death Data}, year = {2006}, note = {{\underline{hdl:1902.1/UOVMCPSWOL} UNF:3:9JU+SmVyHgwRhAKclQ85Cg== Murray Research Archive [Distributor]}} } @article{HoImaKin06, author = {Daniel E. Ho and Kosuke Imai and Gary King and Elizabeth A. Stuart}, title = {Replication Data Set for: Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference}, year = 2006, note = {{\underline{hdl:1902.1/YVDZEQIYDS} Murray Research Archive [distributor]}} } @article{KinAlt06, author = {Gary King and James E. Alt and Nancy Burns and Michael Laver}, title = {Replication data for: A Unified Model of Cabinet Dissolution in Parliamentary Democracies}, year = {2006}, note = {{\underline{hdl:1902.1/RMPXNUSBBS} UNF:3:lfKIeFJKgejkOzXEY1i6lw== Murray Research Archive [Distributor]}} } @article{KinZen06b, author = {Gary King and Langche Zeng}, title = {Replication Data Set for: When Can History be Our Guide? The Pitfalls of Counterfactual Inference}, year = 2006, note = {{\underline{hdl:1902.1/DXRXCFAWPK} Murray Research Archive [distributor]}} } @article{KinZen06c, author = {Gary King and Langche Zeng}, title = {Replication data for: Detecting Model Depedence in Statistical Inference: A Response}, year = {2006}, note = {{\underline{hdl:1902.1/FGSRBXXIYT} UNF:3:K4/CgnMYDMV6izc5RVOZTA== Murray Research Archive [Distributor]}} } @article{KinZen06d, author = {Gary King and Langche Zeng}, title = {Replication data for: When Can History be Our Guide? The Pitfalls of Counterfactual Inference}, year = {2006}, note = {{\underline{hdl:1902.1/DXRXCFAWPK} UNF:3:DaYlT6QSX9r0D50ye+tXpA== Murray Research Archive [Distributor]}} } @article{KinZen06e, author = {Gary King and Langche Zeng}, title = {Replication data for: The Dangers of Extreme Counterfactuals }, year = {2006}, note = {{\underline{hdl:1902.1/UTVMBVNGMX} UNF:3:ytKKNjK+yR8Pq3H0RcV6eg== Murray Research Archive [Distributor]}} } @article{EpsHoKin05b, author = {Lee Epstein and Daniel E. Ho and Gary King and Jeffrey A. Segal}, title = {Replication data for: The Supreme Court During Crisis: How War Affects Only Nonwar Cases}, year = {2005}, note = {{\underline{hdl:1902.1/RESUDVYWPE} UNF:3:ZmbzFbfqogNM0Gb6CcV52A== Murray Research Archive [Distributor]}} } @article{BecKinZen04b, author = {Nathaniel Beck and Gary King and Langche Zeng}, title = {Replication data for: Gelpi and Grynaviski}, year = {2004}, note = {{\underline{hdl:1902.1/LAAYCJJGDS} UNF:3:N0bEAswAlPPVXCxPOZYyqw== Murray Research Archive [Distributor]}} } @article{King03b, author = {Gary King}, title = {10 Million International Dyadic Events}, year = {2003}, note = {{\underline{hdl:1902.1/FYXLAWZRIA} UNF:3:um06qkr/1tAwpS4roUqAiw== Murray Research Archive [Distributor]}} } @article{KinZen01c, author = {Gary King and Langche Zeng}, title = {Replication data for: Explaining Rare Events in International Relations}, year = {2001}, note = {\underline{hdl:1902.1/OUCBSJKXIC} UNF:3:vyct3c8fMCdWOdp03NUhaA== Murray Research Archive [Distributor]} } @article{KinZen01d, author = {Gary King and Langche Zeng}, title = {Replication data for: Improving Forecats of State Failure}, year = {2001}, note = {{\underline{hdl:1902.1/RPQIODIANR} UNF:3:CEsbEgPxbxExfYuh2NWwWQ== Murray Research Archive [Distributor]}} } @article{BecKinZen00b, author = {Nathaniel Beck and Gary King and Langche Zeng}, title = {Replication data for: Improving Quantitative Studies of International Conflict: A Conjecture}, volume = {2000}, note = {{\underline{hdl:1902.1/SZKONDGOMF} UNF:3:rYRDzT8dCJ/BR7V9u8fObA== Murray Research Archive [Distributor]}} } @article{KinTomWit00b, author = {Gary King and Michael Tomz and Jason Wittenberg}, title = {Replication data for: Making the Most of Statistical Analyses: Improving Interpretation and Presentation}, year = {2000}, note = {{\underline{hdl:1902.1/QTCABXZZRQ} UNF:3:1VaLflZ/LfB+AISX+hBm1w== Murray Research Archive [Distributor]}} } @article{KatKin99b, author = {Jonathan Katz and Gary King}, title = {Replication data for: A Statistical Model of Multiparty Electoral Data}, year = {1999}, note = {{\underline{hdl:1902.1/QIGTWZYTLZ} UNF:3:gwGcKylle0BKJTGv3Zv4OA== Murray Research Archive [Distributor]}} } @article{GelKinBos98b, author = {Andrew Gelman and Gary King and John Boscardin}, title = {Replication data for: Estimating the Probability of Events that have Never Occurred: When is your Vote Decisive}, year = {1998}, note = {{\underline{hdl:1902.1/NOLXXTUHNZ} UNF:3:ORDulVH6qEb4lsCyDn5W3A== Murray Research Archive [Distributor]}} } @article{King97b, author = {Gary King}, title = {Replication data for: A Solution to the Ecological Inference Problem: Reconstructing Individuals Behavior from Aggregate Data}, year = {1997}, note = {{\underline{hdl:1902.1/LWMMKUTYXS} UNF:3:DRWozWd89+vNLO7lY2AHbg== Murray Research Archive [Distributor]}} } @article{GelKin94d, author = {Andrew Gelman and Gary King}, title = {Replication data for: Enhancing Democracy Through Legislative Redistricting}, year = {1994}, note = {{\underline{hdl:1902.1/BNCOWNVERH} UNF:3:ZXahi7PBFxLRb46sVKOAuQ== Murray Research Archive [Distributor]}} } @article{GelKin94e, author = {Andrew Gelman and Gary King}, title = {Replication data for: Unified Methods of Evaluating Electoral Systems and Redistricting Plans: United States House of Representatives adn Ohio State Legislature}, year = {1994}, note = {{\underline{hdl:1902.1/JWFTSFKOBK} UNF:3:Fi01DWj4Sx+0ZEOEo4TOXA== Murray Research Archive [Distributor]}} } @article{King94, author = {Gary King}, title = {Elections to the United States House of Representatives, 1898-1992}, year = {1994}, note = {{\underline{hdl:1902.1/TQDSSPRDDZ} UNF:3:tD8SznMFjKIxWxOqTQaamQ== Murray Research Archive [Distributor]}} } @article{GelKin93b, author = {Andrew Gelman and Gary King}, title = {Replication data for: Why Are American Presidential Election Campaign Polls so Variable When Votes are so Predictable?}, year = {1993}, note = {{\underline{hdl:1902.1/SBBXEUSSCW} Murray Research Archive [Distributor]}} } @article{KinLav93b, author = {Gary King and Michael Laver}, title = {Replication data for: On Party Platforms, Mandates, and Government Spending}, year = {1993}, note = {{\underline{hdl:1902.1/XEHYCJAWQD} UNF:3:cwNXuRQ/6Lp72obLkttmGg== Murray Research Archive [Distributor]}} } @article{King91e, author = {Gary King}, title = {Replication data for: Constituency Service and Incumbency Advantage}, year = {1991}, note = {{\underline{hdl:1902.1/JTMXGSZXIZ} UNF:3:IE4ZSAs8ZzUK+fRXNbVvGw== Murray Research Archive [Distributor]}} } @article{King91f, author = {Gary King}, title = {Replication data for: On Political Methodology}, year = {1991}, note = {{\underline{hdl:1902.1/KHTLSQXAEJ} Murray Research Archive [Distributor]}} } @article{AnsKin90b, author = {Stephen Ansolabehere and Gary King}, title = {Replication data for: Measuring the Consequences of Delegate Selection Rules in Presidential Nominations}, year = {1990}, note = {{\underline{hdl:1902.1/BUJXCEPXQK} UNF:3:OdFPcQcvfO5hc3WJ5ty8vQ== Murray Research Archive [Distributor]}} } @article{KinBen86, author = {Gary King and Gerald Benjamin}, title = {Replication data for: The Stability of Partisan Identification in the U.S. House of Representatives, 1789-1984}, year = {1986}, note = {{\underline{hdl:1902.1/HINHTJQYFO} Murray Research Archive [Distributor]}} } %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Software %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @Article{IacKinPor09b, author = {Stefano M. Iacus and Gary King and Giuseppe Porro}, title = {CEM: Coarsened Exact Matching Software}, journal = {Journal of Statistical Software}, volume = 30, issue = 9, year = 2009, note = {{http://gking.harvard.edu/cem}} } @article{WanKinLau07, author = {Jonathan Wand and Gary King and Olivia Lau}, title = {Anchors: Software for Anchoring Vignettes Data}, journal = {Journal of Statistical Software}, year = {2007, forthcoming} } @Article{HonKinBLa10, author = {James Honaker and Gary King and Matthew Blackwell}, title = {Amelia II: A Program for Missing Data}, year = 2010, note = {{http://gking.harvard.edu/amelia}} } @article{ImaKinLau06, author = {Kosuke Imai and Gary King and Olivia Lau}, title = {Zelig: Everyone's Statistical Software}, year = 2006, note = {{http://gking.harvard.edu/zelig}} } @article{TomWitKin05, author = {Michael Tomz and Jason Wittenberg and Gary King}, title = {CLARIFY: Software for Interpreting and Presenting Statistical Results}, year = {1998-2005}, note = {{http://gking.harvard.edu/stats.shtml#clarify}} } @article{HonJosKin98, author = {James Honaker and Anne Joseph and Gary King and Kenneth Scheve and Naunihal Singh.}, title = {AMELIA: A Program for Missing Data}, year = {1998-2002}, note = {{http://gking.harvard.edu/amelia}} } @article{King98, author = {Gary King}, title = {MAXLIK, a set of Gauss programs, annotated for pedagogical purposes, to implement the maximum likelihood models in Unifying Political Methodology: The Likelihood Theory of Statistical Inference}, year = {1998}, note = {{http://gking.harvard.edu/stats.shtml#maxlik}} } @article{King96b, author = {Gary King}, title = {EI: Program for Ecological Inference}, year = {1996-2003}, note = {{http://gking.harvard.edu/stats.shtml#ei}} } @article{GelKin92, author = {Andrew Gelman and Gary King}, title = {JudgeIt: A Program for Evaluating Electoral Systems and Redistricting Plans}, year = {1992-2002}, note = {{http://gking.harvard.edu/stats.shtml#judgeit}} } @article{HoImaKin07a, author = {Daniel E. Ho and Kosuke Imai and Gary King and Elizabeth A. Stuart}, title = {MatchIt: Nonparametric Preprocessing for Parametric Causal Inference}, year = {Forthcoming}, journal = {Journal of Statistical Software}, note = {{http://gking.harvard.edu/matchit}} } @InCollection{Gelman04, author = {Andrew Gelman}, title = {Treatment Effects in Before-After Data}, booktitle = {Applied Bayesian Modeling and Causal Inference from an Incomplete Data Perspective}, publisher = {Wiley}, year = 2004, editor = {Andrew Gelman and Xiao-Li Meng}, chapter = 18, address = {London} } MatchIt/vignettes/gk.bib0000644000176200001440000206654012162551623014712 0ustar liggesusers% A bibtex file for papers by or coauthored with Gary King % % To add references, first please CHECK that your doesn't already % exist in this file and % then add entries only at the end. % % Use these rules for the reference label: % % -if one author: use last name and last 2 digits of the year: Tobler79. % -if multiple authors, use 1st 3 letters of each of UP TO the first three % authors and the last 2 digits of the year: KinTomWit00. % -if necessary add lower-case letters for multiple entries in a year: King02, King02b % (the first one should NOT have an 'a' afterwards) % % -feel free to use the abbreviations at the start, or add to them. % -Use authors full names when known. % % please be sure to commit changes to CVS regularly as a number of % people are all using this at the same time. @STRING{ prq = "Political Research Quarterly"} @STRING{ apsr = "American Political Science Review"} @STRING{ ajps = "American Journal of Political Science"} @STRING{ jop = "Journal of Politics"} @STRING{ bjps = "British Journal of Political Science"} @STRING{ jleo = "Journal of Law, Economics, and Organization"} @STRING{ isa = "Paper presented at the annual meetings of the International Studies Association"} @STRING{ apsa = "Paper presented at the annual meetings of the American Political Science Association"} @STRING{ cp = "Comparative Politics"} @STRING{ io = "International Organization"} @STRING{ midwest = "Paper presented at the Annual Meeting of the Midwest Political Science Association"} @STRING{ mpsa = "midwest"} @STRING{ southern = "Paper presented at the Annual Meeting of the Southern Political Science Association"} @STRING{ icpsr = "Inter-University Consortium for Political and Social Research"} @STRING{ jasa = "Journal of the American Statistical Association"} @STRING{ lsq = "Legislative Studies Quarterly"} @STRING{ isq = "International Studies Quarterly"} @STRING{ tas = "The American Statistician"} @STRING{ jbes = "Journal of Business \& Economic Statistics"} @STRING{ joe = "Journal of Econometrics"} @STRING{ wp = "World Politics"} @STRING{ cup = "Cambridge University Press"} @STRING{ hup = "Harvard University Press"} @STRING{ ny = "New York"} @STRING{ sv = "Springer Verlag"} @STRING{ pup = "Princeton University Press"} @STRING{ ucp = "University of California Press"} @STRING{ ap = "Academic Press"} @STRING{ wb = "The World Bank"} @STRING{ eas = "Europe-Asia Studies"} @STRING{ jet = "Journal of Economic Theory"} @STRING{ jrssA = "Journal of the Royal Statistical Society, A"} @STRING{ jrssb = "Journal of the Royal Statistical Society, B"} @STRING{ poq = "Public Opinion Quarterly"} @STRING{ pnas = "Proceedings of the National Academy of Sciences"} @STRING{ ai = "Artificial Intelligence"} @STRING{ pa = "Political Analysis"} @STRING{ ps = "PS: Political Science and Politics"} @STRING{ smr = "Sociological Methods and Research"} @STRING{ sim = "Statistics in Medicine"} @STRING{ asr = "American Sociological Review"} @STRING{ bmj = "British Medical Journal"} @STRING{ lan = "Lancet"} @STRING{ dem = "Demography"} @STRING{ bull = "Bulletin of WHO"} @STRING{ ssm = "Social Science and Medicine"} @STRING{ mitai = "Artificial Intelligence Laboratory, Massachusetts Institute of Technology"} @STRING{ nc = "Neural Computation"} @article{AbaDruLeb02, author = {Alberto Abadie and David Druckker and Jane Leber Herr and Guido W. Imbens}, title = {Implementing Matching Estimators for Average Treatment Effects in Stata}, journal = {The Stata Journal}, volume = 1, year = 2002, pages = {1--18}, number = 1 } @article{Bin83, author = {David A. Binder}, title = {On the Variance of Asymptoticaly Normal Estimators from Complex Surveys}, year = {1983}, journal = {International Statistical Review}, volume = {51}, number = {3}, pages = {279--292} } @article{HorTho52, author = {D. G. Horvitz and D.J. Thompson}, title = {A Generalization of Sampling without Replacement from a Finite Universe}, year = {1952}, journal = {Journal of the American Statistical Association}, volume = {47}, pages = {663--685} } @article{AbaGelLev08, author = {Kobi Abayomi and Andrew Gelman and Marc Levy}, title = {Diagnostics for Multivariate Imputations}, journal = {Applied Statistics}, volume = {57}, number = {3}, pages = {273--291}, year = {2008} } @misc{AbaImb05, author = {Alberto Abadie and Guido Imbens}, title = {Estimation of the Conditional Variance in Paired Experiments}, year = 2006, howpublished = {KSG Working Paper}, note = {{http://ksghome.harvard.edu/\~{}.aabadie.academic.ksg/cve.pdf}} } @misc{AbaImb09, author = {Alberto Abadie and Guido Imbens}, title = {A Martingale Representation for Matching Estimators}, year = 2009, howpublished = {IZA Discussion Papers number 4073}, note = {{http://ftp.iza.org/dp4073.pdf}} } @article{Imb00, author = {Guido Imbens}, title = {The role of the propensity score in estimating the dose-response functions}, year = {2000}, journal = {Biometrika}, pages = {706--710}, volume = {87}, issue = {3} } @article{AbaImb07b, author = {Alberto Abadie and Guido Imbens}, title = {On the Failure of the Bootstrap for Matching Estimators}, year = {2007}, journal = {Econometrica}, pages = {1537--1557}, volume = {76}, issue = {6} } @article{AbaImb06, author = {Abadie, Alberto and Imbens, Guido W.}, title = {Large Sample Properties of Matching Estimators for Average Treatment Effects}, journal = {Econometrica}, volume = {74}, year = {2006}, pages = {235--267}, number = {1} } @inproceedings{Abu-Mostafa92, author={Y. Abu-Mostafa}, title={A Method for Learning from Hints}, booktitle={Advances in Neural information processings systems 5}, year={1992}, publisher={Morgan Kaufmann Publishers}, address={San Mateo, CA}, editor={S. J. Hanson and Jack D. Cowan and C. Lee Giles} } @article{Abu-Mostafa92, author={Y. Abu-Mostafa}, title={A Method for Learning from Hints}, journal={Advances in Neural information processings systems 5}, volume={1992}, pages={Morgan Kaufmann Publishers}, month={San Mateo CA}, number={S. J. Hanson and Jack D. Cowan and C. Lee Giles} } @book{Achen86, author={Christopher Achen}, title={Statistical Analysis of Quasi-experiments}, publisher={University of California Press}, year={1986}, address={Berkeley} } @techreport{AdaCoaRue00, author={Michelle Adato and David Coady and Marie Ruel}, title={An Operations Evaluation of Progresa from the Perspective of Beneficiaries, Promotoras, School Directors and Health Staff}, institution={International Food Policy Research Institute}, year={2000}, month={August}, type={Final Report}, address={2033 K Street, NW Washington, DC 20006} } @article{AdaGla05, author={Adamic, L.A. and Glance, N.}, title={{The political blogosphere and the 2004 US election: divided they blog}}, journal={Proceedings of the 3rd international workshop on Link discovery}, year={2005}, pages={36--43}, publisher={ACM Press New York, NY, USA} } @article{AgoDyn04, author={Roberto Agodini and Mark Dynarski}, title={Are experiments the only option? {A} look at dropout prevention programs}, journal={Review of Economics and Statistics}, volume= 86, year= 2004, pages={180-194}, month={February}, number= 1 } @unpublished{AgrRajSri03, author={Rakesh Agrawal and Sridhar Rajagopolan and Ramakrishnan Srikant and Yirong Xu}, title={Mining Newsgroups Using Networks Arising from Social Behavior}, note={IBM ALmaden Research Center 650 Harry Rd., San Jose, CA 95120}, year={2003}, month={May} } @book{Aitchison86, author={J. Aitchison}, title={The Statistical Analysis of Compositional Data}, publisher={Chapman and Hall}, year= 1986, address={London} } @article{Albert88, author={James H. Albert}, title={Computational Methods Using a Bayesian Hierarchical Generalized Linear Model}, journal={Journal of the American Statistical Association}, volume={83}, year={1988}, pages={1037-1004}, month={December}, number={404} } @article{AldMcK77, author={John H. Aldrich and Richard D. McKelvey}, title={A Method of Scaling With Applications to the 1968 and 1972 Presidential Elections}, journal= apsr, volume= 71, year= 1977, pages={111-130}, month={March} } @article{AleTab90, author={Alberto Alesina and Guido Tabellini}, title={A Positive Theory of Fiscal Deficits and Government Debt}, journal={The Review of Economic Studies}, volume={57}, year={1990}, pages={403-414}, month={July}, number={3} } @article{Alho00, author={J. M. Alho}, title={Discussion}, journal={North American Actuarial Journal}, volume= 4, year= 2000, pages={91--93}, number= 1 } @article{Alho92, author={J. M. Alho}, title={{Comment on ``Modeling and Forecasting U.S. Mortality'' by R. Lee and L. Carter}}, journal= jasa, volume= 87, year= 1992, pages={673--674}, month={September}, number= 419 } @article{AlSaCr76, author={James Alt and Bo Sarlvik and Ivor Crewe}, title={Individual Differences Scaling and Group Attitude Structures: British Party Imagery in 1974}, journal={Quality and Quantity}, volume= 10, year= 1976, pages={297--320}, month={October} } @book{AltGilMcD03, author={Micah Altman and Jeff Gill and Michael P. McDonald}, title={Numerical Issues in Statistical Computing for the Social Scientist}, publisher={John Wiley and Sons}, year= 2003, address={New York} } @article{Altman85, author={Douglas G. Altman}, title={Comparability of Randomised Groups}, journal={The Statistician}, volume={34}, year={1985}, pages={125-136}, number={1} } @article{Altman98, author={Douglas G. Altman and Jonathan J. Deeks and David L. Sackett}, title={Odds Ratios Should be Avoided When Events are Common}, journal={British Medical Journal}, volume= 317, year= 1998, pages= 1318, month={Nov. 7} } @article{AltMcD03, author={Micah Altman and Michael P. McDonald}, title={Replication with Attention to Numerical Accuracy}, journal={Political Analysis}, volume={11}, year={2003}, pages={302-307}, number={3} } @article{AltRub70, author={Robert P. Althauser and Donald B. Rubin}, title={The computerized construction of a matched sample}, journal={American Journal of Sociology}, volume= 76, year= 1970, pages={325-346}, month={September} } @article{AlvBre95, author={Michael R. Alvarez and John Brehm}, title={American Ambivalence Toward Abortion Policy: A Heteroskedastic probit Method for Assessing Conflicting Values}, journal={American Journal of Political Science}, volume={39}, year={1995}, pages={1055-82}, month={November} } @article{AlvBre97, author={Michael R. Alvarez and John Brehm}, title={Are Americans Ambivalent Towards Racial Policies}, journal={American Journal of Political Science}, volume={41}, year={1997}, pages={345-374}, month={April}, number={2} } @article{AlvGarLan91, author={Michael R.\ Alvarez and Geoffrey Garrett and Peter Lange}, title={Government Partisanship, Labor Organization, and Macroeconomic Performance}, journal= apsr, volume= 85, year= 1991, pages={539--556} } @article{AmoMccZim97, author={A.F. Amos and D.J. McCarty and P. Zimmet}, title={The Rising Global Burden of Diabetes and its Complications: Estimates and Projections to the Year 2010}, journal={Diabetic Medicine}, volume= 14, year= 1997, tpages={S7--S85} } @book{AndBasHum83, author={Andy B. Anderson and Alexander Basilevsky and Derek P.J. Hum}, title={Missing Data: A Review of the Literature}, publisher={Academic Press, Inc}, year={1983}, editor={Peter H. Rossi and James D. Writght and Andy B. Anderson} } @article{AndGib06, author={Krister Andersson and Clark C. Gibson}, title={Decentralized Governance and Environmental Change: Local Institutional Moderation of Defroestation in Bolivia}, journal={Journal of Policy Analysis and Management}, volume={26}, year={2006}, pages={99-123}, number={1} } @article{AndGreMcc05, author={Richard G. Anderson and William H. Greene and B.D. McCullough and H.D. Vinod}, title={The Role of Data \& Program Code Archives in the Future of Economic Research}, year= 2005, month={July}, note={Federal Reserve Bank of St. Louis Research Division} } @article{Andrews91, author={Donald W.K. Andrews}, title={Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation}, journal={Econometrica}, volume={59}, year={1991}, pages={817--858}, month={May}, number={3} } @article{AndZom01, author={A.S. Andreou and G.A. Zombanakis}, title={A Neural Network Measurement of Relative Military Security--The Case of Greece and Cyprus}, journal={Defence and Peace Economics}, volume= 12, year= 2001, pages={303--324}, number= 4, annote={have not read primary source. looks promising, given secondary source comments: all input variables are financial and the output variable--relative security--is population/demographics based. Arms race scenarios are simulated by increasing and decreasing financial covariates.} } @article{AngAngFro94, author={G. De Angelis and R. De Angelis and L. Frova and A. Verdecchia}, title={MIAMOD: A Computer Package to Estimate Chronic Disease Morbidity Using Mortality and Survival Data}, journal={Computer Methods and Programs in Biomedicine}, volume= 44, year= 1994, pages={99--107} } @article{AngImb95, author={Joshua D. Angrist and Guido W. Imbens}, title={Two-Stage Least Squares Estimation of Average Causal Effects in Models withVariable Treatment Intensity}, journal={Journal of the American Statistical Association}, volume={90}, year={1995}, pages={431-442}, month={June}, number={430} } @article{AngImbRub96, author={Angrist, Joshua D. and Imbens, Guido W. and Rubin, Donald B.}, title={Identification of Causal Effects Using Instrumental Variables (with discussion)}, journal={Journal of the American Statistical Association}, volume={91}, year={1996}, pages={444--455}, optnumber={434} } @article{Angress59, author={Werner T. Angress}, title={The Political Role of the Peasantry in the Weimar Republic}, journal={The Review of Politics}, volume= 21, year= 1959, pages={530--549}, number= 3 } @unpublished{AnkBlaCol99, author = {Martha Anker and Robert E. Black and Christopher Coldham and Henry D. Kalter and Maria A. Quigley and David Ross and Robert W. Snow}, title = {A Standard Verbal Autopsy Method for Investigating Causes of Death in Infants and Children}, note = {World Health Organization, Department of communicable Disease Surveillance and Response}, year = {1999}, journal = {World Health Organization} } @book{Anker03, author = {Martha Anker}, title = {Investigating Cause of Death During an Outbreak of Ebola Virus Haemorrhagic Fever: Draft Verbal Autopsy Instrument}, publisher = {World Health Organization}, year = 2003, address = {Geneva} } @article{Anker97, author = {Martha Anker}, title = {The Effect of Misclassification Error on Reported Cause-Specific Mortality Fractions from Verbal Autopsy}, journal = {International Journal of Epidemiology}, volume = {26}, year = {1997}, pages = {1090-1096} } @article{AppBosGra96, author = {A. Appels, et al}, title = {Self-Rated Health and Mortality in a Lithuanian and Dutch Population}, journal = {Social Science and Medicine}, volume = 42, year = 1996, pages = {{681-89}}, number = 5 } @techreport{Arendt03, author = {Jacob N. Arendt}, title = {Social gradients in self-rated health in Denmark - gender differences and health risk factors in dynamic context}, institution = {AKF, Institute of Local Government Studies}, year = 2003, month = {May}, address = {Nyropsgade 37, 1602 Copenhagen V, Denmark} } @book{Arendt73, author = {Arendt, Hannah}, title = {The Origins of Totalitarianism}, publisher = {Harcourt Brace Jovanovich}, year = 1973, address = {New York} } @incollection{Armstrong01, author = {J. Scott Armstrong}, title = {Extrapolation of Time Series and Cross-Sectional Data}, booktitle = {Principles of Forecasting: A Handbook for Researchers and Practitioners}, publisher = {Kluwer}, year = 2001, editor = {J. Scott Armstrong}, pages = {217--243} } @unpublished{Ashworth01, author = {Scott Ashworth}, title = {Reputational Dynamics and Congressional Careers}, note = {Harvard University}, year = 2001, annote = {introduce the single crossing property in political science} } @article{AssPocEno00, author = {Susan F. Assmann and Stuart J. Pocock, Laura E. Enos and Linda E. Kasten}, title = {Subgroup analysis and other (mis)uses of baseline data in clinical trials}, journal = {The Lancet}, volume = {355}, year = {2000}, pages = {1064-1069}, month = {March} } @article{AusMam06, author={Peter C. Austin and Muhammad M. Mamdani}, title={A comparison of propensity score methods: A case-study estimating the effectiveness of post-AMI statin use}, journal={Statistics in Medicine}, volume={25}, year={2006}, pages={2084-2106} } @article{AusMamStu05, author={Peter C. Austin and Muhammad M. Mamdani and Therese A. Stukel and Geoffrey M. Anderson and Jack V. Tu}, title={The use of the propensity score for estimating treatment effects: {A}dministrative versus clinical data}, journal={Statistics in Medicine}, volume={24}, year={2005}, pages={1563-1578} } @article{AvlSchDav98, author={Kirsten Avlund, Kirsten Schultz-Larsen, and Michael Davidson}, title={Tiredness in Daily Activities at Age 70 as a Predictor of Mortality During the Next 10 Years}, journal={Journal of Clinical Epidemiology}, volume= 51, year= 1998, pages={{323-33}} } @article{BacKin04, author={Bachrach, Christine A. and King, Roslind B.}, title={{Data Sharing and Duplication: Is There a Problem?}}, journal={Archives of Pediatric and Adolescent Medicine}, volume= 158, year={2004}, month={September}, number= 9 } @article{BagHopMas02, author={A. Bagust and P.K. Hopkinson and L. Maslove and C.J. Currie}, title={The Projected Health Care Burden of Type 2 Diabetes in the UK from 2000 to 2060}, journal={Diabetic Medicine}, volume= 19, year= 2002, pages={1--5}, number= 4 } @book{Balderston02, author={Theo Balderston}, title={Economics and Politics in the Weimar Republic}, publisher={Cambridge University Press}, year= 2002, address={Cambridge} } @article{BanBan92, author={A.T. Bang and R.A. Bang and the SEARCH team}, title={Diagnosis of causes of childhood deaths in developing countries by verbal autosy: suggested criteria}, journal={Bulletin of the World Health Organization}, volume={70}, year={1992}, pages={499-507}, number={4} } @article{BaqBlaAri98, author={A.H. Baqui and R.E. Black and S.E. Arifeen and K. Hill and S.N. Mitra and A.Al Sabir}, title={Causes of childhood deaths in Bangladesh: results of a nationwide verbal autopsy study}, journal={Bulletin of the World Health Organization}, volume={76}, year={1998}, pages={161}, number={2} } @article{BarFraHil03, author={John Barnard and Constantine E. Frangakis and Jennifer L. Hill and Donald B. Rubin}, title={{Principal Stratification Approach to Broken Randomized Experiments: A Case Study of School Choice Vouchers in New York City.}}, journal={Journal of the American Statistical Association}, volume={98}, year={2003}, pages={299-324}, number={462} } @book{Barkai90, author={Barkai, Avram}, title={Nazi Economics: Ideology, Theory, and Policy}, address={Oxford}, publisher={Berg Press}, year={1990} } @article{BarPonCor00, author={Ivana C. H. C. Barr{\^e}to and L{\'i}gia Kerr Pontes and e Luciano Corr{\^e}a}, title={Vigil{\^a}ncia de {\'o}bitos infantis em sistemas locais de sa{\'u}de: avalia{\c{c}}{\~a}o da aut{\'o}psia verbal e das informa{\c{c}}{\~o}es de agentes de sa{\'u}de}, journal={Rev Panam Salud Publica / Pan Am Journal of Public Health}, volume={7}, year={2000}, pages={303-312}, number={5} } @article{Bartels96, author={Bartels, Larry M.}, title={Uninformed Votes: Information Effects in Presidential Elections}, journal={American Journal of Political Science}, volume= 40, year= 1996, pages={194--230} } @unpublished{Bartels98, author={Larry Bartels}, title={Panel Attrition and Panel Conditioning in American National Election Sudies}, note={Paper prepared for the 1998 meetings of the Society for Political Methodology, San Deigo}, year={1998} } @article{BasEst01, author={S.A. Bashir and J. Esteve}, title={Projecting Cancer Incidence and Mortality Using Bayesian Age-Period-Cohort Models}, journal={Journal of Epidemiology and Biostatistics}, volume= 6, year= 2001, pages={287--296}, number= 3 } @unpublished{BatFerHab06, author={Robert Bates and Karen Feree and James Habyarimana and Macartan Humphreys and Smita Singh}, title={The Africa Research Program}, note={{http://africa.gov.harvard.edu}}, year= 2006 } @article{Bath03, author={Peter A. Bath, PhD}, title={Differences Between Older Men and Women in the Self-Rated Health-Mortality Relationship}, journal={The Gerontologist}, volume= 43, year= 2003, pages={{387-95}} } @article{Baum88, author={Lawrence Baum}, title={Measuring Policy Change in the U.S. Supreme Court}, journal= apsr, volume= 82, year= 1988, pages={905--912}, month={September}, number= 3 } @article{BeaMei89, author={Michael L. Beach and Paul Meier}, title={Choosing Covariates in the Analysis of Clinical Trials}, journal={Controlled Clinical Trials}, volume={10}, year={1989}, pages={161S-175S} } @incollection{Bearce00, author={David Bearce}, title={Economic Sanctions and Neural Networks: Forecasting Effectiveness and Reconsidering Cooperation}, booktitle={Political Complexity: Non Linear Models of Politics}, publisher={University of Michigan Press}, year= 2000, address={Ann Arbor, MI}, editor={Diana Richards}, pages={269--295}, annote={asks whether real-world forecasting needs make NN preferable to traditional (and linear) analysis. Looks at effectiveness of sanctions, using about 100 quantitative cases first examined in 1980s. NNs are shown to forecast twice as well as traditional methods.} } @book{BecChaWil88, author={Richard A. Becker and John M. Chambers and Allan R. Wilks}, title={The New S. language}, publisher={Wadsworth}, year={1988}, address={New York} } @article{BecIch02, author={Sascha O. Becker and Andrea Ichino}, title={Estimation of average treatment effects based on propensity scores}, journal={The Stata Journal}, volume= 2, year= 2002, pages={358-377}, number= 4 } @article{BecIch02, author={Sascha O. Becker and Andrea Ichino}, title={Stata programs for ATT estimation based on propensity score matching}, journal={The Stata Journal}, volume= 2, year= 2002, pages={358--377}, number= 4 } @article{BecJac98, author={Nathaniel Beck and Simon Jackman}, title={Beyond Linearity by Default: Generalized Additive Model}, journal= ajps, volume= 42, year= 1998, pages={596--627}, month={April}, number= 2 } @article{BecKat95, author={Nathaniel Beck and Jonathan Katz}, title={``What to Do (and Not to Do) with Time-Series-Cross-Section Data''}, journal= apsr, volume= 89, year= 1995, pages={634--647} } @article{BecKat96, author={Nathaniel Beck and Jonathan Katz}, title={Nuisance vs. Substance: Specifying and Estimating Time-Series-Cross-Section Model}, journal= pa, volume={VI}, year= 1996, pages={1--36} } @article{BecKatTuc98, author={Nathaniel Beck and Jonathan Katz and Richard Tucker}, title={Taking Time Seriously: Time-Series-Cross-Section Analysis with a Binary Dependent Variable}, journal= apsr, volume= 42, year= 1998, pages={1260-1288} } @article{BedChrJoh96, author={Edward J. Bedrick and Ronald Christensen and Wesley Johnson}, title={A New Perspective on Priors for Generalized Linear models}, journal={Journal of the American Statistical Association}, volume={91}, year={1996}, pages={1450-1460}, number={436} } @techreport{BehTod99, author={Jere R. Behrman and Petra E. Todd}, title={Randomness in the Experimental Samples of Progresa (Education, Health, and Nutrition Program)}, institution={International Food Policy Research Institute}, year={1999}, month={March}, type={Research Report}, address={2033 K Street, NW Washington, DC 20006} } @article{Bell97, author={W.R. Bell}, title={{Comparing and Assessing Time Series Methods for Forecasting Age-Specific Fertility and Mortality Rates}}, journal={Journal of Official Statistics}, volume= 13, year= 1997, pages={279--303}, number= 3 } @article{Bello93, author={Abdul Lateef Bello}, title={Choosing Among Imputation Techniques for Incomplete Multivariate Data: A Simulation Study}, journal={Communications in Statistics A: Theory and Methods}, volume={22}, year={1993}, pages={853-877}, number={3} } @article{BelMon91, author={W.R. Bell and B.C. Monsell}, title={Using Principal Components in time Series modeling and Forecasting of Age-Specific Mortality Rates}, journal={Proceedings of the American Statistical Association, Social Statistics Section}, year= 1991, pages={154--159} } @article{Beltrami1873, author={E. Beltrami}, title={Sulle funzioni bilineari}, journal={Giornale di Matematiche ad Uso degli Studenti Delle Universit{\'a}}, volume= 11, year= 1873, pages={98--106}, note={{An English translation by D. Boley is available as University of Minnesota, Department of Computer Science, Technical Report 90-37, 1990}} } @article{BenBluLus03, author={Yael Benyamini, et al.}, title={Gender differences in the self-rated health-mortality association: Is it poor self-rated health that predicts mortality or excellent self-rated health that predicts survival?}, journal={The Gerontologist}, volume={43}, year={2003}, pages={{396-405}}, number={3} } @incollection{Bendix53, author={Bendix, Reinhard}, title={Social Stratification and Political Power}, booktitle={Class Status and Power}, publisher={The Free Press}, year= 1953, address={Glencoe, IL}, editor={Bendix, Reinhard and Lipset, Seymour Martin} } @article{BenHumEbe04, author={Maureen Reindl Benjamins}, title={Self-Reported Health and Adult Mortality Risk: An Analysis of Cause Specific Mortality}, journal={Social Science and Medicine (Forthcoming 2004)} } @article{benichou95, author={J. Benichou and M. Gail}, title={Methods of Inference for Estimates of Absolute Risk Derived From Population-Based Case-Control Studies}, journal={Biometrics}, volume= 51, year= 1995, pages={182-194} } @article{BenIdl99, author={Yael Benyamini, and Ellen Idler}, title={Community Studies Reporting Association Between Self-Rated Health and Mortality}, journal={Research on Aging}, volume= 21, year= 1999, pages={{392-401}}, number= 3 } @article{BenIdlLev00, author={Yael Benyamini, Ellen Idler, Howard Leventhal, and Elaine A. Leventhal}, title={Positive-Affect and Function as Influences on Self-Assessments of Health: Expanding ou View Beyond Illness and Disability}, journal={Journal of Gerontology: Psychological Sciences}, volume={{55B}}, year= 2000, pages={{P107-116}} } @article{BenLav03, author={Kenneth Benoit and Michael Laver}, title={Estimating Irish party policy positions using computer wordscoring: the 2002 election - a research note}, journal={Irish Political Studies}, volume={18}, year={2003}, pages={97--107}, number={1} } @article{BenLevLev00, author={Yael Benyamini, et al}, title={Gender Differences in Processing Information for Making Self-Assessments of Health }, journal={American Psychosomatic Society}, volume= 62, year= 2000, pages={{354-64}}, number= 2 } @article{BenLevLev99, author={Yael Benyamini, Elaine A. Leventhal, and Howard Leventhal}, title={Self-Assessments of Health. What Do People Know that Predicts their Mortality?}, journal={Reasearch on Aging}, volume= 21, year= 1999, pages={{477-500}}, month={{May}}, number= 3 } @article{BenLip59, author={Bendix, Reinhard and Lipset, Seymour Martin}, title={On the Social Structure of Western Societies: Some Reflections on Comparative Analysis}, journal={Berkeley Journal of Sociology}, volume= 5, year= 1959, pages={1-15} } @article{BenSin99, author={S.K. Benara and Padam Singh}, title={Validity of Causes of Infant Death by Verbal Autopsy}, journal={Indian Journal of Pediatrics}, volume={66}, year={1999}, pages={647-650} } @article{BenSin99, author={S.K. Benara and Padam Singh}, title={Validity of Causes of Infant Death by Verbal Autopsy}, journal={Indian Journal of Pediatrics}, volume={66}, year={1999}, pages={647-650} } @article{BerdeG47, author={Berelson, B. and de Grazia, S.}, title={{Detecting Collaboration in Propaganda}}, journal={Public Opinion Quarterly}, volume={11}, year={1947}, pages={244--253}, number={2} } @proceedings{BerDegLin88, editor={J. M. Bernardo and M.H. Degroot and D.V. Lindley and A.F.M. Smith}, title={Bayesian Statistics 3}, publisher={Clarendon Press, Oxford}, year={1987}, month={June 1-5}, organization={Proceedings of the Third Valencia International Meeting} } @article{Berenson04, author={Robert Berenson}, title={The Medicare Chronic Care Improvement Program}, journal={The Urban Institute}, year={2004}, month={May}, note={{http://www.urban.org/url.cfm?ID=900714}} } @article{Berger04, author={Vance W. Berger}, title={Selection Bias and Baseline Imbalances in Randomized Trials}, journal={Drug Information Journal}, volume={38}, year={2004}, pages={1-2} } @article{Berger05a, author={Vance W. Berger}, title={Quantifying the Magnitude of Baseline Covariate Imbalances Resulting fronmSelection Bias in Randomized Clinical Trials}, journal={Biometrical Journal}, volume={47}, year={2005}, pages={119-127}, number={2} } @book{Berger05b, author={Vance W. Berger}, title={Selection Bias and covariate Imbalances in Randomized Clinical Trials}, publisher={John Wiley \& Sons, Ltd.}, year={2005}, editor={Stephen Senn and Vic Barnett}, series={Statistics in Practice} } @article{Berger94, author={James Berger}, title={An Overview of Robust Bayesian Analysis (With Discussion)}, journal={Test}, volume= 3, year= 1994, pages={5-124} } @article{BerHenSav77, author={E. Berndt and D. Hendry and N.E. Savin}, title={Conflict Among Criteria for Testing Hypotheses in the Multivariate Linear Regression Model}, journal={Econometrica}, volume={45}, year={1977}, pages={1263-1277} } @article{BerKinKon97, author={Shulamit L. Bernard, Jean E. Kincade, Thomas R. Conrad, et al}, title={Predicting Mortality from Community Surveys of Older Adults: The Importance of Self-Rated Functional Ability}, journal={Journal of Gerontology: Social Sciences}, volume={{52B}}, year= 1997, pages={{S155-63}} } @misc{BerKos03, author={Erik Bergstralh and Jon Kosanke}, title={dist, gmatch, and vmatch: SAS Macros}, year= 2003, howpublished={Mayo Clinic, Division of Biostatistics}, note={{http://mayoresearch.mayo.edu/mayo/research/biostat/sasmacros.cfm}} } @book{BerKreOve98, author={Mark de Berg and Marc van Krevald and Mark Overmars and Otfried Schwarzkopf}, title={Computational Geometry: Algorithms and Applications}, publisher={Springer}, year= 1998, address={New York}, edition={2nd, revised edition} } @book{ImbRub10, author={Guido Imbens and Donald Rubin}, title={Causal Inference}, year= {2010}, note={Unpublished manuscript} } @article{Bernstein32, author={F. Bernstein}, title={{\"U}ber eine Methode, die soziologische und bev{\"o}lkerungsstatistische Gliederung von Abstimmungen bei geheimen Wahlverfahren zu ermittlen}, journal={Allgemeines Statistisches Archiv}, volume= 22, year= 1932, pages={253--256} } @article{Besag74, author={Julian Besag}, title={Spatial Interaction and the Statistical Analysis of Lattice Systems (With Discussion)}, journal= jrssb, volume= 36, year= 1974, pages={192-236} } @article{Besag75, author={Julian Besag}, title={Statistical Analysis of Non-Lattice Data}, journal={The Statistician}, volume= 24, year= 1975, pages={179--195}, number= 3 } @article{Besag83, author={Julian E. Besag}, title={Discussion of paper by {P}. {S}witzer}, journal={Bull. Intern. Statist. Inst.}, volume= 50, year= 1983, pages={422-425}, number={Bk. 3} } @article{Besag86, author={Julian Besag}, title={On the Statistical Analysis of Dirty Pictures}, journal={Journal of the Royal Statistical Society B}, volume={48}, year={1986}, pages={259--302}, number={3} } @article{Besancon05, author={Marie L. Besancon}, title={Relative Resources: Inequality in Ethnic Wars, Revolutions, and Genocides}, abstract={Political scientists and economists have exhaustively examined the nexus between economic inequality and political conflict (EI-PC nexus) in aggregated civil wars. This article revisits the nexus and its related theories, empirically and parsimoniously testing the effects of inequality on disaggregated intrastate conflicts. The results buttress the notion that traditionally deprived identity groups are more likely to engage in conflict under more economically equal conditions, while class or revolutionary wars fall under the conditions of greater economic inequality and war. Of the three types of conflicts tested - ethnic conflicts, revolutions, and genocides - economic inequality seems to have the most ambiguous bearing on genocides. Support follows for recent findings that political and social equalities are of greater importance in mitigating ethnic violence and that greed factors might exacerbate violence in all civil conflicts, including genocides. The theoretical argument proposes that the context within which intrastate violence takes place affects the requisite level of relative resources needed for the escalation of violence between groups. The results have policy implications for ethnically divided states that are in the process of equalizing their income differential, but neglect the substantial inclusion of all groups within the political process and the distribution of public goods. The social contracts between the governors and the governed then require careful crafting for a peaceful coexistence of diverse identity groups.}, journal={The Journal of Peace Research}, volume={42}, year={2005}, pages={393-415}, month={July}, number={4} } @article{BesGreHigMen95, author={Julian Besag and Peter Green and David Higdon and Kerrie Mengersen}, title={Bayesian Computation and Stochastic Systems (With Discussion)}, journal={Statistical Science}, volume= 10, year= 1995, pages={3-66}, number= 1 } @article{BesHig99, author={Julian Besag and David M. Higdon}, title={Bayesian Analysis of Agricultural Field Experiments (With Discussion)}, journal= jrssb, volume= 61, year= 1999, pages={691-746}, number={4} } @article{BesKoo95, author={Julian Besag and Charles Kooperberg}, title={On Conditional and Intrinsic Autoregressions}, journal={Biometrika}, volume={82}, year= 1995, pages={733-746}, number={4} } @article{BesYorMol91, author={Julian Besag and Jeremy York and Annie Molli{\'e}}, title={Bayesian Image Restoration with Two Applications in Spatial Statistics (With Discussion)}, journal={Annals of the Institute of Statistical Mathematics}, volume= 43, year= 1991, pages={1-59}, number= 1 } @article{Bicego97, author={G. Bicego}, title={Estimating adult mortality rates in the context of the AIDS epidemic in sub-Saharan Africa: analysis of DHS sibling histories}, journal={Health Transition Review}, volume= 7, year= 1997, pages={7--22}, number={S2} } @book{Biggs93, author={N.L. Biggs}, title={Algebraic Graph Theory}, publisher={Cambridge University Press}, year= 1993, address={Cambridge, UK}, edition={2nd} } @article{Billordo05a, author={Libia Billordo}, title={Publishing in French Political Science Journals}, journal={French Politics}, volume={3}, year={2005}, pages={178-186}, number={2} } @article{Billordo05b, author={Libia Billordo}, title={Methods Training in French Political Science}, journal={French Politics}, volume={3}, year={2005}, pages={352-0357}, number={3} } @article{BinBreEar05, author={J.B. Bingenheimer and R.T. Brennan and F.J. Earls}, title={Firearm violence exposure and serious violent behavior}, journal={Science}, volume={308}, year={2005}, pages={1323-1326}, month={May} } @book{BisFieHol75, author={Y.M. M. Bishop and S.E. Fienberg and P.W. Holland}, title={Multivariate Analysis: Theory and Practice}, publisher={MIT Press}, year= 1975, address={Cambridge, MA} } @book{Bishop95, author={Christopher M. Bishop}, title={Neural Networks for Pattern Recognition}, publisher={Oxford University Press}, year= 1995, address={Oxford} } @article{BisSteWil06, author={Benjamin Bishin and Daniel Stevens and Christian Wilson}, title={{Character Counts: Honesty and Fairness in Election 2000}}, journal={Public Opinion Quarterly}, volume={70}, year={2006}, pages={235-248}, number={2} } @article{BjoKri99, author={Jakob Bue Bjorner and Tage Sondergaard Kristensen}, title={Multi-item Scales for Measuring Global Self Rated Health}, journal={Research on Aging}, volume= 21, year= 1999, pages={{417-39}}, number= 3 } @article{BlaGeo91, author={R.C. Blattberg and E.I. George}, title={Shrinkage Estimation of Price and Promotional Elasticities: Seemingly Unrelated Equations}, journal= jasa, volume= 86, year= 1991, pages={304--315}, month={Jun}, number= 414 } @article{BlaRas04, author={Grant Blank and Karsten B. Rasmussen}, title={The Data Documentation Initiative: The Value and Significance of a Worldwide Standard.}, journal={Social Science Computer Review}, volume={22}, year={2004}, pages={306-318}, number={3} } @article{BlaSmi04, author={Dan A. Black and Jeffrey A. Smith}, title={How robust is the evidence on the effects of college quality? Evidence from matching}, journal={Journal of Econometrics}, volume={121}, year={2004}, pages={99-124}, number={1} } @article{BloHilRic03, author={Howard S. Bloom and Carolyn J. Hill and James A. Riccio}, title={Linking Program Implementation and Effectiveness: Lessons from a Pooled Sample of Welfare-to-Work Experiments}, journal={Journal of Policy Analysis and Management}, volume={22}, year={2003}, pages={551-575}, number={4} } @book{Bloom05, title={Learning More from Social Experiments}, publisher={Russell Sage Foundation}, year={2005}, editor={Howard S. Bloom}, address={New York} } @article{BloRicBla07, author={Howard S. Bloom and Lashawn Richburg-Hayes and Alison Black}, title={Using Covariates to Improve Precision for Studies that Randomize Schools to Evaluate Educational Interventions}, journal={Educational Evaluation and Policy Analysis}, year={2007} } @book{BLS03, author={{Board on Life Sciences}}, title={Sharing Publication-Related Data and Materials: Responsibilities of Authorship in the Life Sciences}, publisher={National Academies Press}, year= 2003, address={Washington, D.C.} } @article{Blumer48, author = {Herbert Blumer}, title = {Public Opinion and Public Opinion Polling}, journal = {American Sociological Review}, volume = {13}, year = {1948}, pages = {542-549}, month = {October}, number = {5} } @incollection{Bohm84, author={Peter Bohm}, title={Are thee Practicable Demand-Revealing Mechanisms?}, booktitle={Public Finance and the Quest for Efficiency}, publisher={Wayne State University Press}, year={1984}, address={Detroit}, editor={H. Hanusch}, pages={127-139} } @article{BonBarMee94, author={Luc Monneux and Jan J. Barendregt and Karin Meeter and Gouke J. Bonsel and Paul J. van der Maas}, title={Estimating Clinical Morbidity Due to Ischemic Heart Disease and Congestive Heart Failure: The Future Rise of Heart Failure}, journal={American Journal of Public Health}, volume= 84, year= 1994, pages={20-28} } @unpublished{BonBonJen01, author={Doug Bond and Joe Bond and J. Craig Jenkins and Churl Oh and Charles Lewis Taylor}, title={Integrated Data for Events Analysis (IDEA): An Event Form Typology for Automated Events Data Development}, note={manuscript, Harvard University}, year= 2001 } @article{Bongaarts89, author={John Bongaarts}, title={A Model of the Spread of HIV Infection and the Demographic Impact of AIDS}, journal={Statistics in Medicine}, volume= 8, year= 1989, pages={103--120} } @techreport{BooMaiSmi02, author={Heather Booth and John Maindonald and Len Smith}, title={{Age-Time Interactions in Mortality Projection: Applying Lee-Carter to Australia}}, institution={The Australian National University}, year= 2002, month={August}, type={Working Papers in Demography} } @article{BooMaiSmi02b, author={Heather Booth and John Maindonald and Len Smith}, title={Applying Lee-Carter Under Conditions of Variable Mortality Decline}, journal={Population Studies}, volume= 56, year= 2002, pages={325--336}, number= 3 } @unpublished{BorBorRal01, author={Roman Borisyuk and Galina Borisyuk and Colin Rallings and Michael Thrasher}, title={Forecasting the 2001 General Election Result: A Neural Network Approach}, note={{http://www.psa.ac.uk/spgrp/epop/forecasting\_genelect2001.htm}}, year={2001}, annote={authors try to forecast election results; they generate fitted values by 'predicting' the winners of past elections. they do break up their data sets into training and test in the spirit of cross-validation; they also compare their results to logit.} } @incollection{Borchardt91, author = {Knut Borchardt}, title = {Economic Causes for the Collapse of the Weimar Republic}, booktitle = {Perspectives on Modern German Economic History and Policy}, publisher = {Cambridge University Press}, year = 1991, address = {New York}, editor = {Knut Borchardt}, pages = {161--184} } @article{borgan95, author={{\O }rnulf Borgan and B. Langgholz and L. Goldstein}, title={Methods for the Analysis of Sampled Cohort Data in the Cox Proportional Hazard Model}, journal={The Annals of Statistics}, volume= 23, year= 1995, number={1749-1778} } @article{BorMayTur04, author={Robert Boruch and Henry May and Herbert Turner and Julia Lavenberg and Anthony Petrosino and Dorothy de Moya and Jeremy Grimshaw and Ellen Foley }, title={Estimating the Effects of Interventions That are Deployed in Many Places: Place-Randomized Trials}, journal={American Behavioral Scientist}, volume={47}, year={2004}, pages={608-633}, number={5} } @book{Boruch97, author={Robert F. Boruch}, title={Randomized Experiments for Planning and Evaluation}, publisher={Sage Publications}, year={1997}, address={Thousand Oaks} } @article{BouChaWel01, author={Andrew Boulle and Daniel Chandramohan and Peter Weller}, title={A Case Study of Using Artificial Neural Networks for Classifying Cause of Death from Verbal Autopsy}, journal={International Journal of Epidemiology}, volume={30}, year={2001}, pages={515-520} } @unpublished{BowHan05, author={Jake Bowers and Ben Hansen}, title={Attributing Effects to A Cluster Randomized Get-Out-The-Vote Campaign: An Application of Randomization Inference Using Full Matching}, note={Departments of Political Science and Statistics: University of Michigan}, year={2005}, month={July} } @book{BoxHunHun78, author={George E.P. Box and William G. Hunger and J. Stuart Hunter}, title={Statistics for Experimenters}, publisher={Wiley-Interscience}, year={1978}, address={New York} } @article{BoyHonNar01, author={James P. Boyle and Amanda A. Honeycutt and K.M. Venkat Narayan and Thomas J. Hoerger and Linda S. Geiss and Hong Chen and Theodore J. Thompson}, title={Projection of Diabetes Burden Through 2050}, journal={Diabetes Care}, volume= 24, year= 2001, pages={1936--1940}, number= 11 } @article{BozBel87, author={J.E. Bozik and W.R. Bell}, title={Forecasting Age Specific Fertility Using Principal Components}, journal={Proceedings of the Americal Statistical Association, Social Statistics Section}, year= 1987, pages={396--401} } @article{bracken98, author={Michael B. and John C. Bracken}, title={Avoidable Systematic Error in Estimating Treatment Effects Must not be Tolerated}, journal={British Medical Journal}, volume= 317, year= 1998, pages={11-56}, month={October 24} } @article{Brady85, author={Henry E. Brady}, title={The Perils of Survey Research: Inter-Personally Incomparable Responses}, journal={Political Methodology}, volume= 11, year= 1985, pages={269--290}, month={June}, number={3--4} } @article{Brady89, author={Henry E. Brady}, title={Factor and Ideal Point Analysis for Interpersonally Incomparable Data}, journal={Psychometrika}, volume= 54, year= 1989, pages={181--202}, month={June}, number= 2 } @inproceedings{BraHil73, author={William Brass and Kenneth Hill}, title={Estimating Adult Mortality in Africa from Orphanhood}, booktitle={Proceedings of the International Population Conference Liege}, year= 1973, organization={International Union for the Scientific Study of Population} } @article{BraTuc01, author={Ted Brader and Joshua Tucker}, title={The Emergence of Mass Partisanship in Russia, 1993-96}, journal={American Journal of Political Science}, volume={45}, year={2001}, pages={69-83} } @book{BreDay80, author={Norman E. Breslow and N.E. Day }, title={Methods in Cancer Research}, publisher={Lyon}, year= 1980 } @book{BreFriOls84, author={Leo Breiman and Jerome H. Friedman and Richard A. Olshen and Charles J. Stone}, title={Classification and Regression Trees}, publisher={Chapman \& Hall}, year={1984}, address={New York, New York} } @book{Brehm93, author={John Brehm}, title={The Phantom Respondents: Opinion Surveys and Political Respresentation}, publisher={University of Michigan Press}, year={1993}, address={Ann Arbor} } @article{Breiman01, author={Leo Breiman}, title={Statistical Modeling: The Two Cultures}, journal={Statistical Science}, volume={16}, year={2001}, pages={199-215}, month={August}, number={3} } @article{Breslow96, author={Norman E. Breslow}, title={Statistics in Epidemiology: The Case-Control Study}, journal= jasa, volume= 91, year= 1996, pages={14--28} } @unpublished{Breyer04, author={L.A. Breyer}, title={The Dbacl Text Classifier}, note={laird@lbreyer.com}, year={04}, month={June} } @unpublished{Breyer04, author={L.A. Breyer}, title={The Dbacl Text Classifier}, note={laird@lbreyer.com}, year={04}, month={June} } @article{BreZie92, author={Hermann Brenner and Hartwig Ziegler}, title={Monitoring and Projecting Cancer Incidence in Saarland, Germany, Based on Age-Cohort Analyses}, journal={Journal of Epidemiology and Community Health}, volume= 46, year= 1992, pages={15--20} } @book{BroDav91, author={Peter J. Brockwell and Richard A. Davis}, title={Time Series: Theory and Methods}, publisher={Springer-Verlag}, year={1991}, edition={2nd} } @article{BroDenVer02, author={N. Brouhns and M. Denuit and J. Vermunt}, title={A Poisson Log-bilinear Regression Approach to the Construction of Projected Lifetables}, journal={Insurance: Mathematics and Economics}, volume= 31, year= 2002, pages={373--393} } @article{BroGra00, author={Ron Brookmeyer and Sarah Gray}, title={Methods for Projecting the Incidence and Prevalence of Chronic Diseases in Ageing Populations: Application to Alzheimer's Disease}, journal={Statistics in Medicine}, volume= 19, year= 2000, pages={1481--1493} } @article{BroHew00, author={M. Brockerhoff and P. Hewett}, title={Inequality of child mortality among ethnic groups in sub-Saharan Africa}, journal= bull, year={2000}, optnumber={1}, optvolume={78}, optpages={30--41} } @article{Bronnum-Hansen02, author={Henrik Bronnum-Hansen}, title={Predicting the Effect of Prevention of Ischaemic Heart Disease}, journal={Scandinavian Journal of Public Health}, volume= 30, year= 2002, pages={5--11} } @article{Bronnum-Hansen99, author={Henrik Bronnum-Hansen}, title={How Good is the Prevent Model for Estimating the Health Benefits of Prevention?}, journal={Journal of Epidemiology and Community Health}, volume= 53, year= 1999, pages={300--305} } @article{BroSchRot06, author={M. Alan Brookhart and Sebastian Schneeweiss and Kenneth J. Rothman and Robert J. Glynn and Jerry Avorn and Til Sturmer}, title={Variable Selection for Propensity Score Models}, journal={American Journal of Epidemiology}, volume={163}, year={2006}, pages={1149-1156}, month={April} } @book{Brown58, author={Ralph Brown}, title={Loyalty and Security}, publisher={Yale University Press}, year= 1958, address={New Haven, CT} } @article{Brown82, author={Brown, Courtney}, title={The Nazi Vote: A National Ecological Study}, journal={American Political Science Review}, volume= 76, year= 1982, pages={285-302}, number= 2 } @article{BruFal94, author={Brustein, William and Falter, J{\"u}rgen W.}, title={The Sociology of Nazism: An Interest-Based Account}, journal={Rationality and Society}, volume= 6, year= 1994, pages={369-399}, number= 3 } @book{Brustein96, author={William Brustein}, title={The Logic of Evil: Social Origins of the Nazi Party, 1925-1933}, publisher={Yale University Press}, year= 1996 } @article{BruUrd05, author={Helge Brunborg and Henrik Urdal}, title={The Demography of Conflict and Violence: An Introduction}, abstract={The demography of armed conflict is an emerging field among demographers and peace researchers alike. The articles in this special issue treat demography as both a cause and a consequence of armed conflict, and they carry important policy implications. A study of German-allied countries during World War II addresses the role of refugees and territorial loss in paving the way for genocide. Other articles focusing on the demographic causes of conflict discuss highly contentious issues of whether economic and social inequality, high population pressure on natural resources, and youth bulges and limited migration opportunities can lead to different forms of armed conflict and state failure. The articles on demographic responses to armed conflict analyze the destructiveness of pre-industrial warfare, differences in short- and long-term mortality trends after armed conflict, and migratory responses in war. Another set of articles on demographic responses to war is published simultaneously in the European Journal of Population.}, journal={The Journal of Peace Research}, volume={42}, year={2005}, pages={371-374}, month={July}, number={4} } @book{BSER02, author={{Board on Earth Sciences and Resources}}, title={Geoscience Data and Collections: National Resources in Peril}, publisher={National Academies Press}, year= 2002, address={Washington, D.C.} } @article{Buchheim03, author={Christoph Buchheim}, title={Die Erholung von der Weltwirtschaftskrise 1932/33 in Deutschland}, journal={Jahrbuch fuer Wirtschaftsgeschicht}, year={2003}, pages={13-26}, number={1} } @article{BurFred01, author={B Burstrom and P Fredlund}, title={Self-rated health: Is it as good a predictor of subsequent mortality among adults in lower as well as in higher social classes?}, journal={Journal of Epidemiology and Community Health}, volume= 55, year= 2001, pages={{836-40}} } @article{Burgoon06, author={Brian Burgoon}, title={On Welfare and Terror}, journal={Journal of Conflict Resolution}, volume={50}, year={2006}, pages={176-203}, month={April}, number={2} } @article{Burnham72, author={Walter Dean Burnham}, title={Political Immunisation and Political Confessionalism: The United States and Weimar Germany}, journal={Journal of Interdisciplinary History}, volume= 3, year= 1972, pages={1--30} } @article{Burtless95, author={Gary Burtless}, title={The Case for Randomized Field Trials in Economic and Policy Research}, journal={The Journal of Economic Perspectives}, volume={9}, year={1995}, pages={63-84}, number={2} } @article{ButBurMit87, author={J.S. Butler, et al.}, title={Measurement Error in Self-Reported Health Variables}, journal={The Review of Economics and Statistics}, volume= 69, year= 1987, pages={{644-50}} } @techreport{ButCar01, author={C.T.\ Butts and K.M.\ Carley}, title={Multivariate Methods for Interstructural Analysis}, institution={CASOS working paper, Carnegie Mellon University}, year={2001} } @incollection{Butler51, author={David E. Butler}, title={Appendix}, booktitle={The British General Election of 1950}, publisher={Macmillan}, year= 1951, address={London}, editor={H.G. Nicholas} } @article{BuuEyrTenHop03, author={S. van Buuren and S. Eyres and A. Tennant and M. Hopman-Rock}, title={Assessing comparability of dressing disability in different countries by response conversion}, journal={European Journal of Public Health}, volume={13}, year={2003}, pages={15-19} } @book{ByaFotHuo06, author = {Peter Byass and Edward Fottrell and Dao Lan Huong and Yemane Berhane and Tumani Corrah and Kathleen Kahn and Lulu Muhe and Do Duc Van}, title = {Refining a probabilistic model for interpreting verbal autopsy data}, publisher = {Scandinavian Journal of Public Health}, year = {34}, volume = {2006}, pages = {26-31} } @article{CamJagHar03, author={Michael J. Camasso and Radha Jagannathan and Carol Harvey and Mark Killingsworth}, title={The Use of Client Surveys to Guage the Threat of Contamination in Welfare Reform Experiments}, journal={Journal of Policy Analysis and Management}, volume={22}, year={2003}, pages={207-223}, number={2} } @book{CamTri98, author={A.C. Cameron and P.K. Trivedi}, title={Regression Analysis of Count Data}, publisher={Cambridge University Press}, year={1998} } @article{Canner91, author={Paul L. Canner}, title={Covariate Adjustment of Treatment Effects in Clinical Trials}, journal={Controlled Clinical Trials}, volume={12}, year={1991}, pages={359-366} } @book{Cantril65, author={Hadley Cantril}, title={The Pattern of Human Concerns}, publisher={Rutgers University Press}, year= 1965, address={New Brunswick, N.J.} } @article{CapAngFro95, author={Riccardo Capocaccia and Robert De Angelis and Luisa Frova and Milena Sant and Eva Buiatti and Gemma Gatta and Andrea Micheli and Franco Berrino and Alessandro Barchielli and Ettore Conti and Lorenzo Gafa and Arduino Verdecchia}, title={Estimation and Projections of Stomach Cancer Trends in Italy}, journal={Cancer Causes and Control}, volume= 6, year= 1995, pages={339--346} } @article{CapDeaFro97, author={Riccardo Capocaccia and Roberta De Angelis and Luisa Frova and Gemma Gatta and Milena Sant and Andrea Micheli and Franco Berrino and Ettore Conti and Lorenzo Gafa and Luca Roncucci and Arduino Verdecchia}, title={Estimation and Projections of Colorectal Cancer Trends in Italy}, journal={International Journal of Epidemiology}, volume= 26, year= 1997, pages={924--932}, number= 5 } @article{CapVerMic90, author={Riccardo Capocaccia and Arduino Verdecchia and Andrea Micheli and Milena Sant and Gemma Gatta and Franco Berrino}, title={Breast Cancer Incidence and Prevalence Estimated from Survival and Mortality}, journal={Cancer Causes and Control}, volume= 1, year= 1990, pages={23--29} } @article{CarCha70, author={J.D. Caroll and J. J. Chang}, title={Analysis of Individual Differences in Multidimensional Scaling}, journal={Psychometrika}, volume= 35, year= 1970, pages={283--319}, month={September} } @article{CarGre97, author={J. Douglas Carroll and Paul E. Green}, title={Psychometric Methods in Marketing Research: Part II, Multidimensional Scaling}, journal={Journal of Marketing Research}, volume={XXXIV}, year= 1997, pages={193--204}, month={May} } @article{CarKucLom96, author={Raymond J. Carroll and helmut Kuchenhoff and F. Lombard and Leonard A. Stefanski}, title={Asymptotics for the SIMEX estimator in structural measurement error models. }, journal={Journal of the American Statistical Association}, volume={91}, year={1996}, pages={242-250} } @book{CarLou00, author={Bardley P. Carlin and Thomas A. Louis}, title={Bayes and Empirical Bayes Methods for Data Analysis}, publisher={CRC Press}, year= 2000, edition={2nd} } @article{CarMacRup99, author={Raymond J. Carroll and Jeffrey D. Maca and David Ruppert}, title={Nonparametric regression in the presence of measurement error}, journal={Biometrika}, volume={86}, year={1999}, pages={3}, month={541-554} } @article{Carpenter02, author={Daniel Paul Carpenter}, title={Groups, the Media, Agency Waiting Costs, and FDA Drug Approval}, journal= ajps, volume= 46, year= 2002, pages={490--505}, month={July}, number= 2 } @techreport{CarPrs00, author={Lawrence R. Carter and Alexia Prskawetz}, title={Examining Structural Shifts in Mortality using the Lee-Carter Method}, institution={Bundesinstitut fur Bevolkerungswissenschaften}, year= 2000, address={Germany}, note={Demographische Vorausschatzungen --- Abhandlungen des Arbeitkreises Bevolkerrungswissenschaftlicher Methoden der Statistischen Woche} } @article{Carr07, author={David Carr}, title={24-Hour Newspaper People}, journal={New York Times}, year= 2007, month={15 January} } @article{CavTre94, author={W.B. Cavnar and J.M. Trenkle}, title={{N-Gram-Based Text Categorization}}, journal={Proceedings of the Third Annual Symposium on Document Analysis and Information Retrival}, year={1994}, pages={161-175} } @article{Chafee19, author={Zechariah Chafee}, title={Freedom of Speech in War Time}, journal= hlr, volume= 32, year={1919}, pages={932--??} } @book{Chafee41, author={Zechariah Chafee}, title={Free Speech in the United States}, publisher= hup, year= 1941, address={Cambridge, MA} } @article{ChaMauRod94, author={Daniel Chandramohan and Gillian H. Maude and Laura C. Rodrigues and Richard J. Hayes}, title={Verbal Autopsies for Adult Deaths: Issues in their Development and Validation}, journal={International Journal of Epidemiology}, volume={23}, year={1994}, pages={213-222}, number={2} } @article{Chamberlain80, author={Gary Chamberlain}, title={Analysis of Covariance with Qualitative Data}, journal={Review of Economic Studies}, volume={XLVII}, year= 1980, pages={225-238} } @article{ChaRodMau98, author={Daniel Chandramohan and Laura C. Rodriques and Gillian H. Maude and Richard Hayes}, title={The Validy of Verbal Autopsies for Assessing the Causes of Institutional Maternal Death}, journal={Studies in Family Planning}, volume={29}, year={1998}, pages={414-422}, month={December}, number={4} } @article{Chase68, author={G.R. Chase}, title={On the Efficiency of Matched Pairs in Bernoulli Trials}, journal={Biometrika}, volume={55}, year={1968}, pages={365-369}, month={July}, number={2} } @article{ChaSetQui01, author={Daniel Chandramohan and Philip Setel and Maria Quigley}, title={Effect of misclassification of causes of death in verbal autopsy: can it be adjusted}, journal={International Journal of Epidemiology}, volume={30}, year={2001}, pages={509-514} } @article{ChaSolShi05, author={Daniel Chandramohan and Nadia Soleman and Kenji Shibuya and John Porter}, title={Editorial: Ethical issues in the application of verbal autopsies in mortality surveillance systems}, journal={Tropical Medicine and International Health}, volume={10}, year={2005}, pages={1087-1089}, month={November}, number={11} } @article{CheCumDum03, author={Lee Cheng, et al}, title={Health related quality of life in pregeriatric patients with chronic diseases at urban, public supported clinics}, journal={Health and Quality of Life Outcomes}, volume= 1, year= 2003, pages={{1-8}}, month={October}, number= 63 } @book{CheRon83, author={G. Shabbir Cheema and Dennis A. Rondinelli}, title={Decentralization and Development: Policy Implementation in Developing Countries}, publisher={Sage Publications}, year={1983}, address={Beverly Hills, CA} } @article{Childers76, author={Thomas Childers}, title={The Social Bases of the Nationalist Socialist Vote}, journal={Journal of Contemporary History}, volume= 11, year= 1976, pages={17-42} } @book{Childers83, author={Childers, Thomas}, title={The Nazi Voter}, publisher={University of North Carolina Press}, year= 1983 } @article{ChiLwa91, author={J. Chin and S.K. Lwanga}, title={Estimation and Projection of Adult AIDS Cases: a Simple Epidemiological Model}, journal={Bulletin of the World Health Organization}, volume= 69, year= 1991, pages={399--406}, number= 4 } @article{ChiZamGra92, author={J.D. Chiphangwi and T.P. Zamaere and W Graham and B. Duncan and T. Kenyon and R. Chinyama}, title={Maternal mortality in the Thyolo district of southern Malawi}, journal={East African Medical Journal}, volume= 69, year= 1992, pages={675--679} } @article{Chochran53, author={William G. Cochran}, title={Matching in Analytical Studies}, journal={American Journal of Public Health}, volume={43}, year={1953}, pages={684-691}, month={June} } @book{Christensen96, author={Ronadl Christensen}, title={Plane Answers to Complex Questions: The Theory of Linear Models}, publisher={Springer-Verlag New York}, year={1996}, edition={Second} } @article{Church75, author={Thomas Church}, title={Conspiracy Doctrine and Speech Offenses: A Reexamination of Yates v. U.S. from the Perspective of U.S. v. Spock}, journal={Cornell Law Review}, volume= 60, year={1975}, pages={569--??} } @incollection{ClaBer92, author={David G. Clayton and Luisa Bernardinelli}, title={Bayesian Methods For Mapping Disease Risk}, booktitle={Geographical and Environmental Epidemiology: Methods for Small-Area Studies}, publisher={Oxford University Press}, year= 1992, address={Oxford}, editor={P. Elliott and J.Cuzick and D. English and R. Stern}, pages={205-220} } @article{ClaJanHob01, author={W. Crawford Clark and Malvin N. Janal and Elaine K. Hoben and J. Douglas Carroll}, title={How Separate are the Sensory, Emotional, and Motivational Dimensions of Pain? A Multidimensional Scaling Analysis}, journal={Somatosensory and Motor Research}, volume= 18, year= 2001, pages={31-39}, number= 1 } @article{ClaMarLie04, author={Tim Clark and Sean Martin and Ted Liefeld}, title={Globally Distributed Object Identification for Biological Knowledgebases}, journal={Briefings in Bioinformatics}, volume={5}, year={2004}, pages={59-71}, month={March}, number={1} } @article{Clarkson00, author={Douglas B. Clarkson}, title={A Random Effects Individual Difference Multidimensional Scaling Model}, journal={Computational Statistics and Data Analysis}, volume= 32, year= 2000, pages={337--347}, month={January} } @incollection{Clayton96, author={David G. Clayton}, title={Generalized Linear Mixed Models}, booktitle={Markov Chain {M}onte {C}arlo in Practice}, publisher={Chapman \& Hall}, year= 1996, address={London}, editor={W.R. Gilks and S. Richardson and D.J. Spiegelhalter}, pages={275-301} } @article{CleDev88, author={W.S. cleveland and S.J. Devlin}, title={Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting}, journal={Journal of the American Statistical Association}, volume={83}, year={1988}, pages={596-610} } @book{CleHen98, author={M.P. Clements and D.F. Hendry}, title={{Forecasting Economic Time Series}}, publisher= cup, year= 1998, address={Cambridge, U.K.} } @misc{CliJacRiv00, author={Joshua Clinton and Simon Jackman and Douglas Rivers}, title={The Statistical Analysis of Legislative Behavior: A Unified Approach}, year={2000}, howpublished={Paper presented at the Annual Meeting of the Political Methodology Society} } @unpublished{CliJacRiv02, author={Joshua Clinton and Simon Jackman and Douglas Rivers}, title={The Statistical Analysis of Roll Call Data}, note={Stanford University}, year= 2002 } @article{CloRubSch91, author={Clifford C. Clogg and Donald B. Rubin and Nathaniel Schenker and Bradley Schultz and Lynn Weidman}, title={Multiple Imputation of Industry and Occupation Codes in Census Public-Use Samples Using Bayesian Logistic Regression}, journal={Journal of the American Statistical Association}, volume={86}, year={1991}, pages={68-78}, month={March}, number={413} } @book{CoaDem66, author={Ansley J. Coale and Paul Demeny}, title={Regional Model Life Tables and Stable Populations}, publisher={Princeton University Press}, year= 1966, address={Princeton, N.J.} } @book{CocCox57, author={WG Cochran and GM Cox}, title={Experimental Designs}, publisher={Wiley}, year={1957}, address={New York} } @article{Cochran65, author={William G. Cochran}, title={The Planning of Observational Studies of Human Populations}, journal={Journal of the Royal Statistical Society. Series A (General)}, volume= 128, year= 1965, pages={234-266}, number= 2 } @article{Cochran68, author={Cochran, William G.}, title={The effectiveness of adjustment by subclassification in removing bias in observational studies}, journal={Biometrics}, volume={24}, year={1968}, pages={295-313} } @article{CocRub73, author={Cochran, William G. and Rubin, Donald B.}, title={Controlling bias in observational studies: A review}, journal={Sankhya: The Indian Journal of Statistics, Series A}, volume={35, Part 4}, year={1973}, pages={417-466} } @article{ColMah93, author = {David Collier and Mahon, Jr., James E.}, title = {Conceptual `Stretching' Revisited}, journal = apsr, volume = 87, year = 1993, pages = {845-855}, month = {December}, number = 4 } @article{ColSul02, author={James E. Coleman and Barry Sullivan}, title={Enduring and Empowering: The Bill of Rights in the Third Millennium}, journal={Law and Contemporary Problems}, volume= 65, year={2002}, pages={1--??} } @book{Colton06, author={Timothy Colton}, title={Transitional Citizens: Voters and What Influences Them in the New Russia}, publisher={Harvard University Press}, year={2006 in press}, address={Cambridge, MA} } @article{ComMolGri01, author={Campbell, M.K. and Mollison, J. and Grimshaw, J.M.}, title={{Cluster trials in implementation research: estimation of intracluster correlation coefficients and sample size}}, journal={Statistics in Medicine}, volume={20}, year={2001}, pages={391--399}, number={3} } @unpublished{Congdon06, author={Peter Congdon}, title={A Model Framework for Mortality and Health Data Classified by Age, Area, and Time}, note={to be published in Biometrics Peter congdon, Dept. of Geography, Queen Mary (University of London), Mile end Road, London E1 4NS, England p.congdon@qmul.ac.uk}, year={2006} } @book{CooCam79, author={Thomas D. Cook and Donald T. Campbell}, title={Quasi-Experimentation: Design and Analysis Issues for Field Settings}, publisher={Rand McNally College Publishing Company}, year={1979}, address={Chicago} } @article{CooSte94, author={J. Cook and L. Stefanski}, title={Simulation-extrapolation estimation in parametric measurement error models}, journal={Journal of the American Statistical Asociation}, volume={89}, year={1994}, pages={1314-1328} } @book{CorCraFox94, title={Transforming State-Society Relations in Mexico}, publisher={Center for U.S.-Mexican Studies}, year={1994}, editor={Wayne A. Cornelius and Ann L. Craig and Jonathan Fox}, address={University of California, San Diego}, series={U.S.-Mexico contemporary Perspectives Series, 6} } @InCollection{Cornelius04, author = {Wayne A. Cornelius}, title = {Mobilized Voting in the 2000 Elections: The Changing Efficacy of Vote Buying and Coercion in Mexican Electoral Politics}, booktitle = {Mexico's Pivotal Democratic Election: Candidates, Voters, and the Presidential Campaign of 2000}, OPTcrossref = {}, OPTkey = {}, OPTpages = {}, publisher = {Stanford University Press}, year = {2004}, editor = {Jorge I. Dom\'{i}nguez and Chappell Lawson}, OPTvolume = {}, OPTnumber = {}, OPTseries = {}, OPTtype = {}, OPTchapter = {}, address = {Stanford and La Jolla, CA}, OPTedition = {}, OPTmonth = {}, OPTnote = {}, OPTannote = {} } @article{Cornfield51, author={Jerome Cornfield}, title={A Method of Estimating Comparative Rates from Clinical Data: Application to Cancer of the Lung, Breast and Cervix}, journal={Journal of the National Cancer Institute}, volume= 11, year= 1951, number={1269-1275} } @article{CowBra96, author={Mary Kathryn Cowles and Bradley P. Carlin}, title={Markov Chain Monte Carlo Convergence Diagnotics: A Comparative Review}, journal={Journal of the American Statistical Association}, volume={91}, year={1996}, pages={883-904}, month={June}, number={434} } @article{Cox52, author={D.R. Cox}, title={Some Recent Work on Systematic Experimental Designs}, journal={Journal of the Royal Statistical Society. Series B (Methodological)}, volume={14}, year={1952}, pages={211-219}, number={2} } @book{Cox58, author={David R. Cox}, title={Planning of Experiments}, publisher={John Wiley}, year= 1958, address={New York} } @book{Cox58, author={D.R. Cox}, title={The Planning of Experiments}, publisher={Wiley}, year= 1958 } @article{CoxSke92, author={Brian Cox and D.C.G. Skegg}, title={Projections of Cervical Cancer Mortality and Incidence in New Zealand: The Possible Impact of Screening}, journal={Journal of Epidemiology and Community Health}, volume= 46, year= 1992, pages={373--377} } @article{CraWoo05, author={Craggs, Richard and Mary McGee Wood}, title={{Evaluating Discourse and Dialogue Coding Schemes}}, journal={Computational Linguistics}, volume={31}, year={2005}, pages={289-295}, number={3} } @article{CroKen02, author={Thomas F. Crossley and Steven Kennedy}, title={The reliability of self-assesses health status}, journal={Journal of Health Economics}, volume= 21, year= 2002, pages={{643-58}}, number= 4 } @article{Crosnoe05, author={Robert Crosnoe}, title={Double Disadvantage or Signs of Resilience? The Elementary School Contexts of Children from Mexican Immigrant Families}, journal={American Educational Research Journal}, volume={42}, year={2005}, pages={269-303}, number={2} } @unpublished{CruHotImb06, author = {Richard K. Crump and V. Joseph Hotz and Guido W. Imbens and Oscar Mitnik}, title = {Moving the Goalposts: Addressing Limited Overlap in Estimation of Average Treatment Effects by Changing the Estimand}, note = {Department of Economics, UC Berkeley}, year = {2006}, month = {September} } @article{CruHotImb09, title = {{Dealing with limited overlap in estimation of average treatment effects}}, author = {Richard K. Crump and V. Joseph Hotz and Guido W. Imbens and Oscar Mitnik}, journal = {Biometrika}, volume = {96}, number = {1}, pages = {187}, year = {2009} } @article{CuaFor95, author={C.M. Cuadras and J. Fortiana}, title={A Continuous Metric Scaling Solution for A Random Variable}, journal={Journal of Multivariate Analysis}, volume= 52, year= 1995, pages={1--14} } @article{CuaForOli97, author={C.M. Cuadras and J. Fortiana and F. Oliva}, title={The Proximity of an Individual to a Population with Applications to Discriminant Analysis}, journal={Journal of Classification}, volume= 14, year= 1997, pages={117-136} } @article{CumMcKWei03, author={Peter Cummings and B. McKnight and NS Weiss}, title={Matched-pair cohort methods in traffic crash research}, journal={Accident Analysis and Prevention}, volume= 35, year= 2003, pages={131--141}, note={{http://depts.washington.edu/hiprc/about/topics/web/bike\_prevmat/}} } @article{CumRoy88, author={W.G. Cumberland and R. M. Royall}, title={Does Simple Random Sampling Provide Adequate Balance?}, journal={Journal of the Royal Statistical Society. Series B (methodological)}, volume={50}, year={1988}, pages={118-124}, number={1} } @article{Dagostino98, author={Ralph B. {D'Agostino, Jr.}}, title={Propensity Score Methods for Bias Reduction in the Comparison of a Treatment to a Non-randomized Control Group}, journal={Statistics in Medicine}, volume= 17, year= 1998, pages={2265--2281} } @article{DagRub00, author={Ralph B. {D'Agostino, Jr.} and Donald B. Rubin}, title={Estimating and using propensity scores with partially missing data}, journal={Journal of the American Statistical Association}, volume= 95 , year= 2000, pages={749-759} } @article{DalBecHuc98, author={Russell J. Dalton and Paul A. Beck and Robert Huckfeldt}, title={Partisan Cues and the Media: Information Flows in the 1992 Presidential election}, journal={American Poltical Science Review}, volume={92}, year={1998}, pages={111-126} } @article{DanGraStu96, author={I. Danel and W. Graham and P Stupp and P. Castillo}, title={Applying the sisterhood method for estimating maternal mortality to a health facility-based sample: a comparison with results from a household-based sample}, journal={International Journal of Epidemiology}, volume= 25, year= 1996, pages={1017--1-22} } @inbook{DanLaf05, author={Isabel Danel and Gerard M. La Forgia}, title={Health Systems Innovation in Central America}, chapter={Contracting for Basic Health Care in Rural Guatemala - Comparison of the Performance of Three Delivery Models}, year={2005}, publisher={The World Bank}, address={Washington, DC}, editor={Gerard M. La Forgia} } @unpublished{DasChe01, author={Sanjiv R. Das and Mike Y. Chen}, title={Yahoo! for Amazon: Opinion Extraction from Small Talk on the Web}, note={Department of Finance Santa Clara University}, year={2001}, month={August} } @article{DasKleiKlei94, author={Erik J. Dasbach, PhD, Ronald Klein, MD, Barbara E. K. Klein, MD, and Scot E. Moss, MA}, title={Self-Rated Health and Mortality in People with Diabetes}, journal={American Journal of Public Health}, volume= 84, year= 1994, pages={{1775-79}} } @article{DavAlbCoo03, author={G.L. Davis and J.E. Albright and S.F. Cook and D.M. Rosenberg}, title={Projecting Future Complications of Chornic Hepatitis C in the United States}, journal={Liver Transplantation}, volume= 9, year= 2003, pages={331--338}, number= 4 } @article{DavAlbCoo03, author={G.L. Davis and J.E. Albright and S.F. Cook and D.M. Rosenberg}, title={Projecting Future Complications of Chornic Hepatitis C in the United States}, journal={Liver Transplantation}, volume= 9, year= 2003, pages={331--338}, number= 4 } @unpublished{DavLawPen03, author={Kushal Dave and Steve Lawrence and David Pennock}, title={Mining the Peanut Gallery: Opinion Extraction and Semantic Classification of Product Reviews}, note={Kushal Dave NEC Laboratories America, 4 Independence Way Princeton, NJ 08540, Kushal@nec-labs.com}, year={2003}, month={May} } @article{DavManLai98, author={Huw Talfryn Oakley Davies and Tavakoli Manouche and Crombie Kinloch Iain}, title={Authors Reply}, journal={British Medical Journal}, volume= 317, year= 1998, pages={1156-7}, month={October 24} } @article{DavNeaWen98, author={G. Davey-Smith and J.D. Neaton and D. Wentworth and R. Stamler and J. Stamler}, title={Mortality differences between black and white men in the USA: contribution of income and other risk factors among men screened for the Multiple Risk Factor Intervention Trial (MRFIT)}, journal= lan, volume= 351, year= 1998, pages={934--939}, number= 9107 } @article{DawFauMee89, author={Robyn M. Dawes and David Faust and Paul E. Meehl}, title={Clinical Versus Actuarial Judgement}, journal={Science}, volume={243}, year={1989}, pages={1668-1674}, month={March}, number={4899} } @article{Dawid00, author={Philip Dawid}, title={Causal Inference Without Counterfactuals (with discussion)}, journal= jasa, volume= 95, year= 2000, pages={447-448} } @incollection{Dawid83, author={A. P. Dawid}, title={Invariant Prior Distributions}, booktitle={Encyclopedia of Statistical Sciences}, publisher={Wiley-Interscience}, year= 1983, editor={S. Kotz and S. Johnson and C.B. Read}, pages={228--236}, volume= 4 } @inbook{DeaGro00, author={Angus Deaton and Mararet Grosh}, title={Consumption}, chapter={5}, year={2000}, publisher={The World Bank}, pages={91-133}, volume={1}, series={Designing household survey questionnaires for developing countries: lessons from fifteen years of the Living Standards Measurement Study} } @techreport{DeaPax04, author={Angus Deaton and Christina Paxson}, title={Mortality, Income, and Income Inequality Over Time in the Britain and the United States}, institution={National Bureau of Economic Research}, year= 2004, address={Cambridge, MA}, number= 8534, note={{http://www.nber.org/papers/w8534}} } @unpublished{DebKee05, author={Suzanna De Boef and Luke Keele}, title={Revisiting Dynamic Specification}, note={DeBoef: Dept. of Political Science; PA State University, State College, PA 16802; 814-863-9402 sdeboef@psu.edu}, year={2005}, month={July} } @book{DeBoor78a, author={C. de Boor}, title={A Practical Guide to Splines}, publisher={Springer-Verlag}, year={1978}, address={New York} } @article{DeeBat03, author={Dorly J. H. Deeg and Peter A. Bath }, title={Self-rated health, gender, and mortality in older persons: Introduction to a special section}, journal={The Gerontologist}, volume={43}, year={2003}, pages={{369-71}}, number={3} } @article{DeeKey04, author={Thomas S. Dee and Benjamin J. Keys}, title={Does Merit Pay Reward Good Teachers? Evidence from a Randomized Experiment}, journal={Journal of Policy Analysis and Management}, volume={23}, year={2004}, pages={471-488}, number={3} } @article{Deeks98, author={Jon Deeks}, title={Odds Ratio Should be Used Only in Case-Control Studies and Logistic Regression Analyses}, journal={British Medical Journal}, volume= 317, year= 1998, pages={1155-6}, month={October 24} } @article{DeeZonMaa89, author={Dorly J. H. Deeg, et al}, title={Medical and Social Predictors of Longevity in the Elderly: Total Predictive Value and Interdependence}, journal={Social Science and Medicine}, volume= 29, year= 1989, pages={{1271-80}}, number= 11 } @article{Dehejia05, author={Dehejia Rajeev}, title={Practical Propensity Score Matching: A Reply to Smith and Todd}, journal={Journal of Econometrics}, volume={125}, year={2005}, pages={355-364} } @article{DehWah02, author={Rajeev H. Dehejia and Sadek Wahba}, title={Propensity Score Matching Methods for Non-Experimental Causal Studies}, journal={Review of Economics and Statistics}, volume={84}, year={2002}, pages={151-161}, number={1} } @article{DehWah99, author={Rajeev H. Dehejia and Sadek Wahba}, title={Causal Effects in Nonexperimental Studies: Re-Evaluating the Evaluation of Training Programs}, journal={Journal of the American Statistical Association}, volume={94}, year={1999}, pages={1053-62}, month={December}, number={448} } @article{deMGelGry03, author={Scott de Marchi and Christopher F. Gelpi and Jeffrey D. Grynaviski}, title={Untangling Neural Nets}, journal= apsr, year={2003, forthcoming} } @article{DemLaiRub77, author={Arthur P. Dempster and N.M. Laird and D.B. Rubin}, title={Maximum Likelihood Estimation from Incomplete Data via the EM Algorithm}, journal={Journal of the Royal Statistical Association}, volume={39}, year={1977}, pages={1-38} } @book{DeMoivere1725, title={Annuities on Lives}, year= 1725, editor={Abraham DeMoivre}, address={London} } @book{Derthick79, author={Martha Derthick}, title={Policymaking for Social Security}, publisher={The Brookings Institution}, year={1979}, address={Washington, DC} } @article{DeuBufPoy99, author={Sylvie Deuffic and Laurent Buffat and Thierry Poynard and Alain-Jacques Valleron}, title={Modeling the Hepatitis C Virus Epidemic in France}, journal={Hepatology}, volume= 29, year= 1999, pages={1596--1601}, number= 5 } @book{DevLor93, author={R. DeVore and G. Lorentz}, title={Constructive Approximation}, publisher={Springer-Verlag}, year= 1993, address={New York} } @article{DewThuAnd86, author={William G. Dewald and Jerry G. Thursby and Richard G. Anderson}, title={Replication in Empirical Economics: The Journal of Money, Credit and Banking Project}, journal={American Economic Review}, volume={76}, year={1986}, pages={587-603}, month={September}, number={4} } @article{Diamond86, author={Diamond, A.M.}, title={{What is a citation worth}}, journal={Journal of Human Resources}, volume={21}, year={1986}, pages={200--215}, number={2} } @misc{DiaSek05, author={Alexis Diamond and Jasjeet Sekhon}, title={Genetic Matching for Estimating Causal Effects: A New Method of Achieving Balance in Observational Studies}, year= 2005 , howpublished={{http://jsekhon.fas.harvard.edu/}} } @article{DieGodYu07, author={Daniel Diermeier and Jean-Fran{\c{c}}ois Godbout and Bei Yu and Stefan Kaufmann}, title={Language and Ideology in Congress}, year={2007}, note={Corresponding author, d-diermeier@kellogg.northwestern.edu} } @article{DieMarKoe95, author={Paula Diehr and Donald C. Martin and Thomas Koepsell and Allen Cheadle}, title={Breaking the Matches in a Paired t-Test for Community Interventions When the Number of Pairs is Small}, journal={Statistics in Medicine}, volume={14}, year={1995}, pages={1491-1504} } @article{Dinh02, author={Viet D. Dinh}, title={Freedom and Security After September 11}, journal={Harvard Journal of Law and Public Policy}, volume= 25, year={2002}, pages={399--??} } @unpublished{DinMaz02, author={L. Dini and G. Mazzini}, title={Opinion Classification Through Information Extraction}, note={Turin, Italy}, year={02} } @article{DipGan04, author={Thomas A. DiPrete and Markus Gangl}, title={Assessing Bias in the Estimation of Causal Effects: Rosenbaum Bounds on Matching Estimators and Instrumental Variables Estimation with Imprerfect Instruments}, journal={Sociological Methodology}, volume={34}, year={2004}, pages={271-310}, month={December} } @article{DocWei03, author={Henry V. Doctor and Alexander A. Weinreb}, title={Estimation of AIDS adult mortality by verbal autopsy in rural Malawi}, journal={AIDS}, volume={17}, year={2003}, pages={2509-2513} } @article{DonDon87, author={Allan Donner and A. Donald}, title={Analysis of data arising from a stratified design with the cluster as unit of randomization}, journal={Statistics in Medicine}, volume={6}, year={1987}, pages={43-52} } @techreport{Dong04, author={Lauren Bin Dong}, title={{The Behrens-Fisher Problem: An Empirical Likelihood Approach}}, institution={University of Victoria}, year= 2004, key={Econometric Working Paper} } @article{DonHau89, author={Allan Donner and W. Hauck}, title={Estimation of a common odds ration in paired-cluster randomization designs}, journal={Statistics in Medicine}, volume={8}, year={1989}, pages={599-607} } @book{DonKla00, author={Allan Donner and Neil Klar}, title={Design and Analysis of Cluster Randomization Trials in Health Research}, publisher={Arnold}, year={2000}, address={London} } @article{DonKla93, author={Allan Donner and Neil Klar}, title={Confidence Interval Construction for Effect Measures Arising from Cluster Randomization Trials}, journal={Journal of Clinical Epidemiology}, volume={46}, year={1993}, pages={123-131}, number={2} } @article{Donner87, author={Allan Donner}, title={Statistical Methodology for Paired Cluster Designs}, journal={American Journal of Epidemiology}, volume={126}, year={1987}, pages={972-979}, number={5} } @article{Doorn98, author={Carol Van Doorn }, title={Spouse-rated limitations and spouse-rated life expectancy as mortality predictors}, journal={Journal of Gerontolofy: Social Sciences}, volume={{53B}}, year= 1998, pages={{S137-143}} } @article{Doorn98, author={Carol van Doorn}, title={Spouse-Raetd Limitations and Spouse Rated Life Expectancy as Mortality Predictors}, journal={Journal of Gerontology}, volume={{53B}}, year= 1998, pages={{S137-43}}, number= 3 } @techreport{DooTra90, author={Fred Doolittle and Linda Traeger}, title={Implementing the National JTPA Study}, institution={Manpower Demonstration Research Croporation}, year={1990}, month={April}, address={New York} } @article{Dorsen89, author={Norman Dorsen}, title={Here and There: Foreign Affairs and Civil Liberties}, journal= ajil, volume= 83, year={1989}, pages={840--??} } @article{DowMan90, author={John E. Dowd and Kenneth G. Manton}, title={Forecasting Chronic Disease Risks in Developing Countries}, journal={International Journal of Epidemiology}, volume= 19, year= 1990, pages={1019--1036}, month={May}, number= 4 } @book{Doyle06, author={Sir Arthur Conan Doyle}, title={A Study in Scarlet}, publisher={Adamant Media Corporation}, year= 1888 } @article{DoySam00, author={Michael W. Doyle and Nicholas Sambanis}, title={International Peacebuilding}, journal= apsr, volume= 94, year= 2000, pages={779--801}, month={December}, number= 4 } @book{DozSch98, title={Roads not Taken: Tales of Alternative History}, publisher={Del Rey}, year= 1998, editor={Gardner Dozois and Stanley Schmidt}, address={New York} } @article{Drake93, author={C. Drake}, title={Effects of misspecification of the propensity score on estimators of treatment effects}, journal={Biometrics}, volume={49}, year={1993}, pages={1231-1236} } @unpublished{DreFar04, author={Daniel W. Drezner and Henry Farrell}, title={The Power and Politics of Blogs}, note={American Political Science Association, Chicago, Illinois}, year={2004}, month={August} } @book{Dueve95, author={Christian de Dueve}, title={Vital Dust}, publisher={Basic Books}, year= 1995 } @article{DunDav53, author={Duncan, O. D. and Davis, B.}, title={An Alternative to Ecological Correlation}, journal={American Sociological Review}, volume= 18, year= 1953, pages={665-666} } @unpublished{DurRicWar03, author={Stephen D. Durbin and J. Neal Richter and Doug Warner}, title={A System for Affective Rating of Texts}, note={RightNow Technolgies, Bozeman, MT}, year={03} } @unpublished{DurRicWar03, author={Stephen D. Durbin and J. Neal Richter and Doug Warner}, title={A System for Affective Rating of Texts}, note={RightNow Technolgies, Bozeman, MT}, year={03} } @article{Easterlin03, author={Richard A. Easterlin}, title={Explaining happiness}, journal={PNAS}, volume={100}, year={2003}, pages={11176-11183}, month={September}, number={19} } @book{Edwards72, author={A.W.F. Edwards}, title={Likelihood}, publisher={Cambridge University Press}, year= 1972, address={New York} } @article{Edwards91, author={Harry T. Edwards}, title={The Judicial Function and the Elusive Goal of Principled Decisionmaking}, journal={Wisconsin Law Review}, volume= 1991, year={1991}, pages={837--??} } @article{Efron01, author={Brad Efron}, title={[statistical Modeling: The Two Cultures]: Comment}, journal={Statistical Science}, volume={16}, year={2001}, pages={218-219}, month={August}, number={3} } @article{Efron79, author={B. Efron}, title={{Bootstrap methods: another look at the jackknife}}, journal={Annals of Statistics}, volume= 7, year= 1979, pages={1--26} } @book{Efron82, author={B. Efron}, title={{The Jacknife, the Bootstrap, and Other Resampling Plans}}, publisher={SIAM}, year= 1982, address={Philadelphia} } @article{Efron87, author={B. Efron}, title={Empirical Bayes Confidence Intervals Based on Bootstrap Samples: Comment}, journal={Journal of the American Statistical Association}, volume={82}, year={1987}, pages={754}, month={September}, number={399} } @article{Efron94, author={Bradley Efron}, title={Missing Data, Imputation, and the Bootstrap}, journal={Journal of the American Statistical Association}, volume={89}, year={1994}, pages={463-475}, month={June}, number={426} } @article{Efron94b, author={Bradley Efron}, title={Missing Data, Imputation, and he Bootstrap: Rejoinder}, journal={Journal of the American Statistical Association}, volume={89}, year={1994}, pages={478-479}, month={June}, number={426} } @book{EfrTib93, author={B. Efron and R. Tibshirani}, title={{An Introduction to the Bootstrap}}, publisher={Chapmand and Hall}, year= 1993, address={London} } @book{Einstein20, author={Albert Einstein}, title={Relativity: The Special and General Theory}, publisher={Henry Holt}, year= 1920, address={NY} } @article{EisLaz38, author={P. Eisenberg and Paul F. Lazarsfeld}, title={The psychological effects of unemployment}, journal={Psychological Bulletin}, volume= 35, year= 1938, pages={358--390} } @article{ElbGilWu05, author={Nabila El-Bassei and Louisa Gilbert and Elwin Wu and Hyun Go and Jennifer Hill}, title={Relationship between drug abuse and intimate partner violence: A longitudinal study among women receiving methadone}, journal={American Journal of Public Health}, volume={95}, year={2005}, pages={465-470}, month={March}, number={3} } @article{Elekes86, author={G. Elekes}, title={A Geometric Inequality and the Complexity of Computing Volume}, journal={Discrete \& Computational Geometry}, volume={1}, year={1986}, pages={289-292} } @book{Elster00, author={Jon Elster}, title={Ulysses unbound: studies in rationality, precommitment, and constraints}, publisher={Cambridge University Press}, year={2000}, address={New York} } @inbook{Elster79, author={John Elster}, title={Ulysses and the Sirens: studies in rationality and irrationality}, chapter={II Imperfect Rationality: Ulysses and the Sirens}, year={1979}, publisher={Cambridge University Press}, pages={36 - 111}, address={Cambridge} } @article{Emerson68, author={Thomas I. Emerson}, title={Freedom of Expression in Wartime}, journal={University of Pennsylvania Law Review}, volume= 116, year={1968}, pages={975--1011} } @book{Emerson70, author={Thomas I. Emerson}, title={The System of Freedom of Expression}, publisher={Vintage}, year= 1970, address={New York} } @book{Enders04, author={Walter Enders}, title={Applied Econometric Time Series}, publisher={Wiley}, year={2004}, edition={2nd} } @book{EneHin84, author={James M. Enelow and Melvin J. Hinich}, title={The Spatial Theory of Voting: An Introduction}, publisher={Cambridge University Press}, year= 1984, address={New York} } @article{EoPre92, author={Irma T. Elo and Samuel H. Preston}, title={Effects of Early-Life Conditions on Adult Mortality: A Review}, journal={1992}, volume={58}, year={1992}, pages={186-212}, month={Summer}, number={2} } @article{EpsGonWei01, author={S.A. Epstein and J.J. Gonzales and K. Weinfurt and B Bockeloo and N Yuan and G Chase}, title={Are Psychiatrists' Characterists Related to how They Care for Depression in the Medically Ill? Results from a National Case-Vignette Study}, journal={Psychosomatics}, volume= 42, year= 2001, pages={482--489}, month={Nov.--Dec.}, number= 6 } @unpublished{EpsOha05, author={David L. Epstein and Sharyn O'Halloran}, title={Higher-Order Markov Models}, note={Columbia University}, year={2005} } @book{EriMacSti02, author={Robert S. Erikson and Michael B MacKuen and James S. Stimson}, title={The Macro Polity}, publisher={Cambridge University Press}, year= 2002, address={New York} } @article{EriUndElo01, author={Ingeborg Eriksson, Anna-Lena Unden, and Stig Elofsson}, title={Self-Rated Health. Comparisons Between Three Different Measures. Results from a Population Study.}, journal={International Epidemiological Association}, volume= 30, year= 2001, pages={{326-33}} } @book{EstGolGur95, author={Daniel C. Esty and Jack Goldstone and Ted Robert Gurr and Pamela T. Surko and Alan N. Unger}, title={State Failure Task Force Report}, publisher={Science Applications International Corporation}, year= 1995, address={McLean, Virginia} } @book{EstGolGur98, author={Daniel C. Esty and Jack Goldstone and Ted Robert Gurr and Barbara Harff and Pamela T.\ Surko and Alan N.\ Unger and Robert S. Chen }, title={The State Failure Task Force Report: Phase II Findings}, publisher={Science Applications International Corporation}, year= 1998, address={McLean, Virginia} } @incollection{EstGolGur98b, author={Daniel C. Esty and Jack Goldstone and Ted Robert Gurr and Barbara Harff and Pamela T.\ Surko and Alan N.\ Unger and Robert S.\ Chen}, title={The State Failure Project: Early Warning Research for U.S. Foreign Policy Planning}, booktitle={Preventive Measures: Building Risk Assessment and Crisis Early Warning System}, publisher={Rowman and Littlefield}, year={1998b}, address={Lanham, Maryland}, editor={John L. Davies and Ted Robert Gurr} } @article{EstGolGur99, author={Daniel C. Esty and Jack Goldstone and Ted Robert Gurr and Barbara Harff and Marc Levy, Geoffrey D.\ Dabelko, Pamela T.\ Surko and Alan N.\ Unge}, title={The State Failure Report: Phase II Findings}, journal={Environmental Change and Security}, volume= 5, year= 1999, month={Summer} } @article{EtaLehDia04, author={Jean-Francois Etard and Jean-Yves Le Hesran and Aldiouma Diallo and Jean-Pierre diallo and Jean-Louis Ndiaye and Valerie Delaunay}, title={Childhood mortality and probably causes of death using verbal autopsy in Niakhar, Senegal, 1989-2000}, journal={International Journal of Epidemiology}, volume={33}, year={2004}, pages={1286-1292} } @book{Eubank88, author={R.L. Eubank}, title={Spline Smoothing and Nonparametric Regression}, publisher={Marcel Dekker}, year={1988}, volume={90}, address={Basel}, series={Statistics, textbooks and monographs} } @article{Eule87, author={Julian N. Eule}, title={Temporal Limits on the Legislative Mandate: Entrenchment and Retroactivity}, journal={American Bar Foundation Research Journal}, volume={12}, year={1987}, pages={379-459}, number={2/3} } @book{Everitt05, author={Brian Everitt}, title={An R and S-Plus Companion to Multivariate Analysis}, publisher={Springer-Verlag}, year={2005}, address={London} } @inproceedings{EzzJohKha95, author={T. Ezzati-Rice and W. Johnson and M. Khare and R. Little and D. Rubin and J. Schafer}, title={A Simulation Study to Evaluate the Performance of Model-Based Multiple Imputations in NCHS Health Examination Surveys}, publisher={Proceedings of the Annual Research conference}, address={Washington, D.C.}, pages={257-266}, organization={Bureau of the Census} } @manual{FalHae89, author={J{\"u}rgen W. Falter and Dirk H{\"a}nisch}, title={Wahl- und Sozialdaten der Kreise und Gemeinden des Deutschen Reiches von 1920 bis 1933}, organization={Zentralarchiv f{\"u}r Empirische Sozialforschung}, year= 1989, address={Universit{\"a}t zu K{\"o}ln}, note={ZA number 8013} } @article{FalHan99, author={J{\"u}rgen W. Falter and Dirk H{\"a}nisch}, title={Wahlerfolge und W{\"a}hlerschaft der NSDAP in {\"O}sterreich von 1927 bis 1932}, journal={Zeitgeschichte}, volume= 15, year= 1988, pages={223-244}, number= 6 } @article{FalLohLin85, author = {J{\"u}rgen W. Falter and Jan-Bernd Lohm{\"o}ller and Andreas Link and Johann de Rijke}, title = {Hat Arbeitslosigkeit tats{\"a}chlich den Aufstieg des Nationalsozialismus bewirkt?}, journal = {Jahrbuch f{\"u}r National{\"o}konomie und Statistik}, volume = 200, year = 1985, pages = {121-136}, number = 2 } @incollection{Falter90, author={Falter, J{\"u}rgen}, title={The First German Volkspartei: The Social Foundations of the NSDAP}, booktitle={Elections, Parties and Political Traditions}, publisher={Berg}, year= 1990, address={M{\"u}nchen}, editor={Rohe, K.} } @article{Falter90b, author={Falter, J{\"u}rgen W.}, title={Arbeiter haben erheblich haeufiger, Angestellte dagegen sehr viel seltener NSDAP gewaehlt als wir lange Zeit angenommen haben}, journal={Geschichte und Gesellschaft}, volume= 16, year= 1990, pages={536-552}, number= 4 } @book{Falter91, author={Falter, J{\"u}rgen}, title={Hitlers W{\"a}hler}, publisher={Beck}, year= 1991, address={M{\"u}nchen} } @article{FalZin88, author={Falter, J{\"u}rgen W. and Zintl, Reinhard}, title={The Economic Crisis of the 1930s and the Nazi Vote}, journal={Journal of Interdisciplinary History}, volume= 19, year= 1988, pages={55-85}, number= 1 } @article{FanFotBer06, author={Mesganaw Fantahun and Edward Fottrell and Yemane Berhane and Stig Wall and Ulf Hogberg and Peter Byass}, title={Assessing a new approach to verbal autopsy interpretation in a rural Ethiopian community: the InterVA model}, journal={Bulletin of the World Health Organization}, volume={84}, year={2006}, pages={204-210}, month={March}, number={3} } @article{FanFotBer06, author={Mesganaw Fantahun and Edward Fottrell and Yemane Berhane and Stig Wall and Ulf Hogberg and Peter Byass}, title={Assessing a new approach to verbal autopsy interpretation in a rural Ethiopian community: the InterVA model}, journal={Bulletin of the World Health Organization}, volume={84}, year={2006}, pages={204-210}, month={March}, number={3} } @article{Fantahun98, author={Mesganaw Fantahun}, title={Patters of Childhood Mortality in Three Districts of North Gondar Administrative Zone}, journal={Ethiopian Medical Journal}, volume={36}, year={1998}, pages={71-81}, number={2} } @inproceedings{Fay92, author={Robert E. Fay}, title={When are Inferences from Multiple Imputation Valid?}, year={1992}, pages={354-365}, organization={Proceedings of Survey Research Methods Section of the American Satistical Association} } @article{fearon91, author={James D. Fearon}, title={Counterfactuals and Hypothesis Testing in Political Science}, journal={World Politics}, volume= 43, year= 1991, pages={169--195}, month={June}, number= 2 } @article{Feeney01, author={G. Feeney}, title={The Impact of HIV/AIDS on Adult Mortality in Zimbabwe}, journal={Population and Development Review}, volume= 27, year= 2001, pages={771--980}, number= 4 } @unpublished{Fernandezval05, author={Ivan Fernandez-Val}, title={Bias Correcion in Panel Data Models with Individual Specific Parameters}, note={Boston University}, year={2005} } @unpublished{Fernandezval05, author={Ivan Fernandez-Val}, title={Bias Correction in Panel Data Models with Individual Specific Parameters}, note={Boston University}, year={2005} } @techreport{FidFreGro92, author={M. Fidrich and J. Frenk and J. Gromicho}, title={An efficient algorithm to check whether $0$ belongs to the convex hull of a finite number of {$L_p$}-circles}, institution={Econometric Institute}, year={1992}, type={Report 9204/A}, address={Netherlands} } @book{FieMarStr85, author={Stephen E. Fienberg and Margaret E. Martin and Miron L. Straf}, title={Sharing Research Data}, publisher={National Academy Press}, year={1985} } @article{Finkel01, author={N.J. Finkel}, title={When Principles Collide in Hard Cases}, journal={Psychology, Public Policy, and Law}, volume= 7, year= 2001, pages={515--560}, month={September}, number= 3 } @book{Fiorina81, author={Morris P. Fiorina}, title={Retrospective Voting in American National Elections}, publisher={Yale University Press}, year= 1981, address={New Haven} } @article{FisCobVen98, author={Bonnie S. Fisher and Craig T. Cobane and Thomas M. Vander Ven and Francis T. Cullen}, title={How Many Authors Does It Take to Publish an Article? Trends and Patterns in Political Science}, journal={PS: Political Science and Politics}, volume= 31, year= 1998, pages={847--856}, number= 4 } @article{Fish95, author={Steven M. Fish}, title={The Advent of Multipartism in Russia, 1993-95}, journal={Post Soviet Affairs}, volume={11}, year={1995}, pages={340-383}, number={4} } @book{Fisher35, author={Ronald A. Fisher}, title={The Design of Experiments}, publisher={Oliver and Boyd}, year= 1935, address={London} } @article{Fisher24, author={Ronald A. Fisher}, title={The conditions under which $\chi^2$ measures the discrepancy between observed observation and hypothesis}, journal={Journal of the Royal Statistical Society}, volume={87}, year={1924}, pages={442-450} } @article{Pearson00, author={Karl Pearson}, title={On a criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can reasonably be supposed to have arisen from random sampling}, journal={Philosophical Magazine}, volume={50}, year={1900}, pages={157-175} } @article{FlaBes82, author={Brian R. Flay and J. Allen Best}, title={Overcoming Design Problems in Evaluating Health Behavior Programs}, journal={Evaluation \& The Health Professions}, volume={5}, year={1982}, pages={43-69}, month={March}, number={1} } @article{Foote58, author={Richard J. Foote}, title={A Modified {D}oolittle Approach for Multiple and Partial Correlation and Regression}, journal= jasa, volume= 53, year= 1958, pages={133-143} } @article{ForNorAhm95, author={Ian Ford and John Norrie and Susan Ahmadi}, title={Model Inconsistency, Illustrated by Cox proortional Hazard Model}, journal={Statistics in Medicine}, volume={14}, year={1995}, pages={735-746} } @book{Fortas68, author={Abe Fortas}, title={Concerning Dissent and Civil Disobedience}, publisher={Signet}, year= 1968, address={New York} } @article{Franklin89, author={Charles H. Franklin}, title={Estimation across Data Sets: Two-Stage Auxiliary Instrumental Variables Estimation}, journal={Political Analysis}, volume={1}, year={1989}, pages={1-23}, number={1} } @book{Franzese02, author={R.J. Franzese}, title={Macroeconomic policies of developed democracies}, publisher={Cambridge University Press}, year={2002}, address={New York} } @unpublished{FraRub01, author={Constantine E.\ Frangakis and Donald Rubin}, title={The Defining Role of Principal Effects in Comparing Treatments Using General Post-Treatments Using General Post-Treatment Variables: From Surrogate Endpoints to Censoring by Death}, note={\url{http://biosun01.biostat.jhsph.edu/~cfrangak}} } @article{FraRub02, author={Constantine E. Frangakis and Donald B. Rubin}, title={Principal stratification in causal inference}, journal={Biometrics}, volume= 58, year= 2002, pages={21-29} } @article{FraRubZho02, author={Constantine E. Frangakis and Donald B. Rubin and Ziao-Hua Zhou}, title={Clustered Encouragement Designs with Individual Noncompliance: Bayesian Inference with Randomization, and Application to Advance Directive Forms}, journal={Biostatistics}, volume={3}, year={2002}, pages={147-164}, number={2} } @article{FreChrKha05, author={James V. Freeman and Parul Christian and Subarna K. Khatry and Ramesh K. Adhikari and Steven C. LeClerq and Joanne Katz and Gary L. Darmstadt}, title={Evaluation of neonatal verbal autopsy using physician review versus algorithm-based cause-of-death assignment in rural Nepal}, journal={Paediatric and Perinatal Epidemiology}, volume={19}, year={2005}, pages={323-331} } @article{FreChrKha05, author={James V. Freeman and Parul Christian and Subarna K. Khatry and Ramesh K. Adhikari and Steven C. LeClerq and Joanne Katz and Gary L. Darmstadt}, title={Evaluation of neonatal verbal autopsy using physician review versus algorithm-based cause-of-death assignment in rural Nepal}, journal={Paediatric and Perinatal Epidemiology}, volume={19}, year={2005}, pages={323-331} } @article{Freedman08, author = {David A. Freedman}, year = 2008, volume = 40, title = {On Regression Adjustments to Experimental Data}, journal = {Advances in Applied Mathematics}, pages = {180--193} } @article{Freese07, author={Jeremy Freese}, title={Replication Standards for Quantitative Social Science: Why not Sociology}, journal={Sociological Methods and Research}, year={2007, forthcoming} } @article{FreGonGom06, author={Julio Frenk and Eduardo Gonz{\'a}lez-Pier and Octavio G{\'o}mez-Dant{\'e}s and Miguel A. Lezana and Felicia Marie Knaul}, title={Comprehensive reform to improve health system performance in Mexico}, journal={Lancet}, volume={268}, year={2006}, pages={1524-34}, month={October} } @article{FreKleOst98, author={D.A. Freedman and S.P. Klein and M. Ostland and M.R. Roberts}, title={Review}, journal={Journal of the American Statistical Association}, volume= 93, year= 1998, pages={{1518-1522}} } @article{FreMil04, author={Per G. Fredriksson and Daniel L. Millimet}, title={Comparative Politics and Envrionmental Taxation}, journal={Journal of Environmental Economics and Management}, volume={48}, year={2004}, pages={705-722} } @techreport{Frenk04, author={Julio Frenk}, title={Fair Financing and Universal Social Protection: the structural reform of the Mexican health system}, institution={Secretaria de Salud}, year={2004}, address={Mexico City} } @article{Frenk06, author={Julio Frenk}, title={Bridging the divide: global lessons from evidence-based health policy in Mexico}, journal={Lancet}, volume={368}, year={2006}, pages={954-61}, month={September} } @article{FreSepGom03, author={Julio Frenk and Jamie Sep{\'u}lveda and Octavio G{\'o}mez-Dant{\'e}s and Felicia Knaul}, title={{Evidence-based health policy: three generations of reform in Mexico}}, journal={The Lancet}, volume={362}, year={2003}, pages={1667--1671}, number={9396} } @article{FreWec81, author={Frey, Bruno and Weck, Hannelore}, title={Hat Arbeitslosigkeit den Aufstieg des Nationalsozialismus bewirkt?}, journal={Jahrbuch fuer Nationaloekonomie und Statistik}, volume= 196, year= 1981, pages={1-31} } @book{Friendly00, author={Michael Friendly}, title={Visualizing Categorical Data}, publisher={SAS Institute}, year={2000} } @unpublished{FriHol05, author={John N. Friedman and Richard T. Holden}, title={The Rising Incumbent Advantage: What's Gerrymandering Got to Do With It?}, note={Dept. of Economics, Harvard; rholden@fas.harvard.edu}, year={2005}, month={August} } @unpublished{FriHol05, author={John N. Friedman and Richard T. Holden}, title={The Rising Incumbent Advantage: What's Gerrymandering Got to Do With It?}, note={Dept. of Economics, Harvard; rholden@fas.harvard.edu}, year={2005}, month={August} } @article{FriKroNew98, author={Linda P. Fried, Md, MPH, Richard A. Kronmal, PhD, Anne B. Newman, MD, PhD, et al}, title={Risk Factors for 5-Year Mortality in Older-Adults: The Cardiovascular Health Study}, journal={Journal of the American Medical Association}, volume= 279, year= 1998, pages={{585-92}} } @book{Fritzsche98, author={Peter Fritzsche}, title={Germans into Nazis}, publisher={Harvard University Press}, year= 1998, address={Cambridge, MA} } @unpublished{Frolich02, author={Markus Fr{\"o}lich}, title={What is the Value of Knowing the Propensity Score for Estimating Average Treatment Effects?}, note={IZA Discussion Paper 548, University of St. Gallen}, year= 2002 } @article{Frolich04, author={Markus Fr{\"o}lich}, title={Finite Sample Properties of Propensity Score Matching and Weighting Estimators}, journal={Review of Econometrics and Statistics}, volume= 86, year= 2004, pages={77--90} } @article{FurLov01, author={A. Furnham and J. Lovett}, title={The Perceived Efficacy and Risks of Complementary and Alternative Medicine and Conventional Medicine: A Vignette Study}, journal={Journal of Applied Biobehavioral Research}, volume= 6, year= 2001, pages={39--63}, number= 1 } @article{FylFor91, author={Knut Fylkesnes and Olav Helge Forde}, title={The Tromso Study: Predictors of Self-Evaluated Health-Has Society Adopted the Expanded Health Concept?}, journal={Social Science and Medicine}, volume= 32, year= 1991, pages={{141-46}}, number= 2 } @book{GAD01, author={{Government's Actuary Department}}, title={National Population Projections: Review of Methodology for Projecting Mortality}, publisher={National Statistics Direct, UK}, year= 2001, address={London}, note={{http://www.statistics.gov.uk/}} } @article{GaiMarCar96, author={Mitchell H. Gail and Steven D. Mark and Raymond J. Carroll and Sylvan B. Green and David Pee}, title={On Design Considerations and Randomization-Based Inference for Community Intervention Trials}, journal={Statistics in Medicine}, volume={15}, year={1996}, pages={1069-1092} } @article{GaiMarCar96, author={Mitchell H. Gail and Steven D. Mark and Raymond j. Carroll and Sylvan B. Green and David Pee}, title={On Design Considerations and Randomization-Based Inference for Community Intervention Trials}, journal={Statistics in Medicine}, volume={15}, year={1996}, pages={1069-1092} } @article{GaiWiePia84, author={M.H. Gail and S. Wieand and S. Piantadosi}, title={Biased Estimates of Treatment Effect in Randomized Experiements with Nonlinear Regressions and Omitted Covariates}, journal={Biometrika}, volume={71}, year={1984}, pages={431-444}, month={December}, number={3} } @article{GajPet04, author={Vendhan Gajalakshmi and Richard Peto}, title={Verbal autopsy of 80,000 adult deaths in Tamilnadu, South India}, journal={BMC Public Health}, volume={4}, year={2004}, month={October}, number={47} } @article{GajPetKan02, author={Vendhan Gajalakshmi and Richard Peto and Santhanakrishnan Kanaka and Sivagurunathan Balasubramanian}, title={Verbal autopsy of 48000 adult deaths attributable to medical causes in Chennai (formerly Madras), India}, journal={BMC Public Health}, volume={2}, year={2002} } @article{GajPetKan02, author={Vendhan Gajalakshmi and Richard Peto and Santhanakrishnan Kanaka and Sivagurunathan Balasubramanian}, title={Verbal autopsy of 48000 adult deaths attributable to medical causes in Chennai (formerly Madras), India}, journal={BMC Public Health}, volume={2}, year={2002} } @article{GakHogLop04, author={Emmanuela Gakidou and Margaret Hogan and Alan D Lopez}, title={Adult Mortality: Time for a Reapprasal}, journal={International Journal of Epidemiology}, volume= 33, year= 2004, pages={710-717}, number= 4 } @article{GakLozGon06, author={Emmanuela Gakidou and Rafael Lozano and Eduardo Gonz{\'a}lez-Pier and Jesse Abbott-Klafter and Jeremy T. Barofsky and Chloe Bryson-Cahn and Dennis M. Feehan and Diana K. Lee and Hector Hern{\'a}ndez-Llamas and Christopher J.L. Murray}, title={Assessing the effect of the 2001-06 Mexican health reform: an interim report card}, journal={Lancet}, volume={368}, year={2006}, pages={1920-35}, month={November} } @book{Gamson92, author={William A. Gamson}, title={Talking Politics}, publisher={Cambridge University Press}, year= 1992, address={New York, NY} } @techreport{GAO94, author={{U.S. General Accounting Office}}, title={Breast conservation versus mastectomy: patient survival in day-to-day medical practice and randomized studies: report to the chairman, Subcommitee on Human Resources and Intergovernmental Relations, Committee on Government Operations, House of Representatives}, institution={U.S. General Accounting Office}, year= 1994, address={Washington, DC}, number={Report GAO-PEMD-95-9} } @article{GarFri97, author={M. Garenne and F. Friedberg}, title={Accuracy of indirect estimates of maternal mortality: a simulation model}, journal={Studies in Family Planning}, volume= 28, year= 1997, pages={132--142} } @book{Gasset32, author={Ortega y Gasset, Javier}, title={The Revolt of the Masses}, publisher={G. Allen \& Unwin}, year= 1932, address={London} } @article{Gastwirth87, author={J. Gastwirth}, title={The statistical precision of medical screening procedures: Application to polygraph and AIDS antibodies test data}, journal={Statistical Science}, volume={2}, year={1987}, pages={213-222}, number={3} } @book{Geiger32, author={Geiger, Theodor}, title={Die soziale Schichtung des deutschen Volkes}, publisher={Ferdinand Enke}, year={1932}, address={Stuttgart} } @book{GelCarSte03, author={Andrew Gelman and J.B. Carlin and H.S. Stern and D.B. Rubin}, title={Bayesian Data Analysis, Second Edition}, publisher={Chapman \& Hall}, year= 2003 } @book{GelCarSte95, author={Andrew Gelman and J.B. Carlin and H.S. Stern and D.B. Rubin}, title={Bayesian Data Analysis}, publisher={Chapman and Hall}, year= 1995 } @unpublished{GelGri00, author={Christopher Gelpi and Joseph M. Grieco}, title={Democracy, Interdependence, and the Liberal Peace}, note={{Duke University, http://www.duke.edu/$\sim$gelpi/papers.htm}}, year={2000} } @book{GelHil07, author={Andrew Gelman and Jennifer Hill}, title={Data Analysis Using Regression and Multilevel/Hierarchical Models}, publisher={Cambridge University Press}, year= 2007, address={New York} } @unpublished{GelHua04, author={Andrew Gelman and Zaiying Huang}, title={Estimating incumbency advantage and its varation, as an example of a before-after study}, year={2004}, month={October} } @article{Gelman06, author={Andrew Gelman}, title={Prior distributions for variance parameters in hierarchical models}, journal={Bayesian Analysis}, volume={1}, year={2006}, pages={515-533}, number={3} } @article{GelSmi90, author={{Gelfand, A.E. and Smith, A.F.M.}}, title={Sampling-based approach to calculating marginal densities}, journal= jasa, volume= 85, year= 1990, pages={398--409} } @article{GelSmi90, author={A.E. Gelfand and A.F.M. Smith}, title={Sampling-based approaches to calculating marginal densities}, journal={Journal of the American Statistical Association}, volume={85}, year={1990}, pages={398-409} } @article{GemGem84, author={Stuart Geman and Donald Geman}, title={Stochastic Relaxation, {G}ibbs Distributions, and the {B}ayesian Restoration of Images}, journal={I.E.E.E. Transactions: Pattern Analysis and Machine Intelligence}, volume= 6, year= 1984, pages={721-741} } @article{GerGre00, author={Gerber, Alan S. and Green, Donald P.}, title={The Effects of Canvassing, Telephone Calls, and Direct Mail on Voter Turnout: A Field Experiment}, journal={American Political Science Review}, volume= 94, year= 2000, pages={653--663}, month={September}, number= 3 } @inbook{GerGreKap04, author={Alan S. Gerber and Donald P. Green and Edward H. Kaplan}, title={The illusion of learning from observational research}, chapter={12}, year={2004}, publisher={Cambridge University Press}, pages={251-273}, address={Cambridge, United Kingdom}, editor={Ian Shapiro and Rogers M. Smith and Tarek e. Masoud} } @article{GerSchFra94, author={Gerner, Deborah J. and Philip A. Schrodt and Ronald A. Francisco and Judith L. Weddle}, title={{Machine Coding of Event Data Using Regional and International Sources}}, journal={International Studies Quarterly}, volume={38}, year={1994}, pages={91-119}, number={1} } @unpublished{Gertler00, author={Paul J. Gertler}, title={Final Report: The Impact of PROGRESA on Health}, note={International Food Policy Research Institute}, year={2000}, month={November} } @article{Gertler06, author={P. Gertler}, title={Do Conditional Cash Transfers Improve child Health? Evidence from PROGRESA's Control Randomized Experiment}, journal={The American Economic Review: Papers and Proceedings}, volume={94}, year={2006}, pages={336-42}, number={2} } @techreport{Geyer05, author={Charles J. Geyer}, title={Le Cam Made Simple: Asymptotics of Maximum Likelihood without the LLN or CLT or Sample Size Going to Infinity}, institution={University of Minnesota}, year={2005}, month={May}, address={Univ. MN, Twin Cities, School of Statistics} } @techreport{Geyer05, author={Charles J. Geyer}, title={Le Cam Made Simple: Asymptotics of Maximum Likelihood without the LLN or CLT or Sample Size Going to Infinity}, institution={University of Minnesota}, year={2005}, month={May}, address={Univ. MN, Twin Cities, School of Statistics} } @article{GhoHutRus03, author={Hazem Ghobarah and Paul Huth and Bruce Russett}, title={Civil Wars Kill and Maim People--Long after the Shooting Stops}, journal= apsr, volume= 97, year= 2003, pages={189--202}, month={May}, number= 2 } @article{GiaPalCap01, author={S. Giampaoli and L. Palmieri and R. Capocaccia and L. Pilotto and D. Vanuzzo}, title={Estimating Population-based Incidence and Prevalence of Major Coronary Events}, journal={International Journal of Epidemiology}, volume= 30, year= 2001, pages={S5--S10} } @article{Giles06, author={Jim Giles}, title={The Trouble with Replication}, journal={Nature}, volume={442}, year={2006}, pages={344-347}, month={July} } @book{Gilksetal96, title={Markov Chain Monte Carlo in Practice}, publisher={Chapman \& Hall}, year= 1996 , editor={W.R. Gilks and S. Richardson and D.J. Spiegelhalter} } @book{Gill02, author={Jeff Gill}, title={Bayesian Methods for the Social and Behavioral Sciences}, publisher={Chapman and Hall}, year= 2002, address={London} } @article{GilWal05, author = {Jeff Gill and Lee Walker}, title = {Elicited Priors for Bayesian Model Specification in Political Science Research}, journal = {Journal of Politics}, volume = 67, year = 2005, pages = {841--872}, month = {August}, number = 3 } @unpublished{GimHus06, author={James G. Gimpel and Laura Hussey}, title={State of the Journal Market 2006-2007: Political Science}, note={Univ. of MD, Dept of Gov 3140 Tydings Hall, College Park, MD 20742}, year={2006}, month={February} } @techreport{Girosi91, author={F. Girosi}, title={Models of noise and robust estimates}, institution= mitai, year={1991}, type={A.I. Memo}, number={1287}, note={ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-1287.pdf} } @article{GlaLevMye03, author={Steve Glazerman and Dan M. Levy and David Myers}, title={Nonexperimental versus experimental estimates of earnings impacts}, journal={The Annals of the American Academy of Political and Social Science}, volume= 589, year= 2003, pages={63-93}, month={September} } @article{GlaMayDec06, author={Steven Glazerman and Daniel Mayer and Paul Decker}, title={Alternative Routes to Teaching: The Impacts of Teach for America on Student Achievement and other Outcomes}, journal={Journal of Policy Analysis and Management}, volume={25}, year={2006}, pages={75-96}, number={1} } @article{Gleditsch02, author={Kristian Skrede Gleditsch}, title={Expanded Trade and GDP Data}, journal={Journal of Conflict Resolution}, volume={46}, year={2002}, pages={712-724}, month={October}, number={5} } @article{GleJamRay03, author={Nils Petter Gleditsch and Patrick James and James Lee Ray and Bruce Russett}, title={Editors' Joint Statement: Minimum Replication Standards for International Relations Journals}, journal={International Studies Perspectives}, volume= 4, year= 2003, pages={105} } @article{GleMetStr03, author={Nils Petter Gleditsch and Claire Metelits and Havard Strand}, title={Posting Your Data: Will You be Scooped or Will You be Famous?}, journal={International Studies Perspectives}, volume= 4, year= 2003, pages={89--97} } @unpublished{Globetti97, author={Suzanne Globetti}, title={What We Know About 'Don't Knows': An Analysis of Seven Point Issue Placements}, note={Paper presentated at the annual meetings of the Political Methodology Society, Columbus, OH}, year={1997} } @book{GoeZel86, author={Prem K. Goel and Arnold Zellner}, title={Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti}, publisher={Elsevier Science Publishers B.V.}, year={1986}, volume={6}, editor={Prem K. Goel and Arnold Zellner} } @book{Goldberger91, author={Arthur Goldberger}, title={A Course in Econometrics}, publisher={Harvard University Press}, year= 1991 } @article{GolFraEri96, author={Marthe Gold, MD, MPH, Peter Franks, MD, and Pennifer Erickson}, title={Assessing the Health of the Nation. The Predictive Validity of a Preference-Based Measure and Self-Rated Health}, journal={Medical Care}, volume= 34, year= 1996, pages={{163-77}}, number= 2 } @article{GolHeaWah79, author={G. Golub and M. Heath and G. Wahba}, title={Generalized cross validation as a method for choosing a good ridge parameter}, journal={Technometrics}, volume= 21, year= 1979, pages={215--224} } @article{GolIdn83, author={D. Goldfarb and A. Idnani}, title={A Numerically Stable Dual Method for Solving Strictly Convex Quadratic Programs}, journal={Mathematical Programming}, volume={27}, year={1983}, pages={1-33} } @book{GolJudMil96, author={Amos Golan and George Judge and Doug Miller}, title={Maximum Entropy Econometrics: Robust Estimation With Limited Data}, publisher={John Wiley and Sons}, year= 1996 } @article{GolLan92, author={Larry Goldstein and Bryan Langholz}, title={Asymptotic Theory for Nested Case-Control Sampling in the cox Regression Model}, journal={The Annals of Statistics}, volume= 20, year= 1992, pages={1903-1928}, number= 4 } @article{GolPhiCox01, author={Lee Goldman and Kathryn A. Phillips and Pamela Coxson and Paula A. Goldman and Lawrence Williams and M.G. Myriam Hunink and Milton C. Weinstein}, title={The Effect of Risk Factor Reductions Between 1981-1990 on Coronary Heart Disease Incidence, Prevalence, Mortality, and Cost}, journal={Journal of the American College of Cardiology}, volume={38}, year= 2001, pages={1012--1017}, number= 4 } @article{GolSchMcC02, author={J. Goldie and L. Schwartz and A. McConnachie and J. Morrison}, title={The Impact of Three Years' Ethics Teaching, in an Integrated Medical Curriculum, on Students' Proposed Behavior on Meeting Ethical Dilemmas}, journal={Medical Education}, volume= 36, year= 2002, pages={489--497}, month={May}, number= 5 } @article{GomGarLop99, author={Octavio G{\'o}mez-Dant{\'e}s and Francisco Garrido-Latorre and Sergio L{\'o}pez-Moreno and Blanca Villa and Malaqu{\'i}as L{\'o}pez-Cervantes}, title={Assessment of the health program for the non-insured population}, journal={Revista de Sa{\'u}de P{\'u}blica}, volume={33}, year={1999}, pages={401-412}, number={4}, note={Evaluaci{\'o}n de programa de salud para poblaci{\'o}nno asegurada} } @article{Gompertz1825, author={B. Gompertz}, title={On the Nature of the Function Expressive of the Law of Mortality}, journal={Philosophical Transactions}, volume= 27, year= 1825, pages={513--585} } @article{GonChaLev02, author={Jeffrey S. Gonzales, Gretchen B. Chapman, and Howard Leventhal}, title={Gender Differences in the Factors that Affect Self-Assessments of Health}, journal={Journal of Applied Behavioral Research}, volume= 7, year= 2002, pages={{133-55}} } @article{GooBlu96, author={Jodi S. Goodman and Terry C. Blum}, title={Assessing the Non-random Sampling Effects of Subject Attrition in Longitudinal Research}, journal={Journal of Management}, volume={22}, year={1996}, pages={627-652} } @article{Goodman53, author={Goodman, Leo}, title={Ecological Regressions and the Behavior of Individuals}, journal={American Sociological Review}, volume= 18, year= 1953, pages={663-666} } @inbook{GooJaGoo03, author={Mary-Jo DelVecchio Good, et al.}, title={The Culture of Medicine and Racial, Ethnic, and Class Disparities in Healthcare}, year={2003}, publisher={The National Academies Press}, pages={{594-625}} } @article{GosWadBel98, author={Stephen C. Goss and Alice Wade and Felicitie Bell and Bernard Dussault}, title={Historical and Projected Mortality for Mexico, Canada, and the United States}, journal={North American Actuarial Journal}, volume= 4, year= 1998, pages={108--126}, number= 2 } @article{Gower66, author={J.C. Gower}, title={Some Distance Properties of Latent Root and Vector Methods Used in Multivariate Analysis}, journal={Biometrika}, volume= 53, year= 1966, pages={325--388}, month={December}, number={3/4} } @article{Gower71, author={J.C. Gower}, title={A General Coefficient of Similarity and Some of its Properties}, journal={Biometrics}, volume= 27, year= 1971, pages={857--872} } @article{GraBraSno89, author={W. Graham and W. Brass and R.W. Snow}, title={Estimating Maternal Mortality: The Sisterhood Methods}, journal={Studies in Family Planning}, volume= 20, year= 1989, pages={125--135}, number= 125 } @inbook{Graham94, author={Carol Graham}, title={Mexico's Solidarity Program in Comparative Context: Demand-based Poverty Alleviation Programs in Latin America, Africa and Eastern Europe}, chapter={15}, year={1994}, publisher={Center for U.S.-Mexican Studies}, pages={309-327}, series={U.S.-Mexico Contemporary Perspectives Series, 6}, address={University of California, San Diego} } @article{GraPioCha95, author={Mark Grant, Zdzisiaw Piotrowski, and Rick Chappell}, title={Self-Reported Health and Survival in the Longitudinal Study of Aging, 1984-1986}, journal={Journal of Clinical Epidemiology}, volume= 48, year= 1995, pages={{375-87}}, number= 3 } @inbook{GraSch06, author={J.W. Graham and J.L. Schafer}, title={Statistical Strategies for Small Sample Research}, chapter={On the performance of Multiple Imputation for Multivariate Data with Small Sample Size}, year={2006 In press}, publisher={Sage}, address={Thousand Oaks}, editor={R. Hoyle} } @book{GraSmiBar90, author={Ronald H. Gray and Gordon Smith and Peter Barss}, title={The Use of Verbal Autopsy Methods to Determine Selected Causes of Death in Children}, publisher={International Union for the Scientific Study of Population}, year={1990}, address={Rue des augustins, 34 ; 4000 Liege (Belgium)}, month={February}, number={30} } @book{Graunt1662, author={John Graunt}, title={Natural and Political Observations Mentioned in a Following Index, and Made Upon the Bills of Mortality}, publisher={John Martyn and James Allestry.}, year= 1662, address={London} } @article{GreChr01, author={Sander Greenland and Ronald Christensen}, title={Data Augmentation Priors for Bayesian and Semi-Bayes Analyses of Conditional-logistic and Proportional-Hazards Regression}, journal={Statistics in Medicine}, volume={20}, year={2001}, pages={2421-2428} } @article{Greenland00, author={Sander Greenland}, title={When should Epidemiologic Regressions Use Random Coefficients?}, journal={Biometrics}, volume={56}, year={2000}, pages={915-921}, month={September} } @article{Greenland01, author={Sander Greenland}, title={Putting Background Information About Relative Risks into conjugate Prior Distributions}, journal={Biometrics}, volume={57}, year={2001}, pages={663-670}, month={September} } @article{Greenland03, author={Sander Greenland}, title={Quantifying biases in causal models: classical confounding vs collider-stratification bias}, journal={Epidemiology}, volume= 14, year= 2003, pages={300-306}, number= 3 } @article{Greenland03b, author={Sander Greenland}, title={Generalized Conjugate Priors for Bayesian Analysis of Risk and Survival Regressions}, journal={Biometrics}, volume={59}, year={2003}, pages={92-99}, month={March} } @article{greenland81, author={Sander Greenland}, title={Multivariate Estimation of Exposure-Specific Incidence From Case-Control Studies}, journal={Journal of Chronic Disease}, volume= 34, year= 1981, pages={445-453} } @article{greenland82, author={Sander Greenland}, title={On the Need for the Rare Disease Assumption in Case-Control Studies}, journal={American Journal of Epidemiology}, volume= 116, year= 1982, pages={547-553}, number= 3 } @article{greenland87, author={Sander Greenland}, title={Interpretation and Choice of Effect Measures in Epidemiologic Analysis}, journal={American Journal of Epidemiology}, volume= 125, year= 1987, pages={761-768}, number= 5 } @article{greenland94, author={Sander Greenland}, title={Modeling Risk Ratios from Matched Cohort Data: An Estimating Equation Approach}, journal={Applied Statistics}, volume= 43, year= 1994, pages={223-232}, number= 1 } @incollection{GreGer01, author={Donald P. Green and Alan Gerber}, title={Reclaiming the Experimental Tradition in Political Science}, booktitle={Political Science: State of the Discipline, III}, publisher={APSA}, year= 2001, address={Washington, D.C.}, editor={Helen Milner and Ira Katznelson} } @incollection{GreGer02, author={Donald P. Green and Alan S. Gerber}, title={Reclaiming the Experimental Tradition in Political Science}, booktitle={State of the Discipline}, publisher={W.W. Norton \& Company, Inc.}, year={2002}, address={New York}, editor={Helen Milner and Ira Katznelson}, pages={805-832}, volume={III} } @misc{GreGre03, author={Grendar, Jr., M. and M. Grendar}, title={Maximum Probability/Entropy Translating of Contiguous Categorical Observations into Frequencies}, year= 2003 , howpublished={Working paper, Institute of Mathematics and Computer Science, Mathematical Institute of Slovak Academy of Sciences, Banska Bystrica} } @article{GreKimYoo01, author={Donald P.\ Green and Soo Yeon Kim and David H.\ Yoon}, title={Dirty Pool}, journal= io, volume= 55, year= 2001, pages={441--468}, month={Spring}, number= 2 } @article{GreLuSil04, author={Robert Greevy and Bo Lu and Jeffrey H. Silver and Paul Rosenbaum}, title={Optimal multivariate matching before randomization}, journal={Biostatistics}, volume={5}, year={2004}, pages={263-275}, number={2} } @article{GreMicRob06, author={David H. Greenberg and Charles Michalopoulos and Philip K. Robins}, title={Do Experimental and Nonexperimental Evaluations give Different Answers about the Effectiveness of Government-Funded Training Programs?}, journal={Journal of Policy Analysis and Management}, volume={25}, year={2006}, pages={523-552}, number={3} } @misc{Grenander83, author={Ulf Grenander}, title={Tutorial in Pattern Theory}, year= 1983, howpublished={Technical Report, Division of Applied Mathematics, Brown University} } @article{GrePeaRob99, author={Sander Greenland and Judea Pearl and James M. Robins}, title={Causal Diagrams for Epidemiologic Research}, journal={Epidemiology}, volume= 10, year= 1999, pages={37--48}, month={January}, number= 1 } @book{GreShr04, author={David Greenberg and Mark Shroder}, title={The Digest of Social Experiments}, publisher={Urban Institute Press}, year={2004}, address={Washington, DC}, edition={Third} } @techreport{GriHilOdo01, author={W. E. Griffiths and R. Carter Hill and C. J. O'Donnell}, title={{Including Prior Information in Probit Model Estimation}}, institution={Department of Economics}, year= 2001, month={September}, type={Working Papers}, address={University of Melbourne}, number= 816 } @book{Grindle04, author={Merilee S. Grindle}, title={Despite the Odds}, publisher={Princeton University Press}, year={2004}, address={Princeton, NJ} } @unpublished{Grindle05, author={Merilee S. Grindle}, title={Going Local: Decentralization, Democratization, and the Promise of Good Governance}, note={Kennedy School of Government, Harvard University}, year={2005}, month={July} } @book{Grindle77, author={Merilee Serrill Grindle}, title={Bureaucrats, Politicans, and Peasants in Mexico}, publisher={University of California Press}, year={1977}, address={Berkeley and Los Angeles, California} } @book{Grindle80, author={Merilee S. Grindle}, title={Politics and Policy Implementation in the Third World}, publisher={Princeton University Press}, year={1980}, address={Princeton, NJ} } @article{GroBri99, author={Wim Groot and Henriette Maassen van den Brink}, title={Job Satisfaction and Preference Drift}, journal={Economics Letters}, volume= 63, year= 1999, pages={363--367} } @article{GroLevSny99, author={Tim Groseclose and Steven D. Levitt and James Snyder}, title={Comparing Interest Group Scores Across Time and Chambers: Adjusted ADA Scores for the U.S. Congress}, journal= apsr, volume= 93, year= 1999, pages={33--50}, month={March}, number= 1 } @article{Groot00, author={Wim Groot}, title={Adaptation and Scale of Reference Bias in Self-Assessments of Quality of Life}, journal={Journal of Health Economics}, volume= 19, year= 2000, pages={403--420}, month={June} } @article{Grossman97, author={Joel B. Grossman}, title={The Japanese American Cases and the Vagaries of Constitutional Adjudication in Wartime: An Institutional Perspective}, journal={Hawaii Law Review}, volume= 19, year={1997}, pages={649} } @article{GroZalLeb00, author={William M. Grove and David H. Zald and Boyd S. Lebow and Beth E. Snitz and Chad Nelson}, title={Clinical Versus Mechanical Prediction: A Meta-Analysis}, journal={Psychological Assessment}, volume={12}, year={19-30}, pages={1}, number={1} } @unpublished{GruGuhKum05, author={DanielGruhl and R. Guha and Ravi Kumar and Jasmine NOvak and Andrew Tomkins}, title={The Predictive Power of Online Chatter}, note={Daniel Gruhl IBM Almaden Research Center, 650 Harry Rd. San Jose, CA 95120 dgruhl@us.ibm.com}, year={2005}, month={August} } @article{GuRos93, author={X.S. Gu and Paul R. Rosenbaum}, title={Comparison of multivariate matching methods: structures, distances, and algorithms}, journal={Journal of Computational and Graphical Statistics}, volume={2}, year={1993}, pages={405-420} } @article{GutVan98, author={Sam Gutterman and Irwin T. Vanderhoof}, title={Forecasting Changes in Mortality: A Search for a Law of Causes and Effects}, journal={North American Actuarial Journal}, volume= 4, year= 1998, pages={135--138}, number= 2 } @article{Gwatkin00, author={Davidson R. Gwatkin}, title={Health Inequalities and the Health of the Poor}, journal= bull, year={2000}, optnumber={1}, optvolume={78}, optpages={3--18} } @article{Gwatkin03, author={Davidson Gwatkin}, title={How well do health programmes reach the poor?}, journal={Lancet}, volume={361}, year={2003}, pages={540-1}, month={February} } @article{HabBer95, author={J. Haberland and K.E. Bergmann}, title={The Lee-Carter Model of the Prognosis of Mortality in Germany}, journal={Gesundheitswesen}, volume={57}, year={1995}, pages={674--679}, month={October}, number={10}, note={article in German}, annote={Lee-Carter model is applied to West Germany.} } @article{Haenisch89, author={Dirk H{\"a}nisch}, title={Wahl- und Sozialdaten der Kreise und Gemeinden des Deutschen Reiches von 1920 bis 1933}, journal={Historical Social Research}, volume= 14, year= 1989, pages={39--67}, number= 1 } @incollection{Hagtvet80, author={Hagtvet, Bernt}, title={The Theory of Mass Society and the Collapse of the Weimar Republic}, booktitle={Who Were the Fascists}, publisher={Universitetsforlaget}, year= 1980, address={Oslo}, editor={al., S. U. Larsen et} } @article{hahn98, author={Jinyong Hahn}, title={On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects}, journal={Econometrica}, volume={66}, year={1998}, pages={315-31} } @unpublished{Hamermesh07, author={Daniel Hamermesh}, title={Replication in Economics: Discussion Paper No. 2760}, note={{IZA Discussion Paper : http://www.iza.org/publications/dps/}}, year={2007}, month={April}, address={University of Texas at Austin, NBER and IZA; iza@iza.org} } @book{Hamilton83, author={Hamilton, Richard}, title={Who Voted for Hitler?}, publisher={Princeton University Press}, year= 1983 } @book{Hamilton94, author={James Douglas Hamilton}, title={Time Series Analysis}, publisher={Princeton University Press}, year= 1994, address={Princeton} } @book{Hammond24, author={C.S. Hammond and Company}, title={[Map of] Germany}, publisher={C.S. Hammond and Company}, year= 1924, address={New York} } @article{Hand06, author={David J. Hand}, title={Classifier Technology and the Illusion of Progress}, journal={Statistical Science}, volume={21}, year={2006}, pages={1-14}, number={1} } @article{Hansen04, author={Ben B. Hansen}, title={Full Matching in an Observational Study of Coaching for the {SAT}}, journal={Journal of the American Statistical Association}, volume={99}, year={2004}, pages={609--618}, number={467} } @misc{Hansen05, author={Ben Hansen}, title={Optmatch: Software for Optimal Matching}, year= 2005, note={{http://www.stat.lsa.umich.edu/\~{}bbh/optmatch.html}} } @techreport{Hansen06, author={Ben Hansen}, title={Appraising Covariate Balance After Assignment to Treatment by Groups}, institution={Statistics Department, University of Michigan}, year= 2006, month={{April}}, number= 436 } @article{Harding03, author={David J. Harding}, title={Counterfactual Models of Neighborhood Effects: The Effect of Neighborhood Poverty on Dropping Out and Teenage Pregnancy}, journal={American Journal of Sociology}, volume={109}, year={2003}, pages={676-719}, month={November}, number={3} } @article{HarLis04, author={Glenn W. Harrison and John A. List}, title={Field Experiments}, journal={Journal of Economic Literature}, volume={XLII}, year={2004}, pages={1009-1055} } @article{HarSie75, author={H.O. Hartley and R.L. Sielken, Jr.}, title={A `Super-Population Viewpoint' for Finite Population Sampling}, journal={Biometrics}, volume={31}, year={1975}, pages={411-422}, month={June}, number={2} } @article{Hartung56, author={Fritz Hartung}, title={Zur Geschichte der Weimarer Republik}, journal={Historische Zeitschrift}, volume= 181, year= 1956, pages={581--591}, number= 3 } @book{Harvey91, author={Andrew Harvey}, title={Forecasting, Structural Time Series Models and the Kalman Filter}, publisher={Cambridge University Press}, year= 1991 } @book{Harville97, author={David A. Harville}, title={Matrix Algebra from a Statistician's Perspective}, publisher={Springer}, year= 1997, address={New York} } @unpublished{HasKanSta05, author={Justine S. Hastings and Thomas J. Kane and Douglas O. Staiger}, title={Evaluating a School Choice Lottery: The Importance of Heterogeneous Treatment Effects}, note={Hastings - Yale, Kane - Harvard GSE, Staiger, Dartmouth College}, year={2005}, month={November} } @unpublished{HasKanStai05b, author={Justine S. Hastings and Thomas J. Kane and Douglas O. Staiger and Jeffrey M. Weinstein}, title={Economic Outcomes and the Decision to Vote: The Effect of Randomized School Admissions on Voter Participation}, note={Working paper 11794, National Bureau of Economic Research, 1050 Mass. Ave., Cambridge}, year={2005}, month={November} } @unpublished{HasKanStai05c, author={Justine S. Hastings and Thomas J. Kane and Douglas O. Staiger}, title={parental Preferences and School Competition: Evidence froma Public School Choice Program}, note={National Bureau of Economic Research, 1050 Mass Ave. Camb. Working Paper 11805}, year={2005}, month={November} } @book{HasTib90, author = {Hastie, Trevor J. and Tibshirani, Robert}, title = {Generalized Additive Models}, publisher = {Chapman Hall}, year = {1990}, address = {London} } @article{HauDutBeh99, author = {Lene V. Hau and Z. Dutton and C.H. Behroozi and SE Harris}, title = {{Light Speed Reduction to 17 Metres per Second in an Ultracold Atomic Gas}}, journal = {Nature}, volume = {397}, year = {1999}, pages = {594-598}, number = {6720} } @article{HavNag05, author={Amelia M. Haviland and Daniel S. Nagin}, title={Causal Inferences with Group Based Trajectory models}, journal={Psychometrika}, volume={70}, year={2005}, pages={557-578}, month={September}, number={3} } @book{Hayes87, author={Hayes, Peter}, title={Industry and Ideology}, publisher={Cambridge University Press}, year={1987} } @article{Haynes02, author={R Brian Haynes}, title={What Kind of Evidence is it that Evidence-Based Medicine Advocates Want Health Care Providers and Consumers to Pay Attention to?}, journal={BMC Health Services Research}, volume= 2, year= 2002, month={March}, number= 3, note={{http://www.biomedcentral.com/1472-6963/2/3}} } @article{HaySchBla96, author={Judith C. Hayes, David Schoenfield, Dan Blazer, and Deborah T. Gold}, title={Global Self-Ratings of Health and Mortality: Hazards in North Carolina Piedmont}, journal={Journal of Clinical Epidemiology}, volume= 49, year= 1996, pages={{969-79}} } @article{Heberle43, author={Heberle, R.}, title={The Political Movements among the Rural People in Schleswig-Holstein, 1918-1932}, journal={Journal of Politics}, volume= 5, year= 1943, pages={3-26} } @book{Heberle45, author={Heberle, Rudolf}, title={From Democracy to Nazism}, publisher={Louisiana State University Press}, year= 1945, address={Baton Rouge} } @article{HecHidTod97, author={James J. Heckman and Hidehiko Hidehiko and Petra Todd}, title={Matching as an econometric evaluation estimator: evidence from evaluating a job training programme}, journal={Review of Economic Studies}, volume= 64, year= 1997, pages={605-654} } @article{HecIchSmi98, author={James J. Heckman and Hidehiko Ichimura and Jeffrey Smith and Petra Todd}, title={Characterizing selection bias using experimental data}, journal={Econometrika}, volume= 66, year= 1998, pages={1017-1098}, number= 5 } @article{HecIchTod97, author = {James Heckman and H. Ichimura and P. Todd}, title = {Matching as an Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Program}, journal = {Review of Economic Studies}, volume = 64, month = {October}, year = 1997, pages = {605--654} } @article{Heckman06, author={James J. Heckman}, title={The Scientific Model of Causality}, journal={Sociological Methodology}, volume={35}, year={2006}, pages={1-98}, month={June}, number={1} } @article{Heckman06b, author={James J. Heckman}, title={Rejoinder: Response to Sobel}, journal={Sociological Methodology}, volume={35}, year={2006}, pages={135-162}, month={June}, number={1} } @article{Heckman76, author={James Heckman}, title={The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables, and Simple Estimator for Such Models}, journal={Annals of Economic and Social Measurement}, volume={5}, year={1976}, pages={475-492} } @incollection{Heckman92, author={James J. Heckman}, title={Randomization and Social Policy Evaluation}, booktitle={Evaluating Welfare and Training Programs}, publisher={Harvard University Press}, year={1992}, editor={Charles F. Manski and Irwin Garfinkel} } @inbook{HecRob85, author={J. Heckman and R. Robb}, title={Longitudional Analysis of Labor Market Data}, chapter={Alternative Methods for Evaluating the Impacts of Interventions}, year= 1985 , publisher= cup, editor={J. Heckman and B. Singer} } @article{HecSmi95, author={James J. Heckman and Jeffrey A. Smith}, title={Assessing the Case for Social Experiments}, journal={The Journal of Economic Perspectives}, volume={9}, year={1995}, pages={85-110}, number={2} } @article{HecSny97, author={James Heckman and James Snyder}, title={Linear Probabilty Models of the Demand for Attributes With an Empirical Application to Estimating the Preferences of Legislators}, journal={Rand Journal of Economics}, volume= 28, year= 1997, pages={142--189}, month={special issue}, number= 0 } @article{Heilbronner97, author={Heilbronner, Oded and M{\"u}hlberger, Detlef}, title={The Achilles' Heel of German Catholicism: ``Who Voted for Hitler?'' Revisited}, journal={European History Quarterly}, volume= 27, year= 1997, pages={221-249}, number= 2 } @article{HeiRub90, author={Daniel F. Heitjan and Donald Rubin}, title={Inference from Coarse Data via Multiple Imputation with Application to Age Heaping}, journal= jasa, volume= 85, year= 1990, pages={304--314} } @article{Heitjan89, author={Daniel F. Heitjan}, title={Inference from Grouped Continuous Data: A Review}, journal={Statistical Science}, volume={4}, year={1989}, pages={164-183} } @article{HelPol80, author={L. Heligman and J. H. Pollard}, title={The Age Pattern of Mortality}, journal={Journal of the Institute of Acturaries}, volume= 107, year= 1980, pages={49--80} } @article{Henderson24, author={R. Henderson}, title={A new method of graduation}, journal={Transaction of the Actuarial Society of America}, volume= 119, year= 1924, pages={457--526} } @unpublished{Herron98, author={Michael C. Herron}, title={Voting Abstention, and Individual Expectations in the 1992 Presidential Election}, note={Presented for the Midwest Political Science Assocation conference, Chicago}, year={1998} } @article{HerSek04, author={Michael C. Herron and Jasjeet S. Sekhon}, title={Black Candidates and Black Voters: Assessing the Impact of Candidate Race on Uncounted Vote Rates}, journal={Journal of Politics}, volume= 66, year= 2005, month={forthcoming November}, number= 4 } @article{Heymann02, author={Philip B. Heymann}, title={Civil Liberties and Human Rights in the Aftermath of September 11}, journal={Harvard Journal of Law and Public Policy}, volume= 25, year={2002}, pages={440--455} } @article{Hibbs82, author={Douglas Hibbs}, title={Economic Outcomes and Political Support for British Governments Among the Occupational Classes}, journal={American Political Science Review}, volume= 76, year= 1982, pages={259--279}, month={June} } @incollection{Hicks94, author={Alexander M. Hicks}, title={{Introduction to Pooling}}, booktitle={{The Comparative Political Economy of the Welfare State}}, publisher={Cambridge University Press}, year= 1994, address={New York}, editor={T. Janoski and A. Hicks} } @misc{HigYam00, author={Dave Higdon and Steve Yamamoto}, title={Bayesian Image Analysis in Scanning Magnetoresistance Microscopy}, year= 2000, howpublished={Discussion Paper \# 98-35, Institute of Statistics and Decision Sciences, Duke University} } @article{HilButLor77, author={Lewis E. Hill and Charles E. Butler and Stephen A. Lorenzen}, title={Inflation and the Destruction of Democracy: The Case of the Weimar Republic}, journal={Journal of Economic Issues}, volume= 11, year= 1977, pages={299-314}, number= 2 } @unpublished{Hill04, author={Jennifer Hill}, title={Reducing bias in treatment effect estimation in observational studies suffering from missing data}, note={Columbia University Instititute for Social and Economic Research and Policy (ISERP) Working Paper 04-01}, year= 2004 } @article{Hill87, author={Joe R. Hill}, title={Empirical Bayes Confidence Intervals Based on Bootstrap Samples: Comment}, journal={Journal of the American Statistical Association}, volume={82}, year={1987}, pages={752-754}, month={September}, number={399} } @unpublished{HilPurWil07, author={Dustin Hillard and Stephen Purpura and John Wilkerson}, title={Bill Titles as Proxies for Bill Content: A Case Study of the Distillation of Meaning from a Political Corpus}, note={Prepared for delivery at 2007 annual Meeting of the Midwest Political Science Association, Chicago, IL}, year={2007}, month={April}, address={Univ of WA hillard@u.washington.edu; JFK School of Gov't. stephen_purpura@ksg07.harvard.edu; Univ of WA jwilker@u.washington.edu} } @article{HilRei06, author={Jennifer Hill and Jerome P. Reiter}, title={Interval estimation for treatment effects using propensity score matching}, journal={Statistics in Medicine}, volume={25}, year={2006}, pages={2230-2256} } @incollection{HilReiZan04, author={Jennifer Hill and J. Reiter and Elaine Zanutto}, title={A comparison of experimental and observational data analyses}, booktitle={Applied Bayesian Modeling and Causal Inference from an Incomplete-Data Perspective}, year= 2004 , editor={Andrew Gelman and Xiao-Li Meng} } @incollection{HilRubTho99, author={Jennifer Hill and Donald B. Rubin and Neal Thomas}, title={The Design of the {N}ew {Y}ork {S}chool {C}hoice {S}cholarship {P}rogram Evaluation}, booktitle={Research Designs: Inspired by the Work of Donald Campbell}, publisher={Sage}, year= 1999, address={Thousand Oaks, CA}, editor={L. Bickman}, chapter= 7, pages={155--180} } @article{HilTru77, author={Kenneth Hill and J Trussell}, title={Further Developments in Indirect Mortality Estimation}, journal={Population Studies}, volume= 31, year= 1977, pages={313--334} } @article{HilWalBro05, author={Jennifer L. Hill and Jane Waldfogel and Jeanne Brooks-Gunn and Wen-Jui Han}, title={Maternal Employment and Child Development: A Fresh Look Using Newer Methods}, journal={Developmental Psychology}, volume={41}, year={2005}, pages={833-850}, number={6} } @unpublished{Hindman07, author={Matthew Hindman}, title={Voice, Equality, and the Internet}, note={Book Manuscript}, year={2007} } @book{HinMun94, author={Melvin J. Hinich and Michael C. Munger}, title={Ideology and the Theory of Political Choice}, publisher={University of Michigan Press}, year={1994}, address={Ann Arbor} } @unpublished{HinTsiJoh03, author={Matthew Hindman and Kostas Tsioutsiouliklis and Judy A. Johnson}, title={Googlearchy: How a Few Heavily-Linked Sites Dominate Politics on the Web}, note={Midwest Political Science Association, Chicago, Illinois}, year={2003}, month={April} } @article{HirImbRid03, author = {Keisuke Hirano and Guido W. Imbens and Geert Ridder}, title = {Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score}, journal = {Econometrica}, volume = 71, year = 2003, pages = {1161--1189}, month = {July}, number = 4 } @article{HirImbRub00, author = {Keisuke Hirano and Guido W. Imbens and Donald B. Rubin and Xiao-Hua Zhou}, title = {Assessing the effect of an influenza vaccine in an encouragement design}, journal = {Biostatistics}, volume = {1}, year = {2000}, pages = {69-88}, number = {1} } @article{HirRubZho00, author={Keisuke Hirano and Guido W. Imbens and Donald B. Rubin and Ziao-Hua Zhou}, title={Assessing the effect of an influenza vaccine in an encouragement design}, journal={Biostatistics}, volume={1}, year={2000}, pages={69-88}, number={1} } @unpublished{Hiscox04, author={Michael J. Hiscox}, title={Through a Glass and Darkly: Attitudes Toward International Trade and the Curious Effects of Issue Framing}, note={{http://www.experimentcentral.org/data/data.php?pid=136}}, year= 2004, address={Chicago}, organization={Annual meetings of the American Political Science Association} } @article{Ho91, author={Ho, Suzanne C.}, title={Health and Social Predictors of Mortality in an Elderly Chinese Cohort}, journal={American Journal of Epidemiology}, volume= 133, year= 1991, pages={{209-21}}, number= 9, keywords={aged, cohort studies, health status, mortality, social environment} } @article{HoeFesVan97, author={Nancy Hoeymans, MSc, eta al}, title={Age, time, and cohort effects on functional status and self-rated health in elderly men}, journal={American Journal of Public Health}, volume= 87, year= 1997, pages={{1620-25}}, number= 10 } @article{HoeMadRaf99, author={Jennifer A. Hoeting and David Madigan and Adrian E. Raftery, Adrian E. and Chris T. Volinsky}, title={Bayesian Model Averaging: A Tutorial}, journal={Statistical Science}, volume= 14, year= 1999, pages={382-417}, number= 4 } @article{HoeMadRaf99, author={J.A. Hoeting and D. Madigan and Adrian E. Raftery and C. T. Volinsky}, title={Bayesian Model Averaging: A Tutorial (with discussion)}, journal={Statistical Science}, volume= 14, year= 1999, pages={382--417}, month={{corrected version at http://www.stat.washington.edu/www/research/online/hoeting1999.pdf}} } @article{HojSteAab99, author={Lars Hoj and Jakob Stensballe and Peter Aaby}, title={Maternal mortality in Guinea-Bissau: the use of verbal autopsy in a mutli-ethnic population}, journal={International Journal of Epidemiology}, volume={28}, year={1999}, pages={70-76} } @article{holland86, author={Paul W. Holland}, title={Statistics and Causal Inference}, journal={Journal of the American Statistical Association}, volume= 81, year= 1986, pages={945--960} } @inbook{Holmes95, author={Stephen Holmes}, title={Passions and constraint: on the theory of liberal democracy}, chapter={5 Precommitment and the Paradox of Democracy}, year={1995}, publisher={University of Chicago Press}, pages={134 - 177}, address={Chicago} } @misc{HolMulKal00, author={F.W. Hollmann and T.J. Mulder and J.E. Kallan}, title={{Methodology and Assumptions for the Population Projections of the United States: 1999 to 2100}}, year= 2000 , howpublished={Working Paper 38, Population Division, U.S. Bureau of Census} } @article{HolQuiRap03, author={Harry J. Holzer and John M. Quigley and Steven Raphael}, title={Public Transit and the Spatial Distribution of Minority Employment: Evidence from a Natural Experiment}, journal={Journal of Policy Analysis and Management}, volume={22}, year={2003}, pages={415-441}, number={3} } @article{Holtfrerich84, author = {Carl-Ludwig Holtfrerich}, title = {Zu hohe L{\"o}hne in der Weimarer Republik? Bemerkungen zur Borchardt-These}, journal = {Geschichte und Gesellschaft}, volume = 10, year = 1984, number = 1 } @book{HolWai93, title={Differential Item Functioning}, publisher={Lawrence Erlbaum}, year= 1993, editor={Paul W. Holland and Howard Wainer}, address={Hillsdale, N.J.} } @book{HomUga06, title={Decentralizing Health Services in Mexico}, publisher={Center for U.S. -Mexican Studies, UCSD}, year={2006}, editor={N{\'u}ria Homedes and Antonio Ugalde}, address={La Jolla, California} } @book{HopVau02, title={Paleodemography}, publisher={Cambridge University Press}, year={2002}, editor={Robert D. Hoppa and James W. Vaupel}, address={Cambridge, UK} } @article{Horowitz01, author={Joel L. Horowitz}, title={{The Bootstrap}}, journal={Handbook of Econometrics}, volume={5}, year={2001}, pages={3159-3228}, publisher={Elsevier} } @article{Howell04, author={William G. Howell}, title={Dynamic Selection Effects in Means-Tested, Urban School Voucher Programs}, journal={Journal of Policy Analysis and Management}, volume={23}, year={2004}, pages={225-250}, number={2} } @article{Hsieh85, author={David A. Hsieh and Charles F. Manski and Daniel McFadden}, title={Estimation of Response Probabilities from Augmented Retrospective Observations}, journal={Journal of the American Statistical Association}, volume= 80, year= 1985, pages={651-652}, month={September}, number= 391 } @book{Huber81, author={Peter J. Huber}, title={Robust Statistics}, publisher={Wiley}, year={1981} } @book{HucSpr95, author={R. Robert Huckfeldt and John Sprague}, title={Citizens, Politics, and Social Communication}, publisher={Cambridge University Press}, year= 1995, address={New York, NY} } @article{HumRogEbe98, author={R.A. Hummer and R.G. Rogers and I.W. Eberstein}, title={Sociodemographic Differentials in Adult Mortality: a Review of Analytic Approaches}, journal={Population and Development Review}, year={1998}, optnumber={2}, optvolume={24}, optpages={553--578} } @article{IacPor08, author = {Stefano M. Iacus and Giuseppe Porro}, title = {Random Recursive Partitioning: a matching method for the estimation of the average treatment effect}, journal = {Journal of Applied Econometrics}, volume = {24}, pages = {163-185}, year = {2009} } @unpublished{IacPor06b, author = {Stefano M. Iacus and Giuseppe Porro}, title = {Missing data imputation, matching and other applications of Random Recursive Partitioning}, journal = {Computational Statistics and Data Analysis}, volume = {52}, number = {2}, pages = {773-789}, year = {2007} } @article{IbrChe97, author={Joseph G. Ibrahim and Ming-Hui Chen}, title={Predictive Variable Selection for the Multivariate Linear Model}, journal={Biometrics}, volume= 53, year= 1997, pages={465--478}, month={June} } @article{IdlAng90, author={Ellen Idler and Ronald Angel}, title={Self-Rated Health and Mortality in the NHANES-I Epidemiologic Follow-Up Study}, journal={American Journal of Public Health}, volume= 80, year= 1990, pages={{446-52}} } @article{IdlBen97, author={Ellen L. Idler and Yael Benyamini}, title={Self-Rated Health and Mortality: A Review of Twenty-Seven Community Studies}, journal={Journal of Health and Social Behavior}, volume= 38, year= 1997, pages={{21-37}} } @article{Idler03, author={Ellen L. Idler}, title={Discussion: Gender Differences in Self-Rated Health, in Mortality, and in the Relationship Between the Two. }, journal={The Gerontologist}, volume= 43, year= 2003, pages={{372-75}}, number= 4 } @inbook{Idler92, author={Ellen L. Idler}, title={Self-Assessed Health and Mortality: A Review of Studies}, chapter= 2, year= 1992, publisher={{John Wiley \& Sons, Ltd.}}, pages={{33-54}}, volume= 1, journal={International Review of Health Psychology} } @article{IdlHudLev99, author={Ellen L. Idler, Shawna V. Hudson, and Howard Leventhal}, title={The Meanings of Self-Rated Health- A Qualitative and Quantitative Approach}, journal={Research on Aging}, volume= 21, year= 1999, pages={{458-76}}, month={{May}}, number= 3 } @article{IdlKas91, author={Ellen L. Idler and Stanislav Kasl}, title={Health Perceptions and Survival: Do Global Evaluations of Health Status Really Predict Mortality?}, journal={Journal of Gerontology: Social Sciences}, volume= 46, year= 191, pages={{S55-65}}, number= 2 } @article{IdlKas95, author={Ellen Idler and Stanislav Kasl}, title={Self-Ratings of Health: Do they Also Predict Change in Functional Ability?}, journal={Journal of Gerontology: Social Sciences}, volume={{50B}}, year= 1995, pages={{S344-53}}, number= 6 } @article{IdlKasLem90, author={Ellen L. Idler, Stanislav V. Kasl, and Jon H. Lemke}, title={Self-Evaluated Health and Mortality Among the Elderly in New Haven, Connecticut, and Iowa and Washington Counties, Iowa, 1982-1986}, journal={American Journal of Epidemiology}, volume= 131, year= 1990, pages={{91-103}} } @article{IdlRusDav00, author={Ellen Idler, Louise Russell, and Diane Davis}, title={Survival, Functional Limitations, and Self-Rated Health in the NHANES I Epidemiological Follow-Up Study, 1992}, journal={American Journal of Epidemiology}, volume= 152, year= 2000, pages={{874-83}}, number= 4 } @article{IhaGen96, author={Ross Ihaka and Robert Gentleman}, title={R: A Language for Data Analysis and Graphics}, journal={Journal of Computational and Graphical Statistics}, volume={5}, year={1996}, pages={299-314}, month={September}, number={3} } @article{ImaDyk04, author={Kosuke Imai and David A. van Dyk}, title={Causal Inference with General Treatment Treatment Regimes: Generalizing the Propensity Score}, journal= jasa, volume= 99, year= 2004, pages={854--866}, month={September}, number= 467 } @article{Imai05, author={Kosuke Imai}, title={Do Get-Out-The-Vote Calls Reduce Turnout? The Importance of Statistical Methods for Field Experiments}, journal= apsr, volume={99}, year={2005}, pages={283--300}, month={May}, number={2} } @techreport{Imai07, author={Imai, Kosuke}, title={Randomization-based Inference and Efficiency Analysis in Experiments under the Matched-Pair Design}, institution={Department of Politics, Princeton University}, year={2007} } @article{Imbens00, author={Guido W. Imbens}, title={The Role of the Propensity Score in Estimating Dose-Response Functions}, journal={Biometrika}, volume= 87, year={2000}, pages={706-710}, number= 3 } @article{Imbens03, author={Guido W. Imbens}, title={Sensitivity to exogeneity assumptions in program evaluation}, journal={American Economic Review}, volume= 96, year= 2003, pages={126-132}, number= 2 } @article{Imbens04, author={Guido W. Imbens}, title={Nonparametric estimation of average treatment effects under exogeneity: a review}, journal={Review of Economics and Statistics}, volume= 86, year= 2004, pages={4-29}, number= 1 } @unpublished{ImbensNDb, author={Imbens, Guido W. }, title={Semiparametric Estimation of Average Treatment Effects under Exogeneity: A Review}, note={Manuscript, UC Berkeley}, year={2003} } @article{ImbRub97, author={Guido W. Imbens and Donald B. Rubin}, title={Bayesian Inference for Causal Effects in Randomized Experiements with Noncompliance}, journal={The Annals of Statistics}, volume={25}, year={1997}, pages={305-327}, month={February}, number={1} } @unpublished{ImbRubND, author={Guido W. Imbens and Donald B. Rubin}, title={Causal Inference}, note={Book Manuscript}, year= 2002 } @book{IngMcC96, author = {Jorge Inguez and James A. McCann}, title = {Democratizing Mexico: Public Opinion and Electoral Choice}, address = {Baltimore}, publisher = {Johns Hopkins University Press}, year = {1996} } @book{Insua00, author={David R. Insua and Ruggeri Fabrizio}, title={Bayesian Analysis}, publisher={Springer-Verlag}, year= 2000 } @article{IrwJonMun96, author={Julie R. Irwin and Lawrence E. Jones and David Mundo}, title={Risk Perception and Victim Perception: The Judgment of HIV Cases}, journal={Journal of Behavioral Decision Making}, volume= 9, year= 1996, pages={1--22} } @article{IslRahMah96, author={M. Aminul Islam and M. Mujibur Rahman and D. Mahalanabis and A.K.S. Mahmudur Rahman}, title={Death ina Diarrhoeal Cohort of Infants and Young Children Soon After Discharge From Hospital: Risk Factors and Causes by Verbal Autopsy}, journal={Journal of Tropical Pediatrics}, volume={42}, year={1996}, pages={342-347}, month={December } } @article{IslRahMah96, author={M. Aminul Islam and M. Mujibur Rahman and D. Mahalanabis and A.K.S. Mahmudur Rahman}, title={Death ina Diarrhoeal Cohort of Infants and Young Children Soon After Discharge From Hospital: Risk Factors and Causes by Verbal Autopsy}, journal={Journal of Tropical Pediatrics}, volume={42}, year={1996}, pages={342-347}, month={December } } @misc{ISO97, author={ISO}, title={The Dublin Core Metadata Element Set}, year={1997}, note={{http://www.collectionscanada.ca/iso/tc46sc9/standard/690-2e.htm}} } @article{Iversen01, author={Edwin S. Iversen, Jr.}, title={Spatially disaggregated Real Estate Indices}, journal={Journal of Business \& Economic Statistics}, volume={19}, year={2001}, pages={341 - 357}, month={July}, number={3} } @article{Jackman00, author={Simon Jackman}, title={Estimation and Inference via Bayesian Simulation: An Introduction to Markov Chain Monte Carlo}, journal={American Journal of Political Science}, volume={44}, year={2000}, pages={375-404}, month={April}, number={2} } @techreport{JagRob03, author={Carol Jagger and Dr. Jean-Marie Robine}, title={The Health of Adults in the Eurpoean Union}, institution={Press and Communication, Unit "Analysis and Public Opinion"}, year= 2003, month={{June}} } @article{JagSpiCla93, author={C. Jagger, N.A. Spiers, and M. Clarke}, title={Factors Associated with Decline in Function, Institutionalization and Mortality of Elderly People}, journal={Age and Ageing }, volume= 22, year= 1993, pages={{190-97}} } @incollection{James90, author={Harold James}, title={Economic Reasons for the Collapse of the Weimar Republic}, booktitle={Weimar: Why Did German Democracy Fail?}, publisher={Weidenfeld and Nicolson}, year= 1990, address={London}, pages={30-57} } @article{JeeGimSug98, author={Sun Ha Jee and Il Soon Kim and Il Suh and Dongchun Shin and Lawrence J Appel}, title={Projected Mortality from Lung Cancer in South Korea, 1980-2004}, journal={International Journal of Epidemiology}, volume= 27, year= 1998, pages={365--369} } @inproceedings{JefBarRod01, author={William H. Jefferys and Thomas G. Barnes and Raquel Rodrigues and James O. Berger and Peter M{\"u}ller}, title={Model Selection for Cepheid Star Oscillations}, booktitle={Bayesian methods, with Applications to Science, Policy, and Official Statistics}, year={2001}, publisher={Official Publications of the European Communities, Luxembourg}, editor={E. George and P. Nanopoulos}, pages={253 --252} } @unpublished{JefBarRod06, author={William H. Jefferys and Thomas G. Barnes and Raquel Rodrigues and James O. Berger and Peter Muller}, title={Nonparametric Regression with Wavelet Based Priors: Efficient Posterior Simulation for Unequally Spaced Data and Dependent Priors}, note={Jefferys, Barnes Rodriques, Univ of Tx at Austin, Berger and Muller, Duke Univ.}, year={2006} } @book{Jeffreys61, author={H. Jeffreys}, title={Theory of Probability}, publisher={Clarendon Press}, year= 1961, address={Oxford}, edition={3rd (1st edn., 1939} } @book{JohAlb99, author={Valen E. Johnson and James H. Albert}, title={Ordinal Data Modeling}, publisher={Springer}, year= 1999, address={New York} } @article{Johnson01, author={David H. Johnson}, title={Sharing Data: It's Time to End Psychology's Guild Approach}, journal={Observer (American Psychological Society)}, volume= 14, year= 2001, month={October}, number= 8, note={{http://www.psychologicalscience.org/observer/1001/data.html}} } @inbook{Johnson96, author={Wesley O. Johnson}, title={Predictive Influence in the Lognormal Survival Essays in Honor of Seymour Geisser}, year={1996}, publisher={Elsevier}, pages={104-121}, address={Amsterdam}, editor={J. Lee and A. Zellner and W. Johnson} } @article{Johnson98, author={Timothy P. Johnson}, title={Approaches to Equivalence in Cross-Cultural and Cross-National Survey Research}, journal={ZUMA Nachrichten Spezial}, volume= 3, year= 1998, pages={1--40}, month={January} } @book{JonBau05, author={Bryan D. Jones and Frank R. Baumgartner}, title={The Politics of Attention: How Government Prioritizes Problems}, publisher={University of Chicago Press}, year={2005}, address={Chicago, IL} } @article{JonDagGon04, author={Alison Snow Jones and Ralph B. D'Agostino Jr. and Edward W. Gondolf and Alex Heckert}, title={Assessing the Effectof Batterer Program Completion on Reassault Using Propsensity Scores}, journal={Journal of Interpersonal Violence}, volume={19}, year={2004}, pages={1002-1020}, month={September}, number={9} } @book{Jones88, author = {Jones, Larry Eugene}, title = {German Liberalism and the Dissolution of the Weimar Party System}, publisher = {The University of North Carolina Press}, year = 1988, address = {Chapel Hill and London} } @unpublished{JonKimSta05, author={Bryan D. Jones and Chang-Jin Kim and Richard Startz}, title={A Markov Switching Model of Congressional Partisan Regimes}, note={University of Washington, Center for American Politics and Public Policy, Box 353530 Seattle, WA 98195-3530, bdjones@u.washington.edu}, year={2005} } @article{Jordan1874, author={C. Jordan}, title={{M{\'e}moire sur les formes bilin{\'e}aires}}, journal={Comptes Rendus de l' Acad{\'e}mie des Sciences, Paris}, volume= 78, year= 1874, pages={614--617} } @article{JylGurFer98, author={Maria Jylha, Jack Guralnik, Luigi Jokela, et al}, title={Is self-rated health comparable across cultures and genders?}, journal={Journal of Gerontology: Social Sciences}, volume={{53B}}, year= 1998, pages={{S144-52}} } @incollection{Kadane80, author={Joseph B. Kadane}, title={Predictive and Structural Methods for Eliciting Prior Distributions}, booktitle={Bayesian Analysis in Econometrics and Statistics}, publisher={North-Holland}, year= 1980, editor={Arnold Zellner} } @article{KadDicWin80, author={Joseph B. Kadane and James M. Dickey and Robert L. Winkler and Wayne S. Smith and Stephen C. Peters}, title={Interactive Elicitation of Opinion for a Normal Linear Model}, journal={Journal of the American Statistical Association}, volume={75}, year={1980}, pages={845-854}, month={December}, number={372} } @article{Kahn86, author={Paul W. Kahn}, title={Gramm-Rudman and the Capacity of Congress to Control the Future}, journal={Hastings Constitutional Law Quarterly}, volume={13}, year={1986}, pages={185-231} } @article{KahSchSun98, author={Daniel Kahneman and David Schkade and Cass R. Sunstein}, title={Shared Outrage and Erratic Awards: The Psychology of Punitive Damages}, journal={Journal of Risk and Uncertainty}, volume= 16, year= 1998, pages={49--86}, month={April} } @article{KahTolGar00, author={Kathleen Kahn and Stephen M. Tollman and Michel Garenne and John S.S.Gear}, title={Validation and Application of Verbal autosies in a Rural Area of South Africa}, journal={Tropical Medicine and International Health}, volume={5}, year={2000}, pages={824-831}, number={11} } @article{KalGraBla90, author={Henry D. Kalter and Ronald H. Gary and Robert E. Black and Socorro A. Gultiano}, title={Validation of Postmortem Interviews to Ascertain Selected Causes of Death in Children}, journal={International Journal of Epidemiology}, volume={19}, year={1990}, pages={380-386}, number={2} } @article{KalHosBur99, author={Henry D. Kalter and Munir Hossain and Gilbert Burnham and Naila Z. Khan and Samir K. Saha and Md Anwar Ali and Robert E. Black}, title={Validation of caregiver interviews to diagnose common causes of severe neonatal illness}, journal={Paediatric and Perinatal Epidemiology}, volume={13}, year={1999}, pages={99-113} } @article{KalHosBur99, author={Henry D. Kalter and Munir Hossain and Gilbert Burnham and Naila Z. Khan and Samir K. Saha and Md Anwar Ali and Robert E. Black}, title={Validation of caregiver interviews to diagnose common causes of severe neonatal illness}, journal={Paediatric and Perinatal Epidemiology}, volume={13}, year={1999}, pages={99-113} } @article{Kallay84, author={Michael Kallay}, title={The Complexity of Incremental Convex Hull Algorithms in Rd.}, journal={Informational Processes Letter}, volume={19}, year={1984}, pages={197}, number={4} } @article{Kallay86, author={Michael Kallay}, title={Convex Hull Made Easy}, journal={Information Processing Letters}, volume={22}, year={1986}, month={March}, issue={3} } @article{Kalter92, author={Henry Kalter}, title={The Validation of interviews for estimating morbidity}, journal={Health Policy and Planning}, volume={7}, year={1992}, pages={30-39}, number={1} } @article{KapBarLus88, author={George Kaplan, Vita Barell, and Ayala Lusky}, title={Subjective State of Health and Survival in Elderly Adults}, journal={Journal of Gerontology: Social Sciences}, volume= 43, year= 1988, pages={{S114-20}} } @article{KapGolEve96, author={George A Kaplan, Debbie Goldberg, Susan Everson, et al}, title={Perceived Health Status and Morbidity and Mortality: Evidence from the Kuopio Ischaemic Heart Disease Risk Factor Study}, journal={International Journal of Epidemiology}, volume= 25, year= 1996, pages={{259-65}} } @article{Karaagaoglu99, author={Ergun Karaagaoglu}, title={Estimation of the Prevalence of a Disease from Screening Tests}, journal={Tropical Journal of Medical Sciences}, volume={29}, year={1999}, pages={425-430} } @article{KasCarGel98, author={Robert E. Kass and Bradley P. Carlin and Andrew Gelman and Radford M. Neal}, title={Markov chain Monte Carlo in Practice: A Roundtable Discussion}, journal={The American Statistician}, volume={52}, year={1998}, pages={93-100}, number={2} } @article{KasWas96, author={Robert E. Kass and Larry Wasserman}, title={The Selection of Prior Distributions by Formal Rules}, journal={Journal of the American Statistical Association}, volume= 91, year= 1996, pages={1343--1370}, month={September}, number= 435 } @article{KatTri02, author={Neal K. Katyal and Laurence H. Tribe}, title={Waging War, Deciding Guilt: Trying the Military Tribunals}, journal= ylj, volume= 111, year={2002}, pages={1259--1310} } @article{Kawada03, author={Tomoyuki Kawada}, title={Self rated health and life prognosis}, journal={Archives of Medical Research}, volume= 34, year= 2003, pages={{343-47}} } @book{Kele72, author={Kele, M.}, title={Nazis and Workers}, publisher={University of North Carolina Press}, year= 1972, address={Chapel Hill} } @article{Kelly06, author={Kevin Kelly}, title={{Scan this Book}}, journal={The New York Times Magazine}, year={2006}, month={October 11} } @article{KenStu50, author={M.G. Kendall and A. Stuart}, title={The Law of the Cubic Proportion in election Results}, journal={The British journal of Sociology}, volume={1}, year={1950}, pages={183-196}, month={September}, number={3} } @book{Keyfitz68, author={N. Keyfitz}, title={Introduction to the Mathematics of Population}, publisher={Addison Wesley}, year= 1968, address={Reading, MA} } @article{Keyfitz82, author={N. Keyfitz}, title={Choice of Function for mortality Analysis: Effective Forecasting Depends on a Minimum Parameter Representation}, journal={Theoretical Population Biology}, volume= 21, year= 1982, pages={239--252} } @unpublished{KimHov04, author={Soo-Min Kim and Eduard Hovy}, title={Determining the Sentiment of Opinions}, note={Soo-Min Kim Information Sciences Inst. Univ. of Southern Calif. 4676 Admiralty Way, Marina del Rey, CA 90292-6695; skim@isi.edu}, year={04} } @unpublished{KimHov04, author={Soo-Min Kim and Eduard Hovy}, title={Determining the Sentiment of Opinions}, note={Soo-Min Kim Information Sciences Inst. Univ. of Southern Calif. 4676 Admiralty Way, Marina del Rey, CA 90292-6695; skim@isi.edu}, year={04} } @article{KimWah70, author={G.S. Kimeldorf and G. Wahba}, title={A correspondence between {Bayesian} estimation on stochastic processes and smoothing by splines}, journal={Ann. Math. Statist.}, volume={41}, year={1970}, pages={495--502}, number={2} } @article{KinAubHer98, author={Hilary King and Ronald E. Aubert and William H. Herman}, title={Global Burden of Diabetes, 1995-2025}, journal={Diabetes Care}, volume= 21, year= 1998, pages={1414--1431} } @article{Kinder86, author={Donald R. Kinder}, title={The Continuing American Dilemma: White Resistance to Racial Change 40 years After Myrdal}, journal={Journal of Social Issues}, volume={42}, year={1986}, pages={151-71} } @book{KinPal93, title={Experimental Foundations of Political Science}, publisher={University of Michigan Press}, year= 1993, editor={Donald R. Kinder and Thomas R. Palfrey}, address={Ann Arbor} } @article{KinSea81, author={Donald R. Kinder and David O. Sears}, title={Prejudice and Politics: Symbolic Racism Versus Racial Threats to the Good Life}, journal={Journal of Personality and Social Psychology}, volume={40}, year={1981}, pages={414-31} } @article{Kirchgaessner85, author={Gebhard Kirchg{\"a}ssner}, title={Rationality, Causality and the Relation between Economic Conditions and the Popularity of Parties}, journal={European Economic Review}, volume= 28, year= 1985, pages={243-268}, month={June/July} } @article{Kish49, author={Kish, Leslie}, title={{A Procedure for Objective Respondent Selection within the Household}}, journal={Journal of the American Statistical Association}, volume={44}, year={1949}, pages={380--387}, number={247} } @article{KlaDon97, author={Neil Klar and Allan Donner}, title={The Merits of Matching in Community Intervention Trials: A Cautionary Tale}, journal={Statistics in Medicine}, volume={16}, year={1997}, pages={1753-1764}, number={15} } @article{KlaDon98, author={Neil Klar and Allan Donner}, title={Authors' Reply: The Merits of Matching in Community Intervention Trials: A Cautionary Tale}, journal={Statistics in Medicine}, volume={17}, year={1998}, pages={2151-2152} } @article{Klarman97, author={Michael J. Klarman}, title={Majoritarian Judicial Review: The Entrenchment Problem}, journal={The Georgetown Law Journal}, volume={85}, year={1997}, pages={491-554} } @article{Klee80, author={Victor Klee}, title={On the Complexity of d-Dimensional Voronoi Diagrams}, journal={Archive der Mathematik}, volume={34}, year={1980}, pages={75--80} } @book{KliSmi99, author={Philip A. Klinker and Rogers M. Smith}, title={The Unsteady March: The Rise and Decline of Racial Equality in America}, publisher={?}, year= 1999 } @article{KluBerBra06, author={Klump, J. and Bertelmann, R. and Brase, J. and Diepenbroek, M. and Grobe, H. and H{\"o}ck, H. and Lautenschlager, M. and Schindler, U. and Sens, I. and W{\"a}chter, J.}, title={{Data publication in the open access initiative}}, journal={Data Science Journal}, volume={5}, year={2006}, pages={79--83}, number={0} } @article{Knorr-Held00, author={Leonhard Knorr-Held}, title={Bayesian Modelling of Inseparable Space-Time Variation in Disease Risk}, journal={Statistics in Medicine}, volume= 19, year= 2000, pages={2555-2567} } @article{Koch02, author={Koch, Jeffrey M.}, title={Gender Stereotypes and Citizens' Impressions of House Candidates' Ideological Orientation}, journal={American Journal of Political Science}, volume= 46, year= 2002, pages={453--462} } @article{KohAlt05, author={Isaac S. Kohane and Russ B Altman}, title={Health-Information Altruists --- A Potentially Critical Resource}, journal={New England Journal of Medicine}, volume= 19, year= 2005, pages={2074--2077}, month={November}, number= 353 } @article{KohAlt05, author={Isaac S. Kohane and Russ B. Altman}, title={Health-Information Altruists - A Potentially Critical Resource}, journal={New England Journal of Medicine}, volume={353}, year={2005}, pages={2074-2077}, month={November}, number={19} } @book{Kolb88, author={Eberhard Kolb}, title={The Weimar Republic}, publisher={Unwin Hyman}, year= 1988, address={London} } @article{KolBur91, author={Kolbe, R.H. and Burnett, M.S.}, title={{Content-Analysis Research: An Examination of Applications with Directives for Improving Research Reliability and Objectivity}}, journal={The Journal of Consumer Research}, volume={18}, year={1991}, pages={243--250}, number={2} } @unpublished{KolFinJos06, author={Pranam Kolari and Tim Finin and Anupam Joshi}, title={{SVMs for the Blogosphere: Blog Identification and Splog Detection}}, note={American Association for Artificial Intelligence Spring Symposium on Computational Approaches to Analyzing Weblogs}, year={2006} } @article{KolVliKap00, author={H. Koivumaa-Honkanen et al}, title={Self-Reported Life Satisfaction and 20-Year Mortality in Healthy Finnish Adults}, journal={American Journal of Epedimiology}, volume= 152, year= 2000, pages={{983-91}} } @article{KonDes01, author={M.M. Konstantareas and N. Desbois}, title={Preschoolers Perceptions of the Unfairness of Maternal Disciplinary Practices}, journal={Child Abuse \& Neglect}, volume= 25, year= 2001, pages={473--488}, month={April}, number= 4 } @article{KooVanBon94, author={Marc A. Koopmanschap and Leona Van Roijen and Luc Bonneux and Jan J. Barendregt}, title={Current and Future Costs of Cancer}, journal={European Journal of Cancer}, volume={30A}, year= 1994, pages={60--65}, number= 1 } @unpublished{KopSch05, author={Moshe Koppel and Jonathan Schler}, title={The Importance of Neutral Examples for Learning Sentiment}, note={Dept. of Computer Science Bar-Ilan University, Ramat-Gan Israel koppel,schlerj@cs.biu.ac.il}, year={05} } @unpublished{KopSch05, author={Moshe Koppel and Jonathan Schler}, title={The Importance of Neutral Examples for Learning Sentiment}, note={Dept. of Computer Science Bar-Ilan University, Ramat-Gan Israel koppel,schlerj@cs.biu.ac.il}, year={05} } @article{KorJorLet99, author={A E Kirtne, A F Jorm, Z Jiao, et al}, title={Health, Cognitive and psychosocial factors as predictors of mortality in an elderly community sample}, journal={Journal of Epidemiology and Communtiy Health }, volume= 53, year= 1999, pages={{83-8}} } @book{Kornhauser59, author={Kornhauser, W.}, title={The Politics of Mass Society}, publisher={The Free Press}, year= 1959, address={New York} } @article{KorWilGou03, author={Eline L. Korenromp and Brian G. Williams and Eleanor Gouws and christopher Dye and Robert W. Snow}, title={Measurement of trends in childhood malaria mortality in Africa: an assessment of progress toward targets based on verbal autopsy}, journal={The Lancet Infectious Diseases}, volume={3}, year={2003}, pages={349-58} } @book{Koshar86, author={Koshar, R.}, title={Social Life, Local Politics, and Nazism}, publisher={University of North Carolina Press}, year= 1986, address={Chapel Hill} } @article{KosHeiZak05, author={Michael Kosfeld and Markus Heinrichs and Paul J. Zak and Urs Fischbacher and Ernst Fehr}, title={Oxytocin Increases Trust in Humans}, journal={Nature}, volume={435}, year={2005}, pages={673-676}, month={June} } @article{KraJay94, author={Neal M. Krause, PhD, and Gina M. Jay, PhD}, title={What do Global Self-Rated Health Items Measure?}, journal={Medical Care}, volume= 32, year= 1994, pages={{930-42}} } @article{KraSha84, author={M.S. Kramer and S.H. Shapiro}, title={{Scientific challenges in the application of randomized trials}}, journal={Journal of the American Medical Association}, volume= 252, year= 1984 , pages={2739-45}, number= 19 } @article{KriBacRob07, author={Samuel Krislov and Charles Backstrom and Leonard Robins}, title={When Texans Gerrymander: Much Power, Continuous Politics, Little Law} } @book{Krippendorff04, author={Krippendorff, D.K.}, title={{Content Analysis: An Introduction to Its Methodology}}, publisher={Thousand Oaks, CA: Sage}, year={2004} } @article{Kruedener85, author={J{\"u}rgen von Kruedener}, title={Die {\"U}berforderung der Weimarer Republic als Sozialstaat}, journal={Geschichte und Gesellschaft}, volume= 1, year= 1985, pages={358--376}, number= 3 } @article{Krueger90, author={Anne O. Krueger}, title={Government Failures in Development}, journal={The Journal of Economic Perspectives}, volume={4}, year={1990}, pages={9-23}, number={3} } @article{Krueger99, author={Alan Krueger}, title={Experimental Estimates of Education Production Functions}, journal={Quarterly Journal of Economics}, volume={114}, year={1999}, pages={497-532}, month={May}, number={2} } @article{KrzWys86, author={Mical Krzyzanowski and Miroslaw Wysocki}, title={The Relation of Thirteen-Year Mortality to Ventilatory Impairment and Other Respiratory Symptoms: The Cracow Study}, journal={International Journal of Epidemiology}, volume= 15, year= 1986, pages={{56-64}}, number= 1 } @article{KucMwaLes06, author={Helmut K{\"u}chenohoff and Samuel M. Mwalili and Emmanuel Lassaffre}, title={A General Method for Dealing with Misclassification in Regression: The Misclassification SIMEX}, journal={Biometrics}, volume={62}, year={2006}, pages={85-96}, month={March} } @article{KulLei51, author={S. Kullback and R.A. Leibler}, title={On Information and Sufficiency}, journal={Annals of Mathematical Statistics}, volume= 22, year= 1951, pages={79--86}, month={March}, number= 1 } @unpublished{KumAll04, author={Giridhar Kumaran and James Allan}, title={Text Classification and Named Entities for New Event Detection}, note={Center for Intelligent Information Retreival, Department of Computer Science, Univ of MA, Amherst}, year={2004}, month={July} } @unpublished{KumAll04, author={Giridhar Kumaran and James Allan}, title={Text Classification and Named Entities for New Event Detection}, note={Center for Intelligent Information Retreival, Department of Computer Science, Univ of MA, Amherst}, year={2004}, month={July} } @article{KunGeuvan95, author={Anton Kunst and J.J. Geurts and J. van den Berg}, title={International variation in socioeconomic inequalities in self reported health}, journal={Journal of Epidemiology and Community Health}, year={1995}, optnumber={2}, optvolume={49}, optpages={117--123} } @article{KunGroMac98, author={A.E. Kunst and F. Gorenhof and J.P. Mackenbach and E.W. Health}, title={Occupational class and cause specific mortality in middle aged men in 11 European countries: comparison of population based studies. EU Working Group on Socioeconomic Inequalities in Health }, journal= bmj, year={1998}, optvolume={316}, optpages={1636--1642} } @article{KunGroMac98b, author={Anton Kunst and F. Groenhof and Johann Mackenbach}, title={Mortality by occupational class among men 30--64 years in 11 European countries}, journal= ssm, volume= 46, year= 1998, pages={1459-1476}, number= 11 } @article{Kunsch87, author={Hans R. K{\"u}nsch}, title={Intrinsic Autoregressions and Related Models on the Two-Dimensional Lattice}, journal={Biometrika}, volume= 74, year= 1987, pages={517-524}, number= 3 } @article{Kuo01, author={Yen-Hong Kuo}, title={Extrapolation of Association Between Two Variables in Four General Medical Journals}, year= 2001 , month={September}, note={Forth International Congress on Peer Review in Biomedical Publication}, key={Barcelona, Spain} } @book{kvart86, author={Igal Kvart}, title={A Theory of Counterfactuals}, publisher={Indianapolis: Hackett Publishing Company}, year= 1986 } @article{KwoShuHov06, author={Namhee Kwon and Stuart W. Shulman and Eduard Hovy}, title={{Collective Text Analysis for eRulemaking}}, journal={7th Annual International Conference on Digital Government Research}, year={2006} } @incollection{LagRus02, author={Monica Lagazio and Bruce Russett}, title={A Neural Network Analysis of Militarized International Disputes, 1885-1992: Temporal Stability and Causal Complexity}, booktitle={The Scourge of War: New Extensions on an Old Problem}, publisher={University of Michigan Press}, year={2002}, address={Ann Arbor}, editor={Paul Diehl}, optpages={269--295}, optannote={This paper fits a model for Cold War militarized disputes and assess how well the Cold War model fits pre-Cold War data (so-called 'post-diction'). So it gets fitted values. Also, runs test and training, and discusses merits of neural net approach.} } @article{Lahlrl03, author={P. Lahlrl}, title={On the Impact of Boostrapping in Survey Sampling and Small Area Estimation}, journal={Statistical Science}, volume= 18, year= 2003, pages={199-210}, number= 2 } @article{LaiLou87, author={Nan M. Laird and Thomas A. Louis}, title={Empirical Bayes Confidence Intervals Based on Bootstrap Samples}, journal={Journal of the American Statistical Association}, volume={82}, year={1987}, pages={739-750}, month={September}, number={399} } @article{LaiLou87b, author={Nan M. Laird and Thomas A. Louis}, title={Empirical Bayes Confidence Intervals Based on Bootstrap Samples: Rejoinder}, journal={Journal of the American Statistical Association}, volume={399}, year={1987}, pages={756-757}, month={September} } @unpublished{Lakin05, author={Jason Lakin}, title={Letting the Outsiders in: Democratization and Health Reform in Mexico}, note={American Political Science Association}, year= 2005 , address={Washington D.C.} } @article{Lalonde86, author={Robert Lalonde}, title={Evaluating the Econometric Evaluations of Training Programs}, journal={American Economic Review}, volume={76}, year={1986}, pages={604-620} } @article{Landers05, author={John Landers}, title={The Destructiveness of Pre-Industrial Warfare: Political and Technological Determinants}, journal={Journal for Peace Research}, volume={42}, year={2005}, pages={455-470}, month={July}, number={4} } @article{langholz91, author={B. Langholz and D.C. Thomas}, title={Efficiency of Cohort Sampling Designs: Some Surprising Results}, journal={Biometrics}, volume= 47, year= 1991, pages={1563-1571} } @article{langholz96, author={Bryan Langholz and Larry Goldstein}, title={Risk Set Sampling in Epidemiologic Cohort Studies}, journal={Statistical Science}, volume= 11, year= 1996, pages={35-53}, number= 1 } @article{langholz97, author={Bryan Langholz and Boran {\O }rnulf}, title={Estimation of Absolute Risk from Nested Case-Control Data}, journal={Biometrics}, volume= 53, year= 1997, pages={767-774}, month={June} } @article{LaPalombara68, author={Joseph LaPalombara}, title={Macrotheories and Microapplications in Comparative Politics: A Widening Chasm}, journal= cp, year= 1968, pages={52--78}, month={October} } @book{Laplace1820, author={P.S. Laplace}, title={Philosophical Essays on Probaiblities}, publisher={Dover}, year={1951, original: 1820}, address={New York} } @article{LaRBanJar79, author={Asenath LaRue, PhD, Lew Bank, MA, Lissy Jarvick, MD, PhD, and Monte Hetland, BA}, title={Health in Old Age: How Do Physicians' Ratings and Self-Ratings Compare?}, journal={Journal of Gerontology}, volume= 34, year= 1979, pages={{687-91}} } @article{Lassen05, author={David Dreyer Lassen}, title={The Effect of Information on Voter Turnout: Evidence from a Natural Experiement}, journal={American Journal of Political Science}, volume={2005}, year={49}, pages={103-118}, month={January}, number={1} } @article{Lau97, author={Tai-Shing Lau}, title={The Latent Class Model for Multiple Binary Screening Tests}, journal={Statistics in Medicine}, volume={16}, year={1997}, pages={2283-2295} } @article{LauIbr95, author={Purushottam W. Laud and Joseph G. Ibrahim}, title={Predictive Model Selection}, journal= jrssb, volume= 57, year= 1995, pages={247--262}, number= 1 } @article{LauIbr96, author={Purushottam W. Laud and Joseph G. Ibrahim}, title={Predictive Specification of Prior Model Probabilities in Variable Selection}, journal={Biometrika}, volume= 83, year= 1996, pages={267--274}, number= 2 } @article{LauSmiSta00, author={Jennifer L. Lauby and Philip J. Smith and Michael Stark and Bobbie Person and Janet Adams}, title={A Community-Level HIV Prevention Intervention for Inner-City Women: Results of the Women and Infants Demonstration Projects}, journal={American Journal of Public Health}, volume={90}, year={2000}, pages={216-222}, month={February}, number={2} } @article{LavBenGar03, author={Michael Laver and Kenneth Benoit and John Garry}, title={{Extracting Policy Positions from Political Texts Using Words as Data}}, journal={American Political Science Review}, volume={97}, year={2003}, pages={311-331}, number={2} } @book{Leamer78, author={Edward Leamer}, title={Specification Searches}, publisher={Wiley}, year= 1978, address={New York} } @article{Lebow00, author={Richard Ned Lebow}, title={What's so Different About a Counterfactual?}, journal= wp, volume= 52, year= 2000, pages={550--85}, month={July} } @misc{Lechner00, author={Michael Lechner}, title={A note on the common support problem in applied evaluation studies}, year= 2000, howpublished={{http://www.siaw.unisg.ch/lechner}}, note={University of St. Galen} } @incollection{Lechner99, author={Michael Lechner}, title={Identification and Estimation of Causal Effects of Multiple Treatments under the Conditional Independence Assumption}, booktitle={Econometric Evaluation of Labour Market Policies}, publisher={Physica}, address={Heidelberg}, editor={Lechner, M. and Pfeiffer, F.}, year= 2001, pages={43--58} } @article{LedBre59, author={S. Ledermann and J. Breas}, title={{Les Dimensions de la Mortalit{\'e}}}, journal={Population}, volume= 14, year= 1959, pages={637--682}, note={[in French]} } @article{Lee00, author={Ronald D. Lee}, title={The Lee-Carter Method for Forecasting Mortality, with Various Extensions and Applications}, journal={North American Actuarial Journal}, volume= 4, year= 2000, pages={80--93}, number= 1 } @article{Lee00a, author={Ronald D. Lee}, title={{Long-Term Projections and the US Social Security System}}, journal={Population and Development Review}, volume= 26, year= 2000, pages={137--143}, month={March}, number= 1 } @article{Lee93, author={Ronald D. Lee}, title={{Modeling and Forecasting the Time Series of US Fertility: Age Patterns, Range, and Ultimate Level}}, journal={International Journal of Forecasting}, volume= 9, year= 1993, pages={187--202} } @article{LeeCar92, author = {Ronald D. Lee and Lawrence R. Carter}, title = {{Modeling and Forecasting U.S. Mortality}}, journal = jasa, volume = 87, year = 1992, month = {September}, pages = {659--675}, number = 419 } @article{LeeCar92b, author={Ronald D. Lee and Lawrence R. Carter}, title={Rejoinder}, journal= jasa, volume= 87, year= 1992, pages={674--675}, month={September}, number= 419 } @article{LeeCarTul95, author={Ronald D. Lee and Lawrence Carter and S. Tuljapurkar}, title={Disaggregation in Population Forecasting: Do We Need It? And How to Do it Simply}, journal={Mathematical Population Studies}, volume={5}, year={1995}, pages={217--234}, month={July}, number={3}, annote={Authors describe a model for reducing the dimensionality of the forecasting problem by modeling the evolution over time of the age schedules of vital rates, reducing the problem to forecasting a single parameter for fertility and another for mortality. Authors also show how one can fit the model more simply and prepare integrated forecasts for a collection of regions, and discuss alternate approaches to forecasting the estimated indices of fertility and mortality, including state-space methods.} } @misc{LeeHigBiFerWes00, author={Herbert Lee and David Higdon and Zhuoxin Bi and Marco Ferreira and Mike West}, title={Markov Random Field Models for High-Dimensional Parameters in Simulations of Fluid Flow in Porous Media}, year= 2000, howpublished={Discussion Paper \#00-35, Institute of Statistics and Decision Sciences, Duke University} } @book{LeeJohZel96, author={Jack C. Lee and Wesley O. Johnson and Arnold Zellner}, title={Modelling and Prediction: Honoring Seymour Geisser}, publisher={Springer}, year={1996}, editor={Jack C. Lee and Wesley O. Johnson and Arnold Zellner} } @article{LeeMil01, author={Ronald D. Lee and Timothy Miller}, title={Evaluating the Performance of the Lee-Carter Approach to Modeling and Forecasting Mortality}, journal={Demography}, volume= 38, year= 2001, pages={537--549}, month={November}, number= 4 } @article{LeeRof94, author={Ronald D. Lee and R. Rofman}, title={Modeling and Projecting Mortality in Chile}, journal={Notas Poblacion}, volume={22}, year={1994}, pages={183--213}, month={Jun}, number={59}, annote={Authors extend the Lee-Carter method to deal with various problems of incomplete data common in Third World populations, and then apply the method to forecast mortality in Chile.} } @article{LeeSki99, author={Ronald D. Lee and Jonathan Skinner}, title={Will Aging Baby Boomers Bust the Federal Budget}, journal={Journal of Economic Perspectives}, volume= 13, year= 1999, pages={117--140}, month={Winter}, number= 1 } @article{LeeTul94, author={Ronald D. Lee and S. Tuljapurkar}, title={{Stochastic Population Projections for the U.S.: Beyond High, Medium and Low}}, journal= jasa, volume= 89, year= 1994, pages={1175--1189}, month={December}, number= 428 } @article{LeeTul98, author={Ronald D. Lee and S. Tuljapurkar}, title={{Uncertain Demographic Futures and Social Security Finances}}, journal={American Economic Review: Papers and Proceedings}, year= 1998, pages={237--241}, month={May} } @incollection{LeeTul98a, author={Ronald D. Lee and S. Tuljapurkar}, title={{Stochastic Forecasts for Social Security}}, booktitle={Frontiers in the Economics of Aging}, publisher={University of Chicago Press}, year= 1998, address={Chicago}, editor={David Wise}, pages={393--420} } @techreport{LenFox06, author={Amanda Lenhart and Susannah Fox}, title={{Bloggers: A Portrait of the Internet's New Storytellers}}, institution={Pew Internet and American Life Project}, year= 2006, note={{http://207.21.232.103/pdfs/PIP\%20Bloggers\%20Report\%20July\%2019\%202006.pdf}} } @book{LenHsu99, author={T. Leonard and J.S.J. Hsu}, title={Bayesian Methods}, publisher={Cambridge University Press}, year= 1999, address={Cambridge} } @unpublished{LeuSia03, author={E. Leuven and B. Sianesi}, title={psmatch2}, note={{Stata module to perform full {M}ahalanobis and propensity score matching, common support graphing, and covariate imbalance testing. Available at: http://www1.fee.uva.nl/scholar/mdw/leuven/stata}}, year= 2003 } @misc{LeuSia04, author={Edwin Leuven and Barbara Sianesi}, title={PSMATCH2: Stata module to perform full Mahalanobis and propensity score matching, common support graphing, and covariate imbalance testing}, year= 2004, howpublished={EconPapers}, note={{http://econpapers.repec.org/software/bocbocode/S432001.htm}} } @article{LeuTanLue97, author={Kai-Kuen Leung, Li-Yu Tang, and Bee-Horng Lue}, title={Self-Rated Health and Mortality in Chinese Institutional Elderly Persons}, journal={Journal of Clinical Epidemiology}, volume= 50, year= 1997, pages={{1107-16}}, number= 10 } @book{Levinson01, author={Sanford Levinson}, title={What is the Constitution's Role in Wartime: Why Free Speech and Other Rights Are Not as Safe as You Might Think}, publisher={?}, year= 2001 } @article{LevKas70, author={P.S. Levy and E. H. Kass}, title={A three population model for sequential screening for Bacteriuria}, journal={American Journal of Epidemiology}, volume={91}, year={1970}, pages={148-154} } @article{Lewis01, author={Jeffrey B. Lewis}, title={Estimating Voter Preference Distributions from Individual-Level Voting Data}, journal={Political Analysis}, volume= 9, year= 2001, pages={275-297}, month={June}, number= 3 } @article{Lewis03, author={Anthony Lewis}, title={Marbury v. Madison v. Ashcroft}, journal={New York Times}, year={2003}, month={February 24, A17} } @incollection{Lewis05, author={Maureen Lewis}, title={Improving Efficiency and Impact in Health Care Services: Lessons from Central America}, booktitle={Health Systems Innovation in Central America}, publisher={The World Bank}, year= 2005, address={Washington, D.C.}, editor={Gerard M. La Forgia} } @inbook{Lewis05, author={Maureen Lewis}, title={Health Sysems Innovatin in Central American}, chapter={Improving Efficiency and Impact in Health Care Services - Lessons from Central American }, year={2005}, publisher={The World Bank}, address={Washington DC}, editor={Gerard M. La Forgia} } @book{lewis73, author={David K. Lewis}, title={Counterfactuals}, publisher={Cambridge: Harvard University Press}, year= 1973 } @article{Lewis99b, author={John A. Lewis}, title={Statistical Principles for Clinical Trials (ICH E9) An Introductory Note on an International Guideline}, journal={Statistics in Medicine}, volume={18}, year={1999}, pages={1903-1904} } @article{LewLev89, author={R.A. Lew and P.S. Levy}, title={Estimation of prevalence on the basis of screening tests}, journal={Statistics in Medicine}, volume={8}, year={1989} } @article{LewLev89, author={Robert A. Lew and Paul S. Levy}, title={Estimation of Prevalence on the Basis of Screening Tests}, journal={Statistics in Medicine}, volume={8}, year={1989}, pages={1225-1230} } @book{Li95, author={S.Z. Li}, title={Markov Random Field Modeling in Computer Vision}, publisher={Springer-Verlag}, year= 1995 } @article{LicLipDan92, author={Allen S. Lichter and Marc E. Lippman and David N. Danforth Jr and Teresa d'Angelo and Seth M. Steinberg and Ernest deMoss and Harold D. MacDonald and Cheryl M. Reichert and Maria Merino and Sandra M. Swain and Kenneth Cowan and Lynn H. Gerber and Judith L. Bader and Peggie A. Findlay and Wendy Schain and Catherine R. Gorrell and Karen Straus and Steven A. Rosenberg and Eli Glatstein}, title={Mastectomy Versus Breast-Conserving Therapy in the Treatment of Stage I and II Carcinoma of the Breast: A Randomized Trial at the National Cancer Institute}, journal={Journal of Clinical Oncology}, volume= 10, year= 1992, pages={976-983}, month= June , number= 6 } @article{LilPer94, author={David E. Lilienfeld and Daniel P. Perl}, title={Projected Neurodegenerative Disease Mortality among Minorities in the United States}, journal={Neuroepidemiology}, volume= 13, year= 1994, pages={179--186} } @article{LinCutZwi02, author={Shin Lin and David L. Cutler and Michael E. Zwick and Aravinda Chakravarti}, title={Haplotype Inference in Random Population Samples}, journal={American Journal of Human Genetics}, volume= 71, year= 2002, pages={1129--1137} } @book{LinHam97, title={Handbook of Modern Item Response Theory}, publisher={Springer}, year= 1997, editor={Wim Van Der Linden and Ronald K. Hambleton}, address={New York} } @article{LinLin80, author={Bernard S. Linn and Margaret W. Linn}, title={Objective and self-assessed health in the old and very old}, journal={Social Science and Medicine }, volume={{14A}}, year= 1980, pages={{311-15}} } @article{LinPekWan05, author={Peter K. Lindenauer and Penelope Pekow and Kaijun Wang and Dheeresh K. Mamidi and Benjamin Guierrez and Evan M. Benjamin}, title={Perioperative beta-blocker therapy and mortality after major noncardiac surgery}, journal={New England Journal of Medicine}, volume={353}, year={2005}, pages={349-361}, month={July}, number={4} } @article{LinSmi72, author={D. V. Lindley and A. F. M. Smith}, title={{B}ayes Estimates for the Linear Model}, journal={Journal of the Royal Statistical Society B}, volume= 34, year= 1972, pages={1-41}, number= 1 } @book{Lipset63, author={Lipset, Seymour Martin}, title={Political Man: The Social Basis of Politics}, publisher={Anchor Books}, year= 1963, address={Garden City, NY} } @article{LisMilFre03, author={John A. List and Daniel L. Millimet and Per G. Fredriksson and W. Warren McHone}, title={Effects of Environmental Regulations on Manufacturing Plant Births: Evidence from a Propensity Score Matching Estimator}, journal={The Review of Economics and Statistics}, volume={85}, year={2003}, pages={944-952}, month={November}, number={4} } @article{LitAn04, author={Roderick Little and Hyonggin An}, title={Robust Likelihood-Based Analysis of Multivariate Data with Missing Values}, journal={Statistica Sinica}, volume={14}, year={2004}, pages={949-968} } @article{LitAn04, author={Roderick Little and Hyonggin An}, title={Robust Likelihood-Based Analysis of Multivariate Data with Missing Values}, journal={Statistica Sinica}, volume={14}, year={2004}, pages={949-968} } @book{LitRub02, author={Roderick J.A. Little and Donald B. Rubin}, title={Statistical Analysis with Missing Data, 2nd Edition}, publisher={John Wiley and Sons}, year={2002}, address={New York, New York} } @article{LitRub89, author={Rodrick J. Little and Donald Rubin}, title={The Analysis of Social Science Data with Missing Values}, journal={Sociological Methods and Research}, volume={18}, year={1989}, pages={292-326} } @inbook{LitSch95, author={Rodrick J. Little and N. Schenker}, title={Handbook of Statistical Modeling for the Social and Behavioral Sciences}, chapter={Missing Data}, year={1995}, pages={39-75} } @unpublished{Little05, author={Roderick Little}, title={Calibrated Bayes: A Bayes/Frequentist Roadmap}, note={University of Michigan}, year={2005}, month={September} } @article{Little92, author={Roderick J. Little}, title={Regression with Missing X's: A Review}, journal={Journal of the American Statistical Association}, volume={87}, year={1992}, pages={1227-1237} } @unpublished{LiuHuChe05, author={Bing Liu and Minqing Hu and Junsheng Cheng}, title={Opinion Observer: Analyzing and Comparing Opinions on the Web}, note={Bing Liu Dept of Computer Science; Univ of Illinois at Chicago, 851 south Morgan St. Chicago, IL 60607-7053, liub@cs.uic.edu}, year={2005}, month={May} } @article{LiuWonKon94, author={J. Liu and W.H. Wong and A. Kong}, title={Covariance Structure of the Gibbs Sampler with Applications to the Comparisons of Estimators and Augmentation Schemes}, journal={Biometrika}, volume={81}, year={1994}, pages={27-40} } @article{LiWen05, author={Quan Li and Ming Wen}, title={The Immediate and Lingering Effects of Armed Conflict on Adult Mortality: A Time-Series Cross-National Analysis}, abstract={This research investigates the effect of armed conflict on adult mortality across countries and over time. Theoretical mechanisms are specified for how military violence influences adult mortality, both immediately and over time after conflict. The effects of aggregate conflict, interstate and intrastate conflicts, and conflict severity are explored. The Heckman selection model is applied to account for the conflict-induced missing data problem. A pooled analysis across 84 countries for the period from 1961 to 1998 provides broad empirical support for the proposed theoretical expectations across both genders. This study confirms the importance of both the immediate and the lingering effect of military conflict on the mortality of the working-age population. The immediate effect of civil conflict is much stronger than that of the interstate conflict, while the reverse applies to the lingering effect. Both the immediate and the lingering effects of severe conflict are much stronger than those of minor conflict. While men tend to suffer higher mortality immediately from intrastate conflict and severe conflict, women in the long run experience as much mortality owing to the lingering effects of these conflicts. The mortality data show a strong data selection bias caused by military conflict. The research findings highlight the imperative for negotiating peace. Preventing a contest from escalating into a severe conflict can produce noticeable gains in saved human lives.}, journal={Journal of Peace Research}, volume={42}, year={2005}, pages={471-492}, month={July}, number={4} } @article{LoeFulKag03, author={Susanna Loeb and Bruce Fuller and Sharon Lynn Kagan and Bidemi Carrol}, title={How Welfare Reform Affects Young Children: Experimental Findings from Connecticut - A Research Note}, journal={Journal of Policy Analysis and Management}, volume={22}, year={2003}, pages={537-550}, number={4} } @article{Londregan00, author={John Londregan}, title={Estimating Legislator's Preferred Points}, journal={Political Analysis}, volume= 8, year= 2000, pages={21--34}, month={Winter}, number= 1 } @book{Londregan00b, author={John Londregan}, title={Legislative Institutions and Ideology in Chile}, publisher={Cambridge University Press}, year= 2000, address={New York} } @book{LonFre06, author={J. Scott Long and Jeremy Freese}, title={Regression Models for Categorical Dependent Variables Using Stata}, publisher={Stata Press}, year={2006}, address={College Station, TX} } @article{LooBee46, author={Loomis, C. P. and Beegle, J. A.}, title={The Spread of German Nazism in Rural Areas}, journal= asr, volume= 11, year= 1946, pages={724-734} } @book{LopAhmGui00, author = {Alan Lopez and O. Ahmed and M. Guillot and B.D. Ferguson and J.A. Salomon and C.J.L. Murray and K.H. Hill}, title = {World Mortality in 2000: Life Tables for 191 Countries}, publisher = {World Health Organization}, year = 2000, address = {Geneva} } @article{LowAltFer98, author={Robert Lowry and James E. Alt and Karen Ferree}, title={Fiscal Policy Outcomes and Electoral Accountability in the American States}, journal={American Political Science Review}, volume= 92, year= 1998, pages={759-777}, month={December} } @article{Lowenstein2006, author={Daniel H. Lowenstein}, title={Vieth's Gap: Has the Supreme Court Gone from Bad to Worse on Partisan Gerrymandering?}, journal={Cornell Journal of Law and Public Policy}, volume={N:X}, year={2006}, pages={101-130}, month={January} } @article{LozSolGak06, author = {Rafael Lozano and Patricia Soliz and Emmanuela Gakidou and Jesse Abbott-Klafter and Dennis M. Feehan and Cecilia Vidal and Juan Pablo Ortiz and Christopher J.L. Murray}, title = {Benchmarking of performance of Mexican States with Effective Coverage}, journal = {The Lancet}, volume = {368}, year = {2006}, pages = {1729-1741}, month = {November} } @article{lubin94, author = {J.H. Lubin and M.H. Gail}, title = {Sampling Strategies in Nested Case-Control Studies}, journal = {Environmental Health Perspectives}, volume = 102, year = 1994, pages = {47-51}, number = {suppl 8} } @article{Lubkemann05, author = {Stephen C. Lubkemann}, title = {Migratory Coping in Wartime Mozambique: An Anthropology of Violence and Displacement in Fragmented Wars}, journal = {Journal of Peace Research}, volume = {42}, year = {2005}, pages = {493-508}, month = {July}, number = {4} } @article{LumHea99, author = {Thomas Lumley and Patrick Heagerty}, title = {Weighted Empirical Adaptive Variance Estimators for Correlated Data Regression}, journal = {jrssb}, volume = {61}, year = {1999}, pages = {459--477}, number = {2} } @article{LunSmi05, author = {Jennifer Hickes Lundquist and Herbert L. Smith}, title = {Family Formation Among Women in the U.S. Military: Evidence from the NLSY}, journal = {Journal of Marriage and Family}, volume = {67}, year = {2005}, pages = {1-13}, month = {February} } @article{LuRos04, author={Bo Lu and Paul R. Rosenbaum}, title={Optimal Pair Matching With Two Control Groups}, journal={Journal of Computational and Graphical Statistics}, volume={13}, year={2004}, pages={422-434}, number={2} } @inbook{Lustig94, author={Nora Lustig}, title={Solidarity as a Strategy of Poverty Alleviation}, chapter={5}, year={1994}, publisher={Center for U.S.-Mexican Studies}, pages={79-96}, series={U.S.-Mexico Contemporary Perspectives Series, 6}, address={University of California, San Diego} } @article{LuZanHor01, author = {Bo Lu and Elaine Zanuto and Robert Hornik and Paul R. Rosenbaum}, title = {Matching With Doses in an Observational Study of a Media Campaign Against Drug Abuse}, journal = {Journal of the American Statistical Association}, volume = {96}, year = {2001}, pages = {1245-1253}, month = {December}, number = {456} } @techreport{LymVar03, author = {Peter Lyman and Hal R. Varian}, title = {{How much information 2003}}, institution = {University of California}, year = 2003, note = {{http://www2.sims.berkeley.edu/research/projects/how-much-info-2003/}} } @article{Lynch03, author = {Lynch, C.A.}, title = {{Institutional Repositories: Essential Infrastructure For Scholarship In The Digital Age}}, journal = {portal: Libraries and the Academy}, volume = {3}, year = {2003}, pages = {327--336}, number = {2} } @article{LynMcc92, author = {Henry S. Lynn and Charles E. McCulloch}, title = {When Does it Pay to Break the Matches for Analysis of a Matched-Pairs Design?}, journal = {Biometrics}, volume = {48}, year = {1992}, pages = {397-409}, month = {June} } @article{MacKunGro99, author = {J.P. Mackenbach and A.E. Kunst and F. Groenhof and J.K. Borgan and G. Costa and F. Faggiano }, title = {Socioeconomic inequalities in mortality among women and among men: an international study}, journal = {American Journal of Public Health}, volume = 89, year = 1999, pages = {1800-1806}, number = 12 } @book{Macridis55, author={Roy C. Macridis}, title={The Study of Comparative Government}, publisher={Doubleday and Co.}, year= 1955, address={New York} } @article{MacRivJur06, author = {Ellen J. MacKenzie and Frederick P. Rivara and Gregory J. Jurkovich and Avery B. Nathens and Katherine P. Frey and Brian L. Egleston and David S. Salkever and Daniel O Scharfstein}, title = {A National Evaluation of the Effect of Trauma-Center Care on Mortality}, journal = {New England Journal of Medicine}, volume = {354}, year = {2006}, pages = {366-378}, month = {January} } @article{MadDou64, author = {George L. Maddox and Elizabeth B. Douglas}, title = {Self-Assessments of Health: A Longitudinal Study of Elderly Subjects}, journal = {Journal of Health and Social Behavior }, volume = 14, year = 1973, pages = {{87-93}} } @article{MadNel92, author = {W.R. Madych and S.A. Nelson}, title = {Bounds on Multivariate Polynomials and Exponential Error Estimates for Multiquadric Interpolation}, journal = {Journal of Approximation Theory}, volume = 70, year = 1992, pages = {94--114} } @article{Malaker86, author={CR Malaker}, title={Estimation of Adult Mortality in India: 1971--1981}, journal={Demography India}, volume= 15, year= 1986, pages={126--136} } @article{ManKarMar03, author = {Kristiina Manderbacka, et al}, title = {The Effect of Point of Reference on the Association Between Self-Rated Health and Mortality}, journal = {Social Science and Medicine}, volume = 56, year = 2003, pages = {{1447-52}} } @book{ManSch99, author={Christopher D. Manning and Hinrich Sch{\"u}tze}, title={Foundations of Statistical Natural Language Processing}, publisher={Massachusetts Institute of Technology}, year={1999}, address={Cambridge, MA} } @book{Manski05, author={Charles F. Manski}, title={Social choice with Partial Knowledge of Treatment Response}, publisher={Princeton University Press}, year={2005}, series={Econometric Institute Lectures} } @article{Manski77, author={Charles F. Manski}, title={The Estimation of Choice Probabilities from Choice Based Samples}, journal={Econometrics}, volume= 45, year= 1977, pages={1977--88}, month={November}, number= 8 } @article{Manski90, author = {Charles F. Manski}, title = {The Use of Intentions Data to Predict Behavior: A Best-Case Analysis}, journal = {Journal of the American Statistical Association}, volume = {85}, year = {1990}, pages = {934-940}, month = {December}, number = {412} } @book{Manski95, author={Charles F. Manski}, title={Identification Problems in the Social Sciences}, publisher={Harvard University Press}, year= 1995 } @inproceedings{manski99, author = {Charles F. Manski}, title = {Nonlinear Statistical Inference: Essays in Honor of Takeshi Amemiya}, booktitle = {Nonparametric Identification Under Response-Based Sampling}, year = 1999 , publisher = cup, editor = {C. Hsiao and K. Morimune and J. Powell} } @article{ManSzoKoh01, author = {Mandl, K.D. and Szolovits, P. and Kohane, I.S.}, title = {{Public standards and patients' control: how to keep electronic medical records accessible but private}}, journal = {BMJ}, volume = {322}, year = {2001}, pages = {283--7}, number = {7281} } @article{ManSzoKoh01, author={Kenneth D. Mandl and Peter Szolovits and Isaac S. Kohane}, title={Public standards and patients' control: how to keep electronic medical records accessible but private}, journal={British Medical Journal}, volume={322}, year={2001}, pages={283-287}, month={February}, publisher={British Medical Journal} } @article{mantel73, author={N. Mantel}, title={Synthetic Retrospective Studies and Related Topics}, journal={Biometrics}, volume= 29, year= 1973, number={479-486} } @article{ManTudDie06, author={Dennis T. Mangano and Julia C. Tudor and Cynthia Dietzel}, title={The Risk Associated wtih Aprotinin in Cardiac Surgery}, journal={The New England Journal of Medicine}, volume={354}, year={2006}, pages={353-365}, month={January}, number={4} } @article{ManRao04, title = {{Community-Based and-Driven Development: A Critical Review}}, author = {Mansuri, G. and Rao, V.}, journal = {The World Bank Research Observer}, volume = {19}, number = {1}, pages = {1-39}, year = {2004} } @article{MarCamFay91, author = {Elizabeth A. Martin and Pamela C. Campanelli and Robert E. Fay}, title = {An Application of Rasch Analysis to Questionnaire Design: Using Vignettes to Study the Meaning of `Work' in the Current Population Survey}, journal = {The Statistician}, volume = 40, year = 1991, pages = {265--276}, month = {September}, number = 3 } @article{March57, author={James G. March}, title={party Legislative Representation as a Function of Election Results}, journal={1957}, volume={21}, year={1957-1958}, pages={521-542}, month={Winter}, number={4} } @article{Marcus00, author={George E. Marcus}, title={{Emotions in Politics}}, journal={Annual Review of Political Science}, volume={3}, year={2006}, pages={221-50} } @article{Marcus88, author={George E. Marcus}, title={{The Structure of Emotional Response: The 1984 Presidential Candidates}}, journal={American Political Science Review}, volume={82}, year={1988}, pages={737-761}, number={3} } @article{MarDiePer93, author={Donald C. Martin and Paula Diehr and Edward B. Perrin and Thomas D. Koepsell}, title={The Effect of Matching on the Power of Randomized Community Intervention Studies}, journal={Statistics in Medicine}, volume={12}, year={1993}, pages={329-338} } @article{MarHusLob95, author={David Marsh and Khatidja Husein and Melvyn Lobo and Mehboob Ali Shah and Stephen Luby}, title={Verbal autopsy in Karachi slums: comparing single and multiple cause of child deaths}, journal={Health Policy and Planning}, volume={10}, year={1995}, pages={395-403}, number={4} } @article{MarHusLob95, author={David Marsh and Khatidja Husein and Melvyn Lobo and Mehboob Ali Shah and Stephen Luby}, title={Verbal autopsy in Karachi slums: comparing single and multiple cause of child deaths}, journal={Health Policy and Planning}, volume={10}, year={1995}, pages={395-403}, number={4} } @book{MarKenBib79, author={K. V. Mardia and J. T. Kent and J. M. Bibby}, title={Multivariate Analysis}, publisher= ap, year={1979}, address={London} } @article{MarMajRas93, author={David Marsh and Nuzhat Majit and Zeba Rasmussen and Khalid Mateen and Arif Amin Khan}, title={Cause-Specific Child Mortality In A Mountainous Community In Pakistan By Verbal Autopsy}, journal={Journal of the Pakistan Medical Association}, volume={43}, year={1993}, pages={226-229}, month={November}, number={11} } @article{MarMajRas93, author={David Marsh and Nuzhat Majit and Zeba Rasmussen and Khalid Mateen and Arif Amin Khan}, title={Cause-Specific Child Mortality In A Mountainous Community In Pakistan By Verbal Autopsy}, journal={Journal of the Pakistan Medical Association}, volume={43}, year={1993}, pages={226-229}, month={November}, number={11} } @misc{MarQui01, author={Andrew D. Martin and Kevin M. Quinn}, title={The Dimensions of {S}upreme {C}ourt Decision Making: Again Revisiting {T}he {J}udicial {M}ind}, year= 2001, howpublished={Paper presented at the Annual Meeting of the Midwest Political Science Association} } @manual{MarQui05, author={Andrew D. Martin and Kevin M. Quinn}, title={MCMCpack: Markov chain Monte Carlo (MCMC) Package}, year={2005}, url={{http://mcmcpack.wustl.edu}} } @article{MarSadFik03, author={David R. Marsh and Salim Sadruddin and Fariyal F. Fikree and Chitra Krishnan and Gary L. Darmstadt}, title={Validation of verbal autopsy to determine the cause of 137 neonatal deaths in Karachi, Pakistan}, journal={2003}, volume={17}, year={2003}, pages={132-142} } @article{MarSadFik03, author={David R. Marsh and Salim Sadruddin and Fariyal F. Fikree and Chitra Krishnan and Gary L. Darmstadt}, title={Validation of verbal autopsy to determine the cause of 137 neonatal deaths in Karachi, Pakistan}, journal={2003}, volume={17}, year={2003}, pages={132-142} } @article{Marshall91, author={R.J. Marshall}, title={Mapping Disease and Mortality Rates using Empirical Bayes Estimators}, journal={Applied Statistics}, volume= 40, year= 1991, pages={283--294}, number= 2 } @article{MarSmiSta91, author={M.G. Marmot and G.D. Smith and S. Stansfeld and C. Patel and F. North and J. Head and I. White and E. Brunner and A. Feeney}, title={Health inequalities among British civil servants: the Whitehall II study [see comments].}, journal= lan, year={1991}, optvolume={337}, optpages={1387--1393} } @book{Martin92, author={Lisa Martin}, title={Coercive Cooperation: Explaining Multilateral Economic Sanctions}, publisher={Princeton University Press}, year={1992}, note={Please inquire with Lisa Martin before publishing results from these data, as this dataset includes errors that have since been corrected.} } @article{MatFatIno05, author = {Colin D. Mathers and Doris Ma Fat and Mie Inoue and Chalapati Rao and Alan Lopez}, title = {Counting the dead and what they died from: an assessment of the global status of cause of death data}, journal = {Bulletin of the World Health Organization}, volume = 83, year = 2005, pages = {171--177}, month = {March}, number = 3 } @unpublished{MatLopSte03, author={Colin D. Mathers and Alan Lopez and Claudia Stein and Doris Ma Fat and Chalapati Rao and Mie Unoue and Kenji Shiubuya and Niels Tomijima and Christina Bernard and Hongyi Xu}, title={Deaths and Disease Burden by Cause: Global Burden of Disease Estimates for 2001 by World Bank Country Groups}, note={Evidence and Information for Policy, World Health Organization, Geneva and School of Population health, University of Queensland, Brisbane, Austrailia}, year={2003} } @unpublished{MatSteFat02, author={Colin D. Mathers and Claudia Stein and Doris Ma Fat and Chalapati Rao and Mie Unoue and Niels Tomijima and Christina Bernard and Alan D. Lopez and Christopher J.L. Murray}, title={Global Burden of Disease 2000: Version 2 Methods and Results}, note={Global Programme on Evidence for Health Policy Discussion Paper No. 50 World Health Organization}, year={2002}, month={October} } @article{MauRos97, author={Gillian H. Maude and David A. Ross}, title={The Effect of Different Sensitivity, Specificity and Cause-Specific Mortality Fractions on the Estimation of Differences in Cause-Specific Mortality Rates in Children from Studies Using Verbal Autopsies}, journal={International Journal of Epidemiology}, volume={26}, year={1997}, pages={1097-1106}, number={5} } @techreport{Mayaud01, author={Philippe Mayaud}, title={Aids-Related Research Projects}, institution={The London School of Hygiene \& Tropical Medicine}, year={2001}, address={London School of Hygiene \& Tropical Medicine www.ishtm.ac.uk} } @book{McCNel89, author={Peter McCullagh and James A. Nelder}, title={Generalized Linear Models}, publisher={Chapman \& Hall}, year={1989}, series={Monograph on Statistics and Applied Probability}, edition={2nd}, number={37} } @inbook{McConahay86, author={John B. McConahay}, title={Prejudice, Discrimination, and Racism: Theory and Research}, chapter={Modern Racism Ambivalence, and the Modern Racism Scale}, year={1986}, publisher={New York: Academic Press}, editor={J. Dovidio and S.L. Gaertner} } @article{MccRidMor04, author={Daniel F. McCaffrey and Greg Ridgeway and Andrew R. Morral}, title={Propensity Score Estimation With Boosted Regression for Evaluating Causal Effects in Observational Studies}, journal={Psychological Methods}, volume={9}, year={2004}, pages={403-425}, number={4} } @article{McCShaWan94, author={John McCallum, DPhil, MPhil, Bruce Shadbolt, PhD, and Dong Wang, BSc}, title={Self-Rated Health and Survival: A 7-year Follow-Up study of Australian Elderly.}, journal={American Journal of Public Health}, volume= 84, year= 1994, pages={{1100-05}} } @unpublished{McDonald06a, author={Michael P. McDonald}, title={Seats to Votes Ratios in the United States}, note={George Mason University, Dept of Public and International Affairs 4400 University Dr., 3-F4 Fairfax, VA 22030-4444 (703)-993-4191 mmcdon@gmu.edu}, year={2006} } @unpublished{McDonald06b, author={Michael D. McDonald}, title={A Standard for Detecting and Remedying Gerrymanders}, note={Department of Political Science, Binghamton University- SUNY, Binghamton NY 13902-6000, (617) 777-2946, mdmcd@binghamton.edu}, year={2006} } @article{McKibbin69, author={Ross McKibbin}, title={The Myth of the Unemployed: Who did Vote for the Nazis?}, journal={Australian Journal of Politics and History}, volume= 15, year= 1969, pages={25--40}, number= 2 } @book{McLThr97, author={Geoffrey J. McLachlan and Thriyambakam Krishan}, title={The EM Algorithm and Extensions}, publisher={New York: Wiley} } @article{McNown92, author={Robert McNown}, title={Comment}, journal= jasa, volume= 87, year= 1992, pages={671--672}, number= 419 } @article{McNRog89, author={Rober McNown and Andrei Rogers}, title={Forecasting Mortality: A Parameterized Time Series Approach}, journal={Demography}, volume= 26, year= 1989, pages={645--660}, number= 4 } @article{McNRog92, author={Robert McNown and Andrei Rogers}, title={Forecasting Cause-Specific Mortality Using Time Series Methods}, journal={International Journal of Forecasting}, volume= 8, year= 1992, pages={413--432} } @unpublished{McqLasLai06, author={Matthew B. McQueen and Jessica Lasky-Su and Nan M. Laird and Christoph Lange}, title={Screening and Testing using the Same Data Set: A Testing Strategy for Genome-Wide Association Studies for Case-Control and Case-Cohort Designs}, year={2006} } @article{Mead92, author={A. Mead}, title={Review of the Development of Multidimensional Scaling Methods}, journal={The Statistician}, volume= 41, year= 1992, pages={27--39}, month={April}, number= 1 } @article{MebSek04, author={Walter Mebane and Jasjeet Sekhon}, title={Robust Estimation and Outlier Detection in Overdispersed Multinomial Models of Count Data}, journal= ajps, volume= 48, year= 2004, pages={391--410}, month={April} } @article{MeiKarPar04, author={Bettina Meinow et al.}, title={The effect of the duration of follow-up in mortality analysis: The temporal pattern of different predictors}, journal={Journal of Gerontology: Social Sciences}, volume={{59B}}, year={2004}, pages={{S181-89}}, number={3} } @article{Meng94, author={Xiao-Li Meng}, title={Multiple-Imputation Inferences with Uncongenial Sources of input}, journal={Statistical Science}, volume={9}, year={1994}, pages={538-573}, number={4} } @article{Meng94b, author={X.L. Meng}, title={Posterior Predictive p-Values}, journal={Annals of Statistics}, volume={22}, year={1994}, pages={1142-1160}, number={3} } @article{MenRom03, author={Xiao-Li Meng and Marin Romero}, title={Discussion: Efficiency and Self-Efficiency with Multiple Imputation Inference}, journal={International Statistical Review}, volume={71}, year={2003}, pages={607-618}, number={3} } @article{MenRub92, author={X.L. Meng and Donald Rubin}, title={Performing Likelihood Ratio Tests with Multiply-imputed Data Sets}, journal={Biometrika}, volume={79}, year={192}, pages={103-111} } @article{Metetal53, author={N. Metropolis and A. W. Rosenbluth and M. N. Rosenbluth and A. H. Teller and E. Teller}, title={Equation of State Calculations by Fast Computing Machines}, journal={Journal of Chemical Physics}, volume={21}, year= 1953, pages={1087-1092} } @article{MicBloHil04, author={Charles Michalopoulos and Howard S. Bloom and Carolyn J. Hill}, title={Can propensity-score methods match the findings from a random assignment evaluation of mandatory welfare-to-work programs?}, journal={Review of Economics and Statistics}, volume= 56, year= 2004, pages={156-179}, number= 1 } @article{Midlarsky05, author={Halbert White}, title={A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity}, abstract={This study seeks to distinguish between instances where genocide occurred and others where it might have been expected to occur but did not. Territorial loss, a corollary refugee influx, and a resulting contraction of socio-economic space are suggested to provide that distinction. Four analytic perspectives based on emotional reactions, class envy, prospect theory, and territoriality indicate the critical importance of loss. The theory is examined in the context of the mass murder of European Jewry including, of course, Germany and Austria, and all European German allies that allowed an indigenous genocidal impulse, willingness to comply with German genocidal policies, or an ability to resist German pressures for Jewish deportation. Three instances of perpetrating states - Italy, Vichy France, and Romania - emerge from the analysis. The latter two governments willingly collaborated with the Germans in victimizing their own Jewish citizenry, while Italy was on a genocidal path just prior to the German occupation. All five states mentioned above were found to experience considerable territorial loss and a contraction of socio-economic space. Bulgaria and Finland, on the other hand, actually expanded their borders at the start of the war and saved virtually all of their Jewish citizens. The importance of loss is demonstrated not only cross-sectionally, in the comparison between the five victimizers, on the one hand, and Bulgaria and Finland, on the other, but also diachronically, in the changing behavior over time of the genocidal and perpetrating states.}, journal={Econometrica}, volume={42}, year={1980}, pages={375-391}, month={July}, number={4}, optnumber={4}, optvolume={48}, optpages={817--838}, optmonth={May} } @article{Mierendorff30, author={Carl Mierendorff}, title={Gesicht und Charakter der nationalsozialistischen Bewegung}, journal={Gesellschaft}, volume= 7, year= 1930, pages={489--540}, number= 1 } @article{MiiVuoOja97, author={Seppo Miilunpalo, Ilkka Vuori, Pekka Oja, Matti Pasanen, and Helka Urponen}, title={Self Rated Health as a Health Measure: The Predictive Value of Self-Reported Health Status on the Use of Physician Services and on Mortality in the Working Age Population}, journal={Journal of Clinical Epidemiology}, volume= 50, year= 1997, pages={{517-28}} } @misc{MikSuc05, author={Gerome Miklau and Dan Suciu}, title={Managing Integrity for Data Exchanged on the Web}, year= 2005, month={16--17 June}, howpublished={Eighth International Workshop on the Web and Databases, Baltimore}, note={{http://webdb2005.uhasselt.be/papers/1-3.pdf}} } @article{Miller01, author={Tim Miller}, title={Increasing Longevity and Medicare Expenditures}, journal={Demography}, volume= 38, year= 2001, pages={215--226}, month={May}, number= 2 } @inbook{MilReiHes98, author={Arthur H. Miller and William M. Reisinger and Vicki L. Hesli}, title={Elections and Voters in Post-Communist Russia}, chapter={Leader Popularity and Party Development in Post-Soviet Russia }, year={100-135}, publisher={London: Edward Elgar}, editor={Matthew Wyman and Stephen White and Sarah Oates} } @article{MilRob89, author={Miller, Abraham H. and Robbins, James S.}, title={Who Did Vote for Hitler? A Reanalysis of the Lipset/Bendix Controversy}, journal={Polity}, volume= 21, year= 1989, pages={655-677}, number= 4 } @article{MilSha94, author={Paul Milgrom and Chris Shannon}, title={Monotone Comparative Statics}, journal={Econometrica}, volume= 62, year= 1994, pages={157--180}, month={January}, number= 1, annote={introduction of the single crossing property as a way to ensure monotonicity} } @article{MinRos00, author={Ming, K. and Rosenbaum, Paul R.}, title={Substantial gains in bias reduction from matching with a variable number of controls}, journal={Biometrics}, volume={56}, year={2000}, pages={118-124} } @article{MoeWal01, author={Karl Ove Moene and Michael Wallerstein}, title={Inequality, Social Insurance, and Redistribution}, journal={American Political Science Review}, volume={95}, year={2001}, pages={859-874}, month={December}, number={4} } @article{MoeWal03, author={Karl Ove Moene and Michael Wallerstein}, title={Earnings Inequality and Welfare Spending: A Disaggregated Analysis}, journal={World Politics}, volume={55}, year={2003}, pages={485-516}, month={July} } @book{Mommsen89, author={Hans Mommsen}, title={Die verspielte Freiheit --- der Weg der Republik von Weimar in den Untergang, 1918 bis 1933}, publisher={Propyl{\"a}en}, year= 1989 } @techreport{MonLopGel99, author={Manuel Montes-y-Gomez and Aurelio Lopez-Loez and Alexander F. Gelbukh and Grigori Sidorov and Adolfo Guzman-Arenas}, title={Text Mining: New Techniques and Applications}, institution={Center for computing Research of the National Polytechnic Institute, Mexico City}, year={1999}, month={August}, address={CIC, IPN, Laboratorio de Lenguaje Natural, Av. Juan de Dios Batiz, Mexico DF.}, volume={34} } @techreport{MonLopGel99b, author={Manuel Montes y Gomez and Aurelio Lopez Lopez and Alexander F. Gelbukh}, title={Text Mining as a Social Thermometer}, institution={Centro de Investigaci{\'o}n en Computaci{\'o}n}, year={1999}, address={CIC, IPN Laboratorio de Lenguaje Natural. Ave. Juan de Dios Batiz, Mexico DF} } @book{MonSam04, title={Decentralization and Democracy in Latin America}, publisher={University of Notre Dame Press}, year={2004}, editor={Alfred P. Montero and David J. Samuels}, address={Notre Dame, Indiana} } @book{Montgomery2001, author={Douglas C. Montgomery}, title={Design and Analysis of Experiments}, publisher={Wiley}, year={2001}, address={New York}, edition={5th} } @article{MorBlaTom03, author={Saul S. Morris and Robert E. Black and Lana Tomaskovic}, title={Predicting the distribution of under-five deaths by cause in countries without adequate vital registration systems}, journal={International Journal of Epidemiology}, volume={32}, year={2003}, pages={1041-1051} } @book{Morozov84, author={V.A. Morozov}, title={Methods for solving incorrectly posed problems}, publisher={Springer-Verlag}, year= 1984 , address={Berlin} } @article{MorSpi99, author={Mary J. Morrissey and Donna Spiegelman}, title={Matrix Methods for Estimating Odds Ratios with Misclassified Exposure Data: Extensions and Comparisons}, journal={Biometrics}, volume={55}, year={1999}, pages={338-344}, month={June} } @unpublished{MorYamTat02, author={Satoshi Morinaga and Kenji Yamanishi and Kenji Tateishi and Toshikazu Fukushima}, title={Mining Product Reputations on the Web}, note={Satoshi Morinaga and Kenji Yamanishi NEC Corp. 4-1-1 Miyazaki Miyamae Kawasaki Kanagawa 216-8555 Japan Tel: 81-44-856-2143; morinaga@cw.jp.nec.com}, year={2002} } @unpublished{MorYamTat02, author={Satoshi Morinaga and Kenji Yamanishi and Kenji Tateishi and Toshikazu Fukushima}, title={Mining Product Reputations on the Web}, note={Satoshi Morinaga and Kenji Yamanishi NEC Corp. 4-1-1 Miyazaki Miyamae Kawasaki Kanagawa 216-8555 Japan Tel: 81-44-856-2143; morinaga@cw.jp.nec.com}, year={2002} } @article{MosSha82, author={Jana Mossey MPH, PhD, and Evelyn SHapira, MA}, title={Self-Rated Health: A Predictor of Mortality Among the Elderly}, journal={American Journal of Public Health}, volume= 72, year= 1982, pages={{800-08}} } @article{moynihan00, author={Ray Moynihan and Lisa Bero and Dennis Ross-Degnan and David Henry and Kriby Lee and Judy Watkins and Connie Mah and Stephen B. Soumerai}, title={Coverage by the News Media of the Benefits and Risks of Medications}, journal={New England Journal of Medicine}, volume= 342, year= 2000, pages={1645-1650}, month={June 1}, number= 22 } @article{MugLac02, author={Anthony Mughan and Dean Lacy}, title={Economic Performance, Job Insecurity, and Electoral Choice}, journal={British Journal of Political Science}, volume= 32, year= 2002, pages={513--533} } @book{MurEva03, title={Health Systems Performance Assessment: Debates, Methods and Empiricism}, publisher={World Health Organization}, year= 2003, editor={Christopher J.L. Murray and David B. Evans}, address={Geneva} } @book{MurLop96, title={The Global Burden of Disease}, publisher={Harvard University Press and WHO}, year= 1996 , editor={Christopher L.J.\ Murray and Alan D.\ Lopez} } @article{MurLop97, author={Christopher J. L. Murray and Alan D. Lopez}, title={Mortality by Cause for Eight Regions of the World: Global Burden of Disease Study}, journal={The Lancet}, volume={349}, year={1997}, pages={1269-1276} } @article{murphy69, author={George G. S. Murphy}, title={On Counterfactual Propositions}, journal={History and Theory}, volume= 9, year= 1969, pages={14-38} } @book{Murphy72, author={Paul L. Murphy}, title={The Meaning of Freedom of Speech}, publisher={Greenwood}, year= 1972, address={Westport, CT} } @book{Murray98, author={Murray, David M.}, title={Design and Analysis of Group-Randomized Trials}, publisher={Oxford UP}, year={1998}, address={New York} } @book{Mutz98, author={Diana C. Mutz}, title={Impersonal Influence: How Perceptions of Mass Collectives Affect Political Attitudes}, publisher={Cambridge University Press}, year={1998}, address={New York, NY} } @article{MwaLesDec05, author={Samuel M. Mwalili and Emmanuel Lesaffre and Dominique Declerck}, title={A Bayesian ordinal logistic regression model to correct for interobserver measurement error in a geographical oral health study}, journal={Applied Statistics}, volume={54}, year={2005}, pages={77-93} } @article{Myerson04, author = {Roger Myerson}, year = {2004}, title = {Political Economics and the Weimar Disaster}, journal = {Journal of Institutional and Theoretical Economics}, pages = {187-209}, volume = {160} } @article{Nagler91, author={Jonathan Nagler}, title={{The Effect of Registration Laws and Education on U. S. Voter Turnout}}, journal= apsr, volume={85}, year={1991}, pages={1393--1405}, number={4} } @unpublished{NasYi03, author={Tetsuya Nasukawa and Jeonghee Yi}, title={Sentiment Analysis: Capturing Favoriability Using Natural Language Processing}, note={Tetsuya Nasukawa IBM Research, Tokyo Research Laboratory 1623-14 Shimotsuruma, Yamato-shi, Kanagawa-ken, 242-8502, Japan; nasukawa@jp.ibm.cop}, year={2003}, month={October} } @unpublished{NasYi03, author={Tetsuya Nasukawa and Jeonghee Yi}, title={Sentiment Analysis: Capturing Favoriability Using Natural Language Processing}, note={Tetsuya Nasukawa IBM Research, Tokyo Research Laboratory 1623-14 Shimotsuruma, Yamato-shi, Kanagawa-ken, 242-8502, Japan; nasukawa@jp.ibm.cop}, year={2003}, month={October} } @book{National02, author={NIPSSR}, title={Population Projections for Japan (January, 2002)}, publisher={National Institute of Population and Social Security Research}, year= 2002, annote={Life tables for Japan are constructed using the Lee-Carter method.} } @book{Neuendorf02, author={Neuendorf, K.A.}, title={{The Content Analysis Guidebook}}, publisher={Thousand Oaks, CA: Sage Publications}, year={2002} } @article{Neuhaus02, author={John M. Neuhaus}, title={Analysis of Clustered and Longitudinal Binary Data Subject to Response Misclassification}, journal={Biometrics}, volume={58}, year={2002}, pages={675-683}, month={September} } @article{Neuhaus99, author={John M. Neuhaus}, title={Bias and efficiency loss due to misclassified responses in binary regression}, journal={Biomtrika}, volume={86}, year={1999}, pages={843-855}, number={4} } @article{neutra78, author={Raymond R. Neutra and Margaret E. Drolette}, title={Estimating Exposure-Specific Disease Rates from Case-Control Studies Using Bayes Theorem}, journal={American Journal of Epidemiology}, volume= 108, year= 1978, pages={214-222}, number= 3 } @article{Neyman23, author={J. Neyman}, title={On the application of probability theory to agricultural experiments. Essay on Principles. Section 9}, journal={Statistical Science}, volume={5}, year={1923}, pages={465-480}, note={Translated in 1990, with discussion} } @article{Neyman23b, author={J. Neyman}, title={Statistical Problems in Agricultural Experiments}, journal={Journal of the Royal Statistical Association}, volume= 2, year= 1923, pages={107--180}, number= 2 } @article{Nickerson05, author={David W. Nickerson}, title={Scalable Protocols Offer Efficient Design for Field Experiements}, journal={Political Analysis}, volume={13}, year={2005}, pages={233-252} } @article{NieFet86, author={Richard G. Niemi and Patrick Fett}, title={The Swing Ratio: An Explanation and an Assessment}, journal={Legislative Studies Quarterly}, volume={11}, year={1986}, pages={75-90}, month={February}, number={1} } @misc{NISO01, author={NISO}, title={The Dublin Core Metadata Element Set}, year={2001}, note={{http://www.niso.org/standards/resources/Z39-85.pdf}} } @article{NiyGirPog98, author = {P. Niyogi and F. Girosi and T. Poggio}, title = {Incorporating Prior Information in Machine Learning by Creating Virtual061 Examples}, journal = {Proceedings of the IEEE.}, volume = {86}, year = {1998}, pages = {2196--2209}, number = {11} } @book{Noakes71, author={Noakes, J.}, title={The Nazi Party in Lower Saxony}, publisher={Oxford University Press}, year= 1971, address={New York} } @article{NovReaRau06, author={Scott P. Novak and Sean F. Reardon and Stephen W. Raudenbush and Stephen L. Buka}, title={Retail tobacco outlet density and youth cigarette smoking: A propensity-modeling approach}, journal={American Journal of Public Health}, volume={96}, year={2006}, pages={670-676}, month={April}, number={4} } @article{nurminen95, author={Markku Nurminen}, title={To Use or Not to Use the Odds Ratio in Epidemiologic Analysis}, journal={European Journal of Epidemiology}, volume= 11, year= 1995, number={365-371} } @article{NybPetGai03, author={Hanne Nybo et al}, title={Predictors of Mortality in 2249 Nonagenarians-The Danish 1905 Cohort Study}, journal={Journal of the American Geriatrics Society}, volume= 51, year= 2003, pages={{1365-73}} } @booklet{OetParHym03, title={The Not So Short Introduction to \LaTeXe\}, author = {Tobias Oetiker, Hubert Partl, Irene Hyma and Elisabeth Schlegl}, year = 2003, note = {{Available at http://www.ctan.org/tex-archive/info/lshort/english/lshort.pdf.}} } @article{OhaWooMoo90, author={A. O'Hagan and E.G. Woodward and L.C. Moodaley}, title={Practical Bayesian Analysis of a Simple Logistic Regression: Predicting Corneal Transplants}, journal={Statistics in Medicine}, volume={9}, year={1990}, pages={1091-1101} } @book{Ohr97a, author = {Dieter Ohr}, title = {Nationalsozialistische Propaganda und Weimarer Wahlen: empirische Analysen zur Wirkung von NSDAP-Versammlungen}, publisher = {Westdeutscher Verlag}, year = 1997, address = {Opladen} } @article{Ohr97b, author={Dieter Ohr}, title={Nationalsozialistische Versammlungspropaganda und Wahlerfolg der NSDAP: eine kausale Beziehung?}, journal={Historical Social Research}, volume= 22, year= 1997, pages={106--127}, number={3/4} } @article{OkoDev01, author={Ike S. Okosun and G.E. Alan Dever}, title={Verbal Autopsy: A Necessary Solution for the Paucity of Mortality Data in the Less-Developed Countries}, journal={Ethnicity and Disease}, volume={11}, year={2001}, pages={575-577} } @article{OkoDev01, author={Ike S. Okosun and G.E. Alan Dever}, title={Verbal Autopsy: A Necessary Solution for the Paucity of Mortality Data in the Less-Developed Countries}, journal={Ethnicity and Disease}, volume={11}, year={2001}, pages={575-577} } @article{OloFliAns94, author={John O'Loughlin and Colin Flint and Luc Anselin}, title={The Geography of the Nazi Vote: Context, Confession, and Class in the Reichstag Election of 1930}, journal={Annals of the Association of American Geographers}, volume= 84, year= 1994, pages={351-380} } @article{O'Loughlin02, author={John O'Loughlin}, title={The Electoral Geography of Weimar Germany}, journal={Political Analysis}, volume= 10, year= 2002, pages={217--243}, number= 3 } @article{Oman85, author={Samuel D. Oman}, title={Specifying a Prior Distribution in Structured Regression Problems}, journal= jasa, volume= 80, year= 1985, pages={190--195}, month={March}, number= 389 } @article{OneRus97, author={John R. Oneal and Bruce Russett}, title={The Classical Liberals Were Right: Democracy, Interdependence, and Conflict, 1950-1985}, journal= isq, volume= 41, year= 1997, pages={267--293}, month={June}, number= 2 } @inproceedings{OrcWoo72, author={T. Orchard and M.A. Woodbury}, title={A Missing Information Principle: Theory and Applications}, booktitle={Proceedings of the 6th Berkeley Symposium on Mathematical Statistics and Probability}, year={1972}, publisher={Berkeley: University of California Press}, pages={697-715} } @book{ORourke98, author={Joseph O'Rourke}, title={Computational Geometry in C}, publisher={Cambridge University Press}, year= 1998, address={New York} } @article{OSS44, author={OSS}, title={Greater Germany --- Kreis Boundaries}, journal={OSS Map 6289}, year= 1944, month={July 1} } @article{OveMag92, author={John E. Overall and Kevin N. Magee}, title={Directional Baseline Differences and Type I Error Probabilities in Randomized Clinical Trials}, journal={Journal of Biopharmaceutical Statistics}, volume={2}, year={1992}, pages={189-203}, number={2} } @article{PacPacDuk90, author={Sara Pacque-Margolis and Michel Pacque and Zwannah Dukuly and John Boateng and Hugh R. Taylor}, title={Application of the Verbal Autopsy During A Clinical Trial}, journal={Social Science Medicine}, volume={31}, year={1990}, pages={585-591}, number={5} } @article{PalPet03, author={Ted Palmer and Anthony Petrosino}, title={The "Experimenting Agency". The California Youth Authority Research Division}, journal={Evaluation Review}, volume={22}, year={2003}, pages={228-266}, month={June}, number={3} } @article{PalPoo87, author={Thomas R. Palfrey and Keith T. Poole}, title={The Relationshiop Between Information, Ideology, and Voter Behavior}, journal= ajps, volume= 31, year= 1987, pages={511-530}, month={August}, number= 3 } @article{Palvi41, author={Palvi, Melchior}, title={Economic Foundations of the German Totalitarian State}, journal={American Journal of Sociology}, volume= 46, year= 1941, pages={469-486}, number= 4 } @inproceedings{PanLee05, author={Bo Pang and Lillian Lee}, title={Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales}, booktitle={Proceedings of the ACL}, year= 2005 , pages={115--124} } @article{PanLeeVai02, author={Bo Pang and Lillian Lee and Shivakumar Vaithyanathan}, title={{Thumbs Up? Sentiment Classification using Machine Learning Techniques}}, journal={Proceedings of the Conference on Empirical Methods in Natural Language Processing}, year={2002}, pages={79-86} } @misc{Parsons00, author={Lori S. Parsons}, title={Using SAS Software to Perform a Case-Control Match on Propensity Score in an Observational Study}, year= 2000, note={{http://www2.sas.com/proceedings/sugi25/25/po/25p225.pdf}}, booktitle={SUGI 25}, volume={225-25} } @misc{Parsons01, author={Lori S. Parsons}, title={Reducing Bias in a Propensity Score Matched-Pair Sample Using Greedy Matching Techniques}, year= 2001, note={{http://www2.sas.com/proceedings/sugi26/p214-26.pdf}}, booktitle={SUGI 26}, volume={214-26} } @article{ParThoNor92, author={Marti G. Parker, Mat Thorslund, and Marie-Louise Nordstrom}, title={Predictors of Mortality for the Oldest Old. A 4-year Follow-up of Community Based Elderly in Sweden}, journal={Archives of Gerontology and Geriatrics}, volume= 14, year= 1992 , pages={{227-37}} } @article{Paskin05, author={Norman Paskin}, title={Digital Object Identifiers for Scientific Data}, journal={Data Science Journal}, volume={28}, year={2005}, pages={12-20}, month={April}, note={{http://www.doi.org/topics/050428CODATAarticleDSJ.pdf}} } @inproceedings{Passchier80, author={N. Passchier}, title={The Electoral Geography of the Nazi Landslide}, booktitle={Who Were the Fascists?}, year= 1980, publisher={Universitetsforlaget}, address={Bergen}, editor={S.U. Larsen and B. Hagtvet and J.P. Myklebust}, pages={283--300} } @book{Paul90, author={Paul, G.}, title={Aufstand der Bilder}, publisher={Dietz}, year= 1990, address={Bonn} } @article{PeaLucGla02, author={J.W. Peabody and J. Luck and P. Glassman and S. Jain}, title={Measuring What we want to Measure: Using Vignettes in Clinical Education}, journal={Journal of Internal Medicine}, volume={17, Suppl.}, year= 2002, pages={232--232}, month={April}, number= 1 } @article{Pearce70, author={S.C. Pearce}, title={The Efficiency of Block Designs in General}, journal={Biometrika}, volume={57}, year={1970}, pages={339-346}, month={August}, number={2} } @book{pearl00, author={Judea Pearl}, title={Causality: Models, Reasoning, and Inference}, publisher= cup, year= 2000 } @article{PecBeeSan02, author={Mark Peceny and Caroline C. Beer and Shannon Sanchez-Terry}, title={Dictatorial Peace?}, journal= apsr, volume= 96, year= 2002, pages={15--26}, number= 1 } @article{PelAsp1996, author={Markku Peltonen and Kjell Asplund}, title={Age-Period-Cohort Effects on Stroke Mortality in Sweden 1969-1993 and Forecasts Up to the Year 2004}, journal={Stroke}, volume= 27, year= 1996, pages={1981-1985}, number= 11 } @article{PelAsp96, author={Markku Peltonen and Kjell Asplund}, title={Age-Period-Cohort Effects on Stroke Mortality in Sweden 1969-1993 and Forecasts Up to the Year 2003}, journal={Stroke}, volume={27}, year= 1996, pages={1981--1985} } @article{Perkins00, author={Susan M. Perkins and Wanzhu Tu and Michael G. Underhill and Xiao-Hua Zhou and Michael D. Murray}, title={The use of propensity scores in pharmacoepidemiological research}, journal={Pharmacoepidemiology and drug safety}, volume= 9, year= 2000, pages={93-101} } @article{Permutt90, author={Thomas Permutt}, title={Testing for Imbalance of Covariates in Controlled Experiments}, journal={Statistics in Medicine}, volume={9}, year={90}, pages={1455-1462} } @article{PerTuUnd00, author={Susan M. Perkins and Wanzhu Tu and Michael G. Underhill and Xiao-Hua Zhou and Michael D. Murray}, title={The use of propensity scores in pharmacoepidemiologic research}, journal={Pharmacoepidemiology and Drug Safety}, volume={9}, year={2000}, pages={93-101} } @article{PerWilLev02, author={Thomas T. Perls and John Wilmoth and Robin Levenson and Maureen Drinkwater and Melissa Cohen and Hazel Bogan and Erin Joyce and Stephanie Brewster and Louis Kunkel and Annibale Puca}, title={Life-long Sustained Mortality Advantage of Siblings of Centenarians}, journal= pnas, volume= 99, year= 2002, pages={8442--8447}, month={June 11}, number= 12 } @article{PetRoeMul06, author={E.D. Peterson and M.T. Roe and J. Mulgund and E.R. DeLong and B.L.Lytle and R.G. Brindis and S.C. Smith Jr. and C.V. Pollack Jr. and L.K. Newby and R.A. Harrington and W.B. Gibler and E.M. Ohman}, title={Association between hospital process performance and outcomes among patients with acute coronary syndromes}, journal={Journal of the American Medical Association}, volume={295}, year={2006}, pages={1912-1920}, month={April} } @article{PijFesKro93, author={Loek T. J. Pijls, Edith J.M. Feskens, and Daan Kromhout}, title={Self-Rated Health, Mortality, and Chronic Diseases in Elderly Men: The Zutphen Study, 1985-1990}, journal={American Journal of Epidemiology}, volume= 138, year= 1993, pages={{840-48}}, number= 10 } @article{PiqMacHic02, author={Alex R. Piquero and Randall Macintosh}, title={The Validity of a Self-Reported Delinquency Scale: Comparisons Across Gender, Age, Race, and Place of Residence}, journal= smr, volume= 30, year= 2002, pages={492--529}, month={May}, number= 4 } @book{Placket81, author={R. L. Plackett}, title={The Analysis of Categorical Data}, publisher={Macmillian}, year= 1981, address={New York}, edition={2nd} } @book{Plackett81, author={R.L. Plackett}, title={{The Analysis of Categorical Data}}, publisher={Griffin}, year= 1981, address={London} } @manual{PluBesCowVin05, author={Martyn Plummer and Nicky Best and Kate Cowles and Karen Vines}, title={coda: Output analysis and diagnostics for MCMC}, year={2005}, url={{http://www-fis.iarc.fr/coda/}} } @article{PocAssEno02, author={Stuart J. Pocock and Susan E. Assmann and Laura E. Enos and Linda E. Kasen}, title={Subgroup analysis covariate adjustment and baseline comparisons in clinical trial reporting: current practice and problems}, journal={Statistics in Medicine}, volume={21}, year={2002}, pages={2917-2930} } @article{PogGamLit88, author={T. Poggio and E.B.\ Gamble and J.J.\ Little}, title={Parallel Integration of Vision Modules}, journal={Science}, volume= 242, year= 1988, pages={436--440}, month={21 October} } @unpublished{Pole06a, author = {Antoinette Pole}, title = {Congressional Blogging: Advertising, Credit Claiming, & Position Taking}, note = {Presented at the 2006 annual meeting of the American Political Science Association, Philadelphia, PA}, address = {Antoinette_Pole@brown.edu} } @article{Pole06a, author={Antoinette Pole}, title={Black Bloggers and the Blogosphere}, journal={International Journal of Technology, Knowledge and Society}, volume={2}, year={2006}, number={6} } @unpublished{Pole07, author={Antoinette Pole}, title={Do Blogs Matter? Elite Political Bloggers in American Politics}, address={Antoinette_Pole@brown.edu} } @article{Pollock44, author={Pollock, James K.}, title={An Areal Study of the German Electorate, 1930-1933}, journal={American Political Science Review}, volume= 38, year= 1944, pages={89-95} } @unpublished{PolMck07, author={Antoinette Pole and Laura McKenna}, title={Blogging Alone? Political Participation and the Blogosphere}, address={Antoinette_Pole@brown.edu}, organization={Brown University} } @article{PooDan85, author={Keith Poole and R. Steven Daniels}, title={Ideology, Party, and Voting in the U.S. Congress, 1959--1980}, journal= apsr, volume= 79, year= 1985, pages={373-399}, month={June} } @article{Poole98, author={Keith T. Poole}, title={Recovering a Basic Space From a Set of Issue Scales}, journal= ajps, volume= 42, year= 1998, pages={954--993}, month={July}, number= 3 } @article{PooRos91, author={Keith Poole and Howard Rosenthal}, title={Patterns of Congressional Voting}, journal= ajps, volume= 35, year= 1991, pages={228--278}, month={February} } @book{Popkin94, author={Samuel Popkin}, title={The Reasoning Voter: Communication and Persuasion in Presidential Campaigns}, publisher={University of Chicago Press}, year= 1994, address={Chicago} } @article{Porter80, author={Porter, M. F.}, title={{An algorithm for suffix stripping}}, journal={Program}, volume={14}, year={1980}, pages={130-137}, number={3} } @article{PosVer02, author={Eric A. Posner and Adrian Vermeule}, title={Legislative Entrenchment: A Reappraisal}, journal={The Yale Law Journal}, volume={111}, year={2002}, pages={1665-1705}, month={May}, number={7} } @article{Powell01, author={G.N. Powell}, title={Workplace Romances between Senior-level Executives and Lower-Level Employees}, journal={Human Relations}, volume= 54, year= 2001, pages={1519--1544}, month={November}, number= 11 } @article{PraAit54, author={Prais, S. J. and Aitchison, J.}, title={The Grouping of Observations in Regression Analysis}, journal={Revue de l'Institut International de Statistique}, volume= 22, year= 1954, pages={1-22} } @book{PreHeuGui01, author={Samuel H. Preston and Patrick Heuveline and Michel Guillot}, title={Demography: Measuring and Modeling Population Processes}, publisher={Blackwell}, year= 2001, address={Oxford, England} } @article{prentice78, author={R.L. Prentice and N.E. Breslow}, title={Retrospective Studies and Failure-time Models}, journal={Biometrica}, volume= 65, year= 1978, number={153--5} } @article{prentice79, author={R.L. Prentice and R. Pyke}, title={Logistic Disease Incidence Models and Case-control Studies}, journal={Biometrica}, volume= 63, year= 1979, number={403-411} } @article{prentice86, author={R.L. Prentice}, title={A Case-Cohort Design for Epidemiological Studies and Disease Prevention Trials}, journal={Biometrica}, volume= 73, year= 1986, number={1-11} } @incollection{Preston91, author={Samuel H. Preston}, title={Demographic Change in the United States, 1970--2050}, booktitle={Forecasting the Health of Elderly Populations}, publisher={Springer-Verlag}, year= 1991, address={New York}, editor={K.G. Manton and B.H. Singer and R.M. Suzman}, pages={51--77} } @incollection{Preston93, author={Samuel H. Preston}, title={Demographic Change in the United States, 1970--2050}, booktitle={Demography and Retirement: The Twenty-First Century}, publisher={Praeger Publishers}, year= 1993, address={New York}, editor={A.M. Rappaport and Sylvester Scheiber}, pages={19-48} } @article{Prinz86, author={Michael Prinz}, title={Der unerw{\"u}nschte Stand: Lage und Status der Angestellten im `Dritten Reich'}, journal={Historische Zeitschrift}, volume= 242, year= 1986, pages={327--359}, number= 2 } @article{Prinz89, author={Michael Prinz}, title={Angestellte und Nationalsozialismus}, journal={Geschichte und Gesellschaft}, volume= 15, year= 1989, pages={552--562}, number= 4 } @book{Prinz91, author={Von Michael Prinz and Rainer Zitelmann}, title={Nationalsozialismus und Modernisierung}, publisher={Darmstadt}, year={1991} } @book{PrzAlvChe00, author={Adam Przeworski and Michael e. Alvarez and Jose Antonio Cheibub and Fernando Limongi}, title={Democracy and Development: poltical institutions and well-being in the world, 1950-1990}, publisher={Cambridge University Press}, year={New York, NY}, address={The Edinburgh Building, Cambridge CB22RU, UK} } @incollection{Przeworski05, author={Adam Przeworski}, title={Is the Science of Comparative Politics Possible?}, booktitle={Oxford Handbook of Comparative Poltics}, publisher={Oxford University Press}, year={2005}, month={August}, address={New York}, editor={Carles Boix and Susan C. Stokes} } @article{PrzTeu66, author={Adam Przeworski and Henry Teune}, title={Equivalence in Cross-National Research}, journal={Public Opinion Quarterly}, volume= 30, year={1966--1967}, pages={551--568}, month={Winter} } @article{PurHil06, author={Purpura, Stephen and Dustin Hillard}, title={{Automated Classification of Congressional Legislation}}, journal={Proceedings of the International Conference on Digital Government Research}, year={2006} } @book{Putnam00, author={Robert D. Putnam}, title={Bowling Alone: The Collapse and Revival of American Community}, publisher={Simon and Schuster}, year= 2000, address={New York} } @article{Quandt72, author={Richard Quandt}, title={Methods of Estimating Switching Regressions}, journal= jasa, volume= 67, year= 1972, pages={306-310}, number= 338 } @article{Quandt74, author={Richard E. Quandt}, title={A Stochastic Model of Elections in Two-Party Systems}, journal={Journal of theAmerican Statistical Association}, volume={69}, year={1974}, pages={315-324}, month={June}, number={346} } @incollection{Qui04, author={Kevin Quinn}, title={Ecological Inference in the Presence of Temporal Dependence}, booktitle={Ecological Inference: New Methodological Strategies}, publisher={Cambridge University Press}, year= 2004, address={New York}, editor={Gary King and Ori Rosen and Martin A. Tanner} } @article{QuiArmSno96, author = {M.A. Quigley and J.R.M. Armstrong Schellenberg and R.W. Snow}, title = {Algorithms for verbal autopsies: a validation study in Kenyan children}, journal = {Bulletin of the World Health Organization}, volume = {74}, year = {1996}, pages = {147-154}, number = {2} } @article{QuiChaSet00, author={Maria A. Quigley and Daniel Chandramohan and Philip Setel and Fred Binka and Laura C. Rodrigues}, title={Validity of data-derived algorithms for ascertaining causes of adult death in two African sites using verbal autopsy}, journal={Tropical Medicine and International Health}, volume={5}, year={2000}, pages={33-39}, month={January}, number={1} } @article{Quigley05, author={Maria A. Quigley}, title={Commentary: Verbal Autopsies - from small-scale studies to mortality surveillance systems}, journal={International Journal of Epidemiology}, volume={34}, year={2005}, pages={1087-1088} } @misc{QuiMonCol06, author = {Quinn, K.M. and Monroe, B.L. and Colaresi, M. and Crespin, M.H. and Radev, D.R.}, title = {{How To Analyze Political Attention With Minimal Assumptions And Costs}}, year = {2006}, howpublished = {Annual Meeting of the Society for Political Methodology} } @misc{Quinn00, author = {Kevin M. Quinn}, title = {Flexible Prior Specifications for Factor Analytic Models with an Application to {A}merican Political Ideology}, year = 2000, howpublished = {Paper presented at the Annual Meeting of the Midwest Political Science Association} } @manual{R08, author={{R Development Core Team}}, title={R: A Language and Environment for Statistical Computing}, organization={R Foundation for Statistical Computing}, year={2008}, address={Vienna, Austria}, note={{ISBN} 3-900051-07-0}, url={{http://www.R-project.org}} } @article{Rabban83, author={David Rabban}, title={The Emergence of Modern First Amendment Doctrine}, journal={University of Chicago Law Review}, volume= 50, year={1983}, pages={1207--??} } @article{RagGri95, author={T.E. Raghunathan and J.E. Grizzle}, title={A Split Questionnaire Survey Design}, journal={Journal of the American Statistical Association}, volume={90}, year={1995}, pages={54-63} } @article{Ragsdale91, author={Lyn Ragsdale}, title={{Strong Feelings: Emotional Responses to Presidents}}, journal={Political Behavior}, volume={13}, year={1991}, pages={33-65}, number={1} } @article{RahJos98, author={Elham Rahme and Lawrence Joseph}, title={Estimating the Prevalence of a Rare Disease: Adjusted Maximum Likelihood}, journal={The Statistician}, volume={47}, year={1998}, pages={149-158}, number={1} } @article{RakMorHir91, author={William Rakowski, PhD, Vincent Mor, PhD, and Jeffrey Hiris, BA}, title={The Association of Self-Rated Health with Two-Year Mortality in a Sample of Well Elderly}, journal={Journal of Aging and Health}, volume= 3, year= 1991, pages={{527-45}} } @article{Rao96, author={J.N.K. Rao}, title={On Variance Estimation with Imputed Survey Data}, journal={Journal of the American Statistical Association}, volume={91}, year={1996}, pages={499-506} } @article{RauMarSpy06, author={Stephen W. Raudenbush and Andres Martinez and Jessaca Spybrook}, title={Strategies for Improving Precision in Group-Randomized Experiments}, journal={Educational Evaluation and Policy Analysis}, year={2007}, address={University of Chicago, University of Michigan} } @book{Recipes87, author={William H. Press and Saul Teukolsky and William T. Vetterling and Brian P. Flannery}, title={Numerical Recipes: the Art of Scientific Computing}, publisher={Cambridge University Press}, year={1987}, address={Cambridge} } @article{ReeQui97, author={Barnaby C. Reeves and Maria Quigley}, title={A Review of Data-Derived Methods for Assigning Causes of Death from Verbal Autopsy Data}, journal={International Journal of Epidemiology}, volume={26}, year={1997}, pages={1080-1089}, number={5} } @article{ReeQui97, author={Barnaby C. Reeves and Maria Quigley}, title={A Review of Data-Derived Methods for Assigning Causes of Death from Verbal Autopsy Data}, journal={International Journal of Epidemiology}, volume={26}, year={1997}, pages={1080-1089}, number={5} } @book{Rehnquist98, author={William H. Rehnquist}, title={All the Laws But One: Civil Liberties in Wartime}, publisher={Knopf}, year= 1998, address={New York} } @article{ReuLi03, author={Rafael Reuveny and Quan Li}, title={The Joint Democracy-Dyadic Conflict Nexus: A Simultaneous Equations Model}, journal= isq, volume= 47, year= 2003, pages={325--346}, month={September}, number= 3 } @article{RieSch93, author={Arthur van Riel and Arthur Schram}, title={Weimar Economic Decline, Nazi Economic Recovery, and the Stabilization of Political Dictatorship}, journal={Journal of Economic History}, volume= 53, year= 1993, pages={71--105}, number= 1 } @book{Riffenburgh98, author={R. H. Riffenburgh}, title={Statistics in Medicine}, publisher={Academic Press}, year={1998}, address={San Diego} } @proceedings{RilWie03, editor={Ellen Riloff and Janyce Wiebe}, title={Learning Extraction Patterns for Subjective Expressions}, publisher={Conference on Empirical Methods in Natural Language Processing}, year={2003}, address={Ellen Riloff, School of Computing, University of UT, Salt Lake City, UT 84112; riloff@cs.utah.edu} } @proceedings{RilWie03, editor={Ellen Riloff and Janyce Wiebe}, title={Learning Extraction Patterns for Subjective Expressions}, publisher={Conference on Empirical Methods in Natural Language Processing}, year={2003}, address={Ellen Riloff, School of Computing, University of UT, Salt Lake City, UT 84112; riloff@cs.utah.edu} } @proceedings{RilWieWil03, editor={Ellen Riloff and Janyce Wiebe and Theresa Wilson}, title={Learning Subjective Nouns Using Extraction Pattern Bootstrapping}, publisher={Seventh CoNLL Conf. Edmonton}, year={2003}, month={May-June} } @proceedings{RilWieWil03, editor={Ellen Riloff and Janyce Wiebe and Theresa Wilson}, title={Learning Subjective Nouns Using Extraction Pattern Bootstrapping}, publisher={Seventh CoNLL Conf. Edmonton}, year={2003}, month={May-June} } @book{Ripley96, author={Brian Ripley}, title={Pattern Recognition and Neural Networks}, publisher={Cambridge Univeristy Press}, year={1996} } @article{Ritschl03, author = {Ritschl, Albrecht}, title = {Hat das Dritte Reich wirklich eine ordentliche Besch{\"a}ftigungspolitik betrieben?}, journal = {Jahrbuch f{\"u}r Wirtschaftsgeschichte}, year = {2003}, pages = {{125-40}} } @article{Ritschl90, author = {Albrecht Ritschl}, title = {Zu hohe L{\"o}hne in der Weimarer Republik? Eine Auseinandersetzung mit Holtferichs Berechnungen zur Lohnposition der Arbeitsschaft 1925-1932}, journal = {Geschichte und Gesellschaft}, volume = {16}, year = 1990, pages = {375--402} } @article{Robins95, author = {J.M. Robins}, title = {Discussion of ``Causal diagrams in empirical research'' by J. Pearl}, journal = {Biometrika}, volume = 82, year = 1995, number = {387-394} } @article{Robins86, author = {J.M. Robins and M.H. Gail and J.H. Lubin}, title = {More on Biased Selection of Controls for Case-Control Analyses of Cohort Studies}, journal = {Biometrics}, volume = 42, year = 1986, number = {293-299} } @incollection{Robins99, author={James M. Robins}, title={Marginal Structural Models Versus Structural Nested Models as Tools for Causal Inference}, booktitle={Statistical Models in Epidemiology: The Environment and Clinical Trials}, publisher={Springer-Verlag}, year= 1999, address={New York}, editor={M.E. Halloran and D. Berry}, pages={95-134}, volume= 116 } @article{Robins99b, author={James M. Robins}, title={Association, Causation, and Marginal Structural Models}, journal={Synthese}, volume= 121, year={1999b}, pages={151--179} } @article{RobJew91, author={Laurence D. Robinson and Nicholas P. Jewell}, title={Some Surprising Results about Covariate Adjustment in Logistic Regression Models}, journal={International Statistical Review}, volume={59}, year={1991}, pages={227-240}, month={August}, number={2} } @article{RobMar99, author={Noah Jamie Robinson and Ravai Marindo}, title={Current Estimates of and Future Projections for Adult Deaths Attributed to HIV Infection in Zimbabwe}, journal={Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology}, volume= 20, year= 1999, pages={187--194} } @article{RobRot01, author={James M. Robins and Andrea Rotnitzky}, title={Comment on the Peter J. Bickel and Jaimyoung Kwon,, `Inference for semiparametric models: Some questions and an answer'}, journal={Statistica Sinica}, volume= 11, year= 2001, pages={920--936}, number= 4, annote={on double robustness} } @article{RobRot03, author={James M. Robins and Andrea Rotnitzky}, title={Inverse Probability Weighting Estimation in Survival Analysis}, journal={Encyclopedia of Biostatistics}, year= 2003, note={forthcoming} } @article{RobRot95, author={J. Robins and A. Rotnitzky}, title={Semiparametric efficiency in multivariate regression models with missing data}, journal={Journal of the American Statistical Association}, volume= 90, year= 1995 , pages={122-129} } @article{RobWan00, author={James Robins and Naisyin Wang}, title={Inference for Imputation Estimators}, journal={Biometrika}, volume={87}, year={2000}, pages={113-124} } @article{Rogers86, author={Andrei Rogers}, title={Parameterized Multistate Population Dynamics and Projections}, journal= jasa, volume= 81, year= 1986, pages={48--61} } @article{RogRay99, author={Andrei Rogers and James Raymer}, title={Fitting Observed Demographic Rates with the Multiexponential Model Schedule: An Assessment of Two Estimation Programs}, journal={Applied Regional Science Conference}, volume= 11, year= 1999, pages={1--10}, number= 1 } @book{Rokeach73, author={Milton Rokeach}, title={The Nature of Human Values}, publisher={Free Press}, year= 1973, address={New York} } @book{Rokeach79, author={Rokeach, M.}, title={{Understanding Human Values: Individual and Societal}}, publisher={Free Press}, year={1979}, address={New York} } @article{RonVanCha98, author={Carine Ronsmans and Anne Marie Vanneste and jyotshamoy Chakraborty and Jereon Van Ginneken}, title={A comparison of Three Verbal Autopsy Methods to Ascertain Levels and Causes of Maternal Deaths in Matlab, Bangladesh}, journal={International Journal of Epidemiology}, volume={27}, year={1998}, pages={660-666} } @book{RoseAckerman99, title={Corruption and Government: Causes, Consequences, and Reform}, author={Rose-Ackerman, Susan}, year={1999}, publisher={Cambridge University Press}, address={Cambridge, UK} } @book{Rosenbaum02, author={Rosenbaum, Paul R.}, title={Observational Studies, 2nd Edition}, publisher={Springer Verlag}, year={2002}, address={New York, NY} } @article{Rosenbaum05, author={Paul R. Rosenbaum}, title={An exact distribution-free test comparing two multivariate distributions based on adjacency}, journal={Journal of the Royal Statisitcal Society B}, volume={67}, year={2005}, pages={515-530} } @article{Rosenbaum05b, author={Paul R. Rosenbaum}, title={Heterogeneity and Causality: Unit Heterogeneity and Design Sensitivity in Observational Studies}, journal={The American Statistician}, volume={59}, year={2005}, pages={147-152}, month={May}, number={2} } @article{Rosenbaum84, author={Paul Rosenbaum}, title={The Consequences of Adjusting for a Concomitant Variable That Has Been Affected by the Treatment}, journal= jrssA, volume= 147, year= 1984, pages={656--666}, number= 5 } @article{Rosenbaum86, author={Paul R. Rosenbaum}, title={Dropping out of high school in the {U}nited {S}tates: an observational study}, journal={Journal of Educational Statistics}, volume= 11, year= 1986, pages={207-224} } @article{Rosenbaum89, author={Rosenbaum, Paul R.}, title={Optimal matching for observational studies}, journal={Journal of the American Statistical Association}, volume= 84, year= 1989, pages={{1024--1032}}, keywords={Network; Computation} } @article{Rosenbaum91, author={Paul R. Rosenbaum}, title={A Characterization of Optimal Designs for Observational Studies}, journal={Journal of the Royal Statistical Society, Series B}, volume={53}, year={1991}, pages={597-610}, number={3} } @article{Rosenbaum91, author={Paul R. Rosenbaum}, title={Sensitivity analysis for matched case-control studies}, journal={Biometrics}, volume= 47, year= 1991, pages={87-100}, number= 1 } @article{Rosenbaum99, author={Paul R. Rosenbaum}, title={Choice as an alternative to control in observational studies}, journal={Statistical Science}, volume= 14, year= 1999, pages={259-304}, number= 3, note={With discussion and rejoinder.} } @book{RosHan93, author={Steven J.\ Rosenstone and John M.\ Hansen}, title={Mobilization, Participation, and Democracy in America}, publisher={MacMillian}, year= 1993 } @article{RosHen78, author={Bernard Rosner and Charles H. Hennekens}, title={Analytic Methods in Matched Pair Epidemiological Studies}, journal={International Journal of Epidemiology}, volume={7}, year={1978}, pages={367-372}, number={4} } @book{RosNoc83, title={Measuring Social Judgements: The Factorial Survey Approach}, publisher={Sage}, year= 1983, editor={P. H. Rossi and S. L. Nock}, address={Beverly Hills, CA} } @article{RosRub83, author={Paul R. Rosenbaum and Donald B.\ Rubin}, title={The Central Role of the Propensity Score in Observational Studies for Causal Effects}, journal={Biometrika}, volume= 70, year= 1983, pages={41--55} } @article{RosRub83b, author={Paul R. Rosenbaum and Donald B. Rubin}, title={Assessing sensitivity to an unobserved binary covariate in an observational study with binary outcome}, journal={Journal of the Royal Statistical Society Series B}, volume= 45, year= 1983, pages={212-218}, number= 2 } @article{RosRub84, author = {Paul R. Rosenbaum and Donald B. Rubin}, title = {Reducing Bias in Observational Studies Using Subclassification on the Propensity Score}, journal = jasa, volume = 79, year = 1984, pages = {515--524} } @article{RosRub85, author={Rosenbaum, Paul R. and Rubin, Donald B.}, title={Constructing a Control Group Using Multivariate Matched Sampling Methods That Incorporate the Propensity Score}, journal={The American Statistician}, volume={39}, year={1985}, pages={33-38} } @article{RosRub85b, author={Rosenbaum, P.R. and Rubin, D.B.}, title={The Bias Due to Incomplete Matching}, journal={Biometrics}, volume={41}, year={1985}, pages={103--116}, number={1} } @article{RosSil01, author={Paul R. Rosenbaum and J.H. Silber}, title={Matching and Thick Description in an Observational Study of Mortality After Surgery}, journal={Biostatistics}, volume= 2, year= 2001, pages={{217--232}} } @article{Rothman77, author={Kenneth J. Rothman}, title={Epidemiologic Methods in Clinical Trials}, journal={Cancer}, volume={39}, year={1977}, pages={1771-1775} } @book{rothman98, author={Kenneth J. Rothman and Sander Greenland}, title={Modern Epidemiology}, publisher={Philadelphia: Lippincott-Raven}, year= 1998, edition={2nd edition} } @article{RouSto96, author={L. Roussos and W. Stout}, title={A Multidimensionality-based DIF Anslysis Paradigm}, journal={Applied Psychological Measurement}, volume= 20, year= 1996, pages={355--371} } @article{Rowe05, author={Alexander K Rowe}, title={Should verbal autopsy results for malaria be adjusted to improve validity?}, journal={International Journal of Epidemiology}, volume={34}, year={2005}, pages={712-13}, number={3} } @article{Roy51, author={A.D. Roy}, title={Some Thoughts on the Distribution of Earnings}, journal={Oxford Economic Papers}, volume= 3, year= 1951, pages={135--146} } @article{RoyCum85, author={Richard M. Royall and William G. Cumberland}, title={Conditional Doverage Properties of Finite Population Confidence Intervals}, journal={Journal of the American Statistical Assocation}, volume={80}, year={1985}, pages={355-359}, month={June}, number={390}, tpages={+} } @article{RubDudVan06, author={Daniel Rubin and Sandrine Dudoit and Mark van der Laan}, title={A Method to Increase the Power of Multiple Testing Procedures Through Sample Splitting}, journal={Statistical Applications in Genetics and Molecular Biology}, volume={5}, year={2006}, number={1} } @article{Rubin01, author={Donald B. Rubin}, title={Using propensity scores to help design observational studies: Application to the tobacco litigation}, journal={Heatlh Services \& Outcomes Research Methodology}, volume={2}, year={2001}, pages={169-188}, month={December}, number={3-4} } @unpublished{Rubin04, author={Donald B. Rubin}, title={Discussion of ``{P}rinciples for modeling propensity scores in medical research: a systematic literature review"}, note={Forthcoming in {\it Pharmacoepidemiology and Drug Safety}. Referenced paper by Weitzen, Lapane, Toledano, Hume, Mor}, year= 2004 } @book{Rubin06, author={Donald B. Rubin}, title={Matched Sampling for Causal Effects}, publisher={Cambridge University Press}, year= 2006 , address={Cambridge, England} } @article{Rubin80, author={Rubin, Donald B.}, title={Comments on ``Randomization Analysis of Experimental Data: The Fisher Randomization Test'', by D. Basu}, journal={Journal of the American Statistical Association}, volume={75}, year={1980}, pages={591-593} } @article{Rubin73, author={Rubin, Donald B.}, title={Matching to remove bias in observational studies}, journal={Biometrics}, volume={29}, year={1973}, pages={159-184} } @article{Rubin73b, author={Rubin, Donald B.}, title={The use of matched sampling and regression adjustment to remove bias in observational studies}, journal={Biometrics}, volume={29}, year={1973}, pages={185-203} } @article{rubin74, author={Donald B. Rubin}, title={Estimating Causal Effects of Treatments in Randomized and Nonrandomized Studies}, journal={Journal of Educational Psychology}, volume= 6, year= 1974, pages={688--701} } @article{Rubin76, author={Donald Rubin}, title={Inference and Missing Data}, journal={Biometrika}, volume={63}, year={1976}, pages={581-592} } @article{Rubin77, author={Donald Rubin}, title={Formalizing Subjective Notions about the Effect of Nonrespondents in Sample Surveys}, journal={Journal of the American Statistical Association}, volume={72}, year={1977}, pages={538-543}, month={September}, number={359} } @article{Rubin77b, author={Donald B. Rubin}, title={Assignment to Treatment Group on the Basis of a Covariate}, journal={Journal of Educational Statistics}, volume={2}, year={1977}, pages={1}, number={1-26} } @article{Rubin78, author={Donald B. Rubin}, title={Bayesian inference for causal effects: The role of randomization}, journal={The Annals of Statistics}, volume={6}, year={1978}, pages={34-58} } @article{Rubin79, author={Donald B. Rubin}, title={Using Multivariate Matched Sampling and Regression Adjustment to Control Bias in Observational Studies}, journal= jasa, volume={74}, year={1979}, pages={318--328} } @book{Rubin87, author={Donald B. Rubin}, title={Multiple Imputation for Nonresponse in Surveys}, publisher={John Wiley}, year={1987}, address={New York} } @article{Rubin87b, author={Donald Rubin}, title={A Noniterative sampling/importance resampling alternative to the data augmentation algorithm for creating a few imputations when fractions of missing information are modest: the SIR Algorithm, Discussion of Tanner and Wong}, journal={Journal of the American Statistical Assocaition}, volume={82}, year={1987}, pages={543-546} } @article{Rubin91, author={Donald B. Rubin}, title={Practical implications of modes of statistical inference for causal effects and the critical role of the assignment mechanism}, journal={Biometrics}, volume= 47, year= 1991, pages={1213-1234} } @article{Rubin94, author={Donald B. Rubin}, title={Missing Data, Imputation, and the Bootstrap: Comment}, journal={Journal of the American Statistical Association}, volume={89}, year={1994}, pages={475-478}, month={Jun}, number={426} } @article{Rubin96, author={Donald B. Rubin}, title={Multiple Imputation after 18+ Years}, journal= jasa, volume= 91, year= 1996, pages={473--489}, number= 434 } @article{Rubin96, author={Donald Rubin}, title={Multiple Imputation after 18+ Years}, journal={Journal of the American Statistical Association}, volume={91}, year={1996}, pages={473-489} } @article{Rubin97, author={Donald B. Rubin}, title={Estimating causal effects from large data sets using propensity scores}, journal={Annals of Internal Medicine}, volume= 127, year= 1997, pages={757-763} } @article{RubSch86, author={Donald Rubin and Nathaniel Schenker}, title={Multiple Imputation for Interval Estimation for Simple Random Samples with Ignorable Nonresponse}, journal= jasa, volume= 81, year= 1986, pages={366-374}, number= 394 } @article{RubSch87, author={Donald B. Rubin and Nathaniel Schenker}, title={Logit-Based Interval Estimation from Binomial Data Using the Jeffreys Prior}, journal={Sociological Methodology}, volume={17}, year={1987}, pages={131-144} } @inproceedings{RubSch90, author={D.B. Rubin and J.L. Schafer}, title={Efficiently Creating Multiple Imputations for Incomplete Multivariate Normal Data}, booktitle={Proceedings of the Statistical Computing Section of the American Statistical Association}, year={1990}, pages={83-88} } @article{RubStu06, author={Donald B. Rubin and Elizabeth A. Stuart}, title={Affinely invariant matching methods with discriminant mixtures of proportional ellipsoidally symmetric distributions}, journal={Annals of Statistics}, volume= 34, year={2006}, pages={1814-1826}, number= 4 } @article{RubTho00, author={Donald B. Rubin and Neal Thomas}, title={Combining propensity score matching with additional adjustments for prognostic covariates}, journal={Journal of the American Statistical Association}, volume= 95, year={2000}, pages={573-585} } @article{RubTh, author={Donald B. Rubin and Neal Thomas}, title={Characterizing the Effect of Matching Using Linear Propensity Score Methods With Normal Distributions}, journal={Biometrika}, volume={79}, year={1992}, pages={797-809} } @article{RubTho96, author={Donald B. Rubin and Neal Thomas}, title={Matching Using Estimated Propensity Scores, Relating Theory to Practice}, journal={Biometrics}, volume={52}, year={1996}, pages={249-264} } @unpublished{RugKimMar03, author = {Theodore W. Ruger and Pauline T. Kim and Andrew D. Martin and Kevin M. Quinn}, title = {The Supreme Court Forecasting Project: Legal and Political Science Approaches to Predicting Supreme Court Decision-Making}, note = {Washington University in St. Louis}, year = 2003 } @book{Rule88, author={Rule, J. B.}, title={Theories of Civil Violence}, publisher={University of California Press}, year= 1988, address={Berkeley} } @article{RusOneBer03, author={Bruce Russett and John Oneal and Michael L. Berbaum}, title={Causes of Peace: Democracy, Interdependence, and International Organizations, 1885--1992}, journal= isq, volume= 47, year= 2003, pages={371--393}, month={September}, number= 3 } @article{SabCanGib05, author={Marc S. Sabatine and Christopher P. Cannon and C. Michael Gibson and Jose L. Lopez-Sendon and Gilles Montalescot and Pierre Theroux and Basil S. Lewis and Sabina A. Murphy and Carolyn H. McCabe and Eugene Braunwald}, title={Effect of Clopidogrel Pretreatment Before Percutaneous Coronary Intervention in Patients with ST-Elevation Myoc}, journal={Journal of the American Medical Association}, volume={294}, year={2005}, pages={1224-1232}, month={September}, number={10} } @article{sackett96, author={D. Sackett, J. Deeks and D. Altman}, title={Down with Odds Ratios}, journal={Evidence-Based Medicine}, volume= 1, year= 1996, pages={164--6}, number= 6 } @book{Saldern79, author={Adelheid Saldern}, title={Mittelstand im `Dritten Reich'. Handwerker-Einzelh{\"a}ndler - Bauern}, publisher={Campus}, year= 1979, address={Frankfurt} } @article{SalWeiHam02, author={Joshua A. Salomon and Milton C. Weinstein and James K. Hammitt and Sue J. Goldie}, title={Empirically Calibrated Model of Hepatitis C Virus Infection in the United States}, journal={American Journal of Epidemiology}, volume= 156, year= 2002, pages={761--773} } @article{Sambanis01, author={Nicholas Sambanis}, title={Do Ethnic and Nonethnic Civil Wars Have the Same Causes?}, journal={Journal of Conflict Resolution}, volume={45}, year={2001}, pages={259-82}, month={June}, number={3} } @article{SamDoy07, author={Nicholas Sambanis and Michael W. Doyle}, title={No Easy Choices: Estimating the Effects of United Nations Peacekeeping (Response to King and Zeng)}, journal= isq, year= 2007, month={October} } @article{SanKliDun06, author={Lisa Sanbonmatsu and Jeffrey R. Kling and Greg J. Duncan and Jeanne Brooks-Gunn}, title={Neighborhoods and Academic Achievement: Results From the Moving to Opportunity Experiment}, journal={National Bureau of Economic Research, Working Paper Series}, year={2006}, month={January}, number={Working Paper 11909}, note={{http://www.nber.org/papers/w11909}} } @article{SanNaiWhi02, author={H. Babad and C. Sanderson and B. Naidoo and I. White and D. Wang}, title={The Development of a Simulation Model of Primary Prevention Strategies for Coronary Heart Disease}, journal={Health Care Management Science}, volume= 5, year= 2002, pages={269--274}, number= 4 } @article{SanRedHan96, author={Robert Sanson-Fisher and Sally Redman and Lynne Hancock and Stehen Halpin and Philip Clarke and Margot Schofield and Robert Burton and Michael Hensley and robert Gibberd and Alexander Reid and Raoul Walsh and Afaf Girgis and Louise Burton and Ann McClintock and Robert Carter and Allan Donner and Sylvan Green }, title={Developing methodologies for evaluating community-wide health promotion}, journal={Health Promotion International}, volume={11}, year={1996}, pages={227-236}, number={3} } @article{Sartori70, author={Giovanni Sartori}, title={Concept Misformation in Comparative Politics}, journal= apsr, volume= 64, year= 1970, pages={1033--1053}, month={December}, number= 4 } @article{Schaback96, author={R. Schaback}, title={Approximation by Radia Basis Functions with Finitely Many Centers}, journal={Constructive Approximation}, volume= 12, year= 1996, pages={331--340} } @book{Schafer97, author={Joseph L. Schafer}, title={Analysis of incomplete multivariate data}, publisher={Chapman \& Hall}, year={1997}, address={London} } @book{Schattschneider60, title = {{The Semisovereign People}}, author = {Schattschneider, E.E.}, year = {1960}, address = {New York}, publisher = {Holt, Rinehart and Winston} } @article{SchBuc03, author={M. Schneider and J. Buckley}, title={Making the grade: comparing DC charter schools to other DC public schools}, journal={Educational Evaluation and Policy Analysis}, volume={25}, year={2003}, pages={203-215}, number={2} } @article{SchGer00, author = {Philip Schrodt and Deborah J.\ Gerner}, title = {Cluster-Based Early Warning Indicators for Political Change in the Contemporary Levant}, journal = apsr, volume = 94, year = 2000, pages = {803--818}, number = 4 } @article{Schieder93, author={Wolfgang Schieder}, title={Die NSDAP vor 1933}, journal={Geschichte und Gesellschaft}, volume= 19, year= 1993, pages={141--154}, number= 1 } @inproceedings{SchKhaEzz93, author={Joseph L. Schafer and Meena Khare and Trena M. Ezzati-Rice}, title={Multiple Imputation of Missing Data in NHANESIII }, booktitle={Proceedings of the Annual Research Conference}, year={1993}, pages={459-487}, organization={Washington, D.C., Bureau of the Census} } @article{SchMalBla94, author={David E. Schoenfeld, et al}, title={Self-Rated Health and Mortality in High Functioning Elderly-a Closer Look at Healthy Individuals:MacArthur Field Study of Successful Aging. }, journal={Journal of Gerontology}, volume= 49, year= 1994, pages={{M109-113}}, number= 3 } @article{Schneider04, author={Schneider, B.}, title={{Building a Scientific Community: The Need for Replication}}, journal={The Teachers College Record}, volume={106}, year={2004}, pages={1471--1483}, number={7} } @techreport{Schochet03, author={Peter Schochet and Sheena McConnell and John Burghardt}, title={National Job Corps Study: Findings Using Administrative Earnings Records Data. Final Report}, institution={Mathematica Policy Research, Inc.}, year={2003}, month={October}, address={Princeton, NJ} } @book{Schoenbaum80, author = {Schoenbaum, David}, title = {Hitler's Social Revolution}, address = {New York}, publisher = {Norton}, year = {1980} } @article{Schoenberg46, author={I.J. Schoenberg}, title={Contributions to the problem of approximation of equidistant data by analytic functions, Part A: On the problem of smoothing of graduation, a first class of analytic approximation formulae}, journal={Quart. Appl. Math.}, volume={4}, year={1946}, pages={45--99} } @article{SchOls98, author={Joseph L. Schafer and Maren K. Olsen}, title={Multiple Imputation for multivariate Missing-Data Problems: A Data Analyst's Perspective}, journal={Multivariate Behavioral Research}, volume={33}, year={1998}, pages={545-571}, number={4} } @article{SchSin00, author={Robert E. Schapire and Yoram Singer}, title={BoosTexter: A Boosting-based System for Text Categorization}, journal={Machine Learning}, volume={39}, year={2000}, pages={135-168}, number={2/3} } @article{SchSin00, author={Robert E. Schapire and Yoram Singer}, title={BoosTexter: A Boosting-based System for Text Categorization}, journal={Machine Learning}, volume={39}, year={2000}, pages={135-168}, number={2/3} } @article{SchSla01, author={Kenneth Scheve and Matthew Slaughter}, title={Labor Market Competition and Individual Preferences over Immigration Policy}, journal={Review of Economics and Statistics}, volume={83}, year={2001}, pages={133-145}, month={February}, number={1}, note={Sample data include only the first five of ten multiply imputed data sets.} } @article{Schuessler99, author={Alexander A. Schuessler}, title={Ecological Inference}, journal={Proceedings of the National Academy of Sciences}, volume= 96, year= 1999, pages={10578-10581}, month={September 14}, number= 19, note={{http://www.pnas.org/cgi/content/full/96/19/10578}} } @book{Schumaker81, author={L.L. Schumaker}, title={Spline functions: basic theory}, publisher={John Wiley and Sons }, year= 1981 , address={New York} } @article{Schwarz99, author={Norbert Schwarz}, title={Self-Reports: How the Questions Shape the Answers}, journal={American Psychologist}, volume= 54, year= 1999, pages={93--105}, number= 2 } @article{SchWolWel99, author={Lisa M. Schwartz, Steven Woloshin Gilbert H. Welch}, title={Misunderstanding About the Effects of Race and Sex on Physicians' Referrals for Cardiac Cetheterization}, journal={New England Journal of Medicine}, volume= 341, year= 1999, pages={279-283}, number= 4 } @article{ScoMacCor97, author={William K. Scott, et al}, title={Functional Health Status as a Predictor of Mortality in Men and Women Over 65.}, journal={Journal of Clinical Epidemiology}, volume= 50, year= 1997, pages={{291-96}}, number= 3 } @article{SegBurLoo03, author={O. Segura and A. Burdorf and C. Looman}, title={Update of Predictions of mortality from Pleural Mesothelioma in the Netherlands}, journal={Occupational and Environmental Medicine}, volume= 60, year= 2003, pages={50--55}, number= 1 } @article{Seidel91, author={Raimund Seidel}, title={Small-Dimensional Linear Programming and Convex Hulls Made Easy}, journal={Discrete \& Computational Geometry}, volume={6}, year={1991}, pages={{423-434}}, issue={5} } @inbook{SeiMue94, title={Modelling the AIDS Epidemic: Planning, Policy, and Prediction}, chapter={Viral Load and Sexual Risk: Epidemiologic and Policy Implications for HIV/AIDS}, year={1994}, publisher={Raven Press}, pages={461--480}, address={New York}, altauthor={S.T. Seitz and G.E. Mueller}, alteditor={E.H. Kaplan and M.L. Brandeau} } @article{Sekhon08, author = {Jasjeet S. Sekhon}, title = {Multivariate and Propensity Score Matching Software with Automated Balance Optimization: The matching Package for R}, journal = {Journal of Statistical Software}, year = {2008} } @unpublished{Sekhon04b, author={Jasjeet S. Sekhon}, title={The Varying Role of Voter Information across Democratic Societies}, note={{http://jsekhon.fas.harvard.edu/papers/SekhonInformation.pdf}}, year= 2004 } @article{SekMeb98, author={Jasjeet Singh Sekhon and Mebane, Jr., Walter R.}, title={Genetic Optimization Using Derivatives: Theory and Application to Nonlinear Model}, journal= pa, volume= 7, year= 1998, pages={187--210}, note={{http://jsekhon.fas.harvard.edu/genoud/genoud.pdf}} } @article{Sen02, author={Amartya Sen}, title={Health: Perception Versus Observation}, journal={BMJ}, volume= 324, year= 2002, pages={860-861}, month={13 April} } @article{Senn00, author={Stephen Senn}, title={Consensus and Controversy in Pharmaceutical Statistics}, journal={The Statistician}, volume={49}, year={2000}, pages={135-176}, number={2} } @article{Senn04, author={Stephen Senn}, title={Controversies concerning randomization and additivity in clinical trials}, journal={Statistics in Medicine}, volume={23}, year={2004}, pages={3729-3753} } @article{Senn04b, author={Stephen Senn}, title={Unbalanced Claims for Balance}, journal={2004}, volume={13}, year={2004}, pages={14-16}, month={June}, number={6} } @article{Senn05, author={Stephen Senn}, title={Quantifying the magnitude of baseline covariate imbalances resulting from selection bias in randomized clinical trials - Comment}, journal={Biometrical Journal}, volume={47}, year={2005}, pages={133-135}, number={2} } @article{Senn89, author={S. J. Senn}, title={Covariate Imbalance and Random Allocation in Clinical Trials}, journal={Statistics in Medicine}, volume={8}, year={1989}, pages={467-475} } @article{Senn93, author={Stephen Senn}, title={Baseline Distribution and conditional Size}, journal={Journal of Biopharmaceutical Statistics}, volume={3}, year={1993}, pages={265-270}, number={2} } @article{Senn94, author={S.J. Senn}, title={Testing for Baseline Balance in Clinical Trials}, journal={Statistics in Medicine}, volume={13}, year={1994}, pages={1715-1726} } @article{Senn96, author={Stephen Senn}, title={Baseline Balance and conditional Size: A Reply to Overall Et. Al.}, journal={Journal of Biopharmaceutical Statistics}, volume={6}, year={1996}, pages={201-210}, number={2} } @article{SetSanRao05, author={Philip W. Setal and Osman Sankoh and Chalapati Rao and Victoria A. Velkoff and Colin Mathers and Yang Gonghuan and Yusuf Hemed and Prabhat Jha and Alan D. Lopez}, title={Sample registriation of vital events with verbal autopsy: a renewed commitment to measuring and monitoring vital statistics}, journal={Bulletin of the World Health Organization}, volume={83}, year={2005}, pages={611-617} } @article{SetSanVel05, author={Philip W. Setel and O. Sankoh and VA Velkoff and C Mathers and Y Gonghuan et al.}, title={Sample registration of vital events with verbal autopsy: a renewed commitment to measuring and monitoring vital statistics}, journal={Bulletin of the World Health Organization}, volume= 83, year= 2005, pages={611-617} } @article{SetWhiHem06, author={Philip W. Setel and David R. Whiting and Yusuf Hemed and Daniel Chandramohan and Lara J Wolfson and K.G.M.M. Alberti and Alan Lopez}, title={Validity of verbal autopsy procedures for determining causes of death in Tanzania.}, journal={Tropical Medicine and International Health}, volume= 11, year={2006}, pages={681--696}, number= 5 } @article{ShaBarrCra02, author={Bruce Shadbolt, Jane Barresi, and Paul Craft}, title={Self Rated Health as a Predictor of Survival Among Patients with Advanced Cancer}, journal={Journal of Clinical Oncology}, volume= 20, year= 2002, pages={{2514-19}}, month={{May 15}}, number= 10 } @article{ShaDavWeg92, author={Said Shahtahmasebi, MSc, Richard Davies, PhD, and G. Clare Wenger PhD}, title={A Longitudinal Analysis of Factors Related to Survival in Old Age}, journal={The Gerontological Society of America}, volume= 32, year= 1992, pages={{404-13}}, number= 3 } @article{Shahidullah95, author={M. Shahidullah}, title={The sisterhood method of estimating maternal mortality: the Matlab experience}, journal={Studies in Family Planning}, volume= 26, year= 1995, pages={101--106} } @unpublished{Shalev05, author={Michael Shalev}, title={Limits and Alternatives to Multiple Regression in Comparative Research}, note={Dept. of Sociology \& Anthropology and Department of Political Science; The Hebrew University of Jerusalem; Israel 91905}, year={2005}, month={July} } @book{Shannon49, author={Claude E. Shannon}, title={The Mathematical Theory of Communication}, publisher={University of Illinois Press}, year= 1949, address={Urbana-Champaign} } @article{ShaSit96, author={Jun Shao and Randy R. Sitter}, title={Bootstrap for Imputed Survey Data}, journal={Journal of the American Statistical Association}, volume={91}, year={1996}, pages={1278-1288}, month={September}, number={435} } @article{Sherman00, author={Robert P. Sherman}, title={Tests of Certain Types of Ignorable Nonresponse in Surveys Subject to Item Nonresponse or Attrition}, journal={American Journal of Political Science}, volume={44}, year={2000}, pages={356-368}, number={2} } @article{SheSto93, author={R. Shealy and W. Stout}, title={A Model-Based Standardization Approach That Separates True Bias/DIF From Group Ability Differences and Detects Test Bias/DIF as Well as Item Bias/DIF}, journal={Psychometrika}, volume= 58, year= 1993, pages={159--194}, month={June}, number= 2 } @article{ShiLitPot06, author={M.H. Shishehbor and D. Litaker and C.E. Pothier and M.S. Lauer}, title={Association of socioeconomic status with functional capacity, heart rate, recoery, and all-cause mortality}, journal={Journal of the American Medical Association}, volume={295}, year={2006}, pages={784-792}, month={February} } @article{ShiSmiDra89, author={M.J. Shipley and P.G. Smith and M. Draimaix}, title={Calculation of Power for Matched Pair Studies When Randomization is by Group}, journal={International Journal of Epidemiology}, volume={18}, year={1989}, pages={457-461}, number={2} } @article{ShiTes93, author={T. Shiferaw and F. Tessema}, title={Maternal mortality in rural communities of Illubabor, Southwestern Ethiopia: as estimated by the `sisterhood method'}, journal={Ethiopian Medical Journal}, volume= 31, year= 1993, pages={239--249} } @article{Shively72, author={Shivley, W. Phillips}, title={Party Identification and Voting Choice and Voting Stability: The Weimar Case}, journal= apsr, volume= 66, year= 1972, pages={1203-1225} } @article{Sianesi04, author={Barbara Sianesi}, title={An evaluation of the {S}wedish system of active labor market programs in the 1990's}, journal={Review of Economics and Statistics}, volume= 86, year= 2004, pages={133-155}, number= 1 } @article{SibFleHil01, author={A.M. Sibai and A. Fletcher and M. Hills and O. Campbell}, title={Non-communicable disease mortality rates using the verbal autopsy in a cohort of middle aged and older populations in Beirut during wartime, 1983-93}, journal={Journal of Epidemiology and Community Health}, volume={55}, year={2001}, pages={271-276} } @article{Signorino99, author={Curtis Signorino}, title={Strategic Interaction and the Statistical Analysis of International Conflict}, journal= apsr, volume= 93, year= 1999, pages={279-298}, number= 2 } @article{SigYil03, author={Curtis Signorino and Kuzey Yilmaz}, title={Strategic Misspecification in Discrete Choice Models}, journal= ajps, year={2003}, month={July}, note={{http://www.rochester.edu/College/PSC/signorino/papers/Signo00.pdf}} } @article{SimHop05, author={Beth A. Simmons and Daniel J. Hopkins}, title={The Constraining Power of International Treaties: Theory and Methods}, journal={American Political Science Review}, volume={99}, year={2005}, pages={623-631}, month={November}, number={4} } @article{SimXeo04, author={Simon, Adam F. and Michael Xeons}, title={{Dimensional Reduction of Word-Frequency Data as a Substitute for Intersubjective Content Analysis}}, journal={Political Analysis}, volume={12}, year={2004}, pages={63-75}, number={1} } @unpublished{Singh00, author={R. Singh}, title={Estimation of Adult Mortality from Widowhood Data for India and its Major States}, note={Mumbai, India: International Institute for Population Sciences}, year={2000} } @inproceedings{Singh02, author={Abhishek Singh}, title={Forecasting Mortality in India}, organization={Ninth International Conference of Forum for Interdisciplinary Mathematics on Statistics Combinatorics and Related Areas, University of Allahbad}, crossref={Atlas Document #cakd-39}, annote={Lee-Carter is used to forecast mortality in India from 2000-2015.} } @article{Sisson05, author={Scott A. Sisson}, title={Transdimensional Markov Chains: A Decade of Progress and Future Perspectives}, journal= jasa, volume= 100, year= 2005, pages={1077--1089}, month={September}, number= 471 } @inproceedings{Sivamurthy87, author={M. Sivamurthy}, title={{Principal Components Representation of ASFR: Model of Fertility Estimation and Projection}}, booktitle={CDC Research Monograph}, year= 1987 , address={Cairo Demographic Center}, pages={655--693} } @article{Skalaban92, author={Andrew Skalaban}, title={Interstate Competition and State Strategies to Deregulate Interstate Banking 1982-1988}, journal={Journal of Politics}, volume={54}, year={1992}, pages={793-809}, month={August}, number={3} } @InCollection{Skocpol91, author = {Theda Skocpol}, title = {Targeting Within Universalism: Politically Viable Policies to Combat Poverty in the United States}, booktitle = {The Urban Underclass}, pages = {411-436}, publisher = {Brookings Institution}, editor = {Christopher Jencks and Paul Peterson}, address = {Washington, D.C.}, year = {1991} } @proceedings{Skoufias05, title={PROGRESA and Its Impacts on the Welfare of Rural Households in Mexico}, year={2005}, organization={International Food Policy Research Institute}, address={Washington}, author={E. Skoufias} } @unpublished{Small05, author={Dylan S. Small}, title={Sensitivity Analysis for Limited Information Linear Simultaneous Equations Models With Overidentifying Restrictions}, note={Dept. of Statistics, The Wharton School of the University of Pennsylvania, Philadelphia, PA 19104-6340, dmall@wharton.upenn.edu}, year={2005}, month={September} } @book{SmiMor91, author={P.J. Smith and R.H. Morrow}, title={Methods for field trials of interventions against tropical diseases: a 'toolbox'}, publisher={Oxford University Press}, year={1991}, address={Oxford} } @article{Smith03, author={Tom W. Smith}, title={Developing Comparable Questions in Cross-National Surveys, in Cross-Cultural Survey Methods}, journal={John Wiley and Sons}, volume={2003}, pages={Janet A. Harkness and Fons J. R. van de Vijver and Peter Ph. Mohler}, month={Hoboken, NJ} } @article{Smith97, author={Smith, H.L.}, title={Matching With Multiple Controls to Estimate Treatment Effects in Observational Studies}, journal={Sociological Methodology}, volume={27}, year={1997}, pages={325--353}, number={1} } @article{SmiTod05, author={Jeffrey A. Smith and Petra E. Todd}, title={Does matching overcome LaLonde's critique of nonexperimental estimators?}, journal={Journal of Econometrics}, volume= 125, year= 2005, pages={305-353}, month={March-April}, number={1-2} } @article{SmiTod05b, author={Jeffrey Smith and Petra Todd}, title={Rejoinder}, journal={Journal of Econometrics}, volume={2005}, year={125}, pages={365-375} } @book{SneCoc80, author={George W. Snedecor and William G. Cochran}, title={Statistical Methods}, publisher={Iowa State University Press}, year={1980}, address={Ames, IA}, edition={7th} } @book{SniCar97, author={Paul Sniderman and Edward Carmines}, title={Reaching Beyond Race}, publisher={Harvard University Press}, year= 1997, address={Cambridge, MA} } @article{SniGro96, author={Paul M. Sniderman and Douglas B. Grob}, title={Innovations in Experimental Design in Attitude Surveys}, journal={Annual Review of Sociology}, volume= 22, year= 1996, pages={377-399}, month={August} } @article{Sobel06, author={Michael E. Sobel}, title={Discussion: 'The Scientific Model of Causality'}, journal={Sociological Methodology}, volume={35}, year={2006}, pages={99-33}, month={June}, number={1} } @article{Sobolev38, author={S.L. Sobolev}, title={On a theorem of functional analysis}, journal={Math. Sbornik}, volume= 45, year= 1938, pages={471--496}, note={Russian original;AMS Transl. (2),34(1963),39--68} } @book{SolChaShi05, author={Nadia Soleman and Daniel Chandramohan and Kenji Shibuya}, title={WHO Technical Consultation on Verbal Autopsy Tools}, publisher={Geneva}, year= 2005, note={{http://www.who.int/healthinfo/statistics/mort\_verbalautopsy.pdf}} } @article{SolChaShi06, author={Nadia Soleman and Daniel Chandramohan and Kenji Shibuya}, title={Verbal autopsy: current practices and challenges}, journal={Bulletin of the World Health Organization}, volume={84}, year={2006}, pages={239-245}, month={March}, number={3} } @article{SolWil92, author={Patricia J. Solomon and Susan R. Wilson}, title={Predicting AIDS Deaths and Prevalence in Australia}, journal={The Medical Journal of Australia}, volume= 157, year= 1992, pages={121--125} } @article{SomDjuLoe86, author={Alfred Sommer and Edi Djunaedi and A.A. Loeden and Ignatius Tarwotjo and Keith P. West, Jr. and Robert Tilden and Lisa Mele}, title={Impact of Vitamin A Supplementation on Childhood Mortality}, journal={The Lancet}, volume={1}, year={1986}, pages={1169-1173} } @article{SomZeg91, author={A. Sommer and SL Zeger}, title={{On Estimating Efficacy from Clinical Trials.}}, journal={Statistics in Medicine}, volume={10}, year={1991}, pages={45-52}, number={1} } @article{SomZeg91, author={Alfred Sommer and Scott L. Zeger}, title={On Estimating Efficacy From Clinical Trials}, journal={Statistics in Medicine}, volume={10}, year={1991}, pages={45-52} } @article{Song01, author={Juwon Song and Thomas R. Belin and Martha B. Lee and Xingyu Gao and Mary Jane Rotheram-Borus}, title={Handling baseline differences and missing items in a longitudinal study of {HIV} risk among runaway youths}, journal={Health Services and Outcomes Research Methodology}, volume= 2, year= 2001, pages={317-329} } @article{Sorenson88, author={Kirsten Hjort Sorensen}, title={State of Health and its Association with Death Among Old People at Three-Years Follow Up}, journal={Danish Medical Bulletin}, volume= 35, year= 1988, pages={{597-00}} } @book{Sowa99, author={J. F. Sowa}, title={Knowledge Representation: Logical, Philosophical and Computational Foundations}, publisher={Brooks Cole}, year= 1999 } @unpublished{SpeSun01, author={P. Speckman and D. Sun}, title={{Bayesian Nonparametric Regression and Autoregression Priors}}, note={{www.stat.missouri.edu/\textasciitilde speckman/report/bnpreg.ps}}, year= 2001 } @article{SpiJagCla96, author={Nicola Spiers, Carol Jagger, and Michael Clarke}, title={Physical Function and Perceived Health: Cohort Diffrences and Interrelationships in Older People}, journal={Joural of Gerontology: Social Sciences}, volume={{51B}}, year= 1996, pages={{S226-33}} } @techreport{Sroka06, author={T. Neil Sroka}, title={Understanding the Political Influence of Blogs}, institution={Graduate School of Political Management, George Washington University}, year={2006}, month={April}, address={The Institue for Politics, Democracy, & the Internet, Graduate School of Political Management, George Washington U, 805 21st St., NW Suite 401, Washington, DC 20052} } @article{Stachura93, author={Stachura, Peter D.}, title={National Socialism and the German Proletariat, 1925-1935: Old Myths and New Perspectives}, journal={The Historical Journal}, volume= 36, year= 1993, pages={701-718}, number= 3 } @article{StaNouHil00, author={C. Stanton and A. Noureddine and K. Hill}, title={An Assessment of DHS Maternal Mortality Indicators}, journal={Studies in Family Planning}, volume= 31, year= 2000, pages={111--123} } @inbook{StaSeiWay91, author={E.A. Stanley and S.T. Seitz and P.O. Way and P.D. Johnson and T.F. Curry}, title={The AIDS Epidemic and its Demographic Consequences}, chapter={The iwgAIDS Model for the Heterosexual Spread of HIV and the Demographic Impacts of the AIDS Epidemic}, year= 1991, publisher={United Nations and World Health Organization}, pages={119--136}, series={ST/ESA/SER.A/119}, address={New York} } @article{SteCoo95, author={L.A. Stefanski and J.R. Cook}, title={Stimulation-Extrapolation: The Measurement Error Jackknife}, journal={Journal of the American Statistical Association}, volume={90}, year={1995}, pages={1247-1256}, month={December}, number={432} } @book{Steele04, author={J. Michael Steele}, title={The Cauchy-Schwarz Master Class}, publisher={Cambridge University Press}, year={2004} } @article{Stefanski92, author={Leonard A. Stefanski}, title={Monotone Likelihood Ratio of a "Faulty-Inspection" Distribution}, journal={The American Statistician}, volume={46}, year={1992}, pages={110-114}, month={May}, number={2} } @article{SteNap00, author={Anita L. Stewart and Anna Napoles-Springer}, title={Health-Related Quality of Life Assessments in Diverse Population Groups in the United States}, journal={Medical Care}, volume= 38, year= 2000, pages={II-102 -- II-124}, month={September}, number= 9 } @article{Stephan32, author = {Stephan, Werner}, title = {Grenzen des nationalsozialistischen Vormarsches. Eine Analyse der Wahlziffern seit der Reichstagswahl 1930}, journal = {Zeitschrift f{\"u}r Politik}, volume = 21, year = 1932, pages = {570-578} } @article{Stephan32b, author = {Stephan, Werner}, title = {Die Parteien nach den grossen Fr{\"u}hjahrswahlk{\"a}mpfen. Eine Analyse der Wahlziffern des Jahres 1932}, journal = {Zeitschrift f{\"u}r Politik}, volume = 22, year = 1932, pages = {110-118} } @article{Stephan33, author = {Stephan, Werner}, title = {Die Reichstagswahlen vom 31. Juli 1932}, journal = {Zeitschrift f{\"u}r Politik}, volume = 22, year = 1933, pages = {353-360} } @article{Sterk03, author={Stewart E. Sterk}, title={Retrenchment on Entrenchment}, journal={The George Washington Law Review}, volume={71}, year={2003}, pages={231-254}, month={April}, number={2} } @techreport{Stewart92, author={G.W. Stewart}, title={{On the Early History of the Singular Value Decomposition}}, institution={University of Maryland, College Park}, year= 1992, type={Institute for Advanced Computer Studies}, number={TR-92-31} } @article{Stimson85, author={James A.\ Stimson}, title={Regression Models in Space and Time: A Statistical Essay}, journal= ajps, volume= 29, year= 1985, pages={914--947} } @book{Stockman86, author={David A. Stockman}, title={The Triumph of Politics: How the Reagon Revolution Failed}, publisher={Harper \& Row, Publishers}, year={1986}, address={New York} } @article{StoDorKoz89, author={M.J. Stones, Brenda Dornan, and Albert Kozma}, title={The prediction of mortality in elderly institution residents}, journal={Journal of Gerontology: Psychological Sciences}, volume= 44, year= 1989, pages={{P72-79}} } @article{Stogbauer01, author={Christian St{\"o}gbauer}, title={The Radicalisation of the German Electorate: Swinging to the Right and the Left in the Twilight of the Weimar Republic}, journal={European Review of Economic History}, volume= 5, year= 2001, pages={251--280} } @article{Stone74, author={Stone, M.}, title={Cross-Validatory Choice and Assessment of Statistical Prediction}, journal= jrssb, volume= 36, year= 1974, pages={111-33}, number= 2 } @article{StoRel90, author={Ross M. Stolzenberg and Daniel a. Relles}, title={Theory Testing in a World of Constrained Research Design: The Significance of Heckman's Censored Sampling Bias Correction for Nonexperimental Research}, journal={Sociological Methods and Research}, volume={18}, year={1990}, pages={395-415}, month={May} } @article{StoWat03, author={James H. Stock and Mark W. Watson}, title={Forecasting Output and Inflation: The Role of Asset Prices}, journal={Journal of Economic Literature}, year={2003}, optnumber={3}, optvolume={41}, optmonth={September} } @article{StoWay98, author={John Stover and Peter Way}, title={Projecting the Impact of AIDS on Mortality}, journal={AIDS}, volume= 12, year={1998}, pages={S29--S39}, number={supplement 1} } @book{Strang88, author={G. Strang}, title={{Linear Algebra and Its Applications}}, publisher={Saunders}, year= 1988 } @phdthesis{Stuart04, author={Stuart, Elizabeth A.}, title={Matching methods for estimating causal effects using multiple control groups}, school={Department of Statistics, Harvard University}, year= 2004 } @article{StuRub07, author={Elizabeth A. Stuart and Donald B. Rubin}, title={Matching with multiple control groups with adjustment for group differences}, journal={Journal of Educational and Behavioral Statistics}, year= 2007, note={Forthcoming} } @article{SucJor90, author={L. Suchman and B. Jordan}, title={Interactional Troubles in Face to Face Survey Interviews (With Comments and Rejoinder)}, journal= jasa, volume= 85, year= 1990, pages={232--253}, month={March}, number= 409 } @article{Sunetal00, author={D. Sun and R. Tsutakawa and H. Kim and Z. He}, title={{Spatio-temporal Interaction with Disease Mapping}}, journal={Statistics in Medicine}, volume= 19, year= 2000, pages={2015--2035} } @manual{SunReiLan03, author={S. Sun and S. Reilly and L. Lannom and J. Petrone}, title={Handle System Protocol (ver 2.1) Specification }, organization={RFC 3652 (Informational)}, year={2003}, note={{http://www.ietf.org/rfc/rfc3652.txt}} } @article{Super04, author={Nora Super}, title={Medicare's Chronic Care Improvement Pilot Program: What is its Potential}, journal={National Health Policy Forum Issue Brief}, year={2004}, pages={1-20}, month={May}, number={797}, note={The George Washinton University, Washington, DC}, institution={National Health Policy Form} } @incollection{Tabeau01, author={Ewa Tabeau}, title={A Review of Demographic Forecasting Models for Mortality}, booktitle={Forecasting Mortality in Developed Countries}, publisher={Kluwer Academic Publishers}, year= 2001, address={The Netherlands}, editor={Ewa Tabeau, Anneke van de Berg Jeths and Christopher Heathcoate}, chapter= 1, pages={1--32} } @article{TabEkaHuiBos98, author={Ewa Tabeau and Peter Ekamper and Corina Huisman and Alinda Bosch}, title={Improving Overall Mortality Forecasts by Analysing Cause-of-Death, Period and Cohort Effects in Trends}, journal={European Journal of Population}, volume={15}, year={1999}, pages={153-183} } @article{TabJetHea03, author={Ewa Tabeau and Aneke van den Berg Jeths and Christopher Heathcote}, title={Forecasting Mortality in Developed Countries: Insights from a statistical, demographic and epidemiological perspective.}, journal={Journal of European Population}, volume={1023}, number={10} } @book{Takeshi85, author={Takeshi Amemiya}, title={Advanced Econometrics}, publisher={Harvard University Press}, year={1985}, address={Cambridge} } @book{Tally00, author={Steve Tally}, title={Almost America: From the Colonists to Clinton, A ``What If'' History of the U.S.}, publisher={Quill}, year= 2000, address={New York} } @article{TanKumIke03, author={J. Tanaka and H. Humada and K. Ikeda and K. Chayama and M. Mizui and K. Hino and K. Katayama and J. Kumagai and Y. Komiya and Y. Miyakawa and H. Yoshizawa}, title={Natural histories of Hepatitis C Virus Infection in Men and Women Simulated by the Markov Model}, journal={Journal of Medical Virology}, volume= 70, year= 2003, pages={378--386}, number= 3 } @book{Tanner96, author={Martin A. Tanner}, title={Tools for Statistical Inference: Methods for the Exploration of Posterior Distributions and Likelihood Functions}, publisher={Springer-Verlag}, year= 1996, address={New York} } @article{TanWon87, author={M.A. Tanner and W.H. Wong}, title={The Calculation of Posterior Distributions by Data Augmentation}, journal={Journal of the American Statistical Association}, volume={82}, year={1987}, pages={528-550}, month={June} } @article{Taylor92, author={G. Taylor}, title={A Bayesian interpretation of Whittaker-Henderson graduation}, journal={Insurance: Mathematics and Economics}, volume= 11, year= 1992, pages={7--16} } @book{Tendler97, author={Judith Tendler}, title={Good Government in the Tropics}, publisher={The Johns Hopkins University Press}, year={1997}, address={Baltimore} } @article{TerKleOce00, author={Jeanne A. Teresi and Marjorie Kleinman and Katja Ocepek-Welikson}, title={Modern Psychometric Methods for Detection of Differential Item Functioning: Application to Cognitive Assessment Measures}, journal= sim, volume= 19, year= 2000, pages={1651--1683} } @book{TetBel96, title={Counterfactual Throught Experiments in World Politics}, publisher={Princeton University Press}, year= 1996, editor={Philip E. Tetlock and A. Belkin}, address={Princeton} } @article{TetLeb01, author={Philip E. Tetlock and Richard Ned Lebow}, title={Poking Counterfactual Holes in Covering Laws: Cognitive Styles and Historical Reasoning}, journal= apsr, volume= 95, year= 2001, month={December}, number= 4 } @book{TetLebPar00, title={Unmaking the West: Counterfactual Explorations of Alternative Histories}, publisher={Columbia University Press}, year= 2000, editor={Philip E. Tetlock and Ned R. Lebow and G. Parker}, address={New York} } @article{tetlock99, author={Philip E. Tetlock}, title={Theory-Driven Reasoning About Plausible Pasts and Probable Futures in World Politics: Are we Prisoners of our Preconceptions?}, journal= ajps, volume= 43, year= 1999, pages={335-366}, month={April}, number= 2 } @book{Thisted88, author={Ronald A. Thisted}, title={Elements of Statistical Computing: Numerical Computation}, publisher={Chapman and Hall}, year= 1988, address={Florida} } @inproceedings{ThiSteWai93, author={David Thissen and Lynn Steinberg and Howard Wainer}, title={Detection of Differential Item Functioning Using the Parameters of the Item Response Models}, booktitle={Differential Item Functioning}, crossref={HolWai93} } @article{Thompson05, author={Dennis F. Thompson}, title={{Democracy in Time: Popular Sovereignty and Temporal Representation}}, journal={Constellations}, volume= 12, year= 2005 , pages={245-261}, month={June}, number= 2 } @article{Thompson98, author={Simon G. Thompson}, title={Letters to the Editor: The Merits of Matching in Community Intervention Trials: A Cautionary Tale}, journal={Statistics in Medicine}, volume={17}, year={1998}, pages={2147-2151} } @article{ThoPanLee06, author={Matt Thomas and Bo Pang and Lillian Lee}, title={Get out the vote: Determining support or opposition from Congressional floor-debate transcripts}, journal={Proceedings of EMNLP}, year= 2006, pages={327--335}, note={{http://www.cs.cornell.edu/home/llee/papers/tpl-convote.home.html}} } @article{ThoSyl82, author={Stuart J. Thorson and Donald A. Sylvan}, title={Counterfactuals and the Cuban Missle Crisis}, journal={International Studies Quarterly}, volume= 26, year= 1982, pages={539--571}, number= 4 } @book{Thurstone59, author={L.L. Thurstone}, title={The Measurement of Values}, publisher={University of Chicago Press}, year= 1959, address={Chicago} } @book{TikArs77, author={A. N. Tikhonov and V. Y. Arsenin}, title={Solutions of Ill-posed Problems}, publisher={W. H. Winston}, year= 1977 , address={Washington, D.C.} } @article{Tikhonov63, author={A. N. Tikhonov}, title={Solution of incorrectly formulated problems and the regularization method}, journal={Soviet Math. Dokl.}, volume={4}, year= 1963 , pages={1035--1038} } @article{Timaeus86, author={Ian Timaeus}, title={An Assessment of Methods for Estimating Adult Mortality from Two Sets of Data on Maternal Orphanhood}, journal={Demography}, volume= 23, year= 1986, pages={435--450} } @article{Timaeus91, author={Iain Timaeus}, title={Measurement of Adult Mortality in Developing Countries: A Comparative Review}, journal={Population Index}, volume= 57, year= 1991, pages={552-568}, number= 4 } @article{Timaeus91b, author={Ian Timaeus}, title={Estimation of Adult Mortality from Orphanhood Before and Since Marriage}, journal={Population Studies}, volume= 45, year={1991b}, pages={455--472} } @article{Timpone98, author={Richard J. Timpone}, title={Structure, Behavior, and Voter Turnout in the United States}, journal={American Poltical Science Review}, volume={92}, year={1998}, pages={145-158}, month={March}, number={1} } @incollection{TimZabAli01, author={Ian M. Timaeus Basia Zaba and Mohammed Ali}, title={Estimation of Adult Mortality from Data on Adult Siblings}, booktitle={Brass Tacks: Essays in Medical Demography}, publisher={Athlone}, year= 2001, editor={B. Zaba and J. Blacker}, pages={43--66} } @incollection{Tobler79, author={Waldo Tobler}, title={Cellular Geography}, booktitle={Philosophy in Geography}, publisher={Dordrecht: Reidel}, year= 1979, editor={S.\ Gale and G.\ Olssen} } @article{TodDefOde94, author = {J.E. Todd and A. De Francisco and T.J.D. O'Dempsey and B.M. Greenwood}, title = {The limitations of verbal autopsy in a malaria-endemic region}, journal = {Annals of Tropical Paediatrics}, volume = {14}, year = {1994}, pages = {31-36} } @book{Torgerson58, author = {Warren S. Torgerson}, title = {Theory and Methods of Scaling}, publisher = {Wiley and Sons}, year = 1958, address = {New York} } @incollection{TorRauHer93, author = {Hege Torp and O. Rauum and E. Hernaes and H. Goldstein}, title = {The First Norwegian Experiment}, booktitle = {Measuring Labour Market Measures: Evaluating the Effects of Active Labour Market Policies}, publisher = {Ministry of Labour}, year = {1993}, address = {Copenhagen, Denmark}, editor = {K. Jensen and Per Kongshoj Madsen} } @article{TruRod90, author = {J. Trussell and G. Rodriguez}, title = {A Note on the Sisterhood Estimator of Maternal Mortality}, journal = {Studies in Family Planning}, volume = 21, year = 1990, pages = {344--346}, month = {Nov-Dec}, number = 6 } @article{TsuLin86, author = {Robert K. Tsutakawa and Hsin Ying Lin}, title = {Bayesian Estimation of Item Response Curves}, journal = {Psychometrika}, volume = {51}, year = {1986}, pages = {251-267}, month = {June}, number = {2} } @article{TsuMinKey94, author = {Ichiro Tsuji, MD, et al}, title = {The Predictive Power of Self-Rated Health, Activities of Daily Living, and Ambulatory Activity for Cause Specific Mortality among the Elderly: A Three-year Follow-up in Urban Japan. }, journal = {Journal of the American Geriatric Society}, volume = 42, year = 1994, pages = {{153-56}} } @techreport{Tsutakawa75, author = {Robert K. Tsutakawa}, title = {Bayesian Inference for Bioassay}, institution = {University of Missouri - Columbia}, year = {1975}, month = {August}, number = {52} } @article{Tsutakawa84, author = {Robert K. Tsutakawa}, title = {Estimation of Two-Parameter Logistic Item Response Curves}, journal = {Journal of Educational Statistics}, volume = {9}, year = {1984}, pages = {263-276}, number = {4} } @article{Tsutakawa92, author = {Robert K. Tsutakawa}, title = {Moments Under Conjugate Distributions in Bioassay}, journal = {Statistics \& Probability Letters}, volume = {15}, year = {1992}, pages = {229-233}, month = {October} } @article{Tsutakawa92b, author = {Robert K. Tsutakawa}, title = {Prior Distribution for Item Response Curves}, journal = {British Journal of Mathematical and Statistical Psychology}, volume = {45}, year = {1992}, pages = {51-74} } @article{TulBoe98, author = {Shripad Tuljapurkar and Carl Boe}, title = {Mortality Change and Forecasting: How Much and How Little Do We Know?}, journal = {North American Actuarial Journal}, volume = {2}, year = {1998}, number = {4}, annote = {This paper makes a critical assessment of knowledge about mortality change and the potential of existing work to contribute to the development of useful forecasts in Canada, Mexico, and the United States. Methods of forecasting are reviewed, including the scenario method used by the US Social Security Administration and the time series method of Lee and Carter.} } @article{TulLiBoe00, author = {S. Tuljapurkar and N. Li and C. Boe}, title = {A Universal Pattern of Mortality Decline in the {G7} Countries}, journal = {Nature}, volume = 405, year = 2000, pages = {789--792}, month = {June} } @article{tumbarello98, author = {M. Tumbarello and E. Tacconelli and K. de Gaetano and F. Ardit and T. Pirronti and R. Claudia and L. Ortona}, title = {Bacterial Pneumonia in HIV-Infected Patients: Analysis of Risk Factors and Prognostic Indicators}, journal = {Journal of Acquired Immune Deficiency Syndromes and Human Retroviology}, volume = 18, year = 1998, number = {39-45} } @unpublished{TurLit02, author = {P.D. Turney and M.L. Littman}, title = {Unsupervised Learning of Semantic Orientation}, note = {National Research Council Canada}, year = {2002}, month = {May} } @unpublished{TurLit02, author = {P.D. Turney and M.L. Littman}, title = {Unsupervised Learning of Semantic Orientation}, note = {National Research Council Canada}, year = {2002}, month = {May} } @article{TurMat01, author = {G. Turrell and Colin Mathers}, title = {Socioeconomic inequalities in all-cause and specific-cause mortality in Australia: 1985--1987 and 1995--1997}, journal = {International Journal of Epidemiology}, volume = 30, year = 2001, pages = {231--239}, number = 2 } @book{Turner85, author = {Turner, Henry-Ashbury}, title = {German big business and the rise of Hitler}, publisher = {Oxford University Press}, year = {1985} } @proceedings{Turney02, editor = {Peter D. Turney}, title = {Thumbs Up or Thumbs Down? Semantic Orientation Applied to}, publisher = {40th Annual Meeting of the Associatin for Computational Linguistics}, year = {2002}, month = {July}, organization = {Institute for Information Technology}, address = {National Research Council of Canada, Ottawa, Ontario, Canada K1A0R6} } @proceedings{Turney02, editor = {Peter D. Turney}, title = {Thumbs Up or Thumbs Down? Semantic Orientation Applied to}, publisher = {40th Annual Meeting of the Associatin for Computational Linguistics}, year = {2002}, month = {July}, organization = {Institute for Information Technology}, address = {National Research Council of Canada, Ottawa, Ontario, Canada K1A0R6} } @article{Urdal05, author = {Henrik Urdal}, title = {People vs. Malthus: Population Pressure, Environmental Degradation, and Armed Conflict Revisited}, journal = {Journal of Peace Research}, volume = {42}, year = {2005}, pages = {417-434}, month = {July}, number = {4}, publisher = {Journal for Peace Research} } @book{UttLock02, title = {American Political Scientists: a Dictionary}, publisher = {Greenwood Press}, year = {2002}, editor = {Glenn H. Utter and Charles Lockhart}, address = {Westport, Conn}, edition = {2nd} } @book{Valentine64, author = {Frederick Albert Valentine}, title = {Convex Sets}, publisher = {New York, McGraw-Hill}, year = {1964} } @book{Valentine64, author = {Frederick A Valentine}, title = {Convex Sets}, publisher = {McGraw-Hill}, year = 1964, address = {New York} } @article{VanCor99, author = {Marina Vannucci}, title = {Covariance structure of wavelet coefficients: theory and models in a Bayesian perspective}, journal = {Journal of the Royal Statistical Society B}, volume = {61}, year = {1999}, pages = {971-986}, number = {Part 4} } @book{Vandeth98, author = {Jan W. van Deth}, title = {Comparative Politics, the problem of equivalence}, publisher = {Routledge}, year = {1998}, editor = {Jan W. van Deth}, address = {11 New Fetter Lane, London EC4P 4EE} } @article{vanDoorslaer97, author = {Eddy van Doorslaer}, title = {Income-related Inequalities in Health: Some International Comparisons}, journal = {Journal of Health Economics}, year = {1997}, optnumber = {1}, optvolume = {16}, optpages = {93--112} } @article{VanWissen01, author = {Leo J.G. van Wissen}, title = {Demography of the Firm: A Useful Metaphor?}, journal = {European Journal of Population}, volume = {18}, year = {2002}, pages = {263-279} } @book{Vapnik95, author={Vladimir N. Vapnick}, title={The Nature of Statistical Learning Theory}, publisher={Springer}, year= 1995, address={New York} } @book{Vapnik98, author={Vladimir N. Vapnik}, title={Statistical Learning Theory}, publisher={Wiley}, year= 1998 , address={New York} } @book{VenRip02, author={William N. Venables and Brian D. Ripley}, title={Modern Applied Statistics with S}, publisher={Springer-Verlag}, year={2002}, edition={4th} } @article{VerAngCap02, author={Arduino Verdecchia and Giovanni De Angelis and Riccardo Capocaccia}, title={Estimation and Projections of Cancer Prevalence from Cancer Registry Data}, journal={Statistics in Medicine}, volume= 21, year= 2002, pages={3511--3526} } @article{VerCapEgi89, author={A. Verdecchia and R. Capocaccia and V. Egidi and A. Golini}, title={A Method for the Estimation of Chronic Disease Morbidity and Trends from Mortality Data}, journal={Statistics in Medicine}, volume= 8, year= 1989, pages={201--216} } @article{Verrall93, author={R.J. Verrall}, title={A state space formulation of Whittaker graduation, with extensions}, journal={Insurance: Mathematics and Economics}, volume= 13, year= 1993, pages={7--14} } @article{VerSch77, author={Sidney Verba and Kay Lehman Schlozman}, title={Unemployment, Class Consciousness, and Radical Politics: What Didn't Happen in the Thirties}, journal={Journal of Politics}, volume= 39, year= 1977, pages={291--323}, number= 2 } @book{VerSchBra95, author={Sidney Verba and Kay Lehman Schlozman and Henry E. Brady}, title={Voice and Equality: Civic Volunteerism in American Politics}, publisher={Harvard University Press}, year= 1995, address={Cambridge, MA} } @article{Villalonga04, author={Belen Villalonga}, title={Does Diversification Cause the "Diversification Discount"?}, journal={Financial Management}, volume={33}, year={2004}, pages={5-27}, number={2} } @article{Voth03, author = {Voth, Hans-Joachim}, title = {With a Bang, not a Whimper: Pricking Germany's Stock Market Bubble in 1927 and the Slide into Depression}, journal = {Journal of Economic History}, volume = 63, year = 2003, pages = {65--99}, number = 1 } @article{Voth95, author = {Voth, Hans-Joachim}, title = {Did High Wages or High Interest Rates Bring Down the Weimar Republic? A Cointegration Model of Investment in Germany, 1925-1930}, journal = {Journal of Economic History}, volume = 55, year = 1995, pages = {801--821}, month = {December}, number = 4 } @article{WacWei82, author={Wacholder, S. and Weinberg, C.R.}, title={{Paired versus Two-Sample Design for a Clinical Trial of Treatments with Dichotomous Outcome: Power Considerations}}, journal={Biometrics}, volume={38}, year={1982}, pages={801--812}, number={3} } @article{Wagstaff00, author={Adam Wagstaff}, title={Socioeconomic inequalities in Child Mortality: Comparisons Across Nine Developing Countries}, journal= bull, year={2000}, optnumber={1}, optvolume={78}, optpages={19--29} } @article{Wahba75, author={G. Wahba}, title={Smoothing noisy data by spline functions}, journal={Numer. Math}, volume= 24, year= 1975, pages={383--393} } @article{Wahba77, author={G. Wahba}, title={Practical approximate solutions to linear operator equations when the data are noisy}, journal={SIAM J. Numer. Anal.}, volume={14}, year={1977} } @article{Wahba78, author={G. Wahba}, title={{Improper Priors, Spline Smoothing and the Problem of Guarding Against Model Errors in Regression}}, journal={Journal of the Royal Statistical Society B}, volume= 40, year= 1978, pages={364--372}, number= 3 } @incollection{Wahba79, author={G. Wahba}, title={Smoothing and ill-posed problems}, booktitle={Solutions methods for integral equations and applications}, publisher={Plenum Press}, year= 1979, address={New York}, editor={M. Golberg}, pages={183--194} } @inproceedings{Wahba80, author={G. Wahba}, title={Spline bases, regularization, and generalized cross-validation for solving approximation problems with large quantities of noisy data}, booktitle={Proceedings of the International Conference on Approximation theory in honour of George Lorenz}, year={1980}, month={January 8--10}, publisher={Academic Press}, address={Austin, TX}, editor={J. Ward and E. Cheney} } @incollection{Wahba80a, author={G. Wahba}, title={Spline bases, regularization, and generalized cross-validation for solving approximation problems with large quantities of noisy data}, booktitle={Approximation theory III}, publisher={Academic Press}, year= 1980, address={New York}, editor={W. Cheney}, pages={905--912} } @article{Wahba85, author={G. Wahba}, title={A comparison of {GCV} and {GML} for choosing the smoothing parameter in the generalized splines smoothing problem}, journal={The Annals of Statistics}, volume= 13, year= 1985, pages={1378--1402} } @book{Wahba90, author={G. Wahba}, title={Splines Models for Observational Data}, publisher={{Series in Applied Mathematics, Vol. 59, SIAM}}, year= 1990 , address={Philadelphia} } @techreport{WahLinZha99, author={G. Wahba and Y. Lin and H. Zhang}, title={Generalized Approximate Cross Validation for SVM, or, anather way to look at margin-like quantities}, institution={Department of Statistics, University of Wisconsin}, year={1999}, type={Tech. Report}, number={1006} } @misc{Wakefield01, author={Jon Wakefield}, title={Ecological Inference for $2 \times 2$ Tables}, year= 2001, howpublished={Working Paper \# 12, Center for Statistics and the Social Sciences, University of Washington} } @article{WalCarXiaGel97, author={Lance A. Waller and Bradley P. Carlin and Hong Xia and Alan E. Gelfand}, title={Hierarchical Spatio-Temporal Mapping of Disease Rates}, journal= jasa, volume= 92, year= 1996, pages={607-617} } @article{WalDon94, author={G.E.L. Walraven and P.W.J. van Dongen}, title={Assessment of maternal mortality in Tanzania}, journal={British Journal of Obstetrics and Gynaecology}, volume= 101, year= 1994, pages={414--417} } @book{Waldron99, author={Jeremy Waldron}, title={Law and disagreement}, publisher={Oxford University Press}, year={1999}, address={New York} } @article{Waletal97, author={L.A. Waller and B.P. Carlin and H. Xia and A.E. Gelfand}, title={{Hierarchical Spatio-Temporal Mapping of Disease Rates}}, journal= jasa, volume= 92, year= 1997, pages={607--617}, number= 438 } @techreport{WalHogHam06, author={Robert Walker and Lesley Hoggart and Gayle Hamilton with Susan Blank}, title={Making random assignment happen: Evidence from the UK Employment Retention and Advancement (ERA) demonstration}, institution={Department for Work and Pensions, Corporate Document Services}, year={2006}, month={March}, type={research report}, note={ISBN 1 84 123981 X, Research Report 330} } @article{WanRob98, author={Naisyin Wang and James Robins}, title={Large-sample theory for parametric multiple imputation procedures}, journal={Biometrika}, volume={85}, year={1998}, pages={935-948} } @article{WanSchAvo05, author={Philip S. Wang and Sebastian Schneeweiss and Jerry Avorn and Michael A. Fischer and Helen Mogun and Daniel H. Solomon and M. Alan Brookhart}, title={Risk of Death inelderly Users of Conventional vs. Atypical Antipsychotic Medications}, journal={New England Journal of Medicine}, volume={353}, year={2005}, pages={2335-2341}, month={December} } @article{WanSha91, author={Goya Wannamethee and A. G. Shaper }, title={Self-assessment of Health Status and Mortality in Middle Aged British Men}, journal={International Journal of Epidemiology}, volume= 20, year= 1991, pages={{239-45}}, number= 1 } @unpublished{WanYanMa06, author={L Wang and G. Yang and J Ma and C Rao and X Wan and AD Lopez}, title={Evaluation of the quality of cause of death statistics in rural China using verbal autopsies}, year={2006}, journal={Journal of Epidemiology and Community Health} } @book{WapBerBra40, author={Waples, D. and Berelson, B. and Bradshaw, F.R.}, title={{What Reading Does to People: A Summary of Evidence on the Social Effects of Reading and a Statement of Problems for Research}}, publisher={The University of Chicago Press}, year={1940} } @article{Ware05, author={Helen Ware}, title={Demography, Migration and Conflict in the Pacific}, abstract={This article explores the relationships between demography and internal conflict in the Pacific Island countries, focusing on the three subregions Polynesia, Micronesia and Melanesia. These countries confront distinctive challenges and opportunities because of their unique cultures and non-militarized status, combined with very small size and remote locations. The use of the MIRAB model of island economies based on migration, remittances, aid and bureaucracy is extended to examine its impact on social cohesion and the avoidance of internal conflict. For Polynesia, MIRAB is found to be a sustainable development strategy. Continuous emigration from Polynesia serves to reduce population pressure and communal tensions. Further, remittance income supports the Polynesian economies, and this also reduces the potential for conflict. For Micronesia, except Kiribati and Nauru, migration access to the USA is assured. In contrast, for the Melanesian countries, there is minimal emigration, rapid population growth and considerable intercommunal tension, which has resulted in several coups and one 'failed state'. Demographic pressure created by rapid population growth results in a lack of employment opportunities for youths (who provide the majority of participators in civil unrest and conflicts) rather than in direct pressure on land and other natural resources.}, journal={Journal for Peace Research}, volume={42}, year={2005}, pages={435-454}, month={July}, number={4} } @unpublished{WarSivCao05, author={Michael D. Ward and Randolph M. Siverson and Xun Cao}, title={Everybody Out of the Pool!}, note={Michael Ward, Dept of Politcal Science, Univ of WA, Seattle mdw@u.washington.edu}, year={2005}, month={August} } @techreport{WasRoe06, author={Larry Wasserman and Kathryn Roeder}, title={Weighted Hypothesis Testing}, institution={Carnegie Mellon University}, year={2006}, month={April} } @article{Weibe04, author={Janyce M. Wiebe}, title={Tracking Point of View in Narrative}, journal={Computational Linguistics}, volume={20}, year={1994}, pages={233-287}, number={2} } @article{Weibe04, author={Janyce M. Wiebe}, title={Tracking Point of View in Narrative}, journal={Computational Linguistics}, volume={20}, year={1994}, pages={233-287}, number={2} } @article{WeiCoxWil87, author={Milton C. Weinstein and Pamela G. Coxson and Lawrence W. Williams and Theodore M. Pass and William B Stason and Lee Goldman}, title={Forecasting Coronary Heart Disease Incidence, Mortality, and Cost: The Coronary Heart Disease Policy Model}, journal={American Journal of Public Health}, volume= 77, year= 1987, pages={1417--1426}, number= 11 } @book{Weiss86, author={N.S. Weiss}, title={Clinical Epidemiology: the Study of Outcome of Disease}, publisher={Oxford University Press, NY}, year={1986} } @book{Weiss86, author={Noel S. Weiss}, title={Clinical Epidemiology: The Study of the Outcome of Illness}, publisher={Oxford University Press}, year={1986}, volume={Volume 11}, address={New York}, series={Monographs in Epidemiology and Biostatistics } } @article{WeiTan90, author={Greg C. Wei and Martin A. Tanner}, title={A Monte Carlo Implementation of the EM Algorithm and the Poor Man's Data Augmentation Algorithms}, journal={Journal of the American Statistical Association}, volume={85}, year={1990}, pages={699-704}, month={September} } @article{WeiWanIbr97, author={Robert E. Weiss and Yan Wang and Joseph G. Ibrahim}, title={Predictive Model Selection for Repeated Measures Random Effects Models Using Bayes Factors}, journal={Biometrics}, volume= 53, year= 1997, pages={592--602}, month={June} } @article{Wellhofer03, title = {{Democracy and Fascism: Class, Civil Society, and Rational Choice in Italy}}, author = {E. Spencer Wellhofer}, journal = {American Political Science Review}, volume = {97}, number = {01}, pages = {91--106}, year = {2003} } @article{Werner00, author={Suzanne Werner}, title={The Effects of Political Similarity on the Onset of Militarized Disputes, 1816-1985}, journal= prq, volume= 53, year= 2000, pages={343--374}, month={June} } @article{Wernette1977, author={Wernette, Dee Richard}, title={Quantitative Methods in Studying Political Mobilization in Late Weimar Germany}, journal={Historical Methods Newsletter}, volume= 10, year= 1977, pages={97-101} } @book{WesHar97, author={Mike West and Jeff Harrison}, title={Bayesian Forecasting and Dynamic Linear Models}, publisher={Springer}, year= 1997, address={New York} } @article{WesHarMig85, author={Mike West and P. Jeff Harrison and Helio S. Migon}, title={Dynamic Generalized Linear Models and Bayesian Forecasting}, journal={Journal of the American Statistical Association}, volume={80}, year={1985}, pages={73-83}, month={March}, number={389} } @article{Western95, author={Bruce Western}, title={{Concepts and Suggestions for Robust Regression Analysis}}, journal={American Journal of Political Science}, volume={39}, year={1995}, pages={786--817}, number={3} } @article{Western98, author={Bruce Western}, title={{Causal Heterogeneity in Comparative Research: a Bayesian Hierarchical Modelling Approach}}, journal={American Journal of Political Science}, volume= 42, year= 1998, pages={1233--1259}, month={October}, number= 4 } @article{WhiEva96, author={Stephen Whitefield and Geoffrey Evans}, title={Support for Democracy and Poltical Opposition in Russia 1993-95}, journal={Post Soviet Affairs}, volume={12}, year={1996}, pages={218-52}, number={3} } @book{WhiRosMcA97, author={Stephen White and Richard Rose and Ian McAllister}, title={How Russia Votes}, publisher={Chatham House Publishers, Inc.}, year={1997}, address={Chatham, NJ} } @unpublished{WhiSetCha06, author={David R. Whiting and Philip W. Setel and Daniel Chandramohan and Lara J. Wolfson and Yusuf Hemed and Alan D. Lopez}, title={Estimating Cause-Specific Mortality from Community- and Facility-Based Data Sources in Tanzania: Options and Implications for Mortality Burden Estimates}, note={Whiting, MEASURE Evaluation, Carolina Population Center, Univ. of NC at Chapel Hill, Dept of Medicine, School of Clinical Medical Sciences, Univ of Newcastle upon Tyne England; david.whiting@ncl.ac.uk}, year={2006} } @article{Whitbeck05, author={Caroline Whitbeck}, title={The Responsible Collection, Retention, Sharing, and Interpretation of Data}, journal={Online Ethics Center for Engineering and Science}, year= 2005, note={{http://onlineethics.org/reseth/mod/data.html}} } @article{White02, author={Kevin M. White}, title={Longevity Advances in High-IncomeCountries, 1955-96}, journal={Population and Development Review}, volume= 28, year= 2002, pages={59--76}, month={March}, number= 1 } @article{White80, author={Halbert White}, title={A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity}, journal={Econometrica}, volume={48}, year={1980}, pages={817--838}, month={May}, number={4} } @book{White82, author={Halbert L. White}, title={Asymptotic Theory For Econometricians}, publisher={Academic Press}, year= 1984, address={New York} } @book{White92, author={Halbert H. White}, title={Artificial Neural Networks, Approximation and Learning Theory}, publisher={Blackwell}, year= 1992, address={Cambridge, MA} } @article{Whittaker23, author={{Whittaker E.T.}}, title={On a New Method of Graduation}, journal={Proceedings of the Edinburgh Mathematical Society}, volume= 41, year= 1923, pages={63--75} } @article{WidKub96, author={Widmer, G. and Kubat, M.}, title={{Learning in the presence of concept drift and hidden contexts}}, journal={Machine Learning}, volume={23}, year={1996}, pages={69--101}, number={1}, publisher={Springer} } @unpublished{WieWilBel01, author={Janyce Wiebe and Theresa Wilson and Matthew Bell}, title={Identifying Collocations for Recognizing Opinions}, note={University of Pittsburgh wiebe, twilson, mbell@cs.pitt.edu}, year={2001}, month={April} } @article{WilBerNob01, author={B.P. Will and J.M. Berthelot and K.M. Nobrega and W. Flanagan and W.K. Evans}, title={Canada's Population Health Model (POHEM): A Tool for Performing Economic Evaluations of Cancer Control Interventions}, journal={European Journal of Cancer}, volume= 37, year= 2001, pages={1797--1804} } @article{WilGouBos02, author={Brian G. Williams and Eleanor Gouws and Cynthia Boschi-Pinto and Jennifer Bryce and Christopher Dye}, title={Estimates of world-wide distribution of child deaths from acute respiratory infections}, journal={The Lancet Infectious Diseases}, volume={2}, year={2002}, pages={25-32}, month={January} } @article{WilGouBos02, author={Brian G. Williams and Eleanor Gouws and Cynthia Boschi-Pinto and Jennifer Bryce and Christopher Dye}, title={Estimates of world-wide distribution of child deaths from acute respiratory infections}, journal={The Lancet Infectious Diseases}, volume={2}, year={2002}, pages={25-32}, month={January} } @article{WilHol07, author={Elizabeth Ty Wilde and Robinson Hollister}, title={How Close is Close Enough? Evaluating Propensity Score Matching Using Data from a Class-Size Reduction Experiment}, journal={Journal of Policy Analysis and Management}, volume={26}, year={2007}, number={3} } @techreport{Wilmoth93, author={John Wilmoth}, title={{Computational Methods for Fitting and Extrapolating the Lee-Carter Model of Mortality Change}}, institution={Department of Demography, University of California, Berkeley}, year= 1993 } @incollection{Wilmoth96, author={John R. Wilmoth}, title={Mortality Projections for Japan: A Comparison of Four Methods}, booktitle={Health and Mortality Among Elderly Populations}, publisher={Oxford University Press}, year= 1996, address={Oxford}, editor={G. Caselli and Alan Lopez}, pages={266-287} } @article{Wilmoth98, author={John Wilmoth}, title={The Future of Human Longevity: A Demographer's Perspective}, journal={Science}, volume= 280, year= 1998, pages={395--397}, month={April 17}, number= 5362 } @article{Wilmoth98b, author={John Wilmoth}, title={Is the Pace of Japanese Mortality Decline Converging Towards International Trends?}, journal={Population and Development Review}, volume= 24, year= 1998, pages={593--600}, number= 3 } @article{WinMar92, author={Christopher Winship and Robert D. Mare}, title={Models for Sample Selection Bias}, journal={Annual Review of Sociology}, volume={18}, year={1992}, pages={327-50} } @article{WinMor99, author={Christopher Winship and Stephen L. Morgan}, title={The Estimation of causal Effects from Observational Data}, journal={American Review of Sociology}, volume= 25, year= 1999, pages={659--707} } @article{WinRad94, author={Christopher Winship and Larry Radbill}, title={Sampling Weights and Regression Analysis}, journal={Sociological Methods and Research}, volume={23}, year={1994}, pages={230-257}, month={November}, number={2} } @unpublished{WinSob00, author={Christopher Winship and Michael Sobel}, title={Causal Inference in Sociological Studies}, note={Harvard University}, year= 2000 } @article{WirLin94, author={D.N. Wirawan and M. Linnan}, title={The Bali indirect maternal mortality study}, journal={Studies in Family Planning}, volume= 5, year= 1994, pages={304--309} } @inbook{WolCalJoh94, author = {F.D. Wolinsky, C.M. Callahan, and R.J. Johnson}, title = {Subjective Health Status and Mortality in the Elderly}, year = 1994, publisher = {{New York: Springer Publishing Company}}, pages = {{13-28}}, journal = {Facts and Research in Gerontology} } @article{WolFir02, author = {Rory Wolfe and David Firth}, title = {Modelling Subjective Use of an Ordinal Reponse Scale in a Many Period Crossover Experiment}, journal = {Applied Statistics}, volume = 51, year = 2002, pages = {245--255}, month = {April}, number = 2 } @article{WolJoh92, author = {Fredric Wolinsky and Robert Johnson}, title = {Perceived Health Status and Mortality Among Older Men and Women}, journal = {Journal of Gerontology: Social Sciences}, volume = 47, year = 1992, pages = {{S304-12}} } @article{WolJohStu95, author = {Fredric D. Wolinsky, Robert L. Johnson, and Timothy E. Stump}, title = {The Riske of Mortality among Older Adults over an Eight-Year Period}, journal = {The Gerontologist}, volume = 35, year = 1995, pages = {{150-61}} } @article{WonBenKof98, author = {John B. Wong and William G. Bennett and Raymond S. Koff and Stephen G. Pauker}, title = {Pretreatment Evaluation of Chronic Hepatitis C: Risks Benefits, and Costs}, journal = {Journal of the American Medical Association}, volume = 280, year = 1998, pages = {2088--2093} } @article{WonMcqMch00, author = {John B. Wong and Gerladine M. McQuillan and John G. McHutchison and Thierry Poynard}, title = {Estimating Future Hepatitis C Morbidity, Mortality, and Costs in the United States}, journal = {American Journal of Public Health}, volume = 90, year = 2000, pages = {1562--1569}, number = 10 } @book{WraPet96, author = {Richard Wrangham and Dale Peterson}, title = {Demonic Males}, publisher = {Houghton Mifflin}, year = 1996 } @book{WuHam00, author = {Chien-Fu Wu and Michael Hamada}, title = {Experiments: Planning, analyzing and Parameter Design Optimization}, publisher = {Wiley-Interscience}, year = {2000}, address = {New York} } @book{WuHam00, author = {Chien-Fu Wu and Michael Hamada}, title = {Experiments: Planning, Analyzing, and Parameter Design Optimization}, publisher = {Wiley-Interscience}, year = {2000}, address = {New York} } @article{WuSch93, author = {Z. Wu and R. Schaback}, title = {Local Error Estimates for Radial Basis Function Interpolation of Scattered Data}, journal = {Journal of Numerical Analysis}, volume = 13, year = 1993, pages = {13--27} } @article{YanRaoMa05, author = {Gonghuan Yang and Chalapati Rao and Jiemin Ma and Lijun Wang and Xia Wan and Guillermo Dubrovsy and Alan D. Lopez}, title = {Validation of verbal autopsy procedures for adult deaths in China}, journal = {International Journal of Epidemiology}, year = {2005}, month = {September}, note = {Advance Access published 9/6/05 doi:10.1093/ije/dyi181} } @article{YeeHas03, author = {Yee, T. W. and Hastie, T. J.}, title = {Reduced-rank vector generalized linear models}, journal = {Statistical Modelling}, volume = 3, year = {2003}, pages = {15--41}, issue = 1 } @article{YeeWil96, author = {T.W. Yee and C.J. Wild}, title = {Vector Generalized Additive Models}, journal = {Journal of the Royal Statistical Society. Series B (Methodological)}, volume = {58}, year = {1996}, pages = {481--493}, number = {3} } @article{Yoo02, author = {Thomas W. Yoo}, title = {Presumed Disloyal: Executive Power Judicial Deference, and the Construction of Race Before and After September 11}, journal = {Columbia Human Rights Law Review}, volume = 34, year = {2002}, pages = {1--??} } @Article{YacYac06, author = {Jason Webb Yackee and Susan Webb Yackee}, title = {A Bias Towards Business? Assessing Interest Group Influence on the U.S. Bureaucracy}, journal = {Journal of Politics}, year = {2006}, OPTkey = {}, volume = {68}, number = {1}, pages = {128-169}, OPTmonth = {}, OPTnote = {}, OPTannote = {} } @article{YosMagBos03, author = {Hirokazu Yoshikawa and Katherine A. Magnuson and Johannes M. Bos and Jo Ann Hsueh}, title = {Effects of Earnings-Supplement Policies on Adult Economic and Middle-Childhood Outcomes Differ for the `Hardest to Employ'}, journal = {Child Development}, volume = {74}, year = {2003}, pages = {1500-1521}, month = {September/October}, number = {5} } @proceedings{YuHat03, editor={Hong Yu and Vasileios Hatzivassiloglou}, title={Towards Answering Opinion Questions: Separating Facts from Opinions and Identifying the Polarity of Opinion Sentences}, year={03}, organization={2003 Conference on Empirical Methods in Natural Language Processing}, address={Hong Yu Dept. of Computer Science columbia Univ. New York, NY 10027 hongyu@cs.columbia.edu} } @article{YuKeaSly98, author={Elena S. H. Yu, Yin M. Kean, Donal J. Slyman, et al}, title={Self Perceived Health and 5-Year Mortality Risks among the Elderly in Shanghai, China}, journal={American Journal of Epidemiology}, volume= 147, year= 1998, pages={{880-90}} } @article{yule12, author={G.U. Yule}, title={On the Methods of Measuring the Association Between Two Attributes}, journal={Journal of the Royal Statistical Society}, volume= 75, year= 1912, pages={579--642} } @book{Zaba86, author={Basia Zaba}, title={Measurement of Emigration Using Indirect Techniques. Manual for the collection and analysis of Data on Residence of Relatives}, publisher={Ordina Editions, 10, place St. Jacques 4000 Liege Belgium}, year={1986}, note={Working Group on the Methodology for the Study of International Migration} } @article{ZabDav96, author={Basia Zaba and Patricia H. David}, title={Fertility and the Distribution of Child Mortality Risk Among Women: An Illustrative Analysis}, journal={Population Studies}, volume= 50, year= 1996, pages={263--278} } @book{Zaller92, author={John R. Zaller}, title={The Nature and Origins of Mass Opinion}, publisher={Cambridge University Press}, year= 1992, address={New York, NY} } @article{ZamRouOrh01, author={Asad Zaman and Peter J. Rousseeuw and Mehmet Orhan}, title={{Econometric applications of high-breakdown robust regression techniques}}, journal={Economics Letters}, volume={71}, year={2001}, pages={1--8} } @article{Zeileis04, author={Achim Zeileis}, title={Econometric Computing with HC and HAC Covariance Matrix Estimators}, journal={Journal of Statistical Software}, volume={11}, year={2004}, pages={1--17}, number={10}, publisher={Wiley} } @article{Zellner62, author={A. Zellner}, title={An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests for Aggregation Bias}, journal= jasa, volume= 57, year= 1962, pages={348--368}, month={June}, number= 298 } @incollection{Zeng00, author={Langche Zeng}, title={Neural Network Models for Political Analysis}, booktitle={Political Complexity: Nonlinear Models of Politics}, publisher={University of Michigan Press}, year= 2000, editor={Diana Richards}, pages={239--268} } @article{Zeng99, author={Langche Zeng}, title={Classification and Prediction with Neural Network Models}, journal= smr, volume= 27, year= 1999, pages={499--524}, month={May}, number= 4 } @article{zhang98, author={Jun Zhang and F. Kai Yu}, title={What's the Relative Risk? A Method of Correcting the Odds Ratio in Cohort Studies of Common Outcomes}, journal={New England Journal of Medicine}, volume= 280, year= 1998, pages={1690--1}, number= 19 } @article{Zhao04, author={Zhong Zhao}, title={Using matching to estimate treatment effects: data requirements, matching metrics, and {M}onte {C}arlo evidence}, journal={Review of Economics and Statistics}, volume= 86, year= 2004, pages={91-107}, number= 1 } @article{zocchetti97, author={Carlo Zocchetti, Dario Consonni and Pier Bertazzi}, title={Relationship Between Prevalence Rate Ratios and Odds Ratios in Cross-sectional Studies}, journal={International Journal of Epidemiology}, volume= 26, year= 1997, pages={220--23}, number= 1 } @article{Zorn01, author={Christopher Zorn}, title={Generalized Estimating Equation Models for Correlated Data: A Review with Applications}, journal= ajps, volume= 45, year= 2001, pages={470--490}, month={April} } @article{ZouTepSaa00, author={Shimian Zou and Martin Tepper and Susie El Saadany}, title={Prediction of Hepatitis C Burden in Canada}, journal={Canadian Journal of Gastroenterology}, volume= 14, year= 2000, pages={575--580}, month={July/August}, number= 7 } @article{KnaArrMen06, author = {Felicia Marie Knaul, H{\'e}ctor Arreola-Ornelas, Oscar M{\'e}ndez-Carniado, Chloe Bryson-Cahn, Jeremy Barofsky, Rachel Maguire, Martha Miranda,}, title = {Evidence is good for your health system: policy reform to remedy catastrophic and impoverishing health spending in Mexico}, journal = {Lancet}, volume = {368}, year = {2006}, pages = {1828-41}, month = {November} } @article{KnaFre05, author = {Felicia Marie Knaul and Julio Frenk}, title = {Health Insurance in Mexico: Achieving Universal Coverage Through Structural Reform}, journal = {Health Affairs}, volume = {24}, number = {6}, year = {2005}, pages = {1828-41}, month = {November} } @book{Turner79, author={Henry Turner}, title={German Big Business and the Rise of Hitler}, publisher={Oxford University Press}, year= 1979, address={New York} } @article{CamElbAlt04, author={Campbell, M. and Elbourne, D. and Altman, D.}, title={{CONSORT statement: extension to cluster randomised trials}}, journal={BMJ}, volume={328}, year={2004}, pages={702--708}, number={7441} } @proceedings{HigGre06, editor={JPT Higgins and S. Green}, title={Cochrane Handbook for Systematic Review of Interventions 4.2.5 [updated September 2006]}, publisher={John Wiley and Sons}, year= 2006, address={Chichester, UK}, series={The Cochrane Library}, number= 4 } @article{Campbell04, author={Michael J Campbell}, title={Editorial: Extending CONSORT to include cluster trials}, journal={BMJ}, volume= 328, year= 2004, pages={654-655}, month={March}, note={{http://www.bmj.com/cgi/content/full/328/7441/654\%20?q=y}} } @techreport{MRC02, author={{Medical Research Council}}, title={Cluster Randomized Trials: Methodological and Ethical Considerations}, institution={MRC Clinical Trials Series}, year= 2002, note={{http://www.mrc.ac.uk/Utilities/Documentrecord/index.htm?d=MRC002406}} } @article{Cornfield78, author={Jerome Cornfield}, title={Randomization by Group: a Formal Analysis}, journal={American Journal of Epidemiology}, volume={108}, year={1978}, pages={100}, number={2} } @book{Wood06, author={Simon N. Wood}, title={Generalized Additive Models: An Introduction with R}, publisher={CRC Press}, year= 2006, address={London} } @article{Wood04, author={Simon N. Wood}, title={Stable and efficient multiple smoothing parameter estimation for generalized additive models}, journal= jasa, volume= 99, year= 2004, pages={673--686} } @article{Wood00, author={Simon N. Wood}, title={Modeling and Smoothing Parameter Estimation wiht Multiple Quadratic penalties}, journal={Journal of the Royal Statistical Society}, volume={62}, year={2000}, pages={413-428}, number={2} } @manual{HamHen05, author={Jeff Hamann and Arne Henningsen}, title={systemfit: Simultaneous Equation Systems in R Package}, year={2005}, url={{http://www.systemfit.org}} } @article{BenYek01, author={Yoav Benjamini and Daniel Yekutieli}, title={The Control of the False Discovery Rate in Multiple Teting under Dependency}, journal={The Annals of Statistics}, volume={29}, year={2001}, pages={1165-1188}, month={August}, number={4} } @article{BenHoc95, author={Yoav Benjamini and Yosef Hochberg}, title={Controlling the False Disvoery Rate: A Practical and Powerful Approach to Multiple Testing}, journal={Journal of the Royal Statistical Society, Series B}, volume={57}, year={1995}, pages={289-300}, number={1} } @techreport{WWC06, author={{What Works Clearinghouse}}, title={Evidence Standards for Reviewing Studies}, institution={Institute for Educational Sciences}, year= 2006, note={{http://www.whatworks.ed.gov/reviewprocess/standards.html}} } @article{RauMarSpy07, author={Stephen W. Raudenbush and Andres Martinez and Jessaca Spybrook}, title={Strategies for Improving Precision in Group-Randomized Experiments}, journal={Educational Evaluation and Policy Analysis}, volume= 29, year= 2007, pages={5--29} } @article{HorKle07, author={Nicholas J. Horton and Ken P. Kleinman}, title={Much Ado About Nothing: A Comparion of Missing Data Methods and Software to Fit Incomplete Data Regression Models}, journal={The American Statistician}, volume= 61, year= 2007, pages={79--90}, month={February}, number= 1 } @book{GwaWagYaz05, title={Reaching the Poor}, publisher={The World Bank}, year= 2005, editor={Davidson R. Gwatkin and Adam Wagstaff and Adbo S. Yazbeck}, address={Washington, D.C.} } @book{wdr04, title={Making Services Work for Poor People: World Development Report, 2004}, publisher={Oxford University Press and the World Bank}, year= 2003, editor={{World Bank}}, address={Washington, D.C.} } @article{BauLak03, author={Matthew A. Baum and David A. Lake}, title={The Political Economy of Growth: Democracy and Human Capital}, journal={American Journal of Political Science}, volume={47}, year={2003}, pages={333-347}, month={April}, number={2} } @book{Lee02, author={Taeku Lee}, title={Mobilizing Public Opinion: Black Insurgency and Racial Attitudes in the Civil Rights Era}, publisher={University of Chicago Press}, year={2002}, address={Chicago, IL} } @book{Herbst93, author={Susan Herbst}, title={Numbered Voices: How Opinion Polling Has Shaped American Politics}, publisher={University of Chicago Press}, year={1993}, address={Chicago, IL} } @book{Ginsberg86, title = {The Captive Public: How Mass Opinion Promotes State Power}, author = {Benjamin Ginsberg}, year = {1986}, publisher = {Basic Books}, address = {New York, NY} } @article{Blumer48, title = {Public Opinion and Public Opinion Polling}, author = {Hubert Blumer}, journal = {American Sociological Review}, volume = {13}, number = {5}, pages = {542--549}, year = {1948} } @article{Converse87, title = {{Changing Conceptions of Public Opinion in the Political Process}}, author = {Philip E. Converse}, journal = {The Public Opinion Quarterly}, volume = {51}, pages = {12--24}, year = {1987} } @article{LakBau01, author = {David A. Lake and Matthew A. Baum}, title = {The Invisible Hand of Democracy: Political Control and the Provision of Public Services}, journal = {Comparative Political Studies}, volume = {34}, year = {2001}, pages = {587-621}, month = {August}, number = {6} } @article{IveSos06, author = {Torben Iversen and David Soskice}, title = {Electoral Institutions and the Politics of Coalitions: Why Some Democracies Redistribute More Than Others}, journal = apsr, volume = {100}, year = {2006}, pages = {165-181}, month = {May}, number = {2} } @article{Timmons05, author = {Jeffrey F. Timmons}, title = {The Fiscal Contract: States, Taxes, and Public Services}, journal = {World Politics}, volume = {57}, year = {2005}, pages = {530-567}, month = {July}, number = {4} } @article{Ross06, author={Michael Ross}, title={Is Democracy Good for the Poor?}, journal= ajps, volume={50}, year={2006}, pages={860-874}, month={October}, number={4} } @unpublished{Spence07, author={Matthew J. Spence}, title={Do Governments Spend More to Compensate for Openness}, note={Working paper.}, year= 2007 } @article{Rodrik98, author={Dani Rodrik}, title={Why Do More Open Economies Have Bigger Governments?}, journal={Journal of Political Economy}, volume={106}, year={1998}, pages={997-1032}, month={October}, number={5} } @article{Fearon05, author={James D. Fearon}, title={Primary Commodity Exports and Civil War}, journal={Journal of Conflict Resolution}, volume={49}, year={2005}, pages={483-507}, month={August}, number={4} } @article{ColHoe04, author={Paul Collier and Anke Hoeffler}, title={Greed and Grievance in Civil War}, journal={Oxford Economic Papers}, volume={56}, year={2004}, pages={563-595}, month={October}, number={4} } @article{FeaLai03, author = {James D. Fearon and David D. Laitin}, title = {Ethnicity, Insurgency, and Civil War}, journal = apsr, volume = {97}, year = {2003}, pages = {75-90}, month = {February}, number = {1} } @article{Marinov05, author = {Nikolay Marinov}, title = {Do Economic Sanctions Destabilize Country Leaders?}, journal = ajps, volume = {49}, year = {2005}, pages = {564-576}, month = {July}, number = {3} } @book{Barro97, author = {Robert J. Barro}, title = {Determinants of Economic Growth}, publisher = {MIT Press}, year = 1997, address = {Cambridge} } @article{ChaLin01, author = {Chih-Chung Chang and Chih-Jen Lin}, title = {{LIBSVM}: a library for support vector machines}, year = {2001}, note = {{http://www.csie.ntu.edu.tw/~cjlin/libsvm}} } @article{BosLarGie03, author = {Thomas J. Bossert and Osvaldo Larra{\~n}aga and Ursula Giedion Jos\'e and Jesus Arbelaez and Diana M. Bowser}, title = {Descentralizaci{\'o}n y distribuci{\'o}n equitativa de los recursos: evidencia obtenida en Colombia y Chile}, journal = {Bulletin of World Health Organization}, volume = 81, year = 2003, pages = {95-100}, number = 2 } @article{Bowyer04, author = {Tim Bowyer}, title = {Popular participation and the State: democratizing the health sector in rural Peru}, journal = {International Journal of Health Planning and Management}, volume = 19, year = 2003, pages = {131-161}, } @article{CohPet97, author = {John M. Cohen and Stephen B. Peterson}, title = {Administrative Decentalization: A New Framework for Improved Governance, Accountability, and Performance}, journal = {CID Development Discussion Paper 582}, year = 1997, pages = {1-37}, month = {July}, } @book{DjuMac75, title = {Alternative Approaches to Meeting Basic Health Needs in Developing Countries}, publisher = {World Health Organization}, year = 1975, editor = {V. Djukanovic and E.P. Mach}, address = {Geneva}, } @book{Frenk95, title = {Health and the Economy: Proposals for Progress in the Mexican Health System}, publisher = {D.F. Funsalud}, year = 1995, editor = {V. Djukanovic and E.P. Mach}, address = {Mexico}, } @article{GaiKul02, author = {Raghav Gaiha and Vani Kulkami}, title = {Panchayats, Communities, and the Rural Poor in India}, journal = {Journal of Asian and African Studies}, volume = 37, year = 2002, pages = {131-161}, } @article{GonLeyAta89, author = {Miguel Gonz\'alez-Block and Ren\'e Leyva and Oscar Zap Ata and Ricardo Loewe and Javier Alag\'on}, title = {Health Services Decentralisation in Mexico: Formulation, Implementation and Results of Policy}, journal = {Health Policy and Planning}, year = 1989, pages = {301-315}, volume = 4, month = {July} } @book{KauNel04, title = {Crucial Needs, Weak Incentives: social sector reform, democratization and globalization in Latin American}, publisher = {Wilson Center Press}, year = 2004, editor = {Robert R. Kaufman and Joan M. Nelson}, address = {Washington} } @article{Lloyd-Sherlock00, author={Peter Lloyd-Sherlock}, title={Failing the needy: public social spending in Latin America}, journal={Journal of International Development}, year= 2000, pages={101-119}, volume= 12, month={July}, } @article{LonFre97, author={Juan Luis Londo\~no and Julio Frenk}, title={Structured Pluralism: towards an innovative model for health system reform in Latin American}, journal={Health Policy}, year=1997, pages={1-36}, volume= 41, month={July}, } @inbook{Lustig94, author={Nora Lustig}, title={Solidarity as a strategy of poverty alleviation}, year={1994}, publisher={Center for U.S.-Mexican Studies}, address={University of California, San Diego}, editor={Wayne Cornelius and Ann Craig and Jonathan Fox}, } @article{Prudhomme95, author={R\'emy Prud'homme}, title={The Dangers of Decentralization}, journal={The World Bank Research Observer}, year=1995, volume= 10, month={August}, pages={201-220}, number= 2, } @article{RawSheVan04, author = {Laura Rawlings and Lynne Sherburne-Benz and Julie Van Domelen}, title = {Evaluating Social Funds: A Cross Country analysis of Community Investments}, journal = {World Bank Regional and Sectoral Studies}, year = 2004, } @article{Shah97, author = {Anwar Shah}, title = {Fostering Responsive and Accountable Governance: Lessons from Decentralization Experience}, journapublisherl ={World Bank}, year = 1997, address = {Washington, DC}, annote = {{http://www1.worldbank.org/wbiep/decentralization/library3/shah.pdf}}, } @article{Smoke01, author = {Paul Smoke}, title = {Fiscal Decentralization in Developing Countries: A Review of Current Concepts and Practice}, journal = {Governance and Human Rights Programme Paper No. 2}, year = 2001, month = {February}, journapublisherl ={UNRISD}, address = {Geneva}, } @book{Snyder01, author={Richard Snyder}, title={Politics after neoliberalism}, publisher={Cambridge University Press}, address={Cambridge}, year=2001, } @book{Weyland04, title = {Learning From Foreign Models in Latin American Policy Reform}, editor = {Kurt Weyland}, publisher = {Woodrow Wilson Center Press}, year = 2004, address = {Washington DC}, } @book{Weyland96, author = {Kurt Weyland}, title = {Democracy Without Equity: failures of reform in Brazil}, address = {Pittsburgh}, publisher = {University of Pittsburgh Press}, year = 1996, } @unpublished{Wallach06, author={Hanna M. Wallach}, title={Topic Modeling: Beyond Bag-of-Words}, note={{http://www.icml2006.org/icml_documents/camera-ready/123_Topic_Modeling_Beyon.pdf}}, year= 2006, } @unpublished{WanMccWei07, author = {Xuerui Wang and Andrew MacCallum and Xing Wei}, title = {Topical N-grams: Phrase and Topic Discovery, with an Application to Information Retreival}, note = {{http://www.cs.umass.edu/%7Exuerui/papers/ngram_tr.pdf}}, year = 2007, } @unpublished{GriSteBle04, author = {Thomas L. Griffiths and mark Steyvers and David M. Blei and Joshua B. Tenenbaum}, title = {Integrating Topics and Syntax}, note = {{http://books.nips.cc/papers/files/nips17/NIPS2004_0642.pdf}}, year = 2004, } @unpublished{ScoMat99, author = {Sam Scott and Stan Matwin}, title = {Feature Engineering for Text Classification}, note = {{http://www.ldv.uni-trier.de/ldvpage/naumann/textklassifikation/Textklassifikation/scott99feature.pdf}}, year = 1999, } @unpublished{Sabastiani02, author = {Fabrizio Sebastiani}, title = {Machine Learning in Automated Text Categorisation}, note = {{http://www.math.tau.ac.il/%7Eshimsh/Text_Domain/ACMCS00.pdf}}, year = 2002, } @unpublished{BekAll03, author = {Ron Bekkerman and James Allan}, title = {Using Bigrams in Text Categorization}, note = {{http://ciir.cs.umass.edu/pubfiles/ir-408.pdf}}, year = 2003, } @unpublished{MosBas04, author = {Alessandro Moschitti and Roberto Basili}, title = {Complex Linguistic Features for Text Classification:a comprehensive study}, note = {{http://dit.unitn.it/\~moschitt/articles/ECIR2004.pdf}}, year = 2004, } @article{Manor95, title = {{Democratic Decentralization in Africa and Asia}}, author = {Manor, J.}, journal = {IDS Bulletin}, volume = {26}, number = {2}, pages = {81--88}, year = {1995} } @article{BarMoo90, title = {{Capture and Governance at Local and National Levels}}, author = {Bardhan, P. and Mookherjee, D.}, journal = {The American Economic Review}, volume = {90}, number = {2}, pages = {135--139}, year = {2000} } @book{SavLevBir06, author = {William D. Savedoff and Ruth Levine and Nancy Birdsall}, title = {When Will We Ever Learn? Improving Lives Through Impact Evaluation}, publisher = {Center for Global Development}, year = 2006, note = {{http://www.cgdev.org/section/initiatives/\_active/evalgap}} } @article{GonGutSte06, title = {Priority setting for health interventions in Mexico's System of Social Protection in Health}, author = {Gonz{\'a}lez-Pier, E. and Guti{\'e}rrez-Delgado, C. and Stevens, G. and Barraza-Llor{\'e}ns, M. and Porras-Condey, R. and Carvalho, N. and Loncich, K. and Dias, R.H. and Kulkarni, S. and Casey, A. and others}, journal = {The Lancet}, volume = {368}, number = {9547}, pages = {1608--1618}, year = {2006}, publisher = {Elsevier} } @article{DonKla94, author = {Allan Donner and Neil Klar}, title = {Cluster Randomization Trials in Epidemiology: Theory and Application}, journal = {Journal of Statistical Planning and Inference}, volume = {42}, year = {1994}, pages = {37-56} } @article{BleLaf07, author = {David M. Blei and John D. Lafferty}, title = {A Correlated Topic Model of Science}, journal = {The Annals of Applied Statistics}, volume = {1}, year = {2007}, pages = {17-35}, number = {1} } @article{BleNgJor03, author = {David M. Blei and Andrew Y. Ng and Michael I. Jordan}, title = {Latent Dirichlet Allocation}, journal = {Journal of Machine Learning Research}, volume = {3}, year = {2003}, pages = {993-1022} } @inproceedings{GolZhu06, author = {Andrew B. Goldberg and Xiaojin Zhu}, title = {Seeing Stars When there aren't Many Stars: Graph Based Semi-Supervised Learning for Sentiment Categorization}, booktitle = {HLT-NAACL 2006 Workshop on Textgraphs: Graph-based Algorithms for Natural Language Processing}, year = {2006}, address = {New York, NY}, url = {{http://www.cs.wisc.edu/\~jerryzhu/pub/sslsa.pdf}} } @inproceedings{Turney02, author = {Peter Turney}, title = {Thumbs Up or thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews}, booktitle = {Proceedings of ACL-02, 40th Annual Meeting of the Assocation for Computational Linguistics}, year = {2002}, pages = {417-424}, address = {Philadelphia, US}, url = {{http://www.aclweb.org/anthology/P02-1053.pdf}} } @inproceedings{YuHat03, author = {Hong Yu and Vasileios Hatzivassiloglou}, title = {Towards Answering Opinion Questions: Separating Facts from Opinions and Identifying the Polarity of Opinion Sentences}, booktitle = {Proceedings of EMNLP-03, 8th Conference on Empirical Methods in Natural Language Processing}, year = {2003}, editor = {Michael Collins and Mark Steedman}, pages = {129-136}, address = {Sapporo, JP}, url = {{http://www.aclweb.org/anthology/W03-1017.pdf}} } @inproceedings{PopEtz05, author = {Ana-Maria Popescu and Oren Etzioni}, title = {Extracting Product Features and Opinions from Reviews}, booktitle = {Proceedings of HLT-EMNLP-05, the Human Language Technology Conference / Conference on Empirical Methods in Natural Language Processing}, year = {2005}, pages = {339-346}, address = {Vancouver, CA}, url = {{http://www.acl.ldc.upenn.edu/H/H05/H05-1043.pdf}} } @inproceedings{BalPea94, author = {Alexander Balke and Judea Pearl}, title = {Counterfactual Probabilities: Computational Methods, Bounds and Applications}, booktitle = {Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI-94)}, year = {1994}, month = {July}, address = {Seattle, WA}, } @manual{Bates07, author = {Douglas Bates}, title = {lme4: Fit linear and generalized linear mixed-effects models}, year = {2007}, } @book{PinBat00, author = {Jose C. Pinheiro and Douglas M. Bates}, title = {Mixed-Effects Models in S and S-PLUS}, publisher = {Springer}, year = {2000}, address = {New York} } @BOOK{BoxJon04, AUTHOR = {Janet M. Box-Steffensmeier and Bradford S. Jones}, TITLE = {Event History Modeling: A Guide for Social Scientists}, PUBLISHER = {Cambridge University Press}, YEAR = {2004}, } @BOOK{Huber81, AUTHOR = {Peter J. Huber}, TITLE = {Robust Statistics}, PUBLISHER = {Wiley}, YEAR = {1981}, } @ARTICLE{White80, AUTHOR = {Halbert White}, TITLE = {A Heteroscedastic-Consistent Covariance Matrix Estimator and a Direct Test for Heteroscedasticity}, JOURNAL = {Econometrica}, YEAR = {1980}, volume = {48}, number = {4}, pages = {817--838}, } @BOOK{TheGra00, AUTHOR = {Terry M. Therneau and Patricia M. Grambsch}, TITLE = {Modeling Survival Data: Extending the Cox Model}, PUBLISHER = {Springer}, YEAR = {2000}, } @book{Schoenhoven72, author={Klaus Sch\"onhoven}, title={Die Bayerische Volkspartei 1924-1932}, publisher={Droste}, year= 1972, address={D\"usseldorf} } @article{Geiger30, author={Theodor Geiger}, title={Panik im Mittelstand}, journal={Die Arbeit}, year={1930}, pages={637-654}, number={10} } @article{Borchardt79, author = {Knut Borchardt}, title = {Zwangslagen und Handlungsspielr\"aume in der gro\ss{}en Wirtschaftskrise der fr\"uhen drei\ss{}iger Jahre: Zur Revision des \"uberlieferten Geschichtsbildes}, journal = {Jahrbuch der Bayerischen Akademie der Wissenschaften}, year = {1979}, pages = {87-132} } @book{Kruedener90, author = {J{\"u}rgen von Kruedener}, title = {Economic Crisis and Political Collapse: The Weimar Republic}, publisher = {Berg}, year = 1990, address = {Oxford} } @book{Barkai77, author = {Avraham Barkai}, title = {Das Wirtschaftssystem des Nationalsozialismus}, publisher = {Berend von Nottbeck}, year = 1977, address = {K\"oln} } @book{Lipset60, author = {Seymour Lipset}, title = {Political Man: The Social Bases of Politics}, publisher = {Johns Hopkins University Press}, address = {Baltimore}, year = 1960 } @article{Temin91, author = {Temin,Peter}, title = {Soviet and Nazi Planning in the 1930s}, journal = {Economic History Review}, year = {1991}, volume = {44}, pages = {573-593} } @article{Palyi41, author={Palyi, Melchior}, title={Economic Foundations of the German Totalitarian State}, journal={American Journal of Sociology}, volume= 46, year= 1941, pages={469-486}, number= 4 } @article{Abelshauser99, author={Abelshauser, Werner}, title={Kriegswirtschaft und Wirtschaftswunder}, journal={Vierteljahrshefte fuer Zeitgeschichte}, year={1999}, pages={503-38} } @book{Kretschmar33, author={Hans Kretschmar}, title={Deutsche Agrarprogramme der Nachkriegszeit}, publisher={Junker und D\"unnhaupt}, year= 1933, address={Berlin} } @book{Ruppert92, author={Karsten Ruppert}, title={Im Dienst am Staat von Weimar: Das Zentrum als regierende Partei in der Weimarer Demokratie 1923-1930}, publisher={Droste}, year= 1992, address={D\"usseldorf} } @article{BucSch06, title = {{The Role of Private Property in the Nazi Economy: The Case of Industry}}, author = {Christoph Buchheim and Jonas Scherner}, journal = {The Journal of Economic History}, volume = {66}, number = {02}, pages = {390--416}, year = {2006}, publisher = {Cambridge University Press} } @article{Hemmer35, title = {{Die unsichtbaren Arbeitslosen}}, author = {Hemmer, W.}, journal = {Statistische Methoden-Soziale Tatsachen. Zeulenroda: Bernhard Sporn, Buchdruckerei und Verlagsanstalt}, year = {1935} } @book{Plum72, author = {Plum, G\"unter}, title = {Gesellschaftsstruktur und politisches Bewusstsein in einer katholischen Region 1928-1933: Untersuchung am Beispiel des Regierungsbezirks Aachen}, publisher = {Deutsche Verlags-Anstalt}, year = 1972, address = {Stuttgart} } @Article{HerTre07, author = {Claudia Herrera and Jesus Trevi{\~n}o}, title = {Aplaza Calderón hasta 2030 la meta sobre un sistema universal de salud}, journal = {La Jornada}, year = 2007, month = {October 6} } @Article{Frenk05, author = {Julio Frenk}, title = {Sistema de Pr\'{o}teccion Social en Salud, Elementos conceptuales, financieros, y operativos}, journal = {Secretaria de Salud}, year = 2005, note = {Mexico City} } @InCollection{Ritschl92, author = {Albrecht Ritschl}, title = {Die Wirtschaftspolitik des Dritten Reichs: Ein {\"U}berblick}, booktitle = {Deutschland 1933-1945. Neue Studien zur nationalsozialistischen Herrschaft}, year = 1992, editor = {Karl-Dietrich Bracher and M. Funke and H.-A. Jacobsen}, address = {D\"{u}sseldorf}, publisher = {Droste} } @Book{James86, author = {Harold James}, title = {The German Slump: Politics and Economics, 1924-1936}, publisher = {Clarendon Press}, year = 1986, address = {Oxford} } @inbook{Brady04b, author={Henry E. Brady}, title={Rethinking Social Inquiry: Diverse Tools, Shared Standards}, chapter={Doing Good and Doing Better: How Far Does the Quantitative Template Get Us?}, year={2004}, publisher={Lanham, MD: Rowman and Littlefield}, editor={H.E. Brady and D. Collier} } @inbook{Munck04, author={Gerardo L. Munck}, title={Rethinking Social Inquiry: Diverse Tools, Shared Standards}, chapter={Tools for Qualitative Research}, year={2004}, publisher={Lanham, MD: Rowman and Littlefield}, editor={H.E. Brady and D. Collier} } @inbook{Rogowski04, author={Ronald Rogowski}, title={Rethinking Social Inquiry: Diverse Tools, Shared Standards}, chapter={How Inference in the Social (but Not the Physical) Sciences Neglects Theoretical Anomaly}, year={2004}, publisher={Lanham, MD: Rowman and Littlefield}, editor={H.E. Brady and D. Collier} } @inbook{Bartels04, author={Larry M. Bartels}, title={Rethinking Social Inquiry: Diverse Tools, Shared Standards}, chapter={Some Unfulfilled Promises of Quantitative Imperialism}, year={2004}, publisher={Lanham, MD: Rowman and Littlefield}, editor={H.E. Brady and D. Collier} } @inbook{BraColSea04, author={Henry E. Brady and David Collier and Jason Seawright}, title={Rethinking Social Inquiry: Diverse Tools, Shared Standards}, chapter={Refocusing the Discussion of Methodology}, year={2004}, publisher={Lanham, MD: Rowman and Littlefield}, editor={H.E. Brady and D. Collier} } @inbook{ColBraSea04, author={David Collier and Henry E. Brady and Jason Seawright}, title={Rethinking Social Inquiry: Diverse Tools, Shared Standards}, chapter={Critiques, Responses, and Trade-Offs: Drawing Together the Debate}, year={2004}, publisher={Lanham, MD: Rowman and Littlefield}, editor={H.E. Brady and D. Collier} } @inbook{ColBraSea04b, author={David Collier and Henry E. Brady and Jason Seawright}, title={Rethinking Social Inquiry: Diverse Tools, Shared Standards}, chapter={Sources of Leverage in Causal Inference: Toward an Alternative View of Methodology}, year={2004}, publisher={Lanham, MD: Rowman and Littlefield}, editor={H.E. Brady and D. Collier} } @inbook{ColMahSea04, author={David Collier and James Mahoney and Jason Seawright}, title={Rethinking Social Inquiry: Diverse Tools, Shared Standards}, chapter={Claiming Too Much: Warnings about Selection Bias}, year={2004}, publisher={Lanham, MD: Rowman and Littlefield}, editor={H.E. Brady and D. Collier} } @article{Brady04, title = {Symposium: Two Paths to a Science of Politics}, author = {Henry E. Brady}, journal = {Perspectives on Politics}, volume = {2}, pages = {295--300}, year = {2004} } @article{Fischer98, title = {Beyond Empiricism: Policy Inquiry in Postpositivist Perspective}, author = {Frank Fischer}, journal = {Policy Studies Journal}, volume = {26}, number = {1}, pages = {129--146}, year = {1998} } @article{ClaGilGol06, title = {A Simple Multivariate Test for Asymmetric Hypotheses}, author = {William Roberts Clark and Mihcael J. Gilligan and Matt Golder}, journal = {Political Analysis}, volume = {14}, pages = {311--331}, year = {2006} } @article{Denrell03, title = {Vicarious Learning, Undersampling of Failure and the Myths of Management}, author = {Jerker Denrell}, journal = {Organization Science}, volume = {14}, number = {3}, pages = {227--243}, year = {2003} } @article{Wong02, title = {Did how we learn affect what we learn? Methodological bias, multimethod research and the case of econmic development}, author = {Wilson Wong}, journal = {The Social Science Journal}, volume = {39}, pages = {247--264}, year = {2002} } @article{Tilly01, title = {Mechanisms in Political Processes}, author = {Charles Tilly}, journal = {Annual Review of Political Science}, volume = {4}, pages = {21--41}, year = {2001} } @article{CarPan05, title = {TQCA: A Technique for Adding Temporality to Qualitative Comparative analysis}, author = {Neal Caren and Aaron Panofsky}, journal = {Sociological Methods Reseaarch}, volume = {34}, pages = {147}, year = {2005} } @article{Ebbinghaus05, title = {When Less is More: Selection Problems in a Large-N and Small-N Cross-National Comparisons}, author = {Bernhard Ebbinghaus}, journal = {International Sociology}, volume = {20}, number = {2}, Month = {June}, pages = {133--152}, year = {2005} } @article{Tarrow95, title = {Bridging the Quantitative-Qualitative Divide in Political Science}, author = {Sidney Tarrow}, journal = {American Political Science Review}, volume = {89}, number = {2}, Month = {June}, pages = {471--474}, year = {1995} } @article{Tickner05, title = {What Is Your Research Program? Some Feminist Answers to International Relations Methodological Questions}, author = {J. Ann Tickner}, journal = {International Studies Quarterly}, volume = {49}, pages = {1--21}, year = {2005} } @article{Ragin97, title = {Turning the Tables: How Case-Oriented Research Challenges Variable-Oriented Research}, author = {Charles C. Ragin}, journal = {Comparative Social Research}, volume = {16}, pages = {27--42}, year = {1997} } @article{Abelson01, author = {Julia Abelson}, title = {Understanding the Role of Contextual Influences on Local Healh-Care Decision Making: Case Study Results from Ontario, Canada}, journal = {Social Science & Medicine}, volume = {53}, year = {2001}, pages = {777--793} } @article{Achen05, author = {Christopher H. Achen}, title = {Two Cheers for Charles Ragin}, journal = {Studies in Comparative International Development}, volume = {40}, year = {2005}, pages = {27--32}, month = {Spring}, number = {1} } @article{Adler97, author = {Emanuel Adler}, title = {Seizing the Middle Ground: Constructivism in World Politics}, journal = {European Journal of International Relations}, volume = {3}, year = {1997}, pages = {319-363}, number = {3} } @article{Agrawal01, author = {Arun Agrawal}, title = {Common Property Institutions and Sustainable Governance of Resources}, journal = {World Development}, volume = {29}, year = {2001}, pages = {1649--1672}, number = {10} } @article{Agrawal03, author = {Arun Agrawal}, title = {Sustainable Governance of Common-Pool Resources: Context, Methods, and Politics}, journal = {Annual Review of Anthropology}, volume = {32}, year = {2003}, pages = {243--262} } @article{AmeHalYou99, author = {Edwin Amenta and Drew Halfmann and Michael P. Young}, title = {The Strategies and Contexts of Social Protest:Political Mediation and the Impact of the Townsend Movement in California}, journal = {Mobilization: An International Journal}, volume = {4}, year = {1999}, pages = {1--23}, number = {1} } @unpublished{Andersen03, author = {Svein S. Andersen}, title = {On a Cleary Day You Can See the EU. Case Study Methodology in EU Research}, note = {{http://www.arena.uio.no/publications/working-papers2003/papers/03_16.xml}}, year = 2003, } @unpublished{AndWet01, author = {Steinar Andresen and Joergen Wettestad}, title = {Case studies of the effectiveness of international environmental regimes: Balancing textbook ideals and feasibility concerns}, note = {{http://www.fni.no/doc&.pdf/rapp1901.pdf}}, year = {2001} } @article{AspSch00, author = {Mark D. Aspinwall and Gerald Schneider}, title = {Same Menu, Seperate Tables: The Institutionalist Turn in Political Science and the Study of European Integration}, journal = {European Journal of Political Research}, volume = {38}, year = {2000}, pages = {1--36} } @article{Bartle00, author = {John Bartle}, title = {Political Awareness, Opinion Constraining and the Stablility of Ideological Positions}, journal = {Political Studies}, volume = {48}, year = {2000}, pages = {467--484} } @article{Bartle03, author = {John Bartle}, title = {Partisanship, Performance and Personality: Competing and Complementary Characterizations of the 2001 British General Election}, journal = {Party Politics}, volume = {9}, year = {2003}, pages = {317--345}, number = {3} } @article{Beck06, author = {Nathaniel Beck}, title = {Causal Process ``Observation'': Oxymoron or Old Wine}, } @article{Bellin00, author = {Eva Bellin}, title = {Contingent Democrats: Industrialists, Labor, and Democratization in Late-Developing Countries}, journal = {World Politics}, volume = {52}, year = {2000}, pages = {175-205}, month = {January} } @article{BelMacTha01, author = {Duncan S.A. Bell and Paul K. MacDonald and Bradley A. Thayer}, title = {Start the Evolution Without Us}, journal = {International Security}, volume = {26}, year = {2001}, pages = {187--198}, month = {Summer}, number = {1} } @article{BerLebSte00, author = {Steven Bernstein and Richard Ned Lebow and Janice Gross Stein and Steven Weber}, title = {God Gave Physics the Easy Problems: Adapting Social Science to an Unpredictable World}, journal = {European Journal of International Relations}, volume = {6}, year = {2000}, pages = {43--76}, number = {1} } @article{Berman97, author = {Sheri Berman}, title = {Civil Society and the Collapse of the Weimar Republic}, journal = {World Politics}, volume = {49}, year = {1997}, pages = {401--429}, number = {3} } @article{BlaDob98, author = {Andr\'{e} Blais and Agnieszka Dobrznska}, title = {Turnout in electoral democracies}, journal = {European Journal of Political Research}, volume = {33}, year = {1998}, pages = {239--261}, number = {} } @article{BogCatKel00, author = {Laura M. Bogart and Sheryl L. Catz and Jeffrey A. Kelly and Michelle L. Gray-Bernhardt, and Barbara R. Hartmann and Laura L. Otto-Salaj and Kristin L. Hackl and Frederick R. Bloom}, title = {Psychosical Issues in the Era of New Aids Treatments from the Perspective of Persons Living with HIV}, journal = {2000}, volume = {5}, year = {2000}, pages = {500--516}, number = {4} } @article{Bostrom03, author = {Magnus Bostro{\''m}}, title = {How State-Dependent is a Non-State-Driven Rule-Making Project? The Case of Forest Certification in Sweden}, journal = {Journal of Envrionmental Policy & Planning}, volume = {5}, year = {2003}, pages = {165--180}, number = {2} } @article{Brady07, author = {Henry E. Brady}, title = {Using a Simple Model of Decision-Making to Select and Understand Cases} } @article{BraLanHal00, author = {Paul Brace and Laura Langer and Melinda Gann Hall}, title = {Measuring the Preferences of State Supreme Court Judges}, journal = {The Journal of Politics}, volume = {62}, year = {2000}, pages = {387--413}, month = {May}, number = {2} } @article{BraOhr99, author = {AnnP. Branch and Jakob C. Ohrgaard}, title = {Trapped in the Supranational-Intergovernmental Dichotomy: A Respone to Stone Sweet and Sandholtz}, journal = {Journal of European Public Policy}, volume = {6}, year = {1999}, pages = {123--143}, number = {1} } @unpublished{Braumoeller99, author = {Bear F. Braumoeller}, title = {Statistical Estimation in the Presence of Multiple Causal Paths}, note = {paper prepared of rhte annual meeting of the Midwest Political Science Association, Chicago, IL April 15-17, 1999.}, year = {1999} } @article{Braumoeller03, author = {Bear F. Braumoeller}, title = {Causal Complexity and the Study of Politics}, journal = {Political Analysis}, volume = {11}, year = {2003}, pages = {209-233} } @article{Brecher99, author = {Michael Brecher}, title = {International Studies in the Twentieth Century and Beyond: Flawed Dichotomies, Symthesis, Cumulation: ISA Presidential Address}, journal = {International Studies Quarterly}, volume = {43}, year = {1999}, pages = {213-264}, month = {June}, number = {2} } @article{BreKerPet03, author = {Mark D. Brewer and Rogan Kersh and R. Eric Petersen}, title = {Assessing Conventional Wisdom about Religion and Politics: A Preliminary View from the pews}, journal = {Journal for the Scientific Study of Religion}, volume = {42}, year = {2003}, pages = {125--136}, number = {} } @article{Burden05, author = {Barry C. Burden}, title = {Ralph Nader's Campaign Strategy in the 2000 U.S. Presidential Election}, journal = {American Politics Research}, volume = {33}, year = {2005}, pages = {672--699}, month = {September}, number = {5} } @article{Buthe02, author = {Tim B\''{u}the}, title = {Taking Temporality Seriously: Modeling History and the Use of Narratives as Evidence}, journal = {American Political Science Review}, volume = {96}, year = {2002}, pages = {481--493}, month = {September}, number = {3} } @article{CamLapRie00, author = {Charles Cameron and John S. Lapinski and Charles R. Riemann}, title = {Testing Formal Theories of Political Rhetoric}, journal = {The Journal of Politics}, volume = {62}, year = {2000}, pages = {187--205}, month = {February}, number = {1} } @article{Caporaso95, author = {James A. Caporaso}, title = {Review: Research Design, Falsification, and the Qualitative-Quantitative Divide}, journal = {American Political Science Review}, volume = {89}, year = {1995}, pages = {457--460}, month = {June}, number = {2} } @article{ChiRot03, author = {Fang-Yi Chiou and Lawrence S. Rothenberg}, title = {When Pivotal Politics Meets Partisan Politics}, journal = {American Journal of Political Science}, volume = {47}, year = {2003}, pages = {503--522}, month = {July}, number = {3} } @article{ClaGilGol06, author = {William Roberts Clark and Michael J. Gilligan and Matt Golder}, title = {A Simple Multivariate Test for Asymmetric Hypotheses}, journal = {Political Analysis}, volume = {14}, year = {2006}, pages = {311--331} } @article{Clarke05, author = {Kevin A. Clarke}, title = {The Phantom Menace: Omitted Variable Bias in Econometric Research}, journal = {Conflict management and Peace Science}, volume = {22}, year = {2005}, pages = {341--352}, number = {4} } @article{Collier95, author = {David Collier}, title = {Review: Translating Quantitative Methods for Qualitative Researchers: the Case of Selection Bias}, journal = {American Political Science Review}, volume = {89}, year = {1995}, pages = {461--466}, month = {June}, number = {2} } @article{Denrell03, author = {Jerker Denrell}, title = {Vicarious Learning, Undersampling of Failure, and the Myths of Management}, journal = {Organization Science}, volume = {14}, year = {2003}, pages = {227--243}, month = {May-June}, number = {3} } @article{DerBou04, author = {Mark de Rond and Hamid Bouchikhi}, title = {On the dialectics of Strategic Alliances}, journal = {Organization Science}, volume = {15}, year = {15}, pages = {56-69}, month = {January-February}, number = {1} } @article{DesFinHen00, author = {Laura Desimone and Matia Finn-Stevenson and Christopher Henrich}, title = {Whole School Reform in a Lowe-Income African American Community: The Effects of the CoZi Model on Teachers, Parents, and Students}, journal = {Urban Education}, volume = {35}, year = {2000}, pages = {269} } @article{DeSoysa02, author = {Indra de Soysa}, title = {Ecoviolence: Shrinking Pie, or Honey Pot?}, journal = {Global Environmental Politics}, volume = {2}, year = {2002}, pages = {1--34}, month = {November}, number = {4} } @article{DeSoysa02b, author = {Indra De Soysa}, title = {Paradise Is a Bazaar? Greed, Creed and Governance in Civil War, 1989-99}, journal = {Journal of Pece Research}, volume = {39}, year = {2002}, pages = {395--416}, number = {4} } @article{DicLev99, author = {Jonathan M. Dicicco and Jack S. Levy}, title = {Power Shifts and Problem Shifts}, journal = {Journal of Conflict Resolution}, volume = {43}, year = {1999}, pages = {675--704}, month = {December}, number = {6} } @article{Dorussen01, author = {Han Dorussen}, title = {Mixing Carrots with Sticks: Evaluating the Effectiveness of Positive Incentives}, journal = {Journal of Peace Research}, volume = {38}, year = {2001}, pages = {251--262}, number = {2} } @article{Dowding01, author = {Keith Dowding}, title = {There Must Be End to Confusion: Policy Networks, Intellectual Fatigue, and the Need for Political Science Methods Courses in British Universities}, journal = {Political Studies}, volume = {49}, year = {2001}, pages = {89--105} } @article{Druckman04, author = {James N. Druckman}, title = {Political Preference Formation: Competition, Deliberation, and the (Ir)relevance of Framing Effects}, journal = {American Political Science Review}, volume = {98}, year = {2004}, pages = {671--686}, month = {November}, number = {4} } @article{Elgie04, author = {Robert Elgie}, title = {Semi-Presidentialism: Concepts, Consequences and contesting Explanations}, journal = {Political Studies Review}, volume = {2}, year = {2004}, pages = {314--330} } @article{ElmElm02, author = {Colin Elman and Miriam Fendius Elman}, title = {How Not to Be Lakatos Intolerant: Appraising Progress in IR Research}, journal = {International Studies Quarterly}, volume = {46}, year = {2002}, pages = {231--262} } @article{BerLor99, author = {Bernard I. Finel and Kristin M. Lord}, title = {The Surprising Logic of Transparency}, journal = {International Studies Quarterly}, volume = {43}, year = {1999}, pages = {315--339}, month = {June}, number = {June} } @article{Forster98, author = {Anthony Forster}, title = {Britain and the Negotiation of the Maastricht Treaty: A Critique of Liberal Intergovernmentalism}, journal = {Journal of Common Market Studies}, volume = {36}, year = {1998}, pages = {347--368}, month = {September}, number = {3} } @article{Fricke03, author = {Tom Fricke}, title = {Culture and Causality: An Anthropological Comment}, journal = {Population and Development Review}, volume = {29}, year = {2003}, pages = {470--479}, month = {September}, number = {3} } @article{From02, author = {Johan From}, title = {Decision-making in a complex envrironment: A sociological institutionalist analysis of competition policy decision-making in the European Commission}, journal = {Journal of European Public Policy}, volume = {9}, year = {2002}, pages = {219--237}, number = {2} } @article{Galaz05, author = {Victor Galaz}, title = {Social-ecological Resilience and Social Conflict: Institutions and Strategic Adaptation in Swedish Water Management}, journal = {Ambio}, volume = {34}, year = {2005}, pages = {567--572}, month = {November}, number = {7} } @Article{MadHofKup07, author = {Temina Madon and Karen J. Hofman and Linda Kupfer and Roger I. Glass}, title = {Implementation Science}, journal = {Science}, year = {2007}, volume = {318}, pages = {1728--1729}, month = {14 December} } @Article{Steele05, author = {J. Michael Steele}, title = {Darrell Huff and Fifty Years of \emph{How to Lie With Statistics}}, journal = {Statistical Science}, year = 2005, volume = 20, number = 3, pages = {205-209} } @book{Huff54, title = {{How to Lie With Statistics}}, author = {Darrell Huff}, year = {1954}, address = {New York}, publisher = {WW Norton \& Company} } @article{HeiRub91, title = {{Ignorability and Coarse Data}}, author = {Heitjan, D.F. and Rubin, D.B.}, journal = {The Annals of Statistics}, volume = {19}, number = {4}, pages = {2244--2253}, year = {1991} } @Article{Izenman91, author = {Alan Julian Izenman}, title = {Recent developments in nonparametric density estimation}, journal = {Journal of the American Statistical Association}, year = 1991, volume = 86, number = 413, pages = {205--224} } @article{Gartzke99, title = {War is in the Error Term}, author = {Erik Gartzke}, journal = {International Organization}, volume = {53}, year = {1999}, pages = {567--587}, month = {Summer}, number = {3} } @article{GauLie04, author = {Varun Gauri and Evan S. Lieberman}, title = {Institutions, Social Boundaries, and Epidemics: Explaining Goverment AIDS Policies in Brazil and South Africa} } @article{GelGri01, author = {Christopher Gelpi and Joseph M. Grieco}, title = {Democracy, Leadership Tenure, and the Targeting of Militarized challenges, 1918-1992}, journal = {Journal of Conflict Resolution}, volume = {45}, year = {2001}, pages = {794--817}, month = {December}, number = {6} } @article{GerBar03, author = {John Gerring and Paul A. Barresi}, title = {Putting Ordinary Language to Work: A Min-Max Strategy of Concept Formation in the Social Sciences}, journal = {Journal of Theoretical Politics}, volume = {15}, year = {2003}, pages = {201--232}, number = {2} } @article{GerGreKap03, author = {Alan S. Gerber and Donald P. Green and Edward H. Kaplan}, title = {The Illusion of Learning from Observational Research}, year = {2003} } @article{GerMcD07, author = {John Gerring and Rose McDermott}, title = {An Experimental Template for case Study Research}, journal = {American Journal of Political Science}, volume = {51}, year = {2007}, pages = {688--701}, month = {July}, number = {3} } @article{Gerring04, author = {John Gerring}, title = {What Is a Case Study and What Is It Good for?}, journal = {American Political Science Review}, volume = {98}, year = {2004}, pages = {341--354}, month = {May}, number = {2} } @article{Gerring05, author = {John Gerring}, title = {A unified Framework for The Social Sciences}, journal = {Journal of Theoretical Politics}, volume = {17}, year = {2005}, pages = {163--198}, number = {2} } @article{Gilardi01, author = {Fabrizio Gilardi}, title = {Policy Credibility and Delegation of Regulatory Competencies or Independent Agencies: A Comparative Empirical Consideration}, year = {2001} } @article{Gilardi02, author = {Fabrizio Gilardi}, title = {Policy Credibility and Delegation to Independent Regulatory Agencies: A Comparative Empirical Analysis}, journal = {Journal of European Public Policy}, volume = {9}, year = {2002}, pages = {873--893}, month = {December}, number = {6} } @article{Glaser02, author = {Barney G. Glaser}, title = {Conceptualization: On Theory and Theorizing Using Grounded theory}, journal = {International Journal of Qualitative Methods}, volume = {1}, year = {2002}, note = {{Article 3 from http://www.ualberta.ca/~ijqm/}}, month = {Spring}, number = {2} } @article{GoeLev05, author = {Gary Goertz and Jack S. Levy}, title = {Causal Explanations, Necessary Conditions, and Case Studies: World War I and the End of the Cold War} } @article{Goerzen05, author = {Anthony Goerzen}, title = {Managing Alliance Networks: Emerging Practices of Multinational Corporations}, journal = {Academy of management Executive}, volume = {19}, year = {20}, pages = {94--107}, number = {2} } @article{Golder03, author = {Matt Golder}, title = {Explaining Variation in the Success of Extreme Right Parties in Western Europe}, journal = {Comparative Political Studies}, volume = {36}, year = {2003}, pages = {432--466}, month = {May}, number = {4} } @article{Grendstad99, author = {Gunnar Grendstad}, title = {A Political Cultural Map of Europe. A Survey Approach}, journal = {GeoJournal}, volume = {47}, year = {20}, pages = {463--475} } @article{Grigorian05, author = {Arman Grigorian}, title = {Third-Party Intervention and Escalation in Kosovo: Does Moral Hazard Explain it?}, journal = {Ethnopolitics}, volume = {4}, year = {2005}, pages = {195--213}, number = {2} } @article{Guzzini01, author = {Stefano Guzzini}, title = {The Significance and Roles of Teaching Theory in International Relations}, journal = {Journal of International Relations and Development}, volume = {4}, year = {2001}, pages = {98--117}, number = {2} } @article{Gwako97, author = {Edwins Laban Moogi Gwako}, title = {Conjugal Power in Rural Kenya Families: Its Influence on Women's Decsions About Family Size and Family Planning Practices}, journal = {Sex Roles}, volume = {36}, year = {1997}, pages = {127--147}, month = {February}, number = {3/4} } @article{Hansen98, author = {Kenneth N. Hansen}, title = {Identifying Facets of Democratic Administration: The Empirical Referents of Discourse}, journal = {Administration & Society}, volume = {30}, year = {1998}, pages = {443--461}, month = {September}, number = {4} } @article{Harcourt00, author = {Bernard E. Harcourt}, title = {After the "Social Meaning Turn": Implications for Research Design and methods of Proof in Contemporary Criminal Law Policy Analysis}, journal = {Law & Society Review}, volume = {34}, year = {20}, pages = {179--211}, number = {1} } @article{Haverland03, author = {Markus Haverland}, title = {Methodological Issues in Europeanisation Research: the `No Variation' problem}, note = {prepared for preentation the section 'Europeanisation: Challengs of a New Research Agenda', panl `Europeanisation: Concepts and Methods', ECPR Conference, Marburg, 18-21 September, 2003}, year = {2003}, pages = {}, month = {September} } @article{Haverland06, author = {Markus Haverland}, title = {Does the EU Cause Domestic Developments? Improving Case Selection in Europeanisation Research}, journal = {West European Politics}, volume = {29}, year = {2006}, pages = {134--146}, month = {January}, number = {1} } @article{Hawkins04, author = {Darren Hawkins}, title = {Explaining Costly International Institutions: Persuasion and Enforceable Human Rights Norms}, journal = {International Studies Quarterly}, volume = {48}, year = {2004}, pages = {779--804} } @article{Hay04, author = {Colin Hay}, title = {Theory, Stylized Heuristic or Self-Fulfilling Prophecy? The Status of Rational Choice Theory in Public Administration}, journal = {Public Administration}, volume = {82}, year = {2004}, pages = {39--62}, number = {1} } @article{HelHer01, author = {Gunther Hellmann and Benjamin Herborth}, title = {Democratic Peace and Militarized Interstate Disputes in the Transatlantic Community}, note = {Paper prepared for presentation at the 42. Annual Convention of the International Studies Assocation in Chicago, 21\-25 February 2001}, year = {2001} } @article{HelMul03, author = {Gunther Hellmann and Harald M\"{u}ller}, title = {Editing (I)nternational (R)elations: A Changing World}, journal = {Journal of International Relations and Development}, volume = {6}, year = {2003}, pages = {372--389}, month = {December}, number = {4} } @article{HesLea97, author = {Frederick M. Hess and David L. Leal}, title = {Minority Teachers, Minority Students, and College Matriculation: A New Look at the Role-Modeling Hypothesis}, journal = {Policy Studies Journal}, volume = {25}, year = {1997}, pages = {235-248}, number = {2} } @article{HesLea99, author = {Frederick M. Hess and David L. Leal}, title = {Computer-Assisted Learning in Urban Classrooms:The Impact of Politics, Race, and Class}, journal = {Urban Education}, volume = {34}, year = {1999}, pages = {370} } @article{Hess99, author = {Frederick M. Hess}, title = {A Political Explanation of Policy Selection: The Case of Urban School Reform}, journal = {Policy Studies Journal}, volume = {27}, pages = {459--473}, number = {3} } @article{Hite03, author = {Julie M. Hite}, title = {Patterns of Multidimensionality Among Embedded Network Ties: A Typology of Relational Embeddedness in Emerging Entrepreneurial Firms}, journal = {Strategic Organization}, volume = {1}, year = {2003}, pages = {9--49}, number = {1} } @article{Hite05, author = {Julie M. Hite}, title = {Evolutionary Processes and Paths of Relationally Embedded Network Ties in Emerging Entrepreneurial Firms}, journal = {Entrepreneurship, Theory \& Practice}, volume = {29}, year = {2005}, pages = {113--144}, month = {January}, number = {1} } @article{HodHar03, author = {Matthew Hoddie and Caroline Hartzell}, title = {Civil War Settlements and the Implementation of Military Power-Sharing Arrangements}, journal = {Journal Of Peace Research}, volume = {40}, year = {2003}, pages = {303-320}, number = {3} } @article{HofOca01, author = {Andrew J. Hoffman and William Ocasio}, title = {Not All Events Are Attended Equally: Toward a Middle-Range Theory of Industry Attention to External Events}, journal = {Organization Science}, volume = {12}, year = {2001}, pages = {414--434}, month = {July-August}, number = {4} } @article{Hooghe97, author = {Liesbet Hooghe}, title = {Serving `Europe' - Political Orientations of Senior Commission Officials}, journal = {European Integration Online Papers}, volume = {1}, year = {1997}, note = {{http://eiop.or.at/eiop/texte/1997-008a.htm}}, month = {April}, number = {8} } @article{HowPerVil04, author = {Susan E. Howell and Huey L. Perry and Matthew vile}, title = {Black Cities / White Cities: Evaluating the Police}, journal = {Political Behavior}, volume = {26}, year = {2004}, pages = {45--68}, month = {March}, number = {1} } @article{JacLan04, author = {Karen Jacobsen and Loren B. Landau}, title = {The Dual Imperative in Refugee Research: Some Methodological and Ethical Considerations in Social Science Research on Forced Migration}, journal = {Disasters}, volume = {27}, year = {2003}, pages = {185--206}, number = {3} } @article{JacPhaSwy04, author = {Dirk Jacobs and Karen Phalet and Marc Swyngedouw}, title = {Associational Membership and Political Involvement Among Ethnic Minority Groups in Brussels}, journal = {Journal of Ethnic and Migration Studies}, volume = {30}, year = {2004}, pages = {543--559}, number = {3} } @article{JacTil04, author = {Dirk Jacobs and Jean Tillie}, title = {Introduction: Social Capital and Political Integration of Migrants}, journal = {Journal of Ethnic and Migration Studies}, volume = {30}, year = {2004}, pages = {419--427}, number = {3} } @article{Johnson04, author = {Craig Johnson}, title = {Uncommon Ground: The `Poverty of History' in common Property Discourse}, journal = {Development and Change}, volume = {35}, year = {2004}, pages = {407--433}, number = {3} } @article{JonSte97, author = {Bradford S. Jones and Marco R. Steenbergen}, title = {Modeling Multilevel Data Structures}, year = {1997}, note = {Annual Meetings of the Political Methodology Society} } @article{KaaBea99, author = {Juliet Kaarbo and Ryan K. Beasley}, title = {A Practical Guide to the Comparative Case Study Method in Political Psychology}, journal = {Political Psychology}, volume = {20}, year = {1999}, pages = {369--391}, number = {2} } @article{KatVomMah05, author = {Aaron Katz and Matthias vom Hau and James Mahoney}, title = {Explaining the Great Reversal in Spanish America: Fuzzy-Set Analysis Versus Regression Analysis}, journal = {Sociological Methods Research}, volume = {33}, year = {2005}, pages = {539--573} } @Book{Kenneally07, author = {Christine Kenneally}, title = {The First Word: The Search for the Origins of Language}, publisher = {Viking}, year = 2007, address = {New York} } @book{Coombs65, title = {A Theory of Data}, author = {C.H. Coombs}, year = {1965}, address = {New York}, publisher = {Wiley} } @article{CEFP06, author = {Centro de Estudios de las Finanzas P{\'u}blicas, C{\'a}mara de Diputados}, title = {Gasto en el Sector Salud}, journal = {Nota Informativa}, volume = {64}, month = {September}, year = {2006}, } @Book{Ayres07, author = {Ian Ayres}, title = {Supercrunchers}, publisher = {Random House}, year = 2007, address = {New York} } @Article{Ross06b, author = {Philip E. Ross}, title = {The Expert Mind}, journal = {Scientific American}, year = {2006}, month = {August}, note = {{http://www.sciam.com/article.cfm?id=the-expert-mind}} } @article{RubTho92, author = {Donald B. Rubin and Neal Thomas}, title = {Affinely Invariant Matching methods with Ellipsoidal Distributions}, journal = {Annals of Statistics}, volume = {20}, number = {2}, year = {1992}, pages = {1079-1093} } @article{Rubin76b, author = {Donald B. Rubin}, title = {Multivariate Matching Methods that are Equally Percent Bias Reducing, II: Maximums on Bias Reduction for Fixed Sampled Sizes}, journal = {Biometrics}, volume = {32}, year = {1976}, pages = {121-132}, } @book{RosRub02, author = {P.R. Rosenbaum and Donald B. Rubin}, title = {Observational Studies}, Publisher = {Springer}, year = {2002}, address = {New York} } @article{RacineLi09, author = {J.S. Racine and Q. Li}, title = {Efficient Estimation of Average Treatment Effects With Mixed Categorical and Continuous Data}, journal = {Journal of Business and Economic Statistics}, volume = {27}, number = {2}, year = {2009}, pages = {203-223} } @article{Popoviciu35, author = {T. Popoviciu}, title = {Sur Les \'Equations Alg\'ebriques Ayant Toutes Leurs Racines R\'eelles}, journal = {Mathematica}, volume = {9}, year = {1935}, pages = {129-145} } @article{Rubin76c, title = {{Multivariate Matching Methods That are Equal Percent Bias Reducing, I: Some Examples}}, author = {Donald B. Rubin}, journal = {Biometrics}, volume = {32}, number = {1}, pages = {109--120}, year = {1976} } @InCollection{Coleridge1789, author = {Samuel Taylor Coleridge}, title = {The Rime of the Ancyent Marinere}, booktitle = {Lyrical Ballads}, publisher = {Routledge}, year = {1789 (1991)}, editor = {W. Wordsworth and S. T. Coleridge}, address = {London} } @book{MieBer07, title = {{Permutation Methods: A Distance Function Approach}}, author = {Mielke, P.W. and Berry, K.J.}, year = {2007}, address = {New York}, publisher = {Springer} } @Article{ShiShi07, author = {H. Shimazaki and S. Shinomoto}, title = {A Method for Selecting the Bin Size of a Time Histogram}, journal = {Neural Computation}, year = 2007, volume = 19, number = 6, pages = {1503--1527} } @inbook{Ragin04, author = {Charles C. Ragin}, title = {Rethinking Social Inquiry}, chapter = {Turning the Tables: How Case-Oriented Research CHallenges Variable Oriented Research}, year = {2004}, publisher = {Rowman and Littlefield Publishers, Inc.}, address = {Lanham, MD}, editor = {Henry E. Brady and David Collier} } @unpublished{Ragin07, author = {Charles C. Ragin}, title = {Qualitative Comparative Analysis and Fuzzy Sets}, note = {Presented for the American Political Science Assocation conference, Chicago}, year = {2007} } @article{BatChe04, title = {{The Impact of Measurement Error on Evaluation Methods Based on Strong Ignorability}}, author = {Battistin, E. and Chesher, A.}, journal = {Institute for Fiscal Studies, London}, year = {2004} } @book{Agresti90, title = {{Categorical data analysis}}, author = {Agresti, A.}, year = {1990}, address = {New York}, publisher = {John Wiley \& Sons, Inc.} } @book{Scott92, title = {{Multivariate density estimation. Theory, practice and visualization}}, author = {Scott, D.W.}, year = {1992}, address = {New York}, publisher = {John Wiley \& Sons, Inc.} } @article{FDiac81, title = {{On the histogram as a density estimator: $L_2$ theory}}, author = {Freedman, D. and Diaconis, P.}, journal = {Probability Theory and Related Fields}, year = {1981}, volume = {57}, pages = {453-476} } @article{FreDue07, title = {Clustering by Passing Messages Between Data Points}, author = {BJ Frey and D Dueck}, journal = {Science}, volume = {315}, number = {5814}, pages = {972}, year = {2007} } @Article{Ruben02, author = {Harold Ruben}, title = {A simple conservative and robust solution of the Behrens-Fisher problem}, journal = {Sankhya}, year = {2002}, volume = {64}, number = {1}, pages = {139--155} } @Article{FawChaHer93, author = {WW Fawzi and TC Chalmers and MG Herrera and F Mosteller}, title = {Vitamin A Supplementation and Child Mortality}, journal = {Journal of the American Medical Association}, year = {1993}, volume = {269}, number = {7}, pages = {898--903} } @Article{LavDurKoc05, author = {LM LaVange and TA Durham and GG Koch}, title = {Randomization-based Nonparametric Methods for the Analysis of Multicentre Trials}, journal = {Statistical Methods in Medical Research}, year = {2005}, volume = {14}, number = {3}, pages = {281--301} } @Article{Little04, author = {RJ Little}, title = {To Model or Not to Model? Competing Modes of Inference for Finite Population Sampling}, journal = {Journal of the American Statistical Assocation}, year = {2004}, volume = {99}, pages = {546--556} } @Article{LitRub00, author = {RJ Little and DB Rubin}, title = {Causal Effects in Clinical and Epidemiological Studies Via Potential Outcomes: Concepts and Analytical Approaches}, journal = {Annual Review of Public Health}, year = {2000}, volume = {21}, pages = {121--145} } @Article{MalGre02, author = {G Maldanado and S Greenland}, title = {Estimating Causal Effects}, journal = {International Journal of Epidemiology}, year = {2002}, volume = {31}, pages = {422--429} } @Article{DasNewVel03, author = {Mitali Das and Whitney K. Newey and Francis Vella}, title = {Nonparametric Estimation of Sample Selection Models}, journal = {Review of Economic Studies}, year = {2003}, volume = {70}, pages = {33--58} } @Article{AbaDruHer01, author = {Alberto Abadie and David Drukker and Jane Leber Herr and Guido W. Imbens}, title = {Implementing Matching Estimators for Average Treatment Effects in Stata}, journal = {The Stata Journal}, year = {2004}, volume = {4}, number = {3}, pages = {290--311} } @Article{DunAuMil03, author = {Joel Dunning and JKK Au and RWJ Millner and AJ Levine}, title = {Derivation and Validation of a Clinical Scoring System to Predict the Need for an Intra-Aortic Balloon Pump in Patients Undergoing Adult Cardiac Surgery}, journal = {Interactive Cardiovascular and Thoracic Surgery}, year = {203}, volume = {2}, pages = {639--643} } @Article{Rubin90, author = {DB Rubin}, title = {On the Applicaiton of Probability Theory to Agricultural Experiments. Essay on Principles. Section 9. Comment: Neyman (1923) and Causal Inference in Experiments and Observational Studies}, journal = {Statistical Science}, year = {1990}, volume = {5}, number = {4}, pages = {472--480} } @book{HasTibFri01, title = {{The Elements of Statistical Learning: Data Mining, Inference, and Prediction}}, author = {Trevor Hastie and Robert Tibshirani and Jerome Friedman}, year = {2001}, address = {New York}, publisher = {Springer} } @book{HasTibFri09, title = {{The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Ed}}, author = {Trevor Hastie and Robert Tibshirani and Jerome Friedman}, year = {2009}, address = {New York}, publisher = {Springer} } @Article{WesMukCha00, title = {{Feature selection for SVMs}}, author = {J. Weston and S. Mukherjee and O. Chapelle and M. Pontil and T. Poggio and V. Vapnik}, journal = {Advances in Neural Information Processing Systems}, volume = {13}, pages = {668--674}, year = {2000} } @Article{HsuChaLin03, title = {A practical guide to support vector classification}, author = {C.W. Hsu and C.C. Chang and C.J. Lin}, journal = {National Taiwan University, Technical Report, July}, year = {2003} } @Article{BraGroMil02, title = {Feature Selection Using Linear Support Vector Machines}, author = {Janez Brank and Marko Grobelnik and Natasa Milic-Frayling and Dunja Mladenic}, journal = {Microsoft Research, Technical Report}, year = {2002} } @Article{HilPurWil08, title = {{Computer Assisted Topic Classification for Mixed Methods Social Science Research}}, author = {Dustin Hillard and Stephen Purpura and John Wilkerson}, journal = {Journal of Information Technology and Politics}, year = {2008}, volume = {4}, number = {4} } @Incollection{Joachims98, author = {Thorsten Joachims}, editor = {Claire N\'{e}dellec and C\'{e}line Rouvierol}, booktitle = {Machine Learning ECML-98}, title = {Text Categorization with Support Vector Machines: Learning with Many Relevant Features}, publisher = {Springer}, year = 1998, volume = 1398, pages = {127--142} } @article{AnaAlkLav08, title = {The Role of Fish Oil in Arrhythmia Prevention}, author = {Rishi G. Anand and Mohi Alkadri and Carl J. Lavie and Richard V. Milani}, journal = {Journal of Cardiopulmonary Rehabilitation and Prevention}, year = {2008}, volume = {28}, pages = {92--98} } @article{RosRosSil07, title = {{Minimum Distance Matched Sampling With Fine Balance in an Observational Study of Treatment for Ovarian Cancer}}, author = {Rosenbaum, P.R. and Ross, R.N. and Silber, J.H.}, journal = {Journal of the American Statistical Association}, volume = {102}, number = {477}, pages = {75--83}, year = {2007} } @article{AbaGar03, title = {{The Economic Costs of Conflict: A Case Study of the Basque Country}}, author = {Abadie, A. and Gardeazabal, J.}, journal = {American Economic Review}, volume = {93}, number = {1}, pages = {113--132}, year = {2003} } @Article{IacPor08b, author = {Stefano M. Iacus and Giuseppe Porro}, title = {Invariant and Metric Free Proximities for Data Matching: An R Package}, journal = {Journal of Statistical Software}, year = 2008, volume = 25, number = 11, pages = {1--22} } @Article{IacPor07, author = {Stefano M. Iacus and Giuseppe Porro}, title = {Missing data imputation, matching and other applications of random recursive partitioning}, journal = {Computational Statistics and Data Analysis}, year = 2007, volume = 52, number = 2, pages = {773--789} } @article{StuGre08, title = {Using Full Matching to Estimate Causal Effects in Nonexperimental Studies: Examining the Relationship Between Adolescent Marijuana Use and Adult Outcomes}, author = {Elizabeth A. Stuart and Kerry M. Green}, journal = {Developmental Psychology}, volume = {44}, number = {2}, pages = {395--406}, year = {2008} } @PhdThesis{Moore08, author = {Ryan T. Moore}, title = {Political Analysis and Statistical Applications for Social Policy Research}, school = {Harvard University}, year = {2008}, OPTaddress = {}, month = {May}, } @Article{Moore08b, author = {Ryan T. Moore}, title = {blockTools: Blocking, Assignment, and Diagnosing Interference in Randomized Experiments}, journal = { }, year = {2008}, note = {{http://www.people.fas.harvard.edu/$\sim$rtmoore/software.blockTools.htm}} } @Incollection{NigOroOla03, author = {Gustavo Nigenda and Emanuel Orozco and Gustavo Olaiz}, editor = {Felicia Knaul and Gustavo Nigenda}, booktitle = {Caleidoscopia de la Salud}, title = {La Importancia de los Medicamentos en la Operacion del Seguro Popular de Salud}, publisher = {Funsalud}, pages = {263-273}, year = {2003} } @article{ImaVan04, title = {{Causal inference with general treatment regimes: Generalizing the propensity score}}, author = {Imai, K. and van Dyk, D.A.}, journal = {Journal of the American Statistical Association}, volume = {99}, number = {467}, pages = {854--866}, year = {2004} } @Book{MorWin07, author = {Stephen L. Morgan and Christopher Winship}, title = {Counterfactuals and Causal Inference: Methods and Principles for Social Research}, publisher = {Cambridge University Press}, year = 2007, address = {Cambridge} } @Article{AbaImb07, author = {Alberto Abadie and Guido W. Imbens}, title = {Bias-Corrected Matching Estimators for Average Treatment Effects}, journal = { }, year = {2007}, OPTkey = {}, OPTvolume = {}, OPTnumber = {}, OPTpages = {}, OPTmonth = {}, note = {{http://ksghome.harvard.edu/~aabadie/research.html}}, OPTannote = {} } @Book{Jevons1874, author = {W. Stanley Jevons}, title = {The Principles of Science: A Treatise on Logic and the Scientific Method}, publisher = {MacMillen and Co.}, year = 1874, address = {New York} } @Book{Twain1883, author = {Mark Twain}, title = {Life on the Mississippi}, publisher = {Chatto and Windus}, year = 1883, address = {London} } @Article{SamMic08, author = {Nicholas Sambanis and Alexander Michaelides}, title = {A Comment on Diagnostic Tools for Counterfactual Inference}, journal = {Political Analysis}, year = {2008}, OPTkey = {}, OPTvolume = {17}, OPTnumber = {1}, OPTpages = {}, OPTmonth = {}, OPTnote = {}, OPTannote = {} } @Article{McAfee02, author = {R. Preston McAfee}, title = {Coarse Matching}, journal = {Econometrica}, year = {2002}, volume = {70}, number = {5}, pages = {2025-2034} } @Article{Mielke85, author = {Paul W. Mielke Jr.}, title = {Geometric Concerns Pertaining to Applications of Statistical Tests in the Atmospheric Sciences}, journal = {Journal of the Atmospheric Sciences}, year = {1985}, volume = {42}, number = {12}, pages = {1209-1212} } @Book{Greene08, author = {William H. Greene}, title = {Econometric Analysis, 6th Edn.}, publisher = {Prentice Hall}, year = 2008, address = {New York} } @Article{LeeMil02, author = {Ronald Lee and Timothy Miller}, title = {An Approach to Forecasting Health Expenditures, with Application to the U.S. Medicare System}, journal = {Health Services Research}, year = {2002}, volume = {37}, number = {5}, pages = {1365-1386} } @Article{LubBeeBak95, author = {James Lubitz and James Beebe and Colin Baker}, title = {New England Journal of Medicine}, journal = {Longevity and Medicare Expenditures}, year = {1995}, volume = {332}, number = {15}, pages = {999-1003} } @Article{McKusick99, author = {David McKusick}, title = {Demographic Issues in Medicare Reform:Birthrates, Death Rates, and an Aging Population all Affect Medicare's Financing}, journal = {Health Affairs}, year = {1999}, volume = {18}, number = {1}, pages = {194-207} } @Article{Miller01, author = {Tim Miller}, title = {Increasing Longevity and Medicare Expenditures}, journal = {Demography}, year = {2001}, volume = {38}, number = {2}, pages = {215-226} } @unpublished{Caldis08, author = {Todd G. Caldis}, title = {The Long-Term Projection Assumptions for Medicare and Aggregate national health Expenditures}, note = {{http://www.cms.hhs.gov/ReportsTrustFunds/downloads/projectionmethodology.pdf}}, year = {2008} } @Article{Hansen08, author = {Ben Hansen}, title = {The Prognostic Analogy of the Propensity Score}, journal = {Biometrika}, year = 2008, volume = 95, number = 2, pages = {481--488} } @unpublished{GalSmiBla08, author = {Jose Galdo and Jeffrey Smith and Dan Black}, title = {Bandwidth Selection and the Estimation of Treatment Effects with Unbalanced Data}, note = {University of Michigan}, year = {2008} } @Article{Pronin08, author = {Emily Pronin}, title = {How We See Ourselves and How We See Others}, journal = {Science}, year = 2008, volume = 320, pages = {1170--1180} } @article{GraSci04, title = {{Puzzles, Proverbs, and Omega Matrices: The Scientific and Social Significance of Empirical Implications of Theoretical Models (EITM)}}, author = {Granato, Jim and Scioli, Frank}, journal = {Perspectives on Politics}, volume = {2}, number = {02}, pages = {313--323}, year = {2004}, publisher = {Cambridge Univ Press} } @book{GeoBen05, title = {{Case Studies and Theory Development in the Social Sciences}}, author = {George, A.L. and Bennett, A.}, year = {2005}, publisher = {Mit Press} } @article{MarQuiRug04, title = {{Competing Approaches to Predicting Supreme Court Decision Making}}, author = {Martin, A.D. and Quinn, K.M. and Ruger, T.W. and Kim, P.T.}, journal = {Perspectives on Politics}, volume = {2}, number = {04}, pages = {761--767}, year = {2004} } @Article{Grove05, author = {William M. Grove}, title = {Clinical Versus Statistical Prediction: The Contribution of Paul E. Meehl}, journal = {Journal of Clinical Psychology}, year = 2005, volume = 61, number = 10, pages = {1233--1243} } @proceedings{DjeSmi08, title = {Heterogeneous Impacts in PROGRESA}, address = {Bonn, Germany}, author = {Habiba Djebbari and Jeffrey Smith}, organization = {IZA}, year = {2008} } @Book{Meehl54, author = {Paul E. Meehl}, title = {Clinical Versus Statistical Prediction: A Theoretical Analysis and a Review of the Evidence}, publisher = {University of Minnesota Press}, year = 1954, address = {Minneapolis} } @Book{Rosenstone83, title = {Forecasting Presidential Elections}, author = {S.J. Rosenstone}, year = {1983}, publisher = {Yale University Press New Haven} } @Article{AdcCol01, author = {Robert Adcock and David Collier}, title = {Measurement Validity: A Shared Standard for Qualitative and Quantitative Research}, journal = {American Political Science Review}, year = {2001}, volume = {95}, number = {3}, month = {September}, pages = {529--546} } @Article{BatGreLev00, author = {R.H. Bates and A. Greif and M. Levi, and J.L. Rosenthal, and B.R. Weingast}, title = {The Analytic Narrative Project}, journal = {American Political Science Review}, year = {2000}, volume = {94}, number = {3}, pages = {696--702} } @Article{Carpenter00, author = {Daniel P. Carpenter}, title = {What is the Marginal Value of Analytic Narratives?}, journal = {Social Science History}, year = {2000}, volume = {24}, number={4}, pages = {653-668} } @Article{Skocpol00, author = {Theda Skocpol}, title = {Commentary: Theory Tackles History}, journal = {Social Science History}, year = {2000}, volume = {24}, number = {4}, pages = {677-684} } @article{Parikh00, author = {Sunita Parikh}, title = {The Strategic Value of Analytic Narratives}, journal = {Social Science History}, volume = {24}, year = {2000}, pages = {677--684}, number = {4} } @article{Mahoney00b, author = {James Mahoney}, title = {Path Dependence in Historical Sociology}, journal = {Theory and Society}, volume = {29}, year = {2000}, pages = {507--548} } @article{Pierson00, author = {Paul Pierson}, title = {Increasing Returns, Path Dependence, and the Study of Politics}, journal = {American Political Science Review}, year = {2000}, pages = {251--268}, month = {June} } @article{Mahoney99, author = {James Mahoney}, title = {Nominal, Ordinal, and Narrative Appraisal in Macro-Causal Analysis}, journal = {American Journal of Sociology}, volume = {104}, year = {1999}, pages = {1154-1196}, month = {January}, number = {4} } @article{Pierson00b, author = {Paul Pierson}, title = {Not Just What, but When: Timing and Sequence in Political Processes}, journal = {Studies in american Political Development}, volume = {14}, year = {2000}, pages = {72--92}, month = {spring} } @article{ColLev77, author = {David Collier and Steven Levitsky}, title = {Democracy with Adjectives: Conceptual Innovation in Comparative Research}, journal = {World Politics}, volume = {43}, year = {1977}, pages = {430--451}, month = {April}, number = {3} } @article{Elman05, author = {Colin Elman}, title = {Explanatory Typologies in Qualitative Studies of International Politics}, journal = {International Organization}, volume = {59}, year = {2005}, pages = {293--326}, month = {spring}, number = {2} } @article{Lustick96, author = {Ian S. Lustick}, title = {History, Historiography, and Political Science: Multiple Historical Records and the Problem of Selection Bias}, journal = {American Political Science Review}, volume = {90}, year = {1996}, pages = {605--618}, month = {September}, number = {3} } @Article{Campbell05, author = {James E. Campbell}, title = {Introduction: Assessments of the 2004 Presidential Vote Forecasts}, journal = {PS: Political Science \& Politics}, year = {2005}, volume = {38}, pages = {23--24} } @article{Lieberman05, author = {Evan S. Lieberman}, title = {Nested Analysis as a Mixed-Method Strategy for Comparative Research}, journal = {American Political Science Review}, volume = {99}, year = {2005}, pages = {435--452}, month = {August}, number = {3} } @techreport{Heckman08, author = {James J. Heckman}, title = {Econometric Causality}, institution = {National Bureau of Economic Research}, year = 2008, address = {Cambridge, MA}, number = 13934, note = {{http://www.nber.org/papers/w13934}} } @article{Hall06, author = {Peter A. Hall}, title = {Systematic Process Analysis: When and How to Use It}, journal = {European Management Review}, volume = {3}, year = {2006}, pages = {24--31}, month = {Spring}, number = {1} } @article{Converse87, title = {Changing Conceptions of Public Opinion in the Political Process}, author = {Philip E. Converse}, journal = {The Public Opinion Quarterly}, volume = {51}, pages = {12--24}, year = {1987} } @article{Mahoney08, author = {James Mahoney}, title = {Toward a Unified Theory of Causality}, journal = {Comparative Political studies}, volume = {41}, year = {2008}, pages = {412--436}, month = {April/May}, number = {4/5} } @article{DasNewVel03, title = {Nonparametric Estimation of Sample Selection Models}, author = {Mitali Das and Whitney K. Newey and Francis Vella}, journal = {Review of Economic Studies}, volume = {70}, year = {2003}, pages = {33--58} } @article{HerHei04, title = {The Distribution of R&D Subsidies and Its Effect on the Final Outcome of Innovation Policy}, author = {Liliana Herrera and Joost Heijs}, year = {04}, journal = {DRUID Summern conference 2004 on Industrial Dynamic, Innovation and Development,Elsinore, Denmark, June 14-16}, year = {2004} } @article{AbaDruHer01, title = {Implementing Matching Estimators for Average Treatment Effects in Stata}, author = {Alberto Abadie and David Drukker and Jane Leber Herr and Guido W. Imbens}, journal = {The Stata Journal}, volume = {1}, year = {2001}, pages = {1--18}, number = {1} } @unpublished{BryCapLuc02, title = {Why so Unhappy? The Effect of Union Membership on Job Satisfaction}, author = {Alex Bryson and Lorenzo Cappellari and Claudio Lucifora}, year = {2002}, note = {Policy Studies Institute and Centre for Economic Performance} } @article{DunAuMil03, title = {Derivation and Validation of a Clinical Scoring System to Predict the Need for an Intra-Aortic Balloon Pump in Patients Undergoing Adult Cardiac Surgery}, author = {Joel Dunning and JKK Au and RWJ Millner and AJ Levine}, journal = {Interactive Cardiovascular and Thoracic Surgery}, volume = {2}, year = {2003}, pages = {639--643} } @Book{GlaStr99, author = {Barney G. Glaser and Anselm L. Strauss}, title = {The Discovery of Grounded theory: Strategies for Qualitative Research}, publisher = {Aldine De Gruyter}, year = {1999}, address = {New York} } @Book{Tetlock05, author = {Philip E. Tetlock}, title = {Expert Political Judgment: How Good Is It? How Can We Know?}, publisher = {Princeton University Press}, year = {2005}, address = {Princeton} } @Book{Hammersley00, author = {Martyn Hammersley}, title = {Taking Sides in Social Research: Essays on Partisanship and Bias}, publisher = {Routledge}, year = {2000}, address = {London and New York} } @book{Little91, title = {{Varieties of Social Explanation: An Introduction to the Philosophy of Social Science}}, author = {Little, Daniel}, year = {1991}, publisher = {Westview Press} } @Book{Gerring07, author = {John Gerring}, title = {Case Study Research: Principles and Practices}, publisher = {Cambridge University Press}, year = 2007, address = {New York} } @article{Goldthorpe01, title = {{Causation, Statistics, and Sociology}}, author = {Goldthorpe, J.H.}, journal = {European Sociological Review}, volume = {17}, number = {1}, pages = {1--20}, year = {2001} } @book{Gill08, title = {{Bayesian Methods: A Social and Behavioral Sciences Approach, 2nd edition}}, author = {Jeff Gill}, year = {2008}, publisher = {Chapman \& Hall/CRC} } @book{Elster89, title = {Nuts and Bols for the Social Sciences}, author = {Jon Elster}, year = {1989}, publisher = {Cambridge University Press}, address = {Cambridge, New York} } @book{Hausman98, author = {Daniel M. Hausman}, title = {Causal Asymmetries}, publisher = {Cambridge University Press}, year = {1998}, address = {Cambridge UK, New York} } @book{Collins98, author = {Randall Collins}, title = {The Sociology of Philosophies: A Global Theory of Intellecutual Change}, publisher = {Belknap Press of Harvard University Press}, year = {1998}, address = {Cambridge,MA} } @InCollection{Hall09, author = {Peter A. Hall}, title = {Path Dependence}, booktitle = {The Future of Political Science: 100 Perspectives}, pages = { }, publisher = {Routledge}, year = {2009, forthcoming}, editor = {Gary King and Kay Scholzman and Norman Nie} } @article{MahGoe06, title = {{A Tale of Two Cultures: Contrasting Quantitative and Qualitative Research}}, author = {James Mahoney and Gary Goertz}, journal = {Political Analysis}, volume = {14}, number = {3}, pages = {227--249}, year = {2006} } @techreport{Duneier08, author = {Mitchell Duneier}, title = {How Not to Lie with Ethnography}, institution = {Princeton University}, year = {2008}, OPTkey = {}, OPTvolume = {}, OPTnumber = {}, OPTpages = {}, OPTmonth = {}, OPTnote = {}, OPTannote = {} } @Article{BraGoe00, author = {Bear Braumoeller and Gary Goertz}, title = {The Methodology of Necessary Conditions}, journal = {American Journal of Political Science}, year = 2000, volume = 44, number = 4, pages = {844--858}, month = {October} } @techreport{GlyQui08, author = {Adam Glynn and Kevin Quinn}, title = {Non-parametric Mechanisms and Causal Modeling}, institution = {Harvard}, year = 2008 } @InCollection{Goertz03, author = {Gary Goertz}, title = {The Substantive Importance of Necessary Condition Hypotheses}, booktitle = {Necessary Conditions: Theory, Methodology, and Applications}, publisher = {Rowman \& Littlefield}, year = 2003, editor = {Gary Goertz and Harvey Starr}, address = {Lanham, MD} } @book{RosAllMcc05, author = {Peter E. Rossi and Greg M. Allenby and Robert McCulloch}, title = {Bayesian Statistics and Marketing}, publisher = {John Wiley & Sons, Ltd}, year = 2005, address = {West Sussex, England} } @Article{Starfield91, author = {Starfield, B.}, title = {Primary care and health. {A} cross-national comparison}, journal = {The Journal of the American Medical Association}, year = {1991}, volume = {226}, number = {16}, pages = {2268-2271}, } @Article{WarMur82, author = {Warner, Kenneth and Murt, Hillary}, title = {Imact of the antismoking campaign on smoking prevalence: {A} cohort analysis}, journal = {Journal of Public Health Policy}, year = 1982, volume = 3, number = 4, pages = {374-390} } @Article{WilDeeLun00, author = {Wilmoth, J.R. and Deegan, L.J. and Lundstr\"{o}m, H. and Horiuchi, S.}, title = {Increase of maximum life-span in {S}weden, 1861-1999}, journal = {Science}, year = 2000, volume = 289, pages = {2366-2368} } @Article{Waldron91, author = {Waldron, Ingrid}, title = {Patterns and causes of gender differences in smoking}, journal = {Social Science and Medicine}, year = 1991, volume = 32, number = 9, pages = {989-1005} } @Article{DolPetBor04, author = {Doll, Richard and Peto, Richard and Boreham, Jillian and Sutherland, Isabelle}, title = {Mortality in relation to smoking: 50 years' observations on male {B}ritish doctors}, journal = {British Medical Journal}, year = {2004}, volume = {328}, pages = {1519-1527} } @Article{Doll99, author = {Doll, Richard}, title = {Tobacco: A Medical History}, journal = {Journal of Urban Health: {B}ulletin of the {New York Academy of Medicine} }, year = 1999, volume = 76, number = 3, pages = {989-1005} } @Article{RouBhoPar98, author = {Routh, Hirak Behari and Bhowmik, Kazal Rekha and Parish, Jennifer and Parish, Lawrence}, title = {Historical Aspects of Tobacco Use and Smoking}, journal = {Clinics in Dermatology}, year = 1998, volume = 16, pages = {539-544} } @Article{LeeTul97, author = {Lee, Ronald and Tuljapurkar, Shripad}, title = {Death and taxes: Longer life, consumption, and Social Security}, journal = {Demography}, year = 1997, volume = 34, number = 1, pages = {67-81}, month = {June} } @TechReport{SSAHist07, author = {{Social Security Administration Historian's Office}}, title = {Social Security A Brief History}, institution = {Social Security Administration}, year = 2007, number = {21-059}, month = {October 2007} } @Article{Schneider99, author = {Schneider, Edward}, title = {Aging in the Third Millenium}, journal = {Science}, year = 1999, volume = 283, number = 5403, pages = {796-797} } @Article{FrePla07, author = {Freedland, Stephen and Platz, Elizabeth}, title = {Obesity and prostate cancer: making snese out of apparently conflicting data}, journal = {Epidemiologic Reviews}, year = 2007, volume = 29, number = 1, pages = {88-97} } @Article{LitWhiKri07, author = {Littman, Alyson and White, Emily and Kristal, Alan}, title = {Anthropometrics and prostate cancer risk}, journal = {American Journal of Epidemiology}, year = 2007, volume = 165, number = 11, pages = {1271-1279} } @Article{YanKelHe07, author = {Yang, Wenjie and Kelly, Tanika and He, Jiang}, title = {Genetic Epidemiology of Obesity}, journal = {Epidemiologic Reviews}, year = 2007, volume = 29, number = 1, pages = {49-61} } @Article{RisHelKne90, author = {Rissanen, Aila and Heli\"{o}vaara, Markku and Knekt, Paul and Reunanen, Antti and Aromaa, Arpo and Maatela, Jouni}, title = {Risk of disability and mortality due to verweight in a {F}innish population}, journal = {British Medical Journal}, year = 1990, volume = 301, number = {}, pages = {835-837} } @Article{HeiEriEll00, author = {Heitmann, BL and Erikson, H and Ellsinger, B-M and Mikkelsen, KL and Larsson, B}, title = {Mortaltiy associated with body fat, fat-free mass and body mass index among 60-year-old {S}wedish men $-$ a 22-year follow-up. {T}he study of mean born in $1913$}, journal = {International Journal of Obesity}, year = 2000, volume = 24, pages = {33-37} } @Article{CorMonSom06, author = {Romero-Corral, Abel and Montori, Victor and Somers, Virend and Korinek, Josef and Thomas, Randal and Allison, Thomas and Mookadam, Farouk and Lopez-Jimenez, Francisco}, title = {Association of bodyweight with total mortality and with cardiovascular events in coronary artery disease: a systematic review of cohort studies}, journal = {The Lancet}, year = 2006, volume = 368, pages = {666-678}, month = {August} } @Article{FleGraWil07, author = {Flegal, Katherine and Graubard, Barry and Williamson, David and Gail, Mitchell}, title = {Cause-specific excess deaths associated with underweight, overweight, and obesity}, journal = {Journal of the American Medical Association}, year = 2007, volume = 298, number = 17, pages = {2028-2037} } @Article{AdaSchHar06, author = {Adams, Kenneth and Schatzkin, Arthur and Harris, Tamara and Kipnis, Victor and Mouw, Traci and Ballard-Barbash, Rachel and Hollenbeck, Albert and Leitzmann, Michael}, title = {Overweight, obesity, and mortality in a large prospective cohort of persons $50$ to $71$ years old}, journal = {New England Journal of Medicine}, year = 2006, volume = 355, number = 8, pages = {763-778} } @Article{SukSacBod03, author = {Suk, Seung-Han and Sacco, Ralph and Boden-Albala Bernadette and Cheun, Jian and Pittman, John and Elkind, Mitchell and Paik, Myunghee}, title = {Abdominal obesity and the risk of ischemic stroke: The {N}orthern {M}anhattan {S}troke {S}tudy}, journal = {Stroke}, year = 2003, volume = 34, number = 7, pages = {1586-1592}, month = {July} } @Book{Quetelet1842, author = {Qu\'{e}telet, Lambert Adolphe Jacques}, title = {A treatise on man and the development of his faculties}, publisher = {William and Robert Chambers}, year = 1842, address = {Edinburgh}, } @TechReport{ssa07, author = {{The Board of Trustees, Federal Old-Age and Survivors Insurance and Federal Disability Insurance Trust Funds}}, title = {The 2007 annual report of the board of trustees of the federal old-age and survivors insurance and federal disability insurance trust funds}, institution = {Social Security Administration}, year = 2007 } @TechReport{ssa04, author = {{The Board of Trustees, Federal Old-Age and Survivors Insurance and Federal Disability Insurance Trust Funds}}, title = {The 2004 annual report of the board of trustees of the federal old-age and survivors insurance and federal disability insurance trust funds}, institution = {Social Security Administration}, year = 2004 } @TechReport{ssa06, author = {{The Board of Trustees, Federal Old-Age and Survivors Insurance and Federal Disability Insurance Trust Funds}}, title = {The 2006 annual report of the board of trustees of the federal old-age and survivors insurance and federal disability insurance trust funds}, institution = {Social Security Administration}, year = 2006 } @TechReport{USG:05, author = {{United States Government}}, title = {Budget of the United States Government, Fiscal Year $2006$}, institution = {US Government Printing Office}, year = {2005} } @TechReport{USG:09, author = {{United States Government}}, title = {Budget of the United States Government, Fiscal Year $2009$}, institution = {US Government Printing Office}, year = {2009} } @TechReport{ShoSunBun87, author = {Shoven, John and Sundberg, Jeffrey and Bunker, John}, title = {The social security cost of smoking}, institution = {National Bureau of Economic Research}, year = 1987, type = {Working Paper Series}, number = 2234 } @TechReport{Gravelle98, author = {Gravelle, Jane}, title = {The proposed tobacco settlement: who pays for the health costs of smoking?}, institution = {Library of Congress, Congressional Research Service}, year = 1998, number = {97-1053 E} } @Article{HaeShiMil56, author = {Haenszel, W and Shimkin, MB and Miller, HP}, title = {Tobacco smoking patterns in the {U}nited {S}tates}, journal = {Public Health Monograph}, year = 1956, volume = 45, pages = {1-105} } @Article{WalLyeBra91, author = {Waldron, I and Lye, D and Brandon, A}, title = {Gender differences in teenage smoking}, journal = {Women Health}, year = 1991, volume = 17, pages = {63-87} } @Article{Ferrence88, author = {Ferrence, R}, title = {Sex differences in cigarette smoking in {C}anada, 1900-1978: {A} reconstructed cohort study}, journal = {Canadian Journal of Public Health}, year = 1988, volume = 79, pages = {160-165} } @Article{Elkind85, author = {Elkind, A}, title = {The social definition of women's smoking behavior}, journal = {Social Science and Medicine}, year = 1985, volume = 20, pages = {1269-1278} } @Article{LynBro01, author = {Lynch, Scott and Brown, Scott}, title = {Reconsidering mortality compression and deceleration: {A}n alternative model of mortality rates}, journal = {Demography}, year = 2001, volume = 38, number = 1, pages = {79-95} } @TechReport{Holmer08, author = {Holmer, Martin}, title = {SSASIM Guide}, institution = {Policy Simulation Group}, year = 2008, month = {March} } @Article{MeySab00, author = {Meyerson, Noah and Sabelhaus, John}, title = {Uncertainty in Social Security Trust Fund Projections}, journal = {National Tax Journal}, year = 2000, volume = 53, number = 3, pages = {515-529} } @Article{TulLiBoe00, author = {Tuljapurkar, Shripad and Li, Nan and Boe, Carl}, title = {A universal pattern of mortality decline in the $G7$ countries}, journal = {Nature}, year = 2000, volume = 405, pages = {789-792} } @Article{Boyer47, author = {Boyer, Carl}, title = {Note on an early graph of statistical data {(Huygens 1669)}}, journal = {Isis}, year = 1947, volume = 37, number = {3$/$4}, pages = {148-149} } @Book{Vollgraff50, editor = {Johan Adriaan Vollgraff}, title = {Oeuvres compl\`{e}tes de Christiaan Huygens. Publi\'{e}es par la Soci\'{e}t\'{e} hollandaise des sciences}, publisher = {La Haye: M. Nijhoff}, year = 1950 } @TechReport{Wilmoth03, author = {Wilmoth, John R.}, title = {Overview and Discussion of the Social Security Mortality Projections}, institution = {Technical Panel on Assumptions and Methods, Social Security Advisory Board}, year = 2003, } @TechReport{SSAB07, author = {{Social Security Advisory Board Technical Panel}}, title = {2007 Technical Panel on Assumptions and Methods}, institution = {Social Security Advisory Board}, year = 2007, } @TechReport{SSAB99, author = {{Social Security Advisory Board Technical Panel}}, title = {1999 Technical Panel on Assumptions and Methods}, institution = {Social Security Advisory Board}, year = 1999, } @TechReport{SSAB94, author = {{Social Security Advisory Board Technical Panel}}, title = {1994 Technical Panel on Assumptions and Methods}, institution = {Social Security Advisory Board}, year = 1994, } @TechReport{SSAB91, author = {{Social Security Advisory Board Technical Panel}}, title = {1991 Technical Panel on Assumptions and Methods}, institution = {Social Security Advisory Board}, year = 1991, } @Article{Alho90, author = {Alho, Juha}, title = {Effects of targets and aggregration on the propogation of error in mortality forecasts}, journal = {Mathematical Population Studies}, year = 1990, volume = 2, pages = {209-227} } @Article{CoaKis86, author = {Coale, Ansley and Kisker, Ellen}, title = {Mortality crossover: {R}eality or bad data}, journal = {Population Studies}, year = 1986, volume = 40, number = 3, pages = {389-401} } @Article{Parascandola04, author = {Parascandola, Mark}, title = {Skepticism, statistical methods, and the cigarette: {A} historical analyis of a methodological debate}, journal = {Perspectives in Biology and Medicine}, year = 2004, volume = 47, number = 42, pages = {244-261} } @TechReport{Ball73, author = {Ball, Robert}, title = {Hearings before the {S}pecial {C}ommittee on {Aging}}, institution = {U.S. Senate, Ninety-Third Congress}, year = 1973, number = {Part 1}, month = {January}, note = {SUDOC:Y4.Ag4:So1/2/pt.1} } @Article{Olshansky05, author = {Olshansky, S. Jay and Passaro, Douglas and Hershow, Ronald and Layden, Jennifer and Carnes, Bruce and Brody, Jacob and Hayflick, Leonard and Butler, Robert and Allison, David and Ludwig, David}, title = {A potential decline in life expectancy in the {U}united {S}tates in the 21st century}, journal = {The New England Journal of Medicine}, year = 2005, volume = 352, number = 11, pages = {1138-1145} } @TechReport{ssa117, author = {Cheng, Anthony and Miller, Michael and Morris, Michael and Schultz, Jason and Skirvin, J. Patrick and Walder, Danielle}, title = {A stochastic model of the long-range financial status of the {OASDI} program}, institution = {Social Security Administration, Office of the Chief Actuary}, year = 2004, note = {Actuarial Study No. 117} } @TechReport{ssa116, author = {Bell, Felicitie and Miller, Michael}, title = {Life tables for the {United States} social security area 1900-2100}, institution = {Social Security Administration, Office of the Chief Actuary}, year = 2002, note = {Actuarial Study No. 116} } @TechReport{ssa120, author = {Bell, Felicitie and Miller, Michael}, title = {Life tables for the {United States} social security area 1900-2100}, institution = {Social Security Administration, Office of the Chief Actuary}, year = 2005, note = {Actuarial Study No. 120} } @Article{Warner78, author = {Warner, Kenneth}, title = {Possible increases in the underreporting of cigarette consumption}, journal = {Journal of the American Statitical Association}, year = 1978, volume = 73, number = 362, pages = {314-318} } @Article{CanFisBak65, author = {Cannell, C.F. and Fisher, G. and Bakker, T.}, title = {Reporting of hospitalization in the health interview survey}, journal = {Vital and Health Statistics}, year = 1965, volume = 2, number = 6, pages = {i-71} } @Article{Halley93, author = {Halley, Edmund}, title = {An estimate of the degrees of mortality of mankind, drawn from curious tables of the births and funerals at the city of Breslaw; with an attempt to ascertain the price of annuities upon lives}, journal = {Philosophical Transactions of the Royal Society of London}, year = 1693, volume = 17, pages = {596-610} } @Article{Wright86, author = {Wright, VB}, title = {Will quitting smoking help Medicare solve its financial problems?}, journal = {Inquiry}, year = 1986, volume = 23, number = 1, pages = {76-82} } @TechReport{HMD08, author = {{University of California, Berkeley (USA)} and {Max Planck Institute for Demographic Research (Germany)}}, title = {Human Mortality Database}, year = 2008, institution = {\url{http://www.mortality.org}}, note = {data downloaded on April 7, 2008} } @Article{SasIch02, author = {Sascha O.\ Becker and Andrea Ichino}, title = {Estimation of average treatment effects based on propensity scores}, journal = {The Stata Journal}, year = 2002, volume = 2, number = 4, pages = {358--377} } @Article{JacAdaMul99, author = {Jacobs, David R., Jr and Adachi, Hisashi and Mulder, Ina and Kromhout, Daan and Menotti, Alessandro and Nissinen, Aulikki and Blackburn, Henry}, title = {Cigarette Smoking and Mortality Risk: Twenty-five-Year Follow-up of the Seven Countries Study}, journal = {Archives of Internal Medicine}, year = 1999, volume = 159, number = 7, pages = {733-740} } @Article{PeeBarWil03, author = {Peeters, Anna and Barendregt, Jan and Willekens, Frans and Mackenbach, Johan and Al Mamun, Abdullah and Bonneux, Luc}, title = {Obesity in Adulthood and its Consequences for Life Expectancy: A Life-Table Analysis}, journal = {Annals of Internal Medicine}, year = 2003, volume = 138, number = {24-32} } @Article{LynSmi05, author = {Lynch, John and Smith, George Davey}, title = {A Life Course Approach to Chronic Disease Epidemiology}, journal = {Annual Review of Public Health}, year = 2005, volume = 26, number = 1, pages = {1-35}, } @Article{Peace85, author = {Peace, L.R.}, title = {A Time Correlation Between Cigarette Smoking and Lung Cancer}, journal = {The Statistician}, year = 1985, volume = 34, number = 4, pages = {371-381} } @Article{Sturm02, author = {Sturm, Roland}, title = {The Effects of Obesity, Smoking, and Drinking on Medical Problems and Cost}, journal = {Health Affairs}, year = 2002, pages = {245-253}, month = {March/April} } @TechReport{Gutterman08, author = {Gutterman, Sam}, title = {Human Behavior: An Impediment to Future Mortality Improvement, A Focus on Obesity and Related Matters}, institution = {Society of Actuaries}, year = 2008, note = {Living to 100 and Beyond Symposium} } @Article{BakOlsSor07, author = {Baker, Jennifer and Olsen, Lina and S{\o}rensen,Thorkild}, title = {Childhood Body-Mass Index and the Risk of Coronary Heart Disease in Adulthood}, journal = {New England Journal of Medicine}, year = 2007, volume = 357, number = 23, pages = {2329-2337} } @Article{LeuSia03, title = {{PSMATCH2: Stata module to perform full Mahalanobis and propensity score matching, common support graphing, and covariate imbalance testing}}, author = {Leuven, Edwin and Sianesi, Barbara}, journal = {Statistical Software Components}, year = 2003 } @Article{Kalton68, author = {G. Kalton}, title = {Standardization: A Technique to Control for Extraneous Variables}, journal = {Applied Statistics}, year = 1968, volume = 17, number = 2, pages = {118--136} } @Article{Wei82, title = {Interval estimation of location difference with incomplete data}, author = {Wei, L. J.}, journal = {Biometrika}, volume = {69}, number = {1}, pages = {249--251}, year = {1982} } @article{Moulton04, title = {Covariate-based constrained randomization of group-randomized trials}, author = {Moulton, L.H.}, journal = {Clinical Trials}, volume = {1}, number = {3}, pages = {297}, year = {2004} } @Unpublished{Wand07, author = {Jonathan Wand}, title = {Credible Comparisons Using Interpersonally Incomparable Data: Ranking self-evaluations relative to anchoring vignettes or other common survey questions}, year = {2007}, note = {http://wand.stanford.edu}, } @Unpublished{Buckley08, author = {Jack Buckley}, title = {Survey Context Effects in Anchoring Vignettes}, year = {2008}, note = {http://polmeth.wustl.edu/workingpapers.php}, } @Book{GrzymalaBusse07, author = {Anna Grzymala-Busse}, title = {Rebuilding Levithan: Party Competition and State Exploitation in Post-Communist Democracies}, publisher = {Cambridge University Press}, address = {New York}, year = {2007} } @Unpublished{SoeDelHar07, title = {{Validating the Use of Vignettes for Subjective Threshold Scales}}, author = {Arthur Van Soest and Liam Delaney and Colm P. Harmon and Arie Kapteyn and James P. Smith}, year = {2007}, note = {UCD Geary Institute Working Paper} } @article{JavRip07, title = {{An" Unfolding" Latent Variable Model for Likert Attitude Data: Drawing Inferences Adjusted for Response Style}}, author = {Kristin N. Javaras and Brian D. Ripley}, journal = {Journal of the American Statistical Association}, volume = {102}, number = {478}, pages = {454--463}, year = {2007}, publisher = {American Statistical Association} } @article{KapSmiSoe07, title = {{Vignettes and Self-Reports of Work Disability in the United States and the Netherlands}}, author = {Arie Kapteyn and James P. Smith and Arthur Soest}, journal = {American Economic Review}, volume = {97}, number = {1}, pages = {461--473}, year = {2007}, publisher = {American Economic Association Publications} } @article{Bowling05, title = {{Just one question: If one question works, why ask several?}}, author = {Ann Bowling}, journal = {Journal of Epidemiology and Community Health}, volume = {59}, number = {5}, pages = {342}, year = {2005} } @article{DamVasSzw05, title = {{Perception of health state and the use of vignettes to calibrate for socioeconomic status: results of the World Health Survey in Brazil, 2003}}, author = {Damacena, G.N. and Vasconcellos, M.T.L. and Szwarcwald, C.L.}, journal = {Cadernos de Sa{\'u}de P{\'u}blica}, volume = {21}, pages = {65--77}, year = {2005}, publisher = {SciELO Brasil} } @article{HseTan07, title = {{Sun and Water: On a Modulus-Based Measurement of Happiness}}, author = {Christopher K. Hsee and Judy Ningyu Tang}, journal = {Emotion}, volume = {7}, pages = {213--218}, year = {2007} } @article{SalTanMur04, title = {{Comparability of self rated health: cross sectional multi-country survey using anchoring vignettes}}, author = {Joshua A. Salomon and Ajay Tandon and Christopher J.L. Murray}, journal = {British Medical Journal}, volume = {328}, number = {7434}, pages = {258}, year = {2004}, publisher = {Br Med Assoc} } @unpublished{AbaDiaHai09, title = {Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California's Tobacco Control Program}, author = {Alberto Abadie and Alexis Diamond and Jens Hainmueller}, journal = {Journal of the American Statistical Association}, year = {2009, forthcoming} } @Article{AbaDiaHai09b, author = {Alberto Abadie and Alexis Diamond and Jens Hainmueller}, title = {Synth: An R Package for Synthetic Control Methods in Comparative Case Studies}, journal = {Journal of Statistical Software}, year = {2009, forthcoming} } @article{LozSolGak07, title = {{Benchmarking of performance of Mexican states with effective coverage}}, author = {Rafael Lozano and Patricia Soliz and Emmanuela Gakidou and Jesse Abbott-Klafter and Dennis M. Feehan and Cecilia M. Vidal and Juan Pablo Ortiz and Christopher J. L. Murray}, journal = {Salud P{\'u}blica de M{\'e}xico}, volume = {49}, pages = {53--69}, year = {2007}, publisher = {SciELO Public Health} } @article{MarPol95, title = {{Diagnostics for Redesigning Survey Questionnaires: Measuring Work in the Current Population Survey}}, author = {Elizabeth Martin and Anne E. Polivka}, journal = {Public Opinion Quarterly}, volume = {59}, number = {4}, pages = {547--567}, year = {1995}, publisher = {AAPOR} } @article{Tourangeau04, title = {{Survey Research and Societal Change}}, author = {Roger Tourangeau}, journal = {Annual Review of Psychology}, volume = {55}, number = {1}, pages = {775--801}, year = {2004}, publisher = {Annual Reviews} } @conference{GerWelKel96, title = {{Who lives here? The use of vignettes in household roster research}}, year = {1996}, author = {Eleanor R. Gerber and Tracy R. Wellens and Catherine Keeley}, booktitle = {Proceedings of the Section on Survey Research Methods, American Statistical Association}, pages = {962--967} } @InCollection{Tourangeau91, author = {Roger Tourangeau}, title = {Context Effects on Respones to Attitude Questions: Attitudes as Memory Structures}, booktitle = {Contextual Effects in Social and Psychological Research}, pages = {35-48}, publisher = {Springer-Verlag}, year = {1991}, editor = {Norbert Schwarz and Seymour Sudman}, address = {New York} } @InCollection{Smith91, author = {Tom Smith}, title = {Thoughts on the Nature of Context Effects}, booktitle = {Contextual Effects in Social and Psychological Research}, pages = {163-186}, publisher = {Springer-Verlag}, year = {1991}, editor = {Norbert Schwarz and Seymour Sudman}, address = {New York} } @article{NieCraMat91, title = {{Measuring Internal Political Efficacy in the 1988 National Election Study}}, author = {Richard G. Niemi and Stephen C. Craig and Franco Mattei}, journal = {American Political Science Review}, volume = {85}, number = {4}, pages = {1407--1413}, year = {1991}, publisher = {JSTOR} } @article{CraNieSil90, title = {{Political efficacy and trust: A report on the NES pilot study items}}, author = {Stephen C. Craig and Richard G. Niemi and Glenn E. Silver}, journal = {Political Behavior}, volume = {12}, number = {3}, pages = {289--314}, year = {1990}, publisher = {Springer} } @article{SteKorCar92, title = {{Arenas and Attitudes: A Note on Political Efficacy in a Federal System}}, author = {Marianne C. Stewart and Allan Kornberg and Harold D. Clarke and Alan Acock}, journal = {Journal of Politics}, volume = {54}, number = {1}, pages = {179--196}, year = {1992}, publisher = {JSTOR} } @book{Oliver01, title = {{Democracy in Suburbia}}, author = {J. Eric Oliver}, year = {2001}, publisher = {Princeton University Press}, address = {Princeton, NJ} } @InCollection{Strack91, author = {Fritz Strack}, title = {'Order Effects' in Survey Research: Activation and Information Functions of Preceding Questions}, booktitle = {Contextual Effects in Social and Psychological Research}, pages = {23-34}, publisher = {Springer-Verlag}, year = {1991}, editor = {Norbert Schwarz and Seymour Sudman}, address = {New York}, } @book{Weisberg96, title = {{An introduction to survey research, polling, and data analysis}}, author = {Herbert F. Weisberg and Jon A. Krosnick and Bruce D. Bowen}, year = {1996}, publisher = {Sage Publications}, address = {Thousand Oaks, CA} } @book{Fowler95, title = {{Improving Survey Questions: Design and Evaluation}}, author = {Floyd J. Fowler}, year = {1995}, publisher = {Sage Publications}, address = {Thousand Oaks, CA} } @InCollection{SchHipNoe91, author = {Norbert Schwarz and Hans-J. Hippler and Elisabeth Noelle-Neumann}, title = {A Cognitive Model of Response-Order Effects}, booktitle = {Contextual Effects in Social and Psychological Research}, pages = {187-202}, publisher = {Springer-Verlag}, year = {1991}, editor = {Norbert Schwarz and Seymour Sudman}, address = {New York}, } @article{SchStrMai91, title = {{Assimilation and Contrast Effects in Part-Whole Question Sequences: A Conversational Logic Analysis}}, author = {Norbert Schwarz and Fritz Strack and Hans-Peter Mai}, journal = {Public Opinion Quarterly}, volume = {55}, number = {1}, pages = {3--23}, year = {1991}, publisher = {AAPOR} } @article{WilKe95, title = {{Part-Whole Question Order Effects: Views of Rurality}}, author = {Fern K. Willits and Bin Ke}, journal = {Public Opinion Quarterly}, volume = {59}, number = {3}, pages = {392--403}, year = {1995}, publisher = {AAPOR} } @article{MccObr88, title = {{Question-Order Effects on the Determinants of Subjective Well-Being}}, author = {McKee J. McClendon and David J. O'Brien}, journal = {Public Opinion Quarterly}, volume = {52}, number = {3}, pages = {351--364}, year = {1988}, publisher = {AAPOR} } @article{Finkel87, title = {{The Effects of Participation on Political Efficacy and Political Support: Evidence from a West German Panel}}, author = {Steven E. Finkel}, journal = {Journal of Politics}, volume = {49}, number = {2}, pages = {441--464}, year = {1987} } @book{SchPre96, title = {{Questions and Answers in Attitude Surveys: Experiments on Question Form, Wording, and Context}}, author = {Howard Schuman and Stanley Presser}, year = {1996}, publisher = {Sage}, address = {Thousand Oaks, CA} } @article{Krosnick99, title = {{Survey Research}}, author = {Jon A. Krosnick}, journal = {Annual Review of Psychology}, volume = {50}, number = {1}, pages = {537--567}, year = {1999}, publisher = {Annual Reviews} } @book{SudBraSch96, title = {{Thinking about Answers: The Application of Cognitive Processes to Survey Methodology}}, author = {Seymour Sudman and Norman M. Bradburn and Norbert Schwarz}, year = {1996}, publisher = {Jossey-Bass Publishers}, address = {San Francisco, CA} } @article{KriWilMos97, title = {{Measuring Social Class U.S. Public Health Research: Concepts, Methodologies, and Guidelines}}, author = {N. Krieger and D.R. Williams and M.E. Moss}, journal = {Annual Reviews in Public Health}, volume = {18}, number = {1}, pages = {341--378}, year = {1997}, publisher = {Annual Reviews} } @book{Payne51, title = {{The Art ofAsking Questions}}, author = {Stanley L. Payne}, publisher = {Princeton University Press}, address = {Princeton, NJ}, year = {1951} } @InCollection{Bradburn83, author = {Norman M. Bradburn}, title = {Response Effects}, booktitle = {Handbook of Survey Research}, pages = {}, publisher = {Academic Press}, year = {1983}, address = {New York, NY}, editor = {Peter H. Rossi and James D. Wright and Andy B. Anderson}, } @Article{Robins08, author = {James M. Robins}, title = {Causal models for estimating the effects of weight gain on mortality}, journal = {International Journal of Obesity}, year = 2008, volume = 32, pages = {s15--s41} } @Article{OepVau02, author = {Oeppen, Jim and Vaupel, James}, title = {Broken Limits to Life Expectancy}, journal = {Science}, year = 2002, volume = 296, pages = {1029-1031}, month = {May} } @Article{HorWil98, author = {Horiuchi, Shiro and Wilmoth, John}, title = {Deceleration in the Age Pattern of Mortality at Older Ages}, journal = {Demography}, year = 1998, volume = 35, number = 4, pages = {391-412}, month = {November} } @Article{PreWan06, author = {Preston, Samuel and Wang, Haidong}, title = {Sex Mortality Differences in the United States: The Role of Cohort Smoking Patterns}, journal = {Demography}, year = 2006, volume = 43, number = 4, pages = {631-646}, month = {November} } @article{Finkel85, title = {{Reciprocal Effects of Participation and Political Efficacy: A Panel Analysis}}, author = {Steven E. Finkel}, journal = {American Journal of Political Science}, volume = {29}, number = {4}, pages = {891--913}, year = {1985} } @article{DipGla99, title = {{Incentives and Social Capital: Are Homeowners Better Citizens?}}, author = {Denise DiPasquale and Edward L. Glaeser}, journal = {Journal of Urban Economics}, volume = {45}, number = {2}, pages = {354--384}, year = {1999}, publisher = {Elsevier} } @book{ColRai78, title = {{Social Standing in America: New Dimensions of Class}}, author = {Richard P. Coleman and Lee Rainwater}, publisher = {Basic Books}, address = {New York, NY}, year = {1978} } @article{GruSor98, title = {{Can Class Analysis Be Salvaged?}}, author = {David Grusky and Jesper B. Sorensen}, journal = {American Journal of Sociology}, volume = {103}, number = {5}, pages = {1187--1234}, year = {1998}, publisher = {UChicago Press} } @article{Sorensen00, title = {{Toward a Sounder Basis for Class Analysis}}, author = {Aage B. Sorensen}, journal = {American Journal of Sociology}, volume = {105}, number = {6}, pages = {1523--1558}, year = {2000}, publisher = {University of Chicago Press} } @book{JacJac91, title = {{Class Awareness in the United States}}, author = {Mary R. Jackman and Robert W. Jackman}, publisher = {University of California Press}, year = {1991}, address = {Berkeley, CA} } @article{Fischer03, title = {{The Relative Importance of Income and Race in Determining Residential Outcomes in US Urban Areas, 1970-2000}}, author = {Mary J. Fischer}, journal = {Urban Affairs Review}, volume = {38}, number = {5}, pages = {669-696}, year = {2003} } @article{SchHipDeu85, title = {{Response Scales: Effects of Category Range on Reported Behavior and Comparative Judgments}}, author = {Norbert Schwarz and Hans J. Hippler and Bridget Deutsch and Fritz Strack}, journal = {Public Opinion Quarterly}, volume = {49}, number = {3}, pages = {388--395}, year = {1985}, publisher = {The Trustees of Columbia University} } @article{JavPopLal08, title = {{Co-occurrence of Binge Eating Disorder with Psychiatric and Medical Disorders.}}, author = {Kristin Javaras and Harrison Pope and Justine Lalonde and Jacqueline Roberts and Yael Nillni and Nan Laird and Cynthia Bulik and Scott Crow and Susan McElroy and B. Timothy Walsh and others}, journal = {The Journal of Clinical Psychiatry}, volume = {69}, number = {2}, pages = {266-273}, year = {2008}, publisher = {J Clin Psychiatry} } @article{SinAdlMar03, title = {{Subjective social status: its determinants and its association with measures of ill-health in the Whitehall II study}}, author = {Archana Singh-Manoux and Nancy E. Adler and Michael G. Marmot}, journal = {Social Science and Medicine}, volume = {56}, number = {6}, pages = {1321--1333}, year = {2003}, publisher = {Elsevier} } @Article{RogHumKru05, author = {Rogers, Richard and Hummer, Robert and Krueger, Patrick and Pampel, Fred}, title = {Mortality Attributable to Cigarette Smoking in the United States}, journal = {Population and Development Review}, year = 2005, volume = 31, number = 2, pages = {259-292}, month = {June} } @Article{MehCha09, author = {Mehta, Neil and Chang, Virginia}, title = {Mortality Attributable to Obesity Among Middle-Adults in the United States}, journal = {Demography}, year = 2009, volume = {46}, number = {4}, pages = {851-872}, } @Article{StuRinAnd04, author = {Sturm, Roland and Ringel, Jeanne and Andreyeva, Tatiana}, title = {Increasing Obesity Rates and Disability Trends}, journal = {Health Affairs}, year = 2004, volume = 23, number = 2, pages = {199-205} } @Book{SloSmiTay03, author = {Sloan, Frank and Smith, Kerry and Taylor, Donald}, title = {The Smoking Puzzle: Information, Risk, Perception, and Choice}, publisher = {Harvard University Press}, year = 2003, address = {Cambridge, Mass.} } @Article{RyaZweOra92, author = {Ryan, James and Zwerling, Craig and Orav, Endel John}, title = {Occupational Risks Associated with Cigarette Smoking{:} A Prospective Study}, journal = {American Journal of Public Health}, year = 1992, volume = 82, number = 1, pages = {29-32}, } @Article{LevGusVel97, author = {Levine, Phillip and Gustafson, Tara and Velenchik, Ann}, title = {More Bad News for Smokers? The Effects of Cigarette Smoking on Wages}, journal = {Industrial and Labor Relations Review}, year = 1997, volume = 50, number = 3, pages = {493-509} } @Book{SloOstPic04, author = {Sloan, Frank and Ostermann, Jan and Picone, Gabriel and Conover, Christopher and Taylor, Donald}, title = {The Price of Smoking}, publisher = {The MIT Press}, year = 2004, address = {Cambridge, Mass.} } @Article{DolPetWhe94, author = {Doll, Richard and Peto, Richard and Wheatley, Keith and Gray, Richard and Sutherland, Isabelle}, title = {Mortality in Relation to Smoking: 40 Years' Observations on Male British Doctors}, journal = {British Medical Journal}, year = 1994, volume = 309, number = 6959, pages = {901-911} } @book{Mayhew91, title={{Divided We Govern: Party Control, Lawmaking and Investigations}}, author={David R. Mayhew}, year={1991}, publisher={New Haven CT, Yale University Press} } @article{Sebastiani02, title={{Machine learning in automated text categorization}}, author={Fabrizio Sebastiani}, journal={ACM Computing Surveys (CSUR)}, volume={34}, number={1}, pages={1--47}, year={2002}, publisher={ACM New York, NY, USA} } @article{PanLee08, title={{Opinion Mining and Sentiment Analysis}}, author={Bo Pang and Lillian Lee}, journal={Foundations and Trends in Information Retrieval}, volume={2}, number={1}, pages={1--135}, year={2008} } @Book{Rudalevige02, author = {Andrew Rudalevige}, title = {Managing the President's Program}, publisher = {Princeton University Press}, year = {2002}, address = {Princeton, NJ} } @Book{Kellstedt03, author = {Paul M. Kellstedt}, title = {The Mass Media and the Dynamics of American Racial Attitudes}, publisher = {Cambridge University Press}, year = {2003}, address = {New York, NY} } @Book{Gilens99, author = {Martin Gilens}, title = {Why Americans Hate Welfare}, publisher = {University of Chicago Press}, year = {1999}, address = {Chicago, IL} } @unpublished{NovRau08, title = {The Intergenerational Transfer of Public Pension Promises}, author = {Robert Novy-Marx and Joshua D.Rauh}, journal = {Working Paper}, year = {2008}, note = {http://www.nber.org/papers/w14343} } @Article{Helmond08, author = {Anne Helmond}, title = {How Many Blogs Are There? Is Someone Still Counting?}, journal = {The Blog Herald}, year = 2008, number = {2/11}, note = {http://www.blogherald.com/2008/02/11/how-many-blogs-are-there-is-someone-still-counting/} } @book{Mendelberg01, title={{The Race Card: Campaign Strategy, Implicit Messages, and the Norm of Equality}}, author={Tali Mendelberg}, year={2001}, publisher={Princeton University Press}, address={Princeton, NJ} } @book{Gerring98, title={{Party Ideologies in America, 1828-1996}}, author={John Gerring}, year={1998}, publisher={Cambridge University Press}, address={New York} } @book{Thompson02, title={{Sampling}}, author={Steven K. Thompson}, year={2002}, publisher={John Wiley and Sons}, address={New York} } @book{HilShi08, title={{The Persuadable Voter: Wedge Issues in Presidential Campaigns}}, author={Sunshine Hillygus and Todd G. Shields}, year={2008}, publisher={Princeton University Press}, address={Princeton, NJ} } @book{BraSudWan04, title = {{Asking Questions: The Definitive Guide to Questionnaire Design}}, author = {Norman M. Bradburn and Seymour Sudman and Brian Wansink}, year = {2004}, publisher = {Jossey-Bass}, address = {San Francisco} } @book{ConPre86, title = {{Survey Questions: Handcrafting the Standardized Questionnaire}}, author = {Jean M. Converse and Stanley Presser}, year = {1986}, publisher = {Sage Publications}, address = {Thousand Oaks, CA} } @book{GroCouLep04, title = {{Survey Methodology}}, author = {Robert M. Groves and Mick P. Couper and James M. Lepkowski and Eleanor Singer and Roger Tourangeau}, year = {2004}, publisher = {Wiley}, address = {Hoboken, NJ} } @article{KriJoh08, title = {{New evidence on cross-country differences in job satisfaction using anchoring vignettes}}, author = {Nicolai Kristensen and Edvard Johansson}, journal = {Labour Economics}, volume = {15}, number = {1}, pages = {96--117}, year = {2008} } @Article{GupKriPoz08, author = {Nabanita Datta Gupta and Nicolai Kristensen and Dario Pozzoli}, title = {External Validation of the Use of Vignettes in Cross-Country Health Studies}, journal = { }, year = 2008, note = {Danish National Centre for Social Research} } @article{ColRosQui00, title = {{Prospective validation of a standardized questionnaire for estimating childhood mortality and morbidity due to pneumonia and diarrhoea}}, author = {Coldham, C. and Ross, D. and Quigley, M. and Segura, Z. and Chandramohan, D.}, journal = {Tropical Medicine \& International Health}, volume = {5}, number = {2}, pages = {134--144}, year = {2000} } @Article{MorDaw06, author = {Morera, Osvaldo and Dawes, Robyn}, title = {Clinical and Statistical Prediction After 50 Years: A Dedication to Paul Meehl}, journal = {Journal of Behavioral Decision Making}, year = 2006, volume = 19, pages = {409-412} } @article{OlsHayCar02, author = {Olshansky, S. Jay and Hayflick, Leonard and Carnes, Bruce A.}, title = {{Position Statement on Human Aging}}, journal = {Journal of Gerontology Series A: Biological Sciences and Medical Sciences}, volume = {57}, number = {8}, pages = {B292-297}, year = {2002} } @article{Fries80, author = {Fries, JF}, title = {{Aging, natural death, and the compression of morbidity}}, journal = {New England Journal of Medicine}, volume = {303}, number = {3}, pages = {130-135}, year = {1980} } @article{WarCarHaw08, author = {Wardle, Jane and Carnell, Susan and Haworth, Claire MA and Plomin, Robert}, title = {{Evidence for a strong genetic influence on childhood adiposity despite the force of the obesogenic environment}}, journal = {American Journal of Clinical Nutrition}, volume = {87}, number = {2}, pages = {398-404}, year = {2008} } @Article{MokForBow01, author = {Mokdad, Ali and Ford, Earl and Bowman, Barbara and Dietz, William and Vinicor, Frank and Bales, Virginia and Marks, James}, title = {Prevalence of Obesity, Diabetes, and Obesity-Related Health Risk Factors, 2001}, journal = {Journal of the American Medical Association}, year = 2003, volume = 289, pages = {76-79} } @article{FonRedWan03, author = {Fontaine, Kevin R. and Redden, David T. and Wang, Chenxi and Westfall, Andrew O. and Allison, David B.}, title = {{Years of Life Lost Due to Obesity}}, journal = {Journal of the American Medical Association}, year = 2003, volume = {289}, number = {2}, pages = {187-193} } @article{AllWanRed03, author = {Allison, David B. and Wang, Chenxi and Redden, David T. and and Westfall, Andrew O. and Fontaine, Kevin R.}, title = {{Obesity and Years of Life Lost$-$Reply}}, journal = {Journal of the American Medical Association}, year = 2003, volume = {289}, number = {14}, pages = {1777-1778} } @article{WesAraOls04, author = {Wessel, Timothy R. and Arant, Christopher B. and Olson, Marian B. and Johnson, B. Delia and Reis, Steven E. and Sharaf, Barry L. and Shaw, Leslee J. and Handberg, Eileen and Sopko, George and Kelsey, Sheryl F. and Pepine, Carl J. and Bairey Merz, C. Noel}, title = {{Relationship of Physical Fitness vs Body Mass Index With Coronary Artery Disease and Cardiovascular Events in Women}}, journal = {Journal of the American Medical Association}, volume = {292}, number = {10}, pages = {1179-1187}, year = {2004} } @article{BlaChu04, author = {Blair, Steven N. and Church, Tim S.}, title = {{The Fitness, Obesity, and Health Equation: Is Physical Activity the Common Denominator?}}, journal = {Journal of the American Medical Association}, volume = {292}, number = {10}, pages = {1232-1234}, year = {2004} } @Article{FreSigRaj06, author = {Freedman, Michal and Sigurdson, Alice and Rajaraman, Preetha and Doody, Michele and Linet, Martha and Ron, Elaine}, title = {The Mortality Risk of Smoking and Obesity Combined}, journal = {American Journal of Preventive Medicine}, year = 2006, volume = 31, number = 5, pages = {355-362} } @Article{GreCheCad05, author = {Gregg, Edward and Cheng, Yiling and Cadwell, Betsy and Imperatore, Giuseppina and Williams, Desmond and Flegal, Katherine and Narayan, Venkat and Williamson, David}, title = {Secular Trends in Cardiovascular Disease Risk Factors According to Body Mass Index in US Adults}, journal = {Journal of the American Medical Association}, year = 2005, volume = 293, number = 15, pages = {1868-1874} } @Article{MurLopFee07, author = {Christopher J.L.\ Murray and Alan D. Lopez and Dennis M. Feean and Shanon T. Peter and Gonghuan Yang}, title = {Validation of the Symptom Pattern Method for Analyzing Verbal Autopsy Data}, journal = {PLOS Medicine}, year = 2007, volume = 4, number = 11, pages = {1739--1753}, month = {November} } @Article{CurDurEil04, author = {Currie, Iain and Durban, Maria and Eilers, Paul}, title = {Smoothing and Forecasting Mortality Rates}, journal = {Statistical Modelling}, year = 2004, volume = 4, pages = {279-298} } @Article{KirCur10, author = {Kirkby, James and Currie, Iain }, title = {Smooth Models of Mortality with Period Shocks}, journal = {Statistical Modelling}, year = {2010}, volume = 10, number = 2, pages = {177-196} } @Article{INDEPTH03, author = {{INDEPTH Network}}, title = {Standardised Verbal Autopsy Questionnaire}, journal = { }, note = {{http://indepth-network.org}}, year = 2003 } @Article{SetRaoHem06, author = {PW Setel and C Rao and Y Hemed and DR Whiting and G Yang et al.}, title = {Core Verbal Autopsy Procedures with Comparative Validation Results from Two Countries}, journal = {PLoS Medicine}, year = 2006, volume = 3, number = 8, pages = {e268}, note = {doi:10.1371/journal.pmed.0030268} } @Book{WHO07, author = {{World Health Organization}}, title = {Verbal Autopsy Standards: Ascertaining and Attributing Causes of Death}, publisher = {World Health Organization}, address = {Geneva}, year = 2007 } @Article{ThaKalBaq08, author = {N Thatte and H D Kalter and A H Baqui and E M Williams and G L Darmstadt}, title = {Ascertaining causes of neonatal deaths using verbal autopsy: current methods and challenges}, journal = {Journal of Perinatology}, year = 2008, pages = {1--8}, month = {December} } @TechReport{LeeAndTul03, author = {Lee, Ronald and Anderson, Michael and Tuljapurkar, Shripad}, title = {Stochastic Forecasts of the Social Security Trust Fund}, institution = {Center for the Economics and Demography of Aging}, year = 2003, type = {2003-0005CL} } @TechReport{Holmer03, author = {Holmer, Martin}, title = {Methods for Stochastic Trust Fund Projection}, institution = {Policy Simulation Group}, year = 2003, month = {January} } @TechReport{CBO01, author = {{Congressional Budget Office}}, title = {Uncertainty in Social Security's Long-Term Finances: A Stochastic Analysis}, institution = {Congressional Budget Office}, year = 2001, month = {December} } @TechReport{BurMan03, author = {Burdick, Clark and Manchester, Joyce}, title = {Stochastic Models of the Social Security Trust Funds}, institution = {Division of Economic Research, Social Security Administration}, year = 2003, type = {Research and Statistics Note}, number = {2003-01} } @Manual{Harrell08, title = {Hmisc: Harrell Miscellaneous}, author = {Frank E Harrell Jr and with contributions from many other users.}, year = {2008}, note = {R package version 3.5-2, http://biostat.mc.vanderbilt.edu/s/Hmisc} } @article{Heckman90, title = {{Varieties of selection bias}}, author = {Heckman, James}, volume = {80}, number = {2}, journal = {The American Economic Review}, pages = {313--318}, year = {1990} } @article{TheGol61, title={{On pure and mixed estimation in econometrics}}, author={Theil, H. and Goldberger, AS}, journal={International Economic Review}, volume={2}, pages={65--78}, year={1961} } @Book{Hsiao03, author = {C. Hsiao}, title = {Analysis of Panel Data}, publisher = {Cambridge University Press}, year = 2003, address = {New York} } @article{BanDhiGho05, title= {{Clustering on the Unit Hypersphere Using von Mises-Fisher Distributions}}, author= {Arindam Banerjee and Inderjit Dhillon and Joydeep Ghosh and Suvrit Sra}, journal= {Journal of Machine Learning}, volume= {6}, pages= {1345-1382}, year= {2005} } @article{BleJor06, title= {{Variational Inference for Dirichlet Process Mixtures}}, author= {David Blei and Michael Jordan}, journal= {Journal of Bayesian Analysis}, volume= {1}, number = {1}, pages= {121--144}, year= {2006} } @article{Cowan00, title= {{The Magical Number 4 in Short Term Memory: A Reconsideration of Mental Storage Capacity}}, author= {Nelson Cowan}, journal= {Behavioral and Brain Sciences}, volume= {24}, pages= {87--185}, year= {2000} } @article{Dhillon01, title= {{Co-clustering Documents and Words Using Bipartite Spectral Graph Partitioning}}, author= {Inderjit Dhillon}, journal= {Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining}, pages= {89--98}, year= {2003} } @article{HoPep02, title= {{Simple Explanation of the No Free Lunch Theorem and Its Implications}}, author= {Y Ho and D Pepyne}, journal= {Journal of Optimization Theory and Applications}, volume= {115}, number = {3}, pages= {549--570}, year= {2002} } @MISC{JonWilBau09, author = {Bryan Jones and John Wilkerson and Frank Baumgartner}, title = {{The Policy Agendas Project}}, year = 2009, note = {http://www.policyagendas.org} } @article{JorGhaJaa99, title= {{An Introduction to Variational Methods for Graphical Models}}, author= {Michael Jordan and Zoubin Ghahramani and Tommi Jaakkola and Lawrence Saul}, journal= {Journal of Machine Learning}, volume= {37}, pages= {183--233}, year= {1999} } @Book{KauRou90, author = {Leonard Kaufman and Peter Rousseeuw}, title = {Finding Groups in Data: An Introduction to Cluster Analysis}, publisher = {Wiley}, year = {1990}, address = {New York} } @Book{Kohonen01, author = {Teuvo Kohonen}, title = {Self-Organizing Maps}, publisher = {Springer}, year = {2001}, address = {New York} } @MISC{Lewis99, author = {David Lewis}, title = {{Reuters -21578 text Categorization Test Collection Distribution 1.0}}, year = {1999} } @Book{Mackay03, author = {David Mackay}, title = {Information Theory, Inference, and Learning Algorithms}, publisher = {Cambridge University Press}, year = {2003}, address = {Cambridge} } @article{Meila07, title= {{Comparing Clusterings: An Information Based Distance}}, author= {Marina Meila}, journal= {Journal of Multivariate Analysis}, volume= {98}, number = {5}, pages= {873--895}, year= {2007} } @article{Miller56, title= {{The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information}}, author= {George Miller}, journal= {Psychological Review}, volume= {63}, pages= {81--97}, year= {1956} } @article{NgJorWei02, title= {{On Spectral Clustering: Analysis and an Algorithm}}, author= {Andrew Ng and Michael Jordan and Yair Weiss}, journal= {Advances in Neural Information Processing Systems 14: Proceedings of the 2002 Conference}, year= {2002} } @article{Sammon69, title= {{A Nonlinear Mapping for Data Structure Analysis}}, author= {John Sammon}, journal= {IEEE Transactions on Computers}, volume= {18}, number = {5}, pages= {401--409}, year= {1969} } @article{ShiMal00, title= {{Normalized Cuts and Image Segmentation}}, author= {J Shi and J Malik}, journal= {IEEE Transactions on Pattern Analysis and Machine Intelligence}, volume= {22}, number = {8}, pages= {888--905}, year= {2000} } @Book{Simon57, author = {Herbert Simon}, title = {Models of Man}, publisher = {Wiley}, year = {1957}, address = {New York} } @article{StrGro02, title= {{Cluster Ensembles: A Knowledge Reuse Framework for Combining Multiple Partitions}}, author= {Alexander Strehl and Joydeep Grosh}, journal= {Journal of Machine Learning Research}, volume= {3}, pages= {583--617}, year= {2002} } @article{vonLuxburg07, title= {{A Tutorial on Spectral Clustering}}, author= {Ulrike von Luxburg}, journal= {Statistics and Computing}, volume= {17}, number = {4}, pages= {395--416}, year= {2007} } @Book{Watanabe69, title = {Knowing and Guessing: A Quantitative Study of Inference and Information}, author = {Satosi Watanabe}, publisher = {Wiley}, year = {1969}, address = {New York} } @article{WolMac97, title= {{No Free Lunch Theorems for Optimization}}, author= {DH Wolpert and WG Macready}, journal= {IEEE Transactions on Evolutionary Computation}, volume= {1}, number = {1}, pages= {67--82}, year= {1997} } @Book{Bailey94, author = {Kenneth D. Bailey}, title = {Typologies and taxonomies: an introduction to classification techniques}, publisher = {Sage}, year = 1994, address = {Beverly Hills} } @article{Spivey08, title = {{A generalized recurrence for Bell numbers}}, author = {Spivey, M.Z.}, journal = {J. Integer Sequences}, volume = {11}, year = {2008} } @article{FraRaf02, title = {{Model-based clustering, discriminant analysis, and density estimation}}, author = {Fraley, C. and Raftery, A.E.}, journal = {Journal of the American Statistical Association}, volume = {97}, number = {458}, pages = {611--631}, year = {2002} } @Book{GanMaWu07, author = {Guojun Gan and Chaoqun Ma and Jianhong Wu}, title = {Data Clustering: Theory, Algorithms, and Applications}, publisher = {Siam}, year = 2007, address = {Philadelphia} } @Article{DiaGoeHol08, author = {Persi Diaconis and Sharad Goel and Susan Holmes}, title = {Horseshoes in multidimensional scaling and local kernel methods}, journal = {Annals of Applied Statistics}, year = 2008, volume = 2, number = 3, pages = {777--807} } @article{Almon65, title = {{The distributed lag between capital appropriations and expenditures}}, author = {Almon, Shirley}, journal = {Econometrica: Journal of the Econometric Society}, pages = {178--196}, year = {1965}, publisher = {The Econometric Society} } @Book{ManRagSch08, author = {Christopher D. Manning and Prabhakar Raghavan and Hinrich Sch{\"u}tze}, title = {Introduction to Information Retrieval}, publisher = {Cambridge University Press}, year = 2008, address = {NY} } @article{Mayhew74, title = {{The electoral connection}}, author = {Mayhew, D.}, journal = {New Haven: Yale University}, year = {1974} } @Book{Fiorina89, author = {Morris Fiorina}, title = {Congress, Keystone of the Washington Establishment}, publisher = {Yale University Press}, year = {1989}, address = {New Haven} } @article{EulKar77, title = {{The Puzzle of Representation: Specifying Components of Responsiveness}}, author = {Heiz Eulau and Paul Karps}, journal = {Legislative Studies Quarterly}, volume = {2}, number = {3}, pages = {233-254}, year = {1977} } @article{Yiannakis82, title = {{House Members Communication Styles: Newsletters and Press Releases}}, author = {Diane Evans Yiannakis}, journal = {Journal of Politics}, volume = {44}, number = {4}, pages = {1049-1071}, year = {1982} } @article{MonColQui08, title = {{Fightin' Words: Lexical Feature Selection and Evaluation for Identifying the Content of Political Conflict}}, author = {Burt Monroe and Michael Colaresi and Kevin Quinn}, journal = {Political Analysis}, volume = {16}, number = {4}, pages = {372-403}, year = {2008} } @Book{TayCri04, author = {John Shawe-Taylor and Nello Cristianini}, title = {Kernel Methods for Pattern Analysis}, publisher = {Cambridge University Press}, year = {2004}, address = {Cambridge} } @Misc{Billington07, author = {James H. Billington}, title = {Testimony to Congress (House Subcommittee on Legislative Branch)}, howpublished = {http://www.loc.gov/about/welcome/speeches/digital/digitalage.html}, month = {20 March}, year = 2007 } @article{AbeLedLew08, title = {{Blown to bits: your life, liberty, and happiness after the digital explosion}}, author = {Abelson, H. and Ledeen, K. and Lewis, H.}, year = {2008}, publisher = {Addison-Wesley Professional} } @Article{GilCas09, author = {Jeff Gill and George Casella}, title = {Nonparametric Priors for Ordinal Bayesian Social Science Models: Specification and Estimation}, journal = {Journal of the American Statistical Association}, year = 2009, volume = 104, number = 486, pages = {1--12}, month = {June} } @article{SchGer97, title={{Empirical indicators of crisis phase in the Middle East, 1979-1995}}, author={Schrodt, P.A. and Gerner, D.J.}, journal={Journal of Conflict Resolution}, pages={529--552}, year={1997}, publisher={Sage Publications} } @article{Guttman50, title = {{The problem of attitude and opinion measurement}}, author = {Guttman, L.}, journal = {Measurement and prediction}, volume = {4}, year = {1950} } @article{MilKub05, title = {{Why the move to free trade? Democracy and trade policy in the developing countries}}, author = {Helen Milner and Keiko Kubota}, journal = {International Organization}, volume = {59}, number = {1}, pages = {107--143}, year = {2005} } @Book{GutTho96, author = {Amy Gutmann and Dennis Thompson}, title = {Democracy and Disagreement}, publisher = {Harvard University Press}, year = {1996}, address = {Harvard University Press} } @Unpublished{MikLavBen08, author = {Slava Mikhaylov and Michael Laver and Kenneth Benoit}, title = {Coder Reliability and Misclassification in Comparative Manifesto Project Codings}, note = {Paper presented at the Midwest Political Science Association, Chicago}, month = {April}, year = 2008 } @conference{CarElhNgu06, title={{Meta clustering}}, author={Rich Caruana and Mohamed Elhawary and Nam Nguyen and Casey Smith}, booktitle={ICDM'06. Sixth International Conference on Data Mining}, pages={107--118}, year={2006} } @conference{CarNgu07, title={{Consensus clustering}}, author={Rich Caruana and Nam Nguyen}, booktitle={ICDM'07. Seventh International Conference on Data Mining}, year={2007} } @conference{FerBro03, title={Random Project for High Dimensional Data Clustering: A Cluster Ensemble Approach}, author={Xiaoli Fern and Carla Brodley}, booktitle={Proceedings of the Twentieth International Conference on Machine Learning}, year={2003} } @conference{LawTopJai04, title={Multi-objective Data Clustering}, author={Martin Law and Alexander Topchy and Anil Jain}, booktitle={IEEE Computer Society Conference on Computer Vision and Pattern Recognition}, year={2004} } @conference{BaeBai06, title={A Novel Approach for the Extraction of an Alternate Clustering of High Quality and High Dissimilarity}, author={Eric Bae and James Bailey}, booktitle={Proceedings of the IEEE International Conference on Data Mining}, year={2006} } @conference{FreJai02, title={Data Clustering using Evidence Accumulation}, author={Martin Law and Alexander Topchy and Anil Jain}, booktitle={Proceedings of the 16th International Conference on Pattern Recognition}, year={2002} } @conference{GioManTsa05, title={Clustering aggregation}, author={A Gionis and H Mannila and P Tsaparas}, booktitle={Proceedings of the 21st International Conference on Data Mining}, year={2005} } @conference{TopJaiPun03, title={Combining Multiple Weak Clusterings}, author={A Topchy and AK Jain and W Punch}, booktitle={Proceedings IEEE International Conference on Data Mining}, year={2003} } @conference{TopJaiPun03b, title={A Mixture Model for Clustering Ensembles}, author={A Topchy and AK Jain and W Punch}, booktitle={Proceedings SIAM International Conference on Data Mining}, year={2004} } @conference{Kleinberg03, title={An Impossibility Theorem for Clustering}, author={Jon Kleinberg}, booktitle={Advances in Neural Information Processing Systems Proceedings of the 2002 Conference}, pages={463-470}, year={2003}, } @article{Achen78, title={Measuring Representation}, author={Chris Achen}, journal={American Journal of Political Science}, pages={475--510}, year={1978}, } @INCOLLECTION{LazBar65, author= {Paul Lazardsfeld and Allen Barton}, title = {Qualitative Measurement in the Social Sciences: Classification, Typologies, and Indices}, booktitle = {The Policy Sciences}, publisher = {Standard University Press}, year = {1965}, editor = {Daniel Lerner and Harold Lasswell}, } @article{Pitman97, title={Some Probabilistic Aspects of Set Partitions}, author={Jim Pitman}, journal={The American Mathematical Monthly}, pages={201--209}, year={1997}, } @Article{ZhaSma09, author = {Kai Zhang and Dyland S.\ Small}, title = {Comment: The Essential Role of Pair Matching in Cluster-Randomized Experiments, with Application to the Mexican Universal Health Insurance Program}, journal = {Statistical Science}, year = {2009, forthcoming}, OPTkey = {}, OPTvolume = {}, OPTnumber = {}, OPTpages = {}, OPTmonth = {}, OPTnote = {}, OPTannote = {} } @Article{HilSco09, author = {Jennifer Hill and Marc Scott}, title = {Discussion of `The Essential Role of Pair Matching'}, journal = {Statistical Science}, year = {2009}, OPTkey = {}, OPTvolume = {}, OPTnumber = {}, OPTpages = {}, OPTmonth = {}, OPTnote = {}, OPTannote = {} } @article{Imbens09, title = {{Better LATE Than Nothing: Some Comments on Deaton (2009) and Heckman and Urzua (2009)}}, author = {Imbens, G.W.}, journal = {NBER Working Paper}, year = {2009} } @article{Ashenfelter78, title = {{Estimating the effect of training programs on earnings}}, author = {Ashenfelter, Orley}, journal = {The Review of Economics and Statistics}, pages = {47--57}, year = {1978} } @article{Grimmer10, author = {Justin Grimmer}, title = {A Bayesian Hierarchical Topic Model for Political Texts: Measuring Expressed Agendas in Senate Press Releases}, year = {2010}, journal = {Political Analysis}, } @article{TehJorBea06, title = {Hierarchical Dirichlet Processes}, author = { Y Teh and M Jordan and M Beal and D Blei}, journal = {Journal of the American Statistical Association}, volume = {101}, number = {476}, pages = {1566--1581}, year = {2006}, } @article{MilSto63, title = {{Constituency influence in Congress}}, author = {Miller, W.E. and Stokes, D.E.}, journal = {The American Political Science Review}, pages = {45--56}, year = {1963}, publisher = {The American Political Science Association} } @book{Pitkin72, title = {{The Concept of Representation}}, author = {Pitkin, Hanna F.}, year = {1972}, publisher = {University of California Press} } @Article{HorCoa82, author = {Horiuchi, Shiro and Coale, Ansley}, title = {A Simple Equation for Estimating the Expectation of Life at Old Ages}, journal = {Population Studies}, year = 1982, volume = 36, number = 2, pages = {317-326} } @book{Ayres08, title={{Super crunchers: why thinking-by-numbers is the new way to be smart}}, author={Ayres, Iain}, year={2008}, publisher={Bantam} } @Article{Wilmoth05, author = {Wilmoth, John}, title = {Some methodological issues in mortality projection, based on an analysis of the US Social Security System}, journal = {Genus}, year = 2005, volume = 61, number = 1, pages = {179-211} } @TechReport{Romig08, author = {Romig, Kathleen}, title = {Social Security: What Would Happen If the Trust Funds Ran Out?}, institution = {Congressional Research Service}, year = 2008, number = {RL33514} } @TechReport{SweNic08, author = {Swendiman, Kathleen and Nicola, Thomas}, title = {Social Security Reform: Legal Analysis of Social Security Benefit Entitlement Issues}, institution = {Congressional Research Service}, year = 2008, number = {RL32822} } @Unpublished{BelSon09, author = {Beltr\'{a}n-S\'{a}nchez, Hiram and Soneji, Samir}, title = {A Unifying Approach for Assessing Changes in Life Expectancy Associated with Changes in Mortality: The Case of Violent Deaths}, note = {}, OPTkey = {}, OPTmonth = {}, year = {2009}, OPTannote = {} } @Article{Olshansky88, author = {Olshansky, S. Jay}, title = {On Forecasting Mortality}, journal = {The Milbank Quarterly}, year = 1988, volume = 66, number = 3, pages = {482-530} } @TechReport{ChaWad05, author = {Chaplain, Chris and Wade, Alice}, title = {Estimated OASDI Long-Range Financial Effects of Several Provisions Requested by the Social Security Advisory Board}, institution = {Social Security Administration}, year = 2005, address = {http://www.ssa.gov/OACT/solvency/provisions/index.html} } @article{Armstrong67, title = {{Derivation of theory by means of factor analysis or Tom Swift and his electric factor analysis machine}}, author = {Armstrong, J.S.}, journal = {American Statistician}, pages = {17--21}, year = {1967}, publisher = {American Statistical Association} } @article{ImbAng94, title={{Identification and estimation of local average treatment effects}}, author={Imbens, G.W. and Angrist, J.D.}, journal={Econometrica}, volume={62}, number={2}, pages={467--475}, year={1994} } @article{Little08, author={Roderick Little}, title={Calibrated Bayes: A Bayes/Frequentist Roadmap}, journal={American Statistician}, volume={60}, number={1}, pages={1--11}, year={2008} } @book{McLThr08, author={Geoffrey J. McLachlan and Thriyambakam Krishan}, title={The EM Algorithm and Extensions, Second Edition}, year={2008}, publisher={New York: Wiley} } @article{Little95, author={Roderick Little}, title={Modeling the Drop-Out Mechanism in Repeated-Measures Studies}, journal={jasa}, volume={90}, number={431}, pages={1112--1121}, year={1995} } @book{MolVer05, author={Geert Molenberghs and Geert Verbeke}, title={Models for Discrete Longitudinal Data}, year={2005}, publisher={New York: Wiley} } @article{DavShaSch01, author={Adam Davey, Michael J.\ Shanahan and Joseph L.\ Schafer }, title={Correcting for selective nonresponse in the national longitudinal survey of youth using multiple imputation}, journal={The Journal of Human Resources}, volume={36}, number={3}, pages={500--519}, year={2001} } @article{KacRagSch08, author={Niko A. Kaciroti, Trivellore E. Raghunathan, M. Anthony Schork and Noreen M. Clark}, title={A Bayesian model for longitudinal count data with non-ignorable dropout}, journal={Journal of the Royal Statistical Society Series C-Applied Statistics}, volume={57}, number={5}, pages={521-534}, year={2008} } @article{SteCutRos09, title = {{Forecasting the Effects of Obesity and Smoking on US Life Expectancy}}, author = {Stewart, S.T. and Cutler, D.M. and Rosen, A.B.}, journal = {The New England Journal of Medicine}, volume = {361}, number = {23}, pages = {2252}, year = {2009} } @Article{ByaDamOue09, AUTHOR = {Byass, Peter and D'Ambruoso, Lucia and Ouedraogo, Moctar and Qomariyah, S Nurul}, TITLE = {Assessing the repeatability of verbal autopsy for determining cause of death: two case studies among women of reproductive age in Burkina Faso and Indonesia}, JOURNAL = {Population Health Metrics}, VOLUME = {7}, YEAR = {2009}, NUMBER = {1}, PAGES = {6}, URL = {http://www.pophealthmetrics.com/content/7/1/6} } @article{Traxler97, title = {{An Algorithm for Adaptive Mesh Refinement in N Dimensions}}, author = {Traxler, S.T.}, journal = {Computing}, volume = {59}, number = {1}, pages = {115-137}, year = {1997} } @TechReport{BelMil05, author = {Bell, Felicitie and Miller, Michael}, title = {Life Tables for the United States Social Security Area 1900-2100}, institution = {Social Security Administration Office of the Chief Actuary}, year = 2005, number = {Actuarial Study No. 120} } @Article{TweCutRos09, author = {Stewart, S.T. and Cutler, D.M. and Rosen, A.B.}, title = {Forecasting the Effects of Obesity and Smoking on Life Expectancy}, journal = {The New England Journal of Medicine}, year = {2009}, OPTkey = {}, OPTvolume = {361}, OPTnumber = {23}, OPTpages = {2252-2260}, OPTmonth = {}, OPTnote = {}, OPTannote = {} } @article{Guolo08, author = {Guolo, Annamaria}, title = {{Robust techniques for measurement error correction: a review.}}, journal = {{Statistical Methods in Medical Research}}, volume = {{17}}, number = {{6}}, pages = {555-80}, year = {{2008}}, doi = {{10.1177/0962280207081318}}, } @Article{GrePal90, author = {Green, Donald Philip and Palmquist, Bradley}, title = {{Of Artifacts and Partisan Instability}}, journal = {{American Journal of Political Science}}, volume = {{34}}, number = {{3}}, pages = {872}, year = {{1990}}, doi = {{10.2307/2111402}}, } @Article{WilWil70, author = {Wiley, David E. and Wiley, James A.}, title = {{The Estimation of Measurement Error in Panel Data}}, journal = {{American Sociological Review}}, volume = {{35}}, number = {{1}}, pages = {112}, year = {{1970}}, doi = {{10.2307/2093858}}, } @article{Stefanski00, author = {Stefanski, L. A.}, title = {{Measurement Error Models}}, journal = {{Journal of the American Statistical Association}}, volume = {{95}}, number = {{452}}, pages = {1353--1358}, year = {{2000}} } @article{BroVal96, author = {Brownstone, David and Valletta, Robert G.}, title = {{Modeling Earnings Measurement Error: A Multiple Imputation Approach}}, journal = {{Review of Economics and Statistics}}, volume = {{78}}, number = {{4}}, pages = {705-717}, year = {{1996}}, tags = "measurement error, statistics" } @article{FreMidCar08, pmid = {{18680172}}, author = {Freedman, Laurence S and Midthune, Douglas and Carroll, Raymond J and Kipnis, Victor}, title = {{A comparison of regression calibration, moment reconstruction and imputation for adjusting for covariate measurement error in regression.}}, journal = {{Stat Med}}, volume = {{27}}, number = {{25}}, pages = {5195-216}, year = {{2008}}, doi = {{10.1002/sim.3361}}, tags = "measurement error, statistics" } @article{ColChuGre06, author = {Cole, Stephen R and Chu, Haitao and Greenland, Sander}, title = {{Multiple-imputation for measurement-error correction.}}, journal = {{International Journal of Epidemiology}}, volume = {{35}}, number = {{4}}, pages = {1074-81}, year = {{2006}}, doi = {{10.1093/ije/dyl097}}, tags = "measurement error, statistics" } @article{CasTuf03, author={Casper, Gretchen and Cladiu Tufis}, title={Correlation Versus Interchangeability: The Limited Robustness of Empirical Findings on Democracy Using Highly Correlated Data Sets}, journal={Political Analysis}, volume={11}, year={2003}, pages={196-203}, number={2} } @Article{OlsGolZheRow09, author = {Olshansky, S. Jay and Goldman, Dana and Zheng, Yuhui and Rowe, John}, title = {Aging in America in the Twenty-first Century: Demographic Forecasts from the MacArthur Foundation Research Network on an Aging Society}, journal = {Milbank Quarterly}, year = 2009, volume = 87, number = 4, pages = {842-862} } @TechReport{SSAHist10, author = {{Social Security Administration Historian's Office}}, title = {Historical Background and Development of Social Security}, institution = {Social Security Administration}, year = 2010, note = {http://www.ssa.gov/history} } @Article{KanLauThaVau94, author = {Kannisto, Vaino and Lauritsen, Jens and Thatcher, A. Roger and Vaupel, James}, title = {Reductions in Mortality at Advanced Ages: Several Decades of Evidence from 27 Countries}, journal = {Population and Development Reiew}, year = 1994, volume = 20, number = 4, pages = {793-810} } @Article{HucPluSpr93, author = {Robert Huckfeldt and Eric Plutzer and John Sprague}, title = {Alternative Contexts of Political Behavior: Churches, Neighborhoods, and Individuals}, journal = {Journal of Politics}, year = 1993, volume = 55, number = 2, pages = {365--381}, month = {May} } @Article{KatKat10, author = {Jonathan N. Katz and Gabriel Katz}, title = {{ Correcting for Survey Misreports Using Auxiliary Information with an Application to Estimating Turnout}}, journal = {{American Journal of Political Science}}, year = 2010, volume = 54, number = 3, pages = {{815--835}}, } @Article{ImaYam10, author = {Kosuke Imai and Teppei Yamamoto}, title = {Causal Inference with Differential Measurement Error: Nonparametric Identification and Sensitivity Analysis}, journal = {American Journal of Political Science}, year = 2010, volume = 54, number = 2, month = {April}, pages = {{543--560}} } @conference{BitSmiKra06, title = {Statistically dual distributions in statistical inference}, author = {Bityukov, SI and Smirnova, VV and Krasnikov, NV and Taperechkina, VA}, booktitle = {Statistical Problems in Particle Physics, Astrophysics and Cosmology: proceedings of PHYSTAT05, Oxford, UK, 12-15 September 2005}, pages = {102--105}, year = {2006}, note = {http://arxiv.org/abs/math/0411462v2} } Rubin, D. B. (2010), On the limitations of comparative effectiveness research. Statistics in Medicine, 29: 1991–1995. @Article{Rubin10, author = {Donald B. Rubin}, title = {On the Limitations of Comparative Effectiveness Research}, journal = {Statistics in Medicine}, year = 2010, volume = 29, number = 19, pages = {1991-1995}, month = {August} } @Article{TunBenMcC10, author = {Sean R. Tunis and Joshua Benner and Mark McClellan}, title = {Comparative effectiveness research: Policy context, methods development and research infrastructure}, journal = {Statistics in Medicine}, year = 2010, volume = 29, number = 19, pages = {1964-1976}, month = {August} } @Article{Rubin08, author = {Donald B. Rubin}, title = {For Objective Causal Inference, Design Trumps Analysis}, journal = {Annals of Applied Statistics}, year = 2008, volume = 2, number = 3, pages = {808--840} } @Article{Rubin08b, author = {Donald B. Rubin}, title = {Comment: The Design and Analysis of Gold Standard Randomized Experiments}, journal = {Journal of the American Statistical Association}, year = 2008, volume = 103, number = 484, pages = {1350--1353} } @Article{Austin09, author = {Peter C. Austin}, title = {Some Methods of Propensity-Score Matching had Superior Performance to Others: Results of an Empirical Investigation and Monte Carlo simulations}, journal = {Biometrical Journal}, year = 2009, volume = 51, number = 1, pages = {171-184}, month = {February} } @Article{Stuart10, author = {Elizabeth A. Stuart}, title = {Matching Methods for Causal Inference: A Review and a Look Forward}, journal = {Statistical Science}, year = 2010, volume = 25, number = 1, pages = {1--21} } @Article{Rubin80b, author = {Donald B. Rubin}, title = {Bias Reduction using Mahalanobis Metric Matching}, journal = {Biometrics}, year = 1980, volume = 36, pages = {293--298} } @InCollection{StuRub07b, author = {Elizabeth A. Stuart and Donald B. Rubin}, title = {Best practices in quasi-experimental designs: Matching methods for causal inference}, booktitle = {Best Practices in Quantitative Methods}, pages = {155--176}, publisher = {Sage}, year = 2007, editor = {Jason Osborne}, address = {New York} } @Article{Wilmoth05a, author = {Wilmoth, John}, title = {On the Relationship Between Period and Cohort Mortality}, journal = {Demographic Research}, year = 2005, volume = 13, number = 11, pages = {231-280} } @Article{Guillot03, author = {Guillot, Michel}, title = {The Cross-Sectional Average Length of Life (CAL): A Cross-Sectional Mortality Measure That Reflects the Experience of Cohorts}, journal = {Population Studies}, year = 2003, volume = 57, number = 1, pages = {41-54} } @Article{BonFee03, author = {Bongaarts, John and Feeney, Griffith}, title = {Estimating Mean Lifetime}, journal = {Proceedings of the National Academy of Sciences}, year = 2003, volume = 100, number = 23, pages = {13127-13133} } @Article{Wilmoth95, author = {Wilmoth, John}, title = {Are Mortality Projections Always More Pessimistic When Disaggregated by Cause of Death?}, journal = {Mathematical Population Studies}, year = 1995, volume = 5, number = 4, pages = {293-319} } @Article{Cawley04, author = {Cawley, John}, title = {The Impact of Obesity on Wages}, journal = {Journal of Human Resources}, year = 2004, volume = 39, number = 2, pages = {451-474} } @Article{WolDagKan98, author = {Wolf, Philip and D\'Agostino, Ralph and Kannel, William and Bonita, Ruth and Belanger, Albert}, title = {Cigarette Smoking as a Risk Factor for Stroke. The Framingham Study.}, journal = {Journal of the American Medical Association}, year = 1998, volume = 259, number = 7, pages = {1025-1029} } @Article{BurGouBra03, author = {Burns, Paul and Gough, Stephan and Bradbury, Andrew}, title = {Management of Peripheral Arterial Disease in Primary Care}, journal = {British Medical Journal}, year = 2003, volume = 326, pages = {584-588} } @TechReport{ReiSar08, author = {Reichmuth, Wolfgang and Sarferaz, Samad}, title = {Bayesian Demographic Modeling and Forecasting: An Application to U.S.\ Mortality}, institution = {Humboldt University}, year = 2008, type = {SFB 649}, note = {Discussion Paper 2008-052} } @Article{WanPre09, author = {Wang, Haidong and Preston, Samuel}, title = {Forecasting United States Mortality using Cohort Smoking Histories}, journal = {Proceedings of the National Academy of Sciences}, year = 2009, volume = 109, number = 2, pages = {393-398} } @Article{Platt05, title = {Fastmap, MetricMap, and Landmark MDS are all Nystr{\\"o}m algorithms}, author = {Platt, J.C.}, journal = {Proceedings of the 10th International Workshop on Artificial Intelligence and Statistics}, pages = {261--268}, year = {2005}, } @Article{DesTen03, title = {Global Versus Local Methods in Nonlinearity Dimensionality Reduction}, author = {de Silva, V. and Tenenbaum, J.B.}, journal = {Proceedings of Neural Information Processing Systems}, volume = {15}, pages = {721-728}, year = {2003}, } @article{DuFabGun99, title = {{Centroidal Voronoi tessellations: applications and algorithms}}, author = {Du, Q. and Faber, V. and Gunzburger, M.}, journal = {SIAM review}, pages = {637--676}, year = {1999} } @Article{CroMcCBur08, author = {Jerry Cromwell and Nancy McCall and Joe Burton}, title = {Evaluation of Medicare Health Support Chronic Disease Pilot Program}, journal = {Health Care Financing Review}, year = 2008, volume = 30, number = 1, pages = {47--60} } @Article{McCCroUra08, author = {Nancy McCall and Jerry Cromwell and Carol Urato and Donna Rabiner}, title = {Evaluation of Phase I of the Medicare Health Support Pilot Program Under Traditional Fee-for-Service Medicare: 18-Month Interim Analysis}, journal = {Report to Congress}, year = 2008, month = {October}, note = {CMS Contract No. 500-00-0022} } @Article{Foote09, author = {Sandra M. Foote}, title = {Next Steps: How Can Medicare Accelerate The Pace Of Improving Chronic Care?}, journal = {Health Affairs}, year = 2009, volume = 28, number = 1, pages = {99--102}, note = {http://content.healthaffairs.org/cgi/reprint/28/1/99} } @article{GhoSch03, title = {Multiple edit/multiple imputation for multivariate continuous data}, author = {Ghosh-Dastidar, B. and Schafer, J.L.}, journal = {Journal of the American Statistical Association}, volume = {98}, number = {464}, pages = {807--817}, issn = {0162-1459}, year = {2003} } @article{ThoOgdGal10, title = {{Chronic conditions account for rise in Medicare spending from 1987 to 2006}}, author = {Thorpe, K.E. and Ogden, L.L. and Galactionova, K.}, journal = {Health Affairs}, month = {April}, volume = 29, number = 4, year = {2010} } @Article{Weintraub95, author = {Hal Weintraub et al.}, title = {Through the Glass Lightly}, journal = {Science}, year = 1995, volume = 267, pages = {1609--1618}, month = {17 March} } @article{Forgy65, author = {EW Forgy}, title = {Cluster Analysis of Multivariate Data: Efficiency vs Interpretability of Classifications}, journal = {Biometrics}, year = {1965}, volume = {21}, OPTpages = {768-769}, } @article{GatGev89, author = {I Gath and AB Geva}, title = {Unsupervised Optimal Fuzzy Clustering}, journal = {IEEE Transactions On Pattern Analysis and Machine Intelligence}, year = {1989}, volume = {11}, number = {7}, pages = {773-780}, } @Article{CueGorMat97, author = {JA Cuesta-Albertos and A Gordaliza and C Matran}, title = {Trimmed K-Means: An Attempt to Robustify Quantizers}, journal = {Annals of Statistics}, year = {1997}, volume = {25}, number = {553-576}, } @TechReport{ZhaHsuDay99, author = {Bin Zhang and Meichun Hsu and Umeshwar Dayal}, title = {K-Harmonic Means: A Data Clustering Algorithm}, institution = {HP Laboratories}, year = {1999}, number = {HPL-1999-124}, } @conference{Karayiannis94, title={MECA: Maximum Entropy Clustering Algorithm}, author={NB Karayiannis}, booktitle={The 3rd IEEE International Conference on Fuzzy Systems}, pages={630--635}, year={1994} } @article{McQuitty66, author = {LL McQuitty}, title = {Similarity Analysis by Reciprocal Pairs for Discrete and Continuous Data}, journal = {Educational and Psychological Measurement}, year = {1966}, volume = {26}, pages = {825-831}, } @article{Fraley98, author = {Chris Fraley}, title = {Algorithms for Model-Based Gaussian Hierarchical Clustering}, journal = {SIAM Journal of Scientific Computing}, year = {1998}, volume = {20}, number = {1}, pages = {270-281}, } @article{KoyGraRam05, author = {M Koyuturk and A Graham and N Ramakrishnan}, title = {Compression, Clustering, and Pattern Discovery in Very High-Dimensional Discrete-Attribute Data Sets}, journal = {IEEE Transactions On Knowledge and Data Engineering}, year = {2005}, volume = {17}, number = {4}, } @article{GuhRasShi00, author = {S Guha and R Rastogi and K Shim}, title = {ROCK: A Robust Clustering Algorithm for Categorical Attributes}, journal = {Information Science}, year = {2000}, volume = {25}, number = {5}, } @article{HeyKruYoo99, author = {LJ Heyer and S Kruglyak and S Yooseph}, title = {Exploring Expression Data: Identification and Analysis of Coexpressed Genes}, journal = {Genome Research}, year = {1999}, volume = {9}, pages = {1106-1115}, } @article{BroPihDatDat08, author = {G Brock and V Pihur and S Datta and S Datta}, title = {clValid: An R Package for Cluster Validation}, journal = {Journal of Statistical Software}, year = {2008}, volume = {25}, number = {4}, } @article{MeiShi01, author = {M Meila and J Shi}, title = {A Random Walks View of Spectral Segmentation}, journal = {8th International Workshop on Artificial Intelligence and Statistics (AISTATS)}, year = {2001}, } @article{DhiMalMod03, author = {Inderjit Dhillon and Subramanyam Mallela and Dharmendra Modha}, title = {Information Theoretic Co-Clustering}, journal = {Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining}, year = {2003}, volume = {9}, } @article{Lerman91, author = {IC Lerman}, title = {Foundations of the Likelihood Linkage Analysis Classification Method}, journal = {Applied Stochastic Models and Data Analysis}, year = {1991}, volume = {7}, pages = {63-76}, } @article{WanQiuZam07, author = {S Wang and W Qiu and RH Zamar}, title = {CLUES: A Non-Parametric Clustering Method Based on Local Shrinking}, journal = {Computational Statistics \& Data Analysis}, year = {2007}, volume = {52}, number = {1}, pages = {286-298}, } @misc{Leisch99, author = {Friedrich Leisch}, title = {Bagged Clustering}, howpublished = {Working Paper 51, Adaptive Information Systems and Modelling in Economics and Management Science}, month = {August}, year = {1999}, } @article{Rajesh96, author = {Dave Rajesh}, title = {Fuzzy Shell-Clustering and Applications to Circle Detection in Digital Images}, journal = {Internationl Journal of General Systems}, year = {1996}, volume = {16}, pages = {343-355}, } @Book{Kullback59, author = {Solomon Kullback}, title = {Information Theory and Statistics}, publisher = {Dover Publications}, year = {1959}, } @book{KauRou90, author = {L Kaufman and PJ Rousseeuw}, title = {Finding Groups in Data: An Introduction to Cluster Analysis}, publisher = {Wiley}, year = {1990}, } @Article{Washington08, author = {Ebonya L. Washington}, title = {Female Socialization: How Daughters Affect Their Legislator Fathers' Voting on Woman's Issues}, journal = {American Economic Review}, year = 2008, volume = 98, number = 1, pages = {311-332} } @Article{Muller59, author = {M.E. Muller}, title = {A Note on a Method for Generating Points Uniformly on N -Dimensional Spheres}, journal = {Comm. Assoc. Comput. Mach.}, year = 1959, volume = 2, pages = {19-20}, month = {April} } @Article{ReuBonWil08, author = {Reuser, Mieke and Bonneux, Luc and Willekens, Frans}, title = {The Burden of Mortality of Obesity at Middle and Old Age is Small. A Life Table Analysis of the US Health and Retirement Survey}, journal = {European Journal of Epidemiology}, year = 2008, volume = 23, number = 9, pages = {601-607} } @Article{ThoFer04, author = {Thorpe Jr., Roland J. and Ferraro, Kenneth}, title = {Aging, Obesity, and Mortality Misplaced Concern about Obese Older People?}, journal = {Research on Aging}, year = 2004, volume = 26, number = 1, pages = {108-129} } @Article{Wade10, author = {Wade, Alice}, title = {Mortality Projections for Social Security Programs in the United States}, journal = {North American Actuarial Journal}, year = 2010, volume = 14, number = 3, pages = {299-315} } @TechReport{ssa08, author = {{The Board of Trustees, Federal Old-Age and Survivors Insurance and Federal Disability Insurance Trust Funds}}, title = {The 2008 annual report of the board of trustees of the federal old-age and survivors insurance and federal disability insurance trust funds}, institution = {Social Security Administration}, year = 2008 } @Book{UN82, author = {{Department of International Economic and Social Affairs}}, title = {Model Life Tables for Developing Countries}, publisher = {United Nations}, year = 1982, number = 77, series = {Population Studies} } @Book{SurgeonGeneral64, author = {{Office of the Surgeon General}}, title = {Smoking and Health, Report of the Advisory Committee to the Surgeon General of the Public Health Service}, publisher = {United States Public Health Service}, year = 1964, series = {Public Health Service Publication}, number = {1103} } @Book{CriPreCoh11, editor = {Crimmins, Eileen and Preston, Samuel and Cohen, Barney}, title = {Explaining Divergent Levels of Longevity in High-Income Countries}, publisher = {National Academies Press}, year = 2011, address = {Washington DC}, note = {Panel on Understanding Divergent Trends in Longevity in High-Income Countries} } @Article{PSC09, author = {{Prospective Studies Collaboration}}, title = {Body-mass index andc cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies}, journal = {Lancet}, year = 2009, volume = 373, pages = {1083-96} } @Article{BauPeaPri06, author = {Baur, Joseph and Pearson, Kevin and Price, Nathan and Jamieson, Hamish and Lerin, Carles and Kalra, Avash and Prabhu, Vinayakumar and Allard, Joanne and Lopez-Lluch, Guillermo and Lewis, Kaitlyn and Pistell, Paul and Poosala, Suresh and Becker, Kevin and Boss, Olivier and Gwinn, Dana and Wang, Mingyi and Ramaswamy, Sharah and Fishbein, Kenneth and Spencer, Richard and Lakatta, Edward and Le Couteur, David and Shaw, Reuben and Navas, Placido and Puigserver, Pere and Ingram, Donald and de Cabo, Rafael and Sincliar, David}, title = {Resveratrol improves health and survival of mice on a high-calorie diet}, journal = {Nature}, year = 2006, volume = 444, number = 16, pages = {337-342} } @Unpublished{PreSto10, author = {Preston, Samuel and Stokes, Andrew}, title = {Is the high level of obesity in the United States related to its low life expectancy?}, note = {Working Paper 2010-08, Population Studies Center, University of Pennsylvania}, year = {2010} } @Article{FleCarOgd10, author = {Flegal, Katherine and Carroll, Margaret and Ogden, Cynthia and Curtin, Lester}, title = {Prevalence and trends in obesity among US adults, 1999-2008}, journal = {The Journal of the American Medical Assocation}, year = 2010, volume = 303, number = 3, pages = {235-241} } @Article{BerKimCat06, author = {Bergman, Richard and Kim, Stella and Catalano, Karyn and Hsu, Isabel and Chiu, Jenny and Kabir, Morvarid and Hucking, Katrin and Ader, Marilyn}, title = {Why visceral fat is bad: mechanisms of the metabolic syndrome}, journal = {Obesity}, year = 2006, volume = 14, number = {Supplement 1}, pages = {16S-19S} } @Article{SniVanVis06, author = {Snijder,M.B. and {van Dam},R.M. and Visser,M. and Seidell,J.C.}, title = {What aspects of body fat are particularly hazardous and how do we measure them?}, journal = {International Journal of Epidemiology}, year = 2006, volume = 35, number = 1, pages = {83-92} } @Article{EzzMarSkj06, author = {Ezzati, Majid and Martin, Hilarie and Skjold, Suzanne and Vander Hoorn, Stephen and Murray, Christopher}, title = {Trends in national and state-level obesity in the USA after correction for self-report bias: analysis of health surveys}, journal = {Journal of the Royal Society of Medicine}, year = 2006, volume = 99, number = 5, pages = {250-257} } @Article{EzzFriKul08, author = {Ezzati, M. and Friedman, Ari B. and Kulkarni, Sandeep and Murray, Christopher}, title = {The reversal of fortunes: Trends in county mortality and cross-county mortality disparities in the United States}, journal = {PLoS Medicine}, year = 2008, volume = 5, number = 4, note = {e66}, pages = {0557-0568} } @Article{TorVau11, author = {Torri, T. and Vaupel, J.W.}, title = {Forecasting life expectancy in an international context}, journal = {International Journal of Forecasting}, year = 2011, volume = 27, note = {Forthcoming} } @Article{LiLee05, author = {Li, Nan and Lee, Ronald}, title = {Coherent mortality forecasts for a group of populations: an extension of the Lee-Carter method}, journal = {Demography}, year = 2005, volume = 42, number = 3, pages = {575-594} } @Article{HugKeeNau04, author = {Hughes, JR and Keely, J and Naud, S.}, title = {Shape of the relapse curve and long-term abstinence among untreated smokers}, journal = {Addiction}, year = 2004, volume = 99, number = 1, pages = {29-38} } @article{SuhAtzCho08, author = {Suh, Yousin and Atzmon, Gil and Cho, Mi-Ook and Hwang, David and Liu, Bingrong and Leahy, Daniel J. and Barzilai, Nir and Cohen, Pinchas}, title = {Functionally significant insulin-like growth factor I receptor mutations in centenarians}, volume = {105}, number = {9}, pages = {3438-3442}, year = {2008}, journal = {Proceedings of the National Academy of Sciences} } @article{MaiGoyPle03, author = {Mair, William and Goymer, Patrick and Pletcher, Scott D. and Partridge, Linda}, title = {Demography of Dietary Restriction and Death in Drosophila}, volume = {301}, number = {5640}, pages = {1731-1733}, year = {2003}, journal = {Science} } @article{MasPatShi01, author = {Masuzaki, Hiroaki and Paterson, Janice and Shinyama, Hiroshi and Morton, Nicholas M. and Mullins, John J. and Seckl, Jonathan R. and Flier, Jeffrey S.}, title = {A Transgenic Model of Visceral Obesity and the Metabolic Syndrome}, volume = {294}, number = {5549}, pages = {2166-2170}, year = {2001}, journal = {Science} } @Article{KenChaGen93, author = {Kenyon, Cynthia and Chang, Jean and Gensch, Erin and Rudner, Adam and Tabtiang, Ramon}, title = {A C. elegans mutant that lives twice as long as wild type}, journal = {Nature}, year = 1993, volume = 366, pages = {461-464} } @Article{KojKamAiz04, author = {Toshio Kojima and Hidehiko Kamei and Tomoyuki Aizu and Yasumichi Arai and Michiyo Takayama and Susumu Nakazawa and Yoshinori Ebihara and Hiroki Inagaki and Yukie Masui and Yasuyuki Gondo and Yoshiyuki Sakaki and Nobuyoshi Hirose}, title = {Association analysis between longevity in the Japanese population and polymorphic variants of genes involved in insulin and insulin-like growth factor 1 signaling pathways}, journal = {Experimental Gerontology}, year = 2004, volume = 39, number = {11-12}, pages = {1595 - 1598} } MatchIt/vignettes/faq.tex0000644000176200001440000002154012162551623015111 0ustar liggesusers\chapter{Frequently Asked Questions} \section{How do I Cite this Work?} If you use \MatchIt, please cite\nocite{HoImaKin07,HoImaKin07a} \begin{verse} Daniel Ho; Kosuke Imai; Gary King; and Elizabeth Stuart (2007), ``Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference,'' \emph{Political Analysis} 15(3): 199-236, \url{http://gking.harvard.edu/files/abs/matchp-abs.shtml}. and Daniel Ho; Kosuke Imai; Gary King; and Elizabeth Stuart (2007b) ``Matchit: Nonparametric Preprocessing for Parametric Causal Inference,'' \emph{Journal of Statistical Software}, \url{http://gking.harvard.edu/matchit/}. \end{verse} In addition, the {\tt convex.hull} discard option is implemented via the {\tt WhatIf} package \citep{KinZen06,KinZen07,StoKinZen05}. Generalized linear distance measures are implemented via the {\tt stats} package \citep{VenRip02}. Generalized additive distance measures are implemented via the {\tt mcgv} package \citep{HasTib90}. The neural network distance measure is implemented via the {\tt nnet} package \citep{Ripley96}. The classification trees distance measure is implemented via the {\tt rpart} package \citep{BreFriOls84}. Full and optimal matching are implemented via the {\tt optmatch} package \citep{Hansen04}. Genetic matching is implemented via the {\tt Matching} package \citep{DiaSek05}. Coarsened exact matching is implemented via the \texttt{cem} package \citep{IacKinPor08,IacKinPor08b}. \section{What if My datasets Are Big and Are Taking Up Too Much Memory?} {\tt matchit()} does not save the data set in its output object, but it does save a matrix of the covariates. {\tt match.data()} will create a matched data set. One can eliminate the original data set to save memory in R by {\tt rm(name)}, where {\tt name} is the name of the data set, after calling {\tt match.data()}. %\section{Can I use a Difference-in-Difference Estimator for Matched % Data?} % %A difference-in-differences (DID) analysis can be easily conducted %with \MatchIt. If we were interested in the DID matching estimate in %the Lalonde data, we could simply include {\texttt re75} as a %covariate in the preprocessing step. Then the analysis can be %performed on the change in income from 1975 to 1978: {\tt re78}-{\tt % re75}. Time-varying covariates (of which none exist in the Lalonde %data) should of course also be differenced for the DID estimator. %** we should show how to do this with zelig \section{How Exactly are the Weights Created?} \label{subsec:weights} Each type of matching method can be thought of as creating groups of units with at least one treated unit and at least one control unit in each. In exact matching, subclassification, or full matching, these groups are the subclasses formed, and the number of treated and control units will vary quite a bit across subclasses. In nearest neighbor or optimal matching, the groups are the pairs (or sets) of treated and control units matched. In 1:1 nearest neighbor matching there will be one treated unit and one control unit in each group. In 2:1 nearest neighbor matching there will be one treated unit and two control units in each group. Unmatched units receive a weight of 0. All matched treated units receive a weight of 1. These weights are constructed to estimate the average treatment effect on the treated, with the control group essentially weighted to look like the treated group. The weights for matched control units are formed as follows: \begin{enumerate} \item Within each group, each control unit is given a preliminary weight of $n_{ti}/n_{ci}$, where $n_{ti}$ and $n_{ci}$ are the number of treated and control units in group $i$, respectively. \item If matching is done with replacement, each control unit's weight is added up across the groups in which it was matched. \item The control group weights are scaled to sum to the number of uniquely matched control units. \end{enumerate} With subclassification, when the analysis is done separately within each subclass and then aggregated up across the subclasses, these weights will generally not be used, but they may be used for full matching or nearest neighbor matching if the number of control units matched to each treated unit varies. \section{How Do I Create Observation Names?} \label{rnames} Since the diagnostics often make use of the observation names of the data frame, you may find it helpful to specify observation names for the data input. Use the \texttt{row.names} command to achieve this. For example, to assign the names ``Dan'', ``Kosuke'', ``Liz'' and ``Gary'' to a data frame with the first four observations in the Lalonde data, type: \begin{verbatim} > test <- lalonde[1:4, ] > row.names(test) <- c("Dan", "Kosuke", "Liz", "Gary") > print(test) age educ black hisp married nodegr re74 re75 re78 u74 u75 treat Dan 37 11 1 0 1 1 0 0 9930 1 1 1 Kosuke 22 9 0 1 0 1 0 0 3596 1 1 1 Liz 30 12 1 0 0 0 0 0 24910 1 1 1 Gary 27 11 1 0 0 1 0 0 7506 1 1 1 \end{verbatim} \section{How Can I See Outcomes of Matched Pairs?} To obtain outcomes of matched pairs, recall that the original dataset has unique row names corresponding to each of the observations. The row names of \texttt{match.matrix} correspond to the names of the treated, and each of the cells corresponds to a name of matched controls. So to obtain matched outcomes, you can use: \begin{verbatim} cbind(lalonde[row.names(foo$match.matrix),"re78"], lalonde[foo$match.matrix,"re78"]) \end{verbatim} \section{How Do I Ensure Replicability As \MatchIt\ Versions Develop?} \label{subsec:vercontrol} As the literature on matching techniques is rapidly evolving, \MatchIt\ will strive to incorporate new developments. \MatchIt\ is thereby an evolving program. Users may be concerned that analysis written in a particular version may not be compatible with newer versions of the program. The primary way to ensure that replication archives remain valid is to record the version of \MatchIt\ that was used in the analysis. Our website maintains binaries of all public release versions, so that researchers can replicate results exactly with the appropriate version (for Unix-based platforms, see \hlink{http://gking.harvard.edu/src/contrib/}{http://gking.harvard.edu/src/contrib/}; for windows, see \hlink{http://gking.harvard.edu/bin/windows/contrib/}{http://gking.harvard.edu/bin/windows/contrib/}). In addition, users may find it helpful to install packages with version control, using the {\tt installWithVers} command with {\tt install.packages}. So for example, in the windows R console, users may download the appropriate version from our website and install the package with version control by: \begin{verbatim} install.packages(choose.files('',filters=Filters[c('zip','All'),]), .libPaths()[1],installWithVers=T,CRAN=NULL) \end{verbatim} {\tt R CMD INSTALL} similarly permits users to specify this version using the \\ {\tt --with-package-versions} option. After having specified version control, different versions of the program may be called as necessary. Similar advice may also be appropriate for version control for R more generally. \section{How Do I Use My Own Distance Measure with \MatchIt\,?} A vector of your own distance measure can be used by specifying it as the input for {\tt distance} option in {\tt matchit()}. \section{What Do I Do about Missing Data?} \MatchIt\ requires complete data sets, with no missing values (other than potential outcomes of course). If there are missing values in the data set, imputation techniques should be used first to fill in (``impute'') the missing values (both covariates and outcomes), or the analysis should be done using only complete cases (which we do not in general recommend). For imputation software, see Amelia at (\hlink{http://gking.harvard.edu/stats.shtml}{http://gking.harvard.edu/stats.shtml}) or other programs at \hlink{http://www.multiple-imputation.com}{http://www.multiple-imputation.com}. For more information on missing data and imputation methods, see \cite{KinHonJos01}. \section{Why Preprocessing?} The purpose of matching is to approximate an experimental template, where the matching procedure approximates blocking prior to random treatment assignment in order to balance covariates between treatment and control groups. Separation of the estimation procedure into two steps simulates the research design of an experiment, where no information on outcomes is known at the point of experimental design and randomization. The separation of the balancing process in \MatchIt\ from the analysis process afterward helps keep clear the goal of balancing control and treatment groups and makes it less likely that the user will inadvertently cook the books in his or her favor. %%% Local Variables: %%% mode: latex %%% TeX-master: t %%% End: MatchIt/vignettes/face_off.jpg0000644000176200001440000002137612162551623016061 0ustar liggesusersÿØÿàJFIFddÿìDucky2ÿîAdobedÀÿÛ„         #"""#''''''''''     !! !!''''''''''ÿÀ^&"ÿÄ…!1AQaq‘"2¡±ÁBRb‚’#3ðÑrCs4¢²Sc“$&£³D5ÿÚ ?áȈ€ˆˆˆ€½ZÝ#^#Ö¼–Õ¨d…°¸Ò¿ ä‚K Ú =!NùBF€ypPø˜åŽY¢B‚&Ô€=h)96ïeháZ­E-ÜQ6,“èup#¢‰@DD3ãn´ö«rý·V.ޤï˜\0žu¬Nÿt*å¬+÷wbñÖ¯Œ»´lÏØÉOàdúÊ %9¢" """ "" ×Ë8‹²¼ è¹÷=Á‹8gÄê€8Uùa-%¹m”;½*Ëåå2MÇ·áiý÷´AFƳºñ‚®v؉qp-¥Xçi×ÒºCܼ>1¶•ô._ŠsÏvÂ$1ÒFÚë£ðF•çò¶»¸˜š+êATî·‘ ž5 ÒŠ‘r ¡r¼÷ /ØçP¹¤…J¾¥tA ˆˆˆ€ˆˆˆ€ˆˆˆ€½iR>×ÐWš÷‡Ÿˆ¢ ÜO3˜@’€·]\:)Ëf¸ÊíÚSîªå€ü³Ù#ªèˆ«MhZããÑYì¦Ne7ïÓŸŠ wpö“z¾¥¥û•¡™YZ<B" iE`ËwÆK aŠ|MlVÀ;ÌIhØ>…_[Ö")Pö ×®”EôÒº/ˆˆ€ˆˆˆ€ˆˆ:Ë!G^H~€®XH#–òâýÑ€íXÓéTÞÄŠh±—†‘æº]Æ"FE wZžh9Dw&n÷Ѭd’µhíèR7ܷ̂PÓ_ .wo°w³C˜Z_,¥ƒMEºd£Ë¶Œ¼m!¯±w(ÆÈÇ4ŠÑs¼˜¤„x®“‘¡Îhä¹ÎWø®Aˆx¢" """ """ /hx¯ë¡,¶15ñ48T¥%cg,Mt ^<Ö0+ÒŠÃq<Ð@÷v%ðÞ6åÒ%`4Ô=º‚Ú®w–?¼#WA™¡¶´p ÕEÏrÀ‰z Š9÷LkDB¯{¨]UæÆÇ"~qmvÕà|s ¸f·¹–†åk¨ö;B ñ]Ÿ+Úp÷ˆd±¶‹ÿmvÝ5§Ã'VŸ¡qûË;œ}Ô¶W‘˜® qd±žD ðDD¹jK<™+ÎAô-5µ‰äé> ƒÁ£Ü+±nZâO. ÅüPbˆˆˆ€¶±øëÜ¥ÔvvºiäàÆôüDòaegs‘»†ÆÎ#5ÍÄqF9¸ýW|ížÎ¶í|w’H~Ba[Ë(I§ÀÎŒ(ö=‡cŽˆ;% žó‹¨vÃÑ¢žõ:•£•ÂÙ:7I Á£M)ªè—XèïÞt­zª¥÷n½¢à±ÂH‰Üq肇{Š1D%ûÃ~&óô¨—0íô+=Ö>kk·Ù¶¯i  uÕC_Ä-î_ x4Ð8úlÙÿÃE¿kªµo[¶h6ûÃc(êSšÚ´ÿ5„= öŠó˜n¹´c´icjYþ^Ö']‰fqÌm>EÞ1ˆlúTîfÕÒebÞë ZãÉDdá1´G€!Ñ@DDD@DDD@DDµi™;(8uçE¬ÑSª”ÆŠ:¿{¢ –Øv¹‘´0=À¼~.!Z¬‹¤˜µ­£Gø·UwopöCmnÞ~cÈ<ΊíƒÅ˜ƒ¦¸Äåh2Ó{¢õ×Wa̲k‡ðáà_éyúþò#NW‚—‚Ö ;Hl­Û¶(Øãhu ©vÝÜ iÉG ÇÂö8“Q¨‹º¨»¶¶[i%ì-÷yªÙ{ SÆ(¡Ýpâ ¸°Hç1ÄµÍ ƒTkÛ:FLÁµÔ­[Çxª®WÒÙ]ÌÕàÓPO}ž60Öðä_O%”“5öåÅ“ËVÄ &•ÓЂl)&džçGPõ!˜¶îÄåXZÐ œö€T,è~óºƒÀr]*âØ86GWÌØ9iÆ«žw3<¹¼¢@?„rAXwŠÉÜ(ˆ€ˆˆˆ€ˆˆˆƒÖîxm+^uW\<ØÜlBç-0c[ï6Ù¿ôÑR#•ñÌ4wUïkm=ýÇ–Ò\÷\uAzŸ½ò™«˜±8Å­¹p£‹CÆ»¶êÖÒš+†9lZ#sL³ÍïÜ\ÌKä‘ÜË«_RñíŽÎû/6É€ÝÊÚyÆšu¥U†Ûµ¦s©q’‘¥À5þHh 8Öˆ,8WjàHäiÍ[ ™W<^'amK ®PÈjiÍÞ*pFÖ±•uEFº}(8'ÿ æœÂ[WVÅ4‡ÖZß±qeѾuf“ïY­£ptxØ™j)øÿˆÿa+œ )(Å{~Wt½e}q¥!i=»t äGÛFŽk“y¬PZ¾[]‹.øÂÌçmk¦ò\OIYöªªõ¶¸–Öâ+¨Ù`{eaèæáô„´ÝPÝ8…•x-%Ïžµ'…¿n[e“n‚êå§‹š úVÜŒl¬>è¨ês9®-¥qtw-tN$;kàE çÝÅÛ™\Eës®\Æ;W:ÜЇs«xÚ/1öqt–±ï'W€WÁˆ¶Ž °³Ýv¡‡QTóAá‚Ϲ s shïÖoUhŠï™Œ?v˸ΦÔ~£¨T'wöTù·±§>î•%rÒÛ¬]Íè'Œñi->Ђ˂+qolqeä g&×a¢¸Ä- „Ëy3-ãkß¹ò;oÞ<9ª–kœ7s¸¾_õPdyâjÖëô).üi hêv–9ÛG]è&»ƒ¼`Æ1¶¸Æy²LÀ[;øPð§‚ç·’Ü\Öâr\çjIêU¾ßvF[[‰…XÈ›FÿZǹ0·´k(9ˆ(.X¯G3Ztâ$¢"" """ ""­*ñÙØæ:Xß#~#RyQRbx'’¿vÞR;;-ôJNØØGÙÑrÅ‹k{F¼ÁA©Rõ´‚Ï¿ÏiÔ7ºÎbÏÜMnÈËýá@êh+à­x[©%“î’ÓFJ ±ÉŽ!NT:¡Î6ÎQm@((OëfÖÅŸæµµ#JÔ*½õ¤×w.•ÄÆ ˆ?=ü³žÓ¼2®˜š˜ÜÄîNŽ_x8}J²Wvù—ÚÎÍaÅý«7d1m.ŠH>û4éñÂÇÉ ^Ðۙѻ·>Ö<(§qS8æ‡öî`sl–Î×53y¬VC‰ô,Plãì§ÈÝÃclÂù§xŽ6Ž%ÎÐ-e×~PöÖÆËÝ7¬µ‡׃åPAÔñœ5…–""I´†8IãRÑG}*Ñæ“B\õªëm+üÃÅÜ›·`lÍA: Ñ»–ÏfçhؼaÈÃ+LgÝ-åÍxdAqp`¥*vŸ±U]pûy÷†î'¢ ëûvÎ×8Óa'—¥r®òíÖÈÏ6&†–Õ§èWȲ>S%Œ89¯h¯x(‡NÌŒrÛš@;@ÔŸ·Òƒ—ñv§”ñGE”`ן»ÄaZû†ÃóÙ+'ñÚÇo¦ºnPýÅbë –îvê_Fê[«¦ŠÍ Ä­mìÄâchN('±vqmkâСhw„¶Ðãei!Ò@8ÓN!Êl!í#ßmykÍUûžàºßkIy5.¯3Ô çIªñ~‹eü:Sˆ Yè0DDD@DDD@DDAKcn^Â#o#ÅD-ìfãpÖ·RNLÁÙùÁ³ÊK«¨J.•µtѵ€í¤:ƒŸ‚¤à-ß,,t éEÔ°PyQ3xíA.ÈZÈ|¶ð#B¡s—Øü ™¾ÉK±…Á‘5¢®{ÈøZ:« "£ESïîØ›¹¬lâ´vÙ-æÜA'ásv“¢ ¦79{šË‡XÛÅÕ!¨8¥è?™”SšÐx¥TÆY¾]ôÍjTDž(<ÑMàä,™´àM"ÇÈæLÝ ŸBÕÛí˜Ð?ˆºEœ»XØÆèÂßM£yŒAãAÑt±s"2Tê‚á¸ÎDgáQÈ…¸Yo»¥ylPÆÒ÷¼è*\O¡AÛ]—1®`ÝZj¤ F鎊q¾Y#× 8{~fùŸÜžäî™r8_zÙ±2NZ[æ=•«Ú.@ªh& ­¬´ ³ÊßZDAŠ ‰cŒŽZòд÷ û#‹JžívùÉÂ8ɘè¡P×U;Úöè~+9ÇÐGáçü¶F ¹ö/;ׇÝÌÿÄòWŒ'dŒ#‘ªù)Ý#RƒC¯5ñdÚRƒ‰X¢Ð);Þß#imÚóÛ>;‹(\YpÚ95÷¿ ÷—R“aÔóªàŸ# Êec{¿|mØc£¸î§Ð»\Žtm&´“ÃU}$f2Fî-+Êöð3Ýö¨;›æH* 5i­(ƒÏ'0|eÇ–štU¬¬'c}ç:£jšV\B&Ù+Í'Eì%ϞȞÑ,Ú¿Í(yW•@Mcí¾äÌ;k ü³Z’j}+I í(*èî˜áNCɦ«îVbÛ¾çÅo;l[}Ö÷µÎöUzöí³ï»[ËkwQÑ=ÃÃab ËZë8œ jjuSŽ–?Ë—PqPl±’+Hå{¼¦6§e5¥z,noZè)l]#6ê÷ ¨9þ}Í9ˆ²ƒì²¾i_4¦²Hâ÷ž®q©X" )¾×$deï[LßQj„S=®æ·(ßåm‹ WÂjj¾¿ãwZŸ­b€ˆˆˆ‚[¶»‚ó¶3ù{:9ÑÙ"&‚HÝñF}+¹Ø|Ñí¼­³eüÛm%-ýåµ×¸æž•àåùÙwìŸsàçg¹–¶iÿh ÿš{vÅžþM’¿‰òƒ_`\u*ƒ¯Y÷?l_d"ˆdeŠYò78ð©WÌÅÅž6ÔXGsåå/E¦ÚÐ"ªüå‡-nZÀžâ*Óûa~–ÍEe%«nß _tÆùvÒ‘G7}7kãDe½ÇÏ2Êû¦É#¸¸±àÔøš)þÐîl.";«Ã ¶7Å&À…ÔŽŠ»ÛÎt¹Ì°?Ö·õ­ßbñ©þQy·mĺIª‘ÝÃÛvŒ®/š¼«]H†âhŠ–{«å˜`Žvƒ_yàôS29ö„8ÕÆZ—&£ªÖúo_JÉ¥t‘’ZxT-ëūɶ$s{§öš,`ÓA«iª®+ŸgYcâÌdç ’ØØM-¯er·¹ŠòÂQo! Š·¨;t>¥Äþk‡ñyujë[rIçîR«±bž×‚ÛV±ÑŠPr›²Ä{¹±0—>ÞÒå'ñPŸµ2ó„á…ª¶nH1Û‘ø)ì+Y·mi—ŠšÕ²ö¢T¯m3V§«ˆö´„²é,ƒ£œ>’°^×cmÜíé#þµâ€ˆˆˆ€ˆˆˆƒbÆ¿žµ§::~Ø_£»²¹pq"|èeŠgÍøëáEù²˜¦ŠAÅk…EÀ¯Ô3N÷b?5%¶©Û¨¡eP~{íÉÞÎâ{£nã3nã t|oÕbéò©„6¿¾ˆÈî„ÓÚ¾ö‹ÿò{jègoíG"ùÿÆr;¹OßSžBŠùDòݨõ/5˜$FGR=GÀ¼–mà°@DDD@DDD@DDvìkK[²;<à ÜÇ|:ÐÖŠ’§1··8Ü-ÕͳöI4‚ á÷w ìAÓ³?21}¿í1ŒmîEžá¦‘GA÷÷½rLÆbÿ=—'’Is-‹FÐE…O4AµpÐ-­9µßAZ«rå´ÇÙ¿®ñì+M†_'-hîH*£×½”‚+È$<ö“íAöúŸ¸ ÔkëZëÞð‡]JáÍÄûW‚" """ ""ÔûG½F6Îß~òë[¸ŸRîÞZvƒàW,Sì ˜[—аMpäFñPƒË¶ËàîK*Š;Î"‡ôƒ‡Ú½Ú6öåó;ÞýYtúÕ§¼ñ–®ÿÆC‹Êl¦'½ “W9ÜuUQ¸â²ñV¾LÎ.™B* â@!fÞ ›x,oC|ÖbnqÎis¦‘’±üšYZéãU¢¤ð–^Mq À— y_ =ö¶¡b'QÕë#þ[ÅÈÑïùÓ‡¼*º‘Ží,|t£ãº˜àZ" /¬4sOBÅôq”ÍüBzê¼ÖO$¼“Õb€ˆˆˆ€ˆˆˆ€¬·ÆG`qcH£†× èiX¿6×â±äë쯀ÞKwõäýÕ†¹ÈÕ·-ò%FÓîÈÑE¹–½À9‰d¯ýV•-ó*ò Îòkíel¬°·|nhuF•T(«¶ýÃ? ®q<ÍÒ‚´‰ý(ˆ2iªÄñY3šÅ­½Ìö’‰­Þc7„Pñ^H€ˆˆ=Ýr÷Z2ØšÆÇº@ with the docstrip utility (2.0r). %% %% The original source files were: %% %% dcolumn.doc (with options: `style') %% %% This file is part of the array package. %% --------------------------------------- %% %% It is a contributed file. %% In case of errors please inform the original author. %% %% The checksum in the header refers to the documented version of %% the file. %% %%% ==================================================================== %%% @LaTeX-style-file{ %%% author = "David Carlisle", %%% version = "1.01", %%% date = "12 June 1992", %%% time = "16:24:45 BST", %%% filename = "dcolumn.sty", %%% address = "Computer Science Department %%% Manchester University %%% Oxford Road %%% Manchester %%% England %%% M13 9PL", %%% telephone = "+44 61 275 6139", %%% FAX = "+44 61 275 6236", %%% checksum = "48012 272 1205 9538", %%% email = "carlisle@cs.man.ac.uk (Internet)", %%% codetable = "ISO/ASCII", %%% keywords = "LaTeX, tabular, array, decimal", %%% supported = "yes", %%% docstring = " %%% %%% dcolumn.sty %%% %%% A LaTeX style option for producing tabular entries aligned on a %%% decimal point. %%% The `decimal point' may be any math-mode material, or just `.'. %%% %%% Requires array.sty. %%% Documentation requires Mittelbach's doc.sty. %%% %%% The checksum field above was produced by %%% Robert Solovay's checksum utility.", %%% } %%% ==================================================================== \def\fileversion{v1.01} \def\filedate{92/06/12} \def\docdate {92/06/17} \@ifundefined{DC@centre}{}{\endinput} \wlog{Style-Option: `dcolumn' \fileversion \space\space <\filedate> (D.P.C.)} \wlog{English documentation dated \space <\docdate> (D.P.C.)} \@ifundefined{newcolumntype}{\input array.sty}{} \def\DC@#1#2#3{% \uccode`\~=`#1\relax \m@th \ifnum #3 < \z@ \expandafter\DC@centre \else \expandafter\DC@right \fi {#1}{#2}{#3}} \def\DC@centre#1#2#3{% \let\DC@end\DC@endcentre \uppercase{\def~}{$\egroup\setbox\tw@=\hbox\bgroup${#2}}% \setbox\tw@=\hbox{${\phantom{{#2}}}$}% \setbox\z@=\hbox\bgroup$\mathcode`#1="8000 } \def\DC@endcentre{$\egroup \ifdim \wd\z@>\wd\tw@ \setbox\tw@=\hbox to\wd\z@{\unhbox\tw@\hfill}% \else \setbox\z@=\hbox to\wd\tw@{\hfill\unhbox\z@}\fi \box\z@\box\tw@} \def\DC@right#1#2#3{% \let\DC@end\DC@endright \uppercase{\def~}{$\egroup\setbox\tw@=\hbox to \dimen@\bgroup${#2}}% \setbox\z@=\hbox{$1$}\dimen@=#3\wd\z@ \setbox\z@=\hbox{${#2}$}\advance\dimen@\wd\z@ \setbox\tw@=\hbox to \dimen@{}% \setbox\z@=\hbox\bgroup$\mathcode`#1="8000 } \def\DC@endright{$\hfil\egroup\hfill\box\z@\box\tw@} \newcolumntype{D}[3]{>{\DC@{#1}{#2}{#3}}c<{\DC@end}} \endinput %% %% End of file `dcolumn.sty'. MatchIt/vignettes/balance.tex0000644000176200001440000001572112162551623015733 0ustar liggesusers\section{Checking Balance} \label{sec:balance} \subsection{Quick Overview} To check balance, use \texttt{summary(m.out)} for numerical summaries and \texttt{plot(m.out)} for graphical summaries. \subsection{Details} \subsubsection{The {\tt summary()} Command} The \texttt{summary()} command gives measures of the balance between the treated and control groups in the full (original) data set, and then in the matched data set. If the matching worked well, the measures of balance should be smaller in the matched data set (smaller values of the measures indicate better balance). The \texttt{summary()} output for subclassification is the same as that for other types of matching, except that the balance statistics are shown separately for each subclass, and the overall balance in the matched samples is calculated by aggregating across the subclasses, where each subclass is weighted by the number of units in the subclass. For exact matching, the covariate values within each subclass are guaranteed to be the same, and so the measures of balance are not output for exact matching; only the sample sizes in each subclass are shown. \begin{itemize} \item {\bf Balance statistics:} The statistics the \texttt{summary()} command provides include means, the original control group standard deviation (where applicable), mean differences, standardized mean differences, and (median, mean and maximum) Quantile-Quantile (Q-Q) plot differences. In addition, the \texttt{summary()} command will report (a) the matched call, (b) how many units were matched, unmatched, or discarded due to the \texttt{discard} option (described below), and (c) the percent improvement in balance for each of the balance measures, defined as $100((|a|-|b|)/|a|)$, where $a$ is the balance before and $b$ is the balance after matching. For each set of units (original and matched data sets, with weights used as appropriate in the matched data sets), the following statistics are provided: \begin{enumerate} \item ``Means Treated'' and ``Means Control'' show the weighted means in the treated and control groups \item ``SD Control" is the standard deviation calculated in the control group (where applicable) \item ``Mean Diff'' is the difference in means between the groups \item The final three columns of the summary output give summary statistics of a Q-Q plot (see below for more information on these plots). Those columns give the median, mean, and maximum distance between the two empirical quantile functions (treated and control groups). Values greater than 0 indicate deviations between the groups in some part of the empirical distributions. The plots of the two empirical quantile functions themselves, described below, can provide further insight into which part of the covariate distribution has differences between the two groups. \end{enumerate} \item {\bf Additional options:} Three options to the \texttt{summary()} command can also help with assessing balance and respecifying the propensity score model, as necessary. First, the {\tt interactions = TRUE} option with {\tt summary()} shows the balance of all squares and interactions of the covariates used in the matching procedure. Large differences in higher order interactions usually are a good indication that the propensity score model (the distance measure) needs to be respecified. Similarly, the {\tt addlvariables} option with {\tt summary()} will provide balance measures on additional variables not included in the original matching procedure. If a variable (or interaction of variables) not included in the original propensity score model has large imbalances in the matched groups, including that variable in the next model specification may improve the resulting balance on that variable. Because the outcome variable is not used in the matching procedure, a variety of matching methods can be tried, and the one that leads to the best resulting balance chosen. Finally, the {\tt standardize = TRUE} option will print out standardized versions of the balance measures, where the mean difference is standardized (divided) by the standard deviation in the original treated group. \end{itemize} \subsubsection{The \texttt{plot()} Command} We can also examine the balance graphically using the \texttt{plot()} command, which provides three types of plots: jitter plots of the distance measure, Q-Q plots of each covariate, and histograms of the distance measure. For subclassification, separate Q-Q plots can be printed for each subclass. The jitter plot for subclassification is the same as that for other types of matching, with the addition of vertical lines indicating the subclass cut-points. With the histogram option, 4 histograms are provided: the original treated and control groups and the matched treated and control groups. For the Q-Q plots and the histograms, the weights that result after matching are used to create the plots. Three examples of the output from the {\tt plot()} command are shown in Figure~\ref{fig:plotcommandoutput}. If the empirical distributions are the same in the treated and control groups, the points in the Q-Q plots would all lie on the 45 degree line (lower left panel of Figure~\ref{fig:plotcommandoutput}). Deviations from the 45 degree line indicate differences in the empirical distribution. The jitter plot (top panel) shows the overall distribution of propensity scores in the treated and control groups. In the jitter plot, which can be created by setting \texttt{type = "jitter"}, the size of each point is proportional to the weight given to that unit. Observation names can be interactively identified by clicking the first mouse button near the units. The histograms (lower right panel) can be plotted by setting \texttt{type = "hist"}. \begin{figure} \begin{center} \includegraphics[height=2.7in, keepaspectratio=true]{figs/jitterplotnn.pdf} \includegraphics[height=3in,keepaspectratio=true]{figs/qqplotnn1.pdf} \includegraphics[height=3in,keepaspectratio=true]{figs/hist.pdf} \caption{Examples of the three types of output from the \texttt{plot} command resulting from matching on the /texttt{lalonde} data set based on real earnings in 1974 (\texttt{re74}) divided by 1000, real earnings in 1975 (\texttt{re75}) divided by 1000, years of education (\texttt{educ}), Hispanic (\texttt{hispan}) and marital status (\texttt{married}). Observations in both the treated and the control groups outside the support of the distance measure were discarded. The upper plot shows the jitter plot of the distance measure. The lower left plot shows the QQ plots for the first three covariates (\texttt{I(re74/1000)}, \texttt{I(re75/1000)}, \texttt{educ}). The lower right plot shows the histograms of the density of propensity scores for observations before and after matching.} \label{fig:plotcommandoutput} \end{center} \end{figure} %%% Local Variables: %%% mode: latex %%% TeX-master: "matchit" %%% End: MatchIt/vignettes/asa.bst0000644000176200001440000006663212162551623015111 0ustar liggesusers%% %% This is file `asa.bst', %% generated with the docstrip utility. %% %% The original source files were: %% %% merlin.mbs (with options: `,ay,nat,nm-rev,ed-rev,nmdash,dt-beg,yr-par,note-yr,tit-qq,atit-u,thtit-a,vnum-x,volp-com,pp-last,add-pub,pre-pub,edpar,edby,edbyx,blk-com,pp,ed,abr,ednx,ord,em-it,nfss') %% ---------------------------------------- %% *** BibTeX Style for ASA Journals *** %% (Brett Presnell, 24 August 1998) %% %------------------------------------------------------------------- % The original source file contains the following version information: % \ProvidesFile{merlin.mbs}[1998/02/25 3.85a (PWD)] % % NOTICE: % This file may be used for non-profit purposes. % It may not be distributed in exchange for money, % other than distribution costs. % % The author provides it `as is' and does not guarantee it in any way. % % Copyright (C) 1994-98 Patrick W. Daly %------------------------------------------------------------------- % For use with BibTeX version 0.99a or later %------------------------------------------------------------------- % This bibliography style file is intended for texts in ENGLISH % This is an author-year citation style bibliography. As such, it is % non-standard LaTeX, and requires a special package file to function properly. % Such a package is natbib.sty by Patrick W. Daly % The form of the \bibitem entries is % \bibitem[Jones et al.(1990)]{key}... % \bibitem[Jones et al.(1990)Jones, Baker, and Smith]{key}... % The essential feature is that the label (the part in brackets) consists % of the author names, as they should appear in the citation, with the year % in parentheses following. There must be no space before the opening % parenthesis! % With natbib v5.3, a full list of authors may also follow the year. % In natbib.sty, it is possible to define the type of enclosures that is % really wanted (brackets or parentheses), but in either case, there must % be parentheses in the label. % The \cite command functions as follows: % \citet{key} ==>> Jones et al. (1990) % \citet*{key} ==>> Jones, Baker, and Smith (1990) % \citep{key} ==>> (Jones et al., 1990) % \citep*{key} ==>> (Jones, Baker, and Smith, 1990) % \citep[chap. 2]{key} ==>> (Jones et al., 1990, chap. 2) % \citep[e.g.][]{key} ==>> (e.g. Jones et al., 1990) % \citep[e.g.][p. 32]{key} ==>> (e.g. Jones et al., p. 32) % \citeauthor{key} ==>> Jones et al. % \citeauthor*{key} ==>> Jones, Baker, and Smith % \citeyear{key} ==>> 1990 %--------------------------------------------------------------------- ENTRY { address author booktitle chapter edition editor howpublished institution journal key month note number organization pages publisher school series title type volume year } {} { label extra.label sort.label short.list } INTEGERS { output.state before.all mid.sentence after.sentence after.block } FUNCTION {init.state.consts} { #0 'before.all := #1 'mid.sentence := #2 'after.sentence := #3 'after.block := } STRINGS { s t } FUNCTION {output.nonnull} { 's := output.state mid.sentence = { ", " * write$ } { output.state after.block = { add.period$ write$ newline$ "\newblock " write$ } { output.state before.all = 'write$ { add.period$ " " * write$ } if$ } if$ mid.sentence 'output.state := } if$ s } FUNCTION {output} { duplicate$ empty$ 'pop$ 'output.nonnull if$ } FUNCTION {output.check} { 't := duplicate$ empty$ { pop$ "empty " t * " in " * cite$ * warning$ } 'output.nonnull if$ } FUNCTION {fin.entry} { add.period$ write$ newline$ } FUNCTION {new.block} { output.state before.all = 'skip$ { after.block 'output.state := } if$ } FUNCTION {new.sentence} { output.state after.block = 'skip$ { output.state before.all = 'skip$ { after.sentence 'output.state := } if$ } if$ } FUNCTION {add.blank} { " " * before.all 'output.state := } FUNCTION {date.block} { skip$ } FUNCTION {not} { { #0 } { #1 } if$ } FUNCTION {and} { 'skip$ { pop$ #0 } if$ } FUNCTION {or} { { pop$ #1 } 'skip$ if$ } FUNCTION {non.stop} { duplicate$ "}" * add.period$ #-1 #1 substring$ "." = } FUNCTION {new.block.checkb} { empty$ swap$ empty$ and 'skip$ 'new.block if$ } FUNCTION {field.or.null} { duplicate$ empty$ { pop$ "" } 'skip$ if$ } FUNCTION {emphasize} { duplicate$ empty$ { pop$ "" } { "\textit{" swap$ * "}" * } if$ } FUNCTION {capitalize} { "u" change.case$ "t" change.case$ } FUNCTION {space.word} { " " swap$ * " " * } % Here are the language-specific definitions for explicit words. % Each function has a name bbl.xxx where xxx is the English word. % The language selected here is ENGLISH FUNCTION {bbl.and} { "and"} FUNCTION {bbl.editors} { "eds." } FUNCTION {bbl.editor} { "ed." } FUNCTION {bbl.edby} { "edited by" } FUNCTION {bbl.edition} { "ed." } FUNCTION {bbl.volume} { "vol." } FUNCTION {bbl.of} { "of" } FUNCTION {bbl.number} { "no." } FUNCTION {bbl.nr} { "no." } FUNCTION {bbl.in} { "in" } FUNCTION {bbl.pages} { "pp." } FUNCTION {bbl.page} { "p." } FUNCTION {bbl.chapter} { "chap." } FUNCTION {bbl.techrep} { "Tech. Rep." } FUNCTION {bbl.mthesis} { "Master's thesis" } FUNCTION {bbl.phdthesis} { "Ph.D. thesis" } FUNCTION {bbl.first} { "1st" } FUNCTION {bbl.second} { "2nd" } FUNCTION {bbl.third} { "3rd" } FUNCTION {bbl.fourth} { "4th" } FUNCTION {bbl.fifth} { "5th" } FUNCTION {bbl.st} { "st" } FUNCTION {bbl.nd} { "nd" } FUNCTION {bbl.rd} { "rd" } FUNCTION {bbl.th} { "th" } MACRO {jan} {"Jan."} MACRO {feb} {"Feb."} MACRO {mar} {"Mar."} MACRO {apr} {"Apr."} MACRO {may} {"May"} MACRO {jun} {"Jun."} MACRO {jul} {"Jul."} MACRO {aug} {"Aug."} MACRO {sep} {"Sep."} MACRO {oct} {"Oct."} MACRO {nov} {"Nov."} MACRO {dec} {"Dec."} FUNCTION {eng.ord} { duplicate$ "1" swap$ * #-2 #1 substring$ "1" = { bbl.th * } { duplicate$ #-1 #1 substring$ duplicate$ "1" = { pop$ bbl.st * } { duplicate$ "2" = { pop$ bbl.nd * } { "3" = { bbl.rd * } { bbl.th * } if$ } if$ } if$ } if$ } MACRO {acmcs} {"ACM Computing Surveys"} MACRO {acta} {"Acta Informatica"} MACRO {cacm} {"Communications of the ACM"} MACRO {ibmjrd} {"IBM Journal of Research and Development"} MACRO {ibmsj} {"IBM Systems Journal"} MACRO {ieeese} {"IEEE Transactions on Software Engineering"} MACRO {ieeetc} {"IEEE Transactions on Computers"} MACRO {ieeetcad} {"IEEE Transactions on Computer-Aided Design of Integrated Circuits"} MACRO {ipl} {"Information Processing Letters"} MACRO {jacm} {"Journal of the ACM"} MACRO {jcss} {"Journal of Computer and System Sciences"} MACRO {scp} {"Science of Computer Programming"} MACRO {sicomp} {"SIAM Journal on Computing"} MACRO {tocs} {"ACM Transactions on Computer Systems"} MACRO {tods} {"ACM Transactions on Database Systems"} MACRO {tog} {"ACM Transactions on Graphics"} MACRO {toms} {"ACM Transactions on Mathematical Software"} MACRO {toois} {"ACM Transactions on Office Information Systems"} MACRO {toplas} {"ACM Transactions on Programming Languages and Systems"} MACRO {tcs} {"Theoretical Computer Science"} INTEGERS { nameptr namesleft numnames } FUNCTION {format.names} { 's := #1 'nameptr := s num.names$ 'numnames := numnames 'namesleft := { namesleft #0 > } { s nameptr "{vv~}{ll}{, jj}{, f.}" format.name$ 't := nameptr #1 > { namesleft #1 > { ", " * t * } { numnames #2 > { "," * } 'skip$ if$ s nameptr "{ll}" format.name$ duplicate$ "others" = { 't := } { pop$ } if$ t "others" = { " et~al." * } { bbl.and space.word * t * } if$ } if$ } 't if$ nameptr #1 + 'nameptr := namesleft #1 - 'namesleft := } while$ } FUNCTION {format.names.ed} { format.names } FUNCTION {format.key} { empty$ { key field.or.null } { "" } if$ } FUNCTION {format.authors} { author empty$ { "" } { author format.names } if$ } FUNCTION {format.editors} { editor empty$ { "" } { editor format.names editor num.names$ #1 > { " (" * bbl.editors * ")" * } { " (" * bbl.editor * ")" * } if$ } if$ } FUNCTION {format.in.editors} { editor empty$ { "" } { editor format.names.ed } if$ } FUNCTION {format.note} { note empty$ { "" } { note #1 #1 substring$ duplicate$ "{" = 'skip$ { output.state mid.sentence = { "l" } { "u" } if$ change.case$ } if$ note #2 global.max$ substring$ * } if$ } FUNCTION {format.title} { title empty$ { "" } { title "\enquote{" swap$ * non.stop { ",} " * } { "} " * } if$ } if$ } FUNCTION {end.quote.title} { title empty$ 'skip$ { before.all 'output.state := } if$ } FUNCTION {format.full.names} {'s := #1 'nameptr := s num.names$ 'numnames := numnames 'namesleft := { namesleft #0 > } { s nameptr "{vv~}{ll}" format.name$ 't := nameptr #1 > { namesleft #1 > { ", " * t * } { numnames #2 > { "," * } 'skip$ if$ s nameptr "{ll}" format.name$ duplicate$ "others" = { 't := } { pop$ } if$ t "others" = { " et~al." * } { bbl.and space.word * t * } if$ } if$ } 't if$ nameptr #1 + 'nameptr := namesleft #1 - 'namesleft := } while$ } FUNCTION {author.editor.key.full} { author empty$ { editor empty$ { key empty$ { cite$ #1 #3 substring$ } 'key if$ } { editor format.full.names } if$ } { author format.full.names } if$ } FUNCTION {author.key.full} { author empty$ { key empty$ { cite$ #1 #3 substring$ } 'key if$ } { author format.full.names } if$ } FUNCTION {editor.key.full} { editor empty$ { key empty$ { cite$ #1 #3 substring$ } 'key if$ } { editor format.full.names } if$ } FUNCTION {make.full.names} { type$ "book" = type$ "inbook" = or 'author.editor.key.full { type$ "proceedings" = 'editor.key.full 'author.key.full if$ } if$ } FUNCTION {output.bibitem} { newline$ "\bibitem[{" write$ label write$ ")" make.full.names duplicate$ short.list = { pop$ } { * } if$ "}]{" * write$ cite$ write$ "}" write$ newline$ "" before.all 'output.state := } FUNCTION {n.dashify} { 't := "" { t empty$ not } { t #1 #1 substring$ "-" = { t #1 #2 substring$ "--" = not { "--" * t #2 global.max$ substring$ 't := } { { t #1 #1 substring$ "-" = } { "-" * t #2 global.max$ substring$ 't := } while$ } if$ } { t #1 #1 substring$ * t #2 global.max$ substring$ 't := } if$ } while$ } FUNCTION {word.in} { bbl.in " " * } FUNCTION {format.date} { year duplicate$ empty$ { "empty year in " cite$ * "; set to ????" * warning$ pop$ "????" } 'skip$ if$ extra.label * before.all 'output.state := " (" swap$ * ")" * } FUNCTION {format.btitle} { title emphasize } FUNCTION {tie.or.space.connect} { duplicate$ text.length$ #3 < { "~" } { " " } if$ swap$ * * } FUNCTION {either.or.check} { empty$ 'pop$ { "can't use both " swap$ * " fields in " * cite$ * warning$ } if$ } FUNCTION {format.bvolume} { volume empty$ { "" } { bbl.volume volume tie.or.space.connect series empty$ 'skip$ { bbl.of space.word * series emphasize * } if$ "volume and number" number either.or.check } if$ } FUNCTION {format.number.series} { volume empty$ { number empty$ { series field.or.null } { output.state mid.sentence = { bbl.number } { bbl.number capitalize } if$ number tie.or.space.connect series empty$ { "there's a number but no series in " cite$ * warning$ } { bbl.in space.word * series * } if$ } if$ } { "" } if$ } FUNCTION {is.num} { chr.to.int$ duplicate$ "0" chr.to.int$ < not swap$ "9" chr.to.int$ > not and } FUNCTION {extract.num} { duplicate$ 't := "" 's := { t empty$ not } { t #1 #1 substring$ t #2 global.max$ substring$ 't := duplicate$ is.num { s swap$ * 's := } { pop$ "" 't := } if$ } while$ s empty$ 'skip$ { pop$ s } if$ } FUNCTION {convert.edition} { edition extract.num "l" change.case$ 's := s "first" = s "1" = or { bbl.first 't := } { s "second" = s "2" = or { bbl.second 't := } { s "third" = s "3" = or { bbl.third 't := } { s "fourth" = s "4" = or { bbl.fourth 't := } { s "fifth" = s "5" = or { bbl.fifth 't := } { s #1 #1 substring$ is.num { s eng.ord 't := } { edition 't := } if$ } if$ } if$ } if$ } if$ } if$ t } FUNCTION {format.edition} { edition empty$ { "" } { output.state mid.sentence = { convert.edition "l" change.case$ " " * bbl.edition * } { convert.edition "t" change.case$ " " * bbl.edition * } if$ } if$ } INTEGERS { multiresult } FUNCTION {multi.page.check} { 't := #0 'multiresult := { multiresult not t empty$ not and } { t #1 #1 substring$ duplicate$ "-" = swap$ duplicate$ "," = swap$ "+" = or or { #1 'multiresult := } { t #2 global.max$ substring$ 't := } if$ } while$ multiresult } FUNCTION {format.pages} { pages empty$ { "" } { pages multi.page.check { bbl.pages pages n.dashify tie.or.space.connect } { bbl.page pages tie.or.space.connect } if$ } if$ } FUNCTION {format.journal.pages} { pages empty$ 'skip$ { duplicate$ empty$ { pop$ format.pages } { ", " * pages n.dashify * } if$ } if$ } FUNCTION {format.vol.num.pages} { volume field.or.null } FUNCTION {format.chapter.pages} { chapter empty$ { "" } { type empty$ { bbl.chapter } { type "l" change.case$ } if$ chapter tie.or.space.connect } if$ } FUNCTION {format.in.ed.booktitle} { booktitle empty$ { "" } { editor empty$ { word.in booktitle emphasize * } { word.in booktitle emphasize * ", " * editor num.names$ #1 > { bbl.editors } { bbl.editor } if$ * " " * format.in.editors * } if$ } if$ } FUNCTION {format.thesis.type} { type empty$ 'skip$ { pop$ type "t" change.case$ } if$ } FUNCTION {format.tr.number} { type empty$ { bbl.techrep } 'type if$ number empty$ { "t" change.case$ } { number tie.or.space.connect } if$ } FUNCTION {format.article.crossref} { word.in " \cite{" * crossref * "}" * } FUNCTION {format.book.crossref} { volume empty$ { "empty volume in " cite$ * "'s crossref of " * crossref * warning$ word.in } { bbl.volume volume tie.or.space.connect bbl.of space.word * } if$ " \cite{" * crossref * "}" * } FUNCTION {format.incoll.inproc.crossref} { word.in " \cite{" * crossref * "}" * } FUNCTION {format.publisher} { publisher empty$ { "empty publisher in " cite$ * warning$ } 'skip$ if$ "" address empty$ publisher empty$ and 'skip$ { address empty$ 'skip$ { address * } if$ publisher empty$ 'skip$ { address empty$ 'skip$ { ": " * } if$ publisher * } if$ } if$ output } STRINGS {oldname} FUNCTION {name.or.dash} { 's := oldname empty$ { s 'oldname := s } { s oldname = { "---" } { s 'oldname := s } if$ } if$ } FUNCTION {article} { output.bibitem format.authors "author" output.check author format.key output name.or.dash format.date "year" output.check date.block format.title "title" output.check end.quote.title crossref missing$ { journal emphasize "journal" output.check format.vol.num.pages output } { format.article.crossref output.nonnull format.pages output } if$ format.journal.pages format.note output fin.entry } FUNCTION {book} { output.bibitem author empty$ { format.editors "author and editor" output.check editor format.key output name.or.dash } { format.authors output.nonnull name.or.dash crossref missing$ { "author and editor" editor either.or.check } 'skip$ if$ } if$ format.date "year" output.check date.block format.btitle "title" output.check crossref missing$ { format.bvolume output format.number.series output format.publisher } { format.book.crossref output.nonnull } if$ format.edition output format.note output fin.entry } FUNCTION {booklet} { output.bibitem format.authors output author format.key output name.or.dash format.date "year" output.check date.block format.title "title" output.check end.quote.title howpublished output address output format.note output fin.entry } FUNCTION {inbook} { output.bibitem author empty$ { format.editors "author and editor" output.check editor format.key output name.or.dash } { format.authors output.nonnull name.or.dash crossref missing$ { "author and editor" editor either.or.check } 'skip$ if$ } if$ format.date "year" output.check date.block format.btitle "title" output.check crossref missing$ { format.publisher format.bvolume output format.chapter.pages "chapter and pages" output.check format.number.series output } { format.chapter.pages "chapter and pages" output.check format.book.crossref output.nonnull } if$ format.edition output format.pages "pages" output.check format.note output fin.entry } FUNCTION {incollection} { output.bibitem format.authors "author" output.check author format.key output name.or.dash format.date "year" output.check date.block format.title "title" output.check end.quote.title crossref missing$ { format.in.ed.booktitle "booktitle" output.check format.publisher format.bvolume output format.number.series output format.chapter.pages output format.edition output } { format.incoll.inproc.crossref output.nonnull format.chapter.pages output } if$ format.pages "pages" output.check format.note output fin.entry } FUNCTION {inproceedings} { output.bibitem format.authors "author" output.check author format.key output name.or.dash format.date "year" output.check date.block format.title "title" output.check end.quote.title crossref missing$ { format.in.ed.booktitle "booktitle" output.check publisher empty$ { organization output address output } { organization output format.publisher } if$ format.bvolume output format.number.series output format.pages output } { format.incoll.inproc.crossref output.nonnull format.pages output } if$ format.note output fin.entry } FUNCTION {conference} { inproceedings } FUNCTION {manual} { output.bibitem format.authors output author format.key output name.or.dash format.date "year" output.check date.block format.btitle "title" output.check organization output address output format.edition output format.note output fin.entry } FUNCTION {mastersthesis} { output.bibitem format.authors "author" output.check author format.key output name.or.dash format.date "year" output.check date.block format.title "title" output.check end.quote.title bbl.mthesis format.thesis.type output.nonnull school "school" output.check address output format.note output fin.entry } FUNCTION {misc} { output.bibitem format.authors output author format.key output name.or.dash format.date "year" output.check date.block format.title output end.quote.title howpublished output format.note output fin.entry } FUNCTION {phdthesis} { output.bibitem format.authors "author" output.check author format.key output name.or.dash format.date "year" output.check date.block format.title "title" output.check end.quote.title bbl.phdthesis format.thesis.type output.nonnull school "school" output.check address output format.note output fin.entry } FUNCTION {proceedings} { output.bibitem format.editors output editor format.key output name.or.dash format.date "year" output.check date.block format.btitle "title" output.check format.bvolume output format.number.series output address output organization output publisher output format.note output fin.entry } FUNCTION {techreport} { output.bibitem format.authors "author" output.check author format.key output name.or.dash format.date "year" output.check date.block format.title "title" output.check end.quote.title format.tr.number output.nonnull institution "institution" output.check address output format.note output fin.entry } FUNCTION {unpublished} { output.bibitem format.authors "author" output.check author format.key output name.or.dash format.date "year" output.check date.block format.title "title" output.check end.quote.title format.note "note" output.check fin.entry } FUNCTION {default.type} { misc } READ FUNCTION {sortify} { purify$ "l" change.case$ } INTEGERS { len } FUNCTION {chop.word} { 's := 'len := s #1 len substring$ = { s len #1 + global.max$ substring$ } 's if$ } FUNCTION {format.lab.names} { 's := s #1 "{vv~}{ll}" format.name$ s num.names$ duplicate$ #2 > { pop$ " et~al." * } { #2 < 'skip$ { s #2 "{ff }{vv }{ll}{ jj}" format.name$ "others" = { " et~al." * } { bbl.and space.word * s #2 "{vv~}{ll}" format.name$ * } if$ } if$ } if$ } FUNCTION {author.key.label} { author empty$ { key empty$ { cite$ #1 #3 substring$ } 'key if$ } { author format.lab.names } if$ } FUNCTION {author.editor.key.label} { author empty$ { editor empty$ { key empty$ { cite$ #1 #3 substring$ } 'key if$ } { editor format.lab.names } if$ } { author format.lab.names } if$ } FUNCTION {editor.key.label} { editor empty$ { key empty$ { cite$ #1 #3 substring$ } 'key if$ } { editor format.lab.names } if$ } FUNCTION {calc.short.authors} { type$ "book" = type$ "inbook" = or 'author.editor.key.label { type$ "proceedings" = 'editor.key.label 'author.key.label if$ } if$ 'short.list := } FUNCTION {calc.label} { calc.short.authors short.list "(" * year duplicate$ empty$ { pop$ "????" } 'skip$ if$ * 'label := } FUNCTION {sort.format.names} { 's := #1 'nameptr := "" s num.names$ 'numnames := numnames 'namesleft := { namesleft #0 > } { s nameptr "{vv{ } }{ll{ }}{ f{ }}{ jj{ }}" format.name$ 't := nameptr #1 > { " " * namesleft #1 = t "others" = and { "zzzzz" * } { t sortify * } if$ } { t sortify * } if$ nameptr #1 + 'nameptr := namesleft #1 - 'namesleft := } while$ } FUNCTION {sort.format.title} { 't := "A " #2 "An " #3 "The " #4 t chop.word chop.word chop.word sortify #1 global.max$ substring$ } FUNCTION {author.sort} { author empty$ { key empty$ { "to sort, need author or key in " cite$ * warning$ "" } { key sortify } if$ } { author sort.format.names } if$ } FUNCTION {author.editor.sort} { author empty$ { editor empty$ { key empty$ { "to sort, need author, editor, or key in " cite$ * warning$ "" } { key sortify } if$ } { editor sort.format.names } if$ } { author sort.format.names } if$ } FUNCTION {editor.sort} { editor empty$ { key empty$ { "to sort, need editor or key in " cite$ * warning$ "" } { key sortify } if$ } { editor sort.format.names } if$ } FUNCTION {presort} { calc.label label sortify " " * type$ "book" = type$ "inbook" = or 'author.editor.sort { type$ "proceedings" = 'editor.sort 'author.sort if$ } if$ #1 entry.max$ substring$ 'sort.label := sort.label * " " * title field.or.null sort.format.title * #1 entry.max$ substring$ 'sort.key$ := } ITERATE {presort} SORT STRINGS { last.label next.extra } INTEGERS { last.extra.num number.label } FUNCTION {initialize.extra.label.stuff} { #0 int.to.chr$ 'last.label := "" 'next.extra := #0 'last.extra.num := #0 'number.label := } FUNCTION {forward.pass} { last.label label = { last.extra.num #1 + 'last.extra.num := last.extra.num int.to.chr$ 'extra.label := } { "a" chr.to.int$ 'last.extra.num := "" 'extra.label := label 'last.label := } if$ number.label #1 + 'number.label := } FUNCTION {reverse.pass} { next.extra "b" = { "a" 'extra.label := } 'skip$ if$ extra.label 'next.extra := extra.label duplicate$ empty$ 'skip$ { "{\natexlab{" swap$ * "}}" * } if$ 'extra.label := label extra.label * 'label := } EXECUTE {initialize.extra.label.stuff} ITERATE {forward.pass} REVERSE {reverse.pass} FUNCTION {bib.sort.order} { sort.label " " * year field.or.null sortify * " " * title field.or.null sort.format.title * #1 entry.max$ substring$ 'sort.key$ := } ITERATE {bib.sort.order} SORT FUNCTION {begin.bib} { preamble$ empty$ 'skip$ { preamble$ write$ newline$ } if$ "\begin{thebibliography}{" number.label int.to.str$ * "}" * write$ newline$ "\newcommand{\enquote}[1]{``#1''}" write$ newline$ "\expandafter\ifx\csname natexlab\endcsname\relax\def\natexlab#1{#1}\fi" write$ newline$ } EXECUTE {begin.bib} EXECUTE {init.state.consts} ITERATE {call.type$} FUNCTION {end.bib} { newline$ "\end{thebibliography}" write$ newline$ } EXECUTE {end.bib} %% End of customized bst file %% %% End of file `asa.bst'. MatchIt/vignettes/Makefile0000755000176200001440000000023612162551623015262 0ustar liggesusersall: pdflatex matchit bibtex matchit pdflatex matchit pdflatex matchit matchit.pdf: pdflatex matchit bibtex matchit pdflatex matchit pdflatex matchit MatchIt/man/0000755000176200001440000000000012163124614012356 5ustar liggesusersMatchIt/man/user.prompt.Rd0000644000176200001440000000053311141576547015157 0ustar liggesusers\name{user.prompt} \alias{user.prompt} \title{Pause in demo files} \description{ Use \code{user.prompt} while writing demo files to force users to hit return before continuing. } \usage{ user.prompt() } \seealso{\code{readline}} \author{Olivia Lau \email{olau@fas.harvard.edu} } \examples{ \dontrun{ user.prompt() } } \keyword{file} MatchIt/man/matchit.Rd0000644000176200001440000001754111600517515014307 0ustar liggesusers\name{matchit} \alias{matchit} \alias{MatchIt} \alias{Matchit} \title{MatchIt: Matching Software for Causal Inference} \description{ \code{matchit} is the main command of the package \emph{MatchIt}, which enables parametric models for causal inference to work better by selecting well-matched subsets of the original treated and control groups. MatchIt implements the suggestions of Ho, Imai, King, and Stuart (2004) for improving parametric statistical models by preprocessing data with nonparametric matching methods. MatchIt implements a wide range of sophisticated matching methods, making it possible to greatly reduce the dependence of causal inferences on hard-to-justify, but commonly made, statistical modeling assumptions. The software also easily fits into existing research practices since, after preprocessing with MatchIt, researchers can use whatever parametric model they would have used without MatchIt, but produce inferences with substantially more robustness and less sensitivity to modeling assumptions. Matched data sets created by MatchIt can be entered easily in Zelig (\url{http://gking.harvard.edu/zelig}) for subsequent parametric analyses. Full documentation is available online at \url{http://gking.harvard.edu/matchit}, and help for specific commands is available through \code{help.matchit}.} \details{The matching is done using the \code{matchit(treat ~ X, ...)} command, where \code{treat} is the vector of treatment assignments and \code{X} are the covariates to be used in the matching. There are a number of matching options, detailed below. The full syntax is \code{matchit(formula, data=NULL, discard=0, exact=FALSE, replace=FALSE, ratio=1, model="logit", reestimate=FALSE, nearest=TRUE, m.order=2, caliper=0, calclosest=FALSE, mahvars=NULL, subclass=0, sub.by="treat", counter=TRUE, full=FALSE, full.options=list(), \dots)} A summary of the results can be seen graphically using \code{plot(matchitobject)}, or numerically using \code{summary(matchitobject)}. \code{print(matchitobject)} also prints out the output. } \usage{matchit(formula, data, method = "nearest", distance = "logit", distance.options = list(), discard = "none", reestimate = FALSE, ...) } \arguments{ \item{formula}{This argument takes the usual syntax of R formula, \code{treat ~ x1 + x2}, where \code{treat} is a binary treatment indicator and \code{x1} and \code{x2} are the pre-treatment covariates. Both the treatment indicator and pre-treatment covariates must be contained in the same data frame, which is specified as \code{data} (see below). All of the usual R syntax for formula works. For example, \code{x1:x2} represents the first order interaction term between \code{x1} and \code{x2}, and \code{I(x1^2)} represents the square term of \code{x1}. See \code{help(formula)} for details.} \item{data}{This argument specifies the data frame containing the variables called in \code{formula}.} \item{method}{This argument specifies a matching method. Currently, \code{"exact"} (exact matching), \code{"full"} (full matching), \code{"genetic"} (genetic matching), \code{"nearest"} (nearest neighbor matching), \code{"optimal"} (optimal matching), and \code{"subclass"} (subclassification) are available. The default is \code{"nearest"}. Note that within each of these matching methods, \emph{MatchIt} offers a variety of options.} \item{distance}{This argument specifies the method used to estimate the distance measure. The default is logistic regression, \code{"logit"}. A variety of other methods are available.} \item{distance.options}{ This optional argument specifies the optional arguments that are passed to the model for estimating the distance measure. The input to this argument should be a list.} \item{discard}{This argument specifies whether to discard units that fall outside some measure of support of the distance score before matching, and not allow them to be used at all in the matching procedure. Note that discarding units may change the quantity of interest being estimated. The options are: \code{"none"} (default), which discards no units before matching, \code{"both"}, which discards all units (treated and control) that are outside the support of the distance measure, \code{"control"}, which discards only control units outside the support of the distance measure of the treated units, and \code{"treat"}, which discards only treated units outside the support of the distance measure of the control units.} \item{reestimate}{This argument specifies whether the model for distance measure should be re-estimated after units are discarded. The input must be a logical value. The default is \code{FALSE}.} \item{...}{Additional arguments to be passed to a variety of matching methods.} } \value{ \item{call}{The original \code{matchit} call.} \item{formula}{The formula used to specify the model for estimating the distance measure.} \item{model}{The output of the model used to estimate the distance measure. \code{summary(m.out$model)} will give the summary of the model where \code{m.out} is the output object from \code{matchit}.} \item{match.matrix}{An \eqn{n_1} by \code{ratio} matrix where the row names, which can be obtained through \code{row.names(match.matrix)}, represent the names of the treatment units, which come from the data frame specified in \code{data}. Each column stores the name(s) of the control unit(s) matched to the treatment unit of that row. For example, when the \code{ratio} input for nearest neighbor or optimal matching is specified as 3, the three columns of \code{match.matrix} represent the three control units matched to one treatment unit). \code{NA} indicates that the treatment unit was not matched.} \item{discarded}{A vector of length $n$ that displays whether the units were ineligible for matching due to common support restrictions. It equals \code{TRUE} if unit \eqn{i} was discarded, and it is set to \code{FALSE} otherwise.} \item{distance}{A vector of length \eqn{n} with the estimated distance measure for each unit.} \item{weights}{A vector of length \eqn{n} that provides the weights assigned to each unit in the matching process. Unmatched units have weights equal to \code{0}. Matched treated units have weight \code{1}. Each matched control unit has weight proportional to the number of treatment units to which it was matched, and the sum of the control weights is equal to the number of uniquely matched control units.} \item{subclass}{The subclass index in an ordinal scale from 1 to the total number of subclasses as specified in \code{subclass} (or the total number of subclasses from full or exact matching). Unmatched units have \code{NA}.} \item{q.cut}{The subclass cut-points that classify the distance measure.} \item{treat}{The treatment indicator from \code{data} (the left-hand side of \code{formula}).} \item{X}{The covariates used for estimating the distance measure (the right-hand side of \code{formula}).} \item{nn}{A basic summary table of matched data (e.g., the number of matched units)} } \seealso{Please use \code{help.matchit} to access the matchit reference manual. The complete document is available online at \url{http://gking.harvard.edu/matchit}. } \references{Daniel Ho, Kosuke Imai, Gary King, and Elizabeth Stuart (2007). Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference. Political Analysis 15(3): 199-236. \url{http://gking.harvard.edu/files/abs/matchp-abs.shtml} } \author{ Daniel Ho \email{daniel.ho@yale.edu}; Kosuke Imai \email{kimai@princeton.edu}; Gary King \email{king@harvard.edu}; Elizabeth Stuart\email{estuart@jhsph.edu} } \keyword{environment} MatchIt/man/match.data.Rd0000644000176200001440000000412511546107572014663 0ustar liggesusers\name{match.data} \alias{match.data} \title{Output Matched Data Sets} \description{\code{match.data} outputs matched data sets from \code{matchit()}. } \usage{ match.data(object, group="all", distance = "distance", weights = "weights", subclass = "subclass") } \arguments{ \item{object}{The output object from \code{matchit}. This is a required input.} \item{group}{This argument specifies for which matched group the user wants to extract the data. Available options are \code{"all"} (all matched units), \code{"treat"} (matched units in the treatment group), and \code{"control"} (matched units in the control group). The default is \code{"all"}.} \item{distance}{This argument specifies the variable name used to store the distance measure. The default is \code{"distance"}.} \item{weights}{This argument specifies the variable name used to store the resulting weights from matching. The default is \code{"weights"}.} \item{subclass}{This argument specifies the variable name used to store the subclass indicator. The default is \code{"subclass"}.} } \value{ Returns a subset of the original data set sent to \code{matchit()}, with just the matched units. The data set also contains the additional variables \code{distance}, \code{weights}, and \code{subclass}. The variable \code{distance} gives the estimated distance measure, and \code{weights} gives the weights for each unit, generated in the matching procedure. The variable \code{subclass} gives the subclass index for each unit (if applicable). See the \url{http://gking.harvard.edu/matchit/} for the complete documentation and type \code{demo(match.data)} at the R prompt to see a demonstration of the code. } \seealso{Please use \code{help.matchit} to access the matchit reference manual. The complete document is available online at \url{http://gking.harvard.edu/matchit}.} \author{ Daniel Ho \email{daniel.ho@yale.edu}; Kosuke Imai \email{kimai@princeton.edu}; Gary King \email{king@harvard.edu}; Elizabeth Stuart \email{estuart@jhsph.edu} } \keyword{methods} MatchIt/man/lalonde.Rd0000644000176200001440000000326311141576547014302 0ustar liggesusers\name{lalonde} \docType{data} \alias{lalonde} \title{Data from National Supported Work Demonstration and PSID, as analyzed by Dehejia and Wahba (1999).} \description{ This is a subsample of the data from the treated group in the National Supported Work Demonstration (NSW) and the comparison sample from the Current Population Survey (CPS). This data was previously analyzed extensively by Lalonde (1986) and Dehejia and Wahba (1999). The full dataset is available at \url{http://www.columbia.edu/~rd247/nswdata.html}. } \usage{data(lalonde)} \format{ A data frame with 313 observations (185 treated, 429 control). There are 10 variables measured for each individual. "treat" is the treatment assignment (1=treated, 0=control). "age" is age in years. "educ" is education in number of years of schooling. "black" is an indicator for African-American (1=African-American, 0=not). "hispan" is an indicator for being of Hispanic origin (1=Hispanic, 0=not). "married" is an indicator for married (1=married, 0=not married). "nodegree" is an indicator for whether the individual has a high school degree (1=no degree, 0=degree). "re74" is income in 1974, in U.S. dollars. "re75" is income in 1975, in U.S. dollars. "re78" is income in 1978, in U.S. dollars. } \references{ Lalonde, R. (1986). Evaluating the econometric evaluations of training programs with experimental data. American Economic Review 76: 604-620. Dehejia, R.H. and Wahba, S. (1999). Causal Effects in Nonexperimental Studies: Re-Evaluating the Evaluation of Training Programs. Journal of the American Statistical Association 94: 1053-1062. } \source{\url{http://www.columbia.edu/~rd247/nswdata.html}} \keyword{datasets} MatchIt/man/help.matchit.Rd0000644000176200001440000000225111141576547015240 0ustar liggesusers\name{help.matchit} \alias{help.matchit} \title{HTML Help for Matchit Commands and Models} \description{ The \code{help.matchit} command launches html help for Matchit commands and supported methods. The full manual is available online at \url{http://gking.harvard.edu/matchit}. } \usage{ help.matchit(object) } \arguments{ \item{object}{a character string representing a Matchit command or model. \code{help.matchit("command")} will take you to an index of Matchit commands and \code{help.matchit("method")} will take you to a list of matching methods. The following inputs are currently available: \code{exact}, \code{nearest}, \code{subclass}, \code{full}, \code{optimal}. } } \seealso{The complete document is available online at \url{http://gking.harvard.edu/matchit}. } \author{ Daniel Ho <\email{daniel.ho@yale.edu}>; Kosuke Imai <\email{kimai@princeton.edu}>; Gary King <\email{king@harvard.edu}>; Elizabeth Stuart<\email{estuart@jhsph.edu}> } \keyword{documentation} MatchIt/inst/0000755000176200001440000000000012163124614012560 5ustar liggesusersMatchIt/inst/CITATION0000644000176200001440000000154311555344365013733 0ustar liggesuserscitHeader("To cite MatchIt in publications use:") citEntry(entry = "Article", title = "{MatchIt}: Nonparametric Preprocessing for Parametric Causal Inference", author = personList(as.person("Daniel E. Ho"), as.person("Kosuke Imai"), as.person("Gary King"), as.person("Elizabeth A. Stuart")), journal = "Journal of Statistical Software", year = "2011", volume = "42", number = "8", pages = "1--28", url = "http://www.jstatsoft.org/v42/i08/", textVersion = paste("Daniel E. Ho, Kosuke Imai, Gary King, Elizabeth A. Stuart (2011).", "MatchIt: Nonparametric Preprocessing for Parametric Causal Inference.", "Journal of Statistical Software, Vol. 42, No. 8, pp. 1-28.", "URL http://www.jstatsoft.org/v42/i08/") ) MatchIt/demo/0000755000176200001440000000000012163124614012527 5ustar liggesusersMatchIt/demo/subclass.R0000644000176200001440000000077210701247016014475 0ustar liggesusers### ### An Example Script for Subclassification ### ## load the Lalonde data data(lalonde) ## sublclassification m.out <- matchit(treat ~ re74 + re75 + educ + black + hispan + age, data = lalonde, method = "subclass") user.prompt() ## a short summary print(m.out) user.prompt() ## balance diagnostics print(summary(m.out)) user.prompt() ## balance diagnostics through plots plot(m.out) user.prompt() plot(m.out, type="jitter") s.out <- summary(m.out, standardize=TRUE) plot(s.out) MatchIt/demo/optimal.R0000644000176200001440000000112710701247016014316 0ustar liggesusers### ### An Example Script for Optimal Matching ### ## load the Lalonde data data(lalonde) ## optimal ratio matching using the propensity score based on logistic regression m.out <- matchit(treat ~ re74 + re75 + age + educ, data = lalonde, method = "optimal", distance = "logit", ratio = 2) user.prompt() ## a short summary print(m.out) user.prompt() ## balance diagnostics through statistics print(summary(m.out)) user.prompt() ## balance diagnostics through graphics plot(m.out) user.prompt() plot(m.out, type="jitter") s.out <- summary(m.out, standardize=TRUE) plot(s.out) MatchIt/demo/nearest.R0000644000176200001440000000555010701247016014316 0ustar liggesusers### ### An Example Script for Nearest Neighbor Matching ### data(lalonde) user.prompt() ## 1:1 Nearest neighbor matching m.out <- matchit(treat ~ re74 + re75 + educ + black + hispan + age, data = lalonde, method = "nearest") ## print a short summary print(m.out) user.prompt() ## balance diagnostics through statistics s.out <- summary(m.out, standardize=TRUE) print(s.out) user.prompt() ## balance diagnostics through graphics plot(m.out) user.prompt() plot(m.out, type="jitter") user.prompt() plot(m.out, type="hist") user.prompt() plot(s.out) ## 2:1 Nearest neighbor matching m.out1 <- matchit(treat ~ re74+re75+age+educ, data=lalonde, method = "nearest", distance = "logit", ratio=2) user.prompt() ## print a short summary print(m.out1) user.prompt() ## balance diagnostics through statistics print(summary(m.out1)) user.prompt() ## balance diagnostics through graphics plot(m.out) user.prompt() plot(m.out, type="jitter") ## 1:1 Nearest neighbor matching with Mahalanobis matching on re74 and re75 and exact matching on married m.out2 <- matchit(treat ~ re74+re75+age+educ, data=lalonde, method = "nearest", distance = "logit", mahvars=c("re74", "re75"), exact=c("married"), caliper=.25) user.prompt() ## print a short summary print(m.out2) user.prompt() ## balance diagnostics through statistics s.out2 <- summary(m.out2, standardize=TRUE) print(s.out2) user.prompt() ## balance diagnostics through graphics plot(m.out2) user.prompt() plot(m.out2, type="jitter") user.prompt() plot(s.out2) ## 1:1 Nearest neighbor matching with units outside the common support discarded m.out3 <- matchit(treat ~ re74+re75+age+educ, data=lalonde, method = "nearest", distance = "logit", discard= "both") user.prompt() ## print a short summary print(m.out3) user.prompt() ## balance diagnostics through statistics print(summary(m.out3)) user.prompt() ## balance diagnostics through graphics plot(m.out3) plot(m.out3, type="jitter") ## 2:1 Nearest neighbor matching with replacement m.out4 <- matchit(treat ~ re74+re75+age+educ, data=lalonde, method = "nearest", distance = "logit", replace=TRUE, ratio=2) user.prompt() ## print a short summary print(m.out4) user.prompt() ## balance diagnostics through statistics print(summary(m.out4)) user.prompt() ## balance diagnostics through graphics plot(m.out4) plot(m.out4, type="jitter") plot(m.out4, type="hist") ## 1:1 Nearest neighbor matching followed by subclassification m.out5 <- matchit(treat ~ re74+re75+age+educ, data=lalonde, method = "nearest", distance = "logit", subclass=5) user.prompt() ## print a short summary print(m.out5) user.prompt() ## balance diagnostics through statistics print(summary(m.out5)) user.prompt() ## balance diagnostics through graphics plot(m.out5) user.prompt() s.out5 <- summary(m.out5, standardize=TRUE) plot(s.out5) MatchIt/demo/match.data.R0000644000176200001440000000204410274456423014665 0ustar liggesusers### ### An Example Script for Obtaining Mathced Data ### ## load the Lalonde data data(lalonde) user.prompt() ## perform nearest neighbor matching m.out1 <- matchit(treat ~ re74 + re75 + age + educ, data = lalonde, method = "nearest", distance = "logit") user.prompt() ## obtain matched data m.data1 <- match.data(m.out1) user.prompt() ## summarize the resulting matched data summary(m.data1) user.prompt() ## obtain matched data for the treatment group m.data2 <- match.data(m.out1, group = "treat") user.prompt() summary(m.data2) user.prompt() ## obtain matched data for the control group m.data3 <- match.data(m.out1, group = "control") user.prompt() summary(m.data3) user.prompt() ## run a subclassification method m.out2 <- matchit(treat ~ re74 + re75 + age + educ, data=lalonde, method = "subclass") user.prompt() ## specify different names m.data4 <- match.data(m.out2, subclass = "block", weights = "w", distance = "pscore") user.prompt() ## print the variable names of the matched data names(m.data4) MatchIt/demo/genetic.R0000644000176200001440000000101710701247016014265 0ustar liggesusers#### #### demo file for Genetic Matching #### ## loading the lalonde data data(lalonde) ## using logistic propensity score as one of the covariates m.out <- matchit(treat ~ age + educ + black + hispan + married + nodegree + re74 + re75, data = lalonde, method = "genetic", distance = "logit") user.prompt() ## printing a short summary print(m.out) user.prompt() ## numerical balance diagonstics s.out <- summary(m.out, standardize=TRUE) print(s.out) user.prompt() ## graphical balance diagnostics plot(m.out) plot(s.out) MatchIt/demo/full.R0000644000176200001440000000114510701142754013616 0ustar liggesusers### ### An Example Script for Full Matching ### ## load the Lalonde data data(lalonde) ## conduct full matching using the propensity score based on logistic regression m.out <- matchit(treat ~ age + educ + black + hispan + married + nodegree + re74 + re75, data = lalonde, method = "full", distance = "logit") ## print a short summary print(m.out) user.prompt() ## balance diagnostics through statistics s.out <- summary(m.out) print(s.out) s.out <- summary(m.out, standardize=TRUE) print(s.out) user.prompt() ## balance diagnostics through graphics plot(m.out) plot(s.out) MatchIt/demo/exact.R0000644000176200001440000000054410701247016013757 0ustar liggesusers### ### An Example Script for Exact Matching ### ## laod the Lalonde data data(lalonde) ## exact matching m.out <- matchit(treat ~ educ + black + hispan, data = lalonde, method = "exact") user.prompt() ## print a short summary print(m.out) user.prompt() ## balance diagnostics through statistics print(summary(m.out, covariates = T)) MatchIt/demo/cem.R0000644000176200001440000000247711023755604013433 0ustar liggesusers### ### An Example Script for Coarsened Exact Matching ### ## load the Lalonde data data(lalonde) ## coarsened exact matching with automatic coarsening m.out <- matchit(treat ~ age + educ + black + hispan + married + nodegree + re74 + re75, data = lalonde, method = "cem") user.prompt() ## print a short summary print(m.out) user.prompt() ## balance diagnostics through statistics; standardize = T for plotting s.out <- summary(m.out, covariates = T, standardize = T) print(s.out) user.prompt() ## graphical balance checks plot(m.out) plot(s.out) ## create some cutpoints for continuous variables re74cut <- hist(lalonde$re74, br=seq(0,max(lalonde$re74)+1000, by=1000),plot=FALSE)$breaks re75cut <- hist(lalonde$re75, br=seq(0,max(lalonde$re75)+1000, by=1000),plot=FALSE)$breaks agecut <- hist(lalonde$age, br=seq(15,55, length=14),plot=FALSE)$breaks mycp <- list(re75=re75cut, re74=re74cut, age=agecut) ## coarsened exact matching with user-given cutpoints m.out2 <- matchit(treat ~ age + educ + black + hispan + married + nodegree + re74 + re75, data = lalonde, method = "cem", cutpoints = mycp) user.prompt() ## print a short summary print(m.out2) user.prompt() ## balance diagnostics through statistics s.out2 <- summary(m.out2, covariates = T) print(s.out2) user.prompt() MatchIt/demo/analysis.R0000644000176200001440000000641710701247016014503 0ustar liggesusers### ### Example 1: calculating the average treatment effect for the treated ### ## load the Lalonde data data(lalonde) ## load Zelig package: if not already installed, try install.package("Zelig") library(Zelig) ## propensity score matching m.out1 <- matchit(treat ~ age + educ + black + hispan + nodegree + married + re74 + re75, method = "nearest", data = lalonde) user.prompt() ## fit the linear model to the control group controlling for propensity score and ## other covariates z.out1 <- zelig(re78 ~ age + educ + black + hispan + nodegree + married + re74 + re75 + distance, data = match.data(m.out1, "control"), model = "ls") user.prompt() ## set the covariates to the covariates of matched treated units ## use conditional prediction by setting cond = TRUE. x.out1 <- setx(z.out1, data = match.data(m.out1, "treat"), fn = NULL, cond = TRUE) user.prompt() ## simulate quantities of interest s.out1 <- sim(z.out1, x = x.out1) user.prompt() ## obtain a summary print(summary(s.out1)) user.prompt() ### ### Example 2: calculating the average treatment effect for the entire sample ### ## fit the linear model to the treatment group controlling for propensity score and ## other covariates z.out2 <- zelig(re78 ~ age + educ + black + hispan + nodegree + married + re74 + re75 + distance, data = match.data(m.out1, "treat"), model = "ls") user.prompt() ## conducting the simulation procedure for the control group x.out2 <- setx(z.out2, data = match.data(m.out1, "control"), fn = NULL, cond = TRUE) user.prompt() s.out2 <- sim(z.out2, x = x.out2) user.prompt() ## Note that Zelig calculates the difference between observed and ## either predicted or expected values. This means that the treatment ## effect for the control units is actually the effect of control ## (observed control outcome minus the imputed outcome under treatment ## from the model). Hence, to combine treatment effects just reverse ## the signs of the estimated treatment effect of controls. ate.all <- c(s.out1$qi$att.ev, -s.out2$qi$att.ev) user.prompt() ## some summaries ## point estimate print(mean(ate.all)) user.prompt() ## standard error print(sd(ate.all)) user.prompt() ## 95% confidence interval print(quantile(ate.all, c(0.025, 0.975))) user.prompt() ### ### Example 3: subclassification ### ## subclassification with 4 subclasses m.out2 <- matchit(treat ~ age + educ + black + hispan + nodegree + married + re74 + re75, data = lalonde, method = "subclass", subclass = 4) user.prompt() ## controlling only for the estimated prpensity score and lagged Y within each subclass ## one can potentially control for more z.out3 <- zelig(re78 ~ re74 + re75 + distance, data = match.data(m.out2, "control"), model = "ls", by = "subclass") user.prompt() ## conducting simulations x.out3 <- setx(z.out3, data = match.data(m.out2, "treat"), fn = NULL, cond = TRUE) user.prompt() ## for the demonstration purpose, we set the number of simulations to be 100 s.out3 <- sim(z.out3, x = x.out3, num = 100) user.prompt() ## overall results print(summary(s.out3)) user.prompt() ## summary for each subclass print(summary(s.out3, subset = 1)) user.prompt() print(summary(s.out3, subset = 2)) user.prompt() print(summary(s.out3, subset = 3)) MatchIt/demo/00Index0000644000176200001440000000103611024257145013662 0ustar liggesusersexact Demo of exact matching, using Lalonde dataset full Demo of full matching, using Lalonde dataset genetic Demo of genetic matching, using Lalonde dataset match.data Demo of obtaining matched data nearest Demos of nearest neighbor matching, using Lalonde dataset subclass Demo of subclassification, using Lalonde dataset optimal Demo of optimal matching, using Lalonde dataset analysis Demo of using Zelig with MatchIt for parametric causal inference after matching cem Demo of coarsened exact matching MatchIt/data/0000755000176200001440000000000012163124614012514 5ustar liggesusersMatchIt/data/lalonde.tab.gz0000644000176200001440000002263712163124614015253 0ustar liggesusers‹}]ËÒt·Nó_åºlÉ×9&U N (®àýYK¶dïîNH‘ü'mïm[·¥%yç—ÿýý·_ÿ÷—Ÿ_~ýçßð÷ßþòÿ„üã¿ÿúOÿ†þË¿þÏÿúŸøÃüúûïÿúÛ_ð§ÿü¯¿üöÏ¿ÿÆÁ¿ÿÖËúG]ÿ¿üÕ/û÷ÿùÉ?ÚrÆ?ÓÏú{ú™SÓ+•fc„cD~¦ H{ˆÖY_c¢öü$û×õ—”™æ«TSì1ñ*N¯©½ò~UµçèÏx ‘1_}ÌiCZ¬æRRm¯²WÓmˆ¾¯&ÙÃ^!ïË¥Ë+×acæ~GnÏíäV^Id\ÚkÅ[Îcx%Wêkožo«¹ëk¦õ²¼ÎÃôñ¶ÜÓ,¯¶¶”í„óx;™µ¥GëÚcF×ùšºÙÙæþÓOÐ$ú}mn{¹9=‰ŒWMûAÝßö¶ÞRG~%È<\Ï'õ6õµ·d§\>”&§‘ÊK×)‹²´ÏA½ô—.Í’ì/Ë_NGì| ~*·2üÔ\&6•× ¥ÁÔü<¡•4^s¿eryKž3ï-IÝRzÛuιé+/¥ÁóÃæZ‘×ÜZ.ëëûËæ˜†¹#÷Û4ñ:¢ç½†ofÑe;™·'4DAq Ö]aÛ·'ü¾æ<€Ü²¬^÷Yåú4ëØæ×/Ó(ÉèC=&÷îšôöºÑ:ÂÎR„>¶ãûºåÀO™ˆ&8ñµãqéëÉÀÁ6—ü}çŠ[ù»K~åã†Ãƒ öÂãÌ‚`±ÃñÕoï©û×oV3š?ÿ›þ ´ãçÀ"•lKÃÒ:é8/wìcž@socÐ¼ÛÆw3íãú¶Ð™¿;N€¿PsÊŸ9´ùÞ~-ßcáœÐ­¾7;í,Ë\ÙhGÞ÷.k=Pìì[ìoyD@N;c™Ã]æ{ZíÊkLX_7›SÚöÌž¤!ØJœSþ3t“¸hŸ?Oáö UrúƒcEÜ æåÑÿcTF®!;kIÕó€·\ 6Q÷¨…²ô«õÂr¾[ƒ–4áÁ}=ß±@žU_8£=h>£èÛ›rzžI’N0}ÊÔœ7µš“iÁ -µ¶w–%Vå,¥Z¤‚3xiQø{àçôjžçé'hVÇ:Îr’Ô{,å‹NpO¡úÀ|MÄ;CugfÙÝÇEµõ˜/ÈB “´O;\/ñÒ îóIëΰdk VœfÁqŠ0“?§ñ ªk‡™µÑ¸oy5õ#šß’K¥zv@—Ä9f–/¯’)Ð4~´!ÁÆœÖóK5{=ÊÞ¨¿1ÄvÅ¿êÔq7 ·¯¦#ÌÍÔ²»v˜øÎTWvø–ÆÇX Nl"VqE àƒ|¡!E€Zw‘nA„ñ„Re€zŒŒü´â…¡¨»ÙíüÑM&ï7 *•»ì™ìT]¾DáÚ>GÌÃðXÌ[ÎîOn@~”&ŽF¹Ï# pHf§W†o+:!±‰Umؘw’ù0c…z¼Êd`¨§Òˆñâ¬Gþp¹ç/>©¾ºÞBÛôwˆ˜ÛUdaŠ 1.õ`Dv:ÚžÁ,ëD¨ØYiéµÑh>Yéy0L)t#¤&ІIR_Lu¿~ž? åÜ4€]ø Hw«ÏJ]õ ‰r›ŒÏ ¨JóÛ¥7.ˆå÷Œ$¨"lá±HB÷Ðñ©îÛºy¤X¾,ÁϸËY‰-íé(¤U¦ó`ü±•ÎY¦X¸ˆÑ7ÂVꆓCÅÞÙ䄱½:& ›m½2—£ö塞ä÷ ár)x8„*ˆ(¶|_Š~†Ó"5½Jükáú;Ï?Aö±¯¬8’xSMºíV^‹D0*ž_ÝøBZà •¡_yPjGo€È*ünãz¿†Ô Ù‚°¼³çg…`ß_©Â&yÛ€=—à€®ç %d$–O]3¿é»ôJš‘«Qä÷™kXë9ÅJäÝ•ïëdßôpyìÍFÎýpª³fªJŽè{å+§˜.™j'¦©˜S` Åì4v[õãd°jD˜«L¸Á”^µbûÛwžþˆ$MÚ„™S …Ô)3qÅ_Y{‘‡‡…̙ԡŠ«Ø<0Ž’ ¨’Bž¯â¨ß@§ `©bÏké8ê¹Ñ½îçÞ¬0n¬.!0yˆ]9¾<€7h&¿ŽH=bÏÎõóu–X´¹ßq Ÿy+æÊüä»dzK`¥”'›l¾:oÝœi9ú¨pu ®‘{(c×!ÇdÚ›ýIì…±˜‚àÕ‰M÷Q·Æ!*¶AõÓ‘ÍŽ”Gvˆ¬²â™ÍõÜšÖ.*üø³ªpß™Á+ÆÁlYµ~Œ|¯Q C¾ñ¸ì‘H¾ ÿcÏŽ˜'ƒ‘•'4 Ÿ“Í9êÜ¢.qLiØGÌnà9¡þÙØz7ãîR¾`oA…¬.ð Z…ÿÛ3¾Ð¼ÐùŒ¥ã-}ª‡ZENòÑ#E9èt;˜SÚ¹VÉôØÞ2 ÐHŒý S«©Ø  ¯<”OY²9tÆvdeðe.õÍe<Ò&¸rŠm,YÌÊ?˜úú œ+º£<§$hO°µQ[¼àWî% ¬îýpÔ9e•h!þ‚%õ·REpr378&D×¢>xÞ/p8 LE¨$µB5 ÆÓËléÄI8gC$¨@q¯”·3¢~›™Ó¤ñ@Í ð‡:‰ã÷”ˆÄ‡FT,ƒ®›ªtõpPÄæ…“<œï;þ8'Áƒ) Iθ ØÈkS6yq)Z/R±Noé4T@ŹÁ·Žú<ÚmT(.˜%ø”’ ¿Àpÿîïÿ毱ÿ´ë–­lNnZI®!°Tx3Ëô8E~±`ü˜R\kŠ} ò",>§¨M©,'~NAHAÎoS §y-„ “¢OèR·l®èˆ§ÒñlÂËÑßAD{Æ`; ب¥,€ ¿åSLöžÃ¬Wø[Jƒâà±03äØÃ]¹dð‘‰#©è6­…¤ ¼KM¾¦ùň«RÖœ„GƒZÏd,†lÒÙÇ Æ]Oò»Xãc˜’¶aÖ¼ßs\ü¨XTh)1vÓpÄRÃþOøÇW<†\ö $Žß®ºAE®?Ç×ol×”² sßÊ'p¿`u ÃÁ½ÞÑcuÁß'Ót• ™úkBBBžVÜ*kÛ»?†ô‚º‚(vBw/©öÅÉÙ”î:yäÏ&ãGšÀÖ(L„Uãµ9ÃñÑí–xR ˜Ö4†c€s£x¦Î]i¦ 1ç,Ïß%“iÚ³¥-™½*\üÄÎrR3…B’RÝûµ¼áA¿vÓI·)ë>!pe0S€ŒîSd;Œ’jjð¨ÑKvøxABË}M÷xÈÖB)ÊOe]ÙìÆÄnq¶âÑ»^â”`vR ¾ÈJ4ÁûfÛZÖêFzÄ™œŒYV/Rc=*JÓWÖvÄ85c$ZV˜]Ër˜ðÔ̤ö”¾áá}d“9/6Æ̨¤°á 3¨¡›6¯Ó ã-ÚUb&O›žsy#¢aj!©Âã+äi]˜=mHyGæÄY甥‰¢Üú‚ûí¡ÏÀ‡ˆâã§ ”†²Ùί‹¿àìcë«Ö˜€1gÛ[ôGäwî½1Ao„rìïY]/Ÿ) Ë1Ø;3Ólu9vº½ôº³¢+&c„™Ô¯[ü¢u¡_E™>Ia~…0M+n[ݤ^˽õNê;±´’ü -üãZÌÎ ¤Q5l1F0A»Ìž²¾RÞ‡-/ƒ…n°±‘3yÒ˜öà³Yë3Æ1b .­V:Ùº}ÃÈþü;þ6„$OH¢Xì„9¾ nþn0Òb)œ°LC!t(ð܈ Œ¶ë`e¬amuðT_ÅVv–ÃÍýßDs€lçÁô#0ýµ À9#«Š!NÒ yX`Ïi±EYIÌÎ9°ñNdx^6>nW¸,²Õ…LúÔ0Š1üù—QTckø|Öë$4c˜˜é b-´PØE*ñÜ8þX­XY( Ò”Xï#¯²˜Í ¦¦ÅZ4M²áLóÛ°ddYãå8{º?¿<Ô.³ZJÛx>±ïÖµiªÏ9gšâ(`ÌI‰d8@”œ=Çs·›–Ue9¨‘Šîf¢y*ŽÎs™Y?•–ÔŒ&€Ra.&k†E§GÚó=vÆÈ‰±FÎX^p]U}›³¢z¹£-t@ u!¢¥ÇqÁ¼q6«ìĤvÒ‰M|è<3¼8T^¯°ØFƸT‘)t‡>Ö ³6pj„–Øú»ë•ÂÚF%[¢>É$_/q`ÿ–Np¬·áŒàÑb¼I=?\9Pƒ%<ßd-™×dCCÐIŸxÜ >°Á,€NVkìjÎŒ¤òÜ9CE|„ŠÀ’çÎIºmǘT?ß$ ~ëQVe)«¦˜Ô6¥t½‰Î‚å":>lþ¢¹Rš­Õ-X­åf”MŒãxh£òI&zvTì;X˜&ÕlfŒÊÊÈÞSœ€çð—Wl³b,àPÌÂeÎØåôÔ®dbEÄÀhš½1Œ Ý}]‹´«ùV*ä ³F–©†–r•ºXí5)¢¹Æ!WV𲓡u÷I-­“Ô-¥Æ$,†466à ™žØLÙ¯8p°ª _ŠÁØÁ5´ú¾ôê ÉÆd5lH”’úI9;€P‚,޳¬ÈÔ˜ˆÄ_YæMÖ=Ca!‹Ífg[¶B–WœåÉyœå]EÉ‚dŠG[ˬ«1jž±¬šöMVÈNvT‹ŒN¢.³_²ƒl“Ô²v–øœ êŽs#ga0ßg2Z‘Dztçsœª+!“ÆÈÖn´Ðˆ!@E®‹,_²wA‚϶\¶ªUó}²Ó2+\>]L!³@ä¾Ì¾ ÄgÇLéK @ÙçOùD‹Y¾08%AIG(‰ \GzY\^¬Ý³£È.ðßÐR­ÑÏå"î ôGœ}°/‚5`’o·ËüT¯NQ·vÏyœäâìê×L+ÂY?@2Xƒ(ÎhqwOàA?M0‹°)Õ(dVþ}+›½ÓGŽ€Ý²E“Êb]+Ã5ÌlÑwõ™ÀZÅ\mR²0 ÜŸ­ãxÍ)‡(qƒ© ù[ ‡ ©ú3 Î0lLܵ)]_…ÌÙÎÁ˜$Ö|3b?ívëÿeËCËÄ@}%÷•W5rø ±AÈpaÆû qª“¶×¢èÒØ›d0)J ê)»{FúkªÑDr?ØoF¢ó¢¸î.ÂîÑ2Ç–žvæÐ9•Àky1vp.‡³A¢Áu¾ŽÒà Núœì&ìÒÕšPR{}®ä¥‘Ú¯í7c÷Ðcx9»*ÁΖ|“íyquúä÷è (²Î½3´~úë+퉅h"ËÍàO‰i‘tåÁ¹%ÛÀž^ ÄCm¡€á€WÇÔâªK ¶Eªµñ ƒñÐTaÆç“ÜÖïä“|9d#kx5±‡ï^t]}â•Ô­9‡±‚d“ÁuOÚ|ܪÛÕ8}VSá Œ|)¼Ò‘¥~1zeBµeùv¥XñŠ”O2ñW9G÷ÃþÇ œÂzC3Gáâ©_PžL†RÕÕÓM4UXeQÿZ|<ÒãÉ~9ºH$êzÓysuïÔ>b´aÃigZÍiê\ÃÐO¨£zV¹K,yñsû›™Î&Qiá¬Ï:¿áâçž]ÌKªL ›"y>ƒ­wi† ¾@û&ØF¶kuhO%vo ]öàËx-d)”;ËÐl¤E6×ÈÅÑyÒ»ˆÜ‡A^ÈN®®ck¨.’®¦‹ S’XÝŽ<#ñ ²C d¸Xºò PZª\?½îŽŒøW)¸°¼hº¼ f§7‚Š\EØÄ~ñsÏ>‚nÝ•¥¹±£\ayrĤ¶']¤&霆M ±=ÍQœÌ‹¢{¦´šxÁƒ^{õ/E ,/vî­8•É1pÎÔ–P`™ÈÓã°æ–äaAEÙÒM“t1–ṟn ÛœÍÏåûŠ-7-s }åOÍ茘“÷?¬ò`™„n~2¹*´ìXuÜ|góG¦?e‘`“mpptf;8Øë´ºø*ÿ Ó˜‡ »ð@—l±=³Q²Zî„ôLÏâ<º_F¯Ð6ôà‰Ù—ˤis¬](åΣbÁ,sŒ~+ÊìCjv6•@44j±sÏ~!¸f¶E²ùÑW?ÚYòâçž—pc©TãípNJÂÎf·Ü¿òrv_He[ [Ÿ «u×캻‰ºò0’Æ›„r‹ 4ò|Ä 9K‹· AdædÒÂ67ÜEÕ=õª’øf˜³D‘¶Ø =É0ÊWe´$«¼XÚÏèˆóÑlÆa­*ÈÛ‡>Ø^õnÈêì9”lãÓô˜·'»œ°&õO¡°ýáEÇð?Ì+«³Çq{z™`† SÔ³‡Eؽ߬‡F\»No´¹ºf”nME7»:È>….²îy¥.“d7C¶+õ°@evëøzfà÷c¬ˆ–im€üy•É,9Òªé6>Ž¬Ù½QÙqÎÞ(º64åïñÌýfÌ‹u£-+lhiYti¶˜ÃPÕ‡ /Ϊ}JÍ"Z_â£GïñÌîÑïNX˜Ýñhµ,ú6ž=¾¸X»‡6­»>YÒ ŒÙ_[ZëQk¢³ÖŠŒÂk¼›[Ê"é[©õ‘WÞsàE9þI’Y.:yf"h5•6tƒ«Ÿ 6#æÐ» -)ºgF¡Òè ÒZã6s8päÍ'yKÅ鯟°ëÊîÉaÕHãIPxËÍââÌŸ÷’È-P}€ÛVÔäOFtµ£Û'Ųß|{+"™9¢“&…¨/ Ã›°/k5Õ6§L‹²„ Æ^Þ}á?ó¶?›„}jP>¹¦Ä’>pïÄV]Ä÷-tºÃ.V—^î^—–Ý'7›ÉXc¼)ɃJüСܯ쉱ȗ ÉÁ+±ˆÝ˜Óò`73jæ²H··ÂUPÎÆIL}¬1–íÑûµX·zC_j²`²LOaI$:&n 4íVóå]ăò}IšT€ZÒÍNž¾v¨?x¢H†€A0AÖ€M"3H?Ï¿®¤–…CË·ØÆ>ï+qÉžÏX°á*¶·‘»I‡L–E¬=Ï=ˆÑ¬dÁ†>~›Â{FewÃõ[ÂVÛY¢U»ÅæþQ#"_œÕ _þ!#â¨> ·ˆº·¾8¢úJäÉØo¹§«Áîƒ{ªuCôîFK D,Õä0iz ;d™Eätì3ÖxQÝ(òÛt € PçÄôð»°ë;ŽêÊ ½°y.Óùa¨CîãvƒRhH°:É¡Êï.ŒÓð96 qº7+ϧN6{× kj¬ ^uWÙÜY{¹¦Ì¢U£sôB[)Î1FÛGQ¦w-È"ÌN¤4Ç@ÓK@(76ÒåÎJP&uÌŽQt#¼§vÜÖz^Qv¿DÄΛZØzÂÝë¸KÄ®Z Ya aò…‚d“eù7XÎä­`Fù»M¶8ˆ>“½wöŒÀ“±ö;\|Šs¢Gø¼öšØ~\µ/¿\{•¨PIqã=„D:c£e7üñÕ[Ʀ`âèJ¨±ê×Êjˆä¦Äž€÷ù3=NáUŽèw’E…=ÂCÃ.IŽüð3#ƒÇî¬3ÁˆÝ$-wËdz‡ÕR! >‹*Ï$sí„åÎÊ^¿ ÈQìŽÂX÷£Ö¤êà> äoìnÄSbRá-…ølcoß™!ì!ËuNÖ9ï£mµ‘ZO,u±7èÚsŸ›;ÇÊfއêo쑮΄·Þ‡—nÕŽA¨q¿7 ö¨¶[]›We-ߨR¢Y?ÎöMÆ1T{‹ùjœf9½mʼnZm‘®Ÿ›ü’ N!çgÌû‰‰`’Þœ4˜g’ä×Õ<6y÷IË5g°3Vbmõ‚z{Ž]M³ªH̩ٸ¹xoð#V²¼>¥õOG”Y °ŽdÒ!ÖgÝìÞŸ«w;úz¿N€í0Ñ«!¸(mÝ‘‰Rf×M_M©u0bx‹¥ôô!9œ"0‰q$«úƒžao‡ó:þŸ ”ñdp>Ëàj6ŠÃ×¶¸¯rv^Íî•YÀÓA.ÒKåp­10‘˜L&/¡ÃWF¨ïQϼxBÕÎIÙ®E”·†léaÒnjwÍPz{Û.2eK#)ÍTO낺ëà²Ì¦ˆT¬]uE÷xöƒyeIS>ƒŸ]‘Òõ¸Hµ~#*—–¶ÊØézd<Âqø<-F?OW‹ñ¼¦,EÀ¹zÙ×ûh6]²Û¶09Öì…«+›Rv–²{)ú¹ñõFQÔ3NGù™ ûݹÙ¬Ö&+ܬk8Û\‘øÎìx•wøy;ÌÆBŸOéŽ.X‹t5æ¥,MæBV¸}ÒðüâΙí•¿cÃóhN<€¶OûrÅ‚ôFH†a-jëMí‹Uú’NK]؈L¡L÷×÷7¶_úc9Ñzv5 À¿òh)‚ækh8Ýé½Ä ÆèœíKq}æKâ[Œ$µ60kB>®?Íúé~Å– =8º>J¶&µ«}»ð˜Þ¯mRkÞYߌ^Âíw­á¯*t¹1RVÞÚÚŸùá0M)Ž>Æ5&¢J“ç…‰Í/š¢Í䲓ÊOYUËö4útXúP`²¾ú²o­ ®^ºˆ¬úJÝG}ßnëÙ$£äÛ’±3mžÏén#ë÷eáeO÷Q4§;¶ž„¦}¡±içvUÿäÐ&£e¶‡òr͈æVMQkÈqÎ3•i_N!RôJîØuwŠÉL!cçë¼…îÑGgï¾7§)(Ï¢°ŠSН{·ˆÝþƒÍü¤Â9‹÷voþ4³Ç\îa~{óÙAQíë1$¤ æbåœkÄHY­Ü›È¿±IÃe–£è<ºÙ7sm…—H{<:ÊDgpåM—Â]²ý4XiŽ&Ï£—µŠuÔší&0®ó‹tz^O„Rî¾íhÑM›­ÝÏÓ0»‚U­”ëϔϾíÒ2Ë©· ÄïdÜÕK2Xj|Ø2ÃE<3 çúªõ1Ò"ØwvF«G¼Ô’ûÙÌÚøqÑ^Õ?›S¶ÍV³ò¹­¥ü¥Ü£,ðå¢÷îÚ¶Ÿë2¼fPÌ€•ŸéGË*gÏõD»X¤ Nõ† ÕawiÍ;y:Zî><ƒ¼õd("C0F.‡¥itjºRÌ/™É3'(N̪^¼¨ˆ#—·›üê^é;dfú™ÌA{7ëtg¹ø£<¯°ŠÄ¾Ú—-øˆI`w.7º¾Á‚n¶’òj_î1¸K 3mäXk¾¤§_º02?¹ÃJüÐÇKhöoäçnï»oF¶»rFª‚«ì‰ÍeîþÕqéµ%F“¯˜°ïK.ORÒ§eäÊÖÜuLJåË‚ý™ÌÄæòçã.€h¤ºTÉb=³l™üèj‰"ͱd»ÛÞ-Æ ‚º½¹ç¼—Àû4-®Å:<¹Ø²tÈ»~Œ°cfáš»˜ ¸=Ëeõe´[‹’Gç_j̤ƒYÔò¸î°WÀþ´Á)ØlCaí£÷…jz/à‹Û'ÔgŽh£xo¢šVå:yw1îø~ÉšÝýçê­­ß»4tßU||<©òkO°+34v(yÖ£Õ­ë T•iít ʾZ't<|烶ž×ÒxÍÜ¥Ö–>ŸZËíq ͵åŒ*lp›wt¨_:W‰t)Kçå‚êô·Ö“ü¹rS±f7¿ÇÏ7N6œâU%bËA³ý72šÑÍ¢‹Åa“ÀQÞ±ëãF û‚a¿0:ÓY`yÒ³emφ¬s`•Jä¶—ÅÕÔç”îß]4ô»W4ïÒ™AÍÉÕ.¥<™F<$äV°ž"VEôQ‘—ü÷xÊüºÿù"Oï®  ù¨ü Ú 61ŠE¨öSX¾fŸ÷tMíW"ßóß/$[ðº ÕÞ÷ Ô}ú6´£,ùN–&B7Íñäü˜5±`+ñ¬ñ™mLȆj\‹ÑÐ7†W>¬°×ôÓ¶—ÌÙê 'è<›î&üù£àÇ€ùî;tËâ÷ip8r=äú½l,\*ÀÁl4Ö\ï§œåd»Áä4ŸŽö]´ÈÇø…ow™‹~àE¯>·Ýž ÷êÆ3¾´Kñï}}û&¾p°î<Œ²Ýo›ùaƒþ,DX~Z$žr±CßÖ¼)ƒñî Ôz¾®¢‹+x|’ÆT·5~ËÖi±Ï»¼—5ßRy¼¬ ¿Hf~WîVØÁ 4ÇWC)•­Ñ-ö?==þwrâeogbËnYyo®Å÷rJÊßÏ2“lžã—äe”¯~«$o%}?qû“Ãû²²ùÈI?žE¯»v{ýîú}­]Óéß(éí¾ÿ¥,{·‹ß]W¼m~⎽'6!ù‡VVnMÆ·‰ò’­¯)G5ò¹ôÊúDuQV:^¿ý7zÖïo]|áüBÙ¡f/T´ÇÊã)ËiëÉ?ǽº?XD¿táòR"ÆÊù¨/]¶öϪ޵do¤ÿê}Šx›co¼,²âüxl³¦W¬¸9Ný¹ý\ž…I¦GädÃãû»V(”·ÿƂ݈ïÝù¼‚¼Õ¸"οúq¦Â@kMatchIt/R/0000755000176200001440000000000012163124614012004 5ustar liggesusersMatchIt/R/weights.subclass.R0000644000176200001440000000213410262644716015427 0ustar liggesusersweights.subclass <- function(psclass, treat) { ttt <- treat[!is.na(psclass)] classes <- na.omit(psclass) n <- length(ttt) labels <- names(ttt) tlabels <- labels[ttt==1] clabels <- labels[ttt==0] weights <- rep(0, n) names(weights) <- labels weights[tlabels] <- 1 for(j in unique(classes)){ qn0 <- sum(ttt==0 & classes==j) qn1 <- sum(ttt==1 & classes==j) weights[ttt==0 & classes==j] <- qn1/qn0 } if (sum(weights[ttt==0])==0) weights[ttt==0] <- rep(0, length(weights[clabels])) else { ## Number of C units that were matched to at least 1 T num.cs <- sum(weights[clabels] > 0) weights[clabels] <- weights[clabels]*num.cs/sum(weights[clabels]) } if (any(is.na(psclass))) { tmp <- rep(0, sum(is.na(psclass))) names(tmp) <- names(treat[is.na(psclass)]) weights <- c(weights, tmp)[names(treat)] } if (sum(weights)==0) stop("No units were matched") else if (sum(weights[tlabels])==0) stop("No treated units were matched") else if (sum(weights[clabels])==0) stop("No control units were matched") return(weights) } MatchIt/R/weights.matrix.R0000644000176200001440000000273710270312711015107 0ustar liggesusersweights.matrix <- function(match.matrix, treat, discarded){ n <- length(treat) labels <- names(treat) tlabels <- labels[treat==1] clabels <- labels[treat==0] in.sample <- !discarded names(in.sample) <- labels match.matrix <- match.matrix[tlabels,,drop=F][in.sample[tlabels],,drop=F] num.matches <- dim(match.matrix)[2]-apply(as.matrix(match.matrix), 1, function(x){sum(is.na(x))}) names(num.matches) <- tlabels[in.sample[tlabels]] t.units <- row.names(match.matrix)[num.matches>0] c.units <- na.omit(as.vector(as.matrix(match.matrix))) weights <- rep(0,length(treat)) names(weights) <- labels weights[t.units] <- 1 for (cont in clabels) { treats <- na.omit(row.names(match.matrix)[cont==match.matrix[,1]]) if (dim(match.matrix)[2]>1) for (j in 2:dim(match.matrix)[2]) treats <- c(na.omit(row.names(match.matrix)[cont==match.matrix[,j]]),treats) for (k in unique(treats)) weights[cont] <- weights[cont] + 1/num.matches[k] } if (sum(weights[clabels])==0) weights[clabels] <- rep(0, length(weights[clabels])) else weights[clabels] <- weights[clabels]*length(unique(c.units))/sum(weights[clabels]) weights[!in.sample] <- 0 if (sum(weights)==0) stop("No units were matched") else if (sum(weights[tlabels])==0) stop("No treated units were matched") else if (sum(weights[clabels])==0) stop("No control units were matched") return(weights) } MatchIt/R/user.prompt.R0000644000176200001440000000012210425406160014416 0ustar liggesusersuser.prompt <- function() silent <- readline("\nPress to continue: ") MatchIt/R/summary.matchit.subclass.R0000644000176200001440000001016611024275003017070 0ustar liggesuserssummary.matchit.subclass <- function(object, interactions = FALSE, addlvariables=NULL, standardize = FALSE, ...) { X <- object$X ## Fix X matrix so that it doesn't have any factors varnames <- colnames(X) for(var in varnames) { if(is.factor(X[,var])) { tempX <- X[,!colnames(X)%in%c(var)] form<-formula(substitute(~dummy-1,list(dummy=as.name(var)))) X <- cbind(tempX, model.matrix(form, X)) } } XX <- cbind(distance=object$distance,X) if (!is.null(addlvariables)) XX <- cbind(XX, addlvariables) treat <- object$treat weights <- object$weights nam <- dimnames(XX)[[2]] kk <- ncol(XX) ## Summary Stats aa <- apply(XX,2,qoi,tt=treat,ww=as.numeric(weights!=0),standardize=standardize) sum.all <- as.data.frame(matrix(0,kk,6)) sum.matched <- as.data.frame(matrix(0,kk,6)) row.names(sum.all) <- row.names(sum.matched) <- nam names(sum.all) <- names(sum.matched) <- names(aa[[1]]) sum.all.int <- sum.matched.int <- NULL for(i in 1:kk){ sum.all[i,] <- aa[[i]][1,] sum.matched[i,] <- aa[[i]][2,] if(interactions){ for(j in i:kk){ x2 <- XX[,i]*as.matrix(XX[,j]) jqoi <- qoi(x2,tt=treat,ww=as.numeric(weights!=0),standardize=standardize) sum.all.int <- rbind(sum.all.int,jqoi[1,]) sum.matched.int <- rbind(sum.matched.int,jqoi[2,]) row.names(sum.all.int)[nrow(sum.all.int)] <- row.names(sum.matched.int)[nrow(sum.matched.int)] <- paste(nam[i],nam[j],sep="x") } } } xn <- aa[[1]]$xn sum.all <- rbind(sum.all,sum.all.int) sum.matched <- rbind(sum.matched,sum.matched.int) ## By Subclass qbins <- max(object$subclass,na.rm=TRUE) if(interactions){ q.table <- array(0,dim=c(kk+sum(1:kk),6,qbins)) ii <- 0 nn <- NULL } else { q.table <- array(0,dim=c(kk,6,qbins)) } aa <- apply(XX,2,qoi.by.sub,tt=treat,ww=weights, qq=object$subclass,standardize=standardize) for(i in 1:kk){ if(!interactions){ q.table[i,,] <- as.matrix(aa[[i]]$q.table) nn <- names(aa) } else { ii <- ii + 1 q.table[ii,,] <- as.matrix(aa[[i]]$q.table) nn <- c(nn,names(aa)[i]) for(j in i:kk){ ii <- ii + 1 x2 <- XX[,i]*as.matrix(XX[,j]) q.table[ii,,] <- as.matrix(qoi.by.sub(x2,tt=treat,ww=weights,qq=object$subclass,standardize=standardize)$q.table) nn <- c(nn,paste(nam[i],nam[j],sep="x")) } } } qn <- aa[[1]]$qn dimnames(q.table) <- list(nn,row.names(aa[[i]]$q.table),paste("Subclass",1:qbins)) ## Aggregate Subclass if(is.null(object$call$sub.by)){ object$call$sub.by <- "treat" } if(object$call$sub.by=="treat") { wsub <- qn[1,]/sum(qn[1,]) } else if(object$call$sub.by=="control") { wsub <- qn[2,]/sum(qn[2,]) } else if(object$call$sub.by=="all") { wsub <- qn[3,]/sum(qn[3,]) } sum.subclass <- sum.all for(i in 1:kk){ for(j in 1:6){ if(j==3) { sum.subclass[i,j] <- sqrt(sum((wsub^2)*(q.table[i,j,]^2))) } else { sum.subclass[i,j] <- sum(wsub*q.table[i,j,]) } } } ## Imbalance Reduction stat0 <- abs(cbind(sum.all[,2]-sum.all[,1], sum.all[,4:6])) stat1 <- abs(cbind(sum.subclass[,2]-sum.subclass[,1], sum.subclass[,4:6])) reduction <- as.data.frame(100*(stat0-stat1)/stat0) if(sum(stat0==0 & stat1==0, na.rm=T)>0){ reduction[stat0==0 & stat1==0] <- 0 } if(sum(stat0==0 & stat1>0,na.rm=T)>0){ reduction[stat0==0 & stat1>0] <- -Inf } if (standardize) names(reduction) <- c("Std. Mean Diff.", "eCDF Med","eCDF Mean", "eCDF Max") else names(reduction) <- c("Mean Diff.", "eQQ Med","eQQ Mean", "eQQ Max") ## output res <- list(call=object$call, sum.all = sum.all, sum.matched = sum.matched, sum.subclass = sum.subclass, reduction = reduction, qn = qn, q.table = q.table) class(res) <- c("summary.matchit.subclass", "summary.matchit") return(res) } MatchIt/R/summary.matchit.full.R0000644000176200001440000000617710703212305016221 0ustar liggesuserssummary.matchit.full <- function(object, interactions = FALSE, addlvariables = NULL, numdraws = 5000, standardize = FALSE, ...) { XX <- cbind(distance=object$distance,object$X) if (!is.null(addlvariables)) XX <- cbind(XX, addlvariables) treat <- object$treat weights <- object$weights nam <- dimnames(XX)[[2]] kk <- ncol(XX) ## Get samples of T and C units to send to qqplot t.plot <- sample(names(treat)[treat==1], numdraws/2, replace=TRUE, prob=weights[treat==1]) c.plot <- sample(names(treat)[treat==0], numdraws/2, replace=TRUE, prob=weights[treat==0]) ## Summary Stats aa <- apply(XX,2,qoi,tt=treat,ww=weights, t.plot=t.plot, c.plot=c.plot, standardize=standardize) sum.all <- as.data.frame(matrix(0,kk,6)) sum.matched <- as.data.frame(matrix(0,kk,6)) row.names(sum.all) <- row.names(sum.matched) <- nam names(sum.all) <- names(sum.matched) <- names(aa[[1]]) sum.all.int <- sum.matched.int <- NULL for(i in 1:kk){ sum.all[i,] <- aa[[i]][1,] sum.matched[i,] <- aa[[i]][2,] if(interactions){ for(j in i:kk){ x2 <- XX[,i]*as.matrix(XX[,j]) names(x2) <- names(XX[,1]) jqoi <- qoi(x2,tt=treat,ww=weights, t.plot=t.plot, c.plot=c.plot, standardize=standardize) sum.all.int <- rbind(sum.all.int,jqoi[1,]) sum.matched.int <- rbind(sum.matched.int,jqoi[2,]) row.names(sum.all.int)[nrow(sum.all.int)] <- row.names(sum.matched.int)[nrow(sum.matched.int)] <- paste(nam[i],nam[j],sep="x") } } } xn <- aa[[1]]$xn sum.all <- rbind(sum.all,sum.all.int) sum.matched <- rbind(sum.matched,sum.matched.int) ## Imbalance Reduction stat0 <- abs(cbind(sum.all[,2]-sum.all[,1], sum.all[,4:6])) stat1 <- abs(cbind(sum.matched[,2]-sum.matched[,1], sum.matched[,4:6])) reduction <- as.data.frame(100*(stat0-stat1)/stat0) if(sum(stat0==0 & stat1==0, na.rm=T)>0){ reduction[stat0==0 & stat1==0] <- 0 } if(sum(stat0==0 & stat1>0,na.rm=T)>0){ reduction[stat0==0 & stat1>0] <- -Inf } if (standardize) names(reduction) <- c("Std. Mean Diff.", "eCDF Med","eCDF Mean", "eCDF Max") else names(reduction) <- c("Mean Diff.", "eQQ Med","eQQ Mean", "eQQ Max") ## Sample sizes nn <- matrix(0, ncol=2, nrow=4) nn[1,] <- c(sum(object$treat==0), sum(object$treat==1)) nn[2,] <- c(sum(object$treat==0 & object$weights>0), sum(object$treat==1 & object$weights>0)) nn[3,] <- c(sum(object$treat==0 & object$weights==0 & object$discarded==0), sum(object$treat==1 & object$weights==0 & object$discarded==0)) nn[4,] <- c(sum(object$treat==0 & object$weights==0 & object$discarded==1), sum(object$treat==1 & object$weights==0 & object$discarded==1)) dimnames(nn) <- list(c("All","Matched","Unmatched","Discarded"), c("Control","Treated")) ## output res <- list(call=object$call, nn = nn, sum.all = sum.all, sum.matched = sum.matched, reduction = reduction) class(res) <- c("summary.matchit.full", "summary.matchit") return(res) } MatchIt/R/summary.matchit.exact.R0000644000176200001440000000253011041165132016351 0ustar liggesuserssummary.matchit.exact <- function(object, covariates = FALSE, ...) { XX <- object$X treat <- object$treat qbins <- max(object$subclass,na.rm=TRUE) if(!covariates){ q.table <- as.data.frame(matrix(0,qbins,3)) names(q.table) <- c("Treated","Control","Total") for(i in 1:qbins){ qi <- object$subclass==i q.table[i,] <- c(sum(treat[qi]==1, na.rm=T), sum(treat[qi]==0, na.rm=T), length(treat[qi & !is.na(qi)])) } } else { kk <- ncol(XX) q.table <- as.data.frame(matrix(0,qbins,kk+3)) names(q.table) <- c("Treated","Control","Total",dimnames(XX)[[2]]) for(i in 1:qbins){ qi <- object$subclass==i & !is.na(object$subclass==i) q.table[i,] <- c(sum(treat[qi]==1, na.rm=T), sum(treat[qi]==0, na.rm=T), length(treat[qi & !is.na(qi)]),as.numeric(XX[qi,,drop=F][1,])) } } ntab <- table(factor(!is.na(object$subclass), levels=c("TRUE","FALSE")), treat) nn <- rbind(table(treat), ntab[c("TRUE","FALSE"),]) dimnames(nn) <- list(c("All","Matched","Discarded"), c("Control","Treated")) ## output res <- list(q.table = q.table, nn = nn, subclass = object$subclass, treat = object$treat, call = object$call) class(res) <- c("summary.matchit.exact", "summary.matchit") return(res) } MatchIt/R/summary.matchit.R0000644000176200001440000000530611434402563015262 0ustar liggesuserssummary.matchit <- function(object, interactions = FALSE, addlvariables = NULL, standardize = FALSE, ...) { X <- object$X ## Fix X matrix so that it doesn't have any factors varnames <- colnames(X) for(var in varnames) { if(is.factor(X[,var])) { tempX <- X[,!colnames(X)%in%c(var)] form<-formula(substitute(~dummy-1,list(dummy=as.name(var)))) X <- cbind(tempX, model.matrix(form, X)) } } ## No distance output for pure Mahalanobis if("matchit.mahalanobis"%in%class(object)){ XX <- X } else{ XX <- cbind(distance=object$distance,X) } if (!is.null(addlvariables)) XX <- cbind(XX, addlvariables) treat <- object$treat weights <- object$weights nam <- dimnames(XX)[[2]] dupnam <- duplicated(nam) if(sum(dupnam)>0){ nam[dupnam] <- paste(nam[dupnam],".1",sep="") } kk <- ncol(XX) ## Summary Stats aa <- apply(XX,2,qoi,tt=treat,ww=weights,standardize=standardize,std=T) sum.all <- as.data.frame(matrix(0,kk,7)) sum.matched <- as.data.frame(matrix(0,kk,7)) row.names(sum.all) <- row.names(sum.matched) <- nam names(sum.all) <- names(sum.matched) <- names(aa[[1]]) sum.all.int <- sum.matched.int <- NULL for(i in 1:kk){ sum.all[i,] <- aa[[i]][1,] sum.matched[i,] <- aa[[i]][2,] if(interactions){ for(j in i:kk){ x2 <- XX[,i]*as.matrix(XX[,j]) jqoi <- qoi(x2,tt=treat,ww=weights,standardize=standardize,std=T) sum.all.int <- rbind(sum.all.int,jqoi[1,]) sum.matched.int <- rbind(sum.matched.int,jqoi[2,]) row.names(sum.all.int)[nrow(sum.all.int)] <- row.names(sum.matched.int)[nrow(sum.matched.int)] <- paste(nam[i],nam[j],sep="x") } } } xn <- aa[[1]]$xn sum.all <- rbind(sum.all,sum.all.int) sum.matched <- rbind(sum.matched,sum.matched.int) ## Imbalance Reduction stat0 <- abs(cbind(sum.all[,2]-sum.all[,1], sum.all[,5:7])) stat1 <- abs(cbind(sum.matched[,2]-sum.matched[,1], sum.matched[,5:7])) reduction <- as.data.frame(100*(stat0-stat1)/stat0) if(sum(stat0==0 & stat1==0, na.rm=T)>0){ reduction[stat0==0 & stat1==0] <- 0 } if(sum(stat0==0 & stat1>0,na.rm=T)>0){ reduction[stat0==0 & stat1>0] <- -Inf } if (standardize) names(reduction) <- c("Std. Mean Diff.", "eCDF Med","eCDF Mean", "eCDF Max") else names(reduction) <- c("Mean Diff.", "eQQ Med","eQQ Mean", "eQQ Max") ## output res <- list(call=object$call, nn = object$nn, sum.all = sum.all, sum.matched = sum.matched, reduction = reduction) class(res) <- "summary.matchit" return(res) } MatchIt/R/qqsum.R0000644000176200001440000000120010331713325013264 0ustar liggesusers## Function for QQ summary stats qqsum <- function (x, y, standardize = FALSE){ sx <- sort(x) sy <- sort(y) lenx <- length(sx) leny <- length(sy) if (standardize) { vals <- sort(unique(c(sx, sy))) sx <- ecdf(sx) sx <- sx(vals) sy <- ecdf(sy) sy <- sy(vals) } else { if (leny < lenx) sx <- approx(1:lenx, sx, n = leny, method = "constant")$y if (leny > lenx) sy <- approx(1:leny, sy, n = lenx, method = "constant")$y } dxy <- abs(sx-sy) meandiff <- mean(dxy) meddiff <- median(dxy) maxdiff <- max(dxy) invisible(list(meandiff=meandiff, meddiff=meddiff, maxdiff=maxdiff)) } MatchIt/R/print.summary.matchit.subclass.R0000644000176200001440000000142010304323376020223 0ustar liggesusersprint.summary.matchit.subclass <- function(x, digits = max(3, getOption("digits") - 3), ...){ sum.all <- x$sum.all sum.matched <- x$sum.matched q.table <- x$q.table cat("\nCall:", deparse(x$call), sep = "\n") cat("Summary of balance for all data:\n") print.data.frame(round(sum.all,digits)) cat("\n") cat("\nSummary of balance by subclasses:\n") print.table(round(q.table, digits)) cat("\nSample sizes by subclasses:\n") print.data.frame(x$qn, digits = digits) cat("\nSummary of balance across subclasses\n") print.data.frame(round(x$sum.subclass, digits)) cat("\nPercent Balance Improvement:\n") print.data.frame(round(x$reduction,digits)) cat("\n") } MatchIt/R/print.summary.matchit.exact.R0000644000176200001440000000063011041165132017503 0ustar liggesusersprint.summary.matchit.exact <- function(x, digits = max(3, getOption("digits") - 3), ...){ cat("\nCall:", deparse(x$call), sep = "\n") cat("\nSample sizes:\n") print.table(x$nn,digits=digits) cat("\nMatched sample sizes by subclass:\n") print.data.frame(x$q.table, digits = digits) cat("\n") invisible(x) } MatchIt/R/print.summary.matchit.R0000644000176200001440000000142210304323376016407 0ustar liggesusersprint.summary.matchit <- function(x, digits = max(3, getOption("digits") - 3), ...){ sum.all <- x$sum.all sum.matched <- x$sum.matched q.table <- x$q.table xn <- x$nn cat("\nCall:", deparse(x$call), sep = "\n") cat("\nSummary of balance for all data:\n") print.data.frame(round(sum.all,digits)) cat("\n") xs1 <- sum.matched cc <- row.names(sum.all) if(!is.null(x$sum.matched) | identical(eval(x$call$method),"All")) { cat("\nSummary of balance for matched data:\n") print.data.frame(round(xs1,digits)) cat("\nPercent Balance Improvement:\n") print.data.frame(round(x$reduction,digits)) cat("\nSample sizes:\n") print.table(xn, digits=digits) cat("\n") } invisible(x) } MatchIt/R/print.matchit.subclass.R0000644000176200001440000000061310304316120016517 0ustar liggesusersprint.matchit.subclass <- function(x, digits = getOption("digits"), ...){ cat("\nCall: ", deparse(x$call), sep = "\n") cat("\nSample sizes by subclasses:\n\n") nsub <- table(x$subclass,x$treat) nn <- rbind(table(x$treat),nsub) dimnames(nn) <- list(c("All",paste("Subclass",dimnames(nsub)[[1]])), c("Control","Treated")) print.table(nn, ...) invisible(x) cat("\n") } MatchIt/R/print.matchit.full.R0000644000176200001440000000100510304316120015636 0ustar liggesusersprint.matchit.full <- function(x, digits = getOption("digits"), ...){ cat("\nCall: ", deparse(x$call), sep = "\n") cat("\nSample sizes:\n") if (any(x$weights>0)) nn <- rbind(table(x$treat), table(x$weights>0, x$treat), c(0,0)) else nn <- rbind(table(x$treat), table(x$weights>0,x$treat)[2:1,]) dimnames(nn) <- list(c("All","Matched","Discarded"), c("Control","Treated")) print.table(nn, ...) invisible(x) cat("\n") } MatchIt/R/print.matchit.exact.R0000644000176200001440000000105410304316120016004 0ustar liggesusersprint.matchit.exact <- function(x, digits = getOption("digits"), ...){ cat("\nCall: ", deparse(x$call), sep = "\n") cat("\nExact Subclasses: ", max(x$subclass, na.rm=T),"\n",sep="") cat("\nSample sizes:\n") ntab <- table(factor(!is.na(x$subclass), levels=c("TRUE","FALSE")), x$treat) nn <- rbind(table(x$treat), ntab[c("TRUE","FALSE"),]) dimnames(nn) <- list(c("All","Matched","Unmatched"), c("Control","Treated")) print.table(nn, ...) invisible(x) cat("\n") } MatchIt/R/print.matchit.R0000644000176200001440000000064111430774543014724 0ustar liggesusersprint.matchit <- function(x, digits = getOption("digits"), ...){ cat("\nCall: ", deparse(x$call), sep="\n") cat("\nSample sizes:\n") #if(any(x$weights>0)) # nn <- rbind(table(x$treat), # table(x$weights>0, x$treat), # c(0,0)) #else # nn <- rbind(table(x$treat), # table(x$weights>0,x$treat)[2:1,]) print.table(x$nn, ...) invisible(x) cat("\n") } MatchIt/R/plot.summary.matchit.R0000644000176200001440000000333410703021044016223 0ustar liggesusersplot.summary.matchit <- function(x, interactive = TRUE, ...) { if ("matchit.exact" %in% class(x)){ stop("Not appropriate for exact matching. No plots generated.") } if (!"Std. Mean Diff."%in%names(x$sum.all)){ stop("Not appropriate for unstandardized summary. Run summary() with the standardize=TRUE option, and then plot.") } sd.pre <- abs(x$sum.all$"Std. Mean Diff.") sd.post <- abs(x$sum.matched$"Std. Mean Diff.") if (!is.null(x$q.table)) sd.post <- abs(x$sum.subclass$"Std. Mean Diff") ases.dat <- data.frame(es.unw = sd.pre, es.w = sd.post) par(mfrow=c(1,1)) plot(c(0.85, 2.15), c(0, min(3, max(unlist(ases.dat[, 1:2]), na.rm = TRUE))), type = "n", xaxt = "n", ylab = "Absolute Standardized Diff in Means", xlab = "", main = "") abline(h = c(0.2, 0.4, 0.6, 0.8, 1.0)) axis(side = 1, at = 1:2, labels = c("All Data", "Matched Data")) for (i in 1:nrow(ases.dat)) { points(1:2, abs(ases.dat[i, c("es.unw", "es.w")]), type = "b", col = "grey", pch=19) } temp1 <- ases.dat[abs(ases.dat$es.unw) < abs(ases.dat$es.w),] for (i in 1:nrow(temp1)) { points(1:2, abs(temp1[i, c("es.unw", "es.w")]), type = "b", col = "black", lwd = 2, pch=19) } if (max(ases.dat$es.w, na.rm = TRUE) > 3) mtext(text = "Some standardized diffs in means > 3 after matching!", side = 3, col = "red") if(interactive==TRUE) { print("To identify the variables, use first mouse button; to stop, use second.") identify(rep(1, length(sd.pre)),sd.pre,rownames(x$sum.all),atpen=T) identify(rep(2, length(sd.post)),sd.post,rownames(x$sum.all),atpen=T) } } MatchIt/R/plot.matchit.subclass.R0000644000176200001440000000277111221036205016352 0ustar liggesusersplot.matchit.subclass <- function(x, discrete.cutoff=5, type="QQ", interactive = T, subclass = NULL, which.xs=NULL,...){ choice.menu <- function(choices,question) { k <- length(choices)-1 Choices <- data.frame(choices) row.names(Choices) <- 0:k names(Choices) <- "Choices" print.data.frame(Choices,right=FALSE) ans <- readline(question) while(!ans%in%c(0:k)) { print("Not valid -- please pick one of the choices") print.data.frame(Choices,right=FALSE) ans <- readline(question) } return(ans) } if(type=="QQ"){ if(interactive){ choices <- c("No",paste("Yes : Subclass ", 1:max(x$subclass,na.rm=T))) question <- "Would you like to see quantile-quantile plots of any subclasses?" ans <- -1 while(ans!=0) { ans <- as.numeric(choice.menu(choices,question)) if(ans!=0) { matchit.qqplot(x,discrete.cutoff,which.subclass=ans, interactive = interactive, which.xs=which.xs,...) } } } else { matchit.qqplot(x,discrete.cutoff,which.subclass=subclass, interactive=interactive, which.xs=which.xs,...) } } else if(type=="jitter"){ jitter.pscore(x, interactive=interactive,...) } else if(type=="hist"){ hist.pscore(x,...) } else { stop("Invalid type") } } MatchIt/R/plot.matchit.R0000644000176200001440000000170111434402563014536 0ustar liggesusers# Need to account for weights -- how do we do qq plots with weights plot.matchit <- function(x, discrete.cutoff=5, type="QQ", numdraws=5000, interactive = T, which.xs = NULL, ...){ if ("matchit.exact" %in% class(x)){ stop("Not appropriate for exact matching. No plots generated.") } if(type=="QQ"){ matchit.qqplot(x=x,discrete.cutoff=discrete.cutoff, numdraws=numdraws, interactive=interactive, which.xs = which.xs, ...) } else if(type=="jitter"){ if("matchit.mahalanobis" %in% class(x)){ stop("Not appropriate for pure Mahalanobis matching. No plots generated.") } jitter.pscore(x, interactive=interactive,...) } else if(type=="hist"){ if("matchit.mahalanobis" %in% class(x)){ stop("Not appropriate for pure Mahalanobis matching. No plots generated.") } hist.pscore(x,...) } else { stop("Invalid type") } } MatchIt/R/matchit2subclass.R0000644000176200001440000000716211500472177015414 0ustar liggesusersmatchit2subclass <- function(treat, X, data, distance, discarded, is.full.mahalanobis, match.matrix=NULL, subclass=6, sub.by="treat", verbose = FALSE){ if(verbose) cat("Subclassifying... \n") # sub.by if(!is.vector(sub.by)|length(sub.by)!=1){ warning(sub.by," is not a valid sub.by option; sub.by=\"treat\" used instead",call.=FALSE); sub.by <- "treat"} if(!sub.by%in%c("treat","control","all")){ warning(sub.by, " is not a valid sub.by option; sub.by=\"treat\" used instead",call.=FALSE); sub.by <- "treat"} #subclass if(length(subclass)==1){ if(subclass<0 | subclass==1){ warning(subclass, " is not a valid subclass; subclass=6 used instead",call.=FALSE); subclass <- 6} } else { if(!is.vector(subclass)){ warning(subclass, " is not a valid subclass; subclass=6 used instead",call.=FALSE); subclass <- 6} if(sum(subclass<=1 & subclass>=0)!=length(subclass)){ warning("Subclass ", subclass, " is not bounded by 0 and 1; subclass=6 used instead", call.=FALSE); subclass <- 6} } in.sample <- !discarded n <- length(treat) ## Matching & Subclassification if(!is.null(match.matrix)){ #match.matrix <- match.matrix[in.sample[treat==1],,drop=F] t.units <- row.names(match.matrix)[in.sample[treat==1]==1] c.units <- na.omit(as.vector(as.matrix(match.matrix))) matched <-c(t.units,c.units) matched <- names(treat)%in%matched } else matched <- rep(TRUE,n) names(matched) <- names(treat) m1 <- matched[treat==1] m0 <- matched[treat==0] p1 <- distance[treat==1][m1] p0 <- distance[treat==0][m0] ## Settting Cut Points if(length(subclass)!=1 | (length(subclass)==1 & all(subclass<1))) { subclass <- sort(subclass) if (subclass[1]==0) subclass <- subclass[-1] if (subclass[length(subclass)]==1) subclass <- subclass[-length(subclass)] if(sub.by=="treat") q <- c(0,quantile(p1,probs=c(subclass)),1) else if(sub.by=="control") q <- c(0,quantile(p0,probs=c(subclass)),1) else if(sub.by=="all") q <- c(0,quantile(distance,probs=c(subclass)),1) else stop("Invalid input for sub.by") } else { if(subclass<=0){stop("Subclass must be a positive vector",call.=FALSE)} sprobs <- seq(0,1,length=(round(subclass)+1)) sprobs <- sprobs[2:(length(sprobs)-1)] min.dist <- min(distance,na.rm=TRUE)-0.01 max.dist <- max(distance,na.rm=TRUE)+0.01 if(sub.by=="treat") q <- c(min.dist,quantile(p1,probs=sprobs,na.rm=TRUE), max.dist) else if(sub.by=="control") q <- c(min.dist,quantile(p0,probs=sprobs,na.rm=TRUE), max.dist) else if(sub.by=="all") q <- c(min.dist, quantile(distance,probs=sprobs,na.rm=TRUE), max.dist) else stop("Must specify a valid sub.by",call.=FALSE) } ## Calculating Subclasses qbins <- length(q)-1 psclass <- rep(0,n) names(psclass) <- names(treat) for (i in 1:qbins){ q1 <- q[i] q2 <- q[i+1] psclass <- psclass+i*as.numeric(distance=q1) } ## No subclass for discarded or unmatched units psclass[in.sample==0] <- NA psclass[!matched] <- NA if(verbose){cat("Done\n")} res <- list(subclass = psclass, q.cut = q, weights = weights.subclass(psclass, treat)) #warning for discrete data unique.classes <- unique(psclass) unique.classes <- unique.classes[!is.na (unique.classes)] if(length(unique.classes)!=subclass){ warning("Due to discreteness in data, fewer subclasses generated",call.=F) } class(res) <- c("matchit.subclass", "matchit") return(res) } MatchIt/R/matchit2optimal.R0000644000176200001440000000355012162545334015240 0ustar liggesusersmatchit2optimal <- function(treat, X, data, distance, discarded, is.full.mahalanobis, ratio = 1, verbose=FALSE, ...) { #if (!("optmatch" %in% .packages(all = TRUE))) # install.packages("optmatch") require(optmatch) if(verbose) cat("Optimal matching... \n") ## optimal matching for undiscarded units ttt <- treat[!discarded] n0 <- length(ttt[ttt==0]) n1 <- length(ttt[ttt==1]) d1 <- distance[ttt==1] d0 <- distance[ttt==0] d <- matrix(0, ncol=n0, nrow=n1) tlabels <- rownames(d) <- names(ttt[ttt==1]) clabels <- colnames(d) <- names(ttt[ttt==0]) for (i in 1:n1) d[i,] <- abs(d1[i]-d0) full <- fullmatch(d, min.controls = ratio, max.controls = ratio, omit.fraction = (n0-ratio*n1)/n0, ...) psclass <- full[pmatch(names(ttt), names(full))] psclass <- as.numeric(as.factor(psclass)) names(psclass) <- names(ttt) mm <- matrix(0, nrow = n1, ncol = ratio, dimnames = list(tlabels, 1:ratio)) for (i in 1:n1) mm[i,] <- names(which(psclass[tlabels[i]] == psclass[-pmatch(tlabels[i], names(psclass))])) if (any(discarded)) { ## add psclass = NA for discarded units tmp <- rep(NA, sum(discarded)) names(tmp) <- names(treat[discarded]) psclass <- c(psclass, tmp)[names(treat)] ## add match.matrix = NA for discarded units tdisc <- discarded[treat==1] if (any(tdisc)) { tmp <- matrix(NA, nrow = sum(tdisc), ncol= ratio, dimnames = list(names(treat[treat==1 & discarded]), 1:ratio)) mm <- as.matrix(rbind(mm, tmp)[names(treat[treat==1]),]) } } ## calculate weights and return the results res <- list(match.matrix = mm, subclass = psclass, weights = weights.matrix(mm, treat, discarded)) class(res) <- "matchit" return(res) } MatchIt/R/matchit2nearest.R0000644000176200001440000002371211500472177015235 0ustar liggesusersmatchit2nearest <- function(treat, X, data, distance, discarded, ratio=1, replace = FALSE, m.order = "largest", caliper = 0, calclosest = FALSE, mahvars = NULL, exact = NULL, subclass=NULL, verbose=FALSE, sub.by=NULL, is.full.mahalanobis,...){ if(verbose) cat("Nearest neighbor matching... \n") #replace if(!(identical(replace,TRUE) | identical(replace,FALSE))){ warning("replace=",replace," is invalid; used replace=FALSE instead",call.=FALSE);replace=FALSE} #m.order if(!(identical(m.order,"largest") | identical(m.order,"smallest") | identical(m.order,"random"))){ warning("m.order=",m.order," is invalid; used m.order='largest' instead",call.=FALSE);m.order="largest"} #ratio ratio <- round(ratio) if(!is.numeric(ratio) | ratio[1]<1 | !identical(round(length(ratio)),1)){ warning("ratio=",ratio," is invalid; used ratio=1 instead",call.=FALSE);ratio=1} #caliper if(!is.vector(caliper) | !identical(round(length(caliper)),1)){ warning("caliper=",caliper," is invalid; Caliper matching not done",call.=FALSE);caliper=0} if(caliper<0){ warning("caliper=",caliper," is less than 0; Caliper matching not done",call.=FALSE);caliper=0} #calclosest if(!(identical(calclosest,TRUE)| identical(calclosest,FALSE))){ warning("calclosest=",calclosest," is invalid; used calclosest=FALSE instead",call.=FALSE) calclosest=FALSE} #mahvars & caliper if (!is.null(mahvars) & caliper[1]==0){ warning("No caliper size specified for Mahalanobis matching. Caliper=.25 used.",call. = FALSE);caliper=.25} #when mahalanobis distance is used for all covars if(is.full.mahalanobis){ mahvars <- X Sigma <- var(X) ## Note: caliper irrelevant, but triggers mahalanobis matching caliper <- .25 ## no subclass with full mahalanobis if(!is.null(subclass)){ warning("No subclassification with pure Mahalanobis distance.",call. = FALSE) subclass <- NULL } } # Sample sizes, labels n <- length(treat) n0 <- length(treat[treat==0]) n1 <- length(treat[treat==1]) d1 <- distance[treat==1] d0 <- distance[treat==0] if(is.null(names(treat))) names(treat) <- 1:n labels <- names(treat) tlabels <- names(treat[treat==1]) clabels <- names(treat[treat==0]) in.sample <- !discarded names(in.sample) <- labels ## 10/1/07: Warning for if fewer control than ratio*treated and matching without replacement if (n0 < ratio*n1 & replace==FALSE) { if (ratio > 1) warning(paste("Not enough control units for ", ratio, " matches for each treated unit when matching without replacement. Not all treated units will receive", ratio, "matches")) else warning(paste("Fewer control than treated units and matching without replacement. Not all treated units will receive a match. Treated units will be matched in the order specified by m.order:", m.order)) } ## Generating match matrix match.matrix <- matrix(0, nrow=n1, ncol=ratio, dimnames=list(tlabels, 1:ratio)) ## Vectors of whether unit has been matched: ## = 0 if not matched (unit # of match if matched) ## = -1 if can't be matched (if in.sample=0) matchedc <- rep(0,length(d0)) names(matchedc) <- clabels ## These are the units that are ineligible because of discard ## (in.sample==0) matchedc[in.sample[clabels]==0] <- -1 match.matrix[in.sample[tlabels]==0,] <- -1 matchedt <- match.matrix[,1] names(matchedt) <- tlabels ## total number of matches (including ratios) = ratio * n1 tr <- length(match.matrix[match.matrix!=-1]) r <- 1 ## Caliper for matching (=0 if caliper matching not done) sd.cal <- caliper*sqrt(var(distance[in.sample==1])) ## Var-covar matrix for Mahalanobis (currently set for full sample) if (!is.null(mahvars) & !is.full.mahalanobis) { if(!sum(mahvars%in%names(data))==length(mahvars)) { warning("Mahvars not contained in data. Mahalanobis matching not done.",call.=FALSE) mahvars=NULL } else { ww <- mahvars%in%dimnames(X)[[2]] nw <- length(mahvars) mahvars <- data[,mahvars,drop=F] Sigma <- var(mahvars) if(sum(ww)!=nw){ X <- cbind(X,mahvars[!ww]) } mahvars <- as.matrix(mahvars) } } ## Now for exact matching within nearest neighbor ## exact should not equal T for this type of matching--that would get sent to matchit2exact if (!is.null(exact)){ if(!sum(exact%in%names(data))==length(exact)) { warning("Exact variables not contained in data. Exact matching not done.",call.=FALSE) exact=NULL } else { ww <- exact%in%dimnames(X)[[2]] nw <- length(exact) exact <- data[,exact,drop=F] if(sum(ww)!=nw){ X <- cbind(X,exact[!ww]) } } } ## Looping through nearest neighbour matching for all treatment units ## Only do matching for units with in.sample==1 (matched!=-1) if(verbose){ trseq <- floor(seq(tr/10,tr,tr/10)) cat("Matching Treated: ") } for(i in 1:tr){ ## Make new matchedc column to be used for exact matching ## Will only be 0 (eligible for matching) if it's an exact match if(verbose) {if(i%in%trseq){cat(10*which(trseq==i),"%...",sep="")}} # a counter matchedc2 <- matchedc ##in cases there's no replacement and all controls have been used up if(!0%in%matchedc2){ match.matrix[match.matrix[,r]==0 & !is.na(match.matrix[,r]),r] <- NA if(r1){itert <- sample(itert,1)} ## Calculating all the absolute deviations in propensity scores ## Calculate only for those eligible to be matched (matchedc==0) ## this first if statement only applies to replacement ratio ## matching, so that each treatment unit is matched to a different ## control unit than from the previous round ## match number = NA if no units within caliper ## Set things up for exact matching ## Make matchedc2==-2 if it isn't an exact match ## There might be a more efficient way to do this, but I couldn't figure ## out another way to compare a vector with the matrix if (!is.null(exact)) { for (k in 1:dim(exact)[2]) matchedc2[exact[itert,k]!=exact[clabels,k]] <- -2 } ## Need to add a check in case there aren't any eligible matches left... if(replace & r!=1) { if (sum(!clabels%in%match.matrix[itert,(1:r-1)] & matchedc2==0)==0) { deviation <- NULL mindev <- NA } else deviation <- abs(d0[!clabels%in%match.matrix[itert,(1:r-1)] & matchedc2==0]-iterd1) } else { if (sum(matchedc2==0)==0) { deviation <- NULL mindev <- NA } else deviation <- abs(d0[matchedc2==0]-iterd1) } if (caliper!=0 & (!is.null(deviation))) { if(replace & r!=1) pool <- clabels[!clabels%in%match.matrix[itert,(1:r-1)] & matchedc2==0][deviation <= sd.cal] else pool <- clabels[matchedc2==0][deviation <= sd.cal] if(length(pool)==0) { if (calclosest==FALSE) mindev <- NA else { if (replace & r!= 1){ mindev <- clabels[!clabels%in%match.matrix[itert,(1:r-1)]][min(deviation)==deviation] } else{mindev <- clabels[matchedc2==0][min(deviation)==deviation]} } } else if (length(pool)==1) mindev <- pool[1] else if (is.null(mahvars)) mindev <- sample(pool, 1) else { ## This has the important vars for the C's within the caliper poolvarsC <- mahvars[pool,,drop=F] ## Sigma is the full group var/covar matrix of Mahalvars mahal <- mahalanobis(poolvarsC, mahvars[itert,],Sigma) mindev <- pool[mahal==min(mahal)] } } else if(!is.null(deviation)) { if (replace & r!=1){ mindev <- clabels[!clabels%in%match.matrix[itert,(1:r-1)] & matchedc2==0][min(deviation)==deviation] } else {mindev <- clabels[matchedc2==0][min(deviation)==deviation]} } ## Resolving ties in minimum deviation by random draw if(length(mindev)>1){goodmatch <- sample(mindev,1)} else goodmatch <- mindev ## Storing which treatment unit has been matched to control, and ## vice versa matchedt[itert==tlabels] <- goodmatch matchedc[goodmatch==clabels] <- itert ## instead of the in.sample, we now have an index with dimensions n1 by # of ## matches (ratio) match.matrix[which(itert==tlabels),r] <- goodmatch ## If matching with replacement, set matchedc back to 0 so it can be reused if (replace) matchedc[goodmatch==clabels] <- 0 } if(verbose){cat("Done\n")} x <- as.matrix(match.matrix) x[x==-1] <- NA ## Calculate weights and return the results res <- list(match.matrix = match.matrix, weights = weights.matrix(match.matrix, treat, discarded), X=X) ## Subclassifying if(!is.null(subclass)){ if(is.null(sub.by)) sub.by="treat" psres <- matchit2subclass(treat,X,data,distance,discarded, match.matrix=match.matrix, subclass=subclass, verbose=verbose, sub.by=sub.by, ...) res$subclass <- psres$subclass res$q.cut <- psres$q.cut class(res) <- c("matchit.subclass", "matchit") } else{ class(res) <- "matchit" } return(res) } MatchIt/R/matchit2genetic.R0000644000176200001440000000272712162545334015216 0ustar liggesusersmatchit2genetic <- function(treat, X, data, distance, discarded, is.full.mahalanobis, ratio = 1, verbose = FALSE, ...) { #if (!("rgenoud" %in% .packages(all = TRUE))) # install.packages("rgenoud") #require(rgenoud) #if (!("Matching" %in% .packages(all = TRUE))) # install.packages("Matching") require(Matching) if (verbose) cat("Genetic matching... \n") tt <- treat[!discarded] n <- length(tt) n1 <- length(tt[tt==1]) xx <- X[!discarded,] dd <- distance[!discarded] tind <- (1:n)[tt==1] cind <- (1:n)[tt==0] labels <- names(tt) tlabels <- names(tt[tt==1]) clabels <- names(tt[tt==0]) out <- GenMatch(tt, cbind(dd, xx), M = ratio, ...)$matches ## ratio matching does not seem to work with GenMatch mm <- matrix(0, nrow = n1, ncol = max(table(out[,1])), dimnames = list(tlabels, 1:max(table(out[,1])))) for (i in 1:n1) { tmp <- labels[c(out[out[,1]==tind[i],2:(ratio+1)])] if (length(tmp) < ncol(mm)) tmp <- c(tmp, rep(NA, ncol(mm)-length(tmp))) mm[i,] <- tmp } if (any(discarded)) { tdisc <- discarded[treat==1] tmp <- matrix(NA, nrow = sum(tdisc), ncol = ncol(mm), dimnames = list(names(treat[treat == 1 & discarded]), 1:ncol(mm))) mm <- as.matrix(rbind(mm, tmp)[names(treat[treat==1]),]) } res <- list(match.matrix = mm, weights = weights.matrix(mm, treat, discarded)) class(res) <- "matchit" return(res) } MatchIt/R/matchit2full.R0000644000176200001440000000221712162545334014534 0ustar liggesusersmatchit2full <- function(treat, X, data, distance, discarded, is.full.mahalanobis, verbose=FALSE, ...) { #if (!("optmatch" %in% .packages(all = TRUE))) # install.packages("optmatch") require(optmatch) if(verbose) cat("Full matching... \n") ## full matching for undiscarded units ttt <- treat[!discarded] ddd <- distance[!discarded] n0 <- length(ttt[ttt==0]) n1 <- length(ttt[ttt==1]) d1 <- ddd[ttt==1] d0 <- ddd[ttt==0] d <- matrix(0, ncol=n0, nrow=n1) rownames(d) <- names(ttt[ttt==1]) colnames(d) <- names(ttt[ttt==0]) for (i in 1:n1) d[i,] <- abs(d1[i]-d0) full <- fullmatch(d, ...) psclass <- full[pmatch(names(ttt), names(full))] psclass <- as.numeric(as.factor(psclass)) names(psclass) <- names(ttt) ## add psclass = NA for discarded units if (any(discarded)) { tmp <- rep(NA, sum(discarded)) names(tmp) <- names(treat[discarded]) psclass <- c(psclass, tmp)[names(treat)] } ## calculate weights and return the results res <- list(subclass = psclass, weights = weights.subclass(psclass, treat)) class(res) <- c("matchit.full", "matchit") return(res) } MatchIt/R/matchit2exact.R0000644000176200001440000000111211500472177014666 0ustar liggesusersmatchit2exact <- function(treat, X, data, distance, discarded, is.full.mahalanobis, verbose=FALSE, ...){ if(verbose) cat("Exact matching... \n") n <- length(treat) xx <- apply(X, 1, function(x) paste(x, collapse = "\r")) xx1 <- xx[treat==1] xx0 <- xx[treat==0] cc <- unique(xx1) cc <- cc[cc%in%xx0] ncc <- length(cc) psclass <- rep(NA,n) names(psclass) <- names(treat) for(i in 1:ncc) psclass[xx==cc[i]] <- i res <- list(subclass = psclass, weights = weights.subclass(psclass, treat)) class(res) <- c("matchit.exact", "matchit") return(res) } MatchIt/R/matchit2cem.R0000644000176200001440000000346712162545334014346 0ustar liggesusers# matchit2cem - matchit wrapper for cem matching algorithm # # 06/10/2008 - m.blackwell # # this function takes inputs from matchit() and returns the # strata for each observation in the subclass entry and the # weight for each observation in the weight entry. No match # matrix is returned since matches are not unique within # strata. # matchit2cem <- function(treat, X, data, distance, discarded, is.full.mahalanobis, ratio = 1, verbose = FALSE, k2k.method=NULL, ...) { #if (!("cem" %in% .packages(all = TRUE))) # install.packages("cem",repos="http://gking.harvard.edu/") require(cem) if (verbose) cat("Coarsened exact matching...\n") n <- length(treat) # cem takes the data all together and wants the treatment specified # with the column name of the data frame. Here we massage the matchit # inputs to this format. Note that X has its proper columnames, but # treat does not have the original column name. cem.data <- as.data.frame(cbind(treat,X)) mat <- cem(treatment="treat",data=cem.data,verbose=as.integer(verbose)+1, method=k2k.method,...) # here we create a column vector where the matched entry get its stratum # and the unmatched entry gets an NA. strat <- rep(NA,n) names(strat) <- names(treat) strat[mat$matched] <- mat$strata[mat$matched] # here we just add the names onto the wieght from the cem output wh <- mat$w names(wh) <- names(treat) # weighting functions in matchit error-out on these conditions, # so we should too. if (sum(wh)==0) stop("No units were matched") else if (sum(wh[treat==1])==0) stop("No treated units were matched") else if (sum(wh[treat==0])==0) stop("No control units were matched") res <- list(subclass = strat, weights = mat$w) class(res) <- "matchit" return(res) } MatchIt/R/matchit.qqplot.R0000644000176200001440000000666411221036205015103 0ustar liggesusersmatchit.qqplot <- function(x,discrete.cutoff, which.subclass=NULL, numdraws=5000, interactive = T, which.xs = NULL,...){ X <- x$X ## Fix X matrix so that it doesn't have any factors varnames <- colnames(X) for(var in varnames) { if(is.factor(X[,var])) { tempX <- X[,!colnames(X)%in%c(var)] form<-formula(substitute(~dummy-1,list(dummy=as.name(var)))) X <- cbind(tempX, model.matrix(form, X)) } } covariates <- X if(!is.null(which.xs)){ if(sum(which.xs%in%dimnames(covariates)[[2]])!=length(which.xs)){ stop("which.xs is incorrectly specified") } covariates <- covariates[,which.xs,drop=F] } treat <- x$treat matched <- x$weights!=0 ratio <- x$call$ratio if(is.null(ratio)){ratio <- 1} ## For full or ratio matching, sample numdraws observations using the weights if(identical(x$call$method,"full") | (ratio!=1)) { t.plot <- sample(names(treat)[treat==1], numdraws/2, replace=TRUE, prob=x$weights[treat==1]) c.plot <- sample(names(treat)[treat==0], numdraws/2, replace=TRUE, prob=x$weights[treat==0]) m.covariates <- x$X[c(t.plot, c.plot),] m.treat <- x$treat[c(t.plot, c.plot)] } else { m.covariates <- covariates[matched,,drop=F] m.treat <- treat[matched] } if(!is.null(which.subclass)){ subclass <- x$subclass sub.index <- subclass==which.subclass & !is.na(subclass) sub.covariates <- covariates[sub.index,,drop=F] sub.treat <- treat[sub.index] sub.matched <- matched[sub.index] ## Matched units in each subclass m.covariates <- sub.covariates[sub.matched,,drop=F] m.treat <- sub.treat[sub.matched] ## Compare to full sample--reset covariates and treat to full data set # covariates <- x$X # treat <- x$treat } nn <- dimnames(covariates)[[2]] nc <- length(nn) covariates <- data.matrix(covariates) # oma <- c(4, 4, 6, 4) oma <- c(2.25,0,3.75,1.5) opar <- par(mfrow = c(3, 3), mar = rep.int(1/2, 4), oma = oma) on.exit(par(opar)) # par(oma=c(2.25,0,3.75,1.5)) for (i in 1:nc){ xi <- covariates[,i] m.xi <- m.covariates[,i] ni <- nn[i] plot(xi,type="n",axes=F) if(((i-1)%%3)==0){ htext <- "QQ Plots" if(!is.null(which.subclass)){ htext <- paste(htext,paste(" (Subclass ",which.subclass,")",sep=""),sep="") } mtext(htext, 3, 2, TRUE, 0.5, cex=1.1,font=2) mtext("All", 3, .25, TRUE, 0.5, cex=1,font = 1) mtext("Matched", 3, .25, TRUE, 0.83, cex=1,font = 1) mtext("Control Units", 1, 0, TRUE, 2/3, cex=1,font = 1) mtext("Treated Units", 4, 0, TRUE, 0.5, cex=1,font = 1) } par(usr = c(0, 1, 0, 1)) l.wid <- strwidth(nn, "user") cex.labels <- max(0.75, min(1.45, 0.85/max(l.wid))) text(0.5,0.5,ni,cex=cex.labels) if(length(table(xi))<=discrete.cutoff){ xi <- jitter(xi) m.xi <- jitter(m.xi) } rr <- range(xi) eqqplot(xi[treat==0],xi[treat==1], xlim=rr,ylim=rr,axes=F,ylab="",xlab="",...) abline(a=0,b=1) abline(a=(rr[2]-rr[1])*0.1,b=1,lty=2) abline(a=-(rr[2]-rr[1])*0.1,b=1,lty=2) axis(2) box() eqqplot(m.xi[m.treat==0],m.xi[m.treat==1],xlim=rr,ylim=rr,axes=F,ylab="",xlab="",...) abline(a=0,b=1) abline(a=(rr[2]-rr[1])*0.1,b=1,lty=2) abline(a=-(rr[2]-rr[1])*0.1,b=1,lty=2) box() if(interactive){ par(ask=T) } else { par(ask=F) } } par(ask=F) } MatchIt/R/matchit.R0000644000176200001440000000733511651316550013573 0ustar liggesusersmatchit <- function(formula, data, method = "nearest", distance = "logit", distance.options=list(), discard = "none", reestimate = FALSE, ...) { #Checking input format #data input mcall <- match.call() if(is.null(data)) stop("Dataframe must be specified",call.=FALSE) if(!is.data.frame(data)){ stop("Data must be a dataframe",call.=FALSE)} if(sum(is.na(data))>0) stop("Missing values exist in the data") # list-wise deletion # allvars <- all.vars(mcall) # varsindata <- colnames(data)[colnames(data) %in% all.vars(mcall)] # data <- na.omit(subset(data, select = varsindata)) ## 7/13/06: Convert character variables to factors as necessary ischar <- rep(0, dim(data)[2]) for (i in 1:dim(data)[2]) if(is.character(data[,i])) data[,i] <- as.factor(data[,i]) ## check inputs if (!is.numeric(distance)) { fn1 <- paste("distance2", distance, sep = "") if (!exists(fn1)) stop(distance, "not supported.") } if (is.numeric(distance)) { fn1 <- "distance2user" } fn2 <- paste("matchit2", method, sep = "") if (!exists(fn2)) stop(method, "not supported.") ## obtain T and X tryerror <- try(model.frame(formula), TRUE) if (distance %in% c("GAMlogit", "GAMprobit", "GAMcloglog", "GAMlog", "GAMcauchit")) { library(mgcv) tt <- terms(mgcv::interpret.gam(formula)$fake.formula) } else { tt <- terms(formula) } attr(tt, "intercept") <- 0 mf <- model.frame(tt, data) treat <- model.response(mf) X <- model.matrix(tt, data=mf) ## estimate the distance measure if (method == "exact") { distance <- out1 <- discarded <- NULL if (!is.null(distance)) warning("distance is set to `NULL' when exact matching is used.") } else if (is.numeric(distance)){ out1 <- NULL discarded <- discard(treat, distance, discard, X) } else { if (is.null(distance.options$formula)) distance.options$formula <- formula if (is.null(distance.options$data)) distance.options$data <- data out1 <- do.call(fn1, distance.options) discarded <- discard(treat, out1$distance, discard, X) if (reestimate) { distance.options$data <- data[!discarded,] distance.options$weights <- distance.options$weights[!discarded] tmp <- out1 out1 <- do.call(fn1, distance.options) tmp$distance[!discarded] <- out1$distance out1$distance <- tmp$distance } distance <- out1$distance } ## full mahalanobis matching if(fn1=="distance2mahalanobis"){ is.full.mahalanobis <- TRUE } else {is.full.mahalanobis <- FALSE} ## matching! out2 <- do.call(fn2, list(treat, X, data, distance=distance, discarded, is.full.mahalanobis=is.full.mahalanobis, ...)) ## no distance for full mahalanobis matching if(fn1=="distance2mahalanobis"){ distance[1:length(distance)] <- NA class(out2) <- c("matchit.mahalanobis","matchit") } ## putting all the results together out2$call <- mcall out2$model <- out1$model out2$formula <- formula out2$treat <- treat if (is.null(out2$X)){ out2$X <- X } out2$distance <- distance out2$discarded <- discarded ## basic summary nn <- matrix(0, ncol=2, nrow=4) nn[1,] <- c(sum(out2$treat==0), sum(out2$treat==1)) nn[2,] <- c(sum(out2$treat==0 & out2$weights>0), sum(out2$treat==1 & out2$weights>0)) nn[3,] <- c(sum(out2$treat==0 & out2$weights==0 & out2$discarded==0), sum(out2$treat==1 & out2$weights==0 & out2$discarded==0)) nn[4,] <- c(sum(out2$treat==0 & out2$weights==0 & out2$discarded==1), sum(out2$treat==1 & out2$weights==0 & out2$discarded==1)) dimnames(nn) <- list(c("All","Matched","Unmatched","Discarded"), c("Control","Treated")) out2$nn <- nn return(out2) } MatchIt/R/match.qoi.R0000644000176200001440000000561510701546462014026 0ustar liggesusers## Function to calculate summary stats qoi <- function(xx,tt,ww, t.plot=NULL, c.plot=NULL, sds=NULL, standardize = FALSE, std=F){ weighted.var <- function(x, w) { sum(w * (x - weighted.mean(x,w))^2)/(sum(w) - 1)} xsum <- matrix(NA,2,7) xsum <- as.data.frame(xsum) row.names(xsum) <- c("Full","Matched") if (standardize) names(xsum) <- c("Means Treated","Means Control", "SD Control", "Std. Mean Diff.", "eCDF Med", "eCDF Mean", "eCDF Max") else names(xsum) <- c("Means Treated","Means Control", "SD Control", "Mean Diff", "eQQ Med", "eQQ Mean", "eQQ Max") x1 <- xx[tt==1] x0 <- xx[tt==0] ww1 <- ww[tt==1] ww0 <- ww[tt==0] xsum[1,1] <- mean(x1,na.rm=T) xsum[1,2] <- mean(x0,na.rm=T) xsum[1,3] <- sd(x0,na.rm=T) X.t.m <- xx[tt==1][ww1>0] X.c.m <- xx[tt==0][ww0>0] xsum[2,1] <- weighted.mean(X.t.m, ww1[ww1>0]) xsum[2,2] <- weighted.mean(X.c.m, ww0[ww0>0]) xsum[2,3] <- sqrt(weighted.var(X.c.m, ww0[ww0>0])) if(!(sum(tt==1)<2|(sum(tt==0)<2))){ xsd <- sd(x1,na.rm=T) qqall <- qqsum(x1,x0,standardize=standardize) xsum[1,5:7] <- c(qqall$meddiff,qqall$meandiff,qqall$maxdiff) if (standardize) if (!is.null(sds)) xsum[1,4] <- (mean(x1,na.rm=T)-mean(x0,na.rm=T))/sds else xsum[1,4] <- (mean(x1,na.rm=T)-mean(x0,na.rm=T))/xsd else xsum[1,4] <- mean(x1,na.rm=T)-mean(x0,na.rm=T) if(!is.null(t.plot)) qqmat <- qqsum(xx[t.plot],xx[c.plot],standardize=standardize) else qqmat <- qqsum(x1[ww1>0],x0[ww0>0],standardize=standardize) xsum[2,5:7] <- c(qqmat$meddiff,qqmat$meandiff,qqmat$maxdiff) if (standardize) if (!is.null(sds)) xsum[2,4] <- (xsum[2,1]-xsum[2,2])/sds else xsum[2,4] <- (xsum[2,1]-xsum[2,2])/xsd else xsum[2,4] <- xsum[2,1]-xsum[2,2] } if(!std){ xsum <- xsum[,c(1:2,4:7)] } xsum } ## By subclass qoi.by.sub <- function(xx,tt,ww,qq,standardize=FALSE){ qbins <- max(qq,na.rm=TRUE) q.table <- matrix(0,6,qbins) qn <- matrix(0,3,qbins) matched <- ww!=0 for (i in 1:qbins) { qi <- qq[matched]==i & (!is.na(qq[matched])) qx <- xx[matched][qi] qt <- tt[matched][qi] qw <- as.numeric(ww[matched][qi]!=0) if(sum(qt==1)<2|(sum(qt==0)<2)){ if(sum(qt==1)<2) warning("Not enough treatment units in subclass ",i,call.=FALSE) else if(sum(qt==0)<2) warning("Not enough control units in subclass ",i,call.=FALSE) } qoi.i <- qoi(qx,qt,qw, sds=sd(xx[tt==1],na.rm=T), standardize=standardize) q.table[,i] <- as.numeric(qoi.i[1,]) qn[,i] <- c(sum(qt),sum(qt==0),length(qt)) } q.table <- as.data.frame(q.table) qn <- as.data.frame(qn) names(q.table) <- names(qn) <- paste("Subclass",1:qbins) row.names(q.table) <- names(qoi.i) row.names(qn) <- c("Treated","Control","Total") list(q.table=q.table,qn=qn) } MatchIt/R/match.data.R0000644000176200001440000000251111430774543014142 0ustar liggesusersmatch.data <- function(object, group = "all", distance = "distance", weights = "weights", subclass = "subclass") { if (!is.null(object$model)) { env <- attributes(terms(object$model))$.Environment } else { env <- parent.frame() } data <- eval(object$call$data, envir = env) treat <- object$treat wt <- object$weights vars <- names(data) if (distance %in% vars) stop("invalid input for distance. choose a different name.") else if (!is.null(object$distance)) { dta <- data.frame(cbind(data, object$distance)) names(dta) <- c(names(data), distance) data <- dta } if (weights %in% vars) stop("invalid input for weights. choose a different name.") else if (!is.null(object$weights)){ dta <- data.frame(cbind(data, object$weights)) names(dta) <- c(names(data), weights) data <- dta } if (subclass %in% vars) stop("invalid input for subclass. choose a different name.") else if (!is.null(object$subclass)){ dta <- data.frame(cbind(data, object$subclass)) names(dta) <- c(names(data), subclass) data <- dta } if (group == "all") return(data[wt > 0,]) else if (group == "treat") return(data[wt > 0 & treat == 1,]) else if (group == "control") return(data[wt > 0 & treat == 0,]) else stop("error: invalid input for group.") } MatchIt/R/jitter.pscore.R0000644000176200001440000000351411221036205014715 0ustar liggesusersjitter.pscore <- function(x, interactive,pch=1,cex=NULL,...){ treat <- x$treat pscore <- x$distance weights <- x$weights matched <- weights!=0 q.cut <- x$q.cut jitp <- jitter(rep(1,length(treat)),factor=6)+(treat==1)*(weights==0)-(treat==0)-(weights==0)*(treat==0) cwt <- sqrt(weights) minp <- min(pscore,na.rm=T) maxp <- max(pscore,na.rm=T) plot(pscore,xlim=c(minp,maxp+0.1*(maxp-minp)),ylim=c(-1.5,2.5), type="n",ylab="",xlab="Propensity Score", axes=F,main="Distribution of Propensity Scores",...) if(!is.null(q.cut)){abline(v=q.cut,col="grey",lty=1)} if(is.null(cex)){ points(pscore[treat==1&weights!=0],jitp[treat==1&weights!=0], pch=pch,cex=cwt[treat==1&weights!=0],...) points(pscore[treat==0&weights!=0],jitp[treat==0&weights!=0], pch=pch,cex=cwt[treat==0&weights!=0],...) points(pscore[treat==1&weights==0],jitp[treat==1&weights==0], pch=pch,cex=1,...) points(pscore[treat==0&weights==0],jitp[treat==0&weights==0], pch=pch,cex=1,...) }else{ points(pscore[treat==1&weights!=0],jitp[treat==1&weights!=0], pch=pch,cex=cex,...) points(pscore[treat==0&weights!=0],jitp[treat==0&weights!=0], pch=pch,cex=cex,...) points(pscore[treat==1&weights==0],jitp[treat==1&weights==0], pch=pch,cex=cex,...) points(pscore[treat==0&weights==0],jitp[treat==0&weights==0], pch=pch,cex=cex,...) } axis(1) text(sum(range(na.omit(pscore)))/2,2.5,"Unmatched Treatment Units") text(sum(range(na.omit(pscore)))/2,1.5,"Matched Treatment Units") text(sum(range(na.omit(pscore)))/2,0.5,"Matched Control Units") text(sum(range(na.omit(pscore)))/2,-0.5,"Unmatched Control Units") box() if(interactive==TRUE) { print("To identify the units, use first mouse button; to stop, use second.") identify(pscore,jitp,names(treat),atpen=T) } } MatchIt/R/hist.pscore.R0000644000176200001440000000431211221036205014360 0ustar liggesusershist.pscore <- function(x, numdraws=5000, xlab="Propensity Score", main=NULL, freq=F, xlim = NULL,...){ treat <- x$treat pscore <- x$distance weights <- x$weights matched <- weights!=0 q.cut <- x$q.cut cwt <- sqrt(weights) ratio <- x$call$ratio if(is.null(ratio)){ratio <- 1} ## For full or ratio matching, sample numdraws observations using the weights if(identical(x$call$method,"full") | (ratio!=1)) { pscore.treated.matched <- sample(names(treat)[treat==1], numdraws/2, replace=TRUE, prob=x$weights[treat==1]) pscore.treated.matched <- pscore[pscore.treated.matched] pscore.control.matched <- sample(names(treat)[treat==0], numdraws/2, replace=TRUE, prob=x$weights[treat==0]) pscore.control.matched <- pscore[pscore.control.matched] } else { pscore.treated.matched <- pscore[treat==1 & weights!=0] pscore.control.matched <- pscore[treat==0 & weights!=0] } par(mfrow=c(2,2)) if(!is.null(xlim)){warning("xlim may not be user specified. xlim returned to default.")} xlim <- range(na.omit(pscore)) if(is.null(main)){ hist(pscore[treat==1],xlim=xlim, xlab=xlab, freq=freq, main="Raw Treated", ...) hist(pscore.treated.matched,xlim=xlim, xlab=xlab, freq=freq, main="Matched Treated",...) if(!is.null(q.cut)){abline(v=q.cut,col="grey",lty=1)} hist(pscore[treat==0],xlim=xlim, xlab=xlab, freq=freq, main="Raw Control",...) hist(pscore.control.matched,xlim=xlim, xlab=xlab, freq=freq, main="Matched Control",...) if(!is.null(q.cut)){abline(v=q.cut,col="grey",lty=1)} }else{ hist(pscore[treat==1],xlim=xlim, xlab=xlab, freq=freq, main=main, ...) hist(pscore.treated.matched,xlim=xlim, xlab=xlab, freq=freq, main=main,...) if(!is.null(q.cut)){abline(v=q.cut,col="grey",lty=1)} hist(pscore[treat==0],xlim=xlim, xlab=xlab, freq=freq, main=main,...) hist(pscore.control.matched,xlim=xlim, xlab=xlab, freq=freq, main=main,...) if(!is.null(q.cut)){abline(v=q.cut,col="grey",lty=1)} } } MatchIt/R/help.matchit.R0000644000176200001440000000400210304731730014501 0ustar liggesusershelp.matchit <- function (object=NULL) { under.unix <- !(version$os == "Microsoft Windows" || version$os == "Win32" || version$os == "mingw32") sys <- function(command, text = NULL) { cmd <- if (length(text)) paste(command, text) else command if (under.unix) system(cmd) else shell(cmd, wait = TRUE) } browser <- .Options$help.browser if (!length(browser)) browser <- .Options$browser if (!length(browser)) browser <- getOption("browser") url <- NULL if (is.null(object)) url <- c("http://gking.harvard.edu/matchit") if (!is.null(object)) { if (object == "matchit") url <- c("http://gking.harvard.edu/matchit/docs/Reference_Manual.html") if (object == "exact") url <- c("http://gking.harvard.edu/matchit/docs/Exact_Matching2.html") if (object == "subclass") url <- c("http://gking.harvard.edu/matchit/docs/Subclassification2.html") if (object == "nearest") url <- c("http://gking.harvard.edu/matchit/docs/Nearest_Neighbor_Match2.html") if (object == "optimal") url <- c("http://gking.harvard.edu/matchit/docs/Optimal_Matching2.html") if (object == "full") url <- c("http://gking.harvard.edu/matchit/docs/Full_Matching2.html") if (object == "match.data") url <- c("http://gking.harvard.edu/matchit/docs/_TT_match_data_TT.html") if (object == "summary") url <- c("http://gking.harvard.edu/matchit/docs/_TT_summary_TT.html") if (object == "plot") url <- c("http://gking.harvard.edu/matchit/docs/_TT_plot_TT.html") } if (is.null(url)) { cat("Error:", object, "currently not documented in help.matchit. \n Please check http://gking.harvard.edu/matchit. \n", sep = " ") url <- c("http://gking.harvard.edu/matchit") } if (under.unix) { sys(paste(browser, url, "&")) invisible() } if (!under.unix) { browseURL(url, browser = browser) invisible("") } } MatchIt/R/eqqplot.R0000644000176200001440000000102610323462506013614 0ustar liggesuserseqqplot <- function(x, y, plot.it = TRUE, xlab = deparse(substitute(x)), ylab = deparse(substitute(y)), ...) { ## empirical quantile-quantile plot; hacked from qqplot() in stats. sx <- sort(x) sy <- sort(y) lenx <- length(sx) leny <- length(sy) if (leny < lenx) sx <- approx(1:lenx, sx, n = leny, method = "constant")$y if (leny > lenx) sy <- approx(1:leny, sy, n = lenx, method = "constant")$y if (plot.it) plot(sx, sy, xlab = xlab, ylab = ylab, ...) invisible(list(x = sx, y = sy)) } MatchIt/R/distance2rpart.R0000644000176200001440000000023510265332610015052 0ustar liggesusersdistance2rpart <- function(formula, data, ...) { require(rpart) res <- rpart(formula, data, ...) return(list(model = res, distance = predict(res))) } MatchIt/R/distance2nnet.R0000644000176200001440000000023110265332610014662 0ustar liggesusersdistance2nnet <- function(formula, data, ...) { require(nnet) res <- nnet(formula, data, ...) return(list(model = res, distance = fitted(res))) } MatchIt/R/distance2mahalanobis.R0000644000176200001440000000037411434402563016210 0ustar liggesusersdistance2mahalanobis <- function(formula, data, ...) { X <- model.matrix(formula, data) ## Placeholder where real work is done on a unit by unit basis distance <- rep(1, nrow(X)) return(list(model = NULL, distance = distance)) } MatchIt/R/distance2glm.R0000644000176200001440000000317510265332610014507 0ustar liggesusersdistance2logit <- function(formula, data, ...) { res <- glm(formula, data, family=binomial(logit), ...) return(list(model = res, distance = fitted(res))) } distance2linear.logit <- function(formula, data, ...) { res <- glm(formula, data, family=binomial(logit), ...) return(list(model = res, distance = predict(res))) } distance2probit <- function(formula, data, ...) { res <- glm(formula, data, family=binomial(probit), ...) return(list(model = res, distance = fitted(res))) } distance2linear.probit <- function(formula, data, ...) { res <- glm(formula, data, family=binomial(probit), ...) return(list(model = res, distance = predict(res))) } distance2cloglog <- function(formula, data, ...) { res <- glm(formula, data, family=binomial(cloglog), ...) return(list(model = res, distance = fitted(res))) } distance2linear.cloglog <- function(formula, data, ...) { res <- glm(formula, data, family=binomial(cloglog), ...) return(list(model = res, distance = predict(res))) } distance2log <- function(formula, data, ...) { res <- glm(formula, data, family=binomial(log), ...) return(list(model = res, distance = fitted(res))) } distance2linear.log <- function(formula, data, ...) { res <- glm(formula, data, family=binomial(log), ...) return(list(model = res, distance = predict(res))) } distance2cauchit <- function(formula, data, ...) { res <- glm(formula, data, family=binomial(cauchit), ...) return(list(model = res, distance = fitted(res))) } distance2linearcauchit <- function(formula, data, ...) { res <- glm(formula, data, family=binomial(cauchit), ...) return(list(model = res, distance = predict(res))) } MatchIt/R/distance2GAM.R0000644000176200001440000000161210265332610014326 0ustar liggesusersdistance2GAMlogit <- function(formula, data, ...) { require(mgcv) res <- gam(formula, data, family=binomial(logit), ...) return(list(model = res, distance = fitted(res))) } distance2GAMprobit <- function(formula, data, ...) { require(mgcv) res <- gam(formula, data, family=binomial(probit), ...) return(list(model = res, distance = fitted(res))) } distance2GAMcloglog <- function(formula, data, ...) { require(mgcv) res <- gam(formula, data, family=binomial(cloglog), ...) return(list(model = res, distance = fitted(res))) } distance2GAMlog <- function(formula, data, ...) { require(mgcv) res <- gam(formula, data, family=binomial(log), ...) return(list(model = res, distance = fitted(res))) } distance2GAMcauchit <- function(formula, data, ...) { require(mgcv) res <- gam(formula, data, family=binomial(cauchit), ...) return(list(model = res, distance = fitted(res))) } MatchIt/R/discard.R0000644000176200001440000000331612162545334013550 0ustar liggesusersdiscard <- function(treat, pscore, option, X) { n.obs <- length(treat) pmax0 <- max(pscore[treat==0]) pmax1 <- max(pscore[treat==1]) pmin0 <- min(pscore[treat==0]) pmin1 <- min(pscore[treat==1]) if (is.logical(option)) # user input return(option) else if (option == "none") # keep all units discarded <- rep(FALSE, n.obs) else if (option == "both") # discard units outside of common support discarded <- (pscore < max(pmin0, pmin1) | pscore > min(pmax0, pmax1)) else if (option == "control") # discard control units only discarded <- (pscore < pmin1 | pscore > pmax1) else if (option == "treat") # discard treated units only discarded <- (pscore < pmin0 | pscore > pmax0) else if (any(grep(option, c("hull.control", "hull.treat", "hull.both")))) { ## convext hull stuff # if (!("WhatIf" %in% .packages(all = TRUE))) # install.packages("WhatIf") # if (!("lpSolve" %in% .packages(all = TRUE))) # install.packages("lpSolve") require(WhatIf) # require(lpSolve) discarded <- rep(FALSE, n.obs) if (option == "hull.control"){ # discard units not in T convex hull wif <- whatif(cfact = X[treat==0,], data = X[treat==1,]) discarded[treat==0] <- !wif$in.hull } else if (option == "hull.treat") { wif <- whatif(cfact = X[treat==1,], data = X[treat==0,]) discarded[treat==1] <- !wif$in.hull } else if (option == "hull.both"){ # discard units not in T&C convex hull wif <- whatif(cfact = cbind(1-treat, X), data = cbind(treat, X)) discarded <- !wif$in.hull } else stop("invalid input for `discard'") } else stop("invalid input for `discard'") names(discarded) <- names(treat) return(discarded) } MatchIt/NAMESPACE0000644000176200001440000000100310700713530013010 0ustar liggesusersimport(MASS) export(matchit, help.matchit, match.data, user.prompt) S3method(print, matchit) S3method(print, matchit.exact) S3method(print, matchit.subclass) S3method(print, summary.matchit) S3method(print, summary.matchit.exact) S3method(print, summary.matchit.subclass) S3method(plot, matchit) S3method(plot, summary.matchit) S3method(plot, matchit.subclass) S3method(summary, matchit) S3method(summary, matchit.exact) S3method(summary, matchit.subclass) S3method(summary, matchit.full) MatchIt/DESCRIPTION0000644000176200001440000000163712163141375013323 0ustar liggesusersPackage: MatchIt Version: 2.4-21 Date: 2013-06-26 Title: MatchIt: Nonparametric Preprocessing for Parametric Casual Inference Author: Daniel Ho , Kosuke Imai , Gary King , Elizabeth Stuart Maintainer: Kosuke Imai Depends: R (>= 2.6), MASS Suggests: cem, optmatch, Matching, nnet, rpart, mgcv, WhatIf Description: MatchIt selects matched samples of the the original treated and control groups with similar covariate distributions -- can be used to match exactly on covariates, to match on propensity scores, or perform a variety of other matching procedures. LazyLoad: yes LazyData: yes License: GPL (>= 2) URL: http://gking.harvard.edu/matchit Packaged: 2013-06-27 21:07:24 UTC; kimai NeedsCompilation: no Repository: CRAN Date/Publication: 2013-06-28 00:55:57