pax_global_header00006660000000000000000000000064136177514650014531gustar00rootroot0000000000000052 comment=0e2a51a716b01d5e045f27d4d2b57a0041664284 mcpl-1.3.2/000077500000000000000000000000001361775146500124675ustar00rootroot00000000000000mcpl-1.3.2/.gitignore000066400000000000000000000004201361775146500144530ustar00rootroot00000000000000# Compiled Object files *.slo *.lo *.o *.obj # Precompiled Headers *.gch *.pch # Compiled Dynamic libraries *.so *.dylib *.dll # Fortran module files *.mod *.smod # Compiled Static libraries *.lai *.la *.a *.lib # Executables *.exe *.out *.app # Emacs *~ \#*\# .\#* mcpl-1.3.2/.travis.yml000066400000000000000000000061151361775146500146030ustar00rootroot00000000000000language: cpp os: - linux - osx osx_image: xcode9.2 env: global: - SHELL_SESSION_HISTORY=0 matrix: - BUILD=Release - BUILD=Debug addons: apt: packages: - cmake - cmake-data - python-numpy - python-matplotlib - python3-numpy - python3-matplotlib compiler: - gcc - clang before_install: - python -c "import fcntl; fcntl.fcntl(1, fcntl.F_SETFL, 0)" - if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then (sleep 2;gpg --keyserver hkp://keys.gnupg.net --recv-keys 409B6B1796C275462A1703113804BB82D39DC0E3 7D2BAF1CF37B13E2069D6956105BD0E739499BDB||true); fi - if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then (sleep 2;command curl -sSL https://rvm.io/mpapis.asc | gpg --import -)||(sleep 2;command curl -sSL https://rvm.io/mpapis.asc | gpg --import -)||(sleep 2;command curl -sSL https://rvm.io/mpapis.asc | gpg --import -)||true ; fi - if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then (sleep 2;rvm get stable --auto-dotfiles; sleep 2)||true; fi before_script: - set -e - cmake --version - python --version - python -c 'import numpy' 2>/dev/null || pip install numpy - python -c 'import numpy; print numpy.__version__' - if [[ x$(which python3 >& /dev/null&&echo 1||echo 0) == x0 ]]; then echo 'WARNING python3 not found so python3 commands will do nothing!'; mkdir fakepy3; echo true > fakepy3/python3; chmod +x fakepy3/python3; export PATH="$PWD/fakepy3:$PATH"; fi - python3 --version - python3 -c 'import numpy' 2>/dev/null || pip install numpy - python3 -c 'import numpy; print(numpy.__version__)' - ls -l - mkdir build installdir rundir - ls -l - set +e - cd ./build/ - ls -l - set -e - cmake .. -DBUILD_FAT=ON -DCMAKE_BUILD_TYPE=${BUILD} -DCMAKE_INSTALL_PREFIX=../installdir/ - set +e - ls -l script: - set -e - make VERBOSE=1 install - set +e - cd ../rundir/ - ls -l - set -e - find ../installdir/ - ../installdir/bin/mcplexample_write myfile.mcpl - ../installdir/bin/mcplexample_filter myfile.mcpl.gz myfile_filtered.mcpl - ../installdir/bin/mcplexample_read myfile_filtered.mcpl.gz - ../installdir/bin/mcpltool myfile.mcpl.gz - ../installdir/bin/mcpltool myfile_filtered.mcpl.gz - ../installdir/bin/mcpltool_fat myfile_filtered.mcpl.gz - ../installdir/bin/mcplexample_pyread myfile.mcpl.gz - ../installdir/bin/pymcpltool myfile.mcpl.gz - ../installdir/bin/pymcpltool --stats myfile.mcpl.gz - python -c 'import matplotlib' 2>/dev/null || python -mpip install matplotlib - ../installdir/bin/pymcpltool --stats --pdf myfile.mcpl.gz - python3 ../installdir/bin/mcplexample_pyread myfile.mcpl.gz - python3 ../installdir/bin/pymcpltool myfile.mcpl.gz - python3 ../installdir/bin/pymcpltool --stats myfile.mcpl.gz - python3 -c 'import matplotlib' 2>/dev/null || python3 -mpip install matplotlib - rm -f mcpl.pdf - python3 ../installdir/bin/pymcpltool --stats --pdf myfile.mcpl.gz - set +e notifications: email: recipients: - mcpl-developers@cern.ch on_success: change on_failure: always mcpl-1.3.2/CHANGELOG000066400000000000000000000143241361775146500137050ustar00rootroot00000000000000v1.3.2 2020-02-09 * Fix time conversion bug in phits2mcpl and mcpl2phits, where ms<->ns factors had been mistakenly inverted (github issue #53). Thanks to Douglas Di Julio (ESS) for reporting. * Reorder link flags in documentation and "fat" Makefile to be correctly placed after the compilation objects. This fixes modern GCC compilation using as-needed flag, which is the default on Ubuntu (github issue #51). v1.3.1 2019-06-29 * Fix length of all data arrays in Python API in the last particle block in all files, making pymcpltool --stats work again for files with more than blocklength particles (github issue #49). * Python API accepts pathlib.Path objects introduced in Python 3.4 (github issue #50). v1.3.0 2019-06-21 * Introduce support for PHITS. This is done via mcpl2phits and phits2mcpl command line tools for conversions to and from PHITS binary dump files. Thanks to Douglas Di Julio (ESS) for help in adding this new feature. * Introduce new --forcemerge option for the mcpltool and an associated mcpl_forcemerge_files function in the C API. This makes it possible to merge particles from otherwise incompatible files, at the heavy price of discarding descriptive metadata like comments and blobs. This is intended as a last-resort solution (github issue #43). * Add new public function mcpl_transfer_last_read_particle, which makes it possible to perform non-lossy filtering or merging of files using custom C code (github issue #18). * Fix pymcpltool --stats sum(weights) bug with python3 (github issue #46) * Handle unexpected records at the end of SSW headers gracefully (github issue #45). v1.2.3 2018-09-26 * ssw2mcpl: Support MCNP 6.2. v1.2.2 2018-03-07 * mcpl.py: Fix issues in MCPLParticleBlock.position() and MCPLParticleBlock.polarisation() methods which could result in exceptions or warnings being emitted for certain input files or for certain versions of python and numpy. v1.2.1 2018-01-23 * Correct _POSIX_C_SOURCE to address FreeBSD compilation (github issue #33). * mcpl.py: Work around issues in numpy v1.14 to fix MCPLParticleBlock.position() and MCPLParticleBlock.polarisation() methods (github issue #34). * CMakeLists.txt: Always use absolute rpath (for OSX). * Fix gcc7 compilation. v1.2.0 2017-07-02 * Add pure python module for MCPL access, stat collection and plotting. Also add a pure-python mcpltool which provides readonly access to MCPL files, and includes statistics and plotting capabilities. Supports both python2 and python3. * Add --text option to mcpltool/pymcpltool, for producing column-based ascii files from MCPL particle data. * mcpl_repair now detects and treats truncated files properly. * Particle listings no longer show weight columns when file has a universal weight. * Fixed casing of method names in comments in G4MCPLGenerator and G4MCPLWriter. * Sanity check that endianness field in files is indeed "L" or "B". * Minor code fixes caught in static analysis with clang analyze. * Minor fixes in textual output. v1.1.0 2017-03-29 * Introduced new and more precise unit vector packing scheme. Consequently, MCPL_FORMATVERSION was increased from 2 to 3. Files in the old format remain fully functional. * Merging: Add mcpl_merge_files function which merges any number of existing files into a new one and rename mcpl_merge to mcpl_merge_inplace (the old obsolete form still works for now, but prints a warning when used). The mcpltool --merge interface is updated correspondingly. Gzipped files can now be merged directly. Warn users if merging a file with itself and error for safety if output of extractions or merges already exists. * MCNP SSW support: Format decoding now relies purely on layout of fortran records, allowing more files to be read, even from some custom compilations of MCNP. Also replaced a static read buffer with a dynamic one, fixing errors experienced by some users and support MCNP5 for the first time. File load printouts are improved slightly and all warnings about untested code paths now include a request for feedback. * ssw2mcpl: Embed more useful meta-data in MCPL header. * mcpl2ssw: Reference SSW file can now be gzipped. * Add option for universal weights in MCPL files, to save 4 or 8 bytes per particle in output from unweighted simulations. * Add MCPL_VERSION_STR macro to mcpl.h for convenience. * Bugfix: mcpl_particle_t userflags field changed from int32_t to uint32_t. * Obsolete *_rc versions of gzipping functions (old obsolete forms still work for now, but print warnings when used). * Fix spelling of mcpl_hdr_universel_pdgcode (old obsolete form still works for now, but prints a warning when used). * G4MCPLWriter: Fix capitalisation of StorePreStep/StorePostStep. * Build system and documentation: Add INSTALL file with more details concerning build and integration, and add a simple makefile for "fat" tools. Also add src_fat/LICENSE.zlib with the zlib license and reference it where relevant, and include the full text of the zlib license towards the top of all autogenerated "fat" files. Smaller updates to README and related files. * Simplify internal MCPL particle I/O by using buffer. * Fix rare issue where mcpltool --extract could distort unit vectors. * Guard against overflow in particle position during file navigation * Add a few more platform compatibility checks. * Fix flag name in CMakeLists.txt affecting zlib support in SSW converters. * Workaround incomplete C99 support in version 12 of intels C compiler. * Add small sample MCPL file (example/example.mcpl) to release. v1.0.0 2016-09-07 * Identical to 0.99.1. v0.99.1 2016-09-04 * Release candidate for MCPL 1.0.0 * Add --extract flag for the mcpltool. v0.7.0 2016-08-25 * First github based public release of MCPL. mcpl-1.3.2/CMakeLists.txt000066400000000000000000000174321361775146500152360ustar00rootroot00000000000000 ################################################################################## # # # CMake file which can be used to compile and link all code in the MCPL. # # distribution. # # # # One way to invoke cmake to build and install would be like this: # # # # $> cmake /path/to/sourcedir -DCMAKE_INSTALL_PREFIX=/path/to/installdir # # # # Followed by: # # # # $> make install # # # # Refer to the INSTALL file from the MCPL distribution for more details. # # # # Written 2016-2017 by T. Kittelmann. # # # ################################################################################## cmake_minimum_required(VERSION 3.0.0) project(MCPL CXX C) set(BUILD_EXAMPLES ON CACHE STRING "Whether to build examples.") set(BUILD_WITHZLIB ON CACHE STRING "Whether to link with zlib if available.") set(BUILD_WITHSSW ON CACHE STRING "Whether to build the MCPL-SSW converters (for MCNP).") set(BUILD_WITHPHITS ON CACHE STRING "Whether to build the MCPL-PHITS converters.") set(BUILD_WITHG4 ON CACHE STRING "Whether to build Geant4 plugins if Geant4 is available.") set(BUILD_FAT OFF CACHE STRING "Whether to also build the fat binaries.") set(INSTALL_PY ON CACHE STRING "Whether to also install mcpl python files.") if (NOT CMAKE_BUILD_TYPE) set(CMAKE_BUILD_TYPE Release) endif() get_filename_component(MCPLLIBDIR "${CMAKE_INSTALL_PREFIX}/lib" ABSOLUTE) set(CMAKE_INSTALL_RPATH "${MCPLLIBDIR}") set(CMAKE_INSTALL_RPATH_USE_LINK_PATH TRUE) if (CMAKE_VERSION VERSION_LESS "3.1") set (CMAKE_C_FLAGS "--std=c99 ${CMAKE_C_FLAGS}") else () set (CMAKE_C_STANDARD 99) endif () if (CMAKE_VERSION VERSION_LESS "3.1") set (CMAKE_CXX_FLAGS "--std=c++0x ${CMAKE_CXX_FLAGS}") else () set (CMAKE_CXX_STANDARD 11) endif () set(SRC "${CMAKE_CURRENT_SOURCE_DIR}/src") set(SRCFAT "${CMAKE_CURRENT_SOURCE_DIR}/src_fat") set(SRCEX "${CMAKE_CURRENT_SOURCE_DIR}/examples") set(INSTDEST "RUNTIME;DESTINATION;bin;LIBRARY;DESTINATION;lib;ARCHIVE;DESTINATION;lib") add_library(mcpl SHARED "${SRC}/mcpl/mcpl.c") target_include_directories(mcpl PUBLIC "${SRC}/mcpl") target_link_libraries(mcpl m) add_executable(mcpltool "${SRC}/mcpl/mcpltool_app.c") target_link_libraries(mcpltool mcpl) install(TARGETS mcpl mcpltool ${INSTDEST}) install(FILES "${SRC}/mcpl/mcpl.h" DESTINATION include) if (BUILD_WITHSSW) add_library(sswmcpl SHARED "${SRC}/mcnpssw/sswmcpl.c" "${SRC}/mcnpssw/sswread.c") target_include_directories(sswmcpl PUBLIC "${SRC}/mcnpssw") target_link_libraries(sswmcpl mcpl m) add_executable(ssw2mcpl "${SRC}/mcnpssw/ssw2mcpl_app.c") target_link_libraries(ssw2mcpl sswmcpl) add_executable(mcpl2ssw "${SRC}/mcnpssw/mcpl2ssw_app.c") target_link_libraries(mcpl2ssw sswmcpl) install(TARGETS mcpl2ssw ssw2mcpl sswmcpl ${INSTDEST}) endif() if (BUILD_WITHPHITS) add_library(phitsmcpl SHARED "${SRC}/phits/phitsmcpl.c" "${SRC}/phits/phitsread.c") target_include_directories(phitsmcpl PUBLIC "${SRC}/phits") target_link_libraries(phitsmcpl mcpl m) add_executable(phits2mcpl "${SRC}/phits/phits2mcpl_app.c") target_link_libraries(phits2mcpl phitsmcpl) add_executable(mcpl2phits "${SRC}/phits/mcpl2phits_app.c") target_link_libraries(mcpl2phits phitsmcpl) install(TARGETS mcpl2phits phits2mcpl phitsmcpl ${INSTDEST}) endif() if (INSTALL_PY) install(FILES "${SRC}/python/mcpl.py" DESTINATION python) install(PROGRAMS "${SRC}/python/pymcpltool" DESTINATION bin) if (BUILD_EXAMPLES) install(PROGRAMS "${SRCEX}/pyexample_readmcpl" DESTINATION bin RENAME mcplexample_pyread) endif() if (BUILD_FAT) install(PROGRAMS "${SRCFAT}/pymcpltool" DESTINATION bin RENAME pymcpltool_fat) endif() endif() if (BUILD_EXAMPLES) add_executable(mcplexample_read "${SRCEX}/rawexample_readmcpl.c") target_link_libraries(mcplexample_read mcpl) add_executable(mcplexample_write "${SRCEX}/rawexample_writemcpl.c") target_link_libraries(mcplexample_write mcpl) add_executable(mcplexample_filter "${SRCEX}/rawexample_filtermcpl.c") target_link_libraries(mcplexample_filter mcpl) install(TARGETS mcplexample_read mcplexample_write mcplexample_filter ${INSTDEST}) endif() if (BUILD_FAT) add_library(mcpl_fat SHARED "${SRCFAT}/mcpl_fat.c") target_include_directories(mcpl_fat PUBLIC "${SRC}/mcpl") target_link_libraries(mcpl_fat m) add_executable(mcpltool_fat "${SRCFAT}/mcpltool_app_fat.c") target_link_libraries(mcpltool_fat m) install(TARGETS mcpl_fat mcpltool_fat ${INSTDEST}) if (BUILD_WITHSSW) add_executable(ssw2mcpl_fat "${SRCFAT}/ssw2mcpl_app_fat.c") target_link_libraries(ssw2mcpl_fat m) add_executable(mcpl2ssw_fat "${SRCFAT}/mcpl2ssw_app_fat.c") target_link_libraries(mcpl2ssw_fat m) install(TARGETS ssw2mcpl_fat mcpl2ssw_fat ${INSTDEST}) endif() if (BUILD_WITHPHITS) add_executable(phits2mcpl_fat "${SRCFAT}/phits2mcpl_app_fat.c") target_link_libraries(phits2mcpl_fat m) add_executable(mcpl2phits_fat "${SRCFAT}/mcpl2phits_app_fat.c") target_link_libraries(mcpl2phits_fat m) install(TARGETS phits2mcpl_fat mcpl2phits_fat ${INSTDEST}) endif() endif() if (BUILD_WITHZLIB) find_package(ZLIB) if(NOT ZLIB_FOUND) message("BUILD_WITHZLIB set to ON but failed to enable zlib support.") endif() else() set(ZLIB_FOUND NO) endif() if(ZLIB_FOUND) target_compile_definitions(mcpl PRIVATE "-DMCPL_HASZLIB") target_include_directories(mcpl SYSTEM PRIVATE ${ZLIB_INCLUDE_DIRS}) target_link_libraries(mcpl ${ZLIB_LIBRARIES}) if (BUILD_WITHSSW) target_compile_definitions(sswmcpl PRIVATE "-DSSWREAD_HASZLIB") target_include_directories(sswmcpl SYSTEM PRIVATE ${ZLIB_INCLUDE_DIRS}) target_link_libraries(sswmcpl ${ZLIB_LIBRARIES}) endif() if (BUILD_WITHPHITS) target_compile_definitions(phitsmcpl PRIVATE "-DPHITSREAD_HASZLIB") target_include_directories(phitsmcpl SYSTEM PRIVATE ${ZLIB_INCLUDE_DIRS}) target_link_libraries(phitsmcpl ${ZLIB_LIBRARIES}) endif() else() message("zlib support not enabled - gzipped input files will NOT be directly readable by resulting binaries.") endif() if (BUILD_WITHG4) find_package(Geant4) if(NOT Geant4_FOUND) message("BUILD_WITHG4 set to ON but failed to enable Geant4 support.") endif() else() set(Geant4_FOUND NO) endif() if (Geant4_FOUND) add_library(g4mcpl SHARED "${SRC}/geant4/G4MCPLGenerator.cc" "${SRC}/geant4/G4MCPLWriter.cc") target_link_libraries(g4mcpl mcpl ${Geant4_LIBRARIES}) target_include_directories(g4mcpl PUBLIC "${SRC}/geant4") target_include_directories(g4mcpl SYSTEM PUBLIC ${Geant4_INCLUDE_DIRS}) install(TARGETS g4mcpl ${INSTDEST}) install(FILES "${SRC}/geant4/G4MCPLGenerator.hh" "${SRC}/geant4/G4MCPLWriter.hh" DESTINATION include) if (BUILD_EXAMPLES) add_executable(mcplexample_geant4read "${SRCEX}/g4example_readmcpl.cc") target_link_libraries(mcplexample_geant4read g4mcpl) add_executable(mcplexample_geant4write "${SRCEX}/g4example_writemcpl.cc") target_link_libraries(mcplexample_geant4write g4mcpl) install(TARGETS mcplexample_geant4read mcplexample_geant4write ${INSTDEST}) endif() endif() mcpl-1.3.2/FILES000066400000000000000000000072771361775146500132710ustar00rootroot00000000000000********************************************************************************** *** The files in this distribution are: README : Brief instructions. LICENSE : License conditions. VERSION : File containing the version of the distribution. CHANGELOG : Release notes. INSTALL : Build and installation instructions. FILES : This file. examples/ : Small standalone examples for reading and writing MCPL files, either from standalone C or python applications or through Geant4 simulations in C++. Also contains a small sample MCPL file. CMakeLists.txt : Configuration file for optionally building and installing via CMake (cf. the INSTALL file for instructions). src/mcpl/ : Implementation of MCPL itself in C, along with the mcpltool command line application. The file mcpl.h is the public interface of MCPL and mcpl.c is the implementation. src/python : Implementation of MCPL in the pure python module mcpl.py, along with the pymcpltool command line application. src/geant4/ : MCPL hooks for Geant4 in C++, in the form of two classes implementing respectively a G4VSensitiveDetector and a G4VUserPrimaryGeneratorAction. src/mcnpssw/ : MCPL hooks for MCNP in C, in the form of a few .h/.c file pairs and two command line applications which can be used to convert between the MCPL format and the SSW files used by MCNP. src/phits/ : MCPL hooks for PHITS in C, in the form of a few .h/.c file pairs and two command line applications which can be used to convert between the MCPL format and the binary dump files used by PHITS. src/mcstas/ : No actual code is here, just a small reminder of how the MCPL plugin shipped with McStas can be used. src/mcxtrace/ : No actual code is here, just a small reminder of how the MCPL plugin shipped with McXtrace can be used. src_fat/ : Various "fat" versions of files from the above directories under src/, for convenience. These files are automatically generated and also contain code under the zlib license (see src_fat/LICENSE.zlib). src_fat/LICENSE.zlib: License conditions for zlib (http://zlib.net) code, which is embedded in files under the src_fat/ directory. src_fat/mcpl.c : Replacement for src/mcpl/mcpl.c which includes zlib sources internally (thus making transparent compression available even when zlib is not available to the build system). src_fat/*_app.c : Single-file versions of the command-line applications mcpltool, mcpl2ssw, ssw2mcpl, mcpl2phits and phits2mcpl. These can be compiled without the need for any external headers or libraries (except math-lib: -lm), and includes both MCPL, zlib, mcnpssw, and phits sources internally as needed. src_fat/pymcpltool : The pymcpltool in a single executable file is included for consistency and convenience, although its contents are similar to those of src/python/mcpl.py. src_fat/Makefile : Simple makefile for building the "fat" command-line applications (cf. the INSTALL file for instructions). mcpl-1.3.2/INSTALL000066400000000000000000000250441361775146500135250ustar00rootroot00000000000000The official and supported way in which to build all files in the MCPL distribution is via CMake, however, depending on the use-case it might be more appropriate to simply integrate MCPL directly into the build system of a given simulation framework, or to use a quick compilation of one of the "fat" versions of the command line tools: mcpltool, ssw2mcpl, mcpl2ssw, phits2mcpl, or mcpl2phits. Finally, the python module (mcpl.py) and associated tool (pymcpltool) can be used directly without any build step. The various options are discussed below. Building via CMake ------------------ The MCPL distribution requires CMake version 3.0.0 or later. If you do not have CMake installed, or if your platform has an older version installed, you have to visit http://cmake.org/ and acquire a recent version. CMake is a very powerful cross-platform configuration and build tool and a complete discussion of it is beyond the scope of the present instructions. Further in-depth instructions and tutorials are available at http://cmake.org/ and elsewhere online. The following is a quick recipe (using an in-source build for simplicity): 1. Since you are reading this INSTALL file, it is assumed you have already unpacked the MCPL source distribution somewhere. Assuming this is in a directory called /path/to/mcplsource, step into this directory with: cd /path/to/mcplsource 2. Now, configure with CMake (assuming you wish to install the result into a directory called /path/to/mcplinstall): cmake . -DCMAKE_INSTALL_PREFIX=/path/to/mcplinstall This will fail if your system is missing basic build tools, such as a C/C++ capable compiler. In addition to generic CMake options, you can fine-tune what will be build by adding one or more of the following flags to the command: * -DBUILD_WITHZLIB=OFF [whether to link with zlib, default is ON] * -DBUILD_EXAMPLES=OFF [whether to build examples, default is ON] * -DBUILD_FAT=ON [whether to build "fat" binaries, default is OFF] * -DBUILD_WITHG4=OFF [whether to build G4 hooks, default is ON] * -DBUILD_WITHSSW=OFF [whether to build SSW hooks, default is ON] * -DBUILD_WITHPHITS=OFF [whether to build PHITS hooks, default is ON] * -DINSTALL_PY=OFF [whether to install python files, default is ON] 3. Perform the build and install in one step with (assuming you are on a platform where CMake generates makefiles): make install 4. Now you can use the installed files from /path/to/mcplinstall. For instance, you can invoke the mcpltool with (showing usage instructions): /path/to/mcplinstall/bin/mcpltool --help The python mcpl tool can also be used directly, assuming your machine contains a python (both python2 and python3 are supported) installation with the NumPy (numpy.org) module available: /path/to/mcplinstall/bin/pymcpltool --help If you additionally wish be able to use the MCPL python module in custom python code via "import mcpl", you have to add the python subdirectory to your python path: export PYTHONPATH=/path/to/mcplinstall/python:$PYTHONPATH Building "fat" tools via simple Makefile ---------------------------------------- Assuming you are only interested in getting access to the commands mcpltool, mcpl2ssw, ssw2mcpl, mcpl2phits, or phits2mcpl , and that you are on a standard UNIX-like platform such as Linux or OS X, you can forego the CMake build described above and simply invoke a simple Makefile 1. Since you are reading this INSTALL file, it is assumed you have already unpacked the MCPL source distribution somewhere. Assuming this is in a directory called /path/to/mcplsource, step into this directory with: cd /path/to/mcplsource 2. Invoke the build: make -f src_fat/Makefile 3. The resulting binaries are now in src_fat/mcpltool, src_fat/mcpl2ssw, src_fat/ssw2mcpl, src_fat/mcpl2phits, and src_fat/phits2mcpl. You can copy them somewhere else or use them where they are. For instance, you can immediately invoke the mcpltool with (showing usage instructions): ./src_fat/mcpltool --help Building "fat" tools via quick and dirty one-liners --------------------------------------------------- If for some reason neither the CMake build nor Makefile above works for you, you can skip using a build tool altogether and simply invoke a direct compilation command, in order to build one of the command line tools (using one of the "fat" source files). 1. Since you are reading this INSTALL file, it is assumed you have already unpacked the MCPL source distribution somewhere. Assuming this is in a directory called /path/to/mcplsource, step into this directory with: cd /path/to/mcplsource 2. Assuming you wish to build the mcpltool (exchange "mcpltool" with "ssw2mcpl", "mcpl2ssw", "phits2mcpl", or "mcpl2phits" in the commands below to build a different utility), simply do: gcc -std=c99 src_fat/mcpltool_app_fat.c -lm -o mcpltool If you have a different compiler than gcc (such as "clang"), of course put that instead of "gcc" in the command above. 3. You can copy the resulting binary somewhere else or use it where it is. For instance, you can immediately invoke the mcpltool with (showing usage instructions): ./mcpltool --help Using just the MCPL python module or pymcpltool ----------------------------------------------- If you just want access to the pymcpltool, you can run it directly from the tarball via: ./src_fat/pymcpltool Or you can copy it to a more "proper" location on your system and make sure it is in your PATH. For example, if you are using the BASH shell, you could copy it into a directory called $HOME/bin and put the following line in your .bashrc file: export PATH=$HOME/bin:$PATH If you want access to the MCPL python module, and use it via "import mcpl" in your python code, you must simply ensure that the file ./src/python/mcpl.py resides somewhere in your PYTHONPATH. For example, if you are using the BASH shell, you could copy it into a a directory called $HOME/python and put the following line in your .bashrc file: export PYTHONPATH=$HOME/python:$PYTHONPATH Alternatively, depending on your python version and settings, it might simply be enough to copy mcpl.py into your run directory. Use MCPL from an existing environment ------------------------------------- Presently (June 2019), MCPL is known to be integrated into McStas, McXtrace, VITESS, RESTRAX/SIMRES and the coding framework of the ESS detector group. Users of these environments will have already access to MCPL, as it is integrated and distributed along with them. For the two former, refer to src/mcstas/README and src/mcxtrace/README respectively for how to proceed (instructions for VITESS, RESTRAX and SIMRES will be added at a later time). Integrating MCPL into an existing environment --------------------------------------------- Maintainers of a given development environment or simulation tool might wish to integrate MCPL directly into their code-base, thus providing their users with MCPL support and integration out of the box. How to best perform such integration will naturally depend on the particular use-case, but a few general pieces of advice are provided here (feel free to contact the MCPL team for additional advice and feedback, see https://mctools.github.io/mcpl/contact/). 1. If your users need code-level access to functionality provided in mcpl.h, you should copy src/mcpl/mcpl.h and src/mcpl/mcpl.c into a suitable location in your build system and make sure they are compiled into a library (like libmcpl.so). The compilation can proceed using either a C++ compiler (any standard), or a C compiler (using -std=c99 or later), and must be linked with the math library, due to internal usage of the sqrt function (typically supply -lm at the link stage). It is also highly recommended to enable zlib support by either setting -DMCPL_HASZLIB, as well as the include path for zlib.h and the appropriate link flag (typically -lz). Alternatively, zlib support can be enabled by substituting src/mcpl/mcpl.c with src_fat/mcpl_fat.c. 2. If you or your users need to use the MCPL python module in python code, copy over src/python/mcpl.py into a suitable location in your framework (should be in the PYTHONPATH). 3. Provide access to the mcpltool by compiling either src/mcpl/mcpltool_app.c or src_fat/mcpltool_app_fat.c (the former must be linked with the MCPL library compiled in item #1 above). Likewise, provide access to the pymcpltool by copying over either src/python/pymcpltool or src_fat/pymcpltool, depending on whether you also provide access to the mcpl.py module. 4. If your users use Geant4, you should copy over the two MCPL-G4 interface classes from src/geant4 and make sure the .cc files get compiled and linked with the MCPL library from item #1 above. 5. If your users use MCNP, or might interact with people who do, you should make sure to provide the mcpl2ssw and ssw2mcpl commands. This can either be done by simply copying over src_fat/ssw2mcpl_app_fat.c and src_fat/mcpl2ssw_app_fat.c and compiling them directly, or by copying over files from src/mcnpssw/, compiling sswmcpl.h, sswmcpl.c, sswread.h and sswread.c into a library (find instructions regarding flags at the top of the two .c files), and subsequently use that library when compiling mcpl2ssw_app.c and ssw2mcpl_app.c into the two command line applications. 6. If your users use PHITS, or might interact with people who do, you should make sure to provide the mcpl2phits and phits2mcpl commands. This can either be done by simply copying over src_fat/phits2mcpl_app_fat.c and src_fat/mcpl2phits_app_fat.c and compiling them directly, or by copying over files from src/phits/, compiling phitsmcpl.h, phitsmcpl.c, phitsread.h and phitsread.c into a library (find instructions regarding flags at the top of the two .c files), and subsequently use that library when compiling mcpl2phits_app.c and phits2mcpl_app.c into the two command line applications. 7. If applicable, provide your users with pre-written hooks using MCPL, in whatever form is suitable for your framework. For instance, the McStas developers added two user-visible McStas components: MCPL_input and MCPL_output. Internal code in these two components include and use functions from mcpl.h to implement their functionality (taking care of details such as user-visible parameters and multi-processing in the same way other McStas components do), but McStas users need not worry about those details. The integration is completed by making the mcpltool command available at the command line for McStas users. mcpl-1.3.2/LICENSE000066400000000000000000000203321361775146500134740ustar00rootroot00000000000000 ============== === Overview === ============== The MCPL source code is distributed under the very permissive CC0 license from Creative Commons (see below), and it is intended that the MCPL code can thus be easily integrated into existing code-bases without legal obstacles. However, note that usage of the various MCPL interfaces to specific third-party programmes might require additional permissions and licenses, as mandated by the third-party programme in question. This is outside the scope of the MCPL project, and the authors of MCPL can not be held responsible for any such usage. Additionally, note that the zlib compression library (http://zlib.net) is embedded in C files found in the src_fat/ directory, and usage of such files must thus also respect the zlib license (see src_fat/LICENSE.zlib). A substantial effort went into developing MCPL. If you use it for your work, we would appreciate it if you would use the following reference in your work: T. Kittelmann, et al., Monte Carlo Particle Lists: MCPL, Computer Physics Communications 218, 17-42 (2017), https://doi.org/10.1016/j.cpc.2017.04.012 ===================== === The CC0 license === ===================== Creative Commons Legal Code CC0 1.0 Universal CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE LEGAL SERVICES. DISTRIBUTION OF THIS DOCUMENT DOES NOT CREATE AN ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES REGARDING THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS PROVIDED HEREUNDER, AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS PROVIDED HEREUNDER. Statement of Purpose The laws of most jurisdictions throughout the world automatically confer exclusive Copyright and Related Rights (defined below) upon the creator and subsequent owner(s) (each and all, an "owner") of an original work of authorship and/or a database (each, a "Work"). Certain owners wish to permanently relinquish those rights to a Work for the purpose of contributing to a commons of creative, cultural and scientific works ("Commons") that the public can reliably and without fear of later claims of infringement build upon, modify, incorporate in other works, reuse and redistribute as freely as possible in any form whatsoever and for any purposes, including without limitation commercial purposes. These owners may contribute to the Commons to promote the ideal of a free culture and the further production of creative, cultural and scientific works, or to gain reputation or greater distribution for their Work in part through the use and efforts of others. For these and/or other purposes and motivations, and without any expectation of additional consideration or compensation, the person associating CC0 with a Work (the "Affirmer"), to the extent that he or she is an owner of Copyright and Related Rights in the Work, voluntarily elects to apply CC0 to the Work and publicly distribute the Work under its terms, with knowledge of his or her Copyright and Related Rights in the Work and the meaning and intended legal effect of CC0 on those rights. 1. Copyright and Related Rights. A Work made available under CC0 may be protected by copyright and related or neighboring rights ("Copyright and Related Rights"). Copyright and Related Rights include, but are not limited to, the following: i. the right to reproduce, adapt, distribute, perform, display, communicate, and translate a Work; ii. moral rights retained by the original author(s) and/or performer(s); iii. publicity and privacy rights pertaining to a person's image or likeness depicted in a Work; iv. rights protecting against unfair competition in regards to a Work, subject to the limitations in paragraph 4(a), below; v. rights protecting the extraction, dissemination, use and reuse of data in a Work; vi. database rights (such as those arising under Directive 96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection of databases, and under any national implementation thereof, including any amended or successor version of such directive); and vii. other similar, equivalent or corresponding rights throughout the world based on applicable law or treaty, and any national implementations thereof. 2. Waiver. To the greatest extent permitted by, but not in contravention of, applicable law, Affirmer hereby overtly, fully, permanently, irrevocably and unconditionally waives, abandons, and surrenders all of Affirmer's Copyright and Related Rights and associated claims and causes of action, whether now known or unknown (including existing as well as future claims and causes of action), in the Work (i) in all territories worldwide, (ii) for the maximum duration provided by applicable law or treaty (including future time extensions), (iii) in any current or future medium and for any number of copies, and (iv) for any purpose whatsoever, including without limitation commercial, advertising or promotional purposes (the "Waiver"). Affirmer makes the Waiver for the benefit of each member of the public at large and to the detriment of Affirmer's heirs and successors, fully intending that such Waiver shall not be subject to revocation, rescission, cancellation, termination, or any other legal or equitable action to disrupt the quiet enjoyment of the Work by the public as contemplated by Affirmer's express Statement of Purpose. 3. Public License Fallback. Should any part of the Waiver for any reason be judged legally invalid or ineffective under applicable law, then the Waiver shall be preserved to the maximum extent permitted taking into account Affirmer's express Statement of Purpose. In addition, to the extent the Waiver is so judged Affirmer hereby grants to each affected person a royalty-free, non transferable, non sublicensable, non exclusive, irrevocable and unconditional license to exercise Affirmer's Copyright and Related Rights in the Work (i) in all territories worldwide, (ii) for the maximum duration provided by applicable law or treaty (including future time extensions), (iii) in any current or future medium and for any number of copies, and (iv) for any purpose whatsoever, including without limitation commercial, advertising or promotional purposes (the "License"). The License shall be deemed effective as of the date CC0 was applied by Affirmer to the Work. Should any part of the License for any reason be judged legally invalid or ineffective under applicable law, such partial invalidity or ineffectiveness shall not invalidate the remainder of the License, and in such case Affirmer hereby affirms that he or she will not (i) exercise any of his or her remaining Copyright and Related Rights in the Work or (ii) assert any associated claims and causes of action with respect to the Work, in either case contrary to Affirmer's express Statement of Purpose. 4. Limitations and Disclaimers. a. No trademark or patent rights held by Affirmer are waived, abandoned, surrendered, licensed or otherwise affected by this document. b. Affirmer offers the Work as-is and makes no representations or warranties of any kind concerning the Work, express, implied, statutory or otherwise, including without limitation warranties of title, merchantability, fitness for a particular purpose, non infringement, or the absence of latent or other defects, accuracy, or the present or absence of errors, whether or not discoverable, all to the greatest extent permissible under applicable law. c. Affirmer disclaims responsibility for clearing rights of other persons that may apply to the Work or any use thereof, including without limitation any person's Copyright and Related Rights in the Work. Further, Affirmer disclaims responsibility for obtaining any necessary consents, permissions or other rights required for any use of the Work. d. Affirmer understands and acknowledges that Creative Commons is not a party to this document and has no duty or obligation with respect to this CC0 or use of the Work. mcpl-1.3.2/README000066400000000000000000000037051361775146500133540ustar00rootroot00000000000000This is a source distribution of MCPL - Monte Carlo Particle Lists. Included are the core utilities for reading and writing .mcpl files: A binary format with lists of particle state information, for interchanging and reshooting events between various Monte Carlo simulation applications. The core utilities include both command line tools and programming interfaces for C/C++ and python. MCPL I/O hooks for Geant4 (geant4.cern.ch) and MCNP (SSW files) are included in this distribution as well. Hooks for McStas (mcstas.org) and McXtrace (mcxtrace.org) are already included directly upstream in those applications. A few examples of how to use the Geant4 hooks, or how to interact with MCPL files from standalone C code, are also provided. Refer to the FILES file for more information about included files, and refer to the INSTALL file for build instructions. MCPL and most code distributed here was written 2015-2019 by Thomas Kittelmann (thomas.kittelmann@esss.se). The MCNP-SSW converters were written in close collaboration with Esben Klinkby (esbe@dtu.dk), and the McStas and McXtrace converters were written by Erik B. Knudsen (erkn@fysik.dtu.dk) and Peter Willendrup (pkwi@fysik.dtu.dk). The PHITS converters were written in close collaboration with Douglas Di Julio (douglas.dijulio@esss.se). See the file LICENSE for usage conditions. A substantial effort went into developing MCPL. If you use it for your work, we would appreciate it if you would use the following reference in your work: T. Kittelmann, et al., Monte Carlo Particle Lists: MCPL, Computer Physics Communications 218, 17-42 (2017), https://doi.org/10.1016/j.cpc.2017.04.012 The latest version of MCPL and further instructions and documentation can be found at https://mctools.github.io/mcpl/. Note that instructions for installation and setup of third-party products like Geant4, McStas and MCNP are beyond the scope of this file. Please refer to the products own instructions for more information. mcpl-1.3.2/VERSION000066400000000000000000000000061361775146500135330ustar00rootroot000000000000001.3.2 mcpl-1.3.2/examples/000077500000000000000000000000001361775146500143055ustar00rootroot00000000000000mcpl-1.3.2/examples/example.mcpl000066400000000000000000001070041361775146500166170ustar00rootroot00000000000000MCPL003L$G4MCPLWriter [G4MCPLWriter]9Transmission spectrum from 10GeV proton beam on 20cm lead=sevOA=Ծĺc??E5? [?$#AACN;ʹ?D%(@h`h5?V>@7Aw>Hc#-:Ad>?Ͳ7?@^x@6dAA=>?Ks7?@ߑ=A۾l>>[>7?7?@!@AMh>nj>[8?@PA{=AJ - &=>*7?@W8?KzI9?@O@?A"t>K7?@V-AAq?QP]=)`9?@B",Ae(=|>>8?@AJ A}sj@K1ƞ9?@%5AAAR>4 1?*B5?@zS9BAקGL>BP>o8?@ =.AAa޾Ь?=>ە8?@Xk`AmAAғ>~?/ß9?@-m?4Aw=zH?G7?@XqAw?!C#8?@鐣@A=;? A.g8?@ bAA1d@U>$>8?@Z  Ak>8W?í7?@ );@A]3ܽW> 8?@uA6AA:R@W= 8?@O AAҾW>c>7?@H?vxAj;vͨ8Ḃ5?@" 'AG:)=:<.>9?@W @y2AH@Atmvt>8?@lA]AT@L=<%7:?@7A]?OOE>"u9?@gw@ AA_ǾĀ:J:?@+A\=F3*:=J9?@:X>AO0?>_+p7?@8BUAo?'^?]7?@uAA<5 ?xRaՁ9?@,J?A>=bs? 6?@8ݜA1AAWU*|s ?ė8?@XEA>A%?H4C7?@ ϨAxt?@Fǿ`6?@L?A]>6?6?@-!1@A=2@n 9?@?h?A?>C@3p[6?@^0yAH?A5Q 0鴽d?vb5?֒@ehAAySj@U6?6'HXAW!?e6?ɞ;;A>>)m?Qw 7?:["AA ->iS>1p8?@ubA۸bA~?0IG)27?@?%EAAx?'=07?@I %G@Ah=v?_6?@^?*d;@A@O>?@q?@}6?@ AAzQj$@ٹ'8?@¸A AA>W(_>q7?@B?2AAT,>x ?'~=nN9?@+AkAAd7>-G?-7?@xE AAX>>==Q8?@@.@ |A ?, l>j8?@#~ )A>~q=cg>8?@D5wA>?r=ێ9?@,?|D@Ar?@_0?]?6?s@~wA}=3"@@Q*D5? Fɯ= a6A? ><7?M7?@AA: ή><9?@w@A&>Ӝ?ط6?@AAIv@%*>8]9?@m+]6BA <==ŭ9?@>A@rAi>?3¯`6?@#\BA"@>͈>%>?(9?@ =BMAA= O?R=9?@l@'z'AAI{=\>n>f8?@AlAhX=FA>?|7?@B7AuR@z>,=9?@*CAҽAtj @zS@l7?@UA߸ AA'?5>1>7?@qAIuWAA?-X7^8?@qA t@A޶@Oa>x7?@yA{A7?gB@ 7?@sAS>AA.@>T{7?@@ͩA3?ꬾӅ?h7?@kAAA}?ל?]7?@@KAAT>? }6?@nK@ț@Aq?ւ>_@j6?@A H@A?~½͓?~7?@zѿA BAD?>Ũ=ر9?@vAA3>χ=[c?n7?@.@?AA+"c>Й?#7?@@`AU< =5@D?l %7?:@mVA5h>.bB}886?@sמ(A/㶾&@ᾋ7?@IW?A%@to#ཱ}9?@dARuAA=_=F?tg8?@yA >@A]P)?&I7?@ZDgQAAb?U&?ͯ?aj6?@v@Ag:?v@p6?@ieZAAT?oz>1?6?@╄AA!'k*>dz(8?@rpAAo)f>>87?@K AA:@ϒd/@}6?@LA|R۾À== +9?@6I@AA?B>A>6?@&@/BAAxS> M>38?@D6AA%D"@i%,𾷎T7?@QA@f%8?@AX?e>cO7?@n?"@A֪lAB6?@ylAAK ?ؖ7?@G@(Awk]>7?@#AOBA%?AӽN9?@fAjbvjSQ>8?@\?@AL @??W7?@忾-A ?2>\-@ν57?@ \k@A>SL?"7?&=A V3=9?@8@t~?AA6@%]>2T\>B7?@N||A3={??! B8?@D'uA+ؽA?66?@M;IAd>HN ?+>Ӻ7?@kGA׾A4%>?ÜJ}8?@JhAf|>_M|.>ю9?@,A|@ ?~ >7?@L9LFAe]>c!?97?@imAAW>5@nG@l6?@AAi>/@V޼k69?@=EpA@a==?j6?@thA@IC c7?@˧?DAU@s>>{7?@W V^(A䑾* >|п7?@>Av}o@mzt,;6?@ˮATXѳԾ =]:(7?@ߥ@,AA9%?*8>8?@ɜCA*O(>WS?6?@cȐAB,;=}?Ӧ?Q7?@薸fx;@A6?q ?M7?@\;U2?A =@>V 8?@) @A @ۑ>Ґ6?@~A=9,?_J@>6?@<@IAٵ;,=>eH8?@02Az=о6.?Ԡ7?@9(}AA&=l>>)@7?@6BAW8@ P?FT8?@A:AA>R_? 8?@FﳂAA ;uZ@e0>z9?@:@BAA*@Ʋ>z=p9?@mB'[AA@?">@+>9?@<@SA>]+aa=F@n9?@Y@@AL>?@6?@Ar]AARq>s> ?.8?@ꆮF?A@=2@D6?wF@ĥA^&K>L2+<ۙD?5?pIGԿA.CFB5\5?5>TVX?AR0=T;>eC?5?bfAc>} W?`i8?@|AAAv>Y?TV>R9?@@ILAAB,==A>];?*8?@;A?A,?=^?J.=7?@A OAߵz@G穾',8?@տfٝA"N={Gv>ǵ8?@yc>k@Am_>^Ԟ?8?@H^dsNAA[1@w+C5?@YA4@A@G ?t>|8?@hlni~AAĠ>=3?Kj7?@5d$A>=?c.8?@H>kSA1iIAbҼL?ȧ18?@A& AA v Q>m8?@p3?c~AT@Y 0= z28?@A$'UAA=#kX?:!e8?@A,@A{K>|,b>[;}8?@@k@AJ!$@=Q&T!j7?@=@A> ??U7?@@:A>FWz%?I}8?@{ 3@A5>? =Q'l9?@+`]}A&`tA?ϯ7?@ˉAz0A"?ö4@ٽx9?@?f"AA~>e=MlL8?@m@ޥAARs;'? 7?@@9ACAAo@%>-g_k8?@ΟA:1AO?~? 7?@Vk8AK;r=%=w=9?@=[@vA=y?Q?I18?@~@'A׆=c?`@#6?@ӿO@AN>ܗ?J@>V57?@XcobA >@yF>ĝ8?@M;s~AA_ƕí?+6?7?@8խ@ A ־׮?/8?@DR:?_ AA?-=g?R7?@hEAAUS@"?hd7?@`WAz=ao>d[? f8?@ȏvP6?A*4 ?roS#7?@ņAAwXE>8?@ hGAA#<$@$?8?@O< AAb@ľ3]?k/:7?@&QAdlA29S>8<:?@2~>A&+=?E 8?@4$AHw נ@V!7?@ @CIAA?W$>" = 7?@ڢx>AeB;@?@pB5?@ ~?DAB<?z ?&6?@q}BA?N_@֝5?@l8>A7@k ?5?@n?Z@A@IY>X?'8?@ɍ^=A:+?eRb?6?@[?ɽAp4B,5?@-'AA?ϑU8?@\hAAOP]'Z.>:%8?@ɃBKAs=?>'nI9?@>A>ߔ*?{e7?@{>"sAE@/*7?@DsƋ@Ao<jʊ?7?@}qUv=AZ{@3;!?P 8?@YGAAi;>8?@oC@w~AACo?&ɽ ? 99?@~+AgA@s6?@,XJ@k= BAj=(@hB@6?@8[ЀCAT<?_,̋7?@b9*@Aᾳ_þun>7?@E2OA."YV@6?@WA1$@9?W8?@cAAr>8aT?48?@d܂[AG9_m>?(r7?@Aq`AA-?%@5%<]mY9?@R2At [>ܹ6?tlA>ֳ?6?3;͏@A7?u?f6?Z*ug@A@&K6?@ys:@AxS@6?)2E?@Alž.>?6?%98A %)C5?@. @ {>Ar=@<EKC5?@GA@A??+=9?@A*f>4= F9?@q^@W}aALP@rB&1Ә>U,8?@ A!r>d+z=WC?)qB8?@x$A-%AMJ)z@ret7?@EAAA?O$>tf?m_8?@lUA<(AA):>66@>/7?@AAA)68>O>筊9?@A5TAAv?s=X? 7?@`@XZAAљ:A=:5?o7?@gAҬAAR?$O>=x9?@pyXA=&J=X9?@᜿1P?AS;6D?#<8?@͗"Ak>ڦ,k0?_W8?@9vAuA~?Kb7bQ8?@?>KA$:\yF/<5?rD@Fn>AP > K=r֗DM5?E AMxjǥC5?Bz>A&!5K=F_D9N5? Ae?A?N=.q8?@2S藻AnؾXV>C7?@x?4@AR"?1@Cb>N&&9?@A O@A> S"?7?@W@0A@=J>8?@c@A ߾)b @@^}6?@ Wmш@AulǾ6@>8?@I?)BA1ǂ>q?u6>;89?@Y@AqV(>s8?@\SAA9C>7?@8_~v@AwS=w? zw5?@[2AUþG@hn>g 8?@,AAz@§=;l7?@@A?wȽ  @Z6?@ B AA> >i?8?@_d@Ak7>r>o=(79?@:s(Ah?o?o}8?@@FAA@>;(_08?@AFArQ=>S&8?@ ArAAG@~[>(f?%^8?@8-R@At?>r_j5?q0ȿA6ռZC?h8?@g}$SAAa׾j9=q9?@j?JSAAM5=yP2?so8?@@a?A7>hT9?@@m&?AIiSP>> 9?@iBA@AY>>Z>,A=9?@6ԿMA:>3-@7&x>69?@?WHSAA#@Jq>q8?@OO?NA/>?q>`&7?@u=)A߾>c=-Џ8?@c}߃AAa?P>1 >8?@N(@!A 5=?y2>.9?@e8?A1@҈I7?@:9@NAAHq>=>A96?@CJ BAhS>@=j9?@a[տA: ?\2?7?@@㞃AA=m2?J$BA6?@M?xAAM}dh>u">A8?@/aLAA)W @=l>U1 8?AbRA%az!:>FJ8?@1>_A|)ξj?=9?@JsPAi j"q?Q8?@ }p=ArABG>X8?@.?{frAA O3.7=a9?@>9HAdl@ 4?b8?@'ANN?ѾGѾ 8?@[>Ǽ;A+%@)=8?@ZA?"?E-4>37?@RAH?,8?@L`)AABR>:Ҝ>9?@&p[>Ay> ?~]@xV6?@ A@Aw>$>@b>>r9?@fWAA]I>NR? 8?@U*AX>4+b>-@ I7?@+x Aže ~@k7?@my-;A<>O? ߾<8?@[/AM5?A&}"?=s7?@eufAA=^=?H98?@!@<Am>j *DY5?@ͨ?2AY-n>?#7?@U5AAz/ ƌ<@<77?@A[^Ͼƾ=n2?O7?@4*AAa>V"?OA9?@ylAg? K8?@i@A?3c-=Mc8?@).#;>A'D?>B\7?@(J1DAAK\>NN?g?#V8?@D6pAA4P?7?@5%AA?mE۾<_ =A#9?@a A8ܽ?I`> 8?@dYTAmAgz?Թ?7?@=Aef@B6?@zAA A>C@V Jԃ9?@A5 `AS|?6?@`p b$AoV> B=)y>+ 8?@\Q8IA8>7?@$bA[@A>W?@v7?@;'A ~Q=?7#W[?V7?@4lI?At*?>>8?@@A>?7?@@߾A>O ?>u8?@'APAv ?߾ga>88?@򖿛3AAG|>ȘA7jr6?@)@IAA<@D>H8?@@?|AAA(? >,u8?@O!A69.>>u8?@SZA AA>N1>_o4?7?@ϟZA:nUAA:>J@%9?JD7?@fA=AA7>> >>7?@=A4@AA?L>Or>7?@1^AvBAA9½#?9?,7?@pՇ&A3?k;[8?@K@A*I> ?~]u7?@7'U3qAA؆?jb$Co%5?@J7AA|!:$@ BR6?@ 3AA>b= >8?@ JAA,_ '?V7?@]|E(A ednp[ >9?@@3k`A.ھG>5@7?@"eAc A[W>%Ϲ>X>cO8?@H-@EmAu>@V==_ :9?@`cA'AAS?4>?)v]8?@\As>??~³36?@S=?@A>U[Q?88?@͆AeF>t1=C=U9?@A[6@AZgH>`?n>+7?@,@!@A>l?\7?@5tA S%AAs?BQzO?b7?@QjAt*AAH2?,>#J_? 6?@ʔADA?Q&l? 8?@}aA<#AA5 > ?!!=PC8?@D9AԿAvZ!@W7n8?@?3WAA 7>@Üt6?@ҘA/7; >>?9?@aA@AלU^P@N>;7?@A["@A?Qx?6?@PA˿A#S@ɰCѿ'7?@}AkApͽsh?r8?@CAAAT>d>9?@A,AAҽ? !ؽW07?@`JuAtA\=_,Q>59?@WsA!Wʾ<C5?@W/LA~d8?@51?ALpD;D =\;DG5?@mWuA ꝉ@E#7?@%#Ax>M?>=ܼl9?@ĥ@AHj?@Q6?@ 5y?GEAAa$+=~> >8?@؁?vAn;m\? 8?@L@SAA(?j>A#6?@ @SsSAA?Ư@>g.%6?@PBg@AAԑ=/E@>9?@':&Ab@AcJp>hM7?@}{ A >$~Ԝ>[9?@bŽAAv &0>b>8?@L@Ff@AJ?K#է08?@%1j AAؾ?ۜCR5?@@jtAAw>>C8?@dUAA)?>T ^9?@U@FAAғ<fG>b+>8?@CA?>վe=d/9?@AA(>Ě>a>09?@4xw@A =U-??7?@IAA;#?w>l,N9?@56@AƇ6-?սa8?@@nALj AA@Qˋ?8(7?@MGŝ]AAv@A>3Bک7?@AE@AAo?ŮutC?3.7?@^AAW_?>m#8?@m#AA?ś>A '}9?@| L?6?@' =Apބu;F<5?g5ȱ=Aui?AG,BG>B|[5?-'8m??AK>N>"R@D~@5?qjA^uM+?}^S5?'Is%{@;H5? `@A=.?_S5?ꑥAڔO!̾XC{V5?;;@aԮ?A룼?3@K4>p7?@ ?@AS+c@/?˃6?@-@h?A>&?+>,?H<7?@ *?o@Ab>tX@q6?@MoAz@AT>/fU=>AB88?@F=@*|?A- @ҽA6?@U@+lAA9d?>,>59?@#@*G@A"${x?Yv`7?@]}TvAP?=#>q9?@l jLAF>5˺|N?7?@d nAA*(?#?E8?@`3@`@A@H#I[.$8?@`sA@>@62?Ky-6?@c AكT ?P@l6?@`43/AC?C @+\7?@aPA=Ar>PI?&8?@dDAA ȱ=y>VP>.+8?@@@^?AOc,?eIv> @{Yu6?@Tbl? AۃsOy>jj38?@5AyO@R5hz9?@7?@Au>`>/T?>7?@h!6A#j>>cAʷ6?@8A@?D 5?@%{?~l?Aཾɍ<='8?@șwAg'k?IθV5?@3te?r@AR>P>uAc5?@1@&X@AL>?Ǿ@r(6?@AI;AA=u'>j8?@]&@AA摽=",7?@M@k@A > C#>P7?@a?XWdAA#Ⱦ?<@7?@A/A_<:NA,Axd8?@c4f@AL>Q>&>8r7?@2O׾A=z?>/7>66?@PXY AA?ɽ{6?@->@Ao>ly?N 7?@wIAIz@P6?@E@cA >.\@95‡P6?@ q3=A쾛AV5?@ǜ?^BAg?EP!o8?@Ol{*AAS*n>D>hx7?@J.Oj,A'<c?P7?@zAAə^?2<9?@JοBA>>E۹>8?@\@<AVW@2=|Aw6?@Oo@$Y>A+? tu|A5?@ A+@A@vݼ?ܼ7?@ l?A?<;ɿ $7?@FvAA٧2>*>9?@ؿsAAI ؆>_=3jV6?@ Ŀ^AA./?Ἱ?on>6?@ ;EAAX@ΦD-?AC6?@˘̿xAA_>u@(C6?@k-sBA?}>(=?6?@HQqAA4M@։@R6?@? AA> ?@>Zp7?@I AA%r@8ᆪ\@6?@ǿ͊AA?Ŋ ?AS96?@JHAAn'<59}?|++8?@>AAF@8= JA#B6?@bڦAAmeJ@,?P?'66?"ݿAAn긄=/@%56?AA'' >=U>K%6?S@@AtE?Ԏ?55?p3oiA>@˾5<:95?h?帰Aׇ.@rY5?s8 @Aҽ0 >? 5?AAA&&?@E?7?@eK?A ?f>O!5?@P0GA]ߕϾ=8?@#?XNAvؗ>ǭ;oBbQp5?@?@A-2 @?’5?@/'BA@S>$H> R9?@-@A?Jܾ7+˾>`8?@#AA9?Ǿ 9?@X8Ш9AAoU8?@2D@Ap-&CR>=6@ k<6?@W?A= ?zT<:?@CAA(?k>BKP?#Q7?@v1AFA?]B>?<7?@(@?A>j%=DZ?\`7?@b@/A>5% ?S6?@TAA[@k#?7?@1b(?AXl@<6?e"8?@G>2 A*yYL> =UI7?@U@rW7A)4ѻ@^Z6?@z@#AyOL@>΁7?@jaWљ?A[q>[B?5?@Ij@AôLY>+7?@%A\P>qȓ? \8?@YAAAh|?b0#V 8?@ @@A/Rb:6.:?@T!A~S>Af?R]17?@@E%@A=(?\S,7?@>M@uA?>P?_cR7?@AVsFAA[>E_?K7?@ѫAT\AAHL? 􎼡>W(8?@6'A~tAA4Q =%>-?Hv8?@JmA$BA)$=\N>8?@Aœ ]+?4>8?@PA1=AT"@67?@>>6A?=nI8?@AA1=@-Sg9?@0AzA>j@>8?@7A;6?F"|}:?@dAs@Aw߽g>^8?@\: ]AAs'@CKnC7?@wx@Ar?vv@Z?疄7?@gG VAA [?7:?Z77?@^!AAP=?گ=9?@XYAoAI>m>>>8?@F~EV@AP @<~$O^8?@ei@Ke8AAghs>nv>a8?@YA 3A= N>#A?p'Z7?A[.A>->"?{[7? bAȖ@A[>c?=?uZ5?zΛ@WA|Gr>T4J?)-8?K@gA_AA=c??s7?@2M$A%|.?ƪ\6?@h" ?AA/ @qھ{?V6?@"F@AAj='*?B?Y[6?@gGAAf71>5}Z@fP6?@p0.vAAs{r@ pt@k6?@-W@TAAo@ƾ[q>a9?@ò@lBA?%@29t7?@]F8AA4=P ?J6AQJ6?@h@G A?w?b3?!8?@Jc`AX A!8?@a?ῢ 7?@"AA e#?e7?@&AmuAM3@=I>-9?@N@D7A3>Y@7?@&Bm|\A> ?,Jӽ"8?@VAzA>ENN>=?9?@sMſ ƿANf5;CsR5?@Z#=]A滦FNv=כ8?@x{_@A3?E{HBk5?@= 3AA>%Q4>*6?@tT"!@A=Ѓ?bw]?6?@7B୅Ax=P%Y>O 9?@h?nVA@>4&^B @5?@%H@ٽA>!?ea@1> 6?@/QݭA"@oZ6?@T?nVAuN @>K5?@H @AQ>wR? 7?@NnAA*@;g c6?@&?%ÿA>}?h?Fq5?A @A.Pn>/? 8?@7BRAW?{[>A)9?@8T?BǿA>^ԯCp5?@% AmAiy|l6=-T8?@NZBAa-=+b/=9?@ zZA?Y_c q5?@32 Ay??5A?5?@jijA# :=H9?@&~f9AAT`zb>7=r9?@i|?AG>^?GpA5?@[AgAA-AB>D>A6?@;`AA{5@ ?18"@$U,6?@]AA ?8?@E"+A-=\?78?@9 WAA{J?wR>D@k6?@ 8AACȫ>+>=ib9?@>Fۿ}a?Azꦾ; >XCzX5?@1#A=0@A%f9?@?$? A.>@Я?^W8?@s@ԉ<A@𾭺/?$7?@ϋ@@A0?e?V>F57?@EAs|AXF>-U?8?@A KAL?@С9?@՞A7~A{O@t=O8?@(N7A[yA m@t,Ա8?@^jAǚ6AAY̫>Sc>J?8?@ߧ@|AACS?>`M8?@ΐAzDRA$f@a}?Q7?@J|H@A񔾋#?KňCrnn5?@AAnJ@}?b܉8?@$B5!BA>;?f>-N9?@ci%fBAOd?۳ڽ<9?@NT/&@A\{(?bG?zbP8?@{ O)!AA@gz7?@B'@SaAA9?X>n8?@(b@7>A!4߾ ;?Tх8?@nAA}[>s?'=9?@2@AY u>k?16?L/C4AA꾖xby> 6?.R AAm=T17?6?7,ǤAA ?Ct>!a?盉6?"uTAA ?T^d?\i 6?K\AA[H@MZ> ]@N 6?O?-ܿA]=r*??Go5?YFAA?/ z7?@Ö|#4AA2@ ?&6?@AAAt?{=B8?@>X<>W9?@#AAA@~? EN8?@/)8?A_|5>o}B5?@* AAu?߾>8?@U@!8*Ah9K> @>F6?@A.MAʾ=|z>8?@Tvp@A'=.*j>q>?Cn28?@U@@A3>+پ_ӧ?6?@A|??A5 xJ@#)@mz6?@7,Aߢ\AA{83?Q>?(A7?@f@|A=Tt@8@0`6?@ DAdQAI8?@&A+A2\@^6?@ /@"AAooh>!@-]C[5?@+>JuAA(?0<8?@"5I+AA7 3>_(9?@@AAA@]1=D8?@m/AeycAA-=W=۲8?@P¥AA>Af!l>x9?@XBAN-X@Ս?j7?@G?BA>bl?|B.> 8?@$AYAA?,r">̃v>׈8?@C^AA+?u@h ?m6?&TWAArO>[@?>6?{>.?AC=>0D@5?*Go?A o|>C1A5?-G:5?AF|>#D?5?P꿝оA?akge-D5?/4ͨA¾$A=5?.Q潓?AN?O?3E5?wAx= -U@;=5?rڤAU& *,?*/=5?+p8&Ah @&<5?b=8ؾAE@bt,=?5??>A]:>1۾hj@x=5? A7>vA,?LD>==ey=5? ~@AjbAWZ@V2\5?‡U>=A]a> |>n-?Ti=5?_c>>Ai->㸔>ɩ@=5?}>7A,>L6=?=5?1=:7A=>k=n9@K=5?]> Aj >I,i>;?7s=5?헦67{A6=9?><5?ʾUA#n.?pC5?鑞R A6D?V@=5?>A<@?@5?\?!ۿA]7>[(>j`H5?U=TA?W?@>5?TǾA&m'>v>>5?>=L%DAO5z#@\E?5?A=!hAS>쫾sA^<5? ?bAKXy>$?>E5??$]ASU>fc@$A5?aW: A?"gg$0X5?PQEA?ge`?W5?T@N@A w? H?QZ5?sQ@-mI@A ???A@5;Q5?7@@AI}?S(;ܮ?L}5?āk@ϻy@Ais>!_@ir? X5?z@e@A*m?>ҧ?9W5?y@W@A?> c@DV5?C~V@A@Af%?>f@P5?[U@%@@Ai >=r'@>P5? 8O@Y@A?W?+@JR5?oM@vM@A??`@Q5?ˤ5@E|@@A ?_e>AA/N5? [5@F@@A>>>@'N5?l'7@֥@@A?p?w @~RN5? cAd(@9"Y5? uhA @I#Y5?yBA!oL@IIY5?AyXAXgL@}쿴X5? 6]bAėV<}?X5?HAC_>@AX5?\Akn?X5?;AXU6?M;Y5?MዟArJ?0j̾PZY5? yAVľ(@ti[5? ̤Abþ@ֿZ5?zAk?|>ib@Tq7P5?{heAi`c,?Z>O5???Ae? ?؏?E5?o>Y?A>I>7}M@| =5?%>FA^> KA<5?>AW4>gfC=5? >ІAzC>b_R>A=5?z>9GAX#:>HFpϺ?=5?Ud> A[7>Tjif?=5?XK>IˆAà5>qb &AW=5?>BiAH>ʽ_?k=5?>uiqA> G콱2A=5?zu>sA=A<5?e]BAc@^ gſ h5?G>mAzܽ܍?=5?_D>oA[| >&*w0@=5?`l>oA=.&?<5?1>(KA(=[=XB<5?-d>pnA={@6C<5?>RqA4='Ao<5? ?YA @S? " l=5? _>~A#>B?Q>=5?=BA?eI$|X/>5?]zA+@D5? =Q^AA?vL*5>5?<>ԽAU>?e=5?>ŧEA(@]'?Y<5??W{>A"AS?>]@-D5?z>::A׫[<?<5?d~? A[Y}@ n>'>5?X?f`A8>̾bc@=5?X>rcIAԷ>&1qAо?#@*=5?qkhDA ^?|w꿽eL5?g=?A#i>Ӄ#AB>5?# <&9?Ax >JC^?u>5?-?r@>A>49=݃@7=5?^(oBA뜽<?J?5?*UJ>AU\=k@>5? 8>?A ? @#@5?ƴn>jq x>a@J=5??ӓ<AK!-bAL=5?xA@!*=@X5?{f>+ ?A ƍA,2=5? fe> ?AޙE?Aaѧ>F>m=5?oD>]o?AIо>d(V@KR=5?2d>x>Ab3=@ =5?an>e?Ad<>{"@n=5?We>6?A u=8/z>4>=5?+ >կ?A=<>> >?=A=5?D>?A!Q>6>??j_=5?qjA}1=4@H5?zI+'AϾ?qO5?a&W?GAN#R9>_Z5?b?3j<Aa>hZ־w0A$=5?1?jA?\?b>5?-?<A~">_PiL?a=5??*>AX>X$?#=5?Ay>5DN>AF$n=q? =5?~?-?AL!Ŝ>Az> =U4AJ"=5? '? ;?AV=/>c2t@=5?Ty??A.)>pn>kN@?5?2@A<Ag M5?A;*`AX|`h5?ٿ6A6h=3 @,S5?*@A(7?!K5?Y LA ?;Y5?@@A?jթ>5Ϲ@jvR5?`n]@A/}>x@nDG5?n%@"@A?J>L?6J5?9A<@7 @A|"?>Ţ?n K5?/@(%@AS ?J?O@K5?k@$?A{?0@ N5?r[@D@A?P?$E`B?Q5?l$@-@A08F?kN5?:@O@A5>`#?q?O5?i@0t@AEE @avW5?m;@$B@A>K5v>iGO5?7@B@AN ?;?>@N5?F?Y>A 2 @=<@xO5? ?e;X?Au =?zB5?=@?A3p?h>qlE5?V2>:=AP>ry ?=5? HYDA0?+>;jB5?S8?LǾA/>K>h??W@5?_.EA^"@vAͼEQ5?8+QAAf?/οX5?@[@Ame?*>?DNW5?/=PA&@  X@m<5?FEA"F?O.>V?W5?dGLWA|`6?.2V5?h.A8?YZSvMF5?2AON8 ?X=5?n&KA`ѽ!23@ >5?ˆkC>AW>=n@Y<5?yEf>A, 4>t@;=5?¡=eԈA-] ?&p&@;<5?,>s\پAҗ//ASO=š;@=5?o?i]?A?̏e>CC5?g¾%R>A=ه!v?{6?@su>v"$AA`<6?@J>AC@Sb {}$7?@t?A!XR[K>k=7?@A AAs?V'>pj,?8?@'?ii@Ao8>O?C 6?@ @WAc?=8@76?@杇?IA?N>=l"6?@1ҎAxϻ? p>NPŒ5?@{?AAAEO?0\N>='8?@r@%@Ag\#?@=|8?@EWG>AWuB>ߐ<7?@0LzApAߒ>F>?07?@RGAsV|?:̾=7?@YAآsA߾>61>?7?@3?lt?A5R crCj?n6?@ʙ@ښ AÒ{c>37?@?'A >:D ?dW6?@3!AA J@A\@6?@QAӹAO>?,@B 8?@֙@A% @I@N6?@grt>A @D?B}#6?@qs0AA؂=.swI7?@:?8-~@A=ҽO˾lZ@]66?@7ݿ AAT!?@K]@#%h7?@N?A`H?A)>9L>d?C7?@LJ@PkA5T>a@\*8?@ڻ?A\ ߾q=m7?@" ?7@A&?=7?@@Z٫Aa?|BA65?@ '>CAb,=^r*Aܧ5?@:HRAbd̼,-A45?@/jA'AA@IA= =;9?@^wA9@AAv>l8?@pA1>Sw?Dh8?@]0?>AK^>b>B{b5?@PAk;q<7?@h3AAMF@<)7?@YσAy ?!Xsۭ[s5?@!RՎAA >҆8?@jl`AAO&{6>> E?48?@|@AXՆ>+H@9.7?@>U큿Aq@̙> ?QA5?M=A7qvG??5?G`@A1A`!?D5?ޝ9A @j=N@@5? Փ(ԉAӉx>Vj?V?@5?vAW?6?M.@5?q>MxA>gU @K@5?3>ZACV>xDz@?5?9>A|i>z@Β?5?4:$A$>1$y3@njA6?3 N>Am >>M>5??A!9?5Atu>5?N>>ƹA a>KAtT=5?>žAoZ>u4@D=5?ŕ>tNӾAJ>>X?@n1=5?dl>EAA[>kH>S=5?®=mGA`(aMr@ <5?Dxs=A5u*43?=5?/-ؿA ?yuH5?P=h9AqJ>Ѿ= M@4 >5?C|pAd?cW5?ޜxNAz?[CC5?ѓ?lJ?A9@>b@wH5?xAA?5Z㾬`T5?ÿA׾Bjx@L;A5?, A>O?i|B5?>_׿A>ϧ?XA5?2:Aˇ@?5?p=cAW`@\=5?$@@A@E>E?c5g5?'?ЈxAH!?E=?>5?(?7e<AW>P> b?|?5?S?v#Ag?|I?=?5?}>lӾAW->5.AN'=5?+S>\A=h2J4B<5?ҋ=SݽASա>f?<5?S=Aj=NcA<5?J*=fܽAB6E@<5?-A=A++ B:<5?g=WAZ?[@<5?&N>!A!G=. 0 ?<5?,>[AQѝ=b3@<5?\Zp(הAAu?>ujML9?@$]AAA?Z36?@ZbblZAu@I.5?@;i@UAӴ!?>b?7?@YOAA{?`o@>8?@a?A>~ @C5?@Mr@qA C>?.8?@ E`:A:<(a\@~ѓ6?@?A5O%>Y=?#J9?@hg 5?AJ_t>?@5?@%'A@4?AX @ʾp@*~6?@9UA>Wu0%>8?@H.A^bnQ~@m5?@O3Ab AA>@C*W9?@D:X"AA1@fȽ0b$8?@`@.>A?W@Mh8?@ ?mAJ@$>N@5?E=iOA#քA@+E2A5?_żC,A5齬?=5?c#U=S?APfvw>?>5?ii>ApL>)QоjHA7=5?l>HA>?t=5?iLxAԍx>8@:?@>%@Aτ>'7u6?p6?@GNAk@8@_y~B8?@S׾@AK?&G67?@YX&A?>? (K8?@?PAX=پ8?@:AAa?-I@9'6?@8}AA>>* ?e8?@@IAx5\Hb>YF8?@ó @AJ0%>]xW8?@IAA>0/c!?s6 9?@*|.W2AAe>6>>> 9?@@qAy>Ak5?@'@@HAJ@@:6?@gb.K@A(?mҾ;Ɩ?5?iU@Ad'>2>>A2Ͼ߂?I5?(@(A>`D =P5?U ܊Aw?Ѫ@&:?@@81AAVnj>5&@>7?@V@A6>>W8?@ eA =#@S9yӥ6?@[hAjP>@"8?66?@zsAھ=ޱ?!,7?@V9? TAX>*>w ?5B_5?@0VXA|@X >L8?@5Ah"@?)F7?@$@:@AA?>R?|6?@f@?A=tn>C?F 6?@A|?$?A ξ~G@'6?@UFAK?AG>͂?K+@g6?@@j?Aj @ع>Dƿa)6?@woAAJe> ! >o8?@d60>A? g?V7?@a@+d>A*>n1@05?@@AK>'@E*v46?@dff@eQA8"?v!a='9?@o@A >n>;7?@[5B@Al?zЩ>1{7?@du?AB?#@u>#9?@,AABAv=J?)>8?@ZMAhx7<4?̤>nӘ8?@8)j?S@A>?G5B6?V?j=D?Aa?\S=2>A5?1@ L?Ae ;+>x@|6?LKAJ޽5?P5?@2¿Au>}_@*f@5?4U'?A9=0罩?*A5?F1^A~.7d@RG5?"A5^ӽr?fK5?=HA!J3u2G@<A5?:ݿm/iAU?C5? >@A|jT>!z= c7?@ kb?Apoƾ]>%8?@+x2@AzP@8@6?@ A.^z >N@6?@gc@A?k2Q28?@LA{*=Q5Iq?a&8?@H@8@AD8f>`8?@} A@ͼ=\&@c&8?@>PAȸ3<M>y!g8?@[ua?A3^$E>S8?@e>zAD?^dt@n7?@N@q@Ad>g@77?@A#~>g @xz8?@xZA?AA@?7?@M1AT?A]4H3>F?3py7?@]yRA0+>#9?@=AKlk>>yi.?g8?@9?y@A;{D٪V?D7?@1`A-AA<ν?4?7?@suAAKb)>7?@R@}A@j;> ?57?@A@ANZz:>8?@ ;?A>?yӾjlb8?@ga\^A?>H>TF8?@)=}?AO>h @h?]P7?@2<@A}s>GeDbe5?@Yl@ATiC>t>J$8?@.@iAAR9@%8?@" FA&JJkDE?ܜ7?@mcpl-1.3.2/examples/g4example_readmcpl.cc000066400000000000000000000051131361775146500203510ustar00rootroot00000000000000 /////////////////////////////////////////////////////////////////////////////////// // // // Simple example which uses the G4MCPLGenerator to shoot particles from an MCPL // // file into a large empty box, and enabling verbose tracking output to get // // resulting particles printed. // // // // This file can be freely used as per the terms in the LICENSE file. // // // // Written by Thomas Kittelmann, 2016. // // // /////////////////////////////////////////////////////////////////////////////////// #include "G4MCPLGenerator.hh" #include "G4RunManager.hh" #include "G4VUserDetectorConstruction.hh" #include "G4PhysListFactory.hh" #include "G4NistManager.hh" #include "G4Box.hh" #include "G4PVPlacement.hh" #include "G4SystemOfUnits.hh" #include "G4UImanager.hh" #include class MyGeo : public G4VUserDetectorConstruction { public: MyGeo(){} virtual ~MyGeo(){} virtual G4VPhysicalVolume* Construct() { G4Material * mat_vacuum = G4NistManager::Instance()->FindOrBuildMaterial("G4_Galactic",true); G4VSolid * world_shape = new G4Box("World",1*CLHEP::km,1*CLHEP::km,1*CLHEP::km); G4LogicalVolume * world_log = new G4LogicalVolume(world_shape,mat_vacuum,"World"); G4PVPlacement * world_phys = new G4PVPlacement(0,G4ThreeVector(),world_log,"World",0,false,0); return world_phys; } }; int main( int argc, char** argv ) { if (argc!=2) { G4cout << "Please specify exactly one MCPL file to use for event generation." << G4endl; return 1; } CLHEP::HepRandom::setTheSeed(123456);//set seed for better reproducibility (in //case of unstable particles in the //input). G4RunManager runManager; runManager.SetUserInitialization(new MyGeo); runManager.SetUserInitialization(G4PhysListFactory().GetReferencePhysList("QGSP_BERT")); runManager.SetUserAction(new G4MCPLGenerator(argv[1])); runManager.Initialize(); if ( G4UImanager::GetUIpointer()->ApplyCommand("/tracking/verbose 1") != fCommandSucceeded ) { G4cout << "Problems executing \"/tracking/verbose 1\". Aborting."<::max()); return 0; } mcpl-1.3.2/examples/g4example_writemcpl.cc000066400000000000000000000101661361775146500205740ustar00rootroot00000000000000/////////////////////////////////////////////////////////////////////////////////// // // // Simple example of simulating a 10 GeV proton impinging on a box of lead and // // using a detector volume on the backside to capture all particles reaching it // // and store them in an MCPL file. // // // // This file can be freely used as per the terms in the LICENSE file. // // // // Written by Thomas Kittelmann, 2016. // // // /////////////////////////////////////////////////////////////////////////////////// #include "G4MCPLWriter.hh" #include "G4RunManager.hh" #include "G4VUserDetectorConstruction.hh" #include "G4VUserPrimaryGeneratorAction.hh" #include "G4PhysListFactory.hh" #include "G4NistManager.hh" #include "G4ParticleGun.hh" #include "G4SystemOfUnits.hh" #include "G4Box.hh" #include "G4PVPlacement.hh" #include "G4SDManager.hh" class MyGeo : public G4VUserDetectorConstruction { public: MyGeo(){} virtual ~MyGeo(){} virtual G4VPhysicalVolume* Construct() { G4Material * mat_vacuum = G4NistManager::Instance()->FindOrBuildMaterial("G4_Galactic",true); G4Material * mat_lead = G4NistManager::Instance()->FindOrBuildMaterial("G4_Pb",true); G4LogicalVolume * world_log = new G4LogicalVolume(new G4Box("World",1*CLHEP::m,1*CLHEP::m,0.4*CLHEP::m), mat_vacuum,"World",0,0,0); G4PVPlacement * world_phys = new G4PVPlacement(0,G4ThreeVector(),world_log,"World",0,false,0); G4LogicalVolume * target_log = new G4LogicalVolume(new G4Box("Target",1*CLHEP::m, 1*CLHEP::m, 0.1*CLHEP::m), mat_lead,"Target",0,0,0); new G4PVPlacement(0,G4ThreeVector(0.0,0.0,0.1*CLHEP::m),target_log,"Target",world_log,false,0); G4LogicalVolume * detector_log = new G4LogicalVolume(new G4Box("Detector",1*CLHEP::m, 1*CLHEP::m, 0.1*CLHEP::m), mat_lead,"Detector",0,0,0); new G4PVPlacement(0,G4ThreeVector(0.0,0.0,0.3*CLHEP::m),detector_log,"Detector",world_log,false,0); //Setup our mcpl writer and register it as a sensitive detector on the desired volume(s): G4MCPLWriter * mcplwriter = new G4MCPLWriter("myoutput.mcpl"); mcplwriter->AddComment( "Transmission spectrum from 10GeV proton beam on 20cm lead" ); // mcplwriter->AddComment( ... ); //optionally add comment to header // mcplwriter->AddData( ... ); //optionally add binary data blob(s) to header // mcplwriter->EnableDoublePrecision(); //optionally enable double precision storage // mcplwriter->EnablePolarisation(); //optionally enable storage of polarisation vectors // mcplwriter->EnableUniversalWeight(1.0); //optionally enable universal weight G4SDManager::GetSDMpointer()->AddNewDetector( mcplwriter ); detector_log->SetSensitiveDetector(mcplwriter); return world_phys; } }; class MyGun : public G4VUserPrimaryGeneratorAction { public: MyGun() : m_gun(new G4ParticleGun(1)) { m_gun->SetParticleDefinition(G4ParticleTable::GetParticleTable()->FindParticle("proton")); m_gun->SetParticleEnergy(10*CLHEP::GeV); m_gun->SetParticlePosition(G4ThreeVector(0.0, 0.0, -1.0*CLHEP::cm)); m_gun->SetParticleMomentumDirection(G4ThreeVector(0.0, 0.0, 1.0)); } virtual ~MyGun() { delete m_gun; } void GeneratePrimaries(G4Event* evt) { m_gun->GeneratePrimaryVertex(evt); } private: G4ParticleGun* m_gun; }; int main( int, char** ) { CLHEP::HepRandom::setTheSeed(123456); G4RunManager* rm = new G4RunManager; rm->SetUserInitialization(new MyGeo); rm->SetUserInitialization(G4PhysListFactory().GetReferencePhysList("QGSP_BERT")); rm->SetUserAction(new MyGun); rm->Initialize(); rm->BeamOn(10); delete rm; return 0; } mcpl-1.3.2/examples/pyexample_readmcpl000077500000000000000000000051561361775146500201150ustar00rootroot00000000000000#!/usr/bin/env python ################################################################################### # # # Monte Carlo Particle Lists : MCPL # # # # Simple example with comments, showing how one can use the mcpl.py module to # # access MCPL files. # # # # Find more information and updates at https://mctools.github.io/mcpl/ # # # # This file can be freely used as per the terms in the LICENSE file. # # # # Written by Thomas Kittelmann, 2017. # # # ################################################################################### #Make this example work with both python2 and python3: from __future__ import print_function import sys, os #Import mcpl module (with a fall-back sys.path edit, so the example can be run #from an MCPL installation even though the user did not set PYTHONPATH correctly): try: import mcpl except ImportError: try: sys.path.insert(0,os.path.join(os.path.dirname(__file__),'..','python')) import mcpl except ImportError: sys.path.insert(0,os.path.join(os.path.dirname(__file__),'..','src','python')) import mcpl #Get name of input file to open from command line: inputfile = sys.argv[1] #Uncomment next line for module documentation: #help(mcpl) #Open the file: f = mcpl.MCPLFile(inputfile) #Dump entire header to stdout: f.dump_hdr() #Or access relevant parts: print( 'Number of particles in file: %i' % f.nparticles ) print( 'Numbers are in single-precision: %s' % f.opt_singleprec ) for c in f.comments: print( "Some comment: %s" % c ) #Loop over all particles and print their positions and energies: for p in f.particles: print( p.x, p.y, p.z, p.ekin ) #help(p) #<-- uncomment to see all field names #Same, but each iteration will be over a big "block" of 10000 particles, so all #fields are now numpy arrays of length 10000: for p in f.particle_blocks: print( p.x, p.y, p.z, p.ekin ) #NB: change blocklength to, say, 1000, by opening file with: # mcpl.MCPLFile('example.mcpl',blocklength=1000) mcpl-1.3.2/examples/rawexample_filtermcpl.c000066400000000000000000000040371361775146500210430ustar00rootroot00000000000000 /////////////////////////////////////////////////////////////////////////////////// // // // A small standalone example of how to one might extract a subset of particles // // from an existing MCPL file in order to create a new smaller file. // // // // This file can be freely used as per the terms in the LICENSE file. // // // // Written 2015-2016 by Thomas.Kittelmann@esss.se // // // /////////////////////////////////////////////////////////////////////////////////// #include "mcpl.h" #include int main(int argc,char**argv) { if (argc!=3) { printf("Please supply input and output filenames\n"); return 1; } const char * infilename = argv[1]; const char * outfilename = argv[2]; // Initialisation, open existing file and create output file handle. Transfer // all meta-data from existing file, and add an extra comment in the output // file to document the process: mcpl_file_t fi = mcpl_open_file(infilename); mcpl_outfile_t fo = mcpl_create_outfile(outfilename); mcpl_transfer_metadata(fi, fo); mcpl_hdr_add_comment(fo,"Applied custom filter to select neutrons with ekin<0.1MeV"); //Loop over particles from input, only adding the chosen particles to the output file: const mcpl_particle_t* particle; while ( ( particle = mcpl_read(fi) ) ) { if ( particle->pdgcode == 2112 && particle->ekin < 0.1 ) { mcpl_add_particle(fo,particle); //Note that a guaranteed non-lossy alternative to mcpl_add_particle(fo,particle) //would be mcpl_transfer_last_read_particle(fi,fo) which can work directly on //the serialised on-disk particle data. } } //Close up files: mcpl_closeandgzip_outfile(fo); mcpl_close_file(fi); } mcpl-1.3.2/examples/rawexample_readmcpl.c000066400000000000000000000035071361775146500204720ustar00rootroot00000000000000 /////////////////////////////////////////////////////////////////////////////////// // // // A small standalone example of how to one might read particles from an MCPL // // file into a given programme. // // // // This file can be freely used as per the terms in the LICENSE file. // // // // Written 2015-2016 by Thomas.Kittelmann@esss.se // // // /////////////////////////////////////////////////////////////////////////////////// #include "mcpl.h" #include #include #include int main(int argc,char**argv) { if (argc!=2) { printf("Please supply input filename\n"); return 1; } const char * filename = argv[1]; //Open the file: mcpl_file_t f = mcpl_open_file(filename); //For fun, access and print a bit of the info found in the header (see mcpl.h for more): printf("Opened MCPL file produced with %s\n",mcpl_hdr_srcname(f)); unsigned i; for (i = 0; i < mcpl_hdr_ncomments(f); ++i) printf("file had comment: '%s'\n",mcpl_hdr_comment(f,i)); printf("File contains %llu particles\n",(unsigned long long)mcpl_hdr_nparticles(f)); //Now, loop over particles and print some info: const mcpl_particle_t* p; while ( ( p = mcpl_read(f) ) ) { //print some info (see the mcpl_particle_t struct in mcpl.h for more fields): printf(" found particle with pdgcode %i and time-stamp %g ms with weight %g\n", p->pdgcode, p->time, p->weight); } mcpl_close_file(f); } mcpl-1.3.2/examples/rawexample_writemcpl.c000066400000000000000000000103631361775146500207070ustar00rootroot00000000000000 /////////////////////////////////////////////////////////////////////////////////// // // // A small standalone example of how to one might output an MCPL file from a // // given programme. // // // // This file can be freely used as per the terms in the LICENSE file. // // // // Written 2015-2016 by Thomas.Kittelmann@esss.se // // // /////////////////////////////////////////////////////////////////////////////////// #include "mcpl.h" #include #include #include double randuniform(double a, double b) { return a + rand() * (b-a) / RAND_MAX; } int main(int argc,char**argv) { if (argc!=2) { printf("Please supply output filename\n"); return 1; } const char * filename = argv[1]; // Initialisation, create output file handle, embed name of source application // in the header and declare that this is a neutron-only file. Note that an // ".mcpl" extension will be added to the filename if it doesn't have it // already: mcpl_outfile_t f = mcpl_create_outfile(filename); mcpl_hdr_set_srcname(f,"my_cool_program_name"); // By default, floating point numbers will be stored in single precision and // neither polarisation nor user-flags will be stored in the file. These // defaults can be modified by one or more of the following calls (perhaps // they could be options to your McStas component): // // mcpl_enable_userflags(f); // mcpl_enable_polarisation(f); // mcpl_enable_doubleprec(f); // If all particles will be of the same type, optimise the file a bit by: // // mcpl_enable_universal_pdgcode(f,2112);//all particles are neutrons //We can add comments (strings) to the header. It is always a good idea to add //comments explaining things like coordinate system, contents of user-flags //(if any), and what the values in the "weight" field means exactly.: mcpl_hdr_add_comment(f,"Some comment."); mcpl_hdr_add_comment(f,"Another comment."); //It is also possible to add binary data with mcpl_hdr_add_data, if desired //(can be indexed by strings). So for instance, custom persistified //configuration meta-data could be added (or perhaps just a text file used by //configuration by your programme, if appropriate). //Allocate the particle structure we will use during the simulation loop //to register particle data in the output file: mcpl_particle_t * particle = mcpl_get_empty_particle(f); //Simulation loop, modify the particle struct and add to the file as many //times as needed (here everything will simply be filled with some stupid //random numbers): int i; for (i = 0; i < 1000; ++i) { //particle type: if (rand()%2) particle->pdgcode = 2112;//50% neutrons else particle->pdgcode = 22;//50% gammas //position in centimeters: particle->position[0] = randuniform(-100,100); particle->position[1] = randuniform(-100,100); particle->position[2] = randuniform(-100,100); //kinetic energy in MeV: particle->ekin = randuniform(0.001,10); //momentum direction (unit vector): particle->direction[0] = 0.0; particle->direction[1] = 0; particle->direction[2] = 1.0; //time in milliseconds: particle->time = randuniform(0,100); //weight in unspecified units: particle->weight = randuniform(0.01,10); //modify userflags and polarisation (what units?) as well, if enabled. //Finally, add the particle to the file: mcpl_add_particle(f,particle); } //At the end, remember to properly close the output file (and cleanup mem if desired): mcpl_closeandgzip_outfile(f); //Note: By calling mcpl_closeandgzip_outfile rather than mcpl_close_outfile, //the output file will (in most cases) end up being gzipped, resulting in a //smaller file. Such files can be read directly if mcpl is compiled with zlib //support (if not, users will have to gunzip it before using it). } mcpl-1.3.2/src/000077500000000000000000000000001361775146500132565ustar00rootroot00000000000000mcpl-1.3.2/src/geant4/000077500000000000000000000000001361775146500144405ustar00rootroot00000000000000mcpl-1.3.2/src/geant4/G4MCPLGenerator.cc000066400000000000000000000130021361775146500175400ustar00rootroot00000000000000#include "G4MCPLGenerator.hh" #include "G4ParticleGun.hh" #include "G4RunManager.hh" #include "G4SystemOfUnits.hh" #include "G4ParticleTable.hh" #include "G4IonTable.hh" #include "G4ios.hh" #include /////////////////////////////////////////////////////////////////////////////////// // // // Implementation of G4MCPLGenerator class. // // // // This file can be freely used as per the terms in the LICENSE file. // // // // Written by Thomas Kittelmann, 2016. // // // /////////////////////////////////////////////////////////////////////////////////// G4MCPLGenerator::G4MCPLGenerator(const G4String& inputFile) : G4VUserPrimaryGeneratorAction(), m_currentPDG(0), m_currentPartDef(0), m_nUnknownPDG(0), m_inputFile(inputFile) { m_mcplfile.internal = 0; } G4MCPLGenerator::~G4MCPLGenerator() { if (m_nUnknownPDG) { std::ostringstream cmt; cmt << "Ignored a total of " << m_nUnknownPDG << " particles in input due to untranslatable pdg codes"; G4Exception("G4MCPLGenerator::~G4MCPLGenerator()", "G4MCPLGenerator07", JustWarning, cmt.str().c_str()); } if (m_mcplfile.internal) mcpl_close_file(m_mcplfile); delete m_gun; } bool G4MCPLGenerator::UseParticle(const mcpl_particle_t*) const { return true; } void G4MCPLGenerator::ModifyParticle(G4ThreeVector&, G4ThreeVector&, G4ThreeVector&, G4double&, G4double&) const { } void G4MCPLGenerator::GeneratePrimaries(G4Event* evt) { if (!m_mcplfile.internal) { //Initialise: m_mcplfile = mcpl_open_file(m_inputFile.c_str()); m_gun = new G4ParticleGun(1); FindNext(); if (!m_p) { G4Exception("G4MCPLGenerator::G4MCPLGenerator()", "G4MCPLGenerator01", RunMustBeAborted, "Not a single suitable particle found in input file"); } } if (!m_p) { G4Exception("G4MCPLGenerator::GeneratePrimaries()", "G4MCPLGenerator02", RunMustBeAborted, "GeneratePrimaries called despite no suitable" " particles existing."); G4RunManager::GetRunManager()->AbortRun(false);//hard abort return; } //Transfer m_p info to gun and shoot: assert(m_currentPDG == m_p->pdgcode && m_currentPartDef); m_gun->SetParticleDefinition(m_currentPartDef); G4ThreeVector pos(m_p->position[0],m_p->position[1],m_p->position[2]); pos *= CLHEP::cm; G4ThreeVector dir(m_p->direction[0],m_p->direction[1],m_p->direction[2]); G4ThreeVector pol(m_p->polarisation[0],m_p->polarisation[1],m_p->polarisation[2]); double time = m_p->time*CLHEP::millisecond; double weight = m_p->weight; ModifyParticle(pos,dir,pol,time,weight); m_gun->SetParticleMomentumDirection( dir ); m_gun->SetParticlePosition( pos); m_gun->SetParticleEnergy(m_p->ekin);//already in MeV and CLHEP::MeV=1 m_gun->SetParticleTime(time); m_gun->SetParticlePolarization(pol); const G4int ivertex = evt->GetNumberOfPrimaryVertex(); m_gun->GeneratePrimaryVertex(evt); if (weight!=1.0) evt->GetPrimaryVertex(ivertex)->SetWeight(weight); //Prepare for next. FindNext(); if (!m_p) { G4cout << "G4MCPLGenerator: No more particles to use from input file after this event. Requesting soft abort of run." << G4endl; G4RunManager::GetRunManager()->AbortRun(true);//soft abort } } void G4MCPLGenerator::FindNext() { while( ( m_p = mcpl_read(m_mcplfile) ) ) { if (!UseParticle(m_p)) continue; if (!(m_p->weight>0.0)) { G4Exception("G4MCPLGenerator::GeneratePrimaries()", "G4MCPLGenerator03", JustWarning, "Ignoring particle in input with invalid weight."); continue; } if (m_p->pdgcode==0) { G4Exception("G4MCPLGenerator::GeneratePrimaries()", "G4MCPLGenerator04", JustWarning, "Ignoring particle in input with invalid pdg code (0)."); continue; } if (!LookupPDG(m_p->pdgcode)) { ++m_nUnknownPDG; if (m_nUnknownPDG<=100) { std::ostringstream cmt; cmt << "Ignoring particle in input with untranslatable pdg code (" << m_p->pdgcode <<")"; G4Exception("G4MCPLGenerator::GeneratePrimaries()", "G4MCPLGenerator05", JustWarning, cmt.str().c_str()); if (m_nUnknownPDG==100) G4Exception("G4MCPLGenerator::GeneratePrimaries()", "G4MCPLGenerator06", JustWarning, "Limit reached. Suppressing further warnings" " regarding untranslatable pdg codes"); } continue; } break; } } G4ParticleDefinition* G4MCPLGenerator::LookupPDG(G4int pdgcode) { if (m_currentPDG == pdgcode) return m_currentPartDef; m_currentPDG = pdgcode; std::map::const_iterator it = m_pdg2pdef.find(pdgcode); if (it!=m_pdg2pdef.end()) { m_currentPartDef = it->second; } else { m_currentPartDef = G4ParticleTable::GetParticleTable()->FindParticle(pdgcode); if ( !m_currentPartDef && (pdgcode/100000000 == 10)) { //Not in ParticleTable and pdgcode is of form 10xxxxxxxx, so look for ion: m_currentPartDef = G4IonTable::GetIonTable()->GetIon(pdgcode); } m_pdg2pdef[pdgcode] = m_currentPartDef; } return m_currentPartDef; } mcpl-1.3.2/src/geant4/G4MCPLGenerator.hh000066400000000000000000000061541361775146500175640ustar00rootroot00000000000000#ifndef MCPL_G4MCPLGenerator_hh #define MCPL_G4MCPLGenerator_hh /////////////////////////////////////////////////////////////////////////////////// // // // This class opens the input_file in MCPL format provided in the constructor // // and use one of the particles found inside each time GeneratePrimaries(..) is // // called to generate a primary particle in the G4Event. // // // // If it runs out of particles in the input file it will call abortRun on the // // run manager (normally a soft-abort). Thus, simply calling beamOn with a very // // high number of particles will ensure that all particles in the input_file // // will be used. // // // // If desired, reimplement and override the UseParticle function to ignore // // certain particles in the input file, or override the ModifyParticle method to // // for instance translate or rotate input coordinates or perform time shifts or // // reweighing. // // // // This file can be freely used as per the terms in the LICENSE file. // // // // Written by Thomas Kittelmann, 2016-2017. // // // /////////////////////////////////////////////////////////////////////////////////// #include "G4VUserPrimaryGeneratorAction.hh" #include "G4ThreeVector.hh" #include "G4String.hh" #include "mcpl.h" #include class G4ParticleDefinition; class G4ParticleGun; class G4MCPLGenerator : public G4VUserPrimaryGeneratorAction { public: G4MCPLGenerator(const G4String& inputFile); virtual ~G4MCPLGenerator(); virtual void GeneratePrimaries(G4Event*); protected: //Reimplement this to filter input particles (default implementation //accepts all particles): virtual bool UseParticle(const mcpl_particle_t*) const; //Reimplement this to change coordinates or weights of input particles //before using them (does nothing by default): virtual void ModifyParticle( G4ThreeVector& pos, G4ThreeVector& dir, G4ThreeVector& pol, G4double& time, G4double& weight ) const; private: G4MCPLGenerator& operator=(const G4MCPLGenerator&); G4MCPLGenerator(const G4MCPLGenerator&); void FindNext(); G4ParticleDefinition* LookupPDG(G4int); mcpl_file_t m_mcplfile; const mcpl_particle_t * m_p; G4ParticleGun * m_gun; G4int m_currentPDG; G4ParticleDefinition* m_currentPartDef; std::map m_pdg2pdef; unsigned long long m_nUnknownPDG; G4String m_inputFile; }; #endif mcpl-1.3.2/src/geant4/G4MCPLWriter.cc000066400000000000000000000107331361775146500170760ustar00rootroot00000000000000#include "G4MCPLWriter.hh" #include "G4Track.hh" #include /////////////////////////////////////////////////////////////////////////////////// // // // Implementation of G4MCPLWriter class. // // // // This file can be freely used as per the terms in the LICENSE file. // // // // Written by Thomas Kittelmann, 2016. // // // /////////////////////////////////////////////////////////////////////////////////// G4MCPLWriter::G4MCPLWriter( const G4String& outputFile, const G4String& name ) : G4VSensitiveDetector(name), m_store_polarisation(false), m_store_userflags(false) { std::memset(&m_p,0,sizeof(m_p)); m_f = mcpl_create_outfile( outputFile.c_str() ); { std::stringstream tmp; tmp << "G4MCPLWriter [" << name <<"]"; mcpl_hdr_set_srcname( m_f, tmp.str().c_str() ); } G4String ufdescr = UserFlagsDescription(); if (!ufdescr.empty()) { std::stringstream tmp; tmp << "UserFlagDescription: "<GetPreStepPoint()->GetStepStatus() != fGeomBoundary ) return false; //Store the state at the beginning of the step, but avoid //particles taking their very first step (this would double- //count secondary particles created at the volume edge): if ( step->GetTrack()->GetCurrentStepNumber() > 1 ) StorePreStep(step); //Tell Geant4 to stop further tracking of the particle: Kill(step); return true; } void G4MCPLWriter::AddComment( const G4String& comment ) { mcpl_hdr_add_comment( m_f, comment.c_str() ); } void G4MCPLWriter::AddData( const G4String& dataKey, size_t dataLength, const char* data ) { mcpl_hdr_add_data( m_f, dataKey.c_str(), dataLength, data ); } void G4MCPLWriter::EnableDoublePrecision() { mcpl_enable_doubleprec(m_f); } void G4MCPLWriter::EnablePolarisation() { mcpl_enable_polarisation(m_f); m_store_polarisation = true; } void G4MCPLWriter::EnableUniversalWeight(G4double w) { mcpl_enable_universal_weight(m_f,w); } void G4MCPLWriter::Store( const G4Step * step, const G4StepPoint* pt ) { G4Track * trk = step->GetTrack(); const G4DynamicParticle * dynpar = trk->GetDynamicParticle(); m_p.pdgcode = dynpar->GetPDGcode(); if (!m_p.pdgcode&&dynpar->GetParticleDefinition()->GetParticleName()=="opticalphoton") { m_p.pdgcode=22;//store optical photons as regular photons } m_p.time = pt->GetGlobalTime() / CLHEP::millisecond; m_p.weight = pt->GetWeight(); m_p.ekin = pt->GetKineticEnergy();//already in MeV const G4ThreeVector& pos = pt->GetPosition(); const G4ThreeVector& dir = pt->GetMomentumDirection(); const G4double tocm(1.0/CLHEP::cm); m_p.position[0] = pos.x() * tocm; m_p.position[1] = pos.y() * tocm; m_p.position[2] = pos.z() * tocm; m_p.direction[0] = dir.x(); m_p.direction[1] = dir.y(); m_p.direction[2] = dir.z(); G4double dm2 = dir.mag2(); if (fabs(dm2-1.0)>1.0e-12) { if (!dm2) { if (m_p.ekin) { //inconsistent G4Exception("G4MCPLGenerator::GeneratePrimaries()", "G4MCPLWriter01", JustWarning, "Captured particle has no momentum-direction but eKin>0. Choosing momdir (0,0,1)."); } //arguably consistent if ekin=0, but we should in any case only put unit //directional vectors in mcpl: m_p.direction[0] = m_p.direction[1] = 0.0; m_p.direction[2] = 1.0; } else { //fix normalisation: dm2 = 1.0/sqrt(dm2); m_p.direction[0] *= dm2; m_p.direction[1] *= dm2; m_p.direction[2] *= dm2; } } if (m_store_polarisation) { const G4ThreeVector& pol = pt->GetPolarization(); m_p.polarisation[0] = pol.x(); m_p.polarisation[1] = pol.y(); m_p.polarisation[2] = pol.z(); } if (m_store_userflags) { m_p.userflags = UserFlags(step); } mcpl_add_particle(m_f,&m_p); } mcpl-1.3.2/src/geant4/G4MCPLWriter.hh000066400000000000000000000113641361775146500171110ustar00rootroot00000000000000#ifndef MCPL_G4MCPLWriter_hh #define MCPL_G4MCPLWriter_hh /////////////////////////////////////////////////////////////////////////////////// // // // This class implements a sensitive detector which when attached to one or more // // logical volumes in the active geometry, cause the state (at the point of // // entry) of any simulated particle entering those volumes to be stored in an // // output MPCL file, whose name must be provided in the constructor of the // // class. Furthermore, in the default implementation, the particles are then // // "killed", to avoid potential double-counting issues, as are any particle // // created inside the volume. // // // // Thus, attaching the G4MCPLWriter to a volume, in a sense makes it act like a // // black hole, sucking any particle entering it into the output MCPL file, // // rather than letting them continue simulation. // // // // If desired, this exact behaviour can be modified in a derived class by // // overriding the ProcessHits method and using the StorePreStep(..), // // StorePostStep(..) and Kill(..) protected methods inside as needed. Likewise, // // custom 32 bit user flags can be calculated for captured particles and stored // // in the output file, by overriding the UserFlags and UserFlagsDescription // // methods. // // // // This file can be freely used as per the terms in the LICENSE file. // // // // Written by Thomas Kittelmann, 2016-2017. // // // /////////////////////////////////////////////////////////////////////////////////// #include "G4VSensitiveDetector.hh" #include "G4Track.hh" #include "mcpl.h" class G4MCPLWriter : public G4VSensitiveDetector { public: //The constructor needs the name of the output MCPL file, and optionally the //name argument to be passed to the G4VSensitiveDetector constructor: G4MCPLWriter( const G4String& outputFile, const G4String& name = "G4MCPLWriter" ); //Destructor closes the output file: virtual ~G4MCPLWriter(); //One or more calls to the following methods can be used to add comments or //data into the MCPL header, or to enable double-precision or polarisation //info in the information of stored particles. They must be called *before* //the first particle is stored in the file: void AddComment( const G4String& ); void AddData( const G4String& dataKey, size_t dataLength, const char* data ); void EnableDoublePrecision(); void EnablePolarisation(); void EnableUniversalWeight(G4double); //The default ProcessHits simply "consumes" all particles entering the //volume, in the sense that we store their state at pre-step as a particle //in the MCPL file and then we "kill" it, telling Geant4 to halt further //simulation of the particle. If different behaviour is desired, simply //override ProcessHits in a derived class (consider in that case to call //addComments(..) from your derived constructor, to add a comment //describing the new behaviour): virtual G4bool ProcessHits(G4Step * step,G4TouchableHistory*); //If desired, custom flags in the form of a 32bit integer can be stored in //the mcpl output along with each particle. To do so, override the next two //methods to calculate the custom user flags for each step plus a general //comment describing those flags: virtual G4String UserFlagsDescription() const { return ""; } virtual uint32_t UserFlags(const G4Step*) const { return 0; } protected: //Methods that can be used inside ProcessHits to store particles into the //MCPL file and/or kill the track: void StorePreStep(const G4Step * step) { Store(step,step->GetPreStepPoint()); } void StorePostStep(const G4Step * step) { Store(step,step->GetPostStepPoint()); } void Kill(G4Step * step) { step->GetTrack()->SetTrackStatus(fStopAndKill); } private: G4MCPLWriter& operator=(const G4MCPLWriter&); G4MCPLWriter(const G4MCPLWriter&); void Store(const G4Step *, const G4StepPoint *); mcpl_outfile_t m_f; mcpl_particle_t m_p; bool m_store_polarisation; bool m_store_userflags; }; #endif mcpl-1.3.2/src/mcnpssw/000077500000000000000000000000001361775146500147505ustar00rootroot00000000000000mcpl-1.3.2/src/mcnpssw/mcpl2ssw_app.c000066400000000000000000000022721361775146500175310ustar00rootroot00000000000000#include "sswmcpl.h" ///////////////////////////////////////////////////////////////////////////////////// // // // mcpl2ssw : a simple command line utility for converting MCPL to SSW. // // // // This file can be freely used as per the terms in the LICENSE file. // // // // However, note that usage of MCNP(X)-related utilities might require additional // // permissions and licenses from third-parties, which is not within the scope of // // the MCPL project itself. // // // // Written 2015-2016, thomas.kittelmann@esss.se (European Spallation Source). // // // ///////////////////////////////////////////////////////////////////////////////////// int main(int argc,char** argv) { return mcpl2ssw_app(argc,argv); } mcpl-1.3.2/src/mcnpssw/ssw2mcpl_app.c000066400000000000000000000022721361775146500175310ustar00rootroot00000000000000#include "sswmcpl.h" ///////////////////////////////////////////////////////////////////////////////////// // // // ssw2mcpl : a simple command line utility for converting SSW to MCPL. // // // // This file can be freely used as per the terms in the LICENSE file. // // // // However, note that usage of MCNP(X)-related utilities might require additional // // permissions and licenses from third-parties, which is not within the scope of // // the MCPL project itself. // // // // Written 2015-2016, thomas.kittelmann@esss.se (European Spallation Source). // // // ///////////////////////////////////////////////////////////////////////////////////// int main(int argc,char** argv) { return ssw2mcpl_app(argc,argv); } mcpl-1.3.2/src/mcnpssw/sswmcpl.c000066400000000000000000000604621361775146500166140ustar00rootroot00000000000000 ///////////////////////////////////////////////////////////////////////////////////// // // // sswmcpl : Code for converting between MCPL and SSW files from MCNP(X). // // // // // // Compilation of sswmcpl.c can proceed via any compliant C-compiler using // // -std=c99 later. Furthermore, the following preprocessor flag can be used // // when compiling sswmcpl.c to fine tune the build process. // // // // SSWMCPL_HDR_INCPATH : Specify alternative value if the sswmcpl header // // itself is not to be included as "sswmcpl.h". // // SSWREAD_HDR_INCPATH : Specify alternative value if the sswread header // // is not to be included as "sswread.h". // // MCPL_HEADER_INCPATH : Specify alternative value if the MCPL header is // // not to be included as "mcpl.h". // // // // This file can be freely used as per the terms in the LICENSE file. // // // // However, note that usage of MCNP(X)-related utilities might require additional // // permissions and licenses from third-parties, which is not within the scope of // // the MCPL project itself. // // // // Written 2015-2017, thomas.kittelmann@esss.se (European Spallation Source). // // // ///////////////////////////////////////////////////////////////////////////////////// #ifdef SSWMCPL_HDR_INCPATH # include SSWMCPL_HDR_INCPATH #else # include "sswmcpl.h" #endif #ifdef SSWREAD_HDR_INCPATH # include SSWREAD_HDR_INCPATH #else # include "sswread.h" #endif #ifdef MCPL_HEADER_INCPATH # include MCPL_HEADER_INCPATH #else # include "mcpl.h" #endif #include #include #include #include #include void ssw_error(const char * msg);//fwd declare internal function from sswread.c int sswmcpl_buf_is_text(size_t n, const unsigned char * buf) { //We correctly allow ASCII & UTF-8 but falsely classify UTF-16 and UTF-32 as //data. See http://stackoverflow.com/questions/277521#277568 for how we could //also detect UTF-16 & UTF-32. const unsigned char * bufE = buf + n; for (; buf!=bufE; ++buf) if ( ! ( ( *buf >=9 && *buf<=13 ) || ( *buf >=32 && *buf<=126 ) || *buf >=128 ) ) return 0; return 1; } int sswmcpl_file2buf(const char * filename, unsigned char** buf, size_t* lbuf, size_t maxsize, int require_text) { *buf = 0; *lbuf = 0; FILE * file = fopen(filename, "rb"); if (!file) { printf("Error: could not open file %s.\n",filename); return 0; } size_t pos_begin = ftell(file); size_t bbuf_size = maxsize;//default to max size (in case SEEK_END does not work) int bbuf_size_guess = 1; if (!fseek( file, 0, SEEK_END )) { size_t pos_end = ftell(file); bbuf_size = pos_end-pos_begin; bbuf_size_guess = 0; if (bbuf_size<50) { printf("Error: file %s is suspiciously short.\n",filename); return 0; } if (bbuf_size>104857600) { printf("Error: file %s is larger than %g bytes.\n",filename,(double)maxsize); return 0; } } if (fseek( file, 0, SEEK_SET)) { printf("Error: Could not rewind file %s.\n",filename); return 0; } unsigned char * bbuf = malloc(bbuf_size); unsigned char * bbuf_iter = bbuf; size_t left = bbuf_size; while (left) { size_t nb = fread(bbuf_iter, 1, left, file); if (bbuf_size_guess&&nb==0) { bbuf_size -= left; break; } if (nb==0||nb>left) { printf("Error: file %s read-error.\n",filename); free(bbuf); return 0; } bbuf_iter += nb; left -= nb; } fclose(file); if ( require_text && !sswmcpl_buf_is_text(bbuf_size, bbuf) ) { printf("Error: file %s does not appear to be a text file.\n",filename); free(bbuf); return 0; } *buf = bbuf; *lbuf = bbuf_size; return 1; } int ssw2mcpl(const char * sswfile, const char * mcplfile) { return ssw2mcpl2(sswfile, mcplfile, 0, 0, 1, 0); } int ssw2mcpl2(const char * sswfile, const char * mcplfile, int opt_dp, int opt_surf, int opt_gzip, const char * inputdeckfile) { ssw_file_t f = ssw_open_file(sswfile); mcpl_outfile_t mcplfh = mcpl_create_outfile(mcplfile); mcpl_hdr_set_srcname(mcplfh,ssw_mcnpflavour(f)); uint64_t lstrbuf = 1024; lstrbuf += strlen(ssw_srcname(f)); lstrbuf += strlen(ssw_srcversion(f)); lstrbuf += strlen(ssw_title(f)); if (lstrbuf<4096) { char * buf = (char*)malloc((int)lstrbuf); buf[0] = '\0'; strcat(buf,"SSW file from "); strcat(buf,ssw_mcnpflavour(f)); strcat(buf," converted with ssw2mcpl (from MCPL release v" MCPL_VERSION_STR ")"); mcpl_hdr_add_comment(mcplfh,buf); buf[0] = '\0'; strcat(buf,"SSW metadata: [kods='"); strcat(buf,ssw_srcname(f)); strcat(buf,"', vers='"); strcat(buf,ssw_srcversion(f)); strcat(buf,"', title='"); strcat(buf,ssw_title(f)); strcat(buf,"']"); mcpl_hdr_add_comment(mcplfh,buf); free(buf); } else { mcpl_hdr_add_comment(mcplfh,"SSW metadata: "); } if (opt_surf) { mcpl_hdr_add_comment(mcplfh,"The userflags in this file are the surface IDs found in the SSW file"); mcpl_enable_userflags(mcplfh); } if (opt_dp) { mcpl_enable_doubleprec(mcplfh); } if (inputdeckfile) { unsigned char* cfgfile_buf; size_t cfgfile_lbuf; if (!sswmcpl_file2buf(inputdeckfile, &cfgfile_buf, &cfgfile_lbuf, 104857600, 1)) return 0; if (!strstr((const char*)cfgfile_buf, ssw_title(f))) { printf("Error: specified configuration file %s does not contain title found in ssw file: \"%s\".\n",inputdeckfile,ssw_title(f)); return 0; } mcpl_hdr_add_data(mcplfh, "mcnp_input_deck", (uint32_t)cfgfile_lbuf,(const char *)cfgfile_buf); free(cfgfile_buf); } mcpl_particle_t mcpl_particle; memset(&mcpl_particle,0,sizeof(mcpl_particle)); const ssw_particle_t * p; while ((p=ssw_load_particle(f))) { mcpl_particle.pdgcode = p->pdgcode; if (!mcpl_particle.pdgcode) { printf("Warning: ignored particle with no PDG code set (raw ssw type was %li).\n",p->rawtype); continue; } mcpl_particle.position[0] = p->x;//already in cm mcpl_particle.position[1] = p->y;//already in cm mcpl_particle.position[2] = p->z;//already in cm mcpl_particle.direction[0] = p->dirx; mcpl_particle.direction[1] = p->diry; mcpl_particle.direction[2] = p->dirz; mcpl_particle.time = p->time * 1.0e-5;//"shakes" to milliseconds mcpl_particle.weight = p->weight; mcpl_particle.ekin = p->ekin;//already in MeV mcpl_particle.userflags = p->isurf; mcpl_add_particle(mcplfh,&mcpl_particle); } const char * tmp = mcpl_outfile_filename(mcplfh); size_t laf = strlen(tmp); char * actual_filename = malloc(laf+1); actual_filename[0]='\0'; strcat(actual_filename,tmp); int did_gzip = 0; if (opt_gzip) did_gzip = mcpl_closeandgzip_outfile(mcplfh); else mcpl_close_outfile(mcplfh); ssw_close_file(f); printf("Created %s%s\n",actual_filename,(did_gzip?".gz":"")); free(actual_filename); return 1; } void ssw2mcpl_parse_args(int argc,char **argv, const char** infile, const char **outfile, const char **cfgfile, int* double_prec, int* surface_info, int* do_gzip) { *cfgfile = 0; *infile = 0; *outfile = 0; *surface_info = 0; *double_prec = 0; *do_gzip = 1; int i; for (i=1; i < argc; ++i) { if (argv[i][0]=='\0') continue; if (strcmp(argv[i],"-h")==0||strcmp(argv[i],"--help")==0) { const char * progname = strrchr(argv[0], '/'); progname = progname ? progname + 1 : argv[0]; printf("Usage:\n\n"); printf(" %s [options] input.ssw [output.mcpl]\n\n",progname); printf("Converts the Monte Carlo particles in the input.ssw file (MCNP Surface\n" "Source Write format) to MCPL format and stores in the designated output\n" "file (defaults to \"output.mcpl\").\n" "\n" "Options:\n" "\n" " -h, --help : Show this usage information.\n" " -d, --double : Enable double-precision storage of floating point values.\n" " -s, --surf : Store SSW surface IDs in the MCPL userflags.\n" " -n, --nogzip : Do not attempt to gzip output file.\n" " -c FILE : Embed entire configuration FILE (the input deck)\n" " used to produce input.ssw in the MCPL header.\n" ); exit(0); } if (strcmp(argv[i],"-c")==0) { if (i+1==argc||argv[i+1][0]=='-') { printf("Error: Missing argument for -c\n"); exit(1); } ++i; if (*cfgfile) { printf("Error: -c specified more than once\n"); exit(1); } *cfgfile = argv[i]; continue; } if (strcmp(argv[i],"-d")==0||strcmp(argv[i],"--double")==0) { *double_prec = 1; continue; } if (strcmp(argv[i],"-s")==0||strcmp(argv[i],"--surf")==0) { *surface_info = 1; continue; } if (strcmp(argv[i],"-n")==0||strcmp(argv[i],"--nogzip")==0) { *do_gzip = 0; continue; } if (argv[i][0]=='-') { printf("Error: Unknown argument: %s\n",argv[i]); exit(1); } if (!*infile) { *infile = argv[i]; continue; } if (!*outfile) { *outfile = argv[i]; continue; } printf("Error: Too many arguments! (run with -h or --help for usage instructions)\n"); exit(1); } if (!*infile) { printf("Error: Too few arguments! (run with -h or --help for usage instructions)\n"); exit(1); } if (!*outfile) *outfile = "output.mcpl"; if (strcmp(*infile,*outfile)==0) { //basic test, easy to cheat: printf("Error: input and output files are identical.\n"); exit(1); } } int ssw2mcpl_app(int argc,char** argv) { const char * infile; const char * outfile; const char * cfgfile; int double_prec, surface_info, do_gzip; ssw2mcpl_parse_args(argc,argv,&infile,&outfile,&cfgfile,&double_prec,&surface_info,&do_gzip); int ok = ssw2mcpl2(infile, outfile,double_prec, surface_info, do_gzip,cfgfile); return ok ? 0 : 1; } void ssw_update_nparticles(FILE* f, int64_t np1pos, int32_t np1, int64_t nrsspos, int32_t nrss) { //Seek and update np1 and nrss fields at correct location in header: const char * errmsg = "Errors encountered while attempting to update number of particle info in output file."; int64_t savedpos = ftell(f); if (savedpos<0) ssw_error(errmsg); if (fseek( f, np1pos, SEEK_SET )) ssw_error(errmsg); size_t nb = fwrite(&np1, 1, sizeof(np1), f); if (nb != sizeof(np1)) ssw_error(errmsg); if (fseek( f, nrsspos, SEEK_SET )) ssw_error(errmsg); nb = fwrite(&nrss, 1, sizeof(nrss), f); if (nb != sizeof(nrss)) ssw_error(errmsg); if (fseek( f, savedpos, SEEK_SET )) ssw_error(errmsg); } void ssw_writerecord(FILE* outfile, int reclen, size_t lbuf, char* buf) { if (reclen==4) { uint32_t rl = lbuf; size_t nb = fwrite(&rl, 1, sizeof(rl), outfile); if (nb!=sizeof(rl)) ssw_error("write error"); nb = fwrite(buf, 1, lbuf, outfile); if (nb!=lbuf) ssw_error("write error"); nb = fwrite(&rl, 1, sizeof(rl), outfile); if (nb!=sizeof(rl)) ssw_error("write error"); } else { assert(reclen==8); uint64_t rl = lbuf; size_t nb = fwrite(&rl, 1, sizeof(rl), outfile); if (nb!=sizeof(rl)) ssw_error("write error"); nb = fwrite(buf, 1, lbuf, outfile); if (nb!=lbuf) ssw_error("write error"); nb = fwrite(&rl, 1, sizeof(rl), outfile); if (nb!=sizeof(rl)) ssw_error("write error"); } } //Fwd declaration of internal function in sswread.c: void ssw_internal_grabhdr( const char * filename, int is_gzip, int64_t hdrlen, unsigned char * hdrbuf ); int mcpl2ssw(const char * inmcplfile, const char * outsswfile, const char * refsswfile, long surface_id, long nparticles_limit) { mcpl_file_t fmcpl = mcpl_open_file(inmcplfile); printf( "Opened MCPL file produced with \"%s\" (contains %llu particles)\n", mcpl_hdr_srcname(fmcpl), (unsigned long long)mcpl_hdr_nparticles(fmcpl) ); if (surface_id==0 && !mcpl_hdr_has_userflags(fmcpl)) ssw_error("MCPL file contains no userflags so parameter specifying " "resulting SSW surface ID of particles is mandatory (use -s)."); printf("Opening reference SSW file:\n"); ssw_file_t fsswref = ssw_open_file(refsswfile); //Open reference file and figure out variables like header length, position of //"nparticles"-like variables, fortran record length and mcnp version. int ssw_reclen; int ssw_ssblen; int64_t ssw_hdrlen; int64_t ssw_np1pos; int64_t ssw_nrsspos; ssw_layout(fsswref, &ssw_reclen, &ssw_ssblen, &ssw_hdrlen, &ssw_np1pos, &ssw_nrsspos); assert(ssw_np1pos0); char ref_mcnpflavour_str[64]; ref_mcnpflavour_str[0] = '\0'; strcat(ref_mcnpflavour_str,ssw_mcnpflavour(fsswref)); int ref_is_gzipped = ssw_is_gzipped(fsswref); ssw_close_file(fsswref); //Grab the header: unsigned char * hdrbuf = (unsigned char*)malloc(ssw_hdrlen); assert(hdrbuf); ssw_internal_grabhdr( refsswfile, ref_is_gzipped, ssw_hdrlen, hdrbuf ); int32_t orig_np1 = * ((int32_t*)(&hdrbuf[ssw_np1pos])); //Clear |np1| and nrss in header to to indicate incomplete info (we will //update just before closing the file): *((int32_t*)(&hdrbuf[ssw_np1pos])) = 0; *((int32_t*)(&hdrbuf[ssw_nrsspos])) = 0; printf("Creating (or overwriting) output SSW file.\n"); //Open new ssw file: FILE * fout = fopen(outsswfile,"wb"); if (!fout) ssw_error("Problems opening new SSW file"); //Write header: int nb = fwrite(hdrbuf, 1, ssw_hdrlen, fout); if (nb!=ssw_hdrlen) ssw_error("Problems writing header to new SSW file"); free(hdrbuf); double ssb[11]; if ( ssw_ssblen != 10 && ssw_ssblen != 11) ssw_error("Unexpected length of ssb record in reference SSW file"); if ( (ssw_mcnp_type == SSW_MCNP6) && ssw_ssblen != 11 ) ssw_error("Unexpected length of ssb record in reference SSW file (expected 11 for MCNP6 files)"); //ssb[0] should be history number (starting from 1), but in our case we always //put nhistories=nparticles, so it is simply incrementing by 1 for each particle. ssb[0] = 0.0; assert(surface_id>=0&&surface_id<1000000); const mcpl_particle_t* mcpl_p; long used = 0; long long skipped_nosswtype = 0; printf("Initiating particle conversion loop.\n"); while ( ( mcpl_p = mcpl_read(fmcpl) ) ) { ++ssb[0]; ssb[2] = mcpl_p->weight; ssb[3] = mcpl_p->ekin;//already in MeV ssb[4] = mcpl_p->time * 1.0e5;//milliseconds to "shakes" ssb[5] = mcpl_p->position[0];//already in cm ssb[6] = mcpl_p->position[1];//already in cm ssb[7] = mcpl_p->position[2];//already in cm ssb[8] = mcpl_p->direction[0]; ssb[9] = mcpl_p->direction[1]; int32_t isurf = surface_id; if (!isurf) isurf = (int32_t)mcpl_p->userflags; if (isurf<=0||isurf>1000000) { if (isurf==0&&surface_id==0) ssw_error("Could not determine surface ID: no global surface id specified and particle had no (or empty) userflags"); else ssw_error("Surface id must be in range 1..999999"); } int64_t rawtype; if (ssw_mcnp_type == SSW_MCNP6) { rawtype = conv_mcnp6_pdg2ssw(mcpl_p->pdgcode); } else if (ssw_mcnp_type == SSW_MCNPX) { rawtype = conv_mcnpx_pdg2ssw(mcpl_p->pdgcode); } else { assert(ssw_mcnp_type == SSW_MCNP5); rawtype = (mcpl_p->pdgcode==2112?1:(mcpl_p->pdgcode==22?2:0)); } if (!rawtype) { ++skipped_nosswtype; if (skipped_nosswtype<=100) { printf("WARNING: Found PDG code (%li) in the MCPL file which can not be converted to an %s particle type\n", (long)mcpl_p->pdgcode,ref_mcnpflavour_str); if (skipped_nosswtype==100) printf("WARNING: Suppressing future warnings regarding non-convertible PDG codes.\n"); } continue; } assert(rawtype>0); if (ssw_mcnp_type == SSW_MCNP6) { assert(ssw_ssblen==11); ssb[10] = isurf;//Should we set the sign of ssb[10] to mean something (we take abs(ssb[10]) in sswread.c)? ssb[1] = rawtype*4;//Shift 2 bits (thus we only create files with those two bits zero!) } else if (ssw_mcnp_type == SSW_MCNPX) { ssb[1] = isurf + 1000000*rawtype; if (ssw_ssblen==11) ssb[10] = 1.0;//Cosine of angle at surface? Can't calculate it, so we simply set //it to 1 (seems to be not used anyway?) } else { assert(ssw_mcnp_type == SSW_MCNP5); ssb[1] = (isurf + 1000000*rawtype)*8; if (ssw_ssblen==11) ssb[10] = 1.0;//Cosine of angle at surface? Can't calculate it, so we simply set //it to 1 (seems to be not used anyway?) } //Sign of ssb[1] is used to store the sign of dirz: assert(ssb[1] >= 1.0); if (mcpl_p->direction[2]<0.0) ssb[1] = - ssb[1]; ssw_writerecord(fout,ssw_reclen,sizeof(double)*ssw_ssblen,(char*)&ssb[0]); if (++used==nparticles_limit) { long long remaining = mcpl_hdr_nparticles(fmcpl) - skipped_nosswtype - used; if (remaining) printf("Output limit of %li particles reached. Ignoring remaining %lli particles in the MCPL file.\n", nparticles_limit,remaining); break; } } printf("Ending particle conversion loop.\n"); if (skipped_nosswtype) { printf("WARNING: Ignored %lli particles in the input MCPL file since their PDG codes" " could not be converted to MCNP types.\n",(long long)skipped_nosswtype); } int32_t new_nrss = used; int32_t new_np1 = new_nrss; if (new_np1==0) { //SSW files must at least have 1 history (but can have 0 particles) printf("WARNING: Input MCPL file has 0 useful particles but we are setting number" " of histories in new SSW file to 1 to avoid creating an invalid file.\n"); new_np1 = 1; } if (orig_np1<0) new_np1 = - new_np1; ssw_update_nparticles(fout,ssw_np1pos,new_np1,ssw_nrsspos,new_nrss); mcpl_close_file(fmcpl); fclose(fout); printf("Created %s with %lli particles (nrss) and %lli histories (np1).\n",outsswfile,(long long)new_nrss,(long long)labs(new_np1)); return 1; } int mcpl2ssw_app_usage( const char** argv, const char * errmsg ) { if (errmsg) { printf("ERROR: %s\n\n",errmsg); printf("Run with -h or --help for usage information\n"); return 1; } const char * progname = strrchr(argv[0], '/'); progname = progname ? progname + 1 : argv[0]; printf("Usage:\n\n"); printf(" %s [options] [output.ssw]\n\n",progname); printf("Converts the Monte Carlo particles in the input MCPL file to SSW format\n" "(MCNP Surface Source Write) and stores the result in the designated output\n" "file (defaults to \"output.ssw\").\n" "\n" "In order to do so and get the details of the SSW format correct, the user\n" "must also provide a reference SSW file from the same approximate setup\n" "(MCNP version, input deck...) where the new SSW file is to be used. The\n" "reference SSW file can of course be very small, as only the file header is\n" "important (the new file essentially gets a copy of the header found in the\n" "reference file, except for certain fields related to number of particles\n" "whose values are changed).\n" "\n" "Finally, one must pay attention to the Surface ID assigned to the\n" "particles in the resulting SSW file: Either the user specifies a global\n" "one with -s, or it is assumed that the MCPL userflags field in the\n" "input file is actually intended to become the Surface ID. Note that not\n" "all MCPL files have userflag fields and that valid Surface IDs are\n" "integers in the range 1-999999.\n" "\n" "Options:\n" "\n" " -h, --help : Show this usage information.\n" " -s : All particles in the SSW file will get this surface ID.\n" " -l : Limit the number of particles transferred to the SSW file\n" " (defaults to 2147483647, the maximal SSW capacity).\n" ); return 0; } int mcpl2ssw_parse_args(int argc,const char **argv, const char** inmcplfile, const char **refsswfile, const char **outsswfile, long* nparticles_limit, long* surface_id) { //returns: 0 all ok, 1: error, -1: all ok but do nothing (-h/--help mode) *inmcplfile = 0; *refsswfile = 0; *outsswfile = 0; *nparticles_limit = INT32_MAX; *surface_id = 0; int64_t opt_num_limit = -1; int64_t opt_num_isurf = -1; int i; for (i = 1; i=2&&a[0]=='-'&&a[1]!='-') { //short options: int64_t * consume_digit = 0; size_t j; for (j=1; j'9') return mcpl2ssw_app_usage(argv,"Bad option: expected number"); *consume_digit *= 10; *consume_digit += a[j] - '0'; continue; } switch(a[j]) { case 'h': mcpl2ssw_app_usage(argv,0); return -1; case 'l': consume_digit = &opt_num_limit; break; case 's': consume_digit = &opt_num_isurf; break; default: return mcpl2ssw_app_usage(argv,"Unrecognised option"); } if (consume_digit) { *consume_digit = 0; if (j+1==n) return mcpl2ssw_app_usage(argv,"Bad option: missing number"); } } } else if (n==6 && strcmp(a,"--help")==0) { mcpl2ssw_app_usage(argv,0); return -1; } else if (n>=1&&a[0]!='-') { if (*outsswfile) return mcpl2ssw_app_usage(argv,"Too many arguments."); if (*refsswfile) *outsswfile = a; else if (*inmcplfile) *refsswfile = a; else *inmcplfile = a; } else { return mcpl2ssw_app_usage(argv,"Bad arguments"); } } if (!*inmcplfile) return mcpl2ssw_app_usage(argv,"Missing argument : input MCPL file"); if (!*refsswfile) return mcpl2ssw_app_usage(argv,"Missing argument : Reference SSW file"); if (!*outsswfile) *outsswfile = "output.ssw"; if (opt_num_limit<=0) opt_num_limit = INT32_MAX; if (opt_num_limit>INT32_MAX) return mcpl2ssw_app_usage(argv,"Parameter out of range : SSW files can only hold up to 2147483647 particles."); *nparticles_limit = opt_num_limit; if (opt_num_isurf==0||opt_num_isurf>999999) return mcpl2ssw_app_usage(argv,"Parameter out of range : Surface ID must be in range [1,999999]."); if (opt_num_isurf<0) opt_num_isurf = 0; *surface_id = opt_num_isurf; return 0; } int mcpl2ssw_app( int argc, char** argv ) { const char * inmcplfile; const char * refsswfile; const char * outsswfile; long nparticles_limit; long surface_id; int parse = mcpl2ssw_parse_args( argc, (const char**)argv, &inmcplfile, &refsswfile, &outsswfile, &nparticles_limit, &surface_id ); if (parse==-1)// --help return 0; if (parse)// parse error return parse; if (mcpl2ssw(inmcplfile, outsswfile, refsswfile,surface_id, nparticles_limit)) return 0; return 1; } mcpl-1.3.2/src/mcnpssw/sswmcpl.h000066400000000000000000000071651361775146500166220ustar00rootroot00000000000000#ifndef sswmcpl_h #define sswmcpl_h ////////////////////////////////////////////////////////////////////////////////////// // // // Functions for converting SSW files from MCNP(X) to MCPL files. // // // // The code was written with help from E. Klinkby DTU NuTech. // // // // This file can be freely used as per the terms in the LICENSE file. // // // // However, note that usage of MCNP(X)-related utilities might require additional // // permissions and licenses from third-parties, which is not within the scope of // // the MCPL project itself. // // // // Written 2015-2017 by Thomas.Kittelmann@esss.se. // // // ////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////// // Create mcplfile based on content in sswfile. Using this function will neither // enable double-precision or user-flags in the output file, and will always // attempt to gzip the resulting MCPL file. Use ssw2mcpl2 instead to fine-tune // these choices or to embed a copy of the MCNP input deck file in the MCPL // header. Returns 1 on success, 0 on failure: int ssw2mcpl(const char * sswfile, const char * mcplfile); ////////////////////////////////////////////////////////////////////////////////////// // Advanced version of the above with more options: // // opt_dp : Set to 1 to enable double-precision storage of floating point // values. Set to 0 for single-precision. // opt_surf: Set to 1 to store SSW surface id information in the MCPL // userflags. Set to 0 to not store any userflags. // opt_gzip: Set to 1 to gzip the resulting mcpl file. Set to 0 to leave the // resulting file uncompressed. // inputdeckfile: Set to the filename of the MCNP input deck file, to embed a // copy of it in the MCPL header. Set to 0 to not do this. // int ssw2mcpl2(const char * sswfile, const char * mcplfile, int opt_dp, int opt_surf, int opt_gzip, const char * inputdeckfile); ////////////////////////////////////////////////////////////////////////////////////// // Create sswfile based on content in mcplfile. This also needs a reference // sswfile from the same approximate setup (MCNP version, input deck...) where // the new SSW file is to be used. If the surface_id parameter is non-zero, all // particles in the resulting sswfile will have that surface ID, otherwise it // will be taken from the MCPL userflags (must be in range [1,999999]). Finally, // if the limit parameter is non-zero, it will provide an upper limit on the // number of particles put into the resulting ssw file (up to 2147483647). int mcpl2ssw(const char * mcplfile, const char * sswfile, const char * refsswfile, long surface_id, long limit); ////////////////////////////////////////////////////////////////////////////////////// // For easily creating standard ssw2mcpl and mcpl2ssw cmdline applications: int ssw2mcpl_app(int argc,char** argv); int mcpl2ssw_app(int argc,char** argv); #endif mcpl-1.3.2/src/mcnpssw/sswread.c000066400000000000000000000706761361775146500166040ustar00rootroot00000000000000 ///////////////////////////////////////////////////////////////////////////////////// // // // sswread : Code for reading SSW files from MCNP(X) // // // // // // Compilation of sswread.c can proceed via any compliant C-compiler using // // -std=c99 or later, and the resulting code must always be linked with libm // // (using -lm). Furthermore, the following preprocessor flags can be used // // when compiling sswread.c to fine tune the build process and the // // capabilities of the resulting binary. // // // // SSWREAD_HASZLIB : Define if compiling and linking with zlib, to allow direct // // reading of gzipped SSW files. // // SSWREAD_ZLIB_INCPATH : Specify alternative value if the zlib header is not to // // be included as "zlib.h". // // SSWREAD_HDR_INCPATH : Specify alternative value if the sswread header itself // // is not to be included as "sswread.h". // // // // This file can be freely used as per the terms in the LICENSE file. // // // // However, note that usage of MCNP(X)-related utilities might require additional // // permissions and licenses from third-parties, which is not within the scope of // // the MCPL project itself. // // // // Written 2015-2017, thomas.kittelmann@esss.se (European Spallation Source). // // // ///////////////////////////////////////////////////////////////////////////////////// #ifdef SSWREAD_HDR_INCPATH # include SSWREAD_HDR_INCPATH #else # include "sswread.h" #endif #ifdef SSWREAD_HASZLIB # ifdef SSWREAD_ZLIB_INCPATH # include SSWREAD_ZLIB_INCPATH # else # include "zlib.h" # endif #endif #include #include #include #include #include #include //Should be large enough to hold first record in all supported files: #define SSWREAD_STDBUFSIZE 1024 #define SSW_MCNP_NOTFOUND 0 #define SSW_MCNP6 1 #define SSW_MCNPX 2 #define SSW_MCNP5 3 void ssw_error(const char * msg) { printf("ERROR: %s\n",msg); exit(1); } typedef struct { //Fortran width of record length field (4 or 8) int reclen; //Header data: char kods[9]; // Code char vers[6]; // Version char lods[29]; // Date char idtms[20]; // Machine-Designator char probs[20]; // Problem-ID char aids[129]; // Creation-Run Problem-Title-Card int32_t np1; int32_t nrss; int32_t njsw; int32_t nrcd; int32_t niss; int32_t pos; int mcnp_type; #ifdef SSWREAD_HASZLIB gzFile filegz; #else void * filegz; #endif FILE * file; ssw_particle_t part; unsigned lbuf; unsigned lbufmax; char * buf; size_t np1pos; size_t nrsspos; size_t headlen; } ssw_fileinternal_t; #define SSW_FILEDECODE ssw_fileinternal_t * f = (ssw_fileinternal_t *)ff.internal; assert(f) int ssw_readbytes(ssw_fileinternal_t* f, char * dest, int nbytes) { int nb; #ifdef SSWREAD_HASZLIB if (f->filegz) nb = gzread(f->filegz, dest, nbytes); else #endif nb = fread(dest, 1, nbytes, f->file); if (nb!=nbytes) { printf("SSW Error: read failure\n"); return 0; } return 1; } int ssw_loadrecord(ssw_fileinternal_t* f) { if (f->reclen==4) { uint32_t rl; if (!ssw_readbytes(f, (char*)&rl, 4)) return 0; f->lbuf = rl; } else { uint64_t rl; if (!ssw_readbytes(f, (char*)&rl, 8)) return 0; f->lbuf = rl; } if (f->lbuf > f->lbufmax) { //Very large record, must grow buffer: free(f->buf); f->lbufmax = f->lbuf; f->buf = malloc(f->lbufmax); } if ( f->lbuf <= SSWREAD_STDBUFSIZE && f->lbufmax > SSWREAD_STDBUFSIZE ) { //Make sure we don't hold on to very large buffers once they are no longer //needed: free(f->buf); f->lbufmax = SSWREAD_STDBUFSIZE; f->buf = malloc(f->lbufmax); } if (!f->buf) { //Could be corrupted data resulting in unusually large lbuf: printf("SSW Error: unable to allocate requested buffer (corrupted input?).\n"); return 0; } char * buf = (char*)f->buf; if (!ssw_readbytes(f, buf, f->lbuf)) return 0; if (f->reclen==4) { uint32_t rl; return ssw_readbytes(f, (char*)&rl, 4) && f->lbuf == rl; } else { uint64_t rl; return ssw_readbytes(f, (char*)&rl, 8) && f->lbuf == rl; } } void ssw_close_file(ssw_file_t ff) { SSW_FILEDECODE; if (!f) return; if (f->file) { fclose(f->file); f->file = 0; } #ifdef SSWREAD_HASZLIB if (f->filegz) { gzclose(f->filegz); f->file = 0; } #endif free(f->buf); free(f); ff.internal = 0; } void ssw_strip(char **str) { size_t l = strlen(*str); int i = 0; while ((*str)[i]==' ') ++i; if (i) memmove(*str,*str+i,l+1-i); i = l-i-1; while (i>=0&&(*str)[i]==' ') { (*str)[i]='\0'; --i; } } ssw_file_t ssw_openerror(ssw_fileinternal_t * f, const char* msg) { if (f) { if (f->file) fclose(f->file); #ifdef SSWREAD_HASZLIB if (f->filegz) gzclose(f->filegz); #endif free(f->buf); free(f); } ssw_error(msg); ssw_file_t out; out.internal = 0; return out; } //NB: Do not change function signature without updating code in sswmcpl.c as well! void ssw_internal_grabhdr( const char * filename, int is_gzip, int64_t hdrlen, unsigned char * hdrbuf ) { //To be used by mcpl2ssw, but we don't want to complicate the build process //for users further by also requiring sswmcpl.c to deal with zlib //directly. Thus, we provide a hidden function here which mcpl2ssw can use by //forward declaring it. if (is_gzip) { #ifdef SSWREAD_HASZLIB gzFile filegz = gzopen(filename,"rb"); if (!filegz) ssw_error("Unable to open file!"); int64_t pos = 0; int64_t toread = hdrlen; while(toread) { int chunk = (hdrlen>16384?16384:(int)hdrlen); int nb = gzread(filegz, hdrbuf+pos, chunk); if (!nb) printf("SSW Error: read failure\n"); assert(toread >= nb); toread -= nb; pos += nb; } gzclose(filegz); #else ssw_error("This installation was not built with zlib support and can not read compressed (.gz) files directly."); #endif } else { FILE * fh = fopen(filename,"rb"); if (!fh) ssw_error("Unable to open file!\n"); int64_t pos = 0; int64_t toread = hdrlen; while(toread) { int chunk = (hdrlen>16384?16384:(int)hdrlen); int nb = fread(hdrbuf+pos,1,chunk,fh); if (!nb) printf("SSW Error: read failure\n"); assert(toread >= nb); toread -= nb; pos += nb; } fclose(fh); } } ssw_file_t ssw_open_and_procrec0( const char * filename ) { ssw_fileinternal_t * f = (ssw_fileinternal_t*)calloc(sizeof(ssw_fileinternal_t),1); assert(f); ssw_file_t out; out.internal = f; //open file (with gzopen if filename ends with .gz): f->file = 0; f->filegz = 0; char * lastdot = strrchr(filename, '.'); if (lastdot && strcmp(lastdot, ".gz") == 0) { #ifdef SSWREAD_HASZLIB f->filegz = gzopen(filename,"rb"); if (!f->filegz) ssw_error("Unable to open file!"); #else ssw_error("This installation was not built with zlib support and can not read compressed (.gz) files directly."); #endif } else { f->file = fopen(filename,"rb"); if (!f->file) ssw_error("Unable to open file!"); } //Prepare buffer. SSWREAD_STDBUFSIZE bytes should always be enough for the //first record (guaranteed by the checks below), but it might later grow on //demand inside ssw_loadrecord if needed. f->lbufmax = SSWREAD_STDBUFSIZE; char * buf = malloc(f->lbufmax); f->buf = buf; //Fortran data is usually written in "records" with an initial and final 32bit //or 64bit integer specifying the record byte-length. The tested file-types //begin in one of the following ways: // // 1) 4B[163|167] + KODS : MCNPX2.7.0 with 32bit reclen // 2) 8B[163|167] + KODS : MCNPX2.7.0 with 64bit reclen // 3) 16B +4B[143 or 191] + KODS : MCNP6 with 32bit reclen // 4) 24B +8B[143 or 191] + KODS : MCNP6 with 64bit reclen // 5) 4B[143]+KODS : MCNP5 with 32bit reclen. // 6) 8B[143]+KODS : MCNP5 with 64bit reclen. // //Where KODS is 8 bytes representing the "code name" as a string. For pure //MCNPX/MCNP6 this string contains "mcnpx" and "mcnp" respectively, but we //should allow for custom in-house versions with modified contents of KODS. We //do, however, require that the first character or KODS is an ASCII character //in the range 32-126 (i.e. non-extended ascii without control or null chars). // //Note that for option 3) and 4), the second record can have a length of //either 143 (MCNP 6.0) or 191 (MCNP 6.2), since the "aids" field increased in //size from 80 to 128 chars. // //Note that for option 3) and 4), the 16B / 24B are a fortran record with 8 //bytes of data - usually (always?) the string "SF_00001". //Thus, we probe the first 36 bytes and search the patterns above: ssw_readbytes(f,buf,36); uint32_t first32 = *((uint32_t*)buf); uint32_t first64 = *((uint64_t*)buf); f->reclen = 0; f->mcnp_type = SSW_MCNP_NOTFOUND; uint64_t lenrec0 = 99999; unsigned rec0begin = 0; //First look for MCNP6: unsigned mcnp6_lenaids = 80; if ( first32==8 && *((uint32_t*)(buf+12))==8 && (*((uint32_t*)(buf+16))==143||*((uint32_t*)(buf+16))==191) && buf[20]>=32 && buf[20]<127) { //Looks like 3), an mcnp6 file with 32bit fortran records. f->mcnp_type = SSW_MCNP6; f->reclen = 4; lenrec0 = *((uint32_t*)(buf+16)); rec0begin = 20; if (*((uint32_t*)(buf+16))==191) mcnp6_lenaids = 128; } else if ( first32==8 && *((uint64_t*)(buf+16))==8 && (*((uint64_t*)(buf+24))==143||*((uint64_t*)(buf+24))==191) && buf[32]>=32 && buf[32]<127) { //Looks like 4), an mcnp6 file with 64bit fortran records. f->mcnp_type = SSW_MCNP6; f->reclen = 8; lenrec0 = *((uint64_t*)(buf+24)); rec0begin = 32; if (*((uint64_t*)(buf+24))==191) mcnp6_lenaids = 128; } //Next, look for MCNPX: if ( f->mcnp_type == SSW_MCNP_NOTFOUND ) { if ( (first32==163||first32==167) && ( buf[4]>=32 && buf[4]<127 ) ) { //Looks like 1), an mcnpx file with 32bit fortran records. f->mcnp_type = SSW_MCNPX; f->reclen = 4; lenrec0 = first32; rec0begin = 4; } else if ( (first64==163||first64==167) && ( buf[8]>=32 && buf[8]<127 ) ) { //Looks like 2), an mcnpx file with 64bit fortran records. f->mcnp_type = SSW_MCNPX; f->reclen = 8; lenrec0 = first64; rec0begin = 8; } } //Finally, look for MCNP5: if ( f->mcnp_type == SSW_MCNP_NOTFOUND ) { if ( first32==143 && ( buf[4]>=32 && buf[4]<127 ) ) { //Looks like 5), an mcnp5 file with 32bit fortran records. f->mcnp_type = SSW_MCNP5; f->reclen = 4; lenrec0 = first32; rec0begin = 4; } else if ( first64==143 && ( buf[8]>=32 && buf[8]<127 ) ) { //Looks like 6), an mcnp5 file with 64bit fortran records. f->mcnp_type = SSW_MCNP5; f->reclen = 8; lenrec0 = first64; rec0begin = 8; } } if ( f->mcnp_type == SSW_MCNP_NOTFOUND ) return ssw_openerror(f,"ssw_open_file error: File does not look like a supported MCNP SSW file"); assert(f->reclen && rec0begin && lenrec0 && lenrec0<99999 ); if (f->reclen==8) { printf("ssw_open_file WARNING: 64bit Fortran records detected which is untested (feedback" " appreciated at https://mctools.github.io/mcpl/contact/).\n"); } //Finish reading the first record: int missingrec0 = (int)(lenrec0 + rec0begin) - (int)36 + f->reclen; assert(missingrec0>0); ssw_readbytes(f,buf+36,missingrec0); //Check final marker: uint64_t lenrec0_b; if (f->reclen==4) lenrec0_b = *((uint32_t*)(buf+(rec0begin+lenrec0))); else lenrec0_b = *((uint64_t*)(buf+(rec0begin+lenrec0))); if (lenrec0!=lenrec0_b) return ssw_openerror(f,"ssw_open_file error: Unexpected header contents\n"); //decode first record, inspired by ssw.py: if (f->mcnp_type == SSW_MCNP6) { char * r = buf + rec0begin; unsigned n; memcpy(f->kods,r, n=8); r += n; memcpy(f->vers,r, n=5); r += n; memcpy(f->lods,r, n=28); r += n; memcpy(f->idtms,r, n=18); r += n; memcpy(f->aids,r, n=mcnp6_lenaids); f->probs[0]='\0'; } else if (f->mcnp_type == SSW_MCNPX) { assert(lenrec0==163||lenrec0==167); char * r = buf + f->reclen; unsigned n; memcpy(f->kods,r, n=8); r += n; memcpy(f->vers,r, n=5); r += n; memcpy(f->lods,r, n=28); r += n; memcpy(f->idtms,r, n=19); r += n; memcpy(f->probs,r, n=19); r += n; memcpy(f->aids,r, n=80); } else { assert(f->mcnp_type == SSW_MCNP5); assert(lenrec0==143); char * r = buf + f->reclen; unsigned n; memcpy(f->kods,r, n=8); r += n; memcpy(f->vers,r, n=5); r += n; memcpy(f->lods,r, n=8); r += n; memcpy(f->idtms,r, n=19); r += n; memcpy(f->probs,r, n=19); r += n; memcpy(f->aids,r, n=80); } char * tmp; tmp = f->kods; ssw_strip(&tmp); tmp = f->vers; ssw_strip(&tmp); tmp = f->lods; ssw_strip(&tmp); tmp = f->idtms; ssw_strip(&tmp); tmp = f->probs; ssw_strip(&tmp); tmp = f->aids; ssw_strip(&tmp); const char * bn = strrchr(filename, '/'); bn = bn ? bn + 1 : filename; printf("ssw_open_file: Opened file \"%s\":\n",bn); const char * expected_kods = (f->mcnp_type == SSW_MCNPX?"mcnpx":"mcnp"); if (strcmp(f->kods,expected_kods)!=0) { printf("ssw_open_file WARNING: Unusual MCNP flavour detected (\"%s\").\n",f->kods); } if (f->mcnp_type==SSW_MCNP6) { if ( strcmp(f->vers,"6")!=0 && strcmp(f->vers,"6.mpi")!=0 ) { printf("ssw_open_file WARNING: Untested MCNP6 source version : \"%s\". (feedback" " appreciated at https://mctools.github.io/mcpl/contact/)\n",f->vers); } } else if (f->mcnp_type==SSW_MCNPX) { if ( strcmp(f->vers,"2.5.0")!=0 && strcmp(f->vers,"2.6.0")!=0 && strcmp(f->vers,"2.7.0")!=0 && strcmp(f->vers,"26b")!=0 ) printf("ssw_open_file WARNING: Untested MCNPX source version : \"%s\". (feedback" " appreciated at https://mctools.github.io/mcpl/contact/)\n",f->vers); } else if (f->mcnp_type==SSW_MCNP5) { if ( strcmp(f->vers,"5")!=0 ) printf("ssw_open_file WARNING: Untested MCNP5 source version : \"%s\". (feedback" " appreciated at https://mctools.github.io/mcpl/contact/)\n",f->vers); } return out; } ssw_file_t ssw_open_file( const char * filename ) { if (!filename) ssw_error("ssw_open_file called with null string for filename"); //Open, classify and process first record with mcnp type and version info: ssw_file_t out = ssw_open_and_procrec0( filename ); ssw_fileinternal_t * f = (ssw_fileinternal_t *)out.internal; assert(f); //Skip a record: if (!ssw_loadrecord(f)) return ssw_openerror(f,"ssw_open_file error: problems loading record"); //Position of current record payload in file: long int current_recpos; #ifdef SSWREAD_HASZLIB if (f->filegz) current_recpos = gztell(f->filegz); else #endif current_recpos = ftell(f->file); current_recpos -= f->reclen; current_recpos -= f->lbuf; //Read size data and mark position of nrss & np1 variables. int32_t * bi = (int32_t*)f->buf; if ( (f->mcnp_type == SSW_MCNP6) && f->lbuf>=32 ) { f->np1 = bi[0]; f->np1pos = current_recpos + 0 * sizeof(int32_t); f->nrss = bi[2]; f->nrsspos = current_recpos + 2 * sizeof(int32_t); f->nrcd = abs(bi[4]); f->njsw = bi[5]; f->niss = bi[6]; } else if ( (f->mcnp_type == SSW_MCNPX) && f->lbuf==20 ) { f->np1 = bi[0]; f->np1pos = current_recpos + 0 * sizeof(int32_t); f->nrss = bi[1]; f->nrsspos = current_recpos + 1 * sizeof(int32_t); f->nrcd = bi[2]; f->njsw = bi[3]; f->niss = bi[4]; } else if ( (f->mcnp_type == SSW_MCNP5) && f->lbuf==32 ) { int64_t np1_64 = ((int64_t*)f->buf)[0]; if (np1_64 > 2147483647 || np1_64 < -2147483647) return ssw_openerror(f,"ssw_open_file error: MCNP5 files with more than 2147483647" " histories are not supported"); f->np1 = (int32_t)np1_64; f->np1pos = current_recpos + 0 * sizeof(int64_t); uint64_t nrss_64 = ((uint64_t*)f->buf)[1]; if (nrss_64 > 2147483647 ) return ssw_openerror(f,"ssw_open_file error: MCNP5 files with more than 2147483647" " particles are not supported"); f->nrss = (int32_t)nrss_64; f->nrsspos = current_recpos + 1 * sizeof(int64_t); f->nrcd = bi[4]; f->njsw = bi[5]; f->niss = bi[6]; } else if (f->lbuf==40) { printf("ssw_open_file WARNING: File format has header format for which decoding was never tested (feedback" " appreciated at https://mctools.github.io/mcpl/contact/).\n"); f->np1 = bi[0]; f->np1pos = current_recpos + 0 * sizeof(int32_t); f->nrss = bi[2]; f->nrsspos = current_recpos + 2 * sizeof(int32_t); f->nrcd = bi[4]; f->njsw = bi[6]; f->niss = bi[8]; } else { return ssw_openerror(f,"ssw_open_file error: Unexpected record length"); } printf("ssw_open_file: File layout detected : %s\n",ssw_mcnpflavour(out)); printf("ssw_open_file: Code ID fields : \"%s\" / \"%s\"\n",f->kods,f->vers); printf("ssw_open_file: Title field : \"%s\"\n",f->aids); /* printf("ssw_open_file: Found kods = '%s'\n",f->kods); */ /* printf("ssw_open_file: Found vers = '%s'\n",f->vers); */ /* printf("ssw_open_file: Found lods = '%s'\n",f->lods); */ /* printf("ssw_open_file: Found idtms = '%s'\n",f->idtms); */ /* printf("ssw_open_file: Found probs = '%s'\n",f->probs); */ /* printf("ssw_open_file: Found aids = '%s'\n",f->aids); */ printf("ssw_open_file: Source statistics (histories): %11i\n" , abs(f->np1)); printf("ssw_open_file: Particles in file : %11i\n" , f->nrss); printf("ssw_open_file: Number of surfaces : %11i\n" , f->njsw); printf("ssw_open_file: Histories at surfaces : %11i\n" , f->niss); // printf("ssw_open_file: File length of SSB array : %11i\n" , f->nrcd); if(f->nrcd==6) return ssw_openerror(f,"ssw_open_file error: SSW files with spherical sources are not currently supported."); if(f->nrcd<10) return ssw_openerror(f,"ssw_open_file error: Too short SSB arrays in file"); if(f->nrcd>11) return ssw_openerror(f,"ssw_open_file error: Unexpected length of SSB arrays in file"); if ( (f->mcnp_type == SSW_MCNP6) && f->nrcd==10 ) return ssw_openerror(f,"ssw_open_file error: Unexpected length of SSB arrays in MCNP6 file"); int32_t niwr = 0; if (f->np1==0) return ssw_openerror(f,"ssw_open_file error: File has 0 particle histories which should not be possible"); if (f->np1<0) {//Sign is well-defined since f->np1!=0 f->np1 = - f->np1; if (!ssw_loadrecord(f)) return ssw_openerror(f,"ssw_open_file error: problems loading record"); niwr = bi[0]; //mipts = bi[1];//source particle type //kjaq = bi[2];//macrobody facet flag } //skip over njsw + niwr + 1 records which we are not interested in: int i; for (i = 0; i < f->njsw+niwr+1; ++i) { if (!ssw_loadrecord(f)) return ssw_openerror(f,"ssw_open_file error: problems loading record"); } //End of header? Mark the position: f->pos = 0; #ifdef SSWREAD_HASZLIB if (f->filegz) f->headlen = gztell(f->filegz); else #endif f->headlen = ftell(f->file); //Check that it was really the end of the header by preloading the next //record(s) and checking if the length corresponds to that of particle data //(NB: ssw_load_particle knows that the particle at position 0 will have //already been loaded by these checks). See also //https://github.com/mctools/mcpl/issues/45: unsigned nmaxunexpected = 3; while ( nmaxunexpected-- > 0 ) { if (!ssw_loadrecord(f)) { //For files with 0 particles, we assume (this is not guaranteed of //course!) that the failure is due to EOF: if (f->nrss==0) break; //But this is certainly an error for files with >0 particles: return ssw_openerror(f,"ssw_open_file error: problems loading record"); } if ( f->nrss > 0 && f->lbuf == (unsigned)8*f->nrcd ) { //Looks like we preloaded the first particle of the file! break; } else { //Looks like this could not be a particle, so we interpret this as if the //header was actually one record longer than previously thought: f->headlen += f->reclen * 2 + f->lbuf; printf("ssw_open_file WARNING: Unexpected %i byte record encountered at end of header. Continuing under the assumption it contains valid configuration data.\n",f->lbuf); } } //Return handle: out.internal = f; return out; } //Query header info: unsigned long ssw_nparticles(ssw_file_t ff) { SSW_FILEDECODE; return f->nrss; } const char* ssw_srcname(ssw_file_t ff) { SSW_FILEDECODE; return f->kods; } const char* ssw_srcversion(ssw_file_t ff) { SSW_FILEDECODE; return f->vers; } const char* ssw_title(ssw_file_t ff) { SSW_FILEDECODE; return f->aids; } int ssw_is_mcnp6(ssw_file_t ff) { SSW_FILEDECODE; return f->mcnp_type == SSW_MCNP6; } int ssw_is_mcnpx(ssw_file_t ff) { SSW_FILEDECODE; return f->mcnp_type == SSW_MCNPX; } int ssw_is_mcnp5(ssw_file_t ff) { SSW_FILEDECODE; return f->mcnp_type == SSW_MCNP5; } const char * ssw_mcnpflavour(ssw_file_t ff) { SSW_FILEDECODE; switch(f->mcnp_type) { case SSW_MCNP5: return "MCNP5"; case SSW_MCNP6: return "MCNP6"; case SSW_MCNPX: return "MCNPX"; default: ssw_error("ssw_mcnpflavour: logic error.\n"); } return "MCNP_logic_error"; } int ssw_is_gzipped(ssw_file_t ff) { SSW_FILEDECODE; #ifdef SSWREAD_HASZLIB if (f->filegz) return 1; #endif return 0; } void ssw_layout(ssw_file_t ff, int* reclen, int* ssblen, int64_t* hdrlen, int64_t* np1pos, int64_t* nrsspos) { SSW_FILEDECODE; *reclen = f->reclen; *ssblen = f->nrcd; *np1pos = f->np1pos; *nrsspos = f->nrsspos; *hdrlen = f->headlen; } //load next particle (null indicates eof): const ssw_particle_t * ssw_load_particle(ssw_file_t ff) { SSW_FILEDECODE; if (f->pos >= f->nrss) return 0; ++f->pos; //The record of the first particle in the file is always pre-loaded during //initialisation, for the others we must consume another record: if ( f->pos > 1 && !ssw_loadrecord(f) ) { ssw_error("ssw_load error: problems loading particle record\n"); return 0; } if (f->lbuf != (unsigned)8*f->nrcd) { ssw_error("ssw_load error: unexpected particle data length"); return 0; } double * ssb = (double*)f->buf; ssw_particle_t* p = &(f->part); p->weight = ssb[2]; p->ekin = ssb[3];//MeV p->time = ssb[4]; p->x = ssb[5]; p->y = ssb[6]; p->z = ssb[7]; p->dirx = ssb[8]; p->diry = ssb[9]; int64_t nx = ssb[1]; if (nx<0) nx = - nx;//sign is used for sign of dirz (see below) if ( f->mcnp_type == SSW_MCNP6 ) { assert(f->nrcd==11); p->isurf = labs((int32_t)ssb[10]); nx /= 4;//ignore two lowest bits, maybe used to indicate cell-source-particle and energy-group mode (??) p->rawtype = nx; p->pdgcode = conv_mcnp6_ssw2pdg(nx); if (!p->pdgcode) printf("ssw_load_particle WARNING: Could not convert raw MCNP6 SSW type (%li) to pdg code\n",(long)(p->rawtype)); } else if ( f->mcnp_type == SSW_MCNPX ) { p->isurf = nx % 1000000; p->rawtype = nx / 1000000; p->pdgcode = conv_mcnpx_ssw2pdg(p->rawtype); if (!p->pdgcode) printf("ssw_load_particle WARNING: Could not convert raw MCNPX SSW type (%li) to pdg code\n",(long)(p->rawtype)); } else { assert( f->mcnp_type == SSW_MCNP5 ); nx /= 8;//Guess: Get rid of some bits that might be used for something else p->isurf = nx % 1000000; p->rawtype = nx / 1000000; p->rawtype /= 100;//Guess: Get rid of some "bits" that might be used for something else p->pdgcode = (p->rawtype==1?2112:(p->rawtype==2?22:0));//only neutrons and gammas in MCNP5 if (!p->pdgcode) printf("ssw_load_particle WARNING: Could not convert raw MCNP5 SSW type (%li) to pdg code\n",(long)(p->rawtype)); } p->dirz = sqrt(fmax(0.0, 1. - p->dirx*p->dirx-p->diry*p->diry)); if (ssb[1]<0.0) p->dirz = - p->dirz; return p; } static int32_t conv_mcnpx_to_pdg_0to34[] = { 0, 2112, 22, 11, 13, 15, 12, 14, 16, 2212, 3122, 3222, 3112, 3322, 3312, 3334, 4122, 4232, 4132, 5122, 211, 111, 321, 310, 130, 411, 421, 431, 521, 511, 531, 1000010020, 1000010030, 1000020030, 1000020040 }; static int32_t conv_mcnp6_to_pdg_0to36[] = { 0, 2112, 22, 11, 13, -2112, 12, 14, -11, 2212, 3122, 3222, 3112, 3322, 3312, 3334, -13, -12, -14, -2212, 211, 111, 321, 310, 130, -3122, -3222, -3112, -3322, -3312, -3334, 1000010020, 1000010030, 1000020030, 1000020040, -211, -321 }; int32_t conv_mcnpx_ssw2pdg( int32_t c ) { if (c<0) return 0; if (c<=34) return conv_mcnpx_to_pdg_0to34[c]; if (c>=401&&c<=434) return c==402 ? 22 : - conv_mcnpx_to_pdg_0to34[c%100]; int32_t sign = 1; if (c%1000==435) { sign = -1; c -= 400; } if (c%1000==35) { //ion from MMMAAA035 where MMM = Z-1 to 100ZZZAAA0 c /= 1000; long A = c%1000; if (!A) return 0; c /= 1000; if (c/1000) return 0; long ZM1 = c%1000; return sign * (1000000000 + (ZM1+1)*10000 + A*10); } //Retry without non-type related parts: int j = (c%1000)/100; if (j==2||j==6) return conv_mcnpx_ssw2pdg(c-200); return 0; } int32_t conv_mcnp6_ssw2pdg( int32_t c ) { if (c<0) return 0; int antibit = c%2; c /= 2; int ptype = c%64; c /= 64; if (ptype<=36) { //Note that A (see below) has been observed in SSW files to have non-zero //values for ptype<37 as well, so don't require A, Z or S to be 0 here. int32_t p = conv_mcnp6_to_pdg_0to36[ptype]; return (antibit&&p!=22) ? -p : p; } if (ptype==37) { int A = c%512; c /= 512; int Z = c%128; c /= 128; int S = c; if (A<1||Z<1||A9) return 0; int32_t p = 1000000000 + 10000*Z + 10*A + S; return antibit ? -p : p; } return 0; } int32_t conv_mcnpx_pdg2ssw( int32_t c ) { int32_t absc = c < 0 ? -c : c; if (absc <= 1000020040) { int i; for (i = 0; i<35; ++i) { if (conv_mcnpx_to_pdg_0to34[i]==c) return i; } for (i = 0; i<35; ++i) { if (conv_mcnpx_to_pdg_0to34[i] == -c) return 400+i; } } if (absc>1000000000&&absc<=1009999990) { //Ions. PDG format for ions is 10LZZZAAAI, where L!=0 indicates strangeness //and I!=0 indicates exited nuclei. We only allow L=I=0 ions here. int32_t I = absc % 10;//isomer level absc/=10; int32_t A = absc%1000; absc/=1000; int32_t Z = absc % 1000; assert(absc/1000==100);//L=0 guaranteed by enclosing condition. if ( I || !A || !Z || Z>A ) return 0; return (Z-1)*1000000 + A*1000 + ( c<0 ? 435 : 35 ); } return 0; } int32_t conv_mcnp6_pdg2ssw( int32_t c ) { int32_t absc = c < 0 ? -c : c; if (absc <= 1000020040) { if (c==-11) return 7;//e+ is special case, pick 7 (anti e-) rather than 16 (straight e+) int i; for (i = 0; i<37; ++i) { if (conv_mcnp6_to_pdg_0to36[i]==c) return 2*i; } for (i = 0; i<37; ++i) { if (conv_mcnp6_to_pdg_0to36[i] == -c) return 1 + 2*i; } } if (absc>1000000000&&absc<=1009999990) { //Ions. PDG format for ions is 10LZZZAAAI, where L!=0 indicates strangeness //and I!=0 indicates exited nuclei. We only allow L=0 ions here. int32_t I = absc % 10;//isomer level absc/=10; int32_t A = absc%1000; absc/=1000; int32_t Z = absc % 1000; assert(absc/1000==100);//L=0 guaranteed by enclosing condition. if ( !A || !Z || Z>A ) return 0; int32_t res = (c<0?1:0); res += 2*37; res += 128*A; res += 128*512*Z; res += 128*512*128*I; return res; } return 0; } mcpl-1.3.2/src/mcnpssw/sswread.h000066400000000000000000000112411361775146500165700ustar00rootroot00000000000000#ifndef sswread_h #define sswread_h ///////////////////////////////////////////////////////////////////////////////////// // // // Code for reading SSW files from MCNP(X). Not all versions of the format has // // been tested, but it is the hope that this will at the very least provide // // reliable functionality for extracting the particle information within. // // // // The code was written with help from E. Klinkby DTU NuTech and under // // inspiration from equivalent programs written in Fortran (E. Klinkby DTU // // NuTech with help from H. Breitkreutz) and in python (PyNE & mc-tools by K. // // Batkov ESS). // // // // Refer to the top of sswread.c for details regarding how to build. // // // // This file can be freely used as per the terms in the LICENSE file. // // // // However, note that usage of MCNP(X)-related utilities might require additional // // permissions and licenses from third-parties, which is not within the scope of // // the MCPL project itself. // // // // Written 2015-2017, thomas.kittelmann@esss.se (European Spallation Source). // // // ///////////////////////////////////////////////////////////////////////////////////// #include #ifdef __cplusplus extern "C" { #endif typedef struct { void * internal; } ssw_file_t; typedef struct { double x;//cm double y;//cm double z;//cm double dirx; double diry; double dirz; double weight; double ekin;//MeV double time;//"shakes" (1e-8seconds) long rawtype;//raw particle type encoding (mcnpx and mcnp6 employs different schemes) long pdgcode;//rawtype converted to PDG codes. long isurf; } ssw_particle_t; //Open file (can read gzipped ssw .gz files directly if zlib usage is enabled): ssw_file_t ssw_open_file(const char * filename); //Query header info: unsigned long ssw_nparticles(ssw_file_t); const char* ssw_srcname(ssw_file_t);//Usually "mcnp" or "mcnpx" const char* ssw_srcversion(ssw_file_t); const char* ssw_title(ssw_file_t);//Problem title from input deck int ssw_is_gzipped(ssw_file_t);//whether input file was gzipped int ssw_is_mcnp6(ssw_file_t); int ssw_is_mcnp5(ssw_file_t); int ssw_is_mcnpx(ssw_file_t); const char * ssw_mcnpflavour(ssw_file_t);//string like "MCNPX" or "MCNP6" //load next particle (null indicates eof): const ssw_particle_t * ssw_load_particle(ssw_file_t); //close file and release resources: void ssw_close_file(ssw_file_t); //Advanced info about file layout: void ssw_layout(ssw_file_t, int* reclen, int* ssblen, int64_t* hdrlen, int64_t* np1pos, int64_t* nrsspos); //////////////////////////////////////////////////////////////////////////// // // // Utility functions for converting between particle codes used in SSW // // files from MCNPX or MCNP6 and the codes from the Particle Data Group: // // // // http://pdg.lbl.gov/2014/reviews/rpp2014-rev-monte-carlo-numbering.pdf // // // // Note that all the functions here return 0 when the code could not be // // converted. This might not be an error as such, but could indicate an // // exotic particle which has no code assigned in the target MCNP scheme. // // // // MCNP5 does not have it's own function as it only supports neutrons // // (1<->2112) and gammas (2<->22). // // // //////////////////////////////////////////////////////////////////////////// int32_t conv_mcnpx_ssw2pdg(int32_t); int32_t conv_mcnp6_ssw2pdg(int32_t); int32_t conv_mcnpx_pdg2ssw(int32_t); int32_t conv_mcnp6_pdg2ssw(int32_t); #ifdef __cplusplus } #endif #endif mcpl-1.3.2/src/mcpl/000077500000000000000000000000001361775146500142115ustar00rootroot00000000000000mcpl-1.3.2/src/mcpl/mcpl.c000066400000000000000000002614711361775146500153230ustar00rootroot00000000000000 ///////////////////////////////////////////////////////////////////////////////////// // // // Monte Carlo Particle Lists : MCPL // // // // Utilities for reading and writing .mcpl files: A binary format with lists of // // particle state information, for interchanging and reshooting events between // // various Monte Carlo simulation applications. // // // // Client code including mcpl.h does not need any special build flags and can // // be compiled with any complient compiler and any current C or C++ standard. // // // // Compilation of mcpl.c on the other hand is currently not supported for C89, // // although this could be revisited. Thus, compilation of mcpl.c can proceed // // using any complient C-compiler using -std=c99 or -std=c11 or any complient // // C++ compiler using any version of the C++ standard, and the resulting code // // must always be linked with libm (using -lm). Furthermore, the following // // preprocessor flags can be used when compiling mcpl.c to fine tune the build // // process and the capabilities of the resulting binary. // // // // MCPL_HASZLIB : Define if compiling and linking with zlib, to allow // // direct reading of .mcpl.gz files. // // MCPL_ZLIB_INCPATH : Specify alternative value if the zlib header is not to // // be included as "zlib.h". // // MCPL_HEADER_INCPATH : Specify alternative value if the MCPL header itself is // // not to be included as "mcpl.h". // // MCPL_NO_EXT_GZIP : Define to make sure that mcpl_gzip_file will never // // compress via a separate process running a system- // // provided gzip executable. // // MCPL_NO_CUSTOM_GZIP : Define to make sure that mcpl_gzip_file will never // // compress via custom zlib-based code. // // // // This file can be freely used as per the terms in the LICENSE file. // // // // Find more information and updates at https://mctools.github.io/mcpl/ // // // // Written by Thomas Kittelmann, 2015-2017. // // // ///////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////// // MCPL_FORMATVERSION history: // // // // 3: Current version. Changed packing of unit vectors from octahedral to // // the better performing "Adaptive Projection Packing". // // 2: First public release. // // 1: Format used during early development. No longer supported. // ///////////////////////////////////////////////////////////////////////////////////// //Rough platform detection (could be much more fine-grained): #if defined(__unix__) || defined(__unix) || (defined(__APPLE__) && defined(__MACH__)) # define MCPL_THIS_IS_UNIX #endif #if defined(MSDOS) || defined(OS2) || defined(WIN32) || defined(_WIN32) || defined(__CYGWIN__) # ifdef MCPL_THIS_IS_UNIX # undef MCPL_THIS_IS_UNIX # endif # define MCPL_THIS_IS_MS #endif //Before including mcpl.h, we attempt to get PRIu64 defined in a relatively //robust manner by enabling feature test macros for gcc and including relevant //headers: #ifndef __STDC_FORMAT_MACROS # define __STDC_FORMAT_MACROS #endif #ifndef _POSIX_C_SOURCE # define _POSIX_C_SOURCE 200809L #endif #ifndef _ISOC99_SOURCE # define _ISOC99_SOURCE 1 #endif #ifndef _C99_SOURCE # define _C99_SOURCE 1 #endif #include #include #ifndef PRIu64//bad compiler - fallback to guessing # if defined(_MSC_VER) && (_MSC_VER<1900) # define PRIu64 "I64u" # else # if defined(__WORDSIZE) && (__WORDSIZE==64) # define PRIu64 "lu" # else # define PRIu64 "llu" # endif # endif #endif #ifdef MCPL_HEADER_INCPATH # include MCPL_HEADER_INCPATH #else # include "mcpl.h" #endif #ifdef MCPL_HASZLIB # ifdef MCPL_ZLIB_INCPATH # include MCPL_ZLIB_INCPATH # else # include "zlib.h" # endif #endif #include #include #include #include #include #include #ifdef MCPL_THIS_IS_MS # include # include #endif #define MCPLIMP_NPARTICLES_POS 8 #define MCPLIMP_MAX_PARTICLE_SIZE 96 int mcpl_platform_is_little_endian() { //Return 0 for big endian, 1 for little endian. volatile uint32_t i=0x01234567; return (*((uint8_t*)(&i))) == 0x67; } void mcpl_default_error_handler(const char * msg) { printf("MCPL ERROR: %s\n",msg); exit(1); } static void (*mcpl_error_handler)(const char *) = &mcpl_default_error_handler; void mcpl_error(const char * msg) { mcpl_error_handler(msg); //Error handler should not return, but in case it does anyway, we at least //ensure a hard exit! mcpl_default_error_handler("Handler given to mcpl_set_error_handler returns" " to calling code which is not allowed!"); } void mcpl_set_error_handler(void (*handler)(const char *)) { mcpl_error_handler = handler; } void mcpl_store_string(char** dest, const char * src) { size_t n = strlen(src); if (n>65535) n = 65535; if (*dest) free(*dest); *dest = (char*)calloc(n+1,1); assert(*dest); strncpy( *dest,src,n ); (*dest)[n] = '\0'; return; } void mcpl_write_buffer(FILE* f, uint32_t n, const char * data, const char * errmsg) { size_t nb = fwrite(&n, 1, sizeof(n), f); if (nb!=sizeof(n)) mcpl_error(errmsg); nb = fwrite(data, 1, n, f); if (nb!=n) mcpl_error(errmsg); } void mcpl_write_string(FILE* f, const char * str, const char * errmsg) { size_t n = strlen(str); mcpl_write_buffer(f,n,str,errmsg);//nb: we don't write the terminating null-char } typedef struct { char * filename; FILE * file; char * hdr_srcprogname; uint32_t ncomments; char ** comments; uint32_t nblobs; char ** blobkeys; uint32_t * bloblengths; char ** blobs; int opt_userflags; int opt_polarisation; int opt_singleprec; int32_t opt_universalpdgcode; double opt_universalweight; int header_notwritten; uint64_t nparticles; unsigned particle_size; mcpl_particle_t* puser; unsigned opt_signature; char particle_buffer[MCPLIMP_MAX_PARTICLE_SIZE]; } mcpl_outfileinternal_t; #define MCPLIMP_OUTFILEDECODE mcpl_outfileinternal_t * f = (mcpl_outfileinternal_t *)of.internal; assert(f) void mcpl_recalc_psize(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; unsigned fp = f->opt_singleprec ? sizeof(float) : sizeof(double); f->particle_size = 7*fp; if (f->opt_polarisation) f->particle_size += 3*fp; if (!f->opt_universalpdgcode) f->particle_size += sizeof(int32_t); if (!f->opt_universalweight) f->particle_size += fp; if (f->opt_userflags) f->particle_size += sizeof(uint32_t); assert(f->particle_size<=MCPLIMP_MAX_PARTICLE_SIZE); f->opt_signature = 0 + 1 * f->opt_singleprec + 2 * f->opt_polarisation + 4 * f->opt_universalpdgcode + 8 * (f->opt_universalweight?1:0) + 16 * f->opt_userflags; } void mcpl_platform_compatibility_check() { static int first = 1; if (!first) return; first = 0; if (CHAR_BIT!=8) mcpl_error("Platform compatibility check failed (bytes are not 8 bit)"); if (sizeof(float)!=4) mcpl_error("Platform compatibility check failed (float is not 4 bytes)"); if (sizeof(double)!=8) mcpl_error("Platform compatibility check failed (double is not 8 bytes)"); int32_t m1_32 = -1; int32_t not0_32 = ~0; int64_t m1_64 = -1; int64_t not0_64 = ~0; if ( m1_32 != not0_32 || m1_64 != not0_64 ) mcpl_error("Platform compatibility check failed (integers are not two's complement)"); if (copysign(1.0, -0.0) != -1.0) mcpl_error("Platform compatibility check failed (floating point numbers do not have signed zero)"); mcpl_particle_t pd; if ( (char*)&(pd.userflags)-(char*)&(pd) != 12*sizeof(double)+sizeof(uint32_t) ) mcpl_error("Platform compatibility check failed (unexpected padding in mcpl_particle_t)"); } mcpl_outfile_t mcpl_create_outfile(const char * filename) { //Sanity check chosen filename and append ".mcpl" if missing to help people //who forgot to add the extension (in the hope of higher consistency). if (!filename) mcpl_error("mcpl_create_outfile called with null string."); size_t n = strlen(filename); if (!n) mcpl_error("mcpl_create_outfile called with empty string."); if (n>4096) mcpl_error("mcpl_create_outfile called with too long string."); const char * lastdot = strrchr(filename, '.'); if (lastdot==filename && n==5) mcpl_error("mcpl_create_outfile called with string with no basename part (\".mcpl\")."); //Initialise data structures and open file: mcpl_platform_compatibility_check(); mcpl_outfile_t out; out.internal = 0; mcpl_outfileinternal_t * f = (mcpl_outfileinternal_t*)calloc(sizeof(mcpl_outfileinternal_t),1); assert(f); if (!lastdot || strcmp(lastdot, ".mcpl") != 0) { f->filename = (char*)malloc(n+6); f->filename[0] = '\0'; strcat(f->filename,filename); strcat(f->filename,".mcpl"); } else { f->filename = (char*)malloc(n+1); f->filename[0] = '\0'; strcat(f->filename,filename); } f->hdr_srcprogname = 0; f->ncomments = 0; f->comments = 0; f->nblobs = 0; f->blobkeys = 0; f->bloblengths = 0; f->blobs = 0; f->opt_userflags = 0; f->opt_polarisation = 0; f->opt_singleprec = 1; f->opt_universalpdgcode = 0; f->opt_universalweight = 0.0; f->header_notwritten = 1; f->nparticles = 0; f->file = fopen(f->filename,"wb"); if (!f->file) mcpl_error("Unable to open output file!"); out.internal = f; mcpl_recalc_psize(out); return out; } const char * mcpl_outfile_filename(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; return f->filename; } void mcpl_hdr_set_srcname(mcpl_outfile_t of,const char * spn) { MCPLIMP_OUTFILEDECODE; if (!f->header_notwritten) mcpl_error("mcpl_hdr_set_srcname called too late."); mcpl_store_string(&(f->hdr_srcprogname),spn); } void mcpl_hdr_add_comment(mcpl_outfile_t of,const char *comment) { MCPLIMP_OUTFILEDECODE; if (!f->header_notwritten) mcpl_error("mcpl_hdr_add_comment called too late."); size_t oldn = f->ncomments; f->ncomments += 1; if (oldn) f->comments = (char **)realloc(f->comments,f->ncomments * sizeof(char*) ); else f->comments = (char **)calloc(f->ncomments,sizeof(char*)); f->comments[oldn] = 0; mcpl_store_string(&(f->comments[oldn]),comment); } void mcpl_hdr_add_data(mcpl_outfile_t of, const char * key, uint32_t ldata, const char * data) { MCPLIMP_OUTFILEDECODE; if (!f->header_notwritten) mcpl_error("mcpl_hdr_add_data called too late."); size_t oldn = f->nblobs; f->nblobs += 1; //Check that key is unique unsigned i; for (i =0; iblobkeys[i],key)==0) mcpl_error("mcpl_hdr_add_data got duplicate key"); } //store key: if (oldn) f->blobkeys = (char **)realloc(f->blobkeys,f->nblobs * sizeof(char*) ); else f->blobkeys = (char **)calloc(f->nblobs,sizeof(char*)); f->blobkeys[oldn] = 0; mcpl_store_string(&(f->blobkeys[oldn]),key); //store blob-lengths: if (oldn) f->bloblengths = (uint32_t*)realloc(f->bloblengths,f->nblobs * sizeof(uint32_t) ); else f->bloblengths = (uint32_t *)calloc(f->nblobs,sizeof(uint32_t)); f->bloblengths[oldn] = ldata; //store data: if (oldn) f->blobs = (char **)realloc(f->blobs,f->nblobs * sizeof(char*) ); else f->blobs = (char **)calloc(f->nblobs,sizeof(char*)); f->blobs[oldn] = (char *)malloc(ldata); memcpy(f->blobs[oldn],data,ldata); } void mcpl_enable_userflags(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; if (f->opt_userflags) return; if (!f->header_notwritten) mcpl_error("mcpl_enable_userflags called too late."); f->opt_userflags = 1; mcpl_recalc_psize(of); } void mcpl_enable_polarisation(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; if (f->opt_polarisation) return; if (!f->header_notwritten) mcpl_error("mcpl_enable_polarisation called too late."); f->opt_polarisation = 1; mcpl_recalc_psize(of); } void mcpl_enable_doubleprec(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; if (!f->opt_singleprec) return; if (!f->header_notwritten) mcpl_error("mcpl_enable_doubleprec called too late."); f->opt_singleprec = 0; mcpl_recalc_psize(of); } void mcpl_enable_universal_pdgcode(mcpl_outfile_t of, int32_t pdgcode) { MCPLIMP_OUTFILEDECODE; if (pdgcode==0) mcpl_error("mcpl_enable_universal_pdgcode must be called with non-zero pdgcode."); if (f->opt_universalpdgcode) { if (f->opt_universalpdgcode!=pdgcode) mcpl_error("mcpl_enable_universal_pdgcode called multiple times"); return; } if (!f->header_notwritten) mcpl_error("mcpl_enable_universal_pdgcode called too late."); f->opt_universalpdgcode = pdgcode; mcpl_recalc_psize(of); } void mcpl_enable_universal_weight(mcpl_outfile_t of, double w) { MCPLIMP_OUTFILEDECODE; if (w<=0.0||isinf(w)||isnan(w)) mcpl_error("mcpl_enable_universal_weight must be called with positive but finite weight."); if (f->opt_universalweight) { if (f->opt_universalweight!=w) mcpl_error("mcpl_enable_universal_weight called multiple times"); return; } if (!f->header_notwritten) mcpl_error("mcpl_enable_universal_weight called too late."); f->opt_universalweight = w; mcpl_recalc_psize(of); } void mcpl_write_header(mcpl_outfileinternal_t * f) { if (!f->header_notwritten) mcpl_error("Logical error!"); const char * errmsg="Errors encountered while attempting to write file header."; //Always start the file with an unsigned char-array (for endian agnosticity) //containing magic word (MCPL), file format version ('001'-'999') and //endianness used in the file ('L' or 'B'): unsigned char start[8] = {'M','C','P','L','0','0','0','L'}; start[4] = (MCPL_FORMATVERSION/100)%10 + '0'; start[5] = (MCPL_FORMATVERSION/10)%10 + '0'; start[6] = MCPL_FORMATVERSION%10 + '0'; if (!mcpl_platform_is_little_endian()) start[7] = 'B'; size_t nb = fwrite(start, 1, sizeof(start), f->file); if (nb!=sizeof(start)) mcpl_error(errmsg); //Right after the initial 8 bytes, we put the number of particles (0 for now, //but important that position is fixed so we can seek and update it later).: long int nparticles_pos = ftell(f->file); if (nparticles_pos!=MCPLIMP_NPARTICLES_POS) mcpl_error(errmsg); nb = fwrite(&f->nparticles, 1, sizeof(f->nparticles), f->file); if (nb!=sizeof(f->nparticles)) mcpl_error(errmsg); //Then a bunch of numbers: uint32_t arr[8]; arr[0] = f->ncomments; arr[1] = f->nblobs; arr[2] = f->opt_userflags; arr[3] = f->opt_polarisation; arr[4] = f->opt_singleprec; arr[5] = f->opt_universalpdgcode; arr[6] = f->particle_size; arr[7] = (f->opt_universalweight?1:0); assert(sizeof(arr)==32); nb = fwrite(arr, 1, sizeof(arr), f->file); if (nb!=sizeof(arr)) mcpl_error(errmsg); if (f->opt_universalweight) { assert(sizeof(f->opt_universalweight)==8); nb = fwrite((void*)(&(f->opt_universalweight)), 1, sizeof(f->opt_universalweight), f->file); if (nb!=sizeof(f->opt_universalweight)) mcpl_error(errmsg); } //strings: mcpl_write_string(f->file,f->hdr_srcprogname?f->hdr_srcprogname:"unknown",errmsg); uint32_t i; for (i = 0; i < f->ncomments; ++i) mcpl_write_string(f->file,f->comments[i],errmsg); //blob keys: for (i = 0; i < f->nblobs; ++i) mcpl_write_string(f->file,f->blobkeys[i],errmsg); //blobs: for (i = 0; i < f->nblobs; ++i) mcpl_write_buffer(f->file, f->bloblengths[i], f->blobs[i],errmsg); //Free up acquired memory only needed for header writing: free(f->hdr_srcprogname); f->hdr_srcprogname = 0; if (f->ncomments) { for (i = 0; i < f->ncomments; ++i) free(f->comments[i]); free(f->comments); f->comments=0; f->ncomments=0; } if (f->nblobs) { for (i = 0; i < f->nblobs; ++i) free(f->blobkeys[i]); free(f->blobkeys); f->blobkeys = 0; for (i = 0; i < f->nblobs; ++i) free(f->blobs[i]); free(f->blobs); f->blobs = 0; free(f->bloblengths); f->bloblengths = 0; f->nblobs = 0; } f->header_notwritten = 0; } #ifndef INFINITY //Missing in ICC 12 C99 compilation: # define INFINITY (__builtin_inf()) #endif void mcpl_unitvect_pack_adaptproj(const double* in, double* out) { //Precise packing of unit vector into 2 floats + 1 bit using the "Adaptive //Projection Packing" method (T. Kittelmann, 2017). // //The Adaptive Projection Packing method is a variant on the traditional projection //method where one would store (x,y,sign(z)) and upon unpacking recover the //magnitude of z with |z|=sqrt(1-x^2-y^2), a formula which suffers from //numerical precision issues when |z| is small. In this improved version, one //gets rid of the precision issues by always storing the components that are //smallest in magnitude (the last one must then have a magnitude in the //interval [1/sqrt(3),1] = [0.577,1.0] which is never small). This just leaves //the issue of being able to recognise the coordinate choices again upon //unpacking. Since all components are at most of unit magnitude, this is //achieved by storing 1/z rather than z and replacing either x or y as //needed (infinity when z=0). Thus, the packed data will contain: // // ( 1/z, y, sign(x) ) when |x|>|y|,|z| // ( x, 1/z, sign(y) ) when |y|>|x|,|z| // ( x, y, sign(z) ) when |z|>|x|,|y| // //The unpacking code can determine which of the three scenarios is used to //encode a given piece of data by checking if the first or second field is //greater than unity. // //Note that the arrays "in" and "out" are both of dimension 3, however out[2] //will contain only binary information, in the form of the sign of the //component which was projected away (-1.0 or 1.0). const double absx = fabs(in[0]); const double absy = fabs(in[1]); if ( fabs(in[2]) < fmax(absx,absy) ) { const double invz = ( in[2] ? (1.0/in[2]) : INFINITY ); if (absx>=absy) { //output (1/z,y,sign(x)) out[0] = invz; out[1] = in[1]; out[2] = in[0]; } else { //output (x,1/z,sign(y)) out[0] = in[0]; out[1] = invz; out[2] = in[1]; } } else { //output (x,y,sign(z)) out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; } out[2] = copysign(1.0,out[2]); } void mcpl_unitvect_unpack_adaptproj( const double* in, double* out ) { //Unpacking for the "Adaptive Projection Packing" method (T. Kittelmann, 2017). //See mcpl_unitvect_pack_adaptproj for more information. // //Note that the arrays "in" and "out" are both of dimension 3, however in[2] //will contain only binary information, in the form of the sign of the //component which was projected away. assert(in[2]==1.0||in[2]==-1.0); if (fabs(in[0]) > 1.0) { //input is (1/z,y,sign(x)) out[1] = in[1]; out[2] = 1.0 / in[0]; out[0] = in[2] * sqrt( fmax( 0.0, 1.0 - ( in[1]*in[1] + out[2]*out[2] ) ) ); } else if (fabs(in[1])>1.0) { //input is (x,1/z,sign(y)) out[0] = in[0]; out[2] = 1.0 / in[1]; out[1] = in[2] * sqrt( fmax ( 0.0, 1.0 - ( in[0]*in[0] + out[2]*out[2] ) ) ); } else { //input is (x,y,sign(z)) out[0] = in[0]; out[1] = in[1]; out[2] = in[2] * sqrt( fmax( 0.0, 1.0 - ( in[0]*in[0] + in[1]*in[1] ) ) ); } } void mcpl_unitvect_unpack_oct(const double* in, double* out) { //Octahedral packing inspired by http://jcgt.org/published/0003/02/01/ // //and: // //Octahedron Environment Maps, T. Engelhardt & C. Dachsbacher, Conference: //Proceedings of the Vision, Modeling, and Visualization Conference 2008, VMV //2008, Konstanz, Germany, October 8-10, 2008 // //Note: Octahedral packing was used for the MCPL-2 format, which we are no //longer writing, only reading. Thus, we only keep the unpacking function in //the code. //restore z-coord of octahedron: out[2] = 1.0 - fabs(in[0]) - fabs(in[1]); if (out[2]<0) { //lower hemisphere out[0] = ( 1.0 - fabs( in[1] ) ) * ( in[0] >= 0.0 ? 1.0 : -1.0 ); out[1] = ( 1.0 - fabs( in[0] ) ) * ( in[1] >= 0.0 ? 1.0 : -1.0 ); } else { //upper hemisphere out[0] = in[0]; out[1] = in[1]; } //project from octahedron to unit sphere: double n = 1.0 / sqrt(out[0]*out[0]+out[1]*out[1]+out[2]*out[2]); out[0] *= n; out[1] *= n; out[2] *= n; } void mcpl_internal_serialise_particle_to_buffer( const mcpl_particle_t* particle, mcpl_outfileinternal_t * f ) { //Serialise the provided particle into the particle_buffer of the output file //(according to the settings of the output file). double pack_ekindir[3]; //Sanity check (add more??): double dirsq = particle->direction[0] * particle->direction[0] + particle->direction[1] * particle->direction[1] + particle->direction[2] * particle->direction[2]; if (fabs(dirsq-1.0)>1.0e-5) mcpl_error("attempting to add particle with non-unit direction vector"); if (particle->ekin<0.0) mcpl_error("attempting to add particle with negative kinetic energy"); //direction and ekin are packed into 3 doubles: mcpl_unitvect_pack_adaptproj(particle->direction,pack_ekindir); //pack_ekindir[2] is now just a sign(1.0 or -1.0), so we can store the //ekin in that field as well (since it must be non-negative). We use copysign //to be sure the signbit is set also if ekin=0: pack_ekindir[2] = copysign(particle->ekin,pack_ekindir[2]); //serialise particle object to buffer: unsigned ibuf = 0; char * pbuf = &(f->particle_buffer[0]); int i; if (f->opt_singleprec) { if (f->opt_polarisation) { for (i=0;i<3;++i) { *(float*)&pbuf[ibuf] = (float)particle->polarisation[i]; ibuf += sizeof(float); } } for (i=0;i<3;++i) { *(float*)&pbuf[ibuf] = (float)particle->position[i]; ibuf += sizeof(float); } for (i=0;i<3;++i) { *(float*)&pbuf[ibuf] = (float)pack_ekindir[i]; ibuf += sizeof(float); } *(float*)&pbuf[ibuf] = (float)particle->time; ibuf += sizeof(float); if (!f->opt_universalweight) { *(float*)&pbuf[ibuf] = (float)particle->weight; ibuf += sizeof(float); } } else { if (f->opt_polarisation) { for (i=0;i<3;++i) { *(double*)&pbuf[ibuf] = particle->polarisation[i]; ibuf += sizeof(double); } } for (i=0;i<3;++i) { *(double*)&pbuf[ibuf] = particle->position[i]; ibuf += sizeof(double); } for (i=0;i<3;++i) { *(double*)&pbuf[ibuf] = pack_ekindir[i]; ibuf += sizeof(double); } *(double*)&pbuf[ibuf] = particle->time; ibuf += sizeof(double); if (!f->opt_universalweight) { *(double*)&pbuf[ibuf] = particle->weight; ibuf += sizeof(double); } } if (!f->opt_universalpdgcode) { *(int32_t*)&pbuf[ibuf] = particle->pdgcode; ibuf += sizeof(int32_t); } if (f->opt_userflags) { *(uint32_t*)&pbuf[ibuf] = particle->userflags; #ifndef NDEBUG ibuf += sizeof(uint32_t); #endif } assert(ibuf==f->particle_size); } void mcpl_internal_write_particle_buffer_to_file(mcpl_outfileinternal_t * f ) { //Ensure header is written: if (f->header_notwritten) mcpl_write_header(f); //Increment nparticles and write buffer to file: f->nparticles += 1; size_t nb; nb = fwrite(&(f->particle_buffer[0]), 1, f->particle_size, f->file); if (nb!=f->particle_size) mcpl_error("Errors encountered while attempting to write particle data."); } void mcpl_add_particle(mcpl_outfile_t of,const mcpl_particle_t* particle) { MCPLIMP_OUTFILEDECODE; mcpl_internal_serialise_particle_to_buffer(particle,f); mcpl_internal_write_particle_buffer_to_file(f); } void mcpl_update_nparticles(FILE* f, uint64_t n) { //Seek and update nparticles at correct location in header: const char * errmsg = "Errors encountered while attempting to update number of particles in file."; int64_t savedpos = ftell(f); if (savedpos<0) mcpl_error(errmsg); if (fseek( f, MCPLIMP_NPARTICLES_POS, SEEK_SET )) mcpl_error(errmsg); size_t nb = fwrite(&n, 1, sizeof(n), f); if (nb != sizeof(n)) mcpl_error(errmsg); if (fseek( f, savedpos, SEEK_SET )) mcpl_error(errmsg); } mcpl_particle_t* mcpl_get_empty_particle(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; if (f->puser) { //Calling more than once. This could be innocent, or it could indicate //problems in multi-threaded user-code. Better disallow and give an error: mcpl_error("mcpl_get_empty_particle must not be called more than once per output file"); } else { f->puser = (mcpl_particle_t*)calloc(sizeof(mcpl_particle_t),1); } return f->puser; } void mcpl_close_outfile(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; if (f->header_notwritten) mcpl_write_header(f); if (f->nparticles) mcpl_update_nparticles(f->file,f->nparticles); fclose(f->file); free(f->filename); free(f->puser); free(f); } void mcpl_transfer_metadata(mcpl_file_t source, mcpl_outfile_t target) { //Note that MCPL format version 2 and 3 have the same meta-data in the header, //except of course the version number itself. if (mcpl_hdr_little_endian(source) != mcpl_platform_is_little_endian()) mcpl_error("mcpl_transfer_metadata can only work on files with same endianness as current platform."); mcpl_hdr_set_srcname(target,mcpl_hdr_srcname(source)); unsigned i; for (i = 0; i < mcpl_hdr_ncomments(source); ++i) mcpl_hdr_add_comment(target,mcpl_hdr_comment(source,i)); const char** blobkeys = mcpl_hdr_blobkeys(source); if (blobkeys) { int nblobs = mcpl_hdr_nblobs(source); uint32_t ldata; const char * data; int ii; for (ii = 0; ii < nblobs; ++ii) { int res = mcpl_hdr_blob(source,blobkeys[ii],&ldata,&data); assert(res);//key must exist (void)res; mcpl_hdr_add_data(target, blobkeys[ii], ldata, data); } } if (mcpl_hdr_has_userflags(source)) mcpl_enable_userflags(target); if (mcpl_hdr_has_polarisation(source)) mcpl_enable_polarisation(target); if (mcpl_hdr_has_doubleprec(source)) mcpl_enable_doubleprec(target); int32_t updg = mcpl_hdr_universal_pdgcode(source); if (updg) mcpl_enable_universal_pdgcode(target,updg); double uw = mcpl_hdr_universal_weight(source); if (uw) mcpl_enable_universal_weight(target,uw); } int mcpl_closeandgzip_outfile_rc(mcpl_outfile_t of) { printf("MCPL WARNING: Usage of function mcpl_closeandgzip_outfile_rc is obsolete as" " mcpl_closeandgzip_outfile now also returns the status. Please update your code" " to use mcpl_closeandgzip_outfile instead.\n"); return mcpl_closeandgzip_outfile(of); } int mcpl_closeandgzip_outfile(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; char * filename = f->filename; f->filename = 0;//prevent free in mcpl_close_outfile mcpl_close_outfile(of); int rc = mcpl_gzip_file(filename); free(filename); return rc; } typedef struct { FILE * file; #ifdef MCPL_HASZLIB gzFile filegz; #else void * filegz; #endif char * hdr_srcprogname; unsigned format_version; int opt_userflags; int opt_polarisation; int opt_singleprec; int32_t opt_universalpdgcode; double opt_universalweight; int is_little_endian; uint64_t nparticles; uint32_t ncomments; char ** comments; uint32_t nblobs; char ** blobkeys; uint32_t * bloblengths; char ** blobs; unsigned particle_size; uint64_t first_particle_pos; uint64_t current_particle_idx; mcpl_particle_t* particle; unsigned opt_signature; char particle_buffer[MCPLIMP_MAX_PARTICLE_SIZE]; } mcpl_fileinternal_t; #define MCPLIMP_FILEDECODE mcpl_fileinternal_t * f = (mcpl_fileinternal_t *)ff.internal; assert(f) void mcpl_read_buffer(mcpl_fileinternal_t* f, unsigned* n, char ** buf, const char * errmsg) { size_t nb; #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, n, sizeof(*n)); else #endif nb = fread(n, 1, sizeof(*n), f->file); if (nb!=sizeof(*n)) mcpl_error(errmsg); *buf = (char*)calloc(*n,1); #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, *buf, *n); else #endif nb = fread(*buf, 1, *n, f->file); if (nb!=*n) mcpl_error(errmsg); } void mcpl_read_string(mcpl_fileinternal_t* f, char ** dest, const char* errmsg) { size_t nb; uint32_t n; #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, &n, sizeof(n)); else #endif nb = fread(&n, 1, sizeof(n), f->file); if (nb!=sizeof(n)) mcpl_error(errmsg); char * s = (char*)calloc(n+1,1); #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, s, n); else #endif nb = fread(s, 1, n, f->file); if (nb!=n) mcpl_error(errmsg); s[n] = '\0'; *dest = s; } mcpl_file_t mcpl_actual_open_file(const char * filename, int * repair_status) { int caller_is_mcpl_repair = *repair_status; *repair_status = 0;//file not broken if (!filename) mcpl_error("mcpl_open_file called with null string"); mcpl_platform_compatibility_check(); mcpl_file_t out; out.internal = 0; mcpl_fileinternal_t * f = (mcpl_fileinternal_t*)calloc(sizeof(mcpl_fileinternal_t),1); assert(f); //open file (with gzopen if filename ends with .gz): f->file = 0; f->filegz = 0; const char * lastdot = strrchr(filename, '.'); if (lastdot && strcmp(lastdot, ".gz") == 0) { #ifdef MCPL_HASZLIB f->filegz = gzopen(filename,"rb"); if (!f->filegz) mcpl_error("Unable to open file!"); #else mcpl_error("This installation of MCPL was not built with zlib support and can not read compressed (.gz) files directly."); #endif } else { f->file = fopen(filename,"rb"); if (!f->file) mcpl_error("Unable to open file!"); } //First read and check magic word, format version and endianness. unsigned char start[8];// = {'M','C','P','L','0','0','0','L'}; size_t nb; #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, start, sizeof(start)); else #endif nb = fread(start, 1, sizeof(start), f->file); if (nb>=4&&(start[0]!='M'||start[1]!='C'||start[2]!='P'||start[3]!='L')) mcpl_error("File is not an MCPL file!"); if (nb!=sizeof(start)) mcpl_error("Error while reading first bytes of file!"); f->format_version = (start[4]-'0')*100 + (start[5]-'0')*10 + (start[6]-'0'); if (f->format_version!=2&&f->format_version!=3) mcpl_error("File is in an unsupported MCPL version!"); f->is_little_endian = mcpl_platform_is_little_endian(); if (start[7]!=(f->is_little_endian?'L':'B')) { if (start[7]=='L'||start[7]=='B') mcpl_error("Endian-ness of current platform is different than the one used to write the file."); else mcpl_error("Unexpected value in endianness field!"); } //proceed reading header, knowing we have a consistent version and endian-ness. const char * errmsg = "Errors encountered while attempting to read header"; uint64_t np; #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, &np, sizeof(np)); else #endif nb = fread(&np, 1, sizeof(np), f->file); if (nb!=sizeof(np)) mcpl_error(errmsg); f->nparticles = np; uint32_t arr[8]; assert(sizeof(arr)==32); #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, arr, sizeof(arr)); else #endif nb=fread(arr, 1, sizeof(arr), f->file); if (nb!=sizeof(arr)) mcpl_error(errmsg); f->ncomments = arr[0]; f->nblobs = arr[1]; f->opt_userflags = arr[2]; f->opt_polarisation = arr[3]; f->opt_singleprec = arr[4]; f->opt_universalpdgcode = arr[5]; f->particle_size = arr[6];//We could check consistency here with the calculated value. assert(f->particle_size<=MCPLIMP_MAX_PARTICLE_SIZE); if (arr[7]) { //file has universal weight #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, (void*)&(f->opt_universalweight), sizeof(f->opt_universalweight)); else #endif nb=fread((void*)&(f->opt_universalweight), 1, sizeof(f->opt_universalweight), f->file); assert(nb==sizeof(f->opt_universalweight)); if (nb!=sizeof(f->opt_universalweight)) mcpl_error(errmsg); } f->opt_signature = 0 + 1 * f->opt_singleprec + 2 * f->opt_polarisation + 4 * f->opt_universalpdgcode + 8 * (f->opt_universalweight?1:0) + 16 * f->opt_userflags; //Then some strings: mcpl_read_string(f,&f->hdr_srcprogname,errmsg); f->comments = f->ncomments ? (char **)calloc(f->ncomments,sizeof(char*)) : 0; uint32_t i; for (i = 0; i < f->ncomments; ++i) mcpl_read_string(f,&(f->comments[i]),errmsg); f->blobkeys = 0; f->bloblengths = 0; f->blobs = 0; if (f->nblobs) { f->blobs = (char **)calloc(f->nblobs,sizeof(char*)); f->blobkeys = (char **)calloc(f->nblobs,sizeof(char*)); f->bloblengths = (uint32_t *)calloc(f->nblobs,sizeof(uint32_t)); for (i =0; i < f->nblobs; ++i) mcpl_read_string(f,&(f->blobkeys[i]),errmsg); for (i =0; i < f->nblobs; ++i) mcpl_read_buffer(f, &(f->bloblengths[i]), &(f->blobs[i]), errmsg); } f->particle = (mcpl_particle_t*)calloc(sizeof(mcpl_particle_t),1); //At first event now: f->current_particle_idx = 0; int64_t tellpos = -1; #ifdef MCPL_HASZLIB if (f->filegz) tellpos = gztell(f->filegz); else #endif tellpos = ftell(f->file); if (tellpos<0) mcpl_error(errmsg); f->first_particle_pos = tellpos; if ( f->nparticles==0 || caller_is_mcpl_repair ) { //Although empty files are permitted, it is possible that the file was never //closed properly (maybe the writing program ended prematurely). Let us //check to possibly recover usage of the file. If caller is mcpl_repair, we //always check since the file might have been truncated after it was first //closed properly. if (f->filegz) { //SEEK_END is not supported by zlib, and there is no reliable way to get //the input size. Thus, all we can do is to uncompress the whole thing, //which we won't since it might stall operations for a long time. But we //can at least try to check whether the file is indeed empty or not, and //give an error in the latter case: #ifdef MCPL_HASZLIB if (f->nparticles==0) { char testbuf[4]; nb = gzread(f->filegz, testbuf, sizeof(testbuf)); if (nb>0) { if (caller_is_mcpl_repair) { *repair_status = 1;//file broken but can't recover since gzip. } else { mcpl_error("Input file appears to not have been closed properly and data recovery is disabled for gzipped files."); } } } else { assert(caller_is_mcpl_repair); *repair_status = 2;//file brokenness can not be determined since gzip. } gzseek( f->filegz, f->first_particle_pos, SEEK_SET ); #endif } else { if (f->file && !fseek( f->file, 0, SEEK_END )) {//SEEK_END is not guaranteed to always work, so we fail our recovery attempt silently. int64_t endpos = ftell(f->file); if (endpos > (int64_t)f->first_particle_pos && (uint64_t)endpos != f->first_particle_pos) { uint64_t np = ( endpos - f->first_particle_pos ) / f->particle_size; if ( f->nparticles != np ) { if ( f->nparticles > 0 && np > f->nparticles ) { //should really not happen unless file was corrupted or file was //first closed properly and then something was appended to it. mcpl_error("Input file has invalid combination of meta-data & filesize."); } if (caller_is_mcpl_repair) { *repair_status = 3;//file broken and should be able to repair } else { assert(f->nparticles == 0); printf("MCPL WARNING: Input file appears to not have been closed properly. Recovered %" PRIu64 " particles.\n",np); } f->nparticles = np; } } } fseek( f->file, f->first_particle_pos, SEEK_SET );//if this fseek failed, it might just be that we are at EOF with no particles. } } out.internal = f; return out; } mcpl_file_t mcpl_open_file(const char * filename) { int repair_status = 0; return mcpl_actual_open_file(filename,&repair_status); } void mcpl_repair(const char * filename) { int repair_status = 1; mcpl_file_t f = mcpl_actual_open_file(filename,&repair_status); uint64_t nparticles = mcpl_hdr_nparticles(f); mcpl_close_file(f); if (repair_status==0) { mcpl_error("File does not appear to be broken."); } else if (repair_status==1) { mcpl_error("Input file is indeed broken, but must be gunzipped before it can be repaired."); } else if (repair_status==2) { mcpl_error("File must be gunzipped before it can be checked and possibly repaired."); } //Ok, we should repair the file by updating nparticles in the header: FILE * fh = fopen(filename,"rb+"); if (!fh) mcpl_error("Unable to open file in update mode!"); mcpl_update_nparticles(fh, nparticles); fclose(fh); //Verify that we fixed it: repair_status = 1; f = mcpl_actual_open_file(filename,&repair_status); uint64_t nparticles2 = mcpl_hdr_nparticles(f); mcpl_close_file(f); if (repair_status==0&&nparticles==nparticles2) { printf("MCPL: Succesfully repaired file with %" PRIu64 " particles.\n",nparticles); } else { mcpl_error("Something went wrong while attempting to repair file."); } } void mcpl_close_file(mcpl_file_t ff) { MCPLIMP_FILEDECODE; free(f->hdr_srcprogname); uint32_t i; for (i = 0; i < f->ncomments; ++i) free(f->comments[i]); free(f->comments); for (i = 0; i < f->nblobs; ++i) free(f->blobkeys[i]); for (i = 0; i < f->nblobs; ++i) free(f->blobs[i]); free(f->blobkeys); free(f->blobs); free(f->bloblengths); free(f->particle); #ifdef MCPL_HASZLIB if (f->filegz) gzclose(f->filegz); #endif if (f->file) fclose(f->file); free(f); } unsigned mcpl_hdr_version(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->format_version; } uint64_t mcpl_hdr_nparticles(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->nparticles; } unsigned mcpl_hdr_ncomments(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->ncomments; } const char * mcpl_hdr_comment(mcpl_file_t ff, unsigned i) { MCPLIMP_FILEDECODE; if (i>=f->ncomments) mcpl_error("Invalid comment requested (index out of bounds)"); return f->comments[i]; } int mcpl_hdr_nblobs(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->nblobs; } const char** mcpl_hdr_blobkeys(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return (const char**)f->blobkeys; } int mcpl_hdr_blob(mcpl_file_t ff, const char* key, uint32_t* ldata, const char ** data) { MCPLIMP_FILEDECODE; uint32_t i; for (i = 0; i < f->nblobs; ++i) { if (strcmp(f->blobkeys[i],key)==0) { *data = f->blobs[i]; *ldata = f->bloblengths[i]; return 1; } } *data = 0; *ldata = 0; return 0; } const char* mcpl_hdr_srcname(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->hdr_srcprogname; } int mcpl_hdr_has_userflags(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->opt_userflags; } int mcpl_hdr_has_polarisation(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->opt_polarisation; } int mcpl_hdr_has_doubleprec(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return !f->opt_singleprec; } const mcpl_particle_t* mcpl_read(mcpl_file_t ff) { MCPLIMP_FILEDECODE; f->current_particle_idx += 1; if ( f->current_particle_idx > f->nparticles ) { f->current_particle_idx = f->nparticles;//overflow guard return 0; } //read particle data: size_t nb; unsigned lbuf = f->particle_size; char * pbuf = &(f->particle_buffer[0]); #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, pbuf, lbuf); else #endif nb = fread(pbuf, 1, lbuf, f->file); if (nb!=lbuf) mcpl_error("Errors encountered while attempting to read particle data."); //Transfer to particle struct: unsigned ibuf = 0; mcpl_particle_t * p = f->particle; double pack_ekindir[3]; p->weight = f->opt_universalweight; int i; if (f->opt_singleprec) { if (f->opt_polarisation) { for (i=0;i<3;++i) { p->polarisation[i] = *(float*)&pbuf[ibuf]; ibuf += sizeof(float); } } else { for (i=0;i<3;++i) p->polarisation[i] = 0.0; } for (i=0;i<3;++i) { p->position[i] = *(float*)&pbuf[ibuf]; ibuf += sizeof(float); } for (i=0;i<3;++i) { pack_ekindir[i] = *(float*)&pbuf[ibuf]; ibuf += sizeof(float); } p->time = *(float*)&pbuf[ibuf]; ibuf += sizeof(float); if (!p->weight) { p->weight = *(float*)&pbuf[ibuf]; ibuf += sizeof(float); } } else { if (f->opt_polarisation) { for (i=0;i<3;++i) { p->polarisation[i] = *(double*)&pbuf[ibuf]; ibuf += sizeof(double); } } else { for (i=0;i<3;++i) p->polarisation[i] = 0.0; } for (i=0;i<3;++i) { p->position[i] = *(double*)&pbuf[ibuf]; ibuf += sizeof(double); } for (i=0;i<3;++i) { pack_ekindir[i] = *(double*)&pbuf[ibuf]; ibuf += sizeof(double); } p->time = *(double*)&pbuf[ibuf]; ibuf += sizeof(double); if (!p->weight) { p->weight = *(double*)&pbuf[ibuf]; ibuf += sizeof(double); } } if (f->opt_universalpdgcode) { p->pdgcode = f->opt_universalpdgcode; } else { p->pdgcode = *(int32_t*)&pbuf[ibuf]; ibuf += sizeof(int32_t); } if (f->opt_userflags) { p->userflags = *(uint32_t*)&pbuf[ibuf]; #ifndef NDEBUG ibuf += sizeof(uint32_t); #endif } else { f->opt_userflags = 0; } assert(ibuf==lbuf); //Unpack direction and ekin: if (f->format_version>=3) { p->ekin = fabs(pack_ekindir[2]); pack_ekindir[2] = copysign(1.0,pack_ekindir[2]); mcpl_unitvect_unpack_adaptproj(pack_ekindir,p->direction); } else { assert(f->format_version==2); mcpl_unitvect_unpack_oct(pack_ekindir,p->direction); p->ekin = pack_ekindir[2]; if (signbit(pack_ekindir[2])) { p->ekin = -p->ekin; p->direction[2] = 0.0; } } return p; } int mcpl_skipforward(mcpl_file_t ff,uint64_t n) { MCPLIMP_FILEDECODE; //increment, but guard against overflows: if ( n >= f->nparticles || f->current_particle_idx >= f->nparticles ) f->current_particle_idx = f->nparticles; else f->current_particle_idx += n; if ( f->current_particle_idx > f->nparticles ) f->current_particle_idx = f->nparticles; int notEOF = f->current_particle_idxnparticles; if (n==0) return notEOF; if (notEOF) { int error; #ifdef MCPL_HASZLIB if (f->filegz) { int64_t targetpos = f->current_particle_idx*f->particle_size+f->first_particle_pos; error = gzseek( f->filegz, targetpos, SEEK_SET )!=targetpos; } else #endif error = fseek( f->file, f->particle_size * n, SEEK_CUR )!=0; if (error) mcpl_error("Errors encountered while skipping in particle list"); } return notEOF; } int mcpl_rewind(mcpl_file_t ff) { MCPLIMP_FILEDECODE; int already_there = (f->current_particle_idx==0); f->current_particle_idx = 0; int notEOF = f->current_particle_idxnparticles; if (notEOF&&!already_there) { int error; #ifdef MCPL_HASZLIB if (f->filegz) { error = gzseek( f->filegz, f->first_particle_pos, SEEK_SET )!=(int64_t)f->first_particle_pos; } else #endif error = fseek( f->file, f->first_particle_pos, SEEK_SET )!=0; if (error) mcpl_error("Errors encountered while rewinding particle list"); } return notEOF; } int mcpl_seek(mcpl_file_t ff,uint64_t ipos) { MCPLIMP_FILEDECODE; int already_there = (f->current_particle_idx==ipos); f->current_particle_idx = (iposnparticles?ipos:f->nparticles); int notEOF = f->current_particle_idxnparticles; if (notEOF&&!already_there) { int error; #ifdef MCPL_HASZLIB if (f->filegz) { int64_t targetpos = f->current_particle_idx*f->particle_size+f->first_particle_pos; error = gzseek( f->filegz, targetpos, SEEK_SET )!=targetpos; } else #endif error = fseek( f->file, f->first_particle_pos + f->particle_size * ipos, SEEK_SET )!=0; if (error) mcpl_error("Errors encountered while seeking in particle list"); } return notEOF; } uint64_t mcpl_currentposition(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->current_particle_idx; } const char * mcpl_basename(const char * filename) { //portable "basename" which doesn't modify it's argument: const char * bn = strrchr(filename, '/'); return bn ? bn + 1 : filename; } int mcpl_hdr_particle_size(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->particle_size; } uint64_t mcpl_hdr_header_size(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->first_particle_pos; } int mcpl_hdr_universal_pdgcode(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->opt_universalpdgcode; } int mcpl_hdr_universel_pdgcode(mcpl_file_t ff) { printf("MCPL WARNING: Usage of function mcpl_hdr_universel_pdgcode is obsolete as it has" " been renamed to mcpl_hdr_universal_pdgcode. Please update your code.\n"); return mcpl_hdr_universal_pdgcode(ff); } double mcpl_hdr_universal_weight(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->opt_universalweight; } int mcpl_hdr_little_endian(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->is_little_endian; } void mcpl_transfer_last_read_particle(mcpl_file_t source, mcpl_outfile_t target) { mcpl_outfileinternal_t * ft = (mcpl_outfileinternal_t *)target.internal; assert(ft); mcpl_fileinternal_t * fs = (mcpl_fileinternal_t *)source.internal; assert(fs); if ( fs->current_particle_idx==0 && fs->particle->weight==0.0 && fs->particle->pdgcode==0 ) { mcpl_error("mcpl_transfer_last_read_particle called with source file in invalid state" " (did you forget to first call mcpl_read() on the source file before calling this function?)"); return; } //Sanity checks for universal fields here (but not in mcpl_add_particle since users are allowed to create files by setting just the universal fields): if ( ft->opt_universalpdgcode && fs->particle->pdgcode != ft->opt_universalpdgcode) { printf("MCPL ERROR: mcpl_transfer_last_read_particle asked to transfer particle with pdgcode %li into a file with universal pdgcode of %li\n", (long)fs->particle->pdgcode,(long)ft->opt_universalpdgcode); mcpl_error("mcpl_transfer_last_read_particle got incompatible pdgcode\n"); return; } if ( ft->opt_universalweight && fs->particle->weight != ft->opt_universalweight) { printf("MCPL ERROR: mcpl_transfer_last_read_particle asked to transfer particle with weight %g into a file with universal weight of %g\n", fs->particle->weight,ft->opt_universalweight); mcpl_error("mcpl_transfer_last_read_particle got incompatible weight\n"); return; } //NB: We don't sanity check that polarisation/userflags are enabled if present //in the input particle, since it is a valid use-case to use this function to //discard such info. if ( fs->format_version == 2 || ( fs->opt_singleprec && !ft->opt_singleprec ) ) { //source file is in old format with different unit vector packing, or the //floating point precision is increasing. In these scenarious we can not //reuse the 3 floats representing packed direction+ekin but must proceed via //a full unpacking+repacking. mcpl_add_particle(target,fs->particle); return; } if ( ft->opt_signature == fs->opt_signature ) { //Particle data is encoded in exactly the same manner in src and target (a //common scenario for many merge or extraction scenarios) -> simply transfer //the bytes and be done with it: assert(fs->particle_size==ft->particle_size); memcpy(ft->particle_buffer,fs->particle_buffer,fs->particle_size); mcpl_internal_write_particle_buffer_to_file(ft); return; } //The hard way - first serialise the source particle into the output buffer: mcpl_internal_serialise_particle_to_buffer( fs->particle, ft ); //If possible, override the 3 FP representing packed ekin+dir from the packing //in the source, thus avoiding potentially lossy unpacking+packing: size_t fpsize_target = ft->opt_singleprec ? sizeof(float) : sizeof(double); size_t idx_packekindir_target = (ft->opt_polarisation ? 6 : 3) * fpsize_target; size_t idx_packekindir_src = (fs->opt_polarisation ? 6 : 3) * fpsize_target; if (fs->opt_singleprec == ft->opt_singleprec) { memcpy( &(ft->particle_buffer[idx_packekindir_target]), &(fs->particle_buffer[idx_packekindir_src]), fpsize_target * 3); } else if ( ft->opt_singleprec && !fs->opt_singleprec ) { //For the case of double precision -> single precision, we can simply //perform a narrowing conversion: double * packekindir_src = (double*)&(fs->particle_buffer[idx_packekindir_src]); float * packekindir_target = (float*)&(ft->particle_buffer[idx_packekindir_target]); for (unsigned i = 0; i < 3; ++i) { packekindir_target[i] = (float)packekindir_src[i]; } } mcpl_internal_write_particle_buffer_to_file(ft); } void mcpl_dump_header(mcpl_file_t f) { printf("\n Basic info\n"); printf(" Format : MCPL-%i\n",mcpl_hdr_version(f)); printf(" No. of particles : %" PRIu64 "\n",mcpl_hdr_nparticles(f)); printf(" Header storage : %" PRIu64 " bytes\n",mcpl_hdr_header_size(f)); printf(" Data storage : %" PRIu64 " bytes\n",mcpl_hdr_nparticles(f)*mcpl_hdr_particle_size(f)); printf("\n Custom meta data\n"); printf(" Source : \"%s\"\n",mcpl_hdr_srcname(f)); unsigned nc=mcpl_hdr_ncomments(f); printf(" Number of comments : %i\n",nc); unsigned ic; for (ic = 0; ic < nc; ++ic) printf(" -> comment %i : \"%s\"\n",ic,mcpl_hdr_comment(f,ic)); unsigned nb = mcpl_hdr_nblobs(f); printf(" Number of blobs : %i\n",nb); const char** blobkeys = mcpl_hdr_blobkeys(f); uint32_t ib; for (ib = 0; ib < nb; ++ib) { const char * data; uint32_t ldata; int ok = mcpl_hdr_blob(f, blobkeys[ib], &ldata, &data); if (!ok) mcpl_error("Unexpected blob access error"); printf(" -> %lu bytes of data with key \"%s\"\n",(unsigned long)ldata,blobkeys[ib]); } printf("\n Particle data format\n"); printf(" User flags : %s\n",(mcpl_hdr_has_userflags(f)?"yes":"no")); printf(" Polarisation info : %s\n",(mcpl_hdr_has_polarisation(f)?"yes":"no")); printf(" Fixed part. type : "); int32_t updg = mcpl_hdr_universal_pdgcode(f); if (updg) printf("yes (pdgcode %li)\n",(long)updg); else printf("no\n"); printf(" Fixed part. weight : "); double uw = mcpl_hdr_universal_weight(f); if (uw) printf("yes (weight %g)\n",uw); else printf("no\n"); printf(" FP precision : %s\n",(mcpl_hdr_has_doubleprec(f)?"double":"single")); printf(" Endianness : %s\n",(mcpl_hdr_little_endian(f)?"little":"big")); printf(" Storage : %i bytes/particle\n",mcpl_hdr_particle_size(f)); printf("\n"); } //Not in the public interface, but perhaps it should be to allow custom //applications to apply custom filters and see the selected particles. For now, //we simply keep the function signature stable, allowing other code to access it //by forward declaring it themselves: void mcpl_dump_particles(mcpl_file_t f, uint64_t nskip, uint64_t nlimit, int(filter)(const mcpl_particle_t*)) { int has_uf = mcpl_hdr_has_userflags(f); int has_pol = mcpl_hdr_has_polarisation(f); double uweight = mcpl_hdr_universal_weight(f); printf("index pdgcode ekin[MeV] x[cm] y[cm] z[cm] ux uy uz time[ms]"); if (!uweight) printf(" weight"); if (has_pol) printf(" pol-x pol-y pol-z"); if (has_uf) printf(" userflags"); printf("\n"); mcpl_skipforward(f,nskip); uint64_t count = nlimit; const mcpl_particle_t* p; while((nlimit==0||count--)&&(p=mcpl_read(f))) { if (filter && !filter(p) ) { ++count; continue; } uint64_t idx = mcpl_currentposition(f)-1;//-1 since mcpl_read skipped ahead printf("%5" PRIu64 " %11i %11.5g %11.5g %11.5g %11.5g %11.5g %11.5g %11.5g %11.5g", idx, p->pdgcode, p->ekin, p->position[0], p->position[1], p->position[2], p->direction[0], p->direction[1], p->direction[2], p->time); if (!uweight) printf(" %11.5g",p->weight); if (has_pol) printf(" %11.5g %11.5g %11.5g",p->polarisation[0],p->polarisation[1],p->polarisation[2]); if (has_uf) printf(" 0x%08x",p->userflags); printf("\n"); } } void mcpl_dump(const char * filename, int parts, uint64_t nskip, uint64_t nlimit) { if (parts<0||parts>2) mcpl_error("mcpl_dump got forbidden value for argument parts"); mcpl_file_t f = mcpl_open_file(filename); printf("Opened MCPL file %s:\n",mcpl_basename(filename)); if (parts==0||parts==1) mcpl_dump_header(f); if (parts==0||parts==2) mcpl_dump_particles(f,nskip,nlimit,0); mcpl_close_file(f); } int mcpl_actual_can_merge(mcpl_file_t ff1, mcpl_file_t ff2) { mcpl_fileinternal_t * f1 = (mcpl_fileinternal_t *)ff1.internal; mcpl_fileinternal_t * f2 = (mcpl_fileinternal_t *)ff2.internal; assert(f1&&f2); if (f1->first_particle_pos!=f2->first_particle_pos) return 0;//different header //Note, we do not check the format_version field here, since mcpl_merge_files //can actually work on files with different versions. //Very strict checking of everything except nparticles. Even order of blobs //and comments must be preserved (could possibly be relaxed a bit): if (strcmp(f1->hdr_srcprogname,f2->hdr_srcprogname)!=0) return 0; if (f1->opt_userflags!=f2->opt_userflags) return 0; if (f1->opt_polarisation!=f2->opt_polarisation) return 0; if (f1->opt_singleprec!=f2->opt_singleprec) return 0; if (f1->opt_universalpdgcode!=f2->opt_universalpdgcode) return 0; if (f1->opt_universalweight!=f2->opt_universalweight) return 0; if (f1->is_little_endian!=f2->is_little_endian) return 0; if (f1->particle_size!=f2->particle_size) return 0; if (f1->ncomments!=f2->ncomments) return 0; if (f1->nblobs!=f2->nblobs) return 0; uint32_t i; for (i = 0; incomments; ++i) { if (strcmp(f1->comments[i],f2->comments[i])!=0) return 0; } for (i = 0; inblobs; ++i) { if (f1->bloblengths[i]!=f2->bloblengths[i]) return 0; if (strcmp(f1->blobkeys[i],f2->blobkeys[i])!=0) return 0; if (memcmp(f1->blobs[i],f2->blobs[i],f1->bloblengths[i])!=0) return 0; } return 1; } int mcpl_can_merge(const char * file1, const char* file2) { mcpl_file_t f1 = mcpl_open_file(file1); mcpl_file_t f2 = mcpl_open_file(file2); int can_merge = mcpl_actual_can_merge(f1,f2); mcpl_close_file(f1); mcpl_close_file(f2); return can_merge; } #ifdef MCPL_THIS_IS_UNIX # include #endif int mcpl_file_certainly_exists(const char * filename) { #if defined MCPL_THIS_IS_UNIX || defined MCPL_THIS_IS_MS if( access( filename, F_OK ) != -1 ) return 1; return 0; #else //esoteric platform without access(..). Try opening for reads: FILE *fd; if ((fd = fopen(filename, "r"))) { fclose(fd); return 1; } //non-existing or read access not allowed: return 0; #endif } #ifdef MCPL_THIS_IS_UNIX # include # include #endif void mcpl_warn_duplicates(unsigned n, const char ** filenames) { //Checks that no filenames in provided list represent the same file (the //detection is not 100% certain on non-POSIX platforms). If duplicates are //found, emit warning - it is assumed the function is called from //mcpl_merge_xxx on a user-provided list of files. //Since this is C, we resort to slow O(N^2) comparison for simplicity. if (n<2) return; #ifdef MCPL_THIS_IS_UNIX //Bullet proof(ish) way, (st_ino,st_dev) uniquely identifies a file on a system. dev_t * id_dev = (dev_t*)calloc(n*sizeof(dev_t),1); ino_t * id_ino = (ino_t*)calloc(n*sizeof(ino_t),1); unsigned i; for (i = 0; iparticle_size; //buffer for transferring up to 1000 particles at a time: const unsigned npbufsize = 1000; char * buf = (char*)malloc(npbufsize*particle_size); uint64_t np_remaining = nparticles; while(np_remaining) { //NB: On linux > 2.6.33 we could use sendfile for more efficient in-kernel //transfer of data between two files! uint64_t toread = np_remaining >= npbufsize ? npbufsize : np_remaining; np_remaining -= toread; //read: size_t nb; #ifdef MCPL_HASZLIB if (fi->filegz) nb = gzread(fi->filegz, buf, toread*particle_size); else #endif nb = fread(buf,1,toread*particle_size,fi->file); if (nb!=toread*particle_size) mcpl_error("Unexpected read-error while merging"); //write: nb = fwrite(buf,1,toread*particle_size,fo); if (nb!=toread*particle_size) mcpl_error("Unexpected write-error while merging"); } free(buf); } mcpl_outfile_t mcpl_forcemerge_files( const char * file_output, unsigned nfiles, const char ** files, int keep_userflags ) { //////////////////////////////////// // Initial sanity check of input: // //////////////////////////////////// if (!nfiles) mcpl_error("mcpl_forcemerge_files must be called with at least one input file"); //Warn user if they are merging a file with itself: mcpl_warn_duplicates(nfiles,files); //Create new file: if (mcpl_file_certainly_exists(file_output)) mcpl_error("requested output file of mcpl_forcemerge_files already exists"); /////////////////////////////////////////// // Fallback to normal merge if possible: // /////////////////////////////////////////// //Check all files for compatibility before we start (for robustness, we check //again when actually merging each file). unsigned ifile; int normal_merge_ok = 1; for (ifile = 1; ifile < nfiles; ++ifile) { if (!mcpl_can_merge(files[0],files[ifile])) { normal_merge_ok = 0; break; } } if (normal_merge_ok) { printf("MCPL mcpl_forcemerge_files called with %i files that are compatible for a standard merge => falling back to standard mcpl_merge_files function\n",nfiles); return mcpl_merge_files(file_output,nfiles,files); } ///////////////////////////// // Actual forcemerge code: // ///////////////////////////// //Run through files and collect meta-data: int opt_dp = 0; int opt_pol = 0; int opt_uf = 0; int lastseen_universalpdg = 0; int disallow_universalpdg = 0; double lastseen_universalweight = 0; int disallow_universalweight = 0; for (ifile = 0; ifile < nfiles; ++ifile) { mcpl_file_t f = mcpl_open_file(files[ifile]); if (!mcpl_hdr_nparticles(f)) { mcpl_close_file(f); continue;//won't affect anything } if (mcpl_hdr_has_userflags(f)) opt_uf = 1;//enable if any if (mcpl_hdr_has_polarisation(f)) opt_pol = 1;//enable if any if (mcpl_hdr_has_doubleprec(f)) opt_dp = 1; int32_t updg = mcpl_hdr_universal_pdgcode(f); if ( !updg || ( lastseen_universalpdg && lastseen_universalpdg != updg ) ) { disallow_universalpdg = 1; } else { lastseen_universalpdg = updg; } double uw = mcpl_hdr_universal_weight(f); if ( !uw || ( lastseen_universalweight && lastseen_universalweight != uw ) ) { disallow_universalweight = 1; } else { lastseen_universalweight = uw; } mcpl_close_file(f); } if (!keep_userflags) opt_uf = 0; mcpl_outfile_t out = mcpl_create_outfile(file_output); mcpl_hdr_set_srcname(out,"mcpl_forcemerge_files (from MCPL v" MCPL_VERSION_STR ")"); if ( opt_uf ) mcpl_enable_userflags(out); if ( opt_pol ) mcpl_enable_polarisation(out); if (opt_dp) mcpl_enable_doubleprec(out); if ( !disallow_universalpdg && lastseen_universalpdg ) mcpl_enable_universal_pdgcode(out,lastseen_universalpdg); if ( !disallow_universalweight && lastseen_universalweight ) mcpl_enable_universal_weight(out,lastseen_universalweight); //Finally, perform the transfer: for (ifile = 0; ifile < nfiles; ++ifile) { mcpl_file_t f = mcpl_open_file(files[ifile]); uint64_t np = mcpl_hdr_nparticles(f); printf("MCPL force-merge: Transferring %" PRIu64 " particle%s from file %s\n",np,(np==1?"":"s"),files[ifile]); const mcpl_particle_t* particle; while ( ( particle = mcpl_read(f) ) ) mcpl_transfer_last_read_particle(f, out);//lossless transfer when possible mcpl_close_file(f); } mcpl_outfileinternal_t * out_internal = (mcpl_outfileinternal_t *)out.internal; uint64_t np = out_internal->nparticles; printf("MCPL force-merge: Transferred a total of %" PRIu64 " particle%s to new file %s\n",np,(np==1?"":"s"),file_output); return out; } mcpl_outfile_t mcpl_merge_files( const char* file_output, unsigned nfiles, const char ** files ) { mcpl_outfile_t out; out.internal = 0; if (!nfiles) mcpl_error("mcpl_merge_files must be called with at least one input file"); //Check all files for compatibility before we start (for robustness, we check //again when actually merging each file). unsigned ifile; for (ifile = 1; ifile < nfiles; ++ifile) { if (!mcpl_can_merge(files[0],files[ifile])) mcpl_error("Attempting to merge incompatible files."); } //Warn user if they are merging a file with itself: mcpl_warn_duplicates(nfiles,files); //Create new file: if (mcpl_file_certainly_exists(file_output)) mcpl_error("requested output file of mcpl_merge_files already exists"); out = mcpl_create_outfile(file_output); mcpl_outfileinternal_t * out_internal = (mcpl_outfileinternal_t *)out.internal; mcpl_file_t f1; f1.internal = 0; int warned_oldversion = 0; for (ifile = 0; ifile < nfiles; ++ifile) { mcpl_file_t fi = mcpl_open_file(files[ifile]); if (ifile==0) { //Add metadata from the first file: mcpl_transfer_metadata(fi, out); if (out_internal->header_notwritten) mcpl_write_header(out_internal); f1 = fi; } else { //Check file is still compatible with first file if (!mcpl_actual_can_merge(f1,fi)) mcpl_error("Aborting merge of suddenly incompatible files."); } //Transfer particle contents: if (mcpl_hdr_version(fi)==MCPL_FORMATVERSION) { //Can transfer raw bytes: uint64_t npi = mcpl_hdr_nparticles(fi); mcpl_transfer_particle_contents(out_internal->file, fi, npi); out_internal->nparticles += npi; } else { //Merging from older version. Transfer via public interface to re-encode //particle data for latest format: if (!warned_oldversion) { warned_oldversion = 1; printf("MCPL WARNING: Merging files from older MCPL format. Output will be in latest format.\n"); } const mcpl_particle_t* particle; while ( ( particle = mcpl_read(fi) ) ) mcpl_add_particle(out,particle); } if (ifile!=0) mcpl_close_file(fi); } mcpl_close_file(f1); return out; } void mcpl_merge(const char * file1, const char* file2) { printf("MCPL WARNING: Usage of function mcpl_merge is obsolete as it has" " been renamed to mcpl_merge_inplace. Please update your code.\n"); mcpl_merge_inplace(file1, file2); } void mcpl_merge_inplace(const char * file1, const char* file2) { mcpl_file_t ff1 = mcpl_open_file(file1); mcpl_file_t ff2 = mcpl_open_file(file2); int can_merge = mcpl_actual_can_merge(ff1,ff2); if (!can_merge) { mcpl_close_file(ff1); mcpl_close_file(ff2); mcpl_error("Attempting to merge incompatible files"); } //Warn user if they are merging a file with itself: const char * filelist[2]; filelist[0] = file1; filelist[1] = file2; mcpl_warn_duplicates(2,filelist); //Access internals: mcpl_fileinternal_t * f1 = (mcpl_fileinternal_t *)ff1.internal; mcpl_fileinternal_t * f2 = (mcpl_fileinternal_t *)ff2.internal; assert(f1&&f2); if (f1->format_version!=f2->format_version) { mcpl_close_file(ff1); mcpl_close_file(ff2); mcpl_error("Attempting to merge incompatible files (can not mix MCPL format versions when merging inplace)"); } if (f1->filegz) { mcpl_close_file(ff1); mcpl_close_file(ff2); mcpl_error("direct modification of gzipped files is not supported."); } uint64_t np1 = f1->nparticles; uint64_t np2 = f2->nparticles; if (!np2) return;//nothing to take from file 2. unsigned particle_size = f1->particle_size; uint64_t first_particle_pos = f1->first_particle_pos; //Should be same since can_merge: assert(particle_size==f2->particle_size); assert(first_particle_pos==f2->first_particle_pos); //Now, close file1 and reopen a file handle in append mode: mcpl_close_file(ff1); FILE * f1a = fopen(file1,"rb+"); //Update file positions. Note that f2->file is already at the position for the //first particle and that the seek operation on f1a correctly discards any //partial entries at the end, which could be there if the file was in need of //mcpl_repair: if (!f1a) mcpl_error("Unable to open file1 in update mode!"); if (fseek( f1a, first_particle_pos + particle_size*np1, SEEK_SET )) mcpl_error("Unable to seek to end of file1 in update mode"); //Transfer particle contents, setting nparticles to 0 during the operation (so //the file appears broken and in need of mcpl_repair in case of errors during //the transfer): mcpl_update_nparticles(f1a,0); mcpl_transfer_particle_contents(f1a, ff2, np2); mcpl_update_nparticles(f1a,np1+np2); //Finish up. mcpl_close_file(ff2); fclose(f1a); } #define MCPLIMP_TOOL_DEFAULT_NLIMIT 10 #define MCPLIMP_TOOL_DEFAULT_NSKIP 0 int mcpl_tool_usage( char** argv, const char * errmsg ) { if (errmsg) { printf("ERROR: %s\n\n",errmsg); printf("Run with -h or --help for usage information\n"); return 1; } const char * progname = mcpl_basename(argv[0]); printf("Tool for inspecting or modifying Monte Carlo Particle List (.mcpl) files.\n"); printf("\n"); printf("The default behaviour is to display the contents of the FILE in human readable\n"); printf("format (see Dump Options below for how to modify what is displayed).\n"); printf("\n"); #ifdef MCPL_HASZLIB printf("This installation supports direct reading of gzipped files (.mcpl.gz).\n"); printf("\n"); #endif printf("Usage:\n"); printf(" %s [dump-options] FILE\n",progname); printf(" %s --merge [merge-options] FILE1 FILE2\n",progname); printf(" %s --extract [extract-options] FILE1 FILE2\n",progname); printf(" %s --repair FILE\n",progname); printf(" %s --version\n",progname); printf(" %s --help\n",progname); printf("\n"); printf("Dump options:\n"); printf(" By default include the info in the FILE header plus the first ten contained\n"); printf(" particles. Modify with the following options:\n"); assert(MCPLIMP_TOOL_DEFAULT_NLIMIT==10); printf(" -j, --justhead : Dump just header info and no particle info.\n"); printf(" -n, --nohead : Dump just particle info and no header info.\n"); printf(" -lN : Dump up to N particles from the file (default %i). You\n",MCPLIMP_TOOL_DEFAULT_NLIMIT); printf(" can specify -l0 to disable this limit.\n"); printf(" -sN : Skip past the first N particles in the file (default %i).\n",MCPLIMP_TOOL_DEFAULT_NSKIP); printf(" -bKEY : Dump binary blob stored under KEY to standard output.\n"); printf("\n"); printf("Merge options:\n"); printf(" -m, --merge FILEOUT FILE1 FILE2 ... FILEN\n"); printf(" Creates new FILEOUT with combined particle contents from\n"); printf(" specified list of N existing and compatible files.\n"); printf(" -m, --merge --inplace FILE1 FILE2 ... FILEN\n"); printf(" Appends the particle contents in FILE2 ... FILEN into\n"); printf(" FILE1. Note that this action modifies FILE1!\n"); printf(" --forcemerge [--keepuserflags] FILEOUT FILE1 FILE2 ... FILEN\n"); printf(" Like --merge but works with incompatible files as well, at the\n"); printf(" heavy price of discarding most metadata like comments and blobs.\n"); printf(" Userflags will be discarded unless --keepuserflags is specified.\n"); printf("\n"); printf("Extract options:\n"); printf(" -e, --extract FILE1 FILE2\n"); printf(" Extracts particles from FILE1 into a new FILE2.\n"); printf(" -lN, -sN : Select range of particles in FILE1 (as above).\n"); printf(" -pPDGCODE : select particles of type given by PDGCODE.\n"); printf("\n"); printf("Other options:\n"); printf(" -r, --repair FILE\n"); printf(" Attempt to repair FILE which was not properly closed, by up-\n"); printf(" dating the file header with the correct number of particles.\n"); printf(" -t, --text MCPLFILE OUTFILE\n"); printf(" Read particle contents of MCPLFILE and write into OUTFILE\n"); printf(" using a simple ASCII-based format.\n"); printf(" -v, --version : Display version of MCPL installation.\n"); printf(" -h, --help : Display this usage information (ignores all other options).\n"); return 0; } int mcpl_str2int(const char* str, size_t len, int64_t* res) { //portable 64bit str2int with error checking (only INT64_MIN might not be //possible to specify). *res = 0; if (!len) len=strlen(str); if (!len) return 0; int sign = 1; if (str[0]=='-') { sign = -1; len -= 1; str += 1; } int64_t tmp = 0; size_t i; for (i=0; i'9') { return 0; } int64_t prev = tmp; tmp *= 10; tmp += str[i] - '0'; if (prev>=tmp) return 1;//overflow (hopefully it did not trigger a signal or FPE) } *res = sign * tmp; return 1; } int mcpl_tool(int argc,char** argv) { int nfilenames = 0; char ** filenames = 0; const char * blobkey = 0; const char * pdgcode_str = 0; int opt_justhead = 0; int opt_nohead = 0; int64_t opt_num_limit = -1; int64_t opt_num_skip = -1; int opt_merge = 0; int opt_forcemerge = 0; int opt_keepuserflags = 0; int opt_inplace = 0; int opt_extract = 0; int opt_preventcomment = 0;//undocumented unoffical flag for mcpl unit tests int opt_repair = 0; int opt_version = 0; int opt_text = 0; int i; for (i = 1; i=2&&a[0]=='-'&&a[1]!='-') { //short options: int64_t * consume_digit = 0; size_t j; for (j=1; j'9') return free(filenames),mcpl_tool_usage(argv,"Bad option: expected number"); *consume_digit *= 10; *consume_digit += a[j] - '0'; continue; } if (a[j]=='b') { if (blobkey) return free(filenames),mcpl_tool_usage(argv,"-b specified more than once"); if (j+1==n) return free(filenames),mcpl_tool_usage(argv,"Missing argument for -b"); blobkey = a+j+1; break; } if (a[j]=='p') { if (pdgcode_str) return free(filenames),mcpl_tool_usage(argv,"-p specified more than once"); if (j+1==n) return free(filenames),mcpl_tool_usage(argv,"Missing argument for -p"); pdgcode_str = a+j+1; break; } switch(a[j]) { case 'h': return free(filenames), mcpl_tool_usage(argv,0); case 'j': opt_justhead = 1; break; case 'n': opt_nohead = 1; break; case 'm': opt_merge = 1; break; case 'e': opt_extract = 1; break; case 'r': opt_repair = 1; break; case 'v': opt_version = 1; break; case 't': opt_text = 1; break; case 'l': consume_digit = &opt_num_limit; break; case 's': consume_digit = &opt_num_skip; break; default: return free(filenames),mcpl_tool_usage(argv,"Unrecognised option"); } if (consume_digit) { *consume_digit = 0; if (j+1==n) return free(filenames),mcpl_tool_usage(argv,"Bad option: missing number"); } } } else if (n>=3&&a[0]=='-'&&a[1]=='-') { a+=2; //long options: const char * lo_help = "help"; const char * lo_justhead = "justhead"; const char * lo_nohead = "nohead"; const char * lo_merge = "merge"; const char * lo_inplace = "inplace"; const char * lo_extract = "extract"; const char * lo_preventcomment = "preventcomment"; const char * lo_repair = "repair"; const char * lo_version = "version"; const char * lo_text = "text"; const char * lo_forcemerge = "forcemerge"; const char * lo_keepuserflags = "keepuserflags"; //Use strstr instead of "strcmp(a,"--help")==0" to support shortened //versions (works since all our long-opts start with unique char). if (strstr(lo_help,a)==lo_help) return free(filenames), mcpl_tool_usage(argv,0); else if (strstr(lo_justhead,a)==lo_justhead) opt_justhead = 1; else if (strstr(lo_nohead,a)==lo_nohead) opt_nohead = 1; else if (strstr(lo_merge,a)==lo_merge) opt_merge = 1; else if (strstr(lo_forcemerge,a)==lo_forcemerge) opt_forcemerge = 1; else if (strstr(lo_keepuserflags,a)==lo_keepuserflags) opt_keepuserflags = 1; else if (strstr(lo_inplace,a)==lo_inplace) opt_inplace = 1; else if (strstr(lo_extract,a)==lo_extract) opt_extract = 1; else if (strstr(lo_repair,a)==lo_repair) opt_repair = 1; else if (strstr(lo_version,a)==lo_version) opt_version = 1; else if (strstr(lo_preventcomment,a)==lo_preventcomment) opt_preventcomment = 1; else if (strstr(lo_text,a)==lo_text) opt_text = 1; else return free(filenames),mcpl_tool_usage(argv,"Unrecognised option"); } else if (n>=1&&a[0]!='-') { //input file if (!filenames) filenames = (char **)calloc(argc,sizeof(char*)); filenames[nfilenames] = a; ++nfilenames; } else { return free(filenames),mcpl_tool_usage(argv,"Bad arguments"); } } if ( opt_extract==0 && pdgcode_str ) return free(filenames),mcpl_tool_usage(argv,"-p can only be used with --extract."); if ( opt_merge==0 && opt_inplace!=0 ) return free(filenames),mcpl_tool_usage(argv,"--inplace can only be used with --merge."); if ( opt_forcemerge==0 && opt_keepuserflags!=0 ) return free(filenames),mcpl_tool_usage(argv,"--keepuserflags can only be used with --forcemerge."); if ( opt_merge!=0 && opt_forcemerge!=0 ) return free(filenames),mcpl_tool_usage(argv,"--merge and --forcemerge can not both be specified ."); int number_dumpopts = (opt_justhead + opt_nohead + (blobkey!=0)); if (opt_extract==0) number_dumpopts += (opt_num_limit!=-1) + (opt_num_skip!=-1); int any_dumpopts = number_dumpopts != 0; int any_extractopts = (opt_extract!=0||pdgcode_str!=0); int any_mergeopts = (opt_merge!=0||opt_forcemerge!=0); int any_textopts = (opt_text!=0); if (any_dumpopts+any_mergeopts+any_extractopts+any_textopts+opt_repair+opt_version>1) return free(filenames),mcpl_tool_usage(argv,"Conflicting options specified."); if (blobkey&&(number_dumpopts>1)) return free(filenames),mcpl_tool_usage(argv,"Do not specify other dump options with -b."); if (opt_version) { free(filenames); if (nfilenames) return mcpl_tool_usage(argv,"Unrecognised arguments for --version."); printf("MCPL version " MCPL_VERSION_STR "\n"); return 0; } if (any_mergeopts) { if (nfilenames<2) return free(filenames),mcpl_tool_usage(argv, (opt_forcemerge?"Too few arguments for --forcemerge.":"Too few arguments for --merge.") ); int ifirstinfile = (opt_inplace ? 0 : 1); if (!opt_forcemerge) { for (i = ifirstinfile+1; i < nfilenames; ++i) if (!mcpl_can_merge(filenames[ifirstinfile],filenames[i])) return free(filenames),mcpl_tool_usage(argv,"Requested files are incompatible for merge as they have different header info."); } if (opt_inplace) { assert( !opt_forcemerge && opt_merge ); for (i = ifirstinfile+1; i < nfilenames; ++i) mcpl_merge_inplace(filenames[ifirstinfile],filenames[i]); } else { if (mcpl_file_certainly_exists(filenames[0])) return free(filenames),mcpl_tool_usage(argv,"Requested output file already exists."); //Disallow .gz endings unless it is .mcpl.gz, in which case we attempt to gzip automatically. char * outfn = filenames[0]; size_t lfn = strlen(outfn); int attempt_gzip = 0; if( lfn > 8 && !strcmp(outfn + (lfn - 8), ".mcpl.gz")) { attempt_gzip = 1; outfn = (char*)malloc(lfn+1); outfn[0] = '\0'; strcat(outfn,filenames[0]); outfn[lfn-3] = '\0'; if (mcpl_file_certainly_exists(outfn)) return free(filenames),mcpl_tool_usage(argv,"Requested output file already exists (without .gz extension)."); } else if( lfn > 3 && !strcmp(outfn + (lfn - 3), ".gz")) { return free(filenames),mcpl_tool_usage(argv,"Requested output file should not have .gz extension (unless it is .mcpl.gz)."); } mcpl_outfile_t mf = ( opt_forcemerge ? mcpl_forcemerge_files( outfn, nfilenames-1, (const char**)filenames + 1, opt_keepuserflags) : mcpl_merge_files( outfn, nfilenames-1, (const char**)filenames + 1) ); if (attempt_gzip) { if (!mcpl_closeandgzip_outfile(mf)) printf("MCPL WARNING: Failed to gzip output. Non-gzipped output is found in %s\n",outfn); } else { mcpl_close_outfile(mf); } if (outfn != filenames[0]) free(outfn); } free(filenames); return 0; } if (opt_extract) { if (nfilenames>2) return free(filenames),mcpl_tool_usage(argv,"Too many arguments."); if (nfilenames!=2) return free(filenames),mcpl_tool_usage(argv,"Must specify both input and output files with --extract."); if (mcpl_file_certainly_exists(filenames[1])) return free(filenames),mcpl_tool_usage(argv,"Requested output file already exists."); mcpl_file_t fi = mcpl_open_file(filenames[0]); mcpl_outfile_t fo = mcpl_create_outfile(filenames[1]); mcpl_transfer_metadata(fi, fo); uint64_t fi_nparticles = mcpl_hdr_nparticles(fi); if (!opt_preventcomment) { char comment[1024]; sprintf(comment, "mcpltool: extracted particles from file with %" PRIu64 " particles",fi_nparticles); mcpl_hdr_add_comment(fo,comment); } int32_t pdgcode_select = 0; if (pdgcode_str) { int64_t pdgcode64; if (!mcpl_str2int(pdgcode_str, 0, &pdgcode64) || pdgcode64<-2147483648 || pdgcode64>2147483647 || !pdgcode64) return free(filenames),mcpl_tool_usage(argv,"Must specify non-zero 32bit integer as argument to -p."); pdgcode_select = (int32_t)pdgcode64; } if (opt_num_skip>0) mcpl_seek(fi,(uint64_t)opt_num_skip); //uint64_t(-1) instead of UINT64_MAX to fix clang c++98 compilation uint64_t left = opt_num_limit>0 ? (uint64_t)opt_num_limit : (uint64_t)-1; uint64_t added = 0; const mcpl_particle_t* particle; while ( left-- && ( particle = mcpl_read(fi) ) ) { if (pdgcode_select && pdgcode_select!= particle->pdgcode) continue; mcpl_transfer_last_read_particle(fi, fo);//Doing mcpl_add_particle(fo,particle) is potentially (very rarely) lossy ++added; } char *fo_filename = (char*)malloc(strlen(mcpl_outfile_filename(fo))+4); fo_filename[0] = '\0'; strcat(fo_filename,mcpl_outfile_filename(fo)); if (mcpl_closeandgzip_outfile(fo)) strcat(fo_filename,".gz"); mcpl_close_file(fi); printf("MCPL: Succesfully extracted %" PRIu64 " / %" PRIu64 " particles from %s into %s\n", added,fi_nparticles,filenames[0],fo_filename); free(fo_filename); free(filenames); return 0; } if (opt_text) { if (nfilenames>2) return free(filenames),mcpl_tool_usage(argv,"Too many arguments."); if (nfilenames!=2) return free(filenames),mcpl_tool_usage(argv,"Must specify both input and output files with --text."); if (mcpl_file_certainly_exists(filenames[1])) return free(filenames),mcpl_tool_usage(argv,"Requested output file already exists."); mcpl_file_t fi = mcpl_open_file(filenames[0]); FILE * fout = fopen(filenames[1],"w"); if (!fout) return free(filenames),mcpl_tool_usage(argv,"Could not open output file."); fprintf(fout,"#MCPL-ASCII\n#ASCII-FORMAT: v1\n#NPARTICLES: %" PRIu64 "\n#END-HEADER\n",mcpl_hdr_nparticles(fi)); fprintf(fout,"index pdgcode ekin[MeV] x[cm] " " y[cm] z[cm] ux " " uy uz time[ms] weight " " pol-x pol-y pol-z userflags\n"); const mcpl_particle_t* p; while ( ( p = mcpl_read(fi) ) ) { uint64_t idx = mcpl_currentposition(fi)-1;//-1 since mcpl_read skipped ahead fprintf(fout,"%5" PRIu64 " %11i %23.18g %23.18g %23.18g %23.18g %23.18g %23.18g %23.18g %23.18g %23.18g" " %23.18g %23.18g %23.18g 0x%08x\n", idx,p->pdgcode,p->ekin,p->position[0],p->position[1],p->position[2], p->direction[0],p->direction[1],p->direction[2],p->time,p->weight, p->polarisation[0],p->polarisation[1],p->polarisation[2],p->userflags); } fclose(fout); mcpl_close_file(fi); free(filenames); return 0; } if (nfilenames>1) return free(filenames),mcpl_tool_usage(argv,"Too many arguments."); if (!nfilenames) return free(filenames),mcpl_tool_usage(argv,"No input file specified"); if (opt_repair) { mcpl_repair(filenames[0]); free(filenames); return 0; } //Dump mode: if (blobkey) { mcpl_file_t mcplfile = mcpl_open_file(filenames[0]); uint32_t ldata; const char * data; if (!mcpl_hdr_blob(mcplfile, blobkey, &ldata, &data)) return 1; #ifdef MCPL_THIS_IS_MS setmode(STDOUT_FILENO, O_BINARY); #endif uint32_t nb = write(STDOUT_FILENO,data,ldata); if (nb!=ldata) mcpl_error("Problems writing to stdout"); free(filenames); return 0; } if (opt_justhead&&(opt_num_limit!=-1||opt_num_skip!=-1)) return free(filenames),mcpl_tool_usage(argv,"Do not specify -l or -s with --justhead"); if (opt_num_limit<0) opt_num_limit = MCPLIMP_TOOL_DEFAULT_NLIMIT; if (opt_num_skip<0) opt_num_skip = MCPLIMP_TOOL_DEFAULT_NSKIP; if (opt_justhead&&opt_nohead) return free(filenames),mcpl_tool_usage(argv,"Do not supply both --justhead and --nohead."); int parts = 0; if (opt_nohead) parts=2; else if (opt_justhead) parts=1; mcpl_dump(filenames[0],parts,opt_num_skip,opt_num_limit); free(filenames); return 0; } int mcpl_gzip_file_rc(const char * filename) { printf("MCPL WARNING: Usage of function mcpl_gzip_file_rc is obsolete as" " mcpl_gzip_file now also returns the status. Please update your code" " to use mcpl_gzip_file instead.\n"); return mcpl_gzip_file(filename); } #if defined(MCPL_HASZLIB) && !defined(Z_SOLO) && !defined(MCPL_NO_CUSTOM_GZIP) # define MCPLIMP_HAS_CUSTOM_GZIP int _mcpl_custom_gzip(const char *file, const char *mode);//return 1 if successful, 0 if not #endif #if defined MCPL_THIS_IS_UNIX && !defined(MCPL_NO_EXT_GZIP) //Platform is unix-like enough that we assume gzip is installed and we can //include posix headers. # include # include # include int mcpl_gzip_file(const char * filename) { const char * bn = strrchr(filename, '/'); bn = bn ? bn + 1 : filename; //spawn process in which to perform gzip: printf("MCPL: Attempting to compress file %s with gzip\n",bn); fflush(0); pid_t gzip_pid = fork(); if (gzip_pid) { //main proc int chld_state = 0; pid_t ret = waitpid(gzip_pid,&chld_state,0); if (ret!=gzip_pid||chld_state!=0) { # ifdef MCPLIMP_HAS_CUSTOM_GZIP printf("MCPL WARNING: Problems invoking gzip - will revert to a custom zlib based compression\n"); if (!_mcpl_custom_gzip(filename,"wb")) mcpl_error("Problems encountered while attempting to compress file"); else printf("MCPL: Succesfully compressed file into %s.gz\n",bn); # else mcpl_error("Problems encountered while attempting to invoke gzip"); # endif } else printf("MCPL: Succesfully compressed file into %s.gz\n",bn); } else { //spawned proc in which to invoke gzip execlp("gzip", "gzip", "-f",filename, (char*)0); printf("MCPL: execlp/gzip error: %s\n",strerror(errno)); exit(1); } return 1; } #else //Non unix-y platform (like windows). We could use e.g. windows-specific calls //instead of the fork() and waitpid() used above, but gzip likely not present on //the system anyway, so we either resort to using zlib directly to gzip, or we //disable the feature and print a warning. # ifndef MCPLIMP_HAS_CUSTOM_GZIP int mcpl_gzip_file(const char * filename) { const char * bn = strrchr(filename, '/'); bn = bn ? bn + 1 : filename; printf("MCPL WARNING: Requested compression of %s to %s.gz is not supported in this build.\n",bn,bn); return 0; } # else int mcpl_gzip_file(const char * filename) { const char * bn = strrchr(filename, '/'); bn = bn ? bn + 1 : filename; printf("MCPL: Attempting to compress file %s with zlib\n",bn); if (!_mcpl_custom_gzip(filename,"wb")) printf("MCPL ERROR: Problems encountered while compressing file %s.\n",bn); else printf("MCPL: Succesfully compressed file into %s.gz\n",bn); return 1; } # endif #endif #ifdef MCPLIMP_HAS_CUSTOM_GZIP int _mcpl_custom_gzip(const char *filename, const char *mode) { //Open input file: FILE *handle_in = fopen(filename, "rb"); if (!handle_in) return 0; //Construct output file name by appending .gz: char * outfn = (char*)malloc(strlen(filename) + 4); outfn[0] = '\0'; strcat(outfn,filename); strcat(outfn,".gz"); //Open output file: gzFile handle_out = gzopen(outfn, mode); free(outfn); if (!handle_out) { fclose(handle_in); return 0; } //Compress input to output: char buf[16384]; size_t len; while (1) { len = (int)fread(buf, 1, sizeof(buf), handle_in); if (ferror(handle_in)) return 0; if (!len) break; if ((size_t)gzwrite(handle_out, buf, (unsigned)len) != len) return 0; } //close file: fclose(handle_in); if (gzclose(handle_out) != Z_OK) return 0; //remove input file and return success: unlink(filename); return 1; } #endif mcpl-1.3.2/src/mcpl/mcpl.h000066400000000000000000000274721361775146500153310ustar00rootroot00000000000000#ifndef MCPL_H #define MCPL_H #include /***********************************************************************************/ /* */ /* Monte Carlo Particle Lists : MCPL */ /* */ /* Utilities for reading and writing .mcpl files: A binary format with lists of */ /* particle state information, for interchanging and reshooting events between */ /* various Monte Carlo simulation applications. */ /* */ /* Find more information and updates at https://mctools.github.io/mcpl/ */ /* */ /* This file can be freely used as per the terms in the LICENSE file. */ /* */ /* Written by Thomas Kittelmann, 2015-2017. */ /* */ /***********************************************************************************/ #define MCPL_VERSION_MAJOR 1 #define MCPL_VERSION_MINOR 3 #define MCPL_VERSION_PATCH 2 #define MCPL_VERSION 10302 /* (10000*MAJOR+100*MINOR+PATCH) */ #define MCPL_VERSION_STR "1.3.2" #define MCPL_FORMATVERSION 3 /* Format version of written files */ #ifdef __cplusplus extern "C" { #endif /*********/ /* Types */ /*********/ #pragma pack (push, 1) /* The data structure representing a particle (note that persistification of */ /* polarisation and userflags must be explicitly enabled when writing .mcpl */ /* files, or they will simply contain zeroes when the file is read): */ typedef struct { double ekin; /* kinetic energy [MeV] */ double polarisation[3]; /* polarisation vector */ double position[3]; /* position [cm] */ double direction[3]; /* momentum direction (unit vector) */ double time; /* time-stamp [millisecond] */ double weight; /* weight or intensity */ int32_t pdgcode; /* MC particle number from the Particle Data Group (2112=neutron, 22=gamma, ...) */ uint32_t userflags; /* User flags (if used, the file header should probably contain information about how). */ } mcpl_particle_t; #pragma pack (pop) typedef struct { void * internal; } mcpl_file_t; /* file-object used while reading .mcpl */ typedef struct { void * internal; } mcpl_outfile_t; /* file-object used while writing .mcpl */ /****************************/ /* Creating new .mcpl files */ /****************************/ /* Instantiate new file object (will also open and override specified file) */ mcpl_outfile_t mcpl_create_outfile(const char * filename); const char * mcpl_outfile_filename(mcpl_outfile_t);/* filename being written to (might have had .mcpl appended) */ /* Optionally set global options or add info to the header: */ void mcpl_hdr_set_srcname(mcpl_outfile_t, const char *);/* Name of the generating application */ void mcpl_hdr_add_comment(mcpl_outfile_t, const char *);/* Add one or more human-readable comments */ void mcpl_hdr_add_data(mcpl_outfile_t, const char * key, uint32_t ldata, const char * data);/* add binary blobs by key */ void mcpl_enable_userflags(mcpl_outfile_t);/* to write the "userflags" info */ void mcpl_enable_polarisation(mcpl_outfile_t);/* to write the "polarisation" info */ void mcpl_enable_doubleprec(mcpl_outfile_t);/* use double precision FP numbers in storage */ void mcpl_enable_universal_pdgcode(mcpl_outfile_t, int32_t pdgcode);/* All particles are of the same type */ void mcpl_enable_universal_weight(mcpl_outfile_t, double w);/* All particles have the same weight */ /* Optionally (but rarely skipped) add particles, by updating the info in */ /* and then passing in a pointer to an mcpl_particle_t instance: */ void mcpl_add_particle(mcpl_outfile_t,const mcpl_particle_t*); /* Finally, always remember to close the file: */ void mcpl_close_outfile(mcpl_outfile_t); /* Alternatively close with (will call mcpl_gzip_file after close). */ /* Returns non-zero if gzipping was succesful: */ int mcpl_closeandgzip_outfile(mcpl_outfile_t); /* Convenience function which returns a pointer to a nulled-out particle struct which can be used to edit and pass to mcpl_add_particle. It can be reused and will be automatically free'd when the file is closed: */ mcpl_particle_t* mcpl_get_empty_particle(mcpl_outfile_t); /***********************/ /* Reading .mcpl files */ /***********************/ /* Open file and load header information into memory, skip to the first (if */ /* any) particle in the list: */ mcpl_file_t mcpl_open_file(const char * filename); /* Access header data: */ unsigned mcpl_hdr_version(mcpl_file_t);/* file format version (not the same as MCPL_VERSION) */ uint64_t mcpl_hdr_nparticles(mcpl_file_t);/* number of particles stored in file */ const char* mcpl_hdr_srcname(mcpl_file_t);/* Name of the generating application */ unsigned mcpl_hdr_ncomments(mcpl_file_t);/* number of comments stored in file */ const char * mcpl_hdr_comment(mcpl_file_t, unsigned icomment);/* access i'th comment */ int mcpl_hdr_nblobs(mcpl_file_t); const char** mcpl_hdr_blobkeys(mcpl_file_t);/* returns 0 if there are no keys */ int mcpl_hdr_blob(mcpl_file_t, const char* key, uint32_t* ldata, const char ** data);/* access data (returns 0 if key doesn't exist) */ int mcpl_hdr_has_userflags(mcpl_file_t); int mcpl_hdr_has_polarisation(mcpl_file_t); int mcpl_hdr_has_doubleprec(mcpl_file_t); uint64_t mcpl_hdr_header_size(mcpl_file_t);/* bytes consumed by header (uncompressed) */ int mcpl_hdr_particle_size(mcpl_file_t);/* bytes per particle (uncompressed) */ int32_t mcpl_hdr_universal_pdgcode(mcpl_file_t);/* returns 0 in case of per-particle pdgcode */ double mcpl_hdr_universal_weight(mcpl_file_t);/* returns 0.0 in case of per-particle weights */ int mcpl_hdr_little_endian(mcpl_file_t); /* Request pointer to particle at current location and skip forward to the next */ /* particle. Return value will be null in case there was no particle at the */ /* current location (normally due to end-of-file): */ const mcpl_particle_t* mcpl_read(mcpl_file_t); /* Seek and skip in particles (returns 0 when there is no particle at the new position): */ int mcpl_skipforward(mcpl_file_t,uint64_t n); int mcpl_rewind(mcpl_file_t); int mcpl_seek(mcpl_file_t,uint64_t ipos); uint64_t mcpl_currentposition(mcpl_file_t); /* Deallocate memory and release file-handle with: */ void mcpl_close_file(mcpl_file_t); /***********************************/ /* Other operations on .mcpl files */ /***********************************/ /* Dump information about the file to std-output: */ /* parts : 0 -> header+particle list, 1 -> just header, 2 -> just particle list. */ /* nlimit: maximum number of particles to list (0 for unlimited) */ /* nskip : index of first particle in the file to list. */ void mcpl_dump(const char * file, int parts, uint64_t nskip, uint64_t nlimit); /* Merge contents of a list of files by concatenating all particle contents into a */ /* new file, file_output. This results in an error unless all meta-data and settings */ /* in the files are identical. Also fails if file_output already exists. Note that */ /* the return value is a handle to the output file which has not yet been closed: */ mcpl_outfile_t mcpl_merge_files( const char* file_output, unsigned nfiles, const char ** files); /* Test if files could be merged by mcpl_merge_files: */ int mcpl_can_merge(const char * file1, const char* file2); /* Similar to mcpl_merge_files, but merges two files by appending all particles in */ /* file2 to the list in file1 (thus file1 grows while file2 stays untouched). */ /* Note that this requires similar version of the MCPL format of the two files, in */ /* addition to the other checks in mcpl_can_merge(). */ /* Careful usage of this function can be more efficient than mcpl_merge_files. */ void mcpl_merge_inplace(const char * file1, const char* file2); /* Attempt to merge incompatible files, by throwing away meta-data and otherwise */ /* selecting a configuration which is suitable to contain the data of all files. */ /* Userflags will be discarded unless keep_userflags=1. */ /* If called with compatible files, the code will fall back to calling the usual */ /* mcpl_merge_files function instead. */ mcpl_outfile_t mcpl_forcemerge_files( const char* file_output, unsigned nfiles, const char ** files, int keep_userflags ); /* Attempt to fix number of particles in the header of a file which was never */ /* properly closed: */ void mcpl_repair(const char * file1); /* For easily creating a standard mcpl-tool cmdline application: */ int mcpl_tool(int argc, char** argv); /* Attempt to run gzip on a file (does not require MCPL_HASZLIB on unix) */ /* Returns non-zero if gzipping was succesful. */ int mcpl_gzip_file(const char * filename); /* Convenience function which transfers all settings, blobs and comments to */ /* target. Intended to make it easy to filter files via custom C code. */ void mcpl_transfer_metadata(mcpl_file_t source, mcpl_outfile_t target); /* Function which can be used when transferring particles from one MCPL file */ /* to another. A particle must have been already read from the source file */ /* with a call to mcpl_read(..). This function will transfer the packed par- */ /* ticle data exactly when possible (using mcpl_add_particle can in principle */ /* introduce tiny numerical uncertainties due to the internal unpacking and */ /* repacking of direction vectors involved): */ void mcpl_transfer_last_read_particle(mcpl_file_t source, mcpl_outfile_t target); /******************/ /* Error handling */ /******************/ /* Override the error handler which will get called with the error */ /* description. If no handler is set, errors will get printed to stdout and the */ /* process terminated. An error handler should not return to the calling code. */ void mcpl_set_error_handler(void (*handler)(const char *)); /**********************/ /* Obsolete functions */ /**********************/ /* Functions kept for backwards compatibility. They keep working for now, but */ /* usage will result in a warning printed to stdout, notifying users to update */ /* their code. */ void mcpl_merge(const char *, const char*);/* Obsolete name for mcpl_merge_inplace */ int mcpl_gzip_file_rc(const char * filename);/* Obsolete name for mcpl_gzip_file */ int mcpl_closeandgzip_outfile_rc(mcpl_outfile_t);/* Obsolete name for mcpl_closeandgzip_outfile_rc */ int32_t mcpl_hdr_universel_pdgcode(mcpl_file_t);/* Obsolete name for mcpl_hdr_universal_pdgcode */ #ifdef __cplusplus } #endif #endif mcpl-1.3.2/src/mcpl/mcpltool_app.c000066400000000000000000000015401361775146500170460ustar00rootroot00000000000000///////////////////////////////////////////////////////////////////////////////////// // // // mcpltool : a simple command line utility for inspecting MCPL files. // // // // This file can be freely used as per the terms in the LICENSE file. // // // // Written by Thomas Kittelmann, 2015-2016. // // // ///////////////////////////////////////////////////////////////////////////////////// #include "mcpl.h" int main ( int argc, char** argv ) { return mcpl_tool(argc,argv); } mcpl-1.3.2/src/mcstas/000077500000000000000000000000001361775146500145505ustar00rootroot00000000000000mcpl-1.3.2/src/mcstas/README000066400000000000000000000007461361775146500154370ustar00rootroot00000000000000From McStas version 2.3, MCPL plugins are shipped as part of the McStas Component distribution. Please refer to the following McStas instrument files in the examples/ directory of that distribution for demonstrations of how to enable the relevant components: examples/Test_MCPL_input.instr examples/Test_MCPL_output.instr Additionally, users of McStas automatically have access to the mcpltool command. Further instructions are also available at https://mctools.github.io/mcpl/. mcpl-1.3.2/src/mcxtrace/000077500000000000000000000000001361775146500150645ustar00rootroot00000000000000mcpl-1.3.2/src/mcxtrace/README000066400000000000000000000007561361775146500157540ustar00rootroot00000000000000From McXtrace version 1.3, MCPL plugins are shipped as part of the McXtrace Component distribution. Please refer to the following McXtrace instrument files in the examples/ directory of that distribution for demonstrations of how to enable the relevant components: examples/Test_MCPL_input.instr examples/Test_MCPL_output.instr Additionally, users of McXtrace automatically have access to the mcpltool command. Further instructions are also available at https://mctools.github.io/mcpl/. mcpl-1.3.2/src/phits/000077500000000000000000000000001361775146500144055ustar00rootroot00000000000000mcpl-1.3.2/src/phits/mcpl2phits_app.c000066400000000000000000000024121361775146500174750ustar00rootroot00000000000000#include "phitsmcpl.h" ///////////////////////////////////////////////////////////////////////////////////// // // // mcpl2phits : a simple command line utility for converting MCPL to binary // PHITS dump files. // // // // This file can be freely used as per the terms in the LICENSE file. // // // // However, note that usage of PHITS-related utilities might require additional // // permissions and licenses from third-parties, which is not within the scope of // // the MCPL project itself. // // // // Written 2019, thomas.kittelmann@esss.se (European Spallation Source). // // // ///////////////////////////////////////////////////////////////////////////////////// int main(int argc,char** argv) { return mcpl2phits_app(argc,argv); } mcpl-1.3.2/src/phits/phits2mcpl_app.c000066400000000000000000000024241361775146500175000ustar00rootroot00000000000000#include "phitsmcpl.h" ///////////////////////////////////////////////////////////////////////////////////// // // // phits2mcpl : a simple command line utility for converting binary PHITS dump // // files to MCPL. // // // // This file can be freely used as per the terms in the LICENSE file. // // // // However, note that usage of PHITS-related utilities might require additional // // permissions and licenses from third-parties, which is not within the scope of // // the MCPL project itself. // // // // Written 2019, thomas.kittelmann@esss.se (European Spallation Source). // // // ///////////////////////////////////////////////////////////////////////////////////// int main(int argc,char** argv) { return phits2mcpl_app(argc,argv); } mcpl-1.3.2/src/phits/phitsmcpl.c000066400000000000000000000474061361775146500165670ustar00rootroot00000000000000 ///////////////////////////////////////////////////////////////////////////////////// // // // phitsmcpl : Code for converting between MCPL and binary PHITS dump files. // // // // // // Compilation of phitsmcpl.c can proceed via any compliant C-compiler using // // -std=c99 later. Furthermore, the following preprocessor flag can be used // // when compiling phitsmcpl.c to fine tune the build process. // // // // PHITSMCPL_HDR_INCPATH : Specify alternative value if the phitsmcpl header // // itself is not to be included as "phitsmcpl.h". // // PHITSREAD_HDR_INCPATH : Specify alternative value if the phitsread header // // is not to be included as "phitsread.h". // // MCPL_HEADER_INCPATH : Specify alternative value if the MCPL header is // // not to be included as "mcpl.h". // // // // This file can be freely used as per the terms in the LICENSE file. // // // // However, note that usage of PHITS-related utilities might require additional // // permissions and licenses from third-parties, which is not within the scope of // // the MCPL project itself. // // // // Written 2019, thomas.kittelmann@esss.se (European Spallation Source). // // // ///////////////////////////////////////////////////////////////////////////////////// #ifdef PHITSMCPL_HDR_INCPATH # include PHITSMCPL_HDR_INCPATH #else # include "phitsmcpl.h" #endif #ifdef PHITSREAD_HDR_INCPATH # include PHITSREAD_HDR_INCPATH #else # include "phitsread.h" #endif #ifdef MCPL_HEADER_INCPATH # include MCPL_HEADER_INCPATH #else # include "mcpl.h" #endif #include #include #include #include #include void phits_error(const char * msg);//fwd declare internal function from phitsread.c int phitsmcpl_buf_is_text(size_t n, const unsigned char * buf) { //We correctly allow ASCII & UTF-8 but falsely classify UTF-16 and UTF-32 as //data. See http://stackoverflow.com/questions/277521#277568 for how we could //also detect UTF-16 & UTF-32. const unsigned char * bufE = buf + n; for (; buf!=bufE; ++buf) if ( ! ( ( *buf >=9 && *buf<=13 ) || ( *buf >=32 && *buf<=126 ) || *buf >=128 ) ) return 0; return 1; } int phitsmcpl_file2buf(const char * filename, unsigned char** buf, size_t* lbuf, size_t maxsize, int require_text) { *buf = 0; *lbuf = 0; FILE * file = fopen(filename, "rb"); if (!file) { printf("Error: could not open file %s.\n",filename); return 0; } size_t pos_begin = ftell(file); size_t bbuf_size = maxsize;//default to max size (in case SEEK_END does not work) int bbuf_size_guess = 1; if (!fseek( file, 0, SEEK_END )) { size_t pos_end = ftell(file); bbuf_size = pos_end-pos_begin; bbuf_size_guess = 0; if (bbuf_size<50) { printf("Error: file %s is suspiciously short.\n",filename); return 0; } if (bbuf_size>104857600) { printf("Error: file %s is larger than %g bytes.\n",filename,(double)maxsize); return 0; } } if (fseek( file, 0, SEEK_SET)) { printf("Error: Could not rewind file %s.\n",filename); return 0; } unsigned char * bbuf = malloc(bbuf_size); unsigned char * bbuf_iter = bbuf; size_t left = bbuf_size; while (left) { size_t nb = fread(bbuf_iter, 1, left, file); if (bbuf_size_guess&&nb==0) { bbuf_size -= left; break; } if (nb==0||nb>left) { printf("Error: file %s read-error.\n",filename); free(bbuf); return 0; } bbuf_iter += nb; left -= nb; } fclose(file); if ( require_text && !phitsmcpl_buf_is_text(bbuf_size, bbuf) ) { printf("Error: file %s does not appear to be a text file.\n",filename); free(bbuf); return 0; } *buf = bbuf; *lbuf = bbuf_size; return 1; } int phits2mcpl(const char * phitsfile, const char * mcplfile) { return phits2mcpl2(phitsfile, mcplfile, 0, 1, 0, 0); } int phits2mcpl2( const char * phitsdumpfile, const char * mcplfile, int opt_dp, int opt_gzip, const char * inputdeckfile, const char * dumpsummaryfile ) { phits_file_t f = phits_open_file(phitsdumpfile); mcpl_outfile_t mcplfh = mcpl_create_outfile(mcplfile); mcpl_hdr_set_srcname(mcplfh,"PHITS"); mcpl_hdr_add_comment(mcplfh,"Converted from PHITS with phits2mcpl (from MCPL release v" MCPL_VERSION_STR ")"); if (opt_dp) mcpl_enable_doubleprec(mcplfh); if (phits_has_polarisation(f)) mcpl_enable_polarisation(mcplfh); if (inputdeckfile) { unsigned char* cfgfile_buf; size_t cfgfile_lbuf; if (!phitsmcpl_file2buf(inputdeckfile, &cfgfile_buf, &cfgfile_lbuf, 104857600, 1)) return 0; //We won't do much for sanity checks since we want to avoid the risk of //false positives, but at least the word "dump" should occur in both input //deck and dump summary files: if (!strstr((const char*)cfgfile_buf, "dump")) { printf("Error: specified configuration file %s looks invalid as it does not contain the word \"dump\".\n",inputdeckfile); return 0; } mcpl_hdr_add_data(mcplfh, "phits_input_deck", (uint32_t)cfgfile_lbuf,(const char *)cfgfile_buf); free(cfgfile_buf); } if (dumpsummaryfile) { unsigned char* summaryfile_buf; size_t summaryfile_lbuf; if (!phitsmcpl_file2buf(dumpsummaryfile, &summaryfile_buf, &summaryfile_lbuf, 104857600, 1)) return 0; //Same check as for the input deck above: if (!strstr((const char*)summaryfile_buf, "dump")) { printf("Error: specified dump summary file %s looks invalid as it does not contain the word \"dump\".\n",dumpsummaryfile); return 0; } mcpl_hdr_add_data(mcplfh, "phits_dump_summary_file", (uint32_t)summaryfile_lbuf,(const char *)summaryfile_buf); free(summaryfile_buf); } mcpl_particle_t* mcpl_particle = mcpl_get_empty_particle(mcplfh); const phits_particle_t * p; while ((p=phits_load_particle(f))) { if (!p->pdgcode) { printf("Warning: ignored particle with no PDG code set (raw phits kt code was %li).\n",p->rawtype); continue; } mcpl_particle->pdgcode = p->pdgcode; mcpl_particle->position[0] = p->x;//already in cm mcpl_particle->position[1] = p->y;//already in cm mcpl_particle->position[2] = p->z;//already in cm mcpl_particle->direction[0] = p->dirx; mcpl_particle->direction[1] = p->diry; mcpl_particle->direction[2] = p->dirz; mcpl_particle->polarisation[0] = p->polx; mcpl_particle->polarisation[1] = p->poly; mcpl_particle->polarisation[2] = p->polz; mcpl_particle->time = p->time * 1.0e-6;//nanoseconds (PHITS) to milliseconds (MCPL) mcpl_particle->weight = p->weight; mcpl_particle->ekin = p->ekin;//already in MeV mcpl_add_particle(mcplfh,mcpl_particle); } const char * tmp = mcpl_outfile_filename(mcplfh); size_t laf = strlen(tmp); char * actual_filename = malloc(laf+1); actual_filename[0]='\0'; strcat(actual_filename,tmp); int did_gzip = 0; if (opt_gzip) did_gzip = mcpl_closeandgzip_outfile(mcplfh); else mcpl_close_outfile(mcplfh); phits_close_file(f); printf("Created %s%s\n",actual_filename,(did_gzip?".gz":"")); free(actual_filename); return 1; } void phits2mcpl_parse_args( int argc,char **argv, const char** infile, const char **outfile, const char **cfgfile, const char **dumpsummaryfile, int* double_prec, int* do_gzip ) { *cfgfile = 0; *dumpsummaryfile = 0; *infile = 0; *outfile = 0; *double_prec = 0; *do_gzip = 1; int i; for (i=1; i < argc; ++i) { if (argv[i][0]=='\0') continue; if (strcmp(argv[i],"-h")==0||strcmp(argv[i],"--help")==0) { const char * progname = strrchr(argv[0], '/'); progname = progname ? progname + 1 : argv[0]; printf("Usage:\n\n"); printf(" %s [options] dumpfile [output.mcpl]\n\n",progname); printf("Converts the Monte Carlo particles in the input dump file (binary PHITS dump\n" "file format in suitable configuration) to MCPL format and stores in the\n" "designated output file (defaults to \"output.mcpl\").\n" "\n" "Options:\n" "\n" " -h, --help : Show this usage information.\n" " -d, --double : Enable double-precision storage of floating point values.\n" " -n, --nogzip : Do not attempt to gzip output file.\n" " -c FILE : Embed entire configuration FILE (the input deck)\n" " used to produce dumpfile in the MCPL header.\n" " -s FILE : Embed into the MCPL header the dump summary text file,\n" " which was produced along with the dumpfile itself.\n" ); exit(0); } if (strcmp(argv[i],"-c")==0) { if (i+1==argc||argv[i+1][0]=='-') { printf("Error: Missing argument for -c\n"); exit(1); } ++i; if (*cfgfile) { printf("Error: -c specified more than once\n"); exit(1); } *cfgfile = argv[i]; continue; } if (strcmp(argv[i],"-s")==0) { if (i+1==argc||argv[i+1][0]=='-') { printf("Error: Missing argument for -s\n"); exit(1); } ++i; if (*dumpsummaryfile) { printf("Error: -s specified more than once\n"); exit(1); } *dumpsummaryfile = argv[i]; continue; } if (strcmp(argv[i],"-d")==0||strcmp(argv[i],"--double")==0) { *double_prec = 1; continue; } if (strcmp(argv[i],"-n")==0||strcmp(argv[i],"--nogzip")==0) { *do_gzip = 0; continue; } if (argv[i][0]=='-') { printf("Error: Unknown argument: %s\n",argv[i]); exit(1); } if (!*infile) { *infile = argv[i]; continue; } if (!*outfile) { *outfile = argv[i]; continue; } printf("Error: Too many arguments! (run with -h or --help for usage instructions)\n"); exit(1); } if (!*infile) { printf("Error: Too few arguments! (run with -h or --help for usage instructions)\n"); exit(1); } if (!*outfile) *outfile = "output.mcpl"; if (strcmp(*infile,*outfile)==0) { //basic test, easy to cheat: printf("Error: input and output files are identical.\n"); exit(1); } } int phits2mcpl_app(int argc,char** argv) { const char * infile; const char * outfile; const char * cfgfile; const char * dumphdrfile; int double_prec, do_gzip; phits2mcpl_parse_args(argc,argv,&infile,&outfile,&cfgfile,&dumphdrfile,&double_prec,&do_gzip); int ok = phits2mcpl2(infile, outfile,double_prec, do_gzip,cfgfile,dumphdrfile); return ok ? 0 : 1; } void phits_writerecord(FILE* outfile, int reclen, size_t lbuf, char* buf) { if (reclen==4) { uint32_t rl = lbuf; size_t nb = fwrite(&rl, 1, sizeof(rl), outfile); if (nb!=sizeof(rl)) phits_error("write error"); nb = fwrite(buf, 1, lbuf, outfile); if (nb!=lbuf) phits_error("write error"); nb = fwrite(&rl, 1, sizeof(rl), outfile); if (nb!=sizeof(rl)) phits_error("write error"); } else { assert(reclen==8); uint64_t rl = lbuf; size_t nb = fwrite(&rl, 1, sizeof(rl), outfile); if (nb!=sizeof(rl)) phits_error("write error"); nb = fwrite(buf, 1, lbuf, outfile); if (nb!=lbuf) phits_error("write error"); nb = fwrite(&rl, 1, sizeof(rl), outfile); if (nb!=sizeof(rl)) phits_error("write error"); } } int mcpl2phits( const char * inmcplfile, const char * outphitsdumpfile, int use_polarisation, long nparticles_limit, int reclen ) { if ( reclen != 4 && reclen != 8 ) phits_error("Reclen parameter should be 4 (32bit Fortran record markers, recommended) or 8 (64bit Fortran record markers)"); mcpl_file_t fmcpl = mcpl_open_file(inmcplfile); printf( "Opened MCPL file produced with \"%s\" (contains %llu particles)\n", mcpl_hdr_srcname(fmcpl), (unsigned long long)mcpl_hdr_nparticles(fmcpl) ); printf("Creating (or overwriting) output PHITS file.\n"); //Open new phits file: FILE * fout = fopen(outphitsdumpfile,"wb"); if (!fout) phits_error("Problems opening new PHITS file"); const mcpl_particle_t* mcpl_p; long long used = 0; long long skipped_nophitstype = 0; printf("Initiating particle conversion loop.\n"); double dumpdata[13] = {0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.};//explicit since gcc 4.1-4.6 might warn on ={0}; syntax while ( ( mcpl_p = mcpl_read(fmcpl) ) ) { int32_t rawtype = conv_code_pdg2phits( mcpl_p->pdgcode ); if (!rawtype) { ++skipped_nophitstype; if (skipped_nophitstype<=100) { printf("WARNING: Found PDG code (%li) in the MCPL file which can not be converted to a PHITS particle code\n", (long)mcpl_p->pdgcode); if (skipped_nophitstype==100) printf("WARNING: Suppressing future warnings regarding non-convertible PDG codes.\n"); } continue; } assert(rawtype!=0); dumpdata[0] = rawtype; dumpdata[1] = mcpl_p->position[0];//Already in cm dumpdata[2] = mcpl_p->position[1];//Already in cm dumpdata[3] = mcpl_p->position[2];//Already in cm dumpdata[4] = mcpl_p->direction[0]; dumpdata[5] = mcpl_p->direction[1]; dumpdata[6] = mcpl_p->direction[2]; dumpdata[7] = mcpl_p->ekin;//Already in MeV dumpdata[8] = mcpl_p->weight; dumpdata[9] = mcpl_p->time * 1.0e6;//ms->ns dumpdata[10] = mcpl_p->polarisation[0]; dumpdata[11] = mcpl_p->polarisation[1]; dumpdata[12] = mcpl_p->polarisation[2]; if (used==INT32_MAX) { printf("WARNING: Writing more than 2147483647 (maximum value of 32 bit integers) particles in the PHITS dump " "file - it is not known whether PHITS will be able to deal with such files correctly.\n"); } phits_writerecord(fout,reclen,sizeof(double)*(use_polarisation?13:10),(char*)&dumpdata[0]); if (++used==nparticles_limit) { long long remaining = mcpl_hdr_nparticles(fmcpl) - skipped_nophitstype - used; if (remaining) printf("Output limit of %li particles reached. Ignoring remaining %lli particles in the MCPL file.\n", nparticles_limit,remaining); break; } } printf("Ending particle conversion loop.\n"); if (skipped_nophitstype) { printf("WARNING: Ignored %lli particles in the input MCPL file since their PDG codes" " could not be converted to PHITS codes.\n",(long long)skipped_nophitstype); } mcpl_close_file(fmcpl); fclose(fout); printf("Created %s with %lli particles.\n",outphitsdumpfile,(long long)used); return 1; } int mcpl2phits_app_usage( const char** argv, const char * errmsg ) { if (errmsg) { printf("ERROR: %s\n\n",errmsg); printf("Run with -h or --help for usage information\n"); return 1; } const char * progname = strrchr(argv[0], '/'); progname = progname ? progname + 1 : argv[0]; printf("Usage:\n\n"); printf(" %s [options] [phits.dmp]\n\n",progname); printf("Converts the Monte Carlo particles in the input MCPL file to binary PHITS\n" "dump file format and stores the result in the designated output file\n" "(defaults to \"phitsdata_dmp\"). The file can be read in PHITS using\n" "a configuration of (assuming the filename is \"phits.dmp\"):\n" " dump = 13\n" " 1 2 3 4 5 6 7 8 9 10 14 15 16\n" " file = phits.dmp\n" "\n" "Options:\n" "\n" " -h, --help : Show this usage information.\n" " -n, --nopol : Do not write polarisation info (saving ~22%% in file size). The\n" " PHITS configuration reading the file must then be (assuming the\n" " filename is \"phits.dmp\"):\n" " dump = 10\n" " 1 2 3 4 5 6 7 8 9 10\n" " file = phits.dmp\n" " -f : Write Fortran records with 64 bit integer markers. Note that\n" " the default (32 bit) is almost always the correct choice.\n" " -l : Limit the number of particles transferred to the PHITS file\n" " (defaults to 0, meaning no limit).\n" ); return 0; } int mcpl2phits_parse_args( int argc,const char **argv, const char** inmcplfile, const char **outphitsfile, long* nparticles_limit, int* use64bitreclen, int* nopolarisation ) { //returns: 0 all ok, 1: error, -1: all ok but do nothing (-h/--help mode) *inmcplfile = 0; *outphitsfile = 0; *nparticles_limit = INT32_MAX; *use64bitreclen = 0; *nopolarisation = 0; int64_t opt_num_limit = -1; int i; for (i = 1; i=2&&a[0]=='-'&&a[1]!='-') { //short options: int64_t * consume_digit = 0; size_t j; for (j=1; j'9') return mcpl2phits_app_usage(argv,"Bad option: expected number"); *consume_digit *= 10; *consume_digit += a[j] - '0'; continue; } switch(a[j]) { case 'h': mcpl2phits_app_usage(argv,0); return -1; case 'l': consume_digit = &opt_num_limit; break; case 'f': *use64bitreclen = 1; break; case 'n': *nopolarisation = 1; break; default: return mcpl2phits_app_usage(argv,"Unrecognised option"); } if (consume_digit) { *consume_digit = 0; if (j+1==n) return mcpl2phits_app_usage(argv,"Bad option: missing number"); } } } else if (n==6 && strcmp(a,"--help")==0) { mcpl2phits_app_usage(argv,0); return -1; } else if (n>=1&&a[0]!='-') { if (*outphitsfile) return mcpl2phits_app_usage(argv,"Too many arguments."); else if (*inmcplfile) *outphitsfile = a; else *inmcplfile = a; } else { return mcpl2phits_app_usage(argv,"Bad arguments"); } } if (!*inmcplfile) return mcpl2phits_app_usage(argv,"Missing argument : input MCPL file"); if (!*outphitsfile) *outphitsfile = "phits.dmp"; if (opt_num_limit<=0) opt_num_limit = 0; //NB: For now we allow unlimited number of particles in the file - but let the //mcpl2phits method emit a WARNING if exceeding INT32_MAX particles. *nparticles_limit = opt_num_limit; return 0; } int mcpl2phits_app( int argc, char** argv ) { const char * inmcplfile; const char * outphitsfile; long nparticles_limit; int use64bitreclen, nopolarisation; int parse = mcpl2phits_parse_args( argc, (const char**)argv, &inmcplfile, &outphitsfile, &nparticles_limit, &use64bitreclen, &nopolarisation); if (parse==-1)// --help return 0; if (parse)// parse error return parse; int reclen = (use64bitreclen?8:4); if (mcpl2phits(inmcplfile, outphitsfile, (nopolarisation?0:1), nparticles_limit, reclen)) return 0; return 1; } mcpl-1.3.2/src/phits/phitsmcpl.h000066400000000000000000000102601361775146500165600ustar00rootroot00000000000000#ifndef phitsmcpl_h #define phitsmcpl_h ////////////////////////////////////////////////////////////////////////////////////// // // // Functions for converting binary PHITS dump files to and from MCPL files. // // // // The code was written with help from D. Di Julio, ESS. // // // // This file can be freely used as per the terms in the LICENSE file. // // // // However, note that usage of PHITS-related utilities might require additional // // permissions and licenses from third-parties, which is not within the scope of // // the MCPL project itself. // // // // Written 2019 by Thomas.Kittelmann@esss.se. // // // ////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////// // Create mcplfile based on content in PHITS dump file. Using this function will // use single-precision in the output file, and will always attempt to gzip the // resulting MCPL file. Use phits2mcpl2 instead to fine-tune these choices or to // embed a copy of the PHITS input deck or dump summary file in the MCPL header // for reference. Returns 1 on success, 0 on failure: int phits2mcpl(const char * phitsfile, const char * mcplfile); ////////////////////////////////////////////////////////////////////////////////////// // Advanced version of the above with more options: // // opt_dp : Set to 1 to enable double-precision storage of floating point // values. Set to 0 for single-precision. // opt_gzip: Set to 1 to gzip the resulting mcpl file. Set to 0 to leave the // resulting file uncompressed. // inputdeckfile: Set to the filename of the PHITS input deck file, to embed a // copy of it in the MCPL header. Set to 0 to not do this. // dumpsummaryfile: Set to the filename of the dump summary text file (which // is produced along with the binary dump file by PHITS), to // embed a copy of it in the MCPL header. Set to 0 to not do // this. // // Note: The created mcpl file will have polarisation columns enabled if and // only if the input dump file has polarisation info. int phits2mcpl2( const char * phitsdumpfile, const char * mcplfile, int opt_dp, int opt_gzip, const char * inputdeckfile, const char * dumpsummaryfile ); ////////////////////////////////////////////////////////////////////////////////////// // Create binary PHITS dump file based on content in mcplfile. If usepol option // is set to 1 (as opposed to 0), the resulting file will include polarisation (aka spin // direction) information and must be read via: // // dump=13 // 1 2 3 4 5 6 7 8 9 10 14 15 16 // // Otherwise it is excluded and the reader must be configured via: // // dump=10 // 1 2 3 4 5 6 7 8 9 10 // // If the limit parameter is non-zero, it will provide an upper limit on the // number of particles put into the resulting phits file. Finally, the reclen // parameters control whether the hidden Fortran record markers in the produced // file use 32bit (reclen=4) or 64bit (reclen=8) integers. The correct choice is // almost always to use reclen=4. int mcpl2phits( const char * mcplfile, const char * phitsdumpfile, int usepol, long limit, int reclen ); ////////////////////////////////////////////////////////////////////////////////////// // For easily creating standard phits2mcpl and mcpl2phits cmdline applications: int phits2mcpl_app(int argc,char** argv); int mcpl2phits_app(int argc,char** argv); #endif mcpl-1.3.2/src/phits/phitsread.c000066400000000000000000000316211361775146500165370ustar00rootroot00000000000000 ///////////////////////////////////////////////////////////////////////////////////// // // // phitsread : Code for reading binary dump files from PHITS // // // // // // Compilation of phitsread.c can proceed via any compliant C-compiler using // // -std=c99 or later, and the resulting code must always be linked with libm // // (using -lm). Furthermore, the following preprocessor flags can be used // // when compiling phitsread.c to fine tune the build process and the // // capabilities of the resulting binary. // // // // PHITSREAD_HASZLIB : Define if compiling and linking with zlib, to allow // // direct reading of gzipped PHITS files. // // PHITSREAD_ZLIB_INCPATH : Specify alternative value if the zlib header is not // // to be included as "zlib.h". // // PHITSREAD_HDR_INCPATH : Specify alternative value if the phitsread header // // itself is not to be included as "phitsread.h". // // // // This file can be freely used as per the terms in the LICENSE file. // // // // However, note that usage of PHITS-related utilities might require additional // // permissions and licenses from third-parties, which is not within the scope of // // the MCPL project itself. // // // // Written 2019, thomas.kittelmann@esss.se (European Spallation Source). // // // ///////////////////////////////////////////////////////////////////////////////////// #ifdef PHITSREAD_HDR_INCPATH # include PHITSREAD_HDR_INCPATH #else # include "phitsread.h" #endif #ifdef PHITSREAD_HASZLIB # ifdef PHITSREAD_ZLIB_INCPATH # include PHITSREAD_ZLIB_INCPATH # else # include "zlib.h" # endif #endif #include #include #include #include #include static int phits_known_nonion_codes[] = { 11, 12, 13, 14, 22, 111, 211, 221, 311, 321, 331, 2112, 2212, 3112, 3122, 3212, 3222, 3312, 3322, 3334 }; int phits_cmp_codes( void const *va, void const *vb ) { //Standard integer comparison function for bsearch const int * a = (const int *)va; const int * b = (const int *)vb; return *a < *b ? -1 : ( *a > *b ? 1 : 0 ); } int32_t conv_code_phits2pdg( int32_t c ) { int32_t absc = c < 0 ? -c : c; if (!c) return 0; if (absc<1000000) { //Presumably PHITS use pdg codes directly for non-nuclei/ions return c; } //PHITS encode nucleis as Z*1000000+A long A = absc % 1000000; long Z = absc / 1000000; if (!Z||Z>130||A500)//Just picking max Z=130, A=500 as a quick sanity check - could tighten this! return 0;//impossible //PDG format for ions is 10LZZZAAAI, where L!=0 indicates strangeness //and I!=0 indicates exited nuclei. We only allow L=I=0 ions here. long abspdgcode = 10 * (A + 1000*(Z+100000)); return (int32_t) ( c < 0 ? -abspdgcode : abspdgcode ); } int32_t conv_code_pdg2phits( int32_t c ) { int32_t absc = c < 0 ? -c : c; if ( absc <= 1000000000 ) { //Presumably PHITS use pdg codes directly for non-nuclei/ions, but only with //room for 6 digits. And in fact, only those in the phits_known_nonion_codes //are supported - and for 22, 111, 331 only if not negative (these particles //are their own antiparticles): int key = absc; void * res = bsearch(&key, phits_known_nonion_codes, sizeof(phits_known_nonion_codes) / sizeof(phits_known_nonion_codes[0]), sizeof(phits_known_nonion_codes[0]), phits_cmp_codes); if ( !res || ( c < 0 && (c==-22||c==-111||c==-331) ) ) return 0; return c; } if (absc<=1009999990) { //Ions. PDG format for ions is 10LZZZAAAI, where L!=0 indicates strangeness //and I!=0 indicates exited nuclei. We only allow L=I=0 ions here. if (c<0) return 0;//Negative ions seems to not actually be supported in PHITS. int32_t I = absc % 10;//isomer level absc/=10; int32_t A = absc%1000; absc/=1000; int32_t Z = absc % 1000; assert(absc/1000==100);//L=0 guaranteed by enclosing condition. if ( I || !A || !Z || Z>A ) return 0; //PHITS encode nucleis as Z*1000000+A: int32_t absphitscode = Z*1000000+A; return c < 0 ? -absphitscode : absphitscode; } return 0; } void phits_error(const char * msg) { printf("ERROR: %s\n",msg); exit(1); } //Should be more than large enough to hold all records in all supported PHITS //dump files, including two 64bit record markers: #define PHITSREAD_MAXBUFSIZE (15*sizeof(double)) typedef struct { #ifdef PHITSREAD_HASZLIB gzFile filegz; #else void * filegz; #endif FILE * file; phits_particle_t part; int reclen;//width of Fortran record length field (4 or 8) unsigned particlesize;//length of particle data in bytes (typically 10*8 or 13*8) char buf[PHITSREAD_MAXBUFSIZE];//for holding last record of raw data read (including record markers of reclen bytes) unsigned lbuf;//number of bytes currently read into buf int haspolarisation; } phits_fileinternal_t; int phits_readbytes(phits_fileinternal_t* f, char * dest, int nbytes) { assert(nbytes>0); //Attempt to read at most nbytes from file and into dest, handling both //gzipped and standard files. int nb; #ifdef PHITSREAD_HASZLIB if (f->filegz) nb = gzread(f->filegz, dest, nbytes); else #endif nb = fread(dest, 1, nbytes, f->file); return nb; } int phits_ensure_load(phits_fileinternal_t* f, int nbytes) { //For slowly filling up f->buf while reading first record. Returns 1 in case of success. if ( nbytes > (int)PHITSREAD_MAXBUFSIZE ) return 0; int missing = nbytes - f->lbuf; if ( missing<=0 ) return 1; int nr = phits_readbytes(f,&(f->buf[f->lbuf]),missing); if (nr!=missing) return 0; f->lbuf = nbytes; return 1; } int phits_tryload_reclen(phits_fileinternal_t* f, int reclen ) { assert(reclen==4||reclen==8); if ( ! phits_ensure_load( f, reclen ) ) return 0; char * buf = & ( f->buf[0] ); uint64_t l1 = ( reclen == 4 ? (uint64_t)(*((uint32_t*)buf)) : (uint64_t)(*((uint64_t*)buf)) ); if ( ! phits_ensure_load( f, l1 + 2*reclen ) ) return 0; buf += (reclen + l1); uint64_t l2 = ( reclen == 4 ? (uint64_t)(*((uint32_t*)buf)) : (uint64_t)(*((uint64_t*)buf)) ); if (l1!=l2) return 0; //All ok! f->reclen = reclen; f->particlesize = l1; return 1; } phits_file_t phits_openerror(phits_fileinternal_t * f, const char* msg) { if (f) { if (f->file) fclose(f->file); #ifdef PHITSREAD_HASZLIB if (f->filegz) gzclose(f->filegz); #endif free(f); } phits_error(msg); phits_file_t out; out.internal = 0; return out; } phits_file_t phits_open_internal( const char * filename ) { phits_fileinternal_t * f = (phits_fileinternal_t*)calloc(sizeof(phits_fileinternal_t),1); assert(f); phits_file_t out; out.internal = f; //Init: f->particlesize = 0; f->lbuf = 0; f->reclen = 4; f->file = 0; f->filegz = 0; f->haspolarisation = 0; memset( &( f->part ),0,sizeof(f->part) ); //open file (with gzopen if filename ends with .gz): const char * lastdot = strrchr(filename, '.'); if (lastdot && strcmp(lastdot, ".gz") == 0) { #ifdef PHITSREAD_HASZLIB f->filegz = gzopen(filename,"rb"); if (!f->filegz) phits_error("Unable to open file!"); #else phits_error("This installation was not built with zlib support and can not read compressed (.gz) files directly."); #endif } else { f->file = fopen(filename,"rb"); if (!f->file) phits_error("Unable to open file!"); } //Try to read first Fortran record marker, keeping in mind that we do not //know if it is 32bit or 64bit, and that an empty file is to be interpreted //as a valid PHITS dump file with 0 particles: if (!phits_ensure_load(f,1)) { //Can't read a single byte. Assume that this indicates an empty file and //therefore a valid PHITS dump file with 0 particles: //file with 0 particles, mark as EOF: f->particlesize = 0; f->haspolarisation = 0;//Convention: We mark empty files as NOT HAVING //polarisation info (to avoid potentially inflating //mcpl files in various merge/conversion //scenarios). return out; } //Try to read first record with first 32bit then 64bit record lengths //(updating f->reclen and f->particlesize in case of success): if (!phits_tryload_reclen(f,4)) { if (!phits_tryload_reclen(f,8)) { if (f->lbuf<8) phits_error("Invalid PHITS dump file: too short\n"); phits_error("Invalid PHITS dump file: Problems reading first record.\n"); } } assert( f->reclen==4 || f->reclen==8 ); if (f->reclen==8) { printf("phits_open_file WARNING: 64bit Fortran records detected which is untested (feedback" " appreciated at https://mctools.github.io/mcpl/contact/).\n"); } if (f->particlesize == 10*sizeof(double)) { f->haspolarisation = 0; } else if (f->particlesize == 13*sizeof(double)) { f->haspolarisation = 1; } else { phits_error("Invalid PHITS dump file: Does not contain exactly 10 or 13 fields in each" " particle - like due to unsupported configuration flags being used when" " producing the file.\n"); } return out; } phits_file_t phits_open_file( const char * filename ) { if (!filename) phits_error("phits_open_file called with null string for filename"); //Open, classify and process first record with mcnp type and version info: phits_file_t out = phits_open_internal( filename ); phits_fileinternal_t * f = (phits_fileinternal_t *)out.internal; assert(f); out.internal = f; return out; } const phits_particle_t * phits_load_particle(phits_file_t ff) { phits_fileinternal_t * f = (phits_fileinternal_t *)ff.internal; assert(f); if (!f->particlesize) { //EOF already return 0; } assert( f->particlesize == 10*sizeof(double) || f->particlesize == 13*sizeof(double) ); if (!f->lbuf) { if (!phits_ensure_load(f, 1)) { //Can't read a single byte - assume EOF: f->particlesize = 0; return 0; } //Try to load another record int old_reclen = f->reclen; (void)old_reclen;//otherwise unused if assert inactive. unsigned old_particlesize = f->particlesize; if (!phits_tryload_reclen(f,f->reclen)) { phits_error("Problems loading particle data record!"); return 0; } assert(f->reclen==old_reclen); if ( f->particlesize != old_particlesize) { phits_error("Problems loading particle data record - particle data length changed mid-file (perhaps it is not actually a binary PHITS dump file after all?)!"); return 0; } } assert( f->lbuf == f->particlesize + f->reclen * 2 ); double * pdata = (double*)(f->buf+f->reclen); phits_particle_t * pp = & (f->part); pp->rawtype = pdata[0]; //NB: PHITS units, not MCPL units here (only difference is time unit which is ns in PHITS and ms in MCPL): pp->x = pdata[1];//cm pp->y = pdata[2];//cm pp->z = pdata[3];//cm pp->dirx = pdata[4]; pp->diry = pdata[5]; pp->dirz = pdata[6]; pp->ekin = pdata[7];//MeV pp->weight = pdata[8]; pp->time = pdata[9];//ns if (f->particlesize == 13*sizeof(double)) { pp->polx = pdata[10]; pp->poly = pdata[11]; pp->polz = pdata[12]; } else { pp->polx = 0.0; pp->poly = 0.0; pp->polz = 0.0; } pp->pdgcode = conv_code_phits2pdg(pp->rawtype); //Mark as used: f->lbuf = 0; return pp; } int phits_has_polarisation(phits_file_t ff) { phits_fileinternal_t * f = (phits_fileinternal_t *)ff.internal; assert(f); return f->haspolarisation; } void phits_close_file(phits_file_t ff) { phits_fileinternal_t * f = (phits_fileinternal_t *)ff.internal; assert(f); if (!f) return; if (f->file) { fclose(f->file); f->file = 0; } #ifdef PHITSREAD_HASZLIB if (f->filegz) { gzclose(f->filegz); f->file = 0; } #endif free(f); ff.internal = 0; } mcpl-1.3.2/src/phits/phitsread.h000066400000000000000000000100071361775146500165370ustar00rootroot00000000000000#ifndef phitsread_h #define phitsread_h ///////////////////////////////////////////////////////////////////////////////////// // // // Code for reading binary PHITS dump files. This has been tested with PHITS // // version 3.1 so far. // // // // The code was written with help from Douglas Di Julio (European Spallation // // Source), and the PHITS dump file format was mostly inferred by looking in the // // PHITS manual (it is in any case extremely simple). // // // // Refer to the top of phitsread.c for details regarding how to build. // // // // This file can be freely used as per the terms in the LICENSE file. // // // // However, note that usage of PHITS-related utilities might require additional // // permissions and licenses from third-parties, which is not within the scope of // // the MCPL project itself. // // // // Written 2019, thomas.kittelmann@esss.se (European Spallation Source). // // // ///////////////////////////////////////////////////////////////////////////////////// #include #ifdef __cplusplus extern "C" { #endif typedef struct { void * internal; } phits_file_t; typedef struct { double x;//cm double y;//cm double z;//cm double dirx; double diry; double dirz; double polx; double poly; double polz; double weight; double ekin;//MeV double time;//nanoseconds long rawtype;//raw particle type encoding (PHITS "kt") long pdgcode;//rawtype converted to PDG codes. } phits_particle_t; //Open file (can read gzipped phits .gz files directly if zlib usage is enabled): phits_file_t phits_open_file(const char * filename); //Whether input file was gzipped: int phits_is_gzipped(phits_file_t); //Whether input file contains polarisation fields (note that the special case //of a file with 0 particles will always register as not having polarisation //fields): int phits_has_polarisation(phits_file_t); //load next particle (null indicates EOF): const phits_particle_t * phits_load_particle(phits_file_t); //close file and release resources: void phits_close_file(phits_file_t); //////////////////////////////////////////////////////////////////////////// // // // Utility functions for converting between particle codes used in PHITS // // (cf user manual for PHITS 3.1, page 29), and the codes from the // // Particle Data Group (which actually overlaps for the non-ions // // supported in PHITS): // // // // http://pdg.lbl.gov/2014/reviews/rpp2014-rev-monte-carlo-numbering.pdf // // // // Note that all the functions here return 0 when the code could not be // // converted. This might not be an error as such, but could indicate an // // exotic particle which has no code assigned in PHITS. // // // //////////////////////////////////////////////////////////////////////////// int32_t conv_code_phits2pdg(int32_t); int32_t conv_code_pdg2phits(int32_t); #ifdef __cplusplus } #endif #endif mcpl-1.3.2/src/python/000077500000000000000000000000001361775146500145775ustar00rootroot00000000000000mcpl-1.3.2/src/python/mcpl.py000066400000000000000000002065031361775146500161120ustar00rootroot00000000000000#!/usr/bin/env python """Python module for accessing MCPL files. The MCPL (Monte Carlo Particle Lists) format is thoroughly documented on the project homepage, from where it is also possible to download the entire MCPL distribution: https://mctools.github.io/mcpl/ Specifically, more documentation about how to use the present python module to access MCPL files can be found at: https://mctools.github.io/mcpl/usage_python/ This file can freely used as per the terms in the LICENSE file distributed with MCPL, also available at https://github.com/mctools/mcpl/blob/master/LICENSE . A substantial effort went into developing MCPL. If you use it for your work, we would appreciate it if you would use the following reference in your work: T. Kittelmann, et al., Monte Carlo Particle Lists: MCPL, Computer Physics Communications 218, 17-42 (2017), https://doi.org/10.1016/j.cpc.2017.04.012 mcpl.py written by Thomas Kittelmann, 2017-2019. The work was supported by the European Union's Horizon 2020 research and innovation programme under grant agreement No 676548 (the BrightnESS project) """ from __future__ import division, print_function, absolute_import,unicode_literals#enable py3 behaviour in py2.6+ try: _str = lambda s : s.encode('ascii') if (hasattr(s,'encode') and bytes==str) else s except SyntaxError: print('MCPL ERROR: Unsupported obsolete Python detected') raise SystemExit(1) __license__ = _str('CC0 1.0 Universal') __copyright__ = _str('Copyright 2017-2019') __version__ = _str('1.3.2') __status__ = _str('Production') __author__ = _str('Thomas Kittelmann') __maintainer__ = _str('Thomas Kittelmann') __email__ = _str('thomas.kittelmann@esss.se') __all__ = [_str('MCPLFile'), _str('MCPLParticle'), _str('MCPLParticleBlock'), _str('MCPLError'), _str('dump_file'), _str('convert2ascii'), _str('app_pymcpltool'), _str('collect_stats'), _str('dump_stats'), _str('plot_stats'), _str('main')] #Python version checks and workarounds: import sys,os pyversion = sys.version_info[0:3] _minpy2=(2,6,6) _minpy3=(3,3,2) if pyversion < _minpy2 or (pyversion >= (3,0,0) and pyversion < _minpy3): print(('MCPL WARNING: Unsupported python version %s detected (needs at least python2' +' v%s+ or python3 v%s+).')%('.'.join(str(i) for i in pyversion), '.'.join(str(i) for i in _minpy2), '.'.join(str(i) for i in _minpy3))) #Enable more py3 like behaviour in py2: __metaclass__ = type #classes are new-style without inheriting from "object" if pyversion < (3,0,0): range = xrange #in py3, range is py2's xrange #For raw output of byte-array contents to stdout, without any troubles depending #on encoding or python versions: def _output_bytearray_raw(b): sys.stdout.flush() getattr(sys.stdout,'buffer',sys.stdout).write(b) sys.stdout.flush() #numpy version checks (unfortunately NumpyVersion doesn't even exist in all #releases of numpy back to 1.3.0 so needs workarounds): try: import numpy as np except ImportError: print() print("ERROR: For reasons of efficiency, this MCPL python module requires numpy (www.numpy.org)") print("ERROR: to be installed. You can perhaps install it using using your software manager and") print("ERROR: searching for \"numpy\" or \"python-numpy\", or it might come bundled with software") print("ERROR: such as scientific python or anaconda, depending on your platform. Alternatively,") print("ERROR: if you are using the pip package manager, you should be able to install it with") print("ERROR: the command \"pip install numpy\".") print() raise _numpyok=True _numpy_oldfromfile=False try: from numpy.lib import NumpyVersion except ImportError: NumpyVersion = None if not NumpyVersion is None: if NumpyVersion(np.__version__) < '1.3.0': _numpyok = False if NumpyVersion(np.__version__) < '1.5.0': _numpy_oldfromfile = True else: try: vtuple=tuple(int(v) for v in str(np.__version__).strip().split('.')[0:2]) if vtuple<(1,3): _numpyok = False if vtuple<(1,5): _numpy_oldfromfile = True except ValueError: _numpyok = False if not _numpyok: print("MCPL WARNING: Unsupported numpy version (%s) detected"%(str(np.__version__))) np_dtype=np.dtype try: np.dtype('f8') except TypeError: np_dtype = lambda x : np.dtype(x.encode('ascii') if hasattr(x,'encode') else x) #old np.unique does not understand return_inverse and unique1d must be used #instead: np_unique = np.unique if hasattr(np,'unique') else np.unique1d try: np.unique(np.asarray([1]),return_inverse=True) except TypeError: np_unique = np.unique1d if hasattr(np,'stack'): np_stack = np.stack else: #np.stack only added in numpy 1.10. Using the following code snippet from #numpy to get the functionality for older releases: def np_stack(arrays, axis=0): arrays = [np.asanyarray(arr) for arr in arrays] if not arrays: raise ValueError('need at least one array to stack') shapes = set(arr.shape for arr in arrays) if len(shapes) != 1: raise ValueError('all input arrays must have the same shape') result_ndim = arrays[0].ndim + 1 if not -result_ndim <= axis < result_ndim: msg = 'axis {0} out of bounds [-{1}, {1})'.format(axis, result_ndim) raise IndexError(msg) if axis < 0: axis += result_ndim sl = (slice(None),) * axis + (np.newaxis,) expanded_arrays = [arr[sl] for arr in arrays] return np.concatenate(expanded_arrays, axis=axis) if hasattr(np.add,'at'): _np_add_at = np.add.at else: #Slow fallback for ancient numpy: def _np_add_at(a,indices,b): for ib,i in enumerate(indices): a[i] += b[ib] try: import pathlib as _pathlib except ImportError: _pathlib = None class MCPLError(Exception): """Common exception class for all exceptions raised by module""" pass class MCPLParticle: """Object representing a single particle""" def __init__(self,block,idx): """For internal use only - users should not normally create MCPLParticle objects themselves""" self._b = block#can we make it a weak ref, to make sure multiple blocks are not kept around? self._i = idx @property def position(self): """position as 3-dimensional array [cm]""" return self._b.position[self._i] @property def direction(self): """normalised momentum direction as 3-dimensional array""" return self._b.direction[self._i] @property def polarisation(self): """polarisation vector as 3-dimensional array""" return self._b.polarisation[self._i] @property def x(self): """x-coordinate of position [cm]""" return self._b.x[self._i] @property def y(self): """y-coordinate of position [cm]""" return self._b.y[self._i] @property def z(self): """z-coordinate of position [cm]""" return self._b.z[self._i] @property def ux(self): """x-coordinate of normalised momentum direction""" return self._b.ux[self._i] @property def uy(self): """y-coordinate of normalised momentum direction""" return self._b.uy[self._i] @property def uz(self): """z-coordinate of normalised momentum direction""" return self._b.uz[self._i] @property def polx(self): """x-coordinate of polarisation vector""" return self._b.polx[self._i] @property def poly(self): """y-coordinate of polarisation vector""" return self._b.poly[self._i] @property def polz(self): """z-coordinate of polarisation vector""" return self._b.polz[self._i] @property def ekin(self): """kinetic energy [MeV]""" return self._b.ekin[self._i] @property def time(self): """time-stamp [millisecond]""" return self._b.time[self._i] @property def weight(self): """weight or intensity""" return self._b.weight[self._i] @property def userflags(self): """custom per-particle flags""" return self._b.userflags[self._i] @property def pdgcode(self): """MC particle number from the Particle Data Group (2112=neutron, 22=gamma, ...)""" return self._b.pdgcode[self._i] @property def file_index(self): """Particle position in file (counting from 0)""" return self._b._offset + self._i class MCPLParticleBlock: """Object representing a block of particle. Fields are arrays rather than single numbers, but otherwise have the same meaning as on the MCPLParticle class.""" def __init__(self,opt_polarisation,opt_userflags,opt_globalw,opt_globalpdg,fmtversion): """For internal use only - users should not normally create MCPLParticle objects themselves""" #empty block (set offset to max int to ensure d<0 in contains_ipos and get_by_global: self._offset = 9223372036854775807 #non-constant columns (never the same in all blocks): self._data = tuple() #potentially constant columns (first entry says whether non-constant, second is cache): self._polx = [opt_polarisation,None] self._poly = [opt_polarisation,None] self._polz = [opt_polarisation,None] self._uf = [bool(opt_userflags),None] self._w = [not opt_globalw,None] self._pdg = [not opt_globalpdg,None] self._opt_globalw = opt_globalw self._opt_globalpdg = opt_globalpdg self._fmtversion = fmtversion self._view_pos = None self._view_pol = None self._view_dir = None self._pos_cache,self._pol_cache = None,None#extra ndarrays for numpy 1.14 issue def _set_data(self,data,file_offset): #always present, but must unpack: self._ux,self._uy,self._uz,self._ekin = None,None,None,None self._view_dir = None #reset non-constant columns: for ncc in [self._polx,self._poly,self._polz,self._uf,self._w,self._pdg]: if ncc[0]: ncc[1]=None self._view_pos = None if self._polx[0]: self._view_pol = None if data is None: self._offset = 9223372036854775807 self._data = tuple() else: self._data = data self._offset = file_offset def contains_ipos(self,ipos): d=ipos-self._offset return d>=0 and d=0 and ipos=0 and d1.0) condb = np.logical_and(np.logical_not(conda),(np.abs(in1)>1.0)) #nb, reuse intermediate results below: in0sq = np.square(in0) in1sq = np.square(in1) self._ux = np.where(conda, in2 * np.sqrt(np.clip(1.0-(in1sq+np.square(in0inv)),0.0,1.0)), in0) self._uy = np.where(condb, in2 * np.sqrt(np.clip(1.0-(in0sq+np.square(in1inv)),0.0,1.0)), in1) self._uz = np.where(conda, in0inv, np.where(condb, in1inv, in2 * np.sqrt(np.clip(1.0-(in0sq+in1sq),0.0,1.0)))) def _unpack_legacy(self): in0 = self._data['uve1'].astype(float) in1 = self._data['uve2'].astype(float) abs_in0 = np.abs(in0) abs_in1 = np.abs(in1) self._uz = (1.0 - abs_in0) - abs_in1 zneg = ( self._uz < 0.0 ) not_zneg = np.logical_not(zneg) self._ux = not_zneg * in0 + zneg * ( 1.0 - abs_in1 ) * np.where(in0 >= 0.0,1.0,-1.0) self._uy = not_zneg * in1 + zneg * ( 1.0 - abs_in0 ) * np.where(in1 >= 0.0,1.0,-1.0) n = 1.0 / np.sqrt(np.square(self._ux)+np.square(self._uy)+np.square(self._uz)) self._ux *= n self._uy *= n self._uz *= n self._uz = np.where(np.signbit(self._data['uve3']),0.0,self._uz) class MCPLFile: """Python-only class for reading MCPL files, using numpy and internal caches to ensure good efficiency. File access is read-only, and the particles can only be read in consecutive and forward order, providing either single particles or blocks of particles as requested.""" def __init__(self,filename,blocklength = 10000, raw_strings = False): """Open indicated mcpl file, which can either be uncompressed (.mcpl) or compressed (.mcpl.gz). The blocklength parameter can be used to control the number of particles read by each call to read_block(). The parameter raw_strings has no effect in python2. In python3, it will prevent utf-8 decoding of string data loaded from the file.""" self._py3_str_decode = (not raw_strings) if (pyversion >= (3,0,0)) else False if hasattr(os,'fspath') and hasattr(filename,'__fspath__'): #python >= 3.6, work with all pathlike objects (including str and pathlib.Path): filename = os.fspath(filename) elif _pathlib and hasattr(_pathlib,'PurePath') and isinstance(filename,_pathlib.PurePath): #work with pathlib.Path in python 3.4 and 3.5: filename = str(filename) #prepare file i/o (opens file): self._open_file(filename) #load info from mcpl header: self._loadhdr() #Check if empty files are actually broken (like in mcpl.c): if self.nparticles==0: if filename.endswith('.gz'): #compressed - can only detect and raise error try: test_read=self._fileread(dtype='u1',count=1) except ValueError: test_read=[] if len(test_read)>0: raise MCPLError("Input file appears to not have been closed properly" +" and data recovery is disabled for gzipped files.") else: #not compressed - can use file size to recover file np_rec = (int(os.stat(filename).st_size)-self.headersize) // self.particlesize if np_rec: self._np = np_rec self._hdr['nparticles'] = np_rec print ("MCPL WARNING: Input file appears to not have been closed" +" properly. Recovered %i particles."%np_rec) #prepare dtype for reading 1 particle: fp = 'f4' if self.opt_singleprec else 'f8' fields = [] if self.opt_polarisation: fields += [('polx',fp),('poly',fp),('polz',fp)] fields += [('x',fp),('y',fp),('z',fp), ('uve1',fp),('uve2',fp),('uve3',fp),#packed unit vector and ekin ('t',fp)] if not self.opt_universalweight: fields += [('w',fp)] if not self.opt_universalpdgcode: fields += [('pdg','i4')] if self.opt_userflags: fields += [('uf','u4')] fields = [(str(f[0]),str(f[1])) for f in fields]#workaround for https://github.com/numpy/numpy/issues/2407 self._pdt = np_dtype(fields).newbyteorder(self.endianness) #Init position and caches (don't read first block yet): self._ipos = 0 self._blocklength = int(blocklength) assert(self._blocklength>0) self._iblock = 0 self._nblocks = self.nparticles // self._blocklength + (1 if self.nparticles%self._blocklength else 0) #reuse same block object for whole file (to reuse fixed columns and internal caches) self._currentblock = MCPLParticleBlock(self.opt_polarisation,self.opt_userflags, self.opt_universalweight,self.opt_universalpdgcode,self.version) @property def blocklength(self): """Number of particles read by each call to read_block()""" return self._blocklength def _open_file(self,filename): self._fileclose = lambda : None if not hasattr(filename,'endswith'): raise MCPLError('Unsupported type of filename object (should be path-like, a string or similar)') #Try to mimic checks and capabilities of mcpl.c as closely as possible #here (including the ability of gzopen to open uncompressed files), #which is why the slightly odd order of some checks below. try: fh = open(filename,'rb') except (IOError,OSError) as e: if e.errno == 2: fh = None#file not found else: raise if not fh: raise MCPLError('Unable to open file!') is_gz = False if filename.endswith('.gz'): is_gz = True try: import gzip except ImportError: raise MCPLError('can not open compressed files since gzip module is absent') try: if (fh.read(4)==b'MCPL'): #This is actually not a gzipped file, mimic gzopen in mcpl.c by #magically being able to open .mcpl files that are mistakenly named #as .mcpl.gz is_gz = False except (IOError, OSError, EOFError): pass fh.seek(0) can_use_np_fromfile = not _numpy_oldfromfile if is_gz: can_use_np_fromfile = False fh = gzip.GzipFile(fileobj=fh) if not fh: raise MCPLError('failed to open compressed file') if can_use_np_fromfile: #modern numpy and not gzipped input - read bytes by passing filehandle to np.fromfile self._fileread = lambda dtype,count : np.fromfile(fh,dtype=np_dtype(dtype),count=np.squeeze(count)) else: #old numpy or gzipped input - read bytes via filehandle and use np.frombuffer to decode #list of exception types that might indicate read errors (TypeError #and struct.error are in the list due to bugs in the python 3.3 gzip #module): read_errors=[ IOError, OSError, EOFError, TypeError] try: import struct read_errors += [struct.error] except: pass read_errors = tuple(read_errors) def fread_via_buffer(dtype,count): dtype,count=np_dtype(dtype),np.squeeze(count) assert count>0 n = dtype.itemsize * count try: x = fh.read( n ) except read_errors: x = tuple() if len(x)==n: return np.frombuffer(x,dtype=dtype, count=count) else: return np.ndarray(dtype=dtype,shape=0)#incomplete read => return empty array self._fileread = fread_via_buffer self._fileseek = lambda pos : fh.seek(pos) self._fileclose = lambda : fh.close() #two methods needed for usage in with-statements: def __enter__(self): return self def __exit__(self, ttype, value, traceback): self._fileclose() def read_block(self): """Read and return next block of particles (None when EOF). Similar to read(), but returned \"particle\" object actually represents a whole block of particles, and the fields on it are thus (numpy) arrays of numbers rather than single numbers. See also the particle_blocks property for an iterator-based access to blocks.""" if self._iblock>=self._nblocks: return None #read next block: to_read = self._blocklength if self._iblock+1==self._nblocks and self._np%self._blocklength: to_read = self.nparticles%self._blocklength#last block is shorter x = self._fileread(dtype=self._pdt,count=to_read) if len(x)!=to_read: raise MCPLError('Errors encountered while attempting to read particle data.') self._currentblock._set_data(x,self._iblock*self._blocklength) self._iblock += 1 return self._currentblock def read(self): """Read and return next particle in file (None when EOF) as a particle object, with particle state information available on fields as seen in the following example: p = mcplfile.read() if p is not None: print p.x,p.y,p.z print p.ux,p.uy,p.uz print p.polx,p.poly,p.polz print p.ekin,p.time,p.weight,p.userflags See also the particles property for an iterator-based access to particles. Furthermore, note that the read_blocks() function and the particle_blocks property provides block-based access, which can improve performance dramatically.""" if self._ipos >= self._np: return None#end of file p = self._currentblock.get_by_global(self._ipos) if p is None: self.read_block() p = self._currentblock.get_by_global(self._ipos) self._ipos += 1 return p def skip_forward(self,n): """skip n positions forward in file. (returns False when there is no particle at the new position, otherwise True)""" inew = self._ipos + int(n) if inew <= self._ipos: if inew == self._ipos: return self._ipos < self._np raise MCPLError("Requested skip is not in the forward direction") if self._currentblock.contains_ipos(inew): #handle case of small skip within currently loaded block first: self._ipos = inew return True if inew >= self._np: self._ipos = self.nparticles self._iblock = self._nblocks return False#EOF #skip to a given block: self._iblock = inew // self._blocklength assert self._iblock < self._nblocks#should not be eof blockstart = self.headersize+self._iblock*self._blocklength*self.particlesize assert blockstart > self._ipos#seek should be *forward* self._fileseek(blockstart) self._ipos = inew if not self.read_block(): raise MCPLError('Unexpected failure to load particle block') return True @property def particles(self): """Use to iterate over all particles in file: for p in thefile.particles: print p.x,p.y,p.z """ self.rewind() while True: p=self.read() if p is None: break yield p @property def particle_blocks(self): """Use to iterate over all particles in file, returning a block of particles each time for efficiency: for p in thefile.particle_blocks: print p.x,p.y,p.z #NB: the "values" here are actually arrays """ self.rewind() while True: p=self.read_block() if p is None: break yield p def rewind(self): """Rewind file, causing next calls to read() and read_blocks() to start again at the beginning of the file.""" self._fileseek(self.headersize) self._ipos = 0 self._iblock = 0 self._currentblock._set_data(None,None) @property def version(self): """MCPL format version of the file""" return self._hdr['version'] @property def nparticles(self): """Number of particles in file""" return self._hdr['nparticles'] @property def particlesize(self): """Uncompressed per-particle storage size in file [bytes]""" return self._hdr['particlesize'] @property def headersize(self): """Uncompressed size of the file header [bytes]""" return self._hdr['headersize'] @property def endianness(self): """Endianness of numbers in file""" return self._hdr['endianness'] @property def opt_userflags(self): """Whether or not userflags are enabled in file""" return self._hdr['opt_userflags'] @property def opt_universalpdgcode(self): """Global PDG code for all particles in file (a value of 0 means that PDG codes are stored per-particle)""" return self._hdr['opt_universalpdgcode'] @property def opt_polarisation(self): """Whether or not polarisation info is enabled in file""" return self._hdr['opt_polarisation'] @property def opt_singleprec(self): """Whether or not floating point numbers in particle data are stored in single-precision (32bit) rather than double-precision (64bit)""" return self._hdr['opt_singleprec'] @property def opt_universalweight(self): """Global weight for all particles in file (a value of 0.0 means that weights are stored per-particle)""" return self._hdr['opt_universalweight'] @property def sourcename(self): """Name of application that wrote the MCPL file""" return self._hdr['sourcename'] @property def comments(self): """List of custom comments (strings) embedded in the file header""" return self._hdr['comments'] @property def blobs(self): """Dictionary of custom binary blobs (byte-arrays) embedded in the file header. Each such blob is associated with a key, which is also the key in the dictionary""" return self._hdr['blobs'] @property def blob_storage_order(self): """In-file storage order of binary blobs (as list of keys).""" return self._hdr['blobkeys'] def _loadhdr(self): self._hdr={} h=self._hdr x=self._fileread(dtype='u1',count=8) if len(x)!=8 or not all(x[0:4]==(77,67,80,76)): raise MCPLError('File is not an MCPL file!') x=list(map(chr,x[4:])) version = int(''.join(x[0:3])) if not version in (2,3): raise MCPLError('File is in an unsupported MCPL version!') h['version']=version endianness = x[3] if not endianness in ('L','B'): raise MCPLError('Unexpected value in endianness field!') h['endianness']=endianness dt= np_dtype("u8,5u4,i4,2u4").newbyteorder(endianness) y = self._fileread(dtype=dt,count=1) if len(y)!=1: raise MCPLError('Invalid header') (nparticles,(ncomments,nblobs,opt_userflags,opt_polarisation,opt_singleprec), opt_universalpdgcode,(particlesize,_tmp)) = y[0] #convert all int types to python 'int' (which is 64bit), to avoid #conversions like int+np.uint64->np.float64, and flags to bool: nparticles = int(nparticles) self._np = nparticles#needs frequent access particlesize = int(particlesize) opt_universalpdgcode = int(opt_universalpdgcode) opt_userflags = bool(opt_userflags) opt_polarisation = bool(opt_polarisation) opt_singleprec = bool(opt_singleprec) opt_universalweight = float(self._fileread(dtype=np_dtype('f8').newbyteorder(endianness),count=1)[0] if _tmp else 0.0) h['nparticles']=nparticles h['particlesize']=particlesize h['opt_universalpdgcode']=opt_universalpdgcode h['opt_userflags'] = opt_userflags h['opt_polarisation'] = opt_polarisation h['opt_singleprec'] = opt_singleprec h['opt_universalweight'] = opt_universalweight def readarr(): l = self._fileread(dtype=np_dtype('u4').newbyteorder(endianness),count=1) if len(l)!=1: raise MCPLError('Invalid header') if l==0: return b'' cont = self._fileread(dtype='u1',count=l) if len(cont)!=l: raise MCPLError('Invalid header') return cont.tobytes() if hasattr(cont,'tobytes') else cont.tostring() sourcename = readarr() comments=[] for i in range(ncomments): comments += [readarr()] blobs={} blobs_user={} blobkeys = []#to keep order available to dump_hdr for i in range(nblobs): blobkeys += [readarr()] for i,bk in enumerate(blobkeys): blobs[bk] = readarr() headersize = ( 48 + 4 + len(sourcename) + (8 if opt_universalweight else 0) + sum(4+len(c) for c in comments) + sum(8+len(bk)+len(bv) for bk,bv in blobs.items()) ) h['headersize'] = headersize if self._py3_str_decode: #attributes return python strings since raw_strings was not set, so #we must decode these before returning to the user. But for output #compatibility with the C-mcpltool, dump_hdr() will use original ones above. h['sourcename_raw'] = sourcename h['comments_raw'] = comments h['blobs_raw'] = blobs h['blobkeys_raw'] = blobkeys h['sourcename'] = sourcename.decode('utf-8','replace') h['comments'] = [c.decode('utf-8','replace') for c in comments] h['blobkeys'] = [bk.decode('utf-8','replace') for bk in blobkeys] h['blobs'] = dict((k.decode('utf-8','replace'),v) for k,v in blobs.items()) else: #raw bytes all the way h['sourcename'] = sourcename h['comments'] = comments h['blobs'] = blobs h['blobkeys'] = blobkeys def dump_hdr(self): """Dump file header to stdout (using a format identical to the one from the compiled mcpltool)""" h=self._hdr def print_datastring(prefix,s,postfix): print(prefix,end='') _output_bytearray_raw(s) print(postfix) print("\n Basic info") print(" Format : MCPL-%i"%h['version']) print(" No. of particles : %i"%h['nparticles']) print(" Header storage : %i bytes"%h['headersize']) print(" Data storage : %i bytes"%(h['nparticles']*h['particlesize'])) print("\n Custom meta data") print_datastring(' Source : "', h.get('sourcename_raw',None) or h.get('sourcename'), '"') comments = h.get('comments_raw',None) or h.get('comments') print(" Number of comments : %i"%len(comments)) for i,c in enumerate(comments): print_datastring(' -> comment %i : "'%i,c,'"') blobs = h.get('blobs_raw',None) or h.get('blobs') blobkeys = h.get('blobkeys_raw',None) or h.get('blobkeys') print(" Number of blobs : %i"%len(h['blobs'])) for bk in blobkeys: print_datastring(' -> %i bytes of data with key "'%len(blobs[bk]),bk,'"') print("\n Particle data format") print(" User flags : %s"%("yes" if h['opt_userflags'] else "no")) print(" Polarisation info : %s"%("yes" if h['opt_polarisation'] else "no")) s = " Fixed part. type : " if h['opt_universalpdgcode']: s += "yes (pdgcode %i)"%h['opt_universalpdgcode'] else: s += "no" print(s) s = " Fixed part. weight : " if h['opt_universalweight']: s += "yes (weight %g)"%h['opt_universalweight'] else: s += "no" print(s) print(" FP precision : %s"%("single" if h['opt_singleprec'] else "double")) print(" Endianness : %s"%({'L':'little','B':'big'}[h['endianness']])) print(" Storage : %i bytes/particle"%h['particlesize']) print() def dump_particles(self,limit=10,skip=0): """Dump a list of particles to stdout (using a format identical to the one from the compiled mcpltool). The limit and skip parameters can be used to respectively limit the number of particles printed and to skip past particles at the head of the file. Use limit=0 to disable the limit.""" #1) update position self.rewind() self.skip_forward(skip) #2) print column titles: opt_pol,opt_uf,opt_uw = self.opt_polarisation,self.opt_userflags,self.opt_universalweight s = "index pdgcode ekin[MeV] x[cm] y[cm] z[cm] ux uy uz time[ms]" if not opt_uw: s += " weight" if opt_pol: s += " pol-x pol-y pol-z" if opt_uf: s += " userflags" print(s) #3) loop and print fmt1 = "%5i %11i %11.5g %11.5g %11.5g %11.5g %11.5g %11.5g %11.5g %11.5g" fmt2 = " %11.5g %11.5g %11.5g" for i in range(limit if limit!=0 else self.nparticles): p = self.read() if p is None: break s = fmt1%( p.file_index,p.pdgcode,p.ekin,p.x,p.y,p.z, p.ux,p.uy,p.uz,p.time ) if not opt_uw: s += " %11.5g"%p.weight if opt_pol: s+=fmt2%( p.polx, p.poly, p.polz ) if opt_uf: s+=" 0x%08x"%p.userflags print(s) def dump_file(filename,header=True,particles=True,limit=10,skip=0,**kwargs): """Python equivalent of mcpl_dump(..) function from mcpl.h, which can be used to dump both header and particle contents of a file to stdout.""" f = MCPLFile(filename,**kwargs) print("Opened MCPL file %s:"%os.path.basename(filename)) if header: f.dump_hdr() if particles: f.dump_particles(limit=limit,skip=skip) def convert2ascii(mcplfile,outfile): """Read particle contents of mcplfile and write into outfile using a simple ASCII-based format""" fin = mcplfile if isinstance(mcplfile,MCPLFile) else MCPLFile(mcplfile) fout = outfile if hasattr(outfile,'write') else open(outfile,'w') fout.write("#MCPL-ASCII\n#ASCII-FORMAT: v1\n#NPARTICLES: %i\n#END-HEADER\n"%fin.nparticles) fout.write("index pdgcode ekin[MeV] x[cm] " +" y[cm] z[cm] ux " +" uy uz time[ms] weight " +" pol-x pol-y pol-z userflags\n") fmtstr="%5i %11i %23.18g %23.18g %23.18g %23.18g %23.18g %23.18g %23.18g %23.18g %23.18g %23.18g %23.18g %23.18g 0x%08x\n" for idx,p in enumerate(fin.particles): fout.write(fmtstr%(idx,p.pdgcode,p.ekin,p.x,p.y,p.z,p.ux,p.uy,p.uz,p.time,p.weight,p.polx,p.poly,p.polz,p.userflags)) def _pymcpltool_usage(progname,errmsg=None): if errmsg: print("ERROR: %s\n"%errmsg) print("Run with -h or --help for usage information") sys.exit(1) helpmsg = """ Tool for inspecting Monte Carlo Particle List (.mcpl) files. The default behaviour is to display the contents of the FILE in human readable format (see Dump Options below for how to modify what is displayed). This is the read-only python version of the tool, and as such a lot of functionality is missing compared to the compiled C version of the tool. This installation supports direct reading of gzipped files (.mcpl.gz). Usage: PROGNAME [dump-options] FILE PROGNAME --stats [stat-options] FILE PROGNAME --version PROGNAME --help Dump options: By default include the info in the FILE header plus the first ten contained particles. Modify with the following options: -j, --justhead : Dump just header info and no particle info. -n, --nohead : Dump just particle info and no header info. -lN : Dump up to N particles from the file (default 10). You can specify -l0 to disable this limit. -sN : Skip past the first N particles in the file (default 0). -bKEY : Dump binary blob stored under KEY to standard output. Stat options: --stats FILE : Print statistics summary of particle state data from FILE. --stats --pdf FILE : Produce PDF file mcpl.pdf with histograms of particle state data from FILE. --stats --gui FILE : Like --pdf, but opens interactive histogram views directly. Other options: -t, --text MCPLFILE OUTFILE Read particle contents of MCPLFILE and write into OUTFILE using a simple ASCII-based format. -v, --version : Display version of MCPL installation. -h, --help : Display this usage information (ignores all other options). """ print(helpmsg.strip().replace('PROGNAME',progname)) sys.exit(0) def app_pymcpltool(argv=None): """Implements a python equivalent of the compiled MCPL tool. If no argv list is passed in, sys.argv will be used. In case of errors, MCPLError exceptions are raised.""" if argv is None: argv = sys.argv progname,args = os.path.basename(argv[0]),argv[1:] #NB: We do not use standard python parsing modules, since we want to be #as strictly compatible with the compiled mcpltool as possible. if not args: print('ERROR: No input file specified\n\nRun with -h or --help for usage information') sys.exit(1) opt_justhead = False opt_nohead = False opt_limit = None opt_skip = None opt_blobkey = None opt_version = False opt_text = False opt_stats = False opt_pdf = False opt_gui = False filelist = [] def bad(errmsg): _pymcpltool_usage(progname,errmsg) for a in args: if a.startswith(str('--')): if a==str('--justhead'): opt_justhead=True elif a==str('--nohead'): opt_nohead=True elif a==str('--version'): opt_version=True elif a==str('--stats'): opt_stats=True elif a==str('--pdf'): opt_pdf=True elif a==str('--gui'): opt_gui=True elif a==str('--text'): opt_text=True elif a==str('--help'): _pymcpltool_usage(progname) else: bad(str("Unrecognised option : %s")%a) elif a.startswith(str('-')): a=a[1:] while a: f,a=a[0],a[1:] if f=='b': if not opt_blobkey is None: bad("-b specified more than once") if not a: bad("Missing argument for -b") opt_blobkey,a = a,'' elif f=='l' or f=='s': if not a: bad("Bad option: missing number") if not a.isdigit(): bad("Bad option: expected number") if f=='l': if not opt_limit is None: bad("-l specified more than once") opt_limit = int(a) else: assert f=='s' if not opt_skip is None: bad("-s specified more than once") opt_skip = int(a) a='' elif f=='j': opt_justhead=True elif f=='n': opt_nohead=True elif f=='v': opt_version=True elif f=='t': opt_text=True elif f=='h': _pymcpltool_usage(progname) else: bad("Unrecognised option : -%s"%f) else: filelist += [a] number_dumpopts = sum(1 for e in (opt_justhead,opt_nohead,opt_limit is not None,opt_skip is not None,opt_blobkey) if e) numper_statopts = sum(1 for e in (opt_stats,opt_pdf,opt_gui) if e) if sum(1 for e in (opt_version,opt_text,number_dumpopts,numper_statopts) if e)>1: bad('Conflicting options specified.') if number_dumpopts>1 and opt_blobkey: bad("Do not specify other dump options with -b.") if opt_pdf and not opt_stats: bad("Do not specify --pdf without --stats") if opt_gui and not opt_stats: bad("Do not specify --gui without --stats") if opt_gui and opt_pdf: bad("Do not specify both --pdf and --gui") if opt_version: if filelist: bad("Unrecognised arguments for --version.") print("MCPL version %s"%__version__) sys.exit(0) if opt_text: if len(filelist)>2: bad("Too many arguments.") if len(filelist)!=2: bad("Must specify both input and output files with --text.") if (os.path.exists(filelist[1])): bad("Requested output file already exists.") try: fout = open(filelist[1],'w') except (IOError,OSError) as e: fout = None if not fout: raise MCPLError('Could not open output file.') convert2ascii(filelist[0],fout) sys.exit(0) #Dump or stats: if len(filelist)>1: bad("Too many arguments.") if not filelist: bad("No input file specified") if opt_stats: f=MCPLFile(filelist[0]) if f.nparticles==0: bad("Can not calculate statistics for an empty file") if opt_pdf or opt_gui: plot_stats(f, pdf=('mcpl.pdf' if opt_pdf else False), set_backend=('agg' if opt_pdf else None)) if opt_pdf: print("Created mcpl.pdf") else: dump_stats(f) sys.exit(0) #Dump if opt_blobkey: with MCPLFile(filelist[0]) as f: thedata = f.blobs.get(opt_blobkey,None) if thedata is None and 'blobs_raw' in f._hdr: #Under LANG=C and python3, utf-8 keys might be in trouble: thedata = f._hdr['blobs_raw'].get(os.fsencode(opt_blobkey),None) if thedata is None: sys.exit(1) if sys.platform == "win32": import msvcrt msvcrt.setmode(sys.stdout.fileno(), os.O_BINARY) _output_bytearray_raw(thedata) sys.exit(0) if (opt_limit is not None or opt_skip is not None) and opt_justhead: bad("Do not specify -l or -s with --justhead") if opt_limit is None: opt_limit = 10 if opt_skip is None: opt_skip = 0 if opt_justhead and opt_nohead: bad("Do not supply both --justhead and --nohead.") dump_file(filelist[0],header=not opt_nohead,particles=not opt_justhead,limit=opt_limit,skip=opt_skip) sys.exit(0) _db_pdg = None _db_elem = None def _pdg_database(pdgcode): global _db_pdg, _db_elem if _db_pdg is None: _db_pdg = { 12:'nu_e',14:'nu_mu',16:'nu_tau',-12:'nu_e-bar',-14:'nu_mu-bar', -16:'nu_tau-bar',2112:'n',2212:'p',-2112:'n-bar',-2212:'p-bar', 22:'gamma',11:'e-',-11:'e+',13:'mu-',-13:'mu+',15:'tau-',-15:'tau+', 211:'pi+',-211:'pi-',111:'pi0',321:'K+',-321:'K-',130:'Klong', 310:'Kshort',-1000010020:'D-bar',-1000010030:'T-bar',1000010020:'D', 1000010030:'T',1000020040:'alpha',-1000020040:'alpha-bar' } r=_db_pdg.get(pdgcode,None) if r is not None: return r if _db_elem is None: _db_elem = ['H', 'He', 'Li', 'Be', 'B', 'C', 'N', 'O', 'F', 'Ne', 'Na', 'Mg', 'Al', 'Si', 'P' , 'S', 'Cl', 'Ar', 'K', 'Ca', 'Sc', 'Ti', 'V', 'Cr', 'Mn', 'Fe', 'Co', 'Ni', 'Cu', 'Zn', 'Ga', 'Ge', 'As', 'Se', 'Br', 'Kr', 'Rb', 'Sr', 'Y', 'Zr', 'Nb', 'Mo', 'Tc', 'Ru', 'Rh', 'Pd', 'Ag', 'Cd', 'In', 'Sn', 'Sb', 'Te', 'I', 'Xe', 'Cs', 'Ba', 'La', 'Ce', 'Pr', 'Nd', 'Pm', 'Sm', 'Eu', 'Gd', 'Tb', 'Dy', 'Ho', 'Er', 'Tm', 'Yb', 'Lu', 'Hf', 'Ta', 'W', 'Re', 'Os', 'Ir', 'Pt', 'Au', 'Hg', 'Tl', 'Pb', 'Bi', 'Po', 'At', 'Rn', 'Fr', 'Ra', 'Ac', 'Th', 'Pa', 'U', 'Np', 'Pu', 'Am', 'Cm', 'Bk', 'Cf', 'Es', 'Fm', 'Md', 'No', 'Lr', 'Rf', 'Db', 'Sg', 'Bh', 'Hs', 'Mt', 'Ds', 'Rg'] if pdgcode>0 and pdgcode//100000000==10: I = pdgcode % 10 pdgcode //= 10 AAA = pdgcode%1000 pdgcode //= 1000 ZZZ = pdgcode%1000 pdgcode //= 1000 L = pdgcode % 10 pdgcode //= 10 if pdgcode==10 and ZZZ>0 and AAA>0: if L==0 and I==0 and ZZZ < len(_db_elem)+1: return '%s%i'%(_db_elem[ZZZ-1],AAA) s = 'ion(Z=%i,A=%i'%(ZZZ,AAA) if L: s += ',L=%i'%L if I: s += ',I=%i'%I s += ')' return s return None def _unique_count(a,weights=None): """returns (unique,count) where unique is an array of sorted unique values in a, and count is the corresponding frequency counts""" unique, inverse = np_unique(a, return_inverse=True) count = np.zeros(len(unique), np.int if weights is None else np_dtype(type(weights[0]))) _np_add_at(count, inverse, 1 if weights is None else weights) return (unique, count) def _merge_unique_count(uc1,uc2): """merges the results of calling _unique_count on two separate data sets""" u = np.append(uc1[0],uc2[0]) c = np.append(uc1[1],uc2[1]) restype=(uc1[1][0] if len(uc1[1]) else 0) +(uc2[1][0] if len(uc2[1]) else 0) unique, inverse = np_unique(u, return_inverse=True) count = np.zeros(len(unique), np_dtype(type(restype))) _np_add_at(count, inverse, c) return (unique,count) class _StatCollector: def __init__(self): #For numerical stability also when mean>>rms, rms state is calculated by #accumulation in T variable (as in "SimpleHists" by T. Kittelmann, 2014). #Here the variable T is stored in self.__rmsstate. self.clear() self.__dumporder = ['min','max','mean','rms','integral'] self.__statcalc = { 'rms' : (lambda : np.sqrt(self.__rmsstate/self.__sumw) if self.__sumw else None ), 'mean' : (lambda : (self.__sumwx/self.__sumw) if self.__sumw else None ), 'min' : (lambda : self.__min ), 'max' : (lambda : self.__max ), 'integral' : (lambda : self.__sumw ) } assert sorted(self.__dumporder)==sorted(self.__statcalc.keys()) def clear(self): self.__sumw,self.__sumwx,self.__rmsstate = 0.0,0.0,0.0 self.__min,self.__max = None,None def add_data(self,a,w = None): amin,amax = a.min(),a.max() assert w is None or len(w)==len(a) assert not np.isnan(amin),"input array has NaN's!" self.__min = min(amin,amin if self.__min is None else self.__min) self.__max = max(amax,amax if self.__max is None else self.__max) new_sumw = float(len(a)) if w is None else w.sum() if not new_sumw: return new_sumwx = a.sum() if w is None else (a*w).sum() a_shifted = a - new_sumwx/new_sumw#shift to mean for numerical stability sumwx_shifted = a_shifted.sum() if w is None else (a_shifted*w).sum() sumwxx_shifted = (a_shifted**2).sum() if w is None else ((a_shifted**2)*w).sum() new_T = sumwxx_shifted - sumwx_shifted**2/new_sumw if not self.__sumw: self.__rmsstate = new_T else: w1,w2 = self.__sumw,new_sumw self.__rmsstate += new_T + (w2*self.__sumwx-w1*new_sumwx)**2/(w1*w2*(w1+w2)) self.__sumw += new_sumw self.__sumwx += new_sumwx def dump(self): for k in self.__dumporder: print("%s : %s"%(k.ljust(8),'%g'%self.__statcalc[k]() if self.__sumw>0.0 or k=='integral' else 'n/a')) def summarise(self): return ', '.join("%s=%s"%(k,'%g'%self.__statcalc[k]() if self.__sumw>0.0 or k=='integral' else 'n/a') for k in self.__dumporder) def __getitem__(self,a): return self.__statcalc[a]() def as_dict(self): return dict((k,self.__statcalc[k]()) for k in self.__statcalc.keys()) _possible_std_stats = ['ekin','x','y','z','ux','uy','uz','time','weight','polx','poly','polz'] _possible_freq_stats = ['pdgcode','userflags'] def collect_stats(mcplfile,stats=_str('all'),bin_data=True): """Efficiently collect statistics from an entire file (or part of file, if limit or skip parameters are set). Returns dictionary with stat names as key and the collected statistics as values.""" #Normal stats (will be used weighted, except for stats about the weight field itself): possible_std_stats = set(_possible_std_stats) #Stats for which distributions are less likely to be relevant, so unique #values and their frequency will be returned instead: possible_freq_stats = set(_possible_freq_stats) if _str(stats)==_str('all'): stats = possible_std_stats.union(possible_freq_stats) if not isinstance(stats,set): stats = set(stats) if not isinstance(mcplfile,MCPLFile): mcplfile = MCPLFile(mcplfile) if mcplfile.nparticles==0: print("MCPL WARNING: Can not calculate stats on an empty file") return {} unknown = stats.difference(possible_std_stats.union(possible_freq_stats)) if unknown: raise MCPLError('Unknown stat names requested: "%s"'%('","'.join(unknown))) #Some stats might be constant for all particles in the file: constant_stats_available = set() if mcplfile.opt_universalpdgcode: constant_stats_available.add('pdgcode') if not mcplfile.opt_userflags: constant_stats_available.add('userflags') if mcplfile.opt_universalweight: constant_stats_available.add('weight') if not mcplfile.opt_polarisation: constant_stats_available |= set(['polx','poly','polz']) cnst_stats = constant_stats_available.intersection(stats) stats = stats.difference(cnst_stats) std_stats = sorted(list(stats.difference(constant_stats_available).intersection(possible_std_stats))) freq_stats = sorted(list(stats.difference(constant_stats_available).intersection(possible_freq_stats))) if not std_stats and not freq_stats and not cnst_stats: raise MCPLError('No stats requested') weight_sum = mcplfile.nparticles * mcplfile.opt_universalweight if mcplfile.opt_universalweight else None nbins = 100 if mcplfile.nparticles < 1000 else 200 if nbins%2==0: nbins += 1#ensure nbins is odd (makes some stuff below easier) collected_stats={} if std_stats: #Unfortunately we need a pass-through in order to collect #statistics for histogram ranges: for s in std_stats: collected_stats[s] = _StatCollector() for pb in mcplfile.particle_blocks: vals_weight=pb.weight for s,sc in collected_stats.items(): if s=='weight': sc.add_data(vals_weight) else: sc.add_data(getattr(pb,s),vals_weight) ranges={} for s,sc in collected_stats.items(): if weight_sum is None and s!='weight': weight_sum = sc['integral'] ranges[s] = [max(sc['min'],sc['mean']-2*sc['rms']), min(sc['max'],sc['mean']+2*sc['rms'])] if not ranges[s][0]10000: print("MCPL WARNING: Too many unique values in %s field. Disabling %s statistics"%(s,s)) disable+=[s] for s in disable: del freq_uc[s] freq_stats.remove(s) for s in (std_stats if bin_data else []): vals = getattr(pb,s) if s!='weight' else vals_weight h,bins = np.histogram(vals, bins=nbins, range=ranges[s], weights=(None if s=='weight' else vals_weight)) if s in hists: hists[s][0] += h else: hists[s] = [ h, bins ] if weight_sum is None: sumw += pb.weight.sum() if weight_sum is None: weight_sum = sumw if weight_sum is None: #apparently we need a run-through for the sole purpose of calculating this... assert not std_stats and not freq_stats weight_sum = 0.0 for pb in mcplfile.particle_blocks: weight_sum += pb.weight.sum() assert not weight_sum is None if cnst_stats: if 'pdgcode' in cnst_stats: assert mcplfile.opt_universalpdgcode cnst_stats.remove('pdgcode') freq_uc['pdgcode'] = (np.asarray([mcplfile.opt_universalpdgcode]),np.asarray([weight_sum])) if 'userflags' in cnst_stats: assert not mcplfile.opt_userflags cnst_stats.remove('userflags') freq_uc['userflags'] = (np.asarray([0]),np.asarray([weight_sum])) if 'weight' in cnst_stats: uw=mcplfile.opt_universalweight assert uw cnst_stats.remove('weight') sc=_StatCollector() sc.add_data(np.asarray([uw],float),np.asarray([mcplfile.nparticles],float)) collected_stats['weight']=sc if bin_data: bins = np.linspace(0.0,2.0*uw,nbins+1) h = np.zeros(nbins) assert nbins % 2 != 0#nbins is odd, value falls at bin center below: h[nbins//2] = uw * mcplfile.nparticles#unweighted! hists['weight'] = [ h, bins ] for spol in ('polx','poly','polz'): if spol in cnst_stats: cnst_stats.remove(spol) sc=_StatCollector() sc.add_data(np.asarray([0.0],float),np.asarray([weight_sum],float)) collected_stats[spol] = sc if bin_data: bins = np.linspace(-1.0,1.0,nbins+1) h = np.zeros(nbins) assert nbins % 2 != 0#nbins is odd, value 0.0 falls at bin center: h[nbins//2] = weight_sum hists[spol] = [ h, bins ] for s in list(k for k in freq_uc.keys()): #sort by frequency: u,c=freq_uc[s] sortidx=np.argsort(u,kind='mergesort')#the indices that would sort u u,c=u[sortidx],c[sortidx] sortidx=np.argsort(c,kind='mergesort')[::-1]#the indices that would sort c, viewed in reverse order freq_uc[s] = u[sortidx],c[sortidx] results = { 'file':{'type':'fileinfo','integral':weight_sum,'nparticles':mcplfile.nparticles} } for s,uc in freq_uc.items(): results[s] = { 'unique_values': uc[0], 'unique_values_counts' : uc[1], 'weighted' : True, 'type':'freq' } units=dict(ekin='MeV',x='cm',y='cm',z='cm',time='ms') for s,sc in collected_stats.items(): d=sc.as_dict() d.update({'summary':sc.summarise(), 'name':s, 'unit':units.get(s,None), 'weighted': s!='weight', 'type' : 'hist'}) if bin_data: h,bins = hists[s] d.update({'hist_bins' : bins, 'hist' : h}) results[s] = d return results _freq_alt_descr = {'pdgcode': _pdg_database, 'userflags':lambda x : '0x%08x'%x} def dump_stats(stats): """Format and print provided statistics object to stdout. The stats object is assumed to have been created by a call to collect_stats()""" if not isinstance(stats,dict): stats = collect_stats(stats,bin_data=False) print('------------------------------------------------------------------------------') print('nparticles : %i'%stats['file']['nparticles']) print('sum(weights) : %g'%stats['file']['integral']) if set(stats).intersection(_possible_std_stats): print('------------------------------------------------------------------------------') print(' : mean rms min max') print('------------------------------------------------------------------------------') for statname in _possible_std_stats: if not statname in stats: continue s=stats[statname] assert s['type']=='hist' su = '%s %s'%(statname.ljust(6),('[%s]'%s['unit']).rjust(5)) if s['unit'] else statname print('%s : %15g %15g %15g %15g'%(su.ljust(12),s['mean'],s['rms'],s['min'],s['max'])) for statname in _possible_freq_stats: if not statname in stats: continue print('------------------------------------------------------------------------------') s=stats[statname] assert s['type']=='freq' fct_alt_descr = _freq_alt_descr.get(statname,lambda x: '') #fmt_fct = freq_formats_fcts[statname] uv,uvc=s['unique_values'],s['unique_values_counts'].copy() percents=uvc*(100.0/uvc.sum()) showmax=50 print ('%s : '%(statname.ljust(12)),end='') for i,(u,p,c) in enumerate(zip(uv,percents,uvc)): txt='%i'%u if i+1==showmax: txt='other' alttxt='' p=percents[i:].sum() c=uvc[i:].sum() else: alttxt=fct_alt_descr(u) print('%s %s %12g (%5.2f%%)'%(txt.rjust(26 if i else 11), ('(%s)'%alttxt if alttxt else '').ljust(12), c,p)) if i+1==showmax: break print (' [ values ] [ weighted counts ]') print('------------------------------------------------------------------------------') def plot_stats(stats,pdf=False,set_backend=None): """Produce plots of provided statistics object with matplotlib. The pdf parameter can be set to a filename and if so, the plots will be produced in that newly created PDF file, rather than being shown interactively. The set_backend parameter can be used to select a matplotlib backend. The stats object is assumed to have been created by a call to collect_stats().""" if pdf is True: raise MCPLError('If set, the pdf parameter should be a string' +' containing the desired filename of the PDF file to be created') if pdf and os.path.exists(pdf): raise MCPLError('PDF file %s already exists'%(pdf)) try: import matplotlib except ImportError: print() print("ERROR: For plotting, this MCPL python module requires matplotlib (matplotlib.org) to be") print("ERROR: installed. You can perhaps install it using using your software manager and searching") print("ERROR: for \"matplotlib\" or \"python-matplotlib\", or it might come bundled with software") print("ERROR: such as scientific python or anaconda, depending on your platform. Alternatively, if") print("ERROR: you are using the pip package manager, you might be able to install it with the") print("ERROR: command \"pip install matplotlib\".") print() raise if set_backend: matplotlib.use(set_backend) if pdf: try: from matplotlib.backends.backend_pdf import PdfPages except ImportError: print() print("ERROR: matplotlib installation does not have required support for PDF output.") print() raise pdf_file = pdf pdf = PdfPages(pdf) try: import matplotlib.pyplot as plt except ImportError: print() print("ERROR: importing matplotlib succeeded, but importing matplotlib.pyplot failed.") print("ERROR: This is rather unusual, an is perhaps related to issues with your chosen") print("ERROR: matplotlib backend, which you might have set globally in a matplotlib") print("ERROR: configuration file.") print() raise if not isinstance(stats,dict): stats = collect_stats(stats,bin_data=True) showmax=10 for s in _possible_freq_stats: if not s in stats: continue freq=stats[s] u,c=freq['unique_values'],freq['unique_values_counts'] fct_alt_descr = _freq_alt_descr.get(s,lambda x: None) def fmt_fct_raw(x): alttxt = fct_alt_descr(x) return '%s\n(%s)'%(str(x),alttxt) if alttxt is not None else str(x) #fmt_fct_raw = freq_formats_fcts[s] fmt_fct = lambda i,x: fmt_fct_raw(x) if len(c)>showmax: sum_other = c[showmax-1:].sum() u,c = u[0:showmax].copy(), c[0:showmax].copy() c[showmax-1] = sum_other fmt_fct = lambda i,x: 'other' if i==showmax-1 else fmt_fct_raw(x) percents = c.astype(float)*100.0/sum(c) labels = ['%s\n%.2f%%'%(fmt_fct(i,e),percents[i]) for i,e in enumerate(u)] barcenters=list(range(len(c))) rects = plt.bar(barcenters, c, width=0.7,align='center',linewidth=0) ax=plt.gca() ax.set_xticks(barcenters) percents=c.astype(float)*100.0/sum(c) ax.set_xticklabels(labels,fontsize='small') ax.yaxis.grid(True,color='white',linestyle='-') ax.set_xlim(-0.5,len(c)-0.5) plt.title(s) plt.subplots_adjust(left=0.1, right=0.94, top=0.93, bottom=0.13) if pdf: pdf.savefig(plt.gcf()) plt.close() else: plt.show() for s in _possible_std_stats: if not s in stats: continue h=stats[s] hist,bins = h['hist'],h['hist_bins'] plt.bar(0.5*(bins[:-1] + bins[1:]), hist, align='center', width=(bins[1] - bins[0]),linewidth=0) plt.grid() plt.title('%s%s (%s)'%(s, ' [%s]'%h['unit'] if h['unit'] is not None else '', 'weighted' if h['weighted'] else 'unweighted')) plt.xlabel(h['summary'],fontsize='small') plt.xlim(bins[0],bins[-1]) plt.subplots_adjust(left=0.1, right=0.94, top=0.93, bottom=0.13) if pdf: pdf.savefig(plt.gcf()) plt.close() else: plt.show() if pdf: if hasattr(pdf,'infodict'): d = pdf.infodict() d['Title'] = 'Plots made with mcpl.py version %s'%__version__ d['Author'] = 'mcpl.py v%s'%__version__ d['Subject'] = 'mcpl plots' d['Keywords'] = 'mcpl' pdf.close() def main(): """This function simply calls app_pymcpltool(), but any raised MCPLError exception will be caught and transformed into a corresponding error message followed by a call to sys.exit(1). Invoking the mcpl.py module as a script (for instance with "python -m") will result in a call to this function.""" try: app_pymcpltool() except MCPLError as e: print('MCPL ERROR: %s'%str(e)) sys.exit(1) if __name__=='__main__': main() mcpl-1.3.2/src/python/pymcpltool000077500000000000000000000032031361775146500167250ustar00rootroot00000000000000#!/usr/bin/env python ################################################################################### # # # Monte Carlo Particle Lists : MCPL # # # # Application providing the pymcpltool. This actually just means importing the # # mcpl.py module and running the main() function found there. # # # # Find more information and updates at https://mctools.github.io/mcpl/ # # # # This file can be freely used as per the terms in the LICENSE file. # # # # Written by Thomas Kittelmann, 2017. # # # ################################################################################### #Import mcpl module (with a fall-back sys.path edit, so the tool can be run #from an MCPL installation even though the user did not set PYTHONPATH correctly): try: import mcpl except ImportError: import sys, os try: sys.path.insert(0,os.path.join(os.path.dirname(__file__))) import mcpl except ImportError: sys.path.insert(0,os.path.join(os.path.dirname(__file__),'..','python')) import mcpl #Launch tool: mcpl.main() mcpl-1.3.2/src_fat/000077500000000000000000000000001361775146500141105ustar00rootroot00000000000000mcpl-1.3.2/src_fat/LICENSE.zlib000066400000000000000000000021211361775146500160500ustar00rootroot00000000000000/* zlib.h -- interface of the 'zlib' general purpose compression library version 1.2.8, April 28th, 2013 Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. Jean-loup Gailly Mark Adler jloup@gzip.org madler@alumni.caltech.edu */ mcpl-1.3.2/src_fat/Makefile000066400000000000000000000041121361775146500155460ustar00rootroot00000000000000################################################################################## # # # A very simple makefile which compiles the autogenerated "fat" commandline # # tools in src_fat of the MCPL distribution. # # # # Note that this simply builds the final executables directly in src_fat, with # # no intermediate build output. # # # # Refer to the INSTALL file from the MCPL distribution for more details. # # # # Written 2017-2019 by T. Kittelmann. # # # ################################################################################## SHELL = /bin/sh CFLAGS = -std=c99 CFLAGS_EXTRA ?= LDFLAGS = -lm LDFLAGS_EXTRA ?= DEBUGFLAGS = -g -O0 RELEASEFLAGS = -O2 -DNDEBUG SRCDIR = $(dir $(lastword $(MAKEFILE_LIST))) DESTDIR = $(SRCDIR) CC ?= gcc TARGETS = $(DESTDIR)mcpl2phits $(DESTDIR)phits2mcpl $(DESTDIR)mcpl2ssw $(DESTDIR)ssw2mcpl $(DESTDIR)mcpltool CFLAGS += $(CFLAGS_EXTRA) LDFLAGS += $(LDFLAGS_EXTRA) all: release release: CFLAGS += $(RELEASEFLAGS) release: $(TARGETS) debug: CFLAGS += $(DEBUGFLAGS) debug: $(TARGETS) .PHONY : all clean release debug clean: rm -f $(TARGETS) $(DESTDIR)mcpltool: $(SRCDIR)mcpltool_app_fat.c $(CC) $(CFLAGS) $< $(LDFLAGS) -o $@ $(DESTDIR)ssw2mcpl: $(SRCDIR)ssw2mcpl_app_fat.c $(CC) $(CFLAGS) $< $(LDFLAGS) -o $@ $(DESTDIR)mcpl2ssw: $(SRCDIR)mcpl2ssw_app_fat.c $(CC) $(CFLAGS) $< $(LDFLAGS) -o $@ $(DESTDIR)phits2mcpl: $(SRCDIR)phits2mcpl_app_fat.c $(CC) $(CFLAGS) $< $(LDFLAGS) -o $@ $(DESTDIR)mcpl2phits: $(SRCDIR)mcpl2phits_app_fat.c $(CC) $(CFLAGS) $< $(LDFLAGS) -o $@ mcpl-1.3.2/src_fat/mcpl2phits_app_fat.c000066400000000000000000022726741361775146500200570ustar00rootroot00000000000000 /////////////////////////////////////////////////////////////////////// // // // This is a quick and dirty standalone version of the MCPL to PHITS // // converter, mcpl2phits, including both mcpl.h, mcpl.c, // // phitsread.h, phitsread.c, a main(), and zlib. // // // // Compile into executable using C99 with libm: // // // // $CC -std=c99 mcpl2phits_app_fat.c -lm -o mcpl2phits // // // // Where $CC is a C99 capable C-compiler like gcc or clang. // // // // For licensing and documentation, please refer to either the MCPL // // website (https://mctools.github.io/mcpl/) or files in the full // // MCPL distribution, obtainable from the same place. In particular, // // since some code in this file originates in the zlib library // // (http://zlib.net), the zlib license applies to those parts and is // // repeated below. // // // // Note that usage of PHITS-related utilities might require // // additional permissions and licenses from third-parties, which is // // not within the scope of the MCPL project itself. // // // /////////////////////////////////////////////////////////////////////// //---------- the zlib license ----------// /* zlib.h -- interface of the 'zlib' general purpose compression library version 1.2.8, April 28th, 2013 Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. Jean-loup Gailly Mark Adler jloup@gzip.org madler@alumni.caltech.edu */ //---------- Automatically concatenated code follows below ----------// #ifdef MCPL_HEADER_INCPATH # undef MCPL_HEADER_INCPATH #endif #ifndef __STDC_FORMAT_MACROS # define __STDC_FORMAT_MACROS #endif #ifndef _POSIX_C_SOURCE # define _POSIX_C_SOURCE 200809L #endif #ifndef _ISOC99_SOURCE # define _ISOC99_SOURCE 1 #endif #ifndef _C99_SOURCE # define _C99_SOURCE 1 #endif #ifndef MCPL_HASZLIB # define MCPL_HASZLIB #endif #ifndef PHITSREAD_HASZLIB # define PHITSREAD_HASZLIB #endif #ifdef PHITSREAD_HDR_INCPATH # undef PHITSREAD_HDR_INCPATH #endif #ifdef PHITSMCPL_HDR_INCPATH # undef PHITSMCPL_HDR_INCPATH #endif #ifdef PHITSREAD_ZLIB_INCPATH # undef PHITSREAD_ZLIB_INCPATH #endif #ifdef MCPL_ZLIB_INCPATH # undef MCPL_ZLIB_INCPATH #endif #ifndef MCPL_H #define MCPL_H #include /***********************************************************************************/ /* */ /* Monte Carlo Particle Lists : MCPL */ /* */ /* Utilities for reading and writing .mcpl files: A binary format with lists of */ /* particle state information, for interchanging and reshooting events between */ /* various Monte Carlo simulation applications. */ /* */ /* Find more information and updates at https://mctools.github.io/mcpl/ */ /* */ /* This file can be freely used as per the terms in the LICENSE file. */ /* */ /* Written by Thomas Kittelmann, 2015-2017. */ /* */ /***********************************************************************************/ #define MCPL_VERSION_MAJOR 1 #define MCPL_VERSION_MINOR 3 #define MCPL_VERSION_PATCH 2 #define MCPL_VERSION 10302 /* (10000*MAJOR+100*MINOR+PATCH) */ #define MCPL_VERSION_STR "1.3.2" #define MCPL_FORMATVERSION 3 /* Format version of written files */ #ifdef __cplusplus extern "C" { #endif /*********/ /* Types */ /*********/ #pragma pack (push, 1) /* The data structure representing a particle (note that persistification of */ /* polarisation and userflags must be explicitly enabled when writing .mcpl */ /* files, or they will simply contain zeroes when the file is read): */ typedef struct { double ekin; /* kinetic energy [MeV] */ double polarisation[3]; /* polarisation vector */ double position[3]; /* position [cm] */ double direction[3]; /* momentum direction (unit vector) */ double time; /* time-stamp [millisecond] */ double weight; /* weight or intensity */ int32_t pdgcode; /* MC particle number from the Particle Data Group (2112=neutron, 22=gamma, ...) */ uint32_t userflags; /* User flags (if used, the file header should probably contain information about how). */ } mcpl_particle_t; #pragma pack (pop) typedef struct { void * internal; } mcpl_file_t; /* file-object used while reading .mcpl */ typedef struct { void * internal; } mcpl_outfile_t; /* file-object used while writing .mcpl */ /****************************/ /* Creating new .mcpl files */ /****************************/ /* Instantiate new file object (will also open and override specified file) */ mcpl_outfile_t mcpl_create_outfile(const char * filename); const char * mcpl_outfile_filename(mcpl_outfile_t);/* filename being written to (might have had .mcpl appended) */ /* Optionally set global options or add info to the header: */ void mcpl_hdr_set_srcname(mcpl_outfile_t, const char *);/* Name of the generating application */ void mcpl_hdr_add_comment(mcpl_outfile_t, const char *);/* Add one or more human-readable comments */ void mcpl_hdr_add_data(mcpl_outfile_t, const char * key, uint32_t ldata, const char * data);/* add binary blobs by key */ void mcpl_enable_userflags(mcpl_outfile_t);/* to write the "userflags" info */ void mcpl_enable_polarisation(mcpl_outfile_t);/* to write the "polarisation" info */ void mcpl_enable_doubleprec(mcpl_outfile_t);/* use double precision FP numbers in storage */ void mcpl_enable_universal_pdgcode(mcpl_outfile_t, int32_t pdgcode);/* All particles are of the same type */ void mcpl_enable_universal_weight(mcpl_outfile_t, double w);/* All particles have the same weight */ /* Optionally (but rarely skipped) add particles, by updating the info in */ /* and then passing in a pointer to an mcpl_particle_t instance: */ void mcpl_add_particle(mcpl_outfile_t,const mcpl_particle_t*); /* Finally, always remember to close the file: */ void mcpl_close_outfile(mcpl_outfile_t); /* Alternatively close with (will call mcpl_gzip_file after close). */ /* Returns non-zero if gzipping was succesful: */ int mcpl_closeandgzip_outfile(mcpl_outfile_t); /* Convenience function which returns a pointer to a nulled-out particle struct which can be used to edit and pass to mcpl_add_particle. It can be reused and will be automatically free'd when the file is closed: */ mcpl_particle_t* mcpl_get_empty_particle(mcpl_outfile_t); /***********************/ /* Reading .mcpl files */ /***********************/ /* Open file and load header information into memory, skip to the first (if */ /* any) particle in the list: */ mcpl_file_t mcpl_open_file(const char * filename); /* Access header data: */ unsigned mcpl_hdr_version(mcpl_file_t);/* file format version (not the same as MCPL_VERSION) */ uint64_t mcpl_hdr_nparticles(mcpl_file_t);/* number of particles stored in file */ const char* mcpl_hdr_srcname(mcpl_file_t);/* Name of the generating application */ unsigned mcpl_hdr_ncomments(mcpl_file_t);/* number of comments stored in file */ const char * mcpl_hdr_comment(mcpl_file_t, unsigned icomment);/* access i'th comment */ int mcpl_hdr_nblobs(mcpl_file_t); const char** mcpl_hdr_blobkeys(mcpl_file_t);/* returns 0 if there are no keys */ int mcpl_hdr_blob(mcpl_file_t, const char* key, uint32_t* ldata, const char ** data);/* access data (returns 0 if key doesn't exist) */ int mcpl_hdr_has_userflags(mcpl_file_t); int mcpl_hdr_has_polarisation(mcpl_file_t); int mcpl_hdr_has_doubleprec(mcpl_file_t); uint64_t mcpl_hdr_header_size(mcpl_file_t);/* bytes consumed by header (uncompressed) */ int mcpl_hdr_particle_size(mcpl_file_t);/* bytes per particle (uncompressed) */ int32_t mcpl_hdr_universal_pdgcode(mcpl_file_t);/* returns 0 in case of per-particle pdgcode */ double mcpl_hdr_universal_weight(mcpl_file_t);/* returns 0.0 in case of per-particle weights */ int mcpl_hdr_little_endian(mcpl_file_t); /* Request pointer to particle at current location and skip forward to the next */ /* particle. Return value will be null in case there was no particle at the */ /* current location (normally due to end-of-file): */ const mcpl_particle_t* mcpl_read(mcpl_file_t); /* Seek and skip in particles (returns 0 when there is no particle at the new position): */ int mcpl_skipforward(mcpl_file_t,uint64_t n); int mcpl_rewind(mcpl_file_t); int mcpl_seek(mcpl_file_t,uint64_t ipos); uint64_t mcpl_currentposition(mcpl_file_t); /* Deallocate memory and release file-handle with: */ void mcpl_close_file(mcpl_file_t); /***********************************/ /* Other operations on .mcpl files */ /***********************************/ /* Dump information about the file to std-output: */ /* parts : 0 -> header+particle list, 1 -> just header, 2 -> just particle list. */ /* nlimit: maximum number of particles to list (0 for unlimited) */ /* nskip : index of first particle in the file to list. */ void mcpl_dump(const char * file, int parts, uint64_t nskip, uint64_t nlimit); /* Merge contents of a list of files by concatenating all particle contents into a */ /* new file, file_output. This results in an error unless all meta-data and settings */ /* in the files are identical. Also fails if file_output already exists. Note that */ /* the return value is a handle to the output file which has not yet been closed: */ mcpl_outfile_t mcpl_merge_files( const char* file_output, unsigned nfiles, const char ** files); /* Test if files could be merged by mcpl_merge_files: */ int mcpl_can_merge(const char * file1, const char* file2); /* Similar to mcpl_merge_files, but merges two files by appending all particles in */ /* file2 to the list in file1 (thus file1 grows while file2 stays untouched). */ /* Note that this requires similar version of the MCPL format of the two files, in */ /* addition to the other checks in mcpl_can_merge(). */ /* Careful usage of this function can be more efficient than mcpl_merge_files. */ void mcpl_merge_inplace(const char * file1, const char* file2); /* Attempt to merge incompatible files, by throwing away meta-data and otherwise */ /* selecting a configuration which is suitable to contain the data of all files. */ /* Userflags will be discarded unless keep_userflags=1. */ /* If called with compatible files, the code will fall back to calling the usual */ /* mcpl_merge_files function instead. */ mcpl_outfile_t mcpl_forcemerge_files( const char* file_output, unsigned nfiles, const char ** files, int keep_userflags ); /* Attempt to fix number of particles in the header of a file which was never */ /* properly closed: */ void mcpl_repair(const char * file1); /* For easily creating a standard mcpl-tool cmdline application: */ int mcpl_tool(int argc, char** argv); /* Attempt to run gzip on a file (does not require MCPL_HASZLIB on unix) */ /* Returns non-zero if gzipping was succesful. */ int mcpl_gzip_file(const char * filename); /* Convenience function which transfers all settings, blobs and comments to */ /* target. Intended to make it easy to filter files via custom C code. */ void mcpl_transfer_metadata(mcpl_file_t source, mcpl_outfile_t target); /* Function which can be used when transferring particles from one MCPL file */ /* to another. A particle must have been already read from the source file */ /* with a call to mcpl_read(..). This function will transfer the packed par- */ /* ticle data exactly when possible (using mcpl_add_particle can in principle */ /* introduce tiny numerical uncertainties due to the internal unpacking and */ /* repacking of direction vectors involved): */ void mcpl_transfer_last_read_particle(mcpl_file_t source, mcpl_outfile_t target); /******************/ /* Error handling */ /******************/ /* Override the error handler which will get called with the error */ /* description. If no handler is set, errors will get printed to stdout and the */ /* process terminated. An error handler should not return to the calling code. */ void mcpl_set_error_handler(void (*handler)(const char *)); /**********************/ /* Obsolete functions */ /**********************/ /* Functions kept for backwards compatibility. They keep working for now, but */ /* usage will result in a warning printed to stdout, notifying users to update */ /* their code. */ void mcpl_merge(const char *, const char*);/* Obsolete name for mcpl_merge_inplace */ int mcpl_gzip_file_rc(const char * filename);/* Obsolete name for mcpl_gzip_file */ int mcpl_closeandgzip_outfile_rc(mcpl_outfile_t);/* Obsolete name for mcpl_closeandgzip_outfile_rc */ int32_t mcpl_hdr_universel_pdgcode(mcpl_file_t);/* Obsolete name for mcpl_hdr_universal_pdgcode */ #ifdef __cplusplus } #endif #endif #ifndef phitsmcpl_h #define phitsmcpl_h ////////////////////////////////////////////////////////////////////////////////////// // // // Functions for converting binary PHITS dump files to and from MCPL files. // // // // The code was written with help from D. Di Julio, ESS. // // // // This file can be freely used as per the terms in the LICENSE file. // // // // However, note that usage of PHITS-related utilities might require additional // // permissions and licenses from third-parties, which is not within the scope of // // the MCPL project itself. // // // // Written 2019 by Thomas.Kittelmann@esss.se. // // // ////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////// // Create mcplfile based on content in PHITS dump file. Using this function will // use single-precision in the output file, and will always attempt to gzip the // resulting MCPL file. Use phits2mcpl2 instead to fine-tune these choices or to // embed a copy of the PHITS input deck or dump summary file in the MCPL header // for reference. Returns 1 on success, 0 on failure: int phits2mcpl(const char * phitsfile, const char * mcplfile); ////////////////////////////////////////////////////////////////////////////////////// // Advanced version of the above with more options: // // opt_dp : Set to 1 to enable double-precision storage of floating point // values. Set to 0 for single-precision. // opt_gzip: Set to 1 to gzip the resulting mcpl file. Set to 0 to leave the // resulting file uncompressed. // inputdeckfile: Set to the filename of the PHITS input deck file, to embed a // copy of it in the MCPL header. Set to 0 to not do this. // dumpsummaryfile: Set to the filename of the dump summary text file (which // is produced along with the binary dump file by PHITS), to // embed a copy of it in the MCPL header. Set to 0 to not do // this. // // Note: The created mcpl file will have polarisation columns enabled if and // only if the input dump file has polarisation info. int phits2mcpl2( const char * phitsdumpfile, const char * mcplfile, int opt_dp, int opt_gzip, const char * inputdeckfile, const char * dumpsummaryfile ); ////////////////////////////////////////////////////////////////////////////////////// // Create binary PHITS dump file based on content in mcplfile. If usepol option // is set to 1 (as opposed to 0), the resulting file will include polarisation (aka spin // direction) information and must be read via: // // dump=13 // 1 2 3 4 5 6 7 8 9 10 14 15 16 // // Otherwise it is excluded and the reader must be configured via: // // dump=10 // 1 2 3 4 5 6 7 8 9 10 // // If the limit parameter is non-zero, it will provide an upper limit on the // number of particles put into the resulting phits file. Finally, the reclen // parameters control whether the hidden Fortran record markers in the produced // file use 32bit (reclen=4) or 64bit (reclen=8) integers. The correct choice is // almost always to use reclen=4. int mcpl2phits( const char * mcplfile, const char * phitsdumpfile, int usepol, long limit, int reclen ); ////////////////////////////////////////////////////////////////////////////////////// // For easily creating standard phits2mcpl and mcpl2phits cmdline applications: int phits2mcpl_app(int argc,char** argv); int mcpl2phits_app(int argc,char** argv); #endif #ifndef MCPL_HASZLIB # define MCPL_HASZLIB #endif #ifdef MCPL_ZLIB_INCPATH # undef MCPL_ZLIB_INCPATH #endif ///////////////////////////////////////////////////////////////////////////////////// // // // Monte Carlo Particle Lists : MCPL // // // // Utilities for reading and writing .mcpl files: A binary format with lists of // // particle state information, for interchanging and reshooting events between // // various Monte Carlo simulation applications. // // // // Client code including mcpl.h does not need any special build flags and can // // be compiled with any complient compiler and any current C or C++ standard. // // // // Compilation of mcpl.c on the other hand is currently not supported for C89, // // although this could be revisited. Thus, compilation of mcpl.c can proceed // // using any complient C-compiler using -std=c99 or -std=c11 or any complient // // C++ compiler using any version of the C++ standard, and the resulting code // // must always be linked with libm (using -lm). Furthermore, the following // // preprocessor flags can be used when compiling mcpl.c to fine tune the build // // process and the capabilities of the resulting binary. // // // // MCPL_HASZLIB : Define if compiling and linking with zlib, to allow // // direct reading of .mcpl.gz files. // // MCPL_ZLIB_INCPATH : Specify alternative value if the zlib header is not to // // be included as "zlib.h". // // MCPL_HEADER_INCPATH : Specify alternative value if the MCPL header itself is // // not to be included as "mcpl.h". // // MCPL_NO_EXT_GZIP : Define to make sure that mcpl_gzip_file will never // // compress via a separate process running a system- // // provided gzip executable. // // MCPL_NO_CUSTOM_GZIP : Define to make sure that mcpl_gzip_file will never // // compress via custom zlib-based code. // // // // This file can be freely used as per the terms in the LICENSE file. // // // // Find more information and updates at https://mctools.github.io/mcpl/ // // // // Written by Thomas Kittelmann, 2015-2017. // // // ///////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////// // MCPL_FORMATVERSION history: // // // // 3: Current version. Changed packing of unit vectors from octahedral to // // the better performing "Adaptive Projection Packing". // // 2: First public release. // // 1: Format used during early development. No longer supported. // ///////////////////////////////////////////////////////////////////////////////////// //Rough platform detection (could be much more fine-grained): #if defined(__unix__) || defined(__unix) || (defined(__APPLE__) && defined(__MACH__)) # define MCPL_THIS_IS_UNIX #endif #if defined(MSDOS) || defined(OS2) || defined(WIN32) || defined(_WIN32) || defined(__CYGWIN__) # ifdef MCPL_THIS_IS_UNIX # undef MCPL_THIS_IS_UNIX # endif # define MCPL_THIS_IS_MS #endif //Before including mcpl.h, we attempt to get PRIu64 defined in a relatively //robust manner by enabling feature test macros for gcc and including relevant //headers: #ifndef __STDC_FORMAT_MACROS # define __STDC_FORMAT_MACROS #endif #ifndef _POSIX_C_SOURCE # define _POSIX_C_SOURCE 200809L #endif #ifndef _ISOC99_SOURCE # define _ISOC99_SOURCE 1 #endif #ifndef _C99_SOURCE # define _C99_SOURCE 1 #endif #include #include #ifndef PRIu64//bad compiler - fallback to guessing # if defined(_MSC_VER) && (_MSC_VER<1900) # define PRIu64 "I64u" # else # if defined(__WORDSIZE) && (__WORDSIZE==64) # define PRIu64 "lu" # else # define PRIu64 "llu" # endif # endif #endif #ifdef MCPL_HEADER_INCPATH # include MCPL_HEADER_INCPATH #else #endif #ifdef MCPL_HASZLIB # ifdef MCPL_ZLIB_INCPATH # include MCPL_ZLIB_INCPATH # else #ifndef NO_DUMMY_DECL # define NO_DUMMY_DECL #endif /* zlib.h -- interface of the 'zlib' general purpose compression library version 1.2.8, April 28th, 2013 Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. Jean-loup Gailly Mark Adler jloup@gzip.org madler@alumni.caltech.edu The data format used by the zlib library is described by RFCs (Request for Comments) 1950 to 1952 in the files http://tools.ietf.org/html/rfc1950 (zlib format), rfc1951 (deflate format) and rfc1952 (gzip format). */ #ifndef MiniZLib_ZLIB_H #define MiniZLib_ZLIB_H /* zconf.h -- configuration of the zlib compression library * Copyright (C) 1995-2013 Jean-loup Gailly. * For conditions of distribution and use, see copyright notice in zlib.h */ /* @(#) $Id$ */ #ifndef MiniZLib_ZCONF_H #define MiniZLib_ZCONF_H /* * If you *really* need a unique prefix for all types and library functions, * compile with -DZ_PREFIX. The "standard" zlib should be compiled without it. * Even better than compiling with -DZ_PREFIX would be to use configure to set * this permanently in zconf.h using "./configure --zprefix". */ #if 1 /* may be set to #if 1 by ./configure */ # define Z_PREFIX_SET /* all linked symbols */ # define _dist_code minizlib__dist_code # define _length_code minizlib__length_code # define _tr_align minizlib__tr_align # define _tr_flush_bits minizlib__tr_flush_bits # define _tr_flush_block minizlib__tr_flush_block # define _tr_init minizlib__tr_init # define _tr_stored_block minizlib__tr_stored_block # define _tr_tally minizlib__tr_tally # define adler32 minizlib_adler32 # define adler32_combine minizlib_adler32_combine # define adler32_combine64 minizlib_adler32_combine64 # ifndef Z_SOLO # define compress minizlib_compress # define compress2 minizlib_compress2 # define compressBound minizlib_compressBound # endif # define crc32 minizlib_crc32 # define crc32_combine minizlib_crc32_combine # define crc32_combine64 minizlib_crc32_combine64 # define deflate minizlib_deflate # define deflateBound minizlib_deflateBound # define deflateCopy minizlib_deflateCopy # define deflateEnd minizlib_deflateEnd # define deflateInit2_ minizlib_deflateInit2_ # define deflateInit_ minizlib_deflateInit_ # define deflateParams minizlib_deflateParams # define deflatePending minizlib_deflatePending # define deflatePrime minizlib_deflatePrime # define deflateReset minizlib_deflateReset # define deflateResetKeep minizlib_deflateResetKeep # define deflateSetDictionary minizlib_deflateSetDictionary # define deflateSetHeader minizlib_deflateSetHeader # define deflateTune minizlib_deflateTune # define deflate_copyright minizlib_deflate_copyright # define get_crc_table minizlib_get_crc_table # ifndef Z_SOLO # define gz_error minizlib_gz_error # define gz_intmax minizlib_gz_intmax # define gz_strwinerror minizlib_gz_strwinerror # define gzbuffer minizlib_gzbuffer # define gzclearerr minizlib_gzclearerr # define gzclose minizlib_gzclose # define gzclose_r minizlib_gzclose_r # define gzclose_w minizlib_gzclose_w # define gzdirect minizlib_gzdirect # define gzdopen minizlib_gzdopen # define gzeof minizlib_gzeof # define gzerror minizlib_gzerror # define gzflush minizlib_gzflush # define gzgetc minizlib_gzgetc # define gzgetc_ minizlib_gzgetc_ # define gzgets minizlib_gzgets # define gzoffset minizlib_gzoffset # define gzoffset64 minizlib_gzoffset64 # define gzopen minizlib_gzopen # define gzopen64 minizlib_gzopen64 # ifdef _WIN32 # define gzopen_w minizlib_gzopen_w # endif # define gzprintf minizlib_gzprintf # define gzvprintf minizlib_gzvprintf # define gzputc minizlib_gzputc # define gzputs minizlib_gzputs # define gzread minizlib_gzread # define gzrewind minizlib_gzrewind # define gzseek minizlib_gzseek # define gzseek64 minizlib_gzseek64 # define gzsetparams minizlib_gzsetparams # define gztell minizlib_gztell # define gztell64 minizlib_gztell64 # define gzungetc minizlib_gzungetc # define gzwrite minizlib_gzwrite # endif # define inflate minizlib_inflate # define inflateBack minizlib_inflateBack # define inflateBackEnd minizlib_inflateBackEnd # define inflateBackInit_ minizlib_inflateBackInit_ # define inflateCopy minizlib_inflateCopy # define inflateEnd minizlib_inflateEnd # define inflateGetHeader minizlib_inflateGetHeader # define inflateInit2_ minizlib_inflateInit2_ # define inflateInit_ minizlib_inflateInit_ # define inflateMark minizlib_inflateMark # define inflatePrime minizlib_inflatePrime # define inflateReset minizlib_inflateReset # define inflateReset2 minizlib_inflateReset2 # define inflateSetDictionary minizlib_inflateSetDictionary # define inflateGetDictionary minizlib_inflateGetDictionary # define inflateSync minizlib_inflateSync # define inflateSyncPoint minizlib_inflateSyncPoint # define inflateUndermine minizlib_inflateUndermine # define inflateResetKeep minizlib_inflateResetKeep # define inflate_copyright minizlib_inflate_copyright # define inflate_fast minizlib_inflate_fast # define inflate_table minizlib_inflate_table # ifndef Z_SOLO # define uncompress minizlib_uncompress # endif # define zError minizlib_zError # ifndef Z_SOLO # define zcalloc minizlib_zcalloc # define zcfree minizlib_zcfree # endif # define zlibCompileFlags minizlib_zlibCompileFlags # define zlibVersion minizlib_zlibVersion /* all zlib typedefs in zlib.h and zconf.h */ # define Byte minizlib_Byte # define Bytef minizlib_Bytef # define alloc_func minizlib_alloc_func # define charf minizlib_charf # define free_func minizlib_free_func # ifndef Z_SOLO # define gzFile minizlib_gzFile # endif # define gz_header minizlib_gz_header # define gz_headerp minizlib_gz_headerp # define in_func minizlib_in_func # define intf minizlib_intf # define out_func minizlib_out_func # define uInt minizlib_uInt # define uIntf minizlib_uIntf # define uLong minizlib_uLong # define uLongf minizlib_uLongf # define voidp minizlib_voidp # define voidpc minizlib_voidpc # define voidpf minizlib_voidpf /* all zlib structs in zlib.h and zconf.h */ # define gz_header_s minizlib_gz_header_s # define internal_state minizlib_internal_state /* extras added by TK */ # define distfix minizlib_distfix # define lenfix minizlib_lenfix # define lbase minizlib_lbase # define dbase minizlib_dbase # define my_version minizlib_my_version # define dext minizlib_dext # define order minizlib_order # define build_bl_tree minizlib_build_bl_tree # define copy_block minizlib_copy_block # define crc32_big minizlib_crc32_big # define crc32_little minizlib_crc32_little # define deflate_huff minizlib_deflate_huff # define deflate_rle minizlib_deflate_rle # define detect_data_type minizlib_detect_data_type # define fixedtables minizlib_fixedtables # define flush_pending minizlib_flush_pending # define gen_bitlen minizlib_gen_bitlen # define gf2_matrix_square minizlib_gf2_matrix_square # define gf2_matrix_times minizlib_gf2_matrix_times # define init_block minizlib_init_block # define lm_init minizlib_lm_init # define pqdownheap minizlib_pqdownheap # define putShortMSB minizlib_putShortMSB # define read_buf minizlib_read_buf # define scan_tree minizlib_scan_tree # define send_all_trees minizlib_send_all_trees # define syncsearch minizlib_syncsearch # define tr_static_init minizlib_tr_static_init # define updatewindow minizlib_updatewindow # define adler32_combine_ minizlib_adler32_combine_ # define bi_flush minizlib_bi_flush # define bi_reverse minizlib_bi_reverse # define bi_windup minizlib_bi_windup # define gen_codes minizlib_gen_codes # define deflate_slow minizlib_deflate_slow # define deflate_fast minizlib_deflate_fast # define deflate_stored minizlib_deflate_stored # define gz_avail minizlib_gz_avail # define gz_load minizlib_gz_load # define gz_reset minizlib_gz_reset # define gz_skip minizlib_gz_skip # define gz_zero minizlib_gz_zero # define gz_comp minizlib_gz_comp # define gz_decomp minizlib_gz_decomp # define gz_fetch minizlib_gz_fetch # define gz_init minizlib_gz_init # define gz_look minizlib_gz_look # define gz_open minizlib_gz_open # define z_errmsg minizlib_z_errmsg # define crc32_combine_ minizlib_crc32_combine_ # define crc_table minizlib_crc_table # define longest_match minizlib_longest_match # define fill_window minizlib_fill_window # define configuration_table minizlib_configuration_table # define send_tree minizlib_send_tree # define compress_block minizlib_compress_block # define extra_lbits minizlib_extra_lbits # define base_length minizlib_base_length # define extra_dbits minizlib_extra_dbits # define base_dist minizlib_base_dist # define build_tree minizlib_build_tree # define bl_order minizlib_bl_order # define extra_blbits minizlib_extra_blbits # define static_l_desc minizlib_static_l_desc # define static_bl_desc minizlib_static_bl_desc # define static_d_desc minizlib_static_d_desc # define static_dtree minizlib_static_dtree # define static_ltree minizlib_static_ltree #endif #if defined(__MSDOS__) && !defined(MSDOS) # define MSDOS #endif #if (defined(OS_2) || defined(__OS2__)) && !defined(OS2) # define OS2 #endif #if defined(_WINDOWS) && !defined(WINDOWS) # define WINDOWS #endif #if defined(_WIN32) || defined(_WIN32_WCE) || defined(__WIN32__) # ifndef WIN32 # define WIN32 # endif #endif #if (defined(MSDOS) || defined(OS2) || defined(WINDOWS)) && !defined(WIN32) # if !defined(__GNUC__) && !defined(__FLAT__) && !defined(__386__) # ifndef SYS16BIT # define SYS16BIT # endif # endif #endif /* * Compile with -DMAXSEG_64K if the alloc function cannot allocate more * than 64k bytes at a time (needed on systems with 16-bit int). */ #ifdef SYS16BIT # define MAXSEG_64K #endif #ifdef MSDOS # define UNALIGNED_OK #endif #ifdef __STDC_VERSION__ # ifndef STDC # define STDC # endif # if __STDC_VERSION__ >= 199901L # ifndef STDC99 # define STDC99 # endif # endif #endif #if !defined(STDC) && (defined(__STDC__) || defined(__cplusplus)) # define STDC #endif #if !defined(STDC) && (defined(__GNUC__) || defined(__BORLANDC__)) # define STDC #endif #if !defined(STDC) && (defined(MSDOS) || defined(WINDOWS) || defined(WIN32)) # define STDC #endif #if !defined(STDC) && (defined(OS2) || defined(__HOS_AIX__)) # define STDC #endif #if defined(__OS400__) && !defined(STDC) /* iSeries (formerly AS/400). */ # define STDC #endif #ifndef STDC # ifndef const /* cannot use !defined(STDC) && !defined(const) on Mac */ # define const /* note: need a more gentle solution here */ # endif #endif #if defined(ZLIB_CONST) && !defined(z_const) # define z_const const #else # define z_const #endif /* Some Mac compilers merge all .h files incorrectly: */ #if defined(__MWERKS__)||defined(applec)||defined(THINK_C)||defined(__SC__) # define NO_DUMMY_DECL #endif /* Maximum value for memLevel in deflateInit2 */ #ifndef MAX_MEM_LEVEL # ifdef MAXSEG_64K # define MAX_MEM_LEVEL 8 # else # define MAX_MEM_LEVEL 9 # endif #endif /* Maximum value for windowBits in deflateInit2 and inflateInit2. * WARNING: reducing MAX_WBITS makes minigzip unable to extract .gz files * created by gzip. (Files created by minigzip can still be extracted by * gzip.) */ #ifndef MAX_WBITS # define MAX_WBITS 15 /* 32K LZ77 window */ #endif /* The memory requirements for deflate are (in bytes): (1 << (windowBits+2)) + (1 << (memLevel+9)) that is: 128K for windowBits=15 + 128K for memLevel = 8 (default values) plus a few kilobytes for small objects. For example, if you want to reduce the default memory requirements from 256K to 128K, compile with make CFLAGS="-O -DMAX_WBITS=14 -DMAX_MEM_LEVEL=7" Of course this will generally degrade compression (there's no free lunch). The memory requirements for inflate are (in bytes) 1 << windowBits that is, 32K for windowBits=15 (default value) plus a few kilobytes for small objects. */ /* Type declarations */ #ifndef OF /* function prototypes */ # ifdef STDC # define OF(args) args # else # define OF(args) () # endif #endif #ifndef Z_ARG /* function prototypes for stdarg */ # if defined(STDC) || defined(Z_HAVE_STDARG_H) # define Z_ARG(args) args # else # define Z_ARG(args) () # endif #endif /* The following definitions for FAR are needed only for MSDOS mixed * model programming (small or medium model with some far allocations). * This was tested only with MSC; for other MSDOS compilers you may have * to define NO_MEMCPY in zutil.h. If you don't need the mixed model, * just define FAR to be empty. */ #ifdef SYS16BIT # if defined(M_I86SM) || defined(M_I86MM) /* MSC small or medium model */ # define SMALL_MEDIUM # ifdef _MSC_VER # define FAR _far # else # define FAR far # endif # endif # if (defined(__SMALL__) || defined(__MEDIUM__)) /* Turbo C small or medium model */ # define SMALL_MEDIUM # ifdef __BORLANDC__ # define FAR _far # else # define FAR far # endif # endif #endif #if defined(WINDOWS) || defined(WIN32) /* If building or using zlib as a DLL, define ZLIB_DLL. * This is not mandatory, but it offers a little performance increase. */ # ifdef ZLIB_DLL # if defined(WIN32) && (!defined(__BORLANDC__) || (__BORLANDC__ >= 0x500)) # ifdef ZLIB_INTERNAL # define ZEXTERN extern __declspec(dllexport) # else # define ZEXTERN extern __declspec(dllimport) # endif # endif # endif /* ZLIB_DLL */ /* If building or using zlib with the WINAPI/WINAPIV calling convention, * define ZLIB_WINAPI. * Caution: the standard ZLIB1.DLL is NOT compiled using ZLIB_WINAPI. */ # ifdef ZLIB_WINAPI # ifdef FAR # undef FAR # endif # include /* No need for _export, use ZLIB.DEF instead. */ /* For complete Windows compatibility, use WINAPI, not __stdcall. */ # define ZEXPORT WINAPI # ifdef WIN32 # define ZEXPORTVA WINAPIV # else # define ZEXPORTVA FAR CDECL # endif # endif #endif #if defined (__BEOS__) # ifdef ZLIB_DLL # ifdef ZLIB_INTERNAL # define ZEXPORT __declspec(dllexport) # define ZEXPORTVA __declspec(dllexport) # else # define ZEXPORT __declspec(dllimport) # define ZEXPORTVA __declspec(dllimport) # endif # endif #endif #ifndef ZEXTERN # define ZEXTERN extern #endif #ifndef ZEXPORT # define ZEXPORT #endif #ifndef ZEXPORTVA # define ZEXPORTVA #endif #ifndef FAR # define FAR #endif #if !defined(__MACTYPES__) typedef unsigned char Byte; /* 8 bits */ #endif typedef unsigned int uInt; /* 16 bits or more */ typedef unsigned long uLong; /* 32 bits or more */ #ifdef SMALL_MEDIUM /* Borland C/C++ and some old MSC versions ignore FAR inside typedef */ # define Bytef Byte FAR #else typedef Byte FAR Bytef; #endif typedef char FAR charf; typedef int FAR intf; typedef uInt FAR uIntf; typedef uLong FAR uLongf; #ifdef STDC typedef void const *voidpc; typedef void FAR *voidpf; typedef void *voidp; #else typedef Byte const *voidpc; typedef Byte FAR *voidpf; typedef Byte *voidp; #endif #if !defined(Z_U4) && !defined(Z_SOLO) && defined(STDC) # include # if (UINT_MAX == 0xffffffffUL) # define Z_U4 unsigned # elif (ULONG_MAX == 0xffffffffUL) # define Z_U4 unsigned long # elif (USHRT_MAX == 0xffffffffUL) # define Z_U4 unsigned short # endif #endif #ifdef Z_U4 typedef Z_U4 z_crc_t; #else typedef unsigned long z_crc_t; #endif #ifdef HAVE_UNISTD_H /* may be set to #if 1 by ./configure */ # define Z_HAVE_UNISTD_H #endif #ifdef HAVE_STDARG_H /* may be set to #if 1 by ./configure */ # define Z_HAVE_STDARG_H #endif #ifdef STDC # ifndef Z_SOLO # include /* for off_t */ # endif #endif #if defined(STDC) || defined(Z_HAVE_STDARG_H) # ifndef Z_SOLO # include /* for va_list */ # endif #endif #ifdef _WIN32 # ifndef Z_SOLO # include /* for wchar_t */ # endif #endif /* a little trick to accommodate both "#define _LARGEFILE64_SOURCE" and * "#define _LARGEFILE64_SOURCE 1" as requesting 64-bit operations, (even * though the former does not conform to the LFS document), but considering * both "#undef _LARGEFILE64_SOURCE" and "#define _LARGEFILE64_SOURCE 0" as * equivalently requesting no 64-bit operations */ #if defined(_LARGEFILE64_SOURCE) && -_LARGEFILE64_SOURCE - -1 == 1 # undef _LARGEFILE64_SOURCE #endif #if defined(__WATCOMC__) && !defined(Z_HAVE_UNISTD_H) # define Z_HAVE_UNISTD_H #endif #ifndef Z_SOLO # if defined(Z_HAVE_UNISTD_H) || defined(_LARGEFILE64_SOURCE) # include /* for SEEK_*, off_t, and _LFS64_LARGEFILE */ # ifdef VMS # include /* for off_t */ # endif # ifndef z_off_t # define z_off_t off_t # endif # endif #endif #if defined(_LFS64_LARGEFILE) && _LFS64_LARGEFILE-0 # define Z_LFS64 #endif #if defined(_LARGEFILE64_SOURCE) && defined(Z_LFS64) # define Z_LARGE64 #endif #if defined(_FILE_OFFSET_BITS) && _FILE_OFFSET_BITS-0 == 64 && defined(Z_LFS64) # define Z_WANT64 #endif #if !defined(SEEK_SET) && !defined(Z_SOLO) # define SEEK_SET 0 /* Seek from beginning of file. */ # define SEEK_CUR 1 /* Seek from current position. */ # define SEEK_END 2 /* Set file pointer to EOF plus "offset" */ #endif #ifndef z_off_t # define z_off_t long #endif #if !defined(_WIN32) && defined(Z_LARGE64) # define z_off64_t off64_t #else # if defined(_WIN32) && !defined(__GNUC__) && !defined(Z_SOLO) # define z_off64_t __int64 # else # define z_off64_t z_off_t # endif #endif /* MVS linker does not support external names larger than 8 bytes */ #if defined(__MVS__) #pragma map(deflateInit_,"DEIN") #pragma map(deflateInit2_,"DEIN2") #pragma map(deflateEnd,"DEEND") #pragma map(deflateBound,"DEBND") #pragma map(inflateInit_,"ININ") #pragma map(inflateInit2_,"ININ2") #pragma map(inflateEnd,"INEND") #pragma map(inflateSync,"INSY") #pragma map(inflateSetDictionary,"INSEDI") #pragma map(compressBound,"CMBND") #pragma map(inflate_table,"INTABL") #pragma map(inflate_fast,"INFA") #pragma map(inflate_copyright,"INCOPY") #endif #endif /* ZCONF_H */ #ifdef __cplusplus extern "C" { #endif #define ZLIB_VERSION "1.2.8" #define ZLIB_VERNUM 0x1280 #define ZLIB_VER_MAJOR 1 #define ZLIB_VER_MINOR 2 #define ZLIB_VER_REVISION 8 #define ZLIB_VER_SUBREVISION 0 /* The 'zlib' compression library provides in-memory compression and decompression functions, including integrity checks of the uncompressed data. This version of the library supports only one compression method (deflation) but other algorithms will be added later and will have the same stream interface. Compression can be done in a single step if the buffers are large enough, or can be done by repeated calls of the compression function. In the latter case, the application must provide more input and/or consume the output (providing more output space) before each call. The compressed data format used by default by the in-memory functions is the zlib format, which is a zlib wrapper documented in RFC 1950, wrapped around a deflate stream, which is itself documented in RFC 1951. The library also supports reading and writing files in gzip (.gz) format with an interface similar to that of stdio using the functions that start with "gz". The gzip format is different from the zlib format. gzip is a gzip wrapper, documented in RFC 1952, wrapped around a deflate stream. This library can optionally read and write gzip streams in memory as well. The zlib format was designed to be compact and fast for use in memory and on communications channels. The gzip format was designed for single- file compression on file systems, has a larger header than zlib to maintain directory information, and uses a different, slower check method than zlib. The library does not install any signal handler. The decoder checks the consistency of the compressed data, so the library should never crash even in case of corrupted input. */ typedef voidpf (*alloc_func) OF((voidpf opaque, uInt items, uInt size)); typedef void (*free_func) OF((voidpf opaque, voidpf address)); struct internal_state; typedef struct z_stream_s { z_const Bytef *next_in; /* next input byte */ uInt avail_in; /* number of bytes available at next_in */ uLong total_in; /* total number of input bytes read so far */ Bytef *next_out; /* next output byte should be put there */ uInt avail_out; /* remaining free space at next_out */ uLong total_out; /* total number of bytes output so far */ z_const char *msg; /* last error message, NULL if no error */ struct internal_state FAR *state; /* not visible by applications */ alloc_func zalloc; /* used to allocate the internal state */ free_func zfree; /* used to free the internal state */ voidpf opaque; /* private data object passed to zalloc and zfree */ int data_type; /* best guess about the data type: binary or text */ uLong adler; /* adler32 value of the uncompressed data */ uLong reserved; /* reserved for future use */ } z_stream; typedef z_stream FAR *z_streamp; /* gzip header information passed to and from zlib routines. See RFC 1952 for more details on the meanings of these fields. */ typedef struct gz_header_s { int text; /* true if compressed data believed to be text */ uLong time; /* modification time */ int xflags; /* extra flags (not used when writing a gzip file) */ int os; /* operating system */ Bytef *extra; /* pointer to extra field or Z_NULL if none */ uInt extra_len; /* extra field length (valid if extra != Z_NULL) */ uInt extra_max; /* space at extra (only when reading header) */ Bytef *name; /* pointer to zero-terminated file name or Z_NULL */ uInt name_max; /* space at name (only when reading header) */ Bytef *comment; /* pointer to zero-terminated comment or Z_NULL */ uInt comm_max; /* space at comment (only when reading header) */ int hcrc; /* true if there was or will be a header crc */ int done; /* true when done reading gzip header (not used when writing a gzip file) */ } gz_header; typedef gz_header FAR *gz_headerp; /* The application must update next_in and avail_in when avail_in has dropped to zero. It must update next_out and avail_out when avail_out has dropped to zero. The application must initialize zalloc, zfree and opaque before calling the init function. All other fields are set by the compression library and must not be updated by the application. The opaque value provided by the application will be passed as the first parameter for calls of zalloc and zfree. This can be useful for custom memory management. The compression library attaches no meaning to the opaque value. zalloc must return Z_NULL if there is not enough memory for the object. If zlib is used in a multi-threaded application, zalloc and zfree must be thread safe. On 16-bit systems, the functions zalloc and zfree must be able to allocate exactly 65536 bytes, but will not be required to allocate more than this if the symbol MAXSEG_64K is defined (see zconf.h). WARNING: On MSDOS, pointers returned by zalloc for objects of exactly 65536 bytes *must* have their offset normalized to zero. The default allocation function provided by this library ensures this (see zutil.c). To reduce memory requirements and avoid any allocation of 64K objects, at the expense of compression ratio, compile the library with -DMAX_WBITS=14 (see zconf.h). The fields total_in and total_out can be used for statistics or progress reports. After compression, total_in holds the total size of the uncompressed data and may be saved for use in the decompressor (particularly if the decompressor wants to decompress everything in a single step). */ /* constants */ #define Z_NO_FLUSH 0 #define Z_PARTIAL_FLUSH 1 #define Z_SYNC_FLUSH 2 #define Z_FULL_FLUSH 3 #define Z_FINISH 4 #define Z_BLOCK 5 #define Z_TREES 6 /* Allowed flush values; see deflate() and inflate() below for details */ #define Z_OK 0 #define Z_STREAM_END 1 #define Z_NEED_DICT 2 #define Z_ERRNO (-1) #define Z_STREAM_ERROR (-2) #define Z_DATA_ERROR (-3) #define Z_MEM_ERROR (-4) #define Z_BUF_ERROR (-5) #define Z_VERSION_ERROR (-6) /* Return codes for the compression/decompression functions. Negative values * are errors, positive values are used for special but normal events. */ #define Z_NO_COMPRESSION 0 #define Z_BEST_SPEED 1 #define Z_BEST_COMPRESSION 9 #define Z_DEFAULT_COMPRESSION (-1) /* compression levels */ #define Z_FILTERED 1 #define Z_HUFFMAN_ONLY 2 #define Z_RLE 3 #define Z_FIXED 4 #define Z_DEFAULT_STRATEGY 0 /* compression strategy; see deflateInit2() below for details */ #define Z_BINARY 0 #define Z_TEXT 1 #define Z_ASCII Z_TEXT /* for compatibility with 1.2.2 and earlier */ #define Z_UNKNOWN 2 /* Possible values of the data_type field (though see inflate()) */ #define Z_DEFLATED 8 /* The deflate compression method (the only one supported in this version) */ #define Z_NULL 0 /* for initializing zalloc, zfree, opaque */ #define zlib_version zlibVersion() /* for compatibility with versions < 1.0.2 */ /* basic functions */ ZEXTERN const char * ZEXPORT zlibVersion OF((void)); /* The application can compare zlibVersion and ZLIB_VERSION for consistency. If the first character differs, the library code actually used is not compatible with the zlib.h header file used by the application. This check is automatically made by deflateInit and inflateInit. */ /* ZEXTERN int ZEXPORT deflateInit OF((z_streamp strm, int level)); Initializes the internal stream state for compression. The fields zalloc, zfree and opaque must be initialized before by the caller. If zalloc and zfree are set to Z_NULL, deflateInit updates them to use default allocation functions. The compression level must be Z_DEFAULT_COMPRESSION, or between 0 and 9: 1 gives best speed, 9 gives best compression, 0 gives no compression at all (the input data is simply copied a block at a time). Z_DEFAULT_COMPRESSION requests a default compromise between speed and compression (currently equivalent to level 6). deflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_STREAM_ERROR if level is not a valid compression level, or Z_VERSION_ERROR if the zlib library version (zlib_version) is incompatible with the version assumed by the caller (ZLIB_VERSION). msg is set to null if there is no error message. deflateInit does not perform any compression: this will be done by deflate(). */ ZEXTERN int ZEXPORT deflate OF((z_streamp strm, int flush)); /* deflate compresses as much data as possible, and stops when the input buffer becomes empty or the output buffer becomes full. It may introduce some output latency (reading input without producing any output) except when forced to flush. The detailed semantics are as follows. deflate performs one or both of the following actions: - Compress more input starting at next_in and update next_in and avail_in accordingly. If not all input can be processed (because there is not enough room in the output buffer), next_in and avail_in are updated and processing will resume at this point for the next call of deflate(). - Provide more output starting at next_out and update next_out and avail_out accordingly. This action is forced if the parameter flush is non zero. Forcing flush frequently degrades the compression ratio, so this parameter should be set only when necessary (in interactive applications). Some output may be provided even if flush is not set. Before the call of deflate(), the application should ensure that at least one of the actions is possible, by providing more input and/or consuming more output, and updating avail_in or avail_out accordingly; avail_out should never be zero before the call. The application can consume the compressed output when it wants, for example when the output buffer is full (avail_out == 0), or after each call of deflate(). If deflate returns Z_OK and with zero avail_out, it must be called again after making room in the output buffer because there might be more output pending. Normally the parameter flush is set to Z_NO_FLUSH, which allows deflate to decide how much data to accumulate before producing output, in order to maximize compression. If the parameter flush is set to Z_SYNC_FLUSH, all pending output is flushed to the output buffer and the output is aligned on a byte boundary, so that the decompressor can get all input data available so far. (In particular avail_in is zero after the call if enough output space has been provided before the call.) Flushing may degrade compression for some compression algorithms and so it should be used only when necessary. This completes the current deflate block and follows it with an empty stored block that is three bits plus filler bits to the next byte, followed by four bytes (00 00 ff ff). If flush is set to Z_PARTIAL_FLUSH, all pending output is flushed to the output buffer, but the output is not aligned to a byte boundary. All of the input data so far will be available to the decompressor, as for Z_SYNC_FLUSH. This completes the current deflate block and follows it with an empty fixed codes block that is 10 bits long. This assures that enough bytes are output in order for the decompressor to finish the block before the empty fixed code block. If flush is set to Z_BLOCK, a deflate block is completed and emitted, as for Z_SYNC_FLUSH, but the output is not aligned on a byte boundary, and up to seven bits of the current block are held to be written as the next byte after the next deflate block is completed. In this case, the decompressor may not be provided enough bits at this point in order to complete decompression of the data provided so far to the compressor. It may need to wait for the next block to be emitted. This is for advanced applications that need to control the emission of deflate blocks. If flush is set to Z_FULL_FLUSH, all output is flushed as with Z_SYNC_FLUSH, and the compression state is reset so that decompression can restart from this point if previous compressed data has been damaged or if random access is desired. Using Z_FULL_FLUSH too often can seriously degrade compression. If deflate returns with avail_out == 0, this function must be called again with the same value of the flush parameter and more output space (updated avail_out), until the flush is complete (deflate returns with non-zero avail_out). In the case of a Z_FULL_FLUSH or Z_SYNC_FLUSH, make sure that avail_out is greater than six to avoid repeated flush markers due to avail_out == 0 on return. If the parameter flush is set to Z_FINISH, pending input is processed, pending output is flushed and deflate returns with Z_STREAM_END if there was enough output space; if deflate returns with Z_OK, this function must be called again with Z_FINISH and more output space (updated avail_out) but no more input data, until it returns with Z_STREAM_END or an error. After deflate has returned Z_STREAM_END, the only possible operations on the stream are deflateReset or deflateEnd. Z_FINISH can be used immediately after deflateInit if all the compression is to be done in a single step. In this case, avail_out must be at least the value returned by deflateBound (see below). Then deflate is guaranteed to return Z_STREAM_END. If not enough output space is provided, deflate will not return Z_STREAM_END, and it must be called again as described above. deflate() sets strm->adler to the adler32 checksum of all input read so far (that is, total_in bytes). deflate() may update strm->data_type if it can make a good guess about the input data type (Z_BINARY or Z_TEXT). In doubt, the data is considered binary. This field is only for information purposes and does not affect the compression algorithm in any manner. deflate() returns Z_OK if some progress has been made (more input processed or more output produced), Z_STREAM_END if all input has been consumed and all output has been produced (only when flush is set to Z_FINISH), Z_STREAM_ERROR if the stream state was inconsistent (for example if next_in or next_out was Z_NULL), Z_BUF_ERROR if no progress is possible (for example avail_in or avail_out was zero). Note that Z_BUF_ERROR is not fatal, and deflate() can be called again with more input and more output space to continue compressing. */ ZEXTERN int ZEXPORT deflateEnd OF((z_streamp strm)); /* All dynamically allocated data structures for this stream are freed. This function discards any unprocessed input and does not flush any pending output. deflateEnd returns Z_OK if success, Z_STREAM_ERROR if the stream state was inconsistent, Z_DATA_ERROR if the stream was freed prematurely (some input or output was discarded). In the error case, msg may be set but then points to a static string (which must not be deallocated). */ /* ZEXTERN int ZEXPORT inflateInit OF((z_streamp strm)); Initializes the internal stream state for decompression. The fields next_in, avail_in, zalloc, zfree and opaque must be initialized before by the caller. If next_in is not Z_NULL and avail_in is large enough (the exact value depends on the compression method), inflateInit determines the compression method from the zlib header and allocates all data structures accordingly; otherwise the allocation will be deferred to the first call of inflate. If zalloc and zfree are set to Z_NULL, inflateInit updates them to use default allocation functions. inflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_VERSION_ERROR if the zlib library version is incompatible with the version assumed by the caller, or Z_STREAM_ERROR if the parameters are invalid, such as a null pointer to the structure. msg is set to null if there is no error message. inflateInit does not perform any decompression apart from possibly reading the zlib header if present: actual decompression will be done by inflate(). (So next_in and avail_in may be modified, but next_out and avail_out are unused and unchanged.) The current implementation of inflateInit() does not process any header information -- that is deferred until inflate() is called. */ ZEXTERN int ZEXPORT inflate OF((z_streamp strm, int flush)); /* inflate decompresses as much data as possible, and stops when the input buffer becomes empty or the output buffer becomes full. It may introduce some output latency (reading input without producing any output) except when forced to flush. The detailed semantics are as follows. inflate performs one or both of the following actions: - Decompress more input starting at next_in and update next_in and avail_in accordingly. If not all input can be processed (because there is not enough room in the output buffer), next_in is updated and processing will resume at this point for the next call of inflate(). - Provide more output starting at next_out and update next_out and avail_out accordingly. inflate() provides as much output as possible, until there is no more input data or no more space in the output buffer (see below about the flush parameter). Before the call of inflate(), the application should ensure that at least one of the actions is possible, by providing more input and/or consuming more output, and updating the next_* and avail_* values accordingly. The application can consume the uncompressed output when it wants, for example when the output buffer is full (avail_out == 0), or after each call of inflate(). If inflate returns Z_OK and with zero avail_out, it must be called again after making room in the output buffer because there might be more output pending. The flush parameter of inflate() can be Z_NO_FLUSH, Z_SYNC_FLUSH, Z_FINISH, Z_BLOCK, or Z_TREES. Z_SYNC_FLUSH requests that inflate() flush as much output as possible to the output buffer. Z_BLOCK requests that inflate() stop if and when it gets to the next deflate block boundary. When decoding the zlib or gzip format, this will cause inflate() to return immediately after the header and before the first block. When doing a raw inflate, inflate() will go ahead and process the first block, and will return when it gets to the end of that block, or when it runs out of data. The Z_BLOCK option assists in appending to or combining deflate streams. Also to assist in this, on return inflate() will set strm->data_type to the number of unused bits in the last byte taken from strm->next_in, plus 64 if inflate() is currently decoding the last block in the deflate stream, plus 128 if inflate() returned immediately after decoding an end-of-block code or decoding the complete header up to just before the first byte of the deflate stream. The end-of-block will not be indicated until all of the uncompressed data from that block has been written to strm->next_out. The number of unused bits may in general be greater than seven, except when bit 7 of data_type is set, in which case the number of unused bits will be less than eight. data_type is set as noted here every time inflate() returns for all flush options, and so can be used to determine the amount of currently consumed input in bits. The Z_TREES option behaves as Z_BLOCK does, but it also returns when the end of each deflate block header is reached, before any actual data in that block is decoded. This allows the caller to determine the length of the deflate block header for later use in random access within a deflate block. 256 is added to the value of strm->data_type when inflate() returns immediately after reaching the end of the deflate block header. inflate() should normally be called until it returns Z_STREAM_END or an error. However if all decompression is to be performed in a single step (a single call of inflate), the parameter flush should be set to Z_FINISH. In this case all pending input is processed and all pending output is flushed; avail_out must be large enough to hold all of the uncompressed data for the operation to complete. (The size of the uncompressed data may have been saved by the compressor for this purpose.) The use of Z_FINISH is not required to perform an inflation in one step. However it may be used to inform inflate that a faster approach can be used for the single inflate() call. Z_FINISH also informs inflate to not maintain a sliding window if the stream completes, which reduces inflate's memory footprint. If the stream does not complete, either because not all of the stream is provided or not enough output space is provided, then a sliding window will be allocated and inflate() can be called again to continue the operation as if Z_NO_FLUSH had been used. In this implementation, inflate() always flushes as much output as possible to the output buffer, and always uses the faster approach on the first call. So the effects of the flush parameter in this implementation are on the return value of inflate() as noted below, when inflate() returns early when Z_BLOCK or Z_TREES is used, and when inflate() avoids the allocation of memory for a sliding window when Z_FINISH is used. If a preset dictionary is needed after this call (see inflateSetDictionary below), inflate sets strm->adler to the Adler-32 checksum of the dictionary chosen by the compressor and returns Z_NEED_DICT; otherwise it sets strm->adler to the Adler-32 checksum of all output produced so far (that is, total_out bytes) and returns Z_OK, Z_STREAM_END or an error code as described below. At the end of the stream, inflate() checks that its computed adler32 checksum is equal to that saved by the compressor and returns Z_STREAM_END only if the checksum is correct. inflate() can decompress and check either zlib-wrapped or gzip-wrapped deflate data. The header type is detected automatically, if requested when initializing with inflateInit2(). Any information contained in the gzip header is not retained, so applications that need that information should instead use raw inflate, see inflateInit2() below, or inflateBack() and perform their own processing of the gzip header and trailer. When processing gzip-wrapped deflate data, strm->adler32 is set to the CRC-32 of the output producted so far. The CRC-32 is checked against the gzip trailer. inflate() returns Z_OK if some progress has been made (more input processed or more output produced), Z_STREAM_END if the end of the compressed data has been reached and all uncompressed output has been produced, Z_NEED_DICT if a preset dictionary is needed at this point, Z_DATA_ERROR if the input data was corrupted (input stream not conforming to the zlib format or incorrect check value), Z_STREAM_ERROR if the stream structure was inconsistent (for example next_in or next_out was Z_NULL), Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if no progress is possible or if there was not enough room in the output buffer when Z_FINISH is used. Note that Z_BUF_ERROR is not fatal, and inflate() can be called again with more input and more output space to continue decompressing. If Z_DATA_ERROR is returned, the application may then call inflateSync() to look for a good compression block if a partial recovery of the data is desired. */ ZEXTERN int ZEXPORT inflateEnd OF((z_streamp strm)); /* All dynamically allocated data structures for this stream are freed. This function discards any unprocessed input and does not flush any pending output. inflateEnd returns Z_OK if success, Z_STREAM_ERROR if the stream state was inconsistent. In the error case, msg may be set but then points to a static string (which must not be deallocated). */ /* Advanced functions */ /* The following functions are needed only in some special applications. */ /* ZEXTERN int ZEXPORT deflateInit2 OF((z_streamp strm, int level, int method, int windowBits, int memLevel, int strategy)); This is another version of deflateInit with more compression options. The fields next_in, zalloc, zfree and opaque must be initialized before by the caller. The method parameter is the compression method. It must be Z_DEFLATED in this version of the library. The windowBits parameter is the base two logarithm of the window size (the size of the history buffer). It should be in the range 8..15 for this version of the library. Larger values of this parameter result in better compression at the expense of memory usage. The default value is 15 if deflateInit is used instead. windowBits can also be -8..-15 for raw deflate. In this case, -windowBits determines the window size. deflate() will then generate raw deflate data with no zlib header or trailer, and will not compute an adler32 check value. windowBits can also be greater than 15 for optional gzip encoding. Add 16 to windowBits to write a simple gzip header and trailer around the compressed data instead of a zlib wrapper. The gzip header will have no file name, no extra data, no comment, no modification time (set to zero), no header crc, and the operating system will be set to 255 (unknown). If a gzip stream is being written, strm->adler is a crc32 instead of an adler32. The memLevel parameter specifies how much memory should be allocated for the internal compression state. memLevel=1 uses minimum memory but is slow and reduces compression ratio; memLevel=9 uses maximum memory for optimal speed. The default value is 8. See zconf.h for total memory usage as a function of windowBits and memLevel. The strategy parameter is used to tune the compression algorithm. Use the value Z_DEFAULT_STRATEGY for normal data, Z_FILTERED for data produced by a filter (or predictor), Z_HUFFMAN_ONLY to force Huffman encoding only (no string match), or Z_RLE to limit match distances to one (run-length encoding). Filtered data consists mostly of small values with a somewhat random distribution. In this case, the compression algorithm is tuned to compress them better. The effect of Z_FILTERED is to force more Huffman coding and less string matching; it is somewhat intermediate between Z_DEFAULT_STRATEGY and Z_HUFFMAN_ONLY. Z_RLE is designed to be almost as fast as Z_HUFFMAN_ONLY, but give better compression for PNG image data. The strategy parameter only affects the compression ratio but not the correctness of the compressed output even if it is not set appropriately. Z_FIXED prevents the use of dynamic Huffman codes, allowing for a simpler decoder for special applications. deflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_STREAM_ERROR if any parameter is invalid (such as an invalid method), or Z_VERSION_ERROR if the zlib library version (zlib_version) is incompatible with the version assumed by the caller (ZLIB_VERSION). msg is set to null if there is no error message. deflateInit2 does not perform any compression: this will be done by deflate(). */ ZEXTERN int ZEXPORT deflateSetDictionary OF((z_streamp strm, const Bytef *dictionary, uInt dictLength)); /* Initializes the compression dictionary from the given byte sequence without producing any compressed output. When using the zlib format, this function must be called immediately after deflateInit, deflateInit2 or deflateReset, and before any call of deflate. When doing raw deflate, this function must be called either before any call of deflate, or immediately after the completion of a deflate block, i.e. after all input has been consumed and all output has been delivered when using any of the flush options Z_BLOCK, Z_PARTIAL_FLUSH, Z_SYNC_FLUSH, or Z_FULL_FLUSH. The compressor and decompressor must use exactly the same dictionary (see inflateSetDictionary). The dictionary should consist of strings (byte sequences) that are likely to be encountered later in the data to be compressed, with the most commonly used strings preferably put towards the end of the dictionary. Using a dictionary is most useful when the data to be compressed is short and can be predicted with good accuracy; the data can then be compressed better than with the default empty dictionary. Depending on the size of the compression data structures selected by deflateInit or deflateInit2, a part of the dictionary may in effect be discarded, for example if the dictionary is larger than the window size provided in deflateInit or deflateInit2. Thus the strings most likely to be useful should be put at the end of the dictionary, not at the front. In addition, the current implementation of deflate will use at most the window size minus 262 bytes of the provided dictionary. Upon return of this function, strm->adler is set to the adler32 value of the dictionary; the decompressor may later use this value to determine which dictionary has been used by the compressor. (The adler32 value applies to the whole dictionary even if only a subset of the dictionary is actually used by the compressor.) If a raw deflate was requested, then the adler32 value is not computed and strm->adler is not set. deflateSetDictionary returns Z_OK if success, or Z_STREAM_ERROR if a parameter is invalid (e.g. dictionary being Z_NULL) or the stream state is inconsistent (for example if deflate has already been called for this stream or if not at a block boundary for raw deflate). deflateSetDictionary does not perform any compression: this will be done by deflate(). */ ZEXTERN int ZEXPORT deflateCopy OF((z_streamp dest, z_streamp source)); /* Sets the destination stream as a complete copy of the source stream. This function can be useful when several compression strategies will be tried, for example when there are several ways of pre-processing the input data with a filter. The streams that will be discarded should then be freed by calling deflateEnd. Note that deflateCopy duplicates the internal compression state which can be quite large, so this strategy is slow and can consume lots of memory. deflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc being Z_NULL). msg is left unchanged in both source and destination. */ ZEXTERN int ZEXPORT deflateReset OF((z_streamp strm)); /* This function is equivalent to deflateEnd followed by deflateInit, but does not free and reallocate all the internal compression state. The stream will keep the same compression level and any other attributes that may have been set by deflateInit2. deflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc or state being Z_NULL). */ ZEXTERN int ZEXPORT deflateParams OF((z_streamp strm, int level, int strategy)); /* Dynamically update the compression level and compression strategy. The interpretation of level and strategy is as in deflateInit2. This can be used to switch between compression and straight copy of the input data, or to switch to a different kind of input data requiring a different strategy. If the compression level is changed, the input available so far is compressed with the old level (and may be flushed); the new level will take effect only at the next call of deflate(). Before the call of deflateParams, the stream state must be set as for a call of deflate(), since the currently available input may have to be compressed and flushed. In particular, strm->avail_out must be non-zero. deflateParams returns Z_OK if success, Z_STREAM_ERROR if the source stream state was inconsistent or if a parameter was invalid, Z_BUF_ERROR if strm->avail_out was zero. */ ZEXTERN int ZEXPORT deflateTune OF((z_streamp strm, int good_length, int max_lazy, int nice_length, int max_chain)); /* Fine tune deflate's internal compression parameters. This should only be used by someone who understands the algorithm used by zlib's deflate for searching for the best matching string, and even then only by the most fanatic optimizer trying to squeeze out the last compressed bit for their specific input data. Read the deflate.c source code for the meaning of the max_lazy, good_length, nice_length, and max_chain parameters. deflateTune() can be called after deflateInit() or deflateInit2(), and returns Z_OK on success, or Z_STREAM_ERROR for an invalid deflate stream. */ ZEXTERN uLong ZEXPORT deflateBound OF((z_streamp strm, uLong sourceLen)); /* deflateBound() returns an upper bound on the compressed size after deflation of sourceLen bytes. It must be called after deflateInit() or deflateInit2(), and after deflateSetHeader(), if used. This would be used to allocate an output buffer for deflation in a single pass, and so would be called before deflate(). If that first deflate() call is provided the sourceLen input bytes, an output buffer allocated to the size returned by deflateBound(), and the flush value Z_FINISH, then deflate() is guaranteed to return Z_STREAM_END. Note that it is possible for the compressed size to be larger than the value returned by deflateBound() if flush options other than Z_FINISH or Z_NO_FLUSH are used. */ ZEXTERN int ZEXPORT deflatePending OF((z_streamp strm, unsigned *pending, int *bits)); /* deflatePending() returns the number of bytes and bits of output that have been generated, but not yet provided in the available output. The bytes not provided would be due to the available output space having being consumed. The number of bits of output not provided are between 0 and 7, where they await more bits to join them in order to fill out a full byte. If pending or bits are Z_NULL, then those values are not set. deflatePending returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent. */ ZEXTERN int ZEXPORT deflatePrime OF((z_streamp strm, int bits, int value)); /* deflatePrime() inserts bits in the deflate output stream. The intent is that this function is used to start off the deflate output with the bits leftover from a previous deflate stream when appending to it. As such, this function can only be used for raw deflate, and must be used before the first deflate() call after a deflateInit2() or deflateReset(). bits must be less than or equal to 16, and that many of the least significant bits of value will be inserted in the output. deflatePrime returns Z_OK if success, Z_BUF_ERROR if there was not enough room in the internal buffer to insert the bits, or Z_STREAM_ERROR if the source stream state was inconsistent. */ ZEXTERN int ZEXPORT deflateSetHeader OF((z_streamp strm, gz_headerp head)); /* deflateSetHeader() provides gzip header information for when a gzip stream is requested by deflateInit2(). deflateSetHeader() may be called after deflateInit2() or deflateReset() and before the first call of deflate(). The text, time, os, extra field, name, and comment information in the provided gz_header structure are written to the gzip header (xflag is ignored -- the extra flags are set according to the compression level). The caller must assure that, if not Z_NULL, name and comment are terminated with a zero byte, and that if extra is not Z_NULL, that extra_len bytes are available there. If hcrc is true, a gzip header crc is included. Note that the current versions of the command-line version of gzip (up through version 1.3.x) do not support header crc's, and will report that it is a "multi-part gzip file" and give up. If deflateSetHeader is not used, the default gzip header has text false, the time set to zero, and os set to 255, with no extra, name, or comment fields. The gzip header is returned to the default state by deflateReset(). deflateSetHeader returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent. */ /* ZEXTERN int ZEXPORT inflateInit2 OF((z_streamp strm, int windowBits)); This is another version of inflateInit with an extra parameter. The fields next_in, avail_in, zalloc, zfree and opaque must be initialized before by the caller. The windowBits parameter is the base two logarithm of the maximum window size (the size of the history buffer). It should be in the range 8..15 for this version of the library. The default value is 15 if inflateInit is used instead. windowBits must be greater than or equal to the windowBits value provided to deflateInit2() while compressing, or it must be equal to 15 if deflateInit2() was not used. If a compressed stream with a larger window size is given as input, inflate() will return with the error code Z_DATA_ERROR instead of trying to allocate a larger window. windowBits can also be zero to request that inflate use the window size in the zlib header of the compressed stream. windowBits can also be -8..-15 for raw inflate. In this case, -windowBits determines the window size. inflate() will then process raw deflate data, not looking for a zlib or gzip header, not generating a check value, and not looking for any check values for comparison at the end of the stream. This is for use with other formats that use the deflate compressed data format such as zip. Those formats provide their own check values. If a custom format is developed using the raw deflate format for compressed data, it is recommended that a check value such as an adler32 or a crc32 be applied to the uncompressed data as is done in the zlib, gzip, and zip formats. For most applications, the zlib format should be used as is. Note that comments above on the use in deflateInit2() applies to the magnitude of windowBits. windowBits can also be greater than 15 for optional gzip decoding. Add 32 to windowBits to enable zlib and gzip decoding with automatic header detection, or add 16 to decode only the gzip format (the zlib format will return a Z_DATA_ERROR). If a gzip stream is being decoded, strm->adler is a crc32 instead of an adler32. inflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_VERSION_ERROR if the zlib library version is incompatible with the version assumed by the caller, or Z_STREAM_ERROR if the parameters are invalid, such as a null pointer to the structure. msg is set to null if there is no error message. inflateInit2 does not perform any decompression apart from possibly reading the zlib header if present: actual decompression will be done by inflate(). (So next_in and avail_in may be modified, but next_out and avail_out are unused and unchanged.) The current implementation of inflateInit2() does not process any header information -- that is deferred until inflate() is called. */ ZEXTERN int ZEXPORT inflateSetDictionary OF((z_streamp strm, const Bytef *dictionary, uInt dictLength)); /* Initializes the decompression dictionary from the given uncompressed byte sequence. This function must be called immediately after a call of inflate, if that call returned Z_NEED_DICT. The dictionary chosen by the compressor can be determined from the adler32 value returned by that call of inflate. The compressor and decompressor must use exactly the same dictionary (see deflateSetDictionary). For raw inflate, this function can be called at any time to set the dictionary. If the provided dictionary is smaller than the window and there is already data in the window, then the provided dictionary will amend what's there. The application must insure that the dictionary that was used for compression is provided. inflateSetDictionary returns Z_OK if success, Z_STREAM_ERROR if a parameter is invalid (e.g. dictionary being Z_NULL) or the stream state is inconsistent, Z_DATA_ERROR if the given dictionary doesn't match the expected one (incorrect adler32 value). inflateSetDictionary does not perform any decompression: this will be done by subsequent calls of inflate(). */ ZEXTERN int ZEXPORT inflateGetDictionary OF((z_streamp strm, Bytef *dictionary, uInt *dictLength)); /* Returns the sliding dictionary being maintained by inflate. dictLength is set to the number of bytes in the dictionary, and that many bytes are copied to dictionary. dictionary must have enough space, where 32768 bytes is always enough. If inflateGetDictionary() is called with dictionary equal to Z_NULL, then only the dictionary length is returned, and nothing is copied. Similary, if dictLength is Z_NULL, then it is not set. inflateGetDictionary returns Z_OK on success, or Z_STREAM_ERROR if the stream state is inconsistent. */ ZEXTERN int ZEXPORT inflateSync OF((z_streamp strm)); /* Skips invalid compressed data until a possible full flush point (see above for the description of deflate with Z_FULL_FLUSH) can be found, or until all available input is skipped. No output is provided. inflateSync searches for a 00 00 FF FF pattern in the compressed data. All full flush points have this pattern, but not all occurrences of this pattern are full flush points. inflateSync returns Z_OK if a possible full flush point has been found, Z_BUF_ERROR if no more input was provided, Z_DATA_ERROR if no flush point has been found, or Z_STREAM_ERROR if the stream structure was inconsistent. In the success case, the application may save the current current value of total_in which indicates where valid compressed data was found. In the error case, the application may repeatedly call inflateSync, providing more input each time, until success or end of the input data. */ ZEXTERN int ZEXPORT inflateCopy OF((z_streamp dest, z_streamp source)); /* Sets the destination stream as a complete copy of the source stream. This function can be useful when randomly accessing a large stream. The first pass through the stream can periodically record the inflate state, allowing restarting inflate at those points when randomly accessing the stream. inflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc being Z_NULL). msg is left unchanged in both source and destination. */ ZEXTERN int ZEXPORT inflateReset OF((z_streamp strm)); /* This function is equivalent to inflateEnd followed by inflateInit, but does not free and reallocate all the internal decompression state. The stream will keep attributes that may have been set by inflateInit2. inflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc or state being Z_NULL). */ ZEXTERN int ZEXPORT inflateReset2 OF((z_streamp strm, int windowBits)); /* This function is the same as inflateReset, but it also permits changing the wrap and window size requests. The windowBits parameter is interpreted the same as it is for inflateInit2. inflateReset2 returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc or state being Z_NULL), or if the windowBits parameter is invalid. */ ZEXTERN int ZEXPORT inflatePrime OF((z_streamp strm, int bits, int value)); /* This function inserts bits in the inflate input stream. The intent is that this function is used to start inflating at a bit position in the middle of a byte. The provided bits will be used before any bytes are used from next_in. This function should only be used with raw inflate, and should be used before the first inflate() call after inflateInit2() or inflateReset(). bits must be less than or equal to 16, and that many of the least significant bits of value will be inserted in the input. If bits is negative, then the input stream bit buffer is emptied. Then inflatePrime() can be called again to put bits in the buffer. This is used to clear out bits leftover after feeding inflate a block description prior to feeding inflate codes. inflatePrime returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent. */ ZEXTERN long ZEXPORT inflateMark OF((z_streamp strm)); /* This function returns two values, one in the lower 16 bits of the return value, and the other in the remaining upper bits, obtained by shifting the return value down 16 bits. If the upper value is -1 and the lower value is zero, then inflate() is currently decoding information outside of a block. If the upper value is -1 and the lower value is non-zero, then inflate is in the middle of a stored block, with the lower value equaling the number of bytes from the input remaining to copy. If the upper value is not -1, then it is the number of bits back from the current bit position in the input of the code (literal or length/distance pair) currently being processed. In that case the lower value is the number of bytes already emitted for that code. A code is being processed if inflate is waiting for more input to complete decoding of the code, or if it has completed decoding but is waiting for more output space to write the literal or match data. inflateMark() is used to mark locations in the input data for random access, which may be at bit positions, and to note those cases where the output of a code may span boundaries of random access blocks. The current location in the input stream can be determined from avail_in and data_type as noted in the description for the Z_BLOCK flush parameter for inflate. inflateMark returns the value noted above or -1 << 16 if the provided source stream state was inconsistent. */ ZEXTERN int ZEXPORT inflateGetHeader OF((z_streamp strm, gz_headerp head)); /* inflateGetHeader() requests that gzip header information be stored in the provided gz_header structure. inflateGetHeader() may be called after inflateInit2() or inflateReset(), and before the first call of inflate(). As inflate() processes the gzip stream, head->done is zero until the header is completed, at which time head->done is set to one. If a zlib stream is being decoded, then head->done is set to -1 to indicate that there will be no gzip header information forthcoming. Note that Z_BLOCK or Z_TREES can be used to force inflate() to return immediately after header processing is complete and before any actual data is decompressed. The text, time, xflags, and os fields are filled in with the gzip header contents. hcrc is set to true if there is a header CRC. (The header CRC was valid if done is set to one.) If extra is not Z_NULL, then extra_max contains the maximum number of bytes to write to extra. Once done is true, extra_len contains the actual extra field length, and extra contains the extra field, or that field truncated if extra_max is less than extra_len. If name is not Z_NULL, then up to name_max characters are written there, terminated with a zero unless the length is greater than name_max. If comment is not Z_NULL, then up to comm_max characters are written there, terminated with a zero unless the length is greater than comm_max. When any of extra, name, or comment are not Z_NULL and the respective field is not present in the header, then that field is set to Z_NULL to signal its absence. This allows the use of deflateSetHeader() with the returned structure to duplicate the header. However if those fields are set to allocated memory, then the application will need to save those pointers elsewhere so that they can be eventually freed. If inflateGetHeader is not used, then the header information is simply discarded. The header is always checked for validity, including the header CRC if present. inflateReset() will reset the process to discard the header information. The application would need to call inflateGetHeader() again to retrieve the header from the next gzip stream. inflateGetHeader returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent. */ /* ZEXTERN int ZEXPORT inflateBackInit OF((z_streamp strm, int windowBits, unsigned char FAR *window)); Initialize the internal stream state for decompression using inflateBack() calls. The fields zalloc, zfree and opaque in strm must be initialized before the call. If zalloc and zfree are Z_NULL, then the default library- derived memory allocation routines are used. windowBits is the base two logarithm of the window size, in the range 8..15. window is a caller supplied buffer of that size. Except for special applications where it is assured that deflate was used with small window sizes, windowBits must be 15 and a 32K byte window must be supplied to be able to decompress general deflate streams. See inflateBack() for the usage of these routines. inflateBackInit will return Z_OK on success, Z_STREAM_ERROR if any of the parameters are invalid, Z_MEM_ERROR if the internal state could not be allocated, or Z_VERSION_ERROR if the version of the library does not match the version of the header file. */ typedef unsigned (*in_func) OF((void FAR *, z_const unsigned char FAR * FAR *)); typedef int (*out_func) OF((void FAR *, unsigned char FAR *, unsigned)); ZEXTERN int ZEXPORT inflateBack OF((z_streamp strm, in_func in, void FAR *in_desc, out_func out, void FAR *out_desc)); /* inflateBack() does a raw inflate with a single call using a call-back interface for input and output. This is potentially more efficient than inflate() for file i/o applications, in that it avoids copying between the output and the sliding window by simply making the window itself the output buffer. inflate() can be faster on modern CPUs when used with large buffers. inflateBack() trusts the application to not change the output buffer passed by the output function, at least until inflateBack() returns. inflateBackInit() must be called first to allocate the internal state and to initialize the state with the user-provided window buffer. inflateBack() may then be used multiple times to inflate a complete, raw deflate stream with each call. inflateBackEnd() is then called to free the allocated state. A raw deflate stream is one with no zlib or gzip header or trailer. This routine would normally be used in a utility that reads zip or gzip files and writes out uncompressed files. The utility would decode the header and process the trailer on its own, hence this routine expects only the raw deflate stream to decompress. This is different from the normal behavior of inflate(), which expects either a zlib or gzip header and trailer around the deflate stream. inflateBack() uses two subroutines supplied by the caller that are then called by inflateBack() for input and output. inflateBack() calls those routines until it reads a complete deflate stream and writes out all of the uncompressed data, or until it encounters an error. The function's parameters and return types are defined above in the in_func and out_func typedefs. inflateBack() will call in(in_desc, &buf) which should return the number of bytes of provided input, and a pointer to that input in buf. If there is no input available, in() must return zero--buf is ignored in that case--and inflateBack() will return a buffer error. inflateBack() will call out(out_desc, buf, len) to write the uncompressed data buf[0..len-1]. out() should return zero on success, or non-zero on failure. If out() returns non-zero, inflateBack() will return with an error. Neither in() nor out() are permitted to change the contents of the window provided to inflateBackInit(), which is also the buffer that out() uses to write from. The length written by out() will be at most the window size. Any non-zero amount of input may be provided by in(). For convenience, inflateBack() can be provided input on the first call by setting strm->next_in and strm->avail_in. If that input is exhausted, then in() will be called. Therefore strm->next_in must be initialized before calling inflateBack(). If strm->next_in is Z_NULL, then in() will be called immediately for input. If strm->next_in is not Z_NULL, then strm->avail_in must also be initialized, and then if strm->avail_in is not zero, input will initially be taken from strm->next_in[0 .. strm->avail_in - 1]. The in_desc and out_desc parameters of inflateBack() is passed as the first parameter of in() and out() respectively when they are called. These descriptors can be optionally used to pass any information that the caller- supplied in() and out() functions need to do their job. On return, inflateBack() will set strm->next_in and strm->avail_in to pass back any unused input that was provided by the last in() call. The return values of inflateBack() can be Z_STREAM_END on success, Z_BUF_ERROR if in() or out() returned an error, Z_DATA_ERROR if there was a format error in the deflate stream (in which case strm->msg is set to indicate the nature of the error), or Z_STREAM_ERROR if the stream was not properly initialized. In the case of Z_BUF_ERROR, an input or output error can be distinguished using strm->next_in which will be Z_NULL only if in() returned an error. If strm->next_in is not Z_NULL, then the Z_BUF_ERROR was due to out() returning non-zero. (in() will always be called before out(), so strm->next_in is assured to be defined if out() returns non-zero.) Note that inflateBack() cannot return Z_OK. */ ZEXTERN int ZEXPORT inflateBackEnd OF((z_streamp strm)); /* All memory allocated by inflateBackInit() is freed. inflateBackEnd() returns Z_OK on success, or Z_STREAM_ERROR if the stream state was inconsistent. */ ZEXTERN uLong ZEXPORT zlibCompileFlags OF((void)); /* Return flags indicating compile-time options. Type sizes, two bits each, 00 = 16 bits, 01 = 32, 10 = 64, 11 = other: 1.0: size of uInt 3.2: size of uLong 5.4: size of voidpf (pointer) 7.6: size of z_off_t Compiler, assembler, and debug options: 8: DEBUG 9: ASMV or ASMINF -- use ASM code 10: ZLIB_WINAPI -- exported functions use the WINAPI calling convention 11: 0 (reserved) One-time table building (smaller code, but not thread-safe if true): 12: BUILDFIXED -- build static block decoding tables when needed 13: DYNAMIC_CRC_TABLE -- build CRC calculation tables when needed 14,15: 0 (reserved) Library content (indicates missing functionality): 16: NO_GZCOMPRESS -- gz* functions cannot compress (to avoid linking deflate code when not needed) 17: NO_GZIP -- deflate can't write gzip streams, and inflate can't detect and decode gzip streams (to avoid linking crc code) 18-19: 0 (reserved) Operation variations (changes in library functionality): 20: PKZIP_BUG_WORKAROUND -- slightly more permissive inflate 21: FASTEST -- deflate algorithm with only one, lowest compression level 22,23: 0 (reserved) The sprintf variant used by gzprintf (zero is best): 24: 0 = vs*, 1 = s* -- 1 means limited to 20 arguments after the format 25: 0 = *nprintf, 1 = *printf -- 1 means gzprintf() not secure! 26: 0 = returns value, 1 = void -- 1 means inferred string length returned Remainder: 27-31: 0 (reserved) */ #ifndef Z_SOLO /* utility functions */ /* The following utility functions are implemented on top of the basic stream-oriented functions. To simplify the interface, some default options are assumed (compression level and memory usage, standard memory allocation functions). The source code of these utility functions can be modified if you need special options. */ ZEXTERN int ZEXPORT compress OF((Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen)); /* Compresses the source buffer into the destination buffer. sourceLen is the byte length of the source buffer. Upon entry, destLen is the total size of the destination buffer, which must be at least the value returned by compressBound(sourceLen). Upon exit, destLen is the actual size of the compressed buffer. compress returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if there was not enough room in the output buffer. */ ZEXTERN int ZEXPORT compress2 OF((Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen, int level)); /* Compresses the source buffer into the destination buffer. The level parameter has the same meaning as in deflateInit. sourceLen is the byte length of the source buffer. Upon entry, destLen is the total size of the destination buffer, which must be at least the value returned by compressBound(sourceLen). Upon exit, destLen is the actual size of the compressed buffer. compress2 returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if there was not enough room in the output buffer, Z_STREAM_ERROR if the level parameter is invalid. */ ZEXTERN uLong ZEXPORT compressBound OF((uLong sourceLen)); /* compressBound() returns an upper bound on the compressed size after compress() or compress2() on sourceLen bytes. It would be used before a compress() or compress2() call to allocate the destination buffer. */ ZEXTERN int ZEXPORT uncompress OF((Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen)); /* Decompresses the source buffer into the destination buffer. sourceLen is the byte length of the source buffer. Upon entry, destLen is the total size of the destination buffer, which must be large enough to hold the entire uncompressed data. (The size of the uncompressed data must have been saved previously by the compressor and transmitted to the decompressor by some mechanism outside the scope of this compression library.) Upon exit, destLen is the actual size of the uncompressed buffer. uncompress returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if there was not enough room in the output buffer, or Z_DATA_ERROR if the input data was corrupted or incomplete. In the case where there is not enough room, uncompress() will fill the output buffer with the uncompressed data up to that point. */ /* gzip file access functions */ /* This library supports reading and writing files in gzip (.gz) format with an interface similar to that of stdio, using the functions that start with "gz". The gzip format is different from the zlib format. gzip is a gzip wrapper, documented in RFC 1952, wrapped around a deflate stream. */ typedef struct gzFile_s *gzFile; /* semi-opaque gzip file descriptor */ /* ZEXTERN gzFile ZEXPORT gzopen OF((const char *path, const char *mode)); Opens a gzip (.gz) file for reading or writing. The mode parameter is as in fopen ("rb" or "wb") but can also include a compression level ("wb9") or a strategy: 'f' for filtered data as in "wb6f", 'h' for Huffman-only compression as in "wb1h", 'R' for run-length encoding as in "wb1R", or 'F' for fixed code compression as in "wb9F". (See the description of deflateInit2 for more information about the strategy parameter.) 'T' will request transparent writing or appending with no compression and not using the gzip format. "a" can be used instead of "w" to request that the gzip stream that will be written be appended to the file. "+" will result in an error, since reading and writing to the same gzip file is not supported. The addition of "x" when writing will create the file exclusively, which fails if the file already exists. On systems that support it, the addition of "e" when reading or writing will set the flag to close the file on an execve() call. These functions, as well as gzip, will read and decode a sequence of gzip streams in a file. The append function of gzopen() can be used to create such a file. (Also see gzflush() for another way to do this.) When appending, gzopen does not test whether the file begins with a gzip stream, nor does it look for the end of the gzip streams to begin appending. gzopen will simply append a gzip stream to the existing file. gzopen can be used to read a file which is not in gzip format; in this case gzread will directly read from the file without decompression. When reading, this will be detected automatically by looking for the magic two- byte gzip header. gzopen returns NULL if the file could not be opened, if there was insufficient memory to allocate the gzFile state, or if an invalid mode was specified (an 'r', 'w', or 'a' was not provided, or '+' was provided). errno can be checked to determine if the reason gzopen failed was that the file could not be opened. */ ZEXTERN gzFile ZEXPORT gzdopen OF((int fd, const char *mode)); /* gzdopen associates a gzFile with the file descriptor fd. File descriptors are obtained from calls like open, dup, creat, pipe or fileno (if the file has been previously opened with fopen). The mode parameter is as in gzopen. The next call of gzclose on the returned gzFile will also close the file descriptor fd, just like fclose(fdopen(fd, mode)) closes the file descriptor fd. If you want to keep fd open, use fd = dup(fd_keep); gz = gzdopen(fd, mode);. The duplicated descriptor should be saved to avoid a leak, since gzdopen does not close fd if it fails. If you are using fileno() to get the file descriptor from a FILE *, then you will have to use dup() to avoid double-close()ing the file descriptor. Both gzclose() and fclose() will close the associated file descriptor, so they need to have different file descriptors. gzdopen returns NULL if there was insufficient memory to allocate the gzFile state, if an invalid mode was specified (an 'r', 'w', or 'a' was not provided, or '+' was provided), or if fd is -1. The file descriptor is not used until the next gz* read, write, seek, or close operation, so gzdopen will not detect if fd is invalid (unless fd is -1). */ ZEXTERN int ZEXPORT gzbuffer OF((gzFile file, unsigned size)); /* Set the internal buffer size used by this library's functions. The default buffer size is 8192 bytes. This function must be called after gzopen() or gzdopen(), and before any other calls that read or write the file. The buffer memory allocation is always deferred to the first read or write. Two buffers are allocated, either both of the specified size when writing, or one of the specified size and the other twice that size when reading. A larger buffer size of, for example, 64K or 128K bytes will noticeably increase the speed of decompression (reading). The new buffer size also affects the maximum length for gzprintf(). gzbuffer() returns 0 on success, or -1 on failure, such as being called too late. */ ZEXTERN int ZEXPORT gzsetparams OF((gzFile file, int level, int strategy)); /* Dynamically update the compression level or strategy. See the description of deflateInit2 for the meaning of these parameters. gzsetparams returns Z_OK if success, or Z_STREAM_ERROR if the file was not opened for writing. */ ZEXTERN int ZEXPORT gzread OF((gzFile file, voidp buf, unsigned len)); /* Reads the given number of uncompressed bytes from the compressed file. If the input file is not in gzip format, gzread copies the given number of bytes into the buffer directly from the file. After reaching the end of a gzip stream in the input, gzread will continue to read, looking for another gzip stream. Any number of gzip streams may be concatenated in the input file, and will all be decompressed by gzread(). If something other than a gzip stream is encountered after a gzip stream, that remaining trailing garbage is ignored (and no error is returned). gzread can be used to read a gzip file that is being concurrently written. Upon reaching the end of the input, gzread will return with the available data. If the error code returned by gzerror is Z_OK or Z_BUF_ERROR, then gzclearerr can be used to clear the end of file indicator in order to permit gzread to be tried again. Z_OK indicates that a gzip stream was completed on the last gzread. Z_BUF_ERROR indicates that the input file ended in the middle of a gzip stream. Note that gzread does not return -1 in the event of an incomplete gzip stream. This error is deferred until gzclose(), which will return Z_BUF_ERROR if the last gzread ended in the middle of a gzip stream. Alternatively, gzerror can be used before gzclose to detect this case. gzread returns the number of uncompressed bytes actually read, less than len for end of file, or -1 for error. */ ZEXTERN int ZEXPORT gzwrite OF((gzFile file, voidpc buf, unsigned len)); /* Writes the given number of uncompressed bytes into the compressed file. gzwrite returns the number of uncompressed bytes written or 0 in case of error. */ ZEXTERN int ZEXPORTVA gzprintf Z_ARG((gzFile file, const char *format, ...)); /* Converts, formats, and writes the arguments to the compressed file under control of the format string, as in fprintf. gzprintf returns the number of uncompressed bytes actually written, or 0 in case of error. The number of uncompressed bytes written is limited to 8191, or one less than the buffer size given to gzbuffer(). The caller should assure that this limit is not exceeded. If it is exceeded, then gzprintf() will return an error (0) with nothing written. In this case, there may also be a buffer overflow with unpredictable consequences, which is possible only if zlib was compiled with the insecure functions sprintf() or vsprintf() because the secure snprintf() or vsnprintf() functions were not available. This can be determined using zlibCompileFlags(). */ ZEXTERN int ZEXPORT gzputs OF((gzFile file, const char *s)); /* Writes the given null-terminated string to the compressed file, excluding the terminating null character. gzputs returns the number of characters written, or -1 in case of error. */ ZEXTERN char * ZEXPORT gzgets OF((gzFile file, char *buf, int len)); /* Reads bytes from the compressed file until len-1 characters are read, or a newline character is read and transferred to buf, or an end-of-file condition is encountered. If any characters are read or if len == 1, the string is terminated with a null character. If no characters are read due to an end-of-file or len < 1, then the buffer is left untouched. gzgets returns buf which is a null-terminated string, or it returns NULL for end-of-file or in case of error. If there was an error, the contents at buf are indeterminate. */ ZEXTERN int ZEXPORT gzputc OF((gzFile file, int c)); /* Writes c, converted to an unsigned char, into the compressed file. gzputc returns the value that was written, or -1 in case of error. */ ZEXTERN int ZEXPORT gzgetc OF((gzFile file)); /* Reads one byte from the compressed file. gzgetc returns this byte or -1 in case of end of file or error. This is implemented as a macro for speed. As such, it does not do all of the checking the other functions do. I.e. it does not check to see if file is NULL, nor whether the structure file points to has been clobbered or not. */ ZEXTERN int ZEXPORT gzungetc OF((int c, gzFile file)); /* Push one character back onto the stream to be read as the first character on the next read. At least one character of push-back is allowed. gzungetc() returns the character pushed, or -1 on failure. gzungetc() will fail if c is -1, and may fail if a character has been pushed but not read yet. If gzungetc is used immediately after gzopen or gzdopen, at least the output buffer size of pushed characters is allowed. (See gzbuffer above.) The pushed character will be discarded if the stream is repositioned with gzseek() or gzrewind(). */ ZEXTERN int ZEXPORT gzflush OF((gzFile file, int flush)); /* Flushes all pending output into the compressed file. The parameter flush is as in the deflate() function. The return value is the zlib error number (see function gzerror below). gzflush is only permitted when writing. If the flush parameter is Z_FINISH, the remaining data is written and the gzip stream is completed in the output. If gzwrite() is called again, a new gzip stream will be started in the output. gzread() is able to read such concatented gzip streams. gzflush should be called only when strictly necessary because it will degrade compression if called too often. */ /* ZEXTERN z_off_t ZEXPORT gzseek OF((gzFile file, z_off_t offset, int whence)); Sets the starting position for the next gzread or gzwrite on the given compressed file. The offset represents a number of bytes in the uncompressed data stream. The whence parameter is defined as in lseek(2); the value SEEK_END is not supported. If the file is opened for reading, this function is emulated but can be extremely slow. If the file is opened for writing, only forward seeks are supported; gzseek then compresses a sequence of zeroes up to the new starting position. gzseek returns the resulting offset location as measured in bytes from the beginning of the uncompressed stream, or -1 in case of error, in particular if the file is opened for writing and the new starting position would be before the current position. */ ZEXTERN int ZEXPORT gzrewind OF((gzFile file)); /* Rewinds the given file. This function is supported only for reading. gzrewind(file) is equivalent to (int)gzseek(file, 0L, SEEK_SET) */ /* ZEXTERN z_off_t ZEXPORT gztell OF((gzFile file)); Returns the starting position for the next gzread or gzwrite on the given compressed file. This position represents a number of bytes in the uncompressed data stream, and is zero when starting, even if appending or reading a gzip stream from the middle of a file using gzdopen(). gztell(file) is equivalent to gzseek(file, 0L, SEEK_CUR) */ /* ZEXTERN z_off_t ZEXPORT gzoffset OF((gzFile file)); Returns the current offset in the file being read or written. This offset includes the count of bytes that precede the gzip stream, for example when appending or when using gzdopen() for reading. When reading, the offset does not include as yet unused buffered input. This information can be used for a progress indicator. On error, gzoffset() returns -1. */ ZEXTERN int ZEXPORT gzeof OF((gzFile file)); /* Returns true (1) if the end-of-file indicator has been set while reading, false (0) otherwise. Note that the end-of-file indicator is set only if the read tried to go past the end of the input, but came up short. Therefore, just like feof(), gzeof() may return false even if there is no more data to read, in the event that the last read request was for the exact number of bytes remaining in the input file. This will happen if the input file size is an exact multiple of the buffer size. If gzeof() returns true, then the read functions will return no more data, unless the end-of-file indicator is reset by gzclearerr() and the input file has grown since the previous end of file was detected. */ ZEXTERN int ZEXPORT gzdirect OF((gzFile file)); /* Returns true (1) if file is being copied directly while reading, or false (0) if file is a gzip stream being decompressed. If the input file is empty, gzdirect() will return true, since the input does not contain a gzip stream. If gzdirect() is used immediately after gzopen() or gzdopen() it will cause buffers to be allocated to allow reading the file to determine if it is a gzip file. Therefore if gzbuffer() is used, it should be called before gzdirect(). When writing, gzdirect() returns true (1) if transparent writing was requested ("wT" for the gzopen() mode), or false (0) otherwise. (Note: gzdirect() is not needed when writing. Transparent writing must be explicitly requested, so the application already knows the answer. When linking statically, using gzdirect() will include all of the zlib code for gzip file reading and decompression, which may not be desired.) */ ZEXTERN int ZEXPORT gzclose OF((gzFile file)); /* Flushes all pending output if necessary, closes the compressed file and deallocates the (de)compression state. Note that once file is closed, you cannot call gzerror with file, since its structures have been deallocated. gzclose must not be called more than once on the same file, just as free must not be called more than once on the same allocation. gzclose will return Z_STREAM_ERROR if file is not valid, Z_ERRNO on a file operation error, Z_MEM_ERROR if out of memory, Z_BUF_ERROR if the last read ended in the middle of a gzip stream, or Z_OK on success. */ ZEXTERN int ZEXPORT gzclose_r OF((gzFile file)); ZEXTERN int ZEXPORT gzclose_w OF((gzFile file)); /* Same as gzclose(), but gzclose_r() is only for use when reading, and gzclose_w() is only for use when writing or appending. The advantage to using these instead of gzclose() is that they avoid linking in zlib compression or decompression code that is not used when only reading or only writing respectively. If gzclose() is used, then both compression and decompression code will be included the application when linking to a static zlib library. */ ZEXTERN const char * ZEXPORT gzerror OF((gzFile file, int *errnum)); /* Returns the error message for the last error which occurred on the given compressed file. errnum is set to zlib error number. If an error occurred in the file system and not in the compression library, errnum is set to Z_ERRNO and the application may consult errno to get the exact error code. The application must not modify the returned string. Future calls to this function may invalidate the previously returned string. If file is closed, then the string previously returned by gzerror will no longer be available. gzerror() should be used to distinguish errors from end-of-file for those functions above that do not distinguish those cases in their return values. */ ZEXTERN void ZEXPORT gzclearerr OF((gzFile file)); /* Clears the error and end-of-file flags for file. This is analogous to the clearerr() function in stdio. This is useful for continuing to read a gzip file that is being written concurrently. */ #endif /* !Z_SOLO */ /* checksum functions */ /* These functions are not related to compression but are exported anyway because they might be useful in applications using the compression library. */ ZEXTERN uLong ZEXPORT adler32 OF((uLong adler, const Bytef *buf, uInt len)); /* Update a running Adler-32 checksum with the bytes buf[0..len-1] and return the updated checksum. If buf is Z_NULL, this function returns the required initial value for the checksum. An Adler-32 checksum is almost as reliable as a CRC32 but can be computed much faster. Usage example: uLong adler = adler32(0L, Z_NULL, 0); while (read_buffer(buffer, length) != EOF) { adler = adler32(adler, buffer, length); } if (adler != original_adler) error(); */ /* ZEXTERN uLong ZEXPORT adler32_combine OF((uLong adler1, uLong adler2, z_off_t len2)); Combine two Adler-32 checksums into one. For two sequences of bytes, seq1 and seq2 with lengths len1 and len2, Adler-32 checksums were calculated for each, adler1 and adler2. adler32_combine() returns the Adler-32 checksum of seq1 and seq2 concatenated, requiring only adler1, adler2, and len2. Note that the z_off_t type (like off_t) is a signed integer. If len2 is negative, the result has no meaning or utility. */ ZEXTERN uLong ZEXPORT crc32 OF((uLong crc, const Bytef *buf, uInt len)); /* Update a running CRC-32 with the bytes buf[0..len-1] and return the updated CRC-32. If buf is Z_NULL, this function returns the required initial value for the crc. Pre- and post-conditioning (one's complement) is performed within this function so it shouldn't be done by the application. Usage example: uLong crc = crc32(0L, Z_NULL, 0); while (read_buffer(buffer, length) != EOF) { crc = crc32(crc, buffer, length); } if (crc != original_crc) error(); */ /* ZEXTERN uLong ZEXPORT crc32_combine OF((uLong crc1, uLong crc2, z_off_t len2)); Combine two CRC-32 check values into one. For two sequences of bytes, seq1 and seq2 with lengths len1 and len2, CRC-32 check values were calculated for each, crc1 and crc2. crc32_combine() returns the CRC-32 check value of seq1 and seq2 concatenated, requiring only crc1, crc2, and len2. */ /* various hacks, don't look :) */ /* deflateInit and inflateInit are macros to allow checking the zlib version * and the compiler's view of z_stream: */ ZEXTERN int ZEXPORT deflateInit_ OF((z_streamp strm, int level, const char *version, int stream_size)); ZEXTERN int ZEXPORT inflateInit_ OF((z_streamp strm, const char *version, int stream_size)); ZEXTERN int ZEXPORT deflateInit2_ OF((z_streamp strm, int level, int method, int windowBits, int memLevel, int strategy, const char *version, int stream_size)); ZEXTERN int ZEXPORT inflateInit2_ OF((z_streamp strm, int windowBits, const char *version, int stream_size)); ZEXTERN int ZEXPORT inflateBackInit_ OF((z_streamp strm, int windowBits, unsigned char FAR *window, const char *version, int stream_size)); #define deflateInit(strm, level) \ deflateInit_((strm), (level), ZLIB_VERSION, (int)sizeof(z_stream)) #define inflateInit(strm) \ inflateInit_((strm), ZLIB_VERSION, (int)sizeof(z_stream)) #define deflateInit2(strm, level, method, windowBits, memLevel, strategy) \ deflateInit2_((strm),(level),(method),(windowBits),(memLevel),\ (strategy), ZLIB_VERSION, (int)sizeof(z_stream)) #define inflateInit2(strm, windowBits) \ inflateInit2_((strm), (windowBits), ZLIB_VERSION, \ (int)sizeof(z_stream)) #define inflateBackInit(strm, windowBits, window) \ inflateBackInit_((strm), (windowBits), (window), \ ZLIB_VERSION, (int)sizeof(z_stream)) #ifndef Z_SOLO /* gzgetc() macro and its supporting function and exposed data structure. Note * that the real internal state is much larger than the exposed structure. * This abbreviated structure exposes just enough for the gzgetc() macro. The * user should not mess with these exposed elements, since their names or * behavior could change in the future, perhaps even capriciously. They can * only be used by the gzgetc() macro. You have been warned. */ struct gzFile_s { unsigned have; unsigned char *next; z_off64_t pos; }; ZEXTERN int ZEXPORT gzgetc_ OF((gzFile file)); /* backward compatibility */ #ifdef Z_PREFIX_SET # undef z_gzgetc # define z_gzgetc(g) \ ((g)->have ? ((g)->have--, (g)->pos++, *((g)->next)++) : gzgetc(g)) #else # define gzgetc(g) \ ((g)->have ? ((g)->have--, (g)->pos++, *((g)->next)++) : gzgetc(g)) #endif /* provide 64-bit offset functions if _LARGEFILE64_SOURCE defined, and/or * change the regular functions to 64 bits if _FILE_OFFSET_BITS is 64 (if * both are true, the application gets the *64 functions, and the regular * functions are changed to 64 bits) -- in case these are set on systems * without large file support, _LFS64_LARGEFILE must also be true */ #ifdef Z_LARGE64 ZEXTERN gzFile ZEXPORT gzopen64 OF((const char *, const char *)); ZEXTERN z_off64_t ZEXPORT gzseek64 OF((gzFile, z_off64_t, int)); ZEXTERN z_off64_t ZEXPORT gztell64 OF((gzFile)); ZEXTERN z_off64_t ZEXPORT gzoffset64 OF((gzFile)); ZEXTERN uLong ZEXPORT adler32_combine64 OF((uLong, uLong, z_off64_t)); ZEXTERN uLong ZEXPORT crc32_combine64 OF((uLong, uLong, z_off64_t)); #endif #if !defined(ZLIB_INTERNAL) && defined(Z_WANT64) # ifdef Z_PREFIX_SET # define minizlib_gzopen minizlib_gzopen64 # define minizlib_gzseek minizlib_gzseek64 # define minizlib_gztell minizlib_gztell64 # define minizlib_gzoffset minizlib_gzoffset64 # define minizlib_adler32_combine minizlib_adler32_combine64 # define minizlib_crc32_combine minizlib_crc32_combine64 # else # define gzopen gzopen64 # define gzseek gzseek64 # define gztell gztell64 # define gzoffset gzoffset64 # define adler32_combine adler32_combine64 # define crc32_combine crc32_combine64 # endif # ifndef Z_LARGE64 ZEXTERN gzFile ZEXPORT gzopen64 OF((const char *, const char *)); ZEXTERN z_off_t ZEXPORT gzseek64 OF((gzFile, z_off_t, int)); ZEXTERN z_off_t ZEXPORT gztell64 OF((gzFile)); ZEXTERN z_off_t ZEXPORT gzoffset64 OF((gzFile)); ZEXTERN uLong ZEXPORT adler32_combine64 OF((uLong, uLong, z_off_t)); ZEXTERN uLong ZEXPORT crc32_combine64 OF((uLong, uLong, z_off_t)); # endif #else ZEXTERN gzFile ZEXPORT gzopen OF((const char *, const char *)); ZEXTERN z_off_t ZEXPORT gzseek OF((gzFile, z_off_t, int)); ZEXTERN z_off_t ZEXPORT gztell OF((gzFile)); ZEXTERN z_off_t ZEXPORT gzoffset OF((gzFile)); ZEXTERN uLong ZEXPORT adler32_combine OF((uLong, uLong, z_off_t)); ZEXTERN uLong ZEXPORT crc32_combine OF((uLong, uLong, z_off_t)); #endif #else /* Z_SOLO */ ZEXTERN uLong ZEXPORT adler32_combine OF((uLong, uLong, z_off_t)); ZEXTERN uLong ZEXPORT crc32_combine OF((uLong, uLong, z_off_t)); #endif /* !Z_SOLO */ /* hack for buggy compilers */ #if !defined(ZUTIL_H) && !defined(NO_DUMMY_DECL) struct internal_state {int dummy;}; #endif /* undocumented functions */ ZEXTERN const char * ZEXPORT zError OF((int)); ZEXTERN int ZEXPORT inflateSyncPoint OF((z_streamp)); ZEXTERN const z_crc_t FAR * ZEXPORT get_crc_table OF((void)); ZEXTERN int ZEXPORT inflateUndermine OF((z_streamp, int)); ZEXTERN int ZEXPORT inflateResetKeep OF((z_streamp)); ZEXTERN int ZEXPORT deflateResetKeep OF((z_streamp)); #if defined(_WIN32) && !defined(Z_SOLO) ZEXTERN gzFile ZEXPORT gzopen_w OF((const wchar_t *path, const char *mode)); #endif #if defined(STDC) || defined(Z_HAVE_STDARG_H) # ifndef Z_SOLO ZEXTERN int ZEXPORTVA gzvprintf Z_ARG((gzFile file, const char *format, va_list va)); # endif #endif #ifdef __cplusplus } #endif #endif /* ZLIB_H */ # endif #endif #include #include #include #include #include #include #ifdef MCPL_THIS_IS_MS # include # include #endif #define MCPLIMP_NPARTICLES_POS 8 #define MCPLIMP_MAX_PARTICLE_SIZE 96 int mcpl_platform_is_little_endian() { //Return 0 for big endian, 1 for little endian. volatile uint32_t i=0x01234567; return (*((uint8_t*)(&i))) == 0x67; } void mcpl_default_error_handler(const char * msg) { printf("MCPL ERROR: %s\n",msg); exit(1); } static void (*mcpl_error_handler)(const char *) = &mcpl_default_error_handler; void mcpl_error(const char * msg) { mcpl_error_handler(msg); //Error handler should not return, but in case it does anyway, we at least //ensure a hard exit! mcpl_default_error_handler("Handler given to mcpl_set_error_handler returns" " to calling code which is not allowed!"); } void mcpl_set_error_handler(void (*handler)(const char *)) { mcpl_error_handler = handler; } void mcpl_store_string(char** dest, const char * src) { size_t n = strlen(src); if (n>65535) n = 65535; if (*dest) free(*dest); *dest = (char*)calloc(n+1,1); assert(*dest); strncpy( *dest,src,n ); (*dest)[n] = '\0'; return; } void mcpl_write_buffer(FILE* f, uint32_t n, const char * data, const char * errmsg) { size_t nb = fwrite(&n, 1, sizeof(n), f); if (nb!=sizeof(n)) mcpl_error(errmsg); nb = fwrite(data, 1, n, f); if (nb!=n) mcpl_error(errmsg); } void mcpl_write_string(FILE* f, const char * str, const char * errmsg) { size_t n = strlen(str); mcpl_write_buffer(f,n,str,errmsg);//nb: we don't write the terminating null-char } typedef struct { char * filename; FILE * file; char * hdr_srcprogname; uint32_t ncomments; char ** comments; uint32_t nblobs; char ** blobkeys; uint32_t * bloblengths; char ** blobs; int opt_userflags; int opt_polarisation; int opt_singleprec; int32_t opt_universalpdgcode; double opt_universalweight; int header_notwritten; uint64_t nparticles; unsigned particle_size; mcpl_particle_t* puser; unsigned opt_signature; char particle_buffer[MCPLIMP_MAX_PARTICLE_SIZE]; } mcpl_outfileinternal_t; #define MCPLIMP_OUTFILEDECODE mcpl_outfileinternal_t * f = (mcpl_outfileinternal_t *)of.internal; assert(f) void mcpl_recalc_psize(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; unsigned fp = f->opt_singleprec ? sizeof(float) : sizeof(double); f->particle_size = 7*fp; if (f->opt_polarisation) f->particle_size += 3*fp; if (!f->opt_universalpdgcode) f->particle_size += sizeof(int32_t); if (!f->opt_universalweight) f->particle_size += fp; if (f->opt_userflags) f->particle_size += sizeof(uint32_t); assert(f->particle_size<=MCPLIMP_MAX_PARTICLE_SIZE); f->opt_signature = 0 + 1 * f->opt_singleprec + 2 * f->opt_polarisation + 4 * f->opt_universalpdgcode + 8 * (f->opt_universalweight?1:0) + 16 * f->opt_userflags; } void mcpl_platform_compatibility_check() { static int first = 1; if (!first) return; first = 0; if (CHAR_BIT!=8) mcpl_error("Platform compatibility check failed (bytes are not 8 bit)"); if (sizeof(float)!=4) mcpl_error("Platform compatibility check failed (float is not 4 bytes)"); if (sizeof(double)!=8) mcpl_error("Platform compatibility check failed (double is not 8 bytes)"); int32_t m1_32 = -1; int32_t not0_32 = ~0; int64_t m1_64 = -1; int64_t not0_64 = ~0; if ( m1_32 != not0_32 || m1_64 != not0_64 ) mcpl_error("Platform compatibility check failed (integers are not two's complement)"); if (copysign(1.0, -0.0) != -1.0) mcpl_error("Platform compatibility check failed (floating point numbers do not have signed zero)"); mcpl_particle_t pd; if ( (char*)&(pd.userflags)-(char*)&(pd) != 12*sizeof(double)+sizeof(uint32_t) ) mcpl_error("Platform compatibility check failed (unexpected padding in mcpl_particle_t)"); } mcpl_outfile_t mcpl_create_outfile(const char * filename) { //Sanity check chosen filename and append ".mcpl" if missing to help people //who forgot to add the extension (in the hope of higher consistency). if (!filename) mcpl_error("mcpl_create_outfile called with null string."); size_t n = strlen(filename); if (!n) mcpl_error("mcpl_create_outfile called with empty string."); if (n>4096) mcpl_error("mcpl_create_outfile called with too long string."); const char * lastdot = strrchr(filename, '.'); if (lastdot==filename && n==5) mcpl_error("mcpl_create_outfile called with string with no basename part (\".mcpl\")."); //Initialise data structures and open file: mcpl_platform_compatibility_check(); mcpl_outfile_t out; out.internal = 0; mcpl_outfileinternal_t * f = (mcpl_outfileinternal_t*)calloc(sizeof(mcpl_outfileinternal_t),1); assert(f); if (!lastdot || strcmp(lastdot, ".mcpl") != 0) { f->filename = (char*)malloc(n+6); f->filename[0] = '\0'; strcat(f->filename,filename); strcat(f->filename,".mcpl"); } else { f->filename = (char*)malloc(n+1); f->filename[0] = '\0'; strcat(f->filename,filename); } f->hdr_srcprogname = 0; f->ncomments = 0; f->comments = 0; f->nblobs = 0; f->blobkeys = 0; f->bloblengths = 0; f->blobs = 0; f->opt_userflags = 0; f->opt_polarisation = 0; f->opt_singleprec = 1; f->opt_universalpdgcode = 0; f->opt_universalweight = 0.0; f->header_notwritten = 1; f->nparticles = 0; f->file = fopen(f->filename,"wb"); if (!f->file) mcpl_error("Unable to open output file!"); out.internal = f; mcpl_recalc_psize(out); return out; } const char * mcpl_outfile_filename(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; return f->filename; } void mcpl_hdr_set_srcname(mcpl_outfile_t of,const char * spn) { MCPLIMP_OUTFILEDECODE; if (!f->header_notwritten) mcpl_error("mcpl_hdr_set_srcname called too late."); mcpl_store_string(&(f->hdr_srcprogname),spn); } void mcpl_hdr_add_comment(mcpl_outfile_t of,const char *comment) { MCPLIMP_OUTFILEDECODE; if (!f->header_notwritten) mcpl_error("mcpl_hdr_add_comment called too late."); size_t oldn = f->ncomments; f->ncomments += 1; if (oldn) f->comments = (char **)realloc(f->comments,f->ncomments * sizeof(char*) ); else f->comments = (char **)calloc(f->ncomments,sizeof(char*)); f->comments[oldn] = 0; mcpl_store_string(&(f->comments[oldn]),comment); } void mcpl_hdr_add_data(mcpl_outfile_t of, const char * key, uint32_t ldata, const char * data) { MCPLIMP_OUTFILEDECODE; if (!f->header_notwritten) mcpl_error("mcpl_hdr_add_data called too late."); size_t oldn = f->nblobs; f->nblobs += 1; //Check that key is unique unsigned i; for (i =0; iblobkeys[i],key)==0) mcpl_error("mcpl_hdr_add_data got duplicate key"); } //store key: if (oldn) f->blobkeys = (char **)realloc(f->blobkeys,f->nblobs * sizeof(char*) ); else f->blobkeys = (char **)calloc(f->nblobs,sizeof(char*)); f->blobkeys[oldn] = 0; mcpl_store_string(&(f->blobkeys[oldn]),key); //store blob-lengths: if (oldn) f->bloblengths = (uint32_t*)realloc(f->bloblengths,f->nblobs * sizeof(uint32_t) ); else f->bloblengths = (uint32_t *)calloc(f->nblobs,sizeof(uint32_t)); f->bloblengths[oldn] = ldata; //store data: if (oldn) f->blobs = (char **)realloc(f->blobs,f->nblobs * sizeof(char*) ); else f->blobs = (char **)calloc(f->nblobs,sizeof(char*)); f->blobs[oldn] = (char *)malloc(ldata); memcpy(f->blobs[oldn],data,ldata); } void mcpl_enable_userflags(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; if (f->opt_userflags) return; if (!f->header_notwritten) mcpl_error("mcpl_enable_userflags called too late."); f->opt_userflags = 1; mcpl_recalc_psize(of); } void mcpl_enable_polarisation(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; if (f->opt_polarisation) return; if (!f->header_notwritten) mcpl_error("mcpl_enable_polarisation called too late."); f->opt_polarisation = 1; mcpl_recalc_psize(of); } void mcpl_enable_doubleprec(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; if (!f->opt_singleprec) return; if (!f->header_notwritten) mcpl_error("mcpl_enable_doubleprec called too late."); f->opt_singleprec = 0; mcpl_recalc_psize(of); } void mcpl_enable_universal_pdgcode(mcpl_outfile_t of, int32_t pdgcode) { MCPLIMP_OUTFILEDECODE; if (pdgcode==0) mcpl_error("mcpl_enable_universal_pdgcode must be called with non-zero pdgcode."); if (f->opt_universalpdgcode) { if (f->opt_universalpdgcode!=pdgcode) mcpl_error("mcpl_enable_universal_pdgcode called multiple times"); return; } if (!f->header_notwritten) mcpl_error("mcpl_enable_universal_pdgcode called too late."); f->opt_universalpdgcode = pdgcode; mcpl_recalc_psize(of); } void mcpl_enable_universal_weight(mcpl_outfile_t of, double w) { MCPLIMP_OUTFILEDECODE; if (w<=0.0||isinf(w)||isnan(w)) mcpl_error("mcpl_enable_universal_weight must be called with positive but finite weight."); if (f->opt_universalweight) { if (f->opt_universalweight!=w) mcpl_error("mcpl_enable_universal_weight called multiple times"); return; } if (!f->header_notwritten) mcpl_error("mcpl_enable_universal_weight called too late."); f->opt_universalweight = w; mcpl_recalc_psize(of); } void mcpl_write_header(mcpl_outfileinternal_t * f) { if (!f->header_notwritten) mcpl_error("Logical error!"); const char * errmsg="Errors encountered while attempting to write file header."; //Always start the file with an unsigned char-array (for endian agnosticity) //containing magic word (MCPL), file format version ('001'-'999') and //endianness used in the file ('L' or 'B'): unsigned char start[8] = {'M','C','P','L','0','0','0','L'}; start[4] = (MCPL_FORMATVERSION/100)%10 + '0'; start[5] = (MCPL_FORMATVERSION/10)%10 + '0'; start[6] = MCPL_FORMATVERSION%10 + '0'; if (!mcpl_platform_is_little_endian()) start[7] = 'B'; size_t nb = fwrite(start, 1, sizeof(start), f->file); if (nb!=sizeof(start)) mcpl_error(errmsg); //Right after the initial 8 bytes, we put the number of particles (0 for now, //but important that position is fixed so we can seek and update it later).: long int nparticles_pos = ftell(f->file); if (nparticles_pos!=MCPLIMP_NPARTICLES_POS) mcpl_error(errmsg); nb = fwrite(&f->nparticles, 1, sizeof(f->nparticles), f->file); if (nb!=sizeof(f->nparticles)) mcpl_error(errmsg); //Then a bunch of numbers: uint32_t arr[8]; arr[0] = f->ncomments; arr[1] = f->nblobs; arr[2] = f->opt_userflags; arr[3] = f->opt_polarisation; arr[4] = f->opt_singleprec; arr[5] = f->opt_universalpdgcode; arr[6] = f->particle_size; arr[7] = (f->opt_universalweight?1:0); assert(sizeof(arr)==32); nb = fwrite(arr, 1, sizeof(arr), f->file); if (nb!=sizeof(arr)) mcpl_error(errmsg); if (f->opt_universalweight) { assert(sizeof(f->opt_universalweight)==8); nb = fwrite((void*)(&(f->opt_universalweight)), 1, sizeof(f->opt_universalweight), f->file); if (nb!=sizeof(f->opt_universalweight)) mcpl_error(errmsg); } //strings: mcpl_write_string(f->file,f->hdr_srcprogname?f->hdr_srcprogname:"unknown",errmsg); uint32_t i; for (i = 0; i < f->ncomments; ++i) mcpl_write_string(f->file,f->comments[i],errmsg); //blob keys: for (i = 0; i < f->nblobs; ++i) mcpl_write_string(f->file,f->blobkeys[i],errmsg); //blobs: for (i = 0; i < f->nblobs; ++i) mcpl_write_buffer(f->file, f->bloblengths[i], f->blobs[i],errmsg); //Free up acquired memory only needed for header writing: free(f->hdr_srcprogname); f->hdr_srcprogname = 0; if (f->ncomments) { for (i = 0; i < f->ncomments; ++i) free(f->comments[i]); free(f->comments); f->comments=0; f->ncomments=0; } if (f->nblobs) { for (i = 0; i < f->nblobs; ++i) free(f->blobkeys[i]); free(f->blobkeys); f->blobkeys = 0; for (i = 0; i < f->nblobs; ++i) free(f->blobs[i]); free(f->blobs); f->blobs = 0; free(f->bloblengths); f->bloblengths = 0; f->nblobs = 0; } f->header_notwritten = 0; } #ifndef INFINITY //Missing in ICC 12 C99 compilation: # define INFINITY (__builtin_inf()) #endif void mcpl_unitvect_pack_adaptproj(const double* in, double* out) { //Precise packing of unit vector into 2 floats + 1 bit using the "Adaptive //Projection Packing" method (T. Kittelmann, 2017). // //The Adaptive Projection Packing method is a variant on the traditional projection //method where one would store (x,y,sign(z)) and upon unpacking recover the //magnitude of z with |z|=sqrt(1-x^2-y^2), a formula which suffers from //numerical precision issues when |z| is small. In this improved version, one //gets rid of the precision issues by always storing the components that are //smallest in magnitude (the last one must then have a magnitude in the //interval [1/sqrt(3),1] = [0.577,1.0] which is never small). This just leaves //the issue of being able to recognise the coordinate choices again upon //unpacking. Since all components are at most of unit magnitude, this is //achieved by storing 1/z rather than z and replacing either x or y as //needed (infinity when z=0). Thus, the packed data will contain: // // ( 1/z, y, sign(x) ) when |x|>|y|,|z| // ( x, 1/z, sign(y) ) when |y|>|x|,|z| // ( x, y, sign(z) ) when |z|>|x|,|y| // //The unpacking code can determine which of the three scenarios is used to //encode a given piece of data by checking if the first or second field is //greater than unity. // //Note that the arrays "in" and "out" are both of dimension 3, however out[2] //will contain only binary information, in the form of the sign of the //component which was projected away (-1.0 or 1.0). const double absx = fabs(in[0]); const double absy = fabs(in[1]); if ( fabs(in[2]) < fmax(absx,absy) ) { const double invz = ( in[2] ? (1.0/in[2]) : INFINITY ); if (absx>=absy) { //output (1/z,y,sign(x)) out[0] = invz; out[1] = in[1]; out[2] = in[0]; } else { //output (x,1/z,sign(y)) out[0] = in[0]; out[1] = invz; out[2] = in[1]; } } else { //output (x,y,sign(z)) out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; } out[2] = copysign(1.0,out[2]); } void mcpl_unitvect_unpack_adaptproj( const double* in, double* out ) { //Unpacking for the "Adaptive Projection Packing" method (T. Kittelmann, 2017). //See mcpl_unitvect_pack_adaptproj for more information. // //Note that the arrays "in" and "out" are both of dimension 3, however in[2] //will contain only binary information, in the form of the sign of the //component which was projected away. assert(in[2]==1.0||in[2]==-1.0); if (fabs(in[0]) > 1.0) { //input is (1/z,y,sign(x)) out[1] = in[1]; out[2] = 1.0 / in[0]; out[0] = in[2] * sqrt( fmax( 0.0, 1.0 - ( in[1]*in[1] + out[2]*out[2] ) ) ); } else if (fabs(in[1])>1.0) { //input is (x,1/z,sign(y)) out[0] = in[0]; out[2] = 1.0 / in[1]; out[1] = in[2] * sqrt( fmax ( 0.0, 1.0 - ( in[0]*in[0] + out[2]*out[2] ) ) ); } else { //input is (x,y,sign(z)) out[0] = in[0]; out[1] = in[1]; out[2] = in[2] * sqrt( fmax( 0.0, 1.0 - ( in[0]*in[0] + in[1]*in[1] ) ) ); } } void mcpl_unitvect_unpack_oct(const double* in, double* out) { //Octahedral packing inspired by http://jcgt.org/published/0003/02/01/ // //and: // //Octahedron Environment Maps, T. Engelhardt & C. Dachsbacher, Conference: //Proceedings of the Vision, Modeling, and Visualization Conference 2008, VMV //2008, Konstanz, Germany, October 8-10, 2008 // //Note: Octahedral packing was used for the MCPL-2 format, which we are no //longer writing, only reading. Thus, we only keep the unpacking function in //the code. //restore z-coord of octahedron: out[2] = 1.0 - fabs(in[0]) - fabs(in[1]); if (out[2]<0) { //lower hemisphere out[0] = ( 1.0 - fabs( in[1] ) ) * ( in[0] >= 0.0 ? 1.0 : -1.0 ); out[1] = ( 1.0 - fabs( in[0] ) ) * ( in[1] >= 0.0 ? 1.0 : -1.0 ); } else { //upper hemisphere out[0] = in[0]; out[1] = in[1]; } //project from octahedron to unit sphere: double n = 1.0 / sqrt(out[0]*out[0]+out[1]*out[1]+out[2]*out[2]); out[0] *= n; out[1] *= n; out[2] *= n; } void mcpl_internal_serialise_particle_to_buffer( const mcpl_particle_t* particle, mcpl_outfileinternal_t * f ) { //Serialise the provided particle into the particle_buffer of the output file //(according to the settings of the output file). double pack_ekindir[3]; //Sanity check (add more??): double dirsq = particle->direction[0] * particle->direction[0] + particle->direction[1] * particle->direction[1] + particle->direction[2] * particle->direction[2]; if (fabs(dirsq-1.0)>1.0e-5) mcpl_error("attempting to add particle with non-unit direction vector"); if (particle->ekin<0.0) mcpl_error("attempting to add particle with negative kinetic energy"); //direction and ekin are packed into 3 doubles: mcpl_unitvect_pack_adaptproj(particle->direction,pack_ekindir); //pack_ekindir[2] is now just a sign(1.0 or -1.0), so we can store the //ekin in that field as well (since it must be non-negative). We use copysign //to be sure the signbit is set also if ekin=0: pack_ekindir[2] = copysign(particle->ekin,pack_ekindir[2]); //serialise particle object to buffer: unsigned ibuf = 0; char * pbuf = &(f->particle_buffer[0]); int i; if (f->opt_singleprec) { if (f->opt_polarisation) { for (i=0;i<3;++i) { *(float*)&pbuf[ibuf] = (float)particle->polarisation[i]; ibuf += sizeof(float); } } for (i=0;i<3;++i) { *(float*)&pbuf[ibuf] = (float)particle->position[i]; ibuf += sizeof(float); } for (i=0;i<3;++i) { *(float*)&pbuf[ibuf] = (float)pack_ekindir[i]; ibuf += sizeof(float); } *(float*)&pbuf[ibuf] = (float)particle->time; ibuf += sizeof(float); if (!f->opt_universalweight) { *(float*)&pbuf[ibuf] = (float)particle->weight; ibuf += sizeof(float); } } else { if (f->opt_polarisation) { for (i=0;i<3;++i) { *(double*)&pbuf[ibuf] = particle->polarisation[i]; ibuf += sizeof(double); } } for (i=0;i<3;++i) { *(double*)&pbuf[ibuf] = particle->position[i]; ibuf += sizeof(double); } for (i=0;i<3;++i) { *(double*)&pbuf[ibuf] = pack_ekindir[i]; ibuf += sizeof(double); } *(double*)&pbuf[ibuf] = particle->time; ibuf += sizeof(double); if (!f->opt_universalweight) { *(double*)&pbuf[ibuf] = particle->weight; ibuf += sizeof(double); } } if (!f->opt_universalpdgcode) { *(int32_t*)&pbuf[ibuf] = particle->pdgcode; ibuf += sizeof(int32_t); } if (f->opt_userflags) { *(uint32_t*)&pbuf[ibuf] = particle->userflags; #ifndef NDEBUG ibuf += sizeof(uint32_t); #endif } assert(ibuf==f->particle_size); } void mcpl_internal_write_particle_buffer_to_file(mcpl_outfileinternal_t * f ) { //Ensure header is written: if (f->header_notwritten) mcpl_write_header(f); //Increment nparticles and write buffer to file: f->nparticles += 1; size_t nb; nb = fwrite(&(f->particle_buffer[0]), 1, f->particle_size, f->file); if (nb!=f->particle_size) mcpl_error("Errors encountered while attempting to write particle data."); } void mcpl_add_particle(mcpl_outfile_t of,const mcpl_particle_t* particle) { MCPLIMP_OUTFILEDECODE; mcpl_internal_serialise_particle_to_buffer(particle,f); mcpl_internal_write_particle_buffer_to_file(f); } void mcpl_update_nparticles(FILE* f, uint64_t n) { //Seek and update nparticles at correct location in header: const char * errmsg = "Errors encountered while attempting to update number of particles in file."; int64_t savedpos = ftell(f); if (savedpos<0) mcpl_error(errmsg); if (fseek( f, MCPLIMP_NPARTICLES_POS, SEEK_SET )) mcpl_error(errmsg); size_t nb = fwrite(&n, 1, sizeof(n), f); if (nb != sizeof(n)) mcpl_error(errmsg); if (fseek( f, savedpos, SEEK_SET )) mcpl_error(errmsg); } mcpl_particle_t* mcpl_get_empty_particle(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; if (f->puser) { //Calling more than once. This could be innocent, or it could indicate //problems in multi-threaded user-code. Better disallow and give an error: mcpl_error("mcpl_get_empty_particle must not be called more than once per output file"); } else { f->puser = (mcpl_particle_t*)calloc(sizeof(mcpl_particle_t),1); } return f->puser; } void mcpl_close_outfile(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; if (f->header_notwritten) mcpl_write_header(f); if (f->nparticles) mcpl_update_nparticles(f->file,f->nparticles); fclose(f->file); free(f->filename); free(f->puser); free(f); } void mcpl_transfer_metadata(mcpl_file_t source, mcpl_outfile_t target) { //Note that MCPL format version 2 and 3 have the same meta-data in the header, //except of course the version number itself. if (mcpl_hdr_little_endian(source) != mcpl_platform_is_little_endian()) mcpl_error("mcpl_transfer_metadata can only work on files with same endianness as current platform."); mcpl_hdr_set_srcname(target,mcpl_hdr_srcname(source)); unsigned i; for (i = 0; i < mcpl_hdr_ncomments(source); ++i) mcpl_hdr_add_comment(target,mcpl_hdr_comment(source,i)); const char** blobkeys = mcpl_hdr_blobkeys(source); if (blobkeys) { int nblobs = mcpl_hdr_nblobs(source); uint32_t ldata; const char * data; int ii; for (ii = 0; ii < nblobs; ++ii) { int res = mcpl_hdr_blob(source,blobkeys[ii],&ldata,&data); assert(res);//key must exist (void)res; mcpl_hdr_add_data(target, blobkeys[ii], ldata, data); } } if (mcpl_hdr_has_userflags(source)) mcpl_enable_userflags(target); if (mcpl_hdr_has_polarisation(source)) mcpl_enable_polarisation(target); if (mcpl_hdr_has_doubleprec(source)) mcpl_enable_doubleprec(target); int32_t updg = mcpl_hdr_universal_pdgcode(source); if (updg) mcpl_enable_universal_pdgcode(target,updg); double uw = mcpl_hdr_universal_weight(source); if (uw) mcpl_enable_universal_weight(target,uw); } int mcpl_closeandgzip_outfile_rc(mcpl_outfile_t of) { printf("MCPL WARNING: Usage of function mcpl_closeandgzip_outfile_rc is obsolete as" " mcpl_closeandgzip_outfile now also returns the status. Please update your code" " to use mcpl_closeandgzip_outfile instead.\n"); return mcpl_closeandgzip_outfile(of); } int mcpl_closeandgzip_outfile(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; char * filename = f->filename; f->filename = 0;//prevent free in mcpl_close_outfile mcpl_close_outfile(of); int rc = mcpl_gzip_file(filename); free(filename); return rc; } typedef struct { FILE * file; #ifdef MCPL_HASZLIB gzFile filegz; #else void * filegz; #endif char * hdr_srcprogname; unsigned format_version; int opt_userflags; int opt_polarisation; int opt_singleprec; int32_t opt_universalpdgcode; double opt_universalweight; int is_little_endian; uint64_t nparticles; uint32_t ncomments; char ** comments; uint32_t nblobs; char ** blobkeys; uint32_t * bloblengths; char ** blobs; unsigned particle_size; uint64_t first_particle_pos; uint64_t current_particle_idx; mcpl_particle_t* particle; unsigned opt_signature; char particle_buffer[MCPLIMP_MAX_PARTICLE_SIZE]; } mcpl_fileinternal_t; #define MCPLIMP_FILEDECODE mcpl_fileinternal_t * f = (mcpl_fileinternal_t *)ff.internal; assert(f) void mcpl_read_buffer(mcpl_fileinternal_t* f, unsigned* n, char ** buf, const char * errmsg) { size_t nb; #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, n, sizeof(*n)); else #endif nb = fread(n, 1, sizeof(*n), f->file); if (nb!=sizeof(*n)) mcpl_error(errmsg); *buf = (char*)calloc(*n,1); #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, *buf, *n); else #endif nb = fread(*buf, 1, *n, f->file); if (nb!=*n) mcpl_error(errmsg); } void mcpl_read_string(mcpl_fileinternal_t* f, char ** dest, const char* errmsg) { size_t nb; uint32_t n; #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, &n, sizeof(n)); else #endif nb = fread(&n, 1, sizeof(n), f->file); if (nb!=sizeof(n)) mcpl_error(errmsg); char * s = (char*)calloc(n+1,1); #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, s, n); else #endif nb = fread(s, 1, n, f->file); if (nb!=n) mcpl_error(errmsg); s[n] = '\0'; *dest = s; } mcpl_file_t mcpl_actual_open_file(const char * filename, int * repair_status) { int caller_is_mcpl_repair = *repair_status; *repair_status = 0;//file not broken if (!filename) mcpl_error("mcpl_open_file called with null string"); mcpl_platform_compatibility_check(); mcpl_file_t out; out.internal = 0; mcpl_fileinternal_t * f = (mcpl_fileinternal_t*)calloc(sizeof(mcpl_fileinternal_t),1); assert(f); //open file (with gzopen if filename ends with .gz): f->file = 0; f->filegz = 0; const char * lastdot = strrchr(filename, '.'); if (lastdot && strcmp(lastdot, ".gz") == 0) { #ifdef MCPL_HASZLIB f->filegz = gzopen(filename,"rb"); if (!f->filegz) mcpl_error("Unable to open file!"); #else mcpl_error("This installation of MCPL was not built with zlib support and can not read compressed (.gz) files directly."); #endif } else { f->file = fopen(filename,"rb"); if (!f->file) mcpl_error("Unable to open file!"); } //First read and check magic word, format version and endianness. unsigned char start[8];// = {'M','C','P','L','0','0','0','L'}; size_t nb; #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, start, sizeof(start)); else #endif nb = fread(start, 1, sizeof(start), f->file); if (nb>=4&&(start[0]!='M'||start[1]!='C'||start[2]!='P'||start[3]!='L')) mcpl_error("File is not an MCPL file!"); if (nb!=sizeof(start)) mcpl_error("Error while reading first bytes of file!"); f->format_version = (start[4]-'0')*100 + (start[5]-'0')*10 + (start[6]-'0'); if (f->format_version!=2&&f->format_version!=3) mcpl_error("File is in an unsupported MCPL version!"); f->is_little_endian = mcpl_platform_is_little_endian(); if (start[7]!=(f->is_little_endian?'L':'B')) { if (start[7]=='L'||start[7]=='B') mcpl_error("Endian-ness of current platform is different than the one used to write the file."); else mcpl_error("Unexpected value in endianness field!"); } //proceed reading header, knowing we have a consistent version and endian-ness. const char * errmsg = "Errors encountered while attempting to read header"; uint64_t np; #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, &np, sizeof(np)); else #endif nb = fread(&np, 1, sizeof(np), f->file); if (nb!=sizeof(np)) mcpl_error(errmsg); f->nparticles = np; uint32_t arr[8]; assert(sizeof(arr)==32); #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, arr, sizeof(arr)); else #endif nb=fread(arr, 1, sizeof(arr), f->file); if (nb!=sizeof(arr)) mcpl_error(errmsg); f->ncomments = arr[0]; f->nblobs = arr[1]; f->opt_userflags = arr[2]; f->opt_polarisation = arr[3]; f->opt_singleprec = arr[4]; f->opt_universalpdgcode = arr[5]; f->particle_size = arr[6];//We could check consistency here with the calculated value. assert(f->particle_size<=MCPLIMP_MAX_PARTICLE_SIZE); if (arr[7]) { //file has universal weight #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, (void*)&(f->opt_universalweight), sizeof(f->opt_universalweight)); else #endif nb=fread((void*)&(f->opt_universalweight), 1, sizeof(f->opt_universalweight), f->file); assert(nb==sizeof(f->opt_universalweight)); if (nb!=sizeof(f->opt_universalweight)) mcpl_error(errmsg); } f->opt_signature = 0 + 1 * f->opt_singleprec + 2 * f->opt_polarisation + 4 * f->opt_universalpdgcode + 8 * (f->opt_universalweight?1:0) + 16 * f->opt_userflags; //Then some strings: mcpl_read_string(f,&f->hdr_srcprogname,errmsg); f->comments = f->ncomments ? (char **)calloc(f->ncomments,sizeof(char*)) : 0; uint32_t i; for (i = 0; i < f->ncomments; ++i) mcpl_read_string(f,&(f->comments[i]),errmsg); f->blobkeys = 0; f->bloblengths = 0; f->blobs = 0; if (f->nblobs) { f->blobs = (char **)calloc(f->nblobs,sizeof(char*)); f->blobkeys = (char **)calloc(f->nblobs,sizeof(char*)); f->bloblengths = (uint32_t *)calloc(f->nblobs,sizeof(uint32_t)); for (i =0; i < f->nblobs; ++i) mcpl_read_string(f,&(f->blobkeys[i]),errmsg); for (i =0; i < f->nblobs; ++i) mcpl_read_buffer(f, &(f->bloblengths[i]), &(f->blobs[i]), errmsg); } f->particle = (mcpl_particle_t*)calloc(sizeof(mcpl_particle_t),1); //At first event now: f->current_particle_idx = 0; int64_t tellpos = -1; #ifdef MCPL_HASZLIB if (f->filegz) tellpos = gztell(f->filegz); else #endif tellpos = ftell(f->file); if (tellpos<0) mcpl_error(errmsg); f->first_particle_pos = tellpos; if ( f->nparticles==0 || caller_is_mcpl_repair ) { //Although empty files are permitted, it is possible that the file was never //closed properly (maybe the writing program ended prematurely). Let us //check to possibly recover usage of the file. If caller is mcpl_repair, we //always check since the file might have been truncated after it was first //closed properly. if (f->filegz) { //SEEK_END is not supported by zlib, and there is no reliable way to get //the input size. Thus, all we can do is to uncompress the whole thing, //which we won't since it might stall operations for a long time. But we //can at least try to check whether the file is indeed empty or not, and //give an error in the latter case: #ifdef MCPL_HASZLIB if (f->nparticles==0) { char testbuf[4]; nb = gzread(f->filegz, testbuf, sizeof(testbuf)); if (nb>0) { if (caller_is_mcpl_repair) { *repair_status = 1;//file broken but can't recover since gzip. } else { mcpl_error("Input file appears to not have been closed properly and data recovery is disabled for gzipped files."); } } } else { assert(caller_is_mcpl_repair); *repair_status = 2;//file brokenness can not be determined since gzip. } gzseek( f->filegz, f->first_particle_pos, SEEK_SET ); #endif } else { if (f->file && !fseek( f->file, 0, SEEK_END )) {//SEEK_END is not guaranteed to always work, so we fail our recovery attempt silently. int64_t endpos = ftell(f->file); if (endpos > (int64_t)f->first_particle_pos && (uint64_t)endpos != f->first_particle_pos) { uint64_t np = ( endpos - f->first_particle_pos ) / f->particle_size; if ( f->nparticles != np ) { if ( f->nparticles > 0 && np > f->nparticles ) { //should really not happen unless file was corrupted or file was //first closed properly and then something was appended to it. mcpl_error("Input file has invalid combination of meta-data & filesize."); } if (caller_is_mcpl_repair) { *repair_status = 3;//file broken and should be able to repair } else { assert(f->nparticles == 0); printf("MCPL WARNING: Input file appears to not have been closed properly. Recovered %" PRIu64 " particles.\n",np); } f->nparticles = np; } } } fseek( f->file, f->first_particle_pos, SEEK_SET );//if this fseek failed, it might just be that we are at EOF with no particles. } } out.internal = f; return out; } mcpl_file_t mcpl_open_file(const char * filename) { int repair_status = 0; return mcpl_actual_open_file(filename,&repair_status); } void mcpl_repair(const char * filename) { int repair_status = 1; mcpl_file_t f = mcpl_actual_open_file(filename,&repair_status); uint64_t nparticles = mcpl_hdr_nparticles(f); mcpl_close_file(f); if (repair_status==0) { mcpl_error("File does not appear to be broken."); } else if (repair_status==1) { mcpl_error("Input file is indeed broken, but must be gunzipped before it can be repaired."); } else if (repair_status==2) { mcpl_error("File must be gunzipped before it can be checked and possibly repaired."); } //Ok, we should repair the file by updating nparticles in the header: FILE * fh = fopen(filename,"rb+"); if (!fh) mcpl_error("Unable to open file in update mode!"); mcpl_update_nparticles(fh, nparticles); fclose(fh); //Verify that we fixed it: repair_status = 1; f = mcpl_actual_open_file(filename,&repair_status); uint64_t nparticles2 = mcpl_hdr_nparticles(f); mcpl_close_file(f); if (repair_status==0&&nparticles==nparticles2) { printf("MCPL: Succesfully repaired file with %" PRIu64 " particles.\n",nparticles); } else { mcpl_error("Something went wrong while attempting to repair file."); } } void mcpl_close_file(mcpl_file_t ff) { MCPLIMP_FILEDECODE; free(f->hdr_srcprogname); uint32_t i; for (i = 0; i < f->ncomments; ++i) free(f->comments[i]); free(f->comments); for (i = 0; i < f->nblobs; ++i) free(f->blobkeys[i]); for (i = 0; i < f->nblobs; ++i) free(f->blobs[i]); free(f->blobkeys); free(f->blobs); free(f->bloblengths); free(f->particle); #ifdef MCPL_HASZLIB if (f->filegz) gzclose(f->filegz); #endif if (f->file) fclose(f->file); free(f); } unsigned mcpl_hdr_version(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->format_version; } uint64_t mcpl_hdr_nparticles(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->nparticles; } unsigned mcpl_hdr_ncomments(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->ncomments; } const char * mcpl_hdr_comment(mcpl_file_t ff, unsigned i) { MCPLIMP_FILEDECODE; if (i>=f->ncomments) mcpl_error("Invalid comment requested (index out of bounds)"); return f->comments[i]; } int mcpl_hdr_nblobs(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->nblobs; } const char** mcpl_hdr_blobkeys(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return (const char**)f->blobkeys; } int mcpl_hdr_blob(mcpl_file_t ff, const char* key, uint32_t* ldata, const char ** data) { MCPLIMP_FILEDECODE; uint32_t i; for (i = 0; i < f->nblobs; ++i) { if (strcmp(f->blobkeys[i],key)==0) { *data = f->blobs[i]; *ldata = f->bloblengths[i]; return 1; } } *data = 0; *ldata = 0; return 0; } const char* mcpl_hdr_srcname(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->hdr_srcprogname; } int mcpl_hdr_has_userflags(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->opt_userflags; } int mcpl_hdr_has_polarisation(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->opt_polarisation; } int mcpl_hdr_has_doubleprec(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return !f->opt_singleprec; } const mcpl_particle_t* mcpl_read(mcpl_file_t ff) { MCPLIMP_FILEDECODE; f->current_particle_idx += 1; if ( f->current_particle_idx > f->nparticles ) { f->current_particle_idx = f->nparticles;//overflow guard return 0; } //read particle data: size_t nb; unsigned lbuf = f->particle_size; char * pbuf = &(f->particle_buffer[0]); #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, pbuf, lbuf); else #endif nb = fread(pbuf, 1, lbuf, f->file); if (nb!=lbuf) mcpl_error("Errors encountered while attempting to read particle data."); //Transfer to particle struct: unsigned ibuf = 0; mcpl_particle_t * p = f->particle; double pack_ekindir[3]; p->weight = f->opt_universalweight; int i; if (f->opt_singleprec) { if (f->opt_polarisation) { for (i=0;i<3;++i) { p->polarisation[i] = *(float*)&pbuf[ibuf]; ibuf += sizeof(float); } } else { for (i=0;i<3;++i) p->polarisation[i] = 0.0; } for (i=0;i<3;++i) { p->position[i] = *(float*)&pbuf[ibuf]; ibuf += sizeof(float); } for (i=0;i<3;++i) { pack_ekindir[i] = *(float*)&pbuf[ibuf]; ibuf += sizeof(float); } p->time = *(float*)&pbuf[ibuf]; ibuf += sizeof(float); if (!p->weight) { p->weight = *(float*)&pbuf[ibuf]; ibuf += sizeof(float); } } else { if (f->opt_polarisation) { for (i=0;i<3;++i) { p->polarisation[i] = *(double*)&pbuf[ibuf]; ibuf += sizeof(double); } } else { for (i=0;i<3;++i) p->polarisation[i] = 0.0; } for (i=0;i<3;++i) { p->position[i] = *(double*)&pbuf[ibuf]; ibuf += sizeof(double); } for (i=0;i<3;++i) { pack_ekindir[i] = *(double*)&pbuf[ibuf]; ibuf += sizeof(double); } p->time = *(double*)&pbuf[ibuf]; ibuf += sizeof(double); if (!p->weight) { p->weight = *(double*)&pbuf[ibuf]; ibuf += sizeof(double); } } if (f->opt_universalpdgcode) { p->pdgcode = f->opt_universalpdgcode; } else { p->pdgcode = *(int32_t*)&pbuf[ibuf]; ibuf += sizeof(int32_t); } if (f->opt_userflags) { p->userflags = *(uint32_t*)&pbuf[ibuf]; #ifndef NDEBUG ibuf += sizeof(uint32_t); #endif } else { f->opt_userflags = 0; } assert(ibuf==lbuf); //Unpack direction and ekin: if (f->format_version>=3) { p->ekin = fabs(pack_ekindir[2]); pack_ekindir[2] = copysign(1.0,pack_ekindir[2]); mcpl_unitvect_unpack_adaptproj(pack_ekindir,p->direction); } else { assert(f->format_version==2); mcpl_unitvect_unpack_oct(pack_ekindir,p->direction); p->ekin = pack_ekindir[2]; if (signbit(pack_ekindir[2])) { p->ekin = -p->ekin; p->direction[2] = 0.0; } } return p; } int mcpl_skipforward(mcpl_file_t ff,uint64_t n) { MCPLIMP_FILEDECODE; //increment, but guard against overflows: if ( n >= f->nparticles || f->current_particle_idx >= f->nparticles ) f->current_particle_idx = f->nparticles; else f->current_particle_idx += n; if ( f->current_particle_idx > f->nparticles ) f->current_particle_idx = f->nparticles; int notEOF = f->current_particle_idxnparticles; if (n==0) return notEOF; if (notEOF) { int error; #ifdef MCPL_HASZLIB if (f->filegz) { int64_t targetpos = f->current_particle_idx*f->particle_size+f->first_particle_pos; error = gzseek( f->filegz, targetpos, SEEK_SET )!=targetpos; } else #endif error = fseek( f->file, f->particle_size * n, SEEK_CUR )!=0; if (error) mcpl_error("Errors encountered while skipping in particle list"); } return notEOF; } int mcpl_rewind(mcpl_file_t ff) { MCPLIMP_FILEDECODE; int already_there = (f->current_particle_idx==0); f->current_particle_idx = 0; int notEOF = f->current_particle_idxnparticles; if (notEOF&&!already_there) { int error; #ifdef MCPL_HASZLIB if (f->filegz) { error = gzseek( f->filegz, f->first_particle_pos, SEEK_SET )!=(int64_t)f->first_particle_pos; } else #endif error = fseek( f->file, f->first_particle_pos, SEEK_SET )!=0; if (error) mcpl_error("Errors encountered while rewinding particle list"); } return notEOF; } int mcpl_seek(mcpl_file_t ff,uint64_t ipos) { MCPLIMP_FILEDECODE; int already_there = (f->current_particle_idx==ipos); f->current_particle_idx = (iposnparticles?ipos:f->nparticles); int notEOF = f->current_particle_idxnparticles; if (notEOF&&!already_there) { int error; #ifdef MCPL_HASZLIB if (f->filegz) { int64_t targetpos = f->current_particle_idx*f->particle_size+f->first_particle_pos; error = gzseek( f->filegz, targetpos, SEEK_SET )!=targetpos; } else #endif error = fseek( f->file, f->first_particle_pos + f->particle_size * ipos, SEEK_SET )!=0; if (error) mcpl_error("Errors encountered while seeking in particle list"); } return notEOF; } uint64_t mcpl_currentposition(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->current_particle_idx; } const char * mcpl_basename(const char * filename) { //portable "basename" which doesn't modify it's argument: const char * bn = strrchr(filename, '/'); return bn ? bn + 1 : filename; } int mcpl_hdr_particle_size(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->particle_size; } uint64_t mcpl_hdr_header_size(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->first_particle_pos; } int mcpl_hdr_universal_pdgcode(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->opt_universalpdgcode; } int mcpl_hdr_universel_pdgcode(mcpl_file_t ff) { printf("MCPL WARNING: Usage of function mcpl_hdr_universel_pdgcode is obsolete as it has" " been renamed to mcpl_hdr_universal_pdgcode. Please update your code.\n"); return mcpl_hdr_universal_pdgcode(ff); } double mcpl_hdr_universal_weight(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->opt_universalweight; } int mcpl_hdr_little_endian(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->is_little_endian; } void mcpl_transfer_last_read_particle(mcpl_file_t source, mcpl_outfile_t target) { mcpl_outfileinternal_t * ft = (mcpl_outfileinternal_t *)target.internal; assert(ft); mcpl_fileinternal_t * fs = (mcpl_fileinternal_t *)source.internal; assert(fs); if ( fs->current_particle_idx==0 && fs->particle->weight==0.0 && fs->particle->pdgcode==0 ) { mcpl_error("mcpl_transfer_last_read_particle called with source file in invalid state" " (did you forget to first call mcpl_read() on the source file before calling this function?)"); return; } //Sanity checks for universal fields here (but not in mcpl_add_particle since users are allowed to create files by setting just the universal fields): if ( ft->opt_universalpdgcode && fs->particle->pdgcode != ft->opt_universalpdgcode) { printf("MCPL ERROR: mcpl_transfer_last_read_particle asked to transfer particle with pdgcode %li into a file with universal pdgcode of %li\n", (long)fs->particle->pdgcode,(long)ft->opt_universalpdgcode); mcpl_error("mcpl_transfer_last_read_particle got incompatible pdgcode\n"); return; } if ( ft->opt_universalweight && fs->particle->weight != ft->opt_universalweight) { printf("MCPL ERROR: mcpl_transfer_last_read_particle asked to transfer particle with weight %g into a file with universal weight of %g\n", fs->particle->weight,ft->opt_universalweight); mcpl_error("mcpl_transfer_last_read_particle got incompatible weight\n"); return; } //NB: We don't sanity check that polarisation/userflags are enabled if present //in the input particle, since it is a valid use-case to use this function to //discard such info. if ( fs->format_version == 2 || ( fs->opt_singleprec && !ft->opt_singleprec ) ) { //source file is in old format with different unit vector packing, or the //floating point precision is increasing. In these scenarious we can not //reuse the 3 floats representing packed direction+ekin but must proceed via //a full unpacking+repacking. mcpl_add_particle(target,fs->particle); return; } if ( ft->opt_signature == fs->opt_signature ) { //Particle data is encoded in exactly the same manner in src and target (a //common scenario for many merge or extraction scenarios) -> simply transfer //the bytes and be done with it: assert(fs->particle_size==ft->particle_size); memcpy(ft->particle_buffer,fs->particle_buffer,fs->particle_size); mcpl_internal_write_particle_buffer_to_file(ft); return; } //The hard way - first serialise the source particle into the output buffer: mcpl_internal_serialise_particle_to_buffer( fs->particle, ft ); //If possible, override the 3 FP representing packed ekin+dir from the packing //in the source, thus avoiding potentially lossy unpacking+packing: size_t fpsize_target = ft->opt_singleprec ? sizeof(float) : sizeof(double); size_t idx_packekindir_target = (ft->opt_polarisation ? 6 : 3) * fpsize_target; size_t idx_packekindir_src = (fs->opt_polarisation ? 6 : 3) * fpsize_target; if (fs->opt_singleprec == ft->opt_singleprec) { memcpy( &(ft->particle_buffer[idx_packekindir_target]), &(fs->particle_buffer[idx_packekindir_src]), fpsize_target * 3); } else if ( ft->opt_singleprec && !fs->opt_singleprec ) { //For the case of double precision -> single precision, we can simply //perform a narrowing conversion: double * packekindir_src = (double*)&(fs->particle_buffer[idx_packekindir_src]); float * packekindir_target = (float*)&(ft->particle_buffer[idx_packekindir_target]); for (unsigned i = 0; i < 3; ++i) { packekindir_target[i] = (float)packekindir_src[i]; } } mcpl_internal_write_particle_buffer_to_file(ft); } void mcpl_dump_header(mcpl_file_t f) { printf("\n Basic info\n"); printf(" Format : MCPL-%i\n",mcpl_hdr_version(f)); printf(" No. of particles : %" PRIu64 "\n",mcpl_hdr_nparticles(f)); printf(" Header storage : %" PRIu64 " bytes\n",mcpl_hdr_header_size(f)); printf(" Data storage : %" PRIu64 " bytes\n",mcpl_hdr_nparticles(f)*mcpl_hdr_particle_size(f)); printf("\n Custom meta data\n"); printf(" Source : \"%s\"\n",mcpl_hdr_srcname(f)); unsigned nc=mcpl_hdr_ncomments(f); printf(" Number of comments : %i\n",nc); unsigned ic; for (ic = 0; ic < nc; ++ic) printf(" -> comment %i : \"%s\"\n",ic,mcpl_hdr_comment(f,ic)); unsigned nb = mcpl_hdr_nblobs(f); printf(" Number of blobs : %i\n",nb); const char** blobkeys = mcpl_hdr_blobkeys(f); uint32_t ib; for (ib = 0; ib < nb; ++ib) { const char * data; uint32_t ldata; int ok = mcpl_hdr_blob(f, blobkeys[ib], &ldata, &data); if (!ok) mcpl_error("Unexpected blob access error"); printf(" -> %lu bytes of data with key \"%s\"\n",(unsigned long)ldata,blobkeys[ib]); } printf("\n Particle data format\n"); printf(" User flags : %s\n",(mcpl_hdr_has_userflags(f)?"yes":"no")); printf(" Polarisation info : %s\n",(mcpl_hdr_has_polarisation(f)?"yes":"no")); printf(" Fixed part. type : "); int32_t updg = mcpl_hdr_universal_pdgcode(f); if (updg) printf("yes (pdgcode %li)\n",(long)updg); else printf("no\n"); printf(" Fixed part. weight : "); double uw = mcpl_hdr_universal_weight(f); if (uw) printf("yes (weight %g)\n",uw); else printf("no\n"); printf(" FP precision : %s\n",(mcpl_hdr_has_doubleprec(f)?"double":"single")); printf(" Endianness : %s\n",(mcpl_hdr_little_endian(f)?"little":"big")); printf(" Storage : %i bytes/particle\n",mcpl_hdr_particle_size(f)); printf("\n"); } //Not in the public interface, but perhaps it should be to allow custom //applications to apply custom filters and see the selected particles. For now, //we simply keep the function signature stable, allowing other code to access it //by forward declaring it themselves: void mcpl_dump_particles(mcpl_file_t f, uint64_t nskip, uint64_t nlimit, int(filter)(const mcpl_particle_t*)) { int has_uf = mcpl_hdr_has_userflags(f); int has_pol = mcpl_hdr_has_polarisation(f); double uweight = mcpl_hdr_universal_weight(f); printf("index pdgcode ekin[MeV] x[cm] y[cm] z[cm] ux uy uz time[ms]"); if (!uweight) printf(" weight"); if (has_pol) printf(" pol-x pol-y pol-z"); if (has_uf) printf(" userflags"); printf("\n"); mcpl_skipforward(f,nskip); uint64_t count = nlimit; const mcpl_particle_t* p; while((nlimit==0||count--)&&(p=mcpl_read(f))) { if (filter && !filter(p) ) { ++count; continue; } uint64_t idx = mcpl_currentposition(f)-1;//-1 since mcpl_read skipped ahead printf("%5" PRIu64 " %11i %11.5g %11.5g %11.5g %11.5g %11.5g %11.5g %11.5g %11.5g", idx, p->pdgcode, p->ekin, p->position[0], p->position[1], p->position[2], p->direction[0], p->direction[1], p->direction[2], p->time); if (!uweight) printf(" %11.5g",p->weight); if (has_pol) printf(" %11.5g %11.5g %11.5g",p->polarisation[0],p->polarisation[1],p->polarisation[2]); if (has_uf) printf(" 0x%08x",p->userflags); printf("\n"); } } void mcpl_dump(const char * filename, int parts, uint64_t nskip, uint64_t nlimit) { if (parts<0||parts>2) mcpl_error("mcpl_dump got forbidden value for argument parts"); mcpl_file_t f = mcpl_open_file(filename); printf("Opened MCPL file %s:\n",mcpl_basename(filename)); if (parts==0||parts==1) mcpl_dump_header(f); if (parts==0||parts==2) mcpl_dump_particles(f,nskip,nlimit,0); mcpl_close_file(f); } int mcpl_actual_can_merge(mcpl_file_t ff1, mcpl_file_t ff2) { mcpl_fileinternal_t * f1 = (mcpl_fileinternal_t *)ff1.internal; mcpl_fileinternal_t * f2 = (mcpl_fileinternal_t *)ff2.internal; assert(f1&&f2); if (f1->first_particle_pos!=f2->first_particle_pos) return 0;//different header //Note, we do not check the format_version field here, since mcpl_merge_files //can actually work on files with different versions. //Very strict checking of everything except nparticles. Even order of blobs //and comments must be preserved (could possibly be relaxed a bit): if (strcmp(f1->hdr_srcprogname,f2->hdr_srcprogname)!=0) return 0; if (f1->opt_userflags!=f2->opt_userflags) return 0; if (f1->opt_polarisation!=f2->opt_polarisation) return 0; if (f1->opt_singleprec!=f2->opt_singleprec) return 0; if (f1->opt_universalpdgcode!=f2->opt_universalpdgcode) return 0; if (f1->opt_universalweight!=f2->opt_universalweight) return 0; if (f1->is_little_endian!=f2->is_little_endian) return 0; if (f1->particle_size!=f2->particle_size) return 0; if (f1->ncomments!=f2->ncomments) return 0; if (f1->nblobs!=f2->nblobs) return 0; uint32_t i; for (i = 0; incomments; ++i) { if (strcmp(f1->comments[i],f2->comments[i])!=0) return 0; } for (i = 0; inblobs; ++i) { if (f1->bloblengths[i]!=f2->bloblengths[i]) return 0; if (strcmp(f1->blobkeys[i],f2->blobkeys[i])!=0) return 0; if (memcmp(f1->blobs[i],f2->blobs[i],f1->bloblengths[i])!=0) return 0; } return 1; } int mcpl_can_merge(const char * file1, const char* file2) { mcpl_file_t f1 = mcpl_open_file(file1); mcpl_file_t f2 = mcpl_open_file(file2); int can_merge = mcpl_actual_can_merge(f1,f2); mcpl_close_file(f1); mcpl_close_file(f2); return can_merge; } #ifdef MCPL_THIS_IS_UNIX # include #endif int mcpl_file_certainly_exists(const char * filename) { #if defined MCPL_THIS_IS_UNIX || defined MCPL_THIS_IS_MS if( access( filename, F_OK ) != -1 ) return 1; return 0; #else //esoteric platform without access(..). Try opening for reads: FILE *fd; if ((fd = fopen(filename, "r"))) { fclose(fd); return 1; } //non-existing or read access not allowed: return 0; #endif } #ifdef MCPL_THIS_IS_UNIX # include # include #endif void mcpl_warn_duplicates(unsigned n, const char ** filenames) { //Checks that no filenames in provided list represent the same file (the //detection is not 100% certain on non-POSIX platforms). If duplicates are //found, emit warning - it is assumed the function is called from //mcpl_merge_xxx on a user-provided list of files. //Since this is C, we resort to slow O(N^2) comparison for simplicity. if (n<2) return; #ifdef MCPL_THIS_IS_UNIX //Bullet proof(ish) way, (st_ino,st_dev) uniquely identifies a file on a system. dev_t * id_dev = (dev_t*)calloc(n*sizeof(dev_t),1); ino_t * id_ino = (ino_t*)calloc(n*sizeof(ino_t),1); unsigned i; for (i = 0; iparticle_size; //buffer for transferring up to 1000 particles at a time: const unsigned npbufsize = 1000; char * buf = (char*)malloc(npbufsize*particle_size); uint64_t np_remaining = nparticles; while(np_remaining) { //NB: On linux > 2.6.33 we could use sendfile for more efficient in-kernel //transfer of data between two files! uint64_t toread = np_remaining >= npbufsize ? npbufsize : np_remaining; np_remaining -= toread; //read: size_t nb; #ifdef MCPL_HASZLIB if (fi->filegz) nb = gzread(fi->filegz, buf, toread*particle_size); else #endif nb = fread(buf,1,toread*particle_size,fi->file); if (nb!=toread*particle_size) mcpl_error("Unexpected read-error while merging"); //write: nb = fwrite(buf,1,toread*particle_size,fo); if (nb!=toread*particle_size) mcpl_error("Unexpected write-error while merging"); } free(buf); } mcpl_outfile_t mcpl_forcemerge_files( const char * file_output, unsigned nfiles, const char ** files, int keep_userflags ) { //////////////////////////////////// // Initial sanity check of input: // //////////////////////////////////// if (!nfiles) mcpl_error("mcpl_forcemerge_files must be called with at least one input file"); //Warn user if they are merging a file with itself: mcpl_warn_duplicates(nfiles,files); //Create new file: if (mcpl_file_certainly_exists(file_output)) mcpl_error("requested output file of mcpl_forcemerge_files already exists"); /////////////////////////////////////////// // Fallback to normal merge if possible: // /////////////////////////////////////////// //Check all files for compatibility before we start (for robustness, we check //again when actually merging each file). unsigned ifile; int normal_merge_ok = 1; for (ifile = 1; ifile < nfiles; ++ifile) { if (!mcpl_can_merge(files[0],files[ifile])) { normal_merge_ok = 0; break; } } if (normal_merge_ok) { printf("MCPL mcpl_forcemerge_files called with %i files that are compatible for a standard merge => falling back to standard mcpl_merge_files function\n",nfiles); return mcpl_merge_files(file_output,nfiles,files); } ///////////////////////////// // Actual forcemerge code: // ///////////////////////////// //Run through files and collect meta-data: int opt_dp = 0; int opt_pol = 0; int opt_uf = 0; int lastseen_universalpdg = 0; int disallow_universalpdg = 0; double lastseen_universalweight = 0; int disallow_universalweight = 0; for (ifile = 0; ifile < nfiles; ++ifile) { mcpl_file_t f = mcpl_open_file(files[ifile]); if (!mcpl_hdr_nparticles(f)) { mcpl_close_file(f); continue;//won't affect anything } if (mcpl_hdr_has_userflags(f)) opt_uf = 1;//enable if any if (mcpl_hdr_has_polarisation(f)) opt_pol = 1;//enable if any if (mcpl_hdr_has_doubleprec(f)) opt_dp = 1; int32_t updg = mcpl_hdr_universal_pdgcode(f); if ( !updg || ( lastseen_universalpdg && lastseen_universalpdg != updg ) ) { disallow_universalpdg = 1; } else { lastseen_universalpdg = updg; } double uw = mcpl_hdr_universal_weight(f); if ( !uw || ( lastseen_universalweight && lastseen_universalweight != uw ) ) { disallow_universalweight = 1; } else { lastseen_universalweight = uw; } mcpl_close_file(f); } if (!keep_userflags) opt_uf = 0; mcpl_outfile_t out = mcpl_create_outfile(file_output); mcpl_hdr_set_srcname(out,"mcpl_forcemerge_files (from MCPL v" MCPL_VERSION_STR ")"); if ( opt_uf ) mcpl_enable_userflags(out); if ( opt_pol ) mcpl_enable_polarisation(out); if (opt_dp) mcpl_enable_doubleprec(out); if ( !disallow_universalpdg && lastseen_universalpdg ) mcpl_enable_universal_pdgcode(out,lastseen_universalpdg); if ( !disallow_universalweight && lastseen_universalweight ) mcpl_enable_universal_weight(out,lastseen_universalweight); //Finally, perform the transfer: for (ifile = 0; ifile < nfiles; ++ifile) { mcpl_file_t f = mcpl_open_file(files[ifile]); uint64_t np = mcpl_hdr_nparticles(f); printf("MCPL force-merge: Transferring %" PRIu64 " particle%s from file %s\n",np,(np==1?"":"s"),files[ifile]); const mcpl_particle_t* particle; while ( ( particle = mcpl_read(f) ) ) mcpl_transfer_last_read_particle(f, out);//lossless transfer when possible mcpl_close_file(f); } mcpl_outfileinternal_t * out_internal = (mcpl_outfileinternal_t *)out.internal; uint64_t np = out_internal->nparticles; printf("MCPL force-merge: Transferred a total of %" PRIu64 " particle%s to new file %s\n",np,(np==1?"":"s"),file_output); return out; } mcpl_outfile_t mcpl_merge_files( const char* file_output, unsigned nfiles, const char ** files ) { mcpl_outfile_t out; out.internal = 0; if (!nfiles) mcpl_error("mcpl_merge_files must be called with at least one input file"); //Check all files for compatibility before we start (for robustness, we check //again when actually merging each file). unsigned ifile; for (ifile = 1; ifile < nfiles; ++ifile) { if (!mcpl_can_merge(files[0],files[ifile])) mcpl_error("Attempting to merge incompatible files."); } //Warn user if they are merging a file with itself: mcpl_warn_duplicates(nfiles,files); //Create new file: if (mcpl_file_certainly_exists(file_output)) mcpl_error("requested output file of mcpl_merge_files already exists"); out = mcpl_create_outfile(file_output); mcpl_outfileinternal_t * out_internal = (mcpl_outfileinternal_t *)out.internal; mcpl_file_t f1; f1.internal = 0; int warned_oldversion = 0; for (ifile = 0; ifile < nfiles; ++ifile) { mcpl_file_t fi = mcpl_open_file(files[ifile]); if (ifile==0) { //Add metadata from the first file: mcpl_transfer_metadata(fi, out); if (out_internal->header_notwritten) mcpl_write_header(out_internal); f1 = fi; } else { //Check file is still compatible with first file if (!mcpl_actual_can_merge(f1,fi)) mcpl_error("Aborting merge of suddenly incompatible files."); } //Transfer particle contents: if (mcpl_hdr_version(fi)==MCPL_FORMATVERSION) { //Can transfer raw bytes: uint64_t npi = mcpl_hdr_nparticles(fi); mcpl_transfer_particle_contents(out_internal->file, fi, npi); out_internal->nparticles += npi; } else { //Merging from older version. Transfer via public interface to re-encode //particle data for latest format: if (!warned_oldversion) { warned_oldversion = 1; printf("MCPL WARNING: Merging files from older MCPL format. Output will be in latest format.\n"); } const mcpl_particle_t* particle; while ( ( particle = mcpl_read(fi) ) ) mcpl_add_particle(out,particle); } if (ifile!=0) mcpl_close_file(fi); } mcpl_close_file(f1); return out; } void mcpl_merge(const char * file1, const char* file2) { printf("MCPL WARNING: Usage of function mcpl_merge is obsolete as it has" " been renamed to mcpl_merge_inplace. Please update your code.\n"); mcpl_merge_inplace(file1, file2); } void mcpl_merge_inplace(const char * file1, const char* file2) { mcpl_file_t ff1 = mcpl_open_file(file1); mcpl_file_t ff2 = mcpl_open_file(file2); int can_merge = mcpl_actual_can_merge(ff1,ff2); if (!can_merge) { mcpl_close_file(ff1); mcpl_close_file(ff2); mcpl_error("Attempting to merge incompatible files"); } //Warn user if they are merging a file with itself: const char * filelist[2]; filelist[0] = file1; filelist[1] = file2; mcpl_warn_duplicates(2,filelist); //Access internals: mcpl_fileinternal_t * f1 = (mcpl_fileinternal_t *)ff1.internal; mcpl_fileinternal_t * f2 = (mcpl_fileinternal_t *)ff2.internal; assert(f1&&f2); if (f1->format_version!=f2->format_version) { mcpl_close_file(ff1); mcpl_close_file(ff2); mcpl_error("Attempting to merge incompatible files (can not mix MCPL format versions when merging inplace)"); } if (f1->filegz) { mcpl_close_file(ff1); mcpl_close_file(ff2); mcpl_error("direct modification of gzipped files is not supported."); } uint64_t np1 = f1->nparticles; uint64_t np2 = f2->nparticles; if (!np2) return;//nothing to take from file 2. unsigned particle_size = f1->particle_size; uint64_t first_particle_pos = f1->first_particle_pos; //Should be same since can_merge: assert(particle_size==f2->particle_size); assert(first_particle_pos==f2->first_particle_pos); //Now, close file1 and reopen a file handle in append mode: mcpl_close_file(ff1); FILE * f1a = fopen(file1,"rb+"); //Update file positions. Note that f2->file is already at the position for the //first particle and that the seek operation on f1a correctly discards any //partial entries at the end, which could be there if the file was in need of //mcpl_repair: if (!f1a) mcpl_error("Unable to open file1 in update mode!"); if (fseek( f1a, first_particle_pos + particle_size*np1, SEEK_SET )) mcpl_error("Unable to seek to end of file1 in update mode"); //Transfer particle contents, setting nparticles to 0 during the operation (so //the file appears broken and in need of mcpl_repair in case of errors during //the transfer): mcpl_update_nparticles(f1a,0); mcpl_transfer_particle_contents(f1a, ff2, np2); mcpl_update_nparticles(f1a,np1+np2); //Finish up. mcpl_close_file(ff2); fclose(f1a); } #define MCPLIMP_TOOL_DEFAULT_NLIMIT 10 #define MCPLIMP_TOOL_DEFAULT_NSKIP 0 int mcpl_tool_usage( char** argv, const char * errmsg ) { if (errmsg) { printf("ERROR: %s\n\n",errmsg); printf("Run with -h or --help for usage information\n"); return 1; } const char * progname = mcpl_basename(argv[0]); printf("Tool for inspecting or modifying Monte Carlo Particle List (.mcpl) files.\n"); printf("\n"); printf("The default behaviour is to display the contents of the FILE in human readable\n"); printf("format (see Dump Options below for how to modify what is displayed).\n"); printf("\n"); #ifdef MCPL_HASZLIB printf("This installation supports direct reading of gzipped files (.mcpl.gz).\n"); printf("\n"); #endif printf("Usage:\n"); printf(" %s [dump-options] FILE\n",progname); printf(" %s --merge [merge-options] FILE1 FILE2\n",progname); printf(" %s --extract [extract-options] FILE1 FILE2\n",progname); printf(" %s --repair FILE\n",progname); printf(" %s --version\n",progname); printf(" %s --help\n",progname); printf("\n"); printf("Dump options:\n"); printf(" By default include the info in the FILE header plus the first ten contained\n"); printf(" particles. Modify with the following options:\n"); assert(MCPLIMP_TOOL_DEFAULT_NLIMIT==10); printf(" -j, --justhead : Dump just header info and no particle info.\n"); printf(" -n, --nohead : Dump just particle info and no header info.\n"); printf(" -lN : Dump up to N particles from the file (default %i). You\n",MCPLIMP_TOOL_DEFAULT_NLIMIT); printf(" can specify -l0 to disable this limit.\n"); printf(" -sN : Skip past the first N particles in the file (default %i).\n",MCPLIMP_TOOL_DEFAULT_NSKIP); printf(" -bKEY : Dump binary blob stored under KEY to standard output.\n"); printf("\n"); printf("Merge options:\n"); printf(" -m, --merge FILEOUT FILE1 FILE2 ... FILEN\n"); printf(" Creates new FILEOUT with combined particle contents from\n"); printf(" specified list of N existing and compatible files.\n"); printf(" -m, --merge --inplace FILE1 FILE2 ... FILEN\n"); printf(" Appends the particle contents in FILE2 ... FILEN into\n"); printf(" FILE1. Note that this action modifies FILE1!\n"); printf(" --forcemerge [--keepuserflags] FILEOUT FILE1 FILE2 ... FILEN\n"); printf(" Like --merge but works with incompatible files as well, at the\n"); printf(" heavy price of discarding most metadata like comments and blobs.\n"); printf(" Userflags will be discarded unless --keepuserflags is specified.\n"); printf("\n"); printf("Extract options:\n"); printf(" -e, --extract FILE1 FILE2\n"); printf(" Extracts particles from FILE1 into a new FILE2.\n"); printf(" -lN, -sN : Select range of particles in FILE1 (as above).\n"); printf(" -pPDGCODE : select particles of type given by PDGCODE.\n"); printf("\n"); printf("Other options:\n"); printf(" -r, --repair FILE\n"); printf(" Attempt to repair FILE which was not properly closed, by up-\n"); printf(" dating the file header with the correct number of particles.\n"); printf(" -t, --text MCPLFILE OUTFILE\n"); printf(" Read particle contents of MCPLFILE and write into OUTFILE\n"); printf(" using a simple ASCII-based format.\n"); printf(" -v, --version : Display version of MCPL installation.\n"); printf(" -h, --help : Display this usage information (ignores all other options).\n"); return 0; } int mcpl_str2int(const char* str, size_t len, int64_t* res) { //portable 64bit str2int with error checking (only INT64_MIN might not be //possible to specify). *res = 0; if (!len) len=strlen(str); if (!len) return 0; int sign = 1; if (str[0]=='-') { sign = -1; len -= 1; str += 1; } int64_t tmp = 0; size_t i; for (i=0; i'9') { return 0; } int64_t prev = tmp; tmp *= 10; tmp += str[i] - '0'; if (prev>=tmp) return 1;//overflow (hopefully it did not trigger a signal or FPE) } *res = sign * tmp; return 1; } int mcpl_tool(int argc,char** argv) { int nfilenames = 0; char ** filenames = 0; const char * blobkey = 0; const char * pdgcode_str = 0; int opt_justhead = 0; int opt_nohead = 0; int64_t opt_num_limit = -1; int64_t opt_num_skip = -1; int opt_merge = 0; int opt_forcemerge = 0; int opt_keepuserflags = 0; int opt_inplace = 0; int opt_extract = 0; int opt_preventcomment = 0;//undocumented unoffical flag for mcpl unit tests int opt_repair = 0; int opt_version = 0; int opt_text = 0; int i; for (i = 1; i=2&&a[0]=='-'&&a[1]!='-') { //short options: int64_t * consume_digit = 0; size_t j; for (j=1; j'9') return free(filenames),mcpl_tool_usage(argv,"Bad option: expected number"); *consume_digit *= 10; *consume_digit += a[j] - '0'; continue; } if (a[j]=='b') { if (blobkey) return free(filenames),mcpl_tool_usage(argv,"-b specified more than once"); if (j+1==n) return free(filenames),mcpl_tool_usage(argv,"Missing argument for -b"); blobkey = a+j+1; break; } if (a[j]=='p') { if (pdgcode_str) return free(filenames),mcpl_tool_usage(argv,"-p specified more than once"); if (j+1==n) return free(filenames),mcpl_tool_usage(argv,"Missing argument for -p"); pdgcode_str = a+j+1; break; } switch(a[j]) { case 'h': return free(filenames), mcpl_tool_usage(argv,0); case 'j': opt_justhead = 1; break; case 'n': opt_nohead = 1; break; case 'm': opt_merge = 1; break; case 'e': opt_extract = 1; break; case 'r': opt_repair = 1; break; case 'v': opt_version = 1; break; case 't': opt_text = 1; break; case 'l': consume_digit = &opt_num_limit; break; case 's': consume_digit = &opt_num_skip; break; default: return free(filenames),mcpl_tool_usage(argv,"Unrecognised option"); } if (consume_digit) { *consume_digit = 0; if (j+1==n) return free(filenames),mcpl_tool_usage(argv,"Bad option: missing number"); } } } else if (n>=3&&a[0]=='-'&&a[1]=='-') { a+=2; //long options: const char * lo_help = "help"; const char * lo_justhead = "justhead"; const char * lo_nohead = "nohead"; const char * lo_merge = "merge"; const char * lo_inplace = "inplace"; const char * lo_extract = "extract"; const char * lo_preventcomment = "preventcomment"; const char * lo_repair = "repair"; const char * lo_version = "version"; const char * lo_text = "text"; const char * lo_forcemerge = "forcemerge"; const char * lo_keepuserflags = "keepuserflags"; //Use strstr instead of "strcmp(a,"--help")==0" to support shortened //versions (works since all our long-opts start with unique char). if (strstr(lo_help,a)==lo_help) return free(filenames), mcpl_tool_usage(argv,0); else if (strstr(lo_justhead,a)==lo_justhead) opt_justhead = 1; else if (strstr(lo_nohead,a)==lo_nohead) opt_nohead = 1; else if (strstr(lo_merge,a)==lo_merge) opt_merge = 1; else if (strstr(lo_forcemerge,a)==lo_forcemerge) opt_forcemerge = 1; else if (strstr(lo_keepuserflags,a)==lo_keepuserflags) opt_keepuserflags = 1; else if (strstr(lo_inplace,a)==lo_inplace) opt_inplace = 1; else if (strstr(lo_extract,a)==lo_extract) opt_extract = 1; else if (strstr(lo_repair,a)==lo_repair) opt_repair = 1; else if (strstr(lo_version,a)==lo_version) opt_version = 1; else if (strstr(lo_preventcomment,a)==lo_preventcomment) opt_preventcomment = 1; else if (strstr(lo_text,a)==lo_text) opt_text = 1; else return free(filenames),mcpl_tool_usage(argv,"Unrecognised option"); } else if (n>=1&&a[0]!='-') { //input file if (!filenames) filenames = (char **)calloc(argc,sizeof(char*)); filenames[nfilenames] = a; ++nfilenames; } else { return free(filenames),mcpl_tool_usage(argv,"Bad arguments"); } } if ( opt_extract==0 && pdgcode_str ) return free(filenames),mcpl_tool_usage(argv,"-p can only be used with --extract."); if ( opt_merge==0 && opt_inplace!=0 ) return free(filenames),mcpl_tool_usage(argv,"--inplace can only be used with --merge."); if ( opt_forcemerge==0 && opt_keepuserflags!=0 ) return free(filenames),mcpl_tool_usage(argv,"--keepuserflags can only be used with --forcemerge."); if ( opt_merge!=0 && opt_forcemerge!=0 ) return free(filenames),mcpl_tool_usage(argv,"--merge and --forcemerge can not both be specified ."); int number_dumpopts = (opt_justhead + opt_nohead + (blobkey!=0)); if (opt_extract==0) number_dumpopts += (opt_num_limit!=-1) + (opt_num_skip!=-1); int any_dumpopts = number_dumpopts != 0; int any_extractopts = (opt_extract!=0||pdgcode_str!=0); int any_mergeopts = (opt_merge!=0||opt_forcemerge!=0); int any_textopts = (opt_text!=0); if (any_dumpopts+any_mergeopts+any_extractopts+any_textopts+opt_repair+opt_version>1) return free(filenames),mcpl_tool_usage(argv,"Conflicting options specified."); if (blobkey&&(number_dumpopts>1)) return free(filenames),mcpl_tool_usage(argv,"Do not specify other dump options with -b."); if (opt_version) { free(filenames); if (nfilenames) return mcpl_tool_usage(argv,"Unrecognised arguments for --version."); printf("MCPL version " MCPL_VERSION_STR "\n"); return 0; } if (any_mergeopts) { if (nfilenames<2) return free(filenames),mcpl_tool_usage(argv, (opt_forcemerge?"Too few arguments for --forcemerge.":"Too few arguments for --merge.") ); int ifirstinfile = (opt_inplace ? 0 : 1); if (!opt_forcemerge) { for (i = ifirstinfile+1; i < nfilenames; ++i) if (!mcpl_can_merge(filenames[ifirstinfile],filenames[i])) return free(filenames),mcpl_tool_usage(argv,"Requested files are incompatible for merge as they have different header info."); } if (opt_inplace) { assert( !opt_forcemerge && opt_merge ); for (i = ifirstinfile+1; i < nfilenames; ++i) mcpl_merge_inplace(filenames[ifirstinfile],filenames[i]); } else { if (mcpl_file_certainly_exists(filenames[0])) return free(filenames),mcpl_tool_usage(argv,"Requested output file already exists."); //Disallow .gz endings unless it is .mcpl.gz, in which case we attempt to gzip automatically. char * outfn = filenames[0]; size_t lfn = strlen(outfn); int attempt_gzip = 0; if( lfn > 8 && !strcmp(outfn + (lfn - 8), ".mcpl.gz")) { attempt_gzip = 1; outfn = (char*)malloc(lfn+1); outfn[0] = '\0'; strcat(outfn,filenames[0]); outfn[lfn-3] = '\0'; if (mcpl_file_certainly_exists(outfn)) return free(filenames),mcpl_tool_usage(argv,"Requested output file already exists (without .gz extension)."); } else if( lfn > 3 && !strcmp(outfn + (lfn - 3), ".gz")) { return free(filenames),mcpl_tool_usage(argv,"Requested output file should not have .gz extension (unless it is .mcpl.gz)."); } mcpl_outfile_t mf = ( opt_forcemerge ? mcpl_forcemerge_files( outfn, nfilenames-1, (const char**)filenames + 1, opt_keepuserflags) : mcpl_merge_files( outfn, nfilenames-1, (const char**)filenames + 1) ); if (attempt_gzip) { if (!mcpl_closeandgzip_outfile(mf)) printf("MCPL WARNING: Failed to gzip output. Non-gzipped output is found in %s\n",outfn); } else { mcpl_close_outfile(mf); } if (outfn != filenames[0]) free(outfn); } free(filenames); return 0; } if (opt_extract) { if (nfilenames>2) return free(filenames),mcpl_tool_usage(argv,"Too many arguments."); if (nfilenames!=2) return free(filenames),mcpl_tool_usage(argv,"Must specify both input and output files with --extract."); if (mcpl_file_certainly_exists(filenames[1])) return free(filenames),mcpl_tool_usage(argv,"Requested output file already exists."); mcpl_file_t fi = mcpl_open_file(filenames[0]); mcpl_outfile_t fo = mcpl_create_outfile(filenames[1]); mcpl_transfer_metadata(fi, fo); uint64_t fi_nparticles = mcpl_hdr_nparticles(fi); if (!opt_preventcomment) { char comment[1024]; sprintf(comment, "mcpltool: extracted particles from file with %" PRIu64 " particles",fi_nparticles); mcpl_hdr_add_comment(fo,comment); } int32_t pdgcode_select = 0; if (pdgcode_str) { int64_t pdgcode64; if (!mcpl_str2int(pdgcode_str, 0, &pdgcode64) || pdgcode64<-2147483648 || pdgcode64>2147483647 || !pdgcode64) return free(filenames),mcpl_tool_usage(argv,"Must specify non-zero 32bit integer as argument to -p."); pdgcode_select = (int32_t)pdgcode64; } if (opt_num_skip>0) mcpl_seek(fi,(uint64_t)opt_num_skip); //uint64_t(-1) instead of UINT64_MAX to fix clang c++98 compilation uint64_t left = opt_num_limit>0 ? (uint64_t)opt_num_limit : (uint64_t)-1; uint64_t added = 0; const mcpl_particle_t* particle; while ( left-- && ( particle = mcpl_read(fi) ) ) { if (pdgcode_select && pdgcode_select!= particle->pdgcode) continue; mcpl_transfer_last_read_particle(fi, fo);//Doing mcpl_add_particle(fo,particle) is potentially (very rarely) lossy ++added; } char *fo_filename = (char*)malloc(strlen(mcpl_outfile_filename(fo))+4); fo_filename[0] = '\0'; strcat(fo_filename,mcpl_outfile_filename(fo)); if (mcpl_closeandgzip_outfile(fo)) strcat(fo_filename,".gz"); mcpl_close_file(fi); printf("MCPL: Succesfully extracted %" PRIu64 " / %" PRIu64 " particles from %s into %s\n", added,fi_nparticles,filenames[0],fo_filename); free(fo_filename); free(filenames); return 0; } if (opt_text) { if (nfilenames>2) return free(filenames),mcpl_tool_usage(argv,"Too many arguments."); if (nfilenames!=2) return free(filenames),mcpl_tool_usage(argv,"Must specify both input and output files with --text."); if (mcpl_file_certainly_exists(filenames[1])) return free(filenames),mcpl_tool_usage(argv,"Requested output file already exists."); mcpl_file_t fi = mcpl_open_file(filenames[0]); FILE * fout = fopen(filenames[1],"w"); if (!fout) return free(filenames),mcpl_tool_usage(argv,"Could not open output file."); fprintf(fout,"#MCPL-ASCII\n#ASCII-FORMAT: v1\n#NPARTICLES: %" PRIu64 "\n#END-HEADER\n",mcpl_hdr_nparticles(fi)); fprintf(fout,"index pdgcode ekin[MeV] x[cm] " " y[cm] z[cm] ux " " uy uz time[ms] weight " " pol-x pol-y pol-z userflags\n"); const mcpl_particle_t* p; while ( ( p = mcpl_read(fi) ) ) { uint64_t idx = mcpl_currentposition(fi)-1;//-1 since mcpl_read skipped ahead fprintf(fout,"%5" PRIu64 " %11i %23.18g %23.18g %23.18g %23.18g %23.18g %23.18g %23.18g %23.18g %23.18g" " %23.18g %23.18g %23.18g 0x%08x\n", idx,p->pdgcode,p->ekin,p->position[0],p->position[1],p->position[2], p->direction[0],p->direction[1],p->direction[2],p->time,p->weight, p->polarisation[0],p->polarisation[1],p->polarisation[2],p->userflags); } fclose(fout); mcpl_close_file(fi); free(filenames); return 0; } if (nfilenames>1) return free(filenames),mcpl_tool_usage(argv,"Too many arguments."); if (!nfilenames) return free(filenames),mcpl_tool_usage(argv,"No input file specified"); if (opt_repair) { mcpl_repair(filenames[0]); free(filenames); return 0; } //Dump mode: if (blobkey) { mcpl_file_t mcplfile = mcpl_open_file(filenames[0]); uint32_t ldata; const char * data; if (!mcpl_hdr_blob(mcplfile, blobkey, &ldata, &data)) return 1; #ifdef MCPL_THIS_IS_MS setmode(STDOUT_FILENO, O_BINARY); #endif uint32_t nb = write(STDOUT_FILENO,data,ldata); if (nb!=ldata) mcpl_error("Problems writing to stdout"); free(filenames); return 0; } if (opt_justhead&&(opt_num_limit!=-1||opt_num_skip!=-1)) return free(filenames),mcpl_tool_usage(argv,"Do not specify -l or -s with --justhead"); if (opt_num_limit<0) opt_num_limit = MCPLIMP_TOOL_DEFAULT_NLIMIT; if (opt_num_skip<0) opt_num_skip = MCPLIMP_TOOL_DEFAULT_NSKIP; if (opt_justhead&&opt_nohead) return free(filenames),mcpl_tool_usage(argv,"Do not supply both --justhead and --nohead."); int parts = 0; if (opt_nohead) parts=2; else if (opt_justhead) parts=1; mcpl_dump(filenames[0],parts,opt_num_skip,opt_num_limit); free(filenames); return 0; } int mcpl_gzip_file_rc(const char * filename) { printf("MCPL WARNING: Usage of function mcpl_gzip_file_rc is obsolete as" " mcpl_gzip_file now also returns the status. Please update your code" " to use mcpl_gzip_file instead.\n"); return mcpl_gzip_file(filename); } #if defined(MCPL_HASZLIB) && !defined(Z_SOLO) && !defined(MCPL_NO_CUSTOM_GZIP) # define MCPLIMP_HAS_CUSTOM_GZIP int _mcpl_custom_gzip(const char *file, const char *mode);//return 1 if successful, 0 if not #endif #if defined MCPL_THIS_IS_UNIX && !defined(MCPL_NO_EXT_GZIP) //Platform is unix-like enough that we assume gzip is installed and we can //include posix headers. # include # include # include int mcpl_gzip_file(const char * filename) { const char * bn = strrchr(filename, '/'); bn = bn ? bn + 1 : filename; //spawn process in which to perform gzip: printf("MCPL: Attempting to compress file %s with gzip\n",bn); fflush(0); pid_t gzip_pid = fork(); if (gzip_pid) { //main proc int chld_state = 0; pid_t ret = waitpid(gzip_pid,&chld_state,0); if (ret!=gzip_pid||chld_state!=0) { # ifdef MCPLIMP_HAS_CUSTOM_GZIP printf("MCPL WARNING: Problems invoking gzip - will revert to a custom zlib based compression\n"); if (!_mcpl_custom_gzip(filename,"wb")) mcpl_error("Problems encountered while attempting to compress file"); else printf("MCPL: Succesfully compressed file into %s.gz\n",bn); # else mcpl_error("Problems encountered while attempting to invoke gzip"); # endif } else printf("MCPL: Succesfully compressed file into %s.gz\n",bn); } else { //spawned proc in which to invoke gzip execlp("gzip", "gzip", "-f",filename, (char*)0); printf("MCPL: execlp/gzip error: %s\n",strerror(errno)); exit(1); } return 1; } #else //Non unix-y platform (like windows). We could use e.g. windows-specific calls //instead of the fork() and waitpid() used above, but gzip likely not present on //the system anyway, so we either resort to using zlib directly to gzip, or we //disable the feature and print a warning. # ifndef MCPLIMP_HAS_CUSTOM_GZIP int mcpl_gzip_file(const char * filename) { const char * bn = strrchr(filename, '/'); bn = bn ? bn + 1 : filename; printf("MCPL WARNING: Requested compression of %s to %s.gz is not supported in this build.\n",bn,bn); return 0; } # else int mcpl_gzip_file(const char * filename) { const char * bn = strrchr(filename, '/'); bn = bn ? bn + 1 : filename; printf("MCPL: Attempting to compress file %s with zlib\n",bn); if (!_mcpl_custom_gzip(filename,"wb")) printf("MCPL ERROR: Problems encountered while compressing file %s.\n",bn); else printf("MCPL: Succesfully compressed file into %s.gz\n",bn); return 1; } # endif #endif #ifdef MCPLIMP_HAS_CUSTOM_GZIP int _mcpl_custom_gzip(const char *filename, const char *mode) { //Open input file: FILE *handle_in = fopen(filename, "rb"); if (!handle_in) return 0; //Construct output file name by appending .gz: char * outfn = (char*)malloc(strlen(filename) + 4); outfn[0] = '\0'; strcat(outfn,filename); strcat(outfn,".gz"); //Open output file: gzFile handle_out = gzopen(outfn, mode); free(outfn); if (!handle_out) { fclose(handle_in); return 0; } //Compress input to output: char buf[16384]; size_t len; while (1) { len = (int)fread(buf, 1, sizeof(buf), handle_in); if (ferror(handle_in)) return 0; if (!len) break; if ((size_t)gzwrite(handle_out, buf, (unsigned)len) != len) return 0; } //close file: fclose(handle_in); if (gzclose(handle_out) != Z_OK) return 0; //remove input file and return success: unlink(filename); return 1; } #endif #ifdef NAME # undef NAME #endif /* START OF DUMP OF mz_uncompr.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* uncompr.c -- decompress a memory buffer * Copyright (C) 1995-2003, 2010 Jean-loup Gailly. * For conditions of distribution and use, see copyright notice in zlib.h */ /* @(#) $Id$ */ #define ZLIB_INTERNAL /* =========================================================================== Decompresses the source buffer into the destination buffer. sourceLen is the byte length of the source buffer. Upon entry, destLen is the total size of the destination buffer, which must be large enough to hold the entire uncompressed data. (The size of the uncompressed data must have been saved previously by the compressor and transmitted to the decompressor by some mechanism outside the scope of this compression library.) Upon exit, destLen is the actual size of the compressed buffer. uncompress returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if there was not enough room in the output buffer, or Z_DATA_ERROR if the input data was corrupted. */ int ZEXPORT uncompress (dest, destLen, source, sourceLen) Bytef *dest; uLongf *destLen; const Bytef *source; uLong sourceLen; { z_stream stream; int err; stream.next_in = (z_const Bytef *)source; stream.avail_in = (uInt)sourceLen; /* Check for source > 64K on 16-bit machine: */ if ((uLong)stream.avail_in != sourceLen) return Z_BUF_ERROR; stream.next_out = dest; stream.avail_out = (uInt)*destLen; if ((uLong)stream.avail_out != *destLen) return Z_BUF_ERROR; stream.zalloc = (alloc_func)0; stream.zfree = (free_func)0; err = inflateInit(&stream); if (err != Z_OK) return err; err = inflate(&stream, Z_FINISH); if (err != Z_STREAM_END) { inflateEnd(&stream); if (err == Z_NEED_DICT || (err == Z_BUF_ERROR && stream.avail_in == 0)) return Z_DATA_ERROR; return err; } *destLen = stream.total_out; err = inflateEnd(&stream); return err; } /* END OF DUMP OF mz_uncompr.c*/ /* START OF DUMP OF mz_trees.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* trees.c -- output deflated data using Huffman coding * Copyright (C) 1995-2012 Jean-loup Gailly * detect_data_type() function provided freely by Cosmin Truta, 2006 * For conditions of distribution and use, see copyright notice in zlib.h */ /* * ALGORITHM * * The "deflation" process uses several Huffman trees. The more * common source values are represented by shorter bit sequences. * * Each code tree is stored in a compressed form which is itself * a Huffman encoding of the lengths of all the code strings (in * ascending order by source values). The actual code strings are * reconstructed from the lengths in the inflate process, as described * in the deflate specification. * * REFERENCES * * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc * * Storer, James A. * Data Compression: Methods and Theory, pp. 49-50. * Computer Science Press, 1988. ISBN 0-7167-8156-5. * * Sedgewick, R. * Algorithms, p290. * Addison-Wesley, 1983. ISBN 0-201-06672-6. */ /* @(#) $Id$ */ /* #define GEN_TREES_H */ /* START OF DUMP OF mz_deflate.h*/ /* deflate.h -- internal compression state * Copyright (C) 1995-2012 Jean-loup Gailly * For conditions of distribution and use, see copyright notice in zlib.h */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ /* @(#) $Id$ */ #ifndef DEFLATE_H #define DEFLATE_H /* START OF DUMP OF mz_zutil.h*/ /* zutil.h -- internal interface and configuration of the compression library * Copyright (C) 1995-2013 Jean-loup Gailly. * For conditions of distribution and use, see copyright notice in zlib.h */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ /* @(#) $Id$ */ #ifndef ZUTIL_H #define ZUTIL_H #ifdef HAVE_HIDDEN # define ZLIB_INTERNAL __attribute__((visibility ("hidden"))) #else # define ZLIB_INTERNAL #endif #if defined(STDC) && !defined(Z_SOLO) # if !(defined(_WIN32_WCE) && defined(_MSC_VER)) # include # endif # include # include #endif #ifdef Z_SOLO typedef long ptrdiff_t; /* guess -- will be caught if guess is wrong */ #endif #ifndef local # define local static #endif /* compile with -Dlocal if your debugger can't find static symbols */ typedef unsigned char uch; typedef uch FAR uchf; typedef unsigned short ush; typedef ush FAR ushf; typedef unsigned long ulg; extern z_const char * const z_errmsg[10]; /* indexed by 2-zlib_error */ /* (size given to avoid silly warnings with Visual C++) */ #define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)] #define ERR_RETURN(strm,err) \ return (strm->msg = ERR_MSG(err), (err)) /* To be used only when the state is known to be valid */ /* common constants */ #ifndef DEF_WBITS # define DEF_WBITS MAX_WBITS #endif /* default windowBits for decompression. MAX_WBITS is for compression only */ #if MAX_MEM_LEVEL >= 8 # define DEF_MEM_LEVEL 8 #else # define DEF_MEM_LEVEL MAX_MEM_LEVEL #endif /* default memLevel */ #define STORED_BLOCK 0 #define STATIC_TREES 1 #define DYN_TREES 2 /* The three kinds of block type */ #define MIN_MATCH 3 #define MAX_MATCH 258 /* The minimum and maximum match lengths */ #define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */ /* target dependencies */ #if defined(MSDOS) || (defined(WINDOWS) && !defined(WIN32)) # define OS_CODE 0x00 # ifndef Z_SOLO # if defined(__TURBOC__) || defined(__BORLANDC__) # if (__STDC__ == 1) && (defined(__LARGE__) || defined(__COMPACT__)) /* Allow compilation with ANSI keywords only enabled */ void _Cdecl farfree( void *block ); void *_Cdecl farmalloc( unsigned long nbytes ); # else # include # endif # else /* MSC or DJGPP */ # include # endif # endif #endif #ifdef AMIGA # define OS_CODE 0x01 #endif #if defined(VAXC) || defined(VMS) # define OS_CODE 0x02 # define F_OPEN(name, mode) \ fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512") #endif #if defined(ATARI) || defined(atarist) # define OS_CODE 0x05 #endif #ifdef OS2 # define OS_CODE 0x06 # if defined(M_I86) && !defined(Z_SOLO) # include # endif #endif #if defined(MACOS) || defined(TARGET_OS_MAC) # define OS_CODE 0x07 # ifndef Z_SOLO # if defined(__MWERKS__) && __dest_os != __be_os && __dest_os != __win32_os # include /* for fdopen */ # else # ifndef fdopen # define fdopen(fd,mode) NULL /* No fdopen() */ # endif # endif # endif #endif #ifdef TOPS20 # define OS_CODE 0x0a #endif #ifdef WIN32 # ifndef __CYGWIN__ /* Cygwin is Unix, not Win32 */ # define OS_CODE 0x0b # endif #endif #ifdef __50SERIES /* Prime/PRIMOS */ # define OS_CODE 0x0f #endif #if defined(_BEOS_) || defined(RISCOS) # define fdopen(fd,mode) NULL /* No fdopen() */ #endif #if (defined(_MSC_VER) && (_MSC_VER > 600)) && !defined __INTERIX # if defined(_WIN32_WCE) # define fdopen(fd,mode) NULL /* No fdopen() */ # ifndef _PTRDIFF_T_DEFINED typedef int ptrdiff_t; # define _PTRDIFF_T_DEFINED # endif # else # define fdopen(fd,type) _fdopen(fd,type) # endif #endif #if defined(__BORLANDC__) && !defined(MSDOS) #pragma warn -8004 #pragma warn -8008 #pragma warn -8066 #endif /* provide prototypes for these when building zlib without LFS */ #if !defined(_WIN32) && \ (!defined(_LARGEFILE64_SOURCE) || _LFS64_LARGEFILE-0 == 0) ZEXTERN uLong ZEXPORT adler32_combine64 OF((uLong, uLong, z_off_t)); ZEXTERN uLong ZEXPORT crc32_combine64 OF((uLong, uLong, z_off_t)); #endif /* common defaults */ #ifndef OS_CODE # define OS_CODE 0x03 /* assume Unix */ #endif #ifndef F_OPEN # define F_OPEN(name, mode) fopen((name), (mode)) #endif /* functions */ #if defined(pyr) || defined(Z_SOLO) # define NO_MEMCPY #endif #if defined(SMALL_MEDIUM) && !defined(_MSC_VER) && !defined(__SC__) /* Use our own functions for small and medium model with MSC <= 5.0. * You may have to use the same strategy for Borland C (untested). * The __SC__ check is for Symantec. */ # define NO_MEMCPY #endif #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY) # define HAVE_MEMCPY #endif #ifdef HAVE_MEMCPY # ifdef SMALL_MEDIUM /* MSDOS small or medium model */ # define zmemcpy _fmemcpy # define zmemcmp _fmemcmp # define zmemzero(dest, len) _fmemset(dest, 0, len) # else # define zmemcpy memcpy # define zmemcmp memcmp # define zmemzero(dest, len) memset(dest, 0, len) # endif #else void ZLIB_INTERNAL zmemcpy OF((Bytef* dest, const Bytef* source, uInt len)); int ZLIB_INTERNAL zmemcmp OF((const Bytef* s1, const Bytef* s2, uInt len)); void ZLIB_INTERNAL zmemzero OF((Bytef* dest, uInt len)); #endif /* Diagnostic functions */ #ifdef DEBUG # include extern int ZLIB_INTERNAL z_verbose; extern void ZLIB_INTERNAL z_error OF((char *m)); # define Assert(cond,msg) {if(!(cond)) z_error(msg);} # define Trace(x) {if (z_verbose>=0) fprintf x ;} # define Tracev(x) {if (z_verbose>0) fprintf x ;} # define Tracevv(x) {if (z_verbose>1) fprintf x ;} # define Tracec(c,x) {if (z_verbose>0 && (c)) fprintf x ;} # define Tracecv(c,x) {if (z_verbose>1 && (c)) fprintf x ;} #else # define Assert(cond,msg) # define Trace(x) # define Tracev(x) # define Tracevv(x) # define Tracec(c,x) # define Tracecv(c,x) #endif #ifndef Z_SOLO voidpf ZLIB_INTERNAL zcalloc OF((voidpf opaque, unsigned items, unsigned size)); void ZLIB_INTERNAL zcfree OF((voidpf opaque, voidpf ptr)); #endif #define ZALLOC(strm, items, size) \ (*((strm)->zalloc))((strm)->opaque, (items), (size)) #define ZFREE(strm, addr) (*((strm)->zfree))((strm)->opaque, (voidpf)(addr)) #define TRY_FREE(s, p) {if (p) ZFREE(s, p);} /* Reverse the bytes in a 32-bit value */ #define ZSWAP32(q) ((((q) >> 24) & 0xff) + (((q) >> 8) & 0xff00) + \ (((q) & 0xff00) << 8) + (((q) & 0xff) << 24)) #endif /* ZUTIL_H */ /* END OF DUMP OF mz_zutil.h*/ /* define NO_GZIP when compiling if you want to disable gzip header and trailer creation by deflate(). NO_GZIP would be used to avoid linking in the crc code when it is not needed. For shared libraries, gzip encoding should be left enabled. */ #ifndef NO_GZIP # define GZIP #endif /* =========================================================================== * Internal compression state. */ #define LENGTH_CODES 29 /* number of length codes, not counting the special END_BLOCK code */ #define LITERALS 256 /* number of literal bytes 0..255 */ #define L_CODES (LITERALS+1+LENGTH_CODES) /* number of Literal or Length codes, including the END_BLOCK code */ #define D_CODES 30 /* number of distance codes */ #define BL_CODES 19 /* number of codes used to transfer the bit lengths */ #define HEAP_SIZE (2*L_CODES+1) /* maximum heap size */ #define MAX_BITS 15 /* All codes must not exceed MAX_BITS bits */ #define Buf_size 16 /* size of bit buffer in bi_buf */ #define INIT_STATE 42 #define EXTRA_STATE 69 #define NAME_STATE 73 #define COMMENT_STATE 91 #define HCRC_STATE 103 #define BUSY_STATE 113 #define FINISH_STATE 666 /* Stream status */ /* Data structure describing a single value and its code string. */ typedef struct ct_data_s { union { ush freq; /* frequency count */ ush code; /* bit string */ } fc; union { ush dad; /* father node in Huffman tree */ ush len; /* length of bit string */ } dl; } FAR ct_data; #define Freq fc.freq #define Code fc.code #define Dad dl.dad #define Len dl.len typedef struct static_tree_desc_s static_tree_desc; typedef struct tree_desc_s { ct_data *dyn_tree; /* the dynamic tree */ int max_code; /* largest code with non zero frequency */ static_tree_desc *stat_desc; /* the corresponding static tree */ } FAR tree_desc; typedef ush Pos; typedef Pos FAR Posf; typedef unsigned IPos; /* A Pos is an index in the character window. We use short instead of int to * save space in the various tables. IPos is used only for parameter passing. */ typedef struct internal_state { z_streamp strm; /* pointer back to this zlib stream */ int status; /* as the name implies */ Bytef *pending_buf; /* output still pending */ ulg pending_buf_size; /* size of pending_buf */ Bytef *pending_out; /* next pending byte to output to the stream */ uInt pending; /* nb of bytes in the pending buffer */ int wrap; /* bit 0 true for zlib, bit 1 true for gzip */ gz_headerp gzhead; /* gzip header information to write */ uInt gzindex; /* where in extra, name, or comment */ Byte method; /* can only be DEFLATED */ int last_flush; /* value of flush param for previous deflate call */ /* used by deflate.c: */ uInt w_size; /* LZ77 window size (32K by default) */ uInt w_bits; /* log2(w_size) (8..16) */ uInt w_mask; /* w_size - 1 */ Bytef *window; /* Sliding window. Input bytes are read into the second half of the window, * and move to the first half later to keep a dictionary of at least wSize * bytes. With this organization, matches are limited to a distance of * wSize-MAX_MATCH bytes, but this ensures that IO is always * performed with a length multiple of the block size. Also, it limits * the window size to 64K, which is quite useful on MSDOS. * To do: use the user input buffer as sliding window. */ ulg window_size; /* Actual size of window: 2*wSize, except when the user input buffer * is directly used as sliding window. */ Posf *prev; /* Link to older string with same hash index. To limit the size of this * array to 64K, this link is maintained only for the last 32K strings. * An index in this array is thus a window index modulo 32K. */ Posf *head; /* Heads of the hash chains or NIL. */ uInt ins_h; /* hash index of string to be inserted */ uInt hash_size; /* number of elements in hash table */ uInt hash_bits; /* log2(hash_size) */ uInt hash_mask; /* hash_size-1 */ uInt hash_shift; /* Number of bits by which ins_h must be shifted at each input * step. It must be such that after MIN_MATCH steps, the oldest * byte no longer takes part in the hash key, that is: * hash_shift * MIN_MATCH >= hash_bits */ long block_start; /* Window position at the beginning of the current output block. Gets * negative when the window is moved backwards. */ uInt match_length; /* length of best match */ IPos prev_match; /* previous match */ int match_available; /* set if previous match exists */ uInt strstart; /* start of string to insert */ uInt match_start; /* start of matching string */ uInt lookahead; /* number of valid bytes ahead in window */ uInt prev_length; /* Length of the best match at previous step. Matches not greater than this * are discarded. This is used in the lazy match evaluation. */ uInt max_chain_length; /* To speed up deflation, hash chains are never searched beyond this * length. A higher limit improves compression ratio but degrades the * speed. */ uInt max_lazy_match; /* Attempt to find a better match only when the current match is strictly * smaller than this value. This mechanism is used only for compression * levels >= 4. */ # define max_insert_length max_lazy_match /* Insert new strings in the hash table only if the match length is not * greater than this length. This saves time but degrades compression. * max_insert_length is used only for compression levels <= 3. */ int level; /* compression level (1..9) */ int strategy; /* favor or force Huffman coding*/ uInt good_match; /* Use a faster search when the previous match is longer than this */ int nice_match; /* Stop searching when current match exceeds this */ /* used by trees.c: */ /* Didn't use ct_data typedef below to suppress compiler warning */ struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */ struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */ struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */ struct tree_desc_s l_desc; /* desc. for literal tree */ struct tree_desc_s d_desc; /* desc. for distance tree */ struct tree_desc_s bl_desc; /* desc. for bit length tree */ ush bl_count[MAX_BITS+1]; /* number of codes at each bit length for an optimal tree */ int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */ int heap_len; /* number of elements in the heap */ int heap_max; /* element of largest frequency */ /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used. * The same heap array is used to build all trees. */ uch depth[2*L_CODES+1]; /* Depth of each subtree used as tie breaker for trees of equal frequency */ uchf *l_buf; /* buffer for literals or lengths */ uInt lit_bufsize; /* Size of match buffer for literals/lengths. There are 4 reasons for * limiting lit_bufsize to 64K: * - frequencies can be kept in 16 bit counters * - if compression is not successful for the first block, all input * data is still in the window so we can still emit a stored block even * when input comes from standard input. (This can also be done for * all blocks if lit_bufsize is not greater than 32K.) * - if compression is not successful for a file smaller than 64K, we can * even emit a stored file instead of a stored block (saving 5 bytes). * This is applicable only for zip (not gzip or zlib). * - creating new Huffman trees less frequently may not provide fast * adaptation to changes in the input data statistics. (Take for * example a binary file with poorly compressible code followed by * a highly compressible string table.) Smaller buffer sizes give * fast adaptation but have of course the overhead of transmitting * trees more frequently. * - I can't count above 4 */ uInt last_lit; /* running index in l_buf */ ushf *d_buf; /* Buffer for distances. To simplify the code, d_buf and l_buf have * the same number of elements. To use different lengths, an extra flag * array would be necessary. */ ulg opt_len; /* bit length of current block with optimal trees */ ulg static_len; /* bit length of current block with static trees */ uInt matches; /* number of string matches in current block */ uInt insert; /* bytes at end of window left to insert */ #ifdef DEBUG ulg compressed_len; /* total bit length of compressed file mod 2^32 */ ulg bits_sent; /* bit length of compressed data sent mod 2^32 */ #endif ush bi_buf; /* Output buffer. bits are inserted starting at the bottom (least * significant bits). */ int bi_valid; /* Number of valid bits in bi_buf. All bits above the last valid bit * are always zero. */ ulg high_water; /* High water mark offset in window for initialized bytes -- bytes above * this are set to zero in order to avoid memory check warnings when * longest match routines access bytes past the input. This is then * updated to the new high water mark. */ } FAR deflate_state; /* Output a byte on the stream. * IN assertion: there is enough room in pending_buf. */ #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);} #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1) /* Minimum amount of lookahead, except at the end of the input file. * See deflate.c for comments about the MIN_MATCH+1. */ #define MAX_DIST(s) ((s)->w_size-MIN_LOOKAHEAD) /* In order to simplify the code, particularly on 16 bit machines, match * distances are limited to MAX_DIST instead of WSIZE. */ #define WIN_INIT MAX_MATCH /* Number of bytes after end of data in window to initialize in order to avoid memory checker errors from longest match routines */ /* in trees.c */ void ZLIB_INTERNAL _tr_init OF((deflate_state *s)); int ZLIB_INTERNAL _tr_tally OF((deflate_state *s, unsigned dist, unsigned lc)); void ZLIB_INTERNAL _tr_flush_block OF((deflate_state *s, charf *buf, ulg stored_len, int last)); void ZLIB_INTERNAL _tr_flush_bits OF((deflate_state *s)); void ZLIB_INTERNAL _tr_align OF((deflate_state *s)); void ZLIB_INTERNAL _tr_stored_block OF((deflate_state *s, charf *buf, ulg stored_len, int last)); #define d_code(dist) \ ((dist) < 256 ? _dist_code[dist] : _dist_code[256+((dist)>>7)]) /* Mapping from a distance to a distance code. dist is the distance - 1 and * must not have side effects. _dist_code[256] and _dist_code[257] are never * used. */ #ifndef DEBUG /* Inline versions of _tr_tally for speed: */ #if defined(GEN_TREES_H) || !defined(STDC) extern uch ZLIB_INTERNAL _length_code[]; extern uch ZLIB_INTERNAL _dist_code[]; #else extern const uch ZLIB_INTERNAL _length_code[]; extern const uch ZLIB_INTERNAL _dist_code[]; #endif # define _tr_tally_lit(s, c, flush) \ { uch cc = (c); \ s->d_buf[s->last_lit] = 0; \ s->l_buf[s->last_lit++] = cc; \ s->dyn_ltree[cc].Freq++; \ flush = (s->last_lit == s->lit_bufsize-1); \ } # define _tr_tally_dist(s, distance, length, flush) \ { uch len = (length); \ ush dist = (distance); \ s->d_buf[s->last_lit] = dist; \ s->l_buf[s->last_lit++] = len; \ dist--; \ s->dyn_ltree[_length_code[len]+LITERALS+1].Freq++; \ s->dyn_dtree[d_code(dist)].Freq++; \ flush = (s->last_lit == s->lit_bufsize-1); \ } #else # define _tr_tally_lit(s, c, flush) flush = _tr_tally(s, 0, c) # define _tr_tally_dist(s, distance, length, flush) \ flush = _tr_tally(s, distance, length) #endif #endif /* DEFLATE_H */ /* END OF DUMP OF mz_deflate.h*/ #ifdef DEBUG # include #endif /* =========================================================================== * Constants */ #define MAX_BL_BITS 7 /* Bit length codes must not exceed MAX_BL_BITS bits */ #define END_BLOCK 256 /* end of block literal code */ #define REP_3_6 16 /* repeat previous bit length 3-6 times (2 bits of repeat count) */ #define REPZ_3_10 17 /* repeat a zero length 3-10 times (3 bits of repeat count) */ #define REPZ_11_138 18 /* repeat a zero length 11-138 times (7 bits of repeat count) */ local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; local const int extra_dbits[D_CODES] /* extra bits for each distance code */ = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */ = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; local const uch bl_order[BL_CODES] = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; /* The lengths of the bit length codes are sent in order of decreasing * probability, to avoid transmitting the lengths for unused bit length codes. */ /* =========================================================================== * Local data. These are initialized only once. */ #define DIST_CODE_LEN 512 /* see definition of array dist_code below */ #if defined(GEN_TREES_H) || !defined(STDC) /* non ANSI compilers may not accept trees.h */ local ct_data static_ltree[L_CODES+2]; /* The static literal tree. Since the bit lengths are imposed, there is no * need for the L_CODES extra codes used during heap construction. However * The codes 286 and 287 are needed to build a canonical tree (see _tr_init * below). */ local ct_data static_dtree[D_CODES]; /* The static distance tree. (Actually a trivial tree since all codes use * 5 bits.) */ uch _dist_code[DIST_CODE_LEN]; /* Distance codes. The first 256 values correspond to the distances * 3 .. 258, the last 256 values correspond to the top 8 bits of * the 15 bit distances. */ uch _length_code[MAX_MATCH-MIN_MATCH+1]; /* length code for each normalized match length (0 == MIN_MATCH) */ local int base_length[LENGTH_CODES]; /* First normalized length for each code (0 = MIN_MATCH) */ local int base_dist[D_CODES]; /* First normalized distance for each code (0 = distance of 1) */ #else /* START OF DUMP OF mz_trees.h*/ /* header created automatically with -DGEN_TREES_H */ local const ct_data static_ltree[L_CODES+2] = { {{ 12},{ 8}}, {{140},{ 8}}, {{ 76},{ 8}}, {{204},{ 8}}, {{ 44},{ 8}}, {{172},{ 8}}, {{108},{ 8}}, {{236},{ 8}}, {{ 28},{ 8}}, {{156},{ 8}}, {{ 92},{ 8}}, {{220},{ 8}}, {{ 60},{ 8}}, {{188},{ 8}}, {{124},{ 8}}, {{252},{ 8}}, {{ 2},{ 8}}, {{130},{ 8}}, {{ 66},{ 8}}, {{194},{ 8}}, {{ 34},{ 8}}, {{162},{ 8}}, {{ 98},{ 8}}, {{226},{ 8}}, {{ 18},{ 8}}, {{146},{ 8}}, {{ 82},{ 8}}, {{210},{ 8}}, {{ 50},{ 8}}, {{178},{ 8}}, {{114},{ 8}}, {{242},{ 8}}, {{ 10},{ 8}}, {{138},{ 8}}, {{ 74},{ 8}}, {{202},{ 8}}, {{ 42},{ 8}}, {{170},{ 8}}, {{106},{ 8}}, {{234},{ 8}}, {{ 26},{ 8}}, {{154},{ 8}}, {{ 90},{ 8}}, {{218},{ 8}}, {{ 58},{ 8}}, {{186},{ 8}}, {{122},{ 8}}, {{250},{ 8}}, {{ 6},{ 8}}, {{134},{ 8}}, {{ 70},{ 8}}, {{198},{ 8}}, {{ 38},{ 8}}, {{166},{ 8}}, {{102},{ 8}}, {{230},{ 8}}, {{ 22},{ 8}}, {{150},{ 8}}, {{ 86},{ 8}}, {{214},{ 8}}, {{ 54},{ 8}}, {{182},{ 8}}, {{118},{ 8}}, {{246},{ 8}}, {{ 14},{ 8}}, {{142},{ 8}}, {{ 78},{ 8}}, {{206},{ 8}}, {{ 46},{ 8}}, {{174},{ 8}}, {{110},{ 8}}, {{238},{ 8}}, {{ 30},{ 8}}, {{158},{ 8}}, {{ 94},{ 8}}, {{222},{ 8}}, {{ 62},{ 8}}, {{190},{ 8}}, {{126},{ 8}}, {{254},{ 8}}, {{ 1},{ 8}}, {{129},{ 8}}, {{ 65},{ 8}}, {{193},{ 8}}, {{ 33},{ 8}}, {{161},{ 8}}, {{ 97},{ 8}}, {{225},{ 8}}, {{ 17},{ 8}}, {{145},{ 8}}, {{ 81},{ 8}}, {{209},{ 8}}, {{ 49},{ 8}}, {{177},{ 8}}, {{113},{ 8}}, {{241},{ 8}}, {{ 9},{ 8}}, {{137},{ 8}}, {{ 73},{ 8}}, {{201},{ 8}}, {{ 41},{ 8}}, {{169},{ 8}}, {{105},{ 8}}, {{233},{ 8}}, {{ 25},{ 8}}, {{153},{ 8}}, {{ 89},{ 8}}, {{217},{ 8}}, {{ 57},{ 8}}, {{185},{ 8}}, {{121},{ 8}}, {{249},{ 8}}, {{ 5},{ 8}}, {{133},{ 8}}, {{ 69},{ 8}}, {{197},{ 8}}, {{ 37},{ 8}}, {{165},{ 8}}, {{101},{ 8}}, {{229},{ 8}}, {{ 21},{ 8}}, {{149},{ 8}}, {{ 85},{ 8}}, {{213},{ 8}}, {{ 53},{ 8}}, {{181},{ 8}}, {{117},{ 8}}, {{245},{ 8}}, {{ 13},{ 8}}, {{141},{ 8}}, {{ 77},{ 8}}, {{205},{ 8}}, {{ 45},{ 8}}, {{173},{ 8}}, {{109},{ 8}}, {{237},{ 8}}, {{ 29},{ 8}}, {{157},{ 8}}, {{ 93},{ 8}}, {{221},{ 8}}, {{ 61},{ 8}}, {{189},{ 8}}, {{125},{ 8}}, {{253},{ 8}}, {{ 19},{ 9}}, {{275},{ 9}}, {{147},{ 9}}, {{403},{ 9}}, {{ 83},{ 9}}, {{339},{ 9}}, {{211},{ 9}}, {{467},{ 9}}, {{ 51},{ 9}}, {{307},{ 9}}, {{179},{ 9}}, {{435},{ 9}}, {{115},{ 9}}, {{371},{ 9}}, {{243},{ 9}}, {{499},{ 9}}, {{ 11},{ 9}}, {{267},{ 9}}, {{139},{ 9}}, {{395},{ 9}}, {{ 75},{ 9}}, {{331},{ 9}}, {{203},{ 9}}, {{459},{ 9}}, {{ 43},{ 9}}, {{299},{ 9}}, {{171},{ 9}}, {{427},{ 9}}, {{107},{ 9}}, {{363},{ 9}}, {{235},{ 9}}, {{491},{ 9}}, {{ 27},{ 9}}, {{283},{ 9}}, {{155},{ 9}}, {{411},{ 9}}, {{ 91},{ 9}}, {{347},{ 9}}, {{219},{ 9}}, {{475},{ 9}}, {{ 59},{ 9}}, {{315},{ 9}}, {{187},{ 9}}, {{443},{ 9}}, {{123},{ 9}}, {{379},{ 9}}, {{251},{ 9}}, {{507},{ 9}}, {{ 7},{ 9}}, {{263},{ 9}}, {{135},{ 9}}, {{391},{ 9}}, {{ 71},{ 9}}, {{327},{ 9}}, {{199},{ 9}}, {{455},{ 9}}, {{ 39},{ 9}}, {{295},{ 9}}, {{167},{ 9}}, {{423},{ 9}}, {{103},{ 9}}, {{359},{ 9}}, {{231},{ 9}}, {{487},{ 9}}, {{ 23},{ 9}}, {{279},{ 9}}, {{151},{ 9}}, {{407},{ 9}}, {{ 87},{ 9}}, {{343},{ 9}}, {{215},{ 9}}, {{471},{ 9}}, {{ 55},{ 9}}, {{311},{ 9}}, {{183},{ 9}}, {{439},{ 9}}, {{119},{ 9}}, {{375},{ 9}}, {{247},{ 9}}, {{503},{ 9}}, {{ 15},{ 9}}, {{271},{ 9}}, {{143},{ 9}}, {{399},{ 9}}, {{ 79},{ 9}}, {{335},{ 9}}, {{207},{ 9}}, {{463},{ 9}}, {{ 47},{ 9}}, {{303},{ 9}}, {{175},{ 9}}, {{431},{ 9}}, {{111},{ 9}}, {{367},{ 9}}, {{239},{ 9}}, {{495},{ 9}}, {{ 31},{ 9}}, {{287},{ 9}}, {{159},{ 9}}, {{415},{ 9}}, {{ 95},{ 9}}, {{351},{ 9}}, {{223},{ 9}}, {{479},{ 9}}, {{ 63},{ 9}}, {{319},{ 9}}, {{191},{ 9}}, {{447},{ 9}}, {{127},{ 9}}, {{383},{ 9}}, {{255},{ 9}}, {{511},{ 9}}, {{ 0},{ 7}}, {{ 64},{ 7}}, {{ 32},{ 7}}, {{ 96},{ 7}}, {{ 16},{ 7}}, {{ 80},{ 7}}, {{ 48},{ 7}}, {{112},{ 7}}, {{ 8},{ 7}}, {{ 72},{ 7}}, {{ 40},{ 7}}, {{104},{ 7}}, {{ 24},{ 7}}, {{ 88},{ 7}}, {{ 56},{ 7}}, {{120},{ 7}}, {{ 4},{ 7}}, {{ 68},{ 7}}, {{ 36},{ 7}}, {{100},{ 7}}, {{ 20},{ 7}}, {{ 84},{ 7}}, {{ 52},{ 7}}, {{116},{ 7}}, {{ 3},{ 8}}, {{131},{ 8}}, {{ 67},{ 8}}, {{195},{ 8}}, {{ 35},{ 8}}, {{163},{ 8}}, {{ 99},{ 8}}, {{227},{ 8}} }; local const ct_data static_dtree[D_CODES] = { {{ 0},{ 5}}, {{16},{ 5}}, {{ 8},{ 5}}, {{24},{ 5}}, {{ 4},{ 5}}, {{20},{ 5}}, {{12},{ 5}}, {{28},{ 5}}, {{ 2},{ 5}}, {{18},{ 5}}, {{10},{ 5}}, {{26},{ 5}}, {{ 6},{ 5}}, {{22},{ 5}}, {{14},{ 5}}, {{30},{ 5}}, {{ 1},{ 5}}, {{17},{ 5}}, {{ 9},{ 5}}, {{25},{ 5}}, {{ 5},{ 5}}, {{21},{ 5}}, {{13},{ 5}}, {{29},{ 5}}, {{ 3},{ 5}}, {{19},{ 5}}, {{11},{ 5}}, {{27},{ 5}}, {{ 7},{ 5}}, {{23},{ 5}} }; const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = { 0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 16, 17, 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29 }; const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= { 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28 }; local const int base_length[LENGTH_CODES] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 0 }; local const int base_dist[D_CODES] = { 0, 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576 }; /* END OF DUMP OF mz_trees.h*/ #endif /* GEN_TREES_H */ struct static_tree_desc_s { const ct_data *static_tree; /* static tree or NULL */ const intf *extra_bits; /* extra bits for each code or NULL */ int extra_base; /* base index for extra_bits */ int elems; /* max number of elements in the tree */ int max_length; /* max bit length for the codes */ }; local static_tree_desc static_l_desc = {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; local static_tree_desc static_d_desc = {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS}; local static_tree_desc static_bl_desc = {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; /* =========================================================================== * Local (static) routines in this file. */ local void tr_static_init OF((void)); local void init_block OF((deflate_state *s)); local void pqdownheap OF((deflate_state *s, ct_data *tree, int k)); local void gen_bitlen OF((deflate_state *s, tree_desc *desc)); local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count)); local void build_tree OF((deflate_state *s, tree_desc *desc)); local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code)); local void send_tree OF((deflate_state *s, ct_data *tree, int max_code)); local int build_bl_tree OF((deflate_state *s)); local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes, int blcodes)); local void compress_block OF((deflate_state *s, const ct_data *ltree, const ct_data *dtree)); local int detect_data_type OF((deflate_state *s)); local unsigned bi_reverse OF((unsigned value, int length)); local void bi_windup OF((deflate_state *s)); local void bi_flush OF((deflate_state *s)); local void copy_block OF((deflate_state *s, charf *buf, unsigned len, int header)); #ifdef GEN_TREES_H local void gen_trees_header OF((void)); #endif #ifndef DEBUG # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) /* Send a code of the given tree. c and tree must not have side effects */ #else /* DEBUG */ # define send_code(s, c, tree) \ { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ send_bits(s, tree[c].Code, tree[c].Len); } #endif /* =========================================================================== * Output a short LSB first on the stream. * IN assertion: there is enough room in pendingBuf. */ #define put_short(s, w) { \ put_byte(s, (uch)((w) & 0xff)); \ put_byte(s, (uch)((ush)(w) >> 8)); \ } /* =========================================================================== * Send a value on a given number of bits. * IN assertion: length <= 16 and value fits in length bits. */ #ifdef DEBUG local void send_bits OF((deflate_state *s, int value, int length)); local void send_bits(s, value, length) deflate_state *s; int value; /* value to send */ int length; /* number of bits */ { Tracevv((stderr," l %2d v %4x ", length, value)); Assert(length > 0 && length <= 15, "invalid length"); s->bits_sent += (ulg)length; /* If not enough room in bi_buf, use (valid) bits from bi_buf and * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) * unused bits in value. */ if (s->bi_valid > (int)Buf_size - length) { s->bi_buf |= (ush)value << s->bi_valid; put_short(s, s->bi_buf); s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); s->bi_valid += length - Buf_size; } else { s->bi_buf |= (ush)value << s->bi_valid; s->bi_valid += length; } } #else /* !DEBUG */ #define send_bits(s, value, length) \ { int len = length;\ if (s->bi_valid > (int)Buf_size - len) {\ int val = value;\ s->bi_buf |= (ush)val << s->bi_valid;\ put_short(s, s->bi_buf);\ s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ s->bi_valid += len - Buf_size;\ } else {\ s->bi_buf |= (ush)(value) << s->bi_valid;\ s->bi_valid += len;\ }\ } #endif /* DEBUG */ /* the arguments must not have side effects */ /* =========================================================================== * Initialize the various 'constant' tables. */ local void tr_static_init() { #if defined(GEN_TREES_H) || !defined(STDC) static int static_init_done = 0; int n; /* iterates over tree elements */ int bits; /* bit counter */ int length; /* length value */ int code; /* code value */ int dist; /* distance index */ ush bl_count[MAX_BITS+1]; /* number of codes at each bit length for an optimal tree */ if (static_init_done) return; /* For some embedded targets, global variables are not initialized: */ #ifdef NO_INIT_GLOBAL_POINTERS static_l_desc.static_tree = static_ltree; static_l_desc.extra_bits = extra_lbits; static_d_desc.static_tree = static_dtree; static_d_desc.extra_bits = extra_dbits; static_bl_desc.extra_bits = extra_blbits; #endif /* Initialize the mapping length (0..255) -> length code (0..28) */ length = 0; for (code = 0; code < LENGTH_CODES-1; code++) { base_length[code] = length; for (n = 0; n < (1< dist code (0..29) */ dist = 0; for (code = 0 ; code < 16; code++) { base_dist[code] = dist; for (n = 0; n < (1<>= 7; /* from now on, all distances are divided by 128 */ for ( ; code < D_CODES; code++) { base_dist[code] = dist << 7; for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { _dist_code[256 + dist++] = (uch)code; } } Assert (dist == 256, "tr_static_init: 256+dist != 512"); /* Construct the codes of the static literal tree */ for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; n = 0; while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; /* Codes 286 and 287 do not exist, but we must include them in the * tree construction to get a canonical Huffman tree (longest code * all ones) */ gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); /* The static distance tree is trivial: */ for (n = 0; n < D_CODES; n++) { static_dtree[n].Len = 5; static_dtree[n].Code = bi_reverse((unsigned)n, 5); } static_init_done = 1; # ifdef GEN_TREES_H gen_trees_header(); # endif #endif /* defined(GEN_TREES_H) || !defined(STDC) */ } /* =========================================================================== * Genererate the file trees.h describing the static trees. */ #ifdef GEN_TREES_H # ifndef DEBUG # include # endif # define SEPARATOR(i, last, width) \ ((i) == (last)? "\n};\n\n" : \ ((i) % (width) == (width)-1 ? ",\n" : ", ")) void gen_trees_header() { FILE *header = fopen("trees.h", "w"); int i; Assert (header != NULL, "Can't open trees.h"); fprintf(header, "/* header created automatically with -DGEN_TREES_H */\n\n"); fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n"); for (i = 0; i < L_CODES+2; i++) { fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code, static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5)); } fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n"); for (i = 0; i < D_CODES; i++) { fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code, static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5)); } fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n"); for (i = 0; i < DIST_CODE_LEN; i++) { fprintf(header, "%2u%s", _dist_code[i], SEPARATOR(i, DIST_CODE_LEN-1, 20)); } fprintf(header, "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n"); for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) { fprintf(header, "%2u%s", _length_code[i], SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20)); } fprintf(header, "local const int base_length[LENGTH_CODES] = {\n"); for (i = 0; i < LENGTH_CODES; i++) { fprintf(header, "%1u%s", base_length[i], SEPARATOR(i, LENGTH_CODES-1, 20)); } fprintf(header, "local const int base_dist[D_CODES] = {\n"); for (i = 0; i < D_CODES; i++) { fprintf(header, "%5u%s", base_dist[i], SEPARATOR(i, D_CODES-1, 10)); } fclose(header); } #endif /* GEN_TREES_H */ /* =========================================================================== * Initialize the tree data structures for a new zlib stream. */ void ZLIB_INTERNAL _tr_init(s) deflate_state *s; { tr_static_init(); s->l_desc.dyn_tree = s->dyn_ltree; s->l_desc.stat_desc = &static_l_desc; s->d_desc.dyn_tree = s->dyn_dtree; s->d_desc.stat_desc = &static_d_desc; s->bl_desc.dyn_tree = s->bl_tree; s->bl_desc.stat_desc = &static_bl_desc; s->bi_buf = 0; s->bi_valid = 0; #ifdef DEBUG s->compressed_len = 0L; s->bits_sent = 0L; #endif /* Initialize the first block of the first file: */ init_block(s); } /* =========================================================================== * Initialize a new block. */ local void init_block(s) deflate_state *s; { int n; /* iterates over tree elements */ /* Initialize the trees. */ for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0; for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0; for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; s->dyn_ltree[END_BLOCK].Freq = 1; s->opt_len = s->static_len = 0L; s->last_lit = s->matches = 0; } #define SMALLEST 1 /* Index within the heap array of least frequent node in the Huffman tree */ /* =========================================================================== * Remove the smallest element from the heap and recreate the heap with * one less element. Updates heap and heap_len. */ #define pqremove(s, tree, top) \ {\ top = s->heap[SMALLEST]; \ s->heap[SMALLEST] = s->heap[s->heap_len--]; \ pqdownheap(s, tree, SMALLEST); \ } /* =========================================================================== * Compares to subtrees, using the tree depth as tie breaker when * the subtrees have equal frequency. This minimizes the worst case length. */ #define smaller(tree, n, m, depth) \ (tree[n].Freq < tree[m].Freq || \ (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) /* =========================================================================== * Restore the heap property by moving down the tree starting at node k, * exchanging a node with the smallest of its two sons if necessary, stopping * when the heap property is re-established (each father smaller than its * two sons). */ local void pqdownheap(s, tree, k) deflate_state *s; ct_data *tree; /* the tree to restore */ int k; /* node to move down */ { int v = s->heap[k]; int j = k << 1; /* left son of k */ while (j <= s->heap_len) { /* Set j to the smallest of the two sons: */ if (j < s->heap_len && smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { j++; } /* Exit if v is smaller than both sons */ if (smaller(tree, v, s->heap[j], s->depth)) break; /* Exchange v with the smallest son */ s->heap[k] = s->heap[j]; k = j; /* And continue down the tree, setting j to the left son of k */ j <<= 1; } s->heap[k] = v; } /* =========================================================================== * Compute the optimal bit lengths for a tree and update the total bit length * for the current block. * IN assertion: the fields freq and dad are set, heap[heap_max] and * above are the tree nodes sorted by increasing frequency. * OUT assertions: the field len is set to the optimal bit length, the * array bl_count contains the frequencies for each bit length. * The length opt_len is updated; static_len is also updated if stree is * not null. */ local void gen_bitlen(s, desc) deflate_state *s; tree_desc *desc; /* the tree descriptor */ { ct_data *tree = desc->dyn_tree; int max_code = desc->max_code; const ct_data *stree = desc->stat_desc->static_tree; const intf *extra = desc->stat_desc->extra_bits; int base = desc->stat_desc->extra_base; int max_length = desc->stat_desc->max_length; int h; /* heap index */ int n, m; /* iterate over the tree elements */ int bits; /* bit length */ int xbits; /* extra bits */ ush f; /* frequency */ int overflow = 0; /* number of elements with bit length too large */ for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; /* In a first pass, compute the optimal bit lengths (which may * overflow in the case of the bit length tree). */ tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ for (h = s->heap_max+1; h < HEAP_SIZE; h++) { n = s->heap[h]; bits = tree[tree[n].Dad].Len + 1; if (bits > max_length) bits = max_length, overflow++; tree[n].Len = (ush)bits; /* We overwrite tree[n].Dad which is no longer needed */ if (n > max_code) continue; /* not a leaf node */ s->bl_count[bits]++; xbits = 0; if (n >= base) xbits = extra[n-base]; f = tree[n].Freq; s->opt_len += (ulg)f * (bits + xbits); if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits); } if (overflow == 0) return; Trace((stderr,"\nbit length overflow\n")); /* This happens for example on obj2 and pic of the Calgary corpus */ /* Find the first bit length which could increase: */ do { bits = max_length-1; while (s->bl_count[bits] == 0) bits--; s->bl_count[bits]--; /* move one leaf down the tree */ s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ s->bl_count[max_length]--; /* The brother of the overflow item also moves one step up, * but this does not affect bl_count[max_length] */ overflow -= 2; } while (overflow > 0); /* Now recompute all bit lengths, scanning in increasing frequency. * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all * lengths instead of fixing only the wrong ones. This idea is taken * from 'ar' written by Haruhiko Okumura.) */ for (bits = max_length; bits != 0; bits--) { n = s->bl_count[bits]; while (n != 0) { m = s->heap[--h]; if (m > max_code) continue; if ((unsigned) tree[m].Len != (unsigned) bits) { Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); s->opt_len += ((long)bits - (long)tree[m].Len) *(long)tree[m].Freq; tree[m].Len = (ush)bits; } n--; } } } /* =========================================================================== * Generate the codes for a given tree and bit counts (which need not be * optimal). * IN assertion: the array bl_count contains the bit length statistics for * the given tree and the field len is set for all tree elements. * OUT assertion: the field code is set for all tree elements of non * zero code length. */ local void gen_codes (tree, max_code, bl_count) ct_data *tree; /* the tree to decorate */ int max_code; /* largest code with non zero frequency */ ushf *bl_count; /* number of codes at each bit length */ { ush next_code[MAX_BITS+1]; /* next code value for each bit length */ ush code = 0; /* running code value */ int bits; /* bit index */ int n; /* code index */ /* The distribution counts are first used to generate the code values * without bit reversal. */ for (bits = 1; bits <= MAX_BITS; bits++) { next_code[bits] = code = (code + bl_count[bits-1]) << 1; } /* Check that the bit counts in bl_count are consistent. The last code * must be all ones. */ Assert (code + bl_count[MAX_BITS]-1 == (1<dyn_tree; const ct_data *stree = desc->stat_desc->static_tree; int elems = desc->stat_desc->elems; int n, m; /* iterate over heap elements */ int max_code = -1; /* largest code with non zero frequency */ int node; /* new node being created */ /* Construct the initial heap, with least frequent element in * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. * heap[0] is not used. */ s->heap_len = 0, s->heap_max = HEAP_SIZE; for (n = 0; n < elems; n++) { if (tree[n].Freq != 0) { s->heap[++(s->heap_len)] = max_code = n; s->depth[n] = 0; } else { tree[n].Len = 0; } } /* The pkzip format requires that at least one distance code exists, * and that at least one bit should be sent even if there is only one * possible code. So to avoid special checks later on we force at least * two codes of non zero frequency. */ while (s->heap_len < 2) { node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); tree[node].Freq = 1; s->depth[node] = 0; s->opt_len--; if (stree) s->static_len -= stree[node].Len; /* node is 0 or 1 so it does not have extra bits */ } desc->max_code = max_code; /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, * establish sub-heaps of increasing lengths: */ for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); /* Construct the Huffman tree by repeatedly combining the least two * frequent nodes. */ node = elems; /* next internal node of the tree */ do { pqremove(s, tree, n); /* n = node of least frequency */ m = s->heap[SMALLEST]; /* m = node of next least frequency */ s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ s->heap[--(s->heap_max)] = m; /* Create a new node father of n and m */ tree[node].Freq = tree[n].Freq + tree[m].Freq; s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ? s->depth[n] : s->depth[m]) + 1); tree[n].Dad = tree[m].Dad = (ush)node; #ifdef DUMP_BL_TREE if (tree == s->bl_tree) { fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); } #endif /* and insert the new node in the heap */ s->heap[SMALLEST] = node++; pqdownheap(s, tree, SMALLEST); } while (s->heap_len >= 2); s->heap[--(s->heap_max)] = s->heap[SMALLEST]; /* At this point, the fields freq and dad are set. We can now * generate the bit lengths. */ gen_bitlen(s, (tree_desc *)desc); /* The field len is now set, we can generate the bit codes */ gen_codes ((ct_data *)tree, max_code, s->bl_count); } /* =========================================================================== * Scan a literal or distance tree to determine the frequencies of the codes * in the bit length tree. */ local void scan_tree (s, tree, max_code) deflate_state *s; ct_data *tree; /* the tree to be scanned */ int max_code; /* and its largest code of non zero frequency */ { int n; /* iterates over all tree elements */ int prevlen = -1; /* last emitted length */ int curlen; /* length of current code */ int nextlen = tree[0].Len; /* length of next code */ int count = 0; /* repeat count of the current code */ int max_count = 7; /* max repeat count */ int min_count = 4; /* min repeat count */ if (nextlen == 0) max_count = 138, min_count = 3; tree[max_code+1].Len = (ush)0xffff; /* guard */ for (n = 0; n <= max_code; n++) { curlen = nextlen; nextlen = tree[n+1].Len; if (++count < max_count && curlen == nextlen) { continue; } else if (count < min_count) { s->bl_tree[curlen].Freq += count; } else if (curlen != 0) { if (curlen != prevlen) s->bl_tree[curlen].Freq++; s->bl_tree[REP_3_6].Freq++; } else if (count <= 10) { s->bl_tree[REPZ_3_10].Freq++; } else { s->bl_tree[REPZ_11_138].Freq++; } count = 0; prevlen = curlen; if (nextlen == 0) { max_count = 138, min_count = 3; } else if (curlen == nextlen) { max_count = 6, min_count = 3; } else { max_count = 7, min_count = 4; } } } /* =========================================================================== * Send a literal or distance tree in compressed form, using the codes in * bl_tree. */ local void send_tree (s, tree, max_code) deflate_state *s; ct_data *tree; /* the tree to be scanned */ int max_code; /* and its largest code of non zero frequency */ { int n; /* iterates over all tree elements */ int prevlen = -1; /* last emitted length */ int curlen; /* length of current code */ int nextlen = tree[0].Len; /* length of next code */ int count = 0; /* repeat count of the current code */ int max_count = 7; /* max repeat count */ int min_count = 4; /* min repeat count */ /* tree[max_code+1].Len = -1; */ /* guard already set */ if (nextlen == 0) max_count = 138, min_count = 3; for (n = 0; n <= max_code; n++) { curlen = nextlen; nextlen = tree[n+1].Len; if (++count < max_count && curlen == nextlen) { continue; } else if (count < min_count) { do { send_code(s, curlen, s->bl_tree); } while (--count != 0); } else if (curlen != 0) { if (curlen != prevlen) { send_code(s, curlen, s->bl_tree); count--; } Assert(count >= 3 && count <= 6, " 3_6?"); send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2); } else if (count <= 10) { send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3); } else { send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7); } count = 0; prevlen = curlen; if (nextlen == 0) { max_count = 138, min_count = 3; } else if (curlen == nextlen) { max_count = 6, min_count = 3; } else { max_count = 7, min_count = 4; } } } /* =========================================================================== * Construct the Huffman tree for the bit lengths and return the index in * bl_order of the last bit length code to send. */ local int build_bl_tree(s) deflate_state *s; { int max_blindex; /* index of last bit length code of non zero freq */ /* Determine the bit length frequencies for literal and distance trees */ scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); /* Build the bit length tree: */ build_tree(s, (tree_desc *)(&(s->bl_desc))); /* opt_len now includes the length of the tree representations, except * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. */ /* Determine the number of bit length codes to send. The pkzip format * requires that at least 4 bit length codes be sent. (appnote.txt says * 3 but the actual value used is 4.) */ for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; } /* Update opt_len to include the bit length tree and counts */ s->opt_len += 3*(max_blindex+1) + 5+5+4; Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", s->opt_len, s->static_len)); return max_blindex; } /* =========================================================================== * Send the header for a block using dynamic Huffman trees: the counts, the * lengths of the bit length codes, the literal tree and the distance tree. * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. */ local void send_all_trees(s, lcodes, dcodes, blcodes) deflate_state *s; int lcodes, dcodes, blcodes; /* number of codes for each tree */ { int rank; /* index in bl_order */ Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, "too many codes"); Tracev((stderr, "\nbl counts: ")); send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */ send_bits(s, dcodes-1, 5); send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */ for (rank = 0; rank < blcodes; rank++) { Tracev((stderr, "\nbl code %2d ", bl_order[rank])); send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); } Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */ Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */ Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); } /* =========================================================================== * Send a stored block */ void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last) deflate_state *s; charf *buf; /* input block */ ulg stored_len; /* length of input block */ int last; /* one if this is the last block for a file */ { send_bits(s, (STORED_BLOCK<<1)+last, 3); /* send block type */ #ifdef DEBUG s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; s->compressed_len += (stored_len + 4) << 3; #endif copy_block(s, buf, (unsigned)stored_len, 1); /* with header */ } /* =========================================================================== * Flush the bits in the bit buffer to pending output (leaves at most 7 bits) */ void ZLIB_INTERNAL _tr_flush_bits(s) deflate_state *s; { bi_flush(s); } /* =========================================================================== * Send one empty static block to give enough lookahead for inflate. * This takes 10 bits, of which 7 may remain in the bit buffer. */ void ZLIB_INTERNAL _tr_align(s) deflate_state *s; { send_bits(s, STATIC_TREES<<1, 3); send_code(s, END_BLOCK, static_ltree); #ifdef DEBUG s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ #endif bi_flush(s); } /* =========================================================================== * Determine the best encoding for the current block: dynamic trees, static * trees or store, and output the encoded block to the zip file. */ void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last) deflate_state *s; charf *buf; /* input block, or NULL if too old */ ulg stored_len; /* length of input block */ int last; /* one if this is the last block for a file */ { ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ int max_blindex = 0; /* index of last bit length code of non zero freq */ /* Build the Huffman trees unless a stored block is forced */ if (s->level > 0) { /* Check if the file is binary or text */ if (s->strm->data_type == Z_UNKNOWN) s->strm->data_type = detect_data_type(s); /* Construct the literal and distance trees */ build_tree(s, (tree_desc *)(&(s->l_desc))); Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, s->static_len)); build_tree(s, (tree_desc *)(&(s->d_desc))); Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, s->static_len)); /* At this point, opt_len and static_len are the total bit lengths of * the compressed block data, excluding the tree representations. */ /* Build the bit length tree for the above two trees, and get the index * in bl_order of the last bit length code to send. */ max_blindex = build_bl_tree(s); /* Determine the best encoding. Compute the block lengths in bytes. */ opt_lenb = (s->opt_len+3+7)>>3; static_lenb = (s->static_len+3+7)>>3; Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, s->last_lit)); if (static_lenb <= opt_lenb) opt_lenb = static_lenb; } else { Assert(buf != (char*)0, "lost buf"); opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ } #ifdef FORCE_STORED if (buf != (char*)0) { /* force stored block */ #else if (stored_len+4 <= opt_lenb && buf != (char*)0) { /* 4: two words for the lengths */ #endif /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. * Otherwise we can't have processed more than WSIZE input bytes since * the last block flush, because compression would have been * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to * transform a block into a stored block. */ _tr_stored_block(s, buf, stored_len, last); #ifdef FORCE_STATIC } else if (static_lenb >= 0) { /* force static trees */ #else } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) { #endif send_bits(s, (STATIC_TREES<<1)+last, 3); compress_block(s, (const ct_data *)static_ltree, (const ct_data *)static_dtree); #ifdef DEBUG s->compressed_len += 3 + s->static_len; #endif } else { send_bits(s, (DYN_TREES<<1)+last, 3); send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, max_blindex+1); compress_block(s, (const ct_data *)s->dyn_ltree, (const ct_data *)s->dyn_dtree); #ifdef DEBUG s->compressed_len += 3 + s->opt_len; #endif } Assert (s->compressed_len == s->bits_sent, "bad compressed size"); /* The above check is made mod 2^32, for files larger than 512 MB * and uLong implemented on 32 bits. */ init_block(s); if (last) { bi_windup(s); #ifdef DEBUG s->compressed_len += 7; /* align on byte boundary */ #endif } Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, s->compressed_len-7*last)); } /* =========================================================================== * Save the match info and tally the frequency counts. Return true if * the current block must be flushed. */ int ZLIB_INTERNAL _tr_tally (s, dist, lc) deflate_state *s; unsigned dist; /* distance of matched string */ unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */ { s->d_buf[s->last_lit] = (ush)dist; s->l_buf[s->last_lit++] = (uch)lc; if (dist == 0) { /* lc is the unmatched char */ s->dyn_ltree[lc].Freq++; } else { s->matches++; /* Here, lc is the match length - MIN_MATCH */ dist--; /* dist = match distance - 1 */ Assert((ush)dist < (ush)MAX_DIST(s) && (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match"); s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++; s->dyn_dtree[d_code(dist)].Freq++; } #ifdef TRUNCATE_BLOCK /* Try to guess if it is profitable to stop the current block here */ if ((s->last_lit & 0x1fff) == 0 && s->level > 2) { /* Compute an upper bound for the compressed length */ ulg out_length = (ulg)s->last_lit*8L; ulg in_length = (ulg)((long)s->strstart - s->block_start); int dcode; for (dcode = 0; dcode < D_CODES; dcode++) { out_length += (ulg)s->dyn_dtree[dcode].Freq * (5L+extra_dbits[dcode]); } out_length >>= 3; Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", s->last_lit, in_length, out_length, 100L - out_length*100L/in_length)); if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1; } #endif return (s->last_lit == s->lit_bufsize-1); /* We avoid equality with lit_bufsize because of wraparound at 64K * on 16 bit machines and because stored blocks are restricted to * 64K-1 bytes. */ } /* =========================================================================== * Send the block data compressed using the given Huffman trees */ local void compress_block(s, ltree, dtree) deflate_state *s; const ct_data *ltree; /* literal tree */ const ct_data *dtree; /* distance tree */ { unsigned dist; /* distance of matched string */ int lc; /* match length or unmatched char (if dist == 0) */ unsigned lx = 0; /* running index in l_buf */ unsigned code; /* the code to send */ int extra; /* number of extra bits to send */ if (s->last_lit != 0) do { dist = s->d_buf[lx]; lc = s->l_buf[lx++]; if (dist == 0) { send_code(s, lc, ltree); /* send a literal byte */ Tracecv(isgraph(lc), (stderr," '%c' ", lc)); } else { /* Here, lc is the match length - MIN_MATCH */ code = _length_code[lc]; send_code(s, code+LITERALS+1, ltree); /* send the length code */ extra = extra_lbits[code]; if (extra != 0) { lc -= base_length[code]; send_bits(s, lc, extra); /* send the extra length bits */ } dist--; /* dist is now the match distance - 1 */ code = d_code(dist); Assert (code < D_CODES, "bad d_code"); send_code(s, code, dtree); /* send the distance code */ extra = extra_dbits[code]; if (extra != 0) { dist -= base_dist[code]; send_bits(s, dist, extra); /* send the extra distance bits */ } } /* literal or match pair ? */ /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx, "pendingBuf overflow"); } while (lx < s->last_lit); send_code(s, END_BLOCK, ltree); } /* =========================================================================== * Check if the data type is TEXT or BINARY, using the following algorithm: * - TEXT if the two conditions below are satisfied: * a) There are no non-portable control characters belonging to the * "black list" (0..6, 14..25, 28..31). * b) There is at least one printable character belonging to the * "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255). * - BINARY otherwise. * - The following partially-portable control characters form a * "gray list" that is ignored in this detection algorithm: * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}). * IN assertion: the fields Freq of dyn_ltree are set. */ local int detect_data_type(s) deflate_state *s; { /* black_mask is the bit mask of black-listed bytes * set bits 0..6, 14..25, and 28..31 * 0xf3ffc07f = binary 11110011111111111100000001111111 */ unsigned long black_mask = 0xf3ffc07fUL; int n; /* Check for non-textual ("black-listed") bytes. */ for (n = 0; n <= 31; n++, black_mask >>= 1) if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0)) return Z_BINARY; /* Check for textual ("white-listed") bytes. */ if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0 || s->dyn_ltree[13].Freq != 0) return Z_TEXT; for (n = 32; n < LITERALS; n++) if (s->dyn_ltree[n].Freq != 0) return Z_TEXT; /* There are no "black-listed" or "white-listed" bytes: * this stream either is empty or has tolerated ("gray-listed") bytes only. */ return Z_BINARY; } /* =========================================================================== * Reverse the first len bits of a code, using straightforward code (a faster * method would use a table) * IN assertion: 1 <= len <= 15 */ local unsigned bi_reverse(code, len) unsigned code; /* the value to invert */ int len; /* its bit length */ { register unsigned res = 0; do { res |= code & 1; code >>= 1, res <<= 1; } while (--len > 0); return res >> 1; } /* =========================================================================== * Flush the bit buffer, keeping at most 7 bits in it. */ local void bi_flush(s) deflate_state *s; { if (s->bi_valid == 16) { put_short(s, s->bi_buf); s->bi_buf = 0; s->bi_valid = 0; } else if (s->bi_valid >= 8) { put_byte(s, (Byte)s->bi_buf); s->bi_buf >>= 8; s->bi_valid -= 8; } } /* =========================================================================== * Flush the bit buffer and align the output on a byte boundary */ local void bi_windup(s) deflate_state *s; { if (s->bi_valid > 8) { put_short(s, s->bi_buf); } else if (s->bi_valid > 0) { put_byte(s, (Byte)s->bi_buf); } s->bi_buf = 0; s->bi_valid = 0; #ifdef DEBUG s->bits_sent = (s->bits_sent+7) & ~7; #endif } /* =========================================================================== * Copy a stored block, storing first the length and its * one's complement if requested. */ local void copy_block(s, buf, len, header) deflate_state *s; charf *buf; /* the input data */ unsigned len; /* its length */ int header; /* true if block header must be written */ { bi_windup(s); /* align on byte boundary */ if (header) { put_short(s, (ush)len); put_short(s, (ush)~len); #ifdef DEBUG s->bits_sent += 2*16; #endif } #ifdef DEBUG s->bits_sent += (ulg)len<<3; #endif while (len--) { put_byte(s, *buf++); } } /* END OF DUMP OF mz_trees.c*/ /* START OF DUMP OF mz_inftrees.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* inftrees.c -- generate Huffman trees for efficient decoding * Copyright (C) 1995-2013 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* START OF DUMP OF mz_inftrees.h*/ /* inftrees.h -- header to use inftrees.c * Copyright (C) 1995-2005, 2010 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ /* Structure for decoding tables. Each entry provides either the information needed to do the operation requested by the code that indexed that table entry, or it provides a pointer to another table that indexes more bits of the code. op indicates whether the entry is a pointer to another table, a literal, a length or distance, an end-of-block, or an invalid code. For a table pointer, the low four bits of op is the number of index bits of that table. For a length or distance, the low four bits of op is the number of extra bits to get after the code. bits is the number of bits in this code or part of the code to drop off of the bit buffer. val is the actual byte to output in the case of a literal, the base length or distance, or the offset from the current table to the next table. Each entry is four bytes. */ typedef struct { unsigned char op; /* operation, extra bits, table bits */ unsigned char bits; /* bits in this part of the code */ unsigned short val; /* offset in table or code value */ } code; /* op values as set by inflate_table(): 00000000 - literal 0000tttt - table link, tttt != 0 is the number of table index bits 0001eeee - length or distance, eeee is the number of extra bits 01100000 - end of block 01000000 - invalid code */ /* Maximum size of the dynamic table. The maximum number of code structures is 1444, which is the sum of 852 for literal/length codes and 592 for distance codes. These values were found by exhaustive searches using the program examples/enough.c found in the zlib distribtution. The arguments to that program are the number of symbols, the initial root table size, and the maximum bit length of a code. "enough 286 9 15" for literal/length codes returns returns 852, and "enough 30 6 15" for distance codes returns 592. The initial root table size (9 or 6) is found in the fifth argument of the inflate_table() calls in inflate.c and infback.c. If the root table size is changed, then these maximum sizes would be need to be recalculated and updated. */ #define ENOUGH_LENS 852 #define ENOUGH_DISTS 592 #define ENOUGH (ENOUGH_LENS+ENOUGH_DISTS) /* Type of code to build for inflate_table() */ typedef enum { CODES, LENS, DISTS } codetype; int ZLIB_INTERNAL inflate_table OF((codetype type, unsigned short FAR *lens, unsigned codes, code FAR * FAR *table, unsigned FAR *bits, unsigned short FAR *work)); /* END OF DUMP OF mz_inftrees.h*/ #define MAXBITS 15 const char inflate_copyright[] = " inflate 1.2.8 Copyright 1995-2013 Mark Adler "; /* If you use the zlib library in a product, an acknowledgment is welcome in the documentation of your product. If for some reason you cannot include such an acknowledgment, I would appreciate that you keep this copyright string in the executable of your product. */ /* Build a set of tables to decode the provided canonical Huffman code. The code lengths are lens[0..codes-1]. The result starts at *table, whose indices are 0..2^bits-1. work is a writable array of at least lens shorts, which is used as a work area. type is the type of code to be generated, CODES, LENS, or DISTS. On return, zero is success, -1 is an invalid code, and +1 means that ENOUGH isn't enough. table on return points to the next available entry's address. bits is the requested root table index bits, and on return it is the actual root table index bits. It will differ if the request is greater than the longest code or if it is less than the shortest code. */ int ZLIB_INTERNAL inflate_table(type, lens, codes, table, bits, work) codetype type; unsigned short FAR *lens; unsigned codes; code FAR * FAR *table; unsigned FAR *bits; unsigned short FAR *work; { unsigned len; /* a code's length in bits */ unsigned sym; /* index of code symbols */ unsigned min, max; /* minimum and maximum code lengths */ unsigned root; /* number of index bits for root table */ unsigned curr; /* number of index bits for current table */ unsigned drop; /* code bits to drop for sub-table */ int left; /* number of prefix codes available */ unsigned used; /* code entries in table used */ unsigned huff; /* Huffman code */ unsigned incr; /* for incrementing code, index */ unsigned fill; /* index for replicating entries */ unsigned low; /* low bits for current root entry */ unsigned mask; /* mask for low root bits */ code here; /* table entry for duplication */ code FAR *next; /* next available space in table */ const unsigned short FAR *base; /* base value table to use */ const unsigned short FAR *extra; /* extra bits table to use */ int end; /* use base and extra for symbol > end */ unsigned short count[MAXBITS+1]; /* number of codes of each length */ unsigned short offs[MAXBITS+1]; /* offsets in table for each length */ static const unsigned short lbase[31] = { /* Length codes 257..285 base */ 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; static const unsigned short lext[31] = { /* Length codes 257..285 extra */ 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 72, 78}; static const unsigned short dbase[32] = { /* Distance codes 0..29 base */ 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577, 0, 0}; static const unsigned short dext[32] = { /* Distance codes 0..29 extra */ 16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 64, 64}; /* Process a set of code lengths to create a canonical Huffman code. The code lengths are lens[0..codes-1]. Each length corresponds to the symbols 0..codes-1. The Huffman code is generated by first sorting the symbols by length from short to long, and retaining the symbol order for codes with equal lengths. Then the code starts with all zero bits for the first code of the shortest length, and the codes are integer increments for the same length, and zeros are appended as the length increases. For the deflate format, these bits are stored backwards from their more natural integer increment ordering, and so when the decoding tables are built in the large loop below, the integer codes are incremented backwards. This routine assumes, but does not check, that all of the entries in lens[] are in the range 0..MAXBITS. The caller must assure this. 1..MAXBITS is interpreted as that code length. zero means that that symbol does not occur in this code. The codes are sorted by computing a count of codes for each length, creating from that a table of starting indices for each length in the sorted table, and then entering the symbols in order in the sorted table. The sorted table is work[], with that space being provided by the caller. The length counts are used for other purposes as well, i.e. finding the minimum and maximum length codes, determining if there are any codes at all, checking for a valid set of lengths, and looking ahead at length counts to determine sub-table sizes when building the decoding tables. */ /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */ for (len = 0; len <= MAXBITS; len++) count[len] = 0; for (sym = 0; sym < codes; sym++) count[lens[sym]]++; /* bound code lengths, force root to be within code lengths */ root = *bits; for (max = MAXBITS; max >= 1; max--) if (count[max] != 0) break; if (root > max) root = max; if (max == 0) { /* no symbols to code at all */ here.op = (unsigned char)64; /* invalid code marker */ here.bits = (unsigned char)1; here.val = (unsigned short)0; *(*table)++ = here; /* make a table to force an error */ *(*table)++ = here; *bits = 1; return 0; /* no symbols, but wait for decoding to report error */ } for (min = 1; min < max; min++) if (count[min] != 0) break; if (root < min) root = min; /* check for an over-subscribed or incomplete set of lengths */ left = 1; for (len = 1; len <= MAXBITS; len++) { left <<= 1; left -= count[len]; if (left < 0) return -1; /* over-subscribed */ } if (left > 0 && (type == CODES || max != 1)) return -1; /* incomplete set */ /* generate offsets into symbol table for each length for sorting */ offs[1] = 0; for (len = 1; len < MAXBITS; len++) offs[len + 1] = offs[len] + count[len]; /* sort symbols by length, by symbol order within each length */ for (sym = 0; sym < codes; sym++) if (lens[sym] != 0) work[offs[lens[sym]]++] = (unsigned short)sym; /* Create and fill in decoding tables. In this loop, the table being filled is at next and has curr index bits. The code being used is huff with length len. That code is converted to an index by dropping drop bits off of the bottom. For codes where len is less than drop + curr, those top drop + curr - len bits are incremented through all values to fill the table with replicated entries. root is the number of index bits for the root table. When len exceeds root, sub-tables are created pointed to by the root entry with an index of the low root bits of huff. This is saved in low to check for when a new sub-table should be started. drop is zero when the root table is being filled, and drop is root when sub-tables are being filled. When a new sub-table is needed, it is necessary to look ahead in the code lengths to determine what size sub-table is needed. The length counts are used for this, and so count[] is decremented as codes are entered in the tables. used keeps track of how many table entries have been allocated from the provided *table space. It is checked for LENS and DIST tables against the constants ENOUGH_LENS and ENOUGH_DISTS to guard against changes in the initial root table size constants. See the comments in inftrees.h for more information. sym increments through all symbols, and the loop terminates when all codes of length max, i.e. all codes, have been processed. This routine permits incomplete codes, so another loop after this one fills in the rest of the decoding tables with invalid code markers. */ /* set up for code type */ switch (type) { case CODES: base = extra = work; /* dummy value--not used */ end = 19; break; case LENS: base = lbase; base -= 257; extra = lext; extra -= 257; end = 256; break; default: /* DISTS */ base = dbase; extra = dext; end = -1; } /* initialize state for loop */ huff = 0; /* starting code */ sym = 0; /* starting code symbol */ len = min; /* starting code length */ next = *table; /* current table to fill in */ curr = root; /* current table index bits */ drop = 0; /* current bits to drop from code for index */ low = (unsigned)(-1); /* trigger new sub-table when len > root */ used = 1U << root; /* use root table entries */ mask = used - 1; /* mask for comparing low */ /* check available table space */ if ((type == LENS && used > ENOUGH_LENS) || (type == DISTS && used > ENOUGH_DISTS)) return 1; /* process all codes and make table entries */ for (;;) { /* create table entry */ here.bits = (unsigned char)(len - drop); if ((int)(work[sym]) < end) { here.op = (unsigned char)0; here.val = work[sym]; } else if ((int)(work[sym]) > end) { here.op = (unsigned char)(extra[work[sym]]); here.val = base[work[sym]]; } else { here.op = (unsigned char)(32 + 64); /* end of block */ here.val = 0; } /* replicate for those indices with low len bits equal to huff */ incr = 1U << (len - drop); fill = 1U << curr; min = fill; /* save offset to next table */ do { fill -= incr; next[(huff >> drop) + fill] = here; } while (fill != 0); /* backwards increment the len-bit code huff */ incr = 1U << (len - 1); while (huff & incr) incr >>= 1; if (incr != 0) { huff &= incr - 1; huff += incr; } else huff = 0; /* go to next symbol, update count, len */ sym++; if (--(count[len]) == 0) { if (len == max) break; len = lens[work[sym]]; } /* create new sub-table if needed */ if (len > root && (huff & mask) != low) { /* if first time, transition to sub-tables */ if (drop == 0) drop = root; /* increment past last table */ next += min; /* here min is 1 << curr */ /* determine length of next table */ curr = len - drop; left = (int)(1 << curr); while (curr + drop < max) { left -= count[curr + drop]; if (left <= 0) break; curr++; left <<= 1; } /* check for enough space */ used += 1U << curr; if ((type == LENS && used > ENOUGH_LENS) || (type == DISTS && used > ENOUGH_DISTS)) return 1; /* point entry in root table to sub-table */ low = huff & mask; (*table)[low].op = (unsigned char)curr; (*table)[low].bits = (unsigned char)root; (*table)[low].val = (unsigned short)(next - *table); } } /* fill in remaining table entry if code is incomplete (guaranteed to have at most one remaining entry, since if the code is incomplete, the maximum code length that was allowed to get this far is one bit) */ if (huff != 0) { here.op = (unsigned char)64; /* invalid code marker */ here.bits = (unsigned char)(len - drop); here.val = (unsigned short)0; next[huff] = here; } /* set return parameters */ *table += used; *bits = root; return 0; } /* END OF DUMP OF mz_inftrees.c*/ /* START OF DUMP OF mz_inflate.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* inflate.c -- zlib decompression * Copyright (C) 1995-2012 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* * Change history: * * 1.2.beta0 24 Nov 2002 * - First version -- complete rewrite of inflate to simplify code, avoid * creation of window when not needed, minimize use of window when it is * needed, make inffast.c even faster, implement gzip decoding, and to * improve code readability and style over the previous zlib inflate code * * 1.2.beta1 25 Nov 2002 * - Use pointers for available input and output checking in inffast.c * - Remove input and output counters in inffast.c * - Change inffast.c entry and loop from avail_in >= 7 to >= 6 * - Remove unnecessary second byte pull from length extra in inffast.c * - Unroll direct copy to three copies per loop in inffast.c * * 1.2.beta2 4 Dec 2002 * - Change external routine names to reduce potential conflicts * - Correct filename to inffixed.h for fixed tables in inflate.c * - Make hbuf[] unsigned char to match parameter type in inflate.c * - Change strm->next_out[-state->offset] to *(strm->next_out - state->offset) * to avoid negation problem on Alphas (64 bit) in inflate.c * * 1.2.beta3 22 Dec 2002 * - Add comments on state->bits assertion in inffast.c * - Add comments on op field in inftrees.h * - Fix bug in reuse of allocated window after inflateReset() * - Remove bit fields--back to byte structure for speed * - Remove distance extra == 0 check in inflate_fast()--only helps for lengths * - Change post-increments to pre-increments in inflate_fast(), PPC biased? * - Add compile time option, POSTINC, to use post-increments instead (Intel?) * - Make MATCH copy in inflate() much faster for when inflate_fast() not used * - Use local copies of stream next and avail values, as well as local bit * buffer and bit count in inflate()--for speed when inflate_fast() not used * * 1.2.beta4 1 Jan 2003 * - Split ptr - 257 statements in inflate_table() to avoid compiler warnings * - Move a comment on output buffer sizes from inffast.c to inflate.c * - Add comments in inffast.c to introduce the inflate_fast() routine * - Rearrange window copies in inflate_fast() for speed and simplification * - Unroll last copy for window match in inflate_fast() * - Use local copies of window variables in inflate_fast() for speed * - Pull out common wnext == 0 case for speed in inflate_fast() * - Make op and len in inflate_fast() unsigned for consistency * - Add FAR to lcode and dcode declarations in inflate_fast() * - Simplified bad distance check in inflate_fast() * - Added inflateBackInit(), inflateBack(), and inflateBackEnd() in new * source file infback.c to provide a call-back interface to inflate for * programs like gzip and unzip -- uses window as output buffer to avoid * window copying * * 1.2.beta5 1 Jan 2003 * - Improved inflateBack() interface to allow the caller to provide initial * input in strm. * - Fixed stored blocks bug in inflateBack() * * 1.2.beta6 4 Jan 2003 * - Added comments in inffast.c on effectiveness of POSTINC * - Typecasting all around to reduce compiler warnings * - Changed loops from while (1) or do {} while (1) to for (;;), again to * make compilers happy * - Changed type of window in inflateBackInit() to unsigned char * * * 1.2.beta7 27 Jan 2003 * - Changed many types to unsigned or unsigned short to avoid warnings * - Added inflateCopy() function * * 1.2.0 9 Mar 2003 * - Changed inflateBack() interface to provide separate opaque descriptors * for the in() and out() functions * - Changed inflateBack() argument and in_func typedef to swap the length * and buffer address return values for the input function * - Check next_in and next_out for Z_NULL on entry to inflate() * * The history for versions after 1.2.0 are in ChangeLog in zlib distribution. */ /* START OF DUMP OF mz_inflate.h*/ /* inflate.h -- internal inflate state definition * Copyright (C) 1995-2009 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ /* define NO_GZIP when compiling if you want to disable gzip header and trailer decoding by inflate(). NO_GZIP would be used to avoid linking in the crc code when it is not needed. For shared libraries, gzip decoding should be left enabled. */ #ifndef NO_GZIP # define GUNZIP #endif /* Possible inflate modes between inflate() calls */ typedef enum { HEAD, /* i: waiting for magic header */ FLAGS, /* i: waiting for method and flags (gzip) */ TIME, /* i: waiting for modification time (gzip) */ OS, /* i: waiting for extra flags and operating system (gzip) */ EXLEN, /* i: waiting for extra length (gzip) */ EXTRA, /* i: waiting for extra bytes (gzip) */ NAME, /* i: waiting for end of file name (gzip) */ COMMENT, /* i: waiting for end of comment (gzip) */ HCRC, /* i: waiting for header crc (gzip) */ DICTID, /* i: waiting for dictionary check value */ DICT, /* waiting for inflateSetDictionary() call */ TYPE, /* i: waiting for type bits, including last-flag bit */ TYPEDO, /* i: same, but skip check to exit inflate on new block */ STORED, /* i: waiting for stored size (length and complement) */ COPY_, /* i/o: same as COPY below, but only first time in */ COPY, /* i/o: waiting for input or output to copy stored block */ TABLE, /* i: waiting for dynamic block table lengths */ LENLENS, /* i: waiting for code length code lengths */ CODELENS, /* i: waiting for length/lit and distance code lengths */ LEN_, /* i: same as LEN below, but only first time in */ LEN, /* i: waiting for length/lit/eob code */ LENEXT, /* i: waiting for length extra bits */ DIST, /* i: waiting for distance code */ DISTEXT, /* i: waiting for distance extra bits */ MATCH, /* o: waiting for output space to copy string */ LIT, /* o: waiting for output space to write literal */ CHECK, /* i: waiting for 32-bit check value */ LENGTH, /* i: waiting for 32-bit length (gzip) */ DONE, /* finished check, done -- remain here until reset */ BAD, /* got a data error -- remain here until reset */ MEM, /* got an inflate() memory error -- remain here until reset */ SYNC /* looking for synchronization bytes to restart inflate() */ } inflate_mode; /* State transitions between above modes - (most modes can go to BAD or MEM on error -- not shown for clarity) Process header: HEAD -> (gzip) or (zlib) or (raw) (gzip) -> FLAGS -> TIME -> OS -> EXLEN -> EXTRA -> NAME -> COMMENT -> HCRC -> TYPE (zlib) -> DICTID or TYPE DICTID -> DICT -> TYPE (raw) -> TYPEDO Read deflate blocks: TYPE -> TYPEDO -> STORED or TABLE or LEN_ or CHECK STORED -> COPY_ -> COPY -> TYPE TABLE -> LENLENS -> CODELENS -> LEN_ LEN_ -> LEN Read deflate codes in fixed or dynamic block: LEN -> LENEXT or LIT or TYPE LENEXT -> DIST -> DISTEXT -> MATCH -> LEN LIT -> LEN Process trailer: CHECK -> LENGTH -> DONE */ /* state maintained between inflate() calls. Approximately 10K bytes. */ struct inflate_state { inflate_mode mode; /* current inflate mode */ int last; /* true if processing last block */ int wrap; /* bit 0 true for zlib, bit 1 true for gzip */ int havedict; /* true if dictionary provided */ int flags; /* gzip header method and flags (0 if zlib) */ unsigned dmax; /* zlib header max distance (INFLATE_STRICT) */ unsigned long check; /* protected copy of check value */ unsigned long total; /* protected copy of output count */ gz_headerp head; /* where to save gzip header information */ /* sliding window */ unsigned wbits; /* log base 2 of requested window size */ unsigned wsize; /* window size or zero if not using window */ unsigned whave; /* valid bytes in the window */ unsigned wnext; /* window write index */ unsigned char FAR *window; /* allocated sliding window, if needed */ /* bit accumulator */ unsigned long hold; /* input bit accumulator */ unsigned bits; /* number of bits in "in" */ /* for string and stored block copying */ unsigned length; /* literal or length of data to copy */ unsigned offset; /* distance back to copy string from */ /* for table and code decoding */ unsigned extra; /* extra bits needed */ /* fixed and dynamic code tables */ code const FAR *lencode; /* starting table for length/literal codes */ code const FAR *distcode; /* starting table for distance codes */ unsigned lenbits; /* index bits for lencode */ unsigned distbits; /* index bits for distcode */ /* dynamic table building */ unsigned ncode; /* number of code length code lengths */ unsigned nlen; /* number of length code lengths */ unsigned ndist; /* number of distance code lengths */ unsigned have; /* number of code lengths in lens[] */ code FAR *next; /* next available space in codes[] */ unsigned short lens[320]; /* temporary storage for code lengths */ unsigned short work[288]; /* work area for code table building */ code codes[ENOUGH]; /* space for code tables */ int sane; /* if false, allow invalid distance too far */ int back; /* bits back of last unprocessed length/lit */ unsigned was; /* initial length of match */ }; /* END OF DUMP OF mz_inflate.h*/ /* START OF DUMP OF mz_inffast.h*/ /* inffast.h -- header to use inffast.c * Copyright (C) 1995-2003, 2010 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ void ZLIB_INTERNAL inflate_fast OF((z_streamp strm, unsigned start)); /* END OF DUMP OF mz_inffast.h*/ #ifdef MAKEFIXED # ifndef BUILDFIXED # define BUILDFIXED # endif #endif /* function prototypes */ local void fixedtables OF((struct inflate_state FAR *state)); local int updatewindow OF((z_streamp strm, const unsigned char FAR *end, unsigned copy)); #ifdef BUILDFIXED void makefixed OF((void)); #endif local unsigned syncsearch OF((unsigned FAR *have, const unsigned char FAR *buf, unsigned len)); int ZEXPORT inflateResetKeep(strm) z_streamp strm; { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; strm->total_in = strm->total_out = state->total = 0; strm->msg = Z_NULL; if (state->wrap) /* to support ill-conceived Java test suite */ strm->adler = state->wrap & 1; state->mode = HEAD; state->last = 0; state->havedict = 0; state->dmax = 32768U; state->head = Z_NULL; state->hold = 0; state->bits = 0; state->lencode = state->distcode = state->next = state->codes; state->sane = 1; state->back = -1; Tracev((stderr, "inflate: reset\n")); return Z_OK; } int ZEXPORT inflateReset(strm) z_streamp strm; { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; state->wsize = 0; state->whave = 0; state->wnext = 0; return inflateResetKeep(strm); } int ZEXPORT inflateReset2(strm, windowBits) z_streamp strm; int windowBits; { int wrap; struct inflate_state FAR *state; /* get the state */ if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; /* extract wrap request from windowBits parameter */ if (windowBits < 0) { wrap = 0; windowBits = -windowBits; } else { wrap = (windowBits >> 4) + 1; #ifdef GUNZIP if (windowBits < 48) windowBits &= 15; #endif } /* set number of window bits, free window if different */ if (windowBits && (windowBits < 8 || windowBits > 15)) return Z_STREAM_ERROR; if (state->window != Z_NULL && state->wbits != (unsigned)windowBits) { ZFREE(strm, state->window); state->window = Z_NULL; } /* update state and reset the rest of it */ state->wrap = wrap; state->wbits = (unsigned)windowBits; return inflateReset(strm); } int ZEXPORT inflateInit2_(strm, windowBits, version, stream_size) z_streamp strm; int windowBits; const char *version; int stream_size; { int ret; struct inflate_state FAR *state; if (version == Z_NULL || version[0] != ZLIB_VERSION[0] || stream_size != (int)(sizeof(z_stream))) return Z_VERSION_ERROR; if (strm == Z_NULL) return Z_STREAM_ERROR; strm->msg = Z_NULL; /* in case we return an error */ if (strm->zalloc == (alloc_func)0) { #ifdef Z_SOLO return Z_STREAM_ERROR; #else strm->zalloc = zcalloc; strm->opaque = (voidpf)0; #endif } if (strm->zfree == (free_func)0) #ifdef Z_SOLO return Z_STREAM_ERROR; #else strm->zfree = zcfree; #endif state = (struct inflate_state FAR *) ZALLOC(strm, 1, sizeof(struct inflate_state)); if (state == Z_NULL) return Z_MEM_ERROR; Tracev((stderr, "inflate: allocated\n")); strm->state = (struct internal_state FAR *)state; state->window = Z_NULL; ret = inflateReset2(strm, windowBits); if (ret != Z_OK) { ZFREE(strm, state); strm->state = Z_NULL; } return ret; } int ZEXPORT inflateInit_(strm, version, stream_size) z_streamp strm; const char *version; int stream_size; { return inflateInit2_(strm, DEF_WBITS, version, stream_size); } int ZEXPORT inflatePrime(strm, bits, value) z_streamp strm; int bits; int value; { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (bits < 0) { state->hold = 0; state->bits = 0; return Z_OK; } if (bits > 16 || state->bits + bits > 32) return Z_STREAM_ERROR; value &= (1L << bits) - 1; state->hold += value << state->bits; state->bits += bits; return Z_OK; } /* Return state with length and distance decoding tables and index sizes set to fixed code decoding. Normally this returns fixed tables from inffixed.h. If BUILDFIXED is defined, then instead this routine builds the tables the first time it's called, and returns those tables the first time and thereafter. This reduces the size of the code by about 2K bytes, in exchange for a little execution time. However, BUILDFIXED should not be used for threaded applications, since the rewriting of the tables and virgin may not be thread-safe. */ local void fixedtables(state) struct inflate_state FAR *state; { #ifdef BUILDFIXED static int virgin = 1; static code *lenfix, *distfix; static code fixed[544]; /* build fixed huffman tables if first call (may not be thread safe) */ if (virgin) { unsigned sym, bits; static code *next; /* literal/length table */ sym = 0; while (sym < 144) state->lens[sym++] = 8; while (sym < 256) state->lens[sym++] = 9; while (sym < 280) state->lens[sym++] = 7; while (sym < 288) state->lens[sym++] = 8; next = fixed; lenfix = next; bits = 9; inflate_table(LENS, state->lens, 288, &(next), &(bits), state->work); /* distance table */ sym = 0; while (sym < 32) state->lens[sym++] = 5; distfix = next; bits = 5; inflate_table(DISTS, state->lens, 32, &(next), &(bits), state->work); /* do this just once */ virgin = 0; } #else /* !BUILDFIXED */ /* START OF DUMP OF mz_inffixed.h*/ /* inffixed.h -- table for decoding fixed codes * Generated automatically by makefixed(). */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of this library and is subject to change. Applications should only use zlib.h. */ static const code lenfix[512] = { {96,7,0},{0,8,80},{0,8,16},{20,8,115},{18,7,31},{0,8,112},{0,8,48}, {0,9,192},{16,7,10},{0,8,96},{0,8,32},{0,9,160},{0,8,0},{0,8,128}, {0,8,64},{0,9,224},{16,7,6},{0,8,88},{0,8,24},{0,9,144},{19,7,59}, {0,8,120},{0,8,56},{0,9,208},{17,7,17},{0,8,104},{0,8,40},{0,9,176}, {0,8,8},{0,8,136},{0,8,72},{0,9,240},{16,7,4},{0,8,84},{0,8,20}, {21,8,227},{19,7,43},{0,8,116},{0,8,52},{0,9,200},{17,7,13},{0,8,100}, {0,8,36},{0,9,168},{0,8,4},{0,8,132},{0,8,68},{0,9,232},{16,7,8}, {0,8,92},{0,8,28},{0,9,152},{20,7,83},{0,8,124},{0,8,60},{0,9,216}, {18,7,23},{0,8,108},{0,8,44},{0,9,184},{0,8,12},{0,8,140},{0,8,76}, {0,9,248},{16,7,3},{0,8,82},{0,8,18},{21,8,163},{19,7,35},{0,8,114}, {0,8,50},{0,9,196},{17,7,11},{0,8,98},{0,8,34},{0,9,164},{0,8,2}, {0,8,130},{0,8,66},{0,9,228},{16,7,7},{0,8,90},{0,8,26},{0,9,148}, {20,7,67},{0,8,122},{0,8,58},{0,9,212},{18,7,19},{0,8,106},{0,8,42}, {0,9,180},{0,8,10},{0,8,138},{0,8,74},{0,9,244},{16,7,5},{0,8,86}, {0,8,22},{64,8,0},{19,7,51},{0,8,118},{0,8,54},{0,9,204},{17,7,15}, {0,8,102},{0,8,38},{0,9,172},{0,8,6},{0,8,134},{0,8,70},{0,9,236}, {16,7,9},{0,8,94},{0,8,30},{0,9,156},{20,7,99},{0,8,126},{0,8,62}, {0,9,220},{18,7,27},{0,8,110},{0,8,46},{0,9,188},{0,8,14},{0,8,142}, {0,8,78},{0,9,252},{96,7,0},{0,8,81},{0,8,17},{21,8,131},{18,7,31}, {0,8,113},{0,8,49},{0,9,194},{16,7,10},{0,8,97},{0,8,33},{0,9,162}, {0,8,1},{0,8,129},{0,8,65},{0,9,226},{16,7,6},{0,8,89},{0,8,25}, {0,9,146},{19,7,59},{0,8,121},{0,8,57},{0,9,210},{17,7,17},{0,8,105}, {0,8,41},{0,9,178},{0,8,9},{0,8,137},{0,8,73},{0,9,242},{16,7,4}, {0,8,85},{0,8,21},{16,8,258},{19,7,43},{0,8,117},{0,8,53},{0,9,202}, {17,7,13},{0,8,101},{0,8,37},{0,9,170},{0,8,5},{0,8,133},{0,8,69}, {0,9,234},{16,7,8},{0,8,93},{0,8,29},{0,9,154},{20,7,83},{0,8,125}, {0,8,61},{0,9,218},{18,7,23},{0,8,109},{0,8,45},{0,9,186},{0,8,13}, {0,8,141},{0,8,77},{0,9,250},{16,7,3},{0,8,83},{0,8,19},{21,8,195}, {19,7,35},{0,8,115},{0,8,51},{0,9,198},{17,7,11},{0,8,99},{0,8,35}, {0,9,166},{0,8,3},{0,8,131},{0,8,67},{0,9,230},{16,7,7},{0,8,91}, {0,8,27},{0,9,150},{20,7,67},{0,8,123},{0,8,59},{0,9,214},{18,7,19}, {0,8,107},{0,8,43},{0,9,182},{0,8,11},{0,8,139},{0,8,75},{0,9,246}, {16,7,5},{0,8,87},{0,8,23},{64,8,0},{19,7,51},{0,8,119},{0,8,55}, {0,9,206},{17,7,15},{0,8,103},{0,8,39},{0,9,174},{0,8,7},{0,8,135}, {0,8,71},{0,9,238},{16,7,9},{0,8,95},{0,8,31},{0,9,158},{20,7,99}, {0,8,127},{0,8,63},{0,9,222},{18,7,27},{0,8,111},{0,8,47},{0,9,190}, {0,8,15},{0,8,143},{0,8,79},{0,9,254},{96,7,0},{0,8,80},{0,8,16}, {20,8,115},{18,7,31},{0,8,112},{0,8,48},{0,9,193},{16,7,10},{0,8,96}, {0,8,32},{0,9,161},{0,8,0},{0,8,128},{0,8,64},{0,9,225},{16,7,6}, {0,8,88},{0,8,24},{0,9,145},{19,7,59},{0,8,120},{0,8,56},{0,9,209}, {17,7,17},{0,8,104},{0,8,40},{0,9,177},{0,8,8},{0,8,136},{0,8,72}, {0,9,241},{16,7,4},{0,8,84},{0,8,20},{21,8,227},{19,7,43},{0,8,116}, {0,8,52},{0,9,201},{17,7,13},{0,8,100},{0,8,36},{0,9,169},{0,8,4}, {0,8,132},{0,8,68},{0,9,233},{16,7,8},{0,8,92},{0,8,28},{0,9,153}, {20,7,83},{0,8,124},{0,8,60},{0,9,217},{18,7,23},{0,8,108},{0,8,44}, {0,9,185},{0,8,12},{0,8,140},{0,8,76},{0,9,249},{16,7,3},{0,8,82}, {0,8,18},{21,8,163},{19,7,35},{0,8,114},{0,8,50},{0,9,197},{17,7,11}, {0,8,98},{0,8,34},{0,9,165},{0,8,2},{0,8,130},{0,8,66},{0,9,229}, {16,7,7},{0,8,90},{0,8,26},{0,9,149},{20,7,67},{0,8,122},{0,8,58}, {0,9,213},{18,7,19},{0,8,106},{0,8,42},{0,9,181},{0,8,10},{0,8,138}, {0,8,74},{0,9,245},{16,7,5},{0,8,86},{0,8,22},{64,8,0},{19,7,51}, {0,8,118},{0,8,54},{0,9,205},{17,7,15},{0,8,102},{0,8,38},{0,9,173}, {0,8,6},{0,8,134},{0,8,70},{0,9,237},{16,7,9},{0,8,94},{0,8,30}, {0,9,157},{20,7,99},{0,8,126},{0,8,62},{0,9,221},{18,7,27},{0,8,110}, {0,8,46},{0,9,189},{0,8,14},{0,8,142},{0,8,78},{0,9,253},{96,7,0}, {0,8,81},{0,8,17},{21,8,131},{18,7,31},{0,8,113},{0,8,49},{0,9,195}, {16,7,10},{0,8,97},{0,8,33},{0,9,163},{0,8,1},{0,8,129},{0,8,65}, {0,9,227},{16,7,6},{0,8,89},{0,8,25},{0,9,147},{19,7,59},{0,8,121}, {0,8,57},{0,9,211},{17,7,17},{0,8,105},{0,8,41},{0,9,179},{0,8,9}, {0,8,137},{0,8,73},{0,9,243},{16,7,4},{0,8,85},{0,8,21},{16,8,258}, {19,7,43},{0,8,117},{0,8,53},{0,9,203},{17,7,13},{0,8,101},{0,8,37}, {0,9,171},{0,8,5},{0,8,133},{0,8,69},{0,9,235},{16,7,8},{0,8,93}, {0,8,29},{0,9,155},{20,7,83},{0,8,125},{0,8,61},{0,9,219},{18,7,23}, {0,8,109},{0,8,45},{0,9,187},{0,8,13},{0,8,141},{0,8,77},{0,9,251}, {16,7,3},{0,8,83},{0,8,19},{21,8,195},{19,7,35},{0,8,115},{0,8,51}, {0,9,199},{17,7,11},{0,8,99},{0,8,35},{0,9,167},{0,8,3},{0,8,131}, {0,8,67},{0,9,231},{16,7,7},{0,8,91},{0,8,27},{0,9,151},{20,7,67}, {0,8,123},{0,8,59},{0,9,215},{18,7,19},{0,8,107},{0,8,43},{0,9,183}, {0,8,11},{0,8,139},{0,8,75},{0,9,247},{16,7,5},{0,8,87},{0,8,23}, {64,8,0},{19,7,51},{0,8,119},{0,8,55},{0,9,207},{17,7,15},{0,8,103}, {0,8,39},{0,9,175},{0,8,7},{0,8,135},{0,8,71},{0,9,239},{16,7,9}, {0,8,95},{0,8,31},{0,9,159},{20,7,99},{0,8,127},{0,8,63},{0,9,223}, {18,7,27},{0,8,111},{0,8,47},{0,9,191},{0,8,15},{0,8,143},{0,8,79}, {0,9,255} }; static const code distfix[32] = { {16,5,1},{23,5,257},{19,5,17},{27,5,4097},{17,5,5},{25,5,1025}, {21,5,65},{29,5,16385},{16,5,3},{24,5,513},{20,5,33},{28,5,8193}, {18,5,9},{26,5,2049},{22,5,129},{64,5,0},{16,5,2},{23,5,385}, {19,5,25},{27,5,6145},{17,5,7},{25,5,1537},{21,5,97},{29,5,24577}, {16,5,4},{24,5,769},{20,5,49},{28,5,12289},{18,5,13},{26,5,3073}, {22,5,193},{64,5,0} }; /* END OF DUMP OF mz_inffixed.h*/ #endif /* BUILDFIXED */ state->lencode = lenfix; state->lenbits = 9; state->distcode = distfix; state->distbits = 5; } #ifdef MAKEFIXED #include /* Write out the inffixed.h that is #include'd above. Defining MAKEFIXED also defines BUILDFIXED, so the tables are built on the fly. makefixed() writes those tables to stdout, which would be piped to inffixed.h. A small program can simply call makefixed to do this: void makefixed(void); int main(void) { makefixed(); return 0; } Then that can be linked with zlib built with MAKEFIXED defined and run: a.out > inffixed.h */ void makefixed() { unsigned low, size; struct inflate_state state; fixedtables(&state); puts(" /* inffixed.h -- table for decoding fixed codes"); puts(" * Generated automatically by makefixed()."); puts(" */"); puts(""); puts(" /* WARNING: this file should *not* be used by applications."); puts(" It is part of the implementation of this library and is"); puts(" subject to change. Applications should only use zlib.h."); puts(" */"); puts(""); size = 1U << 9; printf(" static const code lenfix[%u] = {", size); low = 0; for (;;) { if ((low % 7) == 0) printf("\n "); printf("{%u,%u,%d}", (low & 127) == 99 ? 64 : state.lencode[low].op, state.lencode[low].bits, state.lencode[low].val); if (++low == size) break; putchar(','); } puts("\n };"); size = 1U << 5; printf("\n static const code distfix[%u] = {", size); low = 0; for (;;) { if ((low % 6) == 0) printf("\n "); printf("{%u,%u,%d}", state.distcode[low].op, state.distcode[low].bits, state.distcode[low].val); if (++low == size) break; putchar(','); } puts("\n };"); } #endif /* MAKEFIXED */ /* Update the window with the last wsize (normally 32K) bytes written before returning. If window does not exist yet, create it. This is only called when a window is already in use, or when output has been written during this inflate call, but the end of the deflate stream has not been reached yet. It is also called to create a window for dictionary data when a dictionary is loaded. Providing output buffers larger than 32K to inflate() should provide a speed advantage, since only the last 32K of output is copied to the sliding window upon return from inflate(), and since all distances after the first 32K of output will fall in the output data, making match copies simpler and faster. The advantage may be dependent on the size of the processor's data caches. */ local int updatewindow(strm, end, copy) z_streamp strm; const Bytef *end; unsigned copy; { struct inflate_state FAR *state; unsigned dist; state = (struct inflate_state FAR *)strm->state; /* if it hasn't been done already, allocate space for the window */ if (state->window == Z_NULL) { state->window = (unsigned char FAR *) ZALLOC(strm, 1U << state->wbits, sizeof(unsigned char)); if (state->window == Z_NULL) return 1; } /* if window not in use yet, initialize */ if (state->wsize == 0) { state->wsize = 1U << state->wbits; state->wnext = 0; state->whave = 0; } /* copy state->wsize or less output bytes into the circular window */ if (copy >= state->wsize) { zmemcpy(state->window, end - state->wsize, state->wsize); state->wnext = 0; state->whave = state->wsize; } else { dist = state->wsize - state->wnext; if (dist > copy) dist = copy; zmemcpy(state->window + state->wnext, end - copy, dist); copy -= dist; if (copy) { zmemcpy(state->window, end - copy, copy); state->wnext = copy; state->whave = state->wsize; } else { state->wnext += dist; if (state->wnext == state->wsize) state->wnext = 0; if (state->whave < state->wsize) state->whave += dist; } } return 0; } /* Macros for inflate(): */ /* check function to use adler32() for zlib or crc32() for gzip */ #ifdef GUNZIP # define UPDATE(check, buf, len) \ (state->flags ? crc32(check, buf, len) : adler32(check, buf, len)) #else # define UPDATE(check, buf, len) adler32(check, buf, len) #endif /* check macros for header crc */ #ifdef GUNZIP # define CRC2(check, word) \ do { \ hbuf[0] = (unsigned char)(word); \ hbuf[1] = (unsigned char)((word) >> 8); \ check = crc32(check, hbuf, 2); \ } while (0) # define CRC4(check, word) \ do { \ hbuf[0] = (unsigned char)(word); \ hbuf[1] = (unsigned char)((word) >> 8); \ hbuf[2] = (unsigned char)((word) >> 16); \ hbuf[3] = (unsigned char)((word) >> 24); \ check = crc32(check, hbuf, 4); \ } while (0) #endif /* Load registers with state in inflate() for speed */ #define LOAD() \ do { \ put = strm->next_out; \ left = strm->avail_out; \ next = strm->next_in; \ have = strm->avail_in; \ hold = state->hold; \ bits = state->bits; \ } while (0) /* Restore state from registers in inflate() */ #define RESTORE() \ do { \ strm->next_out = put; \ strm->avail_out = left; \ strm->next_in = next; \ strm->avail_in = have; \ state->hold = hold; \ state->bits = bits; \ } while (0) /* Clear the input bit accumulator */ #define INITBITS() \ do { \ hold = 0; \ bits = 0; \ } while (0) /* Get a byte of input into the bit accumulator, or return from inflate() if there is no input available. */ #define PULLBYTE() \ do { \ if (have == 0) goto inf_leave; \ have--; \ hold += (unsigned long)(*next++) << bits; \ bits += 8; \ } while (0) /* Assure that there are at least n bits in the bit accumulator. If there is not enough available input to do that, then return from inflate(). */ #define NEEDBITS(n) \ do { \ while (bits < (unsigned)(n)) \ PULLBYTE(); \ } while (0) /* Return the low n bits of the bit accumulator (n < 16) */ #define BITS(n) \ ((unsigned)hold & ((1U << (n)) - 1)) /* Remove n bits from the bit accumulator */ #define DROPBITS(n) \ do { \ hold >>= (n); \ bits -= (unsigned)(n); \ } while (0) /* Remove zero to seven bits as needed to go to a byte boundary */ #define BYTEBITS() \ do { \ hold >>= bits & 7; \ bits -= bits & 7; \ } while (0) /* inflate() uses a state machine to process as much input data and generate as much output data as possible before returning. The state machine is structured roughly as follows: for (;;) switch (state) { ... case STATEn: if (not enough input data or output space to make progress) return; ... make progress ... state = STATEm; break; ... } so when inflate() is called again, the same case is attempted again, and if the appropriate resources are provided, the machine proceeds to the next state. The NEEDBITS() macro is usually the way the state evaluates whether it can proceed or should return. NEEDBITS() does the return if the requested bits are not available. The typical use of the BITS macros is: NEEDBITS(n); ... do something with BITS(n) ... DROPBITS(n); where NEEDBITS(n) either returns from inflate() if there isn't enough input left to load n bits into the accumulator, or it continues. BITS(n) gives the low n bits in the accumulator. When done, DROPBITS(n) drops the low n bits off the accumulator. INITBITS() clears the accumulator and sets the number of available bits to zero. BYTEBITS() discards just enough bits to put the accumulator on a byte boundary. After BYTEBITS() and a NEEDBITS(8), then BITS(8) would return the next byte in the stream. NEEDBITS(n) uses PULLBYTE() to get an available byte of input, or to return if there is no input available. The decoding of variable length codes uses PULLBYTE() directly in order to pull just enough bytes to decode the next code, and no more. Some states loop until they get enough input, making sure that enough state information is maintained to continue the loop where it left off if NEEDBITS() returns in the loop. For example, want, need, and keep would all have to actually be part of the saved state in case NEEDBITS() returns: case STATEw: while (want < need) { NEEDBITS(n); keep[want++] = BITS(n); DROPBITS(n); } state = STATEx; case STATEx: As shown above, if the next state is also the next case, then the break is omitted. A state may also return if there is not enough output space available to complete that state. Those states are copying stored data, writing a literal byte, and copying a matching string. When returning, a "goto inf_leave" is used to update the total counters, update the check value, and determine whether any progress has been made during that inflate() call in order to return the proper return code. Progress is defined as a change in either strm->avail_in or strm->avail_out. When there is a window, goto inf_leave will update the window with the last output written. If a goto inf_leave occurs in the middle of decompression and there is no window currently, goto inf_leave will create one and copy output to the window for the next call of inflate(). In this implementation, the flush parameter of inflate() only affects the return code (per zlib.h). inflate() always writes as much as possible to strm->next_out, given the space available and the provided input--the effect documented in zlib.h of Z_SYNC_FLUSH. Furthermore, inflate() always defers the allocation of and copying into a sliding window until necessary, which provides the effect documented in zlib.h for Z_FINISH when the entire input stream available. So the only thing the flush parameter actually does is: when flush is set to Z_FINISH, inflate() cannot return Z_OK. Instead it will return Z_BUF_ERROR if it has not reached the end of the stream. */ int ZEXPORT inflate(strm, flush) z_streamp strm; int flush; { struct inflate_state FAR *state; z_const unsigned char FAR *next; /* next input */ unsigned char FAR *put; /* next output */ unsigned have, left; /* available input and output */ unsigned long hold; /* bit buffer */ unsigned bits; /* bits in bit buffer */ unsigned in, out; /* save starting available input and output */ unsigned copy; /* number of stored or match bytes to copy */ unsigned char FAR *from; /* where to copy match bytes from */ code here; /* current decoding table entry */ code last; /* parent table entry */ unsigned len; /* length to copy for repeats, bits to drop */ int ret; /* return code */ #ifdef GUNZIP unsigned char hbuf[4]; /* buffer for gzip header crc calculation */ #endif static const unsigned short order[19] = /* permutation of code lengths */ {16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; if (strm == Z_NULL || strm->state == Z_NULL || strm->next_out == Z_NULL || (strm->next_in == Z_NULL && strm->avail_in != 0)) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (state->mode == TYPE) state->mode = TYPEDO; /* skip check */ LOAD(); in = have; out = left; ret = Z_OK; for (;;) switch (state->mode) { case HEAD: if (state->wrap == 0) { state->mode = TYPEDO; break; } NEEDBITS(16); #ifdef GUNZIP if ((state->wrap & 2) && hold == 0x8b1f) { /* gzip header */ state->check = crc32(0L, Z_NULL, 0); CRC2(state->check, hold); INITBITS(); state->mode = FLAGS; break; } state->flags = 0; /* expect zlib header */ if (state->head != Z_NULL) state->head->done = -1; if (!(state->wrap & 1) || /* check if zlib header allowed */ #else if ( #endif ((BITS(8) << 8) + (hold >> 8)) % 31) { strm->msg = (char *)"incorrect header check"; state->mode = BAD; break; } if (BITS(4) != Z_DEFLATED) { strm->msg = (char *)"unknown compression method"; state->mode = BAD; break; } DROPBITS(4); len = BITS(4) + 8; if (state->wbits == 0) state->wbits = len; else if (len > state->wbits) { strm->msg = (char *)"invalid window size"; state->mode = BAD; break; } state->dmax = 1U << len; Tracev((stderr, "inflate: zlib header ok\n")); strm->adler = state->check = adler32(0L, Z_NULL, 0); state->mode = hold & 0x200 ? DICTID : TYPE; INITBITS(); break; #ifdef GUNZIP case FLAGS: NEEDBITS(16); state->flags = (int)(hold); if ((state->flags & 0xff) != Z_DEFLATED) { strm->msg = (char *)"unknown compression method"; state->mode = BAD; break; } if (state->flags & 0xe000) { strm->msg = (char *)"unknown header flags set"; state->mode = BAD; break; } if (state->head != Z_NULL) state->head->text = (int)((hold >> 8) & 1); if (state->flags & 0x0200) CRC2(state->check, hold); INITBITS(); state->mode = TIME; case TIME: NEEDBITS(32); if (state->head != Z_NULL) state->head->time = hold; if (state->flags & 0x0200) CRC4(state->check, hold); INITBITS(); state->mode = OS; case OS: NEEDBITS(16); if (state->head != Z_NULL) { state->head->xflags = (int)(hold & 0xff); state->head->os = (int)(hold >> 8); } if (state->flags & 0x0200) CRC2(state->check, hold); INITBITS(); state->mode = EXLEN;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case EXLEN: if (state->flags & 0x0400) { NEEDBITS(16); state->length = (unsigned)(hold); if (state->head != Z_NULL) state->head->extra_len = (unsigned)hold; if (state->flags & 0x0200) CRC2(state->check, hold); INITBITS(); } else if (state->head != Z_NULL) state->head->extra = Z_NULL; state->mode = EXTRA;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case EXTRA: if (state->flags & 0x0400) { copy = state->length; if (copy > have) copy = have; if (copy) { if (state->head != Z_NULL && state->head->extra != Z_NULL) { len = state->head->extra_len - state->length; zmemcpy(state->head->extra + len, next, len + copy > state->head->extra_max ? state->head->extra_max - len : copy); } if (state->flags & 0x0200) state->check = crc32(state->check, next, copy); have -= copy; next += copy; state->length -= copy; } if (state->length) goto inf_leave; } state->length = 0; state->mode = NAME;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case NAME: if (state->flags & 0x0800) { if (have == 0) goto inf_leave; copy = 0; do { len = (unsigned)(next[copy++]); if (state->head != Z_NULL && state->head->name != Z_NULL && state->length < state->head->name_max) state->head->name[state->length++] = len; } while (len && copy < have); if (state->flags & 0x0200) state->check = crc32(state->check, next, copy); have -= copy; next += copy; if (len) goto inf_leave; } else if (state->head != Z_NULL) state->head->name = Z_NULL; state->length = 0; state->mode = COMMENT;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case COMMENT: if (state->flags & 0x1000) { if (have == 0) goto inf_leave; copy = 0; do { len = (unsigned)(next[copy++]); if (state->head != Z_NULL && state->head->comment != Z_NULL && state->length < state->head->comm_max) state->head->comment[state->length++] = len; } while (len && copy < have); if (state->flags & 0x0200) state->check = crc32(state->check, next, copy); have -= copy; next += copy; if (len) goto inf_leave; } else if (state->head != Z_NULL) state->head->comment = Z_NULL; state->mode = HCRC;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case HCRC: if (state->flags & 0x0200) { NEEDBITS(16); if (hold != (state->check & 0xffff)) { strm->msg = (char *)"header crc mismatch"; state->mode = BAD; break; } INITBITS(); } if (state->head != Z_NULL) { state->head->hcrc = (int)((state->flags >> 9) & 1); state->head->done = 1; } strm->adler = state->check = crc32(0L, Z_NULL, 0); state->mode = TYPE; break; #endif case DICTID: NEEDBITS(32); strm->adler = state->check = ZSWAP32(hold); INITBITS(); state->mode = DICT;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case DICT: if (state->havedict == 0) { RESTORE(); return Z_NEED_DICT; } strm->adler = state->check = adler32(0L, Z_NULL, 0); state->mode = TYPE;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case TYPE: if (flush == Z_BLOCK || flush == Z_TREES) goto inf_leave;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case TYPEDO: if (state->last) { BYTEBITS(); state->mode = CHECK; break; } NEEDBITS(3); state->last = BITS(1); DROPBITS(1); switch (BITS(2)) { case 0: /* stored block */ Tracev((stderr, "inflate: stored block%s\n", state->last ? " (last)" : "")); state->mode = STORED; break; case 1: /* fixed block */ fixedtables(state); Tracev((stderr, "inflate: fixed codes block%s\n", state->last ? " (last)" : "")); state->mode = LEN_; /* decode codes */ if (flush == Z_TREES) { DROPBITS(2); goto inf_leave; } break; case 2: /* dynamic block */ Tracev((stderr, "inflate: dynamic codes block%s\n", state->last ? " (last)" : "")); state->mode = TABLE; break; case 3: strm->msg = (char *)"invalid block type"; state->mode = BAD; } DROPBITS(2); break; case STORED: BYTEBITS(); /* go to byte boundary */ NEEDBITS(32); if ((hold & 0xffff) != ((hold >> 16) ^ 0xffff)) { strm->msg = (char *)"invalid stored block lengths"; state->mode = BAD; break; } state->length = (unsigned)hold & 0xffff; Tracev((stderr, "inflate: stored length %u\n", state->length)); INITBITS(); state->mode = COPY_; if (flush == Z_TREES) goto inf_leave;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case COPY_: state->mode = COPY;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case COPY: copy = state->length; if (copy) { if (copy > have) copy = have; if (copy > left) copy = left; if (copy == 0) goto inf_leave; zmemcpy(put, next, copy); have -= copy; next += copy; left -= copy; put += copy; state->length -= copy; break; } Tracev((stderr, "inflate: stored end\n")); state->mode = TYPE; break; case TABLE: NEEDBITS(14); state->nlen = BITS(5) + 257; DROPBITS(5); state->ndist = BITS(5) + 1; DROPBITS(5); state->ncode = BITS(4) + 4; DROPBITS(4); #ifndef PKZIP_BUG_WORKAROUND if (state->nlen > 286 || state->ndist > 30) { strm->msg = (char *)"too many length or distance symbols"; state->mode = BAD; break; } #endif Tracev((stderr, "inflate: table sizes ok\n")); state->have = 0; state->mode = LENLENS; case LENLENS: while (state->have < state->ncode) { NEEDBITS(3); state->lens[order[state->have++]] = (unsigned short)BITS(3); DROPBITS(3); } while (state->have < 19) state->lens[order[state->have++]] = 0; state->next = state->codes; state->lencode = (const code FAR *)(state->next); state->lenbits = 7; ret = inflate_table(CODES, state->lens, 19, &(state->next), &(state->lenbits), state->work); if (ret) { strm->msg = (char *)"invalid code lengths set"; state->mode = BAD; break; } Tracev((stderr, "inflate: code lengths ok\n")); state->have = 0; state->mode = CODELENS; case CODELENS: while (state->have < state->nlen + state->ndist) { for (;;) { here = state->lencode[BITS(state->lenbits)]; if ((unsigned)(here.bits) <= bits) break; PULLBYTE(); } if (here.val < 16) { DROPBITS(here.bits); state->lens[state->have++] = here.val; } else { if (here.val == 16) { NEEDBITS(here.bits + 2); DROPBITS(here.bits); if (state->have == 0) { strm->msg = (char *)"invalid bit length repeat"; state->mode = BAD; break; } len = state->lens[state->have - 1]; copy = 3 + BITS(2); DROPBITS(2); } else if (here.val == 17) { NEEDBITS(here.bits + 3); DROPBITS(here.bits); len = 0; copy = 3 + BITS(3); DROPBITS(3); } else { NEEDBITS(here.bits + 7); DROPBITS(here.bits); len = 0; copy = 11 + BITS(7); DROPBITS(7); } if (state->have + copy > state->nlen + state->ndist) { strm->msg = (char *)"invalid bit length repeat"; state->mode = BAD; break; } while (copy--) state->lens[state->have++] = (unsigned short)len; } } /* handle error breaks in while */ if (state->mode == BAD) break; /* check for end-of-block code (better have one) */ if (state->lens[256] == 0) { strm->msg = (char *)"invalid code -- missing end-of-block"; state->mode = BAD; break; } /* build code tables -- note: do not change the lenbits or distbits values here (9 and 6) without reading the comments in inftrees.h concerning the ENOUGH constants, which depend on those values */ state->next = state->codes; state->lencode = (const code FAR *)(state->next); state->lenbits = 9; ret = inflate_table(LENS, state->lens, state->nlen, &(state->next), &(state->lenbits), state->work); if (ret) { strm->msg = (char *)"invalid literal/lengths set"; state->mode = BAD; break; } state->distcode = (const code FAR *)(state->next); state->distbits = 6; ret = inflate_table(DISTS, state->lens + state->nlen, state->ndist, &(state->next), &(state->distbits), state->work); if (ret) { strm->msg = (char *)"invalid distances set"; state->mode = BAD; break; } Tracev((stderr, "inflate: codes ok\n")); state->mode = LEN_; if (flush == Z_TREES) goto inf_leave;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case LEN_: state->mode = LEN;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case LEN: if (have >= 6 && left >= 258) { RESTORE(); inflate_fast(strm, out); LOAD(); if (state->mode == TYPE) state->back = -1; break; } state->back = 0; for (;;) { here = state->lencode[BITS(state->lenbits)]; if ((unsigned)(here.bits) <= bits) break; PULLBYTE(); } if (here.op && (here.op & 0xf0) == 0) { last = here; for (;;) { here = state->lencode[last.val + (BITS(last.bits + last.op) >> last.bits)]; if ((unsigned)(last.bits + here.bits) <= bits) break; PULLBYTE(); } DROPBITS(last.bits); state->back += last.bits; } DROPBITS(here.bits); state->back += here.bits; state->length = (unsigned)here.val; if ((int)(here.op) == 0) { Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ? "inflate: literal '%c'\n" : "inflate: literal 0x%02x\n", here.val)); state->mode = LIT; break; } if (here.op & 32) { Tracevv((stderr, "inflate: end of block\n")); state->back = -1; state->mode = TYPE; break; } if (here.op & 64) { strm->msg = (char *)"invalid literal/length code"; state->mode = BAD; break; } state->extra = (unsigned)(here.op) & 15; state->mode = LENEXT;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case LENEXT: if (state->extra) { NEEDBITS(state->extra); state->length += BITS(state->extra); DROPBITS(state->extra); state->back += state->extra; } Tracevv((stderr, "inflate: length %u\n", state->length)); state->was = state->length; state->mode = DIST;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case DIST: for (;;) { here = state->distcode[BITS(state->distbits)]; if ((unsigned)(here.bits) <= bits) break; PULLBYTE(); } if ((here.op & 0xf0) == 0) { last = here; for (;;) { here = state->distcode[last.val + (BITS(last.bits + last.op) >> last.bits)]; if ((unsigned)(last.bits + here.bits) <= bits) break; PULLBYTE(); } DROPBITS(last.bits); state->back += last.bits; } DROPBITS(here.bits); state->back += here.bits; if (here.op & 64) { strm->msg = (char *)"invalid distance code"; state->mode = BAD; break; } state->offset = (unsigned)here.val; state->extra = (unsigned)(here.op) & 15; state->mode = DISTEXT;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case DISTEXT: if (state->extra) { NEEDBITS(state->extra); state->offset += BITS(state->extra); DROPBITS(state->extra); state->back += state->extra; } #ifdef INFLATE_STRICT if (state->offset > state->dmax) { strm->msg = (char *)"invalid distance too far back"; state->mode = BAD; break; } #endif Tracevv((stderr, "inflate: distance %u\n", state->offset)); state->mode = MATCH;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case MATCH: if (left == 0) goto inf_leave; copy = out - left; if (state->offset > copy) { /* copy from window */ copy = state->offset - copy; if (copy > state->whave) { if (state->sane) { strm->msg = (char *)"invalid distance too far back"; state->mode = BAD; break; } #ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR Trace((stderr, "inflate.c too far\n")); copy -= state->whave; if (copy > state->length) copy = state->length; if (copy > left) copy = left; left -= copy; state->length -= copy; do { *put++ = 0; } while (--copy); if (state->length == 0) state->mode = LEN; break; #endif } if (copy > state->wnext) { copy -= state->wnext; from = state->window + (state->wsize - copy); } else from = state->window + (state->wnext - copy); if (copy > state->length) copy = state->length; } else { /* copy from output */ from = put - state->offset; copy = state->length; } if (copy > left) copy = left; left -= copy; state->length -= copy; do { *put++ = *from++; } while (--copy); if (state->length == 0) state->mode = LEN; break; case LIT: if (left == 0) goto inf_leave; *put++ = (unsigned char)(state->length); left--; state->mode = LEN; break; case CHECK: if (state->wrap) { NEEDBITS(32); out -= left; strm->total_out += out; state->total += out; if (out) strm->adler = state->check = UPDATE(state->check, put - out, out); out = left; if (( #ifdef GUNZIP state->flags ? hold : #endif ZSWAP32(hold)) != state->check) { strm->msg = (char *)"incorrect data check"; state->mode = BAD; break; } INITBITS(); Tracev((stderr, "inflate: check matches trailer\n")); } #ifdef GUNZIP state->mode = LENGTH;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case LENGTH: if (state->wrap && state->flags) { NEEDBITS(32); if (hold != (state->total & 0xffffffffUL)) { strm->msg = (char *)"incorrect length check"; state->mode = BAD; break; } INITBITS(); Tracev((stderr, "inflate: length matches trailer\n")); } #endif state->mode = DONE;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case DONE: ret = Z_STREAM_END; goto inf_leave; case BAD: ret = Z_DATA_ERROR; goto inf_leave; case MEM: return Z_MEM_ERROR; case SYNC: default: return Z_STREAM_ERROR; } /* Return from inflate(), updating the total counts and the check value. If there was no progress during the inflate() call, return a buffer error. Call updatewindow() to create and/or update the window state. Note: a memory error from inflate() is non-recoverable. */ inf_leave: RESTORE(); if (state->wsize || (out != strm->avail_out && state->mode < BAD && (state->mode < CHECK || flush != Z_FINISH))) if (updatewindow(strm, strm->next_out, out - strm->avail_out)) { state->mode = MEM; return Z_MEM_ERROR; } in -= strm->avail_in; out -= strm->avail_out; strm->total_in += in; strm->total_out += out; state->total += out; if (state->wrap && out) strm->adler = state->check = UPDATE(state->check, strm->next_out - out, out); strm->data_type = state->bits + (state->last ? 64 : 0) + (state->mode == TYPE ? 128 : 0) + (state->mode == LEN_ || state->mode == COPY_ ? 256 : 0); if (((in == 0 && out == 0) || flush == Z_FINISH) && ret == Z_OK) ret = Z_BUF_ERROR; return ret; } int ZEXPORT inflateEnd(strm) z_streamp strm; { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL || strm->zfree == (free_func)0) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (state->window != Z_NULL) ZFREE(strm, state->window); ZFREE(strm, strm->state); strm->state = Z_NULL; Tracev((stderr, "inflate: end\n")); return Z_OK; } int ZEXPORT inflateGetDictionary(strm, dictionary, dictLength) z_streamp strm; Bytef *dictionary; uInt *dictLength; { struct inflate_state FAR *state; /* check state */ if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; /* copy dictionary */ if (state->whave && dictionary != Z_NULL) { zmemcpy(dictionary, state->window + state->wnext, state->whave - state->wnext); zmemcpy(dictionary + state->whave - state->wnext, state->window, state->wnext); } if (dictLength != Z_NULL) *dictLength = state->whave; return Z_OK; } int ZEXPORT inflateSetDictionary(strm, dictionary, dictLength) z_streamp strm; const Bytef *dictionary; uInt dictLength; { struct inflate_state FAR *state; unsigned long dictid; int ret; /* check state */ if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (state->wrap != 0 && state->mode != DICT) return Z_STREAM_ERROR; /* check for correct dictionary identifier */ if (state->mode == DICT) { dictid = adler32(0L, Z_NULL, 0); dictid = adler32(dictid, dictionary, dictLength); if (dictid != state->check) return Z_DATA_ERROR; } /* copy dictionary to window using updatewindow(), which will amend the existing dictionary if appropriate */ ret = updatewindow(strm, dictionary + dictLength, dictLength); if (ret) { state->mode = MEM; return Z_MEM_ERROR; } state->havedict = 1; Tracev((stderr, "inflate: dictionary set\n")); return Z_OK; } int ZEXPORT inflateGetHeader(strm, head) z_streamp strm; gz_headerp head; { struct inflate_state FAR *state; /* check state */ if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if ((state->wrap & 2) == 0) return Z_STREAM_ERROR; /* save header structure */ state->head = head; head->done = 0; return Z_OK; } /* Search buf[0..len-1] for the pattern: 0, 0, 0xff, 0xff. Return when found or when out of input. When called, *have is the number of pattern bytes found in order so far, in 0..3. On return *have is updated to the new state. If on return *have equals four, then the pattern was found and the return value is how many bytes were read including the last byte of the pattern. If *have is less than four, then the pattern has not been found yet and the return value is len. In the latter case, syncsearch() can be called again with more data and the *have state. *have is initialized to zero for the first call. */ local unsigned syncsearch(have, buf, len) unsigned FAR *have; const unsigned char FAR *buf; unsigned len; { unsigned got; unsigned next; got = *have; next = 0; while (next < len && got < 4) { if ((int)(buf[next]) == (got < 2 ? 0 : 0xff)) got++; else if (buf[next]) got = 0; else got = 4 - got; next++; } *have = got; return next; } int ZEXPORT inflateSync(strm) z_streamp strm; { unsigned len; /* number of bytes to look at or looked at */ unsigned long in, out; /* temporary to save total_in and total_out */ unsigned char buf[4]; /* to restore bit buffer to byte string */ struct inflate_state FAR *state; /* check parameters */ if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (strm->avail_in == 0 && state->bits < 8) return Z_BUF_ERROR; /* if first time, start search in bit buffer */ if (state->mode != SYNC) { state->mode = SYNC; state->hold <<= state->bits & 7; state->bits -= state->bits & 7; len = 0; while (state->bits >= 8) { buf[len++] = (unsigned char)(state->hold); state->hold >>= 8; state->bits -= 8; } state->have = 0; syncsearch(&(state->have), buf, len); } /* search available input */ len = syncsearch(&(state->have), strm->next_in, strm->avail_in); strm->avail_in -= len; strm->next_in += len; strm->total_in += len; /* return no joy or set up to restart inflate() on a new block */ if (state->have != 4) return Z_DATA_ERROR; in = strm->total_in; out = strm->total_out; inflateReset(strm); strm->total_in = in; strm->total_out = out; state->mode = TYPE; return Z_OK; } /* Returns true if inflate is currently at the end of a block generated by Z_SYNC_FLUSH or Z_FULL_FLUSH. This function is used by one PPP implementation to provide an additional safety check. PPP uses Z_SYNC_FLUSH but removes the length bytes of the resulting empty stored block. When decompressing, PPP checks that at the end of input packet, inflate is waiting for these length bytes. */ int ZEXPORT inflateSyncPoint(strm) z_streamp strm; { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; return state->mode == STORED && state->bits == 0; } int ZEXPORT inflateCopy(dest, source) z_streamp dest; z_streamp source; { struct inflate_state FAR *state; struct inflate_state FAR *copy; unsigned char FAR *window; unsigned wsize; /* check input */ if (dest == Z_NULL || source == Z_NULL || source->state == Z_NULL || source->zalloc == (alloc_func)0 || source->zfree == (free_func)0) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)source->state; /* allocate space */ copy = (struct inflate_state FAR *) ZALLOC(source, 1, sizeof(struct inflate_state)); if (copy == Z_NULL) return Z_MEM_ERROR; window = Z_NULL; if (state->window != Z_NULL) { window = (unsigned char FAR *) ZALLOC(source, 1U << state->wbits, sizeof(unsigned char)); if (window == Z_NULL) { ZFREE(source, copy); return Z_MEM_ERROR; } } /* copy state */ zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream)); zmemcpy((voidpf)copy, (voidpf)state, sizeof(struct inflate_state)); if (state->lencode >= state->codes && state->lencode <= state->codes + ENOUGH - 1) { copy->lencode = copy->codes + (state->lencode - state->codes); copy->distcode = copy->codes + (state->distcode - state->codes); } copy->next = copy->codes + (state->next - state->codes); if (window != Z_NULL) { wsize = 1U << state->wbits; zmemcpy(window, state->window, wsize); } copy->window = window; dest->state = (struct internal_state FAR *)copy; return Z_OK; } int ZEXPORT inflateUndermine(strm, subvert) z_streamp strm; int subvert; { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; state->sane = !subvert; #ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR return Z_OK; #else state->sane = 1; return Z_DATA_ERROR; #endif } long ZEXPORT inflateMark(strm) z_streamp strm; { struct inflate_state FAR *state; //TK: Applied the following fix (also in actual zlib devel branch): if (strm == Z_NULL || strm->state == Z_NULL) return (long)(((unsigned long)0 - 1) << 16); //TK: Code was (but clang 7.3 warns about bitshifting negative numbers): //if (strm == Z_NULL || strm->state == Z_NULL) return -1L << 16; state = (struct inflate_state FAR *)strm->state; return ((long)(state->back) << 16) + (state->mode == COPY ? state->length : (state->mode == MATCH ? state->was - state->length : 0)); } /* END OF DUMP OF mz_inflate.c*/ /* START OF DUMP OF mz_inffast.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* inffast.c -- fast decoding * Copyright (C) 1995-2008, 2010, 2013 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ #ifndef ASMINF /* Allow machine dependent optimization for post-increment or pre-increment. Based on testing to date, Pre-increment preferred for: - PowerPC G3 (Adler) - MIPS R5000 (Randers-Pehrson) Post-increment preferred for: - none No measurable difference: - Pentium III (Anderson) - M68060 (Nikl) */ #ifdef POSTINC # define OFF 0 # define PUP(a) *(a)++ #else # define OFF 1 # define PUP(a) *++(a) #endif /* Decode literal, length, and distance codes and write out the resulting literal and match bytes until either not enough input or output is available, an end-of-block is encountered, or a data error is encountered. When large enough input and output buffers are supplied to inflate(), for example, a 16K input buffer and a 64K output buffer, more than 95% of the inflate execution time is spent in this routine. Entry assumptions: state->mode == LEN strm->avail_in >= 6 strm->avail_out >= 258 start >= strm->avail_out state->bits < 8 On return, state->mode is one of: LEN -- ran out of enough output space or enough available input TYPE -- reached end of block code, inflate() to interpret next block BAD -- error in block data Notes: - The maximum input bits used by a length/distance pair is 15 bits for the length code, 5 bits for the length extra, 15 bits for the distance code, and 13 bits for the distance extra. This totals 48 bits, or six bytes. Therefore if strm->avail_in >= 6, then there is enough input to avoid checking for available input while decoding. - The maximum bytes that a single length/distance pair can output is 258 bytes, which is the maximum length that can be coded. inflate_fast() requires strm->avail_out >= 258 for each loop to avoid checking for output space. */ void ZLIB_INTERNAL inflate_fast(strm, start) z_streamp strm; unsigned start; /* inflate()'s starting value for strm->avail_out */ { struct inflate_state FAR *state; z_const unsigned char FAR *in; /* local strm->next_in */ z_const unsigned char FAR *last; /* have enough input while in < last */ unsigned char FAR *out; /* local strm->next_out */ unsigned char FAR *beg; /* inflate()'s initial strm->next_out */ unsigned char FAR *end; /* while out < end, enough space available */ #ifdef INFLATE_STRICT unsigned dmax; /* maximum distance from zlib header */ #endif unsigned wsize; /* window size or zero if not using window */ unsigned whave; /* valid bytes in the window */ unsigned wnext; /* window write index */ unsigned char FAR *window; /* allocated sliding window, if wsize != 0 */ unsigned long hold; /* local strm->hold */ unsigned bits; /* local strm->bits */ code const FAR *lcode; /* local strm->lencode */ code const FAR *dcode; /* local strm->distcode */ unsigned lmask; /* mask for first level of length codes */ unsigned dmask; /* mask for first level of distance codes */ code here; /* retrieved table entry */ unsigned op; /* code bits, operation, extra bits, or */ /* window position, window bytes to copy */ unsigned len; /* match length, unused bytes */ unsigned dist; /* match distance */ unsigned char FAR *from; /* where to copy match from */ /* copy state to local variables */ state = (struct inflate_state FAR *)strm->state; in = strm->next_in - OFF; last = in + (strm->avail_in - 5); out = strm->next_out - OFF; beg = out - (start - strm->avail_out); end = out + (strm->avail_out - 257); #ifdef INFLATE_STRICT dmax = state->dmax; #endif wsize = state->wsize; whave = state->whave; wnext = state->wnext; window = state->window; hold = state->hold; bits = state->bits; lcode = state->lencode; dcode = state->distcode; lmask = (1U << state->lenbits) - 1; dmask = (1U << state->distbits) - 1; /* decode literals and length/distances until end-of-block or not enough input data or output space */ do { if (bits < 15) { hold += (unsigned long)(PUP(in)) << bits; bits += 8; hold += (unsigned long)(PUP(in)) << bits; bits += 8; } here = lcode[hold & lmask]; dolen: op = (unsigned)(here.bits); hold >>= op; bits -= op; op = (unsigned)(here.op); if (op == 0) { /* literal */ Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ? "inflate: literal '%c'\n" : "inflate: literal 0x%02x\n", here.val)); PUP(out) = (unsigned char)(here.val); } else if (op & 16) { /* length base */ len = (unsigned)(here.val); op &= 15; /* number of extra bits */ if (op) { if (bits < op) { hold += (unsigned long)(PUP(in)) << bits; bits += 8; } len += (unsigned)hold & ((1U << op) - 1); hold >>= op; bits -= op; } Tracevv((stderr, "inflate: length %u\n", len)); if (bits < 15) { hold += (unsigned long)(PUP(in)) << bits; bits += 8; hold += (unsigned long)(PUP(in)) << bits; bits += 8; } here = dcode[hold & dmask]; dodist: op = (unsigned)(here.bits); hold >>= op; bits -= op; op = (unsigned)(here.op); if (op & 16) { /* distance base */ dist = (unsigned)(here.val); op &= 15; /* number of extra bits */ if (bits < op) { hold += (unsigned long)(PUP(in)) << bits; bits += 8; if (bits < op) { hold += (unsigned long)(PUP(in)) << bits; bits += 8; } } dist += (unsigned)hold & ((1U << op) - 1); #ifdef INFLATE_STRICT if (dist > dmax) { strm->msg = (char *)"invalid distance too far back"; state->mode = BAD; break; } #endif hold >>= op; bits -= op; Tracevv((stderr, "inflate: distance %u\n", dist)); op = (unsigned)(out - beg); /* max distance in output */ if (dist > op) { /* see if copy from window */ op = dist - op; /* distance back in window */ if (op > whave) { if (state->sane) { strm->msg = (char *)"invalid distance too far back"; state->mode = BAD; break; } #ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR if (len <= op - whave) { do { PUP(out) = 0; } while (--len); continue; } len -= op - whave; do { PUP(out) = 0; } while (--op > whave); if (op == 0) { from = out - dist; do { PUP(out) = PUP(from); } while (--len); continue; } #endif } from = window - OFF; if (wnext == 0) { /* very common case */ from += wsize - op; if (op < len) { /* some from window */ len -= op; do { PUP(out) = PUP(from); } while (--op); from = out - dist; /* rest from output */ } } else if (wnext < op) { /* wrap around window */ from += wsize + wnext - op; op -= wnext; if (op < len) { /* some from end of window */ len -= op; do { PUP(out) = PUP(from); } while (--op); from = window - OFF; if (wnext < len) { /* some from start of window */ op = wnext; len -= op; do { PUP(out) = PUP(from); } while (--op); from = out - dist; /* rest from output */ } } } else { /* contiguous in window */ from += wnext - op; if (op < len) { /* some from window */ len -= op; do { PUP(out) = PUP(from); } while (--op); from = out - dist; /* rest from output */ } } while (len > 2) { PUP(out) = PUP(from); PUP(out) = PUP(from); PUP(out) = PUP(from); len -= 3; } if (len) { PUP(out) = PUP(from); if (len > 1) PUP(out) = PUP(from); } } else { from = out - dist; /* copy direct from output */ do { /* minimum length is three */ PUP(out) = PUP(from); PUP(out) = PUP(from); PUP(out) = PUP(from); len -= 3; } while (len > 2); if (len) { PUP(out) = PUP(from); if (len > 1) PUP(out) = PUP(from); } } } else if ((op & 64) == 0) { /* 2nd level distance code */ here = dcode[here.val + (hold & ((1U << op) - 1))]; goto dodist; } else { strm->msg = (char *)"invalid distance code"; state->mode = BAD; break; } } else if ((op & 64) == 0) { /* 2nd level length code */ here = lcode[here.val + (hold & ((1U << op) - 1))]; goto dolen; } else if (op & 32) { /* end-of-block */ Tracevv((stderr, "inflate: end of block\n")); state->mode = TYPE; break; } else { strm->msg = (char *)"invalid literal/length code"; state->mode = BAD; break; } } while (in < last && out < end); /* return unused bytes (on entry, bits < 8, so in won't go too far back) */ len = bits >> 3; in -= len; bits -= len << 3; hold &= (1U << bits) - 1; /* update state and return */ strm->next_in = in + OFF; strm->next_out = out + OFF; strm->avail_in = (unsigned)(in < last ? 5 + (last - in) : 5 - (in - last)); strm->avail_out = (unsigned)(out < end ? 257 + (end - out) : 257 - (out - end)); state->hold = hold; state->bits = bits; return; } /* inflate_fast() speedups that turned out slower (on a PowerPC G3 750CXe): - Using bit fields for code structure - Different op definition to avoid & for extra bits (do & for table bits) - Three separate decoding do-loops for direct, window, and wnext == 0 - Special case for distance > 1 copies to do overlapped load and store copy - Explicit branch predictions (based on measured branch probabilities) - Deferring match copy and interspersed it with decoding subsequent codes - Swapping literal/length else - Swapping window/direct else - Larger unrolled copy loops (three is about right) - Moving len -= 3 statement into middle of loop */ #endif /* !ASMINF */ /* END OF DUMP OF mz_inffast.c*/ /* START OF DUMP OF mz_gzwrite.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* gzwrite.c -- zlib functions for writing gzip files * Copyright (C) 2004, 2005, 2010, 2011, 2012, 2013 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* START OF DUMP OF mz_gzguts.h*/ /* gzguts.h -- zlib internal header definitions for gz* operations * Copyright (C) 2004, 2005, 2010, 2011, 2012, 2013 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ #include //ADDED BY TK #include //ADDED BY TK #include //ADDED BY TK #ifdef _LARGEFILE64_SOURCE # ifndef _LARGEFILE_SOURCE # define _LARGEFILE_SOURCE 1 # endif # ifdef _FILE_OFFSET_BITS # undef _FILE_OFFSET_BITS # endif #endif #ifdef HAVE_HIDDEN # define ZLIB_INTERNAL __attribute__((visibility ("hidden"))) #else # define ZLIB_INTERNAL #endif #include #ifdef STDC # include # include # include #endif #include #ifdef _WIN32 # include #endif #if defined(__TURBOC__) || defined(_MSC_VER) || defined(_WIN32) # include #endif #ifdef WINAPI_FAMILY # define open _open # define read _read # define write _write # define close _close #endif #ifdef NO_DEFLATE /* for compatibility with old definition */ # define NO_GZCOMPRESS #endif #if defined(STDC99) || (defined(__TURBOC__) && __TURBOC__ >= 0x550) # ifndef HAVE_VSNPRINTF # define HAVE_VSNPRINTF # endif #endif #if defined(__CYGWIN__) # ifndef HAVE_VSNPRINTF # define HAVE_VSNPRINTF # endif #endif #if defined(MSDOS) && defined(__BORLANDC__) && (BORLANDC > 0x410) # ifndef HAVE_VSNPRINTF # define HAVE_VSNPRINTF # endif #endif #ifndef HAVE_VSNPRINTF # ifdef MSDOS /* vsnprintf may exist on some MS-DOS compilers (DJGPP?), but for now we just assume it doesn't. */ # define NO_vsnprintf # endif # ifdef __TURBOC__ # define NO_vsnprintf # endif # ifdef WIN32 /* In Win32, vsnprintf is available as the "non-ANSI" _vsnprintf. */ # if !defined(vsnprintf) && !defined(NO_vsnprintf) # if !defined(_MSC_VER) || ( defined(_MSC_VER) && _MSC_VER < 1500 ) # define vsnprintf _vsnprintf # endif # endif # endif # ifdef __SASC # define NO_vsnprintf # endif # ifdef VMS # define NO_vsnprintf # endif # ifdef __OS400__ # define NO_vsnprintf # endif # ifdef __MVS__ # define NO_vsnprintf # endif #endif /* unlike snprintf (which is required in C99, yet still not supported by Microsoft more than a decade later!), _snprintf does not guarantee null termination of the result -- however this is only used in gzlib.c where the result is assured to fit in the space provided */ #ifdef _MSC_VER # define snprintf _snprintf #endif #ifndef local # define local static #endif /* compile with -Dlocal if your debugger can't find static symbols */ /* gz* functions always use library allocation functions */ #ifndef STDC extern voidp malloc OF((uInt size)); extern void free OF((voidpf ptr)); #endif /* get errno and strerror definition */ #if defined UNDER_CE # include # define zstrerror() gz_strwinerror((DWORD)GetLastError()) #else # ifndef NO_STRERROR # include # define zstrerror() strerror(errno) # else # define zstrerror() "stdio error (consult errno)" # endif #endif /* provide prototypes for these when building zlib without LFS */ #if !defined(_LARGEFILE64_SOURCE) || _LFS64_LARGEFILE-0 == 0 ZEXTERN gzFile ZEXPORT gzopen64 OF((const char *, const char *)); ZEXTERN z_off64_t ZEXPORT gzseek64 OF((gzFile, z_off64_t, int)); ZEXTERN z_off64_t ZEXPORT gztell64 OF((gzFile)); ZEXTERN z_off64_t ZEXPORT gzoffset64 OF((gzFile)); #endif /* default memLevel */ #if MAX_MEM_LEVEL >= 8 # define DEF_MEM_LEVEL 8 #else # define DEF_MEM_LEVEL MAX_MEM_LEVEL #endif /* default i/o buffer size -- double this for output when reading (this and twice this must be able to fit in an unsigned type) */ #define GZBUFSIZE 8192 /* gzip modes, also provide a little integrity check on the passed structure */ #define GZ_NONE 0 #define GZ_READ 7247 #define GZ_WRITE 31153 #define GZ_APPEND 1 /* mode set to GZ_WRITE after the file is opened */ /* values for gz_state how */ #define LOOK 0 /* look for a gzip header */ #define COPY 1 /* copy input directly */ #define GZIP 2 /* decompress a gzip stream */ /* internal gzip file state data structure */ typedef struct { /* exposed contents for gzgetc() macro */ struct gzFile_s x; /* "x" for exposed */ /* x.have: number of bytes available at x.next */ /* x.next: next output data to deliver or write */ /* x.pos: current position in uncompressed data */ /* used for both reading and writing */ int mode; /* see gzip modes above */ int fd; /* file descriptor */ char *path; /* path or fd for error messages */ unsigned size; /* buffer size, zero if not allocated yet */ unsigned want; /* requested buffer size, default is GZBUFSIZE */ unsigned char *in; /* input buffer */ unsigned char *out; /* output buffer (double-sized when reading) */ int direct; /* 0 if processing gzip, 1 if transparent */ /* just for reading */ int how; /* 0: get header, 1: copy, 2: decompress */ z_off64_t start; /* where the gzip data started, for rewinding */ int eof; /* true if end of input file reached */ int past; /* true if read requested past end */ /* just for writing */ int level; /* compression level */ int strategy; /* compression strategy */ /* seek request */ z_off64_t skip; /* amount to skip (already rewound if backwards) */ int seek; /* true if seek request pending */ /* error information */ int err; /* error code */ char *msg; /* error message */ /* zlib inflate or deflate stream */ z_stream strm; /* stream structure in-place (not a pointer) */ } gz_state; typedef gz_state FAR *gz_statep; /* shared functions */ void ZLIB_INTERNAL gz_error OF((gz_statep, int, const char *)); #if defined UNDER_CE char ZLIB_INTERNAL *gz_strwinerror OF((DWORD error)); #endif /* GT_OFF(x), where x is an unsigned value, is true if x > maximum z_off64_t value -- needed when comparing unsigned to z_off64_t, which is signed (possible z_off64_t types off_t, off64_t, and long are all signed) */ #ifdef INT_MAX # define GT_OFF(x) (sizeof(int) == sizeof(z_off64_t) && (x) > INT_MAX) #else unsigned ZLIB_INTERNAL gz_intmax OF((void)); # define GT_OFF(x) (sizeof(int) == sizeof(z_off64_t) && (x) > gz_intmax()) #endif /* END OF DUMP OF mz_gzguts.h*/ /* Local functions */ local int gz_init OF((gz_statep)); local int gz_comp OF((gz_statep, int)); local int gz_zero OF((gz_statep, z_off64_t)); /* Initialize state for writing a gzip file. Mark initialization by setting state->size to non-zero. Return -1 on failure or 0 on success. */ local int gz_init(state) gz_statep state; { int ret; z_streamp strm = &(state->strm); /* allocate input buffer */ state->in = (unsigned char *)malloc(state->want); if (state->in == NULL) { gz_error(state, Z_MEM_ERROR, "out of memory"); return -1; } /* only need output buffer and deflate state if compressing */ if (!state->direct) { /* allocate output buffer */ state->out = (unsigned char *)malloc(state->want); if (state->out == NULL) { free(state->in); gz_error(state, Z_MEM_ERROR, "out of memory"); return -1; } /* allocate deflate memory, set up for gzip compression */ strm->zalloc = Z_NULL; strm->zfree = Z_NULL; strm->opaque = Z_NULL; ret = deflateInit2(strm, state->level, Z_DEFLATED, MAX_WBITS + 16, DEF_MEM_LEVEL, state->strategy); if (ret != Z_OK) { free(state->out); free(state->in); gz_error(state, Z_MEM_ERROR, "out of memory"); return -1; } } /* mark state as initialized */ state->size = state->want; /* initialize write buffer if compressing */ if (!state->direct) { strm->avail_out = state->size; strm->next_out = state->out; state->x.next = strm->next_out; } return 0; } /* Compress whatever is at avail_in and next_in and write to the output file. Return -1 if there is an error writing to the output file, otherwise 0. flush is assumed to be a valid deflate() flush value. If flush is Z_FINISH, then the deflate() state is reset to start a new gzip stream. If gz->direct is true, then simply write to the output file without compressing, and ignore flush. */ local int gz_comp(state, flush) gz_statep state; int flush; { int ret, got; unsigned have; z_streamp strm = &(state->strm); /* allocate memory if this is the first time through */ if (state->size == 0 && gz_init(state) == -1) return -1; /* write directly if requested */ if (state->direct) { got = write(state->fd, strm->next_in, strm->avail_in); if (got < 0 || (unsigned)got != strm->avail_in) { gz_error(state, Z_ERRNO, zstrerror()); return -1; } strm->avail_in = 0; return 0; } /* run deflate() on provided input until it produces no more output */ ret = Z_OK; do { /* write out current buffer contents if full, or if flushing, but if doing Z_FINISH then don't write until we get to Z_STREAM_END */ if (strm->avail_out == 0 || (flush != Z_NO_FLUSH && (flush != Z_FINISH || ret == Z_STREAM_END))) { have = (unsigned)(strm->next_out - state->x.next); if (have && ((got = write(state->fd, state->x.next, have)) < 0 || (unsigned)got != have)) { gz_error(state, Z_ERRNO, zstrerror()); return -1; } if (strm->avail_out == 0) { strm->avail_out = state->size; strm->next_out = state->out; } state->x.next = strm->next_out; } /* compress */ have = strm->avail_out; ret = deflate(strm, flush); if (ret == Z_STREAM_ERROR) { gz_error(state, Z_STREAM_ERROR, "internal error: deflate stream corrupt"); return -1; } have -= strm->avail_out; } while (have); /* if that completed a deflate stream, allow another to start */ if (flush == Z_FINISH) deflateReset(strm); /* all done, no errors */ return 0; } /* Compress len zeros to output. Return -1 on error, 0 on success. */ local int gz_zero(state, len) gz_statep state; z_off64_t len; { int first; unsigned n; z_streamp strm = &(state->strm); /* consume whatever's left in the input buffer */ if (strm->avail_in && gz_comp(state, Z_NO_FLUSH) == -1) return -1; /* compress len zeros (len guaranteed > 0) */ first = 1; while (len) { n = GT_OFF(state->size) || (z_off64_t)state->size > len ? (unsigned)len : state->size; if (first) { memset(state->in, 0, n); first = 0; } strm->avail_in = n; strm->next_in = state->in; state->x.pos += n; if (gz_comp(state, Z_NO_FLUSH) == -1) return -1; len -= n; } return 0; } /* -- see zlib.h -- */ int ZEXPORT gzwrite(file, buf, len) gzFile file; voidpc buf; unsigned len; { unsigned put = len; gz_statep state; z_streamp strm; /* get internal structure */ if (file == NULL) return 0; state = (gz_statep)file; strm = &(state->strm); /* check that we're writing and that there's no error */ if (state->mode != GZ_WRITE || state->err != Z_OK) return 0; /* since an int is returned, make sure len fits in one, otherwise return with an error (this avoids the flaw in the interface) */ if ((int)len < 0) { gz_error(state, Z_DATA_ERROR, "requested length does not fit in int"); return 0; } /* if len is zero, avoid unnecessary operations */ if (len == 0) return 0; /* allocate memory if this is the first time through */ if (state->size == 0 && gz_init(state) == -1) return 0; /* check for seek request */ if (state->seek) { state->seek = 0; if (gz_zero(state, state->skip) == -1) return 0; } /* for small len, copy to input buffer, otherwise compress directly */ if (len < state->size) { /* copy to input buffer, compress when full */ do { unsigned have, copy; if (strm->avail_in == 0) strm->next_in = state->in; have = (unsigned)((strm->next_in + strm->avail_in) - state->in); copy = state->size - have; if (copy > len) copy = len; memcpy(state->in + have, buf, copy); strm->avail_in += copy; state->x.pos += copy; buf = (const char *)buf + copy; len -= copy; if (len && gz_comp(state, Z_NO_FLUSH) == -1) return 0; } while (len); } else { /* consume whatever's left in the input buffer */ if (strm->avail_in && gz_comp(state, Z_NO_FLUSH) == -1) return 0; /* directly compress user buffer to file */ strm->avail_in = len; strm->next_in = (z_const Bytef *)buf; state->x.pos += len; if (gz_comp(state, Z_NO_FLUSH) == -1) return 0; } /* input was all buffered or compressed (put will fit in int) */ return (int)put; } /* -- see zlib.h -- */ int ZEXPORT gzputc(file, c) gzFile file; int c; { unsigned have; unsigned char buf[1]; gz_statep state; z_streamp strm; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; strm = &(state->strm); /* check that we're writing and that there's no error */ if (state->mode != GZ_WRITE || state->err != Z_OK) return -1; /* check for seek request */ if (state->seek) { state->seek = 0; if (gz_zero(state, state->skip) == -1) return -1; } /* try writing to input buffer for speed (state->size == 0 if buffer not initialized) */ if (state->size) { if (strm->avail_in == 0) strm->next_in = state->in; have = (unsigned)((strm->next_in + strm->avail_in) - state->in); if (have < state->size) { state->in[have] = c; strm->avail_in++; state->x.pos++; return c & 0xff; } } /* no room in buffer or not initialized, use gz_write() */ buf[0] = c; if (gzwrite(file, buf, 1) != 1) return -1; return c & 0xff; } /* -- see zlib.h -- */ int ZEXPORT gzputs(file, str) gzFile file; const char *str; { int ret; unsigned len; /* write string */ len = (unsigned)strlen(str); ret = gzwrite(file, str, len); return ret == 0 && len != 0 ? -1 : ret; } #if defined(STDC) || defined(Z_HAVE_STDARG_H) #include /* -- see zlib.h -- */ int ZEXPORTVA gzvprintf(gzFile file, const char *format, va_list va) { int size, len; gz_statep state; z_streamp strm; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; strm = &(state->strm); /* check that we're writing and that there's no error */ if (state->mode != GZ_WRITE || state->err != Z_OK) return 0; /* make sure we have some buffer space */ if (state->size == 0 && gz_init(state) == -1) return 0; /* check for seek request */ if (state->seek) { state->seek = 0; if (gz_zero(state, state->skip) == -1) return 0; } /* consume whatever's left in the input buffer */ if (strm->avail_in && gz_comp(state, Z_NO_FLUSH) == -1) return 0; /* do the printf() into the input buffer, put length in len */ size = (int)(state->size); state->in[size - 1] = 0; #ifdef NO_vsnprintf # ifdef HAS_vsprintf_void (void)vsprintf((char *)(state->in), format, va); for (len = 0; len < size; len++) if (state->in[len] == 0) break; # else len = vsprintf((char *)(state->in), format, va); # endif #else # ifdef HAS_vsnprintf_void (void)vsnprintf((char *)(state->in), size, format, va); len = strlen((char *)(state->in)); # else len = vsnprintf((char *)(state->in), size, format, va); # endif #endif /* check that printf() results fit in buffer */ if (len <= 0 || len >= (int)size || state->in[size - 1] != 0) return 0; /* update buffer and position, defer compression until needed */ strm->avail_in = (unsigned)len; strm->next_in = state->in; state->x.pos += len; return len; } int ZEXPORTVA gzprintf(gzFile file, const char *format, ...) { va_list va; int ret; va_start(va, format); ret = gzvprintf(file, format, va); va_end(va); return ret; } #else /* !STDC && !Z_HAVE_STDARG_H */ /* -- see zlib.h -- */ int ZEXPORTVA gzprintf (file, format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20) gzFile file; const char *format; int a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20; { int size, len; gz_statep state; z_streamp strm; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; strm = &(state->strm); /* check that can really pass pointer in ints */ if (sizeof(int) != sizeof(void *)) return 0; /* check that we're writing and that there's no error */ if (state->mode != GZ_WRITE || state->err != Z_OK) return 0; /* make sure we have some buffer space */ if (state->size == 0 && gz_init(state) == -1) return 0; /* check for seek request */ if (state->seek) { state->seek = 0; if (gz_zero(state, state->skip) == -1) return 0; } /* consume whatever's left in the input buffer */ if (strm->avail_in && gz_comp(state, Z_NO_FLUSH) == -1) return 0; /* do the printf() into the input buffer, put length in len */ size = (int)(state->size); state->in[size - 1] = 0; #ifdef NO_snprintf # ifdef HAS_sprintf_void sprintf((char *)(state->in), format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20); for (len = 0; len < size; len++) if (state->in[len] == 0) break; # else len = sprintf((char *)(state->in), format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20); # endif #else # ifdef HAS_snprintf_void snprintf((char *)(state->in), size, format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20); len = strlen((char *)(state->in)); # else len = snprintf((char *)(state->in), size, format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20); # endif #endif /* check that printf() results fit in buffer */ if (len <= 0 || len >= (int)size || state->in[size - 1] != 0) return 0; /* update buffer and position, defer compression until needed */ strm->avail_in = (unsigned)len; strm->next_in = state->in; state->x.pos += len; return len; } #endif /* -- see zlib.h -- */ int ZEXPORT gzflush(file, flush) gzFile file; int flush; { gz_statep state; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; /* check that we're writing and that there's no error */ if (state->mode != GZ_WRITE || state->err != Z_OK) return Z_STREAM_ERROR; /* check flush parameter */ if (flush < 0 || flush > Z_FINISH) return Z_STREAM_ERROR; /* check for seek request */ if (state->seek) { state->seek = 0; if (gz_zero(state, state->skip) == -1) return -1; } /* compress remaining data with requested flush */ gz_comp(state, flush); return state->err; } /* -- see zlib.h -- */ int ZEXPORT gzsetparams(file, level, strategy) gzFile file; int level; int strategy; { gz_statep state; z_streamp strm; /* get internal structure */ if (file == NULL) return Z_STREAM_ERROR; state = (gz_statep)file; strm = &(state->strm); /* check that we're writing and that there's no error */ if (state->mode != GZ_WRITE || state->err != Z_OK) return Z_STREAM_ERROR; /* if no change is requested, then do nothing */ if (level == state->level && strategy == state->strategy) return Z_OK; /* check for seek request */ if (state->seek) { state->seek = 0; if (gz_zero(state, state->skip) == -1) return -1; } /* change compression parameters for subsequent input */ if (state->size) { /* flush previous input with previous parameters before changing */ if (strm->avail_in && gz_comp(state, Z_PARTIAL_FLUSH) == -1) return state->err; deflateParams(strm, level, strategy); } state->level = level; state->strategy = strategy; return Z_OK; } /* -- see zlib.h -- */ int ZEXPORT gzclose_w(file) gzFile file; { int ret = Z_OK; gz_statep state; /* get internal structure */ if (file == NULL) return Z_STREAM_ERROR; state = (gz_statep)file; /* check that we're writing */ if (state->mode != GZ_WRITE) return Z_STREAM_ERROR; /* check for seek request */ if (state->seek) { state->seek = 0; if (gz_zero(state, state->skip) == -1) ret = state->err; } /* flush, free memory, and close file */ if (gz_comp(state, Z_FINISH) == -1) ret = state->err; if (state->size) { if (!state->direct) { (void)deflateEnd(&(state->strm)); free(state->out); } free(state->in); } gz_error(state, Z_OK, NULL); free(state->path); if (close(state->fd) == -1) ret = Z_ERRNO; free(state); return ret; } /* END OF DUMP OF mz_gzwrite.c*/ /* START OF DUMP OF mz_gzread.c*/ #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* gzread.c -- zlib functions for reading gzip files * Copyright (C) 2004, 2005, 2010, 2011, 2012, 2013 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* Local functions */ local int gz_load OF((gz_statep, unsigned char *, unsigned, unsigned *)); local int gz_avail OF((gz_statep)); local int gz_look OF((gz_statep)); local int gz_decomp OF((gz_statep)); local int gz_fetch OF((gz_statep)); local int gz_skip OF((gz_statep, z_off64_t)); /* Use read() to load a buffer -- return -1 on error, otherwise 0. Read from state->fd, and update state->eof, state->err, and state->msg as appropriate. This function needs to loop on read(), since read() is not guaranteed to read the number of bytes requested, depending on the type of descriptor. */ local int gz_load(state, buf, len, have) gz_statep state; unsigned char *buf; unsigned len; unsigned *have; { int ret; *have = 0; do { ret = read(state->fd, buf + *have, len - *have); if (ret <= 0) break; *have += ret; } while (*have < len); if (ret < 0) { gz_error(state, Z_ERRNO, zstrerror()); return -1; } if (ret == 0) state->eof = 1; return 0; } /* Load up input buffer and set eof flag if last data loaded -- return -1 on error, 0 otherwise. Note that the eof flag is set when the end of the input file is reached, even though there may be unused data in the buffer. Once that data has been used, no more attempts will be made to read the file. If strm->avail_in != 0, then the current data is moved to the beginning of the input buffer, and then the remainder of the buffer is loaded with the available data from the input file. */ local int gz_avail(state) gz_statep state; { unsigned got; z_streamp strm = &(state->strm); if (state->err != Z_OK && state->err != Z_BUF_ERROR) return -1; if (state->eof == 0) { if (strm->avail_in) { /* copy what's there to the start */ unsigned char *p = state->in; unsigned const char *q = strm->next_in; unsigned n = strm->avail_in; do { *p++ = *q++; } while (--n); } if (gz_load(state, state->in + strm->avail_in, state->size - strm->avail_in, &got) == -1) return -1; strm->avail_in += got; strm->next_in = state->in; } return 0; } /* Look for gzip header, set up for inflate or copy. state->x.have must be 0. If this is the first time in, allocate required memory. state->how will be left unchanged if there is no more input data available, will be set to COPY if there is no gzip header and direct copying will be performed, or it will be set to GZIP for decompression. If direct copying, then leftover input data from the input buffer will be copied to the output buffer. In that case, all further file reads will be directly to either the output buffer or a user buffer. If decompressing, the inflate state will be initialized. gz_look() will return 0 on success or -1 on failure. */ local int gz_look(state) gz_statep state; { z_streamp strm = &(state->strm); /* allocate read buffers and inflate memory */ if (state->size == 0) { /* allocate buffers */ state->in = (unsigned char *)malloc(state->want); state->out = (unsigned char *)malloc(state->want << 1); if (state->in == NULL || state->out == NULL) { if (state->out != NULL) free(state->out); if (state->in != NULL) free(state->in); gz_error(state, Z_MEM_ERROR, "out of memory"); return -1; } state->size = state->want; /* allocate inflate memory */ state->strm.zalloc = Z_NULL; state->strm.zfree = Z_NULL; state->strm.opaque = Z_NULL; state->strm.avail_in = 0; state->strm.next_in = Z_NULL; if (inflateInit2(&(state->strm), 15 + 16) != Z_OK) { /* gunzip */ free(state->out); free(state->in); state->size = 0; gz_error(state, Z_MEM_ERROR, "out of memory"); return -1; } } /* get at least the magic bytes in the input buffer */ if (strm->avail_in < 2) { if (gz_avail(state) == -1) return -1; if (strm->avail_in == 0) return 0; } /* look for gzip magic bytes -- if there, do gzip decoding (note: there is a logical dilemma here when considering the case of a partially written gzip file, to wit, if a single 31 byte is written, then we cannot tell whether this is a single-byte file, or just a partially written gzip file -- for here we assume that if a gzip file is being written, then the header will be written in a single operation, so that reading a single byte is sufficient indication that it is not a gzip file) */ if (strm->avail_in > 1 && strm->next_in[0] == 31 && strm->next_in[1] == 139) { inflateReset(strm); state->how = GZIP; state->direct = 0; return 0; } /* no gzip header -- if we were decoding gzip before, then this is trailing garbage. Ignore the trailing garbage and finish. */ if (state->direct == 0) { strm->avail_in = 0; state->eof = 1; state->x.have = 0; return 0; } /* doing raw i/o, copy any leftover input to output -- this assumes that the output buffer is larger than the input buffer, which also assures space for gzungetc() */ state->x.next = state->out; if (strm->avail_in) { memcpy(state->x.next, strm->next_in, strm->avail_in); state->x.have = strm->avail_in; strm->avail_in = 0; } state->how = COPY; state->direct = 1; return 0; } /* Decompress from input to the provided next_out and avail_out in the state. On return, state->x.have and state->x.next point to the just decompressed data. If the gzip stream completes, state->how is reset to LOOK to look for the next gzip stream or raw data, once state->x.have is depleted. Returns 0 on success, -1 on failure. */ local int gz_decomp(state) gz_statep state; { int ret = Z_OK; unsigned had; z_streamp strm = &(state->strm); /* fill output buffer up to end of deflate stream */ had = strm->avail_out; do { /* get more input for inflate() */ if (strm->avail_in == 0 && gz_avail(state) == -1) return -1; if (strm->avail_in == 0) { gz_error(state, Z_BUF_ERROR, "unexpected end of file"); break; } /* decompress and handle errors */ ret = inflate(strm, Z_NO_FLUSH); if (ret == Z_STREAM_ERROR || ret == Z_NEED_DICT) { gz_error(state, Z_STREAM_ERROR, "internal error: inflate stream corrupt"); return -1; } if (ret == Z_MEM_ERROR) { gz_error(state, Z_MEM_ERROR, "out of memory"); return -1; } if (ret == Z_DATA_ERROR) { /* deflate stream invalid */ gz_error(state, Z_DATA_ERROR, strm->msg == NULL ? "compressed data error" : strm->msg); return -1; } } while (strm->avail_out && ret != Z_STREAM_END); /* update available output */ state->x.have = had - strm->avail_out; state->x.next = strm->next_out - state->x.have; /* if the gzip stream completed successfully, look for another */ if (ret == Z_STREAM_END) state->how = LOOK; /* good decompression */ return 0; } /* Fetch data and put it in the output buffer. Assumes state->x.have is 0. Data is either copied from the input file or decompressed from the input file depending on state->how. If state->how is LOOK, then a gzip header is looked for to determine whether to copy or decompress. Returns -1 on error, otherwise 0. gz_fetch() will leave state->how as COPY or GZIP unless the end of the input file has been reached and all data has been processed. */ local int gz_fetch(state) gz_statep state; { z_streamp strm = &(state->strm); do { switch(state->how) { case LOOK: /* -> LOOK, COPY (only if never GZIP), or GZIP */ if (gz_look(state) == -1) return -1; if (state->how == LOOK) return 0; break; case COPY: /* -> COPY */ if (gz_load(state, state->out, state->size << 1, &(state->x.have)) == -1) return -1; state->x.next = state->out; return 0; case GZIP: /* -> GZIP or LOOK (if end of gzip stream) */ strm->avail_out = state->size << 1; strm->next_out = state->out; if (gz_decomp(state) == -1) return -1; } } while (state->x.have == 0 && (!state->eof || strm->avail_in)); return 0; } /* Skip len uncompressed bytes of output. Return -1 on error, 0 on success. */ local int gz_skip(state, len) gz_statep state; z_off64_t len; { unsigned n; /* skip over len bytes or reach end-of-file, whichever comes first */ while (len) /* skip over whatever is in output buffer */ if (state->x.have) { n = GT_OFF(state->x.have) || (z_off64_t)state->x.have > len ? (unsigned)len : state->x.have; state->x.have -= n; state->x.next += n; state->x.pos += n; len -= n; } /* output buffer empty -- return if we're at the end of the input */ else if (state->eof && state->strm.avail_in == 0) break; /* need more data to skip -- load up output buffer */ else { /* get more output, looking for header if required */ if (gz_fetch(state) == -1) return -1; } return 0; } /* -- see zlib.h -- */ int ZEXPORT gzread(file, buf, len) gzFile file; voidp buf; unsigned len; { unsigned got, n; gz_statep state; z_streamp strm; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; strm = &(state->strm); /* check that we're reading and that there's no (serious) error */ if (state->mode != GZ_READ || (state->err != Z_OK && state->err != Z_BUF_ERROR)) return -1; /* since an int is returned, make sure len fits in one, otherwise return with an error (this avoids the flaw in the interface) */ if ((int)len < 0) { gz_error(state, Z_DATA_ERROR, "requested length does not fit in int"); return -1; } /* if len is zero, avoid unnecessary operations */ if (len == 0) return 0; /* process a skip request */ if (state->seek) { state->seek = 0; if (gz_skip(state, state->skip) == -1) return -1; } /* get len bytes to buf, or less than len if at the end */ got = 0; do { /* first just try copying data from the output buffer */ if (state->x.have) { n = state->x.have > len ? len : state->x.have; memcpy(buf, state->x.next, n); state->x.next += n; state->x.have -= n; } /* output buffer empty -- return if we're at the end of the input */ else if (state->eof && strm->avail_in == 0) { state->past = 1; /* tried to read past end */ break; } /* need output data -- for small len or new stream load up our output buffer */ else if (state->how == LOOK || len < (state->size << 1)) { /* get more output, looking for header if required */ if (gz_fetch(state) == -1) return -1; continue; /* no progress yet -- go back to copy above */ /* the copy above assures that we will leave with space in the output buffer, allowing at least one gzungetc() to succeed */ } /* large len -- read directly into user buffer */ else if (state->how == COPY) { /* read directly */ if (gz_load(state, (unsigned char *)buf, len, &n) == -1) return -1; } /* large len -- decompress directly into user buffer */ else { /* state->how == GZIP */ strm->avail_out = len; strm->next_out = (unsigned char *)buf; if (gz_decomp(state) == -1) return -1; n = state->x.have; state->x.have = 0; } /* update progress */ len -= n; buf = (char *)buf + n; got += n; state->x.pos += n; } while (len); /* return number of bytes read into user buffer (will fit in int) */ return (int)got; } /* -- see zlib.h -- */ #ifdef Z_PREFIX_SET # undef z_gzgetc #else # undef gzgetc #endif int ZEXPORT gzgetc(file) gzFile file; { int ret; unsigned char buf[1]; gz_statep state; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; /* check that we're reading and that there's no (serious) error */ if (state->mode != GZ_READ || (state->err != Z_OK && state->err != Z_BUF_ERROR)) return -1; /* try output buffer (no need to check for skip request) */ if (state->x.have) { state->x.have--; state->x.pos++; return *(state->x.next)++; } /* nothing there -- try gzread() */ ret = gzread(file, buf, 1); return ret < 1 ? -1 : buf[0]; } int ZEXPORT gzgetc_(file) gzFile file; { return gzgetc(file); } /* -- see zlib.h -- */ int ZEXPORT gzungetc(c, file) int c; gzFile file; { gz_statep state; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; /* check that we're reading and that there's no (serious) error */ if (state->mode != GZ_READ || (state->err != Z_OK && state->err != Z_BUF_ERROR)) return -1; /* process a skip request */ if (state->seek) { state->seek = 0; if (gz_skip(state, state->skip) == -1) return -1; } /* can't push EOF */ if (c < 0) return -1; /* if output buffer empty, put byte at end (allows more pushing) */ if (state->x.have == 0) { state->x.have = 1; state->x.next = state->out + (state->size << 1) - 1; state->x.next[0] = c; state->x.pos--; state->past = 0; return c; } /* if no room, give up (must have already done a gzungetc()) */ if (state->x.have == (state->size << 1)) { gz_error(state, Z_DATA_ERROR, "out of room to push characters"); return -1; } /* slide output data if needed and insert byte before existing data */ if (state->x.next == state->out) { unsigned char *src = state->out + state->x.have; unsigned char *dest = state->out + (state->size << 1); while (src > state->out) *--dest = *--src; state->x.next = dest; } state->x.have++; state->x.next--; state->x.next[0] = c; state->x.pos--; state->past = 0; return c; } /* -- see zlib.h -- */ char * ZEXPORT gzgets(file, buf, len) gzFile file; char *buf; int len; { unsigned left, n; char *str; unsigned char *eol; gz_statep state; /* check parameters and get internal structure */ if (file == NULL || buf == NULL || len < 1) return NULL; state = (gz_statep)file; /* check that we're reading and that there's no (serious) error */ if (state->mode != GZ_READ || (state->err != Z_OK && state->err != Z_BUF_ERROR)) return NULL; /* process a skip request */ if (state->seek) { state->seek = 0; if (gz_skip(state, state->skip) == -1) return NULL; } /* copy output bytes up to new line or len - 1, whichever comes first -- append a terminating zero to the string (we don't check for a zero in the contents, let the user worry about that) */ str = buf; left = (unsigned)len - 1; if (left) do { /* assure that something is in the output buffer */ if (state->x.have == 0 && gz_fetch(state) == -1) return NULL; /* error */ if (state->x.have == 0) { /* end of file */ state->past = 1; /* read past end */ break; /* return what we have */ } /* look for end-of-line in current output buffer */ n = state->x.have > left ? left : state->x.have; eol = (unsigned char *)memchr(state->x.next, '\n', n); if (eol != NULL) n = (unsigned)(eol - state->x.next) + 1; /* copy through end-of-line, or remainder if not found */ memcpy(buf, state->x.next, n); state->x.have -= n; state->x.next += n; state->x.pos += n; left -= n; buf += n; } while (left && eol == NULL); /* return terminated string, or if nothing, end of file */ if (buf == str) return NULL; buf[0] = 0; return str; } /* -- see zlib.h -- */ int ZEXPORT gzdirect(file) gzFile file; { gz_statep state; /* get internal structure */ if (file == NULL) return 0; state = (gz_statep)file; /* if the state is not known, but we can find out, then do so (this is mainly for right after a gzopen() or gzdopen()) */ if (state->mode == GZ_READ && state->how == LOOK && state->x.have == 0) (void)gz_look(state); /* return 1 if transparent, 0 if processing a gzip stream */ return state->direct; } /* -- see zlib.h -- */ int ZEXPORT gzclose_r(file) gzFile file; { int ret, err; gz_statep state; /* get internal structure */ if (file == NULL) return Z_STREAM_ERROR; state = (gz_statep)file; /* check that we're reading */ if (state->mode != GZ_READ) return Z_STREAM_ERROR; /* free memory and close file */ if (state->size) { inflateEnd(&(state->strm)); free(state->out); free(state->in); } err = state->err == Z_BUF_ERROR ? Z_BUF_ERROR : Z_OK; gz_error(state, Z_OK, NULL); free(state->path); ret = close(state->fd); free(state); return ret ? Z_ERRNO : err; } /* END OF DUMP OF mz_gzread.c*/ /* START OF DUMP OF mz_gzlib.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* gzlib.c -- zlib functions common to reading and writing gzip files * Copyright (C) 2004, 2010, 2011, 2012, 2013 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ #if defined(_WIN32) && !defined(__BORLANDC__) # define LSEEK _lseeki64 #else #if defined(_LARGEFILE64_SOURCE) && _LFS64_LARGEFILE-0 # define LSEEK lseek64 #else # define LSEEK lseek #endif #endif /* Local functions */ local void gz_reset OF((gz_statep)); local gzFile gz_open OF((const void *, int, const char *)); #if defined UNDER_CE /* Map the Windows error number in ERROR to a locale-dependent error message string and return a pointer to it. Typically, the values for ERROR come from GetLastError. The string pointed to shall not be modified by the application, but may be overwritten by a subsequent call to gz_strwinerror The gz_strwinerror function does not change the current setting of GetLastError. */ char ZLIB_INTERNAL *gz_strwinerror (error) DWORD error; { static char buf[1024]; wchar_t *msgbuf; DWORD lasterr = GetLastError(); DWORD chars = FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER, NULL, error, 0, /* Default language */ (LPVOID)&msgbuf, 0, NULL); if (chars != 0) { /* If there is an \r\n appended, zap it. */ if (chars >= 2 && msgbuf[chars - 2] == '\r' && msgbuf[chars - 1] == '\n') { chars -= 2; msgbuf[chars] = 0; } if (chars > sizeof (buf) - 1) { chars = sizeof (buf) - 1; msgbuf[chars] = 0; } wcstombs(buf, msgbuf, chars + 1); LocalFree(msgbuf); } else { sprintf(buf, "unknown win32 error (%ld)", error); } SetLastError(lasterr); return buf; } #endif /* UNDER_CE */ /* Reset gzip file state */ local void gz_reset(state) gz_statep state; { state->x.have = 0; /* no output data available */ if (state->mode == GZ_READ) { /* for reading ... */ state->eof = 0; /* not at end of file */ state->past = 0; /* have not read past end yet */ state->how = LOOK; /* look for gzip header */ } state->seek = 0; /* no seek request pending */ gz_error(state, Z_OK, NULL); /* clear error */ state->x.pos = 0; /* no uncompressed data yet */ state->strm.avail_in = 0; /* no input data yet */ } /* Open a gzip file either by name or file descriptor. */ local gzFile gz_open(path, fd, mode) const void *path; int fd; const char *mode; { gz_statep state; size_t len; int oflag; #ifdef O_CLOEXEC int cloexec = 0; #endif #ifdef O_EXCL int exclusive = 0; #endif /* check input */ if (path == NULL) return NULL; /* allocate gzFile structure to return */ state = (gz_statep)malloc(sizeof(gz_state)); if (state == NULL) return NULL; state->size = 0; /* no buffers allocated yet */ state->want = GZBUFSIZE; /* requested buffer size */ state->msg = NULL; /* no error message yet */ /* interpret mode */ state->mode = GZ_NONE; state->level = Z_DEFAULT_COMPRESSION; state->strategy = Z_DEFAULT_STRATEGY; state->direct = 0; while (*mode) { if (*mode >= '0' && *mode <= '9') state->level = *mode - '0'; else switch (*mode) { case 'r': state->mode = GZ_READ; break; #ifndef NO_GZCOMPRESS case 'w': state->mode = GZ_WRITE; break; case 'a': state->mode = GZ_APPEND; break; #endif case '+': /* can't read and write at the same time */ free(state); return NULL; case 'b': /* ignore -- will request binary anyway */ break; #ifdef O_CLOEXEC case 'e': cloexec = 1; break; #endif #ifdef O_EXCL case 'x': exclusive = 1; break; #endif case 'f': state->strategy = Z_FILTERED; break; case 'h': state->strategy = Z_HUFFMAN_ONLY; break; case 'R': state->strategy = Z_RLE; break; case 'F': state->strategy = Z_FIXED; break; case 'T': state->direct = 1; break; default: /* could consider as an error, but just ignore */ ; } mode++; } /* must provide an "r", "w", or "a" */ if (state->mode == GZ_NONE) { free(state); return NULL; } /* can't force transparent read */ if (state->mode == GZ_READ) { if (state->direct) { free(state); return NULL; } state->direct = 1; /* for empty file */ } /* save the path name for error messages */ #ifdef _WIN32 if (fd == -2) { len = wcstombs(NULL, path, 0); if (len == (size_t)-1) len = 0; } else #endif len = strlen((const char *)path); state->path = (char *)malloc(len + 1); if (state->path == NULL) { free(state); return NULL; } #ifdef _WIN32 if (fd == -2) if (len) wcstombs(state->path, path, len + 1); else *(state->path) = 0; else #endif #if !defined(NO_snprintf) && !defined(NO_vsnprintf) snprintf(state->path, len + 1, "%s", (const char *)path); #else strcpy(state->path, path); #endif /* compute the flags for open() */ oflag = #ifdef O_LARGEFILE O_LARGEFILE | #endif #ifdef O_BINARY O_BINARY | #endif #ifdef O_CLOEXEC (cloexec ? O_CLOEXEC : 0) | #endif (state->mode == GZ_READ ? O_RDONLY : (O_WRONLY | O_CREAT | #ifdef O_EXCL (exclusive ? O_EXCL : 0) | #endif (state->mode == GZ_WRITE ? O_TRUNC : O_APPEND))); /* open the file with the appropriate flags (or just use fd) */ state->fd = fd > -1 ? fd : ( #ifdef _WIN32 fd == -2 ? _wopen(path, oflag, 0666) : #endif open((const char *)path, oflag, 0666)); if (state->fd == -1) { free(state->path); free(state); return NULL; } if (state->mode == GZ_APPEND) state->mode = GZ_WRITE; /* simplify later checks */ /* save the current position for rewinding (only if reading) */ if (state->mode == GZ_READ) { state->start = LSEEK(state->fd, 0, SEEK_CUR); if (state->start == -1) state->start = 0; } /* initialize stream */ gz_reset(state); /* return stream */ return (gzFile)state; } /* -- see zlib.h -- */ gzFile ZEXPORT gzopen(path, mode) const char *path; const char *mode; { return gz_open(path, -1, mode); } /* -- see zlib.h -- */ gzFile ZEXPORT gzopen64(path, mode) const char *path; const char *mode; { return gz_open(path, -1, mode); } /* -- see zlib.h -- */ gzFile ZEXPORT gzdopen(fd, mode) int fd; const char *mode; { char *path; /* identifier for error messages */ gzFile gz; if (fd == -1 || (path = (char *)malloc(7 + 3 * sizeof(int))) == NULL) return NULL; #if !defined(NO_snprintf) && !defined(NO_vsnprintf) snprintf(path, 7 + 3 * sizeof(int), "", fd); /* for debugging */ #else sprintf(path, "", fd); /* for debugging */ #endif gz = gz_open(path, fd, mode); free(path); return gz; } /* -- see zlib.h -- */ #ifdef _WIN32 gzFile ZEXPORT gzopen_w(path, mode) const wchar_t *path; const char *mode; { return gz_open(path, -2, mode); } #endif /* -- see zlib.h -- */ int ZEXPORT gzbuffer(file, size) gzFile file; unsigned size; { gz_statep state; /* get internal structure and check integrity */ if (file == NULL) return -1; state = (gz_statep)file; if (state->mode != GZ_READ && state->mode != GZ_WRITE) return -1; /* make sure we haven't already allocated memory */ if (state->size != 0) return -1; /* check and set requested size */ if (size < 2) size = 2; /* need two bytes to check magic header */ state->want = size; return 0; } /* -- see zlib.h -- */ int ZEXPORT gzrewind(file) gzFile file; { gz_statep state; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; /* check that we're reading and that there's no error */ if (state->mode != GZ_READ || (state->err != Z_OK && state->err != Z_BUF_ERROR)) return -1; /* back up and start over */ if (LSEEK(state->fd, state->start, SEEK_SET) == -1) return -1; gz_reset(state); return 0; } /* -- see zlib.h -- */ z_off64_t ZEXPORT gzseek64(file, offset, whence) gzFile file; z_off64_t offset; int whence; { unsigned n; z_off64_t ret; gz_statep state; /* get internal structure and check integrity */ if (file == NULL) return -1; state = (gz_statep)file; if (state->mode != GZ_READ && state->mode != GZ_WRITE) return -1; /* check that there's no error */ if (state->err != Z_OK && state->err != Z_BUF_ERROR) return -1; /* can only seek from start or relative to current position */ if (whence != SEEK_SET && whence != SEEK_CUR) return -1; /* normalize offset to a SEEK_CUR specification */ if (whence == SEEK_SET) offset -= state->x.pos; else if (state->seek) offset += state->skip; state->seek = 0; /* if within raw area while reading, just go there */ if (state->mode == GZ_READ && state->how == COPY && state->x.pos + offset >= 0) { ret = LSEEK(state->fd, offset - state->x.have, SEEK_CUR); if (ret == -1) return -1; state->x.have = 0; state->eof = 0; state->past = 0; state->seek = 0; gz_error(state, Z_OK, NULL); state->strm.avail_in = 0; state->x.pos += offset; return state->x.pos; } /* calculate skip amount, rewinding if needed for back seek when reading */ if (offset < 0) { if (state->mode != GZ_READ) /* writing -- can't go backwards */ return -1; offset += state->x.pos; if (offset < 0) /* before start of file! */ return -1; if (gzrewind(file) == -1) /* rewind, then skip to offset */ return -1; } /* if reading, skip what's in output buffer (one less gzgetc() check) */ if (state->mode == GZ_READ) { n = GT_OFF(state->x.have) || (z_off64_t)state->x.have > offset ? (unsigned)offset : state->x.have; state->x.have -= n; state->x.next += n; state->x.pos += n; offset -= n; } /* request skip (if not zero) */ if (offset) { state->seek = 1; state->skip = offset; } return state->x.pos + offset; } /* -- see zlib.h -- */ z_off_t ZEXPORT gzseek(file, offset, whence) gzFile file; z_off_t offset; int whence; { z_off64_t ret; ret = gzseek64(file, (z_off64_t)offset, whence); return ret == (z_off_t)ret ? (z_off_t)ret : -1; } /* -- see zlib.h -- */ z_off64_t ZEXPORT gztell64(file) gzFile file; { gz_statep state; /* get internal structure and check integrity */ if (file == NULL) return -1; state = (gz_statep)file; if (state->mode != GZ_READ && state->mode != GZ_WRITE) return -1; /* return position */ return state->x.pos + (state->seek ? state->skip : 0); } /* -- see zlib.h -- */ z_off_t ZEXPORT gztell(file) gzFile file; { z_off64_t ret; ret = gztell64(file); return ret == (z_off_t)ret ? (z_off_t)ret : -1; } /* -- see zlib.h -- */ z_off64_t ZEXPORT gzoffset64(file) gzFile file; { z_off64_t offset; gz_statep state; /* get internal structure and check integrity */ if (file == NULL) return -1; state = (gz_statep)file; if (state->mode != GZ_READ && state->mode != GZ_WRITE) return -1; /* compute and return effective offset in file */ offset = LSEEK(state->fd, 0, SEEK_CUR); if (offset == -1) return -1; if (state->mode == GZ_READ) /* reading */ offset -= state->strm.avail_in; /* don't count buffered input */ return offset; } /* -- see zlib.h -- */ z_off_t ZEXPORT gzoffset(file) gzFile file; { z_off64_t ret; ret = gzoffset64(file); return ret == (z_off_t)ret ? (z_off_t)ret : -1; } /* -- see zlib.h -- */ int ZEXPORT gzeof(file) gzFile file; { gz_statep state; /* get internal structure and check integrity */ if (file == NULL) return 0; state = (gz_statep)file; if (state->mode != GZ_READ && state->mode != GZ_WRITE) return 0; /* return end-of-file state */ return state->mode == GZ_READ ? state->past : 0; } /* -- see zlib.h -- */ const char * ZEXPORT gzerror(file, errnum) gzFile file; int *errnum; { gz_statep state; /* get internal structure and check integrity */ if (file == NULL) return NULL; state = (gz_statep)file; if (state->mode != GZ_READ && state->mode != GZ_WRITE) return NULL; /* return error information */ if (errnum != NULL) *errnum = state->err; return state->err == Z_MEM_ERROR ? "out of memory" : (state->msg == NULL ? "" : state->msg); } /* -- see zlib.h -- */ void ZEXPORT gzclearerr(file) gzFile file; { gz_statep state; /* get internal structure and check integrity */ if (file == NULL) return; state = (gz_statep)file; if (state->mode != GZ_READ && state->mode != GZ_WRITE) return; /* clear error and end-of-file */ if (state->mode == GZ_READ) { state->eof = 0; state->past = 0; } gz_error(state, Z_OK, NULL); } /* Create an error message in allocated memory and set state->err and state->msg accordingly. Free any previous error message already there. Do not try to free or allocate space if the error is Z_MEM_ERROR (out of memory). Simply save the error message as a static string. If there is an allocation failure constructing the error message, then convert the error to out of memory. */ void ZLIB_INTERNAL gz_error(state, err, msg) gz_statep state; int err; const char *msg; { /* free previously allocated message and clear */ if (state->msg != NULL) { if (state->err != Z_MEM_ERROR) free(state->msg); state->msg = NULL; } /* if fatal, set state->x.have to 0 so that the gzgetc() macro fails */ if (err != Z_OK && err != Z_BUF_ERROR) state->x.have = 0; /* set error code, and if no message, then done */ state->err = err; if (msg == NULL) return; /* for an out of memory error, return literal string when requested */ if (err == Z_MEM_ERROR) return; /* construct error message with path */ if ((state->msg = (char *)malloc(strlen(state->path) + strlen(msg) + 3)) == NULL) { state->err = Z_MEM_ERROR; return; } #if !defined(NO_snprintf) && !defined(NO_vsnprintf) snprintf(state->msg, strlen(state->path) + strlen(msg) + 3, "%s%s%s", state->path, ": ", msg); #else strcpy(state->msg, state->path); strcat(state->msg, ": "); strcat(state->msg, msg); #endif return; } #ifndef INT_MAX /* portably return maximum value for an int (when limits.h presumed not available) -- we need to do this to cover cases where 2's complement not used, since C standard permits 1's complement and sign-bit representations, otherwise we could just use ((unsigned)-1) >> 1 */ unsigned ZLIB_INTERNAL gz_intmax() { unsigned p, q; p = 1; do { q = p; p <<= 1; p++; } while (p > q); return q >> 1; } #endif /* END OF DUMP OF mz_gzlib.c*/ /* START OF DUMP OF mz_gzclose.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* gzclose.c -- zlib gzclose() function * Copyright (C) 2004, 2010 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* gzclose() is in a separate file so that it is linked in only if it is used. That way the other gzclose functions can be used instead to avoid linking in unneeded compression or decompression routines. */ int ZEXPORT gzclose(file) gzFile file; { #ifndef NO_GZCOMPRESS gz_statep state; if (file == NULL) return Z_STREAM_ERROR; state = (gz_statep)file; return state->mode == GZ_READ ? gzclose_r(file) : gzclose_w(file); #else return gzclose_r(file); #endif } /* END OF DUMP OF mz_gzclose.c*/ /* START OF DUMP OF mz_deflate.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* deflate.c -- compress data using the deflation algorithm * Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* * ALGORITHM * * The "deflation" process depends on being able to identify portions * of the input text which are identical to earlier input (within a * sliding window trailing behind the input currently being processed). * * The most straightforward technique turns out to be the fastest for * most input files: try all possible matches and select the longest. * The key feature of this algorithm is that insertions into the string * dictionary are very simple and thus fast, and deletions are avoided * completely. Insertions are performed at each input character, whereas * string matches are performed only when the previous match ends. So it * is preferable to spend more time in matches to allow very fast string * insertions and avoid deletions. The matching algorithm for small * strings is inspired from that of Rabin & Karp. A brute force approach * is used to find longer strings when a small match has been found. * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze * (by Leonid Broukhis). * A previous version of this file used a more sophisticated algorithm * (by Fiala and Greene) which is guaranteed to run in linear amortized * time, but has a larger average cost, uses more memory and is patented. * However the F&G algorithm may be faster for some highly redundant * files if the parameter max_chain_length (described below) is too large. * * ACKNOWLEDGEMENTS * * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and * I found it in 'freeze' written by Leonid Broukhis. * Thanks to many people for bug reports and testing. * * REFERENCES * * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification". * Available in http://tools.ietf.org/html/rfc1951 * * A description of the Rabin and Karp algorithm is given in the book * "Algorithms" by R. Sedgewick, Addison-Wesley, p252. * * Fiala,E.R., and Greene,D.H. * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595 * */ /* @(#) $Id$ */ const char deflate_copyright[] = " deflate 1.2.8 Copyright 1995-2013 Jean-loup Gailly and Mark Adler "; /* If you use the zlib library in a product, an acknowledgment is welcome in the documentation of your product. If for some reason you cannot include such an acknowledgment, I would appreciate that you keep this copyright string in the executable of your product. */ /* =========================================================================== * Function prototypes. */ typedef enum { need_more, /* block not completed, need more input or more output */ block_done, /* block flush performed */ finish_started, /* finish started, need only more output at next deflate */ finish_done /* finish done, accept no more input or output */ } block_state; typedef block_state (*compress_func) OF((deflate_state *s, int flush)); /* Compression function. Returns the block state after the call. */ local void fill_window OF((deflate_state *s)); local block_state deflate_stored OF((deflate_state *s, int flush)); local block_state deflate_fast OF((deflate_state *s, int flush)); #ifndef FASTEST local block_state deflate_slow OF((deflate_state *s, int flush)); #endif local block_state deflate_rle OF((deflate_state *s, int flush)); local block_state deflate_huff OF((deflate_state *s, int flush)); local void lm_init OF((deflate_state *s)); local void putShortMSB OF((deflate_state *s, uInt b)); local void flush_pending OF((z_streamp strm)); local int read_buf OF((z_streamp strm, Bytef *buf, unsigned size)); #ifdef ASMV void match_init OF((void)); /* asm code initialization */ uInt longest_match OF((deflate_state *s, IPos cur_match)); #else local uInt longest_match OF((deflate_state *s, IPos cur_match)); #endif #ifdef DEBUG local void check_match OF((deflate_state *s, IPos start, IPos match, int length)); #endif /* =========================================================================== * Local data */ #define NIL 0 /* Tail of hash chains */ #ifndef TOO_FAR # define TOO_FAR 4096 #endif /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */ /* Values for max_lazy_match, good_match and max_chain_length, depending on * the desired pack level (0..9). The values given below have been tuned to * exclude worst case performance for pathological files. Better values may be * found for specific files. */ typedef struct config_s { ush good_length; /* reduce lazy search above this match length */ ush max_lazy; /* do not perform lazy search above this match length */ ush nice_length; /* quit search above this match length */ ush max_chain; compress_func func; } config; #ifdef FASTEST local const config configuration_table[2] = { /* good lazy nice chain */ /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ /* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */ #else local const config configuration_table[10] = { /* good lazy nice chain */ /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ /* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */ /* 2 */ {4, 5, 16, 8, deflate_fast}, /* 3 */ {4, 6, 32, 32, deflate_fast}, /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */ /* 5 */ {8, 16, 32, 32, deflate_slow}, /* 6 */ {8, 16, 128, 128, deflate_slow}, /* 7 */ {8, 32, 128, 256, deflate_slow}, /* 8 */ {32, 128, 258, 1024, deflate_slow}, /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */ #endif /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different * meaning. */ #define EQUAL 0 /* result of memcmp for equal strings */ #ifndef NO_DUMMY_DECL struct static_tree_desc_s {int dummy;}; /* for buggy compilers */ #endif /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */ #define RANK(f) (((f) << 1) - ((f) > 4 ? 9 : 0)) /* =========================================================================== * Update a hash value with the given input byte * IN assertion: all calls to to UPDATE_HASH are made with consecutive * input characters, so that a running hash key can be computed from the * previous key instead of complete recalculation each time. */ #define UPDATE_HASH(s,h,c) (h = (((h)<hash_shift) ^ (c)) & s->hash_mask) /* =========================================================================== * Insert string str in the dictionary and set match_head to the previous head * of the hash chain (the most recent string with same hash key). Return * the previous length of the hash chain. * If this file is compiled with -DFASTEST, the compression level is forced * to 1, and no hash chains are maintained. * IN assertion: all calls to to INSERT_STRING are made with consecutive * input characters and the first MIN_MATCH bytes of str are valid * (except for the last MIN_MATCH-1 bytes of the input file). */ #ifdef FASTEST #define INSERT_STRING(s, str, match_head) \ (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ match_head = s->head[s->ins_h], \ s->head[s->ins_h] = (Pos)(str)) #else #define INSERT_STRING(s, str, match_head) \ (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \ s->head[s->ins_h] = (Pos)(str)) #endif /* =========================================================================== * Initialize the hash table (avoiding 64K overflow for 16 bit systems). * prev[] will be initialized on the fly. */ #define CLEAR_HASH(s) \ s->head[s->hash_size-1] = NIL; \ zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head)); /* ========================================================================= */ int ZEXPORT deflateInit_(strm, level, version, stream_size) z_streamp strm; int level; const char *version; int stream_size; { return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, Z_DEFAULT_STRATEGY, version, stream_size); /* To do: ignore strm->next_in if we use it as window */ } /* ========================================================================= */ int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy, version, stream_size) z_streamp strm; int level; int method; int windowBits; int memLevel; int strategy; const char *version; int stream_size; { deflate_state *s; int wrap = 1; static const char my_version[] = ZLIB_VERSION; ushf *overlay; /* We overlay pending_buf and d_buf+l_buf. This works since the average * output size for (length,distance) codes is <= 24 bits. */ if (version == Z_NULL || version[0] != my_version[0] || stream_size != sizeof(z_stream)) { return Z_VERSION_ERROR; } if (strm == Z_NULL) return Z_STREAM_ERROR; strm->msg = Z_NULL; if (strm->zalloc == (alloc_func)0) { #ifdef Z_SOLO return Z_STREAM_ERROR; #else strm->zalloc = zcalloc; strm->opaque = (voidpf)0; #endif } if (strm->zfree == (free_func)0) #ifdef Z_SOLO return Z_STREAM_ERROR; #else strm->zfree = zcfree; #endif #ifdef FASTEST if (level != 0) level = 1; #else if (level == Z_DEFAULT_COMPRESSION) level = 6; #endif if (windowBits < 0) { /* suppress zlib wrapper */ wrap = 0; windowBits = -windowBits; } #ifdef GZIP else if (windowBits > 15) { wrap = 2; /* write gzip wrapper instead */ windowBits -= 16; } #endif if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED || windowBits < 8 || windowBits > 15 || level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) { return Z_STREAM_ERROR; } if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */ s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state)); if (s == Z_NULL) return Z_MEM_ERROR; strm->state = (struct internal_state FAR *)s; s->strm = strm; s->wrap = wrap; s->gzhead = Z_NULL; s->w_bits = windowBits; s->w_size = 1 << s->w_bits; s->w_mask = s->w_size - 1; s->hash_bits = memLevel + 7; s->hash_size = 1 << s->hash_bits; s->hash_mask = s->hash_size - 1; s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH); s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte)); s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos)); s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos)); s->high_water = 0; /* nothing written to s->window yet */ s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2); s->pending_buf = (uchf *) overlay; s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L); if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL || s->pending_buf == Z_NULL) { s->status = FINISH_STATE; strm->msg = ERR_MSG(Z_MEM_ERROR); deflateEnd (strm); return Z_MEM_ERROR; } s->d_buf = overlay + s->lit_bufsize/sizeof(ush); s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize; s->level = level; s->strategy = strategy; s->method = (Byte)method; return deflateReset(strm); } /* ========================================================================= */ int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength) z_streamp strm; const Bytef *dictionary; uInt dictLength; { deflate_state *s; uInt str, n; int wrap; unsigned avail; z_const unsigned char *next; if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL) return Z_STREAM_ERROR; s = strm->state; wrap = s->wrap; if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead) return Z_STREAM_ERROR; /* when using zlib wrappers, compute Adler-32 for provided dictionary */ if (wrap == 1) strm->adler = adler32(strm->adler, dictionary, dictLength); s->wrap = 0; /* avoid computing Adler-32 in read_buf */ /* if dictionary would fill window, just replace the history */ if (dictLength >= s->w_size) { if (wrap == 0) { /* already empty otherwise */ CLEAR_HASH(s); s->strstart = 0; s->block_start = 0L; s->insert = 0; } dictionary += dictLength - s->w_size; /* use the tail */ dictLength = s->w_size; } /* insert dictionary into window and hash */ avail = strm->avail_in; next = strm->next_in; strm->avail_in = dictLength; strm->next_in = (z_const Bytef *)dictionary; fill_window(s); while (s->lookahead >= MIN_MATCH) { str = s->strstart; n = s->lookahead - (MIN_MATCH-1); do { UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); #ifndef FASTEST s->prev[str & s->w_mask] = s->head[s->ins_h]; #endif s->head[s->ins_h] = (Pos)str; str++; } while (--n); s->strstart = str; s->lookahead = MIN_MATCH-1; fill_window(s); } s->strstart += s->lookahead; s->block_start = (long)s->strstart; s->insert = s->lookahead; s->lookahead = 0; s->match_length = s->prev_length = MIN_MATCH-1; s->match_available = 0; strm->next_in = next; strm->avail_in = avail; s->wrap = wrap; return Z_OK; } /* ========================================================================= */ int ZEXPORT deflateResetKeep (strm) z_streamp strm; { deflate_state *s; if (strm == Z_NULL || strm->state == Z_NULL || strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) { return Z_STREAM_ERROR; } strm->total_in = strm->total_out = 0; strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */ strm->data_type = Z_UNKNOWN; s = (deflate_state *)strm->state; s->pending = 0; s->pending_out = s->pending_buf; if (s->wrap < 0) { s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */ } s->status = s->wrap ? INIT_STATE : BUSY_STATE; strm->adler = #ifdef GZIP s->wrap == 2 ? crc32(0L, Z_NULL, 0) : #endif adler32(0L, Z_NULL, 0); s->last_flush = Z_NO_FLUSH; _tr_init(s); return Z_OK; } /* ========================================================================= */ int ZEXPORT deflateReset (strm) z_streamp strm; { int ret; ret = deflateResetKeep(strm); if (ret == Z_OK) lm_init(strm->state); return ret; } /* ========================================================================= */ int ZEXPORT deflateSetHeader (strm, head) z_streamp strm; gz_headerp head; { if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; if (strm->state->wrap != 2) return Z_STREAM_ERROR; strm->state->gzhead = head; return Z_OK; } /* ========================================================================= */ int ZEXPORT deflatePending (strm, pending, bits) unsigned *pending; int *bits; z_streamp strm; { if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; if (pending != Z_NULL) *pending = strm->state->pending; if (bits != Z_NULL) *bits = strm->state->bi_valid; return Z_OK; } /* ========================================================================= */ int ZEXPORT deflatePrime (strm, bits, value) z_streamp strm; int bits; int value; { deflate_state *s; int put; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; s = strm->state; if ((Bytef *)(s->d_buf) < s->pending_out + ((Buf_size + 7) >> 3)) return Z_BUF_ERROR; do { put = Buf_size - s->bi_valid; if (put > bits) put = bits; s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid); s->bi_valid += put; _tr_flush_bits(s); value >>= put; bits -= put; } while (bits); return Z_OK; } /* ========================================================================= */ int ZEXPORT deflateParams(strm, level, strategy) z_streamp strm; int level; int strategy; { deflate_state *s; compress_func func; int err = Z_OK; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; s = strm->state; #ifdef FASTEST if (level != 0) level = 1; #else if (level == Z_DEFAULT_COMPRESSION) level = 6; #endif if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) { return Z_STREAM_ERROR; } func = configuration_table[s->level].func; if ((strategy != s->strategy || func != configuration_table[level].func) && strm->total_in != 0) { /* Flush the last buffer: */ err = deflate(strm, Z_BLOCK); if (err == Z_BUF_ERROR && s->pending == 0) err = Z_OK; } if (s->level != level) { s->level = level; s->max_lazy_match = configuration_table[level].max_lazy; s->good_match = configuration_table[level].good_length; s->nice_match = configuration_table[level].nice_length; s->max_chain_length = configuration_table[level].max_chain; } s->strategy = strategy; return err; } /* ========================================================================= */ int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain) z_streamp strm; int good_length; int max_lazy; int nice_length; int max_chain; { deflate_state *s; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; s = strm->state; s->good_match = good_length; s->max_lazy_match = max_lazy; s->nice_match = nice_length; s->max_chain_length = max_chain; return Z_OK; } /* ========================================================================= * For the default windowBits of 15 and memLevel of 8, this function returns * a close to exact, as well as small, upper bound on the compressed size. * They are coded as constants here for a reason--if the #define's are * changed, then this function needs to be changed as well. The return * value for 15 and 8 only works for those exact settings. * * For any setting other than those defaults for windowBits and memLevel, * the value returned is a conservative worst case for the maximum expansion * resulting from using fixed blocks instead of stored blocks, which deflate * can emit on compressed data for some combinations of the parameters. * * This function could be more sophisticated to provide closer upper bounds for * every combination of windowBits and memLevel. But even the conservative * upper bound of about 14% expansion does not seem onerous for output buffer * allocation. */ uLong ZEXPORT deflateBound(strm, sourceLen) z_streamp strm; uLong sourceLen; { deflate_state *s; uLong complen, wraplen; Bytef *str; /* conservative upper bound for compressed data */ complen = sourceLen + ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5; /* if can't get parameters, return conservative bound plus zlib wrapper */ if (strm == Z_NULL || strm->state == Z_NULL) return complen + 6; /* compute wrapper length */ s = strm->state; switch (s->wrap) { case 0: /* raw deflate */ wraplen = 0; break; case 1: /* zlib wrapper */ wraplen = 6 + (s->strstart ? 4 : 0); break; case 2: /* gzip wrapper */ wraplen = 18; if (s->gzhead != Z_NULL) { /* user-supplied gzip header */ if (s->gzhead->extra != Z_NULL) wraplen += 2 + s->gzhead->extra_len; str = s->gzhead->name; if (str != Z_NULL) do { wraplen++; } while (*str++); str = s->gzhead->comment; if (str != Z_NULL) do { wraplen++; } while (*str++); if (s->gzhead->hcrc) wraplen += 2; } break; default: /* for compiler happiness */ wraplen = 6; } /* if not default parameters, return conservative bound */ if (s->w_bits != 15 || s->hash_bits != 8 + 7) return complen + wraplen; /* default settings: return tight bound for that case */ return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) + (sourceLen >> 25) + 13 - 6 + wraplen; } /* ========================================================================= * Put a short in the pending buffer. The 16-bit value is put in MSB order. * IN assertion: the stream state is correct and there is enough room in * pending_buf. */ local void putShortMSB (s, b) deflate_state *s; uInt b; { put_byte(s, (Byte)(b >> 8)); put_byte(s, (Byte)(b & 0xff)); } /* ========================================================================= * Flush as much pending output as possible. All deflate() output goes * through this function so some applications may wish to modify it * to avoid allocating a large strm->next_out buffer and copying into it. * (See also read_buf()). */ local void flush_pending(strm) z_streamp strm; { unsigned len; deflate_state *s = strm->state; _tr_flush_bits(s); len = s->pending; if (len > strm->avail_out) len = strm->avail_out; if (len == 0) return; zmemcpy(strm->next_out, s->pending_out, len); strm->next_out += len; s->pending_out += len; strm->total_out += len; strm->avail_out -= len; s->pending -= len; if (s->pending == 0) { s->pending_out = s->pending_buf; } } /* ========================================================================= */ int ZEXPORT deflate (strm, flush) z_streamp strm; int flush; { int old_flush; /* value of flush param for previous deflate call */ deflate_state *s; if (strm == Z_NULL || strm->state == Z_NULL || flush > Z_BLOCK || flush < 0) { return Z_STREAM_ERROR; } s = strm->state; if (strm->next_out == Z_NULL || (strm->next_in == Z_NULL && strm->avail_in != 0) || (s->status == FINISH_STATE && flush != Z_FINISH)) { ERR_RETURN(strm, Z_STREAM_ERROR); } if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR); s->strm = strm; /* just in case */ old_flush = s->last_flush; s->last_flush = flush; /* Write the header */ if (s->status == INIT_STATE) { #ifdef GZIP if (s->wrap == 2) { strm->adler = crc32(0L, Z_NULL, 0); put_byte(s, 31); put_byte(s, 139); put_byte(s, 8); if (s->gzhead == Z_NULL) { put_byte(s, 0); put_byte(s, 0); put_byte(s, 0); put_byte(s, 0); put_byte(s, 0); put_byte(s, s->level == 9 ? 2 : (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? 4 : 0)); put_byte(s, OS_CODE); s->status = BUSY_STATE; } else { put_byte(s, (s->gzhead->text ? 1 : 0) + (s->gzhead->hcrc ? 2 : 0) + (s->gzhead->extra == Z_NULL ? 0 : 4) + (s->gzhead->name == Z_NULL ? 0 : 8) + (s->gzhead->comment == Z_NULL ? 0 : 16) ); put_byte(s, (Byte)(s->gzhead->time & 0xff)); put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff)); put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff)); put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff)); put_byte(s, s->level == 9 ? 2 : (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? 4 : 0)); put_byte(s, s->gzhead->os & 0xff); if (s->gzhead->extra != Z_NULL) { put_byte(s, s->gzhead->extra_len & 0xff); put_byte(s, (s->gzhead->extra_len >> 8) & 0xff); } if (s->gzhead->hcrc) strm->adler = crc32(strm->adler, s->pending_buf, s->pending); s->gzindex = 0; s->status = EXTRA_STATE; } } else #endif { uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8; uInt level_flags; if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2) level_flags = 0; else if (s->level < 6) level_flags = 1; else if (s->level == 6) level_flags = 2; else level_flags = 3; header |= (level_flags << 6); if (s->strstart != 0) header |= PRESET_DICT; header += 31 - (header % 31); s->status = BUSY_STATE; putShortMSB(s, header); /* Save the adler32 of the preset dictionary: */ if (s->strstart != 0) { putShortMSB(s, (uInt)(strm->adler >> 16)); putShortMSB(s, (uInt)(strm->adler & 0xffff)); } strm->adler = adler32(0L, Z_NULL, 0); } } #ifdef GZIP if (s->status == EXTRA_STATE) { if (s->gzhead->extra != Z_NULL) { uInt beg = s->pending; /* start of bytes to update crc */ while (s->gzindex < (s->gzhead->extra_len & 0xffff)) { if (s->pending == s->pending_buf_size) { if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); flush_pending(strm); beg = s->pending; if (s->pending == s->pending_buf_size) break; } put_byte(s, s->gzhead->extra[s->gzindex]); s->gzindex++; } if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); if (s->gzindex == s->gzhead->extra_len) { s->gzindex = 0; s->status = NAME_STATE; } } else s->status = NAME_STATE; } if (s->status == NAME_STATE) { if (s->gzhead->name != Z_NULL) { uInt beg = s->pending; /* start of bytes to update crc */ int val; do { if (s->pending == s->pending_buf_size) { if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); flush_pending(strm); beg = s->pending; if (s->pending == s->pending_buf_size) { val = 1; break; } } val = s->gzhead->name[s->gzindex++]; put_byte(s, val); } while (val != 0); if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); if (val == 0) { s->gzindex = 0; s->status = COMMENT_STATE; } } else s->status = COMMENT_STATE; } if (s->status == COMMENT_STATE) { if (s->gzhead->comment != Z_NULL) { uInt beg = s->pending; /* start of bytes to update crc */ int val; do { if (s->pending == s->pending_buf_size) { if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); flush_pending(strm); beg = s->pending; if (s->pending == s->pending_buf_size) { val = 1; break; } } val = s->gzhead->comment[s->gzindex++]; put_byte(s, val); } while (val != 0); if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); if (val == 0) s->status = HCRC_STATE; } else s->status = HCRC_STATE; } if (s->status == HCRC_STATE) { if (s->gzhead->hcrc) { if (s->pending + 2 > s->pending_buf_size) flush_pending(strm); if (s->pending + 2 <= s->pending_buf_size) { put_byte(s, (Byte)(strm->adler & 0xff)); put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); strm->adler = crc32(0L, Z_NULL, 0); s->status = BUSY_STATE; } } else s->status = BUSY_STATE; } #endif /* Flush as much pending output as possible */ if (s->pending != 0) { flush_pending(strm); if (strm->avail_out == 0) { /* Since avail_out is 0, deflate will be called again with * more output space, but possibly with both pending and * avail_in equal to zero. There won't be anything to do, * but this is not an error situation so make sure we * return OK instead of BUF_ERROR at next call of deflate: */ s->last_flush = -1; return Z_OK; } /* Make sure there is something to do and avoid duplicate consecutive * flushes. For repeated and useless calls with Z_FINISH, we keep * returning Z_STREAM_END instead of Z_BUF_ERROR. */ } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) && flush != Z_FINISH) { ERR_RETURN(strm, Z_BUF_ERROR); } /* User must not provide more input after the first FINISH: */ if (s->status == FINISH_STATE && strm->avail_in != 0) { ERR_RETURN(strm, Z_BUF_ERROR); } /* Start a new block or continue the current one. */ if (strm->avail_in != 0 || s->lookahead != 0 || (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) { block_state bstate; bstate = s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) : (s->strategy == Z_RLE ? deflate_rle(s, flush) : (*(configuration_table[s->level].func))(s, flush)); if (bstate == finish_started || bstate == finish_done) { s->status = FINISH_STATE; } if (bstate == need_more || bstate == finish_started) { if (strm->avail_out == 0) { s->last_flush = -1; /* avoid BUF_ERROR next call, see above */ } return Z_OK; /* If flush != Z_NO_FLUSH && avail_out == 0, the next call * of deflate should use the same flush parameter to make sure * that the flush is complete. So we don't have to output an * empty block here, this will be done at next call. This also * ensures that for a very small output buffer, we emit at most * one empty block. */ } if (bstate == block_done) { if (flush == Z_PARTIAL_FLUSH) { _tr_align(s); } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */ _tr_stored_block(s, (char*)0, 0L, 0); /* For a full flush, this empty block will be recognized * as a special marker by inflate_sync(). */ if (flush == Z_FULL_FLUSH) { CLEAR_HASH(s); /* forget history */ if (s->lookahead == 0) { s->strstart = 0; s->block_start = 0L; s->insert = 0; } } } flush_pending(strm); if (strm->avail_out == 0) { s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */ return Z_OK; } } } Assert(strm->avail_out > 0, "bug2"); if (flush != Z_FINISH) return Z_OK; if (s->wrap <= 0) return Z_STREAM_END; /* Write the trailer */ #ifdef GZIP if (s->wrap == 2) { put_byte(s, (Byte)(strm->adler & 0xff)); put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); put_byte(s, (Byte)((strm->adler >> 16) & 0xff)); put_byte(s, (Byte)((strm->adler >> 24) & 0xff)); put_byte(s, (Byte)(strm->total_in & 0xff)); put_byte(s, (Byte)((strm->total_in >> 8) & 0xff)); put_byte(s, (Byte)((strm->total_in >> 16) & 0xff)); put_byte(s, (Byte)((strm->total_in >> 24) & 0xff)); } else #endif { putShortMSB(s, (uInt)(strm->adler >> 16)); putShortMSB(s, (uInt)(strm->adler & 0xffff)); } flush_pending(strm); /* If avail_out is zero, the application will call deflate again * to flush the rest. */ if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */ return s->pending != 0 ? Z_OK : Z_STREAM_END; } /* ========================================================================= */ int ZEXPORT deflateEnd (strm) z_streamp strm; { int status; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; status = strm->state->status; if (status != INIT_STATE && status != EXTRA_STATE && status != NAME_STATE && status != COMMENT_STATE && status != HCRC_STATE && status != BUSY_STATE && status != FINISH_STATE) { return Z_STREAM_ERROR; } /* Deallocate in reverse order of allocations: */ TRY_FREE(strm, strm->state->pending_buf); TRY_FREE(strm, strm->state->head); TRY_FREE(strm, strm->state->prev); TRY_FREE(strm, strm->state->window); ZFREE(strm, strm->state); strm->state = Z_NULL; return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; } /* ========================================================================= * Copy the source state to the destination state. * To simplify the source, this is not supported for 16-bit MSDOS (which * doesn't have enough memory anyway to duplicate compression states). */ int ZEXPORT deflateCopy (dest, source) z_streamp dest; z_streamp source; { #ifdef MAXSEG_64K return Z_STREAM_ERROR; #else deflate_state *ds; deflate_state *ss; ushf *overlay; if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) { return Z_STREAM_ERROR; } ss = source->state; zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream)); ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state)); if (ds == Z_NULL) return Z_MEM_ERROR; dest->state = (struct internal_state FAR *) ds; zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state)); ds->strm = dest; ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte)); ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos)); ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos)); overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2); ds->pending_buf = (uchf *) overlay; if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL || ds->pending_buf == Z_NULL) { deflateEnd (dest); return Z_MEM_ERROR; } /* following zmemcpy do not work for 16-bit MSDOS */ zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte)); zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos)); zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos)); zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size); ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf); ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush); ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize; ds->l_desc.dyn_tree = ds->dyn_ltree; ds->d_desc.dyn_tree = ds->dyn_dtree; ds->bl_desc.dyn_tree = ds->bl_tree; return Z_OK; #endif /* MAXSEG_64K */ } /* =========================================================================== * Read a new buffer from the current input stream, update the adler32 * and total number of bytes read. All deflate() input goes through * this function so some applications may wish to modify it to avoid * allocating a large strm->next_in buffer and copying from it. * (See also flush_pending()). */ local int read_buf(strm, buf, size) z_streamp strm; Bytef *buf; unsigned size; { unsigned len = strm->avail_in; if (len > size) len = size; if (len == 0) return 0; strm->avail_in -= len; zmemcpy(buf, strm->next_in, len); if (strm->state->wrap == 1) { strm->adler = adler32(strm->adler, buf, len); } #ifdef GZIP else if (strm->state->wrap == 2) { strm->adler = crc32(strm->adler, buf, len); } #endif strm->next_in += len; strm->total_in += len; return (int)len; } /* =========================================================================== * Initialize the "longest match" routines for a new zlib stream */ local void lm_init (s) deflate_state *s; { s->window_size = (ulg)2L*s->w_size; CLEAR_HASH(s); /* Set the default configuration parameters: */ s->max_lazy_match = configuration_table[s->level].max_lazy; s->good_match = configuration_table[s->level].good_length; s->nice_match = configuration_table[s->level].nice_length; s->max_chain_length = configuration_table[s->level].max_chain; s->strstart = 0; s->block_start = 0L; s->lookahead = 0; s->insert = 0; s->match_length = s->prev_length = MIN_MATCH-1; s->match_available = 0; s->ins_h = 0; #ifndef FASTEST #ifdef ASMV match_init(); /* initialize the asm code */ #endif #endif } #ifndef FASTEST /* =========================================================================== * Set match_start to the longest match starting at the given string and * return its length. Matches shorter or equal to prev_length are discarded, * in which case the result is equal to prev_length and match_start is * garbage. * IN assertions: cur_match is the head of the hash chain for the current * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 * OUT assertion: the match length is not greater than s->lookahead. */ #ifndef ASMV /* For 80x86 and 680x0, an optimized version will be provided in match.asm or * match.S. The code will be functionally equivalent. */ local uInt longest_match(s, cur_match) deflate_state *s; IPos cur_match; /* current match */ { unsigned chain_length = s->max_chain_length;/* max hash chain length */ register Bytef *scan = s->window + s->strstart; /* current string */ register Bytef *match; /* matched string */ register int len; /* length of current match */ int best_len = s->prev_length; /* best match length so far */ int nice_match = s->nice_match; /* stop if match long enough */ IPos limit = s->strstart > (IPos)MAX_DIST(s) ? s->strstart - (IPos)MAX_DIST(s) : NIL; /* Stop when cur_match becomes <= limit. To simplify the code, * we prevent matches with the string of window index 0. */ Posf *prev = s->prev; uInt wmask = s->w_mask; #ifdef UNALIGNED_OK /* Compare two bytes at a time. Note: this is not always beneficial. * Try with and without -DUNALIGNED_OK to check. */ register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1; register ush scan_start = *(ushf*)scan; register ush scan_end = *(ushf*)(scan+best_len-1); #else register Bytef *strend = s->window + s->strstart + MAX_MATCH; register Byte scan_end1 = scan[best_len-1]; register Byte scan_end = scan[best_len]; #endif /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. * It is easy to get rid of this optimization if necessary. */ Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); /* Do not waste too much time if we already have a good match: */ if (s->prev_length >= s->good_match) { chain_length >>= 2; } /* Do not look for matches beyond the end of the input. This is necessary * to make deflate deterministic. */ if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead; Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); do { Assert(cur_match < s->strstart, "no future"); match = s->window + cur_match; /* Skip to next match if the match length cannot increase * or if the match length is less than 2. Note that the checks below * for insufficient lookahead only occur occasionally for performance * reasons. Therefore uninitialized memory will be accessed, and * conditional jumps will be made that depend on those values. * However the length of the match is limited to the lookahead, so * the output of deflate is not affected by the uninitialized values. */ #if (defined(UNALIGNED_OK) && MAX_MATCH == 258) /* This code assumes sizeof(unsigned short) == 2. Do not use * UNALIGNED_OK if your compiler uses a different size. */ if (*(ushf*)(match+best_len-1) != scan_end || *(ushf*)match != scan_start) continue; /* It is not necessary to compare scan[2] and match[2] since they are * always equal when the other bytes match, given that the hash keys * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at * strstart+3, +5, ... up to strstart+257. We check for insufficient * lookahead only every 4th comparison; the 128th check will be made * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is * necessary to put more guard bytes at the end of the window, or * to check more often for insufficient lookahead. */ Assert(scan[2] == match[2], "scan[2]?"); scan++, match++; do { } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) && *(ushf*)(scan+=2) == *(ushf*)(match+=2) && *(ushf*)(scan+=2) == *(ushf*)(match+=2) && *(ushf*)(scan+=2) == *(ushf*)(match+=2) && scan < strend); /* The funny "do {}" generates better code on most compilers */ /* Here, scan <= window+strstart+257 */ Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); if (*scan == *match) scan++; len = (MAX_MATCH - 1) - (int)(strend-scan); scan = strend - (MAX_MATCH-1); #else /* UNALIGNED_OK */ if (match[best_len] != scan_end || match[best_len-1] != scan_end1 || *match != *scan || *++match != scan[1]) continue; /* The check at best_len-1 can be removed because it will be made * again later. (This heuristic is not always a win.) * It is not necessary to compare scan[2] and match[2] since they * are always equal when the other bytes match, given that * the hash keys are equal and that HASH_BITS >= 8. */ scan += 2, match++; Assert(*scan == *match, "match[2]?"); /* We check for insufficient lookahead only every 8th comparison; * the 256th check will be made at strstart+258. */ do { } while (*++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && scan < strend); Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); len = MAX_MATCH - (int)(strend - scan); scan = strend - MAX_MATCH; #endif /* UNALIGNED_OK */ if (len > best_len) { s->match_start = cur_match; best_len = len; if (len >= nice_match) break; #ifdef UNALIGNED_OK scan_end = *(ushf*)(scan+best_len-1); #else scan_end1 = scan[best_len-1]; scan_end = scan[best_len]; #endif } } while ((cur_match = prev[cur_match & wmask]) > limit && --chain_length != 0); if ((uInt)best_len <= s->lookahead) return (uInt)best_len; return s->lookahead; } #endif /* ASMV */ #else /* FASTEST */ /* --------------------------------------------------------------------------- * Optimized version for FASTEST only */ local uInt longest_match(s, cur_match) deflate_state *s; IPos cur_match; /* current match */ { register Bytef *scan = s->window + s->strstart; /* current string */ register Bytef *match; /* matched string */ register int len; /* length of current match */ register Bytef *strend = s->window + s->strstart + MAX_MATCH; /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. * It is easy to get rid of this optimization if necessary. */ Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); Assert(cur_match < s->strstart, "no future"); match = s->window + cur_match; /* Return failure if the match length is less than 2: */ if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1; /* The check at best_len-1 can be removed because it will be made * again later. (This heuristic is not always a win.) * It is not necessary to compare scan[2] and match[2] since they * are always equal when the other bytes match, given that * the hash keys are equal and that HASH_BITS >= 8. */ scan += 2, match += 2; Assert(*scan == *match, "match[2]?"); /* We check for insufficient lookahead only every 8th comparison; * the 256th check will be made at strstart+258. */ do { } while (*++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && scan < strend); Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); len = MAX_MATCH - (int)(strend - scan); if (len < MIN_MATCH) return MIN_MATCH - 1; s->match_start = cur_match; return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead; } #endif /* FASTEST */ #ifdef DEBUG /* =========================================================================== * Check that the match at match_start is indeed a match. */ local void check_match(s, start, match, length) deflate_state *s; IPos start, match; int length; { /* check that the match is indeed a match */ if (zmemcmp(s->window + match, s->window + start, length) != EQUAL) { fprintf(stderr, " start %u, match %u, length %d\n", start, match, length); do { fprintf(stderr, "%c%c", s->window[match++], s->window[start++]); } while (--length != 0); z_error("invalid match"); } if (z_verbose > 1) { fprintf(stderr,"\\[%d,%d]", start-match, length); do { putc(s->window[start++], stderr); } while (--length != 0); } } #else # define check_match(s, start, match, length) #endif /* DEBUG */ /* =========================================================================== * Fill the window when the lookahead becomes insufficient. * Updates strstart and lookahead. * * IN assertion: lookahead < MIN_LOOKAHEAD * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD * At least one byte has been read, or avail_in == 0; reads are * performed for at least two bytes (required for the zip translate_eol * option -- not supported here). */ local void fill_window(s) deflate_state *s; { register unsigned n, m; register Posf *p; unsigned more; /* Amount of free space at the end of the window. */ uInt wsize = s->w_size; Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead"); do { more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart); /* Deal with !@#$% 64K limit: */ if (sizeof(int) <= 2) { if (more == 0 && s->strstart == 0 && s->lookahead == 0) { more = wsize; } else if (more == (unsigned)(-1)) { /* Very unlikely, but possible on 16 bit machine if * strstart == 0 && lookahead == 1 (input done a byte at time) */ more--; } } /* If the window is almost full and there is insufficient lookahead, * move the upper half to the lower one to make room in the upper half. */ if (s->strstart >= wsize+MAX_DIST(s)) { zmemcpy(s->window, s->window+wsize, (unsigned)wsize); s->match_start -= wsize; s->strstart -= wsize; /* we now have strstart >= MAX_DIST */ s->block_start -= (long) wsize; /* Slide the hash table (could be avoided with 32 bit values at the expense of memory usage). We slide even when level == 0 to keep the hash table consistent if we switch back to level > 0 later. (Using level 0 permanently is not an optimal usage of zlib, so we don't care about this pathological case.) */ n = s->hash_size; p = &s->head[n]; do { m = *--p; *p = (Pos)(m >= wsize ? m-wsize : NIL); } while (--n); n = wsize; #ifndef FASTEST p = &s->prev[n]; do { m = *--p; *p = (Pos)(m >= wsize ? m-wsize : NIL); /* If n is not on any hash chain, prev[n] is garbage but * its value will never be used. */ } while (--n); #endif more += wsize; } if (s->strm->avail_in == 0) break; /* If there was no sliding: * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && * more == window_size - lookahead - strstart * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) * => more >= window_size - 2*WSIZE + 2 * In the BIG_MEM or MMAP case (not yet supported), * window_size == input_size + MIN_LOOKAHEAD && * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. * Otherwise, window_size == 2*WSIZE so more >= 2. * If there was sliding, more >= WSIZE. So in all cases, more >= 2. */ Assert(more >= 2, "more < 2"); n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more); s->lookahead += n; /* Initialize the hash value now that we have some input: */ if (s->lookahead + s->insert >= MIN_MATCH) { uInt str = s->strstart - s->insert; s->ins_h = s->window[str]; UPDATE_HASH(s, s->ins_h, s->window[str + 1]); #if MIN_MATCH != 3 Call UPDATE_HASH() MIN_MATCH-3 more times #endif while (s->insert) { UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); #ifndef FASTEST s->prev[str & s->w_mask] = s->head[s->ins_h]; #endif s->head[s->ins_h] = (Pos)str; str++; s->insert--; if (s->lookahead + s->insert < MIN_MATCH) break; } } /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, * but this is not important since only literal bytes will be emitted. */ } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0); /* If the WIN_INIT bytes after the end of the current data have never been * written, then zero those bytes in order to avoid memory check reports of * the use of uninitialized (or uninitialised as Julian writes) bytes by * the longest match routines. Update the high water mark for the next * time through here. WIN_INIT is set to MAX_MATCH since the longest match * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead. */ if (s->high_water < s->window_size) { ulg curr = s->strstart + (ulg)(s->lookahead); ulg init; if (s->high_water < curr) { /* Previous high water mark below current data -- zero WIN_INIT * bytes or up to end of window, whichever is less. */ init = s->window_size - curr; if (init > WIN_INIT) init = WIN_INIT; zmemzero(s->window + curr, (unsigned)init); s->high_water = curr + init; } else if (s->high_water < (ulg)curr + WIN_INIT) { /* High water mark at or above current data, but below current data * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up * to end of window, whichever is less. */ init = (ulg)curr + WIN_INIT - s->high_water; if (init > s->window_size - s->high_water) init = s->window_size - s->high_water; zmemzero(s->window + s->high_water, (unsigned)init); s->high_water += init; } } Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD, "not enough room for search"); } /* =========================================================================== * Flush the current block, with given end-of-file flag. * IN assertion: strstart is set to the end of the current match. */ #define FLUSH_BLOCK_ONLY(s, last) { \ _tr_flush_block(s, (s->block_start >= 0L ? \ (charf *)&s->window[(unsigned)s->block_start] : \ (charf *)Z_NULL), \ (ulg)((long)s->strstart - s->block_start), \ (last)); \ s->block_start = s->strstart; \ flush_pending(s->strm); \ Tracev((stderr,"[FLUSH]")); \ } /* Same but force premature exit if necessary. */ #define FLUSH_BLOCK(s, last) { \ FLUSH_BLOCK_ONLY(s, last); \ if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \ } /* =========================================================================== * Copy without compression as much as possible from the input stream, return * the current block state. * This function does not insert new strings in the dictionary since * uncompressible data is probably not useful. This function is used * only for the level=0 compression option. * NOTE: this function should be optimized to avoid extra copying from * window to pending_buf. */ local block_state deflate_stored(s, flush) deflate_state *s; int flush; { /* Stored blocks are limited to 0xffff bytes, pending_buf is limited * to pending_buf_size, and each stored block has a 5 byte header: */ ulg max_block_size = 0xffff; ulg max_start; if (max_block_size > s->pending_buf_size - 5) { max_block_size = s->pending_buf_size - 5; } /* Copy as much as possible from input to output: */ for (;;) { /* Fill the window as much as possible: */ if (s->lookahead <= 1) { Assert(s->strstart < s->w_size+MAX_DIST(s) || s->block_start >= (long)s->w_size, "slide too late"); fill_window(s); if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more; if (s->lookahead == 0) break; /* flush the current block */ } Assert(s->block_start >= 0L, "block gone"); s->strstart += s->lookahead; s->lookahead = 0; /* Emit a stored block if pending_buf will be full: */ max_start = s->block_start + max_block_size; if (s->strstart == 0 || (ulg)s->strstart >= max_start) { /* strstart == 0 is possible when wraparound on 16-bit machine */ s->lookahead = (uInt)(s->strstart - max_start); s->strstart = (uInt)max_start; FLUSH_BLOCK(s, 0); } /* Flush if we may have to slide, otherwise block_start may become * negative and the data will be gone: */ if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) { FLUSH_BLOCK(s, 0); } } s->insert = 0; if (flush == Z_FINISH) { FLUSH_BLOCK(s, 1); return finish_done; } if ((long)s->strstart > s->block_start) FLUSH_BLOCK(s, 0); return block_done; } /* =========================================================================== * Compress as much as possible from the input stream, return the current * block state. * This function does not perform lazy evaluation of matches and inserts * new strings in the dictionary only for unmatched strings or for short * matches. It is used only for the fast compression options. */ local block_state deflate_fast(s, flush) deflate_state *s; int flush; { IPos hash_head; /* head of the hash chain */ int bflush; /* set if current block must be flushed */ for (;;) { /* Make sure that we always have enough lookahead, except * at the end of the input file. We need MAX_MATCH bytes * for the next match, plus MIN_MATCH bytes to insert the * string following the next match. */ if (s->lookahead < MIN_LOOKAHEAD) { fill_window(s); if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { return need_more; } if (s->lookahead == 0) break; /* flush the current block */ } /* Insert the string window[strstart .. strstart+2] in the * dictionary, and set hash_head to the head of the hash chain: */ hash_head = NIL; if (s->lookahead >= MIN_MATCH) { INSERT_STRING(s, s->strstart, hash_head); } /* Find the longest match, discarding those <= prev_length. * At this point we have always match_length < MIN_MATCH */ if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) { /* To simplify the code, we prevent matches with the string * of window index 0 (in particular we have to avoid a match * of the string with itself at the start of the input file). */ s->match_length = longest_match (s, hash_head); /* longest_match() sets match_start */ } if (s->match_length >= MIN_MATCH) { check_match(s, s->strstart, s->match_start, s->match_length); _tr_tally_dist(s, s->strstart - s->match_start, s->match_length - MIN_MATCH, bflush); s->lookahead -= s->match_length; /* Insert new strings in the hash table only if the match length * is not too large. This saves time but degrades compression. */ #ifndef FASTEST if (s->match_length <= s->max_insert_length && s->lookahead >= MIN_MATCH) { s->match_length--; /* string at strstart already in table */ do { s->strstart++; INSERT_STRING(s, s->strstart, hash_head); /* strstart never exceeds WSIZE-MAX_MATCH, so there are * always MIN_MATCH bytes ahead. */ } while (--s->match_length != 0); s->strstart++; } else #endif { s->strstart += s->match_length; s->match_length = 0; s->ins_h = s->window[s->strstart]; UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); #if MIN_MATCH != 3 Call UPDATE_HASH() MIN_MATCH-3 more times #endif /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not * matter since it will be recomputed at next deflate call. */ } } else { /* No match, output a literal byte */ Tracevv((stderr,"%c", s->window[s->strstart])); _tr_tally_lit (s, s->window[s->strstart], bflush); s->lookahead--; s->strstart++; } if (bflush) FLUSH_BLOCK(s, 0); } s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1; if (flush == Z_FINISH) { FLUSH_BLOCK(s, 1); return finish_done; } if (s->last_lit) FLUSH_BLOCK(s, 0); return block_done; } #ifndef FASTEST /* =========================================================================== * Same as above, but achieves better compression. We use a lazy * evaluation for matches: a match is finally adopted only if there is * no better match at the next window position. */ local block_state deflate_slow(s, flush) deflate_state *s; int flush; { IPos hash_head; /* head of hash chain */ int bflush; /* set if current block must be flushed */ /* Process the input block. */ for (;;) { /* Make sure that we always have enough lookahead, except * at the end of the input file. We need MAX_MATCH bytes * for the next match, plus MIN_MATCH bytes to insert the * string following the next match. */ if (s->lookahead < MIN_LOOKAHEAD) { fill_window(s); if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { return need_more; } if (s->lookahead == 0) break; /* flush the current block */ } /* Insert the string window[strstart .. strstart+2] in the * dictionary, and set hash_head to the head of the hash chain: */ hash_head = NIL; if (s->lookahead >= MIN_MATCH) { INSERT_STRING(s, s->strstart, hash_head); } /* Find the longest match, discarding those <= prev_length. */ s->prev_length = s->match_length, s->prev_match = s->match_start; s->match_length = MIN_MATCH-1; if (hash_head != NIL && s->prev_length < s->max_lazy_match && s->strstart - hash_head <= MAX_DIST(s)) { /* To simplify the code, we prevent matches with the string * of window index 0 (in particular we have to avoid a match * of the string with itself at the start of the input file). */ s->match_length = longest_match (s, hash_head); /* longest_match() sets match_start */ if (s->match_length <= 5 && (s->strategy == Z_FILTERED #if TOO_FAR <= 32767 || (s->match_length == MIN_MATCH && s->strstart - s->match_start > TOO_FAR) #endif )) { /* If prev_match is also MIN_MATCH, match_start is garbage * but we will ignore the current match anyway. */ s->match_length = MIN_MATCH-1; } } /* If there was a match at the previous step and the current * match is not better, output the previous match: */ if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) { uInt max_insert = s->strstart + s->lookahead - MIN_MATCH; /* Do not insert strings in hash table beyond this. */ check_match(s, s->strstart-1, s->prev_match, s->prev_length); _tr_tally_dist(s, s->strstart -1 - s->prev_match, s->prev_length - MIN_MATCH, bflush); /* Insert in hash table all strings up to the end of the match. * strstart-1 and strstart are already inserted. If there is not * enough lookahead, the last two strings are not inserted in * the hash table. */ s->lookahead -= s->prev_length-1; s->prev_length -= 2; do { if (++s->strstart <= max_insert) { INSERT_STRING(s, s->strstart, hash_head); } } while (--s->prev_length != 0); s->match_available = 0; s->match_length = MIN_MATCH-1; s->strstart++; if (bflush) FLUSH_BLOCK(s, 0); } else if (s->match_available) { /* If there was no match at the previous position, output a * single literal. If there was a match but the current match * is longer, truncate the previous match to a single literal. */ Tracevv((stderr,"%c", s->window[s->strstart-1])); _tr_tally_lit(s, s->window[s->strstart-1], bflush); if (bflush) { FLUSH_BLOCK_ONLY(s, 0); } s->strstart++; s->lookahead--; if (s->strm->avail_out == 0) return need_more; } else { /* There is no previous match to compare with, wait for * the next step to decide. */ s->match_available = 1; s->strstart++; s->lookahead--; } } Assert (flush != Z_NO_FLUSH, "no flush?"); if (s->match_available) { Tracevv((stderr,"%c", s->window[s->strstart-1])); _tr_tally_lit(s, s->window[s->strstart-1], bflush); s->match_available = 0; } s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1; if (flush == Z_FINISH) { FLUSH_BLOCK(s, 1); return finish_done; } if (s->last_lit) FLUSH_BLOCK(s, 0); return block_done; } #endif /* FASTEST */ /* =========================================================================== * For Z_RLE, simply look for runs of bytes, generate matches only of distance * one. Do not maintain a hash table. (It will be regenerated if this run of * deflate switches away from Z_RLE.) */ local block_state deflate_rle(s, flush) deflate_state *s; int flush; { int bflush; /* set if current block must be flushed */ uInt prev; /* byte at distance one to match */ Bytef *scan, *strend; /* scan goes up to strend for length of run */ for (;;) { /* Make sure that we always have enough lookahead, except * at the end of the input file. We need MAX_MATCH bytes * for the longest run, plus one for the unrolled loop. */ if (s->lookahead <= MAX_MATCH) { fill_window(s); if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) { return need_more; } if (s->lookahead == 0) break; /* flush the current block */ } /* See how many times the previous byte repeats */ s->match_length = 0; if (s->lookahead >= MIN_MATCH && s->strstart > 0) { scan = s->window + s->strstart - 1; prev = *scan; if (prev == *++scan && prev == *++scan && prev == *++scan) { strend = s->window + s->strstart + MAX_MATCH; do { } while (prev == *++scan && prev == *++scan && prev == *++scan && prev == *++scan && prev == *++scan && prev == *++scan && prev == *++scan && prev == *++scan && scan < strend); s->match_length = MAX_MATCH - (int)(strend - scan); if (s->match_length > s->lookahead) s->match_length = s->lookahead; } Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan"); } /* Emit match if have run of MIN_MATCH or longer, else emit literal */ if (s->match_length >= MIN_MATCH) { check_match(s, s->strstart, s->strstart - 1, s->match_length); _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush); s->lookahead -= s->match_length; s->strstart += s->match_length; s->match_length = 0; } else { /* No match, output a literal byte */ Tracevv((stderr,"%c", s->window[s->strstart])); _tr_tally_lit (s, s->window[s->strstart], bflush); s->lookahead--; s->strstart++; } if (bflush) FLUSH_BLOCK(s, 0); } s->insert = 0; if (flush == Z_FINISH) { FLUSH_BLOCK(s, 1); return finish_done; } if (s->last_lit) FLUSH_BLOCK(s, 0); return block_done; } /* =========================================================================== * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table. * (It will be regenerated if this run of deflate switches away from Huffman.) */ local block_state deflate_huff(s, flush) deflate_state *s; int flush; { int bflush; /* set if current block must be flushed */ for (;;) { /* Make sure that we have a literal to write. */ if (s->lookahead == 0) { fill_window(s); if (s->lookahead == 0) { if (flush == Z_NO_FLUSH) return need_more; break; /* flush the current block */ } } /* Output a literal byte */ s->match_length = 0; Tracevv((stderr,"%c", s->window[s->strstart])); _tr_tally_lit (s, s->window[s->strstart], bflush); s->lookahead--; s->strstart++; if (bflush) FLUSH_BLOCK(s, 0); } s->insert = 0; if (flush == Z_FINISH) { FLUSH_BLOCK(s, 1); return finish_done; } if (s->last_lit) FLUSH_BLOCK(s, 0); return block_done; } /* END OF DUMP OF mz_deflate.c*/ /* START OF DUMP OF mz_crc32.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* crc32.c -- compute the CRC-32 of a data stream * Copyright (C) 1995-2006, 2010, 2011, 2012 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h * * Thanks to Rodney Brown for his contribution of faster * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing * tables for updating the shift register in one step with three exclusive-ors * instead of four steps with four exclusive-ors. This results in about a * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3. */ /* @(#) $Id$ */ /* Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore protection on the static variables used to control the first-use generation of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should first call get_crc_table() to initialize the tables before allowing more than one thread to use crc32(). DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h. */ #ifdef MAKECRCH # include # ifndef DYNAMIC_CRC_TABLE # define DYNAMIC_CRC_TABLE # endif /* !DYNAMIC_CRC_TABLE */ #endif /* MAKECRCH */ #define local static /* Definitions for doing the crc four data bytes at a time. */ #if !defined(NOBYFOUR) && defined(Z_U4) # define BYFOUR #endif #ifdef BYFOUR local unsigned long crc32_little OF((unsigned long, const unsigned char FAR *, unsigned)); local unsigned long crc32_big OF((unsigned long, const unsigned char FAR *, unsigned)); # define TBLS 8 #else # define TBLS 1 #endif /* BYFOUR */ /* Local functions for crc concatenation */ local unsigned long gf2_matrix_times OF((unsigned long *mat, unsigned long vec)); local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat)); local uLong crc32_combine_ OF((uLong crc1, uLong crc2, z_off64_t len2)); #ifdef DYNAMIC_CRC_TABLE local volatile int crc_table_empty = 1; local z_crc_t FAR crc_table[TBLS][256]; local void make_crc_table OF((void)); #ifdef MAKECRCH local void write_table OF((FILE *, const z_crc_t FAR *)); #endif /* MAKECRCH */ /* Generate tables for a byte-wise 32-bit CRC calculation on the polynomial: x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1. Polynomials over GF(2) are represented in binary, one bit per coefficient, with the lowest powers in the most significant bit. Then adding polynomials is just exclusive-or, and multiplying a polynomial by x is a right shift by one. If we call the above polynomial p, and represent a byte as the polynomial q, also with the lowest power in the most significant bit (so the byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p, where a mod b means the remainder after dividing a by b. This calculation is done using the shift-register method of multiplying and taking the remainder. The register is initialized to zero, and for each incoming bit, x^32 is added mod p to the register if the bit is a one (where x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by x (which is shifting right by one and adding x^32 mod p if the bit shifted out is a one). We start with the highest power (least significant bit) of q and repeat for all eight bits of q. The first table is simply the CRC of all possible eight bit values. This is all the information needed to generate CRCs on data a byte at a time for all combinations of CRC register values and incoming bytes. The remaining tables allow for word-at-a-time CRC calculation for both big-endian and little- endian machines, where a word is four bytes. */ local void make_crc_table() { z_crc_t c; int n, k; z_crc_t poly; /* polynomial exclusive-or pattern */ /* terms of polynomial defining this crc (except x^32): */ static volatile int first = 1; /* flag to limit concurrent making */ static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26}; /* See if another task is already doing this (not thread-safe, but better than nothing -- significantly reduces duration of vulnerability in case the advice about DYNAMIC_CRC_TABLE is ignored) */ if (first) { first = 0; /* make exclusive-or pattern from polynomial (0xedb88320UL) */ poly = 0; for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++) poly |= (z_crc_t)1 << (31 - p[n]); /* generate a crc for every 8-bit value */ for (n = 0; n < 256; n++) { c = (z_crc_t)n; for (k = 0; k < 8; k++) c = c & 1 ? poly ^ (c >> 1) : c >> 1; crc_table[0][n] = c; } #ifdef BYFOUR /* generate crc for each value followed by one, two, and three zeros, and then the byte reversal of those as well as the first table */ for (n = 0; n < 256; n++) { c = crc_table[0][n]; crc_table[4][n] = ZSWAP32(c); for (k = 1; k < 4; k++) { c = crc_table[0][c & 0xff] ^ (c >> 8); crc_table[k][n] = c; crc_table[k + 4][n] = ZSWAP32(c); } } #endif /* BYFOUR */ crc_table_empty = 0; } else { /* not first */ /* wait for the other guy to finish (not efficient, but rare) */ while (crc_table_empty) ; } #ifdef MAKECRCH /* write out CRC tables to crc32.h */ { FILE *out; out = fopen("crc32.h", "w"); if (out == NULL) return; fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n"); fprintf(out, " * Generated automatically by crc32.c\n */\n\n"); fprintf(out, "local const z_crc_t FAR "); fprintf(out, "crc_table[TBLS][256] =\n{\n {\n"); write_table(out, crc_table[0]); # ifdef BYFOUR fprintf(out, "#ifdef BYFOUR\n"); for (k = 1; k < 8; k++) { fprintf(out, " },\n {\n"); write_table(out, crc_table[k]); } fprintf(out, "#endif\n"); # endif /* BYFOUR */ fprintf(out, " }\n};\n"); fclose(out); } #endif /* MAKECRCH */ } #ifdef MAKECRCH local void write_table(out, table) FILE *out; const z_crc_t FAR *table; { int n; for (n = 0; n < 256; n++) fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : " ", (unsigned long)(table[n]), n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", ")); } #endif /* MAKECRCH */ #else /* !DYNAMIC_CRC_TABLE */ /* ======================================================================== * Tables of CRC-32s of all single-byte values, made by make_crc_table(). */ /* START OF DUMP OF mz_crc32.h*/ /* crc32.h -- tables for rapid CRC calculation * Generated automatically by crc32.c */ local const z_crc_t FAR crc_table[TBLS][256] = { { 0x00000000UL, 0x77073096UL, 0xee0e612cUL, 0x990951baUL, 0x076dc419UL, 0x706af48fUL, 0xe963a535UL, 0x9e6495a3UL, 0x0edb8832UL, 0x79dcb8a4UL, 0xe0d5e91eUL, 0x97d2d988UL, 0x09b64c2bUL, 0x7eb17cbdUL, 0xe7b82d07UL, 0x90bf1d91UL, 0x1db71064UL, 0x6ab020f2UL, 0xf3b97148UL, 0x84be41deUL, 0x1adad47dUL, 0x6ddde4ebUL, 0xf4d4b551UL, 0x83d385c7UL, 0x136c9856UL, 0x646ba8c0UL, 0xfd62f97aUL, 0x8a65c9ecUL, 0x14015c4fUL, 0x63066cd9UL, 0xfa0f3d63UL, 0x8d080df5UL, 0x3b6e20c8UL, 0x4c69105eUL, 0xd56041e4UL, 0xa2677172UL, 0x3c03e4d1UL, 0x4b04d447UL, 0xd20d85fdUL, 0xa50ab56bUL, 0x35b5a8faUL, 0x42b2986cUL, 0xdbbbc9d6UL, 0xacbcf940UL, 0x32d86ce3UL, 0x45df5c75UL, 0xdcd60dcfUL, 0xabd13d59UL, 0x26d930acUL, 0x51de003aUL, 0xc8d75180UL, 0xbfd06116UL, 0x21b4f4b5UL, 0x56b3c423UL, 0xcfba9599UL, 0xb8bda50fUL, 0x2802b89eUL, 0x5f058808UL, 0xc60cd9b2UL, 0xb10be924UL, 0x2f6f7c87UL, 0x58684c11UL, 0xc1611dabUL, 0xb6662d3dUL, 0x76dc4190UL, 0x01db7106UL, 0x98d220bcUL, 0xefd5102aUL, 0x71b18589UL, 0x06b6b51fUL, 0x9fbfe4a5UL, 0xe8b8d433UL, 0x7807c9a2UL, 0x0f00f934UL, 0x9609a88eUL, 0xe10e9818UL, 0x7f6a0dbbUL, 0x086d3d2dUL, 0x91646c97UL, 0xe6635c01UL, 0x6b6b51f4UL, 0x1c6c6162UL, 0x856530d8UL, 0xf262004eUL, 0x6c0695edUL, 0x1b01a57bUL, 0x8208f4c1UL, 0xf50fc457UL, 0x65b0d9c6UL, 0x12b7e950UL, 0x8bbeb8eaUL, 0xfcb9887cUL, 0x62dd1ddfUL, 0x15da2d49UL, 0x8cd37cf3UL, 0xfbd44c65UL, 0x4db26158UL, 0x3ab551ceUL, 0xa3bc0074UL, 0xd4bb30e2UL, 0x4adfa541UL, 0x3dd895d7UL, 0xa4d1c46dUL, 0xd3d6f4fbUL, 0x4369e96aUL, 0x346ed9fcUL, 0xad678846UL, 0xda60b8d0UL, 0x44042d73UL, 0x33031de5UL, 0xaa0a4c5fUL, 0xdd0d7cc9UL, 0x5005713cUL, 0x270241aaUL, 0xbe0b1010UL, 0xc90c2086UL, 0x5768b525UL, 0x206f85b3UL, 0xb966d409UL, 0xce61e49fUL, 0x5edef90eUL, 0x29d9c998UL, 0xb0d09822UL, 0xc7d7a8b4UL, 0x59b33d17UL, 0x2eb40d81UL, 0xb7bd5c3bUL, 0xc0ba6cadUL, 0xedb88320UL, 0x9abfb3b6UL, 0x03b6e20cUL, 0x74b1d29aUL, 0xead54739UL, 0x9dd277afUL, 0x04db2615UL, 0x73dc1683UL, 0xe3630b12UL, 0x94643b84UL, 0x0d6d6a3eUL, 0x7a6a5aa8UL, 0xe40ecf0bUL, 0x9309ff9dUL, 0x0a00ae27UL, 0x7d079eb1UL, 0xf00f9344UL, 0x8708a3d2UL, 0x1e01f268UL, 0x6906c2feUL, 0xf762575dUL, 0x806567cbUL, 0x196c3671UL, 0x6e6b06e7UL, 0xfed41b76UL, 0x89d32be0UL, 0x10da7a5aUL, 0x67dd4accUL, 0xf9b9df6fUL, 0x8ebeeff9UL, 0x17b7be43UL, 0x60b08ed5UL, 0xd6d6a3e8UL, 0xa1d1937eUL, 0x38d8c2c4UL, 0x4fdff252UL, 0xd1bb67f1UL, 0xa6bc5767UL, 0x3fb506ddUL, 0x48b2364bUL, 0xd80d2bdaUL, 0xaf0a1b4cUL, 0x36034af6UL, 0x41047a60UL, 0xdf60efc3UL, 0xa867df55UL, 0x316e8eefUL, 0x4669be79UL, 0xcb61b38cUL, 0xbc66831aUL, 0x256fd2a0UL, 0x5268e236UL, 0xcc0c7795UL, 0xbb0b4703UL, 0x220216b9UL, 0x5505262fUL, 0xc5ba3bbeUL, 0xb2bd0b28UL, 0x2bb45a92UL, 0x5cb36a04UL, 0xc2d7ffa7UL, 0xb5d0cf31UL, 0x2cd99e8bUL, 0x5bdeae1dUL, 0x9b64c2b0UL, 0xec63f226UL, 0x756aa39cUL, 0x026d930aUL, 0x9c0906a9UL, 0xeb0e363fUL, 0x72076785UL, 0x05005713UL, 0x95bf4a82UL, 0xe2b87a14UL, 0x7bb12baeUL, 0x0cb61b38UL, 0x92d28e9bUL, 0xe5d5be0dUL, 0x7cdcefb7UL, 0x0bdbdf21UL, 0x86d3d2d4UL, 0xf1d4e242UL, 0x68ddb3f8UL, 0x1fda836eUL, 0x81be16cdUL, 0xf6b9265bUL, 0x6fb077e1UL, 0x18b74777UL, 0x88085ae6UL, 0xff0f6a70UL, 0x66063bcaUL, 0x11010b5cUL, 0x8f659effUL, 0xf862ae69UL, 0x616bffd3UL, 0x166ccf45UL, 0xa00ae278UL, 0xd70dd2eeUL, 0x4e048354UL, 0x3903b3c2UL, 0xa7672661UL, 0xd06016f7UL, 0x4969474dUL, 0x3e6e77dbUL, 0xaed16a4aUL, 0xd9d65adcUL, 0x40df0b66UL, 0x37d83bf0UL, 0xa9bcae53UL, 0xdebb9ec5UL, 0x47b2cf7fUL, 0x30b5ffe9UL, 0xbdbdf21cUL, 0xcabac28aUL, 0x53b39330UL, 0x24b4a3a6UL, 0xbad03605UL, 0xcdd70693UL, 0x54de5729UL, 0x23d967bfUL, 0xb3667a2eUL, 0xc4614ab8UL, 0x5d681b02UL, 0x2a6f2b94UL, 0xb40bbe37UL, 0xc30c8ea1UL, 0x5a05df1bUL, 0x2d02ef8dUL #ifdef BYFOUR }, { 0x00000000UL, 0x191b3141UL, 0x32366282UL, 0x2b2d53c3UL, 0x646cc504UL, 0x7d77f445UL, 0x565aa786UL, 0x4f4196c7UL, 0xc8d98a08UL, 0xd1c2bb49UL, 0xfaefe88aUL, 0xe3f4d9cbUL, 0xacb54f0cUL, 0xb5ae7e4dUL, 0x9e832d8eUL, 0x87981ccfUL, 0x4ac21251UL, 0x53d92310UL, 0x78f470d3UL, 0x61ef4192UL, 0x2eaed755UL, 0x37b5e614UL, 0x1c98b5d7UL, 0x05838496UL, 0x821b9859UL, 0x9b00a918UL, 0xb02dfadbUL, 0xa936cb9aUL, 0xe6775d5dUL, 0xff6c6c1cUL, 0xd4413fdfUL, 0xcd5a0e9eUL, 0x958424a2UL, 0x8c9f15e3UL, 0xa7b24620UL, 0xbea97761UL, 0xf1e8e1a6UL, 0xe8f3d0e7UL, 0xc3de8324UL, 0xdac5b265UL, 0x5d5daeaaUL, 0x44469febUL, 0x6f6bcc28UL, 0x7670fd69UL, 0x39316baeUL, 0x202a5aefUL, 0x0b07092cUL, 0x121c386dUL, 0xdf4636f3UL, 0xc65d07b2UL, 0xed705471UL, 0xf46b6530UL, 0xbb2af3f7UL, 0xa231c2b6UL, 0x891c9175UL, 0x9007a034UL, 0x179fbcfbUL, 0x0e848dbaUL, 0x25a9de79UL, 0x3cb2ef38UL, 0x73f379ffUL, 0x6ae848beUL, 0x41c51b7dUL, 0x58de2a3cUL, 0xf0794f05UL, 0xe9627e44UL, 0xc24f2d87UL, 0xdb541cc6UL, 0x94158a01UL, 0x8d0ebb40UL, 0xa623e883UL, 0xbf38d9c2UL, 0x38a0c50dUL, 0x21bbf44cUL, 0x0a96a78fUL, 0x138d96ceUL, 0x5ccc0009UL, 0x45d73148UL, 0x6efa628bUL, 0x77e153caUL, 0xbabb5d54UL, 0xa3a06c15UL, 0x888d3fd6UL, 0x91960e97UL, 0xded79850UL, 0xc7cca911UL, 0xece1fad2UL, 0xf5facb93UL, 0x7262d75cUL, 0x6b79e61dUL, 0x4054b5deUL, 0x594f849fUL, 0x160e1258UL, 0x0f152319UL, 0x243870daUL, 0x3d23419bUL, 0x65fd6ba7UL, 0x7ce65ae6UL, 0x57cb0925UL, 0x4ed03864UL, 0x0191aea3UL, 0x188a9fe2UL, 0x33a7cc21UL, 0x2abcfd60UL, 0xad24e1afUL, 0xb43fd0eeUL, 0x9f12832dUL, 0x8609b26cUL, 0xc94824abUL, 0xd05315eaUL, 0xfb7e4629UL, 0xe2657768UL, 0x2f3f79f6UL, 0x362448b7UL, 0x1d091b74UL, 0x04122a35UL, 0x4b53bcf2UL, 0x52488db3UL, 0x7965de70UL, 0x607eef31UL, 0xe7e6f3feUL, 0xfefdc2bfUL, 0xd5d0917cUL, 0xcccba03dUL, 0x838a36faUL, 0x9a9107bbUL, 0xb1bc5478UL, 0xa8a76539UL, 0x3b83984bUL, 0x2298a90aUL, 0x09b5fac9UL, 0x10aecb88UL, 0x5fef5d4fUL, 0x46f46c0eUL, 0x6dd93fcdUL, 0x74c20e8cUL, 0xf35a1243UL, 0xea412302UL, 0xc16c70c1UL, 0xd8774180UL, 0x9736d747UL, 0x8e2de606UL, 0xa500b5c5UL, 0xbc1b8484UL, 0x71418a1aUL, 0x685abb5bUL, 0x4377e898UL, 0x5a6cd9d9UL, 0x152d4f1eUL, 0x0c367e5fUL, 0x271b2d9cUL, 0x3e001cddUL, 0xb9980012UL, 0xa0833153UL, 0x8bae6290UL, 0x92b553d1UL, 0xddf4c516UL, 0xc4eff457UL, 0xefc2a794UL, 0xf6d996d5UL, 0xae07bce9UL, 0xb71c8da8UL, 0x9c31de6bUL, 0x852aef2aUL, 0xca6b79edUL, 0xd37048acUL, 0xf85d1b6fUL, 0xe1462a2eUL, 0x66de36e1UL, 0x7fc507a0UL, 0x54e85463UL, 0x4df36522UL, 0x02b2f3e5UL, 0x1ba9c2a4UL, 0x30849167UL, 0x299fa026UL, 0xe4c5aeb8UL, 0xfdde9ff9UL, 0xd6f3cc3aUL, 0xcfe8fd7bUL, 0x80a96bbcUL, 0x99b25afdUL, 0xb29f093eUL, 0xab84387fUL, 0x2c1c24b0UL, 0x350715f1UL, 0x1e2a4632UL, 0x07317773UL, 0x4870e1b4UL, 0x516bd0f5UL, 0x7a468336UL, 0x635db277UL, 0xcbfad74eUL, 0xd2e1e60fUL, 0xf9ccb5ccUL, 0xe0d7848dUL, 0xaf96124aUL, 0xb68d230bUL, 0x9da070c8UL, 0x84bb4189UL, 0x03235d46UL, 0x1a386c07UL, 0x31153fc4UL, 0x280e0e85UL, 0x674f9842UL, 0x7e54a903UL, 0x5579fac0UL, 0x4c62cb81UL, 0x8138c51fUL, 0x9823f45eUL, 0xb30ea79dUL, 0xaa1596dcUL, 0xe554001bUL, 0xfc4f315aUL, 0xd7626299UL, 0xce7953d8UL, 0x49e14f17UL, 0x50fa7e56UL, 0x7bd72d95UL, 0x62cc1cd4UL, 0x2d8d8a13UL, 0x3496bb52UL, 0x1fbbe891UL, 0x06a0d9d0UL, 0x5e7ef3ecUL, 0x4765c2adUL, 0x6c48916eUL, 0x7553a02fUL, 0x3a1236e8UL, 0x230907a9UL, 0x0824546aUL, 0x113f652bUL, 0x96a779e4UL, 0x8fbc48a5UL, 0xa4911b66UL, 0xbd8a2a27UL, 0xf2cbbce0UL, 0xebd08da1UL, 0xc0fdde62UL, 0xd9e6ef23UL, 0x14bce1bdUL, 0x0da7d0fcUL, 0x268a833fUL, 0x3f91b27eUL, 0x70d024b9UL, 0x69cb15f8UL, 0x42e6463bUL, 0x5bfd777aUL, 0xdc656bb5UL, 0xc57e5af4UL, 0xee530937UL, 0xf7483876UL, 0xb809aeb1UL, 0xa1129ff0UL, 0x8a3fcc33UL, 0x9324fd72UL }, { 0x00000000UL, 0x01c26a37UL, 0x0384d46eUL, 0x0246be59UL, 0x0709a8dcUL, 0x06cbc2ebUL, 0x048d7cb2UL, 0x054f1685UL, 0x0e1351b8UL, 0x0fd13b8fUL, 0x0d9785d6UL, 0x0c55efe1UL, 0x091af964UL, 0x08d89353UL, 0x0a9e2d0aUL, 0x0b5c473dUL, 0x1c26a370UL, 0x1de4c947UL, 0x1fa2771eUL, 0x1e601d29UL, 0x1b2f0bacUL, 0x1aed619bUL, 0x18abdfc2UL, 0x1969b5f5UL, 0x1235f2c8UL, 0x13f798ffUL, 0x11b126a6UL, 0x10734c91UL, 0x153c5a14UL, 0x14fe3023UL, 0x16b88e7aUL, 0x177ae44dUL, 0x384d46e0UL, 0x398f2cd7UL, 0x3bc9928eUL, 0x3a0bf8b9UL, 0x3f44ee3cUL, 0x3e86840bUL, 0x3cc03a52UL, 0x3d025065UL, 0x365e1758UL, 0x379c7d6fUL, 0x35dac336UL, 0x3418a901UL, 0x3157bf84UL, 0x3095d5b3UL, 0x32d36beaUL, 0x331101ddUL, 0x246be590UL, 0x25a98fa7UL, 0x27ef31feUL, 0x262d5bc9UL, 0x23624d4cUL, 0x22a0277bUL, 0x20e69922UL, 0x2124f315UL, 0x2a78b428UL, 0x2bbade1fUL, 0x29fc6046UL, 0x283e0a71UL, 0x2d711cf4UL, 0x2cb376c3UL, 0x2ef5c89aUL, 0x2f37a2adUL, 0x709a8dc0UL, 0x7158e7f7UL, 0x731e59aeUL, 0x72dc3399UL, 0x7793251cUL, 0x76514f2bUL, 0x7417f172UL, 0x75d59b45UL, 0x7e89dc78UL, 0x7f4bb64fUL, 0x7d0d0816UL, 0x7ccf6221UL, 0x798074a4UL, 0x78421e93UL, 0x7a04a0caUL, 0x7bc6cafdUL, 0x6cbc2eb0UL, 0x6d7e4487UL, 0x6f38fadeUL, 0x6efa90e9UL, 0x6bb5866cUL, 0x6a77ec5bUL, 0x68315202UL, 0x69f33835UL, 0x62af7f08UL, 0x636d153fUL, 0x612bab66UL, 0x60e9c151UL, 0x65a6d7d4UL, 0x6464bde3UL, 0x662203baUL, 0x67e0698dUL, 0x48d7cb20UL, 0x4915a117UL, 0x4b531f4eUL, 0x4a917579UL, 0x4fde63fcUL, 0x4e1c09cbUL, 0x4c5ab792UL, 0x4d98dda5UL, 0x46c49a98UL, 0x4706f0afUL, 0x45404ef6UL, 0x448224c1UL, 0x41cd3244UL, 0x400f5873UL, 0x4249e62aUL, 0x438b8c1dUL, 0x54f16850UL, 0x55330267UL, 0x5775bc3eUL, 0x56b7d609UL, 0x53f8c08cUL, 0x523aaabbUL, 0x507c14e2UL, 0x51be7ed5UL, 0x5ae239e8UL, 0x5b2053dfUL, 0x5966ed86UL, 0x58a487b1UL, 0x5deb9134UL, 0x5c29fb03UL, 0x5e6f455aUL, 0x5fad2f6dUL, 0xe1351b80UL, 0xe0f771b7UL, 0xe2b1cfeeUL, 0xe373a5d9UL, 0xe63cb35cUL, 0xe7fed96bUL, 0xe5b86732UL, 0xe47a0d05UL, 0xef264a38UL, 0xeee4200fUL, 0xeca29e56UL, 0xed60f461UL, 0xe82fe2e4UL, 0xe9ed88d3UL, 0xebab368aUL, 0xea695cbdUL, 0xfd13b8f0UL, 0xfcd1d2c7UL, 0xfe976c9eUL, 0xff5506a9UL, 0xfa1a102cUL, 0xfbd87a1bUL, 0xf99ec442UL, 0xf85cae75UL, 0xf300e948UL, 0xf2c2837fUL, 0xf0843d26UL, 0xf1465711UL, 0xf4094194UL, 0xf5cb2ba3UL, 0xf78d95faUL, 0xf64fffcdUL, 0xd9785d60UL, 0xd8ba3757UL, 0xdafc890eUL, 0xdb3ee339UL, 0xde71f5bcUL, 0xdfb39f8bUL, 0xddf521d2UL, 0xdc374be5UL, 0xd76b0cd8UL, 0xd6a966efUL, 0xd4efd8b6UL, 0xd52db281UL, 0xd062a404UL, 0xd1a0ce33UL, 0xd3e6706aUL, 0xd2241a5dUL, 0xc55efe10UL, 0xc49c9427UL, 0xc6da2a7eUL, 0xc7184049UL, 0xc25756ccUL, 0xc3953cfbUL, 0xc1d382a2UL, 0xc011e895UL, 0xcb4dafa8UL, 0xca8fc59fUL, 0xc8c97bc6UL, 0xc90b11f1UL, 0xcc440774UL, 0xcd866d43UL, 0xcfc0d31aUL, 0xce02b92dUL, 0x91af9640UL, 0x906dfc77UL, 0x922b422eUL, 0x93e92819UL, 0x96a63e9cUL, 0x976454abUL, 0x9522eaf2UL, 0x94e080c5UL, 0x9fbcc7f8UL, 0x9e7eadcfUL, 0x9c381396UL, 0x9dfa79a1UL, 0x98b56f24UL, 0x99770513UL, 0x9b31bb4aUL, 0x9af3d17dUL, 0x8d893530UL, 0x8c4b5f07UL, 0x8e0de15eUL, 0x8fcf8b69UL, 0x8a809decUL, 0x8b42f7dbUL, 0x89044982UL, 0x88c623b5UL, 0x839a6488UL, 0x82580ebfUL, 0x801eb0e6UL, 0x81dcdad1UL, 0x8493cc54UL, 0x8551a663UL, 0x8717183aUL, 0x86d5720dUL, 0xa9e2d0a0UL, 0xa820ba97UL, 0xaa6604ceUL, 0xaba46ef9UL, 0xaeeb787cUL, 0xaf29124bUL, 0xad6fac12UL, 0xacadc625UL, 0xa7f18118UL, 0xa633eb2fUL, 0xa4755576UL, 0xa5b73f41UL, 0xa0f829c4UL, 0xa13a43f3UL, 0xa37cfdaaUL, 0xa2be979dUL, 0xb5c473d0UL, 0xb40619e7UL, 0xb640a7beUL, 0xb782cd89UL, 0xb2cddb0cUL, 0xb30fb13bUL, 0xb1490f62UL, 0xb08b6555UL, 0xbbd72268UL, 0xba15485fUL, 0xb853f606UL, 0xb9919c31UL, 0xbcde8ab4UL, 0xbd1ce083UL, 0xbf5a5edaUL, 0xbe9834edUL }, { 0x00000000UL, 0xb8bc6765UL, 0xaa09c88bUL, 0x12b5afeeUL, 0x8f629757UL, 0x37def032UL, 0x256b5fdcUL, 0x9dd738b9UL, 0xc5b428efUL, 0x7d084f8aUL, 0x6fbde064UL, 0xd7018701UL, 0x4ad6bfb8UL, 0xf26ad8ddUL, 0xe0df7733UL, 0x58631056UL, 0x5019579fUL, 0xe8a530faUL, 0xfa109f14UL, 0x42acf871UL, 0xdf7bc0c8UL, 0x67c7a7adUL, 0x75720843UL, 0xcdce6f26UL, 0x95ad7f70UL, 0x2d111815UL, 0x3fa4b7fbUL, 0x8718d09eUL, 0x1acfe827UL, 0xa2738f42UL, 0xb0c620acUL, 0x087a47c9UL, 0xa032af3eUL, 0x188ec85bUL, 0x0a3b67b5UL, 0xb28700d0UL, 0x2f503869UL, 0x97ec5f0cUL, 0x8559f0e2UL, 0x3de59787UL, 0x658687d1UL, 0xdd3ae0b4UL, 0xcf8f4f5aUL, 0x7733283fUL, 0xeae41086UL, 0x525877e3UL, 0x40edd80dUL, 0xf851bf68UL, 0xf02bf8a1UL, 0x48979fc4UL, 0x5a22302aUL, 0xe29e574fUL, 0x7f496ff6UL, 0xc7f50893UL, 0xd540a77dUL, 0x6dfcc018UL, 0x359fd04eUL, 0x8d23b72bUL, 0x9f9618c5UL, 0x272a7fa0UL, 0xbafd4719UL, 0x0241207cUL, 0x10f48f92UL, 0xa848e8f7UL, 0x9b14583dUL, 0x23a83f58UL, 0x311d90b6UL, 0x89a1f7d3UL, 0x1476cf6aUL, 0xaccaa80fUL, 0xbe7f07e1UL, 0x06c36084UL, 0x5ea070d2UL, 0xe61c17b7UL, 0xf4a9b859UL, 0x4c15df3cUL, 0xd1c2e785UL, 0x697e80e0UL, 0x7bcb2f0eUL, 0xc377486bUL, 0xcb0d0fa2UL, 0x73b168c7UL, 0x6104c729UL, 0xd9b8a04cUL, 0x446f98f5UL, 0xfcd3ff90UL, 0xee66507eUL, 0x56da371bUL, 0x0eb9274dUL, 0xb6054028UL, 0xa4b0efc6UL, 0x1c0c88a3UL, 0x81dbb01aUL, 0x3967d77fUL, 0x2bd27891UL, 0x936e1ff4UL, 0x3b26f703UL, 0x839a9066UL, 0x912f3f88UL, 0x299358edUL, 0xb4446054UL, 0x0cf80731UL, 0x1e4da8dfUL, 0xa6f1cfbaUL, 0xfe92dfecUL, 0x462eb889UL, 0x549b1767UL, 0xec277002UL, 0x71f048bbUL, 0xc94c2fdeUL, 0xdbf98030UL, 0x6345e755UL, 0x6b3fa09cUL, 0xd383c7f9UL, 0xc1366817UL, 0x798a0f72UL, 0xe45d37cbUL, 0x5ce150aeUL, 0x4e54ff40UL, 0xf6e89825UL, 0xae8b8873UL, 0x1637ef16UL, 0x048240f8UL, 0xbc3e279dUL, 0x21e91f24UL, 0x99557841UL, 0x8be0d7afUL, 0x335cb0caUL, 0xed59b63bUL, 0x55e5d15eUL, 0x47507eb0UL, 0xffec19d5UL, 0x623b216cUL, 0xda874609UL, 0xc832e9e7UL, 0x708e8e82UL, 0x28ed9ed4UL, 0x9051f9b1UL, 0x82e4565fUL, 0x3a58313aUL, 0xa78f0983UL, 0x1f336ee6UL, 0x0d86c108UL, 0xb53aa66dUL, 0xbd40e1a4UL, 0x05fc86c1UL, 0x1749292fUL, 0xaff54e4aUL, 0x322276f3UL, 0x8a9e1196UL, 0x982bbe78UL, 0x2097d91dUL, 0x78f4c94bUL, 0xc048ae2eUL, 0xd2fd01c0UL, 0x6a4166a5UL, 0xf7965e1cUL, 0x4f2a3979UL, 0x5d9f9697UL, 0xe523f1f2UL, 0x4d6b1905UL, 0xf5d77e60UL, 0xe762d18eUL, 0x5fdeb6ebUL, 0xc2098e52UL, 0x7ab5e937UL, 0x680046d9UL, 0xd0bc21bcUL, 0x88df31eaUL, 0x3063568fUL, 0x22d6f961UL, 0x9a6a9e04UL, 0x07bda6bdUL, 0xbf01c1d8UL, 0xadb46e36UL, 0x15080953UL, 0x1d724e9aUL, 0xa5ce29ffUL, 0xb77b8611UL, 0x0fc7e174UL, 0x9210d9cdUL, 0x2aacbea8UL, 0x38191146UL, 0x80a57623UL, 0xd8c66675UL, 0x607a0110UL, 0x72cfaefeUL, 0xca73c99bUL, 0x57a4f122UL, 0xef189647UL, 0xfdad39a9UL, 0x45115eccUL, 0x764dee06UL, 0xcef18963UL, 0xdc44268dUL, 0x64f841e8UL, 0xf92f7951UL, 0x41931e34UL, 0x5326b1daUL, 0xeb9ad6bfUL, 0xb3f9c6e9UL, 0x0b45a18cUL, 0x19f00e62UL, 0xa14c6907UL, 0x3c9b51beUL, 0x842736dbUL, 0x96929935UL, 0x2e2efe50UL, 0x2654b999UL, 0x9ee8defcUL, 0x8c5d7112UL, 0x34e11677UL, 0xa9362eceUL, 0x118a49abUL, 0x033fe645UL, 0xbb838120UL, 0xe3e09176UL, 0x5b5cf613UL, 0x49e959fdUL, 0xf1553e98UL, 0x6c820621UL, 0xd43e6144UL, 0xc68bceaaUL, 0x7e37a9cfUL, 0xd67f4138UL, 0x6ec3265dUL, 0x7c7689b3UL, 0xc4caeed6UL, 0x591dd66fUL, 0xe1a1b10aUL, 0xf3141ee4UL, 0x4ba87981UL, 0x13cb69d7UL, 0xab770eb2UL, 0xb9c2a15cUL, 0x017ec639UL, 0x9ca9fe80UL, 0x241599e5UL, 0x36a0360bUL, 0x8e1c516eUL, 0x866616a7UL, 0x3eda71c2UL, 0x2c6fde2cUL, 0x94d3b949UL, 0x090481f0UL, 0xb1b8e695UL, 0xa30d497bUL, 0x1bb12e1eUL, 0x43d23e48UL, 0xfb6e592dUL, 0xe9dbf6c3UL, 0x516791a6UL, 0xccb0a91fUL, 0x740cce7aUL, 0x66b96194UL, 0xde0506f1UL }, { 0x00000000UL, 0x96300777UL, 0x2c610eeeUL, 0xba510999UL, 0x19c46d07UL, 0x8ff46a70UL, 0x35a563e9UL, 0xa395649eUL, 0x3288db0eUL, 0xa4b8dc79UL, 0x1ee9d5e0UL, 0x88d9d297UL, 0x2b4cb609UL, 0xbd7cb17eUL, 0x072db8e7UL, 0x911dbf90UL, 0x6410b71dUL, 0xf220b06aUL, 0x4871b9f3UL, 0xde41be84UL, 0x7dd4da1aUL, 0xebe4dd6dUL, 0x51b5d4f4UL, 0xc785d383UL, 0x56986c13UL, 0xc0a86b64UL, 0x7af962fdUL, 0xecc9658aUL, 0x4f5c0114UL, 0xd96c0663UL, 0x633d0ffaUL, 0xf50d088dUL, 0xc8206e3bUL, 0x5e10694cUL, 0xe44160d5UL, 0x727167a2UL, 0xd1e4033cUL, 0x47d4044bUL, 0xfd850dd2UL, 0x6bb50aa5UL, 0xfaa8b535UL, 0x6c98b242UL, 0xd6c9bbdbUL, 0x40f9bcacUL, 0xe36cd832UL, 0x755cdf45UL, 0xcf0dd6dcUL, 0x593dd1abUL, 0xac30d926UL, 0x3a00de51UL, 0x8051d7c8UL, 0x1661d0bfUL, 0xb5f4b421UL, 0x23c4b356UL, 0x9995bacfUL, 0x0fa5bdb8UL, 0x9eb80228UL, 0x0888055fUL, 0xb2d90cc6UL, 0x24e90bb1UL, 0x877c6f2fUL, 0x114c6858UL, 0xab1d61c1UL, 0x3d2d66b6UL, 0x9041dc76UL, 0x0671db01UL, 0xbc20d298UL, 0x2a10d5efUL, 0x8985b171UL, 0x1fb5b606UL, 0xa5e4bf9fUL, 0x33d4b8e8UL, 0xa2c90778UL, 0x34f9000fUL, 0x8ea80996UL, 0x18980ee1UL, 0xbb0d6a7fUL, 0x2d3d6d08UL, 0x976c6491UL, 0x015c63e6UL, 0xf4516b6bUL, 0x62616c1cUL, 0xd8306585UL, 0x4e0062f2UL, 0xed95066cUL, 0x7ba5011bUL, 0xc1f40882UL, 0x57c40ff5UL, 0xc6d9b065UL, 0x50e9b712UL, 0xeab8be8bUL, 0x7c88b9fcUL, 0xdf1ddd62UL, 0x492dda15UL, 0xf37cd38cUL, 0x654cd4fbUL, 0x5861b24dUL, 0xce51b53aUL, 0x7400bca3UL, 0xe230bbd4UL, 0x41a5df4aUL, 0xd795d83dUL, 0x6dc4d1a4UL, 0xfbf4d6d3UL, 0x6ae96943UL, 0xfcd96e34UL, 0x468867adUL, 0xd0b860daUL, 0x732d0444UL, 0xe51d0333UL, 0x5f4c0aaaUL, 0xc97c0dddUL, 0x3c710550UL, 0xaa410227UL, 0x10100bbeUL, 0x86200cc9UL, 0x25b56857UL, 0xb3856f20UL, 0x09d466b9UL, 0x9fe461ceUL, 0x0ef9de5eUL, 0x98c9d929UL, 0x2298d0b0UL, 0xb4a8d7c7UL, 0x173db359UL, 0x810db42eUL, 0x3b5cbdb7UL, 0xad6cbac0UL, 0x2083b8edUL, 0xb6b3bf9aUL, 0x0ce2b603UL, 0x9ad2b174UL, 0x3947d5eaUL, 0xaf77d29dUL, 0x1526db04UL, 0x8316dc73UL, 0x120b63e3UL, 0x843b6494UL, 0x3e6a6d0dUL, 0xa85a6a7aUL, 0x0bcf0ee4UL, 0x9dff0993UL, 0x27ae000aUL, 0xb19e077dUL, 0x44930ff0UL, 0xd2a30887UL, 0x68f2011eUL, 0xfec20669UL, 0x5d5762f7UL, 0xcb676580UL, 0x71366c19UL, 0xe7066b6eUL, 0x761bd4feUL, 0xe02bd389UL, 0x5a7ada10UL, 0xcc4add67UL, 0x6fdfb9f9UL, 0xf9efbe8eUL, 0x43beb717UL, 0xd58eb060UL, 0xe8a3d6d6UL, 0x7e93d1a1UL, 0xc4c2d838UL, 0x52f2df4fUL, 0xf167bbd1UL, 0x6757bca6UL, 0xdd06b53fUL, 0x4b36b248UL, 0xda2b0dd8UL, 0x4c1b0aafUL, 0xf64a0336UL, 0x607a0441UL, 0xc3ef60dfUL, 0x55df67a8UL, 0xef8e6e31UL, 0x79be6946UL, 0x8cb361cbUL, 0x1a8366bcUL, 0xa0d26f25UL, 0x36e26852UL, 0x95770cccUL, 0x03470bbbUL, 0xb9160222UL, 0x2f260555UL, 0xbe3bbac5UL, 0x280bbdb2UL, 0x925ab42bUL, 0x046ab35cUL, 0xa7ffd7c2UL, 0x31cfd0b5UL, 0x8b9ed92cUL, 0x1daede5bUL, 0xb0c2649bUL, 0x26f263ecUL, 0x9ca36a75UL, 0x0a936d02UL, 0xa906099cUL, 0x3f360eebUL, 0x85670772UL, 0x13570005UL, 0x824abf95UL, 0x147ab8e2UL, 0xae2bb17bUL, 0x381bb60cUL, 0x9b8ed292UL, 0x0dbed5e5UL, 0xb7efdc7cUL, 0x21dfdb0bUL, 0xd4d2d386UL, 0x42e2d4f1UL, 0xf8b3dd68UL, 0x6e83da1fUL, 0xcd16be81UL, 0x5b26b9f6UL, 0xe177b06fUL, 0x7747b718UL, 0xe65a0888UL, 0x706a0fffUL, 0xca3b0666UL, 0x5c0b0111UL, 0xff9e658fUL, 0x69ae62f8UL, 0xd3ff6b61UL, 0x45cf6c16UL, 0x78e20aa0UL, 0xeed20dd7UL, 0x5483044eUL, 0xc2b30339UL, 0x612667a7UL, 0xf71660d0UL, 0x4d476949UL, 0xdb776e3eUL, 0x4a6ad1aeUL, 0xdc5ad6d9UL, 0x660bdf40UL, 0xf03bd837UL, 0x53aebca9UL, 0xc59ebbdeUL, 0x7fcfb247UL, 0xe9ffb530UL, 0x1cf2bdbdUL, 0x8ac2bacaUL, 0x3093b353UL, 0xa6a3b424UL, 0x0536d0baUL, 0x9306d7cdUL, 0x2957de54UL, 0xbf67d923UL, 0x2e7a66b3UL, 0xb84a61c4UL, 0x021b685dUL, 0x942b6f2aUL, 0x37be0bb4UL, 0xa18e0cc3UL, 0x1bdf055aUL, 0x8def022dUL }, { 0x00000000UL, 0x41311b19UL, 0x82623632UL, 0xc3532d2bUL, 0x04c56c64UL, 0x45f4777dUL, 0x86a75a56UL, 0xc796414fUL, 0x088ad9c8UL, 0x49bbc2d1UL, 0x8ae8effaUL, 0xcbd9f4e3UL, 0x0c4fb5acUL, 0x4d7eaeb5UL, 0x8e2d839eUL, 0xcf1c9887UL, 0x5112c24aUL, 0x1023d953UL, 0xd370f478UL, 0x9241ef61UL, 0x55d7ae2eUL, 0x14e6b537UL, 0xd7b5981cUL, 0x96848305UL, 0x59981b82UL, 0x18a9009bUL, 0xdbfa2db0UL, 0x9acb36a9UL, 0x5d5d77e6UL, 0x1c6c6cffUL, 0xdf3f41d4UL, 0x9e0e5acdUL, 0xa2248495UL, 0xe3159f8cUL, 0x2046b2a7UL, 0x6177a9beUL, 0xa6e1e8f1UL, 0xe7d0f3e8UL, 0x2483dec3UL, 0x65b2c5daUL, 0xaaae5d5dUL, 0xeb9f4644UL, 0x28cc6b6fUL, 0x69fd7076UL, 0xae6b3139UL, 0xef5a2a20UL, 0x2c09070bUL, 0x6d381c12UL, 0xf33646dfUL, 0xb2075dc6UL, 0x715470edUL, 0x30656bf4UL, 0xf7f32abbUL, 0xb6c231a2UL, 0x75911c89UL, 0x34a00790UL, 0xfbbc9f17UL, 0xba8d840eUL, 0x79dea925UL, 0x38efb23cUL, 0xff79f373UL, 0xbe48e86aUL, 0x7d1bc541UL, 0x3c2ade58UL, 0x054f79f0UL, 0x447e62e9UL, 0x872d4fc2UL, 0xc61c54dbUL, 0x018a1594UL, 0x40bb0e8dUL, 0x83e823a6UL, 0xc2d938bfUL, 0x0dc5a038UL, 0x4cf4bb21UL, 0x8fa7960aUL, 0xce968d13UL, 0x0900cc5cUL, 0x4831d745UL, 0x8b62fa6eUL, 0xca53e177UL, 0x545dbbbaUL, 0x156ca0a3UL, 0xd63f8d88UL, 0x970e9691UL, 0x5098d7deUL, 0x11a9ccc7UL, 0xd2fae1ecUL, 0x93cbfaf5UL, 0x5cd76272UL, 0x1de6796bUL, 0xdeb55440UL, 0x9f844f59UL, 0x58120e16UL, 0x1923150fUL, 0xda703824UL, 0x9b41233dUL, 0xa76bfd65UL, 0xe65ae67cUL, 0x2509cb57UL, 0x6438d04eUL, 0xa3ae9101UL, 0xe29f8a18UL, 0x21cca733UL, 0x60fdbc2aUL, 0xafe124adUL, 0xeed03fb4UL, 0x2d83129fUL, 0x6cb20986UL, 0xab2448c9UL, 0xea1553d0UL, 0x29467efbUL, 0x687765e2UL, 0xf6793f2fUL, 0xb7482436UL, 0x741b091dUL, 0x352a1204UL, 0xf2bc534bUL, 0xb38d4852UL, 0x70de6579UL, 0x31ef7e60UL, 0xfef3e6e7UL, 0xbfc2fdfeUL, 0x7c91d0d5UL, 0x3da0cbccUL, 0xfa368a83UL, 0xbb07919aUL, 0x7854bcb1UL, 0x3965a7a8UL, 0x4b98833bUL, 0x0aa99822UL, 0xc9fab509UL, 0x88cbae10UL, 0x4f5def5fUL, 0x0e6cf446UL, 0xcd3fd96dUL, 0x8c0ec274UL, 0x43125af3UL, 0x022341eaUL, 0xc1706cc1UL, 0x804177d8UL, 0x47d73697UL, 0x06e62d8eUL, 0xc5b500a5UL, 0x84841bbcUL, 0x1a8a4171UL, 0x5bbb5a68UL, 0x98e87743UL, 0xd9d96c5aUL, 0x1e4f2d15UL, 0x5f7e360cUL, 0x9c2d1b27UL, 0xdd1c003eUL, 0x120098b9UL, 0x533183a0UL, 0x9062ae8bUL, 0xd153b592UL, 0x16c5f4ddUL, 0x57f4efc4UL, 0x94a7c2efUL, 0xd596d9f6UL, 0xe9bc07aeUL, 0xa88d1cb7UL, 0x6bde319cUL, 0x2aef2a85UL, 0xed796bcaUL, 0xac4870d3UL, 0x6f1b5df8UL, 0x2e2a46e1UL, 0xe136de66UL, 0xa007c57fUL, 0x6354e854UL, 0x2265f34dUL, 0xe5f3b202UL, 0xa4c2a91bUL, 0x67918430UL, 0x26a09f29UL, 0xb8aec5e4UL, 0xf99fdefdUL, 0x3accf3d6UL, 0x7bfde8cfUL, 0xbc6ba980UL, 0xfd5ab299UL, 0x3e099fb2UL, 0x7f3884abUL, 0xb0241c2cUL, 0xf1150735UL, 0x32462a1eUL, 0x73773107UL, 0xb4e17048UL, 0xf5d06b51UL, 0x3683467aUL, 0x77b25d63UL, 0x4ed7facbUL, 0x0fe6e1d2UL, 0xccb5ccf9UL, 0x8d84d7e0UL, 0x4a1296afUL, 0x0b238db6UL, 0xc870a09dUL, 0x8941bb84UL, 0x465d2303UL, 0x076c381aUL, 0xc43f1531UL, 0x850e0e28UL, 0x42984f67UL, 0x03a9547eUL, 0xc0fa7955UL, 0x81cb624cUL, 0x1fc53881UL, 0x5ef42398UL, 0x9da70eb3UL, 0xdc9615aaUL, 0x1b0054e5UL, 0x5a314ffcUL, 0x996262d7UL, 0xd85379ceUL, 0x174fe149UL, 0x567efa50UL, 0x952dd77bUL, 0xd41ccc62UL, 0x138a8d2dUL, 0x52bb9634UL, 0x91e8bb1fUL, 0xd0d9a006UL, 0xecf37e5eUL, 0xadc26547UL, 0x6e91486cUL, 0x2fa05375UL, 0xe836123aUL, 0xa9070923UL, 0x6a542408UL, 0x2b653f11UL, 0xe479a796UL, 0xa548bc8fUL, 0x661b91a4UL, 0x272a8abdUL, 0xe0bccbf2UL, 0xa18dd0ebUL, 0x62defdc0UL, 0x23efe6d9UL, 0xbde1bc14UL, 0xfcd0a70dUL, 0x3f838a26UL, 0x7eb2913fUL, 0xb924d070UL, 0xf815cb69UL, 0x3b46e642UL, 0x7a77fd5bUL, 0xb56b65dcUL, 0xf45a7ec5UL, 0x370953eeUL, 0x763848f7UL, 0xb1ae09b8UL, 0xf09f12a1UL, 0x33cc3f8aUL, 0x72fd2493UL }, { 0x00000000UL, 0x376ac201UL, 0x6ed48403UL, 0x59be4602UL, 0xdca80907UL, 0xebc2cb06UL, 0xb27c8d04UL, 0x85164f05UL, 0xb851130eUL, 0x8f3bd10fUL, 0xd685970dUL, 0xe1ef550cUL, 0x64f91a09UL, 0x5393d808UL, 0x0a2d9e0aUL, 0x3d475c0bUL, 0x70a3261cUL, 0x47c9e41dUL, 0x1e77a21fUL, 0x291d601eUL, 0xac0b2f1bUL, 0x9b61ed1aUL, 0xc2dfab18UL, 0xf5b56919UL, 0xc8f23512UL, 0xff98f713UL, 0xa626b111UL, 0x914c7310UL, 0x145a3c15UL, 0x2330fe14UL, 0x7a8eb816UL, 0x4de47a17UL, 0xe0464d38UL, 0xd72c8f39UL, 0x8e92c93bUL, 0xb9f80b3aUL, 0x3cee443fUL, 0x0b84863eUL, 0x523ac03cUL, 0x6550023dUL, 0x58175e36UL, 0x6f7d9c37UL, 0x36c3da35UL, 0x01a91834UL, 0x84bf5731UL, 0xb3d59530UL, 0xea6bd332UL, 0xdd011133UL, 0x90e56b24UL, 0xa78fa925UL, 0xfe31ef27UL, 0xc95b2d26UL, 0x4c4d6223UL, 0x7b27a022UL, 0x2299e620UL, 0x15f32421UL, 0x28b4782aUL, 0x1fdeba2bUL, 0x4660fc29UL, 0x710a3e28UL, 0xf41c712dUL, 0xc376b32cUL, 0x9ac8f52eUL, 0xada2372fUL, 0xc08d9a70UL, 0xf7e75871UL, 0xae591e73UL, 0x9933dc72UL, 0x1c259377UL, 0x2b4f5176UL, 0x72f11774UL, 0x459bd575UL, 0x78dc897eUL, 0x4fb64b7fUL, 0x16080d7dUL, 0x2162cf7cUL, 0xa4748079UL, 0x931e4278UL, 0xcaa0047aUL, 0xfdcac67bUL, 0xb02ebc6cUL, 0x87447e6dUL, 0xdefa386fUL, 0xe990fa6eUL, 0x6c86b56bUL, 0x5bec776aUL, 0x02523168UL, 0x3538f369UL, 0x087faf62UL, 0x3f156d63UL, 0x66ab2b61UL, 0x51c1e960UL, 0xd4d7a665UL, 0xe3bd6464UL, 0xba032266UL, 0x8d69e067UL, 0x20cbd748UL, 0x17a11549UL, 0x4e1f534bUL, 0x7975914aUL, 0xfc63de4fUL, 0xcb091c4eUL, 0x92b75a4cUL, 0xa5dd984dUL, 0x989ac446UL, 0xaff00647UL, 0xf64e4045UL, 0xc1248244UL, 0x4432cd41UL, 0x73580f40UL, 0x2ae64942UL, 0x1d8c8b43UL, 0x5068f154UL, 0x67023355UL, 0x3ebc7557UL, 0x09d6b756UL, 0x8cc0f853UL, 0xbbaa3a52UL, 0xe2147c50UL, 0xd57ebe51UL, 0xe839e25aUL, 0xdf53205bUL, 0x86ed6659UL, 0xb187a458UL, 0x3491eb5dUL, 0x03fb295cUL, 0x5a456f5eUL, 0x6d2fad5fUL, 0x801b35e1UL, 0xb771f7e0UL, 0xeecfb1e2UL, 0xd9a573e3UL, 0x5cb33ce6UL, 0x6bd9fee7UL, 0x3267b8e5UL, 0x050d7ae4UL, 0x384a26efUL, 0x0f20e4eeUL, 0x569ea2ecUL, 0x61f460edUL, 0xe4e22fe8UL, 0xd388ede9UL, 0x8a36abebUL, 0xbd5c69eaUL, 0xf0b813fdUL, 0xc7d2d1fcUL, 0x9e6c97feUL, 0xa90655ffUL, 0x2c101afaUL, 0x1b7ad8fbUL, 0x42c49ef9UL, 0x75ae5cf8UL, 0x48e900f3UL, 0x7f83c2f2UL, 0x263d84f0UL, 0x115746f1UL, 0x944109f4UL, 0xa32bcbf5UL, 0xfa958df7UL, 0xcdff4ff6UL, 0x605d78d9UL, 0x5737bad8UL, 0x0e89fcdaUL, 0x39e33edbUL, 0xbcf571deUL, 0x8b9fb3dfUL, 0xd221f5ddUL, 0xe54b37dcUL, 0xd80c6bd7UL, 0xef66a9d6UL, 0xb6d8efd4UL, 0x81b22dd5UL, 0x04a462d0UL, 0x33cea0d1UL, 0x6a70e6d3UL, 0x5d1a24d2UL, 0x10fe5ec5UL, 0x27949cc4UL, 0x7e2adac6UL, 0x494018c7UL, 0xcc5657c2UL, 0xfb3c95c3UL, 0xa282d3c1UL, 0x95e811c0UL, 0xa8af4dcbUL, 0x9fc58fcaUL, 0xc67bc9c8UL, 0xf1110bc9UL, 0x740744ccUL, 0x436d86cdUL, 0x1ad3c0cfUL, 0x2db902ceUL, 0x4096af91UL, 0x77fc6d90UL, 0x2e422b92UL, 0x1928e993UL, 0x9c3ea696UL, 0xab546497UL, 0xf2ea2295UL, 0xc580e094UL, 0xf8c7bc9fUL, 0xcfad7e9eUL, 0x9613389cUL, 0xa179fa9dUL, 0x246fb598UL, 0x13057799UL, 0x4abb319bUL, 0x7dd1f39aUL, 0x3035898dUL, 0x075f4b8cUL, 0x5ee10d8eUL, 0x698bcf8fUL, 0xec9d808aUL, 0xdbf7428bUL, 0x82490489UL, 0xb523c688UL, 0x88649a83UL, 0xbf0e5882UL, 0xe6b01e80UL, 0xd1dadc81UL, 0x54cc9384UL, 0x63a65185UL, 0x3a181787UL, 0x0d72d586UL, 0xa0d0e2a9UL, 0x97ba20a8UL, 0xce0466aaUL, 0xf96ea4abUL, 0x7c78ebaeUL, 0x4b1229afUL, 0x12ac6fadUL, 0x25c6adacUL, 0x1881f1a7UL, 0x2feb33a6UL, 0x765575a4UL, 0x413fb7a5UL, 0xc429f8a0UL, 0xf3433aa1UL, 0xaafd7ca3UL, 0x9d97bea2UL, 0xd073c4b5UL, 0xe71906b4UL, 0xbea740b6UL, 0x89cd82b7UL, 0x0cdbcdb2UL, 0x3bb10fb3UL, 0x620f49b1UL, 0x55658bb0UL, 0x6822d7bbUL, 0x5f4815baUL, 0x06f653b8UL, 0x319c91b9UL, 0xb48adebcUL, 0x83e01cbdUL, 0xda5e5abfUL, 0xed3498beUL }, { 0x00000000UL, 0x6567bcb8UL, 0x8bc809aaUL, 0xeeafb512UL, 0x5797628fUL, 0x32f0de37UL, 0xdc5f6b25UL, 0xb938d79dUL, 0xef28b4c5UL, 0x8a4f087dUL, 0x64e0bd6fUL, 0x018701d7UL, 0xb8bfd64aUL, 0xddd86af2UL, 0x3377dfe0UL, 0x56106358UL, 0x9f571950UL, 0xfa30a5e8UL, 0x149f10faUL, 0x71f8ac42UL, 0xc8c07bdfUL, 0xada7c767UL, 0x43087275UL, 0x266fcecdUL, 0x707fad95UL, 0x1518112dUL, 0xfbb7a43fUL, 0x9ed01887UL, 0x27e8cf1aUL, 0x428f73a2UL, 0xac20c6b0UL, 0xc9477a08UL, 0x3eaf32a0UL, 0x5bc88e18UL, 0xb5673b0aUL, 0xd00087b2UL, 0x6938502fUL, 0x0c5fec97UL, 0xe2f05985UL, 0x8797e53dUL, 0xd1878665UL, 0xb4e03addUL, 0x5a4f8fcfUL, 0x3f283377UL, 0x8610e4eaUL, 0xe3775852UL, 0x0dd8ed40UL, 0x68bf51f8UL, 0xa1f82bf0UL, 0xc49f9748UL, 0x2a30225aUL, 0x4f579ee2UL, 0xf66f497fUL, 0x9308f5c7UL, 0x7da740d5UL, 0x18c0fc6dUL, 0x4ed09f35UL, 0x2bb7238dUL, 0xc518969fUL, 0xa07f2a27UL, 0x1947fdbaUL, 0x7c204102UL, 0x928ff410UL, 0xf7e848a8UL, 0x3d58149bUL, 0x583fa823UL, 0xb6901d31UL, 0xd3f7a189UL, 0x6acf7614UL, 0x0fa8caacUL, 0xe1077fbeUL, 0x8460c306UL, 0xd270a05eUL, 0xb7171ce6UL, 0x59b8a9f4UL, 0x3cdf154cUL, 0x85e7c2d1UL, 0xe0807e69UL, 0x0e2fcb7bUL, 0x6b4877c3UL, 0xa20f0dcbUL, 0xc768b173UL, 0x29c70461UL, 0x4ca0b8d9UL, 0xf5986f44UL, 0x90ffd3fcUL, 0x7e5066eeUL, 0x1b37da56UL, 0x4d27b90eUL, 0x284005b6UL, 0xc6efb0a4UL, 0xa3880c1cUL, 0x1ab0db81UL, 0x7fd76739UL, 0x9178d22bUL, 0xf41f6e93UL, 0x03f7263bUL, 0x66909a83UL, 0x883f2f91UL, 0xed589329UL, 0x546044b4UL, 0x3107f80cUL, 0xdfa84d1eUL, 0xbacff1a6UL, 0xecdf92feUL, 0x89b82e46UL, 0x67179b54UL, 0x027027ecUL, 0xbb48f071UL, 0xde2f4cc9UL, 0x3080f9dbUL, 0x55e74563UL, 0x9ca03f6bUL, 0xf9c783d3UL, 0x176836c1UL, 0x720f8a79UL, 0xcb375de4UL, 0xae50e15cUL, 0x40ff544eUL, 0x2598e8f6UL, 0x73888baeUL, 0x16ef3716UL, 0xf8408204UL, 0x9d273ebcUL, 0x241fe921UL, 0x41785599UL, 0xafd7e08bUL, 0xcab05c33UL, 0x3bb659edUL, 0x5ed1e555UL, 0xb07e5047UL, 0xd519ecffUL, 0x6c213b62UL, 0x094687daUL, 0xe7e932c8UL, 0x828e8e70UL, 0xd49eed28UL, 0xb1f95190UL, 0x5f56e482UL, 0x3a31583aUL, 0x83098fa7UL, 0xe66e331fUL, 0x08c1860dUL, 0x6da63ab5UL, 0xa4e140bdUL, 0xc186fc05UL, 0x2f294917UL, 0x4a4ef5afUL, 0xf3762232UL, 0x96119e8aUL, 0x78be2b98UL, 0x1dd99720UL, 0x4bc9f478UL, 0x2eae48c0UL, 0xc001fdd2UL, 0xa566416aUL, 0x1c5e96f7UL, 0x79392a4fUL, 0x97969f5dUL, 0xf2f123e5UL, 0x05196b4dUL, 0x607ed7f5UL, 0x8ed162e7UL, 0xebb6de5fUL, 0x528e09c2UL, 0x37e9b57aUL, 0xd9460068UL, 0xbc21bcd0UL, 0xea31df88UL, 0x8f566330UL, 0x61f9d622UL, 0x049e6a9aUL, 0xbda6bd07UL, 0xd8c101bfUL, 0x366eb4adUL, 0x53090815UL, 0x9a4e721dUL, 0xff29cea5UL, 0x11867bb7UL, 0x74e1c70fUL, 0xcdd91092UL, 0xa8beac2aUL, 0x46111938UL, 0x2376a580UL, 0x7566c6d8UL, 0x10017a60UL, 0xfeaecf72UL, 0x9bc973caUL, 0x22f1a457UL, 0x479618efUL, 0xa939adfdUL, 0xcc5e1145UL, 0x06ee4d76UL, 0x6389f1ceUL, 0x8d2644dcUL, 0xe841f864UL, 0x51792ff9UL, 0x341e9341UL, 0xdab12653UL, 0xbfd69aebUL, 0xe9c6f9b3UL, 0x8ca1450bUL, 0x620ef019UL, 0x07694ca1UL, 0xbe519b3cUL, 0xdb362784UL, 0x35999296UL, 0x50fe2e2eUL, 0x99b95426UL, 0xfcdee89eUL, 0x12715d8cUL, 0x7716e134UL, 0xce2e36a9UL, 0xab498a11UL, 0x45e63f03UL, 0x208183bbUL, 0x7691e0e3UL, 0x13f65c5bUL, 0xfd59e949UL, 0x983e55f1UL, 0x2106826cUL, 0x44613ed4UL, 0xaace8bc6UL, 0xcfa9377eUL, 0x38417fd6UL, 0x5d26c36eUL, 0xb389767cUL, 0xd6eecac4UL, 0x6fd61d59UL, 0x0ab1a1e1UL, 0xe41e14f3UL, 0x8179a84bUL, 0xd769cb13UL, 0xb20e77abUL, 0x5ca1c2b9UL, 0x39c67e01UL, 0x80fea99cUL, 0xe5991524UL, 0x0b36a036UL, 0x6e511c8eUL, 0xa7166686UL, 0xc271da3eUL, 0x2cde6f2cUL, 0x49b9d394UL, 0xf0810409UL, 0x95e6b8b1UL, 0x7b490da3UL, 0x1e2eb11bUL, 0x483ed243UL, 0x2d596efbUL, 0xc3f6dbe9UL, 0xa6916751UL, 0x1fa9b0ccUL, 0x7ace0c74UL, 0x9461b966UL, 0xf10605deUL #endif } }; /* END OF DUMP OF mz_crc32.h*/ #endif /* DYNAMIC_CRC_TABLE */ /* ========================================================================= * This function can be used by asm versions of crc32() */ const z_crc_t FAR * ZEXPORT get_crc_table() { #ifdef DYNAMIC_CRC_TABLE if (crc_table_empty) make_crc_table(); #endif /* DYNAMIC_CRC_TABLE */ return (const z_crc_t FAR *)crc_table; } /* ========================================================================= */ #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8) #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1 /* ========================================================================= */ unsigned long ZEXPORT crc32(crc, buf, len) unsigned long crc; const unsigned char FAR *buf; uInt len; { if (buf == Z_NULL) return 0UL; #ifdef DYNAMIC_CRC_TABLE if (crc_table_empty) make_crc_table(); #endif /* DYNAMIC_CRC_TABLE */ #ifdef BYFOUR if (sizeof(void *) == sizeof(ptrdiff_t)) { z_crc_t endian; endian = 1; if (*((unsigned char *)(&endian))) return crc32_little(crc, buf, len); else return crc32_big(crc, buf, len); } #endif /* BYFOUR */ crc = crc ^ 0xffffffffUL; while (len >= 8) { DO8; len -= 8; } if (len) do { DO1; } while (--len); return crc ^ 0xffffffffUL; } #ifdef BYFOUR /* ========================================================================= */ #define DOLIT4 c ^= *buf4++; \ c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \ crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24] #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4 /* ========================================================================= */ local unsigned long crc32_little(crc, buf, len) unsigned long crc; const unsigned char FAR *buf; unsigned len; { register z_crc_t c; register const z_crc_t FAR *buf4; c = (z_crc_t)crc; c = ~c; while (len && ((ptrdiff_t)buf & 3)) { c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); len--; } buf4 = (const z_crc_t FAR *)(const void FAR *)buf; while (len >= 32) { DOLIT32; len -= 32; } while (len >= 4) { DOLIT4; len -= 4; } buf = (const unsigned char FAR *)buf4; if (len) do { c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); } while (--len); c = ~c; return (unsigned long)c; } /* ========================================================================= */ #define DOBIG4 c ^= *++buf4; \ c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \ crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24] #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4 /* ========================================================================= */ local unsigned long crc32_big(crc, buf, len) unsigned long crc; const unsigned char FAR *buf; unsigned len; { register z_crc_t c; register const z_crc_t FAR *buf4; c = ZSWAP32((z_crc_t)crc); c = ~c; while (len && ((ptrdiff_t)buf & 3)) { c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); len--; } buf4 = (const z_crc_t FAR *)(const void FAR *)buf; buf4--; while (len >= 32) { DOBIG32; len -= 32; } while (len >= 4) { DOBIG4; len -= 4; } buf4++; buf = (const unsigned char FAR *)buf4; if (len) do { c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); } while (--len); c = ~c; return (unsigned long)(ZSWAP32(c)); } #endif /* BYFOUR */ #define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */ /* ========================================================================= */ local unsigned long gf2_matrix_times(mat, vec) unsigned long *mat; unsigned long vec; { unsigned long sum; sum = 0; while (vec) { if (vec & 1) sum ^= *mat; vec >>= 1; mat++; } return sum; } /* ========================================================================= */ local void gf2_matrix_square(square, mat) unsigned long *square; unsigned long *mat; { int n; for (n = 0; n < GF2_DIM; n++) square[n] = gf2_matrix_times(mat, mat[n]); } /* ========================================================================= */ local uLong crc32_combine_(crc1, crc2, len2) uLong crc1; uLong crc2; z_off64_t len2; { int n; unsigned long row; unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */ unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */ /* degenerate case (also disallow negative lengths) */ if (len2 <= 0) return crc1; /* put operator for one zero bit in odd */ odd[0] = 0xedb88320UL; /* CRC-32 polynomial */ row = 1; for (n = 1; n < GF2_DIM; n++) { odd[n] = row; row <<= 1; } /* put operator for two zero bits in even */ gf2_matrix_square(even, odd); /* put operator for four zero bits in odd */ gf2_matrix_square(odd, even); /* apply len2 zeros to crc1 (first square will put the operator for one zero byte, eight zero bits, in even) */ do { /* apply zeros operator for this bit of len2 */ gf2_matrix_square(even, odd); if (len2 & 1) crc1 = gf2_matrix_times(even, crc1); len2 >>= 1; /* if no more bits set, then done */ if (len2 == 0) break; /* another iteration of the loop with odd and even swapped */ gf2_matrix_square(odd, even); if (len2 & 1) crc1 = gf2_matrix_times(odd, crc1); len2 >>= 1; /* if no more bits set, then done */ } while (len2 != 0); /* return combined crc */ crc1 ^= crc2; return crc1; } /* ========================================================================= */ uLong ZEXPORT crc32_combine(crc1, crc2, len2) uLong crc1; uLong crc2; z_off_t len2; { return crc32_combine_(crc1, crc2, len2); } uLong ZEXPORT crc32_combine64(crc1, crc2, len2) uLong crc1; uLong crc2; z_off64_t len2; { return crc32_combine_(crc1, crc2, len2); } /* END OF DUMP OF mz_crc32.c*/ /* START OF DUMP OF mz_compress.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* compress.c -- compress a memory buffer * Copyright (C) 1995-2005 Jean-loup Gailly. * For conditions of distribution and use, see copyright notice in zlib.h */ /* @(#) $Id$ */ #define ZLIB_INTERNAL /* =========================================================================== Compresses the source buffer into the destination buffer. The level parameter has the same meaning as in deflateInit. sourceLen is the byte length of the source buffer. Upon entry, destLen is the total size of the destination buffer, which must be at least 0.1% larger than sourceLen plus 12 bytes. Upon exit, destLen is the actual size of the compressed buffer. compress2 returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if there was not enough room in the output buffer, Z_STREAM_ERROR if the level parameter is invalid. */ int ZEXPORT compress2 (dest, destLen, source, sourceLen, level) Bytef *dest; uLongf *destLen; const Bytef *source; uLong sourceLen; int level; { z_stream stream; int err; stream.next_in = (z_const Bytef *)source; stream.avail_in = (uInt)sourceLen; #ifdef MAXSEG_64K /* Check for source > 64K on 16-bit machine: */ if ((uLong)stream.avail_in != sourceLen) return Z_BUF_ERROR; #endif stream.next_out = dest; stream.avail_out = (uInt)*destLen; if ((uLong)stream.avail_out != *destLen) return Z_BUF_ERROR; stream.zalloc = (alloc_func)0; stream.zfree = (free_func)0; stream.opaque = (voidpf)0; err = deflateInit(&stream, level); if (err != Z_OK) return err; err = deflate(&stream, Z_FINISH); if (err != Z_STREAM_END) { deflateEnd(&stream); return err == Z_OK ? Z_BUF_ERROR : err; } *destLen = stream.total_out; err = deflateEnd(&stream); return err; } /* =========================================================================== */ int ZEXPORT compress (dest, destLen, source, sourceLen) Bytef *dest; uLongf *destLen; const Bytef *source; uLong sourceLen; { return compress2(dest, destLen, source, sourceLen, Z_DEFAULT_COMPRESSION); } /* =========================================================================== If the default memLevel or windowBits for deflateInit() is changed, then this function needs to be updated. */ uLong ZEXPORT compressBound (sourceLen) uLong sourceLen; { return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) + (sourceLen >> 25) + 13; } /* END OF DUMP OF mz_compress.c*/ /* START OF DUMP OF mz_adler32.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* adler32.c -- compute the Adler-32 checksum of a data stream * Copyright (C) 1995-2011 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* @(#) $Id$ */ #define local static local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2)); #define BASE 65521 /* largest prime smaller than 65536 */ #define NMAX 5552 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */ #define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;} #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1); #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2); #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4); #define DO16(buf) DO8(buf,0); DO8(buf,8); /* use NO_DIVIDE if your processor does not do division in hardware -- try it both ways to see which is faster */ #ifdef NO_DIVIDE /* note that this assumes BASE is 65521, where 65536 % 65521 == 15 (thank you to John Reiser for pointing this out) */ # define CHOP(a) \ do { \ unsigned long tmp = a >> 16; \ a &= 0xffffUL; \ a += (tmp << 4) - tmp; \ } while (0) # define MOD28(a) \ do { \ CHOP(a); \ if (a >= BASE) a -= BASE; \ } while (0) # define MOD(a) \ do { \ CHOP(a); \ MOD28(a); \ } while (0) # define MOD63(a) \ do { /* this assumes a is not negative */ \ z_off64_t tmp = a >> 32; \ a &= 0xffffffffL; \ a += (tmp << 8) - (tmp << 5) + tmp; \ tmp = a >> 16; \ a &= 0xffffL; \ a += (tmp << 4) - tmp; \ tmp = a >> 16; \ a &= 0xffffL; \ a += (tmp << 4) - tmp; \ if (a >= BASE) a -= BASE; \ } while (0) #else # define MOD(a) a %= BASE # define MOD28(a) a %= BASE # define MOD63(a) a %= BASE #endif /* ========================================================================= */ uLong ZEXPORT adler32(adler, buf, len) uLong adler; const Bytef *buf; uInt len; { unsigned long sum2; unsigned n; /* split Adler-32 into component sums */ sum2 = (adler >> 16) & 0xffff; adler &= 0xffff; /* in case user likes doing a byte at a time, keep it fast */ if (len == 1) { adler += buf[0]; if (adler >= BASE) adler -= BASE; sum2 += adler; if (sum2 >= BASE) sum2 -= BASE; return adler | (sum2 << 16); } /* initial Adler-32 value (deferred check for len == 1 speed) */ if (buf == Z_NULL) return 1L; /* in case short lengths are provided, keep it somewhat fast */ if (len < 16) { while (len--) { adler += *buf++; sum2 += adler; } if (adler >= BASE) adler -= BASE; MOD28(sum2); /* only added so many BASE's */ return adler | (sum2 << 16); } /* do length NMAX blocks -- requires just one modulo operation */ while (len >= NMAX) { len -= NMAX; n = NMAX / 16; /* NMAX is divisible by 16 */ do { DO16(buf); /* 16 sums unrolled */ buf += 16; } while (--n); MOD(adler); MOD(sum2); } /* do remaining bytes (less than NMAX, still just one modulo) */ if (len) { /* avoid modulos if none remaining */ while (len >= 16) { len -= 16; DO16(buf); buf += 16; } while (len--) { adler += *buf++; sum2 += adler; } MOD(adler); MOD(sum2); } /* return recombined sums */ return adler | (sum2 << 16); } /* ========================================================================= */ local uLong adler32_combine_(adler1, adler2, len2) uLong adler1; uLong adler2; z_off64_t len2; { unsigned long sum1; unsigned long sum2; unsigned rem; /* for negative len, return invalid adler32 as a clue for debugging */ if (len2 < 0) return 0xffffffffUL; /* the derivation of this formula is left as an exercise for the reader */ MOD63(len2); /* assumes len2 >= 0 */ rem = (unsigned)len2; sum1 = adler1 & 0xffff; sum2 = rem * sum1; MOD(sum2); sum1 += (adler2 & 0xffff) + BASE - 1; sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem; if (sum1 >= BASE) sum1 -= BASE; if (sum1 >= BASE) sum1 -= BASE; if (sum2 >= (BASE << 1)) sum2 -= (BASE << 1); if (sum2 >= BASE) sum2 -= BASE; return sum1 | (sum2 << 16); } /* ========================================================================= */ uLong ZEXPORT adler32_combine(adler1, adler2, len2) uLong adler1; uLong adler2; z_off_t len2; { return adler32_combine_(adler1, adler2, len2); } uLong ZEXPORT adler32_combine64(adler1, adler2, len2) uLong adler1; uLong adler2; z_off64_t len2; { return adler32_combine_(adler1, adler2, len2); } /* END OF DUMP OF mz_adler32.c*/ /* START OF DUMP OF mz_zutil.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* zutil.c -- target dependent utility functions for the compression library * Copyright (C) 1995-2005, 2010, 2011, 2012 Jean-loup Gailly. * For conditions of distribution and use, see copyright notice in zlib.h */ /* @(#) $Id$ */ #ifndef Z_SOLO #endif #ifndef NO_DUMMY_DECL struct internal_state {int dummy;}; /* for buggy compilers */ #endif z_const char * const z_errmsg[10] = { "need dictionary", /* Z_NEED_DICT 2 */ "stream end", /* Z_STREAM_END 1 */ "", /* Z_OK 0 */ "file error", /* Z_ERRNO (-1) */ "stream error", /* Z_STREAM_ERROR (-2) */ "data error", /* Z_DATA_ERROR (-3) */ "insufficient memory", /* Z_MEM_ERROR (-4) */ "buffer error", /* Z_BUF_ERROR (-5) */ "incompatible version",/* Z_VERSION_ERROR (-6) */ ""}; const char * ZEXPORT zlibVersion() { return ZLIB_VERSION; } uLong ZEXPORT zlibCompileFlags() { uLong flags; flags = 0; switch ((int)(sizeof(uInt))) { case 2: break; case 4: flags += 1; break; case 8: flags += 2; break; default: flags += 3; } switch ((int)(sizeof(uLong))) { case 2: break; case 4: flags += 1 << 2; break; case 8: flags += 2 << 2; break; default: flags += 3 << 2; } switch ((int)(sizeof(voidpf))) { case 2: break; case 4: flags += 1 << 4; break; case 8: flags += 2 << 4; break; default: flags += 3 << 4; } switch ((int)(sizeof(z_off_t))) { case 2: break; case 4: flags += 1 << 6; break; case 8: flags += 2 << 6; break; default: flags += 3 << 6; } #ifdef DEBUG flags += 1 << 8; #endif #if defined(ASMV) || defined(ASMINF) flags += 1 << 9; #endif #ifdef ZLIB_WINAPI flags += 1 << 10; #endif #ifdef BUILDFIXED flags += 1 << 12; #endif #ifdef DYNAMIC_CRC_TABLE flags += 1 << 13; #endif #ifdef NO_GZCOMPRESS flags += 1L << 16; #endif #ifdef NO_GZIP flags += 1L << 17; #endif #ifdef PKZIP_BUG_WORKAROUND flags += 1L << 20; #endif #ifdef FASTEST flags += 1L << 21; #endif #if defined(STDC) || defined(Z_HAVE_STDARG_H) # ifdef NO_vsnprintf flags += 1L << 25; # ifdef HAS_vsprintf_void flags += 1L << 26; # endif # else # ifdef HAS_vsnprintf_void flags += 1L << 26; # endif # endif #else flags += 1L << 24; # ifdef NO_snprintf flags += 1L << 25; # ifdef HAS_sprintf_void flags += 1L << 26; # endif # else # ifdef HAS_snprintf_void flags += 1L << 26; # endif # endif #endif return flags; } #ifdef DEBUG # ifndef verbose # define verbose 0 # endif int ZLIB_INTERNAL z_verbose = verbose; void ZLIB_INTERNAL z_error (m) char *m; { fprintf(stderr, "%s\n", m); exit(1); } #endif /* exported to allow conversion of error code to string for compress() and * uncompress() */ const char * ZEXPORT zError(err) int err; { return ERR_MSG(err); } #if defined(_WIN32_WCE) /* The Microsoft C Run-Time Library for Windows CE doesn't have * errno. We define it as a global variable to simplify porting. * Its value is always 0 and should not be used. */ int errno = 0; #endif #ifndef HAVE_MEMCPY void ZLIB_INTERNAL zmemcpy(dest, source, len) Bytef* dest; const Bytef* source; uInt len; { if (len == 0) return; do { *dest++ = *source++; /* ??? to be unrolled */ } while (--len != 0); } int ZLIB_INTERNAL zmemcmp(s1, s2, len) const Bytef* s1; const Bytef* s2; uInt len; { uInt j; for (j = 0; j < len; j++) { if (s1[j] != s2[j]) return 2*(s1[j] > s2[j])-1; } return 0; } void ZLIB_INTERNAL zmemzero(dest, len) Bytef* dest; uInt len; { if (len == 0) return; do { *dest++ = 0; /* ??? to be unrolled */ } while (--len != 0); } #endif #ifndef Z_SOLO #ifdef SYS16BIT #ifdef __TURBOC__ /* Turbo C in 16-bit mode */ # define MY_ZCALLOC /* Turbo C malloc() does not allow dynamic allocation of 64K bytes * and farmalloc(64K) returns a pointer with an offset of 8, so we * must fix the pointer. Warning: the pointer must be put back to its * original form in order to free it, use zcfree(). */ #define MAX_PTR 10 /* 10*64K = 640K */ local int next_ptr = 0; typedef struct ptr_table_s { voidpf org_ptr; voidpf new_ptr; } ptr_table; local ptr_table table[MAX_PTR]; /* This table is used to remember the original form of pointers * to large buffers (64K). Such pointers are normalized with a zero offset. * Since MSDOS is not a preemptive multitasking OS, this table is not * protected from concurrent access. This hack doesn't work anyway on * a protected system like OS/2. Use Microsoft C instead. */ voidpf ZLIB_INTERNAL zcalloc (voidpf opaque, unsigned items, unsigned size) { voidpf buf = opaque; /* just to make some compilers happy */ ulg bsize = (ulg)items*size; /* If we allocate less than 65520 bytes, we assume that farmalloc * will return a usable pointer which doesn't have to be normalized. */ if (bsize < 65520L) { buf = farmalloc(bsize); if (*(ush*)&buf != 0) return buf; } else { buf = farmalloc(bsize + 16L); } if (buf == NULL || next_ptr >= MAX_PTR) return NULL; table[next_ptr].org_ptr = buf; /* Normalize the pointer to seg:0 */ *((ush*)&buf+1) += ((ush)((uch*)buf-0) + 15) >> 4; *(ush*)&buf = 0; table[next_ptr++].new_ptr = buf; return buf; } void ZLIB_INTERNAL zcfree (voidpf opaque, voidpf ptr) { int n; if (*(ush*)&ptr != 0) { /* object < 64K */ farfree(ptr); return; } /* Find the original pointer */ for (n = 0; n < next_ptr; n++) { if (ptr != table[n].new_ptr) continue; farfree(table[n].org_ptr); while (++n < next_ptr) { table[n-1] = table[n]; } next_ptr--; return; } ptr = opaque; /* just to make some compilers happy */ Assert(0, "zcfree: ptr not found"); } #endif /* __TURBOC__ */ #ifdef M_I86 /* Microsoft C in 16-bit mode */ # define MY_ZCALLOC #if (!defined(_MSC_VER) || (_MSC_VER <= 600)) # define _halloc halloc # define _hfree hfree #endif voidpf ZLIB_INTERNAL zcalloc (voidpf opaque, uInt items, uInt size) { if (opaque) opaque = 0; /* to make compiler happy */ return _halloc((long)items, size); } void ZLIB_INTERNAL zcfree (voidpf opaque, voidpf ptr) { if (opaque) opaque = 0; /* to make compiler happy */ _hfree(ptr); } #endif /* M_I86 */ #endif /* SYS16BIT */ #ifndef MY_ZCALLOC /* Any system without a special alloc function */ #ifndef STDC extern voidp malloc OF((uInt size)); extern voidp calloc OF((uInt items, uInt size)); extern void free OF((voidpf ptr)); #endif voidpf ZLIB_INTERNAL zcalloc (opaque, items, size) voidpf opaque; unsigned items; unsigned size; { if (opaque) items += size - size; /* make compiler happy */ return sizeof(uInt) > 2 ? (voidpf)malloc(items * size) : (voidpf)calloc(items, size); } void ZLIB_INTERNAL zcfree (opaque, ptr) voidpf opaque; voidpf ptr; { free(ptr); if (opaque) return; /* make compiler happy */ } #endif /* MY_ZCALLOC */ #endif /* !Z_SOLO */ /* END OF DUMP OF mz_zutil.c*/ ///////////////////////////////////////////////////////////////////////////////////// // // // phitsread : Code for reading binary dump files from PHITS // // // // // // Compilation of phitsread.c can proceed via any compliant C-compiler using // // -std=c99 or later, and the resulting code must always be linked with libm // // (using -lm). Furthermore, the following preprocessor flags can be used // // when compiling phitsread.c to fine tune the build process and the // // capabilities of the resulting binary. // // // // PHITSREAD_HASZLIB : Define if compiling and linking with zlib, to allow // // direct reading of gzipped PHITS files. // // PHITSREAD_ZLIB_INCPATH : Specify alternative value if the zlib header is not // // to be included as "zlib.h". // // PHITSREAD_HDR_INCPATH : Specify alternative value if the phitsread header // // itself is not to be included as "phitsread.h". // // // // This file can be freely used as per the terms in the LICENSE file. // // // // However, note that usage of PHITS-related utilities might require additional // // permissions and licenses from third-parties, which is not within the scope of // // the MCPL project itself. // // // // Written 2019, thomas.kittelmann@esss.se (European Spallation Source). // // // ///////////////////////////////////////////////////////////////////////////////////// #ifdef PHITSREAD_HDR_INCPATH # include PHITSREAD_HDR_INCPATH #else #ifndef phitsread_h #define phitsread_h ///////////////////////////////////////////////////////////////////////////////////// // // // Code for reading binary PHITS dump files. This has been tested with PHITS // // version 3.1 so far. // // // // The code was written with help from Douglas Di Julio (European Spallation // // Source), and the PHITS dump file format was mostly inferred by looking in the // // PHITS manual (it is in any case extremely simple). // // // // Refer to the top of phitsread.c for details regarding how to build. // // // // This file can be freely used as per the terms in the LICENSE file. // // // // However, note that usage of PHITS-related utilities might require additional // // permissions and licenses from third-parties, which is not within the scope of // // the MCPL project itself. // // // // Written 2019, thomas.kittelmann@esss.se (European Spallation Source). // // // ///////////////////////////////////////////////////////////////////////////////////// #include #ifdef __cplusplus extern "C" { #endif typedef struct { void * internal; } phits_file_t; typedef struct { double x;//cm double y;//cm double z;//cm double dirx; double diry; double dirz; double polx; double poly; double polz; double weight; double ekin;//MeV double time;//nanoseconds long rawtype;//raw particle type encoding (PHITS "kt") long pdgcode;//rawtype converted to PDG codes. } phits_particle_t; //Open file (can read gzipped phits .gz files directly if zlib usage is enabled): phits_file_t phits_open_file(const char * filename); //Whether input file was gzipped: int phits_is_gzipped(phits_file_t); //Whether input file contains polarisation fields (note that the special case //of a file with 0 particles will always register as not having polarisation //fields): int phits_has_polarisation(phits_file_t); //load next particle (null indicates EOF): const phits_particle_t * phits_load_particle(phits_file_t); //close file and release resources: void phits_close_file(phits_file_t); //////////////////////////////////////////////////////////////////////////// // // // Utility functions for converting between particle codes used in PHITS // // (cf user manual for PHITS 3.1, page 29), and the codes from the // // Particle Data Group (which actually overlaps for the non-ions // // supported in PHITS): // // // // http://pdg.lbl.gov/2014/reviews/rpp2014-rev-monte-carlo-numbering.pdf // // // // Note that all the functions here return 0 when the code could not be // // converted. This might not be an error as such, but could indicate an // // exotic particle which has no code assigned in PHITS. // // // //////////////////////////////////////////////////////////////////////////// int32_t conv_code_phits2pdg(int32_t); int32_t conv_code_pdg2phits(int32_t); #ifdef __cplusplus } #endif #endif #endif #ifdef PHITSREAD_HASZLIB # ifdef PHITSREAD_ZLIB_INCPATH # include PHITSREAD_ZLIB_INCPATH # else # endif #endif #include #include #include #include #include static int phits_known_nonion_codes[] = { 11, 12, 13, 14, 22, 111, 211, 221, 311, 321, 331, 2112, 2212, 3112, 3122, 3212, 3222, 3312, 3322, 3334 }; int phits_cmp_codes( void const *va, void const *vb ) { //Standard integer comparison function for bsearch const int * a = (const int *)va; const int * b = (const int *)vb; return *a < *b ? -1 : ( *a > *b ? 1 : 0 ); } int32_t conv_code_phits2pdg( int32_t c ) { int32_t absc = c < 0 ? -c : c; if (!c) return 0; if (absc<1000000) { //Presumably PHITS use pdg codes directly for non-nuclei/ions return c; } //PHITS encode nucleis as Z*1000000+A long A = absc % 1000000; long Z = absc / 1000000; if (!Z||Z>130||A500)//Just picking max Z=130, A=500 as a quick sanity check - could tighten this! return 0;//impossible //PDG format for ions is 10LZZZAAAI, where L!=0 indicates strangeness //and I!=0 indicates exited nuclei. We only allow L=I=0 ions here. long abspdgcode = 10 * (A + 1000*(Z+100000)); return (int32_t) ( c < 0 ? -abspdgcode : abspdgcode ); } int32_t conv_code_pdg2phits( int32_t c ) { int32_t absc = c < 0 ? -c : c; if ( absc <= 1000000000 ) { //Presumably PHITS use pdg codes directly for non-nuclei/ions, but only with //room for 6 digits. And in fact, only those in the phits_known_nonion_codes //are supported - and for 22, 111, 331 only if not negative (these particles //are their own antiparticles): int key = absc; void * res = bsearch(&key, phits_known_nonion_codes, sizeof(phits_known_nonion_codes) / sizeof(phits_known_nonion_codes[0]), sizeof(phits_known_nonion_codes[0]), phits_cmp_codes); if ( !res || ( c < 0 && (c==-22||c==-111||c==-331) ) ) return 0; return c; } if (absc<=1009999990) { //Ions. PDG format for ions is 10LZZZAAAI, where L!=0 indicates strangeness //and I!=0 indicates exited nuclei. We only allow L=I=0 ions here. if (c<0) return 0;//Negative ions seems to not actually be supported in PHITS. int32_t I = absc % 10;//isomer level absc/=10; int32_t A = absc%1000; absc/=1000; int32_t Z = absc % 1000; assert(absc/1000==100);//L=0 guaranteed by enclosing condition. if ( I || !A || !Z || Z>A ) return 0; //PHITS encode nucleis as Z*1000000+A: int32_t absphitscode = Z*1000000+A; return c < 0 ? -absphitscode : absphitscode; } return 0; } void phits_error(const char * msg) { printf("ERROR: %s\n",msg); exit(1); } //Should be more than large enough to hold all records in all supported PHITS //dump files, including two 64bit record markers: #define PHITSREAD_MAXBUFSIZE (15*sizeof(double)) typedef struct { #ifdef PHITSREAD_HASZLIB gzFile filegz; #else void * filegz; #endif FILE * file; phits_particle_t part; int reclen;//width of Fortran record length field (4 or 8) unsigned particlesize;//length of particle data in bytes (typically 10*8 or 13*8) char buf[PHITSREAD_MAXBUFSIZE];//for holding last record of raw data read (including record markers of reclen bytes) unsigned lbuf;//number of bytes currently read into buf int haspolarisation; } phits_fileinternal_t; int phits_readbytes(phits_fileinternal_t* f, char * dest, int nbytes) { assert(nbytes>0); //Attempt to read at most nbytes from file and into dest, handling both //gzipped and standard files. int nb; #ifdef PHITSREAD_HASZLIB if (f->filegz) nb = gzread(f->filegz, dest, nbytes); else #endif nb = fread(dest, 1, nbytes, f->file); return nb; } int phits_ensure_load(phits_fileinternal_t* f, int nbytes) { //For slowly filling up f->buf while reading first record. Returns 1 in case of success. if ( nbytes > (int)PHITSREAD_MAXBUFSIZE ) return 0; int missing = nbytes - f->lbuf; if ( missing<=0 ) return 1; int nr = phits_readbytes(f,&(f->buf[f->lbuf]),missing); if (nr!=missing) return 0; f->lbuf = nbytes; return 1; } int phits_tryload_reclen(phits_fileinternal_t* f, int reclen ) { assert(reclen==4||reclen==8); if ( ! phits_ensure_load( f, reclen ) ) return 0; char * buf = & ( f->buf[0] ); uint64_t l1 = ( reclen == 4 ? (uint64_t)(*((uint32_t*)buf)) : (uint64_t)(*((uint64_t*)buf)) ); if ( ! phits_ensure_load( f, l1 + 2*reclen ) ) return 0; buf += (reclen + l1); uint64_t l2 = ( reclen == 4 ? (uint64_t)(*((uint32_t*)buf)) : (uint64_t)(*((uint64_t*)buf)) ); if (l1!=l2) return 0; //All ok! f->reclen = reclen; f->particlesize = l1; return 1; } phits_file_t phits_openerror(phits_fileinternal_t * f, const char* msg) { if (f) { if (f->file) fclose(f->file); #ifdef PHITSREAD_HASZLIB if (f->filegz) gzclose(f->filegz); #endif free(f); } phits_error(msg); phits_file_t out; out.internal = 0; return out; } phits_file_t phits_open_internal( const char * filename ) { phits_fileinternal_t * f = (phits_fileinternal_t*)calloc(sizeof(phits_fileinternal_t),1); assert(f); phits_file_t out; out.internal = f; //Init: f->particlesize = 0; f->lbuf = 0; f->reclen = 4; f->file = 0; f->filegz = 0; f->haspolarisation = 0; memset( &( f->part ),0,sizeof(f->part) ); //open file (with gzopen if filename ends with .gz): const char * lastdot = strrchr(filename, '.'); if (lastdot && strcmp(lastdot, ".gz") == 0) { #ifdef PHITSREAD_HASZLIB f->filegz = gzopen(filename,"rb"); if (!f->filegz) phits_error("Unable to open file!"); #else phits_error("This installation was not built with zlib support and can not read compressed (.gz) files directly."); #endif } else { f->file = fopen(filename,"rb"); if (!f->file) phits_error("Unable to open file!"); } //Try to read first Fortran record marker, keeping in mind that we do not //know if it is 32bit or 64bit, and that an empty file is to be interpreted //as a valid PHITS dump file with 0 particles: if (!phits_ensure_load(f,1)) { //Can't read a single byte. Assume that this indicates an empty file and //therefore a valid PHITS dump file with 0 particles: //file with 0 particles, mark as EOF: f->particlesize = 0; f->haspolarisation = 0;//Convention: We mark empty files as NOT HAVING //polarisation info (to avoid potentially inflating //mcpl files in various merge/conversion //scenarios). return out; } //Try to read first record with first 32bit then 64bit record lengths //(updating f->reclen and f->particlesize in case of success): if (!phits_tryload_reclen(f,4)) { if (!phits_tryload_reclen(f,8)) { if (f->lbuf<8) phits_error("Invalid PHITS dump file: too short\n"); phits_error("Invalid PHITS dump file: Problems reading first record.\n"); } } assert( f->reclen==4 || f->reclen==8 ); if (f->reclen==8) { printf("phits_open_file WARNING: 64bit Fortran records detected which is untested (feedback" " appreciated at https://mctools.github.io/mcpl/contact/).\n"); } if (f->particlesize == 10*sizeof(double)) { f->haspolarisation = 0; } else if (f->particlesize == 13*sizeof(double)) { f->haspolarisation = 1; } else { phits_error("Invalid PHITS dump file: Does not contain exactly 10 or 13 fields in each" " particle - like due to unsupported configuration flags being used when" " producing the file.\n"); } return out; } phits_file_t phits_open_file( const char * filename ) { if (!filename) phits_error("phits_open_file called with null string for filename"); //Open, classify and process first record with mcnp type and version info: phits_file_t out = phits_open_internal( filename ); phits_fileinternal_t * f = (phits_fileinternal_t *)out.internal; assert(f); out.internal = f; return out; } const phits_particle_t * phits_load_particle(phits_file_t ff) { phits_fileinternal_t * f = (phits_fileinternal_t *)ff.internal; assert(f); if (!f->particlesize) { //EOF already return 0; } assert( f->particlesize == 10*sizeof(double) || f->particlesize == 13*sizeof(double) ); if (!f->lbuf) { if (!phits_ensure_load(f, 1)) { //Can't read a single byte - assume EOF: f->particlesize = 0; return 0; } //Try to load another record int old_reclen = f->reclen; (void)old_reclen;//otherwise unused if assert inactive. unsigned old_particlesize = f->particlesize; if (!phits_tryload_reclen(f,f->reclen)) { phits_error("Problems loading particle data record!"); return 0; } assert(f->reclen==old_reclen); if ( f->particlesize != old_particlesize) { phits_error("Problems loading particle data record - particle data length changed mid-file (perhaps it is not actually a binary PHITS dump file after all?)!"); return 0; } } assert( f->lbuf == f->particlesize + f->reclen * 2 ); double * pdata = (double*)(f->buf+f->reclen); phits_particle_t * pp = & (f->part); pp->rawtype = pdata[0]; //NB: PHITS units, not MCPL units here (only difference is time unit which is ns in PHITS and ms in MCPL): pp->x = pdata[1];//cm pp->y = pdata[2];//cm pp->z = pdata[3];//cm pp->dirx = pdata[4]; pp->diry = pdata[5]; pp->dirz = pdata[6]; pp->ekin = pdata[7];//MeV pp->weight = pdata[8]; pp->time = pdata[9];//ns if (f->particlesize == 13*sizeof(double)) { pp->polx = pdata[10]; pp->poly = pdata[11]; pp->polz = pdata[12]; } else { pp->polx = 0.0; pp->poly = 0.0; pp->polz = 0.0; } pp->pdgcode = conv_code_phits2pdg(pp->rawtype); //Mark as used: f->lbuf = 0; return pp; } int phits_has_polarisation(phits_file_t ff) { phits_fileinternal_t * f = (phits_fileinternal_t *)ff.internal; assert(f); return f->haspolarisation; } void phits_close_file(phits_file_t ff) { phits_fileinternal_t * f = (phits_fileinternal_t *)ff.internal; assert(f); if (!f) return; if (f->file) { fclose(f->file); f->file = 0; } #ifdef PHITSREAD_HASZLIB if (f->filegz) { gzclose(f->filegz); f->file = 0; } #endif free(f); ff.internal = 0; } ///////////////////////////////////////////////////////////////////////////////////// // // // phitsmcpl : Code for converting between MCPL and binary PHITS dump files. // // // // // // Compilation of phitsmcpl.c can proceed via any compliant C-compiler using // // -std=c99 later. Furthermore, the following preprocessor flag can be used // // when compiling phitsmcpl.c to fine tune the build process. // // // // PHITSMCPL_HDR_INCPATH : Specify alternative value if the phitsmcpl header // // itself is not to be included as "phitsmcpl.h". // // PHITSREAD_HDR_INCPATH : Specify alternative value if the phitsread header // // is not to be included as "phitsread.h". // // MCPL_HEADER_INCPATH : Specify alternative value if the MCPL header is // // not to be included as "mcpl.h". // // // // This file can be freely used as per the terms in the LICENSE file. // // // // However, note that usage of PHITS-related utilities might require additional // // permissions and licenses from third-parties, which is not within the scope of // // the MCPL project itself. // // // // Written 2019, thomas.kittelmann@esss.se (European Spallation Source). // // // ///////////////////////////////////////////////////////////////////////////////////// #ifdef PHITSMCPL_HDR_INCPATH # include PHITSMCPL_HDR_INCPATH #else #endif #ifdef PHITSREAD_HDR_INCPATH # include PHITSREAD_HDR_INCPATH #else #endif #ifdef MCPL_HEADER_INCPATH # include MCPL_HEADER_INCPATH #else #endif #include #include #include #include #include void phits_error(const char * msg);//fwd declare internal function from phitsread.c int phitsmcpl_buf_is_text(size_t n, const unsigned char * buf) { //We correctly allow ASCII & UTF-8 but falsely classify UTF-16 and UTF-32 as //data. See http://stackoverflow.com/questions/277521#277568 for how we could //also detect UTF-16 & UTF-32. const unsigned char * bufE = buf + n; for (; buf!=bufE; ++buf) if ( ! ( ( *buf >=9 && *buf<=13 ) || ( *buf >=32 && *buf<=126 ) || *buf >=128 ) ) return 0; return 1; } int phitsmcpl_file2buf(const char * filename, unsigned char** buf, size_t* lbuf, size_t maxsize, int require_text) { *buf = 0; *lbuf = 0; FILE * file = fopen(filename, "rb"); if (!file) { printf("Error: could not open file %s.\n",filename); return 0; } size_t pos_begin = ftell(file); size_t bbuf_size = maxsize;//default to max size (in case SEEK_END does not work) int bbuf_size_guess = 1; if (!fseek( file, 0, SEEK_END )) { size_t pos_end = ftell(file); bbuf_size = pos_end-pos_begin; bbuf_size_guess = 0; if (bbuf_size<50) { printf("Error: file %s is suspiciously short.\n",filename); return 0; } if (bbuf_size>104857600) { printf("Error: file %s is larger than %g bytes.\n",filename,(double)maxsize); return 0; } } if (fseek( file, 0, SEEK_SET)) { printf("Error: Could not rewind file %s.\n",filename); return 0; } unsigned char * bbuf = malloc(bbuf_size); unsigned char * bbuf_iter = bbuf; size_t left = bbuf_size; while (left) { size_t nb = fread(bbuf_iter, 1, left, file); if (bbuf_size_guess&&nb==0) { bbuf_size -= left; break; } if (nb==0||nb>left) { printf("Error: file %s read-error.\n",filename); free(bbuf); return 0; } bbuf_iter += nb; left -= nb; } fclose(file); if ( require_text && !phitsmcpl_buf_is_text(bbuf_size, bbuf) ) { printf("Error: file %s does not appear to be a text file.\n",filename); free(bbuf); return 0; } *buf = bbuf; *lbuf = bbuf_size; return 1; } int phits2mcpl(const char * phitsfile, const char * mcplfile) { return phits2mcpl2(phitsfile, mcplfile, 0, 1, 0, 0); } int phits2mcpl2( const char * phitsdumpfile, const char * mcplfile, int opt_dp, int opt_gzip, const char * inputdeckfile, const char * dumpsummaryfile ) { phits_file_t f = phits_open_file(phitsdumpfile); mcpl_outfile_t mcplfh = mcpl_create_outfile(mcplfile); mcpl_hdr_set_srcname(mcplfh,"PHITS"); mcpl_hdr_add_comment(mcplfh,"Converted from PHITS with phits2mcpl (from MCPL release v" MCPL_VERSION_STR ")"); if (opt_dp) mcpl_enable_doubleprec(mcplfh); if (phits_has_polarisation(f)) mcpl_enable_polarisation(mcplfh); if (inputdeckfile) { unsigned char* cfgfile_buf; size_t cfgfile_lbuf; if (!phitsmcpl_file2buf(inputdeckfile, &cfgfile_buf, &cfgfile_lbuf, 104857600, 1)) return 0; //We won't do much for sanity checks since we want to avoid the risk of //false positives, but at least the word "dump" should occur in both input //deck and dump summary files: if (!strstr((const char*)cfgfile_buf, "dump")) { printf("Error: specified configuration file %s looks invalid as it does not contain the word \"dump\".\n",inputdeckfile); return 0; } mcpl_hdr_add_data(mcplfh, "phits_input_deck", (uint32_t)cfgfile_lbuf,(const char *)cfgfile_buf); free(cfgfile_buf); } if (dumpsummaryfile) { unsigned char* summaryfile_buf; size_t summaryfile_lbuf; if (!phitsmcpl_file2buf(dumpsummaryfile, &summaryfile_buf, &summaryfile_lbuf, 104857600, 1)) return 0; //Same check as for the input deck above: if (!strstr((const char*)summaryfile_buf, "dump")) { printf("Error: specified dump summary file %s looks invalid as it does not contain the word \"dump\".\n",dumpsummaryfile); return 0; } mcpl_hdr_add_data(mcplfh, "phits_dump_summary_file", (uint32_t)summaryfile_lbuf,(const char *)summaryfile_buf); free(summaryfile_buf); } mcpl_particle_t* mcpl_particle = mcpl_get_empty_particle(mcplfh); const phits_particle_t * p; while ((p=phits_load_particle(f))) { if (!p->pdgcode) { printf("Warning: ignored particle with no PDG code set (raw phits kt code was %li).\n",p->rawtype); continue; } mcpl_particle->pdgcode = p->pdgcode; mcpl_particle->position[0] = p->x;//already in cm mcpl_particle->position[1] = p->y;//already in cm mcpl_particle->position[2] = p->z;//already in cm mcpl_particle->direction[0] = p->dirx; mcpl_particle->direction[1] = p->diry; mcpl_particle->direction[2] = p->dirz; mcpl_particle->polarisation[0] = p->polx; mcpl_particle->polarisation[1] = p->poly; mcpl_particle->polarisation[2] = p->polz; mcpl_particle->time = p->time * 1.0e-6;//nanoseconds (PHITS) to milliseconds (MCPL) mcpl_particle->weight = p->weight; mcpl_particle->ekin = p->ekin;//already in MeV mcpl_add_particle(mcplfh,mcpl_particle); } const char * tmp = mcpl_outfile_filename(mcplfh); size_t laf = strlen(tmp); char * actual_filename = malloc(laf+1); actual_filename[0]='\0'; strcat(actual_filename,tmp); int did_gzip = 0; if (opt_gzip) did_gzip = mcpl_closeandgzip_outfile(mcplfh); else mcpl_close_outfile(mcplfh); phits_close_file(f); printf("Created %s%s\n",actual_filename,(did_gzip?".gz":"")); free(actual_filename); return 1; } void phits2mcpl_parse_args( int argc,char **argv, const char** infile, const char **outfile, const char **cfgfile, const char **dumpsummaryfile, int* double_prec, int* do_gzip ) { *cfgfile = 0; *dumpsummaryfile = 0; *infile = 0; *outfile = 0; *double_prec = 0; *do_gzip = 1; int i; for (i=1; i < argc; ++i) { if (argv[i][0]=='\0') continue; if (strcmp(argv[i],"-h")==0||strcmp(argv[i],"--help")==0) { const char * progname = strrchr(argv[0], '/'); progname = progname ? progname + 1 : argv[0]; printf("Usage:\n\n"); printf(" %s [options] dumpfile [output.mcpl]\n\n",progname); printf("Converts the Monte Carlo particles in the input dump file (binary PHITS dump\n" "file format in suitable configuration) to MCPL format and stores in the\n" "designated output file (defaults to \"output.mcpl\").\n" "\n" "Options:\n" "\n" " -h, --help : Show this usage information.\n" " -d, --double : Enable double-precision storage of floating point values.\n" " -n, --nogzip : Do not attempt to gzip output file.\n" " -c FILE : Embed entire configuration FILE (the input deck)\n" " used to produce dumpfile in the MCPL header.\n" " -s FILE : Embed into the MCPL header the dump summary text file,\n" " which was produced along with the dumpfile itself.\n" ); exit(0); } if (strcmp(argv[i],"-c")==0) { if (i+1==argc||argv[i+1][0]=='-') { printf("Error: Missing argument for -c\n"); exit(1); } ++i; if (*cfgfile) { printf("Error: -c specified more than once\n"); exit(1); } *cfgfile = argv[i]; continue; } if (strcmp(argv[i],"-s")==0) { if (i+1==argc||argv[i+1][0]=='-') { printf("Error: Missing argument for -s\n"); exit(1); } ++i; if (*dumpsummaryfile) { printf("Error: -s specified more than once\n"); exit(1); } *dumpsummaryfile = argv[i]; continue; } if (strcmp(argv[i],"-d")==0||strcmp(argv[i],"--double")==0) { *double_prec = 1; continue; } if (strcmp(argv[i],"-n")==0||strcmp(argv[i],"--nogzip")==0) { *do_gzip = 0; continue; } if (argv[i][0]=='-') { printf("Error: Unknown argument: %s\n",argv[i]); exit(1); } if (!*infile) { *infile = argv[i]; continue; } if (!*outfile) { *outfile = argv[i]; continue; } printf("Error: Too many arguments! (run with -h or --help for usage instructions)\n"); exit(1); } if (!*infile) { printf("Error: Too few arguments! (run with -h or --help for usage instructions)\n"); exit(1); } if (!*outfile) *outfile = "output.mcpl"; if (strcmp(*infile,*outfile)==0) { //basic test, easy to cheat: printf("Error: input and output files are identical.\n"); exit(1); } } int phits2mcpl_app(int argc,char** argv) { const char * infile; const char * outfile; const char * cfgfile; const char * dumphdrfile; int double_prec, do_gzip; phits2mcpl_parse_args(argc,argv,&infile,&outfile,&cfgfile,&dumphdrfile,&double_prec,&do_gzip); int ok = phits2mcpl2(infile, outfile,double_prec, do_gzip,cfgfile,dumphdrfile); return ok ? 0 : 1; } void phits_writerecord(FILE* outfile, int reclen, size_t lbuf, char* buf) { if (reclen==4) { uint32_t rl = lbuf; size_t nb = fwrite(&rl, 1, sizeof(rl), outfile); if (nb!=sizeof(rl)) phits_error("write error"); nb = fwrite(buf, 1, lbuf, outfile); if (nb!=lbuf) phits_error("write error"); nb = fwrite(&rl, 1, sizeof(rl), outfile); if (nb!=sizeof(rl)) phits_error("write error"); } else { assert(reclen==8); uint64_t rl = lbuf; size_t nb = fwrite(&rl, 1, sizeof(rl), outfile); if (nb!=sizeof(rl)) phits_error("write error"); nb = fwrite(buf, 1, lbuf, outfile); if (nb!=lbuf) phits_error("write error"); nb = fwrite(&rl, 1, sizeof(rl), outfile); if (nb!=sizeof(rl)) phits_error("write error"); } } int mcpl2phits( const char * inmcplfile, const char * outphitsdumpfile, int use_polarisation, long nparticles_limit, int reclen ) { if ( reclen != 4 && reclen != 8 ) phits_error("Reclen parameter should be 4 (32bit Fortran record markers, recommended) or 8 (64bit Fortran record markers)"); mcpl_file_t fmcpl = mcpl_open_file(inmcplfile); printf( "Opened MCPL file produced with \"%s\" (contains %llu particles)\n", mcpl_hdr_srcname(fmcpl), (unsigned long long)mcpl_hdr_nparticles(fmcpl) ); printf("Creating (or overwriting) output PHITS file.\n"); //Open new phits file: FILE * fout = fopen(outphitsdumpfile,"wb"); if (!fout) phits_error("Problems opening new PHITS file"); const mcpl_particle_t* mcpl_p; long long used = 0; long long skipped_nophitstype = 0; printf("Initiating particle conversion loop.\n"); double dumpdata[13] = {0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.};//explicit since gcc 4.1-4.6 might warn on ={0}; syntax while ( ( mcpl_p = mcpl_read(fmcpl) ) ) { int32_t rawtype = conv_code_pdg2phits( mcpl_p->pdgcode ); if (!rawtype) { ++skipped_nophitstype; if (skipped_nophitstype<=100) { printf("WARNING: Found PDG code (%li) in the MCPL file which can not be converted to a PHITS particle code\n", (long)mcpl_p->pdgcode); if (skipped_nophitstype==100) printf("WARNING: Suppressing future warnings regarding non-convertible PDG codes.\n"); } continue; } assert(rawtype!=0); dumpdata[0] = rawtype; dumpdata[1] = mcpl_p->position[0];//Already in cm dumpdata[2] = mcpl_p->position[1];//Already in cm dumpdata[3] = mcpl_p->position[2];//Already in cm dumpdata[4] = mcpl_p->direction[0]; dumpdata[5] = mcpl_p->direction[1]; dumpdata[6] = mcpl_p->direction[2]; dumpdata[7] = mcpl_p->ekin;//Already in MeV dumpdata[8] = mcpl_p->weight; dumpdata[9] = mcpl_p->time * 1.0e6;//ms->ns dumpdata[10] = mcpl_p->polarisation[0]; dumpdata[11] = mcpl_p->polarisation[1]; dumpdata[12] = mcpl_p->polarisation[2]; if (used==INT32_MAX) { printf("WARNING: Writing more than 2147483647 (maximum value of 32 bit integers) particles in the PHITS dump " "file - it is not known whether PHITS will be able to deal with such files correctly.\n"); } phits_writerecord(fout,reclen,sizeof(double)*(use_polarisation?13:10),(char*)&dumpdata[0]); if (++used==nparticles_limit) { long long remaining = mcpl_hdr_nparticles(fmcpl) - skipped_nophitstype - used; if (remaining) printf("Output limit of %li particles reached. Ignoring remaining %lli particles in the MCPL file.\n", nparticles_limit,remaining); break; } } printf("Ending particle conversion loop.\n"); if (skipped_nophitstype) { printf("WARNING: Ignored %lli particles in the input MCPL file since their PDG codes" " could not be converted to PHITS codes.\n",(long long)skipped_nophitstype); } mcpl_close_file(fmcpl); fclose(fout); printf("Created %s with %lli particles.\n",outphitsdumpfile,(long long)used); return 1; } int mcpl2phits_app_usage( const char** argv, const char * errmsg ) { if (errmsg) { printf("ERROR: %s\n\n",errmsg); printf("Run with -h or --help for usage information\n"); return 1; } const char * progname = strrchr(argv[0], '/'); progname = progname ? progname + 1 : argv[0]; printf("Usage:\n\n"); printf(" %s [options] [phits.dmp]\n\n",progname); printf("Converts the Monte Carlo particles in the input MCPL file to binary PHITS\n" "dump file format and stores the result in the designated output file\n" "(defaults to \"phitsdata_dmp\"). The file can be read in PHITS using\n" "a configuration of (assuming the filename is \"phits.dmp\"):\n" " dump = 13\n" " 1 2 3 4 5 6 7 8 9 10 14 15 16\n" " file = phits.dmp\n" "\n" "Options:\n" "\n" " -h, --help : Show this usage information.\n" " -n, --nopol : Do not write polarisation info (saving ~22%% in file size). The\n" " PHITS configuration reading the file must then be (assuming the\n" " filename is \"phits.dmp\"):\n" " dump = 10\n" " 1 2 3 4 5 6 7 8 9 10\n" " file = phits.dmp\n" " -f : Write Fortran records with 64 bit integer markers. Note that\n" " the default (32 bit) is almost always the correct choice.\n" " -l : Limit the number of particles transferred to the PHITS file\n" " (defaults to 0, meaning no limit).\n" ); return 0; } int mcpl2phits_parse_args( int argc,const char **argv, const char** inmcplfile, const char **outphitsfile, long* nparticles_limit, int* use64bitreclen, int* nopolarisation ) { //returns: 0 all ok, 1: error, -1: all ok but do nothing (-h/--help mode) *inmcplfile = 0; *outphitsfile = 0; *nparticles_limit = INT32_MAX; *use64bitreclen = 0; *nopolarisation = 0; int64_t opt_num_limit = -1; int i; for (i = 1; i=2&&a[0]=='-'&&a[1]!='-') { //short options: int64_t * consume_digit = 0; size_t j; for (j=1; j'9') return mcpl2phits_app_usage(argv,"Bad option: expected number"); *consume_digit *= 10; *consume_digit += a[j] - '0'; continue; } switch(a[j]) { case 'h': mcpl2phits_app_usage(argv,0); return -1; case 'l': consume_digit = &opt_num_limit; break; case 'f': *use64bitreclen = 1; break; case 'n': *nopolarisation = 1; break; default: return mcpl2phits_app_usage(argv,"Unrecognised option"); } if (consume_digit) { *consume_digit = 0; if (j+1==n) return mcpl2phits_app_usage(argv,"Bad option: missing number"); } } } else if (n==6 && strcmp(a,"--help")==0) { mcpl2phits_app_usage(argv,0); return -1; } else if (n>=1&&a[0]!='-') { if (*outphitsfile) return mcpl2phits_app_usage(argv,"Too many arguments."); else if (*inmcplfile) *outphitsfile = a; else *inmcplfile = a; } else { return mcpl2phits_app_usage(argv,"Bad arguments"); } } if (!*inmcplfile) return mcpl2phits_app_usage(argv,"Missing argument : input MCPL file"); if (!*outphitsfile) *outphitsfile = "phits.dmp"; if (opt_num_limit<=0) opt_num_limit = 0; //NB: For now we allow unlimited number of particles in the file - but let the //mcpl2phits method emit a WARNING if exceeding INT32_MAX particles. *nparticles_limit = opt_num_limit; return 0; } int mcpl2phits_app( int argc, char** argv ) { const char * inmcplfile; const char * outphitsfile; long nparticles_limit; int use64bitreclen, nopolarisation; int parse = mcpl2phits_parse_args( argc, (const char**)argv, &inmcplfile, &outphitsfile, &nparticles_limit, &use64bitreclen, &nopolarisation); if (parse==-1)// --help return 0; if (parse)// parse error return parse; int reclen = (use64bitreclen?8:4); if (mcpl2phits(inmcplfile, outphitsfile, (nopolarisation?0:1), nparticles_limit, reclen)) return 0; return 1; } ///////////////////////////////////////////////////////////////////////////////////// // // // mcpl2phits : a simple command line utility for converting MCPL to binary // PHITS dump files. // // // // This file can be freely used as per the terms in the LICENSE file. // // // // However, note that usage of PHITS-related utilities might require additional // // permissions and licenses from third-parties, which is not within the scope of // // the MCPL project itself. // // // // Written 2019, thomas.kittelmann@esss.se (European Spallation Source). // // // ///////////////////////////////////////////////////////////////////////////////////// int main(int argc,char** argv) { return mcpl2phits_app(argc,argv); } mcpl-1.3.2/src_fat/mcpl2ssw_app_fat.c000066400000000000000000023430341361775146500175310ustar00rootroot00000000000000 /////////////////////////////////////////////////////////////////////// // // // This is a quick and dirty standalone version of the MCPL to SSW // // converter, mcpl2ssw, including both mcpl.h, mcpl.c, // // sswread.h, sswread.c, a main(), and zlib. // // // // Compile into executable using C99 with libm: // // // // $CC -std=c99 mcpl2ssw_app_fat.c -lm -o mcpl2ssw // // // // Where $CC is a C99 capable C-compiler like gcc or clang. // // // // For licensing and documentation, please refer to either the MCPL // // website (https://mctools.github.io/mcpl/) or files in the full // // MCPL distribution, obtainable from the same place. In particular, // // since some code in this file originates in the zlib library // // (http://zlib.net), the zlib license applies to those parts and is // // repeated below. // // // // Note that usage of MCNP(X)-related utilities might require // // additional permissions and licenses from third-parties, which is // // not within the scope of the MCPL project itself. // // // /////////////////////////////////////////////////////////////////////// //---------- the zlib license ----------// /* zlib.h -- interface of the 'zlib' general purpose compression library version 1.2.8, April 28th, 2013 Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. Jean-loup Gailly Mark Adler jloup@gzip.org madler@alumni.caltech.edu */ //---------- Automatically concatenated code follows below ----------// #ifdef MCPL_HEADER_INCPATH # undef MCPL_HEADER_INCPATH #endif #ifndef __STDC_FORMAT_MACROS # define __STDC_FORMAT_MACROS #endif #ifndef _POSIX_C_SOURCE # define _POSIX_C_SOURCE 200809L #endif #ifndef _ISOC99_SOURCE # define _ISOC99_SOURCE 1 #endif #ifndef _C99_SOURCE # define _C99_SOURCE 1 #endif #ifndef MCPL_HASZLIB # define MCPL_HASZLIB #endif #ifndef SSWREAD_HASZLIB # define SSWREAD_HASZLIB #endif #ifdef SSWREAD_HDR_INCPATH # undef SSWREAD_HDR_INCPATH #endif #ifdef SSWMCPL_HDR_INCPATH # undef SSWMCPL_HDR_INCPATH #endif #ifdef SSWREAD_ZLIB_INCPATH # undef SSWREAD_ZLIB_INCPATH #endif #ifdef MCPL_ZLIB_INCPATH # undef MCPL_ZLIB_INCPATH #endif #ifndef MCPL_H #define MCPL_H #include /***********************************************************************************/ /* */ /* Monte Carlo Particle Lists : MCPL */ /* */ /* Utilities for reading and writing .mcpl files: A binary format with lists of */ /* particle state information, for interchanging and reshooting events between */ /* various Monte Carlo simulation applications. */ /* */ /* Find more information and updates at https://mctools.github.io/mcpl/ */ /* */ /* This file can be freely used as per the terms in the LICENSE file. */ /* */ /* Written by Thomas Kittelmann, 2015-2017. */ /* */ /***********************************************************************************/ #define MCPL_VERSION_MAJOR 1 #define MCPL_VERSION_MINOR 3 #define MCPL_VERSION_PATCH 2 #define MCPL_VERSION 10302 /* (10000*MAJOR+100*MINOR+PATCH) */ #define MCPL_VERSION_STR "1.3.2" #define MCPL_FORMATVERSION 3 /* Format version of written files */ #ifdef __cplusplus extern "C" { #endif /*********/ /* Types */ /*********/ #pragma pack (push, 1) /* The data structure representing a particle (note that persistification of */ /* polarisation and userflags must be explicitly enabled when writing .mcpl */ /* files, or they will simply contain zeroes when the file is read): */ typedef struct { double ekin; /* kinetic energy [MeV] */ double polarisation[3]; /* polarisation vector */ double position[3]; /* position [cm] */ double direction[3]; /* momentum direction (unit vector) */ double time; /* time-stamp [millisecond] */ double weight; /* weight or intensity */ int32_t pdgcode; /* MC particle number from the Particle Data Group (2112=neutron, 22=gamma, ...) */ uint32_t userflags; /* User flags (if used, the file header should probably contain information about how). */ } mcpl_particle_t; #pragma pack (pop) typedef struct { void * internal; } mcpl_file_t; /* file-object used while reading .mcpl */ typedef struct { void * internal; } mcpl_outfile_t; /* file-object used while writing .mcpl */ /****************************/ /* Creating new .mcpl files */ /****************************/ /* Instantiate new file object (will also open and override specified file) */ mcpl_outfile_t mcpl_create_outfile(const char * filename); const char * mcpl_outfile_filename(mcpl_outfile_t);/* filename being written to (might have had .mcpl appended) */ /* Optionally set global options or add info to the header: */ void mcpl_hdr_set_srcname(mcpl_outfile_t, const char *);/* Name of the generating application */ void mcpl_hdr_add_comment(mcpl_outfile_t, const char *);/* Add one or more human-readable comments */ void mcpl_hdr_add_data(mcpl_outfile_t, const char * key, uint32_t ldata, const char * data);/* add binary blobs by key */ void mcpl_enable_userflags(mcpl_outfile_t);/* to write the "userflags" info */ void mcpl_enable_polarisation(mcpl_outfile_t);/* to write the "polarisation" info */ void mcpl_enable_doubleprec(mcpl_outfile_t);/* use double precision FP numbers in storage */ void mcpl_enable_universal_pdgcode(mcpl_outfile_t, int32_t pdgcode);/* All particles are of the same type */ void mcpl_enable_universal_weight(mcpl_outfile_t, double w);/* All particles have the same weight */ /* Optionally (but rarely skipped) add particles, by updating the info in */ /* and then passing in a pointer to an mcpl_particle_t instance: */ void mcpl_add_particle(mcpl_outfile_t,const mcpl_particle_t*); /* Finally, always remember to close the file: */ void mcpl_close_outfile(mcpl_outfile_t); /* Alternatively close with (will call mcpl_gzip_file after close). */ /* Returns non-zero if gzipping was succesful: */ int mcpl_closeandgzip_outfile(mcpl_outfile_t); /* Convenience function which returns a pointer to a nulled-out particle struct which can be used to edit and pass to mcpl_add_particle. It can be reused and will be automatically free'd when the file is closed: */ mcpl_particle_t* mcpl_get_empty_particle(mcpl_outfile_t); /***********************/ /* Reading .mcpl files */ /***********************/ /* Open file and load header information into memory, skip to the first (if */ /* any) particle in the list: */ mcpl_file_t mcpl_open_file(const char * filename); /* Access header data: */ unsigned mcpl_hdr_version(mcpl_file_t);/* file format version (not the same as MCPL_VERSION) */ uint64_t mcpl_hdr_nparticles(mcpl_file_t);/* number of particles stored in file */ const char* mcpl_hdr_srcname(mcpl_file_t);/* Name of the generating application */ unsigned mcpl_hdr_ncomments(mcpl_file_t);/* number of comments stored in file */ const char * mcpl_hdr_comment(mcpl_file_t, unsigned icomment);/* access i'th comment */ int mcpl_hdr_nblobs(mcpl_file_t); const char** mcpl_hdr_blobkeys(mcpl_file_t);/* returns 0 if there are no keys */ int mcpl_hdr_blob(mcpl_file_t, const char* key, uint32_t* ldata, const char ** data);/* access data (returns 0 if key doesn't exist) */ int mcpl_hdr_has_userflags(mcpl_file_t); int mcpl_hdr_has_polarisation(mcpl_file_t); int mcpl_hdr_has_doubleprec(mcpl_file_t); uint64_t mcpl_hdr_header_size(mcpl_file_t);/* bytes consumed by header (uncompressed) */ int mcpl_hdr_particle_size(mcpl_file_t);/* bytes per particle (uncompressed) */ int32_t mcpl_hdr_universal_pdgcode(mcpl_file_t);/* returns 0 in case of per-particle pdgcode */ double mcpl_hdr_universal_weight(mcpl_file_t);/* returns 0.0 in case of per-particle weights */ int mcpl_hdr_little_endian(mcpl_file_t); /* Request pointer to particle at current location and skip forward to the next */ /* particle. Return value will be null in case there was no particle at the */ /* current location (normally due to end-of-file): */ const mcpl_particle_t* mcpl_read(mcpl_file_t); /* Seek and skip in particles (returns 0 when there is no particle at the new position): */ int mcpl_skipforward(mcpl_file_t,uint64_t n); int mcpl_rewind(mcpl_file_t); int mcpl_seek(mcpl_file_t,uint64_t ipos); uint64_t mcpl_currentposition(mcpl_file_t); /* Deallocate memory and release file-handle with: */ void mcpl_close_file(mcpl_file_t); /***********************************/ /* Other operations on .mcpl files */ /***********************************/ /* Dump information about the file to std-output: */ /* parts : 0 -> header+particle list, 1 -> just header, 2 -> just particle list. */ /* nlimit: maximum number of particles to list (0 for unlimited) */ /* nskip : index of first particle in the file to list. */ void mcpl_dump(const char * file, int parts, uint64_t nskip, uint64_t nlimit); /* Merge contents of a list of files by concatenating all particle contents into a */ /* new file, file_output. This results in an error unless all meta-data and settings */ /* in the files are identical. Also fails if file_output already exists. Note that */ /* the return value is a handle to the output file which has not yet been closed: */ mcpl_outfile_t mcpl_merge_files( const char* file_output, unsigned nfiles, const char ** files); /* Test if files could be merged by mcpl_merge_files: */ int mcpl_can_merge(const char * file1, const char* file2); /* Similar to mcpl_merge_files, but merges two files by appending all particles in */ /* file2 to the list in file1 (thus file1 grows while file2 stays untouched). */ /* Note that this requires similar version of the MCPL format of the two files, in */ /* addition to the other checks in mcpl_can_merge(). */ /* Careful usage of this function can be more efficient than mcpl_merge_files. */ void mcpl_merge_inplace(const char * file1, const char* file2); /* Attempt to merge incompatible files, by throwing away meta-data and otherwise */ /* selecting a configuration which is suitable to contain the data of all files. */ /* Userflags will be discarded unless keep_userflags=1. */ /* If called with compatible files, the code will fall back to calling the usual */ /* mcpl_merge_files function instead. */ mcpl_outfile_t mcpl_forcemerge_files( const char* file_output, unsigned nfiles, const char ** files, int keep_userflags ); /* Attempt to fix number of particles in the header of a file which was never */ /* properly closed: */ void mcpl_repair(const char * file1); /* For easily creating a standard mcpl-tool cmdline application: */ int mcpl_tool(int argc, char** argv); /* Attempt to run gzip on a file (does not require MCPL_HASZLIB on unix) */ /* Returns non-zero if gzipping was succesful. */ int mcpl_gzip_file(const char * filename); /* Convenience function which transfers all settings, blobs and comments to */ /* target. Intended to make it easy to filter files via custom C code. */ void mcpl_transfer_metadata(mcpl_file_t source, mcpl_outfile_t target); /* Function which can be used when transferring particles from one MCPL file */ /* to another. A particle must have been already read from the source file */ /* with a call to mcpl_read(..). This function will transfer the packed par- */ /* ticle data exactly when possible (using mcpl_add_particle can in principle */ /* introduce tiny numerical uncertainties due to the internal unpacking and */ /* repacking of direction vectors involved): */ void mcpl_transfer_last_read_particle(mcpl_file_t source, mcpl_outfile_t target); /******************/ /* Error handling */ /******************/ /* Override the error handler which will get called with the error */ /* description. If no handler is set, errors will get printed to stdout and the */ /* process terminated. An error handler should not return to the calling code. */ void mcpl_set_error_handler(void (*handler)(const char *)); /**********************/ /* Obsolete functions */ /**********************/ /* Functions kept for backwards compatibility. They keep working for now, but */ /* usage will result in a warning printed to stdout, notifying users to update */ /* their code. */ void mcpl_merge(const char *, const char*);/* Obsolete name for mcpl_merge_inplace */ int mcpl_gzip_file_rc(const char * filename);/* Obsolete name for mcpl_gzip_file */ int mcpl_closeandgzip_outfile_rc(mcpl_outfile_t);/* Obsolete name for mcpl_closeandgzip_outfile_rc */ int32_t mcpl_hdr_universel_pdgcode(mcpl_file_t);/* Obsolete name for mcpl_hdr_universal_pdgcode */ #ifdef __cplusplus } #endif #endif #ifndef sswmcpl_h #define sswmcpl_h ////////////////////////////////////////////////////////////////////////////////////// // // // Functions for converting SSW files from MCNP(X) to MCPL files. // // // // The code was written with help from E. Klinkby DTU NuTech. // // // // This file can be freely used as per the terms in the LICENSE file. // // // // However, note that usage of MCNP(X)-related utilities might require additional // // permissions and licenses from third-parties, which is not within the scope of // // the MCPL project itself. // // // // Written 2015-2017 by Thomas.Kittelmann@esss.se. // // // ////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////// // Create mcplfile based on content in sswfile. Using this function will neither // enable double-precision or user-flags in the output file, and will always // attempt to gzip the resulting MCPL file. Use ssw2mcpl2 instead to fine-tune // these choices or to embed a copy of the MCNP input deck file in the MCPL // header. Returns 1 on success, 0 on failure: int ssw2mcpl(const char * sswfile, const char * mcplfile); ////////////////////////////////////////////////////////////////////////////////////// // Advanced version of the above with more options: // // opt_dp : Set to 1 to enable double-precision storage of floating point // values. Set to 0 for single-precision. // opt_surf: Set to 1 to store SSW surface id information in the MCPL // userflags. Set to 0 to not store any userflags. // opt_gzip: Set to 1 to gzip the resulting mcpl file. Set to 0 to leave the // resulting file uncompressed. // inputdeckfile: Set to the filename of the MCNP input deck file, to embed a // copy of it in the MCPL header. Set to 0 to not do this. // int ssw2mcpl2(const char * sswfile, const char * mcplfile, int opt_dp, int opt_surf, int opt_gzip, const char * inputdeckfile); ////////////////////////////////////////////////////////////////////////////////////// // Create sswfile based on content in mcplfile. This also needs a reference // sswfile from the same approximate setup (MCNP version, input deck...) where // the new SSW file is to be used. If the surface_id parameter is non-zero, all // particles in the resulting sswfile will have that surface ID, otherwise it // will be taken from the MCPL userflags (must be in range [1,999999]). Finally, // if the limit parameter is non-zero, it will provide an upper limit on the // number of particles put into the resulting ssw file (up to 2147483647). int mcpl2ssw(const char * mcplfile, const char * sswfile, const char * refsswfile, long surface_id, long limit); ////////////////////////////////////////////////////////////////////////////////////// // For easily creating standard ssw2mcpl and mcpl2ssw cmdline applications: int ssw2mcpl_app(int argc,char** argv); int mcpl2ssw_app(int argc,char** argv); #endif #ifndef MCPL_HASZLIB # define MCPL_HASZLIB #endif #ifdef MCPL_ZLIB_INCPATH # undef MCPL_ZLIB_INCPATH #endif ///////////////////////////////////////////////////////////////////////////////////// // // // Monte Carlo Particle Lists : MCPL // // // // Utilities for reading and writing .mcpl files: A binary format with lists of // // particle state information, for interchanging and reshooting events between // // various Monte Carlo simulation applications. // // // // Client code including mcpl.h does not need any special build flags and can // // be compiled with any complient compiler and any current C or C++ standard. // // // // Compilation of mcpl.c on the other hand is currently not supported for C89, // // although this could be revisited. Thus, compilation of mcpl.c can proceed // // using any complient C-compiler using -std=c99 or -std=c11 or any complient // // C++ compiler using any version of the C++ standard, and the resulting code // // must always be linked with libm (using -lm). Furthermore, the following // // preprocessor flags can be used when compiling mcpl.c to fine tune the build // // process and the capabilities of the resulting binary. // // // // MCPL_HASZLIB : Define if compiling and linking with zlib, to allow // // direct reading of .mcpl.gz files. // // MCPL_ZLIB_INCPATH : Specify alternative value if the zlib header is not to // // be included as "zlib.h". // // MCPL_HEADER_INCPATH : Specify alternative value if the MCPL header itself is // // not to be included as "mcpl.h". // // MCPL_NO_EXT_GZIP : Define to make sure that mcpl_gzip_file will never // // compress via a separate process running a system- // // provided gzip executable. // // MCPL_NO_CUSTOM_GZIP : Define to make sure that mcpl_gzip_file will never // // compress via custom zlib-based code. // // // // This file can be freely used as per the terms in the LICENSE file. // // // // Find more information and updates at https://mctools.github.io/mcpl/ // // // // Written by Thomas Kittelmann, 2015-2017. // // // ///////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////// // MCPL_FORMATVERSION history: // // // // 3: Current version. Changed packing of unit vectors from octahedral to // // the better performing "Adaptive Projection Packing". // // 2: First public release. // // 1: Format used during early development. No longer supported. // ///////////////////////////////////////////////////////////////////////////////////// //Rough platform detection (could be much more fine-grained): #if defined(__unix__) || defined(__unix) || (defined(__APPLE__) && defined(__MACH__)) # define MCPL_THIS_IS_UNIX #endif #if defined(MSDOS) || defined(OS2) || defined(WIN32) || defined(_WIN32) || defined(__CYGWIN__) # ifdef MCPL_THIS_IS_UNIX # undef MCPL_THIS_IS_UNIX # endif # define MCPL_THIS_IS_MS #endif //Before including mcpl.h, we attempt to get PRIu64 defined in a relatively //robust manner by enabling feature test macros for gcc and including relevant //headers: #ifndef __STDC_FORMAT_MACROS # define __STDC_FORMAT_MACROS #endif #ifndef _POSIX_C_SOURCE # define _POSIX_C_SOURCE 200809L #endif #ifndef _ISOC99_SOURCE # define _ISOC99_SOURCE 1 #endif #ifndef _C99_SOURCE # define _C99_SOURCE 1 #endif #include #include #ifndef PRIu64//bad compiler - fallback to guessing # if defined(_MSC_VER) && (_MSC_VER<1900) # define PRIu64 "I64u" # else # if defined(__WORDSIZE) && (__WORDSIZE==64) # define PRIu64 "lu" # else # define PRIu64 "llu" # endif # endif #endif #ifdef MCPL_HEADER_INCPATH # include MCPL_HEADER_INCPATH #else #endif #ifdef MCPL_HASZLIB # ifdef MCPL_ZLIB_INCPATH # include MCPL_ZLIB_INCPATH # else #ifndef NO_DUMMY_DECL # define NO_DUMMY_DECL #endif /* zlib.h -- interface of the 'zlib' general purpose compression library version 1.2.8, April 28th, 2013 Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. Jean-loup Gailly Mark Adler jloup@gzip.org madler@alumni.caltech.edu The data format used by the zlib library is described by RFCs (Request for Comments) 1950 to 1952 in the files http://tools.ietf.org/html/rfc1950 (zlib format), rfc1951 (deflate format) and rfc1952 (gzip format). */ #ifndef MiniZLib_ZLIB_H #define MiniZLib_ZLIB_H /* zconf.h -- configuration of the zlib compression library * Copyright (C) 1995-2013 Jean-loup Gailly. * For conditions of distribution and use, see copyright notice in zlib.h */ /* @(#) $Id$ */ #ifndef MiniZLib_ZCONF_H #define MiniZLib_ZCONF_H /* * If you *really* need a unique prefix for all types and library functions, * compile with -DZ_PREFIX. The "standard" zlib should be compiled without it. * Even better than compiling with -DZ_PREFIX would be to use configure to set * this permanently in zconf.h using "./configure --zprefix". */ #if 1 /* may be set to #if 1 by ./configure */ # define Z_PREFIX_SET /* all linked symbols */ # define _dist_code minizlib__dist_code # define _length_code minizlib__length_code # define _tr_align minizlib__tr_align # define _tr_flush_bits minizlib__tr_flush_bits # define _tr_flush_block minizlib__tr_flush_block # define _tr_init minizlib__tr_init # define _tr_stored_block minizlib__tr_stored_block # define _tr_tally minizlib__tr_tally # define adler32 minizlib_adler32 # define adler32_combine minizlib_adler32_combine # define adler32_combine64 minizlib_adler32_combine64 # ifndef Z_SOLO # define compress minizlib_compress # define compress2 minizlib_compress2 # define compressBound minizlib_compressBound # endif # define crc32 minizlib_crc32 # define crc32_combine minizlib_crc32_combine # define crc32_combine64 minizlib_crc32_combine64 # define deflate minizlib_deflate # define deflateBound minizlib_deflateBound # define deflateCopy minizlib_deflateCopy # define deflateEnd minizlib_deflateEnd # define deflateInit2_ minizlib_deflateInit2_ # define deflateInit_ minizlib_deflateInit_ # define deflateParams minizlib_deflateParams # define deflatePending minizlib_deflatePending # define deflatePrime minizlib_deflatePrime # define deflateReset minizlib_deflateReset # define deflateResetKeep minizlib_deflateResetKeep # define deflateSetDictionary minizlib_deflateSetDictionary # define deflateSetHeader minizlib_deflateSetHeader # define deflateTune minizlib_deflateTune # define deflate_copyright minizlib_deflate_copyright # define get_crc_table minizlib_get_crc_table # ifndef Z_SOLO # define gz_error minizlib_gz_error # define gz_intmax minizlib_gz_intmax # define gz_strwinerror minizlib_gz_strwinerror # define gzbuffer minizlib_gzbuffer # define gzclearerr minizlib_gzclearerr # define gzclose minizlib_gzclose # define gzclose_r minizlib_gzclose_r # define gzclose_w minizlib_gzclose_w # define gzdirect minizlib_gzdirect # define gzdopen minizlib_gzdopen # define gzeof minizlib_gzeof # define gzerror minizlib_gzerror # define gzflush minizlib_gzflush # define gzgetc minizlib_gzgetc # define gzgetc_ minizlib_gzgetc_ # define gzgets minizlib_gzgets # define gzoffset minizlib_gzoffset # define gzoffset64 minizlib_gzoffset64 # define gzopen minizlib_gzopen # define gzopen64 minizlib_gzopen64 # ifdef _WIN32 # define gzopen_w minizlib_gzopen_w # endif # define gzprintf minizlib_gzprintf # define gzvprintf minizlib_gzvprintf # define gzputc minizlib_gzputc # define gzputs minizlib_gzputs # define gzread minizlib_gzread # define gzrewind minizlib_gzrewind # define gzseek minizlib_gzseek # define gzseek64 minizlib_gzseek64 # define gzsetparams minizlib_gzsetparams # define gztell minizlib_gztell # define gztell64 minizlib_gztell64 # define gzungetc minizlib_gzungetc # define gzwrite minizlib_gzwrite # endif # define inflate minizlib_inflate # define inflateBack minizlib_inflateBack # define inflateBackEnd minizlib_inflateBackEnd # define inflateBackInit_ minizlib_inflateBackInit_ # define inflateCopy minizlib_inflateCopy # define inflateEnd minizlib_inflateEnd # define inflateGetHeader minizlib_inflateGetHeader # define inflateInit2_ minizlib_inflateInit2_ # define inflateInit_ minizlib_inflateInit_ # define inflateMark minizlib_inflateMark # define inflatePrime minizlib_inflatePrime # define inflateReset minizlib_inflateReset # define inflateReset2 minizlib_inflateReset2 # define inflateSetDictionary minizlib_inflateSetDictionary # define inflateGetDictionary minizlib_inflateGetDictionary # define inflateSync minizlib_inflateSync # define inflateSyncPoint minizlib_inflateSyncPoint # define inflateUndermine minizlib_inflateUndermine # define inflateResetKeep minizlib_inflateResetKeep # define inflate_copyright minizlib_inflate_copyright # define inflate_fast minizlib_inflate_fast # define inflate_table minizlib_inflate_table # ifndef Z_SOLO # define uncompress minizlib_uncompress # endif # define zError minizlib_zError # ifndef Z_SOLO # define zcalloc minizlib_zcalloc # define zcfree minizlib_zcfree # endif # define zlibCompileFlags minizlib_zlibCompileFlags # define zlibVersion minizlib_zlibVersion /* all zlib typedefs in zlib.h and zconf.h */ # define Byte minizlib_Byte # define Bytef minizlib_Bytef # define alloc_func minizlib_alloc_func # define charf minizlib_charf # define free_func minizlib_free_func # ifndef Z_SOLO # define gzFile minizlib_gzFile # endif # define gz_header minizlib_gz_header # define gz_headerp minizlib_gz_headerp # define in_func minizlib_in_func # define intf minizlib_intf # define out_func minizlib_out_func # define uInt minizlib_uInt # define uIntf minizlib_uIntf # define uLong minizlib_uLong # define uLongf minizlib_uLongf # define voidp minizlib_voidp # define voidpc minizlib_voidpc # define voidpf minizlib_voidpf /* all zlib structs in zlib.h and zconf.h */ # define gz_header_s minizlib_gz_header_s # define internal_state minizlib_internal_state /* extras added by TK */ # define distfix minizlib_distfix # define lenfix minizlib_lenfix # define lbase minizlib_lbase # define dbase minizlib_dbase # define my_version minizlib_my_version # define dext minizlib_dext # define order minizlib_order # define build_bl_tree minizlib_build_bl_tree # define copy_block minizlib_copy_block # define crc32_big minizlib_crc32_big # define crc32_little minizlib_crc32_little # define deflate_huff minizlib_deflate_huff # define deflate_rle minizlib_deflate_rle # define detect_data_type minizlib_detect_data_type # define fixedtables minizlib_fixedtables # define flush_pending minizlib_flush_pending # define gen_bitlen minizlib_gen_bitlen # define gf2_matrix_square minizlib_gf2_matrix_square # define gf2_matrix_times minizlib_gf2_matrix_times # define init_block minizlib_init_block # define lm_init minizlib_lm_init # define pqdownheap minizlib_pqdownheap # define putShortMSB minizlib_putShortMSB # define read_buf minizlib_read_buf # define scan_tree minizlib_scan_tree # define send_all_trees minizlib_send_all_trees # define syncsearch minizlib_syncsearch # define tr_static_init minizlib_tr_static_init # define updatewindow minizlib_updatewindow # define adler32_combine_ minizlib_adler32_combine_ # define bi_flush minizlib_bi_flush # define bi_reverse minizlib_bi_reverse # define bi_windup minizlib_bi_windup # define gen_codes minizlib_gen_codes # define deflate_slow minizlib_deflate_slow # define deflate_fast minizlib_deflate_fast # define deflate_stored minizlib_deflate_stored # define gz_avail minizlib_gz_avail # define gz_load minizlib_gz_load # define gz_reset minizlib_gz_reset # define gz_skip minizlib_gz_skip # define gz_zero minizlib_gz_zero # define gz_comp minizlib_gz_comp # define gz_decomp minizlib_gz_decomp # define gz_fetch minizlib_gz_fetch # define gz_init minizlib_gz_init # define gz_look minizlib_gz_look # define gz_open minizlib_gz_open # define z_errmsg minizlib_z_errmsg # define crc32_combine_ minizlib_crc32_combine_ # define crc_table minizlib_crc_table # define longest_match minizlib_longest_match # define fill_window minizlib_fill_window # define configuration_table minizlib_configuration_table # define send_tree minizlib_send_tree # define compress_block minizlib_compress_block # define extra_lbits minizlib_extra_lbits # define base_length minizlib_base_length # define extra_dbits minizlib_extra_dbits # define base_dist minizlib_base_dist # define build_tree minizlib_build_tree # define bl_order minizlib_bl_order # define extra_blbits minizlib_extra_blbits # define static_l_desc minizlib_static_l_desc # define static_bl_desc minizlib_static_bl_desc # define static_d_desc minizlib_static_d_desc # define static_dtree minizlib_static_dtree # define static_ltree minizlib_static_ltree #endif #if defined(__MSDOS__) && !defined(MSDOS) # define MSDOS #endif #if (defined(OS_2) || defined(__OS2__)) && !defined(OS2) # define OS2 #endif #if defined(_WINDOWS) && !defined(WINDOWS) # define WINDOWS #endif #if defined(_WIN32) || defined(_WIN32_WCE) || defined(__WIN32__) # ifndef WIN32 # define WIN32 # endif #endif #if (defined(MSDOS) || defined(OS2) || defined(WINDOWS)) && !defined(WIN32) # if !defined(__GNUC__) && !defined(__FLAT__) && !defined(__386__) # ifndef SYS16BIT # define SYS16BIT # endif # endif #endif /* * Compile with -DMAXSEG_64K if the alloc function cannot allocate more * than 64k bytes at a time (needed on systems with 16-bit int). */ #ifdef SYS16BIT # define MAXSEG_64K #endif #ifdef MSDOS # define UNALIGNED_OK #endif #ifdef __STDC_VERSION__ # ifndef STDC # define STDC # endif # if __STDC_VERSION__ >= 199901L # ifndef STDC99 # define STDC99 # endif # endif #endif #if !defined(STDC) && (defined(__STDC__) || defined(__cplusplus)) # define STDC #endif #if !defined(STDC) && (defined(__GNUC__) || defined(__BORLANDC__)) # define STDC #endif #if !defined(STDC) && (defined(MSDOS) || defined(WINDOWS) || defined(WIN32)) # define STDC #endif #if !defined(STDC) && (defined(OS2) || defined(__HOS_AIX__)) # define STDC #endif #if defined(__OS400__) && !defined(STDC) /* iSeries (formerly AS/400). */ # define STDC #endif #ifndef STDC # ifndef const /* cannot use !defined(STDC) && !defined(const) on Mac */ # define const /* note: need a more gentle solution here */ # endif #endif #if defined(ZLIB_CONST) && !defined(z_const) # define z_const const #else # define z_const #endif /* Some Mac compilers merge all .h files incorrectly: */ #if defined(__MWERKS__)||defined(applec)||defined(THINK_C)||defined(__SC__) # define NO_DUMMY_DECL #endif /* Maximum value for memLevel in deflateInit2 */ #ifndef MAX_MEM_LEVEL # ifdef MAXSEG_64K # define MAX_MEM_LEVEL 8 # else # define MAX_MEM_LEVEL 9 # endif #endif /* Maximum value for windowBits in deflateInit2 and inflateInit2. * WARNING: reducing MAX_WBITS makes minigzip unable to extract .gz files * created by gzip. (Files created by minigzip can still be extracted by * gzip.) */ #ifndef MAX_WBITS # define MAX_WBITS 15 /* 32K LZ77 window */ #endif /* The memory requirements for deflate are (in bytes): (1 << (windowBits+2)) + (1 << (memLevel+9)) that is: 128K for windowBits=15 + 128K for memLevel = 8 (default values) plus a few kilobytes for small objects. For example, if you want to reduce the default memory requirements from 256K to 128K, compile with make CFLAGS="-O -DMAX_WBITS=14 -DMAX_MEM_LEVEL=7" Of course this will generally degrade compression (there's no free lunch). The memory requirements for inflate are (in bytes) 1 << windowBits that is, 32K for windowBits=15 (default value) plus a few kilobytes for small objects. */ /* Type declarations */ #ifndef OF /* function prototypes */ # ifdef STDC # define OF(args) args # else # define OF(args) () # endif #endif #ifndef Z_ARG /* function prototypes for stdarg */ # if defined(STDC) || defined(Z_HAVE_STDARG_H) # define Z_ARG(args) args # else # define Z_ARG(args) () # endif #endif /* The following definitions for FAR are needed only for MSDOS mixed * model programming (small or medium model with some far allocations). * This was tested only with MSC; for other MSDOS compilers you may have * to define NO_MEMCPY in zutil.h. If you don't need the mixed model, * just define FAR to be empty. */ #ifdef SYS16BIT # if defined(M_I86SM) || defined(M_I86MM) /* MSC small or medium model */ # define SMALL_MEDIUM # ifdef _MSC_VER # define FAR _far # else # define FAR far # endif # endif # if (defined(__SMALL__) || defined(__MEDIUM__)) /* Turbo C small or medium model */ # define SMALL_MEDIUM # ifdef __BORLANDC__ # define FAR _far # else # define FAR far # endif # endif #endif #if defined(WINDOWS) || defined(WIN32) /* If building or using zlib as a DLL, define ZLIB_DLL. * This is not mandatory, but it offers a little performance increase. */ # ifdef ZLIB_DLL # if defined(WIN32) && (!defined(__BORLANDC__) || (__BORLANDC__ >= 0x500)) # ifdef ZLIB_INTERNAL # define ZEXTERN extern __declspec(dllexport) # else # define ZEXTERN extern __declspec(dllimport) # endif # endif # endif /* ZLIB_DLL */ /* If building or using zlib with the WINAPI/WINAPIV calling convention, * define ZLIB_WINAPI. * Caution: the standard ZLIB1.DLL is NOT compiled using ZLIB_WINAPI. */ # ifdef ZLIB_WINAPI # ifdef FAR # undef FAR # endif # include /* No need for _export, use ZLIB.DEF instead. */ /* For complete Windows compatibility, use WINAPI, not __stdcall. */ # define ZEXPORT WINAPI # ifdef WIN32 # define ZEXPORTVA WINAPIV # else # define ZEXPORTVA FAR CDECL # endif # endif #endif #if defined (__BEOS__) # ifdef ZLIB_DLL # ifdef ZLIB_INTERNAL # define ZEXPORT __declspec(dllexport) # define ZEXPORTVA __declspec(dllexport) # else # define ZEXPORT __declspec(dllimport) # define ZEXPORTVA __declspec(dllimport) # endif # endif #endif #ifndef ZEXTERN # define ZEXTERN extern #endif #ifndef ZEXPORT # define ZEXPORT #endif #ifndef ZEXPORTVA # define ZEXPORTVA #endif #ifndef FAR # define FAR #endif #if !defined(__MACTYPES__) typedef unsigned char Byte; /* 8 bits */ #endif typedef unsigned int uInt; /* 16 bits or more */ typedef unsigned long uLong; /* 32 bits or more */ #ifdef SMALL_MEDIUM /* Borland C/C++ and some old MSC versions ignore FAR inside typedef */ # define Bytef Byte FAR #else typedef Byte FAR Bytef; #endif typedef char FAR charf; typedef int FAR intf; typedef uInt FAR uIntf; typedef uLong FAR uLongf; #ifdef STDC typedef void const *voidpc; typedef void FAR *voidpf; typedef void *voidp; #else typedef Byte const *voidpc; typedef Byte FAR *voidpf; typedef Byte *voidp; #endif #if !defined(Z_U4) && !defined(Z_SOLO) && defined(STDC) # include # if (UINT_MAX == 0xffffffffUL) # define Z_U4 unsigned # elif (ULONG_MAX == 0xffffffffUL) # define Z_U4 unsigned long # elif (USHRT_MAX == 0xffffffffUL) # define Z_U4 unsigned short # endif #endif #ifdef Z_U4 typedef Z_U4 z_crc_t; #else typedef unsigned long z_crc_t; #endif #ifdef HAVE_UNISTD_H /* may be set to #if 1 by ./configure */ # define Z_HAVE_UNISTD_H #endif #ifdef HAVE_STDARG_H /* may be set to #if 1 by ./configure */ # define Z_HAVE_STDARG_H #endif #ifdef STDC # ifndef Z_SOLO # include /* for off_t */ # endif #endif #if defined(STDC) || defined(Z_HAVE_STDARG_H) # ifndef Z_SOLO # include /* for va_list */ # endif #endif #ifdef _WIN32 # ifndef Z_SOLO # include /* for wchar_t */ # endif #endif /* a little trick to accommodate both "#define _LARGEFILE64_SOURCE" and * "#define _LARGEFILE64_SOURCE 1" as requesting 64-bit operations, (even * though the former does not conform to the LFS document), but considering * both "#undef _LARGEFILE64_SOURCE" and "#define _LARGEFILE64_SOURCE 0" as * equivalently requesting no 64-bit operations */ #if defined(_LARGEFILE64_SOURCE) && -_LARGEFILE64_SOURCE - -1 == 1 # undef _LARGEFILE64_SOURCE #endif #if defined(__WATCOMC__) && !defined(Z_HAVE_UNISTD_H) # define Z_HAVE_UNISTD_H #endif #ifndef Z_SOLO # if defined(Z_HAVE_UNISTD_H) || defined(_LARGEFILE64_SOURCE) # include /* for SEEK_*, off_t, and _LFS64_LARGEFILE */ # ifdef VMS # include /* for off_t */ # endif # ifndef z_off_t # define z_off_t off_t # endif # endif #endif #if defined(_LFS64_LARGEFILE) && _LFS64_LARGEFILE-0 # define Z_LFS64 #endif #if defined(_LARGEFILE64_SOURCE) && defined(Z_LFS64) # define Z_LARGE64 #endif #if defined(_FILE_OFFSET_BITS) && _FILE_OFFSET_BITS-0 == 64 && defined(Z_LFS64) # define Z_WANT64 #endif #if !defined(SEEK_SET) && !defined(Z_SOLO) # define SEEK_SET 0 /* Seek from beginning of file. */ # define SEEK_CUR 1 /* Seek from current position. */ # define SEEK_END 2 /* Set file pointer to EOF plus "offset" */ #endif #ifndef z_off_t # define z_off_t long #endif #if !defined(_WIN32) && defined(Z_LARGE64) # define z_off64_t off64_t #else # if defined(_WIN32) && !defined(__GNUC__) && !defined(Z_SOLO) # define z_off64_t __int64 # else # define z_off64_t z_off_t # endif #endif /* MVS linker does not support external names larger than 8 bytes */ #if defined(__MVS__) #pragma map(deflateInit_,"DEIN") #pragma map(deflateInit2_,"DEIN2") #pragma map(deflateEnd,"DEEND") #pragma map(deflateBound,"DEBND") #pragma map(inflateInit_,"ININ") #pragma map(inflateInit2_,"ININ2") #pragma map(inflateEnd,"INEND") #pragma map(inflateSync,"INSY") #pragma map(inflateSetDictionary,"INSEDI") #pragma map(compressBound,"CMBND") #pragma map(inflate_table,"INTABL") #pragma map(inflate_fast,"INFA") #pragma map(inflate_copyright,"INCOPY") #endif #endif /* ZCONF_H */ #ifdef __cplusplus extern "C" { #endif #define ZLIB_VERSION "1.2.8" #define ZLIB_VERNUM 0x1280 #define ZLIB_VER_MAJOR 1 #define ZLIB_VER_MINOR 2 #define ZLIB_VER_REVISION 8 #define ZLIB_VER_SUBREVISION 0 /* The 'zlib' compression library provides in-memory compression and decompression functions, including integrity checks of the uncompressed data. This version of the library supports only one compression method (deflation) but other algorithms will be added later and will have the same stream interface. Compression can be done in a single step if the buffers are large enough, or can be done by repeated calls of the compression function. In the latter case, the application must provide more input and/or consume the output (providing more output space) before each call. The compressed data format used by default by the in-memory functions is the zlib format, which is a zlib wrapper documented in RFC 1950, wrapped around a deflate stream, which is itself documented in RFC 1951. The library also supports reading and writing files in gzip (.gz) format with an interface similar to that of stdio using the functions that start with "gz". The gzip format is different from the zlib format. gzip is a gzip wrapper, documented in RFC 1952, wrapped around a deflate stream. This library can optionally read and write gzip streams in memory as well. The zlib format was designed to be compact and fast for use in memory and on communications channels. The gzip format was designed for single- file compression on file systems, has a larger header than zlib to maintain directory information, and uses a different, slower check method than zlib. The library does not install any signal handler. The decoder checks the consistency of the compressed data, so the library should never crash even in case of corrupted input. */ typedef voidpf (*alloc_func) OF((voidpf opaque, uInt items, uInt size)); typedef void (*free_func) OF((voidpf opaque, voidpf address)); struct internal_state; typedef struct z_stream_s { z_const Bytef *next_in; /* next input byte */ uInt avail_in; /* number of bytes available at next_in */ uLong total_in; /* total number of input bytes read so far */ Bytef *next_out; /* next output byte should be put there */ uInt avail_out; /* remaining free space at next_out */ uLong total_out; /* total number of bytes output so far */ z_const char *msg; /* last error message, NULL if no error */ struct internal_state FAR *state; /* not visible by applications */ alloc_func zalloc; /* used to allocate the internal state */ free_func zfree; /* used to free the internal state */ voidpf opaque; /* private data object passed to zalloc and zfree */ int data_type; /* best guess about the data type: binary or text */ uLong adler; /* adler32 value of the uncompressed data */ uLong reserved; /* reserved for future use */ } z_stream; typedef z_stream FAR *z_streamp; /* gzip header information passed to and from zlib routines. See RFC 1952 for more details on the meanings of these fields. */ typedef struct gz_header_s { int text; /* true if compressed data believed to be text */ uLong time; /* modification time */ int xflags; /* extra flags (not used when writing a gzip file) */ int os; /* operating system */ Bytef *extra; /* pointer to extra field or Z_NULL if none */ uInt extra_len; /* extra field length (valid if extra != Z_NULL) */ uInt extra_max; /* space at extra (only when reading header) */ Bytef *name; /* pointer to zero-terminated file name or Z_NULL */ uInt name_max; /* space at name (only when reading header) */ Bytef *comment; /* pointer to zero-terminated comment or Z_NULL */ uInt comm_max; /* space at comment (only when reading header) */ int hcrc; /* true if there was or will be a header crc */ int done; /* true when done reading gzip header (not used when writing a gzip file) */ } gz_header; typedef gz_header FAR *gz_headerp; /* The application must update next_in and avail_in when avail_in has dropped to zero. It must update next_out and avail_out when avail_out has dropped to zero. The application must initialize zalloc, zfree and opaque before calling the init function. All other fields are set by the compression library and must not be updated by the application. The opaque value provided by the application will be passed as the first parameter for calls of zalloc and zfree. This can be useful for custom memory management. The compression library attaches no meaning to the opaque value. zalloc must return Z_NULL if there is not enough memory for the object. If zlib is used in a multi-threaded application, zalloc and zfree must be thread safe. On 16-bit systems, the functions zalloc and zfree must be able to allocate exactly 65536 bytes, but will not be required to allocate more than this if the symbol MAXSEG_64K is defined (see zconf.h). WARNING: On MSDOS, pointers returned by zalloc for objects of exactly 65536 bytes *must* have their offset normalized to zero. The default allocation function provided by this library ensures this (see zutil.c). To reduce memory requirements and avoid any allocation of 64K objects, at the expense of compression ratio, compile the library with -DMAX_WBITS=14 (see zconf.h). The fields total_in and total_out can be used for statistics or progress reports. After compression, total_in holds the total size of the uncompressed data and may be saved for use in the decompressor (particularly if the decompressor wants to decompress everything in a single step). */ /* constants */ #define Z_NO_FLUSH 0 #define Z_PARTIAL_FLUSH 1 #define Z_SYNC_FLUSH 2 #define Z_FULL_FLUSH 3 #define Z_FINISH 4 #define Z_BLOCK 5 #define Z_TREES 6 /* Allowed flush values; see deflate() and inflate() below for details */ #define Z_OK 0 #define Z_STREAM_END 1 #define Z_NEED_DICT 2 #define Z_ERRNO (-1) #define Z_STREAM_ERROR (-2) #define Z_DATA_ERROR (-3) #define Z_MEM_ERROR (-4) #define Z_BUF_ERROR (-5) #define Z_VERSION_ERROR (-6) /* Return codes for the compression/decompression functions. Negative values * are errors, positive values are used for special but normal events. */ #define Z_NO_COMPRESSION 0 #define Z_BEST_SPEED 1 #define Z_BEST_COMPRESSION 9 #define Z_DEFAULT_COMPRESSION (-1) /* compression levels */ #define Z_FILTERED 1 #define Z_HUFFMAN_ONLY 2 #define Z_RLE 3 #define Z_FIXED 4 #define Z_DEFAULT_STRATEGY 0 /* compression strategy; see deflateInit2() below for details */ #define Z_BINARY 0 #define Z_TEXT 1 #define Z_ASCII Z_TEXT /* for compatibility with 1.2.2 and earlier */ #define Z_UNKNOWN 2 /* Possible values of the data_type field (though see inflate()) */ #define Z_DEFLATED 8 /* The deflate compression method (the only one supported in this version) */ #define Z_NULL 0 /* for initializing zalloc, zfree, opaque */ #define zlib_version zlibVersion() /* for compatibility with versions < 1.0.2 */ /* basic functions */ ZEXTERN const char * ZEXPORT zlibVersion OF((void)); /* The application can compare zlibVersion and ZLIB_VERSION for consistency. If the first character differs, the library code actually used is not compatible with the zlib.h header file used by the application. This check is automatically made by deflateInit and inflateInit. */ /* ZEXTERN int ZEXPORT deflateInit OF((z_streamp strm, int level)); Initializes the internal stream state for compression. The fields zalloc, zfree and opaque must be initialized before by the caller. If zalloc and zfree are set to Z_NULL, deflateInit updates them to use default allocation functions. The compression level must be Z_DEFAULT_COMPRESSION, or between 0 and 9: 1 gives best speed, 9 gives best compression, 0 gives no compression at all (the input data is simply copied a block at a time). Z_DEFAULT_COMPRESSION requests a default compromise between speed and compression (currently equivalent to level 6). deflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_STREAM_ERROR if level is not a valid compression level, or Z_VERSION_ERROR if the zlib library version (zlib_version) is incompatible with the version assumed by the caller (ZLIB_VERSION). msg is set to null if there is no error message. deflateInit does not perform any compression: this will be done by deflate(). */ ZEXTERN int ZEXPORT deflate OF((z_streamp strm, int flush)); /* deflate compresses as much data as possible, and stops when the input buffer becomes empty or the output buffer becomes full. It may introduce some output latency (reading input without producing any output) except when forced to flush. The detailed semantics are as follows. deflate performs one or both of the following actions: - Compress more input starting at next_in and update next_in and avail_in accordingly. If not all input can be processed (because there is not enough room in the output buffer), next_in and avail_in are updated and processing will resume at this point for the next call of deflate(). - Provide more output starting at next_out and update next_out and avail_out accordingly. This action is forced if the parameter flush is non zero. Forcing flush frequently degrades the compression ratio, so this parameter should be set only when necessary (in interactive applications). Some output may be provided even if flush is not set. Before the call of deflate(), the application should ensure that at least one of the actions is possible, by providing more input and/or consuming more output, and updating avail_in or avail_out accordingly; avail_out should never be zero before the call. The application can consume the compressed output when it wants, for example when the output buffer is full (avail_out == 0), or after each call of deflate(). If deflate returns Z_OK and with zero avail_out, it must be called again after making room in the output buffer because there might be more output pending. Normally the parameter flush is set to Z_NO_FLUSH, which allows deflate to decide how much data to accumulate before producing output, in order to maximize compression. If the parameter flush is set to Z_SYNC_FLUSH, all pending output is flushed to the output buffer and the output is aligned on a byte boundary, so that the decompressor can get all input data available so far. (In particular avail_in is zero after the call if enough output space has been provided before the call.) Flushing may degrade compression for some compression algorithms and so it should be used only when necessary. This completes the current deflate block and follows it with an empty stored block that is three bits plus filler bits to the next byte, followed by four bytes (00 00 ff ff). If flush is set to Z_PARTIAL_FLUSH, all pending output is flushed to the output buffer, but the output is not aligned to a byte boundary. All of the input data so far will be available to the decompressor, as for Z_SYNC_FLUSH. This completes the current deflate block and follows it with an empty fixed codes block that is 10 bits long. This assures that enough bytes are output in order for the decompressor to finish the block before the empty fixed code block. If flush is set to Z_BLOCK, a deflate block is completed and emitted, as for Z_SYNC_FLUSH, but the output is not aligned on a byte boundary, and up to seven bits of the current block are held to be written as the next byte after the next deflate block is completed. In this case, the decompressor may not be provided enough bits at this point in order to complete decompression of the data provided so far to the compressor. It may need to wait for the next block to be emitted. This is for advanced applications that need to control the emission of deflate blocks. If flush is set to Z_FULL_FLUSH, all output is flushed as with Z_SYNC_FLUSH, and the compression state is reset so that decompression can restart from this point if previous compressed data has been damaged or if random access is desired. Using Z_FULL_FLUSH too often can seriously degrade compression. If deflate returns with avail_out == 0, this function must be called again with the same value of the flush parameter and more output space (updated avail_out), until the flush is complete (deflate returns with non-zero avail_out). In the case of a Z_FULL_FLUSH or Z_SYNC_FLUSH, make sure that avail_out is greater than six to avoid repeated flush markers due to avail_out == 0 on return. If the parameter flush is set to Z_FINISH, pending input is processed, pending output is flushed and deflate returns with Z_STREAM_END if there was enough output space; if deflate returns with Z_OK, this function must be called again with Z_FINISH and more output space (updated avail_out) but no more input data, until it returns with Z_STREAM_END or an error. After deflate has returned Z_STREAM_END, the only possible operations on the stream are deflateReset or deflateEnd. Z_FINISH can be used immediately after deflateInit if all the compression is to be done in a single step. In this case, avail_out must be at least the value returned by deflateBound (see below). Then deflate is guaranteed to return Z_STREAM_END. If not enough output space is provided, deflate will not return Z_STREAM_END, and it must be called again as described above. deflate() sets strm->adler to the adler32 checksum of all input read so far (that is, total_in bytes). deflate() may update strm->data_type if it can make a good guess about the input data type (Z_BINARY or Z_TEXT). In doubt, the data is considered binary. This field is only for information purposes and does not affect the compression algorithm in any manner. deflate() returns Z_OK if some progress has been made (more input processed or more output produced), Z_STREAM_END if all input has been consumed and all output has been produced (only when flush is set to Z_FINISH), Z_STREAM_ERROR if the stream state was inconsistent (for example if next_in or next_out was Z_NULL), Z_BUF_ERROR if no progress is possible (for example avail_in or avail_out was zero). Note that Z_BUF_ERROR is not fatal, and deflate() can be called again with more input and more output space to continue compressing. */ ZEXTERN int ZEXPORT deflateEnd OF((z_streamp strm)); /* All dynamically allocated data structures for this stream are freed. This function discards any unprocessed input and does not flush any pending output. deflateEnd returns Z_OK if success, Z_STREAM_ERROR if the stream state was inconsistent, Z_DATA_ERROR if the stream was freed prematurely (some input or output was discarded). In the error case, msg may be set but then points to a static string (which must not be deallocated). */ /* ZEXTERN int ZEXPORT inflateInit OF((z_streamp strm)); Initializes the internal stream state for decompression. The fields next_in, avail_in, zalloc, zfree and opaque must be initialized before by the caller. If next_in is not Z_NULL and avail_in is large enough (the exact value depends on the compression method), inflateInit determines the compression method from the zlib header and allocates all data structures accordingly; otherwise the allocation will be deferred to the first call of inflate. If zalloc and zfree are set to Z_NULL, inflateInit updates them to use default allocation functions. inflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_VERSION_ERROR if the zlib library version is incompatible with the version assumed by the caller, or Z_STREAM_ERROR if the parameters are invalid, such as a null pointer to the structure. msg is set to null if there is no error message. inflateInit does not perform any decompression apart from possibly reading the zlib header if present: actual decompression will be done by inflate(). (So next_in and avail_in may be modified, but next_out and avail_out are unused and unchanged.) The current implementation of inflateInit() does not process any header information -- that is deferred until inflate() is called. */ ZEXTERN int ZEXPORT inflate OF((z_streamp strm, int flush)); /* inflate decompresses as much data as possible, and stops when the input buffer becomes empty or the output buffer becomes full. It may introduce some output latency (reading input without producing any output) except when forced to flush. The detailed semantics are as follows. inflate performs one or both of the following actions: - Decompress more input starting at next_in and update next_in and avail_in accordingly. If not all input can be processed (because there is not enough room in the output buffer), next_in is updated and processing will resume at this point for the next call of inflate(). - Provide more output starting at next_out and update next_out and avail_out accordingly. inflate() provides as much output as possible, until there is no more input data or no more space in the output buffer (see below about the flush parameter). Before the call of inflate(), the application should ensure that at least one of the actions is possible, by providing more input and/or consuming more output, and updating the next_* and avail_* values accordingly. The application can consume the uncompressed output when it wants, for example when the output buffer is full (avail_out == 0), or after each call of inflate(). If inflate returns Z_OK and with zero avail_out, it must be called again after making room in the output buffer because there might be more output pending. The flush parameter of inflate() can be Z_NO_FLUSH, Z_SYNC_FLUSH, Z_FINISH, Z_BLOCK, or Z_TREES. Z_SYNC_FLUSH requests that inflate() flush as much output as possible to the output buffer. Z_BLOCK requests that inflate() stop if and when it gets to the next deflate block boundary. When decoding the zlib or gzip format, this will cause inflate() to return immediately after the header and before the first block. When doing a raw inflate, inflate() will go ahead and process the first block, and will return when it gets to the end of that block, or when it runs out of data. The Z_BLOCK option assists in appending to or combining deflate streams. Also to assist in this, on return inflate() will set strm->data_type to the number of unused bits in the last byte taken from strm->next_in, plus 64 if inflate() is currently decoding the last block in the deflate stream, plus 128 if inflate() returned immediately after decoding an end-of-block code or decoding the complete header up to just before the first byte of the deflate stream. The end-of-block will not be indicated until all of the uncompressed data from that block has been written to strm->next_out. The number of unused bits may in general be greater than seven, except when bit 7 of data_type is set, in which case the number of unused bits will be less than eight. data_type is set as noted here every time inflate() returns for all flush options, and so can be used to determine the amount of currently consumed input in bits. The Z_TREES option behaves as Z_BLOCK does, but it also returns when the end of each deflate block header is reached, before any actual data in that block is decoded. This allows the caller to determine the length of the deflate block header for later use in random access within a deflate block. 256 is added to the value of strm->data_type when inflate() returns immediately after reaching the end of the deflate block header. inflate() should normally be called until it returns Z_STREAM_END or an error. However if all decompression is to be performed in a single step (a single call of inflate), the parameter flush should be set to Z_FINISH. In this case all pending input is processed and all pending output is flushed; avail_out must be large enough to hold all of the uncompressed data for the operation to complete. (The size of the uncompressed data may have been saved by the compressor for this purpose.) The use of Z_FINISH is not required to perform an inflation in one step. However it may be used to inform inflate that a faster approach can be used for the single inflate() call. Z_FINISH also informs inflate to not maintain a sliding window if the stream completes, which reduces inflate's memory footprint. If the stream does not complete, either because not all of the stream is provided or not enough output space is provided, then a sliding window will be allocated and inflate() can be called again to continue the operation as if Z_NO_FLUSH had been used. In this implementation, inflate() always flushes as much output as possible to the output buffer, and always uses the faster approach on the first call. So the effects of the flush parameter in this implementation are on the return value of inflate() as noted below, when inflate() returns early when Z_BLOCK or Z_TREES is used, and when inflate() avoids the allocation of memory for a sliding window when Z_FINISH is used. If a preset dictionary is needed after this call (see inflateSetDictionary below), inflate sets strm->adler to the Adler-32 checksum of the dictionary chosen by the compressor and returns Z_NEED_DICT; otherwise it sets strm->adler to the Adler-32 checksum of all output produced so far (that is, total_out bytes) and returns Z_OK, Z_STREAM_END or an error code as described below. At the end of the stream, inflate() checks that its computed adler32 checksum is equal to that saved by the compressor and returns Z_STREAM_END only if the checksum is correct. inflate() can decompress and check either zlib-wrapped or gzip-wrapped deflate data. The header type is detected automatically, if requested when initializing with inflateInit2(). Any information contained in the gzip header is not retained, so applications that need that information should instead use raw inflate, see inflateInit2() below, or inflateBack() and perform their own processing of the gzip header and trailer. When processing gzip-wrapped deflate data, strm->adler32 is set to the CRC-32 of the output producted so far. The CRC-32 is checked against the gzip trailer. inflate() returns Z_OK if some progress has been made (more input processed or more output produced), Z_STREAM_END if the end of the compressed data has been reached and all uncompressed output has been produced, Z_NEED_DICT if a preset dictionary is needed at this point, Z_DATA_ERROR if the input data was corrupted (input stream not conforming to the zlib format or incorrect check value), Z_STREAM_ERROR if the stream structure was inconsistent (for example next_in or next_out was Z_NULL), Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if no progress is possible or if there was not enough room in the output buffer when Z_FINISH is used. Note that Z_BUF_ERROR is not fatal, and inflate() can be called again with more input and more output space to continue decompressing. If Z_DATA_ERROR is returned, the application may then call inflateSync() to look for a good compression block if a partial recovery of the data is desired. */ ZEXTERN int ZEXPORT inflateEnd OF((z_streamp strm)); /* All dynamically allocated data structures for this stream are freed. This function discards any unprocessed input and does not flush any pending output. inflateEnd returns Z_OK if success, Z_STREAM_ERROR if the stream state was inconsistent. In the error case, msg may be set but then points to a static string (which must not be deallocated). */ /* Advanced functions */ /* The following functions are needed only in some special applications. */ /* ZEXTERN int ZEXPORT deflateInit2 OF((z_streamp strm, int level, int method, int windowBits, int memLevel, int strategy)); This is another version of deflateInit with more compression options. The fields next_in, zalloc, zfree and opaque must be initialized before by the caller. The method parameter is the compression method. It must be Z_DEFLATED in this version of the library. The windowBits parameter is the base two logarithm of the window size (the size of the history buffer). It should be in the range 8..15 for this version of the library. Larger values of this parameter result in better compression at the expense of memory usage. The default value is 15 if deflateInit is used instead. windowBits can also be -8..-15 for raw deflate. In this case, -windowBits determines the window size. deflate() will then generate raw deflate data with no zlib header or trailer, and will not compute an adler32 check value. windowBits can also be greater than 15 for optional gzip encoding. Add 16 to windowBits to write a simple gzip header and trailer around the compressed data instead of a zlib wrapper. The gzip header will have no file name, no extra data, no comment, no modification time (set to zero), no header crc, and the operating system will be set to 255 (unknown). If a gzip stream is being written, strm->adler is a crc32 instead of an adler32. The memLevel parameter specifies how much memory should be allocated for the internal compression state. memLevel=1 uses minimum memory but is slow and reduces compression ratio; memLevel=9 uses maximum memory for optimal speed. The default value is 8. See zconf.h for total memory usage as a function of windowBits and memLevel. The strategy parameter is used to tune the compression algorithm. Use the value Z_DEFAULT_STRATEGY for normal data, Z_FILTERED for data produced by a filter (or predictor), Z_HUFFMAN_ONLY to force Huffman encoding only (no string match), or Z_RLE to limit match distances to one (run-length encoding). Filtered data consists mostly of small values with a somewhat random distribution. In this case, the compression algorithm is tuned to compress them better. The effect of Z_FILTERED is to force more Huffman coding and less string matching; it is somewhat intermediate between Z_DEFAULT_STRATEGY and Z_HUFFMAN_ONLY. Z_RLE is designed to be almost as fast as Z_HUFFMAN_ONLY, but give better compression for PNG image data. The strategy parameter only affects the compression ratio but not the correctness of the compressed output even if it is not set appropriately. Z_FIXED prevents the use of dynamic Huffman codes, allowing for a simpler decoder for special applications. deflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_STREAM_ERROR if any parameter is invalid (such as an invalid method), or Z_VERSION_ERROR if the zlib library version (zlib_version) is incompatible with the version assumed by the caller (ZLIB_VERSION). msg is set to null if there is no error message. deflateInit2 does not perform any compression: this will be done by deflate(). */ ZEXTERN int ZEXPORT deflateSetDictionary OF((z_streamp strm, const Bytef *dictionary, uInt dictLength)); /* Initializes the compression dictionary from the given byte sequence without producing any compressed output. When using the zlib format, this function must be called immediately after deflateInit, deflateInit2 or deflateReset, and before any call of deflate. When doing raw deflate, this function must be called either before any call of deflate, or immediately after the completion of a deflate block, i.e. after all input has been consumed and all output has been delivered when using any of the flush options Z_BLOCK, Z_PARTIAL_FLUSH, Z_SYNC_FLUSH, or Z_FULL_FLUSH. The compressor and decompressor must use exactly the same dictionary (see inflateSetDictionary). The dictionary should consist of strings (byte sequences) that are likely to be encountered later in the data to be compressed, with the most commonly used strings preferably put towards the end of the dictionary. Using a dictionary is most useful when the data to be compressed is short and can be predicted with good accuracy; the data can then be compressed better than with the default empty dictionary. Depending on the size of the compression data structures selected by deflateInit or deflateInit2, a part of the dictionary may in effect be discarded, for example if the dictionary is larger than the window size provided in deflateInit or deflateInit2. Thus the strings most likely to be useful should be put at the end of the dictionary, not at the front. In addition, the current implementation of deflate will use at most the window size minus 262 bytes of the provided dictionary. Upon return of this function, strm->adler is set to the adler32 value of the dictionary; the decompressor may later use this value to determine which dictionary has been used by the compressor. (The adler32 value applies to the whole dictionary even if only a subset of the dictionary is actually used by the compressor.) If a raw deflate was requested, then the adler32 value is not computed and strm->adler is not set. deflateSetDictionary returns Z_OK if success, or Z_STREAM_ERROR if a parameter is invalid (e.g. dictionary being Z_NULL) or the stream state is inconsistent (for example if deflate has already been called for this stream or if not at a block boundary for raw deflate). deflateSetDictionary does not perform any compression: this will be done by deflate(). */ ZEXTERN int ZEXPORT deflateCopy OF((z_streamp dest, z_streamp source)); /* Sets the destination stream as a complete copy of the source stream. This function can be useful when several compression strategies will be tried, for example when there are several ways of pre-processing the input data with a filter. The streams that will be discarded should then be freed by calling deflateEnd. Note that deflateCopy duplicates the internal compression state which can be quite large, so this strategy is slow and can consume lots of memory. deflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc being Z_NULL). msg is left unchanged in both source and destination. */ ZEXTERN int ZEXPORT deflateReset OF((z_streamp strm)); /* This function is equivalent to deflateEnd followed by deflateInit, but does not free and reallocate all the internal compression state. The stream will keep the same compression level and any other attributes that may have been set by deflateInit2. deflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc or state being Z_NULL). */ ZEXTERN int ZEXPORT deflateParams OF((z_streamp strm, int level, int strategy)); /* Dynamically update the compression level and compression strategy. The interpretation of level and strategy is as in deflateInit2. This can be used to switch between compression and straight copy of the input data, or to switch to a different kind of input data requiring a different strategy. If the compression level is changed, the input available so far is compressed with the old level (and may be flushed); the new level will take effect only at the next call of deflate(). Before the call of deflateParams, the stream state must be set as for a call of deflate(), since the currently available input may have to be compressed and flushed. In particular, strm->avail_out must be non-zero. deflateParams returns Z_OK if success, Z_STREAM_ERROR if the source stream state was inconsistent or if a parameter was invalid, Z_BUF_ERROR if strm->avail_out was zero. */ ZEXTERN int ZEXPORT deflateTune OF((z_streamp strm, int good_length, int max_lazy, int nice_length, int max_chain)); /* Fine tune deflate's internal compression parameters. This should only be used by someone who understands the algorithm used by zlib's deflate for searching for the best matching string, and even then only by the most fanatic optimizer trying to squeeze out the last compressed bit for their specific input data. Read the deflate.c source code for the meaning of the max_lazy, good_length, nice_length, and max_chain parameters. deflateTune() can be called after deflateInit() or deflateInit2(), and returns Z_OK on success, or Z_STREAM_ERROR for an invalid deflate stream. */ ZEXTERN uLong ZEXPORT deflateBound OF((z_streamp strm, uLong sourceLen)); /* deflateBound() returns an upper bound on the compressed size after deflation of sourceLen bytes. It must be called after deflateInit() or deflateInit2(), and after deflateSetHeader(), if used. This would be used to allocate an output buffer for deflation in a single pass, and so would be called before deflate(). If that first deflate() call is provided the sourceLen input bytes, an output buffer allocated to the size returned by deflateBound(), and the flush value Z_FINISH, then deflate() is guaranteed to return Z_STREAM_END. Note that it is possible for the compressed size to be larger than the value returned by deflateBound() if flush options other than Z_FINISH or Z_NO_FLUSH are used. */ ZEXTERN int ZEXPORT deflatePending OF((z_streamp strm, unsigned *pending, int *bits)); /* deflatePending() returns the number of bytes and bits of output that have been generated, but not yet provided in the available output. The bytes not provided would be due to the available output space having being consumed. The number of bits of output not provided are between 0 and 7, where they await more bits to join them in order to fill out a full byte. If pending or bits are Z_NULL, then those values are not set. deflatePending returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent. */ ZEXTERN int ZEXPORT deflatePrime OF((z_streamp strm, int bits, int value)); /* deflatePrime() inserts bits in the deflate output stream. The intent is that this function is used to start off the deflate output with the bits leftover from a previous deflate stream when appending to it. As such, this function can only be used for raw deflate, and must be used before the first deflate() call after a deflateInit2() or deflateReset(). bits must be less than or equal to 16, and that many of the least significant bits of value will be inserted in the output. deflatePrime returns Z_OK if success, Z_BUF_ERROR if there was not enough room in the internal buffer to insert the bits, or Z_STREAM_ERROR if the source stream state was inconsistent. */ ZEXTERN int ZEXPORT deflateSetHeader OF((z_streamp strm, gz_headerp head)); /* deflateSetHeader() provides gzip header information for when a gzip stream is requested by deflateInit2(). deflateSetHeader() may be called after deflateInit2() or deflateReset() and before the first call of deflate(). The text, time, os, extra field, name, and comment information in the provided gz_header structure are written to the gzip header (xflag is ignored -- the extra flags are set according to the compression level). The caller must assure that, if not Z_NULL, name and comment are terminated with a zero byte, and that if extra is not Z_NULL, that extra_len bytes are available there. If hcrc is true, a gzip header crc is included. Note that the current versions of the command-line version of gzip (up through version 1.3.x) do not support header crc's, and will report that it is a "multi-part gzip file" and give up. If deflateSetHeader is not used, the default gzip header has text false, the time set to zero, and os set to 255, with no extra, name, or comment fields. The gzip header is returned to the default state by deflateReset(). deflateSetHeader returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent. */ /* ZEXTERN int ZEXPORT inflateInit2 OF((z_streamp strm, int windowBits)); This is another version of inflateInit with an extra parameter. The fields next_in, avail_in, zalloc, zfree and opaque must be initialized before by the caller. The windowBits parameter is the base two logarithm of the maximum window size (the size of the history buffer). It should be in the range 8..15 for this version of the library. The default value is 15 if inflateInit is used instead. windowBits must be greater than or equal to the windowBits value provided to deflateInit2() while compressing, or it must be equal to 15 if deflateInit2() was not used. If a compressed stream with a larger window size is given as input, inflate() will return with the error code Z_DATA_ERROR instead of trying to allocate a larger window. windowBits can also be zero to request that inflate use the window size in the zlib header of the compressed stream. windowBits can also be -8..-15 for raw inflate. In this case, -windowBits determines the window size. inflate() will then process raw deflate data, not looking for a zlib or gzip header, not generating a check value, and not looking for any check values for comparison at the end of the stream. This is for use with other formats that use the deflate compressed data format such as zip. Those formats provide their own check values. If a custom format is developed using the raw deflate format for compressed data, it is recommended that a check value such as an adler32 or a crc32 be applied to the uncompressed data as is done in the zlib, gzip, and zip formats. For most applications, the zlib format should be used as is. Note that comments above on the use in deflateInit2() applies to the magnitude of windowBits. windowBits can also be greater than 15 for optional gzip decoding. Add 32 to windowBits to enable zlib and gzip decoding with automatic header detection, or add 16 to decode only the gzip format (the zlib format will return a Z_DATA_ERROR). If a gzip stream is being decoded, strm->adler is a crc32 instead of an adler32. inflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_VERSION_ERROR if the zlib library version is incompatible with the version assumed by the caller, or Z_STREAM_ERROR if the parameters are invalid, such as a null pointer to the structure. msg is set to null if there is no error message. inflateInit2 does not perform any decompression apart from possibly reading the zlib header if present: actual decompression will be done by inflate(). (So next_in and avail_in may be modified, but next_out and avail_out are unused and unchanged.) The current implementation of inflateInit2() does not process any header information -- that is deferred until inflate() is called. */ ZEXTERN int ZEXPORT inflateSetDictionary OF((z_streamp strm, const Bytef *dictionary, uInt dictLength)); /* Initializes the decompression dictionary from the given uncompressed byte sequence. This function must be called immediately after a call of inflate, if that call returned Z_NEED_DICT. The dictionary chosen by the compressor can be determined from the adler32 value returned by that call of inflate. The compressor and decompressor must use exactly the same dictionary (see deflateSetDictionary). For raw inflate, this function can be called at any time to set the dictionary. If the provided dictionary is smaller than the window and there is already data in the window, then the provided dictionary will amend what's there. The application must insure that the dictionary that was used for compression is provided. inflateSetDictionary returns Z_OK if success, Z_STREAM_ERROR if a parameter is invalid (e.g. dictionary being Z_NULL) or the stream state is inconsistent, Z_DATA_ERROR if the given dictionary doesn't match the expected one (incorrect adler32 value). inflateSetDictionary does not perform any decompression: this will be done by subsequent calls of inflate(). */ ZEXTERN int ZEXPORT inflateGetDictionary OF((z_streamp strm, Bytef *dictionary, uInt *dictLength)); /* Returns the sliding dictionary being maintained by inflate. dictLength is set to the number of bytes in the dictionary, and that many bytes are copied to dictionary. dictionary must have enough space, where 32768 bytes is always enough. If inflateGetDictionary() is called with dictionary equal to Z_NULL, then only the dictionary length is returned, and nothing is copied. Similary, if dictLength is Z_NULL, then it is not set. inflateGetDictionary returns Z_OK on success, or Z_STREAM_ERROR if the stream state is inconsistent. */ ZEXTERN int ZEXPORT inflateSync OF((z_streamp strm)); /* Skips invalid compressed data until a possible full flush point (see above for the description of deflate with Z_FULL_FLUSH) can be found, or until all available input is skipped. No output is provided. inflateSync searches for a 00 00 FF FF pattern in the compressed data. All full flush points have this pattern, but not all occurrences of this pattern are full flush points. inflateSync returns Z_OK if a possible full flush point has been found, Z_BUF_ERROR if no more input was provided, Z_DATA_ERROR if no flush point has been found, or Z_STREAM_ERROR if the stream structure was inconsistent. In the success case, the application may save the current current value of total_in which indicates where valid compressed data was found. In the error case, the application may repeatedly call inflateSync, providing more input each time, until success or end of the input data. */ ZEXTERN int ZEXPORT inflateCopy OF((z_streamp dest, z_streamp source)); /* Sets the destination stream as a complete copy of the source stream. This function can be useful when randomly accessing a large stream. The first pass through the stream can periodically record the inflate state, allowing restarting inflate at those points when randomly accessing the stream. inflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc being Z_NULL). msg is left unchanged in both source and destination. */ ZEXTERN int ZEXPORT inflateReset OF((z_streamp strm)); /* This function is equivalent to inflateEnd followed by inflateInit, but does not free and reallocate all the internal decompression state. The stream will keep attributes that may have been set by inflateInit2. inflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc or state being Z_NULL). */ ZEXTERN int ZEXPORT inflateReset2 OF((z_streamp strm, int windowBits)); /* This function is the same as inflateReset, but it also permits changing the wrap and window size requests. The windowBits parameter is interpreted the same as it is for inflateInit2. inflateReset2 returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc or state being Z_NULL), or if the windowBits parameter is invalid. */ ZEXTERN int ZEXPORT inflatePrime OF((z_streamp strm, int bits, int value)); /* This function inserts bits in the inflate input stream. The intent is that this function is used to start inflating at a bit position in the middle of a byte. The provided bits will be used before any bytes are used from next_in. This function should only be used with raw inflate, and should be used before the first inflate() call after inflateInit2() or inflateReset(). bits must be less than or equal to 16, and that many of the least significant bits of value will be inserted in the input. If bits is negative, then the input stream bit buffer is emptied. Then inflatePrime() can be called again to put bits in the buffer. This is used to clear out bits leftover after feeding inflate a block description prior to feeding inflate codes. inflatePrime returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent. */ ZEXTERN long ZEXPORT inflateMark OF((z_streamp strm)); /* This function returns two values, one in the lower 16 bits of the return value, and the other in the remaining upper bits, obtained by shifting the return value down 16 bits. If the upper value is -1 and the lower value is zero, then inflate() is currently decoding information outside of a block. If the upper value is -1 and the lower value is non-zero, then inflate is in the middle of a stored block, with the lower value equaling the number of bytes from the input remaining to copy. If the upper value is not -1, then it is the number of bits back from the current bit position in the input of the code (literal or length/distance pair) currently being processed. In that case the lower value is the number of bytes already emitted for that code. A code is being processed if inflate is waiting for more input to complete decoding of the code, or if it has completed decoding but is waiting for more output space to write the literal or match data. inflateMark() is used to mark locations in the input data for random access, which may be at bit positions, and to note those cases where the output of a code may span boundaries of random access blocks. The current location in the input stream can be determined from avail_in and data_type as noted in the description for the Z_BLOCK flush parameter for inflate. inflateMark returns the value noted above or -1 << 16 if the provided source stream state was inconsistent. */ ZEXTERN int ZEXPORT inflateGetHeader OF((z_streamp strm, gz_headerp head)); /* inflateGetHeader() requests that gzip header information be stored in the provided gz_header structure. inflateGetHeader() may be called after inflateInit2() or inflateReset(), and before the first call of inflate(). As inflate() processes the gzip stream, head->done is zero until the header is completed, at which time head->done is set to one. If a zlib stream is being decoded, then head->done is set to -1 to indicate that there will be no gzip header information forthcoming. Note that Z_BLOCK or Z_TREES can be used to force inflate() to return immediately after header processing is complete and before any actual data is decompressed. The text, time, xflags, and os fields are filled in with the gzip header contents. hcrc is set to true if there is a header CRC. (The header CRC was valid if done is set to one.) If extra is not Z_NULL, then extra_max contains the maximum number of bytes to write to extra. Once done is true, extra_len contains the actual extra field length, and extra contains the extra field, or that field truncated if extra_max is less than extra_len. If name is not Z_NULL, then up to name_max characters are written there, terminated with a zero unless the length is greater than name_max. If comment is not Z_NULL, then up to comm_max characters are written there, terminated with a zero unless the length is greater than comm_max. When any of extra, name, or comment are not Z_NULL and the respective field is not present in the header, then that field is set to Z_NULL to signal its absence. This allows the use of deflateSetHeader() with the returned structure to duplicate the header. However if those fields are set to allocated memory, then the application will need to save those pointers elsewhere so that they can be eventually freed. If inflateGetHeader is not used, then the header information is simply discarded. The header is always checked for validity, including the header CRC if present. inflateReset() will reset the process to discard the header information. The application would need to call inflateGetHeader() again to retrieve the header from the next gzip stream. inflateGetHeader returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent. */ /* ZEXTERN int ZEXPORT inflateBackInit OF((z_streamp strm, int windowBits, unsigned char FAR *window)); Initialize the internal stream state for decompression using inflateBack() calls. The fields zalloc, zfree and opaque in strm must be initialized before the call. If zalloc and zfree are Z_NULL, then the default library- derived memory allocation routines are used. windowBits is the base two logarithm of the window size, in the range 8..15. window is a caller supplied buffer of that size. Except for special applications where it is assured that deflate was used with small window sizes, windowBits must be 15 and a 32K byte window must be supplied to be able to decompress general deflate streams. See inflateBack() for the usage of these routines. inflateBackInit will return Z_OK on success, Z_STREAM_ERROR if any of the parameters are invalid, Z_MEM_ERROR if the internal state could not be allocated, or Z_VERSION_ERROR if the version of the library does not match the version of the header file. */ typedef unsigned (*in_func) OF((void FAR *, z_const unsigned char FAR * FAR *)); typedef int (*out_func) OF((void FAR *, unsigned char FAR *, unsigned)); ZEXTERN int ZEXPORT inflateBack OF((z_streamp strm, in_func in, void FAR *in_desc, out_func out, void FAR *out_desc)); /* inflateBack() does a raw inflate with a single call using a call-back interface for input and output. This is potentially more efficient than inflate() for file i/o applications, in that it avoids copying between the output and the sliding window by simply making the window itself the output buffer. inflate() can be faster on modern CPUs when used with large buffers. inflateBack() trusts the application to not change the output buffer passed by the output function, at least until inflateBack() returns. inflateBackInit() must be called first to allocate the internal state and to initialize the state with the user-provided window buffer. inflateBack() may then be used multiple times to inflate a complete, raw deflate stream with each call. inflateBackEnd() is then called to free the allocated state. A raw deflate stream is one with no zlib or gzip header or trailer. This routine would normally be used in a utility that reads zip or gzip files and writes out uncompressed files. The utility would decode the header and process the trailer on its own, hence this routine expects only the raw deflate stream to decompress. This is different from the normal behavior of inflate(), which expects either a zlib or gzip header and trailer around the deflate stream. inflateBack() uses two subroutines supplied by the caller that are then called by inflateBack() for input and output. inflateBack() calls those routines until it reads a complete deflate stream and writes out all of the uncompressed data, or until it encounters an error. The function's parameters and return types are defined above in the in_func and out_func typedefs. inflateBack() will call in(in_desc, &buf) which should return the number of bytes of provided input, and a pointer to that input in buf. If there is no input available, in() must return zero--buf is ignored in that case--and inflateBack() will return a buffer error. inflateBack() will call out(out_desc, buf, len) to write the uncompressed data buf[0..len-1]. out() should return zero on success, or non-zero on failure. If out() returns non-zero, inflateBack() will return with an error. Neither in() nor out() are permitted to change the contents of the window provided to inflateBackInit(), which is also the buffer that out() uses to write from. The length written by out() will be at most the window size. Any non-zero amount of input may be provided by in(). For convenience, inflateBack() can be provided input on the first call by setting strm->next_in and strm->avail_in. If that input is exhausted, then in() will be called. Therefore strm->next_in must be initialized before calling inflateBack(). If strm->next_in is Z_NULL, then in() will be called immediately for input. If strm->next_in is not Z_NULL, then strm->avail_in must also be initialized, and then if strm->avail_in is not zero, input will initially be taken from strm->next_in[0 .. strm->avail_in - 1]. The in_desc and out_desc parameters of inflateBack() is passed as the first parameter of in() and out() respectively when they are called. These descriptors can be optionally used to pass any information that the caller- supplied in() and out() functions need to do their job. On return, inflateBack() will set strm->next_in and strm->avail_in to pass back any unused input that was provided by the last in() call. The return values of inflateBack() can be Z_STREAM_END on success, Z_BUF_ERROR if in() or out() returned an error, Z_DATA_ERROR if there was a format error in the deflate stream (in which case strm->msg is set to indicate the nature of the error), or Z_STREAM_ERROR if the stream was not properly initialized. In the case of Z_BUF_ERROR, an input or output error can be distinguished using strm->next_in which will be Z_NULL only if in() returned an error. If strm->next_in is not Z_NULL, then the Z_BUF_ERROR was due to out() returning non-zero. (in() will always be called before out(), so strm->next_in is assured to be defined if out() returns non-zero.) Note that inflateBack() cannot return Z_OK. */ ZEXTERN int ZEXPORT inflateBackEnd OF((z_streamp strm)); /* All memory allocated by inflateBackInit() is freed. inflateBackEnd() returns Z_OK on success, or Z_STREAM_ERROR if the stream state was inconsistent. */ ZEXTERN uLong ZEXPORT zlibCompileFlags OF((void)); /* Return flags indicating compile-time options. Type sizes, two bits each, 00 = 16 bits, 01 = 32, 10 = 64, 11 = other: 1.0: size of uInt 3.2: size of uLong 5.4: size of voidpf (pointer) 7.6: size of z_off_t Compiler, assembler, and debug options: 8: DEBUG 9: ASMV or ASMINF -- use ASM code 10: ZLIB_WINAPI -- exported functions use the WINAPI calling convention 11: 0 (reserved) One-time table building (smaller code, but not thread-safe if true): 12: BUILDFIXED -- build static block decoding tables when needed 13: DYNAMIC_CRC_TABLE -- build CRC calculation tables when needed 14,15: 0 (reserved) Library content (indicates missing functionality): 16: NO_GZCOMPRESS -- gz* functions cannot compress (to avoid linking deflate code when not needed) 17: NO_GZIP -- deflate can't write gzip streams, and inflate can't detect and decode gzip streams (to avoid linking crc code) 18-19: 0 (reserved) Operation variations (changes in library functionality): 20: PKZIP_BUG_WORKAROUND -- slightly more permissive inflate 21: FASTEST -- deflate algorithm with only one, lowest compression level 22,23: 0 (reserved) The sprintf variant used by gzprintf (zero is best): 24: 0 = vs*, 1 = s* -- 1 means limited to 20 arguments after the format 25: 0 = *nprintf, 1 = *printf -- 1 means gzprintf() not secure! 26: 0 = returns value, 1 = void -- 1 means inferred string length returned Remainder: 27-31: 0 (reserved) */ #ifndef Z_SOLO /* utility functions */ /* The following utility functions are implemented on top of the basic stream-oriented functions. To simplify the interface, some default options are assumed (compression level and memory usage, standard memory allocation functions). The source code of these utility functions can be modified if you need special options. */ ZEXTERN int ZEXPORT compress OF((Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen)); /* Compresses the source buffer into the destination buffer. sourceLen is the byte length of the source buffer. Upon entry, destLen is the total size of the destination buffer, which must be at least the value returned by compressBound(sourceLen). Upon exit, destLen is the actual size of the compressed buffer. compress returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if there was not enough room in the output buffer. */ ZEXTERN int ZEXPORT compress2 OF((Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen, int level)); /* Compresses the source buffer into the destination buffer. The level parameter has the same meaning as in deflateInit. sourceLen is the byte length of the source buffer. Upon entry, destLen is the total size of the destination buffer, which must be at least the value returned by compressBound(sourceLen). Upon exit, destLen is the actual size of the compressed buffer. compress2 returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if there was not enough room in the output buffer, Z_STREAM_ERROR if the level parameter is invalid. */ ZEXTERN uLong ZEXPORT compressBound OF((uLong sourceLen)); /* compressBound() returns an upper bound on the compressed size after compress() or compress2() on sourceLen bytes. It would be used before a compress() or compress2() call to allocate the destination buffer. */ ZEXTERN int ZEXPORT uncompress OF((Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen)); /* Decompresses the source buffer into the destination buffer. sourceLen is the byte length of the source buffer. Upon entry, destLen is the total size of the destination buffer, which must be large enough to hold the entire uncompressed data. (The size of the uncompressed data must have been saved previously by the compressor and transmitted to the decompressor by some mechanism outside the scope of this compression library.) Upon exit, destLen is the actual size of the uncompressed buffer. uncompress returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if there was not enough room in the output buffer, or Z_DATA_ERROR if the input data was corrupted or incomplete. In the case where there is not enough room, uncompress() will fill the output buffer with the uncompressed data up to that point. */ /* gzip file access functions */ /* This library supports reading and writing files in gzip (.gz) format with an interface similar to that of stdio, using the functions that start with "gz". The gzip format is different from the zlib format. gzip is a gzip wrapper, documented in RFC 1952, wrapped around a deflate stream. */ typedef struct gzFile_s *gzFile; /* semi-opaque gzip file descriptor */ /* ZEXTERN gzFile ZEXPORT gzopen OF((const char *path, const char *mode)); Opens a gzip (.gz) file for reading or writing. The mode parameter is as in fopen ("rb" or "wb") but can also include a compression level ("wb9") or a strategy: 'f' for filtered data as in "wb6f", 'h' for Huffman-only compression as in "wb1h", 'R' for run-length encoding as in "wb1R", or 'F' for fixed code compression as in "wb9F". (See the description of deflateInit2 for more information about the strategy parameter.) 'T' will request transparent writing or appending with no compression and not using the gzip format. "a" can be used instead of "w" to request that the gzip stream that will be written be appended to the file. "+" will result in an error, since reading and writing to the same gzip file is not supported. The addition of "x" when writing will create the file exclusively, which fails if the file already exists. On systems that support it, the addition of "e" when reading or writing will set the flag to close the file on an execve() call. These functions, as well as gzip, will read and decode a sequence of gzip streams in a file. The append function of gzopen() can be used to create such a file. (Also see gzflush() for another way to do this.) When appending, gzopen does not test whether the file begins with a gzip stream, nor does it look for the end of the gzip streams to begin appending. gzopen will simply append a gzip stream to the existing file. gzopen can be used to read a file which is not in gzip format; in this case gzread will directly read from the file without decompression. When reading, this will be detected automatically by looking for the magic two- byte gzip header. gzopen returns NULL if the file could not be opened, if there was insufficient memory to allocate the gzFile state, or if an invalid mode was specified (an 'r', 'w', or 'a' was not provided, or '+' was provided). errno can be checked to determine if the reason gzopen failed was that the file could not be opened. */ ZEXTERN gzFile ZEXPORT gzdopen OF((int fd, const char *mode)); /* gzdopen associates a gzFile with the file descriptor fd. File descriptors are obtained from calls like open, dup, creat, pipe or fileno (if the file has been previously opened with fopen). The mode parameter is as in gzopen. The next call of gzclose on the returned gzFile will also close the file descriptor fd, just like fclose(fdopen(fd, mode)) closes the file descriptor fd. If you want to keep fd open, use fd = dup(fd_keep); gz = gzdopen(fd, mode);. The duplicated descriptor should be saved to avoid a leak, since gzdopen does not close fd if it fails. If you are using fileno() to get the file descriptor from a FILE *, then you will have to use dup() to avoid double-close()ing the file descriptor. Both gzclose() and fclose() will close the associated file descriptor, so they need to have different file descriptors. gzdopen returns NULL if there was insufficient memory to allocate the gzFile state, if an invalid mode was specified (an 'r', 'w', or 'a' was not provided, or '+' was provided), or if fd is -1. The file descriptor is not used until the next gz* read, write, seek, or close operation, so gzdopen will not detect if fd is invalid (unless fd is -1). */ ZEXTERN int ZEXPORT gzbuffer OF((gzFile file, unsigned size)); /* Set the internal buffer size used by this library's functions. The default buffer size is 8192 bytes. This function must be called after gzopen() or gzdopen(), and before any other calls that read or write the file. The buffer memory allocation is always deferred to the first read or write. Two buffers are allocated, either both of the specified size when writing, or one of the specified size and the other twice that size when reading. A larger buffer size of, for example, 64K or 128K bytes will noticeably increase the speed of decompression (reading). The new buffer size also affects the maximum length for gzprintf(). gzbuffer() returns 0 on success, or -1 on failure, such as being called too late. */ ZEXTERN int ZEXPORT gzsetparams OF((gzFile file, int level, int strategy)); /* Dynamically update the compression level or strategy. See the description of deflateInit2 for the meaning of these parameters. gzsetparams returns Z_OK if success, or Z_STREAM_ERROR if the file was not opened for writing. */ ZEXTERN int ZEXPORT gzread OF((gzFile file, voidp buf, unsigned len)); /* Reads the given number of uncompressed bytes from the compressed file. If the input file is not in gzip format, gzread copies the given number of bytes into the buffer directly from the file. After reaching the end of a gzip stream in the input, gzread will continue to read, looking for another gzip stream. Any number of gzip streams may be concatenated in the input file, and will all be decompressed by gzread(). If something other than a gzip stream is encountered after a gzip stream, that remaining trailing garbage is ignored (and no error is returned). gzread can be used to read a gzip file that is being concurrently written. Upon reaching the end of the input, gzread will return with the available data. If the error code returned by gzerror is Z_OK or Z_BUF_ERROR, then gzclearerr can be used to clear the end of file indicator in order to permit gzread to be tried again. Z_OK indicates that a gzip stream was completed on the last gzread. Z_BUF_ERROR indicates that the input file ended in the middle of a gzip stream. Note that gzread does not return -1 in the event of an incomplete gzip stream. This error is deferred until gzclose(), which will return Z_BUF_ERROR if the last gzread ended in the middle of a gzip stream. Alternatively, gzerror can be used before gzclose to detect this case. gzread returns the number of uncompressed bytes actually read, less than len for end of file, or -1 for error. */ ZEXTERN int ZEXPORT gzwrite OF((gzFile file, voidpc buf, unsigned len)); /* Writes the given number of uncompressed bytes into the compressed file. gzwrite returns the number of uncompressed bytes written or 0 in case of error. */ ZEXTERN int ZEXPORTVA gzprintf Z_ARG((gzFile file, const char *format, ...)); /* Converts, formats, and writes the arguments to the compressed file under control of the format string, as in fprintf. gzprintf returns the number of uncompressed bytes actually written, or 0 in case of error. The number of uncompressed bytes written is limited to 8191, or one less than the buffer size given to gzbuffer(). The caller should assure that this limit is not exceeded. If it is exceeded, then gzprintf() will return an error (0) with nothing written. In this case, there may also be a buffer overflow with unpredictable consequences, which is possible only if zlib was compiled with the insecure functions sprintf() or vsprintf() because the secure snprintf() or vsnprintf() functions were not available. This can be determined using zlibCompileFlags(). */ ZEXTERN int ZEXPORT gzputs OF((gzFile file, const char *s)); /* Writes the given null-terminated string to the compressed file, excluding the terminating null character. gzputs returns the number of characters written, or -1 in case of error. */ ZEXTERN char * ZEXPORT gzgets OF((gzFile file, char *buf, int len)); /* Reads bytes from the compressed file until len-1 characters are read, or a newline character is read and transferred to buf, or an end-of-file condition is encountered. If any characters are read or if len == 1, the string is terminated with a null character. If no characters are read due to an end-of-file or len < 1, then the buffer is left untouched. gzgets returns buf which is a null-terminated string, or it returns NULL for end-of-file or in case of error. If there was an error, the contents at buf are indeterminate. */ ZEXTERN int ZEXPORT gzputc OF((gzFile file, int c)); /* Writes c, converted to an unsigned char, into the compressed file. gzputc returns the value that was written, or -1 in case of error. */ ZEXTERN int ZEXPORT gzgetc OF((gzFile file)); /* Reads one byte from the compressed file. gzgetc returns this byte or -1 in case of end of file or error. This is implemented as a macro for speed. As such, it does not do all of the checking the other functions do. I.e. it does not check to see if file is NULL, nor whether the structure file points to has been clobbered or not. */ ZEXTERN int ZEXPORT gzungetc OF((int c, gzFile file)); /* Push one character back onto the stream to be read as the first character on the next read. At least one character of push-back is allowed. gzungetc() returns the character pushed, or -1 on failure. gzungetc() will fail if c is -1, and may fail if a character has been pushed but not read yet. If gzungetc is used immediately after gzopen or gzdopen, at least the output buffer size of pushed characters is allowed. (See gzbuffer above.) The pushed character will be discarded if the stream is repositioned with gzseek() or gzrewind(). */ ZEXTERN int ZEXPORT gzflush OF((gzFile file, int flush)); /* Flushes all pending output into the compressed file. The parameter flush is as in the deflate() function. The return value is the zlib error number (see function gzerror below). gzflush is only permitted when writing. If the flush parameter is Z_FINISH, the remaining data is written and the gzip stream is completed in the output. If gzwrite() is called again, a new gzip stream will be started in the output. gzread() is able to read such concatented gzip streams. gzflush should be called only when strictly necessary because it will degrade compression if called too often. */ /* ZEXTERN z_off_t ZEXPORT gzseek OF((gzFile file, z_off_t offset, int whence)); Sets the starting position for the next gzread or gzwrite on the given compressed file. The offset represents a number of bytes in the uncompressed data stream. The whence parameter is defined as in lseek(2); the value SEEK_END is not supported. If the file is opened for reading, this function is emulated but can be extremely slow. If the file is opened for writing, only forward seeks are supported; gzseek then compresses a sequence of zeroes up to the new starting position. gzseek returns the resulting offset location as measured in bytes from the beginning of the uncompressed stream, or -1 in case of error, in particular if the file is opened for writing and the new starting position would be before the current position. */ ZEXTERN int ZEXPORT gzrewind OF((gzFile file)); /* Rewinds the given file. This function is supported only for reading. gzrewind(file) is equivalent to (int)gzseek(file, 0L, SEEK_SET) */ /* ZEXTERN z_off_t ZEXPORT gztell OF((gzFile file)); Returns the starting position for the next gzread or gzwrite on the given compressed file. This position represents a number of bytes in the uncompressed data stream, and is zero when starting, even if appending or reading a gzip stream from the middle of a file using gzdopen(). gztell(file) is equivalent to gzseek(file, 0L, SEEK_CUR) */ /* ZEXTERN z_off_t ZEXPORT gzoffset OF((gzFile file)); Returns the current offset in the file being read or written. This offset includes the count of bytes that precede the gzip stream, for example when appending or when using gzdopen() for reading. When reading, the offset does not include as yet unused buffered input. This information can be used for a progress indicator. On error, gzoffset() returns -1. */ ZEXTERN int ZEXPORT gzeof OF((gzFile file)); /* Returns true (1) if the end-of-file indicator has been set while reading, false (0) otherwise. Note that the end-of-file indicator is set only if the read tried to go past the end of the input, but came up short. Therefore, just like feof(), gzeof() may return false even if there is no more data to read, in the event that the last read request was for the exact number of bytes remaining in the input file. This will happen if the input file size is an exact multiple of the buffer size. If gzeof() returns true, then the read functions will return no more data, unless the end-of-file indicator is reset by gzclearerr() and the input file has grown since the previous end of file was detected. */ ZEXTERN int ZEXPORT gzdirect OF((gzFile file)); /* Returns true (1) if file is being copied directly while reading, or false (0) if file is a gzip stream being decompressed. If the input file is empty, gzdirect() will return true, since the input does not contain a gzip stream. If gzdirect() is used immediately after gzopen() or gzdopen() it will cause buffers to be allocated to allow reading the file to determine if it is a gzip file. Therefore if gzbuffer() is used, it should be called before gzdirect(). When writing, gzdirect() returns true (1) if transparent writing was requested ("wT" for the gzopen() mode), or false (0) otherwise. (Note: gzdirect() is not needed when writing. Transparent writing must be explicitly requested, so the application already knows the answer. When linking statically, using gzdirect() will include all of the zlib code for gzip file reading and decompression, which may not be desired.) */ ZEXTERN int ZEXPORT gzclose OF((gzFile file)); /* Flushes all pending output if necessary, closes the compressed file and deallocates the (de)compression state. Note that once file is closed, you cannot call gzerror with file, since its structures have been deallocated. gzclose must not be called more than once on the same file, just as free must not be called more than once on the same allocation. gzclose will return Z_STREAM_ERROR if file is not valid, Z_ERRNO on a file operation error, Z_MEM_ERROR if out of memory, Z_BUF_ERROR if the last read ended in the middle of a gzip stream, or Z_OK on success. */ ZEXTERN int ZEXPORT gzclose_r OF((gzFile file)); ZEXTERN int ZEXPORT gzclose_w OF((gzFile file)); /* Same as gzclose(), but gzclose_r() is only for use when reading, and gzclose_w() is only for use when writing or appending. The advantage to using these instead of gzclose() is that they avoid linking in zlib compression or decompression code that is not used when only reading or only writing respectively. If gzclose() is used, then both compression and decompression code will be included the application when linking to a static zlib library. */ ZEXTERN const char * ZEXPORT gzerror OF((gzFile file, int *errnum)); /* Returns the error message for the last error which occurred on the given compressed file. errnum is set to zlib error number. If an error occurred in the file system and not in the compression library, errnum is set to Z_ERRNO and the application may consult errno to get the exact error code. The application must not modify the returned string. Future calls to this function may invalidate the previously returned string. If file is closed, then the string previously returned by gzerror will no longer be available. gzerror() should be used to distinguish errors from end-of-file for those functions above that do not distinguish those cases in their return values. */ ZEXTERN void ZEXPORT gzclearerr OF((gzFile file)); /* Clears the error and end-of-file flags for file. This is analogous to the clearerr() function in stdio. This is useful for continuing to read a gzip file that is being written concurrently. */ #endif /* !Z_SOLO */ /* checksum functions */ /* These functions are not related to compression but are exported anyway because they might be useful in applications using the compression library. */ ZEXTERN uLong ZEXPORT adler32 OF((uLong adler, const Bytef *buf, uInt len)); /* Update a running Adler-32 checksum with the bytes buf[0..len-1] and return the updated checksum. If buf is Z_NULL, this function returns the required initial value for the checksum. An Adler-32 checksum is almost as reliable as a CRC32 but can be computed much faster. Usage example: uLong adler = adler32(0L, Z_NULL, 0); while (read_buffer(buffer, length) != EOF) { adler = adler32(adler, buffer, length); } if (adler != original_adler) error(); */ /* ZEXTERN uLong ZEXPORT adler32_combine OF((uLong adler1, uLong adler2, z_off_t len2)); Combine two Adler-32 checksums into one. For two sequences of bytes, seq1 and seq2 with lengths len1 and len2, Adler-32 checksums were calculated for each, adler1 and adler2. adler32_combine() returns the Adler-32 checksum of seq1 and seq2 concatenated, requiring only adler1, adler2, and len2. Note that the z_off_t type (like off_t) is a signed integer. If len2 is negative, the result has no meaning or utility. */ ZEXTERN uLong ZEXPORT crc32 OF((uLong crc, const Bytef *buf, uInt len)); /* Update a running CRC-32 with the bytes buf[0..len-1] and return the updated CRC-32. If buf is Z_NULL, this function returns the required initial value for the crc. Pre- and post-conditioning (one's complement) is performed within this function so it shouldn't be done by the application. Usage example: uLong crc = crc32(0L, Z_NULL, 0); while (read_buffer(buffer, length) != EOF) { crc = crc32(crc, buffer, length); } if (crc != original_crc) error(); */ /* ZEXTERN uLong ZEXPORT crc32_combine OF((uLong crc1, uLong crc2, z_off_t len2)); Combine two CRC-32 check values into one. For two sequences of bytes, seq1 and seq2 with lengths len1 and len2, CRC-32 check values were calculated for each, crc1 and crc2. crc32_combine() returns the CRC-32 check value of seq1 and seq2 concatenated, requiring only crc1, crc2, and len2. */ /* various hacks, don't look :) */ /* deflateInit and inflateInit are macros to allow checking the zlib version * and the compiler's view of z_stream: */ ZEXTERN int ZEXPORT deflateInit_ OF((z_streamp strm, int level, const char *version, int stream_size)); ZEXTERN int ZEXPORT inflateInit_ OF((z_streamp strm, const char *version, int stream_size)); ZEXTERN int ZEXPORT deflateInit2_ OF((z_streamp strm, int level, int method, int windowBits, int memLevel, int strategy, const char *version, int stream_size)); ZEXTERN int ZEXPORT inflateInit2_ OF((z_streamp strm, int windowBits, const char *version, int stream_size)); ZEXTERN int ZEXPORT inflateBackInit_ OF((z_streamp strm, int windowBits, unsigned char FAR *window, const char *version, int stream_size)); #define deflateInit(strm, level) \ deflateInit_((strm), (level), ZLIB_VERSION, (int)sizeof(z_stream)) #define inflateInit(strm) \ inflateInit_((strm), ZLIB_VERSION, (int)sizeof(z_stream)) #define deflateInit2(strm, level, method, windowBits, memLevel, strategy) \ deflateInit2_((strm),(level),(method),(windowBits),(memLevel),\ (strategy), ZLIB_VERSION, (int)sizeof(z_stream)) #define inflateInit2(strm, windowBits) \ inflateInit2_((strm), (windowBits), ZLIB_VERSION, \ (int)sizeof(z_stream)) #define inflateBackInit(strm, windowBits, window) \ inflateBackInit_((strm), (windowBits), (window), \ ZLIB_VERSION, (int)sizeof(z_stream)) #ifndef Z_SOLO /* gzgetc() macro and its supporting function and exposed data structure. Note * that the real internal state is much larger than the exposed structure. * This abbreviated structure exposes just enough for the gzgetc() macro. The * user should not mess with these exposed elements, since their names or * behavior could change in the future, perhaps even capriciously. They can * only be used by the gzgetc() macro. You have been warned. */ struct gzFile_s { unsigned have; unsigned char *next; z_off64_t pos; }; ZEXTERN int ZEXPORT gzgetc_ OF((gzFile file)); /* backward compatibility */ #ifdef Z_PREFIX_SET # undef z_gzgetc # define z_gzgetc(g) \ ((g)->have ? ((g)->have--, (g)->pos++, *((g)->next)++) : gzgetc(g)) #else # define gzgetc(g) \ ((g)->have ? ((g)->have--, (g)->pos++, *((g)->next)++) : gzgetc(g)) #endif /* provide 64-bit offset functions if _LARGEFILE64_SOURCE defined, and/or * change the regular functions to 64 bits if _FILE_OFFSET_BITS is 64 (if * both are true, the application gets the *64 functions, and the regular * functions are changed to 64 bits) -- in case these are set on systems * without large file support, _LFS64_LARGEFILE must also be true */ #ifdef Z_LARGE64 ZEXTERN gzFile ZEXPORT gzopen64 OF((const char *, const char *)); ZEXTERN z_off64_t ZEXPORT gzseek64 OF((gzFile, z_off64_t, int)); ZEXTERN z_off64_t ZEXPORT gztell64 OF((gzFile)); ZEXTERN z_off64_t ZEXPORT gzoffset64 OF((gzFile)); ZEXTERN uLong ZEXPORT adler32_combine64 OF((uLong, uLong, z_off64_t)); ZEXTERN uLong ZEXPORT crc32_combine64 OF((uLong, uLong, z_off64_t)); #endif #if !defined(ZLIB_INTERNAL) && defined(Z_WANT64) # ifdef Z_PREFIX_SET # define minizlib_gzopen minizlib_gzopen64 # define minizlib_gzseek minizlib_gzseek64 # define minizlib_gztell minizlib_gztell64 # define minizlib_gzoffset minizlib_gzoffset64 # define minizlib_adler32_combine minizlib_adler32_combine64 # define minizlib_crc32_combine minizlib_crc32_combine64 # else # define gzopen gzopen64 # define gzseek gzseek64 # define gztell gztell64 # define gzoffset gzoffset64 # define adler32_combine adler32_combine64 # define crc32_combine crc32_combine64 # endif # ifndef Z_LARGE64 ZEXTERN gzFile ZEXPORT gzopen64 OF((const char *, const char *)); ZEXTERN z_off_t ZEXPORT gzseek64 OF((gzFile, z_off_t, int)); ZEXTERN z_off_t ZEXPORT gztell64 OF((gzFile)); ZEXTERN z_off_t ZEXPORT gzoffset64 OF((gzFile)); ZEXTERN uLong ZEXPORT adler32_combine64 OF((uLong, uLong, z_off_t)); ZEXTERN uLong ZEXPORT crc32_combine64 OF((uLong, uLong, z_off_t)); # endif #else ZEXTERN gzFile ZEXPORT gzopen OF((const char *, const char *)); ZEXTERN z_off_t ZEXPORT gzseek OF((gzFile, z_off_t, int)); ZEXTERN z_off_t ZEXPORT gztell OF((gzFile)); ZEXTERN z_off_t ZEXPORT gzoffset OF((gzFile)); ZEXTERN uLong ZEXPORT adler32_combine OF((uLong, uLong, z_off_t)); ZEXTERN uLong ZEXPORT crc32_combine OF((uLong, uLong, z_off_t)); #endif #else /* Z_SOLO */ ZEXTERN uLong ZEXPORT adler32_combine OF((uLong, uLong, z_off_t)); ZEXTERN uLong ZEXPORT crc32_combine OF((uLong, uLong, z_off_t)); #endif /* !Z_SOLO */ /* hack for buggy compilers */ #if !defined(ZUTIL_H) && !defined(NO_DUMMY_DECL) struct internal_state {int dummy;}; #endif /* undocumented functions */ ZEXTERN const char * ZEXPORT zError OF((int)); ZEXTERN int ZEXPORT inflateSyncPoint OF((z_streamp)); ZEXTERN const z_crc_t FAR * ZEXPORT get_crc_table OF((void)); ZEXTERN int ZEXPORT inflateUndermine OF((z_streamp, int)); ZEXTERN int ZEXPORT inflateResetKeep OF((z_streamp)); ZEXTERN int ZEXPORT deflateResetKeep OF((z_streamp)); #if defined(_WIN32) && !defined(Z_SOLO) ZEXTERN gzFile ZEXPORT gzopen_w OF((const wchar_t *path, const char *mode)); #endif #if defined(STDC) || defined(Z_HAVE_STDARG_H) # ifndef Z_SOLO ZEXTERN int ZEXPORTVA gzvprintf Z_ARG((gzFile file, const char *format, va_list va)); # endif #endif #ifdef __cplusplus } #endif #endif /* ZLIB_H */ # endif #endif #include #include #include #include #include #include #ifdef MCPL_THIS_IS_MS # include # include #endif #define MCPLIMP_NPARTICLES_POS 8 #define MCPLIMP_MAX_PARTICLE_SIZE 96 int mcpl_platform_is_little_endian() { //Return 0 for big endian, 1 for little endian. volatile uint32_t i=0x01234567; return (*((uint8_t*)(&i))) == 0x67; } void mcpl_default_error_handler(const char * msg) { printf("MCPL ERROR: %s\n",msg); exit(1); } static void (*mcpl_error_handler)(const char *) = &mcpl_default_error_handler; void mcpl_error(const char * msg) { mcpl_error_handler(msg); //Error handler should not return, but in case it does anyway, we at least //ensure a hard exit! mcpl_default_error_handler("Handler given to mcpl_set_error_handler returns" " to calling code which is not allowed!"); } void mcpl_set_error_handler(void (*handler)(const char *)) { mcpl_error_handler = handler; } void mcpl_store_string(char** dest, const char * src) { size_t n = strlen(src); if (n>65535) n = 65535; if (*dest) free(*dest); *dest = (char*)calloc(n+1,1); assert(*dest); strncpy( *dest,src,n ); (*dest)[n] = '\0'; return; } void mcpl_write_buffer(FILE* f, uint32_t n, const char * data, const char * errmsg) { size_t nb = fwrite(&n, 1, sizeof(n), f); if (nb!=sizeof(n)) mcpl_error(errmsg); nb = fwrite(data, 1, n, f); if (nb!=n) mcpl_error(errmsg); } void mcpl_write_string(FILE* f, const char * str, const char * errmsg) { size_t n = strlen(str); mcpl_write_buffer(f,n,str,errmsg);//nb: we don't write the terminating null-char } typedef struct { char * filename; FILE * file; char * hdr_srcprogname; uint32_t ncomments; char ** comments; uint32_t nblobs; char ** blobkeys; uint32_t * bloblengths; char ** blobs; int opt_userflags; int opt_polarisation; int opt_singleprec; int32_t opt_universalpdgcode; double opt_universalweight; int header_notwritten; uint64_t nparticles; unsigned particle_size; mcpl_particle_t* puser; unsigned opt_signature; char particle_buffer[MCPLIMP_MAX_PARTICLE_SIZE]; } mcpl_outfileinternal_t; #define MCPLIMP_OUTFILEDECODE mcpl_outfileinternal_t * f = (mcpl_outfileinternal_t *)of.internal; assert(f) void mcpl_recalc_psize(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; unsigned fp = f->opt_singleprec ? sizeof(float) : sizeof(double); f->particle_size = 7*fp; if (f->opt_polarisation) f->particle_size += 3*fp; if (!f->opt_universalpdgcode) f->particle_size += sizeof(int32_t); if (!f->opt_universalweight) f->particle_size += fp; if (f->opt_userflags) f->particle_size += sizeof(uint32_t); assert(f->particle_size<=MCPLIMP_MAX_PARTICLE_SIZE); f->opt_signature = 0 + 1 * f->opt_singleprec + 2 * f->opt_polarisation + 4 * f->opt_universalpdgcode + 8 * (f->opt_universalweight?1:0) + 16 * f->opt_userflags; } void mcpl_platform_compatibility_check() { static int first = 1; if (!first) return; first = 0; if (CHAR_BIT!=8) mcpl_error("Platform compatibility check failed (bytes are not 8 bit)"); if (sizeof(float)!=4) mcpl_error("Platform compatibility check failed (float is not 4 bytes)"); if (sizeof(double)!=8) mcpl_error("Platform compatibility check failed (double is not 8 bytes)"); int32_t m1_32 = -1; int32_t not0_32 = ~0; int64_t m1_64 = -1; int64_t not0_64 = ~0; if ( m1_32 != not0_32 || m1_64 != not0_64 ) mcpl_error("Platform compatibility check failed (integers are not two's complement)"); if (copysign(1.0, -0.0) != -1.0) mcpl_error("Platform compatibility check failed (floating point numbers do not have signed zero)"); mcpl_particle_t pd; if ( (char*)&(pd.userflags)-(char*)&(pd) != 12*sizeof(double)+sizeof(uint32_t) ) mcpl_error("Platform compatibility check failed (unexpected padding in mcpl_particle_t)"); } mcpl_outfile_t mcpl_create_outfile(const char * filename) { //Sanity check chosen filename and append ".mcpl" if missing to help people //who forgot to add the extension (in the hope of higher consistency). if (!filename) mcpl_error("mcpl_create_outfile called with null string."); size_t n = strlen(filename); if (!n) mcpl_error("mcpl_create_outfile called with empty string."); if (n>4096) mcpl_error("mcpl_create_outfile called with too long string."); const char * lastdot = strrchr(filename, '.'); if (lastdot==filename && n==5) mcpl_error("mcpl_create_outfile called with string with no basename part (\".mcpl\")."); //Initialise data structures and open file: mcpl_platform_compatibility_check(); mcpl_outfile_t out; out.internal = 0; mcpl_outfileinternal_t * f = (mcpl_outfileinternal_t*)calloc(sizeof(mcpl_outfileinternal_t),1); assert(f); if (!lastdot || strcmp(lastdot, ".mcpl") != 0) { f->filename = (char*)malloc(n+6); f->filename[0] = '\0'; strcat(f->filename,filename); strcat(f->filename,".mcpl"); } else { f->filename = (char*)malloc(n+1); f->filename[0] = '\0'; strcat(f->filename,filename); } f->hdr_srcprogname = 0; f->ncomments = 0; f->comments = 0; f->nblobs = 0; f->blobkeys = 0; f->bloblengths = 0; f->blobs = 0; f->opt_userflags = 0; f->opt_polarisation = 0; f->opt_singleprec = 1; f->opt_universalpdgcode = 0; f->opt_universalweight = 0.0; f->header_notwritten = 1; f->nparticles = 0; f->file = fopen(f->filename,"wb"); if (!f->file) mcpl_error("Unable to open output file!"); out.internal = f; mcpl_recalc_psize(out); return out; } const char * mcpl_outfile_filename(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; return f->filename; } void mcpl_hdr_set_srcname(mcpl_outfile_t of,const char * spn) { MCPLIMP_OUTFILEDECODE; if (!f->header_notwritten) mcpl_error("mcpl_hdr_set_srcname called too late."); mcpl_store_string(&(f->hdr_srcprogname),spn); } void mcpl_hdr_add_comment(mcpl_outfile_t of,const char *comment) { MCPLIMP_OUTFILEDECODE; if (!f->header_notwritten) mcpl_error("mcpl_hdr_add_comment called too late."); size_t oldn = f->ncomments; f->ncomments += 1; if (oldn) f->comments = (char **)realloc(f->comments,f->ncomments * sizeof(char*) ); else f->comments = (char **)calloc(f->ncomments,sizeof(char*)); f->comments[oldn] = 0; mcpl_store_string(&(f->comments[oldn]),comment); } void mcpl_hdr_add_data(mcpl_outfile_t of, const char * key, uint32_t ldata, const char * data) { MCPLIMP_OUTFILEDECODE; if (!f->header_notwritten) mcpl_error("mcpl_hdr_add_data called too late."); size_t oldn = f->nblobs; f->nblobs += 1; //Check that key is unique unsigned i; for (i =0; iblobkeys[i],key)==0) mcpl_error("mcpl_hdr_add_data got duplicate key"); } //store key: if (oldn) f->blobkeys = (char **)realloc(f->blobkeys,f->nblobs * sizeof(char*) ); else f->blobkeys = (char **)calloc(f->nblobs,sizeof(char*)); f->blobkeys[oldn] = 0; mcpl_store_string(&(f->blobkeys[oldn]),key); //store blob-lengths: if (oldn) f->bloblengths = (uint32_t*)realloc(f->bloblengths,f->nblobs * sizeof(uint32_t) ); else f->bloblengths = (uint32_t *)calloc(f->nblobs,sizeof(uint32_t)); f->bloblengths[oldn] = ldata; //store data: if (oldn) f->blobs = (char **)realloc(f->blobs,f->nblobs * sizeof(char*) ); else f->blobs = (char **)calloc(f->nblobs,sizeof(char*)); f->blobs[oldn] = (char *)malloc(ldata); memcpy(f->blobs[oldn],data,ldata); } void mcpl_enable_userflags(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; if (f->opt_userflags) return; if (!f->header_notwritten) mcpl_error("mcpl_enable_userflags called too late."); f->opt_userflags = 1; mcpl_recalc_psize(of); } void mcpl_enable_polarisation(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; if (f->opt_polarisation) return; if (!f->header_notwritten) mcpl_error("mcpl_enable_polarisation called too late."); f->opt_polarisation = 1; mcpl_recalc_psize(of); } void mcpl_enable_doubleprec(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; if (!f->opt_singleprec) return; if (!f->header_notwritten) mcpl_error("mcpl_enable_doubleprec called too late."); f->opt_singleprec = 0; mcpl_recalc_psize(of); } void mcpl_enable_universal_pdgcode(mcpl_outfile_t of, int32_t pdgcode) { MCPLIMP_OUTFILEDECODE; if (pdgcode==0) mcpl_error("mcpl_enable_universal_pdgcode must be called with non-zero pdgcode."); if (f->opt_universalpdgcode) { if (f->opt_universalpdgcode!=pdgcode) mcpl_error("mcpl_enable_universal_pdgcode called multiple times"); return; } if (!f->header_notwritten) mcpl_error("mcpl_enable_universal_pdgcode called too late."); f->opt_universalpdgcode = pdgcode; mcpl_recalc_psize(of); } void mcpl_enable_universal_weight(mcpl_outfile_t of, double w) { MCPLIMP_OUTFILEDECODE; if (w<=0.0||isinf(w)||isnan(w)) mcpl_error("mcpl_enable_universal_weight must be called with positive but finite weight."); if (f->opt_universalweight) { if (f->opt_universalweight!=w) mcpl_error("mcpl_enable_universal_weight called multiple times"); return; } if (!f->header_notwritten) mcpl_error("mcpl_enable_universal_weight called too late."); f->opt_universalweight = w; mcpl_recalc_psize(of); } void mcpl_write_header(mcpl_outfileinternal_t * f) { if (!f->header_notwritten) mcpl_error("Logical error!"); const char * errmsg="Errors encountered while attempting to write file header."; //Always start the file with an unsigned char-array (for endian agnosticity) //containing magic word (MCPL), file format version ('001'-'999') and //endianness used in the file ('L' or 'B'): unsigned char start[8] = {'M','C','P','L','0','0','0','L'}; start[4] = (MCPL_FORMATVERSION/100)%10 + '0'; start[5] = (MCPL_FORMATVERSION/10)%10 + '0'; start[6] = MCPL_FORMATVERSION%10 + '0'; if (!mcpl_platform_is_little_endian()) start[7] = 'B'; size_t nb = fwrite(start, 1, sizeof(start), f->file); if (nb!=sizeof(start)) mcpl_error(errmsg); //Right after the initial 8 bytes, we put the number of particles (0 for now, //but important that position is fixed so we can seek and update it later).: long int nparticles_pos = ftell(f->file); if (nparticles_pos!=MCPLIMP_NPARTICLES_POS) mcpl_error(errmsg); nb = fwrite(&f->nparticles, 1, sizeof(f->nparticles), f->file); if (nb!=sizeof(f->nparticles)) mcpl_error(errmsg); //Then a bunch of numbers: uint32_t arr[8]; arr[0] = f->ncomments; arr[1] = f->nblobs; arr[2] = f->opt_userflags; arr[3] = f->opt_polarisation; arr[4] = f->opt_singleprec; arr[5] = f->opt_universalpdgcode; arr[6] = f->particle_size; arr[7] = (f->opt_universalweight?1:0); assert(sizeof(arr)==32); nb = fwrite(arr, 1, sizeof(arr), f->file); if (nb!=sizeof(arr)) mcpl_error(errmsg); if (f->opt_universalweight) { assert(sizeof(f->opt_universalweight)==8); nb = fwrite((void*)(&(f->opt_universalweight)), 1, sizeof(f->opt_universalweight), f->file); if (nb!=sizeof(f->opt_universalweight)) mcpl_error(errmsg); } //strings: mcpl_write_string(f->file,f->hdr_srcprogname?f->hdr_srcprogname:"unknown",errmsg); uint32_t i; for (i = 0; i < f->ncomments; ++i) mcpl_write_string(f->file,f->comments[i],errmsg); //blob keys: for (i = 0; i < f->nblobs; ++i) mcpl_write_string(f->file,f->blobkeys[i],errmsg); //blobs: for (i = 0; i < f->nblobs; ++i) mcpl_write_buffer(f->file, f->bloblengths[i], f->blobs[i],errmsg); //Free up acquired memory only needed for header writing: free(f->hdr_srcprogname); f->hdr_srcprogname = 0; if (f->ncomments) { for (i = 0; i < f->ncomments; ++i) free(f->comments[i]); free(f->comments); f->comments=0; f->ncomments=0; } if (f->nblobs) { for (i = 0; i < f->nblobs; ++i) free(f->blobkeys[i]); free(f->blobkeys); f->blobkeys = 0; for (i = 0; i < f->nblobs; ++i) free(f->blobs[i]); free(f->blobs); f->blobs = 0; free(f->bloblengths); f->bloblengths = 0; f->nblobs = 0; } f->header_notwritten = 0; } #ifndef INFINITY //Missing in ICC 12 C99 compilation: # define INFINITY (__builtin_inf()) #endif void mcpl_unitvect_pack_adaptproj(const double* in, double* out) { //Precise packing of unit vector into 2 floats + 1 bit using the "Adaptive //Projection Packing" method (T. Kittelmann, 2017). // //The Adaptive Projection Packing method is a variant on the traditional projection //method where one would store (x,y,sign(z)) and upon unpacking recover the //magnitude of z with |z|=sqrt(1-x^2-y^2), a formula which suffers from //numerical precision issues when |z| is small. In this improved version, one //gets rid of the precision issues by always storing the components that are //smallest in magnitude (the last one must then have a magnitude in the //interval [1/sqrt(3),1] = [0.577,1.0] which is never small). This just leaves //the issue of being able to recognise the coordinate choices again upon //unpacking. Since all components are at most of unit magnitude, this is //achieved by storing 1/z rather than z and replacing either x or y as //needed (infinity when z=0). Thus, the packed data will contain: // // ( 1/z, y, sign(x) ) when |x|>|y|,|z| // ( x, 1/z, sign(y) ) when |y|>|x|,|z| // ( x, y, sign(z) ) when |z|>|x|,|y| // //The unpacking code can determine which of the three scenarios is used to //encode a given piece of data by checking if the first or second field is //greater than unity. // //Note that the arrays "in" and "out" are both of dimension 3, however out[2] //will contain only binary information, in the form of the sign of the //component which was projected away (-1.0 or 1.0). const double absx = fabs(in[0]); const double absy = fabs(in[1]); if ( fabs(in[2]) < fmax(absx,absy) ) { const double invz = ( in[2] ? (1.0/in[2]) : INFINITY ); if (absx>=absy) { //output (1/z,y,sign(x)) out[0] = invz; out[1] = in[1]; out[2] = in[0]; } else { //output (x,1/z,sign(y)) out[0] = in[0]; out[1] = invz; out[2] = in[1]; } } else { //output (x,y,sign(z)) out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; } out[2] = copysign(1.0,out[2]); } void mcpl_unitvect_unpack_adaptproj( const double* in, double* out ) { //Unpacking for the "Adaptive Projection Packing" method (T. Kittelmann, 2017). //See mcpl_unitvect_pack_adaptproj for more information. // //Note that the arrays "in" and "out" are both of dimension 3, however in[2] //will contain only binary information, in the form of the sign of the //component which was projected away. assert(in[2]==1.0||in[2]==-1.0); if (fabs(in[0]) > 1.0) { //input is (1/z,y,sign(x)) out[1] = in[1]; out[2] = 1.0 / in[0]; out[0] = in[2] * sqrt( fmax( 0.0, 1.0 - ( in[1]*in[1] + out[2]*out[2] ) ) ); } else if (fabs(in[1])>1.0) { //input is (x,1/z,sign(y)) out[0] = in[0]; out[2] = 1.0 / in[1]; out[1] = in[2] * sqrt( fmax ( 0.0, 1.0 - ( in[0]*in[0] + out[2]*out[2] ) ) ); } else { //input is (x,y,sign(z)) out[0] = in[0]; out[1] = in[1]; out[2] = in[2] * sqrt( fmax( 0.0, 1.0 - ( in[0]*in[0] + in[1]*in[1] ) ) ); } } void mcpl_unitvect_unpack_oct(const double* in, double* out) { //Octahedral packing inspired by http://jcgt.org/published/0003/02/01/ // //and: // //Octahedron Environment Maps, T. Engelhardt & C. Dachsbacher, Conference: //Proceedings of the Vision, Modeling, and Visualization Conference 2008, VMV //2008, Konstanz, Germany, October 8-10, 2008 // //Note: Octahedral packing was used for the MCPL-2 format, which we are no //longer writing, only reading. Thus, we only keep the unpacking function in //the code. //restore z-coord of octahedron: out[2] = 1.0 - fabs(in[0]) - fabs(in[1]); if (out[2]<0) { //lower hemisphere out[0] = ( 1.0 - fabs( in[1] ) ) * ( in[0] >= 0.0 ? 1.0 : -1.0 ); out[1] = ( 1.0 - fabs( in[0] ) ) * ( in[1] >= 0.0 ? 1.0 : -1.0 ); } else { //upper hemisphere out[0] = in[0]; out[1] = in[1]; } //project from octahedron to unit sphere: double n = 1.0 / sqrt(out[0]*out[0]+out[1]*out[1]+out[2]*out[2]); out[0] *= n; out[1] *= n; out[2] *= n; } void mcpl_internal_serialise_particle_to_buffer( const mcpl_particle_t* particle, mcpl_outfileinternal_t * f ) { //Serialise the provided particle into the particle_buffer of the output file //(according to the settings of the output file). double pack_ekindir[3]; //Sanity check (add more??): double dirsq = particle->direction[0] * particle->direction[0] + particle->direction[1] * particle->direction[1] + particle->direction[2] * particle->direction[2]; if (fabs(dirsq-1.0)>1.0e-5) mcpl_error("attempting to add particle with non-unit direction vector"); if (particle->ekin<0.0) mcpl_error("attempting to add particle with negative kinetic energy"); //direction and ekin are packed into 3 doubles: mcpl_unitvect_pack_adaptproj(particle->direction,pack_ekindir); //pack_ekindir[2] is now just a sign(1.0 or -1.0), so we can store the //ekin in that field as well (since it must be non-negative). We use copysign //to be sure the signbit is set also if ekin=0: pack_ekindir[2] = copysign(particle->ekin,pack_ekindir[2]); //serialise particle object to buffer: unsigned ibuf = 0; char * pbuf = &(f->particle_buffer[0]); int i; if (f->opt_singleprec) { if (f->opt_polarisation) { for (i=0;i<3;++i) { *(float*)&pbuf[ibuf] = (float)particle->polarisation[i]; ibuf += sizeof(float); } } for (i=0;i<3;++i) { *(float*)&pbuf[ibuf] = (float)particle->position[i]; ibuf += sizeof(float); } for (i=0;i<3;++i) { *(float*)&pbuf[ibuf] = (float)pack_ekindir[i]; ibuf += sizeof(float); } *(float*)&pbuf[ibuf] = (float)particle->time; ibuf += sizeof(float); if (!f->opt_universalweight) { *(float*)&pbuf[ibuf] = (float)particle->weight; ibuf += sizeof(float); } } else { if (f->opt_polarisation) { for (i=0;i<3;++i) { *(double*)&pbuf[ibuf] = particle->polarisation[i]; ibuf += sizeof(double); } } for (i=0;i<3;++i) { *(double*)&pbuf[ibuf] = particle->position[i]; ibuf += sizeof(double); } for (i=0;i<3;++i) { *(double*)&pbuf[ibuf] = pack_ekindir[i]; ibuf += sizeof(double); } *(double*)&pbuf[ibuf] = particle->time; ibuf += sizeof(double); if (!f->opt_universalweight) { *(double*)&pbuf[ibuf] = particle->weight; ibuf += sizeof(double); } } if (!f->opt_universalpdgcode) { *(int32_t*)&pbuf[ibuf] = particle->pdgcode; ibuf += sizeof(int32_t); } if (f->opt_userflags) { *(uint32_t*)&pbuf[ibuf] = particle->userflags; #ifndef NDEBUG ibuf += sizeof(uint32_t); #endif } assert(ibuf==f->particle_size); } void mcpl_internal_write_particle_buffer_to_file(mcpl_outfileinternal_t * f ) { //Ensure header is written: if (f->header_notwritten) mcpl_write_header(f); //Increment nparticles and write buffer to file: f->nparticles += 1; size_t nb; nb = fwrite(&(f->particle_buffer[0]), 1, f->particle_size, f->file); if (nb!=f->particle_size) mcpl_error("Errors encountered while attempting to write particle data."); } void mcpl_add_particle(mcpl_outfile_t of,const mcpl_particle_t* particle) { MCPLIMP_OUTFILEDECODE; mcpl_internal_serialise_particle_to_buffer(particle,f); mcpl_internal_write_particle_buffer_to_file(f); } void mcpl_update_nparticles(FILE* f, uint64_t n) { //Seek and update nparticles at correct location in header: const char * errmsg = "Errors encountered while attempting to update number of particles in file."; int64_t savedpos = ftell(f); if (savedpos<0) mcpl_error(errmsg); if (fseek( f, MCPLIMP_NPARTICLES_POS, SEEK_SET )) mcpl_error(errmsg); size_t nb = fwrite(&n, 1, sizeof(n), f); if (nb != sizeof(n)) mcpl_error(errmsg); if (fseek( f, savedpos, SEEK_SET )) mcpl_error(errmsg); } mcpl_particle_t* mcpl_get_empty_particle(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; if (f->puser) { //Calling more than once. This could be innocent, or it could indicate //problems in multi-threaded user-code. Better disallow and give an error: mcpl_error("mcpl_get_empty_particle must not be called more than once per output file"); } else { f->puser = (mcpl_particle_t*)calloc(sizeof(mcpl_particle_t),1); } return f->puser; } void mcpl_close_outfile(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; if (f->header_notwritten) mcpl_write_header(f); if (f->nparticles) mcpl_update_nparticles(f->file,f->nparticles); fclose(f->file); free(f->filename); free(f->puser); free(f); } void mcpl_transfer_metadata(mcpl_file_t source, mcpl_outfile_t target) { //Note that MCPL format version 2 and 3 have the same meta-data in the header, //except of course the version number itself. if (mcpl_hdr_little_endian(source) != mcpl_platform_is_little_endian()) mcpl_error("mcpl_transfer_metadata can only work on files with same endianness as current platform."); mcpl_hdr_set_srcname(target,mcpl_hdr_srcname(source)); unsigned i; for (i = 0; i < mcpl_hdr_ncomments(source); ++i) mcpl_hdr_add_comment(target,mcpl_hdr_comment(source,i)); const char** blobkeys = mcpl_hdr_blobkeys(source); if (blobkeys) { int nblobs = mcpl_hdr_nblobs(source); uint32_t ldata; const char * data; int ii; for (ii = 0; ii < nblobs; ++ii) { int res = mcpl_hdr_blob(source,blobkeys[ii],&ldata,&data); assert(res);//key must exist (void)res; mcpl_hdr_add_data(target, blobkeys[ii], ldata, data); } } if (mcpl_hdr_has_userflags(source)) mcpl_enable_userflags(target); if (mcpl_hdr_has_polarisation(source)) mcpl_enable_polarisation(target); if (mcpl_hdr_has_doubleprec(source)) mcpl_enable_doubleprec(target); int32_t updg = mcpl_hdr_universal_pdgcode(source); if (updg) mcpl_enable_universal_pdgcode(target,updg); double uw = mcpl_hdr_universal_weight(source); if (uw) mcpl_enable_universal_weight(target,uw); } int mcpl_closeandgzip_outfile_rc(mcpl_outfile_t of) { printf("MCPL WARNING: Usage of function mcpl_closeandgzip_outfile_rc is obsolete as" " mcpl_closeandgzip_outfile now also returns the status. Please update your code" " to use mcpl_closeandgzip_outfile instead.\n"); return mcpl_closeandgzip_outfile(of); } int mcpl_closeandgzip_outfile(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; char * filename = f->filename; f->filename = 0;//prevent free in mcpl_close_outfile mcpl_close_outfile(of); int rc = mcpl_gzip_file(filename); free(filename); return rc; } typedef struct { FILE * file; #ifdef MCPL_HASZLIB gzFile filegz; #else void * filegz; #endif char * hdr_srcprogname; unsigned format_version; int opt_userflags; int opt_polarisation; int opt_singleprec; int32_t opt_universalpdgcode; double opt_universalweight; int is_little_endian; uint64_t nparticles; uint32_t ncomments; char ** comments; uint32_t nblobs; char ** blobkeys; uint32_t * bloblengths; char ** blobs; unsigned particle_size; uint64_t first_particle_pos; uint64_t current_particle_idx; mcpl_particle_t* particle; unsigned opt_signature; char particle_buffer[MCPLIMP_MAX_PARTICLE_SIZE]; } mcpl_fileinternal_t; #define MCPLIMP_FILEDECODE mcpl_fileinternal_t * f = (mcpl_fileinternal_t *)ff.internal; assert(f) void mcpl_read_buffer(mcpl_fileinternal_t* f, unsigned* n, char ** buf, const char * errmsg) { size_t nb; #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, n, sizeof(*n)); else #endif nb = fread(n, 1, sizeof(*n), f->file); if (nb!=sizeof(*n)) mcpl_error(errmsg); *buf = (char*)calloc(*n,1); #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, *buf, *n); else #endif nb = fread(*buf, 1, *n, f->file); if (nb!=*n) mcpl_error(errmsg); } void mcpl_read_string(mcpl_fileinternal_t* f, char ** dest, const char* errmsg) { size_t nb; uint32_t n; #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, &n, sizeof(n)); else #endif nb = fread(&n, 1, sizeof(n), f->file); if (nb!=sizeof(n)) mcpl_error(errmsg); char * s = (char*)calloc(n+1,1); #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, s, n); else #endif nb = fread(s, 1, n, f->file); if (nb!=n) mcpl_error(errmsg); s[n] = '\0'; *dest = s; } mcpl_file_t mcpl_actual_open_file(const char * filename, int * repair_status) { int caller_is_mcpl_repair = *repair_status; *repair_status = 0;//file not broken if (!filename) mcpl_error("mcpl_open_file called with null string"); mcpl_platform_compatibility_check(); mcpl_file_t out; out.internal = 0; mcpl_fileinternal_t * f = (mcpl_fileinternal_t*)calloc(sizeof(mcpl_fileinternal_t),1); assert(f); //open file (with gzopen if filename ends with .gz): f->file = 0; f->filegz = 0; const char * lastdot = strrchr(filename, '.'); if (lastdot && strcmp(lastdot, ".gz") == 0) { #ifdef MCPL_HASZLIB f->filegz = gzopen(filename,"rb"); if (!f->filegz) mcpl_error("Unable to open file!"); #else mcpl_error("This installation of MCPL was not built with zlib support and can not read compressed (.gz) files directly."); #endif } else { f->file = fopen(filename,"rb"); if (!f->file) mcpl_error("Unable to open file!"); } //First read and check magic word, format version and endianness. unsigned char start[8];// = {'M','C','P','L','0','0','0','L'}; size_t nb; #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, start, sizeof(start)); else #endif nb = fread(start, 1, sizeof(start), f->file); if (nb>=4&&(start[0]!='M'||start[1]!='C'||start[2]!='P'||start[3]!='L')) mcpl_error("File is not an MCPL file!"); if (nb!=sizeof(start)) mcpl_error("Error while reading first bytes of file!"); f->format_version = (start[4]-'0')*100 + (start[5]-'0')*10 + (start[6]-'0'); if (f->format_version!=2&&f->format_version!=3) mcpl_error("File is in an unsupported MCPL version!"); f->is_little_endian = mcpl_platform_is_little_endian(); if (start[7]!=(f->is_little_endian?'L':'B')) { if (start[7]=='L'||start[7]=='B') mcpl_error("Endian-ness of current platform is different than the one used to write the file."); else mcpl_error("Unexpected value in endianness field!"); } //proceed reading header, knowing we have a consistent version and endian-ness. const char * errmsg = "Errors encountered while attempting to read header"; uint64_t np; #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, &np, sizeof(np)); else #endif nb = fread(&np, 1, sizeof(np), f->file); if (nb!=sizeof(np)) mcpl_error(errmsg); f->nparticles = np; uint32_t arr[8]; assert(sizeof(arr)==32); #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, arr, sizeof(arr)); else #endif nb=fread(arr, 1, sizeof(arr), f->file); if (nb!=sizeof(arr)) mcpl_error(errmsg); f->ncomments = arr[0]; f->nblobs = arr[1]; f->opt_userflags = arr[2]; f->opt_polarisation = arr[3]; f->opt_singleprec = arr[4]; f->opt_universalpdgcode = arr[5]; f->particle_size = arr[6];//We could check consistency here with the calculated value. assert(f->particle_size<=MCPLIMP_MAX_PARTICLE_SIZE); if (arr[7]) { //file has universal weight #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, (void*)&(f->opt_universalweight), sizeof(f->opt_universalweight)); else #endif nb=fread((void*)&(f->opt_universalweight), 1, sizeof(f->opt_universalweight), f->file); assert(nb==sizeof(f->opt_universalweight)); if (nb!=sizeof(f->opt_universalweight)) mcpl_error(errmsg); } f->opt_signature = 0 + 1 * f->opt_singleprec + 2 * f->opt_polarisation + 4 * f->opt_universalpdgcode + 8 * (f->opt_universalweight?1:0) + 16 * f->opt_userflags; //Then some strings: mcpl_read_string(f,&f->hdr_srcprogname,errmsg); f->comments = f->ncomments ? (char **)calloc(f->ncomments,sizeof(char*)) : 0; uint32_t i; for (i = 0; i < f->ncomments; ++i) mcpl_read_string(f,&(f->comments[i]),errmsg); f->blobkeys = 0; f->bloblengths = 0; f->blobs = 0; if (f->nblobs) { f->blobs = (char **)calloc(f->nblobs,sizeof(char*)); f->blobkeys = (char **)calloc(f->nblobs,sizeof(char*)); f->bloblengths = (uint32_t *)calloc(f->nblobs,sizeof(uint32_t)); for (i =0; i < f->nblobs; ++i) mcpl_read_string(f,&(f->blobkeys[i]),errmsg); for (i =0; i < f->nblobs; ++i) mcpl_read_buffer(f, &(f->bloblengths[i]), &(f->blobs[i]), errmsg); } f->particle = (mcpl_particle_t*)calloc(sizeof(mcpl_particle_t),1); //At first event now: f->current_particle_idx = 0; int64_t tellpos = -1; #ifdef MCPL_HASZLIB if (f->filegz) tellpos = gztell(f->filegz); else #endif tellpos = ftell(f->file); if (tellpos<0) mcpl_error(errmsg); f->first_particle_pos = tellpos; if ( f->nparticles==0 || caller_is_mcpl_repair ) { //Although empty files are permitted, it is possible that the file was never //closed properly (maybe the writing program ended prematurely). Let us //check to possibly recover usage of the file. If caller is mcpl_repair, we //always check since the file might have been truncated after it was first //closed properly. if (f->filegz) { //SEEK_END is not supported by zlib, and there is no reliable way to get //the input size. Thus, all we can do is to uncompress the whole thing, //which we won't since it might stall operations for a long time. But we //can at least try to check whether the file is indeed empty or not, and //give an error in the latter case: #ifdef MCPL_HASZLIB if (f->nparticles==0) { char testbuf[4]; nb = gzread(f->filegz, testbuf, sizeof(testbuf)); if (nb>0) { if (caller_is_mcpl_repair) { *repair_status = 1;//file broken but can't recover since gzip. } else { mcpl_error("Input file appears to not have been closed properly and data recovery is disabled for gzipped files."); } } } else { assert(caller_is_mcpl_repair); *repair_status = 2;//file brokenness can not be determined since gzip. } gzseek( f->filegz, f->first_particle_pos, SEEK_SET ); #endif } else { if (f->file && !fseek( f->file, 0, SEEK_END )) {//SEEK_END is not guaranteed to always work, so we fail our recovery attempt silently. int64_t endpos = ftell(f->file); if (endpos > (int64_t)f->first_particle_pos && (uint64_t)endpos != f->first_particle_pos) { uint64_t np = ( endpos - f->first_particle_pos ) / f->particle_size; if ( f->nparticles != np ) { if ( f->nparticles > 0 && np > f->nparticles ) { //should really not happen unless file was corrupted or file was //first closed properly and then something was appended to it. mcpl_error("Input file has invalid combination of meta-data & filesize."); } if (caller_is_mcpl_repair) { *repair_status = 3;//file broken and should be able to repair } else { assert(f->nparticles == 0); printf("MCPL WARNING: Input file appears to not have been closed properly. Recovered %" PRIu64 " particles.\n",np); } f->nparticles = np; } } } fseek( f->file, f->first_particle_pos, SEEK_SET );//if this fseek failed, it might just be that we are at EOF with no particles. } } out.internal = f; return out; } mcpl_file_t mcpl_open_file(const char * filename) { int repair_status = 0; return mcpl_actual_open_file(filename,&repair_status); } void mcpl_repair(const char * filename) { int repair_status = 1; mcpl_file_t f = mcpl_actual_open_file(filename,&repair_status); uint64_t nparticles = mcpl_hdr_nparticles(f); mcpl_close_file(f); if (repair_status==0) { mcpl_error("File does not appear to be broken."); } else if (repair_status==1) { mcpl_error("Input file is indeed broken, but must be gunzipped before it can be repaired."); } else if (repair_status==2) { mcpl_error("File must be gunzipped before it can be checked and possibly repaired."); } //Ok, we should repair the file by updating nparticles in the header: FILE * fh = fopen(filename,"rb+"); if (!fh) mcpl_error("Unable to open file in update mode!"); mcpl_update_nparticles(fh, nparticles); fclose(fh); //Verify that we fixed it: repair_status = 1; f = mcpl_actual_open_file(filename,&repair_status); uint64_t nparticles2 = mcpl_hdr_nparticles(f); mcpl_close_file(f); if (repair_status==0&&nparticles==nparticles2) { printf("MCPL: Succesfully repaired file with %" PRIu64 " particles.\n",nparticles); } else { mcpl_error("Something went wrong while attempting to repair file."); } } void mcpl_close_file(mcpl_file_t ff) { MCPLIMP_FILEDECODE; free(f->hdr_srcprogname); uint32_t i; for (i = 0; i < f->ncomments; ++i) free(f->comments[i]); free(f->comments); for (i = 0; i < f->nblobs; ++i) free(f->blobkeys[i]); for (i = 0; i < f->nblobs; ++i) free(f->blobs[i]); free(f->blobkeys); free(f->blobs); free(f->bloblengths); free(f->particle); #ifdef MCPL_HASZLIB if (f->filegz) gzclose(f->filegz); #endif if (f->file) fclose(f->file); free(f); } unsigned mcpl_hdr_version(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->format_version; } uint64_t mcpl_hdr_nparticles(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->nparticles; } unsigned mcpl_hdr_ncomments(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->ncomments; } const char * mcpl_hdr_comment(mcpl_file_t ff, unsigned i) { MCPLIMP_FILEDECODE; if (i>=f->ncomments) mcpl_error("Invalid comment requested (index out of bounds)"); return f->comments[i]; } int mcpl_hdr_nblobs(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->nblobs; } const char** mcpl_hdr_blobkeys(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return (const char**)f->blobkeys; } int mcpl_hdr_blob(mcpl_file_t ff, const char* key, uint32_t* ldata, const char ** data) { MCPLIMP_FILEDECODE; uint32_t i; for (i = 0; i < f->nblobs; ++i) { if (strcmp(f->blobkeys[i],key)==0) { *data = f->blobs[i]; *ldata = f->bloblengths[i]; return 1; } } *data = 0; *ldata = 0; return 0; } const char* mcpl_hdr_srcname(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->hdr_srcprogname; } int mcpl_hdr_has_userflags(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->opt_userflags; } int mcpl_hdr_has_polarisation(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->opt_polarisation; } int mcpl_hdr_has_doubleprec(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return !f->opt_singleprec; } const mcpl_particle_t* mcpl_read(mcpl_file_t ff) { MCPLIMP_FILEDECODE; f->current_particle_idx += 1; if ( f->current_particle_idx > f->nparticles ) { f->current_particle_idx = f->nparticles;//overflow guard return 0; } //read particle data: size_t nb; unsigned lbuf = f->particle_size; char * pbuf = &(f->particle_buffer[0]); #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, pbuf, lbuf); else #endif nb = fread(pbuf, 1, lbuf, f->file); if (nb!=lbuf) mcpl_error("Errors encountered while attempting to read particle data."); //Transfer to particle struct: unsigned ibuf = 0; mcpl_particle_t * p = f->particle; double pack_ekindir[3]; p->weight = f->opt_universalweight; int i; if (f->opt_singleprec) { if (f->opt_polarisation) { for (i=0;i<3;++i) { p->polarisation[i] = *(float*)&pbuf[ibuf]; ibuf += sizeof(float); } } else { for (i=0;i<3;++i) p->polarisation[i] = 0.0; } for (i=0;i<3;++i) { p->position[i] = *(float*)&pbuf[ibuf]; ibuf += sizeof(float); } for (i=0;i<3;++i) { pack_ekindir[i] = *(float*)&pbuf[ibuf]; ibuf += sizeof(float); } p->time = *(float*)&pbuf[ibuf]; ibuf += sizeof(float); if (!p->weight) { p->weight = *(float*)&pbuf[ibuf]; ibuf += sizeof(float); } } else { if (f->opt_polarisation) { for (i=0;i<3;++i) { p->polarisation[i] = *(double*)&pbuf[ibuf]; ibuf += sizeof(double); } } else { for (i=0;i<3;++i) p->polarisation[i] = 0.0; } for (i=0;i<3;++i) { p->position[i] = *(double*)&pbuf[ibuf]; ibuf += sizeof(double); } for (i=0;i<3;++i) { pack_ekindir[i] = *(double*)&pbuf[ibuf]; ibuf += sizeof(double); } p->time = *(double*)&pbuf[ibuf]; ibuf += sizeof(double); if (!p->weight) { p->weight = *(double*)&pbuf[ibuf]; ibuf += sizeof(double); } } if (f->opt_universalpdgcode) { p->pdgcode = f->opt_universalpdgcode; } else { p->pdgcode = *(int32_t*)&pbuf[ibuf]; ibuf += sizeof(int32_t); } if (f->opt_userflags) { p->userflags = *(uint32_t*)&pbuf[ibuf]; #ifndef NDEBUG ibuf += sizeof(uint32_t); #endif } else { f->opt_userflags = 0; } assert(ibuf==lbuf); //Unpack direction and ekin: if (f->format_version>=3) { p->ekin = fabs(pack_ekindir[2]); pack_ekindir[2] = copysign(1.0,pack_ekindir[2]); mcpl_unitvect_unpack_adaptproj(pack_ekindir,p->direction); } else { assert(f->format_version==2); mcpl_unitvect_unpack_oct(pack_ekindir,p->direction); p->ekin = pack_ekindir[2]; if (signbit(pack_ekindir[2])) { p->ekin = -p->ekin; p->direction[2] = 0.0; } } return p; } int mcpl_skipforward(mcpl_file_t ff,uint64_t n) { MCPLIMP_FILEDECODE; //increment, but guard against overflows: if ( n >= f->nparticles || f->current_particle_idx >= f->nparticles ) f->current_particle_idx = f->nparticles; else f->current_particle_idx += n; if ( f->current_particle_idx > f->nparticles ) f->current_particle_idx = f->nparticles; int notEOF = f->current_particle_idxnparticles; if (n==0) return notEOF; if (notEOF) { int error; #ifdef MCPL_HASZLIB if (f->filegz) { int64_t targetpos = f->current_particle_idx*f->particle_size+f->first_particle_pos; error = gzseek( f->filegz, targetpos, SEEK_SET )!=targetpos; } else #endif error = fseek( f->file, f->particle_size * n, SEEK_CUR )!=0; if (error) mcpl_error("Errors encountered while skipping in particle list"); } return notEOF; } int mcpl_rewind(mcpl_file_t ff) { MCPLIMP_FILEDECODE; int already_there = (f->current_particle_idx==0); f->current_particle_idx = 0; int notEOF = f->current_particle_idxnparticles; if (notEOF&&!already_there) { int error; #ifdef MCPL_HASZLIB if (f->filegz) { error = gzseek( f->filegz, f->first_particle_pos, SEEK_SET )!=(int64_t)f->first_particle_pos; } else #endif error = fseek( f->file, f->first_particle_pos, SEEK_SET )!=0; if (error) mcpl_error("Errors encountered while rewinding particle list"); } return notEOF; } int mcpl_seek(mcpl_file_t ff,uint64_t ipos) { MCPLIMP_FILEDECODE; int already_there = (f->current_particle_idx==ipos); f->current_particle_idx = (iposnparticles?ipos:f->nparticles); int notEOF = f->current_particle_idxnparticles; if (notEOF&&!already_there) { int error; #ifdef MCPL_HASZLIB if (f->filegz) { int64_t targetpos = f->current_particle_idx*f->particle_size+f->first_particle_pos; error = gzseek( f->filegz, targetpos, SEEK_SET )!=targetpos; } else #endif error = fseek( f->file, f->first_particle_pos + f->particle_size * ipos, SEEK_SET )!=0; if (error) mcpl_error("Errors encountered while seeking in particle list"); } return notEOF; } uint64_t mcpl_currentposition(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->current_particle_idx; } const char * mcpl_basename(const char * filename) { //portable "basename" which doesn't modify it's argument: const char * bn = strrchr(filename, '/'); return bn ? bn + 1 : filename; } int mcpl_hdr_particle_size(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->particle_size; } uint64_t mcpl_hdr_header_size(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->first_particle_pos; } int mcpl_hdr_universal_pdgcode(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->opt_universalpdgcode; } int mcpl_hdr_universel_pdgcode(mcpl_file_t ff) { printf("MCPL WARNING: Usage of function mcpl_hdr_universel_pdgcode is obsolete as it has" " been renamed to mcpl_hdr_universal_pdgcode. Please update your code.\n"); return mcpl_hdr_universal_pdgcode(ff); } double mcpl_hdr_universal_weight(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->opt_universalweight; } int mcpl_hdr_little_endian(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->is_little_endian; } void mcpl_transfer_last_read_particle(mcpl_file_t source, mcpl_outfile_t target) { mcpl_outfileinternal_t * ft = (mcpl_outfileinternal_t *)target.internal; assert(ft); mcpl_fileinternal_t * fs = (mcpl_fileinternal_t *)source.internal; assert(fs); if ( fs->current_particle_idx==0 && fs->particle->weight==0.0 && fs->particle->pdgcode==0 ) { mcpl_error("mcpl_transfer_last_read_particle called with source file in invalid state" " (did you forget to first call mcpl_read() on the source file before calling this function?)"); return; } //Sanity checks for universal fields here (but not in mcpl_add_particle since users are allowed to create files by setting just the universal fields): if ( ft->opt_universalpdgcode && fs->particle->pdgcode != ft->opt_universalpdgcode) { printf("MCPL ERROR: mcpl_transfer_last_read_particle asked to transfer particle with pdgcode %li into a file with universal pdgcode of %li\n", (long)fs->particle->pdgcode,(long)ft->opt_universalpdgcode); mcpl_error("mcpl_transfer_last_read_particle got incompatible pdgcode\n"); return; } if ( ft->opt_universalweight && fs->particle->weight != ft->opt_universalweight) { printf("MCPL ERROR: mcpl_transfer_last_read_particle asked to transfer particle with weight %g into a file with universal weight of %g\n", fs->particle->weight,ft->opt_universalweight); mcpl_error("mcpl_transfer_last_read_particle got incompatible weight\n"); return; } //NB: We don't sanity check that polarisation/userflags are enabled if present //in the input particle, since it is a valid use-case to use this function to //discard such info. if ( fs->format_version == 2 || ( fs->opt_singleprec && !ft->opt_singleprec ) ) { //source file is in old format with different unit vector packing, or the //floating point precision is increasing. In these scenarious we can not //reuse the 3 floats representing packed direction+ekin but must proceed via //a full unpacking+repacking. mcpl_add_particle(target,fs->particle); return; } if ( ft->opt_signature == fs->opt_signature ) { //Particle data is encoded in exactly the same manner in src and target (a //common scenario for many merge or extraction scenarios) -> simply transfer //the bytes and be done with it: assert(fs->particle_size==ft->particle_size); memcpy(ft->particle_buffer,fs->particle_buffer,fs->particle_size); mcpl_internal_write_particle_buffer_to_file(ft); return; } //The hard way - first serialise the source particle into the output buffer: mcpl_internal_serialise_particle_to_buffer( fs->particle, ft ); //If possible, override the 3 FP representing packed ekin+dir from the packing //in the source, thus avoiding potentially lossy unpacking+packing: size_t fpsize_target = ft->opt_singleprec ? sizeof(float) : sizeof(double); size_t idx_packekindir_target = (ft->opt_polarisation ? 6 : 3) * fpsize_target; size_t idx_packekindir_src = (fs->opt_polarisation ? 6 : 3) * fpsize_target; if (fs->opt_singleprec == ft->opt_singleprec) { memcpy( &(ft->particle_buffer[idx_packekindir_target]), &(fs->particle_buffer[idx_packekindir_src]), fpsize_target * 3); } else if ( ft->opt_singleprec && !fs->opt_singleprec ) { //For the case of double precision -> single precision, we can simply //perform a narrowing conversion: double * packekindir_src = (double*)&(fs->particle_buffer[idx_packekindir_src]); float * packekindir_target = (float*)&(ft->particle_buffer[idx_packekindir_target]); for (unsigned i = 0; i < 3; ++i) { packekindir_target[i] = (float)packekindir_src[i]; } } mcpl_internal_write_particle_buffer_to_file(ft); } void mcpl_dump_header(mcpl_file_t f) { printf("\n Basic info\n"); printf(" Format : MCPL-%i\n",mcpl_hdr_version(f)); printf(" No. of particles : %" PRIu64 "\n",mcpl_hdr_nparticles(f)); printf(" Header storage : %" PRIu64 " bytes\n",mcpl_hdr_header_size(f)); printf(" Data storage : %" PRIu64 " bytes\n",mcpl_hdr_nparticles(f)*mcpl_hdr_particle_size(f)); printf("\n Custom meta data\n"); printf(" Source : \"%s\"\n",mcpl_hdr_srcname(f)); unsigned nc=mcpl_hdr_ncomments(f); printf(" Number of comments : %i\n",nc); unsigned ic; for (ic = 0; ic < nc; ++ic) printf(" -> comment %i : \"%s\"\n",ic,mcpl_hdr_comment(f,ic)); unsigned nb = mcpl_hdr_nblobs(f); printf(" Number of blobs : %i\n",nb); const char** blobkeys = mcpl_hdr_blobkeys(f); uint32_t ib; for (ib = 0; ib < nb; ++ib) { const char * data; uint32_t ldata; int ok = mcpl_hdr_blob(f, blobkeys[ib], &ldata, &data); if (!ok) mcpl_error("Unexpected blob access error"); printf(" -> %lu bytes of data with key \"%s\"\n",(unsigned long)ldata,blobkeys[ib]); } printf("\n Particle data format\n"); printf(" User flags : %s\n",(mcpl_hdr_has_userflags(f)?"yes":"no")); printf(" Polarisation info : %s\n",(mcpl_hdr_has_polarisation(f)?"yes":"no")); printf(" Fixed part. type : "); int32_t updg = mcpl_hdr_universal_pdgcode(f); if (updg) printf("yes (pdgcode %li)\n",(long)updg); else printf("no\n"); printf(" Fixed part. weight : "); double uw = mcpl_hdr_universal_weight(f); if (uw) printf("yes (weight %g)\n",uw); else printf("no\n"); printf(" FP precision : %s\n",(mcpl_hdr_has_doubleprec(f)?"double":"single")); printf(" Endianness : %s\n",(mcpl_hdr_little_endian(f)?"little":"big")); printf(" Storage : %i bytes/particle\n",mcpl_hdr_particle_size(f)); printf("\n"); } //Not in the public interface, but perhaps it should be to allow custom //applications to apply custom filters and see the selected particles. For now, //we simply keep the function signature stable, allowing other code to access it //by forward declaring it themselves: void mcpl_dump_particles(mcpl_file_t f, uint64_t nskip, uint64_t nlimit, int(filter)(const mcpl_particle_t*)) { int has_uf = mcpl_hdr_has_userflags(f); int has_pol = mcpl_hdr_has_polarisation(f); double uweight = mcpl_hdr_universal_weight(f); printf("index pdgcode ekin[MeV] x[cm] y[cm] z[cm] ux uy uz time[ms]"); if (!uweight) printf(" weight"); if (has_pol) printf(" pol-x pol-y pol-z"); if (has_uf) printf(" userflags"); printf("\n"); mcpl_skipforward(f,nskip); uint64_t count = nlimit; const mcpl_particle_t* p; while((nlimit==0||count--)&&(p=mcpl_read(f))) { if (filter && !filter(p) ) { ++count; continue; } uint64_t idx = mcpl_currentposition(f)-1;//-1 since mcpl_read skipped ahead printf("%5" PRIu64 " %11i %11.5g %11.5g %11.5g %11.5g %11.5g %11.5g %11.5g %11.5g", idx, p->pdgcode, p->ekin, p->position[0], p->position[1], p->position[2], p->direction[0], p->direction[1], p->direction[2], p->time); if (!uweight) printf(" %11.5g",p->weight); if (has_pol) printf(" %11.5g %11.5g %11.5g",p->polarisation[0],p->polarisation[1],p->polarisation[2]); if (has_uf) printf(" 0x%08x",p->userflags); printf("\n"); } } void mcpl_dump(const char * filename, int parts, uint64_t nskip, uint64_t nlimit) { if (parts<0||parts>2) mcpl_error("mcpl_dump got forbidden value for argument parts"); mcpl_file_t f = mcpl_open_file(filename); printf("Opened MCPL file %s:\n",mcpl_basename(filename)); if (parts==0||parts==1) mcpl_dump_header(f); if (parts==0||parts==2) mcpl_dump_particles(f,nskip,nlimit,0); mcpl_close_file(f); } int mcpl_actual_can_merge(mcpl_file_t ff1, mcpl_file_t ff2) { mcpl_fileinternal_t * f1 = (mcpl_fileinternal_t *)ff1.internal; mcpl_fileinternal_t * f2 = (mcpl_fileinternal_t *)ff2.internal; assert(f1&&f2); if (f1->first_particle_pos!=f2->first_particle_pos) return 0;//different header //Note, we do not check the format_version field here, since mcpl_merge_files //can actually work on files with different versions. //Very strict checking of everything except nparticles. Even order of blobs //and comments must be preserved (could possibly be relaxed a bit): if (strcmp(f1->hdr_srcprogname,f2->hdr_srcprogname)!=0) return 0; if (f1->opt_userflags!=f2->opt_userflags) return 0; if (f1->opt_polarisation!=f2->opt_polarisation) return 0; if (f1->opt_singleprec!=f2->opt_singleprec) return 0; if (f1->opt_universalpdgcode!=f2->opt_universalpdgcode) return 0; if (f1->opt_universalweight!=f2->opt_universalweight) return 0; if (f1->is_little_endian!=f2->is_little_endian) return 0; if (f1->particle_size!=f2->particle_size) return 0; if (f1->ncomments!=f2->ncomments) return 0; if (f1->nblobs!=f2->nblobs) return 0; uint32_t i; for (i = 0; incomments; ++i) { if (strcmp(f1->comments[i],f2->comments[i])!=0) return 0; } for (i = 0; inblobs; ++i) { if (f1->bloblengths[i]!=f2->bloblengths[i]) return 0; if (strcmp(f1->blobkeys[i],f2->blobkeys[i])!=0) return 0; if (memcmp(f1->blobs[i],f2->blobs[i],f1->bloblengths[i])!=0) return 0; } return 1; } int mcpl_can_merge(const char * file1, const char* file2) { mcpl_file_t f1 = mcpl_open_file(file1); mcpl_file_t f2 = mcpl_open_file(file2); int can_merge = mcpl_actual_can_merge(f1,f2); mcpl_close_file(f1); mcpl_close_file(f2); return can_merge; } #ifdef MCPL_THIS_IS_UNIX # include #endif int mcpl_file_certainly_exists(const char * filename) { #if defined MCPL_THIS_IS_UNIX || defined MCPL_THIS_IS_MS if( access( filename, F_OK ) != -1 ) return 1; return 0; #else //esoteric platform without access(..). Try opening for reads: FILE *fd; if ((fd = fopen(filename, "r"))) { fclose(fd); return 1; } //non-existing or read access not allowed: return 0; #endif } #ifdef MCPL_THIS_IS_UNIX # include # include #endif void mcpl_warn_duplicates(unsigned n, const char ** filenames) { //Checks that no filenames in provided list represent the same file (the //detection is not 100% certain on non-POSIX platforms). If duplicates are //found, emit warning - it is assumed the function is called from //mcpl_merge_xxx on a user-provided list of files. //Since this is C, we resort to slow O(N^2) comparison for simplicity. if (n<2) return; #ifdef MCPL_THIS_IS_UNIX //Bullet proof(ish) way, (st_ino,st_dev) uniquely identifies a file on a system. dev_t * id_dev = (dev_t*)calloc(n*sizeof(dev_t),1); ino_t * id_ino = (ino_t*)calloc(n*sizeof(ino_t),1); unsigned i; for (i = 0; iparticle_size; //buffer for transferring up to 1000 particles at a time: const unsigned npbufsize = 1000; char * buf = (char*)malloc(npbufsize*particle_size); uint64_t np_remaining = nparticles; while(np_remaining) { //NB: On linux > 2.6.33 we could use sendfile for more efficient in-kernel //transfer of data between two files! uint64_t toread = np_remaining >= npbufsize ? npbufsize : np_remaining; np_remaining -= toread; //read: size_t nb; #ifdef MCPL_HASZLIB if (fi->filegz) nb = gzread(fi->filegz, buf, toread*particle_size); else #endif nb = fread(buf,1,toread*particle_size,fi->file); if (nb!=toread*particle_size) mcpl_error("Unexpected read-error while merging"); //write: nb = fwrite(buf,1,toread*particle_size,fo); if (nb!=toread*particle_size) mcpl_error("Unexpected write-error while merging"); } free(buf); } mcpl_outfile_t mcpl_forcemerge_files( const char * file_output, unsigned nfiles, const char ** files, int keep_userflags ) { //////////////////////////////////// // Initial sanity check of input: // //////////////////////////////////// if (!nfiles) mcpl_error("mcpl_forcemerge_files must be called with at least one input file"); //Warn user if they are merging a file with itself: mcpl_warn_duplicates(nfiles,files); //Create new file: if (mcpl_file_certainly_exists(file_output)) mcpl_error("requested output file of mcpl_forcemerge_files already exists"); /////////////////////////////////////////// // Fallback to normal merge if possible: // /////////////////////////////////////////// //Check all files for compatibility before we start (for robustness, we check //again when actually merging each file). unsigned ifile; int normal_merge_ok = 1; for (ifile = 1; ifile < nfiles; ++ifile) { if (!mcpl_can_merge(files[0],files[ifile])) { normal_merge_ok = 0; break; } } if (normal_merge_ok) { printf("MCPL mcpl_forcemerge_files called with %i files that are compatible for a standard merge => falling back to standard mcpl_merge_files function\n",nfiles); return mcpl_merge_files(file_output,nfiles,files); } ///////////////////////////// // Actual forcemerge code: // ///////////////////////////// //Run through files and collect meta-data: int opt_dp = 0; int opt_pol = 0; int opt_uf = 0; int lastseen_universalpdg = 0; int disallow_universalpdg = 0; double lastseen_universalweight = 0; int disallow_universalweight = 0; for (ifile = 0; ifile < nfiles; ++ifile) { mcpl_file_t f = mcpl_open_file(files[ifile]); if (!mcpl_hdr_nparticles(f)) { mcpl_close_file(f); continue;//won't affect anything } if (mcpl_hdr_has_userflags(f)) opt_uf = 1;//enable if any if (mcpl_hdr_has_polarisation(f)) opt_pol = 1;//enable if any if (mcpl_hdr_has_doubleprec(f)) opt_dp = 1; int32_t updg = mcpl_hdr_universal_pdgcode(f); if ( !updg || ( lastseen_universalpdg && lastseen_universalpdg != updg ) ) { disallow_universalpdg = 1; } else { lastseen_universalpdg = updg; } double uw = mcpl_hdr_universal_weight(f); if ( !uw || ( lastseen_universalweight && lastseen_universalweight != uw ) ) { disallow_universalweight = 1; } else { lastseen_universalweight = uw; } mcpl_close_file(f); } if (!keep_userflags) opt_uf = 0; mcpl_outfile_t out = mcpl_create_outfile(file_output); mcpl_hdr_set_srcname(out,"mcpl_forcemerge_files (from MCPL v" MCPL_VERSION_STR ")"); if ( opt_uf ) mcpl_enable_userflags(out); if ( opt_pol ) mcpl_enable_polarisation(out); if (opt_dp) mcpl_enable_doubleprec(out); if ( !disallow_universalpdg && lastseen_universalpdg ) mcpl_enable_universal_pdgcode(out,lastseen_universalpdg); if ( !disallow_universalweight && lastseen_universalweight ) mcpl_enable_universal_weight(out,lastseen_universalweight); //Finally, perform the transfer: for (ifile = 0; ifile < nfiles; ++ifile) { mcpl_file_t f = mcpl_open_file(files[ifile]); uint64_t np = mcpl_hdr_nparticles(f); printf("MCPL force-merge: Transferring %" PRIu64 " particle%s from file %s\n",np,(np==1?"":"s"),files[ifile]); const mcpl_particle_t* particle; while ( ( particle = mcpl_read(f) ) ) mcpl_transfer_last_read_particle(f, out);//lossless transfer when possible mcpl_close_file(f); } mcpl_outfileinternal_t * out_internal = (mcpl_outfileinternal_t *)out.internal; uint64_t np = out_internal->nparticles; printf("MCPL force-merge: Transferred a total of %" PRIu64 " particle%s to new file %s\n",np,(np==1?"":"s"),file_output); return out; } mcpl_outfile_t mcpl_merge_files( const char* file_output, unsigned nfiles, const char ** files ) { mcpl_outfile_t out; out.internal = 0; if (!nfiles) mcpl_error("mcpl_merge_files must be called with at least one input file"); //Check all files for compatibility before we start (for robustness, we check //again when actually merging each file). unsigned ifile; for (ifile = 1; ifile < nfiles; ++ifile) { if (!mcpl_can_merge(files[0],files[ifile])) mcpl_error("Attempting to merge incompatible files."); } //Warn user if they are merging a file with itself: mcpl_warn_duplicates(nfiles,files); //Create new file: if (mcpl_file_certainly_exists(file_output)) mcpl_error("requested output file of mcpl_merge_files already exists"); out = mcpl_create_outfile(file_output); mcpl_outfileinternal_t * out_internal = (mcpl_outfileinternal_t *)out.internal; mcpl_file_t f1; f1.internal = 0; int warned_oldversion = 0; for (ifile = 0; ifile < nfiles; ++ifile) { mcpl_file_t fi = mcpl_open_file(files[ifile]); if (ifile==0) { //Add metadata from the first file: mcpl_transfer_metadata(fi, out); if (out_internal->header_notwritten) mcpl_write_header(out_internal); f1 = fi; } else { //Check file is still compatible with first file if (!mcpl_actual_can_merge(f1,fi)) mcpl_error("Aborting merge of suddenly incompatible files."); } //Transfer particle contents: if (mcpl_hdr_version(fi)==MCPL_FORMATVERSION) { //Can transfer raw bytes: uint64_t npi = mcpl_hdr_nparticles(fi); mcpl_transfer_particle_contents(out_internal->file, fi, npi); out_internal->nparticles += npi; } else { //Merging from older version. Transfer via public interface to re-encode //particle data for latest format: if (!warned_oldversion) { warned_oldversion = 1; printf("MCPL WARNING: Merging files from older MCPL format. Output will be in latest format.\n"); } const mcpl_particle_t* particle; while ( ( particle = mcpl_read(fi) ) ) mcpl_add_particle(out,particle); } if (ifile!=0) mcpl_close_file(fi); } mcpl_close_file(f1); return out; } void mcpl_merge(const char * file1, const char* file2) { printf("MCPL WARNING: Usage of function mcpl_merge is obsolete as it has" " been renamed to mcpl_merge_inplace. Please update your code.\n"); mcpl_merge_inplace(file1, file2); } void mcpl_merge_inplace(const char * file1, const char* file2) { mcpl_file_t ff1 = mcpl_open_file(file1); mcpl_file_t ff2 = mcpl_open_file(file2); int can_merge = mcpl_actual_can_merge(ff1,ff2); if (!can_merge) { mcpl_close_file(ff1); mcpl_close_file(ff2); mcpl_error("Attempting to merge incompatible files"); } //Warn user if they are merging a file with itself: const char * filelist[2]; filelist[0] = file1; filelist[1] = file2; mcpl_warn_duplicates(2,filelist); //Access internals: mcpl_fileinternal_t * f1 = (mcpl_fileinternal_t *)ff1.internal; mcpl_fileinternal_t * f2 = (mcpl_fileinternal_t *)ff2.internal; assert(f1&&f2); if (f1->format_version!=f2->format_version) { mcpl_close_file(ff1); mcpl_close_file(ff2); mcpl_error("Attempting to merge incompatible files (can not mix MCPL format versions when merging inplace)"); } if (f1->filegz) { mcpl_close_file(ff1); mcpl_close_file(ff2); mcpl_error("direct modification of gzipped files is not supported."); } uint64_t np1 = f1->nparticles; uint64_t np2 = f2->nparticles; if (!np2) return;//nothing to take from file 2. unsigned particle_size = f1->particle_size; uint64_t first_particle_pos = f1->first_particle_pos; //Should be same since can_merge: assert(particle_size==f2->particle_size); assert(first_particle_pos==f2->first_particle_pos); //Now, close file1 and reopen a file handle in append mode: mcpl_close_file(ff1); FILE * f1a = fopen(file1,"rb+"); //Update file positions. Note that f2->file is already at the position for the //first particle and that the seek operation on f1a correctly discards any //partial entries at the end, which could be there if the file was in need of //mcpl_repair: if (!f1a) mcpl_error("Unable to open file1 in update mode!"); if (fseek( f1a, first_particle_pos + particle_size*np1, SEEK_SET )) mcpl_error("Unable to seek to end of file1 in update mode"); //Transfer particle contents, setting nparticles to 0 during the operation (so //the file appears broken and in need of mcpl_repair in case of errors during //the transfer): mcpl_update_nparticles(f1a,0); mcpl_transfer_particle_contents(f1a, ff2, np2); mcpl_update_nparticles(f1a,np1+np2); //Finish up. mcpl_close_file(ff2); fclose(f1a); } #define MCPLIMP_TOOL_DEFAULT_NLIMIT 10 #define MCPLIMP_TOOL_DEFAULT_NSKIP 0 int mcpl_tool_usage( char** argv, const char * errmsg ) { if (errmsg) { printf("ERROR: %s\n\n",errmsg); printf("Run with -h or --help for usage information\n"); return 1; } const char * progname = mcpl_basename(argv[0]); printf("Tool for inspecting or modifying Monte Carlo Particle List (.mcpl) files.\n"); printf("\n"); printf("The default behaviour is to display the contents of the FILE in human readable\n"); printf("format (see Dump Options below for how to modify what is displayed).\n"); printf("\n"); #ifdef MCPL_HASZLIB printf("This installation supports direct reading of gzipped files (.mcpl.gz).\n"); printf("\n"); #endif printf("Usage:\n"); printf(" %s [dump-options] FILE\n",progname); printf(" %s --merge [merge-options] FILE1 FILE2\n",progname); printf(" %s --extract [extract-options] FILE1 FILE2\n",progname); printf(" %s --repair FILE\n",progname); printf(" %s --version\n",progname); printf(" %s --help\n",progname); printf("\n"); printf("Dump options:\n"); printf(" By default include the info in the FILE header plus the first ten contained\n"); printf(" particles. Modify with the following options:\n"); assert(MCPLIMP_TOOL_DEFAULT_NLIMIT==10); printf(" -j, --justhead : Dump just header info and no particle info.\n"); printf(" -n, --nohead : Dump just particle info and no header info.\n"); printf(" -lN : Dump up to N particles from the file (default %i). You\n",MCPLIMP_TOOL_DEFAULT_NLIMIT); printf(" can specify -l0 to disable this limit.\n"); printf(" -sN : Skip past the first N particles in the file (default %i).\n",MCPLIMP_TOOL_DEFAULT_NSKIP); printf(" -bKEY : Dump binary blob stored under KEY to standard output.\n"); printf("\n"); printf("Merge options:\n"); printf(" -m, --merge FILEOUT FILE1 FILE2 ... FILEN\n"); printf(" Creates new FILEOUT with combined particle contents from\n"); printf(" specified list of N existing and compatible files.\n"); printf(" -m, --merge --inplace FILE1 FILE2 ... FILEN\n"); printf(" Appends the particle contents in FILE2 ... FILEN into\n"); printf(" FILE1. Note that this action modifies FILE1!\n"); printf(" --forcemerge [--keepuserflags] FILEOUT FILE1 FILE2 ... FILEN\n"); printf(" Like --merge but works with incompatible files as well, at the\n"); printf(" heavy price of discarding most metadata like comments and blobs.\n"); printf(" Userflags will be discarded unless --keepuserflags is specified.\n"); printf("\n"); printf("Extract options:\n"); printf(" -e, --extract FILE1 FILE2\n"); printf(" Extracts particles from FILE1 into a new FILE2.\n"); printf(" -lN, -sN : Select range of particles in FILE1 (as above).\n"); printf(" -pPDGCODE : select particles of type given by PDGCODE.\n"); printf("\n"); printf("Other options:\n"); printf(" -r, --repair FILE\n"); printf(" Attempt to repair FILE which was not properly closed, by up-\n"); printf(" dating the file header with the correct number of particles.\n"); printf(" -t, --text MCPLFILE OUTFILE\n"); printf(" Read particle contents of MCPLFILE and write into OUTFILE\n"); printf(" using a simple ASCII-based format.\n"); printf(" -v, --version : Display version of MCPL installation.\n"); printf(" -h, --help : Display this usage information (ignores all other options).\n"); return 0; } int mcpl_str2int(const char* str, size_t len, int64_t* res) { //portable 64bit str2int with error checking (only INT64_MIN might not be //possible to specify). *res = 0; if (!len) len=strlen(str); if (!len) return 0; int sign = 1; if (str[0]=='-') { sign = -1; len -= 1; str += 1; } int64_t tmp = 0; size_t i; for (i=0; i'9') { return 0; } int64_t prev = tmp; tmp *= 10; tmp += str[i] - '0'; if (prev>=tmp) return 1;//overflow (hopefully it did not trigger a signal or FPE) } *res = sign * tmp; return 1; } int mcpl_tool(int argc,char** argv) { int nfilenames = 0; char ** filenames = 0; const char * blobkey = 0; const char * pdgcode_str = 0; int opt_justhead = 0; int opt_nohead = 0; int64_t opt_num_limit = -1; int64_t opt_num_skip = -1; int opt_merge = 0; int opt_forcemerge = 0; int opt_keepuserflags = 0; int opt_inplace = 0; int opt_extract = 0; int opt_preventcomment = 0;//undocumented unoffical flag for mcpl unit tests int opt_repair = 0; int opt_version = 0; int opt_text = 0; int i; for (i = 1; i=2&&a[0]=='-'&&a[1]!='-') { //short options: int64_t * consume_digit = 0; size_t j; for (j=1; j'9') return free(filenames),mcpl_tool_usage(argv,"Bad option: expected number"); *consume_digit *= 10; *consume_digit += a[j] - '0'; continue; } if (a[j]=='b') { if (blobkey) return free(filenames),mcpl_tool_usage(argv,"-b specified more than once"); if (j+1==n) return free(filenames),mcpl_tool_usage(argv,"Missing argument for -b"); blobkey = a+j+1; break; } if (a[j]=='p') { if (pdgcode_str) return free(filenames),mcpl_tool_usage(argv,"-p specified more than once"); if (j+1==n) return free(filenames),mcpl_tool_usage(argv,"Missing argument for -p"); pdgcode_str = a+j+1; break; } switch(a[j]) { case 'h': return free(filenames), mcpl_tool_usage(argv,0); case 'j': opt_justhead = 1; break; case 'n': opt_nohead = 1; break; case 'm': opt_merge = 1; break; case 'e': opt_extract = 1; break; case 'r': opt_repair = 1; break; case 'v': opt_version = 1; break; case 't': opt_text = 1; break; case 'l': consume_digit = &opt_num_limit; break; case 's': consume_digit = &opt_num_skip; break; default: return free(filenames),mcpl_tool_usage(argv,"Unrecognised option"); } if (consume_digit) { *consume_digit = 0; if (j+1==n) return free(filenames),mcpl_tool_usage(argv,"Bad option: missing number"); } } } else if (n>=3&&a[0]=='-'&&a[1]=='-') { a+=2; //long options: const char * lo_help = "help"; const char * lo_justhead = "justhead"; const char * lo_nohead = "nohead"; const char * lo_merge = "merge"; const char * lo_inplace = "inplace"; const char * lo_extract = "extract"; const char * lo_preventcomment = "preventcomment"; const char * lo_repair = "repair"; const char * lo_version = "version"; const char * lo_text = "text"; const char * lo_forcemerge = "forcemerge"; const char * lo_keepuserflags = "keepuserflags"; //Use strstr instead of "strcmp(a,"--help")==0" to support shortened //versions (works since all our long-opts start with unique char). if (strstr(lo_help,a)==lo_help) return free(filenames), mcpl_tool_usage(argv,0); else if (strstr(lo_justhead,a)==lo_justhead) opt_justhead = 1; else if (strstr(lo_nohead,a)==lo_nohead) opt_nohead = 1; else if (strstr(lo_merge,a)==lo_merge) opt_merge = 1; else if (strstr(lo_forcemerge,a)==lo_forcemerge) opt_forcemerge = 1; else if (strstr(lo_keepuserflags,a)==lo_keepuserflags) opt_keepuserflags = 1; else if (strstr(lo_inplace,a)==lo_inplace) opt_inplace = 1; else if (strstr(lo_extract,a)==lo_extract) opt_extract = 1; else if (strstr(lo_repair,a)==lo_repair) opt_repair = 1; else if (strstr(lo_version,a)==lo_version) opt_version = 1; else if (strstr(lo_preventcomment,a)==lo_preventcomment) opt_preventcomment = 1; else if (strstr(lo_text,a)==lo_text) opt_text = 1; else return free(filenames),mcpl_tool_usage(argv,"Unrecognised option"); } else if (n>=1&&a[0]!='-') { //input file if (!filenames) filenames = (char **)calloc(argc,sizeof(char*)); filenames[nfilenames] = a; ++nfilenames; } else { return free(filenames),mcpl_tool_usage(argv,"Bad arguments"); } } if ( opt_extract==0 && pdgcode_str ) return free(filenames),mcpl_tool_usage(argv,"-p can only be used with --extract."); if ( opt_merge==0 && opt_inplace!=0 ) return free(filenames),mcpl_tool_usage(argv,"--inplace can only be used with --merge."); if ( opt_forcemerge==0 && opt_keepuserflags!=0 ) return free(filenames),mcpl_tool_usage(argv,"--keepuserflags can only be used with --forcemerge."); if ( opt_merge!=0 && opt_forcemerge!=0 ) return free(filenames),mcpl_tool_usage(argv,"--merge and --forcemerge can not both be specified ."); int number_dumpopts = (opt_justhead + opt_nohead + (blobkey!=0)); if (opt_extract==0) number_dumpopts += (opt_num_limit!=-1) + (opt_num_skip!=-1); int any_dumpopts = number_dumpopts != 0; int any_extractopts = (opt_extract!=0||pdgcode_str!=0); int any_mergeopts = (opt_merge!=0||opt_forcemerge!=0); int any_textopts = (opt_text!=0); if (any_dumpopts+any_mergeopts+any_extractopts+any_textopts+opt_repair+opt_version>1) return free(filenames),mcpl_tool_usage(argv,"Conflicting options specified."); if (blobkey&&(number_dumpopts>1)) return free(filenames),mcpl_tool_usage(argv,"Do not specify other dump options with -b."); if (opt_version) { free(filenames); if (nfilenames) return mcpl_tool_usage(argv,"Unrecognised arguments for --version."); printf("MCPL version " MCPL_VERSION_STR "\n"); return 0; } if (any_mergeopts) { if (nfilenames<2) return free(filenames),mcpl_tool_usage(argv, (opt_forcemerge?"Too few arguments for --forcemerge.":"Too few arguments for --merge.") ); int ifirstinfile = (opt_inplace ? 0 : 1); if (!opt_forcemerge) { for (i = ifirstinfile+1; i < nfilenames; ++i) if (!mcpl_can_merge(filenames[ifirstinfile],filenames[i])) return free(filenames),mcpl_tool_usage(argv,"Requested files are incompatible for merge as they have different header info."); } if (opt_inplace) { assert( !opt_forcemerge && opt_merge ); for (i = ifirstinfile+1; i < nfilenames; ++i) mcpl_merge_inplace(filenames[ifirstinfile],filenames[i]); } else { if (mcpl_file_certainly_exists(filenames[0])) return free(filenames),mcpl_tool_usage(argv,"Requested output file already exists."); //Disallow .gz endings unless it is .mcpl.gz, in which case we attempt to gzip automatically. char * outfn = filenames[0]; size_t lfn = strlen(outfn); int attempt_gzip = 0; if( lfn > 8 && !strcmp(outfn + (lfn - 8), ".mcpl.gz")) { attempt_gzip = 1; outfn = (char*)malloc(lfn+1); outfn[0] = '\0'; strcat(outfn,filenames[0]); outfn[lfn-3] = '\0'; if (mcpl_file_certainly_exists(outfn)) return free(filenames),mcpl_tool_usage(argv,"Requested output file already exists (without .gz extension)."); } else if( lfn > 3 && !strcmp(outfn + (lfn - 3), ".gz")) { return free(filenames),mcpl_tool_usage(argv,"Requested output file should not have .gz extension (unless it is .mcpl.gz)."); } mcpl_outfile_t mf = ( opt_forcemerge ? mcpl_forcemerge_files( outfn, nfilenames-1, (const char**)filenames + 1, opt_keepuserflags) : mcpl_merge_files( outfn, nfilenames-1, (const char**)filenames + 1) ); if (attempt_gzip) { if (!mcpl_closeandgzip_outfile(mf)) printf("MCPL WARNING: Failed to gzip output. Non-gzipped output is found in %s\n",outfn); } else { mcpl_close_outfile(mf); } if (outfn != filenames[0]) free(outfn); } free(filenames); return 0; } if (opt_extract) { if (nfilenames>2) return free(filenames),mcpl_tool_usage(argv,"Too many arguments."); if (nfilenames!=2) return free(filenames),mcpl_tool_usage(argv,"Must specify both input and output files with --extract."); if (mcpl_file_certainly_exists(filenames[1])) return free(filenames),mcpl_tool_usage(argv,"Requested output file already exists."); mcpl_file_t fi = mcpl_open_file(filenames[0]); mcpl_outfile_t fo = mcpl_create_outfile(filenames[1]); mcpl_transfer_metadata(fi, fo); uint64_t fi_nparticles = mcpl_hdr_nparticles(fi); if (!opt_preventcomment) { char comment[1024]; sprintf(comment, "mcpltool: extracted particles from file with %" PRIu64 " particles",fi_nparticles); mcpl_hdr_add_comment(fo,comment); } int32_t pdgcode_select = 0; if (pdgcode_str) { int64_t pdgcode64; if (!mcpl_str2int(pdgcode_str, 0, &pdgcode64) || pdgcode64<-2147483648 || pdgcode64>2147483647 || !pdgcode64) return free(filenames),mcpl_tool_usage(argv,"Must specify non-zero 32bit integer as argument to -p."); pdgcode_select = (int32_t)pdgcode64; } if (opt_num_skip>0) mcpl_seek(fi,(uint64_t)opt_num_skip); //uint64_t(-1) instead of UINT64_MAX to fix clang c++98 compilation uint64_t left = opt_num_limit>0 ? (uint64_t)opt_num_limit : (uint64_t)-1; uint64_t added = 0; const mcpl_particle_t* particle; while ( left-- && ( particle = mcpl_read(fi) ) ) { if (pdgcode_select && pdgcode_select!= particle->pdgcode) continue; mcpl_transfer_last_read_particle(fi, fo);//Doing mcpl_add_particle(fo,particle) is potentially (very rarely) lossy ++added; } char *fo_filename = (char*)malloc(strlen(mcpl_outfile_filename(fo))+4); fo_filename[0] = '\0'; strcat(fo_filename,mcpl_outfile_filename(fo)); if (mcpl_closeandgzip_outfile(fo)) strcat(fo_filename,".gz"); mcpl_close_file(fi); printf("MCPL: Succesfully extracted %" PRIu64 " / %" PRIu64 " particles from %s into %s\n", added,fi_nparticles,filenames[0],fo_filename); free(fo_filename); free(filenames); return 0; } if (opt_text) { if (nfilenames>2) return free(filenames),mcpl_tool_usage(argv,"Too many arguments."); if (nfilenames!=2) return free(filenames),mcpl_tool_usage(argv,"Must specify both input and output files with --text."); if (mcpl_file_certainly_exists(filenames[1])) return free(filenames),mcpl_tool_usage(argv,"Requested output file already exists."); mcpl_file_t fi = mcpl_open_file(filenames[0]); FILE * fout = fopen(filenames[1],"w"); if (!fout) return free(filenames),mcpl_tool_usage(argv,"Could not open output file."); fprintf(fout,"#MCPL-ASCII\n#ASCII-FORMAT: v1\n#NPARTICLES: %" PRIu64 "\n#END-HEADER\n",mcpl_hdr_nparticles(fi)); fprintf(fout,"index pdgcode ekin[MeV] x[cm] " " y[cm] z[cm] ux " " uy uz time[ms] weight " " pol-x pol-y pol-z userflags\n"); const mcpl_particle_t* p; while ( ( p = mcpl_read(fi) ) ) { uint64_t idx = mcpl_currentposition(fi)-1;//-1 since mcpl_read skipped ahead fprintf(fout,"%5" PRIu64 " %11i %23.18g %23.18g %23.18g %23.18g %23.18g %23.18g %23.18g %23.18g %23.18g" " %23.18g %23.18g %23.18g 0x%08x\n", idx,p->pdgcode,p->ekin,p->position[0],p->position[1],p->position[2], p->direction[0],p->direction[1],p->direction[2],p->time,p->weight, p->polarisation[0],p->polarisation[1],p->polarisation[2],p->userflags); } fclose(fout); mcpl_close_file(fi); free(filenames); return 0; } if (nfilenames>1) return free(filenames),mcpl_tool_usage(argv,"Too many arguments."); if (!nfilenames) return free(filenames),mcpl_tool_usage(argv,"No input file specified"); if (opt_repair) { mcpl_repair(filenames[0]); free(filenames); return 0; } //Dump mode: if (blobkey) { mcpl_file_t mcplfile = mcpl_open_file(filenames[0]); uint32_t ldata; const char * data; if (!mcpl_hdr_blob(mcplfile, blobkey, &ldata, &data)) return 1; #ifdef MCPL_THIS_IS_MS setmode(STDOUT_FILENO, O_BINARY); #endif uint32_t nb = write(STDOUT_FILENO,data,ldata); if (nb!=ldata) mcpl_error("Problems writing to stdout"); free(filenames); return 0; } if (opt_justhead&&(opt_num_limit!=-1||opt_num_skip!=-1)) return free(filenames),mcpl_tool_usage(argv,"Do not specify -l or -s with --justhead"); if (opt_num_limit<0) opt_num_limit = MCPLIMP_TOOL_DEFAULT_NLIMIT; if (opt_num_skip<0) opt_num_skip = MCPLIMP_TOOL_DEFAULT_NSKIP; if (opt_justhead&&opt_nohead) return free(filenames),mcpl_tool_usage(argv,"Do not supply both --justhead and --nohead."); int parts = 0; if (opt_nohead) parts=2; else if (opt_justhead) parts=1; mcpl_dump(filenames[0],parts,opt_num_skip,opt_num_limit); free(filenames); return 0; } int mcpl_gzip_file_rc(const char * filename) { printf("MCPL WARNING: Usage of function mcpl_gzip_file_rc is obsolete as" " mcpl_gzip_file now also returns the status. Please update your code" " to use mcpl_gzip_file instead.\n"); return mcpl_gzip_file(filename); } #if defined(MCPL_HASZLIB) && !defined(Z_SOLO) && !defined(MCPL_NO_CUSTOM_GZIP) # define MCPLIMP_HAS_CUSTOM_GZIP int _mcpl_custom_gzip(const char *file, const char *mode);//return 1 if successful, 0 if not #endif #if defined MCPL_THIS_IS_UNIX && !defined(MCPL_NO_EXT_GZIP) //Platform is unix-like enough that we assume gzip is installed and we can //include posix headers. # include # include # include int mcpl_gzip_file(const char * filename) { const char * bn = strrchr(filename, '/'); bn = bn ? bn + 1 : filename; //spawn process in which to perform gzip: printf("MCPL: Attempting to compress file %s with gzip\n",bn); fflush(0); pid_t gzip_pid = fork(); if (gzip_pid) { //main proc int chld_state = 0; pid_t ret = waitpid(gzip_pid,&chld_state,0); if (ret!=gzip_pid||chld_state!=0) { # ifdef MCPLIMP_HAS_CUSTOM_GZIP printf("MCPL WARNING: Problems invoking gzip - will revert to a custom zlib based compression\n"); if (!_mcpl_custom_gzip(filename,"wb")) mcpl_error("Problems encountered while attempting to compress file"); else printf("MCPL: Succesfully compressed file into %s.gz\n",bn); # else mcpl_error("Problems encountered while attempting to invoke gzip"); # endif } else printf("MCPL: Succesfully compressed file into %s.gz\n",bn); } else { //spawned proc in which to invoke gzip execlp("gzip", "gzip", "-f",filename, (char*)0); printf("MCPL: execlp/gzip error: %s\n",strerror(errno)); exit(1); } return 1; } #else //Non unix-y platform (like windows). We could use e.g. windows-specific calls //instead of the fork() and waitpid() used above, but gzip likely not present on //the system anyway, so we either resort to using zlib directly to gzip, or we //disable the feature and print a warning. # ifndef MCPLIMP_HAS_CUSTOM_GZIP int mcpl_gzip_file(const char * filename) { const char * bn = strrchr(filename, '/'); bn = bn ? bn + 1 : filename; printf("MCPL WARNING: Requested compression of %s to %s.gz is not supported in this build.\n",bn,bn); return 0; } # else int mcpl_gzip_file(const char * filename) { const char * bn = strrchr(filename, '/'); bn = bn ? bn + 1 : filename; printf("MCPL: Attempting to compress file %s with zlib\n",bn); if (!_mcpl_custom_gzip(filename,"wb")) printf("MCPL ERROR: Problems encountered while compressing file %s.\n",bn); else printf("MCPL: Succesfully compressed file into %s.gz\n",bn); return 1; } # endif #endif #ifdef MCPLIMP_HAS_CUSTOM_GZIP int _mcpl_custom_gzip(const char *filename, const char *mode) { //Open input file: FILE *handle_in = fopen(filename, "rb"); if (!handle_in) return 0; //Construct output file name by appending .gz: char * outfn = (char*)malloc(strlen(filename) + 4); outfn[0] = '\0'; strcat(outfn,filename); strcat(outfn,".gz"); //Open output file: gzFile handle_out = gzopen(outfn, mode); free(outfn); if (!handle_out) { fclose(handle_in); return 0; } //Compress input to output: char buf[16384]; size_t len; while (1) { len = (int)fread(buf, 1, sizeof(buf), handle_in); if (ferror(handle_in)) return 0; if (!len) break; if ((size_t)gzwrite(handle_out, buf, (unsigned)len) != len) return 0; } //close file: fclose(handle_in); if (gzclose(handle_out) != Z_OK) return 0; //remove input file and return success: unlink(filename); return 1; } #endif #ifdef NAME # undef NAME #endif /* START OF DUMP OF mz_uncompr.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* uncompr.c -- decompress a memory buffer * Copyright (C) 1995-2003, 2010 Jean-loup Gailly. * For conditions of distribution and use, see copyright notice in zlib.h */ /* @(#) $Id$ */ #define ZLIB_INTERNAL /* =========================================================================== Decompresses the source buffer into the destination buffer. sourceLen is the byte length of the source buffer. Upon entry, destLen is the total size of the destination buffer, which must be large enough to hold the entire uncompressed data. (The size of the uncompressed data must have been saved previously by the compressor and transmitted to the decompressor by some mechanism outside the scope of this compression library.) Upon exit, destLen is the actual size of the compressed buffer. uncompress returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if there was not enough room in the output buffer, or Z_DATA_ERROR if the input data was corrupted. */ int ZEXPORT uncompress (dest, destLen, source, sourceLen) Bytef *dest; uLongf *destLen; const Bytef *source; uLong sourceLen; { z_stream stream; int err; stream.next_in = (z_const Bytef *)source; stream.avail_in = (uInt)sourceLen; /* Check for source > 64K on 16-bit machine: */ if ((uLong)stream.avail_in != sourceLen) return Z_BUF_ERROR; stream.next_out = dest; stream.avail_out = (uInt)*destLen; if ((uLong)stream.avail_out != *destLen) return Z_BUF_ERROR; stream.zalloc = (alloc_func)0; stream.zfree = (free_func)0; err = inflateInit(&stream); if (err != Z_OK) return err; err = inflate(&stream, Z_FINISH); if (err != Z_STREAM_END) { inflateEnd(&stream); if (err == Z_NEED_DICT || (err == Z_BUF_ERROR && stream.avail_in == 0)) return Z_DATA_ERROR; return err; } *destLen = stream.total_out; err = inflateEnd(&stream); return err; } /* END OF DUMP OF mz_uncompr.c*/ /* START OF DUMP OF mz_trees.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* trees.c -- output deflated data using Huffman coding * Copyright (C) 1995-2012 Jean-loup Gailly * detect_data_type() function provided freely by Cosmin Truta, 2006 * For conditions of distribution and use, see copyright notice in zlib.h */ /* * ALGORITHM * * The "deflation" process uses several Huffman trees. The more * common source values are represented by shorter bit sequences. * * Each code tree is stored in a compressed form which is itself * a Huffman encoding of the lengths of all the code strings (in * ascending order by source values). The actual code strings are * reconstructed from the lengths in the inflate process, as described * in the deflate specification. * * REFERENCES * * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc * * Storer, James A. * Data Compression: Methods and Theory, pp. 49-50. * Computer Science Press, 1988. ISBN 0-7167-8156-5. * * Sedgewick, R. * Algorithms, p290. * Addison-Wesley, 1983. ISBN 0-201-06672-6. */ /* @(#) $Id$ */ /* #define GEN_TREES_H */ /* START OF DUMP OF mz_deflate.h*/ /* deflate.h -- internal compression state * Copyright (C) 1995-2012 Jean-loup Gailly * For conditions of distribution and use, see copyright notice in zlib.h */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ /* @(#) $Id$ */ #ifndef DEFLATE_H #define DEFLATE_H /* START OF DUMP OF mz_zutil.h*/ /* zutil.h -- internal interface and configuration of the compression library * Copyright (C) 1995-2013 Jean-loup Gailly. * For conditions of distribution and use, see copyright notice in zlib.h */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ /* @(#) $Id$ */ #ifndef ZUTIL_H #define ZUTIL_H #ifdef HAVE_HIDDEN # define ZLIB_INTERNAL __attribute__((visibility ("hidden"))) #else # define ZLIB_INTERNAL #endif #if defined(STDC) && !defined(Z_SOLO) # if !(defined(_WIN32_WCE) && defined(_MSC_VER)) # include # endif # include # include #endif #ifdef Z_SOLO typedef long ptrdiff_t; /* guess -- will be caught if guess is wrong */ #endif #ifndef local # define local static #endif /* compile with -Dlocal if your debugger can't find static symbols */ typedef unsigned char uch; typedef uch FAR uchf; typedef unsigned short ush; typedef ush FAR ushf; typedef unsigned long ulg; extern z_const char * const z_errmsg[10]; /* indexed by 2-zlib_error */ /* (size given to avoid silly warnings with Visual C++) */ #define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)] #define ERR_RETURN(strm,err) \ return (strm->msg = ERR_MSG(err), (err)) /* To be used only when the state is known to be valid */ /* common constants */ #ifndef DEF_WBITS # define DEF_WBITS MAX_WBITS #endif /* default windowBits for decompression. MAX_WBITS is for compression only */ #if MAX_MEM_LEVEL >= 8 # define DEF_MEM_LEVEL 8 #else # define DEF_MEM_LEVEL MAX_MEM_LEVEL #endif /* default memLevel */ #define STORED_BLOCK 0 #define STATIC_TREES 1 #define DYN_TREES 2 /* The three kinds of block type */ #define MIN_MATCH 3 #define MAX_MATCH 258 /* The minimum and maximum match lengths */ #define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */ /* target dependencies */ #if defined(MSDOS) || (defined(WINDOWS) && !defined(WIN32)) # define OS_CODE 0x00 # ifndef Z_SOLO # if defined(__TURBOC__) || defined(__BORLANDC__) # if (__STDC__ == 1) && (defined(__LARGE__) || defined(__COMPACT__)) /* Allow compilation with ANSI keywords only enabled */ void _Cdecl farfree( void *block ); void *_Cdecl farmalloc( unsigned long nbytes ); # else # include # endif # else /* MSC or DJGPP */ # include # endif # endif #endif #ifdef AMIGA # define OS_CODE 0x01 #endif #if defined(VAXC) || defined(VMS) # define OS_CODE 0x02 # define F_OPEN(name, mode) \ fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512") #endif #if defined(ATARI) || defined(atarist) # define OS_CODE 0x05 #endif #ifdef OS2 # define OS_CODE 0x06 # if defined(M_I86) && !defined(Z_SOLO) # include # endif #endif #if defined(MACOS) || defined(TARGET_OS_MAC) # define OS_CODE 0x07 # ifndef Z_SOLO # if defined(__MWERKS__) && __dest_os != __be_os && __dest_os != __win32_os # include /* for fdopen */ # else # ifndef fdopen # define fdopen(fd,mode) NULL /* No fdopen() */ # endif # endif # endif #endif #ifdef TOPS20 # define OS_CODE 0x0a #endif #ifdef WIN32 # ifndef __CYGWIN__ /* Cygwin is Unix, not Win32 */ # define OS_CODE 0x0b # endif #endif #ifdef __50SERIES /* Prime/PRIMOS */ # define OS_CODE 0x0f #endif #if defined(_BEOS_) || defined(RISCOS) # define fdopen(fd,mode) NULL /* No fdopen() */ #endif #if (defined(_MSC_VER) && (_MSC_VER > 600)) && !defined __INTERIX # if defined(_WIN32_WCE) # define fdopen(fd,mode) NULL /* No fdopen() */ # ifndef _PTRDIFF_T_DEFINED typedef int ptrdiff_t; # define _PTRDIFF_T_DEFINED # endif # else # define fdopen(fd,type) _fdopen(fd,type) # endif #endif #if defined(__BORLANDC__) && !defined(MSDOS) #pragma warn -8004 #pragma warn -8008 #pragma warn -8066 #endif /* provide prototypes for these when building zlib without LFS */ #if !defined(_WIN32) && \ (!defined(_LARGEFILE64_SOURCE) || _LFS64_LARGEFILE-0 == 0) ZEXTERN uLong ZEXPORT adler32_combine64 OF((uLong, uLong, z_off_t)); ZEXTERN uLong ZEXPORT crc32_combine64 OF((uLong, uLong, z_off_t)); #endif /* common defaults */ #ifndef OS_CODE # define OS_CODE 0x03 /* assume Unix */ #endif #ifndef F_OPEN # define F_OPEN(name, mode) fopen((name), (mode)) #endif /* functions */ #if defined(pyr) || defined(Z_SOLO) # define NO_MEMCPY #endif #if defined(SMALL_MEDIUM) && !defined(_MSC_VER) && !defined(__SC__) /* Use our own functions for small and medium model with MSC <= 5.0. * You may have to use the same strategy for Borland C (untested). * The __SC__ check is for Symantec. */ # define NO_MEMCPY #endif #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY) # define HAVE_MEMCPY #endif #ifdef HAVE_MEMCPY # ifdef SMALL_MEDIUM /* MSDOS small or medium model */ # define zmemcpy _fmemcpy # define zmemcmp _fmemcmp # define zmemzero(dest, len) _fmemset(dest, 0, len) # else # define zmemcpy memcpy # define zmemcmp memcmp # define zmemzero(dest, len) memset(dest, 0, len) # endif #else void ZLIB_INTERNAL zmemcpy OF((Bytef* dest, const Bytef* source, uInt len)); int ZLIB_INTERNAL zmemcmp OF((const Bytef* s1, const Bytef* s2, uInt len)); void ZLIB_INTERNAL zmemzero OF((Bytef* dest, uInt len)); #endif /* Diagnostic functions */ #ifdef DEBUG # include extern int ZLIB_INTERNAL z_verbose; extern void ZLIB_INTERNAL z_error OF((char *m)); # define Assert(cond,msg) {if(!(cond)) z_error(msg);} # define Trace(x) {if (z_verbose>=0) fprintf x ;} # define Tracev(x) {if (z_verbose>0) fprintf x ;} # define Tracevv(x) {if (z_verbose>1) fprintf x ;} # define Tracec(c,x) {if (z_verbose>0 && (c)) fprintf x ;} # define Tracecv(c,x) {if (z_verbose>1 && (c)) fprintf x ;} #else # define Assert(cond,msg) # define Trace(x) # define Tracev(x) # define Tracevv(x) # define Tracec(c,x) # define Tracecv(c,x) #endif #ifndef Z_SOLO voidpf ZLIB_INTERNAL zcalloc OF((voidpf opaque, unsigned items, unsigned size)); void ZLIB_INTERNAL zcfree OF((voidpf opaque, voidpf ptr)); #endif #define ZALLOC(strm, items, size) \ (*((strm)->zalloc))((strm)->opaque, (items), (size)) #define ZFREE(strm, addr) (*((strm)->zfree))((strm)->opaque, (voidpf)(addr)) #define TRY_FREE(s, p) {if (p) ZFREE(s, p);} /* Reverse the bytes in a 32-bit value */ #define ZSWAP32(q) ((((q) >> 24) & 0xff) + (((q) >> 8) & 0xff00) + \ (((q) & 0xff00) << 8) + (((q) & 0xff) << 24)) #endif /* ZUTIL_H */ /* END OF DUMP OF mz_zutil.h*/ /* define NO_GZIP when compiling if you want to disable gzip header and trailer creation by deflate(). NO_GZIP would be used to avoid linking in the crc code when it is not needed. For shared libraries, gzip encoding should be left enabled. */ #ifndef NO_GZIP # define GZIP #endif /* =========================================================================== * Internal compression state. */ #define LENGTH_CODES 29 /* number of length codes, not counting the special END_BLOCK code */ #define LITERALS 256 /* number of literal bytes 0..255 */ #define L_CODES (LITERALS+1+LENGTH_CODES) /* number of Literal or Length codes, including the END_BLOCK code */ #define D_CODES 30 /* number of distance codes */ #define BL_CODES 19 /* number of codes used to transfer the bit lengths */ #define HEAP_SIZE (2*L_CODES+1) /* maximum heap size */ #define MAX_BITS 15 /* All codes must not exceed MAX_BITS bits */ #define Buf_size 16 /* size of bit buffer in bi_buf */ #define INIT_STATE 42 #define EXTRA_STATE 69 #define NAME_STATE 73 #define COMMENT_STATE 91 #define HCRC_STATE 103 #define BUSY_STATE 113 #define FINISH_STATE 666 /* Stream status */ /* Data structure describing a single value and its code string. */ typedef struct ct_data_s { union { ush freq; /* frequency count */ ush code; /* bit string */ } fc; union { ush dad; /* father node in Huffman tree */ ush len; /* length of bit string */ } dl; } FAR ct_data; #define Freq fc.freq #define Code fc.code #define Dad dl.dad #define Len dl.len typedef struct static_tree_desc_s static_tree_desc; typedef struct tree_desc_s { ct_data *dyn_tree; /* the dynamic tree */ int max_code; /* largest code with non zero frequency */ static_tree_desc *stat_desc; /* the corresponding static tree */ } FAR tree_desc; typedef ush Pos; typedef Pos FAR Posf; typedef unsigned IPos; /* A Pos is an index in the character window. We use short instead of int to * save space in the various tables. IPos is used only for parameter passing. */ typedef struct internal_state { z_streamp strm; /* pointer back to this zlib stream */ int status; /* as the name implies */ Bytef *pending_buf; /* output still pending */ ulg pending_buf_size; /* size of pending_buf */ Bytef *pending_out; /* next pending byte to output to the stream */ uInt pending; /* nb of bytes in the pending buffer */ int wrap; /* bit 0 true for zlib, bit 1 true for gzip */ gz_headerp gzhead; /* gzip header information to write */ uInt gzindex; /* where in extra, name, or comment */ Byte method; /* can only be DEFLATED */ int last_flush; /* value of flush param for previous deflate call */ /* used by deflate.c: */ uInt w_size; /* LZ77 window size (32K by default) */ uInt w_bits; /* log2(w_size) (8..16) */ uInt w_mask; /* w_size - 1 */ Bytef *window; /* Sliding window. Input bytes are read into the second half of the window, * and move to the first half later to keep a dictionary of at least wSize * bytes. With this organization, matches are limited to a distance of * wSize-MAX_MATCH bytes, but this ensures that IO is always * performed with a length multiple of the block size. Also, it limits * the window size to 64K, which is quite useful on MSDOS. * To do: use the user input buffer as sliding window. */ ulg window_size; /* Actual size of window: 2*wSize, except when the user input buffer * is directly used as sliding window. */ Posf *prev; /* Link to older string with same hash index. To limit the size of this * array to 64K, this link is maintained only for the last 32K strings. * An index in this array is thus a window index modulo 32K. */ Posf *head; /* Heads of the hash chains or NIL. */ uInt ins_h; /* hash index of string to be inserted */ uInt hash_size; /* number of elements in hash table */ uInt hash_bits; /* log2(hash_size) */ uInt hash_mask; /* hash_size-1 */ uInt hash_shift; /* Number of bits by which ins_h must be shifted at each input * step. It must be such that after MIN_MATCH steps, the oldest * byte no longer takes part in the hash key, that is: * hash_shift * MIN_MATCH >= hash_bits */ long block_start; /* Window position at the beginning of the current output block. Gets * negative when the window is moved backwards. */ uInt match_length; /* length of best match */ IPos prev_match; /* previous match */ int match_available; /* set if previous match exists */ uInt strstart; /* start of string to insert */ uInt match_start; /* start of matching string */ uInt lookahead; /* number of valid bytes ahead in window */ uInt prev_length; /* Length of the best match at previous step. Matches not greater than this * are discarded. This is used in the lazy match evaluation. */ uInt max_chain_length; /* To speed up deflation, hash chains are never searched beyond this * length. A higher limit improves compression ratio but degrades the * speed. */ uInt max_lazy_match; /* Attempt to find a better match only when the current match is strictly * smaller than this value. This mechanism is used only for compression * levels >= 4. */ # define max_insert_length max_lazy_match /* Insert new strings in the hash table only if the match length is not * greater than this length. This saves time but degrades compression. * max_insert_length is used only for compression levels <= 3. */ int level; /* compression level (1..9) */ int strategy; /* favor or force Huffman coding*/ uInt good_match; /* Use a faster search when the previous match is longer than this */ int nice_match; /* Stop searching when current match exceeds this */ /* used by trees.c: */ /* Didn't use ct_data typedef below to suppress compiler warning */ struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */ struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */ struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */ struct tree_desc_s l_desc; /* desc. for literal tree */ struct tree_desc_s d_desc; /* desc. for distance tree */ struct tree_desc_s bl_desc; /* desc. for bit length tree */ ush bl_count[MAX_BITS+1]; /* number of codes at each bit length for an optimal tree */ int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */ int heap_len; /* number of elements in the heap */ int heap_max; /* element of largest frequency */ /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used. * The same heap array is used to build all trees. */ uch depth[2*L_CODES+1]; /* Depth of each subtree used as tie breaker for trees of equal frequency */ uchf *l_buf; /* buffer for literals or lengths */ uInt lit_bufsize; /* Size of match buffer for literals/lengths. There are 4 reasons for * limiting lit_bufsize to 64K: * - frequencies can be kept in 16 bit counters * - if compression is not successful for the first block, all input * data is still in the window so we can still emit a stored block even * when input comes from standard input. (This can also be done for * all blocks if lit_bufsize is not greater than 32K.) * - if compression is not successful for a file smaller than 64K, we can * even emit a stored file instead of a stored block (saving 5 bytes). * This is applicable only for zip (not gzip or zlib). * - creating new Huffman trees less frequently may not provide fast * adaptation to changes in the input data statistics. (Take for * example a binary file with poorly compressible code followed by * a highly compressible string table.) Smaller buffer sizes give * fast adaptation but have of course the overhead of transmitting * trees more frequently. * - I can't count above 4 */ uInt last_lit; /* running index in l_buf */ ushf *d_buf; /* Buffer for distances. To simplify the code, d_buf and l_buf have * the same number of elements. To use different lengths, an extra flag * array would be necessary. */ ulg opt_len; /* bit length of current block with optimal trees */ ulg static_len; /* bit length of current block with static trees */ uInt matches; /* number of string matches in current block */ uInt insert; /* bytes at end of window left to insert */ #ifdef DEBUG ulg compressed_len; /* total bit length of compressed file mod 2^32 */ ulg bits_sent; /* bit length of compressed data sent mod 2^32 */ #endif ush bi_buf; /* Output buffer. bits are inserted starting at the bottom (least * significant bits). */ int bi_valid; /* Number of valid bits in bi_buf. All bits above the last valid bit * are always zero. */ ulg high_water; /* High water mark offset in window for initialized bytes -- bytes above * this are set to zero in order to avoid memory check warnings when * longest match routines access bytes past the input. This is then * updated to the new high water mark. */ } FAR deflate_state; /* Output a byte on the stream. * IN assertion: there is enough room in pending_buf. */ #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);} #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1) /* Minimum amount of lookahead, except at the end of the input file. * See deflate.c for comments about the MIN_MATCH+1. */ #define MAX_DIST(s) ((s)->w_size-MIN_LOOKAHEAD) /* In order to simplify the code, particularly on 16 bit machines, match * distances are limited to MAX_DIST instead of WSIZE. */ #define WIN_INIT MAX_MATCH /* Number of bytes after end of data in window to initialize in order to avoid memory checker errors from longest match routines */ /* in trees.c */ void ZLIB_INTERNAL _tr_init OF((deflate_state *s)); int ZLIB_INTERNAL _tr_tally OF((deflate_state *s, unsigned dist, unsigned lc)); void ZLIB_INTERNAL _tr_flush_block OF((deflate_state *s, charf *buf, ulg stored_len, int last)); void ZLIB_INTERNAL _tr_flush_bits OF((deflate_state *s)); void ZLIB_INTERNAL _tr_align OF((deflate_state *s)); void ZLIB_INTERNAL _tr_stored_block OF((deflate_state *s, charf *buf, ulg stored_len, int last)); #define d_code(dist) \ ((dist) < 256 ? _dist_code[dist] : _dist_code[256+((dist)>>7)]) /* Mapping from a distance to a distance code. dist is the distance - 1 and * must not have side effects. _dist_code[256] and _dist_code[257] are never * used. */ #ifndef DEBUG /* Inline versions of _tr_tally for speed: */ #if defined(GEN_TREES_H) || !defined(STDC) extern uch ZLIB_INTERNAL _length_code[]; extern uch ZLIB_INTERNAL _dist_code[]; #else extern const uch ZLIB_INTERNAL _length_code[]; extern const uch ZLIB_INTERNAL _dist_code[]; #endif # define _tr_tally_lit(s, c, flush) \ { uch cc = (c); \ s->d_buf[s->last_lit] = 0; \ s->l_buf[s->last_lit++] = cc; \ s->dyn_ltree[cc].Freq++; \ flush = (s->last_lit == s->lit_bufsize-1); \ } # define _tr_tally_dist(s, distance, length, flush) \ { uch len = (length); \ ush dist = (distance); \ s->d_buf[s->last_lit] = dist; \ s->l_buf[s->last_lit++] = len; \ dist--; \ s->dyn_ltree[_length_code[len]+LITERALS+1].Freq++; \ s->dyn_dtree[d_code(dist)].Freq++; \ flush = (s->last_lit == s->lit_bufsize-1); \ } #else # define _tr_tally_lit(s, c, flush) flush = _tr_tally(s, 0, c) # define _tr_tally_dist(s, distance, length, flush) \ flush = _tr_tally(s, distance, length) #endif #endif /* DEFLATE_H */ /* END OF DUMP OF mz_deflate.h*/ #ifdef DEBUG # include #endif /* =========================================================================== * Constants */ #define MAX_BL_BITS 7 /* Bit length codes must not exceed MAX_BL_BITS bits */ #define END_BLOCK 256 /* end of block literal code */ #define REP_3_6 16 /* repeat previous bit length 3-6 times (2 bits of repeat count) */ #define REPZ_3_10 17 /* repeat a zero length 3-10 times (3 bits of repeat count) */ #define REPZ_11_138 18 /* repeat a zero length 11-138 times (7 bits of repeat count) */ local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; local const int extra_dbits[D_CODES] /* extra bits for each distance code */ = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */ = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; local const uch bl_order[BL_CODES] = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; /* The lengths of the bit length codes are sent in order of decreasing * probability, to avoid transmitting the lengths for unused bit length codes. */ /* =========================================================================== * Local data. These are initialized only once. */ #define DIST_CODE_LEN 512 /* see definition of array dist_code below */ #if defined(GEN_TREES_H) || !defined(STDC) /* non ANSI compilers may not accept trees.h */ local ct_data static_ltree[L_CODES+2]; /* The static literal tree. Since the bit lengths are imposed, there is no * need for the L_CODES extra codes used during heap construction. However * The codes 286 and 287 are needed to build a canonical tree (see _tr_init * below). */ local ct_data static_dtree[D_CODES]; /* The static distance tree. (Actually a trivial tree since all codes use * 5 bits.) */ uch _dist_code[DIST_CODE_LEN]; /* Distance codes. The first 256 values correspond to the distances * 3 .. 258, the last 256 values correspond to the top 8 bits of * the 15 bit distances. */ uch _length_code[MAX_MATCH-MIN_MATCH+1]; /* length code for each normalized match length (0 == MIN_MATCH) */ local int base_length[LENGTH_CODES]; /* First normalized length for each code (0 = MIN_MATCH) */ local int base_dist[D_CODES]; /* First normalized distance for each code (0 = distance of 1) */ #else /* START OF DUMP OF mz_trees.h*/ /* header created automatically with -DGEN_TREES_H */ local const ct_data static_ltree[L_CODES+2] = { {{ 12},{ 8}}, {{140},{ 8}}, {{ 76},{ 8}}, {{204},{ 8}}, {{ 44},{ 8}}, {{172},{ 8}}, {{108},{ 8}}, {{236},{ 8}}, {{ 28},{ 8}}, {{156},{ 8}}, {{ 92},{ 8}}, {{220},{ 8}}, {{ 60},{ 8}}, {{188},{ 8}}, {{124},{ 8}}, {{252},{ 8}}, {{ 2},{ 8}}, {{130},{ 8}}, {{ 66},{ 8}}, {{194},{ 8}}, {{ 34},{ 8}}, {{162},{ 8}}, {{ 98},{ 8}}, {{226},{ 8}}, {{ 18},{ 8}}, {{146},{ 8}}, {{ 82},{ 8}}, {{210},{ 8}}, {{ 50},{ 8}}, {{178},{ 8}}, {{114},{ 8}}, {{242},{ 8}}, {{ 10},{ 8}}, {{138},{ 8}}, {{ 74},{ 8}}, {{202},{ 8}}, {{ 42},{ 8}}, {{170},{ 8}}, {{106},{ 8}}, {{234},{ 8}}, {{ 26},{ 8}}, {{154},{ 8}}, {{ 90},{ 8}}, {{218},{ 8}}, {{ 58},{ 8}}, {{186},{ 8}}, {{122},{ 8}}, {{250},{ 8}}, {{ 6},{ 8}}, {{134},{ 8}}, {{ 70},{ 8}}, {{198},{ 8}}, {{ 38},{ 8}}, {{166},{ 8}}, {{102},{ 8}}, {{230},{ 8}}, {{ 22},{ 8}}, {{150},{ 8}}, {{ 86},{ 8}}, {{214},{ 8}}, {{ 54},{ 8}}, {{182},{ 8}}, {{118},{ 8}}, {{246},{ 8}}, {{ 14},{ 8}}, {{142},{ 8}}, {{ 78},{ 8}}, {{206},{ 8}}, {{ 46},{ 8}}, {{174},{ 8}}, {{110},{ 8}}, {{238},{ 8}}, {{ 30},{ 8}}, {{158},{ 8}}, {{ 94},{ 8}}, {{222},{ 8}}, {{ 62},{ 8}}, {{190},{ 8}}, {{126},{ 8}}, {{254},{ 8}}, {{ 1},{ 8}}, {{129},{ 8}}, {{ 65},{ 8}}, {{193},{ 8}}, {{ 33},{ 8}}, {{161},{ 8}}, {{ 97},{ 8}}, {{225},{ 8}}, {{ 17},{ 8}}, {{145},{ 8}}, {{ 81},{ 8}}, {{209},{ 8}}, {{ 49},{ 8}}, {{177},{ 8}}, {{113},{ 8}}, {{241},{ 8}}, {{ 9},{ 8}}, {{137},{ 8}}, {{ 73},{ 8}}, {{201},{ 8}}, {{ 41},{ 8}}, {{169},{ 8}}, {{105},{ 8}}, {{233},{ 8}}, {{ 25},{ 8}}, {{153},{ 8}}, {{ 89},{ 8}}, {{217},{ 8}}, {{ 57},{ 8}}, {{185},{ 8}}, {{121},{ 8}}, {{249},{ 8}}, {{ 5},{ 8}}, {{133},{ 8}}, {{ 69},{ 8}}, {{197},{ 8}}, {{ 37},{ 8}}, {{165},{ 8}}, {{101},{ 8}}, {{229},{ 8}}, {{ 21},{ 8}}, {{149},{ 8}}, {{ 85},{ 8}}, {{213},{ 8}}, {{ 53},{ 8}}, {{181},{ 8}}, {{117},{ 8}}, {{245},{ 8}}, {{ 13},{ 8}}, {{141},{ 8}}, {{ 77},{ 8}}, {{205},{ 8}}, {{ 45},{ 8}}, {{173},{ 8}}, {{109},{ 8}}, {{237},{ 8}}, {{ 29},{ 8}}, {{157},{ 8}}, {{ 93},{ 8}}, {{221},{ 8}}, {{ 61},{ 8}}, {{189},{ 8}}, {{125},{ 8}}, {{253},{ 8}}, {{ 19},{ 9}}, {{275},{ 9}}, {{147},{ 9}}, {{403},{ 9}}, {{ 83},{ 9}}, {{339},{ 9}}, {{211},{ 9}}, {{467},{ 9}}, {{ 51},{ 9}}, {{307},{ 9}}, {{179},{ 9}}, {{435},{ 9}}, {{115},{ 9}}, {{371},{ 9}}, {{243},{ 9}}, {{499},{ 9}}, {{ 11},{ 9}}, {{267},{ 9}}, {{139},{ 9}}, {{395},{ 9}}, {{ 75},{ 9}}, {{331},{ 9}}, {{203},{ 9}}, {{459},{ 9}}, {{ 43},{ 9}}, {{299},{ 9}}, {{171},{ 9}}, {{427},{ 9}}, {{107},{ 9}}, {{363},{ 9}}, {{235},{ 9}}, {{491},{ 9}}, {{ 27},{ 9}}, {{283},{ 9}}, {{155},{ 9}}, {{411},{ 9}}, {{ 91},{ 9}}, {{347},{ 9}}, {{219},{ 9}}, {{475},{ 9}}, {{ 59},{ 9}}, {{315},{ 9}}, {{187},{ 9}}, {{443},{ 9}}, {{123},{ 9}}, {{379},{ 9}}, {{251},{ 9}}, {{507},{ 9}}, {{ 7},{ 9}}, {{263},{ 9}}, {{135},{ 9}}, {{391},{ 9}}, {{ 71},{ 9}}, {{327},{ 9}}, {{199},{ 9}}, {{455},{ 9}}, {{ 39},{ 9}}, {{295},{ 9}}, {{167},{ 9}}, {{423},{ 9}}, {{103},{ 9}}, {{359},{ 9}}, {{231},{ 9}}, {{487},{ 9}}, {{ 23},{ 9}}, {{279},{ 9}}, {{151},{ 9}}, {{407},{ 9}}, {{ 87},{ 9}}, {{343},{ 9}}, {{215},{ 9}}, {{471},{ 9}}, {{ 55},{ 9}}, {{311},{ 9}}, {{183},{ 9}}, {{439},{ 9}}, {{119},{ 9}}, {{375},{ 9}}, {{247},{ 9}}, {{503},{ 9}}, {{ 15},{ 9}}, {{271},{ 9}}, {{143},{ 9}}, {{399},{ 9}}, {{ 79},{ 9}}, {{335},{ 9}}, {{207},{ 9}}, {{463},{ 9}}, {{ 47},{ 9}}, {{303},{ 9}}, {{175},{ 9}}, {{431},{ 9}}, {{111},{ 9}}, {{367},{ 9}}, {{239},{ 9}}, {{495},{ 9}}, {{ 31},{ 9}}, {{287},{ 9}}, {{159},{ 9}}, {{415},{ 9}}, {{ 95},{ 9}}, {{351},{ 9}}, {{223},{ 9}}, {{479},{ 9}}, {{ 63},{ 9}}, {{319},{ 9}}, {{191},{ 9}}, {{447},{ 9}}, {{127},{ 9}}, {{383},{ 9}}, {{255},{ 9}}, {{511},{ 9}}, {{ 0},{ 7}}, {{ 64},{ 7}}, {{ 32},{ 7}}, {{ 96},{ 7}}, {{ 16},{ 7}}, {{ 80},{ 7}}, {{ 48},{ 7}}, {{112},{ 7}}, {{ 8},{ 7}}, {{ 72},{ 7}}, {{ 40},{ 7}}, {{104},{ 7}}, {{ 24},{ 7}}, {{ 88},{ 7}}, {{ 56},{ 7}}, {{120},{ 7}}, {{ 4},{ 7}}, {{ 68},{ 7}}, {{ 36},{ 7}}, {{100},{ 7}}, {{ 20},{ 7}}, {{ 84},{ 7}}, {{ 52},{ 7}}, {{116},{ 7}}, {{ 3},{ 8}}, {{131},{ 8}}, {{ 67},{ 8}}, {{195},{ 8}}, {{ 35},{ 8}}, {{163},{ 8}}, {{ 99},{ 8}}, {{227},{ 8}} }; local const ct_data static_dtree[D_CODES] = { {{ 0},{ 5}}, {{16},{ 5}}, {{ 8},{ 5}}, {{24},{ 5}}, {{ 4},{ 5}}, {{20},{ 5}}, {{12},{ 5}}, {{28},{ 5}}, {{ 2},{ 5}}, {{18},{ 5}}, {{10},{ 5}}, {{26},{ 5}}, {{ 6},{ 5}}, {{22},{ 5}}, {{14},{ 5}}, {{30},{ 5}}, {{ 1},{ 5}}, {{17},{ 5}}, {{ 9},{ 5}}, {{25},{ 5}}, {{ 5},{ 5}}, {{21},{ 5}}, {{13},{ 5}}, {{29},{ 5}}, {{ 3},{ 5}}, {{19},{ 5}}, {{11},{ 5}}, {{27},{ 5}}, {{ 7},{ 5}}, {{23},{ 5}} }; const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = { 0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 16, 17, 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29 }; const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= { 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28 }; local const int base_length[LENGTH_CODES] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 0 }; local const int base_dist[D_CODES] = { 0, 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576 }; /* END OF DUMP OF mz_trees.h*/ #endif /* GEN_TREES_H */ struct static_tree_desc_s { const ct_data *static_tree; /* static tree or NULL */ const intf *extra_bits; /* extra bits for each code or NULL */ int extra_base; /* base index for extra_bits */ int elems; /* max number of elements in the tree */ int max_length; /* max bit length for the codes */ }; local static_tree_desc static_l_desc = {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; local static_tree_desc static_d_desc = {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS}; local static_tree_desc static_bl_desc = {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; /* =========================================================================== * Local (static) routines in this file. */ local void tr_static_init OF((void)); local void init_block OF((deflate_state *s)); local void pqdownheap OF((deflate_state *s, ct_data *tree, int k)); local void gen_bitlen OF((deflate_state *s, tree_desc *desc)); local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count)); local void build_tree OF((deflate_state *s, tree_desc *desc)); local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code)); local void send_tree OF((deflate_state *s, ct_data *tree, int max_code)); local int build_bl_tree OF((deflate_state *s)); local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes, int blcodes)); local void compress_block OF((deflate_state *s, const ct_data *ltree, const ct_data *dtree)); local int detect_data_type OF((deflate_state *s)); local unsigned bi_reverse OF((unsigned value, int length)); local void bi_windup OF((deflate_state *s)); local void bi_flush OF((deflate_state *s)); local void copy_block OF((deflate_state *s, charf *buf, unsigned len, int header)); #ifdef GEN_TREES_H local void gen_trees_header OF((void)); #endif #ifndef DEBUG # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) /* Send a code of the given tree. c and tree must not have side effects */ #else /* DEBUG */ # define send_code(s, c, tree) \ { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ send_bits(s, tree[c].Code, tree[c].Len); } #endif /* =========================================================================== * Output a short LSB first on the stream. * IN assertion: there is enough room in pendingBuf. */ #define put_short(s, w) { \ put_byte(s, (uch)((w) & 0xff)); \ put_byte(s, (uch)((ush)(w) >> 8)); \ } /* =========================================================================== * Send a value on a given number of bits. * IN assertion: length <= 16 and value fits in length bits. */ #ifdef DEBUG local void send_bits OF((deflate_state *s, int value, int length)); local void send_bits(s, value, length) deflate_state *s; int value; /* value to send */ int length; /* number of bits */ { Tracevv((stderr," l %2d v %4x ", length, value)); Assert(length > 0 && length <= 15, "invalid length"); s->bits_sent += (ulg)length; /* If not enough room in bi_buf, use (valid) bits from bi_buf and * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) * unused bits in value. */ if (s->bi_valid > (int)Buf_size - length) { s->bi_buf |= (ush)value << s->bi_valid; put_short(s, s->bi_buf); s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); s->bi_valid += length - Buf_size; } else { s->bi_buf |= (ush)value << s->bi_valid; s->bi_valid += length; } } #else /* !DEBUG */ #define send_bits(s, value, length) \ { int len = length;\ if (s->bi_valid > (int)Buf_size - len) {\ int val = value;\ s->bi_buf |= (ush)val << s->bi_valid;\ put_short(s, s->bi_buf);\ s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ s->bi_valid += len - Buf_size;\ } else {\ s->bi_buf |= (ush)(value) << s->bi_valid;\ s->bi_valid += len;\ }\ } #endif /* DEBUG */ /* the arguments must not have side effects */ /* =========================================================================== * Initialize the various 'constant' tables. */ local void tr_static_init() { #if defined(GEN_TREES_H) || !defined(STDC) static int static_init_done = 0; int n; /* iterates over tree elements */ int bits; /* bit counter */ int length; /* length value */ int code; /* code value */ int dist; /* distance index */ ush bl_count[MAX_BITS+1]; /* number of codes at each bit length for an optimal tree */ if (static_init_done) return; /* For some embedded targets, global variables are not initialized: */ #ifdef NO_INIT_GLOBAL_POINTERS static_l_desc.static_tree = static_ltree; static_l_desc.extra_bits = extra_lbits; static_d_desc.static_tree = static_dtree; static_d_desc.extra_bits = extra_dbits; static_bl_desc.extra_bits = extra_blbits; #endif /* Initialize the mapping length (0..255) -> length code (0..28) */ length = 0; for (code = 0; code < LENGTH_CODES-1; code++) { base_length[code] = length; for (n = 0; n < (1< dist code (0..29) */ dist = 0; for (code = 0 ; code < 16; code++) { base_dist[code] = dist; for (n = 0; n < (1<>= 7; /* from now on, all distances are divided by 128 */ for ( ; code < D_CODES; code++) { base_dist[code] = dist << 7; for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { _dist_code[256 + dist++] = (uch)code; } } Assert (dist == 256, "tr_static_init: 256+dist != 512"); /* Construct the codes of the static literal tree */ for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; n = 0; while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; /* Codes 286 and 287 do not exist, but we must include them in the * tree construction to get a canonical Huffman tree (longest code * all ones) */ gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); /* The static distance tree is trivial: */ for (n = 0; n < D_CODES; n++) { static_dtree[n].Len = 5; static_dtree[n].Code = bi_reverse((unsigned)n, 5); } static_init_done = 1; # ifdef GEN_TREES_H gen_trees_header(); # endif #endif /* defined(GEN_TREES_H) || !defined(STDC) */ } /* =========================================================================== * Genererate the file trees.h describing the static trees. */ #ifdef GEN_TREES_H # ifndef DEBUG # include # endif # define SEPARATOR(i, last, width) \ ((i) == (last)? "\n};\n\n" : \ ((i) % (width) == (width)-1 ? ",\n" : ", ")) void gen_trees_header() { FILE *header = fopen("trees.h", "w"); int i; Assert (header != NULL, "Can't open trees.h"); fprintf(header, "/* header created automatically with -DGEN_TREES_H */\n\n"); fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n"); for (i = 0; i < L_CODES+2; i++) { fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code, static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5)); } fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n"); for (i = 0; i < D_CODES; i++) { fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code, static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5)); } fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n"); for (i = 0; i < DIST_CODE_LEN; i++) { fprintf(header, "%2u%s", _dist_code[i], SEPARATOR(i, DIST_CODE_LEN-1, 20)); } fprintf(header, "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n"); for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) { fprintf(header, "%2u%s", _length_code[i], SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20)); } fprintf(header, "local const int base_length[LENGTH_CODES] = {\n"); for (i = 0; i < LENGTH_CODES; i++) { fprintf(header, "%1u%s", base_length[i], SEPARATOR(i, LENGTH_CODES-1, 20)); } fprintf(header, "local const int base_dist[D_CODES] = {\n"); for (i = 0; i < D_CODES; i++) { fprintf(header, "%5u%s", base_dist[i], SEPARATOR(i, D_CODES-1, 10)); } fclose(header); } #endif /* GEN_TREES_H */ /* =========================================================================== * Initialize the tree data structures for a new zlib stream. */ void ZLIB_INTERNAL _tr_init(s) deflate_state *s; { tr_static_init(); s->l_desc.dyn_tree = s->dyn_ltree; s->l_desc.stat_desc = &static_l_desc; s->d_desc.dyn_tree = s->dyn_dtree; s->d_desc.stat_desc = &static_d_desc; s->bl_desc.dyn_tree = s->bl_tree; s->bl_desc.stat_desc = &static_bl_desc; s->bi_buf = 0; s->bi_valid = 0; #ifdef DEBUG s->compressed_len = 0L; s->bits_sent = 0L; #endif /* Initialize the first block of the first file: */ init_block(s); } /* =========================================================================== * Initialize a new block. */ local void init_block(s) deflate_state *s; { int n; /* iterates over tree elements */ /* Initialize the trees. */ for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0; for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0; for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; s->dyn_ltree[END_BLOCK].Freq = 1; s->opt_len = s->static_len = 0L; s->last_lit = s->matches = 0; } #define SMALLEST 1 /* Index within the heap array of least frequent node in the Huffman tree */ /* =========================================================================== * Remove the smallest element from the heap and recreate the heap with * one less element. Updates heap and heap_len. */ #define pqremove(s, tree, top) \ {\ top = s->heap[SMALLEST]; \ s->heap[SMALLEST] = s->heap[s->heap_len--]; \ pqdownheap(s, tree, SMALLEST); \ } /* =========================================================================== * Compares to subtrees, using the tree depth as tie breaker when * the subtrees have equal frequency. This minimizes the worst case length. */ #define smaller(tree, n, m, depth) \ (tree[n].Freq < tree[m].Freq || \ (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) /* =========================================================================== * Restore the heap property by moving down the tree starting at node k, * exchanging a node with the smallest of its two sons if necessary, stopping * when the heap property is re-established (each father smaller than its * two sons). */ local void pqdownheap(s, tree, k) deflate_state *s; ct_data *tree; /* the tree to restore */ int k; /* node to move down */ { int v = s->heap[k]; int j = k << 1; /* left son of k */ while (j <= s->heap_len) { /* Set j to the smallest of the two sons: */ if (j < s->heap_len && smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { j++; } /* Exit if v is smaller than both sons */ if (smaller(tree, v, s->heap[j], s->depth)) break; /* Exchange v with the smallest son */ s->heap[k] = s->heap[j]; k = j; /* And continue down the tree, setting j to the left son of k */ j <<= 1; } s->heap[k] = v; } /* =========================================================================== * Compute the optimal bit lengths for a tree and update the total bit length * for the current block. * IN assertion: the fields freq and dad are set, heap[heap_max] and * above are the tree nodes sorted by increasing frequency. * OUT assertions: the field len is set to the optimal bit length, the * array bl_count contains the frequencies for each bit length. * The length opt_len is updated; static_len is also updated if stree is * not null. */ local void gen_bitlen(s, desc) deflate_state *s; tree_desc *desc; /* the tree descriptor */ { ct_data *tree = desc->dyn_tree; int max_code = desc->max_code; const ct_data *stree = desc->stat_desc->static_tree; const intf *extra = desc->stat_desc->extra_bits; int base = desc->stat_desc->extra_base; int max_length = desc->stat_desc->max_length; int h; /* heap index */ int n, m; /* iterate over the tree elements */ int bits; /* bit length */ int xbits; /* extra bits */ ush f; /* frequency */ int overflow = 0; /* number of elements with bit length too large */ for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; /* In a first pass, compute the optimal bit lengths (which may * overflow in the case of the bit length tree). */ tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ for (h = s->heap_max+1; h < HEAP_SIZE; h++) { n = s->heap[h]; bits = tree[tree[n].Dad].Len + 1; if (bits > max_length) bits = max_length, overflow++; tree[n].Len = (ush)bits; /* We overwrite tree[n].Dad which is no longer needed */ if (n > max_code) continue; /* not a leaf node */ s->bl_count[bits]++; xbits = 0; if (n >= base) xbits = extra[n-base]; f = tree[n].Freq; s->opt_len += (ulg)f * (bits + xbits); if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits); } if (overflow == 0) return; Trace((stderr,"\nbit length overflow\n")); /* This happens for example on obj2 and pic of the Calgary corpus */ /* Find the first bit length which could increase: */ do { bits = max_length-1; while (s->bl_count[bits] == 0) bits--; s->bl_count[bits]--; /* move one leaf down the tree */ s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ s->bl_count[max_length]--; /* The brother of the overflow item also moves one step up, * but this does not affect bl_count[max_length] */ overflow -= 2; } while (overflow > 0); /* Now recompute all bit lengths, scanning in increasing frequency. * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all * lengths instead of fixing only the wrong ones. This idea is taken * from 'ar' written by Haruhiko Okumura.) */ for (bits = max_length; bits != 0; bits--) { n = s->bl_count[bits]; while (n != 0) { m = s->heap[--h]; if (m > max_code) continue; if ((unsigned) tree[m].Len != (unsigned) bits) { Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); s->opt_len += ((long)bits - (long)tree[m].Len) *(long)tree[m].Freq; tree[m].Len = (ush)bits; } n--; } } } /* =========================================================================== * Generate the codes for a given tree and bit counts (which need not be * optimal). * IN assertion: the array bl_count contains the bit length statistics for * the given tree and the field len is set for all tree elements. * OUT assertion: the field code is set for all tree elements of non * zero code length. */ local void gen_codes (tree, max_code, bl_count) ct_data *tree; /* the tree to decorate */ int max_code; /* largest code with non zero frequency */ ushf *bl_count; /* number of codes at each bit length */ { ush next_code[MAX_BITS+1]; /* next code value for each bit length */ ush code = 0; /* running code value */ int bits; /* bit index */ int n; /* code index */ /* The distribution counts are first used to generate the code values * without bit reversal. */ for (bits = 1; bits <= MAX_BITS; bits++) { next_code[bits] = code = (code + bl_count[bits-1]) << 1; } /* Check that the bit counts in bl_count are consistent. The last code * must be all ones. */ Assert (code + bl_count[MAX_BITS]-1 == (1<dyn_tree; const ct_data *stree = desc->stat_desc->static_tree; int elems = desc->stat_desc->elems; int n, m; /* iterate over heap elements */ int max_code = -1; /* largest code with non zero frequency */ int node; /* new node being created */ /* Construct the initial heap, with least frequent element in * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. * heap[0] is not used. */ s->heap_len = 0, s->heap_max = HEAP_SIZE; for (n = 0; n < elems; n++) { if (tree[n].Freq != 0) { s->heap[++(s->heap_len)] = max_code = n; s->depth[n] = 0; } else { tree[n].Len = 0; } } /* The pkzip format requires that at least one distance code exists, * and that at least one bit should be sent even if there is only one * possible code. So to avoid special checks later on we force at least * two codes of non zero frequency. */ while (s->heap_len < 2) { node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); tree[node].Freq = 1; s->depth[node] = 0; s->opt_len--; if (stree) s->static_len -= stree[node].Len; /* node is 0 or 1 so it does not have extra bits */ } desc->max_code = max_code; /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, * establish sub-heaps of increasing lengths: */ for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); /* Construct the Huffman tree by repeatedly combining the least two * frequent nodes. */ node = elems; /* next internal node of the tree */ do { pqremove(s, tree, n); /* n = node of least frequency */ m = s->heap[SMALLEST]; /* m = node of next least frequency */ s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ s->heap[--(s->heap_max)] = m; /* Create a new node father of n and m */ tree[node].Freq = tree[n].Freq + tree[m].Freq; s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ? s->depth[n] : s->depth[m]) + 1); tree[n].Dad = tree[m].Dad = (ush)node; #ifdef DUMP_BL_TREE if (tree == s->bl_tree) { fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); } #endif /* and insert the new node in the heap */ s->heap[SMALLEST] = node++; pqdownheap(s, tree, SMALLEST); } while (s->heap_len >= 2); s->heap[--(s->heap_max)] = s->heap[SMALLEST]; /* At this point, the fields freq and dad are set. We can now * generate the bit lengths. */ gen_bitlen(s, (tree_desc *)desc); /* The field len is now set, we can generate the bit codes */ gen_codes ((ct_data *)tree, max_code, s->bl_count); } /* =========================================================================== * Scan a literal or distance tree to determine the frequencies of the codes * in the bit length tree. */ local void scan_tree (s, tree, max_code) deflate_state *s; ct_data *tree; /* the tree to be scanned */ int max_code; /* and its largest code of non zero frequency */ { int n; /* iterates over all tree elements */ int prevlen = -1; /* last emitted length */ int curlen; /* length of current code */ int nextlen = tree[0].Len; /* length of next code */ int count = 0; /* repeat count of the current code */ int max_count = 7; /* max repeat count */ int min_count = 4; /* min repeat count */ if (nextlen == 0) max_count = 138, min_count = 3; tree[max_code+1].Len = (ush)0xffff; /* guard */ for (n = 0; n <= max_code; n++) { curlen = nextlen; nextlen = tree[n+1].Len; if (++count < max_count && curlen == nextlen) { continue; } else if (count < min_count) { s->bl_tree[curlen].Freq += count; } else if (curlen != 0) { if (curlen != prevlen) s->bl_tree[curlen].Freq++; s->bl_tree[REP_3_6].Freq++; } else if (count <= 10) { s->bl_tree[REPZ_3_10].Freq++; } else { s->bl_tree[REPZ_11_138].Freq++; } count = 0; prevlen = curlen; if (nextlen == 0) { max_count = 138, min_count = 3; } else if (curlen == nextlen) { max_count = 6, min_count = 3; } else { max_count = 7, min_count = 4; } } } /* =========================================================================== * Send a literal or distance tree in compressed form, using the codes in * bl_tree. */ local void send_tree (s, tree, max_code) deflate_state *s; ct_data *tree; /* the tree to be scanned */ int max_code; /* and its largest code of non zero frequency */ { int n; /* iterates over all tree elements */ int prevlen = -1; /* last emitted length */ int curlen; /* length of current code */ int nextlen = tree[0].Len; /* length of next code */ int count = 0; /* repeat count of the current code */ int max_count = 7; /* max repeat count */ int min_count = 4; /* min repeat count */ /* tree[max_code+1].Len = -1; */ /* guard already set */ if (nextlen == 0) max_count = 138, min_count = 3; for (n = 0; n <= max_code; n++) { curlen = nextlen; nextlen = tree[n+1].Len; if (++count < max_count && curlen == nextlen) { continue; } else if (count < min_count) { do { send_code(s, curlen, s->bl_tree); } while (--count != 0); } else if (curlen != 0) { if (curlen != prevlen) { send_code(s, curlen, s->bl_tree); count--; } Assert(count >= 3 && count <= 6, " 3_6?"); send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2); } else if (count <= 10) { send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3); } else { send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7); } count = 0; prevlen = curlen; if (nextlen == 0) { max_count = 138, min_count = 3; } else if (curlen == nextlen) { max_count = 6, min_count = 3; } else { max_count = 7, min_count = 4; } } } /* =========================================================================== * Construct the Huffman tree for the bit lengths and return the index in * bl_order of the last bit length code to send. */ local int build_bl_tree(s) deflate_state *s; { int max_blindex; /* index of last bit length code of non zero freq */ /* Determine the bit length frequencies for literal and distance trees */ scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); /* Build the bit length tree: */ build_tree(s, (tree_desc *)(&(s->bl_desc))); /* opt_len now includes the length of the tree representations, except * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. */ /* Determine the number of bit length codes to send. The pkzip format * requires that at least 4 bit length codes be sent. (appnote.txt says * 3 but the actual value used is 4.) */ for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; } /* Update opt_len to include the bit length tree and counts */ s->opt_len += 3*(max_blindex+1) + 5+5+4; Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", s->opt_len, s->static_len)); return max_blindex; } /* =========================================================================== * Send the header for a block using dynamic Huffman trees: the counts, the * lengths of the bit length codes, the literal tree and the distance tree. * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. */ local void send_all_trees(s, lcodes, dcodes, blcodes) deflate_state *s; int lcodes, dcodes, blcodes; /* number of codes for each tree */ { int rank; /* index in bl_order */ Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, "too many codes"); Tracev((stderr, "\nbl counts: ")); send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */ send_bits(s, dcodes-1, 5); send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */ for (rank = 0; rank < blcodes; rank++) { Tracev((stderr, "\nbl code %2d ", bl_order[rank])); send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); } Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */ Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */ Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); } /* =========================================================================== * Send a stored block */ void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last) deflate_state *s; charf *buf; /* input block */ ulg stored_len; /* length of input block */ int last; /* one if this is the last block for a file */ { send_bits(s, (STORED_BLOCK<<1)+last, 3); /* send block type */ #ifdef DEBUG s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; s->compressed_len += (stored_len + 4) << 3; #endif copy_block(s, buf, (unsigned)stored_len, 1); /* with header */ } /* =========================================================================== * Flush the bits in the bit buffer to pending output (leaves at most 7 bits) */ void ZLIB_INTERNAL _tr_flush_bits(s) deflate_state *s; { bi_flush(s); } /* =========================================================================== * Send one empty static block to give enough lookahead for inflate. * This takes 10 bits, of which 7 may remain in the bit buffer. */ void ZLIB_INTERNAL _tr_align(s) deflate_state *s; { send_bits(s, STATIC_TREES<<1, 3); send_code(s, END_BLOCK, static_ltree); #ifdef DEBUG s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ #endif bi_flush(s); } /* =========================================================================== * Determine the best encoding for the current block: dynamic trees, static * trees or store, and output the encoded block to the zip file. */ void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last) deflate_state *s; charf *buf; /* input block, or NULL if too old */ ulg stored_len; /* length of input block */ int last; /* one if this is the last block for a file */ { ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ int max_blindex = 0; /* index of last bit length code of non zero freq */ /* Build the Huffman trees unless a stored block is forced */ if (s->level > 0) { /* Check if the file is binary or text */ if (s->strm->data_type == Z_UNKNOWN) s->strm->data_type = detect_data_type(s); /* Construct the literal and distance trees */ build_tree(s, (tree_desc *)(&(s->l_desc))); Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, s->static_len)); build_tree(s, (tree_desc *)(&(s->d_desc))); Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, s->static_len)); /* At this point, opt_len and static_len are the total bit lengths of * the compressed block data, excluding the tree representations. */ /* Build the bit length tree for the above two trees, and get the index * in bl_order of the last bit length code to send. */ max_blindex = build_bl_tree(s); /* Determine the best encoding. Compute the block lengths in bytes. */ opt_lenb = (s->opt_len+3+7)>>3; static_lenb = (s->static_len+3+7)>>3; Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, s->last_lit)); if (static_lenb <= opt_lenb) opt_lenb = static_lenb; } else { Assert(buf != (char*)0, "lost buf"); opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ } #ifdef FORCE_STORED if (buf != (char*)0) { /* force stored block */ #else if (stored_len+4 <= opt_lenb && buf != (char*)0) { /* 4: two words for the lengths */ #endif /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. * Otherwise we can't have processed more than WSIZE input bytes since * the last block flush, because compression would have been * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to * transform a block into a stored block. */ _tr_stored_block(s, buf, stored_len, last); #ifdef FORCE_STATIC } else if (static_lenb >= 0) { /* force static trees */ #else } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) { #endif send_bits(s, (STATIC_TREES<<1)+last, 3); compress_block(s, (const ct_data *)static_ltree, (const ct_data *)static_dtree); #ifdef DEBUG s->compressed_len += 3 + s->static_len; #endif } else { send_bits(s, (DYN_TREES<<1)+last, 3); send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, max_blindex+1); compress_block(s, (const ct_data *)s->dyn_ltree, (const ct_data *)s->dyn_dtree); #ifdef DEBUG s->compressed_len += 3 + s->opt_len; #endif } Assert (s->compressed_len == s->bits_sent, "bad compressed size"); /* The above check is made mod 2^32, for files larger than 512 MB * and uLong implemented on 32 bits. */ init_block(s); if (last) { bi_windup(s); #ifdef DEBUG s->compressed_len += 7; /* align on byte boundary */ #endif } Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, s->compressed_len-7*last)); } /* =========================================================================== * Save the match info and tally the frequency counts. Return true if * the current block must be flushed. */ int ZLIB_INTERNAL _tr_tally (s, dist, lc) deflate_state *s; unsigned dist; /* distance of matched string */ unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */ { s->d_buf[s->last_lit] = (ush)dist; s->l_buf[s->last_lit++] = (uch)lc; if (dist == 0) { /* lc is the unmatched char */ s->dyn_ltree[lc].Freq++; } else { s->matches++; /* Here, lc is the match length - MIN_MATCH */ dist--; /* dist = match distance - 1 */ Assert((ush)dist < (ush)MAX_DIST(s) && (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match"); s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++; s->dyn_dtree[d_code(dist)].Freq++; } #ifdef TRUNCATE_BLOCK /* Try to guess if it is profitable to stop the current block here */ if ((s->last_lit & 0x1fff) == 0 && s->level > 2) { /* Compute an upper bound for the compressed length */ ulg out_length = (ulg)s->last_lit*8L; ulg in_length = (ulg)((long)s->strstart - s->block_start); int dcode; for (dcode = 0; dcode < D_CODES; dcode++) { out_length += (ulg)s->dyn_dtree[dcode].Freq * (5L+extra_dbits[dcode]); } out_length >>= 3; Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", s->last_lit, in_length, out_length, 100L - out_length*100L/in_length)); if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1; } #endif return (s->last_lit == s->lit_bufsize-1); /* We avoid equality with lit_bufsize because of wraparound at 64K * on 16 bit machines and because stored blocks are restricted to * 64K-1 bytes. */ } /* =========================================================================== * Send the block data compressed using the given Huffman trees */ local void compress_block(s, ltree, dtree) deflate_state *s; const ct_data *ltree; /* literal tree */ const ct_data *dtree; /* distance tree */ { unsigned dist; /* distance of matched string */ int lc; /* match length or unmatched char (if dist == 0) */ unsigned lx = 0; /* running index in l_buf */ unsigned code; /* the code to send */ int extra; /* number of extra bits to send */ if (s->last_lit != 0) do { dist = s->d_buf[lx]; lc = s->l_buf[lx++]; if (dist == 0) { send_code(s, lc, ltree); /* send a literal byte */ Tracecv(isgraph(lc), (stderr," '%c' ", lc)); } else { /* Here, lc is the match length - MIN_MATCH */ code = _length_code[lc]; send_code(s, code+LITERALS+1, ltree); /* send the length code */ extra = extra_lbits[code]; if (extra != 0) { lc -= base_length[code]; send_bits(s, lc, extra); /* send the extra length bits */ } dist--; /* dist is now the match distance - 1 */ code = d_code(dist); Assert (code < D_CODES, "bad d_code"); send_code(s, code, dtree); /* send the distance code */ extra = extra_dbits[code]; if (extra != 0) { dist -= base_dist[code]; send_bits(s, dist, extra); /* send the extra distance bits */ } } /* literal or match pair ? */ /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx, "pendingBuf overflow"); } while (lx < s->last_lit); send_code(s, END_BLOCK, ltree); } /* =========================================================================== * Check if the data type is TEXT or BINARY, using the following algorithm: * - TEXT if the two conditions below are satisfied: * a) There are no non-portable control characters belonging to the * "black list" (0..6, 14..25, 28..31). * b) There is at least one printable character belonging to the * "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255). * - BINARY otherwise. * - The following partially-portable control characters form a * "gray list" that is ignored in this detection algorithm: * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}). * IN assertion: the fields Freq of dyn_ltree are set. */ local int detect_data_type(s) deflate_state *s; { /* black_mask is the bit mask of black-listed bytes * set bits 0..6, 14..25, and 28..31 * 0xf3ffc07f = binary 11110011111111111100000001111111 */ unsigned long black_mask = 0xf3ffc07fUL; int n; /* Check for non-textual ("black-listed") bytes. */ for (n = 0; n <= 31; n++, black_mask >>= 1) if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0)) return Z_BINARY; /* Check for textual ("white-listed") bytes. */ if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0 || s->dyn_ltree[13].Freq != 0) return Z_TEXT; for (n = 32; n < LITERALS; n++) if (s->dyn_ltree[n].Freq != 0) return Z_TEXT; /* There are no "black-listed" or "white-listed" bytes: * this stream either is empty or has tolerated ("gray-listed") bytes only. */ return Z_BINARY; } /* =========================================================================== * Reverse the first len bits of a code, using straightforward code (a faster * method would use a table) * IN assertion: 1 <= len <= 15 */ local unsigned bi_reverse(code, len) unsigned code; /* the value to invert */ int len; /* its bit length */ { register unsigned res = 0; do { res |= code & 1; code >>= 1, res <<= 1; } while (--len > 0); return res >> 1; } /* =========================================================================== * Flush the bit buffer, keeping at most 7 bits in it. */ local void bi_flush(s) deflate_state *s; { if (s->bi_valid == 16) { put_short(s, s->bi_buf); s->bi_buf = 0; s->bi_valid = 0; } else if (s->bi_valid >= 8) { put_byte(s, (Byte)s->bi_buf); s->bi_buf >>= 8; s->bi_valid -= 8; } } /* =========================================================================== * Flush the bit buffer and align the output on a byte boundary */ local void bi_windup(s) deflate_state *s; { if (s->bi_valid > 8) { put_short(s, s->bi_buf); } else if (s->bi_valid > 0) { put_byte(s, (Byte)s->bi_buf); } s->bi_buf = 0; s->bi_valid = 0; #ifdef DEBUG s->bits_sent = (s->bits_sent+7) & ~7; #endif } /* =========================================================================== * Copy a stored block, storing first the length and its * one's complement if requested. */ local void copy_block(s, buf, len, header) deflate_state *s; charf *buf; /* the input data */ unsigned len; /* its length */ int header; /* true if block header must be written */ { bi_windup(s); /* align on byte boundary */ if (header) { put_short(s, (ush)len); put_short(s, (ush)~len); #ifdef DEBUG s->bits_sent += 2*16; #endif } #ifdef DEBUG s->bits_sent += (ulg)len<<3; #endif while (len--) { put_byte(s, *buf++); } } /* END OF DUMP OF mz_trees.c*/ /* START OF DUMP OF mz_inftrees.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* inftrees.c -- generate Huffman trees for efficient decoding * Copyright (C) 1995-2013 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* START OF DUMP OF mz_inftrees.h*/ /* inftrees.h -- header to use inftrees.c * Copyright (C) 1995-2005, 2010 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ /* Structure for decoding tables. Each entry provides either the information needed to do the operation requested by the code that indexed that table entry, or it provides a pointer to another table that indexes more bits of the code. op indicates whether the entry is a pointer to another table, a literal, a length or distance, an end-of-block, or an invalid code. For a table pointer, the low four bits of op is the number of index bits of that table. For a length or distance, the low four bits of op is the number of extra bits to get after the code. bits is the number of bits in this code or part of the code to drop off of the bit buffer. val is the actual byte to output in the case of a literal, the base length or distance, or the offset from the current table to the next table. Each entry is four bytes. */ typedef struct { unsigned char op; /* operation, extra bits, table bits */ unsigned char bits; /* bits in this part of the code */ unsigned short val; /* offset in table or code value */ } code; /* op values as set by inflate_table(): 00000000 - literal 0000tttt - table link, tttt != 0 is the number of table index bits 0001eeee - length or distance, eeee is the number of extra bits 01100000 - end of block 01000000 - invalid code */ /* Maximum size of the dynamic table. The maximum number of code structures is 1444, which is the sum of 852 for literal/length codes and 592 for distance codes. These values were found by exhaustive searches using the program examples/enough.c found in the zlib distribtution. The arguments to that program are the number of symbols, the initial root table size, and the maximum bit length of a code. "enough 286 9 15" for literal/length codes returns returns 852, and "enough 30 6 15" for distance codes returns 592. The initial root table size (9 or 6) is found in the fifth argument of the inflate_table() calls in inflate.c and infback.c. If the root table size is changed, then these maximum sizes would be need to be recalculated and updated. */ #define ENOUGH_LENS 852 #define ENOUGH_DISTS 592 #define ENOUGH (ENOUGH_LENS+ENOUGH_DISTS) /* Type of code to build for inflate_table() */ typedef enum { CODES, LENS, DISTS } codetype; int ZLIB_INTERNAL inflate_table OF((codetype type, unsigned short FAR *lens, unsigned codes, code FAR * FAR *table, unsigned FAR *bits, unsigned short FAR *work)); /* END OF DUMP OF mz_inftrees.h*/ #define MAXBITS 15 const char inflate_copyright[] = " inflate 1.2.8 Copyright 1995-2013 Mark Adler "; /* If you use the zlib library in a product, an acknowledgment is welcome in the documentation of your product. If for some reason you cannot include such an acknowledgment, I would appreciate that you keep this copyright string in the executable of your product. */ /* Build a set of tables to decode the provided canonical Huffman code. The code lengths are lens[0..codes-1]. The result starts at *table, whose indices are 0..2^bits-1. work is a writable array of at least lens shorts, which is used as a work area. type is the type of code to be generated, CODES, LENS, or DISTS. On return, zero is success, -1 is an invalid code, and +1 means that ENOUGH isn't enough. table on return points to the next available entry's address. bits is the requested root table index bits, and on return it is the actual root table index bits. It will differ if the request is greater than the longest code or if it is less than the shortest code. */ int ZLIB_INTERNAL inflate_table(type, lens, codes, table, bits, work) codetype type; unsigned short FAR *lens; unsigned codes; code FAR * FAR *table; unsigned FAR *bits; unsigned short FAR *work; { unsigned len; /* a code's length in bits */ unsigned sym; /* index of code symbols */ unsigned min, max; /* minimum and maximum code lengths */ unsigned root; /* number of index bits for root table */ unsigned curr; /* number of index bits for current table */ unsigned drop; /* code bits to drop for sub-table */ int left; /* number of prefix codes available */ unsigned used; /* code entries in table used */ unsigned huff; /* Huffman code */ unsigned incr; /* for incrementing code, index */ unsigned fill; /* index for replicating entries */ unsigned low; /* low bits for current root entry */ unsigned mask; /* mask for low root bits */ code here; /* table entry for duplication */ code FAR *next; /* next available space in table */ const unsigned short FAR *base; /* base value table to use */ const unsigned short FAR *extra; /* extra bits table to use */ int end; /* use base and extra for symbol > end */ unsigned short count[MAXBITS+1]; /* number of codes of each length */ unsigned short offs[MAXBITS+1]; /* offsets in table for each length */ static const unsigned short lbase[31] = { /* Length codes 257..285 base */ 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; static const unsigned short lext[31] = { /* Length codes 257..285 extra */ 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 72, 78}; static const unsigned short dbase[32] = { /* Distance codes 0..29 base */ 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577, 0, 0}; static const unsigned short dext[32] = { /* Distance codes 0..29 extra */ 16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 64, 64}; /* Process a set of code lengths to create a canonical Huffman code. The code lengths are lens[0..codes-1]. Each length corresponds to the symbols 0..codes-1. The Huffman code is generated by first sorting the symbols by length from short to long, and retaining the symbol order for codes with equal lengths. Then the code starts with all zero bits for the first code of the shortest length, and the codes are integer increments for the same length, and zeros are appended as the length increases. For the deflate format, these bits are stored backwards from their more natural integer increment ordering, and so when the decoding tables are built in the large loop below, the integer codes are incremented backwards. This routine assumes, but does not check, that all of the entries in lens[] are in the range 0..MAXBITS. The caller must assure this. 1..MAXBITS is interpreted as that code length. zero means that that symbol does not occur in this code. The codes are sorted by computing a count of codes for each length, creating from that a table of starting indices for each length in the sorted table, and then entering the symbols in order in the sorted table. The sorted table is work[], with that space being provided by the caller. The length counts are used for other purposes as well, i.e. finding the minimum and maximum length codes, determining if there are any codes at all, checking for a valid set of lengths, and looking ahead at length counts to determine sub-table sizes when building the decoding tables. */ /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */ for (len = 0; len <= MAXBITS; len++) count[len] = 0; for (sym = 0; sym < codes; sym++) count[lens[sym]]++; /* bound code lengths, force root to be within code lengths */ root = *bits; for (max = MAXBITS; max >= 1; max--) if (count[max] != 0) break; if (root > max) root = max; if (max == 0) { /* no symbols to code at all */ here.op = (unsigned char)64; /* invalid code marker */ here.bits = (unsigned char)1; here.val = (unsigned short)0; *(*table)++ = here; /* make a table to force an error */ *(*table)++ = here; *bits = 1; return 0; /* no symbols, but wait for decoding to report error */ } for (min = 1; min < max; min++) if (count[min] != 0) break; if (root < min) root = min; /* check for an over-subscribed or incomplete set of lengths */ left = 1; for (len = 1; len <= MAXBITS; len++) { left <<= 1; left -= count[len]; if (left < 0) return -1; /* over-subscribed */ } if (left > 0 && (type == CODES || max != 1)) return -1; /* incomplete set */ /* generate offsets into symbol table for each length for sorting */ offs[1] = 0; for (len = 1; len < MAXBITS; len++) offs[len + 1] = offs[len] + count[len]; /* sort symbols by length, by symbol order within each length */ for (sym = 0; sym < codes; sym++) if (lens[sym] != 0) work[offs[lens[sym]]++] = (unsigned short)sym; /* Create and fill in decoding tables. In this loop, the table being filled is at next and has curr index bits. The code being used is huff with length len. That code is converted to an index by dropping drop bits off of the bottom. For codes where len is less than drop + curr, those top drop + curr - len bits are incremented through all values to fill the table with replicated entries. root is the number of index bits for the root table. When len exceeds root, sub-tables are created pointed to by the root entry with an index of the low root bits of huff. This is saved in low to check for when a new sub-table should be started. drop is zero when the root table is being filled, and drop is root when sub-tables are being filled. When a new sub-table is needed, it is necessary to look ahead in the code lengths to determine what size sub-table is needed. The length counts are used for this, and so count[] is decremented as codes are entered in the tables. used keeps track of how many table entries have been allocated from the provided *table space. It is checked for LENS and DIST tables against the constants ENOUGH_LENS and ENOUGH_DISTS to guard against changes in the initial root table size constants. See the comments in inftrees.h for more information. sym increments through all symbols, and the loop terminates when all codes of length max, i.e. all codes, have been processed. This routine permits incomplete codes, so another loop after this one fills in the rest of the decoding tables with invalid code markers. */ /* set up for code type */ switch (type) { case CODES: base = extra = work; /* dummy value--not used */ end = 19; break; case LENS: base = lbase; base -= 257; extra = lext; extra -= 257; end = 256; break; default: /* DISTS */ base = dbase; extra = dext; end = -1; } /* initialize state for loop */ huff = 0; /* starting code */ sym = 0; /* starting code symbol */ len = min; /* starting code length */ next = *table; /* current table to fill in */ curr = root; /* current table index bits */ drop = 0; /* current bits to drop from code for index */ low = (unsigned)(-1); /* trigger new sub-table when len > root */ used = 1U << root; /* use root table entries */ mask = used - 1; /* mask for comparing low */ /* check available table space */ if ((type == LENS && used > ENOUGH_LENS) || (type == DISTS && used > ENOUGH_DISTS)) return 1; /* process all codes and make table entries */ for (;;) { /* create table entry */ here.bits = (unsigned char)(len - drop); if ((int)(work[sym]) < end) { here.op = (unsigned char)0; here.val = work[sym]; } else if ((int)(work[sym]) > end) { here.op = (unsigned char)(extra[work[sym]]); here.val = base[work[sym]]; } else { here.op = (unsigned char)(32 + 64); /* end of block */ here.val = 0; } /* replicate for those indices with low len bits equal to huff */ incr = 1U << (len - drop); fill = 1U << curr; min = fill; /* save offset to next table */ do { fill -= incr; next[(huff >> drop) + fill] = here; } while (fill != 0); /* backwards increment the len-bit code huff */ incr = 1U << (len - 1); while (huff & incr) incr >>= 1; if (incr != 0) { huff &= incr - 1; huff += incr; } else huff = 0; /* go to next symbol, update count, len */ sym++; if (--(count[len]) == 0) { if (len == max) break; len = lens[work[sym]]; } /* create new sub-table if needed */ if (len > root && (huff & mask) != low) { /* if first time, transition to sub-tables */ if (drop == 0) drop = root; /* increment past last table */ next += min; /* here min is 1 << curr */ /* determine length of next table */ curr = len - drop; left = (int)(1 << curr); while (curr + drop < max) { left -= count[curr + drop]; if (left <= 0) break; curr++; left <<= 1; } /* check for enough space */ used += 1U << curr; if ((type == LENS && used > ENOUGH_LENS) || (type == DISTS && used > ENOUGH_DISTS)) return 1; /* point entry in root table to sub-table */ low = huff & mask; (*table)[low].op = (unsigned char)curr; (*table)[low].bits = (unsigned char)root; (*table)[low].val = (unsigned short)(next - *table); } } /* fill in remaining table entry if code is incomplete (guaranteed to have at most one remaining entry, since if the code is incomplete, the maximum code length that was allowed to get this far is one bit) */ if (huff != 0) { here.op = (unsigned char)64; /* invalid code marker */ here.bits = (unsigned char)(len - drop); here.val = (unsigned short)0; next[huff] = here; } /* set return parameters */ *table += used; *bits = root; return 0; } /* END OF DUMP OF mz_inftrees.c*/ /* START OF DUMP OF mz_inflate.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* inflate.c -- zlib decompression * Copyright (C) 1995-2012 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* * Change history: * * 1.2.beta0 24 Nov 2002 * - First version -- complete rewrite of inflate to simplify code, avoid * creation of window when not needed, minimize use of window when it is * needed, make inffast.c even faster, implement gzip decoding, and to * improve code readability and style over the previous zlib inflate code * * 1.2.beta1 25 Nov 2002 * - Use pointers for available input and output checking in inffast.c * - Remove input and output counters in inffast.c * - Change inffast.c entry and loop from avail_in >= 7 to >= 6 * - Remove unnecessary second byte pull from length extra in inffast.c * - Unroll direct copy to three copies per loop in inffast.c * * 1.2.beta2 4 Dec 2002 * - Change external routine names to reduce potential conflicts * - Correct filename to inffixed.h for fixed tables in inflate.c * - Make hbuf[] unsigned char to match parameter type in inflate.c * - Change strm->next_out[-state->offset] to *(strm->next_out - state->offset) * to avoid negation problem on Alphas (64 bit) in inflate.c * * 1.2.beta3 22 Dec 2002 * - Add comments on state->bits assertion in inffast.c * - Add comments on op field in inftrees.h * - Fix bug in reuse of allocated window after inflateReset() * - Remove bit fields--back to byte structure for speed * - Remove distance extra == 0 check in inflate_fast()--only helps for lengths * - Change post-increments to pre-increments in inflate_fast(), PPC biased? * - Add compile time option, POSTINC, to use post-increments instead (Intel?) * - Make MATCH copy in inflate() much faster for when inflate_fast() not used * - Use local copies of stream next and avail values, as well as local bit * buffer and bit count in inflate()--for speed when inflate_fast() not used * * 1.2.beta4 1 Jan 2003 * - Split ptr - 257 statements in inflate_table() to avoid compiler warnings * - Move a comment on output buffer sizes from inffast.c to inflate.c * - Add comments in inffast.c to introduce the inflate_fast() routine * - Rearrange window copies in inflate_fast() for speed and simplification * - Unroll last copy for window match in inflate_fast() * - Use local copies of window variables in inflate_fast() for speed * - Pull out common wnext == 0 case for speed in inflate_fast() * - Make op and len in inflate_fast() unsigned for consistency * - Add FAR to lcode and dcode declarations in inflate_fast() * - Simplified bad distance check in inflate_fast() * - Added inflateBackInit(), inflateBack(), and inflateBackEnd() in new * source file infback.c to provide a call-back interface to inflate for * programs like gzip and unzip -- uses window as output buffer to avoid * window copying * * 1.2.beta5 1 Jan 2003 * - Improved inflateBack() interface to allow the caller to provide initial * input in strm. * - Fixed stored blocks bug in inflateBack() * * 1.2.beta6 4 Jan 2003 * - Added comments in inffast.c on effectiveness of POSTINC * - Typecasting all around to reduce compiler warnings * - Changed loops from while (1) or do {} while (1) to for (;;), again to * make compilers happy * - Changed type of window in inflateBackInit() to unsigned char * * * 1.2.beta7 27 Jan 2003 * - Changed many types to unsigned or unsigned short to avoid warnings * - Added inflateCopy() function * * 1.2.0 9 Mar 2003 * - Changed inflateBack() interface to provide separate opaque descriptors * for the in() and out() functions * - Changed inflateBack() argument and in_func typedef to swap the length * and buffer address return values for the input function * - Check next_in and next_out for Z_NULL on entry to inflate() * * The history for versions after 1.2.0 are in ChangeLog in zlib distribution. */ /* START OF DUMP OF mz_inflate.h*/ /* inflate.h -- internal inflate state definition * Copyright (C) 1995-2009 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ /* define NO_GZIP when compiling if you want to disable gzip header and trailer decoding by inflate(). NO_GZIP would be used to avoid linking in the crc code when it is not needed. For shared libraries, gzip decoding should be left enabled. */ #ifndef NO_GZIP # define GUNZIP #endif /* Possible inflate modes between inflate() calls */ typedef enum { HEAD, /* i: waiting for magic header */ FLAGS, /* i: waiting for method and flags (gzip) */ TIME, /* i: waiting for modification time (gzip) */ OS, /* i: waiting for extra flags and operating system (gzip) */ EXLEN, /* i: waiting for extra length (gzip) */ EXTRA, /* i: waiting for extra bytes (gzip) */ NAME, /* i: waiting for end of file name (gzip) */ COMMENT, /* i: waiting for end of comment (gzip) */ HCRC, /* i: waiting for header crc (gzip) */ DICTID, /* i: waiting for dictionary check value */ DICT, /* waiting for inflateSetDictionary() call */ TYPE, /* i: waiting for type bits, including last-flag bit */ TYPEDO, /* i: same, but skip check to exit inflate on new block */ STORED, /* i: waiting for stored size (length and complement) */ COPY_, /* i/o: same as COPY below, but only first time in */ COPY, /* i/o: waiting for input or output to copy stored block */ TABLE, /* i: waiting for dynamic block table lengths */ LENLENS, /* i: waiting for code length code lengths */ CODELENS, /* i: waiting for length/lit and distance code lengths */ LEN_, /* i: same as LEN below, but only first time in */ LEN, /* i: waiting for length/lit/eob code */ LENEXT, /* i: waiting for length extra bits */ DIST, /* i: waiting for distance code */ DISTEXT, /* i: waiting for distance extra bits */ MATCH, /* o: waiting for output space to copy string */ LIT, /* o: waiting for output space to write literal */ CHECK, /* i: waiting for 32-bit check value */ LENGTH, /* i: waiting for 32-bit length (gzip) */ DONE, /* finished check, done -- remain here until reset */ BAD, /* got a data error -- remain here until reset */ MEM, /* got an inflate() memory error -- remain here until reset */ SYNC /* looking for synchronization bytes to restart inflate() */ } inflate_mode; /* State transitions between above modes - (most modes can go to BAD or MEM on error -- not shown for clarity) Process header: HEAD -> (gzip) or (zlib) or (raw) (gzip) -> FLAGS -> TIME -> OS -> EXLEN -> EXTRA -> NAME -> COMMENT -> HCRC -> TYPE (zlib) -> DICTID or TYPE DICTID -> DICT -> TYPE (raw) -> TYPEDO Read deflate blocks: TYPE -> TYPEDO -> STORED or TABLE or LEN_ or CHECK STORED -> COPY_ -> COPY -> TYPE TABLE -> LENLENS -> CODELENS -> LEN_ LEN_ -> LEN Read deflate codes in fixed or dynamic block: LEN -> LENEXT or LIT or TYPE LENEXT -> DIST -> DISTEXT -> MATCH -> LEN LIT -> LEN Process trailer: CHECK -> LENGTH -> DONE */ /* state maintained between inflate() calls. Approximately 10K bytes. */ struct inflate_state { inflate_mode mode; /* current inflate mode */ int last; /* true if processing last block */ int wrap; /* bit 0 true for zlib, bit 1 true for gzip */ int havedict; /* true if dictionary provided */ int flags; /* gzip header method and flags (0 if zlib) */ unsigned dmax; /* zlib header max distance (INFLATE_STRICT) */ unsigned long check; /* protected copy of check value */ unsigned long total; /* protected copy of output count */ gz_headerp head; /* where to save gzip header information */ /* sliding window */ unsigned wbits; /* log base 2 of requested window size */ unsigned wsize; /* window size or zero if not using window */ unsigned whave; /* valid bytes in the window */ unsigned wnext; /* window write index */ unsigned char FAR *window; /* allocated sliding window, if needed */ /* bit accumulator */ unsigned long hold; /* input bit accumulator */ unsigned bits; /* number of bits in "in" */ /* for string and stored block copying */ unsigned length; /* literal or length of data to copy */ unsigned offset; /* distance back to copy string from */ /* for table and code decoding */ unsigned extra; /* extra bits needed */ /* fixed and dynamic code tables */ code const FAR *lencode; /* starting table for length/literal codes */ code const FAR *distcode; /* starting table for distance codes */ unsigned lenbits; /* index bits for lencode */ unsigned distbits; /* index bits for distcode */ /* dynamic table building */ unsigned ncode; /* number of code length code lengths */ unsigned nlen; /* number of length code lengths */ unsigned ndist; /* number of distance code lengths */ unsigned have; /* number of code lengths in lens[] */ code FAR *next; /* next available space in codes[] */ unsigned short lens[320]; /* temporary storage for code lengths */ unsigned short work[288]; /* work area for code table building */ code codes[ENOUGH]; /* space for code tables */ int sane; /* if false, allow invalid distance too far */ int back; /* bits back of last unprocessed length/lit */ unsigned was; /* initial length of match */ }; /* END OF DUMP OF mz_inflate.h*/ /* START OF DUMP OF mz_inffast.h*/ /* inffast.h -- header to use inffast.c * Copyright (C) 1995-2003, 2010 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ void ZLIB_INTERNAL inflate_fast OF((z_streamp strm, unsigned start)); /* END OF DUMP OF mz_inffast.h*/ #ifdef MAKEFIXED # ifndef BUILDFIXED # define BUILDFIXED # endif #endif /* function prototypes */ local void fixedtables OF((struct inflate_state FAR *state)); local int updatewindow OF((z_streamp strm, const unsigned char FAR *end, unsigned copy)); #ifdef BUILDFIXED void makefixed OF((void)); #endif local unsigned syncsearch OF((unsigned FAR *have, const unsigned char FAR *buf, unsigned len)); int ZEXPORT inflateResetKeep(strm) z_streamp strm; { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; strm->total_in = strm->total_out = state->total = 0; strm->msg = Z_NULL; if (state->wrap) /* to support ill-conceived Java test suite */ strm->adler = state->wrap & 1; state->mode = HEAD; state->last = 0; state->havedict = 0; state->dmax = 32768U; state->head = Z_NULL; state->hold = 0; state->bits = 0; state->lencode = state->distcode = state->next = state->codes; state->sane = 1; state->back = -1; Tracev((stderr, "inflate: reset\n")); return Z_OK; } int ZEXPORT inflateReset(strm) z_streamp strm; { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; state->wsize = 0; state->whave = 0; state->wnext = 0; return inflateResetKeep(strm); } int ZEXPORT inflateReset2(strm, windowBits) z_streamp strm; int windowBits; { int wrap; struct inflate_state FAR *state; /* get the state */ if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; /* extract wrap request from windowBits parameter */ if (windowBits < 0) { wrap = 0; windowBits = -windowBits; } else { wrap = (windowBits >> 4) + 1; #ifdef GUNZIP if (windowBits < 48) windowBits &= 15; #endif } /* set number of window bits, free window if different */ if (windowBits && (windowBits < 8 || windowBits > 15)) return Z_STREAM_ERROR; if (state->window != Z_NULL && state->wbits != (unsigned)windowBits) { ZFREE(strm, state->window); state->window = Z_NULL; } /* update state and reset the rest of it */ state->wrap = wrap; state->wbits = (unsigned)windowBits; return inflateReset(strm); } int ZEXPORT inflateInit2_(strm, windowBits, version, stream_size) z_streamp strm; int windowBits; const char *version; int stream_size; { int ret; struct inflate_state FAR *state; if (version == Z_NULL || version[0] != ZLIB_VERSION[0] || stream_size != (int)(sizeof(z_stream))) return Z_VERSION_ERROR; if (strm == Z_NULL) return Z_STREAM_ERROR; strm->msg = Z_NULL; /* in case we return an error */ if (strm->zalloc == (alloc_func)0) { #ifdef Z_SOLO return Z_STREAM_ERROR; #else strm->zalloc = zcalloc; strm->opaque = (voidpf)0; #endif } if (strm->zfree == (free_func)0) #ifdef Z_SOLO return Z_STREAM_ERROR; #else strm->zfree = zcfree; #endif state = (struct inflate_state FAR *) ZALLOC(strm, 1, sizeof(struct inflate_state)); if (state == Z_NULL) return Z_MEM_ERROR; Tracev((stderr, "inflate: allocated\n")); strm->state = (struct internal_state FAR *)state; state->window = Z_NULL; ret = inflateReset2(strm, windowBits); if (ret != Z_OK) { ZFREE(strm, state); strm->state = Z_NULL; } return ret; } int ZEXPORT inflateInit_(strm, version, stream_size) z_streamp strm; const char *version; int stream_size; { return inflateInit2_(strm, DEF_WBITS, version, stream_size); } int ZEXPORT inflatePrime(strm, bits, value) z_streamp strm; int bits; int value; { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (bits < 0) { state->hold = 0; state->bits = 0; return Z_OK; } if (bits > 16 || state->bits + bits > 32) return Z_STREAM_ERROR; value &= (1L << bits) - 1; state->hold += value << state->bits; state->bits += bits; return Z_OK; } /* Return state with length and distance decoding tables and index sizes set to fixed code decoding. Normally this returns fixed tables from inffixed.h. If BUILDFIXED is defined, then instead this routine builds the tables the first time it's called, and returns those tables the first time and thereafter. This reduces the size of the code by about 2K bytes, in exchange for a little execution time. However, BUILDFIXED should not be used for threaded applications, since the rewriting of the tables and virgin may not be thread-safe. */ local void fixedtables(state) struct inflate_state FAR *state; { #ifdef BUILDFIXED static int virgin = 1; static code *lenfix, *distfix; static code fixed[544]; /* build fixed huffman tables if first call (may not be thread safe) */ if (virgin) { unsigned sym, bits; static code *next; /* literal/length table */ sym = 0; while (sym < 144) state->lens[sym++] = 8; while (sym < 256) state->lens[sym++] = 9; while (sym < 280) state->lens[sym++] = 7; while (sym < 288) state->lens[sym++] = 8; next = fixed; lenfix = next; bits = 9; inflate_table(LENS, state->lens, 288, &(next), &(bits), state->work); /* distance table */ sym = 0; while (sym < 32) state->lens[sym++] = 5; distfix = next; bits = 5; inflate_table(DISTS, state->lens, 32, &(next), &(bits), state->work); /* do this just once */ virgin = 0; } #else /* !BUILDFIXED */ /* START OF DUMP OF mz_inffixed.h*/ /* inffixed.h -- table for decoding fixed codes * Generated automatically by makefixed(). */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of this library and is subject to change. Applications should only use zlib.h. */ static const code lenfix[512] = { {96,7,0},{0,8,80},{0,8,16},{20,8,115},{18,7,31},{0,8,112},{0,8,48}, {0,9,192},{16,7,10},{0,8,96},{0,8,32},{0,9,160},{0,8,0},{0,8,128}, {0,8,64},{0,9,224},{16,7,6},{0,8,88},{0,8,24},{0,9,144},{19,7,59}, {0,8,120},{0,8,56},{0,9,208},{17,7,17},{0,8,104},{0,8,40},{0,9,176}, {0,8,8},{0,8,136},{0,8,72},{0,9,240},{16,7,4},{0,8,84},{0,8,20}, {21,8,227},{19,7,43},{0,8,116},{0,8,52},{0,9,200},{17,7,13},{0,8,100}, {0,8,36},{0,9,168},{0,8,4},{0,8,132},{0,8,68},{0,9,232},{16,7,8}, {0,8,92},{0,8,28},{0,9,152},{20,7,83},{0,8,124},{0,8,60},{0,9,216}, {18,7,23},{0,8,108},{0,8,44},{0,9,184},{0,8,12},{0,8,140},{0,8,76}, {0,9,248},{16,7,3},{0,8,82},{0,8,18},{21,8,163},{19,7,35},{0,8,114}, {0,8,50},{0,9,196},{17,7,11},{0,8,98},{0,8,34},{0,9,164},{0,8,2}, {0,8,130},{0,8,66},{0,9,228},{16,7,7},{0,8,90},{0,8,26},{0,9,148}, {20,7,67},{0,8,122},{0,8,58},{0,9,212},{18,7,19},{0,8,106},{0,8,42}, {0,9,180},{0,8,10},{0,8,138},{0,8,74},{0,9,244},{16,7,5},{0,8,86}, {0,8,22},{64,8,0},{19,7,51},{0,8,118},{0,8,54},{0,9,204},{17,7,15}, {0,8,102},{0,8,38},{0,9,172},{0,8,6},{0,8,134},{0,8,70},{0,9,236}, {16,7,9},{0,8,94},{0,8,30},{0,9,156},{20,7,99},{0,8,126},{0,8,62}, {0,9,220},{18,7,27},{0,8,110},{0,8,46},{0,9,188},{0,8,14},{0,8,142}, {0,8,78},{0,9,252},{96,7,0},{0,8,81},{0,8,17},{21,8,131},{18,7,31}, {0,8,113},{0,8,49},{0,9,194},{16,7,10},{0,8,97},{0,8,33},{0,9,162}, {0,8,1},{0,8,129},{0,8,65},{0,9,226},{16,7,6},{0,8,89},{0,8,25}, {0,9,146},{19,7,59},{0,8,121},{0,8,57},{0,9,210},{17,7,17},{0,8,105}, {0,8,41},{0,9,178},{0,8,9},{0,8,137},{0,8,73},{0,9,242},{16,7,4}, {0,8,85},{0,8,21},{16,8,258},{19,7,43},{0,8,117},{0,8,53},{0,9,202}, {17,7,13},{0,8,101},{0,8,37},{0,9,170},{0,8,5},{0,8,133},{0,8,69}, {0,9,234},{16,7,8},{0,8,93},{0,8,29},{0,9,154},{20,7,83},{0,8,125}, {0,8,61},{0,9,218},{18,7,23},{0,8,109},{0,8,45},{0,9,186},{0,8,13}, {0,8,141},{0,8,77},{0,9,250},{16,7,3},{0,8,83},{0,8,19},{21,8,195}, {19,7,35},{0,8,115},{0,8,51},{0,9,198},{17,7,11},{0,8,99},{0,8,35}, {0,9,166},{0,8,3},{0,8,131},{0,8,67},{0,9,230},{16,7,7},{0,8,91}, {0,8,27},{0,9,150},{20,7,67},{0,8,123},{0,8,59},{0,9,214},{18,7,19}, {0,8,107},{0,8,43},{0,9,182},{0,8,11},{0,8,139},{0,8,75},{0,9,246}, {16,7,5},{0,8,87},{0,8,23},{64,8,0},{19,7,51},{0,8,119},{0,8,55}, {0,9,206},{17,7,15},{0,8,103},{0,8,39},{0,9,174},{0,8,7},{0,8,135}, {0,8,71},{0,9,238},{16,7,9},{0,8,95},{0,8,31},{0,9,158},{20,7,99}, {0,8,127},{0,8,63},{0,9,222},{18,7,27},{0,8,111},{0,8,47},{0,9,190}, {0,8,15},{0,8,143},{0,8,79},{0,9,254},{96,7,0},{0,8,80},{0,8,16}, {20,8,115},{18,7,31},{0,8,112},{0,8,48},{0,9,193},{16,7,10},{0,8,96}, {0,8,32},{0,9,161},{0,8,0},{0,8,128},{0,8,64},{0,9,225},{16,7,6}, {0,8,88},{0,8,24},{0,9,145},{19,7,59},{0,8,120},{0,8,56},{0,9,209}, {17,7,17},{0,8,104},{0,8,40},{0,9,177},{0,8,8},{0,8,136},{0,8,72}, {0,9,241},{16,7,4},{0,8,84},{0,8,20},{21,8,227},{19,7,43},{0,8,116}, {0,8,52},{0,9,201},{17,7,13},{0,8,100},{0,8,36},{0,9,169},{0,8,4}, {0,8,132},{0,8,68},{0,9,233},{16,7,8},{0,8,92},{0,8,28},{0,9,153}, {20,7,83},{0,8,124},{0,8,60},{0,9,217},{18,7,23},{0,8,108},{0,8,44}, {0,9,185},{0,8,12},{0,8,140},{0,8,76},{0,9,249},{16,7,3},{0,8,82}, {0,8,18},{21,8,163},{19,7,35},{0,8,114},{0,8,50},{0,9,197},{17,7,11}, {0,8,98},{0,8,34},{0,9,165},{0,8,2},{0,8,130},{0,8,66},{0,9,229}, {16,7,7},{0,8,90},{0,8,26},{0,9,149},{20,7,67},{0,8,122},{0,8,58}, {0,9,213},{18,7,19},{0,8,106},{0,8,42},{0,9,181},{0,8,10},{0,8,138}, {0,8,74},{0,9,245},{16,7,5},{0,8,86},{0,8,22},{64,8,0},{19,7,51}, {0,8,118},{0,8,54},{0,9,205},{17,7,15},{0,8,102},{0,8,38},{0,9,173}, {0,8,6},{0,8,134},{0,8,70},{0,9,237},{16,7,9},{0,8,94},{0,8,30}, {0,9,157},{20,7,99},{0,8,126},{0,8,62},{0,9,221},{18,7,27},{0,8,110}, {0,8,46},{0,9,189},{0,8,14},{0,8,142},{0,8,78},{0,9,253},{96,7,0}, {0,8,81},{0,8,17},{21,8,131},{18,7,31},{0,8,113},{0,8,49},{0,9,195}, {16,7,10},{0,8,97},{0,8,33},{0,9,163},{0,8,1},{0,8,129},{0,8,65}, {0,9,227},{16,7,6},{0,8,89},{0,8,25},{0,9,147},{19,7,59},{0,8,121}, {0,8,57},{0,9,211},{17,7,17},{0,8,105},{0,8,41},{0,9,179},{0,8,9}, {0,8,137},{0,8,73},{0,9,243},{16,7,4},{0,8,85},{0,8,21},{16,8,258}, {19,7,43},{0,8,117},{0,8,53},{0,9,203},{17,7,13},{0,8,101},{0,8,37}, {0,9,171},{0,8,5},{0,8,133},{0,8,69},{0,9,235},{16,7,8},{0,8,93}, {0,8,29},{0,9,155},{20,7,83},{0,8,125},{0,8,61},{0,9,219},{18,7,23}, {0,8,109},{0,8,45},{0,9,187},{0,8,13},{0,8,141},{0,8,77},{0,9,251}, {16,7,3},{0,8,83},{0,8,19},{21,8,195},{19,7,35},{0,8,115},{0,8,51}, {0,9,199},{17,7,11},{0,8,99},{0,8,35},{0,9,167},{0,8,3},{0,8,131}, {0,8,67},{0,9,231},{16,7,7},{0,8,91},{0,8,27},{0,9,151},{20,7,67}, {0,8,123},{0,8,59},{0,9,215},{18,7,19},{0,8,107},{0,8,43},{0,9,183}, {0,8,11},{0,8,139},{0,8,75},{0,9,247},{16,7,5},{0,8,87},{0,8,23}, {64,8,0},{19,7,51},{0,8,119},{0,8,55},{0,9,207},{17,7,15},{0,8,103}, {0,8,39},{0,9,175},{0,8,7},{0,8,135},{0,8,71},{0,9,239},{16,7,9}, {0,8,95},{0,8,31},{0,9,159},{20,7,99},{0,8,127},{0,8,63},{0,9,223}, {18,7,27},{0,8,111},{0,8,47},{0,9,191},{0,8,15},{0,8,143},{0,8,79}, {0,9,255} }; static const code distfix[32] = { {16,5,1},{23,5,257},{19,5,17},{27,5,4097},{17,5,5},{25,5,1025}, {21,5,65},{29,5,16385},{16,5,3},{24,5,513},{20,5,33},{28,5,8193}, {18,5,9},{26,5,2049},{22,5,129},{64,5,0},{16,5,2},{23,5,385}, {19,5,25},{27,5,6145},{17,5,7},{25,5,1537},{21,5,97},{29,5,24577}, {16,5,4},{24,5,769},{20,5,49},{28,5,12289},{18,5,13},{26,5,3073}, {22,5,193},{64,5,0} }; /* END OF DUMP OF mz_inffixed.h*/ #endif /* BUILDFIXED */ state->lencode = lenfix; state->lenbits = 9; state->distcode = distfix; state->distbits = 5; } #ifdef MAKEFIXED #include /* Write out the inffixed.h that is #include'd above. Defining MAKEFIXED also defines BUILDFIXED, so the tables are built on the fly. makefixed() writes those tables to stdout, which would be piped to inffixed.h. A small program can simply call makefixed to do this: void makefixed(void); int main(void) { makefixed(); return 0; } Then that can be linked with zlib built with MAKEFIXED defined and run: a.out > inffixed.h */ void makefixed() { unsigned low, size; struct inflate_state state; fixedtables(&state); puts(" /* inffixed.h -- table for decoding fixed codes"); puts(" * Generated automatically by makefixed()."); puts(" */"); puts(""); puts(" /* WARNING: this file should *not* be used by applications."); puts(" It is part of the implementation of this library and is"); puts(" subject to change. Applications should only use zlib.h."); puts(" */"); puts(""); size = 1U << 9; printf(" static const code lenfix[%u] = {", size); low = 0; for (;;) { if ((low % 7) == 0) printf("\n "); printf("{%u,%u,%d}", (low & 127) == 99 ? 64 : state.lencode[low].op, state.lencode[low].bits, state.lencode[low].val); if (++low == size) break; putchar(','); } puts("\n };"); size = 1U << 5; printf("\n static const code distfix[%u] = {", size); low = 0; for (;;) { if ((low % 6) == 0) printf("\n "); printf("{%u,%u,%d}", state.distcode[low].op, state.distcode[low].bits, state.distcode[low].val); if (++low == size) break; putchar(','); } puts("\n };"); } #endif /* MAKEFIXED */ /* Update the window with the last wsize (normally 32K) bytes written before returning. If window does not exist yet, create it. This is only called when a window is already in use, or when output has been written during this inflate call, but the end of the deflate stream has not been reached yet. It is also called to create a window for dictionary data when a dictionary is loaded. Providing output buffers larger than 32K to inflate() should provide a speed advantage, since only the last 32K of output is copied to the sliding window upon return from inflate(), and since all distances after the first 32K of output will fall in the output data, making match copies simpler and faster. The advantage may be dependent on the size of the processor's data caches. */ local int updatewindow(strm, end, copy) z_streamp strm; const Bytef *end; unsigned copy; { struct inflate_state FAR *state; unsigned dist; state = (struct inflate_state FAR *)strm->state; /* if it hasn't been done already, allocate space for the window */ if (state->window == Z_NULL) { state->window = (unsigned char FAR *) ZALLOC(strm, 1U << state->wbits, sizeof(unsigned char)); if (state->window == Z_NULL) return 1; } /* if window not in use yet, initialize */ if (state->wsize == 0) { state->wsize = 1U << state->wbits; state->wnext = 0; state->whave = 0; } /* copy state->wsize or less output bytes into the circular window */ if (copy >= state->wsize) { zmemcpy(state->window, end - state->wsize, state->wsize); state->wnext = 0; state->whave = state->wsize; } else { dist = state->wsize - state->wnext; if (dist > copy) dist = copy; zmemcpy(state->window + state->wnext, end - copy, dist); copy -= dist; if (copy) { zmemcpy(state->window, end - copy, copy); state->wnext = copy; state->whave = state->wsize; } else { state->wnext += dist; if (state->wnext == state->wsize) state->wnext = 0; if (state->whave < state->wsize) state->whave += dist; } } return 0; } /* Macros for inflate(): */ /* check function to use adler32() for zlib or crc32() for gzip */ #ifdef GUNZIP # define UPDATE(check, buf, len) \ (state->flags ? crc32(check, buf, len) : adler32(check, buf, len)) #else # define UPDATE(check, buf, len) adler32(check, buf, len) #endif /* check macros for header crc */ #ifdef GUNZIP # define CRC2(check, word) \ do { \ hbuf[0] = (unsigned char)(word); \ hbuf[1] = (unsigned char)((word) >> 8); \ check = crc32(check, hbuf, 2); \ } while (0) # define CRC4(check, word) \ do { \ hbuf[0] = (unsigned char)(word); \ hbuf[1] = (unsigned char)((word) >> 8); \ hbuf[2] = (unsigned char)((word) >> 16); \ hbuf[3] = (unsigned char)((word) >> 24); \ check = crc32(check, hbuf, 4); \ } while (0) #endif /* Load registers with state in inflate() for speed */ #define LOAD() \ do { \ put = strm->next_out; \ left = strm->avail_out; \ next = strm->next_in; \ have = strm->avail_in; \ hold = state->hold; \ bits = state->bits; \ } while (0) /* Restore state from registers in inflate() */ #define RESTORE() \ do { \ strm->next_out = put; \ strm->avail_out = left; \ strm->next_in = next; \ strm->avail_in = have; \ state->hold = hold; \ state->bits = bits; \ } while (0) /* Clear the input bit accumulator */ #define INITBITS() \ do { \ hold = 0; \ bits = 0; \ } while (0) /* Get a byte of input into the bit accumulator, or return from inflate() if there is no input available. */ #define PULLBYTE() \ do { \ if (have == 0) goto inf_leave; \ have--; \ hold += (unsigned long)(*next++) << bits; \ bits += 8; \ } while (0) /* Assure that there are at least n bits in the bit accumulator. If there is not enough available input to do that, then return from inflate(). */ #define NEEDBITS(n) \ do { \ while (bits < (unsigned)(n)) \ PULLBYTE(); \ } while (0) /* Return the low n bits of the bit accumulator (n < 16) */ #define BITS(n) \ ((unsigned)hold & ((1U << (n)) - 1)) /* Remove n bits from the bit accumulator */ #define DROPBITS(n) \ do { \ hold >>= (n); \ bits -= (unsigned)(n); \ } while (0) /* Remove zero to seven bits as needed to go to a byte boundary */ #define BYTEBITS() \ do { \ hold >>= bits & 7; \ bits -= bits & 7; \ } while (0) /* inflate() uses a state machine to process as much input data and generate as much output data as possible before returning. The state machine is structured roughly as follows: for (;;) switch (state) { ... case STATEn: if (not enough input data or output space to make progress) return; ... make progress ... state = STATEm; break; ... } so when inflate() is called again, the same case is attempted again, and if the appropriate resources are provided, the machine proceeds to the next state. The NEEDBITS() macro is usually the way the state evaluates whether it can proceed or should return. NEEDBITS() does the return if the requested bits are not available. The typical use of the BITS macros is: NEEDBITS(n); ... do something with BITS(n) ... DROPBITS(n); where NEEDBITS(n) either returns from inflate() if there isn't enough input left to load n bits into the accumulator, or it continues. BITS(n) gives the low n bits in the accumulator. When done, DROPBITS(n) drops the low n bits off the accumulator. INITBITS() clears the accumulator and sets the number of available bits to zero. BYTEBITS() discards just enough bits to put the accumulator on a byte boundary. After BYTEBITS() and a NEEDBITS(8), then BITS(8) would return the next byte in the stream. NEEDBITS(n) uses PULLBYTE() to get an available byte of input, or to return if there is no input available. The decoding of variable length codes uses PULLBYTE() directly in order to pull just enough bytes to decode the next code, and no more. Some states loop until they get enough input, making sure that enough state information is maintained to continue the loop where it left off if NEEDBITS() returns in the loop. For example, want, need, and keep would all have to actually be part of the saved state in case NEEDBITS() returns: case STATEw: while (want < need) { NEEDBITS(n); keep[want++] = BITS(n); DROPBITS(n); } state = STATEx; case STATEx: As shown above, if the next state is also the next case, then the break is omitted. A state may also return if there is not enough output space available to complete that state. Those states are copying stored data, writing a literal byte, and copying a matching string. When returning, a "goto inf_leave" is used to update the total counters, update the check value, and determine whether any progress has been made during that inflate() call in order to return the proper return code. Progress is defined as a change in either strm->avail_in or strm->avail_out. When there is a window, goto inf_leave will update the window with the last output written. If a goto inf_leave occurs in the middle of decompression and there is no window currently, goto inf_leave will create one and copy output to the window for the next call of inflate(). In this implementation, the flush parameter of inflate() only affects the return code (per zlib.h). inflate() always writes as much as possible to strm->next_out, given the space available and the provided input--the effect documented in zlib.h of Z_SYNC_FLUSH. Furthermore, inflate() always defers the allocation of and copying into a sliding window until necessary, which provides the effect documented in zlib.h for Z_FINISH when the entire input stream available. So the only thing the flush parameter actually does is: when flush is set to Z_FINISH, inflate() cannot return Z_OK. Instead it will return Z_BUF_ERROR if it has not reached the end of the stream. */ int ZEXPORT inflate(strm, flush) z_streamp strm; int flush; { struct inflate_state FAR *state; z_const unsigned char FAR *next; /* next input */ unsigned char FAR *put; /* next output */ unsigned have, left; /* available input and output */ unsigned long hold; /* bit buffer */ unsigned bits; /* bits in bit buffer */ unsigned in, out; /* save starting available input and output */ unsigned copy; /* number of stored or match bytes to copy */ unsigned char FAR *from; /* where to copy match bytes from */ code here; /* current decoding table entry */ code last; /* parent table entry */ unsigned len; /* length to copy for repeats, bits to drop */ int ret; /* return code */ #ifdef GUNZIP unsigned char hbuf[4]; /* buffer for gzip header crc calculation */ #endif static const unsigned short order[19] = /* permutation of code lengths */ {16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; if (strm == Z_NULL || strm->state == Z_NULL || strm->next_out == Z_NULL || (strm->next_in == Z_NULL && strm->avail_in != 0)) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (state->mode == TYPE) state->mode = TYPEDO; /* skip check */ LOAD(); in = have; out = left; ret = Z_OK; for (;;) switch (state->mode) { case HEAD: if (state->wrap == 0) { state->mode = TYPEDO; break; } NEEDBITS(16); #ifdef GUNZIP if ((state->wrap & 2) && hold == 0x8b1f) { /* gzip header */ state->check = crc32(0L, Z_NULL, 0); CRC2(state->check, hold); INITBITS(); state->mode = FLAGS; break; } state->flags = 0; /* expect zlib header */ if (state->head != Z_NULL) state->head->done = -1; if (!(state->wrap & 1) || /* check if zlib header allowed */ #else if ( #endif ((BITS(8) << 8) + (hold >> 8)) % 31) { strm->msg = (char *)"incorrect header check"; state->mode = BAD; break; } if (BITS(4) != Z_DEFLATED) { strm->msg = (char *)"unknown compression method"; state->mode = BAD; break; } DROPBITS(4); len = BITS(4) + 8; if (state->wbits == 0) state->wbits = len; else if (len > state->wbits) { strm->msg = (char *)"invalid window size"; state->mode = BAD; break; } state->dmax = 1U << len; Tracev((stderr, "inflate: zlib header ok\n")); strm->adler = state->check = adler32(0L, Z_NULL, 0); state->mode = hold & 0x200 ? DICTID : TYPE; INITBITS(); break; #ifdef GUNZIP case FLAGS: NEEDBITS(16); state->flags = (int)(hold); if ((state->flags & 0xff) != Z_DEFLATED) { strm->msg = (char *)"unknown compression method"; state->mode = BAD; break; } if (state->flags & 0xe000) { strm->msg = (char *)"unknown header flags set"; state->mode = BAD; break; } if (state->head != Z_NULL) state->head->text = (int)((hold >> 8) & 1); if (state->flags & 0x0200) CRC2(state->check, hold); INITBITS(); state->mode = TIME; case TIME: NEEDBITS(32); if (state->head != Z_NULL) state->head->time = hold; if (state->flags & 0x0200) CRC4(state->check, hold); INITBITS(); state->mode = OS; case OS: NEEDBITS(16); if (state->head != Z_NULL) { state->head->xflags = (int)(hold & 0xff); state->head->os = (int)(hold >> 8); } if (state->flags & 0x0200) CRC2(state->check, hold); INITBITS(); state->mode = EXLEN;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case EXLEN: if (state->flags & 0x0400) { NEEDBITS(16); state->length = (unsigned)(hold); if (state->head != Z_NULL) state->head->extra_len = (unsigned)hold; if (state->flags & 0x0200) CRC2(state->check, hold); INITBITS(); } else if (state->head != Z_NULL) state->head->extra = Z_NULL; state->mode = EXTRA;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case EXTRA: if (state->flags & 0x0400) { copy = state->length; if (copy > have) copy = have; if (copy) { if (state->head != Z_NULL && state->head->extra != Z_NULL) { len = state->head->extra_len - state->length; zmemcpy(state->head->extra + len, next, len + copy > state->head->extra_max ? state->head->extra_max - len : copy); } if (state->flags & 0x0200) state->check = crc32(state->check, next, copy); have -= copy; next += copy; state->length -= copy; } if (state->length) goto inf_leave; } state->length = 0; state->mode = NAME;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case NAME: if (state->flags & 0x0800) { if (have == 0) goto inf_leave; copy = 0; do { len = (unsigned)(next[copy++]); if (state->head != Z_NULL && state->head->name != Z_NULL && state->length < state->head->name_max) state->head->name[state->length++] = len; } while (len && copy < have); if (state->flags & 0x0200) state->check = crc32(state->check, next, copy); have -= copy; next += copy; if (len) goto inf_leave; } else if (state->head != Z_NULL) state->head->name = Z_NULL; state->length = 0; state->mode = COMMENT;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case COMMENT: if (state->flags & 0x1000) { if (have == 0) goto inf_leave; copy = 0; do { len = (unsigned)(next[copy++]); if (state->head != Z_NULL && state->head->comment != Z_NULL && state->length < state->head->comm_max) state->head->comment[state->length++] = len; } while (len && copy < have); if (state->flags & 0x0200) state->check = crc32(state->check, next, copy); have -= copy; next += copy; if (len) goto inf_leave; } else if (state->head != Z_NULL) state->head->comment = Z_NULL; state->mode = HCRC;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case HCRC: if (state->flags & 0x0200) { NEEDBITS(16); if (hold != (state->check & 0xffff)) { strm->msg = (char *)"header crc mismatch"; state->mode = BAD; break; } INITBITS(); } if (state->head != Z_NULL) { state->head->hcrc = (int)((state->flags >> 9) & 1); state->head->done = 1; } strm->adler = state->check = crc32(0L, Z_NULL, 0); state->mode = TYPE; break; #endif case DICTID: NEEDBITS(32); strm->adler = state->check = ZSWAP32(hold); INITBITS(); state->mode = DICT;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case DICT: if (state->havedict == 0) { RESTORE(); return Z_NEED_DICT; } strm->adler = state->check = adler32(0L, Z_NULL, 0); state->mode = TYPE;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case TYPE: if (flush == Z_BLOCK || flush == Z_TREES) goto inf_leave;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case TYPEDO: if (state->last) { BYTEBITS(); state->mode = CHECK; break; } NEEDBITS(3); state->last = BITS(1); DROPBITS(1); switch (BITS(2)) { case 0: /* stored block */ Tracev((stderr, "inflate: stored block%s\n", state->last ? " (last)" : "")); state->mode = STORED; break; case 1: /* fixed block */ fixedtables(state); Tracev((stderr, "inflate: fixed codes block%s\n", state->last ? " (last)" : "")); state->mode = LEN_; /* decode codes */ if (flush == Z_TREES) { DROPBITS(2); goto inf_leave; } break; case 2: /* dynamic block */ Tracev((stderr, "inflate: dynamic codes block%s\n", state->last ? " (last)" : "")); state->mode = TABLE; break; case 3: strm->msg = (char *)"invalid block type"; state->mode = BAD; } DROPBITS(2); break; case STORED: BYTEBITS(); /* go to byte boundary */ NEEDBITS(32); if ((hold & 0xffff) != ((hold >> 16) ^ 0xffff)) { strm->msg = (char *)"invalid stored block lengths"; state->mode = BAD; break; } state->length = (unsigned)hold & 0xffff; Tracev((stderr, "inflate: stored length %u\n", state->length)); INITBITS(); state->mode = COPY_; if (flush == Z_TREES) goto inf_leave;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case COPY_: state->mode = COPY;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case COPY: copy = state->length; if (copy) { if (copy > have) copy = have; if (copy > left) copy = left; if (copy == 0) goto inf_leave; zmemcpy(put, next, copy); have -= copy; next += copy; left -= copy; put += copy; state->length -= copy; break; } Tracev((stderr, "inflate: stored end\n")); state->mode = TYPE; break; case TABLE: NEEDBITS(14); state->nlen = BITS(5) + 257; DROPBITS(5); state->ndist = BITS(5) + 1; DROPBITS(5); state->ncode = BITS(4) + 4; DROPBITS(4); #ifndef PKZIP_BUG_WORKAROUND if (state->nlen > 286 || state->ndist > 30) { strm->msg = (char *)"too many length or distance symbols"; state->mode = BAD; break; } #endif Tracev((stderr, "inflate: table sizes ok\n")); state->have = 0; state->mode = LENLENS; case LENLENS: while (state->have < state->ncode) { NEEDBITS(3); state->lens[order[state->have++]] = (unsigned short)BITS(3); DROPBITS(3); } while (state->have < 19) state->lens[order[state->have++]] = 0; state->next = state->codes; state->lencode = (const code FAR *)(state->next); state->lenbits = 7; ret = inflate_table(CODES, state->lens, 19, &(state->next), &(state->lenbits), state->work); if (ret) { strm->msg = (char *)"invalid code lengths set"; state->mode = BAD; break; } Tracev((stderr, "inflate: code lengths ok\n")); state->have = 0; state->mode = CODELENS; case CODELENS: while (state->have < state->nlen + state->ndist) { for (;;) { here = state->lencode[BITS(state->lenbits)]; if ((unsigned)(here.bits) <= bits) break; PULLBYTE(); } if (here.val < 16) { DROPBITS(here.bits); state->lens[state->have++] = here.val; } else { if (here.val == 16) { NEEDBITS(here.bits + 2); DROPBITS(here.bits); if (state->have == 0) { strm->msg = (char *)"invalid bit length repeat"; state->mode = BAD; break; } len = state->lens[state->have - 1]; copy = 3 + BITS(2); DROPBITS(2); } else if (here.val == 17) { NEEDBITS(here.bits + 3); DROPBITS(here.bits); len = 0; copy = 3 + BITS(3); DROPBITS(3); } else { NEEDBITS(here.bits + 7); DROPBITS(here.bits); len = 0; copy = 11 + BITS(7); DROPBITS(7); } if (state->have + copy > state->nlen + state->ndist) { strm->msg = (char *)"invalid bit length repeat"; state->mode = BAD; break; } while (copy--) state->lens[state->have++] = (unsigned short)len; } } /* handle error breaks in while */ if (state->mode == BAD) break; /* check for end-of-block code (better have one) */ if (state->lens[256] == 0) { strm->msg = (char *)"invalid code -- missing end-of-block"; state->mode = BAD; break; } /* build code tables -- note: do not change the lenbits or distbits values here (9 and 6) without reading the comments in inftrees.h concerning the ENOUGH constants, which depend on those values */ state->next = state->codes; state->lencode = (const code FAR *)(state->next); state->lenbits = 9; ret = inflate_table(LENS, state->lens, state->nlen, &(state->next), &(state->lenbits), state->work); if (ret) { strm->msg = (char *)"invalid literal/lengths set"; state->mode = BAD; break; } state->distcode = (const code FAR *)(state->next); state->distbits = 6; ret = inflate_table(DISTS, state->lens + state->nlen, state->ndist, &(state->next), &(state->distbits), state->work); if (ret) { strm->msg = (char *)"invalid distances set"; state->mode = BAD; break; } Tracev((stderr, "inflate: codes ok\n")); state->mode = LEN_; if (flush == Z_TREES) goto inf_leave;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case LEN_: state->mode = LEN;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case LEN: if (have >= 6 && left >= 258) { RESTORE(); inflate_fast(strm, out); LOAD(); if (state->mode == TYPE) state->back = -1; break; } state->back = 0; for (;;) { here = state->lencode[BITS(state->lenbits)]; if ((unsigned)(here.bits) <= bits) break; PULLBYTE(); } if (here.op && (here.op & 0xf0) == 0) { last = here; for (;;) { here = state->lencode[last.val + (BITS(last.bits + last.op) >> last.bits)]; if ((unsigned)(last.bits + here.bits) <= bits) break; PULLBYTE(); } DROPBITS(last.bits); state->back += last.bits; } DROPBITS(here.bits); state->back += here.bits; state->length = (unsigned)here.val; if ((int)(here.op) == 0) { Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ? "inflate: literal '%c'\n" : "inflate: literal 0x%02x\n", here.val)); state->mode = LIT; break; } if (here.op & 32) { Tracevv((stderr, "inflate: end of block\n")); state->back = -1; state->mode = TYPE; break; } if (here.op & 64) { strm->msg = (char *)"invalid literal/length code"; state->mode = BAD; break; } state->extra = (unsigned)(here.op) & 15; state->mode = LENEXT;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case LENEXT: if (state->extra) { NEEDBITS(state->extra); state->length += BITS(state->extra); DROPBITS(state->extra); state->back += state->extra; } Tracevv((stderr, "inflate: length %u\n", state->length)); state->was = state->length; state->mode = DIST;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case DIST: for (;;) { here = state->distcode[BITS(state->distbits)]; if ((unsigned)(here.bits) <= bits) break; PULLBYTE(); } if ((here.op & 0xf0) == 0) { last = here; for (;;) { here = state->distcode[last.val + (BITS(last.bits + last.op) >> last.bits)]; if ((unsigned)(last.bits + here.bits) <= bits) break; PULLBYTE(); } DROPBITS(last.bits); state->back += last.bits; } DROPBITS(here.bits); state->back += here.bits; if (here.op & 64) { strm->msg = (char *)"invalid distance code"; state->mode = BAD; break; } state->offset = (unsigned)here.val; state->extra = (unsigned)(here.op) & 15; state->mode = DISTEXT;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case DISTEXT: if (state->extra) { NEEDBITS(state->extra); state->offset += BITS(state->extra); DROPBITS(state->extra); state->back += state->extra; } #ifdef INFLATE_STRICT if (state->offset > state->dmax) { strm->msg = (char *)"invalid distance too far back"; state->mode = BAD; break; } #endif Tracevv((stderr, "inflate: distance %u\n", state->offset)); state->mode = MATCH;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case MATCH: if (left == 0) goto inf_leave; copy = out - left; if (state->offset > copy) { /* copy from window */ copy = state->offset - copy; if (copy > state->whave) { if (state->sane) { strm->msg = (char *)"invalid distance too far back"; state->mode = BAD; break; } #ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR Trace((stderr, "inflate.c too far\n")); copy -= state->whave; if (copy > state->length) copy = state->length; if (copy > left) copy = left; left -= copy; state->length -= copy; do { *put++ = 0; } while (--copy); if (state->length == 0) state->mode = LEN; break; #endif } if (copy > state->wnext) { copy -= state->wnext; from = state->window + (state->wsize - copy); } else from = state->window + (state->wnext - copy); if (copy > state->length) copy = state->length; } else { /* copy from output */ from = put - state->offset; copy = state->length; } if (copy > left) copy = left; left -= copy; state->length -= copy; do { *put++ = *from++; } while (--copy); if (state->length == 0) state->mode = LEN; break; case LIT: if (left == 0) goto inf_leave; *put++ = (unsigned char)(state->length); left--; state->mode = LEN; break; case CHECK: if (state->wrap) { NEEDBITS(32); out -= left; strm->total_out += out; state->total += out; if (out) strm->adler = state->check = UPDATE(state->check, put - out, out); out = left; if (( #ifdef GUNZIP state->flags ? hold : #endif ZSWAP32(hold)) != state->check) { strm->msg = (char *)"incorrect data check"; state->mode = BAD; break; } INITBITS(); Tracev((stderr, "inflate: check matches trailer\n")); } #ifdef GUNZIP state->mode = LENGTH;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case LENGTH: if (state->wrap && state->flags) { NEEDBITS(32); if (hold != (state->total & 0xffffffffUL)) { strm->msg = (char *)"incorrect length check"; state->mode = BAD; break; } INITBITS(); Tracev((stderr, "inflate: length matches trailer\n")); } #endif state->mode = DONE;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case DONE: ret = Z_STREAM_END; goto inf_leave; case BAD: ret = Z_DATA_ERROR; goto inf_leave; case MEM: return Z_MEM_ERROR; case SYNC: default: return Z_STREAM_ERROR; } /* Return from inflate(), updating the total counts and the check value. If there was no progress during the inflate() call, return a buffer error. Call updatewindow() to create and/or update the window state. Note: a memory error from inflate() is non-recoverable. */ inf_leave: RESTORE(); if (state->wsize || (out != strm->avail_out && state->mode < BAD && (state->mode < CHECK || flush != Z_FINISH))) if (updatewindow(strm, strm->next_out, out - strm->avail_out)) { state->mode = MEM; return Z_MEM_ERROR; } in -= strm->avail_in; out -= strm->avail_out; strm->total_in += in; strm->total_out += out; state->total += out; if (state->wrap && out) strm->adler = state->check = UPDATE(state->check, strm->next_out - out, out); strm->data_type = state->bits + (state->last ? 64 : 0) + (state->mode == TYPE ? 128 : 0) + (state->mode == LEN_ || state->mode == COPY_ ? 256 : 0); if (((in == 0 && out == 0) || flush == Z_FINISH) && ret == Z_OK) ret = Z_BUF_ERROR; return ret; } int ZEXPORT inflateEnd(strm) z_streamp strm; { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL || strm->zfree == (free_func)0) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (state->window != Z_NULL) ZFREE(strm, state->window); ZFREE(strm, strm->state); strm->state = Z_NULL; Tracev((stderr, "inflate: end\n")); return Z_OK; } int ZEXPORT inflateGetDictionary(strm, dictionary, dictLength) z_streamp strm; Bytef *dictionary; uInt *dictLength; { struct inflate_state FAR *state; /* check state */ if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; /* copy dictionary */ if (state->whave && dictionary != Z_NULL) { zmemcpy(dictionary, state->window + state->wnext, state->whave - state->wnext); zmemcpy(dictionary + state->whave - state->wnext, state->window, state->wnext); } if (dictLength != Z_NULL) *dictLength = state->whave; return Z_OK; } int ZEXPORT inflateSetDictionary(strm, dictionary, dictLength) z_streamp strm; const Bytef *dictionary; uInt dictLength; { struct inflate_state FAR *state; unsigned long dictid; int ret; /* check state */ if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (state->wrap != 0 && state->mode != DICT) return Z_STREAM_ERROR; /* check for correct dictionary identifier */ if (state->mode == DICT) { dictid = adler32(0L, Z_NULL, 0); dictid = adler32(dictid, dictionary, dictLength); if (dictid != state->check) return Z_DATA_ERROR; } /* copy dictionary to window using updatewindow(), which will amend the existing dictionary if appropriate */ ret = updatewindow(strm, dictionary + dictLength, dictLength); if (ret) { state->mode = MEM; return Z_MEM_ERROR; } state->havedict = 1; Tracev((stderr, "inflate: dictionary set\n")); return Z_OK; } int ZEXPORT inflateGetHeader(strm, head) z_streamp strm; gz_headerp head; { struct inflate_state FAR *state; /* check state */ if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if ((state->wrap & 2) == 0) return Z_STREAM_ERROR; /* save header structure */ state->head = head; head->done = 0; return Z_OK; } /* Search buf[0..len-1] for the pattern: 0, 0, 0xff, 0xff. Return when found or when out of input. When called, *have is the number of pattern bytes found in order so far, in 0..3. On return *have is updated to the new state. If on return *have equals four, then the pattern was found and the return value is how many bytes were read including the last byte of the pattern. If *have is less than four, then the pattern has not been found yet and the return value is len. In the latter case, syncsearch() can be called again with more data and the *have state. *have is initialized to zero for the first call. */ local unsigned syncsearch(have, buf, len) unsigned FAR *have; const unsigned char FAR *buf; unsigned len; { unsigned got; unsigned next; got = *have; next = 0; while (next < len && got < 4) { if ((int)(buf[next]) == (got < 2 ? 0 : 0xff)) got++; else if (buf[next]) got = 0; else got = 4 - got; next++; } *have = got; return next; } int ZEXPORT inflateSync(strm) z_streamp strm; { unsigned len; /* number of bytes to look at or looked at */ unsigned long in, out; /* temporary to save total_in and total_out */ unsigned char buf[4]; /* to restore bit buffer to byte string */ struct inflate_state FAR *state; /* check parameters */ if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (strm->avail_in == 0 && state->bits < 8) return Z_BUF_ERROR; /* if first time, start search in bit buffer */ if (state->mode != SYNC) { state->mode = SYNC; state->hold <<= state->bits & 7; state->bits -= state->bits & 7; len = 0; while (state->bits >= 8) { buf[len++] = (unsigned char)(state->hold); state->hold >>= 8; state->bits -= 8; } state->have = 0; syncsearch(&(state->have), buf, len); } /* search available input */ len = syncsearch(&(state->have), strm->next_in, strm->avail_in); strm->avail_in -= len; strm->next_in += len; strm->total_in += len; /* return no joy or set up to restart inflate() on a new block */ if (state->have != 4) return Z_DATA_ERROR; in = strm->total_in; out = strm->total_out; inflateReset(strm); strm->total_in = in; strm->total_out = out; state->mode = TYPE; return Z_OK; } /* Returns true if inflate is currently at the end of a block generated by Z_SYNC_FLUSH or Z_FULL_FLUSH. This function is used by one PPP implementation to provide an additional safety check. PPP uses Z_SYNC_FLUSH but removes the length bytes of the resulting empty stored block. When decompressing, PPP checks that at the end of input packet, inflate is waiting for these length bytes. */ int ZEXPORT inflateSyncPoint(strm) z_streamp strm; { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; return state->mode == STORED && state->bits == 0; } int ZEXPORT inflateCopy(dest, source) z_streamp dest; z_streamp source; { struct inflate_state FAR *state; struct inflate_state FAR *copy; unsigned char FAR *window; unsigned wsize; /* check input */ if (dest == Z_NULL || source == Z_NULL || source->state == Z_NULL || source->zalloc == (alloc_func)0 || source->zfree == (free_func)0) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)source->state; /* allocate space */ copy = (struct inflate_state FAR *) ZALLOC(source, 1, sizeof(struct inflate_state)); if (copy == Z_NULL) return Z_MEM_ERROR; window = Z_NULL; if (state->window != Z_NULL) { window = (unsigned char FAR *) ZALLOC(source, 1U << state->wbits, sizeof(unsigned char)); if (window == Z_NULL) { ZFREE(source, copy); return Z_MEM_ERROR; } } /* copy state */ zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream)); zmemcpy((voidpf)copy, (voidpf)state, sizeof(struct inflate_state)); if (state->lencode >= state->codes && state->lencode <= state->codes + ENOUGH - 1) { copy->lencode = copy->codes + (state->lencode - state->codes); copy->distcode = copy->codes + (state->distcode - state->codes); } copy->next = copy->codes + (state->next - state->codes); if (window != Z_NULL) { wsize = 1U << state->wbits; zmemcpy(window, state->window, wsize); } copy->window = window; dest->state = (struct internal_state FAR *)copy; return Z_OK; } int ZEXPORT inflateUndermine(strm, subvert) z_streamp strm; int subvert; { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; state->sane = !subvert; #ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR return Z_OK; #else state->sane = 1; return Z_DATA_ERROR; #endif } long ZEXPORT inflateMark(strm) z_streamp strm; { struct inflate_state FAR *state; //TK: Applied the following fix (also in actual zlib devel branch): if (strm == Z_NULL || strm->state == Z_NULL) return (long)(((unsigned long)0 - 1) << 16); //TK: Code was (but clang 7.3 warns about bitshifting negative numbers): //if (strm == Z_NULL || strm->state == Z_NULL) return -1L << 16; state = (struct inflate_state FAR *)strm->state; return ((long)(state->back) << 16) + (state->mode == COPY ? state->length : (state->mode == MATCH ? state->was - state->length : 0)); } /* END OF DUMP OF mz_inflate.c*/ /* START OF DUMP OF mz_inffast.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* inffast.c -- fast decoding * Copyright (C) 1995-2008, 2010, 2013 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ #ifndef ASMINF /* Allow machine dependent optimization for post-increment or pre-increment. Based on testing to date, Pre-increment preferred for: - PowerPC G3 (Adler) - MIPS R5000 (Randers-Pehrson) Post-increment preferred for: - none No measurable difference: - Pentium III (Anderson) - M68060 (Nikl) */ #ifdef POSTINC # define OFF 0 # define PUP(a) *(a)++ #else # define OFF 1 # define PUP(a) *++(a) #endif /* Decode literal, length, and distance codes and write out the resulting literal and match bytes until either not enough input or output is available, an end-of-block is encountered, or a data error is encountered. When large enough input and output buffers are supplied to inflate(), for example, a 16K input buffer and a 64K output buffer, more than 95% of the inflate execution time is spent in this routine. Entry assumptions: state->mode == LEN strm->avail_in >= 6 strm->avail_out >= 258 start >= strm->avail_out state->bits < 8 On return, state->mode is one of: LEN -- ran out of enough output space or enough available input TYPE -- reached end of block code, inflate() to interpret next block BAD -- error in block data Notes: - The maximum input bits used by a length/distance pair is 15 bits for the length code, 5 bits for the length extra, 15 bits for the distance code, and 13 bits for the distance extra. This totals 48 bits, or six bytes. Therefore if strm->avail_in >= 6, then there is enough input to avoid checking for available input while decoding. - The maximum bytes that a single length/distance pair can output is 258 bytes, which is the maximum length that can be coded. inflate_fast() requires strm->avail_out >= 258 for each loop to avoid checking for output space. */ void ZLIB_INTERNAL inflate_fast(strm, start) z_streamp strm; unsigned start; /* inflate()'s starting value for strm->avail_out */ { struct inflate_state FAR *state; z_const unsigned char FAR *in; /* local strm->next_in */ z_const unsigned char FAR *last; /* have enough input while in < last */ unsigned char FAR *out; /* local strm->next_out */ unsigned char FAR *beg; /* inflate()'s initial strm->next_out */ unsigned char FAR *end; /* while out < end, enough space available */ #ifdef INFLATE_STRICT unsigned dmax; /* maximum distance from zlib header */ #endif unsigned wsize; /* window size or zero if not using window */ unsigned whave; /* valid bytes in the window */ unsigned wnext; /* window write index */ unsigned char FAR *window; /* allocated sliding window, if wsize != 0 */ unsigned long hold; /* local strm->hold */ unsigned bits; /* local strm->bits */ code const FAR *lcode; /* local strm->lencode */ code const FAR *dcode; /* local strm->distcode */ unsigned lmask; /* mask for first level of length codes */ unsigned dmask; /* mask for first level of distance codes */ code here; /* retrieved table entry */ unsigned op; /* code bits, operation, extra bits, or */ /* window position, window bytes to copy */ unsigned len; /* match length, unused bytes */ unsigned dist; /* match distance */ unsigned char FAR *from; /* where to copy match from */ /* copy state to local variables */ state = (struct inflate_state FAR *)strm->state; in = strm->next_in - OFF; last = in + (strm->avail_in - 5); out = strm->next_out - OFF; beg = out - (start - strm->avail_out); end = out + (strm->avail_out - 257); #ifdef INFLATE_STRICT dmax = state->dmax; #endif wsize = state->wsize; whave = state->whave; wnext = state->wnext; window = state->window; hold = state->hold; bits = state->bits; lcode = state->lencode; dcode = state->distcode; lmask = (1U << state->lenbits) - 1; dmask = (1U << state->distbits) - 1; /* decode literals and length/distances until end-of-block or not enough input data or output space */ do { if (bits < 15) { hold += (unsigned long)(PUP(in)) << bits; bits += 8; hold += (unsigned long)(PUP(in)) << bits; bits += 8; } here = lcode[hold & lmask]; dolen: op = (unsigned)(here.bits); hold >>= op; bits -= op; op = (unsigned)(here.op); if (op == 0) { /* literal */ Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ? "inflate: literal '%c'\n" : "inflate: literal 0x%02x\n", here.val)); PUP(out) = (unsigned char)(here.val); } else if (op & 16) { /* length base */ len = (unsigned)(here.val); op &= 15; /* number of extra bits */ if (op) { if (bits < op) { hold += (unsigned long)(PUP(in)) << bits; bits += 8; } len += (unsigned)hold & ((1U << op) - 1); hold >>= op; bits -= op; } Tracevv((stderr, "inflate: length %u\n", len)); if (bits < 15) { hold += (unsigned long)(PUP(in)) << bits; bits += 8; hold += (unsigned long)(PUP(in)) << bits; bits += 8; } here = dcode[hold & dmask]; dodist: op = (unsigned)(here.bits); hold >>= op; bits -= op; op = (unsigned)(here.op); if (op & 16) { /* distance base */ dist = (unsigned)(here.val); op &= 15; /* number of extra bits */ if (bits < op) { hold += (unsigned long)(PUP(in)) << bits; bits += 8; if (bits < op) { hold += (unsigned long)(PUP(in)) << bits; bits += 8; } } dist += (unsigned)hold & ((1U << op) - 1); #ifdef INFLATE_STRICT if (dist > dmax) { strm->msg = (char *)"invalid distance too far back"; state->mode = BAD; break; } #endif hold >>= op; bits -= op; Tracevv((stderr, "inflate: distance %u\n", dist)); op = (unsigned)(out - beg); /* max distance in output */ if (dist > op) { /* see if copy from window */ op = dist - op; /* distance back in window */ if (op > whave) { if (state->sane) { strm->msg = (char *)"invalid distance too far back"; state->mode = BAD; break; } #ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR if (len <= op - whave) { do { PUP(out) = 0; } while (--len); continue; } len -= op - whave; do { PUP(out) = 0; } while (--op > whave); if (op == 0) { from = out - dist; do { PUP(out) = PUP(from); } while (--len); continue; } #endif } from = window - OFF; if (wnext == 0) { /* very common case */ from += wsize - op; if (op < len) { /* some from window */ len -= op; do { PUP(out) = PUP(from); } while (--op); from = out - dist; /* rest from output */ } } else if (wnext < op) { /* wrap around window */ from += wsize + wnext - op; op -= wnext; if (op < len) { /* some from end of window */ len -= op; do { PUP(out) = PUP(from); } while (--op); from = window - OFF; if (wnext < len) { /* some from start of window */ op = wnext; len -= op; do { PUP(out) = PUP(from); } while (--op); from = out - dist; /* rest from output */ } } } else { /* contiguous in window */ from += wnext - op; if (op < len) { /* some from window */ len -= op; do { PUP(out) = PUP(from); } while (--op); from = out - dist; /* rest from output */ } } while (len > 2) { PUP(out) = PUP(from); PUP(out) = PUP(from); PUP(out) = PUP(from); len -= 3; } if (len) { PUP(out) = PUP(from); if (len > 1) PUP(out) = PUP(from); } } else { from = out - dist; /* copy direct from output */ do { /* minimum length is three */ PUP(out) = PUP(from); PUP(out) = PUP(from); PUP(out) = PUP(from); len -= 3; } while (len > 2); if (len) { PUP(out) = PUP(from); if (len > 1) PUP(out) = PUP(from); } } } else if ((op & 64) == 0) { /* 2nd level distance code */ here = dcode[here.val + (hold & ((1U << op) - 1))]; goto dodist; } else { strm->msg = (char *)"invalid distance code"; state->mode = BAD; break; } } else if ((op & 64) == 0) { /* 2nd level length code */ here = lcode[here.val + (hold & ((1U << op) - 1))]; goto dolen; } else if (op & 32) { /* end-of-block */ Tracevv((stderr, "inflate: end of block\n")); state->mode = TYPE; break; } else { strm->msg = (char *)"invalid literal/length code"; state->mode = BAD; break; } } while (in < last && out < end); /* return unused bytes (on entry, bits < 8, so in won't go too far back) */ len = bits >> 3; in -= len; bits -= len << 3; hold &= (1U << bits) - 1; /* update state and return */ strm->next_in = in + OFF; strm->next_out = out + OFF; strm->avail_in = (unsigned)(in < last ? 5 + (last - in) : 5 - (in - last)); strm->avail_out = (unsigned)(out < end ? 257 + (end - out) : 257 - (out - end)); state->hold = hold; state->bits = bits; return; } /* inflate_fast() speedups that turned out slower (on a PowerPC G3 750CXe): - Using bit fields for code structure - Different op definition to avoid & for extra bits (do & for table bits) - Three separate decoding do-loops for direct, window, and wnext == 0 - Special case for distance > 1 copies to do overlapped load and store copy - Explicit branch predictions (based on measured branch probabilities) - Deferring match copy and interspersed it with decoding subsequent codes - Swapping literal/length else - Swapping window/direct else - Larger unrolled copy loops (three is about right) - Moving len -= 3 statement into middle of loop */ #endif /* !ASMINF */ /* END OF DUMP OF mz_inffast.c*/ /* START OF DUMP OF mz_gzwrite.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* gzwrite.c -- zlib functions for writing gzip files * Copyright (C) 2004, 2005, 2010, 2011, 2012, 2013 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* START OF DUMP OF mz_gzguts.h*/ /* gzguts.h -- zlib internal header definitions for gz* operations * Copyright (C) 2004, 2005, 2010, 2011, 2012, 2013 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ #include //ADDED BY TK #include //ADDED BY TK #include //ADDED BY TK #ifdef _LARGEFILE64_SOURCE # ifndef _LARGEFILE_SOURCE # define _LARGEFILE_SOURCE 1 # endif # ifdef _FILE_OFFSET_BITS # undef _FILE_OFFSET_BITS # endif #endif #ifdef HAVE_HIDDEN # define ZLIB_INTERNAL __attribute__((visibility ("hidden"))) #else # define ZLIB_INTERNAL #endif #include #ifdef STDC # include # include # include #endif #include #ifdef _WIN32 # include #endif #if defined(__TURBOC__) || defined(_MSC_VER) || defined(_WIN32) # include #endif #ifdef WINAPI_FAMILY # define open _open # define read _read # define write _write # define close _close #endif #ifdef NO_DEFLATE /* for compatibility with old definition */ # define NO_GZCOMPRESS #endif #if defined(STDC99) || (defined(__TURBOC__) && __TURBOC__ >= 0x550) # ifndef HAVE_VSNPRINTF # define HAVE_VSNPRINTF # endif #endif #if defined(__CYGWIN__) # ifndef HAVE_VSNPRINTF # define HAVE_VSNPRINTF # endif #endif #if defined(MSDOS) && defined(__BORLANDC__) && (BORLANDC > 0x410) # ifndef HAVE_VSNPRINTF # define HAVE_VSNPRINTF # endif #endif #ifndef HAVE_VSNPRINTF # ifdef MSDOS /* vsnprintf may exist on some MS-DOS compilers (DJGPP?), but for now we just assume it doesn't. */ # define NO_vsnprintf # endif # ifdef __TURBOC__ # define NO_vsnprintf # endif # ifdef WIN32 /* In Win32, vsnprintf is available as the "non-ANSI" _vsnprintf. */ # if !defined(vsnprintf) && !defined(NO_vsnprintf) # if !defined(_MSC_VER) || ( defined(_MSC_VER) && _MSC_VER < 1500 ) # define vsnprintf _vsnprintf # endif # endif # endif # ifdef __SASC # define NO_vsnprintf # endif # ifdef VMS # define NO_vsnprintf # endif # ifdef __OS400__ # define NO_vsnprintf # endif # ifdef __MVS__ # define NO_vsnprintf # endif #endif /* unlike snprintf (which is required in C99, yet still not supported by Microsoft more than a decade later!), _snprintf does not guarantee null termination of the result -- however this is only used in gzlib.c where the result is assured to fit in the space provided */ #ifdef _MSC_VER # define snprintf _snprintf #endif #ifndef local # define local static #endif /* compile with -Dlocal if your debugger can't find static symbols */ /* gz* functions always use library allocation functions */ #ifndef STDC extern voidp malloc OF((uInt size)); extern void free OF((voidpf ptr)); #endif /* get errno and strerror definition */ #if defined UNDER_CE # include # define zstrerror() gz_strwinerror((DWORD)GetLastError()) #else # ifndef NO_STRERROR # include # define zstrerror() strerror(errno) # else # define zstrerror() "stdio error (consult errno)" # endif #endif /* provide prototypes for these when building zlib without LFS */ #if !defined(_LARGEFILE64_SOURCE) || _LFS64_LARGEFILE-0 == 0 ZEXTERN gzFile ZEXPORT gzopen64 OF((const char *, const char *)); ZEXTERN z_off64_t ZEXPORT gzseek64 OF((gzFile, z_off64_t, int)); ZEXTERN z_off64_t ZEXPORT gztell64 OF((gzFile)); ZEXTERN z_off64_t ZEXPORT gzoffset64 OF((gzFile)); #endif /* default memLevel */ #if MAX_MEM_LEVEL >= 8 # define DEF_MEM_LEVEL 8 #else # define DEF_MEM_LEVEL MAX_MEM_LEVEL #endif /* default i/o buffer size -- double this for output when reading (this and twice this must be able to fit in an unsigned type) */ #define GZBUFSIZE 8192 /* gzip modes, also provide a little integrity check on the passed structure */ #define GZ_NONE 0 #define GZ_READ 7247 #define GZ_WRITE 31153 #define GZ_APPEND 1 /* mode set to GZ_WRITE after the file is opened */ /* values for gz_state how */ #define LOOK 0 /* look for a gzip header */ #define COPY 1 /* copy input directly */ #define GZIP 2 /* decompress a gzip stream */ /* internal gzip file state data structure */ typedef struct { /* exposed contents for gzgetc() macro */ struct gzFile_s x; /* "x" for exposed */ /* x.have: number of bytes available at x.next */ /* x.next: next output data to deliver or write */ /* x.pos: current position in uncompressed data */ /* used for both reading and writing */ int mode; /* see gzip modes above */ int fd; /* file descriptor */ char *path; /* path or fd for error messages */ unsigned size; /* buffer size, zero if not allocated yet */ unsigned want; /* requested buffer size, default is GZBUFSIZE */ unsigned char *in; /* input buffer */ unsigned char *out; /* output buffer (double-sized when reading) */ int direct; /* 0 if processing gzip, 1 if transparent */ /* just for reading */ int how; /* 0: get header, 1: copy, 2: decompress */ z_off64_t start; /* where the gzip data started, for rewinding */ int eof; /* true if end of input file reached */ int past; /* true if read requested past end */ /* just for writing */ int level; /* compression level */ int strategy; /* compression strategy */ /* seek request */ z_off64_t skip; /* amount to skip (already rewound if backwards) */ int seek; /* true if seek request pending */ /* error information */ int err; /* error code */ char *msg; /* error message */ /* zlib inflate or deflate stream */ z_stream strm; /* stream structure in-place (not a pointer) */ } gz_state; typedef gz_state FAR *gz_statep; /* shared functions */ void ZLIB_INTERNAL gz_error OF((gz_statep, int, const char *)); #if defined UNDER_CE char ZLIB_INTERNAL *gz_strwinerror OF((DWORD error)); #endif /* GT_OFF(x), where x is an unsigned value, is true if x > maximum z_off64_t value -- needed when comparing unsigned to z_off64_t, which is signed (possible z_off64_t types off_t, off64_t, and long are all signed) */ #ifdef INT_MAX # define GT_OFF(x) (sizeof(int) == sizeof(z_off64_t) && (x) > INT_MAX) #else unsigned ZLIB_INTERNAL gz_intmax OF((void)); # define GT_OFF(x) (sizeof(int) == sizeof(z_off64_t) && (x) > gz_intmax()) #endif /* END OF DUMP OF mz_gzguts.h*/ /* Local functions */ local int gz_init OF((gz_statep)); local int gz_comp OF((gz_statep, int)); local int gz_zero OF((gz_statep, z_off64_t)); /* Initialize state for writing a gzip file. Mark initialization by setting state->size to non-zero. Return -1 on failure or 0 on success. */ local int gz_init(state) gz_statep state; { int ret; z_streamp strm = &(state->strm); /* allocate input buffer */ state->in = (unsigned char *)malloc(state->want); if (state->in == NULL) { gz_error(state, Z_MEM_ERROR, "out of memory"); return -1; } /* only need output buffer and deflate state if compressing */ if (!state->direct) { /* allocate output buffer */ state->out = (unsigned char *)malloc(state->want); if (state->out == NULL) { free(state->in); gz_error(state, Z_MEM_ERROR, "out of memory"); return -1; } /* allocate deflate memory, set up for gzip compression */ strm->zalloc = Z_NULL; strm->zfree = Z_NULL; strm->opaque = Z_NULL; ret = deflateInit2(strm, state->level, Z_DEFLATED, MAX_WBITS + 16, DEF_MEM_LEVEL, state->strategy); if (ret != Z_OK) { free(state->out); free(state->in); gz_error(state, Z_MEM_ERROR, "out of memory"); return -1; } } /* mark state as initialized */ state->size = state->want; /* initialize write buffer if compressing */ if (!state->direct) { strm->avail_out = state->size; strm->next_out = state->out; state->x.next = strm->next_out; } return 0; } /* Compress whatever is at avail_in and next_in and write to the output file. Return -1 if there is an error writing to the output file, otherwise 0. flush is assumed to be a valid deflate() flush value. If flush is Z_FINISH, then the deflate() state is reset to start a new gzip stream. If gz->direct is true, then simply write to the output file without compressing, and ignore flush. */ local int gz_comp(state, flush) gz_statep state; int flush; { int ret, got; unsigned have; z_streamp strm = &(state->strm); /* allocate memory if this is the first time through */ if (state->size == 0 && gz_init(state) == -1) return -1; /* write directly if requested */ if (state->direct) { got = write(state->fd, strm->next_in, strm->avail_in); if (got < 0 || (unsigned)got != strm->avail_in) { gz_error(state, Z_ERRNO, zstrerror()); return -1; } strm->avail_in = 0; return 0; } /* run deflate() on provided input until it produces no more output */ ret = Z_OK; do { /* write out current buffer contents if full, or if flushing, but if doing Z_FINISH then don't write until we get to Z_STREAM_END */ if (strm->avail_out == 0 || (flush != Z_NO_FLUSH && (flush != Z_FINISH || ret == Z_STREAM_END))) { have = (unsigned)(strm->next_out - state->x.next); if (have && ((got = write(state->fd, state->x.next, have)) < 0 || (unsigned)got != have)) { gz_error(state, Z_ERRNO, zstrerror()); return -1; } if (strm->avail_out == 0) { strm->avail_out = state->size; strm->next_out = state->out; } state->x.next = strm->next_out; } /* compress */ have = strm->avail_out; ret = deflate(strm, flush); if (ret == Z_STREAM_ERROR) { gz_error(state, Z_STREAM_ERROR, "internal error: deflate stream corrupt"); return -1; } have -= strm->avail_out; } while (have); /* if that completed a deflate stream, allow another to start */ if (flush == Z_FINISH) deflateReset(strm); /* all done, no errors */ return 0; } /* Compress len zeros to output. Return -1 on error, 0 on success. */ local int gz_zero(state, len) gz_statep state; z_off64_t len; { int first; unsigned n; z_streamp strm = &(state->strm); /* consume whatever's left in the input buffer */ if (strm->avail_in && gz_comp(state, Z_NO_FLUSH) == -1) return -1; /* compress len zeros (len guaranteed > 0) */ first = 1; while (len) { n = GT_OFF(state->size) || (z_off64_t)state->size > len ? (unsigned)len : state->size; if (first) { memset(state->in, 0, n); first = 0; } strm->avail_in = n; strm->next_in = state->in; state->x.pos += n; if (gz_comp(state, Z_NO_FLUSH) == -1) return -1; len -= n; } return 0; } /* -- see zlib.h -- */ int ZEXPORT gzwrite(file, buf, len) gzFile file; voidpc buf; unsigned len; { unsigned put = len; gz_statep state; z_streamp strm; /* get internal structure */ if (file == NULL) return 0; state = (gz_statep)file; strm = &(state->strm); /* check that we're writing and that there's no error */ if (state->mode != GZ_WRITE || state->err != Z_OK) return 0; /* since an int is returned, make sure len fits in one, otherwise return with an error (this avoids the flaw in the interface) */ if ((int)len < 0) { gz_error(state, Z_DATA_ERROR, "requested length does not fit in int"); return 0; } /* if len is zero, avoid unnecessary operations */ if (len == 0) return 0; /* allocate memory if this is the first time through */ if (state->size == 0 && gz_init(state) == -1) return 0; /* check for seek request */ if (state->seek) { state->seek = 0; if (gz_zero(state, state->skip) == -1) return 0; } /* for small len, copy to input buffer, otherwise compress directly */ if (len < state->size) { /* copy to input buffer, compress when full */ do { unsigned have, copy; if (strm->avail_in == 0) strm->next_in = state->in; have = (unsigned)((strm->next_in + strm->avail_in) - state->in); copy = state->size - have; if (copy > len) copy = len; memcpy(state->in + have, buf, copy); strm->avail_in += copy; state->x.pos += copy; buf = (const char *)buf + copy; len -= copy; if (len && gz_comp(state, Z_NO_FLUSH) == -1) return 0; } while (len); } else { /* consume whatever's left in the input buffer */ if (strm->avail_in && gz_comp(state, Z_NO_FLUSH) == -1) return 0; /* directly compress user buffer to file */ strm->avail_in = len; strm->next_in = (z_const Bytef *)buf; state->x.pos += len; if (gz_comp(state, Z_NO_FLUSH) == -1) return 0; } /* input was all buffered or compressed (put will fit in int) */ return (int)put; } /* -- see zlib.h -- */ int ZEXPORT gzputc(file, c) gzFile file; int c; { unsigned have; unsigned char buf[1]; gz_statep state; z_streamp strm; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; strm = &(state->strm); /* check that we're writing and that there's no error */ if (state->mode != GZ_WRITE || state->err != Z_OK) return -1; /* check for seek request */ if (state->seek) { state->seek = 0; if (gz_zero(state, state->skip) == -1) return -1; } /* try writing to input buffer for speed (state->size == 0 if buffer not initialized) */ if (state->size) { if (strm->avail_in == 0) strm->next_in = state->in; have = (unsigned)((strm->next_in + strm->avail_in) - state->in); if (have < state->size) { state->in[have] = c; strm->avail_in++; state->x.pos++; return c & 0xff; } } /* no room in buffer or not initialized, use gz_write() */ buf[0] = c; if (gzwrite(file, buf, 1) != 1) return -1; return c & 0xff; } /* -- see zlib.h -- */ int ZEXPORT gzputs(file, str) gzFile file; const char *str; { int ret; unsigned len; /* write string */ len = (unsigned)strlen(str); ret = gzwrite(file, str, len); return ret == 0 && len != 0 ? -1 : ret; } #if defined(STDC) || defined(Z_HAVE_STDARG_H) #include /* -- see zlib.h -- */ int ZEXPORTVA gzvprintf(gzFile file, const char *format, va_list va) { int size, len; gz_statep state; z_streamp strm; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; strm = &(state->strm); /* check that we're writing and that there's no error */ if (state->mode != GZ_WRITE || state->err != Z_OK) return 0; /* make sure we have some buffer space */ if (state->size == 0 && gz_init(state) == -1) return 0; /* check for seek request */ if (state->seek) { state->seek = 0; if (gz_zero(state, state->skip) == -1) return 0; } /* consume whatever's left in the input buffer */ if (strm->avail_in && gz_comp(state, Z_NO_FLUSH) == -1) return 0; /* do the printf() into the input buffer, put length in len */ size = (int)(state->size); state->in[size - 1] = 0; #ifdef NO_vsnprintf # ifdef HAS_vsprintf_void (void)vsprintf((char *)(state->in), format, va); for (len = 0; len < size; len++) if (state->in[len] == 0) break; # else len = vsprintf((char *)(state->in), format, va); # endif #else # ifdef HAS_vsnprintf_void (void)vsnprintf((char *)(state->in), size, format, va); len = strlen((char *)(state->in)); # else len = vsnprintf((char *)(state->in), size, format, va); # endif #endif /* check that printf() results fit in buffer */ if (len <= 0 || len >= (int)size || state->in[size - 1] != 0) return 0; /* update buffer and position, defer compression until needed */ strm->avail_in = (unsigned)len; strm->next_in = state->in; state->x.pos += len; return len; } int ZEXPORTVA gzprintf(gzFile file, const char *format, ...) { va_list va; int ret; va_start(va, format); ret = gzvprintf(file, format, va); va_end(va); return ret; } #else /* !STDC && !Z_HAVE_STDARG_H */ /* -- see zlib.h -- */ int ZEXPORTVA gzprintf (file, format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20) gzFile file; const char *format; int a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20; { int size, len; gz_statep state; z_streamp strm; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; strm = &(state->strm); /* check that can really pass pointer in ints */ if (sizeof(int) != sizeof(void *)) return 0; /* check that we're writing and that there's no error */ if (state->mode != GZ_WRITE || state->err != Z_OK) return 0; /* make sure we have some buffer space */ if (state->size == 0 && gz_init(state) == -1) return 0; /* check for seek request */ if (state->seek) { state->seek = 0; if (gz_zero(state, state->skip) == -1) return 0; } /* consume whatever's left in the input buffer */ if (strm->avail_in && gz_comp(state, Z_NO_FLUSH) == -1) return 0; /* do the printf() into the input buffer, put length in len */ size = (int)(state->size); state->in[size - 1] = 0; #ifdef NO_snprintf # ifdef HAS_sprintf_void sprintf((char *)(state->in), format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20); for (len = 0; len < size; len++) if (state->in[len] == 0) break; # else len = sprintf((char *)(state->in), format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20); # endif #else # ifdef HAS_snprintf_void snprintf((char *)(state->in), size, format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20); len = strlen((char *)(state->in)); # else len = snprintf((char *)(state->in), size, format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20); # endif #endif /* check that printf() results fit in buffer */ if (len <= 0 || len >= (int)size || state->in[size - 1] != 0) return 0; /* update buffer and position, defer compression until needed */ strm->avail_in = (unsigned)len; strm->next_in = state->in; state->x.pos += len; return len; } #endif /* -- see zlib.h -- */ int ZEXPORT gzflush(file, flush) gzFile file; int flush; { gz_statep state; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; /* check that we're writing and that there's no error */ if (state->mode != GZ_WRITE || state->err != Z_OK) return Z_STREAM_ERROR; /* check flush parameter */ if (flush < 0 || flush > Z_FINISH) return Z_STREAM_ERROR; /* check for seek request */ if (state->seek) { state->seek = 0; if (gz_zero(state, state->skip) == -1) return -1; } /* compress remaining data with requested flush */ gz_comp(state, flush); return state->err; } /* -- see zlib.h -- */ int ZEXPORT gzsetparams(file, level, strategy) gzFile file; int level; int strategy; { gz_statep state; z_streamp strm; /* get internal structure */ if (file == NULL) return Z_STREAM_ERROR; state = (gz_statep)file; strm = &(state->strm); /* check that we're writing and that there's no error */ if (state->mode != GZ_WRITE || state->err != Z_OK) return Z_STREAM_ERROR; /* if no change is requested, then do nothing */ if (level == state->level && strategy == state->strategy) return Z_OK; /* check for seek request */ if (state->seek) { state->seek = 0; if (gz_zero(state, state->skip) == -1) return -1; } /* change compression parameters for subsequent input */ if (state->size) { /* flush previous input with previous parameters before changing */ if (strm->avail_in && gz_comp(state, Z_PARTIAL_FLUSH) == -1) return state->err; deflateParams(strm, level, strategy); } state->level = level; state->strategy = strategy; return Z_OK; } /* -- see zlib.h -- */ int ZEXPORT gzclose_w(file) gzFile file; { int ret = Z_OK; gz_statep state; /* get internal structure */ if (file == NULL) return Z_STREAM_ERROR; state = (gz_statep)file; /* check that we're writing */ if (state->mode != GZ_WRITE) return Z_STREAM_ERROR; /* check for seek request */ if (state->seek) { state->seek = 0; if (gz_zero(state, state->skip) == -1) ret = state->err; } /* flush, free memory, and close file */ if (gz_comp(state, Z_FINISH) == -1) ret = state->err; if (state->size) { if (!state->direct) { (void)deflateEnd(&(state->strm)); free(state->out); } free(state->in); } gz_error(state, Z_OK, NULL); free(state->path); if (close(state->fd) == -1) ret = Z_ERRNO; free(state); return ret; } /* END OF DUMP OF mz_gzwrite.c*/ /* START OF DUMP OF mz_gzread.c*/ #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* gzread.c -- zlib functions for reading gzip files * Copyright (C) 2004, 2005, 2010, 2011, 2012, 2013 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* Local functions */ local int gz_load OF((gz_statep, unsigned char *, unsigned, unsigned *)); local int gz_avail OF((gz_statep)); local int gz_look OF((gz_statep)); local int gz_decomp OF((gz_statep)); local int gz_fetch OF((gz_statep)); local int gz_skip OF((gz_statep, z_off64_t)); /* Use read() to load a buffer -- return -1 on error, otherwise 0. Read from state->fd, and update state->eof, state->err, and state->msg as appropriate. This function needs to loop on read(), since read() is not guaranteed to read the number of bytes requested, depending on the type of descriptor. */ local int gz_load(state, buf, len, have) gz_statep state; unsigned char *buf; unsigned len; unsigned *have; { int ret; *have = 0; do { ret = read(state->fd, buf + *have, len - *have); if (ret <= 0) break; *have += ret; } while (*have < len); if (ret < 0) { gz_error(state, Z_ERRNO, zstrerror()); return -1; } if (ret == 0) state->eof = 1; return 0; } /* Load up input buffer and set eof flag if last data loaded -- return -1 on error, 0 otherwise. Note that the eof flag is set when the end of the input file is reached, even though there may be unused data in the buffer. Once that data has been used, no more attempts will be made to read the file. If strm->avail_in != 0, then the current data is moved to the beginning of the input buffer, and then the remainder of the buffer is loaded with the available data from the input file. */ local int gz_avail(state) gz_statep state; { unsigned got; z_streamp strm = &(state->strm); if (state->err != Z_OK && state->err != Z_BUF_ERROR) return -1; if (state->eof == 0) { if (strm->avail_in) { /* copy what's there to the start */ unsigned char *p = state->in; unsigned const char *q = strm->next_in; unsigned n = strm->avail_in; do { *p++ = *q++; } while (--n); } if (gz_load(state, state->in + strm->avail_in, state->size - strm->avail_in, &got) == -1) return -1; strm->avail_in += got; strm->next_in = state->in; } return 0; } /* Look for gzip header, set up for inflate or copy. state->x.have must be 0. If this is the first time in, allocate required memory. state->how will be left unchanged if there is no more input data available, will be set to COPY if there is no gzip header and direct copying will be performed, or it will be set to GZIP for decompression. If direct copying, then leftover input data from the input buffer will be copied to the output buffer. In that case, all further file reads will be directly to either the output buffer or a user buffer. If decompressing, the inflate state will be initialized. gz_look() will return 0 on success or -1 on failure. */ local int gz_look(state) gz_statep state; { z_streamp strm = &(state->strm); /* allocate read buffers and inflate memory */ if (state->size == 0) { /* allocate buffers */ state->in = (unsigned char *)malloc(state->want); state->out = (unsigned char *)malloc(state->want << 1); if (state->in == NULL || state->out == NULL) { if (state->out != NULL) free(state->out); if (state->in != NULL) free(state->in); gz_error(state, Z_MEM_ERROR, "out of memory"); return -1; } state->size = state->want; /* allocate inflate memory */ state->strm.zalloc = Z_NULL; state->strm.zfree = Z_NULL; state->strm.opaque = Z_NULL; state->strm.avail_in = 0; state->strm.next_in = Z_NULL; if (inflateInit2(&(state->strm), 15 + 16) != Z_OK) { /* gunzip */ free(state->out); free(state->in); state->size = 0; gz_error(state, Z_MEM_ERROR, "out of memory"); return -1; } } /* get at least the magic bytes in the input buffer */ if (strm->avail_in < 2) { if (gz_avail(state) == -1) return -1; if (strm->avail_in == 0) return 0; } /* look for gzip magic bytes -- if there, do gzip decoding (note: there is a logical dilemma here when considering the case of a partially written gzip file, to wit, if a single 31 byte is written, then we cannot tell whether this is a single-byte file, or just a partially written gzip file -- for here we assume that if a gzip file is being written, then the header will be written in a single operation, so that reading a single byte is sufficient indication that it is not a gzip file) */ if (strm->avail_in > 1 && strm->next_in[0] == 31 && strm->next_in[1] == 139) { inflateReset(strm); state->how = GZIP; state->direct = 0; return 0; } /* no gzip header -- if we were decoding gzip before, then this is trailing garbage. Ignore the trailing garbage and finish. */ if (state->direct == 0) { strm->avail_in = 0; state->eof = 1; state->x.have = 0; return 0; } /* doing raw i/o, copy any leftover input to output -- this assumes that the output buffer is larger than the input buffer, which also assures space for gzungetc() */ state->x.next = state->out; if (strm->avail_in) { memcpy(state->x.next, strm->next_in, strm->avail_in); state->x.have = strm->avail_in; strm->avail_in = 0; } state->how = COPY; state->direct = 1; return 0; } /* Decompress from input to the provided next_out and avail_out in the state. On return, state->x.have and state->x.next point to the just decompressed data. If the gzip stream completes, state->how is reset to LOOK to look for the next gzip stream or raw data, once state->x.have is depleted. Returns 0 on success, -1 on failure. */ local int gz_decomp(state) gz_statep state; { int ret = Z_OK; unsigned had; z_streamp strm = &(state->strm); /* fill output buffer up to end of deflate stream */ had = strm->avail_out; do { /* get more input for inflate() */ if (strm->avail_in == 0 && gz_avail(state) == -1) return -1; if (strm->avail_in == 0) { gz_error(state, Z_BUF_ERROR, "unexpected end of file"); break; } /* decompress and handle errors */ ret = inflate(strm, Z_NO_FLUSH); if (ret == Z_STREAM_ERROR || ret == Z_NEED_DICT) { gz_error(state, Z_STREAM_ERROR, "internal error: inflate stream corrupt"); return -1; } if (ret == Z_MEM_ERROR) { gz_error(state, Z_MEM_ERROR, "out of memory"); return -1; } if (ret == Z_DATA_ERROR) { /* deflate stream invalid */ gz_error(state, Z_DATA_ERROR, strm->msg == NULL ? "compressed data error" : strm->msg); return -1; } } while (strm->avail_out && ret != Z_STREAM_END); /* update available output */ state->x.have = had - strm->avail_out; state->x.next = strm->next_out - state->x.have; /* if the gzip stream completed successfully, look for another */ if (ret == Z_STREAM_END) state->how = LOOK; /* good decompression */ return 0; } /* Fetch data and put it in the output buffer. Assumes state->x.have is 0. Data is either copied from the input file or decompressed from the input file depending on state->how. If state->how is LOOK, then a gzip header is looked for to determine whether to copy or decompress. Returns -1 on error, otherwise 0. gz_fetch() will leave state->how as COPY or GZIP unless the end of the input file has been reached and all data has been processed. */ local int gz_fetch(state) gz_statep state; { z_streamp strm = &(state->strm); do { switch(state->how) { case LOOK: /* -> LOOK, COPY (only if never GZIP), or GZIP */ if (gz_look(state) == -1) return -1; if (state->how == LOOK) return 0; break; case COPY: /* -> COPY */ if (gz_load(state, state->out, state->size << 1, &(state->x.have)) == -1) return -1; state->x.next = state->out; return 0; case GZIP: /* -> GZIP or LOOK (if end of gzip stream) */ strm->avail_out = state->size << 1; strm->next_out = state->out; if (gz_decomp(state) == -1) return -1; } } while (state->x.have == 0 && (!state->eof || strm->avail_in)); return 0; } /* Skip len uncompressed bytes of output. Return -1 on error, 0 on success. */ local int gz_skip(state, len) gz_statep state; z_off64_t len; { unsigned n; /* skip over len bytes or reach end-of-file, whichever comes first */ while (len) /* skip over whatever is in output buffer */ if (state->x.have) { n = GT_OFF(state->x.have) || (z_off64_t)state->x.have > len ? (unsigned)len : state->x.have; state->x.have -= n; state->x.next += n; state->x.pos += n; len -= n; } /* output buffer empty -- return if we're at the end of the input */ else if (state->eof && state->strm.avail_in == 0) break; /* need more data to skip -- load up output buffer */ else { /* get more output, looking for header if required */ if (gz_fetch(state) == -1) return -1; } return 0; } /* -- see zlib.h -- */ int ZEXPORT gzread(file, buf, len) gzFile file; voidp buf; unsigned len; { unsigned got, n; gz_statep state; z_streamp strm; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; strm = &(state->strm); /* check that we're reading and that there's no (serious) error */ if (state->mode != GZ_READ || (state->err != Z_OK && state->err != Z_BUF_ERROR)) return -1; /* since an int is returned, make sure len fits in one, otherwise return with an error (this avoids the flaw in the interface) */ if ((int)len < 0) { gz_error(state, Z_DATA_ERROR, "requested length does not fit in int"); return -1; } /* if len is zero, avoid unnecessary operations */ if (len == 0) return 0; /* process a skip request */ if (state->seek) { state->seek = 0; if (gz_skip(state, state->skip) == -1) return -1; } /* get len bytes to buf, or less than len if at the end */ got = 0; do { /* first just try copying data from the output buffer */ if (state->x.have) { n = state->x.have > len ? len : state->x.have; memcpy(buf, state->x.next, n); state->x.next += n; state->x.have -= n; } /* output buffer empty -- return if we're at the end of the input */ else if (state->eof && strm->avail_in == 0) { state->past = 1; /* tried to read past end */ break; } /* need output data -- for small len or new stream load up our output buffer */ else if (state->how == LOOK || len < (state->size << 1)) { /* get more output, looking for header if required */ if (gz_fetch(state) == -1) return -1; continue; /* no progress yet -- go back to copy above */ /* the copy above assures that we will leave with space in the output buffer, allowing at least one gzungetc() to succeed */ } /* large len -- read directly into user buffer */ else if (state->how == COPY) { /* read directly */ if (gz_load(state, (unsigned char *)buf, len, &n) == -1) return -1; } /* large len -- decompress directly into user buffer */ else { /* state->how == GZIP */ strm->avail_out = len; strm->next_out = (unsigned char *)buf; if (gz_decomp(state) == -1) return -1; n = state->x.have; state->x.have = 0; } /* update progress */ len -= n; buf = (char *)buf + n; got += n; state->x.pos += n; } while (len); /* return number of bytes read into user buffer (will fit in int) */ return (int)got; } /* -- see zlib.h -- */ #ifdef Z_PREFIX_SET # undef z_gzgetc #else # undef gzgetc #endif int ZEXPORT gzgetc(file) gzFile file; { int ret; unsigned char buf[1]; gz_statep state; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; /* check that we're reading and that there's no (serious) error */ if (state->mode != GZ_READ || (state->err != Z_OK && state->err != Z_BUF_ERROR)) return -1; /* try output buffer (no need to check for skip request) */ if (state->x.have) { state->x.have--; state->x.pos++; return *(state->x.next)++; } /* nothing there -- try gzread() */ ret = gzread(file, buf, 1); return ret < 1 ? -1 : buf[0]; } int ZEXPORT gzgetc_(file) gzFile file; { return gzgetc(file); } /* -- see zlib.h -- */ int ZEXPORT gzungetc(c, file) int c; gzFile file; { gz_statep state; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; /* check that we're reading and that there's no (serious) error */ if (state->mode != GZ_READ || (state->err != Z_OK && state->err != Z_BUF_ERROR)) return -1; /* process a skip request */ if (state->seek) { state->seek = 0; if (gz_skip(state, state->skip) == -1) return -1; } /* can't push EOF */ if (c < 0) return -1; /* if output buffer empty, put byte at end (allows more pushing) */ if (state->x.have == 0) { state->x.have = 1; state->x.next = state->out + (state->size << 1) - 1; state->x.next[0] = c; state->x.pos--; state->past = 0; return c; } /* if no room, give up (must have already done a gzungetc()) */ if (state->x.have == (state->size << 1)) { gz_error(state, Z_DATA_ERROR, "out of room to push characters"); return -1; } /* slide output data if needed and insert byte before existing data */ if (state->x.next == state->out) { unsigned char *src = state->out + state->x.have; unsigned char *dest = state->out + (state->size << 1); while (src > state->out) *--dest = *--src; state->x.next = dest; } state->x.have++; state->x.next--; state->x.next[0] = c; state->x.pos--; state->past = 0; return c; } /* -- see zlib.h -- */ char * ZEXPORT gzgets(file, buf, len) gzFile file; char *buf; int len; { unsigned left, n; char *str; unsigned char *eol; gz_statep state; /* check parameters and get internal structure */ if (file == NULL || buf == NULL || len < 1) return NULL; state = (gz_statep)file; /* check that we're reading and that there's no (serious) error */ if (state->mode != GZ_READ || (state->err != Z_OK && state->err != Z_BUF_ERROR)) return NULL; /* process a skip request */ if (state->seek) { state->seek = 0; if (gz_skip(state, state->skip) == -1) return NULL; } /* copy output bytes up to new line or len - 1, whichever comes first -- append a terminating zero to the string (we don't check for a zero in the contents, let the user worry about that) */ str = buf; left = (unsigned)len - 1; if (left) do { /* assure that something is in the output buffer */ if (state->x.have == 0 && gz_fetch(state) == -1) return NULL; /* error */ if (state->x.have == 0) { /* end of file */ state->past = 1; /* read past end */ break; /* return what we have */ } /* look for end-of-line in current output buffer */ n = state->x.have > left ? left : state->x.have; eol = (unsigned char *)memchr(state->x.next, '\n', n); if (eol != NULL) n = (unsigned)(eol - state->x.next) + 1; /* copy through end-of-line, or remainder if not found */ memcpy(buf, state->x.next, n); state->x.have -= n; state->x.next += n; state->x.pos += n; left -= n; buf += n; } while (left && eol == NULL); /* return terminated string, or if nothing, end of file */ if (buf == str) return NULL; buf[0] = 0; return str; } /* -- see zlib.h -- */ int ZEXPORT gzdirect(file) gzFile file; { gz_statep state; /* get internal structure */ if (file == NULL) return 0; state = (gz_statep)file; /* if the state is not known, but we can find out, then do so (this is mainly for right after a gzopen() or gzdopen()) */ if (state->mode == GZ_READ && state->how == LOOK && state->x.have == 0) (void)gz_look(state); /* return 1 if transparent, 0 if processing a gzip stream */ return state->direct; } /* -- see zlib.h -- */ int ZEXPORT gzclose_r(file) gzFile file; { int ret, err; gz_statep state; /* get internal structure */ if (file == NULL) return Z_STREAM_ERROR; state = (gz_statep)file; /* check that we're reading */ if (state->mode != GZ_READ) return Z_STREAM_ERROR; /* free memory and close file */ if (state->size) { inflateEnd(&(state->strm)); free(state->out); free(state->in); } err = state->err == Z_BUF_ERROR ? Z_BUF_ERROR : Z_OK; gz_error(state, Z_OK, NULL); free(state->path); ret = close(state->fd); free(state); return ret ? Z_ERRNO : err; } /* END OF DUMP OF mz_gzread.c*/ /* START OF DUMP OF mz_gzlib.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* gzlib.c -- zlib functions common to reading and writing gzip files * Copyright (C) 2004, 2010, 2011, 2012, 2013 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ #if defined(_WIN32) && !defined(__BORLANDC__) # define LSEEK _lseeki64 #else #if defined(_LARGEFILE64_SOURCE) && _LFS64_LARGEFILE-0 # define LSEEK lseek64 #else # define LSEEK lseek #endif #endif /* Local functions */ local void gz_reset OF((gz_statep)); local gzFile gz_open OF((const void *, int, const char *)); #if defined UNDER_CE /* Map the Windows error number in ERROR to a locale-dependent error message string and return a pointer to it. Typically, the values for ERROR come from GetLastError. The string pointed to shall not be modified by the application, but may be overwritten by a subsequent call to gz_strwinerror The gz_strwinerror function does not change the current setting of GetLastError. */ char ZLIB_INTERNAL *gz_strwinerror (error) DWORD error; { static char buf[1024]; wchar_t *msgbuf; DWORD lasterr = GetLastError(); DWORD chars = FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER, NULL, error, 0, /* Default language */ (LPVOID)&msgbuf, 0, NULL); if (chars != 0) { /* If there is an \r\n appended, zap it. */ if (chars >= 2 && msgbuf[chars - 2] == '\r' && msgbuf[chars - 1] == '\n') { chars -= 2; msgbuf[chars] = 0; } if (chars > sizeof (buf) - 1) { chars = sizeof (buf) - 1; msgbuf[chars] = 0; } wcstombs(buf, msgbuf, chars + 1); LocalFree(msgbuf); } else { sprintf(buf, "unknown win32 error (%ld)", error); } SetLastError(lasterr); return buf; } #endif /* UNDER_CE */ /* Reset gzip file state */ local void gz_reset(state) gz_statep state; { state->x.have = 0; /* no output data available */ if (state->mode == GZ_READ) { /* for reading ... */ state->eof = 0; /* not at end of file */ state->past = 0; /* have not read past end yet */ state->how = LOOK; /* look for gzip header */ } state->seek = 0; /* no seek request pending */ gz_error(state, Z_OK, NULL); /* clear error */ state->x.pos = 0; /* no uncompressed data yet */ state->strm.avail_in = 0; /* no input data yet */ } /* Open a gzip file either by name or file descriptor. */ local gzFile gz_open(path, fd, mode) const void *path; int fd; const char *mode; { gz_statep state; size_t len; int oflag; #ifdef O_CLOEXEC int cloexec = 0; #endif #ifdef O_EXCL int exclusive = 0; #endif /* check input */ if (path == NULL) return NULL; /* allocate gzFile structure to return */ state = (gz_statep)malloc(sizeof(gz_state)); if (state == NULL) return NULL; state->size = 0; /* no buffers allocated yet */ state->want = GZBUFSIZE; /* requested buffer size */ state->msg = NULL; /* no error message yet */ /* interpret mode */ state->mode = GZ_NONE; state->level = Z_DEFAULT_COMPRESSION; state->strategy = Z_DEFAULT_STRATEGY; state->direct = 0; while (*mode) { if (*mode >= '0' && *mode <= '9') state->level = *mode - '0'; else switch (*mode) { case 'r': state->mode = GZ_READ; break; #ifndef NO_GZCOMPRESS case 'w': state->mode = GZ_WRITE; break; case 'a': state->mode = GZ_APPEND; break; #endif case '+': /* can't read and write at the same time */ free(state); return NULL; case 'b': /* ignore -- will request binary anyway */ break; #ifdef O_CLOEXEC case 'e': cloexec = 1; break; #endif #ifdef O_EXCL case 'x': exclusive = 1; break; #endif case 'f': state->strategy = Z_FILTERED; break; case 'h': state->strategy = Z_HUFFMAN_ONLY; break; case 'R': state->strategy = Z_RLE; break; case 'F': state->strategy = Z_FIXED; break; case 'T': state->direct = 1; break; default: /* could consider as an error, but just ignore */ ; } mode++; } /* must provide an "r", "w", or "a" */ if (state->mode == GZ_NONE) { free(state); return NULL; } /* can't force transparent read */ if (state->mode == GZ_READ) { if (state->direct) { free(state); return NULL; } state->direct = 1; /* for empty file */ } /* save the path name for error messages */ #ifdef _WIN32 if (fd == -2) { len = wcstombs(NULL, path, 0); if (len == (size_t)-1) len = 0; } else #endif len = strlen((const char *)path); state->path = (char *)malloc(len + 1); if (state->path == NULL) { free(state); return NULL; } #ifdef _WIN32 if (fd == -2) if (len) wcstombs(state->path, path, len + 1); else *(state->path) = 0; else #endif #if !defined(NO_snprintf) && !defined(NO_vsnprintf) snprintf(state->path, len + 1, "%s", (const char *)path); #else strcpy(state->path, path); #endif /* compute the flags for open() */ oflag = #ifdef O_LARGEFILE O_LARGEFILE | #endif #ifdef O_BINARY O_BINARY | #endif #ifdef O_CLOEXEC (cloexec ? O_CLOEXEC : 0) | #endif (state->mode == GZ_READ ? O_RDONLY : (O_WRONLY | O_CREAT | #ifdef O_EXCL (exclusive ? O_EXCL : 0) | #endif (state->mode == GZ_WRITE ? O_TRUNC : O_APPEND))); /* open the file with the appropriate flags (or just use fd) */ state->fd = fd > -1 ? fd : ( #ifdef _WIN32 fd == -2 ? _wopen(path, oflag, 0666) : #endif open((const char *)path, oflag, 0666)); if (state->fd == -1) { free(state->path); free(state); return NULL; } if (state->mode == GZ_APPEND) state->mode = GZ_WRITE; /* simplify later checks */ /* save the current position for rewinding (only if reading) */ if (state->mode == GZ_READ) { state->start = LSEEK(state->fd, 0, SEEK_CUR); if (state->start == -1) state->start = 0; } /* initialize stream */ gz_reset(state); /* return stream */ return (gzFile)state; } /* -- see zlib.h -- */ gzFile ZEXPORT gzopen(path, mode) const char *path; const char *mode; { return gz_open(path, -1, mode); } /* -- see zlib.h -- */ gzFile ZEXPORT gzopen64(path, mode) const char *path; const char *mode; { return gz_open(path, -1, mode); } /* -- see zlib.h -- */ gzFile ZEXPORT gzdopen(fd, mode) int fd; const char *mode; { char *path; /* identifier for error messages */ gzFile gz; if (fd == -1 || (path = (char *)malloc(7 + 3 * sizeof(int))) == NULL) return NULL; #if !defined(NO_snprintf) && !defined(NO_vsnprintf) snprintf(path, 7 + 3 * sizeof(int), "", fd); /* for debugging */ #else sprintf(path, "", fd); /* for debugging */ #endif gz = gz_open(path, fd, mode); free(path); return gz; } /* -- see zlib.h -- */ #ifdef _WIN32 gzFile ZEXPORT gzopen_w(path, mode) const wchar_t *path; const char *mode; { return gz_open(path, -2, mode); } #endif /* -- see zlib.h -- */ int ZEXPORT gzbuffer(file, size) gzFile file; unsigned size; { gz_statep state; /* get internal structure and check integrity */ if (file == NULL) return -1; state = (gz_statep)file; if (state->mode != GZ_READ && state->mode != GZ_WRITE) return -1; /* make sure we haven't already allocated memory */ if (state->size != 0) return -1; /* check and set requested size */ if (size < 2) size = 2; /* need two bytes to check magic header */ state->want = size; return 0; } /* -- see zlib.h -- */ int ZEXPORT gzrewind(file) gzFile file; { gz_statep state; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; /* check that we're reading and that there's no error */ if (state->mode != GZ_READ || (state->err != Z_OK && state->err != Z_BUF_ERROR)) return -1; /* back up and start over */ if (LSEEK(state->fd, state->start, SEEK_SET) == -1) return -1; gz_reset(state); return 0; } /* -- see zlib.h -- */ z_off64_t ZEXPORT gzseek64(file, offset, whence) gzFile file; z_off64_t offset; int whence; { unsigned n; z_off64_t ret; gz_statep state; /* get internal structure and check integrity */ if (file == NULL) return -1; state = (gz_statep)file; if (state->mode != GZ_READ && state->mode != GZ_WRITE) return -1; /* check that there's no error */ if (state->err != Z_OK && state->err != Z_BUF_ERROR) return -1; /* can only seek from start or relative to current position */ if (whence != SEEK_SET && whence != SEEK_CUR) return -1; /* normalize offset to a SEEK_CUR specification */ if (whence == SEEK_SET) offset -= state->x.pos; else if (state->seek) offset += state->skip; state->seek = 0; /* if within raw area while reading, just go there */ if (state->mode == GZ_READ && state->how == COPY && state->x.pos + offset >= 0) { ret = LSEEK(state->fd, offset - state->x.have, SEEK_CUR); if (ret == -1) return -1; state->x.have = 0; state->eof = 0; state->past = 0; state->seek = 0; gz_error(state, Z_OK, NULL); state->strm.avail_in = 0; state->x.pos += offset; return state->x.pos; } /* calculate skip amount, rewinding if needed for back seek when reading */ if (offset < 0) { if (state->mode != GZ_READ) /* writing -- can't go backwards */ return -1; offset += state->x.pos; if (offset < 0) /* before start of file! */ return -1; if (gzrewind(file) == -1) /* rewind, then skip to offset */ return -1; } /* if reading, skip what's in output buffer (one less gzgetc() check) */ if (state->mode == GZ_READ) { n = GT_OFF(state->x.have) || (z_off64_t)state->x.have > offset ? (unsigned)offset : state->x.have; state->x.have -= n; state->x.next += n; state->x.pos += n; offset -= n; } /* request skip (if not zero) */ if (offset) { state->seek = 1; state->skip = offset; } return state->x.pos + offset; } /* -- see zlib.h -- */ z_off_t ZEXPORT gzseek(file, offset, whence) gzFile file; z_off_t offset; int whence; { z_off64_t ret; ret = gzseek64(file, (z_off64_t)offset, whence); return ret == (z_off_t)ret ? (z_off_t)ret : -1; } /* -- see zlib.h -- */ z_off64_t ZEXPORT gztell64(file) gzFile file; { gz_statep state; /* get internal structure and check integrity */ if (file == NULL) return -1; state = (gz_statep)file; if (state->mode != GZ_READ && state->mode != GZ_WRITE) return -1; /* return position */ return state->x.pos + (state->seek ? state->skip : 0); } /* -- see zlib.h -- */ z_off_t ZEXPORT gztell(file) gzFile file; { z_off64_t ret; ret = gztell64(file); return ret == (z_off_t)ret ? (z_off_t)ret : -1; } /* -- see zlib.h -- */ z_off64_t ZEXPORT gzoffset64(file) gzFile file; { z_off64_t offset; gz_statep state; /* get internal structure and check integrity */ if (file == NULL) return -1; state = (gz_statep)file; if (state->mode != GZ_READ && state->mode != GZ_WRITE) return -1; /* compute and return effective offset in file */ offset = LSEEK(state->fd, 0, SEEK_CUR); if (offset == -1) return -1; if (state->mode == GZ_READ) /* reading */ offset -= state->strm.avail_in; /* don't count buffered input */ return offset; } /* -- see zlib.h -- */ z_off_t ZEXPORT gzoffset(file) gzFile file; { z_off64_t ret; ret = gzoffset64(file); return ret == (z_off_t)ret ? (z_off_t)ret : -1; } /* -- see zlib.h -- */ int ZEXPORT gzeof(file) gzFile file; { gz_statep state; /* get internal structure and check integrity */ if (file == NULL) return 0; state = (gz_statep)file; if (state->mode != GZ_READ && state->mode != GZ_WRITE) return 0; /* return end-of-file state */ return state->mode == GZ_READ ? state->past : 0; } /* -- see zlib.h -- */ const char * ZEXPORT gzerror(file, errnum) gzFile file; int *errnum; { gz_statep state; /* get internal structure and check integrity */ if (file == NULL) return NULL; state = (gz_statep)file; if (state->mode != GZ_READ && state->mode != GZ_WRITE) return NULL; /* return error information */ if (errnum != NULL) *errnum = state->err; return state->err == Z_MEM_ERROR ? "out of memory" : (state->msg == NULL ? "" : state->msg); } /* -- see zlib.h -- */ void ZEXPORT gzclearerr(file) gzFile file; { gz_statep state; /* get internal structure and check integrity */ if (file == NULL) return; state = (gz_statep)file; if (state->mode != GZ_READ && state->mode != GZ_WRITE) return; /* clear error and end-of-file */ if (state->mode == GZ_READ) { state->eof = 0; state->past = 0; } gz_error(state, Z_OK, NULL); } /* Create an error message in allocated memory and set state->err and state->msg accordingly. Free any previous error message already there. Do not try to free or allocate space if the error is Z_MEM_ERROR (out of memory). Simply save the error message as a static string. If there is an allocation failure constructing the error message, then convert the error to out of memory. */ void ZLIB_INTERNAL gz_error(state, err, msg) gz_statep state; int err; const char *msg; { /* free previously allocated message and clear */ if (state->msg != NULL) { if (state->err != Z_MEM_ERROR) free(state->msg); state->msg = NULL; } /* if fatal, set state->x.have to 0 so that the gzgetc() macro fails */ if (err != Z_OK && err != Z_BUF_ERROR) state->x.have = 0; /* set error code, and if no message, then done */ state->err = err; if (msg == NULL) return; /* for an out of memory error, return literal string when requested */ if (err == Z_MEM_ERROR) return; /* construct error message with path */ if ((state->msg = (char *)malloc(strlen(state->path) + strlen(msg) + 3)) == NULL) { state->err = Z_MEM_ERROR; return; } #if !defined(NO_snprintf) && !defined(NO_vsnprintf) snprintf(state->msg, strlen(state->path) + strlen(msg) + 3, "%s%s%s", state->path, ": ", msg); #else strcpy(state->msg, state->path); strcat(state->msg, ": "); strcat(state->msg, msg); #endif return; } #ifndef INT_MAX /* portably return maximum value for an int (when limits.h presumed not available) -- we need to do this to cover cases where 2's complement not used, since C standard permits 1's complement and sign-bit representations, otherwise we could just use ((unsigned)-1) >> 1 */ unsigned ZLIB_INTERNAL gz_intmax() { unsigned p, q; p = 1; do { q = p; p <<= 1; p++; } while (p > q); return q >> 1; } #endif /* END OF DUMP OF mz_gzlib.c*/ /* START OF DUMP OF mz_gzclose.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* gzclose.c -- zlib gzclose() function * Copyright (C) 2004, 2010 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* gzclose() is in a separate file so that it is linked in only if it is used. That way the other gzclose functions can be used instead to avoid linking in unneeded compression or decompression routines. */ int ZEXPORT gzclose(file) gzFile file; { #ifndef NO_GZCOMPRESS gz_statep state; if (file == NULL) return Z_STREAM_ERROR; state = (gz_statep)file; return state->mode == GZ_READ ? gzclose_r(file) : gzclose_w(file); #else return gzclose_r(file); #endif } /* END OF DUMP OF mz_gzclose.c*/ /* START OF DUMP OF mz_deflate.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* deflate.c -- compress data using the deflation algorithm * Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* * ALGORITHM * * The "deflation" process depends on being able to identify portions * of the input text which are identical to earlier input (within a * sliding window trailing behind the input currently being processed). * * The most straightforward technique turns out to be the fastest for * most input files: try all possible matches and select the longest. * The key feature of this algorithm is that insertions into the string * dictionary are very simple and thus fast, and deletions are avoided * completely. Insertions are performed at each input character, whereas * string matches are performed only when the previous match ends. So it * is preferable to spend more time in matches to allow very fast string * insertions and avoid deletions. The matching algorithm for small * strings is inspired from that of Rabin & Karp. A brute force approach * is used to find longer strings when a small match has been found. * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze * (by Leonid Broukhis). * A previous version of this file used a more sophisticated algorithm * (by Fiala and Greene) which is guaranteed to run in linear amortized * time, but has a larger average cost, uses more memory and is patented. * However the F&G algorithm may be faster for some highly redundant * files if the parameter max_chain_length (described below) is too large. * * ACKNOWLEDGEMENTS * * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and * I found it in 'freeze' written by Leonid Broukhis. * Thanks to many people for bug reports and testing. * * REFERENCES * * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification". * Available in http://tools.ietf.org/html/rfc1951 * * A description of the Rabin and Karp algorithm is given in the book * "Algorithms" by R. Sedgewick, Addison-Wesley, p252. * * Fiala,E.R., and Greene,D.H. * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595 * */ /* @(#) $Id$ */ const char deflate_copyright[] = " deflate 1.2.8 Copyright 1995-2013 Jean-loup Gailly and Mark Adler "; /* If you use the zlib library in a product, an acknowledgment is welcome in the documentation of your product. If for some reason you cannot include such an acknowledgment, I would appreciate that you keep this copyright string in the executable of your product. */ /* =========================================================================== * Function prototypes. */ typedef enum { need_more, /* block not completed, need more input or more output */ block_done, /* block flush performed */ finish_started, /* finish started, need only more output at next deflate */ finish_done /* finish done, accept no more input or output */ } block_state; typedef block_state (*compress_func) OF((deflate_state *s, int flush)); /* Compression function. Returns the block state after the call. */ local void fill_window OF((deflate_state *s)); local block_state deflate_stored OF((deflate_state *s, int flush)); local block_state deflate_fast OF((deflate_state *s, int flush)); #ifndef FASTEST local block_state deflate_slow OF((deflate_state *s, int flush)); #endif local block_state deflate_rle OF((deflate_state *s, int flush)); local block_state deflate_huff OF((deflate_state *s, int flush)); local void lm_init OF((deflate_state *s)); local void putShortMSB OF((deflate_state *s, uInt b)); local void flush_pending OF((z_streamp strm)); local int read_buf OF((z_streamp strm, Bytef *buf, unsigned size)); #ifdef ASMV void match_init OF((void)); /* asm code initialization */ uInt longest_match OF((deflate_state *s, IPos cur_match)); #else local uInt longest_match OF((deflate_state *s, IPos cur_match)); #endif #ifdef DEBUG local void check_match OF((deflate_state *s, IPos start, IPos match, int length)); #endif /* =========================================================================== * Local data */ #define NIL 0 /* Tail of hash chains */ #ifndef TOO_FAR # define TOO_FAR 4096 #endif /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */ /* Values for max_lazy_match, good_match and max_chain_length, depending on * the desired pack level (0..9). The values given below have been tuned to * exclude worst case performance for pathological files. Better values may be * found for specific files. */ typedef struct config_s { ush good_length; /* reduce lazy search above this match length */ ush max_lazy; /* do not perform lazy search above this match length */ ush nice_length; /* quit search above this match length */ ush max_chain; compress_func func; } config; #ifdef FASTEST local const config configuration_table[2] = { /* good lazy nice chain */ /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ /* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */ #else local const config configuration_table[10] = { /* good lazy nice chain */ /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ /* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */ /* 2 */ {4, 5, 16, 8, deflate_fast}, /* 3 */ {4, 6, 32, 32, deflate_fast}, /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */ /* 5 */ {8, 16, 32, 32, deflate_slow}, /* 6 */ {8, 16, 128, 128, deflate_slow}, /* 7 */ {8, 32, 128, 256, deflate_slow}, /* 8 */ {32, 128, 258, 1024, deflate_slow}, /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */ #endif /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different * meaning. */ #define EQUAL 0 /* result of memcmp for equal strings */ #ifndef NO_DUMMY_DECL struct static_tree_desc_s {int dummy;}; /* for buggy compilers */ #endif /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */ #define RANK(f) (((f) << 1) - ((f) > 4 ? 9 : 0)) /* =========================================================================== * Update a hash value with the given input byte * IN assertion: all calls to to UPDATE_HASH are made with consecutive * input characters, so that a running hash key can be computed from the * previous key instead of complete recalculation each time. */ #define UPDATE_HASH(s,h,c) (h = (((h)<hash_shift) ^ (c)) & s->hash_mask) /* =========================================================================== * Insert string str in the dictionary and set match_head to the previous head * of the hash chain (the most recent string with same hash key). Return * the previous length of the hash chain. * If this file is compiled with -DFASTEST, the compression level is forced * to 1, and no hash chains are maintained. * IN assertion: all calls to to INSERT_STRING are made with consecutive * input characters and the first MIN_MATCH bytes of str are valid * (except for the last MIN_MATCH-1 bytes of the input file). */ #ifdef FASTEST #define INSERT_STRING(s, str, match_head) \ (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ match_head = s->head[s->ins_h], \ s->head[s->ins_h] = (Pos)(str)) #else #define INSERT_STRING(s, str, match_head) \ (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \ s->head[s->ins_h] = (Pos)(str)) #endif /* =========================================================================== * Initialize the hash table (avoiding 64K overflow for 16 bit systems). * prev[] will be initialized on the fly. */ #define CLEAR_HASH(s) \ s->head[s->hash_size-1] = NIL; \ zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head)); /* ========================================================================= */ int ZEXPORT deflateInit_(strm, level, version, stream_size) z_streamp strm; int level; const char *version; int stream_size; { return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, Z_DEFAULT_STRATEGY, version, stream_size); /* To do: ignore strm->next_in if we use it as window */ } /* ========================================================================= */ int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy, version, stream_size) z_streamp strm; int level; int method; int windowBits; int memLevel; int strategy; const char *version; int stream_size; { deflate_state *s; int wrap = 1; static const char my_version[] = ZLIB_VERSION; ushf *overlay; /* We overlay pending_buf and d_buf+l_buf. This works since the average * output size for (length,distance) codes is <= 24 bits. */ if (version == Z_NULL || version[0] != my_version[0] || stream_size != sizeof(z_stream)) { return Z_VERSION_ERROR; } if (strm == Z_NULL) return Z_STREAM_ERROR; strm->msg = Z_NULL; if (strm->zalloc == (alloc_func)0) { #ifdef Z_SOLO return Z_STREAM_ERROR; #else strm->zalloc = zcalloc; strm->opaque = (voidpf)0; #endif } if (strm->zfree == (free_func)0) #ifdef Z_SOLO return Z_STREAM_ERROR; #else strm->zfree = zcfree; #endif #ifdef FASTEST if (level != 0) level = 1; #else if (level == Z_DEFAULT_COMPRESSION) level = 6; #endif if (windowBits < 0) { /* suppress zlib wrapper */ wrap = 0; windowBits = -windowBits; } #ifdef GZIP else if (windowBits > 15) { wrap = 2; /* write gzip wrapper instead */ windowBits -= 16; } #endif if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED || windowBits < 8 || windowBits > 15 || level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) { return Z_STREAM_ERROR; } if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */ s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state)); if (s == Z_NULL) return Z_MEM_ERROR; strm->state = (struct internal_state FAR *)s; s->strm = strm; s->wrap = wrap; s->gzhead = Z_NULL; s->w_bits = windowBits; s->w_size = 1 << s->w_bits; s->w_mask = s->w_size - 1; s->hash_bits = memLevel + 7; s->hash_size = 1 << s->hash_bits; s->hash_mask = s->hash_size - 1; s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH); s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte)); s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos)); s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos)); s->high_water = 0; /* nothing written to s->window yet */ s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2); s->pending_buf = (uchf *) overlay; s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L); if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL || s->pending_buf == Z_NULL) { s->status = FINISH_STATE; strm->msg = ERR_MSG(Z_MEM_ERROR); deflateEnd (strm); return Z_MEM_ERROR; } s->d_buf = overlay + s->lit_bufsize/sizeof(ush); s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize; s->level = level; s->strategy = strategy; s->method = (Byte)method; return deflateReset(strm); } /* ========================================================================= */ int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength) z_streamp strm; const Bytef *dictionary; uInt dictLength; { deflate_state *s; uInt str, n; int wrap; unsigned avail; z_const unsigned char *next; if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL) return Z_STREAM_ERROR; s = strm->state; wrap = s->wrap; if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead) return Z_STREAM_ERROR; /* when using zlib wrappers, compute Adler-32 for provided dictionary */ if (wrap == 1) strm->adler = adler32(strm->adler, dictionary, dictLength); s->wrap = 0; /* avoid computing Adler-32 in read_buf */ /* if dictionary would fill window, just replace the history */ if (dictLength >= s->w_size) { if (wrap == 0) { /* already empty otherwise */ CLEAR_HASH(s); s->strstart = 0; s->block_start = 0L; s->insert = 0; } dictionary += dictLength - s->w_size; /* use the tail */ dictLength = s->w_size; } /* insert dictionary into window and hash */ avail = strm->avail_in; next = strm->next_in; strm->avail_in = dictLength; strm->next_in = (z_const Bytef *)dictionary; fill_window(s); while (s->lookahead >= MIN_MATCH) { str = s->strstart; n = s->lookahead - (MIN_MATCH-1); do { UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); #ifndef FASTEST s->prev[str & s->w_mask] = s->head[s->ins_h]; #endif s->head[s->ins_h] = (Pos)str; str++; } while (--n); s->strstart = str; s->lookahead = MIN_MATCH-1; fill_window(s); } s->strstart += s->lookahead; s->block_start = (long)s->strstart; s->insert = s->lookahead; s->lookahead = 0; s->match_length = s->prev_length = MIN_MATCH-1; s->match_available = 0; strm->next_in = next; strm->avail_in = avail; s->wrap = wrap; return Z_OK; } /* ========================================================================= */ int ZEXPORT deflateResetKeep (strm) z_streamp strm; { deflate_state *s; if (strm == Z_NULL || strm->state == Z_NULL || strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) { return Z_STREAM_ERROR; } strm->total_in = strm->total_out = 0; strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */ strm->data_type = Z_UNKNOWN; s = (deflate_state *)strm->state; s->pending = 0; s->pending_out = s->pending_buf; if (s->wrap < 0) { s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */ } s->status = s->wrap ? INIT_STATE : BUSY_STATE; strm->adler = #ifdef GZIP s->wrap == 2 ? crc32(0L, Z_NULL, 0) : #endif adler32(0L, Z_NULL, 0); s->last_flush = Z_NO_FLUSH; _tr_init(s); return Z_OK; } /* ========================================================================= */ int ZEXPORT deflateReset (strm) z_streamp strm; { int ret; ret = deflateResetKeep(strm); if (ret == Z_OK) lm_init(strm->state); return ret; } /* ========================================================================= */ int ZEXPORT deflateSetHeader (strm, head) z_streamp strm; gz_headerp head; { if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; if (strm->state->wrap != 2) return Z_STREAM_ERROR; strm->state->gzhead = head; return Z_OK; } /* ========================================================================= */ int ZEXPORT deflatePending (strm, pending, bits) unsigned *pending; int *bits; z_streamp strm; { if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; if (pending != Z_NULL) *pending = strm->state->pending; if (bits != Z_NULL) *bits = strm->state->bi_valid; return Z_OK; } /* ========================================================================= */ int ZEXPORT deflatePrime (strm, bits, value) z_streamp strm; int bits; int value; { deflate_state *s; int put; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; s = strm->state; if ((Bytef *)(s->d_buf) < s->pending_out + ((Buf_size + 7) >> 3)) return Z_BUF_ERROR; do { put = Buf_size - s->bi_valid; if (put > bits) put = bits; s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid); s->bi_valid += put; _tr_flush_bits(s); value >>= put; bits -= put; } while (bits); return Z_OK; } /* ========================================================================= */ int ZEXPORT deflateParams(strm, level, strategy) z_streamp strm; int level; int strategy; { deflate_state *s; compress_func func; int err = Z_OK; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; s = strm->state; #ifdef FASTEST if (level != 0) level = 1; #else if (level == Z_DEFAULT_COMPRESSION) level = 6; #endif if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) { return Z_STREAM_ERROR; } func = configuration_table[s->level].func; if ((strategy != s->strategy || func != configuration_table[level].func) && strm->total_in != 0) { /* Flush the last buffer: */ err = deflate(strm, Z_BLOCK); if (err == Z_BUF_ERROR && s->pending == 0) err = Z_OK; } if (s->level != level) { s->level = level; s->max_lazy_match = configuration_table[level].max_lazy; s->good_match = configuration_table[level].good_length; s->nice_match = configuration_table[level].nice_length; s->max_chain_length = configuration_table[level].max_chain; } s->strategy = strategy; return err; } /* ========================================================================= */ int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain) z_streamp strm; int good_length; int max_lazy; int nice_length; int max_chain; { deflate_state *s; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; s = strm->state; s->good_match = good_length; s->max_lazy_match = max_lazy; s->nice_match = nice_length; s->max_chain_length = max_chain; return Z_OK; } /* ========================================================================= * For the default windowBits of 15 and memLevel of 8, this function returns * a close to exact, as well as small, upper bound on the compressed size. * They are coded as constants here for a reason--if the #define's are * changed, then this function needs to be changed as well. The return * value for 15 and 8 only works for those exact settings. * * For any setting other than those defaults for windowBits and memLevel, * the value returned is a conservative worst case for the maximum expansion * resulting from using fixed blocks instead of stored blocks, which deflate * can emit on compressed data for some combinations of the parameters. * * This function could be more sophisticated to provide closer upper bounds for * every combination of windowBits and memLevel. But even the conservative * upper bound of about 14% expansion does not seem onerous for output buffer * allocation. */ uLong ZEXPORT deflateBound(strm, sourceLen) z_streamp strm; uLong sourceLen; { deflate_state *s; uLong complen, wraplen; Bytef *str; /* conservative upper bound for compressed data */ complen = sourceLen + ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5; /* if can't get parameters, return conservative bound plus zlib wrapper */ if (strm == Z_NULL || strm->state == Z_NULL) return complen + 6; /* compute wrapper length */ s = strm->state; switch (s->wrap) { case 0: /* raw deflate */ wraplen = 0; break; case 1: /* zlib wrapper */ wraplen = 6 + (s->strstart ? 4 : 0); break; case 2: /* gzip wrapper */ wraplen = 18; if (s->gzhead != Z_NULL) { /* user-supplied gzip header */ if (s->gzhead->extra != Z_NULL) wraplen += 2 + s->gzhead->extra_len; str = s->gzhead->name; if (str != Z_NULL) do { wraplen++; } while (*str++); str = s->gzhead->comment; if (str != Z_NULL) do { wraplen++; } while (*str++); if (s->gzhead->hcrc) wraplen += 2; } break; default: /* for compiler happiness */ wraplen = 6; } /* if not default parameters, return conservative bound */ if (s->w_bits != 15 || s->hash_bits != 8 + 7) return complen + wraplen; /* default settings: return tight bound for that case */ return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) + (sourceLen >> 25) + 13 - 6 + wraplen; } /* ========================================================================= * Put a short in the pending buffer. The 16-bit value is put in MSB order. * IN assertion: the stream state is correct and there is enough room in * pending_buf. */ local void putShortMSB (s, b) deflate_state *s; uInt b; { put_byte(s, (Byte)(b >> 8)); put_byte(s, (Byte)(b & 0xff)); } /* ========================================================================= * Flush as much pending output as possible. All deflate() output goes * through this function so some applications may wish to modify it * to avoid allocating a large strm->next_out buffer and copying into it. * (See also read_buf()). */ local void flush_pending(strm) z_streamp strm; { unsigned len; deflate_state *s = strm->state; _tr_flush_bits(s); len = s->pending; if (len > strm->avail_out) len = strm->avail_out; if (len == 0) return; zmemcpy(strm->next_out, s->pending_out, len); strm->next_out += len; s->pending_out += len; strm->total_out += len; strm->avail_out -= len; s->pending -= len; if (s->pending == 0) { s->pending_out = s->pending_buf; } } /* ========================================================================= */ int ZEXPORT deflate (strm, flush) z_streamp strm; int flush; { int old_flush; /* value of flush param for previous deflate call */ deflate_state *s; if (strm == Z_NULL || strm->state == Z_NULL || flush > Z_BLOCK || flush < 0) { return Z_STREAM_ERROR; } s = strm->state; if (strm->next_out == Z_NULL || (strm->next_in == Z_NULL && strm->avail_in != 0) || (s->status == FINISH_STATE && flush != Z_FINISH)) { ERR_RETURN(strm, Z_STREAM_ERROR); } if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR); s->strm = strm; /* just in case */ old_flush = s->last_flush; s->last_flush = flush; /* Write the header */ if (s->status == INIT_STATE) { #ifdef GZIP if (s->wrap == 2) { strm->adler = crc32(0L, Z_NULL, 0); put_byte(s, 31); put_byte(s, 139); put_byte(s, 8); if (s->gzhead == Z_NULL) { put_byte(s, 0); put_byte(s, 0); put_byte(s, 0); put_byte(s, 0); put_byte(s, 0); put_byte(s, s->level == 9 ? 2 : (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? 4 : 0)); put_byte(s, OS_CODE); s->status = BUSY_STATE; } else { put_byte(s, (s->gzhead->text ? 1 : 0) + (s->gzhead->hcrc ? 2 : 0) + (s->gzhead->extra == Z_NULL ? 0 : 4) + (s->gzhead->name == Z_NULL ? 0 : 8) + (s->gzhead->comment == Z_NULL ? 0 : 16) ); put_byte(s, (Byte)(s->gzhead->time & 0xff)); put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff)); put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff)); put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff)); put_byte(s, s->level == 9 ? 2 : (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? 4 : 0)); put_byte(s, s->gzhead->os & 0xff); if (s->gzhead->extra != Z_NULL) { put_byte(s, s->gzhead->extra_len & 0xff); put_byte(s, (s->gzhead->extra_len >> 8) & 0xff); } if (s->gzhead->hcrc) strm->adler = crc32(strm->adler, s->pending_buf, s->pending); s->gzindex = 0; s->status = EXTRA_STATE; } } else #endif { uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8; uInt level_flags; if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2) level_flags = 0; else if (s->level < 6) level_flags = 1; else if (s->level == 6) level_flags = 2; else level_flags = 3; header |= (level_flags << 6); if (s->strstart != 0) header |= PRESET_DICT; header += 31 - (header % 31); s->status = BUSY_STATE; putShortMSB(s, header); /* Save the adler32 of the preset dictionary: */ if (s->strstart != 0) { putShortMSB(s, (uInt)(strm->adler >> 16)); putShortMSB(s, (uInt)(strm->adler & 0xffff)); } strm->adler = adler32(0L, Z_NULL, 0); } } #ifdef GZIP if (s->status == EXTRA_STATE) { if (s->gzhead->extra != Z_NULL) { uInt beg = s->pending; /* start of bytes to update crc */ while (s->gzindex < (s->gzhead->extra_len & 0xffff)) { if (s->pending == s->pending_buf_size) { if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); flush_pending(strm); beg = s->pending; if (s->pending == s->pending_buf_size) break; } put_byte(s, s->gzhead->extra[s->gzindex]); s->gzindex++; } if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); if (s->gzindex == s->gzhead->extra_len) { s->gzindex = 0; s->status = NAME_STATE; } } else s->status = NAME_STATE; } if (s->status == NAME_STATE) { if (s->gzhead->name != Z_NULL) { uInt beg = s->pending; /* start of bytes to update crc */ int val; do { if (s->pending == s->pending_buf_size) { if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); flush_pending(strm); beg = s->pending; if (s->pending == s->pending_buf_size) { val = 1; break; } } val = s->gzhead->name[s->gzindex++]; put_byte(s, val); } while (val != 0); if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); if (val == 0) { s->gzindex = 0; s->status = COMMENT_STATE; } } else s->status = COMMENT_STATE; } if (s->status == COMMENT_STATE) { if (s->gzhead->comment != Z_NULL) { uInt beg = s->pending; /* start of bytes to update crc */ int val; do { if (s->pending == s->pending_buf_size) { if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); flush_pending(strm); beg = s->pending; if (s->pending == s->pending_buf_size) { val = 1; break; } } val = s->gzhead->comment[s->gzindex++]; put_byte(s, val); } while (val != 0); if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); if (val == 0) s->status = HCRC_STATE; } else s->status = HCRC_STATE; } if (s->status == HCRC_STATE) { if (s->gzhead->hcrc) { if (s->pending + 2 > s->pending_buf_size) flush_pending(strm); if (s->pending + 2 <= s->pending_buf_size) { put_byte(s, (Byte)(strm->adler & 0xff)); put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); strm->adler = crc32(0L, Z_NULL, 0); s->status = BUSY_STATE; } } else s->status = BUSY_STATE; } #endif /* Flush as much pending output as possible */ if (s->pending != 0) { flush_pending(strm); if (strm->avail_out == 0) { /* Since avail_out is 0, deflate will be called again with * more output space, but possibly with both pending and * avail_in equal to zero. There won't be anything to do, * but this is not an error situation so make sure we * return OK instead of BUF_ERROR at next call of deflate: */ s->last_flush = -1; return Z_OK; } /* Make sure there is something to do and avoid duplicate consecutive * flushes. For repeated and useless calls with Z_FINISH, we keep * returning Z_STREAM_END instead of Z_BUF_ERROR. */ } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) && flush != Z_FINISH) { ERR_RETURN(strm, Z_BUF_ERROR); } /* User must not provide more input after the first FINISH: */ if (s->status == FINISH_STATE && strm->avail_in != 0) { ERR_RETURN(strm, Z_BUF_ERROR); } /* Start a new block or continue the current one. */ if (strm->avail_in != 0 || s->lookahead != 0 || (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) { block_state bstate; bstate = s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) : (s->strategy == Z_RLE ? deflate_rle(s, flush) : (*(configuration_table[s->level].func))(s, flush)); if (bstate == finish_started || bstate == finish_done) { s->status = FINISH_STATE; } if (bstate == need_more || bstate == finish_started) { if (strm->avail_out == 0) { s->last_flush = -1; /* avoid BUF_ERROR next call, see above */ } return Z_OK; /* If flush != Z_NO_FLUSH && avail_out == 0, the next call * of deflate should use the same flush parameter to make sure * that the flush is complete. So we don't have to output an * empty block here, this will be done at next call. This also * ensures that for a very small output buffer, we emit at most * one empty block. */ } if (bstate == block_done) { if (flush == Z_PARTIAL_FLUSH) { _tr_align(s); } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */ _tr_stored_block(s, (char*)0, 0L, 0); /* For a full flush, this empty block will be recognized * as a special marker by inflate_sync(). */ if (flush == Z_FULL_FLUSH) { CLEAR_HASH(s); /* forget history */ if (s->lookahead == 0) { s->strstart = 0; s->block_start = 0L; s->insert = 0; } } } flush_pending(strm); if (strm->avail_out == 0) { s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */ return Z_OK; } } } Assert(strm->avail_out > 0, "bug2"); if (flush != Z_FINISH) return Z_OK; if (s->wrap <= 0) return Z_STREAM_END; /* Write the trailer */ #ifdef GZIP if (s->wrap == 2) { put_byte(s, (Byte)(strm->adler & 0xff)); put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); put_byte(s, (Byte)((strm->adler >> 16) & 0xff)); put_byte(s, (Byte)((strm->adler >> 24) & 0xff)); put_byte(s, (Byte)(strm->total_in & 0xff)); put_byte(s, (Byte)((strm->total_in >> 8) & 0xff)); put_byte(s, (Byte)((strm->total_in >> 16) & 0xff)); put_byte(s, (Byte)((strm->total_in >> 24) & 0xff)); } else #endif { putShortMSB(s, (uInt)(strm->adler >> 16)); putShortMSB(s, (uInt)(strm->adler & 0xffff)); } flush_pending(strm); /* If avail_out is zero, the application will call deflate again * to flush the rest. */ if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */ return s->pending != 0 ? Z_OK : Z_STREAM_END; } /* ========================================================================= */ int ZEXPORT deflateEnd (strm) z_streamp strm; { int status; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; status = strm->state->status; if (status != INIT_STATE && status != EXTRA_STATE && status != NAME_STATE && status != COMMENT_STATE && status != HCRC_STATE && status != BUSY_STATE && status != FINISH_STATE) { return Z_STREAM_ERROR; } /* Deallocate in reverse order of allocations: */ TRY_FREE(strm, strm->state->pending_buf); TRY_FREE(strm, strm->state->head); TRY_FREE(strm, strm->state->prev); TRY_FREE(strm, strm->state->window); ZFREE(strm, strm->state); strm->state = Z_NULL; return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; } /* ========================================================================= * Copy the source state to the destination state. * To simplify the source, this is not supported for 16-bit MSDOS (which * doesn't have enough memory anyway to duplicate compression states). */ int ZEXPORT deflateCopy (dest, source) z_streamp dest; z_streamp source; { #ifdef MAXSEG_64K return Z_STREAM_ERROR; #else deflate_state *ds; deflate_state *ss; ushf *overlay; if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) { return Z_STREAM_ERROR; } ss = source->state; zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream)); ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state)); if (ds == Z_NULL) return Z_MEM_ERROR; dest->state = (struct internal_state FAR *) ds; zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state)); ds->strm = dest; ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte)); ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos)); ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos)); overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2); ds->pending_buf = (uchf *) overlay; if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL || ds->pending_buf == Z_NULL) { deflateEnd (dest); return Z_MEM_ERROR; } /* following zmemcpy do not work for 16-bit MSDOS */ zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte)); zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos)); zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos)); zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size); ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf); ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush); ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize; ds->l_desc.dyn_tree = ds->dyn_ltree; ds->d_desc.dyn_tree = ds->dyn_dtree; ds->bl_desc.dyn_tree = ds->bl_tree; return Z_OK; #endif /* MAXSEG_64K */ } /* =========================================================================== * Read a new buffer from the current input stream, update the adler32 * and total number of bytes read. All deflate() input goes through * this function so some applications may wish to modify it to avoid * allocating a large strm->next_in buffer and copying from it. * (See also flush_pending()). */ local int read_buf(strm, buf, size) z_streamp strm; Bytef *buf; unsigned size; { unsigned len = strm->avail_in; if (len > size) len = size; if (len == 0) return 0; strm->avail_in -= len; zmemcpy(buf, strm->next_in, len); if (strm->state->wrap == 1) { strm->adler = adler32(strm->adler, buf, len); } #ifdef GZIP else if (strm->state->wrap == 2) { strm->adler = crc32(strm->adler, buf, len); } #endif strm->next_in += len; strm->total_in += len; return (int)len; } /* =========================================================================== * Initialize the "longest match" routines for a new zlib stream */ local void lm_init (s) deflate_state *s; { s->window_size = (ulg)2L*s->w_size; CLEAR_HASH(s); /* Set the default configuration parameters: */ s->max_lazy_match = configuration_table[s->level].max_lazy; s->good_match = configuration_table[s->level].good_length; s->nice_match = configuration_table[s->level].nice_length; s->max_chain_length = configuration_table[s->level].max_chain; s->strstart = 0; s->block_start = 0L; s->lookahead = 0; s->insert = 0; s->match_length = s->prev_length = MIN_MATCH-1; s->match_available = 0; s->ins_h = 0; #ifndef FASTEST #ifdef ASMV match_init(); /* initialize the asm code */ #endif #endif } #ifndef FASTEST /* =========================================================================== * Set match_start to the longest match starting at the given string and * return its length. Matches shorter or equal to prev_length are discarded, * in which case the result is equal to prev_length and match_start is * garbage. * IN assertions: cur_match is the head of the hash chain for the current * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 * OUT assertion: the match length is not greater than s->lookahead. */ #ifndef ASMV /* For 80x86 and 680x0, an optimized version will be provided in match.asm or * match.S. The code will be functionally equivalent. */ local uInt longest_match(s, cur_match) deflate_state *s; IPos cur_match; /* current match */ { unsigned chain_length = s->max_chain_length;/* max hash chain length */ register Bytef *scan = s->window + s->strstart; /* current string */ register Bytef *match; /* matched string */ register int len; /* length of current match */ int best_len = s->prev_length; /* best match length so far */ int nice_match = s->nice_match; /* stop if match long enough */ IPos limit = s->strstart > (IPos)MAX_DIST(s) ? s->strstart - (IPos)MAX_DIST(s) : NIL; /* Stop when cur_match becomes <= limit. To simplify the code, * we prevent matches with the string of window index 0. */ Posf *prev = s->prev; uInt wmask = s->w_mask; #ifdef UNALIGNED_OK /* Compare two bytes at a time. Note: this is not always beneficial. * Try with and without -DUNALIGNED_OK to check. */ register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1; register ush scan_start = *(ushf*)scan; register ush scan_end = *(ushf*)(scan+best_len-1); #else register Bytef *strend = s->window + s->strstart + MAX_MATCH; register Byte scan_end1 = scan[best_len-1]; register Byte scan_end = scan[best_len]; #endif /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. * It is easy to get rid of this optimization if necessary. */ Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); /* Do not waste too much time if we already have a good match: */ if (s->prev_length >= s->good_match) { chain_length >>= 2; } /* Do not look for matches beyond the end of the input. This is necessary * to make deflate deterministic. */ if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead; Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); do { Assert(cur_match < s->strstart, "no future"); match = s->window + cur_match; /* Skip to next match if the match length cannot increase * or if the match length is less than 2. Note that the checks below * for insufficient lookahead only occur occasionally for performance * reasons. Therefore uninitialized memory will be accessed, and * conditional jumps will be made that depend on those values. * However the length of the match is limited to the lookahead, so * the output of deflate is not affected by the uninitialized values. */ #if (defined(UNALIGNED_OK) && MAX_MATCH == 258) /* This code assumes sizeof(unsigned short) == 2. Do not use * UNALIGNED_OK if your compiler uses a different size. */ if (*(ushf*)(match+best_len-1) != scan_end || *(ushf*)match != scan_start) continue; /* It is not necessary to compare scan[2] and match[2] since they are * always equal when the other bytes match, given that the hash keys * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at * strstart+3, +5, ... up to strstart+257. We check for insufficient * lookahead only every 4th comparison; the 128th check will be made * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is * necessary to put more guard bytes at the end of the window, or * to check more often for insufficient lookahead. */ Assert(scan[2] == match[2], "scan[2]?"); scan++, match++; do { } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) && *(ushf*)(scan+=2) == *(ushf*)(match+=2) && *(ushf*)(scan+=2) == *(ushf*)(match+=2) && *(ushf*)(scan+=2) == *(ushf*)(match+=2) && scan < strend); /* The funny "do {}" generates better code on most compilers */ /* Here, scan <= window+strstart+257 */ Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); if (*scan == *match) scan++; len = (MAX_MATCH - 1) - (int)(strend-scan); scan = strend - (MAX_MATCH-1); #else /* UNALIGNED_OK */ if (match[best_len] != scan_end || match[best_len-1] != scan_end1 || *match != *scan || *++match != scan[1]) continue; /* The check at best_len-1 can be removed because it will be made * again later. (This heuristic is not always a win.) * It is not necessary to compare scan[2] and match[2] since they * are always equal when the other bytes match, given that * the hash keys are equal and that HASH_BITS >= 8. */ scan += 2, match++; Assert(*scan == *match, "match[2]?"); /* We check for insufficient lookahead only every 8th comparison; * the 256th check will be made at strstart+258. */ do { } while (*++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && scan < strend); Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); len = MAX_MATCH - (int)(strend - scan); scan = strend - MAX_MATCH; #endif /* UNALIGNED_OK */ if (len > best_len) { s->match_start = cur_match; best_len = len; if (len >= nice_match) break; #ifdef UNALIGNED_OK scan_end = *(ushf*)(scan+best_len-1); #else scan_end1 = scan[best_len-1]; scan_end = scan[best_len]; #endif } } while ((cur_match = prev[cur_match & wmask]) > limit && --chain_length != 0); if ((uInt)best_len <= s->lookahead) return (uInt)best_len; return s->lookahead; } #endif /* ASMV */ #else /* FASTEST */ /* --------------------------------------------------------------------------- * Optimized version for FASTEST only */ local uInt longest_match(s, cur_match) deflate_state *s; IPos cur_match; /* current match */ { register Bytef *scan = s->window + s->strstart; /* current string */ register Bytef *match; /* matched string */ register int len; /* length of current match */ register Bytef *strend = s->window + s->strstart + MAX_MATCH; /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. * It is easy to get rid of this optimization if necessary. */ Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); Assert(cur_match < s->strstart, "no future"); match = s->window + cur_match; /* Return failure if the match length is less than 2: */ if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1; /* The check at best_len-1 can be removed because it will be made * again later. (This heuristic is not always a win.) * It is not necessary to compare scan[2] and match[2] since they * are always equal when the other bytes match, given that * the hash keys are equal and that HASH_BITS >= 8. */ scan += 2, match += 2; Assert(*scan == *match, "match[2]?"); /* We check for insufficient lookahead only every 8th comparison; * the 256th check will be made at strstart+258. */ do { } while (*++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && scan < strend); Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); len = MAX_MATCH - (int)(strend - scan); if (len < MIN_MATCH) return MIN_MATCH - 1; s->match_start = cur_match; return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead; } #endif /* FASTEST */ #ifdef DEBUG /* =========================================================================== * Check that the match at match_start is indeed a match. */ local void check_match(s, start, match, length) deflate_state *s; IPos start, match; int length; { /* check that the match is indeed a match */ if (zmemcmp(s->window + match, s->window + start, length) != EQUAL) { fprintf(stderr, " start %u, match %u, length %d\n", start, match, length); do { fprintf(stderr, "%c%c", s->window[match++], s->window[start++]); } while (--length != 0); z_error("invalid match"); } if (z_verbose > 1) { fprintf(stderr,"\\[%d,%d]", start-match, length); do { putc(s->window[start++], stderr); } while (--length != 0); } } #else # define check_match(s, start, match, length) #endif /* DEBUG */ /* =========================================================================== * Fill the window when the lookahead becomes insufficient. * Updates strstart and lookahead. * * IN assertion: lookahead < MIN_LOOKAHEAD * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD * At least one byte has been read, or avail_in == 0; reads are * performed for at least two bytes (required for the zip translate_eol * option -- not supported here). */ local void fill_window(s) deflate_state *s; { register unsigned n, m; register Posf *p; unsigned more; /* Amount of free space at the end of the window. */ uInt wsize = s->w_size; Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead"); do { more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart); /* Deal with !@#$% 64K limit: */ if (sizeof(int) <= 2) { if (more == 0 && s->strstart == 0 && s->lookahead == 0) { more = wsize; } else if (more == (unsigned)(-1)) { /* Very unlikely, but possible on 16 bit machine if * strstart == 0 && lookahead == 1 (input done a byte at time) */ more--; } } /* If the window is almost full and there is insufficient lookahead, * move the upper half to the lower one to make room in the upper half. */ if (s->strstart >= wsize+MAX_DIST(s)) { zmemcpy(s->window, s->window+wsize, (unsigned)wsize); s->match_start -= wsize; s->strstart -= wsize; /* we now have strstart >= MAX_DIST */ s->block_start -= (long) wsize; /* Slide the hash table (could be avoided with 32 bit values at the expense of memory usage). We slide even when level == 0 to keep the hash table consistent if we switch back to level > 0 later. (Using level 0 permanently is not an optimal usage of zlib, so we don't care about this pathological case.) */ n = s->hash_size; p = &s->head[n]; do { m = *--p; *p = (Pos)(m >= wsize ? m-wsize : NIL); } while (--n); n = wsize; #ifndef FASTEST p = &s->prev[n]; do { m = *--p; *p = (Pos)(m >= wsize ? m-wsize : NIL); /* If n is not on any hash chain, prev[n] is garbage but * its value will never be used. */ } while (--n); #endif more += wsize; } if (s->strm->avail_in == 0) break; /* If there was no sliding: * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && * more == window_size - lookahead - strstart * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) * => more >= window_size - 2*WSIZE + 2 * In the BIG_MEM or MMAP case (not yet supported), * window_size == input_size + MIN_LOOKAHEAD && * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. * Otherwise, window_size == 2*WSIZE so more >= 2. * If there was sliding, more >= WSIZE. So in all cases, more >= 2. */ Assert(more >= 2, "more < 2"); n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more); s->lookahead += n; /* Initialize the hash value now that we have some input: */ if (s->lookahead + s->insert >= MIN_MATCH) { uInt str = s->strstart - s->insert; s->ins_h = s->window[str]; UPDATE_HASH(s, s->ins_h, s->window[str + 1]); #if MIN_MATCH != 3 Call UPDATE_HASH() MIN_MATCH-3 more times #endif while (s->insert) { UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); #ifndef FASTEST s->prev[str & s->w_mask] = s->head[s->ins_h]; #endif s->head[s->ins_h] = (Pos)str; str++; s->insert--; if (s->lookahead + s->insert < MIN_MATCH) break; } } /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, * but this is not important since only literal bytes will be emitted. */ } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0); /* If the WIN_INIT bytes after the end of the current data have never been * written, then zero those bytes in order to avoid memory check reports of * the use of uninitialized (or uninitialised as Julian writes) bytes by * the longest match routines. Update the high water mark for the next * time through here. WIN_INIT is set to MAX_MATCH since the longest match * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead. */ if (s->high_water < s->window_size) { ulg curr = s->strstart + (ulg)(s->lookahead); ulg init; if (s->high_water < curr) { /* Previous high water mark below current data -- zero WIN_INIT * bytes or up to end of window, whichever is less. */ init = s->window_size - curr; if (init > WIN_INIT) init = WIN_INIT; zmemzero(s->window + curr, (unsigned)init); s->high_water = curr + init; } else if (s->high_water < (ulg)curr + WIN_INIT) { /* High water mark at or above current data, but below current data * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up * to end of window, whichever is less. */ init = (ulg)curr + WIN_INIT - s->high_water; if (init > s->window_size - s->high_water) init = s->window_size - s->high_water; zmemzero(s->window + s->high_water, (unsigned)init); s->high_water += init; } } Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD, "not enough room for search"); } /* =========================================================================== * Flush the current block, with given end-of-file flag. * IN assertion: strstart is set to the end of the current match. */ #define FLUSH_BLOCK_ONLY(s, last) { \ _tr_flush_block(s, (s->block_start >= 0L ? \ (charf *)&s->window[(unsigned)s->block_start] : \ (charf *)Z_NULL), \ (ulg)((long)s->strstart - s->block_start), \ (last)); \ s->block_start = s->strstart; \ flush_pending(s->strm); \ Tracev((stderr,"[FLUSH]")); \ } /* Same but force premature exit if necessary. */ #define FLUSH_BLOCK(s, last) { \ FLUSH_BLOCK_ONLY(s, last); \ if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \ } /* =========================================================================== * Copy without compression as much as possible from the input stream, return * the current block state. * This function does not insert new strings in the dictionary since * uncompressible data is probably not useful. This function is used * only for the level=0 compression option. * NOTE: this function should be optimized to avoid extra copying from * window to pending_buf. */ local block_state deflate_stored(s, flush) deflate_state *s; int flush; { /* Stored blocks are limited to 0xffff bytes, pending_buf is limited * to pending_buf_size, and each stored block has a 5 byte header: */ ulg max_block_size = 0xffff; ulg max_start; if (max_block_size > s->pending_buf_size - 5) { max_block_size = s->pending_buf_size - 5; } /* Copy as much as possible from input to output: */ for (;;) { /* Fill the window as much as possible: */ if (s->lookahead <= 1) { Assert(s->strstart < s->w_size+MAX_DIST(s) || s->block_start >= (long)s->w_size, "slide too late"); fill_window(s); if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more; if (s->lookahead == 0) break; /* flush the current block */ } Assert(s->block_start >= 0L, "block gone"); s->strstart += s->lookahead; s->lookahead = 0; /* Emit a stored block if pending_buf will be full: */ max_start = s->block_start + max_block_size; if (s->strstart == 0 || (ulg)s->strstart >= max_start) { /* strstart == 0 is possible when wraparound on 16-bit machine */ s->lookahead = (uInt)(s->strstart - max_start); s->strstart = (uInt)max_start; FLUSH_BLOCK(s, 0); } /* Flush if we may have to slide, otherwise block_start may become * negative and the data will be gone: */ if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) { FLUSH_BLOCK(s, 0); } } s->insert = 0; if (flush == Z_FINISH) { FLUSH_BLOCK(s, 1); return finish_done; } if ((long)s->strstart > s->block_start) FLUSH_BLOCK(s, 0); return block_done; } /* =========================================================================== * Compress as much as possible from the input stream, return the current * block state. * This function does not perform lazy evaluation of matches and inserts * new strings in the dictionary only for unmatched strings or for short * matches. It is used only for the fast compression options. */ local block_state deflate_fast(s, flush) deflate_state *s; int flush; { IPos hash_head; /* head of the hash chain */ int bflush; /* set if current block must be flushed */ for (;;) { /* Make sure that we always have enough lookahead, except * at the end of the input file. We need MAX_MATCH bytes * for the next match, plus MIN_MATCH bytes to insert the * string following the next match. */ if (s->lookahead < MIN_LOOKAHEAD) { fill_window(s); if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { return need_more; } if (s->lookahead == 0) break; /* flush the current block */ } /* Insert the string window[strstart .. strstart+2] in the * dictionary, and set hash_head to the head of the hash chain: */ hash_head = NIL; if (s->lookahead >= MIN_MATCH) { INSERT_STRING(s, s->strstart, hash_head); } /* Find the longest match, discarding those <= prev_length. * At this point we have always match_length < MIN_MATCH */ if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) { /* To simplify the code, we prevent matches with the string * of window index 0 (in particular we have to avoid a match * of the string with itself at the start of the input file). */ s->match_length = longest_match (s, hash_head); /* longest_match() sets match_start */ } if (s->match_length >= MIN_MATCH) { check_match(s, s->strstart, s->match_start, s->match_length); _tr_tally_dist(s, s->strstart - s->match_start, s->match_length - MIN_MATCH, bflush); s->lookahead -= s->match_length; /* Insert new strings in the hash table only if the match length * is not too large. This saves time but degrades compression. */ #ifndef FASTEST if (s->match_length <= s->max_insert_length && s->lookahead >= MIN_MATCH) { s->match_length--; /* string at strstart already in table */ do { s->strstart++; INSERT_STRING(s, s->strstart, hash_head); /* strstart never exceeds WSIZE-MAX_MATCH, so there are * always MIN_MATCH bytes ahead. */ } while (--s->match_length != 0); s->strstart++; } else #endif { s->strstart += s->match_length; s->match_length = 0; s->ins_h = s->window[s->strstart]; UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); #if MIN_MATCH != 3 Call UPDATE_HASH() MIN_MATCH-3 more times #endif /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not * matter since it will be recomputed at next deflate call. */ } } else { /* No match, output a literal byte */ Tracevv((stderr,"%c", s->window[s->strstart])); _tr_tally_lit (s, s->window[s->strstart], bflush); s->lookahead--; s->strstart++; } if (bflush) FLUSH_BLOCK(s, 0); } s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1; if (flush == Z_FINISH) { FLUSH_BLOCK(s, 1); return finish_done; } if (s->last_lit) FLUSH_BLOCK(s, 0); return block_done; } #ifndef FASTEST /* =========================================================================== * Same as above, but achieves better compression. We use a lazy * evaluation for matches: a match is finally adopted only if there is * no better match at the next window position. */ local block_state deflate_slow(s, flush) deflate_state *s; int flush; { IPos hash_head; /* head of hash chain */ int bflush; /* set if current block must be flushed */ /* Process the input block. */ for (;;) { /* Make sure that we always have enough lookahead, except * at the end of the input file. We need MAX_MATCH bytes * for the next match, plus MIN_MATCH bytes to insert the * string following the next match. */ if (s->lookahead < MIN_LOOKAHEAD) { fill_window(s); if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { return need_more; } if (s->lookahead == 0) break; /* flush the current block */ } /* Insert the string window[strstart .. strstart+2] in the * dictionary, and set hash_head to the head of the hash chain: */ hash_head = NIL; if (s->lookahead >= MIN_MATCH) { INSERT_STRING(s, s->strstart, hash_head); } /* Find the longest match, discarding those <= prev_length. */ s->prev_length = s->match_length, s->prev_match = s->match_start; s->match_length = MIN_MATCH-1; if (hash_head != NIL && s->prev_length < s->max_lazy_match && s->strstart - hash_head <= MAX_DIST(s)) { /* To simplify the code, we prevent matches with the string * of window index 0 (in particular we have to avoid a match * of the string with itself at the start of the input file). */ s->match_length = longest_match (s, hash_head); /* longest_match() sets match_start */ if (s->match_length <= 5 && (s->strategy == Z_FILTERED #if TOO_FAR <= 32767 || (s->match_length == MIN_MATCH && s->strstart - s->match_start > TOO_FAR) #endif )) { /* If prev_match is also MIN_MATCH, match_start is garbage * but we will ignore the current match anyway. */ s->match_length = MIN_MATCH-1; } } /* If there was a match at the previous step and the current * match is not better, output the previous match: */ if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) { uInt max_insert = s->strstart + s->lookahead - MIN_MATCH; /* Do not insert strings in hash table beyond this. */ check_match(s, s->strstart-1, s->prev_match, s->prev_length); _tr_tally_dist(s, s->strstart -1 - s->prev_match, s->prev_length - MIN_MATCH, bflush); /* Insert in hash table all strings up to the end of the match. * strstart-1 and strstart are already inserted. If there is not * enough lookahead, the last two strings are not inserted in * the hash table. */ s->lookahead -= s->prev_length-1; s->prev_length -= 2; do { if (++s->strstart <= max_insert) { INSERT_STRING(s, s->strstart, hash_head); } } while (--s->prev_length != 0); s->match_available = 0; s->match_length = MIN_MATCH-1; s->strstart++; if (bflush) FLUSH_BLOCK(s, 0); } else if (s->match_available) { /* If there was no match at the previous position, output a * single literal. If there was a match but the current match * is longer, truncate the previous match to a single literal. */ Tracevv((stderr,"%c", s->window[s->strstart-1])); _tr_tally_lit(s, s->window[s->strstart-1], bflush); if (bflush) { FLUSH_BLOCK_ONLY(s, 0); } s->strstart++; s->lookahead--; if (s->strm->avail_out == 0) return need_more; } else { /* There is no previous match to compare with, wait for * the next step to decide. */ s->match_available = 1; s->strstart++; s->lookahead--; } } Assert (flush != Z_NO_FLUSH, "no flush?"); if (s->match_available) { Tracevv((stderr,"%c", s->window[s->strstart-1])); _tr_tally_lit(s, s->window[s->strstart-1], bflush); s->match_available = 0; } s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1; if (flush == Z_FINISH) { FLUSH_BLOCK(s, 1); return finish_done; } if (s->last_lit) FLUSH_BLOCK(s, 0); return block_done; } #endif /* FASTEST */ /* =========================================================================== * For Z_RLE, simply look for runs of bytes, generate matches only of distance * one. Do not maintain a hash table. (It will be regenerated if this run of * deflate switches away from Z_RLE.) */ local block_state deflate_rle(s, flush) deflate_state *s; int flush; { int bflush; /* set if current block must be flushed */ uInt prev; /* byte at distance one to match */ Bytef *scan, *strend; /* scan goes up to strend for length of run */ for (;;) { /* Make sure that we always have enough lookahead, except * at the end of the input file. We need MAX_MATCH bytes * for the longest run, plus one for the unrolled loop. */ if (s->lookahead <= MAX_MATCH) { fill_window(s); if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) { return need_more; } if (s->lookahead == 0) break; /* flush the current block */ } /* See how many times the previous byte repeats */ s->match_length = 0; if (s->lookahead >= MIN_MATCH && s->strstart > 0) { scan = s->window + s->strstart - 1; prev = *scan; if (prev == *++scan && prev == *++scan && prev == *++scan) { strend = s->window + s->strstart + MAX_MATCH; do { } while (prev == *++scan && prev == *++scan && prev == *++scan && prev == *++scan && prev == *++scan && prev == *++scan && prev == *++scan && prev == *++scan && scan < strend); s->match_length = MAX_MATCH - (int)(strend - scan); if (s->match_length > s->lookahead) s->match_length = s->lookahead; } Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan"); } /* Emit match if have run of MIN_MATCH or longer, else emit literal */ if (s->match_length >= MIN_MATCH) { check_match(s, s->strstart, s->strstart - 1, s->match_length); _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush); s->lookahead -= s->match_length; s->strstart += s->match_length; s->match_length = 0; } else { /* No match, output a literal byte */ Tracevv((stderr,"%c", s->window[s->strstart])); _tr_tally_lit (s, s->window[s->strstart], bflush); s->lookahead--; s->strstart++; } if (bflush) FLUSH_BLOCK(s, 0); } s->insert = 0; if (flush == Z_FINISH) { FLUSH_BLOCK(s, 1); return finish_done; } if (s->last_lit) FLUSH_BLOCK(s, 0); return block_done; } /* =========================================================================== * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table. * (It will be regenerated if this run of deflate switches away from Huffman.) */ local block_state deflate_huff(s, flush) deflate_state *s; int flush; { int bflush; /* set if current block must be flushed */ for (;;) { /* Make sure that we have a literal to write. */ if (s->lookahead == 0) { fill_window(s); if (s->lookahead == 0) { if (flush == Z_NO_FLUSH) return need_more; break; /* flush the current block */ } } /* Output a literal byte */ s->match_length = 0; Tracevv((stderr,"%c", s->window[s->strstart])); _tr_tally_lit (s, s->window[s->strstart], bflush); s->lookahead--; s->strstart++; if (bflush) FLUSH_BLOCK(s, 0); } s->insert = 0; if (flush == Z_FINISH) { FLUSH_BLOCK(s, 1); return finish_done; } if (s->last_lit) FLUSH_BLOCK(s, 0); return block_done; } /* END OF DUMP OF mz_deflate.c*/ /* START OF DUMP OF mz_crc32.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* crc32.c -- compute the CRC-32 of a data stream * Copyright (C) 1995-2006, 2010, 2011, 2012 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h * * Thanks to Rodney Brown for his contribution of faster * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing * tables for updating the shift register in one step with three exclusive-ors * instead of four steps with four exclusive-ors. This results in about a * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3. */ /* @(#) $Id$ */ /* Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore protection on the static variables used to control the first-use generation of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should first call get_crc_table() to initialize the tables before allowing more than one thread to use crc32(). DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h. */ #ifdef MAKECRCH # include # ifndef DYNAMIC_CRC_TABLE # define DYNAMIC_CRC_TABLE # endif /* !DYNAMIC_CRC_TABLE */ #endif /* MAKECRCH */ #define local static /* Definitions for doing the crc four data bytes at a time. */ #if !defined(NOBYFOUR) && defined(Z_U4) # define BYFOUR #endif #ifdef BYFOUR local unsigned long crc32_little OF((unsigned long, const unsigned char FAR *, unsigned)); local unsigned long crc32_big OF((unsigned long, const unsigned char FAR *, unsigned)); # define TBLS 8 #else # define TBLS 1 #endif /* BYFOUR */ /* Local functions for crc concatenation */ local unsigned long gf2_matrix_times OF((unsigned long *mat, unsigned long vec)); local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat)); local uLong crc32_combine_ OF((uLong crc1, uLong crc2, z_off64_t len2)); #ifdef DYNAMIC_CRC_TABLE local volatile int crc_table_empty = 1; local z_crc_t FAR crc_table[TBLS][256]; local void make_crc_table OF((void)); #ifdef MAKECRCH local void write_table OF((FILE *, const z_crc_t FAR *)); #endif /* MAKECRCH */ /* Generate tables for a byte-wise 32-bit CRC calculation on the polynomial: x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1. Polynomials over GF(2) are represented in binary, one bit per coefficient, with the lowest powers in the most significant bit. Then adding polynomials is just exclusive-or, and multiplying a polynomial by x is a right shift by one. If we call the above polynomial p, and represent a byte as the polynomial q, also with the lowest power in the most significant bit (so the byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p, where a mod b means the remainder after dividing a by b. This calculation is done using the shift-register method of multiplying and taking the remainder. The register is initialized to zero, and for each incoming bit, x^32 is added mod p to the register if the bit is a one (where x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by x (which is shifting right by one and adding x^32 mod p if the bit shifted out is a one). We start with the highest power (least significant bit) of q and repeat for all eight bits of q. The first table is simply the CRC of all possible eight bit values. This is all the information needed to generate CRCs on data a byte at a time for all combinations of CRC register values and incoming bytes. The remaining tables allow for word-at-a-time CRC calculation for both big-endian and little- endian machines, where a word is four bytes. */ local void make_crc_table() { z_crc_t c; int n, k; z_crc_t poly; /* polynomial exclusive-or pattern */ /* terms of polynomial defining this crc (except x^32): */ static volatile int first = 1; /* flag to limit concurrent making */ static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26}; /* See if another task is already doing this (not thread-safe, but better than nothing -- significantly reduces duration of vulnerability in case the advice about DYNAMIC_CRC_TABLE is ignored) */ if (first) { first = 0; /* make exclusive-or pattern from polynomial (0xedb88320UL) */ poly = 0; for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++) poly |= (z_crc_t)1 << (31 - p[n]); /* generate a crc for every 8-bit value */ for (n = 0; n < 256; n++) { c = (z_crc_t)n; for (k = 0; k < 8; k++) c = c & 1 ? poly ^ (c >> 1) : c >> 1; crc_table[0][n] = c; } #ifdef BYFOUR /* generate crc for each value followed by one, two, and three zeros, and then the byte reversal of those as well as the first table */ for (n = 0; n < 256; n++) { c = crc_table[0][n]; crc_table[4][n] = ZSWAP32(c); for (k = 1; k < 4; k++) { c = crc_table[0][c & 0xff] ^ (c >> 8); crc_table[k][n] = c; crc_table[k + 4][n] = ZSWAP32(c); } } #endif /* BYFOUR */ crc_table_empty = 0; } else { /* not first */ /* wait for the other guy to finish (not efficient, but rare) */ while (crc_table_empty) ; } #ifdef MAKECRCH /* write out CRC tables to crc32.h */ { FILE *out; out = fopen("crc32.h", "w"); if (out == NULL) return; fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n"); fprintf(out, " * Generated automatically by crc32.c\n */\n\n"); fprintf(out, "local const z_crc_t FAR "); fprintf(out, "crc_table[TBLS][256] =\n{\n {\n"); write_table(out, crc_table[0]); # ifdef BYFOUR fprintf(out, "#ifdef BYFOUR\n"); for (k = 1; k < 8; k++) { fprintf(out, " },\n {\n"); write_table(out, crc_table[k]); } fprintf(out, "#endif\n"); # endif /* BYFOUR */ fprintf(out, " }\n};\n"); fclose(out); } #endif /* MAKECRCH */ } #ifdef MAKECRCH local void write_table(out, table) FILE *out; const z_crc_t FAR *table; { int n; for (n = 0; n < 256; n++) fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : " ", (unsigned long)(table[n]), n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", ")); } #endif /* MAKECRCH */ #else /* !DYNAMIC_CRC_TABLE */ /* ======================================================================== * Tables of CRC-32s of all single-byte values, made by make_crc_table(). */ /* START OF DUMP OF mz_crc32.h*/ /* crc32.h -- tables for rapid CRC calculation * Generated automatically by crc32.c */ local const z_crc_t FAR crc_table[TBLS][256] = { { 0x00000000UL, 0x77073096UL, 0xee0e612cUL, 0x990951baUL, 0x076dc419UL, 0x706af48fUL, 0xe963a535UL, 0x9e6495a3UL, 0x0edb8832UL, 0x79dcb8a4UL, 0xe0d5e91eUL, 0x97d2d988UL, 0x09b64c2bUL, 0x7eb17cbdUL, 0xe7b82d07UL, 0x90bf1d91UL, 0x1db71064UL, 0x6ab020f2UL, 0xf3b97148UL, 0x84be41deUL, 0x1adad47dUL, 0x6ddde4ebUL, 0xf4d4b551UL, 0x83d385c7UL, 0x136c9856UL, 0x646ba8c0UL, 0xfd62f97aUL, 0x8a65c9ecUL, 0x14015c4fUL, 0x63066cd9UL, 0xfa0f3d63UL, 0x8d080df5UL, 0x3b6e20c8UL, 0x4c69105eUL, 0xd56041e4UL, 0xa2677172UL, 0x3c03e4d1UL, 0x4b04d447UL, 0xd20d85fdUL, 0xa50ab56bUL, 0x35b5a8faUL, 0x42b2986cUL, 0xdbbbc9d6UL, 0xacbcf940UL, 0x32d86ce3UL, 0x45df5c75UL, 0xdcd60dcfUL, 0xabd13d59UL, 0x26d930acUL, 0x51de003aUL, 0xc8d75180UL, 0xbfd06116UL, 0x21b4f4b5UL, 0x56b3c423UL, 0xcfba9599UL, 0xb8bda50fUL, 0x2802b89eUL, 0x5f058808UL, 0xc60cd9b2UL, 0xb10be924UL, 0x2f6f7c87UL, 0x58684c11UL, 0xc1611dabUL, 0xb6662d3dUL, 0x76dc4190UL, 0x01db7106UL, 0x98d220bcUL, 0xefd5102aUL, 0x71b18589UL, 0x06b6b51fUL, 0x9fbfe4a5UL, 0xe8b8d433UL, 0x7807c9a2UL, 0x0f00f934UL, 0x9609a88eUL, 0xe10e9818UL, 0x7f6a0dbbUL, 0x086d3d2dUL, 0x91646c97UL, 0xe6635c01UL, 0x6b6b51f4UL, 0x1c6c6162UL, 0x856530d8UL, 0xf262004eUL, 0x6c0695edUL, 0x1b01a57bUL, 0x8208f4c1UL, 0xf50fc457UL, 0x65b0d9c6UL, 0x12b7e950UL, 0x8bbeb8eaUL, 0xfcb9887cUL, 0x62dd1ddfUL, 0x15da2d49UL, 0x8cd37cf3UL, 0xfbd44c65UL, 0x4db26158UL, 0x3ab551ceUL, 0xa3bc0074UL, 0xd4bb30e2UL, 0x4adfa541UL, 0x3dd895d7UL, 0xa4d1c46dUL, 0xd3d6f4fbUL, 0x4369e96aUL, 0x346ed9fcUL, 0xad678846UL, 0xda60b8d0UL, 0x44042d73UL, 0x33031de5UL, 0xaa0a4c5fUL, 0xdd0d7cc9UL, 0x5005713cUL, 0x270241aaUL, 0xbe0b1010UL, 0xc90c2086UL, 0x5768b525UL, 0x206f85b3UL, 0xb966d409UL, 0xce61e49fUL, 0x5edef90eUL, 0x29d9c998UL, 0xb0d09822UL, 0xc7d7a8b4UL, 0x59b33d17UL, 0x2eb40d81UL, 0xb7bd5c3bUL, 0xc0ba6cadUL, 0xedb88320UL, 0x9abfb3b6UL, 0x03b6e20cUL, 0x74b1d29aUL, 0xead54739UL, 0x9dd277afUL, 0x04db2615UL, 0x73dc1683UL, 0xe3630b12UL, 0x94643b84UL, 0x0d6d6a3eUL, 0x7a6a5aa8UL, 0xe40ecf0bUL, 0x9309ff9dUL, 0x0a00ae27UL, 0x7d079eb1UL, 0xf00f9344UL, 0x8708a3d2UL, 0x1e01f268UL, 0x6906c2feUL, 0xf762575dUL, 0x806567cbUL, 0x196c3671UL, 0x6e6b06e7UL, 0xfed41b76UL, 0x89d32be0UL, 0x10da7a5aUL, 0x67dd4accUL, 0xf9b9df6fUL, 0x8ebeeff9UL, 0x17b7be43UL, 0x60b08ed5UL, 0xd6d6a3e8UL, 0xa1d1937eUL, 0x38d8c2c4UL, 0x4fdff252UL, 0xd1bb67f1UL, 0xa6bc5767UL, 0x3fb506ddUL, 0x48b2364bUL, 0xd80d2bdaUL, 0xaf0a1b4cUL, 0x36034af6UL, 0x41047a60UL, 0xdf60efc3UL, 0xa867df55UL, 0x316e8eefUL, 0x4669be79UL, 0xcb61b38cUL, 0xbc66831aUL, 0x256fd2a0UL, 0x5268e236UL, 0xcc0c7795UL, 0xbb0b4703UL, 0x220216b9UL, 0x5505262fUL, 0xc5ba3bbeUL, 0xb2bd0b28UL, 0x2bb45a92UL, 0x5cb36a04UL, 0xc2d7ffa7UL, 0xb5d0cf31UL, 0x2cd99e8bUL, 0x5bdeae1dUL, 0x9b64c2b0UL, 0xec63f226UL, 0x756aa39cUL, 0x026d930aUL, 0x9c0906a9UL, 0xeb0e363fUL, 0x72076785UL, 0x05005713UL, 0x95bf4a82UL, 0xe2b87a14UL, 0x7bb12baeUL, 0x0cb61b38UL, 0x92d28e9bUL, 0xe5d5be0dUL, 0x7cdcefb7UL, 0x0bdbdf21UL, 0x86d3d2d4UL, 0xf1d4e242UL, 0x68ddb3f8UL, 0x1fda836eUL, 0x81be16cdUL, 0xf6b9265bUL, 0x6fb077e1UL, 0x18b74777UL, 0x88085ae6UL, 0xff0f6a70UL, 0x66063bcaUL, 0x11010b5cUL, 0x8f659effUL, 0xf862ae69UL, 0x616bffd3UL, 0x166ccf45UL, 0xa00ae278UL, 0xd70dd2eeUL, 0x4e048354UL, 0x3903b3c2UL, 0xa7672661UL, 0xd06016f7UL, 0x4969474dUL, 0x3e6e77dbUL, 0xaed16a4aUL, 0xd9d65adcUL, 0x40df0b66UL, 0x37d83bf0UL, 0xa9bcae53UL, 0xdebb9ec5UL, 0x47b2cf7fUL, 0x30b5ffe9UL, 0xbdbdf21cUL, 0xcabac28aUL, 0x53b39330UL, 0x24b4a3a6UL, 0xbad03605UL, 0xcdd70693UL, 0x54de5729UL, 0x23d967bfUL, 0xb3667a2eUL, 0xc4614ab8UL, 0x5d681b02UL, 0x2a6f2b94UL, 0xb40bbe37UL, 0xc30c8ea1UL, 0x5a05df1bUL, 0x2d02ef8dUL #ifdef BYFOUR }, { 0x00000000UL, 0x191b3141UL, 0x32366282UL, 0x2b2d53c3UL, 0x646cc504UL, 0x7d77f445UL, 0x565aa786UL, 0x4f4196c7UL, 0xc8d98a08UL, 0xd1c2bb49UL, 0xfaefe88aUL, 0xe3f4d9cbUL, 0xacb54f0cUL, 0xb5ae7e4dUL, 0x9e832d8eUL, 0x87981ccfUL, 0x4ac21251UL, 0x53d92310UL, 0x78f470d3UL, 0x61ef4192UL, 0x2eaed755UL, 0x37b5e614UL, 0x1c98b5d7UL, 0x05838496UL, 0x821b9859UL, 0x9b00a918UL, 0xb02dfadbUL, 0xa936cb9aUL, 0xe6775d5dUL, 0xff6c6c1cUL, 0xd4413fdfUL, 0xcd5a0e9eUL, 0x958424a2UL, 0x8c9f15e3UL, 0xa7b24620UL, 0xbea97761UL, 0xf1e8e1a6UL, 0xe8f3d0e7UL, 0xc3de8324UL, 0xdac5b265UL, 0x5d5daeaaUL, 0x44469febUL, 0x6f6bcc28UL, 0x7670fd69UL, 0x39316baeUL, 0x202a5aefUL, 0x0b07092cUL, 0x121c386dUL, 0xdf4636f3UL, 0xc65d07b2UL, 0xed705471UL, 0xf46b6530UL, 0xbb2af3f7UL, 0xa231c2b6UL, 0x891c9175UL, 0x9007a034UL, 0x179fbcfbUL, 0x0e848dbaUL, 0x25a9de79UL, 0x3cb2ef38UL, 0x73f379ffUL, 0x6ae848beUL, 0x41c51b7dUL, 0x58de2a3cUL, 0xf0794f05UL, 0xe9627e44UL, 0xc24f2d87UL, 0xdb541cc6UL, 0x94158a01UL, 0x8d0ebb40UL, 0xa623e883UL, 0xbf38d9c2UL, 0x38a0c50dUL, 0x21bbf44cUL, 0x0a96a78fUL, 0x138d96ceUL, 0x5ccc0009UL, 0x45d73148UL, 0x6efa628bUL, 0x77e153caUL, 0xbabb5d54UL, 0xa3a06c15UL, 0x888d3fd6UL, 0x91960e97UL, 0xded79850UL, 0xc7cca911UL, 0xece1fad2UL, 0xf5facb93UL, 0x7262d75cUL, 0x6b79e61dUL, 0x4054b5deUL, 0x594f849fUL, 0x160e1258UL, 0x0f152319UL, 0x243870daUL, 0x3d23419bUL, 0x65fd6ba7UL, 0x7ce65ae6UL, 0x57cb0925UL, 0x4ed03864UL, 0x0191aea3UL, 0x188a9fe2UL, 0x33a7cc21UL, 0x2abcfd60UL, 0xad24e1afUL, 0xb43fd0eeUL, 0x9f12832dUL, 0x8609b26cUL, 0xc94824abUL, 0xd05315eaUL, 0xfb7e4629UL, 0xe2657768UL, 0x2f3f79f6UL, 0x362448b7UL, 0x1d091b74UL, 0x04122a35UL, 0x4b53bcf2UL, 0x52488db3UL, 0x7965de70UL, 0x607eef31UL, 0xe7e6f3feUL, 0xfefdc2bfUL, 0xd5d0917cUL, 0xcccba03dUL, 0x838a36faUL, 0x9a9107bbUL, 0xb1bc5478UL, 0xa8a76539UL, 0x3b83984bUL, 0x2298a90aUL, 0x09b5fac9UL, 0x10aecb88UL, 0x5fef5d4fUL, 0x46f46c0eUL, 0x6dd93fcdUL, 0x74c20e8cUL, 0xf35a1243UL, 0xea412302UL, 0xc16c70c1UL, 0xd8774180UL, 0x9736d747UL, 0x8e2de606UL, 0xa500b5c5UL, 0xbc1b8484UL, 0x71418a1aUL, 0x685abb5bUL, 0x4377e898UL, 0x5a6cd9d9UL, 0x152d4f1eUL, 0x0c367e5fUL, 0x271b2d9cUL, 0x3e001cddUL, 0xb9980012UL, 0xa0833153UL, 0x8bae6290UL, 0x92b553d1UL, 0xddf4c516UL, 0xc4eff457UL, 0xefc2a794UL, 0xf6d996d5UL, 0xae07bce9UL, 0xb71c8da8UL, 0x9c31de6bUL, 0x852aef2aUL, 0xca6b79edUL, 0xd37048acUL, 0xf85d1b6fUL, 0xe1462a2eUL, 0x66de36e1UL, 0x7fc507a0UL, 0x54e85463UL, 0x4df36522UL, 0x02b2f3e5UL, 0x1ba9c2a4UL, 0x30849167UL, 0x299fa026UL, 0xe4c5aeb8UL, 0xfdde9ff9UL, 0xd6f3cc3aUL, 0xcfe8fd7bUL, 0x80a96bbcUL, 0x99b25afdUL, 0xb29f093eUL, 0xab84387fUL, 0x2c1c24b0UL, 0x350715f1UL, 0x1e2a4632UL, 0x07317773UL, 0x4870e1b4UL, 0x516bd0f5UL, 0x7a468336UL, 0x635db277UL, 0xcbfad74eUL, 0xd2e1e60fUL, 0xf9ccb5ccUL, 0xe0d7848dUL, 0xaf96124aUL, 0xb68d230bUL, 0x9da070c8UL, 0x84bb4189UL, 0x03235d46UL, 0x1a386c07UL, 0x31153fc4UL, 0x280e0e85UL, 0x674f9842UL, 0x7e54a903UL, 0x5579fac0UL, 0x4c62cb81UL, 0x8138c51fUL, 0x9823f45eUL, 0xb30ea79dUL, 0xaa1596dcUL, 0xe554001bUL, 0xfc4f315aUL, 0xd7626299UL, 0xce7953d8UL, 0x49e14f17UL, 0x50fa7e56UL, 0x7bd72d95UL, 0x62cc1cd4UL, 0x2d8d8a13UL, 0x3496bb52UL, 0x1fbbe891UL, 0x06a0d9d0UL, 0x5e7ef3ecUL, 0x4765c2adUL, 0x6c48916eUL, 0x7553a02fUL, 0x3a1236e8UL, 0x230907a9UL, 0x0824546aUL, 0x113f652bUL, 0x96a779e4UL, 0x8fbc48a5UL, 0xa4911b66UL, 0xbd8a2a27UL, 0xf2cbbce0UL, 0xebd08da1UL, 0xc0fdde62UL, 0xd9e6ef23UL, 0x14bce1bdUL, 0x0da7d0fcUL, 0x268a833fUL, 0x3f91b27eUL, 0x70d024b9UL, 0x69cb15f8UL, 0x42e6463bUL, 0x5bfd777aUL, 0xdc656bb5UL, 0xc57e5af4UL, 0xee530937UL, 0xf7483876UL, 0xb809aeb1UL, 0xa1129ff0UL, 0x8a3fcc33UL, 0x9324fd72UL }, { 0x00000000UL, 0x01c26a37UL, 0x0384d46eUL, 0x0246be59UL, 0x0709a8dcUL, 0x06cbc2ebUL, 0x048d7cb2UL, 0x054f1685UL, 0x0e1351b8UL, 0x0fd13b8fUL, 0x0d9785d6UL, 0x0c55efe1UL, 0x091af964UL, 0x08d89353UL, 0x0a9e2d0aUL, 0x0b5c473dUL, 0x1c26a370UL, 0x1de4c947UL, 0x1fa2771eUL, 0x1e601d29UL, 0x1b2f0bacUL, 0x1aed619bUL, 0x18abdfc2UL, 0x1969b5f5UL, 0x1235f2c8UL, 0x13f798ffUL, 0x11b126a6UL, 0x10734c91UL, 0x153c5a14UL, 0x14fe3023UL, 0x16b88e7aUL, 0x177ae44dUL, 0x384d46e0UL, 0x398f2cd7UL, 0x3bc9928eUL, 0x3a0bf8b9UL, 0x3f44ee3cUL, 0x3e86840bUL, 0x3cc03a52UL, 0x3d025065UL, 0x365e1758UL, 0x379c7d6fUL, 0x35dac336UL, 0x3418a901UL, 0x3157bf84UL, 0x3095d5b3UL, 0x32d36beaUL, 0x331101ddUL, 0x246be590UL, 0x25a98fa7UL, 0x27ef31feUL, 0x262d5bc9UL, 0x23624d4cUL, 0x22a0277bUL, 0x20e69922UL, 0x2124f315UL, 0x2a78b428UL, 0x2bbade1fUL, 0x29fc6046UL, 0x283e0a71UL, 0x2d711cf4UL, 0x2cb376c3UL, 0x2ef5c89aUL, 0x2f37a2adUL, 0x709a8dc0UL, 0x7158e7f7UL, 0x731e59aeUL, 0x72dc3399UL, 0x7793251cUL, 0x76514f2bUL, 0x7417f172UL, 0x75d59b45UL, 0x7e89dc78UL, 0x7f4bb64fUL, 0x7d0d0816UL, 0x7ccf6221UL, 0x798074a4UL, 0x78421e93UL, 0x7a04a0caUL, 0x7bc6cafdUL, 0x6cbc2eb0UL, 0x6d7e4487UL, 0x6f38fadeUL, 0x6efa90e9UL, 0x6bb5866cUL, 0x6a77ec5bUL, 0x68315202UL, 0x69f33835UL, 0x62af7f08UL, 0x636d153fUL, 0x612bab66UL, 0x60e9c151UL, 0x65a6d7d4UL, 0x6464bde3UL, 0x662203baUL, 0x67e0698dUL, 0x48d7cb20UL, 0x4915a117UL, 0x4b531f4eUL, 0x4a917579UL, 0x4fde63fcUL, 0x4e1c09cbUL, 0x4c5ab792UL, 0x4d98dda5UL, 0x46c49a98UL, 0x4706f0afUL, 0x45404ef6UL, 0x448224c1UL, 0x41cd3244UL, 0x400f5873UL, 0x4249e62aUL, 0x438b8c1dUL, 0x54f16850UL, 0x55330267UL, 0x5775bc3eUL, 0x56b7d609UL, 0x53f8c08cUL, 0x523aaabbUL, 0x507c14e2UL, 0x51be7ed5UL, 0x5ae239e8UL, 0x5b2053dfUL, 0x5966ed86UL, 0x58a487b1UL, 0x5deb9134UL, 0x5c29fb03UL, 0x5e6f455aUL, 0x5fad2f6dUL, 0xe1351b80UL, 0xe0f771b7UL, 0xe2b1cfeeUL, 0xe373a5d9UL, 0xe63cb35cUL, 0xe7fed96bUL, 0xe5b86732UL, 0xe47a0d05UL, 0xef264a38UL, 0xeee4200fUL, 0xeca29e56UL, 0xed60f461UL, 0xe82fe2e4UL, 0xe9ed88d3UL, 0xebab368aUL, 0xea695cbdUL, 0xfd13b8f0UL, 0xfcd1d2c7UL, 0xfe976c9eUL, 0xff5506a9UL, 0xfa1a102cUL, 0xfbd87a1bUL, 0xf99ec442UL, 0xf85cae75UL, 0xf300e948UL, 0xf2c2837fUL, 0xf0843d26UL, 0xf1465711UL, 0xf4094194UL, 0xf5cb2ba3UL, 0xf78d95faUL, 0xf64fffcdUL, 0xd9785d60UL, 0xd8ba3757UL, 0xdafc890eUL, 0xdb3ee339UL, 0xde71f5bcUL, 0xdfb39f8bUL, 0xddf521d2UL, 0xdc374be5UL, 0xd76b0cd8UL, 0xd6a966efUL, 0xd4efd8b6UL, 0xd52db281UL, 0xd062a404UL, 0xd1a0ce33UL, 0xd3e6706aUL, 0xd2241a5dUL, 0xc55efe10UL, 0xc49c9427UL, 0xc6da2a7eUL, 0xc7184049UL, 0xc25756ccUL, 0xc3953cfbUL, 0xc1d382a2UL, 0xc011e895UL, 0xcb4dafa8UL, 0xca8fc59fUL, 0xc8c97bc6UL, 0xc90b11f1UL, 0xcc440774UL, 0xcd866d43UL, 0xcfc0d31aUL, 0xce02b92dUL, 0x91af9640UL, 0x906dfc77UL, 0x922b422eUL, 0x93e92819UL, 0x96a63e9cUL, 0x976454abUL, 0x9522eaf2UL, 0x94e080c5UL, 0x9fbcc7f8UL, 0x9e7eadcfUL, 0x9c381396UL, 0x9dfa79a1UL, 0x98b56f24UL, 0x99770513UL, 0x9b31bb4aUL, 0x9af3d17dUL, 0x8d893530UL, 0x8c4b5f07UL, 0x8e0de15eUL, 0x8fcf8b69UL, 0x8a809decUL, 0x8b42f7dbUL, 0x89044982UL, 0x88c623b5UL, 0x839a6488UL, 0x82580ebfUL, 0x801eb0e6UL, 0x81dcdad1UL, 0x8493cc54UL, 0x8551a663UL, 0x8717183aUL, 0x86d5720dUL, 0xa9e2d0a0UL, 0xa820ba97UL, 0xaa6604ceUL, 0xaba46ef9UL, 0xaeeb787cUL, 0xaf29124bUL, 0xad6fac12UL, 0xacadc625UL, 0xa7f18118UL, 0xa633eb2fUL, 0xa4755576UL, 0xa5b73f41UL, 0xa0f829c4UL, 0xa13a43f3UL, 0xa37cfdaaUL, 0xa2be979dUL, 0xb5c473d0UL, 0xb40619e7UL, 0xb640a7beUL, 0xb782cd89UL, 0xb2cddb0cUL, 0xb30fb13bUL, 0xb1490f62UL, 0xb08b6555UL, 0xbbd72268UL, 0xba15485fUL, 0xb853f606UL, 0xb9919c31UL, 0xbcde8ab4UL, 0xbd1ce083UL, 0xbf5a5edaUL, 0xbe9834edUL }, { 0x00000000UL, 0xb8bc6765UL, 0xaa09c88bUL, 0x12b5afeeUL, 0x8f629757UL, 0x37def032UL, 0x256b5fdcUL, 0x9dd738b9UL, 0xc5b428efUL, 0x7d084f8aUL, 0x6fbde064UL, 0xd7018701UL, 0x4ad6bfb8UL, 0xf26ad8ddUL, 0xe0df7733UL, 0x58631056UL, 0x5019579fUL, 0xe8a530faUL, 0xfa109f14UL, 0x42acf871UL, 0xdf7bc0c8UL, 0x67c7a7adUL, 0x75720843UL, 0xcdce6f26UL, 0x95ad7f70UL, 0x2d111815UL, 0x3fa4b7fbUL, 0x8718d09eUL, 0x1acfe827UL, 0xa2738f42UL, 0xb0c620acUL, 0x087a47c9UL, 0xa032af3eUL, 0x188ec85bUL, 0x0a3b67b5UL, 0xb28700d0UL, 0x2f503869UL, 0x97ec5f0cUL, 0x8559f0e2UL, 0x3de59787UL, 0x658687d1UL, 0xdd3ae0b4UL, 0xcf8f4f5aUL, 0x7733283fUL, 0xeae41086UL, 0x525877e3UL, 0x40edd80dUL, 0xf851bf68UL, 0xf02bf8a1UL, 0x48979fc4UL, 0x5a22302aUL, 0xe29e574fUL, 0x7f496ff6UL, 0xc7f50893UL, 0xd540a77dUL, 0x6dfcc018UL, 0x359fd04eUL, 0x8d23b72bUL, 0x9f9618c5UL, 0x272a7fa0UL, 0xbafd4719UL, 0x0241207cUL, 0x10f48f92UL, 0xa848e8f7UL, 0x9b14583dUL, 0x23a83f58UL, 0x311d90b6UL, 0x89a1f7d3UL, 0x1476cf6aUL, 0xaccaa80fUL, 0xbe7f07e1UL, 0x06c36084UL, 0x5ea070d2UL, 0xe61c17b7UL, 0xf4a9b859UL, 0x4c15df3cUL, 0xd1c2e785UL, 0x697e80e0UL, 0x7bcb2f0eUL, 0xc377486bUL, 0xcb0d0fa2UL, 0x73b168c7UL, 0x6104c729UL, 0xd9b8a04cUL, 0x446f98f5UL, 0xfcd3ff90UL, 0xee66507eUL, 0x56da371bUL, 0x0eb9274dUL, 0xb6054028UL, 0xa4b0efc6UL, 0x1c0c88a3UL, 0x81dbb01aUL, 0x3967d77fUL, 0x2bd27891UL, 0x936e1ff4UL, 0x3b26f703UL, 0x839a9066UL, 0x912f3f88UL, 0x299358edUL, 0xb4446054UL, 0x0cf80731UL, 0x1e4da8dfUL, 0xa6f1cfbaUL, 0xfe92dfecUL, 0x462eb889UL, 0x549b1767UL, 0xec277002UL, 0x71f048bbUL, 0xc94c2fdeUL, 0xdbf98030UL, 0x6345e755UL, 0x6b3fa09cUL, 0xd383c7f9UL, 0xc1366817UL, 0x798a0f72UL, 0xe45d37cbUL, 0x5ce150aeUL, 0x4e54ff40UL, 0xf6e89825UL, 0xae8b8873UL, 0x1637ef16UL, 0x048240f8UL, 0xbc3e279dUL, 0x21e91f24UL, 0x99557841UL, 0x8be0d7afUL, 0x335cb0caUL, 0xed59b63bUL, 0x55e5d15eUL, 0x47507eb0UL, 0xffec19d5UL, 0x623b216cUL, 0xda874609UL, 0xc832e9e7UL, 0x708e8e82UL, 0x28ed9ed4UL, 0x9051f9b1UL, 0x82e4565fUL, 0x3a58313aUL, 0xa78f0983UL, 0x1f336ee6UL, 0x0d86c108UL, 0xb53aa66dUL, 0xbd40e1a4UL, 0x05fc86c1UL, 0x1749292fUL, 0xaff54e4aUL, 0x322276f3UL, 0x8a9e1196UL, 0x982bbe78UL, 0x2097d91dUL, 0x78f4c94bUL, 0xc048ae2eUL, 0xd2fd01c0UL, 0x6a4166a5UL, 0xf7965e1cUL, 0x4f2a3979UL, 0x5d9f9697UL, 0xe523f1f2UL, 0x4d6b1905UL, 0xf5d77e60UL, 0xe762d18eUL, 0x5fdeb6ebUL, 0xc2098e52UL, 0x7ab5e937UL, 0x680046d9UL, 0xd0bc21bcUL, 0x88df31eaUL, 0x3063568fUL, 0x22d6f961UL, 0x9a6a9e04UL, 0x07bda6bdUL, 0xbf01c1d8UL, 0xadb46e36UL, 0x15080953UL, 0x1d724e9aUL, 0xa5ce29ffUL, 0xb77b8611UL, 0x0fc7e174UL, 0x9210d9cdUL, 0x2aacbea8UL, 0x38191146UL, 0x80a57623UL, 0xd8c66675UL, 0x607a0110UL, 0x72cfaefeUL, 0xca73c99bUL, 0x57a4f122UL, 0xef189647UL, 0xfdad39a9UL, 0x45115eccUL, 0x764dee06UL, 0xcef18963UL, 0xdc44268dUL, 0x64f841e8UL, 0xf92f7951UL, 0x41931e34UL, 0x5326b1daUL, 0xeb9ad6bfUL, 0xb3f9c6e9UL, 0x0b45a18cUL, 0x19f00e62UL, 0xa14c6907UL, 0x3c9b51beUL, 0x842736dbUL, 0x96929935UL, 0x2e2efe50UL, 0x2654b999UL, 0x9ee8defcUL, 0x8c5d7112UL, 0x34e11677UL, 0xa9362eceUL, 0x118a49abUL, 0x033fe645UL, 0xbb838120UL, 0xe3e09176UL, 0x5b5cf613UL, 0x49e959fdUL, 0xf1553e98UL, 0x6c820621UL, 0xd43e6144UL, 0xc68bceaaUL, 0x7e37a9cfUL, 0xd67f4138UL, 0x6ec3265dUL, 0x7c7689b3UL, 0xc4caeed6UL, 0x591dd66fUL, 0xe1a1b10aUL, 0xf3141ee4UL, 0x4ba87981UL, 0x13cb69d7UL, 0xab770eb2UL, 0xb9c2a15cUL, 0x017ec639UL, 0x9ca9fe80UL, 0x241599e5UL, 0x36a0360bUL, 0x8e1c516eUL, 0x866616a7UL, 0x3eda71c2UL, 0x2c6fde2cUL, 0x94d3b949UL, 0x090481f0UL, 0xb1b8e695UL, 0xa30d497bUL, 0x1bb12e1eUL, 0x43d23e48UL, 0xfb6e592dUL, 0xe9dbf6c3UL, 0x516791a6UL, 0xccb0a91fUL, 0x740cce7aUL, 0x66b96194UL, 0xde0506f1UL }, { 0x00000000UL, 0x96300777UL, 0x2c610eeeUL, 0xba510999UL, 0x19c46d07UL, 0x8ff46a70UL, 0x35a563e9UL, 0xa395649eUL, 0x3288db0eUL, 0xa4b8dc79UL, 0x1ee9d5e0UL, 0x88d9d297UL, 0x2b4cb609UL, 0xbd7cb17eUL, 0x072db8e7UL, 0x911dbf90UL, 0x6410b71dUL, 0xf220b06aUL, 0x4871b9f3UL, 0xde41be84UL, 0x7dd4da1aUL, 0xebe4dd6dUL, 0x51b5d4f4UL, 0xc785d383UL, 0x56986c13UL, 0xc0a86b64UL, 0x7af962fdUL, 0xecc9658aUL, 0x4f5c0114UL, 0xd96c0663UL, 0x633d0ffaUL, 0xf50d088dUL, 0xc8206e3bUL, 0x5e10694cUL, 0xe44160d5UL, 0x727167a2UL, 0xd1e4033cUL, 0x47d4044bUL, 0xfd850dd2UL, 0x6bb50aa5UL, 0xfaa8b535UL, 0x6c98b242UL, 0xd6c9bbdbUL, 0x40f9bcacUL, 0xe36cd832UL, 0x755cdf45UL, 0xcf0dd6dcUL, 0x593dd1abUL, 0xac30d926UL, 0x3a00de51UL, 0x8051d7c8UL, 0x1661d0bfUL, 0xb5f4b421UL, 0x23c4b356UL, 0x9995bacfUL, 0x0fa5bdb8UL, 0x9eb80228UL, 0x0888055fUL, 0xb2d90cc6UL, 0x24e90bb1UL, 0x877c6f2fUL, 0x114c6858UL, 0xab1d61c1UL, 0x3d2d66b6UL, 0x9041dc76UL, 0x0671db01UL, 0xbc20d298UL, 0x2a10d5efUL, 0x8985b171UL, 0x1fb5b606UL, 0xa5e4bf9fUL, 0x33d4b8e8UL, 0xa2c90778UL, 0x34f9000fUL, 0x8ea80996UL, 0x18980ee1UL, 0xbb0d6a7fUL, 0x2d3d6d08UL, 0x976c6491UL, 0x015c63e6UL, 0xf4516b6bUL, 0x62616c1cUL, 0xd8306585UL, 0x4e0062f2UL, 0xed95066cUL, 0x7ba5011bUL, 0xc1f40882UL, 0x57c40ff5UL, 0xc6d9b065UL, 0x50e9b712UL, 0xeab8be8bUL, 0x7c88b9fcUL, 0xdf1ddd62UL, 0x492dda15UL, 0xf37cd38cUL, 0x654cd4fbUL, 0x5861b24dUL, 0xce51b53aUL, 0x7400bca3UL, 0xe230bbd4UL, 0x41a5df4aUL, 0xd795d83dUL, 0x6dc4d1a4UL, 0xfbf4d6d3UL, 0x6ae96943UL, 0xfcd96e34UL, 0x468867adUL, 0xd0b860daUL, 0x732d0444UL, 0xe51d0333UL, 0x5f4c0aaaUL, 0xc97c0dddUL, 0x3c710550UL, 0xaa410227UL, 0x10100bbeUL, 0x86200cc9UL, 0x25b56857UL, 0xb3856f20UL, 0x09d466b9UL, 0x9fe461ceUL, 0x0ef9de5eUL, 0x98c9d929UL, 0x2298d0b0UL, 0xb4a8d7c7UL, 0x173db359UL, 0x810db42eUL, 0x3b5cbdb7UL, 0xad6cbac0UL, 0x2083b8edUL, 0xb6b3bf9aUL, 0x0ce2b603UL, 0x9ad2b174UL, 0x3947d5eaUL, 0xaf77d29dUL, 0x1526db04UL, 0x8316dc73UL, 0x120b63e3UL, 0x843b6494UL, 0x3e6a6d0dUL, 0xa85a6a7aUL, 0x0bcf0ee4UL, 0x9dff0993UL, 0x27ae000aUL, 0xb19e077dUL, 0x44930ff0UL, 0xd2a30887UL, 0x68f2011eUL, 0xfec20669UL, 0x5d5762f7UL, 0xcb676580UL, 0x71366c19UL, 0xe7066b6eUL, 0x761bd4feUL, 0xe02bd389UL, 0x5a7ada10UL, 0xcc4add67UL, 0x6fdfb9f9UL, 0xf9efbe8eUL, 0x43beb717UL, 0xd58eb060UL, 0xe8a3d6d6UL, 0x7e93d1a1UL, 0xc4c2d838UL, 0x52f2df4fUL, 0xf167bbd1UL, 0x6757bca6UL, 0xdd06b53fUL, 0x4b36b248UL, 0xda2b0dd8UL, 0x4c1b0aafUL, 0xf64a0336UL, 0x607a0441UL, 0xc3ef60dfUL, 0x55df67a8UL, 0xef8e6e31UL, 0x79be6946UL, 0x8cb361cbUL, 0x1a8366bcUL, 0xa0d26f25UL, 0x36e26852UL, 0x95770cccUL, 0x03470bbbUL, 0xb9160222UL, 0x2f260555UL, 0xbe3bbac5UL, 0x280bbdb2UL, 0x925ab42bUL, 0x046ab35cUL, 0xa7ffd7c2UL, 0x31cfd0b5UL, 0x8b9ed92cUL, 0x1daede5bUL, 0xb0c2649bUL, 0x26f263ecUL, 0x9ca36a75UL, 0x0a936d02UL, 0xa906099cUL, 0x3f360eebUL, 0x85670772UL, 0x13570005UL, 0x824abf95UL, 0x147ab8e2UL, 0xae2bb17bUL, 0x381bb60cUL, 0x9b8ed292UL, 0x0dbed5e5UL, 0xb7efdc7cUL, 0x21dfdb0bUL, 0xd4d2d386UL, 0x42e2d4f1UL, 0xf8b3dd68UL, 0x6e83da1fUL, 0xcd16be81UL, 0x5b26b9f6UL, 0xe177b06fUL, 0x7747b718UL, 0xe65a0888UL, 0x706a0fffUL, 0xca3b0666UL, 0x5c0b0111UL, 0xff9e658fUL, 0x69ae62f8UL, 0xd3ff6b61UL, 0x45cf6c16UL, 0x78e20aa0UL, 0xeed20dd7UL, 0x5483044eUL, 0xc2b30339UL, 0x612667a7UL, 0xf71660d0UL, 0x4d476949UL, 0xdb776e3eUL, 0x4a6ad1aeUL, 0xdc5ad6d9UL, 0x660bdf40UL, 0xf03bd837UL, 0x53aebca9UL, 0xc59ebbdeUL, 0x7fcfb247UL, 0xe9ffb530UL, 0x1cf2bdbdUL, 0x8ac2bacaUL, 0x3093b353UL, 0xa6a3b424UL, 0x0536d0baUL, 0x9306d7cdUL, 0x2957de54UL, 0xbf67d923UL, 0x2e7a66b3UL, 0xb84a61c4UL, 0x021b685dUL, 0x942b6f2aUL, 0x37be0bb4UL, 0xa18e0cc3UL, 0x1bdf055aUL, 0x8def022dUL }, { 0x00000000UL, 0x41311b19UL, 0x82623632UL, 0xc3532d2bUL, 0x04c56c64UL, 0x45f4777dUL, 0x86a75a56UL, 0xc796414fUL, 0x088ad9c8UL, 0x49bbc2d1UL, 0x8ae8effaUL, 0xcbd9f4e3UL, 0x0c4fb5acUL, 0x4d7eaeb5UL, 0x8e2d839eUL, 0xcf1c9887UL, 0x5112c24aUL, 0x1023d953UL, 0xd370f478UL, 0x9241ef61UL, 0x55d7ae2eUL, 0x14e6b537UL, 0xd7b5981cUL, 0x96848305UL, 0x59981b82UL, 0x18a9009bUL, 0xdbfa2db0UL, 0x9acb36a9UL, 0x5d5d77e6UL, 0x1c6c6cffUL, 0xdf3f41d4UL, 0x9e0e5acdUL, 0xa2248495UL, 0xe3159f8cUL, 0x2046b2a7UL, 0x6177a9beUL, 0xa6e1e8f1UL, 0xe7d0f3e8UL, 0x2483dec3UL, 0x65b2c5daUL, 0xaaae5d5dUL, 0xeb9f4644UL, 0x28cc6b6fUL, 0x69fd7076UL, 0xae6b3139UL, 0xef5a2a20UL, 0x2c09070bUL, 0x6d381c12UL, 0xf33646dfUL, 0xb2075dc6UL, 0x715470edUL, 0x30656bf4UL, 0xf7f32abbUL, 0xb6c231a2UL, 0x75911c89UL, 0x34a00790UL, 0xfbbc9f17UL, 0xba8d840eUL, 0x79dea925UL, 0x38efb23cUL, 0xff79f373UL, 0xbe48e86aUL, 0x7d1bc541UL, 0x3c2ade58UL, 0x054f79f0UL, 0x447e62e9UL, 0x872d4fc2UL, 0xc61c54dbUL, 0x018a1594UL, 0x40bb0e8dUL, 0x83e823a6UL, 0xc2d938bfUL, 0x0dc5a038UL, 0x4cf4bb21UL, 0x8fa7960aUL, 0xce968d13UL, 0x0900cc5cUL, 0x4831d745UL, 0x8b62fa6eUL, 0xca53e177UL, 0x545dbbbaUL, 0x156ca0a3UL, 0xd63f8d88UL, 0x970e9691UL, 0x5098d7deUL, 0x11a9ccc7UL, 0xd2fae1ecUL, 0x93cbfaf5UL, 0x5cd76272UL, 0x1de6796bUL, 0xdeb55440UL, 0x9f844f59UL, 0x58120e16UL, 0x1923150fUL, 0xda703824UL, 0x9b41233dUL, 0xa76bfd65UL, 0xe65ae67cUL, 0x2509cb57UL, 0x6438d04eUL, 0xa3ae9101UL, 0xe29f8a18UL, 0x21cca733UL, 0x60fdbc2aUL, 0xafe124adUL, 0xeed03fb4UL, 0x2d83129fUL, 0x6cb20986UL, 0xab2448c9UL, 0xea1553d0UL, 0x29467efbUL, 0x687765e2UL, 0xf6793f2fUL, 0xb7482436UL, 0x741b091dUL, 0x352a1204UL, 0xf2bc534bUL, 0xb38d4852UL, 0x70de6579UL, 0x31ef7e60UL, 0xfef3e6e7UL, 0xbfc2fdfeUL, 0x7c91d0d5UL, 0x3da0cbccUL, 0xfa368a83UL, 0xbb07919aUL, 0x7854bcb1UL, 0x3965a7a8UL, 0x4b98833bUL, 0x0aa99822UL, 0xc9fab509UL, 0x88cbae10UL, 0x4f5def5fUL, 0x0e6cf446UL, 0xcd3fd96dUL, 0x8c0ec274UL, 0x43125af3UL, 0x022341eaUL, 0xc1706cc1UL, 0x804177d8UL, 0x47d73697UL, 0x06e62d8eUL, 0xc5b500a5UL, 0x84841bbcUL, 0x1a8a4171UL, 0x5bbb5a68UL, 0x98e87743UL, 0xd9d96c5aUL, 0x1e4f2d15UL, 0x5f7e360cUL, 0x9c2d1b27UL, 0xdd1c003eUL, 0x120098b9UL, 0x533183a0UL, 0x9062ae8bUL, 0xd153b592UL, 0x16c5f4ddUL, 0x57f4efc4UL, 0x94a7c2efUL, 0xd596d9f6UL, 0xe9bc07aeUL, 0xa88d1cb7UL, 0x6bde319cUL, 0x2aef2a85UL, 0xed796bcaUL, 0xac4870d3UL, 0x6f1b5df8UL, 0x2e2a46e1UL, 0xe136de66UL, 0xa007c57fUL, 0x6354e854UL, 0x2265f34dUL, 0xe5f3b202UL, 0xa4c2a91bUL, 0x67918430UL, 0x26a09f29UL, 0xb8aec5e4UL, 0xf99fdefdUL, 0x3accf3d6UL, 0x7bfde8cfUL, 0xbc6ba980UL, 0xfd5ab299UL, 0x3e099fb2UL, 0x7f3884abUL, 0xb0241c2cUL, 0xf1150735UL, 0x32462a1eUL, 0x73773107UL, 0xb4e17048UL, 0xf5d06b51UL, 0x3683467aUL, 0x77b25d63UL, 0x4ed7facbUL, 0x0fe6e1d2UL, 0xccb5ccf9UL, 0x8d84d7e0UL, 0x4a1296afUL, 0x0b238db6UL, 0xc870a09dUL, 0x8941bb84UL, 0x465d2303UL, 0x076c381aUL, 0xc43f1531UL, 0x850e0e28UL, 0x42984f67UL, 0x03a9547eUL, 0xc0fa7955UL, 0x81cb624cUL, 0x1fc53881UL, 0x5ef42398UL, 0x9da70eb3UL, 0xdc9615aaUL, 0x1b0054e5UL, 0x5a314ffcUL, 0x996262d7UL, 0xd85379ceUL, 0x174fe149UL, 0x567efa50UL, 0x952dd77bUL, 0xd41ccc62UL, 0x138a8d2dUL, 0x52bb9634UL, 0x91e8bb1fUL, 0xd0d9a006UL, 0xecf37e5eUL, 0xadc26547UL, 0x6e91486cUL, 0x2fa05375UL, 0xe836123aUL, 0xa9070923UL, 0x6a542408UL, 0x2b653f11UL, 0xe479a796UL, 0xa548bc8fUL, 0x661b91a4UL, 0x272a8abdUL, 0xe0bccbf2UL, 0xa18dd0ebUL, 0x62defdc0UL, 0x23efe6d9UL, 0xbde1bc14UL, 0xfcd0a70dUL, 0x3f838a26UL, 0x7eb2913fUL, 0xb924d070UL, 0xf815cb69UL, 0x3b46e642UL, 0x7a77fd5bUL, 0xb56b65dcUL, 0xf45a7ec5UL, 0x370953eeUL, 0x763848f7UL, 0xb1ae09b8UL, 0xf09f12a1UL, 0x33cc3f8aUL, 0x72fd2493UL }, { 0x00000000UL, 0x376ac201UL, 0x6ed48403UL, 0x59be4602UL, 0xdca80907UL, 0xebc2cb06UL, 0xb27c8d04UL, 0x85164f05UL, 0xb851130eUL, 0x8f3bd10fUL, 0xd685970dUL, 0xe1ef550cUL, 0x64f91a09UL, 0x5393d808UL, 0x0a2d9e0aUL, 0x3d475c0bUL, 0x70a3261cUL, 0x47c9e41dUL, 0x1e77a21fUL, 0x291d601eUL, 0xac0b2f1bUL, 0x9b61ed1aUL, 0xc2dfab18UL, 0xf5b56919UL, 0xc8f23512UL, 0xff98f713UL, 0xa626b111UL, 0x914c7310UL, 0x145a3c15UL, 0x2330fe14UL, 0x7a8eb816UL, 0x4de47a17UL, 0xe0464d38UL, 0xd72c8f39UL, 0x8e92c93bUL, 0xb9f80b3aUL, 0x3cee443fUL, 0x0b84863eUL, 0x523ac03cUL, 0x6550023dUL, 0x58175e36UL, 0x6f7d9c37UL, 0x36c3da35UL, 0x01a91834UL, 0x84bf5731UL, 0xb3d59530UL, 0xea6bd332UL, 0xdd011133UL, 0x90e56b24UL, 0xa78fa925UL, 0xfe31ef27UL, 0xc95b2d26UL, 0x4c4d6223UL, 0x7b27a022UL, 0x2299e620UL, 0x15f32421UL, 0x28b4782aUL, 0x1fdeba2bUL, 0x4660fc29UL, 0x710a3e28UL, 0xf41c712dUL, 0xc376b32cUL, 0x9ac8f52eUL, 0xada2372fUL, 0xc08d9a70UL, 0xf7e75871UL, 0xae591e73UL, 0x9933dc72UL, 0x1c259377UL, 0x2b4f5176UL, 0x72f11774UL, 0x459bd575UL, 0x78dc897eUL, 0x4fb64b7fUL, 0x16080d7dUL, 0x2162cf7cUL, 0xa4748079UL, 0x931e4278UL, 0xcaa0047aUL, 0xfdcac67bUL, 0xb02ebc6cUL, 0x87447e6dUL, 0xdefa386fUL, 0xe990fa6eUL, 0x6c86b56bUL, 0x5bec776aUL, 0x02523168UL, 0x3538f369UL, 0x087faf62UL, 0x3f156d63UL, 0x66ab2b61UL, 0x51c1e960UL, 0xd4d7a665UL, 0xe3bd6464UL, 0xba032266UL, 0x8d69e067UL, 0x20cbd748UL, 0x17a11549UL, 0x4e1f534bUL, 0x7975914aUL, 0xfc63de4fUL, 0xcb091c4eUL, 0x92b75a4cUL, 0xa5dd984dUL, 0x989ac446UL, 0xaff00647UL, 0xf64e4045UL, 0xc1248244UL, 0x4432cd41UL, 0x73580f40UL, 0x2ae64942UL, 0x1d8c8b43UL, 0x5068f154UL, 0x67023355UL, 0x3ebc7557UL, 0x09d6b756UL, 0x8cc0f853UL, 0xbbaa3a52UL, 0xe2147c50UL, 0xd57ebe51UL, 0xe839e25aUL, 0xdf53205bUL, 0x86ed6659UL, 0xb187a458UL, 0x3491eb5dUL, 0x03fb295cUL, 0x5a456f5eUL, 0x6d2fad5fUL, 0x801b35e1UL, 0xb771f7e0UL, 0xeecfb1e2UL, 0xd9a573e3UL, 0x5cb33ce6UL, 0x6bd9fee7UL, 0x3267b8e5UL, 0x050d7ae4UL, 0x384a26efUL, 0x0f20e4eeUL, 0x569ea2ecUL, 0x61f460edUL, 0xe4e22fe8UL, 0xd388ede9UL, 0x8a36abebUL, 0xbd5c69eaUL, 0xf0b813fdUL, 0xc7d2d1fcUL, 0x9e6c97feUL, 0xa90655ffUL, 0x2c101afaUL, 0x1b7ad8fbUL, 0x42c49ef9UL, 0x75ae5cf8UL, 0x48e900f3UL, 0x7f83c2f2UL, 0x263d84f0UL, 0x115746f1UL, 0x944109f4UL, 0xa32bcbf5UL, 0xfa958df7UL, 0xcdff4ff6UL, 0x605d78d9UL, 0x5737bad8UL, 0x0e89fcdaUL, 0x39e33edbUL, 0xbcf571deUL, 0x8b9fb3dfUL, 0xd221f5ddUL, 0xe54b37dcUL, 0xd80c6bd7UL, 0xef66a9d6UL, 0xb6d8efd4UL, 0x81b22dd5UL, 0x04a462d0UL, 0x33cea0d1UL, 0x6a70e6d3UL, 0x5d1a24d2UL, 0x10fe5ec5UL, 0x27949cc4UL, 0x7e2adac6UL, 0x494018c7UL, 0xcc5657c2UL, 0xfb3c95c3UL, 0xa282d3c1UL, 0x95e811c0UL, 0xa8af4dcbUL, 0x9fc58fcaUL, 0xc67bc9c8UL, 0xf1110bc9UL, 0x740744ccUL, 0x436d86cdUL, 0x1ad3c0cfUL, 0x2db902ceUL, 0x4096af91UL, 0x77fc6d90UL, 0x2e422b92UL, 0x1928e993UL, 0x9c3ea696UL, 0xab546497UL, 0xf2ea2295UL, 0xc580e094UL, 0xf8c7bc9fUL, 0xcfad7e9eUL, 0x9613389cUL, 0xa179fa9dUL, 0x246fb598UL, 0x13057799UL, 0x4abb319bUL, 0x7dd1f39aUL, 0x3035898dUL, 0x075f4b8cUL, 0x5ee10d8eUL, 0x698bcf8fUL, 0xec9d808aUL, 0xdbf7428bUL, 0x82490489UL, 0xb523c688UL, 0x88649a83UL, 0xbf0e5882UL, 0xe6b01e80UL, 0xd1dadc81UL, 0x54cc9384UL, 0x63a65185UL, 0x3a181787UL, 0x0d72d586UL, 0xa0d0e2a9UL, 0x97ba20a8UL, 0xce0466aaUL, 0xf96ea4abUL, 0x7c78ebaeUL, 0x4b1229afUL, 0x12ac6fadUL, 0x25c6adacUL, 0x1881f1a7UL, 0x2feb33a6UL, 0x765575a4UL, 0x413fb7a5UL, 0xc429f8a0UL, 0xf3433aa1UL, 0xaafd7ca3UL, 0x9d97bea2UL, 0xd073c4b5UL, 0xe71906b4UL, 0xbea740b6UL, 0x89cd82b7UL, 0x0cdbcdb2UL, 0x3bb10fb3UL, 0x620f49b1UL, 0x55658bb0UL, 0x6822d7bbUL, 0x5f4815baUL, 0x06f653b8UL, 0x319c91b9UL, 0xb48adebcUL, 0x83e01cbdUL, 0xda5e5abfUL, 0xed3498beUL }, { 0x00000000UL, 0x6567bcb8UL, 0x8bc809aaUL, 0xeeafb512UL, 0x5797628fUL, 0x32f0de37UL, 0xdc5f6b25UL, 0xb938d79dUL, 0xef28b4c5UL, 0x8a4f087dUL, 0x64e0bd6fUL, 0x018701d7UL, 0xb8bfd64aUL, 0xddd86af2UL, 0x3377dfe0UL, 0x56106358UL, 0x9f571950UL, 0xfa30a5e8UL, 0x149f10faUL, 0x71f8ac42UL, 0xc8c07bdfUL, 0xada7c767UL, 0x43087275UL, 0x266fcecdUL, 0x707fad95UL, 0x1518112dUL, 0xfbb7a43fUL, 0x9ed01887UL, 0x27e8cf1aUL, 0x428f73a2UL, 0xac20c6b0UL, 0xc9477a08UL, 0x3eaf32a0UL, 0x5bc88e18UL, 0xb5673b0aUL, 0xd00087b2UL, 0x6938502fUL, 0x0c5fec97UL, 0xe2f05985UL, 0x8797e53dUL, 0xd1878665UL, 0xb4e03addUL, 0x5a4f8fcfUL, 0x3f283377UL, 0x8610e4eaUL, 0xe3775852UL, 0x0dd8ed40UL, 0x68bf51f8UL, 0xa1f82bf0UL, 0xc49f9748UL, 0x2a30225aUL, 0x4f579ee2UL, 0xf66f497fUL, 0x9308f5c7UL, 0x7da740d5UL, 0x18c0fc6dUL, 0x4ed09f35UL, 0x2bb7238dUL, 0xc518969fUL, 0xa07f2a27UL, 0x1947fdbaUL, 0x7c204102UL, 0x928ff410UL, 0xf7e848a8UL, 0x3d58149bUL, 0x583fa823UL, 0xb6901d31UL, 0xd3f7a189UL, 0x6acf7614UL, 0x0fa8caacUL, 0xe1077fbeUL, 0x8460c306UL, 0xd270a05eUL, 0xb7171ce6UL, 0x59b8a9f4UL, 0x3cdf154cUL, 0x85e7c2d1UL, 0xe0807e69UL, 0x0e2fcb7bUL, 0x6b4877c3UL, 0xa20f0dcbUL, 0xc768b173UL, 0x29c70461UL, 0x4ca0b8d9UL, 0xf5986f44UL, 0x90ffd3fcUL, 0x7e5066eeUL, 0x1b37da56UL, 0x4d27b90eUL, 0x284005b6UL, 0xc6efb0a4UL, 0xa3880c1cUL, 0x1ab0db81UL, 0x7fd76739UL, 0x9178d22bUL, 0xf41f6e93UL, 0x03f7263bUL, 0x66909a83UL, 0x883f2f91UL, 0xed589329UL, 0x546044b4UL, 0x3107f80cUL, 0xdfa84d1eUL, 0xbacff1a6UL, 0xecdf92feUL, 0x89b82e46UL, 0x67179b54UL, 0x027027ecUL, 0xbb48f071UL, 0xde2f4cc9UL, 0x3080f9dbUL, 0x55e74563UL, 0x9ca03f6bUL, 0xf9c783d3UL, 0x176836c1UL, 0x720f8a79UL, 0xcb375de4UL, 0xae50e15cUL, 0x40ff544eUL, 0x2598e8f6UL, 0x73888baeUL, 0x16ef3716UL, 0xf8408204UL, 0x9d273ebcUL, 0x241fe921UL, 0x41785599UL, 0xafd7e08bUL, 0xcab05c33UL, 0x3bb659edUL, 0x5ed1e555UL, 0xb07e5047UL, 0xd519ecffUL, 0x6c213b62UL, 0x094687daUL, 0xe7e932c8UL, 0x828e8e70UL, 0xd49eed28UL, 0xb1f95190UL, 0x5f56e482UL, 0x3a31583aUL, 0x83098fa7UL, 0xe66e331fUL, 0x08c1860dUL, 0x6da63ab5UL, 0xa4e140bdUL, 0xc186fc05UL, 0x2f294917UL, 0x4a4ef5afUL, 0xf3762232UL, 0x96119e8aUL, 0x78be2b98UL, 0x1dd99720UL, 0x4bc9f478UL, 0x2eae48c0UL, 0xc001fdd2UL, 0xa566416aUL, 0x1c5e96f7UL, 0x79392a4fUL, 0x97969f5dUL, 0xf2f123e5UL, 0x05196b4dUL, 0x607ed7f5UL, 0x8ed162e7UL, 0xebb6de5fUL, 0x528e09c2UL, 0x37e9b57aUL, 0xd9460068UL, 0xbc21bcd0UL, 0xea31df88UL, 0x8f566330UL, 0x61f9d622UL, 0x049e6a9aUL, 0xbda6bd07UL, 0xd8c101bfUL, 0x366eb4adUL, 0x53090815UL, 0x9a4e721dUL, 0xff29cea5UL, 0x11867bb7UL, 0x74e1c70fUL, 0xcdd91092UL, 0xa8beac2aUL, 0x46111938UL, 0x2376a580UL, 0x7566c6d8UL, 0x10017a60UL, 0xfeaecf72UL, 0x9bc973caUL, 0x22f1a457UL, 0x479618efUL, 0xa939adfdUL, 0xcc5e1145UL, 0x06ee4d76UL, 0x6389f1ceUL, 0x8d2644dcUL, 0xe841f864UL, 0x51792ff9UL, 0x341e9341UL, 0xdab12653UL, 0xbfd69aebUL, 0xe9c6f9b3UL, 0x8ca1450bUL, 0x620ef019UL, 0x07694ca1UL, 0xbe519b3cUL, 0xdb362784UL, 0x35999296UL, 0x50fe2e2eUL, 0x99b95426UL, 0xfcdee89eUL, 0x12715d8cUL, 0x7716e134UL, 0xce2e36a9UL, 0xab498a11UL, 0x45e63f03UL, 0x208183bbUL, 0x7691e0e3UL, 0x13f65c5bUL, 0xfd59e949UL, 0x983e55f1UL, 0x2106826cUL, 0x44613ed4UL, 0xaace8bc6UL, 0xcfa9377eUL, 0x38417fd6UL, 0x5d26c36eUL, 0xb389767cUL, 0xd6eecac4UL, 0x6fd61d59UL, 0x0ab1a1e1UL, 0xe41e14f3UL, 0x8179a84bUL, 0xd769cb13UL, 0xb20e77abUL, 0x5ca1c2b9UL, 0x39c67e01UL, 0x80fea99cUL, 0xe5991524UL, 0x0b36a036UL, 0x6e511c8eUL, 0xa7166686UL, 0xc271da3eUL, 0x2cde6f2cUL, 0x49b9d394UL, 0xf0810409UL, 0x95e6b8b1UL, 0x7b490da3UL, 0x1e2eb11bUL, 0x483ed243UL, 0x2d596efbUL, 0xc3f6dbe9UL, 0xa6916751UL, 0x1fa9b0ccUL, 0x7ace0c74UL, 0x9461b966UL, 0xf10605deUL #endif } }; /* END OF DUMP OF mz_crc32.h*/ #endif /* DYNAMIC_CRC_TABLE */ /* ========================================================================= * This function can be used by asm versions of crc32() */ const z_crc_t FAR * ZEXPORT get_crc_table() { #ifdef DYNAMIC_CRC_TABLE if (crc_table_empty) make_crc_table(); #endif /* DYNAMIC_CRC_TABLE */ return (const z_crc_t FAR *)crc_table; } /* ========================================================================= */ #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8) #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1 /* ========================================================================= */ unsigned long ZEXPORT crc32(crc, buf, len) unsigned long crc; const unsigned char FAR *buf; uInt len; { if (buf == Z_NULL) return 0UL; #ifdef DYNAMIC_CRC_TABLE if (crc_table_empty) make_crc_table(); #endif /* DYNAMIC_CRC_TABLE */ #ifdef BYFOUR if (sizeof(void *) == sizeof(ptrdiff_t)) { z_crc_t endian; endian = 1; if (*((unsigned char *)(&endian))) return crc32_little(crc, buf, len); else return crc32_big(crc, buf, len); } #endif /* BYFOUR */ crc = crc ^ 0xffffffffUL; while (len >= 8) { DO8; len -= 8; } if (len) do { DO1; } while (--len); return crc ^ 0xffffffffUL; } #ifdef BYFOUR /* ========================================================================= */ #define DOLIT4 c ^= *buf4++; \ c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \ crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24] #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4 /* ========================================================================= */ local unsigned long crc32_little(crc, buf, len) unsigned long crc; const unsigned char FAR *buf; unsigned len; { register z_crc_t c; register const z_crc_t FAR *buf4; c = (z_crc_t)crc; c = ~c; while (len && ((ptrdiff_t)buf & 3)) { c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); len--; } buf4 = (const z_crc_t FAR *)(const void FAR *)buf; while (len >= 32) { DOLIT32; len -= 32; } while (len >= 4) { DOLIT4; len -= 4; } buf = (const unsigned char FAR *)buf4; if (len) do { c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); } while (--len); c = ~c; return (unsigned long)c; } /* ========================================================================= */ #define DOBIG4 c ^= *++buf4; \ c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \ crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24] #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4 /* ========================================================================= */ local unsigned long crc32_big(crc, buf, len) unsigned long crc; const unsigned char FAR *buf; unsigned len; { register z_crc_t c; register const z_crc_t FAR *buf4; c = ZSWAP32((z_crc_t)crc); c = ~c; while (len && ((ptrdiff_t)buf & 3)) { c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); len--; } buf4 = (const z_crc_t FAR *)(const void FAR *)buf; buf4--; while (len >= 32) { DOBIG32; len -= 32; } while (len >= 4) { DOBIG4; len -= 4; } buf4++; buf = (const unsigned char FAR *)buf4; if (len) do { c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); } while (--len); c = ~c; return (unsigned long)(ZSWAP32(c)); } #endif /* BYFOUR */ #define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */ /* ========================================================================= */ local unsigned long gf2_matrix_times(mat, vec) unsigned long *mat; unsigned long vec; { unsigned long sum; sum = 0; while (vec) { if (vec & 1) sum ^= *mat; vec >>= 1; mat++; } return sum; } /* ========================================================================= */ local void gf2_matrix_square(square, mat) unsigned long *square; unsigned long *mat; { int n; for (n = 0; n < GF2_DIM; n++) square[n] = gf2_matrix_times(mat, mat[n]); } /* ========================================================================= */ local uLong crc32_combine_(crc1, crc2, len2) uLong crc1; uLong crc2; z_off64_t len2; { int n; unsigned long row; unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */ unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */ /* degenerate case (also disallow negative lengths) */ if (len2 <= 0) return crc1; /* put operator for one zero bit in odd */ odd[0] = 0xedb88320UL; /* CRC-32 polynomial */ row = 1; for (n = 1; n < GF2_DIM; n++) { odd[n] = row; row <<= 1; } /* put operator for two zero bits in even */ gf2_matrix_square(even, odd); /* put operator for four zero bits in odd */ gf2_matrix_square(odd, even); /* apply len2 zeros to crc1 (first square will put the operator for one zero byte, eight zero bits, in even) */ do { /* apply zeros operator for this bit of len2 */ gf2_matrix_square(even, odd); if (len2 & 1) crc1 = gf2_matrix_times(even, crc1); len2 >>= 1; /* if no more bits set, then done */ if (len2 == 0) break; /* another iteration of the loop with odd and even swapped */ gf2_matrix_square(odd, even); if (len2 & 1) crc1 = gf2_matrix_times(odd, crc1); len2 >>= 1; /* if no more bits set, then done */ } while (len2 != 0); /* return combined crc */ crc1 ^= crc2; return crc1; } /* ========================================================================= */ uLong ZEXPORT crc32_combine(crc1, crc2, len2) uLong crc1; uLong crc2; z_off_t len2; { return crc32_combine_(crc1, crc2, len2); } uLong ZEXPORT crc32_combine64(crc1, crc2, len2) uLong crc1; uLong crc2; z_off64_t len2; { return crc32_combine_(crc1, crc2, len2); } /* END OF DUMP OF mz_crc32.c*/ /* START OF DUMP OF mz_compress.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* compress.c -- compress a memory buffer * Copyright (C) 1995-2005 Jean-loup Gailly. * For conditions of distribution and use, see copyright notice in zlib.h */ /* @(#) $Id$ */ #define ZLIB_INTERNAL /* =========================================================================== Compresses the source buffer into the destination buffer. The level parameter has the same meaning as in deflateInit. sourceLen is the byte length of the source buffer. Upon entry, destLen is the total size of the destination buffer, which must be at least 0.1% larger than sourceLen plus 12 bytes. Upon exit, destLen is the actual size of the compressed buffer. compress2 returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if there was not enough room in the output buffer, Z_STREAM_ERROR if the level parameter is invalid. */ int ZEXPORT compress2 (dest, destLen, source, sourceLen, level) Bytef *dest; uLongf *destLen; const Bytef *source; uLong sourceLen; int level; { z_stream stream; int err; stream.next_in = (z_const Bytef *)source; stream.avail_in = (uInt)sourceLen; #ifdef MAXSEG_64K /* Check for source > 64K on 16-bit machine: */ if ((uLong)stream.avail_in != sourceLen) return Z_BUF_ERROR; #endif stream.next_out = dest; stream.avail_out = (uInt)*destLen; if ((uLong)stream.avail_out != *destLen) return Z_BUF_ERROR; stream.zalloc = (alloc_func)0; stream.zfree = (free_func)0; stream.opaque = (voidpf)0; err = deflateInit(&stream, level); if (err != Z_OK) return err; err = deflate(&stream, Z_FINISH); if (err != Z_STREAM_END) { deflateEnd(&stream); return err == Z_OK ? Z_BUF_ERROR : err; } *destLen = stream.total_out; err = deflateEnd(&stream); return err; } /* =========================================================================== */ int ZEXPORT compress (dest, destLen, source, sourceLen) Bytef *dest; uLongf *destLen; const Bytef *source; uLong sourceLen; { return compress2(dest, destLen, source, sourceLen, Z_DEFAULT_COMPRESSION); } /* =========================================================================== If the default memLevel or windowBits for deflateInit() is changed, then this function needs to be updated. */ uLong ZEXPORT compressBound (sourceLen) uLong sourceLen; { return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) + (sourceLen >> 25) + 13; } /* END OF DUMP OF mz_compress.c*/ /* START OF DUMP OF mz_adler32.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* adler32.c -- compute the Adler-32 checksum of a data stream * Copyright (C) 1995-2011 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* @(#) $Id$ */ #define local static local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2)); #define BASE 65521 /* largest prime smaller than 65536 */ #define NMAX 5552 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */ #define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;} #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1); #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2); #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4); #define DO16(buf) DO8(buf,0); DO8(buf,8); /* use NO_DIVIDE if your processor does not do division in hardware -- try it both ways to see which is faster */ #ifdef NO_DIVIDE /* note that this assumes BASE is 65521, where 65536 % 65521 == 15 (thank you to John Reiser for pointing this out) */ # define CHOP(a) \ do { \ unsigned long tmp = a >> 16; \ a &= 0xffffUL; \ a += (tmp << 4) - tmp; \ } while (0) # define MOD28(a) \ do { \ CHOP(a); \ if (a >= BASE) a -= BASE; \ } while (0) # define MOD(a) \ do { \ CHOP(a); \ MOD28(a); \ } while (0) # define MOD63(a) \ do { /* this assumes a is not negative */ \ z_off64_t tmp = a >> 32; \ a &= 0xffffffffL; \ a += (tmp << 8) - (tmp << 5) + tmp; \ tmp = a >> 16; \ a &= 0xffffL; \ a += (tmp << 4) - tmp; \ tmp = a >> 16; \ a &= 0xffffL; \ a += (tmp << 4) - tmp; \ if (a >= BASE) a -= BASE; \ } while (0) #else # define MOD(a) a %= BASE # define MOD28(a) a %= BASE # define MOD63(a) a %= BASE #endif /* ========================================================================= */ uLong ZEXPORT adler32(adler, buf, len) uLong adler; const Bytef *buf; uInt len; { unsigned long sum2; unsigned n; /* split Adler-32 into component sums */ sum2 = (adler >> 16) & 0xffff; adler &= 0xffff; /* in case user likes doing a byte at a time, keep it fast */ if (len == 1) { adler += buf[0]; if (adler >= BASE) adler -= BASE; sum2 += adler; if (sum2 >= BASE) sum2 -= BASE; return adler | (sum2 << 16); } /* initial Adler-32 value (deferred check for len == 1 speed) */ if (buf == Z_NULL) return 1L; /* in case short lengths are provided, keep it somewhat fast */ if (len < 16) { while (len--) { adler += *buf++; sum2 += adler; } if (adler >= BASE) adler -= BASE; MOD28(sum2); /* only added so many BASE's */ return adler | (sum2 << 16); } /* do length NMAX blocks -- requires just one modulo operation */ while (len >= NMAX) { len -= NMAX; n = NMAX / 16; /* NMAX is divisible by 16 */ do { DO16(buf); /* 16 sums unrolled */ buf += 16; } while (--n); MOD(adler); MOD(sum2); } /* do remaining bytes (less than NMAX, still just one modulo) */ if (len) { /* avoid modulos if none remaining */ while (len >= 16) { len -= 16; DO16(buf); buf += 16; } while (len--) { adler += *buf++; sum2 += adler; } MOD(adler); MOD(sum2); } /* return recombined sums */ return adler | (sum2 << 16); } /* ========================================================================= */ local uLong adler32_combine_(adler1, adler2, len2) uLong adler1; uLong adler2; z_off64_t len2; { unsigned long sum1; unsigned long sum2; unsigned rem; /* for negative len, return invalid adler32 as a clue for debugging */ if (len2 < 0) return 0xffffffffUL; /* the derivation of this formula is left as an exercise for the reader */ MOD63(len2); /* assumes len2 >= 0 */ rem = (unsigned)len2; sum1 = adler1 & 0xffff; sum2 = rem * sum1; MOD(sum2); sum1 += (adler2 & 0xffff) + BASE - 1; sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem; if (sum1 >= BASE) sum1 -= BASE; if (sum1 >= BASE) sum1 -= BASE; if (sum2 >= (BASE << 1)) sum2 -= (BASE << 1); if (sum2 >= BASE) sum2 -= BASE; return sum1 | (sum2 << 16); } /* ========================================================================= */ uLong ZEXPORT adler32_combine(adler1, adler2, len2) uLong adler1; uLong adler2; z_off_t len2; { return adler32_combine_(adler1, adler2, len2); } uLong ZEXPORT adler32_combine64(adler1, adler2, len2) uLong adler1; uLong adler2; z_off64_t len2; { return adler32_combine_(adler1, adler2, len2); } /* END OF DUMP OF mz_adler32.c*/ /* START OF DUMP OF mz_zutil.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* zutil.c -- target dependent utility functions for the compression library * Copyright (C) 1995-2005, 2010, 2011, 2012 Jean-loup Gailly. * For conditions of distribution and use, see copyright notice in zlib.h */ /* @(#) $Id$ */ #ifndef Z_SOLO #endif #ifndef NO_DUMMY_DECL struct internal_state {int dummy;}; /* for buggy compilers */ #endif z_const char * const z_errmsg[10] = { "need dictionary", /* Z_NEED_DICT 2 */ "stream end", /* Z_STREAM_END 1 */ "", /* Z_OK 0 */ "file error", /* Z_ERRNO (-1) */ "stream error", /* Z_STREAM_ERROR (-2) */ "data error", /* Z_DATA_ERROR (-3) */ "insufficient memory", /* Z_MEM_ERROR (-4) */ "buffer error", /* Z_BUF_ERROR (-5) */ "incompatible version",/* Z_VERSION_ERROR (-6) */ ""}; const char * ZEXPORT zlibVersion() { return ZLIB_VERSION; } uLong ZEXPORT zlibCompileFlags() { uLong flags; flags = 0; switch ((int)(sizeof(uInt))) { case 2: break; case 4: flags += 1; break; case 8: flags += 2; break; default: flags += 3; } switch ((int)(sizeof(uLong))) { case 2: break; case 4: flags += 1 << 2; break; case 8: flags += 2 << 2; break; default: flags += 3 << 2; } switch ((int)(sizeof(voidpf))) { case 2: break; case 4: flags += 1 << 4; break; case 8: flags += 2 << 4; break; default: flags += 3 << 4; } switch ((int)(sizeof(z_off_t))) { case 2: break; case 4: flags += 1 << 6; break; case 8: flags += 2 << 6; break; default: flags += 3 << 6; } #ifdef DEBUG flags += 1 << 8; #endif #if defined(ASMV) || defined(ASMINF) flags += 1 << 9; #endif #ifdef ZLIB_WINAPI flags += 1 << 10; #endif #ifdef BUILDFIXED flags += 1 << 12; #endif #ifdef DYNAMIC_CRC_TABLE flags += 1 << 13; #endif #ifdef NO_GZCOMPRESS flags += 1L << 16; #endif #ifdef NO_GZIP flags += 1L << 17; #endif #ifdef PKZIP_BUG_WORKAROUND flags += 1L << 20; #endif #ifdef FASTEST flags += 1L << 21; #endif #if defined(STDC) || defined(Z_HAVE_STDARG_H) # ifdef NO_vsnprintf flags += 1L << 25; # ifdef HAS_vsprintf_void flags += 1L << 26; # endif # else # ifdef HAS_vsnprintf_void flags += 1L << 26; # endif # endif #else flags += 1L << 24; # ifdef NO_snprintf flags += 1L << 25; # ifdef HAS_sprintf_void flags += 1L << 26; # endif # else # ifdef HAS_snprintf_void flags += 1L << 26; # endif # endif #endif return flags; } #ifdef DEBUG # ifndef verbose # define verbose 0 # endif int ZLIB_INTERNAL z_verbose = verbose; void ZLIB_INTERNAL z_error (m) char *m; { fprintf(stderr, "%s\n", m); exit(1); } #endif /* exported to allow conversion of error code to string for compress() and * uncompress() */ const char * ZEXPORT zError(err) int err; { return ERR_MSG(err); } #if defined(_WIN32_WCE) /* The Microsoft C Run-Time Library for Windows CE doesn't have * errno. We define it as a global variable to simplify porting. * Its value is always 0 and should not be used. */ int errno = 0; #endif #ifndef HAVE_MEMCPY void ZLIB_INTERNAL zmemcpy(dest, source, len) Bytef* dest; const Bytef* source; uInt len; { if (len == 0) return; do { *dest++ = *source++; /* ??? to be unrolled */ } while (--len != 0); } int ZLIB_INTERNAL zmemcmp(s1, s2, len) const Bytef* s1; const Bytef* s2; uInt len; { uInt j; for (j = 0; j < len; j++) { if (s1[j] != s2[j]) return 2*(s1[j] > s2[j])-1; } return 0; } void ZLIB_INTERNAL zmemzero(dest, len) Bytef* dest; uInt len; { if (len == 0) return; do { *dest++ = 0; /* ??? to be unrolled */ } while (--len != 0); } #endif #ifndef Z_SOLO #ifdef SYS16BIT #ifdef __TURBOC__ /* Turbo C in 16-bit mode */ # define MY_ZCALLOC /* Turbo C malloc() does not allow dynamic allocation of 64K bytes * and farmalloc(64K) returns a pointer with an offset of 8, so we * must fix the pointer. Warning: the pointer must be put back to its * original form in order to free it, use zcfree(). */ #define MAX_PTR 10 /* 10*64K = 640K */ local int next_ptr = 0; typedef struct ptr_table_s { voidpf org_ptr; voidpf new_ptr; } ptr_table; local ptr_table table[MAX_PTR]; /* This table is used to remember the original form of pointers * to large buffers (64K). Such pointers are normalized with a zero offset. * Since MSDOS is not a preemptive multitasking OS, this table is not * protected from concurrent access. This hack doesn't work anyway on * a protected system like OS/2. Use Microsoft C instead. */ voidpf ZLIB_INTERNAL zcalloc (voidpf opaque, unsigned items, unsigned size) { voidpf buf = opaque; /* just to make some compilers happy */ ulg bsize = (ulg)items*size; /* If we allocate less than 65520 bytes, we assume that farmalloc * will return a usable pointer which doesn't have to be normalized. */ if (bsize < 65520L) { buf = farmalloc(bsize); if (*(ush*)&buf != 0) return buf; } else { buf = farmalloc(bsize + 16L); } if (buf == NULL || next_ptr >= MAX_PTR) return NULL; table[next_ptr].org_ptr = buf; /* Normalize the pointer to seg:0 */ *((ush*)&buf+1) += ((ush)((uch*)buf-0) + 15) >> 4; *(ush*)&buf = 0; table[next_ptr++].new_ptr = buf; return buf; } void ZLIB_INTERNAL zcfree (voidpf opaque, voidpf ptr) { int n; if (*(ush*)&ptr != 0) { /* object < 64K */ farfree(ptr); return; } /* Find the original pointer */ for (n = 0; n < next_ptr; n++) { if (ptr != table[n].new_ptr) continue; farfree(table[n].org_ptr); while (++n < next_ptr) { table[n-1] = table[n]; } next_ptr--; return; } ptr = opaque; /* just to make some compilers happy */ Assert(0, "zcfree: ptr not found"); } #endif /* __TURBOC__ */ #ifdef M_I86 /* Microsoft C in 16-bit mode */ # define MY_ZCALLOC #if (!defined(_MSC_VER) || (_MSC_VER <= 600)) # define _halloc halloc # define _hfree hfree #endif voidpf ZLIB_INTERNAL zcalloc (voidpf opaque, uInt items, uInt size) { if (opaque) opaque = 0; /* to make compiler happy */ return _halloc((long)items, size); } void ZLIB_INTERNAL zcfree (voidpf opaque, voidpf ptr) { if (opaque) opaque = 0; /* to make compiler happy */ _hfree(ptr); } #endif /* M_I86 */ #endif /* SYS16BIT */ #ifndef MY_ZCALLOC /* Any system without a special alloc function */ #ifndef STDC extern voidp malloc OF((uInt size)); extern voidp calloc OF((uInt items, uInt size)); extern void free OF((voidpf ptr)); #endif voidpf ZLIB_INTERNAL zcalloc (opaque, items, size) voidpf opaque; unsigned items; unsigned size; { if (opaque) items += size - size; /* make compiler happy */ return sizeof(uInt) > 2 ? (voidpf)malloc(items * size) : (voidpf)calloc(items, size); } void ZLIB_INTERNAL zcfree (opaque, ptr) voidpf opaque; voidpf ptr; { free(ptr); if (opaque) return; /* make compiler happy */ } #endif /* MY_ZCALLOC */ #endif /* !Z_SOLO */ /* END OF DUMP OF mz_zutil.c*/ ///////////////////////////////////////////////////////////////////////////////////// // // // sswread : Code for reading SSW files from MCNP(X) // // // // // // Compilation of sswread.c can proceed via any compliant C-compiler using // // -std=c99 or later, and the resulting code must always be linked with libm // // (using -lm). Furthermore, the following preprocessor flags can be used // // when compiling sswread.c to fine tune the build process and the // // capabilities of the resulting binary. // // // // SSWREAD_HASZLIB : Define if compiling and linking with zlib, to allow direct // // reading of gzipped SSW files. // // SSWREAD_ZLIB_INCPATH : Specify alternative value if the zlib header is not to // // be included as "zlib.h". // // SSWREAD_HDR_INCPATH : Specify alternative value if the sswread header itself // // is not to be included as "sswread.h". // // // // This file can be freely used as per the terms in the LICENSE file. // // // // However, note that usage of MCNP(X)-related utilities might require additional // // permissions and licenses from third-parties, which is not within the scope of // // the MCPL project itself. // // // // Written 2015-2017, thomas.kittelmann@esss.se (European Spallation Source). // // // ///////////////////////////////////////////////////////////////////////////////////// #ifdef SSWREAD_HDR_INCPATH # include SSWREAD_HDR_INCPATH #else #ifndef sswread_h #define sswread_h ///////////////////////////////////////////////////////////////////////////////////// // // // Code for reading SSW files from MCNP(X). Not all versions of the format has // // been tested, but it is the hope that this will at the very least provide // // reliable functionality for extracting the particle information within. // // // // The code was written with help from E. Klinkby DTU NuTech and under // // inspiration from equivalent programs written in Fortran (E. Klinkby DTU // // NuTech with help from H. Breitkreutz) and in python (PyNE & mc-tools by K. // // Batkov ESS). // // // // Refer to the top of sswread.c for details regarding how to build. // // // // This file can be freely used as per the terms in the LICENSE file. // // // // However, note that usage of MCNP(X)-related utilities might require additional // // permissions and licenses from third-parties, which is not within the scope of // // the MCPL project itself. // // // // Written 2015-2017, thomas.kittelmann@esss.se (European Spallation Source). // // // ///////////////////////////////////////////////////////////////////////////////////// #include #ifdef __cplusplus extern "C" { #endif typedef struct { void * internal; } ssw_file_t; typedef struct { double x;//cm double y;//cm double z;//cm double dirx; double diry; double dirz; double weight; double ekin;//MeV double time;//"shakes" (1e-8seconds) long rawtype;//raw particle type encoding (mcnpx and mcnp6 employs different schemes) long pdgcode;//rawtype converted to PDG codes. long isurf; } ssw_particle_t; //Open file (can read gzipped ssw .gz files directly if zlib usage is enabled): ssw_file_t ssw_open_file(const char * filename); //Query header info: unsigned long ssw_nparticles(ssw_file_t); const char* ssw_srcname(ssw_file_t);//Usually "mcnp" or "mcnpx" const char* ssw_srcversion(ssw_file_t); const char* ssw_title(ssw_file_t);//Problem title from input deck int ssw_is_gzipped(ssw_file_t);//whether input file was gzipped int ssw_is_mcnp6(ssw_file_t); int ssw_is_mcnp5(ssw_file_t); int ssw_is_mcnpx(ssw_file_t); const char * ssw_mcnpflavour(ssw_file_t);//string like "MCNPX" or "MCNP6" //load next particle (null indicates eof): const ssw_particle_t * ssw_load_particle(ssw_file_t); //close file and release resources: void ssw_close_file(ssw_file_t); //Advanced info about file layout: void ssw_layout(ssw_file_t, int* reclen, int* ssblen, int64_t* hdrlen, int64_t* np1pos, int64_t* nrsspos); //////////////////////////////////////////////////////////////////////////// // // // Utility functions for converting between particle codes used in SSW // // files from MCNPX or MCNP6 and the codes from the Particle Data Group: // // // // http://pdg.lbl.gov/2014/reviews/rpp2014-rev-monte-carlo-numbering.pdf // // // // Note that all the functions here return 0 when the code could not be // // converted. This might not be an error as such, but could indicate an // // exotic particle which has no code assigned in the target MCNP scheme. // // // // MCNP5 does not have it's own function as it only supports neutrons // // (1<->2112) and gammas (2<->22). // // // //////////////////////////////////////////////////////////////////////////// int32_t conv_mcnpx_ssw2pdg(int32_t); int32_t conv_mcnp6_ssw2pdg(int32_t); int32_t conv_mcnpx_pdg2ssw(int32_t); int32_t conv_mcnp6_pdg2ssw(int32_t); #ifdef __cplusplus } #endif #endif #endif #ifdef SSWREAD_HASZLIB # ifdef SSWREAD_ZLIB_INCPATH # include SSWREAD_ZLIB_INCPATH # else # endif #endif #include #include #include #include #include #include //Should be large enough to hold first record in all supported files: #define SSWREAD_STDBUFSIZE 1024 #define SSW_MCNP_NOTFOUND 0 #define SSW_MCNP6 1 #define SSW_MCNPX 2 #define SSW_MCNP5 3 void ssw_error(const char * msg) { printf("ERROR: %s\n",msg); exit(1); } typedef struct { //Fortran width of record length field (4 or 8) int reclen; //Header data: char kods[9]; // Code char vers[6]; // Version char lods[29]; // Date char idtms[20]; // Machine-Designator char probs[20]; // Problem-ID char aids[129]; // Creation-Run Problem-Title-Card int32_t np1; int32_t nrss; int32_t njsw; int32_t nrcd; int32_t niss; int32_t pos; int mcnp_type; #ifdef SSWREAD_HASZLIB gzFile filegz; #else void * filegz; #endif FILE * file; ssw_particle_t part; unsigned lbuf; unsigned lbufmax; char * buf; size_t np1pos; size_t nrsspos; size_t headlen; } ssw_fileinternal_t; #define SSW_FILEDECODE ssw_fileinternal_t * f = (ssw_fileinternal_t *)ff.internal; assert(f) int ssw_readbytes(ssw_fileinternal_t* f, char * dest, int nbytes) { int nb; #ifdef SSWREAD_HASZLIB if (f->filegz) nb = gzread(f->filegz, dest, nbytes); else #endif nb = fread(dest, 1, nbytes, f->file); if (nb!=nbytes) { printf("SSW Error: read failure\n"); return 0; } return 1; } int ssw_loadrecord(ssw_fileinternal_t* f) { if (f->reclen==4) { uint32_t rl; if (!ssw_readbytes(f, (char*)&rl, 4)) return 0; f->lbuf = rl; } else { uint64_t rl; if (!ssw_readbytes(f, (char*)&rl, 8)) return 0; f->lbuf = rl; } if (f->lbuf > f->lbufmax) { //Very large record, must grow buffer: free(f->buf); f->lbufmax = f->lbuf; f->buf = malloc(f->lbufmax); } if ( f->lbuf <= SSWREAD_STDBUFSIZE && f->lbufmax > SSWREAD_STDBUFSIZE ) { //Make sure we don't hold on to very large buffers once they are no longer //needed: free(f->buf); f->lbufmax = SSWREAD_STDBUFSIZE; f->buf = malloc(f->lbufmax); } if (!f->buf) { //Could be corrupted data resulting in unusually large lbuf: printf("SSW Error: unable to allocate requested buffer (corrupted input?).\n"); return 0; } char * buf = (char*)f->buf; if (!ssw_readbytes(f, buf, f->lbuf)) return 0; if (f->reclen==4) { uint32_t rl; return ssw_readbytes(f, (char*)&rl, 4) && f->lbuf == rl; } else { uint64_t rl; return ssw_readbytes(f, (char*)&rl, 8) && f->lbuf == rl; } } void ssw_close_file(ssw_file_t ff) { SSW_FILEDECODE; if (!f) return; if (f->file) { fclose(f->file); f->file = 0; } #ifdef SSWREAD_HASZLIB if (f->filegz) { gzclose(f->filegz); f->file = 0; } #endif free(f->buf); free(f); ff.internal = 0; } void ssw_strip(char **str) { size_t l = strlen(*str); int i = 0; while ((*str)[i]==' ') ++i; if (i) memmove(*str,*str+i,l+1-i); i = l-i-1; while (i>=0&&(*str)[i]==' ') { (*str)[i]='\0'; --i; } } ssw_file_t ssw_openerror(ssw_fileinternal_t * f, const char* msg) { if (f) { if (f->file) fclose(f->file); #ifdef SSWREAD_HASZLIB if (f->filegz) gzclose(f->filegz); #endif free(f->buf); free(f); } ssw_error(msg); ssw_file_t out; out.internal = 0; return out; } //NB: Do not change function signature without updating code in sswmcpl.c as well! void ssw_internal_grabhdr( const char * filename, int is_gzip, int64_t hdrlen, unsigned char * hdrbuf ) { //To be used by mcpl2ssw, but we don't want to complicate the build process //for users further by also requiring sswmcpl.c to deal with zlib //directly. Thus, we provide a hidden function here which mcpl2ssw can use by //forward declaring it. if (is_gzip) { #ifdef SSWREAD_HASZLIB gzFile filegz = gzopen(filename,"rb"); if (!filegz) ssw_error("Unable to open file!"); int64_t pos = 0; int64_t toread = hdrlen; while(toread) { int chunk = (hdrlen>16384?16384:(int)hdrlen); int nb = gzread(filegz, hdrbuf+pos, chunk); if (!nb) printf("SSW Error: read failure\n"); assert(toread >= nb); toread -= nb; pos += nb; } gzclose(filegz); #else ssw_error("This installation was not built with zlib support and can not read compressed (.gz) files directly."); #endif } else { FILE * fh = fopen(filename,"rb"); if (!fh) ssw_error("Unable to open file!\n"); int64_t pos = 0; int64_t toread = hdrlen; while(toread) { int chunk = (hdrlen>16384?16384:(int)hdrlen); int nb = fread(hdrbuf+pos,1,chunk,fh); if (!nb) printf("SSW Error: read failure\n"); assert(toread >= nb); toread -= nb; pos += nb; } fclose(fh); } } ssw_file_t ssw_open_and_procrec0( const char * filename ) { ssw_fileinternal_t * f = (ssw_fileinternal_t*)calloc(sizeof(ssw_fileinternal_t),1); assert(f); ssw_file_t out; out.internal = f; //open file (with gzopen if filename ends with .gz): f->file = 0; f->filegz = 0; char * lastdot = strrchr(filename, '.'); if (lastdot && strcmp(lastdot, ".gz") == 0) { #ifdef SSWREAD_HASZLIB f->filegz = gzopen(filename,"rb"); if (!f->filegz) ssw_error("Unable to open file!"); #else ssw_error("This installation was not built with zlib support and can not read compressed (.gz) files directly."); #endif } else { f->file = fopen(filename,"rb"); if (!f->file) ssw_error("Unable to open file!"); } //Prepare buffer. SSWREAD_STDBUFSIZE bytes should always be enough for the //first record (guaranteed by the checks below), but it might later grow on //demand inside ssw_loadrecord if needed. f->lbufmax = SSWREAD_STDBUFSIZE; char * buf = malloc(f->lbufmax); f->buf = buf; //Fortran data is usually written in "records" with an initial and final 32bit //or 64bit integer specifying the record byte-length. The tested file-types //begin in one of the following ways: // // 1) 4B[163|167] + KODS : MCNPX2.7.0 with 32bit reclen // 2) 8B[163|167] + KODS : MCNPX2.7.0 with 64bit reclen // 3) 16B +4B[143 or 191] + KODS : MCNP6 with 32bit reclen // 4) 24B +8B[143 or 191] + KODS : MCNP6 with 64bit reclen // 5) 4B[143]+KODS : MCNP5 with 32bit reclen. // 6) 8B[143]+KODS : MCNP5 with 64bit reclen. // //Where KODS is 8 bytes representing the "code name" as a string. For pure //MCNPX/MCNP6 this string contains "mcnpx" and "mcnp" respectively, but we //should allow for custom in-house versions with modified contents of KODS. We //do, however, require that the first character or KODS is an ASCII character //in the range 32-126 (i.e. non-extended ascii without control or null chars). // //Note that for option 3) and 4), the second record can have a length of //either 143 (MCNP 6.0) or 191 (MCNP 6.2), since the "aids" field increased in //size from 80 to 128 chars. // //Note that for option 3) and 4), the 16B / 24B are a fortran record with 8 //bytes of data - usually (always?) the string "SF_00001". //Thus, we probe the first 36 bytes and search the patterns above: ssw_readbytes(f,buf,36); uint32_t first32 = *((uint32_t*)buf); uint32_t first64 = *((uint64_t*)buf); f->reclen = 0; f->mcnp_type = SSW_MCNP_NOTFOUND; uint64_t lenrec0 = 99999; unsigned rec0begin = 0; //First look for MCNP6: unsigned mcnp6_lenaids = 80; if ( first32==8 && *((uint32_t*)(buf+12))==8 && (*((uint32_t*)(buf+16))==143||*((uint32_t*)(buf+16))==191) && buf[20]>=32 && buf[20]<127) { //Looks like 3), an mcnp6 file with 32bit fortran records. f->mcnp_type = SSW_MCNP6; f->reclen = 4; lenrec0 = *((uint32_t*)(buf+16)); rec0begin = 20; if (*((uint32_t*)(buf+16))==191) mcnp6_lenaids = 128; } else if ( first32==8 && *((uint64_t*)(buf+16))==8 && (*((uint64_t*)(buf+24))==143||*((uint64_t*)(buf+24))==191) && buf[32]>=32 && buf[32]<127) { //Looks like 4), an mcnp6 file with 64bit fortran records. f->mcnp_type = SSW_MCNP6; f->reclen = 8; lenrec0 = *((uint64_t*)(buf+24)); rec0begin = 32; if (*((uint64_t*)(buf+24))==191) mcnp6_lenaids = 128; } //Next, look for MCNPX: if ( f->mcnp_type == SSW_MCNP_NOTFOUND ) { if ( (first32==163||first32==167) && ( buf[4]>=32 && buf[4]<127 ) ) { //Looks like 1), an mcnpx file with 32bit fortran records. f->mcnp_type = SSW_MCNPX; f->reclen = 4; lenrec0 = first32; rec0begin = 4; } else if ( (first64==163||first64==167) && ( buf[8]>=32 && buf[8]<127 ) ) { //Looks like 2), an mcnpx file with 64bit fortran records. f->mcnp_type = SSW_MCNPX; f->reclen = 8; lenrec0 = first64; rec0begin = 8; } } //Finally, look for MCNP5: if ( f->mcnp_type == SSW_MCNP_NOTFOUND ) { if ( first32==143 && ( buf[4]>=32 && buf[4]<127 ) ) { //Looks like 5), an mcnp5 file with 32bit fortran records. f->mcnp_type = SSW_MCNP5; f->reclen = 4; lenrec0 = first32; rec0begin = 4; } else if ( first64==143 && ( buf[8]>=32 && buf[8]<127 ) ) { //Looks like 6), an mcnp5 file with 64bit fortran records. f->mcnp_type = SSW_MCNP5; f->reclen = 8; lenrec0 = first64; rec0begin = 8; } } if ( f->mcnp_type == SSW_MCNP_NOTFOUND ) return ssw_openerror(f,"ssw_open_file error: File does not look like a supported MCNP SSW file"); assert(f->reclen && rec0begin && lenrec0 && lenrec0<99999 ); if (f->reclen==8) { printf("ssw_open_file WARNING: 64bit Fortran records detected which is untested (feedback" " appreciated at https://mctools.github.io/mcpl/contact/).\n"); } //Finish reading the first record: int missingrec0 = (int)(lenrec0 + rec0begin) - (int)36 + f->reclen; assert(missingrec0>0); ssw_readbytes(f,buf+36,missingrec0); //Check final marker: uint64_t lenrec0_b; if (f->reclen==4) lenrec0_b = *((uint32_t*)(buf+(rec0begin+lenrec0))); else lenrec0_b = *((uint64_t*)(buf+(rec0begin+lenrec0))); if (lenrec0!=lenrec0_b) return ssw_openerror(f,"ssw_open_file error: Unexpected header contents\n"); //decode first record, inspired by ssw.py: if (f->mcnp_type == SSW_MCNP6) { char * r = buf + rec0begin; unsigned n; memcpy(f->kods,r, n=8); r += n; memcpy(f->vers,r, n=5); r += n; memcpy(f->lods,r, n=28); r += n; memcpy(f->idtms,r, n=18); r += n; memcpy(f->aids,r, n=mcnp6_lenaids); f->probs[0]='\0'; } else if (f->mcnp_type == SSW_MCNPX) { assert(lenrec0==163||lenrec0==167); char * r = buf + f->reclen; unsigned n; memcpy(f->kods,r, n=8); r += n; memcpy(f->vers,r, n=5); r += n; memcpy(f->lods,r, n=28); r += n; memcpy(f->idtms,r, n=19); r += n; memcpy(f->probs,r, n=19); r += n; memcpy(f->aids,r, n=80); } else { assert(f->mcnp_type == SSW_MCNP5); assert(lenrec0==143); char * r = buf + f->reclen; unsigned n; memcpy(f->kods,r, n=8); r += n; memcpy(f->vers,r, n=5); r += n; memcpy(f->lods,r, n=8); r += n; memcpy(f->idtms,r, n=19); r += n; memcpy(f->probs,r, n=19); r += n; memcpy(f->aids,r, n=80); } char * tmp; tmp = f->kods; ssw_strip(&tmp); tmp = f->vers; ssw_strip(&tmp); tmp = f->lods; ssw_strip(&tmp); tmp = f->idtms; ssw_strip(&tmp); tmp = f->probs; ssw_strip(&tmp); tmp = f->aids; ssw_strip(&tmp); const char * bn = strrchr(filename, '/'); bn = bn ? bn + 1 : filename; printf("ssw_open_file: Opened file \"%s\":\n",bn); const char * expected_kods = (f->mcnp_type == SSW_MCNPX?"mcnpx":"mcnp"); if (strcmp(f->kods,expected_kods)!=0) { printf("ssw_open_file WARNING: Unusual MCNP flavour detected (\"%s\").\n",f->kods); } if (f->mcnp_type==SSW_MCNP6) { if ( strcmp(f->vers,"6")!=0 && strcmp(f->vers,"6.mpi")!=0 ) { printf("ssw_open_file WARNING: Untested MCNP6 source version : \"%s\". (feedback" " appreciated at https://mctools.github.io/mcpl/contact/)\n",f->vers); } } else if (f->mcnp_type==SSW_MCNPX) { if ( strcmp(f->vers,"2.5.0")!=0 && strcmp(f->vers,"2.6.0")!=0 && strcmp(f->vers,"2.7.0")!=0 && strcmp(f->vers,"26b")!=0 ) printf("ssw_open_file WARNING: Untested MCNPX source version : \"%s\". (feedback" " appreciated at https://mctools.github.io/mcpl/contact/)\n",f->vers); } else if (f->mcnp_type==SSW_MCNP5) { if ( strcmp(f->vers,"5")!=0 ) printf("ssw_open_file WARNING: Untested MCNP5 source version : \"%s\". (feedback" " appreciated at https://mctools.github.io/mcpl/contact/)\n",f->vers); } return out; } ssw_file_t ssw_open_file( const char * filename ) { if (!filename) ssw_error("ssw_open_file called with null string for filename"); //Open, classify and process first record with mcnp type and version info: ssw_file_t out = ssw_open_and_procrec0( filename ); ssw_fileinternal_t * f = (ssw_fileinternal_t *)out.internal; assert(f); //Skip a record: if (!ssw_loadrecord(f)) return ssw_openerror(f,"ssw_open_file error: problems loading record"); //Position of current record payload in file: long int current_recpos; #ifdef SSWREAD_HASZLIB if (f->filegz) current_recpos = gztell(f->filegz); else #endif current_recpos = ftell(f->file); current_recpos -= f->reclen; current_recpos -= f->lbuf; //Read size data and mark position of nrss & np1 variables. int32_t * bi = (int32_t*)f->buf; if ( (f->mcnp_type == SSW_MCNP6) && f->lbuf>=32 ) { f->np1 = bi[0]; f->np1pos = current_recpos + 0 * sizeof(int32_t); f->nrss = bi[2]; f->nrsspos = current_recpos + 2 * sizeof(int32_t); f->nrcd = abs(bi[4]); f->njsw = bi[5]; f->niss = bi[6]; } else if ( (f->mcnp_type == SSW_MCNPX) && f->lbuf==20 ) { f->np1 = bi[0]; f->np1pos = current_recpos + 0 * sizeof(int32_t); f->nrss = bi[1]; f->nrsspos = current_recpos + 1 * sizeof(int32_t); f->nrcd = bi[2]; f->njsw = bi[3]; f->niss = bi[4]; } else if ( (f->mcnp_type == SSW_MCNP5) && f->lbuf==32 ) { int64_t np1_64 = ((int64_t*)f->buf)[0]; if (np1_64 > 2147483647 || np1_64 < -2147483647) return ssw_openerror(f,"ssw_open_file error: MCNP5 files with more than 2147483647" " histories are not supported"); f->np1 = (int32_t)np1_64; f->np1pos = current_recpos + 0 * sizeof(int64_t); uint64_t nrss_64 = ((uint64_t*)f->buf)[1]; if (nrss_64 > 2147483647 ) return ssw_openerror(f,"ssw_open_file error: MCNP5 files with more than 2147483647" " particles are not supported"); f->nrss = (int32_t)nrss_64; f->nrsspos = current_recpos + 1 * sizeof(int64_t); f->nrcd = bi[4]; f->njsw = bi[5]; f->niss = bi[6]; } else if (f->lbuf==40) { printf("ssw_open_file WARNING: File format has header format for which decoding was never tested (feedback" " appreciated at https://mctools.github.io/mcpl/contact/).\n"); f->np1 = bi[0]; f->np1pos = current_recpos + 0 * sizeof(int32_t); f->nrss = bi[2]; f->nrsspos = current_recpos + 2 * sizeof(int32_t); f->nrcd = bi[4]; f->njsw = bi[6]; f->niss = bi[8]; } else { return ssw_openerror(f,"ssw_open_file error: Unexpected record length"); } printf("ssw_open_file: File layout detected : %s\n",ssw_mcnpflavour(out)); printf("ssw_open_file: Code ID fields : \"%s\" / \"%s\"\n",f->kods,f->vers); printf("ssw_open_file: Title field : \"%s\"\n",f->aids); /* printf("ssw_open_file: Found kods = '%s'\n",f->kods); */ /* printf("ssw_open_file: Found vers = '%s'\n",f->vers); */ /* printf("ssw_open_file: Found lods = '%s'\n",f->lods); */ /* printf("ssw_open_file: Found idtms = '%s'\n",f->idtms); */ /* printf("ssw_open_file: Found probs = '%s'\n",f->probs); */ /* printf("ssw_open_file: Found aids = '%s'\n",f->aids); */ printf("ssw_open_file: Source statistics (histories): %11i\n" , abs(f->np1)); printf("ssw_open_file: Particles in file : %11i\n" , f->nrss); printf("ssw_open_file: Number of surfaces : %11i\n" , f->njsw); printf("ssw_open_file: Histories at surfaces : %11i\n" , f->niss); // printf("ssw_open_file: File length of SSB array : %11i\n" , f->nrcd); if(f->nrcd==6) return ssw_openerror(f,"ssw_open_file error: SSW files with spherical sources are not currently supported."); if(f->nrcd<10) return ssw_openerror(f,"ssw_open_file error: Too short SSB arrays in file"); if(f->nrcd>11) return ssw_openerror(f,"ssw_open_file error: Unexpected length of SSB arrays in file"); if ( (f->mcnp_type == SSW_MCNP6) && f->nrcd==10 ) return ssw_openerror(f,"ssw_open_file error: Unexpected length of SSB arrays in MCNP6 file"); int32_t niwr = 0; if (f->np1==0) return ssw_openerror(f,"ssw_open_file error: File has 0 particle histories which should not be possible"); if (f->np1<0) {//Sign is well-defined since f->np1!=0 f->np1 = - f->np1; if (!ssw_loadrecord(f)) return ssw_openerror(f,"ssw_open_file error: problems loading record"); niwr = bi[0]; //mipts = bi[1];//source particle type //kjaq = bi[2];//macrobody facet flag } //skip over njsw + niwr + 1 records which we are not interested in: int i; for (i = 0; i < f->njsw+niwr+1; ++i) { if (!ssw_loadrecord(f)) return ssw_openerror(f,"ssw_open_file error: problems loading record"); } //End of header? Mark the position: f->pos = 0; #ifdef SSWREAD_HASZLIB if (f->filegz) f->headlen = gztell(f->filegz); else #endif f->headlen = ftell(f->file); //Check that it was really the end of the header by preloading the next //record(s) and checking if the length corresponds to that of particle data //(NB: ssw_load_particle knows that the particle at position 0 will have //already been loaded by these checks). See also //https://github.com/mctools/mcpl/issues/45: unsigned nmaxunexpected = 3; while ( nmaxunexpected-- > 0 ) { if (!ssw_loadrecord(f)) { //For files with 0 particles, we assume (this is not guaranteed of //course!) that the failure is due to EOF: if (f->nrss==0) break; //But this is certainly an error for files with >0 particles: return ssw_openerror(f,"ssw_open_file error: problems loading record"); } if ( f->nrss > 0 && f->lbuf == (unsigned)8*f->nrcd ) { //Looks like we preloaded the first particle of the file! break; } else { //Looks like this could not be a particle, so we interpret this as if the //header was actually one record longer than previously thought: f->headlen += f->reclen * 2 + f->lbuf; printf("ssw_open_file WARNING: Unexpected %i byte record encountered at end of header. Continuing under the assumption it contains valid configuration data.\n",f->lbuf); } } //Return handle: out.internal = f; return out; } //Query header info: unsigned long ssw_nparticles(ssw_file_t ff) { SSW_FILEDECODE; return f->nrss; } const char* ssw_srcname(ssw_file_t ff) { SSW_FILEDECODE; return f->kods; } const char* ssw_srcversion(ssw_file_t ff) { SSW_FILEDECODE; return f->vers; } const char* ssw_title(ssw_file_t ff) { SSW_FILEDECODE; return f->aids; } int ssw_is_mcnp6(ssw_file_t ff) { SSW_FILEDECODE; return f->mcnp_type == SSW_MCNP6; } int ssw_is_mcnpx(ssw_file_t ff) { SSW_FILEDECODE; return f->mcnp_type == SSW_MCNPX; } int ssw_is_mcnp5(ssw_file_t ff) { SSW_FILEDECODE; return f->mcnp_type == SSW_MCNP5; } const char * ssw_mcnpflavour(ssw_file_t ff) { SSW_FILEDECODE; switch(f->mcnp_type) { case SSW_MCNP5: return "MCNP5"; case SSW_MCNP6: return "MCNP6"; case SSW_MCNPX: return "MCNPX"; default: ssw_error("ssw_mcnpflavour: logic error.\n"); } return "MCNP_logic_error"; } int ssw_is_gzipped(ssw_file_t ff) { SSW_FILEDECODE; #ifdef SSWREAD_HASZLIB if (f->filegz) return 1; #endif return 0; } void ssw_layout(ssw_file_t ff, int* reclen, int* ssblen, int64_t* hdrlen, int64_t* np1pos, int64_t* nrsspos) { SSW_FILEDECODE; *reclen = f->reclen; *ssblen = f->nrcd; *np1pos = f->np1pos; *nrsspos = f->nrsspos; *hdrlen = f->headlen; } //load next particle (null indicates eof): const ssw_particle_t * ssw_load_particle(ssw_file_t ff) { SSW_FILEDECODE; if (f->pos >= f->nrss) return 0; ++f->pos; //The record of the first particle in the file is always pre-loaded during //initialisation, for the others we must consume another record: if ( f->pos > 1 && !ssw_loadrecord(f) ) { ssw_error("ssw_load error: problems loading particle record\n"); return 0; } if (f->lbuf != (unsigned)8*f->nrcd) { ssw_error("ssw_load error: unexpected particle data length"); return 0; } double * ssb = (double*)f->buf; ssw_particle_t* p = &(f->part); p->weight = ssb[2]; p->ekin = ssb[3];//MeV p->time = ssb[4]; p->x = ssb[5]; p->y = ssb[6]; p->z = ssb[7]; p->dirx = ssb[8]; p->diry = ssb[9]; int64_t nx = ssb[1]; if (nx<0) nx = - nx;//sign is used for sign of dirz (see below) if ( f->mcnp_type == SSW_MCNP6 ) { assert(f->nrcd==11); p->isurf = labs((int32_t)ssb[10]); nx /= 4;//ignore two lowest bits, maybe used to indicate cell-source-particle and energy-group mode (??) p->rawtype = nx; p->pdgcode = conv_mcnp6_ssw2pdg(nx); if (!p->pdgcode) printf("ssw_load_particle WARNING: Could not convert raw MCNP6 SSW type (%li) to pdg code\n",(long)(p->rawtype)); } else if ( f->mcnp_type == SSW_MCNPX ) { p->isurf = nx % 1000000; p->rawtype = nx / 1000000; p->pdgcode = conv_mcnpx_ssw2pdg(p->rawtype); if (!p->pdgcode) printf("ssw_load_particle WARNING: Could not convert raw MCNPX SSW type (%li) to pdg code\n",(long)(p->rawtype)); } else { assert( f->mcnp_type == SSW_MCNP5 ); nx /= 8;//Guess: Get rid of some bits that might be used for something else p->isurf = nx % 1000000; p->rawtype = nx / 1000000; p->rawtype /= 100;//Guess: Get rid of some "bits" that might be used for something else p->pdgcode = (p->rawtype==1?2112:(p->rawtype==2?22:0));//only neutrons and gammas in MCNP5 if (!p->pdgcode) printf("ssw_load_particle WARNING: Could not convert raw MCNP5 SSW type (%li) to pdg code\n",(long)(p->rawtype)); } p->dirz = sqrt(fmax(0.0, 1. - p->dirx*p->dirx-p->diry*p->diry)); if (ssb[1]<0.0) p->dirz = - p->dirz; return p; } static int32_t conv_mcnpx_to_pdg_0to34[] = { 0, 2112, 22, 11, 13, 15, 12, 14, 16, 2212, 3122, 3222, 3112, 3322, 3312, 3334, 4122, 4232, 4132, 5122, 211, 111, 321, 310, 130, 411, 421, 431, 521, 511, 531, 1000010020, 1000010030, 1000020030, 1000020040 }; static int32_t conv_mcnp6_to_pdg_0to36[] = { 0, 2112, 22, 11, 13, -2112, 12, 14, -11, 2212, 3122, 3222, 3112, 3322, 3312, 3334, -13, -12, -14, -2212, 211, 111, 321, 310, 130, -3122, -3222, -3112, -3322, -3312, -3334, 1000010020, 1000010030, 1000020030, 1000020040, -211, -321 }; int32_t conv_mcnpx_ssw2pdg( int32_t c ) { if (c<0) return 0; if (c<=34) return conv_mcnpx_to_pdg_0to34[c]; if (c>=401&&c<=434) return c==402 ? 22 : - conv_mcnpx_to_pdg_0to34[c%100]; int32_t sign = 1; if (c%1000==435) { sign = -1; c -= 400; } if (c%1000==35) { //ion from MMMAAA035 where MMM = Z-1 to 100ZZZAAA0 c /= 1000; long A = c%1000; if (!A) return 0; c /= 1000; if (c/1000) return 0; long ZM1 = c%1000; return sign * (1000000000 + (ZM1+1)*10000 + A*10); } //Retry without non-type related parts: int j = (c%1000)/100; if (j==2||j==6) return conv_mcnpx_ssw2pdg(c-200); return 0; } int32_t conv_mcnp6_ssw2pdg( int32_t c ) { if (c<0) return 0; int antibit = c%2; c /= 2; int ptype = c%64; c /= 64; if (ptype<=36) { //Note that A (see below) has been observed in SSW files to have non-zero //values for ptype<37 as well, so don't require A, Z or S to be 0 here. int32_t p = conv_mcnp6_to_pdg_0to36[ptype]; return (antibit&&p!=22) ? -p : p; } if (ptype==37) { int A = c%512; c /= 512; int Z = c%128; c /= 128; int S = c; if (A<1||Z<1||A9) return 0; int32_t p = 1000000000 + 10000*Z + 10*A + S; return antibit ? -p : p; } return 0; } int32_t conv_mcnpx_pdg2ssw( int32_t c ) { int32_t absc = c < 0 ? -c : c; if (absc <= 1000020040) { int i; for (i = 0; i<35; ++i) { if (conv_mcnpx_to_pdg_0to34[i]==c) return i; } for (i = 0; i<35; ++i) { if (conv_mcnpx_to_pdg_0to34[i] == -c) return 400+i; } } if (absc>1000000000&&absc<=1009999990) { //Ions. PDG format for ions is 10LZZZAAAI, where L!=0 indicates strangeness //and I!=0 indicates exited nuclei. We only allow L=I=0 ions here. int32_t I = absc % 10;//isomer level absc/=10; int32_t A = absc%1000; absc/=1000; int32_t Z = absc % 1000; assert(absc/1000==100);//L=0 guaranteed by enclosing condition. if ( I || !A || !Z || Z>A ) return 0; return (Z-1)*1000000 + A*1000 + ( c<0 ? 435 : 35 ); } return 0; } int32_t conv_mcnp6_pdg2ssw( int32_t c ) { int32_t absc = c < 0 ? -c : c; if (absc <= 1000020040) { if (c==-11) return 7;//e+ is special case, pick 7 (anti e-) rather than 16 (straight e+) int i; for (i = 0; i<37; ++i) { if (conv_mcnp6_to_pdg_0to36[i]==c) return 2*i; } for (i = 0; i<37; ++i) { if (conv_mcnp6_to_pdg_0to36[i] == -c) return 1 + 2*i; } } if (absc>1000000000&&absc<=1009999990) { //Ions. PDG format for ions is 10LZZZAAAI, where L!=0 indicates strangeness //and I!=0 indicates exited nuclei. We only allow L=0 ions here. int32_t I = absc % 10;//isomer level absc/=10; int32_t A = absc%1000; absc/=1000; int32_t Z = absc % 1000; assert(absc/1000==100);//L=0 guaranteed by enclosing condition. if ( !A || !Z || Z>A ) return 0; int32_t res = (c<0?1:0); res += 2*37; res += 128*A; res += 128*512*Z; res += 128*512*128*I; return res; } return 0; } ///////////////////////////////////////////////////////////////////////////////////// // // // sswmcpl : Code for converting between MCPL and SSW files from MCNP(X). // // // // // // Compilation of sswmcpl.c can proceed via any compliant C-compiler using // // -std=c99 later. Furthermore, the following preprocessor flag can be used // // when compiling sswmcpl.c to fine tune the build process. // // // // SSWMCPL_HDR_INCPATH : Specify alternative value if the sswmcpl header // // itself is not to be included as "sswmcpl.h". // // SSWREAD_HDR_INCPATH : Specify alternative value if the sswread header // // is not to be included as "sswread.h". // // MCPL_HEADER_INCPATH : Specify alternative value if the MCPL header is // // not to be included as "mcpl.h". // // // // This file can be freely used as per the terms in the LICENSE file. // // // // However, note that usage of MCNP(X)-related utilities might require additional // // permissions and licenses from third-parties, which is not within the scope of // // the MCPL project itself. // // // // Written 2015-2017, thomas.kittelmann@esss.se (European Spallation Source). // // // ///////////////////////////////////////////////////////////////////////////////////// #ifdef SSWMCPL_HDR_INCPATH # include SSWMCPL_HDR_INCPATH #else #endif #ifdef SSWREAD_HDR_INCPATH # include SSWREAD_HDR_INCPATH #else #endif #ifdef MCPL_HEADER_INCPATH # include MCPL_HEADER_INCPATH #else #endif #include #include #include #include #include void ssw_error(const char * msg);//fwd declare internal function from sswread.c int sswmcpl_buf_is_text(size_t n, const unsigned char * buf) { //We correctly allow ASCII & UTF-8 but falsely classify UTF-16 and UTF-32 as //data. See http://stackoverflow.com/questions/277521#277568 for how we could //also detect UTF-16 & UTF-32. const unsigned char * bufE = buf + n; for (; buf!=bufE; ++buf) if ( ! ( ( *buf >=9 && *buf<=13 ) || ( *buf >=32 && *buf<=126 ) || *buf >=128 ) ) return 0; return 1; } int sswmcpl_file2buf(const char * filename, unsigned char** buf, size_t* lbuf, size_t maxsize, int require_text) { *buf = 0; *lbuf = 0; FILE * file = fopen(filename, "rb"); if (!file) { printf("Error: could not open file %s.\n",filename); return 0; } size_t pos_begin = ftell(file); size_t bbuf_size = maxsize;//default to max size (in case SEEK_END does not work) int bbuf_size_guess = 1; if (!fseek( file, 0, SEEK_END )) { size_t pos_end = ftell(file); bbuf_size = pos_end-pos_begin; bbuf_size_guess = 0; if (bbuf_size<50) { printf("Error: file %s is suspiciously short.\n",filename); return 0; } if (bbuf_size>104857600) { printf("Error: file %s is larger than %g bytes.\n",filename,(double)maxsize); return 0; } } if (fseek( file, 0, SEEK_SET)) { printf("Error: Could not rewind file %s.\n",filename); return 0; } unsigned char * bbuf = malloc(bbuf_size); unsigned char * bbuf_iter = bbuf; size_t left = bbuf_size; while (left) { size_t nb = fread(bbuf_iter, 1, left, file); if (bbuf_size_guess&&nb==0) { bbuf_size -= left; break; } if (nb==0||nb>left) { printf("Error: file %s read-error.\n",filename); free(bbuf); return 0; } bbuf_iter += nb; left -= nb; } fclose(file); if ( require_text && !sswmcpl_buf_is_text(bbuf_size, bbuf) ) { printf("Error: file %s does not appear to be a text file.\n",filename); free(bbuf); return 0; } *buf = bbuf; *lbuf = bbuf_size; return 1; } int ssw2mcpl(const char * sswfile, const char * mcplfile) { return ssw2mcpl2(sswfile, mcplfile, 0, 0, 1, 0); } int ssw2mcpl2(const char * sswfile, const char * mcplfile, int opt_dp, int opt_surf, int opt_gzip, const char * inputdeckfile) { ssw_file_t f = ssw_open_file(sswfile); mcpl_outfile_t mcplfh = mcpl_create_outfile(mcplfile); mcpl_hdr_set_srcname(mcplfh,ssw_mcnpflavour(f)); uint64_t lstrbuf = 1024; lstrbuf += strlen(ssw_srcname(f)); lstrbuf += strlen(ssw_srcversion(f)); lstrbuf += strlen(ssw_title(f)); if (lstrbuf<4096) { char * buf = (char*)malloc((int)lstrbuf); buf[0] = '\0'; strcat(buf,"SSW file from "); strcat(buf,ssw_mcnpflavour(f)); strcat(buf," converted with ssw2mcpl (from MCPL release v" MCPL_VERSION_STR ")"); mcpl_hdr_add_comment(mcplfh,buf); buf[0] = '\0'; strcat(buf,"SSW metadata: [kods='"); strcat(buf,ssw_srcname(f)); strcat(buf,"', vers='"); strcat(buf,ssw_srcversion(f)); strcat(buf,"', title='"); strcat(buf,ssw_title(f)); strcat(buf,"']"); mcpl_hdr_add_comment(mcplfh,buf); free(buf); } else { mcpl_hdr_add_comment(mcplfh,"SSW metadata: "); } if (opt_surf) { mcpl_hdr_add_comment(mcplfh,"The userflags in this file are the surface IDs found in the SSW file"); mcpl_enable_userflags(mcplfh); } if (opt_dp) { mcpl_enable_doubleprec(mcplfh); } if (inputdeckfile) { unsigned char* cfgfile_buf; size_t cfgfile_lbuf; if (!sswmcpl_file2buf(inputdeckfile, &cfgfile_buf, &cfgfile_lbuf, 104857600, 1)) return 0; if (!strstr((const char*)cfgfile_buf, ssw_title(f))) { printf("Error: specified configuration file %s does not contain title found in ssw file: \"%s\".\n",inputdeckfile,ssw_title(f)); return 0; } mcpl_hdr_add_data(mcplfh, "mcnp_input_deck", (uint32_t)cfgfile_lbuf,(const char *)cfgfile_buf); free(cfgfile_buf); } mcpl_particle_t mcpl_particle; memset(&mcpl_particle,0,sizeof(mcpl_particle)); const ssw_particle_t * p; while ((p=ssw_load_particle(f))) { mcpl_particle.pdgcode = p->pdgcode; if (!mcpl_particle.pdgcode) { printf("Warning: ignored particle with no PDG code set (raw ssw type was %li).\n",p->rawtype); continue; } mcpl_particle.position[0] = p->x;//already in cm mcpl_particle.position[1] = p->y;//already in cm mcpl_particle.position[2] = p->z;//already in cm mcpl_particle.direction[0] = p->dirx; mcpl_particle.direction[1] = p->diry; mcpl_particle.direction[2] = p->dirz; mcpl_particle.time = p->time * 1.0e-5;//"shakes" to milliseconds mcpl_particle.weight = p->weight; mcpl_particle.ekin = p->ekin;//already in MeV mcpl_particle.userflags = p->isurf; mcpl_add_particle(mcplfh,&mcpl_particle); } const char * tmp = mcpl_outfile_filename(mcplfh); size_t laf = strlen(tmp); char * actual_filename = malloc(laf+1); actual_filename[0]='\0'; strcat(actual_filename,tmp); int did_gzip = 0; if (opt_gzip) did_gzip = mcpl_closeandgzip_outfile(mcplfh); else mcpl_close_outfile(mcplfh); ssw_close_file(f); printf("Created %s%s\n",actual_filename,(did_gzip?".gz":"")); free(actual_filename); return 1; } void ssw2mcpl_parse_args(int argc,char **argv, const char** infile, const char **outfile, const char **cfgfile, int* double_prec, int* surface_info, int* do_gzip) { *cfgfile = 0; *infile = 0; *outfile = 0; *surface_info = 0; *double_prec = 0; *do_gzip = 1; int i; for (i=1; i < argc; ++i) { if (argv[i][0]=='\0') continue; if (strcmp(argv[i],"-h")==0||strcmp(argv[i],"--help")==0) { const char * progname = strrchr(argv[0], '/'); progname = progname ? progname + 1 : argv[0]; printf("Usage:\n\n"); printf(" %s [options] input.ssw [output.mcpl]\n\n",progname); printf("Converts the Monte Carlo particles in the input.ssw file (MCNP Surface\n" "Source Write format) to MCPL format and stores in the designated output\n" "file (defaults to \"output.mcpl\").\n" "\n" "Options:\n" "\n" " -h, --help : Show this usage information.\n" " -d, --double : Enable double-precision storage of floating point values.\n" " -s, --surf : Store SSW surface IDs in the MCPL userflags.\n" " -n, --nogzip : Do not attempt to gzip output file.\n" " -c FILE : Embed entire configuration FILE (the input deck)\n" " used to produce input.ssw in the MCPL header.\n" ); exit(0); } if (strcmp(argv[i],"-c")==0) { if (i+1==argc||argv[i+1][0]=='-') { printf("Error: Missing argument for -c\n"); exit(1); } ++i; if (*cfgfile) { printf("Error: -c specified more than once\n"); exit(1); } *cfgfile = argv[i]; continue; } if (strcmp(argv[i],"-d")==0||strcmp(argv[i],"--double")==0) { *double_prec = 1; continue; } if (strcmp(argv[i],"-s")==0||strcmp(argv[i],"--surf")==0) { *surface_info = 1; continue; } if (strcmp(argv[i],"-n")==0||strcmp(argv[i],"--nogzip")==0) { *do_gzip = 0; continue; } if (argv[i][0]=='-') { printf("Error: Unknown argument: %s\n",argv[i]); exit(1); } if (!*infile) { *infile = argv[i]; continue; } if (!*outfile) { *outfile = argv[i]; continue; } printf("Error: Too many arguments! (run with -h or --help for usage instructions)\n"); exit(1); } if (!*infile) { printf("Error: Too few arguments! (run with -h or --help for usage instructions)\n"); exit(1); } if (!*outfile) *outfile = "output.mcpl"; if (strcmp(*infile,*outfile)==0) { //basic test, easy to cheat: printf("Error: input and output files are identical.\n"); exit(1); } } int ssw2mcpl_app(int argc,char** argv) { const char * infile; const char * outfile; const char * cfgfile; int double_prec, surface_info, do_gzip; ssw2mcpl_parse_args(argc,argv,&infile,&outfile,&cfgfile,&double_prec,&surface_info,&do_gzip); int ok = ssw2mcpl2(infile, outfile,double_prec, surface_info, do_gzip,cfgfile); return ok ? 0 : 1; } void ssw_update_nparticles(FILE* f, int64_t np1pos, int32_t np1, int64_t nrsspos, int32_t nrss) { //Seek and update np1 and nrss fields at correct location in header: const char * errmsg = "Errors encountered while attempting to update number of particle info in output file."; int64_t savedpos = ftell(f); if (savedpos<0) ssw_error(errmsg); if (fseek( f, np1pos, SEEK_SET )) ssw_error(errmsg); size_t nb = fwrite(&np1, 1, sizeof(np1), f); if (nb != sizeof(np1)) ssw_error(errmsg); if (fseek( f, nrsspos, SEEK_SET )) ssw_error(errmsg); nb = fwrite(&nrss, 1, sizeof(nrss), f); if (nb != sizeof(nrss)) ssw_error(errmsg); if (fseek( f, savedpos, SEEK_SET )) ssw_error(errmsg); } void ssw_writerecord(FILE* outfile, int reclen, size_t lbuf, char* buf) { if (reclen==4) { uint32_t rl = lbuf; size_t nb = fwrite(&rl, 1, sizeof(rl), outfile); if (nb!=sizeof(rl)) ssw_error("write error"); nb = fwrite(buf, 1, lbuf, outfile); if (nb!=lbuf) ssw_error("write error"); nb = fwrite(&rl, 1, sizeof(rl), outfile); if (nb!=sizeof(rl)) ssw_error("write error"); } else { assert(reclen==8); uint64_t rl = lbuf; size_t nb = fwrite(&rl, 1, sizeof(rl), outfile); if (nb!=sizeof(rl)) ssw_error("write error"); nb = fwrite(buf, 1, lbuf, outfile); if (nb!=lbuf) ssw_error("write error"); nb = fwrite(&rl, 1, sizeof(rl), outfile); if (nb!=sizeof(rl)) ssw_error("write error"); } } //Fwd declaration of internal function in sswread.c: void ssw_internal_grabhdr( const char * filename, int is_gzip, int64_t hdrlen, unsigned char * hdrbuf ); int mcpl2ssw(const char * inmcplfile, const char * outsswfile, const char * refsswfile, long surface_id, long nparticles_limit) { mcpl_file_t fmcpl = mcpl_open_file(inmcplfile); printf( "Opened MCPL file produced with \"%s\" (contains %llu particles)\n", mcpl_hdr_srcname(fmcpl), (unsigned long long)mcpl_hdr_nparticles(fmcpl) ); if (surface_id==0 && !mcpl_hdr_has_userflags(fmcpl)) ssw_error("MCPL file contains no userflags so parameter specifying " "resulting SSW surface ID of particles is mandatory (use -s)."); printf("Opening reference SSW file:\n"); ssw_file_t fsswref = ssw_open_file(refsswfile); //Open reference file and figure out variables like header length, position of //"nparticles"-like variables, fortran record length and mcnp version. int ssw_reclen; int ssw_ssblen; int64_t ssw_hdrlen; int64_t ssw_np1pos; int64_t ssw_nrsspos; ssw_layout(fsswref, &ssw_reclen, &ssw_ssblen, &ssw_hdrlen, &ssw_np1pos, &ssw_nrsspos); assert(ssw_np1pos0); char ref_mcnpflavour_str[64]; ref_mcnpflavour_str[0] = '\0'; strcat(ref_mcnpflavour_str,ssw_mcnpflavour(fsswref)); int ref_is_gzipped = ssw_is_gzipped(fsswref); ssw_close_file(fsswref); //Grab the header: unsigned char * hdrbuf = (unsigned char*)malloc(ssw_hdrlen); assert(hdrbuf); ssw_internal_grabhdr( refsswfile, ref_is_gzipped, ssw_hdrlen, hdrbuf ); int32_t orig_np1 = * ((int32_t*)(&hdrbuf[ssw_np1pos])); //Clear |np1| and nrss in header to to indicate incomplete info (we will //update just before closing the file): *((int32_t*)(&hdrbuf[ssw_np1pos])) = 0; *((int32_t*)(&hdrbuf[ssw_nrsspos])) = 0; printf("Creating (or overwriting) output SSW file.\n"); //Open new ssw file: FILE * fout = fopen(outsswfile,"wb"); if (!fout) ssw_error("Problems opening new SSW file"); //Write header: int nb = fwrite(hdrbuf, 1, ssw_hdrlen, fout); if (nb!=ssw_hdrlen) ssw_error("Problems writing header to new SSW file"); free(hdrbuf); double ssb[11]; if ( ssw_ssblen != 10 && ssw_ssblen != 11) ssw_error("Unexpected length of ssb record in reference SSW file"); if ( (ssw_mcnp_type == SSW_MCNP6) && ssw_ssblen != 11 ) ssw_error("Unexpected length of ssb record in reference SSW file (expected 11 for MCNP6 files)"); //ssb[0] should be history number (starting from 1), but in our case we always //put nhistories=nparticles, so it is simply incrementing by 1 for each particle. ssb[0] = 0.0; assert(surface_id>=0&&surface_id<1000000); const mcpl_particle_t* mcpl_p; long used = 0; long long skipped_nosswtype = 0; printf("Initiating particle conversion loop.\n"); while ( ( mcpl_p = mcpl_read(fmcpl) ) ) { ++ssb[0]; ssb[2] = mcpl_p->weight; ssb[3] = mcpl_p->ekin;//already in MeV ssb[4] = mcpl_p->time * 1.0e5;//milliseconds to "shakes" ssb[5] = mcpl_p->position[0];//already in cm ssb[6] = mcpl_p->position[1];//already in cm ssb[7] = mcpl_p->position[2];//already in cm ssb[8] = mcpl_p->direction[0]; ssb[9] = mcpl_p->direction[1]; int32_t isurf = surface_id; if (!isurf) isurf = (int32_t)mcpl_p->userflags; if (isurf<=0||isurf>1000000) { if (isurf==0&&surface_id==0) ssw_error("Could not determine surface ID: no global surface id specified and particle had no (or empty) userflags"); else ssw_error("Surface id must be in range 1..999999"); } int64_t rawtype; if (ssw_mcnp_type == SSW_MCNP6) { rawtype = conv_mcnp6_pdg2ssw(mcpl_p->pdgcode); } else if (ssw_mcnp_type == SSW_MCNPX) { rawtype = conv_mcnpx_pdg2ssw(mcpl_p->pdgcode); } else { assert(ssw_mcnp_type == SSW_MCNP5); rawtype = (mcpl_p->pdgcode==2112?1:(mcpl_p->pdgcode==22?2:0)); } if (!rawtype) { ++skipped_nosswtype; if (skipped_nosswtype<=100) { printf("WARNING: Found PDG code (%li) in the MCPL file which can not be converted to an %s particle type\n", (long)mcpl_p->pdgcode,ref_mcnpflavour_str); if (skipped_nosswtype==100) printf("WARNING: Suppressing future warnings regarding non-convertible PDG codes.\n"); } continue; } assert(rawtype>0); if (ssw_mcnp_type == SSW_MCNP6) { assert(ssw_ssblen==11); ssb[10] = isurf;//Should we set the sign of ssb[10] to mean something (we take abs(ssb[10]) in sswread.c)? ssb[1] = rawtype*4;//Shift 2 bits (thus we only create files with those two bits zero!) } else if (ssw_mcnp_type == SSW_MCNPX) { ssb[1] = isurf + 1000000*rawtype; if (ssw_ssblen==11) ssb[10] = 1.0;//Cosine of angle at surface? Can't calculate it, so we simply set //it to 1 (seems to be not used anyway?) } else { assert(ssw_mcnp_type == SSW_MCNP5); ssb[1] = (isurf + 1000000*rawtype)*8; if (ssw_ssblen==11) ssb[10] = 1.0;//Cosine of angle at surface? Can't calculate it, so we simply set //it to 1 (seems to be not used anyway?) } //Sign of ssb[1] is used to store the sign of dirz: assert(ssb[1] >= 1.0); if (mcpl_p->direction[2]<0.0) ssb[1] = - ssb[1]; ssw_writerecord(fout,ssw_reclen,sizeof(double)*ssw_ssblen,(char*)&ssb[0]); if (++used==nparticles_limit) { long long remaining = mcpl_hdr_nparticles(fmcpl) - skipped_nosswtype - used; if (remaining) printf("Output limit of %li particles reached. Ignoring remaining %lli particles in the MCPL file.\n", nparticles_limit,remaining); break; } } printf("Ending particle conversion loop.\n"); if (skipped_nosswtype) { printf("WARNING: Ignored %lli particles in the input MCPL file since their PDG codes" " could not be converted to MCNP types.\n",(long long)skipped_nosswtype); } int32_t new_nrss = used; int32_t new_np1 = new_nrss; if (new_np1==0) { //SSW files must at least have 1 history (but can have 0 particles) printf("WARNING: Input MCPL file has 0 useful particles but we are setting number" " of histories in new SSW file to 1 to avoid creating an invalid file.\n"); new_np1 = 1; } if (orig_np1<0) new_np1 = - new_np1; ssw_update_nparticles(fout,ssw_np1pos,new_np1,ssw_nrsspos,new_nrss); mcpl_close_file(fmcpl); fclose(fout); printf("Created %s with %lli particles (nrss) and %lli histories (np1).\n",outsswfile,(long long)new_nrss,(long long)labs(new_np1)); return 1; } int mcpl2ssw_app_usage( const char** argv, const char * errmsg ) { if (errmsg) { printf("ERROR: %s\n\n",errmsg); printf("Run with -h or --help for usage information\n"); return 1; } const char * progname = strrchr(argv[0], '/'); progname = progname ? progname + 1 : argv[0]; printf("Usage:\n\n"); printf(" %s [options] [output.ssw]\n\n",progname); printf("Converts the Monte Carlo particles in the input MCPL file to SSW format\n" "(MCNP Surface Source Write) and stores the result in the designated output\n" "file (defaults to \"output.ssw\").\n" "\n" "In order to do so and get the details of the SSW format correct, the user\n" "must also provide a reference SSW file from the same approximate setup\n" "(MCNP version, input deck...) where the new SSW file is to be used. The\n" "reference SSW file can of course be very small, as only the file header is\n" "important (the new file essentially gets a copy of the header found in the\n" "reference file, except for certain fields related to number of particles\n" "whose values are changed).\n" "\n" "Finally, one must pay attention to the Surface ID assigned to the\n" "particles in the resulting SSW file: Either the user specifies a global\n" "one with -s, or it is assumed that the MCPL userflags field in the\n" "input file is actually intended to become the Surface ID. Note that not\n" "all MCPL files have userflag fields and that valid Surface IDs are\n" "integers in the range 1-999999.\n" "\n" "Options:\n" "\n" " -h, --help : Show this usage information.\n" " -s : All particles in the SSW file will get this surface ID.\n" " -l : Limit the number of particles transferred to the SSW file\n" " (defaults to 2147483647, the maximal SSW capacity).\n" ); return 0; } int mcpl2ssw_parse_args(int argc,const char **argv, const char** inmcplfile, const char **refsswfile, const char **outsswfile, long* nparticles_limit, long* surface_id) { //returns: 0 all ok, 1: error, -1: all ok but do nothing (-h/--help mode) *inmcplfile = 0; *refsswfile = 0; *outsswfile = 0; *nparticles_limit = INT32_MAX; *surface_id = 0; int64_t opt_num_limit = -1; int64_t opt_num_isurf = -1; int i; for (i = 1; i=2&&a[0]=='-'&&a[1]!='-') { //short options: int64_t * consume_digit = 0; size_t j; for (j=1; j'9') return mcpl2ssw_app_usage(argv,"Bad option: expected number"); *consume_digit *= 10; *consume_digit += a[j] - '0'; continue; } switch(a[j]) { case 'h': mcpl2ssw_app_usage(argv,0); return -1; case 'l': consume_digit = &opt_num_limit; break; case 's': consume_digit = &opt_num_isurf; break; default: return mcpl2ssw_app_usage(argv,"Unrecognised option"); } if (consume_digit) { *consume_digit = 0; if (j+1==n) return mcpl2ssw_app_usage(argv,"Bad option: missing number"); } } } else if (n==6 && strcmp(a,"--help")==0) { mcpl2ssw_app_usage(argv,0); return -1; } else if (n>=1&&a[0]!='-') { if (*outsswfile) return mcpl2ssw_app_usage(argv,"Too many arguments."); if (*refsswfile) *outsswfile = a; else if (*inmcplfile) *refsswfile = a; else *inmcplfile = a; } else { return mcpl2ssw_app_usage(argv,"Bad arguments"); } } if (!*inmcplfile) return mcpl2ssw_app_usage(argv,"Missing argument : input MCPL file"); if (!*refsswfile) return mcpl2ssw_app_usage(argv,"Missing argument : Reference SSW file"); if (!*outsswfile) *outsswfile = "output.ssw"; if (opt_num_limit<=0) opt_num_limit = INT32_MAX; if (opt_num_limit>INT32_MAX) return mcpl2ssw_app_usage(argv,"Parameter out of range : SSW files can only hold up to 2147483647 particles."); *nparticles_limit = opt_num_limit; if (opt_num_isurf==0||opt_num_isurf>999999) return mcpl2ssw_app_usage(argv,"Parameter out of range : Surface ID must be in range [1,999999]."); if (opt_num_isurf<0) opt_num_isurf = 0; *surface_id = opt_num_isurf; return 0; } int mcpl2ssw_app( int argc, char** argv ) { const char * inmcplfile; const char * refsswfile; const char * outsswfile; long nparticles_limit; long surface_id; int parse = mcpl2ssw_parse_args( argc, (const char**)argv, &inmcplfile, &refsswfile, &outsswfile, &nparticles_limit, &surface_id ); if (parse==-1)// --help return 0; if (parse)// parse error return parse; if (mcpl2ssw(inmcplfile, outsswfile, refsswfile,surface_id, nparticles_limit)) return 0; return 1; } ///////////////////////////////////////////////////////////////////////////////////// // // // mcpl2ssw : a simple command line utility for converting MCPL to SSW. // // // // This file can be freely used as per the terms in the LICENSE file. // // // // However, note that usage of MCNP(X)-related utilities might require additional // // permissions and licenses from third-parties, which is not within the scope of // // the MCPL project itself. // // // // Written 2015-2016, thomas.kittelmann@esss.se (European Spallation Source). // // // ///////////////////////////////////////////////////////////////////////////////////// int main(int argc,char** argv) { return mcpl2ssw_app(argc,argv); } mcpl-1.3.2/src_fat/mcpl_fat.c000066400000000000000000021153071361775146500160520ustar00rootroot00000000000000 ///////////////////////////////////////////////////////////////////// // // // NOTICE: This is an automatically modified version of mcpl.c which // // has been augmented by including the sources of zlib inside, eli- // // minating the need for linking with zlib, at the expense of being // // more bloated. // // // // For licensing and documentation, please refer to either the MCPL // // website (https://mctools.github.io/mcpl/) or files in the full // // MCPL distribution, obtainable from the same place. In particular, // // since some code in this file originates in the zlib library // // (http://zlib.net), the zlib license applies to those parts and is // // repeated below. // // // ///////////////////////////////////////////////////////////////////// //---------- the zlib license ----------// /* zlib.h -- interface of the 'zlib' general purpose compression library version 1.2.8, April 28th, 2013 Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. Jean-loup Gailly Mark Adler jloup@gzip.org madler@alumni.caltech.edu */ //---------- Automatically concatenated code follows below ----------// #ifdef MCPL_HEADER_INCPATH # undef MCPL_HEADER_INCPATH #endif #ifndef __STDC_FORMAT_MACROS # define __STDC_FORMAT_MACROS #endif #ifndef _POSIX_C_SOURCE # define _POSIX_C_SOURCE 200809L #endif #ifndef _ISOC99_SOURCE # define _ISOC99_SOURCE 1 #endif #ifndef _C99_SOURCE # define _C99_SOURCE 1 #endif #ifndef MCPL_HASZLIB # define MCPL_HASZLIB #endif #ifdef MCPL_ZLIB_INCPATH # undef MCPL_ZLIB_INCPATH #endif ///////////////////////////////////////////////////////////////////////////////////// // // // Monte Carlo Particle Lists : MCPL // // // // Utilities for reading and writing .mcpl files: A binary format with lists of // // particle state information, for interchanging and reshooting events between // // various Monte Carlo simulation applications. // // // // Client code including mcpl.h does not need any special build flags and can // // be compiled with any complient compiler and any current C or C++ standard. // // // // Compilation of mcpl.c on the other hand is currently not supported for C89, // // although this could be revisited. Thus, compilation of mcpl.c can proceed // // using any complient C-compiler using -std=c99 or -std=c11 or any complient // // C++ compiler using any version of the C++ standard, and the resulting code // // must always be linked with libm (using -lm). Furthermore, the following // // preprocessor flags can be used when compiling mcpl.c to fine tune the build // // process and the capabilities of the resulting binary. // // // // MCPL_HASZLIB : Define if compiling and linking with zlib, to allow // // direct reading of .mcpl.gz files. // // MCPL_ZLIB_INCPATH : Specify alternative value if the zlib header is not to // // be included as "zlib.h". // // MCPL_HEADER_INCPATH : Specify alternative value if the MCPL header itself is // // not to be included as "mcpl.h". // // MCPL_NO_EXT_GZIP : Define to make sure that mcpl_gzip_file will never // // compress via a separate process running a system- // // provided gzip executable. // // MCPL_NO_CUSTOM_GZIP : Define to make sure that mcpl_gzip_file will never // // compress via custom zlib-based code. // // // // This file can be freely used as per the terms in the LICENSE file. // // // // Find more information and updates at https://mctools.github.io/mcpl/ // // // // Written by Thomas Kittelmann, 2015-2017. // // // ///////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////// // MCPL_FORMATVERSION history: // // // // 3: Current version. Changed packing of unit vectors from octahedral to // // the better performing "Adaptive Projection Packing". // // 2: First public release. // // 1: Format used during early development. No longer supported. // ///////////////////////////////////////////////////////////////////////////////////// //Rough platform detection (could be much more fine-grained): #if defined(__unix__) || defined(__unix) || (defined(__APPLE__) && defined(__MACH__)) # define MCPL_THIS_IS_UNIX #endif #if defined(MSDOS) || defined(OS2) || defined(WIN32) || defined(_WIN32) || defined(__CYGWIN__) # ifdef MCPL_THIS_IS_UNIX # undef MCPL_THIS_IS_UNIX # endif # define MCPL_THIS_IS_MS #endif //Before including mcpl.h, we attempt to get PRIu64 defined in a relatively //robust manner by enabling feature test macros for gcc and including relevant //headers: #ifndef __STDC_FORMAT_MACROS # define __STDC_FORMAT_MACROS #endif #ifndef _POSIX_C_SOURCE # define _POSIX_C_SOURCE 200809L #endif #ifndef _ISOC99_SOURCE # define _ISOC99_SOURCE 1 #endif #ifndef _C99_SOURCE # define _C99_SOURCE 1 #endif #include #include #ifndef PRIu64//bad compiler - fallback to guessing # if defined(_MSC_VER) && (_MSC_VER<1900) # define PRIu64 "I64u" # else # if defined(__WORDSIZE) && (__WORDSIZE==64) # define PRIu64 "lu" # else # define PRIu64 "llu" # endif # endif #endif #ifdef MCPL_HEADER_INCPATH # include MCPL_HEADER_INCPATH #else # include "mcpl.h" #endif #ifdef MCPL_HASZLIB # ifdef MCPL_ZLIB_INCPATH # include MCPL_ZLIB_INCPATH # else #ifndef NO_DUMMY_DECL # define NO_DUMMY_DECL #endif /* zlib.h -- interface of the 'zlib' general purpose compression library version 1.2.8, April 28th, 2013 Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. Jean-loup Gailly Mark Adler jloup@gzip.org madler@alumni.caltech.edu The data format used by the zlib library is described by RFCs (Request for Comments) 1950 to 1952 in the files http://tools.ietf.org/html/rfc1950 (zlib format), rfc1951 (deflate format) and rfc1952 (gzip format). */ #ifndef MiniZLib_ZLIB_H #define MiniZLib_ZLIB_H /* zconf.h -- configuration of the zlib compression library * Copyright (C) 1995-2013 Jean-loup Gailly. * For conditions of distribution and use, see copyright notice in zlib.h */ /* @(#) $Id$ */ #ifndef MiniZLib_ZCONF_H #define MiniZLib_ZCONF_H /* * If you *really* need a unique prefix for all types and library functions, * compile with -DZ_PREFIX. The "standard" zlib should be compiled without it. * Even better than compiling with -DZ_PREFIX would be to use configure to set * this permanently in zconf.h using "./configure --zprefix". */ #if 1 /* may be set to #if 1 by ./configure */ # define Z_PREFIX_SET /* all linked symbols */ # define _dist_code minizlib__dist_code # define _length_code minizlib__length_code # define _tr_align minizlib__tr_align # define _tr_flush_bits minizlib__tr_flush_bits # define _tr_flush_block minizlib__tr_flush_block # define _tr_init minizlib__tr_init # define _tr_stored_block minizlib__tr_stored_block # define _tr_tally minizlib__tr_tally # define adler32 minizlib_adler32 # define adler32_combine minizlib_adler32_combine # define adler32_combine64 minizlib_adler32_combine64 # ifndef Z_SOLO # define compress minizlib_compress # define compress2 minizlib_compress2 # define compressBound minizlib_compressBound # endif # define crc32 minizlib_crc32 # define crc32_combine minizlib_crc32_combine # define crc32_combine64 minizlib_crc32_combine64 # define deflate minizlib_deflate # define deflateBound minizlib_deflateBound # define deflateCopy minizlib_deflateCopy # define deflateEnd minizlib_deflateEnd # define deflateInit2_ minizlib_deflateInit2_ # define deflateInit_ minizlib_deflateInit_ # define deflateParams minizlib_deflateParams # define deflatePending minizlib_deflatePending # define deflatePrime minizlib_deflatePrime # define deflateReset minizlib_deflateReset # define deflateResetKeep minizlib_deflateResetKeep # define deflateSetDictionary minizlib_deflateSetDictionary # define deflateSetHeader minizlib_deflateSetHeader # define deflateTune minizlib_deflateTune # define deflate_copyright minizlib_deflate_copyright # define get_crc_table minizlib_get_crc_table # ifndef Z_SOLO # define gz_error minizlib_gz_error # define gz_intmax minizlib_gz_intmax # define gz_strwinerror minizlib_gz_strwinerror # define gzbuffer minizlib_gzbuffer # define gzclearerr minizlib_gzclearerr # define gzclose minizlib_gzclose # define gzclose_r minizlib_gzclose_r # define gzclose_w minizlib_gzclose_w # define gzdirect minizlib_gzdirect # define gzdopen minizlib_gzdopen # define gzeof minizlib_gzeof # define gzerror minizlib_gzerror # define gzflush minizlib_gzflush # define gzgetc minizlib_gzgetc # define gzgetc_ minizlib_gzgetc_ # define gzgets minizlib_gzgets # define gzoffset minizlib_gzoffset # define gzoffset64 minizlib_gzoffset64 # define gzopen minizlib_gzopen # define gzopen64 minizlib_gzopen64 # ifdef _WIN32 # define gzopen_w minizlib_gzopen_w # endif # define gzprintf minizlib_gzprintf # define gzvprintf minizlib_gzvprintf # define gzputc minizlib_gzputc # define gzputs minizlib_gzputs # define gzread minizlib_gzread # define gzrewind minizlib_gzrewind # define gzseek minizlib_gzseek # define gzseek64 minizlib_gzseek64 # define gzsetparams minizlib_gzsetparams # define gztell minizlib_gztell # define gztell64 minizlib_gztell64 # define gzungetc minizlib_gzungetc # define gzwrite minizlib_gzwrite # endif # define inflate minizlib_inflate # define inflateBack minizlib_inflateBack # define inflateBackEnd minizlib_inflateBackEnd # define inflateBackInit_ minizlib_inflateBackInit_ # define inflateCopy minizlib_inflateCopy # define inflateEnd minizlib_inflateEnd # define inflateGetHeader minizlib_inflateGetHeader # define inflateInit2_ minizlib_inflateInit2_ # define inflateInit_ minizlib_inflateInit_ # define inflateMark minizlib_inflateMark # define inflatePrime minizlib_inflatePrime # define inflateReset minizlib_inflateReset # define inflateReset2 minizlib_inflateReset2 # define inflateSetDictionary minizlib_inflateSetDictionary # define inflateGetDictionary minizlib_inflateGetDictionary # define inflateSync minizlib_inflateSync # define inflateSyncPoint minizlib_inflateSyncPoint # define inflateUndermine minizlib_inflateUndermine # define inflateResetKeep minizlib_inflateResetKeep # define inflate_copyright minizlib_inflate_copyright # define inflate_fast minizlib_inflate_fast # define inflate_table minizlib_inflate_table # ifndef Z_SOLO # define uncompress minizlib_uncompress # endif # define zError minizlib_zError # ifndef Z_SOLO # define zcalloc minizlib_zcalloc # define zcfree minizlib_zcfree # endif # define zlibCompileFlags minizlib_zlibCompileFlags # define zlibVersion minizlib_zlibVersion /* all zlib typedefs in zlib.h and zconf.h */ # define Byte minizlib_Byte # define Bytef minizlib_Bytef # define alloc_func minizlib_alloc_func # define charf minizlib_charf # define free_func minizlib_free_func # ifndef Z_SOLO # define gzFile minizlib_gzFile # endif # define gz_header minizlib_gz_header # define gz_headerp minizlib_gz_headerp # define in_func minizlib_in_func # define intf minizlib_intf # define out_func minizlib_out_func # define uInt minizlib_uInt # define uIntf minizlib_uIntf # define uLong minizlib_uLong # define uLongf minizlib_uLongf # define voidp minizlib_voidp # define voidpc minizlib_voidpc # define voidpf minizlib_voidpf /* all zlib structs in zlib.h and zconf.h */ # define gz_header_s minizlib_gz_header_s # define internal_state minizlib_internal_state /* extras added by TK */ # define distfix minizlib_distfix # define lenfix minizlib_lenfix # define lbase minizlib_lbase # define dbase minizlib_dbase # define my_version minizlib_my_version # define dext minizlib_dext # define order minizlib_order # define build_bl_tree minizlib_build_bl_tree # define copy_block minizlib_copy_block # define crc32_big minizlib_crc32_big # define crc32_little minizlib_crc32_little # define deflate_huff minizlib_deflate_huff # define deflate_rle minizlib_deflate_rle # define detect_data_type minizlib_detect_data_type # define fixedtables minizlib_fixedtables # define flush_pending minizlib_flush_pending # define gen_bitlen minizlib_gen_bitlen # define gf2_matrix_square minizlib_gf2_matrix_square # define gf2_matrix_times minizlib_gf2_matrix_times # define init_block minizlib_init_block # define lm_init minizlib_lm_init # define pqdownheap minizlib_pqdownheap # define putShortMSB minizlib_putShortMSB # define read_buf minizlib_read_buf # define scan_tree minizlib_scan_tree # define send_all_trees minizlib_send_all_trees # define syncsearch minizlib_syncsearch # define tr_static_init minizlib_tr_static_init # define updatewindow minizlib_updatewindow # define adler32_combine_ minizlib_adler32_combine_ # define bi_flush minizlib_bi_flush # define bi_reverse minizlib_bi_reverse # define bi_windup minizlib_bi_windup # define gen_codes minizlib_gen_codes # define deflate_slow minizlib_deflate_slow # define deflate_fast minizlib_deflate_fast # define deflate_stored minizlib_deflate_stored # define gz_avail minizlib_gz_avail # define gz_load minizlib_gz_load # define gz_reset minizlib_gz_reset # define gz_skip minizlib_gz_skip # define gz_zero minizlib_gz_zero # define gz_comp minizlib_gz_comp # define gz_decomp minizlib_gz_decomp # define gz_fetch minizlib_gz_fetch # define gz_init minizlib_gz_init # define gz_look minizlib_gz_look # define gz_open minizlib_gz_open # define z_errmsg minizlib_z_errmsg # define crc32_combine_ minizlib_crc32_combine_ # define crc_table minizlib_crc_table # define longest_match minizlib_longest_match # define fill_window minizlib_fill_window # define configuration_table minizlib_configuration_table # define send_tree minizlib_send_tree # define compress_block minizlib_compress_block # define extra_lbits minizlib_extra_lbits # define base_length minizlib_base_length # define extra_dbits minizlib_extra_dbits # define base_dist minizlib_base_dist # define build_tree minizlib_build_tree # define bl_order minizlib_bl_order # define extra_blbits minizlib_extra_blbits # define static_l_desc minizlib_static_l_desc # define static_bl_desc minizlib_static_bl_desc # define static_d_desc minizlib_static_d_desc # define static_dtree minizlib_static_dtree # define static_ltree minizlib_static_ltree #endif #if defined(__MSDOS__) && !defined(MSDOS) # define MSDOS #endif #if (defined(OS_2) || defined(__OS2__)) && !defined(OS2) # define OS2 #endif #if defined(_WINDOWS) && !defined(WINDOWS) # define WINDOWS #endif #if defined(_WIN32) || defined(_WIN32_WCE) || defined(__WIN32__) # ifndef WIN32 # define WIN32 # endif #endif #if (defined(MSDOS) || defined(OS2) || defined(WINDOWS)) && !defined(WIN32) # if !defined(__GNUC__) && !defined(__FLAT__) && !defined(__386__) # ifndef SYS16BIT # define SYS16BIT # endif # endif #endif /* * Compile with -DMAXSEG_64K if the alloc function cannot allocate more * than 64k bytes at a time (needed on systems with 16-bit int). */ #ifdef SYS16BIT # define MAXSEG_64K #endif #ifdef MSDOS # define UNALIGNED_OK #endif #ifdef __STDC_VERSION__ # ifndef STDC # define STDC # endif # if __STDC_VERSION__ >= 199901L # ifndef STDC99 # define STDC99 # endif # endif #endif #if !defined(STDC) && (defined(__STDC__) || defined(__cplusplus)) # define STDC #endif #if !defined(STDC) && (defined(__GNUC__) || defined(__BORLANDC__)) # define STDC #endif #if !defined(STDC) && (defined(MSDOS) || defined(WINDOWS) || defined(WIN32)) # define STDC #endif #if !defined(STDC) && (defined(OS2) || defined(__HOS_AIX__)) # define STDC #endif #if defined(__OS400__) && !defined(STDC) /* iSeries (formerly AS/400). */ # define STDC #endif #ifndef STDC # ifndef const /* cannot use !defined(STDC) && !defined(const) on Mac */ # define const /* note: need a more gentle solution here */ # endif #endif #if defined(ZLIB_CONST) && !defined(z_const) # define z_const const #else # define z_const #endif /* Some Mac compilers merge all .h files incorrectly: */ #if defined(__MWERKS__)||defined(applec)||defined(THINK_C)||defined(__SC__) # define NO_DUMMY_DECL #endif /* Maximum value for memLevel in deflateInit2 */ #ifndef MAX_MEM_LEVEL # ifdef MAXSEG_64K # define MAX_MEM_LEVEL 8 # else # define MAX_MEM_LEVEL 9 # endif #endif /* Maximum value for windowBits in deflateInit2 and inflateInit2. * WARNING: reducing MAX_WBITS makes minigzip unable to extract .gz files * created by gzip. (Files created by minigzip can still be extracted by * gzip.) */ #ifndef MAX_WBITS # define MAX_WBITS 15 /* 32K LZ77 window */ #endif /* The memory requirements for deflate are (in bytes): (1 << (windowBits+2)) + (1 << (memLevel+9)) that is: 128K for windowBits=15 + 128K for memLevel = 8 (default values) plus a few kilobytes for small objects. For example, if you want to reduce the default memory requirements from 256K to 128K, compile with make CFLAGS="-O -DMAX_WBITS=14 -DMAX_MEM_LEVEL=7" Of course this will generally degrade compression (there's no free lunch). The memory requirements for inflate are (in bytes) 1 << windowBits that is, 32K for windowBits=15 (default value) plus a few kilobytes for small objects. */ /* Type declarations */ #ifndef OF /* function prototypes */ # ifdef STDC # define OF(args) args # else # define OF(args) () # endif #endif #ifndef Z_ARG /* function prototypes for stdarg */ # if defined(STDC) || defined(Z_HAVE_STDARG_H) # define Z_ARG(args) args # else # define Z_ARG(args) () # endif #endif /* The following definitions for FAR are needed only for MSDOS mixed * model programming (small or medium model with some far allocations). * This was tested only with MSC; for other MSDOS compilers you may have * to define NO_MEMCPY in zutil.h. If you don't need the mixed model, * just define FAR to be empty. */ #ifdef SYS16BIT # if defined(M_I86SM) || defined(M_I86MM) /* MSC small or medium model */ # define SMALL_MEDIUM # ifdef _MSC_VER # define FAR _far # else # define FAR far # endif # endif # if (defined(__SMALL__) || defined(__MEDIUM__)) /* Turbo C small or medium model */ # define SMALL_MEDIUM # ifdef __BORLANDC__ # define FAR _far # else # define FAR far # endif # endif #endif #if defined(WINDOWS) || defined(WIN32) /* If building or using zlib as a DLL, define ZLIB_DLL. * This is not mandatory, but it offers a little performance increase. */ # ifdef ZLIB_DLL # if defined(WIN32) && (!defined(__BORLANDC__) || (__BORLANDC__ >= 0x500)) # ifdef ZLIB_INTERNAL # define ZEXTERN extern __declspec(dllexport) # else # define ZEXTERN extern __declspec(dllimport) # endif # endif # endif /* ZLIB_DLL */ /* If building or using zlib with the WINAPI/WINAPIV calling convention, * define ZLIB_WINAPI. * Caution: the standard ZLIB1.DLL is NOT compiled using ZLIB_WINAPI. */ # ifdef ZLIB_WINAPI # ifdef FAR # undef FAR # endif # include /* No need for _export, use ZLIB.DEF instead. */ /* For complete Windows compatibility, use WINAPI, not __stdcall. */ # define ZEXPORT WINAPI # ifdef WIN32 # define ZEXPORTVA WINAPIV # else # define ZEXPORTVA FAR CDECL # endif # endif #endif #if defined (__BEOS__) # ifdef ZLIB_DLL # ifdef ZLIB_INTERNAL # define ZEXPORT __declspec(dllexport) # define ZEXPORTVA __declspec(dllexport) # else # define ZEXPORT __declspec(dllimport) # define ZEXPORTVA __declspec(dllimport) # endif # endif #endif #ifndef ZEXTERN # define ZEXTERN extern #endif #ifndef ZEXPORT # define ZEXPORT #endif #ifndef ZEXPORTVA # define ZEXPORTVA #endif #ifndef FAR # define FAR #endif #if !defined(__MACTYPES__) typedef unsigned char Byte; /* 8 bits */ #endif typedef unsigned int uInt; /* 16 bits or more */ typedef unsigned long uLong; /* 32 bits or more */ #ifdef SMALL_MEDIUM /* Borland C/C++ and some old MSC versions ignore FAR inside typedef */ # define Bytef Byte FAR #else typedef Byte FAR Bytef; #endif typedef char FAR charf; typedef int FAR intf; typedef uInt FAR uIntf; typedef uLong FAR uLongf; #ifdef STDC typedef void const *voidpc; typedef void FAR *voidpf; typedef void *voidp; #else typedef Byte const *voidpc; typedef Byte FAR *voidpf; typedef Byte *voidp; #endif #if !defined(Z_U4) && !defined(Z_SOLO) && defined(STDC) # include # if (UINT_MAX == 0xffffffffUL) # define Z_U4 unsigned # elif (ULONG_MAX == 0xffffffffUL) # define Z_U4 unsigned long # elif (USHRT_MAX == 0xffffffffUL) # define Z_U4 unsigned short # endif #endif #ifdef Z_U4 typedef Z_U4 z_crc_t; #else typedef unsigned long z_crc_t; #endif #ifdef HAVE_UNISTD_H /* may be set to #if 1 by ./configure */ # define Z_HAVE_UNISTD_H #endif #ifdef HAVE_STDARG_H /* may be set to #if 1 by ./configure */ # define Z_HAVE_STDARG_H #endif #ifdef STDC # ifndef Z_SOLO # include /* for off_t */ # endif #endif #if defined(STDC) || defined(Z_HAVE_STDARG_H) # ifndef Z_SOLO # include /* for va_list */ # endif #endif #ifdef _WIN32 # ifndef Z_SOLO # include /* for wchar_t */ # endif #endif /* a little trick to accommodate both "#define _LARGEFILE64_SOURCE" and * "#define _LARGEFILE64_SOURCE 1" as requesting 64-bit operations, (even * though the former does not conform to the LFS document), but considering * both "#undef _LARGEFILE64_SOURCE" and "#define _LARGEFILE64_SOURCE 0" as * equivalently requesting no 64-bit operations */ #if defined(_LARGEFILE64_SOURCE) && -_LARGEFILE64_SOURCE - -1 == 1 # undef _LARGEFILE64_SOURCE #endif #if defined(__WATCOMC__) && !defined(Z_HAVE_UNISTD_H) # define Z_HAVE_UNISTD_H #endif #ifndef Z_SOLO # if defined(Z_HAVE_UNISTD_H) || defined(_LARGEFILE64_SOURCE) # include /* for SEEK_*, off_t, and _LFS64_LARGEFILE */ # ifdef VMS # include /* for off_t */ # endif # ifndef z_off_t # define z_off_t off_t # endif # endif #endif #if defined(_LFS64_LARGEFILE) && _LFS64_LARGEFILE-0 # define Z_LFS64 #endif #if defined(_LARGEFILE64_SOURCE) && defined(Z_LFS64) # define Z_LARGE64 #endif #if defined(_FILE_OFFSET_BITS) && _FILE_OFFSET_BITS-0 == 64 && defined(Z_LFS64) # define Z_WANT64 #endif #if !defined(SEEK_SET) && !defined(Z_SOLO) # define SEEK_SET 0 /* Seek from beginning of file. */ # define SEEK_CUR 1 /* Seek from current position. */ # define SEEK_END 2 /* Set file pointer to EOF plus "offset" */ #endif #ifndef z_off_t # define z_off_t long #endif #if !defined(_WIN32) && defined(Z_LARGE64) # define z_off64_t off64_t #else # if defined(_WIN32) && !defined(__GNUC__) && !defined(Z_SOLO) # define z_off64_t __int64 # else # define z_off64_t z_off_t # endif #endif /* MVS linker does not support external names larger than 8 bytes */ #if defined(__MVS__) #pragma map(deflateInit_,"DEIN") #pragma map(deflateInit2_,"DEIN2") #pragma map(deflateEnd,"DEEND") #pragma map(deflateBound,"DEBND") #pragma map(inflateInit_,"ININ") #pragma map(inflateInit2_,"ININ2") #pragma map(inflateEnd,"INEND") #pragma map(inflateSync,"INSY") #pragma map(inflateSetDictionary,"INSEDI") #pragma map(compressBound,"CMBND") #pragma map(inflate_table,"INTABL") #pragma map(inflate_fast,"INFA") #pragma map(inflate_copyright,"INCOPY") #endif #endif /* ZCONF_H */ #ifdef __cplusplus extern "C" { #endif #define ZLIB_VERSION "1.2.8" #define ZLIB_VERNUM 0x1280 #define ZLIB_VER_MAJOR 1 #define ZLIB_VER_MINOR 2 #define ZLIB_VER_REVISION 8 #define ZLIB_VER_SUBREVISION 0 /* The 'zlib' compression library provides in-memory compression and decompression functions, including integrity checks of the uncompressed data. This version of the library supports only one compression method (deflation) but other algorithms will be added later and will have the same stream interface. Compression can be done in a single step if the buffers are large enough, or can be done by repeated calls of the compression function. In the latter case, the application must provide more input and/or consume the output (providing more output space) before each call. The compressed data format used by default by the in-memory functions is the zlib format, which is a zlib wrapper documented in RFC 1950, wrapped around a deflate stream, which is itself documented in RFC 1951. The library also supports reading and writing files in gzip (.gz) format with an interface similar to that of stdio using the functions that start with "gz". The gzip format is different from the zlib format. gzip is a gzip wrapper, documented in RFC 1952, wrapped around a deflate stream. This library can optionally read and write gzip streams in memory as well. The zlib format was designed to be compact and fast for use in memory and on communications channels. The gzip format was designed for single- file compression on file systems, has a larger header than zlib to maintain directory information, and uses a different, slower check method than zlib. The library does not install any signal handler. The decoder checks the consistency of the compressed data, so the library should never crash even in case of corrupted input. */ typedef voidpf (*alloc_func) OF((voidpf opaque, uInt items, uInt size)); typedef void (*free_func) OF((voidpf opaque, voidpf address)); struct internal_state; typedef struct z_stream_s { z_const Bytef *next_in; /* next input byte */ uInt avail_in; /* number of bytes available at next_in */ uLong total_in; /* total number of input bytes read so far */ Bytef *next_out; /* next output byte should be put there */ uInt avail_out; /* remaining free space at next_out */ uLong total_out; /* total number of bytes output so far */ z_const char *msg; /* last error message, NULL if no error */ struct internal_state FAR *state; /* not visible by applications */ alloc_func zalloc; /* used to allocate the internal state */ free_func zfree; /* used to free the internal state */ voidpf opaque; /* private data object passed to zalloc and zfree */ int data_type; /* best guess about the data type: binary or text */ uLong adler; /* adler32 value of the uncompressed data */ uLong reserved; /* reserved for future use */ } z_stream; typedef z_stream FAR *z_streamp; /* gzip header information passed to and from zlib routines. See RFC 1952 for more details on the meanings of these fields. */ typedef struct gz_header_s { int text; /* true if compressed data believed to be text */ uLong time; /* modification time */ int xflags; /* extra flags (not used when writing a gzip file) */ int os; /* operating system */ Bytef *extra; /* pointer to extra field or Z_NULL if none */ uInt extra_len; /* extra field length (valid if extra != Z_NULL) */ uInt extra_max; /* space at extra (only when reading header) */ Bytef *name; /* pointer to zero-terminated file name or Z_NULL */ uInt name_max; /* space at name (only when reading header) */ Bytef *comment; /* pointer to zero-terminated comment or Z_NULL */ uInt comm_max; /* space at comment (only when reading header) */ int hcrc; /* true if there was or will be a header crc */ int done; /* true when done reading gzip header (not used when writing a gzip file) */ } gz_header; typedef gz_header FAR *gz_headerp; /* The application must update next_in and avail_in when avail_in has dropped to zero. It must update next_out and avail_out when avail_out has dropped to zero. The application must initialize zalloc, zfree and opaque before calling the init function. All other fields are set by the compression library and must not be updated by the application. The opaque value provided by the application will be passed as the first parameter for calls of zalloc and zfree. This can be useful for custom memory management. The compression library attaches no meaning to the opaque value. zalloc must return Z_NULL if there is not enough memory for the object. If zlib is used in a multi-threaded application, zalloc and zfree must be thread safe. On 16-bit systems, the functions zalloc and zfree must be able to allocate exactly 65536 bytes, but will not be required to allocate more than this if the symbol MAXSEG_64K is defined (see zconf.h). WARNING: On MSDOS, pointers returned by zalloc for objects of exactly 65536 bytes *must* have their offset normalized to zero. The default allocation function provided by this library ensures this (see zutil.c). To reduce memory requirements and avoid any allocation of 64K objects, at the expense of compression ratio, compile the library with -DMAX_WBITS=14 (see zconf.h). The fields total_in and total_out can be used for statistics or progress reports. After compression, total_in holds the total size of the uncompressed data and may be saved for use in the decompressor (particularly if the decompressor wants to decompress everything in a single step). */ /* constants */ #define Z_NO_FLUSH 0 #define Z_PARTIAL_FLUSH 1 #define Z_SYNC_FLUSH 2 #define Z_FULL_FLUSH 3 #define Z_FINISH 4 #define Z_BLOCK 5 #define Z_TREES 6 /* Allowed flush values; see deflate() and inflate() below for details */ #define Z_OK 0 #define Z_STREAM_END 1 #define Z_NEED_DICT 2 #define Z_ERRNO (-1) #define Z_STREAM_ERROR (-2) #define Z_DATA_ERROR (-3) #define Z_MEM_ERROR (-4) #define Z_BUF_ERROR (-5) #define Z_VERSION_ERROR (-6) /* Return codes for the compression/decompression functions. Negative values * are errors, positive values are used for special but normal events. */ #define Z_NO_COMPRESSION 0 #define Z_BEST_SPEED 1 #define Z_BEST_COMPRESSION 9 #define Z_DEFAULT_COMPRESSION (-1) /* compression levels */ #define Z_FILTERED 1 #define Z_HUFFMAN_ONLY 2 #define Z_RLE 3 #define Z_FIXED 4 #define Z_DEFAULT_STRATEGY 0 /* compression strategy; see deflateInit2() below for details */ #define Z_BINARY 0 #define Z_TEXT 1 #define Z_ASCII Z_TEXT /* for compatibility with 1.2.2 and earlier */ #define Z_UNKNOWN 2 /* Possible values of the data_type field (though see inflate()) */ #define Z_DEFLATED 8 /* The deflate compression method (the only one supported in this version) */ #define Z_NULL 0 /* for initializing zalloc, zfree, opaque */ #define zlib_version zlibVersion() /* for compatibility with versions < 1.0.2 */ /* basic functions */ ZEXTERN const char * ZEXPORT zlibVersion OF((void)); /* The application can compare zlibVersion and ZLIB_VERSION for consistency. If the first character differs, the library code actually used is not compatible with the zlib.h header file used by the application. This check is automatically made by deflateInit and inflateInit. */ /* ZEXTERN int ZEXPORT deflateInit OF((z_streamp strm, int level)); Initializes the internal stream state for compression. The fields zalloc, zfree and opaque must be initialized before by the caller. If zalloc and zfree are set to Z_NULL, deflateInit updates them to use default allocation functions. The compression level must be Z_DEFAULT_COMPRESSION, or between 0 and 9: 1 gives best speed, 9 gives best compression, 0 gives no compression at all (the input data is simply copied a block at a time). Z_DEFAULT_COMPRESSION requests a default compromise between speed and compression (currently equivalent to level 6). deflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_STREAM_ERROR if level is not a valid compression level, or Z_VERSION_ERROR if the zlib library version (zlib_version) is incompatible with the version assumed by the caller (ZLIB_VERSION). msg is set to null if there is no error message. deflateInit does not perform any compression: this will be done by deflate(). */ ZEXTERN int ZEXPORT deflate OF((z_streamp strm, int flush)); /* deflate compresses as much data as possible, and stops when the input buffer becomes empty or the output buffer becomes full. It may introduce some output latency (reading input without producing any output) except when forced to flush. The detailed semantics are as follows. deflate performs one or both of the following actions: - Compress more input starting at next_in and update next_in and avail_in accordingly. If not all input can be processed (because there is not enough room in the output buffer), next_in and avail_in are updated and processing will resume at this point for the next call of deflate(). - Provide more output starting at next_out and update next_out and avail_out accordingly. This action is forced if the parameter flush is non zero. Forcing flush frequently degrades the compression ratio, so this parameter should be set only when necessary (in interactive applications). Some output may be provided even if flush is not set. Before the call of deflate(), the application should ensure that at least one of the actions is possible, by providing more input and/or consuming more output, and updating avail_in or avail_out accordingly; avail_out should never be zero before the call. The application can consume the compressed output when it wants, for example when the output buffer is full (avail_out == 0), or after each call of deflate(). If deflate returns Z_OK and with zero avail_out, it must be called again after making room in the output buffer because there might be more output pending. Normally the parameter flush is set to Z_NO_FLUSH, which allows deflate to decide how much data to accumulate before producing output, in order to maximize compression. If the parameter flush is set to Z_SYNC_FLUSH, all pending output is flushed to the output buffer and the output is aligned on a byte boundary, so that the decompressor can get all input data available so far. (In particular avail_in is zero after the call if enough output space has been provided before the call.) Flushing may degrade compression for some compression algorithms and so it should be used only when necessary. This completes the current deflate block and follows it with an empty stored block that is three bits plus filler bits to the next byte, followed by four bytes (00 00 ff ff). If flush is set to Z_PARTIAL_FLUSH, all pending output is flushed to the output buffer, but the output is not aligned to a byte boundary. All of the input data so far will be available to the decompressor, as for Z_SYNC_FLUSH. This completes the current deflate block and follows it with an empty fixed codes block that is 10 bits long. This assures that enough bytes are output in order for the decompressor to finish the block before the empty fixed code block. If flush is set to Z_BLOCK, a deflate block is completed and emitted, as for Z_SYNC_FLUSH, but the output is not aligned on a byte boundary, and up to seven bits of the current block are held to be written as the next byte after the next deflate block is completed. In this case, the decompressor may not be provided enough bits at this point in order to complete decompression of the data provided so far to the compressor. It may need to wait for the next block to be emitted. This is for advanced applications that need to control the emission of deflate blocks. If flush is set to Z_FULL_FLUSH, all output is flushed as with Z_SYNC_FLUSH, and the compression state is reset so that decompression can restart from this point if previous compressed data has been damaged or if random access is desired. Using Z_FULL_FLUSH too often can seriously degrade compression. If deflate returns with avail_out == 0, this function must be called again with the same value of the flush parameter and more output space (updated avail_out), until the flush is complete (deflate returns with non-zero avail_out). In the case of a Z_FULL_FLUSH or Z_SYNC_FLUSH, make sure that avail_out is greater than six to avoid repeated flush markers due to avail_out == 0 on return. If the parameter flush is set to Z_FINISH, pending input is processed, pending output is flushed and deflate returns with Z_STREAM_END if there was enough output space; if deflate returns with Z_OK, this function must be called again with Z_FINISH and more output space (updated avail_out) but no more input data, until it returns with Z_STREAM_END or an error. After deflate has returned Z_STREAM_END, the only possible operations on the stream are deflateReset or deflateEnd. Z_FINISH can be used immediately after deflateInit if all the compression is to be done in a single step. In this case, avail_out must be at least the value returned by deflateBound (see below). Then deflate is guaranteed to return Z_STREAM_END. If not enough output space is provided, deflate will not return Z_STREAM_END, and it must be called again as described above. deflate() sets strm->adler to the adler32 checksum of all input read so far (that is, total_in bytes). deflate() may update strm->data_type if it can make a good guess about the input data type (Z_BINARY or Z_TEXT). In doubt, the data is considered binary. This field is only for information purposes and does not affect the compression algorithm in any manner. deflate() returns Z_OK if some progress has been made (more input processed or more output produced), Z_STREAM_END if all input has been consumed and all output has been produced (only when flush is set to Z_FINISH), Z_STREAM_ERROR if the stream state was inconsistent (for example if next_in or next_out was Z_NULL), Z_BUF_ERROR if no progress is possible (for example avail_in or avail_out was zero). Note that Z_BUF_ERROR is not fatal, and deflate() can be called again with more input and more output space to continue compressing. */ ZEXTERN int ZEXPORT deflateEnd OF((z_streamp strm)); /* All dynamically allocated data structures for this stream are freed. This function discards any unprocessed input and does not flush any pending output. deflateEnd returns Z_OK if success, Z_STREAM_ERROR if the stream state was inconsistent, Z_DATA_ERROR if the stream was freed prematurely (some input or output was discarded). In the error case, msg may be set but then points to a static string (which must not be deallocated). */ /* ZEXTERN int ZEXPORT inflateInit OF((z_streamp strm)); Initializes the internal stream state for decompression. The fields next_in, avail_in, zalloc, zfree and opaque must be initialized before by the caller. If next_in is not Z_NULL and avail_in is large enough (the exact value depends on the compression method), inflateInit determines the compression method from the zlib header and allocates all data structures accordingly; otherwise the allocation will be deferred to the first call of inflate. If zalloc and zfree are set to Z_NULL, inflateInit updates them to use default allocation functions. inflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_VERSION_ERROR if the zlib library version is incompatible with the version assumed by the caller, or Z_STREAM_ERROR if the parameters are invalid, such as a null pointer to the structure. msg is set to null if there is no error message. inflateInit does not perform any decompression apart from possibly reading the zlib header if present: actual decompression will be done by inflate(). (So next_in and avail_in may be modified, but next_out and avail_out are unused and unchanged.) The current implementation of inflateInit() does not process any header information -- that is deferred until inflate() is called. */ ZEXTERN int ZEXPORT inflate OF((z_streamp strm, int flush)); /* inflate decompresses as much data as possible, and stops when the input buffer becomes empty or the output buffer becomes full. It may introduce some output latency (reading input without producing any output) except when forced to flush. The detailed semantics are as follows. inflate performs one or both of the following actions: - Decompress more input starting at next_in and update next_in and avail_in accordingly. If not all input can be processed (because there is not enough room in the output buffer), next_in is updated and processing will resume at this point for the next call of inflate(). - Provide more output starting at next_out and update next_out and avail_out accordingly. inflate() provides as much output as possible, until there is no more input data or no more space in the output buffer (see below about the flush parameter). Before the call of inflate(), the application should ensure that at least one of the actions is possible, by providing more input and/or consuming more output, and updating the next_* and avail_* values accordingly. The application can consume the uncompressed output when it wants, for example when the output buffer is full (avail_out == 0), or after each call of inflate(). If inflate returns Z_OK and with zero avail_out, it must be called again after making room in the output buffer because there might be more output pending. The flush parameter of inflate() can be Z_NO_FLUSH, Z_SYNC_FLUSH, Z_FINISH, Z_BLOCK, or Z_TREES. Z_SYNC_FLUSH requests that inflate() flush as much output as possible to the output buffer. Z_BLOCK requests that inflate() stop if and when it gets to the next deflate block boundary. When decoding the zlib or gzip format, this will cause inflate() to return immediately after the header and before the first block. When doing a raw inflate, inflate() will go ahead and process the first block, and will return when it gets to the end of that block, or when it runs out of data. The Z_BLOCK option assists in appending to or combining deflate streams. Also to assist in this, on return inflate() will set strm->data_type to the number of unused bits in the last byte taken from strm->next_in, plus 64 if inflate() is currently decoding the last block in the deflate stream, plus 128 if inflate() returned immediately after decoding an end-of-block code or decoding the complete header up to just before the first byte of the deflate stream. The end-of-block will not be indicated until all of the uncompressed data from that block has been written to strm->next_out. The number of unused bits may in general be greater than seven, except when bit 7 of data_type is set, in which case the number of unused bits will be less than eight. data_type is set as noted here every time inflate() returns for all flush options, and so can be used to determine the amount of currently consumed input in bits. The Z_TREES option behaves as Z_BLOCK does, but it also returns when the end of each deflate block header is reached, before any actual data in that block is decoded. This allows the caller to determine the length of the deflate block header for later use in random access within a deflate block. 256 is added to the value of strm->data_type when inflate() returns immediately after reaching the end of the deflate block header. inflate() should normally be called until it returns Z_STREAM_END or an error. However if all decompression is to be performed in a single step (a single call of inflate), the parameter flush should be set to Z_FINISH. In this case all pending input is processed and all pending output is flushed; avail_out must be large enough to hold all of the uncompressed data for the operation to complete. (The size of the uncompressed data may have been saved by the compressor for this purpose.) The use of Z_FINISH is not required to perform an inflation in one step. However it may be used to inform inflate that a faster approach can be used for the single inflate() call. Z_FINISH also informs inflate to not maintain a sliding window if the stream completes, which reduces inflate's memory footprint. If the stream does not complete, either because not all of the stream is provided or not enough output space is provided, then a sliding window will be allocated and inflate() can be called again to continue the operation as if Z_NO_FLUSH had been used. In this implementation, inflate() always flushes as much output as possible to the output buffer, and always uses the faster approach on the first call. So the effects of the flush parameter in this implementation are on the return value of inflate() as noted below, when inflate() returns early when Z_BLOCK or Z_TREES is used, and when inflate() avoids the allocation of memory for a sliding window when Z_FINISH is used. If a preset dictionary is needed after this call (see inflateSetDictionary below), inflate sets strm->adler to the Adler-32 checksum of the dictionary chosen by the compressor and returns Z_NEED_DICT; otherwise it sets strm->adler to the Adler-32 checksum of all output produced so far (that is, total_out bytes) and returns Z_OK, Z_STREAM_END or an error code as described below. At the end of the stream, inflate() checks that its computed adler32 checksum is equal to that saved by the compressor and returns Z_STREAM_END only if the checksum is correct. inflate() can decompress and check either zlib-wrapped or gzip-wrapped deflate data. The header type is detected automatically, if requested when initializing with inflateInit2(). Any information contained in the gzip header is not retained, so applications that need that information should instead use raw inflate, see inflateInit2() below, or inflateBack() and perform their own processing of the gzip header and trailer. When processing gzip-wrapped deflate data, strm->adler32 is set to the CRC-32 of the output producted so far. The CRC-32 is checked against the gzip trailer. inflate() returns Z_OK if some progress has been made (more input processed or more output produced), Z_STREAM_END if the end of the compressed data has been reached and all uncompressed output has been produced, Z_NEED_DICT if a preset dictionary is needed at this point, Z_DATA_ERROR if the input data was corrupted (input stream not conforming to the zlib format or incorrect check value), Z_STREAM_ERROR if the stream structure was inconsistent (for example next_in or next_out was Z_NULL), Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if no progress is possible or if there was not enough room in the output buffer when Z_FINISH is used. Note that Z_BUF_ERROR is not fatal, and inflate() can be called again with more input and more output space to continue decompressing. If Z_DATA_ERROR is returned, the application may then call inflateSync() to look for a good compression block if a partial recovery of the data is desired. */ ZEXTERN int ZEXPORT inflateEnd OF((z_streamp strm)); /* All dynamically allocated data structures for this stream are freed. This function discards any unprocessed input and does not flush any pending output. inflateEnd returns Z_OK if success, Z_STREAM_ERROR if the stream state was inconsistent. In the error case, msg may be set but then points to a static string (which must not be deallocated). */ /* Advanced functions */ /* The following functions are needed only in some special applications. */ /* ZEXTERN int ZEXPORT deflateInit2 OF((z_streamp strm, int level, int method, int windowBits, int memLevel, int strategy)); This is another version of deflateInit with more compression options. The fields next_in, zalloc, zfree and opaque must be initialized before by the caller. The method parameter is the compression method. It must be Z_DEFLATED in this version of the library. The windowBits parameter is the base two logarithm of the window size (the size of the history buffer). It should be in the range 8..15 for this version of the library. Larger values of this parameter result in better compression at the expense of memory usage. The default value is 15 if deflateInit is used instead. windowBits can also be -8..-15 for raw deflate. In this case, -windowBits determines the window size. deflate() will then generate raw deflate data with no zlib header or trailer, and will not compute an adler32 check value. windowBits can also be greater than 15 for optional gzip encoding. Add 16 to windowBits to write a simple gzip header and trailer around the compressed data instead of a zlib wrapper. The gzip header will have no file name, no extra data, no comment, no modification time (set to zero), no header crc, and the operating system will be set to 255 (unknown). If a gzip stream is being written, strm->adler is a crc32 instead of an adler32. The memLevel parameter specifies how much memory should be allocated for the internal compression state. memLevel=1 uses minimum memory but is slow and reduces compression ratio; memLevel=9 uses maximum memory for optimal speed. The default value is 8. See zconf.h for total memory usage as a function of windowBits and memLevel. The strategy parameter is used to tune the compression algorithm. Use the value Z_DEFAULT_STRATEGY for normal data, Z_FILTERED for data produced by a filter (or predictor), Z_HUFFMAN_ONLY to force Huffman encoding only (no string match), or Z_RLE to limit match distances to one (run-length encoding). Filtered data consists mostly of small values with a somewhat random distribution. In this case, the compression algorithm is tuned to compress them better. The effect of Z_FILTERED is to force more Huffman coding and less string matching; it is somewhat intermediate between Z_DEFAULT_STRATEGY and Z_HUFFMAN_ONLY. Z_RLE is designed to be almost as fast as Z_HUFFMAN_ONLY, but give better compression for PNG image data. The strategy parameter only affects the compression ratio but not the correctness of the compressed output even if it is not set appropriately. Z_FIXED prevents the use of dynamic Huffman codes, allowing for a simpler decoder for special applications. deflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_STREAM_ERROR if any parameter is invalid (such as an invalid method), or Z_VERSION_ERROR if the zlib library version (zlib_version) is incompatible with the version assumed by the caller (ZLIB_VERSION). msg is set to null if there is no error message. deflateInit2 does not perform any compression: this will be done by deflate(). */ ZEXTERN int ZEXPORT deflateSetDictionary OF((z_streamp strm, const Bytef *dictionary, uInt dictLength)); /* Initializes the compression dictionary from the given byte sequence without producing any compressed output. When using the zlib format, this function must be called immediately after deflateInit, deflateInit2 or deflateReset, and before any call of deflate. When doing raw deflate, this function must be called either before any call of deflate, or immediately after the completion of a deflate block, i.e. after all input has been consumed and all output has been delivered when using any of the flush options Z_BLOCK, Z_PARTIAL_FLUSH, Z_SYNC_FLUSH, or Z_FULL_FLUSH. The compressor and decompressor must use exactly the same dictionary (see inflateSetDictionary). The dictionary should consist of strings (byte sequences) that are likely to be encountered later in the data to be compressed, with the most commonly used strings preferably put towards the end of the dictionary. Using a dictionary is most useful when the data to be compressed is short and can be predicted with good accuracy; the data can then be compressed better than with the default empty dictionary. Depending on the size of the compression data structures selected by deflateInit or deflateInit2, a part of the dictionary may in effect be discarded, for example if the dictionary is larger than the window size provided in deflateInit or deflateInit2. Thus the strings most likely to be useful should be put at the end of the dictionary, not at the front. In addition, the current implementation of deflate will use at most the window size minus 262 bytes of the provided dictionary. Upon return of this function, strm->adler is set to the adler32 value of the dictionary; the decompressor may later use this value to determine which dictionary has been used by the compressor. (The adler32 value applies to the whole dictionary even if only a subset of the dictionary is actually used by the compressor.) If a raw deflate was requested, then the adler32 value is not computed and strm->adler is not set. deflateSetDictionary returns Z_OK if success, or Z_STREAM_ERROR if a parameter is invalid (e.g. dictionary being Z_NULL) or the stream state is inconsistent (for example if deflate has already been called for this stream or if not at a block boundary for raw deflate). deflateSetDictionary does not perform any compression: this will be done by deflate(). */ ZEXTERN int ZEXPORT deflateCopy OF((z_streamp dest, z_streamp source)); /* Sets the destination stream as a complete copy of the source stream. This function can be useful when several compression strategies will be tried, for example when there are several ways of pre-processing the input data with a filter. The streams that will be discarded should then be freed by calling deflateEnd. Note that deflateCopy duplicates the internal compression state which can be quite large, so this strategy is slow and can consume lots of memory. deflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc being Z_NULL). msg is left unchanged in both source and destination. */ ZEXTERN int ZEXPORT deflateReset OF((z_streamp strm)); /* This function is equivalent to deflateEnd followed by deflateInit, but does not free and reallocate all the internal compression state. The stream will keep the same compression level and any other attributes that may have been set by deflateInit2. deflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc or state being Z_NULL). */ ZEXTERN int ZEXPORT deflateParams OF((z_streamp strm, int level, int strategy)); /* Dynamically update the compression level and compression strategy. The interpretation of level and strategy is as in deflateInit2. This can be used to switch between compression and straight copy of the input data, or to switch to a different kind of input data requiring a different strategy. If the compression level is changed, the input available so far is compressed with the old level (and may be flushed); the new level will take effect only at the next call of deflate(). Before the call of deflateParams, the stream state must be set as for a call of deflate(), since the currently available input may have to be compressed and flushed. In particular, strm->avail_out must be non-zero. deflateParams returns Z_OK if success, Z_STREAM_ERROR if the source stream state was inconsistent or if a parameter was invalid, Z_BUF_ERROR if strm->avail_out was zero. */ ZEXTERN int ZEXPORT deflateTune OF((z_streamp strm, int good_length, int max_lazy, int nice_length, int max_chain)); /* Fine tune deflate's internal compression parameters. This should only be used by someone who understands the algorithm used by zlib's deflate for searching for the best matching string, and even then only by the most fanatic optimizer trying to squeeze out the last compressed bit for their specific input data. Read the deflate.c source code for the meaning of the max_lazy, good_length, nice_length, and max_chain parameters. deflateTune() can be called after deflateInit() or deflateInit2(), and returns Z_OK on success, or Z_STREAM_ERROR for an invalid deflate stream. */ ZEXTERN uLong ZEXPORT deflateBound OF((z_streamp strm, uLong sourceLen)); /* deflateBound() returns an upper bound on the compressed size after deflation of sourceLen bytes. It must be called after deflateInit() or deflateInit2(), and after deflateSetHeader(), if used. This would be used to allocate an output buffer for deflation in a single pass, and so would be called before deflate(). If that first deflate() call is provided the sourceLen input bytes, an output buffer allocated to the size returned by deflateBound(), and the flush value Z_FINISH, then deflate() is guaranteed to return Z_STREAM_END. Note that it is possible for the compressed size to be larger than the value returned by deflateBound() if flush options other than Z_FINISH or Z_NO_FLUSH are used. */ ZEXTERN int ZEXPORT deflatePending OF((z_streamp strm, unsigned *pending, int *bits)); /* deflatePending() returns the number of bytes and bits of output that have been generated, but not yet provided in the available output. The bytes not provided would be due to the available output space having being consumed. The number of bits of output not provided are between 0 and 7, where they await more bits to join them in order to fill out a full byte. If pending or bits are Z_NULL, then those values are not set. deflatePending returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent. */ ZEXTERN int ZEXPORT deflatePrime OF((z_streamp strm, int bits, int value)); /* deflatePrime() inserts bits in the deflate output stream. The intent is that this function is used to start off the deflate output with the bits leftover from a previous deflate stream when appending to it. As such, this function can only be used for raw deflate, and must be used before the first deflate() call after a deflateInit2() or deflateReset(). bits must be less than or equal to 16, and that many of the least significant bits of value will be inserted in the output. deflatePrime returns Z_OK if success, Z_BUF_ERROR if there was not enough room in the internal buffer to insert the bits, or Z_STREAM_ERROR if the source stream state was inconsistent. */ ZEXTERN int ZEXPORT deflateSetHeader OF((z_streamp strm, gz_headerp head)); /* deflateSetHeader() provides gzip header information for when a gzip stream is requested by deflateInit2(). deflateSetHeader() may be called after deflateInit2() or deflateReset() and before the first call of deflate(). The text, time, os, extra field, name, and comment information in the provided gz_header structure are written to the gzip header (xflag is ignored -- the extra flags are set according to the compression level). The caller must assure that, if not Z_NULL, name and comment are terminated with a zero byte, and that if extra is not Z_NULL, that extra_len bytes are available there. If hcrc is true, a gzip header crc is included. Note that the current versions of the command-line version of gzip (up through version 1.3.x) do not support header crc's, and will report that it is a "multi-part gzip file" and give up. If deflateSetHeader is not used, the default gzip header has text false, the time set to zero, and os set to 255, with no extra, name, or comment fields. The gzip header is returned to the default state by deflateReset(). deflateSetHeader returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent. */ /* ZEXTERN int ZEXPORT inflateInit2 OF((z_streamp strm, int windowBits)); This is another version of inflateInit with an extra parameter. The fields next_in, avail_in, zalloc, zfree and opaque must be initialized before by the caller. The windowBits parameter is the base two logarithm of the maximum window size (the size of the history buffer). It should be in the range 8..15 for this version of the library. The default value is 15 if inflateInit is used instead. windowBits must be greater than or equal to the windowBits value provided to deflateInit2() while compressing, or it must be equal to 15 if deflateInit2() was not used. If a compressed stream with a larger window size is given as input, inflate() will return with the error code Z_DATA_ERROR instead of trying to allocate a larger window. windowBits can also be zero to request that inflate use the window size in the zlib header of the compressed stream. windowBits can also be -8..-15 for raw inflate. In this case, -windowBits determines the window size. inflate() will then process raw deflate data, not looking for a zlib or gzip header, not generating a check value, and not looking for any check values for comparison at the end of the stream. This is for use with other formats that use the deflate compressed data format such as zip. Those formats provide their own check values. If a custom format is developed using the raw deflate format for compressed data, it is recommended that a check value such as an adler32 or a crc32 be applied to the uncompressed data as is done in the zlib, gzip, and zip formats. For most applications, the zlib format should be used as is. Note that comments above on the use in deflateInit2() applies to the magnitude of windowBits. windowBits can also be greater than 15 for optional gzip decoding. Add 32 to windowBits to enable zlib and gzip decoding with automatic header detection, or add 16 to decode only the gzip format (the zlib format will return a Z_DATA_ERROR). If a gzip stream is being decoded, strm->adler is a crc32 instead of an adler32. inflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_VERSION_ERROR if the zlib library version is incompatible with the version assumed by the caller, or Z_STREAM_ERROR if the parameters are invalid, such as a null pointer to the structure. msg is set to null if there is no error message. inflateInit2 does not perform any decompression apart from possibly reading the zlib header if present: actual decompression will be done by inflate(). (So next_in and avail_in may be modified, but next_out and avail_out are unused and unchanged.) The current implementation of inflateInit2() does not process any header information -- that is deferred until inflate() is called. */ ZEXTERN int ZEXPORT inflateSetDictionary OF((z_streamp strm, const Bytef *dictionary, uInt dictLength)); /* Initializes the decompression dictionary from the given uncompressed byte sequence. This function must be called immediately after a call of inflate, if that call returned Z_NEED_DICT. The dictionary chosen by the compressor can be determined from the adler32 value returned by that call of inflate. The compressor and decompressor must use exactly the same dictionary (see deflateSetDictionary). For raw inflate, this function can be called at any time to set the dictionary. If the provided dictionary is smaller than the window and there is already data in the window, then the provided dictionary will amend what's there. The application must insure that the dictionary that was used for compression is provided. inflateSetDictionary returns Z_OK if success, Z_STREAM_ERROR if a parameter is invalid (e.g. dictionary being Z_NULL) or the stream state is inconsistent, Z_DATA_ERROR if the given dictionary doesn't match the expected one (incorrect adler32 value). inflateSetDictionary does not perform any decompression: this will be done by subsequent calls of inflate(). */ ZEXTERN int ZEXPORT inflateGetDictionary OF((z_streamp strm, Bytef *dictionary, uInt *dictLength)); /* Returns the sliding dictionary being maintained by inflate. dictLength is set to the number of bytes in the dictionary, and that many bytes are copied to dictionary. dictionary must have enough space, where 32768 bytes is always enough. If inflateGetDictionary() is called with dictionary equal to Z_NULL, then only the dictionary length is returned, and nothing is copied. Similary, if dictLength is Z_NULL, then it is not set. inflateGetDictionary returns Z_OK on success, or Z_STREAM_ERROR if the stream state is inconsistent. */ ZEXTERN int ZEXPORT inflateSync OF((z_streamp strm)); /* Skips invalid compressed data until a possible full flush point (see above for the description of deflate with Z_FULL_FLUSH) can be found, or until all available input is skipped. No output is provided. inflateSync searches for a 00 00 FF FF pattern in the compressed data. All full flush points have this pattern, but not all occurrences of this pattern are full flush points. inflateSync returns Z_OK if a possible full flush point has been found, Z_BUF_ERROR if no more input was provided, Z_DATA_ERROR if no flush point has been found, or Z_STREAM_ERROR if the stream structure was inconsistent. In the success case, the application may save the current current value of total_in which indicates where valid compressed data was found. In the error case, the application may repeatedly call inflateSync, providing more input each time, until success or end of the input data. */ ZEXTERN int ZEXPORT inflateCopy OF((z_streamp dest, z_streamp source)); /* Sets the destination stream as a complete copy of the source stream. This function can be useful when randomly accessing a large stream. The first pass through the stream can periodically record the inflate state, allowing restarting inflate at those points when randomly accessing the stream. inflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc being Z_NULL). msg is left unchanged in both source and destination. */ ZEXTERN int ZEXPORT inflateReset OF((z_streamp strm)); /* This function is equivalent to inflateEnd followed by inflateInit, but does not free and reallocate all the internal decompression state. The stream will keep attributes that may have been set by inflateInit2. inflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc or state being Z_NULL). */ ZEXTERN int ZEXPORT inflateReset2 OF((z_streamp strm, int windowBits)); /* This function is the same as inflateReset, but it also permits changing the wrap and window size requests. The windowBits parameter is interpreted the same as it is for inflateInit2. inflateReset2 returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc or state being Z_NULL), or if the windowBits parameter is invalid. */ ZEXTERN int ZEXPORT inflatePrime OF((z_streamp strm, int bits, int value)); /* This function inserts bits in the inflate input stream. The intent is that this function is used to start inflating at a bit position in the middle of a byte. The provided bits will be used before any bytes are used from next_in. This function should only be used with raw inflate, and should be used before the first inflate() call after inflateInit2() or inflateReset(). bits must be less than or equal to 16, and that many of the least significant bits of value will be inserted in the input. If bits is negative, then the input stream bit buffer is emptied. Then inflatePrime() can be called again to put bits in the buffer. This is used to clear out bits leftover after feeding inflate a block description prior to feeding inflate codes. inflatePrime returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent. */ ZEXTERN long ZEXPORT inflateMark OF((z_streamp strm)); /* This function returns two values, one in the lower 16 bits of the return value, and the other in the remaining upper bits, obtained by shifting the return value down 16 bits. If the upper value is -1 and the lower value is zero, then inflate() is currently decoding information outside of a block. If the upper value is -1 and the lower value is non-zero, then inflate is in the middle of a stored block, with the lower value equaling the number of bytes from the input remaining to copy. If the upper value is not -1, then it is the number of bits back from the current bit position in the input of the code (literal or length/distance pair) currently being processed. In that case the lower value is the number of bytes already emitted for that code. A code is being processed if inflate is waiting for more input to complete decoding of the code, or if it has completed decoding but is waiting for more output space to write the literal or match data. inflateMark() is used to mark locations in the input data for random access, which may be at bit positions, and to note those cases where the output of a code may span boundaries of random access blocks. The current location in the input stream can be determined from avail_in and data_type as noted in the description for the Z_BLOCK flush parameter for inflate. inflateMark returns the value noted above or -1 << 16 if the provided source stream state was inconsistent. */ ZEXTERN int ZEXPORT inflateGetHeader OF((z_streamp strm, gz_headerp head)); /* inflateGetHeader() requests that gzip header information be stored in the provided gz_header structure. inflateGetHeader() may be called after inflateInit2() or inflateReset(), and before the first call of inflate(). As inflate() processes the gzip stream, head->done is zero until the header is completed, at which time head->done is set to one. If a zlib stream is being decoded, then head->done is set to -1 to indicate that there will be no gzip header information forthcoming. Note that Z_BLOCK or Z_TREES can be used to force inflate() to return immediately after header processing is complete and before any actual data is decompressed. The text, time, xflags, and os fields are filled in with the gzip header contents. hcrc is set to true if there is a header CRC. (The header CRC was valid if done is set to one.) If extra is not Z_NULL, then extra_max contains the maximum number of bytes to write to extra. Once done is true, extra_len contains the actual extra field length, and extra contains the extra field, or that field truncated if extra_max is less than extra_len. If name is not Z_NULL, then up to name_max characters are written there, terminated with a zero unless the length is greater than name_max. If comment is not Z_NULL, then up to comm_max characters are written there, terminated with a zero unless the length is greater than comm_max. When any of extra, name, or comment are not Z_NULL and the respective field is not present in the header, then that field is set to Z_NULL to signal its absence. This allows the use of deflateSetHeader() with the returned structure to duplicate the header. However if those fields are set to allocated memory, then the application will need to save those pointers elsewhere so that they can be eventually freed. If inflateGetHeader is not used, then the header information is simply discarded. The header is always checked for validity, including the header CRC if present. inflateReset() will reset the process to discard the header information. The application would need to call inflateGetHeader() again to retrieve the header from the next gzip stream. inflateGetHeader returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent. */ /* ZEXTERN int ZEXPORT inflateBackInit OF((z_streamp strm, int windowBits, unsigned char FAR *window)); Initialize the internal stream state for decompression using inflateBack() calls. The fields zalloc, zfree and opaque in strm must be initialized before the call. If zalloc and zfree are Z_NULL, then the default library- derived memory allocation routines are used. windowBits is the base two logarithm of the window size, in the range 8..15. window is a caller supplied buffer of that size. Except for special applications where it is assured that deflate was used with small window sizes, windowBits must be 15 and a 32K byte window must be supplied to be able to decompress general deflate streams. See inflateBack() for the usage of these routines. inflateBackInit will return Z_OK on success, Z_STREAM_ERROR if any of the parameters are invalid, Z_MEM_ERROR if the internal state could not be allocated, or Z_VERSION_ERROR if the version of the library does not match the version of the header file. */ typedef unsigned (*in_func) OF((void FAR *, z_const unsigned char FAR * FAR *)); typedef int (*out_func) OF((void FAR *, unsigned char FAR *, unsigned)); ZEXTERN int ZEXPORT inflateBack OF((z_streamp strm, in_func in, void FAR *in_desc, out_func out, void FAR *out_desc)); /* inflateBack() does a raw inflate with a single call using a call-back interface for input and output. This is potentially more efficient than inflate() for file i/o applications, in that it avoids copying between the output and the sliding window by simply making the window itself the output buffer. inflate() can be faster on modern CPUs when used with large buffers. inflateBack() trusts the application to not change the output buffer passed by the output function, at least until inflateBack() returns. inflateBackInit() must be called first to allocate the internal state and to initialize the state with the user-provided window buffer. inflateBack() may then be used multiple times to inflate a complete, raw deflate stream with each call. inflateBackEnd() is then called to free the allocated state. A raw deflate stream is one with no zlib or gzip header or trailer. This routine would normally be used in a utility that reads zip or gzip files and writes out uncompressed files. The utility would decode the header and process the trailer on its own, hence this routine expects only the raw deflate stream to decompress. This is different from the normal behavior of inflate(), which expects either a zlib or gzip header and trailer around the deflate stream. inflateBack() uses two subroutines supplied by the caller that are then called by inflateBack() for input and output. inflateBack() calls those routines until it reads a complete deflate stream and writes out all of the uncompressed data, or until it encounters an error. The function's parameters and return types are defined above in the in_func and out_func typedefs. inflateBack() will call in(in_desc, &buf) which should return the number of bytes of provided input, and a pointer to that input in buf. If there is no input available, in() must return zero--buf is ignored in that case--and inflateBack() will return a buffer error. inflateBack() will call out(out_desc, buf, len) to write the uncompressed data buf[0..len-1]. out() should return zero on success, or non-zero on failure. If out() returns non-zero, inflateBack() will return with an error. Neither in() nor out() are permitted to change the contents of the window provided to inflateBackInit(), which is also the buffer that out() uses to write from. The length written by out() will be at most the window size. Any non-zero amount of input may be provided by in(). For convenience, inflateBack() can be provided input on the first call by setting strm->next_in and strm->avail_in. If that input is exhausted, then in() will be called. Therefore strm->next_in must be initialized before calling inflateBack(). If strm->next_in is Z_NULL, then in() will be called immediately for input. If strm->next_in is not Z_NULL, then strm->avail_in must also be initialized, and then if strm->avail_in is not zero, input will initially be taken from strm->next_in[0 .. strm->avail_in - 1]. The in_desc and out_desc parameters of inflateBack() is passed as the first parameter of in() and out() respectively when they are called. These descriptors can be optionally used to pass any information that the caller- supplied in() and out() functions need to do their job. On return, inflateBack() will set strm->next_in and strm->avail_in to pass back any unused input that was provided by the last in() call. The return values of inflateBack() can be Z_STREAM_END on success, Z_BUF_ERROR if in() or out() returned an error, Z_DATA_ERROR if there was a format error in the deflate stream (in which case strm->msg is set to indicate the nature of the error), or Z_STREAM_ERROR if the stream was not properly initialized. In the case of Z_BUF_ERROR, an input or output error can be distinguished using strm->next_in which will be Z_NULL only if in() returned an error. If strm->next_in is not Z_NULL, then the Z_BUF_ERROR was due to out() returning non-zero. (in() will always be called before out(), so strm->next_in is assured to be defined if out() returns non-zero.) Note that inflateBack() cannot return Z_OK. */ ZEXTERN int ZEXPORT inflateBackEnd OF((z_streamp strm)); /* All memory allocated by inflateBackInit() is freed. inflateBackEnd() returns Z_OK on success, or Z_STREAM_ERROR if the stream state was inconsistent. */ ZEXTERN uLong ZEXPORT zlibCompileFlags OF((void)); /* Return flags indicating compile-time options. Type sizes, two bits each, 00 = 16 bits, 01 = 32, 10 = 64, 11 = other: 1.0: size of uInt 3.2: size of uLong 5.4: size of voidpf (pointer) 7.6: size of z_off_t Compiler, assembler, and debug options: 8: DEBUG 9: ASMV or ASMINF -- use ASM code 10: ZLIB_WINAPI -- exported functions use the WINAPI calling convention 11: 0 (reserved) One-time table building (smaller code, but not thread-safe if true): 12: BUILDFIXED -- build static block decoding tables when needed 13: DYNAMIC_CRC_TABLE -- build CRC calculation tables when needed 14,15: 0 (reserved) Library content (indicates missing functionality): 16: NO_GZCOMPRESS -- gz* functions cannot compress (to avoid linking deflate code when not needed) 17: NO_GZIP -- deflate can't write gzip streams, and inflate can't detect and decode gzip streams (to avoid linking crc code) 18-19: 0 (reserved) Operation variations (changes in library functionality): 20: PKZIP_BUG_WORKAROUND -- slightly more permissive inflate 21: FASTEST -- deflate algorithm with only one, lowest compression level 22,23: 0 (reserved) The sprintf variant used by gzprintf (zero is best): 24: 0 = vs*, 1 = s* -- 1 means limited to 20 arguments after the format 25: 0 = *nprintf, 1 = *printf -- 1 means gzprintf() not secure! 26: 0 = returns value, 1 = void -- 1 means inferred string length returned Remainder: 27-31: 0 (reserved) */ #ifndef Z_SOLO /* utility functions */ /* The following utility functions are implemented on top of the basic stream-oriented functions. To simplify the interface, some default options are assumed (compression level and memory usage, standard memory allocation functions). The source code of these utility functions can be modified if you need special options. */ ZEXTERN int ZEXPORT compress OF((Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen)); /* Compresses the source buffer into the destination buffer. sourceLen is the byte length of the source buffer. Upon entry, destLen is the total size of the destination buffer, which must be at least the value returned by compressBound(sourceLen). Upon exit, destLen is the actual size of the compressed buffer. compress returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if there was not enough room in the output buffer. */ ZEXTERN int ZEXPORT compress2 OF((Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen, int level)); /* Compresses the source buffer into the destination buffer. The level parameter has the same meaning as in deflateInit. sourceLen is the byte length of the source buffer. Upon entry, destLen is the total size of the destination buffer, which must be at least the value returned by compressBound(sourceLen). Upon exit, destLen is the actual size of the compressed buffer. compress2 returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if there was not enough room in the output buffer, Z_STREAM_ERROR if the level parameter is invalid. */ ZEXTERN uLong ZEXPORT compressBound OF((uLong sourceLen)); /* compressBound() returns an upper bound on the compressed size after compress() or compress2() on sourceLen bytes. It would be used before a compress() or compress2() call to allocate the destination buffer. */ ZEXTERN int ZEXPORT uncompress OF((Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen)); /* Decompresses the source buffer into the destination buffer. sourceLen is the byte length of the source buffer. Upon entry, destLen is the total size of the destination buffer, which must be large enough to hold the entire uncompressed data. (The size of the uncompressed data must have been saved previously by the compressor and transmitted to the decompressor by some mechanism outside the scope of this compression library.) Upon exit, destLen is the actual size of the uncompressed buffer. uncompress returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if there was not enough room in the output buffer, or Z_DATA_ERROR if the input data was corrupted or incomplete. In the case where there is not enough room, uncompress() will fill the output buffer with the uncompressed data up to that point. */ /* gzip file access functions */ /* This library supports reading and writing files in gzip (.gz) format with an interface similar to that of stdio, using the functions that start with "gz". The gzip format is different from the zlib format. gzip is a gzip wrapper, documented in RFC 1952, wrapped around a deflate stream. */ typedef struct gzFile_s *gzFile; /* semi-opaque gzip file descriptor */ /* ZEXTERN gzFile ZEXPORT gzopen OF((const char *path, const char *mode)); Opens a gzip (.gz) file for reading or writing. The mode parameter is as in fopen ("rb" or "wb") but can also include a compression level ("wb9") or a strategy: 'f' for filtered data as in "wb6f", 'h' for Huffman-only compression as in "wb1h", 'R' for run-length encoding as in "wb1R", or 'F' for fixed code compression as in "wb9F". (See the description of deflateInit2 for more information about the strategy parameter.) 'T' will request transparent writing or appending with no compression and not using the gzip format. "a" can be used instead of "w" to request that the gzip stream that will be written be appended to the file. "+" will result in an error, since reading and writing to the same gzip file is not supported. The addition of "x" when writing will create the file exclusively, which fails if the file already exists. On systems that support it, the addition of "e" when reading or writing will set the flag to close the file on an execve() call. These functions, as well as gzip, will read and decode a sequence of gzip streams in a file. The append function of gzopen() can be used to create such a file. (Also see gzflush() for another way to do this.) When appending, gzopen does not test whether the file begins with a gzip stream, nor does it look for the end of the gzip streams to begin appending. gzopen will simply append a gzip stream to the existing file. gzopen can be used to read a file which is not in gzip format; in this case gzread will directly read from the file without decompression. When reading, this will be detected automatically by looking for the magic two- byte gzip header. gzopen returns NULL if the file could not be opened, if there was insufficient memory to allocate the gzFile state, or if an invalid mode was specified (an 'r', 'w', or 'a' was not provided, or '+' was provided). errno can be checked to determine if the reason gzopen failed was that the file could not be opened. */ ZEXTERN gzFile ZEXPORT gzdopen OF((int fd, const char *mode)); /* gzdopen associates a gzFile with the file descriptor fd. File descriptors are obtained from calls like open, dup, creat, pipe or fileno (if the file has been previously opened with fopen). The mode parameter is as in gzopen. The next call of gzclose on the returned gzFile will also close the file descriptor fd, just like fclose(fdopen(fd, mode)) closes the file descriptor fd. If you want to keep fd open, use fd = dup(fd_keep); gz = gzdopen(fd, mode);. The duplicated descriptor should be saved to avoid a leak, since gzdopen does not close fd if it fails. If you are using fileno() to get the file descriptor from a FILE *, then you will have to use dup() to avoid double-close()ing the file descriptor. Both gzclose() and fclose() will close the associated file descriptor, so they need to have different file descriptors. gzdopen returns NULL if there was insufficient memory to allocate the gzFile state, if an invalid mode was specified (an 'r', 'w', or 'a' was not provided, or '+' was provided), or if fd is -1. The file descriptor is not used until the next gz* read, write, seek, or close operation, so gzdopen will not detect if fd is invalid (unless fd is -1). */ ZEXTERN int ZEXPORT gzbuffer OF((gzFile file, unsigned size)); /* Set the internal buffer size used by this library's functions. The default buffer size is 8192 bytes. This function must be called after gzopen() or gzdopen(), and before any other calls that read or write the file. The buffer memory allocation is always deferred to the first read or write. Two buffers are allocated, either both of the specified size when writing, or one of the specified size and the other twice that size when reading. A larger buffer size of, for example, 64K or 128K bytes will noticeably increase the speed of decompression (reading). The new buffer size also affects the maximum length for gzprintf(). gzbuffer() returns 0 on success, or -1 on failure, such as being called too late. */ ZEXTERN int ZEXPORT gzsetparams OF((gzFile file, int level, int strategy)); /* Dynamically update the compression level or strategy. See the description of deflateInit2 for the meaning of these parameters. gzsetparams returns Z_OK if success, or Z_STREAM_ERROR if the file was not opened for writing. */ ZEXTERN int ZEXPORT gzread OF((gzFile file, voidp buf, unsigned len)); /* Reads the given number of uncompressed bytes from the compressed file. If the input file is not in gzip format, gzread copies the given number of bytes into the buffer directly from the file. After reaching the end of a gzip stream in the input, gzread will continue to read, looking for another gzip stream. Any number of gzip streams may be concatenated in the input file, and will all be decompressed by gzread(). If something other than a gzip stream is encountered after a gzip stream, that remaining trailing garbage is ignored (and no error is returned). gzread can be used to read a gzip file that is being concurrently written. Upon reaching the end of the input, gzread will return with the available data. If the error code returned by gzerror is Z_OK or Z_BUF_ERROR, then gzclearerr can be used to clear the end of file indicator in order to permit gzread to be tried again. Z_OK indicates that a gzip stream was completed on the last gzread. Z_BUF_ERROR indicates that the input file ended in the middle of a gzip stream. Note that gzread does not return -1 in the event of an incomplete gzip stream. This error is deferred until gzclose(), which will return Z_BUF_ERROR if the last gzread ended in the middle of a gzip stream. Alternatively, gzerror can be used before gzclose to detect this case. gzread returns the number of uncompressed bytes actually read, less than len for end of file, or -1 for error. */ ZEXTERN int ZEXPORT gzwrite OF((gzFile file, voidpc buf, unsigned len)); /* Writes the given number of uncompressed bytes into the compressed file. gzwrite returns the number of uncompressed bytes written or 0 in case of error. */ ZEXTERN int ZEXPORTVA gzprintf Z_ARG((gzFile file, const char *format, ...)); /* Converts, formats, and writes the arguments to the compressed file under control of the format string, as in fprintf. gzprintf returns the number of uncompressed bytes actually written, or 0 in case of error. The number of uncompressed bytes written is limited to 8191, or one less than the buffer size given to gzbuffer(). The caller should assure that this limit is not exceeded. If it is exceeded, then gzprintf() will return an error (0) with nothing written. In this case, there may also be a buffer overflow with unpredictable consequences, which is possible only if zlib was compiled with the insecure functions sprintf() or vsprintf() because the secure snprintf() or vsnprintf() functions were not available. This can be determined using zlibCompileFlags(). */ ZEXTERN int ZEXPORT gzputs OF((gzFile file, const char *s)); /* Writes the given null-terminated string to the compressed file, excluding the terminating null character. gzputs returns the number of characters written, or -1 in case of error. */ ZEXTERN char * ZEXPORT gzgets OF((gzFile file, char *buf, int len)); /* Reads bytes from the compressed file until len-1 characters are read, or a newline character is read and transferred to buf, or an end-of-file condition is encountered. If any characters are read or if len == 1, the string is terminated with a null character. If no characters are read due to an end-of-file or len < 1, then the buffer is left untouched. gzgets returns buf which is a null-terminated string, or it returns NULL for end-of-file or in case of error. If there was an error, the contents at buf are indeterminate. */ ZEXTERN int ZEXPORT gzputc OF((gzFile file, int c)); /* Writes c, converted to an unsigned char, into the compressed file. gzputc returns the value that was written, or -1 in case of error. */ ZEXTERN int ZEXPORT gzgetc OF((gzFile file)); /* Reads one byte from the compressed file. gzgetc returns this byte or -1 in case of end of file or error. This is implemented as a macro for speed. As such, it does not do all of the checking the other functions do. I.e. it does not check to see if file is NULL, nor whether the structure file points to has been clobbered or not. */ ZEXTERN int ZEXPORT gzungetc OF((int c, gzFile file)); /* Push one character back onto the stream to be read as the first character on the next read. At least one character of push-back is allowed. gzungetc() returns the character pushed, or -1 on failure. gzungetc() will fail if c is -1, and may fail if a character has been pushed but not read yet. If gzungetc is used immediately after gzopen or gzdopen, at least the output buffer size of pushed characters is allowed. (See gzbuffer above.) The pushed character will be discarded if the stream is repositioned with gzseek() or gzrewind(). */ ZEXTERN int ZEXPORT gzflush OF((gzFile file, int flush)); /* Flushes all pending output into the compressed file. The parameter flush is as in the deflate() function. The return value is the zlib error number (see function gzerror below). gzflush is only permitted when writing. If the flush parameter is Z_FINISH, the remaining data is written and the gzip stream is completed in the output. If gzwrite() is called again, a new gzip stream will be started in the output. gzread() is able to read such concatented gzip streams. gzflush should be called only when strictly necessary because it will degrade compression if called too often. */ /* ZEXTERN z_off_t ZEXPORT gzseek OF((gzFile file, z_off_t offset, int whence)); Sets the starting position for the next gzread or gzwrite on the given compressed file. The offset represents a number of bytes in the uncompressed data stream. The whence parameter is defined as in lseek(2); the value SEEK_END is not supported. If the file is opened for reading, this function is emulated but can be extremely slow. If the file is opened for writing, only forward seeks are supported; gzseek then compresses a sequence of zeroes up to the new starting position. gzseek returns the resulting offset location as measured in bytes from the beginning of the uncompressed stream, or -1 in case of error, in particular if the file is opened for writing and the new starting position would be before the current position. */ ZEXTERN int ZEXPORT gzrewind OF((gzFile file)); /* Rewinds the given file. This function is supported only for reading. gzrewind(file) is equivalent to (int)gzseek(file, 0L, SEEK_SET) */ /* ZEXTERN z_off_t ZEXPORT gztell OF((gzFile file)); Returns the starting position for the next gzread or gzwrite on the given compressed file. This position represents a number of bytes in the uncompressed data stream, and is zero when starting, even if appending or reading a gzip stream from the middle of a file using gzdopen(). gztell(file) is equivalent to gzseek(file, 0L, SEEK_CUR) */ /* ZEXTERN z_off_t ZEXPORT gzoffset OF((gzFile file)); Returns the current offset in the file being read or written. This offset includes the count of bytes that precede the gzip stream, for example when appending or when using gzdopen() for reading. When reading, the offset does not include as yet unused buffered input. This information can be used for a progress indicator. On error, gzoffset() returns -1. */ ZEXTERN int ZEXPORT gzeof OF((gzFile file)); /* Returns true (1) if the end-of-file indicator has been set while reading, false (0) otherwise. Note that the end-of-file indicator is set only if the read tried to go past the end of the input, but came up short. Therefore, just like feof(), gzeof() may return false even if there is no more data to read, in the event that the last read request was for the exact number of bytes remaining in the input file. This will happen if the input file size is an exact multiple of the buffer size. If gzeof() returns true, then the read functions will return no more data, unless the end-of-file indicator is reset by gzclearerr() and the input file has grown since the previous end of file was detected. */ ZEXTERN int ZEXPORT gzdirect OF((gzFile file)); /* Returns true (1) if file is being copied directly while reading, or false (0) if file is a gzip stream being decompressed. If the input file is empty, gzdirect() will return true, since the input does not contain a gzip stream. If gzdirect() is used immediately after gzopen() or gzdopen() it will cause buffers to be allocated to allow reading the file to determine if it is a gzip file. Therefore if gzbuffer() is used, it should be called before gzdirect(). When writing, gzdirect() returns true (1) if transparent writing was requested ("wT" for the gzopen() mode), or false (0) otherwise. (Note: gzdirect() is not needed when writing. Transparent writing must be explicitly requested, so the application already knows the answer. When linking statically, using gzdirect() will include all of the zlib code for gzip file reading and decompression, which may not be desired.) */ ZEXTERN int ZEXPORT gzclose OF((gzFile file)); /* Flushes all pending output if necessary, closes the compressed file and deallocates the (de)compression state. Note that once file is closed, you cannot call gzerror with file, since its structures have been deallocated. gzclose must not be called more than once on the same file, just as free must not be called more than once on the same allocation. gzclose will return Z_STREAM_ERROR if file is not valid, Z_ERRNO on a file operation error, Z_MEM_ERROR if out of memory, Z_BUF_ERROR if the last read ended in the middle of a gzip stream, or Z_OK on success. */ ZEXTERN int ZEXPORT gzclose_r OF((gzFile file)); ZEXTERN int ZEXPORT gzclose_w OF((gzFile file)); /* Same as gzclose(), but gzclose_r() is only for use when reading, and gzclose_w() is only for use when writing or appending. The advantage to using these instead of gzclose() is that they avoid linking in zlib compression or decompression code that is not used when only reading or only writing respectively. If gzclose() is used, then both compression and decompression code will be included the application when linking to a static zlib library. */ ZEXTERN const char * ZEXPORT gzerror OF((gzFile file, int *errnum)); /* Returns the error message for the last error which occurred on the given compressed file. errnum is set to zlib error number. If an error occurred in the file system and not in the compression library, errnum is set to Z_ERRNO and the application may consult errno to get the exact error code. The application must not modify the returned string. Future calls to this function may invalidate the previously returned string. If file is closed, then the string previously returned by gzerror will no longer be available. gzerror() should be used to distinguish errors from end-of-file for those functions above that do not distinguish those cases in their return values. */ ZEXTERN void ZEXPORT gzclearerr OF((gzFile file)); /* Clears the error and end-of-file flags for file. This is analogous to the clearerr() function in stdio. This is useful for continuing to read a gzip file that is being written concurrently. */ #endif /* !Z_SOLO */ /* checksum functions */ /* These functions are not related to compression but are exported anyway because they might be useful in applications using the compression library. */ ZEXTERN uLong ZEXPORT adler32 OF((uLong adler, const Bytef *buf, uInt len)); /* Update a running Adler-32 checksum with the bytes buf[0..len-1] and return the updated checksum. If buf is Z_NULL, this function returns the required initial value for the checksum. An Adler-32 checksum is almost as reliable as a CRC32 but can be computed much faster. Usage example: uLong adler = adler32(0L, Z_NULL, 0); while (read_buffer(buffer, length) != EOF) { adler = adler32(adler, buffer, length); } if (adler != original_adler) error(); */ /* ZEXTERN uLong ZEXPORT adler32_combine OF((uLong adler1, uLong adler2, z_off_t len2)); Combine two Adler-32 checksums into one. For two sequences of bytes, seq1 and seq2 with lengths len1 and len2, Adler-32 checksums were calculated for each, adler1 and adler2. adler32_combine() returns the Adler-32 checksum of seq1 and seq2 concatenated, requiring only adler1, adler2, and len2. Note that the z_off_t type (like off_t) is a signed integer. If len2 is negative, the result has no meaning or utility. */ ZEXTERN uLong ZEXPORT crc32 OF((uLong crc, const Bytef *buf, uInt len)); /* Update a running CRC-32 with the bytes buf[0..len-1] and return the updated CRC-32. If buf is Z_NULL, this function returns the required initial value for the crc. Pre- and post-conditioning (one's complement) is performed within this function so it shouldn't be done by the application. Usage example: uLong crc = crc32(0L, Z_NULL, 0); while (read_buffer(buffer, length) != EOF) { crc = crc32(crc, buffer, length); } if (crc != original_crc) error(); */ /* ZEXTERN uLong ZEXPORT crc32_combine OF((uLong crc1, uLong crc2, z_off_t len2)); Combine two CRC-32 check values into one. For two sequences of bytes, seq1 and seq2 with lengths len1 and len2, CRC-32 check values were calculated for each, crc1 and crc2. crc32_combine() returns the CRC-32 check value of seq1 and seq2 concatenated, requiring only crc1, crc2, and len2. */ /* various hacks, don't look :) */ /* deflateInit and inflateInit are macros to allow checking the zlib version * and the compiler's view of z_stream: */ ZEXTERN int ZEXPORT deflateInit_ OF((z_streamp strm, int level, const char *version, int stream_size)); ZEXTERN int ZEXPORT inflateInit_ OF((z_streamp strm, const char *version, int stream_size)); ZEXTERN int ZEXPORT deflateInit2_ OF((z_streamp strm, int level, int method, int windowBits, int memLevel, int strategy, const char *version, int stream_size)); ZEXTERN int ZEXPORT inflateInit2_ OF((z_streamp strm, int windowBits, const char *version, int stream_size)); ZEXTERN int ZEXPORT inflateBackInit_ OF((z_streamp strm, int windowBits, unsigned char FAR *window, const char *version, int stream_size)); #define deflateInit(strm, level) \ deflateInit_((strm), (level), ZLIB_VERSION, (int)sizeof(z_stream)) #define inflateInit(strm) \ inflateInit_((strm), ZLIB_VERSION, (int)sizeof(z_stream)) #define deflateInit2(strm, level, method, windowBits, memLevel, strategy) \ deflateInit2_((strm),(level),(method),(windowBits),(memLevel),\ (strategy), ZLIB_VERSION, (int)sizeof(z_stream)) #define inflateInit2(strm, windowBits) \ inflateInit2_((strm), (windowBits), ZLIB_VERSION, \ (int)sizeof(z_stream)) #define inflateBackInit(strm, windowBits, window) \ inflateBackInit_((strm), (windowBits), (window), \ ZLIB_VERSION, (int)sizeof(z_stream)) #ifndef Z_SOLO /* gzgetc() macro and its supporting function and exposed data structure. Note * that the real internal state is much larger than the exposed structure. * This abbreviated structure exposes just enough for the gzgetc() macro. The * user should not mess with these exposed elements, since their names or * behavior could change in the future, perhaps even capriciously. They can * only be used by the gzgetc() macro. You have been warned. */ struct gzFile_s { unsigned have; unsigned char *next; z_off64_t pos; }; ZEXTERN int ZEXPORT gzgetc_ OF((gzFile file)); /* backward compatibility */ #ifdef Z_PREFIX_SET # undef z_gzgetc # define z_gzgetc(g) \ ((g)->have ? ((g)->have--, (g)->pos++, *((g)->next)++) : gzgetc(g)) #else # define gzgetc(g) \ ((g)->have ? ((g)->have--, (g)->pos++, *((g)->next)++) : gzgetc(g)) #endif /* provide 64-bit offset functions if _LARGEFILE64_SOURCE defined, and/or * change the regular functions to 64 bits if _FILE_OFFSET_BITS is 64 (if * both are true, the application gets the *64 functions, and the regular * functions are changed to 64 bits) -- in case these are set on systems * without large file support, _LFS64_LARGEFILE must also be true */ #ifdef Z_LARGE64 ZEXTERN gzFile ZEXPORT gzopen64 OF((const char *, const char *)); ZEXTERN z_off64_t ZEXPORT gzseek64 OF((gzFile, z_off64_t, int)); ZEXTERN z_off64_t ZEXPORT gztell64 OF((gzFile)); ZEXTERN z_off64_t ZEXPORT gzoffset64 OF((gzFile)); ZEXTERN uLong ZEXPORT adler32_combine64 OF((uLong, uLong, z_off64_t)); ZEXTERN uLong ZEXPORT crc32_combine64 OF((uLong, uLong, z_off64_t)); #endif #if !defined(ZLIB_INTERNAL) && defined(Z_WANT64) # ifdef Z_PREFIX_SET # define minizlib_gzopen minizlib_gzopen64 # define minizlib_gzseek minizlib_gzseek64 # define minizlib_gztell minizlib_gztell64 # define minizlib_gzoffset minizlib_gzoffset64 # define minizlib_adler32_combine minizlib_adler32_combine64 # define minizlib_crc32_combine minizlib_crc32_combine64 # else # define gzopen gzopen64 # define gzseek gzseek64 # define gztell gztell64 # define gzoffset gzoffset64 # define adler32_combine adler32_combine64 # define crc32_combine crc32_combine64 # endif # ifndef Z_LARGE64 ZEXTERN gzFile ZEXPORT gzopen64 OF((const char *, const char *)); ZEXTERN z_off_t ZEXPORT gzseek64 OF((gzFile, z_off_t, int)); ZEXTERN z_off_t ZEXPORT gztell64 OF((gzFile)); ZEXTERN z_off_t ZEXPORT gzoffset64 OF((gzFile)); ZEXTERN uLong ZEXPORT adler32_combine64 OF((uLong, uLong, z_off_t)); ZEXTERN uLong ZEXPORT crc32_combine64 OF((uLong, uLong, z_off_t)); # endif #else ZEXTERN gzFile ZEXPORT gzopen OF((const char *, const char *)); ZEXTERN z_off_t ZEXPORT gzseek OF((gzFile, z_off_t, int)); ZEXTERN z_off_t ZEXPORT gztell OF((gzFile)); ZEXTERN z_off_t ZEXPORT gzoffset OF((gzFile)); ZEXTERN uLong ZEXPORT adler32_combine OF((uLong, uLong, z_off_t)); ZEXTERN uLong ZEXPORT crc32_combine OF((uLong, uLong, z_off_t)); #endif #else /* Z_SOLO */ ZEXTERN uLong ZEXPORT adler32_combine OF((uLong, uLong, z_off_t)); ZEXTERN uLong ZEXPORT crc32_combine OF((uLong, uLong, z_off_t)); #endif /* !Z_SOLO */ /* hack for buggy compilers */ #if !defined(ZUTIL_H) && !defined(NO_DUMMY_DECL) struct internal_state {int dummy;}; #endif /* undocumented functions */ ZEXTERN const char * ZEXPORT zError OF((int)); ZEXTERN int ZEXPORT inflateSyncPoint OF((z_streamp)); ZEXTERN const z_crc_t FAR * ZEXPORT get_crc_table OF((void)); ZEXTERN int ZEXPORT inflateUndermine OF((z_streamp, int)); ZEXTERN int ZEXPORT inflateResetKeep OF((z_streamp)); ZEXTERN int ZEXPORT deflateResetKeep OF((z_streamp)); #if defined(_WIN32) && !defined(Z_SOLO) ZEXTERN gzFile ZEXPORT gzopen_w OF((const wchar_t *path, const char *mode)); #endif #if defined(STDC) || defined(Z_HAVE_STDARG_H) # ifndef Z_SOLO ZEXTERN int ZEXPORTVA gzvprintf Z_ARG((gzFile file, const char *format, va_list va)); # endif #endif #ifdef __cplusplus } #endif #endif /* ZLIB_H */ # endif #endif #include #include #include #include #include #include #ifdef MCPL_THIS_IS_MS # include # include #endif #define MCPLIMP_NPARTICLES_POS 8 #define MCPLIMP_MAX_PARTICLE_SIZE 96 int mcpl_platform_is_little_endian() { //Return 0 for big endian, 1 for little endian. volatile uint32_t i=0x01234567; return (*((uint8_t*)(&i))) == 0x67; } void mcpl_default_error_handler(const char * msg) { printf("MCPL ERROR: %s\n",msg); exit(1); } static void (*mcpl_error_handler)(const char *) = &mcpl_default_error_handler; void mcpl_error(const char * msg) { mcpl_error_handler(msg); //Error handler should not return, but in case it does anyway, we at least //ensure a hard exit! mcpl_default_error_handler("Handler given to mcpl_set_error_handler returns" " to calling code which is not allowed!"); } void mcpl_set_error_handler(void (*handler)(const char *)) { mcpl_error_handler = handler; } void mcpl_store_string(char** dest, const char * src) { size_t n = strlen(src); if (n>65535) n = 65535; if (*dest) free(*dest); *dest = (char*)calloc(n+1,1); assert(*dest); strncpy( *dest,src,n ); (*dest)[n] = '\0'; return; } void mcpl_write_buffer(FILE* f, uint32_t n, const char * data, const char * errmsg) { size_t nb = fwrite(&n, 1, sizeof(n), f); if (nb!=sizeof(n)) mcpl_error(errmsg); nb = fwrite(data, 1, n, f); if (nb!=n) mcpl_error(errmsg); } void mcpl_write_string(FILE* f, const char * str, const char * errmsg) { size_t n = strlen(str); mcpl_write_buffer(f,n,str,errmsg);//nb: we don't write the terminating null-char } typedef struct { char * filename; FILE * file; char * hdr_srcprogname; uint32_t ncomments; char ** comments; uint32_t nblobs; char ** blobkeys; uint32_t * bloblengths; char ** blobs; int opt_userflags; int opt_polarisation; int opt_singleprec; int32_t opt_universalpdgcode; double opt_universalweight; int header_notwritten; uint64_t nparticles; unsigned particle_size; mcpl_particle_t* puser; unsigned opt_signature; char particle_buffer[MCPLIMP_MAX_PARTICLE_SIZE]; } mcpl_outfileinternal_t; #define MCPLIMP_OUTFILEDECODE mcpl_outfileinternal_t * f = (mcpl_outfileinternal_t *)of.internal; assert(f) void mcpl_recalc_psize(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; unsigned fp = f->opt_singleprec ? sizeof(float) : sizeof(double); f->particle_size = 7*fp; if (f->opt_polarisation) f->particle_size += 3*fp; if (!f->opt_universalpdgcode) f->particle_size += sizeof(int32_t); if (!f->opt_universalweight) f->particle_size += fp; if (f->opt_userflags) f->particle_size += sizeof(uint32_t); assert(f->particle_size<=MCPLIMP_MAX_PARTICLE_SIZE); f->opt_signature = 0 + 1 * f->opt_singleprec + 2 * f->opt_polarisation + 4 * f->opt_universalpdgcode + 8 * (f->opt_universalweight?1:0) + 16 * f->opt_userflags; } void mcpl_platform_compatibility_check() { static int first = 1; if (!first) return; first = 0; if (CHAR_BIT!=8) mcpl_error("Platform compatibility check failed (bytes are not 8 bit)"); if (sizeof(float)!=4) mcpl_error("Platform compatibility check failed (float is not 4 bytes)"); if (sizeof(double)!=8) mcpl_error("Platform compatibility check failed (double is not 8 bytes)"); int32_t m1_32 = -1; int32_t not0_32 = ~0; int64_t m1_64 = -1; int64_t not0_64 = ~0; if ( m1_32 != not0_32 || m1_64 != not0_64 ) mcpl_error("Platform compatibility check failed (integers are not two's complement)"); if (copysign(1.0, -0.0) != -1.0) mcpl_error("Platform compatibility check failed (floating point numbers do not have signed zero)"); mcpl_particle_t pd; if ( (char*)&(pd.userflags)-(char*)&(pd) != 12*sizeof(double)+sizeof(uint32_t) ) mcpl_error("Platform compatibility check failed (unexpected padding in mcpl_particle_t)"); } mcpl_outfile_t mcpl_create_outfile(const char * filename) { //Sanity check chosen filename and append ".mcpl" if missing to help people //who forgot to add the extension (in the hope of higher consistency). if (!filename) mcpl_error("mcpl_create_outfile called with null string."); size_t n = strlen(filename); if (!n) mcpl_error("mcpl_create_outfile called with empty string."); if (n>4096) mcpl_error("mcpl_create_outfile called with too long string."); const char * lastdot = strrchr(filename, '.'); if (lastdot==filename && n==5) mcpl_error("mcpl_create_outfile called with string with no basename part (\".mcpl\")."); //Initialise data structures and open file: mcpl_platform_compatibility_check(); mcpl_outfile_t out; out.internal = 0; mcpl_outfileinternal_t * f = (mcpl_outfileinternal_t*)calloc(sizeof(mcpl_outfileinternal_t),1); assert(f); if (!lastdot || strcmp(lastdot, ".mcpl") != 0) { f->filename = (char*)malloc(n+6); f->filename[0] = '\0'; strcat(f->filename,filename); strcat(f->filename,".mcpl"); } else { f->filename = (char*)malloc(n+1); f->filename[0] = '\0'; strcat(f->filename,filename); } f->hdr_srcprogname = 0; f->ncomments = 0; f->comments = 0; f->nblobs = 0; f->blobkeys = 0; f->bloblengths = 0; f->blobs = 0; f->opt_userflags = 0; f->opt_polarisation = 0; f->opt_singleprec = 1; f->opt_universalpdgcode = 0; f->opt_universalweight = 0.0; f->header_notwritten = 1; f->nparticles = 0; f->file = fopen(f->filename,"wb"); if (!f->file) mcpl_error("Unable to open output file!"); out.internal = f; mcpl_recalc_psize(out); return out; } const char * mcpl_outfile_filename(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; return f->filename; } void mcpl_hdr_set_srcname(mcpl_outfile_t of,const char * spn) { MCPLIMP_OUTFILEDECODE; if (!f->header_notwritten) mcpl_error("mcpl_hdr_set_srcname called too late."); mcpl_store_string(&(f->hdr_srcprogname),spn); } void mcpl_hdr_add_comment(mcpl_outfile_t of,const char *comment) { MCPLIMP_OUTFILEDECODE; if (!f->header_notwritten) mcpl_error("mcpl_hdr_add_comment called too late."); size_t oldn = f->ncomments; f->ncomments += 1; if (oldn) f->comments = (char **)realloc(f->comments,f->ncomments * sizeof(char*) ); else f->comments = (char **)calloc(f->ncomments,sizeof(char*)); f->comments[oldn] = 0; mcpl_store_string(&(f->comments[oldn]),comment); } void mcpl_hdr_add_data(mcpl_outfile_t of, const char * key, uint32_t ldata, const char * data) { MCPLIMP_OUTFILEDECODE; if (!f->header_notwritten) mcpl_error("mcpl_hdr_add_data called too late."); size_t oldn = f->nblobs; f->nblobs += 1; //Check that key is unique unsigned i; for (i =0; iblobkeys[i],key)==0) mcpl_error("mcpl_hdr_add_data got duplicate key"); } //store key: if (oldn) f->blobkeys = (char **)realloc(f->blobkeys,f->nblobs * sizeof(char*) ); else f->blobkeys = (char **)calloc(f->nblobs,sizeof(char*)); f->blobkeys[oldn] = 0; mcpl_store_string(&(f->blobkeys[oldn]),key); //store blob-lengths: if (oldn) f->bloblengths = (uint32_t*)realloc(f->bloblengths,f->nblobs * sizeof(uint32_t) ); else f->bloblengths = (uint32_t *)calloc(f->nblobs,sizeof(uint32_t)); f->bloblengths[oldn] = ldata; //store data: if (oldn) f->blobs = (char **)realloc(f->blobs,f->nblobs * sizeof(char*) ); else f->blobs = (char **)calloc(f->nblobs,sizeof(char*)); f->blobs[oldn] = (char *)malloc(ldata); memcpy(f->blobs[oldn],data,ldata); } void mcpl_enable_userflags(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; if (f->opt_userflags) return; if (!f->header_notwritten) mcpl_error("mcpl_enable_userflags called too late."); f->opt_userflags = 1; mcpl_recalc_psize(of); } void mcpl_enable_polarisation(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; if (f->opt_polarisation) return; if (!f->header_notwritten) mcpl_error("mcpl_enable_polarisation called too late."); f->opt_polarisation = 1; mcpl_recalc_psize(of); } void mcpl_enable_doubleprec(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; if (!f->opt_singleprec) return; if (!f->header_notwritten) mcpl_error("mcpl_enable_doubleprec called too late."); f->opt_singleprec = 0; mcpl_recalc_psize(of); } void mcpl_enable_universal_pdgcode(mcpl_outfile_t of, int32_t pdgcode) { MCPLIMP_OUTFILEDECODE; if (pdgcode==0) mcpl_error("mcpl_enable_universal_pdgcode must be called with non-zero pdgcode."); if (f->opt_universalpdgcode) { if (f->opt_universalpdgcode!=pdgcode) mcpl_error("mcpl_enable_universal_pdgcode called multiple times"); return; } if (!f->header_notwritten) mcpl_error("mcpl_enable_universal_pdgcode called too late."); f->opt_universalpdgcode = pdgcode; mcpl_recalc_psize(of); } void mcpl_enable_universal_weight(mcpl_outfile_t of, double w) { MCPLIMP_OUTFILEDECODE; if (w<=0.0||isinf(w)||isnan(w)) mcpl_error("mcpl_enable_universal_weight must be called with positive but finite weight."); if (f->opt_universalweight) { if (f->opt_universalweight!=w) mcpl_error("mcpl_enable_universal_weight called multiple times"); return; } if (!f->header_notwritten) mcpl_error("mcpl_enable_universal_weight called too late."); f->opt_universalweight = w; mcpl_recalc_psize(of); } void mcpl_write_header(mcpl_outfileinternal_t * f) { if (!f->header_notwritten) mcpl_error("Logical error!"); const char * errmsg="Errors encountered while attempting to write file header."; //Always start the file with an unsigned char-array (for endian agnosticity) //containing magic word (MCPL), file format version ('001'-'999') and //endianness used in the file ('L' or 'B'): unsigned char start[8] = {'M','C','P','L','0','0','0','L'}; start[4] = (MCPL_FORMATVERSION/100)%10 + '0'; start[5] = (MCPL_FORMATVERSION/10)%10 + '0'; start[6] = MCPL_FORMATVERSION%10 + '0'; if (!mcpl_platform_is_little_endian()) start[7] = 'B'; size_t nb = fwrite(start, 1, sizeof(start), f->file); if (nb!=sizeof(start)) mcpl_error(errmsg); //Right after the initial 8 bytes, we put the number of particles (0 for now, //but important that position is fixed so we can seek and update it later).: long int nparticles_pos = ftell(f->file); if (nparticles_pos!=MCPLIMP_NPARTICLES_POS) mcpl_error(errmsg); nb = fwrite(&f->nparticles, 1, sizeof(f->nparticles), f->file); if (nb!=sizeof(f->nparticles)) mcpl_error(errmsg); //Then a bunch of numbers: uint32_t arr[8]; arr[0] = f->ncomments; arr[1] = f->nblobs; arr[2] = f->opt_userflags; arr[3] = f->opt_polarisation; arr[4] = f->opt_singleprec; arr[5] = f->opt_universalpdgcode; arr[6] = f->particle_size; arr[7] = (f->opt_universalweight?1:0); assert(sizeof(arr)==32); nb = fwrite(arr, 1, sizeof(arr), f->file); if (nb!=sizeof(arr)) mcpl_error(errmsg); if (f->opt_universalweight) { assert(sizeof(f->opt_universalweight)==8); nb = fwrite((void*)(&(f->opt_universalweight)), 1, sizeof(f->opt_universalweight), f->file); if (nb!=sizeof(f->opt_universalweight)) mcpl_error(errmsg); } //strings: mcpl_write_string(f->file,f->hdr_srcprogname?f->hdr_srcprogname:"unknown",errmsg); uint32_t i; for (i = 0; i < f->ncomments; ++i) mcpl_write_string(f->file,f->comments[i],errmsg); //blob keys: for (i = 0; i < f->nblobs; ++i) mcpl_write_string(f->file,f->blobkeys[i],errmsg); //blobs: for (i = 0; i < f->nblobs; ++i) mcpl_write_buffer(f->file, f->bloblengths[i], f->blobs[i],errmsg); //Free up acquired memory only needed for header writing: free(f->hdr_srcprogname); f->hdr_srcprogname = 0; if (f->ncomments) { for (i = 0; i < f->ncomments; ++i) free(f->comments[i]); free(f->comments); f->comments=0; f->ncomments=0; } if (f->nblobs) { for (i = 0; i < f->nblobs; ++i) free(f->blobkeys[i]); free(f->blobkeys); f->blobkeys = 0; for (i = 0; i < f->nblobs; ++i) free(f->blobs[i]); free(f->blobs); f->blobs = 0; free(f->bloblengths); f->bloblengths = 0; f->nblobs = 0; } f->header_notwritten = 0; } #ifndef INFINITY //Missing in ICC 12 C99 compilation: # define INFINITY (__builtin_inf()) #endif void mcpl_unitvect_pack_adaptproj(const double* in, double* out) { //Precise packing of unit vector into 2 floats + 1 bit using the "Adaptive //Projection Packing" method (T. Kittelmann, 2017). // //The Adaptive Projection Packing method is a variant on the traditional projection //method where one would store (x,y,sign(z)) and upon unpacking recover the //magnitude of z with |z|=sqrt(1-x^2-y^2), a formula which suffers from //numerical precision issues when |z| is small. In this improved version, one //gets rid of the precision issues by always storing the components that are //smallest in magnitude (the last one must then have a magnitude in the //interval [1/sqrt(3),1] = [0.577,1.0] which is never small). This just leaves //the issue of being able to recognise the coordinate choices again upon //unpacking. Since all components are at most of unit magnitude, this is //achieved by storing 1/z rather than z and replacing either x or y as //needed (infinity when z=0). Thus, the packed data will contain: // // ( 1/z, y, sign(x) ) when |x|>|y|,|z| // ( x, 1/z, sign(y) ) when |y|>|x|,|z| // ( x, y, sign(z) ) when |z|>|x|,|y| // //The unpacking code can determine which of the three scenarios is used to //encode a given piece of data by checking if the first or second field is //greater than unity. // //Note that the arrays "in" and "out" are both of dimension 3, however out[2] //will contain only binary information, in the form of the sign of the //component which was projected away (-1.0 or 1.0). const double absx = fabs(in[0]); const double absy = fabs(in[1]); if ( fabs(in[2]) < fmax(absx,absy) ) { const double invz = ( in[2] ? (1.0/in[2]) : INFINITY ); if (absx>=absy) { //output (1/z,y,sign(x)) out[0] = invz; out[1] = in[1]; out[2] = in[0]; } else { //output (x,1/z,sign(y)) out[0] = in[0]; out[1] = invz; out[2] = in[1]; } } else { //output (x,y,sign(z)) out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; } out[2] = copysign(1.0,out[2]); } void mcpl_unitvect_unpack_adaptproj( const double* in, double* out ) { //Unpacking for the "Adaptive Projection Packing" method (T. Kittelmann, 2017). //See mcpl_unitvect_pack_adaptproj for more information. // //Note that the arrays "in" and "out" are both of dimension 3, however in[2] //will contain only binary information, in the form of the sign of the //component which was projected away. assert(in[2]==1.0||in[2]==-1.0); if (fabs(in[0]) > 1.0) { //input is (1/z,y,sign(x)) out[1] = in[1]; out[2] = 1.0 / in[0]; out[0] = in[2] * sqrt( fmax( 0.0, 1.0 - ( in[1]*in[1] + out[2]*out[2] ) ) ); } else if (fabs(in[1])>1.0) { //input is (x,1/z,sign(y)) out[0] = in[0]; out[2] = 1.0 / in[1]; out[1] = in[2] * sqrt( fmax ( 0.0, 1.0 - ( in[0]*in[0] + out[2]*out[2] ) ) ); } else { //input is (x,y,sign(z)) out[0] = in[0]; out[1] = in[1]; out[2] = in[2] * sqrt( fmax( 0.0, 1.0 - ( in[0]*in[0] + in[1]*in[1] ) ) ); } } void mcpl_unitvect_unpack_oct(const double* in, double* out) { //Octahedral packing inspired by http://jcgt.org/published/0003/02/01/ // //and: // //Octahedron Environment Maps, T. Engelhardt & C. Dachsbacher, Conference: //Proceedings of the Vision, Modeling, and Visualization Conference 2008, VMV //2008, Konstanz, Germany, October 8-10, 2008 // //Note: Octahedral packing was used for the MCPL-2 format, which we are no //longer writing, only reading. Thus, we only keep the unpacking function in //the code. //restore z-coord of octahedron: out[2] = 1.0 - fabs(in[0]) - fabs(in[1]); if (out[2]<0) { //lower hemisphere out[0] = ( 1.0 - fabs( in[1] ) ) * ( in[0] >= 0.0 ? 1.0 : -1.0 ); out[1] = ( 1.0 - fabs( in[0] ) ) * ( in[1] >= 0.0 ? 1.0 : -1.0 ); } else { //upper hemisphere out[0] = in[0]; out[1] = in[1]; } //project from octahedron to unit sphere: double n = 1.0 / sqrt(out[0]*out[0]+out[1]*out[1]+out[2]*out[2]); out[0] *= n; out[1] *= n; out[2] *= n; } void mcpl_internal_serialise_particle_to_buffer( const mcpl_particle_t* particle, mcpl_outfileinternal_t * f ) { //Serialise the provided particle into the particle_buffer of the output file //(according to the settings of the output file). double pack_ekindir[3]; //Sanity check (add more??): double dirsq = particle->direction[0] * particle->direction[0] + particle->direction[1] * particle->direction[1] + particle->direction[2] * particle->direction[2]; if (fabs(dirsq-1.0)>1.0e-5) mcpl_error("attempting to add particle with non-unit direction vector"); if (particle->ekin<0.0) mcpl_error("attempting to add particle with negative kinetic energy"); //direction and ekin are packed into 3 doubles: mcpl_unitvect_pack_adaptproj(particle->direction,pack_ekindir); //pack_ekindir[2] is now just a sign(1.0 or -1.0), so we can store the //ekin in that field as well (since it must be non-negative). We use copysign //to be sure the signbit is set also if ekin=0: pack_ekindir[2] = copysign(particle->ekin,pack_ekindir[2]); //serialise particle object to buffer: unsigned ibuf = 0; char * pbuf = &(f->particle_buffer[0]); int i; if (f->opt_singleprec) { if (f->opt_polarisation) { for (i=0;i<3;++i) { *(float*)&pbuf[ibuf] = (float)particle->polarisation[i]; ibuf += sizeof(float); } } for (i=0;i<3;++i) { *(float*)&pbuf[ibuf] = (float)particle->position[i]; ibuf += sizeof(float); } for (i=0;i<3;++i) { *(float*)&pbuf[ibuf] = (float)pack_ekindir[i]; ibuf += sizeof(float); } *(float*)&pbuf[ibuf] = (float)particle->time; ibuf += sizeof(float); if (!f->opt_universalweight) { *(float*)&pbuf[ibuf] = (float)particle->weight; ibuf += sizeof(float); } } else { if (f->opt_polarisation) { for (i=0;i<3;++i) { *(double*)&pbuf[ibuf] = particle->polarisation[i]; ibuf += sizeof(double); } } for (i=0;i<3;++i) { *(double*)&pbuf[ibuf] = particle->position[i]; ibuf += sizeof(double); } for (i=0;i<3;++i) { *(double*)&pbuf[ibuf] = pack_ekindir[i]; ibuf += sizeof(double); } *(double*)&pbuf[ibuf] = particle->time; ibuf += sizeof(double); if (!f->opt_universalweight) { *(double*)&pbuf[ibuf] = particle->weight; ibuf += sizeof(double); } } if (!f->opt_universalpdgcode) { *(int32_t*)&pbuf[ibuf] = particle->pdgcode; ibuf += sizeof(int32_t); } if (f->opt_userflags) { *(uint32_t*)&pbuf[ibuf] = particle->userflags; #ifndef NDEBUG ibuf += sizeof(uint32_t); #endif } assert(ibuf==f->particle_size); } void mcpl_internal_write_particle_buffer_to_file(mcpl_outfileinternal_t * f ) { //Ensure header is written: if (f->header_notwritten) mcpl_write_header(f); //Increment nparticles and write buffer to file: f->nparticles += 1; size_t nb; nb = fwrite(&(f->particle_buffer[0]), 1, f->particle_size, f->file); if (nb!=f->particle_size) mcpl_error("Errors encountered while attempting to write particle data."); } void mcpl_add_particle(mcpl_outfile_t of,const mcpl_particle_t* particle) { MCPLIMP_OUTFILEDECODE; mcpl_internal_serialise_particle_to_buffer(particle,f); mcpl_internal_write_particle_buffer_to_file(f); } void mcpl_update_nparticles(FILE* f, uint64_t n) { //Seek and update nparticles at correct location in header: const char * errmsg = "Errors encountered while attempting to update number of particles in file."; int64_t savedpos = ftell(f); if (savedpos<0) mcpl_error(errmsg); if (fseek( f, MCPLIMP_NPARTICLES_POS, SEEK_SET )) mcpl_error(errmsg); size_t nb = fwrite(&n, 1, sizeof(n), f); if (nb != sizeof(n)) mcpl_error(errmsg); if (fseek( f, savedpos, SEEK_SET )) mcpl_error(errmsg); } mcpl_particle_t* mcpl_get_empty_particle(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; if (f->puser) { //Calling more than once. This could be innocent, or it could indicate //problems in multi-threaded user-code. Better disallow and give an error: mcpl_error("mcpl_get_empty_particle must not be called more than once per output file"); } else { f->puser = (mcpl_particle_t*)calloc(sizeof(mcpl_particle_t),1); } return f->puser; } void mcpl_close_outfile(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; if (f->header_notwritten) mcpl_write_header(f); if (f->nparticles) mcpl_update_nparticles(f->file,f->nparticles); fclose(f->file); free(f->filename); free(f->puser); free(f); } void mcpl_transfer_metadata(mcpl_file_t source, mcpl_outfile_t target) { //Note that MCPL format version 2 and 3 have the same meta-data in the header, //except of course the version number itself. if (mcpl_hdr_little_endian(source) != mcpl_platform_is_little_endian()) mcpl_error("mcpl_transfer_metadata can only work on files with same endianness as current platform."); mcpl_hdr_set_srcname(target,mcpl_hdr_srcname(source)); unsigned i; for (i = 0; i < mcpl_hdr_ncomments(source); ++i) mcpl_hdr_add_comment(target,mcpl_hdr_comment(source,i)); const char** blobkeys = mcpl_hdr_blobkeys(source); if (blobkeys) { int nblobs = mcpl_hdr_nblobs(source); uint32_t ldata; const char * data; int ii; for (ii = 0; ii < nblobs; ++ii) { int res = mcpl_hdr_blob(source,blobkeys[ii],&ldata,&data); assert(res);//key must exist (void)res; mcpl_hdr_add_data(target, blobkeys[ii], ldata, data); } } if (mcpl_hdr_has_userflags(source)) mcpl_enable_userflags(target); if (mcpl_hdr_has_polarisation(source)) mcpl_enable_polarisation(target); if (mcpl_hdr_has_doubleprec(source)) mcpl_enable_doubleprec(target); int32_t updg = mcpl_hdr_universal_pdgcode(source); if (updg) mcpl_enable_universal_pdgcode(target,updg); double uw = mcpl_hdr_universal_weight(source); if (uw) mcpl_enable_universal_weight(target,uw); } int mcpl_closeandgzip_outfile_rc(mcpl_outfile_t of) { printf("MCPL WARNING: Usage of function mcpl_closeandgzip_outfile_rc is obsolete as" " mcpl_closeandgzip_outfile now also returns the status. Please update your code" " to use mcpl_closeandgzip_outfile instead.\n"); return mcpl_closeandgzip_outfile(of); } int mcpl_closeandgzip_outfile(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; char * filename = f->filename; f->filename = 0;//prevent free in mcpl_close_outfile mcpl_close_outfile(of); int rc = mcpl_gzip_file(filename); free(filename); return rc; } typedef struct { FILE * file; #ifdef MCPL_HASZLIB gzFile filegz; #else void * filegz; #endif char * hdr_srcprogname; unsigned format_version; int opt_userflags; int opt_polarisation; int opt_singleprec; int32_t opt_universalpdgcode; double opt_universalweight; int is_little_endian; uint64_t nparticles; uint32_t ncomments; char ** comments; uint32_t nblobs; char ** blobkeys; uint32_t * bloblengths; char ** blobs; unsigned particle_size; uint64_t first_particle_pos; uint64_t current_particle_idx; mcpl_particle_t* particle; unsigned opt_signature; char particle_buffer[MCPLIMP_MAX_PARTICLE_SIZE]; } mcpl_fileinternal_t; #define MCPLIMP_FILEDECODE mcpl_fileinternal_t * f = (mcpl_fileinternal_t *)ff.internal; assert(f) void mcpl_read_buffer(mcpl_fileinternal_t* f, unsigned* n, char ** buf, const char * errmsg) { size_t nb; #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, n, sizeof(*n)); else #endif nb = fread(n, 1, sizeof(*n), f->file); if (nb!=sizeof(*n)) mcpl_error(errmsg); *buf = (char*)calloc(*n,1); #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, *buf, *n); else #endif nb = fread(*buf, 1, *n, f->file); if (nb!=*n) mcpl_error(errmsg); } void mcpl_read_string(mcpl_fileinternal_t* f, char ** dest, const char* errmsg) { size_t nb; uint32_t n; #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, &n, sizeof(n)); else #endif nb = fread(&n, 1, sizeof(n), f->file); if (nb!=sizeof(n)) mcpl_error(errmsg); char * s = (char*)calloc(n+1,1); #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, s, n); else #endif nb = fread(s, 1, n, f->file); if (nb!=n) mcpl_error(errmsg); s[n] = '\0'; *dest = s; } mcpl_file_t mcpl_actual_open_file(const char * filename, int * repair_status) { int caller_is_mcpl_repair = *repair_status; *repair_status = 0;//file not broken if (!filename) mcpl_error("mcpl_open_file called with null string"); mcpl_platform_compatibility_check(); mcpl_file_t out; out.internal = 0; mcpl_fileinternal_t * f = (mcpl_fileinternal_t*)calloc(sizeof(mcpl_fileinternal_t),1); assert(f); //open file (with gzopen if filename ends with .gz): f->file = 0; f->filegz = 0; const char * lastdot = strrchr(filename, '.'); if (lastdot && strcmp(lastdot, ".gz") == 0) { #ifdef MCPL_HASZLIB f->filegz = gzopen(filename,"rb"); if (!f->filegz) mcpl_error("Unable to open file!"); #else mcpl_error("This installation of MCPL was not built with zlib support and can not read compressed (.gz) files directly."); #endif } else { f->file = fopen(filename,"rb"); if (!f->file) mcpl_error("Unable to open file!"); } //First read and check magic word, format version and endianness. unsigned char start[8];// = {'M','C','P','L','0','0','0','L'}; size_t nb; #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, start, sizeof(start)); else #endif nb = fread(start, 1, sizeof(start), f->file); if (nb>=4&&(start[0]!='M'||start[1]!='C'||start[2]!='P'||start[3]!='L')) mcpl_error("File is not an MCPL file!"); if (nb!=sizeof(start)) mcpl_error("Error while reading first bytes of file!"); f->format_version = (start[4]-'0')*100 + (start[5]-'0')*10 + (start[6]-'0'); if (f->format_version!=2&&f->format_version!=3) mcpl_error("File is in an unsupported MCPL version!"); f->is_little_endian = mcpl_platform_is_little_endian(); if (start[7]!=(f->is_little_endian?'L':'B')) { if (start[7]=='L'||start[7]=='B') mcpl_error("Endian-ness of current platform is different than the one used to write the file."); else mcpl_error("Unexpected value in endianness field!"); } //proceed reading header, knowing we have a consistent version and endian-ness. const char * errmsg = "Errors encountered while attempting to read header"; uint64_t np; #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, &np, sizeof(np)); else #endif nb = fread(&np, 1, sizeof(np), f->file); if (nb!=sizeof(np)) mcpl_error(errmsg); f->nparticles = np; uint32_t arr[8]; assert(sizeof(arr)==32); #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, arr, sizeof(arr)); else #endif nb=fread(arr, 1, sizeof(arr), f->file); if (nb!=sizeof(arr)) mcpl_error(errmsg); f->ncomments = arr[0]; f->nblobs = arr[1]; f->opt_userflags = arr[2]; f->opt_polarisation = arr[3]; f->opt_singleprec = arr[4]; f->opt_universalpdgcode = arr[5]; f->particle_size = arr[6];//We could check consistency here with the calculated value. assert(f->particle_size<=MCPLIMP_MAX_PARTICLE_SIZE); if (arr[7]) { //file has universal weight #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, (void*)&(f->opt_universalweight), sizeof(f->opt_universalweight)); else #endif nb=fread((void*)&(f->opt_universalweight), 1, sizeof(f->opt_universalweight), f->file); assert(nb==sizeof(f->opt_universalweight)); if (nb!=sizeof(f->opt_universalweight)) mcpl_error(errmsg); } f->opt_signature = 0 + 1 * f->opt_singleprec + 2 * f->opt_polarisation + 4 * f->opt_universalpdgcode + 8 * (f->opt_universalweight?1:0) + 16 * f->opt_userflags; //Then some strings: mcpl_read_string(f,&f->hdr_srcprogname,errmsg); f->comments = f->ncomments ? (char **)calloc(f->ncomments,sizeof(char*)) : 0; uint32_t i; for (i = 0; i < f->ncomments; ++i) mcpl_read_string(f,&(f->comments[i]),errmsg); f->blobkeys = 0; f->bloblengths = 0; f->blobs = 0; if (f->nblobs) { f->blobs = (char **)calloc(f->nblobs,sizeof(char*)); f->blobkeys = (char **)calloc(f->nblobs,sizeof(char*)); f->bloblengths = (uint32_t *)calloc(f->nblobs,sizeof(uint32_t)); for (i =0; i < f->nblobs; ++i) mcpl_read_string(f,&(f->blobkeys[i]),errmsg); for (i =0; i < f->nblobs; ++i) mcpl_read_buffer(f, &(f->bloblengths[i]), &(f->blobs[i]), errmsg); } f->particle = (mcpl_particle_t*)calloc(sizeof(mcpl_particle_t),1); //At first event now: f->current_particle_idx = 0; int64_t tellpos = -1; #ifdef MCPL_HASZLIB if (f->filegz) tellpos = gztell(f->filegz); else #endif tellpos = ftell(f->file); if (tellpos<0) mcpl_error(errmsg); f->first_particle_pos = tellpos; if ( f->nparticles==0 || caller_is_mcpl_repair ) { //Although empty files are permitted, it is possible that the file was never //closed properly (maybe the writing program ended prematurely). Let us //check to possibly recover usage of the file. If caller is mcpl_repair, we //always check since the file might have been truncated after it was first //closed properly. if (f->filegz) { //SEEK_END is not supported by zlib, and there is no reliable way to get //the input size. Thus, all we can do is to uncompress the whole thing, //which we won't since it might stall operations for a long time. But we //can at least try to check whether the file is indeed empty or not, and //give an error in the latter case: #ifdef MCPL_HASZLIB if (f->nparticles==0) { char testbuf[4]; nb = gzread(f->filegz, testbuf, sizeof(testbuf)); if (nb>0) { if (caller_is_mcpl_repair) { *repair_status = 1;//file broken but can't recover since gzip. } else { mcpl_error("Input file appears to not have been closed properly and data recovery is disabled for gzipped files."); } } } else { assert(caller_is_mcpl_repair); *repair_status = 2;//file brokenness can not be determined since gzip. } gzseek( f->filegz, f->first_particle_pos, SEEK_SET ); #endif } else { if (f->file && !fseek( f->file, 0, SEEK_END )) {//SEEK_END is not guaranteed to always work, so we fail our recovery attempt silently. int64_t endpos = ftell(f->file); if (endpos > (int64_t)f->first_particle_pos && (uint64_t)endpos != f->first_particle_pos) { uint64_t np = ( endpos - f->first_particle_pos ) / f->particle_size; if ( f->nparticles != np ) { if ( f->nparticles > 0 && np > f->nparticles ) { //should really not happen unless file was corrupted or file was //first closed properly and then something was appended to it. mcpl_error("Input file has invalid combination of meta-data & filesize."); } if (caller_is_mcpl_repair) { *repair_status = 3;//file broken and should be able to repair } else { assert(f->nparticles == 0); printf("MCPL WARNING: Input file appears to not have been closed properly. Recovered %" PRIu64 " particles.\n",np); } f->nparticles = np; } } } fseek( f->file, f->first_particle_pos, SEEK_SET );//if this fseek failed, it might just be that we are at EOF with no particles. } } out.internal = f; return out; } mcpl_file_t mcpl_open_file(const char * filename) { int repair_status = 0; return mcpl_actual_open_file(filename,&repair_status); } void mcpl_repair(const char * filename) { int repair_status = 1; mcpl_file_t f = mcpl_actual_open_file(filename,&repair_status); uint64_t nparticles = mcpl_hdr_nparticles(f); mcpl_close_file(f); if (repair_status==0) { mcpl_error("File does not appear to be broken."); } else if (repair_status==1) { mcpl_error("Input file is indeed broken, but must be gunzipped before it can be repaired."); } else if (repair_status==2) { mcpl_error("File must be gunzipped before it can be checked and possibly repaired."); } //Ok, we should repair the file by updating nparticles in the header: FILE * fh = fopen(filename,"rb+"); if (!fh) mcpl_error("Unable to open file in update mode!"); mcpl_update_nparticles(fh, nparticles); fclose(fh); //Verify that we fixed it: repair_status = 1; f = mcpl_actual_open_file(filename,&repair_status); uint64_t nparticles2 = mcpl_hdr_nparticles(f); mcpl_close_file(f); if (repair_status==0&&nparticles==nparticles2) { printf("MCPL: Succesfully repaired file with %" PRIu64 " particles.\n",nparticles); } else { mcpl_error("Something went wrong while attempting to repair file."); } } void mcpl_close_file(mcpl_file_t ff) { MCPLIMP_FILEDECODE; free(f->hdr_srcprogname); uint32_t i; for (i = 0; i < f->ncomments; ++i) free(f->comments[i]); free(f->comments); for (i = 0; i < f->nblobs; ++i) free(f->blobkeys[i]); for (i = 0; i < f->nblobs; ++i) free(f->blobs[i]); free(f->blobkeys); free(f->blobs); free(f->bloblengths); free(f->particle); #ifdef MCPL_HASZLIB if (f->filegz) gzclose(f->filegz); #endif if (f->file) fclose(f->file); free(f); } unsigned mcpl_hdr_version(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->format_version; } uint64_t mcpl_hdr_nparticles(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->nparticles; } unsigned mcpl_hdr_ncomments(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->ncomments; } const char * mcpl_hdr_comment(mcpl_file_t ff, unsigned i) { MCPLIMP_FILEDECODE; if (i>=f->ncomments) mcpl_error("Invalid comment requested (index out of bounds)"); return f->comments[i]; } int mcpl_hdr_nblobs(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->nblobs; } const char** mcpl_hdr_blobkeys(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return (const char**)f->blobkeys; } int mcpl_hdr_blob(mcpl_file_t ff, const char* key, uint32_t* ldata, const char ** data) { MCPLIMP_FILEDECODE; uint32_t i; for (i = 0; i < f->nblobs; ++i) { if (strcmp(f->blobkeys[i],key)==0) { *data = f->blobs[i]; *ldata = f->bloblengths[i]; return 1; } } *data = 0; *ldata = 0; return 0; } const char* mcpl_hdr_srcname(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->hdr_srcprogname; } int mcpl_hdr_has_userflags(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->opt_userflags; } int mcpl_hdr_has_polarisation(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->opt_polarisation; } int mcpl_hdr_has_doubleprec(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return !f->opt_singleprec; } const mcpl_particle_t* mcpl_read(mcpl_file_t ff) { MCPLIMP_FILEDECODE; f->current_particle_idx += 1; if ( f->current_particle_idx > f->nparticles ) { f->current_particle_idx = f->nparticles;//overflow guard return 0; } //read particle data: size_t nb; unsigned lbuf = f->particle_size; char * pbuf = &(f->particle_buffer[0]); #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, pbuf, lbuf); else #endif nb = fread(pbuf, 1, lbuf, f->file); if (nb!=lbuf) mcpl_error("Errors encountered while attempting to read particle data."); //Transfer to particle struct: unsigned ibuf = 0; mcpl_particle_t * p = f->particle; double pack_ekindir[3]; p->weight = f->opt_universalweight; int i; if (f->opt_singleprec) { if (f->opt_polarisation) { for (i=0;i<3;++i) { p->polarisation[i] = *(float*)&pbuf[ibuf]; ibuf += sizeof(float); } } else { for (i=0;i<3;++i) p->polarisation[i] = 0.0; } for (i=0;i<3;++i) { p->position[i] = *(float*)&pbuf[ibuf]; ibuf += sizeof(float); } for (i=0;i<3;++i) { pack_ekindir[i] = *(float*)&pbuf[ibuf]; ibuf += sizeof(float); } p->time = *(float*)&pbuf[ibuf]; ibuf += sizeof(float); if (!p->weight) { p->weight = *(float*)&pbuf[ibuf]; ibuf += sizeof(float); } } else { if (f->opt_polarisation) { for (i=0;i<3;++i) { p->polarisation[i] = *(double*)&pbuf[ibuf]; ibuf += sizeof(double); } } else { for (i=0;i<3;++i) p->polarisation[i] = 0.0; } for (i=0;i<3;++i) { p->position[i] = *(double*)&pbuf[ibuf]; ibuf += sizeof(double); } for (i=0;i<3;++i) { pack_ekindir[i] = *(double*)&pbuf[ibuf]; ibuf += sizeof(double); } p->time = *(double*)&pbuf[ibuf]; ibuf += sizeof(double); if (!p->weight) { p->weight = *(double*)&pbuf[ibuf]; ibuf += sizeof(double); } } if (f->opt_universalpdgcode) { p->pdgcode = f->opt_universalpdgcode; } else { p->pdgcode = *(int32_t*)&pbuf[ibuf]; ibuf += sizeof(int32_t); } if (f->opt_userflags) { p->userflags = *(uint32_t*)&pbuf[ibuf]; #ifndef NDEBUG ibuf += sizeof(uint32_t); #endif } else { f->opt_userflags = 0; } assert(ibuf==lbuf); //Unpack direction and ekin: if (f->format_version>=3) { p->ekin = fabs(pack_ekindir[2]); pack_ekindir[2] = copysign(1.0,pack_ekindir[2]); mcpl_unitvect_unpack_adaptproj(pack_ekindir,p->direction); } else { assert(f->format_version==2); mcpl_unitvect_unpack_oct(pack_ekindir,p->direction); p->ekin = pack_ekindir[2]; if (signbit(pack_ekindir[2])) { p->ekin = -p->ekin; p->direction[2] = 0.0; } } return p; } int mcpl_skipforward(mcpl_file_t ff,uint64_t n) { MCPLIMP_FILEDECODE; //increment, but guard against overflows: if ( n >= f->nparticles || f->current_particle_idx >= f->nparticles ) f->current_particle_idx = f->nparticles; else f->current_particle_idx += n; if ( f->current_particle_idx > f->nparticles ) f->current_particle_idx = f->nparticles; int notEOF = f->current_particle_idxnparticles; if (n==0) return notEOF; if (notEOF) { int error; #ifdef MCPL_HASZLIB if (f->filegz) { int64_t targetpos = f->current_particle_idx*f->particle_size+f->first_particle_pos; error = gzseek( f->filegz, targetpos, SEEK_SET )!=targetpos; } else #endif error = fseek( f->file, f->particle_size * n, SEEK_CUR )!=0; if (error) mcpl_error("Errors encountered while skipping in particle list"); } return notEOF; } int mcpl_rewind(mcpl_file_t ff) { MCPLIMP_FILEDECODE; int already_there = (f->current_particle_idx==0); f->current_particle_idx = 0; int notEOF = f->current_particle_idxnparticles; if (notEOF&&!already_there) { int error; #ifdef MCPL_HASZLIB if (f->filegz) { error = gzseek( f->filegz, f->first_particle_pos, SEEK_SET )!=(int64_t)f->first_particle_pos; } else #endif error = fseek( f->file, f->first_particle_pos, SEEK_SET )!=0; if (error) mcpl_error("Errors encountered while rewinding particle list"); } return notEOF; } int mcpl_seek(mcpl_file_t ff,uint64_t ipos) { MCPLIMP_FILEDECODE; int already_there = (f->current_particle_idx==ipos); f->current_particle_idx = (iposnparticles?ipos:f->nparticles); int notEOF = f->current_particle_idxnparticles; if (notEOF&&!already_there) { int error; #ifdef MCPL_HASZLIB if (f->filegz) { int64_t targetpos = f->current_particle_idx*f->particle_size+f->first_particle_pos; error = gzseek( f->filegz, targetpos, SEEK_SET )!=targetpos; } else #endif error = fseek( f->file, f->first_particle_pos + f->particle_size * ipos, SEEK_SET )!=0; if (error) mcpl_error("Errors encountered while seeking in particle list"); } return notEOF; } uint64_t mcpl_currentposition(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->current_particle_idx; } const char * mcpl_basename(const char * filename) { //portable "basename" which doesn't modify it's argument: const char * bn = strrchr(filename, '/'); return bn ? bn + 1 : filename; } int mcpl_hdr_particle_size(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->particle_size; } uint64_t mcpl_hdr_header_size(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->first_particle_pos; } int mcpl_hdr_universal_pdgcode(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->opt_universalpdgcode; } int mcpl_hdr_universel_pdgcode(mcpl_file_t ff) { printf("MCPL WARNING: Usage of function mcpl_hdr_universel_pdgcode is obsolete as it has" " been renamed to mcpl_hdr_universal_pdgcode. Please update your code.\n"); return mcpl_hdr_universal_pdgcode(ff); } double mcpl_hdr_universal_weight(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->opt_universalweight; } int mcpl_hdr_little_endian(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->is_little_endian; } void mcpl_transfer_last_read_particle(mcpl_file_t source, mcpl_outfile_t target) { mcpl_outfileinternal_t * ft = (mcpl_outfileinternal_t *)target.internal; assert(ft); mcpl_fileinternal_t * fs = (mcpl_fileinternal_t *)source.internal; assert(fs); if ( fs->current_particle_idx==0 && fs->particle->weight==0.0 && fs->particle->pdgcode==0 ) { mcpl_error("mcpl_transfer_last_read_particle called with source file in invalid state" " (did you forget to first call mcpl_read() on the source file before calling this function?)"); return; } //Sanity checks for universal fields here (but not in mcpl_add_particle since users are allowed to create files by setting just the universal fields): if ( ft->opt_universalpdgcode && fs->particle->pdgcode != ft->opt_universalpdgcode) { printf("MCPL ERROR: mcpl_transfer_last_read_particle asked to transfer particle with pdgcode %li into a file with universal pdgcode of %li\n", (long)fs->particle->pdgcode,(long)ft->opt_universalpdgcode); mcpl_error("mcpl_transfer_last_read_particle got incompatible pdgcode\n"); return; } if ( ft->opt_universalweight && fs->particle->weight != ft->opt_universalweight) { printf("MCPL ERROR: mcpl_transfer_last_read_particle asked to transfer particle with weight %g into a file with universal weight of %g\n", fs->particle->weight,ft->opt_universalweight); mcpl_error("mcpl_transfer_last_read_particle got incompatible weight\n"); return; } //NB: We don't sanity check that polarisation/userflags are enabled if present //in the input particle, since it is a valid use-case to use this function to //discard such info. if ( fs->format_version == 2 || ( fs->opt_singleprec && !ft->opt_singleprec ) ) { //source file is in old format with different unit vector packing, or the //floating point precision is increasing. In these scenarious we can not //reuse the 3 floats representing packed direction+ekin but must proceed via //a full unpacking+repacking. mcpl_add_particle(target,fs->particle); return; } if ( ft->opt_signature == fs->opt_signature ) { //Particle data is encoded in exactly the same manner in src and target (a //common scenario for many merge or extraction scenarios) -> simply transfer //the bytes and be done with it: assert(fs->particle_size==ft->particle_size); memcpy(ft->particle_buffer,fs->particle_buffer,fs->particle_size); mcpl_internal_write_particle_buffer_to_file(ft); return; } //The hard way - first serialise the source particle into the output buffer: mcpl_internal_serialise_particle_to_buffer( fs->particle, ft ); //If possible, override the 3 FP representing packed ekin+dir from the packing //in the source, thus avoiding potentially lossy unpacking+packing: size_t fpsize_target = ft->opt_singleprec ? sizeof(float) : sizeof(double); size_t idx_packekindir_target = (ft->opt_polarisation ? 6 : 3) * fpsize_target; size_t idx_packekindir_src = (fs->opt_polarisation ? 6 : 3) * fpsize_target; if (fs->opt_singleprec == ft->opt_singleprec) { memcpy( &(ft->particle_buffer[idx_packekindir_target]), &(fs->particle_buffer[idx_packekindir_src]), fpsize_target * 3); } else if ( ft->opt_singleprec && !fs->opt_singleprec ) { //For the case of double precision -> single precision, we can simply //perform a narrowing conversion: double * packekindir_src = (double*)&(fs->particle_buffer[idx_packekindir_src]); float * packekindir_target = (float*)&(ft->particle_buffer[idx_packekindir_target]); for (unsigned i = 0; i < 3; ++i) { packekindir_target[i] = (float)packekindir_src[i]; } } mcpl_internal_write_particle_buffer_to_file(ft); } void mcpl_dump_header(mcpl_file_t f) { printf("\n Basic info\n"); printf(" Format : MCPL-%i\n",mcpl_hdr_version(f)); printf(" No. of particles : %" PRIu64 "\n",mcpl_hdr_nparticles(f)); printf(" Header storage : %" PRIu64 " bytes\n",mcpl_hdr_header_size(f)); printf(" Data storage : %" PRIu64 " bytes\n",mcpl_hdr_nparticles(f)*mcpl_hdr_particle_size(f)); printf("\n Custom meta data\n"); printf(" Source : \"%s\"\n",mcpl_hdr_srcname(f)); unsigned nc=mcpl_hdr_ncomments(f); printf(" Number of comments : %i\n",nc); unsigned ic; for (ic = 0; ic < nc; ++ic) printf(" -> comment %i : \"%s\"\n",ic,mcpl_hdr_comment(f,ic)); unsigned nb = mcpl_hdr_nblobs(f); printf(" Number of blobs : %i\n",nb); const char** blobkeys = mcpl_hdr_blobkeys(f); uint32_t ib; for (ib = 0; ib < nb; ++ib) { const char * data; uint32_t ldata; int ok = mcpl_hdr_blob(f, blobkeys[ib], &ldata, &data); if (!ok) mcpl_error("Unexpected blob access error"); printf(" -> %lu bytes of data with key \"%s\"\n",(unsigned long)ldata,blobkeys[ib]); } printf("\n Particle data format\n"); printf(" User flags : %s\n",(mcpl_hdr_has_userflags(f)?"yes":"no")); printf(" Polarisation info : %s\n",(mcpl_hdr_has_polarisation(f)?"yes":"no")); printf(" Fixed part. type : "); int32_t updg = mcpl_hdr_universal_pdgcode(f); if (updg) printf("yes (pdgcode %li)\n",(long)updg); else printf("no\n"); printf(" Fixed part. weight : "); double uw = mcpl_hdr_universal_weight(f); if (uw) printf("yes (weight %g)\n",uw); else printf("no\n"); printf(" FP precision : %s\n",(mcpl_hdr_has_doubleprec(f)?"double":"single")); printf(" Endianness : %s\n",(mcpl_hdr_little_endian(f)?"little":"big")); printf(" Storage : %i bytes/particle\n",mcpl_hdr_particle_size(f)); printf("\n"); } //Not in the public interface, but perhaps it should be to allow custom //applications to apply custom filters and see the selected particles. For now, //we simply keep the function signature stable, allowing other code to access it //by forward declaring it themselves: void mcpl_dump_particles(mcpl_file_t f, uint64_t nskip, uint64_t nlimit, int(filter)(const mcpl_particle_t*)) { int has_uf = mcpl_hdr_has_userflags(f); int has_pol = mcpl_hdr_has_polarisation(f); double uweight = mcpl_hdr_universal_weight(f); printf("index pdgcode ekin[MeV] x[cm] y[cm] z[cm] ux uy uz time[ms]"); if (!uweight) printf(" weight"); if (has_pol) printf(" pol-x pol-y pol-z"); if (has_uf) printf(" userflags"); printf("\n"); mcpl_skipforward(f,nskip); uint64_t count = nlimit; const mcpl_particle_t* p; while((nlimit==0||count--)&&(p=mcpl_read(f))) { if (filter && !filter(p) ) { ++count; continue; } uint64_t idx = mcpl_currentposition(f)-1;//-1 since mcpl_read skipped ahead printf("%5" PRIu64 " %11i %11.5g %11.5g %11.5g %11.5g %11.5g %11.5g %11.5g %11.5g", idx, p->pdgcode, p->ekin, p->position[0], p->position[1], p->position[2], p->direction[0], p->direction[1], p->direction[2], p->time); if (!uweight) printf(" %11.5g",p->weight); if (has_pol) printf(" %11.5g %11.5g %11.5g",p->polarisation[0],p->polarisation[1],p->polarisation[2]); if (has_uf) printf(" 0x%08x",p->userflags); printf("\n"); } } void mcpl_dump(const char * filename, int parts, uint64_t nskip, uint64_t nlimit) { if (parts<0||parts>2) mcpl_error("mcpl_dump got forbidden value for argument parts"); mcpl_file_t f = mcpl_open_file(filename); printf("Opened MCPL file %s:\n",mcpl_basename(filename)); if (parts==0||parts==1) mcpl_dump_header(f); if (parts==0||parts==2) mcpl_dump_particles(f,nskip,nlimit,0); mcpl_close_file(f); } int mcpl_actual_can_merge(mcpl_file_t ff1, mcpl_file_t ff2) { mcpl_fileinternal_t * f1 = (mcpl_fileinternal_t *)ff1.internal; mcpl_fileinternal_t * f2 = (mcpl_fileinternal_t *)ff2.internal; assert(f1&&f2); if (f1->first_particle_pos!=f2->first_particle_pos) return 0;//different header //Note, we do not check the format_version field here, since mcpl_merge_files //can actually work on files with different versions. //Very strict checking of everything except nparticles. Even order of blobs //and comments must be preserved (could possibly be relaxed a bit): if (strcmp(f1->hdr_srcprogname,f2->hdr_srcprogname)!=0) return 0; if (f1->opt_userflags!=f2->opt_userflags) return 0; if (f1->opt_polarisation!=f2->opt_polarisation) return 0; if (f1->opt_singleprec!=f2->opt_singleprec) return 0; if (f1->opt_universalpdgcode!=f2->opt_universalpdgcode) return 0; if (f1->opt_universalweight!=f2->opt_universalweight) return 0; if (f1->is_little_endian!=f2->is_little_endian) return 0; if (f1->particle_size!=f2->particle_size) return 0; if (f1->ncomments!=f2->ncomments) return 0; if (f1->nblobs!=f2->nblobs) return 0; uint32_t i; for (i = 0; incomments; ++i) { if (strcmp(f1->comments[i],f2->comments[i])!=0) return 0; } for (i = 0; inblobs; ++i) { if (f1->bloblengths[i]!=f2->bloblengths[i]) return 0; if (strcmp(f1->blobkeys[i],f2->blobkeys[i])!=0) return 0; if (memcmp(f1->blobs[i],f2->blobs[i],f1->bloblengths[i])!=0) return 0; } return 1; } int mcpl_can_merge(const char * file1, const char* file2) { mcpl_file_t f1 = mcpl_open_file(file1); mcpl_file_t f2 = mcpl_open_file(file2); int can_merge = mcpl_actual_can_merge(f1,f2); mcpl_close_file(f1); mcpl_close_file(f2); return can_merge; } #ifdef MCPL_THIS_IS_UNIX # include #endif int mcpl_file_certainly_exists(const char * filename) { #if defined MCPL_THIS_IS_UNIX || defined MCPL_THIS_IS_MS if( access( filename, F_OK ) != -1 ) return 1; return 0; #else //esoteric platform without access(..). Try opening for reads: FILE *fd; if ((fd = fopen(filename, "r"))) { fclose(fd); return 1; } //non-existing or read access not allowed: return 0; #endif } #ifdef MCPL_THIS_IS_UNIX # include # include #endif void mcpl_warn_duplicates(unsigned n, const char ** filenames) { //Checks that no filenames in provided list represent the same file (the //detection is not 100% certain on non-POSIX platforms). If duplicates are //found, emit warning - it is assumed the function is called from //mcpl_merge_xxx on a user-provided list of files. //Since this is C, we resort to slow O(N^2) comparison for simplicity. if (n<2) return; #ifdef MCPL_THIS_IS_UNIX //Bullet proof(ish) way, (st_ino,st_dev) uniquely identifies a file on a system. dev_t * id_dev = (dev_t*)calloc(n*sizeof(dev_t),1); ino_t * id_ino = (ino_t*)calloc(n*sizeof(ino_t),1); unsigned i; for (i = 0; iparticle_size; //buffer for transferring up to 1000 particles at a time: const unsigned npbufsize = 1000; char * buf = (char*)malloc(npbufsize*particle_size); uint64_t np_remaining = nparticles; while(np_remaining) { //NB: On linux > 2.6.33 we could use sendfile for more efficient in-kernel //transfer of data between two files! uint64_t toread = np_remaining >= npbufsize ? npbufsize : np_remaining; np_remaining -= toread; //read: size_t nb; #ifdef MCPL_HASZLIB if (fi->filegz) nb = gzread(fi->filegz, buf, toread*particle_size); else #endif nb = fread(buf,1,toread*particle_size,fi->file); if (nb!=toread*particle_size) mcpl_error("Unexpected read-error while merging"); //write: nb = fwrite(buf,1,toread*particle_size,fo); if (nb!=toread*particle_size) mcpl_error("Unexpected write-error while merging"); } free(buf); } mcpl_outfile_t mcpl_forcemerge_files( const char * file_output, unsigned nfiles, const char ** files, int keep_userflags ) { //////////////////////////////////// // Initial sanity check of input: // //////////////////////////////////// if (!nfiles) mcpl_error("mcpl_forcemerge_files must be called with at least one input file"); //Warn user if they are merging a file with itself: mcpl_warn_duplicates(nfiles,files); //Create new file: if (mcpl_file_certainly_exists(file_output)) mcpl_error("requested output file of mcpl_forcemerge_files already exists"); /////////////////////////////////////////// // Fallback to normal merge if possible: // /////////////////////////////////////////// //Check all files for compatibility before we start (for robustness, we check //again when actually merging each file). unsigned ifile; int normal_merge_ok = 1; for (ifile = 1; ifile < nfiles; ++ifile) { if (!mcpl_can_merge(files[0],files[ifile])) { normal_merge_ok = 0; break; } } if (normal_merge_ok) { printf("MCPL mcpl_forcemerge_files called with %i files that are compatible for a standard merge => falling back to standard mcpl_merge_files function\n",nfiles); return mcpl_merge_files(file_output,nfiles,files); } ///////////////////////////// // Actual forcemerge code: // ///////////////////////////// //Run through files and collect meta-data: int opt_dp = 0; int opt_pol = 0; int opt_uf = 0; int lastseen_universalpdg = 0; int disallow_universalpdg = 0; double lastseen_universalweight = 0; int disallow_universalweight = 0; for (ifile = 0; ifile < nfiles; ++ifile) { mcpl_file_t f = mcpl_open_file(files[ifile]); if (!mcpl_hdr_nparticles(f)) { mcpl_close_file(f); continue;//won't affect anything } if (mcpl_hdr_has_userflags(f)) opt_uf = 1;//enable if any if (mcpl_hdr_has_polarisation(f)) opt_pol = 1;//enable if any if (mcpl_hdr_has_doubleprec(f)) opt_dp = 1; int32_t updg = mcpl_hdr_universal_pdgcode(f); if ( !updg || ( lastseen_universalpdg && lastseen_universalpdg != updg ) ) { disallow_universalpdg = 1; } else { lastseen_universalpdg = updg; } double uw = mcpl_hdr_universal_weight(f); if ( !uw || ( lastseen_universalweight && lastseen_universalweight != uw ) ) { disallow_universalweight = 1; } else { lastseen_universalweight = uw; } mcpl_close_file(f); } if (!keep_userflags) opt_uf = 0; mcpl_outfile_t out = mcpl_create_outfile(file_output); mcpl_hdr_set_srcname(out,"mcpl_forcemerge_files (from MCPL v" MCPL_VERSION_STR ")"); if ( opt_uf ) mcpl_enable_userflags(out); if ( opt_pol ) mcpl_enable_polarisation(out); if (opt_dp) mcpl_enable_doubleprec(out); if ( !disallow_universalpdg && lastseen_universalpdg ) mcpl_enable_universal_pdgcode(out,lastseen_universalpdg); if ( !disallow_universalweight && lastseen_universalweight ) mcpl_enable_universal_weight(out,lastseen_universalweight); //Finally, perform the transfer: for (ifile = 0; ifile < nfiles; ++ifile) { mcpl_file_t f = mcpl_open_file(files[ifile]); uint64_t np = mcpl_hdr_nparticles(f); printf("MCPL force-merge: Transferring %" PRIu64 " particle%s from file %s\n",np,(np==1?"":"s"),files[ifile]); const mcpl_particle_t* particle; while ( ( particle = mcpl_read(f) ) ) mcpl_transfer_last_read_particle(f, out);//lossless transfer when possible mcpl_close_file(f); } mcpl_outfileinternal_t * out_internal = (mcpl_outfileinternal_t *)out.internal; uint64_t np = out_internal->nparticles; printf("MCPL force-merge: Transferred a total of %" PRIu64 " particle%s to new file %s\n",np,(np==1?"":"s"),file_output); return out; } mcpl_outfile_t mcpl_merge_files( const char* file_output, unsigned nfiles, const char ** files ) { mcpl_outfile_t out; out.internal = 0; if (!nfiles) mcpl_error("mcpl_merge_files must be called with at least one input file"); //Check all files for compatibility before we start (for robustness, we check //again when actually merging each file). unsigned ifile; for (ifile = 1; ifile < nfiles; ++ifile) { if (!mcpl_can_merge(files[0],files[ifile])) mcpl_error("Attempting to merge incompatible files."); } //Warn user if they are merging a file with itself: mcpl_warn_duplicates(nfiles,files); //Create new file: if (mcpl_file_certainly_exists(file_output)) mcpl_error("requested output file of mcpl_merge_files already exists"); out = mcpl_create_outfile(file_output); mcpl_outfileinternal_t * out_internal = (mcpl_outfileinternal_t *)out.internal; mcpl_file_t f1; f1.internal = 0; int warned_oldversion = 0; for (ifile = 0; ifile < nfiles; ++ifile) { mcpl_file_t fi = mcpl_open_file(files[ifile]); if (ifile==0) { //Add metadata from the first file: mcpl_transfer_metadata(fi, out); if (out_internal->header_notwritten) mcpl_write_header(out_internal); f1 = fi; } else { //Check file is still compatible with first file if (!mcpl_actual_can_merge(f1,fi)) mcpl_error("Aborting merge of suddenly incompatible files."); } //Transfer particle contents: if (mcpl_hdr_version(fi)==MCPL_FORMATVERSION) { //Can transfer raw bytes: uint64_t npi = mcpl_hdr_nparticles(fi); mcpl_transfer_particle_contents(out_internal->file, fi, npi); out_internal->nparticles += npi; } else { //Merging from older version. Transfer via public interface to re-encode //particle data for latest format: if (!warned_oldversion) { warned_oldversion = 1; printf("MCPL WARNING: Merging files from older MCPL format. Output will be in latest format.\n"); } const mcpl_particle_t* particle; while ( ( particle = mcpl_read(fi) ) ) mcpl_add_particle(out,particle); } if (ifile!=0) mcpl_close_file(fi); } mcpl_close_file(f1); return out; } void mcpl_merge(const char * file1, const char* file2) { printf("MCPL WARNING: Usage of function mcpl_merge is obsolete as it has" " been renamed to mcpl_merge_inplace. Please update your code.\n"); mcpl_merge_inplace(file1, file2); } void mcpl_merge_inplace(const char * file1, const char* file2) { mcpl_file_t ff1 = mcpl_open_file(file1); mcpl_file_t ff2 = mcpl_open_file(file2); int can_merge = mcpl_actual_can_merge(ff1,ff2); if (!can_merge) { mcpl_close_file(ff1); mcpl_close_file(ff2); mcpl_error("Attempting to merge incompatible files"); } //Warn user if they are merging a file with itself: const char * filelist[2]; filelist[0] = file1; filelist[1] = file2; mcpl_warn_duplicates(2,filelist); //Access internals: mcpl_fileinternal_t * f1 = (mcpl_fileinternal_t *)ff1.internal; mcpl_fileinternal_t * f2 = (mcpl_fileinternal_t *)ff2.internal; assert(f1&&f2); if (f1->format_version!=f2->format_version) { mcpl_close_file(ff1); mcpl_close_file(ff2); mcpl_error("Attempting to merge incompatible files (can not mix MCPL format versions when merging inplace)"); } if (f1->filegz) { mcpl_close_file(ff1); mcpl_close_file(ff2); mcpl_error("direct modification of gzipped files is not supported."); } uint64_t np1 = f1->nparticles; uint64_t np2 = f2->nparticles; if (!np2) return;//nothing to take from file 2. unsigned particle_size = f1->particle_size; uint64_t first_particle_pos = f1->first_particle_pos; //Should be same since can_merge: assert(particle_size==f2->particle_size); assert(first_particle_pos==f2->first_particle_pos); //Now, close file1 and reopen a file handle in append mode: mcpl_close_file(ff1); FILE * f1a = fopen(file1,"rb+"); //Update file positions. Note that f2->file is already at the position for the //first particle and that the seek operation on f1a correctly discards any //partial entries at the end, which could be there if the file was in need of //mcpl_repair: if (!f1a) mcpl_error("Unable to open file1 in update mode!"); if (fseek( f1a, first_particle_pos + particle_size*np1, SEEK_SET )) mcpl_error("Unable to seek to end of file1 in update mode"); //Transfer particle contents, setting nparticles to 0 during the operation (so //the file appears broken and in need of mcpl_repair in case of errors during //the transfer): mcpl_update_nparticles(f1a,0); mcpl_transfer_particle_contents(f1a, ff2, np2); mcpl_update_nparticles(f1a,np1+np2); //Finish up. mcpl_close_file(ff2); fclose(f1a); } #define MCPLIMP_TOOL_DEFAULT_NLIMIT 10 #define MCPLIMP_TOOL_DEFAULT_NSKIP 0 int mcpl_tool_usage( char** argv, const char * errmsg ) { if (errmsg) { printf("ERROR: %s\n\n",errmsg); printf("Run with -h or --help for usage information\n"); return 1; } const char * progname = mcpl_basename(argv[0]); printf("Tool for inspecting or modifying Monte Carlo Particle List (.mcpl) files.\n"); printf("\n"); printf("The default behaviour is to display the contents of the FILE in human readable\n"); printf("format (see Dump Options below for how to modify what is displayed).\n"); printf("\n"); #ifdef MCPL_HASZLIB printf("This installation supports direct reading of gzipped files (.mcpl.gz).\n"); printf("\n"); #endif printf("Usage:\n"); printf(" %s [dump-options] FILE\n",progname); printf(" %s --merge [merge-options] FILE1 FILE2\n",progname); printf(" %s --extract [extract-options] FILE1 FILE2\n",progname); printf(" %s --repair FILE\n",progname); printf(" %s --version\n",progname); printf(" %s --help\n",progname); printf("\n"); printf("Dump options:\n"); printf(" By default include the info in the FILE header plus the first ten contained\n"); printf(" particles. Modify with the following options:\n"); assert(MCPLIMP_TOOL_DEFAULT_NLIMIT==10); printf(" -j, --justhead : Dump just header info and no particle info.\n"); printf(" -n, --nohead : Dump just particle info and no header info.\n"); printf(" -lN : Dump up to N particles from the file (default %i). You\n",MCPLIMP_TOOL_DEFAULT_NLIMIT); printf(" can specify -l0 to disable this limit.\n"); printf(" -sN : Skip past the first N particles in the file (default %i).\n",MCPLIMP_TOOL_DEFAULT_NSKIP); printf(" -bKEY : Dump binary blob stored under KEY to standard output.\n"); printf("\n"); printf("Merge options:\n"); printf(" -m, --merge FILEOUT FILE1 FILE2 ... FILEN\n"); printf(" Creates new FILEOUT with combined particle contents from\n"); printf(" specified list of N existing and compatible files.\n"); printf(" -m, --merge --inplace FILE1 FILE2 ... FILEN\n"); printf(" Appends the particle contents in FILE2 ... FILEN into\n"); printf(" FILE1. Note that this action modifies FILE1!\n"); printf(" --forcemerge [--keepuserflags] FILEOUT FILE1 FILE2 ... FILEN\n"); printf(" Like --merge but works with incompatible files as well, at the\n"); printf(" heavy price of discarding most metadata like comments and blobs.\n"); printf(" Userflags will be discarded unless --keepuserflags is specified.\n"); printf("\n"); printf("Extract options:\n"); printf(" -e, --extract FILE1 FILE2\n"); printf(" Extracts particles from FILE1 into a new FILE2.\n"); printf(" -lN, -sN : Select range of particles in FILE1 (as above).\n"); printf(" -pPDGCODE : select particles of type given by PDGCODE.\n"); printf("\n"); printf("Other options:\n"); printf(" -r, --repair FILE\n"); printf(" Attempt to repair FILE which was not properly closed, by up-\n"); printf(" dating the file header with the correct number of particles.\n"); printf(" -t, --text MCPLFILE OUTFILE\n"); printf(" Read particle contents of MCPLFILE and write into OUTFILE\n"); printf(" using a simple ASCII-based format.\n"); printf(" -v, --version : Display version of MCPL installation.\n"); printf(" -h, --help : Display this usage information (ignores all other options).\n"); return 0; } int mcpl_str2int(const char* str, size_t len, int64_t* res) { //portable 64bit str2int with error checking (only INT64_MIN might not be //possible to specify). *res = 0; if (!len) len=strlen(str); if (!len) return 0; int sign = 1; if (str[0]=='-') { sign = -1; len -= 1; str += 1; } int64_t tmp = 0; size_t i; for (i=0; i'9') { return 0; } int64_t prev = tmp; tmp *= 10; tmp += str[i] - '0'; if (prev>=tmp) return 1;//overflow (hopefully it did not trigger a signal or FPE) } *res = sign * tmp; return 1; } int mcpl_tool(int argc,char** argv) { int nfilenames = 0; char ** filenames = 0; const char * blobkey = 0; const char * pdgcode_str = 0; int opt_justhead = 0; int opt_nohead = 0; int64_t opt_num_limit = -1; int64_t opt_num_skip = -1; int opt_merge = 0; int opt_forcemerge = 0; int opt_keepuserflags = 0; int opt_inplace = 0; int opt_extract = 0; int opt_preventcomment = 0;//undocumented unoffical flag for mcpl unit tests int opt_repair = 0; int opt_version = 0; int opt_text = 0; int i; for (i = 1; i=2&&a[0]=='-'&&a[1]!='-') { //short options: int64_t * consume_digit = 0; size_t j; for (j=1; j'9') return free(filenames),mcpl_tool_usage(argv,"Bad option: expected number"); *consume_digit *= 10; *consume_digit += a[j] - '0'; continue; } if (a[j]=='b') { if (blobkey) return free(filenames),mcpl_tool_usage(argv,"-b specified more than once"); if (j+1==n) return free(filenames),mcpl_tool_usage(argv,"Missing argument for -b"); blobkey = a+j+1; break; } if (a[j]=='p') { if (pdgcode_str) return free(filenames),mcpl_tool_usage(argv,"-p specified more than once"); if (j+1==n) return free(filenames),mcpl_tool_usage(argv,"Missing argument for -p"); pdgcode_str = a+j+1; break; } switch(a[j]) { case 'h': return free(filenames), mcpl_tool_usage(argv,0); case 'j': opt_justhead = 1; break; case 'n': opt_nohead = 1; break; case 'm': opt_merge = 1; break; case 'e': opt_extract = 1; break; case 'r': opt_repair = 1; break; case 'v': opt_version = 1; break; case 't': opt_text = 1; break; case 'l': consume_digit = &opt_num_limit; break; case 's': consume_digit = &opt_num_skip; break; default: return free(filenames),mcpl_tool_usage(argv,"Unrecognised option"); } if (consume_digit) { *consume_digit = 0; if (j+1==n) return free(filenames),mcpl_tool_usage(argv,"Bad option: missing number"); } } } else if (n>=3&&a[0]=='-'&&a[1]=='-') { a+=2; //long options: const char * lo_help = "help"; const char * lo_justhead = "justhead"; const char * lo_nohead = "nohead"; const char * lo_merge = "merge"; const char * lo_inplace = "inplace"; const char * lo_extract = "extract"; const char * lo_preventcomment = "preventcomment"; const char * lo_repair = "repair"; const char * lo_version = "version"; const char * lo_text = "text"; const char * lo_forcemerge = "forcemerge"; const char * lo_keepuserflags = "keepuserflags"; //Use strstr instead of "strcmp(a,"--help")==0" to support shortened //versions (works since all our long-opts start with unique char). if (strstr(lo_help,a)==lo_help) return free(filenames), mcpl_tool_usage(argv,0); else if (strstr(lo_justhead,a)==lo_justhead) opt_justhead = 1; else if (strstr(lo_nohead,a)==lo_nohead) opt_nohead = 1; else if (strstr(lo_merge,a)==lo_merge) opt_merge = 1; else if (strstr(lo_forcemerge,a)==lo_forcemerge) opt_forcemerge = 1; else if (strstr(lo_keepuserflags,a)==lo_keepuserflags) opt_keepuserflags = 1; else if (strstr(lo_inplace,a)==lo_inplace) opt_inplace = 1; else if (strstr(lo_extract,a)==lo_extract) opt_extract = 1; else if (strstr(lo_repair,a)==lo_repair) opt_repair = 1; else if (strstr(lo_version,a)==lo_version) opt_version = 1; else if (strstr(lo_preventcomment,a)==lo_preventcomment) opt_preventcomment = 1; else if (strstr(lo_text,a)==lo_text) opt_text = 1; else return free(filenames),mcpl_tool_usage(argv,"Unrecognised option"); } else if (n>=1&&a[0]!='-') { //input file if (!filenames) filenames = (char **)calloc(argc,sizeof(char*)); filenames[nfilenames] = a; ++nfilenames; } else { return free(filenames),mcpl_tool_usage(argv,"Bad arguments"); } } if ( opt_extract==0 && pdgcode_str ) return free(filenames),mcpl_tool_usage(argv,"-p can only be used with --extract."); if ( opt_merge==0 && opt_inplace!=0 ) return free(filenames),mcpl_tool_usage(argv,"--inplace can only be used with --merge."); if ( opt_forcemerge==0 && opt_keepuserflags!=0 ) return free(filenames),mcpl_tool_usage(argv,"--keepuserflags can only be used with --forcemerge."); if ( opt_merge!=0 && opt_forcemerge!=0 ) return free(filenames),mcpl_tool_usage(argv,"--merge and --forcemerge can not both be specified ."); int number_dumpopts = (opt_justhead + opt_nohead + (blobkey!=0)); if (opt_extract==0) number_dumpopts += (opt_num_limit!=-1) + (opt_num_skip!=-1); int any_dumpopts = number_dumpopts != 0; int any_extractopts = (opt_extract!=0||pdgcode_str!=0); int any_mergeopts = (opt_merge!=0||opt_forcemerge!=0); int any_textopts = (opt_text!=0); if (any_dumpopts+any_mergeopts+any_extractopts+any_textopts+opt_repair+opt_version>1) return free(filenames),mcpl_tool_usage(argv,"Conflicting options specified."); if (blobkey&&(number_dumpopts>1)) return free(filenames),mcpl_tool_usage(argv,"Do not specify other dump options with -b."); if (opt_version) { free(filenames); if (nfilenames) return mcpl_tool_usage(argv,"Unrecognised arguments for --version."); printf("MCPL version " MCPL_VERSION_STR "\n"); return 0; } if (any_mergeopts) { if (nfilenames<2) return free(filenames),mcpl_tool_usage(argv, (opt_forcemerge?"Too few arguments for --forcemerge.":"Too few arguments for --merge.") ); int ifirstinfile = (opt_inplace ? 0 : 1); if (!opt_forcemerge) { for (i = ifirstinfile+1; i < nfilenames; ++i) if (!mcpl_can_merge(filenames[ifirstinfile],filenames[i])) return free(filenames),mcpl_tool_usage(argv,"Requested files are incompatible for merge as they have different header info."); } if (opt_inplace) { assert( !opt_forcemerge && opt_merge ); for (i = ifirstinfile+1; i < nfilenames; ++i) mcpl_merge_inplace(filenames[ifirstinfile],filenames[i]); } else { if (mcpl_file_certainly_exists(filenames[0])) return free(filenames),mcpl_tool_usage(argv,"Requested output file already exists."); //Disallow .gz endings unless it is .mcpl.gz, in which case we attempt to gzip automatically. char * outfn = filenames[0]; size_t lfn = strlen(outfn); int attempt_gzip = 0; if( lfn > 8 && !strcmp(outfn + (lfn - 8), ".mcpl.gz")) { attempt_gzip = 1; outfn = (char*)malloc(lfn+1); outfn[0] = '\0'; strcat(outfn,filenames[0]); outfn[lfn-3] = '\0'; if (mcpl_file_certainly_exists(outfn)) return free(filenames),mcpl_tool_usage(argv,"Requested output file already exists (without .gz extension)."); } else if( lfn > 3 && !strcmp(outfn + (lfn - 3), ".gz")) { return free(filenames),mcpl_tool_usage(argv,"Requested output file should not have .gz extension (unless it is .mcpl.gz)."); } mcpl_outfile_t mf = ( opt_forcemerge ? mcpl_forcemerge_files( outfn, nfilenames-1, (const char**)filenames + 1, opt_keepuserflags) : mcpl_merge_files( outfn, nfilenames-1, (const char**)filenames + 1) ); if (attempt_gzip) { if (!mcpl_closeandgzip_outfile(mf)) printf("MCPL WARNING: Failed to gzip output. Non-gzipped output is found in %s\n",outfn); } else { mcpl_close_outfile(mf); } if (outfn != filenames[0]) free(outfn); } free(filenames); return 0; } if (opt_extract) { if (nfilenames>2) return free(filenames),mcpl_tool_usage(argv,"Too many arguments."); if (nfilenames!=2) return free(filenames),mcpl_tool_usage(argv,"Must specify both input and output files with --extract."); if (mcpl_file_certainly_exists(filenames[1])) return free(filenames),mcpl_tool_usage(argv,"Requested output file already exists."); mcpl_file_t fi = mcpl_open_file(filenames[0]); mcpl_outfile_t fo = mcpl_create_outfile(filenames[1]); mcpl_transfer_metadata(fi, fo); uint64_t fi_nparticles = mcpl_hdr_nparticles(fi); if (!opt_preventcomment) { char comment[1024]; sprintf(comment, "mcpltool: extracted particles from file with %" PRIu64 " particles",fi_nparticles); mcpl_hdr_add_comment(fo,comment); } int32_t pdgcode_select = 0; if (pdgcode_str) { int64_t pdgcode64; if (!mcpl_str2int(pdgcode_str, 0, &pdgcode64) || pdgcode64<-2147483648 || pdgcode64>2147483647 || !pdgcode64) return free(filenames),mcpl_tool_usage(argv,"Must specify non-zero 32bit integer as argument to -p."); pdgcode_select = (int32_t)pdgcode64; } if (opt_num_skip>0) mcpl_seek(fi,(uint64_t)opt_num_skip); //uint64_t(-1) instead of UINT64_MAX to fix clang c++98 compilation uint64_t left = opt_num_limit>0 ? (uint64_t)opt_num_limit : (uint64_t)-1; uint64_t added = 0; const mcpl_particle_t* particle; while ( left-- && ( particle = mcpl_read(fi) ) ) { if (pdgcode_select && pdgcode_select!= particle->pdgcode) continue; mcpl_transfer_last_read_particle(fi, fo);//Doing mcpl_add_particle(fo,particle) is potentially (very rarely) lossy ++added; } char *fo_filename = (char*)malloc(strlen(mcpl_outfile_filename(fo))+4); fo_filename[0] = '\0'; strcat(fo_filename,mcpl_outfile_filename(fo)); if (mcpl_closeandgzip_outfile(fo)) strcat(fo_filename,".gz"); mcpl_close_file(fi); printf("MCPL: Succesfully extracted %" PRIu64 " / %" PRIu64 " particles from %s into %s\n", added,fi_nparticles,filenames[0],fo_filename); free(fo_filename); free(filenames); return 0; } if (opt_text) { if (nfilenames>2) return free(filenames),mcpl_tool_usage(argv,"Too many arguments."); if (nfilenames!=2) return free(filenames),mcpl_tool_usage(argv,"Must specify both input and output files with --text."); if (mcpl_file_certainly_exists(filenames[1])) return free(filenames),mcpl_tool_usage(argv,"Requested output file already exists."); mcpl_file_t fi = mcpl_open_file(filenames[0]); FILE * fout = fopen(filenames[1],"w"); if (!fout) return free(filenames),mcpl_tool_usage(argv,"Could not open output file."); fprintf(fout,"#MCPL-ASCII\n#ASCII-FORMAT: v1\n#NPARTICLES: %" PRIu64 "\n#END-HEADER\n",mcpl_hdr_nparticles(fi)); fprintf(fout,"index pdgcode ekin[MeV] x[cm] " " y[cm] z[cm] ux " " uy uz time[ms] weight " " pol-x pol-y pol-z userflags\n"); const mcpl_particle_t* p; while ( ( p = mcpl_read(fi) ) ) { uint64_t idx = mcpl_currentposition(fi)-1;//-1 since mcpl_read skipped ahead fprintf(fout,"%5" PRIu64 " %11i %23.18g %23.18g %23.18g %23.18g %23.18g %23.18g %23.18g %23.18g %23.18g" " %23.18g %23.18g %23.18g 0x%08x\n", idx,p->pdgcode,p->ekin,p->position[0],p->position[1],p->position[2], p->direction[0],p->direction[1],p->direction[2],p->time,p->weight, p->polarisation[0],p->polarisation[1],p->polarisation[2],p->userflags); } fclose(fout); mcpl_close_file(fi); free(filenames); return 0; } if (nfilenames>1) return free(filenames),mcpl_tool_usage(argv,"Too many arguments."); if (!nfilenames) return free(filenames),mcpl_tool_usage(argv,"No input file specified"); if (opt_repair) { mcpl_repair(filenames[0]); free(filenames); return 0; } //Dump mode: if (blobkey) { mcpl_file_t mcplfile = mcpl_open_file(filenames[0]); uint32_t ldata; const char * data; if (!mcpl_hdr_blob(mcplfile, blobkey, &ldata, &data)) return 1; #ifdef MCPL_THIS_IS_MS setmode(STDOUT_FILENO, O_BINARY); #endif uint32_t nb = write(STDOUT_FILENO,data,ldata); if (nb!=ldata) mcpl_error("Problems writing to stdout"); free(filenames); return 0; } if (opt_justhead&&(opt_num_limit!=-1||opt_num_skip!=-1)) return free(filenames),mcpl_tool_usage(argv,"Do not specify -l or -s with --justhead"); if (opt_num_limit<0) opt_num_limit = MCPLIMP_TOOL_DEFAULT_NLIMIT; if (opt_num_skip<0) opt_num_skip = MCPLIMP_TOOL_DEFAULT_NSKIP; if (opt_justhead&&opt_nohead) return free(filenames),mcpl_tool_usage(argv,"Do not supply both --justhead and --nohead."); int parts = 0; if (opt_nohead) parts=2; else if (opt_justhead) parts=1; mcpl_dump(filenames[0],parts,opt_num_skip,opt_num_limit); free(filenames); return 0; } int mcpl_gzip_file_rc(const char * filename) { printf("MCPL WARNING: Usage of function mcpl_gzip_file_rc is obsolete as" " mcpl_gzip_file now also returns the status. Please update your code" " to use mcpl_gzip_file instead.\n"); return mcpl_gzip_file(filename); } #if defined(MCPL_HASZLIB) && !defined(Z_SOLO) && !defined(MCPL_NO_CUSTOM_GZIP) # define MCPLIMP_HAS_CUSTOM_GZIP int _mcpl_custom_gzip(const char *file, const char *mode);//return 1 if successful, 0 if not #endif #if defined MCPL_THIS_IS_UNIX && !defined(MCPL_NO_EXT_GZIP) //Platform is unix-like enough that we assume gzip is installed and we can //include posix headers. # include # include # include int mcpl_gzip_file(const char * filename) { const char * bn = strrchr(filename, '/'); bn = bn ? bn + 1 : filename; //spawn process in which to perform gzip: printf("MCPL: Attempting to compress file %s with gzip\n",bn); fflush(0); pid_t gzip_pid = fork(); if (gzip_pid) { //main proc int chld_state = 0; pid_t ret = waitpid(gzip_pid,&chld_state,0); if (ret!=gzip_pid||chld_state!=0) { # ifdef MCPLIMP_HAS_CUSTOM_GZIP printf("MCPL WARNING: Problems invoking gzip - will revert to a custom zlib based compression\n"); if (!_mcpl_custom_gzip(filename,"wb")) mcpl_error("Problems encountered while attempting to compress file"); else printf("MCPL: Succesfully compressed file into %s.gz\n",bn); # else mcpl_error("Problems encountered while attempting to invoke gzip"); # endif } else printf("MCPL: Succesfully compressed file into %s.gz\n",bn); } else { //spawned proc in which to invoke gzip execlp("gzip", "gzip", "-f",filename, (char*)0); printf("MCPL: execlp/gzip error: %s\n",strerror(errno)); exit(1); } return 1; } #else //Non unix-y platform (like windows). We could use e.g. windows-specific calls //instead of the fork() and waitpid() used above, but gzip likely not present on //the system anyway, so we either resort to using zlib directly to gzip, or we //disable the feature and print a warning. # ifndef MCPLIMP_HAS_CUSTOM_GZIP int mcpl_gzip_file(const char * filename) { const char * bn = strrchr(filename, '/'); bn = bn ? bn + 1 : filename; printf("MCPL WARNING: Requested compression of %s to %s.gz is not supported in this build.\n",bn,bn); return 0; } # else int mcpl_gzip_file(const char * filename) { const char * bn = strrchr(filename, '/'); bn = bn ? bn + 1 : filename; printf("MCPL: Attempting to compress file %s with zlib\n",bn); if (!_mcpl_custom_gzip(filename,"wb")) printf("MCPL ERROR: Problems encountered while compressing file %s.\n",bn); else printf("MCPL: Succesfully compressed file into %s.gz\n",bn); return 1; } # endif #endif #ifdef MCPLIMP_HAS_CUSTOM_GZIP int _mcpl_custom_gzip(const char *filename, const char *mode) { //Open input file: FILE *handle_in = fopen(filename, "rb"); if (!handle_in) return 0; //Construct output file name by appending .gz: char * outfn = (char*)malloc(strlen(filename) + 4); outfn[0] = '\0'; strcat(outfn,filename); strcat(outfn,".gz"); //Open output file: gzFile handle_out = gzopen(outfn, mode); free(outfn); if (!handle_out) { fclose(handle_in); return 0; } //Compress input to output: char buf[16384]; size_t len; while (1) { len = (int)fread(buf, 1, sizeof(buf), handle_in); if (ferror(handle_in)) return 0; if (!len) break; if ((size_t)gzwrite(handle_out, buf, (unsigned)len) != len) return 0; } //close file: fclose(handle_in); if (gzclose(handle_out) != Z_OK) return 0; //remove input file and return success: unlink(filename); return 1; } #endif #ifdef NAME # undef NAME #endif /* START OF DUMP OF mz_uncompr.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* uncompr.c -- decompress a memory buffer * Copyright (C) 1995-2003, 2010 Jean-loup Gailly. * For conditions of distribution and use, see copyright notice in zlib.h */ /* @(#) $Id$ */ #define ZLIB_INTERNAL /* =========================================================================== Decompresses the source buffer into the destination buffer. sourceLen is the byte length of the source buffer. Upon entry, destLen is the total size of the destination buffer, which must be large enough to hold the entire uncompressed data. (The size of the uncompressed data must have been saved previously by the compressor and transmitted to the decompressor by some mechanism outside the scope of this compression library.) Upon exit, destLen is the actual size of the compressed buffer. uncompress returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if there was not enough room in the output buffer, or Z_DATA_ERROR if the input data was corrupted. */ int ZEXPORT uncompress (dest, destLen, source, sourceLen) Bytef *dest; uLongf *destLen; const Bytef *source; uLong sourceLen; { z_stream stream; int err; stream.next_in = (z_const Bytef *)source; stream.avail_in = (uInt)sourceLen; /* Check for source > 64K on 16-bit machine: */ if ((uLong)stream.avail_in != sourceLen) return Z_BUF_ERROR; stream.next_out = dest; stream.avail_out = (uInt)*destLen; if ((uLong)stream.avail_out != *destLen) return Z_BUF_ERROR; stream.zalloc = (alloc_func)0; stream.zfree = (free_func)0; err = inflateInit(&stream); if (err != Z_OK) return err; err = inflate(&stream, Z_FINISH); if (err != Z_STREAM_END) { inflateEnd(&stream); if (err == Z_NEED_DICT || (err == Z_BUF_ERROR && stream.avail_in == 0)) return Z_DATA_ERROR; return err; } *destLen = stream.total_out; err = inflateEnd(&stream); return err; } /* END OF DUMP OF mz_uncompr.c*/ /* START OF DUMP OF mz_trees.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* trees.c -- output deflated data using Huffman coding * Copyright (C) 1995-2012 Jean-loup Gailly * detect_data_type() function provided freely by Cosmin Truta, 2006 * For conditions of distribution and use, see copyright notice in zlib.h */ /* * ALGORITHM * * The "deflation" process uses several Huffman trees. The more * common source values are represented by shorter bit sequences. * * Each code tree is stored in a compressed form which is itself * a Huffman encoding of the lengths of all the code strings (in * ascending order by source values). The actual code strings are * reconstructed from the lengths in the inflate process, as described * in the deflate specification. * * REFERENCES * * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc * * Storer, James A. * Data Compression: Methods and Theory, pp. 49-50. * Computer Science Press, 1988. ISBN 0-7167-8156-5. * * Sedgewick, R. * Algorithms, p290. * Addison-Wesley, 1983. ISBN 0-201-06672-6. */ /* @(#) $Id$ */ /* #define GEN_TREES_H */ /* START OF DUMP OF mz_deflate.h*/ /* deflate.h -- internal compression state * Copyright (C) 1995-2012 Jean-loup Gailly * For conditions of distribution and use, see copyright notice in zlib.h */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ /* @(#) $Id$ */ #ifndef DEFLATE_H #define DEFLATE_H /* START OF DUMP OF mz_zutil.h*/ /* zutil.h -- internal interface and configuration of the compression library * Copyright (C) 1995-2013 Jean-loup Gailly. * For conditions of distribution and use, see copyright notice in zlib.h */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ /* @(#) $Id$ */ #ifndef ZUTIL_H #define ZUTIL_H #ifdef HAVE_HIDDEN # define ZLIB_INTERNAL __attribute__((visibility ("hidden"))) #else # define ZLIB_INTERNAL #endif #if defined(STDC) && !defined(Z_SOLO) # if !(defined(_WIN32_WCE) && defined(_MSC_VER)) # include # endif # include # include #endif #ifdef Z_SOLO typedef long ptrdiff_t; /* guess -- will be caught if guess is wrong */ #endif #ifndef local # define local static #endif /* compile with -Dlocal if your debugger can't find static symbols */ typedef unsigned char uch; typedef uch FAR uchf; typedef unsigned short ush; typedef ush FAR ushf; typedef unsigned long ulg; extern z_const char * const z_errmsg[10]; /* indexed by 2-zlib_error */ /* (size given to avoid silly warnings with Visual C++) */ #define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)] #define ERR_RETURN(strm,err) \ return (strm->msg = ERR_MSG(err), (err)) /* To be used only when the state is known to be valid */ /* common constants */ #ifndef DEF_WBITS # define DEF_WBITS MAX_WBITS #endif /* default windowBits for decompression. MAX_WBITS is for compression only */ #if MAX_MEM_LEVEL >= 8 # define DEF_MEM_LEVEL 8 #else # define DEF_MEM_LEVEL MAX_MEM_LEVEL #endif /* default memLevel */ #define STORED_BLOCK 0 #define STATIC_TREES 1 #define DYN_TREES 2 /* The three kinds of block type */ #define MIN_MATCH 3 #define MAX_MATCH 258 /* The minimum and maximum match lengths */ #define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */ /* target dependencies */ #if defined(MSDOS) || (defined(WINDOWS) && !defined(WIN32)) # define OS_CODE 0x00 # ifndef Z_SOLO # if defined(__TURBOC__) || defined(__BORLANDC__) # if (__STDC__ == 1) && (defined(__LARGE__) || defined(__COMPACT__)) /* Allow compilation with ANSI keywords only enabled */ void _Cdecl farfree( void *block ); void *_Cdecl farmalloc( unsigned long nbytes ); # else # include # endif # else /* MSC or DJGPP */ # include # endif # endif #endif #ifdef AMIGA # define OS_CODE 0x01 #endif #if defined(VAXC) || defined(VMS) # define OS_CODE 0x02 # define F_OPEN(name, mode) \ fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512") #endif #if defined(ATARI) || defined(atarist) # define OS_CODE 0x05 #endif #ifdef OS2 # define OS_CODE 0x06 # if defined(M_I86) && !defined(Z_SOLO) # include # endif #endif #if defined(MACOS) || defined(TARGET_OS_MAC) # define OS_CODE 0x07 # ifndef Z_SOLO # if defined(__MWERKS__) && __dest_os != __be_os && __dest_os != __win32_os # include /* for fdopen */ # else # ifndef fdopen # define fdopen(fd,mode) NULL /* No fdopen() */ # endif # endif # endif #endif #ifdef TOPS20 # define OS_CODE 0x0a #endif #ifdef WIN32 # ifndef __CYGWIN__ /* Cygwin is Unix, not Win32 */ # define OS_CODE 0x0b # endif #endif #ifdef __50SERIES /* Prime/PRIMOS */ # define OS_CODE 0x0f #endif #if defined(_BEOS_) || defined(RISCOS) # define fdopen(fd,mode) NULL /* No fdopen() */ #endif #if (defined(_MSC_VER) && (_MSC_VER > 600)) && !defined __INTERIX # if defined(_WIN32_WCE) # define fdopen(fd,mode) NULL /* No fdopen() */ # ifndef _PTRDIFF_T_DEFINED typedef int ptrdiff_t; # define _PTRDIFF_T_DEFINED # endif # else # define fdopen(fd,type) _fdopen(fd,type) # endif #endif #if defined(__BORLANDC__) && !defined(MSDOS) #pragma warn -8004 #pragma warn -8008 #pragma warn -8066 #endif /* provide prototypes for these when building zlib without LFS */ #if !defined(_WIN32) && \ (!defined(_LARGEFILE64_SOURCE) || _LFS64_LARGEFILE-0 == 0) ZEXTERN uLong ZEXPORT adler32_combine64 OF((uLong, uLong, z_off_t)); ZEXTERN uLong ZEXPORT crc32_combine64 OF((uLong, uLong, z_off_t)); #endif /* common defaults */ #ifndef OS_CODE # define OS_CODE 0x03 /* assume Unix */ #endif #ifndef F_OPEN # define F_OPEN(name, mode) fopen((name), (mode)) #endif /* functions */ #if defined(pyr) || defined(Z_SOLO) # define NO_MEMCPY #endif #if defined(SMALL_MEDIUM) && !defined(_MSC_VER) && !defined(__SC__) /* Use our own functions for small and medium model with MSC <= 5.0. * You may have to use the same strategy for Borland C (untested). * The __SC__ check is for Symantec. */ # define NO_MEMCPY #endif #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY) # define HAVE_MEMCPY #endif #ifdef HAVE_MEMCPY # ifdef SMALL_MEDIUM /* MSDOS small or medium model */ # define zmemcpy _fmemcpy # define zmemcmp _fmemcmp # define zmemzero(dest, len) _fmemset(dest, 0, len) # else # define zmemcpy memcpy # define zmemcmp memcmp # define zmemzero(dest, len) memset(dest, 0, len) # endif #else void ZLIB_INTERNAL zmemcpy OF((Bytef* dest, const Bytef* source, uInt len)); int ZLIB_INTERNAL zmemcmp OF((const Bytef* s1, const Bytef* s2, uInt len)); void ZLIB_INTERNAL zmemzero OF((Bytef* dest, uInt len)); #endif /* Diagnostic functions */ #ifdef DEBUG # include extern int ZLIB_INTERNAL z_verbose; extern void ZLIB_INTERNAL z_error OF((char *m)); # define Assert(cond,msg) {if(!(cond)) z_error(msg);} # define Trace(x) {if (z_verbose>=0) fprintf x ;} # define Tracev(x) {if (z_verbose>0) fprintf x ;} # define Tracevv(x) {if (z_verbose>1) fprintf x ;} # define Tracec(c,x) {if (z_verbose>0 && (c)) fprintf x ;} # define Tracecv(c,x) {if (z_verbose>1 && (c)) fprintf x ;} #else # define Assert(cond,msg) # define Trace(x) # define Tracev(x) # define Tracevv(x) # define Tracec(c,x) # define Tracecv(c,x) #endif #ifndef Z_SOLO voidpf ZLIB_INTERNAL zcalloc OF((voidpf opaque, unsigned items, unsigned size)); void ZLIB_INTERNAL zcfree OF((voidpf opaque, voidpf ptr)); #endif #define ZALLOC(strm, items, size) \ (*((strm)->zalloc))((strm)->opaque, (items), (size)) #define ZFREE(strm, addr) (*((strm)->zfree))((strm)->opaque, (voidpf)(addr)) #define TRY_FREE(s, p) {if (p) ZFREE(s, p);} /* Reverse the bytes in a 32-bit value */ #define ZSWAP32(q) ((((q) >> 24) & 0xff) + (((q) >> 8) & 0xff00) + \ (((q) & 0xff00) << 8) + (((q) & 0xff) << 24)) #endif /* ZUTIL_H */ /* END OF DUMP OF mz_zutil.h*/ /* define NO_GZIP when compiling if you want to disable gzip header and trailer creation by deflate(). NO_GZIP would be used to avoid linking in the crc code when it is not needed. For shared libraries, gzip encoding should be left enabled. */ #ifndef NO_GZIP # define GZIP #endif /* =========================================================================== * Internal compression state. */ #define LENGTH_CODES 29 /* number of length codes, not counting the special END_BLOCK code */ #define LITERALS 256 /* number of literal bytes 0..255 */ #define L_CODES (LITERALS+1+LENGTH_CODES) /* number of Literal or Length codes, including the END_BLOCK code */ #define D_CODES 30 /* number of distance codes */ #define BL_CODES 19 /* number of codes used to transfer the bit lengths */ #define HEAP_SIZE (2*L_CODES+1) /* maximum heap size */ #define MAX_BITS 15 /* All codes must not exceed MAX_BITS bits */ #define Buf_size 16 /* size of bit buffer in bi_buf */ #define INIT_STATE 42 #define EXTRA_STATE 69 #define NAME_STATE 73 #define COMMENT_STATE 91 #define HCRC_STATE 103 #define BUSY_STATE 113 #define FINISH_STATE 666 /* Stream status */ /* Data structure describing a single value and its code string. */ typedef struct ct_data_s { union { ush freq; /* frequency count */ ush code; /* bit string */ } fc; union { ush dad; /* father node in Huffman tree */ ush len; /* length of bit string */ } dl; } FAR ct_data; #define Freq fc.freq #define Code fc.code #define Dad dl.dad #define Len dl.len typedef struct static_tree_desc_s static_tree_desc; typedef struct tree_desc_s { ct_data *dyn_tree; /* the dynamic tree */ int max_code; /* largest code with non zero frequency */ static_tree_desc *stat_desc; /* the corresponding static tree */ } FAR tree_desc; typedef ush Pos; typedef Pos FAR Posf; typedef unsigned IPos; /* A Pos is an index in the character window. We use short instead of int to * save space in the various tables. IPos is used only for parameter passing. */ typedef struct internal_state { z_streamp strm; /* pointer back to this zlib stream */ int status; /* as the name implies */ Bytef *pending_buf; /* output still pending */ ulg pending_buf_size; /* size of pending_buf */ Bytef *pending_out; /* next pending byte to output to the stream */ uInt pending; /* nb of bytes in the pending buffer */ int wrap; /* bit 0 true for zlib, bit 1 true for gzip */ gz_headerp gzhead; /* gzip header information to write */ uInt gzindex; /* where in extra, name, or comment */ Byte method; /* can only be DEFLATED */ int last_flush; /* value of flush param for previous deflate call */ /* used by deflate.c: */ uInt w_size; /* LZ77 window size (32K by default) */ uInt w_bits; /* log2(w_size) (8..16) */ uInt w_mask; /* w_size - 1 */ Bytef *window; /* Sliding window. Input bytes are read into the second half of the window, * and move to the first half later to keep a dictionary of at least wSize * bytes. With this organization, matches are limited to a distance of * wSize-MAX_MATCH bytes, but this ensures that IO is always * performed with a length multiple of the block size. Also, it limits * the window size to 64K, which is quite useful on MSDOS. * To do: use the user input buffer as sliding window. */ ulg window_size; /* Actual size of window: 2*wSize, except when the user input buffer * is directly used as sliding window. */ Posf *prev; /* Link to older string with same hash index. To limit the size of this * array to 64K, this link is maintained only for the last 32K strings. * An index in this array is thus a window index modulo 32K. */ Posf *head; /* Heads of the hash chains or NIL. */ uInt ins_h; /* hash index of string to be inserted */ uInt hash_size; /* number of elements in hash table */ uInt hash_bits; /* log2(hash_size) */ uInt hash_mask; /* hash_size-1 */ uInt hash_shift; /* Number of bits by which ins_h must be shifted at each input * step. It must be such that after MIN_MATCH steps, the oldest * byte no longer takes part in the hash key, that is: * hash_shift * MIN_MATCH >= hash_bits */ long block_start; /* Window position at the beginning of the current output block. Gets * negative when the window is moved backwards. */ uInt match_length; /* length of best match */ IPos prev_match; /* previous match */ int match_available; /* set if previous match exists */ uInt strstart; /* start of string to insert */ uInt match_start; /* start of matching string */ uInt lookahead; /* number of valid bytes ahead in window */ uInt prev_length; /* Length of the best match at previous step. Matches not greater than this * are discarded. This is used in the lazy match evaluation. */ uInt max_chain_length; /* To speed up deflation, hash chains are never searched beyond this * length. A higher limit improves compression ratio but degrades the * speed. */ uInt max_lazy_match; /* Attempt to find a better match only when the current match is strictly * smaller than this value. This mechanism is used only for compression * levels >= 4. */ # define max_insert_length max_lazy_match /* Insert new strings in the hash table only if the match length is not * greater than this length. This saves time but degrades compression. * max_insert_length is used only for compression levels <= 3. */ int level; /* compression level (1..9) */ int strategy; /* favor or force Huffman coding*/ uInt good_match; /* Use a faster search when the previous match is longer than this */ int nice_match; /* Stop searching when current match exceeds this */ /* used by trees.c: */ /* Didn't use ct_data typedef below to suppress compiler warning */ struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */ struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */ struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */ struct tree_desc_s l_desc; /* desc. for literal tree */ struct tree_desc_s d_desc; /* desc. for distance tree */ struct tree_desc_s bl_desc; /* desc. for bit length tree */ ush bl_count[MAX_BITS+1]; /* number of codes at each bit length for an optimal tree */ int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */ int heap_len; /* number of elements in the heap */ int heap_max; /* element of largest frequency */ /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used. * The same heap array is used to build all trees. */ uch depth[2*L_CODES+1]; /* Depth of each subtree used as tie breaker for trees of equal frequency */ uchf *l_buf; /* buffer for literals or lengths */ uInt lit_bufsize; /* Size of match buffer for literals/lengths. There are 4 reasons for * limiting lit_bufsize to 64K: * - frequencies can be kept in 16 bit counters * - if compression is not successful for the first block, all input * data is still in the window so we can still emit a stored block even * when input comes from standard input. (This can also be done for * all blocks if lit_bufsize is not greater than 32K.) * - if compression is not successful for a file smaller than 64K, we can * even emit a stored file instead of a stored block (saving 5 bytes). * This is applicable only for zip (not gzip or zlib). * - creating new Huffman trees less frequently may not provide fast * adaptation to changes in the input data statistics. (Take for * example a binary file with poorly compressible code followed by * a highly compressible string table.) Smaller buffer sizes give * fast adaptation but have of course the overhead of transmitting * trees more frequently. * - I can't count above 4 */ uInt last_lit; /* running index in l_buf */ ushf *d_buf; /* Buffer for distances. To simplify the code, d_buf and l_buf have * the same number of elements. To use different lengths, an extra flag * array would be necessary. */ ulg opt_len; /* bit length of current block with optimal trees */ ulg static_len; /* bit length of current block with static trees */ uInt matches; /* number of string matches in current block */ uInt insert; /* bytes at end of window left to insert */ #ifdef DEBUG ulg compressed_len; /* total bit length of compressed file mod 2^32 */ ulg bits_sent; /* bit length of compressed data sent mod 2^32 */ #endif ush bi_buf; /* Output buffer. bits are inserted starting at the bottom (least * significant bits). */ int bi_valid; /* Number of valid bits in bi_buf. All bits above the last valid bit * are always zero. */ ulg high_water; /* High water mark offset in window for initialized bytes -- bytes above * this are set to zero in order to avoid memory check warnings when * longest match routines access bytes past the input. This is then * updated to the new high water mark. */ } FAR deflate_state; /* Output a byte on the stream. * IN assertion: there is enough room in pending_buf. */ #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);} #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1) /* Minimum amount of lookahead, except at the end of the input file. * See deflate.c for comments about the MIN_MATCH+1. */ #define MAX_DIST(s) ((s)->w_size-MIN_LOOKAHEAD) /* In order to simplify the code, particularly on 16 bit machines, match * distances are limited to MAX_DIST instead of WSIZE. */ #define WIN_INIT MAX_MATCH /* Number of bytes after end of data in window to initialize in order to avoid memory checker errors from longest match routines */ /* in trees.c */ void ZLIB_INTERNAL _tr_init OF((deflate_state *s)); int ZLIB_INTERNAL _tr_tally OF((deflate_state *s, unsigned dist, unsigned lc)); void ZLIB_INTERNAL _tr_flush_block OF((deflate_state *s, charf *buf, ulg stored_len, int last)); void ZLIB_INTERNAL _tr_flush_bits OF((deflate_state *s)); void ZLIB_INTERNAL _tr_align OF((deflate_state *s)); void ZLIB_INTERNAL _tr_stored_block OF((deflate_state *s, charf *buf, ulg stored_len, int last)); #define d_code(dist) \ ((dist) < 256 ? _dist_code[dist] : _dist_code[256+((dist)>>7)]) /* Mapping from a distance to a distance code. dist is the distance - 1 and * must not have side effects. _dist_code[256] and _dist_code[257] are never * used. */ #ifndef DEBUG /* Inline versions of _tr_tally for speed: */ #if defined(GEN_TREES_H) || !defined(STDC) extern uch ZLIB_INTERNAL _length_code[]; extern uch ZLIB_INTERNAL _dist_code[]; #else extern const uch ZLIB_INTERNAL _length_code[]; extern const uch ZLIB_INTERNAL _dist_code[]; #endif # define _tr_tally_lit(s, c, flush) \ { uch cc = (c); \ s->d_buf[s->last_lit] = 0; \ s->l_buf[s->last_lit++] = cc; \ s->dyn_ltree[cc].Freq++; \ flush = (s->last_lit == s->lit_bufsize-1); \ } # define _tr_tally_dist(s, distance, length, flush) \ { uch len = (length); \ ush dist = (distance); \ s->d_buf[s->last_lit] = dist; \ s->l_buf[s->last_lit++] = len; \ dist--; \ s->dyn_ltree[_length_code[len]+LITERALS+1].Freq++; \ s->dyn_dtree[d_code(dist)].Freq++; \ flush = (s->last_lit == s->lit_bufsize-1); \ } #else # define _tr_tally_lit(s, c, flush) flush = _tr_tally(s, 0, c) # define _tr_tally_dist(s, distance, length, flush) \ flush = _tr_tally(s, distance, length) #endif #endif /* DEFLATE_H */ /* END OF DUMP OF mz_deflate.h*/ #ifdef DEBUG # include #endif /* =========================================================================== * Constants */ #define MAX_BL_BITS 7 /* Bit length codes must not exceed MAX_BL_BITS bits */ #define END_BLOCK 256 /* end of block literal code */ #define REP_3_6 16 /* repeat previous bit length 3-6 times (2 bits of repeat count) */ #define REPZ_3_10 17 /* repeat a zero length 3-10 times (3 bits of repeat count) */ #define REPZ_11_138 18 /* repeat a zero length 11-138 times (7 bits of repeat count) */ local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; local const int extra_dbits[D_CODES] /* extra bits for each distance code */ = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */ = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; local const uch bl_order[BL_CODES] = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; /* The lengths of the bit length codes are sent in order of decreasing * probability, to avoid transmitting the lengths for unused bit length codes. */ /* =========================================================================== * Local data. These are initialized only once. */ #define DIST_CODE_LEN 512 /* see definition of array dist_code below */ #if defined(GEN_TREES_H) || !defined(STDC) /* non ANSI compilers may not accept trees.h */ local ct_data static_ltree[L_CODES+2]; /* The static literal tree. Since the bit lengths are imposed, there is no * need for the L_CODES extra codes used during heap construction. However * The codes 286 and 287 are needed to build a canonical tree (see _tr_init * below). */ local ct_data static_dtree[D_CODES]; /* The static distance tree. (Actually a trivial tree since all codes use * 5 bits.) */ uch _dist_code[DIST_CODE_LEN]; /* Distance codes. The first 256 values correspond to the distances * 3 .. 258, the last 256 values correspond to the top 8 bits of * the 15 bit distances. */ uch _length_code[MAX_MATCH-MIN_MATCH+1]; /* length code for each normalized match length (0 == MIN_MATCH) */ local int base_length[LENGTH_CODES]; /* First normalized length for each code (0 = MIN_MATCH) */ local int base_dist[D_CODES]; /* First normalized distance for each code (0 = distance of 1) */ #else /* START OF DUMP OF mz_trees.h*/ /* header created automatically with -DGEN_TREES_H */ local const ct_data static_ltree[L_CODES+2] = { {{ 12},{ 8}}, {{140},{ 8}}, {{ 76},{ 8}}, {{204},{ 8}}, {{ 44},{ 8}}, {{172},{ 8}}, {{108},{ 8}}, {{236},{ 8}}, {{ 28},{ 8}}, {{156},{ 8}}, {{ 92},{ 8}}, {{220},{ 8}}, {{ 60},{ 8}}, {{188},{ 8}}, {{124},{ 8}}, {{252},{ 8}}, {{ 2},{ 8}}, {{130},{ 8}}, {{ 66},{ 8}}, {{194},{ 8}}, {{ 34},{ 8}}, {{162},{ 8}}, {{ 98},{ 8}}, {{226},{ 8}}, {{ 18},{ 8}}, {{146},{ 8}}, {{ 82},{ 8}}, {{210},{ 8}}, {{ 50},{ 8}}, {{178},{ 8}}, {{114},{ 8}}, {{242},{ 8}}, {{ 10},{ 8}}, {{138},{ 8}}, {{ 74},{ 8}}, {{202},{ 8}}, {{ 42},{ 8}}, {{170},{ 8}}, {{106},{ 8}}, {{234},{ 8}}, {{ 26},{ 8}}, {{154},{ 8}}, {{ 90},{ 8}}, {{218},{ 8}}, {{ 58},{ 8}}, {{186},{ 8}}, {{122},{ 8}}, {{250},{ 8}}, {{ 6},{ 8}}, {{134},{ 8}}, {{ 70},{ 8}}, {{198},{ 8}}, {{ 38},{ 8}}, {{166},{ 8}}, {{102},{ 8}}, {{230},{ 8}}, {{ 22},{ 8}}, {{150},{ 8}}, {{ 86},{ 8}}, {{214},{ 8}}, {{ 54},{ 8}}, {{182},{ 8}}, {{118},{ 8}}, {{246},{ 8}}, {{ 14},{ 8}}, {{142},{ 8}}, {{ 78},{ 8}}, {{206},{ 8}}, {{ 46},{ 8}}, {{174},{ 8}}, {{110},{ 8}}, {{238},{ 8}}, {{ 30},{ 8}}, {{158},{ 8}}, {{ 94},{ 8}}, {{222},{ 8}}, {{ 62},{ 8}}, {{190},{ 8}}, {{126},{ 8}}, {{254},{ 8}}, {{ 1},{ 8}}, {{129},{ 8}}, {{ 65},{ 8}}, {{193},{ 8}}, {{ 33},{ 8}}, {{161},{ 8}}, {{ 97},{ 8}}, {{225},{ 8}}, {{ 17},{ 8}}, {{145},{ 8}}, {{ 81},{ 8}}, {{209},{ 8}}, {{ 49},{ 8}}, {{177},{ 8}}, {{113},{ 8}}, {{241},{ 8}}, {{ 9},{ 8}}, {{137},{ 8}}, {{ 73},{ 8}}, {{201},{ 8}}, {{ 41},{ 8}}, {{169},{ 8}}, {{105},{ 8}}, {{233},{ 8}}, {{ 25},{ 8}}, {{153},{ 8}}, {{ 89},{ 8}}, {{217},{ 8}}, {{ 57},{ 8}}, {{185},{ 8}}, {{121},{ 8}}, {{249},{ 8}}, {{ 5},{ 8}}, {{133},{ 8}}, {{ 69},{ 8}}, {{197},{ 8}}, {{ 37},{ 8}}, {{165},{ 8}}, {{101},{ 8}}, {{229},{ 8}}, {{ 21},{ 8}}, {{149},{ 8}}, {{ 85},{ 8}}, {{213},{ 8}}, {{ 53},{ 8}}, {{181},{ 8}}, {{117},{ 8}}, {{245},{ 8}}, {{ 13},{ 8}}, {{141},{ 8}}, {{ 77},{ 8}}, {{205},{ 8}}, {{ 45},{ 8}}, {{173},{ 8}}, {{109},{ 8}}, {{237},{ 8}}, {{ 29},{ 8}}, {{157},{ 8}}, {{ 93},{ 8}}, {{221},{ 8}}, {{ 61},{ 8}}, {{189},{ 8}}, {{125},{ 8}}, {{253},{ 8}}, {{ 19},{ 9}}, {{275},{ 9}}, {{147},{ 9}}, {{403},{ 9}}, {{ 83},{ 9}}, {{339},{ 9}}, {{211},{ 9}}, {{467},{ 9}}, {{ 51},{ 9}}, {{307},{ 9}}, {{179},{ 9}}, {{435},{ 9}}, {{115},{ 9}}, {{371},{ 9}}, {{243},{ 9}}, {{499},{ 9}}, {{ 11},{ 9}}, {{267},{ 9}}, {{139},{ 9}}, {{395},{ 9}}, {{ 75},{ 9}}, {{331},{ 9}}, {{203},{ 9}}, {{459},{ 9}}, {{ 43},{ 9}}, {{299},{ 9}}, {{171},{ 9}}, {{427},{ 9}}, {{107},{ 9}}, {{363},{ 9}}, {{235},{ 9}}, {{491},{ 9}}, {{ 27},{ 9}}, {{283},{ 9}}, {{155},{ 9}}, {{411},{ 9}}, {{ 91},{ 9}}, {{347},{ 9}}, {{219},{ 9}}, {{475},{ 9}}, {{ 59},{ 9}}, {{315},{ 9}}, {{187},{ 9}}, {{443},{ 9}}, {{123},{ 9}}, {{379},{ 9}}, {{251},{ 9}}, {{507},{ 9}}, {{ 7},{ 9}}, {{263},{ 9}}, {{135},{ 9}}, {{391},{ 9}}, {{ 71},{ 9}}, {{327},{ 9}}, {{199},{ 9}}, {{455},{ 9}}, {{ 39},{ 9}}, {{295},{ 9}}, {{167},{ 9}}, {{423},{ 9}}, {{103},{ 9}}, {{359},{ 9}}, {{231},{ 9}}, {{487},{ 9}}, {{ 23},{ 9}}, {{279},{ 9}}, {{151},{ 9}}, {{407},{ 9}}, {{ 87},{ 9}}, {{343},{ 9}}, {{215},{ 9}}, {{471},{ 9}}, {{ 55},{ 9}}, {{311},{ 9}}, {{183},{ 9}}, {{439},{ 9}}, {{119},{ 9}}, {{375},{ 9}}, {{247},{ 9}}, {{503},{ 9}}, {{ 15},{ 9}}, {{271},{ 9}}, {{143},{ 9}}, {{399},{ 9}}, {{ 79},{ 9}}, {{335},{ 9}}, {{207},{ 9}}, {{463},{ 9}}, {{ 47},{ 9}}, {{303},{ 9}}, {{175},{ 9}}, {{431},{ 9}}, {{111},{ 9}}, {{367},{ 9}}, {{239},{ 9}}, {{495},{ 9}}, {{ 31},{ 9}}, {{287},{ 9}}, {{159},{ 9}}, {{415},{ 9}}, {{ 95},{ 9}}, {{351},{ 9}}, {{223},{ 9}}, {{479},{ 9}}, {{ 63},{ 9}}, {{319},{ 9}}, {{191},{ 9}}, {{447},{ 9}}, {{127},{ 9}}, {{383},{ 9}}, {{255},{ 9}}, {{511},{ 9}}, {{ 0},{ 7}}, {{ 64},{ 7}}, {{ 32},{ 7}}, {{ 96},{ 7}}, {{ 16},{ 7}}, {{ 80},{ 7}}, {{ 48},{ 7}}, {{112},{ 7}}, {{ 8},{ 7}}, {{ 72},{ 7}}, {{ 40},{ 7}}, {{104},{ 7}}, {{ 24},{ 7}}, {{ 88},{ 7}}, {{ 56},{ 7}}, {{120},{ 7}}, {{ 4},{ 7}}, {{ 68},{ 7}}, {{ 36},{ 7}}, {{100},{ 7}}, {{ 20},{ 7}}, {{ 84},{ 7}}, {{ 52},{ 7}}, {{116},{ 7}}, {{ 3},{ 8}}, {{131},{ 8}}, {{ 67},{ 8}}, {{195},{ 8}}, {{ 35},{ 8}}, {{163},{ 8}}, {{ 99},{ 8}}, {{227},{ 8}} }; local const ct_data static_dtree[D_CODES] = { {{ 0},{ 5}}, {{16},{ 5}}, {{ 8},{ 5}}, {{24},{ 5}}, {{ 4},{ 5}}, {{20},{ 5}}, {{12},{ 5}}, {{28},{ 5}}, {{ 2},{ 5}}, {{18},{ 5}}, {{10},{ 5}}, {{26},{ 5}}, {{ 6},{ 5}}, {{22},{ 5}}, {{14},{ 5}}, {{30},{ 5}}, {{ 1},{ 5}}, {{17},{ 5}}, {{ 9},{ 5}}, {{25},{ 5}}, {{ 5},{ 5}}, {{21},{ 5}}, {{13},{ 5}}, {{29},{ 5}}, {{ 3},{ 5}}, {{19},{ 5}}, {{11},{ 5}}, {{27},{ 5}}, {{ 7},{ 5}}, {{23},{ 5}} }; const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = { 0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 16, 17, 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29 }; const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= { 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28 }; local const int base_length[LENGTH_CODES] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 0 }; local const int base_dist[D_CODES] = { 0, 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576 }; /* END OF DUMP OF mz_trees.h*/ #endif /* GEN_TREES_H */ struct static_tree_desc_s { const ct_data *static_tree; /* static tree or NULL */ const intf *extra_bits; /* extra bits for each code or NULL */ int extra_base; /* base index for extra_bits */ int elems; /* max number of elements in the tree */ int max_length; /* max bit length for the codes */ }; local static_tree_desc static_l_desc = {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; local static_tree_desc static_d_desc = {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS}; local static_tree_desc static_bl_desc = {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; /* =========================================================================== * Local (static) routines in this file. */ local void tr_static_init OF((void)); local void init_block OF((deflate_state *s)); local void pqdownheap OF((deflate_state *s, ct_data *tree, int k)); local void gen_bitlen OF((deflate_state *s, tree_desc *desc)); local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count)); local void build_tree OF((deflate_state *s, tree_desc *desc)); local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code)); local void send_tree OF((deflate_state *s, ct_data *tree, int max_code)); local int build_bl_tree OF((deflate_state *s)); local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes, int blcodes)); local void compress_block OF((deflate_state *s, const ct_data *ltree, const ct_data *dtree)); local int detect_data_type OF((deflate_state *s)); local unsigned bi_reverse OF((unsigned value, int length)); local void bi_windup OF((deflate_state *s)); local void bi_flush OF((deflate_state *s)); local void copy_block OF((deflate_state *s, charf *buf, unsigned len, int header)); #ifdef GEN_TREES_H local void gen_trees_header OF((void)); #endif #ifndef DEBUG # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) /* Send a code of the given tree. c and tree must not have side effects */ #else /* DEBUG */ # define send_code(s, c, tree) \ { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ send_bits(s, tree[c].Code, tree[c].Len); } #endif /* =========================================================================== * Output a short LSB first on the stream. * IN assertion: there is enough room in pendingBuf. */ #define put_short(s, w) { \ put_byte(s, (uch)((w) & 0xff)); \ put_byte(s, (uch)((ush)(w) >> 8)); \ } /* =========================================================================== * Send a value on a given number of bits. * IN assertion: length <= 16 and value fits in length bits. */ #ifdef DEBUG local void send_bits OF((deflate_state *s, int value, int length)); local void send_bits(s, value, length) deflate_state *s; int value; /* value to send */ int length; /* number of bits */ { Tracevv((stderr," l %2d v %4x ", length, value)); Assert(length > 0 && length <= 15, "invalid length"); s->bits_sent += (ulg)length; /* If not enough room in bi_buf, use (valid) bits from bi_buf and * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) * unused bits in value. */ if (s->bi_valid > (int)Buf_size - length) { s->bi_buf |= (ush)value << s->bi_valid; put_short(s, s->bi_buf); s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); s->bi_valid += length - Buf_size; } else { s->bi_buf |= (ush)value << s->bi_valid; s->bi_valid += length; } } #else /* !DEBUG */ #define send_bits(s, value, length) \ { int len = length;\ if (s->bi_valid > (int)Buf_size - len) {\ int val = value;\ s->bi_buf |= (ush)val << s->bi_valid;\ put_short(s, s->bi_buf);\ s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ s->bi_valid += len - Buf_size;\ } else {\ s->bi_buf |= (ush)(value) << s->bi_valid;\ s->bi_valid += len;\ }\ } #endif /* DEBUG */ /* the arguments must not have side effects */ /* =========================================================================== * Initialize the various 'constant' tables. */ local void tr_static_init() { #if defined(GEN_TREES_H) || !defined(STDC) static int static_init_done = 0; int n; /* iterates over tree elements */ int bits; /* bit counter */ int length; /* length value */ int code; /* code value */ int dist; /* distance index */ ush bl_count[MAX_BITS+1]; /* number of codes at each bit length for an optimal tree */ if (static_init_done) return; /* For some embedded targets, global variables are not initialized: */ #ifdef NO_INIT_GLOBAL_POINTERS static_l_desc.static_tree = static_ltree; static_l_desc.extra_bits = extra_lbits; static_d_desc.static_tree = static_dtree; static_d_desc.extra_bits = extra_dbits; static_bl_desc.extra_bits = extra_blbits; #endif /* Initialize the mapping length (0..255) -> length code (0..28) */ length = 0; for (code = 0; code < LENGTH_CODES-1; code++) { base_length[code] = length; for (n = 0; n < (1< dist code (0..29) */ dist = 0; for (code = 0 ; code < 16; code++) { base_dist[code] = dist; for (n = 0; n < (1<>= 7; /* from now on, all distances are divided by 128 */ for ( ; code < D_CODES; code++) { base_dist[code] = dist << 7; for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { _dist_code[256 + dist++] = (uch)code; } } Assert (dist == 256, "tr_static_init: 256+dist != 512"); /* Construct the codes of the static literal tree */ for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; n = 0; while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; /* Codes 286 and 287 do not exist, but we must include them in the * tree construction to get a canonical Huffman tree (longest code * all ones) */ gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); /* The static distance tree is trivial: */ for (n = 0; n < D_CODES; n++) { static_dtree[n].Len = 5; static_dtree[n].Code = bi_reverse((unsigned)n, 5); } static_init_done = 1; # ifdef GEN_TREES_H gen_trees_header(); # endif #endif /* defined(GEN_TREES_H) || !defined(STDC) */ } /* =========================================================================== * Genererate the file trees.h describing the static trees. */ #ifdef GEN_TREES_H # ifndef DEBUG # include # endif # define SEPARATOR(i, last, width) \ ((i) == (last)? "\n};\n\n" : \ ((i) % (width) == (width)-1 ? ",\n" : ", ")) void gen_trees_header() { FILE *header = fopen("trees.h", "w"); int i; Assert (header != NULL, "Can't open trees.h"); fprintf(header, "/* header created automatically with -DGEN_TREES_H */\n\n"); fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n"); for (i = 0; i < L_CODES+2; i++) { fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code, static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5)); } fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n"); for (i = 0; i < D_CODES; i++) { fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code, static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5)); } fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n"); for (i = 0; i < DIST_CODE_LEN; i++) { fprintf(header, "%2u%s", _dist_code[i], SEPARATOR(i, DIST_CODE_LEN-1, 20)); } fprintf(header, "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n"); for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) { fprintf(header, "%2u%s", _length_code[i], SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20)); } fprintf(header, "local const int base_length[LENGTH_CODES] = {\n"); for (i = 0; i < LENGTH_CODES; i++) { fprintf(header, "%1u%s", base_length[i], SEPARATOR(i, LENGTH_CODES-1, 20)); } fprintf(header, "local const int base_dist[D_CODES] = {\n"); for (i = 0; i < D_CODES; i++) { fprintf(header, "%5u%s", base_dist[i], SEPARATOR(i, D_CODES-1, 10)); } fclose(header); } #endif /* GEN_TREES_H */ /* =========================================================================== * Initialize the tree data structures for a new zlib stream. */ void ZLIB_INTERNAL _tr_init(s) deflate_state *s; { tr_static_init(); s->l_desc.dyn_tree = s->dyn_ltree; s->l_desc.stat_desc = &static_l_desc; s->d_desc.dyn_tree = s->dyn_dtree; s->d_desc.stat_desc = &static_d_desc; s->bl_desc.dyn_tree = s->bl_tree; s->bl_desc.stat_desc = &static_bl_desc; s->bi_buf = 0; s->bi_valid = 0; #ifdef DEBUG s->compressed_len = 0L; s->bits_sent = 0L; #endif /* Initialize the first block of the first file: */ init_block(s); } /* =========================================================================== * Initialize a new block. */ local void init_block(s) deflate_state *s; { int n; /* iterates over tree elements */ /* Initialize the trees. */ for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0; for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0; for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; s->dyn_ltree[END_BLOCK].Freq = 1; s->opt_len = s->static_len = 0L; s->last_lit = s->matches = 0; } #define SMALLEST 1 /* Index within the heap array of least frequent node in the Huffman tree */ /* =========================================================================== * Remove the smallest element from the heap and recreate the heap with * one less element. Updates heap and heap_len. */ #define pqremove(s, tree, top) \ {\ top = s->heap[SMALLEST]; \ s->heap[SMALLEST] = s->heap[s->heap_len--]; \ pqdownheap(s, tree, SMALLEST); \ } /* =========================================================================== * Compares to subtrees, using the tree depth as tie breaker when * the subtrees have equal frequency. This minimizes the worst case length. */ #define smaller(tree, n, m, depth) \ (tree[n].Freq < tree[m].Freq || \ (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) /* =========================================================================== * Restore the heap property by moving down the tree starting at node k, * exchanging a node with the smallest of its two sons if necessary, stopping * when the heap property is re-established (each father smaller than its * two sons). */ local void pqdownheap(s, tree, k) deflate_state *s; ct_data *tree; /* the tree to restore */ int k; /* node to move down */ { int v = s->heap[k]; int j = k << 1; /* left son of k */ while (j <= s->heap_len) { /* Set j to the smallest of the two sons: */ if (j < s->heap_len && smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { j++; } /* Exit if v is smaller than both sons */ if (smaller(tree, v, s->heap[j], s->depth)) break; /* Exchange v with the smallest son */ s->heap[k] = s->heap[j]; k = j; /* And continue down the tree, setting j to the left son of k */ j <<= 1; } s->heap[k] = v; } /* =========================================================================== * Compute the optimal bit lengths for a tree and update the total bit length * for the current block. * IN assertion: the fields freq and dad are set, heap[heap_max] and * above are the tree nodes sorted by increasing frequency. * OUT assertions: the field len is set to the optimal bit length, the * array bl_count contains the frequencies for each bit length. * The length opt_len is updated; static_len is also updated if stree is * not null. */ local void gen_bitlen(s, desc) deflate_state *s; tree_desc *desc; /* the tree descriptor */ { ct_data *tree = desc->dyn_tree; int max_code = desc->max_code; const ct_data *stree = desc->stat_desc->static_tree; const intf *extra = desc->stat_desc->extra_bits; int base = desc->stat_desc->extra_base; int max_length = desc->stat_desc->max_length; int h; /* heap index */ int n, m; /* iterate over the tree elements */ int bits; /* bit length */ int xbits; /* extra bits */ ush f; /* frequency */ int overflow = 0; /* number of elements with bit length too large */ for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; /* In a first pass, compute the optimal bit lengths (which may * overflow in the case of the bit length tree). */ tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ for (h = s->heap_max+1; h < HEAP_SIZE; h++) { n = s->heap[h]; bits = tree[tree[n].Dad].Len + 1; if (bits > max_length) bits = max_length, overflow++; tree[n].Len = (ush)bits; /* We overwrite tree[n].Dad which is no longer needed */ if (n > max_code) continue; /* not a leaf node */ s->bl_count[bits]++; xbits = 0; if (n >= base) xbits = extra[n-base]; f = tree[n].Freq; s->opt_len += (ulg)f * (bits + xbits); if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits); } if (overflow == 0) return; Trace((stderr,"\nbit length overflow\n")); /* This happens for example on obj2 and pic of the Calgary corpus */ /* Find the first bit length which could increase: */ do { bits = max_length-1; while (s->bl_count[bits] == 0) bits--; s->bl_count[bits]--; /* move one leaf down the tree */ s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ s->bl_count[max_length]--; /* The brother of the overflow item also moves one step up, * but this does not affect bl_count[max_length] */ overflow -= 2; } while (overflow > 0); /* Now recompute all bit lengths, scanning in increasing frequency. * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all * lengths instead of fixing only the wrong ones. This idea is taken * from 'ar' written by Haruhiko Okumura.) */ for (bits = max_length; bits != 0; bits--) { n = s->bl_count[bits]; while (n != 0) { m = s->heap[--h]; if (m > max_code) continue; if ((unsigned) tree[m].Len != (unsigned) bits) { Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); s->opt_len += ((long)bits - (long)tree[m].Len) *(long)tree[m].Freq; tree[m].Len = (ush)bits; } n--; } } } /* =========================================================================== * Generate the codes for a given tree and bit counts (which need not be * optimal). * IN assertion: the array bl_count contains the bit length statistics for * the given tree and the field len is set for all tree elements. * OUT assertion: the field code is set for all tree elements of non * zero code length. */ local void gen_codes (tree, max_code, bl_count) ct_data *tree; /* the tree to decorate */ int max_code; /* largest code with non zero frequency */ ushf *bl_count; /* number of codes at each bit length */ { ush next_code[MAX_BITS+1]; /* next code value for each bit length */ ush code = 0; /* running code value */ int bits; /* bit index */ int n; /* code index */ /* The distribution counts are first used to generate the code values * without bit reversal. */ for (bits = 1; bits <= MAX_BITS; bits++) { next_code[bits] = code = (code + bl_count[bits-1]) << 1; } /* Check that the bit counts in bl_count are consistent. The last code * must be all ones. */ Assert (code + bl_count[MAX_BITS]-1 == (1<dyn_tree; const ct_data *stree = desc->stat_desc->static_tree; int elems = desc->stat_desc->elems; int n, m; /* iterate over heap elements */ int max_code = -1; /* largest code with non zero frequency */ int node; /* new node being created */ /* Construct the initial heap, with least frequent element in * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. * heap[0] is not used. */ s->heap_len = 0, s->heap_max = HEAP_SIZE; for (n = 0; n < elems; n++) { if (tree[n].Freq != 0) { s->heap[++(s->heap_len)] = max_code = n; s->depth[n] = 0; } else { tree[n].Len = 0; } } /* The pkzip format requires that at least one distance code exists, * and that at least one bit should be sent even if there is only one * possible code. So to avoid special checks later on we force at least * two codes of non zero frequency. */ while (s->heap_len < 2) { node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); tree[node].Freq = 1; s->depth[node] = 0; s->opt_len--; if (stree) s->static_len -= stree[node].Len; /* node is 0 or 1 so it does not have extra bits */ } desc->max_code = max_code; /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, * establish sub-heaps of increasing lengths: */ for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); /* Construct the Huffman tree by repeatedly combining the least two * frequent nodes. */ node = elems; /* next internal node of the tree */ do { pqremove(s, tree, n); /* n = node of least frequency */ m = s->heap[SMALLEST]; /* m = node of next least frequency */ s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ s->heap[--(s->heap_max)] = m; /* Create a new node father of n and m */ tree[node].Freq = tree[n].Freq + tree[m].Freq; s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ? s->depth[n] : s->depth[m]) + 1); tree[n].Dad = tree[m].Dad = (ush)node; #ifdef DUMP_BL_TREE if (tree == s->bl_tree) { fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); } #endif /* and insert the new node in the heap */ s->heap[SMALLEST] = node++; pqdownheap(s, tree, SMALLEST); } while (s->heap_len >= 2); s->heap[--(s->heap_max)] = s->heap[SMALLEST]; /* At this point, the fields freq and dad are set. We can now * generate the bit lengths. */ gen_bitlen(s, (tree_desc *)desc); /* The field len is now set, we can generate the bit codes */ gen_codes ((ct_data *)tree, max_code, s->bl_count); } /* =========================================================================== * Scan a literal or distance tree to determine the frequencies of the codes * in the bit length tree. */ local void scan_tree (s, tree, max_code) deflate_state *s; ct_data *tree; /* the tree to be scanned */ int max_code; /* and its largest code of non zero frequency */ { int n; /* iterates over all tree elements */ int prevlen = -1; /* last emitted length */ int curlen; /* length of current code */ int nextlen = tree[0].Len; /* length of next code */ int count = 0; /* repeat count of the current code */ int max_count = 7; /* max repeat count */ int min_count = 4; /* min repeat count */ if (nextlen == 0) max_count = 138, min_count = 3; tree[max_code+1].Len = (ush)0xffff; /* guard */ for (n = 0; n <= max_code; n++) { curlen = nextlen; nextlen = tree[n+1].Len; if (++count < max_count && curlen == nextlen) { continue; } else if (count < min_count) { s->bl_tree[curlen].Freq += count; } else if (curlen != 0) { if (curlen != prevlen) s->bl_tree[curlen].Freq++; s->bl_tree[REP_3_6].Freq++; } else if (count <= 10) { s->bl_tree[REPZ_3_10].Freq++; } else { s->bl_tree[REPZ_11_138].Freq++; } count = 0; prevlen = curlen; if (nextlen == 0) { max_count = 138, min_count = 3; } else if (curlen == nextlen) { max_count = 6, min_count = 3; } else { max_count = 7, min_count = 4; } } } /* =========================================================================== * Send a literal or distance tree in compressed form, using the codes in * bl_tree. */ local void send_tree (s, tree, max_code) deflate_state *s; ct_data *tree; /* the tree to be scanned */ int max_code; /* and its largest code of non zero frequency */ { int n; /* iterates over all tree elements */ int prevlen = -1; /* last emitted length */ int curlen; /* length of current code */ int nextlen = tree[0].Len; /* length of next code */ int count = 0; /* repeat count of the current code */ int max_count = 7; /* max repeat count */ int min_count = 4; /* min repeat count */ /* tree[max_code+1].Len = -1; */ /* guard already set */ if (nextlen == 0) max_count = 138, min_count = 3; for (n = 0; n <= max_code; n++) { curlen = nextlen; nextlen = tree[n+1].Len; if (++count < max_count && curlen == nextlen) { continue; } else if (count < min_count) { do { send_code(s, curlen, s->bl_tree); } while (--count != 0); } else if (curlen != 0) { if (curlen != prevlen) { send_code(s, curlen, s->bl_tree); count--; } Assert(count >= 3 && count <= 6, " 3_6?"); send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2); } else if (count <= 10) { send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3); } else { send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7); } count = 0; prevlen = curlen; if (nextlen == 0) { max_count = 138, min_count = 3; } else if (curlen == nextlen) { max_count = 6, min_count = 3; } else { max_count = 7, min_count = 4; } } } /* =========================================================================== * Construct the Huffman tree for the bit lengths and return the index in * bl_order of the last bit length code to send. */ local int build_bl_tree(s) deflate_state *s; { int max_blindex; /* index of last bit length code of non zero freq */ /* Determine the bit length frequencies for literal and distance trees */ scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); /* Build the bit length tree: */ build_tree(s, (tree_desc *)(&(s->bl_desc))); /* opt_len now includes the length of the tree representations, except * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. */ /* Determine the number of bit length codes to send. The pkzip format * requires that at least 4 bit length codes be sent. (appnote.txt says * 3 but the actual value used is 4.) */ for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; } /* Update opt_len to include the bit length tree and counts */ s->opt_len += 3*(max_blindex+1) + 5+5+4; Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", s->opt_len, s->static_len)); return max_blindex; } /* =========================================================================== * Send the header for a block using dynamic Huffman trees: the counts, the * lengths of the bit length codes, the literal tree and the distance tree. * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. */ local void send_all_trees(s, lcodes, dcodes, blcodes) deflate_state *s; int lcodes, dcodes, blcodes; /* number of codes for each tree */ { int rank; /* index in bl_order */ Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, "too many codes"); Tracev((stderr, "\nbl counts: ")); send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */ send_bits(s, dcodes-1, 5); send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */ for (rank = 0; rank < blcodes; rank++) { Tracev((stderr, "\nbl code %2d ", bl_order[rank])); send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); } Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */ Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */ Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); } /* =========================================================================== * Send a stored block */ void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last) deflate_state *s; charf *buf; /* input block */ ulg stored_len; /* length of input block */ int last; /* one if this is the last block for a file */ { send_bits(s, (STORED_BLOCK<<1)+last, 3); /* send block type */ #ifdef DEBUG s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; s->compressed_len += (stored_len + 4) << 3; #endif copy_block(s, buf, (unsigned)stored_len, 1); /* with header */ } /* =========================================================================== * Flush the bits in the bit buffer to pending output (leaves at most 7 bits) */ void ZLIB_INTERNAL _tr_flush_bits(s) deflate_state *s; { bi_flush(s); } /* =========================================================================== * Send one empty static block to give enough lookahead for inflate. * This takes 10 bits, of which 7 may remain in the bit buffer. */ void ZLIB_INTERNAL _tr_align(s) deflate_state *s; { send_bits(s, STATIC_TREES<<1, 3); send_code(s, END_BLOCK, static_ltree); #ifdef DEBUG s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ #endif bi_flush(s); } /* =========================================================================== * Determine the best encoding for the current block: dynamic trees, static * trees or store, and output the encoded block to the zip file. */ void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last) deflate_state *s; charf *buf; /* input block, or NULL if too old */ ulg stored_len; /* length of input block */ int last; /* one if this is the last block for a file */ { ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ int max_blindex = 0; /* index of last bit length code of non zero freq */ /* Build the Huffman trees unless a stored block is forced */ if (s->level > 0) { /* Check if the file is binary or text */ if (s->strm->data_type == Z_UNKNOWN) s->strm->data_type = detect_data_type(s); /* Construct the literal and distance trees */ build_tree(s, (tree_desc *)(&(s->l_desc))); Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, s->static_len)); build_tree(s, (tree_desc *)(&(s->d_desc))); Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, s->static_len)); /* At this point, opt_len and static_len are the total bit lengths of * the compressed block data, excluding the tree representations. */ /* Build the bit length tree for the above two trees, and get the index * in bl_order of the last bit length code to send. */ max_blindex = build_bl_tree(s); /* Determine the best encoding. Compute the block lengths in bytes. */ opt_lenb = (s->opt_len+3+7)>>3; static_lenb = (s->static_len+3+7)>>3; Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, s->last_lit)); if (static_lenb <= opt_lenb) opt_lenb = static_lenb; } else { Assert(buf != (char*)0, "lost buf"); opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ } #ifdef FORCE_STORED if (buf != (char*)0) { /* force stored block */ #else if (stored_len+4 <= opt_lenb && buf != (char*)0) { /* 4: two words for the lengths */ #endif /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. * Otherwise we can't have processed more than WSIZE input bytes since * the last block flush, because compression would have been * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to * transform a block into a stored block. */ _tr_stored_block(s, buf, stored_len, last); #ifdef FORCE_STATIC } else if (static_lenb >= 0) { /* force static trees */ #else } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) { #endif send_bits(s, (STATIC_TREES<<1)+last, 3); compress_block(s, (const ct_data *)static_ltree, (const ct_data *)static_dtree); #ifdef DEBUG s->compressed_len += 3 + s->static_len; #endif } else { send_bits(s, (DYN_TREES<<1)+last, 3); send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, max_blindex+1); compress_block(s, (const ct_data *)s->dyn_ltree, (const ct_data *)s->dyn_dtree); #ifdef DEBUG s->compressed_len += 3 + s->opt_len; #endif } Assert (s->compressed_len == s->bits_sent, "bad compressed size"); /* The above check is made mod 2^32, for files larger than 512 MB * and uLong implemented on 32 bits. */ init_block(s); if (last) { bi_windup(s); #ifdef DEBUG s->compressed_len += 7; /* align on byte boundary */ #endif } Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, s->compressed_len-7*last)); } /* =========================================================================== * Save the match info and tally the frequency counts. Return true if * the current block must be flushed. */ int ZLIB_INTERNAL _tr_tally (s, dist, lc) deflate_state *s; unsigned dist; /* distance of matched string */ unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */ { s->d_buf[s->last_lit] = (ush)dist; s->l_buf[s->last_lit++] = (uch)lc; if (dist == 0) { /* lc is the unmatched char */ s->dyn_ltree[lc].Freq++; } else { s->matches++; /* Here, lc is the match length - MIN_MATCH */ dist--; /* dist = match distance - 1 */ Assert((ush)dist < (ush)MAX_DIST(s) && (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match"); s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++; s->dyn_dtree[d_code(dist)].Freq++; } #ifdef TRUNCATE_BLOCK /* Try to guess if it is profitable to stop the current block here */ if ((s->last_lit & 0x1fff) == 0 && s->level > 2) { /* Compute an upper bound for the compressed length */ ulg out_length = (ulg)s->last_lit*8L; ulg in_length = (ulg)((long)s->strstart - s->block_start); int dcode; for (dcode = 0; dcode < D_CODES; dcode++) { out_length += (ulg)s->dyn_dtree[dcode].Freq * (5L+extra_dbits[dcode]); } out_length >>= 3; Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", s->last_lit, in_length, out_length, 100L - out_length*100L/in_length)); if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1; } #endif return (s->last_lit == s->lit_bufsize-1); /* We avoid equality with lit_bufsize because of wraparound at 64K * on 16 bit machines and because stored blocks are restricted to * 64K-1 bytes. */ } /* =========================================================================== * Send the block data compressed using the given Huffman trees */ local void compress_block(s, ltree, dtree) deflate_state *s; const ct_data *ltree; /* literal tree */ const ct_data *dtree; /* distance tree */ { unsigned dist; /* distance of matched string */ int lc; /* match length or unmatched char (if dist == 0) */ unsigned lx = 0; /* running index in l_buf */ unsigned code; /* the code to send */ int extra; /* number of extra bits to send */ if (s->last_lit != 0) do { dist = s->d_buf[lx]; lc = s->l_buf[lx++]; if (dist == 0) { send_code(s, lc, ltree); /* send a literal byte */ Tracecv(isgraph(lc), (stderr," '%c' ", lc)); } else { /* Here, lc is the match length - MIN_MATCH */ code = _length_code[lc]; send_code(s, code+LITERALS+1, ltree); /* send the length code */ extra = extra_lbits[code]; if (extra != 0) { lc -= base_length[code]; send_bits(s, lc, extra); /* send the extra length bits */ } dist--; /* dist is now the match distance - 1 */ code = d_code(dist); Assert (code < D_CODES, "bad d_code"); send_code(s, code, dtree); /* send the distance code */ extra = extra_dbits[code]; if (extra != 0) { dist -= base_dist[code]; send_bits(s, dist, extra); /* send the extra distance bits */ } } /* literal or match pair ? */ /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx, "pendingBuf overflow"); } while (lx < s->last_lit); send_code(s, END_BLOCK, ltree); } /* =========================================================================== * Check if the data type is TEXT or BINARY, using the following algorithm: * - TEXT if the two conditions below are satisfied: * a) There are no non-portable control characters belonging to the * "black list" (0..6, 14..25, 28..31). * b) There is at least one printable character belonging to the * "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255). * - BINARY otherwise. * - The following partially-portable control characters form a * "gray list" that is ignored in this detection algorithm: * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}). * IN assertion: the fields Freq of dyn_ltree are set. */ local int detect_data_type(s) deflate_state *s; { /* black_mask is the bit mask of black-listed bytes * set bits 0..6, 14..25, and 28..31 * 0xf3ffc07f = binary 11110011111111111100000001111111 */ unsigned long black_mask = 0xf3ffc07fUL; int n; /* Check for non-textual ("black-listed") bytes. */ for (n = 0; n <= 31; n++, black_mask >>= 1) if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0)) return Z_BINARY; /* Check for textual ("white-listed") bytes. */ if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0 || s->dyn_ltree[13].Freq != 0) return Z_TEXT; for (n = 32; n < LITERALS; n++) if (s->dyn_ltree[n].Freq != 0) return Z_TEXT; /* There are no "black-listed" or "white-listed" bytes: * this stream either is empty or has tolerated ("gray-listed") bytes only. */ return Z_BINARY; } /* =========================================================================== * Reverse the first len bits of a code, using straightforward code (a faster * method would use a table) * IN assertion: 1 <= len <= 15 */ local unsigned bi_reverse(code, len) unsigned code; /* the value to invert */ int len; /* its bit length */ { register unsigned res = 0; do { res |= code & 1; code >>= 1, res <<= 1; } while (--len > 0); return res >> 1; } /* =========================================================================== * Flush the bit buffer, keeping at most 7 bits in it. */ local void bi_flush(s) deflate_state *s; { if (s->bi_valid == 16) { put_short(s, s->bi_buf); s->bi_buf = 0; s->bi_valid = 0; } else if (s->bi_valid >= 8) { put_byte(s, (Byte)s->bi_buf); s->bi_buf >>= 8; s->bi_valid -= 8; } } /* =========================================================================== * Flush the bit buffer and align the output on a byte boundary */ local void bi_windup(s) deflate_state *s; { if (s->bi_valid > 8) { put_short(s, s->bi_buf); } else if (s->bi_valid > 0) { put_byte(s, (Byte)s->bi_buf); } s->bi_buf = 0; s->bi_valid = 0; #ifdef DEBUG s->bits_sent = (s->bits_sent+7) & ~7; #endif } /* =========================================================================== * Copy a stored block, storing first the length and its * one's complement if requested. */ local void copy_block(s, buf, len, header) deflate_state *s; charf *buf; /* the input data */ unsigned len; /* its length */ int header; /* true if block header must be written */ { bi_windup(s); /* align on byte boundary */ if (header) { put_short(s, (ush)len); put_short(s, (ush)~len); #ifdef DEBUG s->bits_sent += 2*16; #endif } #ifdef DEBUG s->bits_sent += (ulg)len<<3; #endif while (len--) { put_byte(s, *buf++); } } /* END OF DUMP OF mz_trees.c*/ /* START OF DUMP OF mz_inftrees.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* inftrees.c -- generate Huffman trees for efficient decoding * Copyright (C) 1995-2013 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* START OF DUMP OF mz_inftrees.h*/ /* inftrees.h -- header to use inftrees.c * Copyright (C) 1995-2005, 2010 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ /* Structure for decoding tables. Each entry provides either the information needed to do the operation requested by the code that indexed that table entry, or it provides a pointer to another table that indexes more bits of the code. op indicates whether the entry is a pointer to another table, a literal, a length or distance, an end-of-block, or an invalid code. For a table pointer, the low four bits of op is the number of index bits of that table. For a length or distance, the low four bits of op is the number of extra bits to get after the code. bits is the number of bits in this code or part of the code to drop off of the bit buffer. val is the actual byte to output in the case of a literal, the base length or distance, or the offset from the current table to the next table. Each entry is four bytes. */ typedef struct { unsigned char op; /* operation, extra bits, table bits */ unsigned char bits; /* bits in this part of the code */ unsigned short val; /* offset in table or code value */ } code; /* op values as set by inflate_table(): 00000000 - literal 0000tttt - table link, tttt != 0 is the number of table index bits 0001eeee - length or distance, eeee is the number of extra bits 01100000 - end of block 01000000 - invalid code */ /* Maximum size of the dynamic table. The maximum number of code structures is 1444, which is the sum of 852 for literal/length codes and 592 for distance codes. These values were found by exhaustive searches using the program examples/enough.c found in the zlib distribtution. The arguments to that program are the number of symbols, the initial root table size, and the maximum bit length of a code. "enough 286 9 15" for literal/length codes returns returns 852, and "enough 30 6 15" for distance codes returns 592. The initial root table size (9 or 6) is found in the fifth argument of the inflate_table() calls in inflate.c and infback.c. If the root table size is changed, then these maximum sizes would be need to be recalculated and updated. */ #define ENOUGH_LENS 852 #define ENOUGH_DISTS 592 #define ENOUGH (ENOUGH_LENS+ENOUGH_DISTS) /* Type of code to build for inflate_table() */ typedef enum { CODES, LENS, DISTS } codetype; int ZLIB_INTERNAL inflate_table OF((codetype type, unsigned short FAR *lens, unsigned codes, code FAR * FAR *table, unsigned FAR *bits, unsigned short FAR *work)); /* END OF DUMP OF mz_inftrees.h*/ #define MAXBITS 15 const char inflate_copyright[] = " inflate 1.2.8 Copyright 1995-2013 Mark Adler "; /* If you use the zlib library in a product, an acknowledgment is welcome in the documentation of your product. If for some reason you cannot include such an acknowledgment, I would appreciate that you keep this copyright string in the executable of your product. */ /* Build a set of tables to decode the provided canonical Huffman code. The code lengths are lens[0..codes-1]. The result starts at *table, whose indices are 0..2^bits-1. work is a writable array of at least lens shorts, which is used as a work area. type is the type of code to be generated, CODES, LENS, or DISTS. On return, zero is success, -1 is an invalid code, and +1 means that ENOUGH isn't enough. table on return points to the next available entry's address. bits is the requested root table index bits, and on return it is the actual root table index bits. It will differ if the request is greater than the longest code or if it is less than the shortest code. */ int ZLIB_INTERNAL inflate_table(type, lens, codes, table, bits, work) codetype type; unsigned short FAR *lens; unsigned codes; code FAR * FAR *table; unsigned FAR *bits; unsigned short FAR *work; { unsigned len; /* a code's length in bits */ unsigned sym; /* index of code symbols */ unsigned min, max; /* minimum and maximum code lengths */ unsigned root; /* number of index bits for root table */ unsigned curr; /* number of index bits for current table */ unsigned drop; /* code bits to drop for sub-table */ int left; /* number of prefix codes available */ unsigned used; /* code entries in table used */ unsigned huff; /* Huffman code */ unsigned incr; /* for incrementing code, index */ unsigned fill; /* index for replicating entries */ unsigned low; /* low bits for current root entry */ unsigned mask; /* mask for low root bits */ code here; /* table entry for duplication */ code FAR *next; /* next available space in table */ const unsigned short FAR *base; /* base value table to use */ const unsigned short FAR *extra; /* extra bits table to use */ int end; /* use base and extra for symbol > end */ unsigned short count[MAXBITS+1]; /* number of codes of each length */ unsigned short offs[MAXBITS+1]; /* offsets in table for each length */ static const unsigned short lbase[31] = { /* Length codes 257..285 base */ 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; static const unsigned short lext[31] = { /* Length codes 257..285 extra */ 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 72, 78}; static const unsigned short dbase[32] = { /* Distance codes 0..29 base */ 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577, 0, 0}; static const unsigned short dext[32] = { /* Distance codes 0..29 extra */ 16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 64, 64}; /* Process a set of code lengths to create a canonical Huffman code. The code lengths are lens[0..codes-1]. Each length corresponds to the symbols 0..codes-1. The Huffman code is generated by first sorting the symbols by length from short to long, and retaining the symbol order for codes with equal lengths. Then the code starts with all zero bits for the first code of the shortest length, and the codes are integer increments for the same length, and zeros are appended as the length increases. For the deflate format, these bits are stored backwards from their more natural integer increment ordering, and so when the decoding tables are built in the large loop below, the integer codes are incremented backwards. This routine assumes, but does not check, that all of the entries in lens[] are in the range 0..MAXBITS. The caller must assure this. 1..MAXBITS is interpreted as that code length. zero means that that symbol does not occur in this code. The codes are sorted by computing a count of codes for each length, creating from that a table of starting indices for each length in the sorted table, and then entering the symbols in order in the sorted table. The sorted table is work[], with that space being provided by the caller. The length counts are used for other purposes as well, i.e. finding the minimum and maximum length codes, determining if there are any codes at all, checking for a valid set of lengths, and looking ahead at length counts to determine sub-table sizes when building the decoding tables. */ /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */ for (len = 0; len <= MAXBITS; len++) count[len] = 0; for (sym = 0; sym < codes; sym++) count[lens[sym]]++; /* bound code lengths, force root to be within code lengths */ root = *bits; for (max = MAXBITS; max >= 1; max--) if (count[max] != 0) break; if (root > max) root = max; if (max == 0) { /* no symbols to code at all */ here.op = (unsigned char)64; /* invalid code marker */ here.bits = (unsigned char)1; here.val = (unsigned short)0; *(*table)++ = here; /* make a table to force an error */ *(*table)++ = here; *bits = 1; return 0; /* no symbols, but wait for decoding to report error */ } for (min = 1; min < max; min++) if (count[min] != 0) break; if (root < min) root = min; /* check for an over-subscribed or incomplete set of lengths */ left = 1; for (len = 1; len <= MAXBITS; len++) { left <<= 1; left -= count[len]; if (left < 0) return -1; /* over-subscribed */ } if (left > 0 && (type == CODES || max != 1)) return -1; /* incomplete set */ /* generate offsets into symbol table for each length for sorting */ offs[1] = 0; for (len = 1; len < MAXBITS; len++) offs[len + 1] = offs[len] + count[len]; /* sort symbols by length, by symbol order within each length */ for (sym = 0; sym < codes; sym++) if (lens[sym] != 0) work[offs[lens[sym]]++] = (unsigned short)sym; /* Create and fill in decoding tables. In this loop, the table being filled is at next and has curr index bits. The code being used is huff with length len. That code is converted to an index by dropping drop bits off of the bottom. For codes where len is less than drop + curr, those top drop + curr - len bits are incremented through all values to fill the table with replicated entries. root is the number of index bits for the root table. When len exceeds root, sub-tables are created pointed to by the root entry with an index of the low root bits of huff. This is saved in low to check for when a new sub-table should be started. drop is zero when the root table is being filled, and drop is root when sub-tables are being filled. When a new sub-table is needed, it is necessary to look ahead in the code lengths to determine what size sub-table is needed. The length counts are used for this, and so count[] is decremented as codes are entered in the tables. used keeps track of how many table entries have been allocated from the provided *table space. It is checked for LENS and DIST tables against the constants ENOUGH_LENS and ENOUGH_DISTS to guard against changes in the initial root table size constants. See the comments in inftrees.h for more information. sym increments through all symbols, and the loop terminates when all codes of length max, i.e. all codes, have been processed. This routine permits incomplete codes, so another loop after this one fills in the rest of the decoding tables with invalid code markers. */ /* set up for code type */ switch (type) { case CODES: base = extra = work; /* dummy value--not used */ end = 19; break; case LENS: base = lbase; base -= 257; extra = lext; extra -= 257; end = 256; break; default: /* DISTS */ base = dbase; extra = dext; end = -1; } /* initialize state for loop */ huff = 0; /* starting code */ sym = 0; /* starting code symbol */ len = min; /* starting code length */ next = *table; /* current table to fill in */ curr = root; /* current table index bits */ drop = 0; /* current bits to drop from code for index */ low = (unsigned)(-1); /* trigger new sub-table when len > root */ used = 1U << root; /* use root table entries */ mask = used - 1; /* mask for comparing low */ /* check available table space */ if ((type == LENS && used > ENOUGH_LENS) || (type == DISTS && used > ENOUGH_DISTS)) return 1; /* process all codes and make table entries */ for (;;) { /* create table entry */ here.bits = (unsigned char)(len - drop); if ((int)(work[sym]) < end) { here.op = (unsigned char)0; here.val = work[sym]; } else if ((int)(work[sym]) > end) { here.op = (unsigned char)(extra[work[sym]]); here.val = base[work[sym]]; } else { here.op = (unsigned char)(32 + 64); /* end of block */ here.val = 0; } /* replicate for those indices with low len bits equal to huff */ incr = 1U << (len - drop); fill = 1U << curr; min = fill; /* save offset to next table */ do { fill -= incr; next[(huff >> drop) + fill] = here; } while (fill != 0); /* backwards increment the len-bit code huff */ incr = 1U << (len - 1); while (huff & incr) incr >>= 1; if (incr != 0) { huff &= incr - 1; huff += incr; } else huff = 0; /* go to next symbol, update count, len */ sym++; if (--(count[len]) == 0) { if (len == max) break; len = lens[work[sym]]; } /* create new sub-table if needed */ if (len > root && (huff & mask) != low) { /* if first time, transition to sub-tables */ if (drop == 0) drop = root; /* increment past last table */ next += min; /* here min is 1 << curr */ /* determine length of next table */ curr = len - drop; left = (int)(1 << curr); while (curr + drop < max) { left -= count[curr + drop]; if (left <= 0) break; curr++; left <<= 1; } /* check for enough space */ used += 1U << curr; if ((type == LENS && used > ENOUGH_LENS) || (type == DISTS && used > ENOUGH_DISTS)) return 1; /* point entry in root table to sub-table */ low = huff & mask; (*table)[low].op = (unsigned char)curr; (*table)[low].bits = (unsigned char)root; (*table)[low].val = (unsigned short)(next - *table); } } /* fill in remaining table entry if code is incomplete (guaranteed to have at most one remaining entry, since if the code is incomplete, the maximum code length that was allowed to get this far is one bit) */ if (huff != 0) { here.op = (unsigned char)64; /* invalid code marker */ here.bits = (unsigned char)(len - drop); here.val = (unsigned short)0; next[huff] = here; } /* set return parameters */ *table += used; *bits = root; return 0; } /* END OF DUMP OF mz_inftrees.c*/ /* START OF DUMP OF mz_inflate.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* inflate.c -- zlib decompression * Copyright (C) 1995-2012 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* * Change history: * * 1.2.beta0 24 Nov 2002 * - First version -- complete rewrite of inflate to simplify code, avoid * creation of window when not needed, minimize use of window when it is * needed, make inffast.c even faster, implement gzip decoding, and to * improve code readability and style over the previous zlib inflate code * * 1.2.beta1 25 Nov 2002 * - Use pointers for available input and output checking in inffast.c * - Remove input and output counters in inffast.c * - Change inffast.c entry and loop from avail_in >= 7 to >= 6 * - Remove unnecessary second byte pull from length extra in inffast.c * - Unroll direct copy to three copies per loop in inffast.c * * 1.2.beta2 4 Dec 2002 * - Change external routine names to reduce potential conflicts * - Correct filename to inffixed.h for fixed tables in inflate.c * - Make hbuf[] unsigned char to match parameter type in inflate.c * - Change strm->next_out[-state->offset] to *(strm->next_out - state->offset) * to avoid negation problem on Alphas (64 bit) in inflate.c * * 1.2.beta3 22 Dec 2002 * - Add comments on state->bits assertion in inffast.c * - Add comments on op field in inftrees.h * - Fix bug in reuse of allocated window after inflateReset() * - Remove bit fields--back to byte structure for speed * - Remove distance extra == 0 check in inflate_fast()--only helps for lengths * - Change post-increments to pre-increments in inflate_fast(), PPC biased? * - Add compile time option, POSTINC, to use post-increments instead (Intel?) * - Make MATCH copy in inflate() much faster for when inflate_fast() not used * - Use local copies of stream next and avail values, as well as local bit * buffer and bit count in inflate()--for speed when inflate_fast() not used * * 1.2.beta4 1 Jan 2003 * - Split ptr - 257 statements in inflate_table() to avoid compiler warnings * - Move a comment on output buffer sizes from inffast.c to inflate.c * - Add comments in inffast.c to introduce the inflate_fast() routine * - Rearrange window copies in inflate_fast() for speed and simplification * - Unroll last copy for window match in inflate_fast() * - Use local copies of window variables in inflate_fast() for speed * - Pull out common wnext == 0 case for speed in inflate_fast() * - Make op and len in inflate_fast() unsigned for consistency * - Add FAR to lcode and dcode declarations in inflate_fast() * - Simplified bad distance check in inflate_fast() * - Added inflateBackInit(), inflateBack(), and inflateBackEnd() in new * source file infback.c to provide a call-back interface to inflate for * programs like gzip and unzip -- uses window as output buffer to avoid * window copying * * 1.2.beta5 1 Jan 2003 * - Improved inflateBack() interface to allow the caller to provide initial * input in strm. * - Fixed stored blocks bug in inflateBack() * * 1.2.beta6 4 Jan 2003 * - Added comments in inffast.c on effectiveness of POSTINC * - Typecasting all around to reduce compiler warnings * - Changed loops from while (1) or do {} while (1) to for (;;), again to * make compilers happy * - Changed type of window in inflateBackInit() to unsigned char * * * 1.2.beta7 27 Jan 2003 * - Changed many types to unsigned or unsigned short to avoid warnings * - Added inflateCopy() function * * 1.2.0 9 Mar 2003 * - Changed inflateBack() interface to provide separate opaque descriptors * for the in() and out() functions * - Changed inflateBack() argument and in_func typedef to swap the length * and buffer address return values for the input function * - Check next_in and next_out for Z_NULL on entry to inflate() * * The history for versions after 1.2.0 are in ChangeLog in zlib distribution. */ /* START OF DUMP OF mz_inflate.h*/ /* inflate.h -- internal inflate state definition * Copyright (C) 1995-2009 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ /* define NO_GZIP when compiling if you want to disable gzip header and trailer decoding by inflate(). NO_GZIP would be used to avoid linking in the crc code when it is not needed. For shared libraries, gzip decoding should be left enabled. */ #ifndef NO_GZIP # define GUNZIP #endif /* Possible inflate modes between inflate() calls */ typedef enum { HEAD, /* i: waiting for magic header */ FLAGS, /* i: waiting for method and flags (gzip) */ TIME, /* i: waiting for modification time (gzip) */ OS, /* i: waiting for extra flags and operating system (gzip) */ EXLEN, /* i: waiting for extra length (gzip) */ EXTRA, /* i: waiting for extra bytes (gzip) */ NAME, /* i: waiting for end of file name (gzip) */ COMMENT, /* i: waiting for end of comment (gzip) */ HCRC, /* i: waiting for header crc (gzip) */ DICTID, /* i: waiting for dictionary check value */ DICT, /* waiting for inflateSetDictionary() call */ TYPE, /* i: waiting for type bits, including last-flag bit */ TYPEDO, /* i: same, but skip check to exit inflate on new block */ STORED, /* i: waiting for stored size (length and complement) */ COPY_, /* i/o: same as COPY below, but only first time in */ COPY, /* i/o: waiting for input or output to copy stored block */ TABLE, /* i: waiting for dynamic block table lengths */ LENLENS, /* i: waiting for code length code lengths */ CODELENS, /* i: waiting for length/lit and distance code lengths */ LEN_, /* i: same as LEN below, but only first time in */ LEN, /* i: waiting for length/lit/eob code */ LENEXT, /* i: waiting for length extra bits */ DIST, /* i: waiting for distance code */ DISTEXT, /* i: waiting for distance extra bits */ MATCH, /* o: waiting for output space to copy string */ LIT, /* o: waiting for output space to write literal */ CHECK, /* i: waiting for 32-bit check value */ LENGTH, /* i: waiting for 32-bit length (gzip) */ DONE, /* finished check, done -- remain here until reset */ BAD, /* got a data error -- remain here until reset */ MEM, /* got an inflate() memory error -- remain here until reset */ SYNC /* looking for synchronization bytes to restart inflate() */ } inflate_mode; /* State transitions between above modes - (most modes can go to BAD or MEM on error -- not shown for clarity) Process header: HEAD -> (gzip) or (zlib) or (raw) (gzip) -> FLAGS -> TIME -> OS -> EXLEN -> EXTRA -> NAME -> COMMENT -> HCRC -> TYPE (zlib) -> DICTID or TYPE DICTID -> DICT -> TYPE (raw) -> TYPEDO Read deflate blocks: TYPE -> TYPEDO -> STORED or TABLE or LEN_ or CHECK STORED -> COPY_ -> COPY -> TYPE TABLE -> LENLENS -> CODELENS -> LEN_ LEN_ -> LEN Read deflate codes in fixed or dynamic block: LEN -> LENEXT or LIT or TYPE LENEXT -> DIST -> DISTEXT -> MATCH -> LEN LIT -> LEN Process trailer: CHECK -> LENGTH -> DONE */ /* state maintained between inflate() calls. Approximately 10K bytes. */ struct inflate_state { inflate_mode mode; /* current inflate mode */ int last; /* true if processing last block */ int wrap; /* bit 0 true for zlib, bit 1 true for gzip */ int havedict; /* true if dictionary provided */ int flags; /* gzip header method and flags (0 if zlib) */ unsigned dmax; /* zlib header max distance (INFLATE_STRICT) */ unsigned long check; /* protected copy of check value */ unsigned long total; /* protected copy of output count */ gz_headerp head; /* where to save gzip header information */ /* sliding window */ unsigned wbits; /* log base 2 of requested window size */ unsigned wsize; /* window size or zero if not using window */ unsigned whave; /* valid bytes in the window */ unsigned wnext; /* window write index */ unsigned char FAR *window; /* allocated sliding window, if needed */ /* bit accumulator */ unsigned long hold; /* input bit accumulator */ unsigned bits; /* number of bits in "in" */ /* for string and stored block copying */ unsigned length; /* literal or length of data to copy */ unsigned offset; /* distance back to copy string from */ /* for table and code decoding */ unsigned extra; /* extra bits needed */ /* fixed and dynamic code tables */ code const FAR *lencode; /* starting table for length/literal codes */ code const FAR *distcode; /* starting table for distance codes */ unsigned lenbits; /* index bits for lencode */ unsigned distbits; /* index bits for distcode */ /* dynamic table building */ unsigned ncode; /* number of code length code lengths */ unsigned nlen; /* number of length code lengths */ unsigned ndist; /* number of distance code lengths */ unsigned have; /* number of code lengths in lens[] */ code FAR *next; /* next available space in codes[] */ unsigned short lens[320]; /* temporary storage for code lengths */ unsigned short work[288]; /* work area for code table building */ code codes[ENOUGH]; /* space for code tables */ int sane; /* if false, allow invalid distance too far */ int back; /* bits back of last unprocessed length/lit */ unsigned was; /* initial length of match */ }; /* END OF DUMP OF mz_inflate.h*/ /* START OF DUMP OF mz_inffast.h*/ /* inffast.h -- header to use inffast.c * Copyright (C) 1995-2003, 2010 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ void ZLIB_INTERNAL inflate_fast OF((z_streamp strm, unsigned start)); /* END OF DUMP OF mz_inffast.h*/ #ifdef MAKEFIXED # ifndef BUILDFIXED # define BUILDFIXED # endif #endif /* function prototypes */ local void fixedtables OF((struct inflate_state FAR *state)); local int updatewindow OF((z_streamp strm, const unsigned char FAR *end, unsigned copy)); #ifdef BUILDFIXED void makefixed OF((void)); #endif local unsigned syncsearch OF((unsigned FAR *have, const unsigned char FAR *buf, unsigned len)); int ZEXPORT inflateResetKeep(strm) z_streamp strm; { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; strm->total_in = strm->total_out = state->total = 0; strm->msg = Z_NULL; if (state->wrap) /* to support ill-conceived Java test suite */ strm->adler = state->wrap & 1; state->mode = HEAD; state->last = 0; state->havedict = 0; state->dmax = 32768U; state->head = Z_NULL; state->hold = 0; state->bits = 0; state->lencode = state->distcode = state->next = state->codes; state->sane = 1; state->back = -1; Tracev((stderr, "inflate: reset\n")); return Z_OK; } int ZEXPORT inflateReset(strm) z_streamp strm; { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; state->wsize = 0; state->whave = 0; state->wnext = 0; return inflateResetKeep(strm); } int ZEXPORT inflateReset2(strm, windowBits) z_streamp strm; int windowBits; { int wrap; struct inflate_state FAR *state; /* get the state */ if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; /* extract wrap request from windowBits parameter */ if (windowBits < 0) { wrap = 0; windowBits = -windowBits; } else { wrap = (windowBits >> 4) + 1; #ifdef GUNZIP if (windowBits < 48) windowBits &= 15; #endif } /* set number of window bits, free window if different */ if (windowBits && (windowBits < 8 || windowBits > 15)) return Z_STREAM_ERROR; if (state->window != Z_NULL && state->wbits != (unsigned)windowBits) { ZFREE(strm, state->window); state->window = Z_NULL; } /* update state and reset the rest of it */ state->wrap = wrap; state->wbits = (unsigned)windowBits; return inflateReset(strm); } int ZEXPORT inflateInit2_(strm, windowBits, version, stream_size) z_streamp strm; int windowBits; const char *version; int stream_size; { int ret; struct inflate_state FAR *state; if (version == Z_NULL || version[0] != ZLIB_VERSION[0] || stream_size != (int)(sizeof(z_stream))) return Z_VERSION_ERROR; if (strm == Z_NULL) return Z_STREAM_ERROR; strm->msg = Z_NULL; /* in case we return an error */ if (strm->zalloc == (alloc_func)0) { #ifdef Z_SOLO return Z_STREAM_ERROR; #else strm->zalloc = zcalloc; strm->opaque = (voidpf)0; #endif } if (strm->zfree == (free_func)0) #ifdef Z_SOLO return Z_STREAM_ERROR; #else strm->zfree = zcfree; #endif state = (struct inflate_state FAR *) ZALLOC(strm, 1, sizeof(struct inflate_state)); if (state == Z_NULL) return Z_MEM_ERROR; Tracev((stderr, "inflate: allocated\n")); strm->state = (struct internal_state FAR *)state; state->window = Z_NULL; ret = inflateReset2(strm, windowBits); if (ret != Z_OK) { ZFREE(strm, state); strm->state = Z_NULL; } return ret; } int ZEXPORT inflateInit_(strm, version, stream_size) z_streamp strm; const char *version; int stream_size; { return inflateInit2_(strm, DEF_WBITS, version, stream_size); } int ZEXPORT inflatePrime(strm, bits, value) z_streamp strm; int bits; int value; { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (bits < 0) { state->hold = 0; state->bits = 0; return Z_OK; } if (bits > 16 || state->bits + bits > 32) return Z_STREAM_ERROR; value &= (1L << bits) - 1; state->hold += value << state->bits; state->bits += bits; return Z_OK; } /* Return state with length and distance decoding tables and index sizes set to fixed code decoding. Normally this returns fixed tables from inffixed.h. If BUILDFIXED is defined, then instead this routine builds the tables the first time it's called, and returns those tables the first time and thereafter. This reduces the size of the code by about 2K bytes, in exchange for a little execution time. However, BUILDFIXED should not be used for threaded applications, since the rewriting of the tables and virgin may not be thread-safe. */ local void fixedtables(state) struct inflate_state FAR *state; { #ifdef BUILDFIXED static int virgin = 1; static code *lenfix, *distfix; static code fixed[544]; /* build fixed huffman tables if first call (may not be thread safe) */ if (virgin) { unsigned sym, bits; static code *next; /* literal/length table */ sym = 0; while (sym < 144) state->lens[sym++] = 8; while (sym < 256) state->lens[sym++] = 9; while (sym < 280) state->lens[sym++] = 7; while (sym < 288) state->lens[sym++] = 8; next = fixed; lenfix = next; bits = 9; inflate_table(LENS, state->lens, 288, &(next), &(bits), state->work); /* distance table */ sym = 0; while (sym < 32) state->lens[sym++] = 5; distfix = next; bits = 5; inflate_table(DISTS, state->lens, 32, &(next), &(bits), state->work); /* do this just once */ virgin = 0; } #else /* !BUILDFIXED */ /* START OF DUMP OF mz_inffixed.h*/ /* inffixed.h -- table for decoding fixed codes * Generated automatically by makefixed(). */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of this library and is subject to change. Applications should only use zlib.h. */ static const code lenfix[512] = { {96,7,0},{0,8,80},{0,8,16},{20,8,115},{18,7,31},{0,8,112},{0,8,48}, {0,9,192},{16,7,10},{0,8,96},{0,8,32},{0,9,160},{0,8,0},{0,8,128}, {0,8,64},{0,9,224},{16,7,6},{0,8,88},{0,8,24},{0,9,144},{19,7,59}, {0,8,120},{0,8,56},{0,9,208},{17,7,17},{0,8,104},{0,8,40},{0,9,176}, {0,8,8},{0,8,136},{0,8,72},{0,9,240},{16,7,4},{0,8,84},{0,8,20}, {21,8,227},{19,7,43},{0,8,116},{0,8,52},{0,9,200},{17,7,13},{0,8,100}, {0,8,36},{0,9,168},{0,8,4},{0,8,132},{0,8,68},{0,9,232},{16,7,8}, {0,8,92},{0,8,28},{0,9,152},{20,7,83},{0,8,124},{0,8,60},{0,9,216}, {18,7,23},{0,8,108},{0,8,44},{0,9,184},{0,8,12},{0,8,140},{0,8,76}, {0,9,248},{16,7,3},{0,8,82},{0,8,18},{21,8,163},{19,7,35},{0,8,114}, {0,8,50},{0,9,196},{17,7,11},{0,8,98},{0,8,34},{0,9,164},{0,8,2}, {0,8,130},{0,8,66},{0,9,228},{16,7,7},{0,8,90},{0,8,26},{0,9,148}, {20,7,67},{0,8,122},{0,8,58},{0,9,212},{18,7,19},{0,8,106},{0,8,42}, {0,9,180},{0,8,10},{0,8,138},{0,8,74},{0,9,244},{16,7,5},{0,8,86}, {0,8,22},{64,8,0},{19,7,51},{0,8,118},{0,8,54},{0,9,204},{17,7,15}, {0,8,102},{0,8,38},{0,9,172},{0,8,6},{0,8,134},{0,8,70},{0,9,236}, {16,7,9},{0,8,94},{0,8,30},{0,9,156},{20,7,99},{0,8,126},{0,8,62}, {0,9,220},{18,7,27},{0,8,110},{0,8,46},{0,9,188},{0,8,14},{0,8,142}, {0,8,78},{0,9,252},{96,7,0},{0,8,81},{0,8,17},{21,8,131},{18,7,31}, {0,8,113},{0,8,49},{0,9,194},{16,7,10},{0,8,97},{0,8,33},{0,9,162}, {0,8,1},{0,8,129},{0,8,65},{0,9,226},{16,7,6},{0,8,89},{0,8,25}, {0,9,146},{19,7,59},{0,8,121},{0,8,57},{0,9,210},{17,7,17},{0,8,105}, {0,8,41},{0,9,178},{0,8,9},{0,8,137},{0,8,73},{0,9,242},{16,7,4}, {0,8,85},{0,8,21},{16,8,258},{19,7,43},{0,8,117},{0,8,53},{0,9,202}, {17,7,13},{0,8,101},{0,8,37},{0,9,170},{0,8,5},{0,8,133},{0,8,69}, {0,9,234},{16,7,8},{0,8,93},{0,8,29},{0,9,154},{20,7,83},{0,8,125}, {0,8,61},{0,9,218},{18,7,23},{0,8,109},{0,8,45},{0,9,186},{0,8,13}, {0,8,141},{0,8,77},{0,9,250},{16,7,3},{0,8,83},{0,8,19},{21,8,195}, {19,7,35},{0,8,115},{0,8,51},{0,9,198},{17,7,11},{0,8,99},{0,8,35}, {0,9,166},{0,8,3},{0,8,131},{0,8,67},{0,9,230},{16,7,7},{0,8,91}, {0,8,27},{0,9,150},{20,7,67},{0,8,123},{0,8,59},{0,9,214},{18,7,19}, {0,8,107},{0,8,43},{0,9,182},{0,8,11},{0,8,139},{0,8,75},{0,9,246}, {16,7,5},{0,8,87},{0,8,23},{64,8,0},{19,7,51},{0,8,119},{0,8,55}, {0,9,206},{17,7,15},{0,8,103},{0,8,39},{0,9,174},{0,8,7},{0,8,135}, {0,8,71},{0,9,238},{16,7,9},{0,8,95},{0,8,31},{0,9,158},{20,7,99}, {0,8,127},{0,8,63},{0,9,222},{18,7,27},{0,8,111},{0,8,47},{0,9,190}, {0,8,15},{0,8,143},{0,8,79},{0,9,254},{96,7,0},{0,8,80},{0,8,16}, {20,8,115},{18,7,31},{0,8,112},{0,8,48},{0,9,193},{16,7,10},{0,8,96}, {0,8,32},{0,9,161},{0,8,0},{0,8,128},{0,8,64},{0,9,225},{16,7,6}, {0,8,88},{0,8,24},{0,9,145},{19,7,59},{0,8,120},{0,8,56},{0,9,209}, {17,7,17},{0,8,104},{0,8,40},{0,9,177},{0,8,8},{0,8,136},{0,8,72}, {0,9,241},{16,7,4},{0,8,84},{0,8,20},{21,8,227},{19,7,43},{0,8,116}, {0,8,52},{0,9,201},{17,7,13},{0,8,100},{0,8,36},{0,9,169},{0,8,4}, {0,8,132},{0,8,68},{0,9,233},{16,7,8},{0,8,92},{0,8,28},{0,9,153}, {20,7,83},{0,8,124},{0,8,60},{0,9,217},{18,7,23},{0,8,108},{0,8,44}, {0,9,185},{0,8,12},{0,8,140},{0,8,76},{0,9,249},{16,7,3},{0,8,82}, {0,8,18},{21,8,163},{19,7,35},{0,8,114},{0,8,50},{0,9,197},{17,7,11}, {0,8,98},{0,8,34},{0,9,165},{0,8,2},{0,8,130},{0,8,66},{0,9,229}, {16,7,7},{0,8,90},{0,8,26},{0,9,149},{20,7,67},{0,8,122},{0,8,58}, {0,9,213},{18,7,19},{0,8,106},{0,8,42},{0,9,181},{0,8,10},{0,8,138}, {0,8,74},{0,9,245},{16,7,5},{0,8,86},{0,8,22},{64,8,0},{19,7,51}, {0,8,118},{0,8,54},{0,9,205},{17,7,15},{0,8,102},{0,8,38},{0,9,173}, {0,8,6},{0,8,134},{0,8,70},{0,9,237},{16,7,9},{0,8,94},{0,8,30}, {0,9,157},{20,7,99},{0,8,126},{0,8,62},{0,9,221},{18,7,27},{0,8,110}, {0,8,46},{0,9,189},{0,8,14},{0,8,142},{0,8,78},{0,9,253},{96,7,0}, {0,8,81},{0,8,17},{21,8,131},{18,7,31},{0,8,113},{0,8,49},{0,9,195}, {16,7,10},{0,8,97},{0,8,33},{0,9,163},{0,8,1},{0,8,129},{0,8,65}, {0,9,227},{16,7,6},{0,8,89},{0,8,25},{0,9,147},{19,7,59},{0,8,121}, {0,8,57},{0,9,211},{17,7,17},{0,8,105},{0,8,41},{0,9,179},{0,8,9}, {0,8,137},{0,8,73},{0,9,243},{16,7,4},{0,8,85},{0,8,21},{16,8,258}, {19,7,43},{0,8,117},{0,8,53},{0,9,203},{17,7,13},{0,8,101},{0,8,37}, {0,9,171},{0,8,5},{0,8,133},{0,8,69},{0,9,235},{16,7,8},{0,8,93}, {0,8,29},{0,9,155},{20,7,83},{0,8,125},{0,8,61},{0,9,219},{18,7,23}, {0,8,109},{0,8,45},{0,9,187},{0,8,13},{0,8,141},{0,8,77},{0,9,251}, {16,7,3},{0,8,83},{0,8,19},{21,8,195},{19,7,35},{0,8,115},{0,8,51}, {0,9,199},{17,7,11},{0,8,99},{0,8,35},{0,9,167},{0,8,3},{0,8,131}, {0,8,67},{0,9,231},{16,7,7},{0,8,91},{0,8,27},{0,9,151},{20,7,67}, {0,8,123},{0,8,59},{0,9,215},{18,7,19},{0,8,107},{0,8,43},{0,9,183}, {0,8,11},{0,8,139},{0,8,75},{0,9,247},{16,7,5},{0,8,87},{0,8,23}, {64,8,0},{19,7,51},{0,8,119},{0,8,55},{0,9,207},{17,7,15},{0,8,103}, {0,8,39},{0,9,175},{0,8,7},{0,8,135},{0,8,71},{0,9,239},{16,7,9}, {0,8,95},{0,8,31},{0,9,159},{20,7,99},{0,8,127},{0,8,63},{0,9,223}, {18,7,27},{0,8,111},{0,8,47},{0,9,191},{0,8,15},{0,8,143},{0,8,79}, {0,9,255} }; static const code distfix[32] = { {16,5,1},{23,5,257},{19,5,17},{27,5,4097},{17,5,5},{25,5,1025}, {21,5,65},{29,5,16385},{16,5,3},{24,5,513},{20,5,33},{28,5,8193}, {18,5,9},{26,5,2049},{22,5,129},{64,5,0},{16,5,2},{23,5,385}, {19,5,25},{27,5,6145},{17,5,7},{25,5,1537},{21,5,97},{29,5,24577}, {16,5,4},{24,5,769},{20,5,49},{28,5,12289},{18,5,13},{26,5,3073}, {22,5,193},{64,5,0} }; /* END OF DUMP OF mz_inffixed.h*/ #endif /* BUILDFIXED */ state->lencode = lenfix; state->lenbits = 9; state->distcode = distfix; state->distbits = 5; } #ifdef MAKEFIXED #include /* Write out the inffixed.h that is #include'd above. Defining MAKEFIXED also defines BUILDFIXED, so the tables are built on the fly. makefixed() writes those tables to stdout, which would be piped to inffixed.h. A small program can simply call makefixed to do this: void makefixed(void); int main(void) { makefixed(); return 0; } Then that can be linked with zlib built with MAKEFIXED defined and run: a.out > inffixed.h */ void makefixed() { unsigned low, size; struct inflate_state state; fixedtables(&state); puts(" /* inffixed.h -- table for decoding fixed codes"); puts(" * Generated automatically by makefixed()."); puts(" */"); puts(""); puts(" /* WARNING: this file should *not* be used by applications."); puts(" It is part of the implementation of this library and is"); puts(" subject to change. Applications should only use zlib.h."); puts(" */"); puts(""); size = 1U << 9; printf(" static const code lenfix[%u] = {", size); low = 0; for (;;) { if ((low % 7) == 0) printf("\n "); printf("{%u,%u,%d}", (low & 127) == 99 ? 64 : state.lencode[low].op, state.lencode[low].bits, state.lencode[low].val); if (++low == size) break; putchar(','); } puts("\n };"); size = 1U << 5; printf("\n static const code distfix[%u] = {", size); low = 0; for (;;) { if ((low % 6) == 0) printf("\n "); printf("{%u,%u,%d}", state.distcode[low].op, state.distcode[low].bits, state.distcode[low].val); if (++low == size) break; putchar(','); } puts("\n };"); } #endif /* MAKEFIXED */ /* Update the window with the last wsize (normally 32K) bytes written before returning. If window does not exist yet, create it. This is only called when a window is already in use, or when output has been written during this inflate call, but the end of the deflate stream has not been reached yet. It is also called to create a window for dictionary data when a dictionary is loaded. Providing output buffers larger than 32K to inflate() should provide a speed advantage, since only the last 32K of output is copied to the sliding window upon return from inflate(), and since all distances after the first 32K of output will fall in the output data, making match copies simpler and faster. The advantage may be dependent on the size of the processor's data caches. */ local int updatewindow(strm, end, copy) z_streamp strm; const Bytef *end; unsigned copy; { struct inflate_state FAR *state; unsigned dist; state = (struct inflate_state FAR *)strm->state; /* if it hasn't been done already, allocate space for the window */ if (state->window == Z_NULL) { state->window = (unsigned char FAR *) ZALLOC(strm, 1U << state->wbits, sizeof(unsigned char)); if (state->window == Z_NULL) return 1; } /* if window not in use yet, initialize */ if (state->wsize == 0) { state->wsize = 1U << state->wbits; state->wnext = 0; state->whave = 0; } /* copy state->wsize or less output bytes into the circular window */ if (copy >= state->wsize) { zmemcpy(state->window, end - state->wsize, state->wsize); state->wnext = 0; state->whave = state->wsize; } else { dist = state->wsize - state->wnext; if (dist > copy) dist = copy; zmemcpy(state->window + state->wnext, end - copy, dist); copy -= dist; if (copy) { zmemcpy(state->window, end - copy, copy); state->wnext = copy; state->whave = state->wsize; } else { state->wnext += dist; if (state->wnext == state->wsize) state->wnext = 0; if (state->whave < state->wsize) state->whave += dist; } } return 0; } /* Macros for inflate(): */ /* check function to use adler32() for zlib or crc32() for gzip */ #ifdef GUNZIP # define UPDATE(check, buf, len) \ (state->flags ? crc32(check, buf, len) : adler32(check, buf, len)) #else # define UPDATE(check, buf, len) adler32(check, buf, len) #endif /* check macros for header crc */ #ifdef GUNZIP # define CRC2(check, word) \ do { \ hbuf[0] = (unsigned char)(word); \ hbuf[1] = (unsigned char)((word) >> 8); \ check = crc32(check, hbuf, 2); \ } while (0) # define CRC4(check, word) \ do { \ hbuf[0] = (unsigned char)(word); \ hbuf[1] = (unsigned char)((word) >> 8); \ hbuf[2] = (unsigned char)((word) >> 16); \ hbuf[3] = (unsigned char)((word) >> 24); \ check = crc32(check, hbuf, 4); \ } while (0) #endif /* Load registers with state in inflate() for speed */ #define LOAD() \ do { \ put = strm->next_out; \ left = strm->avail_out; \ next = strm->next_in; \ have = strm->avail_in; \ hold = state->hold; \ bits = state->bits; \ } while (0) /* Restore state from registers in inflate() */ #define RESTORE() \ do { \ strm->next_out = put; \ strm->avail_out = left; \ strm->next_in = next; \ strm->avail_in = have; \ state->hold = hold; \ state->bits = bits; \ } while (0) /* Clear the input bit accumulator */ #define INITBITS() \ do { \ hold = 0; \ bits = 0; \ } while (0) /* Get a byte of input into the bit accumulator, or return from inflate() if there is no input available. */ #define PULLBYTE() \ do { \ if (have == 0) goto inf_leave; \ have--; \ hold += (unsigned long)(*next++) << bits; \ bits += 8; \ } while (0) /* Assure that there are at least n bits in the bit accumulator. If there is not enough available input to do that, then return from inflate(). */ #define NEEDBITS(n) \ do { \ while (bits < (unsigned)(n)) \ PULLBYTE(); \ } while (0) /* Return the low n bits of the bit accumulator (n < 16) */ #define BITS(n) \ ((unsigned)hold & ((1U << (n)) - 1)) /* Remove n bits from the bit accumulator */ #define DROPBITS(n) \ do { \ hold >>= (n); \ bits -= (unsigned)(n); \ } while (0) /* Remove zero to seven bits as needed to go to a byte boundary */ #define BYTEBITS() \ do { \ hold >>= bits & 7; \ bits -= bits & 7; \ } while (0) /* inflate() uses a state machine to process as much input data and generate as much output data as possible before returning. The state machine is structured roughly as follows: for (;;) switch (state) { ... case STATEn: if (not enough input data or output space to make progress) return; ... make progress ... state = STATEm; break; ... } so when inflate() is called again, the same case is attempted again, and if the appropriate resources are provided, the machine proceeds to the next state. The NEEDBITS() macro is usually the way the state evaluates whether it can proceed or should return. NEEDBITS() does the return if the requested bits are not available. The typical use of the BITS macros is: NEEDBITS(n); ... do something with BITS(n) ... DROPBITS(n); where NEEDBITS(n) either returns from inflate() if there isn't enough input left to load n bits into the accumulator, or it continues. BITS(n) gives the low n bits in the accumulator. When done, DROPBITS(n) drops the low n bits off the accumulator. INITBITS() clears the accumulator and sets the number of available bits to zero. BYTEBITS() discards just enough bits to put the accumulator on a byte boundary. After BYTEBITS() and a NEEDBITS(8), then BITS(8) would return the next byte in the stream. NEEDBITS(n) uses PULLBYTE() to get an available byte of input, or to return if there is no input available. The decoding of variable length codes uses PULLBYTE() directly in order to pull just enough bytes to decode the next code, and no more. Some states loop until they get enough input, making sure that enough state information is maintained to continue the loop where it left off if NEEDBITS() returns in the loop. For example, want, need, and keep would all have to actually be part of the saved state in case NEEDBITS() returns: case STATEw: while (want < need) { NEEDBITS(n); keep[want++] = BITS(n); DROPBITS(n); } state = STATEx; case STATEx: As shown above, if the next state is also the next case, then the break is omitted. A state may also return if there is not enough output space available to complete that state. Those states are copying stored data, writing a literal byte, and copying a matching string. When returning, a "goto inf_leave" is used to update the total counters, update the check value, and determine whether any progress has been made during that inflate() call in order to return the proper return code. Progress is defined as a change in either strm->avail_in or strm->avail_out. When there is a window, goto inf_leave will update the window with the last output written. If a goto inf_leave occurs in the middle of decompression and there is no window currently, goto inf_leave will create one and copy output to the window for the next call of inflate(). In this implementation, the flush parameter of inflate() only affects the return code (per zlib.h). inflate() always writes as much as possible to strm->next_out, given the space available and the provided input--the effect documented in zlib.h of Z_SYNC_FLUSH. Furthermore, inflate() always defers the allocation of and copying into a sliding window until necessary, which provides the effect documented in zlib.h for Z_FINISH when the entire input stream available. So the only thing the flush parameter actually does is: when flush is set to Z_FINISH, inflate() cannot return Z_OK. Instead it will return Z_BUF_ERROR if it has not reached the end of the stream. */ int ZEXPORT inflate(strm, flush) z_streamp strm; int flush; { struct inflate_state FAR *state; z_const unsigned char FAR *next; /* next input */ unsigned char FAR *put; /* next output */ unsigned have, left; /* available input and output */ unsigned long hold; /* bit buffer */ unsigned bits; /* bits in bit buffer */ unsigned in, out; /* save starting available input and output */ unsigned copy; /* number of stored or match bytes to copy */ unsigned char FAR *from; /* where to copy match bytes from */ code here; /* current decoding table entry */ code last; /* parent table entry */ unsigned len; /* length to copy for repeats, bits to drop */ int ret; /* return code */ #ifdef GUNZIP unsigned char hbuf[4]; /* buffer for gzip header crc calculation */ #endif static const unsigned short order[19] = /* permutation of code lengths */ {16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; if (strm == Z_NULL || strm->state == Z_NULL || strm->next_out == Z_NULL || (strm->next_in == Z_NULL && strm->avail_in != 0)) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (state->mode == TYPE) state->mode = TYPEDO; /* skip check */ LOAD(); in = have; out = left; ret = Z_OK; for (;;) switch (state->mode) { case HEAD: if (state->wrap == 0) { state->mode = TYPEDO; break; } NEEDBITS(16); #ifdef GUNZIP if ((state->wrap & 2) && hold == 0x8b1f) { /* gzip header */ state->check = crc32(0L, Z_NULL, 0); CRC2(state->check, hold); INITBITS(); state->mode = FLAGS; break; } state->flags = 0; /* expect zlib header */ if (state->head != Z_NULL) state->head->done = -1; if (!(state->wrap & 1) || /* check if zlib header allowed */ #else if ( #endif ((BITS(8) << 8) + (hold >> 8)) % 31) { strm->msg = (char *)"incorrect header check"; state->mode = BAD; break; } if (BITS(4) != Z_DEFLATED) { strm->msg = (char *)"unknown compression method"; state->mode = BAD; break; } DROPBITS(4); len = BITS(4) + 8; if (state->wbits == 0) state->wbits = len; else if (len > state->wbits) { strm->msg = (char *)"invalid window size"; state->mode = BAD; break; } state->dmax = 1U << len; Tracev((stderr, "inflate: zlib header ok\n")); strm->adler = state->check = adler32(0L, Z_NULL, 0); state->mode = hold & 0x200 ? DICTID : TYPE; INITBITS(); break; #ifdef GUNZIP case FLAGS: NEEDBITS(16); state->flags = (int)(hold); if ((state->flags & 0xff) != Z_DEFLATED) { strm->msg = (char *)"unknown compression method"; state->mode = BAD; break; } if (state->flags & 0xe000) { strm->msg = (char *)"unknown header flags set"; state->mode = BAD; break; } if (state->head != Z_NULL) state->head->text = (int)((hold >> 8) & 1); if (state->flags & 0x0200) CRC2(state->check, hold); INITBITS(); state->mode = TIME; case TIME: NEEDBITS(32); if (state->head != Z_NULL) state->head->time = hold; if (state->flags & 0x0200) CRC4(state->check, hold); INITBITS(); state->mode = OS; case OS: NEEDBITS(16); if (state->head != Z_NULL) { state->head->xflags = (int)(hold & 0xff); state->head->os = (int)(hold >> 8); } if (state->flags & 0x0200) CRC2(state->check, hold); INITBITS(); state->mode = EXLEN;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case EXLEN: if (state->flags & 0x0400) { NEEDBITS(16); state->length = (unsigned)(hold); if (state->head != Z_NULL) state->head->extra_len = (unsigned)hold; if (state->flags & 0x0200) CRC2(state->check, hold); INITBITS(); } else if (state->head != Z_NULL) state->head->extra = Z_NULL; state->mode = EXTRA;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case EXTRA: if (state->flags & 0x0400) { copy = state->length; if (copy > have) copy = have; if (copy) { if (state->head != Z_NULL && state->head->extra != Z_NULL) { len = state->head->extra_len - state->length; zmemcpy(state->head->extra + len, next, len + copy > state->head->extra_max ? state->head->extra_max - len : copy); } if (state->flags & 0x0200) state->check = crc32(state->check, next, copy); have -= copy; next += copy; state->length -= copy; } if (state->length) goto inf_leave; } state->length = 0; state->mode = NAME;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case NAME: if (state->flags & 0x0800) { if (have == 0) goto inf_leave; copy = 0; do { len = (unsigned)(next[copy++]); if (state->head != Z_NULL && state->head->name != Z_NULL && state->length < state->head->name_max) state->head->name[state->length++] = len; } while (len && copy < have); if (state->flags & 0x0200) state->check = crc32(state->check, next, copy); have -= copy; next += copy; if (len) goto inf_leave; } else if (state->head != Z_NULL) state->head->name = Z_NULL; state->length = 0; state->mode = COMMENT;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case COMMENT: if (state->flags & 0x1000) { if (have == 0) goto inf_leave; copy = 0; do { len = (unsigned)(next[copy++]); if (state->head != Z_NULL && state->head->comment != Z_NULL && state->length < state->head->comm_max) state->head->comment[state->length++] = len; } while (len && copy < have); if (state->flags & 0x0200) state->check = crc32(state->check, next, copy); have -= copy; next += copy; if (len) goto inf_leave; } else if (state->head != Z_NULL) state->head->comment = Z_NULL; state->mode = HCRC;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case HCRC: if (state->flags & 0x0200) { NEEDBITS(16); if (hold != (state->check & 0xffff)) { strm->msg = (char *)"header crc mismatch"; state->mode = BAD; break; } INITBITS(); } if (state->head != Z_NULL) { state->head->hcrc = (int)((state->flags >> 9) & 1); state->head->done = 1; } strm->adler = state->check = crc32(0L, Z_NULL, 0); state->mode = TYPE; break; #endif case DICTID: NEEDBITS(32); strm->adler = state->check = ZSWAP32(hold); INITBITS(); state->mode = DICT;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case DICT: if (state->havedict == 0) { RESTORE(); return Z_NEED_DICT; } strm->adler = state->check = adler32(0L, Z_NULL, 0); state->mode = TYPE;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case TYPE: if (flush == Z_BLOCK || flush == Z_TREES) goto inf_leave;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case TYPEDO: if (state->last) { BYTEBITS(); state->mode = CHECK; break; } NEEDBITS(3); state->last = BITS(1); DROPBITS(1); switch (BITS(2)) { case 0: /* stored block */ Tracev((stderr, "inflate: stored block%s\n", state->last ? " (last)" : "")); state->mode = STORED; break; case 1: /* fixed block */ fixedtables(state); Tracev((stderr, "inflate: fixed codes block%s\n", state->last ? " (last)" : "")); state->mode = LEN_; /* decode codes */ if (flush == Z_TREES) { DROPBITS(2); goto inf_leave; } break; case 2: /* dynamic block */ Tracev((stderr, "inflate: dynamic codes block%s\n", state->last ? " (last)" : "")); state->mode = TABLE; break; case 3: strm->msg = (char *)"invalid block type"; state->mode = BAD; } DROPBITS(2); break; case STORED: BYTEBITS(); /* go to byte boundary */ NEEDBITS(32); if ((hold & 0xffff) != ((hold >> 16) ^ 0xffff)) { strm->msg = (char *)"invalid stored block lengths"; state->mode = BAD; break; } state->length = (unsigned)hold & 0xffff; Tracev((stderr, "inflate: stored length %u\n", state->length)); INITBITS(); state->mode = COPY_; if (flush == Z_TREES) goto inf_leave;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case COPY_: state->mode = COPY;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case COPY: copy = state->length; if (copy) { if (copy > have) copy = have; if (copy > left) copy = left; if (copy == 0) goto inf_leave; zmemcpy(put, next, copy); have -= copy; next += copy; left -= copy; put += copy; state->length -= copy; break; } Tracev((stderr, "inflate: stored end\n")); state->mode = TYPE; break; case TABLE: NEEDBITS(14); state->nlen = BITS(5) + 257; DROPBITS(5); state->ndist = BITS(5) + 1; DROPBITS(5); state->ncode = BITS(4) + 4; DROPBITS(4); #ifndef PKZIP_BUG_WORKAROUND if (state->nlen > 286 || state->ndist > 30) { strm->msg = (char *)"too many length or distance symbols"; state->mode = BAD; break; } #endif Tracev((stderr, "inflate: table sizes ok\n")); state->have = 0; state->mode = LENLENS; case LENLENS: while (state->have < state->ncode) { NEEDBITS(3); state->lens[order[state->have++]] = (unsigned short)BITS(3); DROPBITS(3); } while (state->have < 19) state->lens[order[state->have++]] = 0; state->next = state->codes; state->lencode = (const code FAR *)(state->next); state->lenbits = 7; ret = inflate_table(CODES, state->lens, 19, &(state->next), &(state->lenbits), state->work); if (ret) { strm->msg = (char *)"invalid code lengths set"; state->mode = BAD; break; } Tracev((stderr, "inflate: code lengths ok\n")); state->have = 0; state->mode = CODELENS; case CODELENS: while (state->have < state->nlen + state->ndist) { for (;;) { here = state->lencode[BITS(state->lenbits)]; if ((unsigned)(here.bits) <= bits) break; PULLBYTE(); } if (here.val < 16) { DROPBITS(here.bits); state->lens[state->have++] = here.val; } else { if (here.val == 16) { NEEDBITS(here.bits + 2); DROPBITS(here.bits); if (state->have == 0) { strm->msg = (char *)"invalid bit length repeat"; state->mode = BAD; break; } len = state->lens[state->have - 1]; copy = 3 + BITS(2); DROPBITS(2); } else if (here.val == 17) { NEEDBITS(here.bits + 3); DROPBITS(here.bits); len = 0; copy = 3 + BITS(3); DROPBITS(3); } else { NEEDBITS(here.bits + 7); DROPBITS(here.bits); len = 0; copy = 11 + BITS(7); DROPBITS(7); } if (state->have + copy > state->nlen + state->ndist) { strm->msg = (char *)"invalid bit length repeat"; state->mode = BAD; break; } while (copy--) state->lens[state->have++] = (unsigned short)len; } } /* handle error breaks in while */ if (state->mode == BAD) break; /* check for end-of-block code (better have one) */ if (state->lens[256] == 0) { strm->msg = (char *)"invalid code -- missing end-of-block"; state->mode = BAD; break; } /* build code tables -- note: do not change the lenbits or distbits values here (9 and 6) without reading the comments in inftrees.h concerning the ENOUGH constants, which depend on those values */ state->next = state->codes; state->lencode = (const code FAR *)(state->next); state->lenbits = 9; ret = inflate_table(LENS, state->lens, state->nlen, &(state->next), &(state->lenbits), state->work); if (ret) { strm->msg = (char *)"invalid literal/lengths set"; state->mode = BAD; break; } state->distcode = (const code FAR *)(state->next); state->distbits = 6; ret = inflate_table(DISTS, state->lens + state->nlen, state->ndist, &(state->next), &(state->distbits), state->work); if (ret) { strm->msg = (char *)"invalid distances set"; state->mode = BAD; break; } Tracev((stderr, "inflate: codes ok\n")); state->mode = LEN_; if (flush == Z_TREES) goto inf_leave;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case LEN_: state->mode = LEN;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case LEN: if (have >= 6 && left >= 258) { RESTORE(); inflate_fast(strm, out); LOAD(); if (state->mode == TYPE) state->back = -1; break; } state->back = 0; for (;;) { here = state->lencode[BITS(state->lenbits)]; if ((unsigned)(here.bits) <= bits) break; PULLBYTE(); } if (here.op && (here.op & 0xf0) == 0) { last = here; for (;;) { here = state->lencode[last.val + (BITS(last.bits + last.op) >> last.bits)]; if ((unsigned)(last.bits + here.bits) <= bits) break; PULLBYTE(); } DROPBITS(last.bits); state->back += last.bits; } DROPBITS(here.bits); state->back += here.bits; state->length = (unsigned)here.val; if ((int)(here.op) == 0) { Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ? "inflate: literal '%c'\n" : "inflate: literal 0x%02x\n", here.val)); state->mode = LIT; break; } if (here.op & 32) { Tracevv((stderr, "inflate: end of block\n")); state->back = -1; state->mode = TYPE; break; } if (here.op & 64) { strm->msg = (char *)"invalid literal/length code"; state->mode = BAD; break; } state->extra = (unsigned)(here.op) & 15; state->mode = LENEXT;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case LENEXT: if (state->extra) { NEEDBITS(state->extra); state->length += BITS(state->extra); DROPBITS(state->extra); state->back += state->extra; } Tracevv((stderr, "inflate: length %u\n", state->length)); state->was = state->length; state->mode = DIST;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case DIST: for (;;) { here = state->distcode[BITS(state->distbits)]; if ((unsigned)(here.bits) <= bits) break; PULLBYTE(); } if ((here.op & 0xf0) == 0) { last = here; for (;;) { here = state->distcode[last.val + (BITS(last.bits + last.op) >> last.bits)]; if ((unsigned)(last.bits + here.bits) <= bits) break; PULLBYTE(); } DROPBITS(last.bits); state->back += last.bits; } DROPBITS(here.bits); state->back += here.bits; if (here.op & 64) { strm->msg = (char *)"invalid distance code"; state->mode = BAD; break; } state->offset = (unsigned)here.val; state->extra = (unsigned)(here.op) & 15; state->mode = DISTEXT;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case DISTEXT: if (state->extra) { NEEDBITS(state->extra); state->offset += BITS(state->extra); DROPBITS(state->extra); state->back += state->extra; } #ifdef INFLATE_STRICT if (state->offset > state->dmax) { strm->msg = (char *)"invalid distance too far back"; state->mode = BAD; break; } #endif Tracevv((stderr, "inflate: distance %u\n", state->offset)); state->mode = MATCH;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case MATCH: if (left == 0) goto inf_leave; copy = out - left; if (state->offset > copy) { /* copy from window */ copy = state->offset - copy; if (copy > state->whave) { if (state->sane) { strm->msg = (char *)"invalid distance too far back"; state->mode = BAD; break; } #ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR Trace((stderr, "inflate.c too far\n")); copy -= state->whave; if (copy > state->length) copy = state->length; if (copy > left) copy = left; left -= copy; state->length -= copy; do { *put++ = 0; } while (--copy); if (state->length == 0) state->mode = LEN; break; #endif } if (copy > state->wnext) { copy -= state->wnext; from = state->window + (state->wsize - copy); } else from = state->window + (state->wnext - copy); if (copy > state->length) copy = state->length; } else { /* copy from output */ from = put - state->offset; copy = state->length; } if (copy > left) copy = left; left -= copy; state->length -= copy; do { *put++ = *from++; } while (--copy); if (state->length == 0) state->mode = LEN; break; case LIT: if (left == 0) goto inf_leave; *put++ = (unsigned char)(state->length); left--; state->mode = LEN; break; case CHECK: if (state->wrap) { NEEDBITS(32); out -= left; strm->total_out += out; state->total += out; if (out) strm->adler = state->check = UPDATE(state->check, put - out, out); out = left; if (( #ifdef GUNZIP state->flags ? hold : #endif ZSWAP32(hold)) != state->check) { strm->msg = (char *)"incorrect data check"; state->mode = BAD; break; } INITBITS(); Tracev((stderr, "inflate: check matches trailer\n")); } #ifdef GUNZIP state->mode = LENGTH;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case LENGTH: if (state->wrap && state->flags) { NEEDBITS(32); if (hold != (state->total & 0xffffffffUL)) { strm->msg = (char *)"incorrect length check"; state->mode = BAD; break; } INITBITS(); Tracev((stderr, "inflate: length matches trailer\n")); } #endif state->mode = DONE;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case DONE: ret = Z_STREAM_END; goto inf_leave; case BAD: ret = Z_DATA_ERROR; goto inf_leave; case MEM: return Z_MEM_ERROR; case SYNC: default: return Z_STREAM_ERROR; } /* Return from inflate(), updating the total counts and the check value. If there was no progress during the inflate() call, return a buffer error. Call updatewindow() to create and/or update the window state. Note: a memory error from inflate() is non-recoverable. */ inf_leave: RESTORE(); if (state->wsize || (out != strm->avail_out && state->mode < BAD && (state->mode < CHECK || flush != Z_FINISH))) if (updatewindow(strm, strm->next_out, out - strm->avail_out)) { state->mode = MEM; return Z_MEM_ERROR; } in -= strm->avail_in; out -= strm->avail_out; strm->total_in += in; strm->total_out += out; state->total += out; if (state->wrap && out) strm->adler = state->check = UPDATE(state->check, strm->next_out - out, out); strm->data_type = state->bits + (state->last ? 64 : 0) + (state->mode == TYPE ? 128 : 0) + (state->mode == LEN_ || state->mode == COPY_ ? 256 : 0); if (((in == 0 && out == 0) || flush == Z_FINISH) && ret == Z_OK) ret = Z_BUF_ERROR; return ret; } int ZEXPORT inflateEnd(strm) z_streamp strm; { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL || strm->zfree == (free_func)0) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (state->window != Z_NULL) ZFREE(strm, state->window); ZFREE(strm, strm->state); strm->state = Z_NULL; Tracev((stderr, "inflate: end\n")); return Z_OK; } int ZEXPORT inflateGetDictionary(strm, dictionary, dictLength) z_streamp strm; Bytef *dictionary; uInt *dictLength; { struct inflate_state FAR *state; /* check state */ if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; /* copy dictionary */ if (state->whave && dictionary != Z_NULL) { zmemcpy(dictionary, state->window + state->wnext, state->whave - state->wnext); zmemcpy(dictionary + state->whave - state->wnext, state->window, state->wnext); } if (dictLength != Z_NULL) *dictLength = state->whave; return Z_OK; } int ZEXPORT inflateSetDictionary(strm, dictionary, dictLength) z_streamp strm; const Bytef *dictionary; uInt dictLength; { struct inflate_state FAR *state; unsigned long dictid; int ret; /* check state */ if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (state->wrap != 0 && state->mode != DICT) return Z_STREAM_ERROR; /* check for correct dictionary identifier */ if (state->mode == DICT) { dictid = adler32(0L, Z_NULL, 0); dictid = adler32(dictid, dictionary, dictLength); if (dictid != state->check) return Z_DATA_ERROR; } /* copy dictionary to window using updatewindow(), which will amend the existing dictionary if appropriate */ ret = updatewindow(strm, dictionary + dictLength, dictLength); if (ret) { state->mode = MEM; return Z_MEM_ERROR; } state->havedict = 1; Tracev((stderr, "inflate: dictionary set\n")); return Z_OK; } int ZEXPORT inflateGetHeader(strm, head) z_streamp strm; gz_headerp head; { struct inflate_state FAR *state; /* check state */ if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if ((state->wrap & 2) == 0) return Z_STREAM_ERROR; /* save header structure */ state->head = head; head->done = 0; return Z_OK; } /* Search buf[0..len-1] for the pattern: 0, 0, 0xff, 0xff. Return when found or when out of input. When called, *have is the number of pattern bytes found in order so far, in 0..3. On return *have is updated to the new state. If on return *have equals four, then the pattern was found and the return value is how many bytes were read including the last byte of the pattern. If *have is less than four, then the pattern has not been found yet and the return value is len. In the latter case, syncsearch() can be called again with more data and the *have state. *have is initialized to zero for the first call. */ local unsigned syncsearch(have, buf, len) unsigned FAR *have; const unsigned char FAR *buf; unsigned len; { unsigned got; unsigned next; got = *have; next = 0; while (next < len && got < 4) { if ((int)(buf[next]) == (got < 2 ? 0 : 0xff)) got++; else if (buf[next]) got = 0; else got = 4 - got; next++; } *have = got; return next; } int ZEXPORT inflateSync(strm) z_streamp strm; { unsigned len; /* number of bytes to look at or looked at */ unsigned long in, out; /* temporary to save total_in and total_out */ unsigned char buf[4]; /* to restore bit buffer to byte string */ struct inflate_state FAR *state; /* check parameters */ if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (strm->avail_in == 0 && state->bits < 8) return Z_BUF_ERROR; /* if first time, start search in bit buffer */ if (state->mode != SYNC) { state->mode = SYNC; state->hold <<= state->bits & 7; state->bits -= state->bits & 7; len = 0; while (state->bits >= 8) { buf[len++] = (unsigned char)(state->hold); state->hold >>= 8; state->bits -= 8; } state->have = 0; syncsearch(&(state->have), buf, len); } /* search available input */ len = syncsearch(&(state->have), strm->next_in, strm->avail_in); strm->avail_in -= len; strm->next_in += len; strm->total_in += len; /* return no joy or set up to restart inflate() on a new block */ if (state->have != 4) return Z_DATA_ERROR; in = strm->total_in; out = strm->total_out; inflateReset(strm); strm->total_in = in; strm->total_out = out; state->mode = TYPE; return Z_OK; } /* Returns true if inflate is currently at the end of a block generated by Z_SYNC_FLUSH or Z_FULL_FLUSH. This function is used by one PPP implementation to provide an additional safety check. PPP uses Z_SYNC_FLUSH but removes the length bytes of the resulting empty stored block. When decompressing, PPP checks that at the end of input packet, inflate is waiting for these length bytes. */ int ZEXPORT inflateSyncPoint(strm) z_streamp strm; { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; return state->mode == STORED && state->bits == 0; } int ZEXPORT inflateCopy(dest, source) z_streamp dest; z_streamp source; { struct inflate_state FAR *state; struct inflate_state FAR *copy; unsigned char FAR *window; unsigned wsize; /* check input */ if (dest == Z_NULL || source == Z_NULL || source->state == Z_NULL || source->zalloc == (alloc_func)0 || source->zfree == (free_func)0) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)source->state; /* allocate space */ copy = (struct inflate_state FAR *) ZALLOC(source, 1, sizeof(struct inflate_state)); if (copy == Z_NULL) return Z_MEM_ERROR; window = Z_NULL; if (state->window != Z_NULL) { window = (unsigned char FAR *) ZALLOC(source, 1U << state->wbits, sizeof(unsigned char)); if (window == Z_NULL) { ZFREE(source, copy); return Z_MEM_ERROR; } } /* copy state */ zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream)); zmemcpy((voidpf)copy, (voidpf)state, sizeof(struct inflate_state)); if (state->lencode >= state->codes && state->lencode <= state->codes + ENOUGH - 1) { copy->lencode = copy->codes + (state->lencode - state->codes); copy->distcode = copy->codes + (state->distcode - state->codes); } copy->next = copy->codes + (state->next - state->codes); if (window != Z_NULL) { wsize = 1U << state->wbits; zmemcpy(window, state->window, wsize); } copy->window = window; dest->state = (struct internal_state FAR *)copy; return Z_OK; } int ZEXPORT inflateUndermine(strm, subvert) z_streamp strm; int subvert; { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; state->sane = !subvert; #ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR return Z_OK; #else state->sane = 1; return Z_DATA_ERROR; #endif } long ZEXPORT inflateMark(strm) z_streamp strm; { struct inflate_state FAR *state; //TK: Applied the following fix (also in actual zlib devel branch): if (strm == Z_NULL || strm->state == Z_NULL) return (long)(((unsigned long)0 - 1) << 16); //TK: Code was (but clang 7.3 warns about bitshifting negative numbers): //if (strm == Z_NULL || strm->state == Z_NULL) return -1L << 16; state = (struct inflate_state FAR *)strm->state; return ((long)(state->back) << 16) + (state->mode == COPY ? state->length : (state->mode == MATCH ? state->was - state->length : 0)); } /* END OF DUMP OF mz_inflate.c*/ /* START OF DUMP OF mz_inffast.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* inffast.c -- fast decoding * Copyright (C) 1995-2008, 2010, 2013 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ #ifndef ASMINF /* Allow machine dependent optimization for post-increment or pre-increment. Based on testing to date, Pre-increment preferred for: - PowerPC G3 (Adler) - MIPS R5000 (Randers-Pehrson) Post-increment preferred for: - none No measurable difference: - Pentium III (Anderson) - M68060 (Nikl) */ #ifdef POSTINC # define OFF 0 # define PUP(a) *(a)++ #else # define OFF 1 # define PUP(a) *++(a) #endif /* Decode literal, length, and distance codes and write out the resulting literal and match bytes until either not enough input or output is available, an end-of-block is encountered, or a data error is encountered. When large enough input and output buffers are supplied to inflate(), for example, a 16K input buffer and a 64K output buffer, more than 95% of the inflate execution time is spent in this routine. Entry assumptions: state->mode == LEN strm->avail_in >= 6 strm->avail_out >= 258 start >= strm->avail_out state->bits < 8 On return, state->mode is one of: LEN -- ran out of enough output space or enough available input TYPE -- reached end of block code, inflate() to interpret next block BAD -- error in block data Notes: - The maximum input bits used by a length/distance pair is 15 bits for the length code, 5 bits for the length extra, 15 bits for the distance code, and 13 bits for the distance extra. This totals 48 bits, or six bytes. Therefore if strm->avail_in >= 6, then there is enough input to avoid checking for available input while decoding. - The maximum bytes that a single length/distance pair can output is 258 bytes, which is the maximum length that can be coded. inflate_fast() requires strm->avail_out >= 258 for each loop to avoid checking for output space. */ void ZLIB_INTERNAL inflate_fast(strm, start) z_streamp strm; unsigned start; /* inflate()'s starting value for strm->avail_out */ { struct inflate_state FAR *state; z_const unsigned char FAR *in; /* local strm->next_in */ z_const unsigned char FAR *last; /* have enough input while in < last */ unsigned char FAR *out; /* local strm->next_out */ unsigned char FAR *beg; /* inflate()'s initial strm->next_out */ unsigned char FAR *end; /* while out < end, enough space available */ #ifdef INFLATE_STRICT unsigned dmax; /* maximum distance from zlib header */ #endif unsigned wsize; /* window size or zero if not using window */ unsigned whave; /* valid bytes in the window */ unsigned wnext; /* window write index */ unsigned char FAR *window; /* allocated sliding window, if wsize != 0 */ unsigned long hold; /* local strm->hold */ unsigned bits; /* local strm->bits */ code const FAR *lcode; /* local strm->lencode */ code const FAR *dcode; /* local strm->distcode */ unsigned lmask; /* mask for first level of length codes */ unsigned dmask; /* mask for first level of distance codes */ code here; /* retrieved table entry */ unsigned op; /* code bits, operation, extra bits, or */ /* window position, window bytes to copy */ unsigned len; /* match length, unused bytes */ unsigned dist; /* match distance */ unsigned char FAR *from; /* where to copy match from */ /* copy state to local variables */ state = (struct inflate_state FAR *)strm->state; in = strm->next_in - OFF; last = in + (strm->avail_in - 5); out = strm->next_out - OFF; beg = out - (start - strm->avail_out); end = out + (strm->avail_out - 257); #ifdef INFLATE_STRICT dmax = state->dmax; #endif wsize = state->wsize; whave = state->whave; wnext = state->wnext; window = state->window; hold = state->hold; bits = state->bits; lcode = state->lencode; dcode = state->distcode; lmask = (1U << state->lenbits) - 1; dmask = (1U << state->distbits) - 1; /* decode literals and length/distances until end-of-block or not enough input data or output space */ do { if (bits < 15) { hold += (unsigned long)(PUP(in)) << bits; bits += 8; hold += (unsigned long)(PUP(in)) << bits; bits += 8; } here = lcode[hold & lmask]; dolen: op = (unsigned)(here.bits); hold >>= op; bits -= op; op = (unsigned)(here.op); if (op == 0) { /* literal */ Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ? "inflate: literal '%c'\n" : "inflate: literal 0x%02x\n", here.val)); PUP(out) = (unsigned char)(here.val); } else if (op & 16) { /* length base */ len = (unsigned)(here.val); op &= 15; /* number of extra bits */ if (op) { if (bits < op) { hold += (unsigned long)(PUP(in)) << bits; bits += 8; } len += (unsigned)hold & ((1U << op) - 1); hold >>= op; bits -= op; } Tracevv((stderr, "inflate: length %u\n", len)); if (bits < 15) { hold += (unsigned long)(PUP(in)) << bits; bits += 8; hold += (unsigned long)(PUP(in)) << bits; bits += 8; } here = dcode[hold & dmask]; dodist: op = (unsigned)(here.bits); hold >>= op; bits -= op; op = (unsigned)(here.op); if (op & 16) { /* distance base */ dist = (unsigned)(here.val); op &= 15; /* number of extra bits */ if (bits < op) { hold += (unsigned long)(PUP(in)) << bits; bits += 8; if (bits < op) { hold += (unsigned long)(PUP(in)) << bits; bits += 8; } } dist += (unsigned)hold & ((1U << op) - 1); #ifdef INFLATE_STRICT if (dist > dmax) { strm->msg = (char *)"invalid distance too far back"; state->mode = BAD; break; } #endif hold >>= op; bits -= op; Tracevv((stderr, "inflate: distance %u\n", dist)); op = (unsigned)(out - beg); /* max distance in output */ if (dist > op) { /* see if copy from window */ op = dist - op; /* distance back in window */ if (op > whave) { if (state->sane) { strm->msg = (char *)"invalid distance too far back"; state->mode = BAD; break; } #ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR if (len <= op - whave) { do { PUP(out) = 0; } while (--len); continue; } len -= op - whave; do { PUP(out) = 0; } while (--op > whave); if (op == 0) { from = out - dist; do { PUP(out) = PUP(from); } while (--len); continue; } #endif } from = window - OFF; if (wnext == 0) { /* very common case */ from += wsize - op; if (op < len) { /* some from window */ len -= op; do { PUP(out) = PUP(from); } while (--op); from = out - dist; /* rest from output */ } } else if (wnext < op) { /* wrap around window */ from += wsize + wnext - op; op -= wnext; if (op < len) { /* some from end of window */ len -= op; do { PUP(out) = PUP(from); } while (--op); from = window - OFF; if (wnext < len) { /* some from start of window */ op = wnext; len -= op; do { PUP(out) = PUP(from); } while (--op); from = out - dist; /* rest from output */ } } } else { /* contiguous in window */ from += wnext - op; if (op < len) { /* some from window */ len -= op; do { PUP(out) = PUP(from); } while (--op); from = out - dist; /* rest from output */ } } while (len > 2) { PUP(out) = PUP(from); PUP(out) = PUP(from); PUP(out) = PUP(from); len -= 3; } if (len) { PUP(out) = PUP(from); if (len > 1) PUP(out) = PUP(from); } } else { from = out - dist; /* copy direct from output */ do { /* minimum length is three */ PUP(out) = PUP(from); PUP(out) = PUP(from); PUP(out) = PUP(from); len -= 3; } while (len > 2); if (len) { PUP(out) = PUP(from); if (len > 1) PUP(out) = PUP(from); } } } else if ((op & 64) == 0) { /* 2nd level distance code */ here = dcode[here.val + (hold & ((1U << op) - 1))]; goto dodist; } else { strm->msg = (char *)"invalid distance code"; state->mode = BAD; break; } } else if ((op & 64) == 0) { /* 2nd level length code */ here = lcode[here.val + (hold & ((1U << op) - 1))]; goto dolen; } else if (op & 32) { /* end-of-block */ Tracevv((stderr, "inflate: end of block\n")); state->mode = TYPE; break; } else { strm->msg = (char *)"invalid literal/length code"; state->mode = BAD; break; } } while (in < last && out < end); /* return unused bytes (on entry, bits < 8, so in won't go too far back) */ len = bits >> 3; in -= len; bits -= len << 3; hold &= (1U << bits) - 1; /* update state and return */ strm->next_in = in + OFF; strm->next_out = out + OFF; strm->avail_in = (unsigned)(in < last ? 5 + (last - in) : 5 - (in - last)); strm->avail_out = (unsigned)(out < end ? 257 + (end - out) : 257 - (out - end)); state->hold = hold; state->bits = bits; return; } /* inflate_fast() speedups that turned out slower (on a PowerPC G3 750CXe): - Using bit fields for code structure - Different op definition to avoid & for extra bits (do & for table bits) - Three separate decoding do-loops for direct, window, and wnext == 0 - Special case for distance > 1 copies to do overlapped load and store copy - Explicit branch predictions (based on measured branch probabilities) - Deferring match copy and interspersed it with decoding subsequent codes - Swapping literal/length else - Swapping window/direct else - Larger unrolled copy loops (three is about right) - Moving len -= 3 statement into middle of loop */ #endif /* !ASMINF */ /* END OF DUMP OF mz_inffast.c*/ /* START OF DUMP OF mz_gzwrite.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* gzwrite.c -- zlib functions for writing gzip files * Copyright (C) 2004, 2005, 2010, 2011, 2012, 2013 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* START OF DUMP OF mz_gzguts.h*/ /* gzguts.h -- zlib internal header definitions for gz* operations * Copyright (C) 2004, 2005, 2010, 2011, 2012, 2013 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ #include //ADDED BY TK #include //ADDED BY TK #include //ADDED BY TK #ifdef _LARGEFILE64_SOURCE # ifndef _LARGEFILE_SOURCE # define _LARGEFILE_SOURCE 1 # endif # ifdef _FILE_OFFSET_BITS # undef _FILE_OFFSET_BITS # endif #endif #ifdef HAVE_HIDDEN # define ZLIB_INTERNAL __attribute__((visibility ("hidden"))) #else # define ZLIB_INTERNAL #endif #include #ifdef STDC # include # include # include #endif #include #ifdef _WIN32 # include #endif #if defined(__TURBOC__) || defined(_MSC_VER) || defined(_WIN32) # include #endif #ifdef WINAPI_FAMILY # define open _open # define read _read # define write _write # define close _close #endif #ifdef NO_DEFLATE /* for compatibility with old definition */ # define NO_GZCOMPRESS #endif #if defined(STDC99) || (defined(__TURBOC__) && __TURBOC__ >= 0x550) # ifndef HAVE_VSNPRINTF # define HAVE_VSNPRINTF # endif #endif #if defined(__CYGWIN__) # ifndef HAVE_VSNPRINTF # define HAVE_VSNPRINTF # endif #endif #if defined(MSDOS) && defined(__BORLANDC__) && (BORLANDC > 0x410) # ifndef HAVE_VSNPRINTF # define HAVE_VSNPRINTF # endif #endif #ifndef HAVE_VSNPRINTF # ifdef MSDOS /* vsnprintf may exist on some MS-DOS compilers (DJGPP?), but for now we just assume it doesn't. */ # define NO_vsnprintf # endif # ifdef __TURBOC__ # define NO_vsnprintf # endif # ifdef WIN32 /* In Win32, vsnprintf is available as the "non-ANSI" _vsnprintf. */ # if !defined(vsnprintf) && !defined(NO_vsnprintf) # if !defined(_MSC_VER) || ( defined(_MSC_VER) && _MSC_VER < 1500 ) # define vsnprintf _vsnprintf # endif # endif # endif # ifdef __SASC # define NO_vsnprintf # endif # ifdef VMS # define NO_vsnprintf # endif # ifdef __OS400__ # define NO_vsnprintf # endif # ifdef __MVS__ # define NO_vsnprintf # endif #endif /* unlike snprintf (which is required in C99, yet still not supported by Microsoft more than a decade later!), _snprintf does not guarantee null termination of the result -- however this is only used in gzlib.c where the result is assured to fit in the space provided */ #ifdef _MSC_VER # define snprintf _snprintf #endif #ifndef local # define local static #endif /* compile with -Dlocal if your debugger can't find static symbols */ /* gz* functions always use library allocation functions */ #ifndef STDC extern voidp malloc OF((uInt size)); extern void free OF((voidpf ptr)); #endif /* get errno and strerror definition */ #if defined UNDER_CE # include # define zstrerror() gz_strwinerror((DWORD)GetLastError()) #else # ifndef NO_STRERROR # include # define zstrerror() strerror(errno) # else # define zstrerror() "stdio error (consult errno)" # endif #endif /* provide prototypes for these when building zlib without LFS */ #if !defined(_LARGEFILE64_SOURCE) || _LFS64_LARGEFILE-0 == 0 ZEXTERN gzFile ZEXPORT gzopen64 OF((const char *, const char *)); ZEXTERN z_off64_t ZEXPORT gzseek64 OF((gzFile, z_off64_t, int)); ZEXTERN z_off64_t ZEXPORT gztell64 OF((gzFile)); ZEXTERN z_off64_t ZEXPORT gzoffset64 OF((gzFile)); #endif /* default memLevel */ #if MAX_MEM_LEVEL >= 8 # define DEF_MEM_LEVEL 8 #else # define DEF_MEM_LEVEL MAX_MEM_LEVEL #endif /* default i/o buffer size -- double this for output when reading (this and twice this must be able to fit in an unsigned type) */ #define GZBUFSIZE 8192 /* gzip modes, also provide a little integrity check on the passed structure */ #define GZ_NONE 0 #define GZ_READ 7247 #define GZ_WRITE 31153 #define GZ_APPEND 1 /* mode set to GZ_WRITE after the file is opened */ /* values for gz_state how */ #define LOOK 0 /* look for a gzip header */ #define COPY 1 /* copy input directly */ #define GZIP 2 /* decompress a gzip stream */ /* internal gzip file state data structure */ typedef struct { /* exposed contents for gzgetc() macro */ struct gzFile_s x; /* "x" for exposed */ /* x.have: number of bytes available at x.next */ /* x.next: next output data to deliver or write */ /* x.pos: current position in uncompressed data */ /* used for both reading and writing */ int mode; /* see gzip modes above */ int fd; /* file descriptor */ char *path; /* path or fd for error messages */ unsigned size; /* buffer size, zero if not allocated yet */ unsigned want; /* requested buffer size, default is GZBUFSIZE */ unsigned char *in; /* input buffer */ unsigned char *out; /* output buffer (double-sized when reading) */ int direct; /* 0 if processing gzip, 1 if transparent */ /* just for reading */ int how; /* 0: get header, 1: copy, 2: decompress */ z_off64_t start; /* where the gzip data started, for rewinding */ int eof; /* true if end of input file reached */ int past; /* true if read requested past end */ /* just for writing */ int level; /* compression level */ int strategy; /* compression strategy */ /* seek request */ z_off64_t skip; /* amount to skip (already rewound if backwards) */ int seek; /* true if seek request pending */ /* error information */ int err; /* error code */ char *msg; /* error message */ /* zlib inflate or deflate stream */ z_stream strm; /* stream structure in-place (not a pointer) */ } gz_state; typedef gz_state FAR *gz_statep; /* shared functions */ void ZLIB_INTERNAL gz_error OF((gz_statep, int, const char *)); #if defined UNDER_CE char ZLIB_INTERNAL *gz_strwinerror OF((DWORD error)); #endif /* GT_OFF(x), where x is an unsigned value, is true if x > maximum z_off64_t value -- needed when comparing unsigned to z_off64_t, which is signed (possible z_off64_t types off_t, off64_t, and long are all signed) */ #ifdef INT_MAX # define GT_OFF(x) (sizeof(int) == sizeof(z_off64_t) && (x) > INT_MAX) #else unsigned ZLIB_INTERNAL gz_intmax OF((void)); # define GT_OFF(x) (sizeof(int) == sizeof(z_off64_t) && (x) > gz_intmax()) #endif /* END OF DUMP OF mz_gzguts.h*/ /* Local functions */ local int gz_init OF((gz_statep)); local int gz_comp OF((gz_statep, int)); local int gz_zero OF((gz_statep, z_off64_t)); /* Initialize state for writing a gzip file. Mark initialization by setting state->size to non-zero. Return -1 on failure or 0 on success. */ local int gz_init(state) gz_statep state; { int ret; z_streamp strm = &(state->strm); /* allocate input buffer */ state->in = (unsigned char *)malloc(state->want); if (state->in == NULL) { gz_error(state, Z_MEM_ERROR, "out of memory"); return -1; } /* only need output buffer and deflate state if compressing */ if (!state->direct) { /* allocate output buffer */ state->out = (unsigned char *)malloc(state->want); if (state->out == NULL) { free(state->in); gz_error(state, Z_MEM_ERROR, "out of memory"); return -1; } /* allocate deflate memory, set up for gzip compression */ strm->zalloc = Z_NULL; strm->zfree = Z_NULL; strm->opaque = Z_NULL; ret = deflateInit2(strm, state->level, Z_DEFLATED, MAX_WBITS + 16, DEF_MEM_LEVEL, state->strategy); if (ret != Z_OK) { free(state->out); free(state->in); gz_error(state, Z_MEM_ERROR, "out of memory"); return -1; } } /* mark state as initialized */ state->size = state->want; /* initialize write buffer if compressing */ if (!state->direct) { strm->avail_out = state->size; strm->next_out = state->out; state->x.next = strm->next_out; } return 0; } /* Compress whatever is at avail_in and next_in and write to the output file. Return -1 if there is an error writing to the output file, otherwise 0. flush is assumed to be a valid deflate() flush value. If flush is Z_FINISH, then the deflate() state is reset to start a new gzip stream. If gz->direct is true, then simply write to the output file without compressing, and ignore flush. */ local int gz_comp(state, flush) gz_statep state; int flush; { int ret, got; unsigned have; z_streamp strm = &(state->strm); /* allocate memory if this is the first time through */ if (state->size == 0 && gz_init(state) == -1) return -1; /* write directly if requested */ if (state->direct) { got = write(state->fd, strm->next_in, strm->avail_in); if (got < 0 || (unsigned)got != strm->avail_in) { gz_error(state, Z_ERRNO, zstrerror()); return -1; } strm->avail_in = 0; return 0; } /* run deflate() on provided input until it produces no more output */ ret = Z_OK; do { /* write out current buffer contents if full, or if flushing, but if doing Z_FINISH then don't write until we get to Z_STREAM_END */ if (strm->avail_out == 0 || (flush != Z_NO_FLUSH && (flush != Z_FINISH || ret == Z_STREAM_END))) { have = (unsigned)(strm->next_out - state->x.next); if (have && ((got = write(state->fd, state->x.next, have)) < 0 || (unsigned)got != have)) { gz_error(state, Z_ERRNO, zstrerror()); return -1; } if (strm->avail_out == 0) { strm->avail_out = state->size; strm->next_out = state->out; } state->x.next = strm->next_out; } /* compress */ have = strm->avail_out; ret = deflate(strm, flush); if (ret == Z_STREAM_ERROR) { gz_error(state, Z_STREAM_ERROR, "internal error: deflate stream corrupt"); return -1; } have -= strm->avail_out; } while (have); /* if that completed a deflate stream, allow another to start */ if (flush == Z_FINISH) deflateReset(strm); /* all done, no errors */ return 0; } /* Compress len zeros to output. Return -1 on error, 0 on success. */ local int gz_zero(state, len) gz_statep state; z_off64_t len; { int first; unsigned n; z_streamp strm = &(state->strm); /* consume whatever's left in the input buffer */ if (strm->avail_in && gz_comp(state, Z_NO_FLUSH) == -1) return -1; /* compress len zeros (len guaranteed > 0) */ first = 1; while (len) { n = GT_OFF(state->size) || (z_off64_t)state->size > len ? (unsigned)len : state->size; if (first) { memset(state->in, 0, n); first = 0; } strm->avail_in = n; strm->next_in = state->in; state->x.pos += n; if (gz_comp(state, Z_NO_FLUSH) == -1) return -1; len -= n; } return 0; } /* -- see zlib.h -- */ int ZEXPORT gzwrite(file, buf, len) gzFile file; voidpc buf; unsigned len; { unsigned put = len; gz_statep state; z_streamp strm; /* get internal structure */ if (file == NULL) return 0; state = (gz_statep)file; strm = &(state->strm); /* check that we're writing and that there's no error */ if (state->mode != GZ_WRITE || state->err != Z_OK) return 0; /* since an int is returned, make sure len fits in one, otherwise return with an error (this avoids the flaw in the interface) */ if ((int)len < 0) { gz_error(state, Z_DATA_ERROR, "requested length does not fit in int"); return 0; } /* if len is zero, avoid unnecessary operations */ if (len == 0) return 0; /* allocate memory if this is the first time through */ if (state->size == 0 && gz_init(state) == -1) return 0; /* check for seek request */ if (state->seek) { state->seek = 0; if (gz_zero(state, state->skip) == -1) return 0; } /* for small len, copy to input buffer, otherwise compress directly */ if (len < state->size) { /* copy to input buffer, compress when full */ do { unsigned have, copy; if (strm->avail_in == 0) strm->next_in = state->in; have = (unsigned)((strm->next_in + strm->avail_in) - state->in); copy = state->size - have; if (copy > len) copy = len; memcpy(state->in + have, buf, copy); strm->avail_in += copy; state->x.pos += copy; buf = (const char *)buf + copy; len -= copy; if (len && gz_comp(state, Z_NO_FLUSH) == -1) return 0; } while (len); } else { /* consume whatever's left in the input buffer */ if (strm->avail_in && gz_comp(state, Z_NO_FLUSH) == -1) return 0; /* directly compress user buffer to file */ strm->avail_in = len; strm->next_in = (z_const Bytef *)buf; state->x.pos += len; if (gz_comp(state, Z_NO_FLUSH) == -1) return 0; } /* input was all buffered or compressed (put will fit in int) */ return (int)put; } /* -- see zlib.h -- */ int ZEXPORT gzputc(file, c) gzFile file; int c; { unsigned have; unsigned char buf[1]; gz_statep state; z_streamp strm; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; strm = &(state->strm); /* check that we're writing and that there's no error */ if (state->mode != GZ_WRITE || state->err != Z_OK) return -1; /* check for seek request */ if (state->seek) { state->seek = 0; if (gz_zero(state, state->skip) == -1) return -1; } /* try writing to input buffer for speed (state->size == 0 if buffer not initialized) */ if (state->size) { if (strm->avail_in == 0) strm->next_in = state->in; have = (unsigned)((strm->next_in + strm->avail_in) - state->in); if (have < state->size) { state->in[have] = c; strm->avail_in++; state->x.pos++; return c & 0xff; } } /* no room in buffer or not initialized, use gz_write() */ buf[0] = c; if (gzwrite(file, buf, 1) != 1) return -1; return c & 0xff; } /* -- see zlib.h -- */ int ZEXPORT gzputs(file, str) gzFile file; const char *str; { int ret; unsigned len; /* write string */ len = (unsigned)strlen(str); ret = gzwrite(file, str, len); return ret == 0 && len != 0 ? -1 : ret; } #if defined(STDC) || defined(Z_HAVE_STDARG_H) #include /* -- see zlib.h -- */ int ZEXPORTVA gzvprintf(gzFile file, const char *format, va_list va) { int size, len; gz_statep state; z_streamp strm; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; strm = &(state->strm); /* check that we're writing and that there's no error */ if (state->mode != GZ_WRITE || state->err != Z_OK) return 0; /* make sure we have some buffer space */ if (state->size == 0 && gz_init(state) == -1) return 0; /* check for seek request */ if (state->seek) { state->seek = 0; if (gz_zero(state, state->skip) == -1) return 0; } /* consume whatever's left in the input buffer */ if (strm->avail_in && gz_comp(state, Z_NO_FLUSH) == -1) return 0; /* do the printf() into the input buffer, put length in len */ size = (int)(state->size); state->in[size - 1] = 0; #ifdef NO_vsnprintf # ifdef HAS_vsprintf_void (void)vsprintf((char *)(state->in), format, va); for (len = 0; len < size; len++) if (state->in[len] == 0) break; # else len = vsprintf((char *)(state->in), format, va); # endif #else # ifdef HAS_vsnprintf_void (void)vsnprintf((char *)(state->in), size, format, va); len = strlen((char *)(state->in)); # else len = vsnprintf((char *)(state->in), size, format, va); # endif #endif /* check that printf() results fit in buffer */ if (len <= 0 || len >= (int)size || state->in[size - 1] != 0) return 0; /* update buffer and position, defer compression until needed */ strm->avail_in = (unsigned)len; strm->next_in = state->in; state->x.pos += len; return len; } int ZEXPORTVA gzprintf(gzFile file, const char *format, ...) { va_list va; int ret; va_start(va, format); ret = gzvprintf(file, format, va); va_end(va); return ret; } #else /* !STDC && !Z_HAVE_STDARG_H */ /* -- see zlib.h -- */ int ZEXPORTVA gzprintf (file, format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20) gzFile file; const char *format; int a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20; { int size, len; gz_statep state; z_streamp strm; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; strm = &(state->strm); /* check that can really pass pointer in ints */ if (sizeof(int) != sizeof(void *)) return 0; /* check that we're writing and that there's no error */ if (state->mode != GZ_WRITE || state->err != Z_OK) return 0; /* make sure we have some buffer space */ if (state->size == 0 && gz_init(state) == -1) return 0; /* check for seek request */ if (state->seek) { state->seek = 0; if (gz_zero(state, state->skip) == -1) return 0; } /* consume whatever's left in the input buffer */ if (strm->avail_in && gz_comp(state, Z_NO_FLUSH) == -1) return 0; /* do the printf() into the input buffer, put length in len */ size = (int)(state->size); state->in[size - 1] = 0; #ifdef NO_snprintf # ifdef HAS_sprintf_void sprintf((char *)(state->in), format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20); for (len = 0; len < size; len++) if (state->in[len] == 0) break; # else len = sprintf((char *)(state->in), format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20); # endif #else # ifdef HAS_snprintf_void snprintf((char *)(state->in), size, format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20); len = strlen((char *)(state->in)); # else len = snprintf((char *)(state->in), size, format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20); # endif #endif /* check that printf() results fit in buffer */ if (len <= 0 || len >= (int)size || state->in[size - 1] != 0) return 0; /* update buffer and position, defer compression until needed */ strm->avail_in = (unsigned)len; strm->next_in = state->in; state->x.pos += len; return len; } #endif /* -- see zlib.h -- */ int ZEXPORT gzflush(file, flush) gzFile file; int flush; { gz_statep state; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; /* check that we're writing and that there's no error */ if (state->mode != GZ_WRITE || state->err != Z_OK) return Z_STREAM_ERROR; /* check flush parameter */ if (flush < 0 || flush > Z_FINISH) return Z_STREAM_ERROR; /* check for seek request */ if (state->seek) { state->seek = 0; if (gz_zero(state, state->skip) == -1) return -1; } /* compress remaining data with requested flush */ gz_comp(state, flush); return state->err; } /* -- see zlib.h -- */ int ZEXPORT gzsetparams(file, level, strategy) gzFile file; int level; int strategy; { gz_statep state; z_streamp strm; /* get internal structure */ if (file == NULL) return Z_STREAM_ERROR; state = (gz_statep)file; strm = &(state->strm); /* check that we're writing and that there's no error */ if (state->mode != GZ_WRITE || state->err != Z_OK) return Z_STREAM_ERROR; /* if no change is requested, then do nothing */ if (level == state->level && strategy == state->strategy) return Z_OK; /* check for seek request */ if (state->seek) { state->seek = 0; if (gz_zero(state, state->skip) == -1) return -1; } /* change compression parameters for subsequent input */ if (state->size) { /* flush previous input with previous parameters before changing */ if (strm->avail_in && gz_comp(state, Z_PARTIAL_FLUSH) == -1) return state->err; deflateParams(strm, level, strategy); } state->level = level; state->strategy = strategy; return Z_OK; } /* -- see zlib.h -- */ int ZEXPORT gzclose_w(file) gzFile file; { int ret = Z_OK; gz_statep state; /* get internal structure */ if (file == NULL) return Z_STREAM_ERROR; state = (gz_statep)file; /* check that we're writing */ if (state->mode != GZ_WRITE) return Z_STREAM_ERROR; /* check for seek request */ if (state->seek) { state->seek = 0; if (gz_zero(state, state->skip) == -1) ret = state->err; } /* flush, free memory, and close file */ if (gz_comp(state, Z_FINISH) == -1) ret = state->err; if (state->size) { if (!state->direct) { (void)deflateEnd(&(state->strm)); free(state->out); } free(state->in); } gz_error(state, Z_OK, NULL); free(state->path); if (close(state->fd) == -1) ret = Z_ERRNO; free(state); return ret; } /* END OF DUMP OF mz_gzwrite.c*/ /* START OF DUMP OF mz_gzread.c*/ #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* gzread.c -- zlib functions for reading gzip files * Copyright (C) 2004, 2005, 2010, 2011, 2012, 2013 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* Local functions */ local int gz_load OF((gz_statep, unsigned char *, unsigned, unsigned *)); local int gz_avail OF((gz_statep)); local int gz_look OF((gz_statep)); local int gz_decomp OF((gz_statep)); local int gz_fetch OF((gz_statep)); local int gz_skip OF((gz_statep, z_off64_t)); /* Use read() to load a buffer -- return -1 on error, otherwise 0. Read from state->fd, and update state->eof, state->err, and state->msg as appropriate. This function needs to loop on read(), since read() is not guaranteed to read the number of bytes requested, depending on the type of descriptor. */ local int gz_load(state, buf, len, have) gz_statep state; unsigned char *buf; unsigned len; unsigned *have; { int ret; *have = 0; do { ret = read(state->fd, buf + *have, len - *have); if (ret <= 0) break; *have += ret; } while (*have < len); if (ret < 0) { gz_error(state, Z_ERRNO, zstrerror()); return -1; } if (ret == 0) state->eof = 1; return 0; } /* Load up input buffer and set eof flag if last data loaded -- return -1 on error, 0 otherwise. Note that the eof flag is set when the end of the input file is reached, even though there may be unused data in the buffer. Once that data has been used, no more attempts will be made to read the file. If strm->avail_in != 0, then the current data is moved to the beginning of the input buffer, and then the remainder of the buffer is loaded with the available data from the input file. */ local int gz_avail(state) gz_statep state; { unsigned got; z_streamp strm = &(state->strm); if (state->err != Z_OK && state->err != Z_BUF_ERROR) return -1; if (state->eof == 0) { if (strm->avail_in) { /* copy what's there to the start */ unsigned char *p = state->in; unsigned const char *q = strm->next_in; unsigned n = strm->avail_in; do { *p++ = *q++; } while (--n); } if (gz_load(state, state->in + strm->avail_in, state->size - strm->avail_in, &got) == -1) return -1; strm->avail_in += got; strm->next_in = state->in; } return 0; } /* Look for gzip header, set up for inflate or copy. state->x.have must be 0. If this is the first time in, allocate required memory. state->how will be left unchanged if there is no more input data available, will be set to COPY if there is no gzip header and direct copying will be performed, or it will be set to GZIP for decompression. If direct copying, then leftover input data from the input buffer will be copied to the output buffer. In that case, all further file reads will be directly to either the output buffer or a user buffer. If decompressing, the inflate state will be initialized. gz_look() will return 0 on success or -1 on failure. */ local int gz_look(state) gz_statep state; { z_streamp strm = &(state->strm); /* allocate read buffers and inflate memory */ if (state->size == 0) { /* allocate buffers */ state->in = (unsigned char *)malloc(state->want); state->out = (unsigned char *)malloc(state->want << 1); if (state->in == NULL || state->out == NULL) { if (state->out != NULL) free(state->out); if (state->in != NULL) free(state->in); gz_error(state, Z_MEM_ERROR, "out of memory"); return -1; } state->size = state->want; /* allocate inflate memory */ state->strm.zalloc = Z_NULL; state->strm.zfree = Z_NULL; state->strm.opaque = Z_NULL; state->strm.avail_in = 0; state->strm.next_in = Z_NULL; if (inflateInit2(&(state->strm), 15 + 16) != Z_OK) { /* gunzip */ free(state->out); free(state->in); state->size = 0; gz_error(state, Z_MEM_ERROR, "out of memory"); return -1; } } /* get at least the magic bytes in the input buffer */ if (strm->avail_in < 2) { if (gz_avail(state) == -1) return -1; if (strm->avail_in == 0) return 0; } /* look for gzip magic bytes -- if there, do gzip decoding (note: there is a logical dilemma here when considering the case of a partially written gzip file, to wit, if a single 31 byte is written, then we cannot tell whether this is a single-byte file, or just a partially written gzip file -- for here we assume that if a gzip file is being written, then the header will be written in a single operation, so that reading a single byte is sufficient indication that it is not a gzip file) */ if (strm->avail_in > 1 && strm->next_in[0] == 31 && strm->next_in[1] == 139) { inflateReset(strm); state->how = GZIP; state->direct = 0; return 0; } /* no gzip header -- if we were decoding gzip before, then this is trailing garbage. Ignore the trailing garbage and finish. */ if (state->direct == 0) { strm->avail_in = 0; state->eof = 1; state->x.have = 0; return 0; } /* doing raw i/o, copy any leftover input to output -- this assumes that the output buffer is larger than the input buffer, which also assures space for gzungetc() */ state->x.next = state->out; if (strm->avail_in) { memcpy(state->x.next, strm->next_in, strm->avail_in); state->x.have = strm->avail_in; strm->avail_in = 0; } state->how = COPY; state->direct = 1; return 0; } /* Decompress from input to the provided next_out and avail_out in the state. On return, state->x.have and state->x.next point to the just decompressed data. If the gzip stream completes, state->how is reset to LOOK to look for the next gzip stream or raw data, once state->x.have is depleted. Returns 0 on success, -1 on failure. */ local int gz_decomp(state) gz_statep state; { int ret = Z_OK; unsigned had; z_streamp strm = &(state->strm); /* fill output buffer up to end of deflate stream */ had = strm->avail_out; do { /* get more input for inflate() */ if (strm->avail_in == 0 && gz_avail(state) == -1) return -1; if (strm->avail_in == 0) { gz_error(state, Z_BUF_ERROR, "unexpected end of file"); break; } /* decompress and handle errors */ ret = inflate(strm, Z_NO_FLUSH); if (ret == Z_STREAM_ERROR || ret == Z_NEED_DICT) { gz_error(state, Z_STREAM_ERROR, "internal error: inflate stream corrupt"); return -1; } if (ret == Z_MEM_ERROR) { gz_error(state, Z_MEM_ERROR, "out of memory"); return -1; } if (ret == Z_DATA_ERROR) { /* deflate stream invalid */ gz_error(state, Z_DATA_ERROR, strm->msg == NULL ? "compressed data error" : strm->msg); return -1; } } while (strm->avail_out && ret != Z_STREAM_END); /* update available output */ state->x.have = had - strm->avail_out; state->x.next = strm->next_out - state->x.have; /* if the gzip stream completed successfully, look for another */ if (ret == Z_STREAM_END) state->how = LOOK; /* good decompression */ return 0; } /* Fetch data and put it in the output buffer. Assumes state->x.have is 0. Data is either copied from the input file or decompressed from the input file depending on state->how. If state->how is LOOK, then a gzip header is looked for to determine whether to copy or decompress. Returns -1 on error, otherwise 0. gz_fetch() will leave state->how as COPY or GZIP unless the end of the input file has been reached and all data has been processed. */ local int gz_fetch(state) gz_statep state; { z_streamp strm = &(state->strm); do { switch(state->how) { case LOOK: /* -> LOOK, COPY (only if never GZIP), or GZIP */ if (gz_look(state) == -1) return -1; if (state->how == LOOK) return 0; break; case COPY: /* -> COPY */ if (gz_load(state, state->out, state->size << 1, &(state->x.have)) == -1) return -1; state->x.next = state->out; return 0; case GZIP: /* -> GZIP or LOOK (if end of gzip stream) */ strm->avail_out = state->size << 1; strm->next_out = state->out; if (gz_decomp(state) == -1) return -1; } } while (state->x.have == 0 && (!state->eof || strm->avail_in)); return 0; } /* Skip len uncompressed bytes of output. Return -1 on error, 0 on success. */ local int gz_skip(state, len) gz_statep state; z_off64_t len; { unsigned n; /* skip over len bytes or reach end-of-file, whichever comes first */ while (len) /* skip over whatever is in output buffer */ if (state->x.have) { n = GT_OFF(state->x.have) || (z_off64_t)state->x.have > len ? (unsigned)len : state->x.have; state->x.have -= n; state->x.next += n; state->x.pos += n; len -= n; } /* output buffer empty -- return if we're at the end of the input */ else if (state->eof && state->strm.avail_in == 0) break; /* need more data to skip -- load up output buffer */ else { /* get more output, looking for header if required */ if (gz_fetch(state) == -1) return -1; } return 0; } /* -- see zlib.h -- */ int ZEXPORT gzread(file, buf, len) gzFile file; voidp buf; unsigned len; { unsigned got, n; gz_statep state; z_streamp strm; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; strm = &(state->strm); /* check that we're reading and that there's no (serious) error */ if (state->mode != GZ_READ || (state->err != Z_OK && state->err != Z_BUF_ERROR)) return -1; /* since an int is returned, make sure len fits in one, otherwise return with an error (this avoids the flaw in the interface) */ if ((int)len < 0) { gz_error(state, Z_DATA_ERROR, "requested length does not fit in int"); return -1; } /* if len is zero, avoid unnecessary operations */ if (len == 0) return 0; /* process a skip request */ if (state->seek) { state->seek = 0; if (gz_skip(state, state->skip) == -1) return -1; } /* get len bytes to buf, or less than len if at the end */ got = 0; do { /* first just try copying data from the output buffer */ if (state->x.have) { n = state->x.have > len ? len : state->x.have; memcpy(buf, state->x.next, n); state->x.next += n; state->x.have -= n; } /* output buffer empty -- return if we're at the end of the input */ else if (state->eof && strm->avail_in == 0) { state->past = 1; /* tried to read past end */ break; } /* need output data -- for small len or new stream load up our output buffer */ else if (state->how == LOOK || len < (state->size << 1)) { /* get more output, looking for header if required */ if (gz_fetch(state) == -1) return -1; continue; /* no progress yet -- go back to copy above */ /* the copy above assures that we will leave with space in the output buffer, allowing at least one gzungetc() to succeed */ } /* large len -- read directly into user buffer */ else if (state->how == COPY) { /* read directly */ if (gz_load(state, (unsigned char *)buf, len, &n) == -1) return -1; } /* large len -- decompress directly into user buffer */ else { /* state->how == GZIP */ strm->avail_out = len; strm->next_out = (unsigned char *)buf; if (gz_decomp(state) == -1) return -1; n = state->x.have; state->x.have = 0; } /* update progress */ len -= n; buf = (char *)buf + n; got += n; state->x.pos += n; } while (len); /* return number of bytes read into user buffer (will fit in int) */ return (int)got; } /* -- see zlib.h -- */ #ifdef Z_PREFIX_SET # undef z_gzgetc #else # undef gzgetc #endif int ZEXPORT gzgetc(file) gzFile file; { int ret; unsigned char buf[1]; gz_statep state; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; /* check that we're reading and that there's no (serious) error */ if (state->mode != GZ_READ || (state->err != Z_OK && state->err != Z_BUF_ERROR)) return -1; /* try output buffer (no need to check for skip request) */ if (state->x.have) { state->x.have--; state->x.pos++; return *(state->x.next)++; } /* nothing there -- try gzread() */ ret = gzread(file, buf, 1); return ret < 1 ? -1 : buf[0]; } int ZEXPORT gzgetc_(file) gzFile file; { return gzgetc(file); } /* -- see zlib.h -- */ int ZEXPORT gzungetc(c, file) int c; gzFile file; { gz_statep state; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; /* check that we're reading and that there's no (serious) error */ if (state->mode != GZ_READ || (state->err != Z_OK && state->err != Z_BUF_ERROR)) return -1; /* process a skip request */ if (state->seek) { state->seek = 0; if (gz_skip(state, state->skip) == -1) return -1; } /* can't push EOF */ if (c < 0) return -1; /* if output buffer empty, put byte at end (allows more pushing) */ if (state->x.have == 0) { state->x.have = 1; state->x.next = state->out + (state->size << 1) - 1; state->x.next[0] = c; state->x.pos--; state->past = 0; return c; } /* if no room, give up (must have already done a gzungetc()) */ if (state->x.have == (state->size << 1)) { gz_error(state, Z_DATA_ERROR, "out of room to push characters"); return -1; } /* slide output data if needed and insert byte before existing data */ if (state->x.next == state->out) { unsigned char *src = state->out + state->x.have; unsigned char *dest = state->out + (state->size << 1); while (src > state->out) *--dest = *--src; state->x.next = dest; } state->x.have++; state->x.next--; state->x.next[0] = c; state->x.pos--; state->past = 0; return c; } /* -- see zlib.h -- */ char * ZEXPORT gzgets(file, buf, len) gzFile file; char *buf; int len; { unsigned left, n; char *str; unsigned char *eol; gz_statep state; /* check parameters and get internal structure */ if (file == NULL || buf == NULL || len < 1) return NULL; state = (gz_statep)file; /* check that we're reading and that there's no (serious) error */ if (state->mode != GZ_READ || (state->err != Z_OK && state->err != Z_BUF_ERROR)) return NULL; /* process a skip request */ if (state->seek) { state->seek = 0; if (gz_skip(state, state->skip) == -1) return NULL; } /* copy output bytes up to new line or len - 1, whichever comes first -- append a terminating zero to the string (we don't check for a zero in the contents, let the user worry about that) */ str = buf; left = (unsigned)len - 1; if (left) do { /* assure that something is in the output buffer */ if (state->x.have == 0 && gz_fetch(state) == -1) return NULL; /* error */ if (state->x.have == 0) { /* end of file */ state->past = 1; /* read past end */ break; /* return what we have */ } /* look for end-of-line in current output buffer */ n = state->x.have > left ? left : state->x.have; eol = (unsigned char *)memchr(state->x.next, '\n', n); if (eol != NULL) n = (unsigned)(eol - state->x.next) + 1; /* copy through end-of-line, or remainder if not found */ memcpy(buf, state->x.next, n); state->x.have -= n; state->x.next += n; state->x.pos += n; left -= n; buf += n; } while (left && eol == NULL); /* return terminated string, or if nothing, end of file */ if (buf == str) return NULL; buf[0] = 0; return str; } /* -- see zlib.h -- */ int ZEXPORT gzdirect(file) gzFile file; { gz_statep state; /* get internal structure */ if (file == NULL) return 0; state = (gz_statep)file; /* if the state is not known, but we can find out, then do so (this is mainly for right after a gzopen() or gzdopen()) */ if (state->mode == GZ_READ && state->how == LOOK && state->x.have == 0) (void)gz_look(state); /* return 1 if transparent, 0 if processing a gzip stream */ return state->direct; } /* -- see zlib.h -- */ int ZEXPORT gzclose_r(file) gzFile file; { int ret, err; gz_statep state; /* get internal structure */ if (file == NULL) return Z_STREAM_ERROR; state = (gz_statep)file; /* check that we're reading */ if (state->mode != GZ_READ) return Z_STREAM_ERROR; /* free memory and close file */ if (state->size) { inflateEnd(&(state->strm)); free(state->out); free(state->in); } err = state->err == Z_BUF_ERROR ? Z_BUF_ERROR : Z_OK; gz_error(state, Z_OK, NULL); free(state->path); ret = close(state->fd); free(state); return ret ? Z_ERRNO : err; } /* END OF DUMP OF mz_gzread.c*/ /* START OF DUMP OF mz_gzlib.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* gzlib.c -- zlib functions common to reading and writing gzip files * Copyright (C) 2004, 2010, 2011, 2012, 2013 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ #if defined(_WIN32) && !defined(__BORLANDC__) # define LSEEK _lseeki64 #else #if defined(_LARGEFILE64_SOURCE) && _LFS64_LARGEFILE-0 # define LSEEK lseek64 #else # define LSEEK lseek #endif #endif /* Local functions */ local void gz_reset OF((gz_statep)); local gzFile gz_open OF((const void *, int, const char *)); #if defined UNDER_CE /* Map the Windows error number in ERROR to a locale-dependent error message string and return a pointer to it. Typically, the values for ERROR come from GetLastError. The string pointed to shall not be modified by the application, but may be overwritten by a subsequent call to gz_strwinerror The gz_strwinerror function does not change the current setting of GetLastError. */ char ZLIB_INTERNAL *gz_strwinerror (error) DWORD error; { static char buf[1024]; wchar_t *msgbuf; DWORD lasterr = GetLastError(); DWORD chars = FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER, NULL, error, 0, /* Default language */ (LPVOID)&msgbuf, 0, NULL); if (chars != 0) { /* If there is an \r\n appended, zap it. */ if (chars >= 2 && msgbuf[chars - 2] == '\r' && msgbuf[chars - 1] == '\n') { chars -= 2; msgbuf[chars] = 0; } if (chars > sizeof (buf) - 1) { chars = sizeof (buf) - 1; msgbuf[chars] = 0; } wcstombs(buf, msgbuf, chars + 1); LocalFree(msgbuf); } else { sprintf(buf, "unknown win32 error (%ld)", error); } SetLastError(lasterr); return buf; } #endif /* UNDER_CE */ /* Reset gzip file state */ local void gz_reset(state) gz_statep state; { state->x.have = 0; /* no output data available */ if (state->mode == GZ_READ) { /* for reading ... */ state->eof = 0; /* not at end of file */ state->past = 0; /* have not read past end yet */ state->how = LOOK; /* look for gzip header */ } state->seek = 0; /* no seek request pending */ gz_error(state, Z_OK, NULL); /* clear error */ state->x.pos = 0; /* no uncompressed data yet */ state->strm.avail_in = 0; /* no input data yet */ } /* Open a gzip file either by name or file descriptor. */ local gzFile gz_open(path, fd, mode) const void *path; int fd; const char *mode; { gz_statep state; size_t len; int oflag; #ifdef O_CLOEXEC int cloexec = 0; #endif #ifdef O_EXCL int exclusive = 0; #endif /* check input */ if (path == NULL) return NULL; /* allocate gzFile structure to return */ state = (gz_statep)malloc(sizeof(gz_state)); if (state == NULL) return NULL; state->size = 0; /* no buffers allocated yet */ state->want = GZBUFSIZE; /* requested buffer size */ state->msg = NULL; /* no error message yet */ /* interpret mode */ state->mode = GZ_NONE; state->level = Z_DEFAULT_COMPRESSION; state->strategy = Z_DEFAULT_STRATEGY; state->direct = 0; while (*mode) { if (*mode >= '0' && *mode <= '9') state->level = *mode - '0'; else switch (*mode) { case 'r': state->mode = GZ_READ; break; #ifndef NO_GZCOMPRESS case 'w': state->mode = GZ_WRITE; break; case 'a': state->mode = GZ_APPEND; break; #endif case '+': /* can't read and write at the same time */ free(state); return NULL; case 'b': /* ignore -- will request binary anyway */ break; #ifdef O_CLOEXEC case 'e': cloexec = 1; break; #endif #ifdef O_EXCL case 'x': exclusive = 1; break; #endif case 'f': state->strategy = Z_FILTERED; break; case 'h': state->strategy = Z_HUFFMAN_ONLY; break; case 'R': state->strategy = Z_RLE; break; case 'F': state->strategy = Z_FIXED; break; case 'T': state->direct = 1; break; default: /* could consider as an error, but just ignore */ ; } mode++; } /* must provide an "r", "w", or "a" */ if (state->mode == GZ_NONE) { free(state); return NULL; } /* can't force transparent read */ if (state->mode == GZ_READ) { if (state->direct) { free(state); return NULL; } state->direct = 1; /* for empty file */ } /* save the path name for error messages */ #ifdef _WIN32 if (fd == -2) { len = wcstombs(NULL, path, 0); if (len == (size_t)-1) len = 0; } else #endif len = strlen((const char *)path); state->path = (char *)malloc(len + 1); if (state->path == NULL) { free(state); return NULL; } #ifdef _WIN32 if (fd == -2) if (len) wcstombs(state->path, path, len + 1); else *(state->path) = 0; else #endif #if !defined(NO_snprintf) && !defined(NO_vsnprintf) snprintf(state->path, len + 1, "%s", (const char *)path); #else strcpy(state->path, path); #endif /* compute the flags for open() */ oflag = #ifdef O_LARGEFILE O_LARGEFILE | #endif #ifdef O_BINARY O_BINARY | #endif #ifdef O_CLOEXEC (cloexec ? O_CLOEXEC : 0) | #endif (state->mode == GZ_READ ? O_RDONLY : (O_WRONLY | O_CREAT | #ifdef O_EXCL (exclusive ? O_EXCL : 0) | #endif (state->mode == GZ_WRITE ? O_TRUNC : O_APPEND))); /* open the file with the appropriate flags (or just use fd) */ state->fd = fd > -1 ? fd : ( #ifdef _WIN32 fd == -2 ? _wopen(path, oflag, 0666) : #endif open((const char *)path, oflag, 0666)); if (state->fd == -1) { free(state->path); free(state); return NULL; } if (state->mode == GZ_APPEND) state->mode = GZ_WRITE; /* simplify later checks */ /* save the current position for rewinding (only if reading) */ if (state->mode == GZ_READ) { state->start = LSEEK(state->fd, 0, SEEK_CUR); if (state->start == -1) state->start = 0; } /* initialize stream */ gz_reset(state); /* return stream */ return (gzFile)state; } /* -- see zlib.h -- */ gzFile ZEXPORT gzopen(path, mode) const char *path; const char *mode; { return gz_open(path, -1, mode); } /* -- see zlib.h -- */ gzFile ZEXPORT gzopen64(path, mode) const char *path; const char *mode; { return gz_open(path, -1, mode); } /* -- see zlib.h -- */ gzFile ZEXPORT gzdopen(fd, mode) int fd; const char *mode; { char *path; /* identifier for error messages */ gzFile gz; if (fd == -1 || (path = (char *)malloc(7 + 3 * sizeof(int))) == NULL) return NULL; #if !defined(NO_snprintf) && !defined(NO_vsnprintf) snprintf(path, 7 + 3 * sizeof(int), "", fd); /* for debugging */ #else sprintf(path, "", fd); /* for debugging */ #endif gz = gz_open(path, fd, mode); free(path); return gz; } /* -- see zlib.h -- */ #ifdef _WIN32 gzFile ZEXPORT gzopen_w(path, mode) const wchar_t *path; const char *mode; { return gz_open(path, -2, mode); } #endif /* -- see zlib.h -- */ int ZEXPORT gzbuffer(file, size) gzFile file; unsigned size; { gz_statep state; /* get internal structure and check integrity */ if (file == NULL) return -1; state = (gz_statep)file; if (state->mode != GZ_READ && state->mode != GZ_WRITE) return -1; /* make sure we haven't already allocated memory */ if (state->size != 0) return -1; /* check and set requested size */ if (size < 2) size = 2; /* need two bytes to check magic header */ state->want = size; return 0; } /* -- see zlib.h -- */ int ZEXPORT gzrewind(file) gzFile file; { gz_statep state; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; /* check that we're reading and that there's no error */ if (state->mode != GZ_READ || (state->err != Z_OK && state->err != Z_BUF_ERROR)) return -1; /* back up and start over */ if (LSEEK(state->fd, state->start, SEEK_SET) == -1) return -1; gz_reset(state); return 0; } /* -- see zlib.h -- */ z_off64_t ZEXPORT gzseek64(file, offset, whence) gzFile file; z_off64_t offset; int whence; { unsigned n; z_off64_t ret; gz_statep state; /* get internal structure and check integrity */ if (file == NULL) return -1; state = (gz_statep)file; if (state->mode != GZ_READ && state->mode != GZ_WRITE) return -1; /* check that there's no error */ if (state->err != Z_OK && state->err != Z_BUF_ERROR) return -1; /* can only seek from start or relative to current position */ if (whence != SEEK_SET && whence != SEEK_CUR) return -1; /* normalize offset to a SEEK_CUR specification */ if (whence == SEEK_SET) offset -= state->x.pos; else if (state->seek) offset += state->skip; state->seek = 0; /* if within raw area while reading, just go there */ if (state->mode == GZ_READ && state->how == COPY && state->x.pos + offset >= 0) { ret = LSEEK(state->fd, offset - state->x.have, SEEK_CUR); if (ret == -1) return -1; state->x.have = 0; state->eof = 0; state->past = 0; state->seek = 0; gz_error(state, Z_OK, NULL); state->strm.avail_in = 0; state->x.pos += offset; return state->x.pos; } /* calculate skip amount, rewinding if needed for back seek when reading */ if (offset < 0) { if (state->mode != GZ_READ) /* writing -- can't go backwards */ return -1; offset += state->x.pos; if (offset < 0) /* before start of file! */ return -1; if (gzrewind(file) == -1) /* rewind, then skip to offset */ return -1; } /* if reading, skip what's in output buffer (one less gzgetc() check) */ if (state->mode == GZ_READ) { n = GT_OFF(state->x.have) || (z_off64_t)state->x.have > offset ? (unsigned)offset : state->x.have; state->x.have -= n; state->x.next += n; state->x.pos += n; offset -= n; } /* request skip (if not zero) */ if (offset) { state->seek = 1; state->skip = offset; } return state->x.pos + offset; } /* -- see zlib.h -- */ z_off_t ZEXPORT gzseek(file, offset, whence) gzFile file; z_off_t offset; int whence; { z_off64_t ret; ret = gzseek64(file, (z_off64_t)offset, whence); return ret == (z_off_t)ret ? (z_off_t)ret : -1; } /* -- see zlib.h -- */ z_off64_t ZEXPORT gztell64(file) gzFile file; { gz_statep state; /* get internal structure and check integrity */ if (file == NULL) return -1; state = (gz_statep)file; if (state->mode != GZ_READ && state->mode != GZ_WRITE) return -1; /* return position */ return state->x.pos + (state->seek ? state->skip : 0); } /* -- see zlib.h -- */ z_off_t ZEXPORT gztell(file) gzFile file; { z_off64_t ret; ret = gztell64(file); return ret == (z_off_t)ret ? (z_off_t)ret : -1; } /* -- see zlib.h -- */ z_off64_t ZEXPORT gzoffset64(file) gzFile file; { z_off64_t offset; gz_statep state; /* get internal structure and check integrity */ if (file == NULL) return -1; state = (gz_statep)file; if (state->mode != GZ_READ && state->mode != GZ_WRITE) return -1; /* compute and return effective offset in file */ offset = LSEEK(state->fd, 0, SEEK_CUR); if (offset == -1) return -1; if (state->mode == GZ_READ) /* reading */ offset -= state->strm.avail_in; /* don't count buffered input */ return offset; } /* -- see zlib.h -- */ z_off_t ZEXPORT gzoffset(file) gzFile file; { z_off64_t ret; ret = gzoffset64(file); return ret == (z_off_t)ret ? (z_off_t)ret : -1; } /* -- see zlib.h -- */ int ZEXPORT gzeof(file) gzFile file; { gz_statep state; /* get internal structure and check integrity */ if (file == NULL) return 0; state = (gz_statep)file; if (state->mode != GZ_READ && state->mode != GZ_WRITE) return 0; /* return end-of-file state */ return state->mode == GZ_READ ? state->past : 0; } /* -- see zlib.h -- */ const char * ZEXPORT gzerror(file, errnum) gzFile file; int *errnum; { gz_statep state; /* get internal structure and check integrity */ if (file == NULL) return NULL; state = (gz_statep)file; if (state->mode != GZ_READ && state->mode != GZ_WRITE) return NULL; /* return error information */ if (errnum != NULL) *errnum = state->err; return state->err == Z_MEM_ERROR ? "out of memory" : (state->msg == NULL ? "" : state->msg); } /* -- see zlib.h -- */ void ZEXPORT gzclearerr(file) gzFile file; { gz_statep state; /* get internal structure and check integrity */ if (file == NULL) return; state = (gz_statep)file; if (state->mode != GZ_READ && state->mode != GZ_WRITE) return; /* clear error and end-of-file */ if (state->mode == GZ_READ) { state->eof = 0; state->past = 0; } gz_error(state, Z_OK, NULL); } /* Create an error message in allocated memory and set state->err and state->msg accordingly. Free any previous error message already there. Do not try to free or allocate space if the error is Z_MEM_ERROR (out of memory). Simply save the error message as a static string. If there is an allocation failure constructing the error message, then convert the error to out of memory. */ void ZLIB_INTERNAL gz_error(state, err, msg) gz_statep state; int err; const char *msg; { /* free previously allocated message and clear */ if (state->msg != NULL) { if (state->err != Z_MEM_ERROR) free(state->msg); state->msg = NULL; } /* if fatal, set state->x.have to 0 so that the gzgetc() macro fails */ if (err != Z_OK && err != Z_BUF_ERROR) state->x.have = 0; /* set error code, and if no message, then done */ state->err = err; if (msg == NULL) return; /* for an out of memory error, return literal string when requested */ if (err == Z_MEM_ERROR) return; /* construct error message with path */ if ((state->msg = (char *)malloc(strlen(state->path) + strlen(msg) + 3)) == NULL) { state->err = Z_MEM_ERROR; return; } #if !defined(NO_snprintf) && !defined(NO_vsnprintf) snprintf(state->msg, strlen(state->path) + strlen(msg) + 3, "%s%s%s", state->path, ": ", msg); #else strcpy(state->msg, state->path); strcat(state->msg, ": "); strcat(state->msg, msg); #endif return; } #ifndef INT_MAX /* portably return maximum value for an int (when limits.h presumed not available) -- we need to do this to cover cases where 2's complement not used, since C standard permits 1's complement and sign-bit representations, otherwise we could just use ((unsigned)-1) >> 1 */ unsigned ZLIB_INTERNAL gz_intmax() { unsigned p, q; p = 1; do { q = p; p <<= 1; p++; } while (p > q); return q >> 1; } #endif /* END OF DUMP OF mz_gzlib.c*/ /* START OF DUMP OF mz_gzclose.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* gzclose.c -- zlib gzclose() function * Copyright (C) 2004, 2010 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* gzclose() is in a separate file so that it is linked in only if it is used. That way the other gzclose functions can be used instead to avoid linking in unneeded compression or decompression routines. */ int ZEXPORT gzclose(file) gzFile file; { #ifndef NO_GZCOMPRESS gz_statep state; if (file == NULL) return Z_STREAM_ERROR; state = (gz_statep)file; return state->mode == GZ_READ ? gzclose_r(file) : gzclose_w(file); #else return gzclose_r(file); #endif } /* END OF DUMP OF mz_gzclose.c*/ /* START OF DUMP OF mz_deflate.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* deflate.c -- compress data using the deflation algorithm * Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* * ALGORITHM * * The "deflation" process depends on being able to identify portions * of the input text which are identical to earlier input (within a * sliding window trailing behind the input currently being processed). * * The most straightforward technique turns out to be the fastest for * most input files: try all possible matches and select the longest. * The key feature of this algorithm is that insertions into the string * dictionary are very simple and thus fast, and deletions are avoided * completely. Insertions are performed at each input character, whereas * string matches are performed only when the previous match ends. So it * is preferable to spend more time in matches to allow very fast string * insertions and avoid deletions. The matching algorithm for small * strings is inspired from that of Rabin & Karp. A brute force approach * is used to find longer strings when a small match has been found. * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze * (by Leonid Broukhis). * A previous version of this file used a more sophisticated algorithm * (by Fiala and Greene) which is guaranteed to run in linear amortized * time, but has a larger average cost, uses more memory and is patented. * However the F&G algorithm may be faster for some highly redundant * files if the parameter max_chain_length (described below) is too large. * * ACKNOWLEDGEMENTS * * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and * I found it in 'freeze' written by Leonid Broukhis. * Thanks to many people for bug reports and testing. * * REFERENCES * * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification". * Available in http://tools.ietf.org/html/rfc1951 * * A description of the Rabin and Karp algorithm is given in the book * "Algorithms" by R. Sedgewick, Addison-Wesley, p252. * * Fiala,E.R., and Greene,D.H. * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595 * */ /* @(#) $Id$ */ const char deflate_copyright[] = " deflate 1.2.8 Copyright 1995-2013 Jean-loup Gailly and Mark Adler "; /* If you use the zlib library in a product, an acknowledgment is welcome in the documentation of your product. If for some reason you cannot include such an acknowledgment, I would appreciate that you keep this copyright string in the executable of your product. */ /* =========================================================================== * Function prototypes. */ typedef enum { need_more, /* block not completed, need more input or more output */ block_done, /* block flush performed */ finish_started, /* finish started, need only more output at next deflate */ finish_done /* finish done, accept no more input or output */ } block_state; typedef block_state (*compress_func) OF((deflate_state *s, int flush)); /* Compression function. Returns the block state after the call. */ local void fill_window OF((deflate_state *s)); local block_state deflate_stored OF((deflate_state *s, int flush)); local block_state deflate_fast OF((deflate_state *s, int flush)); #ifndef FASTEST local block_state deflate_slow OF((deflate_state *s, int flush)); #endif local block_state deflate_rle OF((deflate_state *s, int flush)); local block_state deflate_huff OF((deflate_state *s, int flush)); local void lm_init OF((deflate_state *s)); local void putShortMSB OF((deflate_state *s, uInt b)); local void flush_pending OF((z_streamp strm)); local int read_buf OF((z_streamp strm, Bytef *buf, unsigned size)); #ifdef ASMV void match_init OF((void)); /* asm code initialization */ uInt longest_match OF((deflate_state *s, IPos cur_match)); #else local uInt longest_match OF((deflate_state *s, IPos cur_match)); #endif #ifdef DEBUG local void check_match OF((deflate_state *s, IPos start, IPos match, int length)); #endif /* =========================================================================== * Local data */ #define NIL 0 /* Tail of hash chains */ #ifndef TOO_FAR # define TOO_FAR 4096 #endif /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */ /* Values for max_lazy_match, good_match and max_chain_length, depending on * the desired pack level (0..9). The values given below have been tuned to * exclude worst case performance for pathological files. Better values may be * found for specific files. */ typedef struct config_s { ush good_length; /* reduce lazy search above this match length */ ush max_lazy; /* do not perform lazy search above this match length */ ush nice_length; /* quit search above this match length */ ush max_chain; compress_func func; } config; #ifdef FASTEST local const config configuration_table[2] = { /* good lazy nice chain */ /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ /* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */ #else local const config configuration_table[10] = { /* good lazy nice chain */ /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ /* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */ /* 2 */ {4, 5, 16, 8, deflate_fast}, /* 3 */ {4, 6, 32, 32, deflate_fast}, /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */ /* 5 */ {8, 16, 32, 32, deflate_slow}, /* 6 */ {8, 16, 128, 128, deflate_slow}, /* 7 */ {8, 32, 128, 256, deflate_slow}, /* 8 */ {32, 128, 258, 1024, deflate_slow}, /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */ #endif /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different * meaning. */ #define EQUAL 0 /* result of memcmp for equal strings */ #ifndef NO_DUMMY_DECL struct static_tree_desc_s {int dummy;}; /* for buggy compilers */ #endif /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */ #define RANK(f) (((f) << 1) - ((f) > 4 ? 9 : 0)) /* =========================================================================== * Update a hash value with the given input byte * IN assertion: all calls to to UPDATE_HASH are made with consecutive * input characters, so that a running hash key can be computed from the * previous key instead of complete recalculation each time. */ #define UPDATE_HASH(s,h,c) (h = (((h)<hash_shift) ^ (c)) & s->hash_mask) /* =========================================================================== * Insert string str in the dictionary and set match_head to the previous head * of the hash chain (the most recent string with same hash key). Return * the previous length of the hash chain. * If this file is compiled with -DFASTEST, the compression level is forced * to 1, and no hash chains are maintained. * IN assertion: all calls to to INSERT_STRING are made with consecutive * input characters and the first MIN_MATCH bytes of str are valid * (except for the last MIN_MATCH-1 bytes of the input file). */ #ifdef FASTEST #define INSERT_STRING(s, str, match_head) \ (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ match_head = s->head[s->ins_h], \ s->head[s->ins_h] = (Pos)(str)) #else #define INSERT_STRING(s, str, match_head) \ (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \ s->head[s->ins_h] = (Pos)(str)) #endif /* =========================================================================== * Initialize the hash table (avoiding 64K overflow for 16 bit systems). * prev[] will be initialized on the fly. */ #define CLEAR_HASH(s) \ s->head[s->hash_size-1] = NIL; \ zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head)); /* ========================================================================= */ int ZEXPORT deflateInit_(strm, level, version, stream_size) z_streamp strm; int level; const char *version; int stream_size; { return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, Z_DEFAULT_STRATEGY, version, stream_size); /* To do: ignore strm->next_in if we use it as window */ } /* ========================================================================= */ int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy, version, stream_size) z_streamp strm; int level; int method; int windowBits; int memLevel; int strategy; const char *version; int stream_size; { deflate_state *s; int wrap = 1; static const char my_version[] = ZLIB_VERSION; ushf *overlay; /* We overlay pending_buf and d_buf+l_buf. This works since the average * output size for (length,distance) codes is <= 24 bits. */ if (version == Z_NULL || version[0] != my_version[0] || stream_size != sizeof(z_stream)) { return Z_VERSION_ERROR; } if (strm == Z_NULL) return Z_STREAM_ERROR; strm->msg = Z_NULL; if (strm->zalloc == (alloc_func)0) { #ifdef Z_SOLO return Z_STREAM_ERROR; #else strm->zalloc = zcalloc; strm->opaque = (voidpf)0; #endif } if (strm->zfree == (free_func)0) #ifdef Z_SOLO return Z_STREAM_ERROR; #else strm->zfree = zcfree; #endif #ifdef FASTEST if (level != 0) level = 1; #else if (level == Z_DEFAULT_COMPRESSION) level = 6; #endif if (windowBits < 0) { /* suppress zlib wrapper */ wrap = 0; windowBits = -windowBits; } #ifdef GZIP else if (windowBits > 15) { wrap = 2; /* write gzip wrapper instead */ windowBits -= 16; } #endif if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED || windowBits < 8 || windowBits > 15 || level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) { return Z_STREAM_ERROR; } if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */ s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state)); if (s == Z_NULL) return Z_MEM_ERROR; strm->state = (struct internal_state FAR *)s; s->strm = strm; s->wrap = wrap; s->gzhead = Z_NULL; s->w_bits = windowBits; s->w_size = 1 << s->w_bits; s->w_mask = s->w_size - 1; s->hash_bits = memLevel + 7; s->hash_size = 1 << s->hash_bits; s->hash_mask = s->hash_size - 1; s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH); s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte)); s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos)); s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos)); s->high_water = 0; /* nothing written to s->window yet */ s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2); s->pending_buf = (uchf *) overlay; s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L); if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL || s->pending_buf == Z_NULL) { s->status = FINISH_STATE; strm->msg = ERR_MSG(Z_MEM_ERROR); deflateEnd (strm); return Z_MEM_ERROR; } s->d_buf = overlay + s->lit_bufsize/sizeof(ush); s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize; s->level = level; s->strategy = strategy; s->method = (Byte)method; return deflateReset(strm); } /* ========================================================================= */ int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength) z_streamp strm; const Bytef *dictionary; uInt dictLength; { deflate_state *s; uInt str, n; int wrap; unsigned avail; z_const unsigned char *next; if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL) return Z_STREAM_ERROR; s = strm->state; wrap = s->wrap; if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead) return Z_STREAM_ERROR; /* when using zlib wrappers, compute Adler-32 for provided dictionary */ if (wrap == 1) strm->adler = adler32(strm->adler, dictionary, dictLength); s->wrap = 0; /* avoid computing Adler-32 in read_buf */ /* if dictionary would fill window, just replace the history */ if (dictLength >= s->w_size) { if (wrap == 0) { /* already empty otherwise */ CLEAR_HASH(s); s->strstart = 0; s->block_start = 0L; s->insert = 0; } dictionary += dictLength - s->w_size; /* use the tail */ dictLength = s->w_size; } /* insert dictionary into window and hash */ avail = strm->avail_in; next = strm->next_in; strm->avail_in = dictLength; strm->next_in = (z_const Bytef *)dictionary; fill_window(s); while (s->lookahead >= MIN_MATCH) { str = s->strstart; n = s->lookahead - (MIN_MATCH-1); do { UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); #ifndef FASTEST s->prev[str & s->w_mask] = s->head[s->ins_h]; #endif s->head[s->ins_h] = (Pos)str; str++; } while (--n); s->strstart = str; s->lookahead = MIN_MATCH-1; fill_window(s); } s->strstart += s->lookahead; s->block_start = (long)s->strstart; s->insert = s->lookahead; s->lookahead = 0; s->match_length = s->prev_length = MIN_MATCH-1; s->match_available = 0; strm->next_in = next; strm->avail_in = avail; s->wrap = wrap; return Z_OK; } /* ========================================================================= */ int ZEXPORT deflateResetKeep (strm) z_streamp strm; { deflate_state *s; if (strm == Z_NULL || strm->state == Z_NULL || strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) { return Z_STREAM_ERROR; } strm->total_in = strm->total_out = 0; strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */ strm->data_type = Z_UNKNOWN; s = (deflate_state *)strm->state; s->pending = 0; s->pending_out = s->pending_buf; if (s->wrap < 0) { s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */ } s->status = s->wrap ? INIT_STATE : BUSY_STATE; strm->adler = #ifdef GZIP s->wrap == 2 ? crc32(0L, Z_NULL, 0) : #endif adler32(0L, Z_NULL, 0); s->last_flush = Z_NO_FLUSH; _tr_init(s); return Z_OK; } /* ========================================================================= */ int ZEXPORT deflateReset (strm) z_streamp strm; { int ret; ret = deflateResetKeep(strm); if (ret == Z_OK) lm_init(strm->state); return ret; } /* ========================================================================= */ int ZEXPORT deflateSetHeader (strm, head) z_streamp strm; gz_headerp head; { if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; if (strm->state->wrap != 2) return Z_STREAM_ERROR; strm->state->gzhead = head; return Z_OK; } /* ========================================================================= */ int ZEXPORT deflatePending (strm, pending, bits) unsigned *pending; int *bits; z_streamp strm; { if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; if (pending != Z_NULL) *pending = strm->state->pending; if (bits != Z_NULL) *bits = strm->state->bi_valid; return Z_OK; } /* ========================================================================= */ int ZEXPORT deflatePrime (strm, bits, value) z_streamp strm; int bits; int value; { deflate_state *s; int put; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; s = strm->state; if ((Bytef *)(s->d_buf) < s->pending_out + ((Buf_size + 7) >> 3)) return Z_BUF_ERROR; do { put = Buf_size - s->bi_valid; if (put > bits) put = bits; s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid); s->bi_valid += put; _tr_flush_bits(s); value >>= put; bits -= put; } while (bits); return Z_OK; } /* ========================================================================= */ int ZEXPORT deflateParams(strm, level, strategy) z_streamp strm; int level; int strategy; { deflate_state *s; compress_func func; int err = Z_OK; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; s = strm->state; #ifdef FASTEST if (level != 0) level = 1; #else if (level == Z_DEFAULT_COMPRESSION) level = 6; #endif if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) { return Z_STREAM_ERROR; } func = configuration_table[s->level].func; if ((strategy != s->strategy || func != configuration_table[level].func) && strm->total_in != 0) { /* Flush the last buffer: */ err = deflate(strm, Z_BLOCK); if (err == Z_BUF_ERROR && s->pending == 0) err = Z_OK; } if (s->level != level) { s->level = level; s->max_lazy_match = configuration_table[level].max_lazy; s->good_match = configuration_table[level].good_length; s->nice_match = configuration_table[level].nice_length; s->max_chain_length = configuration_table[level].max_chain; } s->strategy = strategy; return err; } /* ========================================================================= */ int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain) z_streamp strm; int good_length; int max_lazy; int nice_length; int max_chain; { deflate_state *s; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; s = strm->state; s->good_match = good_length; s->max_lazy_match = max_lazy; s->nice_match = nice_length; s->max_chain_length = max_chain; return Z_OK; } /* ========================================================================= * For the default windowBits of 15 and memLevel of 8, this function returns * a close to exact, as well as small, upper bound on the compressed size. * They are coded as constants here for a reason--if the #define's are * changed, then this function needs to be changed as well. The return * value for 15 and 8 only works for those exact settings. * * For any setting other than those defaults for windowBits and memLevel, * the value returned is a conservative worst case for the maximum expansion * resulting from using fixed blocks instead of stored blocks, which deflate * can emit on compressed data for some combinations of the parameters. * * This function could be more sophisticated to provide closer upper bounds for * every combination of windowBits and memLevel. But even the conservative * upper bound of about 14% expansion does not seem onerous for output buffer * allocation. */ uLong ZEXPORT deflateBound(strm, sourceLen) z_streamp strm; uLong sourceLen; { deflate_state *s; uLong complen, wraplen; Bytef *str; /* conservative upper bound for compressed data */ complen = sourceLen + ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5; /* if can't get parameters, return conservative bound plus zlib wrapper */ if (strm == Z_NULL || strm->state == Z_NULL) return complen + 6; /* compute wrapper length */ s = strm->state; switch (s->wrap) { case 0: /* raw deflate */ wraplen = 0; break; case 1: /* zlib wrapper */ wraplen = 6 + (s->strstart ? 4 : 0); break; case 2: /* gzip wrapper */ wraplen = 18; if (s->gzhead != Z_NULL) { /* user-supplied gzip header */ if (s->gzhead->extra != Z_NULL) wraplen += 2 + s->gzhead->extra_len; str = s->gzhead->name; if (str != Z_NULL) do { wraplen++; } while (*str++); str = s->gzhead->comment; if (str != Z_NULL) do { wraplen++; } while (*str++); if (s->gzhead->hcrc) wraplen += 2; } break; default: /* for compiler happiness */ wraplen = 6; } /* if not default parameters, return conservative bound */ if (s->w_bits != 15 || s->hash_bits != 8 + 7) return complen + wraplen; /* default settings: return tight bound for that case */ return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) + (sourceLen >> 25) + 13 - 6 + wraplen; } /* ========================================================================= * Put a short in the pending buffer. The 16-bit value is put in MSB order. * IN assertion: the stream state is correct and there is enough room in * pending_buf. */ local void putShortMSB (s, b) deflate_state *s; uInt b; { put_byte(s, (Byte)(b >> 8)); put_byte(s, (Byte)(b & 0xff)); } /* ========================================================================= * Flush as much pending output as possible. All deflate() output goes * through this function so some applications may wish to modify it * to avoid allocating a large strm->next_out buffer and copying into it. * (See also read_buf()). */ local void flush_pending(strm) z_streamp strm; { unsigned len; deflate_state *s = strm->state; _tr_flush_bits(s); len = s->pending; if (len > strm->avail_out) len = strm->avail_out; if (len == 0) return; zmemcpy(strm->next_out, s->pending_out, len); strm->next_out += len; s->pending_out += len; strm->total_out += len; strm->avail_out -= len; s->pending -= len; if (s->pending == 0) { s->pending_out = s->pending_buf; } } /* ========================================================================= */ int ZEXPORT deflate (strm, flush) z_streamp strm; int flush; { int old_flush; /* value of flush param for previous deflate call */ deflate_state *s; if (strm == Z_NULL || strm->state == Z_NULL || flush > Z_BLOCK || flush < 0) { return Z_STREAM_ERROR; } s = strm->state; if (strm->next_out == Z_NULL || (strm->next_in == Z_NULL && strm->avail_in != 0) || (s->status == FINISH_STATE && flush != Z_FINISH)) { ERR_RETURN(strm, Z_STREAM_ERROR); } if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR); s->strm = strm; /* just in case */ old_flush = s->last_flush; s->last_flush = flush; /* Write the header */ if (s->status == INIT_STATE) { #ifdef GZIP if (s->wrap == 2) { strm->adler = crc32(0L, Z_NULL, 0); put_byte(s, 31); put_byte(s, 139); put_byte(s, 8); if (s->gzhead == Z_NULL) { put_byte(s, 0); put_byte(s, 0); put_byte(s, 0); put_byte(s, 0); put_byte(s, 0); put_byte(s, s->level == 9 ? 2 : (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? 4 : 0)); put_byte(s, OS_CODE); s->status = BUSY_STATE; } else { put_byte(s, (s->gzhead->text ? 1 : 0) + (s->gzhead->hcrc ? 2 : 0) + (s->gzhead->extra == Z_NULL ? 0 : 4) + (s->gzhead->name == Z_NULL ? 0 : 8) + (s->gzhead->comment == Z_NULL ? 0 : 16) ); put_byte(s, (Byte)(s->gzhead->time & 0xff)); put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff)); put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff)); put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff)); put_byte(s, s->level == 9 ? 2 : (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? 4 : 0)); put_byte(s, s->gzhead->os & 0xff); if (s->gzhead->extra != Z_NULL) { put_byte(s, s->gzhead->extra_len & 0xff); put_byte(s, (s->gzhead->extra_len >> 8) & 0xff); } if (s->gzhead->hcrc) strm->adler = crc32(strm->adler, s->pending_buf, s->pending); s->gzindex = 0; s->status = EXTRA_STATE; } } else #endif { uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8; uInt level_flags; if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2) level_flags = 0; else if (s->level < 6) level_flags = 1; else if (s->level == 6) level_flags = 2; else level_flags = 3; header |= (level_flags << 6); if (s->strstart != 0) header |= PRESET_DICT; header += 31 - (header % 31); s->status = BUSY_STATE; putShortMSB(s, header); /* Save the adler32 of the preset dictionary: */ if (s->strstart != 0) { putShortMSB(s, (uInt)(strm->adler >> 16)); putShortMSB(s, (uInt)(strm->adler & 0xffff)); } strm->adler = adler32(0L, Z_NULL, 0); } } #ifdef GZIP if (s->status == EXTRA_STATE) { if (s->gzhead->extra != Z_NULL) { uInt beg = s->pending; /* start of bytes to update crc */ while (s->gzindex < (s->gzhead->extra_len & 0xffff)) { if (s->pending == s->pending_buf_size) { if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); flush_pending(strm); beg = s->pending; if (s->pending == s->pending_buf_size) break; } put_byte(s, s->gzhead->extra[s->gzindex]); s->gzindex++; } if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); if (s->gzindex == s->gzhead->extra_len) { s->gzindex = 0; s->status = NAME_STATE; } } else s->status = NAME_STATE; } if (s->status == NAME_STATE) { if (s->gzhead->name != Z_NULL) { uInt beg = s->pending; /* start of bytes to update crc */ int val; do { if (s->pending == s->pending_buf_size) { if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); flush_pending(strm); beg = s->pending; if (s->pending == s->pending_buf_size) { val = 1; break; } } val = s->gzhead->name[s->gzindex++]; put_byte(s, val); } while (val != 0); if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); if (val == 0) { s->gzindex = 0; s->status = COMMENT_STATE; } } else s->status = COMMENT_STATE; } if (s->status == COMMENT_STATE) { if (s->gzhead->comment != Z_NULL) { uInt beg = s->pending; /* start of bytes to update crc */ int val; do { if (s->pending == s->pending_buf_size) { if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); flush_pending(strm); beg = s->pending; if (s->pending == s->pending_buf_size) { val = 1; break; } } val = s->gzhead->comment[s->gzindex++]; put_byte(s, val); } while (val != 0); if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); if (val == 0) s->status = HCRC_STATE; } else s->status = HCRC_STATE; } if (s->status == HCRC_STATE) { if (s->gzhead->hcrc) { if (s->pending + 2 > s->pending_buf_size) flush_pending(strm); if (s->pending + 2 <= s->pending_buf_size) { put_byte(s, (Byte)(strm->adler & 0xff)); put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); strm->adler = crc32(0L, Z_NULL, 0); s->status = BUSY_STATE; } } else s->status = BUSY_STATE; } #endif /* Flush as much pending output as possible */ if (s->pending != 0) { flush_pending(strm); if (strm->avail_out == 0) { /* Since avail_out is 0, deflate will be called again with * more output space, but possibly with both pending and * avail_in equal to zero. There won't be anything to do, * but this is not an error situation so make sure we * return OK instead of BUF_ERROR at next call of deflate: */ s->last_flush = -1; return Z_OK; } /* Make sure there is something to do and avoid duplicate consecutive * flushes. For repeated and useless calls with Z_FINISH, we keep * returning Z_STREAM_END instead of Z_BUF_ERROR. */ } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) && flush != Z_FINISH) { ERR_RETURN(strm, Z_BUF_ERROR); } /* User must not provide more input after the first FINISH: */ if (s->status == FINISH_STATE && strm->avail_in != 0) { ERR_RETURN(strm, Z_BUF_ERROR); } /* Start a new block or continue the current one. */ if (strm->avail_in != 0 || s->lookahead != 0 || (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) { block_state bstate; bstate = s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) : (s->strategy == Z_RLE ? deflate_rle(s, flush) : (*(configuration_table[s->level].func))(s, flush)); if (bstate == finish_started || bstate == finish_done) { s->status = FINISH_STATE; } if (bstate == need_more || bstate == finish_started) { if (strm->avail_out == 0) { s->last_flush = -1; /* avoid BUF_ERROR next call, see above */ } return Z_OK; /* If flush != Z_NO_FLUSH && avail_out == 0, the next call * of deflate should use the same flush parameter to make sure * that the flush is complete. So we don't have to output an * empty block here, this will be done at next call. This also * ensures that for a very small output buffer, we emit at most * one empty block. */ } if (bstate == block_done) { if (flush == Z_PARTIAL_FLUSH) { _tr_align(s); } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */ _tr_stored_block(s, (char*)0, 0L, 0); /* For a full flush, this empty block will be recognized * as a special marker by inflate_sync(). */ if (flush == Z_FULL_FLUSH) { CLEAR_HASH(s); /* forget history */ if (s->lookahead == 0) { s->strstart = 0; s->block_start = 0L; s->insert = 0; } } } flush_pending(strm); if (strm->avail_out == 0) { s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */ return Z_OK; } } } Assert(strm->avail_out > 0, "bug2"); if (flush != Z_FINISH) return Z_OK; if (s->wrap <= 0) return Z_STREAM_END; /* Write the trailer */ #ifdef GZIP if (s->wrap == 2) { put_byte(s, (Byte)(strm->adler & 0xff)); put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); put_byte(s, (Byte)((strm->adler >> 16) & 0xff)); put_byte(s, (Byte)((strm->adler >> 24) & 0xff)); put_byte(s, (Byte)(strm->total_in & 0xff)); put_byte(s, (Byte)((strm->total_in >> 8) & 0xff)); put_byte(s, (Byte)((strm->total_in >> 16) & 0xff)); put_byte(s, (Byte)((strm->total_in >> 24) & 0xff)); } else #endif { putShortMSB(s, (uInt)(strm->adler >> 16)); putShortMSB(s, (uInt)(strm->adler & 0xffff)); } flush_pending(strm); /* If avail_out is zero, the application will call deflate again * to flush the rest. */ if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */ return s->pending != 0 ? Z_OK : Z_STREAM_END; } /* ========================================================================= */ int ZEXPORT deflateEnd (strm) z_streamp strm; { int status; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; status = strm->state->status; if (status != INIT_STATE && status != EXTRA_STATE && status != NAME_STATE && status != COMMENT_STATE && status != HCRC_STATE && status != BUSY_STATE && status != FINISH_STATE) { return Z_STREAM_ERROR; } /* Deallocate in reverse order of allocations: */ TRY_FREE(strm, strm->state->pending_buf); TRY_FREE(strm, strm->state->head); TRY_FREE(strm, strm->state->prev); TRY_FREE(strm, strm->state->window); ZFREE(strm, strm->state); strm->state = Z_NULL; return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; } /* ========================================================================= * Copy the source state to the destination state. * To simplify the source, this is not supported for 16-bit MSDOS (which * doesn't have enough memory anyway to duplicate compression states). */ int ZEXPORT deflateCopy (dest, source) z_streamp dest; z_streamp source; { #ifdef MAXSEG_64K return Z_STREAM_ERROR; #else deflate_state *ds; deflate_state *ss; ushf *overlay; if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) { return Z_STREAM_ERROR; } ss = source->state; zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream)); ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state)); if (ds == Z_NULL) return Z_MEM_ERROR; dest->state = (struct internal_state FAR *) ds; zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state)); ds->strm = dest; ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte)); ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos)); ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos)); overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2); ds->pending_buf = (uchf *) overlay; if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL || ds->pending_buf == Z_NULL) { deflateEnd (dest); return Z_MEM_ERROR; } /* following zmemcpy do not work for 16-bit MSDOS */ zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte)); zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos)); zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos)); zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size); ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf); ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush); ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize; ds->l_desc.dyn_tree = ds->dyn_ltree; ds->d_desc.dyn_tree = ds->dyn_dtree; ds->bl_desc.dyn_tree = ds->bl_tree; return Z_OK; #endif /* MAXSEG_64K */ } /* =========================================================================== * Read a new buffer from the current input stream, update the adler32 * and total number of bytes read. All deflate() input goes through * this function so some applications may wish to modify it to avoid * allocating a large strm->next_in buffer and copying from it. * (See also flush_pending()). */ local int read_buf(strm, buf, size) z_streamp strm; Bytef *buf; unsigned size; { unsigned len = strm->avail_in; if (len > size) len = size; if (len == 0) return 0; strm->avail_in -= len; zmemcpy(buf, strm->next_in, len); if (strm->state->wrap == 1) { strm->adler = adler32(strm->adler, buf, len); } #ifdef GZIP else if (strm->state->wrap == 2) { strm->adler = crc32(strm->adler, buf, len); } #endif strm->next_in += len; strm->total_in += len; return (int)len; } /* =========================================================================== * Initialize the "longest match" routines for a new zlib stream */ local void lm_init (s) deflate_state *s; { s->window_size = (ulg)2L*s->w_size; CLEAR_HASH(s); /* Set the default configuration parameters: */ s->max_lazy_match = configuration_table[s->level].max_lazy; s->good_match = configuration_table[s->level].good_length; s->nice_match = configuration_table[s->level].nice_length; s->max_chain_length = configuration_table[s->level].max_chain; s->strstart = 0; s->block_start = 0L; s->lookahead = 0; s->insert = 0; s->match_length = s->prev_length = MIN_MATCH-1; s->match_available = 0; s->ins_h = 0; #ifndef FASTEST #ifdef ASMV match_init(); /* initialize the asm code */ #endif #endif } #ifndef FASTEST /* =========================================================================== * Set match_start to the longest match starting at the given string and * return its length. Matches shorter or equal to prev_length are discarded, * in which case the result is equal to prev_length and match_start is * garbage. * IN assertions: cur_match is the head of the hash chain for the current * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 * OUT assertion: the match length is not greater than s->lookahead. */ #ifndef ASMV /* For 80x86 and 680x0, an optimized version will be provided in match.asm or * match.S. The code will be functionally equivalent. */ local uInt longest_match(s, cur_match) deflate_state *s; IPos cur_match; /* current match */ { unsigned chain_length = s->max_chain_length;/* max hash chain length */ register Bytef *scan = s->window + s->strstart; /* current string */ register Bytef *match; /* matched string */ register int len; /* length of current match */ int best_len = s->prev_length; /* best match length so far */ int nice_match = s->nice_match; /* stop if match long enough */ IPos limit = s->strstart > (IPos)MAX_DIST(s) ? s->strstart - (IPos)MAX_DIST(s) : NIL; /* Stop when cur_match becomes <= limit. To simplify the code, * we prevent matches with the string of window index 0. */ Posf *prev = s->prev; uInt wmask = s->w_mask; #ifdef UNALIGNED_OK /* Compare two bytes at a time. Note: this is not always beneficial. * Try with and without -DUNALIGNED_OK to check. */ register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1; register ush scan_start = *(ushf*)scan; register ush scan_end = *(ushf*)(scan+best_len-1); #else register Bytef *strend = s->window + s->strstart + MAX_MATCH; register Byte scan_end1 = scan[best_len-1]; register Byte scan_end = scan[best_len]; #endif /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. * It is easy to get rid of this optimization if necessary. */ Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); /* Do not waste too much time if we already have a good match: */ if (s->prev_length >= s->good_match) { chain_length >>= 2; } /* Do not look for matches beyond the end of the input. This is necessary * to make deflate deterministic. */ if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead; Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); do { Assert(cur_match < s->strstart, "no future"); match = s->window + cur_match; /* Skip to next match if the match length cannot increase * or if the match length is less than 2. Note that the checks below * for insufficient lookahead only occur occasionally for performance * reasons. Therefore uninitialized memory will be accessed, and * conditional jumps will be made that depend on those values. * However the length of the match is limited to the lookahead, so * the output of deflate is not affected by the uninitialized values. */ #if (defined(UNALIGNED_OK) && MAX_MATCH == 258) /* This code assumes sizeof(unsigned short) == 2. Do not use * UNALIGNED_OK if your compiler uses a different size. */ if (*(ushf*)(match+best_len-1) != scan_end || *(ushf*)match != scan_start) continue; /* It is not necessary to compare scan[2] and match[2] since they are * always equal when the other bytes match, given that the hash keys * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at * strstart+3, +5, ... up to strstart+257. We check for insufficient * lookahead only every 4th comparison; the 128th check will be made * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is * necessary to put more guard bytes at the end of the window, or * to check more often for insufficient lookahead. */ Assert(scan[2] == match[2], "scan[2]?"); scan++, match++; do { } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) && *(ushf*)(scan+=2) == *(ushf*)(match+=2) && *(ushf*)(scan+=2) == *(ushf*)(match+=2) && *(ushf*)(scan+=2) == *(ushf*)(match+=2) && scan < strend); /* The funny "do {}" generates better code on most compilers */ /* Here, scan <= window+strstart+257 */ Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); if (*scan == *match) scan++; len = (MAX_MATCH - 1) - (int)(strend-scan); scan = strend - (MAX_MATCH-1); #else /* UNALIGNED_OK */ if (match[best_len] != scan_end || match[best_len-1] != scan_end1 || *match != *scan || *++match != scan[1]) continue; /* The check at best_len-1 can be removed because it will be made * again later. (This heuristic is not always a win.) * It is not necessary to compare scan[2] and match[2] since they * are always equal when the other bytes match, given that * the hash keys are equal and that HASH_BITS >= 8. */ scan += 2, match++; Assert(*scan == *match, "match[2]?"); /* We check for insufficient lookahead only every 8th comparison; * the 256th check will be made at strstart+258. */ do { } while (*++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && scan < strend); Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); len = MAX_MATCH - (int)(strend - scan); scan = strend - MAX_MATCH; #endif /* UNALIGNED_OK */ if (len > best_len) { s->match_start = cur_match; best_len = len; if (len >= nice_match) break; #ifdef UNALIGNED_OK scan_end = *(ushf*)(scan+best_len-1); #else scan_end1 = scan[best_len-1]; scan_end = scan[best_len]; #endif } } while ((cur_match = prev[cur_match & wmask]) > limit && --chain_length != 0); if ((uInt)best_len <= s->lookahead) return (uInt)best_len; return s->lookahead; } #endif /* ASMV */ #else /* FASTEST */ /* --------------------------------------------------------------------------- * Optimized version for FASTEST only */ local uInt longest_match(s, cur_match) deflate_state *s; IPos cur_match; /* current match */ { register Bytef *scan = s->window + s->strstart; /* current string */ register Bytef *match; /* matched string */ register int len; /* length of current match */ register Bytef *strend = s->window + s->strstart + MAX_MATCH; /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. * It is easy to get rid of this optimization if necessary. */ Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); Assert(cur_match < s->strstart, "no future"); match = s->window + cur_match; /* Return failure if the match length is less than 2: */ if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1; /* The check at best_len-1 can be removed because it will be made * again later. (This heuristic is not always a win.) * It is not necessary to compare scan[2] and match[2] since they * are always equal when the other bytes match, given that * the hash keys are equal and that HASH_BITS >= 8. */ scan += 2, match += 2; Assert(*scan == *match, "match[2]?"); /* We check for insufficient lookahead only every 8th comparison; * the 256th check will be made at strstart+258. */ do { } while (*++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && scan < strend); Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); len = MAX_MATCH - (int)(strend - scan); if (len < MIN_MATCH) return MIN_MATCH - 1; s->match_start = cur_match; return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead; } #endif /* FASTEST */ #ifdef DEBUG /* =========================================================================== * Check that the match at match_start is indeed a match. */ local void check_match(s, start, match, length) deflate_state *s; IPos start, match; int length; { /* check that the match is indeed a match */ if (zmemcmp(s->window + match, s->window + start, length) != EQUAL) { fprintf(stderr, " start %u, match %u, length %d\n", start, match, length); do { fprintf(stderr, "%c%c", s->window[match++], s->window[start++]); } while (--length != 0); z_error("invalid match"); } if (z_verbose > 1) { fprintf(stderr,"\\[%d,%d]", start-match, length); do { putc(s->window[start++], stderr); } while (--length != 0); } } #else # define check_match(s, start, match, length) #endif /* DEBUG */ /* =========================================================================== * Fill the window when the lookahead becomes insufficient. * Updates strstart and lookahead. * * IN assertion: lookahead < MIN_LOOKAHEAD * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD * At least one byte has been read, or avail_in == 0; reads are * performed for at least two bytes (required for the zip translate_eol * option -- not supported here). */ local void fill_window(s) deflate_state *s; { register unsigned n, m; register Posf *p; unsigned more; /* Amount of free space at the end of the window. */ uInt wsize = s->w_size; Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead"); do { more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart); /* Deal with !@#$% 64K limit: */ if (sizeof(int) <= 2) { if (more == 0 && s->strstart == 0 && s->lookahead == 0) { more = wsize; } else if (more == (unsigned)(-1)) { /* Very unlikely, but possible on 16 bit machine if * strstart == 0 && lookahead == 1 (input done a byte at time) */ more--; } } /* If the window is almost full and there is insufficient lookahead, * move the upper half to the lower one to make room in the upper half. */ if (s->strstart >= wsize+MAX_DIST(s)) { zmemcpy(s->window, s->window+wsize, (unsigned)wsize); s->match_start -= wsize; s->strstart -= wsize; /* we now have strstart >= MAX_DIST */ s->block_start -= (long) wsize; /* Slide the hash table (could be avoided with 32 bit values at the expense of memory usage). We slide even when level == 0 to keep the hash table consistent if we switch back to level > 0 later. (Using level 0 permanently is not an optimal usage of zlib, so we don't care about this pathological case.) */ n = s->hash_size; p = &s->head[n]; do { m = *--p; *p = (Pos)(m >= wsize ? m-wsize : NIL); } while (--n); n = wsize; #ifndef FASTEST p = &s->prev[n]; do { m = *--p; *p = (Pos)(m >= wsize ? m-wsize : NIL); /* If n is not on any hash chain, prev[n] is garbage but * its value will never be used. */ } while (--n); #endif more += wsize; } if (s->strm->avail_in == 0) break; /* If there was no sliding: * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && * more == window_size - lookahead - strstart * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) * => more >= window_size - 2*WSIZE + 2 * In the BIG_MEM or MMAP case (not yet supported), * window_size == input_size + MIN_LOOKAHEAD && * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. * Otherwise, window_size == 2*WSIZE so more >= 2. * If there was sliding, more >= WSIZE. So in all cases, more >= 2. */ Assert(more >= 2, "more < 2"); n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more); s->lookahead += n; /* Initialize the hash value now that we have some input: */ if (s->lookahead + s->insert >= MIN_MATCH) { uInt str = s->strstart - s->insert; s->ins_h = s->window[str]; UPDATE_HASH(s, s->ins_h, s->window[str + 1]); #if MIN_MATCH != 3 Call UPDATE_HASH() MIN_MATCH-3 more times #endif while (s->insert) { UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); #ifndef FASTEST s->prev[str & s->w_mask] = s->head[s->ins_h]; #endif s->head[s->ins_h] = (Pos)str; str++; s->insert--; if (s->lookahead + s->insert < MIN_MATCH) break; } } /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, * but this is not important since only literal bytes will be emitted. */ } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0); /* If the WIN_INIT bytes after the end of the current data have never been * written, then zero those bytes in order to avoid memory check reports of * the use of uninitialized (or uninitialised as Julian writes) bytes by * the longest match routines. Update the high water mark for the next * time through here. WIN_INIT is set to MAX_MATCH since the longest match * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead. */ if (s->high_water < s->window_size) { ulg curr = s->strstart + (ulg)(s->lookahead); ulg init; if (s->high_water < curr) { /* Previous high water mark below current data -- zero WIN_INIT * bytes or up to end of window, whichever is less. */ init = s->window_size - curr; if (init > WIN_INIT) init = WIN_INIT; zmemzero(s->window + curr, (unsigned)init); s->high_water = curr + init; } else if (s->high_water < (ulg)curr + WIN_INIT) { /* High water mark at or above current data, but below current data * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up * to end of window, whichever is less. */ init = (ulg)curr + WIN_INIT - s->high_water; if (init > s->window_size - s->high_water) init = s->window_size - s->high_water; zmemzero(s->window + s->high_water, (unsigned)init); s->high_water += init; } } Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD, "not enough room for search"); } /* =========================================================================== * Flush the current block, with given end-of-file flag. * IN assertion: strstart is set to the end of the current match. */ #define FLUSH_BLOCK_ONLY(s, last) { \ _tr_flush_block(s, (s->block_start >= 0L ? \ (charf *)&s->window[(unsigned)s->block_start] : \ (charf *)Z_NULL), \ (ulg)((long)s->strstart - s->block_start), \ (last)); \ s->block_start = s->strstart; \ flush_pending(s->strm); \ Tracev((stderr,"[FLUSH]")); \ } /* Same but force premature exit if necessary. */ #define FLUSH_BLOCK(s, last) { \ FLUSH_BLOCK_ONLY(s, last); \ if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \ } /* =========================================================================== * Copy without compression as much as possible from the input stream, return * the current block state. * This function does not insert new strings in the dictionary since * uncompressible data is probably not useful. This function is used * only for the level=0 compression option. * NOTE: this function should be optimized to avoid extra copying from * window to pending_buf. */ local block_state deflate_stored(s, flush) deflate_state *s; int flush; { /* Stored blocks are limited to 0xffff bytes, pending_buf is limited * to pending_buf_size, and each stored block has a 5 byte header: */ ulg max_block_size = 0xffff; ulg max_start; if (max_block_size > s->pending_buf_size - 5) { max_block_size = s->pending_buf_size - 5; } /* Copy as much as possible from input to output: */ for (;;) { /* Fill the window as much as possible: */ if (s->lookahead <= 1) { Assert(s->strstart < s->w_size+MAX_DIST(s) || s->block_start >= (long)s->w_size, "slide too late"); fill_window(s); if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more; if (s->lookahead == 0) break; /* flush the current block */ } Assert(s->block_start >= 0L, "block gone"); s->strstart += s->lookahead; s->lookahead = 0; /* Emit a stored block if pending_buf will be full: */ max_start = s->block_start + max_block_size; if (s->strstart == 0 || (ulg)s->strstart >= max_start) { /* strstart == 0 is possible when wraparound on 16-bit machine */ s->lookahead = (uInt)(s->strstart - max_start); s->strstart = (uInt)max_start; FLUSH_BLOCK(s, 0); } /* Flush if we may have to slide, otherwise block_start may become * negative and the data will be gone: */ if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) { FLUSH_BLOCK(s, 0); } } s->insert = 0; if (flush == Z_FINISH) { FLUSH_BLOCK(s, 1); return finish_done; } if ((long)s->strstart > s->block_start) FLUSH_BLOCK(s, 0); return block_done; } /* =========================================================================== * Compress as much as possible from the input stream, return the current * block state. * This function does not perform lazy evaluation of matches and inserts * new strings in the dictionary only for unmatched strings or for short * matches. It is used only for the fast compression options. */ local block_state deflate_fast(s, flush) deflate_state *s; int flush; { IPos hash_head; /* head of the hash chain */ int bflush; /* set if current block must be flushed */ for (;;) { /* Make sure that we always have enough lookahead, except * at the end of the input file. We need MAX_MATCH bytes * for the next match, plus MIN_MATCH bytes to insert the * string following the next match. */ if (s->lookahead < MIN_LOOKAHEAD) { fill_window(s); if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { return need_more; } if (s->lookahead == 0) break; /* flush the current block */ } /* Insert the string window[strstart .. strstart+2] in the * dictionary, and set hash_head to the head of the hash chain: */ hash_head = NIL; if (s->lookahead >= MIN_MATCH) { INSERT_STRING(s, s->strstart, hash_head); } /* Find the longest match, discarding those <= prev_length. * At this point we have always match_length < MIN_MATCH */ if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) { /* To simplify the code, we prevent matches with the string * of window index 0 (in particular we have to avoid a match * of the string with itself at the start of the input file). */ s->match_length = longest_match (s, hash_head); /* longest_match() sets match_start */ } if (s->match_length >= MIN_MATCH) { check_match(s, s->strstart, s->match_start, s->match_length); _tr_tally_dist(s, s->strstart - s->match_start, s->match_length - MIN_MATCH, bflush); s->lookahead -= s->match_length; /* Insert new strings in the hash table only if the match length * is not too large. This saves time but degrades compression. */ #ifndef FASTEST if (s->match_length <= s->max_insert_length && s->lookahead >= MIN_MATCH) { s->match_length--; /* string at strstart already in table */ do { s->strstart++; INSERT_STRING(s, s->strstart, hash_head); /* strstart never exceeds WSIZE-MAX_MATCH, so there are * always MIN_MATCH bytes ahead. */ } while (--s->match_length != 0); s->strstart++; } else #endif { s->strstart += s->match_length; s->match_length = 0; s->ins_h = s->window[s->strstart]; UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); #if MIN_MATCH != 3 Call UPDATE_HASH() MIN_MATCH-3 more times #endif /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not * matter since it will be recomputed at next deflate call. */ } } else { /* No match, output a literal byte */ Tracevv((stderr,"%c", s->window[s->strstart])); _tr_tally_lit (s, s->window[s->strstart], bflush); s->lookahead--; s->strstart++; } if (bflush) FLUSH_BLOCK(s, 0); } s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1; if (flush == Z_FINISH) { FLUSH_BLOCK(s, 1); return finish_done; } if (s->last_lit) FLUSH_BLOCK(s, 0); return block_done; } #ifndef FASTEST /* =========================================================================== * Same as above, but achieves better compression. We use a lazy * evaluation for matches: a match is finally adopted only if there is * no better match at the next window position. */ local block_state deflate_slow(s, flush) deflate_state *s; int flush; { IPos hash_head; /* head of hash chain */ int bflush; /* set if current block must be flushed */ /* Process the input block. */ for (;;) { /* Make sure that we always have enough lookahead, except * at the end of the input file. We need MAX_MATCH bytes * for the next match, plus MIN_MATCH bytes to insert the * string following the next match. */ if (s->lookahead < MIN_LOOKAHEAD) { fill_window(s); if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { return need_more; } if (s->lookahead == 0) break; /* flush the current block */ } /* Insert the string window[strstart .. strstart+2] in the * dictionary, and set hash_head to the head of the hash chain: */ hash_head = NIL; if (s->lookahead >= MIN_MATCH) { INSERT_STRING(s, s->strstart, hash_head); } /* Find the longest match, discarding those <= prev_length. */ s->prev_length = s->match_length, s->prev_match = s->match_start; s->match_length = MIN_MATCH-1; if (hash_head != NIL && s->prev_length < s->max_lazy_match && s->strstart - hash_head <= MAX_DIST(s)) { /* To simplify the code, we prevent matches with the string * of window index 0 (in particular we have to avoid a match * of the string with itself at the start of the input file). */ s->match_length = longest_match (s, hash_head); /* longest_match() sets match_start */ if (s->match_length <= 5 && (s->strategy == Z_FILTERED #if TOO_FAR <= 32767 || (s->match_length == MIN_MATCH && s->strstart - s->match_start > TOO_FAR) #endif )) { /* If prev_match is also MIN_MATCH, match_start is garbage * but we will ignore the current match anyway. */ s->match_length = MIN_MATCH-1; } } /* If there was a match at the previous step and the current * match is not better, output the previous match: */ if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) { uInt max_insert = s->strstart + s->lookahead - MIN_MATCH; /* Do not insert strings in hash table beyond this. */ check_match(s, s->strstart-1, s->prev_match, s->prev_length); _tr_tally_dist(s, s->strstart -1 - s->prev_match, s->prev_length - MIN_MATCH, bflush); /* Insert in hash table all strings up to the end of the match. * strstart-1 and strstart are already inserted. If there is not * enough lookahead, the last two strings are not inserted in * the hash table. */ s->lookahead -= s->prev_length-1; s->prev_length -= 2; do { if (++s->strstart <= max_insert) { INSERT_STRING(s, s->strstart, hash_head); } } while (--s->prev_length != 0); s->match_available = 0; s->match_length = MIN_MATCH-1; s->strstart++; if (bflush) FLUSH_BLOCK(s, 0); } else if (s->match_available) { /* If there was no match at the previous position, output a * single literal. If there was a match but the current match * is longer, truncate the previous match to a single literal. */ Tracevv((stderr,"%c", s->window[s->strstart-1])); _tr_tally_lit(s, s->window[s->strstart-1], bflush); if (bflush) { FLUSH_BLOCK_ONLY(s, 0); } s->strstart++; s->lookahead--; if (s->strm->avail_out == 0) return need_more; } else { /* There is no previous match to compare with, wait for * the next step to decide. */ s->match_available = 1; s->strstart++; s->lookahead--; } } Assert (flush != Z_NO_FLUSH, "no flush?"); if (s->match_available) { Tracevv((stderr,"%c", s->window[s->strstart-1])); _tr_tally_lit(s, s->window[s->strstart-1], bflush); s->match_available = 0; } s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1; if (flush == Z_FINISH) { FLUSH_BLOCK(s, 1); return finish_done; } if (s->last_lit) FLUSH_BLOCK(s, 0); return block_done; } #endif /* FASTEST */ /* =========================================================================== * For Z_RLE, simply look for runs of bytes, generate matches only of distance * one. Do not maintain a hash table. (It will be regenerated if this run of * deflate switches away from Z_RLE.) */ local block_state deflate_rle(s, flush) deflate_state *s; int flush; { int bflush; /* set if current block must be flushed */ uInt prev; /* byte at distance one to match */ Bytef *scan, *strend; /* scan goes up to strend for length of run */ for (;;) { /* Make sure that we always have enough lookahead, except * at the end of the input file. We need MAX_MATCH bytes * for the longest run, plus one for the unrolled loop. */ if (s->lookahead <= MAX_MATCH) { fill_window(s); if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) { return need_more; } if (s->lookahead == 0) break; /* flush the current block */ } /* See how many times the previous byte repeats */ s->match_length = 0; if (s->lookahead >= MIN_MATCH && s->strstart > 0) { scan = s->window + s->strstart - 1; prev = *scan; if (prev == *++scan && prev == *++scan && prev == *++scan) { strend = s->window + s->strstart + MAX_MATCH; do { } while (prev == *++scan && prev == *++scan && prev == *++scan && prev == *++scan && prev == *++scan && prev == *++scan && prev == *++scan && prev == *++scan && scan < strend); s->match_length = MAX_MATCH - (int)(strend - scan); if (s->match_length > s->lookahead) s->match_length = s->lookahead; } Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan"); } /* Emit match if have run of MIN_MATCH or longer, else emit literal */ if (s->match_length >= MIN_MATCH) { check_match(s, s->strstart, s->strstart - 1, s->match_length); _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush); s->lookahead -= s->match_length; s->strstart += s->match_length; s->match_length = 0; } else { /* No match, output a literal byte */ Tracevv((stderr,"%c", s->window[s->strstart])); _tr_tally_lit (s, s->window[s->strstart], bflush); s->lookahead--; s->strstart++; } if (bflush) FLUSH_BLOCK(s, 0); } s->insert = 0; if (flush == Z_FINISH) { FLUSH_BLOCK(s, 1); return finish_done; } if (s->last_lit) FLUSH_BLOCK(s, 0); return block_done; } /* =========================================================================== * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table. * (It will be regenerated if this run of deflate switches away from Huffman.) */ local block_state deflate_huff(s, flush) deflate_state *s; int flush; { int bflush; /* set if current block must be flushed */ for (;;) { /* Make sure that we have a literal to write. */ if (s->lookahead == 0) { fill_window(s); if (s->lookahead == 0) { if (flush == Z_NO_FLUSH) return need_more; break; /* flush the current block */ } } /* Output a literal byte */ s->match_length = 0; Tracevv((stderr,"%c", s->window[s->strstart])); _tr_tally_lit (s, s->window[s->strstart], bflush); s->lookahead--; s->strstart++; if (bflush) FLUSH_BLOCK(s, 0); } s->insert = 0; if (flush == Z_FINISH) { FLUSH_BLOCK(s, 1); return finish_done; } if (s->last_lit) FLUSH_BLOCK(s, 0); return block_done; } /* END OF DUMP OF mz_deflate.c*/ /* START OF DUMP OF mz_crc32.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* crc32.c -- compute the CRC-32 of a data stream * Copyright (C) 1995-2006, 2010, 2011, 2012 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h * * Thanks to Rodney Brown for his contribution of faster * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing * tables for updating the shift register in one step with three exclusive-ors * instead of four steps with four exclusive-ors. This results in about a * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3. */ /* @(#) $Id$ */ /* Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore protection on the static variables used to control the first-use generation of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should first call get_crc_table() to initialize the tables before allowing more than one thread to use crc32(). DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h. */ #ifdef MAKECRCH # include # ifndef DYNAMIC_CRC_TABLE # define DYNAMIC_CRC_TABLE # endif /* !DYNAMIC_CRC_TABLE */ #endif /* MAKECRCH */ #define local static /* Definitions for doing the crc four data bytes at a time. */ #if !defined(NOBYFOUR) && defined(Z_U4) # define BYFOUR #endif #ifdef BYFOUR local unsigned long crc32_little OF((unsigned long, const unsigned char FAR *, unsigned)); local unsigned long crc32_big OF((unsigned long, const unsigned char FAR *, unsigned)); # define TBLS 8 #else # define TBLS 1 #endif /* BYFOUR */ /* Local functions for crc concatenation */ local unsigned long gf2_matrix_times OF((unsigned long *mat, unsigned long vec)); local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat)); local uLong crc32_combine_ OF((uLong crc1, uLong crc2, z_off64_t len2)); #ifdef DYNAMIC_CRC_TABLE local volatile int crc_table_empty = 1; local z_crc_t FAR crc_table[TBLS][256]; local void make_crc_table OF((void)); #ifdef MAKECRCH local void write_table OF((FILE *, const z_crc_t FAR *)); #endif /* MAKECRCH */ /* Generate tables for a byte-wise 32-bit CRC calculation on the polynomial: x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1. Polynomials over GF(2) are represented in binary, one bit per coefficient, with the lowest powers in the most significant bit. Then adding polynomials is just exclusive-or, and multiplying a polynomial by x is a right shift by one. If we call the above polynomial p, and represent a byte as the polynomial q, also with the lowest power in the most significant bit (so the byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p, where a mod b means the remainder after dividing a by b. This calculation is done using the shift-register method of multiplying and taking the remainder. The register is initialized to zero, and for each incoming bit, x^32 is added mod p to the register if the bit is a one (where x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by x (which is shifting right by one and adding x^32 mod p if the bit shifted out is a one). We start with the highest power (least significant bit) of q and repeat for all eight bits of q. The first table is simply the CRC of all possible eight bit values. This is all the information needed to generate CRCs on data a byte at a time for all combinations of CRC register values and incoming bytes. The remaining tables allow for word-at-a-time CRC calculation for both big-endian and little- endian machines, where a word is four bytes. */ local void make_crc_table() { z_crc_t c; int n, k; z_crc_t poly; /* polynomial exclusive-or pattern */ /* terms of polynomial defining this crc (except x^32): */ static volatile int first = 1; /* flag to limit concurrent making */ static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26}; /* See if another task is already doing this (not thread-safe, but better than nothing -- significantly reduces duration of vulnerability in case the advice about DYNAMIC_CRC_TABLE is ignored) */ if (first) { first = 0; /* make exclusive-or pattern from polynomial (0xedb88320UL) */ poly = 0; for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++) poly |= (z_crc_t)1 << (31 - p[n]); /* generate a crc for every 8-bit value */ for (n = 0; n < 256; n++) { c = (z_crc_t)n; for (k = 0; k < 8; k++) c = c & 1 ? poly ^ (c >> 1) : c >> 1; crc_table[0][n] = c; } #ifdef BYFOUR /* generate crc for each value followed by one, two, and three zeros, and then the byte reversal of those as well as the first table */ for (n = 0; n < 256; n++) { c = crc_table[0][n]; crc_table[4][n] = ZSWAP32(c); for (k = 1; k < 4; k++) { c = crc_table[0][c & 0xff] ^ (c >> 8); crc_table[k][n] = c; crc_table[k + 4][n] = ZSWAP32(c); } } #endif /* BYFOUR */ crc_table_empty = 0; } else { /* not first */ /* wait for the other guy to finish (not efficient, but rare) */ while (crc_table_empty) ; } #ifdef MAKECRCH /* write out CRC tables to crc32.h */ { FILE *out; out = fopen("crc32.h", "w"); if (out == NULL) return; fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n"); fprintf(out, " * Generated automatically by crc32.c\n */\n\n"); fprintf(out, "local const z_crc_t FAR "); fprintf(out, "crc_table[TBLS][256] =\n{\n {\n"); write_table(out, crc_table[0]); # ifdef BYFOUR fprintf(out, "#ifdef BYFOUR\n"); for (k = 1; k < 8; k++) { fprintf(out, " },\n {\n"); write_table(out, crc_table[k]); } fprintf(out, "#endif\n"); # endif /* BYFOUR */ fprintf(out, " }\n};\n"); fclose(out); } #endif /* MAKECRCH */ } #ifdef MAKECRCH local void write_table(out, table) FILE *out; const z_crc_t FAR *table; { int n; for (n = 0; n < 256; n++) fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : " ", (unsigned long)(table[n]), n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", ")); } #endif /* MAKECRCH */ #else /* !DYNAMIC_CRC_TABLE */ /* ======================================================================== * Tables of CRC-32s of all single-byte values, made by make_crc_table(). */ /* START OF DUMP OF mz_crc32.h*/ /* crc32.h -- tables for rapid CRC calculation * Generated automatically by crc32.c */ local const z_crc_t FAR crc_table[TBLS][256] = { { 0x00000000UL, 0x77073096UL, 0xee0e612cUL, 0x990951baUL, 0x076dc419UL, 0x706af48fUL, 0xe963a535UL, 0x9e6495a3UL, 0x0edb8832UL, 0x79dcb8a4UL, 0xe0d5e91eUL, 0x97d2d988UL, 0x09b64c2bUL, 0x7eb17cbdUL, 0xe7b82d07UL, 0x90bf1d91UL, 0x1db71064UL, 0x6ab020f2UL, 0xf3b97148UL, 0x84be41deUL, 0x1adad47dUL, 0x6ddde4ebUL, 0xf4d4b551UL, 0x83d385c7UL, 0x136c9856UL, 0x646ba8c0UL, 0xfd62f97aUL, 0x8a65c9ecUL, 0x14015c4fUL, 0x63066cd9UL, 0xfa0f3d63UL, 0x8d080df5UL, 0x3b6e20c8UL, 0x4c69105eUL, 0xd56041e4UL, 0xa2677172UL, 0x3c03e4d1UL, 0x4b04d447UL, 0xd20d85fdUL, 0xa50ab56bUL, 0x35b5a8faUL, 0x42b2986cUL, 0xdbbbc9d6UL, 0xacbcf940UL, 0x32d86ce3UL, 0x45df5c75UL, 0xdcd60dcfUL, 0xabd13d59UL, 0x26d930acUL, 0x51de003aUL, 0xc8d75180UL, 0xbfd06116UL, 0x21b4f4b5UL, 0x56b3c423UL, 0xcfba9599UL, 0xb8bda50fUL, 0x2802b89eUL, 0x5f058808UL, 0xc60cd9b2UL, 0xb10be924UL, 0x2f6f7c87UL, 0x58684c11UL, 0xc1611dabUL, 0xb6662d3dUL, 0x76dc4190UL, 0x01db7106UL, 0x98d220bcUL, 0xefd5102aUL, 0x71b18589UL, 0x06b6b51fUL, 0x9fbfe4a5UL, 0xe8b8d433UL, 0x7807c9a2UL, 0x0f00f934UL, 0x9609a88eUL, 0xe10e9818UL, 0x7f6a0dbbUL, 0x086d3d2dUL, 0x91646c97UL, 0xe6635c01UL, 0x6b6b51f4UL, 0x1c6c6162UL, 0x856530d8UL, 0xf262004eUL, 0x6c0695edUL, 0x1b01a57bUL, 0x8208f4c1UL, 0xf50fc457UL, 0x65b0d9c6UL, 0x12b7e950UL, 0x8bbeb8eaUL, 0xfcb9887cUL, 0x62dd1ddfUL, 0x15da2d49UL, 0x8cd37cf3UL, 0xfbd44c65UL, 0x4db26158UL, 0x3ab551ceUL, 0xa3bc0074UL, 0xd4bb30e2UL, 0x4adfa541UL, 0x3dd895d7UL, 0xa4d1c46dUL, 0xd3d6f4fbUL, 0x4369e96aUL, 0x346ed9fcUL, 0xad678846UL, 0xda60b8d0UL, 0x44042d73UL, 0x33031de5UL, 0xaa0a4c5fUL, 0xdd0d7cc9UL, 0x5005713cUL, 0x270241aaUL, 0xbe0b1010UL, 0xc90c2086UL, 0x5768b525UL, 0x206f85b3UL, 0xb966d409UL, 0xce61e49fUL, 0x5edef90eUL, 0x29d9c998UL, 0xb0d09822UL, 0xc7d7a8b4UL, 0x59b33d17UL, 0x2eb40d81UL, 0xb7bd5c3bUL, 0xc0ba6cadUL, 0xedb88320UL, 0x9abfb3b6UL, 0x03b6e20cUL, 0x74b1d29aUL, 0xead54739UL, 0x9dd277afUL, 0x04db2615UL, 0x73dc1683UL, 0xe3630b12UL, 0x94643b84UL, 0x0d6d6a3eUL, 0x7a6a5aa8UL, 0xe40ecf0bUL, 0x9309ff9dUL, 0x0a00ae27UL, 0x7d079eb1UL, 0xf00f9344UL, 0x8708a3d2UL, 0x1e01f268UL, 0x6906c2feUL, 0xf762575dUL, 0x806567cbUL, 0x196c3671UL, 0x6e6b06e7UL, 0xfed41b76UL, 0x89d32be0UL, 0x10da7a5aUL, 0x67dd4accUL, 0xf9b9df6fUL, 0x8ebeeff9UL, 0x17b7be43UL, 0x60b08ed5UL, 0xd6d6a3e8UL, 0xa1d1937eUL, 0x38d8c2c4UL, 0x4fdff252UL, 0xd1bb67f1UL, 0xa6bc5767UL, 0x3fb506ddUL, 0x48b2364bUL, 0xd80d2bdaUL, 0xaf0a1b4cUL, 0x36034af6UL, 0x41047a60UL, 0xdf60efc3UL, 0xa867df55UL, 0x316e8eefUL, 0x4669be79UL, 0xcb61b38cUL, 0xbc66831aUL, 0x256fd2a0UL, 0x5268e236UL, 0xcc0c7795UL, 0xbb0b4703UL, 0x220216b9UL, 0x5505262fUL, 0xc5ba3bbeUL, 0xb2bd0b28UL, 0x2bb45a92UL, 0x5cb36a04UL, 0xc2d7ffa7UL, 0xb5d0cf31UL, 0x2cd99e8bUL, 0x5bdeae1dUL, 0x9b64c2b0UL, 0xec63f226UL, 0x756aa39cUL, 0x026d930aUL, 0x9c0906a9UL, 0xeb0e363fUL, 0x72076785UL, 0x05005713UL, 0x95bf4a82UL, 0xe2b87a14UL, 0x7bb12baeUL, 0x0cb61b38UL, 0x92d28e9bUL, 0xe5d5be0dUL, 0x7cdcefb7UL, 0x0bdbdf21UL, 0x86d3d2d4UL, 0xf1d4e242UL, 0x68ddb3f8UL, 0x1fda836eUL, 0x81be16cdUL, 0xf6b9265bUL, 0x6fb077e1UL, 0x18b74777UL, 0x88085ae6UL, 0xff0f6a70UL, 0x66063bcaUL, 0x11010b5cUL, 0x8f659effUL, 0xf862ae69UL, 0x616bffd3UL, 0x166ccf45UL, 0xa00ae278UL, 0xd70dd2eeUL, 0x4e048354UL, 0x3903b3c2UL, 0xa7672661UL, 0xd06016f7UL, 0x4969474dUL, 0x3e6e77dbUL, 0xaed16a4aUL, 0xd9d65adcUL, 0x40df0b66UL, 0x37d83bf0UL, 0xa9bcae53UL, 0xdebb9ec5UL, 0x47b2cf7fUL, 0x30b5ffe9UL, 0xbdbdf21cUL, 0xcabac28aUL, 0x53b39330UL, 0x24b4a3a6UL, 0xbad03605UL, 0xcdd70693UL, 0x54de5729UL, 0x23d967bfUL, 0xb3667a2eUL, 0xc4614ab8UL, 0x5d681b02UL, 0x2a6f2b94UL, 0xb40bbe37UL, 0xc30c8ea1UL, 0x5a05df1bUL, 0x2d02ef8dUL #ifdef BYFOUR }, { 0x00000000UL, 0x191b3141UL, 0x32366282UL, 0x2b2d53c3UL, 0x646cc504UL, 0x7d77f445UL, 0x565aa786UL, 0x4f4196c7UL, 0xc8d98a08UL, 0xd1c2bb49UL, 0xfaefe88aUL, 0xe3f4d9cbUL, 0xacb54f0cUL, 0xb5ae7e4dUL, 0x9e832d8eUL, 0x87981ccfUL, 0x4ac21251UL, 0x53d92310UL, 0x78f470d3UL, 0x61ef4192UL, 0x2eaed755UL, 0x37b5e614UL, 0x1c98b5d7UL, 0x05838496UL, 0x821b9859UL, 0x9b00a918UL, 0xb02dfadbUL, 0xa936cb9aUL, 0xe6775d5dUL, 0xff6c6c1cUL, 0xd4413fdfUL, 0xcd5a0e9eUL, 0x958424a2UL, 0x8c9f15e3UL, 0xa7b24620UL, 0xbea97761UL, 0xf1e8e1a6UL, 0xe8f3d0e7UL, 0xc3de8324UL, 0xdac5b265UL, 0x5d5daeaaUL, 0x44469febUL, 0x6f6bcc28UL, 0x7670fd69UL, 0x39316baeUL, 0x202a5aefUL, 0x0b07092cUL, 0x121c386dUL, 0xdf4636f3UL, 0xc65d07b2UL, 0xed705471UL, 0xf46b6530UL, 0xbb2af3f7UL, 0xa231c2b6UL, 0x891c9175UL, 0x9007a034UL, 0x179fbcfbUL, 0x0e848dbaUL, 0x25a9de79UL, 0x3cb2ef38UL, 0x73f379ffUL, 0x6ae848beUL, 0x41c51b7dUL, 0x58de2a3cUL, 0xf0794f05UL, 0xe9627e44UL, 0xc24f2d87UL, 0xdb541cc6UL, 0x94158a01UL, 0x8d0ebb40UL, 0xa623e883UL, 0xbf38d9c2UL, 0x38a0c50dUL, 0x21bbf44cUL, 0x0a96a78fUL, 0x138d96ceUL, 0x5ccc0009UL, 0x45d73148UL, 0x6efa628bUL, 0x77e153caUL, 0xbabb5d54UL, 0xa3a06c15UL, 0x888d3fd6UL, 0x91960e97UL, 0xded79850UL, 0xc7cca911UL, 0xece1fad2UL, 0xf5facb93UL, 0x7262d75cUL, 0x6b79e61dUL, 0x4054b5deUL, 0x594f849fUL, 0x160e1258UL, 0x0f152319UL, 0x243870daUL, 0x3d23419bUL, 0x65fd6ba7UL, 0x7ce65ae6UL, 0x57cb0925UL, 0x4ed03864UL, 0x0191aea3UL, 0x188a9fe2UL, 0x33a7cc21UL, 0x2abcfd60UL, 0xad24e1afUL, 0xb43fd0eeUL, 0x9f12832dUL, 0x8609b26cUL, 0xc94824abUL, 0xd05315eaUL, 0xfb7e4629UL, 0xe2657768UL, 0x2f3f79f6UL, 0x362448b7UL, 0x1d091b74UL, 0x04122a35UL, 0x4b53bcf2UL, 0x52488db3UL, 0x7965de70UL, 0x607eef31UL, 0xe7e6f3feUL, 0xfefdc2bfUL, 0xd5d0917cUL, 0xcccba03dUL, 0x838a36faUL, 0x9a9107bbUL, 0xb1bc5478UL, 0xa8a76539UL, 0x3b83984bUL, 0x2298a90aUL, 0x09b5fac9UL, 0x10aecb88UL, 0x5fef5d4fUL, 0x46f46c0eUL, 0x6dd93fcdUL, 0x74c20e8cUL, 0xf35a1243UL, 0xea412302UL, 0xc16c70c1UL, 0xd8774180UL, 0x9736d747UL, 0x8e2de606UL, 0xa500b5c5UL, 0xbc1b8484UL, 0x71418a1aUL, 0x685abb5bUL, 0x4377e898UL, 0x5a6cd9d9UL, 0x152d4f1eUL, 0x0c367e5fUL, 0x271b2d9cUL, 0x3e001cddUL, 0xb9980012UL, 0xa0833153UL, 0x8bae6290UL, 0x92b553d1UL, 0xddf4c516UL, 0xc4eff457UL, 0xefc2a794UL, 0xf6d996d5UL, 0xae07bce9UL, 0xb71c8da8UL, 0x9c31de6bUL, 0x852aef2aUL, 0xca6b79edUL, 0xd37048acUL, 0xf85d1b6fUL, 0xe1462a2eUL, 0x66de36e1UL, 0x7fc507a0UL, 0x54e85463UL, 0x4df36522UL, 0x02b2f3e5UL, 0x1ba9c2a4UL, 0x30849167UL, 0x299fa026UL, 0xe4c5aeb8UL, 0xfdde9ff9UL, 0xd6f3cc3aUL, 0xcfe8fd7bUL, 0x80a96bbcUL, 0x99b25afdUL, 0xb29f093eUL, 0xab84387fUL, 0x2c1c24b0UL, 0x350715f1UL, 0x1e2a4632UL, 0x07317773UL, 0x4870e1b4UL, 0x516bd0f5UL, 0x7a468336UL, 0x635db277UL, 0xcbfad74eUL, 0xd2e1e60fUL, 0xf9ccb5ccUL, 0xe0d7848dUL, 0xaf96124aUL, 0xb68d230bUL, 0x9da070c8UL, 0x84bb4189UL, 0x03235d46UL, 0x1a386c07UL, 0x31153fc4UL, 0x280e0e85UL, 0x674f9842UL, 0x7e54a903UL, 0x5579fac0UL, 0x4c62cb81UL, 0x8138c51fUL, 0x9823f45eUL, 0xb30ea79dUL, 0xaa1596dcUL, 0xe554001bUL, 0xfc4f315aUL, 0xd7626299UL, 0xce7953d8UL, 0x49e14f17UL, 0x50fa7e56UL, 0x7bd72d95UL, 0x62cc1cd4UL, 0x2d8d8a13UL, 0x3496bb52UL, 0x1fbbe891UL, 0x06a0d9d0UL, 0x5e7ef3ecUL, 0x4765c2adUL, 0x6c48916eUL, 0x7553a02fUL, 0x3a1236e8UL, 0x230907a9UL, 0x0824546aUL, 0x113f652bUL, 0x96a779e4UL, 0x8fbc48a5UL, 0xa4911b66UL, 0xbd8a2a27UL, 0xf2cbbce0UL, 0xebd08da1UL, 0xc0fdde62UL, 0xd9e6ef23UL, 0x14bce1bdUL, 0x0da7d0fcUL, 0x268a833fUL, 0x3f91b27eUL, 0x70d024b9UL, 0x69cb15f8UL, 0x42e6463bUL, 0x5bfd777aUL, 0xdc656bb5UL, 0xc57e5af4UL, 0xee530937UL, 0xf7483876UL, 0xb809aeb1UL, 0xa1129ff0UL, 0x8a3fcc33UL, 0x9324fd72UL }, { 0x00000000UL, 0x01c26a37UL, 0x0384d46eUL, 0x0246be59UL, 0x0709a8dcUL, 0x06cbc2ebUL, 0x048d7cb2UL, 0x054f1685UL, 0x0e1351b8UL, 0x0fd13b8fUL, 0x0d9785d6UL, 0x0c55efe1UL, 0x091af964UL, 0x08d89353UL, 0x0a9e2d0aUL, 0x0b5c473dUL, 0x1c26a370UL, 0x1de4c947UL, 0x1fa2771eUL, 0x1e601d29UL, 0x1b2f0bacUL, 0x1aed619bUL, 0x18abdfc2UL, 0x1969b5f5UL, 0x1235f2c8UL, 0x13f798ffUL, 0x11b126a6UL, 0x10734c91UL, 0x153c5a14UL, 0x14fe3023UL, 0x16b88e7aUL, 0x177ae44dUL, 0x384d46e0UL, 0x398f2cd7UL, 0x3bc9928eUL, 0x3a0bf8b9UL, 0x3f44ee3cUL, 0x3e86840bUL, 0x3cc03a52UL, 0x3d025065UL, 0x365e1758UL, 0x379c7d6fUL, 0x35dac336UL, 0x3418a901UL, 0x3157bf84UL, 0x3095d5b3UL, 0x32d36beaUL, 0x331101ddUL, 0x246be590UL, 0x25a98fa7UL, 0x27ef31feUL, 0x262d5bc9UL, 0x23624d4cUL, 0x22a0277bUL, 0x20e69922UL, 0x2124f315UL, 0x2a78b428UL, 0x2bbade1fUL, 0x29fc6046UL, 0x283e0a71UL, 0x2d711cf4UL, 0x2cb376c3UL, 0x2ef5c89aUL, 0x2f37a2adUL, 0x709a8dc0UL, 0x7158e7f7UL, 0x731e59aeUL, 0x72dc3399UL, 0x7793251cUL, 0x76514f2bUL, 0x7417f172UL, 0x75d59b45UL, 0x7e89dc78UL, 0x7f4bb64fUL, 0x7d0d0816UL, 0x7ccf6221UL, 0x798074a4UL, 0x78421e93UL, 0x7a04a0caUL, 0x7bc6cafdUL, 0x6cbc2eb0UL, 0x6d7e4487UL, 0x6f38fadeUL, 0x6efa90e9UL, 0x6bb5866cUL, 0x6a77ec5bUL, 0x68315202UL, 0x69f33835UL, 0x62af7f08UL, 0x636d153fUL, 0x612bab66UL, 0x60e9c151UL, 0x65a6d7d4UL, 0x6464bde3UL, 0x662203baUL, 0x67e0698dUL, 0x48d7cb20UL, 0x4915a117UL, 0x4b531f4eUL, 0x4a917579UL, 0x4fde63fcUL, 0x4e1c09cbUL, 0x4c5ab792UL, 0x4d98dda5UL, 0x46c49a98UL, 0x4706f0afUL, 0x45404ef6UL, 0x448224c1UL, 0x41cd3244UL, 0x400f5873UL, 0x4249e62aUL, 0x438b8c1dUL, 0x54f16850UL, 0x55330267UL, 0x5775bc3eUL, 0x56b7d609UL, 0x53f8c08cUL, 0x523aaabbUL, 0x507c14e2UL, 0x51be7ed5UL, 0x5ae239e8UL, 0x5b2053dfUL, 0x5966ed86UL, 0x58a487b1UL, 0x5deb9134UL, 0x5c29fb03UL, 0x5e6f455aUL, 0x5fad2f6dUL, 0xe1351b80UL, 0xe0f771b7UL, 0xe2b1cfeeUL, 0xe373a5d9UL, 0xe63cb35cUL, 0xe7fed96bUL, 0xe5b86732UL, 0xe47a0d05UL, 0xef264a38UL, 0xeee4200fUL, 0xeca29e56UL, 0xed60f461UL, 0xe82fe2e4UL, 0xe9ed88d3UL, 0xebab368aUL, 0xea695cbdUL, 0xfd13b8f0UL, 0xfcd1d2c7UL, 0xfe976c9eUL, 0xff5506a9UL, 0xfa1a102cUL, 0xfbd87a1bUL, 0xf99ec442UL, 0xf85cae75UL, 0xf300e948UL, 0xf2c2837fUL, 0xf0843d26UL, 0xf1465711UL, 0xf4094194UL, 0xf5cb2ba3UL, 0xf78d95faUL, 0xf64fffcdUL, 0xd9785d60UL, 0xd8ba3757UL, 0xdafc890eUL, 0xdb3ee339UL, 0xde71f5bcUL, 0xdfb39f8bUL, 0xddf521d2UL, 0xdc374be5UL, 0xd76b0cd8UL, 0xd6a966efUL, 0xd4efd8b6UL, 0xd52db281UL, 0xd062a404UL, 0xd1a0ce33UL, 0xd3e6706aUL, 0xd2241a5dUL, 0xc55efe10UL, 0xc49c9427UL, 0xc6da2a7eUL, 0xc7184049UL, 0xc25756ccUL, 0xc3953cfbUL, 0xc1d382a2UL, 0xc011e895UL, 0xcb4dafa8UL, 0xca8fc59fUL, 0xc8c97bc6UL, 0xc90b11f1UL, 0xcc440774UL, 0xcd866d43UL, 0xcfc0d31aUL, 0xce02b92dUL, 0x91af9640UL, 0x906dfc77UL, 0x922b422eUL, 0x93e92819UL, 0x96a63e9cUL, 0x976454abUL, 0x9522eaf2UL, 0x94e080c5UL, 0x9fbcc7f8UL, 0x9e7eadcfUL, 0x9c381396UL, 0x9dfa79a1UL, 0x98b56f24UL, 0x99770513UL, 0x9b31bb4aUL, 0x9af3d17dUL, 0x8d893530UL, 0x8c4b5f07UL, 0x8e0de15eUL, 0x8fcf8b69UL, 0x8a809decUL, 0x8b42f7dbUL, 0x89044982UL, 0x88c623b5UL, 0x839a6488UL, 0x82580ebfUL, 0x801eb0e6UL, 0x81dcdad1UL, 0x8493cc54UL, 0x8551a663UL, 0x8717183aUL, 0x86d5720dUL, 0xa9e2d0a0UL, 0xa820ba97UL, 0xaa6604ceUL, 0xaba46ef9UL, 0xaeeb787cUL, 0xaf29124bUL, 0xad6fac12UL, 0xacadc625UL, 0xa7f18118UL, 0xa633eb2fUL, 0xa4755576UL, 0xa5b73f41UL, 0xa0f829c4UL, 0xa13a43f3UL, 0xa37cfdaaUL, 0xa2be979dUL, 0xb5c473d0UL, 0xb40619e7UL, 0xb640a7beUL, 0xb782cd89UL, 0xb2cddb0cUL, 0xb30fb13bUL, 0xb1490f62UL, 0xb08b6555UL, 0xbbd72268UL, 0xba15485fUL, 0xb853f606UL, 0xb9919c31UL, 0xbcde8ab4UL, 0xbd1ce083UL, 0xbf5a5edaUL, 0xbe9834edUL }, { 0x00000000UL, 0xb8bc6765UL, 0xaa09c88bUL, 0x12b5afeeUL, 0x8f629757UL, 0x37def032UL, 0x256b5fdcUL, 0x9dd738b9UL, 0xc5b428efUL, 0x7d084f8aUL, 0x6fbde064UL, 0xd7018701UL, 0x4ad6bfb8UL, 0xf26ad8ddUL, 0xe0df7733UL, 0x58631056UL, 0x5019579fUL, 0xe8a530faUL, 0xfa109f14UL, 0x42acf871UL, 0xdf7bc0c8UL, 0x67c7a7adUL, 0x75720843UL, 0xcdce6f26UL, 0x95ad7f70UL, 0x2d111815UL, 0x3fa4b7fbUL, 0x8718d09eUL, 0x1acfe827UL, 0xa2738f42UL, 0xb0c620acUL, 0x087a47c9UL, 0xa032af3eUL, 0x188ec85bUL, 0x0a3b67b5UL, 0xb28700d0UL, 0x2f503869UL, 0x97ec5f0cUL, 0x8559f0e2UL, 0x3de59787UL, 0x658687d1UL, 0xdd3ae0b4UL, 0xcf8f4f5aUL, 0x7733283fUL, 0xeae41086UL, 0x525877e3UL, 0x40edd80dUL, 0xf851bf68UL, 0xf02bf8a1UL, 0x48979fc4UL, 0x5a22302aUL, 0xe29e574fUL, 0x7f496ff6UL, 0xc7f50893UL, 0xd540a77dUL, 0x6dfcc018UL, 0x359fd04eUL, 0x8d23b72bUL, 0x9f9618c5UL, 0x272a7fa0UL, 0xbafd4719UL, 0x0241207cUL, 0x10f48f92UL, 0xa848e8f7UL, 0x9b14583dUL, 0x23a83f58UL, 0x311d90b6UL, 0x89a1f7d3UL, 0x1476cf6aUL, 0xaccaa80fUL, 0xbe7f07e1UL, 0x06c36084UL, 0x5ea070d2UL, 0xe61c17b7UL, 0xf4a9b859UL, 0x4c15df3cUL, 0xd1c2e785UL, 0x697e80e0UL, 0x7bcb2f0eUL, 0xc377486bUL, 0xcb0d0fa2UL, 0x73b168c7UL, 0x6104c729UL, 0xd9b8a04cUL, 0x446f98f5UL, 0xfcd3ff90UL, 0xee66507eUL, 0x56da371bUL, 0x0eb9274dUL, 0xb6054028UL, 0xa4b0efc6UL, 0x1c0c88a3UL, 0x81dbb01aUL, 0x3967d77fUL, 0x2bd27891UL, 0x936e1ff4UL, 0x3b26f703UL, 0x839a9066UL, 0x912f3f88UL, 0x299358edUL, 0xb4446054UL, 0x0cf80731UL, 0x1e4da8dfUL, 0xa6f1cfbaUL, 0xfe92dfecUL, 0x462eb889UL, 0x549b1767UL, 0xec277002UL, 0x71f048bbUL, 0xc94c2fdeUL, 0xdbf98030UL, 0x6345e755UL, 0x6b3fa09cUL, 0xd383c7f9UL, 0xc1366817UL, 0x798a0f72UL, 0xe45d37cbUL, 0x5ce150aeUL, 0x4e54ff40UL, 0xf6e89825UL, 0xae8b8873UL, 0x1637ef16UL, 0x048240f8UL, 0xbc3e279dUL, 0x21e91f24UL, 0x99557841UL, 0x8be0d7afUL, 0x335cb0caUL, 0xed59b63bUL, 0x55e5d15eUL, 0x47507eb0UL, 0xffec19d5UL, 0x623b216cUL, 0xda874609UL, 0xc832e9e7UL, 0x708e8e82UL, 0x28ed9ed4UL, 0x9051f9b1UL, 0x82e4565fUL, 0x3a58313aUL, 0xa78f0983UL, 0x1f336ee6UL, 0x0d86c108UL, 0xb53aa66dUL, 0xbd40e1a4UL, 0x05fc86c1UL, 0x1749292fUL, 0xaff54e4aUL, 0x322276f3UL, 0x8a9e1196UL, 0x982bbe78UL, 0x2097d91dUL, 0x78f4c94bUL, 0xc048ae2eUL, 0xd2fd01c0UL, 0x6a4166a5UL, 0xf7965e1cUL, 0x4f2a3979UL, 0x5d9f9697UL, 0xe523f1f2UL, 0x4d6b1905UL, 0xf5d77e60UL, 0xe762d18eUL, 0x5fdeb6ebUL, 0xc2098e52UL, 0x7ab5e937UL, 0x680046d9UL, 0xd0bc21bcUL, 0x88df31eaUL, 0x3063568fUL, 0x22d6f961UL, 0x9a6a9e04UL, 0x07bda6bdUL, 0xbf01c1d8UL, 0xadb46e36UL, 0x15080953UL, 0x1d724e9aUL, 0xa5ce29ffUL, 0xb77b8611UL, 0x0fc7e174UL, 0x9210d9cdUL, 0x2aacbea8UL, 0x38191146UL, 0x80a57623UL, 0xd8c66675UL, 0x607a0110UL, 0x72cfaefeUL, 0xca73c99bUL, 0x57a4f122UL, 0xef189647UL, 0xfdad39a9UL, 0x45115eccUL, 0x764dee06UL, 0xcef18963UL, 0xdc44268dUL, 0x64f841e8UL, 0xf92f7951UL, 0x41931e34UL, 0x5326b1daUL, 0xeb9ad6bfUL, 0xb3f9c6e9UL, 0x0b45a18cUL, 0x19f00e62UL, 0xa14c6907UL, 0x3c9b51beUL, 0x842736dbUL, 0x96929935UL, 0x2e2efe50UL, 0x2654b999UL, 0x9ee8defcUL, 0x8c5d7112UL, 0x34e11677UL, 0xa9362eceUL, 0x118a49abUL, 0x033fe645UL, 0xbb838120UL, 0xe3e09176UL, 0x5b5cf613UL, 0x49e959fdUL, 0xf1553e98UL, 0x6c820621UL, 0xd43e6144UL, 0xc68bceaaUL, 0x7e37a9cfUL, 0xd67f4138UL, 0x6ec3265dUL, 0x7c7689b3UL, 0xc4caeed6UL, 0x591dd66fUL, 0xe1a1b10aUL, 0xf3141ee4UL, 0x4ba87981UL, 0x13cb69d7UL, 0xab770eb2UL, 0xb9c2a15cUL, 0x017ec639UL, 0x9ca9fe80UL, 0x241599e5UL, 0x36a0360bUL, 0x8e1c516eUL, 0x866616a7UL, 0x3eda71c2UL, 0x2c6fde2cUL, 0x94d3b949UL, 0x090481f0UL, 0xb1b8e695UL, 0xa30d497bUL, 0x1bb12e1eUL, 0x43d23e48UL, 0xfb6e592dUL, 0xe9dbf6c3UL, 0x516791a6UL, 0xccb0a91fUL, 0x740cce7aUL, 0x66b96194UL, 0xde0506f1UL }, { 0x00000000UL, 0x96300777UL, 0x2c610eeeUL, 0xba510999UL, 0x19c46d07UL, 0x8ff46a70UL, 0x35a563e9UL, 0xa395649eUL, 0x3288db0eUL, 0xa4b8dc79UL, 0x1ee9d5e0UL, 0x88d9d297UL, 0x2b4cb609UL, 0xbd7cb17eUL, 0x072db8e7UL, 0x911dbf90UL, 0x6410b71dUL, 0xf220b06aUL, 0x4871b9f3UL, 0xde41be84UL, 0x7dd4da1aUL, 0xebe4dd6dUL, 0x51b5d4f4UL, 0xc785d383UL, 0x56986c13UL, 0xc0a86b64UL, 0x7af962fdUL, 0xecc9658aUL, 0x4f5c0114UL, 0xd96c0663UL, 0x633d0ffaUL, 0xf50d088dUL, 0xc8206e3bUL, 0x5e10694cUL, 0xe44160d5UL, 0x727167a2UL, 0xd1e4033cUL, 0x47d4044bUL, 0xfd850dd2UL, 0x6bb50aa5UL, 0xfaa8b535UL, 0x6c98b242UL, 0xd6c9bbdbUL, 0x40f9bcacUL, 0xe36cd832UL, 0x755cdf45UL, 0xcf0dd6dcUL, 0x593dd1abUL, 0xac30d926UL, 0x3a00de51UL, 0x8051d7c8UL, 0x1661d0bfUL, 0xb5f4b421UL, 0x23c4b356UL, 0x9995bacfUL, 0x0fa5bdb8UL, 0x9eb80228UL, 0x0888055fUL, 0xb2d90cc6UL, 0x24e90bb1UL, 0x877c6f2fUL, 0x114c6858UL, 0xab1d61c1UL, 0x3d2d66b6UL, 0x9041dc76UL, 0x0671db01UL, 0xbc20d298UL, 0x2a10d5efUL, 0x8985b171UL, 0x1fb5b606UL, 0xa5e4bf9fUL, 0x33d4b8e8UL, 0xa2c90778UL, 0x34f9000fUL, 0x8ea80996UL, 0x18980ee1UL, 0xbb0d6a7fUL, 0x2d3d6d08UL, 0x976c6491UL, 0x015c63e6UL, 0xf4516b6bUL, 0x62616c1cUL, 0xd8306585UL, 0x4e0062f2UL, 0xed95066cUL, 0x7ba5011bUL, 0xc1f40882UL, 0x57c40ff5UL, 0xc6d9b065UL, 0x50e9b712UL, 0xeab8be8bUL, 0x7c88b9fcUL, 0xdf1ddd62UL, 0x492dda15UL, 0xf37cd38cUL, 0x654cd4fbUL, 0x5861b24dUL, 0xce51b53aUL, 0x7400bca3UL, 0xe230bbd4UL, 0x41a5df4aUL, 0xd795d83dUL, 0x6dc4d1a4UL, 0xfbf4d6d3UL, 0x6ae96943UL, 0xfcd96e34UL, 0x468867adUL, 0xd0b860daUL, 0x732d0444UL, 0xe51d0333UL, 0x5f4c0aaaUL, 0xc97c0dddUL, 0x3c710550UL, 0xaa410227UL, 0x10100bbeUL, 0x86200cc9UL, 0x25b56857UL, 0xb3856f20UL, 0x09d466b9UL, 0x9fe461ceUL, 0x0ef9de5eUL, 0x98c9d929UL, 0x2298d0b0UL, 0xb4a8d7c7UL, 0x173db359UL, 0x810db42eUL, 0x3b5cbdb7UL, 0xad6cbac0UL, 0x2083b8edUL, 0xb6b3bf9aUL, 0x0ce2b603UL, 0x9ad2b174UL, 0x3947d5eaUL, 0xaf77d29dUL, 0x1526db04UL, 0x8316dc73UL, 0x120b63e3UL, 0x843b6494UL, 0x3e6a6d0dUL, 0xa85a6a7aUL, 0x0bcf0ee4UL, 0x9dff0993UL, 0x27ae000aUL, 0xb19e077dUL, 0x44930ff0UL, 0xd2a30887UL, 0x68f2011eUL, 0xfec20669UL, 0x5d5762f7UL, 0xcb676580UL, 0x71366c19UL, 0xe7066b6eUL, 0x761bd4feUL, 0xe02bd389UL, 0x5a7ada10UL, 0xcc4add67UL, 0x6fdfb9f9UL, 0xf9efbe8eUL, 0x43beb717UL, 0xd58eb060UL, 0xe8a3d6d6UL, 0x7e93d1a1UL, 0xc4c2d838UL, 0x52f2df4fUL, 0xf167bbd1UL, 0x6757bca6UL, 0xdd06b53fUL, 0x4b36b248UL, 0xda2b0dd8UL, 0x4c1b0aafUL, 0xf64a0336UL, 0x607a0441UL, 0xc3ef60dfUL, 0x55df67a8UL, 0xef8e6e31UL, 0x79be6946UL, 0x8cb361cbUL, 0x1a8366bcUL, 0xa0d26f25UL, 0x36e26852UL, 0x95770cccUL, 0x03470bbbUL, 0xb9160222UL, 0x2f260555UL, 0xbe3bbac5UL, 0x280bbdb2UL, 0x925ab42bUL, 0x046ab35cUL, 0xa7ffd7c2UL, 0x31cfd0b5UL, 0x8b9ed92cUL, 0x1daede5bUL, 0xb0c2649bUL, 0x26f263ecUL, 0x9ca36a75UL, 0x0a936d02UL, 0xa906099cUL, 0x3f360eebUL, 0x85670772UL, 0x13570005UL, 0x824abf95UL, 0x147ab8e2UL, 0xae2bb17bUL, 0x381bb60cUL, 0x9b8ed292UL, 0x0dbed5e5UL, 0xb7efdc7cUL, 0x21dfdb0bUL, 0xd4d2d386UL, 0x42e2d4f1UL, 0xf8b3dd68UL, 0x6e83da1fUL, 0xcd16be81UL, 0x5b26b9f6UL, 0xe177b06fUL, 0x7747b718UL, 0xe65a0888UL, 0x706a0fffUL, 0xca3b0666UL, 0x5c0b0111UL, 0xff9e658fUL, 0x69ae62f8UL, 0xd3ff6b61UL, 0x45cf6c16UL, 0x78e20aa0UL, 0xeed20dd7UL, 0x5483044eUL, 0xc2b30339UL, 0x612667a7UL, 0xf71660d0UL, 0x4d476949UL, 0xdb776e3eUL, 0x4a6ad1aeUL, 0xdc5ad6d9UL, 0x660bdf40UL, 0xf03bd837UL, 0x53aebca9UL, 0xc59ebbdeUL, 0x7fcfb247UL, 0xe9ffb530UL, 0x1cf2bdbdUL, 0x8ac2bacaUL, 0x3093b353UL, 0xa6a3b424UL, 0x0536d0baUL, 0x9306d7cdUL, 0x2957de54UL, 0xbf67d923UL, 0x2e7a66b3UL, 0xb84a61c4UL, 0x021b685dUL, 0x942b6f2aUL, 0x37be0bb4UL, 0xa18e0cc3UL, 0x1bdf055aUL, 0x8def022dUL }, { 0x00000000UL, 0x41311b19UL, 0x82623632UL, 0xc3532d2bUL, 0x04c56c64UL, 0x45f4777dUL, 0x86a75a56UL, 0xc796414fUL, 0x088ad9c8UL, 0x49bbc2d1UL, 0x8ae8effaUL, 0xcbd9f4e3UL, 0x0c4fb5acUL, 0x4d7eaeb5UL, 0x8e2d839eUL, 0xcf1c9887UL, 0x5112c24aUL, 0x1023d953UL, 0xd370f478UL, 0x9241ef61UL, 0x55d7ae2eUL, 0x14e6b537UL, 0xd7b5981cUL, 0x96848305UL, 0x59981b82UL, 0x18a9009bUL, 0xdbfa2db0UL, 0x9acb36a9UL, 0x5d5d77e6UL, 0x1c6c6cffUL, 0xdf3f41d4UL, 0x9e0e5acdUL, 0xa2248495UL, 0xe3159f8cUL, 0x2046b2a7UL, 0x6177a9beUL, 0xa6e1e8f1UL, 0xe7d0f3e8UL, 0x2483dec3UL, 0x65b2c5daUL, 0xaaae5d5dUL, 0xeb9f4644UL, 0x28cc6b6fUL, 0x69fd7076UL, 0xae6b3139UL, 0xef5a2a20UL, 0x2c09070bUL, 0x6d381c12UL, 0xf33646dfUL, 0xb2075dc6UL, 0x715470edUL, 0x30656bf4UL, 0xf7f32abbUL, 0xb6c231a2UL, 0x75911c89UL, 0x34a00790UL, 0xfbbc9f17UL, 0xba8d840eUL, 0x79dea925UL, 0x38efb23cUL, 0xff79f373UL, 0xbe48e86aUL, 0x7d1bc541UL, 0x3c2ade58UL, 0x054f79f0UL, 0x447e62e9UL, 0x872d4fc2UL, 0xc61c54dbUL, 0x018a1594UL, 0x40bb0e8dUL, 0x83e823a6UL, 0xc2d938bfUL, 0x0dc5a038UL, 0x4cf4bb21UL, 0x8fa7960aUL, 0xce968d13UL, 0x0900cc5cUL, 0x4831d745UL, 0x8b62fa6eUL, 0xca53e177UL, 0x545dbbbaUL, 0x156ca0a3UL, 0xd63f8d88UL, 0x970e9691UL, 0x5098d7deUL, 0x11a9ccc7UL, 0xd2fae1ecUL, 0x93cbfaf5UL, 0x5cd76272UL, 0x1de6796bUL, 0xdeb55440UL, 0x9f844f59UL, 0x58120e16UL, 0x1923150fUL, 0xda703824UL, 0x9b41233dUL, 0xa76bfd65UL, 0xe65ae67cUL, 0x2509cb57UL, 0x6438d04eUL, 0xa3ae9101UL, 0xe29f8a18UL, 0x21cca733UL, 0x60fdbc2aUL, 0xafe124adUL, 0xeed03fb4UL, 0x2d83129fUL, 0x6cb20986UL, 0xab2448c9UL, 0xea1553d0UL, 0x29467efbUL, 0x687765e2UL, 0xf6793f2fUL, 0xb7482436UL, 0x741b091dUL, 0x352a1204UL, 0xf2bc534bUL, 0xb38d4852UL, 0x70de6579UL, 0x31ef7e60UL, 0xfef3e6e7UL, 0xbfc2fdfeUL, 0x7c91d0d5UL, 0x3da0cbccUL, 0xfa368a83UL, 0xbb07919aUL, 0x7854bcb1UL, 0x3965a7a8UL, 0x4b98833bUL, 0x0aa99822UL, 0xc9fab509UL, 0x88cbae10UL, 0x4f5def5fUL, 0x0e6cf446UL, 0xcd3fd96dUL, 0x8c0ec274UL, 0x43125af3UL, 0x022341eaUL, 0xc1706cc1UL, 0x804177d8UL, 0x47d73697UL, 0x06e62d8eUL, 0xc5b500a5UL, 0x84841bbcUL, 0x1a8a4171UL, 0x5bbb5a68UL, 0x98e87743UL, 0xd9d96c5aUL, 0x1e4f2d15UL, 0x5f7e360cUL, 0x9c2d1b27UL, 0xdd1c003eUL, 0x120098b9UL, 0x533183a0UL, 0x9062ae8bUL, 0xd153b592UL, 0x16c5f4ddUL, 0x57f4efc4UL, 0x94a7c2efUL, 0xd596d9f6UL, 0xe9bc07aeUL, 0xa88d1cb7UL, 0x6bde319cUL, 0x2aef2a85UL, 0xed796bcaUL, 0xac4870d3UL, 0x6f1b5df8UL, 0x2e2a46e1UL, 0xe136de66UL, 0xa007c57fUL, 0x6354e854UL, 0x2265f34dUL, 0xe5f3b202UL, 0xa4c2a91bUL, 0x67918430UL, 0x26a09f29UL, 0xb8aec5e4UL, 0xf99fdefdUL, 0x3accf3d6UL, 0x7bfde8cfUL, 0xbc6ba980UL, 0xfd5ab299UL, 0x3e099fb2UL, 0x7f3884abUL, 0xb0241c2cUL, 0xf1150735UL, 0x32462a1eUL, 0x73773107UL, 0xb4e17048UL, 0xf5d06b51UL, 0x3683467aUL, 0x77b25d63UL, 0x4ed7facbUL, 0x0fe6e1d2UL, 0xccb5ccf9UL, 0x8d84d7e0UL, 0x4a1296afUL, 0x0b238db6UL, 0xc870a09dUL, 0x8941bb84UL, 0x465d2303UL, 0x076c381aUL, 0xc43f1531UL, 0x850e0e28UL, 0x42984f67UL, 0x03a9547eUL, 0xc0fa7955UL, 0x81cb624cUL, 0x1fc53881UL, 0x5ef42398UL, 0x9da70eb3UL, 0xdc9615aaUL, 0x1b0054e5UL, 0x5a314ffcUL, 0x996262d7UL, 0xd85379ceUL, 0x174fe149UL, 0x567efa50UL, 0x952dd77bUL, 0xd41ccc62UL, 0x138a8d2dUL, 0x52bb9634UL, 0x91e8bb1fUL, 0xd0d9a006UL, 0xecf37e5eUL, 0xadc26547UL, 0x6e91486cUL, 0x2fa05375UL, 0xe836123aUL, 0xa9070923UL, 0x6a542408UL, 0x2b653f11UL, 0xe479a796UL, 0xa548bc8fUL, 0x661b91a4UL, 0x272a8abdUL, 0xe0bccbf2UL, 0xa18dd0ebUL, 0x62defdc0UL, 0x23efe6d9UL, 0xbde1bc14UL, 0xfcd0a70dUL, 0x3f838a26UL, 0x7eb2913fUL, 0xb924d070UL, 0xf815cb69UL, 0x3b46e642UL, 0x7a77fd5bUL, 0xb56b65dcUL, 0xf45a7ec5UL, 0x370953eeUL, 0x763848f7UL, 0xb1ae09b8UL, 0xf09f12a1UL, 0x33cc3f8aUL, 0x72fd2493UL }, { 0x00000000UL, 0x376ac201UL, 0x6ed48403UL, 0x59be4602UL, 0xdca80907UL, 0xebc2cb06UL, 0xb27c8d04UL, 0x85164f05UL, 0xb851130eUL, 0x8f3bd10fUL, 0xd685970dUL, 0xe1ef550cUL, 0x64f91a09UL, 0x5393d808UL, 0x0a2d9e0aUL, 0x3d475c0bUL, 0x70a3261cUL, 0x47c9e41dUL, 0x1e77a21fUL, 0x291d601eUL, 0xac0b2f1bUL, 0x9b61ed1aUL, 0xc2dfab18UL, 0xf5b56919UL, 0xc8f23512UL, 0xff98f713UL, 0xa626b111UL, 0x914c7310UL, 0x145a3c15UL, 0x2330fe14UL, 0x7a8eb816UL, 0x4de47a17UL, 0xe0464d38UL, 0xd72c8f39UL, 0x8e92c93bUL, 0xb9f80b3aUL, 0x3cee443fUL, 0x0b84863eUL, 0x523ac03cUL, 0x6550023dUL, 0x58175e36UL, 0x6f7d9c37UL, 0x36c3da35UL, 0x01a91834UL, 0x84bf5731UL, 0xb3d59530UL, 0xea6bd332UL, 0xdd011133UL, 0x90e56b24UL, 0xa78fa925UL, 0xfe31ef27UL, 0xc95b2d26UL, 0x4c4d6223UL, 0x7b27a022UL, 0x2299e620UL, 0x15f32421UL, 0x28b4782aUL, 0x1fdeba2bUL, 0x4660fc29UL, 0x710a3e28UL, 0xf41c712dUL, 0xc376b32cUL, 0x9ac8f52eUL, 0xada2372fUL, 0xc08d9a70UL, 0xf7e75871UL, 0xae591e73UL, 0x9933dc72UL, 0x1c259377UL, 0x2b4f5176UL, 0x72f11774UL, 0x459bd575UL, 0x78dc897eUL, 0x4fb64b7fUL, 0x16080d7dUL, 0x2162cf7cUL, 0xa4748079UL, 0x931e4278UL, 0xcaa0047aUL, 0xfdcac67bUL, 0xb02ebc6cUL, 0x87447e6dUL, 0xdefa386fUL, 0xe990fa6eUL, 0x6c86b56bUL, 0x5bec776aUL, 0x02523168UL, 0x3538f369UL, 0x087faf62UL, 0x3f156d63UL, 0x66ab2b61UL, 0x51c1e960UL, 0xd4d7a665UL, 0xe3bd6464UL, 0xba032266UL, 0x8d69e067UL, 0x20cbd748UL, 0x17a11549UL, 0x4e1f534bUL, 0x7975914aUL, 0xfc63de4fUL, 0xcb091c4eUL, 0x92b75a4cUL, 0xa5dd984dUL, 0x989ac446UL, 0xaff00647UL, 0xf64e4045UL, 0xc1248244UL, 0x4432cd41UL, 0x73580f40UL, 0x2ae64942UL, 0x1d8c8b43UL, 0x5068f154UL, 0x67023355UL, 0x3ebc7557UL, 0x09d6b756UL, 0x8cc0f853UL, 0xbbaa3a52UL, 0xe2147c50UL, 0xd57ebe51UL, 0xe839e25aUL, 0xdf53205bUL, 0x86ed6659UL, 0xb187a458UL, 0x3491eb5dUL, 0x03fb295cUL, 0x5a456f5eUL, 0x6d2fad5fUL, 0x801b35e1UL, 0xb771f7e0UL, 0xeecfb1e2UL, 0xd9a573e3UL, 0x5cb33ce6UL, 0x6bd9fee7UL, 0x3267b8e5UL, 0x050d7ae4UL, 0x384a26efUL, 0x0f20e4eeUL, 0x569ea2ecUL, 0x61f460edUL, 0xe4e22fe8UL, 0xd388ede9UL, 0x8a36abebUL, 0xbd5c69eaUL, 0xf0b813fdUL, 0xc7d2d1fcUL, 0x9e6c97feUL, 0xa90655ffUL, 0x2c101afaUL, 0x1b7ad8fbUL, 0x42c49ef9UL, 0x75ae5cf8UL, 0x48e900f3UL, 0x7f83c2f2UL, 0x263d84f0UL, 0x115746f1UL, 0x944109f4UL, 0xa32bcbf5UL, 0xfa958df7UL, 0xcdff4ff6UL, 0x605d78d9UL, 0x5737bad8UL, 0x0e89fcdaUL, 0x39e33edbUL, 0xbcf571deUL, 0x8b9fb3dfUL, 0xd221f5ddUL, 0xe54b37dcUL, 0xd80c6bd7UL, 0xef66a9d6UL, 0xb6d8efd4UL, 0x81b22dd5UL, 0x04a462d0UL, 0x33cea0d1UL, 0x6a70e6d3UL, 0x5d1a24d2UL, 0x10fe5ec5UL, 0x27949cc4UL, 0x7e2adac6UL, 0x494018c7UL, 0xcc5657c2UL, 0xfb3c95c3UL, 0xa282d3c1UL, 0x95e811c0UL, 0xa8af4dcbUL, 0x9fc58fcaUL, 0xc67bc9c8UL, 0xf1110bc9UL, 0x740744ccUL, 0x436d86cdUL, 0x1ad3c0cfUL, 0x2db902ceUL, 0x4096af91UL, 0x77fc6d90UL, 0x2e422b92UL, 0x1928e993UL, 0x9c3ea696UL, 0xab546497UL, 0xf2ea2295UL, 0xc580e094UL, 0xf8c7bc9fUL, 0xcfad7e9eUL, 0x9613389cUL, 0xa179fa9dUL, 0x246fb598UL, 0x13057799UL, 0x4abb319bUL, 0x7dd1f39aUL, 0x3035898dUL, 0x075f4b8cUL, 0x5ee10d8eUL, 0x698bcf8fUL, 0xec9d808aUL, 0xdbf7428bUL, 0x82490489UL, 0xb523c688UL, 0x88649a83UL, 0xbf0e5882UL, 0xe6b01e80UL, 0xd1dadc81UL, 0x54cc9384UL, 0x63a65185UL, 0x3a181787UL, 0x0d72d586UL, 0xa0d0e2a9UL, 0x97ba20a8UL, 0xce0466aaUL, 0xf96ea4abUL, 0x7c78ebaeUL, 0x4b1229afUL, 0x12ac6fadUL, 0x25c6adacUL, 0x1881f1a7UL, 0x2feb33a6UL, 0x765575a4UL, 0x413fb7a5UL, 0xc429f8a0UL, 0xf3433aa1UL, 0xaafd7ca3UL, 0x9d97bea2UL, 0xd073c4b5UL, 0xe71906b4UL, 0xbea740b6UL, 0x89cd82b7UL, 0x0cdbcdb2UL, 0x3bb10fb3UL, 0x620f49b1UL, 0x55658bb0UL, 0x6822d7bbUL, 0x5f4815baUL, 0x06f653b8UL, 0x319c91b9UL, 0xb48adebcUL, 0x83e01cbdUL, 0xda5e5abfUL, 0xed3498beUL }, { 0x00000000UL, 0x6567bcb8UL, 0x8bc809aaUL, 0xeeafb512UL, 0x5797628fUL, 0x32f0de37UL, 0xdc5f6b25UL, 0xb938d79dUL, 0xef28b4c5UL, 0x8a4f087dUL, 0x64e0bd6fUL, 0x018701d7UL, 0xb8bfd64aUL, 0xddd86af2UL, 0x3377dfe0UL, 0x56106358UL, 0x9f571950UL, 0xfa30a5e8UL, 0x149f10faUL, 0x71f8ac42UL, 0xc8c07bdfUL, 0xada7c767UL, 0x43087275UL, 0x266fcecdUL, 0x707fad95UL, 0x1518112dUL, 0xfbb7a43fUL, 0x9ed01887UL, 0x27e8cf1aUL, 0x428f73a2UL, 0xac20c6b0UL, 0xc9477a08UL, 0x3eaf32a0UL, 0x5bc88e18UL, 0xb5673b0aUL, 0xd00087b2UL, 0x6938502fUL, 0x0c5fec97UL, 0xe2f05985UL, 0x8797e53dUL, 0xd1878665UL, 0xb4e03addUL, 0x5a4f8fcfUL, 0x3f283377UL, 0x8610e4eaUL, 0xe3775852UL, 0x0dd8ed40UL, 0x68bf51f8UL, 0xa1f82bf0UL, 0xc49f9748UL, 0x2a30225aUL, 0x4f579ee2UL, 0xf66f497fUL, 0x9308f5c7UL, 0x7da740d5UL, 0x18c0fc6dUL, 0x4ed09f35UL, 0x2bb7238dUL, 0xc518969fUL, 0xa07f2a27UL, 0x1947fdbaUL, 0x7c204102UL, 0x928ff410UL, 0xf7e848a8UL, 0x3d58149bUL, 0x583fa823UL, 0xb6901d31UL, 0xd3f7a189UL, 0x6acf7614UL, 0x0fa8caacUL, 0xe1077fbeUL, 0x8460c306UL, 0xd270a05eUL, 0xb7171ce6UL, 0x59b8a9f4UL, 0x3cdf154cUL, 0x85e7c2d1UL, 0xe0807e69UL, 0x0e2fcb7bUL, 0x6b4877c3UL, 0xa20f0dcbUL, 0xc768b173UL, 0x29c70461UL, 0x4ca0b8d9UL, 0xf5986f44UL, 0x90ffd3fcUL, 0x7e5066eeUL, 0x1b37da56UL, 0x4d27b90eUL, 0x284005b6UL, 0xc6efb0a4UL, 0xa3880c1cUL, 0x1ab0db81UL, 0x7fd76739UL, 0x9178d22bUL, 0xf41f6e93UL, 0x03f7263bUL, 0x66909a83UL, 0x883f2f91UL, 0xed589329UL, 0x546044b4UL, 0x3107f80cUL, 0xdfa84d1eUL, 0xbacff1a6UL, 0xecdf92feUL, 0x89b82e46UL, 0x67179b54UL, 0x027027ecUL, 0xbb48f071UL, 0xde2f4cc9UL, 0x3080f9dbUL, 0x55e74563UL, 0x9ca03f6bUL, 0xf9c783d3UL, 0x176836c1UL, 0x720f8a79UL, 0xcb375de4UL, 0xae50e15cUL, 0x40ff544eUL, 0x2598e8f6UL, 0x73888baeUL, 0x16ef3716UL, 0xf8408204UL, 0x9d273ebcUL, 0x241fe921UL, 0x41785599UL, 0xafd7e08bUL, 0xcab05c33UL, 0x3bb659edUL, 0x5ed1e555UL, 0xb07e5047UL, 0xd519ecffUL, 0x6c213b62UL, 0x094687daUL, 0xe7e932c8UL, 0x828e8e70UL, 0xd49eed28UL, 0xb1f95190UL, 0x5f56e482UL, 0x3a31583aUL, 0x83098fa7UL, 0xe66e331fUL, 0x08c1860dUL, 0x6da63ab5UL, 0xa4e140bdUL, 0xc186fc05UL, 0x2f294917UL, 0x4a4ef5afUL, 0xf3762232UL, 0x96119e8aUL, 0x78be2b98UL, 0x1dd99720UL, 0x4bc9f478UL, 0x2eae48c0UL, 0xc001fdd2UL, 0xa566416aUL, 0x1c5e96f7UL, 0x79392a4fUL, 0x97969f5dUL, 0xf2f123e5UL, 0x05196b4dUL, 0x607ed7f5UL, 0x8ed162e7UL, 0xebb6de5fUL, 0x528e09c2UL, 0x37e9b57aUL, 0xd9460068UL, 0xbc21bcd0UL, 0xea31df88UL, 0x8f566330UL, 0x61f9d622UL, 0x049e6a9aUL, 0xbda6bd07UL, 0xd8c101bfUL, 0x366eb4adUL, 0x53090815UL, 0x9a4e721dUL, 0xff29cea5UL, 0x11867bb7UL, 0x74e1c70fUL, 0xcdd91092UL, 0xa8beac2aUL, 0x46111938UL, 0x2376a580UL, 0x7566c6d8UL, 0x10017a60UL, 0xfeaecf72UL, 0x9bc973caUL, 0x22f1a457UL, 0x479618efUL, 0xa939adfdUL, 0xcc5e1145UL, 0x06ee4d76UL, 0x6389f1ceUL, 0x8d2644dcUL, 0xe841f864UL, 0x51792ff9UL, 0x341e9341UL, 0xdab12653UL, 0xbfd69aebUL, 0xe9c6f9b3UL, 0x8ca1450bUL, 0x620ef019UL, 0x07694ca1UL, 0xbe519b3cUL, 0xdb362784UL, 0x35999296UL, 0x50fe2e2eUL, 0x99b95426UL, 0xfcdee89eUL, 0x12715d8cUL, 0x7716e134UL, 0xce2e36a9UL, 0xab498a11UL, 0x45e63f03UL, 0x208183bbUL, 0x7691e0e3UL, 0x13f65c5bUL, 0xfd59e949UL, 0x983e55f1UL, 0x2106826cUL, 0x44613ed4UL, 0xaace8bc6UL, 0xcfa9377eUL, 0x38417fd6UL, 0x5d26c36eUL, 0xb389767cUL, 0xd6eecac4UL, 0x6fd61d59UL, 0x0ab1a1e1UL, 0xe41e14f3UL, 0x8179a84bUL, 0xd769cb13UL, 0xb20e77abUL, 0x5ca1c2b9UL, 0x39c67e01UL, 0x80fea99cUL, 0xe5991524UL, 0x0b36a036UL, 0x6e511c8eUL, 0xa7166686UL, 0xc271da3eUL, 0x2cde6f2cUL, 0x49b9d394UL, 0xf0810409UL, 0x95e6b8b1UL, 0x7b490da3UL, 0x1e2eb11bUL, 0x483ed243UL, 0x2d596efbUL, 0xc3f6dbe9UL, 0xa6916751UL, 0x1fa9b0ccUL, 0x7ace0c74UL, 0x9461b966UL, 0xf10605deUL #endif } }; /* END OF DUMP OF mz_crc32.h*/ #endif /* DYNAMIC_CRC_TABLE */ /* ========================================================================= * This function can be used by asm versions of crc32() */ const z_crc_t FAR * ZEXPORT get_crc_table() { #ifdef DYNAMIC_CRC_TABLE if (crc_table_empty) make_crc_table(); #endif /* DYNAMIC_CRC_TABLE */ return (const z_crc_t FAR *)crc_table; } /* ========================================================================= */ #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8) #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1 /* ========================================================================= */ unsigned long ZEXPORT crc32(crc, buf, len) unsigned long crc; const unsigned char FAR *buf; uInt len; { if (buf == Z_NULL) return 0UL; #ifdef DYNAMIC_CRC_TABLE if (crc_table_empty) make_crc_table(); #endif /* DYNAMIC_CRC_TABLE */ #ifdef BYFOUR if (sizeof(void *) == sizeof(ptrdiff_t)) { z_crc_t endian; endian = 1; if (*((unsigned char *)(&endian))) return crc32_little(crc, buf, len); else return crc32_big(crc, buf, len); } #endif /* BYFOUR */ crc = crc ^ 0xffffffffUL; while (len >= 8) { DO8; len -= 8; } if (len) do { DO1; } while (--len); return crc ^ 0xffffffffUL; } #ifdef BYFOUR /* ========================================================================= */ #define DOLIT4 c ^= *buf4++; \ c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \ crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24] #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4 /* ========================================================================= */ local unsigned long crc32_little(crc, buf, len) unsigned long crc; const unsigned char FAR *buf; unsigned len; { register z_crc_t c; register const z_crc_t FAR *buf4; c = (z_crc_t)crc; c = ~c; while (len && ((ptrdiff_t)buf & 3)) { c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); len--; } buf4 = (const z_crc_t FAR *)(const void FAR *)buf; while (len >= 32) { DOLIT32; len -= 32; } while (len >= 4) { DOLIT4; len -= 4; } buf = (const unsigned char FAR *)buf4; if (len) do { c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); } while (--len); c = ~c; return (unsigned long)c; } /* ========================================================================= */ #define DOBIG4 c ^= *++buf4; \ c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \ crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24] #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4 /* ========================================================================= */ local unsigned long crc32_big(crc, buf, len) unsigned long crc; const unsigned char FAR *buf; unsigned len; { register z_crc_t c; register const z_crc_t FAR *buf4; c = ZSWAP32((z_crc_t)crc); c = ~c; while (len && ((ptrdiff_t)buf & 3)) { c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); len--; } buf4 = (const z_crc_t FAR *)(const void FAR *)buf; buf4--; while (len >= 32) { DOBIG32; len -= 32; } while (len >= 4) { DOBIG4; len -= 4; } buf4++; buf = (const unsigned char FAR *)buf4; if (len) do { c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); } while (--len); c = ~c; return (unsigned long)(ZSWAP32(c)); } #endif /* BYFOUR */ #define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */ /* ========================================================================= */ local unsigned long gf2_matrix_times(mat, vec) unsigned long *mat; unsigned long vec; { unsigned long sum; sum = 0; while (vec) { if (vec & 1) sum ^= *mat; vec >>= 1; mat++; } return sum; } /* ========================================================================= */ local void gf2_matrix_square(square, mat) unsigned long *square; unsigned long *mat; { int n; for (n = 0; n < GF2_DIM; n++) square[n] = gf2_matrix_times(mat, mat[n]); } /* ========================================================================= */ local uLong crc32_combine_(crc1, crc2, len2) uLong crc1; uLong crc2; z_off64_t len2; { int n; unsigned long row; unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */ unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */ /* degenerate case (also disallow negative lengths) */ if (len2 <= 0) return crc1; /* put operator for one zero bit in odd */ odd[0] = 0xedb88320UL; /* CRC-32 polynomial */ row = 1; for (n = 1; n < GF2_DIM; n++) { odd[n] = row; row <<= 1; } /* put operator for two zero bits in even */ gf2_matrix_square(even, odd); /* put operator for four zero bits in odd */ gf2_matrix_square(odd, even); /* apply len2 zeros to crc1 (first square will put the operator for one zero byte, eight zero bits, in even) */ do { /* apply zeros operator for this bit of len2 */ gf2_matrix_square(even, odd); if (len2 & 1) crc1 = gf2_matrix_times(even, crc1); len2 >>= 1; /* if no more bits set, then done */ if (len2 == 0) break; /* another iteration of the loop with odd and even swapped */ gf2_matrix_square(odd, even); if (len2 & 1) crc1 = gf2_matrix_times(odd, crc1); len2 >>= 1; /* if no more bits set, then done */ } while (len2 != 0); /* return combined crc */ crc1 ^= crc2; return crc1; } /* ========================================================================= */ uLong ZEXPORT crc32_combine(crc1, crc2, len2) uLong crc1; uLong crc2; z_off_t len2; { return crc32_combine_(crc1, crc2, len2); } uLong ZEXPORT crc32_combine64(crc1, crc2, len2) uLong crc1; uLong crc2; z_off64_t len2; { return crc32_combine_(crc1, crc2, len2); } /* END OF DUMP OF mz_crc32.c*/ /* START OF DUMP OF mz_compress.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* compress.c -- compress a memory buffer * Copyright (C) 1995-2005 Jean-loup Gailly. * For conditions of distribution and use, see copyright notice in zlib.h */ /* @(#) $Id$ */ #define ZLIB_INTERNAL /* =========================================================================== Compresses the source buffer into the destination buffer. The level parameter has the same meaning as in deflateInit. sourceLen is the byte length of the source buffer. Upon entry, destLen is the total size of the destination buffer, which must be at least 0.1% larger than sourceLen plus 12 bytes. Upon exit, destLen is the actual size of the compressed buffer. compress2 returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if there was not enough room in the output buffer, Z_STREAM_ERROR if the level parameter is invalid. */ int ZEXPORT compress2 (dest, destLen, source, sourceLen, level) Bytef *dest; uLongf *destLen; const Bytef *source; uLong sourceLen; int level; { z_stream stream; int err; stream.next_in = (z_const Bytef *)source; stream.avail_in = (uInt)sourceLen; #ifdef MAXSEG_64K /* Check for source > 64K on 16-bit machine: */ if ((uLong)stream.avail_in != sourceLen) return Z_BUF_ERROR; #endif stream.next_out = dest; stream.avail_out = (uInt)*destLen; if ((uLong)stream.avail_out != *destLen) return Z_BUF_ERROR; stream.zalloc = (alloc_func)0; stream.zfree = (free_func)0; stream.opaque = (voidpf)0; err = deflateInit(&stream, level); if (err != Z_OK) return err; err = deflate(&stream, Z_FINISH); if (err != Z_STREAM_END) { deflateEnd(&stream); return err == Z_OK ? Z_BUF_ERROR : err; } *destLen = stream.total_out; err = deflateEnd(&stream); return err; } /* =========================================================================== */ int ZEXPORT compress (dest, destLen, source, sourceLen) Bytef *dest; uLongf *destLen; const Bytef *source; uLong sourceLen; { return compress2(dest, destLen, source, sourceLen, Z_DEFAULT_COMPRESSION); } /* =========================================================================== If the default memLevel or windowBits for deflateInit() is changed, then this function needs to be updated. */ uLong ZEXPORT compressBound (sourceLen) uLong sourceLen; { return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) + (sourceLen >> 25) + 13; } /* END OF DUMP OF mz_compress.c*/ /* START OF DUMP OF mz_adler32.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* adler32.c -- compute the Adler-32 checksum of a data stream * Copyright (C) 1995-2011 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* @(#) $Id$ */ #define local static local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2)); #define BASE 65521 /* largest prime smaller than 65536 */ #define NMAX 5552 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */ #define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;} #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1); #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2); #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4); #define DO16(buf) DO8(buf,0); DO8(buf,8); /* use NO_DIVIDE if your processor does not do division in hardware -- try it both ways to see which is faster */ #ifdef NO_DIVIDE /* note that this assumes BASE is 65521, where 65536 % 65521 == 15 (thank you to John Reiser for pointing this out) */ # define CHOP(a) \ do { \ unsigned long tmp = a >> 16; \ a &= 0xffffUL; \ a += (tmp << 4) - tmp; \ } while (0) # define MOD28(a) \ do { \ CHOP(a); \ if (a >= BASE) a -= BASE; \ } while (0) # define MOD(a) \ do { \ CHOP(a); \ MOD28(a); \ } while (0) # define MOD63(a) \ do { /* this assumes a is not negative */ \ z_off64_t tmp = a >> 32; \ a &= 0xffffffffL; \ a += (tmp << 8) - (tmp << 5) + tmp; \ tmp = a >> 16; \ a &= 0xffffL; \ a += (tmp << 4) - tmp; \ tmp = a >> 16; \ a &= 0xffffL; \ a += (tmp << 4) - tmp; \ if (a >= BASE) a -= BASE; \ } while (0) #else # define MOD(a) a %= BASE # define MOD28(a) a %= BASE # define MOD63(a) a %= BASE #endif /* ========================================================================= */ uLong ZEXPORT adler32(adler, buf, len) uLong adler; const Bytef *buf; uInt len; { unsigned long sum2; unsigned n; /* split Adler-32 into component sums */ sum2 = (adler >> 16) & 0xffff; adler &= 0xffff; /* in case user likes doing a byte at a time, keep it fast */ if (len == 1) { adler += buf[0]; if (adler >= BASE) adler -= BASE; sum2 += adler; if (sum2 >= BASE) sum2 -= BASE; return adler | (sum2 << 16); } /* initial Adler-32 value (deferred check for len == 1 speed) */ if (buf == Z_NULL) return 1L; /* in case short lengths are provided, keep it somewhat fast */ if (len < 16) { while (len--) { adler += *buf++; sum2 += adler; } if (adler >= BASE) adler -= BASE; MOD28(sum2); /* only added so many BASE's */ return adler | (sum2 << 16); } /* do length NMAX blocks -- requires just one modulo operation */ while (len >= NMAX) { len -= NMAX; n = NMAX / 16; /* NMAX is divisible by 16 */ do { DO16(buf); /* 16 sums unrolled */ buf += 16; } while (--n); MOD(adler); MOD(sum2); } /* do remaining bytes (less than NMAX, still just one modulo) */ if (len) { /* avoid modulos if none remaining */ while (len >= 16) { len -= 16; DO16(buf); buf += 16; } while (len--) { adler += *buf++; sum2 += adler; } MOD(adler); MOD(sum2); } /* return recombined sums */ return adler | (sum2 << 16); } /* ========================================================================= */ local uLong adler32_combine_(adler1, adler2, len2) uLong adler1; uLong adler2; z_off64_t len2; { unsigned long sum1; unsigned long sum2; unsigned rem; /* for negative len, return invalid adler32 as a clue for debugging */ if (len2 < 0) return 0xffffffffUL; /* the derivation of this formula is left as an exercise for the reader */ MOD63(len2); /* assumes len2 >= 0 */ rem = (unsigned)len2; sum1 = adler1 & 0xffff; sum2 = rem * sum1; MOD(sum2); sum1 += (adler2 & 0xffff) + BASE - 1; sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem; if (sum1 >= BASE) sum1 -= BASE; if (sum1 >= BASE) sum1 -= BASE; if (sum2 >= (BASE << 1)) sum2 -= (BASE << 1); if (sum2 >= BASE) sum2 -= BASE; return sum1 | (sum2 << 16); } /* ========================================================================= */ uLong ZEXPORT adler32_combine(adler1, adler2, len2) uLong adler1; uLong adler2; z_off_t len2; { return adler32_combine_(adler1, adler2, len2); } uLong ZEXPORT adler32_combine64(adler1, adler2, len2) uLong adler1; uLong adler2; z_off64_t len2; { return adler32_combine_(adler1, adler2, len2); } /* END OF DUMP OF mz_adler32.c*/ /* START OF DUMP OF mz_zutil.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* zutil.c -- target dependent utility functions for the compression library * Copyright (C) 1995-2005, 2010, 2011, 2012 Jean-loup Gailly. * For conditions of distribution and use, see copyright notice in zlib.h */ /* @(#) $Id$ */ #ifndef Z_SOLO #endif #ifndef NO_DUMMY_DECL struct internal_state {int dummy;}; /* for buggy compilers */ #endif z_const char * const z_errmsg[10] = { "need dictionary", /* Z_NEED_DICT 2 */ "stream end", /* Z_STREAM_END 1 */ "", /* Z_OK 0 */ "file error", /* Z_ERRNO (-1) */ "stream error", /* Z_STREAM_ERROR (-2) */ "data error", /* Z_DATA_ERROR (-3) */ "insufficient memory", /* Z_MEM_ERROR (-4) */ "buffer error", /* Z_BUF_ERROR (-5) */ "incompatible version",/* Z_VERSION_ERROR (-6) */ ""}; const char * ZEXPORT zlibVersion() { return ZLIB_VERSION; } uLong ZEXPORT zlibCompileFlags() { uLong flags; flags = 0; switch ((int)(sizeof(uInt))) { case 2: break; case 4: flags += 1; break; case 8: flags += 2; break; default: flags += 3; } switch ((int)(sizeof(uLong))) { case 2: break; case 4: flags += 1 << 2; break; case 8: flags += 2 << 2; break; default: flags += 3 << 2; } switch ((int)(sizeof(voidpf))) { case 2: break; case 4: flags += 1 << 4; break; case 8: flags += 2 << 4; break; default: flags += 3 << 4; } switch ((int)(sizeof(z_off_t))) { case 2: break; case 4: flags += 1 << 6; break; case 8: flags += 2 << 6; break; default: flags += 3 << 6; } #ifdef DEBUG flags += 1 << 8; #endif #if defined(ASMV) || defined(ASMINF) flags += 1 << 9; #endif #ifdef ZLIB_WINAPI flags += 1 << 10; #endif #ifdef BUILDFIXED flags += 1 << 12; #endif #ifdef DYNAMIC_CRC_TABLE flags += 1 << 13; #endif #ifdef NO_GZCOMPRESS flags += 1L << 16; #endif #ifdef NO_GZIP flags += 1L << 17; #endif #ifdef PKZIP_BUG_WORKAROUND flags += 1L << 20; #endif #ifdef FASTEST flags += 1L << 21; #endif #if defined(STDC) || defined(Z_HAVE_STDARG_H) # ifdef NO_vsnprintf flags += 1L << 25; # ifdef HAS_vsprintf_void flags += 1L << 26; # endif # else # ifdef HAS_vsnprintf_void flags += 1L << 26; # endif # endif #else flags += 1L << 24; # ifdef NO_snprintf flags += 1L << 25; # ifdef HAS_sprintf_void flags += 1L << 26; # endif # else # ifdef HAS_snprintf_void flags += 1L << 26; # endif # endif #endif return flags; } #ifdef DEBUG # ifndef verbose # define verbose 0 # endif int ZLIB_INTERNAL z_verbose = verbose; void ZLIB_INTERNAL z_error (m) char *m; { fprintf(stderr, "%s\n", m); exit(1); } #endif /* exported to allow conversion of error code to string for compress() and * uncompress() */ const char * ZEXPORT zError(err) int err; { return ERR_MSG(err); } #if defined(_WIN32_WCE) /* The Microsoft C Run-Time Library for Windows CE doesn't have * errno. We define it as a global variable to simplify porting. * Its value is always 0 and should not be used. */ int errno = 0; #endif #ifndef HAVE_MEMCPY void ZLIB_INTERNAL zmemcpy(dest, source, len) Bytef* dest; const Bytef* source; uInt len; { if (len == 0) return; do { *dest++ = *source++; /* ??? to be unrolled */ } while (--len != 0); } int ZLIB_INTERNAL zmemcmp(s1, s2, len) const Bytef* s1; const Bytef* s2; uInt len; { uInt j; for (j = 0; j < len; j++) { if (s1[j] != s2[j]) return 2*(s1[j] > s2[j])-1; } return 0; } void ZLIB_INTERNAL zmemzero(dest, len) Bytef* dest; uInt len; { if (len == 0) return; do { *dest++ = 0; /* ??? to be unrolled */ } while (--len != 0); } #endif #ifndef Z_SOLO #ifdef SYS16BIT #ifdef __TURBOC__ /* Turbo C in 16-bit mode */ # define MY_ZCALLOC /* Turbo C malloc() does not allow dynamic allocation of 64K bytes * and farmalloc(64K) returns a pointer with an offset of 8, so we * must fix the pointer. Warning: the pointer must be put back to its * original form in order to free it, use zcfree(). */ #define MAX_PTR 10 /* 10*64K = 640K */ local int next_ptr = 0; typedef struct ptr_table_s { voidpf org_ptr; voidpf new_ptr; } ptr_table; local ptr_table table[MAX_PTR]; /* This table is used to remember the original form of pointers * to large buffers (64K). Such pointers are normalized with a zero offset. * Since MSDOS is not a preemptive multitasking OS, this table is not * protected from concurrent access. This hack doesn't work anyway on * a protected system like OS/2. Use Microsoft C instead. */ voidpf ZLIB_INTERNAL zcalloc (voidpf opaque, unsigned items, unsigned size) { voidpf buf = opaque; /* just to make some compilers happy */ ulg bsize = (ulg)items*size; /* If we allocate less than 65520 bytes, we assume that farmalloc * will return a usable pointer which doesn't have to be normalized. */ if (bsize < 65520L) { buf = farmalloc(bsize); if (*(ush*)&buf != 0) return buf; } else { buf = farmalloc(bsize + 16L); } if (buf == NULL || next_ptr >= MAX_PTR) return NULL; table[next_ptr].org_ptr = buf; /* Normalize the pointer to seg:0 */ *((ush*)&buf+1) += ((ush)((uch*)buf-0) + 15) >> 4; *(ush*)&buf = 0; table[next_ptr++].new_ptr = buf; return buf; } void ZLIB_INTERNAL zcfree (voidpf opaque, voidpf ptr) { int n; if (*(ush*)&ptr != 0) { /* object < 64K */ farfree(ptr); return; } /* Find the original pointer */ for (n = 0; n < next_ptr; n++) { if (ptr != table[n].new_ptr) continue; farfree(table[n].org_ptr); while (++n < next_ptr) { table[n-1] = table[n]; } next_ptr--; return; } ptr = opaque; /* just to make some compilers happy */ Assert(0, "zcfree: ptr not found"); } #endif /* __TURBOC__ */ #ifdef M_I86 /* Microsoft C in 16-bit mode */ # define MY_ZCALLOC #if (!defined(_MSC_VER) || (_MSC_VER <= 600)) # define _halloc halloc # define _hfree hfree #endif voidpf ZLIB_INTERNAL zcalloc (voidpf opaque, uInt items, uInt size) { if (opaque) opaque = 0; /* to make compiler happy */ return _halloc((long)items, size); } void ZLIB_INTERNAL zcfree (voidpf opaque, voidpf ptr) { if (opaque) opaque = 0; /* to make compiler happy */ _hfree(ptr); } #endif /* M_I86 */ #endif /* SYS16BIT */ #ifndef MY_ZCALLOC /* Any system without a special alloc function */ #ifndef STDC extern voidp malloc OF((uInt size)); extern voidp calloc OF((uInt items, uInt size)); extern void free OF((voidpf ptr)); #endif voidpf ZLIB_INTERNAL zcalloc (opaque, items, size) voidpf opaque; unsigned items; unsigned size; { if (opaque) items += size - size; /* make compiler happy */ return sizeof(uInt) > 2 ? (voidpf)malloc(items * size) : (voidpf)calloc(items, size); } void ZLIB_INTERNAL zcfree (opaque, ptr) voidpf opaque; voidpf ptr; { free(ptr); if (opaque) return; /* make compiler happy */ } #endif /* MY_ZCALLOC */ #endif /* !Z_SOLO */ /* END OF DUMP OF mz_zutil.c*/ mcpl-1.3.2/src_fat/mcpltool_app_fat.c000066400000000000000000021477541361775146500176230ustar00rootroot00000000000000 /////////////////////////////////////////////////////////////////////// // // // This is a quick and dirty standalone version of the MCPL tool, // // including both mcpl.h, mcpl.c, and a small main() all in one // // file. Additionally it also includes a version of zlib (with all // // symbol names changed from official zlib), and will thus be able // // to work directly on gzipped files even on systems where zlib is // // otherwise not made available. // // // // Compile into executable using C99 with libm: // // // // $CC -std=c99 -O2 mcpltool_app.c -lm -o mcpltool // // // // Where $CC is a C99 capable C-compiler like gcc or clang. // // // // For licensing and documentation, please refer to either the MCPL // // website (https://mctools.github.io/mcpl/) or files in the full // // MCPL distribution, obtainable from the same place. In particular, // // since some code in this file originates in the zlib library // // (http://zlib.net), the zlib license applies to those parts and is // // repeated below. // // // /////////////////////////////////////////////////////////////////////// //---------- the zlib license ----------// /* zlib.h -- interface of the 'zlib' general purpose compression library version 1.2.8, April 28th, 2013 Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. Jean-loup Gailly Mark Adler jloup@gzip.org madler@alumni.caltech.edu */ //---------- Automatically concatenated code follows below ----------// #ifdef MCPL_HEADER_INCPATH # undef MCPL_HEADER_INCPATH #endif #ifndef __STDC_FORMAT_MACROS # define __STDC_FORMAT_MACROS #endif #ifndef _POSIX_C_SOURCE # define _POSIX_C_SOURCE 200809L #endif #ifndef _ISOC99_SOURCE # define _ISOC99_SOURCE 1 #endif #ifndef _C99_SOURCE # define _C99_SOURCE 1 #endif #ifndef MCPL_HASZLIB # define MCPL_HASZLIB #endif #ifdef MCPL_ZLIB_INCPATH # undef MCPL_ZLIB_INCPATH #endif #ifndef MCPL_HASZLIB # define MCPL_HASZLIB #endif #ifdef MCPL_ZLIB_INCPATH # undef MCPL_ZLIB_INCPATH #endif ///////////////////////////////////////////////////////////////////////////////////// // // // Monte Carlo Particle Lists : MCPL // // // // Utilities for reading and writing .mcpl files: A binary format with lists of // // particle state information, for interchanging and reshooting events between // // various Monte Carlo simulation applications. // // // // Client code including mcpl.h does not need any special build flags and can // // be compiled with any complient compiler and any current C or C++ standard. // // // // Compilation of mcpl.c on the other hand is currently not supported for C89, // // although this could be revisited. Thus, compilation of mcpl.c can proceed // // using any complient C-compiler using -std=c99 or -std=c11 or any complient // // C++ compiler using any version of the C++ standard, and the resulting code // // must always be linked with libm (using -lm). Furthermore, the following // // preprocessor flags can be used when compiling mcpl.c to fine tune the build // // process and the capabilities of the resulting binary. // // // // MCPL_HASZLIB : Define if compiling and linking with zlib, to allow // // direct reading of .mcpl.gz files. // // MCPL_ZLIB_INCPATH : Specify alternative value if the zlib header is not to // // be included as "zlib.h". // // MCPL_HEADER_INCPATH : Specify alternative value if the MCPL header itself is // // not to be included as "mcpl.h". // // MCPL_NO_EXT_GZIP : Define to make sure that mcpl_gzip_file will never // // compress via a separate process running a system- // // provided gzip executable. // // MCPL_NO_CUSTOM_GZIP : Define to make sure that mcpl_gzip_file will never // // compress via custom zlib-based code. // // // // This file can be freely used as per the terms in the LICENSE file. // // // // Find more information and updates at https://mctools.github.io/mcpl/ // // // // Written by Thomas Kittelmann, 2015-2017. // // // ///////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////// // MCPL_FORMATVERSION history: // // // // 3: Current version. Changed packing of unit vectors from octahedral to // // the better performing "Adaptive Projection Packing". // // 2: First public release. // // 1: Format used during early development. No longer supported. // ///////////////////////////////////////////////////////////////////////////////////// //Rough platform detection (could be much more fine-grained): #if defined(__unix__) || defined(__unix) || (defined(__APPLE__) && defined(__MACH__)) # define MCPL_THIS_IS_UNIX #endif #if defined(MSDOS) || defined(OS2) || defined(WIN32) || defined(_WIN32) || defined(__CYGWIN__) # ifdef MCPL_THIS_IS_UNIX # undef MCPL_THIS_IS_UNIX # endif # define MCPL_THIS_IS_MS #endif //Before including mcpl.h, we attempt to get PRIu64 defined in a relatively //robust manner by enabling feature test macros for gcc and including relevant //headers: #ifndef __STDC_FORMAT_MACROS # define __STDC_FORMAT_MACROS #endif #ifndef _POSIX_C_SOURCE # define _POSIX_C_SOURCE 200809L #endif #ifndef _ISOC99_SOURCE # define _ISOC99_SOURCE 1 #endif #ifndef _C99_SOURCE # define _C99_SOURCE 1 #endif #include #include #ifndef PRIu64//bad compiler - fallback to guessing # if defined(_MSC_VER) && (_MSC_VER<1900) # define PRIu64 "I64u" # else # if defined(__WORDSIZE) && (__WORDSIZE==64) # define PRIu64 "lu" # else # define PRIu64 "llu" # endif # endif #endif #ifdef MCPL_HEADER_INCPATH # include MCPL_HEADER_INCPATH #else #ifndef MCPL_H #define MCPL_H #include /***********************************************************************************/ /* */ /* Monte Carlo Particle Lists : MCPL */ /* */ /* Utilities for reading and writing .mcpl files: A binary format with lists of */ /* particle state information, for interchanging and reshooting events between */ /* various Monte Carlo simulation applications. */ /* */ /* Find more information and updates at https://mctools.github.io/mcpl/ */ /* */ /* This file can be freely used as per the terms in the LICENSE file. */ /* */ /* Written by Thomas Kittelmann, 2015-2017. */ /* */ /***********************************************************************************/ #define MCPL_VERSION_MAJOR 1 #define MCPL_VERSION_MINOR 3 #define MCPL_VERSION_PATCH 2 #define MCPL_VERSION 10302 /* (10000*MAJOR+100*MINOR+PATCH) */ #define MCPL_VERSION_STR "1.3.2" #define MCPL_FORMATVERSION 3 /* Format version of written files */ #ifdef __cplusplus extern "C" { #endif /*********/ /* Types */ /*********/ #pragma pack (push, 1) /* The data structure representing a particle (note that persistification of */ /* polarisation and userflags must be explicitly enabled when writing .mcpl */ /* files, or they will simply contain zeroes when the file is read): */ typedef struct { double ekin; /* kinetic energy [MeV] */ double polarisation[3]; /* polarisation vector */ double position[3]; /* position [cm] */ double direction[3]; /* momentum direction (unit vector) */ double time; /* time-stamp [millisecond] */ double weight; /* weight or intensity */ int32_t pdgcode; /* MC particle number from the Particle Data Group (2112=neutron, 22=gamma, ...) */ uint32_t userflags; /* User flags (if used, the file header should probably contain information about how). */ } mcpl_particle_t; #pragma pack (pop) typedef struct { void * internal; } mcpl_file_t; /* file-object used while reading .mcpl */ typedef struct { void * internal; } mcpl_outfile_t; /* file-object used while writing .mcpl */ /****************************/ /* Creating new .mcpl files */ /****************************/ /* Instantiate new file object (will also open and override specified file) */ mcpl_outfile_t mcpl_create_outfile(const char * filename); const char * mcpl_outfile_filename(mcpl_outfile_t);/* filename being written to (might have had .mcpl appended) */ /* Optionally set global options or add info to the header: */ void mcpl_hdr_set_srcname(mcpl_outfile_t, const char *);/* Name of the generating application */ void mcpl_hdr_add_comment(mcpl_outfile_t, const char *);/* Add one or more human-readable comments */ void mcpl_hdr_add_data(mcpl_outfile_t, const char * key, uint32_t ldata, const char * data);/* add binary blobs by key */ void mcpl_enable_userflags(mcpl_outfile_t);/* to write the "userflags" info */ void mcpl_enable_polarisation(mcpl_outfile_t);/* to write the "polarisation" info */ void mcpl_enable_doubleprec(mcpl_outfile_t);/* use double precision FP numbers in storage */ void mcpl_enable_universal_pdgcode(mcpl_outfile_t, int32_t pdgcode);/* All particles are of the same type */ void mcpl_enable_universal_weight(mcpl_outfile_t, double w);/* All particles have the same weight */ /* Optionally (but rarely skipped) add particles, by updating the info in */ /* and then passing in a pointer to an mcpl_particle_t instance: */ void mcpl_add_particle(mcpl_outfile_t,const mcpl_particle_t*); /* Finally, always remember to close the file: */ void mcpl_close_outfile(mcpl_outfile_t); /* Alternatively close with (will call mcpl_gzip_file after close). */ /* Returns non-zero if gzipping was succesful: */ int mcpl_closeandgzip_outfile(mcpl_outfile_t); /* Convenience function which returns a pointer to a nulled-out particle struct which can be used to edit and pass to mcpl_add_particle. It can be reused and will be automatically free'd when the file is closed: */ mcpl_particle_t* mcpl_get_empty_particle(mcpl_outfile_t); /***********************/ /* Reading .mcpl files */ /***********************/ /* Open file and load header information into memory, skip to the first (if */ /* any) particle in the list: */ mcpl_file_t mcpl_open_file(const char * filename); /* Access header data: */ unsigned mcpl_hdr_version(mcpl_file_t);/* file format version (not the same as MCPL_VERSION) */ uint64_t mcpl_hdr_nparticles(mcpl_file_t);/* number of particles stored in file */ const char* mcpl_hdr_srcname(mcpl_file_t);/* Name of the generating application */ unsigned mcpl_hdr_ncomments(mcpl_file_t);/* number of comments stored in file */ const char * mcpl_hdr_comment(mcpl_file_t, unsigned icomment);/* access i'th comment */ int mcpl_hdr_nblobs(mcpl_file_t); const char** mcpl_hdr_blobkeys(mcpl_file_t);/* returns 0 if there are no keys */ int mcpl_hdr_blob(mcpl_file_t, const char* key, uint32_t* ldata, const char ** data);/* access data (returns 0 if key doesn't exist) */ int mcpl_hdr_has_userflags(mcpl_file_t); int mcpl_hdr_has_polarisation(mcpl_file_t); int mcpl_hdr_has_doubleprec(mcpl_file_t); uint64_t mcpl_hdr_header_size(mcpl_file_t);/* bytes consumed by header (uncompressed) */ int mcpl_hdr_particle_size(mcpl_file_t);/* bytes per particle (uncompressed) */ int32_t mcpl_hdr_universal_pdgcode(mcpl_file_t);/* returns 0 in case of per-particle pdgcode */ double mcpl_hdr_universal_weight(mcpl_file_t);/* returns 0.0 in case of per-particle weights */ int mcpl_hdr_little_endian(mcpl_file_t); /* Request pointer to particle at current location and skip forward to the next */ /* particle. Return value will be null in case there was no particle at the */ /* current location (normally due to end-of-file): */ const mcpl_particle_t* mcpl_read(mcpl_file_t); /* Seek and skip in particles (returns 0 when there is no particle at the new position): */ int mcpl_skipforward(mcpl_file_t,uint64_t n); int mcpl_rewind(mcpl_file_t); int mcpl_seek(mcpl_file_t,uint64_t ipos); uint64_t mcpl_currentposition(mcpl_file_t); /* Deallocate memory and release file-handle with: */ void mcpl_close_file(mcpl_file_t); /***********************************/ /* Other operations on .mcpl files */ /***********************************/ /* Dump information about the file to std-output: */ /* parts : 0 -> header+particle list, 1 -> just header, 2 -> just particle list. */ /* nlimit: maximum number of particles to list (0 for unlimited) */ /* nskip : index of first particle in the file to list. */ void mcpl_dump(const char * file, int parts, uint64_t nskip, uint64_t nlimit); /* Merge contents of a list of files by concatenating all particle contents into a */ /* new file, file_output. This results in an error unless all meta-data and settings */ /* in the files are identical. Also fails if file_output already exists. Note that */ /* the return value is a handle to the output file which has not yet been closed: */ mcpl_outfile_t mcpl_merge_files( const char* file_output, unsigned nfiles, const char ** files); /* Test if files could be merged by mcpl_merge_files: */ int mcpl_can_merge(const char * file1, const char* file2); /* Similar to mcpl_merge_files, but merges two files by appending all particles in */ /* file2 to the list in file1 (thus file1 grows while file2 stays untouched). */ /* Note that this requires similar version of the MCPL format of the two files, in */ /* addition to the other checks in mcpl_can_merge(). */ /* Careful usage of this function can be more efficient than mcpl_merge_files. */ void mcpl_merge_inplace(const char * file1, const char* file2); /* Attempt to merge incompatible files, by throwing away meta-data and otherwise */ /* selecting a configuration which is suitable to contain the data of all files. */ /* Userflags will be discarded unless keep_userflags=1. */ /* If called with compatible files, the code will fall back to calling the usual */ /* mcpl_merge_files function instead. */ mcpl_outfile_t mcpl_forcemerge_files( const char* file_output, unsigned nfiles, const char ** files, int keep_userflags ); /* Attempt to fix number of particles in the header of a file which was never */ /* properly closed: */ void mcpl_repair(const char * file1); /* For easily creating a standard mcpl-tool cmdline application: */ int mcpl_tool(int argc, char** argv); /* Attempt to run gzip on a file (does not require MCPL_HASZLIB on unix) */ /* Returns non-zero if gzipping was succesful. */ int mcpl_gzip_file(const char * filename); /* Convenience function which transfers all settings, blobs and comments to */ /* target. Intended to make it easy to filter files via custom C code. */ void mcpl_transfer_metadata(mcpl_file_t source, mcpl_outfile_t target); /* Function which can be used when transferring particles from one MCPL file */ /* to another. A particle must have been already read from the source file */ /* with a call to mcpl_read(..). This function will transfer the packed par- */ /* ticle data exactly when possible (using mcpl_add_particle can in principle */ /* introduce tiny numerical uncertainties due to the internal unpacking and */ /* repacking of direction vectors involved): */ void mcpl_transfer_last_read_particle(mcpl_file_t source, mcpl_outfile_t target); /******************/ /* Error handling */ /******************/ /* Override the error handler which will get called with the error */ /* description. If no handler is set, errors will get printed to stdout and the */ /* process terminated. An error handler should not return to the calling code. */ void mcpl_set_error_handler(void (*handler)(const char *)); /**********************/ /* Obsolete functions */ /**********************/ /* Functions kept for backwards compatibility. They keep working for now, but */ /* usage will result in a warning printed to stdout, notifying users to update */ /* their code. */ void mcpl_merge(const char *, const char*);/* Obsolete name for mcpl_merge_inplace */ int mcpl_gzip_file_rc(const char * filename);/* Obsolete name for mcpl_gzip_file */ int mcpl_closeandgzip_outfile_rc(mcpl_outfile_t);/* Obsolete name for mcpl_closeandgzip_outfile_rc */ int32_t mcpl_hdr_universel_pdgcode(mcpl_file_t);/* Obsolete name for mcpl_hdr_universal_pdgcode */ #ifdef __cplusplus } #endif #endif #endif #ifdef MCPL_HASZLIB # ifdef MCPL_ZLIB_INCPATH # include MCPL_ZLIB_INCPATH # else #ifndef NO_DUMMY_DECL # define NO_DUMMY_DECL #endif /* zlib.h -- interface of the 'zlib' general purpose compression library version 1.2.8, April 28th, 2013 Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. Jean-loup Gailly Mark Adler jloup@gzip.org madler@alumni.caltech.edu The data format used by the zlib library is described by RFCs (Request for Comments) 1950 to 1952 in the files http://tools.ietf.org/html/rfc1950 (zlib format), rfc1951 (deflate format) and rfc1952 (gzip format). */ #ifndef MiniZLib_ZLIB_H #define MiniZLib_ZLIB_H /* zconf.h -- configuration of the zlib compression library * Copyright (C) 1995-2013 Jean-loup Gailly. * For conditions of distribution and use, see copyright notice in zlib.h */ /* @(#) $Id$ */ #ifndef MiniZLib_ZCONF_H #define MiniZLib_ZCONF_H /* * If you *really* need a unique prefix for all types and library functions, * compile with -DZ_PREFIX. The "standard" zlib should be compiled without it. * Even better than compiling with -DZ_PREFIX would be to use configure to set * this permanently in zconf.h using "./configure --zprefix". */ #if 1 /* may be set to #if 1 by ./configure */ # define Z_PREFIX_SET /* all linked symbols */ # define _dist_code minizlib__dist_code # define _length_code minizlib__length_code # define _tr_align minizlib__tr_align # define _tr_flush_bits minizlib__tr_flush_bits # define _tr_flush_block minizlib__tr_flush_block # define _tr_init minizlib__tr_init # define _tr_stored_block minizlib__tr_stored_block # define _tr_tally minizlib__tr_tally # define adler32 minizlib_adler32 # define adler32_combine minizlib_adler32_combine # define adler32_combine64 minizlib_adler32_combine64 # ifndef Z_SOLO # define compress minizlib_compress # define compress2 minizlib_compress2 # define compressBound minizlib_compressBound # endif # define crc32 minizlib_crc32 # define crc32_combine minizlib_crc32_combine # define crc32_combine64 minizlib_crc32_combine64 # define deflate minizlib_deflate # define deflateBound minizlib_deflateBound # define deflateCopy minizlib_deflateCopy # define deflateEnd minizlib_deflateEnd # define deflateInit2_ minizlib_deflateInit2_ # define deflateInit_ minizlib_deflateInit_ # define deflateParams minizlib_deflateParams # define deflatePending minizlib_deflatePending # define deflatePrime minizlib_deflatePrime # define deflateReset minizlib_deflateReset # define deflateResetKeep minizlib_deflateResetKeep # define deflateSetDictionary minizlib_deflateSetDictionary # define deflateSetHeader minizlib_deflateSetHeader # define deflateTune minizlib_deflateTune # define deflate_copyright minizlib_deflate_copyright # define get_crc_table minizlib_get_crc_table # ifndef Z_SOLO # define gz_error minizlib_gz_error # define gz_intmax minizlib_gz_intmax # define gz_strwinerror minizlib_gz_strwinerror # define gzbuffer minizlib_gzbuffer # define gzclearerr minizlib_gzclearerr # define gzclose minizlib_gzclose # define gzclose_r minizlib_gzclose_r # define gzclose_w minizlib_gzclose_w # define gzdirect minizlib_gzdirect # define gzdopen minizlib_gzdopen # define gzeof minizlib_gzeof # define gzerror minizlib_gzerror # define gzflush minizlib_gzflush # define gzgetc minizlib_gzgetc # define gzgetc_ minizlib_gzgetc_ # define gzgets minizlib_gzgets # define gzoffset minizlib_gzoffset # define gzoffset64 minizlib_gzoffset64 # define gzopen minizlib_gzopen # define gzopen64 minizlib_gzopen64 # ifdef _WIN32 # define gzopen_w minizlib_gzopen_w # endif # define gzprintf minizlib_gzprintf # define gzvprintf minizlib_gzvprintf # define gzputc minizlib_gzputc # define gzputs minizlib_gzputs # define gzread minizlib_gzread # define gzrewind minizlib_gzrewind # define gzseek minizlib_gzseek # define gzseek64 minizlib_gzseek64 # define gzsetparams minizlib_gzsetparams # define gztell minizlib_gztell # define gztell64 minizlib_gztell64 # define gzungetc minizlib_gzungetc # define gzwrite minizlib_gzwrite # endif # define inflate minizlib_inflate # define inflateBack minizlib_inflateBack # define inflateBackEnd minizlib_inflateBackEnd # define inflateBackInit_ minizlib_inflateBackInit_ # define inflateCopy minizlib_inflateCopy # define inflateEnd minizlib_inflateEnd # define inflateGetHeader minizlib_inflateGetHeader # define inflateInit2_ minizlib_inflateInit2_ # define inflateInit_ minizlib_inflateInit_ # define inflateMark minizlib_inflateMark # define inflatePrime minizlib_inflatePrime # define inflateReset minizlib_inflateReset # define inflateReset2 minizlib_inflateReset2 # define inflateSetDictionary minizlib_inflateSetDictionary # define inflateGetDictionary minizlib_inflateGetDictionary # define inflateSync minizlib_inflateSync # define inflateSyncPoint minizlib_inflateSyncPoint # define inflateUndermine minizlib_inflateUndermine # define inflateResetKeep minizlib_inflateResetKeep # define inflate_copyright minizlib_inflate_copyright # define inflate_fast minizlib_inflate_fast # define inflate_table minizlib_inflate_table # ifndef Z_SOLO # define uncompress minizlib_uncompress # endif # define zError minizlib_zError # ifndef Z_SOLO # define zcalloc minizlib_zcalloc # define zcfree minizlib_zcfree # endif # define zlibCompileFlags minizlib_zlibCompileFlags # define zlibVersion minizlib_zlibVersion /* all zlib typedefs in zlib.h and zconf.h */ # define Byte minizlib_Byte # define Bytef minizlib_Bytef # define alloc_func minizlib_alloc_func # define charf minizlib_charf # define free_func minizlib_free_func # ifndef Z_SOLO # define gzFile minizlib_gzFile # endif # define gz_header minizlib_gz_header # define gz_headerp minizlib_gz_headerp # define in_func minizlib_in_func # define intf minizlib_intf # define out_func minizlib_out_func # define uInt minizlib_uInt # define uIntf minizlib_uIntf # define uLong minizlib_uLong # define uLongf minizlib_uLongf # define voidp minizlib_voidp # define voidpc minizlib_voidpc # define voidpf minizlib_voidpf /* all zlib structs in zlib.h and zconf.h */ # define gz_header_s minizlib_gz_header_s # define internal_state minizlib_internal_state /* extras added by TK */ # define distfix minizlib_distfix # define lenfix minizlib_lenfix # define lbase minizlib_lbase # define dbase minizlib_dbase # define my_version minizlib_my_version # define dext minizlib_dext # define order minizlib_order # define build_bl_tree minizlib_build_bl_tree # define copy_block minizlib_copy_block # define crc32_big minizlib_crc32_big # define crc32_little minizlib_crc32_little # define deflate_huff minizlib_deflate_huff # define deflate_rle minizlib_deflate_rle # define detect_data_type minizlib_detect_data_type # define fixedtables minizlib_fixedtables # define flush_pending minizlib_flush_pending # define gen_bitlen minizlib_gen_bitlen # define gf2_matrix_square minizlib_gf2_matrix_square # define gf2_matrix_times minizlib_gf2_matrix_times # define init_block minizlib_init_block # define lm_init minizlib_lm_init # define pqdownheap minizlib_pqdownheap # define putShortMSB minizlib_putShortMSB # define read_buf minizlib_read_buf # define scan_tree minizlib_scan_tree # define send_all_trees minizlib_send_all_trees # define syncsearch minizlib_syncsearch # define tr_static_init minizlib_tr_static_init # define updatewindow minizlib_updatewindow # define adler32_combine_ minizlib_adler32_combine_ # define bi_flush minizlib_bi_flush # define bi_reverse minizlib_bi_reverse # define bi_windup minizlib_bi_windup # define gen_codes minizlib_gen_codes # define deflate_slow minizlib_deflate_slow # define deflate_fast minizlib_deflate_fast # define deflate_stored minizlib_deflate_stored # define gz_avail minizlib_gz_avail # define gz_load minizlib_gz_load # define gz_reset minizlib_gz_reset # define gz_skip minizlib_gz_skip # define gz_zero minizlib_gz_zero # define gz_comp minizlib_gz_comp # define gz_decomp minizlib_gz_decomp # define gz_fetch minizlib_gz_fetch # define gz_init minizlib_gz_init # define gz_look minizlib_gz_look # define gz_open minizlib_gz_open # define z_errmsg minizlib_z_errmsg # define crc32_combine_ minizlib_crc32_combine_ # define crc_table minizlib_crc_table # define longest_match minizlib_longest_match # define fill_window minizlib_fill_window # define configuration_table minizlib_configuration_table # define send_tree minizlib_send_tree # define compress_block minizlib_compress_block # define extra_lbits minizlib_extra_lbits # define base_length minizlib_base_length # define extra_dbits minizlib_extra_dbits # define base_dist minizlib_base_dist # define build_tree minizlib_build_tree # define bl_order minizlib_bl_order # define extra_blbits minizlib_extra_blbits # define static_l_desc minizlib_static_l_desc # define static_bl_desc minizlib_static_bl_desc # define static_d_desc minizlib_static_d_desc # define static_dtree minizlib_static_dtree # define static_ltree minizlib_static_ltree #endif #if defined(__MSDOS__) && !defined(MSDOS) # define MSDOS #endif #if (defined(OS_2) || defined(__OS2__)) && !defined(OS2) # define OS2 #endif #if defined(_WINDOWS) && !defined(WINDOWS) # define WINDOWS #endif #if defined(_WIN32) || defined(_WIN32_WCE) || defined(__WIN32__) # ifndef WIN32 # define WIN32 # endif #endif #if (defined(MSDOS) || defined(OS2) || defined(WINDOWS)) && !defined(WIN32) # if !defined(__GNUC__) && !defined(__FLAT__) && !defined(__386__) # ifndef SYS16BIT # define SYS16BIT # endif # endif #endif /* * Compile with -DMAXSEG_64K if the alloc function cannot allocate more * than 64k bytes at a time (needed on systems with 16-bit int). */ #ifdef SYS16BIT # define MAXSEG_64K #endif #ifdef MSDOS # define UNALIGNED_OK #endif #ifdef __STDC_VERSION__ # ifndef STDC # define STDC # endif # if __STDC_VERSION__ >= 199901L # ifndef STDC99 # define STDC99 # endif # endif #endif #if !defined(STDC) && (defined(__STDC__) || defined(__cplusplus)) # define STDC #endif #if !defined(STDC) && (defined(__GNUC__) || defined(__BORLANDC__)) # define STDC #endif #if !defined(STDC) && (defined(MSDOS) || defined(WINDOWS) || defined(WIN32)) # define STDC #endif #if !defined(STDC) && (defined(OS2) || defined(__HOS_AIX__)) # define STDC #endif #if defined(__OS400__) && !defined(STDC) /* iSeries (formerly AS/400). */ # define STDC #endif #ifndef STDC # ifndef const /* cannot use !defined(STDC) && !defined(const) on Mac */ # define const /* note: need a more gentle solution here */ # endif #endif #if defined(ZLIB_CONST) && !defined(z_const) # define z_const const #else # define z_const #endif /* Some Mac compilers merge all .h files incorrectly: */ #if defined(__MWERKS__)||defined(applec)||defined(THINK_C)||defined(__SC__) # define NO_DUMMY_DECL #endif /* Maximum value for memLevel in deflateInit2 */ #ifndef MAX_MEM_LEVEL # ifdef MAXSEG_64K # define MAX_MEM_LEVEL 8 # else # define MAX_MEM_LEVEL 9 # endif #endif /* Maximum value for windowBits in deflateInit2 and inflateInit2. * WARNING: reducing MAX_WBITS makes minigzip unable to extract .gz files * created by gzip. (Files created by minigzip can still be extracted by * gzip.) */ #ifndef MAX_WBITS # define MAX_WBITS 15 /* 32K LZ77 window */ #endif /* The memory requirements for deflate are (in bytes): (1 << (windowBits+2)) + (1 << (memLevel+9)) that is: 128K for windowBits=15 + 128K for memLevel = 8 (default values) plus a few kilobytes for small objects. For example, if you want to reduce the default memory requirements from 256K to 128K, compile with make CFLAGS="-O -DMAX_WBITS=14 -DMAX_MEM_LEVEL=7" Of course this will generally degrade compression (there's no free lunch). The memory requirements for inflate are (in bytes) 1 << windowBits that is, 32K for windowBits=15 (default value) plus a few kilobytes for small objects. */ /* Type declarations */ #ifndef OF /* function prototypes */ # ifdef STDC # define OF(args) args # else # define OF(args) () # endif #endif #ifndef Z_ARG /* function prototypes for stdarg */ # if defined(STDC) || defined(Z_HAVE_STDARG_H) # define Z_ARG(args) args # else # define Z_ARG(args) () # endif #endif /* The following definitions for FAR are needed only for MSDOS mixed * model programming (small or medium model with some far allocations). * This was tested only with MSC; for other MSDOS compilers you may have * to define NO_MEMCPY in zutil.h. If you don't need the mixed model, * just define FAR to be empty. */ #ifdef SYS16BIT # if defined(M_I86SM) || defined(M_I86MM) /* MSC small or medium model */ # define SMALL_MEDIUM # ifdef _MSC_VER # define FAR _far # else # define FAR far # endif # endif # if (defined(__SMALL__) || defined(__MEDIUM__)) /* Turbo C small or medium model */ # define SMALL_MEDIUM # ifdef __BORLANDC__ # define FAR _far # else # define FAR far # endif # endif #endif #if defined(WINDOWS) || defined(WIN32) /* If building or using zlib as a DLL, define ZLIB_DLL. * This is not mandatory, but it offers a little performance increase. */ # ifdef ZLIB_DLL # if defined(WIN32) && (!defined(__BORLANDC__) || (__BORLANDC__ >= 0x500)) # ifdef ZLIB_INTERNAL # define ZEXTERN extern __declspec(dllexport) # else # define ZEXTERN extern __declspec(dllimport) # endif # endif # endif /* ZLIB_DLL */ /* If building or using zlib with the WINAPI/WINAPIV calling convention, * define ZLIB_WINAPI. * Caution: the standard ZLIB1.DLL is NOT compiled using ZLIB_WINAPI. */ # ifdef ZLIB_WINAPI # ifdef FAR # undef FAR # endif # include /* No need for _export, use ZLIB.DEF instead. */ /* For complete Windows compatibility, use WINAPI, not __stdcall. */ # define ZEXPORT WINAPI # ifdef WIN32 # define ZEXPORTVA WINAPIV # else # define ZEXPORTVA FAR CDECL # endif # endif #endif #if defined (__BEOS__) # ifdef ZLIB_DLL # ifdef ZLIB_INTERNAL # define ZEXPORT __declspec(dllexport) # define ZEXPORTVA __declspec(dllexport) # else # define ZEXPORT __declspec(dllimport) # define ZEXPORTVA __declspec(dllimport) # endif # endif #endif #ifndef ZEXTERN # define ZEXTERN extern #endif #ifndef ZEXPORT # define ZEXPORT #endif #ifndef ZEXPORTVA # define ZEXPORTVA #endif #ifndef FAR # define FAR #endif #if !defined(__MACTYPES__) typedef unsigned char Byte; /* 8 bits */ #endif typedef unsigned int uInt; /* 16 bits or more */ typedef unsigned long uLong; /* 32 bits or more */ #ifdef SMALL_MEDIUM /* Borland C/C++ and some old MSC versions ignore FAR inside typedef */ # define Bytef Byte FAR #else typedef Byte FAR Bytef; #endif typedef char FAR charf; typedef int FAR intf; typedef uInt FAR uIntf; typedef uLong FAR uLongf; #ifdef STDC typedef void const *voidpc; typedef void FAR *voidpf; typedef void *voidp; #else typedef Byte const *voidpc; typedef Byte FAR *voidpf; typedef Byte *voidp; #endif #if !defined(Z_U4) && !defined(Z_SOLO) && defined(STDC) # include # if (UINT_MAX == 0xffffffffUL) # define Z_U4 unsigned # elif (ULONG_MAX == 0xffffffffUL) # define Z_U4 unsigned long # elif (USHRT_MAX == 0xffffffffUL) # define Z_U4 unsigned short # endif #endif #ifdef Z_U4 typedef Z_U4 z_crc_t; #else typedef unsigned long z_crc_t; #endif #ifdef HAVE_UNISTD_H /* may be set to #if 1 by ./configure */ # define Z_HAVE_UNISTD_H #endif #ifdef HAVE_STDARG_H /* may be set to #if 1 by ./configure */ # define Z_HAVE_STDARG_H #endif #ifdef STDC # ifndef Z_SOLO # include /* for off_t */ # endif #endif #if defined(STDC) || defined(Z_HAVE_STDARG_H) # ifndef Z_SOLO # include /* for va_list */ # endif #endif #ifdef _WIN32 # ifndef Z_SOLO # include /* for wchar_t */ # endif #endif /* a little trick to accommodate both "#define _LARGEFILE64_SOURCE" and * "#define _LARGEFILE64_SOURCE 1" as requesting 64-bit operations, (even * though the former does not conform to the LFS document), but considering * both "#undef _LARGEFILE64_SOURCE" and "#define _LARGEFILE64_SOURCE 0" as * equivalently requesting no 64-bit operations */ #if defined(_LARGEFILE64_SOURCE) && -_LARGEFILE64_SOURCE - -1 == 1 # undef _LARGEFILE64_SOURCE #endif #if defined(__WATCOMC__) && !defined(Z_HAVE_UNISTD_H) # define Z_HAVE_UNISTD_H #endif #ifndef Z_SOLO # if defined(Z_HAVE_UNISTD_H) || defined(_LARGEFILE64_SOURCE) # include /* for SEEK_*, off_t, and _LFS64_LARGEFILE */ # ifdef VMS # include /* for off_t */ # endif # ifndef z_off_t # define z_off_t off_t # endif # endif #endif #if defined(_LFS64_LARGEFILE) && _LFS64_LARGEFILE-0 # define Z_LFS64 #endif #if defined(_LARGEFILE64_SOURCE) && defined(Z_LFS64) # define Z_LARGE64 #endif #if defined(_FILE_OFFSET_BITS) && _FILE_OFFSET_BITS-0 == 64 && defined(Z_LFS64) # define Z_WANT64 #endif #if !defined(SEEK_SET) && !defined(Z_SOLO) # define SEEK_SET 0 /* Seek from beginning of file. */ # define SEEK_CUR 1 /* Seek from current position. */ # define SEEK_END 2 /* Set file pointer to EOF plus "offset" */ #endif #ifndef z_off_t # define z_off_t long #endif #if !defined(_WIN32) && defined(Z_LARGE64) # define z_off64_t off64_t #else # if defined(_WIN32) && !defined(__GNUC__) && !defined(Z_SOLO) # define z_off64_t __int64 # else # define z_off64_t z_off_t # endif #endif /* MVS linker does not support external names larger than 8 bytes */ #if defined(__MVS__) #pragma map(deflateInit_,"DEIN") #pragma map(deflateInit2_,"DEIN2") #pragma map(deflateEnd,"DEEND") #pragma map(deflateBound,"DEBND") #pragma map(inflateInit_,"ININ") #pragma map(inflateInit2_,"ININ2") #pragma map(inflateEnd,"INEND") #pragma map(inflateSync,"INSY") #pragma map(inflateSetDictionary,"INSEDI") #pragma map(compressBound,"CMBND") #pragma map(inflate_table,"INTABL") #pragma map(inflate_fast,"INFA") #pragma map(inflate_copyright,"INCOPY") #endif #endif /* ZCONF_H */ #ifdef __cplusplus extern "C" { #endif #define ZLIB_VERSION "1.2.8" #define ZLIB_VERNUM 0x1280 #define ZLIB_VER_MAJOR 1 #define ZLIB_VER_MINOR 2 #define ZLIB_VER_REVISION 8 #define ZLIB_VER_SUBREVISION 0 /* The 'zlib' compression library provides in-memory compression and decompression functions, including integrity checks of the uncompressed data. This version of the library supports only one compression method (deflation) but other algorithms will be added later and will have the same stream interface. Compression can be done in a single step if the buffers are large enough, or can be done by repeated calls of the compression function. In the latter case, the application must provide more input and/or consume the output (providing more output space) before each call. The compressed data format used by default by the in-memory functions is the zlib format, which is a zlib wrapper documented in RFC 1950, wrapped around a deflate stream, which is itself documented in RFC 1951. The library also supports reading and writing files in gzip (.gz) format with an interface similar to that of stdio using the functions that start with "gz". The gzip format is different from the zlib format. gzip is a gzip wrapper, documented in RFC 1952, wrapped around a deflate stream. This library can optionally read and write gzip streams in memory as well. The zlib format was designed to be compact and fast for use in memory and on communications channels. The gzip format was designed for single- file compression on file systems, has a larger header than zlib to maintain directory information, and uses a different, slower check method than zlib. The library does not install any signal handler. The decoder checks the consistency of the compressed data, so the library should never crash even in case of corrupted input. */ typedef voidpf (*alloc_func) OF((voidpf opaque, uInt items, uInt size)); typedef void (*free_func) OF((voidpf opaque, voidpf address)); struct internal_state; typedef struct z_stream_s { z_const Bytef *next_in; /* next input byte */ uInt avail_in; /* number of bytes available at next_in */ uLong total_in; /* total number of input bytes read so far */ Bytef *next_out; /* next output byte should be put there */ uInt avail_out; /* remaining free space at next_out */ uLong total_out; /* total number of bytes output so far */ z_const char *msg; /* last error message, NULL if no error */ struct internal_state FAR *state; /* not visible by applications */ alloc_func zalloc; /* used to allocate the internal state */ free_func zfree; /* used to free the internal state */ voidpf opaque; /* private data object passed to zalloc and zfree */ int data_type; /* best guess about the data type: binary or text */ uLong adler; /* adler32 value of the uncompressed data */ uLong reserved; /* reserved for future use */ } z_stream; typedef z_stream FAR *z_streamp; /* gzip header information passed to and from zlib routines. See RFC 1952 for more details on the meanings of these fields. */ typedef struct gz_header_s { int text; /* true if compressed data believed to be text */ uLong time; /* modification time */ int xflags; /* extra flags (not used when writing a gzip file) */ int os; /* operating system */ Bytef *extra; /* pointer to extra field or Z_NULL if none */ uInt extra_len; /* extra field length (valid if extra != Z_NULL) */ uInt extra_max; /* space at extra (only when reading header) */ Bytef *name; /* pointer to zero-terminated file name or Z_NULL */ uInt name_max; /* space at name (only when reading header) */ Bytef *comment; /* pointer to zero-terminated comment or Z_NULL */ uInt comm_max; /* space at comment (only when reading header) */ int hcrc; /* true if there was or will be a header crc */ int done; /* true when done reading gzip header (not used when writing a gzip file) */ } gz_header; typedef gz_header FAR *gz_headerp; /* The application must update next_in and avail_in when avail_in has dropped to zero. It must update next_out and avail_out when avail_out has dropped to zero. The application must initialize zalloc, zfree and opaque before calling the init function. All other fields are set by the compression library and must not be updated by the application. The opaque value provided by the application will be passed as the first parameter for calls of zalloc and zfree. This can be useful for custom memory management. The compression library attaches no meaning to the opaque value. zalloc must return Z_NULL if there is not enough memory for the object. If zlib is used in a multi-threaded application, zalloc and zfree must be thread safe. On 16-bit systems, the functions zalloc and zfree must be able to allocate exactly 65536 bytes, but will not be required to allocate more than this if the symbol MAXSEG_64K is defined (see zconf.h). WARNING: On MSDOS, pointers returned by zalloc for objects of exactly 65536 bytes *must* have their offset normalized to zero. The default allocation function provided by this library ensures this (see zutil.c). To reduce memory requirements and avoid any allocation of 64K objects, at the expense of compression ratio, compile the library with -DMAX_WBITS=14 (see zconf.h). The fields total_in and total_out can be used for statistics or progress reports. After compression, total_in holds the total size of the uncompressed data and may be saved for use in the decompressor (particularly if the decompressor wants to decompress everything in a single step). */ /* constants */ #define Z_NO_FLUSH 0 #define Z_PARTIAL_FLUSH 1 #define Z_SYNC_FLUSH 2 #define Z_FULL_FLUSH 3 #define Z_FINISH 4 #define Z_BLOCK 5 #define Z_TREES 6 /* Allowed flush values; see deflate() and inflate() below for details */ #define Z_OK 0 #define Z_STREAM_END 1 #define Z_NEED_DICT 2 #define Z_ERRNO (-1) #define Z_STREAM_ERROR (-2) #define Z_DATA_ERROR (-3) #define Z_MEM_ERROR (-4) #define Z_BUF_ERROR (-5) #define Z_VERSION_ERROR (-6) /* Return codes for the compression/decompression functions. Negative values * are errors, positive values are used for special but normal events. */ #define Z_NO_COMPRESSION 0 #define Z_BEST_SPEED 1 #define Z_BEST_COMPRESSION 9 #define Z_DEFAULT_COMPRESSION (-1) /* compression levels */ #define Z_FILTERED 1 #define Z_HUFFMAN_ONLY 2 #define Z_RLE 3 #define Z_FIXED 4 #define Z_DEFAULT_STRATEGY 0 /* compression strategy; see deflateInit2() below for details */ #define Z_BINARY 0 #define Z_TEXT 1 #define Z_ASCII Z_TEXT /* for compatibility with 1.2.2 and earlier */ #define Z_UNKNOWN 2 /* Possible values of the data_type field (though see inflate()) */ #define Z_DEFLATED 8 /* The deflate compression method (the only one supported in this version) */ #define Z_NULL 0 /* for initializing zalloc, zfree, opaque */ #define zlib_version zlibVersion() /* for compatibility with versions < 1.0.2 */ /* basic functions */ ZEXTERN const char * ZEXPORT zlibVersion OF((void)); /* The application can compare zlibVersion and ZLIB_VERSION for consistency. If the first character differs, the library code actually used is not compatible with the zlib.h header file used by the application. This check is automatically made by deflateInit and inflateInit. */ /* ZEXTERN int ZEXPORT deflateInit OF((z_streamp strm, int level)); Initializes the internal stream state for compression. The fields zalloc, zfree and opaque must be initialized before by the caller. If zalloc and zfree are set to Z_NULL, deflateInit updates them to use default allocation functions. The compression level must be Z_DEFAULT_COMPRESSION, or between 0 and 9: 1 gives best speed, 9 gives best compression, 0 gives no compression at all (the input data is simply copied a block at a time). Z_DEFAULT_COMPRESSION requests a default compromise between speed and compression (currently equivalent to level 6). deflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_STREAM_ERROR if level is not a valid compression level, or Z_VERSION_ERROR if the zlib library version (zlib_version) is incompatible with the version assumed by the caller (ZLIB_VERSION). msg is set to null if there is no error message. deflateInit does not perform any compression: this will be done by deflate(). */ ZEXTERN int ZEXPORT deflate OF((z_streamp strm, int flush)); /* deflate compresses as much data as possible, and stops when the input buffer becomes empty or the output buffer becomes full. It may introduce some output latency (reading input without producing any output) except when forced to flush. The detailed semantics are as follows. deflate performs one or both of the following actions: - Compress more input starting at next_in and update next_in and avail_in accordingly. If not all input can be processed (because there is not enough room in the output buffer), next_in and avail_in are updated and processing will resume at this point for the next call of deflate(). - Provide more output starting at next_out and update next_out and avail_out accordingly. This action is forced if the parameter flush is non zero. Forcing flush frequently degrades the compression ratio, so this parameter should be set only when necessary (in interactive applications). Some output may be provided even if flush is not set. Before the call of deflate(), the application should ensure that at least one of the actions is possible, by providing more input and/or consuming more output, and updating avail_in or avail_out accordingly; avail_out should never be zero before the call. The application can consume the compressed output when it wants, for example when the output buffer is full (avail_out == 0), or after each call of deflate(). If deflate returns Z_OK and with zero avail_out, it must be called again after making room in the output buffer because there might be more output pending. Normally the parameter flush is set to Z_NO_FLUSH, which allows deflate to decide how much data to accumulate before producing output, in order to maximize compression. If the parameter flush is set to Z_SYNC_FLUSH, all pending output is flushed to the output buffer and the output is aligned on a byte boundary, so that the decompressor can get all input data available so far. (In particular avail_in is zero after the call if enough output space has been provided before the call.) Flushing may degrade compression for some compression algorithms and so it should be used only when necessary. This completes the current deflate block and follows it with an empty stored block that is three bits plus filler bits to the next byte, followed by four bytes (00 00 ff ff). If flush is set to Z_PARTIAL_FLUSH, all pending output is flushed to the output buffer, but the output is not aligned to a byte boundary. All of the input data so far will be available to the decompressor, as for Z_SYNC_FLUSH. This completes the current deflate block and follows it with an empty fixed codes block that is 10 bits long. This assures that enough bytes are output in order for the decompressor to finish the block before the empty fixed code block. If flush is set to Z_BLOCK, a deflate block is completed and emitted, as for Z_SYNC_FLUSH, but the output is not aligned on a byte boundary, and up to seven bits of the current block are held to be written as the next byte after the next deflate block is completed. In this case, the decompressor may not be provided enough bits at this point in order to complete decompression of the data provided so far to the compressor. It may need to wait for the next block to be emitted. This is for advanced applications that need to control the emission of deflate blocks. If flush is set to Z_FULL_FLUSH, all output is flushed as with Z_SYNC_FLUSH, and the compression state is reset so that decompression can restart from this point if previous compressed data has been damaged or if random access is desired. Using Z_FULL_FLUSH too often can seriously degrade compression. If deflate returns with avail_out == 0, this function must be called again with the same value of the flush parameter and more output space (updated avail_out), until the flush is complete (deflate returns with non-zero avail_out). In the case of a Z_FULL_FLUSH or Z_SYNC_FLUSH, make sure that avail_out is greater than six to avoid repeated flush markers due to avail_out == 0 on return. If the parameter flush is set to Z_FINISH, pending input is processed, pending output is flushed and deflate returns with Z_STREAM_END if there was enough output space; if deflate returns with Z_OK, this function must be called again with Z_FINISH and more output space (updated avail_out) but no more input data, until it returns with Z_STREAM_END or an error. After deflate has returned Z_STREAM_END, the only possible operations on the stream are deflateReset or deflateEnd. Z_FINISH can be used immediately after deflateInit if all the compression is to be done in a single step. In this case, avail_out must be at least the value returned by deflateBound (see below). Then deflate is guaranteed to return Z_STREAM_END. If not enough output space is provided, deflate will not return Z_STREAM_END, and it must be called again as described above. deflate() sets strm->adler to the adler32 checksum of all input read so far (that is, total_in bytes). deflate() may update strm->data_type if it can make a good guess about the input data type (Z_BINARY or Z_TEXT). In doubt, the data is considered binary. This field is only for information purposes and does not affect the compression algorithm in any manner. deflate() returns Z_OK if some progress has been made (more input processed or more output produced), Z_STREAM_END if all input has been consumed and all output has been produced (only when flush is set to Z_FINISH), Z_STREAM_ERROR if the stream state was inconsistent (for example if next_in or next_out was Z_NULL), Z_BUF_ERROR if no progress is possible (for example avail_in or avail_out was zero). Note that Z_BUF_ERROR is not fatal, and deflate() can be called again with more input and more output space to continue compressing. */ ZEXTERN int ZEXPORT deflateEnd OF((z_streamp strm)); /* All dynamically allocated data structures for this stream are freed. This function discards any unprocessed input and does not flush any pending output. deflateEnd returns Z_OK if success, Z_STREAM_ERROR if the stream state was inconsistent, Z_DATA_ERROR if the stream was freed prematurely (some input or output was discarded). In the error case, msg may be set but then points to a static string (which must not be deallocated). */ /* ZEXTERN int ZEXPORT inflateInit OF((z_streamp strm)); Initializes the internal stream state for decompression. The fields next_in, avail_in, zalloc, zfree and opaque must be initialized before by the caller. If next_in is not Z_NULL and avail_in is large enough (the exact value depends on the compression method), inflateInit determines the compression method from the zlib header and allocates all data structures accordingly; otherwise the allocation will be deferred to the first call of inflate. If zalloc and zfree are set to Z_NULL, inflateInit updates them to use default allocation functions. inflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_VERSION_ERROR if the zlib library version is incompatible with the version assumed by the caller, or Z_STREAM_ERROR if the parameters are invalid, such as a null pointer to the structure. msg is set to null if there is no error message. inflateInit does not perform any decompression apart from possibly reading the zlib header if present: actual decompression will be done by inflate(). (So next_in and avail_in may be modified, but next_out and avail_out are unused and unchanged.) The current implementation of inflateInit() does not process any header information -- that is deferred until inflate() is called. */ ZEXTERN int ZEXPORT inflate OF((z_streamp strm, int flush)); /* inflate decompresses as much data as possible, and stops when the input buffer becomes empty or the output buffer becomes full. It may introduce some output latency (reading input without producing any output) except when forced to flush. The detailed semantics are as follows. inflate performs one or both of the following actions: - Decompress more input starting at next_in and update next_in and avail_in accordingly. If not all input can be processed (because there is not enough room in the output buffer), next_in is updated and processing will resume at this point for the next call of inflate(). - Provide more output starting at next_out and update next_out and avail_out accordingly. inflate() provides as much output as possible, until there is no more input data or no more space in the output buffer (see below about the flush parameter). Before the call of inflate(), the application should ensure that at least one of the actions is possible, by providing more input and/or consuming more output, and updating the next_* and avail_* values accordingly. The application can consume the uncompressed output when it wants, for example when the output buffer is full (avail_out == 0), or after each call of inflate(). If inflate returns Z_OK and with zero avail_out, it must be called again after making room in the output buffer because there might be more output pending. The flush parameter of inflate() can be Z_NO_FLUSH, Z_SYNC_FLUSH, Z_FINISH, Z_BLOCK, or Z_TREES. Z_SYNC_FLUSH requests that inflate() flush as much output as possible to the output buffer. Z_BLOCK requests that inflate() stop if and when it gets to the next deflate block boundary. When decoding the zlib or gzip format, this will cause inflate() to return immediately after the header and before the first block. When doing a raw inflate, inflate() will go ahead and process the first block, and will return when it gets to the end of that block, or when it runs out of data. The Z_BLOCK option assists in appending to or combining deflate streams. Also to assist in this, on return inflate() will set strm->data_type to the number of unused bits in the last byte taken from strm->next_in, plus 64 if inflate() is currently decoding the last block in the deflate stream, plus 128 if inflate() returned immediately after decoding an end-of-block code or decoding the complete header up to just before the first byte of the deflate stream. The end-of-block will not be indicated until all of the uncompressed data from that block has been written to strm->next_out. The number of unused bits may in general be greater than seven, except when bit 7 of data_type is set, in which case the number of unused bits will be less than eight. data_type is set as noted here every time inflate() returns for all flush options, and so can be used to determine the amount of currently consumed input in bits. The Z_TREES option behaves as Z_BLOCK does, but it also returns when the end of each deflate block header is reached, before any actual data in that block is decoded. This allows the caller to determine the length of the deflate block header for later use in random access within a deflate block. 256 is added to the value of strm->data_type when inflate() returns immediately after reaching the end of the deflate block header. inflate() should normally be called until it returns Z_STREAM_END or an error. However if all decompression is to be performed in a single step (a single call of inflate), the parameter flush should be set to Z_FINISH. In this case all pending input is processed and all pending output is flushed; avail_out must be large enough to hold all of the uncompressed data for the operation to complete. (The size of the uncompressed data may have been saved by the compressor for this purpose.) The use of Z_FINISH is not required to perform an inflation in one step. However it may be used to inform inflate that a faster approach can be used for the single inflate() call. Z_FINISH also informs inflate to not maintain a sliding window if the stream completes, which reduces inflate's memory footprint. If the stream does not complete, either because not all of the stream is provided or not enough output space is provided, then a sliding window will be allocated and inflate() can be called again to continue the operation as if Z_NO_FLUSH had been used. In this implementation, inflate() always flushes as much output as possible to the output buffer, and always uses the faster approach on the first call. So the effects of the flush parameter in this implementation are on the return value of inflate() as noted below, when inflate() returns early when Z_BLOCK or Z_TREES is used, and when inflate() avoids the allocation of memory for a sliding window when Z_FINISH is used. If a preset dictionary is needed after this call (see inflateSetDictionary below), inflate sets strm->adler to the Adler-32 checksum of the dictionary chosen by the compressor and returns Z_NEED_DICT; otherwise it sets strm->adler to the Adler-32 checksum of all output produced so far (that is, total_out bytes) and returns Z_OK, Z_STREAM_END or an error code as described below. At the end of the stream, inflate() checks that its computed adler32 checksum is equal to that saved by the compressor and returns Z_STREAM_END only if the checksum is correct. inflate() can decompress and check either zlib-wrapped or gzip-wrapped deflate data. The header type is detected automatically, if requested when initializing with inflateInit2(). Any information contained in the gzip header is not retained, so applications that need that information should instead use raw inflate, see inflateInit2() below, or inflateBack() and perform their own processing of the gzip header and trailer. When processing gzip-wrapped deflate data, strm->adler32 is set to the CRC-32 of the output producted so far. The CRC-32 is checked against the gzip trailer. inflate() returns Z_OK if some progress has been made (more input processed or more output produced), Z_STREAM_END if the end of the compressed data has been reached and all uncompressed output has been produced, Z_NEED_DICT if a preset dictionary is needed at this point, Z_DATA_ERROR if the input data was corrupted (input stream not conforming to the zlib format or incorrect check value), Z_STREAM_ERROR if the stream structure was inconsistent (for example next_in or next_out was Z_NULL), Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if no progress is possible or if there was not enough room in the output buffer when Z_FINISH is used. Note that Z_BUF_ERROR is not fatal, and inflate() can be called again with more input and more output space to continue decompressing. If Z_DATA_ERROR is returned, the application may then call inflateSync() to look for a good compression block if a partial recovery of the data is desired. */ ZEXTERN int ZEXPORT inflateEnd OF((z_streamp strm)); /* All dynamically allocated data structures for this stream are freed. This function discards any unprocessed input and does not flush any pending output. inflateEnd returns Z_OK if success, Z_STREAM_ERROR if the stream state was inconsistent. In the error case, msg may be set but then points to a static string (which must not be deallocated). */ /* Advanced functions */ /* The following functions are needed only in some special applications. */ /* ZEXTERN int ZEXPORT deflateInit2 OF((z_streamp strm, int level, int method, int windowBits, int memLevel, int strategy)); This is another version of deflateInit with more compression options. The fields next_in, zalloc, zfree and opaque must be initialized before by the caller. The method parameter is the compression method. It must be Z_DEFLATED in this version of the library. The windowBits parameter is the base two logarithm of the window size (the size of the history buffer). It should be in the range 8..15 for this version of the library. Larger values of this parameter result in better compression at the expense of memory usage. The default value is 15 if deflateInit is used instead. windowBits can also be -8..-15 for raw deflate. In this case, -windowBits determines the window size. deflate() will then generate raw deflate data with no zlib header or trailer, and will not compute an adler32 check value. windowBits can also be greater than 15 for optional gzip encoding. Add 16 to windowBits to write a simple gzip header and trailer around the compressed data instead of a zlib wrapper. The gzip header will have no file name, no extra data, no comment, no modification time (set to zero), no header crc, and the operating system will be set to 255 (unknown). If a gzip stream is being written, strm->adler is a crc32 instead of an adler32. The memLevel parameter specifies how much memory should be allocated for the internal compression state. memLevel=1 uses minimum memory but is slow and reduces compression ratio; memLevel=9 uses maximum memory for optimal speed. The default value is 8. See zconf.h for total memory usage as a function of windowBits and memLevel. The strategy parameter is used to tune the compression algorithm. Use the value Z_DEFAULT_STRATEGY for normal data, Z_FILTERED for data produced by a filter (or predictor), Z_HUFFMAN_ONLY to force Huffman encoding only (no string match), or Z_RLE to limit match distances to one (run-length encoding). Filtered data consists mostly of small values with a somewhat random distribution. In this case, the compression algorithm is tuned to compress them better. The effect of Z_FILTERED is to force more Huffman coding and less string matching; it is somewhat intermediate between Z_DEFAULT_STRATEGY and Z_HUFFMAN_ONLY. Z_RLE is designed to be almost as fast as Z_HUFFMAN_ONLY, but give better compression for PNG image data. The strategy parameter only affects the compression ratio but not the correctness of the compressed output even if it is not set appropriately. Z_FIXED prevents the use of dynamic Huffman codes, allowing for a simpler decoder for special applications. deflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_STREAM_ERROR if any parameter is invalid (such as an invalid method), or Z_VERSION_ERROR if the zlib library version (zlib_version) is incompatible with the version assumed by the caller (ZLIB_VERSION). msg is set to null if there is no error message. deflateInit2 does not perform any compression: this will be done by deflate(). */ ZEXTERN int ZEXPORT deflateSetDictionary OF((z_streamp strm, const Bytef *dictionary, uInt dictLength)); /* Initializes the compression dictionary from the given byte sequence without producing any compressed output. When using the zlib format, this function must be called immediately after deflateInit, deflateInit2 or deflateReset, and before any call of deflate. When doing raw deflate, this function must be called either before any call of deflate, or immediately after the completion of a deflate block, i.e. after all input has been consumed and all output has been delivered when using any of the flush options Z_BLOCK, Z_PARTIAL_FLUSH, Z_SYNC_FLUSH, or Z_FULL_FLUSH. The compressor and decompressor must use exactly the same dictionary (see inflateSetDictionary). The dictionary should consist of strings (byte sequences) that are likely to be encountered later in the data to be compressed, with the most commonly used strings preferably put towards the end of the dictionary. Using a dictionary is most useful when the data to be compressed is short and can be predicted with good accuracy; the data can then be compressed better than with the default empty dictionary. Depending on the size of the compression data structures selected by deflateInit or deflateInit2, a part of the dictionary may in effect be discarded, for example if the dictionary is larger than the window size provided in deflateInit or deflateInit2. Thus the strings most likely to be useful should be put at the end of the dictionary, not at the front. In addition, the current implementation of deflate will use at most the window size minus 262 bytes of the provided dictionary. Upon return of this function, strm->adler is set to the adler32 value of the dictionary; the decompressor may later use this value to determine which dictionary has been used by the compressor. (The adler32 value applies to the whole dictionary even if only a subset of the dictionary is actually used by the compressor.) If a raw deflate was requested, then the adler32 value is not computed and strm->adler is not set. deflateSetDictionary returns Z_OK if success, or Z_STREAM_ERROR if a parameter is invalid (e.g. dictionary being Z_NULL) or the stream state is inconsistent (for example if deflate has already been called for this stream or if not at a block boundary for raw deflate). deflateSetDictionary does not perform any compression: this will be done by deflate(). */ ZEXTERN int ZEXPORT deflateCopy OF((z_streamp dest, z_streamp source)); /* Sets the destination stream as a complete copy of the source stream. This function can be useful when several compression strategies will be tried, for example when there are several ways of pre-processing the input data with a filter. The streams that will be discarded should then be freed by calling deflateEnd. Note that deflateCopy duplicates the internal compression state which can be quite large, so this strategy is slow and can consume lots of memory. deflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc being Z_NULL). msg is left unchanged in both source and destination. */ ZEXTERN int ZEXPORT deflateReset OF((z_streamp strm)); /* This function is equivalent to deflateEnd followed by deflateInit, but does not free and reallocate all the internal compression state. The stream will keep the same compression level and any other attributes that may have been set by deflateInit2. deflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc or state being Z_NULL). */ ZEXTERN int ZEXPORT deflateParams OF((z_streamp strm, int level, int strategy)); /* Dynamically update the compression level and compression strategy. The interpretation of level and strategy is as in deflateInit2. This can be used to switch between compression and straight copy of the input data, or to switch to a different kind of input data requiring a different strategy. If the compression level is changed, the input available so far is compressed with the old level (and may be flushed); the new level will take effect only at the next call of deflate(). Before the call of deflateParams, the stream state must be set as for a call of deflate(), since the currently available input may have to be compressed and flushed. In particular, strm->avail_out must be non-zero. deflateParams returns Z_OK if success, Z_STREAM_ERROR if the source stream state was inconsistent or if a parameter was invalid, Z_BUF_ERROR if strm->avail_out was zero. */ ZEXTERN int ZEXPORT deflateTune OF((z_streamp strm, int good_length, int max_lazy, int nice_length, int max_chain)); /* Fine tune deflate's internal compression parameters. This should only be used by someone who understands the algorithm used by zlib's deflate for searching for the best matching string, and even then only by the most fanatic optimizer trying to squeeze out the last compressed bit for their specific input data. Read the deflate.c source code for the meaning of the max_lazy, good_length, nice_length, and max_chain parameters. deflateTune() can be called after deflateInit() or deflateInit2(), and returns Z_OK on success, or Z_STREAM_ERROR for an invalid deflate stream. */ ZEXTERN uLong ZEXPORT deflateBound OF((z_streamp strm, uLong sourceLen)); /* deflateBound() returns an upper bound on the compressed size after deflation of sourceLen bytes. It must be called after deflateInit() or deflateInit2(), and after deflateSetHeader(), if used. This would be used to allocate an output buffer for deflation in a single pass, and so would be called before deflate(). If that first deflate() call is provided the sourceLen input bytes, an output buffer allocated to the size returned by deflateBound(), and the flush value Z_FINISH, then deflate() is guaranteed to return Z_STREAM_END. Note that it is possible for the compressed size to be larger than the value returned by deflateBound() if flush options other than Z_FINISH or Z_NO_FLUSH are used. */ ZEXTERN int ZEXPORT deflatePending OF((z_streamp strm, unsigned *pending, int *bits)); /* deflatePending() returns the number of bytes and bits of output that have been generated, but not yet provided in the available output. The bytes not provided would be due to the available output space having being consumed. The number of bits of output not provided are between 0 and 7, where they await more bits to join them in order to fill out a full byte. If pending or bits are Z_NULL, then those values are not set. deflatePending returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent. */ ZEXTERN int ZEXPORT deflatePrime OF((z_streamp strm, int bits, int value)); /* deflatePrime() inserts bits in the deflate output stream. The intent is that this function is used to start off the deflate output with the bits leftover from a previous deflate stream when appending to it. As such, this function can only be used for raw deflate, and must be used before the first deflate() call after a deflateInit2() or deflateReset(). bits must be less than or equal to 16, and that many of the least significant bits of value will be inserted in the output. deflatePrime returns Z_OK if success, Z_BUF_ERROR if there was not enough room in the internal buffer to insert the bits, or Z_STREAM_ERROR if the source stream state was inconsistent. */ ZEXTERN int ZEXPORT deflateSetHeader OF((z_streamp strm, gz_headerp head)); /* deflateSetHeader() provides gzip header information for when a gzip stream is requested by deflateInit2(). deflateSetHeader() may be called after deflateInit2() or deflateReset() and before the first call of deflate(). The text, time, os, extra field, name, and comment information in the provided gz_header structure are written to the gzip header (xflag is ignored -- the extra flags are set according to the compression level). The caller must assure that, if not Z_NULL, name and comment are terminated with a zero byte, and that if extra is not Z_NULL, that extra_len bytes are available there. If hcrc is true, a gzip header crc is included. Note that the current versions of the command-line version of gzip (up through version 1.3.x) do not support header crc's, and will report that it is a "multi-part gzip file" and give up. If deflateSetHeader is not used, the default gzip header has text false, the time set to zero, and os set to 255, with no extra, name, or comment fields. The gzip header is returned to the default state by deflateReset(). deflateSetHeader returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent. */ /* ZEXTERN int ZEXPORT inflateInit2 OF((z_streamp strm, int windowBits)); This is another version of inflateInit with an extra parameter. The fields next_in, avail_in, zalloc, zfree and opaque must be initialized before by the caller. The windowBits parameter is the base two logarithm of the maximum window size (the size of the history buffer). It should be in the range 8..15 for this version of the library. The default value is 15 if inflateInit is used instead. windowBits must be greater than or equal to the windowBits value provided to deflateInit2() while compressing, or it must be equal to 15 if deflateInit2() was not used. If a compressed stream with a larger window size is given as input, inflate() will return with the error code Z_DATA_ERROR instead of trying to allocate a larger window. windowBits can also be zero to request that inflate use the window size in the zlib header of the compressed stream. windowBits can also be -8..-15 for raw inflate. In this case, -windowBits determines the window size. inflate() will then process raw deflate data, not looking for a zlib or gzip header, not generating a check value, and not looking for any check values for comparison at the end of the stream. This is for use with other formats that use the deflate compressed data format such as zip. Those formats provide their own check values. If a custom format is developed using the raw deflate format for compressed data, it is recommended that a check value such as an adler32 or a crc32 be applied to the uncompressed data as is done in the zlib, gzip, and zip formats. For most applications, the zlib format should be used as is. Note that comments above on the use in deflateInit2() applies to the magnitude of windowBits. windowBits can also be greater than 15 for optional gzip decoding. Add 32 to windowBits to enable zlib and gzip decoding with automatic header detection, or add 16 to decode only the gzip format (the zlib format will return a Z_DATA_ERROR). If a gzip stream is being decoded, strm->adler is a crc32 instead of an adler32. inflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_VERSION_ERROR if the zlib library version is incompatible with the version assumed by the caller, or Z_STREAM_ERROR if the parameters are invalid, such as a null pointer to the structure. msg is set to null if there is no error message. inflateInit2 does not perform any decompression apart from possibly reading the zlib header if present: actual decompression will be done by inflate(). (So next_in and avail_in may be modified, but next_out and avail_out are unused and unchanged.) The current implementation of inflateInit2() does not process any header information -- that is deferred until inflate() is called. */ ZEXTERN int ZEXPORT inflateSetDictionary OF((z_streamp strm, const Bytef *dictionary, uInt dictLength)); /* Initializes the decompression dictionary from the given uncompressed byte sequence. This function must be called immediately after a call of inflate, if that call returned Z_NEED_DICT. The dictionary chosen by the compressor can be determined from the adler32 value returned by that call of inflate. The compressor and decompressor must use exactly the same dictionary (see deflateSetDictionary). For raw inflate, this function can be called at any time to set the dictionary. If the provided dictionary is smaller than the window and there is already data in the window, then the provided dictionary will amend what's there. The application must insure that the dictionary that was used for compression is provided. inflateSetDictionary returns Z_OK if success, Z_STREAM_ERROR if a parameter is invalid (e.g. dictionary being Z_NULL) or the stream state is inconsistent, Z_DATA_ERROR if the given dictionary doesn't match the expected one (incorrect adler32 value). inflateSetDictionary does not perform any decompression: this will be done by subsequent calls of inflate(). */ ZEXTERN int ZEXPORT inflateGetDictionary OF((z_streamp strm, Bytef *dictionary, uInt *dictLength)); /* Returns the sliding dictionary being maintained by inflate. dictLength is set to the number of bytes in the dictionary, and that many bytes are copied to dictionary. dictionary must have enough space, where 32768 bytes is always enough. If inflateGetDictionary() is called with dictionary equal to Z_NULL, then only the dictionary length is returned, and nothing is copied. Similary, if dictLength is Z_NULL, then it is not set. inflateGetDictionary returns Z_OK on success, or Z_STREAM_ERROR if the stream state is inconsistent. */ ZEXTERN int ZEXPORT inflateSync OF((z_streamp strm)); /* Skips invalid compressed data until a possible full flush point (see above for the description of deflate with Z_FULL_FLUSH) can be found, or until all available input is skipped. No output is provided. inflateSync searches for a 00 00 FF FF pattern in the compressed data. All full flush points have this pattern, but not all occurrences of this pattern are full flush points. inflateSync returns Z_OK if a possible full flush point has been found, Z_BUF_ERROR if no more input was provided, Z_DATA_ERROR if no flush point has been found, or Z_STREAM_ERROR if the stream structure was inconsistent. In the success case, the application may save the current current value of total_in which indicates where valid compressed data was found. In the error case, the application may repeatedly call inflateSync, providing more input each time, until success or end of the input data. */ ZEXTERN int ZEXPORT inflateCopy OF((z_streamp dest, z_streamp source)); /* Sets the destination stream as a complete copy of the source stream. This function can be useful when randomly accessing a large stream. The first pass through the stream can periodically record the inflate state, allowing restarting inflate at those points when randomly accessing the stream. inflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc being Z_NULL). msg is left unchanged in both source and destination. */ ZEXTERN int ZEXPORT inflateReset OF((z_streamp strm)); /* This function is equivalent to inflateEnd followed by inflateInit, but does not free and reallocate all the internal decompression state. The stream will keep attributes that may have been set by inflateInit2. inflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc or state being Z_NULL). */ ZEXTERN int ZEXPORT inflateReset2 OF((z_streamp strm, int windowBits)); /* This function is the same as inflateReset, but it also permits changing the wrap and window size requests. The windowBits parameter is interpreted the same as it is for inflateInit2. inflateReset2 returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc or state being Z_NULL), or if the windowBits parameter is invalid. */ ZEXTERN int ZEXPORT inflatePrime OF((z_streamp strm, int bits, int value)); /* This function inserts bits in the inflate input stream. The intent is that this function is used to start inflating at a bit position in the middle of a byte. The provided bits will be used before any bytes are used from next_in. This function should only be used with raw inflate, and should be used before the first inflate() call after inflateInit2() or inflateReset(). bits must be less than or equal to 16, and that many of the least significant bits of value will be inserted in the input. If bits is negative, then the input stream bit buffer is emptied. Then inflatePrime() can be called again to put bits in the buffer. This is used to clear out bits leftover after feeding inflate a block description prior to feeding inflate codes. inflatePrime returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent. */ ZEXTERN long ZEXPORT inflateMark OF((z_streamp strm)); /* This function returns two values, one in the lower 16 bits of the return value, and the other in the remaining upper bits, obtained by shifting the return value down 16 bits. If the upper value is -1 and the lower value is zero, then inflate() is currently decoding information outside of a block. If the upper value is -1 and the lower value is non-zero, then inflate is in the middle of a stored block, with the lower value equaling the number of bytes from the input remaining to copy. If the upper value is not -1, then it is the number of bits back from the current bit position in the input of the code (literal or length/distance pair) currently being processed. In that case the lower value is the number of bytes already emitted for that code. A code is being processed if inflate is waiting for more input to complete decoding of the code, or if it has completed decoding but is waiting for more output space to write the literal or match data. inflateMark() is used to mark locations in the input data for random access, which may be at bit positions, and to note those cases where the output of a code may span boundaries of random access blocks. The current location in the input stream can be determined from avail_in and data_type as noted in the description for the Z_BLOCK flush parameter for inflate. inflateMark returns the value noted above or -1 << 16 if the provided source stream state was inconsistent. */ ZEXTERN int ZEXPORT inflateGetHeader OF((z_streamp strm, gz_headerp head)); /* inflateGetHeader() requests that gzip header information be stored in the provided gz_header structure. inflateGetHeader() may be called after inflateInit2() or inflateReset(), and before the first call of inflate(). As inflate() processes the gzip stream, head->done is zero until the header is completed, at which time head->done is set to one. If a zlib stream is being decoded, then head->done is set to -1 to indicate that there will be no gzip header information forthcoming. Note that Z_BLOCK or Z_TREES can be used to force inflate() to return immediately after header processing is complete and before any actual data is decompressed. The text, time, xflags, and os fields are filled in with the gzip header contents. hcrc is set to true if there is a header CRC. (The header CRC was valid if done is set to one.) If extra is not Z_NULL, then extra_max contains the maximum number of bytes to write to extra. Once done is true, extra_len contains the actual extra field length, and extra contains the extra field, or that field truncated if extra_max is less than extra_len. If name is not Z_NULL, then up to name_max characters are written there, terminated with a zero unless the length is greater than name_max. If comment is not Z_NULL, then up to comm_max characters are written there, terminated with a zero unless the length is greater than comm_max. When any of extra, name, or comment are not Z_NULL and the respective field is not present in the header, then that field is set to Z_NULL to signal its absence. This allows the use of deflateSetHeader() with the returned structure to duplicate the header. However if those fields are set to allocated memory, then the application will need to save those pointers elsewhere so that they can be eventually freed. If inflateGetHeader is not used, then the header information is simply discarded. The header is always checked for validity, including the header CRC if present. inflateReset() will reset the process to discard the header information. The application would need to call inflateGetHeader() again to retrieve the header from the next gzip stream. inflateGetHeader returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent. */ /* ZEXTERN int ZEXPORT inflateBackInit OF((z_streamp strm, int windowBits, unsigned char FAR *window)); Initialize the internal stream state for decompression using inflateBack() calls. The fields zalloc, zfree and opaque in strm must be initialized before the call. If zalloc and zfree are Z_NULL, then the default library- derived memory allocation routines are used. windowBits is the base two logarithm of the window size, in the range 8..15. window is a caller supplied buffer of that size. Except for special applications where it is assured that deflate was used with small window sizes, windowBits must be 15 and a 32K byte window must be supplied to be able to decompress general deflate streams. See inflateBack() for the usage of these routines. inflateBackInit will return Z_OK on success, Z_STREAM_ERROR if any of the parameters are invalid, Z_MEM_ERROR if the internal state could not be allocated, or Z_VERSION_ERROR if the version of the library does not match the version of the header file. */ typedef unsigned (*in_func) OF((void FAR *, z_const unsigned char FAR * FAR *)); typedef int (*out_func) OF((void FAR *, unsigned char FAR *, unsigned)); ZEXTERN int ZEXPORT inflateBack OF((z_streamp strm, in_func in, void FAR *in_desc, out_func out, void FAR *out_desc)); /* inflateBack() does a raw inflate with a single call using a call-back interface for input and output. This is potentially more efficient than inflate() for file i/o applications, in that it avoids copying between the output and the sliding window by simply making the window itself the output buffer. inflate() can be faster on modern CPUs when used with large buffers. inflateBack() trusts the application to not change the output buffer passed by the output function, at least until inflateBack() returns. inflateBackInit() must be called first to allocate the internal state and to initialize the state with the user-provided window buffer. inflateBack() may then be used multiple times to inflate a complete, raw deflate stream with each call. inflateBackEnd() is then called to free the allocated state. A raw deflate stream is one with no zlib or gzip header or trailer. This routine would normally be used in a utility that reads zip or gzip files and writes out uncompressed files. The utility would decode the header and process the trailer on its own, hence this routine expects only the raw deflate stream to decompress. This is different from the normal behavior of inflate(), which expects either a zlib or gzip header and trailer around the deflate stream. inflateBack() uses two subroutines supplied by the caller that are then called by inflateBack() for input and output. inflateBack() calls those routines until it reads a complete deflate stream and writes out all of the uncompressed data, or until it encounters an error. The function's parameters and return types are defined above in the in_func and out_func typedefs. inflateBack() will call in(in_desc, &buf) which should return the number of bytes of provided input, and a pointer to that input in buf. If there is no input available, in() must return zero--buf is ignored in that case--and inflateBack() will return a buffer error. inflateBack() will call out(out_desc, buf, len) to write the uncompressed data buf[0..len-1]. out() should return zero on success, or non-zero on failure. If out() returns non-zero, inflateBack() will return with an error. Neither in() nor out() are permitted to change the contents of the window provided to inflateBackInit(), which is also the buffer that out() uses to write from. The length written by out() will be at most the window size. Any non-zero amount of input may be provided by in(). For convenience, inflateBack() can be provided input on the first call by setting strm->next_in and strm->avail_in. If that input is exhausted, then in() will be called. Therefore strm->next_in must be initialized before calling inflateBack(). If strm->next_in is Z_NULL, then in() will be called immediately for input. If strm->next_in is not Z_NULL, then strm->avail_in must also be initialized, and then if strm->avail_in is not zero, input will initially be taken from strm->next_in[0 .. strm->avail_in - 1]. The in_desc and out_desc parameters of inflateBack() is passed as the first parameter of in() and out() respectively when they are called. These descriptors can be optionally used to pass any information that the caller- supplied in() and out() functions need to do their job. On return, inflateBack() will set strm->next_in and strm->avail_in to pass back any unused input that was provided by the last in() call. The return values of inflateBack() can be Z_STREAM_END on success, Z_BUF_ERROR if in() or out() returned an error, Z_DATA_ERROR if there was a format error in the deflate stream (in which case strm->msg is set to indicate the nature of the error), or Z_STREAM_ERROR if the stream was not properly initialized. In the case of Z_BUF_ERROR, an input or output error can be distinguished using strm->next_in which will be Z_NULL only if in() returned an error. If strm->next_in is not Z_NULL, then the Z_BUF_ERROR was due to out() returning non-zero. (in() will always be called before out(), so strm->next_in is assured to be defined if out() returns non-zero.) Note that inflateBack() cannot return Z_OK. */ ZEXTERN int ZEXPORT inflateBackEnd OF((z_streamp strm)); /* All memory allocated by inflateBackInit() is freed. inflateBackEnd() returns Z_OK on success, or Z_STREAM_ERROR if the stream state was inconsistent. */ ZEXTERN uLong ZEXPORT zlibCompileFlags OF((void)); /* Return flags indicating compile-time options. Type sizes, two bits each, 00 = 16 bits, 01 = 32, 10 = 64, 11 = other: 1.0: size of uInt 3.2: size of uLong 5.4: size of voidpf (pointer) 7.6: size of z_off_t Compiler, assembler, and debug options: 8: DEBUG 9: ASMV or ASMINF -- use ASM code 10: ZLIB_WINAPI -- exported functions use the WINAPI calling convention 11: 0 (reserved) One-time table building (smaller code, but not thread-safe if true): 12: BUILDFIXED -- build static block decoding tables when needed 13: DYNAMIC_CRC_TABLE -- build CRC calculation tables when needed 14,15: 0 (reserved) Library content (indicates missing functionality): 16: NO_GZCOMPRESS -- gz* functions cannot compress (to avoid linking deflate code when not needed) 17: NO_GZIP -- deflate can't write gzip streams, and inflate can't detect and decode gzip streams (to avoid linking crc code) 18-19: 0 (reserved) Operation variations (changes in library functionality): 20: PKZIP_BUG_WORKAROUND -- slightly more permissive inflate 21: FASTEST -- deflate algorithm with only one, lowest compression level 22,23: 0 (reserved) The sprintf variant used by gzprintf (zero is best): 24: 0 = vs*, 1 = s* -- 1 means limited to 20 arguments after the format 25: 0 = *nprintf, 1 = *printf -- 1 means gzprintf() not secure! 26: 0 = returns value, 1 = void -- 1 means inferred string length returned Remainder: 27-31: 0 (reserved) */ #ifndef Z_SOLO /* utility functions */ /* The following utility functions are implemented on top of the basic stream-oriented functions. To simplify the interface, some default options are assumed (compression level and memory usage, standard memory allocation functions). The source code of these utility functions can be modified if you need special options. */ ZEXTERN int ZEXPORT compress OF((Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen)); /* Compresses the source buffer into the destination buffer. sourceLen is the byte length of the source buffer. Upon entry, destLen is the total size of the destination buffer, which must be at least the value returned by compressBound(sourceLen). Upon exit, destLen is the actual size of the compressed buffer. compress returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if there was not enough room in the output buffer. */ ZEXTERN int ZEXPORT compress2 OF((Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen, int level)); /* Compresses the source buffer into the destination buffer. The level parameter has the same meaning as in deflateInit. sourceLen is the byte length of the source buffer. Upon entry, destLen is the total size of the destination buffer, which must be at least the value returned by compressBound(sourceLen). Upon exit, destLen is the actual size of the compressed buffer. compress2 returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if there was not enough room in the output buffer, Z_STREAM_ERROR if the level parameter is invalid. */ ZEXTERN uLong ZEXPORT compressBound OF((uLong sourceLen)); /* compressBound() returns an upper bound on the compressed size after compress() or compress2() on sourceLen bytes. It would be used before a compress() or compress2() call to allocate the destination buffer. */ ZEXTERN int ZEXPORT uncompress OF((Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen)); /* Decompresses the source buffer into the destination buffer. sourceLen is the byte length of the source buffer. Upon entry, destLen is the total size of the destination buffer, which must be large enough to hold the entire uncompressed data. (The size of the uncompressed data must have been saved previously by the compressor and transmitted to the decompressor by some mechanism outside the scope of this compression library.) Upon exit, destLen is the actual size of the uncompressed buffer. uncompress returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if there was not enough room in the output buffer, or Z_DATA_ERROR if the input data was corrupted or incomplete. In the case where there is not enough room, uncompress() will fill the output buffer with the uncompressed data up to that point. */ /* gzip file access functions */ /* This library supports reading and writing files in gzip (.gz) format with an interface similar to that of stdio, using the functions that start with "gz". The gzip format is different from the zlib format. gzip is a gzip wrapper, documented in RFC 1952, wrapped around a deflate stream. */ typedef struct gzFile_s *gzFile; /* semi-opaque gzip file descriptor */ /* ZEXTERN gzFile ZEXPORT gzopen OF((const char *path, const char *mode)); Opens a gzip (.gz) file for reading or writing. The mode parameter is as in fopen ("rb" or "wb") but can also include a compression level ("wb9") or a strategy: 'f' for filtered data as in "wb6f", 'h' for Huffman-only compression as in "wb1h", 'R' for run-length encoding as in "wb1R", or 'F' for fixed code compression as in "wb9F". (See the description of deflateInit2 for more information about the strategy parameter.) 'T' will request transparent writing or appending with no compression and not using the gzip format. "a" can be used instead of "w" to request that the gzip stream that will be written be appended to the file. "+" will result in an error, since reading and writing to the same gzip file is not supported. The addition of "x" when writing will create the file exclusively, which fails if the file already exists. On systems that support it, the addition of "e" when reading or writing will set the flag to close the file on an execve() call. These functions, as well as gzip, will read and decode a sequence of gzip streams in a file. The append function of gzopen() can be used to create such a file. (Also see gzflush() for another way to do this.) When appending, gzopen does not test whether the file begins with a gzip stream, nor does it look for the end of the gzip streams to begin appending. gzopen will simply append a gzip stream to the existing file. gzopen can be used to read a file which is not in gzip format; in this case gzread will directly read from the file without decompression. When reading, this will be detected automatically by looking for the magic two- byte gzip header. gzopen returns NULL if the file could not be opened, if there was insufficient memory to allocate the gzFile state, or if an invalid mode was specified (an 'r', 'w', or 'a' was not provided, or '+' was provided). errno can be checked to determine if the reason gzopen failed was that the file could not be opened. */ ZEXTERN gzFile ZEXPORT gzdopen OF((int fd, const char *mode)); /* gzdopen associates a gzFile with the file descriptor fd. File descriptors are obtained from calls like open, dup, creat, pipe or fileno (if the file has been previously opened with fopen). The mode parameter is as in gzopen. The next call of gzclose on the returned gzFile will also close the file descriptor fd, just like fclose(fdopen(fd, mode)) closes the file descriptor fd. If you want to keep fd open, use fd = dup(fd_keep); gz = gzdopen(fd, mode);. The duplicated descriptor should be saved to avoid a leak, since gzdopen does not close fd if it fails. If you are using fileno() to get the file descriptor from a FILE *, then you will have to use dup() to avoid double-close()ing the file descriptor. Both gzclose() and fclose() will close the associated file descriptor, so they need to have different file descriptors. gzdopen returns NULL if there was insufficient memory to allocate the gzFile state, if an invalid mode was specified (an 'r', 'w', or 'a' was not provided, or '+' was provided), or if fd is -1. The file descriptor is not used until the next gz* read, write, seek, or close operation, so gzdopen will not detect if fd is invalid (unless fd is -1). */ ZEXTERN int ZEXPORT gzbuffer OF((gzFile file, unsigned size)); /* Set the internal buffer size used by this library's functions. The default buffer size is 8192 bytes. This function must be called after gzopen() or gzdopen(), and before any other calls that read or write the file. The buffer memory allocation is always deferred to the first read or write. Two buffers are allocated, either both of the specified size when writing, or one of the specified size and the other twice that size when reading. A larger buffer size of, for example, 64K or 128K bytes will noticeably increase the speed of decompression (reading). The new buffer size also affects the maximum length for gzprintf(). gzbuffer() returns 0 on success, or -1 on failure, such as being called too late. */ ZEXTERN int ZEXPORT gzsetparams OF((gzFile file, int level, int strategy)); /* Dynamically update the compression level or strategy. See the description of deflateInit2 for the meaning of these parameters. gzsetparams returns Z_OK if success, or Z_STREAM_ERROR if the file was not opened for writing. */ ZEXTERN int ZEXPORT gzread OF((gzFile file, voidp buf, unsigned len)); /* Reads the given number of uncompressed bytes from the compressed file. If the input file is not in gzip format, gzread copies the given number of bytes into the buffer directly from the file. After reaching the end of a gzip stream in the input, gzread will continue to read, looking for another gzip stream. Any number of gzip streams may be concatenated in the input file, and will all be decompressed by gzread(). If something other than a gzip stream is encountered after a gzip stream, that remaining trailing garbage is ignored (and no error is returned). gzread can be used to read a gzip file that is being concurrently written. Upon reaching the end of the input, gzread will return with the available data. If the error code returned by gzerror is Z_OK or Z_BUF_ERROR, then gzclearerr can be used to clear the end of file indicator in order to permit gzread to be tried again. Z_OK indicates that a gzip stream was completed on the last gzread. Z_BUF_ERROR indicates that the input file ended in the middle of a gzip stream. Note that gzread does not return -1 in the event of an incomplete gzip stream. This error is deferred until gzclose(), which will return Z_BUF_ERROR if the last gzread ended in the middle of a gzip stream. Alternatively, gzerror can be used before gzclose to detect this case. gzread returns the number of uncompressed bytes actually read, less than len for end of file, or -1 for error. */ ZEXTERN int ZEXPORT gzwrite OF((gzFile file, voidpc buf, unsigned len)); /* Writes the given number of uncompressed bytes into the compressed file. gzwrite returns the number of uncompressed bytes written or 0 in case of error. */ ZEXTERN int ZEXPORTVA gzprintf Z_ARG((gzFile file, const char *format, ...)); /* Converts, formats, and writes the arguments to the compressed file under control of the format string, as in fprintf. gzprintf returns the number of uncompressed bytes actually written, or 0 in case of error. The number of uncompressed bytes written is limited to 8191, or one less than the buffer size given to gzbuffer(). The caller should assure that this limit is not exceeded. If it is exceeded, then gzprintf() will return an error (0) with nothing written. In this case, there may also be a buffer overflow with unpredictable consequences, which is possible only if zlib was compiled with the insecure functions sprintf() or vsprintf() because the secure snprintf() or vsnprintf() functions were not available. This can be determined using zlibCompileFlags(). */ ZEXTERN int ZEXPORT gzputs OF((gzFile file, const char *s)); /* Writes the given null-terminated string to the compressed file, excluding the terminating null character. gzputs returns the number of characters written, or -1 in case of error. */ ZEXTERN char * ZEXPORT gzgets OF((gzFile file, char *buf, int len)); /* Reads bytes from the compressed file until len-1 characters are read, or a newline character is read and transferred to buf, or an end-of-file condition is encountered. If any characters are read or if len == 1, the string is terminated with a null character. If no characters are read due to an end-of-file or len < 1, then the buffer is left untouched. gzgets returns buf which is a null-terminated string, or it returns NULL for end-of-file or in case of error. If there was an error, the contents at buf are indeterminate. */ ZEXTERN int ZEXPORT gzputc OF((gzFile file, int c)); /* Writes c, converted to an unsigned char, into the compressed file. gzputc returns the value that was written, or -1 in case of error. */ ZEXTERN int ZEXPORT gzgetc OF((gzFile file)); /* Reads one byte from the compressed file. gzgetc returns this byte or -1 in case of end of file or error. This is implemented as a macro for speed. As such, it does not do all of the checking the other functions do. I.e. it does not check to see if file is NULL, nor whether the structure file points to has been clobbered or not. */ ZEXTERN int ZEXPORT gzungetc OF((int c, gzFile file)); /* Push one character back onto the stream to be read as the first character on the next read. At least one character of push-back is allowed. gzungetc() returns the character pushed, or -1 on failure. gzungetc() will fail if c is -1, and may fail if a character has been pushed but not read yet. If gzungetc is used immediately after gzopen or gzdopen, at least the output buffer size of pushed characters is allowed. (See gzbuffer above.) The pushed character will be discarded if the stream is repositioned with gzseek() or gzrewind(). */ ZEXTERN int ZEXPORT gzflush OF((gzFile file, int flush)); /* Flushes all pending output into the compressed file. The parameter flush is as in the deflate() function. The return value is the zlib error number (see function gzerror below). gzflush is only permitted when writing. If the flush parameter is Z_FINISH, the remaining data is written and the gzip stream is completed in the output. If gzwrite() is called again, a new gzip stream will be started in the output. gzread() is able to read such concatented gzip streams. gzflush should be called only when strictly necessary because it will degrade compression if called too often. */ /* ZEXTERN z_off_t ZEXPORT gzseek OF((gzFile file, z_off_t offset, int whence)); Sets the starting position for the next gzread or gzwrite on the given compressed file. The offset represents a number of bytes in the uncompressed data stream. The whence parameter is defined as in lseek(2); the value SEEK_END is not supported. If the file is opened for reading, this function is emulated but can be extremely slow. If the file is opened for writing, only forward seeks are supported; gzseek then compresses a sequence of zeroes up to the new starting position. gzseek returns the resulting offset location as measured in bytes from the beginning of the uncompressed stream, or -1 in case of error, in particular if the file is opened for writing and the new starting position would be before the current position. */ ZEXTERN int ZEXPORT gzrewind OF((gzFile file)); /* Rewinds the given file. This function is supported only for reading. gzrewind(file) is equivalent to (int)gzseek(file, 0L, SEEK_SET) */ /* ZEXTERN z_off_t ZEXPORT gztell OF((gzFile file)); Returns the starting position for the next gzread or gzwrite on the given compressed file. This position represents a number of bytes in the uncompressed data stream, and is zero when starting, even if appending or reading a gzip stream from the middle of a file using gzdopen(). gztell(file) is equivalent to gzseek(file, 0L, SEEK_CUR) */ /* ZEXTERN z_off_t ZEXPORT gzoffset OF((gzFile file)); Returns the current offset in the file being read or written. This offset includes the count of bytes that precede the gzip stream, for example when appending or when using gzdopen() for reading. When reading, the offset does not include as yet unused buffered input. This information can be used for a progress indicator. On error, gzoffset() returns -1. */ ZEXTERN int ZEXPORT gzeof OF((gzFile file)); /* Returns true (1) if the end-of-file indicator has been set while reading, false (0) otherwise. Note that the end-of-file indicator is set only if the read tried to go past the end of the input, but came up short. Therefore, just like feof(), gzeof() may return false even if there is no more data to read, in the event that the last read request was for the exact number of bytes remaining in the input file. This will happen if the input file size is an exact multiple of the buffer size. If gzeof() returns true, then the read functions will return no more data, unless the end-of-file indicator is reset by gzclearerr() and the input file has grown since the previous end of file was detected. */ ZEXTERN int ZEXPORT gzdirect OF((gzFile file)); /* Returns true (1) if file is being copied directly while reading, or false (0) if file is a gzip stream being decompressed. If the input file is empty, gzdirect() will return true, since the input does not contain a gzip stream. If gzdirect() is used immediately after gzopen() or gzdopen() it will cause buffers to be allocated to allow reading the file to determine if it is a gzip file. Therefore if gzbuffer() is used, it should be called before gzdirect(). When writing, gzdirect() returns true (1) if transparent writing was requested ("wT" for the gzopen() mode), or false (0) otherwise. (Note: gzdirect() is not needed when writing. Transparent writing must be explicitly requested, so the application already knows the answer. When linking statically, using gzdirect() will include all of the zlib code for gzip file reading and decompression, which may not be desired.) */ ZEXTERN int ZEXPORT gzclose OF((gzFile file)); /* Flushes all pending output if necessary, closes the compressed file and deallocates the (de)compression state. Note that once file is closed, you cannot call gzerror with file, since its structures have been deallocated. gzclose must not be called more than once on the same file, just as free must not be called more than once on the same allocation. gzclose will return Z_STREAM_ERROR if file is not valid, Z_ERRNO on a file operation error, Z_MEM_ERROR if out of memory, Z_BUF_ERROR if the last read ended in the middle of a gzip stream, or Z_OK on success. */ ZEXTERN int ZEXPORT gzclose_r OF((gzFile file)); ZEXTERN int ZEXPORT gzclose_w OF((gzFile file)); /* Same as gzclose(), but gzclose_r() is only for use when reading, and gzclose_w() is only for use when writing or appending. The advantage to using these instead of gzclose() is that they avoid linking in zlib compression or decompression code that is not used when only reading or only writing respectively. If gzclose() is used, then both compression and decompression code will be included the application when linking to a static zlib library. */ ZEXTERN const char * ZEXPORT gzerror OF((gzFile file, int *errnum)); /* Returns the error message for the last error which occurred on the given compressed file. errnum is set to zlib error number. If an error occurred in the file system and not in the compression library, errnum is set to Z_ERRNO and the application may consult errno to get the exact error code. The application must not modify the returned string. Future calls to this function may invalidate the previously returned string. If file is closed, then the string previously returned by gzerror will no longer be available. gzerror() should be used to distinguish errors from end-of-file for those functions above that do not distinguish those cases in their return values. */ ZEXTERN void ZEXPORT gzclearerr OF((gzFile file)); /* Clears the error and end-of-file flags for file. This is analogous to the clearerr() function in stdio. This is useful for continuing to read a gzip file that is being written concurrently. */ #endif /* !Z_SOLO */ /* checksum functions */ /* These functions are not related to compression but are exported anyway because they might be useful in applications using the compression library. */ ZEXTERN uLong ZEXPORT adler32 OF((uLong adler, const Bytef *buf, uInt len)); /* Update a running Adler-32 checksum with the bytes buf[0..len-1] and return the updated checksum. If buf is Z_NULL, this function returns the required initial value for the checksum. An Adler-32 checksum is almost as reliable as a CRC32 but can be computed much faster. Usage example: uLong adler = adler32(0L, Z_NULL, 0); while (read_buffer(buffer, length) != EOF) { adler = adler32(adler, buffer, length); } if (adler != original_adler) error(); */ /* ZEXTERN uLong ZEXPORT adler32_combine OF((uLong adler1, uLong adler2, z_off_t len2)); Combine two Adler-32 checksums into one. For two sequences of bytes, seq1 and seq2 with lengths len1 and len2, Adler-32 checksums were calculated for each, adler1 and adler2. adler32_combine() returns the Adler-32 checksum of seq1 and seq2 concatenated, requiring only adler1, adler2, and len2. Note that the z_off_t type (like off_t) is a signed integer. If len2 is negative, the result has no meaning or utility. */ ZEXTERN uLong ZEXPORT crc32 OF((uLong crc, const Bytef *buf, uInt len)); /* Update a running CRC-32 with the bytes buf[0..len-1] and return the updated CRC-32. If buf is Z_NULL, this function returns the required initial value for the crc. Pre- and post-conditioning (one's complement) is performed within this function so it shouldn't be done by the application. Usage example: uLong crc = crc32(0L, Z_NULL, 0); while (read_buffer(buffer, length) != EOF) { crc = crc32(crc, buffer, length); } if (crc != original_crc) error(); */ /* ZEXTERN uLong ZEXPORT crc32_combine OF((uLong crc1, uLong crc2, z_off_t len2)); Combine two CRC-32 check values into one. For two sequences of bytes, seq1 and seq2 with lengths len1 and len2, CRC-32 check values were calculated for each, crc1 and crc2. crc32_combine() returns the CRC-32 check value of seq1 and seq2 concatenated, requiring only crc1, crc2, and len2. */ /* various hacks, don't look :) */ /* deflateInit and inflateInit are macros to allow checking the zlib version * and the compiler's view of z_stream: */ ZEXTERN int ZEXPORT deflateInit_ OF((z_streamp strm, int level, const char *version, int stream_size)); ZEXTERN int ZEXPORT inflateInit_ OF((z_streamp strm, const char *version, int stream_size)); ZEXTERN int ZEXPORT deflateInit2_ OF((z_streamp strm, int level, int method, int windowBits, int memLevel, int strategy, const char *version, int stream_size)); ZEXTERN int ZEXPORT inflateInit2_ OF((z_streamp strm, int windowBits, const char *version, int stream_size)); ZEXTERN int ZEXPORT inflateBackInit_ OF((z_streamp strm, int windowBits, unsigned char FAR *window, const char *version, int stream_size)); #define deflateInit(strm, level) \ deflateInit_((strm), (level), ZLIB_VERSION, (int)sizeof(z_stream)) #define inflateInit(strm) \ inflateInit_((strm), ZLIB_VERSION, (int)sizeof(z_stream)) #define deflateInit2(strm, level, method, windowBits, memLevel, strategy) \ deflateInit2_((strm),(level),(method),(windowBits),(memLevel),\ (strategy), ZLIB_VERSION, (int)sizeof(z_stream)) #define inflateInit2(strm, windowBits) \ inflateInit2_((strm), (windowBits), ZLIB_VERSION, \ (int)sizeof(z_stream)) #define inflateBackInit(strm, windowBits, window) \ inflateBackInit_((strm), (windowBits), (window), \ ZLIB_VERSION, (int)sizeof(z_stream)) #ifndef Z_SOLO /* gzgetc() macro and its supporting function and exposed data structure. Note * that the real internal state is much larger than the exposed structure. * This abbreviated structure exposes just enough for the gzgetc() macro. The * user should not mess with these exposed elements, since their names or * behavior could change in the future, perhaps even capriciously. They can * only be used by the gzgetc() macro. You have been warned. */ struct gzFile_s { unsigned have; unsigned char *next; z_off64_t pos; }; ZEXTERN int ZEXPORT gzgetc_ OF((gzFile file)); /* backward compatibility */ #ifdef Z_PREFIX_SET # undef z_gzgetc # define z_gzgetc(g) \ ((g)->have ? ((g)->have--, (g)->pos++, *((g)->next)++) : gzgetc(g)) #else # define gzgetc(g) \ ((g)->have ? ((g)->have--, (g)->pos++, *((g)->next)++) : gzgetc(g)) #endif /* provide 64-bit offset functions if _LARGEFILE64_SOURCE defined, and/or * change the regular functions to 64 bits if _FILE_OFFSET_BITS is 64 (if * both are true, the application gets the *64 functions, and the regular * functions are changed to 64 bits) -- in case these are set on systems * without large file support, _LFS64_LARGEFILE must also be true */ #ifdef Z_LARGE64 ZEXTERN gzFile ZEXPORT gzopen64 OF((const char *, const char *)); ZEXTERN z_off64_t ZEXPORT gzseek64 OF((gzFile, z_off64_t, int)); ZEXTERN z_off64_t ZEXPORT gztell64 OF((gzFile)); ZEXTERN z_off64_t ZEXPORT gzoffset64 OF((gzFile)); ZEXTERN uLong ZEXPORT adler32_combine64 OF((uLong, uLong, z_off64_t)); ZEXTERN uLong ZEXPORT crc32_combine64 OF((uLong, uLong, z_off64_t)); #endif #if !defined(ZLIB_INTERNAL) && defined(Z_WANT64) # ifdef Z_PREFIX_SET # define minizlib_gzopen minizlib_gzopen64 # define minizlib_gzseek minizlib_gzseek64 # define minizlib_gztell minizlib_gztell64 # define minizlib_gzoffset minizlib_gzoffset64 # define minizlib_adler32_combine minizlib_adler32_combine64 # define minizlib_crc32_combine minizlib_crc32_combine64 # else # define gzopen gzopen64 # define gzseek gzseek64 # define gztell gztell64 # define gzoffset gzoffset64 # define adler32_combine adler32_combine64 # define crc32_combine crc32_combine64 # endif # ifndef Z_LARGE64 ZEXTERN gzFile ZEXPORT gzopen64 OF((const char *, const char *)); ZEXTERN z_off_t ZEXPORT gzseek64 OF((gzFile, z_off_t, int)); ZEXTERN z_off_t ZEXPORT gztell64 OF((gzFile)); ZEXTERN z_off_t ZEXPORT gzoffset64 OF((gzFile)); ZEXTERN uLong ZEXPORT adler32_combine64 OF((uLong, uLong, z_off_t)); ZEXTERN uLong ZEXPORT crc32_combine64 OF((uLong, uLong, z_off_t)); # endif #else ZEXTERN gzFile ZEXPORT gzopen OF((const char *, const char *)); ZEXTERN z_off_t ZEXPORT gzseek OF((gzFile, z_off_t, int)); ZEXTERN z_off_t ZEXPORT gztell OF((gzFile)); ZEXTERN z_off_t ZEXPORT gzoffset OF((gzFile)); ZEXTERN uLong ZEXPORT adler32_combine OF((uLong, uLong, z_off_t)); ZEXTERN uLong ZEXPORT crc32_combine OF((uLong, uLong, z_off_t)); #endif #else /* Z_SOLO */ ZEXTERN uLong ZEXPORT adler32_combine OF((uLong, uLong, z_off_t)); ZEXTERN uLong ZEXPORT crc32_combine OF((uLong, uLong, z_off_t)); #endif /* !Z_SOLO */ /* hack for buggy compilers */ #if !defined(ZUTIL_H) && !defined(NO_DUMMY_DECL) struct internal_state {int dummy;}; #endif /* undocumented functions */ ZEXTERN const char * ZEXPORT zError OF((int)); ZEXTERN int ZEXPORT inflateSyncPoint OF((z_streamp)); ZEXTERN const z_crc_t FAR * ZEXPORT get_crc_table OF((void)); ZEXTERN int ZEXPORT inflateUndermine OF((z_streamp, int)); ZEXTERN int ZEXPORT inflateResetKeep OF((z_streamp)); ZEXTERN int ZEXPORT deflateResetKeep OF((z_streamp)); #if defined(_WIN32) && !defined(Z_SOLO) ZEXTERN gzFile ZEXPORT gzopen_w OF((const wchar_t *path, const char *mode)); #endif #if defined(STDC) || defined(Z_HAVE_STDARG_H) # ifndef Z_SOLO ZEXTERN int ZEXPORTVA gzvprintf Z_ARG((gzFile file, const char *format, va_list va)); # endif #endif #ifdef __cplusplus } #endif #endif /* ZLIB_H */ # endif #endif #include #include #include #include #include #include #ifdef MCPL_THIS_IS_MS # include # include #endif #define MCPLIMP_NPARTICLES_POS 8 #define MCPLIMP_MAX_PARTICLE_SIZE 96 int mcpl_platform_is_little_endian() { //Return 0 for big endian, 1 for little endian. volatile uint32_t i=0x01234567; return (*((uint8_t*)(&i))) == 0x67; } void mcpl_default_error_handler(const char * msg) { printf("MCPL ERROR: %s\n",msg); exit(1); } static void (*mcpl_error_handler)(const char *) = &mcpl_default_error_handler; void mcpl_error(const char * msg) { mcpl_error_handler(msg); //Error handler should not return, but in case it does anyway, we at least //ensure a hard exit! mcpl_default_error_handler("Handler given to mcpl_set_error_handler returns" " to calling code which is not allowed!"); } void mcpl_set_error_handler(void (*handler)(const char *)) { mcpl_error_handler = handler; } void mcpl_store_string(char** dest, const char * src) { size_t n = strlen(src); if (n>65535) n = 65535; if (*dest) free(*dest); *dest = (char*)calloc(n+1,1); assert(*dest); strncpy( *dest,src,n ); (*dest)[n] = '\0'; return; } void mcpl_write_buffer(FILE* f, uint32_t n, const char * data, const char * errmsg) { size_t nb = fwrite(&n, 1, sizeof(n), f); if (nb!=sizeof(n)) mcpl_error(errmsg); nb = fwrite(data, 1, n, f); if (nb!=n) mcpl_error(errmsg); } void mcpl_write_string(FILE* f, const char * str, const char * errmsg) { size_t n = strlen(str); mcpl_write_buffer(f,n,str,errmsg);//nb: we don't write the terminating null-char } typedef struct { char * filename; FILE * file; char * hdr_srcprogname; uint32_t ncomments; char ** comments; uint32_t nblobs; char ** blobkeys; uint32_t * bloblengths; char ** blobs; int opt_userflags; int opt_polarisation; int opt_singleprec; int32_t opt_universalpdgcode; double opt_universalweight; int header_notwritten; uint64_t nparticles; unsigned particle_size; mcpl_particle_t* puser; unsigned opt_signature; char particle_buffer[MCPLIMP_MAX_PARTICLE_SIZE]; } mcpl_outfileinternal_t; #define MCPLIMP_OUTFILEDECODE mcpl_outfileinternal_t * f = (mcpl_outfileinternal_t *)of.internal; assert(f) void mcpl_recalc_psize(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; unsigned fp = f->opt_singleprec ? sizeof(float) : sizeof(double); f->particle_size = 7*fp; if (f->opt_polarisation) f->particle_size += 3*fp; if (!f->opt_universalpdgcode) f->particle_size += sizeof(int32_t); if (!f->opt_universalweight) f->particle_size += fp; if (f->opt_userflags) f->particle_size += sizeof(uint32_t); assert(f->particle_size<=MCPLIMP_MAX_PARTICLE_SIZE); f->opt_signature = 0 + 1 * f->opt_singleprec + 2 * f->opt_polarisation + 4 * f->opt_universalpdgcode + 8 * (f->opt_universalweight?1:0) + 16 * f->opt_userflags; } void mcpl_platform_compatibility_check() { static int first = 1; if (!first) return; first = 0; if (CHAR_BIT!=8) mcpl_error("Platform compatibility check failed (bytes are not 8 bit)"); if (sizeof(float)!=4) mcpl_error("Platform compatibility check failed (float is not 4 bytes)"); if (sizeof(double)!=8) mcpl_error("Platform compatibility check failed (double is not 8 bytes)"); int32_t m1_32 = -1; int32_t not0_32 = ~0; int64_t m1_64 = -1; int64_t not0_64 = ~0; if ( m1_32 != not0_32 || m1_64 != not0_64 ) mcpl_error("Platform compatibility check failed (integers are not two's complement)"); if (copysign(1.0, -0.0) != -1.0) mcpl_error("Platform compatibility check failed (floating point numbers do not have signed zero)"); mcpl_particle_t pd; if ( (char*)&(pd.userflags)-(char*)&(pd) != 12*sizeof(double)+sizeof(uint32_t) ) mcpl_error("Platform compatibility check failed (unexpected padding in mcpl_particle_t)"); } mcpl_outfile_t mcpl_create_outfile(const char * filename) { //Sanity check chosen filename and append ".mcpl" if missing to help people //who forgot to add the extension (in the hope of higher consistency). if (!filename) mcpl_error("mcpl_create_outfile called with null string."); size_t n = strlen(filename); if (!n) mcpl_error("mcpl_create_outfile called with empty string."); if (n>4096) mcpl_error("mcpl_create_outfile called with too long string."); const char * lastdot = strrchr(filename, '.'); if (lastdot==filename && n==5) mcpl_error("mcpl_create_outfile called with string with no basename part (\".mcpl\")."); //Initialise data structures and open file: mcpl_platform_compatibility_check(); mcpl_outfile_t out; out.internal = 0; mcpl_outfileinternal_t * f = (mcpl_outfileinternal_t*)calloc(sizeof(mcpl_outfileinternal_t),1); assert(f); if (!lastdot || strcmp(lastdot, ".mcpl") != 0) { f->filename = (char*)malloc(n+6); f->filename[0] = '\0'; strcat(f->filename,filename); strcat(f->filename,".mcpl"); } else { f->filename = (char*)malloc(n+1); f->filename[0] = '\0'; strcat(f->filename,filename); } f->hdr_srcprogname = 0; f->ncomments = 0; f->comments = 0; f->nblobs = 0; f->blobkeys = 0; f->bloblengths = 0; f->blobs = 0; f->opt_userflags = 0; f->opt_polarisation = 0; f->opt_singleprec = 1; f->opt_universalpdgcode = 0; f->opt_universalweight = 0.0; f->header_notwritten = 1; f->nparticles = 0; f->file = fopen(f->filename,"wb"); if (!f->file) mcpl_error("Unable to open output file!"); out.internal = f; mcpl_recalc_psize(out); return out; } const char * mcpl_outfile_filename(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; return f->filename; } void mcpl_hdr_set_srcname(mcpl_outfile_t of,const char * spn) { MCPLIMP_OUTFILEDECODE; if (!f->header_notwritten) mcpl_error("mcpl_hdr_set_srcname called too late."); mcpl_store_string(&(f->hdr_srcprogname),spn); } void mcpl_hdr_add_comment(mcpl_outfile_t of,const char *comment) { MCPLIMP_OUTFILEDECODE; if (!f->header_notwritten) mcpl_error("mcpl_hdr_add_comment called too late."); size_t oldn = f->ncomments; f->ncomments += 1; if (oldn) f->comments = (char **)realloc(f->comments,f->ncomments * sizeof(char*) ); else f->comments = (char **)calloc(f->ncomments,sizeof(char*)); f->comments[oldn] = 0; mcpl_store_string(&(f->comments[oldn]),comment); } void mcpl_hdr_add_data(mcpl_outfile_t of, const char * key, uint32_t ldata, const char * data) { MCPLIMP_OUTFILEDECODE; if (!f->header_notwritten) mcpl_error("mcpl_hdr_add_data called too late."); size_t oldn = f->nblobs; f->nblobs += 1; //Check that key is unique unsigned i; for (i =0; iblobkeys[i],key)==0) mcpl_error("mcpl_hdr_add_data got duplicate key"); } //store key: if (oldn) f->blobkeys = (char **)realloc(f->blobkeys,f->nblobs * sizeof(char*) ); else f->blobkeys = (char **)calloc(f->nblobs,sizeof(char*)); f->blobkeys[oldn] = 0; mcpl_store_string(&(f->blobkeys[oldn]),key); //store blob-lengths: if (oldn) f->bloblengths = (uint32_t*)realloc(f->bloblengths,f->nblobs * sizeof(uint32_t) ); else f->bloblengths = (uint32_t *)calloc(f->nblobs,sizeof(uint32_t)); f->bloblengths[oldn] = ldata; //store data: if (oldn) f->blobs = (char **)realloc(f->blobs,f->nblobs * sizeof(char*) ); else f->blobs = (char **)calloc(f->nblobs,sizeof(char*)); f->blobs[oldn] = (char *)malloc(ldata); memcpy(f->blobs[oldn],data,ldata); } void mcpl_enable_userflags(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; if (f->opt_userflags) return; if (!f->header_notwritten) mcpl_error("mcpl_enable_userflags called too late."); f->opt_userflags = 1; mcpl_recalc_psize(of); } void mcpl_enable_polarisation(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; if (f->opt_polarisation) return; if (!f->header_notwritten) mcpl_error("mcpl_enable_polarisation called too late."); f->opt_polarisation = 1; mcpl_recalc_psize(of); } void mcpl_enable_doubleprec(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; if (!f->opt_singleprec) return; if (!f->header_notwritten) mcpl_error("mcpl_enable_doubleprec called too late."); f->opt_singleprec = 0; mcpl_recalc_psize(of); } void mcpl_enable_universal_pdgcode(mcpl_outfile_t of, int32_t pdgcode) { MCPLIMP_OUTFILEDECODE; if (pdgcode==0) mcpl_error("mcpl_enable_universal_pdgcode must be called with non-zero pdgcode."); if (f->opt_universalpdgcode) { if (f->opt_universalpdgcode!=pdgcode) mcpl_error("mcpl_enable_universal_pdgcode called multiple times"); return; } if (!f->header_notwritten) mcpl_error("mcpl_enable_universal_pdgcode called too late."); f->opt_universalpdgcode = pdgcode; mcpl_recalc_psize(of); } void mcpl_enable_universal_weight(mcpl_outfile_t of, double w) { MCPLIMP_OUTFILEDECODE; if (w<=0.0||isinf(w)||isnan(w)) mcpl_error("mcpl_enable_universal_weight must be called with positive but finite weight."); if (f->opt_universalweight) { if (f->opt_universalweight!=w) mcpl_error("mcpl_enable_universal_weight called multiple times"); return; } if (!f->header_notwritten) mcpl_error("mcpl_enable_universal_weight called too late."); f->opt_universalweight = w; mcpl_recalc_psize(of); } void mcpl_write_header(mcpl_outfileinternal_t * f) { if (!f->header_notwritten) mcpl_error("Logical error!"); const char * errmsg="Errors encountered while attempting to write file header."; //Always start the file with an unsigned char-array (for endian agnosticity) //containing magic word (MCPL), file format version ('001'-'999') and //endianness used in the file ('L' or 'B'): unsigned char start[8] = {'M','C','P','L','0','0','0','L'}; start[4] = (MCPL_FORMATVERSION/100)%10 + '0'; start[5] = (MCPL_FORMATVERSION/10)%10 + '0'; start[6] = MCPL_FORMATVERSION%10 + '0'; if (!mcpl_platform_is_little_endian()) start[7] = 'B'; size_t nb = fwrite(start, 1, sizeof(start), f->file); if (nb!=sizeof(start)) mcpl_error(errmsg); //Right after the initial 8 bytes, we put the number of particles (0 for now, //but important that position is fixed so we can seek and update it later).: long int nparticles_pos = ftell(f->file); if (nparticles_pos!=MCPLIMP_NPARTICLES_POS) mcpl_error(errmsg); nb = fwrite(&f->nparticles, 1, sizeof(f->nparticles), f->file); if (nb!=sizeof(f->nparticles)) mcpl_error(errmsg); //Then a bunch of numbers: uint32_t arr[8]; arr[0] = f->ncomments; arr[1] = f->nblobs; arr[2] = f->opt_userflags; arr[3] = f->opt_polarisation; arr[4] = f->opt_singleprec; arr[5] = f->opt_universalpdgcode; arr[6] = f->particle_size; arr[7] = (f->opt_universalweight?1:0); assert(sizeof(arr)==32); nb = fwrite(arr, 1, sizeof(arr), f->file); if (nb!=sizeof(arr)) mcpl_error(errmsg); if (f->opt_universalweight) { assert(sizeof(f->opt_universalweight)==8); nb = fwrite((void*)(&(f->opt_universalweight)), 1, sizeof(f->opt_universalweight), f->file); if (nb!=sizeof(f->opt_universalweight)) mcpl_error(errmsg); } //strings: mcpl_write_string(f->file,f->hdr_srcprogname?f->hdr_srcprogname:"unknown",errmsg); uint32_t i; for (i = 0; i < f->ncomments; ++i) mcpl_write_string(f->file,f->comments[i],errmsg); //blob keys: for (i = 0; i < f->nblobs; ++i) mcpl_write_string(f->file,f->blobkeys[i],errmsg); //blobs: for (i = 0; i < f->nblobs; ++i) mcpl_write_buffer(f->file, f->bloblengths[i], f->blobs[i],errmsg); //Free up acquired memory only needed for header writing: free(f->hdr_srcprogname); f->hdr_srcprogname = 0; if (f->ncomments) { for (i = 0; i < f->ncomments; ++i) free(f->comments[i]); free(f->comments); f->comments=0; f->ncomments=0; } if (f->nblobs) { for (i = 0; i < f->nblobs; ++i) free(f->blobkeys[i]); free(f->blobkeys); f->blobkeys = 0; for (i = 0; i < f->nblobs; ++i) free(f->blobs[i]); free(f->blobs); f->blobs = 0; free(f->bloblengths); f->bloblengths = 0; f->nblobs = 0; } f->header_notwritten = 0; } #ifndef INFINITY //Missing in ICC 12 C99 compilation: # define INFINITY (__builtin_inf()) #endif void mcpl_unitvect_pack_adaptproj(const double* in, double* out) { //Precise packing of unit vector into 2 floats + 1 bit using the "Adaptive //Projection Packing" method (T. Kittelmann, 2017). // //The Adaptive Projection Packing method is a variant on the traditional projection //method where one would store (x,y,sign(z)) and upon unpacking recover the //magnitude of z with |z|=sqrt(1-x^2-y^2), a formula which suffers from //numerical precision issues when |z| is small. In this improved version, one //gets rid of the precision issues by always storing the components that are //smallest in magnitude (the last one must then have a magnitude in the //interval [1/sqrt(3),1] = [0.577,1.0] which is never small). This just leaves //the issue of being able to recognise the coordinate choices again upon //unpacking. Since all components are at most of unit magnitude, this is //achieved by storing 1/z rather than z and replacing either x or y as //needed (infinity when z=0). Thus, the packed data will contain: // // ( 1/z, y, sign(x) ) when |x|>|y|,|z| // ( x, 1/z, sign(y) ) when |y|>|x|,|z| // ( x, y, sign(z) ) when |z|>|x|,|y| // //The unpacking code can determine which of the three scenarios is used to //encode a given piece of data by checking if the first or second field is //greater than unity. // //Note that the arrays "in" and "out" are both of dimension 3, however out[2] //will contain only binary information, in the form of the sign of the //component which was projected away (-1.0 or 1.0). const double absx = fabs(in[0]); const double absy = fabs(in[1]); if ( fabs(in[2]) < fmax(absx,absy) ) { const double invz = ( in[2] ? (1.0/in[2]) : INFINITY ); if (absx>=absy) { //output (1/z,y,sign(x)) out[0] = invz; out[1] = in[1]; out[2] = in[0]; } else { //output (x,1/z,sign(y)) out[0] = in[0]; out[1] = invz; out[2] = in[1]; } } else { //output (x,y,sign(z)) out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; } out[2] = copysign(1.0,out[2]); } void mcpl_unitvect_unpack_adaptproj( const double* in, double* out ) { //Unpacking for the "Adaptive Projection Packing" method (T. Kittelmann, 2017). //See mcpl_unitvect_pack_adaptproj for more information. // //Note that the arrays "in" and "out" are both of dimension 3, however in[2] //will contain only binary information, in the form of the sign of the //component which was projected away. assert(in[2]==1.0||in[2]==-1.0); if (fabs(in[0]) > 1.0) { //input is (1/z,y,sign(x)) out[1] = in[1]; out[2] = 1.0 / in[0]; out[0] = in[2] * sqrt( fmax( 0.0, 1.0 - ( in[1]*in[1] + out[2]*out[2] ) ) ); } else if (fabs(in[1])>1.0) { //input is (x,1/z,sign(y)) out[0] = in[0]; out[2] = 1.0 / in[1]; out[1] = in[2] * sqrt( fmax ( 0.0, 1.0 - ( in[0]*in[0] + out[2]*out[2] ) ) ); } else { //input is (x,y,sign(z)) out[0] = in[0]; out[1] = in[1]; out[2] = in[2] * sqrt( fmax( 0.0, 1.0 - ( in[0]*in[0] + in[1]*in[1] ) ) ); } } void mcpl_unitvect_unpack_oct(const double* in, double* out) { //Octahedral packing inspired by http://jcgt.org/published/0003/02/01/ // //and: // //Octahedron Environment Maps, T. Engelhardt & C. Dachsbacher, Conference: //Proceedings of the Vision, Modeling, and Visualization Conference 2008, VMV //2008, Konstanz, Germany, October 8-10, 2008 // //Note: Octahedral packing was used for the MCPL-2 format, which we are no //longer writing, only reading. Thus, we only keep the unpacking function in //the code. //restore z-coord of octahedron: out[2] = 1.0 - fabs(in[0]) - fabs(in[1]); if (out[2]<0) { //lower hemisphere out[0] = ( 1.0 - fabs( in[1] ) ) * ( in[0] >= 0.0 ? 1.0 : -1.0 ); out[1] = ( 1.0 - fabs( in[0] ) ) * ( in[1] >= 0.0 ? 1.0 : -1.0 ); } else { //upper hemisphere out[0] = in[0]; out[1] = in[1]; } //project from octahedron to unit sphere: double n = 1.0 / sqrt(out[0]*out[0]+out[1]*out[1]+out[2]*out[2]); out[0] *= n; out[1] *= n; out[2] *= n; } void mcpl_internal_serialise_particle_to_buffer( const mcpl_particle_t* particle, mcpl_outfileinternal_t * f ) { //Serialise the provided particle into the particle_buffer of the output file //(according to the settings of the output file). double pack_ekindir[3]; //Sanity check (add more??): double dirsq = particle->direction[0] * particle->direction[0] + particle->direction[1] * particle->direction[1] + particle->direction[2] * particle->direction[2]; if (fabs(dirsq-1.0)>1.0e-5) mcpl_error("attempting to add particle with non-unit direction vector"); if (particle->ekin<0.0) mcpl_error("attempting to add particle with negative kinetic energy"); //direction and ekin are packed into 3 doubles: mcpl_unitvect_pack_adaptproj(particle->direction,pack_ekindir); //pack_ekindir[2] is now just a sign(1.0 or -1.0), so we can store the //ekin in that field as well (since it must be non-negative). We use copysign //to be sure the signbit is set also if ekin=0: pack_ekindir[2] = copysign(particle->ekin,pack_ekindir[2]); //serialise particle object to buffer: unsigned ibuf = 0; char * pbuf = &(f->particle_buffer[0]); int i; if (f->opt_singleprec) { if (f->opt_polarisation) { for (i=0;i<3;++i) { *(float*)&pbuf[ibuf] = (float)particle->polarisation[i]; ibuf += sizeof(float); } } for (i=0;i<3;++i) { *(float*)&pbuf[ibuf] = (float)particle->position[i]; ibuf += sizeof(float); } for (i=0;i<3;++i) { *(float*)&pbuf[ibuf] = (float)pack_ekindir[i]; ibuf += sizeof(float); } *(float*)&pbuf[ibuf] = (float)particle->time; ibuf += sizeof(float); if (!f->opt_universalweight) { *(float*)&pbuf[ibuf] = (float)particle->weight; ibuf += sizeof(float); } } else { if (f->opt_polarisation) { for (i=0;i<3;++i) { *(double*)&pbuf[ibuf] = particle->polarisation[i]; ibuf += sizeof(double); } } for (i=0;i<3;++i) { *(double*)&pbuf[ibuf] = particle->position[i]; ibuf += sizeof(double); } for (i=0;i<3;++i) { *(double*)&pbuf[ibuf] = pack_ekindir[i]; ibuf += sizeof(double); } *(double*)&pbuf[ibuf] = particle->time; ibuf += sizeof(double); if (!f->opt_universalweight) { *(double*)&pbuf[ibuf] = particle->weight; ibuf += sizeof(double); } } if (!f->opt_universalpdgcode) { *(int32_t*)&pbuf[ibuf] = particle->pdgcode; ibuf += sizeof(int32_t); } if (f->opt_userflags) { *(uint32_t*)&pbuf[ibuf] = particle->userflags; #ifndef NDEBUG ibuf += sizeof(uint32_t); #endif } assert(ibuf==f->particle_size); } void mcpl_internal_write_particle_buffer_to_file(mcpl_outfileinternal_t * f ) { //Ensure header is written: if (f->header_notwritten) mcpl_write_header(f); //Increment nparticles and write buffer to file: f->nparticles += 1; size_t nb; nb = fwrite(&(f->particle_buffer[0]), 1, f->particle_size, f->file); if (nb!=f->particle_size) mcpl_error("Errors encountered while attempting to write particle data."); } void mcpl_add_particle(mcpl_outfile_t of,const mcpl_particle_t* particle) { MCPLIMP_OUTFILEDECODE; mcpl_internal_serialise_particle_to_buffer(particle,f); mcpl_internal_write_particle_buffer_to_file(f); } void mcpl_update_nparticles(FILE* f, uint64_t n) { //Seek and update nparticles at correct location in header: const char * errmsg = "Errors encountered while attempting to update number of particles in file."; int64_t savedpos = ftell(f); if (savedpos<0) mcpl_error(errmsg); if (fseek( f, MCPLIMP_NPARTICLES_POS, SEEK_SET )) mcpl_error(errmsg); size_t nb = fwrite(&n, 1, sizeof(n), f); if (nb != sizeof(n)) mcpl_error(errmsg); if (fseek( f, savedpos, SEEK_SET )) mcpl_error(errmsg); } mcpl_particle_t* mcpl_get_empty_particle(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; if (f->puser) { //Calling more than once. This could be innocent, or it could indicate //problems in multi-threaded user-code. Better disallow and give an error: mcpl_error("mcpl_get_empty_particle must not be called more than once per output file"); } else { f->puser = (mcpl_particle_t*)calloc(sizeof(mcpl_particle_t),1); } return f->puser; } void mcpl_close_outfile(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; if (f->header_notwritten) mcpl_write_header(f); if (f->nparticles) mcpl_update_nparticles(f->file,f->nparticles); fclose(f->file); free(f->filename); free(f->puser); free(f); } void mcpl_transfer_metadata(mcpl_file_t source, mcpl_outfile_t target) { //Note that MCPL format version 2 and 3 have the same meta-data in the header, //except of course the version number itself. if (mcpl_hdr_little_endian(source) != mcpl_platform_is_little_endian()) mcpl_error("mcpl_transfer_metadata can only work on files with same endianness as current platform."); mcpl_hdr_set_srcname(target,mcpl_hdr_srcname(source)); unsigned i; for (i = 0; i < mcpl_hdr_ncomments(source); ++i) mcpl_hdr_add_comment(target,mcpl_hdr_comment(source,i)); const char** blobkeys = mcpl_hdr_blobkeys(source); if (blobkeys) { int nblobs = mcpl_hdr_nblobs(source); uint32_t ldata; const char * data; int ii; for (ii = 0; ii < nblobs; ++ii) { int res = mcpl_hdr_blob(source,blobkeys[ii],&ldata,&data); assert(res);//key must exist (void)res; mcpl_hdr_add_data(target, blobkeys[ii], ldata, data); } } if (mcpl_hdr_has_userflags(source)) mcpl_enable_userflags(target); if (mcpl_hdr_has_polarisation(source)) mcpl_enable_polarisation(target); if (mcpl_hdr_has_doubleprec(source)) mcpl_enable_doubleprec(target); int32_t updg = mcpl_hdr_universal_pdgcode(source); if (updg) mcpl_enable_universal_pdgcode(target,updg); double uw = mcpl_hdr_universal_weight(source); if (uw) mcpl_enable_universal_weight(target,uw); } int mcpl_closeandgzip_outfile_rc(mcpl_outfile_t of) { printf("MCPL WARNING: Usage of function mcpl_closeandgzip_outfile_rc is obsolete as" " mcpl_closeandgzip_outfile now also returns the status. Please update your code" " to use mcpl_closeandgzip_outfile instead.\n"); return mcpl_closeandgzip_outfile(of); } int mcpl_closeandgzip_outfile(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; char * filename = f->filename; f->filename = 0;//prevent free in mcpl_close_outfile mcpl_close_outfile(of); int rc = mcpl_gzip_file(filename); free(filename); return rc; } typedef struct { FILE * file; #ifdef MCPL_HASZLIB gzFile filegz; #else void * filegz; #endif char * hdr_srcprogname; unsigned format_version; int opt_userflags; int opt_polarisation; int opt_singleprec; int32_t opt_universalpdgcode; double opt_universalweight; int is_little_endian; uint64_t nparticles; uint32_t ncomments; char ** comments; uint32_t nblobs; char ** blobkeys; uint32_t * bloblengths; char ** blobs; unsigned particle_size; uint64_t first_particle_pos; uint64_t current_particle_idx; mcpl_particle_t* particle; unsigned opt_signature; char particle_buffer[MCPLIMP_MAX_PARTICLE_SIZE]; } mcpl_fileinternal_t; #define MCPLIMP_FILEDECODE mcpl_fileinternal_t * f = (mcpl_fileinternal_t *)ff.internal; assert(f) void mcpl_read_buffer(mcpl_fileinternal_t* f, unsigned* n, char ** buf, const char * errmsg) { size_t nb; #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, n, sizeof(*n)); else #endif nb = fread(n, 1, sizeof(*n), f->file); if (nb!=sizeof(*n)) mcpl_error(errmsg); *buf = (char*)calloc(*n,1); #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, *buf, *n); else #endif nb = fread(*buf, 1, *n, f->file); if (nb!=*n) mcpl_error(errmsg); } void mcpl_read_string(mcpl_fileinternal_t* f, char ** dest, const char* errmsg) { size_t nb; uint32_t n; #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, &n, sizeof(n)); else #endif nb = fread(&n, 1, sizeof(n), f->file); if (nb!=sizeof(n)) mcpl_error(errmsg); char * s = (char*)calloc(n+1,1); #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, s, n); else #endif nb = fread(s, 1, n, f->file); if (nb!=n) mcpl_error(errmsg); s[n] = '\0'; *dest = s; } mcpl_file_t mcpl_actual_open_file(const char * filename, int * repair_status) { int caller_is_mcpl_repair = *repair_status; *repair_status = 0;//file not broken if (!filename) mcpl_error("mcpl_open_file called with null string"); mcpl_platform_compatibility_check(); mcpl_file_t out; out.internal = 0; mcpl_fileinternal_t * f = (mcpl_fileinternal_t*)calloc(sizeof(mcpl_fileinternal_t),1); assert(f); //open file (with gzopen if filename ends with .gz): f->file = 0; f->filegz = 0; const char * lastdot = strrchr(filename, '.'); if (lastdot && strcmp(lastdot, ".gz") == 0) { #ifdef MCPL_HASZLIB f->filegz = gzopen(filename,"rb"); if (!f->filegz) mcpl_error("Unable to open file!"); #else mcpl_error("This installation of MCPL was not built with zlib support and can not read compressed (.gz) files directly."); #endif } else { f->file = fopen(filename,"rb"); if (!f->file) mcpl_error("Unable to open file!"); } //First read and check magic word, format version and endianness. unsigned char start[8];// = {'M','C','P','L','0','0','0','L'}; size_t nb; #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, start, sizeof(start)); else #endif nb = fread(start, 1, sizeof(start), f->file); if (nb>=4&&(start[0]!='M'||start[1]!='C'||start[2]!='P'||start[3]!='L')) mcpl_error("File is not an MCPL file!"); if (nb!=sizeof(start)) mcpl_error("Error while reading first bytes of file!"); f->format_version = (start[4]-'0')*100 + (start[5]-'0')*10 + (start[6]-'0'); if (f->format_version!=2&&f->format_version!=3) mcpl_error("File is in an unsupported MCPL version!"); f->is_little_endian = mcpl_platform_is_little_endian(); if (start[7]!=(f->is_little_endian?'L':'B')) { if (start[7]=='L'||start[7]=='B') mcpl_error("Endian-ness of current platform is different than the one used to write the file."); else mcpl_error("Unexpected value in endianness field!"); } //proceed reading header, knowing we have a consistent version and endian-ness. const char * errmsg = "Errors encountered while attempting to read header"; uint64_t np; #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, &np, sizeof(np)); else #endif nb = fread(&np, 1, sizeof(np), f->file); if (nb!=sizeof(np)) mcpl_error(errmsg); f->nparticles = np; uint32_t arr[8]; assert(sizeof(arr)==32); #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, arr, sizeof(arr)); else #endif nb=fread(arr, 1, sizeof(arr), f->file); if (nb!=sizeof(arr)) mcpl_error(errmsg); f->ncomments = arr[0]; f->nblobs = arr[1]; f->opt_userflags = arr[2]; f->opt_polarisation = arr[3]; f->opt_singleprec = arr[4]; f->opt_universalpdgcode = arr[5]; f->particle_size = arr[6];//We could check consistency here with the calculated value. assert(f->particle_size<=MCPLIMP_MAX_PARTICLE_SIZE); if (arr[7]) { //file has universal weight #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, (void*)&(f->opt_universalweight), sizeof(f->opt_universalweight)); else #endif nb=fread((void*)&(f->opt_universalweight), 1, sizeof(f->opt_universalweight), f->file); assert(nb==sizeof(f->opt_universalweight)); if (nb!=sizeof(f->opt_universalweight)) mcpl_error(errmsg); } f->opt_signature = 0 + 1 * f->opt_singleprec + 2 * f->opt_polarisation + 4 * f->opt_universalpdgcode + 8 * (f->opt_universalweight?1:0) + 16 * f->opt_userflags; //Then some strings: mcpl_read_string(f,&f->hdr_srcprogname,errmsg); f->comments = f->ncomments ? (char **)calloc(f->ncomments,sizeof(char*)) : 0; uint32_t i; for (i = 0; i < f->ncomments; ++i) mcpl_read_string(f,&(f->comments[i]),errmsg); f->blobkeys = 0; f->bloblengths = 0; f->blobs = 0; if (f->nblobs) { f->blobs = (char **)calloc(f->nblobs,sizeof(char*)); f->blobkeys = (char **)calloc(f->nblobs,sizeof(char*)); f->bloblengths = (uint32_t *)calloc(f->nblobs,sizeof(uint32_t)); for (i =0; i < f->nblobs; ++i) mcpl_read_string(f,&(f->blobkeys[i]),errmsg); for (i =0; i < f->nblobs; ++i) mcpl_read_buffer(f, &(f->bloblengths[i]), &(f->blobs[i]), errmsg); } f->particle = (mcpl_particle_t*)calloc(sizeof(mcpl_particle_t),1); //At first event now: f->current_particle_idx = 0; int64_t tellpos = -1; #ifdef MCPL_HASZLIB if (f->filegz) tellpos = gztell(f->filegz); else #endif tellpos = ftell(f->file); if (tellpos<0) mcpl_error(errmsg); f->first_particle_pos = tellpos; if ( f->nparticles==0 || caller_is_mcpl_repair ) { //Although empty files are permitted, it is possible that the file was never //closed properly (maybe the writing program ended prematurely). Let us //check to possibly recover usage of the file. If caller is mcpl_repair, we //always check since the file might have been truncated after it was first //closed properly. if (f->filegz) { //SEEK_END is not supported by zlib, and there is no reliable way to get //the input size. Thus, all we can do is to uncompress the whole thing, //which we won't since it might stall operations for a long time. But we //can at least try to check whether the file is indeed empty or not, and //give an error in the latter case: #ifdef MCPL_HASZLIB if (f->nparticles==0) { char testbuf[4]; nb = gzread(f->filegz, testbuf, sizeof(testbuf)); if (nb>0) { if (caller_is_mcpl_repair) { *repair_status = 1;//file broken but can't recover since gzip. } else { mcpl_error("Input file appears to not have been closed properly and data recovery is disabled for gzipped files."); } } } else { assert(caller_is_mcpl_repair); *repair_status = 2;//file brokenness can not be determined since gzip. } gzseek( f->filegz, f->first_particle_pos, SEEK_SET ); #endif } else { if (f->file && !fseek( f->file, 0, SEEK_END )) {//SEEK_END is not guaranteed to always work, so we fail our recovery attempt silently. int64_t endpos = ftell(f->file); if (endpos > (int64_t)f->first_particle_pos && (uint64_t)endpos != f->first_particle_pos) { uint64_t np = ( endpos - f->first_particle_pos ) / f->particle_size; if ( f->nparticles != np ) { if ( f->nparticles > 0 && np > f->nparticles ) { //should really not happen unless file was corrupted or file was //first closed properly and then something was appended to it. mcpl_error("Input file has invalid combination of meta-data & filesize."); } if (caller_is_mcpl_repair) { *repair_status = 3;//file broken and should be able to repair } else { assert(f->nparticles == 0); printf("MCPL WARNING: Input file appears to not have been closed properly. Recovered %" PRIu64 " particles.\n",np); } f->nparticles = np; } } } fseek( f->file, f->first_particle_pos, SEEK_SET );//if this fseek failed, it might just be that we are at EOF with no particles. } } out.internal = f; return out; } mcpl_file_t mcpl_open_file(const char * filename) { int repair_status = 0; return mcpl_actual_open_file(filename,&repair_status); } void mcpl_repair(const char * filename) { int repair_status = 1; mcpl_file_t f = mcpl_actual_open_file(filename,&repair_status); uint64_t nparticles = mcpl_hdr_nparticles(f); mcpl_close_file(f); if (repair_status==0) { mcpl_error("File does not appear to be broken."); } else if (repair_status==1) { mcpl_error("Input file is indeed broken, but must be gunzipped before it can be repaired."); } else if (repair_status==2) { mcpl_error("File must be gunzipped before it can be checked and possibly repaired."); } //Ok, we should repair the file by updating nparticles in the header: FILE * fh = fopen(filename,"rb+"); if (!fh) mcpl_error("Unable to open file in update mode!"); mcpl_update_nparticles(fh, nparticles); fclose(fh); //Verify that we fixed it: repair_status = 1; f = mcpl_actual_open_file(filename,&repair_status); uint64_t nparticles2 = mcpl_hdr_nparticles(f); mcpl_close_file(f); if (repair_status==0&&nparticles==nparticles2) { printf("MCPL: Succesfully repaired file with %" PRIu64 " particles.\n",nparticles); } else { mcpl_error("Something went wrong while attempting to repair file."); } } void mcpl_close_file(mcpl_file_t ff) { MCPLIMP_FILEDECODE; free(f->hdr_srcprogname); uint32_t i; for (i = 0; i < f->ncomments; ++i) free(f->comments[i]); free(f->comments); for (i = 0; i < f->nblobs; ++i) free(f->blobkeys[i]); for (i = 0; i < f->nblobs; ++i) free(f->blobs[i]); free(f->blobkeys); free(f->blobs); free(f->bloblengths); free(f->particle); #ifdef MCPL_HASZLIB if (f->filegz) gzclose(f->filegz); #endif if (f->file) fclose(f->file); free(f); } unsigned mcpl_hdr_version(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->format_version; } uint64_t mcpl_hdr_nparticles(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->nparticles; } unsigned mcpl_hdr_ncomments(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->ncomments; } const char * mcpl_hdr_comment(mcpl_file_t ff, unsigned i) { MCPLIMP_FILEDECODE; if (i>=f->ncomments) mcpl_error("Invalid comment requested (index out of bounds)"); return f->comments[i]; } int mcpl_hdr_nblobs(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->nblobs; } const char** mcpl_hdr_blobkeys(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return (const char**)f->blobkeys; } int mcpl_hdr_blob(mcpl_file_t ff, const char* key, uint32_t* ldata, const char ** data) { MCPLIMP_FILEDECODE; uint32_t i; for (i = 0; i < f->nblobs; ++i) { if (strcmp(f->blobkeys[i],key)==0) { *data = f->blobs[i]; *ldata = f->bloblengths[i]; return 1; } } *data = 0; *ldata = 0; return 0; } const char* mcpl_hdr_srcname(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->hdr_srcprogname; } int mcpl_hdr_has_userflags(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->opt_userflags; } int mcpl_hdr_has_polarisation(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->opt_polarisation; } int mcpl_hdr_has_doubleprec(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return !f->opt_singleprec; } const mcpl_particle_t* mcpl_read(mcpl_file_t ff) { MCPLIMP_FILEDECODE; f->current_particle_idx += 1; if ( f->current_particle_idx > f->nparticles ) { f->current_particle_idx = f->nparticles;//overflow guard return 0; } //read particle data: size_t nb; unsigned lbuf = f->particle_size; char * pbuf = &(f->particle_buffer[0]); #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, pbuf, lbuf); else #endif nb = fread(pbuf, 1, lbuf, f->file); if (nb!=lbuf) mcpl_error("Errors encountered while attempting to read particle data."); //Transfer to particle struct: unsigned ibuf = 0; mcpl_particle_t * p = f->particle; double pack_ekindir[3]; p->weight = f->opt_universalweight; int i; if (f->opt_singleprec) { if (f->opt_polarisation) { for (i=0;i<3;++i) { p->polarisation[i] = *(float*)&pbuf[ibuf]; ibuf += sizeof(float); } } else { for (i=0;i<3;++i) p->polarisation[i] = 0.0; } for (i=0;i<3;++i) { p->position[i] = *(float*)&pbuf[ibuf]; ibuf += sizeof(float); } for (i=0;i<3;++i) { pack_ekindir[i] = *(float*)&pbuf[ibuf]; ibuf += sizeof(float); } p->time = *(float*)&pbuf[ibuf]; ibuf += sizeof(float); if (!p->weight) { p->weight = *(float*)&pbuf[ibuf]; ibuf += sizeof(float); } } else { if (f->opt_polarisation) { for (i=0;i<3;++i) { p->polarisation[i] = *(double*)&pbuf[ibuf]; ibuf += sizeof(double); } } else { for (i=0;i<3;++i) p->polarisation[i] = 0.0; } for (i=0;i<3;++i) { p->position[i] = *(double*)&pbuf[ibuf]; ibuf += sizeof(double); } for (i=0;i<3;++i) { pack_ekindir[i] = *(double*)&pbuf[ibuf]; ibuf += sizeof(double); } p->time = *(double*)&pbuf[ibuf]; ibuf += sizeof(double); if (!p->weight) { p->weight = *(double*)&pbuf[ibuf]; ibuf += sizeof(double); } } if (f->opt_universalpdgcode) { p->pdgcode = f->opt_universalpdgcode; } else { p->pdgcode = *(int32_t*)&pbuf[ibuf]; ibuf += sizeof(int32_t); } if (f->opt_userflags) { p->userflags = *(uint32_t*)&pbuf[ibuf]; #ifndef NDEBUG ibuf += sizeof(uint32_t); #endif } else { f->opt_userflags = 0; } assert(ibuf==lbuf); //Unpack direction and ekin: if (f->format_version>=3) { p->ekin = fabs(pack_ekindir[2]); pack_ekindir[2] = copysign(1.0,pack_ekindir[2]); mcpl_unitvect_unpack_adaptproj(pack_ekindir,p->direction); } else { assert(f->format_version==2); mcpl_unitvect_unpack_oct(pack_ekindir,p->direction); p->ekin = pack_ekindir[2]; if (signbit(pack_ekindir[2])) { p->ekin = -p->ekin; p->direction[2] = 0.0; } } return p; } int mcpl_skipforward(mcpl_file_t ff,uint64_t n) { MCPLIMP_FILEDECODE; //increment, but guard against overflows: if ( n >= f->nparticles || f->current_particle_idx >= f->nparticles ) f->current_particle_idx = f->nparticles; else f->current_particle_idx += n; if ( f->current_particle_idx > f->nparticles ) f->current_particle_idx = f->nparticles; int notEOF = f->current_particle_idxnparticles; if (n==0) return notEOF; if (notEOF) { int error; #ifdef MCPL_HASZLIB if (f->filegz) { int64_t targetpos = f->current_particle_idx*f->particle_size+f->first_particle_pos; error = gzseek( f->filegz, targetpos, SEEK_SET )!=targetpos; } else #endif error = fseek( f->file, f->particle_size * n, SEEK_CUR )!=0; if (error) mcpl_error("Errors encountered while skipping in particle list"); } return notEOF; } int mcpl_rewind(mcpl_file_t ff) { MCPLIMP_FILEDECODE; int already_there = (f->current_particle_idx==0); f->current_particle_idx = 0; int notEOF = f->current_particle_idxnparticles; if (notEOF&&!already_there) { int error; #ifdef MCPL_HASZLIB if (f->filegz) { error = gzseek( f->filegz, f->first_particle_pos, SEEK_SET )!=(int64_t)f->first_particle_pos; } else #endif error = fseek( f->file, f->first_particle_pos, SEEK_SET )!=0; if (error) mcpl_error("Errors encountered while rewinding particle list"); } return notEOF; } int mcpl_seek(mcpl_file_t ff,uint64_t ipos) { MCPLIMP_FILEDECODE; int already_there = (f->current_particle_idx==ipos); f->current_particle_idx = (iposnparticles?ipos:f->nparticles); int notEOF = f->current_particle_idxnparticles; if (notEOF&&!already_there) { int error; #ifdef MCPL_HASZLIB if (f->filegz) { int64_t targetpos = f->current_particle_idx*f->particle_size+f->first_particle_pos; error = gzseek( f->filegz, targetpos, SEEK_SET )!=targetpos; } else #endif error = fseek( f->file, f->first_particle_pos + f->particle_size * ipos, SEEK_SET )!=0; if (error) mcpl_error("Errors encountered while seeking in particle list"); } return notEOF; } uint64_t mcpl_currentposition(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->current_particle_idx; } const char * mcpl_basename(const char * filename) { //portable "basename" which doesn't modify it's argument: const char * bn = strrchr(filename, '/'); return bn ? bn + 1 : filename; } int mcpl_hdr_particle_size(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->particle_size; } uint64_t mcpl_hdr_header_size(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->first_particle_pos; } int mcpl_hdr_universal_pdgcode(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->opt_universalpdgcode; } int mcpl_hdr_universel_pdgcode(mcpl_file_t ff) { printf("MCPL WARNING: Usage of function mcpl_hdr_universel_pdgcode is obsolete as it has" " been renamed to mcpl_hdr_universal_pdgcode. Please update your code.\n"); return mcpl_hdr_universal_pdgcode(ff); } double mcpl_hdr_universal_weight(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->opt_universalweight; } int mcpl_hdr_little_endian(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->is_little_endian; } void mcpl_transfer_last_read_particle(mcpl_file_t source, mcpl_outfile_t target) { mcpl_outfileinternal_t * ft = (mcpl_outfileinternal_t *)target.internal; assert(ft); mcpl_fileinternal_t * fs = (mcpl_fileinternal_t *)source.internal; assert(fs); if ( fs->current_particle_idx==0 && fs->particle->weight==0.0 && fs->particle->pdgcode==0 ) { mcpl_error("mcpl_transfer_last_read_particle called with source file in invalid state" " (did you forget to first call mcpl_read() on the source file before calling this function?)"); return; } //Sanity checks for universal fields here (but not in mcpl_add_particle since users are allowed to create files by setting just the universal fields): if ( ft->opt_universalpdgcode && fs->particle->pdgcode != ft->opt_universalpdgcode) { printf("MCPL ERROR: mcpl_transfer_last_read_particle asked to transfer particle with pdgcode %li into a file with universal pdgcode of %li\n", (long)fs->particle->pdgcode,(long)ft->opt_universalpdgcode); mcpl_error("mcpl_transfer_last_read_particle got incompatible pdgcode\n"); return; } if ( ft->opt_universalweight && fs->particle->weight != ft->opt_universalweight) { printf("MCPL ERROR: mcpl_transfer_last_read_particle asked to transfer particle with weight %g into a file with universal weight of %g\n", fs->particle->weight,ft->opt_universalweight); mcpl_error("mcpl_transfer_last_read_particle got incompatible weight\n"); return; } //NB: We don't sanity check that polarisation/userflags are enabled if present //in the input particle, since it is a valid use-case to use this function to //discard such info. if ( fs->format_version == 2 || ( fs->opt_singleprec && !ft->opt_singleprec ) ) { //source file is in old format with different unit vector packing, or the //floating point precision is increasing. In these scenarious we can not //reuse the 3 floats representing packed direction+ekin but must proceed via //a full unpacking+repacking. mcpl_add_particle(target,fs->particle); return; } if ( ft->opt_signature == fs->opt_signature ) { //Particle data is encoded in exactly the same manner in src and target (a //common scenario for many merge or extraction scenarios) -> simply transfer //the bytes and be done with it: assert(fs->particle_size==ft->particle_size); memcpy(ft->particle_buffer,fs->particle_buffer,fs->particle_size); mcpl_internal_write_particle_buffer_to_file(ft); return; } //The hard way - first serialise the source particle into the output buffer: mcpl_internal_serialise_particle_to_buffer( fs->particle, ft ); //If possible, override the 3 FP representing packed ekin+dir from the packing //in the source, thus avoiding potentially lossy unpacking+packing: size_t fpsize_target = ft->opt_singleprec ? sizeof(float) : sizeof(double); size_t idx_packekindir_target = (ft->opt_polarisation ? 6 : 3) * fpsize_target; size_t idx_packekindir_src = (fs->opt_polarisation ? 6 : 3) * fpsize_target; if (fs->opt_singleprec == ft->opt_singleprec) { memcpy( &(ft->particle_buffer[idx_packekindir_target]), &(fs->particle_buffer[idx_packekindir_src]), fpsize_target * 3); } else if ( ft->opt_singleprec && !fs->opt_singleprec ) { //For the case of double precision -> single precision, we can simply //perform a narrowing conversion: double * packekindir_src = (double*)&(fs->particle_buffer[idx_packekindir_src]); float * packekindir_target = (float*)&(ft->particle_buffer[idx_packekindir_target]); for (unsigned i = 0; i < 3; ++i) { packekindir_target[i] = (float)packekindir_src[i]; } } mcpl_internal_write_particle_buffer_to_file(ft); } void mcpl_dump_header(mcpl_file_t f) { printf("\n Basic info\n"); printf(" Format : MCPL-%i\n",mcpl_hdr_version(f)); printf(" No. of particles : %" PRIu64 "\n",mcpl_hdr_nparticles(f)); printf(" Header storage : %" PRIu64 " bytes\n",mcpl_hdr_header_size(f)); printf(" Data storage : %" PRIu64 " bytes\n",mcpl_hdr_nparticles(f)*mcpl_hdr_particle_size(f)); printf("\n Custom meta data\n"); printf(" Source : \"%s\"\n",mcpl_hdr_srcname(f)); unsigned nc=mcpl_hdr_ncomments(f); printf(" Number of comments : %i\n",nc); unsigned ic; for (ic = 0; ic < nc; ++ic) printf(" -> comment %i : \"%s\"\n",ic,mcpl_hdr_comment(f,ic)); unsigned nb = mcpl_hdr_nblobs(f); printf(" Number of blobs : %i\n",nb); const char** blobkeys = mcpl_hdr_blobkeys(f); uint32_t ib; for (ib = 0; ib < nb; ++ib) { const char * data; uint32_t ldata; int ok = mcpl_hdr_blob(f, blobkeys[ib], &ldata, &data); if (!ok) mcpl_error("Unexpected blob access error"); printf(" -> %lu bytes of data with key \"%s\"\n",(unsigned long)ldata,blobkeys[ib]); } printf("\n Particle data format\n"); printf(" User flags : %s\n",(mcpl_hdr_has_userflags(f)?"yes":"no")); printf(" Polarisation info : %s\n",(mcpl_hdr_has_polarisation(f)?"yes":"no")); printf(" Fixed part. type : "); int32_t updg = mcpl_hdr_universal_pdgcode(f); if (updg) printf("yes (pdgcode %li)\n",(long)updg); else printf("no\n"); printf(" Fixed part. weight : "); double uw = mcpl_hdr_universal_weight(f); if (uw) printf("yes (weight %g)\n",uw); else printf("no\n"); printf(" FP precision : %s\n",(mcpl_hdr_has_doubleprec(f)?"double":"single")); printf(" Endianness : %s\n",(mcpl_hdr_little_endian(f)?"little":"big")); printf(" Storage : %i bytes/particle\n",mcpl_hdr_particle_size(f)); printf("\n"); } //Not in the public interface, but perhaps it should be to allow custom //applications to apply custom filters and see the selected particles. For now, //we simply keep the function signature stable, allowing other code to access it //by forward declaring it themselves: void mcpl_dump_particles(mcpl_file_t f, uint64_t nskip, uint64_t nlimit, int(filter)(const mcpl_particle_t*)) { int has_uf = mcpl_hdr_has_userflags(f); int has_pol = mcpl_hdr_has_polarisation(f); double uweight = mcpl_hdr_universal_weight(f); printf("index pdgcode ekin[MeV] x[cm] y[cm] z[cm] ux uy uz time[ms]"); if (!uweight) printf(" weight"); if (has_pol) printf(" pol-x pol-y pol-z"); if (has_uf) printf(" userflags"); printf("\n"); mcpl_skipforward(f,nskip); uint64_t count = nlimit; const mcpl_particle_t* p; while((nlimit==0||count--)&&(p=mcpl_read(f))) { if (filter && !filter(p) ) { ++count; continue; } uint64_t idx = mcpl_currentposition(f)-1;//-1 since mcpl_read skipped ahead printf("%5" PRIu64 " %11i %11.5g %11.5g %11.5g %11.5g %11.5g %11.5g %11.5g %11.5g", idx, p->pdgcode, p->ekin, p->position[0], p->position[1], p->position[2], p->direction[0], p->direction[1], p->direction[2], p->time); if (!uweight) printf(" %11.5g",p->weight); if (has_pol) printf(" %11.5g %11.5g %11.5g",p->polarisation[0],p->polarisation[1],p->polarisation[2]); if (has_uf) printf(" 0x%08x",p->userflags); printf("\n"); } } void mcpl_dump(const char * filename, int parts, uint64_t nskip, uint64_t nlimit) { if (parts<0||parts>2) mcpl_error("mcpl_dump got forbidden value for argument parts"); mcpl_file_t f = mcpl_open_file(filename); printf("Opened MCPL file %s:\n",mcpl_basename(filename)); if (parts==0||parts==1) mcpl_dump_header(f); if (parts==0||parts==2) mcpl_dump_particles(f,nskip,nlimit,0); mcpl_close_file(f); } int mcpl_actual_can_merge(mcpl_file_t ff1, mcpl_file_t ff2) { mcpl_fileinternal_t * f1 = (mcpl_fileinternal_t *)ff1.internal; mcpl_fileinternal_t * f2 = (mcpl_fileinternal_t *)ff2.internal; assert(f1&&f2); if (f1->first_particle_pos!=f2->first_particle_pos) return 0;//different header //Note, we do not check the format_version field here, since mcpl_merge_files //can actually work on files with different versions. //Very strict checking of everything except nparticles. Even order of blobs //and comments must be preserved (could possibly be relaxed a bit): if (strcmp(f1->hdr_srcprogname,f2->hdr_srcprogname)!=0) return 0; if (f1->opt_userflags!=f2->opt_userflags) return 0; if (f1->opt_polarisation!=f2->opt_polarisation) return 0; if (f1->opt_singleprec!=f2->opt_singleprec) return 0; if (f1->opt_universalpdgcode!=f2->opt_universalpdgcode) return 0; if (f1->opt_universalweight!=f2->opt_universalweight) return 0; if (f1->is_little_endian!=f2->is_little_endian) return 0; if (f1->particle_size!=f2->particle_size) return 0; if (f1->ncomments!=f2->ncomments) return 0; if (f1->nblobs!=f2->nblobs) return 0; uint32_t i; for (i = 0; incomments; ++i) { if (strcmp(f1->comments[i],f2->comments[i])!=0) return 0; } for (i = 0; inblobs; ++i) { if (f1->bloblengths[i]!=f2->bloblengths[i]) return 0; if (strcmp(f1->blobkeys[i],f2->blobkeys[i])!=0) return 0; if (memcmp(f1->blobs[i],f2->blobs[i],f1->bloblengths[i])!=0) return 0; } return 1; } int mcpl_can_merge(const char * file1, const char* file2) { mcpl_file_t f1 = mcpl_open_file(file1); mcpl_file_t f2 = mcpl_open_file(file2); int can_merge = mcpl_actual_can_merge(f1,f2); mcpl_close_file(f1); mcpl_close_file(f2); return can_merge; } #ifdef MCPL_THIS_IS_UNIX # include #endif int mcpl_file_certainly_exists(const char * filename) { #if defined MCPL_THIS_IS_UNIX || defined MCPL_THIS_IS_MS if( access( filename, F_OK ) != -1 ) return 1; return 0; #else //esoteric platform without access(..). Try opening for reads: FILE *fd; if ((fd = fopen(filename, "r"))) { fclose(fd); return 1; } //non-existing or read access not allowed: return 0; #endif } #ifdef MCPL_THIS_IS_UNIX # include # include #endif void mcpl_warn_duplicates(unsigned n, const char ** filenames) { //Checks that no filenames in provided list represent the same file (the //detection is not 100% certain on non-POSIX platforms). If duplicates are //found, emit warning - it is assumed the function is called from //mcpl_merge_xxx on a user-provided list of files. //Since this is C, we resort to slow O(N^2) comparison for simplicity. if (n<2) return; #ifdef MCPL_THIS_IS_UNIX //Bullet proof(ish) way, (st_ino,st_dev) uniquely identifies a file on a system. dev_t * id_dev = (dev_t*)calloc(n*sizeof(dev_t),1); ino_t * id_ino = (ino_t*)calloc(n*sizeof(ino_t),1); unsigned i; for (i = 0; iparticle_size; //buffer for transferring up to 1000 particles at a time: const unsigned npbufsize = 1000; char * buf = (char*)malloc(npbufsize*particle_size); uint64_t np_remaining = nparticles; while(np_remaining) { //NB: On linux > 2.6.33 we could use sendfile for more efficient in-kernel //transfer of data between two files! uint64_t toread = np_remaining >= npbufsize ? npbufsize : np_remaining; np_remaining -= toread; //read: size_t nb; #ifdef MCPL_HASZLIB if (fi->filegz) nb = gzread(fi->filegz, buf, toread*particle_size); else #endif nb = fread(buf,1,toread*particle_size,fi->file); if (nb!=toread*particle_size) mcpl_error("Unexpected read-error while merging"); //write: nb = fwrite(buf,1,toread*particle_size,fo); if (nb!=toread*particle_size) mcpl_error("Unexpected write-error while merging"); } free(buf); } mcpl_outfile_t mcpl_forcemerge_files( const char * file_output, unsigned nfiles, const char ** files, int keep_userflags ) { //////////////////////////////////// // Initial sanity check of input: // //////////////////////////////////// if (!nfiles) mcpl_error("mcpl_forcemerge_files must be called with at least one input file"); //Warn user if they are merging a file with itself: mcpl_warn_duplicates(nfiles,files); //Create new file: if (mcpl_file_certainly_exists(file_output)) mcpl_error("requested output file of mcpl_forcemerge_files already exists"); /////////////////////////////////////////// // Fallback to normal merge if possible: // /////////////////////////////////////////// //Check all files for compatibility before we start (for robustness, we check //again when actually merging each file). unsigned ifile; int normal_merge_ok = 1; for (ifile = 1; ifile < nfiles; ++ifile) { if (!mcpl_can_merge(files[0],files[ifile])) { normal_merge_ok = 0; break; } } if (normal_merge_ok) { printf("MCPL mcpl_forcemerge_files called with %i files that are compatible for a standard merge => falling back to standard mcpl_merge_files function\n",nfiles); return mcpl_merge_files(file_output,nfiles,files); } ///////////////////////////// // Actual forcemerge code: // ///////////////////////////// //Run through files and collect meta-data: int opt_dp = 0; int opt_pol = 0; int opt_uf = 0; int lastseen_universalpdg = 0; int disallow_universalpdg = 0; double lastseen_universalweight = 0; int disallow_universalweight = 0; for (ifile = 0; ifile < nfiles; ++ifile) { mcpl_file_t f = mcpl_open_file(files[ifile]); if (!mcpl_hdr_nparticles(f)) { mcpl_close_file(f); continue;//won't affect anything } if (mcpl_hdr_has_userflags(f)) opt_uf = 1;//enable if any if (mcpl_hdr_has_polarisation(f)) opt_pol = 1;//enable if any if (mcpl_hdr_has_doubleprec(f)) opt_dp = 1; int32_t updg = mcpl_hdr_universal_pdgcode(f); if ( !updg || ( lastseen_universalpdg && lastseen_universalpdg != updg ) ) { disallow_universalpdg = 1; } else { lastseen_universalpdg = updg; } double uw = mcpl_hdr_universal_weight(f); if ( !uw || ( lastseen_universalweight && lastseen_universalweight != uw ) ) { disallow_universalweight = 1; } else { lastseen_universalweight = uw; } mcpl_close_file(f); } if (!keep_userflags) opt_uf = 0; mcpl_outfile_t out = mcpl_create_outfile(file_output); mcpl_hdr_set_srcname(out,"mcpl_forcemerge_files (from MCPL v" MCPL_VERSION_STR ")"); if ( opt_uf ) mcpl_enable_userflags(out); if ( opt_pol ) mcpl_enable_polarisation(out); if (opt_dp) mcpl_enable_doubleprec(out); if ( !disallow_universalpdg && lastseen_universalpdg ) mcpl_enable_universal_pdgcode(out,lastseen_universalpdg); if ( !disallow_universalweight && lastseen_universalweight ) mcpl_enable_universal_weight(out,lastseen_universalweight); //Finally, perform the transfer: for (ifile = 0; ifile < nfiles; ++ifile) { mcpl_file_t f = mcpl_open_file(files[ifile]); uint64_t np = mcpl_hdr_nparticles(f); printf("MCPL force-merge: Transferring %" PRIu64 " particle%s from file %s\n",np,(np==1?"":"s"),files[ifile]); const mcpl_particle_t* particle; while ( ( particle = mcpl_read(f) ) ) mcpl_transfer_last_read_particle(f, out);//lossless transfer when possible mcpl_close_file(f); } mcpl_outfileinternal_t * out_internal = (mcpl_outfileinternal_t *)out.internal; uint64_t np = out_internal->nparticles; printf("MCPL force-merge: Transferred a total of %" PRIu64 " particle%s to new file %s\n",np,(np==1?"":"s"),file_output); return out; } mcpl_outfile_t mcpl_merge_files( const char* file_output, unsigned nfiles, const char ** files ) { mcpl_outfile_t out; out.internal = 0; if (!nfiles) mcpl_error("mcpl_merge_files must be called with at least one input file"); //Check all files for compatibility before we start (for robustness, we check //again when actually merging each file). unsigned ifile; for (ifile = 1; ifile < nfiles; ++ifile) { if (!mcpl_can_merge(files[0],files[ifile])) mcpl_error("Attempting to merge incompatible files."); } //Warn user if they are merging a file with itself: mcpl_warn_duplicates(nfiles,files); //Create new file: if (mcpl_file_certainly_exists(file_output)) mcpl_error("requested output file of mcpl_merge_files already exists"); out = mcpl_create_outfile(file_output); mcpl_outfileinternal_t * out_internal = (mcpl_outfileinternal_t *)out.internal; mcpl_file_t f1; f1.internal = 0; int warned_oldversion = 0; for (ifile = 0; ifile < nfiles; ++ifile) { mcpl_file_t fi = mcpl_open_file(files[ifile]); if (ifile==0) { //Add metadata from the first file: mcpl_transfer_metadata(fi, out); if (out_internal->header_notwritten) mcpl_write_header(out_internal); f1 = fi; } else { //Check file is still compatible with first file if (!mcpl_actual_can_merge(f1,fi)) mcpl_error("Aborting merge of suddenly incompatible files."); } //Transfer particle contents: if (mcpl_hdr_version(fi)==MCPL_FORMATVERSION) { //Can transfer raw bytes: uint64_t npi = mcpl_hdr_nparticles(fi); mcpl_transfer_particle_contents(out_internal->file, fi, npi); out_internal->nparticles += npi; } else { //Merging from older version. Transfer via public interface to re-encode //particle data for latest format: if (!warned_oldversion) { warned_oldversion = 1; printf("MCPL WARNING: Merging files from older MCPL format. Output will be in latest format.\n"); } const mcpl_particle_t* particle; while ( ( particle = mcpl_read(fi) ) ) mcpl_add_particle(out,particle); } if (ifile!=0) mcpl_close_file(fi); } mcpl_close_file(f1); return out; } void mcpl_merge(const char * file1, const char* file2) { printf("MCPL WARNING: Usage of function mcpl_merge is obsolete as it has" " been renamed to mcpl_merge_inplace. Please update your code.\n"); mcpl_merge_inplace(file1, file2); } void mcpl_merge_inplace(const char * file1, const char* file2) { mcpl_file_t ff1 = mcpl_open_file(file1); mcpl_file_t ff2 = mcpl_open_file(file2); int can_merge = mcpl_actual_can_merge(ff1,ff2); if (!can_merge) { mcpl_close_file(ff1); mcpl_close_file(ff2); mcpl_error("Attempting to merge incompatible files"); } //Warn user if they are merging a file with itself: const char * filelist[2]; filelist[0] = file1; filelist[1] = file2; mcpl_warn_duplicates(2,filelist); //Access internals: mcpl_fileinternal_t * f1 = (mcpl_fileinternal_t *)ff1.internal; mcpl_fileinternal_t * f2 = (mcpl_fileinternal_t *)ff2.internal; assert(f1&&f2); if (f1->format_version!=f2->format_version) { mcpl_close_file(ff1); mcpl_close_file(ff2); mcpl_error("Attempting to merge incompatible files (can not mix MCPL format versions when merging inplace)"); } if (f1->filegz) { mcpl_close_file(ff1); mcpl_close_file(ff2); mcpl_error("direct modification of gzipped files is not supported."); } uint64_t np1 = f1->nparticles; uint64_t np2 = f2->nparticles; if (!np2) return;//nothing to take from file 2. unsigned particle_size = f1->particle_size; uint64_t first_particle_pos = f1->first_particle_pos; //Should be same since can_merge: assert(particle_size==f2->particle_size); assert(first_particle_pos==f2->first_particle_pos); //Now, close file1 and reopen a file handle in append mode: mcpl_close_file(ff1); FILE * f1a = fopen(file1,"rb+"); //Update file positions. Note that f2->file is already at the position for the //first particle and that the seek operation on f1a correctly discards any //partial entries at the end, which could be there if the file was in need of //mcpl_repair: if (!f1a) mcpl_error("Unable to open file1 in update mode!"); if (fseek( f1a, first_particle_pos + particle_size*np1, SEEK_SET )) mcpl_error("Unable to seek to end of file1 in update mode"); //Transfer particle contents, setting nparticles to 0 during the operation (so //the file appears broken and in need of mcpl_repair in case of errors during //the transfer): mcpl_update_nparticles(f1a,0); mcpl_transfer_particle_contents(f1a, ff2, np2); mcpl_update_nparticles(f1a,np1+np2); //Finish up. mcpl_close_file(ff2); fclose(f1a); } #define MCPLIMP_TOOL_DEFAULT_NLIMIT 10 #define MCPLIMP_TOOL_DEFAULT_NSKIP 0 int mcpl_tool_usage( char** argv, const char * errmsg ) { if (errmsg) { printf("ERROR: %s\n\n",errmsg); printf("Run with -h or --help for usage information\n"); return 1; } const char * progname = mcpl_basename(argv[0]); printf("Tool for inspecting or modifying Monte Carlo Particle List (.mcpl) files.\n"); printf("\n"); printf("The default behaviour is to display the contents of the FILE in human readable\n"); printf("format (see Dump Options below for how to modify what is displayed).\n"); printf("\n"); #ifdef MCPL_HASZLIB printf("This installation supports direct reading of gzipped files (.mcpl.gz).\n"); printf("\n"); #endif printf("Usage:\n"); printf(" %s [dump-options] FILE\n",progname); printf(" %s --merge [merge-options] FILE1 FILE2\n",progname); printf(" %s --extract [extract-options] FILE1 FILE2\n",progname); printf(" %s --repair FILE\n",progname); printf(" %s --version\n",progname); printf(" %s --help\n",progname); printf("\n"); printf("Dump options:\n"); printf(" By default include the info in the FILE header plus the first ten contained\n"); printf(" particles. Modify with the following options:\n"); assert(MCPLIMP_TOOL_DEFAULT_NLIMIT==10); printf(" -j, --justhead : Dump just header info and no particle info.\n"); printf(" -n, --nohead : Dump just particle info and no header info.\n"); printf(" -lN : Dump up to N particles from the file (default %i). You\n",MCPLIMP_TOOL_DEFAULT_NLIMIT); printf(" can specify -l0 to disable this limit.\n"); printf(" -sN : Skip past the first N particles in the file (default %i).\n",MCPLIMP_TOOL_DEFAULT_NSKIP); printf(" -bKEY : Dump binary blob stored under KEY to standard output.\n"); printf("\n"); printf("Merge options:\n"); printf(" -m, --merge FILEOUT FILE1 FILE2 ... FILEN\n"); printf(" Creates new FILEOUT with combined particle contents from\n"); printf(" specified list of N existing and compatible files.\n"); printf(" -m, --merge --inplace FILE1 FILE2 ... FILEN\n"); printf(" Appends the particle contents in FILE2 ... FILEN into\n"); printf(" FILE1. Note that this action modifies FILE1!\n"); printf(" --forcemerge [--keepuserflags] FILEOUT FILE1 FILE2 ... FILEN\n"); printf(" Like --merge but works with incompatible files as well, at the\n"); printf(" heavy price of discarding most metadata like comments and blobs.\n"); printf(" Userflags will be discarded unless --keepuserflags is specified.\n"); printf("\n"); printf("Extract options:\n"); printf(" -e, --extract FILE1 FILE2\n"); printf(" Extracts particles from FILE1 into a new FILE2.\n"); printf(" -lN, -sN : Select range of particles in FILE1 (as above).\n"); printf(" -pPDGCODE : select particles of type given by PDGCODE.\n"); printf("\n"); printf("Other options:\n"); printf(" -r, --repair FILE\n"); printf(" Attempt to repair FILE which was not properly closed, by up-\n"); printf(" dating the file header with the correct number of particles.\n"); printf(" -t, --text MCPLFILE OUTFILE\n"); printf(" Read particle contents of MCPLFILE and write into OUTFILE\n"); printf(" using a simple ASCII-based format.\n"); printf(" -v, --version : Display version of MCPL installation.\n"); printf(" -h, --help : Display this usage information (ignores all other options).\n"); return 0; } int mcpl_str2int(const char* str, size_t len, int64_t* res) { //portable 64bit str2int with error checking (only INT64_MIN might not be //possible to specify). *res = 0; if (!len) len=strlen(str); if (!len) return 0; int sign = 1; if (str[0]=='-') { sign = -1; len -= 1; str += 1; } int64_t tmp = 0; size_t i; for (i=0; i'9') { return 0; } int64_t prev = tmp; tmp *= 10; tmp += str[i] - '0'; if (prev>=tmp) return 1;//overflow (hopefully it did not trigger a signal or FPE) } *res = sign * tmp; return 1; } int mcpl_tool(int argc,char** argv) { int nfilenames = 0; char ** filenames = 0; const char * blobkey = 0; const char * pdgcode_str = 0; int opt_justhead = 0; int opt_nohead = 0; int64_t opt_num_limit = -1; int64_t opt_num_skip = -1; int opt_merge = 0; int opt_forcemerge = 0; int opt_keepuserflags = 0; int opt_inplace = 0; int opt_extract = 0; int opt_preventcomment = 0;//undocumented unoffical flag for mcpl unit tests int opt_repair = 0; int opt_version = 0; int opt_text = 0; int i; for (i = 1; i=2&&a[0]=='-'&&a[1]!='-') { //short options: int64_t * consume_digit = 0; size_t j; for (j=1; j'9') return free(filenames),mcpl_tool_usage(argv,"Bad option: expected number"); *consume_digit *= 10; *consume_digit += a[j] - '0'; continue; } if (a[j]=='b') { if (blobkey) return free(filenames),mcpl_tool_usage(argv,"-b specified more than once"); if (j+1==n) return free(filenames),mcpl_tool_usage(argv,"Missing argument for -b"); blobkey = a+j+1; break; } if (a[j]=='p') { if (pdgcode_str) return free(filenames),mcpl_tool_usage(argv,"-p specified more than once"); if (j+1==n) return free(filenames),mcpl_tool_usage(argv,"Missing argument for -p"); pdgcode_str = a+j+1; break; } switch(a[j]) { case 'h': return free(filenames), mcpl_tool_usage(argv,0); case 'j': opt_justhead = 1; break; case 'n': opt_nohead = 1; break; case 'm': opt_merge = 1; break; case 'e': opt_extract = 1; break; case 'r': opt_repair = 1; break; case 'v': opt_version = 1; break; case 't': opt_text = 1; break; case 'l': consume_digit = &opt_num_limit; break; case 's': consume_digit = &opt_num_skip; break; default: return free(filenames),mcpl_tool_usage(argv,"Unrecognised option"); } if (consume_digit) { *consume_digit = 0; if (j+1==n) return free(filenames),mcpl_tool_usage(argv,"Bad option: missing number"); } } } else if (n>=3&&a[0]=='-'&&a[1]=='-') { a+=2; //long options: const char * lo_help = "help"; const char * lo_justhead = "justhead"; const char * lo_nohead = "nohead"; const char * lo_merge = "merge"; const char * lo_inplace = "inplace"; const char * lo_extract = "extract"; const char * lo_preventcomment = "preventcomment"; const char * lo_repair = "repair"; const char * lo_version = "version"; const char * lo_text = "text"; const char * lo_forcemerge = "forcemerge"; const char * lo_keepuserflags = "keepuserflags"; //Use strstr instead of "strcmp(a,"--help")==0" to support shortened //versions (works since all our long-opts start with unique char). if (strstr(lo_help,a)==lo_help) return free(filenames), mcpl_tool_usage(argv,0); else if (strstr(lo_justhead,a)==lo_justhead) opt_justhead = 1; else if (strstr(lo_nohead,a)==lo_nohead) opt_nohead = 1; else if (strstr(lo_merge,a)==lo_merge) opt_merge = 1; else if (strstr(lo_forcemerge,a)==lo_forcemerge) opt_forcemerge = 1; else if (strstr(lo_keepuserflags,a)==lo_keepuserflags) opt_keepuserflags = 1; else if (strstr(lo_inplace,a)==lo_inplace) opt_inplace = 1; else if (strstr(lo_extract,a)==lo_extract) opt_extract = 1; else if (strstr(lo_repair,a)==lo_repair) opt_repair = 1; else if (strstr(lo_version,a)==lo_version) opt_version = 1; else if (strstr(lo_preventcomment,a)==lo_preventcomment) opt_preventcomment = 1; else if (strstr(lo_text,a)==lo_text) opt_text = 1; else return free(filenames),mcpl_tool_usage(argv,"Unrecognised option"); } else if (n>=1&&a[0]!='-') { //input file if (!filenames) filenames = (char **)calloc(argc,sizeof(char*)); filenames[nfilenames] = a; ++nfilenames; } else { return free(filenames),mcpl_tool_usage(argv,"Bad arguments"); } } if ( opt_extract==0 && pdgcode_str ) return free(filenames),mcpl_tool_usage(argv,"-p can only be used with --extract."); if ( opt_merge==0 && opt_inplace!=0 ) return free(filenames),mcpl_tool_usage(argv,"--inplace can only be used with --merge."); if ( opt_forcemerge==0 && opt_keepuserflags!=0 ) return free(filenames),mcpl_tool_usage(argv,"--keepuserflags can only be used with --forcemerge."); if ( opt_merge!=0 && opt_forcemerge!=0 ) return free(filenames),mcpl_tool_usage(argv,"--merge and --forcemerge can not both be specified ."); int number_dumpopts = (opt_justhead + opt_nohead + (blobkey!=0)); if (opt_extract==0) number_dumpopts += (opt_num_limit!=-1) + (opt_num_skip!=-1); int any_dumpopts = number_dumpopts != 0; int any_extractopts = (opt_extract!=0||pdgcode_str!=0); int any_mergeopts = (opt_merge!=0||opt_forcemerge!=0); int any_textopts = (opt_text!=0); if (any_dumpopts+any_mergeopts+any_extractopts+any_textopts+opt_repair+opt_version>1) return free(filenames),mcpl_tool_usage(argv,"Conflicting options specified."); if (blobkey&&(number_dumpopts>1)) return free(filenames),mcpl_tool_usage(argv,"Do not specify other dump options with -b."); if (opt_version) { free(filenames); if (nfilenames) return mcpl_tool_usage(argv,"Unrecognised arguments for --version."); printf("MCPL version " MCPL_VERSION_STR "\n"); return 0; } if (any_mergeopts) { if (nfilenames<2) return free(filenames),mcpl_tool_usage(argv, (opt_forcemerge?"Too few arguments for --forcemerge.":"Too few arguments for --merge.") ); int ifirstinfile = (opt_inplace ? 0 : 1); if (!opt_forcemerge) { for (i = ifirstinfile+1; i < nfilenames; ++i) if (!mcpl_can_merge(filenames[ifirstinfile],filenames[i])) return free(filenames),mcpl_tool_usage(argv,"Requested files are incompatible for merge as they have different header info."); } if (opt_inplace) { assert( !opt_forcemerge && opt_merge ); for (i = ifirstinfile+1; i < nfilenames; ++i) mcpl_merge_inplace(filenames[ifirstinfile],filenames[i]); } else { if (mcpl_file_certainly_exists(filenames[0])) return free(filenames),mcpl_tool_usage(argv,"Requested output file already exists."); //Disallow .gz endings unless it is .mcpl.gz, in which case we attempt to gzip automatically. char * outfn = filenames[0]; size_t lfn = strlen(outfn); int attempt_gzip = 0; if( lfn > 8 && !strcmp(outfn + (lfn - 8), ".mcpl.gz")) { attempt_gzip = 1; outfn = (char*)malloc(lfn+1); outfn[0] = '\0'; strcat(outfn,filenames[0]); outfn[lfn-3] = '\0'; if (mcpl_file_certainly_exists(outfn)) return free(filenames),mcpl_tool_usage(argv,"Requested output file already exists (without .gz extension)."); } else if( lfn > 3 && !strcmp(outfn + (lfn - 3), ".gz")) { return free(filenames),mcpl_tool_usage(argv,"Requested output file should not have .gz extension (unless it is .mcpl.gz)."); } mcpl_outfile_t mf = ( opt_forcemerge ? mcpl_forcemerge_files( outfn, nfilenames-1, (const char**)filenames + 1, opt_keepuserflags) : mcpl_merge_files( outfn, nfilenames-1, (const char**)filenames + 1) ); if (attempt_gzip) { if (!mcpl_closeandgzip_outfile(mf)) printf("MCPL WARNING: Failed to gzip output. Non-gzipped output is found in %s\n",outfn); } else { mcpl_close_outfile(mf); } if (outfn != filenames[0]) free(outfn); } free(filenames); return 0; } if (opt_extract) { if (nfilenames>2) return free(filenames),mcpl_tool_usage(argv,"Too many arguments."); if (nfilenames!=2) return free(filenames),mcpl_tool_usage(argv,"Must specify both input and output files with --extract."); if (mcpl_file_certainly_exists(filenames[1])) return free(filenames),mcpl_tool_usage(argv,"Requested output file already exists."); mcpl_file_t fi = mcpl_open_file(filenames[0]); mcpl_outfile_t fo = mcpl_create_outfile(filenames[1]); mcpl_transfer_metadata(fi, fo); uint64_t fi_nparticles = mcpl_hdr_nparticles(fi); if (!opt_preventcomment) { char comment[1024]; sprintf(comment, "mcpltool: extracted particles from file with %" PRIu64 " particles",fi_nparticles); mcpl_hdr_add_comment(fo,comment); } int32_t pdgcode_select = 0; if (pdgcode_str) { int64_t pdgcode64; if (!mcpl_str2int(pdgcode_str, 0, &pdgcode64) || pdgcode64<-2147483648 || pdgcode64>2147483647 || !pdgcode64) return free(filenames),mcpl_tool_usage(argv,"Must specify non-zero 32bit integer as argument to -p."); pdgcode_select = (int32_t)pdgcode64; } if (opt_num_skip>0) mcpl_seek(fi,(uint64_t)opt_num_skip); //uint64_t(-1) instead of UINT64_MAX to fix clang c++98 compilation uint64_t left = opt_num_limit>0 ? (uint64_t)opt_num_limit : (uint64_t)-1; uint64_t added = 0; const mcpl_particle_t* particle; while ( left-- && ( particle = mcpl_read(fi) ) ) { if (pdgcode_select && pdgcode_select!= particle->pdgcode) continue; mcpl_transfer_last_read_particle(fi, fo);//Doing mcpl_add_particle(fo,particle) is potentially (very rarely) lossy ++added; } char *fo_filename = (char*)malloc(strlen(mcpl_outfile_filename(fo))+4); fo_filename[0] = '\0'; strcat(fo_filename,mcpl_outfile_filename(fo)); if (mcpl_closeandgzip_outfile(fo)) strcat(fo_filename,".gz"); mcpl_close_file(fi); printf("MCPL: Succesfully extracted %" PRIu64 " / %" PRIu64 " particles from %s into %s\n", added,fi_nparticles,filenames[0],fo_filename); free(fo_filename); free(filenames); return 0; } if (opt_text) { if (nfilenames>2) return free(filenames),mcpl_tool_usage(argv,"Too many arguments."); if (nfilenames!=2) return free(filenames),mcpl_tool_usage(argv,"Must specify both input and output files with --text."); if (mcpl_file_certainly_exists(filenames[1])) return free(filenames),mcpl_tool_usage(argv,"Requested output file already exists."); mcpl_file_t fi = mcpl_open_file(filenames[0]); FILE * fout = fopen(filenames[1],"w"); if (!fout) return free(filenames),mcpl_tool_usage(argv,"Could not open output file."); fprintf(fout,"#MCPL-ASCII\n#ASCII-FORMAT: v1\n#NPARTICLES: %" PRIu64 "\n#END-HEADER\n",mcpl_hdr_nparticles(fi)); fprintf(fout,"index pdgcode ekin[MeV] x[cm] " " y[cm] z[cm] ux " " uy uz time[ms] weight " " pol-x pol-y pol-z userflags\n"); const mcpl_particle_t* p; while ( ( p = mcpl_read(fi) ) ) { uint64_t idx = mcpl_currentposition(fi)-1;//-1 since mcpl_read skipped ahead fprintf(fout,"%5" PRIu64 " %11i %23.18g %23.18g %23.18g %23.18g %23.18g %23.18g %23.18g %23.18g %23.18g" " %23.18g %23.18g %23.18g 0x%08x\n", idx,p->pdgcode,p->ekin,p->position[0],p->position[1],p->position[2], p->direction[0],p->direction[1],p->direction[2],p->time,p->weight, p->polarisation[0],p->polarisation[1],p->polarisation[2],p->userflags); } fclose(fout); mcpl_close_file(fi); free(filenames); return 0; } if (nfilenames>1) return free(filenames),mcpl_tool_usage(argv,"Too many arguments."); if (!nfilenames) return free(filenames),mcpl_tool_usage(argv,"No input file specified"); if (opt_repair) { mcpl_repair(filenames[0]); free(filenames); return 0; } //Dump mode: if (blobkey) { mcpl_file_t mcplfile = mcpl_open_file(filenames[0]); uint32_t ldata; const char * data; if (!mcpl_hdr_blob(mcplfile, blobkey, &ldata, &data)) return 1; #ifdef MCPL_THIS_IS_MS setmode(STDOUT_FILENO, O_BINARY); #endif uint32_t nb = write(STDOUT_FILENO,data,ldata); if (nb!=ldata) mcpl_error("Problems writing to stdout"); free(filenames); return 0; } if (opt_justhead&&(opt_num_limit!=-1||opt_num_skip!=-1)) return free(filenames),mcpl_tool_usage(argv,"Do not specify -l or -s with --justhead"); if (opt_num_limit<0) opt_num_limit = MCPLIMP_TOOL_DEFAULT_NLIMIT; if (opt_num_skip<0) opt_num_skip = MCPLIMP_TOOL_DEFAULT_NSKIP; if (opt_justhead&&opt_nohead) return free(filenames),mcpl_tool_usage(argv,"Do not supply both --justhead and --nohead."); int parts = 0; if (opt_nohead) parts=2; else if (opt_justhead) parts=1; mcpl_dump(filenames[0],parts,opt_num_skip,opt_num_limit); free(filenames); return 0; } int mcpl_gzip_file_rc(const char * filename) { printf("MCPL WARNING: Usage of function mcpl_gzip_file_rc is obsolete as" " mcpl_gzip_file now also returns the status. Please update your code" " to use mcpl_gzip_file instead.\n"); return mcpl_gzip_file(filename); } #if defined(MCPL_HASZLIB) && !defined(Z_SOLO) && !defined(MCPL_NO_CUSTOM_GZIP) # define MCPLIMP_HAS_CUSTOM_GZIP int _mcpl_custom_gzip(const char *file, const char *mode);//return 1 if successful, 0 if not #endif #if defined MCPL_THIS_IS_UNIX && !defined(MCPL_NO_EXT_GZIP) //Platform is unix-like enough that we assume gzip is installed and we can //include posix headers. # include # include # include int mcpl_gzip_file(const char * filename) { const char * bn = strrchr(filename, '/'); bn = bn ? bn + 1 : filename; //spawn process in which to perform gzip: printf("MCPL: Attempting to compress file %s with gzip\n",bn); fflush(0); pid_t gzip_pid = fork(); if (gzip_pid) { //main proc int chld_state = 0; pid_t ret = waitpid(gzip_pid,&chld_state,0); if (ret!=gzip_pid||chld_state!=0) { # ifdef MCPLIMP_HAS_CUSTOM_GZIP printf("MCPL WARNING: Problems invoking gzip - will revert to a custom zlib based compression\n"); if (!_mcpl_custom_gzip(filename,"wb")) mcpl_error("Problems encountered while attempting to compress file"); else printf("MCPL: Succesfully compressed file into %s.gz\n",bn); # else mcpl_error("Problems encountered while attempting to invoke gzip"); # endif } else printf("MCPL: Succesfully compressed file into %s.gz\n",bn); } else { //spawned proc in which to invoke gzip execlp("gzip", "gzip", "-f",filename, (char*)0); printf("MCPL: execlp/gzip error: %s\n",strerror(errno)); exit(1); } return 1; } #else //Non unix-y platform (like windows). We could use e.g. windows-specific calls //instead of the fork() and waitpid() used above, but gzip likely not present on //the system anyway, so we either resort to using zlib directly to gzip, or we //disable the feature and print a warning. # ifndef MCPLIMP_HAS_CUSTOM_GZIP int mcpl_gzip_file(const char * filename) { const char * bn = strrchr(filename, '/'); bn = bn ? bn + 1 : filename; printf("MCPL WARNING: Requested compression of %s to %s.gz is not supported in this build.\n",bn,bn); return 0; } # else int mcpl_gzip_file(const char * filename) { const char * bn = strrchr(filename, '/'); bn = bn ? bn + 1 : filename; printf("MCPL: Attempting to compress file %s with zlib\n",bn); if (!_mcpl_custom_gzip(filename,"wb")) printf("MCPL ERROR: Problems encountered while compressing file %s.\n",bn); else printf("MCPL: Succesfully compressed file into %s.gz\n",bn); return 1; } # endif #endif #ifdef MCPLIMP_HAS_CUSTOM_GZIP int _mcpl_custom_gzip(const char *filename, const char *mode) { //Open input file: FILE *handle_in = fopen(filename, "rb"); if (!handle_in) return 0; //Construct output file name by appending .gz: char * outfn = (char*)malloc(strlen(filename) + 4); outfn[0] = '\0'; strcat(outfn,filename); strcat(outfn,".gz"); //Open output file: gzFile handle_out = gzopen(outfn, mode); free(outfn); if (!handle_out) { fclose(handle_in); return 0; } //Compress input to output: char buf[16384]; size_t len; while (1) { len = (int)fread(buf, 1, sizeof(buf), handle_in); if (ferror(handle_in)) return 0; if (!len) break; if ((size_t)gzwrite(handle_out, buf, (unsigned)len) != len) return 0; } //close file: fclose(handle_in); if (gzclose(handle_out) != Z_OK) return 0; //remove input file and return success: unlink(filename); return 1; } #endif #ifdef NAME # undef NAME #endif /* START OF DUMP OF mz_uncompr.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* uncompr.c -- decompress a memory buffer * Copyright (C) 1995-2003, 2010 Jean-loup Gailly. * For conditions of distribution and use, see copyright notice in zlib.h */ /* @(#) $Id$ */ #define ZLIB_INTERNAL /* =========================================================================== Decompresses the source buffer into the destination buffer. sourceLen is the byte length of the source buffer. Upon entry, destLen is the total size of the destination buffer, which must be large enough to hold the entire uncompressed data. (The size of the uncompressed data must have been saved previously by the compressor and transmitted to the decompressor by some mechanism outside the scope of this compression library.) Upon exit, destLen is the actual size of the compressed buffer. uncompress returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if there was not enough room in the output buffer, or Z_DATA_ERROR if the input data was corrupted. */ int ZEXPORT uncompress (dest, destLen, source, sourceLen) Bytef *dest; uLongf *destLen; const Bytef *source; uLong sourceLen; { z_stream stream; int err; stream.next_in = (z_const Bytef *)source; stream.avail_in = (uInt)sourceLen; /* Check for source > 64K on 16-bit machine: */ if ((uLong)stream.avail_in != sourceLen) return Z_BUF_ERROR; stream.next_out = dest; stream.avail_out = (uInt)*destLen; if ((uLong)stream.avail_out != *destLen) return Z_BUF_ERROR; stream.zalloc = (alloc_func)0; stream.zfree = (free_func)0; err = inflateInit(&stream); if (err != Z_OK) return err; err = inflate(&stream, Z_FINISH); if (err != Z_STREAM_END) { inflateEnd(&stream); if (err == Z_NEED_DICT || (err == Z_BUF_ERROR && stream.avail_in == 0)) return Z_DATA_ERROR; return err; } *destLen = stream.total_out; err = inflateEnd(&stream); return err; } /* END OF DUMP OF mz_uncompr.c*/ /* START OF DUMP OF mz_trees.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* trees.c -- output deflated data using Huffman coding * Copyright (C) 1995-2012 Jean-loup Gailly * detect_data_type() function provided freely by Cosmin Truta, 2006 * For conditions of distribution and use, see copyright notice in zlib.h */ /* * ALGORITHM * * The "deflation" process uses several Huffman trees. The more * common source values are represented by shorter bit sequences. * * Each code tree is stored in a compressed form which is itself * a Huffman encoding of the lengths of all the code strings (in * ascending order by source values). The actual code strings are * reconstructed from the lengths in the inflate process, as described * in the deflate specification. * * REFERENCES * * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc * * Storer, James A. * Data Compression: Methods and Theory, pp. 49-50. * Computer Science Press, 1988. ISBN 0-7167-8156-5. * * Sedgewick, R. * Algorithms, p290. * Addison-Wesley, 1983. ISBN 0-201-06672-6. */ /* @(#) $Id$ */ /* #define GEN_TREES_H */ /* START OF DUMP OF mz_deflate.h*/ /* deflate.h -- internal compression state * Copyright (C) 1995-2012 Jean-loup Gailly * For conditions of distribution and use, see copyright notice in zlib.h */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ /* @(#) $Id$ */ #ifndef DEFLATE_H #define DEFLATE_H /* START OF DUMP OF mz_zutil.h*/ /* zutil.h -- internal interface and configuration of the compression library * Copyright (C) 1995-2013 Jean-loup Gailly. * For conditions of distribution and use, see copyright notice in zlib.h */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ /* @(#) $Id$ */ #ifndef ZUTIL_H #define ZUTIL_H #ifdef HAVE_HIDDEN # define ZLIB_INTERNAL __attribute__((visibility ("hidden"))) #else # define ZLIB_INTERNAL #endif #if defined(STDC) && !defined(Z_SOLO) # if !(defined(_WIN32_WCE) && defined(_MSC_VER)) # include # endif # include # include #endif #ifdef Z_SOLO typedef long ptrdiff_t; /* guess -- will be caught if guess is wrong */ #endif #ifndef local # define local static #endif /* compile with -Dlocal if your debugger can't find static symbols */ typedef unsigned char uch; typedef uch FAR uchf; typedef unsigned short ush; typedef ush FAR ushf; typedef unsigned long ulg; extern z_const char * const z_errmsg[10]; /* indexed by 2-zlib_error */ /* (size given to avoid silly warnings with Visual C++) */ #define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)] #define ERR_RETURN(strm,err) \ return (strm->msg = ERR_MSG(err), (err)) /* To be used only when the state is known to be valid */ /* common constants */ #ifndef DEF_WBITS # define DEF_WBITS MAX_WBITS #endif /* default windowBits for decompression. MAX_WBITS is for compression only */ #if MAX_MEM_LEVEL >= 8 # define DEF_MEM_LEVEL 8 #else # define DEF_MEM_LEVEL MAX_MEM_LEVEL #endif /* default memLevel */ #define STORED_BLOCK 0 #define STATIC_TREES 1 #define DYN_TREES 2 /* The three kinds of block type */ #define MIN_MATCH 3 #define MAX_MATCH 258 /* The minimum and maximum match lengths */ #define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */ /* target dependencies */ #if defined(MSDOS) || (defined(WINDOWS) && !defined(WIN32)) # define OS_CODE 0x00 # ifndef Z_SOLO # if defined(__TURBOC__) || defined(__BORLANDC__) # if (__STDC__ == 1) && (defined(__LARGE__) || defined(__COMPACT__)) /* Allow compilation with ANSI keywords only enabled */ void _Cdecl farfree( void *block ); void *_Cdecl farmalloc( unsigned long nbytes ); # else # include # endif # else /* MSC or DJGPP */ # include # endif # endif #endif #ifdef AMIGA # define OS_CODE 0x01 #endif #if defined(VAXC) || defined(VMS) # define OS_CODE 0x02 # define F_OPEN(name, mode) \ fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512") #endif #if defined(ATARI) || defined(atarist) # define OS_CODE 0x05 #endif #ifdef OS2 # define OS_CODE 0x06 # if defined(M_I86) && !defined(Z_SOLO) # include # endif #endif #if defined(MACOS) || defined(TARGET_OS_MAC) # define OS_CODE 0x07 # ifndef Z_SOLO # if defined(__MWERKS__) && __dest_os != __be_os && __dest_os != __win32_os # include /* for fdopen */ # else # ifndef fdopen # define fdopen(fd,mode) NULL /* No fdopen() */ # endif # endif # endif #endif #ifdef TOPS20 # define OS_CODE 0x0a #endif #ifdef WIN32 # ifndef __CYGWIN__ /* Cygwin is Unix, not Win32 */ # define OS_CODE 0x0b # endif #endif #ifdef __50SERIES /* Prime/PRIMOS */ # define OS_CODE 0x0f #endif #if defined(_BEOS_) || defined(RISCOS) # define fdopen(fd,mode) NULL /* No fdopen() */ #endif #if (defined(_MSC_VER) && (_MSC_VER > 600)) && !defined __INTERIX # if defined(_WIN32_WCE) # define fdopen(fd,mode) NULL /* No fdopen() */ # ifndef _PTRDIFF_T_DEFINED typedef int ptrdiff_t; # define _PTRDIFF_T_DEFINED # endif # else # define fdopen(fd,type) _fdopen(fd,type) # endif #endif #if defined(__BORLANDC__) && !defined(MSDOS) #pragma warn -8004 #pragma warn -8008 #pragma warn -8066 #endif /* provide prototypes for these when building zlib without LFS */ #if !defined(_WIN32) && \ (!defined(_LARGEFILE64_SOURCE) || _LFS64_LARGEFILE-0 == 0) ZEXTERN uLong ZEXPORT adler32_combine64 OF((uLong, uLong, z_off_t)); ZEXTERN uLong ZEXPORT crc32_combine64 OF((uLong, uLong, z_off_t)); #endif /* common defaults */ #ifndef OS_CODE # define OS_CODE 0x03 /* assume Unix */ #endif #ifndef F_OPEN # define F_OPEN(name, mode) fopen((name), (mode)) #endif /* functions */ #if defined(pyr) || defined(Z_SOLO) # define NO_MEMCPY #endif #if defined(SMALL_MEDIUM) && !defined(_MSC_VER) && !defined(__SC__) /* Use our own functions for small and medium model with MSC <= 5.0. * You may have to use the same strategy for Borland C (untested). * The __SC__ check is for Symantec. */ # define NO_MEMCPY #endif #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY) # define HAVE_MEMCPY #endif #ifdef HAVE_MEMCPY # ifdef SMALL_MEDIUM /* MSDOS small or medium model */ # define zmemcpy _fmemcpy # define zmemcmp _fmemcmp # define zmemzero(dest, len) _fmemset(dest, 0, len) # else # define zmemcpy memcpy # define zmemcmp memcmp # define zmemzero(dest, len) memset(dest, 0, len) # endif #else void ZLIB_INTERNAL zmemcpy OF((Bytef* dest, const Bytef* source, uInt len)); int ZLIB_INTERNAL zmemcmp OF((const Bytef* s1, const Bytef* s2, uInt len)); void ZLIB_INTERNAL zmemzero OF((Bytef* dest, uInt len)); #endif /* Diagnostic functions */ #ifdef DEBUG # include extern int ZLIB_INTERNAL z_verbose; extern void ZLIB_INTERNAL z_error OF((char *m)); # define Assert(cond,msg) {if(!(cond)) z_error(msg);} # define Trace(x) {if (z_verbose>=0) fprintf x ;} # define Tracev(x) {if (z_verbose>0) fprintf x ;} # define Tracevv(x) {if (z_verbose>1) fprintf x ;} # define Tracec(c,x) {if (z_verbose>0 && (c)) fprintf x ;} # define Tracecv(c,x) {if (z_verbose>1 && (c)) fprintf x ;} #else # define Assert(cond,msg) # define Trace(x) # define Tracev(x) # define Tracevv(x) # define Tracec(c,x) # define Tracecv(c,x) #endif #ifndef Z_SOLO voidpf ZLIB_INTERNAL zcalloc OF((voidpf opaque, unsigned items, unsigned size)); void ZLIB_INTERNAL zcfree OF((voidpf opaque, voidpf ptr)); #endif #define ZALLOC(strm, items, size) \ (*((strm)->zalloc))((strm)->opaque, (items), (size)) #define ZFREE(strm, addr) (*((strm)->zfree))((strm)->opaque, (voidpf)(addr)) #define TRY_FREE(s, p) {if (p) ZFREE(s, p);} /* Reverse the bytes in a 32-bit value */ #define ZSWAP32(q) ((((q) >> 24) & 0xff) + (((q) >> 8) & 0xff00) + \ (((q) & 0xff00) << 8) + (((q) & 0xff) << 24)) #endif /* ZUTIL_H */ /* END OF DUMP OF mz_zutil.h*/ /* define NO_GZIP when compiling if you want to disable gzip header and trailer creation by deflate(). NO_GZIP would be used to avoid linking in the crc code when it is not needed. For shared libraries, gzip encoding should be left enabled. */ #ifndef NO_GZIP # define GZIP #endif /* =========================================================================== * Internal compression state. */ #define LENGTH_CODES 29 /* number of length codes, not counting the special END_BLOCK code */ #define LITERALS 256 /* number of literal bytes 0..255 */ #define L_CODES (LITERALS+1+LENGTH_CODES) /* number of Literal or Length codes, including the END_BLOCK code */ #define D_CODES 30 /* number of distance codes */ #define BL_CODES 19 /* number of codes used to transfer the bit lengths */ #define HEAP_SIZE (2*L_CODES+1) /* maximum heap size */ #define MAX_BITS 15 /* All codes must not exceed MAX_BITS bits */ #define Buf_size 16 /* size of bit buffer in bi_buf */ #define INIT_STATE 42 #define EXTRA_STATE 69 #define NAME_STATE 73 #define COMMENT_STATE 91 #define HCRC_STATE 103 #define BUSY_STATE 113 #define FINISH_STATE 666 /* Stream status */ /* Data structure describing a single value and its code string. */ typedef struct ct_data_s { union { ush freq; /* frequency count */ ush code; /* bit string */ } fc; union { ush dad; /* father node in Huffman tree */ ush len; /* length of bit string */ } dl; } FAR ct_data; #define Freq fc.freq #define Code fc.code #define Dad dl.dad #define Len dl.len typedef struct static_tree_desc_s static_tree_desc; typedef struct tree_desc_s { ct_data *dyn_tree; /* the dynamic tree */ int max_code; /* largest code with non zero frequency */ static_tree_desc *stat_desc; /* the corresponding static tree */ } FAR tree_desc; typedef ush Pos; typedef Pos FAR Posf; typedef unsigned IPos; /* A Pos is an index in the character window. We use short instead of int to * save space in the various tables. IPos is used only for parameter passing. */ typedef struct internal_state { z_streamp strm; /* pointer back to this zlib stream */ int status; /* as the name implies */ Bytef *pending_buf; /* output still pending */ ulg pending_buf_size; /* size of pending_buf */ Bytef *pending_out; /* next pending byte to output to the stream */ uInt pending; /* nb of bytes in the pending buffer */ int wrap; /* bit 0 true for zlib, bit 1 true for gzip */ gz_headerp gzhead; /* gzip header information to write */ uInt gzindex; /* where in extra, name, or comment */ Byte method; /* can only be DEFLATED */ int last_flush; /* value of flush param for previous deflate call */ /* used by deflate.c: */ uInt w_size; /* LZ77 window size (32K by default) */ uInt w_bits; /* log2(w_size) (8..16) */ uInt w_mask; /* w_size - 1 */ Bytef *window; /* Sliding window. Input bytes are read into the second half of the window, * and move to the first half later to keep a dictionary of at least wSize * bytes. With this organization, matches are limited to a distance of * wSize-MAX_MATCH bytes, but this ensures that IO is always * performed with a length multiple of the block size. Also, it limits * the window size to 64K, which is quite useful on MSDOS. * To do: use the user input buffer as sliding window. */ ulg window_size; /* Actual size of window: 2*wSize, except when the user input buffer * is directly used as sliding window. */ Posf *prev; /* Link to older string with same hash index. To limit the size of this * array to 64K, this link is maintained only for the last 32K strings. * An index in this array is thus a window index modulo 32K. */ Posf *head; /* Heads of the hash chains or NIL. */ uInt ins_h; /* hash index of string to be inserted */ uInt hash_size; /* number of elements in hash table */ uInt hash_bits; /* log2(hash_size) */ uInt hash_mask; /* hash_size-1 */ uInt hash_shift; /* Number of bits by which ins_h must be shifted at each input * step. It must be such that after MIN_MATCH steps, the oldest * byte no longer takes part in the hash key, that is: * hash_shift * MIN_MATCH >= hash_bits */ long block_start; /* Window position at the beginning of the current output block. Gets * negative when the window is moved backwards. */ uInt match_length; /* length of best match */ IPos prev_match; /* previous match */ int match_available; /* set if previous match exists */ uInt strstart; /* start of string to insert */ uInt match_start; /* start of matching string */ uInt lookahead; /* number of valid bytes ahead in window */ uInt prev_length; /* Length of the best match at previous step. Matches not greater than this * are discarded. This is used in the lazy match evaluation. */ uInt max_chain_length; /* To speed up deflation, hash chains are never searched beyond this * length. A higher limit improves compression ratio but degrades the * speed. */ uInt max_lazy_match; /* Attempt to find a better match only when the current match is strictly * smaller than this value. This mechanism is used only for compression * levels >= 4. */ # define max_insert_length max_lazy_match /* Insert new strings in the hash table only if the match length is not * greater than this length. This saves time but degrades compression. * max_insert_length is used only for compression levels <= 3. */ int level; /* compression level (1..9) */ int strategy; /* favor or force Huffman coding*/ uInt good_match; /* Use a faster search when the previous match is longer than this */ int nice_match; /* Stop searching when current match exceeds this */ /* used by trees.c: */ /* Didn't use ct_data typedef below to suppress compiler warning */ struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */ struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */ struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */ struct tree_desc_s l_desc; /* desc. for literal tree */ struct tree_desc_s d_desc; /* desc. for distance tree */ struct tree_desc_s bl_desc; /* desc. for bit length tree */ ush bl_count[MAX_BITS+1]; /* number of codes at each bit length for an optimal tree */ int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */ int heap_len; /* number of elements in the heap */ int heap_max; /* element of largest frequency */ /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used. * The same heap array is used to build all trees. */ uch depth[2*L_CODES+1]; /* Depth of each subtree used as tie breaker for trees of equal frequency */ uchf *l_buf; /* buffer for literals or lengths */ uInt lit_bufsize; /* Size of match buffer for literals/lengths. There are 4 reasons for * limiting lit_bufsize to 64K: * - frequencies can be kept in 16 bit counters * - if compression is not successful for the first block, all input * data is still in the window so we can still emit a stored block even * when input comes from standard input. (This can also be done for * all blocks if lit_bufsize is not greater than 32K.) * - if compression is not successful for a file smaller than 64K, we can * even emit a stored file instead of a stored block (saving 5 bytes). * This is applicable only for zip (not gzip or zlib). * - creating new Huffman trees less frequently may not provide fast * adaptation to changes in the input data statistics. (Take for * example a binary file with poorly compressible code followed by * a highly compressible string table.) Smaller buffer sizes give * fast adaptation but have of course the overhead of transmitting * trees more frequently. * - I can't count above 4 */ uInt last_lit; /* running index in l_buf */ ushf *d_buf; /* Buffer for distances. To simplify the code, d_buf and l_buf have * the same number of elements. To use different lengths, an extra flag * array would be necessary. */ ulg opt_len; /* bit length of current block with optimal trees */ ulg static_len; /* bit length of current block with static trees */ uInt matches; /* number of string matches in current block */ uInt insert; /* bytes at end of window left to insert */ #ifdef DEBUG ulg compressed_len; /* total bit length of compressed file mod 2^32 */ ulg bits_sent; /* bit length of compressed data sent mod 2^32 */ #endif ush bi_buf; /* Output buffer. bits are inserted starting at the bottom (least * significant bits). */ int bi_valid; /* Number of valid bits in bi_buf. All bits above the last valid bit * are always zero. */ ulg high_water; /* High water mark offset in window for initialized bytes -- bytes above * this are set to zero in order to avoid memory check warnings when * longest match routines access bytes past the input. This is then * updated to the new high water mark. */ } FAR deflate_state; /* Output a byte on the stream. * IN assertion: there is enough room in pending_buf. */ #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);} #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1) /* Minimum amount of lookahead, except at the end of the input file. * See deflate.c for comments about the MIN_MATCH+1. */ #define MAX_DIST(s) ((s)->w_size-MIN_LOOKAHEAD) /* In order to simplify the code, particularly on 16 bit machines, match * distances are limited to MAX_DIST instead of WSIZE. */ #define WIN_INIT MAX_MATCH /* Number of bytes after end of data in window to initialize in order to avoid memory checker errors from longest match routines */ /* in trees.c */ void ZLIB_INTERNAL _tr_init OF((deflate_state *s)); int ZLIB_INTERNAL _tr_tally OF((deflate_state *s, unsigned dist, unsigned lc)); void ZLIB_INTERNAL _tr_flush_block OF((deflate_state *s, charf *buf, ulg stored_len, int last)); void ZLIB_INTERNAL _tr_flush_bits OF((deflate_state *s)); void ZLIB_INTERNAL _tr_align OF((deflate_state *s)); void ZLIB_INTERNAL _tr_stored_block OF((deflate_state *s, charf *buf, ulg stored_len, int last)); #define d_code(dist) \ ((dist) < 256 ? _dist_code[dist] : _dist_code[256+((dist)>>7)]) /* Mapping from a distance to a distance code. dist is the distance - 1 and * must not have side effects. _dist_code[256] and _dist_code[257] are never * used. */ #ifndef DEBUG /* Inline versions of _tr_tally for speed: */ #if defined(GEN_TREES_H) || !defined(STDC) extern uch ZLIB_INTERNAL _length_code[]; extern uch ZLIB_INTERNAL _dist_code[]; #else extern const uch ZLIB_INTERNAL _length_code[]; extern const uch ZLIB_INTERNAL _dist_code[]; #endif # define _tr_tally_lit(s, c, flush) \ { uch cc = (c); \ s->d_buf[s->last_lit] = 0; \ s->l_buf[s->last_lit++] = cc; \ s->dyn_ltree[cc].Freq++; \ flush = (s->last_lit == s->lit_bufsize-1); \ } # define _tr_tally_dist(s, distance, length, flush) \ { uch len = (length); \ ush dist = (distance); \ s->d_buf[s->last_lit] = dist; \ s->l_buf[s->last_lit++] = len; \ dist--; \ s->dyn_ltree[_length_code[len]+LITERALS+1].Freq++; \ s->dyn_dtree[d_code(dist)].Freq++; \ flush = (s->last_lit == s->lit_bufsize-1); \ } #else # define _tr_tally_lit(s, c, flush) flush = _tr_tally(s, 0, c) # define _tr_tally_dist(s, distance, length, flush) \ flush = _tr_tally(s, distance, length) #endif #endif /* DEFLATE_H */ /* END OF DUMP OF mz_deflate.h*/ #ifdef DEBUG # include #endif /* =========================================================================== * Constants */ #define MAX_BL_BITS 7 /* Bit length codes must not exceed MAX_BL_BITS bits */ #define END_BLOCK 256 /* end of block literal code */ #define REP_3_6 16 /* repeat previous bit length 3-6 times (2 bits of repeat count) */ #define REPZ_3_10 17 /* repeat a zero length 3-10 times (3 bits of repeat count) */ #define REPZ_11_138 18 /* repeat a zero length 11-138 times (7 bits of repeat count) */ local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; local const int extra_dbits[D_CODES] /* extra bits for each distance code */ = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */ = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; local const uch bl_order[BL_CODES] = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; /* The lengths of the bit length codes are sent in order of decreasing * probability, to avoid transmitting the lengths for unused bit length codes. */ /* =========================================================================== * Local data. These are initialized only once. */ #define DIST_CODE_LEN 512 /* see definition of array dist_code below */ #if defined(GEN_TREES_H) || !defined(STDC) /* non ANSI compilers may not accept trees.h */ local ct_data static_ltree[L_CODES+2]; /* The static literal tree. Since the bit lengths are imposed, there is no * need for the L_CODES extra codes used during heap construction. However * The codes 286 and 287 are needed to build a canonical tree (see _tr_init * below). */ local ct_data static_dtree[D_CODES]; /* The static distance tree. (Actually a trivial tree since all codes use * 5 bits.) */ uch _dist_code[DIST_CODE_LEN]; /* Distance codes. The first 256 values correspond to the distances * 3 .. 258, the last 256 values correspond to the top 8 bits of * the 15 bit distances. */ uch _length_code[MAX_MATCH-MIN_MATCH+1]; /* length code for each normalized match length (0 == MIN_MATCH) */ local int base_length[LENGTH_CODES]; /* First normalized length for each code (0 = MIN_MATCH) */ local int base_dist[D_CODES]; /* First normalized distance for each code (0 = distance of 1) */ #else /* START OF DUMP OF mz_trees.h*/ /* header created automatically with -DGEN_TREES_H */ local const ct_data static_ltree[L_CODES+2] = { {{ 12},{ 8}}, {{140},{ 8}}, {{ 76},{ 8}}, {{204},{ 8}}, {{ 44},{ 8}}, {{172},{ 8}}, {{108},{ 8}}, {{236},{ 8}}, {{ 28},{ 8}}, {{156},{ 8}}, {{ 92},{ 8}}, {{220},{ 8}}, {{ 60},{ 8}}, {{188},{ 8}}, {{124},{ 8}}, {{252},{ 8}}, {{ 2},{ 8}}, {{130},{ 8}}, {{ 66},{ 8}}, {{194},{ 8}}, {{ 34},{ 8}}, {{162},{ 8}}, {{ 98},{ 8}}, {{226},{ 8}}, {{ 18},{ 8}}, {{146},{ 8}}, {{ 82},{ 8}}, {{210},{ 8}}, {{ 50},{ 8}}, {{178},{ 8}}, {{114},{ 8}}, {{242},{ 8}}, {{ 10},{ 8}}, {{138},{ 8}}, {{ 74},{ 8}}, {{202},{ 8}}, {{ 42},{ 8}}, {{170},{ 8}}, {{106},{ 8}}, {{234},{ 8}}, {{ 26},{ 8}}, {{154},{ 8}}, {{ 90},{ 8}}, {{218},{ 8}}, {{ 58},{ 8}}, {{186},{ 8}}, {{122},{ 8}}, {{250},{ 8}}, {{ 6},{ 8}}, {{134},{ 8}}, {{ 70},{ 8}}, {{198},{ 8}}, {{ 38},{ 8}}, {{166},{ 8}}, {{102},{ 8}}, {{230},{ 8}}, {{ 22},{ 8}}, {{150},{ 8}}, {{ 86},{ 8}}, {{214},{ 8}}, {{ 54},{ 8}}, {{182},{ 8}}, {{118},{ 8}}, {{246},{ 8}}, {{ 14},{ 8}}, {{142},{ 8}}, {{ 78},{ 8}}, {{206},{ 8}}, {{ 46},{ 8}}, {{174},{ 8}}, {{110},{ 8}}, {{238},{ 8}}, {{ 30},{ 8}}, {{158},{ 8}}, {{ 94},{ 8}}, {{222},{ 8}}, {{ 62},{ 8}}, {{190},{ 8}}, {{126},{ 8}}, {{254},{ 8}}, {{ 1},{ 8}}, {{129},{ 8}}, {{ 65},{ 8}}, {{193},{ 8}}, {{ 33},{ 8}}, {{161},{ 8}}, {{ 97},{ 8}}, {{225},{ 8}}, {{ 17},{ 8}}, {{145},{ 8}}, {{ 81},{ 8}}, {{209},{ 8}}, {{ 49},{ 8}}, {{177},{ 8}}, {{113},{ 8}}, {{241},{ 8}}, {{ 9},{ 8}}, {{137},{ 8}}, {{ 73},{ 8}}, {{201},{ 8}}, {{ 41},{ 8}}, {{169},{ 8}}, {{105},{ 8}}, {{233},{ 8}}, {{ 25},{ 8}}, {{153},{ 8}}, {{ 89},{ 8}}, {{217},{ 8}}, {{ 57},{ 8}}, {{185},{ 8}}, {{121},{ 8}}, {{249},{ 8}}, {{ 5},{ 8}}, {{133},{ 8}}, {{ 69},{ 8}}, {{197},{ 8}}, {{ 37},{ 8}}, {{165},{ 8}}, {{101},{ 8}}, {{229},{ 8}}, {{ 21},{ 8}}, {{149},{ 8}}, {{ 85},{ 8}}, {{213},{ 8}}, {{ 53},{ 8}}, {{181},{ 8}}, {{117},{ 8}}, {{245},{ 8}}, {{ 13},{ 8}}, {{141},{ 8}}, {{ 77},{ 8}}, {{205},{ 8}}, {{ 45},{ 8}}, {{173},{ 8}}, {{109},{ 8}}, {{237},{ 8}}, {{ 29},{ 8}}, {{157},{ 8}}, {{ 93},{ 8}}, {{221},{ 8}}, {{ 61},{ 8}}, {{189},{ 8}}, {{125},{ 8}}, {{253},{ 8}}, {{ 19},{ 9}}, {{275},{ 9}}, {{147},{ 9}}, {{403},{ 9}}, {{ 83},{ 9}}, {{339},{ 9}}, {{211},{ 9}}, {{467},{ 9}}, {{ 51},{ 9}}, {{307},{ 9}}, {{179},{ 9}}, {{435},{ 9}}, {{115},{ 9}}, {{371},{ 9}}, {{243},{ 9}}, {{499},{ 9}}, {{ 11},{ 9}}, {{267},{ 9}}, {{139},{ 9}}, {{395},{ 9}}, {{ 75},{ 9}}, {{331},{ 9}}, {{203},{ 9}}, {{459},{ 9}}, {{ 43},{ 9}}, {{299},{ 9}}, {{171},{ 9}}, {{427},{ 9}}, {{107},{ 9}}, {{363},{ 9}}, {{235},{ 9}}, {{491},{ 9}}, {{ 27},{ 9}}, {{283},{ 9}}, {{155},{ 9}}, {{411},{ 9}}, {{ 91},{ 9}}, {{347},{ 9}}, {{219},{ 9}}, {{475},{ 9}}, {{ 59},{ 9}}, {{315},{ 9}}, {{187},{ 9}}, {{443},{ 9}}, {{123},{ 9}}, {{379},{ 9}}, {{251},{ 9}}, {{507},{ 9}}, {{ 7},{ 9}}, {{263},{ 9}}, {{135},{ 9}}, {{391},{ 9}}, {{ 71},{ 9}}, {{327},{ 9}}, {{199},{ 9}}, {{455},{ 9}}, {{ 39},{ 9}}, {{295},{ 9}}, {{167},{ 9}}, {{423},{ 9}}, {{103},{ 9}}, {{359},{ 9}}, {{231},{ 9}}, {{487},{ 9}}, {{ 23},{ 9}}, {{279},{ 9}}, {{151},{ 9}}, {{407},{ 9}}, {{ 87},{ 9}}, {{343},{ 9}}, {{215},{ 9}}, {{471},{ 9}}, {{ 55},{ 9}}, {{311},{ 9}}, {{183},{ 9}}, {{439},{ 9}}, {{119},{ 9}}, {{375},{ 9}}, {{247},{ 9}}, {{503},{ 9}}, {{ 15},{ 9}}, {{271},{ 9}}, {{143},{ 9}}, {{399},{ 9}}, {{ 79},{ 9}}, {{335},{ 9}}, {{207},{ 9}}, {{463},{ 9}}, {{ 47},{ 9}}, {{303},{ 9}}, {{175},{ 9}}, {{431},{ 9}}, {{111},{ 9}}, {{367},{ 9}}, {{239},{ 9}}, {{495},{ 9}}, {{ 31},{ 9}}, {{287},{ 9}}, {{159},{ 9}}, {{415},{ 9}}, {{ 95},{ 9}}, {{351},{ 9}}, {{223},{ 9}}, {{479},{ 9}}, {{ 63},{ 9}}, {{319},{ 9}}, {{191},{ 9}}, {{447},{ 9}}, {{127},{ 9}}, {{383},{ 9}}, {{255},{ 9}}, {{511},{ 9}}, {{ 0},{ 7}}, {{ 64},{ 7}}, {{ 32},{ 7}}, {{ 96},{ 7}}, {{ 16},{ 7}}, {{ 80},{ 7}}, {{ 48},{ 7}}, {{112},{ 7}}, {{ 8},{ 7}}, {{ 72},{ 7}}, {{ 40},{ 7}}, {{104},{ 7}}, {{ 24},{ 7}}, {{ 88},{ 7}}, {{ 56},{ 7}}, {{120},{ 7}}, {{ 4},{ 7}}, {{ 68},{ 7}}, {{ 36},{ 7}}, {{100},{ 7}}, {{ 20},{ 7}}, {{ 84},{ 7}}, {{ 52},{ 7}}, {{116},{ 7}}, {{ 3},{ 8}}, {{131},{ 8}}, {{ 67},{ 8}}, {{195},{ 8}}, {{ 35},{ 8}}, {{163},{ 8}}, {{ 99},{ 8}}, {{227},{ 8}} }; local const ct_data static_dtree[D_CODES] = { {{ 0},{ 5}}, {{16},{ 5}}, {{ 8},{ 5}}, {{24},{ 5}}, {{ 4},{ 5}}, {{20},{ 5}}, {{12},{ 5}}, {{28},{ 5}}, {{ 2},{ 5}}, {{18},{ 5}}, {{10},{ 5}}, {{26},{ 5}}, {{ 6},{ 5}}, {{22},{ 5}}, {{14},{ 5}}, {{30},{ 5}}, {{ 1},{ 5}}, {{17},{ 5}}, {{ 9},{ 5}}, {{25},{ 5}}, {{ 5},{ 5}}, {{21},{ 5}}, {{13},{ 5}}, {{29},{ 5}}, {{ 3},{ 5}}, {{19},{ 5}}, {{11},{ 5}}, {{27},{ 5}}, {{ 7},{ 5}}, {{23},{ 5}} }; const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = { 0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 16, 17, 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29 }; const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= { 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28 }; local const int base_length[LENGTH_CODES] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 0 }; local const int base_dist[D_CODES] = { 0, 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576 }; /* END OF DUMP OF mz_trees.h*/ #endif /* GEN_TREES_H */ struct static_tree_desc_s { const ct_data *static_tree; /* static tree or NULL */ const intf *extra_bits; /* extra bits for each code or NULL */ int extra_base; /* base index for extra_bits */ int elems; /* max number of elements in the tree */ int max_length; /* max bit length for the codes */ }; local static_tree_desc static_l_desc = {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; local static_tree_desc static_d_desc = {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS}; local static_tree_desc static_bl_desc = {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; /* =========================================================================== * Local (static) routines in this file. */ local void tr_static_init OF((void)); local void init_block OF((deflate_state *s)); local void pqdownheap OF((deflate_state *s, ct_data *tree, int k)); local void gen_bitlen OF((deflate_state *s, tree_desc *desc)); local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count)); local void build_tree OF((deflate_state *s, tree_desc *desc)); local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code)); local void send_tree OF((deflate_state *s, ct_data *tree, int max_code)); local int build_bl_tree OF((deflate_state *s)); local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes, int blcodes)); local void compress_block OF((deflate_state *s, const ct_data *ltree, const ct_data *dtree)); local int detect_data_type OF((deflate_state *s)); local unsigned bi_reverse OF((unsigned value, int length)); local void bi_windup OF((deflate_state *s)); local void bi_flush OF((deflate_state *s)); local void copy_block OF((deflate_state *s, charf *buf, unsigned len, int header)); #ifdef GEN_TREES_H local void gen_trees_header OF((void)); #endif #ifndef DEBUG # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) /* Send a code of the given tree. c and tree must not have side effects */ #else /* DEBUG */ # define send_code(s, c, tree) \ { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ send_bits(s, tree[c].Code, tree[c].Len); } #endif /* =========================================================================== * Output a short LSB first on the stream. * IN assertion: there is enough room in pendingBuf. */ #define put_short(s, w) { \ put_byte(s, (uch)((w) & 0xff)); \ put_byte(s, (uch)((ush)(w) >> 8)); \ } /* =========================================================================== * Send a value on a given number of bits. * IN assertion: length <= 16 and value fits in length bits. */ #ifdef DEBUG local void send_bits OF((deflate_state *s, int value, int length)); local void send_bits(s, value, length) deflate_state *s; int value; /* value to send */ int length; /* number of bits */ { Tracevv((stderr," l %2d v %4x ", length, value)); Assert(length > 0 && length <= 15, "invalid length"); s->bits_sent += (ulg)length; /* If not enough room in bi_buf, use (valid) bits from bi_buf and * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) * unused bits in value. */ if (s->bi_valid > (int)Buf_size - length) { s->bi_buf |= (ush)value << s->bi_valid; put_short(s, s->bi_buf); s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); s->bi_valid += length - Buf_size; } else { s->bi_buf |= (ush)value << s->bi_valid; s->bi_valid += length; } } #else /* !DEBUG */ #define send_bits(s, value, length) \ { int len = length;\ if (s->bi_valid > (int)Buf_size - len) {\ int val = value;\ s->bi_buf |= (ush)val << s->bi_valid;\ put_short(s, s->bi_buf);\ s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ s->bi_valid += len - Buf_size;\ } else {\ s->bi_buf |= (ush)(value) << s->bi_valid;\ s->bi_valid += len;\ }\ } #endif /* DEBUG */ /* the arguments must not have side effects */ /* =========================================================================== * Initialize the various 'constant' tables. */ local void tr_static_init() { #if defined(GEN_TREES_H) || !defined(STDC) static int static_init_done = 0; int n; /* iterates over tree elements */ int bits; /* bit counter */ int length; /* length value */ int code; /* code value */ int dist; /* distance index */ ush bl_count[MAX_BITS+1]; /* number of codes at each bit length for an optimal tree */ if (static_init_done) return; /* For some embedded targets, global variables are not initialized: */ #ifdef NO_INIT_GLOBAL_POINTERS static_l_desc.static_tree = static_ltree; static_l_desc.extra_bits = extra_lbits; static_d_desc.static_tree = static_dtree; static_d_desc.extra_bits = extra_dbits; static_bl_desc.extra_bits = extra_blbits; #endif /* Initialize the mapping length (0..255) -> length code (0..28) */ length = 0; for (code = 0; code < LENGTH_CODES-1; code++) { base_length[code] = length; for (n = 0; n < (1< dist code (0..29) */ dist = 0; for (code = 0 ; code < 16; code++) { base_dist[code] = dist; for (n = 0; n < (1<>= 7; /* from now on, all distances are divided by 128 */ for ( ; code < D_CODES; code++) { base_dist[code] = dist << 7; for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { _dist_code[256 + dist++] = (uch)code; } } Assert (dist == 256, "tr_static_init: 256+dist != 512"); /* Construct the codes of the static literal tree */ for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; n = 0; while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; /* Codes 286 and 287 do not exist, but we must include them in the * tree construction to get a canonical Huffman tree (longest code * all ones) */ gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); /* The static distance tree is trivial: */ for (n = 0; n < D_CODES; n++) { static_dtree[n].Len = 5; static_dtree[n].Code = bi_reverse((unsigned)n, 5); } static_init_done = 1; # ifdef GEN_TREES_H gen_trees_header(); # endif #endif /* defined(GEN_TREES_H) || !defined(STDC) */ } /* =========================================================================== * Genererate the file trees.h describing the static trees. */ #ifdef GEN_TREES_H # ifndef DEBUG # include # endif # define SEPARATOR(i, last, width) \ ((i) == (last)? "\n};\n\n" : \ ((i) % (width) == (width)-1 ? ",\n" : ", ")) void gen_trees_header() { FILE *header = fopen("trees.h", "w"); int i; Assert (header != NULL, "Can't open trees.h"); fprintf(header, "/* header created automatically with -DGEN_TREES_H */\n\n"); fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n"); for (i = 0; i < L_CODES+2; i++) { fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code, static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5)); } fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n"); for (i = 0; i < D_CODES; i++) { fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code, static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5)); } fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n"); for (i = 0; i < DIST_CODE_LEN; i++) { fprintf(header, "%2u%s", _dist_code[i], SEPARATOR(i, DIST_CODE_LEN-1, 20)); } fprintf(header, "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n"); for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) { fprintf(header, "%2u%s", _length_code[i], SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20)); } fprintf(header, "local const int base_length[LENGTH_CODES] = {\n"); for (i = 0; i < LENGTH_CODES; i++) { fprintf(header, "%1u%s", base_length[i], SEPARATOR(i, LENGTH_CODES-1, 20)); } fprintf(header, "local const int base_dist[D_CODES] = {\n"); for (i = 0; i < D_CODES; i++) { fprintf(header, "%5u%s", base_dist[i], SEPARATOR(i, D_CODES-1, 10)); } fclose(header); } #endif /* GEN_TREES_H */ /* =========================================================================== * Initialize the tree data structures for a new zlib stream. */ void ZLIB_INTERNAL _tr_init(s) deflate_state *s; { tr_static_init(); s->l_desc.dyn_tree = s->dyn_ltree; s->l_desc.stat_desc = &static_l_desc; s->d_desc.dyn_tree = s->dyn_dtree; s->d_desc.stat_desc = &static_d_desc; s->bl_desc.dyn_tree = s->bl_tree; s->bl_desc.stat_desc = &static_bl_desc; s->bi_buf = 0; s->bi_valid = 0; #ifdef DEBUG s->compressed_len = 0L; s->bits_sent = 0L; #endif /* Initialize the first block of the first file: */ init_block(s); } /* =========================================================================== * Initialize a new block. */ local void init_block(s) deflate_state *s; { int n; /* iterates over tree elements */ /* Initialize the trees. */ for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0; for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0; for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; s->dyn_ltree[END_BLOCK].Freq = 1; s->opt_len = s->static_len = 0L; s->last_lit = s->matches = 0; } #define SMALLEST 1 /* Index within the heap array of least frequent node in the Huffman tree */ /* =========================================================================== * Remove the smallest element from the heap and recreate the heap with * one less element. Updates heap and heap_len. */ #define pqremove(s, tree, top) \ {\ top = s->heap[SMALLEST]; \ s->heap[SMALLEST] = s->heap[s->heap_len--]; \ pqdownheap(s, tree, SMALLEST); \ } /* =========================================================================== * Compares to subtrees, using the tree depth as tie breaker when * the subtrees have equal frequency. This minimizes the worst case length. */ #define smaller(tree, n, m, depth) \ (tree[n].Freq < tree[m].Freq || \ (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) /* =========================================================================== * Restore the heap property by moving down the tree starting at node k, * exchanging a node with the smallest of its two sons if necessary, stopping * when the heap property is re-established (each father smaller than its * two sons). */ local void pqdownheap(s, tree, k) deflate_state *s; ct_data *tree; /* the tree to restore */ int k; /* node to move down */ { int v = s->heap[k]; int j = k << 1; /* left son of k */ while (j <= s->heap_len) { /* Set j to the smallest of the two sons: */ if (j < s->heap_len && smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { j++; } /* Exit if v is smaller than both sons */ if (smaller(tree, v, s->heap[j], s->depth)) break; /* Exchange v with the smallest son */ s->heap[k] = s->heap[j]; k = j; /* And continue down the tree, setting j to the left son of k */ j <<= 1; } s->heap[k] = v; } /* =========================================================================== * Compute the optimal bit lengths for a tree and update the total bit length * for the current block. * IN assertion: the fields freq and dad are set, heap[heap_max] and * above are the tree nodes sorted by increasing frequency. * OUT assertions: the field len is set to the optimal bit length, the * array bl_count contains the frequencies for each bit length. * The length opt_len is updated; static_len is also updated if stree is * not null. */ local void gen_bitlen(s, desc) deflate_state *s; tree_desc *desc; /* the tree descriptor */ { ct_data *tree = desc->dyn_tree; int max_code = desc->max_code; const ct_data *stree = desc->stat_desc->static_tree; const intf *extra = desc->stat_desc->extra_bits; int base = desc->stat_desc->extra_base; int max_length = desc->stat_desc->max_length; int h; /* heap index */ int n, m; /* iterate over the tree elements */ int bits; /* bit length */ int xbits; /* extra bits */ ush f; /* frequency */ int overflow = 0; /* number of elements with bit length too large */ for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; /* In a first pass, compute the optimal bit lengths (which may * overflow in the case of the bit length tree). */ tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ for (h = s->heap_max+1; h < HEAP_SIZE; h++) { n = s->heap[h]; bits = tree[tree[n].Dad].Len + 1; if (bits > max_length) bits = max_length, overflow++; tree[n].Len = (ush)bits; /* We overwrite tree[n].Dad which is no longer needed */ if (n > max_code) continue; /* not a leaf node */ s->bl_count[bits]++; xbits = 0; if (n >= base) xbits = extra[n-base]; f = tree[n].Freq; s->opt_len += (ulg)f * (bits + xbits); if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits); } if (overflow == 0) return; Trace((stderr,"\nbit length overflow\n")); /* This happens for example on obj2 and pic of the Calgary corpus */ /* Find the first bit length which could increase: */ do { bits = max_length-1; while (s->bl_count[bits] == 0) bits--; s->bl_count[bits]--; /* move one leaf down the tree */ s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ s->bl_count[max_length]--; /* The brother of the overflow item also moves one step up, * but this does not affect bl_count[max_length] */ overflow -= 2; } while (overflow > 0); /* Now recompute all bit lengths, scanning in increasing frequency. * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all * lengths instead of fixing only the wrong ones. This idea is taken * from 'ar' written by Haruhiko Okumura.) */ for (bits = max_length; bits != 0; bits--) { n = s->bl_count[bits]; while (n != 0) { m = s->heap[--h]; if (m > max_code) continue; if ((unsigned) tree[m].Len != (unsigned) bits) { Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); s->opt_len += ((long)bits - (long)tree[m].Len) *(long)tree[m].Freq; tree[m].Len = (ush)bits; } n--; } } } /* =========================================================================== * Generate the codes for a given tree and bit counts (which need not be * optimal). * IN assertion: the array bl_count contains the bit length statistics for * the given tree and the field len is set for all tree elements. * OUT assertion: the field code is set for all tree elements of non * zero code length. */ local void gen_codes (tree, max_code, bl_count) ct_data *tree; /* the tree to decorate */ int max_code; /* largest code with non zero frequency */ ushf *bl_count; /* number of codes at each bit length */ { ush next_code[MAX_BITS+1]; /* next code value for each bit length */ ush code = 0; /* running code value */ int bits; /* bit index */ int n; /* code index */ /* The distribution counts are first used to generate the code values * without bit reversal. */ for (bits = 1; bits <= MAX_BITS; bits++) { next_code[bits] = code = (code + bl_count[bits-1]) << 1; } /* Check that the bit counts in bl_count are consistent. The last code * must be all ones. */ Assert (code + bl_count[MAX_BITS]-1 == (1<dyn_tree; const ct_data *stree = desc->stat_desc->static_tree; int elems = desc->stat_desc->elems; int n, m; /* iterate over heap elements */ int max_code = -1; /* largest code with non zero frequency */ int node; /* new node being created */ /* Construct the initial heap, with least frequent element in * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. * heap[0] is not used. */ s->heap_len = 0, s->heap_max = HEAP_SIZE; for (n = 0; n < elems; n++) { if (tree[n].Freq != 0) { s->heap[++(s->heap_len)] = max_code = n; s->depth[n] = 0; } else { tree[n].Len = 0; } } /* The pkzip format requires that at least one distance code exists, * and that at least one bit should be sent even if there is only one * possible code. So to avoid special checks later on we force at least * two codes of non zero frequency. */ while (s->heap_len < 2) { node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); tree[node].Freq = 1; s->depth[node] = 0; s->opt_len--; if (stree) s->static_len -= stree[node].Len; /* node is 0 or 1 so it does not have extra bits */ } desc->max_code = max_code; /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, * establish sub-heaps of increasing lengths: */ for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); /* Construct the Huffman tree by repeatedly combining the least two * frequent nodes. */ node = elems; /* next internal node of the tree */ do { pqremove(s, tree, n); /* n = node of least frequency */ m = s->heap[SMALLEST]; /* m = node of next least frequency */ s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ s->heap[--(s->heap_max)] = m; /* Create a new node father of n and m */ tree[node].Freq = tree[n].Freq + tree[m].Freq; s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ? s->depth[n] : s->depth[m]) + 1); tree[n].Dad = tree[m].Dad = (ush)node; #ifdef DUMP_BL_TREE if (tree == s->bl_tree) { fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); } #endif /* and insert the new node in the heap */ s->heap[SMALLEST] = node++; pqdownheap(s, tree, SMALLEST); } while (s->heap_len >= 2); s->heap[--(s->heap_max)] = s->heap[SMALLEST]; /* At this point, the fields freq and dad are set. We can now * generate the bit lengths. */ gen_bitlen(s, (tree_desc *)desc); /* The field len is now set, we can generate the bit codes */ gen_codes ((ct_data *)tree, max_code, s->bl_count); } /* =========================================================================== * Scan a literal or distance tree to determine the frequencies of the codes * in the bit length tree. */ local void scan_tree (s, tree, max_code) deflate_state *s; ct_data *tree; /* the tree to be scanned */ int max_code; /* and its largest code of non zero frequency */ { int n; /* iterates over all tree elements */ int prevlen = -1; /* last emitted length */ int curlen; /* length of current code */ int nextlen = tree[0].Len; /* length of next code */ int count = 0; /* repeat count of the current code */ int max_count = 7; /* max repeat count */ int min_count = 4; /* min repeat count */ if (nextlen == 0) max_count = 138, min_count = 3; tree[max_code+1].Len = (ush)0xffff; /* guard */ for (n = 0; n <= max_code; n++) { curlen = nextlen; nextlen = tree[n+1].Len; if (++count < max_count && curlen == nextlen) { continue; } else if (count < min_count) { s->bl_tree[curlen].Freq += count; } else if (curlen != 0) { if (curlen != prevlen) s->bl_tree[curlen].Freq++; s->bl_tree[REP_3_6].Freq++; } else if (count <= 10) { s->bl_tree[REPZ_3_10].Freq++; } else { s->bl_tree[REPZ_11_138].Freq++; } count = 0; prevlen = curlen; if (nextlen == 0) { max_count = 138, min_count = 3; } else if (curlen == nextlen) { max_count = 6, min_count = 3; } else { max_count = 7, min_count = 4; } } } /* =========================================================================== * Send a literal or distance tree in compressed form, using the codes in * bl_tree. */ local void send_tree (s, tree, max_code) deflate_state *s; ct_data *tree; /* the tree to be scanned */ int max_code; /* and its largest code of non zero frequency */ { int n; /* iterates over all tree elements */ int prevlen = -1; /* last emitted length */ int curlen; /* length of current code */ int nextlen = tree[0].Len; /* length of next code */ int count = 0; /* repeat count of the current code */ int max_count = 7; /* max repeat count */ int min_count = 4; /* min repeat count */ /* tree[max_code+1].Len = -1; */ /* guard already set */ if (nextlen == 0) max_count = 138, min_count = 3; for (n = 0; n <= max_code; n++) { curlen = nextlen; nextlen = tree[n+1].Len; if (++count < max_count && curlen == nextlen) { continue; } else if (count < min_count) { do { send_code(s, curlen, s->bl_tree); } while (--count != 0); } else if (curlen != 0) { if (curlen != prevlen) { send_code(s, curlen, s->bl_tree); count--; } Assert(count >= 3 && count <= 6, " 3_6?"); send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2); } else if (count <= 10) { send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3); } else { send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7); } count = 0; prevlen = curlen; if (nextlen == 0) { max_count = 138, min_count = 3; } else if (curlen == nextlen) { max_count = 6, min_count = 3; } else { max_count = 7, min_count = 4; } } } /* =========================================================================== * Construct the Huffman tree for the bit lengths and return the index in * bl_order of the last bit length code to send. */ local int build_bl_tree(s) deflate_state *s; { int max_blindex; /* index of last bit length code of non zero freq */ /* Determine the bit length frequencies for literal and distance trees */ scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); /* Build the bit length tree: */ build_tree(s, (tree_desc *)(&(s->bl_desc))); /* opt_len now includes the length of the tree representations, except * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. */ /* Determine the number of bit length codes to send. The pkzip format * requires that at least 4 bit length codes be sent. (appnote.txt says * 3 but the actual value used is 4.) */ for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; } /* Update opt_len to include the bit length tree and counts */ s->opt_len += 3*(max_blindex+1) + 5+5+4; Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", s->opt_len, s->static_len)); return max_blindex; } /* =========================================================================== * Send the header for a block using dynamic Huffman trees: the counts, the * lengths of the bit length codes, the literal tree and the distance tree. * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. */ local void send_all_trees(s, lcodes, dcodes, blcodes) deflate_state *s; int lcodes, dcodes, blcodes; /* number of codes for each tree */ { int rank; /* index in bl_order */ Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, "too many codes"); Tracev((stderr, "\nbl counts: ")); send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */ send_bits(s, dcodes-1, 5); send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */ for (rank = 0; rank < blcodes; rank++) { Tracev((stderr, "\nbl code %2d ", bl_order[rank])); send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); } Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */ Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */ Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); } /* =========================================================================== * Send a stored block */ void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last) deflate_state *s; charf *buf; /* input block */ ulg stored_len; /* length of input block */ int last; /* one if this is the last block for a file */ { send_bits(s, (STORED_BLOCK<<1)+last, 3); /* send block type */ #ifdef DEBUG s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; s->compressed_len += (stored_len + 4) << 3; #endif copy_block(s, buf, (unsigned)stored_len, 1); /* with header */ } /* =========================================================================== * Flush the bits in the bit buffer to pending output (leaves at most 7 bits) */ void ZLIB_INTERNAL _tr_flush_bits(s) deflate_state *s; { bi_flush(s); } /* =========================================================================== * Send one empty static block to give enough lookahead for inflate. * This takes 10 bits, of which 7 may remain in the bit buffer. */ void ZLIB_INTERNAL _tr_align(s) deflate_state *s; { send_bits(s, STATIC_TREES<<1, 3); send_code(s, END_BLOCK, static_ltree); #ifdef DEBUG s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ #endif bi_flush(s); } /* =========================================================================== * Determine the best encoding for the current block: dynamic trees, static * trees or store, and output the encoded block to the zip file. */ void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last) deflate_state *s; charf *buf; /* input block, or NULL if too old */ ulg stored_len; /* length of input block */ int last; /* one if this is the last block for a file */ { ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ int max_blindex = 0; /* index of last bit length code of non zero freq */ /* Build the Huffman trees unless a stored block is forced */ if (s->level > 0) { /* Check if the file is binary or text */ if (s->strm->data_type == Z_UNKNOWN) s->strm->data_type = detect_data_type(s); /* Construct the literal and distance trees */ build_tree(s, (tree_desc *)(&(s->l_desc))); Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, s->static_len)); build_tree(s, (tree_desc *)(&(s->d_desc))); Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, s->static_len)); /* At this point, opt_len and static_len are the total bit lengths of * the compressed block data, excluding the tree representations. */ /* Build the bit length tree for the above two trees, and get the index * in bl_order of the last bit length code to send. */ max_blindex = build_bl_tree(s); /* Determine the best encoding. Compute the block lengths in bytes. */ opt_lenb = (s->opt_len+3+7)>>3; static_lenb = (s->static_len+3+7)>>3; Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, s->last_lit)); if (static_lenb <= opt_lenb) opt_lenb = static_lenb; } else { Assert(buf != (char*)0, "lost buf"); opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ } #ifdef FORCE_STORED if (buf != (char*)0) { /* force stored block */ #else if (stored_len+4 <= opt_lenb && buf != (char*)0) { /* 4: two words for the lengths */ #endif /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. * Otherwise we can't have processed more than WSIZE input bytes since * the last block flush, because compression would have been * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to * transform a block into a stored block. */ _tr_stored_block(s, buf, stored_len, last); #ifdef FORCE_STATIC } else if (static_lenb >= 0) { /* force static trees */ #else } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) { #endif send_bits(s, (STATIC_TREES<<1)+last, 3); compress_block(s, (const ct_data *)static_ltree, (const ct_data *)static_dtree); #ifdef DEBUG s->compressed_len += 3 + s->static_len; #endif } else { send_bits(s, (DYN_TREES<<1)+last, 3); send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, max_blindex+1); compress_block(s, (const ct_data *)s->dyn_ltree, (const ct_data *)s->dyn_dtree); #ifdef DEBUG s->compressed_len += 3 + s->opt_len; #endif } Assert (s->compressed_len == s->bits_sent, "bad compressed size"); /* The above check is made mod 2^32, for files larger than 512 MB * and uLong implemented on 32 bits. */ init_block(s); if (last) { bi_windup(s); #ifdef DEBUG s->compressed_len += 7; /* align on byte boundary */ #endif } Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, s->compressed_len-7*last)); } /* =========================================================================== * Save the match info and tally the frequency counts. Return true if * the current block must be flushed. */ int ZLIB_INTERNAL _tr_tally (s, dist, lc) deflate_state *s; unsigned dist; /* distance of matched string */ unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */ { s->d_buf[s->last_lit] = (ush)dist; s->l_buf[s->last_lit++] = (uch)lc; if (dist == 0) { /* lc is the unmatched char */ s->dyn_ltree[lc].Freq++; } else { s->matches++; /* Here, lc is the match length - MIN_MATCH */ dist--; /* dist = match distance - 1 */ Assert((ush)dist < (ush)MAX_DIST(s) && (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match"); s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++; s->dyn_dtree[d_code(dist)].Freq++; } #ifdef TRUNCATE_BLOCK /* Try to guess if it is profitable to stop the current block here */ if ((s->last_lit & 0x1fff) == 0 && s->level > 2) { /* Compute an upper bound for the compressed length */ ulg out_length = (ulg)s->last_lit*8L; ulg in_length = (ulg)((long)s->strstart - s->block_start); int dcode; for (dcode = 0; dcode < D_CODES; dcode++) { out_length += (ulg)s->dyn_dtree[dcode].Freq * (5L+extra_dbits[dcode]); } out_length >>= 3; Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", s->last_lit, in_length, out_length, 100L - out_length*100L/in_length)); if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1; } #endif return (s->last_lit == s->lit_bufsize-1); /* We avoid equality with lit_bufsize because of wraparound at 64K * on 16 bit machines and because stored blocks are restricted to * 64K-1 bytes. */ } /* =========================================================================== * Send the block data compressed using the given Huffman trees */ local void compress_block(s, ltree, dtree) deflate_state *s; const ct_data *ltree; /* literal tree */ const ct_data *dtree; /* distance tree */ { unsigned dist; /* distance of matched string */ int lc; /* match length or unmatched char (if dist == 0) */ unsigned lx = 0; /* running index in l_buf */ unsigned code; /* the code to send */ int extra; /* number of extra bits to send */ if (s->last_lit != 0) do { dist = s->d_buf[lx]; lc = s->l_buf[lx++]; if (dist == 0) { send_code(s, lc, ltree); /* send a literal byte */ Tracecv(isgraph(lc), (stderr," '%c' ", lc)); } else { /* Here, lc is the match length - MIN_MATCH */ code = _length_code[lc]; send_code(s, code+LITERALS+1, ltree); /* send the length code */ extra = extra_lbits[code]; if (extra != 0) { lc -= base_length[code]; send_bits(s, lc, extra); /* send the extra length bits */ } dist--; /* dist is now the match distance - 1 */ code = d_code(dist); Assert (code < D_CODES, "bad d_code"); send_code(s, code, dtree); /* send the distance code */ extra = extra_dbits[code]; if (extra != 0) { dist -= base_dist[code]; send_bits(s, dist, extra); /* send the extra distance bits */ } } /* literal or match pair ? */ /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx, "pendingBuf overflow"); } while (lx < s->last_lit); send_code(s, END_BLOCK, ltree); } /* =========================================================================== * Check if the data type is TEXT or BINARY, using the following algorithm: * - TEXT if the two conditions below are satisfied: * a) There are no non-portable control characters belonging to the * "black list" (0..6, 14..25, 28..31). * b) There is at least one printable character belonging to the * "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255). * - BINARY otherwise. * - The following partially-portable control characters form a * "gray list" that is ignored in this detection algorithm: * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}). * IN assertion: the fields Freq of dyn_ltree are set. */ local int detect_data_type(s) deflate_state *s; { /* black_mask is the bit mask of black-listed bytes * set bits 0..6, 14..25, and 28..31 * 0xf3ffc07f = binary 11110011111111111100000001111111 */ unsigned long black_mask = 0xf3ffc07fUL; int n; /* Check for non-textual ("black-listed") bytes. */ for (n = 0; n <= 31; n++, black_mask >>= 1) if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0)) return Z_BINARY; /* Check for textual ("white-listed") bytes. */ if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0 || s->dyn_ltree[13].Freq != 0) return Z_TEXT; for (n = 32; n < LITERALS; n++) if (s->dyn_ltree[n].Freq != 0) return Z_TEXT; /* There are no "black-listed" or "white-listed" bytes: * this stream either is empty or has tolerated ("gray-listed") bytes only. */ return Z_BINARY; } /* =========================================================================== * Reverse the first len bits of a code, using straightforward code (a faster * method would use a table) * IN assertion: 1 <= len <= 15 */ local unsigned bi_reverse(code, len) unsigned code; /* the value to invert */ int len; /* its bit length */ { register unsigned res = 0; do { res |= code & 1; code >>= 1, res <<= 1; } while (--len > 0); return res >> 1; } /* =========================================================================== * Flush the bit buffer, keeping at most 7 bits in it. */ local void bi_flush(s) deflate_state *s; { if (s->bi_valid == 16) { put_short(s, s->bi_buf); s->bi_buf = 0; s->bi_valid = 0; } else if (s->bi_valid >= 8) { put_byte(s, (Byte)s->bi_buf); s->bi_buf >>= 8; s->bi_valid -= 8; } } /* =========================================================================== * Flush the bit buffer and align the output on a byte boundary */ local void bi_windup(s) deflate_state *s; { if (s->bi_valid > 8) { put_short(s, s->bi_buf); } else if (s->bi_valid > 0) { put_byte(s, (Byte)s->bi_buf); } s->bi_buf = 0; s->bi_valid = 0; #ifdef DEBUG s->bits_sent = (s->bits_sent+7) & ~7; #endif } /* =========================================================================== * Copy a stored block, storing first the length and its * one's complement if requested. */ local void copy_block(s, buf, len, header) deflate_state *s; charf *buf; /* the input data */ unsigned len; /* its length */ int header; /* true if block header must be written */ { bi_windup(s); /* align on byte boundary */ if (header) { put_short(s, (ush)len); put_short(s, (ush)~len); #ifdef DEBUG s->bits_sent += 2*16; #endif } #ifdef DEBUG s->bits_sent += (ulg)len<<3; #endif while (len--) { put_byte(s, *buf++); } } /* END OF DUMP OF mz_trees.c*/ /* START OF DUMP OF mz_inftrees.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* inftrees.c -- generate Huffman trees for efficient decoding * Copyright (C) 1995-2013 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* START OF DUMP OF mz_inftrees.h*/ /* inftrees.h -- header to use inftrees.c * Copyright (C) 1995-2005, 2010 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ /* Structure for decoding tables. Each entry provides either the information needed to do the operation requested by the code that indexed that table entry, or it provides a pointer to another table that indexes more bits of the code. op indicates whether the entry is a pointer to another table, a literal, a length or distance, an end-of-block, or an invalid code. For a table pointer, the low four bits of op is the number of index bits of that table. For a length or distance, the low four bits of op is the number of extra bits to get after the code. bits is the number of bits in this code or part of the code to drop off of the bit buffer. val is the actual byte to output in the case of a literal, the base length or distance, or the offset from the current table to the next table. Each entry is four bytes. */ typedef struct { unsigned char op; /* operation, extra bits, table bits */ unsigned char bits; /* bits in this part of the code */ unsigned short val; /* offset in table or code value */ } code; /* op values as set by inflate_table(): 00000000 - literal 0000tttt - table link, tttt != 0 is the number of table index bits 0001eeee - length or distance, eeee is the number of extra bits 01100000 - end of block 01000000 - invalid code */ /* Maximum size of the dynamic table. The maximum number of code structures is 1444, which is the sum of 852 for literal/length codes and 592 for distance codes. These values were found by exhaustive searches using the program examples/enough.c found in the zlib distribtution. The arguments to that program are the number of symbols, the initial root table size, and the maximum bit length of a code. "enough 286 9 15" for literal/length codes returns returns 852, and "enough 30 6 15" for distance codes returns 592. The initial root table size (9 or 6) is found in the fifth argument of the inflate_table() calls in inflate.c and infback.c. If the root table size is changed, then these maximum sizes would be need to be recalculated and updated. */ #define ENOUGH_LENS 852 #define ENOUGH_DISTS 592 #define ENOUGH (ENOUGH_LENS+ENOUGH_DISTS) /* Type of code to build for inflate_table() */ typedef enum { CODES, LENS, DISTS } codetype; int ZLIB_INTERNAL inflate_table OF((codetype type, unsigned short FAR *lens, unsigned codes, code FAR * FAR *table, unsigned FAR *bits, unsigned short FAR *work)); /* END OF DUMP OF mz_inftrees.h*/ #define MAXBITS 15 const char inflate_copyright[] = " inflate 1.2.8 Copyright 1995-2013 Mark Adler "; /* If you use the zlib library in a product, an acknowledgment is welcome in the documentation of your product. If for some reason you cannot include such an acknowledgment, I would appreciate that you keep this copyright string in the executable of your product. */ /* Build a set of tables to decode the provided canonical Huffman code. The code lengths are lens[0..codes-1]. The result starts at *table, whose indices are 0..2^bits-1. work is a writable array of at least lens shorts, which is used as a work area. type is the type of code to be generated, CODES, LENS, or DISTS. On return, zero is success, -1 is an invalid code, and +1 means that ENOUGH isn't enough. table on return points to the next available entry's address. bits is the requested root table index bits, and on return it is the actual root table index bits. It will differ if the request is greater than the longest code or if it is less than the shortest code. */ int ZLIB_INTERNAL inflate_table(type, lens, codes, table, bits, work) codetype type; unsigned short FAR *lens; unsigned codes; code FAR * FAR *table; unsigned FAR *bits; unsigned short FAR *work; { unsigned len; /* a code's length in bits */ unsigned sym; /* index of code symbols */ unsigned min, max; /* minimum and maximum code lengths */ unsigned root; /* number of index bits for root table */ unsigned curr; /* number of index bits for current table */ unsigned drop; /* code bits to drop for sub-table */ int left; /* number of prefix codes available */ unsigned used; /* code entries in table used */ unsigned huff; /* Huffman code */ unsigned incr; /* for incrementing code, index */ unsigned fill; /* index for replicating entries */ unsigned low; /* low bits for current root entry */ unsigned mask; /* mask for low root bits */ code here; /* table entry for duplication */ code FAR *next; /* next available space in table */ const unsigned short FAR *base; /* base value table to use */ const unsigned short FAR *extra; /* extra bits table to use */ int end; /* use base and extra for symbol > end */ unsigned short count[MAXBITS+1]; /* number of codes of each length */ unsigned short offs[MAXBITS+1]; /* offsets in table for each length */ static const unsigned short lbase[31] = { /* Length codes 257..285 base */ 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; static const unsigned short lext[31] = { /* Length codes 257..285 extra */ 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 72, 78}; static const unsigned short dbase[32] = { /* Distance codes 0..29 base */ 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577, 0, 0}; static const unsigned short dext[32] = { /* Distance codes 0..29 extra */ 16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 64, 64}; /* Process a set of code lengths to create a canonical Huffman code. The code lengths are lens[0..codes-1]. Each length corresponds to the symbols 0..codes-1. The Huffman code is generated by first sorting the symbols by length from short to long, and retaining the symbol order for codes with equal lengths. Then the code starts with all zero bits for the first code of the shortest length, and the codes are integer increments for the same length, and zeros are appended as the length increases. For the deflate format, these bits are stored backwards from their more natural integer increment ordering, and so when the decoding tables are built in the large loop below, the integer codes are incremented backwards. This routine assumes, but does not check, that all of the entries in lens[] are in the range 0..MAXBITS. The caller must assure this. 1..MAXBITS is interpreted as that code length. zero means that that symbol does not occur in this code. The codes are sorted by computing a count of codes for each length, creating from that a table of starting indices for each length in the sorted table, and then entering the symbols in order in the sorted table. The sorted table is work[], with that space being provided by the caller. The length counts are used for other purposes as well, i.e. finding the minimum and maximum length codes, determining if there are any codes at all, checking for a valid set of lengths, and looking ahead at length counts to determine sub-table sizes when building the decoding tables. */ /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */ for (len = 0; len <= MAXBITS; len++) count[len] = 0; for (sym = 0; sym < codes; sym++) count[lens[sym]]++; /* bound code lengths, force root to be within code lengths */ root = *bits; for (max = MAXBITS; max >= 1; max--) if (count[max] != 0) break; if (root > max) root = max; if (max == 0) { /* no symbols to code at all */ here.op = (unsigned char)64; /* invalid code marker */ here.bits = (unsigned char)1; here.val = (unsigned short)0; *(*table)++ = here; /* make a table to force an error */ *(*table)++ = here; *bits = 1; return 0; /* no symbols, but wait for decoding to report error */ } for (min = 1; min < max; min++) if (count[min] != 0) break; if (root < min) root = min; /* check for an over-subscribed or incomplete set of lengths */ left = 1; for (len = 1; len <= MAXBITS; len++) { left <<= 1; left -= count[len]; if (left < 0) return -1; /* over-subscribed */ } if (left > 0 && (type == CODES || max != 1)) return -1; /* incomplete set */ /* generate offsets into symbol table for each length for sorting */ offs[1] = 0; for (len = 1; len < MAXBITS; len++) offs[len + 1] = offs[len] + count[len]; /* sort symbols by length, by symbol order within each length */ for (sym = 0; sym < codes; sym++) if (lens[sym] != 0) work[offs[lens[sym]]++] = (unsigned short)sym; /* Create and fill in decoding tables. In this loop, the table being filled is at next and has curr index bits. The code being used is huff with length len. That code is converted to an index by dropping drop bits off of the bottom. For codes where len is less than drop + curr, those top drop + curr - len bits are incremented through all values to fill the table with replicated entries. root is the number of index bits for the root table. When len exceeds root, sub-tables are created pointed to by the root entry with an index of the low root bits of huff. This is saved in low to check for when a new sub-table should be started. drop is zero when the root table is being filled, and drop is root when sub-tables are being filled. When a new sub-table is needed, it is necessary to look ahead in the code lengths to determine what size sub-table is needed. The length counts are used for this, and so count[] is decremented as codes are entered in the tables. used keeps track of how many table entries have been allocated from the provided *table space. It is checked for LENS and DIST tables against the constants ENOUGH_LENS and ENOUGH_DISTS to guard against changes in the initial root table size constants. See the comments in inftrees.h for more information. sym increments through all symbols, and the loop terminates when all codes of length max, i.e. all codes, have been processed. This routine permits incomplete codes, so another loop after this one fills in the rest of the decoding tables with invalid code markers. */ /* set up for code type */ switch (type) { case CODES: base = extra = work; /* dummy value--not used */ end = 19; break; case LENS: base = lbase; base -= 257; extra = lext; extra -= 257; end = 256; break; default: /* DISTS */ base = dbase; extra = dext; end = -1; } /* initialize state for loop */ huff = 0; /* starting code */ sym = 0; /* starting code symbol */ len = min; /* starting code length */ next = *table; /* current table to fill in */ curr = root; /* current table index bits */ drop = 0; /* current bits to drop from code for index */ low = (unsigned)(-1); /* trigger new sub-table when len > root */ used = 1U << root; /* use root table entries */ mask = used - 1; /* mask for comparing low */ /* check available table space */ if ((type == LENS && used > ENOUGH_LENS) || (type == DISTS && used > ENOUGH_DISTS)) return 1; /* process all codes and make table entries */ for (;;) { /* create table entry */ here.bits = (unsigned char)(len - drop); if ((int)(work[sym]) < end) { here.op = (unsigned char)0; here.val = work[sym]; } else if ((int)(work[sym]) > end) { here.op = (unsigned char)(extra[work[sym]]); here.val = base[work[sym]]; } else { here.op = (unsigned char)(32 + 64); /* end of block */ here.val = 0; } /* replicate for those indices with low len bits equal to huff */ incr = 1U << (len - drop); fill = 1U << curr; min = fill; /* save offset to next table */ do { fill -= incr; next[(huff >> drop) + fill] = here; } while (fill != 0); /* backwards increment the len-bit code huff */ incr = 1U << (len - 1); while (huff & incr) incr >>= 1; if (incr != 0) { huff &= incr - 1; huff += incr; } else huff = 0; /* go to next symbol, update count, len */ sym++; if (--(count[len]) == 0) { if (len == max) break; len = lens[work[sym]]; } /* create new sub-table if needed */ if (len > root && (huff & mask) != low) { /* if first time, transition to sub-tables */ if (drop == 0) drop = root; /* increment past last table */ next += min; /* here min is 1 << curr */ /* determine length of next table */ curr = len - drop; left = (int)(1 << curr); while (curr + drop < max) { left -= count[curr + drop]; if (left <= 0) break; curr++; left <<= 1; } /* check for enough space */ used += 1U << curr; if ((type == LENS && used > ENOUGH_LENS) || (type == DISTS && used > ENOUGH_DISTS)) return 1; /* point entry in root table to sub-table */ low = huff & mask; (*table)[low].op = (unsigned char)curr; (*table)[low].bits = (unsigned char)root; (*table)[low].val = (unsigned short)(next - *table); } } /* fill in remaining table entry if code is incomplete (guaranteed to have at most one remaining entry, since if the code is incomplete, the maximum code length that was allowed to get this far is one bit) */ if (huff != 0) { here.op = (unsigned char)64; /* invalid code marker */ here.bits = (unsigned char)(len - drop); here.val = (unsigned short)0; next[huff] = here; } /* set return parameters */ *table += used; *bits = root; return 0; } /* END OF DUMP OF mz_inftrees.c*/ /* START OF DUMP OF mz_inflate.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* inflate.c -- zlib decompression * Copyright (C) 1995-2012 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* * Change history: * * 1.2.beta0 24 Nov 2002 * - First version -- complete rewrite of inflate to simplify code, avoid * creation of window when not needed, minimize use of window when it is * needed, make inffast.c even faster, implement gzip decoding, and to * improve code readability and style over the previous zlib inflate code * * 1.2.beta1 25 Nov 2002 * - Use pointers for available input and output checking in inffast.c * - Remove input and output counters in inffast.c * - Change inffast.c entry and loop from avail_in >= 7 to >= 6 * - Remove unnecessary second byte pull from length extra in inffast.c * - Unroll direct copy to three copies per loop in inffast.c * * 1.2.beta2 4 Dec 2002 * - Change external routine names to reduce potential conflicts * - Correct filename to inffixed.h for fixed tables in inflate.c * - Make hbuf[] unsigned char to match parameter type in inflate.c * - Change strm->next_out[-state->offset] to *(strm->next_out - state->offset) * to avoid negation problem on Alphas (64 bit) in inflate.c * * 1.2.beta3 22 Dec 2002 * - Add comments on state->bits assertion in inffast.c * - Add comments on op field in inftrees.h * - Fix bug in reuse of allocated window after inflateReset() * - Remove bit fields--back to byte structure for speed * - Remove distance extra == 0 check in inflate_fast()--only helps for lengths * - Change post-increments to pre-increments in inflate_fast(), PPC biased? * - Add compile time option, POSTINC, to use post-increments instead (Intel?) * - Make MATCH copy in inflate() much faster for when inflate_fast() not used * - Use local copies of stream next and avail values, as well as local bit * buffer and bit count in inflate()--for speed when inflate_fast() not used * * 1.2.beta4 1 Jan 2003 * - Split ptr - 257 statements in inflate_table() to avoid compiler warnings * - Move a comment on output buffer sizes from inffast.c to inflate.c * - Add comments in inffast.c to introduce the inflate_fast() routine * - Rearrange window copies in inflate_fast() for speed and simplification * - Unroll last copy for window match in inflate_fast() * - Use local copies of window variables in inflate_fast() for speed * - Pull out common wnext == 0 case for speed in inflate_fast() * - Make op and len in inflate_fast() unsigned for consistency * - Add FAR to lcode and dcode declarations in inflate_fast() * - Simplified bad distance check in inflate_fast() * - Added inflateBackInit(), inflateBack(), and inflateBackEnd() in new * source file infback.c to provide a call-back interface to inflate for * programs like gzip and unzip -- uses window as output buffer to avoid * window copying * * 1.2.beta5 1 Jan 2003 * - Improved inflateBack() interface to allow the caller to provide initial * input in strm. * - Fixed stored blocks bug in inflateBack() * * 1.2.beta6 4 Jan 2003 * - Added comments in inffast.c on effectiveness of POSTINC * - Typecasting all around to reduce compiler warnings * - Changed loops from while (1) or do {} while (1) to for (;;), again to * make compilers happy * - Changed type of window in inflateBackInit() to unsigned char * * * 1.2.beta7 27 Jan 2003 * - Changed many types to unsigned or unsigned short to avoid warnings * - Added inflateCopy() function * * 1.2.0 9 Mar 2003 * - Changed inflateBack() interface to provide separate opaque descriptors * for the in() and out() functions * - Changed inflateBack() argument and in_func typedef to swap the length * and buffer address return values for the input function * - Check next_in and next_out for Z_NULL on entry to inflate() * * The history for versions after 1.2.0 are in ChangeLog in zlib distribution. */ /* START OF DUMP OF mz_inflate.h*/ /* inflate.h -- internal inflate state definition * Copyright (C) 1995-2009 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ /* define NO_GZIP when compiling if you want to disable gzip header and trailer decoding by inflate(). NO_GZIP would be used to avoid linking in the crc code when it is not needed. For shared libraries, gzip decoding should be left enabled. */ #ifndef NO_GZIP # define GUNZIP #endif /* Possible inflate modes between inflate() calls */ typedef enum { HEAD, /* i: waiting for magic header */ FLAGS, /* i: waiting for method and flags (gzip) */ TIME, /* i: waiting for modification time (gzip) */ OS, /* i: waiting for extra flags and operating system (gzip) */ EXLEN, /* i: waiting for extra length (gzip) */ EXTRA, /* i: waiting for extra bytes (gzip) */ NAME, /* i: waiting for end of file name (gzip) */ COMMENT, /* i: waiting for end of comment (gzip) */ HCRC, /* i: waiting for header crc (gzip) */ DICTID, /* i: waiting for dictionary check value */ DICT, /* waiting for inflateSetDictionary() call */ TYPE, /* i: waiting for type bits, including last-flag bit */ TYPEDO, /* i: same, but skip check to exit inflate on new block */ STORED, /* i: waiting for stored size (length and complement) */ COPY_, /* i/o: same as COPY below, but only first time in */ COPY, /* i/o: waiting for input or output to copy stored block */ TABLE, /* i: waiting for dynamic block table lengths */ LENLENS, /* i: waiting for code length code lengths */ CODELENS, /* i: waiting for length/lit and distance code lengths */ LEN_, /* i: same as LEN below, but only first time in */ LEN, /* i: waiting for length/lit/eob code */ LENEXT, /* i: waiting for length extra bits */ DIST, /* i: waiting for distance code */ DISTEXT, /* i: waiting for distance extra bits */ MATCH, /* o: waiting for output space to copy string */ LIT, /* o: waiting for output space to write literal */ CHECK, /* i: waiting for 32-bit check value */ LENGTH, /* i: waiting for 32-bit length (gzip) */ DONE, /* finished check, done -- remain here until reset */ BAD, /* got a data error -- remain here until reset */ MEM, /* got an inflate() memory error -- remain here until reset */ SYNC /* looking for synchronization bytes to restart inflate() */ } inflate_mode; /* State transitions between above modes - (most modes can go to BAD or MEM on error -- not shown for clarity) Process header: HEAD -> (gzip) or (zlib) or (raw) (gzip) -> FLAGS -> TIME -> OS -> EXLEN -> EXTRA -> NAME -> COMMENT -> HCRC -> TYPE (zlib) -> DICTID or TYPE DICTID -> DICT -> TYPE (raw) -> TYPEDO Read deflate blocks: TYPE -> TYPEDO -> STORED or TABLE or LEN_ or CHECK STORED -> COPY_ -> COPY -> TYPE TABLE -> LENLENS -> CODELENS -> LEN_ LEN_ -> LEN Read deflate codes in fixed or dynamic block: LEN -> LENEXT or LIT or TYPE LENEXT -> DIST -> DISTEXT -> MATCH -> LEN LIT -> LEN Process trailer: CHECK -> LENGTH -> DONE */ /* state maintained between inflate() calls. Approximately 10K bytes. */ struct inflate_state { inflate_mode mode; /* current inflate mode */ int last; /* true if processing last block */ int wrap; /* bit 0 true for zlib, bit 1 true for gzip */ int havedict; /* true if dictionary provided */ int flags; /* gzip header method and flags (0 if zlib) */ unsigned dmax; /* zlib header max distance (INFLATE_STRICT) */ unsigned long check; /* protected copy of check value */ unsigned long total; /* protected copy of output count */ gz_headerp head; /* where to save gzip header information */ /* sliding window */ unsigned wbits; /* log base 2 of requested window size */ unsigned wsize; /* window size or zero if not using window */ unsigned whave; /* valid bytes in the window */ unsigned wnext; /* window write index */ unsigned char FAR *window; /* allocated sliding window, if needed */ /* bit accumulator */ unsigned long hold; /* input bit accumulator */ unsigned bits; /* number of bits in "in" */ /* for string and stored block copying */ unsigned length; /* literal or length of data to copy */ unsigned offset; /* distance back to copy string from */ /* for table and code decoding */ unsigned extra; /* extra bits needed */ /* fixed and dynamic code tables */ code const FAR *lencode; /* starting table for length/literal codes */ code const FAR *distcode; /* starting table for distance codes */ unsigned lenbits; /* index bits for lencode */ unsigned distbits; /* index bits for distcode */ /* dynamic table building */ unsigned ncode; /* number of code length code lengths */ unsigned nlen; /* number of length code lengths */ unsigned ndist; /* number of distance code lengths */ unsigned have; /* number of code lengths in lens[] */ code FAR *next; /* next available space in codes[] */ unsigned short lens[320]; /* temporary storage for code lengths */ unsigned short work[288]; /* work area for code table building */ code codes[ENOUGH]; /* space for code tables */ int sane; /* if false, allow invalid distance too far */ int back; /* bits back of last unprocessed length/lit */ unsigned was; /* initial length of match */ }; /* END OF DUMP OF mz_inflate.h*/ /* START OF DUMP OF mz_inffast.h*/ /* inffast.h -- header to use inffast.c * Copyright (C) 1995-2003, 2010 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ void ZLIB_INTERNAL inflate_fast OF((z_streamp strm, unsigned start)); /* END OF DUMP OF mz_inffast.h*/ #ifdef MAKEFIXED # ifndef BUILDFIXED # define BUILDFIXED # endif #endif /* function prototypes */ local void fixedtables OF((struct inflate_state FAR *state)); local int updatewindow OF((z_streamp strm, const unsigned char FAR *end, unsigned copy)); #ifdef BUILDFIXED void makefixed OF((void)); #endif local unsigned syncsearch OF((unsigned FAR *have, const unsigned char FAR *buf, unsigned len)); int ZEXPORT inflateResetKeep(strm) z_streamp strm; { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; strm->total_in = strm->total_out = state->total = 0; strm->msg = Z_NULL; if (state->wrap) /* to support ill-conceived Java test suite */ strm->adler = state->wrap & 1; state->mode = HEAD; state->last = 0; state->havedict = 0; state->dmax = 32768U; state->head = Z_NULL; state->hold = 0; state->bits = 0; state->lencode = state->distcode = state->next = state->codes; state->sane = 1; state->back = -1; Tracev((stderr, "inflate: reset\n")); return Z_OK; } int ZEXPORT inflateReset(strm) z_streamp strm; { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; state->wsize = 0; state->whave = 0; state->wnext = 0; return inflateResetKeep(strm); } int ZEXPORT inflateReset2(strm, windowBits) z_streamp strm; int windowBits; { int wrap; struct inflate_state FAR *state; /* get the state */ if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; /* extract wrap request from windowBits parameter */ if (windowBits < 0) { wrap = 0; windowBits = -windowBits; } else { wrap = (windowBits >> 4) + 1; #ifdef GUNZIP if (windowBits < 48) windowBits &= 15; #endif } /* set number of window bits, free window if different */ if (windowBits && (windowBits < 8 || windowBits > 15)) return Z_STREAM_ERROR; if (state->window != Z_NULL && state->wbits != (unsigned)windowBits) { ZFREE(strm, state->window); state->window = Z_NULL; } /* update state and reset the rest of it */ state->wrap = wrap; state->wbits = (unsigned)windowBits; return inflateReset(strm); } int ZEXPORT inflateInit2_(strm, windowBits, version, stream_size) z_streamp strm; int windowBits; const char *version; int stream_size; { int ret; struct inflate_state FAR *state; if (version == Z_NULL || version[0] != ZLIB_VERSION[0] || stream_size != (int)(sizeof(z_stream))) return Z_VERSION_ERROR; if (strm == Z_NULL) return Z_STREAM_ERROR; strm->msg = Z_NULL; /* in case we return an error */ if (strm->zalloc == (alloc_func)0) { #ifdef Z_SOLO return Z_STREAM_ERROR; #else strm->zalloc = zcalloc; strm->opaque = (voidpf)0; #endif } if (strm->zfree == (free_func)0) #ifdef Z_SOLO return Z_STREAM_ERROR; #else strm->zfree = zcfree; #endif state = (struct inflate_state FAR *) ZALLOC(strm, 1, sizeof(struct inflate_state)); if (state == Z_NULL) return Z_MEM_ERROR; Tracev((stderr, "inflate: allocated\n")); strm->state = (struct internal_state FAR *)state; state->window = Z_NULL; ret = inflateReset2(strm, windowBits); if (ret != Z_OK) { ZFREE(strm, state); strm->state = Z_NULL; } return ret; } int ZEXPORT inflateInit_(strm, version, stream_size) z_streamp strm; const char *version; int stream_size; { return inflateInit2_(strm, DEF_WBITS, version, stream_size); } int ZEXPORT inflatePrime(strm, bits, value) z_streamp strm; int bits; int value; { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (bits < 0) { state->hold = 0; state->bits = 0; return Z_OK; } if (bits > 16 || state->bits + bits > 32) return Z_STREAM_ERROR; value &= (1L << bits) - 1; state->hold += value << state->bits; state->bits += bits; return Z_OK; } /* Return state with length and distance decoding tables and index sizes set to fixed code decoding. Normally this returns fixed tables from inffixed.h. If BUILDFIXED is defined, then instead this routine builds the tables the first time it's called, and returns those tables the first time and thereafter. This reduces the size of the code by about 2K bytes, in exchange for a little execution time. However, BUILDFIXED should not be used for threaded applications, since the rewriting of the tables and virgin may not be thread-safe. */ local void fixedtables(state) struct inflate_state FAR *state; { #ifdef BUILDFIXED static int virgin = 1; static code *lenfix, *distfix; static code fixed[544]; /* build fixed huffman tables if first call (may not be thread safe) */ if (virgin) { unsigned sym, bits; static code *next; /* literal/length table */ sym = 0; while (sym < 144) state->lens[sym++] = 8; while (sym < 256) state->lens[sym++] = 9; while (sym < 280) state->lens[sym++] = 7; while (sym < 288) state->lens[sym++] = 8; next = fixed; lenfix = next; bits = 9; inflate_table(LENS, state->lens, 288, &(next), &(bits), state->work); /* distance table */ sym = 0; while (sym < 32) state->lens[sym++] = 5; distfix = next; bits = 5; inflate_table(DISTS, state->lens, 32, &(next), &(bits), state->work); /* do this just once */ virgin = 0; } #else /* !BUILDFIXED */ /* START OF DUMP OF mz_inffixed.h*/ /* inffixed.h -- table for decoding fixed codes * Generated automatically by makefixed(). */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of this library and is subject to change. Applications should only use zlib.h. */ static const code lenfix[512] = { {96,7,0},{0,8,80},{0,8,16},{20,8,115},{18,7,31},{0,8,112},{0,8,48}, {0,9,192},{16,7,10},{0,8,96},{0,8,32},{0,9,160},{0,8,0},{0,8,128}, {0,8,64},{0,9,224},{16,7,6},{0,8,88},{0,8,24},{0,9,144},{19,7,59}, {0,8,120},{0,8,56},{0,9,208},{17,7,17},{0,8,104},{0,8,40},{0,9,176}, {0,8,8},{0,8,136},{0,8,72},{0,9,240},{16,7,4},{0,8,84},{0,8,20}, {21,8,227},{19,7,43},{0,8,116},{0,8,52},{0,9,200},{17,7,13},{0,8,100}, {0,8,36},{0,9,168},{0,8,4},{0,8,132},{0,8,68},{0,9,232},{16,7,8}, {0,8,92},{0,8,28},{0,9,152},{20,7,83},{0,8,124},{0,8,60},{0,9,216}, {18,7,23},{0,8,108},{0,8,44},{0,9,184},{0,8,12},{0,8,140},{0,8,76}, {0,9,248},{16,7,3},{0,8,82},{0,8,18},{21,8,163},{19,7,35},{0,8,114}, {0,8,50},{0,9,196},{17,7,11},{0,8,98},{0,8,34},{0,9,164},{0,8,2}, {0,8,130},{0,8,66},{0,9,228},{16,7,7},{0,8,90},{0,8,26},{0,9,148}, {20,7,67},{0,8,122},{0,8,58},{0,9,212},{18,7,19},{0,8,106},{0,8,42}, {0,9,180},{0,8,10},{0,8,138},{0,8,74},{0,9,244},{16,7,5},{0,8,86}, {0,8,22},{64,8,0},{19,7,51},{0,8,118},{0,8,54},{0,9,204},{17,7,15}, {0,8,102},{0,8,38},{0,9,172},{0,8,6},{0,8,134},{0,8,70},{0,9,236}, {16,7,9},{0,8,94},{0,8,30},{0,9,156},{20,7,99},{0,8,126},{0,8,62}, {0,9,220},{18,7,27},{0,8,110},{0,8,46},{0,9,188},{0,8,14},{0,8,142}, {0,8,78},{0,9,252},{96,7,0},{0,8,81},{0,8,17},{21,8,131},{18,7,31}, {0,8,113},{0,8,49},{0,9,194},{16,7,10},{0,8,97},{0,8,33},{0,9,162}, {0,8,1},{0,8,129},{0,8,65},{0,9,226},{16,7,6},{0,8,89},{0,8,25}, {0,9,146},{19,7,59},{0,8,121},{0,8,57},{0,9,210},{17,7,17},{0,8,105}, {0,8,41},{0,9,178},{0,8,9},{0,8,137},{0,8,73},{0,9,242},{16,7,4}, {0,8,85},{0,8,21},{16,8,258},{19,7,43},{0,8,117},{0,8,53},{0,9,202}, {17,7,13},{0,8,101},{0,8,37},{0,9,170},{0,8,5},{0,8,133},{0,8,69}, {0,9,234},{16,7,8},{0,8,93},{0,8,29},{0,9,154},{20,7,83},{0,8,125}, {0,8,61},{0,9,218},{18,7,23},{0,8,109},{0,8,45},{0,9,186},{0,8,13}, {0,8,141},{0,8,77},{0,9,250},{16,7,3},{0,8,83},{0,8,19},{21,8,195}, {19,7,35},{0,8,115},{0,8,51},{0,9,198},{17,7,11},{0,8,99},{0,8,35}, {0,9,166},{0,8,3},{0,8,131},{0,8,67},{0,9,230},{16,7,7},{0,8,91}, {0,8,27},{0,9,150},{20,7,67},{0,8,123},{0,8,59},{0,9,214},{18,7,19}, {0,8,107},{0,8,43},{0,9,182},{0,8,11},{0,8,139},{0,8,75},{0,9,246}, {16,7,5},{0,8,87},{0,8,23},{64,8,0},{19,7,51},{0,8,119},{0,8,55}, {0,9,206},{17,7,15},{0,8,103},{0,8,39},{0,9,174},{0,8,7},{0,8,135}, {0,8,71},{0,9,238},{16,7,9},{0,8,95},{0,8,31},{0,9,158},{20,7,99}, {0,8,127},{0,8,63},{0,9,222},{18,7,27},{0,8,111},{0,8,47},{0,9,190}, {0,8,15},{0,8,143},{0,8,79},{0,9,254},{96,7,0},{0,8,80},{0,8,16}, {20,8,115},{18,7,31},{0,8,112},{0,8,48},{0,9,193},{16,7,10},{0,8,96}, {0,8,32},{0,9,161},{0,8,0},{0,8,128},{0,8,64},{0,9,225},{16,7,6}, {0,8,88},{0,8,24},{0,9,145},{19,7,59},{0,8,120},{0,8,56},{0,9,209}, {17,7,17},{0,8,104},{0,8,40},{0,9,177},{0,8,8},{0,8,136},{0,8,72}, {0,9,241},{16,7,4},{0,8,84},{0,8,20},{21,8,227},{19,7,43},{0,8,116}, {0,8,52},{0,9,201},{17,7,13},{0,8,100},{0,8,36},{0,9,169},{0,8,4}, {0,8,132},{0,8,68},{0,9,233},{16,7,8},{0,8,92},{0,8,28},{0,9,153}, {20,7,83},{0,8,124},{0,8,60},{0,9,217},{18,7,23},{0,8,108},{0,8,44}, {0,9,185},{0,8,12},{0,8,140},{0,8,76},{0,9,249},{16,7,3},{0,8,82}, {0,8,18},{21,8,163},{19,7,35},{0,8,114},{0,8,50},{0,9,197},{17,7,11}, {0,8,98},{0,8,34},{0,9,165},{0,8,2},{0,8,130},{0,8,66},{0,9,229}, {16,7,7},{0,8,90},{0,8,26},{0,9,149},{20,7,67},{0,8,122},{0,8,58}, {0,9,213},{18,7,19},{0,8,106},{0,8,42},{0,9,181},{0,8,10},{0,8,138}, {0,8,74},{0,9,245},{16,7,5},{0,8,86},{0,8,22},{64,8,0},{19,7,51}, {0,8,118},{0,8,54},{0,9,205},{17,7,15},{0,8,102},{0,8,38},{0,9,173}, {0,8,6},{0,8,134},{0,8,70},{0,9,237},{16,7,9},{0,8,94},{0,8,30}, {0,9,157},{20,7,99},{0,8,126},{0,8,62},{0,9,221},{18,7,27},{0,8,110}, {0,8,46},{0,9,189},{0,8,14},{0,8,142},{0,8,78},{0,9,253},{96,7,0}, {0,8,81},{0,8,17},{21,8,131},{18,7,31},{0,8,113},{0,8,49},{0,9,195}, {16,7,10},{0,8,97},{0,8,33},{0,9,163},{0,8,1},{0,8,129},{0,8,65}, {0,9,227},{16,7,6},{0,8,89},{0,8,25},{0,9,147},{19,7,59},{0,8,121}, {0,8,57},{0,9,211},{17,7,17},{0,8,105},{0,8,41},{0,9,179},{0,8,9}, {0,8,137},{0,8,73},{0,9,243},{16,7,4},{0,8,85},{0,8,21},{16,8,258}, {19,7,43},{0,8,117},{0,8,53},{0,9,203},{17,7,13},{0,8,101},{0,8,37}, {0,9,171},{0,8,5},{0,8,133},{0,8,69},{0,9,235},{16,7,8},{0,8,93}, {0,8,29},{0,9,155},{20,7,83},{0,8,125},{0,8,61},{0,9,219},{18,7,23}, {0,8,109},{0,8,45},{0,9,187},{0,8,13},{0,8,141},{0,8,77},{0,9,251}, {16,7,3},{0,8,83},{0,8,19},{21,8,195},{19,7,35},{0,8,115},{0,8,51}, {0,9,199},{17,7,11},{0,8,99},{0,8,35},{0,9,167},{0,8,3},{0,8,131}, {0,8,67},{0,9,231},{16,7,7},{0,8,91},{0,8,27},{0,9,151},{20,7,67}, {0,8,123},{0,8,59},{0,9,215},{18,7,19},{0,8,107},{0,8,43},{0,9,183}, {0,8,11},{0,8,139},{0,8,75},{0,9,247},{16,7,5},{0,8,87},{0,8,23}, {64,8,0},{19,7,51},{0,8,119},{0,8,55},{0,9,207},{17,7,15},{0,8,103}, {0,8,39},{0,9,175},{0,8,7},{0,8,135},{0,8,71},{0,9,239},{16,7,9}, {0,8,95},{0,8,31},{0,9,159},{20,7,99},{0,8,127},{0,8,63},{0,9,223}, {18,7,27},{0,8,111},{0,8,47},{0,9,191},{0,8,15},{0,8,143},{0,8,79}, {0,9,255} }; static const code distfix[32] = { {16,5,1},{23,5,257},{19,5,17},{27,5,4097},{17,5,5},{25,5,1025}, {21,5,65},{29,5,16385},{16,5,3},{24,5,513},{20,5,33},{28,5,8193}, {18,5,9},{26,5,2049},{22,5,129},{64,5,0},{16,5,2},{23,5,385}, {19,5,25},{27,5,6145},{17,5,7},{25,5,1537},{21,5,97},{29,5,24577}, {16,5,4},{24,5,769},{20,5,49},{28,5,12289},{18,5,13},{26,5,3073}, {22,5,193},{64,5,0} }; /* END OF DUMP OF mz_inffixed.h*/ #endif /* BUILDFIXED */ state->lencode = lenfix; state->lenbits = 9; state->distcode = distfix; state->distbits = 5; } #ifdef MAKEFIXED #include /* Write out the inffixed.h that is #include'd above. Defining MAKEFIXED also defines BUILDFIXED, so the tables are built on the fly. makefixed() writes those tables to stdout, which would be piped to inffixed.h. A small program can simply call makefixed to do this: void makefixed(void); int main(void) { makefixed(); return 0; } Then that can be linked with zlib built with MAKEFIXED defined and run: a.out > inffixed.h */ void makefixed() { unsigned low, size; struct inflate_state state; fixedtables(&state); puts(" /* inffixed.h -- table for decoding fixed codes"); puts(" * Generated automatically by makefixed()."); puts(" */"); puts(""); puts(" /* WARNING: this file should *not* be used by applications."); puts(" It is part of the implementation of this library and is"); puts(" subject to change. Applications should only use zlib.h."); puts(" */"); puts(""); size = 1U << 9; printf(" static const code lenfix[%u] = {", size); low = 0; for (;;) { if ((low % 7) == 0) printf("\n "); printf("{%u,%u,%d}", (low & 127) == 99 ? 64 : state.lencode[low].op, state.lencode[low].bits, state.lencode[low].val); if (++low == size) break; putchar(','); } puts("\n };"); size = 1U << 5; printf("\n static const code distfix[%u] = {", size); low = 0; for (;;) { if ((low % 6) == 0) printf("\n "); printf("{%u,%u,%d}", state.distcode[low].op, state.distcode[low].bits, state.distcode[low].val); if (++low == size) break; putchar(','); } puts("\n };"); } #endif /* MAKEFIXED */ /* Update the window with the last wsize (normally 32K) bytes written before returning. If window does not exist yet, create it. This is only called when a window is already in use, or when output has been written during this inflate call, but the end of the deflate stream has not been reached yet. It is also called to create a window for dictionary data when a dictionary is loaded. Providing output buffers larger than 32K to inflate() should provide a speed advantage, since only the last 32K of output is copied to the sliding window upon return from inflate(), and since all distances after the first 32K of output will fall in the output data, making match copies simpler and faster. The advantage may be dependent on the size of the processor's data caches. */ local int updatewindow(strm, end, copy) z_streamp strm; const Bytef *end; unsigned copy; { struct inflate_state FAR *state; unsigned dist; state = (struct inflate_state FAR *)strm->state; /* if it hasn't been done already, allocate space for the window */ if (state->window == Z_NULL) { state->window = (unsigned char FAR *) ZALLOC(strm, 1U << state->wbits, sizeof(unsigned char)); if (state->window == Z_NULL) return 1; } /* if window not in use yet, initialize */ if (state->wsize == 0) { state->wsize = 1U << state->wbits; state->wnext = 0; state->whave = 0; } /* copy state->wsize or less output bytes into the circular window */ if (copy >= state->wsize) { zmemcpy(state->window, end - state->wsize, state->wsize); state->wnext = 0; state->whave = state->wsize; } else { dist = state->wsize - state->wnext; if (dist > copy) dist = copy; zmemcpy(state->window + state->wnext, end - copy, dist); copy -= dist; if (copy) { zmemcpy(state->window, end - copy, copy); state->wnext = copy; state->whave = state->wsize; } else { state->wnext += dist; if (state->wnext == state->wsize) state->wnext = 0; if (state->whave < state->wsize) state->whave += dist; } } return 0; } /* Macros for inflate(): */ /* check function to use adler32() for zlib or crc32() for gzip */ #ifdef GUNZIP # define UPDATE(check, buf, len) \ (state->flags ? crc32(check, buf, len) : adler32(check, buf, len)) #else # define UPDATE(check, buf, len) adler32(check, buf, len) #endif /* check macros for header crc */ #ifdef GUNZIP # define CRC2(check, word) \ do { \ hbuf[0] = (unsigned char)(word); \ hbuf[1] = (unsigned char)((word) >> 8); \ check = crc32(check, hbuf, 2); \ } while (0) # define CRC4(check, word) \ do { \ hbuf[0] = (unsigned char)(word); \ hbuf[1] = (unsigned char)((word) >> 8); \ hbuf[2] = (unsigned char)((word) >> 16); \ hbuf[3] = (unsigned char)((word) >> 24); \ check = crc32(check, hbuf, 4); \ } while (0) #endif /* Load registers with state in inflate() for speed */ #define LOAD() \ do { \ put = strm->next_out; \ left = strm->avail_out; \ next = strm->next_in; \ have = strm->avail_in; \ hold = state->hold; \ bits = state->bits; \ } while (0) /* Restore state from registers in inflate() */ #define RESTORE() \ do { \ strm->next_out = put; \ strm->avail_out = left; \ strm->next_in = next; \ strm->avail_in = have; \ state->hold = hold; \ state->bits = bits; \ } while (0) /* Clear the input bit accumulator */ #define INITBITS() \ do { \ hold = 0; \ bits = 0; \ } while (0) /* Get a byte of input into the bit accumulator, or return from inflate() if there is no input available. */ #define PULLBYTE() \ do { \ if (have == 0) goto inf_leave; \ have--; \ hold += (unsigned long)(*next++) << bits; \ bits += 8; \ } while (0) /* Assure that there are at least n bits in the bit accumulator. If there is not enough available input to do that, then return from inflate(). */ #define NEEDBITS(n) \ do { \ while (bits < (unsigned)(n)) \ PULLBYTE(); \ } while (0) /* Return the low n bits of the bit accumulator (n < 16) */ #define BITS(n) \ ((unsigned)hold & ((1U << (n)) - 1)) /* Remove n bits from the bit accumulator */ #define DROPBITS(n) \ do { \ hold >>= (n); \ bits -= (unsigned)(n); \ } while (0) /* Remove zero to seven bits as needed to go to a byte boundary */ #define BYTEBITS() \ do { \ hold >>= bits & 7; \ bits -= bits & 7; \ } while (0) /* inflate() uses a state machine to process as much input data and generate as much output data as possible before returning. The state machine is structured roughly as follows: for (;;) switch (state) { ... case STATEn: if (not enough input data or output space to make progress) return; ... make progress ... state = STATEm; break; ... } so when inflate() is called again, the same case is attempted again, and if the appropriate resources are provided, the machine proceeds to the next state. The NEEDBITS() macro is usually the way the state evaluates whether it can proceed or should return. NEEDBITS() does the return if the requested bits are not available. The typical use of the BITS macros is: NEEDBITS(n); ... do something with BITS(n) ... DROPBITS(n); where NEEDBITS(n) either returns from inflate() if there isn't enough input left to load n bits into the accumulator, or it continues. BITS(n) gives the low n bits in the accumulator. When done, DROPBITS(n) drops the low n bits off the accumulator. INITBITS() clears the accumulator and sets the number of available bits to zero. BYTEBITS() discards just enough bits to put the accumulator on a byte boundary. After BYTEBITS() and a NEEDBITS(8), then BITS(8) would return the next byte in the stream. NEEDBITS(n) uses PULLBYTE() to get an available byte of input, or to return if there is no input available. The decoding of variable length codes uses PULLBYTE() directly in order to pull just enough bytes to decode the next code, and no more. Some states loop until they get enough input, making sure that enough state information is maintained to continue the loop where it left off if NEEDBITS() returns in the loop. For example, want, need, and keep would all have to actually be part of the saved state in case NEEDBITS() returns: case STATEw: while (want < need) { NEEDBITS(n); keep[want++] = BITS(n); DROPBITS(n); } state = STATEx; case STATEx: As shown above, if the next state is also the next case, then the break is omitted. A state may also return if there is not enough output space available to complete that state. Those states are copying stored data, writing a literal byte, and copying a matching string. When returning, a "goto inf_leave" is used to update the total counters, update the check value, and determine whether any progress has been made during that inflate() call in order to return the proper return code. Progress is defined as a change in either strm->avail_in or strm->avail_out. When there is a window, goto inf_leave will update the window with the last output written. If a goto inf_leave occurs in the middle of decompression and there is no window currently, goto inf_leave will create one and copy output to the window for the next call of inflate(). In this implementation, the flush parameter of inflate() only affects the return code (per zlib.h). inflate() always writes as much as possible to strm->next_out, given the space available and the provided input--the effect documented in zlib.h of Z_SYNC_FLUSH. Furthermore, inflate() always defers the allocation of and copying into a sliding window until necessary, which provides the effect documented in zlib.h for Z_FINISH when the entire input stream available. So the only thing the flush parameter actually does is: when flush is set to Z_FINISH, inflate() cannot return Z_OK. Instead it will return Z_BUF_ERROR if it has not reached the end of the stream. */ int ZEXPORT inflate(strm, flush) z_streamp strm; int flush; { struct inflate_state FAR *state; z_const unsigned char FAR *next; /* next input */ unsigned char FAR *put; /* next output */ unsigned have, left; /* available input and output */ unsigned long hold; /* bit buffer */ unsigned bits; /* bits in bit buffer */ unsigned in, out; /* save starting available input and output */ unsigned copy; /* number of stored or match bytes to copy */ unsigned char FAR *from; /* where to copy match bytes from */ code here; /* current decoding table entry */ code last; /* parent table entry */ unsigned len; /* length to copy for repeats, bits to drop */ int ret; /* return code */ #ifdef GUNZIP unsigned char hbuf[4]; /* buffer for gzip header crc calculation */ #endif static const unsigned short order[19] = /* permutation of code lengths */ {16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; if (strm == Z_NULL || strm->state == Z_NULL || strm->next_out == Z_NULL || (strm->next_in == Z_NULL && strm->avail_in != 0)) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (state->mode == TYPE) state->mode = TYPEDO; /* skip check */ LOAD(); in = have; out = left; ret = Z_OK; for (;;) switch (state->mode) { case HEAD: if (state->wrap == 0) { state->mode = TYPEDO; break; } NEEDBITS(16); #ifdef GUNZIP if ((state->wrap & 2) && hold == 0x8b1f) { /* gzip header */ state->check = crc32(0L, Z_NULL, 0); CRC2(state->check, hold); INITBITS(); state->mode = FLAGS; break; } state->flags = 0; /* expect zlib header */ if (state->head != Z_NULL) state->head->done = -1; if (!(state->wrap & 1) || /* check if zlib header allowed */ #else if ( #endif ((BITS(8) << 8) + (hold >> 8)) % 31) { strm->msg = (char *)"incorrect header check"; state->mode = BAD; break; } if (BITS(4) != Z_DEFLATED) { strm->msg = (char *)"unknown compression method"; state->mode = BAD; break; } DROPBITS(4); len = BITS(4) + 8; if (state->wbits == 0) state->wbits = len; else if (len > state->wbits) { strm->msg = (char *)"invalid window size"; state->mode = BAD; break; } state->dmax = 1U << len; Tracev((stderr, "inflate: zlib header ok\n")); strm->adler = state->check = adler32(0L, Z_NULL, 0); state->mode = hold & 0x200 ? DICTID : TYPE; INITBITS(); break; #ifdef GUNZIP case FLAGS: NEEDBITS(16); state->flags = (int)(hold); if ((state->flags & 0xff) != Z_DEFLATED) { strm->msg = (char *)"unknown compression method"; state->mode = BAD; break; } if (state->flags & 0xe000) { strm->msg = (char *)"unknown header flags set"; state->mode = BAD; break; } if (state->head != Z_NULL) state->head->text = (int)((hold >> 8) & 1); if (state->flags & 0x0200) CRC2(state->check, hold); INITBITS(); state->mode = TIME; case TIME: NEEDBITS(32); if (state->head != Z_NULL) state->head->time = hold; if (state->flags & 0x0200) CRC4(state->check, hold); INITBITS(); state->mode = OS; case OS: NEEDBITS(16); if (state->head != Z_NULL) { state->head->xflags = (int)(hold & 0xff); state->head->os = (int)(hold >> 8); } if (state->flags & 0x0200) CRC2(state->check, hold); INITBITS(); state->mode = EXLEN;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case EXLEN: if (state->flags & 0x0400) { NEEDBITS(16); state->length = (unsigned)(hold); if (state->head != Z_NULL) state->head->extra_len = (unsigned)hold; if (state->flags & 0x0200) CRC2(state->check, hold); INITBITS(); } else if (state->head != Z_NULL) state->head->extra = Z_NULL; state->mode = EXTRA;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case EXTRA: if (state->flags & 0x0400) { copy = state->length; if (copy > have) copy = have; if (copy) { if (state->head != Z_NULL && state->head->extra != Z_NULL) { len = state->head->extra_len - state->length; zmemcpy(state->head->extra + len, next, len + copy > state->head->extra_max ? state->head->extra_max - len : copy); } if (state->flags & 0x0200) state->check = crc32(state->check, next, copy); have -= copy; next += copy; state->length -= copy; } if (state->length) goto inf_leave; } state->length = 0; state->mode = NAME;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case NAME: if (state->flags & 0x0800) { if (have == 0) goto inf_leave; copy = 0; do { len = (unsigned)(next[copy++]); if (state->head != Z_NULL && state->head->name != Z_NULL && state->length < state->head->name_max) state->head->name[state->length++] = len; } while (len && copy < have); if (state->flags & 0x0200) state->check = crc32(state->check, next, copy); have -= copy; next += copy; if (len) goto inf_leave; } else if (state->head != Z_NULL) state->head->name = Z_NULL; state->length = 0; state->mode = COMMENT;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case COMMENT: if (state->flags & 0x1000) { if (have == 0) goto inf_leave; copy = 0; do { len = (unsigned)(next[copy++]); if (state->head != Z_NULL && state->head->comment != Z_NULL && state->length < state->head->comm_max) state->head->comment[state->length++] = len; } while (len && copy < have); if (state->flags & 0x0200) state->check = crc32(state->check, next, copy); have -= copy; next += copy; if (len) goto inf_leave; } else if (state->head != Z_NULL) state->head->comment = Z_NULL; state->mode = HCRC;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case HCRC: if (state->flags & 0x0200) { NEEDBITS(16); if (hold != (state->check & 0xffff)) { strm->msg = (char *)"header crc mismatch"; state->mode = BAD; break; } INITBITS(); } if (state->head != Z_NULL) { state->head->hcrc = (int)((state->flags >> 9) & 1); state->head->done = 1; } strm->adler = state->check = crc32(0L, Z_NULL, 0); state->mode = TYPE; break; #endif case DICTID: NEEDBITS(32); strm->adler = state->check = ZSWAP32(hold); INITBITS(); state->mode = DICT;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case DICT: if (state->havedict == 0) { RESTORE(); return Z_NEED_DICT; } strm->adler = state->check = adler32(0L, Z_NULL, 0); state->mode = TYPE;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case TYPE: if (flush == Z_BLOCK || flush == Z_TREES) goto inf_leave;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case TYPEDO: if (state->last) { BYTEBITS(); state->mode = CHECK; break; } NEEDBITS(3); state->last = BITS(1); DROPBITS(1); switch (BITS(2)) { case 0: /* stored block */ Tracev((stderr, "inflate: stored block%s\n", state->last ? " (last)" : "")); state->mode = STORED; break; case 1: /* fixed block */ fixedtables(state); Tracev((stderr, "inflate: fixed codes block%s\n", state->last ? " (last)" : "")); state->mode = LEN_; /* decode codes */ if (flush == Z_TREES) { DROPBITS(2); goto inf_leave; } break; case 2: /* dynamic block */ Tracev((stderr, "inflate: dynamic codes block%s\n", state->last ? " (last)" : "")); state->mode = TABLE; break; case 3: strm->msg = (char *)"invalid block type"; state->mode = BAD; } DROPBITS(2); break; case STORED: BYTEBITS(); /* go to byte boundary */ NEEDBITS(32); if ((hold & 0xffff) != ((hold >> 16) ^ 0xffff)) { strm->msg = (char *)"invalid stored block lengths"; state->mode = BAD; break; } state->length = (unsigned)hold & 0xffff; Tracev((stderr, "inflate: stored length %u\n", state->length)); INITBITS(); state->mode = COPY_; if (flush == Z_TREES) goto inf_leave;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case COPY_: state->mode = COPY;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case COPY: copy = state->length; if (copy) { if (copy > have) copy = have; if (copy > left) copy = left; if (copy == 0) goto inf_leave; zmemcpy(put, next, copy); have -= copy; next += copy; left -= copy; put += copy; state->length -= copy; break; } Tracev((stderr, "inflate: stored end\n")); state->mode = TYPE; break; case TABLE: NEEDBITS(14); state->nlen = BITS(5) + 257; DROPBITS(5); state->ndist = BITS(5) + 1; DROPBITS(5); state->ncode = BITS(4) + 4; DROPBITS(4); #ifndef PKZIP_BUG_WORKAROUND if (state->nlen > 286 || state->ndist > 30) { strm->msg = (char *)"too many length or distance symbols"; state->mode = BAD; break; } #endif Tracev((stderr, "inflate: table sizes ok\n")); state->have = 0; state->mode = LENLENS; case LENLENS: while (state->have < state->ncode) { NEEDBITS(3); state->lens[order[state->have++]] = (unsigned short)BITS(3); DROPBITS(3); } while (state->have < 19) state->lens[order[state->have++]] = 0; state->next = state->codes; state->lencode = (const code FAR *)(state->next); state->lenbits = 7; ret = inflate_table(CODES, state->lens, 19, &(state->next), &(state->lenbits), state->work); if (ret) { strm->msg = (char *)"invalid code lengths set"; state->mode = BAD; break; } Tracev((stderr, "inflate: code lengths ok\n")); state->have = 0; state->mode = CODELENS; case CODELENS: while (state->have < state->nlen + state->ndist) { for (;;) { here = state->lencode[BITS(state->lenbits)]; if ((unsigned)(here.bits) <= bits) break; PULLBYTE(); } if (here.val < 16) { DROPBITS(here.bits); state->lens[state->have++] = here.val; } else { if (here.val == 16) { NEEDBITS(here.bits + 2); DROPBITS(here.bits); if (state->have == 0) { strm->msg = (char *)"invalid bit length repeat"; state->mode = BAD; break; } len = state->lens[state->have - 1]; copy = 3 + BITS(2); DROPBITS(2); } else if (here.val == 17) { NEEDBITS(here.bits + 3); DROPBITS(here.bits); len = 0; copy = 3 + BITS(3); DROPBITS(3); } else { NEEDBITS(here.bits + 7); DROPBITS(here.bits); len = 0; copy = 11 + BITS(7); DROPBITS(7); } if (state->have + copy > state->nlen + state->ndist) { strm->msg = (char *)"invalid bit length repeat"; state->mode = BAD; break; } while (copy--) state->lens[state->have++] = (unsigned short)len; } } /* handle error breaks in while */ if (state->mode == BAD) break; /* check for end-of-block code (better have one) */ if (state->lens[256] == 0) { strm->msg = (char *)"invalid code -- missing end-of-block"; state->mode = BAD; break; } /* build code tables -- note: do not change the lenbits or distbits values here (9 and 6) without reading the comments in inftrees.h concerning the ENOUGH constants, which depend on those values */ state->next = state->codes; state->lencode = (const code FAR *)(state->next); state->lenbits = 9; ret = inflate_table(LENS, state->lens, state->nlen, &(state->next), &(state->lenbits), state->work); if (ret) { strm->msg = (char *)"invalid literal/lengths set"; state->mode = BAD; break; } state->distcode = (const code FAR *)(state->next); state->distbits = 6; ret = inflate_table(DISTS, state->lens + state->nlen, state->ndist, &(state->next), &(state->distbits), state->work); if (ret) { strm->msg = (char *)"invalid distances set"; state->mode = BAD; break; } Tracev((stderr, "inflate: codes ok\n")); state->mode = LEN_; if (flush == Z_TREES) goto inf_leave;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case LEN_: state->mode = LEN;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case LEN: if (have >= 6 && left >= 258) { RESTORE(); inflate_fast(strm, out); LOAD(); if (state->mode == TYPE) state->back = -1; break; } state->back = 0; for (;;) { here = state->lencode[BITS(state->lenbits)]; if ((unsigned)(here.bits) <= bits) break; PULLBYTE(); } if (here.op && (here.op & 0xf0) == 0) { last = here; for (;;) { here = state->lencode[last.val + (BITS(last.bits + last.op) >> last.bits)]; if ((unsigned)(last.bits + here.bits) <= bits) break; PULLBYTE(); } DROPBITS(last.bits); state->back += last.bits; } DROPBITS(here.bits); state->back += here.bits; state->length = (unsigned)here.val; if ((int)(here.op) == 0) { Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ? "inflate: literal '%c'\n" : "inflate: literal 0x%02x\n", here.val)); state->mode = LIT; break; } if (here.op & 32) { Tracevv((stderr, "inflate: end of block\n")); state->back = -1; state->mode = TYPE; break; } if (here.op & 64) { strm->msg = (char *)"invalid literal/length code"; state->mode = BAD; break; } state->extra = (unsigned)(here.op) & 15; state->mode = LENEXT;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case LENEXT: if (state->extra) { NEEDBITS(state->extra); state->length += BITS(state->extra); DROPBITS(state->extra); state->back += state->extra; } Tracevv((stderr, "inflate: length %u\n", state->length)); state->was = state->length; state->mode = DIST;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case DIST: for (;;) { here = state->distcode[BITS(state->distbits)]; if ((unsigned)(here.bits) <= bits) break; PULLBYTE(); } if ((here.op & 0xf0) == 0) { last = here; for (;;) { here = state->distcode[last.val + (BITS(last.bits + last.op) >> last.bits)]; if ((unsigned)(last.bits + here.bits) <= bits) break; PULLBYTE(); } DROPBITS(last.bits); state->back += last.bits; } DROPBITS(here.bits); state->back += here.bits; if (here.op & 64) { strm->msg = (char *)"invalid distance code"; state->mode = BAD; break; } state->offset = (unsigned)here.val; state->extra = (unsigned)(here.op) & 15; state->mode = DISTEXT;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case DISTEXT: if (state->extra) { NEEDBITS(state->extra); state->offset += BITS(state->extra); DROPBITS(state->extra); state->back += state->extra; } #ifdef INFLATE_STRICT if (state->offset > state->dmax) { strm->msg = (char *)"invalid distance too far back"; state->mode = BAD; break; } #endif Tracevv((stderr, "inflate: distance %u\n", state->offset)); state->mode = MATCH;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case MATCH: if (left == 0) goto inf_leave; copy = out - left; if (state->offset > copy) { /* copy from window */ copy = state->offset - copy; if (copy > state->whave) { if (state->sane) { strm->msg = (char *)"invalid distance too far back"; state->mode = BAD; break; } #ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR Trace((stderr, "inflate.c too far\n")); copy -= state->whave; if (copy > state->length) copy = state->length; if (copy > left) copy = left; left -= copy; state->length -= copy; do { *put++ = 0; } while (--copy); if (state->length == 0) state->mode = LEN; break; #endif } if (copy > state->wnext) { copy -= state->wnext; from = state->window + (state->wsize - copy); } else from = state->window + (state->wnext - copy); if (copy > state->length) copy = state->length; } else { /* copy from output */ from = put - state->offset; copy = state->length; } if (copy > left) copy = left; left -= copy; state->length -= copy; do { *put++ = *from++; } while (--copy); if (state->length == 0) state->mode = LEN; break; case LIT: if (left == 0) goto inf_leave; *put++ = (unsigned char)(state->length); left--; state->mode = LEN; break; case CHECK: if (state->wrap) { NEEDBITS(32); out -= left; strm->total_out += out; state->total += out; if (out) strm->adler = state->check = UPDATE(state->check, put - out, out); out = left; if (( #ifdef GUNZIP state->flags ? hold : #endif ZSWAP32(hold)) != state->check) { strm->msg = (char *)"incorrect data check"; state->mode = BAD; break; } INITBITS(); Tracev((stderr, "inflate: check matches trailer\n")); } #ifdef GUNZIP state->mode = LENGTH;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case LENGTH: if (state->wrap && state->flags) { NEEDBITS(32); if (hold != (state->total & 0xffffffffUL)) { strm->msg = (char *)"incorrect length check"; state->mode = BAD; break; } INITBITS(); Tracev((stderr, "inflate: length matches trailer\n")); } #endif state->mode = DONE;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case DONE: ret = Z_STREAM_END; goto inf_leave; case BAD: ret = Z_DATA_ERROR; goto inf_leave; case MEM: return Z_MEM_ERROR; case SYNC: default: return Z_STREAM_ERROR; } /* Return from inflate(), updating the total counts and the check value. If there was no progress during the inflate() call, return a buffer error. Call updatewindow() to create and/or update the window state. Note: a memory error from inflate() is non-recoverable. */ inf_leave: RESTORE(); if (state->wsize || (out != strm->avail_out && state->mode < BAD && (state->mode < CHECK || flush != Z_FINISH))) if (updatewindow(strm, strm->next_out, out - strm->avail_out)) { state->mode = MEM; return Z_MEM_ERROR; } in -= strm->avail_in; out -= strm->avail_out; strm->total_in += in; strm->total_out += out; state->total += out; if (state->wrap && out) strm->adler = state->check = UPDATE(state->check, strm->next_out - out, out); strm->data_type = state->bits + (state->last ? 64 : 0) + (state->mode == TYPE ? 128 : 0) + (state->mode == LEN_ || state->mode == COPY_ ? 256 : 0); if (((in == 0 && out == 0) || flush == Z_FINISH) && ret == Z_OK) ret = Z_BUF_ERROR; return ret; } int ZEXPORT inflateEnd(strm) z_streamp strm; { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL || strm->zfree == (free_func)0) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (state->window != Z_NULL) ZFREE(strm, state->window); ZFREE(strm, strm->state); strm->state = Z_NULL; Tracev((stderr, "inflate: end\n")); return Z_OK; } int ZEXPORT inflateGetDictionary(strm, dictionary, dictLength) z_streamp strm; Bytef *dictionary; uInt *dictLength; { struct inflate_state FAR *state; /* check state */ if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; /* copy dictionary */ if (state->whave && dictionary != Z_NULL) { zmemcpy(dictionary, state->window + state->wnext, state->whave - state->wnext); zmemcpy(dictionary + state->whave - state->wnext, state->window, state->wnext); } if (dictLength != Z_NULL) *dictLength = state->whave; return Z_OK; } int ZEXPORT inflateSetDictionary(strm, dictionary, dictLength) z_streamp strm; const Bytef *dictionary; uInt dictLength; { struct inflate_state FAR *state; unsigned long dictid; int ret; /* check state */ if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (state->wrap != 0 && state->mode != DICT) return Z_STREAM_ERROR; /* check for correct dictionary identifier */ if (state->mode == DICT) { dictid = adler32(0L, Z_NULL, 0); dictid = adler32(dictid, dictionary, dictLength); if (dictid != state->check) return Z_DATA_ERROR; } /* copy dictionary to window using updatewindow(), which will amend the existing dictionary if appropriate */ ret = updatewindow(strm, dictionary + dictLength, dictLength); if (ret) { state->mode = MEM; return Z_MEM_ERROR; } state->havedict = 1; Tracev((stderr, "inflate: dictionary set\n")); return Z_OK; } int ZEXPORT inflateGetHeader(strm, head) z_streamp strm; gz_headerp head; { struct inflate_state FAR *state; /* check state */ if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if ((state->wrap & 2) == 0) return Z_STREAM_ERROR; /* save header structure */ state->head = head; head->done = 0; return Z_OK; } /* Search buf[0..len-1] for the pattern: 0, 0, 0xff, 0xff. Return when found or when out of input. When called, *have is the number of pattern bytes found in order so far, in 0..3. On return *have is updated to the new state. If on return *have equals four, then the pattern was found and the return value is how many bytes were read including the last byte of the pattern. If *have is less than four, then the pattern has not been found yet and the return value is len. In the latter case, syncsearch() can be called again with more data and the *have state. *have is initialized to zero for the first call. */ local unsigned syncsearch(have, buf, len) unsigned FAR *have; const unsigned char FAR *buf; unsigned len; { unsigned got; unsigned next; got = *have; next = 0; while (next < len && got < 4) { if ((int)(buf[next]) == (got < 2 ? 0 : 0xff)) got++; else if (buf[next]) got = 0; else got = 4 - got; next++; } *have = got; return next; } int ZEXPORT inflateSync(strm) z_streamp strm; { unsigned len; /* number of bytes to look at or looked at */ unsigned long in, out; /* temporary to save total_in and total_out */ unsigned char buf[4]; /* to restore bit buffer to byte string */ struct inflate_state FAR *state; /* check parameters */ if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (strm->avail_in == 0 && state->bits < 8) return Z_BUF_ERROR; /* if first time, start search in bit buffer */ if (state->mode != SYNC) { state->mode = SYNC; state->hold <<= state->bits & 7; state->bits -= state->bits & 7; len = 0; while (state->bits >= 8) { buf[len++] = (unsigned char)(state->hold); state->hold >>= 8; state->bits -= 8; } state->have = 0; syncsearch(&(state->have), buf, len); } /* search available input */ len = syncsearch(&(state->have), strm->next_in, strm->avail_in); strm->avail_in -= len; strm->next_in += len; strm->total_in += len; /* return no joy or set up to restart inflate() on a new block */ if (state->have != 4) return Z_DATA_ERROR; in = strm->total_in; out = strm->total_out; inflateReset(strm); strm->total_in = in; strm->total_out = out; state->mode = TYPE; return Z_OK; } /* Returns true if inflate is currently at the end of a block generated by Z_SYNC_FLUSH or Z_FULL_FLUSH. This function is used by one PPP implementation to provide an additional safety check. PPP uses Z_SYNC_FLUSH but removes the length bytes of the resulting empty stored block. When decompressing, PPP checks that at the end of input packet, inflate is waiting for these length bytes. */ int ZEXPORT inflateSyncPoint(strm) z_streamp strm; { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; return state->mode == STORED && state->bits == 0; } int ZEXPORT inflateCopy(dest, source) z_streamp dest; z_streamp source; { struct inflate_state FAR *state; struct inflate_state FAR *copy; unsigned char FAR *window; unsigned wsize; /* check input */ if (dest == Z_NULL || source == Z_NULL || source->state == Z_NULL || source->zalloc == (alloc_func)0 || source->zfree == (free_func)0) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)source->state; /* allocate space */ copy = (struct inflate_state FAR *) ZALLOC(source, 1, sizeof(struct inflate_state)); if (copy == Z_NULL) return Z_MEM_ERROR; window = Z_NULL; if (state->window != Z_NULL) { window = (unsigned char FAR *) ZALLOC(source, 1U << state->wbits, sizeof(unsigned char)); if (window == Z_NULL) { ZFREE(source, copy); return Z_MEM_ERROR; } } /* copy state */ zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream)); zmemcpy((voidpf)copy, (voidpf)state, sizeof(struct inflate_state)); if (state->lencode >= state->codes && state->lencode <= state->codes + ENOUGH - 1) { copy->lencode = copy->codes + (state->lencode - state->codes); copy->distcode = copy->codes + (state->distcode - state->codes); } copy->next = copy->codes + (state->next - state->codes); if (window != Z_NULL) { wsize = 1U << state->wbits; zmemcpy(window, state->window, wsize); } copy->window = window; dest->state = (struct internal_state FAR *)copy; return Z_OK; } int ZEXPORT inflateUndermine(strm, subvert) z_streamp strm; int subvert; { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; state->sane = !subvert; #ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR return Z_OK; #else state->sane = 1; return Z_DATA_ERROR; #endif } long ZEXPORT inflateMark(strm) z_streamp strm; { struct inflate_state FAR *state; //TK: Applied the following fix (also in actual zlib devel branch): if (strm == Z_NULL || strm->state == Z_NULL) return (long)(((unsigned long)0 - 1) << 16); //TK: Code was (but clang 7.3 warns about bitshifting negative numbers): //if (strm == Z_NULL || strm->state == Z_NULL) return -1L << 16; state = (struct inflate_state FAR *)strm->state; return ((long)(state->back) << 16) + (state->mode == COPY ? state->length : (state->mode == MATCH ? state->was - state->length : 0)); } /* END OF DUMP OF mz_inflate.c*/ /* START OF DUMP OF mz_inffast.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* inffast.c -- fast decoding * Copyright (C) 1995-2008, 2010, 2013 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ #ifndef ASMINF /* Allow machine dependent optimization for post-increment or pre-increment. Based on testing to date, Pre-increment preferred for: - PowerPC G3 (Adler) - MIPS R5000 (Randers-Pehrson) Post-increment preferred for: - none No measurable difference: - Pentium III (Anderson) - M68060 (Nikl) */ #ifdef POSTINC # define OFF 0 # define PUP(a) *(a)++ #else # define OFF 1 # define PUP(a) *++(a) #endif /* Decode literal, length, and distance codes and write out the resulting literal and match bytes until either not enough input or output is available, an end-of-block is encountered, or a data error is encountered. When large enough input and output buffers are supplied to inflate(), for example, a 16K input buffer and a 64K output buffer, more than 95% of the inflate execution time is spent in this routine. Entry assumptions: state->mode == LEN strm->avail_in >= 6 strm->avail_out >= 258 start >= strm->avail_out state->bits < 8 On return, state->mode is one of: LEN -- ran out of enough output space or enough available input TYPE -- reached end of block code, inflate() to interpret next block BAD -- error in block data Notes: - The maximum input bits used by a length/distance pair is 15 bits for the length code, 5 bits for the length extra, 15 bits for the distance code, and 13 bits for the distance extra. This totals 48 bits, or six bytes. Therefore if strm->avail_in >= 6, then there is enough input to avoid checking for available input while decoding. - The maximum bytes that a single length/distance pair can output is 258 bytes, which is the maximum length that can be coded. inflate_fast() requires strm->avail_out >= 258 for each loop to avoid checking for output space. */ void ZLIB_INTERNAL inflate_fast(strm, start) z_streamp strm; unsigned start; /* inflate()'s starting value for strm->avail_out */ { struct inflate_state FAR *state; z_const unsigned char FAR *in; /* local strm->next_in */ z_const unsigned char FAR *last; /* have enough input while in < last */ unsigned char FAR *out; /* local strm->next_out */ unsigned char FAR *beg; /* inflate()'s initial strm->next_out */ unsigned char FAR *end; /* while out < end, enough space available */ #ifdef INFLATE_STRICT unsigned dmax; /* maximum distance from zlib header */ #endif unsigned wsize; /* window size or zero if not using window */ unsigned whave; /* valid bytes in the window */ unsigned wnext; /* window write index */ unsigned char FAR *window; /* allocated sliding window, if wsize != 0 */ unsigned long hold; /* local strm->hold */ unsigned bits; /* local strm->bits */ code const FAR *lcode; /* local strm->lencode */ code const FAR *dcode; /* local strm->distcode */ unsigned lmask; /* mask for first level of length codes */ unsigned dmask; /* mask for first level of distance codes */ code here; /* retrieved table entry */ unsigned op; /* code bits, operation, extra bits, or */ /* window position, window bytes to copy */ unsigned len; /* match length, unused bytes */ unsigned dist; /* match distance */ unsigned char FAR *from; /* where to copy match from */ /* copy state to local variables */ state = (struct inflate_state FAR *)strm->state; in = strm->next_in - OFF; last = in + (strm->avail_in - 5); out = strm->next_out - OFF; beg = out - (start - strm->avail_out); end = out + (strm->avail_out - 257); #ifdef INFLATE_STRICT dmax = state->dmax; #endif wsize = state->wsize; whave = state->whave; wnext = state->wnext; window = state->window; hold = state->hold; bits = state->bits; lcode = state->lencode; dcode = state->distcode; lmask = (1U << state->lenbits) - 1; dmask = (1U << state->distbits) - 1; /* decode literals and length/distances until end-of-block or not enough input data or output space */ do { if (bits < 15) { hold += (unsigned long)(PUP(in)) << bits; bits += 8; hold += (unsigned long)(PUP(in)) << bits; bits += 8; } here = lcode[hold & lmask]; dolen: op = (unsigned)(here.bits); hold >>= op; bits -= op; op = (unsigned)(here.op); if (op == 0) { /* literal */ Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ? "inflate: literal '%c'\n" : "inflate: literal 0x%02x\n", here.val)); PUP(out) = (unsigned char)(here.val); } else if (op & 16) { /* length base */ len = (unsigned)(here.val); op &= 15; /* number of extra bits */ if (op) { if (bits < op) { hold += (unsigned long)(PUP(in)) << bits; bits += 8; } len += (unsigned)hold & ((1U << op) - 1); hold >>= op; bits -= op; } Tracevv((stderr, "inflate: length %u\n", len)); if (bits < 15) { hold += (unsigned long)(PUP(in)) << bits; bits += 8; hold += (unsigned long)(PUP(in)) << bits; bits += 8; } here = dcode[hold & dmask]; dodist: op = (unsigned)(here.bits); hold >>= op; bits -= op; op = (unsigned)(here.op); if (op & 16) { /* distance base */ dist = (unsigned)(here.val); op &= 15; /* number of extra bits */ if (bits < op) { hold += (unsigned long)(PUP(in)) << bits; bits += 8; if (bits < op) { hold += (unsigned long)(PUP(in)) << bits; bits += 8; } } dist += (unsigned)hold & ((1U << op) - 1); #ifdef INFLATE_STRICT if (dist > dmax) { strm->msg = (char *)"invalid distance too far back"; state->mode = BAD; break; } #endif hold >>= op; bits -= op; Tracevv((stderr, "inflate: distance %u\n", dist)); op = (unsigned)(out - beg); /* max distance in output */ if (dist > op) { /* see if copy from window */ op = dist - op; /* distance back in window */ if (op > whave) { if (state->sane) { strm->msg = (char *)"invalid distance too far back"; state->mode = BAD; break; } #ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR if (len <= op - whave) { do { PUP(out) = 0; } while (--len); continue; } len -= op - whave; do { PUP(out) = 0; } while (--op > whave); if (op == 0) { from = out - dist; do { PUP(out) = PUP(from); } while (--len); continue; } #endif } from = window - OFF; if (wnext == 0) { /* very common case */ from += wsize - op; if (op < len) { /* some from window */ len -= op; do { PUP(out) = PUP(from); } while (--op); from = out - dist; /* rest from output */ } } else if (wnext < op) { /* wrap around window */ from += wsize + wnext - op; op -= wnext; if (op < len) { /* some from end of window */ len -= op; do { PUP(out) = PUP(from); } while (--op); from = window - OFF; if (wnext < len) { /* some from start of window */ op = wnext; len -= op; do { PUP(out) = PUP(from); } while (--op); from = out - dist; /* rest from output */ } } } else { /* contiguous in window */ from += wnext - op; if (op < len) { /* some from window */ len -= op; do { PUP(out) = PUP(from); } while (--op); from = out - dist; /* rest from output */ } } while (len > 2) { PUP(out) = PUP(from); PUP(out) = PUP(from); PUP(out) = PUP(from); len -= 3; } if (len) { PUP(out) = PUP(from); if (len > 1) PUP(out) = PUP(from); } } else { from = out - dist; /* copy direct from output */ do { /* minimum length is three */ PUP(out) = PUP(from); PUP(out) = PUP(from); PUP(out) = PUP(from); len -= 3; } while (len > 2); if (len) { PUP(out) = PUP(from); if (len > 1) PUP(out) = PUP(from); } } } else if ((op & 64) == 0) { /* 2nd level distance code */ here = dcode[here.val + (hold & ((1U << op) - 1))]; goto dodist; } else { strm->msg = (char *)"invalid distance code"; state->mode = BAD; break; } } else if ((op & 64) == 0) { /* 2nd level length code */ here = lcode[here.val + (hold & ((1U << op) - 1))]; goto dolen; } else if (op & 32) { /* end-of-block */ Tracevv((stderr, "inflate: end of block\n")); state->mode = TYPE; break; } else { strm->msg = (char *)"invalid literal/length code"; state->mode = BAD; break; } } while (in < last && out < end); /* return unused bytes (on entry, bits < 8, so in won't go too far back) */ len = bits >> 3; in -= len; bits -= len << 3; hold &= (1U << bits) - 1; /* update state and return */ strm->next_in = in + OFF; strm->next_out = out + OFF; strm->avail_in = (unsigned)(in < last ? 5 + (last - in) : 5 - (in - last)); strm->avail_out = (unsigned)(out < end ? 257 + (end - out) : 257 - (out - end)); state->hold = hold; state->bits = bits; return; } /* inflate_fast() speedups that turned out slower (on a PowerPC G3 750CXe): - Using bit fields for code structure - Different op definition to avoid & for extra bits (do & for table bits) - Three separate decoding do-loops for direct, window, and wnext == 0 - Special case for distance > 1 copies to do overlapped load and store copy - Explicit branch predictions (based on measured branch probabilities) - Deferring match copy and interspersed it with decoding subsequent codes - Swapping literal/length else - Swapping window/direct else - Larger unrolled copy loops (three is about right) - Moving len -= 3 statement into middle of loop */ #endif /* !ASMINF */ /* END OF DUMP OF mz_inffast.c*/ /* START OF DUMP OF mz_gzwrite.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* gzwrite.c -- zlib functions for writing gzip files * Copyright (C) 2004, 2005, 2010, 2011, 2012, 2013 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* START OF DUMP OF mz_gzguts.h*/ /* gzguts.h -- zlib internal header definitions for gz* operations * Copyright (C) 2004, 2005, 2010, 2011, 2012, 2013 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ #include //ADDED BY TK #include //ADDED BY TK #include //ADDED BY TK #ifdef _LARGEFILE64_SOURCE # ifndef _LARGEFILE_SOURCE # define _LARGEFILE_SOURCE 1 # endif # ifdef _FILE_OFFSET_BITS # undef _FILE_OFFSET_BITS # endif #endif #ifdef HAVE_HIDDEN # define ZLIB_INTERNAL __attribute__((visibility ("hidden"))) #else # define ZLIB_INTERNAL #endif #include #ifdef STDC # include # include # include #endif #include #ifdef _WIN32 # include #endif #if defined(__TURBOC__) || defined(_MSC_VER) || defined(_WIN32) # include #endif #ifdef WINAPI_FAMILY # define open _open # define read _read # define write _write # define close _close #endif #ifdef NO_DEFLATE /* for compatibility with old definition */ # define NO_GZCOMPRESS #endif #if defined(STDC99) || (defined(__TURBOC__) && __TURBOC__ >= 0x550) # ifndef HAVE_VSNPRINTF # define HAVE_VSNPRINTF # endif #endif #if defined(__CYGWIN__) # ifndef HAVE_VSNPRINTF # define HAVE_VSNPRINTF # endif #endif #if defined(MSDOS) && defined(__BORLANDC__) && (BORLANDC > 0x410) # ifndef HAVE_VSNPRINTF # define HAVE_VSNPRINTF # endif #endif #ifndef HAVE_VSNPRINTF # ifdef MSDOS /* vsnprintf may exist on some MS-DOS compilers (DJGPP?), but for now we just assume it doesn't. */ # define NO_vsnprintf # endif # ifdef __TURBOC__ # define NO_vsnprintf # endif # ifdef WIN32 /* In Win32, vsnprintf is available as the "non-ANSI" _vsnprintf. */ # if !defined(vsnprintf) && !defined(NO_vsnprintf) # if !defined(_MSC_VER) || ( defined(_MSC_VER) && _MSC_VER < 1500 ) # define vsnprintf _vsnprintf # endif # endif # endif # ifdef __SASC # define NO_vsnprintf # endif # ifdef VMS # define NO_vsnprintf # endif # ifdef __OS400__ # define NO_vsnprintf # endif # ifdef __MVS__ # define NO_vsnprintf # endif #endif /* unlike snprintf (which is required in C99, yet still not supported by Microsoft more than a decade later!), _snprintf does not guarantee null termination of the result -- however this is only used in gzlib.c where the result is assured to fit in the space provided */ #ifdef _MSC_VER # define snprintf _snprintf #endif #ifndef local # define local static #endif /* compile with -Dlocal if your debugger can't find static symbols */ /* gz* functions always use library allocation functions */ #ifndef STDC extern voidp malloc OF((uInt size)); extern void free OF((voidpf ptr)); #endif /* get errno and strerror definition */ #if defined UNDER_CE # include # define zstrerror() gz_strwinerror((DWORD)GetLastError()) #else # ifndef NO_STRERROR # include # define zstrerror() strerror(errno) # else # define zstrerror() "stdio error (consult errno)" # endif #endif /* provide prototypes for these when building zlib without LFS */ #if !defined(_LARGEFILE64_SOURCE) || _LFS64_LARGEFILE-0 == 0 ZEXTERN gzFile ZEXPORT gzopen64 OF((const char *, const char *)); ZEXTERN z_off64_t ZEXPORT gzseek64 OF((gzFile, z_off64_t, int)); ZEXTERN z_off64_t ZEXPORT gztell64 OF((gzFile)); ZEXTERN z_off64_t ZEXPORT gzoffset64 OF((gzFile)); #endif /* default memLevel */ #if MAX_MEM_LEVEL >= 8 # define DEF_MEM_LEVEL 8 #else # define DEF_MEM_LEVEL MAX_MEM_LEVEL #endif /* default i/o buffer size -- double this for output when reading (this and twice this must be able to fit in an unsigned type) */ #define GZBUFSIZE 8192 /* gzip modes, also provide a little integrity check on the passed structure */ #define GZ_NONE 0 #define GZ_READ 7247 #define GZ_WRITE 31153 #define GZ_APPEND 1 /* mode set to GZ_WRITE after the file is opened */ /* values for gz_state how */ #define LOOK 0 /* look for a gzip header */ #define COPY 1 /* copy input directly */ #define GZIP 2 /* decompress a gzip stream */ /* internal gzip file state data structure */ typedef struct { /* exposed contents for gzgetc() macro */ struct gzFile_s x; /* "x" for exposed */ /* x.have: number of bytes available at x.next */ /* x.next: next output data to deliver or write */ /* x.pos: current position in uncompressed data */ /* used for both reading and writing */ int mode; /* see gzip modes above */ int fd; /* file descriptor */ char *path; /* path or fd for error messages */ unsigned size; /* buffer size, zero if not allocated yet */ unsigned want; /* requested buffer size, default is GZBUFSIZE */ unsigned char *in; /* input buffer */ unsigned char *out; /* output buffer (double-sized when reading) */ int direct; /* 0 if processing gzip, 1 if transparent */ /* just for reading */ int how; /* 0: get header, 1: copy, 2: decompress */ z_off64_t start; /* where the gzip data started, for rewinding */ int eof; /* true if end of input file reached */ int past; /* true if read requested past end */ /* just for writing */ int level; /* compression level */ int strategy; /* compression strategy */ /* seek request */ z_off64_t skip; /* amount to skip (already rewound if backwards) */ int seek; /* true if seek request pending */ /* error information */ int err; /* error code */ char *msg; /* error message */ /* zlib inflate or deflate stream */ z_stream strm; /* stream structure in-place (not a pointer) */ } gz_state; typedef gz_state FAR *gz_statep; /* shared functions */ void ZLIB_INTERNAL gz_error OF((gz_statep, int, const char *)); #if defined UNDER_CE char ZLIB_INTERNAL *gz_strwinerror OF((DWORD error)); #endif /* GT_OFF(x), where x is an unsigned value, is true if x > maximum z_off64_t value -- needed when comparing unsigned to z_off64_t, which is signed (possible z_off64_t types off_t, off64_t, and long are all signed) */ #ifdef INT_MAX # define GT_OFF(x) (sizeof(int) == sizeof(z_off64_t) && (x) > INT_MAX) #else unsigned ZLIB_INTERNAL gz_intmax OF((void)); # define GT_OFF(x) (sizeof(int) == sizeof(z_off64_t) && (x) > gz_intmax()) #endif /* END OF DUMP OF mz_gzguts.h*/ /* Local functions */ local int gz_init OF((gz_statep)); local int gz_comp OF((gz_statep, int)); local int gz_zero OF((gz_statep, z_off64_t)); /* Initialize state for writing a gzip file. Mark initialization by setting state->size to non-zero. Return -1 on failure or 0 on success. */ local int gz_init(state) gz_statep state; { int ret; z_streamp strm = &(state->strm); /* allocate input buffer */ state->in = (unsigned char *)malloc(state->want); if (state->in == NULL) { gz_error(state, Z_MEM_ERROR, "out of memory"); return -1; } /* only need output buffer and deflate state if compressing */ if (!state->direct) { /* allocate output buffer */ state->out = (unsigned char *)malloc(state->want); if (state->out == NULL) { free(state->in); gz_error(state, Z_MEM_ERROR, "out of memory"); return -1; } /* allocate deflate memory, set up for gzip compression */ strm->zalloc = Z_NULL; strm->zfree = Z_NULL; strm->opaque = Z_NULL; ret = deflateInit2(strm, state->level, Z_DEFLATED, MAX_WBITS + 16, DEF_MEM_LEVEL, state->strategy); if (ret != Z_OK) { free(state->out); free(state->in); gz_error(state, Z_MEM_ERROR, "out of memory"); return -1; } } /* mark state as initialized */ state->size = state->want; /* initialize write buffer if compressing */ if (!state->direct) { strm->avail_out = state->size; strm->next_out = state->out; state->x.next = strm->next_out; } return 0; } /* Compress whatever is at avail_in and next_in and write to the output file. Return -1 if there is an error writing to the output file, otherwise 0. flush is assumed to be a valid deflate() flush value. If flush is Z_FINISH, then the deflate() state is reset to start a new gzip stream. If gz->direct is true, then simply write to the output file without compressing, and ignore flush. */ local int gz_comp(state, flush) gz_statep state; int flush; { int ret, got; unsigned have; z_streamp strm = &(state->strm); /* allocate memory if this is the first time through */ if (state->size == 0 && gz_init(state) == -1) return -1; /* write directly if requested */ if (state->direct) { got = write(state->fd, strm->next_in, strm->avail_in); if (got < 0 || (unsigned)got != strm->avail_in) { gz_error(state, Z_ERRNO, zstrerror()); return -1; } strm->avail_in = 0; return 0; } /* run deflate() on provided input until it produces no more output */ ret = Z_OK; do { /* write out current buffer contents if full, or if flushing, but if doing Z_FINISH then don't write until we get to Z_STREAM_END */ if (strm->avail_out == 0 || (flush != Z_NO_FLUSH && (flush != Z_FINISH || ret == Z_STREAM_END))) { have = (unsigned)(strm->next_out - state->x.next); if (have && ((got = write(state->fd, state->x.next, have)) < 0 || (unsigned)got != have)) { gz_error(state, Z_ERRNO, zstrerror()); return -1; } if (strm->avail_out == 0) { strm->avail_out = state->size; strm->next_out = state->out; } state->x.next = strm->next_out; } /* compress */ have = strm->avail_out; ret = deflate(strm, flush); if (ret == Z_STREAM_ERROR) { gz_error(state, Z_STREAM_ERROR, "internal error: deflate stream corrupt"); return -1; } have -= strm->avail_out; } while (have); /* if that completed a deflate stream, allow another to start */ if (flush == Z_FINISH) deflateReset(strm); /* all done, no errors */ return 0; } /* Compress len zeros to output. Return -1 on error, 0 on success. */ local int gz_zero(state, len) gz_statep state; z_off64_t len; { int first; unsigned n; z_streamp strm = &(state->strm); /* consume whatever's left in the input buffer */ if (strm->avail_in && gz_comp(state, Z_NO_FLUSH) == -1) return -1; /* compress len zeros (len guaranteed > 0) */ first = 1; while (len) { n = GT_OFF(state->size) || (z_off64_t)state->size > len ? (unsigned)len : state->size; if (first) { memset(state->in, 0, n); first = 0; } strm->avail_in = n; strm->next_in = state->in; state->x.pos += n; if (gz_comp(state, Z_NO_FLUSH) == -1) return -1; len -= n; } return 0; } /* -- see zlib.h -- */ int ZEXPORT gzwrite(file, buf, len) gzFile file; voidpc buf; unsigned len; { unsigned put = len; gz_statep state; z_streamp strm; /* get internal structure */ if (file == NULL) return 0; state = (gz_statep)file; strm = &(state->strm); /* check that we're writing and that there's no error */ if (state->mode != GZ_WRITE || state->err != Z_OK) return 0; /* since an int is returned, make sure len fits in one, otherwise return with an error (this avoids the flaw in the interface) */ if ((int)len < 0) { gz_error(state, Z_DATA_ERROR, "requested length does not fit in int"); return 0; } /* if len is zero, avoid unnecessary operations */ if (len == 0) return 0; /* allocate memory if this is the first time through */ if (state->size == 0 && gz_init(state) == -1) return 0; /* check for seek request */ if (state->seek) { state->seek = 0; if (gz_zero(state, state->skip) == -1) return 0; } /* for small len, copy to input buffer, otherwise compress directly */ if (len < state->size) { /* copy to input buffer, compress when full */ do { unsigned have, copy; if (strm->avail_in == 0) strm->next_in = state->in; have = (unsigned)((strm->next_in + strm->avail_in) - state->in); copy = state->size - have; if (copy > len) copy = len; memcpy(state->in + have, buf, copy); strm->avail_in += copy; state->x.pos += copy; buf = (const char *)buf + copy; len -= copy; if (len && gz_comp(state, Z_NO_FLUSH) == -1) return 0; } while (len); } else { /* consume whatever's left in the input buffer */ if (strm->avail_in && gz_comp(state, Z_NO_FLUSH) == -1) return 0; /* directly compress user buffer to file */ strm->avail_in = len; strm->next_in = (z_const Bytef *)buf; state->x.pos += len; if (gz_comp(state, Z_NO_FLUSH) == -1) return 0; } /* input was all buffered or compressed (put will fit in int) */ return (int)put; } /* -- see zlib.h -- */ int ZEXPORT gzputc(file, c) gzFile file; int c; { unsigned have; unsigned char buf[1]; gz_statep state; z_streamp strm; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; strm = &(state->strm); /* check that we're writing and that there's no error */ if (state->mode != GZ_WRITE || state->err != Z_OK) return -1; /* check for seek request */ if (state->seek) { state->seek = 0; if (gz_zero(state, state->skip) == -1) return -1; } /* try writing to input buffer for speed (state->size == 0 if buffer not initialized) */ if (state->size) { if (strm->avail_in == 0) strm->next_in = state->in; have = (unsigned)((strm->next_in + strm->avail_in) - state->in); if (have < state->size) { state->in[have] = c; strm->avail_in++; state->x.pos++; return c & 0xff; } } /* no room in buffer or not initialized, use gz_write() */ buf[0] = c; if (gzwrite(file, buf, 1) != 1) return -1; return c & 0xff; } /* -- see zlib.h -- */ int ZEXPORT gzputs(file, str) gzFile file; const char *str; { int ret; unsigned len; /* write string */ len = (unsigned)strlen(str); ret = gzwrite(file, str, len); return ret == 0 && len != 0 ? -1 : ret; } #if defined(STDC) || defined(Z_HAVE_STDARG_H) #include /* -- see zlib.h -- */ int ZEXPORTVA gzvprintf(gzFile file, const char *format, va_list va) { int size, len; gz_statep state; z_streamp strm; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; strm = &(state->strm); /* check that we're writing and that there's no error */ if (state->mode != GZ_WRITE || state->err != Z_OK) return 0; /* make sure we have some buffer space */ if (state->size == 0 && gz_init(state) == -1) return 0; /* check for seek request */ if (state->seek) { state->seek = 0; if (gz_zero(state, state->skip) == -1) return 0; } /* consume whatever's left in the input buffer */ if (strm->avail_in && gz_comp(state, Z_NO_FLUSH) == -1) return 0; /* do the printf() into the input buffer, put length in len */ size = (int)(state->size); state->in[size - 1] = 0; #ifdef NO_vsnprintf # ifdef HAS_vsprintf_void (void)vsprintf((char *)(state->in), format, va); for (len = 0; len < size; len++) if (state->in[len] == 0) break; # else len = vsprintf((char *)(state->in), format, va); # endif #else # ifdef HAS_vsnprintf_void (void)vsnprintf((char *)(state->in), size, format, va); len = strlen((char *)(state->in)); # else len = vsnprintf((char *)(state->in), size, format, va); # endif #endif /* check that printf() results fit in buffer */ if (len <= 0 || len >= (int)size || state->in[size - 1] != 0) return 0; /* update buffer and position, defer compression until needed */ strm->avail_in = (unsigned)len; strm->next_in = state->in; state->x.pos += len; return len; } int ZEXPORTVA gzprintf(gzFile file, const char *format, ...) { va_list va; int ret; va_start(va, format); ret = gzvprintf(file, format, va); va_end(va); return ret; } #else /* !STDC && !Z_HAVE_STDARG_H */ /* -- see zlib.h -- */ int ZEXPORTVA gzprintf (file, format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20) gzFile file; const char *format; int a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20; { int size, len; gz_statep state; z_streamp strm; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; strm = &(state->strm); /* check that can really pass pointer in ints */ if (sizeof(int) != sizeof(void *)) return 0; /* check that we're writing and that there's no error */ if (state->mode != GZ_WRITE || state->err != Z_OK) return 0; /* make sure we have some buffer space */ if (state->size == 0 && gz_init(state) == -1) return 0; /* check for seek request */ if (state->seek) { state->seek = 0; if (gz_zero(state, state->skip) == -1) return 0; } /* consume whatever's left in the input buffer */ if (strm->avail_in && gz_comp(state, Z_NO_FLUSH) == -1) return 0; /* do the printf() into the input buffer, put length in len */ size = (int)(state->size); state->in[size - 1] = 0; #ifdef NO_snprintf # ifdef HAS_sprintf_void sprintf((char *)(state->in), format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20); for (len = 0; len < size; len++) if (state->in[len] == 0) break; # else len = sprintf((char *)(state->in), format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20); # endif #else # ifdef HAS_snprintf_void snprintf((char *)(state->in), size, format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20); len = strlen((char *)(state->in)); # else len = snprintf((char *)(state->in), size, format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20); # endif #endif /* check that printf() results fit in buffer */ if (len <= 0 || len >= (int)size || state->in[size - 1] != 0) return 0; /* update buffer and position, defer compression until needed */ strm->avail_in = (unsigned)len; strm->next_in = state->in; state->x.pos += len; return len; } #endif /* -- see zlib.h -- */ int ZEXPORT gzflush(file, flush) gzFile file; int flush; { gz_statep state; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; /* check that we're writing and that there's no error */ if (state->mode != GZ_WRITE || state->err != Z_OK) return Z_STREAM_ERROR; /* check flush parameter */ if (flush < 0 || flush > Z_FINISH) return Z_STREAM_ERROR; /* check for seek request */ if (state->seek) { state->seek = 0; if (gz_zero(state, state->skip) == -1) return -1; } /* compress remaining data with requested flush */ gz_comp(state, flush); return state->err; } /* -- see zlib.h -- */ int ZEXPORT gzsetparams(file, level, strategy) gzFile file; int level; int strategy; { gz_statep state; z_streamp strm; /* get internal structure */ if (file == NULL) return Z_STREAM_ERROR; state = (gz_statep)file; strm = &(state->strm); /* check that we're writing and that there's no error */ if (state->mode != GZ_WRITE || state->err != Z_OK) return Z_STREAM_ERROR; /* if no change is requested, then do nothing */ if (level == state->level && strategy == state->strategy) return Z_OK; /* check for seek request */ if (state->seek) { state->seek = 0; if (gz_zero(state, state->skip) == -1) return -1; } /* change compression parameters for subsequent input */ if (state->size) { /* flush previous input with previous parameters before changing */ if (strm->avail_in && gz_comp(state, Z_PARTIAL_FLUSH) == -1) return state->err; deflateParams(strm, level, strategy); } state->level = level; state->strategy = strategy; return Z_OK; } /* -- see zlib.h -- */ int ZEXPORT gzclose_w(file) gzFile file; { int ret = Z_OK; gz_statep state; /* get internal structure */ if (file == NULL) return Z_STREAM_ERROR; state = (gz_statep)file; /* check that we're writing */ if (state->mode != GZ_WRITE) return Z_STREAM_ERROR; /* check for seek request */ if (state->seek) { state->seek = 0; if (gz_zero(state, state->skip) == -1) ret = state->err; } /* flush, free memory, and close file */ if (gz_comp(state, Z_FINISH) == -1) ret = state->err; if (state->size) { if (!state->direct) { (void)deflateEnd(&(state->strm)); free(state->out); } free(state->in); } gz_error(state, Z_OK, NULL); free(state->path); if (close(state->fd) == -1) ret = Z_ERRNO; free(state); return ret; } /* END OF DUMP OF mz_gzwrite.c*/ /* START OF DUMP OF mz_gzread.c*/ #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* gzread.c -- zlib functions for reading gzip files * Copyright (C) 2004, 2005, 2010, 2011, 2012, 2013 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* Local functions */ local int gz_load OF((gz_statep, unsigned char *, unsigned, unsigned *)); local int gz_avail OF((gz_statep)); local int gz_look OF((gz_statep)); local int gz_decomp OF((gz_statep)); local int gz_fetch OF((gz_statep)); local int gz_skip OF((gz_statep, z_off64_t)); /* Use read() to load a buffer -- return -1 on error, otherwise 0. Read from state->fd, and update state->eof, state->err, and state->msg as appropriate. This function needs to loop on read(), since read() is not guaranteed to read the number of bytes requested, depending on the type of descriptor. */ local int gz_load(state, buf, len, have) gz_statep state; unsigned char *buf; unsigned len; unsigned *have; { int ret; *have = 0; do { ret = read(state->fd, buf + *have, len - *have); if (ret <= 0) break; *have += ret; } while (*have < len); if (ret < 0) { gz_error(state, Z_ERRNO, zstrerror()); return -1; } if (ret == 0) state->eof = 1; return 0; } /* Load up input buffer and set eof flag if last data loaded -- return -1 on error, 0 otherwise. Note that the eof flag is set when the end of the input file is reached, even though there may be unused data in the buffer. Once that data has been used, no more attempts will be made to read the file. If strm->avail_in != 0, then the current data is moved to the beginning of the input buffer, and then the remainder of the buffer is loaded with the available data from the input file. */ local int gz_avail(state) gz_statep state; { unsigned got; z_streamp strm = &(state->strm); if (state->err != Z_OK && state->err != Z_BUF_ERROR) return -1; if (state->eof == 0) { if (strm->avail_in) { /* copy what's there to the start */ unsigned char *p = state->in; unsigned const char *q = strm->next_in; unsigned n = strm->avail_in; do { *p++ = *q++; } while (--n); } if (gz_load(state, state->in + strm->avail_in, state->size - strm->avail_in, &got) == -1) return -1; strm->avail_in += got; strm->next_in = state->in; } return 0; } /* Look for gzip header, set up for inflate or copy. state->x.have must be 0. If this is the first time in, allocate required memory. state->how will be left unchanged if there is no more input data available, will be set to COPY if there is no gzip header and direct copying will be performed, or it will be set to GZIP for decompression. If direct copying, then leftover input data from the input buffer will be copied to the output buffer. In that case, all further file reads will be directly to either the output buffer or a user buffer. If decompressing, the inflate state will be initialized. gz_look() will return 0 on success or -1 on failure. */ local int gz_look(state) gz_statep state; { z_streamp strm = &(state->strm); /* allocate read buffers and inflate memory */ if (state->size == 0) { /* allocate buffers */ state->in = (unsigned char *)malloc(state->want); state->out = (unsigned char *)malloc(state->want << 1); if (state->in == NULL || state->out == NULL) { if (state->out != NULL) free(state->out); if (state->in != NULL) free(state->in); gz_error(state, Z_MEM_ERROR, "out of memory"); return -1; } state->size = state->want; /* allocate inflate memory */ state->strm.zalloc = Z_NULL; state->strm.zfree = Z_NULL; state->strm.opaque = Z_NULL; state->strm.avail_in = 0; state->strm.next_in = Z_NULL; if (inflateInit2(&(state->strm), 15 + 16) != Z_OK) { /* gunzip */ free(state->out); free(state->in); state->size = 0; gz_error(state, Z_MEM_ERROR, "out of memory"); return -1; } } /* get at least the magic bytes in the input buffer */ if (strm->avail_in < 2) { if (gz_avail(state) == -1) return -1; if (strm->avail_in == 0) return 0; } /* look for gzip magic bytes -- if there, do gzip decoding (note: there is a logical dilemma here when considering the case of a partially written gzip file, to wit, if a single 31 byte is written, then we cannot tell whether this is a single-byte file, or just a partially written gzip file -- for here we assume that if a gzip file is being written, then the header will be written in a single operation, so that reading a single byte is sufficient indication that it is not a gzip file) */ if (strm->avail_in > 1 && strm->next_in[0] == 31 && strm->next_in[1] == 139) { inflateReset(strm); state->how = GZIP; state->direct = 0; return 0; } /* no gzip header -- if we were decoding gzip before, then this is trailing garbage. Ignore the trailing garbage and finish. */ if (state->direct == 0) { strm->avail_in = 0; state->eof = 1; state->x.have = 0; return 0; } /* doing raw i/o, copy any leftover input to output -- this assumes that the output buffer is larger than the input buffer, which also assures space for gzungetc() */ state->x.next = state->out; if (strm->avail_in) { memcpy(state->x.next, strm->next_in, strm->avail_in); state->x.have = strm->avail_in; strm->avail_in = 0; } state->how = COPY; state->direct = 1; return 0; } /* Decompress from input to the provided next_out and avail_out in the state. On return, state->x.have and state->x.next point to the just decompressed data. If the gzip stream completes, state->how is reset to LOOK to look for the next gzip stream or raw data, once state->x.have is depleted. Returns 0 on success, -1 on failure. */ local int gz_decomp(state) gz_statep state; { int ret = Z_OK; unsigned had; z_streamp strm = &(state->strm); /* fill output buffer up to end of deflate stream */ had = strm->avail_out; do { /* get more input for inflate() */ if (strm->avail_in == 0 && gz_avail(state) == -1) return -1; if (strm->avail_in == 0) { gz_error(state, Z_BUF_ERROR, "unexpected end of file"); break; } /* decompress and handle errors */ ret = inflate(strm, Z_NO_FLUSH); if (ret == Z_STREAM_ERROR || ret == Z_NEED_DICT) { gz_error(state, Z_STREAM_ERROR, "internal error: inflate stream corrupt"); return -1; } if (ret == Z_MEM_ERROR) { gz_error(state, Z_MEM_ERROR, "out of memory"); return -1; } if (ret == Z_DATA_ERROR) { /* deflate stream invalid */ gz_error(state, Z_DATA_ERROR, strm->msg == NULL ? "compressed data error" : strm->msg); return -1; } } while (strm->avail_out && ret != Z_STREAM_END); /* update available output */ state->x.have = had - strm->avail_out; state->x.next = strm->next_out - state->x.have; /* if the gzip stream completed successfully, look for another */ if (ret == Z_STREAM_END) state->how = LOOK; /* good decompression */ return 0; } /* Fetch data and put it in the output buffer. Assumes state->x.have is 0. Data is either copied from the input file or decompressed from the input file depending on state->how. If state->how is LOOK, then a gzip header is looked for to determine whether to copy or decompress. Returns -1 on error, otherwise 0. gz_fetch() will leave state->how as COPY or GZIP unless the end of the input file has been reached and all data has been processed. */ local int gz_fetch(state) gz_statep state; { z_streamp strm = &(state->strm); do { switch(state->how) { case LOOK: /* -> LOOK, COPY (only if never GZIP), or GZIP */ if (gz_look(state) == -1) return -1; if (state->how == LOOK) return 0; break; case COPY: /* -> COPY */ if (gz_load(state, state->out, state->size << 1, &(state->x.have)) == -1) return -1; state->x.next = state->out; return 0; case GZIP: /* -> GZIP or LOOK (if end of gzip stream) */ strm->avail_out = state->size << 1; strm->next_out = state->out; if (gz_decomp(state) == -1) return -1; } } while (state->x.have == 0 && (!state->eof || strm->avail_in)); return 0; } /* Skip len uncompressed bytes of output. Return -1 on error, 0 on success. */ local int gz_skip(state, len) gz_statep state; z_off64_t len; { unsigned n; /* skip over len bytes or reach end-of-file, whichever comes first */ while (len) /* skip over whatever is in output buffer */ if (state->x.have) { n = GT_OFF(state->x.have) || (z_off64_t)state->x.have > len ? (unsigned)len : state->x.have; state->x.have -= n; state->x.next += n; state->x.pos += n; len -= n; } /* output buffer empty -- return if we're at the end of the input */ else if (state->eof && state->strm.avail_in == 0) break; /* need more data to skip -- load up output buffer */ else { /* get more output, looking for header if required */ if (gz_fetch(state) == -1) return -1; } return 0; } /* -- see zlib.h -- */ int ZEXPORT gzread(file, buf, len) gzFile file; voidp buf; unsigned len; { unsigned got, n; gz_statep state; z_streamp strm; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; strm = &(state->strm); /* check that we're reading and that there's no (serious) error */ if (state->mode != GZ_READ || (state->err != Z_OK && state->err != Z_BUF_ERROR)) return -1; /* since an int is returned, make sure len fits in one, otherwise return with an error (this avoids the flaw in the interface) */ if ((int)len < 0) { gz_error(state, Z_DATA_ERROR, "requested length does not fit in int"); return -1; } /* if len is zero, avoid unnecessary operations */ if (len == 0) return 0; /* process a skip request */ if (state->seek) { state->seek = 0; if (gz_skip(state, state->skip) == -1) return -1; } /* get len bytes to buf, or less than len if at the end */ got = 0; do { /* first just try copying data from the output buffer */ if (state->x.have) { n = state->x.have > len ? len : state->x.have; memcpy(buf, state->x.next, n); state->x.next += n; state->x.have -= n; } /* output buffer empty -- return if we're at the end of the input */ else if (state->eof && strm->avail_in == 0) { state->past = 1; /* tried to read past end */ break; } /* need output data -- for small len or new stream load up our output buffer */ else if (state->how == LOOK || len < (state->size << 1)) { /* get more output, looking for header if required */ if (gz_fetch(state) == -1) return -1; continue; /* no progress yet -- go back to copy above */ /* the copy above assures that we will leave with space in the output buffer, allowing at least one gzungetc() to succeed */ } /* large len -- read directly into user buffer */ else if (state->how == COPY) { /* read directly */ if (gz_load(state, (unsigned char *)buf, len, &n) == -1) return -1; } /* large len -- decompress directly into user buffer */ else { /* state->how == GZIP */ strm->avail_out = len; strm->next_out = (unsigned char *)buf; if (gz_decomp(state) == -1) return -1; n = state->x.have; state->x.have = 0; } /* update progress */ len -= n; buf = (char *)buf + n; got += n; state->x.pos += n; } while (len); /* return number of bytes read into user buffer (will fit in int) */ return (int)got; } /* -- see zlib.h -- */ #ifdef Z_PREFIX_SET # undef z_gzgetc #else # undef gzgetc #endif int ZEXPORT gzgetc(file) gzFile file; { int ret; unsigned char buf[1]; gz_statep state; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; /* check that we're reading and that there's no (serious) error */ if (state->mode != GZ_READ || (state->err != Z_OK && state->err != Z_BUF_ERROR)) return -1; /* try output buffer (no need to check for skip request) */ if (state->x.have) { state->x.have--; state->x.pos++; return *(state->x.next)++; } /* nothing there -- try gzread() */ ret = gzread(file, buf, 1); return ret < 1 ? -1 : buf[0]; } int ZEXPORT gzgetc_(file) gzFile file; { return gzgetc(file); } /* -- see zlib.h -- */ int ZEXPORT gzungetc(c, file) int c; gzFile file; { gz_statep state; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; /* check that we're reading and that there's no (serious) error */ if (state->mode != GZ_READ || (state->err != Z_OK && state->err != Z_BUF_ERROR)) return -1; /* process a skip request */ if (state->seek) { state->seek = 0; if (gz_skip(state, state->skip) == -1) return -1; } /* can't push EOF */ if (c < 0) return -1; /* if output buffer empty, put byte at end (allows more pushing) */ if (state->x.have == 0) { state->x.have = 1; state->x.next = state->out + (state->size << 1) - 1; state->x.next[0] = c; state->x.pos--; state->past = 0; return c; } /* if no room, give up (must have already done a gzungetc()) */ if (state->x.have == (state->size << 1)) { gz_error(state, Z_DATA_ERROR, "out of room to push characters"); return -1; } /* slide output data if needed and insert byte before existing data */ if (state->x.next == state->out) { unsigned char *src = state->out + state->x.have; unsigned char *dest = state->out + (state->size << 1); while (src > state->out) *--dest = *--src; state->x.next = dest; } state->x.have++; state->x.next--; state->x.next[0] = c; state->x.pos--; state->past = 0; return c; } /* -- see zlib.h -- */ char * ZEXPORT gzgets(file, buf, len) gzFile file; char *buf; int len; { unsigned left, n; char *str; unsigned char *eol; gz_statep state; /* check parameters and get internal structure */ if (file == NULL || buf == NULL || len < 1) return NULL; state = (gz_statep)file; /* check that we're reading and that there's no (serious) error */ if (state->mode != GZ_READ || (state->err != Z_OK && state->err != Z_BUF_ERROR)) return NULL; /* process a skip request */ if (state->seek) { state->seek = 0; if (gz_skip(state, state->skip) == -1) return NULL; } /* copy output bytes up to new line or len - 1, whichever comes first -- append a terminating zero to the string (we don't check for a zero in the contents, let the user worry about that) */ str = buf; left = (unsigned)len - 1; if (left) do { /* assure that something is in the output buffer */ if (state->x.have == 0 && gz_fetch(state) == -1) return NULL; /* error */ if (state->x.have == 0) { /* end of file */ state->past = 1; /* read past end */ break; /* return what we have */ } /* look for end-of-line in current output buffer */ n = state->x.have > left ? left : state->x.have; eol = (unsigned char *)memchr(state->x.next, '\n', n); if (eol != NULL) n = (unsigned)(eol - state->x.next) + 1; /* copy through end-of-line, or remainder if not found */ memcpy(buf, state->x.next, n); state->x.have -= n; state->x.next += n; state->x.pos += n; left -= n; buf += n; } while (left && eol == NULL); /* return terminated string, or if nothing, end of file */ if (buf == str) return NULL; buf[0] = 0; return str; } /* -- see zlib.h -- */ int ZEXPORT gzdirect(file) gzFile file; { gz_statep state; /* get internal structure */ if (file == NULL) return 0; state = (gz_statep)file; /* if the state is not known, but we can find out, then do so (this is mainly for right after a gzopen() or gzdopen()) */ if (state->mode == GZ_READ && state->how == LOOK && state->x.have == 0) (void)gz_look(state); /* return 1 if transparent, 0 if processing a gzip stream */ return state->direct; } /* -- see zlib.h -- */ int ZEXPORT gzclose_r(file) gzFile file; { int ret, err; gz_statep state; /* get internal structure */ if (file == NULL) return Z_STREAM_ERROR; state = (gz_statep)file; /* check that we're reading */ if (state->mode != GZ_READ) return Z_STREAM_ERROR; /* free memory and close file */ if (state->size) { inflateEnd(&(state->strm)); free(state->out); free(state->in); } err = state->err == Z_BUF_ERROR ? Z_BUF_ERROR : Z_OK; gz_error(state, Z_OK, NULL); free(state->path); ret = close(state->fd); free(state); return ret ? Z_ERRNO : err; } /* END OF DUMP OF mz_gzread.c*/ /* START OF DUMP OF mz_gzlib.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* gzlib.c -- zlib functions common to reading and writing gzip files * Copyright (C) 2004, 2010, 2011, 2012, 2013 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ #if defined(_WIN32) && !defined(__BORLANDC__) # define LSEEK _lseeki64 #else #if defined(_LARGEFILE64_SOURCE) && _LFS64_LARGEFILE-0 # define LSEEK lseek64 #else # define LSEEK lseek #endif #endif /* Local functions */ local void gz_reset OF((gz_statep)); local gzFile gz_open OF((const void *, int, const char *)); #if defined UNDER_CE /* Map the Windows error number in ERROR to a locale-dependent error message string and return a pointer to it. Typically, the values for ERROR come from GetLastError. The string pointed to shall not be modified by the application, but may be overwritten by a subsequent call to gz_strwinerror The gz_strwinerror function does not change the current setting of GetLastError. */ char ZLIB_INTERNAL *gz_strwinerror (error) DWORD error; { static char buf[1024]; wchar_t *msgbuf; DWORD lasterr = GetLastError(); DWORD chars = FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER, NULL, error, 0, /* Default language */ (LPVOID)&msgbuf, 0, NULL); if (chars != 0) { /* If there is an \r\n appended, zap it. */ if (chars >= 2 && msgbuf[chars - 2] == '\r' && msgbuf[chars - 1] == '\n') { chars -= 2; msgbuf[chars] = 0; } if (chars > sizeof (buf) - 1) { chars = sizeof (buf) - 1; msgbuf[chars] = 0; } wcstombs(buf, msgbuf, chars + 1); LocalFree(msgbuf); } else { sprintf(buf, "unknown win32 error (%ld)", error); } SetLastError(lasterr); return buf; } #endif /* UNDER_CE */ /* Reset gzip file state */ local void gz_reset(state) gz_statep state; { state->x.have = 0; /* no output data available */ if (state->mode == GZ_READ) { /* for reading ... */ state->eof = 0; /* not at end of file */ state->past = 0; /* have not read past end yet */ state->how = LOOK; /* look for gzip header */ } state->seek = 0; /* no seek request pending */ gz_error(state, Z_OK, NULL); /* clear error */ state->x.pos = 0; /* no uncompressed data yet */ state->strm.avail_in = 0; /* no input data yet */ } /* Open a gzip file either by name or file descriptor. */ local gzFile gz_open(path, fd, mode) const void *path; int fd; const char *mode; { gz_statep state; size_t len; int oflag; #ifdef O_CLOEXEC int cloexec = 0; #endif #ifdef O_EXCL int exclusive = 0; #endif /* check input */ if (path == NULL) return NULL; /* allocate gzFile structure to return */ state = (gz_statep)malloc(sizeof(gz_state)); if (state == NULL) return NULL; state->size = 0; /* no buffers allocated yet */ state->want = GZBUFSIZE; /* requested buffer size */ state->msg = NULL; /* no error message yet */ /* interpret mode */ state->mode = GZ_NONE; state->level = Z_DEFAULT_COMPRESSION; state->strategy = Z_DEFAULT_STRATEGY; state->direct = 0; while (*mode) { if (*mode >= '0' && *mode <= '9') state->level = *mode - '0'; else switch (*mode) { case 'r': state->mode = GZ_READ; break; #ifndef NO_GZCOMPRESS case 'w': state->mode = GZ_WRITE; break; case 'a': state->mode = GZ_APPEND; break; #endif case '+': /* can't read and write at the same time */ free(state); return NULL; case 'b': /* ignore -- will request binary anyway */ break; #ifdef O_CLOEXEC case 'e': cloexec = 1; break; #endif #ifdef O_EXCL case 'x': exclusive = 1; break; #endif case 'f': state->strategy = Z_FILTERED; break; case 'h': state->strategy = Z_HUFFMAN_ONLY; break; case 'R': state->strategy = Z_RLE; break; case 'F': state->strategy = Z_FIXED; break; case 'T': state->direct = 1; break; default: /* could consider as an error, but just ignore */ ; } mode++; } /* must provide an "r", "w", or "a" */ if (state->mode == GZ_NONE) { free(state); return NULL; } /* can't force transparent read */ if (state->mode == GZ_READ) { if (state->direct) { free(state); return NULL; } state->direct = 1; /* for empty file */ } /* save the path name for error messages */ #ifdef _WIN32 if (fd == -2) { len = wcstombs(NULL, path, 0); if (len == (size_t)-1) len = 0; } else #endif len = strlen((const char *)path); state->path = (char *)malloc(len + 1); if (state->path == NULL) { free(state); return NULL; } #ifdef _WIN32 if (fd == -2) if (len) wcstombs(state->path, path, len + 1); else *(state->path) = 0; else #endif #if !defined(NO_snprintf) && !defined(NO_vsnprintf) snprintf(state->path, len + 1, "%s", (const char *)path); #else strcpy(state->path, path); #endif /* compute the flags for open() */ oflag = #ifdef O_LARGEFILE O_LARGEFILE | #endif #ifdef O_BINARY O_BINARY | #endif #ifdef O_CLOEXEC (cloexec ? O_CLOEXEC : 0) | #endif (state->mode == GZ_READ ? O_RDONLY : (O_WRONLY | O_CREAT | #ifdef O_EXCL (exclusive ? O_EXCL : 0) | #endif (state->mode == GZ_WRITE ? O_TRUNC : O_APPEND))); /* open the file with the appropriate flags (or just use fd) */ state->fd = fd > -1 ? fd : ( #ifdef _WIN32 fd == -2 ? _wopen(path, oflag, 0666) : #endif open((const char *)path, oflag, 0666)); if (state->fd == -1) { free(state->path); free(state); return NULL; } if (state->mode == GZ_APPEND) state->mode = GZ_WRITE; /* simplify later checks */ /* save the current position for rewinding (only if reading) */ if (state->mode == GZ_READ) { state->start = LSEEK(state->fd, 0, SEEK_CUR); if (state->start == -1) state->start = 0; } /* initialize stream */ gz_reset(state); /* return stream */ return (gzFile)state; } /* -- see zlib.h -- */ gzFile ZEXPORT gzopen(path, mode) const char *path; const char *mode; { return gz_open(path, -1, mode); } /* -- see zlib.h -- */ gzFile ZEXPORT gzopen64(path, mode) const char *path; const char *mode; { return gz_open(path, -1, mode); } /* -- see zlib.h -- */ gzFile ZEXPORT gzdopen(fd, mode) int fd; const char *mode; { char *path; /* identifier for error messages */ gzFile gz; if (fd == -1 || (path = (char *)malloc(7 + 3 * sizeof(int))) == NULL) return NULL; #if !defined(NO_snprintf) && !defined(NO_vsnprintf) snprintf(path, 7 + 3 * sizeof(int), "", fd); /* for debugging */ #else sprintf(path, "", fd); /* for debugging */ #endif gz = gz_open(path, fd, mode); free(path); return gz; } /* -- see zlib.h -- */ #ifdef _WIN32 gzFile ZEXPORT gzopen_w(path, mode) const wchar_t *path; const char *mode; { return gz_open(path, -2, mode); } #endif /* -- see zlib.h -- */ int ZEXPORT gzbuffer(file, size) gzFile file; unsigned size; { gz_statep state; /* get internal structure and check integrity */ if (file == NULL) return -1; state = (gz_statep)file; if (state->mode != GZ_READ && state->mode != GZ_WRITE) return -1; /* make sure we haven't already allocated memory */ if (state->size != 0) return -1; /* check and set requested size */ if (size < 2) size = 2; /* need two bytes to check magic header */ state->want = size; return 0; } /* -- see zlib.h -- */ int ZEXPORT gzrewind(file) gzFile file; { gz_statep state; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; /* check that we're reading and that there's no error */ if (state->mode != GZ_READ || (state->err != Z_OK && state->err != Z_BUF_ERROR)) return -1; /* back up and start over */ if (LSEEK(state->fd, state->start, SEEK_SET) == -1) return -1; gz_reset(state); return 0; } /* -- see zlib.h -- */ z_off64_t ZEXPORT gzseek64(file, offset, whence) gzFile file; z_off64_t offset; int whence; { unsigned n; z_off64_t ret; gz_statep state; /* get internal structure and check integrity */ if (file == NULL) return -1; state = (gz_statep)file; if (state->mode != GZ_READ && state->mode != GZ_WRITE) return -1; /* check that there's no error */ if (state->err != Z_OK && state->err != Z_BUF_ERROR) return -1; /* can only seek from start or relative to current position */ if (whence != SEEK_SET && whence != SEEK_CUR) return -1; /* normalize offset to a SEEK_CUR specification */ if (whence == SEEK_SET) offset -= state->x.pos; else if (state->seek) offset += state->skip; state->seek = 0; /* if within raw area while reading, just go there */ if (state->mode == GZ_READ && state->how == COPY && state->x.pos + offset >= 0) { ret = LSEEK(state->fd, offset - state->x.have, SEEK_CUR); if (ret == -1) return -1; state->x.have = 0; state->eof = 0; state->past = 0; state->seek = 0; gz_error(state, Z_OK, NULL); state->strm.avail_in = 0; state->x.pos += offset; return state->x.pos; } /* calculate skip amount, rewinding if needed for back seek when reading */ if (offset < 0) { if (state->mode != GZ_READ) /* writing -- can't go backwards */ return -1; offset += state->x.pos; if (offset < 0) /* before start of file! */ return -1; if (gzrewind(file) == -1) /* rewind, then skip to offset */ return -1; } /* if reading, skip what's in output buffer (one less gzgetc() check) */ if (state->mode == GZ_READ) { n = GT_OFF(state->x.have) || (z_off64_t)state->x.have > offset ? (unsigned)offset : state->x.have; state->x.have -= n; state->x.next += n; state->x.pos += n; offset -= n; } /* request skip (if not zero) */ if (offset) { state->seek = 1; state->skip = offset; } return state->x.pos + offset; } /* -- see zlib.h -- */ z_off_t ZEXPORT gzseek(file, offset, whence) gzFile file; z_off_t offset; int whence; { z_off64_t ret; ret = gzseek64(file, (z_off64_t)offset, whence); return ret == (z_off_t)ret ? (z_off_t)ret : -1; } /* -- see zlib.h -- */ z_off64_t ZEXPORT gztell64(file) gzFile file; { gz_statep state; /* get internal structure and check integrity */ if (file == NULL) return -1; state = (gz_statep)file; if (state->mode != GZ_READ && state->mode != GZ_WRITE) return -1; /* return position */ return state->x.pos + (state->seek ? state->skip : 0); } /* -- see zlib.h -- */ z_off_t ZEXPORT gztell(file) gzFile file; { z_off64_t ret; ret = gztell64(file); return ret == (z_off_t)ret ? (z_off_t)ret : -1; } /* -- see zlib.h -- */ z_off64_t ZEXPORT gzoffset64(file) gzFile file; { z_off64_t offset; gz_statep state; /* get internal structure and check integrity */ if (file == NULL) return -1; state = (gz_statep)file; if (state->mode != GZ_READ && state->mode != GZ_WRITE) return -1; /* compute and return effective offset in file */ offset = LSEEK(state->fd, 0, SEEK_CUR); if (offset == -1) return -1; if (state->mode == GZ_READ) /* reading */ offset -= state->strm.avail_in; /* don't count buffered input */ return offset; } /* -- see zlib.h -- */ z_off_t ZEXPORT gzoffset(file) gzFile file; { z_off64_t ret; ret = gzoffset64(file); return ret == (z_off_t)ret ? (z_off_t)ret : -1; } /* -- see zlib.h -- */ int ZEXPORT gzeof(file) gzFile file; { gz_statep state; /* get internal structure and check integrity */ if (file == NULL) return 0; state = (gz_statep)file; if (state->mode != GZ_READ && state->mode != GZ_WRITE) return 0; /* return end-of-file state */ return state->mode == GZ_READ ? state->past : 0; } /* -- see zlib.h -- */ const char * ZEXPORT gzerror(file, errnum) gzFile file; int *errnum; { gz_statep state; /* get internal structure and check integrity */ if (file == NULL) return NULL; state = (gz_statep)file; if (state->mode != GZ_READ && state->mode != GZ_WRITE) return NULL; /* return error information */ if (errnum != NULL) *errnum = state->err; return state->err == Z_MEM_ERROR ? "out of memory" : (state->msg == NULL ? "" : state->msg); } /* -- see zlib.h -- */ void ZEXPORT gzclearerr(file) gzFile file; { gz_statep state; /* get internal structure and check integrity */ if (file == NULL) return; state = (gz_statep)file; if (state->mode != GZ_READ && state->mode != GZ_WRITE) return; /* clear error and end-of-file */ if (state->mode == GZ_READ) { state->eof = 0; state->past = 0; } gz_error(state, Z_OK, NULL); } /* Create an error message in allocated memory and set state->err and state->msg accordingly. Free any previous error message already there. Do not try to free or allocate space if the error is Z_MEM_ERROR (out of memory). Simply save the error message as a static string. If there is an allocation failure constructing the error message, then convert the error to out of memory. */ void ZLIB_INTERNAL gz_error(state, err, msg) gz_statep state; int err; const char *msg; { /* free previously allocated message and clear */ if (state->msg != NULL) { if (state->err != Z_MEM_ERROR) free(state->msg); state->msg = NULL; } /* if fatal, set state->x.have to 0 so that the gzgetc() macro fails */ if (err != Z_OK && err != Z_BUF_ERROR) state->x.have = 0; /* set error code, and if no message, then done */ state->err = err; if (msg == NULL) return; /* for an out of memory error, return literal string when requested */ if (err == Z_MEM_ERROR) return; /* construct error message with path */ if ((state->msg = (char *)malloc(strlen(state->path) + strlen(msg) + 3)) == NULL) { state->err = Z_MEM_ERROR; return; } #if !defined(NO_snprintf) && !defined(NO_vsnprintf) snprintf(state->msg, strlen(state->path) + strlen(msg) + 3, "%s%s%s", state->path, ": ", msg); #else strcpy(state->msg, state->path); strcat(state->msg, ": "); strcat(state->msg, msg); #endif return; } #ifndef INT_MAX /* portably return maximum value for an int (when limits.h presumed not available) -- we need to do this to cover cases where 2's complement not used, since C standard permits 1's complement and sign-bit representations, otherwise we could just use ((unsigned)-1) >> 1 */ unsigned ZLIB_INTERNAL gz_intmax() { unsigned p, q; p = 1; do { q = p; p <<= 1; p++; } while (p > q); return q >> 1; } #endif /* END OF DUMP OF mz_gzlib.c*/ /* START OF DUMP OF mz_gzclose.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* gzclose.c -- zlib gzclose() function * Copyright (C) 2004, 2010 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* gzclose() is in a separate file so that it is linked in only if it is used. That way the other gzclose functions can be used instead to avoid linking in unneeded compression or decompression routines. */ int ZEXPORT gzclose(file) gzFile file; { #ifndef NO_GZCOMPRESS gz_statep state; if (file == NULL) return Z_STREAM_ERROR; state = (gz_statep)file; return state->mode == GZ_READ ? gzclose_r(file) : gzclose_w(file); #else return gzclose_r(file); #endif } /* END OF DUMP OF mz_gzclose.c*/ /* START OF DUMP OF mz_deflate.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* deflate.c -- compress data using the deflation algorithm * Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* * ALGORITHM * * The "deflation" process depends on being able to identify portions * of the input text which are identical to earlier input (within a * sliding window trailing behind the input currently being processed). * * The most straightforward technique turns out to be the fastest for * most input files: try all possible matches and select the longest. * The key feature of this algorithm is that insertions into the string * dictionary are very simple and thus fast, and deletions are avoided * completely. Insertions are performed at each input character, whereas * string matches are performed only when the previous match ends. So it * is preferable to spend more time in matches to allow very fast string * insertions and avoid deletions. The matching algorithm for small * strings is inspired from that of Rabin & Karp. A brute force approach * is used to find longer strings when a small match has been found. * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze * (by Leonid Broukhis). * A previous version of this file used a more sophisticated algorithm * (by Fiala and Greene) which is guaranteed to run in linear amortized * time, but has a larger average cost, uses more memory and is patented. * However the F&G algorithm may be faster for some highly redundant * files if the parameter max_chain_length (described below) is too large. * * ACKNOWLEDGEMENTS * * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and * I found it in 'freeze' written by Leonid Broukhis. * Thanks to many people for bug reports and testing. * * REFERENCES * * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification". * Available in http://tools.ietf.org/html/rfc1951 * * A description of the Rabin and Karp algorithm is given in the book * "Algorithms" by R. Sedgewick, Addison-Wesley, p252. * * Fiala,E.R., and Greene,D.H. * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595 * */ /* @(#) $Id$ */ const char deflate_copyright[] = " deflate 1.2.8 Copyright 1995-2013 Jean-loup Gailly and Mark Adler "; /* If you use the zlib library in a product, an acknowledgment is welcome in the documentation of your product. If for some reason you cannot include such an acknowledgment, I would appreciate that you keep this copyright string in the executable of your product. */ /* =========================================================================== * Function prototypes. */ typedef enum { need_more, /* block not completed, need more input or more output */ block_done, /* block flush performed */ finish_started, /* finish started, need only more output at next deflate */ finish_done /* finish done, accept no more input or output */ } block_state; typedef block_state (*compress_func) OF((deflate_state *s, int flush)); /* Compression function. Returns the block state after the call. */ local void fill_window OF((deflate_state *s)); local block_state deflate_stored OF((deflate_state *s, int flush)); local block_state deflate_fast OF((deflate_state *s, int flush)); #ifndef FASTEST local block_state deflate_slow OF((deflate_state *s, int flush)); #endif local block_state deflate_rle OF((deflate_state *s, int flush)); local block_state deflate_huff OF((deflate_state *s, int flush)); local void lm_init OF((deflate_state *s)); local void putShortMSB OF((deflate_state *s, uInt b)); local void flush_pending OF((z_streamp strm)); local int read_buf OF((z_streamp strm, Bytef *buf, unsigned size)); #ifdef ASMV void match_init OF((void)); /* asm code initialization */ uInt longest_match OF((deflate_state *s, IPos cur_match)); #else local uInt longest_match OF((deflate_state *s, IPos cur_match)); #endif #ifdef DEBUG local void check_match OF((deflate_state *s, IPos start, IPos match, int length)); #endif /* =========================================================================== * Local data */ #define NIL 0 /* Tail of hash chains */ #ifndef TOO_FAR # define TOO_FAR 4096 #endif /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */ /* Values for max_lazy_match, good_match and max_chain_length, depending on * the desired pack level (0..9). The values given below have been tuned to * exclude worst case performance for pathological files. Better values may be * found for specific files. */ typedef struct config_s { ush good_length; /* reduce lazy search above this match length */ ush max_lazy; /* do not perform lazy search above this match length */ ush nice_length; /* quit search above this match length */ ush max_chain; compress_func func; } config; #ifdef FASTEST local const config configuration_table[2] = { /* good lazy nice chain */ /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ /* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */ #else local const config configuration_table[10] = { /* good lazy nice chain */ /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ /* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */ /* 2 */ {4, 5, 16, 8, deflate_fast}, /* 3 */ {4, 6, 32, 32, deflate_fast}, /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */ /* 5 */ {8, 16, 32, 32, deflate_slow}, /* 6 */ {8, 16, 128, 128, deflate_slow}, /* 7 */ {8, 32, 128, 256, deflate_slow}, /* 8 */ {32, 128, 258, 1024, deflate_slow}, /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */ #endif /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different * meaning. */ #define EQUAL 0 /* result of memcmp for equal strings */ #ifndef NO_DUMMY_DECL struct static_tree_desc_s {int dummy;}; /* for buggy compilers */ #endif /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */ #define RANK(f) (((f) << 1) - ((f) > 4 ? 9 : 0)) /* =========================================================================== * Update a hash value with the given input byte * IN assertion: all calls to to UPDATE_HASH are made with consecutive * input characters, so that a running hash key can be computed from the * previous key instead of complete recalculation each time. */ #define UPDATE_HASH(s,h,c) (h = (((h)<hash_shift) ^ (c)) & s->hash_mask) /* =========================================================================== * Insert string str in the dictionary and set match_head to the previous head * of the hash chain (the most recent string with same hash key). Return * the previous length of the hash chain. * If this file is compiled with -DFASTEST, the compression level is forced * to 1, and no hash chains are maintained. * IN assertion: all calls to to INSERT_STRING are made with consecutive * input characters and the first MIN_MATCH bytes of str are valid * (except for the last MIN_MATCH-1 bytes of the input file). */ #ifdef FASTEST #define INSERT_STRING(s, str, match_head) \ (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ match_head = s->head[s->ins_h], \ s->head[s->ins_h] = (Pos)(str)) #else #define INSERT_STRING(s, str, match_head) \ (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \ s->head[s->ins_h] = (Pos)(str)) #endif /* =========================================================================== * Initialize the hash table (avoiding 64K overflow for 16 bit systems). * prev[] will be initialized on the fly. */ #define CLEAR_HASH(s) \ s->head[s->hash_size-1] = NIL; \ zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head)); /* ========================================================================= */ int ZEXPORT deflateInit_(strm, level, version, stream_size) z_streamp strm; int level; const char *version; int stream_size; { return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, Z_DEFAULT_STRATEGY, version, stream_size); /* To do: ignore strm->next_in if we use it as window */ } /* ========================================================================= */ int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy, version, stream_size) z_streamp strm; int level; int method; int windowBits; int memLevel; int strategy; const char *version; int stream_size; { deflate_state *s; int wrap = 1; static const char my_version[] = ZLIB_VERSION; ushf *overlay; /* We overlay pending_buf and d_buf+l_buf. This works since the average * output size for (length,distance) codes is <= 24 bits. */ if (version == Z_NULL || version[0] != my_version[0] || stream_size != sizeof(z_stream)) { return Z_VERSION_ERROR; } if (strm == Z_NULL) return Z_STREAM_ERROR; strm->msg = Z_NULL; if (strm->zalloc == (alloc_func)0) { #ifdef Z_SOLO return Z_STREAM_ERROR; #else strm->zalloc = zcalloc; strm->opaque = (voidpf)0; #endif } if (strm->zfree == (free_func)0) #ifdef Z_SOLO return Z_STREAM_ERROR; #else strm->zfree = zcfree; #endif #ifdef FASTEST if (level != 0) level = 1; #else if (level == Z_DEFAULT_COMPRESSION) level = 6; #endif if (windowBits < 0) { /* suppress zlib wrapper */ wrap = 0; windowBits = -windowBits; } #ifdef GZIP else if (windowBits > 15) { wrap = 2; /* write gzip wrapper instead */ windowBits -= 16; } #endif if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED || windowBits < 8 || windowBits > 15 || level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) { return Z_STREAM_ERROR; } if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */ s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state)); if (s == Z_NULL) return Z_MEM_ERROR; strm->state = (struct internal_state FAR *)s; s->strm = strm; s->wrap = wrap; s->gzhead = Z_NULL; s->w_bits = windowBits; s->w_size = 1 << s->w_bits; s->w_mask = s->w_size - 1; s->hash_bits = memLevel + 7; s->hash_size = 1 << s->hash_bits; s->hash_mask = s->hash_size - 1; s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH); s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte)); s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos)); s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos)); s->high_water = 0; /* nothing written to s->window yet */ s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2); s->pending_buf = (uchf *) overlay; s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L); if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL || s->pending_buf == Z_NULL) { s->status = FINISH_STATE; strm->msg = ERR_MSG(Z_MEM_ERROR); deflateEnd (strm); return Z_MEM_ERROR; } s->d_buf = overlay + s->lit_bufsize/sizeof(ush); s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize; s->level = level; s->strategy = strategy; s->method = (Byte)method; return deflateReset(strm); } /* ========================================================================= */ int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength) z_streamp strm; const Bytef *dictionary; uInt dictLength; { deflate_state *s; uInt str, n; int wrap; unsigned avail; z_const unsigned char *next; if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL) return Z_STREAM_ERROR; s = strm->state; wrap = s->wrap; if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead) return Z_STREAM_ERROR; /* when using zlib wrappers, compute Adler-32 for provided dictionary */ if (wrap == 1) strm->adler = adler32(strm->adler, dictionary, dictLength); s->wrap = 0; /* avoid computing Adler-32 in read_buf */ /* if dictionary would fill window, just replace the history */ if (dictLength >= s->w_size) { if (wrap == 0) { /* already empty otherwise */ CLEAR_HASH(s); s->strstart = 0; s->block_start = 0L; s->insert = 0; } dictionary += dictLength - s->w_size; /* use the tail */ dictLength = s->w_size; } /* insert dictionary into window and hash */ avail = strm->avail_in; next = strm->next_in; strm->avail_in = dictLength; strm->next_in = (z_const Bytef *)dictionary; fill_window(s); while (s->lookahead >= MIN_MATCH) { str = s->strstart; n = s->lookahead - (MIN_MATCH-1); do { UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); #ifndef FASTEST s->prev[str & s->w_mask] = s->head[s->ins_h]; #endif s->head[s->ins_h] = (Pos)str; str++; } while (--n); s->strstart = str; s->lookahead = MIN_MATCH-1; fill_window(s); } s->strstart += s->lookahead; s->block_start = (long)s->strstart; s->insert = s->lookahead; s->lookahead = 0; s->match_length = s->prev_length = MIN_MATCH-1; s->match_available = 0; strm->next_in = next; strm->avail_in = avail; s->wrap = wrap; return Z_OK; } /* ========================================================================= */ int ZEXPORT deflateResetKeep (strm) z_streamp strm; { deflate_state *s; if (strm == Z_NULL || strm->state == Z_NULL || strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) { return Z_STREAM_ERROR; } strm->total_in = strm->total_out = 0; strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */ strm->data_type = Z_UNKNOWN; s = (deflate_state *)strm->state; s->pending = 0; s->pending_out = s->pending_buf; if (s->wrap < 0) { s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */ } s->status = s->wrap ? INIT_STATE : BUSY_STATE; strm->adler = #ifdef GZIP s->wrap == 2 ? crc32(0L, Z_NULL, 0) : #endif adler32(0L, Z_NULL, 0); s->last_flush = Z_NO_FLUSH; _tr_init(s); return Z_OK; } /* ========================================================================= */ int ZEXPORT deflateReset (strm) z_streamp strm; { int ret; ret = deflateResetKeep(strm); if (ret == Z_OK) lm_init(strm->state); return ret; } /* ========================================================================= */ int ZEXPORT deflateSetHeader (strm, head) z_streamp strm; gz_headerp head; { if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; if (strm->state->wrap != 2) return Z_STREAM_ERROR; strm->state->gzhead = head; return Z_OK; } /* ========================================================================= */ int ZEXPORT deflatePending (strm, pending, bits) unsigned *pending; int *bits; z_streamp strm; { if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; if (pending != Z_NULL) *pending = strm->state->pending; if (bits != Z_NULL) *bits = strm->state->bi_valid; return Z_OK; } /* ========================================================================= */ int ZEXPORT deflatePrime (strm, bits, value) z_streamp strm; int bits; int value; { deflate_state *s; int put; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; s = strm->state; if ((Bytef *)(s->d_buf) < s->pending_out + ((Buf_size + 7) >> 3)) return Z_BUF_ERROR; do { put = Buf_size - s->bi_valid; if (put > bits) put = bits; s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid); s->bi_valid += put; _tr_flush_bits(s); value >>= put; bits -= put; } while (bits); return Z_OK; } /* ========================================================================= */ int ZEXPORT deflateParams(strm, level, strategy) z_streamp strm; int level; int strategy; { deflate_state *s; compress_func func; int err = Z_OK; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; s = strm->state; #ifdef FASTEST if (level != 0) level = 1; #else if (level == Z_DEFAULT_COMPRESSION) level = 6; #endif if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) { return Z_STREAM_ERROR; } func = configuration_table[s->level].func; if ((strategy != s->strategy || func != configuration_table[level].func) && strm->total_in != 0) { /* Flush the last buffer: */ err = deflate(strm, Z_BLOCK); if (err == Z_BUF_ERROR && s->pending == 0) err = Z_OK; } if (s->level != level) { s->level = level; s->max_lazy_match = configuration_table[level].max_lazy; s->good_match = configuration_table[level].good_length; s->nice_match = configuration_table[level].nice_length; s->max_chain_length = configuration_table[level].max_chain; } s->strategy = strategy; return err; } /* ========================================================================= */ int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain) z_streamp strm; int good_length; int max_lazy; int nice_length; int max_chain; { deflate_state *s; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; s = strm->state; s->good_match = good_length; s->max_lazy_match = max_lazy; s->nice_match = nice_length; s->max_chain_length = max_chain; return Z_OK; } /* ========================================================================= * For the default windowBits of 15 and memLevel of 8, this function returns * a close to exact, as well as small, upper bound on the compressed size. * They are coded as constants here for a reason--if the #define's are * changed, then this function needs to be changed as well. The return * value for 15 and 8 only works for those exact settings. * * For any setting other than those defaults for windowBits and memLevel, * the value returned is a conservative worst case for the maximum expansion * resulting from using fixed blocks instead of stored blocks, which deflate * can emit on compressed data for some combinations of the parameters. * * This function could be more sophisticated to provide closer upper bounds for * every combination of windowBits and memLevel. But even the conservative * upper bound of about 14% expansion does not seem onerous for output buffer * allocation. */ uLong ZEXPORT deflateBound(strm, sourceLen) z_streamp strm; uLong sourceLen; { deflate_state *s; uLong complen, wraplen; Bytef *str; /* conservative upper bound for compressed data */ complen = sourceLen + ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5; /* if can't get parameters, return conservative bound plus zlib wrapper */ if (strm == Z_NULL || strm->state == Z_NULL) return complen + 6; /* compute wrapper length */ s = strm->state; switch (s->wrap) { case 0: /* raw deflate */ wraplen = 0; break; case 1: /* zlib wrapper */ wraplen = 6 + (s->strstart ? 4 : 0); break; case 2: /* gzip wrapper */ wraplen = 18; if (s->gzhead != Z_NULL) { /* user-supplied gzip header */ if (s->gzhead->extra != Z_NULL) wraplen += 2 + s->gzhead->extra_len; str = s->gzhead->name; if (str != Z_NULL) do { wraplen++; } while (*str++); str = s->gzhead->comment; if (str != Z_NULL) do { wraplen++; } while (*str++); if (s->gzhead->hcrc) wraplen += 2; } break; default: /* for compiler happiness */ wraplen = 6; } /* if not default parameters, return conservative bound */ if (s->w_bits != 15 || s->hash_bits != 8 + 7) return complen + wraplen; /* default settings: return tight bound for that case */ return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) + (sourceLen >> 25) + 13 - 6 + wraplen; } /* ========================================================================= * Put a short in the pending buffer. The 16-bit value is put in MSB order. * IN assertion: the stream state is correct and there is enough room in * pending_buf. */ local void putShortMSB (s, b) deflate_state *s; uInt b; { put_byte(s, (Byte)(b >> 8)); put_byte(s, (Byte)(b & 0xff)); } /* ========================================================================= * Flush as much pending output as possible. All deflate() output goes * through this function so some applications may wish to modify it * to avoid allocating a large strm->next_out buffer and copying into it. * (See also read_buf()). */ local void flush_pending(strm) z_streamp strm; { unsigned len; deflate_state *s = strm->state; _tr_flush_bits(s); len = s->pending; if (len > strm->avail_out) len = strm->avail_out; if (len == 0) return; zmemcpy(strm->next_out, s->pending_out, len); strm->next_out += len; s->pending_out += len; strm->total_out += len; strm->avail_out -= len; s->pending -= len; if (s->pending == 0) { s->pending_out = s->pending_buf; } } /* ========================================================================= */ int ZEXPORT deflate (strm, flush) z_streamp strm; int flush; { int old_flush; /* value of flush param for previous deflate call */ deflate_state *s; if (strm == Z_NULL || strm->state == Z_NULL || flush > Z_BLOCK || flush < 0) { return Z_STREAM_ERROR; } s = strm->state; if (strm->next_out == Z_NULL || (strm->next_in == Z_NULL && strm->avail_in != 0) || (s->status == FINISH_STATE && flush != Z_FINISH)) { ERR_RETURN(strm, Z_STREAM_ERROR); } if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR); s->strm = strm; /* just in case */ old_flush = s->last_flush; s->last_flush = flush; /* Write the header */ if (s->status == INIT_STATE) { #ifdef GZIP if (s->wrap == 2) { strm->adler = crc32(0L, Z_NULL, 0); put_byte(s, 31); put_byte(s, 139); put_byte(s, 8); if (s->gzhead == Z_NULL) { put_byte(s, 0); put_byte(s, 0); put_byte(s, 0); put_byte(s, 0); put_byte(s, 0); put_byte(s, s->level == 9 ? 2 : (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? 4 : 0)); put_byte(s, OS_CODE); s->status = BUSY_STATE; } else { put_byte(s, (s->gzhead->text ? 1 : 0) + (s->gzhead->hcrc ? 2 : 0) + (s->gzhead->extra == Z_NULL ? 0 : 4) + (s->gzhead->name == Z_NULL ? 0 : 8) + (s->gzhead->comment == Z_NULL ? 0 : 16) ); put_byte(s, (Byte)(s->gzhead->time & 0xff)); put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff)); put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff)); put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff)); put_byte(s, s->level == 9 ? 2 : (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? 4 : 0)); put_byte(s, s->gzhead->os & 0xff); if (s->gzhead->extra != Z_NULL) { put_byte(s, s->gzhead->extra_len & 0xff); put_byte(s, (s->gzhead->extra_len >> 8) & 0xff); } if (s->gzhead->hcrc) strm->adler = crc32(strm->adler, s->pending_buf, s->pending); s->gzindex = 0; s->status = EXTRA_STATE; } } else #endif { uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8; uInt level_flags; if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2) level_flags = 0; else if (s->level < 6) level_flags = 1; else if (s->level == 6) level_flags = 2; else level_flags = 3; header |= (level_flags << 6); if (s->strstart != 0) header |= PRESET_DICT; header += 31 - (header % 31); s->status = BUSY_STATE; putShortMSB(s, header); /* Save the adler32 of the preset dictionary: */ if (s->strstart != 0) { putShortMSB(s, (uInt)(strm->adler >> 16)); putShortMSB(s, (uInt)(strm->adler & 0xffff)); } strm->adler = adler32(0L, Z_NULL, 0); } } #ifdef GZIP if (s->status == EXTRA_STATE) { if (s->gzhead->extra != Z_NULL) { uInt beg = s->pending; /* start of bytes to update crc */ while (s->gzindex < (s->gzhead->extra_len & 0xffff)) { if (s->pending == s->pending_buf_size) { if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); flush_pending(strm); beg = s->pending; if (s->pending == s->pending_buf_size) break; } put_byte(s, s->gzhead->extra[s->gzindex]); s->gzindex++; } if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); if (s->gzindex == s->gzhead->extra_len) { s->gzindex = 0; s->status = NAME_STATE; } } else s->status = NAME_STATE; } if (s->status == NAME_STATE) { if (s->gzhead->name != Z_NULL) { uInt beg = s->pending; /* start of bytes to update crc */ int val; do { if (s->pending == s->pending_buf_size) { if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); flush_pending(strm); beg = s->pending; if (s->pending == s->pending_buf_size) { val = 1; break; } } val = s->gzhead->name[s->gzindex++]; put_byte(s, val); } while (val != 0); if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); if (val == 0) { s->gzindex = 0; s->status = COMMENT_STATE; } } else s->status = COMMENT_STATE; } if (s->status == COMMENT_STATE) { if (s->gzhead->comment != Z_NULL) { uInt beg = s->pending; /* start of bytes to update crc */ int val; do { if (s->pending == s->pending_buf_size) { if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); flush_pending(strm); beg = s->pending; if (s->pending == s->pending_buf_size) { val = 1; break; } } val = s->gzhead->comment[s->gzindex++]; put_byte(s, val); } while (val != 0); if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); if (val == 0) s->status = HCRC_STATE; } else s->status = HCRC_STATE; } if (s->status == HCRC_STATE) { if (s->gzhead->hcrc) { if (s->pending + 2 > s->pending_buf_size) flush_pending(strm); if (s->pending + 2 <= s->pending_buf_size) { put_byte(s, (Byte)(strm->adler & 0xff)); put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); strm->adler = crc32(0L, Z_NULL, 0); s->status = BUSY_STATE; } } else s->status = BUSY_STATE; } #endif /* Flush as much pending output as possible */ if (s->pending != 0) { flush_pending(strm); if (strm->avail_out == 0) { /* Since avail_out is 0, deflate will be called again with * more output space, but possibly with both pending and * avail_in equal to zero. There won't be anything to do, * but this is not an error situation so make sure we * return OK instead of BUF_ERROR at next call of deflate: */ s->last_flush = -1; return Z_OK; } /* Make sure there is something to do and avoid duplicate consecutive * flushes. For repeated and useless calls with Z_FINISH, we keep * returning Z_STREAM_END instead of Z_BUF_ERROR. */ } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) && flush != Z_FINISH) { ERR_RETURN(strm, Z_BUF_ERROR); } /* User must not provide more input after the first FINISH: */ if (s->status == FINISH_STATE && strm->avail_in != 0) { ERR_RETURN(strm, Z_BUF_ERROR); } /* Start a new block or continue the current one. */ if (strm->avail_in != 0 || s->lookahead != 0 || (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) { block_state bstate; bstate = s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) : (s->strategy == Z_RLE ? deflate_rle(s, flush) : (*(configuration_table[s->level].func))(s, flush)); if (bstate == finish_started || bstate == finish_done) { s->status = FINISH_STATE; } if (bstate == need_more || bstate == finish_started) { if (strm->avail_out == 0) { s->last_flush = -1; /* avoid BUF_ERROR next call, see above */ } return Z_OK; /* If flush != Z_NO_FLUSH && avail_out == 0, the next call * of deflate should use the same flush parameter to make sure * that the flush is complete. So we don't have to output an * empty block here, this will be done at next call. This also * ensures that for a very small output buffer, we emit at most * one empty block. */ } if (bstate == block_done) { if (flush == Z_PARTIAL_FLUSH) { _tr_align(s); } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */ _tr_stored_block(s, (char*)0, 0L, 0); /* For a full flush, this empty block will be recognized * as a special marker by inflate_sync(). */ if (flush == Z_FULL_FLUSH) { CLEAR_HASH(s); /* forget history */ if (s->lookahead == 0) { s->strstart = 0; s->block_start = 0L; s->insert = 0; } } } flush_pending(strm); if (strm->avail_out == 0) { s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */ return Z_OK; } } } Assert(strm->avail_out > 0, "bug2"); if (flush != Z_FINISH) return Z_OK; if (s->wrap <= 0) return Z_STREAM_END; /* Write the trailer */ #ifdef GZIP if (s->wrap == 2) { put_byte(s, (Byte)(strm->adler & 0xff)); put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); put_byte(s, (Byte)((strm->adler >> 16) & 0xff)); put_byte(s, (Byte)((strm->adler >> 24) & 0xff)); put_byte(s, (Byte)(strm->total_in & 0xff)); put_byte(s, (Byte)((strm->total_in >> 8) & 0xff)); put_byte(s, (Byte)((strm->total_in >> 16) & 0xff)); put_byte(s, (Byte)((strm->total_in >> 24) & 0xff)); } else #endif { putShortMSB(s, (uInt)(strm->adler >> 16)); putShortMSB(s, (uInt)(strm->adler & 0xffff)); } flush_pending(strm); /* If avail_out is zero, the application will call deflate again * to flush the rest. */ if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */ return s->pending != 0 ? Z_OK : Z_STREAM_END; } /* ========================================================================= */ int ZEXPORT deflateEnd (strm) z_streamp strm; { int status; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; status = strm->state->status; if (status != INIT_STATE && status != EXTRA_STATE && status != NAME_STATE && status != COMMENT_STATE && status != HCRC_STATE && status != BUSY_STATE && status != FINISH_STATE) { return Z_STREAM_ERROR; } /* Deallocate in reverse order of allocations: */ TRY_FREE(strm, strm->state->pending_buf); TRY_FREE(strm, strm->state->head); TRY_FREE(strm, strm->state->prev); TRY_FREE(strm, strm->state->window); ZFREE(strm, strm->state); strm->state = Z_NULL; return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; } /* ========================================================================= * Copy the source state to the destination state. * To simplify the source, this is not supported for 16-bit MSDOS (which * doesn't have enough memory anyway to duplicate compression states). */ int ZEXPORT deflateCopy (dest, source) z_streamp dest; z_streamp source; { #ifdef MAXSEG_64K return Z_STREAM_ERROR; #else deflate_state *ds; deflate_state *ss; ushf *overlay; if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) { return Z_STREAM_ERROR; } ss = source->state; zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream)); ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state)); if (ds == Z_NULL) return Z_MEM_ERROR; dest->state = (struct internal_state FAR *) ds; zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state)); ds->strm = dest; ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte)); ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos)); ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos)); overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2); ds->pending_buf = (uchf *) overlay; if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL || ds->pending_buf == Z_NULL) { deflateEnd (dest); return Z_MEM_ERROR; } /* following zmemcpy do not work for 16-bit MSDOS */ zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte)); zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos)); zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos)); zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size); ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf); ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush); ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize; ds->l_desc.dyn_tree = ds->dyn_ltree; ds->d_desc.dyn_tree = ds->dyn_dtree; ds->bl_desc.dyn_tree = ds->bl_tree; return Z_OK; #endif /* MAXSEG_64K */ } /* =========================================================================== * Read a new buffer from the current input stream, update the adler32 * and total number of bytes read. All deflate() input goes through * this function so some applications may wish to modify it to avoid * allocating a large strm->next_in buffer and copying from it. * (See also flush_pending()). */ local int read_buf(strm, buf, size) z_streamp strm; Bytef *buf; unsigned size; { unsigned len = strm->avail_in; if (len > size) len = size; if (len == 0) return 0; strm->avail_in -= len; zmemcpy(buf, strm->next_in, len); if (strm->state->wrap == 1) { strm->adler = adler32(strm->adler, buf, len); } #ifdef GZIP else if (strm->state->wrap == 2) { strm->adler = crc32(strm->adler, buf, len); } #endif strm->next_in += len; strm->total_in += len; return (int)len; } /* =========================================================================== * Initialize the "longest match" routines for a new zlib stream */ local void lm_init (s) deflate_state *s; { s->window_size = (ulg)2L*s->w_size; CLEAR_HASH(s); /* Set the default configuration parameters: */ s->max_lazy_match = configuration_table[s->level].max_lazy; s->good_match = configuration_table[s->level].good_length; s->nice_match = configuration_table[s->level].nice_length; s->max_chain_length = configuration_table[s->level].max_chain; s->strstart = 0; s->block_start = 0L; s->lookahead = 0; s->insert = 0; s->match_length = s->prev_length = MIN_MATCH-1; s->match_available = 0; s->ins_h = 0; #ifndef FASTEST #ifdef ASMV match_init(); /* initialize the asm code */ #endif #endif } #ifndef FASTEST /* =========================================================================== * Set match_start to the longest match starting at the given string and * return its length. Matches shorter or equal to prev_length are discarded, * in which case the result is equal to prev_length and match_start is * garbage. * IN assertions: cur_match is the head of the hash chain for the current * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 * OUT assertion: the match length is not greater than s->lookahead. */ #ifndef ASMV /* For 80x86 and 680x0, an optimized version will be provided in match.asm or * match.S. The code will be functionally equivalent. */ local uInt longest_match(s, cur_match) deflate_state *s; IPos cur_match; /* current match */ { unsigned chain_length = s->max_chain_length;/* max hash chain length */ register Bytef *scan = s->window + s->strstart; /* current string */ register Bytef *match; /* matched string */ register int len; /* length of current match */ int best_len = s->prev_length; /* best match length so far */ int nice_match = s->nice_match; /* stop if match long enough */ IPos limit = s->strstart > (IPos)MAX_DIST(s) ? s->strstart - (IPos)MAX_DIST(s) : NIL; /* Stop when cur_match becomes <= limit. To simplify the code, * we prevent matches with the string of window index 0. */ Posf *prev = s->prev; uInt wmask = s->w_mask; #ifdef UNALIGNED_OK /* Compare two bytes at a time. Note: this is not always beneficial. * Try with and without -DUNALIGNED_OK to check. */ register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1; register ush scan_start = *(ushf*)scan; register ush scan_end = *(ushf*)(scan+best_len-1); #else register Bytef *strend = s->window + s->strstart + MAX_MATCH; register Byte scan_end1 = scan[best_len-1]; register Byte scan_end = scan[best_len]; #endif /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. * It is easy to get rid of this optimization if necessary. */ Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); /* Do not waste too much time if we already have a good match: */ if (s->prev_length >= s->good_match) { chain_length >>= 2; } /* Do not look for matches beyond the end of the input. This is necessary * to make deflate deterministic. */ if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead; Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); do { Assert(cur_match < s->strstart, "no future"); match = s->window + cur_match; /* Skip to next match if the match length cannot increase * or if the match length is less than 2. Note that the checks below * for insufficient lookahead only occur occasionally for performance * reasons. Therefore uninitialized memory will be accessed, and * conditional jumps will be made that depend on those values. * However the length of the match is limited to the lookahead, so * the output of deflate is not affected by the uninitialized values. */ #if (defined(UNALIGNED_OK) && MAX_MATCH == 258) /* This code assumes sizeof(unsigned short) == 2. Do not use * UNALIGNED_OK if your compiler uses a different size. */ if (*(ushf*)(match+best_len-1) != scan_end || *(ushf*)match != scan_start) continue; /* It is not necessary to compare scan[2] and match[2] since they are * always equal when the other bytes match, given that the hash keys * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at * strstart+3, +5, ... up to strstart+257. We check for insufficient * lookahead only every 4th comparison; the 128th check will be made * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is * necessary to put more guard bytes at the end of the window, or * to check more often for insufficient lookahead. */ Assert(scan[2] == match[2], "scan[2]?"); scan++, match++; do { } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) && *(ushf*)(scan+=2) == *(ushf*)(match+=2) && *(ushf*)(scan+=2) == *(ushf*)(match+=2) && *(ushf*)(scan+=2) == *(ushf*)(match+=2) && scan < strend); /* The funny "do {}" generates better code on most compilers */ /* Here, scan <= window+strstart+257 */ Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); if (*scan == *match) scan++; len = (MAX_MATCH - 1) - (int)(strend-scan); scan = strend - (MAX_MATCH-1); #else /* UNALIGNED_OK */ if (match[best_len] != scan_end || match[best_len-1] != scan_end1 || *match != *scan || *++match != scan[1]) continue; /* The check at best_len-1 can be removed because it will be made * again later. (This heuristic is not always a win.) * It is not necessary to compare scan[2] and match[2] since they * are always equal when the other bytes match, given that * the hash keys are equal and that HASH_BITS >= 8. */ scan += 2, match++; Assert(*scan == *match, "match[2]?"); /* We check for insufficient lookahead only every 8th comparison; * the 256th check will be made at strstart+258. */ do { } while (*++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && scan < strend); Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); len = MAX_MATCH - (int)(strend - scan); scan = strend - MAX_MATCH; #endif /* UNALIGNED_OK */ if (len > best_len) { s->match_start = cur_match; best_len = len; if (len >= nice_match) break; #ifdef UNALIGNED_OK scan_end = *(ushf*)(scan+best_len-1); #else scan_end1 = scan[best_len-1]; scan_end = scan[best_len]; #endif } } while ((cur_match = prev[cur_match & wmask]) > limit && --chain_length != 0); if ((uInt)best_len <= s->lookahead) return (uInt)best_len; return s->lookahead; } #endif /* ASMV */ #else /* FASTEST */ /* --------------------------------------------------------------------------- * Optimized version for FASTEST only */ local uInt longest_match(s, cur_match) deflate_state *s; IPos cur_match; /* current match */ { register Bytef *scan = s->window + s->strstart; /* current string */ register Bytef *match; /* matched string */ register int len; /* length of current match */ register Bytef *strend = s->window + s->strstart + MAX_MATCH; /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. * It is easy to get rid of this optimization if necessary. */ Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); Assert(cur_match < s->strstart, "no future"); match = s->window + cur_match; /* Return failure if the match length is less than 2: */ if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1; /* The check at best_len-1 can be removed because it will be made * again later. (This heuristic is not always a win.) * It is not necessary to compare scan[2] and match[2] since they * are always equal when the other bytes match, given that * the hash keys are equal and that HASH_BITS >= 8. */ scan += 2, match += 2; Assert(*scan == *match, "match[2]?"); /* We check for insufficient lookahead only every 8th comparison; * the 256th check will be made at strstart+258. */ do { } while (*++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && scan < strend); Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); len = MAX_MATCH - (int)(strend - scan); if (len < MIN_MATCH) return MIN_MATCH - 1; s->match_start = cur_match; return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead; } #endif /* FASTEST */ #ifdef DEBUG /* =========================================================================== * Check that the match at match_start is indeed a match. */ local void check_match(s, start, match, length) deflate_state *s; IPos start, match; int length; { /* check that the match is indeed a match */ if (zmemcmp(s->window + match, s->window + start, length) != EQUAL) { fprintf(stderr, " start %u, match %u, length %d\n", start, match, length); do { fprintf(stderr, "%c%c", s->window[match++], s->window[start++]); } while (--length != 0); z_error("invalid match"); } if (z_verbose > 1) { fprintf(stderr,"\\[%d,%d]", start-match, length); do { putc(s->window[start++], stderr); } while (--length != 0); } } #else # define check_match(s, start, match, length) #endif /* DEBUG */ /* =========================================================================== * Fill the window when the lookahead becomes insufficient. * Updates strstart and lookahead. * * IN assertion: lookahead < MIN_LOOKAHEAD * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD * At least one byte has been read, or avail_in == 0; reads are * performed for at least two bytes (required for the zip translate_eol * option -- not supported here). */ local void fill_window(s) deflate_state *s; { register unsigned n, m; register Posf *p; unsigned more; /* Amount of free space at the end of the window. */ uInt wsize = s->w_size; Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead"); do { more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart); /* Deal with !@#$% 64K limit: */ if (sizeof(int) <= 2) { if (more == 0 && s->strstart == 0 && s->lookahead == 0) { more = wsize; } else if (more == (unsigned)(-1)) { /* Very unlikely, but possible on 16 bit machine if * strstart == 0 && lookahead == 1 (input done a byte at time) */ more--; } } /* If the window is almost full and there is insufficient lookahead, * move the upper half to the lower one to make room in the upper half. */ if (s->strstart >= wsize+MAX_DIST(s)) { zmemcpy(s->window, s->window+wsize, (unsigned)wsize); s->match_start -= wsize; s->strstart -= wsize; /* we now have strstart >= MAX_DIST */ s->block_start -= (long) wsize; /* Slide the hash table (could be avoided with 32 bit values at the expense of memory usage). We slide even when level == 0 to keep the hash table consistent if we switch back to level > 0 later. (Using level 0 permanently is not an optimal usage of zlib, so we don't care about this pathological case.) */ n = s->hash_size; p = &s->head[n]; do { m = *--p; *p = (Pos)(m >= wsize ? m-wsize : NIL); } while (--n); n = wsize; #ifndef FASTEST p = &s->prev[n]; do { m = *--p; *p = (Pos)(m >= wsize ? m-wsize : NIL); /* If n is not on any hash chain, prev[n] is garbage but * its value will never be used. */ } while (--n); #endif more += wsize; } if (s->strm->avail_in == 0) break; /* If there was no sliding: * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && * more == window_size - lookahead - strstart * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) * => more >= window_size - 2*WSIZE + 2 * In the BIG_MEM or MMAP case (not yet supported), * window_size == input_size + MIN_LOOKAHEAD && * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. * Otherwise, window_size == 2*WSIZE so more >= 2. * If there was sliding, more >= WSIZE. So in all cases, more >= 2. */ Assert(more >= 2, "more < 2"); n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more); s->lookahead += n; /* Initialize the hash value now that we have some input: */ if (s->lookahead + s->insert >= MIN_MATCH) { uInt str = s->strstart - s->insert; s->ins_h = s->window[str]; UPDATE_HASH(s, s->ins_h, s->window[str + 1]); #if MIN_MATCH != 3 Call UPDATE_HASH() MIN_MATCH-3 more times #endif while (s->insert) { UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); #ifndef FASTEST s->prev[str & s->w_mask] = s->head[s->ins_h]; #endif s->head[s->ins_h] = (Pos)str; str++; s->insert--; if (s->lookahead + s->insert < MIN_MATCH) break; } } /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, * but this is not important since only literal bytes will be emitted. */ } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0); /* If the WIN_INIT bytes after the end of the current data have never been * written, then zero those bytes in order to avoid memory check reports of * the use of uninitialized (or uninitialised as Julian writes) bytes by * the longest match routines. Update the high water mark for the next * time through here. WIN_INIT is set to MAX_MATCH since the longest match * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead. */ if (s->high_water < s->window_size) { ulg curr = s->strstart + (ulg)(s->lookahead); ulg init; if (s->high_water < curr) { /* Previous high water mark below current data -- zero WIN_INIT * bytes or up to end of window, whichever is less. */ init = s->window_size - curr; if (init > WIN_INIT) init = WIN_INIT; zmemzero(s->window + curr, (unsigned)init); s->high_water = curr + init; } else if (s->high_water < (ulg)curr + WIN_INIT) { /* High water mark at or above current data, but below current data * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up * to end of window, whichever is less. */ init = (ulg)curr + WIN_INIT - s->high_water; if (init > s->window_size - s->high_water) init = s->window_size - s->high_water; zmemzero(s->window + s->high_water, (unsigned)init); s->high_water += init; } } Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD, "not enough room for search"); } /* =========================================================================== * Flush the current block, with given end-of-file flag. * IN assertion: strstart is set to the end of the current match. */ #define FLUSH_BLOCK_ONLY(s, last) { \ _tr_flush_block(s, (s->block_start >= 0L ? \ (charf *)&s->window[(unsigned)s->block_start] : \ (charf *)Z_NULL), \ (ulg)((long)s->strstart - s->block_start), \ (last)); \ s->block_start = s->strstart; \ flush_pending(s->strm); \ Tracev((stderr,"[FLUSH]")); \ } /* Same but force premature exit if necessary. */ #define FLUSH_BLOCK(s, last) { \ FLUSH_BLOCK_ONLY(s, last); \ if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \ } /* =========================================================================== * Copy without compression as much as possible from the input stream, return * the current block state. * This function does not insert new strings in the dictionary since * uncompressible data is probably not useful. This function is used * only for the level=0 compression option. * NOTE: this function should be optimized to avoid extra copying from * window to pending_buf. */ local block_state deflate_stored(s, flush) deflate_state *s; int flush; { /* Stored blocks are limited to 0xffff bytes, pending_buf is limited * to pending_buf_size, and each stored block has a 5 byte header: */ ulg max_block_size = 0xffff; ulg max_start; if (max_block_size > s->pending_buf_size - 5) { max_block_size = s->pending_buf_size - 5; } /* Copy as much as possible from input to output: */ for (;;) { /* Fill the window as much as possible: */ if (s->lookahead <= 1) { Assert(s->strstart < s->w_size+MAX_DIST(s) || s->block_start >= (long)s->w_size, "slide too late"); fill_window(s); if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more; if (s->lookahead == 0) break; /* flush the current block */ } Assert(s->block_start >= 0L, "block gone"); s->strstart += s->lookahead; s->lookahead = 0; /* Emit a stored block if pending_buf will be full: */ max_start = s->block_start + max_block_size; if (s->strstart == 0 || (ulg)s->strstart >= max_start) { /* strstart == 0 is possible when wraparound on 16-bit machine */ s->lookahead = (uInt)(s->strstart - max_start); s->strstart = (uInt)max_start; FLUSH_BLOCK(s, 0); } /* Flush if we may have to slide, otherwise block_start may become * negative and the data will be gone: */ if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) { FLUSH_BLOCK(s, 0); } } s->insert = 0; if (flush == Z_FINISH) { FLUSH_BLOCK(s, 1); return finish_done; } if ((long)s->strstart > s->block_start) FLUSH_BLOCK(s, 0); return block_done; } /* =========================================================================== * Compress as much as possible from the input stream, return the current * block state. * This function does not perform lazy evaluation of matches and inserts * new strings in the dictionary only for unmatched strings or for short * matches. It is used only for the fast compression options. */ local block_state deflate_fast(s, flush) deflate_state *s; int flush; { IPos hash_head; /* head of the hash chain */ int bflush; /* set if current block must be flushed */ for (;;) { /* Make sure that we always have enough lookahead, except * at the end of the input file. We need MAX_MATCH bytes * for the next match, plus MIN_MATCH bytes to insert the * string following the next match. */ if (s->lookahead < MIN_LOOKAHEAD) { fill_window(s); if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { return need_more; } if (s->lookahead == 0) break; /* flush the current block */ } /* Insert the string window[strstart .. strstart+2] in the * dictionary, and set hash_head to the head of the hash chain: */ hash_head = NIL; if (s->lookahead >= MIN_MATCH) { INSERT_STRING(s, s->strstart, hash_head); } /* Find the longest match, discarding those <= prev_length. * At this point we have always match_length < MIN_MATCH */ if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) { /* To simplify the code, we prevent matches with the string * of window index 0 (in particular we have to avoid a match * of the string with itself at the start of the input file). */ s->match_length = longest_match (s, hash_head); /* longest_match() sets match_start */ } if (s->match_length >= MIN_MATCH) { check_match(s, s->strstart, s->match_start, s->match_length); _tr_tally_dist(s, s->strstart - s->match_start, s->match_length - MIN_MATCH, bflush); s->lookahead -= s->match_length; /* Insert new strings in the hash table only if the match length * is not too large. This saves time but degrades compression. */ #ifndef FASTEST if (s->match_length <= s->max_insert_length && s->lookahead >= MIN_MATCH) { s->match_length--; /* string at strstart already in table */ do { s->strstart++; INSERT_STRING(s, s->strstart, hash_head); /* strstart never exceeds WSIZE-MAX_MATCH, so there are * always MIN_MATCH bytes ahead. */ } while (--s->match_length != 0); s->strstart++; } else #endif { s->strstart += s->match_length; s->match_length = 0; s->ins_h = s->window[s->strstart]; UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); #if MIN_MATCH != 3 Call UPDATE_HASH() MIN_MATCH-3 more times #endif /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not * matter since it will be recomputed at next deflate call. */ } } else { /* No match, output a literal byte */ Tracevv((stderr,"%c", s->window[s->strstart])); _tr_tally_lit (s, s->window[s->strstart], bflush); s->lookahead--; s->strstart++; } if (bflush) FLUSH_BLOCK(s, 0); } s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1; if (flush == Z_FINISH) { FLUSH_BLOCK(s, 1); return finish_done; } if (s->last_lit) FLUSH_BLOCK(s, 0); return block_done; } #ifndef FASTEST /* =========================================================================== * Same as above, but achieves better compression. We use a lazy * evaluation for matches: a match is finally adopted only if there is * no better match at the next window position. */ local block_state deflate_slow(s, flush) deflate_state *s; int flush; { IPos hash_head; /* head of hash chain */ int bflush; /* set if current block must be flushed */ /* Process the input block. */ for (;;) { /* Make sure that we always have enough lookahead, except * at the end of the input file. We need MAX_MATCH bytes * for the next match, plus MIN_MATCH bytes to insert the * string following the next match. */ if (s->lookahead < MIN_LOOKAHEAD) { fill_window(s); if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { return need_more; } if (s->lookahead == 0) break; /* flush the current block */ } /* Insert the string window[strstart .. strstart+2] in the * dictionary, and set hash_head to the head of the hash chain: */ hash_head = NIL; if (s->lookahead >= MIN_MATCH) { INSERT_STRING(s, s->strstart, hash_head); } /* Find the longest match, discarding those <= prev_length. */ s->prev_length = s->match_length, s->prev_match = s->match_start; s->match_length = MIN_MATCH-1; if (hash_head != NIL && s->prev_length < s->max_lazy_match && s->strstart - hash_head <= MAX_DIST(s)) { /* To simplify the code, we prevent matches with the string * of window index 0 (in particular we have to avoid a match * of the string with itself at the start of the input file). */ s->match_length = longest_match (s, hash_head); /* longest_match() sets match_start */ if (s->match_length <= 5 && (s->strategy == Z_FILTERED #if TOO_FAR <= 32767 || (s->match_length == MIN_MATCH && s->strstart - s->match_start > TOO_FAR) #endif )) { /* If prev_match is also MIN_MATCH, match_start is garbage * but we will ignore the current match anyway. */ s->match_length = MIN_MATCH-1; } } /* If there was a match at the previous step and the current * match is not better, output the previous match: */ if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) { uInt max_insert = s->strstart + s->lookahead - MIN_MATCH; /* Do not insert strings in hash table beyond this. */ check_match(s, s->strstart-1, s->prev_match, s->prev_length); _tr_tally_dist(s, s->strstart -1 - s->prev_match, s->prev_length - MIN_MATCH, bflush); /* Insert in hash table all strings up to the end of the match. * strstart-1 and strstart are already inserted. If there is not * enough lookahead, the last two strings are not inserted in * the hash table. */ s->lookahead -= s->prev_length-1; s->prev_length -= 2; do { if (++s->strstart <= max_insert) { INSERT_STRING(s, s->strstart, hash_head); } } while (--s->prev_length != 0); s->match_available = 0; s->match_length = MIN_MATCH-1; s->strstart++; if (bflush) FLUSH_BLOCK(s, 0); } else if (s->match_available) { /* If there was no match at the previous position, output a * single literal. If there was a match but the current match * is longer, truncate the previous match to a single literal. */ Tracevv((stderr,"%c", s->window[s->strstart-1])); _tr_tally_lit(s, s->window[s->strstart-1], bflush); if (bflush) { FLUSH_BLOCK_ONLY(s, 0); } s->strstart++; s->lookahead--; if (s->strm->avail_out == 0) return need_more; } else { /* There is no previous match to compare with, wait for * the next step to decide. */ s->match_available = 1; s->strstart++; s->lookahead--; } } Assert (flush != Z_NO_FLUSH, "no flush?"); if (s->match_available) { Tracevv((stderr,"%c", s->window[s->strstart-1])); _tr_tally_lit(s, s->window[s->strstart-1], bflush); s->match_available = 0; } s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1; if (flush == Z_FINISH) { FLUSH_BLOCK(s, 1); return finish_done; } if (s->last_lit) FLUSH_BLOCK(s, 0); return block_done; } #endif /* FASTEST */ /* =========================================================================== * For Z_RLE, simply look for runs of bytes, generate matches only of distance * one. Do not maintain a hash table. (It will be regenerated if this run of * deflate switches away from Z_RLE.) */ local block_state deflate_rle(s, flush) deflate_state *s; int flush; { int bflush; /* set if current block must be flushed */ uInt prev; /* byte at distance one to match */ Bytef *scan, *strend; /* scan goes up to strend for length of run */ for (;;) { /* Make sure that we always have enough lookahead, except * at the end of the input file. We need MAX_MATCH bytes * for the longest run, plus one for the unrolled loop. */ if (s->lookahead <= MAX_MATCH) { fill_window(s); if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) { return need_more; } if (s->lookahead == 0) break; /* flush the current block */ } /* See how many times the previous byte repeats */ s->match_length = 0; if (s->lookahead >= MIN_MATCH && s->strstart > 0) { scan = s->window + s->strstart - 1; prev = *scan; if (prev == *++scan && prev == *++scan && prev == *++scan) { strend = s->window + s->strstart + MAX_MATCH; do { } while (prev == *++scan && prev == *++scan && prev == *++scan && prev == *++scan && prev == *++scan && prev == *++scan && prev == *++scan && prev == *++scan && scan < strend); s->match_length = MAX_MATCH - (int)(strend - scan); if (s->match_length > s->lookahead) s->match_length = s->lookahead; } Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan"); } /* Emit match if have run of MIN_MATCH or longer, else emit literal */ if (s->match_length >= MIN_MATCH) { check_match(s, s->strstart, s->strstart - 1, s->match_length); _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush); s->lookahead -= s->match_length; s->strstart += s->match_length; s->match_length = 0; } else { /* No match, output a literal byte */ Tracevv((stderr,"%c", s->window[s->strstart])); _tr_tally_lit (s, s->window[s->strstart], bflush); s->lookahead--; s->strstart++; } if (bflush) FLUSH_BLOCK(s, 0); } s->insert = 0; if (flush == Z_FINISH) { FLUSH_BLOCK(s, 1); return finish_done; } if (s->last_lit) FLUSH_BLOCK(s, 0); return block_done; } /* =========================================================================== * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table. * (It will be regenerated if this run of deflate switches away from Huffman.) */ local block_state deflate_huff(s, flush) deflate_state *s; int flush; { int bflush; /* set if current block must be flushed */ for (;;) { /* Make sure that we have a literal to write. */ if (s->lookahead == 0) { fill_window(s); if (s->lookahead == 0) { if (flush == Z_NO_FLUSH) return need_more; break; /* flush the current block */ } } /* Output a literal byte */ s->match_length = 0; Tracevv((stderr,"%c", s->window[s->strstart])); _tr_tally_lit (s, s->window[s->strstart], bflush); s->lookahead--; s->strstart++; if (bflush) FLUSH_BLOCK(s, 0); } s->insert = 0; if (flush == Z_FINISH) { FLUSH_BLOCK(s, 1); return finish_done; } if (s->last_lit) FLUSH_BLOCK(s, 0); return block_done; } /* END OF DUMP OF mz_deflate.c*/ /* START OF DUMP OF mz_crc32.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* crc32.c -- compute the CRC-32 of a data stream * Copyright (C) 1995-2006, 2010, 2011, 2012 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h * * Thanks to Rodney Brown for his contribution of faster * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing * tables for updating the shift register in one step with three exclusive-ors * instead of four steps with four exclusive-ors. This results in about a * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3. */ /* @(#) $Id$ */ /* Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore protection on the static variables used to control the first-use generation of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should first call get_crc_table() to initialize the tables before allowing more than one thread to use crc32(). DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h. */ #ifdef MAKECRCH # include # ifndef DYNAMIC_CRC_TABLE # define DYNAMIC_CRC_TABLE # endif /* !DYNAMIC_CRC_TABLE */ #endif /* MAKECRCH */ #define local static /* Definitions for doing the crc four data bytes at a time. */ #if !defined(NOBYFOUR) && defined(Z_U4) # define BYFOUR #endif #ifdef BYFOUR local unsigned long crc32_little OF((unsigned long, const unsigned char FAR *, unsigned)); local unsigned long crc32_big OF((unsigned long, const unsigned char FAR *, unsigned)); # define TBLS 8 #else # define TBLS 1 #endif /* BYFOUR */ /* Local functions for crc concatenation */ local unsigned long gf2_matrix_times OF((unsigned long *mat, unsigned long vec)); local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat)); local uLong crc32_combine_ OF((uLong crc1, uLong crc2, z_off64_t len2)); #ifdef DYNAMIC_CRC_TABLE local volatile int crc_table_empty = 1; local z_crc_t FAR crc_table[TBLS][256]; local void make_crc_table OF((void)); #ifdef MAKECRCH local void write_table OF((FILE *, const z_crc_t FAR *)); #endif /* MAKECRCH */ /* Generate tables for a byte-wise 32-bit CRC calculation on the polynomial: x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1. Polynomials over GF(2) are represented in binary, one bit per coefficient, with the lowest powers in the most significant bit. Then adding polynomials is just exclusive-or, and multiplying a polynomial by x is a right shift by one. If we call the above polynomial p, and represent a byte as the polynomial q, also with the lowest power in the most significant bit (so the byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p, where a mod b means the remainder after dividing a by b. This calculation is done using the shift-register method of multiplying and taking the remainder. The register is initialized to zero, and for each incoming bit, x^32 is added mod p to the register if the bit is a one (where x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by x (which is shifting right by one and adding x^32 mod p if the bit shifted out is a one). We start with the highest power (least significant bit) of q and repeat for all eight bits of q. The first table is simply the CRC of all possible eight bit values. This is all the information needed to generate CRCs on data a byte at a time for all combinations of CRC register values and incoming bytes. The remaining tables allow for word-at-a-time CRC calculation for both big-endian and little- endian machines, where a word is four bytes. */ local void make_crc_table() { z_crc_t c; int n, k; z_crc_t poly; /* polynomial exclusive-or pattern */ /* terms of polynomial defining this crc (except x^32): */ static volatile int first = 1; /* flag to limit concurrent making */ static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26}; /* See if another task is already doing this (not thread-safe, but better than nothing -- significantly reduces duration of vulnerability in case the advice about DYNAMIC_CRC_TABLE is ignored) */ if (first) { first = 0; /* make exclusive-or pattern from polynomial (0xedb88320UL) */ poly = 0; for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++) poly |= (z_crc_t)1 << (31 - p[n]); /* generate a crc for every 8-bit value */ for (n = 0; n < 256; n++) { c = (z_crc_t)n; for (k = 0; k < 8; k++) c = c & 1 ? poly ^ (c >> 1) : c >> 1; crc_table[0][n] = c; } #ifdef BYFOUR /* generate crc for each value followed by one, two, and three zeros, and then the byte reversal of those as well as the first table */ for (n = 0; n < 256; n++) { c = crc_table[0][n]; crc_table[4][n] = ZSWAP32(c); for (k = 1; k < 4; k++) { c = crc_table[0][c & 0xff] ^ (c >> 8); crc_table[k][n] = c; crc_table[k + 4][n] = ZSWAP32(c); } } #endif /* BYFOUR */ crc_table_empty = 0; } else { /* not first */ /* wait for the other guy to finish (not efficient, but rare) */ while (crc_table_empty) ; } #ifdef MAKECRCH /* write out CRC tables to crc32.h */ { FILE *out; out = fopen("crc32.h", "w"); if (out == NULL) return; fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n"); fprintf(out, " * Generated automatically by crc32.c\n */\n\n"); fprintf(out, "local const z_crc_t FAR "); fprintf(out, "crc_table[TBLS][256] =\n{\n {\n"); write_table(out, crc_table[0]); # ifdef BYFOUR fprintf(out, "#ifdef BYFOUR\n"); for (k = 1; k < 8; k++) { fprintf(out, " },\n {\n"); write_table(out, crc_table[k]); } fprintf(out, "#endif\n"); # endif /* BYFOUR */ fprintf(out, " }\n};\n"); fclose(out); } #endif /* MAKECRCH */ } #ifdef MAKECRCH local void write_table(out, table) FILE *out; const z_crc_t FAR *table; { int n; for (n = 0; n < 256; n++) fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : " ", (unsigned long)(table[n]), n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", ")); } #endif /* MAKECRCH */ #else /* !DYNAMIC_CRC_TABLE */ /* ======================================================================== * Tables of CRC-32s of all single-byte values, made by make_crc_table(). */ /* START OF DUMP OF mz_crc32.h*/ /* crc32.h -- tables for rapid CRC calculation * Generated automatically by crc32.c */ local const z_crc_t FAR crc_table[TBLS][256] = { { 0x00000000UL, 0x77073096UL, 0xee0e612cUL, 0x990951baUL, 0x076dc419UL, 0x706af48fUL, 0xe963a535UL, 0x9e6495a3UL, 0x0edb8832UL, 0x79dcb8a4UL, 0xe0d5e91eUL, 0x97d2d988UL, 0x09b64c2bUL, 0x7eb17cbdUL, 0xe7b82d07UL, 0x90bf1d91UL, 0x1db71064UL, 0x6ab020f2UL, 0xf3b97148UL, 0x84be41deUL, 0x1adad47dUL, 0x6ddde4ebUL, 0xf4d4b551UL, 0x83d385c7UL, 0x136c9856UL, 0x646ba8c0UL, 0xfd62f97aUL, 0x8a65c9ecUL, 0x14015c4fUL, 0x63066cd9UL, 0xfa0f3d63UL, 0x8d080df5UL, 0x3b6e20c8UL, 0x4c69105eUL, 0xd56041e4UL, 0xa2677172UL, 0x3c03e4d1UL, 0x4b04d447UL, 0xd20d85fdUL, 0xa50ab56bUL, 0x35b5a8faUL, 0x42b2986cUL, 0xdbbbc9d6UL, 0xacbcf940UL, 0x32d86ce3UL, 0x45df5c75UL, 0xdcd60dcfUL, 0xabd13d59UL, 0x26d930acUL, 0x51de003aUL, 0xc8d75180UL, 0xbfd06116UL, 0x21b4f4b5UL, 0x56b3c423UL, 0xcfba9599UL, 0xb8bda50fUL, 0x2802b89eUL, 0x5f058808UL, 0xc60cd9b2UL, 0xb10be924UL, 0x2f6f7c87UL, 0x58684c11UL, 0xc1611dabUL, 0xb6662d3dUL, 0x76dc4190UL, 0x01db7106UL, 0x98d220bcUL, 0xefd5102aUL, 0x71b18589UL, 0x06b6b51fUL, 0x9fbfe4a5UL, 0xe8b8d433UL, 0x7807c9a2UL, 0x0f00f934UL, 0x9609a88eUL, 0xe10e9818UL, 0x7f6a0dbbUL, 0x086d3d2dUL, 0x91646c97UL, 0xe6635c01UL, 0x6b6b51f4UL, 0x1c6c6162UL, 0x856530d8UL, 0xf262004eUL, 0x6c0695edUL, 0x1b01a57bUL, 0x8208f4c1UL, 0xf50fc457UL, 0x65b0d9c6UL, 0x12b7e950UL, 0x8bbeb8eaUL, 0xfcb9887cUL, 0x62dd1ddfUL, 0x15da2d49UL, 0x8cd37cf3UL, 0xfbd44c65UL, 0x4db26158UL, 0x3ab551ceUL, 0xa3bc0074UL, 0xd4bb30e2UL, 0x4adfa541UL, 0x3dd895d7UL, 0xa4d1c46dUL, 0xd3d6f4fbUL, 0x4369e96aUL, 0x346ed9fcUL, 0xad678846UL, 0xda60b8d0UL, 0x44042d73UL, 0x33031de5UL, 0xaa0a4c5fUL, 0xdd0d7cc9UL, 0x5005713cUL, 0x270241aaUL, 0xbe0b1010UL, 0xc90c2086UL, 0x5768b525UL, 0x206f85b3UL, 0xb966d409UL, 0xce61e49fUL, 0x5edef90eUL, 0x29d9c998UL, 0xb0d09822UL, 0xc7d7a8b4UL, 0x59b33d17UL, 0x2eb40d81UL, 0xb7bd5c3bUL, 0xc0ba6cadUL, 0xedb88320UL, 0x9abfb3b6UL, 0x03b6e20cUL, 0x74b1d29aUL, 0xead54739UL, 0x9dd277afUL, 0x04db2615UL, 0x73dc1683UL, 0xe3630b12UL, 0x94643b84UL, 0x0d6d6a3eUL, 0x7a6a5aa8UL, 0xe40ecf0bUL, 0x9309ff9dUL, 0x0a00ae27UL, 0x7d079eb1UL, 0xf00f9344UL, 0x8708a3d2UL, 0x1e01f268UL, 0x6906c2feUL, 0xf762575dUL, 0x806567cbUL, 0x196c3671UL, 0x6e6b06e7UL, 0xfed41b76UL, 0x89d32be0UL, 0x10da7a5aUL, 0x67dd4accUL, 0xf9b9df6fUL, 0x8ebeeff9UL, 0x17b7be43UL, 0x60b08ed5UL, 0xd6d6a3e8UL, 0xa1d1937eUL, 0x38d8c2c4UL, 0x4fdff252UL, 0xd1bb67f1UL, 0xa6bc5767UL, 0x3fb506ddUL, 0x48b2364bUL, 0xd80d2bdaUL, 0xaf0a1b4cUL, 0x36034af6UL, 0x41047a60UL, 0xdf60efc3UL, 0xa867df55UL, 0x316e8eefUL, 0x4669be79UL, 0xcb61b38cUL, 0xbc66831aUL, 0x256fd2a0UL, 0x5268e236UL, 0xcc0c7795UL, 0xbb0b4703UL, 0x220216b9UL, 0x5505262fUL, 0xc5ba3bbeUL, 0xb2bd0b28UL, 0x2bb45a92UL, 0x5cb36a04UL, 0xc2d7ffa7UL, 0xb5d0cf31UL, 0x2cd99e8bUL, 0x5bdeae1dUL, 0x9b64c2b0UL, 0xec63f226UL, 0x756aa39cUL, 0x026d930aUL, 0x9c0906a9UL, 0xeb0e363fUL, 0x72076785UL, 0x05005713UL, 0x95bf4a82UL, 0xe2b87a14UL, 0x7bb12baeUL, 0x0cb61b38UL, 0x92d28e9bUL, 0xe5d5be0dUL, 0x7cdcefb7UL, 0x0bdbdf21UL, 0x86d3d2d4UL, 0xf1d4e242UL, 0x68ddb3f8UL, 0x1fda836eUL, 0x81be16cdUL, 0xf6b9265bUL, 0x6fb077e1UL, 0x18b74777UL, 0x88085ae6UL, 0xff0f6a70UL, 0x66063bcaUL, 0x11010b5cUL, 0x8f659effUL, 0xf862ae69UL, 0x616bffd3UL, 0x166ccf45UL, 0xa00ae278UL, 0xd70dd2eeUL, 0x4e048354UL, 0x3903b3c2UL, 0xa7672661UL, 0xd06016f7UL, 0x4969474dUL, 0x3e6e77dbUL, 0xaed16a4aUL, 0xd9d65adcUL, 0x40df0b66UL, 0x37d83bf0UL, 0xa9bcae53UL, 0xdebb9ec5UL, 0x47b2cf7fUL, 0x30b5ffe9UL, 0xbdbdf21cUL, 0xcabac28aUL, 0x53b39330UL, 0x24b4a3a6UL, 0xbad03605UL, 0xcdd70693UL, 0x54de5729UL, 0x23d967bfUL, 0xb3667a2eUL, 0xc4614ab8UL, 0x5d681b02UL, 0x2a6f2b94UL, 0xb40bbe37UL, 0xc30c8ea1UL, 0x5a05df1bUL, 0x2d02ef8dUL #ifdef BYFOUR }, { 0x00000000UL, 0x191b3141UL, 0x32366282UL, 0x2b2d53c3UL, 0x646cc504UL, 0x7d77f445UL, 0x565aa786UL, 0x4f4196c7UL, 0xc8d98a08UL, 0xd1c2bb49UL, 0xfaefe88aUL, 0xe3f4d9cbUL, 0xacb54f0cUL, 0xb5ae7e4dUL, 0x9e832d8eUL, 0x87981ccfUL, 0x4ac21251UL, 0x53d92310UL, 0x78f470d3UL, 0x61ef4192UL, 0x2eaed755UL, 0x37b5e614UL, 0x1c98b5d7UL, 0x05838496UL, 0x821b9859UL, 0x9b00a918UL, 0xb02dfadbUL, 0xa936cb9aUL, 0xe6775d5dUL, 0xff6c6c1cUL, 0xd4413fdfUL, 0xcd5a0e9eUL, 0x958424a2UL, 0x8c9f15e3UL, 0xa7b24620UL, 0xbea97761UL, 0xf1e8e1a6UL, 0xe8f3d0e7UL, 0xc3de8324UL, 0xdac5b265UL, 0x5d5daeaaUL, 0x44469febUL, 0x6f6bcc28UL, 0x7670fd69UL, 0x39316baeUL, 0x202a5aefUL, 0x0b07092cUL, 0x121c386dUL, 0xdf4636f3UL, 0xc65d07b2UL, 0xed705471UL, 0xf46b6530UL, 0xbb2af3f7UL, 0xa231c2b6UL, 0x891c9175UL, 0x9007a034UL, 0x179fbcfbUL, 0x0e848dbaUL, 0x25a9de79UL, 0x3cb2ef38UL, 0x73f379ffUL, 0x6ae848beUL, 0x41c51b7dUL, 0x58de2a3cUL, 0xf0794f05UL, 0xe9627e44UL, 0xc24f2d87UL, 0xdb541cc6UL, 0x94158a01UL, 0x8d0ebb40UL, 0xa623e883UL, 0xbf38d9c2UL, 0x38a0c50dUL, 0x21bbf44cUL, 0x0a96a78fUL, 0x138d96ceUL, 0x5ccc0009UL, 0x45d73148UL, 0x6efa628bUL, 0x77e153caUL, 0xbabb5d54UL, 0xa3a06c15UL, 0x888d3fd6UL, 0x91960e97UL, 0xded79850UL, 0xc7cca911UL, 0xece1fad2UL, 0xf5facb93UL, 0x7262d75cUL, 0x6b79e61dUL, 0x4054b5deUL, 0x594f849fUL, 0x160e1258UL, 0x0f152319UL, 0x243870daUL, 0x3d23419bUL, 0x65fd6ba7UL, 0x7ce65ae6UL, 0x57cb0925UL, 0x4ed03864UL, 0x0191aea3UL, 0x188a9fe2UL, 0x33a7cc21UL, 0x2abcfd60UL, 0xad24e1afUL, 0xb43fd0eeUL, 0x9f12832dUL, 0x8609b26cUL, 0xc94824abUL, 0xd05315eaUL, 0xfb7e4629UL, 0xe2657768UL, 0x2f3f79f6UL, 0x362448b7UL, 0x1d091b74UL, 0x04122a35UL, 0x4b53bcf2UL, 0x52488db3UL, 0x7965de70UL, 0x607eef31UL, 0xe7e6f3feUL, 0xfefdc2bfUL, 0xd5d0917cUL, 0xcccba03dUL, 0x838a36faUL, 0x9a9107bbUL, 0xb1bc5478UL, 0xa8a76539UL, 0x3b83984bUL, 0x2298a90aUL, 0x09b5fac9UL, 0x10aecb88UL, 0x5fef5d4fUL, 0x46f46c0eUL, 0x6dd93fcdUL, 0x74c20e8cUL, 0xf35a1243UL, 0xea412302UL, 0xc16c70c1UL, 0xd8774180UL, 0x9736d747UL, 0x8e2de606UL, 0xa500b5c5UL, 0xbc1b8484UL, 0x71418a1aUL, 0x685abb5bUL, 0x4377e898UL, 0x5a6cd9d9UL, 0x152d4f1eUL, 0x0c367e5fUL, 0x271b2d9cUL, 0x3e001cddUL, 0xb9980012UL, 0xa0833153UL, 0x8bae6290UL, 0x92b553d1UL, 0xddf4c516UL, 0xc4eff457UL, 0xefc2a794UL, 0xf6d996d5UL, 0xae07bce9UL, 0xb71c8da8UL, 0x9c31de6bUL, 0x852aef2aUL, 0xca6b79edUL, 0xd37048acUL, 0xf85d1b6fUL, 0xe1462a2eUL, 0x66de36e1UL, 0x7fc507a0UL, 0x54e85463UL, 0x4df36522UL, 0x02b2f3e5UL, 0x1ba9c2a4UL, 0x30849167UL, 0x299fa026UL, 0xe4c5aeb8UL, 0xfdde9ff9UL, 0xd6f3cc3aUL, 0xcfe8fd7bUL, 0x80a96bbcUL, 0x99b25afdUL, 0xb29f093eUL, 0xab84387fUL, 0x2c1c24b0UL, 0x350715f1UL, 0x1e2a4632UL, 0x07317773UL, 0x4870e1b4UL, 0x516bd0f5UL, 0x7a468336UL, 0x635db277UL, 0xcbfad74eUL, 0xd2e1e60fUL, 0xf9ccb5ccUL, 0xe0d7848dUL, 0xaf96124aUL, 0xb68d230bUL, 0x9da070c8UL, 0x84bb4189UL, 0x03235d46UL, 0x1a386c07UL, 0x31153fc4UL, 0x280e0e85UL, 0x674f9842UL, 0x7e54a903UL, 0x5579fac0UL, 0x4c62cb81UL, 0x8138c51fUL, 0x9823f45eUL, 0xb30ea79dUL, 0xaa1596dcUL, 0xe554001bUL, 0xfc4f315aUL, 0xd7626299UL, 0xce7953d8UL, 0x49e14f17UL, 0x50fa7e56UL, 0x7bd72d95UL, 0x62cc1cd4UL, 0x2d8d8a13UL, 0x3496bb52UL, 0x1fbbe891UL, 0x06a0d9d0UL, 0x5e7ef3ecUL, 0x4765c2adUL, 0x6c48916eUL, 0x7553a02fUL, 0x3a1236e8UL, 0x230907a9UL, 0x0824546aUL, 0x113f652bUL, 0x96a779e4UL, 0x8fbc48a5UL, 0xa4911b66UL, 0xbd8a2a27UL, 0xf2cbbce0UL, 0xebd08da1UL, 0xc0fdde62UL, 0xd9e6ef23UL, 0x14bce1bdUL, 0x0da7d0fcUL, 0x268a833fUL, 0x3f91b27eUL, 0x70d024b9UL, 0x69cb15f8UL, 0x42e6463bUL, 0x5bfd777aUL, 0xdc656bb5UL, 0xc57e5af4UL, 0xee530937UL, 0xf7483876UL, 0xb809aeb1UL, 0xa1129ff0UL, 0x8a3fcc33UL, 0x9324fd72UL }, { 0x00000000UL, 0x01c26a37UL, 0x0384d46eUL, 0x0246be59UL, 0x0709a8dcUL, 0x06cbc2ebUL, 0x048d7cb2UL, 0x054f1685UL, 0x0e1351b8UL, 0x0fd13b8fUL, 0x0d9785d6UL, 0x0c55efe1UL, 0x091af964UL, 0x08d89353UL, 0x0a9e2d0aUL, 0x0b5c473dUL, 0x1c26a370UL, 0x1de4c947UL, 0x1fa2771eUL, 0x1e601d29UL, 0x1b2f0bacUL, 0x1aed619bUL, 0x18abdfc2UL, 0x1969b5f5UL, 0x1235f2c8UL, 0x13f798ffUL, 0x11b126a6UL, 0x10734c91UL, 0x153c5a14UL, 0x14fe3023UL, 0x16b88e7aUL, 0x177ae44dUL, 0x384d46e0UL, 0x398f2cd7UL, 0x3bc9928eUL, 0x3a0bf8b9UL, 0x3f44ee3cUL, 0x3e86840bUL, 0x3cc03a52UL, 0x3d025065UL, 0x365e1758UL, 0x379c7d6fUL, 0x35dac336UL, 0x3418a901UL, 0x3157bf84UL, 0x3095d5b3UL, 0x32d36beaUL, 0x331101ddUL, 0x246be590UL, 0x25a98fa7UL, 0x27ef31feUL, 0x262d5bc9UL, 0x23624d4cUL, 0x22a0277bUL, 0x20e69922UL, 0x2124f315UL, 0x2a78b428UL, 0x2bbade1fUL, 0x29fc6046UL, 0x283e0a71UL, 0x2d711cf4UL, 0x2cb376c3UL, 0x2ef5c89aUL, 0x2f37a2adUL, 0x709a8dc0UL, 0x7158e7f7UL, 0x731e59aeUL, 0x72dc3399UL, 0x7793251cUL, 0x76514f2bUL, 0x7417f172UL, 0x75d59b45UL, 0x7e89dc78UL, 0x7f4bb64fUL, 0x7d0d0816UL, 0x7ccf6221UL, 0x798074a4UL, 0x78421e93UL, 0x7a04a0caUL, 0x7bc6cafdUL, 0x6cbc2eb0UL, 0x6d7e4487UL, 0x6f38fadeUL, 0x6efa90e9UL, 0x6bb5866cUL, 0x6a77ec5bUL, 0x68315202UL, 0x69f33835UL, 0x62af7f08UL, 0x636d153fUL, 0x612bab66UL, 0x60e9c151UL, 0x65a6d7d4UL, 0x6464bde3UL, 0x662203baUL, 0x67e0698dUL, 0x48d7cb20UL, 0x4915a117UL, 0x4b531f4eUL, 0x4a917579UL, 0x4fde63fcUL, 0x4e1c09cbUL, 0x4c5ab792UL, 0x4d98dda5UL, 0x46c49a98UL, 0x4706f0afUL, 0x45404ef6UL, 0x448224c1UL, 0x41cd3244UL, 0x400f5873UL, 0x4249e62aUL, 0x438b8c1dUL, 0x54f16850UL, 0x55330267UL, 0x5775bc3eUL, 0x56b7d609UL, 0x53f8c08cUL, 0x523aaabbUL, 0x507c14e2UL, 0x51be7ed5UL, 0x5ae239e8UL, 0x5b2053dfUL, 0x5966ed86UL, 0x58a487b1UL, 0x5deb9134UL, 0x5c29fb03UL, 0x5e6f455aUL, 0x5fad2f6dUL, 0xe1351b80UL, 0xe0f771b7UL, 0xe2b1cfeeUL, 0xe373a5d9UL, 0xe63cb35cUL, 0xe7fed96bUL, 0xe5b86732UL, 0xe47a0d05UL, 0xef264a38UL, 0xeee4200fUL, 0xeca29e56UL, 0xed60f461UL, 0xe82fe2e4UL, 0xe9ed88d3UL, 0xebab368aUL, 0xea695cbdUL, 0xfd13b8f0UL, 0xfcd1d2c7UL, 0xfe976c9eUL, 0xff5506a9UL, 0xfa1a102cUL, 0xfbd87a1bUL, 0xf99ec442UL, 0xf85cae75UL, 0xf300e948UL, 0xf2c2837fUL, 0xf0843d26UL, 0xf1465711UL, 0xf4094194UL, 0xf5cb2ba3UL, 0xf78d95faUL, 0xf64fffcdUL, 0xd9785d60UL, 0xd8ba3757UL, 0xdafc890eUL, 0xdb3ee339UL, 0xde71f5bcUL, 0xdfb39f8bUL, 0xddf521d2UL, 0xdc374be5UL, 0xd76b0cd8UL, 0xd6a966efUL, 0xd4efd8b6UL, 0xd52db281UL, 0xd062a404UL, 0xd1a0ce33UL, 0xd3e6706aUL, 0xd2241a5dUL, 0xc55efe10UL, 0xc49c9427UL, 0xc6da2a7eUL, 0xc7184049UL, 0xc25756ccUL, 0xc3953cfbUL, 0xc1d382a2UL, 0xc011e895UL, 0xcb4dafa8UL, 0xca8fc59fUL, 0xc8c97bc6UL, 0xc90b11f1UL, 0xcc440774UL, 0xcd866d43UL, 0xcfc0d31aUL, 0xce02b92dUL, 0x91af9640UL, 0x906dfc77UL, 0x922b422eUL, 0x93e92819UL, 0x96a63e9cUL, 0x976454abUL, 0x9522eaf2UL, 0x94e080c5UL, 0x9fbcc7f8UL, 0x9e7eadcfUL, 0x9c381396UL, 0x9dfa79a1UL, 0x98b56f24UL, 0x99770513UL, 0x9b31bb4aUL, 0x9af3d17dUL, 0x8d893530UL, 0x8c4b5f07UL, 0x8e0de15eUL, 0x8fcf8b69UL, 0x8a809decUL, 0x8b42f7dbUL, 0x89044982UL, 0x88c623b5UL, 0x839a6488UL, 0x82580ebfUL, 0x801eb0e6UL, 0x81dcdad1UL, 0x8493cc54UL, 0x8551a663UL, 0x8717183aUL, 0x86d5720dUL, 0xa9e2d0a0UL, 0xa820ba97UL, 0xaa6604ceUL, 0xaba46ef9UL, 0xaeeb787cUL, 0xaf29124bUL, 0xad6fac12UL, 0xacadc625UL, 0xa7f18118UL, 0xa633eb2fUL, 0xa4755576UL, 0xa5b73f41UL, 0xa0f829c4UL, 0xa13a43f3UL, 0xa37cfdaaUL, 0xa2be979dUL, 0xb5c473d0UL, 0xb40619e7UL, 0xb640a7beUL, 0xb782cd89UL, 0xb2cddb0cUL, 0xb30fb13bUL, 0xb1490f62UL, 0xb08b6555UL, 0xbbd72268UL, 0xba15485fUL, 0xb853f606UL, 0xb9919c31UL, 0xbcde8ab4UL, 0xbd1ce083UL, 0xbf5a5edaUL, 0xbe9834edUL }, { 0x00000000UL, 0xb8bc6765UL, 0xaa09c88bUL, 0x12b5afeeUL, 0x8f629757UL, 0x37def032UL, 0x256b5fdcUL, 0x9dd738b9UL, 0xc5b428efUL, 0x7d084f8aUL, 0x6fbde064UL, 0xd7018701UL, 0x4ad6bfb8UL, 0xf26ad8ddUL, 0xe0df7733UL, 0x58631056UL, 0x5019579fUL, 0xe8a530faUL, 0xfa109f14UL, 0x42acf871UL, 0xdf7bc0c8UL, 0x67c7a7adUL, 0x75720843UL, 0xcdce6f26UL, 0x95ad7f70UL, 0x2d111815UL, 0x3fa4b7fbUL, 0x8718d09eUL, 0x1acfe827UL, 0xa2738f42UL, 0xb0c620acUL, 0x087a47c9UL, 0xa032af3eUL, 0x188ec85bUL, 0x0a3b67b5UL, 0xb28700d0UL, 0x2f503869UL, 0x97ec5f0cUL, 0x8559f0e2UL, 0x3de59787UL, 0x658687d1UL, 0xdd3ae0b4UL, 0xcf8f4f5aUL, 0x7733283fUL, 0xeae41086UL, 0x525877e3UL, 0x40edd80dUL, 0xf851bf68UL, 0xf02bf8a1UL, 0x48979fc4UL, 0x5a22302aUL, 0xe29e574fUL, 0x7f496ff6UL, 0xc7f50893UL, 0xd540a77dUL, 0x6dfcc018UL, 0x359fd04eUL, 0x8d23b72bUL, 0x9f9618c5UL, 0x272a7fa0UL, 0xbafd4719UL, 0x0241207cUL, 0x10f48f92UL, 0xa848e8f7UL, 0x9b14583dUL, 0x23a83f58UL, 0x311d90b6UL, 0x89a1f7d3UL, 0x1476cf6aUL, 0xaccaa80fUL, 0xbe7f07e1UL, 0x06c36084UL, 0x5ea070d2UL, 0xe61c17b7UL, 0xf4a9b859UL, 0x4c15df3cUL, 0xd1c2e785UL, 0x697e80e0UL, 0x7bcb2f0eUL, 0xc377486bUL, 0xcb0d0fa2UL, 0x73b168c7UL, 0x6104c729UL, 0xd9b8a04cUL, 0x446f98f5UL, 0xfcd3ff90UL, 0xee66507eUL, 0x56da371bUL, 0x0eb9274dUL, 0xb6054028UL, 0xa4b0efc6UL, 0x1c0c88a3UL, 0x81dbb01aUL, 0x3967d77fUL, 0x2bd27891UL, 0x936e1ff4UL, 0x3b26f703UL, 0x839a9066UL, 0x912f3f88UL, 0x299358edUL, 0xb4446054UL, 0x0cf80731UL, 0x1e4da8dfUL, 0xa6f1cfbaUL, 0xfe92dfecUL, 0x462eb889UL, 0x549b1767UL, 0xec277002UL, 0x71f048bbUL, 0xc94c2fdeUL, 0xdbf98030UL, 0x6345e755UL, 0x6b3fa09cUL, 0xd383c7f9UL, 0xc1366817UL, 0x798a0f72UL, 0xe45d37cbUL, 0x5ce150aeUL, 0x4e54ff40UL, 0xf6e89825UL, 0xae8b8873UL, 0x1637ef16UL, 0x048240f8UL, 0xbc3e279dUL, 0x21e91f24UL, 0x99557841UL, 0x8be0d7afUL, 0x335cb0caUL, 0xed59b63bUL, 0x55e5d15eUL, 0x47507eb0UL, 0xffec19d5UL, 0x623b216cUL, 0xda874609UL, 0xc832e9e7UL, 0x708e8e82UL, 0x28ed9ed4UL, 0x9051f9b1UL, 0x82e4565fUL, 0x3a58313aUL, 0xa78f0983UL, 0x1f336ee6UL, 0x0d86c108UL, 0xb53aa66dUL, 0xbd40e1a4UL, 0x05fc86c1UL, 0x1749292fUL, 0xaff54e4aUL, 0x322276f3UL, 0x8a9e1196UL, 0x982bbe78UL, 0x2097d91dUL, 0x78f4c94bUL, 0xc048ae2eUL, 0xd2fd01c0UL, 0x6a4166a5UL, 0xf7965e1cUL, 0x4f2a3979UL, 0x5d9f9697UL, 0xe523f1f2UL, 0x4d6b1905UL, 0xf5d77e60UL, 0xe762d18eUL, 0x5fdeb6ebUL, 0xc2098e52UL, 0x7ab5e937UL, 0x680046d9UL, 0xd0bc21bcUL, 0x88df31eaUL, 0x3063568fUL, 0x22d6f961UL, 0x9a6a9e04UL, 0x07bda6bdUL, 0xbf01c1d8UL, 0xadb46e36UL, 0x15080953UL, 0x1d724e9aUL, 0xa5ce29ffUL, 0xb77b8611UL, 0x0fc7e174UL, 0x9210d9cdUL, 0x2aacbea8UL, 0x38191146UL, 0x80a57623UL, 0xd8c66675UL, 0x607a0110UL, 0x72cfaefeUL, 0xca73c99bUL, 0x57a4f122UL, 0xef189647UL, 0xfdad39a9UL, 0x45115eccUL, 0x764dee06UL, 0xcef18963UL, 0xdc44268dUL, 0x64f841e8UL, 0xf92f7951UL, 0x41931e34UL, 0x5326b1daUL, 0xeb9ad6bfUL, 0xb3f9c6e9UL, 0x0b45a18cUL, 0x19f00e62UL, 0xa14c6907UL, 0x3c9b51beUL, 0x842736dbUL, 0x96929935UL, 0x2e2efe50UL, 0x2654b999UL, 0x9ee8defcUL, 0x8c5d7112UL, 0x34e11677UL, 0xa9362eceUL, 0x118a49abUL, 0x033fe645UL, 0xbb838120UL, 0xe3e09176UL, 0x5b5cf613UL, 0x49e959fdUL, 0xf1553e98UL, 0x6c820621UL, 0xd43e6144UL, 0xc68bceaaUL, 0x7e37a9cfUL, 0xd67f4138UL, 0x6ec3265dUL, 0x7c7689b3UL, 0xc4caeed6UL, 0x591dd66fUL, 0xe1a1b10aUL, 0xf3141ee4UL, 0x4ba87981UL, 0x13cb69d7UL, 0xab770eb2UL, 0xb9c2a15cUL, 0x017ec639UL, 0x9ca9fe80UL, 0x241599e5UL, 0x36a0360bUL, 0x8e1c516eUL, 0x866616a7UL, 0x3eda71c2UL, 0x2c6fde2cUL, 0x94d3b949UL, 0x090481f0UL, 0xb1b8e695UL, 0xa30d497bUL, 0x1bb12e1eUL, 0x43d23e48UL, 0xfb6e592dUL, 0xe9dbf6c3UL, 0x516791a6UL, 0xccb0a91fUL, 0x740cce7aUL, 0x66b96194UL, 0xde0506f1UL }, { 0x00000000UL, 0x96300777UL, 0x2c610eeeUL, 0xba510999UL, 0x19c46d07UL, 0x8ff46a70UL, 0x35a563e9UL, 0xa395649eUL, 0x3288db0eUL, 0xa4b8dc79UL, 0x1ee9d5e0UL, 0x88d9d297UL, 0x2b4cb609UL, 0xbd7cb17eUL, 0x072db8e7UL, 0x911dbf90UL, 0x6410b71dUL, 0xf220b06aUL, 0x4871b9f3UL, 0xde41be84UL, 0x7dd4da1aUL, 0xebe4dd6dUL, 0x51b5d4f4UL, 0xc785d383UL, 0x56986c13UL, 0xc0a86b64UL, 0x7af962fdUL, 0xecc9658aUL, 0x4f5c0114UL, 0xd96c0663UL, 0x633d0ffaUL, 0xf50d088dUL, 0xc8206e3bUL, 0x5e10694cUL, 0xe44160d5UL, 0x727167a2UL, 0xd1e4033cUL, 0x47d4044bUL, 0xfd850dd2UL, 0x6bb50aa5UL, 0xfaa8b535UL, 0x6c98b242UL, 0xd6c9bbdbUL, 0x40f9bcacUL, 0xe36cd832UL, 0x755cdf45UL, 0xcf0dd6dcUL, 0x593dd1abUL, 0xac30d926UL, 0x3a00de51UL, 0x8051d7c8UL, 0x1661d0bfUL, 0xb5f4b421UL, 0x23c4b356UL, 0x9995bacfUL, 0x0fa5bdb8UL, 0x9eb80228UL, 0x0888055fUL, 0xb2d90cc6UL, 0x24e90bb1UL, 0x877c6f2fUL, 0x114c6858UL, 0xab1d61c1UL, 0x3d2d66b6UL, 0x9041dc76UL, 0x0671db01UL, 0xbc20d298UL, 0x2a10d5efUL, 0x8985b171UL, 0x1fb5b606UL, 0xa5e4bf9fUL, 0x33d4b8e8UL, 0xa2c90778UL, 0x34f9000fUL, 0x8ea80996UL, 0x18980ee1UL, 0xbb0d6a7fUL, 0x2d3d6d08UL, 0x976c6491UL, 0x015c63e6UL, 0xf4516b6bUL, 0x62616c1cUL, 0xd8306585UL, 0x4e0062f2UL, 0xed95066cUL, 0x7ba5011bUL, 0xc1f40882UL, 0x57c40ff5UL, 0xc6d9b065UL, 0x50e9b712UL, 0xeab8be8bUL, 0x7c88b9fcUL, 0xdf1ddd62UL, 0x492dda15UL, 0xf37cd38cUL, 0x654cd4fbUL, 0x5861b24dUL, 0xce51b53aUL, 0x7400bca3UL, 0xe230bbd4UL, 0x41a5df4aUL, 0xd795d83dUL, 0x6dc4d1a4UL, 0xfbf4d6d3UL, 0x6ae96943UL, 0xfcd96e34UL, 0x468867adUL, 0xd0b860daUL, 0x732d0444UL, 0xe51d0333UL, 0x5f4c0aaaUL, 0xc97c0dddUL, 0x3c710550UL, 0xaa410227UL, 0x10100bbeUL, 0x86200cc9UL, 0x25b56857UL, 0xb3856f20UL, 0x09d466b9UL, 0x9fe461ceUL, 0x0ef9de5eUL, 0x98c9d929UL, 0x2298d0b0UL, 0xb4a8d7c7UL, 0x173db359UL, 0x810db42eUL, 0x3b5cbdb7UL, 0xad6cbac0UL, 0x2083b8edUL, 0xb6b3bf9aUL, 0x0ce2b603UL, 0x9ad2b174UL, 0x3947d5eaUL, 0xaf77d29dUL, 0x1526db04UL, 0x8316dc73UL, 0x120b63e3UL, 0x843b6494UL, 0x3e6a6d0dUL, 0xa85a6a7aUL, 0x0bcf0ee4UL, 0x9dff0993UL, 0x27ae000aUL, 0xb19e077dUL, 0x44930ff0UL, 0xd2a30887UL, 0x68f2011eUL, 0xfec20669UL, 0x5d5762f7UL, 0xcb676580UL, 0x71366c19UL, 0xe7066b6eUL, 0x761bd4feUL, 0xe02bd389UL, 0x5a7ada10UL, 0xcc4add67UL, 0x6fdfb9f9UL, 0xf9efbe8eUL, 0x43beb717UL, 0xd58eb060UL, 0xe8a3d6d6UL, 0x7e93d1a1UL, 0xc4c2d838UL, 0x52f2df4fUL, 0xf167bbd1UL, 0x6757bca6UL, 0xdd06b53fUL, 0x4b36b248UL, 0xda2b0dd8UL, 0x4c1b0aafUL, 0xf64a0336UL, 0x607a0441UL, 0xc3ef60dfUL, 0x55df67a8UL, 0xef8e6e31UL, 0x79be6946UL, 0x8cb361cbUL, 0x1a8366bcUL, 0xa0d26f25UL, 0x36e26852UL, 0x95770cccUL, 0x03470bbbUL, 0xb9160222UL, 0x2f260555UL, 0xbe3bbac5UL, 0x280bbdb2UL, 0x925ab42bUL, 0x046ab35cUL, 0xa7ffd7c2UL, 0x31cfd0b5UL, 0x8b9ed92cUL, 0x1daede5bUL, 0xb0c2649bUL, 0x26f263ecUL, 0x9ca36a75UL, 0x0a936d02UL, 0xa906099cUL, 0x3f360eebUL, 0x85670772UL, 0x13570005UL, 0x824abf95UL, 0x147ab8e2UL, 0xae2bb17bUL, 0x381bb60cUL, 0x9b8ed292UL, 0x0dbed5e5UL, 0xb7efdc7cUL, 0x21dfdb0bUL, 0xd4d2d386UL, 0x42e2d4f1UL, 0xf8b3dd68UL, 0x6e83da1fUL, 0xcd16be81UL, 0x5b26b9f6UL, 0xe177b06fUL, 0x7747b718UL, 0xe65a0888UL, 0x706a0fffUL, 0xca3b0666UL, 0x5c0b0111UL, 0xff9e658fUL, 0x69ae62f8UL, 0xd3ff6b61UL, 0x45cf6c16UL, 0x78e20aa0UL, 0xeed20dd7UL, 0x5483044eUL, 0xc2b30339UL, 0x612667a7UL, 0xf71660d0UL, 0x4d476949UL, 0xdb776e3eUL, 0x4a6ad1aeUL, 0xdc5ad6d9UL, 0x660bdf40UL, 0xf03bd837UL, 0x53aebca9UL, 0xc59ebbdeUL, 0x7fcfb247UL, 0xe9ffb530UL, 0x1cf2bdbdUL, 0x8ac2bacaUL, 0x3093b353UL, 0xa6a3b424UL, 0x0536d0baUL, 0x9306d7cdUL, 0x2957de54UL, 0xbf67d923UL, 0x2e7a66b3UL, 0xb84a61c4UL, 0x021b685dUL, 0x942b6f2aUL, 0x37be0bb4UL, 0xa18e0cc3UL, 0x1bdf055aUL, 0x8def022dUL }, { 0x00000000UL, 0x41311b19UL, 0x82623632UL, 0xc3532d2bUL, 0x04c56c64UL, 0x45f4777dUL, 0x86a75a56UL, 0xc796414fUL, 0x088ad9c8UL, 0x49bbc2d1UL, 0x8ae8effaUL, 0xcbd9f4e3UL, 0x0c4fb5acUL, 0x4d7eaeb5UL, 0x8e2d839eUL, 0xcf1c9887UL, 0x5112c24aUL, 0x1023d953UL, 0xd370f478UL, 0x9241ef61UL, 0x55d7ae2eUL, 0x14e6b537UL, 0xd7b5981cUL, 0x96848305UL, 0x59981b82UL, 0x18a9009bUL, 0xdbfa2db0UL, 0x9acb36a9UL, 0x5d5d77e6UL, 0x1c6c6cffUL, 0xdf3f41d4UL, 0x9e0e5acdUL, 0xa2248495UL, 0xe3159f8cUL, 0x2046b2a7UL, 0x6177a9beUL, 0xa6e1e8f1UL, 0xe7d0f3e8UL, 0x2483dec3UL, 0x65b2c5daUL, 0xaaae5d5dUL, 0xeb9f4644UL, 0x28cc6b6fUL, 0x69fd7076UL, 0xae6b3139UL, 0xef5a2a20UL, 0x2c09070bUL, 0x6d381c12UL, 0xf33646dfUL, 0xb2075dc6UL, 0x715470edUL, 0x30656bf4UL, 0xf7f32abbUL, 0xb6c231a2UL, 0x75911c89UL, 0x34a00790UL, 0xfbbc9f17UL, 0xba8d840eUL, 0x79dea925UL, 0x38efb23cUL, 0xff79f373UL, 0xbe48e86aUL, 0x7d1bc541UL, 0x3c2ade58UL, 0x054f79f0UL, 0x447e62e9UL, 0x872d4fc2UL, 0xc61c54dbUL, 0x018a1594UL, 0x40bb0e8dUL, 0x83e823a6UL, 0xc2d938bfUL, 0x0dc5a038UL, 0x4cf4bb21UL, 0x8fa7960aUL, 0xce968d13UL, 0x0900cc5cUL, 0x4831d745UL, 0x8b62fa6eUL, 0xca53e177UL, 0x545dbbbaUL, 0x156ca0a3UL, 0xd63f8d88UL, 0x970e9691UL, 0x5098d7deUL, 0x11a9ccc7UL, 0xd2fae1ecUL, 0x93cbfaf5UL, 0x5cd76272UL, 0x1de6796bUL, 0xdeb55440UL, 0x9f844f59UL, 0x58120e16UL, 0x1923150fUL, 0xda703824UL, 0x9b41233dUL, 0xa76bfd65UL, 0xe65ae67cUL, 0x2509cb57UL, 0x6438d04eUL, 0xa3ae9101UL, 0xe29f8a18UL, 0x21cca733UL, 0x60fdbc2aUL, 0xafe124adUL, 0xeed03fb4UL, 0x2d83129fUL, 0x6cb20986UL, 0xab2448c9UL, 0xea1553d0UL, 0x29467efbUL, 0x687765e2UL, 0xf6793f2fUL, 0xb7482436UL, 0x741b091dUL, 0x352a1204UL, 0xf2bc534bUL, 0xb38d4852UL, 0x70de6579UL, 0x31ef7e60UL, 0xfef3e6e7UL, 0xbfc2fdfeUL, 0x7c91d0d5UL, 0x3da0cbccUL, 0xfa368a83UL, 0xbb07919aUL, 0x7854bcb1UL, 0x3965a7a8UL, 0x4b98833bUL, 0x0aa99822UL, 0xc9fab509UL, 0x88cbae10UL, 0x4f5def5fUL, 0x0e6cf446UL, 0xcd3fd96dUL, 0x8c0ec274UL, 0x43125af3UL, 0x022341eaUL, 0xc1706cc1UL, 0x804177d8UL, 0x47d73697UL, 0x06e62d8eUL, 0xc5b500a5UL, 0x84841bbcUL, 0x1a8a4171UL, 0x5bbb5a68UL, 0x98e87743UL, 0xd9d96c5aUL, 0x1e4f2d15UL, 0x5f7e360cUL, 0x9c2d1b27UL, 0xdd1c003eUL, 0x120098b9UL, 0x533183a0UL, 0x9062ae8bUL, 0xd153b592UL, 0x16c5f4ddUL, 0x57f4efc4UL, 0x94a7c2efUL, 0xd596d9f6UL, 0xe9bc07aeUL, 0xa88d1cb7UL, 0x6bde319cUL, 0x2aef2a85UL, 0xed796bcaUL, 0xac4870d3UL, 0x6f1b5df8UL, 0x2e2a46e1UL, 0xe136de66UL, 0xa007c57fUL, 0x6354e854UL, 0x2265f34dUL, 0xe5f3b202UL, 0xa4c2a91bUL, 0x67918430UL, 0x26a09f29UL, 0xb8aec5e4UL, 0xf99fdefdUL, 0x3accf3d6UL, 0x7bfde8cfUL, 0xbc6ba980UL, 0xfd5ab299UL, 0x3e099fb2UL, 0x7f3884abUL, 0xb0241c2cUL, 0xf1150735UL, 0x32462a1eUL, 0x73773107UL, 0xb4e17048UL, 0xf5d06b51UL, 0x3683467aUL, 0x77b25d63UL, 0x4ed7facbUL, 0x0fe6e1d2UL, 0xccb5ccf9UL, 0x8d84d7e0UL, 0x4a1296afUL, 0x0b238db6UL, 0xc870a09dUL, 0x8941bb84UL, 0x465d2303UL, 0x076c381aUL, 0xc43f1531UL, 0x850e0e28UL, 0x42984f67UL, 0x03a9547eUL, 0xc0fa7955UL, 0x81cb624cUL, 0x1fc53881UL, 0x5ef42398UL, 0x9da70eb3UL, 0xdc9615aaUL, 0x1b0054e5UL, 0x5a314ffcUL, 0x996262d7UL, 0xd85379ceUL, 0x174fe149UL, 0x567efa50UL, 0x952dd77bUL, 0xd41ccc62UL, 0x138a8d2dUL, 0x52bb9634UL, 0x91e8bb1fUL, 0xd0d9a006UL, 0xecf37e5eUL, 0xadc26547UL, 0x6e91486cUL, 0x2fa05375UL, 0xe836123aUL, 0xa9070923UL, 0x6a542408UL, 0x2b653f11UL, 0xe479a796UL, 0xa548bc8fUL, 0x661b91a4UL, 0x272a8abdUL, 0xe0bccbf2UL, 0xa18dd0ebUL, 0x62defdc0UL, 0x23efe6d9UL, 0xbde1bc14UL, 0xfcd0a70dUL, 0x3f838a26UL, 0x7eb2913fUL, 0xb924d070UL, 0xf815cb69UL, 0x3b46e642UL, 0x7a77fd5bUL, 0xb56b65dcUL, 0xf45a7ec5UL, 0x370953eeUL, 0x763848f7UL, 0xb1ae09b8UL, 0xf09f12a1UL, 0x33cc3f8aUL, 0x72fd2493UL }, { 0x00000000UL, 0x376ac201UL, 0x6ed48403UL, 0x59be4602UL, 0xdca80907UL, 0xebc2cb06UL, 0xb27c8d04UL, 0x85164f05UL, 0xb851130eUL, 0x8f3bd10fUL, 0xd685970dUL, 0xe1ef550cUL, 0x64f91a09UL, 0x5393d808UL, 0x0a2d9e0aUL, 0x3d475c0bUL, 0x70a3261cUL, 0x47c9e41dUL, 0x1e77a21fUL, 0x291d601eUL, 0xac0b2f1bUL, 0x9b61ed1aUL, 0xc2dfab18UL, 0xf5b56919UL, 0xc8f23512UL, 0xff98f713UL, 0xa626b111UL, 0x914c7310UL, 0x145a3c15UL, 0x2330fe14UL, 0x7a8eb816UL, 0x4de47a17UL, 0xe0464d38UL, 0xd72c8f39UL, 0x8e92c93bUL, 0xb9f80b3aUL, 0x3cee443fUL, 0x0b84863eUL, 0x523ac03cUL, 0x6550023dUL, 0x58175e36UL, 0x6f7d9c37UL, 0x36c3da35UL, 0x01a91834UL, 0x84bf5731UL, 0xb3d59530UL, 0xea6bd332UL, 0xdd011133UL, 0x90e56b24UL, 0xa78fa925UL, 0xfe31ef27UL, 0xc95b2d26UL, 0x4c4d6223UL, 0x7b27a022UL, 0x2299e620UL, 0x15f32421UL, 0x28b4782aUL, 0x1fdeba2bUL, 0x4660fc29UL, 0x710a3e28UL, 0xf41c712dUL, 0xc376b32cUL, 0x9ac8f52eUL, 0xada2372fUL, 0xc08d9a70UL, 0xf7e75871UL, 0xae591e73UL, 0x9933dc72UL, 0x1c259377UL, 0x2b4f5176UL, 0x72f11774UL, 0x459bd575UL, 0x78dc897eUL, 0x4fb64b7fUL, 0x16080d7dUL, 0x2162cf7cUL, 0xa4748079UL, 0x931e4278UL, 0xcaa0047aUL, 0xfdcac67bUL, 0xb02ebc6cUL, 0x87447e6dUL, 0xdefa386fUL, 0xe990fa6eUL, 0x6c86b56bUL, 0x5bec776aUL, 0x02523168UL, 0x3538f369UL, 0x087faf62UL, 0x3f156d63UL, 0x66ab2b61UL, 0x51c1e960UL, 0xd4d7a665UL, 0xe3bd6464UL, 0xba032266UL, 0x8d69e067UL, 0x20cbd748UL, 0x17a11549UL, 0x4e1f534bUL, 0x7975914aUL, 0xfc63de4fUL, 0xcb091c4eUL, 0x92b75a4cUL, 0xa5dd984dUL, 0x989ac446UL, 0xaff00647UL, 0xf64e4045UL, 0xc1248244UL, 0x4432cd41UL, 0x73580f40UL, 0x2ae64942UL, 0x1d8c8b43UL, 0x5068f154UL, 0x67023355UL, 0x3ebc7557UL, 0x09d6b756UL, 0x8cc0f853UL, 0xbbaa3a52UL, 0xe2147c50UL, 0xd57ebe51UL, 0xe839e25aUL, 0xdf53205bUL, 0x86ed6659UL, 0xb187a458UL, 0x3491eb5dUL, 0x03fb295cUL, 0x5a456f5eUL, 0x6d2fad5fUL, 0x801b35e1UL, 0xb771f7e0UL, 0xeecfb1e2UL, 0xd9a573e3UL, 0x5cb33ce6UL, 0x6bd9fee7UL, 0x3267b8e5UL, 0x050d7ae4UL, 0x384a26efUL, 0x0f20e4eeUL, 0x569ea2ecUL, 0x61f460edUL, 0xe4e22fe8UL, 0xd388ede9UL, 0x8a36abebUL, 0xbd5c69eaUL, 0xf0b813fdUL, 0xc7d2d1fcUL, 0x9e6c97feUL, 0xa90655ffUL, 0x2c101afaUL, 0x1b7ad8fbUL, 0x42c49ef9UL, 0x75ae5cf8UL, 0x48e900f3UL, 0x7f83c2f2UL, 0x263d84f0UL, 0x115746f1UL, 0x944109f4UL, 0xa32bcbf5UL, 0xfa958df7UL, 0xcdff4ff6UL, 0x605d78d9UL, 0x5737bad8UL, 0x0e89fcdaUL, 0x39e33edbUL, 0xbcf571deUL, 0x8b9fb3dfUL, 0xd221f5ddUL, 0xe54b37dcUL, 0xd80c6bd7UL, 0xef66a9d6UL, 0xb6d8efd4UL, 0x81b22dd5UL, 0x04a462d0UL, 0x33cea0d1UL, 0x6a70e6d3UL, 0x5d1a24d2UL, 0x10fe5ec5UL, 0x27949cc4UL, 0x7e2adac6UL, 0x494018c7UL, 0xcc5657c2UL, 0xfb3c95c3UL, 0xa282d3c1UL, 0x95e811c0UL, 0xa8af4dcbUL, 0x9fc58fcaUL, 0xc67bc9c8UL, 0xf1110bc9UL, 0x740744ccUL, 0x436d86cdUL, 0x1ad3c0cfUL, 0x2db902ceUL, 0x4096af91UL, 0x77fc6d90UL, 0x2e422b92UL, 0x1928e993UL, 0x9c3ea696UL, 0xab546497UL, 0xf2ea2295UL, 0xc580e094UL, 0xf8c7bc9fUL, 0xcfad7e9eUL, 0x9613389cUL, 0xa179fa9dUL, 0x246fb598UL, 0x13057799UL, 0x4abb319bUL, 0x7dd1f39aUL, 0x3035898dUL, 0x075f4b8cUL, 0x5ee10d8eUL, 0x698bcf8fUL, 0xec9d808aUL, 0xdbf7428bUL, 0x82490489UL, 0xb523c688UL, 0x88649a83UL, 0xbf0e5882UL, 0xe6b01e80UL, 0xd1dadc81UL, 0x54cc9384UL, 0x63a65185UL, 0x3a181787UL, 0x0d72d586UL, 0xa0d0e2a9UL, 0x97ba20a8UL, 0xce0466aaUL, 0xf96ea4abUL, 0x7c78ebaeUL, 0x4b1229afUL, 0x12ac6fadUL, 0x25c6adacUL, 0x1881f1a7UL, 0x2feb33a6UL, 0x765575a4UL, 0x413fb7a5UL, 0xc429f8a0UL, 0xf3433aa1UL, 0xaafd7ca3UL, 0x9d97bea2UL, 0xd073c4b5UL, 0xe71906b4UL, 0xbea740b6UL, 0x89cd82b7UL, 0x0cdbcdb2UL, 0x3bb10fb3UL, 0x620f49b1UL, 0x55658bb0UL, 0x6822d7bbUL, 0x5f4815baUL, 0x06f653b8UL, 0x319c91b9UL, 0xb48adebcUL, 0x83e01cbdUL, 0xda5e5abfUL, 0xed3498beUL }, { 0x00000000UL, 0x6567bcb8UL, 0x8bc809aaUL, 0xeeafb512UL, 0x5797628fUL, 0x32f0de37UL, 0xdc5f6b25UL, 0xb938d79dUL, 0xef28b4c5UL, 0x8a4f087dUL, 0x64e0bd6fUL, 0x018701d7UL, 0xb8bfd64aUL, 0xddd86af2UL, 0x3377dfe0UL, 0x56106358UL, 0x9f571950UL, 0xfa30a5e8UL, 0x149f10faUL, 0x71f8ac42UL, 0xc8c07bdfUL, 0xada7c767UL, 0x43087275UL, 0x266fcecdUL, 0x707fad95UL, 0x1518112dUL, 0xfbb7a43fUL, 0x9ed01887UL, 0x27e8cf1aUL, 0x428f73a2UL, 0xac20c6b0UL, 0xc9477a08UL, 0x3eaf32a0UL, 0x5bc88e18UL, 0xb5673b0aUL, 0xd00087b2UL, 0x6938502fUL, 0x0c5fec97UL, 0xe2f05985UL, 0x8797e53dUL, 0xd1878665UL, 0xb4e03addUL, 0x5a4f8fcfUL, 0x3f283377UL, 0x8610e4eaUL, 0xe3775852UL, 0x0dd8ed40UL, 0x68bf51f8UL, 0xa1f82bf0UL, 0xc49f9748UL, 0x2a30225aUL, 0x4f579ee2UL, 0xf66f497fUL, 0x9308f5c7UL, 0x7da740d5UL, 0x18c0fc6dUL, 0x4ed09f35UL, 0x2bb7238dUL, 0xc518969fUL, 0xa07f2a27UL, 0x1947fdbaUL, 0x7c204102UL, 0x928ff410UL, 0xf7e848a8UL, 0x3d58149bUL, 0x583fa823UL, 0xb6901d31UL, 0xd3f7a189UL, 0x6acf7614UL, 0x0fa8caacUL, 0xe1077fbeUL, 0x8460c306UL, 0xd270a05eUL, 0xb7171ce6UL, 0x59b8a9f4UL, 0x3cdf154cUL, 0x85e7c2d1UL, 0xe0807e69UL, 0x0e2fcb7bUL, 0x6b4877c3UL, 0xa20f0dcbUL, 0xc768b173UL, 0x29c70461UL, 0x4ca0b8d9UL, 0xf5986f44UL, 0x90ffd3fcUL, 0x7e5066eeUL, 0x1b37da56UL, 0x4d27b90eUL, 0x284005b6UL, 0xc6efb0a4UL, 0xa3880c1cUL, 0x1ab0db81UL, 0x7fd76739UL, 0x9178d22bUL, 0xf41f6e93UL, 0x03f7263bUL, 0x66909a83UL, 0x883f2f91UL, 0xed589329UL, 0x546044b4UL, 0x3107f80cUL, 0xdfa84d1eUL, 0xbacff1a6UL, 0xecdf92feUL, 0x89b82e46UL, 0x67179b54UL, 0x027027ecUL, 0xbb48f071UL, 0xde2f4cc9UL, 0x3080f9dbUL, 0x55e74563UL, 0x9ca03f6bUL, 0xf9c783d3UL, 0x176836c1UL, 0x720f8a79UL, 0xcb375de4UL, 0xae50e15cUL, 0x40ff544eUL, 0x2598e8f6UL, 0x73888baeUL, 0x16ef3716UL, 0xf8408204UL, 0x9d273ebcUL, 0x241fe921UL, 0x41785599UL, 0xafd7e08bUL, 0xcab05c33UL, 0x3bb659edUL, 0x5ed1e555UL, 0xb07e5047UL, 0xd519ecffUL, 0x6c213b62UL, 0x094687daUL, 0xe7e932c8UL, 0x828e8e70UL, 0xd49eed28UL, 0xb1f95190UL, 0x5f56e482UL, 0x3a31583aUL, 0x83098fa7UL, 0xe66e331fUL, 0x08c1860dUL, 0x6da63ab5UL, 0xa4e140bdUL, 0xc186fc05UL, 0x2f294917UL, 0x4a4ef5afUL, 0xf3762232UL, 0x96119e8aUL, 0x78be2b98UL, 0x1dd99720UL, 0x4bc9f478UL, 0x2eae48c0UL, 0xc001fdd2UL, 0xa566416aUL, 0x1c5e96f7UL, 0x79392a4fUL, 0x97969f5dUL, 0xf2f123e5UL, 0x05196b4dUL, 0x607ed7f5UL, 0x8ed162e7UL, 0xebb6de5fUL, 0x528e09c2UL, 0x37e9b57aUL, 0xd9460068UL, 0xbc21bcd0UL, 0xea31df88UL, 0x8f566330UL, 0x61f9d622UL, 0x049e6a9aUL, 0xbda6bd07UL, 0xd8c101bfUL, 0x366eb4adUL, 0x53090815UL, 0x9a4e721dUL, 0xff29cea5UL, 0x11867bb7UL, 0x74e1c70fUL, 0xcdd91092UL, 0xa8beac2aUL, 0x46111938UL, 0x2376a580UL, 0x7566c6d8UL, 0x10017a60UL, 0xfeaecf72UL, 0x9bc973caUL, 0x22f1a457UL, 0x479618efUL, 0xa939adfdUL, 0xcc5e1145UL, 0x06ee4d76UL, 0x6389f1ceUL, 0x8d2644dcUL, 0xe841f864UL, 0x51792ff9UL, 0x341e9341UL, 0xdab12653UL, 0xbfd69aebUL, 0xe9c6f9b3UL, 0x8ca1450bUL, 0x620ef019UL, 0x07694ca1UL, 0xbe519b3cUL, 0xdb362784UL, 0x35999296UL, 0x50fe2e2eUL, 0x99b95426UL, 0xfcdee89eUL, 0x12715d8cUL, 0x7716e134UL, 0xce2e36a9UL, 0xab498a11UL, 0x45e63f03UL, 0x208183bbUL, 0x7691e0e3UL, 0x13f65c5bUL, 0xfd59e949UL, 0x983e55f1UL, 0x2106826cUL, 0x44613ed4UL, 0xaace8bc6UL, 0xcfa9377eUL, 0x38417fd6UL, 0x5d26c36eUL, 0xb389767cUL, 0xd6eecac4UL, 0x6fd61d59UL, 0x0ab1a1e1UL, 0xe41e14f3UL, 0x8179a84bUL, 0xd769cb13UL, 0xb20e77abUL, 0x5ca1c2b9UL, 0x39c67e01UL, 0x80fea99cUL, 0xe5991524UL, 0x0b36a036UL, 0x6e511c8eUL, 0xa7166686UL, 0xc271da3eUL, 0x2cde6f2cUL, 0x49b9d394UL, 0xf0810409UL, 0x95e6b8b1UL, 0x7b490da3UL, 0x1e2eb11bUL, 0x483ed243UL, 0x2d596efbUL, 0xc3f6dbe9UL, 0xa6916751UL, 0x1fa9b0ccUL, 0x7ace0c74UL, 0x9461b966UL, 0xf10605deUL #endif } }; /* END OF DUMP OF mz_crc32.h*/ #endif /* DYNAMIC_CRC_TABLE */ /* ========================================================================= * This function can be used by asm versions of crc32() */ const z_crc_t FAR * ZEXPORT get_crc_table() { #ifdef DYNAMIC_CRC_TABLE if (crc_table_empty) make_crc_table(); #endif /* DYNAMIC_CRC_TABLE */ return (const z_crc_t FAR *)crc_table; } /* ========================================================================= */ #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8) #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1 /* ========================================================================= */ unsigned long ZEXPORT crc32(crc, buf, len) unsigned long crc; const unsigned char FAR *buf; uInt len; { if (buf == Z_NULL) return 0UL; #ifdef DYNAMIC_CRC_TABLE if (crc_table_empty) make_crc_table(); #endif /* DYNAMIC_CRC_TABLE */ #ifdef BYFOUR if (sizeof(void *) == sizeof(ptrdiff_t)) { z_crc_t endian; endian = 1; if (*((unsigned char *)(&endian))) return crc32_little(crc, buf, len); else return crc32_big(crc, buf, len); } #endif /* BYFOUR */ crc = crc ^ 0xffffffffUL; while (len >= 8) { DO8; len -= 8; } if (len) do { DO1; } while (--len); return crc ^ 0xffffffffUL; } #ifdef BYFOUR /* ========================================================================= */ #define DOLIT4 c ^= *buf4++; \ c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \ crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24] #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4 /* ========================================================================= */ local unsigned long crc32_little(crc, buf, len) unsigned long crc; const unsigned char FAR *buf; unsigned len; { register z_crc_t c; register const z_crc_t FAR *buf4; c = (z_crc_t)crc; c = ~c; while (len && ((ptrdiff_t)buf & 3)) { c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); len--; } buf4 = (const z_crc_t FAR *)(const void FAR *)buf; while (len >= 32) { DOLIT32; len -= 32; } while (len >= 4) { DOLIT4; len -= 4; } buf = (const unsigned char FAR *)buf4; if (len) do { c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); } while (--len); c = ~c; return (unsigned long)c; } /* ========================================================================= */ #define DOBIG4 c ^= *++buf4; \ c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \ crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24] #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4 /* ========================================================================= */ local unsigned long crc32_big(crc, buf, len) unsigned long crc; const unsigned char FAR *buf; unsigned len; { register z_crc_t c; register const z_crc_t FAR *buf4; c = ZSWAP32((z_crc_t)crc); c = ~c; while (len && ((ptrdiff_t)buf & 3)) { c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); len--; } buf4 = (const z_crc_t FAR *)(const void FAR *)buf; buf4--; while (len >= 32) { DOBIG32; len -= 32; } while (len >= 4) { DOBIG4; len -= 4; } buf4++; buf = (const unsigned char FAR *)buf4; if (len) do { c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); } while (--len); c = ~c; return (unsigned long)(ZSWAP32(c)); } #endif /* BYFOUR */ #define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */ /* ========================================================================= */ local unsigned long gf2_matrix_times(mat, vec) unsigned long *mat; unsigned long vec; { unsigned long sum; sum = 0; while (vec) { if (vec & 1) sum ^= *mat; vec >>= 1; mat++; } return sum; } /* ========================================================================= */ local void gf2_matrix_square(square, mat) unsigned long *square; unsigned long *mat; { int n; for (n = 0; n < GF2_DIM; n++) square[n] = gf2_matrix_times(mat, mat[n]); } /* ========================================================================= */ local uLong crc32_combine_(crc1, crc2, len2) uLong crc1; uLong crc2; z_off64_t len2; { int n; unsigned long row; unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */ unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */ /* degenerate case (also disallow negative lengths) */ if (len2 <= 0) return crc1; /* put operator for one zero bit in odd */ odd[0] = 0xedb88320UL; /* CRC-32 polynomial */ row = 1; for (n = 1; n < GF2_DIM; n++) { odd[n] = row; row <<= 1; } /* put operator for two zero bits in even */ gf2_matrix_square(even, odd); /* put operator for four zero bits in odd */ gf2_matrix_square(odd, even); /* apply len2 zeros to crc1 (first square will put the operator for one zero byte, eight zero bits, in even) */ do { /* apply zeros operator for this bit of len2 */ gf2_matrix_square(even, odd); if (len2 & 1) crc1 = gf2_matrix_times(even, crc1); len2 >>= 1; /* if no more bits set, then done */ if (len2 == 0) break; /* another iteration of the loop with odd and even swapped */ gf2_matrix_square(odd, even); if (len2 & 1) crc1 = gf2_matrix_times(odd, crc1); len2 >>= 1; /* if no more bits set, then done */ } while (len2 != 0); /* return combined crc */ crc1 ^= crc2; return crc1; } /* ========================================================================= */ uLong ZEXPORT crc32_combine(crc1, crc2, len2) uLong crc1; uLong crc2; z_off_t len2; { return crc32_combine_(crc1, crc2, len2); } uLong ZEXPORT crc32_combine64(crc1, crc2, len2) uLong crc1; uLong crc2; z_off64_t len2; { return crc32_combine_(crc1, crc2, len2); } /* END OF DUMP OF mz_crc32.c*/ /* START OF DUMP OF mz_compress.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* compress.c -- compress a memory buffer * Copyright (C) 1995-2005 Jean-loup Gailly. * For conditions of distribution and use, see copyright notice in zlib.h */ /* @(#) $Id$ */ #define ZLIB_INTERNAL /* =========================================================================== Compresses the source buffer into the destination buffer. The level parameter has the same meaning as in deflateInit. sourceLen is the byte length of the source buffer. Upon entry, destLen is the total size of the destination buffer, which must be at least 0.1% larger than sourceLen plus 12 bytes. Upon exit, destLen is the actual size of the compressed buffer. compress2 returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if there was not enough room in the output buffer, Z_STREAM_ERROR if the level parameter is invalid. */ int ZEXPORT compress2 (dest, destLen, source, sourceLen, level) Bytef *dest; uLongf *destLen; const Bytef *source; uLong sourceLen; int level; { z_stream stream; int err; stream.next_in = (z_const Bytef *)source; stream.avail_in = (uInt)sourceLen; #ifdef MAXSEG_64K /* Check for source > 64K on 16-bit machine: */ if ((uLong)stream.avail_in != sourceLen) return Z_BUF_ERROR; #endif stream.next_out = dest; stream.avail_out = (uInt)*destLen; if ((uLong)stream.avail_out != *destLen) return Z_BUF_ERROR; stream.zalloc = (alloc_func)0; stream.zfree = (free_func)0; stream.opaque = (voidpf)0; err = deflateInit(&stream, level); if (err != Z_OK) return err; err = deflate(&stream, Z_FINISH); if (err != Z_STREAM_END) { deflateEnd(&stream); return err == Z_OK ? Z_BUF_ERROR : err; } *destLen = stream.total_out; err = deflateEnd(&stream); return err; } /* =========================================================================== */ int ZEXPORT compress (dest, destLen, source, sourceLen) Bytef *dest; uLongf *destLen; const Bytef *source; uLong sourceLen; { return compress2(dest, destLen, source, sourceLen, Z_DEFAULT_COMPRESSION); } /* =========================================================================== If the default memLevel or windowBits for deflateInit() is changed, then this function needs to be updated. */ uLong ZEXPORT compressBound (sourceLen) uLong sourceLen; { return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) + (sourceLen >> 25) + 13; } /* END OF DUMP OF mz_compress.c*/ /* START OF DUMP OF mz_adler32.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* adler32.c -- compute the Adler-32 checksum of a data stream * Copyright (C) 1995-2011 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* @(#) $Id$ */ #define local static local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2)); #define BASE 65521 /* largest prime smaller than 65536 */ #define NMAX 5552 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */ #define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;} #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1); #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2); #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4); #define DO16(buf) DO8(buf,0); DO8(buf,8); /* use NO_DIVIDE if your processor does not do division in hardware -- try it both ways to see which is faster */ #ifdef NO_DIVIDE /* note that this assumes BASE is 65521, where 65536 % 65521 == 15 (thank you to John Reiser for pointing this out) */ # define CHOP(a) \ do { \ unsigned long tmp = a >> 16; \ a &= 0xffffUL; \ a += (tmp << 4) - tmp; \ } while (0) # define MOD28(a) \ do { \ CHOP(a); \ if (a >= BASE) a -= BASE; \ } while (0) # define MOD(a) \ do { \ CHOP(a); \ MOD28(a); \ } while (0) # define MOD63(a) \ do { /* this assumes a is not negative */ \ z_off64_t tmp = a >> 32; \ a &= 0xffffffffL; \ a += (tmp << 8) - (tmp << 5) + tmp; \ tmp = a >> 16; \ a &= 0xffffL; \ a += (tmp << 4) - tmp; \ tmp = a >> 16; \ a &= 0xffffL; \ a += (tmp << 4) - tmp; \ if (a >= BASE) a -= BASE; \ } while (0) #else # define MOD(a) a %= BASE # define MOD28(a) a %= BASE # define MOD63(a) a %= BASE #endif /* ========================================================================= */ uLong ZEXPORT adler32(adler, buf, len) uLong adler; const Bytef *buf; uInt len; { unsigned long sum2; unsigned n; /* split Adler-32 into component sums */ sum2 = (adler >> 16) & 0xffff; adler &= 0xffff; /* in case user likes doing a byte at a time, keep it fast */ if (len == 1) { adler += buf[0]; if (adler >= BASE) adler -= BASE; sum2 += adler; if (sum2 >= BASE) sum2 -= BASE; return adler | (sum2 << 16); } /* initial Adler-32 value (deferred check for len == 1 speed) */ if (buf == Z_NULL) return 1L; /* in case short lengths are provided, keep it somewhat fast */ if (len < 16) { while (len--) { adler += *buf++; sum2 += adler; } if (adler >= BASE) adler -= BASE; MOD28(sum2); /* only added so many BASE's */ return adler | (sum2 << 16); } /* do length NMAX blocks -- requires just one modulo operation */ while (len >= NMAX) { len -= NMAX; n = NMAX / 16; /* NMAX is divisible by 16 */ do { DO16(buf); /* 16 sums unrolled */ buf += 16; } while (--n); MOD(adler); MOD(sum2); } /* do remaining bytes (less than NMAX, still just one modulo) */ if (len) { /* avoid modulos if none remaining */ while (len >= 16) { len -= 16; DO16(buf); buf += 16; } while (len--) { adler += *buf++; sum2 += adler; } MOD(adler); MOD(sum2); } /* return recombined sums */ return adler | (sum2 << 16); } /* ========================================================================= */ local uLong adler32_combine_(adler1, adler2, len2) uLong adler1; uLong adler2; z_off64_t len2; { unsigned long sum1; unsigned long sum2; unsigned rem; /* for negative len, return invalid adler32 as a clue for debugging */ if (len2 < 0) return 0xffffffffUL; /* the derivation of this formula is left as an exercise for the reader */ MOD63(len2); /* assumes len2 >= 0 */ rem = (unsigned)len2; sum1 = adler1 & 0xffff; sum2 = rem * sum1; MOD(sum2); sum1 += (adler2 & 0xffff) + BASE - 1; sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem; if (sum1 >= BASE) sum1 -= BASE; if (sum1 >= BASE) sum1 -= BASE; if (sum2 >= (BASE << 1)) sum2 -= (BASE << 1); if (sum2 >= BASE) sum2 -= BASE; return sum1 | (sum2 << 16); } /* ========================================================================= */ uLong ZEXPORT adler32_combine(adler1, adler2, len2) uLong adler1; uLong adler2; z_off_t len2; { return adler32_combine_(adler1, adler2, len2); } uLong ZEXPORT adler32_combine64(adler1, adler2, len2) uLong adler1; uLong adler2; z_off64_t len2; { return adler32_combine_(adler1, adler2, len2); } /* END OF DUMP OF mz_adler32.c*/ /* START OF DUMP OF mz_zutil.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* zutil.c -- target dependent utility functions for the compression library * Copyright (C) 1995-2005, 2010, 2011, 2012 Jean-loup Gailly. * For conditions of distribution and use, see copyright notice in zlib.h */ /* @(#) $Id$ */ #ifndef Z_SOLO #endif #ifndef NO_DUMMY_DECL struct internal_state {int dummy;}; /* for buggy compilers */ #endif z_const char * const z_errmsg[10] = { "need dictionary", /* Z_NEED_DICT 2 */ "stream end", /* Z_STREAM_END 1 */ "", /* Z_OK 0 */ "file error", /* Z_ERRNO (-1) */ "stream error", /* Z_STREAM_ERROR (-2) */ "data error", /* Z_DATA_ERROR (-3) */ "insufficient memory", /* Z_MEM_ERROR (-4) */ "buffer error", /* Z_BUF_ERROR (-5) */ "incompatible version",/* Z_VERSION_ERROR (-6) */ ""}; const char * ZEXPORT zlibVersion() { return ZLIB_VERSION; } uLong ZEXPORT zlibCompileFlags() { uLong flags; flags = 0; switch ((int)(sizeof(uInt))) { case 2: break; case 4: flags += 1; break; case 8: flags += 2; break; default: flags += 3; } switch ((int)(sizeof(uLong))) { case 2: break; case 4: flags += 1 << 2; break; case 8: flags += 2 << 2; break; default: flags += 3 << 2; } switch ((int)(sizeof(voidpf))) { case 2: break; case 4: flags += 1 << 4; break; case 8: flags += 2 << 4; break; default: flags += 3 << 4; } switch ((int)(sizeof(z_off_t))) { case 2: break; case 4: flags += 1 << 6; break; case 8: flags += 2 << 6; break; default: flags += 3 << 6; } #ifdef DEBUG flags += 1 << 8; #endif #if defined(ASMV) || defined(ASMINF) flags += 1 << 9; #endif #ifdef ZLIB_WINAPI flags += 1 << 10; #endif #ifdef BUILDFIXED flags += 1 << 12; #endif #ifdef DYNAMIC_CRC_TABLE flags += 1 << 13; #endif #ifdef NO_GZCOMPRESS flags += 1L << 16; #endif #ifdef NO_GZIP flags += 1L << 17; #endif #ifdef PKZIP_BUG_WORKAROUND flags += 1L << 20; #endif #ifdef FASTEST flags += 1L << 21; #endif #if defined(STDC) || defined(Z_HAVE_STDARG_H) # ifdef NO_vsnprintf flags += 1L << 25; # ifdef HAS_vsprintf_void flags += 1L << 26; # endif # else # ifdef HAS_vsnprintf_void flags += 1L << 26; # endif # endif #else flags += 1L << 24; # ifdef NO_snprintf flags += 1L << 25; # ifdef HAS_sprintf_void flags += 1L << 26; # endif # else # ifdef HAS_snprintf_void flags += 1L << 26; # endif # endif #endif return flags; } #ifdef DEBUG # ifndef verbose # define verbose 0 # endif int ZLIB_INTERNAL z_verbose = verbose; void ZLIB_INTERNAL z_error (m) char *m; { fprintf(stderr, "%s\n", m); exit(1); } #endif /* exported to allow conversion of error code to string for compress() and * uncompress() */ const char * ZEXPORT zError(err) int err; { return ERR_MSG(err); } #if defined(_WIN32_WCE) /* The Microsoft C Run-Time Library for Windows CE doesn't have * errno. We define it as a global variable to simplify porting. * Its value is always 0 and should not be used. */ int errno = 0; #endif #ifndef HAVE_MEMCPY void ZLIB_INTERNAL zmemcpy(dest, source, len) Bytef* dest; const Bytef* source; uInt len; { if (len == 0) return; do { *dest++ = *source++; /* ??? to be unrolled */ } while (--len != 0); } int ZLIB_INTERNAL zmemcmp(s1, s2, len) const Bytef* s1; const Bytef* s2; uInt len; { uInt j; for (j = 0; j < len; j++) { if (s1[j] != s2[j]) return 2*(s1[j] > s2[j])-1; } return 0; } void ZLIB_INTERNAL zmemzero(dest, len) Bytef* dest; uInt len; { if (len == 0) return; do { *dest++ = 0; /* ??? to be unrolled */ } while (--len != 0); } #endif #ifndef Z_SOLO #ifdef SYS16BIT #ifdef __TURBOC__ /* Turbo C in 16-bit mode */ # define MY_ZCALLOC /* Turbo C malloc() does not allow dynamic allocation of 64K bytes * and farmalloc(64K) returns a pointer with an offset of 8, so we * must fix the pointer. Warning: the pointer must be put back to its * original form in order to free it, use zcfree(). */ #define MAX_PTR 10 /* 10*64K = 640K */ local int next_ptr = 0; typedef struct ptr_table_s { voidpf org_ptr; voidpf new_ptr; } ptr_table; local ptr_table table[MAX_PTR]; /* This table is used to remember the original form of pointers * to large buffers (64K). Such pointers are normalized with a zero offset. * Since MSDOS is not a preemptive multitasking OS, this table is not * protected from concurrent access. This hack doesn't work anyway on * a protected system like OS/2. Use Microsoft C instead. */ voidpf ZLIB_INTERNAL zcalloc (voidpf opaque, unsigned items, unsigned size) { voidpf buf = opaque; /* just to make some compilers happy */ ulg bsize = (ulg)items*size; /* If we allocate less than 65520 bytes, we assume that farmalloc * will return a usable pointer which doesn't have to be normalized. */ if (bsize < 65520L) { buf = farmalloc(bsize); if (*(ush*)&buf != 0) return buf; } else { buf = farmalloc(bsize + 16L); } if (buf == NULL || next_ptr >= MAX_PTR) return NULL; table[next_ptr].org_ptr = buf; /* Normalize the pointer to seg:0 */ *((ush*)&buf+1) += ((ush)((uch*)buf-0) + 15) >> 4; *(ush*)&buf = 0; table[next_ptr++].new_ptr = buf; return buf; } void ZLIB_INTERNAL zcfree (voidpf opaque, voidpf ptr) { int n; if (*(ush*)&ptr != 0) { /* object < 64K */ farfree(ptr); return; } /* Find the original pointer */ for (n = 0; n < next_ptr; n++) { if (ptr != table[n].new_ptr) continue; farfree(table[n].org_ptr); while (++n < next_ptr) { table[n-1] = table[n]; } next_ptr--; return; } ptr = opaque; /* just to make some compilers happy */ Assert(0, "zcfree: ptr not found"); } #endif /* __TURBOC__ */ #ifdef M_I86 /* Microsoft C in 16-bit mode */ # define MY_ZCALLOC #if (!defined(_MSC_VER) || (_MSC_VER <= 600)) # define _halloc halloc # define _hfree hfree #endif voidpf ZLIB_INTERNAL zcalloc (voidpf opaque, uInt items, uInt size) { if (opaque) opaque = 0; /* to make compiler happy */ return _halloc((long)items, size); } void ZLIB_INTERNAL zcfree (voidpf opaque, voidpf ptr) { if (opaque) opaque = 0; /* to make compiler happy */ _hfree(ptr); } #endif /* M_I86 */ #endif /* SYS16BIT */ #ifndef MY_ZCALLOC /* Any system without a special alloc function */ #ifndef STDC extern voidp malloc OF((uInt size)); extern voidp calloc OF((uInt items, uInt size)); extern void free OF((voidpf ptr)); #endif voidpf ZLIB_INTERNAL zcalloc (opaque, items, size) voidpf opaque; unsigned items; unsigned size; { if (opaque) items += size - size; /* make compiler happy */ return sizeof(uInt) > 2 ? (voidpf)malloc(items * size) : (voidpf)calloc(items, size); } void ZLIB_INTERNAL zcfree (opaque, ptr) voidpf opaque; voidpf ptr; { free(ptr); if (opaque) return; /* make compiler happy */ } #endif /* MY_ZCALLOC */ #endif /* !Z_SOLO */ /* END OF DUMP OF mz_zutil.c*/ ///////////////////////////////////////////////////////////////////////////////////// // // // mcpltool : a simple command line utility for inspecting MCPL files. // // // // This file can be freely used as per the terms in the LICENSE file. // // // // Written by Thomas Kittelmann, 2015-2016. // // // ///////////////////////////////////////////////////////////////////////////////////// int main ( int argc, char** argv ) { return mcpl_tool(argc,argv); } mcpl-1.3.2/src_fat/phits2mcpl_app_fat.c000066400000000000000000022727061361775146500200530ustar00rootroot00000000000000 /////////////////////////////////////////////////////////////////////// // // // This is a quick and dirty standalone version of the PHITS to MCPL // // converter, phits2mcpl, including both mcpl.h, mcpl.c, // // phitsread.h, phitsread.c, a main(), and zlib. // // // // Compile into executable using C99 with libm: // // // // $CC -std=c99 phits2mcpl_app_fat.c -lm -o phits2mcpl // // // // Where $CC is a C99 capable C-compiler like gcc or clang. // // // // For licensing and documentation, please refer to either the MCPL // // website (https://mctools.github.io/mcpl/) or files in the full // // MCPL distribution, obtainable from the same place. In particular, // // since some code in this file originates in the zlib library // // (http://zlib.net), the zlib license applies to those parts and is // // repeated below. // // // // Note that usage of PHITS-related utilities might require // // additional permissions and licenses from third-parties, which is // // not within the scope of the MCPL project itself. // // // /////////////////////////////////////////////////////////////////////// //---------- the zlib license ----------// /* zlib.h -- interface of the 'zlib' general purpose compression library version 1.2.8, April 28th, 2013 Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. Jean-loup Gailly Mark Adler jloup@gzip.org madler@alumni.caltech.edu */ //---------- Automatically concatenated code follows below ----------// #ifdef MCPL_HEADER_INCPATH # undef MCPL_HEADER_INCPATH #endif #ifndef __STDC_FORMAT_MACROS # define __STDC_FORMAT_MACROS #endif #ifndef _POSIX_C_SOURCE # define _POSIX_C_SOURCE 200809L #endif #ifndef _ISOC99_SOURCE # define _ISOC99_SOURCE 1 #endif #ifndef _C99_SOURCE # define _C99_SOURCE 1 #endif #ifndef MCPL_HASZLIB # define MCPL_HASZLIB #endif #ifndef PHITSREAD_HASZLIB # define PHITSREAD_HASZLIB #endif #ifdef PHITSREAD_HDR_INCPATH # undef PHITSREAD_HDR_INCPATH #endif #ifdef PHITSMCPL_HDR_INCPATH # undef PHITSMCPL_HDR_INCPATH #endif #ifdef PHITSREAD_ZLIB_INCPATH # undef PHITSREAD_ZLIB_INCPATH #endif #ifdef MCPL_ZLIB_INCPATH # undef MCPL_ZLIB_INCPATH #endif #ifndef MCPL_H #define MCPL_H #include /***********************************************************************************/ /* */ /* Monte Carlo Particle Lists : MCPL */ /* */ /* Utilities for reading and writing .mcpl files: A binary format with lists of */ /* particle state information, for interchanging and reshooting events between */ /* various Monte Carlo simulation applications. */ /* */ /* Find more information and updates at https://mctools.github.io/mcpl/ */ /* */ /* This file can be freely used as per the terms in the LICENSE file. */ /* */ /* Written by Thomas Kittelmann, 2015-2017. */ /* */ /***********************************************************************************/ #define MCPL_VERSION_MAJOR 1 #define MCPL_VERSION_MINOR 3 #define MCPL_VERSION_PATCH 2 #define MCPL_VERSION 10302 /* (10000*MAJOR+100*MINOR+PATCH) */ #define MCPL_VERSION_STR "1.3.2" #define MCPL_FORMATVERSION 3 /* Format version of written files */ #ifdef __cplusplus extern "C" { #endif /*********/ /* Types */ /*********/ #pragma pack (push, 1) /* The data structure representing a particle (note that persistification of */ /* polarisation and userflags must be explicitly enabled when writing .mcpl */ /* files, or they will simply contain zeroes when the file is read): */ typedef struct { double ekin; /* kinetic energy [MeV] */ double polarisation[3]; /* polarisation vector */ double position[3]; /* position [cm] */ double direction[3]; /* momentum direction (unit vector) */ double time; /* time-stamp [millisecond] */ double weight; /* weight or intensity */ int32_t pdgcode; /* MC particle number from the Particle Data Group (2112=neutron, 22=gamma, ...) */ uint32_t userflags; /* User flags (if used, the file header should probably contain information about how). */ } mcpl_particle_t; #pragma pack (pop) typedef struct { void * internal; } mcpl_file_t; /* file-object used while reading .mcpl */ typedef struct { void * internal; } mcpl_outfile_t; /* file-object used while writing .mcpl */ /****************************/ /* Creating new .mcpl files */ /****************************/ /* Instantiate new file object (will also open and override specified file) */ mcpl_outfile_t mcpl_create_outfile(const char * filename); const char * mcpl_outfile_filename(mcpl_outfile_t);/* filename being written to (might have had .mcpl appended) */ /* Optionally set global options or add info to the header: */ void mcpl_hdr_set_srcname(mcpl_outfile_t, const char *);/* Name of the generating application */ void mcpl_hdr_add_comment(mcpl_outfile_t, const char *);/* Add one or more human-readable comments */ void mcpl_hdr_add_data(mcpl_outfile_t, const char * key, uint32_t ldata, const char * data);/* add binary blobs by key */ void mcpl_enable_userflags(mcpl_outfile_t);/* to write the "userflags" info */ void mcpl_enable_polarisation(mcpl_outfile_t);/* to write the "polarisation" info */ void mcpl_enable_doubleprec(mcpl_outfile_t);/* use double precision FP numbers in storage */ void mcpl_enable_universal_pdgcode(mcpl_outfile_t, int32_t pdgcode);/* All particles are of the same type */ void mcpl_enable_universal_weight(mcpl_outfile_t, double w);/* All particles have the same weight */ /* Optionally (but rarely skipped) add particles, by updating the info in */ /* and then passing in a pointer to an mcpl_particle_t instance: */ void mcpl_add_particle(mcpl_outfile_t,const mcpl_particle_t*); /* Finally, always remember to close the file: */ void mcpl_close_outfile(mcpl_outfile_t); /* Alternatively close with (will call mcpl_gzip_file after close). */ /* Returns non-zero if gzipping was succesful: */ int mcpl_closeandgzip_outfile(mcpl_outfile_t); /* Convenience function which returns a pointer to a nulled-out particle struct which can be used to edit and pass to mcpl_add_particle. It can be reused and will be automatically free'd when the file is closed: */ mcpl_particle_t* mcpl_get_empty_particle(mcpl_outfile_t); /***********************/ /* Reading .mcpl files */ /***********************/ /* Open file and load header information into memory, skip to the first (if */ /* any) particle in the list: */ mcpl_file_t mcpl_open_file(const char * filename); /* Access header data: */ unsigned mcpl_hdr_version(mcpl_file_t);/* file format version (not the same as MCPL_VERSION) */ uint64_t mcpl_hdr_nparticles(mcpl_file_t);/* number of particles stored in file */ const char* mcpl_hdr_srcname(mcpl_file_t);/* Name of the generating application */ unsigned mcpl_hdr_ncomments(mcpl_file_t);/* number of comments stored in file */ const char * mcpl_hdr_comment(mcpl_file_t, unsigned icomment);/* access i'th comment */ int mcpl_hdr_nblobs(mcpl_file_t); const char** mcpl_hdr_blobkeys(mcpl_file_t);/* returns 0 if there are no keys */ int mcpl_hdr_blob(mcpl_file_t, const char* key, uint32_t* ldata, const char ** data);/* access data (returns 0 if key doesn't exist) */ int mcpl_hdr_has_userflags(mcpl_file_t); int mcpl_hdr_has_polarisation(mcpl_file_t); int mcpl_hdr_has_doubleprec(mcpl_file_t); uint64_t mcpl_hdr_header_size(mcpl_file_t);/* bytes consumed by header (uncompressed) */ int mcpl_hdr_particle_size(mcpl_file_t);/* bytes per particle (uncompressed) */ int32_t mcpl_hdr_universal_pdgcode(mcpl_file_t);/* returns 0 in case of per-particle pdgcode */ double mcpl_hdr_universal_weight(mcpl_file_t);/* returns 0.0 in case of per-particle weights */ int mcpl_hdr_little_endian(mcpl_file_t); /* Request pointer to particle at current location and skip forward to the next */ /* particle. Return value will be null in case there was no particle at the */ /* current location (normally due to end-of-file): */ const mcpl_particle_t* mcpl_read(mcpl_file_t); /* Seek and skip in particles (returns 0 when there is no particle at the new position): */ int mcpl_skipforward(mcpl_file_t,uint64_t n); int mcpl_rewind(mcpl_file_t); int mcpl_seek(mcpl_file_t,uint64_t ipos); uint64_t mcpl_currentposition(mcpl_file_t); /* Deallocate memory and release file-handle with: */ void mcpl_close_file(mcpl_file_t); /***********************************/ /* Other operations on .mcpl files */ /***********************************/ /* Dump information about the file to std-output: */ /* parts : 0 -> header+particle list, 1 -> just header, 2 -> just particle list. */ /* nlimit: maximum number of particles to list (0 for unlimited) */ /* nskip : index of first particle in the file to list. */ void mcpl_dump(const char * file, int parts, uint64_t nskip, uint64_t nlimit); /* Merge contents of a list of files by concatenating all particle contents into a */ /* new file, file_output. This results in an error unless all meta-data and settings */ /* in the files are identical. Also fails if file_output already exists. Note that */ /* the return value is a handle to the output file which has not yet been closed: */ mcpl_outfile_t mcpl_merge_files( const char* file_output, unsigned nfiles, const char ** files); /* Test if files could be merged by mcpl_merge_files: */ int mcpl_can_merge(const char * file1, const char* file2); /* Similar to mcpl_merge_files, but merges two files by appending all particles in */ /* file2 to the list in file1 (thus file1 grows while file2 stays untouched). */ /* Note that this requires similar version of the MCPL format of the two files, in */ /* addition to the other checks in mcpl_can_merge(). */ /* Careful usage of this function can be more efficient than mcpl_merge_files. */ void mcpl_merge_inplace(const char * file1, const char* file2); /* Attempt to merge incompatible files, by throwing away meta-data and otherwise */ /* selecting a configuration which is suitable to contain the data of all files. */ /* Userflags will be discarded unless keep_userflags=1. */ /* If called with compatible files, the code will fall back to calling the usual */ /* mcpl_merge_files function instead. */ mcpl_outfile_t mcpl_forcemerge_files( const char* file_output, unsigned nfiles, const char ** files, int keep_userflags ); /* Attempt to fix number of particles in the header of a file which was never */ /* properly closed: */ void mcpl_repair(const char * file1); /* For easily creating a standard mcpl-tool cmdline application: */ int mcpl_tool(int argc, char** argv); /* Attempt to run gzip on a file (does not require MCPL_HASZLIB on unix) */ /* Returns non-zero if gzipping was succesful. */ int mcpl_gzip_file(const char * filename); /* Convenience function which transfers all settings, blobs and comments to */ /* target. Intended to make it easy to filter files via custom C code. */ void mcpl_transfer_metadata(mcpl_file_t source, mcpl_outfile_t target); /* Function which can be used when transferring particles from one MCPL file */ /* to another. A particle must have been already read from the source file */ /* with a call to mcpl_read(..). This function will transfer the packed par- */ /* ticle data exactly when possible (using mcpl_add_particle can in principle */ /* introduce tiny numerical uncertainties due to the internal unpacking and */ /* repacking of direction vectors involved): */ void mcpl_transfer_last_read_particle(mcpl_file_t source, mcpl_outfile_t target); /******************/ /* Error handling */ /******************/ /* Override the error handler which will get called with the error */ /* description. If no handler is set, errors will get printed to stdout and the */ /* process terminated. An error handler should not return to the calling code. */ void mcpl_set_error_handler(void (*handler)(const char *)); /**********************/ /* Obsolete functions */ /**********************/ /* Functions kept for backwards compatibility. They keep working for now, but */ /* usage will result in a warning printed to stdout, notifying users to update */ /* their code. */ void mcpl_merge(const char *, const char*);/* Obsolete name for mcpl_merge_inplace */ int mcpl_gzip_file_rc(const char * filename);/* Obsolete name for mcpl_gzip_file */ int mcpl_closeandgzip_outfile_rc(mcpl_outfile_t);/* Obsolete name for mcpl_closeandgzip_outfile_rc */ int32_t mcpl_hdr_universel_pdgcode(mcpl_file_t);/* Obsolete name for mcpl_hdr_universal_pdgcode */ #ifdef __cplusplus } #endif #endif #ifndef phitsmcpl_h #define phitsmcpl_h ////////////////////////////////////////////////////////////////////////////////////// // // // Functions for converting binary PHITS dump files to and from MCPL files. // // // // The code was written with help from D. Di Julio, ESS. // // // // This file can be freely used as per the terms in the LICENSE file. // // // // However, note that usage of PHITS-related utilities might require additional // // permissions and licenses from third-parties, which is not within the scope of // // the MCPL project itself. // // // // Written 2019 by Thomas.Kittelmann@esss.se. // // // ////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////// // Create mcplfile based on content in PHITS dump file. Using this function will // use single-precision in the output file, and will always attempt to gzip the // resulting MCPL file. Use phits2mcpl2 instead to fine-tune these choices or to // embed a copy of the PHITS input deck or dump summary file in the MCPL header // for reference. Returns 1 on success, 0 on failure: int phits2mcpl(const char * phitsfile, const char * mcplfile); ////////////////////////////////////////////////////////////////////////////////////// // Advanced version of the above with more options: // // opt_dp : Set to 1 to enable double-precision storage of floating point // values. Set to 0 for single-precision. // opt_gzip: Set to 1 to gzip the resulting mcpl file. Set to 0 to leave the // resulting file uncompressed. // inputdeckfile: Set to the filename of the PHITS input deck file, to embed a // copy of it in the MCPL header. Set to 0 to not do this. // dumpsummaryfile: Set to the filename of the dump summary text file (which // is produced along with the binary dump file by PHITS), to // embed a copy of it in the MCPL header. Set to 0 to not do // this. // // Note: The created mcpl file will have polarisation columns enabled if and // only if the input dump file has polarisation info. int phits2mcpl2( const char * phitsdumpfile, const char * mcplfile, int opt_dp, int opt_gzip, const char * inputdeckfile, const char * dumpsummaryfile ); ////////////////////////////////////////////////////////////////////////////////////// // Create binary PHITS dump file based on content in mcplfile. If usepol option // is set to 1 (as opposed to 0), the resulting file will include polarisation (aka spin // direction) information and must be read via: // // dump=13 // 1 2 3 4 5 6 7 8 9 10 14 15 16 // // Otherwise it is excluded and the reader must be configured via: // // dump=10 // 1 2 3 4 5 6 7 8 9 10 // // If the limit parameter is non-zero, it will provide an upper limit on the // number of particles put into the resulting phits file. Finally, the reclen // parameters control whether the hidden Fortran record markers in the produced // file use 32bit (reclen=4) or 64bit (reclen=8) integers. The correct choice is // almost always to use reclen=4. int mcpl2phits( const char * mcplfile, const char * phitsdumpfile, int usepol, long limit, int reclen ); ////////////////////////////////////////////////////////////////////////////////////// // For easily creating standard phits2mcpl and mcpl2phits cmdline applications: int phits2mcpl_app(int argc,char** argv); int mcpl2phits_app(int argc,char** argv); #endif #ifndef MCPL_HASZLIB # define MCPL_HASZLIB #endif #ifdef MCPL_ZLIB_INCPATH # undef MCPL_ZLIB_INCPATH #endif ///////////////////////////////////////////////////////////////////////////////////// // // // Monte Carlo Particle Lists : MCPL // // // // Utilities for reading and writing .mcpl files: A binary format with lists of // // particle state information, for interchanging and reshooting events between // // various Monte Carlo simulation applications. // // // // Client code including mcpl.h does not need any special build flags and can // // be compiled with any complient compiler and any current C or C++ standard. // // // // Compilation of mcpl.c on the other hand is currently not supported for C89, // // although this could be revisited. Thus, compilation of mcpl.c can proceed // // using any complient C-compiler using -std=c99 or -std=c11 or any complient // // C++ compiler using any version of the C++ standard, and the resulting code // // must always be linked with libm (using -lm). Furthermore, the following // // preprocessor flags can be used when compiling mcpl.c to fine tune the build // // process and the capabilities of the resulting binary. // // // // MCPL_HASZLIB : Define if compiling and linking with zlib, to allow // // direct reading of .mcpl.gz files. // // MCPL_ZLIB_INCPATH : Specify alternative value if the zlib header is not to // // be included as "zlib.h". // // MCPL_HEADER_INCPATH : Specify alternative value if the MCPL header itself is // // not to be included as "mcpl.h". // // MCPL_NO_EXT_GZIP : Define to make sure that mcpl_gzip_file will never // // compress via a separate process running a system- // // provided gzip executable. // // MCPL_NO_CUSTOM_GZIP : Define to make sure that mcpl_gzip_file will never // // compress via custom zlib-based code. // // // // This file can be freely used as per the terms in the LICENSE file. // // // // Find more information and updates at https://mctools.github.io/mcpl/ // // // // Written by Thomas Kittelmann, 2015-2017. // // // ///////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////// // MCPL_FORMATVERSION history: // // // // 3: Current version. Changed packing of unit vectors from octahedral to // // the better performing "Adaptive Projection Packing". // // 2: First public release. // // 1: Format used during early development. No longer supported. // ///////////////////////////////////////////////////////////////////////////////////// //Rough platform detection (could be much more fine-grained): #if defined(__unix__) || defined(__unix) || (defined(__APPLE__) && defined(__MACH__)) # define MCPL_THIS_IS_UNIX #endif #if defined(MSDOS) || defined(OS2) || defined(WIN32) || defined(_WIN32) || defined(__CYGWIN__) # ifdef MCPL_THIS_IS_UNIX # undef MCPL_THIS_IS_UNIX # endif # define MCPL_THIS_IS_MS #endif //Before including mcpl.h, we attempt to get PRIu64 defined in a relatively //robust manner by enabling feature test macros for gcc and including relevant //headers: #ifndef __STDC_FORMAT_MACROS # define __STDC_FORMAT_MACROS #endif #ifndef _POSIX_C_SOURCE # define _POSIX_C_SOURCE 200809L #endif #ifndef _ISOC99_SOURCE # define _ISOC99_SOURCE 1 #endif #ifndef _C99_SOURCE # define _C99_SOURCE 1 #endif #include #include #ifndef PRIu64//bad compiler - fallback to guessing # if defined(_MSC_VER) && (_MSC_VER<1900) # define PRIu64 "I64u" # else # if defined(__WORDSIZE) && (__WORDSIZE==64) # define PRIu64 "lu" # else # define PRIu64 "llu" # endif # endif #endif #ifdef MCPL_HEADER_INCPATH # include MCPL_HEADER_INCPATH #else #endif #ifdef MCPL_HASZLIB # ifdef MCPL_ZLIB_INCPATH # include MCPL_ZLIB_INCPATH # else #ifndef NO_DUMMY_DECL # define NO_DUMMY_DECL #endif /* zlib.h -- interface of the 'zlib' general purpose compression library version 1.2.8, April 28th, 2013 Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. Jean-loup Gailly Mark Adler jloup@gzip.org madler@alumni.caltech.edu The data format used by the zlib library is described by RFCs (Request for Comments) 1950 to 1952 in the files http://tools.ietf.org/html/rfc1950 (zlib format), rfc1951 (deflate format) and rfc1952 (gzip format). */ #ifndef MiniZLib_ZLIB_H #define MiniZLib_ZLIB_H /* zconf.h -- configuration of the zlib compression library * Copyright (C) 1995-2013 Jean-loup Gailly. * For conditions of distribution and use, see copyright notice in zlib.h */ /* @(#) $Id$ */ #ifndef MiniZLib_ZCONF_H #define MiniZLib_ZCONF_H /* * If you *really* need a unique prefix for all types and library functions, * compile with -DZ_PREFIX. The "standard" zlib should be compiled without it. * Even better than compiling with -DZ_PREFIX would be to use configure to set * this permanently in zconf.h using "./configure --zprefix". */ #if 1 /* may be set to #if 1 by ./configure */ # define Z_PREFIX_SET /* all linked symbols */ # define _dist_code minizlib__dist_code # define _length_code minizlib__length_code # define _tr_align minizlib__tr_align # define _tr_flush_bits minizlib__tr_flush_bits # define _tr_flush_block minizlib__tr_flush_block # define _tr_init minizlib__tr_init # define _tr_stored_block minizlib__tr_stored_block # define _tr_tally minizlib__tr_tally # define adler32 minizlib_adler32 # define adler32_combine minizlib_adler32_combine # define adler32_combine64 minizlib_adler32_combine64 # ifndef Z_SOLO # define compress minizlib_compress # define compress2 minizlib_compress2 # define compressBound minizlib_compressBound # endif # define crc32 minizlib_crc32 # define crc32_combine minizlib_crc32_combine # define crc32_combine64 minizlib_crc32_combine64 # define deflate minizlib_deflate # define deflateBound minizlib_deflateBound # define deflateCopy minizlib_deflateCopy # define deflateEnd minizlib_deflateEnd # define deflateInit2_ minizlib_deflateInit2_ # define deflateInit_ minizlib_deflateInit_ # define deflateParams minizlib_deflateParams # define deflatePending minizlib_deflatePending # define deflatePrime minizlib_deflatePrime # define deflateReset minizlib_deflateReset # define deflateResetKeep minizlib_deflateResetKeep # define deflateSetDictionary minizlib_deflateSetDictionary # define deflateSetHeader minizlib_deflateSetHeader # define deflateTune minizlib_deflateTune # define deflate_copyright minizlib_deflate_copyright # define get_crc_table minizlib_get_crc_table # ifndef Z_SOLO # define gz_error minizlib_gz_error # define gz_intmax minizlib_gz_intmax # define gz_strwinerror minizlib_gz_strwinerror # define gzbuffer minizlib_gzbuffer # define gzclearerr minizlib_gzclearerr # define gzclose minizlib_gzclose # define gzclose_r minizlib_gzclose_r # define gzclose_w minizlib_gzclose_w # define gzdirect minizlib_gzdirect # define gzdopen minizlib_gzdopen # define gzeof minizlib_gzeof # define gzerror minizlib_gzerror # define gzflush minizlib_gzflush # define gzgetc minizlib_gzgetc # define gzgetc_ minizlib_gzgetc_ # define gzgets minizlib_gzgets # define gzoffset minizlib_gzoffset # define gzoffset64 minizlib_gzoffset64 # define gzopen minizlib_gzopen # define gzopen64 minizlib_gzopen64 # ifdef _WIN32 # define gzopen_w minizlib_gzopen_w # endif # define gzprintf minizlib_gzprintf # define gzvprintf minizlib_gzvprintf # define gzputc minizlib_gzputc # define gzputs minizlib_gzputs # define gzread minizlib_gzread # define gzrewind minizlib_gzrewind # define gzseek minizlib_gzseek # define gzseek64 minizlib_gzseek64 # define gzsetparams minizlib_gzsetparams # define gztell minizlib_gztell # define gztell64 minizlib_gztell64 # define gzungetc minizlib_gzungetc # define gzwrite minizlib_gzwrite # endif # define inflate minizlib_inflate # define inflateBack minizlib_inflateBack # define inflateBackEnd minizlib_inflateBackEnd # define inflateBackInit_ minizlib_inflateBackInit_ # define inflateCopy minizlib_inflateCopy # define inflateEnd minizlib_inflateEnd # define inflateGetHeader minizlib_inflateGetHeader # define inflateInit2_ minizlib_inflateInit2_ # define inflateInit_ minizlib_inflateInit_ # define inflateMark minizlib_inflateMark # define inflatePrime minizlib_inflatePrime # define inflateReset minizlib_inflateReset # define inflateReset2 minizlib_inflateReset2 # define inflateSetDictionary minizlib_inflateSetDictionary # define inflateGetDictionary minizlib_inflateGetDictionary # define inflateSync minizlib_inflateSync # define inflateSyncPoint minizlib_inflateSyncPoint # define inflateUndermine minizlib_inflateUndermine # define inflateResetKeep minizlib_inflateResetKeep # define inflate_copyright minizlib_inflate_copyright # define inflate_fast minizlib_inflate_fast # define inflate_table minizlib_inflate_table # ifndef Z_SOLO # define uncompress minizlib_uncompress # endif # define zError minizlib_zError # ifndef Z_SOLO # define zcalloc minizlib_zcalloc # define zcfree minizlib_zcfree # endif # define zlibCompileFlags minizlib_zlibCompileFlags # define zlibVersion minizlib_zlibVersion /* all zlib typedefs in zlib.h and zconf.h */ # define Byte minizlib_Byte # define Bytef minizlib_Bytef # define alloc_func minizlib_alloc_func # define charf minizlib_charf # define free_func minizlib_free_func # ifndef Z_SOLO # define gzFile minizlib_gzFile # endif # define gz_header minizlib_gz_header # define gz_headerp minizlib_gz_headerp # define in_func minizlib_in_func # define intf minizlib_intf # define out_func minizlib_out_func # define uInt minizlib_uInt # define uIntf minizlib_uIntf # define uLong minizlib_uLong # define uLongf minizlib_uLongf # define voidp minizlib_voidp # define voidpc minizlib_voidpc # define voidpf minizlib_voidpf /* all zlib structs in zlib.h and zconf.h */ # define gz_header_s minizlib_gz_header_s # define internal_state minizlib_internal_state /* extras added by TK */ # define distfix minizlib_distfix # define lenfix minizlib_lenfix # define lbase minizlib_lbase # define dbase minizlib_dbase # define my_version minizlib_my_version # define dext minizlib_dext # define order minizlib_order # define build_bl_tree minizlib_build_bl_tree # define copy_block minizlib_copy_block # define crc32_big minizlib_crc32_big # define crc32_little minizlib_crc32_little # define deflate_huff minizlib_deflate_huff # define deflate_rle minizlib_deflate_rle # define detect_data_type minizlib_detect_data_type # define fixedtables minizlib_fixedtables # define flush_pending minizlib_flush_pending # define gen_bitlen minizlib_gen_bitlen # define gf2_matrix_square minizlib_gf2_matrix_square # define gf2_matrix_times minizlib_gf2_matrix_times # define init_block minizlib_init_block # define lm_init minizlib_lm_init # define pqdownheap minizlib_pqdownheap # define putShortMSB minizlib_putShortMSB # define read_buf minizlib_read_buf # define scan_tree minizlib_scan_tree # define send_all_trees minizlib_send_all_trees # define syncsearch minizlib_syncsearch # define tr_static_init minizlib_tr_static_init # define updatewindow minizlib_updatewindow # define adler32_combine_ minizlib_adler32_combine_ # define bi_flush minizlib_bi_flush # define bi_reverse minizlib_bi_reverse # define bi_windup minizlib_bi_windup # define gen_codes minizlib_gen_codes # define deflate_slow minizlib_deflate_slow # define deflate_fast minizlib_deflate_fast # define deflate_stored minizlib_deflate_stored # define gz_avail minizlib_gz_avail # define gz_load minizlib_gz_load # define gz_reset minizlib_gz_reset # define gz_skip minizlib_gz_skip # define gz_zero minizlib_gz_zero # define gz_comp minizlib_gz_comp # define gz_decomp minizlib_gz_decomp # define gz_fetch minizlib_gz_fetch # define gz_init minizlib_gz_init # define gz_look minizlib_gz_look # define gz_open minizlib_gz_open # define z_errmsg minizlib_z_errmsg # define crc32_combine_ minizlib_crc32_combine_ # define crc_table minizlib_crc_table # define longest_match minizlib_longest_match # define fill_window minizlib_fill_window # define configuration_table minizlib_configuration_table # define send_tree minizlib_send_tree # define compress_block minizlib_compress_block # define extra_lbits minizlib_extra_lbits # define base_length minizlib_base_length # define extra_dbits minizlib_extra_dbits # define base_dist minizlib_base_dist # define build_tree minizlib_build_tree # define bl_order minizlib_bl_order # define extra_blbits minizlib_extra_blbits # define static_l_desc minizlib_static_l_desc # define static_bl_desc minizlib_static_bl_desc # define static_d_desc minizlib_static_d_desc # define static_dtree minizlib_static_dtree # define static_ltree minizlib_static_ltree #endif #if defined(__MSDOS__) && !defined(MSDOS) # define MSDOS #endif #if (defined(OS_2) || defined(__OS2__)) && !defined(OS2) # define OS2 #endif #if defined(_WINDOWS) && !defined(WINDOWS) # define WINDOWS #endif #if defined(_WIN32) || defined(_WIN32_WCE) || defined(__WIN32__) # ifndef WIN32 # define WIN32 # endif #endif #if (defined(MSDOS) || defined(OS2) || defined(WINDOWS)) && !defined(WIN32) # if !defined(__GNUC__) && !defined(__FLAT__) && !defined(__386__) # ifndef SYS16BIT # define SYS16BIT # endif # endif #endif /* * Compile with -DMAXSEG_64K if the alloc function cannot allocate more * than 64k bytes at a time (needed on systems with 16-bit int). */ #ifdef SYS16BIT # define MAXSEG_64K #endif #ifdef MSDOS # define UNALIGNED_OK #endif #ifdef __STDC_VERSION__ # ifndef STDC # define STDC # endif # if __STDC_VERSION__ >= 199901L # ifndef STDC99 # define STDC99 # endif # endif #endif #if !defined(STDC) && (defined(__STDC__) || defined(__cplusplus)) # define STDC #endif #if !defined(STDC) && (defined(__GNUC__) || defined(__BORLANDC__)) # define STDC #endif #if !defined(STDC) && (defined(MSDOS) || defined(WINDOWS) || defined(WIN32)) # define STDC #endif #if !defined(STDC) && (defined(OS2) || defined(__HOS_AIX__)) # define STDC #endif #if defined(__OS400__) && !defined(STDC) /* iSeries (formerly AS/400). */ # define STDC #endif #ifndef STDC # ifndef const /* cannot use !defined(STDC) && !defined(const) on Mac */ # define const /* note: need a more gentle solution here */ # endif #endif #if defined(ZLIB_CONST) && !defined(z_const) # define z_const const #else # define z_const #endif /* Some Mac compilers merge all .h files incorrectly: */ #if defined(__MWERKS__)||defined(applec)||defined(THINK_C)||defined(__SC__) # define NO_DUMMY_DECL #endif /* Maximum value for memLevel in deflateInit2 */ #ifndef MAX_MEM_LEVEL # ifdef MAXSEG_64K # define MAX_MEM_LEVEL 8 # else # define MAX_MEM_LEVEL 9 # endif #endif /* Maximum value for windowBits in deflateInit2 and inflateInit2. * WARNING: reducing MAX_WBITS makes minigzip unable to extract .gz files * created by gzip. (Files created by minigzip can still be extracted by * gzip.) */ #ifndef MAX_WBITS # define MAX_WBITS 15 /* 32K LZ77 window */ #endif /* The memory requirements for deflate are (in bytes): (1 << (windowBits+2)) + (1 << (memLevel+9)) that is: 128K for windowBits=15 + 128K for memLevel = 8 (default values) plus a few kilobytes for small objects. For example, if you want to reduce the default memory requirements from 256K to 128K, compile with make CFLAGS="-O -DMAX_WBITS=14 -DMAX_MEM_LEVEL=7" Of course this will generally degrade compression (there's no free lunch). The memory requirements for inflate are (in bytes) 1 << windowBits that is, 32K for windowBits=15 (default value) plus a few kilobytes for small objects. */ /* Type declarations */ #ifndef OF /* function prototypes */ # ifdef STDC # define OF(args) args # else # define OF(args) () # endif #endif #ifndef Z_ARG /* function prototypes for stdarg */ # if defined(STDC) || defined(Z_HAVE_STDARG_H) # define Z_ARG(args) args # else # define Z_ARG(args) () # endif #endif /* The following definitions for FAR are needed only for MSDOS mixed * model programming (small or medium model with some far allocations). * This was tested only with MSC; for other MSDOS compilers you may have * to define NO_MEMCPY in zutil.h. If you don't need the mixed model, * just define FAR to be empty. */ #ifdef SYS16BIT # if defined(M_I86SM) || defined(M_I86MM) /* MSC small or medium model */ # define SMALL_MEDIUM # ifdef _MSC_VER # define FAR _far # else # define FAR far # endif # endif # if (defined(__SMALL__) || defined(__MEDIUM__)) /* Turbo C small or medium model */ # define SMALL_MEDIUM # ifdef __BORLANDC__ # define FAR _far # else # define FAR far # endif # endif #endif #if defined(WINDOWS) || defined(WIN32) /* If building or using zlib as a DLL, define ZLIB_DLL. * This is not mandatory, but it offers a little performance increase. */ # ifdef ZLIB_DLL # if defined(WIN32) && (!defined(__BORLANDC__) || (__BORLANDC__ >= 0x500)) # ifdef ZLIB_INTERNAL # define ZEXTERN extern __declspec(dllexport) # else # define ZEXTERN extern __declspec(dllimport) # endif # endif # endif /* ZLIB_DLL */ /* If building or using zlib with the WINAPI/WINAPIV calling convention, * define ZLIB_WINAPI. * Caution: the standard ZLIB1.DLL is NOT compiled using ZLIB_WINAPI. */ # ifdef ZLIB_WINAPI # ifdef FAR # undef FAR # endif # include /* No need for _export, use ZLIB.DEF instead. */ /* For complete Windows compatibility, use WINAPI, not __stdcall. */ # define ZEXPORT WINAPI # ifdef WIN32 # define ZEXPORTVA WINAPIV # else # define ZEXPORTVA FAR CDECL # endif # endif #endif #if defined (__BEOS__) # ifdef ZLIB_DLL # ifdef ZLIB_INTERNAL # define ZEXPORT __declspec(dllexport) # define ZEXPORTVA __declspec(dllexport) # else # define ZEXPORT __declspec(dllimport) # define ZEXPORTVA __declspec(dllimport) # endif # endif #endif #ifndef ZEXTERN # define ZEXTERN extern #endif #ifndef ZEXPORT # define ZEXPORT #endif #ifndef ZEXPORTVA # define ZEXPORTVA #endif #ifndef FAR # define FAR #endif #if !defined(__MACTYPES__) typedef unsigned char Byte; /* 8 bits */ #endif typedef unsigned int uInt; /* 16 bits or more */ typedef unsigned long uLong; /* 32 bits or more */ #ifdef SMALL_MEDIUM /* Borland C/C++ and some old MSC versions ignore FAR inside typedef */ # define Bytef Byte FAR #else typedef Byte FAR Bytef; #endif typedef char FAR charf; typedef int FAR intf; typedef uInt FAR uIntf; typedef uLong FAR uLongf; #ifdef STDC typedef void const *voidpc; typedef void FAR *voidpf; typedef void *voidp; #else typedef Byte const *voidpc; typedef Byte FAR *voidpf; typedef Byte *voidp; #endif #if !defined(Z_U4) && !defined(Z_SOLO) && defined(STDC) # include # if (UINT_MAX == 0xffffffffUL) # define Z_U4 unsigned # elif (ULONG_MAX == 0xffffffffUL) # define Z_U4 unsigned long # elif (USHRT_MAX == 0xffffffffUL) # define Z_U4 unsigned short # endif #endif #ifdef Z_U4 typedef Z_U4 z_crc_t; #else typedef unsigned long z_crc_t; #endif #ifdef HAVE_UNISTD_H /* may be set to #if 1 by ./configure */ # define Z_HAVE_UNISTD_H #endif #ifdef HAVE_STDARG_H /* may be set to #if 1 by ./configure */ # define Z_HAVE_STDARG_H #endif #ifdef STDC # ifndef Z_SOLO # include /* for off_t */ # endif #endif #if defined(STDC) || defined(Z_HAVE_STDARG_H) # ifndef Z_SOLO # include /* for va_list */ # endif #endif #ifdef _WIN32 # ifndef Z_SOLO # include /* for wchar_t */ # endif #endif /* a little trick to accommodate both "#define _LARGEFILE64_SOURCE" and * "#define _LARGEFILE64_SOURCE 1" as requesting 64-bit operations, (even * though the former does not conform to the LFS document), but considering * both "#undef _LARGEFILE64_SOURCE" and "#define _LARGEFILE64_SOURCE 0" as * equivalently requesting no 64-bit operations */ #if defined(_LARGEFILE64_SOURCE) && -_LARGEFILE64_SOURCE - -1 == 1 # undef _LARGEFILE64_SOURCE #endif #if defined(__WATCOMC__) && !defined(Z_HAVE_UNISTD_H) # define Z_HAVE_UNISTD_H #endif #ifndef Z_SOLO # if defined(Z_HAVE_UNISTD_H) || defined(_LARGEFILE64_SOURCE) # include /* for SEEK_*, off_t, and _LFS64_LARGEFILE */ # ifdef VMS # include /* for off_t */ # endif # ifndef z_off_t # define z_off_t off_t # endif # endif #endif #if defined(_LFS64_LARGEFILE) && _LFS64_LARGEFILE-0 # define Z_LFS64 #endif #if defined(_LARGEFILE64_SOURCE) && defined(Z_LFS64) # define Z_LARGE64 #endif #if defined(_FILE_OFFSET_BITS) && _FILE_OFFSET_BITS-0 == 64 && defined(Z_LFS64) # define Z_WANT64 #endif #if !defined(SEEK_SET) && !defined(Z_SOLO) # define SEEK_SET 0 /* Seek from beginning of file. */ # define SEEK_CUR 1 /* Seek from current position. */ # define SEEK_END 2 /* Set file pointer to EOF plus "offset" */ #endif #ifndef z_off_t # define z_off_t long #endif #if !defined(_WIN32) && defined(Z_LARGE64) # define z_off64_t off64_t #else # if defined(_WIN32) && !defined(__GNUC__) && !defined(Z_SOLO) # define z_off64_t __int64 # else # define z_off64_t z_off_t # endif #endif /* MVS linker does not support external names larger than 8 bytes */ #if defined(__MVS__) #pragma map(deflateInit_,"DEIN") #pragma map(deflateInit2_,"DEIN2") #pragma map(deflateEnd,"DEEND") #pragma map(deflateBound,"DEBND") #pragma map(inflateInit_,"ININ") #pragma map(inflateInit2_,"ININ2") #pragma map(inflateEnd,"INEND") #pragma map(inflateSync,"INSY") #pragma map(inflateSetDictionary,"INSEDI") #pragma map(compressBound,"CMBND") #pragma map(inflate_table,"INTABL") #pragma map(inflate_fast,"INFA") #pragma map(inflate_copyright,"INCOPY") #endif #endif /* ZCONF_H */ #ifdef __cplusplus extern "C" { #endif #define ZLIB_VERSION "1.2.8" #define ZLIB_VERNUM 0x1280 #define ZLIB_VER_MAJOR 1 #define ZLIB_VER_MINOR 2 #define ZLIB_VER_REVISION 8 #define ZLIB_VER_SUBREVISION 0 /* The 'zlib' compression library provides in-memory compression and decompression functions, including integrity checks of the uncompressed data. This version of the library supports only one compression method (deflation) but other algorithms will be added later and will have the same stream interface. Compression can be done in a single step if the buffers are large enough, or can be done by repeated calls of the compression function. In the latter case, the application must provide more input and/or consume the output (providing more output space) before each call. The compressed data format used by default by the in-memory functions is the zlib format, which is a zlib wrapper documented in RFC 1950, wrapped around a deflate stream, which is itself documented in RFC 1951. The library also supports reading and writing files in gzip (.gz) format with an interface similar to that of stdio using the functions that start with "gz". The gzip format is different from the zlib format. gzip is a gzip wrapper, documented in RFC 1952, wrapped around a deflate stream. This library can optionally read and write gzip streams in memory as well. The zlib format was designed to be compact and fast for use in memory and on communications channels. The gzip format was designed for single- file compression on file systems, has a larger header than zlib to maintain directory information, and uses a different, slower check method than zlib. The library does not install any signal handler. The decoder checks the consistency of the compressed data, so the library should never crash even in case of corrupted input. */ typedef voidpf (*alloc_func) OF((voidpf opaque, uInt items, uInt size)); typedef void (*free_func) OF((voidpf opaque, voidpf address)); struct internal_state; typedef struct z_stream_s { z_const Bytef *next_in; /* next input byte */ uInt avail_in; /* number of bytes available at next_in */ uLong total_in; /* total number of input bytes read so far */ Bytef *next_out; /* next output byte should be put there */ uInt avail_out; /* remaining free space at next_out */ uLong total_out; /* total number of bytes output so far */ z_const char *msg; /* last error message, NULL if no error */ struct internal_state FAR *state; /* not visible by applications */ alloc_func zalloc; /* used to allocate the internal state */ free_func zfree; /* used to free the internal state */ voidpf opaque; /* private data object passed to zalloc and zfree */ int data_type; /* best guess about the data type: binary or text */ uLong adler; /* adler32 value of the uncompressed data */ uLong reserved; /* reserved for future use */ } z_stream; typedef z_stream FAR *z_streamp; /* gzip header information passed to and from zlib routines. See RFC 1952 for more details on the meanings of these fields. */ typedef struct gz_header_s { int text; /* true if compressed data believed to be text */ uLong time; /* modification time */ int xflags; /* extra flags (not used when writing a gzip file) */ int os; /* operating system */ Bytef *extra; /* pointer to extra field or Z_NULL if none */ uInt extra_len; /* extra field length (valid if extra != Z_NULL) */ uInt extra_max; /* space at extra (only when reading header) */ Bytef *name; /* pointer to zero-terminated file name or Z_NULL */ uInt name_max; /* space at name (only when reading header) */ Bytef *comment; /* pointer to zero-terminated comment or Z_NULL */ uInt comm_max; /* space at comment (only when reading header) */ int hcrc; /* true if there was or will be a header crc */ int done; /* true when done reading gzip header (not used when writing a gzip file) */ } gz_header; typedef gz_header FAR *gz_headerp; /* The application must update next_in and avail_in when avail_in has dropped to zero. It must update next_out and avail_out when avail_out has dropped to zero. The application must initialize zalloc, zfree and opaque before calling the init function. All other fields are set by the compression library and must not be updated by the application. The opaque value provided by the application will be passed as the first parameter for calls of zalloc and zfree. This can be useful for custom memory management. The compression library attaches no meaning to the opaque value. zalloc must return Z_NULL if there is not enough memory for the object. If zlib is used in a multi-threaded application, zalloc and zfree must be thread safe. On 16-bit systems, the functions zalloc and zfree must be able to allocate exactly 65536 bytes, but will not be required to allocate more than this if the symbol MAXSEG_64K is defined (see zconf.h). WARNING: On MSDOS, pointers returned by zalloc for objects of exactly 65536 bytes *must* have their offset normalized to zero. The default allocation function provided by this library ensures this (see zutil.c). To reduce memory requirements and avoid any allocation of 64K objects, at the expense of compression ratio, compile the library with -DMAX_WBITS=14 (see zconf.h). The fields total_in and total_out can be used for statistics or progress reports. After compression, total_in holds the total size of the uncompressed data and may be saved for use in the decompressor (particularly if the decompressor wants to decompress everything in a single step). */ /* constants */ #define Z_NO_FLUSH 0 #define Z_PARTIAL_FLUSH 1 #define Z_SYNC_FLUSH 2 #define Z_FULL_FLUSH 3 #define Z_FINISH 4 #define Z_BLOCK 5 #define Z_TREES 6 /* Allowed flush values; see deflate() and inflate() below for details */ #define Z_OK 0 #define Z_STREAM_END 1 #define Z_NEED_DICT 2 #define Z_ERRNO (-1) #define Z_STREAM_ERROR (-2) #define Z_DATA_ERROR (-3) #define Z_MEM_ERROR (-4) #define Z_BUF_ERROR (-5) #define Z_VERSION_ERROR (-6) /* Return codes for the compression/decompression functions. Negative values * are errors, positive values are used for special but normal events. */ #define Z_NO_COMPRESSION 0 #define Z_BEST_SPEED 1 #define Z_BEST_COMPRESSION 9 #define Z_DEFAULT_COMPRESSION (-1) /* compression levels */ #define Z_FILTERED 1 #define Z_HUFFMAN_ONLY 2 #define Z_RLE 3 #define Z_FIXED 4 #define Z_DEFAULT_STRATEGY 0 /* compression strategy; see deflateInit2() below for details */ #define Z_BINARY 0 #define Z_TEXT 1 #define Z_ASCII Z_TEXT /* for compatibility with 1.2.2 and earlier */ #define Z_UNKNOWN 2 /* Possible values of the data_type field (though see inflate()) */ #define Z_DEFLATED 8 /* The deflate compression method (the only one supported in this version) */ #define Z_NULL 0 /* for initializing zalloc, zfree, opaque */ #define zlib_version zlibVersion() /* for compatibility with versions < 1.0.2 */ /* basic functions */ ZEXTERN const char * ZEXPORT zlibVersion OF((void)); /* The application can compare zlibVersion and ZLIB_VERSION for consistency. If the first character differs, the library code actually used is not compatible with the zlib.h header file used by the application. This check is automatically made by deflateInit and inflateInit. */ /* ZEXTERN int ZEXPORT deflateInit OF((z_streamp strm, int level)); Initializes the internal stream state for compression. The fields zalloc, zfree and opaque must be initialized before by the caller. If zalloc and zfree are set to Z_NULL, deflateInit updates them to use default allocation functions. The compression level must be Z_DEFAULT_COMPRESSION, or between 0 and 9: 1 gives best speed, 9 gives best compression, 0 gives no compression at all (the input data is simply copied a block at a time). Z_DEFAULT_COMPRESSION requests a default compromise between speed and compression (currently equivalent to level 6). deflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_STREAM_ERROR if level is not a valid compression level, or Z_VERSION_ERROR if the zlib library version (zlib_version) is incompatible with the version assumed by the caller (ZLIB_VERSION). msg is set to null if there is no error message. deflateInit does not perform any compression: this will be done by deflate(). */ ZEXTERN int ZEXPORT deflate OF((z_streamp strm, int flush)); /* deflate compresses as much data as possible, and stops when the input buffer becomes empty or the output buffer becomes full. It may introduce some output latency (reading input without producing any output) except when forced to flush. The detailed semantics are as follows. deflate performs one or both of the following actions: - Compress more input starting at next_in and update next_in and avail_in accordingly. If not all input can be processed (because there is not enough room in the output buffer), next_in and avail_in are updated and processing will resume at this point for the next call of deflate(). - Provide more output starting at next_out and update next_out and avail_out accordingly. This action is forced if the parameter flush is non zero. Forcing flush frequently degrades the compression ratio, so this parameter should be set only when necessary (in interactive applications). Some output may be provided even if flush is not set. Before the call of deflate(), the application should ensure that at least one of the actions is possible, by providing more input and/or consuming more output, and updating avail_in or avail_out accordingly; avail_out should never be zero before the call. The application can consume the compressed output when it wants, for example when the output buffer is full (avail_out == 0), or after each call of deflate(). If deflate returns Z_OK and with zero avail_out, it must be called again after making room in the output buffer because there might be more output pending. Normally the parameter flush is set to Z_NO_FLUSH, which allows deflate to decide how much data to accumulate before producing output, in order to maximize compression. If the parameter flush is set to Z_SYNC_FLUSH, all pending output is flushed to the output buffer and the output is aligned on a byte boundary, so that the decompressor can get all input data available so far. (In particular avail_in is zero after the call if enough output space has been provided before the call.) Flushing may degrade compression for some compression algorithms and so it should be used only when necessary. This completes the current deflate block and follows it with an empty stored block that is three bits plus filler bits to the next byte, followed by four bytes (00 00 ff ff). If flush is set to Z_PARTIAL_FLUSH, all pending output is flushed to the output buffer, but the output is not aligned to a byte boundary. All of the input data so far will be available to the decompressor, as for Z_SYNC_FLUSH. This completes the current deflate block and follows it with an empty fixed codes block that is 10 bits long. This assures that enough bytes are output in order for the decompressor to finish the block before the empty fixed code block. If flush is set to Z_BLOCK, a deflate block is completed and emitted, as for Z_SYNC_FLUSH, but the output is not aligned on a byte boundary, and up to seven bits of the current block are held to be written as the next byte after the next deflate block is completed. In this case, the decompressor may not be provided enough bits at this point in order to complete decompression of the data provided so far to the compressor. It may need to wait for the next block to be emitted. This is for advanced applications that need to control the emission of deflate blocks. If flush is set to Z_FULL_FLUSH, all output is flushed as with Z_SYNC_FLUSH, and the compression state is reset so that decompression can restart from this point if previous compressed data has been damaged or if random access is desired. Using Z_FULL_FLUSH too often can seriously degrade compression. If deflate returns with avail_out == 0, this function must be called again with the same value of the flush parameter and more output space (updated avail_out), until the flush is complete (deflate returns with non-zero avail_out). In the case of a Z_FULL_FLUSH or Z_SYNC_FLUSH, make sure that avail_out is greater than six to avoid repeated flush markers due to avail_out == 0 on return. If the parameter flush is set to Z_FINISH, pending input is processed, pending output is flushed and deflate returns with Z_STREAM_END if there was enough output space; if deflate returns with Z_OK, this function must be called again with Z_FINISH and more output space (updated avail_out) but no more input data, until it returns with Z_STREAM_END or an error. After deflate has returned Z_STREAM_END, the only possible operations on the stream are deflateReset or deflateEnd. Z_FINISH can be used immediately after deflateInit if all the compression is to be done in a single step. In this case, avail_out must be at least the value returned by deflateBound (see below). Then deflate is guaranteed to return Z_STREAM_END. If not enough output space is provided, deflate will not return Z_STREAM_END, and it must be called again as described above. deflate() sets strm->adler to the adler32 checksum of all input read so far (that is, total_in bytes). deflate() may update strm->data_type if it can make a good guess about the input data type (Z_BINARY or Z_TEXT). In doubt, the data is considered binary. This field is only for information purposes and does not affect the compression algorithm in any manner. deflate() returns Z_OK if some progress has been made (more input processed or more output produced), Z_STREAM_END if all input has been consumed and all output has been produced (only when flush is set to Z_FINISH), Z_STREAM_ERROR if the stream state was inconsistent (for example if next_in or next_out was Z_NULL), Z_BUF_ERROR if no progress is possible (for example avail_in or avail_out was zero). Note that Z_BUF_ERROR is not fatal, and deflate() can be called again with more input and more output space to continue compressing. */ ZEXTERN int ZEXPORT deflateEnd OF((z_streamp strm)); /* All dynamically allocated data structures for this stream are freed. This function discards any unprocessed input and does not flush any pending output. deflateEnd returns Z_OK if success, Z_STREAM_ERROR if the stream state was inconsistent, Z_DATA_ERROR if the stream was freed prematurely (some input or output was discarded). In the error case, msg may be set but then points to a static string (which must not be deallocated). */ /* ZEXTERN int ZEXPORT inflateInit OF((z_streamp strm)); Initializes the internal stream state for decompression. The fields next_in, avail_in, zalloc, zfree and opaque must be initialized before by the caller. If next_in is not Z_NULL and avail_in is large enough (the exact value depends on the compression method), inflateInit determines the compression method from the zlib header and allocates all data structures accordingly; otherwise the allocation will be deferred to the first call of inflate. If zalloc and zfree are set to Z_NULL, inflateInit updates them to use default allocation functions. inflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_VERSION_ERROR if the zlib library version is incompatible with the version assumed by the caller, or Z_STREAM_ERROR if the parameters are invalid, such as a null pointer to the structure. msg is set to null if there is no error message. inflateInit does not perform any decompression apart from possibly reading the zlib header if present: actual decompression will be done by inflate(). (So next_in and avail_in may be modified, but next_out and avail_out are unused and unchanged.) The current implementation of inflateInit() does not process any header information -- that is deferred until inflate() is called. */ ZEXTERN int ZEXPORT inflate OF((z_streamp strm, int flush)); /* inflate decompresses as much data as possible, and stops when the input buffer becomes empty or the output buffer becomes full. It may introduce some output latency (reading input without producing any output) except when forced to flush. The detailed semantics are as follows. inflate performs one or both of the following actions: - Decompress more input starting at next_in and update next_in and avail_in accordingly. If not all input can be processed (because there is not enough room in the output buffer), next_in is updated and processing will resume at this point for the next call of inflate(). - Provide more output starting at next_out and update next_out and avail_out accordingly. inflate() provides as much output as possible, until there is no more input data or no more space in the output buffer (see below about the flush parameter). Before the call of inflate(), the application should ensure that at least one of the actions is possible, by providing more input and/or consuming more output, and updating the next_* and avail_* values accordingly. The application can consume the uncompressed output when it wants, for example when the output buffer is full (avail_out == 0), or after each call of inflate(). If inflate returns Z_OK and with zero avail_out, it must be called again after making room in the output buffer because there might be more output pending. The flush parameter of inflate() can be Z_NO_FLUSH, Z_SYNC_FLUSH, Z_FINISH, Z_BLOCK, or Z_TREES. Z_SYNC_FLUSH requests that inflate() flush as much output as possible to the output buffer. Z_BLOCK requests that inflate() stop if and when it gets to the next deflate block boundary. When decoding the zlib or gzip format, this will cause inflate() to return immediately after the header and before the first block. When doing a raw inflate, inflate() will go ahead and process the first block, and will return when it gets to the end of that block, or when it runs out of data. The Z_BLOCK option assists in appending to or combining deflate streams. Also to assist in this, on return inflate() will set strm->data_type to the number of unused bits in the last byte taken from strm->next_in, plus 64 if inflate() is currently decoding the last block in the deflate stream, plus 128 if inflate() returned immediately after decoding an end-of-block code or decoding the complete header up to just before the first byte of the deflate stream. The end-of-block will not be indicated until all of the uncompressed data from that block has been written to strm->next_out. The number of unused bits may in general be greater than seven, except when bit 7 of data_type is set, in which case the number of unused bits will be less than eight. data_type is set as noted here every time inflate() returns for all flush options, and so can be used to determine the amount of currently consumed input in bits. The Z_TREES option behaves as Z_BLOCK does, but it also returns when the end of each deflate block header is reached, before any actual data in that block is decoded. This allows the caller to determine the length of the deflate block header for later use in random access within a deflate block. 256 is added to the value of strm->data_type when inflate() returns immediately after reaching the end of the deflate block header. inflate() should normally be called until it returns Z_STREAM_END or an error. However if all decompression is to be performed in a single step (a single call of inflate), the parameter flush should be set to Z_FINISH. In this case all pending input is processed and all pending output is flushed; avail_out must be large enough to hold all of the uncompressed data for the operation to complete. (The size of the uncompressed data may have been saved by the compressor for this purpose.) The use of Z_FINISH is not required to perform an inflation in one step. However it may be used to inform inflate that a faster approach can be used for the single inflate() call. Z_FINISH also informs inflate to not maintain a sliding window if the stream completes, which reduces inflate's memory footprint. If the stream does not complete, either because not all of the stream is provided or not enough output space is provided, then a sliding window will be allocated and inflate() can be called again to continue the operation as if Z_NO_FLUSH had been used. In this implementation, inflate() always flushes as much output as possible to the output buffer, and always uses the faster approach on the first call. So the effects of the flush parameter in this implementation are on the return value of inflate() as noted below, when inflate() returns early when Z_BLOCK or Z_TREES is used, and when inflate() avoids the allocation of memory for a sliding window when Z_FINISH is used. If a preset dictionary is needed after this call (see inflateSetDictionary below), inflate sets strm->adler to the Adler-32 checksum of the dictionary chosen by the compressor and returns Z_NEED_DICT; otherwise it sets strm->adler to the Adler-32 checksum of all output produced so far (that is, total_out bytes) and returns Z_OK, Z_STREAM_END or an error code as described below. At the end of the stream, inflate() checks that its computed adler32 checksum is equal to that saved by the compressor and returns Z_STREAM_END only if the checksum is correct. inflate() can decompress and check either zlib-wrapped or gzip-wrapped deflate data. The header type is detected automatically, if requested when initializing with inflateInit2(). Any information contained in the gzip header is not retained, so applications that need that information should instead use raw inflate, see inflateInit2() below, or inflateBack() and perform their own processing of the gzip header and trailer. When processing gzip-wrapped deflate data, strm->adler32 is set to the CRC-32 of the output producted so far. The CRC-32 is checked against the gzip trailer. inflate() returns Z_OK if some progress has been made (more input processed or more output produced), Z_STREAM_END if the end of the compressed data has been reached and all uncompressed output has been produced, Z_NEED_DICT if a preset dictionary is needed at this point, Z_DATA_ERROR if the input data was corrupted (input stream not conforming to the zlib format or incorrect check value), Z_STREAM_ERROR if the stream structure was inconsistent (for example next_in or next_out was Z_NULL), Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if no progress is possible or if there was not enough room in the output buffer when Z_FINISH is used. Note that Z_BUF_ERROR is not fatal, and inflate() can be called again with more input and more output space to continue decompressing. If Z_DATA_ERROR is returned, the application may then call inflateSync() to look for a good compression block if a partial recovery of the data is desired. */ ZEXTERN int ZEXPORT inflateEnd OF((z_streamp strm)); /* All dynamically allocated data structures for this stream are freed. This function discards any unprocessed input and does not flush any pending output. inflateEnd returns Z_OK if success, Z_STREAM_ERROR if the stream state was inconsistent. In the error case, msg may be set but then points to a static string (which must not be deallocated). */ /* Advanced functions */ /* The following functions are needed only in some special applications. */ /* ZEXTERN int ZEXPORT deflateInit2 OF((z_streamp strm, int level, int method, int windowBits, int memLevel, int strategy)); This is another version of deflateInit with more compression options. The fields next_in, zalloc, zfree and opaque must be initialized before by the caller. The method parameter is the compression method. It must be Z_DEFLATED in this version of the library. The windowBits parameter is the base two logarithm of the window size (the size of the history buffer). It should be in the range 8..15 for this version of the library. Larger values of this parameter result in better compression at the expense of memory usage. The default value is 15 if deflateInit is used instead. windowBits can also be -8..-15 for raw deflate. In this case, -windowBits determines the window size. deflate() will then generate raw deflate data with no zlib header or trailer, and will not compute an adler32 check value. windowBits can also be greater than 15 for optional gzip encoding. Add 16 to windowBits to write a simple gzip header and trailer around the compressed data instead of a zlib wrapper. The gzip header will have no file name, no extra data, no comment, no modification time (set to zero), no header crc, and the operating system will be set to 255 (unknown). If a gzip stream is being written, strm->adler is a crc32 instead of an adler32. The memLevel parameter specifies how much memory should be allocated for the internal compression state. memLevel=1 uses minimum memory but is slow and reduces compression ratio; memLevel=9 uses maximum memory for optimal speed. The default value is 8. See zconf.h for total memory usage as a function of windowBits and memLevel. The strategy parameter is used to tune the compression algorithm. Use the value Z_DEFAULT_STRATEGY for normal data, Z_FILTERED for data produced by a filter (or predictor), Z_HUFFMAN_ONLY to force Huffman encoding only (no string match), or Z_RLE to limit match distances to one (run-length encoding). Filtered data consists mostly of small values with a somewhat random distribution. In this case, the compression algorithm is tuned to compress them better. The effect of Z_FILTERED is to force more Huffman coding and less string matching; it is somewhat intermediate between Z_DEFAULT_STRATEGY and Z_HUFFMAN_ONLY. Z_RLE is designed to be almost as fast as Z_HUFFMAN_ONLY, but give better compression for PNG image data. The strategy parameter only affects the compression ratio but not the correctness of the compressed output even if it is not set appropriately. Z_FIXED prevents the use of dynamic Huffman codes, allowing for a simpler decoder for special applications. deflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_STREAM_ERROR if any parameter is invalid (such as an invalid method), or Z_VERSION_ERROR if the zlib library version (zlib_version) is incompatible with the version assumed by the caller (ZLIB_VERSION). msg is set to null if there is no error message. deflateInit2 does not perform any compression: this will be done by deflate(). */ ZEXTERN int ZEXPORT deflateSetDictionary OF((z_streamp strm, const Bytef *dictionary, uInt dictLength)); /* Initializes the compression dictionary from the given byte sequence without producing any compressed output. When using the zlib format, this function must be called immediately after deflateInit, deflateInit2 or deflateReset, and before any call of deflate. When doing raw deflate, this function must be called either before any call of deflate, or immediately after the completion of a deflate block, i.e. after all input has been consumed and all output has been delivered when using any of the flush options Z_BLOCK, Z_PARTIAL_FLUSH, Z_SYNC_FLUSH, or Z_FULL_FLUSH. The compressor and decompressor must use exactly the same dictionary (see inflateSetDictionary). The dictionary should consist of strings (byte sequences) that are likely to be encountered later in the data to be compressed, with the most commonly used strings preferably put towards the end of the dictionary. Using a dictionary is most useful when the data to be compressed is short and can be predicted with good accuracy; the data can then be compressed better than with the default empty dictionary. Depending on the size of the compression data structures selected by deflateInit or deflateInit2, a part of the dictionary may in effect be discarded, for example if the dictionary is larger than the window size provided in deflateInit or deflateInit2. Thus the strings most likely to be useful should be put at the end of the dictionary, not at the front. In addition, the current implementation of deflate will use at most the window size minus 262 bytes of the provided dictionary. Upon return of this function, strm->adler is set to the adler32 value of the dictionary; the decompressor may later use this value to determine which dictionary has been used by the compressor. (The adler32 value applies to the whole dictionary even if only a subset of the dictionary is actually used by the compressor.) If a raw deflate was requested, then the adler32 value is not computed and strm->adler is not set. deflateSetDictionary returns Z_OK if success, or Z_STREAM_ERROR if a parameter is invalid (e.g. dictionary being Z_NULL) or the stream state is inconsistent (for example if deflate has already been called for this stream or if not at a block boundary for raw deflate). deflateSetDictionary does not perform any compression: this will be done by deflate(). */ ZEXTERN int ZEXPORT deflateCopy OF((z_streamp dest, z_streamp source)); /* Sets the destination stream as a complete copy of the source stream. This function can be useful when several compression strategies will be tried, for example when there are several ways of pre-processing the input data with a filter. The streams that will be discarded should then be freed by calling deflateEnd. Note that deflateCopy duplicates the internal compression state which can be quite large, so this strategy is slow and can consume lots of memory. deflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc being Z_NULL). msg is left unchanged in both source and destination. */ ZEXTERN int ZEXPORT deflateReset OF((z_streamp strm)); /* This function is equivalent to deflateEnd followed by deflateInit, but does not free and reallocate all the internal compression state. The stream will keep the same compression level and any other attributes that may have been set by deflateInit2. deflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc or state being Z_NULL). */ ZEXTERN int ZEXPORT deflateParams OF((z_streamp strm, int level, int strategy)); /* Dynamically update the compression level and compression strategy. The interpretation of level and strategy is as in deflateInit2. This can be used to switch between compression and straight copy of the input data, or to switch to a different kind of input data requiring a different strategy. If the compression level is changed, the input available so far is compressed with the old level (and may be flushed); the new level will take effect only at the next call of deflate(). Before the call of deflateParams, the stream state must be set as for a call of deflate(), since the currently available input may have to be compressed and flushed. In particular, strm->avail_out must be non-zero. deflateParams returns Z_OK if success, Z_STREAM_ERROR if the source stream state was inconsistent or if a parameter was invalid, Z_BUF_ERROR if strm->avail_out was zero. */ ZEXTERN int ZEXPORT deflateTune OF((z_streamp strm, int good_length, int max_lazy, int nice_length, int max_chain)); /* Fine tune deflate's internal compression parameters. This should only be used by someone who understands the algorithm used by zlib's deflate for searching for the best matching string, and even then only by the most fanatic optimizer trying to squeeze out the last compressed bit for their specific input data. Read the deflate.c source code for the meaning of the max_lazy, good_length, nice_length, and max_chain parameters. deflateTune() can be called after deflateInit() or deflateInit2(), and returns Z_OK on success, or Z_STREAM_ERROR for an invalid deflate stream. */ ZEXTERN uLong ZEXPORT deflateBound OF((z_streamp strm, uLong sourceLen)); /* deflateBound() returns an upper bound on the compressed size after deflation of sourceLen bytes. It must be called after deflateInit() or deflateInit2(), and after deflateSetHeader(), if used. This would be used to allocate an output buffer for deflation in a single pass, and so would be called before deflate(). If that first deflate() call is provided the sourceLen input bytes, an output buffer allocated to the size returned by deflateBound(), and the flush value Z_FINISH, then deflate() is guaranteed to return Z_STREAM_END. Note that it is possible for the compressed size to be larger than the value returned by deflateBound() if flush options other than Z_FINISH or Z_NO_FLUSH are used. */ ZEXTERN int ZEXPORT deflatePending OF((z_streamp strm, unsigned *pending, int *bits)); /* deflatePending() returns the number of bytes and bits of output that have been generated, but not yet provided in the available output. The bytes not provided would be due to the available output space having being consumed. The number of bits of output not provided are between 0 and 7, where they await more bits to join them in order to fill out a full byte. If pending or bits are Z_NULL, then those values are not set. deflatePending returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent. */ ZEXTERN int ZEXPORT deflatePrime OF((z_streamp strm, int bits, int value)); /* deflatePrime() inserts bits in the deflate output stream. The intent is that this function is used to start off the deflate output with the bits leftover from a previous deflate stream when appending to it. As such, this function can only be used for raw deflate, and must be used before the first deflate() call after a deflateInit2() or deflateReset(). bits must be less than or equal to 16, and that many of the least significant bits of value will be inserted in the output. deflatePrime returns Z_OK if success, Z_BUF_ERROR if there was not enough room in the internal buffer to insert the bits, or Z_STREAM_ERROR if the source stream state was inconsistent. */ ZEXTERN int ZEXPORT deflateSetHeader OF((z_streamp strm, gz_headerp head)); /* deflateSetHeader() provides gzip header information for when a gzip stream is requested by deflateInit2(). deflateSetHeader() may be called after deflateInit2() or deflateReset() and before the first call of deflate(). The text, time, os, extra field, name, and comment information in the provided gz_header structure are written to the gzip header (xflag is ignored -- the extra flags are set according to the compression level). The caller must assure that, if not Z_NULL, name and comment are terminated with a zero byte, and that if extra is not Z_NULL, that extra_len bytes are available there. If hcrc is true, a gzip header crc is included. Note that the current versions of the command-line version of gzip (up through version 1.3.x) do not support header crc's, and will report that it is a "multi-part gzip file" and give up. If deflateSetHeader is not used, the default gzip header has text false, the time set to zero, and os set to 255, with no extra, name, or comment fields. The gzip header is returned to the default state by deflateReset(). deflateSetHeader returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent. */ /* ZEXTERN int ZEXPORT inflateInit2 OF((z_streamp strm, int windowBits)); This is another version of inflateInit with an extra parameter. The fields next_in, avail_in, zalloc, zfree and opaque must be initialized before by the caller. The windowBits parameter is the base two logarithm of the maximum window size (the size of the history buffer). It should be in the range 8..15 for this version of the library. The default value is 15 if inflateInit is used instead. windowBits must be greater than or equal to the windowBits value provided to deflateInit2() while compressing, or it must be equal to 15 if deflateInit2() was not used. If a compressed stream with a larger window size is given as input, inflate() will return with the error code Z_DATA_ERROR instead of trying to allocate a larger window. windowBits can also be zero to request that inflate use the window size in the zlib header of the compressed stream. windowBits can also be -8..-15 for raw inflate. In this case, -windowBits determines the window size. inflate() will then process raw deflate data, not looking for a zlib or gzip header, not generating a check value, and not looking for any check values for comparison at the end of the stream. This is for use with other formats that use the deflate compressed data format such as zip. Those formats provide their own check values. If a custom format is developed using the raw deflate format for compressed data, it is recommended that a check value such as an adler32 or a crc32 be applied to the uncompressed data as is done in the zlib, gzip, and zip formats. For most applications, the zlib format should be used as is. Note that comments above on the use in deflateInit2() applies to the magnitude of windowBits. windowBits can also be greater than 15 for optional gzip decoding. Add 32 to windowBits to enable zlib and gzip decoding with automatic header detection, or add 16 to decode only the gzip format (the zlib format will return a Z_DATA_ERROR). If a gzip stream is being decoded, strm->adler is a crc32 instead of an adler32. inflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_VERSION_ERROR if the zlib library version is incompatible with the version assumed by the caller, or Z_STREAM_ERROR if the parameters are invalid, such as a null pointer to the structure. msg is set to null if there is no error message. inflateInit2 does not perform any decompression apart from possibly reading the zlib header if present: actual decompression will be done by inflate(). (So next_in and avail_in may be modified, but next_out and avail_out are unused and unchanged.) The current implementation of inflateInit2() does not process any header information -- that is deferred until inflate() is called. */ ZEXTERN int ZEXPORT inflateSetDictionary OF((z_streamp strm, const Bytef *dictionary, uInt dictLength)); /* Initializes the decompression dictionary from the given uncompressed byte sequence. This function must be called immediately after a call of inflate, if that call returned Z_NEED_DICT. The dictionary chosen by the compressor can be determined from the adler32 value returned by that call of inflate. The compressor and decompressor must use exactly the same dictionary (see deflateSetDictionary). For raw inflate, this function can be called at any time to set the dictionary. If the provided dictionary is smaller than the window and there is already data in the window, then the provided dictionary will amend what's there. The application must insure that the dictionary that was used for compression is provided. inflateSetDictionary returns Z_OK if success, Z_STREAM_ERROR if a parameter is invalid (e.g. dictionary being Z_NULL) or the stream state is inconsistent, Z_DATA_ERROR if the given dictionary doesn't match the expected one (incorrect adler32 value). inflateSetDictionary does not perform any decompression: this will be done by subsequent calls of inflate(). */ ZEXTERN int ZEXPORT inflateGetDictionary OF((z_streamp strm, Bytef *dictionary, uInt *dictLength)); /* Returns the sliding dictionary being maintained by inflate. dictLength is set to the number of bytes in the dictionary, and that many bytes are copied to dictionary. dictionary must have enough space, where 32768 bytes is always enough. If inflateGetDictionary() is called with dictionary equal to Z_NULL, then only the dictionary length is returned, and nothing is copied. Similary, if dictLength is Z_NULL, then it is not set. inflateGetDictionary returns Z_OK on success, or Z_STREAM_ERROR if the stream state is inconsistent. */ ZEXTERN int ZEXPORT inflateSync OF((z_streamp strm)); /* Skips invalid compressed data until a possible full flush point (see above for the description of deflate with Z_FULL_FLUSH) can be found, or until all available input is skipped. No output is provided. inflateSync searches for a 00 00 FF FF pattern in the compressed data. All full flush points have this pattern, but not all occurrences of this pattern are full flush points. inflateSync returns Z_OK if a possible full flush point has been found, Z_BUF_ERROR if no more input was provided, Z_DATA_ERROR if no flush point has been found, or Z_STREAM_ERROR if the stream structure was inconsistent. In the success case, the application may save the current current value of total_in which indicates where valid compressed data was found. In the error case, the application may repeatedly call inflateSync, providing more input each time, until success or end of the input data. */ ZEXTERN int ZEXPORT inflateCopy OF((z_streamp dest, z_streamp source)); /* Sets the destination stream as a complete copy of the source stream. This function can be useful when randomly accessing a large stream. The first pass through the stream can periodically record the inflate state, allowing restarting inflate at those points when randomly accessing the stream. inflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc being Z_NULL). msg is left unchanged in both source and destination. */ ZEXTERN int ZEXPORT inflateReset OF((z_streamp strm)); /* This function is equivalent to inflateEnd followed by inflateInit, but does not free and reallocate all the internal decompression state. The stream will keep attributes that may have been set by inflateInit2. inflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc or state being Z_NULL). */ ZEXTERN int ZEXPORT inflateReset2 OF((z_streamp strm, int windowBits)); /* This function is the same as inflateReset, but it also permits changing the wrap and window size requests. The windowBits parameter is interpreted the same as it is for inflateInit2. inflateReset2 returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc or state being Z_NULL), or if the windowBits parameter is invalid. */ ZEXTERN int ZEXPORT inflatePrime OF((z_streamp strm, int bits, int value)); /* This function inserts bits in the inflate input stream. The intent is that this function is used to start inflating at a bit position in the middle of a byte. The provided bits will be used before any bytes are used from next_in. This function should only be used with raw inflate, and should be used before the first inflate() call after inflateInit2() or inflateReset(). bits must be less than or equal to 16, and that many of the least significant bits of value will be inserted in the input. If bits is negative, then the input stream bit buffer is emptied. Then inflatePrime() can be called again to put bits in the buffer. This is used to clear out bits leftover after feeding inflate a block description prior to feeding inflate codes. inflatePrime returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent. */ ZEXTERN long ZEXPORT inflateMark OF((z_streamp strm)); /* This function returns two values, one in the lower 16 bits of the return value, and the other in the remaining upper bits, obtained by shifting the return value down 16 bits. If the upper value is -1 and the lower value is zero, then inflate() is currently decoding information outside of a block. If the upper value is -1 and the lower value is non-zero, then inflate is in the middle of a stored block, with the lower value equaling the number of bytes from the input remaining to copy. If the upper value is not -1, then it is the number of bits back from the current bit position in the input of the code (literal or length/distance pair) currently being processed. In that case the lower value is the number of bytes already emitted for that code. A code is being processed if inflate is waiting for more input to complete decoding of the code, or if it has completed decoding but is waiting for more output space to write the literal or match data. inflateMark() is used to mark locations in the input data for random access, which may be at bit positions, and to note those cases where the output of a code may span boundaries of random access blocks. The current location in the input stream can be determined from avail_in and data_type as noted in the description for the Z_BLOCK flush parameter for inflate. inflateMark returns the value noted above or -1 << 16 if the provided source stream state was inconsistent. */ ZEXTERN int ZEXPORT inflateGetHeader OF((z_streamp strm, gz_headerp head)); /* inflateGetHeader() requests that gzip header information be stored in the provided gz_header structure. inflateGetHeader() may be called after inflateInit2() or inflateReset(), and before the first call of inflate(). As inflate() processes the gzip stream, head->done is zero until the header is completed, at which time head->done is set to one. If a zlib stream is being decoded, then head->done is set to -1 to indicate that there will be no gzip header information forthcoming. Note that Z_BLOCK or Z_TREES can be used to force inflate() to return immediately after header processing is complete and before any actual data is decompressed. The text, time, xflags, and os fields are filled in with the gzip header contents. hcrc is set to true if there is a header CRC. (The header CRC was valid if done is set to one.) If extra is not Z_NULL, then extra_max contains the maximum number of bytes to write to extra. Once done is true, extra_len contains the actual extra field length, and extra contains the extra field, or that field truncated if extra_max is less than extra_len. If name is not Z_NULL, then up to name_max characters are written there, terminated with a zero unless the length is greater than name_max. If comment is not Z_NULL, then up to comm_max characters are written there, terminated with a zero unless the length is greater than comm_max. When any of extra, name, or comment are not Z_NULL and the respective field is not present in the header, then that field is set to Z_NULL to signal its absence. This allows the use of deflateSetHeader() with the returned structure to duplicate the header. However if those fields are set to allocated memory, then the application will need to save those pointers elsewhere so that they can be eventually freed. If inflateGetHeader is not used, then the header information is simply discarded. The header is always checked for validity, including the header CRC if present. inflateReset() will reset the process to discard the header information. The application would need to call inflateGetHeader() again to retrieve the header from the next gzip stream. inflateGetHeader returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent. */ /* ZEXTERN int ZEXPORT inflateBackInit OF((z_streamp strm, int windowBits, unsigned char FAR *window)); Initialize the internal stream state for decompression using inflateBack() calls. The fields zalloc, zfree and opaque in strm must be initialized before the call. If zalloc and zfree are Z_NULL, then the default library- derived memory allocation routines are used. windowBits is the base two logarithm of the window size, in the range 8..15. window is a caller supplied buffer of that size. Except for special applications where it is assured that deflate was used with small window sizes, windowBits must be 15 and a 32K byte window must be supplied to be able to decompress general deflate streams. See inflateBack() for the usage of these routines. inflateBackInit will return Z_OK on success, Z_STREAM_ERROR if any of the parameters are invalid, Z_MEM_ERROR if the internal state could not be allocated, or Z_VERSION_ERROR if the version of the library does not match the version of the header file. */ typedef unsigned (*in_func) OF((void FAR *, z_const unsigned char FAR * FAR *)); typedef int (*out_func) OF((void FAR *, unsigned char FAR *, unsigned)); ZEXTERN int ZEXPORT inflateBack OF((z_streamp strm, in_func in, void FAR *in_desc, out_func out, void FAR *out_desc)); /* inflateBack() does a raw inflate with a single call using a call-back interface for input and output. This is potentially more efficient than inflate() for file i/o applications, in that it avoids copying between the output and the sliding window by simply making the window itself the output buffer. inflate() can be faster on modern CPUs when used with large buffers. inflateBack() trusts the application to not change the output buffer passed by the output function, at least until inflateBack() returns. inflateBackInit() must be called first to allocate the internal state and to initialize the state with the user-provided window buffer. inflateBack() may then be used multiple times to inflate a complete, raw deflate stream with each call. inflateBackEnd() is then called to free the allocated state. A raw deflate stream is one with no zlib or gzip header or trailer. This routine would normally be used in a utility that reads zip or gzip files and writes out uncompressed files. The utility would decode the header and process the trailer on its own, hence this routine expects only the raw deflate stream to decompress. This is different from the normal behavior of inflate(), which expects either a zlib or gzip header and trailer around the deflate stream. inflateBack() uses two subroutines supplied by the caller that are then called by inflateBack() for input and output. inflateBack() calls those routines until it reads a complete deflate stream and writes out all of the uncompressed data, or until it encounters an error. The function's parameters and return types are defined above in the in_func and out_func typedefs. inflateBack() will call in(in_desc, &buf) which should return the number of bytes of provided input, and a pointer to that input in buf. If there is no input available, in() must return zero--buf is ignored in that case--and inflateBack() will return a buffer error. inflateBack() will call out(out_desc, buf, len) to write the uncompressed data buf[0..len-1]. out() should return zero on success, or non-zero on failure. If out() returns non-zero, inflateBack() will return with an error. Neither in() nor out() are permitted to change the contents of the window provided to inflateBackInit(), which is also the buffer that out() uses to write from. The length written by out() will be at most the window size. Any non-zero amount of input may be provided by in(). For convenience, inflateBack() can be provided input on the first call by setting strm->next_in and strm->avail_in. If that input is exhausted, then in() will be called. Therefore strm->next_in must be initialized before calling inflateBack(). If strm->next_in is Z_NULL, then in() will be called immediately for input. If strm->next_in is not Z_NULL, then strm->avail_in must also be initialized, and then if strm->avail_in is not zero, input will initially be taken from strm->next_in[0 .. strm->avail_in - 1]. The in_desc and out_desc parameters of inflateBack() is passed as the first parameter of in() and out() respectively when they are called. These descriptors can be optionally used to pass any information that the caller- supplied in() and out() functions need to do their job. On return, inflateBack() will set strm->next_in and strm->avail_in to pass back any unused input that was provided by the last in() call. The return values of inflateBack() can be Z_STREAM_END on success, Z_BUF_ERROR if in() or out() returned an error, Z_DATA_ERROR if there was a format error in the deflate stream (in which case strm->msg is set to indicate the nature of the error), or Z_STREAM_ERROR if the stream was not properly initialized. In the case of Z_BUF_ERROR, an input or output error can be distinguished using strm->next_in which will be Z_NULL only if in() returned an error. If strm->next_in is not Z_NULL, then the Z_BUF_ERROR was due to out() returning non-zero. (in() will always be called before out(), so strm->next_in is assured to be defined if out() returns non-zero.) Note that inflateBack() cannot return Z_OK. */ ZEXTERN int ZEXPORT inflateBackEnd OF((z_streamp strm)); /* All memory allocated by inflateBackInit() is freed. inflateBackEnd() returns Z_OK on success, or Z_STREAM_ERROR if the stream state was inconsistent. */ ZEXTERN uLong ZEXPORT zlibCompileFlags OF((void)); /* Return flags indicating compile-time options. Type sizes, two bits each, 00 = 16 bits, 01 = 32, 10 = 64, 11 = other: 1.0: size of uInt 3.2: size of uLong 5.4: size of voidpf (pointer) 7.6: size of z_off_t Compiler, assembler, and debug options: 8: DEBUG 9: ASMV or ASMINF -- use ASM code 10: ZLIB_WINAPI -- exported functions use the WINAPI calling convention 11: 0 (reserved) One-time table building (smaller code, but not thread-safe if true): 12: BUILDFIXED -- build static block decoding tables when needed 13: DYNAMIC_CRC_TABLE -- build CRC calculation tables when needed 14,15: 0 (reserved) Library content (indicates missing functionality): 16: NO_GZCOMPRESS -- gz* functions cannot compress (to avoid linking deflate code when not needed) 17: NO_GZIP -- deflate can't write gzip streams, and inflate can't detect and decode gzip streams (to avoid linking crc code) 18-19: 0 (reserved) Operation variations (changes in library functionality): 20: PKZIP_BUG_WORKAROUND -- slightly more permissive inflate 21: FASTEST -- deflate algorithm with only one, lowest compression level 22,23: 0 (reserved) The sprintf variant used by gzprintf (zero is best): 24: 0 = vs*, 1 = s* -- 1 means limited to 20 arguments after the format 25: 0 = *nprintf, 1 = *printf -- 1 means gzprintf() not secure! 26: 0 = returns value, 1 = void -- 1 means inferred string length returned Remainder: 27-31: 0 (reserved) */ #ifndef Z_SOLO /* utility functions */ /* The following utility functions are implemented on top of the basic stream-oriented functions. To simplify the interface, some default options are assumed (compression level and memory usage, standard memory allocation functions). The source code of these utility functions can be modified if you need special options. */ ZEXTERN int ZEXPORT compress OF((Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen)); /* Compresses the source buffer into the destination buffer. sourceLen is the byte length of the source buffer. Upon entry, destLen is the total size of the destination buffer, which must be at least the value returned by compressBound(sourceLen). Upon exit, destLen is the actual size of the compressed buffer. compress returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if there was not enough room in the output buffer. */ ZEXTERN int ZEXPORT compress2 OF((Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen, int level)); /* Compresses the source buffer into the destination buffer. The level parameter has the same meaning as in deflateInit. sourceLen is the byte length of the source buffer. Upon entry, destLen is the total size of the destination buffer, which must be at least the value returned by compressBound(sourceLen). Upon exit, destLen is the actual size of the compressed buffer. compress2 returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if there was not enough room in the output buffer, Z_STREAM_ERROR if the level parameter is invalid. */ ZEXTERN uLong ZEXPORT compressBound OF((uLong sourceLen)); /* compressBound() returns an upper bound on the compressed size after compress() or compress2() on sourceLen bytes. It would be used before a compress() or compress2() call to allocate the destination buffer. */ ZEXTERN int ZEXPORT uncompress OF((Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen)); /* Decompresses the source buffer into the destination buffer. sourceLen is the byte length of the source buffer. Upon entry, destLen is the total size of the destination buffer, which must be large enough to hold the entire uncompressed data. (The size of the uncompressed data must have been saved previously by the compressor and transmitted to the decompressor by some mechanism outside the scope of this compression library.) Upon exit, destLen is the actual size of the uncompressed buffer. uncompress returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if there was not enough room in the output buffer, or Z_DATA_ERROR if the input data was corrupted or incomplete. In the case where there is not enough room, uncompress() will fill the output buffer with the uncompressed data up to that point. */ /* gzip file access functions */ /* This library supports reading and writing files in gzip (.gz) format with an interface similar to that of stdio, using the functions that start with "gz". The gzip format is different from the zlib format. gzip is a gzip wrapper, documented in RFC 1952, wrapped around a deflate stream. */ typedef struct gzFile_s *gzFile; /* semi-opaque gzip file descriptor */ /* ZEXTERN gzFile ZEXPORT gzopen OF((const char *path, const char *mode)); Opens a gzip (.gz) file for reading or writing. The mode parameter is as in fopen ("rb" or "wb") but can also include a compression level ("wb9") or a strategy: 'f' for filtered data as in "wb6f", 'h' for Huffman-only compression as in "wb1h", 'R' for run-length encoding as in "wb1R", or 'F' for fixed code compression as in "wb9F". (See the description of deflateInit2 for more information about the strategy parameter.) 'T' will request transparent writing or appending with no compression and not using the gzip format. "a" can be used instead of "w" to request that the gzip stream that will be written be appended to the file. "+" will result in an error, since reading and writing to the same gzip file is not supported. The addition of "x" when writing will create the file exclusively, which fails if the file already exists. On systems that support it, the addition of "e" when reading or writing will set the flag to close the file on an execve() call. These functions, as well as gzip, will read and decode a sequence of gzip streams in a file. The append function of gzopen() can be used to create such a file. (Also see gzflush() for another way to do this.) When appending, gzopen does not test whether the file begins with a gzip stream, nor does it look for the end of the gzip streams to begin appending. gzopen will simply append a gzip stream to the existing file. gzopen can be used to read a file which is not in gzip format; in this case gzread will directly read from the file without decompression. When reading, this will be detected automatically by looking for the magic two- byte gzip header. gzopen returns NULL if the file could not be opened, if there was insufficient memory to allocate the gzFile state, or if an invalid mode was specified (an 'r', 'w', or 'a' was not provided, or '+' was provided). errno can be checked to determine if the reason gzopen failed was that the file could not be opened. */ ZEXTERN gzFile ZEXPORT gzdopen OF((int fd, const char *mode)); /* gzdopen associates a gzFile with the file descriptor fd. File descriptors are obtained from calls like open, dup, creat, pipe or fileno (if the file has been previously opened with fopen). The mode parameter is as in gzopen. The next call of gzclose on the returned gzFile will also close the file descriptor fd, just like fclose(fdopen(fd, mode)) closes the file descriptor fd. If you want to keep fd open, use fd = dup(fd_keep); gz = gzdopen(fd, mode);. The duplicated descriptor should be saved to avoid a leak, since gzdopen does not close fd if it fails. If you are using fileno() to get the file descriptor from a FILE *, then you will have to use dup() to avoid double-close()ing the file descriptor. Both gzclose() and fclose() will close the associated file descriptor, so they need to have different file descriptors. gzdopen returns NULL if there was insufficient memory to allocate the gzFile state, if an invalid mode was specified (an 'r', 'w', or 'a' was not provided, or '+' was provided), or if fd is -1. The file descriptor is not used until the next gz* read, write, seek, or close operation, so gzdopen will not detect if fd is invalid (unless fd is -1). */ ZEXTERN int ZEXPORT gzbuffer OF((gzFile file, unsigned size)); /* Set the internal buffer size used by this library's functions. The default buffer size is 8192 bytes. This function must be called after gzopen() or gzdopen(), and before any other calls that read or write the file. The buffer memory allocation is always deferred to the first read or write. Two buffers are allocated, either both of the specified size when writing, or one of the specified size and the other twice that size when reading. A larger buffer size of, for example, 64K or 128K bytes will noticeably increase the speed of decompression (reading). The new buffer size also affects the maximum length for gzprintf(). gzbuffer() returns 0 on success, or -1 on failure, such as being called too late. */ ZEXTERN int ZEXPORT gzsetparams OF((gzFile file, int level, int strategy)); /* Dynamically update the compression level or strategy. See the description of deflateInit2 for the meaning of these parameters. gzsetparams returns Z_OK if success, or Z_STREAM_ERROR if the file was not opened for writing. */ ZEXTERN int ZEXPORT gzread OF((gzFile file, voidp buf, unsigned len)); /* Reads the given number of uncompressed bytes from the compressed file. If the input file is not in gzip format, gzread copies the given number of bytes into the buffer directly from the file. After reaching the end of a gzip stream in the input, gzread will continue to read, looking for another gzip stream. Any number of gzip streams may be concatenated in the input file, and will all be decompressed by gzread(). If something other than a gzip stream is encountered after a gzip stream, that remaining trailing garbage is ignored (and no error is returned). gzread can be used to read a gzip file that is being concurrently written. Upon reaching the end of the input, gzread will return with the available data. If the error code returned by gzerror is Z_OK or Z_BUF_ERROR, then gzclearerr can be used to clear the end of file indicator in order to permit gzread to be tried again. Z_OK indicates that a gzip stream was completed on the last gzread. Z_BUF_ERROR indicates that the input file ended in the middle of a gzip stream. Note that gzread does not return -1 in the event of an incomplete gzip stream. This error is deferred until gzclose(), which will return Z_BUF_ERROR if the last gzread ended in the middle of a gzip stream. Alternatively, gzerror can be used before gzclose to detect this case. gzread returns the number of uncompressed bytes actually read, less than len for end of file, or -1 for error. */ ZEXTERN int ZEXPORT gzwrite OF((gzFile file, voidpc buf, unsigned len)); /* Writes the given number of uncompressed bytes into the compressed file. gzwrite returns the number of uncompressed bytes written or 0 in case of error. */ ZEXTERN int ZEXPORTVA gzprintf Z_ARG((gzFile file, const char *format, ...)); /* Converts, formats, and writes the arguments to the compressed file under control of the format string, as in fprintf. gzprintf returns the number of uncompressed bytes actually written, or 0 in case of error. The number of uncompressed bytes written is limited to 8191, or one less than the buffer size given to gzbuffer(). The caller should assure that this limit is not exceeded. If it is exceeded, then gzprintf() will return an error (0) with nothing written. In this case, there may also be a buffer overflow with unpredictable consequences, which is possible only if zlib was compiled with the insecure functions sprintf() or vsprintf() because the secure snprintf() or vsnprintf() functions were not available. This can be determined using zlibCompileFlags(). */ ZEXTERN int ZEXPORT gzputs OF((gzFile file, const char *s)); /* Writes the given null-terminated string to the compressed file, excluding the terminating null character. gzputs returns the number of characters written, or -1 in case of error. */ ZEXTERN char * ZEXPORT gzgets OF((gzFile file, char *buf, int len)); /* Reads bytes from the compressed file until len-1 characters are read, or a newline character is read and transferred to buf, or an end-of-file condition is encountered. If any characters are read or if len == 1, the string is terminated with a null character. If no characters are read due to an end-of-file or len < 1, then the buffer is left untouched. gzgets returns buf which is a null-terminated string, or it returns NULL for end-of-file or in case of error. If there was an error, the contents at buf are indeterminate. */ ZEXTERN int ZEXPORT gzputc OF((gzFile file, int c)); /* Writes c, converted to an unsigned char, into the compressed file. gzputc returns the value that was written, or -1 in case of error. */ ZEXTERN int ZEXPORT gzgetc OF((gzFile file)); /* Reads one byte from the compressed file. gzgetc returns this byte or -1 in case of end of file or error. This is implemented as a macro for speed. As such, it does not do all of the checking the other functions do. I.e. it does not check to see if file is NULL, nor whether the structure file points to has been clobbered or not. */ ZEXTERN int ZEXPORT gzungetc OF((int c, gzFile file)); /* Push one character back onto the stream to be read as the first character on the next read. At least one character of push-back is allowed. gzungetc() returns the character pushed, or -1 on failure. gzungetc() will fail if c is -1, and may fail if a character has been pushed but not read yet. If gzungetc is used immediately after gzopen or gzdopen, at least the output buffer size of pushed characters is allowed. (See gzbuffer above.) The pushed character will be discarded if the stream is repositioned with gzseek() or gzrewind(). */ ZEXTERN int ZEXPORT gzflush OF((gzFile file, int flush)); /* Flushes all pending output into the compressed file. The parameter flush is as in the deflate() function. The return value is the zlib error number (see function gzerror below). gzflush is only permitted when writing. If the flush parameter is Z_FINISH, the remaining data is written and the gzip stream is completed in the output. If gzwrite() is called again, a new gzip stream will be started in the output. gzread() is able to read such concatented gzip streams. gzflush should be called only when strictly necessary because it will degrade compression if called too often. */ /* ZEXTERN z_off_t ZEXPORT gzseek OF((gzFile file, z_off_t offset, int whence)); Sets the starting position for the next gzread or gzwrite on the given compressed file. The offset represents a number of bytes in the uncompressed data stream. The whence parameter is defined as in lseek(2); the value SEEK_END is not supported. If the file is opened for reading, this function is emulated but can be extremely slow. If the file is opened for writing, only forward seeks are supported; gzseek then compresses a sequence of zeroes up to the new starting position. gzseek returns the resulting offset location as measured in bytes from the beginning of the uncompressed stream, or -1 in case of error, in particular if the file is opened for writing and the new starting position would be before the current position. */ ZEXTERN int ZEXPORT gzrewind OF((gzFile file)); /* Rewinds the given file. This function is supported only for reading. gzrewind(file) is equivalent to (int)gzseek(file, 0L, SEEK_SET) */ /* ZEXTERN z_off_t ZEXPORT gztell OF((gzFile file)); Returns the starting position for the next gzread or gzwrite on the given compressed file. This position represents a number of bytes in the uncompressed data stream, and is zero when starting, even if appending or reading a gzip stream from the middle of a file using gzdopen(). gztell(file) is equivalent to gzseek(file, 0L, SEEK_CUR) */ /* ZEXTERN z_off_t ZEXPORT gzoffset OF((gzFile file)); Returns the current offset in the file being read or written. This offset includes the count of bytes that precede the gzip stream, for example when appending or when using gzdopen() for reading. When reading, the offset does not include as yet unused buffered input. This information can be used for a progress indicator. On error, gzoffset() returns -1. */ ZEXTERN int ZEXPORT gzeof OF((gzFile file)); /* Returns true (1) if the end-of-file indicator has been set while reading, false (0) otherwise. Note that the end-of-file indicator is set only if the read tried to go past the end of the input, but came up short. Therefore, just like feof(), gzeof() may return false even if there is no more data to read, in the event that the last read request was for the exact number of bytes remaining in the input file. This will happen if the input file size is an exact multiple of the buffer size. If gzeof() returns true, then the read functions will return no more data, unless the end-of-file indicator is reset by gzclearerr() and the input file has grown since the previous end of file was detected. */ ZEXTERN int ZEXPORT gzdirect OF((gzFile file)); /* Returns true (1) if file is being copied directly while reading, or false (0) if file is a gzip stream being decompressed. If the input file is empty, gzdirect() will return true, since the input does not contain a gzip stream. If gzdirect() is used immediately after gzopen() or gzdopen() it will cause buffers to be allocated to allow reading the file to determine if it is a gzip file. Therefore if gzbuffer() is used, it should be called before gzdirect(). When writing, gzdirect() returns true (1) if transparent writing was requested ("wT" for the gzopen() mode), or false (0) otherwise. (Note: gzdirect() is not needed when writing. Transparent writing must be explicitly requested, so the application already knows the answer. When linking statically, using gzdirect() will include all of the zlib code for gzip file reading and decompression, which may not be desired.) */ ZEXTERN int ZEXPORT gzclose OF((gzFile file)); /* Flushes all pending output if necessary, closes the compressed file and deallocates the (de)compression state. Note that once file is closed, you cannot call gzerror with file, since its structures have been deallocated. gzclose must not be called more than once on the same file, just as free must not be called more than once on the same allocation. gzclose will return Z_STREAM_ERROR if file is not valid, Z_ERRNO on a file operation error, Z_MEM_ERROR if out of memory, Z_BUF_ERROR if the last read ended in the middle of a gzip stream, or Z_OK on success. */ ZEXTERN int ZEXPORT gzclose_r OF((gzFile file)); ZEXTERN int ZEXPORT gzclose_w OF((gzFile file)); /* Same as gzclose(), but gzclose_r() is only for use when reading, and gzclose_w() is only for use when writing or appending. The advantage to using these instead of gzclose() is that they avoid linking in zlib compression or decompression code that is not used when only reading or only writing respectively. If gzclose() is used, then both compression and decompression code will be included the application when linking to a static zlib library. */ ZEXTERN const char * ZEXPORT gzerror OF((gzFile file, int *errnum)); /* Returns the error message for the last error which occurred on the given compressed file. errnum is set to zlib error number. If an error occurred in the file system and not in the compression library, errnum is set to Z_ERRNO and the application may consult errno to get the exact error code. The application must not modify the returned string. Future calls to this function may invalidate the previously returned string. If file is closed, then the string previously returned by gzerror will no longer be available. gzerror() should be used to distinguish errors from end-of-file for those functions above that do not distinguish those cases in their return values. */ ZEXTERN void ZEXPORT gzclearerr OF((gzFile file)); /* Clears the error and end-of-file flags for file. This is analogous to the clearerr() function in stdio. This is useful for continuing to read a gzip file that is being written concurrently. */ #endif /* !Z_SOLO */ /* checksum functions */ /* These functions are not related to compression but are exported anyway because they might be useful in applications using the compression library. */ ZEXTERN uLong ZEXPORT adler32 OF((uLong adler, const Bytef *buf, uInt len)); /* Update a running Adler-32 checksum with the bytes buf[0..len-1] and return the updated checksum. If buf is Z_NULL, this function returns the required initial value for the checksum. An Adler-32 checksum is almost as reliable as a CRC32 but can be computed much faster. Usage example: uLong adler = adler32(0L, Z_NULL, 0); while (read_buffer(buffer, length) != EOF) { adler = adler32(adler, buffer, length); } if (adler != original_adler) error(); */ /* ZEXTERN uLong ZEXPORT adler32_combine OF((uLong adler1, uLong adler2, z_off_t len2)); Combine two Adler-32 checksums into one. For two sequences of bytes, seq1 and seq2 with lengths len1 and len2, Adler-32 checksums were calculated for each, adler1 and adler2. adler32_combine() returns the Adler-32 checksum of seq1 and seq2 concatenated, requiring only adler1, adler2, and len2. Note that the z_off_t type (like off_t) is a signed integer. If len2 is negative, the result has no meaning or utility. */ ZEXTERN uLong ZEXPORT crc32 OF((uLong crc, const Bytef *buf, uInt len)); /* Update a running CRC-32 with the bytes buf[0..len-1] and return the updated CRC-32. If buf is Z_NULL, this function returns the required initial value for the crc. Pre- and post-conditioning (one's complement) is performed within this function so it shouldn't be done by the application. Usage example: uLong crc = crc32(0L, Z_NULL, 0); while (read_buffer(buffer, length) != EOF) { crc = crc32(crc, buffer, length); } if (crc != original_crc) error(); */ /* ZEXTERN uLong ZEXPORT crc32_combine OF((uLong crc1, uLong crc2, z_off_t len2)); Combine two CRC-32 check values into one. For two sequences of bytes, seq1 and seq2 with lengths len1 and len2, CRC-32 check values were calculated for each, crc1 and crc2. crc32_combine() returns the CRC-32 check value of seq1 and seq2 concatenated, requiring only crc1, crc2, and len2. */ /* various hacks, don't look :) */ /* deflateInit and inflateInit are macros to allow checking the zlib version * and the compiler's view of z_stream: */ ZEXTERN int ZEXPORT deflateInit_ OF((z_streamp strm, int level, const char *version, int stream_size)); ZEXTERN int ZEXPORT inflateInit_ OF((z_streamp strm, const char *version, int stream_size)); ZEXTERN int ZEXPORT deflateInit2_ OF((z_streamp strm, int level, int method, int windowBits, int memLevel, int strategy, const char *version, int stream_size)); ZEXTERN int ZEXPORT inflateInit2_ OF((z_streamp strm, int windowBits, const char *version, int stream_size)); ZEXTERN int ZEXPORT inflateBackInit_ OF((z_streamp strm, int windowBits, unsigned char FAR *window, const char *version, int stream_size)); #define deflateInit(strm, level) \ deflateInit_((strm), (level), ZLIB_VERSION, (int)sizeof(z_stream)) #define inflateInit(strm) \ inflateInit_((strm), ZLIB_VERSION, (int)sizeof(z_stream)) #define deflateInit2(strm, level, method, windowBits, memLevel, strategy) \ deflateInit2_((strm),(level),(method),(windowBits),(memLevel),\ (strategy), ZLIB_VERSION, (int)sizeof(z_stream)) #define inflateInit2(strm, windowBits) \ inflateInit2_((strm), (windowBits), ZLIB_VERSION, \ (int)sizeof(z_stream)) #define inflateBackInit(strm, windowBits, window) \ inflateBackInit_((strm), (windowBits), (window), \ ZLIB_VERSION, (int)sizeof(z_stream)) #ifndef Z_SOLO /* gzgetc() macro and its supporting function and exposed data structure. Note * that the real internal state is much larger than the exposed structure. * This abbreviated structure exposes just enough for the gzgetc() macro. The * user should not mess with these exposed elements, since their names or * behavior could change in the future, perhaps even capriciously. They can * only be used by the gzgetc() macro. You have been warned. */ struct gzFile_s { unsigned have; unsigned char *next; z_off64_t pos; }; ZEXTERN int ZEXPORT gzgetc_ OF((gzFile file)); /* backward compatibility */ #ifdef Z_PREFIX_SET # undef z_gzgetc # define z_gzgetc(g) \ ((g)->have ? ((g)->have--, (g)->pos++, *((g)->next)++) : gzgetc(g)) #else # define gzgetc(g) \ ((g)->have ? ((g)->have--, (g)->pos++, *((g)->next)++) : gzgetc(g)) #endif /* provide 64-bit offset functions if _LARGEFILE64_SOURCE defined, and/or * change the regular functions to 64 bits if _FILE_OFFSET_BITS is 64 (if * both are true, the application gets the *64 functions, and the regular * functions are changed to 64 bits) -- in case these are set on systems * without large file support, _LFS64_LARGEFILE must also be true */ #ifdef Z_LARGE64 ZEXTERN gzFile ZEXPORT gzopen64 OF((const char *, const char *)); ZEXTERN z_off64_t ZEXPORT gzseek64 OF((gzFile, z_off64_t, int)); ZEXTERN z_off64_t ZEXPORT gztell64 OF((gzFile)); ZEXTERN z_off64_t ZEXPORT gzoffset64 OF((gzFile)); ZEXTERN uLong ZEXPORT adler32_combine64 OF((uLong, uLong, z_off64_t)); ZEXTERN uLong ZEXPORT crc32_combine64 OF((uLong, uLong, z_off64_t)); #endif #if !defined(ZLIB_INTERNAL) && defined(Z_WANT64) # ifdef Z_PREFIX_SET # define minizlib_gzopen minizlib_gzopen64 # define minizlib_gzseek minizlib_gzseek64 # define minizlib_gztell minizlib_gztell64 # define minizlib_gzoffset minizlib_gzoffset64 # define minizlib_adler32_combine minizlib_adler32_combine64 # define minizlib_crc32_combine minizlib_crc32_combine64 # else # define gzopen gzopen64 # define gzseek gzseek64 # define gztell gztell64 # define gzoffset gzoffset64 # define adler32_combine adler32_combine64 # define crc32_combine crc32_combine64 # endif # ifndef Z_LARGE64 ZEXTERN gzFile ZEXPORT gzopen64 OF((const char *, const char *)); ZEXTERN z_off_t ZEXPORT gzseek64 OF((gzFile, z_off_t, int)); ZEXTERN z_off_t ZEXPORT gztell64 OF((gzFile)); ZEXTERN z_off_t ZEXPORT gzoffset64 OF((gzFile)); ZEXTERN uLong ZEXPORT adler32_combine64 OF((uLong, uLong, z_off_t)); ZEXTERN uLong ZEXPORT crc32_combine64 OF((uLong, uLong, z_off_t)); # endif #else ZEXTERN gzFile ZEXPORT gzopen OF((const char *, const char *)); ZEXTERN z_off_t ZEXPORT gzseek OF((gzFile, z_off_t, int)); ZEXTERN z_off_t ZEXPORT gztell OF((gzFile)); ZEXTERN z_off_t ZEXPORT gzoffset OF((gzFile)); ZEXTERN uLong ZEXPORT adler32_combine OF((uLong, uLong, z_off_t)); ZEXTERN uLong ZEXPORT crc32_combine OF((uLong, uLong, z_off_t)); #endif #else /* Z_SOLO */ ZEXTERN uLong ZEXPORT adler32_combine OF((uLong, uLong, z_off_t)); ZEXTERN uLong ZEXPORT crc32_combine OF((uLong, uLong, z_off_t)); #endif /* !Z_SOLO */ /* hack for buggy compilers */ #if !defined(ZUTIL_H) && !defined(NO_DUMMY_DECL) struct internal_state {int dummy;}; #endif /* undocumented functions */ ZEXTERN const char * ZEXPORT zError OF((int)); ZEXTERN int ZEXPORT inflateSyncPoint OF((z_streamp)); ZEXTERN const z_crc_t FAR * ZEXPORT get_crc_table OF((void)); ZEXTERN int ZEXPORT inflateUndermine OF((z_streamp, int)); ZEXTERN int ZEXPORT inflateResetKeep OF((z_streamp)); ZEXTERN int ZEXPORT deflateResetKeep OF((z_streamp)); #if defined(_WIN32) && !defined(Z_SOLO) ZEXTERN gzFile ZEXPORT gzopen_w OF((const wchar_t *path, const char *mode)); #endif #if defined(STDC) || defined(Z_HAVE_STDARG_H) # ifndef Z_SOLO ZEXTERN int ZEXPORTVA gzvprintf Z_ARG((gzFile file, const char *format, va_list va)); # endif #endif #ifdef __cplusplus } #endif #endif /* ZLIB_H */ # endif #endif #include #include #include #include #include #include #ifdef MCPL_THIS_IS_MS # include # include #endif #define MCPLIMP_NPARTICLES_POS 8 #define MCPLIMP_MAX_PARTICLE_SIZE 96 int mcpl_platform_is_little_endian() { //Return 0 for big endian, 1 for little endian. volatile uint32_t i=0x01234567; return (*((uint8_t*)(&i))) == 0x67; } void mcpl_default_error_handler(const char * msg) { printf("MCPL ERROR: %s\n",msg); exit(1); } static void (*mcpl_error_handler)(const char *) = &mcpl_default_error_handler; void mcpl_error(const char * msg) { mcpl_error_handler(msg); //Error handler should not return, but in case it does anyway, we at least //ensure a hard exit! mcpl_default_error_handler("Handler given to mcpl_set_error_handler returns" " to calling code which is not allowed!"); } void mcpl_set_error_handler(void (*handler)(const char *)) { mcpl_error_handler = handler; } void mcpl_store_string(char** dest, const char * src) { size_t n = strlen(src); if (n>65535) n = 65535; if (*dest) free(*dest); *dest = (char*)calloc(n+1,1); assert(*dest); strncpy( *dest,src,n ); (*dest)[n] = '\0'; return; } void mcpl_write_buffer(FILE* f, uint32_t n, const char * data, const char * errmsg) { size_t nb = fwrite(&n, 1, sizeof(n), f); if (nb!=sizeof(n)) mcpl_error(errmsg); nb = fwrite(data, 1, n, f); if (nb!=n) mcpl_error(errmsg); } void mcpl_write_string(FILE* f, const char * str, const char * errmsg) { size_t n = strlen(str); mcpl_write_buffer(f,n,str,errmsg);//nb: we don't write the terminating null-char } typedef struct { char * filename; FILE * file; char * hdr_srcprogname; uint32_t ncomments; char ** comments; uint32_t nblobs; char ** blobkeys; uint32_t * bloblengths; char ** blobs; int opt_userflags; int opt_polarisation; int opt_singleprec; int32_t opt_universalpdgcode; double opt_universalweight; int header_notwritten; uint64_t nparticles; unsigned particle_size; mcpl_particle_t* puser; unsigned opt_signature; char particle_buffer[MCPLIMP_MAX_PARTICLE_SIZE]; } mcpl_outfileinternal_t; #define MCPLIMP_OUTFILEDECODE mcpl_outfileinternal_t * f = (mcpl_outfileinternal_t *)of.internal; assert(f) void mcpl_recalc_psize(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; unsigned fp = f->opt_singleprec ? sizeof(float) : sizeof(double); f->particle_size = 7*fp; if (f->opt_polarisation) f->particle_size += 3*fp; if (!f->opt_universalpdgcode) f->particle_size += sizeof(int32_t); if (!f->opt_universalweight) f->particle_size += fp; if (f->opt_userflags) f->particle_size += sizeof(uint32_t); assert(f->particle_size<=MCPLIMP_MAX_PARTICLE_SIZE); f->opt_signature = 0 + 1 * f->opt_singleprec + 2 * f->opt_polarisation + 4 * f->opt_universalpdgcode + 8 * (f->opt_universalweight?1:0) + 16 * f->opt_userflags; } void mcpl_platform_compatibility_check() { static int first = 1; if (!first) return; first = 0; if (CHAR_BIT!=8) mcpl_error("Platform compatibility check failed (bytes are not 8 bit)"); if (sizeof(float)!=4) mcpl_error("Platform compatibility check failed (float is not 4 bytes)"); if (sizeof(double)!=8) mcpl_error("Platform compatibility check failed (double is not 8 bytes)"); int32_t m1_32 = -1; int32_t not0_32 = ~0; int64_t m1_64 = -1; int64_t not0_64 = ~0; if ( m1_32 != not0_32 || m1_64 != not0_64 ) mcpl_error("Platform compatibility check failed (integers are not two's complement)"); if (copysign(1.0, -0.0) != -1.0) mcpl_error("Platform compatibility check failed (floating point numbers do not have signed zero)"); mcpl_particle_t pd; if ( (char*)&(pd.userflags)-(char*)&(pd) != 12*sizeof(double)+sizeof(uint32_t) ) mcpl_error("Platform compatibility check failed (unexpected padding in mcpl_particle_t)"); } mcpl_outfile_t mcpl_create_outfile(const char * filename) { //Sanity check chosen filename and append ".mcpl" if missing to help people //who forgot to add the extension (in the hope of higher consistency). if (!filename) mcpl_error("mcpl_create_outfile called with null string."); size_t n = strlen(filename); if (!n) mcpl_error("mcpl_create_outfile called with empty string."); if (n>4096) mcpl_error("mcpl_create_outfile called with too long string."); const char * lastdot = strrchr(filename, '.'); if (lastdot==filename && n==5) mcpl_error("mcpl_create_outfile called with string with no basename part (\".mcpl\")."); //Initialise data structures and open file: mcpl_platform_compatibility_check(); mcpl_outfile_t out; out.internal = 0; mcpl_outfileinternal_t * f = (mcpl_outfileinternal_t*)calloc(sizeof(mcpl_outfileinternal_t),1); assert(f); if (!lastdot || strcmp(lastdot, ".mcpl") != 0) { f->filename = (char*)malloc(n+6); f->filename[0] = '\0'; strcat(f->filename,filename); strcat(f->filename,".mcpl"); } else { f->filename = (char*)malloc(n+1); f->filename[0] = '\0'; strcat(f->filename,filename); } f->hdr_srcprogname = 0; f->ncomments = 0; f->comments = 0; f->nblobs = 0; f->blobkeys = 0; f->bloblengths = 0; f->blobs = 0; f->opt_userflags = 0; f->opt_polarisation = 0; f->opt_singleprec = 1; f->opt_universalpdgcode = 0; f->opt_universalweight = 0.0; f->header_notwritten = 1; f->nparticles = 0; f->file = fopen(f->filename,"wb"); if (!f->file) mcpl_error("Unable to open output file!"); out.internal = f; mcpl_recalc_psize(out); return out; } const char * mcpl_outfile_filename(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; return f->filename; } void mcpl_hdr_set_srcname(mcpl_outfile_t of,const char * spn) { MCPLIMP_OUTFILEDECODE; if (!f->header_notwritten) mcpl_error("mcpl_hdr_set_srcname called too late."); mcpl_store_string(&(f->hdr_srcprogname),spn); } void mcpl_hdr_add_comment(mcpl_outfile_t of,const char *comment) { MCPLIMP_OUTFILEDECODE; if (!f->header_notwritten) mcpl_error("mcpl_hdr_add_comment called too late."); size_t oldn = f->ncomments; f->ncomments += 1; if (oldn) f->comments = (char **)realloc(f->comments,f->ncomments * sizeof(char*) ); else f->comments = (char **)calloc(f->ncomments,sizeof(char*)); f->comments[oldn] = 0; mcpl_store_string(&(f->comments[oldn]),comment); } void mcpl_hdr_add_data(mcpl_outfile_t of, const char * key, uint32_t ldata, const char * data) { MCPLIMP_OUTFILEDECODE; if (!f->header_notwritten) mcpl_error("mcpl_hdr_add_data called too late."); size_t oldn = f->nblobs; f->nblobs += 1; //Check that key is unique unsigned i; for (i =0; iblobkeys[i],key)==0) mcpl_error("mcpl_hdr_add_data got duplicate key"); } //store key: if (oldn) f->blobkeys = (char **)realloc(f->blobkeys,f->nblobs * sizeof(char*) ); else f->blobkeys = (char **)calloc(f->nblobs,sizeof(char*)); f->blobkeys[oldn] = 0; mcpl_store_string(&(f->blobkeys[oldn]),key); //store blob-lengths: if (oldn) f->bloblengths = (uint32_t*)realloc(f->bloblengths,f->nblobs * sizeof(uint32_t) ); else f->bloblengths = (uint32_t *)calloc(f->nblobs,sizeof(uint32_t)); f->bloblengths[oldn] = ldata; //store data: if (oldn) f->blobs = (char **)realloc(f->blobs,f->nblobs * sizeof(char*) ); else f->blobs = (char **)calloc(f->nblobs,sizeof(char*)); f->blobs[oldn] = (char *)malloc(ldata); memcpy(f->blobs[oldn],data,ldata); } void mcpl_enable_userflags(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; if (f->opt_userflags) return; if (!f->header_notwritten) mcpl_error("mcpl_enable_userflags called too late."); f->opt_userflags = 1; mcpl_recalc_psize(of); } void mcpl_enable_polarisation(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; if (f->opt_polarisation) return; if (!f->header_notwritten) mcpl_error("mcpl_enable_polarisation called too late."); f->opt_polarisation = 1; mcpl_recalc_psize(of); } void mcpl_enable_doubleprec(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; if (!f->opt_singleprec) return; if (!f->header_notwritten) mcpl_error("mcpl_enable_doubleprec called too late."); f->opt_singleprec = 0; mcpl_recalc_psize(of); } void mcpl_enable_universal_pdgcode(mcpl_outfile_t of, int32_t pdgcode) { MCPLIMP_OUTFILEDECODE; if (pdgcode==0) mcpl_error("mcpl_enable_universal_pdgcode must be called with non-zero pdgcode."); if (f->opt_universalpdgcode) { if (f->opt_universalpdgcode!=pdgcode) mcpl_error("mcpl_enable_universal_pdgcode called multiple times"); return; } if (!f->header_notwritten) mcpl_error("mcpl_enable_universal_pdgcode called too late."); f->opt_universalpdgcode = pdgcode; mcpl_recalc_psize(of); } void mcpl_enable_universal_weight(mcpl_outfile_t of, double w) { MCPLIMP_OUTFILEDECODE; if (w<=0.0||isinf(w)||isnan(w)) mcpl_error("mcpl_enable_universal_weight must be called with positive but finite weight."); if (f->opt_universalweight) { if (f->opt_universalweight!=w) mcpl_error("mcpl_enable_universal_weight called multiple times"); return; } if (!f->header_notwritten) mcpl_error("mcpl_enable_universal_weight called too late."); f->opt_universalweight = w; mcpl_recalc_psize(of); } void mcpl_write_header(mcpl_outfileinternal_t * f) { if (!f->header_notwritten) mcpl_error("Logical error!"); const char * errmsg="Errors encountered while attempting to write file header."; //Always start the file with an unsigned char-array (for endian agnosticity) //containing magic word (MCPL), file format version ('001'-'999') and //endianness used in the file ('L' or 'B'): unsigned char start[8] = {'M','C','P','L','0','0','0','L'}; start[4] = (MCPL_FORMATVERSION/100)%10 + '0'; start[5] = (MCPL_FORMATVERSION/10)%10 + '0'; start[6] = MCPL_FORMATVERSION%10 + '0'; if (!mcpl_platform_is_little_endian()) start[7] = 'B'; size_t nb = fwrite(start, 1, sizeof(start), f->file); if (nb!=sizeof(start)) mcpl_error(errmsg); //Right after the initial 8 bytes, we put the number of particles (0 for now, //but important that position is fixed so we can seek and update it later).: long int nparticles_pos = ftell(f->file); if (nparticles_pos!=MCPLIMP_NPARTICLES_POS) mcpl_error(errmsg); nb = fwrite(&f->nparticles, 1, sizeof(f->nparticles), f->file); if (nb!=sizeof(f->nparticles)) mcpl_error(errmsg); //Then a bunch of numbers: uint32_t arr[8]; arr[0] = f->ncomments; arr[1] = f->nblobs; arr[2] = f->opt_userflags; arr[3] = f->opt_polarisation; arr[4] = f->opt_singleprec; arr[5] = f->opt_universalpdgcode; arr[6] = f->particle_size; arr[7] = (f->opt_universalweight?1:0); assert(sizeof(arr)==32); nb = fwrite(arr, 1, sizeof(arr), f->file); if (nb!=sizeof(arr)) mcpl_error(errmsg); if (f->opt_universalweight) { assert(sizeof(f->opt_universalweight)==8); nb = fwrite((void*)(&(f->opt_universalweight)), 1, sizeof(f->opt_universalweight), f->file); if (nb!=sizeof(f->opt_universalweight)) mcpl_error(errmsg); } //strings: mcpl_write_string(f->file,f->hdr_srcprogname?f->hdr_srcprogname:"unknown",errmsg); uint32_t i; for (i = 0; i < f->ncomments; ++i) mcpl_write_string(f->file,f->comments[i],errmsg); //blob keys: for (i = 0; i < f->nblobs; ++i) mcpl_write_string(f->file,f->blobkeys[i],errmsg); //blobs: for (i = 0; i < f->nblobs; ++i) mcpl_write_buffer(f->file, f->bloblengths[i], f->blobs[i],errmsg); //Free up acquired memory only needed for header writing: free(f->hdr_srcprogname); f->hdr_srcprogname = 0; if (f->ncomments) { for (i = 0; i < f->ncomments; ++i) free(f->comments[i]); free(f->comments); f->comments=0; f->ncomments=0; } if (f->nblobs) { for (i = 0; i < f->nblobs; ++i) free(f->blobkeys[i]); free(f->blobkeys); f->blobkeys = 0; for (i = 0; i < f->nblobs; ++i) free(f->blobs[i]); free(f->blobs); f->blobs = 0; free(f->bloblengths); f->bloblengths = 0; f->nblobs = 0; } f->header_notwritten = 0; } #ifndef INFINITY //Missing in ICC 12 C99 compilation: # define INFINITY (__builtin_inf()) #endif void mcpl_unitvect_pack_adaptproj(const double* in, double* out) { //Precise packing of unit vector into 2 floats + 1 bit using the "Adaptive //Projection Packing" method (T. Kittelmann, 2017). // //The Adaptive Projection Packing method is a variant on the traditional projection //method where one would store (x,y,sign(z)) and upon unpacking recover the //magnitude of z with |z|=sqrt(1-x^2-y^2), a formula which suffers from //numerical precision issues when |z| is small. In this improved version, one //gets rid of the precision issues by always storing the components that are //smallest in magnitude (the last one must then have a magnitude in the //interval [1/sqrt(3),1] = [0.577,1.0] which is never small). This just leaves //the issue of being able to recognise the coordinate choices again upon //unpacking. Since all components are at most of unit magnitude, this is //achieved by storing 1/z rather than z and replacing either x or y as //needed (infinity when z=0). Thus, the packed data will contain: // // ( 1/z, y, sign(x) ) when |x|>|y|,|z| // ( x, 1/z, sign(y) ) when |y|>|x|,|z| // ( x, y, sign(z) ) when |z|>|x|,|y| // //The unpacking code can determine which of the three scenarios is used to //encode a given piece of data by checking if the first or second field is //greater than unity. // //Note that the arrays "in" and "out" are both of dimension 3, however out[2] //will contain only binary information, in the form of the sign of the //component which was projected away (-1.0 or 1.0). const double absx = fabs(in[0]); const double absy = fabs(in[1]); if ( fabs(in[2]) < fmax(absx,absy) ) { const double invz = ( in[2] ? (1.0/in[2]) : INFINITY ); if (absx>=absy) { //output (1/z,y,sign(x)) out[0] = invz; out[1] = in[1]; out[2] = in[0]; } else { //output (x,1/z,sign(y)) out[0] = in[0]; out[1] = invz; out[2] = in[1]; } } else { //output (x,y,sign(z)) out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; } out[2] = copysign(1.0,out[2]); } void mcpl_unitvect_unpack_adaptproj( const double* in, double* out ) { //Unpacking for the "Adaptive Projection Packing" method (T. Kittelmann, 2017). //See mcpl_unitvect_pack_adaptproj for more information. // //Note that the arrays "in" and "out" are both of dimension 3, however in[2] //will contain only binary information, in the form of the sign of the //component which was projected away. assert(in[2]==1.0||in[2]==-1.0); if (fabs(in[0]) > 1.0) { //input is (1/z,y,sign(x)) out[1] = in[1]; out[2] = 1.0 / in[0]; out[0] = in[2] * sqrt( fmax( 0.0, 1.0 - ( in[1]*in[1] + out[2]*out[2] ) ) ); } else if (fabs(in[1])>1.0) { //input is (x,1/z,sign(y)) out[0] = in[0]; out[2] = 1.0 / in[1]; out[1] = in[2] * sqrt( fmax ( 0.0, 1.0 - ( in[0]*in[0] + out[2]*out[2] ) ) ); } else { //input is (x,y,sign(z)) out[0] = in[0]; out[1] = in[1]; out[2] = in[2] * sqrt( fmax( 0.0, 1.0 - ( in[0]*in[0] + in[1]*in[1] ) ) ); } } void mcpl_unitvect_unpack_oct(const double* in, double* out) { //Octahedral packing inspired by http://jcgt.org/published/0003/02/01/ // //and: // //Octahedron Environment Maps, T. Engelhardt & C. Dachsbacher, Conference: //Proceedings of the Vision, Modeling, and Visualization Conference 2008, VMV //2008, Konstanz, Germany, October 8-10, 2008 // //Note: Octahedral packing was used for the MCPL-2 format, which we are no //longer writing, only reading. Thus, we only keep the unpacking function in //the code. //restore z-coord of octahedron: out[2] = 1.0 - fabs(in[0]) - fabs(in[1]); if (out[2]<0) { //lower hemisphere out[0] = ( 1.0 - fabs( in[1] ) ) * ( in[0] >= 0.0 ? 1.0 : -1.0 ); out[1] = ( 1.0 - fabs( in[0] ) ) * ( in[1] >= 0.0 ? 1.0 : -1.0 ); } else { //upper hemisphere out[0] = in[0]; out[1] = in[1]; } //project from octahedron to unit sphere: double n = 1.0 / sqrt(out[0]*out[0]+out[1]*out[1]+out[2]*out[2]); out[0] *= n; out[1] *= n; out[2] *= n; } void mcpl_internal_serialise_particle_to_buffer( const mcpl_particle_t* particle, mcpl_outfileinternal_t * f ) { //Serialise the provided particle into the particle_buffer of the output file //(according to the settings of the output file). double pack_ekindir[3]; //Sanity check (add more??): double dirsq = particle->direction[0] * particle->direction[0] + particle->direction[1] * particle->direction[1] + particle->direction[2] * particle->direction[2]; if (fabs(dirsq-1.0)>1.0e-5) mcpl_error("attempting to add particle with non-unit direction vector"); if (particle->ekin<0.0) mcpl_error("attempting to add particle with negative kinetic energy"); //direction and ekin are packed into 3 doubles: mcpl_unitvect_pack_adaptproj(particle->direction,pack_ekindir); //pack_ekindir[2] is now just a sign(1.0 or -1.0), so we can store the //ekin in that field as well (since it must be non-negative). We use copysign //to be sure the signbit is set also if ekin=0: pack_ekindir[2] = copysign(particle->ekin,pack_ekindir[2]); //serialise particle object to buffer: unsigned ibuf = 0; char * pbuf = &(f->particle_buffer[0]); int i; if (f->opt_singleprec) { if (f->opt_polarisation) { for (i=0;i<3;++i) { *(float*)&pbuf[ibuf] = (float)particle->polarisation[i]; ibuf += sizeof(float); } } for (i=0;i<3;++i) { *(float*)&pbuf[ibuf] = (float)particle->position[i]; ibuf += sizeof(float); } for (i=0;i<3;++i) { *(float*)&pbuf[ibuf] = (float)pack_ekindir[i]; ibuf += sizeof(float); } *(float*)&pbuf[ibuf] = (float)particle->time; ibuf += sizeof(float); if (!f->opt_universalweight) { *(float*)&pbuf[ibuf] = (float)particle->weight; ibuf += sizeof(float); } } else { if (f->opt_polarisation) { for (i=0;i<3;++i) { *(double*)&pbuf[ibuf] = particle->polarisation[i]; ibuf += sizeof(double); } } for (i=0;i<3;++i) { *(double*)&pbuf[ibuf] = particle->position[i]; ibuf += sizeof(double); } for (i=0;i<3;++i) { *(double*)&pbuf[ibuf] = pack_ekindir[i]; ibuf += sizeof(double); } *(double*)&pbuf[ibuf] = particle->time; ibuf += sizeof(double); if (!f->opt_universalweight) { *(double*)&pbuf[ibuf] = particle->weight; ibuf += sizeof(double); } } if (!f->opt_universalpdgcode) { *(int32_t*)&pbuf[ibuf] = particle->pdgcode; ibuf += sizeof(int32_t); } if (f->opt_userflags) { *(uint32_t*)&pbuf[ibuf] = particle->userflags; #ifndef NDEBUG ibuf += sizeof(uint32_t); #endif } assert(ibuf==f->particle_size); } void mcpl_internal_write_particle_buffer_to_file(mcpl_outfileinternal_t * f ) { //Ensure header is written: if (f->header_notwritten) mcpl_write_header(f); //Increment nparticles and write buffer to file: f->nparticles += 1; size_t nb; nb = fwrite(&(f->particle_buffer[0]), 1, f->particle_size, f->file); if (nb!=f->particle_size) mcpl_error("Errors encountered while attempting to write particle data."); } void mcpl_add_particle(mcpl_outfile_t of,const mcpl_particle_t* particle) { MCPLIMP_OUTFILEDECODE; mcpl_internal_serialise_particle_to_buffer(particle,f); mcpl_internal_write_particle_buffer_to_file(f); } void mcpl_update_nparticles(FILE* f, uint64_t n) { //Seek and update nparticles at correct location in header: const char * errmsg = "Errors encountered while attempting to update number of particles in file."; int64_t savedpos = ftell(f); if (savedpos<0) mcpl_error(errmsg); if (fseek( f, MCPLIMP_NPARTICLES_POS, SEEK_SET )) mcpl_error(errmsg); size_t nb = fwrite(&n, 1, sizeof(n), f); if (nb != sizeof(n)) mcpl_error(errmsg); if (fseek( f, savedpos, SEEK_SET )) mcpl_error(errmsg); } mcpl_particle_t* mcpl_get_empty_particle(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; if (f->puser) { //Calling more than once. This could be innocent, or it could indicate //problems in multi-threaded user-code. Better disallow and give an error: mcpl_error("mcpl_get_empty_particle must not be called more than once per output file"); } else { f->puser = (mcpl_particle_t*)calloc(sizeof(mcpl_particle_t),1); } return f->puser; } void mcpl_close_outfile(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; if (f->header_notwritten) mcpl_write_header(f); if (f->nparticles) mcpl_update_nparticles(f->file,f->nparticles); fclose(f->file); free(f->filename); free(f->puser); free(f); } void mcpl_transfer_metadata(mcpl_file_t source, mcpl_outfile_t target) { //Note that MCPL format version 2 and 3 have the same meta-data in the header, //except of course the version number itself. if (mcpl_hdr_little_endian(source) != mcpl_platform_is_little_endian()) mcpl_error("mcpl_transfer_metadata can only work on files with same endianness as current platform."); mcpl_hdr_set_srcname(target,mcpl_hdr_srcname(source)); unsigned i; for (i = 0; i < mcpl_hdr_ncomments(source); ++i) mcpl_hdr_add_comment(target,mcpl_hdr_comment(source,i)); const char** blobkeys = mcpl_hdr_blobkeys(source); if (blobkeys) { int nblobs = mcpl_hdr_nblobs(source); uint32_t ldata; const char * data; int ii; for (ii = 0; ii < nblobs; ++ii) { int res = mcpl_hdr_blob(source,blobkeys[ii],&ldata,&data); assert(res);//key must exist (void)res; mcpl_hdr_add_data(target, blobkeys[ii], ldata, data); } } if (mcpl_hdr_has_userflags(source)) mcpl_enable_userflags(target); if (mcpl_hdr_has_polarisation(source)) mcpl_enable_polarisation(target); if (mcpl_hdr_has_doubleprec(source)) mcpl_enable_doubleprec(target); int32_t updg = mcpl_hdr_universal_pdgcode(source); if (updg) mcpl_enable_universal_pdgcode(target,updg); double uw = mcpl_hdr_universal_weight(source); if (uw) mcpl_enable_universal_weight(target,uw); } int mcpl_closeandgzip_outfile_rc(mcpl_outfile_t of) { printf("MCPL WARNING: Usage of function mcpl_closeandgzip_outfile_rc is obsolete as" " mcpl_closeandgzip_outfile now also returns the status. Please update your code" " to use mcpl_closeandgzip_outfile instead.\n"); return mcpl_closeandgzip_outfile(of); } int mcpl_closeandgzip_outfile(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; char * filename = f->filename; f->filename = 0;//prevent free in mcpl_close_outfile mcpl_close_outfile(of); int rc = mcpl_gzip_file(filename); free(filename); return rc; } typedef struct { FILE * file; #ifdef MCPL_HASZLIB gzFile filegz; #else void * filegz; #endif char * hdr_srcprogname; unsigned format_version; int opt_userflags; int opt_polarisation; int opt_singleprec; int32_t opt_universalpdgcode; double opt_universalweight; int is_little_endian; uint64_t nparticles; uint32_t ncomments; char ** comments; uint32_t nblobs; char ** blobkeys; uint32_t * bloblengths; char ** blobs; unsigned particle_size; uint64_t first_particle_pos; uint64_t current_particle_idx; mcpl_particle_t* particle; unsigned opt_signature; char particle_buffer[MCPLIMP_MAX_PARTICLE_SIZE]; } mcpl_fileinternal_t; #define MCPLIMP_FILEDECODE mcpl_fileinternal_t * f = (mcpl_fileinternal_t *)ff.internal; assert(f) void mcpl_read_buffer(mcpl_fileinternal_t* f, unsigned* n, char ** buf, const char * errmsg) { size_t nb; #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, n, sizeof(*n)); else #endif nb = fread(n, 1, sizeof(*n), f->file); if (nb!=sizeof(*n)) mcpl_error(errmsg); *buf = (char*)calloc(*n,1); #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, *buf, *n); else #endif nb = fread(*buf, 1, *n, f->file); if (nb!=*n) mcpl_error(errmsg); } void mcpl_read_string(mcpl_fileinternal_t* f, char ** dest, const char* errmsg) { size_t nb; uint32_t n; #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, &n, sizeof(n)); else #endif nb = fread(&n, 1, sizeof(n), f->file); if (nb!=sizeof(n)) mcpl_error(errmsg); char * s = (char*)calloc(n+1,1); #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, s, n); else #endif nb = fread(s, 1, n, f->file); if (nb!=n) mcpl_error(errmsg); s[n] = '\0'; *dest = s; } mcpl_file_t mcpl_actual_open_file(const char * filename, int * repair_status) { int caller_is_mcpl_repair = *repair_status; *repair_status = 0;//file not broken if (!filename) mcpl_error("mcpl_open_file called with null string"); mcpl_platform_compatibility_check(); mcpl_file_t out; out.internal = 0; mcpl_fileinternal_t * f = (mcpl_fileinternal_t*)calloc(sizeof(mcpl_fileinternal_t),1); assert(f); //open file (with gzopen if filename ends with .gz): f->file = 0; f->filegz = 0; const char * lastdot = strrchr(filename, '.'); if (lastdot && strcmp(lastdot, ".gz") == 0) { #ifdef MCPL_HASZLIB f->filegz = gzopen(filename,"rb"); if (!f->filegz) mcpl_error("Unable to open file!"); #else mcpl_error("This installation of MCPL was not built with zlib support and can not read compressed (.gz) files directly."); #endif } else { f->file = fopen(filename,"rb"); if (!f->file) mcpl_error("Unable to open file!"); } //First read and check magic word, format version and endianness. unsigned char start[8];// = {'M','C','P','L','0','0','0','L'}; size_t nb; #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, start, sizeof(start)); else #endif nb = fread(start, 1, sizeof(start), f->file); if (nb>=4&&(start[0]!='M'||start[1]!='C'||start[2]!='P'||start[3]!='L')) mcpl_error("File is not an MCPL file!"); if (nb!=sizeof(start)) mcpl_error("Error while reading first bytes of file!"); f->format_version = (start[4]-'0')*100 + (start[5]-'0')*10 + (start[6]-'0'); if (f->format_version!=2&&f->format_version!=3) mcpl_error("File is in an unsupported MCPL version!"); f->is_little_endian = mcpl_platform_is_little_endian(); if (start[7]!=(f->is_little_endian?'L':'B')) { if (start[7]=='L'||start[7]=='B') mcpl_error("Endian-ness of current platform is different than the one used to write the file."); else mcpl_error("Unexpected value in endianness field!"); } //proceed reading header, knowing we have a consistent version and endian-ness. const char * errmsg = "Errors encountered while attempting to read header"; uint64_t np; #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, &np, sizeof(np)); else #endif nb = fread(&np, 1, sizeof(np), f->file); if (nb!=sizeof(np)) mcpl_error(errmsg); f->nparticles = np; uint32_t arr[8]; assert(sizeof(arr)==32); #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, arr, sizeof(arr)); else #endif nb=fread(arr, 1, sizeof(arr), f->file); if (nb!=sizeof(arr)) mcpl_error(errmsg); f->ncomments = arr[0]; f->nblobs = arr[1]; f->opt_userflags = arr[2]; f->opt_polarisation = arr[3]; f->opt_singleprec = arr[4]; f->opt_universalpdgcode = arr[5]; f->particle_size = arr[6];//We could check consistency here with the calculated value. assert(f->particle_size<=MCPLIMP_MAX_PARTICLE_SIZE); if (arr[7]) { //file has universal weight #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, (void*)&(f->opt_universalweight), sizeof(f->opt_universalweight)); else #endif nb=fread((void*)&(f->opt_universalweight), 1, sizeof(f->opt_universalweight), f->file); assert(nb==sizeof(f->opt_universalweight)); if (nb!=sizeof(f->opt_universalweight)) mcpl_error(errmsg); } f->opt_signature = 0 + 1 * f->opt_singleprec + 2 * f->opt_polarisation + 4 * f->opt_universalpdgcode + 8 * (f->opt_universalweight?1:0) + 16 * f->opt_userflags; //Then some strings: mcpl_read_string(f,&f->hdr_srcprogname,errmsg); f->comments = f->ncomments ? (char **)calloc(f->ncomments,sizeof(char*)) : 0; uint32_t i; for (i = 0; i < f->ncomments; ++i) mcpl_read_string(f,&(f->comments[i]),errmsg); f->blobkeys = 0; f->bloblengths = 0; f->blobs = 0; if (f->nblobs) { f->blobs = (char **)calloc(f->nblobs,sizeof(char*)); f->blobkeys = (char **)calloc(f->nblobs,sizeof(char*)); f->bloblengths = (uint32_t *)calloc(f->nblobs,sizeof(uint32_t)); for (i =0; i < f->nblobs; ++i) mcpl_read_string(f,&(f->blobkeys[i]),errmsg); for (i =0; i < f->nblobs; ++i) mcpl_read_buffer(f, &(f->bloblengths[i]), &(f->blobs[i]), errmsg); } f->particle = (mcpl_particle_t*)calloc(sizeof(mcpl_particle_t),1); //At first event now: f->current_particle_idx = 0; int64_t tellpos = -1; #ifdef MCPL_HASZLIB if (f->filegz) tellpos = gztell(f->filegz); else #endif tellpos = ftell(f->file); if (tellpos<0) mcpl_error(errmsg); f->first_particle_pos = tellpos; if ( f->nparticles==0 || caller_is_mcpl_repair ) { //Although empty files are permitted, it is possible that the file was never //closed properly (maybe the writing program ended prematurely). Let us //check to possibly recover usage of the file. If caller is mcpl_repair, we //always check since the file might have been truncated after it was first //closed properly. if (f->filegz) { //SEEK_END is not supported by zlib, and there is no reliable way to get //the input size. Thus, all we can do is to uncompress the whole thing, //which we won't since it might stall operations for a long time. But we //can at least try to check whether the file is indeed empty or not, and //give an error in the latter case: #ifdef MCPL_HASZLIB if (f->nparticles==0) { char testbuf[4]; nb = gzread(f->filegz, testbuf, sizeof(testbuf)); if (nb>0) { if (caller_is_mcpl_repair) { *repair_status = 1;//file broken but can't recover since gzip. } else { mcpl_error("Input file appears to not have been closed properly and data recovery is disabled for gzipped files."); } } } else { assert(caller_is_mcpl_repair); *repair_status = 2;//file brokenness can not be determined since gzip. } gzseek( f->filegz, f->first_particle_pos, SEEK_SET ); #endif } else { if (f->file && !fseek( f->file, 0, SEEK_END )) {//SEEK_END is not guaranteed to always work, so we fail our recovery attempt silently. int64_t endpos = ftell(f->file); if (endpos > (int64_t)f->first_particle_pos && (uint64_t)endpos != f->first_particle_pos) { uint64_t np = ( endpos - f->first_particle_pos ) / f->particle_size; if ( f->nparticles != np ) { if ( f->nparticles > 0 && np > f->nparticles ) { //should really not happen unless file was corrupted or file was //first closed properly and then something was appended to it. mcpl_error("Input file has invalid combination of meta-data & filesize."); } if (caller_is_mcpl_repair) { *repair_status = 3;//file broken and should be able to repair } else { assert(f->nparticles == 0); printf("MCPL WARNING: Input file appears to not have been closed properly. Recovered %" PRIu64 " particles.\n",np); } f->nparticles = np; } } } fseek( f->file, f->first_particle_pos, SEEK_SET );//if this fseek failed, it might just be that we are at EOF with no particles. } } out.internal = f; return out; } mcpl_file_t mcpl_open_file(const char * filename) { int repair_status = 0; return mcpl_actual_open_file(filename,&repair_status); } void mcpl_repair(const char * filename) { int repair_status = 1; mcpl_file_t f = mcpl_actual_open_file(filename,&repair_status); uint64_t nparticles = mcpl_hdr_nparticles(f); mcpl_close_file(f); if (repair_status==0) { mcpl_error("File does not appear to be broken."); } else if (repair_status==1) { mcpl_error("Input file is indeed broken, but must be gunzipped before it can be repaired."); } else if (repair_status==2) { mcpl_error("File must be gunzipped before it can be checked and possibly repaired."); } //Ok, we should repair the file by updating nparticles in the header: FILE * fh = fopen(filename,"rb+"); if (!fh) mcpl_error("Unable to open file in update mode!"); mcpl_update_nparticles(fh, nparticles); fclose(fh); //Verify that we fixed it: repair_status = 1; f = mcpl_actual_open_file(filename,&repair_status); uint64_t nparticles2 = mcpl_hdr_nparticles(f); mcpl_close_file(f); if (repair_status==0&&nparticles==nparticles2) { printf("MCPL: Succesfully repaired file with %" PRIu64 " particles.\n",nparticles); } else { mcpl_error("Something went wrong while attempting to repair file."); } } void mcpl_close_file(mcpl_file_t ff) { MCPLIMP_FILEDECODE; free(f->hdr_srcprogname); uint32_t i; for (i = 0; i < f->ncomments; ++i) free(f->comments[i]); free(f->comments); for (i = 0; i < f->nblobs; ++i) free(f->blobkeys[i]); for (i = 0; i < f->nblobs; ++i) free(f->blobs[i]); free(f->blobkeys); free(f->blobs); free(f->bloblengths); free(f->particle); #ifdef MCPL_HASZLIB if (f->filegz) gzclose(f->filegz); #endif if (f->file) fclose(f->file); free(f); } unsigned mcpl_hdr_version(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->format_version; } uint64_t mcpl_hdr_nparticles(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->nparticles; } unsigned mcpl_hdr_ncomments(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->ncomments; } const char * mcpl_hdr_comment(mcpl_file_t ff, unsigned i) { MCPLIMP_FILEDECODE; if (i>=f->ncomments) mcpl_error("Invalid comment requested (index out of bounds)"); return f->comments[i]; } int mcpl_hdr_nblobs(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->nblobs; } const char** mcpl_hdr_blobkeys(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return (const char**)f->blobkeys; } int mcpl_hdr_blob(mcpl_file_t ff, const char* key, uint32_t* ldata, const char ** data) { MCPLIMP_FILEDECODE; uint32_t i; for (i = 0; i < f->nblobs; ++i) { if (strcmp(f->blobkeys[i],key)==0) { *data = f->blobs[i]; *ldata = f->bloblengths[i]; return 1; } } *data = 0; *ldata = 0; return 0; } const char* mcpl_hdr_srcname(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->hdr_srcprogname; } int mcpl_hdr_has_userflags(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->opt_userflags; } int mcpl_hdr_has_polarisation(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->opt_polarisation; } int mcpl_hdr_has_doubleprec(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return !f->opt_singleprec; } const mcpl_particle_t* mcpl_read(mcpl_file_t ff) { MCPLIMP_FILEDECODE; f->current_particle_idx += 1; if ( f->current_particle_idx > f->nparticles ) { f->current_particle_idx = f->nparticles;//overflow guard return 0; } //read particle data: size_t nb; unsigned lbuf = f->particle_size; char * pbuf = &(f->particle_buffer[0]); #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, pbuf, lbuf); else #endif nb = fread(pbuf, 1, lbuf, f->file); if (nb!=lbuf) mcpl_error("Errors encountered while attempting to read particle data."); //Transfer to particle struct: unsigned ibuf = 0; mcpl_particle_t * p = f->particle; double pack_ekindir[3]; p->weight = f->opt_universalweight; int i; if (f->opt_singleprec) { if (f->opt_polarisation) { for (i=0;i<3;++i) { p->polarisation[i] = *(float*)&pbuf[ibuf]; ibuf += sizeof(float); } } else { for (i=0;i<3;++i) p->polarisation[i] = 0.0; } for (i=0;i<3;++i) { p->position[i] = *(float*)&pbuf[ibuf]; ibuf += sizeof(float); } for (i=0;i<3;++i) { pack_ekindir[i] = *(float*)&pbuf[ibuf]; ibuf += sizeof(float); } p->time = *(float*)&pbuf[ibuf]; ibuf += sizeof(float); if (!p->weight) { p->weight = *(float*)&pbuf[ibuf]; ibuf += sizeof(float); } } else { if (f->opt_polarisation) { for (i=0;i<3;++i) { p->polarisation[i] = *(double*)&pbuf[ibuf]; ibuf += sizeof(double); } } else { for (i=0;i<3;++i) p->polarisation[i] = 0.0; } for (i=0;i<3;++i) { p->position[i] = *(double*)&pbuf[ibuf]; ibuf += sizeof(double); } for (i=0;i<3;++i) { pack_ekindir[i] = *(double*)&pbuf[ibuf]; ibuf += sizeof(double); } p->time = *(double*)&pbuf[ibuf]; ibuf += sizeof(double); if (!p->weight) { p->weight = *(double*)&pbuf[ibuf]; ibuf += sizeof(double); } } if (f->opt_universalpdgcode) { p->pdgcode = f->opt_universalpdgcode; } else { p->pdgcode = *(int32_t*)&pbuf[ibuf]; ibuf += sizeof(int32_t); } if (f->opt_userflags) { p->userflags = *(uint32_t*)&pbuf[ibuf]; #ifndef NDEBUG ibuf += sizeof(uint32_t); #endif } else { f->opt_userflags = 0; } assert(ibuf==lbuf); //Unpack direction and ekin: if (f->format_version>=3) { p->ekin = fabs(pack_ekindir[2]); pack_ekindir[2] = copysign(1.0,pack_ekindir[2]); mcpl_unitvect_unpack_adaptproj(pack_ekindir,p->direction); } else { assert(f->format_version==2); mcpl_unitvect_unpack_oct(pack_ekindir,p->direction); p->ekin = pack_ekindir[2]; if (signbit(pack_ekindir[2])) { p->ekin = -p->ekin; p->direction[2] = 0.0; } } return p; } int mcpl_skipforward(mcpl_file_t ff,uint64_t n) { MCPLIMP_FILEDECODE; //increment, but guard against overflows: if ( n >= f->nparticles || f->current_particle_idx >= f->nparticles ) f->current_particle_idx = f->nparticles; else f->current_particle_idx += n; if ( f->current_particle_idx > f->nparticles ) f->current_particle_idx = f->nparticles; int notEOF = f->current_particle_idxnparticles; if (n==0) return notEOF; if (notEOF) { int error; #ifdef MCPL_HASZLIB if (f->filegz) { int64_t targetpos = f->current_particle_idx*f->particle_size+f->first_particle_pos; error = gzseek( f->filegz, targetpos, SEEK_SET )!=targetpos; } else #endif error = fseek( f->file, f->particle_size * n, SEEK_CUR )!=0; if (error) mcpl_error("Errors encountered while skipping in particle list"); } return notEOF; } int mcpl_rewind(mcpl_file_t ff) { MCPLIMP_FILEDECODE; int already_there = (f->current_particle_idx==0); f->current_particle_idx = 0; int notEOF = f->current_particle_idxnparticles; if (notEOF&&!already_there) { int error; #ifdef MCPL_HASZLIB if (f->filegz) { error = gzseek( f->filegz, f->first_particle_pos, SEEK_SET )!=(int64_t)f->first_particle_pos; } else #endif error = fseek( f->file, f->first_particle_pos, SEEK_SET )!=0; if (error) mcpl_error("Errors encountered while rewinding particle list"); } return notEOF; } int mcpl_seek(mcpl_file_t ff,uint64_t ipos) { MCPLIMP_FILEDECODE; int already_there = (f->current_particle_idx==ipos); f->current_particle_idx = (iposnparticles?ipos:f->nparticles); int notEOF = f->current_particle_idxnparticles; if (notEOF&&!already_there) { int error; #ifdef MCPL_HASZLIB if (f->filegz) { int64_t targetpos = f->current_particle_idx*f->particle_size+f->first_particle_pos; error = gzseek( f->filegz, targetpos, SEEK_SET )!=targetpos; } else #endif error = fseek( f->file, f->first_particle_pos + f->particle_size * ipos, SEEK_SET )!=0; if (error) mcpl_error("Errors encountered while seeking in particle list"); } return notEOF; } uint64_t mcpl_currentposition(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->current_particle_idx; } const char * mcpl_basename(const char * filename) { //portable "basename" which doesn't modify it's argument: const char * bn = strrchr(filename, '/'); return bn ? bn + 1 : filename; } int mcpl_hdr_particle_size(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->particle_size; } uint64_t mcpl_hdr_header_size(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->first_particle_pos; } int mcpl_hdr_universal_pdgcode(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->opt_universalpdgcode; } int mcpl_hdr_universel_pdgcode(mcpl_file_t ff) { printf("MCPL WARNING: Usage of function mcpl_hdr_universel_pdgcode is obsolete as it has" " been renamed to mcpl_hdr_universal_pdgcode. Please update your code.\n"); return mcpl_hdr_universal_pdgcode(ff); } double mcpl_hdr_universal_weight(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->opt_universalweight; } int mcpl_hdr_little_endian(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->is_little_endian; } void mcpl_transfer_last_read_particle(mcpl_file_t source, mcpl_outfile_t target) { mcpl_outfileinternal_t * ft = (mcpl_outfileinternal_t *)target.internal; assert(ft); mcpl_fileinternal_t * fs = (mcpl_fileinternal_t *)source.internal; assert(fs); if ( fs->current_particle_idx==0 && fs->particle->weight==0.0 && fs->particle->pdgcode==0 ) { mcpl_error("mcpl_transfer_last_read_particle called with source file in invalid state" " (did you forget to first call mcpl_read() on the source file before calling this function?)"); return; } //Sanity checks for universal fields here (but not in mcpl_add_particle since users are allowed to create files by setting just the universal fields): if ( ft->opt_universalpdgcode && fs->particle->pdgcode != ft->opt_universalpdgcode) { printf("MCPL ERROR: mcpl_transfer_last_read_particle asked to transfer particle with pdgcode %li into a file with universal pdgcode of %li\n", (long)fs->particle->pdgcode,(long)ft->opt_universalpdgcode); mcpl_error("mcpl_transfer_last_read_particle got incompatible pdgcode\n"); return; } if ( ft->opt_universalweight && fs->particle->weight != ft->opt_universalweight) { printf("MCPL ERROR: mcpl_transfer_last_read_particle asked to transfer particle with weight %g into a file with universal weight of %g\n", fs->particle->weight,ft->opt_universalweight); mcpl_error("mcpl_transfer_last_read_particle got incompatible weight\n"); return; } //NB: We don't sanity check that polarisation/userflags are enabled if present //in the input particle, since it is a valid use-case to use this function to //discard such info. if ( fs->format_version == 2 || ( fs->opt_singleprec && !ft->opt_singleprec ) ) { //source file is in old format with different unit vector packing, or the //floating point precision is increasing. In these scenarious we can not //reuse the 3 floats representing packed direction+ekin but must proceed via //a full unpacking+repacking. mcpl_add_particle(target,fs->particle); return; } if ( ft->opt_signature == fs->opt_signature ) { //Particle data is encoded in exactly the same manner in src and target (a //common scenario for many merge or extraction scenarios) -> simply transfer //the bytes and be done with it: assert(fs->particle_size==ft->particle_size); memcpy(ft->particle_buffer,fs->particle_buffer,fs->particle_size); mcpl_internal_write_particle_buffer_to_file(ft); return; } //The hard way - first serialise the source particle into the output buffer: mcpl_internal_serialise_particle_to_buffer( fs->particle, ft ); //If possible, override the 3 FP representing packed ekin+dir from the packing //in the source, thus avoiding potentially lossy unpacking+packing: size_t fpsize_target = ft->opt_singleprec ? sizeof(float) : sizeof(double); size_t idx_packekindir_target = (ft->opt_polarisation ? 6 : 3) * fpsize_target; size_t idx_packekindir_src = (fs->opt_polarisation ? 6 : 3) * fpsize_target; if (fs->opt_singleprec == ft->opt_singleprec) { memcpy( &(ft->particle_buffer[idx_packekindir_target]), &(fs->particle_buffer[idx_packekindir_src]), fpsize_target * 3); } else if ( ft->opt_singleprec && !fs->opt_singleprec ) { //For the case of double precision -> single precision, we can simply //perform a narrowing conversion: double * packekindir_src = (double*)&(fs->particle_buffer[idx_packekindir_src]); float * packekindir_target = (float*)&(ft->particle_buffer[idx_packekindir_target]); for (unsigned i = 0; i < 3; ++i) { packekindir_target[i] = (float)packekindir_src[i]; } } mcpl_internal_write_particle_buffer_to_file(ft); } void mcpl_dump_header(mcpl_file_t f) { printf("\n Basic info\n"); printf(" Format : MCPL-%i\n",mcpl_hdr_version(f)); printf(" No. of particles : %" PRIu64 "\n",mcpl_hdr_nparticles(f)); printf(" Header storage : %" PRIu64 " bytes\n",mcpl_hdr_header_size(f)); printf(" Data storage : %" PRIu64 " bytes\n",mcpl_hdr_nparticles(f)*mcpl_hdr_particle_size(f)); printf("\n Custom meta data\n"); printf(" Source : \"%s\"\n",mcpl_hdr_srcname(f)); unsigned nc=mcpl_hdr_ncomments(f); printf(" Number of comments : %i\n",nc); unsigned ic; for (ic = 0; ic < nc; ++ic) printf(" -> comment %i : \"%s\"\n",ic,mcpl_hdr_comment(f,ic)); unsigned nb = mcpl_hdr_nblobs(f); printf(" Number of blobs : %i\n",nb); const char** blobkeys = mcpl_hdr_blobkeys(f); uint32_t ib; for (ib = 0; ib < nb; ++ib) { const char * data; uint32_t ldata; int ok = mcpl_hdr_blob(f, blobkeys[ib], &ldata, &data); if (!ok) mcpl_error("Unexpected blob access error"); printf(" -> %lu bytes of data with key \"%s\"\n",(unsigned long)ldata,blobkeys[ib]); } printf("\n Particle data format\n"); printf(" User flags : %s\n",(mcpl_hdr_has_userflags(f)?"yes":"no")); printf(" Polarisation info : %s\n",(mcpl_hdr_has_polarisation(f)?"yes":"no")); printf(" Fixed part. type : "); int32_t updg = mcpl_hdr_universal_pdgcode(f); if (updg) printf("yes (pdgcode %li)\n",(long)updg); else printf("no\n"); printf(" Fixed part. weight : "); double uw = mcpl_hdr_universal_weight(f); if (uw) printf("yes (weight %g)\n",uw); else printf("no\n"); printf(" FP precision : %s\n",(mcpl_hdr_has_doubleprec(f)?"double":"single")); printf(" Endianness : %s\n",(mcpl_hdr_little_endian(f)?"little":"big")); printf(" Storage : %i bytes/particle\n",mcpl_hdr_particle_size(f)); printf("\n"); } //Not in the public interface, but perhaps it should be to allow custom //applications to apply custom filters and see the selected particles. For now, //we simply keep the function signature stable, allowing other code to access it //by forward declaring it themselves: void mcpl_dump_particles(mcpl_file_t f, uint64_t nskip, uint64_t nlimit, int(filter)(const mcpl_particle_t*)) { int has_uf = mcpl_hdr_has_userflags(f); int has_pol = mcpl_hdr_has_polarisation(f); double uweight = mcpl_hdr_universal_weight(f); printf("index pdgcode ekin[MeV] x[cm] y[cm] z[cm] ux uy uz time[ms]"); if (!uweight) printf(" weight"); if (has_pol) printf(" pol-x pol-y pol-z"); if (has_uf) printf(" userflags"); printf("\n"); mcpl_skipforward(f,nskip); uint64_t count = nlimit; const mcpl_particle_t* p; while((nlimit==0||count--)&&(p=mcpl_read(f))) { if (filter && !filter(p) ) { ++count; continue; } uint64_t idx = mcpl_currentposition(f)-1;//-1 since mcpl_read skipped ahead printf("%5" PRIu64 " %11i %11.5g %11.5g %11.5g %11.5g %11.5g %11.5g %11.5g %11.5g", idx, p->pdgcode, p->ekin, p->position[0], p->position[1], p->position[2], p->direction[0], p->direction[1], p->direction[2], p->time); if (!uweight) printf(" %11.5g",p->weight); if (has_pol) printf(" %11.5g %11.5g %11.5g",p->polarisation[0],p->polarisation[1],p->polarisation[2]); if (has_uf) printf(" 0x%08x",p->userflags); printf("\n"); } } void mcpl_dump(const char * filename, int parts, uint64_t nskip, uint64_t nlimit) { if (parts<0||parts>2) mcpl_error("mcpl_dump got forbidden value for argument parts"); mcpl_file_t f = mcpl_open_file(filename); printf("Opened MCPL file %s:\n",mcpl_basename(filename)); if (parts==0||parts==1) mcpl_dump_header(f); if (parts==0||parts==2) mcpl_dump_particles(f,nskip,nlimit,0); mcpl_close_file(f); } int mcpl_actual_can_merge(mcpl_file_t ff1, mcpl_file_t ff2) { mcpl_fileinternal_t * f1 = (mcpl_fileinternal_t *)ff1.internal; mcpl_fileinternal_t * f2 = (mcpl_fileinternal_t *)ff2.internal; assert(f1&&f2); if (f1->first_particle_pos!=f2->first_particle_pos) return 0;//different header //Note, we do not check the format_version field here, since mcpl_merge_files //can actually work on files with different versions. //Very strict checking of everything except nparticles. Even order of blobs //and comments must be preserved (could possibly be relaxed a bit): if (strcmp(f1->hdr_srcprogname,f2->hdr_srcprogname)!=0) return 0; if (f1->opt_userflags!=f2->opt_userflags) return 0; if (f1->opt_polarisation!=f2->opt_polarisation) return 0; if (f1->opt_singleprec!=f2->opt_singleprec) return 0; if (f1->opt_universalpdgcode!=f2->opt_universalpdgcode) return 0; if (f1->opt_universalweight!=f2->opt_universalweight) return 0; if (f1->is_little_endian!=f2->is_little_endian) return 0; if (f1->particle_size!=f2->particle_size) return 0; if (f1->ncomments!=f2->ncomments) return 0; if (f1->nblobs!=f2->nblobs) return 0; uint32_t i; for (i = 0; incomments; ++i) { if (strcmp(f1->comments[i],f2->comments[i])!=0) return 0; } for (i = 0; inblobs; ++i) { if (f1->bloblengths[i]!=f2->bloblengths[i]) return 0; if (strcmp(f1->blobkeys[i],f2->blobkeys[i])!=0) return 0; if (memcmp(f1->blobs[i],f2->blobs[i],f1->bloblengths[i])!=0) return 0; } return 1; } int mcpl_can_merge(const char * file1, const char* file2) { mcpl_file_t f1 = mcpl_open_file(file1); mcpl_file_t f2 = mcpl_open_file(file2); int can_merge = mcpl_actual_can_merge(f1,f2); mcpl_close_file(f1); mcpl_close_file(f2); return can_merge; } #ifdef MCPL_THIS_IS_UNIX # include #endif int mcpl_file_certainly_exists(const char * filename) { #if defined MCPL_THIS_IS_UNIX || defined MCPL_THIS_IS_MS if( access( filename, F_OK ) != -1 ) return 1; return 0; #else //esoteric platform without access(..). Try opening for reads: FILE *fd; if ((fd = fopen(filename, "r"))) { fclose(fd); return 1; } //non-existing or read access not allowed: return 0; #endif } #ifdef MCPL_THIS_IS_UNIX # include # include #endif void mcpl_warn_duplicates(unsigned n, const char ** filenames) { //Checks that no filenames in provided list represent the same file (the //detection is not 100% certain on non-POSIX platforms). If duplicates are //found, emit warning - it is assumed the function is called from //mcpl_merge_xxx on a user-provided list of files. //Since this is C, we resort to slow O(N^2) comparison for simplicity. if (n<2) return; #ifdef MCPL_THIS_IS_UNIX //Bullet proof(ish) way, (st_ino,st_dev) uniquely identifies a file on a system. dev_t * id_dev = (dev_t*)calloc(n*sizeof(dev_t),1); ino_t * id_ino = (ino_t*)calloc(n*sizeof(ino_t),1); unsigned i; for (i = 0; iparticle_size; //buffer for transferring up to 1000 particles at a time: const unsigned npbufsize = 1000; char * buf = (char*)malloc(npbufsize*particle_size); uint64_t np_remaining = nparticles; while(np_remaining) { //NB: On linux > 2.6.33 we could use sendfile for more efficient in-kernel //transfer of data between two files! uint64_t toread = np_remaining >= npbufsize ? npbufsize : np_remaining; np_remaining -= toread; //read: size_t nb; #ifdef MCPL_HASZLIB if (fi->filegz) nb = gzread(fi->filegz, buf, toread*particle_size); else #endif nb = fread(buf,1,toread*particle_size,fi->file); if (nb!=toread*particle_size) mcpl_error("Unexpected read-error while merging"); //write: nb = fwrite(buf,1,toread*particle_size,fo); if (nb!=toread*particle_size) mcpl_error("Unexpected write-error while merging"); } free(buf); } mcpl_outfile_t mcpl_forcemerge_files( const char * file_output, unsigned nfiles, const char ** files, int keep_userflags ) { //////////////////////////////////// // Initial sanity check of input: // //////////////////////////////////// if (!nfiles) mcpl_error("mcpl_forcemerge_files must be called with at least one input file"); //Warn user if they are merging a file with itself: mcpl_warn_duplicates(nfiles,files); //Create new file: if (mcpl_file_certainly_exists(file_output)) mcpl_error("requested output file of mcpl_forcemerge_files already exists"); /////////////////////////////////////////// // Fallback to normal merge if possible: // /////////////////////////////////////////// //Check all files for compatibility before we start (for robustness, we check //again when actually merging each file). unsigned ifile; int normal_merge_ok = 1; for (ifile = 1; ifile < nfiles; ++ifile) { if (!mcpl_can_merge(files[0],files[ifile])) { normal_merge_ok = 0; break; } } if (normal_merge_ok) { printf("MCPL mcpl_forcemerge_files called with %i files that are compatible for a standard merge => falling back to standard mcpl_merge_files function\n",nfiles); return mcpl_merge_files(file_output,nfiles,files); } ///////////////////////////// // Actual forcemerge code: // ///////////////////////////// //Run through files and collect meta-data: int opt_dp = 0; int opt_pol = 0; int opt_uf = 0; int lastseen_universalpdg = 0; int disallow_universalpdg = 0; double lastseen_universalweight = 0; int disallow_universalweight = 0; for (ifile = 0; ifile < nfiles; ++ifile) { mcpl_file_t f = mcpl_open_file(files[ifile]); if (!mcpl_hdr_nparticles(f)) { mcpl_close_file(f); continue;//won't affect anything } if (mcpl_hdr_has_userflags(f)) opt_uf = 1;//enable if any if (mcpl_hdr_has_polarisation(f)) opt_pol = 1;//enable if any if (mcpl_hdr_has_doubleprec(f)) opt_dp = 1; int32_t updg = mcpl_hdr_universal_pdgcode(f); if ( !updg || ( lastseen_universalpdg && lastseen_universalpdg != updg ) ) { disallow_universalpdg = 1; } else { lastseen_universalpdg = updg; } double uw = mcpl_hdr_universal_weight(f); if ( !uw || ( lastseen_universalweight && lastseen_universalweight != uw ) ) { disallow_universalweight = 1; } else { lastseen_universalweight = uw; } mcpl_close_file(f); } if (!keep_userflags) opt_uf = 0; mcpl_outfile_t out = mcpl_create_outfile(file_output); mcpl_hdr_set_srcname(out,"mcpl_forcemerge_files (from MCPL v" MCPL_VERSION_STR ")"); if ( opt_uf ) mcpl_enable_userflags(out); if ( opt_pol ) mcpl_enable_polarisation(out); if (opt_dp) mcpl_enable_doubleprec(out); if ( !disallow_universalpdg && lastseen_universalpdg ) mcpl_enable_universal_pdgcode(out,lastseen_universalpdg); if ( !disallow_universalweight && lastseen_universalweight ) mcpl_enable_universal_weight(out,lastseen_universalweight); //Finally, perform the transfer: for (ifile = 0; ifile < nfiles; ++ifile) { mcpl_file_t f = mcpl_open_file(files[ifile]); uint64_t np = mcpl_hdr_nparticles(f); printf("MCPL force-merge: Transferring %" PRIu64 " particle%s from file %s\n",np,(np==1?"":"s"),files[ifile]); const mcpl_particle_t* particle; while ( ( particle = mcpl_read(f) ) ) mcpl_transfer_last_read_particle(f, out);//lossless transfer when possible mcpl_close_file(f); } mcpl_outfileinternal_t * out_internal = (mcpl_outfileinternal_t *)out.internal; uint64_t np = out_internal->nparticles; printf("MCPL force-merge: Transferred a total of %" PRIu64 " particle%s to new file %s\n",np,(np==1?"":"s"),file_output); return out; } mcpl_outfile_t mcpl_merge_files( const char* file_output, unsigned nfiles, const char ** files ) { mcpl_outfile_t out; out.internal = 0; if (!nfiles) mcpl_error("mcpl_merge_files must be called with at least one input file"); //Check all files for compatibility before we start (for robustness, we check //again when actually merging each file). unsigned ifile; for (ifile = 1; ifile < nfiles; ++ifile) { if (!mcpl_can_merge(files[0],files[ifile])) mcpl_error("Attempting to merge incompatible files."); } //Warn user if they are merging a file with itself: mcpl_warn_duplicates(nfiles,files); //Create new file: if (mcpl_file_certainly_exists(file_output)) mcpl_error("requested output file of mcpl_merge_files already exists"); out = mcpl_create_outfile(file_output); mcpl_outfileinternal_t * out_internal = (mcpl_outfileinternal_t *)out.internal; mcpl_file_t f1; f1.internal = 0; int warned_oldversion = 0; for (ifile = 0; ifile < nfiles; ++ifile) { mcpl_file_t fi = mcpl_open_file(files[ifile]); if (ifile==0) { //Add metadata from the first file: mcpl_transfer_metadata(fi, out); if (out_internal->header_notwritten) mcpl_write_header(out_internal); f1 = fi; } else { //Check file is still compatible with first file if (!mcpl_actual_can_merge(f1,fi)) mcpl_error("Aborting merge of suddenly incompatible files."); } //Transfer particle contents: if (mcpl_hdr_version(fi)==MCPL_FORMATVERSION) { //Can transfer raw bytes: uint64_t npi = mcpl_hdr_nparticles(fi); mcpl_transfer_particle_contents(out_internal->file, fi, npi); out_internal->nparticles += npi; } else { //Merging from older version. Transfer via public interface to re-encode //particle data for latest format: if (!warned_oldversion) { warned_oldversion = 1; printf("MCPL WARNING: Merging files from older MCPL format. Output will be in latest format.\n"); } const mcpl_particle_t* particle; while ( ( particle = mcpl_read(fi) ) ) mcpl_add_particle(out,particle); } if (ifile!=0) mcpl_close_file(fi); } mcpl_close_file(f1); return out; } void mcpl_merge(const char * file1, const char* file2) { printf("MCPL WARNING: Usage of function mcpl_merge is obsolete as it has" " been renamed to mcpl_merge_inplace. Please update your code.\n"); mcpl_merge_inplace(file1, file2); } void mcpl_merge_inplace(const char * file1, const char* file2) { mcpl_file_t ff1 = mcpl_open_file(file1); mcpl_file_t ff2 = mcpl_open_file(file2); int can_merge = mcpl_actual_can_merge(ff1,ff2); if (!can_merge) { mcpl_close_file(ff1); mcpl_close_file(ff2); mcpl_error("Attempting to merge incompatible files"); } //Warn user if they are merging a file with itself: const char * filelist[2]; filelist[0] = file1; filelist[1] = file2; mcpl_warn_duplicates(2,filelist); //Access internals: mcpl_fileinternal_t * f1 = (mcpl_fileinternal_t *)ff1.internal; mcpl_fileinternal_t * f2 = (mcpl_fileinternal_t *)ff2.internal; assert(f1&&f2); if (f1->format_version!=f2->format_version) { mcpl_close_file(ff1); mcpl_close_file(ff2); mcpl_error("Attempting to merge incompatible files (can not mix MCPL format versions when merging inplace)"); } if (f1->filegz) { mcpl_close_file(ff1); mcpl_close_file(ff2); mcpl_error("direct modification of gzipped files is not supported."); } uint64_t np1 = f1->nparticles; uint64_t np2 = f2->nparticles; if (!np2) return;//nothing to take from file 2. unsigned particle_size = f1->particle_size; uint64_t first_particle_pos = f1->first_particle_pos; //Should be same since can_merge: assert(particle_size==f2->particle_size); assert(first_particle_pos==f2->first_particle_pos); //Now, close file1 and reopen a file handle in append mode: mcpl_close_file(ff1); FILE * f1a = fopen(file1,"rb+"); //Update file positions. Note that f2->file is already at the position for the //first particle and that the seek operation on f1a correctly discards any //partial entries at the end, which could be there if the file was in need of //mcpl_repair: if (!f1a) mcpl_error("Unable to open file1 in update mode!"); if (fseek( f1a, first_particle_pos + particle_size*np1, SEEK_SET )) mcpl_error("Unable to seek to end of file1 in update mode"); //Transfer particle contents, setting nparticles to 0 during the operation (so //the file appears broken and in need of mcpl_repair in case of errors during //the transfer): mcpl_update_nparticles(f1a,0); mcpl_transfer_particle_contents(f1a, ff2, np2); mcpl_update_nparticles(f1a,np1+np2); //Finish up. mcpl_close_file(ff2); fclose(f1a); } #define MCPLIMP_TOOL_DEFAULT_NLIMIT 10 #define MCPLIMP_TOOL_DEFAULT_NSKIP 0 int mcpl_tool_usage( char** argv, const char * errmsg ) { if (errmsg) { printf("ERROR: %s\n\n",errmsg); printf("Run with -h or --help for usage information\n"); return 1; } const char * progname = mcpl_basename(argv[0]); printf("Tool for inspecting or modifying Monte Carlo Particle List (.mcpl) files.\n"); printf("\n"); printf("The default behaviour is to display the contents of the FILE in human readable\n"); printf("format (see Dump Options below for how to modify what is displayed).\n"); printf("\n"); #ifdef MCPL_HASZLIB printf("This installation supports direct reading of gzipped files (.mcpl.gz).\n"); printf("\n"); #endif printf("Usage:\n"); printf(" %s [dump-options] FILE\n",progname); printf(" %s --merge [merge-options] FILE1 FILE2\n",progname); printf(" %s --extract [extract-options] FILE1 FILE2\n",progname); printf(" %s --repair FILE\n",progname); printf(" %s --version\n",progname); printf(" %s --help\n",progname); printf("\n"); printf("Dump options:\n"); printf(" By default include the info in the FILE header plus the first ten contained\n"); printf(" particles. Modify with the following options:\n"); assert(MCPLIMP_TOOL_DEFAULT_NLIMIT==10); printf(" -j, --justhead : Dump just header info and no particle info.\n"); printf(" -n, --nohead : Dump just particle info and no header info.\n"); printf(" -lN : Dump up to N particles from the file (default %i). You\n",MCPLIMP_TOOL_DEFAULT_NLIMIT); printf(" can specify -l0 to disable this limit.\n"); printf(" -sN : Skip past the first N particles in the file (default %i).\n",MCPLIMP_TOOL_DEFAULT_NSKIP); printf(" -bKEY : Dump binary blob stored under KEY to standard output.\n"); printf("\n"); printf("Merge options:\n"); printf(" -m, --merge FILEOUT FILE1 FILE2 ... FILEN\n"); printf(" Creates new FILEOUT with combined particle contents from\n"); printf(" specified list of N existing and compatible files.\n"); printf(" -m, --merge --inplace FILE1 FILE2 ... FILEN\n"); printf(" Appends the particle contents in FILE2 ... FILEN into\n"); printf(" FILE1. Note that this action modifies FILE1!\n"); printf(" --forcemerge [--keepuserflags] FILEOUT FILE1 FILE2 ... FILEN\n"); printf(" Like --merge but works with incompatible files as well, at the\n"); printf(" heavy price of discarding most metadata like comments and blobs.\n"); printf(" Userflags will be discarded unless --keepuserflags is specified.\n"); printf("\n"); printf("Extract options:\n"); printf(" -e, --extract FILE1 FILE2\n"); printf(" Extracts particles from FILE1 into a new FILE2.\n"); printf(" -lN, -sN : Select range of particles in FILE1 (as above).\n"); printf(" -pPDGCODE : select particles of type given by PDGCODE.\n"); printf("\n"); printf("Other options:\n"); printf(" -r, --repair FILE\n"); printf(" Attempt to repair FILE which was not properly closed, by up-\n"); printf(" dating the file header with the correct number of particles.\n"); printf(" -t, --text MCPLFILE OUTFILE\n"); printf(" Read particle contents of MCPLFILE and write into OUTFILE\n"); printf(" using a simple ASCII-based format.\n"); printf(" -v, --version : Display version of MCPL installation.\n"); printf(" -h, --help : Display this usage information (ignores all other options).\n"); return 0; } int mcpl_str2int(const char* str, size_t len, int64_t* res) { //portable 64bit str2int with error checking (only INT64_MIN might not be //possible to specify). *res = 0; if (!len) len=strlen(str); if (!len) return 0; int sign = 1; if (str[0]=='-') { sign = -1; len -= 1; str += 1; } int64_t tmp = 0; size_t i; for (i=0; i'9') { return 0; } int64_t prev = tmp; tmp *= 10; tmp += str[i] - '0'; if (prev>=tmp) return 1;//overflow (hopefully it did not trigger a signal or FPE) } *res = sign * tmp; return 1; } int mcpl_tool(int argc,char** argv) { int nfilenames = 0; char ** filenames = 0; const char * blobkey = 0; const char * pdgcode_str = 0; int opt_justhead = 0; int opt_nohead = 0; int64_t opt_num_limit = -1; int64_t opt_num_skip = -1; int opt_merge = 0; int opt_forcemerge = 0; int opt_keepuserflags = 0; int opt_inplace = 0; int opt_extract = 0; int opt_preventcomment = 0;//undocumented unoffical flag for mcpl unit tests int opt_repair = 0; int opt_version = 0; int opt_text = 0; int i; for (i = 1; i=2&&a[0]=='-'&&a[1]!='-') { //short options: int64_t * consume_digit = 0; size_t j; for (j=1; j'9') return free(filenames),mcpl_tool_usage(argv,"Bad option: expected number"); *consume_digit *= 10; *consume_digit += a[j] - '0'; continue; } if (a[j]=='b') { if (blobkey) return free(filenames),mcpl_tool_usage(argv,"-b specified more than once"); if (j+1==n) return free(filenames),mcpl_tool_usage(argv,"Missing argument for -b"); blobkey = a+j+1; break; } if (a[j]=='p') { if (pdgcode_str) return free(filenames),mcpl_tool_usage(argv,"-p specified more than once"); if (j+1==n) return free(filenames),mcpl_tool_usage(argv,"Missing argument for -p"); pdgcode_str = a+j+1; break; } switch(a[j]) { case 'h': return free(filenames), mcpl_tool_usage(argv,0); case 'j': opt_justhead = 1; break; case 'n': opt_nohead = 1; break; case 'm': opt_merge = 1; break; case 'e': opt_extract = 1; break; case 'r': opt_repair = 1; break; case 'v': opt_version = 1; break; case 't': opt_text = 1; break; case 'l': consume_digit = &opt_num_limit; break; case 's': consume_digit = &opt_num_skip; break; default: return free(filenames),mcpl_tool_usage(argv,"Unrecognised option"); } if (consume_digit) { *consume_digit = 0; if (j+1==n) return free(filenames),mcpl_tool_usage(argv,"Bad option: missing number"); } } } else if (n>=3&&a[0]=='-'&&a[1]=='-') { a+=2; //long options: const char * lo_help = "help"; const char * lo_justhead = "justhead"; const char * lo_nohead = "nohead"; const char * lo_merge = "merge"; const char * lo_inplace = "inplace"; const char * lo_extract = "extract"; const char * lo_preventcomment = "preventcomment"; const char * lo_repair = "repair"; const char * lo_version = "version"; const char * lo_text = "text"; const char * lo_forcemerge = "forcemerge"; const char * lo_keepuserflags = "keepuserflags"; //Use strstr instead of "strcmp(a,"--help")==0" to support shortened //versions (works since all our long-opts start with unique char). if (strstr(lo_help,a)==lo_help) return free(filenames), mcpl_tool_usage(argv,0); else if (strstr(lo_justhead,a)==lo_justhead) opt_justhead = 1; else if (strstr(lo_nohead,a)==lo_nohead) opt_nohead = 1; else if (strstr(lo_merge,a)==lo_merge) opt_merge = 1; else if (strstr(lo_forcemerge,a)==lo_forcemerge) opt_forcemerge = 1; else if (strstr(lo_keepuserflags,a)==lo_keepuserflags) opt_keepuserflags = 1; else if (strstr(lo_inplace,a)==lo_inplace) opt_inplace = 1; else if (strstr(lo_extract,a)==lo_extract) opt_extract = 1; else if (strstr(lo_repair,a)==lo_repair) opt_repair = 1; else if (strstr(lo_version,a)==lo_version) opt_version = 1; else if (strstr(lo_preventcomment,a)==lo_preventcomment) opt_preventcomment = 1; else if (strstr(lo_text,a)==lo_text) opt_text = 1; else return free(filenames),mcpl_tool_usage(argv,"Unrecognised option"); } else if (n>=1&&a[0]!='-') { //input file if (!filenames) filenames = (char **)calloc(argc,sizeof(char*)); filenames[nfilenames] = a; ++nfilenames; } else { return free(filenames),mcpl_tool_usage(argv,"Bad arguments"); } } if ( opt_extract==0 && pdgcode_str ) return free(filenames),mcpl_tool_usage(argv,"-p can only be used with --extract."); if ( opt_merge==0 && opt_inplace!=0 ) return free(filenames),mcpl_tool_usage(argv,"--inplace can only be used with --merge."); if ( opt_forcemerge==0 && opt_keepuserflags!=0 ) return free(filenames),mcpl_tool_usage(argv,"--keepuserflags can only be used with --forcemerge."); if ( opt_merge!=0 && opt_forcemerge!=0 ) return free(filenames),mcpl_tool_usage(argv,"--merge and --forcemerge can not both be specified ."); int number_dumpopts = (opt_justhead + opt_nohead + (blobkey!=0)); if (opt_extract==0) number_dumpopts += (opt_num_limit!=-1) + (opt_num_skip!=-1); int any_dumpopts = number_dumpopts != 0; int any_extractopts = (opt_extract!=0||pdgcode_str!=0); int any_mergeopts = (opt_merge!=0||opt_forcemerge!=0); int any_textopts = (opt_text!=0); if (any_dumpopts+any_mergeopts+any_extractopts+any_textopts+opt_repair+opt_version>1) return free(filenames),mcpl_tool_usage(argv,"Conflicting options specified."); if (blobkey&&(number_dumpopts>1)) return free(filenames),mcpl_tool_usage(argv,"Do not specify other dump options with -b."); if (opt_version) { free(filenames); if (nfilenames) return mcpl_tool_usage(argv,"Unrecognised arguments for --version."); printf("MCPL version " MCPL_VERSION_STR "\n"); return 0; } if (any_mergeopts) { if (nfilenames<2) return free(filenames),mcpl_tool_usage(argv, (opt_forcemerge?"Too few arguments for --forcemerge.":"Too few arguments for --merge.") ); int ifirstinfile = (opt_inplace ? 0 : 1); if (!opt_forcemerge) { for (i = ifirstinfile+1; i < nfilenames; ++i) if (!mcpl_can_merge(filenames[ifirstinfile],filenames[i])) return free(filenames),mcpl_tool_usage(argv,"Requested files are incompatible for merge as they have different header info."); } if (opt_inplace) { assert( !opt_forcemerge && opt_merge ); for (i = ifirstinfile+1; i < nfilenames; ++i) mcpl_merge_inplace(filenames[ifirstinfile],filenames[i]); } else { if (mcpl_file_certainly_exists(filenames[0])) return free(filenames),mcpl_tool_usage(argv,"Requested output file already exists."); //Disallow .gz endings unless it is .mcpl.gz, in which case we attempt to gzip automatically. char * outfn = filenames[0]; size_t lfn = strlen(outfn); int attempt_gzip = 0; if( lfn > 8 && !strcmp(outfn + (lfn - 8), ".mcpl.gz")) { attempt_gzip = 1; outfn = (char*)malloc(lfn+1); outfn[0] = '\0'; strcat(outfn,filenames[0]); outfn[lfn-3] = '\0'; if (mcpl_file_certainly_exists(outfn)) return free(filenames),mcpl_tool_usage(argv,"Requested output file already exists (without .gz extension)."); } else if( lfn > 3 && !strcmp(outfn + (lfn - 3), ".gz")) { return free(filenames),mcpl_tool_usage(argv,"Requested output file should not have .gz extension (unless it is .mcpl.gz)."); } mcpl_outfile_t mf = ( opt_forcemerge ? mcpl_forcemerge_files( outfn, nfilenames-1, (const char**)filenames + 1, opt_keepuserflags) : mcpl_merge_files( outfn, nfilenames-1, (const char**)filenames + 1) ); if (attempt_gzip) { if (!mcpl_closeandgzip_outfile(mf)) printf("MCPL WARNING: Failed to gzip output. Non-gzipped output is found in %s\n",outfn); } else { mcpl_close_outfile(mf); } if (outfn != filenames[0]) free(outfn); } free(filenames); return 0; } if (opt_extract) { if (nfilenames>2) return free(filenames),mcpl_tool_usage(argv,"Too many arguments."); if (nfilenames!=2) return free(filenames),mcpl_tool_usage(argv,"Must specify both input and output files with --extract."); if (mcpl_file_certainly_exists(filenames[1])) return free(filenames),mcpl_tool_usage(argv,"Requested output file already exists."); mcpl_file_t fi = mcpl_open_file(filenames[0]); mcpl_outfile_t fo = mcpl_create_outfile(filenames[1]); mcpl_transfer_metadata(fi, fo); uint64_t fi_nparticles = mcpl_hdr_nparticles(fi); if (!opt_preventcomment) { char comment[1024]; sprintf(comment, "mcpltool: extracted particles from file with %" PRIu64 " particles",fi_nparticles); mcpl_hdr_add_comment(fo,comment); } int32_t pdgcode_select = 0; if (pdgcode_str) { int64_t pdgcode64; if (!mcpl_str2int(pdgcode_str, 0, &pdgcode64) || pdgcode64<-2147483648 || pdgcode64>2147483647 || !pdgcode64) return free(filenames),mcpl_tool_usage(argv,"Must specify non-zero 32bit integer as argument to -p."); pdgcode_select = (int32_t)pdgcode64; } if (opt_num_skip>0) mcpl_seek(fi,(uint64_t)opt_num_skip); //uint64_t(-1) instead of UINT64_MAX to fix clang c++98 compilation uint64_t left = opt_num_limit>0 ? (uint64_t)opt_num_limit : (uint64_t)-1; uint64_t added = 0; const mcpl_particle_t* particle; while ( left-- && ( particle = mcpl_read(fi) ) ) { if (pdgcode_select && pdgcode_select!= particle->pdgcode) continue; mcpl_transfer_last_read_particle(fi, fo);//Doing mcpl_add_particle(fo,particle) is potentially (very rarely) lossy ++added; } char *fo_filename = (char*)malloc(strlen(mcpl_outfile_filename(fo))+4); fo_filename[0] = '\0'; strcat(fo_filename,mcpl_outfile_filename(fo)); if (mcpl_closeandgzip_outfile(fo)) strcat(fo_filename,".gz"); mcpl_close_file(fi); printf("MCPL: Succesfully extracted %" PRIu64 " / %" PRIu64 " particles from %s into %s\n", added,fi_nparticles,filenames[0],fo_filename); free(fo_filename); free(filenames); return 0; } if (opt_text) { if (nfilenames>2) return free(filenames),mcpl_tool_usage(argv,"Too many arguments."); if (nfilenames!=2) return free(filenames),mcpl_tool_usage(argv,"Must specify both input and output files with --text."); if (mcpl_file_certainly_exists(filenames[1])) return free(filenames),mcpl_tool_usage(argv,"Requested output file already exists."); mcpl_file_t fi = mcpl_open_file(filenames[0]); FILE * fout = fopen(filenames[1],"w"); if (!fout) return free(filenames),mcpl_tool_usage(argv,"Could not open output file."); fprintf(fout,"#MCPL-ASCII\n#ASCII-FORMAT: v1\n#NPARTICLES: %" PRIu64 "\n#END-HEADER\n",mcpl_hdr_nparticles(fi)); fprintf(fout,"index pdgcode ekin[MeV] x[cm] " " y[cm] z[cm] ux " " uy uz time[ms] weight " " pol-x pol-y pol-z userflags\n"); const mcpl_particle_t* p; while ( ( p = mcpl_read(fi) ) ) { uint64_t idx = mcpl_currentposition(fi)-1;//-1 since mcpl_read skipped ahead fprintf(fout,"%5" PRIu64 " %11i %23.18g %23.18g %23.18g %23.18g %23.18g %23.18g %23.18g %23.18g %23.18g" " %23.18g %23.18g %23.18g 0x%08x\n", idx,p->pdgcode,p->ekin,p->position[0],p->position[1],p->position[2], p->direction[0],p->direction[1],p->direction[2],p->time,p->weight, p->polarisation[0],p->polarisation[1],p->polarisation[2],p->userflags); } fclose(fout); mcpl_close_file(fi); free(filenames); return 0; } if (nfilenames>1) return free(filenames),mcpl_tool_usage(argv,"Too many arguments."); if (!nfilenames) return free(filenames),mcpl_tool_usage(argv,"No input file specified"); if (opt_repair) { mcpl_repair(filenames[0]); free(filenames); return 0; } //Dump mode: if (blobkey) { mcpl_file_t mcplfile = mcpl_open_file(filenames[0]); uint32_t ldata; const char * data; if (!mcpl_hdr_blob(mcplfile, blobkey, &ldata, &data)) return 1; #ifdef MCPL_THIS_IS_MS setmode(STDOUT_FILENO, O_BINARY); #endif uint32_t nb = write(STDOUT_FILENO,data,ldata); if (nb!=ldata) mcpl_error("Problems writing to stdout"); free(filenames); return 0; } if (opt_justhead&&(opt_num_limit!=-1||opt_num_skip!=-1)) return free(filenames),mcpl_tool_usage(argv,"Do not specify -l or -s with --justhead"); if (opt_num_limit<0) opt_num_limit = MCPLIMP_TOOL_DEFAULT_NLIMIT; if (opt_num_skip<0) opt_num_skip = MCPLIMP_TOOL_DEFAULT_NSKIP; if (opt_justhead&&opt_nohead) return free(filenames),mcpl_tool_usage(argv,"Do not supply both --justhead and --nohead."); int parts = 0; if (opt_nohead) parts=2; else if (opt_justhead) parts=1; mcpl_dump(filenames[0],parts,opt_num_skip,opt_num_limit); free(filenames); return 0; } int mcpl_gzip_file_rc(const char * filename) { printf("MCPL WARNING: Usage of function mcpl_gzip_file_rc is obsolete as" " mcpl_gzip_file now also returns the status. Please update your code" " to use mcpl_gzip_file instead.\n"); return mcpl_gzip_file(filename); } #if defined(MCPL_HASZLIB) && !defined(Z_SOLO) && !defined(MCPL_NO_CUSTOM_GZIP) # define MCPLIMP_HAS_CUSTOM_GZIP int _mcpl_custom_gzip(const char *file, const char *mode);//return 1 if successful, 0 if not #endif #if defined MCPL_THIS_IS_UNIX && !defined(MCPL_NO_EXT_GZIP) //Platform is unix-like enough that we assume gzip is installed and we can //include posix headers. # include # include # include int mcpl_gzip_file(const char * filename) { const char * bn = strrchr(filename, '/'); bn = bn ? bn + 1 : filename; //spawn process in which to perform gzip: printf("MCPL: Attempting to compress file %s with gzip\n",bn); fflush(0); pid_t gzip_pid = fork(); if (gzip_pid) { //main proc int chld_state = 0; pid_t ret = waitpid(gzip_pid,&chld_state,0); if (ret!=gzip_pid||chld_state!=0) { # ifdef MCPLIMP_HAS_CUSTOM_GZIP printf("MCPL WARNING: Problems invoking gzip - will revert to a custom zlib based compression\n"); if (!_mcpl_custom_gzip(filename,"wb")) mcpl_error("Problems encountered while attempting to compress file"); else printf("MCPL: Succesfully compressed file into %s.gz\n",bn); # else mcpl_error("Problems encountered while attempting to invoke gzip"); # endif } else printf("MCPL: Succesfully compressed file into %s.gz\n",bn); } else { //spawned proc in which to invoke gzip execlp("gzip", "gzip", "-f",filename, (char*)0); printf("MCPL: execlp/gzip error: %s\n",strerror(errno)); exit(1); } return 1; } #else //Non unix-y platform (like windows). We could use e.g. windows-specific calls //instead of the fork() and waitpid() used above, but gzip likely not present on //the system anyway, so we either resort to using zlib directly to gzip, or we //disable the feature and print a warning. # ifndef MCPLIMP_HAS_CUSTOM_GZIP int mcpl_gzip_file(const char * filename) { const char * bn = strrchr(filename, '/'); bn = bn ? bn + 1 : filename; printf("MCPL WARNING: Requested compression of %s to %s.gz is not supported in this build.\n",bn,bn); return 0; } # else int mcpl_gzip_file(const char * filename) { const char * bn = strrchr(filename, '/'); bn = bn ? bn + 1 : filename; printf("MCPL: Attempting to compress file %s with zlib\n",bn); if (!_mcpl_custom_gzip(filename,"wb")) printf("MCPL ERROR: Problems encountered while compressing file %s.\n",bn); else printf("MCPL: Succesfully compressed file into %s.gz\n",bn); return 1; } # endif #endif #ifdef MCPLIMP_HAS_CUSTOM_GZIP int _mcpl_custom_gzip(const char *filename, const char *mode) { //Open input file: FILE *handle_in = fopen(filename, "rb"); if (!handle_in) return 0; //Construct output file name by appending .gz: char * outfn = (char*)malloc(strlen(filename) + 4); outfn[0] = '\0'; strcat(outfn,filename); strcat(outfn,".gz"); //Open output file: gzFile handle_out = gzopen(outfn, mode); free(outfn); if (!handle_out) { fclose(handle_in); return 0; } //Compress input to output: char buf[16384]; size_t len; while (1) { len = (int)fread(buf, 1, sizeof(buf), handle_in); if (ferror(handle_in)) return 0; if (!len) break; if ((size_t)gzwrite(handle_out, buf, (unsigned)len) != len) return 0; } //close file: fclose(handle_in); if (gzclose(handle_out) != Z_OK) return 0; //remove input file and return success: unlink(filename); return 1; } #endif #ifdef NAME # undef NAME #endif /* START OF DUMP OF mz_uncompr.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* uncompr.c -- decompress a memory buffer * Copyright (C) 1995-2003, 2010 Jean-loup Gailly. * For conditions of distribution and use, see copyright notice in zlib.h */ /* @(#) $Id$ */ #define ZLIB_INTERNAL /* =========================================================================== Decompresses the source buffer into the destination buffer. sourceLen is the byte length of the source buffer. Upon entry, destLen is the total size of the destination buffer, which must be large enough to hold the entire uncompressed data. (The size of the uncompressed data must have been saved previously by the compressor and transmitted to the decompressor by some mechanism outside the scope of this compression library.) Upon exit, destLen is the actual size of the compressed buffer. uncompress returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if there was not enough room in the output buffer, or Z_DATA_ERROR if the input data was corrupted. */ int ZEXPORT uncompress (dest, destLen, source, sourceLen) Bytef *dest; uLongf *destLen; const Bytef *source; uLong sourceLen; { z_stream stream; int err; stream.next_in = (z_const Bytef *)source; stream.avail_in = (uInt)sourceLen; /* Check for source > 64K on 16-bit machine: */ if ((uLong)stream.avail_in != sourceLen) return Z_BUF_ERROR; stream.next_out = dest; stream.avail_out = (uInt)*destLen; if ((uLong)stream.avail_out != *destLen) return Z_BUF_ERROR; stream.zalloc = (alloc_func)0; stream.zfree = (free_func)0; err = inflateInit(&stream); if (err != Z_OK) return err; err = inflate(&stream, Z_FINISH); if (err != Z_STREAM_END) { inflateEnd(&stream); if (err == Z_NEED_DICT || (err == Z_BUF_ERROR && stream.avail_in == 0)) return Z_DATA_ERROR; return err; } *destLen = stream.total_out; err = inflateEnd(&stream); return err; } /* END OF DUMP OF mz_uncompr.c*/ /* START OF DUMP OF mz_trees.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* trees.c -- output deflated data using Huffman coding * Copyright (C) 1995-2012 Jean-loup Gailly * detect_data_type() function provided freely by Cosmin Truta, 2006 * For conditions of distribution and use, see copyright notice in zlib.h */ /* * ALGORITHM * * The "deflation" process uses several Huffman trees. The more * common source values are represented by shorter bit sequences. * * Each code tree is stored in a compressed form which is itself * a Huffman encoding of the lengths of all the code strings (in * ascending order by source values). The actual code strings are * reconstructed from the lengths in the inflate process, as described * in the deflate specification. * * REFERENCES * * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc * * Storer, James A. * Data Compression: Methods and Theory, pp. 49-50. * Computer Science Press, 1988. ISBN 0-7167-8156-5. * * Sedgewick, R. * Algorithms, p290. * Addison-Wesley, 1983. ISBN 0-201-06672-6. */ /* @(#) $Id$ */ /* #define GEN_TREES_H */ /* START OF DUMP OF mz_deflate.h*/ /* deflate.h -- internal compression state * Copyright (C) 1995-2012 Jean-loup Gailly * For conditions of distribution and use, see copyright notice in zlib.h */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ /* @(#) $Id$ */ #ifndef DEFLATE_H #define DEFLATE_H /* START OF DUMP OF mz_zutil.h*/ /* zutil.h -- internal interface and configuration of the compression library * Copyright (C) 1995-2013 Jean-loup Gailly. * For conditions of distribution and use, see copyright notice in zlib.h */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ /* @(#) $Id$ */ #ifndef ZUTIL_H #define ZUTIL_H #ifdef HAVE_HIDDEN # define ZLIB_INTERNAL __attribute__((visibility ("hidden"))) #else # define ZLIB_INTERNAL #endif #if defined(STDC) && !defined(Z_SOLO) # if !(defined(_WIN32_WCE) && defined(_MSC_VER)) # include # endif # include # include #endif #ifdef Z_SOLO typedef long ptrdiff_t; /* guess -- will be caught if guess is wrong */ #endif #ifndef local # define local static #endif /* compile with -Dlocal if your debugger can't find static symbols */ typedef unsigned char uch; typedef uch FAR uchf; typedef unsigned short ush; typedef ush FAR ushf; typedef unsigned long ulg; extern z_const char * const z_errmsg[10]; /* indexed by 2-zlib_error */ /* (size given to avoid silly warnings with Visual C++) */ #define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)] #define ERR_RETURN(strm,err) \ return (strm->msg = ERR_MSG(err), (err)) /* To be used only when the state is known to be valid */ /* common constants */ #ifndef DEF_WBITS # define DEF_WBITS MAX_WBITS #endif /* default windowBits for decompression. MAX_WBITS is for compression only */ #if MAX_MEM_LEVEL >= 8 # define DEF_MEM_LEVEL 8 #else # define DEF_MEM_LEVEL MAX_MEM_LEVEL #endif /* default memLevel */ #define STORED_BLOCK 0 #define STATIC_TREES 1 #define DYN_TREES 2 /* The three kinds of block type */ #define MIN_MATCH 3 #define MAX_MATCH 258 /* The minimum and maximum match lengths */ #define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */ /* target dependencies */ #if defined(MSDOS) || (defined(WINDOWS) && !defined(WIN32)) # define OS_CODE 0x00 # ifndef Z_SOLO # if defined(__TURBOC__) || defined(__BORLANDC__) # if (__STDC__ == 1) && (defined(__LARGE__) || defined(__COMPACT__)) /* Allow compilation with ANSI keywords only enabled */ void _Cdecl farfree( void *block ); void *_Cdecl farmalloc( unsigned long nbytes ); # else # include # endif # else /* MSC or DJGPP */ # include # endif # endif #endif #ifdef AMIGA # define OS_CODE 0x01 #endif #if defined(VAXC) || defined(VMS) # define OS_CODE 0x02 # define F_OPEN(name, mode) \ fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512") #endif #if defined(ATARI) || defined(atarist) # define OS_CODE 0x05 #endif #ifdef OS2 # define OS_CODE 0x06 # if defined(M_I86) && !defined(Z_SOLO) # include # endif #endif #if defined(MACOS) || defined(TARGET_OS_MAC) # define OS_CODE 0x07 # ifndef Z_SOLO # if defined(__MWERKS__) && __dest_os != __be_os && __dest_os != __win32_os # include /* for fdopen */ # else # ifndef fdopen # define fdopen(fd,mode) NULL /* No fdopen() */ # endif # endif # endif #endif #ifdef TOPS20 # define OS_CODE 0x0a #endif #ifdef WIN32 # ifndef __CYGWIN__ /* Cygwin is Unix, not Win32 */ # define OS_CODE 0x0b # endif #endif #ifdef __50SERIES /* Prime/PRIMOS */ # define OS_CODE 0x0f #endif #if defined(_BEOS_) || defined(RISCOS) # define fdopen(fd,mode) NULL /* No fdopen() */ #endif #if (defined(_MSC_VER) && (_MSC_VER > 600)) && !defined __INTERIX # if defined(_WIN32_WCE) # define fdopen(fd,mode) NULL /* No fdopen() */ # ifndef _PTRDIFF_T_DEFINED typedef int ptrdiff_t; # define _PTRDIFF_T_DEFINED # endif # else # define fdopen(fd,type) _fdopen(fd,type) # endif #endif #if defined(__BORLANDC__) && !defined(MSDOS) #pragma warn -8004 #pragma warn -8008 #pragma warn -8066 #endif /* provide prototypes for these when building zlib without LFS */ #if !defined(_WIN32) && \ (!defined(_LARGEFILE64_SOURCE) || _LFS64_LARGEFILE-0 == 0) ZEXTERN uLong ZEXPORT adler32_combine64 OF((uLong, uLong, z_off_t)); ZEXTERN uLong ZEXPORT crc32_combine64 OF((uLong, uLong, z_off_t)); #endif /* common defaults */ #ifndef OS_CODE # define OS_CODE 0x03 /* assume Unix */ #endif #ifndef F_OPEN # define F_OPEN(name, mode) fopen((name), (mode)) #endif /* functions */ #if defined(pyr) || defined(Z_SOLO) # define NO_MEMCPY #endif #if defined(SMALL_MEDIUM) && !defined(_MSC_VER) && !defined(__SC__) /* Use our own functions for small and medium model with MSC <= 5.0. * You may have to use the same strategy for Borland C (untested). * The __SC__ check is for Symantec. */ # define NO_MEMCPY #endif #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY) # define HAVE_MEMCPY #endif #ifdef HAVE_MEMCPY # ifdef SMALL_MEDIUM /* MSDOS small or medium model */ # define zmemcpy _fmemcpy # define zmemcmp _fmemcmp # define zmemzero(dest, len) _fmemset(dest, 0, len) # else # define zmemcpy memcpy # define zmemcmp memcmp # define zmemzero(dest, len) memset(dest, 0, len) # endif #else void ZLIB_INTERNAL zmemcpy OF((Bytef* dest, const Bytef* source, uInt len)); int ZLIB_INTERNAL zmemcmp OF((const Bytef* s1, const Bytef* s2, uInt len)); void ZLIB_INTERNAL zmemzero OF((Bytef* dest, uInt len)); #endif /* Diagnostic functions */ #ifdef DEBUG # include extern int ZLIB_INTERNAL z_verbose; extern void ZLIB_INTERNAL z_error OF((char *m)); # define Assert(cond,msg) {if(!(cond)) z_error(msg);} # define Trace(x) {if (z_verbose>=0) fprintf x ;} # define Tracev(x) {if (z_verbose>0) fprintf x ;} # define Tracevv(x) {if (z_verbose>1) fprintf x ;} # define Tracec(c,x) {if (z_verbose>0 && (c)) fprintf x ;} # define Tracecv(c,x) {if (z_verbose>1 && (c)) fprintf x ;} #else # define Assert(cond,msg) # define Trace(x) # define Tracev(x) # define Tracevv(x) # define Tracec(c,x) # define Tracecv(c,x) #endif #ifndef Z_SOLO voidpf ZLIB_INTERNAL zcalloc OF((voidpf opaque, unsigned items, unsigned size)); void ZLIB_INTERNAL zcfree OF((voidpf opaque, voidpf ptr)); #endif #define ZALLOC(strm, items, size) \ (*((strm)->zalloc))((strm)->opaque, (items), (size)) #define ZFREE(strm, addr) (*((strm)->zfree))((strm)->opaque, (voidpf)(addr)) #define TRY_FREE(s, p) {if (p) ZFREE(s, p);} /* Reverse the bytes in a 32-bit value */ #define ZSWAP32(q) ((((q) >> 24) & 0xff) + (((q) >> 8) & 0xff00) + \ (((q) & 0xff00) << 8) + (((q) & 0xff) << 24)) #endif /* ZUTIL_H */ /* END OF DUMP OF mz_zutil.h*/ /* define NO_GZIP when compiling if you want to disable gzip header and trailer creation by deflate(). NO_GZIP would be used to avoid linking in the crc code when it is not needed. For shared libraries, gzip encoding should be left enabled. */ #ifndef NO_GZIP # define GZIP #endif /* =========================================================================== * Internal compression state. */ #define LENGTH_CODES 29 /* number of length codes, not counting the special END_BLOCK code */ #define LITERALS 256 /* number of literal bytes 0..255 */ #define L_CODES (LITERALS+1+LENGTH_CODES) /* number of Literal or Length codes, including the END_BLOCK code */ #define D_CODES 30 /* number of distance codes */ #define BL_CODES 19 /* number of codes used to transfer the bit lengths */ #define HEAP_SIZE (2*L_CODES+1) /* maximum heap size */ #define MAX_BITS 15 /* All codes must not exceed MAX_BITS bits */ #define Buf_size 16 /* size of bit buffer in bi_buf */ #define INIT_STATE 42 #define EXTRA_STATE 69 #define NAME_STATE 73 #define COMMENT_STATE 91 #define HCRC_STATE 103 #define BUSY_STATE 113 #define FINISH_STATE 666 /* Stream status */ /* Data structure describing a single value and its code string. */ typedef struct ct_data_s { union { ush freq; /* frequency count */ ush code; /* bit string */ } fc; union { ush dad; /* father node in Huffman tree */ ush len; /* length of bit string */ } dl; } FAR ct_data; #define Freq fc.freq #define Code fc.code #define Dad dl.dad #define Len dl.len typedef struct static_tree_desc_s static_tree_desc; typedef struct tree_desc_s { ct_data *dyn_tree; /* the dynamic tree */ int max_code; /* largest code with non zero frequency */ static_tree_desc *stat_desc; /* the corresponding static tree */ } FAR tree_desc; typedef ush Pos; typedef Pos FAR Posf; typedef unsigned IPos; /* A Pos is an index in the character window. We use short instead of int to * save space in the various tables. IPos is used only for parameter passing. */ typedef struct internal_state { z_streamp strm; /* pointer back to this zlib stream */ int status; /* as the name implies */ Bytef *pending_buf; /* output still pending */ ulg pending_buf_size; /* size of pending_buf */ Bytef *pending_out; /* next pending byte to output to the stream */ uInt pending; /* nb of bytes in the pending buffer */ int wrap; /* bit 0 true for zlib, bit 1 true for gzip */ gz_headerp gzhead; /* gzip header information to write */ uInt gzindex; /* where in extra, name, or comment */ Byte method; /* can only be DEFLATED */ int last_flush; /* value of flush param for previous deflate call */ /* used by deflate.c: */ uInt w_size; /* LZ77 window size (32K by default) */ uInt w_bits; /* log2(w_size) (8..16) */ uInt w_mask; /* w_size - 1 */ Bytef *window; /* Sliding window. Input bytes are read into the second half of the window, * and move to the first half later to keep a dictionary of at least wSize * bytes. With this organization, matches are limited to a distance of * wSize-MAX_MATCH bytes, but this ensures that IO is always * performed with a length multiple of the block size. Also, it limits * the window size to 64K, which is quite useful on MSDOS. * To do: use the user input buffer as sliding window. */ ulg window_size; /* Actual size of window: 2*wSize, except when the user input buffer * is directly used as sliding window. */ Posf *prev; /* Link to older string with same hash index. To limit the size of this * array to 64K, this link is maintained only for the last 32K strings. * An index in this array is thus a window index modulo 32K. */ Posf *head; /* Heads of the hash chains or NIL. */ uInt ins_h; /* hash index of string to be inserted */ uInt hash_size; /* number of elements in hash table */ uInt hash_bits; /* log2(hash_size) */ uInt hash_mask; /* hash_size-1 */ uInt hash_shift; /* Number of bits by which ins_h must be shifted at each input * step. It must be such that after MIN_MATCH steps, the oldest * byte no longer takes part in the hash key, that is: * hash_shift * MIN_MATCH >= hash_bits */ long block_start; /* Window position at the beginning of the current output block. Gets * negative when the window is moved backwards. */ uInt match_length; /* length of best match */ IPos prev_match; /* previous match */ int match_available; /* set if previous match exists */ uInt strstart; /* start of string to insert */ uInt match_start; /* start of matching string */ uInt lookahead; /* number of valid bytes ahead in window */ uInt prev_length; /* Length of the best match at previous step. Matches not greater than this * are discarded. This is used in the lazy match evaluation. */ uInt max_chain_length; /* To speed up deflation, hash chains are never searched beyond this * length. A higher limit improves compression ratio but degrades the * speed. */ uInt max_lazy_match; /* Attempt to find a better match only when the current match is strictly * smaller than this value. This mechanism is used only for compression * levels >= 4. */ # define max_insert_length max_lazy_match /* Insert new strings in the hash table only if the match length is not * greater than this length. This saves time but degrades compression. * max_insert_length is used only for compression levels <= 3. */ int level; /* compression level (1..9) */ int strategy; /* favor or force Huffman coding*/ uInt good_match; /* Use a faster search when the previous match is longer than this */ int nice_match; /* Stop searching when current match exceeds this */ /* used by trees.c: */ /* Didn't use ct_data typedef below to suppress compiler warning */ struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */ struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */ struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */ struct tree_desc_s l_desc; /* desc. for literal tree */ struct tree_desc_s d_desc; /* desc. for distance tree */ struct tree_desc_s bl_desc; /* desc. for bit length tree */ ush bl_count[MAX_BITS+1]; /* number of codes at each bit length for an optimal tree */ int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */ int heap_len; /* number of elements in the heap */ int heap_max; /* element of largest frequency */ /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used. * The same heap array is used to build all trees. */ uch depth[2*L_CODES+1]; /* Depth of each subtree used as tie breaker for trees of equal frequency */ uchf *l_buf; /* buffer for literals or lengths */ uInt lit_bufsize; /* Size of match buffer for literals/lengths. There are 4 reasons for * limiting lit_bufsize to 64K: * - frequencies can be kept in 16 bit counters * - if compression is not successful for the first block, all input * data is still in the window so we can still emit a stored block even * when input comes from standard input. (This can also be done for * all blocks if lit_bufsize is not greater than 32K.) * - if compression is not successful for a file smaller than 64K, we can * even emit a stored file instead of a stored block (saving 5 bytes). * This is applicable only for zip (not gzip or zlib). * - creating new Huffman trees less frequently may not provide fast * adaptation to changes in the input data statistics. (Take for * example a binary file with poorly compressible code followed by * a highly compressible string table.) Smaller buffer sizes give * fast adaptation but have of course the overhead of transmitting * trees more frequently. * - I can't count above 4 */ uInt last_lit; /* running index in l_buf */ ushf *d_buf; /* Buffer for distances. To simplify the code, d_buf and l_buf have * the same number of elements. To use different lengths, an extra flag * array would be necessary. */ ulg opt_len; /* bit length of current block with optimal trees */ ulg static_len; /* bit length of current block with static trees */ uInt matches; /* number of string matches in current block */ uInt insert; /* bytes at end of window left to insert */ #ifdef DEBUG ulg compressed_len; /* total bit length of compressed file mod 2^32 */ ulg bits_sent; /* bit length of compressed data sent mod 2^32 */ #endif ush bi_buf; /* Output buffer. bits are inserted starting at the bottom (least * significant bits). */ int bi_valid; /* Number of valid bits in bi_buf. All bits above the last valid bit * are always zero. */ ulg high_water; /* High water mark offset in window for initialized bytes -- bytes above * this are set to zero in order to avoid memory check warnings when * longest match routines access bytes past the input. This is then * updated to the new high water mark. */ } FAR deflate_state; /* Output a byte on the stream. * IN assertion: there is enough room in pending_buf. */ #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);} #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1) /* Minimum amount of lookahead, except at the end of the input file. * See deflate.c for comments about the MIN_MATCH+1. */ #define MAX_DIST(s) ((s)->w_size-MIN_LOOKAHEAD) /* In order to simplify the code, particularly on 16 bit machines, match * distances are limited to MAX_DIST instead of WSIZE. */ #define WIN_INIT MAX_MATCH /* Number of bytes after end of data in window to initialize in order to avoid memory checker errors from longest match routines */ /* in trees.c */ void ZLIB_INTERNAL _tr_init OF((deflate_state *s)); int ZLIB_INTERNAL _tr_tally OF((deflate_state *s, unsigned dist, unsigned lc)); void ZLIB_INTERNAL _tr_flush_block OF((deflate_state *s, charf *buf, ulg stored_len, int last)); void ZLIB_INTERNAL _tr_flush_bits OF((deflate_state *s)); void ZLIB_INTERNAL _tr_align OF((deflate_state *s)); void ZLIB_INTERNAL _tr_stored_block OF((deflate_state *s, charf *buf, ulg stored_len, int last)); #define d_code(dist) \ ((dist) < 256 ? _dist_code[dist] : _dist_code[256+((dist)>>7)]) /* Mapping from a distance to a distance code. dist is the distance - 1 and * must not have side effects. _dist_code[256] and _dist_code[257] are never * used. */ #ifndef DEBUG /* Inline versions of _tr_tally for speed: */ #if defined(GEN_TREES_H) || !defined(STDC) extern uch ZLIB_INTERNAL _length_code[]; extern uch ZLIB_INTERNAL _dist_code[]; #else extern const uch ZLIB_INTERNAL _length_code[]; extern const uch ZLIB_INTERNAL _dist_code[]; #endif # define _tr_tally_lit(s, c, flush) \ { uch cc = (c); \ s->d_buf[s->last_lit] = 0; \ s->l_buf[s->last_lit++] = cc; \ s->dyn_ltree[cc].Freq++; \ flush = (s->last_lit == s->lit_bufsize-1); \ } # define _tr_tally_dist(s, distance, length, flush) \ { uch len = (length); \ ush dist = (distance); \ s->d_buf[s->last_lit] = dist; \ s->l_buf[s->last_lit++] = len; \ dist--; \ s->dyn_ltree[_length_code[len]+LITERALS+1].Freq++; \ s->dyn_dtree[d_code(dist)].Freq++; \ flush = (s->last_lit == s->lit_bufsize-1); \ } #else # define _tr_tally_lit(s, c, flush) flush = _tr_tally(s, 0, c) # define _tr_tally_dist(s, distance, length, flush) \ flush = _tr_tally(s, distance, length) #endif #endif /* DEFLATE_H */ /* END OF DUMP OF mz_deflate.h*/ #ifdef DEBUG # include #endif /* =========================================================================== * Constants */ #define MAX_BL_BITS 7 /* Bit length codes must not exceed MAX_BL_BITS bits */ #define END_BLOCK 256 /* end of block literal code */ #define REP_3_6 16 /* repeat previous bit length 3-6 times (2 bits of repeat count) */ #define REPZ_3_10 17 /* repeat a zero length 3-10 times (3 bits of repeat count) */ #define REPZ_11_138 18 /* repeat a zero length 11-138 times (7 bits of repeat count) */ local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; local const int extra_dbits[D_CODES] /* extra bits for each distance code */ = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */ = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; local const uch bl_order[BL_CODES] = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; /* The lengths of the bit length codes are sent in order of decreasing * probability, to avoid transmitting the lengths for unused bit length codes. */ /* =========================================================================== * Local data. These are initialized only once. */ #define DIST_CODE_LEN 512 /* see definition of array dist_code below */ #if defined(GEN_TREES_H) || !defined(STDC) /* non ANSI compilers may not accept trees.h */ local ct_data static_ltree[L_CODES+2]; /* The static literal tree. Since the bit lengths are imposed, there is no * need for the L_CODES extra codes used during heap construction. However * The codes 286 and 287 are needed to build a canonical tree (see _tr_init * below). */ local ct_data static_dtree[D_CODES]; /* The static distance tree. (Actually a trivial tree since all codes use * 5 bits.) */ uch _dist_code[DIST_CODE_LEN]; /* Distance codes. The first 256 values correspond to the distances * 3 .. 258, the last 256 values correspond to the top 8 bits of * the 15 bit distances. */ uch _length_code[MAX_MATCH-MIN_MATCH+1]; /* length code for each normalized match length (0 == MIN_MATCH) */ local int base_length[LENGTH_CODES]; /* First normalized length for each code (0 = MIN_MATCH) */ local int base_dist[D_CODES]; /* First normalized distance for each code (0 = distance of 1) */ #else /* START OF DUMP OF mz_trees.h*/ /* header created automatically with -DGEN_TREES_H */ local const ct_data static_ltree[L_CODES+2] = { {{ 12},{ 8}}, {{140},{ 8}}, {{ 76},{ 8}}, {{204},{ 8}}, {{ 44},{ 8}}, {{172},{ 8}}, {{108},{ 8}}, {{236},{ 8}}, {{ 28},{ 8}}, {{156},{ 8}}, {{ 92},{ 8}}, {{220},{ 8}}, {{ 60},{ 8}}, {{188},{ 8}}, {{124},{ 8}}, {{252},{ 8}}, {{ 2},{ 8}}, {{130},{ 8}}, {{ 66},{ 8}}, {{194},{ 8}}, {{ 34},{ 8}}, {{162},{ 8}}, {{ 98},{ 8}}, {{226},{ 8}}, {{ 18},{ 8}}, {{146},{ 8}}, {{ 82},{ 8}}, {{210},{ 8}}, {{ 50},{ 8}}, {{178},{ 8}}, {{114},{ 8}}, {{242},{ 8}}, {{ 10},{ 8}}, {{138},{ 8}}, {{ 74},{ 8}}, {{202},{ 8}}, {{ 42},{ 8}}, {{170},{ 8}}, {{106},{ 8}}, {{234},{ 8}}, {{ 26},{ 8}}, {{154},{ 8}}, {{ 90},{ 8}}, {{218},{ 8}}, {{ 58},{ 8}}, {{186},{ 8}}, {{122},{ 8}}, {{250},{ 8}}, {{ 6},{ 8}}, {{134},{ 8}}, {{ 70},{ 8}}, {{198},{ 8}}, {{ 38},{ 8}}, {{166},{ 8}}, {{102},{ 8}}, {{230},{ 8}}, {{ 22},{ 8}}, {{150},{ 8}}, {{ 86},{ 8}}, {{214},{ 8}}, {{ 54},{ 8}}, {{182},{ 8}}, {{118},{ 8}}, {{246},{ 8}}, {{ 14},{ 8}}, {{142},{ 8}}, {{ 78},{ 8}}, {{206},{ 8}}, {{ 46},{ 8}}, {{174},{ 8}}, {{110},{ 8}}, {{238},{ 8}}, {{ 30},{ 8}}, {{158},{ 8}}, {{ 94},{ 8}}, {{222},{ 8}}, {{ 62},{ 8}}, {{190},{ 8}}, {{126},{ 8}}, {{254},{ 8}}, {{ 1},{ 8}}, {{129},{ 8}}, {{ 65},{ 8}}, {{193},{ 8}}, {{ 33},{ 8}}, {{161},{ 8}}, {{ 97},{ 8}}, {{225},{ 8}}, {{ 17},{ 8}}, {{145},{ 8}}, {{ 81},{ 8}}, {{209},{ 8}}, {{ 49},{ 8}}, {{177},{ 8}}, {{113},{ 8}}, {{241},{ 8}}, {{ 9},{ 8}}, {{137},{ 8}}, {{ 73},{ 8}}, {{201},{ 8}}, {{ 41},{ 8}}, {{169},{ 8}}, {{105},{ 8}}, {{233},{ 8}}, {{ 25},{ 8}}, {{153},{ 8}}, {{ 89},{ 8}}, {{217},{ 8}}, {{ 57},{ 8}}, {{185},{ 8}}, {{121},{ 8}}, {{249},{ 8}}, {{ 5},{ 8}}, {{133},{ 8}}, {{ 69},{ 8}}, {{197},{ 8}}, {{ 37},{ 8}}, {{165},{ 8}}, {{101},{ 8}}, {{229},{ 8}}, {{ 21},{ 8}}, {{149},{ 8}}, {{ 85},{ 8}}, {{213},{ 8}}, {{ 53},{ 8}}, {{181},{ 8}}, {{117},{ 8}}, {{245},{ 8}}, {{ 13},{ 8}}, {{141},{ 8}}, {{ 77},{ 8}}, {{205},{ 8}}, {{ 45},{ 8}}, {{173},{ 8}}, {{109},{ 8}}, {{237},{ 8}}, {{ 29},{ 8}}, {{157},{ 8}}, {{ 93},{ 8}}, {{221},{ 8}}, {{ 61},{ 8}}, {{189},{ 8}}, {{125},{ 8}}, {{253},{ 8}}, {{ 19},{ 9}}, {{275},{ 9}}, {{147},{ 9}}, {{403},{ 9}}, {{ 83},{ 9}}, {{339},{ 9}}, {{211},{ 9}}, {{467},{ 9}}, {{ 51},{ 9}}, {{307},{ 9}}, {{179},{ 9}}, {{435},{ 9}}, {{115},{ 9}}, {{371},{ 9}}, {{243},{ 9}}, {{499},{ 9}}, {{ 11},{ 9}}, {{267},{ 9}}, {{139},{ 9}}, {{395},{ 9}}, {{ 75},{ 9}}, {{331},{ 9}}, {{203},{ 9}}, {{459},{ 9}}, {{ 43},{ 9}}, {{299},{ 9}}, {{171},{ 9}}, {{427},{ 9}}, {{107},{ 9}}, {{363},{ 9}}, {{235},{ 9}}, {{491},{ 9}}, {{ 27},{ 9}}, {{283},{ 9}}, {{155},{ 9}}, {{411},{ 9}}, {{ 91},{ 9}}, {{347},{ 9}}, {{219},{ 9}}, {{475},{ 9}}, {{ 59},{ 9}}, {{315},{ 9}}, {{187},{ 9}}, {{443},{ 9}}, {{123},{ 9}}, {{379},{ 9}}, {{251},{ 9}}, {{507},{ 9}}, {{ 7},{ 9}}, {{263},{ 9}}, {{135},{ 9}}, {{391},{ 9}}, {{ 71},{ 9}}, {{327},{ 9}}, {{199},{ 9}}, {{455},{ 9}}, {{ 39},{ 9}}, {{295},{ 9}}, {{167},{ 9}}, {{423},{ 9}}, {{103},{ 9}}, {{359},{ 9}}, {{231},{ 9}}, {{487},{ 9}}, {{ 23},{ 9}}, {{279},{ 9}}, {{151},{ 9}}, {{407},{ 9}}, {{ 87},{ 9}}, {{343},{ 9}}, {{215},{ 9}}, {{471},{ 9}}, {{ 55},{ 9}}, {{311},{ 9}}, {{183},{ 9}}, {{439},{ 9}}, {{119},{ 9}}, {{375},{ 9}}, {{247},{ 9}}, {{503},{ 9}}, {{ 15},{ 9}}, {{271},{ 9}}, {{143},{ 9}}, {{399},{ 9}}, {{ 79},{ 9}}, {{335},{ 9}}, {{207},{ 9}}, {{463},{ 9}}, {{ 47},{ 9}}, {{303},{ 9}}, {{175},{ 9}}, {{431},{ 9}}, {{111},{ 9}}, {{367},{ 9}}, {{239},{ 9}}, {{495},{ 9}}, {{ 31},{ 9}}, {{287},{ 9}}, {{159},{ 9}}, {{415},{ 9}}, {{ 95},{ 9}}, {{351},{ 9}}, {{223},{ 9}}, {{479},{ 9}}, {{ 63},{ 9}}, {{319},{ 9}}, {{191},{ 9}}, {{447},{ 9}}, {{127},{ 9}}, {{383},{ 9}}, {{255},{ 9}}, {{511},{ 9}}, {{ 0},{ 7}}, {{ 64},{ 7}}, {{ 32},{ 7}}, {{ 96},{ 7}}, {{ 16},{ 7}}, {{ 80},{ 7}}, {{ 48},{ 7}}, {{112},{ 7}}, {{ 8},{ 7}}, {{ 72},{ 7}}, {{ 40},{ 7}}, {{104},{ 7}}, {{ 24},{ 7}}, {{ 88},{ 7}}, {{ 56},{ 7}}, {{120},{ 7}}, {{ 4},{ 7}}, {{ 68},{ 7}}, {{ 36},{ 7}}, {{100},{ 7}}, {{ 20},{ 7}}, {{ 84},{ 7}}, {{ 52},{ 7}}, {{116},{ 7}}, {{ 3},{ 8}}, {{131},{ 8}}, {{ 67},{ 8}}, {{195},{ 8}}, {{ 35},{ 8}}, {{163},{ 8}}, {{ 99},{ 8}}, {{227},{ 8}} }; local const ct_data static_dtree[D_CODES] = { {{ 0},{ 5}}, {{16},{ 5}}, {{ 8},{ 5}}, {{24},{ 5}}, {{ 4},{ 5}}, {{20},{ 5}}, {{12},{ 5}}, {{28},{ 5}}, {{ 2},{ 5}}, {{18},{ 5}}, {{10},{ 5}}, {{26},{ 5}}, {{ 6},{ 5}}, {{22},{ 5}}, {{14},{ 5}}, {{30},{ 5}}, {{ 1},{ 5}}, {{17},{ 5}}, {{ 9},{ 5}}, {{25},{ 5}}, {{ 5},{ 5}}, {{21},{ 5}}, {{13},{ 5}}, {{29},{ 5}}, {{ 3},{ 5}}, {{19},{ 5}}, {{11},{ 5}}, {{27},{ 5}}, {{ 7},{ 5}}, {{23},{ 5}} }; const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = { 0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 16, 17, 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29 }; const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= { 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28 }; local const int base_length[LENGTH_CODES] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 0 }; local const int base_dist[D_CODES] = { 0, 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576 }; /* END OF DUMP OF mz_trees.h*/ #endif /* GEN_TREES_H */ struct static_tree_desc_s { const ct_data *static_tree; /* static tree or NULL */ const intf *extra_bits; /* extra bits for each code or NULL */ int extra_base; /* base index for extra_bits */ int elems; /* max number of elements in the tree */ int max_length; /* max bit length for the codes */ }; local static_tree_desc static_l_desc = {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; local static_tree_desc static_d_desc = {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS}; local static_tree_desc static_bl_desc = {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; /* =========================================================================== * Local (static) routines in this file. */ local void tr_static_init OF((void)); local void init_block OF((deflate_state *s)); local void pqdownheap OF((deflate_state *s, ct_data *tree, int k)); local void gen_bitlen OF((deflate_state *s, tree_desc *desc)); local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count)); local void build_tree OF((deflate_state *s, tree_desc *desc)); local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code)); local void send_tree OF((deflate_state *s, ct_data *tree, int max_code)); local int build_bl_tree OF((deflate_state *s)); local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes, int blcodes)); local void compress_block OF((deflate_state *s, const ct_data *ltree, const ct_data *dtree)); local int detect_data_type OF((deflate_state *s)); local unsigned bi_reverse OF((unsigned value, int length)); local void bi_windup OF((deflate_state *s)); local void bi_flush OF((deflate_state *s)); local void copy_block OF((deflate_state *s, charf *buf, unsigned len, int header)); #ifdef GEN_TREES_H local void gen_trees_header OF((void)); #endif #ifndef DEBUG # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) /* Send a code of the given tree. c and tree must not have side effects */ #else /* DEBUG */ # define send_code(s, c, tree) \ { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ send_bits(s, tree[c].Code, tree[c].Len); } #endif /* =========================================================================== * Output a short LSB first on the stream. * IN assertion: there is enough room in pendingBuf. */ #define put_short(s, w) { \ put_byte(s, (uch)((w) & 0xff)); \ put_byte(s, (uch)((ush)(w) >> 8)); \ } /* =========================================================================== * Send a value on a given number of bits. * IN assertion: length <= 16 and value fits in length bits. */ #ifdef DEBUG local void send_bits OF((deflate_state *s, int value, int length)); local void send_bits(s, value, length) deflate_state *s; int value; /* value to send */ int length; /* number of bits */ { Tracevv((stderr," l %2d v %4x ", length, value)); Assert(length > 0 && length <= 15, "invalid length"); s->bits_sent += (ulg)length; /* If not enough room in bi_buf, use (valid) bits from bi_buf and * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) * unused bits in value. */ if (s->bi_valid > (int)Buf_size - length) { s->bi_buf |= (ush)value << s->bi_valid; put_short(s, s->bi_buf); s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); s->bi_valid += length - Buf_size; } else { s->bi_buf |= (ush)value << s->bi_valid; s->bi_valid += length; } } #else /* !DEBUG */ #define send_bits(s, value, length) \ { int len = length;\ if (s->bi_valid > (int)Buf_size - len) {\ int val = value;\ s->bi_buf |= (ush)val << s->bi_valid;\ put_short(s, s->bi_buf);\ s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ s->bi_valid += len - Buf_size;\ } else {\ s->bi_buf |= (ush)(value) << s->bi_valid;\ s->bi_valid += len;\ }\ } #endif /* DEBUG */ /* the arguments must not have side effects */ /* =========================================================================== * Initialize the various 'constant' tables. */ local void tr_static_init() { #if defined(GEN_TREES_H) || !defined(STDC) static int static_init_done = 0; int n; /* iterates over tree elements */ int bits; /* bit counter */ int length; /* length value */ int code; /* code value */ int dist; /* distance index */ ush bl_count[MAX_BITS+1]; /* number of codes at each bit length for an optimal tree */ if (static_init_done) return; /* For some embedded targets, global variables are not initialized: */ #ifdef NO_INIT_GLOBAL_POINTERS static_l_desc.static_tree = static_ltree; static_l_desc.extra_bits = extra_lbits; static_d_desc.static_tree = static_dtree; static_d_desc.extra_bits = extra_dbits; static_bl_desc.extra_bits = extra_blbits; #endif /* Initialize the mapping length (0..255) -> length code (0..28) */ length = 0; for (code = 0; code < LENGTH_CODES-1; code++) { base_length[code] = length; for (n = 0; n < (1< dist code (0..29) */ dist = 0; for (code = 0 ; code < 16; code++) { base_dist[code] = dist; for (n = 0; n < (1<>= 7; /* from now on, all distances are divided by 128 */ for ( ; code < D_CODES; code++) { base_dist[code] = dist << 7; for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { _dist_code[256 + dist++] = (uch)code; } } Assert (dist == 256, "tr_static_init: 256+dist != 512"); /* Construct the codes of the static literal tree */ for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; n = 0; while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; /* Codes 286 and 287 do not exist, but we must include them in the * tree construction to get a canonical Huffman tree (longest code * all ones) */ gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); /* The static distance tree is trivial: */ for (n = 0; n < D_CODES; n++) { static_dtree[n].Len = 5; static_dtree[n].Code = bi_reverse((unsigned)n, 5); } static_init_done = 1; # ifdef GEN_TREES_H gen_trees_header(); # endif #endif /* defined(GEN_TREES_H) || !defined(STDC) */ } /* =========================================================================== * Genererate the file trees.h describing the static trees. */ #ifdef GEN_TREES_H # ifndef DEBUG # include # endif # define SEPARATOR(i, last, width) \ ((i) == (last)? "\n};\n\n" : \ ((i) % (width) == (width)-1 ? ",\n" : ", ")) void gen_trees_header() { FILE *header = fopen("trees.h", "w"); int i; Assert (header != NULL, "Can't open trees.h"); fprintf(header, "/* header created automatically with -DGEN_TREES_H */\n\n"); fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n"); for (i = 0; i < L_CODES+2; i++) { fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code, static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5)); } fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n"); for (i = 0; i < D_CODES; i++) { fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code, static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5)); } fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n"); for (i = 0; i < DIST_CODE_LEN; i++) { fprintf(header, "%2u%s", _dist_code[i], SEPARATOR(i, DIST_CODE_LEN-1, 20)); } fprintf(header, "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n"); for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) { fprintf(header, "%2u%s", _length_code[i], SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20)); } fprintf(header, "local const int base_length[LENGTH_CODES] = {\n"); for (i = 0; i < LENGTH_CODES; i++) { fprintf(header, "%1u%s", base_length[i], SEPARATOR(i, LENGTH_CODES-1, 20)); } fprintf(header, "local const int base_dist[D_CODES] = {\n"); for (i = 0; i < D_CODES; i++) { fprintf(header, "%5u%s", base_dist[i], SEPARATOR(i, D_CODES-1, 10)); } fclose(header); } #endif /* GEN_TREES_H */ /* =========================================================================== * Initialize the tree data structures for a new zlib stream. */ void ZLIB_INTERNAL _tr_init(s) deflate_state *s; { tr_static_init(); s->l_desc.dyn_tree = s->dyn_ltree; s->l_desc.stat_desc = &static_l_desc; s->d_desc.dyn_tree = s->dyn_dtree; s->d_desc.stat_desc = &static_d_desc; s->bl_desc.dyn_tree = s->bl_tree; s->bl_desc.stat_desc = &static_bl_desc; s->bi_buf = 0; s->bi_valid = 0; #ifdef DEBUG s->compressed_len = 0L; s->bits_sent = 0L; #endif /* Initialize the first block of the first file: */ init_block(s); } /* =========================================================================== * Initialize a new block. */ local void init_block(s) deflate_state *s; { int n; /* iterates over tree elements */ /* Initialize the trees. */ for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0; for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0; for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; s->dyn_ltree[END_BLOCK].Freq = 1; s->opt_len = s->static_len = 0L; s->last_lit = s->matches = 0; } #define SMALLEST 1 /* Index within the heap array of least frequent node in the Huffman tree */ /* =========================================================================== * Remove the smallest element from the heap and recreate the heap with * one less element. Updates heap and heap_len. */ #define pqremove(s, tree, top) \ {\ top = s->heap[SMALLEST]; \ s->heap[SMALLEST] = s->heap[s->heap_len--]; \ pqdownheap(s, tree, SMALLEST); \ } /* =========================================================================== * Compares to subtrees, using the tree depth as tie breaker when * the subtrees have equal frequency. This minimizes the worst case length. */ #define smaller(tree, n, m, depth) \ (tree[n].Freq < tree[m].Freq || \ (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) /* =========================================================================== * Restore the heap property by moving down the tree starting at node k, * exchanging a node with the smallest of its two sons if necessary, stopping * when the heap property is re-established (each father smaller than its * two sons). */ local void pqdownheap(s, tree, k) deflate_state *s; ct_data *tree; /* the tree to restore */ int k; /* node to move down */ { int v = s->heap[k]; int j = k << 1; /* left son of k */ while (j <= s->heap_len) { /* Set j to the smallest of the two sons: */ if (j < s->heap_len && smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { j++; } /* Exit if v is smaller than both sons */ if (smaller(tree, v, s->heap[j], s->depth)) break; /* Exchange v with the smallest son */ s->heap[k] = s->heap[j]; k = j; /* And continue down the tree, setting j to the left son of k */ j <<= 1; } s->heap[k] = v; } /* =========================================================================== * Compute the optimal bit lengths for a tree and update the total bit length * for the current block. * IN assertion: the fields freq and dad are set, heap[heap_max] and * above are the tree nodes sorted by increasing frequency. * OUT assertions: the field len is set to the optimal bit length, the * array bl_count contains the frequencies for each bit length. * The length opt_len is updated; static_len is also updated if stree is * not null. */ local void gen_bitlen(s, desc) deflate_state *s; tree_desc *desc; /* the tree descriptor */ { ct_data *tree = desc->dyn_tree; int max_code = desc->max_code; const ct_data *stree = desc->stat_desc->static_tree; const intf *extra = desc->stat_desc->extra_bits; int base = desc->stat_desc->extra_base; int max_length = desc->stat_desc->max_length; int h; /* heap index */ int n, m; /* iterate over the tree elements */ int bits; /* bit length */ int xbits; /* extra bits */ ush f; /* frequency */ int overflow = 0; /* number of elements with bit length too large */ for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; /* In a first pass, compute the optimal bit lengths (which may * overflow in the case of the bit length tree). */ tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ for (h = s->heap_max+1; h < HEAP_SIZE; h++) { n = s->heap[h]; bits = tree[tree[n].Dad].Len + 1; if (bits > max_length) bits = max_length, overflow++; tree[n].Len = (ush)bits; /* We overwrite tree[n].Dad which is no longer needed */ if (n > max_code) continue; /* not a leaf node */ s->bl_count[bits]++; xbits = 0; if (n >= base) xbits = extra[n-base]; f = tree[n].Freq; s->opt_len += (ulg)f * (bits + xbits); if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits); } if (overflow == 0) return; Trace((stderr,"\nbit length overflow\n")); /* This happens for example on obj2 and pic of the Calgary corpus */ /* Find the first bit length which could increase: */ do { bits = max_length-1; while (s->bl_count[bits] == 0) bits--; s->bl_count[bits]--; /* move one leaf down the tree */ s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ s->bl_count[max_length]--; /* The brother of the overflow item also moves one step up, * but this does not affect bl_count[max_length] */ overflow -= 2; } while (overflow > 0); /* Now recompute all bit lengths, scanning in increasing frequency. * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all * lengths instead of fixing only the wrong ones. This idea is taken * from 'ar' written by Haruhiko Okumura.) */ for (bits = max_length; bits != 0; bits--) { n = s->bl_count[bits]; while (n != 0) { m = s->heap[--h]; if (m > max_code) continue; if ((unsigned) tree[m].Len != (unsigned) bits) { Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); s->opt_len += ((long)bits - (long)tree[m].Len) *(long)tree[m].Freq; tree[m].Len = (ush)bits; } n--; } } } /* =========================================================================== * Generate the codes for a given tree and bit counts (which need not be * optimal). * IN assertion: the array bl_count contains the bit length statistics for * the given tree and the field len is set for all tree elements. * OUT assertion: the field code is set for all tree elements of non * zero code length. */ local void gen_codes (tree, max_code, bl_count) ct_data *tree; /* the tree to decorate */ int max_code; /* largest code with non zero frequency */ ushf *bl_count; /* number of codes at each bit length */ { ush next_code[MAX_BITS+1]; /* next code value for each bit length */ ush code = 0; /* running code value */ int bits; /* bit index */ int n; /* code index */ /* The distribution counts are first used to generate the code values * without bit reversal. */ for (bits = 1; bits <= MAX_BITS; bits++) { next_code[bits] = code = (code + bl_count[bits-1]) << 1; } /* Check that the bit counts in bl_count are consistent. The last code * must be all ones. */ Assert (code + bl_count[MAX_BITS]-1 == (1<dyn_tree; const ct_data *stree = desc->stat_desc->static_tree; int elems = desc->stat_desc->elems; int n, m; /* iterate over heap elements */ int max_code = -1; /* largest code with non zero frequency */ int node; /* new node being created */ /* Construct the initial heap, with least frequent element in * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. * heap[0] is not used. */ s->heap_len = 0, s->heap_max = HEAP_SIZE; for (n = 0; n < elems; n++) { if (tree[n].Freq != 0) { s->heap[++(s->heap_len)] = max_code = n; s->depth[n] = 0; } else { tree[n].Len = 0; } } /* The pkzip format requires that at least one distance code exists, * and that at least one bit should be sent even if there is only one * possible code. So to avoid special checks later on we force at least * two codes of non zero frequency. */ while (s->heap_len < 2) { node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); tree[node].Freq = 1; s->depth[node] = 0; s->opt_len--; if (stree) s->static_len -= stree[node].Len; /* node is 0 or 1 so it does not have extra bits */ } desc->max_code = max_code; /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, * establish sub-heaps of increasing lengths: */ for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); /* Construct the Huffman tree by repeatedly combining the least two * frequent nodes. */ node = elems; /* next internal node of the tree */ do { pqremove(s, tree, n); /* n = node of least frequency */ m = s->heap[SMALLEST]; /* m = node of next least frequency */ s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ s->heap[--(s->heap_max)] = m; /* Create a new node father of n and m */ tree[node].Freq = tree[n].Freq + tree[m].Freq; s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ? s->depth[n] : s->depth[m]) + 1); tree[n].Dad = tree[m].Dad = (ush)node; #ifdef DUMP_BL_TREE if (tree == s->bl_tree) { fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); } #endif /* and insert the new node in the heap */ s->heap[SMALLEST] = node++; pqdownheap(s, tree, SMALLEST); } while (s->heap_len >= 2); s->heap[--(s->heap_max)] = s->heap[SMALLEST]; /* At this point, the fields freq and dad are set. We can now * generate the bit lengths. */ gen_bitlen(s, (tree_desc *)desc); /* The field len is now set, we can generate the bit codes */ gen_codes ((ct_data *)tree, max_code, s->bl_count); } /* =========================================================================== * Scan a literal or distance tree to determine the frequencies of the codes * in the bit length tree. */ local void scan_tree (s, tree, max_code) deflate_state *s; ct_data *tree; /* the tree to be scanned */ int max_code; /* and its largest code of non zero frequency */ { int n; /* iterates over all tree elements */ int prevlen = -1; /* last emitted length */ int curlen; /* length of current code */ int nextlen = tree[0].Len; /* length of next code */ int count = 0; /* repeat count of the current code */ int max_count = 7; /* max repeat count */ int min_count = 4; /* min repeat count */ if (nextlen == 0) max_count = 138, min_count = 3; tree[max_code+1].Len = (ush)0xffff; /* guard */ for (n = 0; n <= max_code; n++) { curlen = nextlen; nextlen = tree[n+1].Len; if (++count < max_count && curlen == nextlen) { continue; } else if (count < min_count) { s->bl_tree[curlen].Freq += count; } else if (curlen != 0) { if (curlen != prevlen) s->bl_tree[curlen].Freq++; s->bl_tree[REP_3_6].Freq++; } else if (count <= 10) { s->bl_tree[REPZ_3_10].Freq++; } else { s->bl_tree[REPZ_11_138].Freq++; } count = 0; prevlen = curlen; if (nextlen == 0) { max_count = 138, min_count = 3; } else if (curlen == nextlen) { max_count = 6, min_count = 3; } else { max_count = 7, min_count = 4; } } } /* =========================================================================== * Send a literal or distance tree in compressed form, using the codes in * bl_tree. */ local void send_tree (s, tree, max_code) deflate_state *s; ct_data *tree; /* the tree to be scanned */ int max_code; /* and its largest code of non zero frequency */ { int n; /* iterates over all tree elements */ int prevlen = -1; /* last emitted length */ int curlen; /* length of current code */ int nextlen = tree[0].Len; /* length of next code */ int count = 0; /* repeat count of the current code */ int max_count = 7; /* max repeat count */ int min_count = 4; /* min repeat count */ /* tree[max_code+1].Len = -1; */ /* guard already set */ if (nextlen == 0) max_count = 138, min_count = 3; for (n = 0; n <= max_code; n++) { curlen = nextlen; nextlen = tree[n+1].Len; if (++count < max_count && curlen == nextlen) { continue; } else if (count < min_count) { do { send_code(s, curlen, s->bl_tree); } while (--count != 0); } else if (curlen != 0) { if (curlen != prevlen) { send_code(s, curlen, s->bl_tree); count--; } Assert(count >= 3 && count <= 6, " 3_6?"); send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2); } else if (count <= 10) { send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3); } else { send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7); } count = 0; prevlen = curlen; if (nextlen == 0) { max_count = 138, min_count = 3; } else if (curlen == nextlen) { max_count = 6, min_count = 3; } else { max_count = 7, min_count = 4; } } } /* =========================================================================== * Construct the Huffman tree for the bit lengths and return the index in * bl_order of the last bit length code to send. */ local int build_bl_tree(s) deflate_state *s; { int max_blindex; /* index of last bit length code of non zero freq */ /* Determine the bit length frequencies for literal and distance trees */ scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); /* Build the bit length tree: */ build_tree(s, (tree_desc *)(&(s->bl_desc))); /* opt_len now includes the length of the tree representations, except * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. */ /* Determine the number of bit length codes to send. The pkzip format * requires that at least 4 bit length codes be sent. (appnote.txt says * 3 but the actual value used is 4.) */ for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; } /* Update opt_len to include the bit length tree and counts */ s->opt_len += 3*(max_blindex+1) + 5+5+4; Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", s->opt_len, s->static_len)); return max_blindex; } /* =========================================================================== * Send the header for a block using dynamic Huffman trees: the counts, the * lengths of the bit length codes, the literal tree and the distance tree. * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. */ local void send_all_trees(s, lcodes, dcodes, blcodes) deflate_state *s; int lcodes, dcodes, blcodes; /* number of codes for each tree */ { int rank; /* index in bl_order */ Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, "too many codes"); Tracev((stderr, "\nbl counts: ")); send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */ send_bits(s, dcodes-1, 5); send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */ for (rank = 0; rank < blcodes; rank++) { Tracev((stderr, "\nbl code %2d ", bl_order[rank])); send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); } Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */ Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */ Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); } /* =========================================================================== * Send a stored block */ void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last) deflate_state *s; charf *buf; /* input block */ ulg stored_len; /* length of input block */ int last; /* one if this is the last block for a file */ { send_bits(s, (STORED_BLOCK<<1)+last, 3); /* send block type */ #ifdef DEBUG s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; s->compressed_len += (stored_len + 4) << 3; #endif copy_block(s, buf, (unsigned)stored_len, 1); /* with header */ } /* =========================================================================== * Flush the bits in the bit buffer to pending output (leaves at most 7 bits) */ void ZLIB_INTERNAL _tr_flush_bits(s) deflate_state *s; { bi_flush(s); } /* =========================================================================== * Send one empty static block to give enough lookahead for inflate. * This takes 10 bits, of which 7 may remain in the bit buffer. */ void ZLIB_INTERNAL _tr_align(s) deflate_state *s; { send_bits(s, STATIC_TREES<<1, 3); send_code(s, END_BLOCK, static_ltree); #ifdef DEBUG s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ #endif bi_flush(s); } /* =========================================================================== * Determine the best encoding for the current block: dynamic trees, static * trees or store, and output the encoded block to the zip file. */ void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last) deflate_state *s; charf *buf; /* input block, or NULL if too old */ ulg stored_len; /* length of input block */ int last; /* one if this is the last block for a file */ { ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ int max_blindex = 0; /* index of last bit length code of non zero freq */ /* Build the Huffman trees unless a stored block is forced */ if (s->level > 0) { /* Check if the file is binary or text */ if (s->strm->data_type == Z_UNKNOWN) s->strm->data_type = detect_data_type(s); /* Construct the literal and distance trees */ build_tree(s, (tree_desc *)(&(s->l_desc))); Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, s->static_len)); build_tree(s, (tree_desc *)(&(s->d_desc))); Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, s->static_len)); /* At this point, opt_len and static_len are the total bit lengths of * the compressed block data, excluding the tree representations. */ /* Build the bit length tree for the above two trees, and get the index * in bl_order of the last bit length code to send. */ max_blindex = build_bl_tree(s); /* Determine the best encoding. Compute the block lengths in bytes. */ opt_lenb = (s->opt_len+3+7)>>3; static_lenb = (s->static_len+3+7)>>3; Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, s->last_lit)); if (static_lenb <= opt_lenb) opt_lenb = static_lenb; } else { Assert(buf != (char*)0, "lost buf"); opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ } #ifdef FORCE_STORED if (buf != (char*)0) { /* force stored block */ #else if (stored_len+4 <= opt_lenb && buf != (char*)0) { /* 4: two words for the lengths */ #endif /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. * Otherwise we can't have processed more than WSIZE input bytes since * the last block flush, because compression would have been * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to * transform a block into a stored block. */ _tr_stored_block(s, buf, stored_len, last); #ifdef FORCE_STATIC } else if (static_lenb >= 0) { /* force static trees */ #else } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) { #endif send_bits(s, (STATIC_TREES<<1)+last, 3); compress_block(s, (const ct_data *)static_ltree, (const ct_data *)static_dtree); #ifdef DEBUG s->compressed_len += 3 + s->static_len; #endif } else { send_bits(s, (DYN_TREES<<1)+last, 3); send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, max_blindex+1); compress_block(s, (const ct_data *)s->dyn_ltree, (const ct_data *)s->dyn_dtree); #ifdef DEBUG s->compressed_len += 3 + s->opt_len; #endif } Assert (s->compressed_len == s->bits_sent, "bad compressed size"); /* The above check is made mod 2^32, for files larger than 512 MB * and uLong implemented on 32 bits. */ init_block(s); if (last) { bi_windup(s); #ifdef DEBUG s->compressed_len += 7; /* align on byte boundary */ #endif } Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, s->compressed_len-7*last)); } /* =========================================================================== * Save the match info and tally the frequency counts. Return true if * the current block must be flushed. */ int ZLIB_INTERNAL _tr_tally (s, dist, lc) deflate_state *s; unsigned dist; /* distance of matched string */ unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */ { s->d_buf[s->last_lit] = (ush)dist; s->l_buf[s->last_lit++] = (uch)lc; if (dist == 0) { /* lc is the unmatched char */ s->dyn_ltree[lc].Freq++; } else { s->matches++; /* Here, lc is the match length - MIN_MATCH */ dist--; /* dist = match distance - 1 */ Assert((ush)dist < (ush)MAX_DIST(s) && (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match"); s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++; s->dyn_dtree[d_code(dist)].Freq++; } #ifdef TRUNCATE_BLOCK /* Try to guess if it is profitable to stop the current block here */ if ((s->last_lit & 0x1fff) == 0 && s->level > 2) { /* Compute an upper bound for the compressed length */ ulg out_length = (ulg)s->last_lit*8L; ulg in_length = (ulg)((long)s->strstart - s->block_start); int dcode; for (dcode = 0; dcode < D_CODES; dcode++) { out_length += (ulg)s->dyn_dtree[dcode].Freq * (5L+extra_dbits[dcode]); } out_length >>= 3; Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", s->last_lit, in_length, out_length, 100L - out_length*100L/in_length)); if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1; } #endif return (s->last_lit == s->lit_bufsize-1); /* We avoid equality with lit_bufsize because of wraparound at 64K * on 16 bit machines and because stored blocks are restricted to * 64K-1 bytes. */ } /* =========================================================================== * Send the block data compressed using the given Huffman trees */ local void compress_block(s, ltree, dtree) deflate_state *s; const ct_data *ltree; /* literal tree */ const ct_data *dtree; /* distance tree */ { unsigned dist; /* distance of matched string */ int lc; /* match length or unmatched char (if dist == 0) */ unsigned lx = 0; /* running index in l_buf */ unsigned code; /* the code to send */ int extra; /* number of extra bits to send */ if (s->last_lit != 0) do { dist = s->d_buf[lx]; lc = s->l_buf[lx++]; if (dist == 0) { send_code(s, lc, ltree); /* send a literal byte */ Tracecv(isgraph(lc), (stderr," '%c' ", lc)); } else { /* Here, lc is the match length - MIN_MATCH */ code = _length_code[lc]; send_code(s, code+LITERALS+1, ltree); /* send the length code */ extra = extra_lbits[code]; if (extra != 0) { lc -= base_length[code]; send_bits(s, lc, extra); /* send the extra length bits */ } dist--; /* dist is now the match distance - 1 */ code = d_code(dist); Assert (code < D_CODES, "bad d_code"); send_code(s, code, dtree); /* send the distance code */ extra = extra_dbits[code]; if (extra != 0) { dist -= base_dist[code]; send_bits(s, dist, extra); /* send the extra distance bits */ } } /* literal or match pair ? */ /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx, "pendingBuf overflow"); } while (lx < s->last_lit); send_code(s, END_BLOCK, ltree); } /* =========================================================================== * Check if the data type is TEXT or BINARY, using the following algorithm: * - TEXT if the two conditions below are satisfied: * a) There are no non-portable control characters belonging to the * "black list" (0..6, 14..25, 28..31). * b) There is at least one printable character belonging to the * "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255). * - BINARY otherwise. * - The following partially-portable control characters form a * "gray list" that is ignored in this detection algorithm: * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}). * IN assertion: the fields Freq of dyn_ltree are set. */ local int detect_data_type(s) deflate_state *s; { /* black_mask is the bit mask of black-listed bytes * set bits 0..6, 14..25, and 28..31 * 0xf3ffc07f = binary 11110011111111111100000001111111 */ unsigned long black_mask = 0xf3ffc07fUL; int n; /* Check for non-textual ("black-listed") bytes. */ for (n = 0; n <= 31; n++, black_mask >>= 1) if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0)) return Z_BINARY; /* Check for textual ("white-listed") bytes. */ if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0 || s->dyn_ltree[13].Freq != 0) return Z_TEXT; for (n = 32; n < LITERALS; n++) if (s->dyn_ltree[n].Freq != 0) return Z_TEXT; /* There are no "black-listed" or "white-listed" bytes: * this stream either is empty or has tolerated ("gray-listed") bytes only. */ return Z_BINARY; } /* =========================================================================== * Reverse the first len bits of a code, using straightforward code (a faster * method would use a table) * IN assertion: 1 <= len <= 15 */ local unsigned bi_reverse(code, len) unsigned code; /* the value to invert */ int len; /* its bit length */ { register unsigned res = 0; do { res |= code & 1; code >>= 1, res <<= 1; } while (--len > 0); return res >> 1; } /* =========================================================================== * Flush the bit buffer, keeping at most 7 bits in it. */ local void bi_flush(s) deflate_state *s; { if (s->bi_valid == 16) { put_short(s, s->bi_buf); s->bi_buf = 0; s->bi_valid = 0; } else if (s->bi_valid >= 8) { put_byte(s, (Byte)s->bi_buf); s->bi_buf >>= 8; s->bi_valid -= 8; } } /* =========================================================================== * Flush the bit buffer and align the output on a byte boundary */ local void bi_windup(s) deflate_state *s; { if (s->bi_valid > 8) { put_short(s, s->bi_buf); } else if (s->bi_valid > 0) { put_byte(s, (Byte)s->bi_buf); } s->bi_buf = 0; s->bi_valid = 0; #ifdef DEBUG s->bits_sent = (s->bits_sent+7) & ~7; #endif } /* =========================================================================== * Copy a stored block, storing first the length and its * one's complement if requested. */ local void copy_block(s, buf, len, header) deflate_state *s; charf *buf; /* the input data */ unsigned len; /* its length */ int header; /* true if block header must be written */ { bi_windup(s); /* align on byte boundary */ if (header) { put_short(s, (ush)len); put_short(s, (ush)~len); #ifdef DEBUG s->bits_sent += 2*16; #endif } #ifdef DEBUG s->bits_sent += (ulg)len<<3; #endif while (len--) { put_byte(s, *buf++); } } /* END OF DUMP OF mz_trees.c*/ /* START OF DUMP OF mz_inftrees.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* inftrees.c -- generate Huffman trees for efficient decoding * Copyright (C) 1995-2013 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* START OF DUMP OF mz_inftrees.h*/ /* inftrees.h -- header to use inftrees.c * Copyright (C) 1995-2005, 2010 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ /* Structure for decoding tables. Each entry provides either the information needed to do the operation requested by the code that indexed that table entry, or it provides a pointer to another table that indexes more bits of the code. op indicates whether the entry is a pointer to another table, a literal, a length or distance, an end-of-block, or an invalid code. For a table pointer, the low four bits of op is the number of index bits of that table. For a length or distance, the low four bits of op is the number of extra bits to get after the code. bits is the number of bits in this code or part of the code to drop off of the bit buffer. val is the actual byte to output in the case of a literal, the base length or distance, or the offset from the current table to the next table. Each entry is four bytes. */ typedef struct { unsigned char op; /* operation, extra bits, table bits */ unsigned char bits; /* bits in this part of the code */ unsigned short val; /* offset in table or code value */ } code; /* op values as set by inflate_table(): 00000000 - literal 0000tttt - table link, tttt != 0 is the number of table index bits 0001eeee - length or distance, eeee is the number of extra bits 01100000 - end of block 01000000 - invalid code */ /* Maximum size of the dynamic table. The maximum number of code structures is 1444, which is the sum of 852 for literal/length codes and 592 for distance codes. These values were found by exhaustive searches using the program examples/enough.c found in the zlib distribtution. The arguments to that program are the number of symbols, the initial root table size, and the maximum bit length of a code. "enough 286 9 15" for literal/length codes returns returns 852, and "enough 30 6 15" for distance codes returns 592. The initial root table size (9 or 6) is found in the fifth argument of the inflate_table() calls in inflate.c and infback.c. If the root table size is changed, then these maximum sizes would be need to be recalculated and updated. */ #define ENOUGH_LENS 852 #define ENOUGH_DISTS 592 #define ENOUGH (ENOUGH_LENS+ENOUGH_DISTS) /* Type of code to build for inflate_table() */ typedef enum { CODES, LENS, DISTS } codetype; int ZLIB_INTERNAL inflate_table OF((codetype type, unsigned short FAR *lens, unsigned codes, code FAR * FAR *table, unsigned FAR *bits, unsigned short FAR *work)); /* END OF DUMP OF mz_inftrees.h*/ #define MAXBITS 15 const char inflate_copyright[] = " inflate 1.2.8 Copyright 1995-2013 Mark Adler "; /* If you use the zlib library in a product, an acknowledgment is welcome in the documentation of your product. If for some reason you cannot include such an acknowledgment, I would appreciate that you keep this copyright string in the executable of your product. */ /* Build a set of tables to decode the provided canonical Huffman code. The code lengths are lens[0..codes-1]. The result starts at *table, whose indices are 0..2^bits-1. work is a writable array of at least lens shorts, which is used as a work area. type is the type of code to be generated, CODES, LENS, or DISTS. On return, zero is success, -1 is an invalid code, and +1 means that ENOUGH isn't enough. table on return points to the next available entry's address. bits is the requested root table index bits, and on return it is the actual root table index bits. It will differ if the request is greater than the longest code or if it is less than the shortest code. */ int ZLIB_INTERNAL inflate_table(type, lens, codes, table, bits, work) codetype type; unsigned short FAR *lens; unsigned codes; code FAR * FAR *table; unsigned FAR *bits; unsigned short FAR *work; { unsigned len; /* a code's length in bits */ unsigned sym; /* index of code symbols */ unsigned min, max; /* minimum and maximum code lengths */ unsigned root; /* number of index bits for root table */ unsigned curr; /* number of index bits for current table */ unsigned drop; /* code bits to drop for sub-table */ int left; /* number of prefix codes available */ unsigned used; /* code entries in table used */ unsigned huff; /* Huffman code */ unsigned incr; /* for incrementing code, index */ unsigned fill; /* index for replicating entries */ unsigned low; /* low bits for current root entry */ unsigned mask; /* mask for low root bits */ code here; /* table entry for duplication */ code FAR *next; /* next available space in table */ const unsigned short FAR *base; /* base value table to use */ const unsigned short FAR *extra; /* extra bits table to use */ int end; /* use base and extra for symbol > end */ unsigned short count[MAXBITS+1]; /* number of codes of each length */ unsigned short offs[MAXBITS+1]; /* offsets in table for each length */ static const unsigned short lbase[31] = { /* Length codes 257..285 base */ 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; static const unsigned short lext[31] = { /* Length codes 257..285 extra */ 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 72, 78}; static const unsigned short dbase[32] = { /* Distance codes 0..29 base */ 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577, 0, 0}; static const unsigned short dext[32] = { /* Distance codes 0..29 extra */ 16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 64, 64}; /* Process a set of code lengths to create a canonical Huffman code. The code lengths are lens[0..codes-1]. Each length corresponds to the symbols 0..codes-1. The Huffman code is generated by first sorting the symbols by length from short to long, and retaining the symbol order for codes with equal lengths. Then the code starts with all zero bits for the first code of the shortest length, and the codes are integer increments for the same length, and zeros are appended as the length increases. For the deflate format, these bits are stored backwards from their more natural integer increment ordering, and so when the decoding tables are built in the large loop below, the integer codes are incremented backwards. This routine assumes, but does not check, that all of the entries in lens[] are in the range 0..MAXBITS. The caller must assure this. 1..MAXBITS is interpreted as that code length. zero means that that symbol does not occur in this code. The codes are sorted by computing a count of codes for each length, creating from that a table of starting indices for each length in the sorted table, and then entering the symbols in order in the sorted table. The sorted table is work[], with that space being provided by the caller. The length counts are used for other purposes as well, i.e. finding the minimum and maximum length codes, determining if there are any codes at all, checking for a valid set of lengths, and looking ahead at length counts to determine sub-table sizes when building the decoding tables. */ /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */ for (len = 0; len <= MAXBITS; len++) count[len] = 0; for (sym = 0; sym < codes; sym++) count[lens[sym]]++; /* bound code lengths, force root to be within code lengths */ root = *bits; for (max = MAXBITS; max >= 1; max--) if (count[max] != 0) break; if (root > max) root = max; if (max == 0) { /* no symbols to code at all */ here.op = (unsigned char)64; /* invalid code marker */ here.bits = (unsigned char)1; here.val = (unsigned short)0; *(*table)++ = here; /* make a table to force an error */ *(*table)++ = here; *bits = 1; return 0; /* no symbols, but wait for decoding to report error */ } for (min = 1; min < max; min++) if (count[min] != 0) break; if (root < min) root = min; /* check for an over-subscribed or incomplete set of lengths */ left = 1; for (len = 1; len <= MAXBITS; len++) { left <<= 1; left -= count[len]; if (left < 0) return -1; /* over-subscribed */ } if (left > 0 && (type == CODES || max != 1)) return -1; /* incomplete set */ /* generate offsets into symbol table for each length for sorting */ offs[1] = 0; for (len = 1; len < MAXBITS; len++) offs[len + 1] = offs[len] + count[len]; /* sort symbols by length, by symbol order within each length */ for (sym = 0; sym < codes; sym++) if (lens[sym] != 0) work[offs[lens[sym]]++] = (unsigned short)sym; /* Create and fill in decoding tables. In this loop, the table being filled is at next and has curr index bits. The code being used is huff with length len. That code is converted to an index by dropping drop bits off of the bottom. For codes where len is less than drop + curr, those top drop + curr - len bits are incremented through all values to fill the table with replicated entries. root is the number of index bits for the root table. When len exceeds root, sub-tables are created pointed to by the root entry with an index of the low root bits of huff. This is saved in low to check for when a new sub-table should be started. drop is zero when the root table is being filled, and drop is root when sub-tables are being filled. When a new sub-table is needed, it is necessary to look ahead in the code lengths to determine what size sub-table is needed. The length counts are used for this, and so count[] is decremented as codes are entered in the tables. used keeps track of how many table entries have been allocated from the provided *table space. It is checked for LENS and DIST tables against the constants ENOUGH_LENS and ENOUGH_DISTS to guard against changes in the initial root table size constants. See the comments in inftrees.h for more information. sym increments through all symbols, and the loop terminates when all codes of length max, i.e. all codes, have been processed. This routine permits incomplete codes, so another loop after this one fills in the rest of the decoding tables with invalid code markers. */ /* set up for code type */ switch (type) { case CODES: base = extra = work; /* dummy value--not used */ end = 19; break; case LENS: base = lbase; base -= 257; extra = lext; extra -= 257; end = 256; break; default: /* DISTS */ base = dbase; extra = dext; end = -1; } /* initialize state for loop */ huff = 0; /* starting code */ sym = 0; /* starting code symbol */ len = min; /* starting code length */ next = *table; /* current table to fill in */ curr = root; /* current table index bits */ drop = 0; /* current bits to drop from code for index */ low = (unsigned)(-1); /* trigger new sub-table when len > root */ used = 1U << root; /* use root table entries */ mask = used - 1; /* mask for comparing low */ /* check available table space */ if ((type == LENS && used > ENOUGH_LENS) || (type == DISTS && used > ENOUGH_DISTS)) return 1; /* process all codes and make table entries */ for (;;) { /* create table entry */ here.bits = (unsigned char)(len - drop); if ((int)(work[sym]) < end) { here.op = (unsigned char)0; here.val = work[sym]; } else if ((int)(work[sym]) > end) { here.op = (unsigned char)(extra[work[sym]]); here.val = base[work[sym]]; } else { here.op = (unsigned char)(32 + 64); /* end of block */ here.val = 0; } /* replicate for those indices with low len bits equal to huff */ incr = 1U << (len - drop); fill = 1U << curr; min = fill; /* save offset to next table */ do { fill -= incr; next[(huff >> drop) + fill] = here; } while (fill != 0); /* backwards increment the len-bit code huff */ incr = 1U << (len - 1); while (huff & incr) incr >>= 1; if (incr != 0) { huff &= incr - 1; huff += incr; } else huff = 0; /* go to next symbol, update count, len */ sym++; if (--(count[len]) == 0) { if (len == max) break; len = lens[work[sym]]; } /* create new sub-table if needed */ if (len > root && (huff & mask) != low) { /* if first time, transition to sub-tables */ if (drop == 0) drop = root; /* increment past last table */ next += min; /* here min is 1 << curr */ /* determine length of next table */ curr = len - drop; left = (int)(1 << curr); while (curr + drop < max) { left -= count[curr + drop]; if (left <= 0) break; curr++; left <<= 1; } /* check for enough space */ used += 1U << curr; if ((type == LENS && used > ENOUGH_LENS) || (type == DISTS && used > ENOUGH_DISTS)) return 1; /* point entry in root table to sub-table */ low = huff & mask; (*table)[low].op = (unsigned char)curr; (*table)[low].bits = (unsigned char)root; (*table)[low].val = (unsigned short)(next - *table); } } /* fill in remaining table entry if code is incomplete (guaranteed to have at most one remaining entry, since if the code is incomplete, the maximum code length that was allowed to get this far is one bit) */ if (huff != 0) { here.op = (unsigned char)64; /* invalid code marker */ here.bits = (unsigned char)(len - drop); here.val = (unsigned short)0; next[huff] = here; } /* set return parameters */ *table += used; *bits = root; return 0; } /* END OF DUMP OF mz_inftrees.c*/ /* START OF DUMP OF mz_inflate.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* inflate.c -- zlib decompression * Copyright (C) 1995-2012 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* * Change history: * * 1.2.beta0 24 Nov 2002 * - First version -- complete rewrite of inflate to simplify code, avoid * creation of window when not needed, minimize use of window when it is * needed, make inffast.c even faster, implement gzip decoding, and to * improve code readability and style over the previous zlib inflate code * * 1.2.beta1 25 Nov 2002 * - Use pointers for available input and output checking in inffast.c * - Remove input and output counters in inffast.c * - Change inffast.c entry and loop from avail_in >= 7 to >= 6 * - Remove unnecessary second byte pull from length extra in inffast.c * - Unroll direct copy to three copies per loop in inffast.c * * 1.2.beta2 4 Dec 2002 * - Change external routine names to reduce potential conflicts * - Correct filename to inffixed.h for fixed tables in inflate.c * - Make hbuf[] unsigned char to match parameter type in inflate.c * - Change strm->next_out[-state->offset] to *(strm->next_out - state->offset) * to avoid negation problem on Alphas (64 bit) in inflate.c * * 1.2.beta3 22 Dec 2002 * - Add comments on state->bits assertion in inffast.c * - Add comments on op field in inftrees.h * - Fix bug in reuse of allocated window after inflateReset() * - Remove bit fields--back to byte structure for speed * - Remove distance extra == 0 check in inflate_fast()--only helps for lengths * - Change post-increments to pre-increments in inflate_fast(), PPC biased? * - Add compile time option, POSTINC, to use post-increments instead (Intel?) * - Make MATCH copy in inflate() much faster for when inflate_fast() not used * - Use local copies of stream next and avail values, as well as local bit * buffer and bit count in inflate()--for speed when inflate_fast() not used * * 1.2.beta4 1 Jan 2003 * - Split ptr - 257 statements in inflate_table() to avoid compiler warnings * - Move a comment on output buffer sizes from inffast.c to inflate.c * - Add comments in inffast.c to introduce the inflate_fast() routine * - Rearrange window copies in inflate_fast() for speed and simplification * - Unroll last copy for window match in inflate_fast() * - Use local copies of window variables in inflate_fast() for speed * - Pull out common wnext == 0 case for speed in inflate_fast() * - Make op and len in inflate_fast() unsigned for consistency * - Add FAR to lcode and dcode declarations in inflate_fast() * - Simplified bad distance check in inflate_fast() * - Added inflateBackInit(), inflateBack(), and inflateBackEnd() in new * source file infback.c to provide a call-back interface to inflate for * programs like gzip and unzip -- uses window as output buffer to avoid * window copying * * 1.2.beta5 1 Jan 2003 * - Improved inflateBack() interface to allow the caller to provide initial * input in strm. * - Fixed stored blocks bug in inflateBack() * * 1.2.beta6 4 Jan 2003 * - Added comments in inffast.c on effectiveness of POSTINC * - Typecasting all around to reduce compiler warnings * - Changed loops from while (1) or do {} while (1) to for (;;), again to * make compilers happy * - Changed type of window in inflateBackInit() to unsigned char * * * 1.2.beta7 27 Jan 2003 * - Changed many types to unsigned or unsigned short to avoid warnings * - Added inflateCopy() function * * 1.2.0 9 Mar 2003 * - Changed inflateBack() interface to provide separate opaque descriptors * for the in() and out() functions * - Changed inflateBack() argument and in_func typedef to swap the length * and buffer address return values for the input function * - Check next_in and next_out for Z_NULL on entry to inflate() * * The history for versions after 1.2.0 are in ChangeLog in zlib distribution. */ /* START OF DUMP OF mz_inflate.h*/ /* inflate.h -- internal inflate state definition * Copyright (C) 1995-2009 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ /* define NO_GZIP when compiling if you want to disable gzip header and trailer decoding by inflate(). NO_GZIP would be used to avoid linking in the crc code when it is not needed. For shared libraries, gzip decoding should be left enabled. */ #ifndef NO_GZIP # define GUNZIP #endif /* Possible inflate modes between inflate() calls */ typedef enum { HEAD, /* i: waiting for magic header */ FLAGS, /* i: waiting for method and flags (gzip) */ TIME, /* i: waiting for modification time (gzip) */ OS, /* i: waiting for extra flags and operating system (gzip) */ EXLEN, /* i: waiting for extra length (gzip) */ EXTRA, /* i: waiting for extra bytes (gzip) */ NAME, /* i: waiting for end of file name (gzip) */ COMMENT, /* i: waiting for end of comment (gzip) */ HCRC, /* i: waiting for header crc (gzip) */ DICTID, /* i: waiting for dictionary check value */ DICT, /* waiting for inflateSetDictionary() call */ TYPE, /* i: waiting for type bits, including last-flag bit */ TYPEDO, /* i: same, but skip check to exit inflate on new block */ STORED, /* i: waiting for stored size (length and complement) */ COPY_, /* i/o: same as COPY below, but only first time in */ COPY, /* i/o: waiting for input or output to copy stored block */ TABLE, /* i: waiting for dynamic block table lengths */ LENLENS, /* i: waiting for code length code lengths */ CODELENS, /* i: waiting for length/lit and distance code lengths */ LEN_, /* i: same as LEN below, but only first time in */ LEN, /* i: waiting for length/lit/eob code */ LENEXT, /* i: waiting for length extra bits */ DIST, /* i: waiting for distance code */ DISTEXT, /* i: waiting for distance extra bits */ MATCH, /* o: waiting for output space to copy string */ LIT, /* o: waiting for output space to write literal */ CHECK, /* i: waiting for 32-bit check value */ LENGTH, /* i: waiting for 32-bit length (gzip) */ DONE, /* finished check, done -- remain here until reset */ BAD, /* got a data error -- remain here until reset */ MEM, /* got an inflate() memory error -- remain here until reset */ SYNC /* looking for synchronization bytes to restart inflate() */ } inflate_mode; /* State transitions between above modes - (most modes can go to BAD or MEM on error -- not shown for clarity) Process header: HEAD -> (gzip) or (zlib) or (raw) (gzip) -> FLAGS -> TIME -> OS -> EXLEN -> EXTRA -> NAME -> COMMENT -> HCRC -> TYPE (zlib) -> DICTID or TYPE DICTID -> DICT -> TYPE (raw) -> TYPEDO Read deflate blocks: TYPE -> TYPEDO -> STORED or TABLE or LEN_ or CHECK STORED -> COPY_ -> COPY -> TYPE TABLE -> LENLENS -> CODELENS -> LEN_ LEN_ -> LEN Read deflate codes in fixed or dynamic block: LEN -> LENEXT or LIT or TYPE LENEXT -> DIST -> DISTEXT -> MATCH -> LEN LIT -> LEN Process trailer: CHECK -> LENGTH -> DONE */ /* state maintained between inflate() calls. Approximately 10K bytes. */ struct inflate_state { inflate_mode mode; /* current inflate mode */ int last; /* true if processing last block */ int wrap; /* bit 0 true for zlib, bit 1 true for gzip */ int havedict; /* true if dictionary provided */ int flags; /* gzip header method and flags (0 if zlib) */ unsigned dmax; /* zlib header max distance (INFLATE_STRICT) */ unsigned long check; /* protected copy of check value */ unsigned long total; /* protected copy of output count */ gz_headerp head; /* where to save gzip header information */ /* sliding window */ unsigned wbits; /* log base 2 of requested window size */ unsigned wsize; /* window size or zero if not using window */ unsigned whave; /* valid bytes in the window */ unsigned wnext; /* window write index */ unsigned char FAR *window; /* allocated sliding window, if needed */ /* bit accumulator */ unsigned long hold; /* input bit accumulator */ unsigned bits; /* number of bits in "in" */ /* for string and stored block copying */ unsigned length; /* literal or length of data to copy */ unsigned offset; /* distance back to copy string from */ /* for table and code decoding */ unsigned extra; /* extra bits needed */ /* fixed and dynamic code tables */ code const FAR *lencode; /* starting table for length/literal codes */ code const FAR *distcode; /* starting table for distance codes */ unsigned lenbits; /* index bits for lencode */ unsigned distbits; /* index bits for distcode */ /* dynamic table building */ unsigned ncode; /* number of code length code lengths */ unsigned nlen; /* number of length code lengths */ unsigned ndist; /* number of distance code lengths */ unsigned have; /* number of code lengths in lens[] */ code FAR *next; /* next available space in codes[] */ unsigned short lens[320]; /* temporary storage for code lengths */ unsigned short work[288]; /* work area for code table building */ code codes[ENOUGH]; /* space for code tables */ int sane; /* if false, allow invalid distance too far */ int back; /* bits back of last unprocessed length/lit */ unsigned was; /* initial length of match */ }; /* END OF DUMP OF mz_inflate.h*/ /* START OF DUMP OF mz_inffast.h*/ /* inffast.h -- header to use inffast.c * Copyright (C) 1995-2003, 2010 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ void ZLIB_INTERNAL inflate_fast OF((z_streamp strm, unsigned start)); /* END OF DUMP OF mz_inffast.h*/ #ifdef MAKEFIXED # ifndef BUILDFIXED # define BUILDFIXED # endif #endif /* function prototypes */ local void fixedtables OF((struct inflate_state FAR *state)); local int updatewindow OF((z_streamp strm, const unsigned char FAR *end, unsigned copy)); #ifdef BUILDFIXED void makefixed OF((void)); #endif local unsigned syncsearch OF((unsigned FAR *have, const unsigned char FAR *buf, unsigned len)); int ZEXPORT inflateResetKeep(strm) z_streamp strm; { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; strm->total_in = strm->total_out = state->total = 0; strm->msg = Z_NULL; if (state->wrap) /* to support ill-conceived Java test suite */ strm->adler = state->wrap & 1; state->mode = HEAD; state->last = 0; state->havedict = 0; state->dmax = 32768U; state->head = Z_NULL; state->hold = 0; state->bits = 0; state->lencode = state->distcode = state->next = state->codes; state->sane = 1; state->back = -1; Tracev((stderr, "inflate: reset\n")); return Z_OK; } int ZEXPORT inflateReset(strm) z_streamp strm; { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; state->wsize = 0; state->whave = 0; state->wnext = 0; return inflateResetKeep(strm); } int ZEXPORT inflateReset2(strm, windowBits) z_streamp strm; int windowBits; { int wrap; struct inflate_state FAR *state; /* get the state */ if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; /* extract wrap request from windowBits parameter */ if (windowBits < 0) { wrap = 0; windowBits = -windowBits; } else { wrap = (windowBits >> 4) + 1; #ifdef GUNZIP if (windowBits < 48) windowBits &= 15; #endif } /* set number of window bits, free window if different */ if (windowBits && (windowBits < 8 || windowBits > 15)) return Z_STREAM_ERROR; if (state->window != Z_NULL && state->wbits != (unsigned)windowBits) { ZFREE(strm, state->window); state->window = Z_NULL; } /* update state and reset the rest of it */ state->wrap = wrap; state->wbits = (unsigned)windowBits; return inflateReset(strm); } int ZEXPORT inflateInit2_(strm, windowBits, version, stream_size) z_streamp strm; int windowBits; const char *version; int stream_size; { int ret; struct inflate_state FAR *state; if (version == Z_NULL || version[0] != ZLIB_VERSION[0] || stream_size != (int)(sizeof(z_stream))) return Z_VERSION_ERROR; if (strm == Z_NULL) return Z_STREAM_ERROR; strm->msg = Z_NULL; /* in case we return an error */ if (strm->zalloc == (alloc_func)0) { #ifdef Z_SOLO return Z_STREAM_ERROR; #else strm->zalloc = zcalloc; strm->opaque = (voidpf)0; #endif } if (strm->zfree == (free_func)0) #ifdef Z_SOLO return Z_STREAM_ERROR; #else strm->zfree = zcfree; #endif state = (struct inflate_state FAR *) ZALLOC(strm, 1, sizeof(struct inflate_state)); if (state == Z_NULL) return Z_MEM_ERROR; Tracev((stderr, "inflate: allocated\n")); strm->state = (struct internal_state FAR *)state; state->window = Z_NULL; ret = inflateReset2(strm, windowBits); if (ret != Z_OK) { ZFREE(strm, state); strm->state = Z_NULL; } return ret; } int ZEXPORT inflateInit_(strm, version, stream_size) z_streamp strm; const char *version; int stream_size; { return inflateInit2_(strm, DEF_WBITS, version, stream_size); } int ZEXPORT inflatePrime(strm, bits, value) z_streamp strm; int bits; int value; { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (bits < 0) { state->hold = 0; state->bits = 0; return Z_OK; } if (bits > 16 || state->bits + bits > 32) return Z_STREAM_ERROR; value &= (1L << bits) - 1; state->hold += value << state->bits; state->bits += bits; return Z_OK; } /* Return state with length and distance decoding tables and index sizes set to fixed code decoding. Normally this returns fixed tables from inffixed.h. If BUILDFIXED is defined, then instead this routine builds the tables the first time it's called, and returns those tables the first time and thereafter. This reduces the size of the code by about 2K bytes, in exchange for a little execution time. However, BUILDFIXED should not be used for threaded applications, since the rewriting of the tables and virgin may not be thread-safe. */ local void fixedtables(state) struct inflate_state FAR *state; { #ifdef BUILDFIXED static int virgin = 1; static code *lenfix, *distfix; static code fixed[544]; /* build fixed huffman tables if first call (may not be thread safe) */ if (virgin) { unsigned sym, bits; static code *next; /* literal/length table */ sym = 0; while (sym < 144) state->lens[sym++] = 8; while (sym < 256) state->lens[sym++] = 9; while (sym < 280) state->lens[sym++] = 7; while (sym < 288) state->lens[sym++] = 8; next = fixed; lenfix = next; bits = 9; inflate_table(LENS, state->lens, 288, &(next), &(bits), state->work); /* distance table */ sym = 0; while (sym < 32) state->lens[sym++] = 5; distfix = next; bits = 5; inflate_table(DISTS, state->lens, 32, &(next), &(bits), state->work); /* do this just once */ virgin = 0; } #else /* !BUILDFIXED */ /* START OF DUMP OF mz_inffixed.h*/ /* inffixed.h -- table for decoding fixed codes * Generated automatically by makefixed(). */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of this library and is subject to change. Applications should only use zlib.h. */ static const code lenfix[512] = { {96,7,0},{0,8,80},{0,8,16},{20,8,115},{18,7,31},{0,8,112},{0,8,48}, {0,9,192},{16,7,10},{0,8,96},{0,8,32},{0,9,160},{0,8,0},{0,8,128}, {0,8,64},{0,9,224},{16,7,6},{0,8,88},{0,8,24},{0,9,144},{19,7,59}, {0,8,120},{0,8,56},{0,9,208},{17,7,17},{0,8,104},{0,8,40},{0,9,176}, {0,8,8},{0,8,136},{0,8,72},{0,9,240},{16,7,4},{0,8,84},{0,8,20}, {21,8,227},{19,7,43},{0,8,116},{0,8,52},{0,9,200},{17,7,13},{0,8,100}, {0,8,36},{0,9,168},{0,8,4},{0,8,132},{0,8,68},{0,9,232},{16,7,8}, {0,8,92},{0,8,28},{0,9,152},{20,7,83},{0,8,124},{0,8,60},{0,9,216}, {18,7,23},{0,8,108},{0,8,44},{0,9,184},{0,8,12},{0,8,140},{0,8,76}, {0,9,248},{16,7,3},{0,8,82},{0,8,18},{21,8,163},{19,7,35},{0,8,114}, {0,8,50},{0,9,196},{17,7,11},{0,8,98},{0,8,34},{0,9,164},{0,8,2}, {0,8,130},{0,8,66},{0,9,228},{16,7,7},{0,8,90},{0,8,26},{0,9,148}, {20,7,67},{0,8,122},{0,8,58},{0,9,212},{18,7,19},{0,8,106},{0,8,42}, {0,9,180},{0,8,10},{0,8,138},{0,8,74},{0,9,244},{16,7,5},{0,8,86}, {0,8,22},{64,8,0},{19,7,51},{0,8,118},{0,8,54},{0,9,204},{17,7,15}, {0,8,102},{0,8,38},{0,9,172},{0,8,6},{0,8,134},{0,8,70},{0,9,236}, {16,7,9},{0,8,94},{0,8,30},{0,9,156},{20,7,99},{0,8,126},{0,8,62}, {0,9,220},{18,7,27},{0,8,110},{0,8,46},{0,9,188},{0,8,14},{0,8,142}, {0,8,78},{0,9,252},{96,7,0},{0,8,81},{0,8,17},{21,8,131},{18,7,31}, {0,8,113},{0,8,49},{0,9,194},{16,7,10},{0,8,97},{0,8,33},{0,9,162}, {0,8,1},{0,8,129},{0,8,65},{0,9,226},{16,7,6},{0,8,89},{0,8,25}, {0,9,146},{19,7,59},{0,8,121},{0,8,57},{0,9,210},{17,7,17},{0,8,105}, {0,8,41},{0,9,178},{0,8,9},{0,8,137},{0,8,73},{0,9,242},{16,7,4}, {0,8,85},{0,8,21},{16,8,258},{19,7,43},{0,8,117},{0,8,53},{0,9,202}, {17,7,13},{0,8,101},{0,8,37},{0,9,170},{0,8,5},{0,8,133},{0,8,69}, {0,9,234},{16,7,8},{0,8,93},{0,8,29},{0,9,154},{20,7,83},{0,8,125}, {0,8,61},{0,9,218},{18,7,23},{0,8,109},{0,8,45},{0,9,186},{0,8,13}, {0,8,141},{0,8,77},{0,9,250},{16,7,3},{0,8,83},{0,8,19},{21,8,195}, {19,7,35},{0,8,115},{0,8,51},{0,9,198},{17,7,11},{0,8,99},{0,8,35}, {0,9,166},{0,8,3},{0,8,131},{0,8,67},{0,9,230},{16,7,7},{0,8,91}, {0,8,27},{0,9,150},{20,7,67},{0,8,123},{0,8,59},{0,9,214},{18,7,19}, {0,8,107},{0,8,43},{0,9,182},{0,8,11},{0,8,139},{0,8,75},{0,9,246}, {16,7,5},{0,8,87},{0,8,23},{64,8,0},{19,7,51},{0,8,119},{0,8,55}, {0,9,206},{17,7,15},{0,8,103},{0,8,39},{0,9,174},{0,8,7},{0,8,135}, {0,8,71},{0,9,238},{16,7,9},{0,8,95},{0,8,31},{0,9,158},{20,7,99}, {0,8,127},{0,8,63},{0,9,222},{18,7,27},{0,8,111},{0,8,47},{0,9,190}, {0,8,15},{0,8,143},{0,8,79},{0,9,254},{96,7,0},{0,8,80},{0,8,16}, {20,8,115},{18,7,31},{0,8,112},{0,8,48},{0,9,193},{16,7,10},{0,8,96}, {0,8,32},{0,9,161},{0,8,0},{0,8,128},{0,8,64},{0,9,225},{16,7,6}, {0,8,88},{0,8,24},{0,9,145},{19,7,59},{0,8,120},{0,8,56},{0,9,209}, {17,7,17},{0,8,104},{0,8,40},{0,9,177},{0,8,8},{0,8,136},{0,8,72}, {0,9,241},{16,7,4},{0,8,84},{0,8,20},{21,8,227},{19,7,43},{0,8,116}, {0,8,52},{0,9,201},{17,7,13},{0,8,100},{0,8,36},{0,9,169},{0,8,4}, {0,8,132},{0,8,68},{0,9,233},{16,7,8},{0,8,92},{0,8,28},{0,9,153}, {20,7,83},{0,8,124},{0,8,60},{0,9,217},{18,7,23},{0,8,108},{0,8,44}, {0,9,185},{0,8,12},{0,8,140},{0,8,76},{0,9,249},{16,7,3},{0,8,82}, {0,8,18},{21,8,163},{19,7,35},{0,8,114},{0,8,50},{0,9,197},{17,7,11}, {0,8,98},{0,8,34},{0,9,165},{0,8,2},{0,8,130},{0,8,66},{0,9,229}, {16,7,7},{0,8,90},{0,8,26},{0,9,149},{20,7,67},{0,8,122},{0,8,58}, {0,9,213},{18,7,19},{0,8,106},{0,8,42},{0,9,181},{0,8,10},{0,8,138}, {0,8,74},{0,9,245},{16,7,5},{0,8,86},{0,8,22},{64,8,0},{19,7,51}, {0,8,118},{0,8,54},{0,9,205},{17,7,15},{0,8,102},{0,8,38},{0,9,173}, {0,8,6},{0,8,134},{0,8,70},{0,9,237},{16,7,9},{0,8,94},{0,8,30}, {0,9,157},{20,7,99},{0,8,126},{0,8,62},{0,9,221},{18,7,27},{0,8,110}, {0,8,46},{0,9,189},{0,8,14},{0,8,142},{0,8,78},{0,9,253},{96,7,0}, {0,8,81},{0,8,17},{21,8,131},{18,7,31},{0,8,113},{0,8,49},{0,9,195}, {16,7,10},{0,8,97},{0,8,33},{0,9,163},{0,8,1},{0,8,129},{0,8,65}, {0,9,227},{16,7,6},{0,8,89},{0,8,25},{0,9,147},{19,7,59},{0,8,121}, {0,8,57},{0,9,211},{17,7,17},{0,8,105},{0,8,41},{0,9,179},{0,8,9}, {0,8,137},{0,8,73},{0,9,243},{16,7,4},{0,8,85},{0,8,21},{16,8,258}, {19,7,43},{0,8,117},{0,8,53},{0,9,203},{17,7,13},{0,8,101},{0,8,37}, {0,9,171},{0,8,5},{0,8,133},{0,8,69},{0,9,235},{16,7,8},{0,8,93}, {0,8,29},{0,9,155},{20,7,83},{0,8,125},{0,8,61},{0,9,219},{18,7,23}, {0,8,109},{0,8,45},{0,9,187},{0,8,13},{0,8,141},{0,8,77},{0,9,251}, {16,7,3},{0,8,83},{0,8,19},{21,8,195},{19,7,35},{0,8,115},{0,8,51}, {0,9,199},{17,7,11},{0,8,99},{0,8,35},{0,9,167},{0,8,3},{0,8,131}, {0,8,67},{0,9,231},{16,7,7},{0,8,91},{0,8,27},{0,9,151},{20,7,67}, {0,8,123},{0,8,59},{0,9,215},{18,7,19},{0,8,107},{0,8,43},{0,9,183}, {0,8,11},{0,8,139},{0,8,75},{0,9,247},{16,7,5},{0,8,87},{0,8,23}, {64,8,0},{19,7,51},{0,8,119},{0,8,55},{0,9,207},{17,7,15},{0,8,103}, {0,8,39},{0,9,175},{0,8,7},{0,8,135},{0,8,71},{0,9,239},{16,7,9}, {0,8,95},{0,8,31},{0,9,159},{20,7,99},{0,8,127},{0,8,63},{0,9,223}, {18,7,27},{0,8,111},{0,8,47},{0,9,191},{0,8,15},{0,8,143},{0,8,79}, {0,9,255} }; static const code distfix[32] = { {16,5,1},{23,5,257},{19,5,17},{27,5,4097},{17,5,5},{25,5,1025}, {21,5,65},{29,5,16385},{16,5,3},{24,5,513},{20,5,33},{28,5,8193}, {18,5,9},{26,5,2049},{22,5,129},{64,5,0},{16,5,2},{23,5,385}, {19,5,25},{27,5,6145},{17,5,7},{25,5,1537},{21,5,97},{29,5,24577}, {16,5,4},{24,5,769},{20,5,49},{28,5,12289},{18,5,13},{26,5,3073}, {22,5,193},{64,5,0} }; /* END OF DUMP OF mz_inffixed.h*/ #endif /* BUILDFIXED */ state->lencode = lenfix; state->lenbits = 9; state->distcode = distfix; state->distbits = 5; } #ifdef MAKEFIXED #include /* Write out the inffixed.h that is #include'd above. Defining MAKEFIXED also defines BUILDFIXED, so the tables are built on the fly. makefixed() writes those tables to stdout, which would be piped to inffixed.h. A small program can simply call makefixed to do this: void makefixed(void); int main(void) { makefixed(); return 0; } Then that can be linked with zlib built with MAKEFIXED defined and run: a.out > inffixed.h */ void makefixed() { unsigned low, size; struct inflate_state state; fixedtables(&state); puts(" /* inffixed.h -- table for decoding fixed codes"); puts(" * Generated automatically by makefixed()."); puts(" */"); puts(""); puts(" /* WARNING: this file should *not* be used by applications."); puts(" It is part of the implementation of this library and is"); puts(" subject to change. Applications should only use zlib.h."); puts(" */"); puts(""); size = 1U << 9; printf(" static const code lenfix[%u] = {", size); low = 0; for (;;) { if ((low % 7) == 0) printf("\n "); printf("{%u,%u,%d}", (low & 127) == 99 ? 64 : state.lencode[low].op, state.lencode[low].bits, state.lencode[low].val); if (++low == size) break; putchar(','); } puts("\n };"); size = 1U << 5; printf("\n static const code distfix[%u] = {", size); low = 0; for (;;) { if ((low % 6) == 0) printf("\n "); printf("{%u,%u,%d}", state.distcode[low].op, state.distcode[low].bits, state.distcode[low].val); if (++low == size) break; putchar(','); } puts("\n };"); } #endif /* MAKEFIXED */ /* Update the window with the last wsize (normally 32K) bytes written before returning. If window does not exist yet, create it. This is only called when a window is already in use, or when output has been written during this inflate call, but the end of the deflate stream has not been reached yet. It is also called to create a window for dictionary data when a dictionary is loaded. Providing output buffers larger than 32K to inflate() should provide a speed advantage, since only the last 32K of output is copied to the sliding window upon return from inflate(), and since all distances after the first 32K of output will fall in the output data, making match copies simpler and faster. The advantage may be dependent on the size of the processor's data caches. */ local int updatewindow(strm, end, copy) z_streamp strm; const Bytef *end; unsigned copy; { struct inflate_state FAR *state; unsigned dist; state = (struct inflate_state FAR *)strm->state; /* if it hasn't been done already, allocate space for the window */ if (state->window == Z_NULL) { state->window = (unsigned char FAR *) ZALLOC(strm, 1U << state->wbits, sizeof(unsigned char)); if (state->window == Z_NULL) return 1; } /* if window not in use yet, initialize */ if (state->wsize == 0) { state->wsize = 1U << state->wbits; state->wnext = 0; state->whave = 0; } /* copy state->wsize or less output bytes into the circular window */ if (copy >= state->wsize) { zmemcpy(state->window, end - state->wsize, state->wsize); state->wnext = 0; state->whave = state->wsize; } else { dist = state->wsize - state->wnext; if (dist > copy) dist = copy; zmemcpy(state->window + state->wnext, end - copy, dist); copy -= dist; if (copy) { zmemcpy(state->window, end - copy, copy); state->wnext = copy; state->whave = state->wsize; } else { state->wnext += dist; if (state->wnext == state->wsize) state->wnext = 0; if (state->whave < state->wsize) state->whave += dist; } } return 0; } /* Macros for inflate(): */ /* check function to use adler32() for zlib or crc32() for gzip */ #ifdef GUNZIP # define UPDATE(check, buf, len) \ (state->flags ? crc32(check, buf, len) : adler32(check, buf, len)) #else # define UPDATE(check, buf, len) adler32(check, buf, len) #endif /* check macros for header crc */ #ifdef GUNZIP # define CRC2(check, word) \ do { \ hbuf[0] = (unsigned char)(word); \ hbuf[1] = (unsigned char)((word) >> 8); \ check = crc32(check, hbuf, 2); \ } while (0) # define CRC4(check, word) \ do { \ hbuf[0] = (unsigned char)(word); \ hbuf[1] = (unsigned char)((word) >> 8); \ hbuf[2] = (unsigned char)((word) >> 16); \ hbuf[3] = (unsigned char)((word) >> 24); \ check = crc32(check, hbuf, 4); \ } while (0) #endif /* Load registers with state in inflate() for speed */ #define LOAD() \ do { \ put = strm->next_out; \ left = strm->avail_out; \ next = strm->next_in; \ have = strm->avail_in; \ hold = state->hold; \ bits = state->bits; \ } while (0) /* Restore state from registers in inflate() */ #define RESTORE() \ do { \ strm->next_out = put; \ strm->avail_out = left; \ strm->next_in = next; \ strm->avail_in = have; \ state->hold = hold; \ state->bits = bits; \ } while (0) /* Clear the input bit accumulator */ #define INITBITS() \ do { \ hold = 0; \ bits = 0; \ } while (0) /* Get a byte of input into the bit accumulator, or return from inflate() if there is no input available. */ #define PULLBYTE() \ do { \ if (have == 0) goto inf_leave; \ have--; \ hold += (unsigned long)(*next++) << bits; \ bits += 8; \ } while (0) /* Assure that there are at least n bits in the bit accumulator. If there is not enough available input to do that, then return from inflate(). */ #define NEEDBITS(n) \ do { \ while (bits < (unsigned)(n)) \ PULLBYTE(); \ } while (0) /* Return the low n bits of the bit accumulator (n < 16) */ #define BITS(n) \ ((unsigned)hold & ((1U << (n)) - 1)) /* Remove n bits from the bit accumulator */ #define DROPBITS(n) \ do { \ hold >>= (n); \ bits -= (unsigned)(n); \ } while (0) /* Remove zero to seven bits as needed to go to a byte boundary */ #define BYTEBITS() \ do { \ hold >>= bits & 7; \ bits -= bits & 7; \ } while (0) /* inflate() uses a state machine to process as much input data and generate as much output data as possible before returning. The state machine is structured roughly as follows: for (;;) switch (state) { ... case STATEn: if (not enough input data or output space to make progress) return; ... make progress ... state = STATEm; break; ... } so when inflate() is called again, the same case is attempted again, and if the appropriate resources are provided, the machine proceeds to the next state. The NEEDBITS() macro is usually the way the state evaluates whether it can proceed or should return. NEEDBITS() does the return if the requested bits are not available. The typical use of the BITS macros is: NEEDBITS(n); ... do something with BITS(n) ... DROPBITS(n); where NEEDBITS(n) either returns from inflate() if there isn't enough input left to load n bits into the accumulator, or it continues. BITS(n) gives the low n bits in the accumulator. When done, DROPBITS(n) drops the low n bits off the accumulator. INITBITS() clears the accumulator and sets the number of available bits to zero. BYTEBITS() discards just enough bits to put the accumulator on a byte boundary. After BYTEBITS() and a NEEDBITS(8), then BITS(8) would return the next byte in the stream. NEEDBITS(n) uses PULLBYTE() to get an available byte of input, or to return if there is no input available. The decoding of variable length codes uses PULLBYTE() directly in order to pull just enough bytes to decode the next code, and no more. Some states loop until they get enough input, making sure that enough state information is maintained to continue the loop where it left off if NEEDBITS() returns in the loop. For example, want, need, and keep would all have to actually be part of the saved state in case NEEDBITS() returns: case STATEw: while (want < need) { NEEDBITS(n); keep[want++] = BITS(n); DROPBITS(n); } state = STATEx; case STATEx: As shown above, if the next state is also the next case, then the break is omitted. A state may also return if there is not enough output space available to complete that state. Those states are copying stored data, writing a literal byte, and copying a matching string. When returning, a "goto inf_leave" is used to update the total counters, update the check value, and determine whether any progress has been made during that inflate() call in order to return the proper return code. Progress is defined as a change in either strm->avail_in or strm->avail_out. When there is a window, goto inf_leave will update the window with the last output written. If a goto inf_leave occurs in the middle of decompression and there is no window currently, goto inf_leave will create one and copy output to the window for the next call of inflate(). In this implementation, the flush parameter of inflate() only affects the return code (per zlib.h). inflate() always writes as much as possible to strm->next_out, given the space available and the provided input--the effect documented in zlib.h of Z_SYNC_FLUSH. Furthermore, inflate() always defers the allocation of and copying into a sliding window until necessary, which provides the effect documented in zlib.h for Z_FINISH when the entire input stream available. So the only thing the flush parameter actually does is: when flush is set to Z_FINISH, inflate() cannot return Z_OK. Instead it will return Z_BUF_ERROR if it has not reached the end of the stream. */ int ZEXPORT inflate(strm, flush) z_streamp strm; int flush; { struct inflate_state FAR *state; z_const unsigned char FAR *next; /* next input */ unsigned char FAR *put; /* next output */ unsigned have, left; /* available input and output */ unsigned long hold; /* bit buffer */ unsigned bits; /* bits in bit buffer */ unsigned in, out; /* save starting available input and output */ unsigned copy; /* number of stored or match bytes to copy */ unsigned char FAR *from; /* where to copy match bytes from */ code here; /* current decoding table entry */ code last; /* parent table entry */ unsigned len; /* length to copy for repeats, bits to drop */ int ret; /* return code */ #ifdef GUNZIP unsigned char hbuf[4]; /* buffer for gzip header crc calculation */ #endif static const unsigned short order[19] = /* permutation of code lengths */ {16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; if (strm == Z_NULL || strm->state == Z_NULL || strm->next_out == Z_NULL || (strm->next_in == Z_NULL && strm->avail_in != 0)) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (state->mode == TYPE) state->mode = TYPEDO; /* skip check */ LOAD(); in = have; out = left; ret = Z_OK; for (;;) switch (state->mode) { case HEAD: if (state->wrap == 0) { state->mode = TYPEDO; break; } NEEDBITS(16); #ifdef GUNZIP if ((state->wrap & 2) && hold == 0x8b1f) { /* gzip header */ state->check = crc32(0L, Z_NULL, 0); CRC2(state->check, hold); INITBITS(); state->mode = FLAGS; break; } state->flags = 0; /* expect zlib header */ if (state->head != Z_NULL) state->head->done = -1; if (!(state->wrap & 1) || /* check if zlib header allowed */ #else if ( #endif ((BITS(8) << 8) + (hold >> 8)) % 31) { strm->msg = (char *)"incorrect header check"; state->mode = BAD; break; } if (BITS(4) != Z_DEFLATED) { strm->msg = (char *)"unknown compression method"; state->mode = BAD; break; } DROPBITS(4); len = BITS(4) + 8; if (state->wbits == 0) state->wbits = len; else if (len > state->wbits) { strm->msg = (char *)"invalid window size"; state->mode = BAD; break; } state->dmax = 1U << len; Tracev((stderr, "inflate: zlib header ok\n")); strm->adler = state->check = adler32(0L, Z_NULL, 0); state->mode = hold & 0x200 ? DICTID : TYPE; INITBITS(); break; #ifdef GUNZIP case FLAGS: NEEDBITS(16); state->flags = (int)(hold); if ((state->flags & 0xff) != Z_DEFLATED) { strm->msg = (char *)"unknown compression method"; state->mode = BAD; break; } if (state->flags & 0xe000) { strm->msg = (char *)"unknown header flags set"; state->mode = BAD; break; } if (state->head != Z_NULL) state->head->text = (int)((hold >> 8) & 1); if (state->flags & 0x0200) CRC2(state->check, hold); INITBITS(); state->mode = TIME; case TIME: NEEDBITS(32); if (state->head != Z_NULL) state->head->time = hold; if (state->flags & 0x0200) CRC4(state->check, hold); INITBITS(); state->mode = OS; case OS: NEEDBITS(16); if (state->head != Z_NULL) { state->head->xflags = (int)(hold & 0xff); state->head->os = (int)(hold >> 8); } if (state->flags & 0x0200) CRC2(state->check, hold); INITBITS(); state->mode = EXLEN;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case EXLEN: if (state->flags & 0x0400) { NEEDBITS(16); state->length = (unsigned)(hold); if (state->head != Z_NULL) state->head->extra_len = (unsigned)hold; if (state->flags & 0x0200) CRC2(state->check, hold); INITBITS(); } else if (state->head != Z_NULL) state->head->extra = Z_NULL; state->mode = EXTRA;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case EXTRA: if (state->flags & 0x0400) { copy = state->length; if (copy > have) copy = have; if (copy) { if (state->head != Z_NULL && state->head->extra != Z_NULL) { len = state->head->extra_len - state->length; zmemcpy(state->head->extra + len, next, len + copy > state->head->extra_max ? state->head->extra_max - len : copy); } if (state->flags & 0x0200) state->check = crc32(state->check, next, copy); have -= copy; next += copy; state->length -= copy; } if (state->length) goto inf_leave; } state->length = 0; state->mode = NAME;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case NAME: if (state->flags & 0x0800) { if (have == 0) goto inf_leave; copy = 0; do { len = (unsigned)(next[copy++]); if (state->head != Z_NULL && state->head->name != Z_NULL && state->length < state->head->name_max) state->head->name[state->length++] = len; } while (len && copy < have); if (state->flags & 0x0200) state->check = crc32(state->check, next, copy); have -= copy; next += copy; if (len) goto inf_leave; } else if (state->head != Z_NULL) state->head->name = Z_NULL; state->length = 0; state->mode = COMMENT;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case COMMENT: if (state->flags & 0x1000) { if (have == 0) goto inf_leave; copy = 0; do { len = (unsigned)(next[copy++]); if (state->head != Z_NULL && state->head->comment != Z_NULL && state->length < state->head->comm_max) state->head->comment[state->length++] = len; } while (len && copy < have); if (state->flags & 0x0200) state->check = crc32(state->check, next, copy); have -= copy; next += copy; if (len) goto inf_leave; } else if (state->head != Z_NULL) state->head->comment = Z_NULL; state->mode = HCRC;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case HCRC: if (state->flags & 0x0200) { NEEDBITS(16); if (hold != (state->check & 0xffff)) { strm->msg = (char *)"header crc mismatch"; state->mode = BAD; break; } INITBITS(); } if (state->head != Z_NULL) { state->head->hcrc = (int)((state->flags >> 9) & 1); state->head->done = 1; } strm->adler = state->check = crc32(0L, Z_NULL, 0); state->mode = TYPE; break; #endif case DICTID: NEEDBITS(32); strm->adler = state->check = ZSWAP32(hold); INITBITS(); state->mode = DICT;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case DICT: if (state->havedict == 0) { RESTORE(); return Z_NEED_DICT; } strm->adler = state->check = adler32(0L, Z_NULL, 0); state->mode = TYPE;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case TYPE: if (flush == Z_BLOCK || flush == Z_TREES) goto inf_leave;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case TYPEDO: if (state->last) { BYTEBITS(); state->mode = CHECK; break; } NEEDBITS(3); state->last = BITS(1); DROPBITS(1); switch (BITS(2)) { case 0: /* stored block */ Tracev((stderr, "inflate: stored block%s\n", state->last ? " (last)" : "")); state->mode = STORED; break; case 1: /* fixed block */ fixedtables(state); Tracev((stderr, "inflate: fixed codes block%s\n", state->last ? " (last)" : "")); state->mode = LEN_; /* decode codes */ if (flush == Z_TREES) { DROPBITS(2); goto inf_leave; } break; case 2: /* dynamic block */ Tracev((stderr, "inflate: dynamic codes block%s\n", state->last ? " (last)" : "")); state->mode = TABLE; break; case 3: strm->msg = (char *)"invalid block type"; state->mode = BAD; } DROPBITS(2); break; case STORED: BYTEBITS(); /* go to byte boundary */ NEEDBITS(32); if ((hold & 0xffff) != ((hold >> 16) ^ 0xffff)) { strm->msg = (char *)"invalid stored block lengths"; state->mode = BAD; break; } state->length = (unsigned)hold & 0xffff; Tracev((stderr, "inflate: stored length %u\n", state->length)); INITBITS(); state->mode = COPY_; if (flush == Z_TREES) goto inf_leave;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case COPY_: state->mode = COPY;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case COPY: copy = state->length; if (copy) { if (copy > have) copy = have; if (copy > left) copy = left; if (copy == 0) goto inf_leave; zmemcpy(put, next, copy); have -= copy; next += copy; left -= copy; put += copy; state->length -= copy; break; } Tracev((stderr, "inflate: stored end\n")); state->mode = TYPE; break; case TABLE: NEEDBITS(14); state->nlen = BITS(5) + 257; DROPBITS(5); state->ndist = BITS(5) + 1; DROPBITS(5); state->ncode = BITS(4) + 4; DROPBITS(4); #ifndef PKZIP_BUG_WORKAROUND if (state->nlen > 286 || state->ndist > 30) { strm->msg = (char *)"too many length or distance symbols"; state->mode = BAD; break; } #endif Tracev((stderr, "inflate: table sizes ok\n")); state->have = 0; state->mode = LENLENS; case LENLENS: while (state->have < state->ncode) { NEEDBITS(3); state->lens[order[state->have++]] = (unsigned short)BITS(3); DROPBITS(3); } while (state->have < 19) state->lens[order[state->have++]] = 0; state->next = state->codes; state->lencode = (const code FAR *)(state->next); state->lenbits = 7; ret = inflate_table(CODES, state->lens, 19, &(state->next), &(state->lenbits), state->work); if (ret) { strm->msg = (char *)"invalid code lengths set"; state->mode = BAD; break; } Tracev((stderr, "inflate: code lengths ok\n")); state->have = 0; state->mode = CODELENS; case CODELENS: while (state->have < state->nlen + state->ndist) { for (;;) { here = state->lencode[BITS(state->lenbits)]; if ((unsigned)(here.bits) <= bits) break; PULLBYTE(); } if (here.val < 16) { DROPBITS(here.bits); state->lens[state->have++] = here.val; } else { if (here.val == 16) { NEEDBITS(here.bits + 2); DROPBITS(here.bits); if (state->have == 0) { strm->msg = (char *)"invalid bit length repeat"; state->mode = BAD; break; } len = state->lens[state->have - 1]; copy = 3 + BITS(2); DROPBITS(2); } else if (here.val == 17) { NEEDBITS(here.bits + 3); DROPBITS(here.bits); len = 0; copy = 3 + BITS(3); DROPBITS(3); } else { NEEDBITS(here.bits + 7); DROPBITS(here.bits); len = 0; copy = 11 + BITS(7); DROPBITS(7); } if (state->have + copy > state->nlen + state->ndist) { strm->msg = (char *)"invalid bit length repeat"; state->mode = BAD; break; } while (copy--) state->lens[state->have++] = (unsigned short)len; } } /* handle error breaks in while */ if (state->mode == BAD) break; /* check for end-of-block code (better have one) */ if (state->lens[256] == 0) { strm->msg = (char *)"invalid code -- missing end-of-block"; state->mode = BAD; break; } /* build code tables -- note: do not change the lenbits or distbits values here (9 and 6) without reading the comments in inftrees.h concerning the ENOUGH constants, which depend on those values */ state->next = state->codes; state->lencode = (const code FAR *)(state->next); state->lenbits = 9; ret = inflate_table(LENS, state->lens, state->nlen, &(state->next), &(state->lenbits), state->work); if (ret) { strm->msg = (char *)"invalid literal/lengths set"; state->mode = BAD; break; } state->distcode = (const code FAR *)(state->next); state->distbits = 6; ret = inflate_table(DISTS, state->lens + state->nlen, state->ndist, &(state->next), &(state->distbits), state->work); if (ret) { strm->msg = (char *)"invalid distances set"; state->mode = BAD; break; } Tracev((stderr, "inflate: codes ok\n")); state->mode = LEN_; if (flush == Z_TREES) goto inf_leave;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case LEN_: state->mode = LEN;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case LEN: if (have >= 6 && left >= 258) { RESTORE(); inflate_fast(strm, out); LOAD(); if (state->mode == TYPE) state->back = -1; break; } state->back = 0; for (;;) { here = state->lencode[BITS(state->lenbits)]; if ((unsigned)(here.bits) <= bits) break; PULLBYTE(); } if (here.op && (here.op & 0xf0) == 0) { last = here; for (;;) { here = state->lencode[last.val + (BITS(last.bits + last.op) >> last.bits)]; if ((unsigned)(last.bits + here.bits) <= bits) break; PULLBYTE(); } DROPBITS(last.bits); state->back += last.bits; } DROPBITS(here.bits); state->back += here.bits; state->length = (unsigned)here.val; if ((int)(here.op) == 0) { Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ? "inflate: literal '%c'\n" : "inflate: literal 0x%02x\n", here.val)); state->mode = LIT; break; } if (here.op & 32) { Tracevv((stderr, "inflate: end of block\n")); state->back = -1; state->mode = TYPE; break; } if (here.op & 64) { strm->msg = (char *)"invalid literal/length code"; state->mode = BAD; break; } state->extra = (unsigned)(here.op) & 15; state->mode = LENEXT;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case LENEXT: if (state->extra) { NEEDBITS(state->extra); state->length += BITS(state->extra); DROPBITS(state->extra); state->back += state->extra; } Tracevv((stderr, "inflate: length %u\n", state->length)); state->was = state->length; state->mode = DIST;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case DIST: for (;;) { here = state->distcode[BITS(state->distbits)]; if ((unsigned)(here.bits) <= bits) break; PULLBYTE(); } if ((here.op & 0xf0) == 0) { last = here; for (;;) { here = state->distcode[last.val + (BITS(last.bits + last.op) >> last.bits)]; if ((unsigned)(last.bits + here.bits) <= bits) break; PULLBYTE(); } DROPBITS(last.bits); state->back += last.bits; } DROPBITS(here.bits); state->back += here.bits; if (here.op & 64) { strm->msg = (char *)"invalid distance code"; state->mode = BAD; break; } state->offset = (unsigned)here.val; state->extra = (unsigned)(here.op) & 15; state->mode = DISTEXT;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case DISTEXT: if (state->extra) { NEEDBITS(state->extra); state->offset += BITS(state->extra); DROPBITS(state->extra); state->back += state->extra; } #ifdef INFLATE_STRICT if (state->offset > state->dmax) { strm->msg = (char *)"invalid distance too far back"; state->mode = BAD; break; } #endif Tracevv((stderr, "inflate: distance %u\n", state->offset)); state->mode = MATCH;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case MATCH: if (left == 0) goto inf_leave; copy = out - left; if (state->offset > copy) { /* copy from window */ copy = state->offset - copy; if (copy > state->whave) { if (state->sane) { strm->msg = (char *)"invalid distance too far back"; state->mode = BAD; break; } #ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR Trace((stderr, "inflate.c too far\n")); copy -= state->whave; if (copy > state->length) copy = state->length; if (copy > left) copy = left; left -= copy; state->length -= copy; do { *put++ = 0; } while (--copy); if (state->length == 0) state->mode = LEN; break; #endif } if (copy > state->wnext) { copy -= state->wnext; from = state->window + (state->wsize - copy); } else from = state->window + (state->wnext - copy); if (copy > state->length) copy = state->length; } else { /* copy from output */ from = put - state->offset; copy = state->length; } if (copy > left) copy = left; left -= copy; state->length -= copy; do { *put++ = *from++; } while (--copy); if (state->length == 0) state->mode = LEN; break; case LIT: if (left == 0) goto inf_leave; *put++ = (unsigned char)(state->length); left--; state->mode = LEN; break; case CHECK: if (state->wrap) { NEEDBITS(32); out -= left; strm->total_out += out; state->total += out; if (out) strm->adler = state->check = UPDATE(state->check, put - out, out); out = left; if (( #ifdef GUNZIP state->flags ? hold : #endif ZSWAP32(hold)) != state->check) { strm->msg = (char *)"incorrect data check"; state->mode = BAD; break; } INITBITS(); Tracev((stderr, "inflate: check matches trailer\n")); } #ifdef GUNZIP state->mode = LENGTH;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case LENGTH: if (state->wrap && state->flags) { NEEDBITS(32); if (hold != (state->total & 0xffffffffUL)) { strm->msg = (char *)"incorrect length check"; state->mode = BAD; break; } INITBITS(); Tracev((stderr, "inflate: length matches trailer\n")); } #endif state->mode = DONE;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case DONE: ret = Z_STREAM_END; goto inf_leave; case BAD: ret = Z_DATA_ERROR; goto inf_leave; case MEM: return Z_MEM_ERROR; case SYNC: default: return Z_STREAM_ERROR; } /* Return from inflate(), updating the total counts and the check value. If there was no progress during the inflate() call, return a buffer error. Call updatewindow() to create and/or update the window state. Note: a memory error from inflate() is non-recoverable. */ inf_leave: RESTORE(); if (state->wsize || (out != strm->avail_out && state->mode < BAD && (state->mode < CHECK || flush != Z_FINISH))) if (updatewindow(strm, strm->next_out, out - strm->avail_out)) { state->mode = MEM; return Z_MEM_ERROR; } in -= strm->avail_in; out -= strm->avail_out; strm->total_in += in; strm->total_out += out; state->total += out; if (state->wrap && out) strm->adler = state->check = UPDATE(state->check, strm->next_out - out, out); strm->data_type = state->bits + (state->last ? 64 : 0) + (state->mode == TYPE ? 128 : 0) + (state->mode == LEN_ || state->mode == COPY_ ? 256 : 0); if (((in == 0 && out == 0) || flush == Z_FINISH) && ret == Z_OK) ret = Z_BUF_ERROR; return ret; } int ZEXPORT inflateEnd(strm) z_streamp strm; { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL || strm->zfree == (free_func)0) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (state->window != Z_NULL) ZFREE(strm, state->window); ZFREE(strm, strm->state); strm->state = Z_NULL; Tracev((stderr, "inflate: end\n")); return Z_OK; } int ZEXPORT inflateGetDictionary(strm, dictionary, dictLength) z_streamp strm; Bytef *dictionary; uInt *dictLength; { struct inflate_state FAR *state; /* check state */ if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; /* copy dictionary */ if (state->whave && dictionary != Z_NULL) { zmemcpy(dictionary, state->window + state->wnext, state->whave - state->wnext); zmemcpy(dictionary + state->whave - state->wnext, state->window, state->wnext); } if (dictLength != Z_NULL) *dictLength = state->whave; return Z_OK; } int ZEXPORT inflateSetDictionary(strm, dictionary, dictLength) z_streamp strm; const Bytef *dictionary; uInt dictLength; { struct inflate_state FAR *state; unsigned long dictid; int ret; /* check state */ if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (state->wrap != 0 && state->mode != DICT) return Z_STREAM_ERROR; /* check for correct dictionary identifier */ if (state->mode == DICT) { dictid = adler32(0L, Z_NULL, 0); dictid = adler32(dictid, dictionary, dictLength); if (dictid != state->check) return Z_DATA_ERROR; } /* copy dictionary to window using updatewindow(), which will amend the existing dictionary if appropriate */ ret = updatewindow(strm, dictionary + dictLength, dictLength); if (ret) { state->mode = MEM; return Z_MEM_ERROR; } state->havedict = 1; Tracev((stderr, "inflate: dictionary set\n")); return Z_OK; } int ZEXPORT inflateGetHeader(strm, head) z_streamp strm; gz_headerp head; { struct inflate_state FAR *state; /* check state */ if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if ((state->wrap & 2) == 0) return Z_STREAM_ERROR; /* save header structure */ state->head = head; head->done = 0; return Z_OK; } /* Search buf[0..len-1] for the pattern: 0, 0, 0xff, 0xff. Return when found or when out of input. When called, *have is the number of pattern bytes found in order so far, in 0..3. On return *have is updated to the new state. If on return *have equals four, then the pattern was found and the return value is how many bytes were read including the last byte of the pattern. If *have is less than four, then the pattern has not been found yet and the return value is len. In the latter case, syncsearch() can be called again with more data and the *have state. *have is initialized to zero for the first call. */ local unsigned syncsearch(have, buf, len) unsigned FAR *have; const unsigned char FAR *buf; unsigned len; { unsigned got; unsigned next; got = *have; next = 0; while (next < len && got < 4) { if ((int)(buf[next]) == (got < 2 ? 0 : 0xff)) got++; else if (buf[next]) got = 0; else got = 4 - got; next++; } *have = got; return next; } int ZEXPORT inflateSync(strm) z_streamp strm; { unsigned len; /* number of bytes to look at or looked at */ unsigned long in, out; /* temporary to save total_in and total_out */ unsigned char buf[4]; /* to restore bit buffer to byte string */ struct inflate_state FAR *state; /* check parameters */ if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (strm->avail_in == 0 && state->bits < 8) return Z_BUF_ERROR; /* if first time, start search in bit buffer */ if (state->mode != SYNC) { state->mode = SYNC; state->hold <<= state->bits & 7; state->bits -= state->bits & 7; len = 0; while (state->bits >= 8) { buf[len++] = (unsigned char)(state->hold); state->hold >>= 8; state->bits -= 8; } state->have = 0; syncsearch(&(state->have), buf, len); } /* search available input */ len = syncsearch(&(state->have), strm->next_in, strm->avail_in); strm->avail_in -= len; strm->next_in += len; strm->total_in += len; /* return no joy or set up to restart inflate() on a new block */ if (state->have != 4) return Z_DATA_ERROR; in = strm->total_in; out = strm->total_out; inflateReset(strm); strm->total_in = in; strm->total_out = out; state->mode = TYPE; return Z_OK; } /* Returns true if inflate is currently at the end of a block generated by Z_SYNC_FLUSH or Z_FULL_FLUSH. This function is used by one PPP implementation to provide an additional safety check. PPP uses Z_SYNC_FLUSH but removes the length bytes of the resulting empty stored block. When decompressing, PPP checks that at the end of input packet, inflate is waiting for these length bytes. */ int ZEXPORT inflateSyncPoint(strm) z_streamp strm; { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; return state->mode == STORED && state->bits == 0; } int ZEXPORT inflateCopy(dest, source) z_streamp dest; z_streamp source; { struct inflate_state FAR *state; struct inflate_state FAR *copy; unsigned char FAR *window; unsigned wsize; /* check input */ if (dest == Z_NULL || source == Z_NULL || source->state == Z_NULL || source->zalloc == (alloc_func)0 || source->zfree == (free_func)0) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)source->state; /* allocate space */ copy = (struct inflate_state FAR *) ZALLOC(source, 1, sizeof(struct inflate_state)); if (copy == Z_NULL) return Z_MEM_ERROR; window = Z_NULL; if (state->window != Z_NULL) { window = (unsigned char FAR *) ZALLOC(source, 1U << state->wbits, sizeof(unsigned char)); if (window == Z_NULL) { ZFREE(source, copy); return Z_MEM_ERROR; } } /* copy state */ zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream)); zmemcpy((voidpf)copy, (voidpf)state, sizeof(struct inflate_state)); if (state->lencode >= state->codes && state->lencode <= state->codes + ENOUGH - 1) { copy->lencode = copy->codes + (state->lencode - state->codes); copy->distcode = copy->codes + (state->distcode - state->codes); } copy->next = copy->codes + (state->next - state->codes); if (window != Z_NULL) { wsize = 1U << state->wbits; zmemcpy(window, state->window, wsize); } copy->window = window; dest->state = (struct internal_state FAR *)copy; return Z_OK; } int ZEXPORT inflateUndermine(strm, subvert) z_streamp strm; int subvert; { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; state->sane = !subvert; #ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR return Z_OK; #else state->sane = 1; return Z_DATA_ERROR; #endif } long ZEXPORT inflateMark(strm) z_streamp strm; { struct inflate_state FAR *state; //TK: Applied the following fix (also in actual zlib devel branch): if (strm == Z_NULL || strm->state == Z_NULL) return (long)(((unsigned long)0 - 1) << 16); //TK: Code was (but clang 7.3 warns about bitshifting negative numbers): //if (strm == Z_NULL || strm->state == Z_NULL) return -1L << 16; state = (struct inflate_state FAR *)strm->state; return ((long)(state->back) << 16) + (state->mode == COPY ? state->length : (state->mode == MATCH ? state->was - state->length : 0)); } /* END OF DUMP OF mz_inflate.c*/ /* START OF DUMP OF mz_inffast.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* inffast.c -- fast decoding * Copyright (C) 1995-2008, 2010, 2013 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ #ifndef ASMINF /* Allow machine dependent optimization for post-increment or pre-increment. Based on testing to date, Pre-increment preferred for: - PowerPC G3 (Adler) - MIPS R5000 (Randers-Pehrson) Post-increment preferred for: - none No measurable difference: - Pentium III (Anderson) - M68060 (Nikl) */ #ifdef POSTINC # define OFF 0 # define PUP(a) *(a)++ #else # define OFF 1 # define PUP(a) *++(a) #endif /* Decode literal, length, and distance codes and write out the resulting literal and match bytes until either not enough input or output is available, an end-of-block is encountered, or a data error is encountered. When large enough input and output buffers are supplied to inflate(), for example, a 16K input buffer and a 64K output buffer, more than 95% of the inflate execution time is spent in this routine. Entry assumptions: state->mode == LEN strm->avail_in >= 6 strm->avail_out >= 258 start >= strm->avail_out state->bits < 8 On return, state->mode is one of: LEN -- ran out of enough output space or enough available input TYPE -- reached end of block code, inflate() to interpret next block BAD -- error in block data Notes: - The maximum input bits used by a length/distance pair is 15 bits for the length code, 5 bits for the length extra, 15 bits for the distance code, and 13 bits for the distance extra. This totals 48 bits, or six bytes. Therefore if strm->avail_in >= 6, then there is enough input to avoid checking for available input while decoding. - The maximum bytes that a single length/distance pair can output is 258 bytes, which is the maximum length that can be coded. inflate_fast() requires strm->avail_out >= 258 for each loop to avoid checking for output space. */ void ZLIB_INTERNAL inflate_fast(strm, start) z_streamp strm; unsigned start; /* inflate()'s starting value for strm->avail_out */ { struct inflate_state FAR *state; z_const unsigned char FAR *in; /* local strm->next_in */ z_const unsigned char FAR *last; /* have enough input while in < last */ unsigned char FAR *out; /* local strm->next_out */ unsigned char FAR *beg; /* inflate()'s initial strm->next_out */ unsigned char FAR *end; /* while out < end, enough space available */ #ifdef INFLATE_STRICT unsigned dmax; /* maximum distance from zlib header */ #endif unsigned wsize; /* window size or zero if not using window */ unsigned whave; /* valid bytes in the window */ unsigned wnext; /* window write index */ unsigned char FAR *window; /* allocated sliding window, if wsize != 0 */ unsigned long hold; /* local strm->hold */ unsigned bits; /* local strm->bits */ code const FAR *lcode; /* local strm->lencode */ code const FAR *dcode; /* local strm->distcode */ unsigned lmask; /* mask for first level of length codes */ unsigned dmask; /* mask for first level of distance codes */ code here; /* retrieved table entry */ unsigned op; /* code bits, operation, extra bits, or */ /* window position, window bytes to copy */ unsigned len; /* match length, unused bytes */ unsigned dist; /* match distance */ unsigned char FAR *from; /* where to copy match from */ /* copy state to local variables */ state = (struct inflate_state FAR *)strm->state; in = strm->next_in - OFF; last = in + (strm->avail_in - 5); out = strm->next_out - OFF; beg = out - (start - strm->avail_out); end = out + (strm->avail_out - 257); #ifdef INFLATE_STRICT dmax = state->dmax; #endif wsize = state->wsize; whave = state->whave; wnext = state->wnext; window = state->window; hold = state->hold; bits = state->bits; lcode = state->lencode; dcode = state->distcode; lmask = (1U << state->lenbits) - 1; dmask = (1U << state->distbits) - 1; /* decode literals and length/distances until end-of-block or not enough input data or output space */ do { if (bits < 15) { hold += (unsigned long)(PUP(in)) << bits; bits += 8; hold += (unsigned long)(PUP(in)) << bits; bits += 8; } here = lcode[hold & lmask]; dolen: op = (unsigned)(here.bits); hold >>= op; bits -= op; op = (unsigned)(here.op); if (op == 0) { /* literal */ Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ? "inflate: literal '%c'\n" : "inflate: literal 0x%02x\n", here.val)); PUP(out) = (unsigned char)(here.val); } else if (op & 16) { /* length base */ len = (unsigned)(here.val); op &= 15; /* number of extra bits */ if (op) { if (bits < op) { hold += (unsigned long)(PUP(in)) << bits; bits += 8; } len += (unsigned)hold & ((1U << op) - 1); hold >>= op; bits -= op; } Tracevv((stderr, "inflate: length %u\n", len)); if (bits < 15) { hold += (unsigned long)(PUP(in)) << bits; bits += 8; hold += (unsigned long)(PUP(in)) << bits; bits += 8; } here = dcode[hold & dmask]; dodist: op = (unsigned)(here.bits); hold >>= op; bits -= op; op = (unsigned)(here.op); if (op & 16) { /* distance base */ dist = (unsigned)(here.val); op &= 15; /* number of extra bits */ if (bits < op) { hold += (unsigned long)(PUP(in)) << bits; bits += 8; if (bits < op) { hold += (unsigned long)(PUP(in)) << bits; bits += 8; } } dist += (unsigned)hold & ((1U << op) - 1); #ifdef INFLATE_STRICT if (dist > dmax) { strm->msg = (char *)"invalid distance too far back"; state->mode = BAD; break; } #endif hold >>= op; bits -= op; Tracevv((stderr, "inflate: distance %u\n", dist)); op = (unsigned)(out - beg); /* max distance in output */ if (dist > op) { /* see if copy from window */ op = dist - op; /* distance back in window */ if (op > whave) { if (state->sane) { strm->msg = (char *)"invalid distance too far back"; state->mode = BAD; break; } #ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR if (len <= op - whave) { do { PUP(out) = 0; } while (--len); continue; } len -= op - whave; do { PUP(out) = 0; } while (--op > whave); if (op == 0) { from = out - dist; do { PUP(out) = PUP(from); } while (--len); continue; } #endif } from = window - OFF; if (wnext == 0) { /* very common case */ from += wsize - op; if (op < len) { /* some from window */ len -= op; do { PUP(out) = PUP(from); } while (--op); from = out - dist; /* rest from output */ } } else if (wnext < op) { /* wrap around window */ from += wsize + wnext - op; op -= wnext; if (op < len) { /* some from end of window */ len -= op; do { PUP(out) = PUP(from); } while (--op); from = window - OFF; if (wnext < len) { /* some from start of window */ op = wnext; len -= op; do { PUP(out) = PUP(from); } while (--op); from = out - dist; /* rest from output */ } } } else { /* contiguous in window */ from += wnext - op; if (op < len) { /* some from window */ len -= op; do { PUP(out) = PUP(from); } while (--op); from = out - dist; /* rest from output */ } } while (len > 2) { PUP(out) = PUP(from); PUP(out) = PUP(from); PUP(out) = PUP(from); len -= 3; } if (len) { PUP(out) = PUP(from); if (len > 1) PUP(out) = PUP(from); } } else { from = out - dist; /* copy direct from output */ do { /* minimum length is three */ PUP(out) = PUP(from); PUP(out) = PUP(from); PUP(out) = PUP(from); len -= 3; } while (len > 2); if (len) { PUP(out) = PUP(from); if (len > 1) PUP(out) = PUP(from); } } } else if ((op & 64) == 0) { /* 2nd level distance code */ here = dcode[here.val + (hold & ((1U << op) - 1))]; goto dodist; } else { strm->msg = (char *)"invalid distance code"; state->mode = BAD; break; } } else if ((op & 64) == 0) { /* 2nd level length code */ here = lcode[here.val + (hold & ((1U << op) - 1))]; goto dolen; } else if (op & 32) { /* end-of-block */ Tracevv((stderr, "inflate: end of block\n")); state->mode = TYPE; break; } else { strm->msg = (char *)"invalid literal/length code"; state->mode = BAD; break; } } while (in < last && out < end); /* return unused bytes (on entry, bits < 8, so in won't go too far back) */ len = bits >> 3; in -= len; bits -= len << 3; hold &= (1U << bits) - 1; /* update state and return */ strm->next_in = in + OFF; strm->next_out = out + OFF; strm->avail_in = (unsigned)(in < last ? 5 + (last - in) : 5 - (in - last)); strm->avail_out = (unsigned)(out < end ? 257 + (end - out) : 257 - (out - end)); state->hold = hold; state->bits = bits; return; } /* inflate_fast() speedups that turned out slower (on a PowerPC G3 750CXe): - Using bit fields for code structure - Different op definition to avoid & for extra bits (do & for table bits) - Three separate decoding do-loops for direct, window, and wnext == 0 - Special case for distance > 1 copies to do overlapped load and store copy - Explicit branch predictions (based on measured branch probabilities) - Deferring match copy and interspersed it with decoding subsequent codes - Swapping literal/length else - Swapping window/direct else - Larger unrolled copy loops (three is about right) - Moving len -= 3 statement into middle of loop */ #endif /* !ASMINF */ /* END OF DUMP OF mz_inffast.c*/ /* START OF DUMP OF mz_gzwrite.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* gzwrite.c -- zlib functions for writing gzip files * Copyright (C) 2004, 2005, 2010, 2011, 2012, 2013 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* START OF DUMP OF mz_gzguts.h*/ /* gzguts.h -- zlib internal header definitions for gz* operations * Copyright (C) 2004, 2005, 2010, 2011, 2012, 2013 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ #include //ADDED BY TK #include //ADDED BY TK #include //ADDED BY TK #ifdef _LARGEFILE64_SOURCE # ifndef _LARGEFILE_SOURCE # define _LARGEFILE_SOURCE 1 # endif # ifdef _FILE_OFFSET_BITS # undef _FILE_OFFSET_BITS # endif #endif #ifdef HAVE_HIDDEN # define ZLIB_INTERNAL __attribute__((visibility ("hidden"))) #else # define ZLIB_INTERNAL #endif #include #ifdef STDC # include # include # include #endif #include #ifdef _WIN32 # include #endif #if defined(__TURBOC__) || defined(_MSC_VER) || defined(_WIN32) # include #endif #ifdef WINAPI_FAMILY # define open _open # define read _read # define write _write # define close _close #endif #ifdef NO_DEFLATE /* for compatibility with old definition */ # define NO_GZCOMPRESS #endif #if defined(STDC99) || (defined(__TURBOC__) && __TURBOC__ >= 0x550) # ifndef HAVE_VSNPRINTF # define HAVE_VSNPRINTF # endif #endif #if defined(__CYGWIN__) # ifndef HAVE_VSNPRINTF # define HAVE_VSNPRINTF # endif #endif #if defined(MSDOS) && defined(__BORLANDC__) && (BORLANDC > 0x410) # ifndef HAVE_VSNPRINTF # define HAVE_VSNPRINTF # endif #endif #ifndef HAVE_VSNPRINTF # ifdef MSDOS /* vsnprintf may exist on some MS-DOS compilers (DJGPP?), but for now we just assume it doesn't. */ # define NO_vsnprintf # endif # ifdef __TURBOC__ # define NO_vsnprintf # endif # ifdef WIN32 /* In Win32, vsnprintf is available as the "non-ANSI" _vsnprintf. */ # if !defined(vsnprintf) && !defined(NO_vsnprintf) # if !defined(_MSC_VER) || ( defined(_MSC_VER) && _MSC_VER < 1500 ) # define vsnprintf _vsnprintf # endif # endif # endif # ifdef __SASC # define NO_vsnprintf # endif # ifdef VMS # define NO_vsnprintf # endif # ifdef __OS400__ # define NO_vsnprintf # endif # ifdef __MVS__ # define NO_vsnprintf # endif #endif /* unlike snprintf (which is required in C99, yet still not supported by Microsoft more than a decade later!), _snprintf does not guarantee null termination of the result -- however this is only used in gzlib.c where the result is assured to fit in the space provided */ #ifdef _MSC_VER # define snprintf _snprintf #endif #ifndef local # define local static #endif /* compile with -Dlocal if your debugger can't find static symbols */ /* gz* functions always use library allocation functions */ #ifndef STDC extern voidp malloc OF((uInt size)); extern void free OF((voidpf ptr)); #endif /* get errno and strerror definition */ #if defined UNDER_CE # include # define zstrerror() gz_strwinerror((DWORD)GetLastError()) #else # ifndef NO_STRERROR # include # define zstrerror() strerror(errno) # else # define zstrerror() "stdio error (consult errno)" # endif #endif /* provide prototypes for these when building zlib without LFS */ #if !defined(_LARGEFILE64_SOURCE) || _LFS64_LARGEFILE-0 == 0 ZEXTERN gzFile ZEXPORT gzopen64 OF((const char *, const char *)); ZEXTERN z_off64_t ZEXPORT gzseek64 OF((gzFile, z_off64_t, int)); ZEXTERN z_off64_t ZEXPORT gztell64 OF((gzFile)); ZEXTERN z_off64_t ZEXPORT gzoffset64 OF((gzFile)); #endif /* default memLevel */ #if MAX_MEM_LEVEL >= 8 # define DEF_MEM_LEVEL 8 #else # define DEF_MEM_LEVEL MAX_MEM_LEVEL #endif /* default i/o buffer size -- double this for output when reading (this and twice this must be able to fit in an unsigned type) */ #define GZBUFSIZE 8192 /* gzip modes, also provide a little integrity check on the passed structure */ #define GZ_NONE 0 #define GZ_READ 7247 #define GZ_WRITE 31153 #define GZ_APPEND 1 /* mode set to GZ_WRITE after the file is opened */ /* values for gz_state how */ #define LOOK 0 /* look for a gzip header */ #define COPY 1 /* copy input directly */ #define GZIP 2 /* decompress a gzip stream */ /* internal gzip file state data structure */ typedef struct { /* exposed contents for gzgetc() macro */ struct gzFile_s x; /* "x" for exposed */ /* x.have: number of bytes available at x.next */ /* x.next: next output data to deliver or write */ /* x.pos: current position in uncompressed data */ /* used for both reading and writing */ int mode; /* see gzip modes above */ int fd; /* file descriptor */ char *path; /* path or fd for error messages */ unsigned size; /* buffer size, zero if not allocated yet */ unsigned want; /* requested buffer size, default is GZBUFSIZE */ unsigned char *in; /* input buffer */ unsigned char *out; /* output buffer (double-sized when reading) */ int direct; /* 0 if processing gzip, 1 if transparent */ /* just for reading */ int how; /* 0: get header, 1: copy, 2: decompress */ z_off64_t start; /* where the gzip data started, for rewinding */ int eof; /* true if end of input file reached */ int past; /* true if read requested past end */ /* just for writing */ int level; /* compression level */ int strategy; /* compression strategy */ /* seek request */ z_off64_t skip; /* amount to skip (already rewound if backwards) */ int seek; /* true if seek request pending */ /* error information */ int err; /* error code */ char *msg; /* error message */ /* zlib inflate or deflate stream */ z_stream strm; /* stream structure in-place (not a pointer) */ } gz_state; typedef gz_state FAR *gz_statep; /* shared functions */ void ZLIB_INTERNAL gz_error OF((gz_statep, int, const char *)); #if defined UNDER_CE char ZLIB_INTERNAL *gz_strwinerror OF((DWORD error)); #endif /* GT_OFF(x), where x is an unsigned value, is true if x > maximum z_off64_t value -- needed when comparing unsigned to z_off64_t, which is signed (possible z_off64_t types off_t, off64_t, and long are all signed) */ #ifdef INT_MAX # define GT_OFF(x) (sizeof(int) == sizeof(z_off64_t) && (x) > INT_MAX) #else unsigned ZLIB_INTERNAL gz_intmax OF((void)); # define GT_OFF(x) (sizeof(int) == sizeof(z_off64_t) && (x) > gz_intmax()) #endif /* END OF DUMP OF mz_gzguts.h*/ /* Local functions */ local int gz_init OF((gz_statep)); local int gz_comp OF((gz_statep, int)); local int gz_zero OF((gz_statep, z_off64_t)); /* Initialize state for writing a gzip file. Mark initialization by setting state->size to non-zero. Return -1 on failure or 0 on success. */ local int gz_init(state) gz_statep state; { int ret; z_streamp strm = &(state->strm); /* allocate input buffer */ state->in = (unsigned char *)malloc(state->want); if (state->in == NULL) { gz_error(state, Z_MEM_ERROR, "out of memory"); return -1; } /* only need output buffer and deflate state if compressing */ if (!state->direct) { /* allocate output buffer */ state->out = (unsigned char *)malloc(state->want); if (state->out == NULL) { free(state->in); gz_error(state, Z_MEM_ERROR, "out of memory"); return -1; } /* allocate deflate memory, set up for gzip compression */ strm->zalloc = Z_NULL; strm->zfree = Z_NULL; strm->opaque = Z_NULL; ret = deflateInit2(strm, state->level, Z_DEFLATED, MAX_WBITS + 16, DEF_MEM_LEVEL, state->strategy); if (ret != Z_OK) { free(state->out); free(state->in); gz_error(state, Z_MEM_ERROR, "out of memory"); return -1; } } /* mark state as initialized */ state->size = state->want; /* initialize write buffer if compressing */ if (!state->direct) { strm->avail_out = state->size; strm->next_out = state->out; state->x.next = strm->next_out; } return 0; } /* Compress whatever is at avail_in and next_in and write to the output file. Return -1 if there is an error writing to the output file, otherwise 0. flush is assumed to be a valid deflate() flush value. If flush is Z_FINISH, then the deflate() state is reset to start a new gzip stream. If gz->direct is true, then simply write to the output file without compressing, and ignore flush. */ local int gz_comp(state, flush) gz_statep state; int flush; { int ret, got; unsigned have; z_streamp strm = &(state->strm); /* allocate memory if this is the first time through */ if (state->size == 0 && gz_init(state) == -1) return -1; /* write directly if requested */ if (state->direct) { got = write(state->fd, strm->next_in, strm->avail_in); if (got < 0 || (unsigned)got != strm->avail_in) { gz_error(state, Z_ERRNO, zstrerror()); return -1; } strm->avail_in = 0; return 0; } /* run deflate() on provided input until it produces no more output */ ret = Z_OK; do { /* write out current buffer contents if full, or if flushing, but if doing Z_FINISH then don't write until we get to Z_STREAM_END */ if (strm->avail_out == 0 || (flush != Z_NO_FLUSH && (flush != Z_FINISH || ret == Z_STREAM_END))) { have = (unsigned)(strm->next_out - state->x.next); if (have && ((got = write(state->fd, state->x.next, have)) < 0 || (unsigned)got != have)) { gz_error(state, Z_ERRNO, zstrerror()); return -1; } if (strm->avail_out == 0) { strm->avail_out = state->size; strm->next_out = state->out; } state->x.next = strm->next_out; } /* compress */ have = strm->avail_out; ret = deflate(strm, flush); if (ret == Z_STREAM_ERROR) { gz_error(state, Z_STREAM_ERROR, "internal error: deflate stream corrupt"); return -1; } have -= strm->avail_out; } while (have); /* if that completed a deflate stream, allow another to start */ if (flush == Z_FINISH) deflateReset(strm); /* all done, no errors */ return 0; } /* Compress len zeros to output. Return -1 on error, 0 on success. */ local int gz_zero(state, len) gz_statep state; z_off64_t len; { int first; unsigned n; z_streamp strm = &(state->strm); /* consume whatever's left in the input buffer */ if (strm->avail_in && gz_comp(state, Z_NO_FLUSH) == -1) return -1; /* compress len zeros (len guaranteed > 0) */ first = 1; while (len) { n = GT_OFF(state->size) || (z_off64_t)state->size > len ? (unsigned)len : state->size; if (first) { memset(state->in, 0, n); first = 0; } strm->avail_in = n; strm->next_in = state->in; state->x.pos += n; if (gz_comp(state, Z_NO_FLUSH) == -1) return -1; len -= n; } return 0; } /* -- see zlib.h -- */ int ZEXPORT gzwrite(file, buf, len) gzFile file; voidpc buf; unsigned len; { unsigned put = len; gz_statep state; z_streamp strm; /* get internal structure */ if (file == NULL) return 0; state = (gz_statep)file; strm = &(state->strm); /* check that we're writing and that there's no error */ if (state->mode != GZ_WRITE || state->err != Z_OK) return 0; /* since an int is returned, make sure len fits in one, otherwise return with an error (this avoids the flaw in the interface) */ if ((int)len < 0) { gz_error(state, Z_DATA_ERROR, "requested length does not fit in int"); return 0; } /* if len is zero, avoid unnecessary operations */ if (len == 0) return 0; /* allocate memory if this is the first time through */ if (state->size == 0 && gz_init(state) == -1) return 0; /* check for seek request */ if (state->seek) { state->seek = 0; if (gz_zero(state, state->skip) == -1) return 0; } /* for small len, copy to input buffer, otherwise compress directly */ if (len < state->size) { /* copy to input buffer, compress when full */ do { unsigned have, copy; if (strm->avail_in == 0) strm->next_in = state->in; have = (unsigned)((strm->next_in + strm->avail_in) - state->in); copy = state->size - have; if (copy > len) copy = len; memcpy(state->in + have, buf, copy); strm->avail_in += copy; state->x.pos += copy; buf = (const char *)buf + copy; len -= copy; if (len && gz_comp(state, Z_NO_FLUSH) == -1) return 0; } while (len); } else { /* consume whatever's left in the input buffer */ if (strm->avail_in && gz_comp(state, Z_NO_FLUSH) == -1) return 0; /* directly compress user buffer to file */ strm->avail_in = len; strm->next_in = (z_const Bytef *)buf; state->x.pos += len; if (gz_comp(state, Z_NO_FLUSH) == -1) return 0; } /* input was all buffered or compressed (put will fit in int) */ return (int)put; } /* -- see zlib.h -- */ int ZEXPORT gzputc(file, c) gzFile file; int c; { unsigned have; unsigned char buf[1]; gz_statep state; z_streamp strm; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; strm = &(state->strm); /* check that we're writing and that there's no error */ if (state->mode != GZ_WRITE || state->err != Z_OK) return -1; /* check for seek request */ if (state->seek) { state->seek = 0; if (gz_zero(state, state->skip) == -1) return -1; } /* try writing to input buffer for speed (state->size == 0 if buffer not initialized) */ if (state->size) { if (strm->avail_in == 0) strm->next_in = state->in; have = (unsigned)((strm->next_in + strm->avail_in) - state->in); if (have < state->size) { state->in[have] = c; strm->avail_in++; state->x.pos++; return c & 0xff; } } /* no room in buffer or not initialized, use gz_write() */ buf[0] = c; if (gzwrite(file, buf, 1) != 1) return -1; return c & 0xff; } /* -- see zlib.h -- */ int ZEXPORT gzputs(file, str) gzFile file; const char *str; { int ret; unsigned len; /* write string */ len = (unsigned)strlen(str); ret = gzwrite(file, str, len); return ret == 0 && len != 0 ? -1 : ret; } #if defined(STDC) || defined(Z_HAVE_STDARG_H) #include /* -- see zlib.h -- */ int ZEXPORTVA gzvprintf(gzFile file, const char *format, va_list va) { int size, len; gz_statep state; z_streamp strm; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; strm = &(state->strm); /* check that we're writing and that there's no error */ if (state->mode != GZ_WRITE || state->err != Z_OK) return 0; /* make sure we have some buffer space */ if (state->size == 0 && gz_init(state) == -1) return 0; /* check for seek request */ if (state->seek) { state->seek = 0; if (gz_zero(state, state->skip) == -1) return 0; } /* consume whatever's left in the input buffer */ if (strm->avail_in && gz_comp(state, Z_NO_FLUSH) == -1) return 0; /* do the printf() into the input buffer, put length in len */ size = (int)(state->size); state->in[size - 1] = 0; #ifdef NO_vsnprintf # ifdef HAS_vsprintf_void (void)vsprintf((char *)(state->in), format, va); for (len = 0; len < size; len++) if (state->in[len] == 0) break; # else len = vsprintf((char *)(state->in), format, va); # endif #else # ifdef HAS_vsnprintf_void (void)vsnprintf((char *)(state->in), size, format, va); len = strlen((char *)(state->in)); # else len = vsnprintf((char *)(state->in), size, format, va); # endif #endif /* check that printf() results fit in buffer */ if (len <= 0 || len >= (int)size || state->in[size - 1] != 0) return 0; /* update buffer and position, defer compression until needed */ strm->avail_in = (unsigned)len; strm->next_in = state->in; state->x.pos += len; return len; } int ZEXPORTVA gzprintf(gzFile file, const char *format, ...) { va_list va; int ret; va_start(va, format); ret = gzvprintf(file, format, va); va_end(va); return ret; } #else /* !STDC && !Z_HAVE_STDARG_H */ /* -- see zlib.h -- */ int ZEXPORTVA gzprintf (file, format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20) gzFile file; const char *format; int a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20; { int size, len; gz_statep state; z_streamp strm; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; strm = &(state->strm); /* check that can really pass pointer in ints */ if (sizeof(int) != sizeof(void *)) return 0; /* check that we're writing and that there's no error */ if (state->mode != GZ_WRITE || state->err != Z_OK) return 0; /* make sure we have some buffer space */ if (state->size == 0 && gz_init(state) == -1) return 0; /* check for seek request */ if (state->seek) { state->seek = 0; if (gz_zero(state, state->skip) == -1) return 0; } /* consume whatever's left in the input buffer */ if (strm->avail_in && gz_comp(state, Z_NO_FLUSH) == -1) return 0; /* do the printf() into the input buffer, put length in len */ size = (int)(state->size); state->in[size - 1] = 0; #ifdef NO_snprintf # ifdef HAS_sprintf_void sprintf((char *)(state->in), format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20); for (len = 0; len < size; len++) if (state->in[len] == 0) break; # else len = sprintf((char *)(state->in), format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20); # endif #else # ifdef HAS_snprintf_void snprintf((char *)(state->in), size, format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20); len = strlen((char *)(state->in)); # else len = snprintf((char *)(state->in), size, format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20); # endif #endif /* check that printf() results fit in buffer */ if (len <= 0 || len >= (int)size || state->in[size - 1] != 0) return 0; /* update buffer and position, defer compression until needed */ strm->avail_in = (unsigned)len; strm->next_in = state->in; state->x.pos += len; return len; } #endif /* -- see zlib.h -- */ int ZEXPORT gzflush(file, flush) gzFile file; int flush; { gz_statep state; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; /* check that we're writing and that there's no error */ if (state->mode != GZ_WRITE || state->err != Z_OK) return Z_STREAM_ERROR; /* check flush parameter */ if (flush < 0 || flush > Z_FINISH) return Z_STREAM_ERROR; /* check for seek request */ if (state->seek) { state->seek = 0; if (gz_zero(state, state->skip) == -1) return -1; } /* compress remaining data with requested flush */ gz_comp(state, flush); return state->err; } /* -- see zlib.h -- */ int ZEXPORT gzsetparams(file, level, strategy) gzFile file; int level; int strategy; { gz_statep state; z_streamp strm; /* get internal structure */ if (file == NULL) return Z_STREAM_ERROR; state = (gz_statep)file; strm = &(state->strm); /* check that we're writing and that there's no error */ if (state->mode != GZ_WRITE || state->err != Z_OK) return Z_STREAM_ERROR; /* if no change is requested, then do nothing */ if (level == state->level && strategy == state->strategy) return Z_OK; /* check for seek request */ if (state->seek) { state->seek = 0; if (gz_zero(state, state->skip) == -1) return -1; } /* change compression parameters for subsequent input */ if (state->size) { /* flush previous input with previous parameters before changing */ if (strm->avail_in && gz_comp(state, Z_PARTIAL_FLUSH) == -1) return state->err; deflateParams(strm, level, strategy); } state->level = level; state->strategy = strategy; return Z_OK; } /* -- see zlib.h -- */ int ZEXPORT gzclose_w(file) gzFile file; { int ret = Z_OK; gz_statep state; /* get internal structure */ if (file == NULL) return Z_STREAM_ERROR; state = (gz_statep)file; /* check that we're writing */ if (state->mode != GZ_WRITE) return Z_STREAM_ERROR; /* check for seek request */ if (state->seek) { state->seek = 0; if (gz_zero(state, state->skip) == -1) ret = state->err; } /* flush, free memory, and close file */ if (gz_comp(state, Z_FINISH) == -1) ret = state->err; if (state->size) { if (!state->direct) { (void)deflateEnd(&(state->strm)); free(state->out); } free(state->in); } gz_error(state, Z_OK, NULL); free(state->path); if (close(state->fd) == -1) ret = Z_ERRNO; free(state); return ret; } /* END OF DUMP OF mz_gzwrite.c*/ /* START OF DUMP OF mz_gzread.c*/ #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* gzread.c -- zlib functions for reading gzip files * Copyright (C) 2004, 2005, 2010, 2011, 2012, 2013 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* Local functions */ local int gz_load OF((gz_statep, unsigned char *, unsigned, unsigned *)); local int gz_avail OF((gz_statep)); local int gz_look OF((gz_statep)); local int gz_decomp OF((gz_statep)); local int gz_fetch OF((gz_statep)); local int gz_skip OF((gz_statep, z_off64_t)); /* Use read() to load a buffer -- return -1 on error, otherwise 0. Read from state->fd, and update state->eof, state->err, and state->msg as appropriate. This function needs to loop on read(), since read() is not guaranteed to read the number of bytes requested, depending on the type of descriptor. */ local int gz_load(state, buf, len, have) gz_statep state; unsigned char *buf; unsigned len; unsigned *have; { int ret; *have = 0; do { ret = read(state->fd, buf + *have, len - *have); if (ret <= 0) break; *have += ret; } while (*have < len); if (ret < 0) { gz_error(state, Z_ERRNO, zstrerror()); return -1; } if (ret == 0) state->eof = 1; return 0; } /* Load up input buffer and set eof flag if last data loaded -- return -1 on error, 0 otherwise. Note that the eof flag is set when the end of the input file is reached, even though there may be unused data in the buffer. Once that data has been used, no more attempts will be made to read the file. If strm->avail_in != 0, then the current data is moved to the beginning of the input buffer, and then the remainder of the buffer is loaded with the available data from the input file. */ local int gz_avail(state) gz_statep state; { unsigned got; z_streamp strm = &(state->strm); if (state->err != Z_OK && state->err != Z_BUF_ERROR) return -1; if (state->eof == 0) { if (strm->avail_in) { /* copy what's there to the start */ unsigned char *p = state->in; unsigned const char *q = strm->next_in; unsigned n = strm->avail_in; do { *p++ = *q++; } while (--n); } if (gz_load(state, state->in + strm->avail_in, state->size - strm->avail_in, &got) == -1) return -1; strm->avail_in += got; strm->next_in = state->in; } return 0; } /* Look for gzip header, set up for inflate or copy. state->x.have must be 0. If this is the first time in, allocate required memory. state->how will be left unchanged if there is no more input data available, will be set to COPY if there is no gzip header and direct copying will be performed, or it will be set to GZIP for decompression. If direct copying, then leftover input data from the input buffer will be copied to the output buffer. In that case, all further file reads will be directly to either the output buffer or a user buffer. If decompressing, the inflate state will be initialized. gz_look() will return 0 on success or -1 on failure. */ local int gz_look(state) gz_statep state; { z_streamp strm = &(state->strm); /* allocate read buffers and inflate memory */ if (state->size == 0) { /* allocate buffers */ state->in = (unsigned char *)malloc(state->want); state->out = (unsigned char *)malloc(state->want << 1); if (state->in == NULL || state->out == NULL) { if (state->out != NULL) free(state->out); if (state->in != NULL) free(state->in); gz_error(state, Z_MEM_ERROR, "out of memory"); return -1; } state->size = state->want; /* allocate inflate memory */ state->strm.zalloc = Z_NULL; state->strm.zfree = Z_NULL; state->strm.opaque = Z_NULL; state->strm.avail_in = 0; state->strm.next_in = Z_NULL; if (inflateInit2(&(state->strm), 15 + 16) != Z_OK) { /* gunzip */ free(state->out); free(state->in); state->size = 0; gz_error(state, Z_MEM_ERROR, "out of memory"); return -1; } } /* get at least the magic bytes in the input buffer */ if (strm->avail_in < 2) { if (gz_avail(state) == -1) return -1; if (strm->avail_in == 0) return 0; } /* look for gzip magic bytes -- if there, do gzip decoding (note: there is a logical dilemma here when considering the case of a partially written gzip file, to wit, if a single 31 byte is written, then we cannot tell whether this is a single-byte file, or just a partially written gzip file -- for here we assume that if a gzip file is being written, then the header will be written in a single operation, so that reading a single byte is sufficient indication that it is not a gzip file) */ if (strm->avail_in > 1 && strm->next_in[0] == 31 && strm->next_in[1] == 139) { inflateReset(strm); state->how = GZIP; state->direct = 0; return 0; } /* no gzip header -- if we were decoding gzip before, then this is trailing garbage. Ignore the trailing garbage and finish. */ if (state->direct == 0) { strm->avail_in = 0; state->eof = 1; state->x.have = 0; return 0; } /* doing raw i/o, copy any leftover input to output -- this assumes that the output buffer is larger than the input buffer, which also assures space for gzungetc() */ state->x.next = state->out; if (strm->avail_in) { memcpy(state->x.next, strm->next_in, strm->avail_in); state->x.have = strm->avail_in; strm->avail_in = 0; } state->how = COPY; state->direct = 1; return 0; } /* Decompress from input to the provided next_out and avail_out in the state. On return, state->x.have and state->x.next point to the just decompressed data. If the gzip stream completes, state->how is reset to LOOK to look for the next gzip stream or raw data, once state->x.have is depleted. Returns 0 on success, -1 on failure. */ local int gz_decomp(state) gz_statep state; { int ret = Z_OK; unsigned had; z_streamp strm = &(state->strm); /* fill output buffer up to end of deflate stream */ had = strm->avail_out; do { /* get more input for inflate() */ if (strm->avail_in == 0 && gz_avail(state) == -1) return -1; if (strm->avail_in == 0) { gz_error(state, Z_BUF_ERROR, "unexpected end of file"); break; } /* decompress and handle errors */ ret = inflate(strm, Z_NO_FLUSH); if (ret == Z_STREAM_ERROR || ret == Z_NEED_DICT) { gz_error(state, Z_STREAM_ERROR, "internal error: inflate stream corrupt"); return -1; } if (ret == Z_MEM_ERROR) { gz_error(state, Z_MEM_ERROR, "out of memory"); return -1; } if (ret == Z_DATA_ERROR) { /* deflate stream invalid */ gz_error(state, Z_DATA_ERROR, strm->msg == NULL ? "compressed data error" : strm->msg); return -1; } } while (strm->avail_out && ret != Z_STREAM_END); /* update available output */ state->x.have = had - strm->avail_out; state->x.next = strm->next_out - state->x.have; /* if the gzip stream completed successfully, look for another */ if (ret == Z_STREAM_END) state->how = LOOK; /* good decompression */ return 0; } /* Fetch data and put it in the output buffer. Assumes state->x.have is 0. Data is either copied from the input file or decompressed from the input file depending on state->how. If state->how is LOOK, then a gzip header is looked for to determine whether to copy or decompress. Returns -1 on error, otherwise 0. gz_fetch() will leave state->how as COPY or GZIP unless the end of the input file has been reached and all data has been processed. */ local int gz_fetch(state) gz_statep state; { z_streamp strm = &(state->strm); do { switch(state->how) { case LOOK: /* -> LOOK, COPY (only if never GZIP), or GZIP */ if (gz_look(state) == -1) return -1; if (state->how == LOOK) return 0; break; case COPY: /* -> COPY */ if (gz_load(state, state->out, state->size << 1, &(state->x.have)) == -1) return -1; state->x.next = state->out; return 0; case GZIP: /* -> GZIP or LOOK (if end of gzip stream) */ strm->avail_out = state->size << 1; strm->next_out = state->out; if (gz_decomp(state) == -1) return -1; } } while (state->x.have == 0 && (!state->eof || strm->avail_in)); return 0; } /* Skip len uncompressed bytes of output. Return -1 on error, 0 on success. */ local int gz_skip(state, len) gz_statep state; z_off64_t len; { unsigned n; /* skip over len bytes or reach end-of-file, whichever comes first */ while (len) /* skip over whatever is in output buffer */ if (state->x.have) { n = GT_OFF(state->x.have) || (z_off64_t)state->x.have > len ? (unsigned)len : state->x.have; state->x.have -= n; state->x.next += n; state->x.pos += n; len -= n; } /* output buffer empty -- return if we're at the end of the input */ else if (state->eof && state->strm.avail_in == 0) break; /* need more data to skip -- load up output buffer */ else { /* get more output, looking for header if required */ if (gz_fetch(state) == -1) return -1; } return 0; } /* -- see zlib.h -- */ int ZEXPORT gzread(file, buf, len) gzFile file; voidp buf; unsigned len; { unsigned got, n; gz_statep state; z_streamp strm; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; strm = &(state->strm); /* check that we're reading and that there's no (serious) error */ if (state->mode != GZ_READ || (state->err != Z_OK && state->err != Z_BUF_ERROR)) return -1; /* since an int is returned, make sure len fits in one, otherwise return with an error (this avoids the flaw in the interface) */ if ((int)len < 0) { gz_error(state, Z_DATA_ERROR, "requested length does not fit in int"); return -1; } /* if len is zero, avoid unnecessary operations */ if (len == 0) return 0; /* process a skip request */ if (state->seek) { state->seek = 0; if (gz_skip(state, state->skip) == -1) return -1; } /* get len bytes to buf, or less than len if at the end */ got = 0; do { /* first just try copying data from the output buffer */ if (state->x.have) { n = state->x.have > len ? len : state->x.have; memcpy(buf, state->x.next, n); state->x.next += n; state->x.have -= n; } /* output buffer empty -- return if we're at the end of the input */ else if (state->eof && strm->avail_in == 0) { state->past = 1; /* tried to read past end */ break; } /* need output data -- for small len or new stream load up our output buffer */ else if (state->how == LOOK || len < (state->size << 1)) { /* get more output, looking for header if required */ if (gz_fetch(state) == -1) return -1; continue; /* no progress yet -- go back to copy above */ /* the copy above assures that we will leave with space in the output buffer, allowing at least one gzungetc() to succeed */ } /* large len -- read directly into user buffer */ else if (state->how == COPY) { /* read directly */ if (gz_load(state, (unsigned char *)buf, len, &n) == -1) return -1; } /* large len -- decompress directly into user buffer */ else { /* state->how == GZIP */ strm->avail_out = len; strm->next_out = (unsigned char *)buf; if (gz_decomp(state) == -1) return -1; n = state->x.have; state->x.have = 0; } /* update progress */ len -= n; buf = (char *)buf + n; got += n; state->x.pos += n; } while (len); /* return number of bytes read into user buffer (will fit in int) */ return (int)got; } /* -- see zlib.h -- */ #ifdef Z_PREFIX_SET # undef z_gzgetc #else # undef gzgetc #endif int ZEXPORT gzgetc(file) gzFile file; { int ret; unsigned char buf[1]; gz_statep state; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; /* check that we're reading and that there's no (serious) error */ if (state->mode != GZ_READ || (state->err != Z_OK && state->err != Z_BUF_ERROR)) return -1; /* try output buffer (no need to check for skip request) */ if (state->x.have) { state->x.have--; state->x.pos++; return *(state->x.next)++; } /* nothing there -- try gzread() */ ret = gzread(file, buf, 1); return ret < 1 ? -1 : buf[0]; } int ZEXPORT gzgetc_(file) gzFile file; { return gzgetc(file); } /* -- see zlib.h -- */ int ZEXPORT gzungetc(c, file) int c; gzFile file; { gz_statep state; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; /* check that we're reading and that there's no (serious) error */ if (state->mode != GZ_READ || (state->err != Z_OK && state->err != Z_BUF_ERROR)) return -1; /* process a skip request */ if (state->seek) { state->seek = 0; if (gz_skip(state, state->skip) == -1) return -1; } /* can't push EOF */ if (c < 0) return -1; /* if output buffer empty, put byte at end (allows more pushing) */ if (state->x.have == 0) { state->x.have = 1; state->x.next = state->out + (state->size << 1) - 1; state->x.next[0] = c; state->x.pos--; state->past = 0; return c; } /* if no room, give up (must have already done a gzungetc()) */ if (state->x.have == (state->size << 1)) { gz_error(state, Z_DATA_ERROR, "out of room to push characters"); return -1; } /* slide output data if needed and insert byte before existing data */ if (state->x.next == state->out) { unsigned char *src = state->out + state->x.have; unsigned char *dest = state->out + (state->size << 1); while (src > state->out) *--dest = *--src; state->x.next = dest; } state->x.have++; state->x.next--; state->x.next[0] = c; state->x.pos--; state->past = 0; return c; } /* -- see zlib.h -- */ char * ZEXPORT gzgets(file, buf, len) gzFile file; char *buf; int len; { unsigned left, n; char *str; unsigned char *eol; gz_statep state; /* check parameters and get internal structure */ if (file == NULL || buf == NULL || len < 1) return NULL; state = (gz_statep)file; /* check that we're reading and that there's no (serious) error */ if (state->mode != GZ_READ || (state->err != Z_OK && state->err != Z_BUF_ERROR)) return NULL; /* process a skip request */ if (state->seek) { state->seek = 0; if (gz_skip(state, state->skip) == -1) return NULL; } /* copy output bytes up to new line or len - 1, whichever comes first -- append a terminating zero to the string (we don't check for a zero in the contents, let the user worry about that) */ str = buf; left = (unsigned)len - 1; if (left) do { /* assure that something is in the output buffer */ if (state->x.have == 0 && gz_fetch(state) == -1) return NULL; /* error */ if (state->x.have == 0) { /* end of file */ state->past = 1; /* read past end */ break; /* return what we have */ } /* look for end-of-line in current output buffer */ n = state->x.have > left ? left : state->x.have; eol = (unsigned char *)memchr(state->x.next, '\n', n); if (eol != NULL) n = (unsigned)(eol - state->x.next) + 1; /* copy through end-of-line, or remainder if not found */ memcpy(buf, state->x.next, n); state->x.have -= n; state->x.next += n; state->x.pos += n; left -= n; buf += n; } while (left && eol == NULL); /* return terminated string, or if nothing, end of file */ if (buf == str) return NULL; buf[0] = 0; return str; } /* -- see zlib.h -- */ int ZEXPORT gzdirect(file) gzFile file; { gz_statep state; /* get internal structure */ if (file == NULL) return 0; state = (gz_statep)file; /* if the state is not known, but we can find out, then do so (this is mainly for right after a gzopen() or gzdopen()) */ if (state->mode == GZ_READ && state->how == LOOK && state->x.have == 0) (void)gz_look(state); /* return 1 if transparent, 0 if processing a gzip stream */ return state->direct; } /* -- see zlib.h -- */ int ZEXPORT gzclose_r(file) gzFile file; { int ret, err; gz_statep state; /* get internal structure */ if (file == NULL) return Z_STREAM_ERROR; state = (gz_statep)file; /* check that we're reading */ if (state->mode != GZ_READ) return Z_STREAM_ERROR; /* free memory and close file */ if (state->size) { inflateEnd(&(state->strm)); free(state->out); free(state->in); } err = state->err == Z_BUF_ERROR ? Z_BUF_ERROR : Z_OK; gz_error(state, Z_OK, NULL); free(state->path); ret = close(state->fd); free(state); return ret ? Z_ERRNO : err; } /* END OF DUMP OF mz_gzread.c*/ /* START OF DUMP OF mz_gzlib.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* gzlib.c -- zlib functions common to reading and writing gzip files * Copyright (C) 2004, 2010, 2011, 2012, 2013 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ #if defined(_WIN32) && !defined(__BORLANDC__) # define LSEEK _lseeki64 #else #if defined(_LARGEFILE64_SOURCE) && _LFS64_LARGEFILE-0 # define LSEEK lseek64 #else # define LSEEK lseek #endif #endif /* Local functions */ local void gz_reset OF((gz_statep)); local gzFile gz_open OF((const void *, int, const char *)); #if defined UNDER_CE /* Map the Windows error number in ERROR to a locale-dependent error message string and return a pointer to it. Typically, the values for ERROR come from GetLastError. The string pointed to shall not be modified by the application, but may be overwritten by a subsequent call to gz_strwinerror The gz_strwinerror function does not change the current setting of GetLastError. */ char ZLIB_INTERNAL *gz_strwinerror (error) DWORD error; { static char buf[1024]; wchar_t *msgbuf; DWORD lasterr = GetLastError(); DWORD chars = FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER, NULL, error, 0, /* Default language */ (LPVOID)&msgbuf, 0, NULL); if (chars != 0) { /* If there is an \r\n appended, zap it. */ if (chars >= 2 && msgbuf[chars - 2] == '\r' && msgbuf[chars - 1] == '\n') { chars -= 2; msgbuf[chars] = 0; } if (chars > sizeof (buf) - 1) { chars = sizeof (buf) - 1; msgbuf[chars] = 0; } wcstombs(buf, msgbuf, chars + 1); LocalFree(msgbuf); } else { sprintf(buf, "unknown win32 error (%ld)", error); } SetLastError(lasterr); return buf; } #endif /* UNDER_CE */ /* Reset gzip file state */ local void gz_reset(state) gz_statep state; { state->x.have = 0; /* no output data available */ if (state->mode == GZ_READ) { /* for reading ... */ state->eof = 0; /* not at end of file */ state->past = 0; /* have not read past end yet */ state->how = LOOK; /* look for gzip header */ } state->seek = 0; /* no seek request pending */ gz_error(state, Z_OK, NULL); /* clear error */ state->x.pos = 0; /* no uncompressed data yet */ state->strm.avail_in = 0; /* no input data yet */ } /* Open a gzip file either by name or file descriptor. */ local gzFile gz_open(path, fd, mode) const void *path; int fd; const char *mode; { gz_statep state; size_t len; int oflag; #ifdef O_CLOEXEC int cloexec = 0; #endif #ifdef O_EXCL int exclusive = 0; #endif /* check input */ if (path == NULL) return NULL; /* allocate gzFile structure to return */ state = (gz_statep)malloc(sizeof(gz_state)); if (state == NULL) return NULL; state->size = 0; /* no buffers allocated yet */ state->want = GZBUFSIZE; /* requested buffer size */ state->msg = NULL; /* no error message yet */ /* interpret mode */ state->mode = GZ_NONE; state->level = Z_DEFAULT_COMPRESSION; state->strategy = Z_DEFAULT_STRATEGY; state->direct = 0; while (*mode) { if (*mode >= '0' && *mode <= '9') state->level = *mode - '0'; else switch (*mode) { case 'r': state->mode = GZ_READ; break; #ifndef NO_GZCOMPRESS case 'w': state->mode = GZ_WRITE; break; case 'a': state->mode = GZ_APPEND; break; #endif case '+': /* can't read and write at the same time */ free(state); return NULL; case 'b': /* ignore -- will request binary anyway */ break; #ifdef O_CLOEXEC case 'e': cloexec = 1; break; #endif #ifdef O_EXCL case 'x': exclusive = 1; break; #endif case 'f': state->strategy = Z_FILTERED; break; case 'h': state->strategy = Z_HUFFMAN_ONLY; break; case 'R': state->strategy = Z_RLE; break; case 'F': state->strategy = Z_FIXED; break; case 'T': state->direct = 1; break; default: /* could consider as an error, but just ignore */ ; } mode++; } /* must provide an "r", "w", or "a" */ if (state->mode == GZ_NONE) { free(state); return NULL; } /* can't force transparent read */ if (state->mode == GZ_READ) { if (state->direct) { free(state); return NULL; } state->direct = 1; /* for empty file */ } /* save the path name for error messages */ #ifdef _WIN32 if (fd == -2) { len = wcstombs(NULL, path, 0); if (len == (size_t)-1) len = 0; } else #endif len = strlen((const char *)path); state->path = (char *)malloc(len + 1); if (state->path == NULL) { free(state); return NULL; } #ifdef _WIN32 if (fd == -2) if (len) wcstombs(state->path, path, len + 1); else *(state->path) = 0; else #endif #if !defined(NO_snprintf) && !defined(NO_vsnprintf) snprintf(state->path, len + 1, "%s", (const char *)path); #else strcpy(state->path, path); #endif /* compute the flags for open() */ oflag = #ifdef O_LARGEFILE O_LARGEFILE | #endif #ifdef O_BINARY O_BINARY | #endif #ifdef O_CLOEXEC (cloexec ? O_CLOEXEC : 0) | #endif (state->mode == GZ_READ ? O_RDONLY : (O_WRONLY | O_CREAT | #ifdef O_EXCL (exclusive ? O_EXCL : 0) | #endif (state->mode == GZ_WRITE ? O_TRUNC : O_APPEND))); /* open the file with the appropriate flags (or just use fd) */ state->fd = fd > -1 ? fd : ( #ifdef _WIN32 fd == -2 ? _wopen(path, oflag, 0666) : #endif open((const char *)path, oflag, 0666)); if (state->fd == -1) { free(state->path); free(state); return NULL; } if (state->mode == GZ_APPEND) state->mode = GZ_WRITE; /* simplify later checks */ /* save the current position for rewinding (only if reading) */ if (state->mode == GZ_READ) { state->start = LSEEK(state->fd, 0, SEEK_CUR); if (state->start == -1) state->start = 0; } /* initialize stream */ gz_reset(state); /* return stream */ return (gzFile)state; } /* -- see zlib.h -- */ gzFile ZEXPORT gzopen(path, mode) const char *path; const char *mode; { return gz_open(path, -1, mode); } /* -- see zlib.h -- */ gzFile ZEXPORT gzopen64(path, mode) const char *path; const char *mode; { return gz_open(path, -1, mode); } /* -- see zlib.h -- */ gzFile ZEXPORT gzdopen(fd, mode) int fd; const char *mode; { char *path; /* identifier for error messages */ gzFile gz; if (fd == -1 || (path = (char *)malloc(7 + 3 * sizeof(int))) == NULL) return NULL; #if !defined(NO_snprintf) && !defined(NO_vsnprintf) snprintf(path, 7 + 3 * sizeof(int), "", fd); /* for debugging */ #else sprintf(path, "", fd); /* for debugging */ #endif gz = gz_open(path, fd, mode); free(path); return gz; } /* -- see zlib.h -- */ #ifdef _WIN32 gzFile ZEXPORT gzopen_w(path, mode) const wchar_t *path; const char *mode; { return gz_open(path, -2, mode); } #endif /* -- see zlib.h -- */ int ZEXPORT gzbuffer(file, size) gzFile file; unsigned size; { gz_statep state; /* get internal structure and check integrity */ if (file == NULL) return -1; state = (gz_statep)file; if (state->mode != GZ_READ && state->mode != GZ_WRITE) return -1; /* make sure we haven't already allocated memory */ if (state->size != 0) return -1; /* check and set requested size */ if (size < 2) size = 2; /* need two bytes to check magic header */ state->want = size; return 0; } /* -- see zlib.h -- */ int ZEXPORT gzrewind(file) gzFile file; { gz_statep state; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; /* check that we're reading and that there's no error */ if (state->mode != GZ_READ || (state->err != Z_OK && state->err != Z_BUF_ERROR)) return -1; /* back up and start over */ if (LSEEK(state->fd, state->start, SEEK_SET) == -1) return -1; gz_reset(state); return 0; } /* -- see zlib.h -- */ z_off64_t ZEXPORT gzseek64(file, offset, whence) gzFile file; z_off64_t offset; int whence; { unsigned n; z_off64_t ret; gz_statep state; /* get internal structure and check integrity */ if (file == NULL) return -1; state = (gz_statep)file; if (state->mode != GZ_READ && state->mode != GZ_WRITE) return -1; /* check that there's no error */ if (state->err != Z_OK && state->err != Z_BUF_ERROR) return -1; /* can only seek from start or relative to current position */ if (whence != SEEK_SET && whence != SEEK_CUR) return -1; /* normalize offset to a SEEK_CUR specification */ if (whence == SEEK_SET) offset -= state->x.pos; else if (state->seek) offset += state->skip; state->seek = 0; /* if within raw area while reading, just go there */ if (state->mode == GZ_READ && state->how == COPY && state->x.pos + offset >= 0) { ret = LSEEK(state->fd, offset - state->x.have, SEEK_CUR); if (ret == -1) return -1; state->x.have = 0; state->eof = 0; state->past = 0; state->seek = 0; gz_error(state, Z_OK, NULL); state->strm.avail_in = 0; state->x.pos += offset; return state->x.pos; } /* calculate skip amount, rewinding if needed for back seek when reading */ if (offset < 0) { if (state->mode != GZ_READ) /* writing -- can't go backwards */ return -1; offset += state->x.pos; if (offset < 0) /* before start of file! */ return -1; if (gzrewind(file) == -1) /* rewind, then skip to offset */ return -1; } /* if reading, skip what's in output buffer (one less gzgetc() check) */ if (state->mode == GZ_READ) { n = GT_OFF(state->x.have) || (z_off64_t)state->x.have > offset ? (unsigned)offset : state->x.have; state->x.have -= n; state->x.next += n; state->x.pos += n; offset -= n; } /* request skip (if not zero) */ if (offset) { state->seek = 1; state->skip = offset; } return state->x.pos + offset; } /* -- see zlib.h -- */ z_off_t ZEXPORT gzseek(file, offset, whence) gzFile file; z_off_t offset; int whence; { z_off64_t ret; ret = gzseek64(file, (z_off64_t)offset, whence); return ret == (z_off_t)ret ? (z_off_t)ret : -1; } /* -- see zlib.h -- */ z_off64_t ZEXPORT gztell64(file) gzFile file; { gz_statep state; /* get internal structure and check integrity */ if (file == NULL) return -1; state = (gz_statep)file; if (state->mode != GZ_READ && state->mode != GZ_WRITE) return -1; /* return position */ return state->x.pos + (state->seek ? state->skip : 0); } /* -- see zlib.h -- */ z_off_t ZEXPORT gztell(file) gzFile file; { z_off64_t ret; ret = gztell64(file); return ret == (z_off_t)ret ? (z_off_t)ret : -1; } /* -- see zlib.h -- */ z_off64_t ZEXPORT gzoffset64(file) gzFile file; { z_off64_t offset; gz_statep state; /* get internal structure and check integrity */ if (file == NULL) return -1; state = (gz_statep)file; if (state->mode != GZ_READ && state->mode != GZ_WRITE) return -1; /* compute and return effective offset in file */ offset = LSEEK(state->fd, 0, SEEK_CUR); if (offset == -1) return -1; if (state->mode == GZ_READ) /* reading */ offset -= state->strm.avail_in; /* don't count buffered input */ return offset; } /* -- see zlib.h -- */ z_off_t ZEXPORT gzoffset(file) gzFile file; { z_off64_t ret; ret = gzoffset64(file); return ret == (z_off_t)ret ? (z_off_t)ret : -1; } /* -- see zlib.h -- */ int ZEXPORT gzeof(file) gzFile file; { gz_statep state; /* get internal structure and check integrity */ if (file == NULL) return 0; state = (gz_statep)file; if (state->mode != GZ_READ && state->mode != GZ_WRITE) return 0; /* return end-of-file state */ return state->mode == GZ_READ ? state->past : 0; } /* -- see zlib.h -- */ const char * ZEXPORT gzerror(file, errnum) gzFile file; int *errnum; { gz_statep state; /* get internal structure and check integrity */ if (file == NULL) return NULL; state = (gz_statep)file; if (state->mode != GZ_READ && state->mode != GZ_WRITE) return NULL; /* return error information */ if (errnum != NULL) *errnum = state->err; return state->err == Z_MEM_ERROR ? "out of memory" : (state->msg == NULL ? "" : state->msg); } /* -- see zlib.h -- */ void ZEXPORT gzclearerr(file) gzFile file; { gz_statep state; /* get internal structure and check integrity */ if (file == NULL) return; state = (gz_statep)file; if (state->mode != GZ_READ && state->mode != GZ_WRITE) return; /* clear error and end-of-file */ if (state->mode == GZ_READ) { state->eof = 0; state->past = 0; } gz_error(state, Z_OK, NULL); } /* Create an error message in allocated memory and set state->err and state->msg accordingly. Free any previous error message already there. Do not try to free or allocate space if the error is Z_MEM_ERROR (out of memory). Simply save the error message as a static string. If there is an allocation failure constructing the error message, then convert the error to out of memory. */ void ZLIB_INTERNAL gz_error(state, err, msg) gz_statep state; int err; const char *msg; { /* free previously allocated message and clear */ if (state->msg != NULL) { if (state->err != Z_MEM_ERROR) free(state->msg); state->msg = NULL; } /* if fatal, set state->x.have to 0 so that the gzgetc() macro fails */ if (err != Z_OK && err != Z_BUF_ERROR) state->x.have = 0; /* set error code, and if no message, then done */ state->err = err; if (msg == NULL) return; /* for an out of memory error, return literal string when requested */ if (err == Z_MEM_ERROR) return; /* construct error message with path */ if ((state->msg = (char *)malloc(strlen(state->path) + strlen(msg) + 3)) == NULL) { state->err = Z_MEM_ERROR; return; } #if !defined(NO_snprintf) && !defined(NO_vsnprintf) snprintf(state->msg, strlen(state->path) + strlen(msg) + 3, "%s%s%s", state->path, ": ", msg); #else strcpy(state->msg, state->path); strcat(state->msg, ": "); strcat(state->msg, msg); #endif return; } #ifndef INT_MAX /* portably return maximum value for an int (when limits.h presumed not available) -- we need to do this to cover cases where 2's complement not used, since C standard permits 1's complement and sign-bit representations, otherwise we could just use ((unsigned)-1) >> 1 */ unsigned ZLIB_INTERNAL gz_intmax() { unsigned p, q; p = 1; do { q = p; p <<= 1; p++; } while (p > q); return q >> 1; } #endif /* END OF DUMP OF mz_gzlib.c*/ /* START OF DUMP OF mz_gzclose.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* gzclose.c -- zlib gzclose() function * Copyright (C) 2004, 2010 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* gzclose() is in a separate file so that it is linked in only if it is used. That way the other gzclose functions can be used instead to avoid linking in unneeded compression or decompression routines. */ int ZEXPORT gzclose(file) gzFile file; { #ifndef NO_GZCOMPRESS gz_statep state; if (file == NULL) return Z_STREAM_ERROR; state = (gz_statep)file; return state->mode == GZ_READ ? gzclose_r(file) : gzclose_w(file); #else return gzclose_r(file); #endif } /* END OF DUMP OF mz_gzclose.c*/ /* START OF DUMP OF mz_deflate.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* deflate.c -- compress data using the deflation algorithm * Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* * ALGORITHM * * The "deflation" process depends on being able to identify portions * of the input text which are identical to earlier input (within a * sliding window trailing behind the input currently being processed). * * The most straightforward technique turns out to be the fastest for * most input files: try all possible matches and select the longest. * The key feature of this algorithm is that insertions into the string * dictionary are very simple and thus fast, and deletions are avoided * completely. Insertions are performed at each input character, whereas * string matches are performed only when the previous match ends. So it * is preferable to spend more time in matches to allow very fast string * insertions and avoid deletions. The matching algorithm for small * strings is inspired from that of Rabin & Karp. A brute force approach * is used to find longer strings when a small match has been found. * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze * (by Leonid Broukhis). * A previous version of this file used a more sophisticated algorithm * (by Fiala and Greene) which is guaranteed to run in linear amortized * time, but has a larger average cost, uses more memory and is patented. * However the F&G algorithm may be faster for some highly redundant * files if the parameter max_chain_length (described below) is too large. * * ACKNOWLEDGEMENTS * * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and * I found it in 'freeze' written by Leonid Broukhis. * Thanks to many people for bug reports and testing. * * REFERENCES * * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification". * Available in http://tools.ietf.org/html/rfc1951 * * A description of the Rabin and Karp algorithm is given in the book * "Algorithms" by R. Sedgewick, Addison-Wesley, p252. * * Fiala,E.R., and Greene,D.H. * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595 * */ /* @(#) $Id$ */ const char deflate_copyright[] = " deflate 1.2.8 Copyright 1995-2013 Jean-loup Gailly and Mark Adler "; /* If you use the zlib library in a product, an acknowledgment is welcome in the documentation of your product. If for some reason you cannot include such an acknowledgment, I would appreciate that you keep this copyright string in the executable of your product. */ /* =========================================================================== * Function prototypes. */ typedef enum { need_more, /* block not completed, need more input or more output */ block_done, /* block flush performed */ finish_started, /* finish started, need only more output at next deflate */ finish_done /* finish done, accept no more input or output */ } block_state; typedef block_state (*compress_func) OF((deflate_state *s, int flush)); /* Compression function. Returns the block state after the call. */ local void fill_window OF((deflate_state *s)); local block_state deflate_stored OF((deflate_state *s, int flush)); local block_state deflate_fast OF((deflate_state *s, int flush)); #ifndef FASTEST local block_state deflate_slow OF((deflate_state *s, int flush)); #endif local block_state deflate_rle OF((deflate_state *s, int flush)); local block_state deflate_huff OF((deflate_state *s, int flush)); local void lm_init OF((deflate_state *s)); local void putShortMSB OF((deflate_state *s, uInt b)); local void flush_pending OF((z_streamp strm)); local int read_buf OF((z_streamp strm, Bytef *buf, unsigned size)); #ifdef ASMV void match_init OF((void)); /* asm code initialization */ uInt longest_match OF((deflate_state *s, IPos cur_match)); #else local uInt longest_match OF((deflate_state *s, IPos cur_match)); #endif #ifdef DEBUG local void check_match OF((deflate_state *s, IPos start, IPos match, int length)); #endif /* =========================================================================== * Local data */ #define NIL 0 /* Tail of hash chains */ #ifndef TOO_FAR # define TOO_FAR 4096 #endif /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */ /* Values for max_lazy_match, good_match and max_chain_length, depending on * the desired pack level (0..9). The values given below have been tuned to * exclude worst case performance for pathological files. Better values may be * found for specific files. */ typedef struct config_s { ush good_length; /* reduce lazy search above this match length */ ush max_lazy; /* do not perform lazy search above this match length */ ush nice_length; /* quit search above this match length */ ush max_chain; compress_func func; } config; #ifdef FASTEST local const config configuration_table[2] = { /* good lazy nice chain */ /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ /* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */ #else local const config configuration_table[10] = { /* good lazy nice chain */ /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ /* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */ /* 2 */ {4, 5, 16, 8, deflate_fast}, /* 3 */ {4, 6, 32, 32, deflate_fast}, /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */ /* 5 */ {8, 16, 32, 32, deflate_slow}, /* 6 */ {8, 16, 128, 128, deflate_slow}, /* 7 */ {8, 32, 128, 256, deflate_slow}, /* 8 */ {32, 128, 258, 1024, deflate_slow}, /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */ #endif /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different * meaning. */ #define EQUAL 0 /* result of memcmp for equal strings */ #ifndef NO_DUMMY_DECL struct static_tree_desc_s {int dummy;}; /* for buggy compilers */ #endif /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */ #define RANK(f) (((f) << 1) - ((f) > 4 ? 9 : 0)) /* =========================================================================== * Update a hash value with the given input byte * IN assertion: all calls to to UPDATE_HASH are made with consecutive * input characters, so that a running hash key can be computed from the * previous key instead of complete recalculation each time. */ #define UPDATE_HASH(s,h,c) (h = (((h)<hash_shift) ^ (c)) & s->hash_mask) /* =========================================================================== * Insert string str in the dictionary and set match_head to the previous head * of the hash chain (the most recent string with same hash key). Return * the previous length of the hash chain. * If this file is compiled with -DFASTEST, the compression level is forced * to 1, and no hash chains are maintained. * IN assertion: all calls to to INSERT_STRING are made with consecutive * input characters and the first MIN_MATCH bytes of str are valid * (except for the last MIN_MATCH-1 bytes of the input file). */ #ifdef FASTEST #define INSERT_STRING(s, str, match_head) \ (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ match_head = s->head[s->ins_h], \ s->head[s->ins_h] = (Pos)(str)) #else #define INSERT_STRING(s, str, match_head) \ (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \ s->head[s->ins_h] = (Pos)(str)) #endif /* =========================================================================== * Initialize the hash table (avoiding 64K overflow for 16 bit systems). * prev[] will be initialized on the fly. */ #define CLEAR_HASH(s) \ s->head[s->hash_size-1] = NIL; \ zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head)); /* ========================================================================= */ int ZEXPORT deflateInit_(strm, level, version, stream_size) z_streamp strm; int level; const char *version; int stream_size; { return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, Z_DEFAULT_STRATEGY, version, stream_size); /* To do: ignore strm->next_in if we use it as window */ } /* ========================================================================= */ int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy, version, stream_size) z_streamp strm; int level; int method; int windowBits; int memLevel; int strategy; const char *version; int stream_size; { deflate_state *s; int wrap = 1; static const char my_version[] = ZLIB_VERSION; ushf *overlay; /* We overlay pending_buf and d_buf+l_buf. This works since the average * output size for (length,distance) codes is <= 24 bits. */ if (version == Z_NULL || version[0] != my_version[0] || stream_size != sizeof(z_stream)) { return Z_VERSION_ERROR; } if (strm == Z_NULL) return Z_STREAM_ERROR; strm->msg = Z_NULL; if (strm->zalloc == (alloc_func)0) { #ifdef Z_SOLO return Z_STREAM_ERROR; #else strm->zalloc = zcalloc; strm->opaque = (voidpf)0; #endif } if (strm->zfree == (free_func)0) #ifdef Z_SOLO return Z_STREAM_ERROR; #else strm->zfree = zcfree; #endif #ifdef FASTEST if (level != 0) level = 1; #else if (level == Z_DEFAULT_COMPRESSION) level = 6; #endif if (windowBits < 0) { /* suppress zlib wrapper */ wrap = 0; windowBits = -windowBits; } #ifdef GZIP else if (windowBits > 15) { wrap = 2; /* write gzip wrapper instead */ windowBits -= 16; } #endif if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED || windowBits < 8 || windowBits > 15 || level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) { return Z_STREAM_ERROR; } if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */ s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state)); if (s == Z_NULL) return Z_MEM_ERROR; strm->state = (struct internal_state FAR *)s; s->strm = strm; s->wrap = wrap; s->gzhead = Z_NULL; s->w_bits = windowBits; s->w_size = 1 << s->w_bits; s->w_mask = s->w_size - 1; s->hash_bits = memLevel + 7; s->hash_size = 1 << s->hash_bits; s->hash_mask = s->hash_size - 1; s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH); s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte)); s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos)); s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos)); s->high_water = 0; /* nothing written to s->window yet */ s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2); s->pending_buf = (uchf *) overlay; s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L); if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL || s->pending_buf == Z_NULL) { s->status = FINISH_STATE; strm->msg = ERR_MSG(Z_MEM_ERROR); deflateEnd (strm); return Z_MEM_ERROR; } s->d_buf = overlay + s->lit_bufsize/sizeof(ush); s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize; s->level = level; s->strategy = strategy; s->method = (Byte)method; return deflateReset(strm); } /* ========================================================================= */ int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength) z_streamp strm; const Bytef *dictionary; uInt dictLength; { deflate_state *s; uInt str, n; int wrap; unsigned avail; z_const unsigned char *next; if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL) return Z_STREAM_ERROR; s = strm->state; wrap = s->wrap; if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead) return Z_STREAM_ERROR; /* when using zlib wrappers, compute Adler-32 for provided dictionary */ if (wrap == 1) strm->adler = adler32(strm->adler, dictionary, dictLength); s->wrap = 0; /* avoid computing Adler-32 in read_buf */ /* if dictionary would fill window, just replace the history */ if (dictLength >= s->w_size) { if (wrap == 0) { /* already empty otherwise */ CLEAR_HASH(s); s->strstart = 0; s->block_start = 0L; s->insert = 0; } dictionary += dictLength - s->w_size; /* use the tail */ dictLength = s->w_size; } /* insert dictionary into window and hash */ avail = strm->avail_in; next = strm->next_in; strm->avail_in = dictLength; strm->next_in = (z_const Bytef *)dictionary; fill_window(s); while (s->lookahead >= MIN_MATCH) { str = s->strstart; n = s->lookahead - (MIN_MATCH-1); do { UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); #ifndef FASTEST s->prev[str & s->w_mask] = s->head[s->ins_h]; #endif s->head[s->ins_h] = (Pos)str; str++; } while (--n); s->strstart = str; s->lookahead = MIN_MATCH-1; fill_window(s); } s->strstart += s->lookahead; s->block_start = (long)s->strstart; s->insert = s->lookahead; s->lookahead = 0; s->match_length = s->prev_length = MIN_MATCH-1; s->match_available = 0; strm->next_in = next; strm->avail_in = avail; s->wrap = wrap; return Z_OK; } /* ========================================================================= */ int ZEXPORT deflateResetKeep (strm) z_streamp strm; { deflate_state *s; if (strm == Z_NULL || strm->state == Z_NULL || strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) { return Z_STREAM_ERROR; } strm->total_in = strm->total_out = 0; strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */ strm->data_type = Z_UNKNOWN; s = (deflate_state *)strm->state; s->pending = 0; s->pending_out = s->pending_buf; if (s->wrap < 0) { s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */ } s->status = s->wrap ? INIT_STATE : BUSY_STATE; strm->adler = #ifdef GZIP s->wrap == 2 ? crc32(0L, Z_NULL, 0) : #endif adler32(0L, Z_NULL, 0); s->last_flush = Z_NO_FLUSH; _tr_init(s); return Z_OK; } /* ========================================================================= */ int ZEXPORT deflateReset (strm) z_streamp strm; { int ret; ret = deflateResetKeep(strm); if (ret == Z_OK) lm_init(strm->state); return ret; } /* ========================================================================= */ int ZEXPORT deflateSetHeader (strm, head) z_streamp strm; gz_headerp head; { if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; if (strm->state->wrap != 2) return Z_STREAM_ERROR; strm->state->gzhead = head; return Z_OK; } /* ========================================================================= */ int ZEXPORT deflatePending (strm, pending, bits) unsigned *pending; int *bits; z_streamp strm; { if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; if (pending != Z_NULL) *pending = strm->state->pending; if (bits != Z_NULL) *bits = strm->state->bi_valid; return Z_OK; } /* ========================================================================= */ int ZEXPORT deflatePrime (strm, bits, value) z_streamp strm; int bits; int value; { deflate_state *s; int put; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; s = strm->state; if ((Bytef *)(s->d_buf) < s->pending_out + ((Buf_size + 7) >> 3)) return Z_BUF_ERROR; do { put = Buf_size - s->bi_valid; if (put > bits) put = bits; s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid); s->bi_valid += put; _tr_flush_bits(s); value >>= put; bits -= put; } while (bits); return Z_OK; } /* ========================================================================= */ int ZEXPORT deflateParams(strm, level, strategy) z_streamp strm; int level; int strategy; { deflate_state *s; compress_func func; int err = Z_OK; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; s = strm->state; #ifdef FASTEST if (level != 0) level = 1; #else if (level == Z_DEFAULT_COMPRESSION) level = 6; #endif if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) { return Z_STREAM_ERROR; } func = configuration_table[s->level].func; if ((strategy != s->strategy || func != configuration_table[level].func) && strm->total_in != 0) { /* Flush the last buffer: */ err = deflate(strm, Z_BLOCK); if (err == Z_BUF_ERROR && s->pending == 0) err = Z_OK; } if (s->level != level) { s->level = level; s->max_lazy_match = configuration_table[level].max_lazy; s->good_match = configuration_table[level].good_length; s->nice_match = configuration_table[level].nice_length; s->max_chain_length = configuration_table[level].max_chain; } s->strategy = strategy; return err; } /* ========================================================================= */ int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain) z_streamp strm; int good_length; int max_lazy; int nice_length; int max_chain; { deflate_state *s; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; s = strm->state; s->good_match = good_length; s->max_lazy_match = max_lazy; s->nice_match = nice_length; s->max_chain_length = max_chain; return Z_OK; } /* ========================================================================= * For the default windowBits of 15 and memLevel of 8, this function returns * a close to exact, as well as small, upper bound on the compressed size. * They are coded as constants here for a reason--if the #define's are * changed, then this function needs to be changed as well. The return * value for 15 and 8 only works for those exact settings. * * For any setting other than those defaults for windowBits and memLevel, * the value returned is a conservative worst case for the maximum expansion * resulting from using fixed blocks instead of stored blocks, which deflate * can emit on compressed data for some combinations of the parameters. * * This function could be more sophisticated to provide closer upper bounds for * every combination of windowBits and memLevel. But even the conservative * upper bound of about 14% expansion does not seem onerous for output buffer * allocation. */ uLong ZEXPORT deflateBound(strm, sourceLen) z_streamp strm; uLong sourceLen; { deflate_state *s; uLong complen, wraplen; Bytef *str; /* conservative upper bound for compressed data */ complen = sourceLen + ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5; /* if can't get parameters, return conservative bound plus zlib wrapper */ if (strm == Z_NULL || strm->state == Z_NULL) return complen + 6; /* compute wrapper length */ s = strm->state; switch (s->wrap) { case 0: /* raw deflate */ wraplen = 0; break; case 1: /* zlib wrapper */ wraplen = 6 + (s->strstart ? 4 : 0); break; case 2: /* gzip wrapper */ wraplen = 18; if (s->gzhead != Z_NULL) { /* user-supplied gzip header */ if (s->gzhead->extra != Z_NULL) wraplen += 2 + s->gzhead->extra_len; str = s->gzhead->name; if (str != Z_NULL) do { wraplen++; } while (*str++); str = s->gzhead->comment; if (str != Z_NULL) do { wraplen++; } while (*str++); if (s->gzhead->hcrc) wraplen += 2; } break; default: /* for compiler happiness */ wraplen = 6; } /* if not default parameters, return conservative bound */ if (s->w_bits != 15 || s->hash_bits != 8 + 7) return complen + wraplen; /* default settings: return tight bound for that case */ return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) + (sourceLen >> 25) + 13 - 6 + wraplen; } /* ========================================================================= * Put a short in the pending buffer. The 16-bit value is put in MSB order. * IN assertion: the stream state is correct and there is enough room in * pending_buf. */ local void putShortMSB (s, b) deflate_state *s; uInt b; { put_byte(s, (Byte)(b >> 8)); put_byte(s, (Byte)(b & 0xff)); } /* ========================================================================= * Flush as much pending output as possible. All deflate() output goes * through this function so some applications may wish to modify it * to avoid allocating a large strm->next_out buffer and copying into it. * (See also read_buf()). */ local void flush_pending(strm) z_streamp strm; { unsigned len; deflate_state *s = strm->state; _tr_flush_bits(s); len = s->pending; if (len > strm->avail_out) len = strm->avail_out; if (len == 0) return; zmemcpy(strm->next_out, s->pending_out, len); strm->next_out += len; s->pending_out += len; strm->total_out += len; strm->avail_out -= len; s->pending -= len; if (s->pending == 0) { s->pending_out = s->pending_buf; } } /* ========================================================================= */ int ZEXPORT deflate (strm, flush) z_streamp strm; int flush; { int old_flush; /* value of flush param for previous deflate call */ deflate_state *s; if (strm == Z_NULL || strm->state == Z_NULL || flush > Z_BLOCK || flush < 0) { return Z_STREAM_ERROR; } s = strm->state; if (strm->next_out == Z_NULL || (strm->next_in == Z_NULL && strm->avail_in != 0) || (s->status == FINISH_STATE && flush != Z_FINISH)) { ERR_RETURN(strm, Z_STREAM_ERROR); } if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR); s->strm = strm; /* just in case */ old_flush = s->last_flush; s->last_flush = flush; /* Write the header */ if (s->status == INIT_STATE) { #ifdef GZIP if (s->wrap == 2) { strm->adler = crc32(0L, Z_NULL, 0); put_byte(s, 31); put_byte(s, 139); put_byte(s, 8); if (s->gzhead == Z_NULL) { put_byte(s, 0); put_byte(s, 0); put_byte(s, 0); put_byte(s, 0); put_byte(s, 0); put_byte(s, s->level == 9 ? 2 : (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? 4 : 0)); put_byte(s, OS_CODE); s->status = BUSY_STATE; } else { put_byte(s, (s->gzhead->text ? 1 : 0) + (s->gzhead->hcrc ? 2 : 0) + (s->gzhead->extra == Z_NULL ? 0 : 4) + (s->gzhead->name == Z_NULL ? 0 : 8) + (s->gzhead->comment == Z_NULL ? 0 : 16) ); put_byte(s, (Byte)(s->gzhead->time & 0xff)); put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff)); put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff)); put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff)); put_byte(s, s->level == 9 ? 2 : (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? 4 : 0)); put_byte(s, s->gzhead->os & 0xff); if (s->gzhead->extra != Z_NULL) { put_byte(s, s->gzhead->extra_len & 0xff); put_byte(s, (s->gzhead->extra_len >> 8) & 0xff); } if (s->gzhead->hcrc) strm->adler = crc32(strm->adler, s->pending_buf, s->pending); s->gzindex = 0; s->status = EXTRA_STATE; } } else #endif { uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8; uInt level_flags; if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2) level_flags = 0; else if (s->level < 6) level_flags = 1; else if (s->level == 6) level_flags = 2; else level_flags = 3; header |= (level_flags << 6); if (s->strstart != 0) header |= PRESET_DICT; header += 31 - (header % 31); s->status = BUSY_STATE; putShortMSB(s, header); /* Save the adler32 of the preset dictionary: */ if (s->strstart != 0) { putShortMSB(s, (uInt)(strm->adler >> 16)); putShortMSB(s, (uInt)(strm->adler & 0xffff)); } strm->adler = adler32(0L, Z_NULL, 0); } } #ifdef GZIP if (s->status == EXTRA_STATE) { if (s->gzhead->extra != Z_NULL) { uInt beg = s->pending; /* start of bytes to update crc */ while (s->gzindex < (s->gzhead->extra_len & 0xffff)) { if (s->pending == s->pending_buf_size) { if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); flush_pending(strm); beg = s->pending; if (s->pending == s->pending_buf_size) break; } put_byte(s, s->gzhead->extra[s->gzindex]); s->gzindex++; } if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); if (s->gzindex == s->gzhead->extra_len) { s->gzindex = 0; s->status = NAME_STATE; } } else s->status = NAME_STATE; } if (s->status == NAME_STATE) { if (s->gzhead->name != Z_NULL) { uInt beg = s->pending; /* start of bytes to update crc */ int val; do { if (s->pending == s->pending_buf_size) { if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); flush_pending(strm); beg = s->pending; if (s->pending == s->pending_buf_size) { val = 1; break; } } val = s->gzhead->name[s->gzindex++]; put_byte(s, val); } while (val != 0); if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); if (val == 0) { s->gzindex = 0; s->status = COMMENT_STATE; } } else s->status = COMMENT_STATE; } if (s->status == COMMENT_STATE) { if (s->gzhead->comment != Z_NULL) { uInt beg = s->pending; /* start of bytes to update crc */ int val; do { if (s->pending == s->pending_buf_size) { if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); flush_pending(strm); beg = s->pending; if (s->pending == s->pending_buf_size) { val = 1; break; } } val = s->gzhead->comment[s->gzindex++]; put_byte(s, val); } while (val != 0); if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); if (val == 0) s->status = HCRC_STATE; } else s->status = HCRC_STATE; } if (s->status == HCRC_STATE) { if (s->gzhead->hcrc) { if (s->pending + 2 > s->pending_buf_size) flush_pending(strm); if (s->pending + 2 <= s->pending_buf_size) { put_byte(s, (Byte)(strm->adler & 0xff)); put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); strm->adler = crc32(0L, Z_NULL, 0); s->status = BUSY_STATE; } } else s->status = BUSY_STATE; } #endif /* Flush as much pending output as possible */ if (s->pending != 0) { flush_pending(strm); if (strm->avail_out == 0) { /* Since avail_out is 0, deflate will be called again with * more output space, but possibly with both pending and * avail_in equal to zero. There won't be anything to do, * but this is not an error situation so make sure we * return OK instead of BUF_ERROR at next call of deflate: */ s->last_flush = -1; return Z_OK; } /* Make sure there is something to do and avoid duplicate consecutive * flushes. For repeated and useless calls with Z_FINISH, we keep * returning Z_STREAM_END instead of Z_BUF_ERROR. */ } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) && flush != Z_FINISH) { ERR_RETURN(strm, Z_BUF_ERROR); } /* User must not provide more input after the first FINISH: */ if (s->status == FINISH_STATE && strm->avail_in != 0) { ERR_RETURN(strm, Z_BUF_ERROR); } /* Start a new block or continue the current one. */ if (strm->avail_in != 0 || s->lookahead != 0 || (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) { block_state bstate; bstate = s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) : (s->strategy == Z_RLE ? deflate_rle(s, flush) : (*(configuration_table[s->level].func))(s, flush)); if (bstate == finish_started || bstate == finish_done) { s->status = FINISH_STATE; } if (bstate == need_more || bstate == finish_started) { if (strm->avail_out == 0) { s->last_flush = -1; /* avoid BUF_ERROR next call, see above */ } return Z_OK; /* If flush != Z_NO_FLUSH && avail_out == 0, the next call * of deflate should use the same flush parameter to make sure * that the flush is complete. So we don't have to output an * empty block here, this will be done at next call. This also * ensures that for a very small output buffer, we emit at most * one empty block. */ } if (bstate == block_done) { if (flush == Z_PARTIAL_FLUSH) { _tr_align(s); } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */ _tr_stored_block(s, (char*)0, 0L, 0); /* For a full flush, this empty block will be recognized * as a special marker by inflate_sync(). */ if (flush == Z_FULL_FLUSH) { CLEAR_HASH(s); /* forget history */ if (s->lookahead == 0) { s->strstart = 0; s->block_start = 0L; s->insert = 0; } } } flush_pending(strm); if (strm->avail_out == 0) { s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */ return Z_OK; } } } Assert(strm->avail_out > 0, "bug2"); if (flush != Z_FINISH) return Z_OK; if (s->wrap <= 0) return Z_STREAM_END; /* Write the trailer */ #ifdef GZIP if (s->wrap == 2) { put_byte(s, (Byte)(strm->adler & 0xff)); put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); put_byte(s, (Byte)((strm->adler >> 16) & 0xff)); put_byte(s, (Byte)((strm->adler >> 24) & 0xff)); put_byte(s, (Byte)(strm->total_in & 0xff)); put_byte(s, (Byte)((strm->total_in >> 8) & 0xff)); put_byte(s, (Byte)((strm->total_in >> 16) & 0xff)); put_byte(s, (Byte)((strm->total_in >> 24) & 0xff)); } else #endif { putShortMSB(s, (uInt)(strm->adler >> 16)); putShortMSB(s, (uInt)(strm->adler & 0xffff)); } flush_pending(strm); /* If avail_out is zero, the application will call deflate again * to flush the rest. */ if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */ return s->pending != 0 ? Z_OK : Z_STREAM_END; } /* ========================================================================= */ int ZEXPORT deflateEnd (strm) z_streamp strm; { int status; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; status = strm->state->status; if (status != INIT_STATE && status != EXTRA_STATE && status != NAME_STATE && status != COMMENT_STATE && status != HCRC_STATE && status != BUSY_STATE && status != FINISH_STATE) { return Z_STREAM_ERROR; } /* Deallocate in reverse order of allocations: */ TRY_FREE(strm, strm->state->pending_buf); TRY_FREE(strm, strm->state->head); TRY_FREE(strm, strm->state->prev); TRY_FREE(strm, strm->state->window); ZFREE(strm, strm->state); strm->state = Z_NULL; return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; } /* ========================================================================= * Copy the source state to the destination state. * To simplify the source, this is not supported for 16-bit MSDOS (which * doesn't have enough memory anyway to duplicate compression states). */ int ZEXPORT deflateCopy (dest, source) z_streamp dest; z_streamp source; { #ifdef MAXSEG_64K return Z_STREAM_ERROR; #else deflate_state *ds; deflate_state *ss; ushf *overlay; if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) { return Z_STREAM_ERROR; } ss = source->state; zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream)); ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state)); if (ds == Z_NULL) return Z_MEM_ERROR; dest->state = (struct internal_state FAR *) ds; zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state)); ds->strm = dest; ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte)); ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos)); ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos)); overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2); ds->pending_buf = (uchf *) overlay; if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL || ds->pending_buf == Z_NULL) { deflateEnd (dest); return Z_MEM_ERROR; } /* following zmemcpy do not work for 16-bit MSDOS */ zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte)); zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos)); zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos)); zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size); ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf); ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush); ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize; ds->l_desc.dyn_tree = ds->dyn_ltree; ds->d_desc.dyn_tree = ds->dyn_dtree; ds->bl_desc.dyn_tree = ds->bl_tree; return Z_OK; #endif /* MAXSEG_64K */ } /* =========================================================================== * Read a new buffer from the current input stream, update the adler32 * and total number of bytes read. All deflate() input goes through * this function so some applications may wish to modify it to avoid * allocating a large strm->next_in buffer and copying from it. * (See also flush_pending()). */ local int read_buf(strm, buf, size) z_streamp strm; Bytef *buf; unsigned size; { unsigned len = strm->avail_in; if (len > size) len = size; if (len == 0) return 0; strm->avail_in -= len; zmemcpy(buf, strm->next_in, len); if (strm->state->wrap == 1) { strm->adler = adler32(strm->adler, buf, len); } #ifdef GZIP else if (strm->state->wrap == 2) { strm->adler = crc32(strm->adler, buf, len); } #endif strm->next_in += len; strm->total_in += len; return (int)len; } /* =========================================================================== * Initialize the "longest match" routines for a new zlib stream */ local void lm_init (s) deflate_state *s; { s->window_size = (ulg)2L*s->w_size; CLEAR_HASH(s); /* Set the default configuration parameters: */ s->max_lazy_match = configuration_table[s->level].max_lazy; s->good_match = configuration_table[s->level].good_length; s->nice_match = configuration_table[s->level].nice_length; s->max_chain_length = configuration_table[s->level].max_chain; s->strstart = 0; s->block_start = 0L; s->lookahead = 0; s->insert = 0; s->match_length = s->prev_length = MIN_MATCH-1; s->match_available = 0; s->ins_h = 0; #ifndef FASTEST #ifdef ASMV match_init(); /* initialize the asm code */ #endif #endif } #ifndef FASTEST /* =========================================================================== * Set match_start to the longest match starting at the given string and * return its length. Matches shorter or equal to prev_length are discarded, * in which case the result is equal to prev_length and match_start is * garbage. * IN assertions: cur_match is the head of the hash chain for the current * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 * OUT assertion: the match length is not greater than s->lookahead. */ #ifndef ASMV /* For 80x86 and 680x0, an optimized version will be provided in match.asm or * match.S. The code will be functionally equivalent. */ local uInt longest_match(s, cur_match) deflate_state *s; IPos cur_match; /* current match */ { unsigned chain_length = s->max_chain_length;/* max hash chain length */ register Bytef *scan = s->window + s->strstart; /* current string */ register Bytef *match; /* matched string */ register int len; /* length of current match */ int best_len = s->prev_length; /* best match length so far */ int nice_match = s->nice_match; /* stop if match long enough */ IPos limit = s->strstart > (IPos)MAX_DIST(s) ? s->strstart - (IPos)MAX_DIST(s) : NIL; /* Stop when cur_match becomes <= limit. To simplify the code, * we prevent matches with the string of window index 0. */ Posf *prev = s->prev; uInt wmask = s->w_mask; #ifdef UNALIGNED_OK /* Compare two bytes at a time. Note: this is not always beneficial. * Try with and without -DUNALIGNED_OK to check. */ register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1; register ush scan_start = *(ushf*)scan; register ush scan_end = *(ushf*)(scan+best_len-1); #else register Bytef *strend = s->window + s->strstart + MAX_MATCH; register Byte scan_end1 = scan[best_len-1]; register Byte scan_end = scan[best_len]; #endif /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. * It is easy to get rid of this optimization if necessary. */ Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); /* Do not waste too much time if we already have a good match: */ if (s->prev_length >= s->good_match) { chain_length >>= 2; } /* Do not look for matches beyond the end of the input. This is necessary * to make deflate deterministic. */ if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead; Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); do { Assert(cur_match < s->strstart, "no future"); match = s->window + cur_match; /* Skip to next match if the match length cannot increase * or if the match length is less than 2. Note that the checks below * for insufficient lookahead only occur occasionally for performance * reasons. Therefore uninitialized memory will be accessed, and * conditional jumps will be made that depend on those values. * However the length of the match is limited to the lookahead, so * the output of deflate is not affected by the uninitialized values. */ #if (defined(UNALIGNED_OK) && MAX_MATCH == 258) /* This code assumes sizeof(unsigned short) == 2. Do not use * UNALIGNED_OK if your compiler uses a different size. */ if (*(ushf*)(match+best_len-1) != scan_end || *(ushf*)match != scan_start) continue; /* It is not necessary to compare scan[2] and match[2] since they are * always equal when the other bytes match, given that the hash keys * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at * strstart+3, +5, ... up to strstart+257. We check for insufficient * lookahead only every 4th comparison; the 128th check will be made * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is * necessary to put more guard bytes at the end of the window, or * to check more often for insufficient lookahead. */ Assert(scan[2] == match[2], "scan[2]?"); scan++, match++; do { } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) && *(ushf*)(scan+=2) == *(ushf*)(match+=2) && *(ushf*)(scan+=2) == *(ushf*)(match+=2) && *(ushf*)(scan+=2) == *(ushf*)(match+=2) && scan < strend); /* The funny "do {}" generates better code on most compilers */ /* Here, scan <= window+strstart+257 */ Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); if (*scan == *match) scan++; len = (MAX_MATCH - 1) - (int)(strend-scan); scan = strend - (MAX_MATCH-1); #else /* UNALIGNED_OK */ if (match[best_len] != scan_end || match[best_len-1] != scan_end1 || *match != *scan || *++match != scan[1]) continue; /* The check at best_len-1 can be removed because it will be made * again later. (This heuristic is not always a win.) * It is not necessary to compare scan[2] and match[2] since they * are always equal when the other bytes match, given that * the hash keys are equal and that HASH_BITS >= 8. */ scan += 2, match++; Assert(*scan == *match, "match[2]?"); /* We check for insufficient lookahead only every 8th comparison; * the 256th check will be made at strstart+258. */ do { } while (*++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && scan < strend); Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); len = MAX_MATCH - (int)(strend - scan); scan = strend - MAX_MATCH; #endif /* UNALIGNED_OK */ if (len > best_len) { s->match_start = cur_match; best_len = len; if (len >= nice_match) break; #ifdef UNALIGNED_OK scan_end = *(ushf*)(scan+best_len-1); #else scan_end1 = scan[best_len-1]; scan_end = scan[best_len]; #endif } } while ((cur_match = prev[cur_match & wmask]) > limit && --chain_length != 0); if ((uInt)best_len <= s->lookahead) return (uInt)best_len; return s->lookahead; } #endif /* ASMV */ #else /* FASTEST */ /* --------------------------------------------------------------------------- * Optimized version for FASTEST only */ local uInt longest_match(s, cur_match) deflate_state *s; IPos cur_match; /* current match */ { register Bytef *scan = s->window + s->strstart; /* current string */ register Bytef *match; /* matched string */ register int len; /* length of current match */ register Bytef *strend = s->window + s->strstart + MAX_MATCH; /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. * It is easy to get rid of this optimization if necessary. */ Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); Assert(cur_match < s->strstart, "no future"); match = s->window + cur_match; /* Return failure if the match length is less than 2: */ if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1; /* The check at best_len-1 can be removed because it will be made * again later. (This heuristic is not always a win.) * It is not necessary to compare scan[2] and match[2] since they * are always equal when the other bytes match, given that * the hash keys are equal and that HASH_BITS >= 8. */ scan += 2, match += 2; Assert(*scan == *match, "match[2]?"); /* We check for insufficient lookahead only every 8th comparison; * the 256th check will be made at strstart+258. */ do { } while (*++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && scan < strend); Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); len = MAX_MATCH - (int)(strend - scan); if (len < MIN_MATCH) return MIN_MATCH - 1; s->match_start = cur_match; return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead; } #endif /* FASTEST */ #ifdef DEBUG /* =========================================================================== * Check that the match at match_start is indeed a match. */ local void check_match(s, start, match, length) deflate_state *s; IPos start, match; int length; { /* check that the match is indeed a match */ if (zmemcmp(s->window + match, s->window + start, length) != EQUAL) { fprintf(stderr, " start %u, match %u, length %d\n", start, match, length); do { fprintf(stderr, "%c%c", s->window[match++], s->window[start++]); } while (--length != 0); z_error("invalid match"); } if (z_verbose > 1) { fprintf(stderr,"\\[%d,%d]", start-match, length); do { putc(s->window[start++], stderr); } while (--length != 0); } } #else # define check_match(s, start, match, length) #endif /* DEBUG */ /* =========================================================================== * Fill the window when the lookahead becomes insufficient. * Updates strstart and lookahead. * * IN assertion: lookahead < MIN_LOOKAHEAD * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD * At least one byte has been read, or avail_in == 0; reads are * performed for at least two bytes (required for the zip translate_eol * option -- not supported here). */ local void fill_window(s) deflate_state *s; { register unsigned n, m; register Posf *p; unsigned more; /* Amount of free space at the end of the window. */ uInt wsize = s->w_size; Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead"); do { more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart); /* Deal with !@#$% 64K limit: */ if (sizeof(int) <= 2) { if (more == 0 && s->strstart == 0 && s->lookahead == 0) { more = wsize; } else if (more == (unsigned)(-1)) { /* Very unlikely, but possible on 16 bit machine if * strstart == 0 && lookahead == 1 (input done a byte at time) */ more--; } } /* If the window is almost full and there is insufficient lookahead, * move the upper half to the lower one to make room in the upper half. */ if (s->strstart >= wsize+MAX_DIST(s)) { zmemcpy(s->window, s->window+wsize, (unsigned)wsize); s->match_start -= wsize; s->strstart -= wsize; /* we now have strstart >= MAX_DIST */ s->block_start -= (long) wsize; /* Slide the hash table (could be avoided with 32 bit values at the expense of memory usage). We slide even when level == 0 to keep the hash table consistent if we switch back to level > 0 later. (Using level 0 permanently is not an optimal usage of zlib, so we don't care about this pathological case.) */ n = s->hash_size; p = &s->head[n]; do { m = *--p; *p = (Pos)(m >= wsize ? m-wsize : NIL); } while (--n); n = wsize; #ifndef FASTEST p = &s->prev[n]; do { m = *--p; *p = (Pos)(m >= wsize ? m-wsize : NIL); /* If n is not on any hash chain, prev[n] is garbage but * its value will never be used. */ } while (--n); #endif more += wsize; } if (s->strm->avail_in == 0) break; /* If there was no sliding: * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && * more == window_size - lookahead - strstart * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) * => more >= window_size - 2*WSIZE + 2 * In the BIG_MEM or MMAP case (not yet supported), * window_size == input_size + MIN_LOOKAHEAD && * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. * Otherwise, window_size == 2*WSIZE so more >= 2. * If there was sliding, more >= WSIZE. So in all cases, more >= 2. */ Assert(more >= 2, "more < 2"); n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more); s->lookahead += n; /* Initialize the hash value now that we have some input: */ if (s->lookahead + s->insert >= MIN_MATCH) { uInt str = s->strstart - s->insert; s->ins_h = s->window[str]; UPDATE_HASH(s, s->ins_h, s->window[str + 1]); #if MIN_MATCH != 3 Call UPDATE_HASH() MIN_MATCH-3 more times #endif while (s->insert) { UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); #ifndef FASTEST s->prev[str & s->w_mask] = s->head[s->ins_h]; #endif s->head[s->ins_h] = (Pos)str; str++; s->insert--; if (s->lookahead + s->insert < MIN_MATCH) break; } } /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, * but this is not important since only literal bytes will be emitted. */ } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0); /* If the WIN_INIT bytes after the end of the current data have never been * written, then zero those bytes in order to avoid memory check reports of * the use of uninitialized (or uninitialised as Julian writes) bytes by * the longest match routines. Update the high water mark for the next * time through here. WIN_INIT is set to MAX_MATCH since the longest match * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead. */ if (s->high_water < s->window_size) { ulg curr = s->strstart + (ulg)(s->lookahead); ulg init; if (s->high_water < curr) { /* Previous high water mark below current data -- zero WIN_INIT * bytes or up to end of window, whichever is less. */ init = s->window_size - curr; if (init > WIN_INIT) init = WIN_INIT; zmemzero(s->window + curr, (unsigned)init); s->high_water = curr + init; } else if (s->high_water < (ulg)curr + WIN_INIT) { /* High water mark at or above current data, but below current data * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up * to end of window, whichever is less. */ init = (ulg)curr + WIN_INIT - s->high_water; if (init > s->window_size - s->high_water) init = s->window_size - s->high_water; zmemzero(s->window + s->high_water, (unsigned)init); s->high_water += init; } } Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD, "not enough room for search"); } /* =========================================================================== * Flush the current block, with given end-of-file flag. * IN assertion: strstart is set to the end of the current match. */ #define FLUSH_BLOCK_ONLY(s, last) { \ _tr_flush_block(s, (s->block_start >= 0L ? \ (charf *)&s->window[(unsigned)s->block_start] : \ (charf *)Z_NULL), \ (ulg)((long)s->strstart - s->block_start), \ (last)); \ s->block_start = s->strstart; \ flush_pending(s->strm); \ Tracev((stderr,"[FLUSH]")); \ } /* Same but force premature exit if necessary. */ #define FLUSH_BLOCK(s, last) { \ FLUSH_BLOCK_ONLY(s, last); \ if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \ } /* =========================================================================== * Copy without compression as much as possible from the input stream, return * the current block state. * This function does not insert new strings in the dictionary since * uncompressible data is probably not useful. This function is used * only for the level=0 compression option. * NOTE: this function should be optimized to avoid extra copying from * window to pending_buf. */ local block_state deflate_stored(s, flush) deflate_state *s; int flush; { /* Stored blocks are limited to 0xffff bytes, pending_buf is limited * to pending_buf_size, and each stored block has a 5 byte header: */ ulg max_block_size = 0xffff; ulg max_start; if (max_block_size > s->pending_buf_size - 5) { max_block_size = s->pending_buf_size - 5; } /* Copy as much as possible from input to output: */ for (;;) { /* Fill the window as much as possible: */ if (s->lookahead <= 1) { Assert(s->strstart < s->w_size+MAX_DIST(s) || s->block_start >= (long)s->w_size, "slide too late"); fill_window(s); if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more; if (s->lookahead == 0) break; /* flush the current block */ } Assert(s->block_start >= 0L, "block gone"); s->strstart += s->lookahead; s->lookahead = 0; /* Emit a stored block if pending_buf will be full: */ max_start = s->block_start + max_block_size; if (s->strstart == 0 || (ulg)s->strstart >= max_start) { /* strstart == 0 is possible when wraparound on 16-bit machine */ s->lookahead = (uInt)(s->strstart - max_start); s->strstart = (uInt)max_start; FLUSH_BLOCK(s, 0); } /* Flush if we may have to slide, otherwise block_start may become * negative and the data will be gone: */ if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) { FLUSH_BLOCK(s, 0); } } s->insert = 0; if (flush == Z_FINISH) { FLUSH_BLOCK(s, 1); return finish_done; } if ((long)s->strstart > s->block_start) FLUSH_BLOCK(s, 0); return block_done; } /* =========================================================================== * Compress as much as possible from the input stream, return the current * block state. * This function does not perform lazy evaluation of matches and inserts * new strings in the dictionary only for unmatched strings or for short * matches. It is used only for the fast compression options. */ local block_state deflate_fast(s, flush) deflate_state *s; int flush; { IPos hash_head; /* head of the hash chain */ int bflush; /* set if current block must be flushed */ for (;;) { /* Make sure that we always have enough lookahead, except * at the end of the input file. We need MAX_MATCH bytes * for the next match, plus MIN_MATCH bytes to insert the * string following the next match. */ if (s->lookahead < MIN_LOOKAHEAD) { fill_window(s); if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { return need_more; } if (s->lookahead == 0) break; /* flush the current block */ } /* Insert the string window[strstart .. strstart+2] in the * dictionary, and set hash_head to the head of the hash chain: */ hash_head = NIL; if (s->lookahead >= MIN_MATCH) { INSERT_STRING(s, s->strstart, hash_head); } /* Find the longest match, discarding those <= prev_length. * At this point we have always match_length < MIN_MATCH */ if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) { /* To simplify the code, we prevent matches with the string * of window index 0 (in particular we have to avoid a match * of the string with itself at the start of the input file). */ s->match_length = longest_match (s, hash_head); /* longest_match() sets match_start */ } if (s->match_length >= MIN_MATCH) { check_match(s, s->strstart, s->match_start, s->match_length); _tr_tally_dist(s, s->strstart - s->match_start, s->match_length - MIN_MATCH, bflush); s->lookahead -= s->match_length; /* Insert new strings in the hash table only if the match length * is not too large. This saves time but degrades compression. */ #ifndef FASTEST if (s->match_length <= s->max_insert_length && s->lookahead >= MIN_MATCH) { s->match_length--; /* string at strstart already in table */ do { s->strstart++; INSERT_STRING(s, s->strstart, hash_head); /* strstart never exceeds WSIZE-MAX_MATCH, so there are * always MIN_MATCH bytes ahead. */ } while (--s->match_length != 0); s->strstart++; } else #endif { s->strstart += s->match_length; s->match_length = 0; s->ins_h = s->window[s->strstart]; UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); #if MIN_MATCH != 3 Call UPDATE_HASH() MIN_MATCH-3 more times #endif /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not * matter since it will be recomputed at next deflate call. */ } } else { /* No match, output a literal byte */ Tracevv((stderr,"%c", s->window[s->strstart])); _tr_tally_lit (s, s->window[s->strstart], bflush); s->lookahead--; s->strstart++; } if (bflush) FLUSH_BLOCK(s, 0); } s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1; if (flush == Z_FINISH) { FLUSH_BLOCK(s, 1); return finish_done; } if (s->last_lit) FLUSH_BLOCK(s, 0); return block_done; } #ifndef FASTEST /* =========================================================================== * Same as above, but achieves better compression. We use a lazy * evaluation for matches: a match is finally adopted only if there is * no better match at the next window position. */ local block_state deflate_slow(s, flush) deflate_state *s; int flush; { IPos hash_head; /* head of hash chain */ int bflush; /* set if current block must be flushed */ /* Process the input block. */ for (;;) { /* Make sure that we always have enough lookahead, except * at the end of the input file. We need MAX_MATCH bytes * for the next match, plus MIN_MATCH bytes to insert the * string following the next match. */ if (s->lookahead < MIN_LOOKAHEAD) { fill_window(s); if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { return need_more; } if (s->lookahead == 0) break; /* flush the current block */ } /* Insert the string window[strstart .. strstart+2] in the * dictionary, and set hash_head to the head of the hash chain: */ hash_head = NIL; if (s->lookahead >= MIN_MATCH) { INSERT_STRING(s, s->strstart, hash_head); } /* Find the longest match, discarding those <= prev_length. */ s->prev_length = s->match_length, s->prev_match = s->match_start; s->match_length = MIN_MATCH-1; if (hash_head != NIL && s->prev_length < s->max_lazy_match && s->strstart - hash_head <= MAX_DIST(s)) { /* To simplify the code, we prevent matches with the string * of window index 0 (in particular we have to avoid a match * of the string with itself at the start of the input file). */ s->match_length = longest_match (s, hash_head); /* longest_match() sets match_start */ if (s->match_length <= 5 && (s->strategy == Z_FILTERED #if TOO_FAR <= 32767 || (s->match_length == MIN_MATCH && s->strstart - s->match_start > TOO_FAR) #endif )) { /* If prev_match is also MIN_MATCH, match_start is garbage * but we will ignore the current match anyway. */ s->match_length = MIN_MATCH-1; } } /* If there was a match at the previous step and the current * match is not better, output the previous match: */ if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) { uInt max_insert = s->strstart + s->lookahead - MIN_MATCH; /* Do not insert strings in hash table beyond this. */ check_match(s, s->strstart-1, s->prev_match, s->prev_length); _tr_tally_dist(s, s->strstart -1 - s->prev_match, s->prev_length - MIN_MATCH, bflush); /* Insert in hash table all strings up to the end of the match. * strstart-1 and strstart are already inserted. If there is not * enough lookahead, the last two strings are not inserted in * the hash table. */ s->lookahead -= s->prev_length-1; s->prev_length -= 2; do { if (++s->strstart <= max_insert) { INSERT_STRING(s, s->strstart, hash_head); } } while (--s->prev_length != 0); s->match_available = 0; s->match_length = MIN_MATCH-1; s->strstart++; if (bflush) FLUSH_BLOCK(s, 0); } else if (s->match_available) { /* If there was no match at the previous position, output a * single literal. If there was a match but the current match * is longer, truncate the previous match to a single literal. */ Tracevv((stderr,"%c", s->window[s->strstart-1])); _tr_tally_lit(s, s->window[s->strstart-1], bflush); if (bflush) { FLUSH_BLOCK_ONLY(s, 0); } s->strstart++; s->lookahead--; if (s->strm->avail_out == 0) return need_more; } else { /* There is no previous match to compare with, wait for * the next step to decide. */ s->match_available = 1; s->strstart++; s->lookahead--; } } Assert (flush != Z_NO_FLUSH, "no flush?"); if (s->match_available) { Tracevv((stderr,"%c", s->window[s->strstart-1])); _tr_tally_lit(s, s->window[s->strstart-1], bflush); s->match_available = 0; } s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1; if (flush == Z_FINISH) { FLUSH_BLOCK(s, 1); return finish_done; } if (s->last_lit) FLUSH_BLOCK(s, 0); return block_done; } #endif /* FASTEST */ /* =========================================================================== * For Z_RLE, simply look for runs of bytes, generate matches only of distance * one. Do not maintain a hash table. (It will be regenerated if this run of * deflate switches away from Z_RLE.) */ local block_state deflate_rle(s, flush) deflate_state *s; int flush; { int bflush; /* set if current block must be flushed */ uInt prev; /* byte at distance one to match */ Bytef *scan, *strend; /* scan goes up to strend for length of run */ for (;;) { /* Make sure that we always have enough lookahead, except * at the end of the input file. We need MAX_MATCH bytes * for the longest run, plus one for the unrolled loop. */ if (s->lookahead <= MAX_MATCH) { fill_window(s); if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) { return need_more; } if (s->lookahead == 0) break; /* flush the current block */ } /* See how many times the previous byte repeats */ s->match_length = 0; if (s->lookahead >= MIN_MATCH && s->strstart > 0) { scan = s->window + s->strstart - 1; prev = *scan; if (prev == *++scan && prev == *++scan && prev == *++scan) { strend = s->window + s->strstart + MAX_MATCH; do { } while (prev == *++scan && prev == *++scan && prev == *++scan && prev == *++scan && prev == *++scan && prev == *++scan && prev == *++scan && prev == *++scan && scan < strend); s->match_length = MAX_MATCH - (int)(strend - scan); if (s->match_length > s->lookahead) s->match_length = s->lookahead; } Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan"); } /* Emit match if have run of MIN_MATCH or longer, else emit literal */ if (s->match_length >= MIN_MATCH) { check_match(s, s->strstart, s->strstart - 1, s->match_length); _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush); s->lookahead -= s->match_length; s->strstart += s->match_length; s->match_length = 0; } else { /* No match, output a literal byte */ Tracevv((stderr,"%c", s->window[s->strstart])); _tr_tally_lit (s, s->window[s->strstart], bflush); s->lookahead--; s->strstart++; } if (bflush) FLUSH_BLOCK(s, 0); } s->insert = 0; if (flush == Z_FINISH) { FLUSH_BLOCK(s, 1); return finish_done; } if (s->last_lit) FLUSH_BLOCK(s, 0); return block_done; } /* =========================================================================== * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table. * (It will be regenerated if this run of deflate switches away from Huffman.) */ local block_state deflate_huff(s, flush) deflate_state *s; int flush; { int bflush; /* set if current block must be flushed */ for (;;) { /* Make sure that we have a literal to write. */ if (s->lookahead == 0) { fill_window(s); if (s->lookahead == 0) { if (flush == Z_NO_FLUSH) return need_more; break; /* flush the current block */ } } /* Output a literal byte */ s->match_length = 0; Tracevv((stderr,"%c", s->window[s->strstart])); _tr_tally_lit (s, s->window[s->strstart], bflush); s->lookahead--; s->strstart++; if (bflush) FLUSH_BLOCK(s, 0); } s->insert = 0; if (flush == Z_FINISH) { FLUSH_BLOCK(s, 1); return finish_done; } if (s->last_lit) FLUSH_BLOCK(s, 0); return block_done; } /* END OF DUMP OF mz_deflate.c*/ /* START OF DUMP OF mz_crc32.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* crc32.c -- compute the CRC-32 of a data stream * Copyright (C) 1995-2006, 2010, 2011, 2012 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h * * Thanks to Rodney Brown for his contribution of faster * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing * tables for updating the shift register in one step with three exclusive-ors * instead of four steps with four exclusive-ors. This results in about a * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3. */ /* @(#) $Id$ */ /* Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore protection on the static variables used to control the first-use generation of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should first call get_crc_table() to initialize the tables before allowing more than one thread to use crc32(). DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h. */ #ifdef MAKECRCH # include # ifndef DYNAMIC_CRC_TABLE # define DYNAMIC_CRC_TABLE # endif /* !DYNAMIC_CRC_TABLE */ #endif /* MAKECRCH */ #define local static /* Definitions for doing the crc four data bytes at a time. */ #if !defined(NOBYFOUR) && defined(Z_U4) # define BYFOUR #endif #ifdef BYFOUR local unsigned long crc32_little OF((unsigned long, const unsigned char FAR *, unsigned)); local unsigned long crc32_big OF((unsigned long, const unsigned char FAR *, unsigned)); # define TBLS 8 #else # define TBLS 1 #endif /* BYFOUR */ /* Local functions for crc concatenation */ local unsigned long gf2_matrix_times OF((unsigned long *mat, unsigned long vec)); local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat)); local uLong crc32_combine_ OF((uLong crc1, uLong crc2, z_off64_t len2)); #ifdef DYNAMIC_CRC_TABLE local volatile int crc_table_empty = 1; local z_crc_t FAR crc_table[TBLS][256]; local void make_crc_table OF((void)); #ifdef MAKECRCH local void write_table OF((FILE *, const z_crc_t FAR *)); #endif /* MAKECRCH */ /* Generate tables for a byte-wise 32-bit CRC calculation on the polynomial: x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1. Polynomials over GF(2) are represented in binary, one bit per coefficient, with the lowest powers in the most significant bit. Then adding polynomials is just exclusive-or, and multiplying a polynomial by x is a right shift by one. If we call the above polynomial p, and represent a byte as the polynomial q, also with the lowest power in the most significant bit (so the byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p, where a mod b means the remainder after dividing a by b. This calculation is done using the shift-register method of multiplying and taking the remainder. The register is initialized to zero, and for each incoming bit, x^32 is added mod p to the register if the bit is a one (where x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by x (which is shifting right by one and adding x^32 mod p if the bit shifted out is a one). We start with the highest power (least significant bit) of q and repeat for all eight bits of q. The first table is simply the CRC of all possible eight bit values. This is all the information needed to generate CRCs on data a byte at a time for all combinations of CRC register values and incoming bytes. The remaining tables allow for word-at-a-time CRC calculation for both big-endian and little- endian machines, where a word is four bytes. */ local void make_crc_table() { z_crc_t c; int n, k; z_crc_t poly; /* polynomial exclusive-or pattern */ /* terms of polynomial defining this crc (except x^32): */ static volatile int first = 1; /* flag to limit concurrent making */ static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26}; /* See if another task is already doing this (not thread-safe, but better than nothing -- significantly reduces duration of vulnerability in case the advice about DYNAMIC_CRC_TABLE is ignored) */ if (first) { first = 0; /* make exclusive-or pattern from polynomial (0xedb88320UL) */ poly = 0; for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++) poly |= (z_crc_t)1 << (31 - p[n]); /* generate a crc for every 8-bit value */ for (n = 0; n < 256; n++) { c = (z_crc_t)n; for (k = 0; k < 8; k++) c = c & 1 ? poly ^ (c >> 1) : c >> 1; crc_table[0][n] = c; } #ifdef BYFOUR /* generate crc for each value followed by one, two, and three zeros, and then the byte reversal of those as well as the first table */ for (n = 0; n < 256; n++) { c = crc_table[0][n]; crc_table[4][n] = ZSWAP32(c); for (k = 1; k < 4; k++) { c = crc_table[0][c & 0xff] ^ (c >> 8); crc_table[k][n] = c; crc_table[k + 4][n] = ZSWAP32(c); } } #endif /* BYFOUR */ crc_table_empty = 0; } else { /* not first */ /* wait for the other guy to finish (not efficient, but rare) */ while (crc_table_empty) ; } #ifdef MAKECRCH /* write out CRC tables to crc32.h */ { FILE *out; out = fopen("crc32.h", "w"); if (out == NULL) return; fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n"); fprintf(out, " * Generated automatically by crc32.c\n */\n\n"); fprintf(out, "local const z_crc_t FAR "); fprintf(out, "crc_table[TBLS][256] =\n{\n {\n"); write_table(out, crc_table[0]); # ifdef BYFOUR fprintf(out, "#ifdef BYFOUR\n"); for (k = 1; k < 8; k++) { fprintf(out, " },\n {\n"); write_table(out, crc_table[k]); } fprintf(out, "#endif\n"); # endif /* BYFOUR */ fprintf(out, " }\n};\n"); fclose(out); } #endif /* MAKECRCH */ } #ifdef MAKECRCH local void write_table(out, table) FILE *out; const z_crc_t FAR *table; { int n; for (n = 0; n < 256; n++) fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : " ", (unsigned long)(table[n]), n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", ")); } #endif /* MAKECRCH */ #else /* !DYNAMIC_CRC_TABLE */ /* ======================================================================== * Tables of CRC-32s of all single-byte values, made by make_crc_table(). */ /* START OF DUMP OF mz_crc32.h*/ /* crc32.h -- tables for rapid CRC calculation * Generated automatically by crc32.c */ local const z_crc_t FAR crc_table[TBLS][256] = { { 0x00000000UL, 0x77073096UL, 0xee0e612cUL, 0x990951baUL, 0x076dc419UL, 0x706af48fUL, 0xe963a535UL, 0x9e6495a3UL, 0x0edb8832UL, 0x79dcb8a4UL, 0xe0d5e91eUL, 0x97d2d988UL, 0x09b64c2bUL, 0x7eb17cbdUL, 0xe7b82d07UL, 0x90bf1d91UL, 0x1db71064UL, 0x6ab020f2UL, 0xf3b97148UL, 0x84be41deUL, 0x1adad47dUL, 0x6ddde4ebUL, 0xf4d4b551UL, 0x83d385c7UL, 0x136c9856UL, 0x646ba8c0UL, 0xfd62f97aUL, 0x8a65c9ecUL, 0x14015c4fUL, 0x63066cd9UL, 0xfa0f3d63UL, 0x8d080df5UL, 0x3b6e20c8UL, 0x4c69105eUL, 0xd56041e4UL, 0xa2677172UL, 0x3c03e4d1UL, 0x4b04d447UL, 0xd20d85fdUL, 0xa50ab56bUL, 0x35b5a8faUL, 0x42b2986cUL, 0xdbbbc9d6UL, 0xacbcf940UL, 0x32d86ce3UL, 0x45df5c75UL, 0xdcd60dcfUL, 0xabd13d59UL, 0x26d930acUL, 0x51de003aUL, 0xc8d75180UL, 0xbfd06116UL, 0x21b4f4b5UL, 0x56b3c423UL, 0xcfba9599UL, 0xb8bda50fUL, 0x2802b89eUL, 0x5f058808UL, 0xc60cd9b2UL, 0xb10be924UL, 0x2f6f7c87UL, 0x58684c11UL, 0xc1611dabUL, 0xb6662d3dUL, 0x76dc4190UL, 0x01db7106UL, 0x98d220bcUL, 0xefd5102aUL, 0x71b18589UL, 0x06b6b51fUL, 0x9fbfe4a5UL, 0xe8b8d433UL, 0x7807c9a2UL, 0x0f00f934UL, 0x9609a88eUL, 0xe10e9818UL, 0x7f6a0dbbUL, 0x086d3d2dUL, 0x91646c97UL, 0xe6635c01UL, 0x6b6b51f4UL, 0x1c6c6162UL, 0x856530d8UL, 0xf262004eUL, 0x6c0695edUL, 0x1b01a57bUL, 0x8208f4c1UL, 0xf50fc457UL, 0x65b0d9c6UL, 0x12b7e950UL, 0x8bbeb8eaUL, 0xfcb9887cUL, 0x62dd1ddfUL, 0x15da2d49UL, 0x8cd37cf3UL, 0xfbd44c65UL, 0x4db26158UL, 0x3ab551ceUL, 0xa3bc0074UL, 0xd4bb30e2UL, 0x4adfa541UL, 0x3dd895d7UL, 0xa4d1c46dUL, 0xd3d6f4fbUL, 0x4369e96aUL, 0x346ed9fcUL, 0xad678846UL, 0xda60b8d0UL, 0x44042d73UL, 0x33031de5UL, 0xaa0a4c5fUL, 0xdd0d7cc9UL, 0x5005713cUL, 0x270241aaUL, 0xbe0b1010UL, 0xc90c2086UL, 0x5768b525UL, 0x206f85b3UL, 0xb966d409UL, 0xce61e49fUL, 0x5edef90eUL, 0x29d9c998UL, 0xb0d09822UL, 0xc7d7a8b4UL, 0x59b33d17UL, 0x2eb40d81UL, 0xb7bd5c3bUL, 0xc0ba6cadUL, 0xedb88320UL, 0x9abfb3b6UL, 0x03b6e20cUL, 0x74b1d29aUL, 0xead54739UL, 0x9dd277afUL, 0x04db2615UL, 0x73dc1683UL, 0xe3630b12UL, 0x94643b84UL, 0x0d6d6a3eUL, 0x7a6a5aa8UL, 0xe40ecf0bUL, 0x9309ff9dUL, 0x0a00ae27UL, 0x7d079eb1UL, 0xf00f9344UL, 0x8708a3d2UL, 0x1e01f268UL, 0x6906c2feUL, 0xf762575dUL, 0x806567cbUL, 0x196c3671UL, 0x6e6b06e7UL, 0xfed41b76UL, 0x89d32be0UL, 0x10da7a5aUL, 0x67dd4accUL, 0xf9b9df6fUL, 0x8ebeeff9UL, 0x17b7be43UL, 0x60b08ed5UL, 0xd6d6a3e8UL, 0xa1d1937eUL, 0x38d8c2c4UL, 0x4fdff252UL, 0xd1bb67f1UL, 0xa6bc5767UL, 0x3fb506ddUL, 0x48b2364bUL, 0xd80d2bdaUL, 0xaf0a1b4cUL, 0x36034af6UL, 0x41047a60UL, 0xdf60efc3UL, 0xa867df55UL, 0x316e8eefUL, 0x4669be79UL, 0xcb61b38cUL, 0xbc66831aUL, 0x256fd2a0UL, 0x5268e236UL, 0xcc0c7795UL, 0xbb0b4703UL, 0x220216b9UL, 0x5505262fUL, 0xc5ba3bbeUL, 0xb2bd0b28UL, 0x2bb45a92UL, 0x5cb36a04UL, 0xc2d7ffa7UL, 0xb5d0cf31UL, 0x2cd99e8bUL, 0x5bdeae1dUL, 0x9b64c2b0UL, 0xec63f226UL, 0x756aa39cUL, 0x026d930aUL, 0x9c0906a9UL, 0xeb0e363fUL, 0x72076785UL, 0x05005713UL, 0x95bf4a82UL, 0xe2b87a14UL, 0x7bb12baeUL, 0x0cb61b38UL, 0x92d28e9bUL, 0xe5d5be0dUL, 0x7cdcefb7UL, 0x0bdbdf21UL, 0x86d3d2d4UL, 0xf1d4e242UL, 0x68ddb3f8UL, 0x1fda836eUL, 0x81be16cdUL, 0xf6b9265bUL, 0x6fb077e1UL, 0x18b74777UL, 0x88085ae6UL, 0xff0f6a70UL, 0x66063bcaUL, 0x11010b5cUL, 0x8f659effUL, 0xf862ae69UL, 0x616bffd3UL, 0x166ccf45UL, 0xa00ae278UL, 0xd70dd2eeUL, 0x4e048354UL, 0x3903b3c2UL, 0xa7672661UL, 0xd06016f7UL, 0x4969474dUL, 0x3e6e77dbUL, 0xaed16a4aUL, 0xd9d65adcUL, 0x40df0b66UL, 0x37d83bf0UL, 0xa9bcae53UL, 0xdebb9ec5UL, 0x47b2cf7fUL, 0x30b5ffe9UL, 0xbdbdf21cUL, 0xcabac28aUL, 0x53b39330UL, 0x24b4a3a6UL, 0xbad03605UL, 0xcdd70693UL, 0x54de5729UL, 0x23d967bfUL, 0xb3667a2eUL, 0xc4614ab8UL, 0x5d681b02UL, 0x2a6f2b94UL, 0xb40bbe37UL, 0xc30c8ea1UL, 0x5a05df1bUL, 0x2d02ef8dUL #ifdef BYFOUR }, { 0x00000000UL, 0x191b3141UL, 0x32366282UL, 0x2b2d53c3UL, 0x646cc504UL, 0x7d77f445UL, 0x565aa786UL, 0x4f4196c7UL, 0xc8d98a08UL, 0xd1c2bb49UL, 0xfaefe88aUL, 0xe3f4d9cbUL, 0xacb54f0cUL, 0xb5ae7e4dUL, 0x9e832d8eUL, 0x87981ccfUL, 0x4ac21251UL, 0x53d92310UL, 0x78f470d3UL, 0x61ef4192UL, 0x2eaed755UL, 0x37b5e614UL, 0x1c98b5d7UL, 0x05838496UL, 0x821b9859UL, 0x9b00a918UL, 0xb02dfadbUL, 0xa936cb9aUL, 0xe6775d5dUL, 0xff6c6c1cUL, 0xd4413fdfUL, 0xcd5a0e9eUL, 0x958424a2UL, 0x8c9f15e3UL, 0xa7b24620UL, 0xbea97761UL, 0xf1e8e1a6UL, 0xe8f3d0e7UL, 0xc3de8324UL, 0xdac5b265UL, 0x5d5daeaaUL, 0x44469febUL, 0x6f6bcc28UL, 0x7670fd69UL, 0x39316baeUL, 0x202a5aefUL, 0x0b07092cUL, 0x121c386dUL, 0xdf4636f3UL, 0xc65d07b2UL, 0xed705471UL, 0xf46b6530UL, 0xbb2af3f7UL, 0xa231c2b6UL, 0x891c9175UL, 0x9007a034UL, 0x179fbcfbUL, 0x0e848dbaUL, 0x25a9de79UL, 0x3cb2ef38UL, 0x73f379ffUL, 0x6ae848beUL, 0x41c51b7dUL, 0x58de2a3cUL, 0xf0794f05UL, 0xe9627e44UL, 0xc24f2d87UL, 0xdb541cc6UL, 0x94158a01UL, 0x8d0ebb40UL, 0xa623e883UL, 0xbf38d9c2UL, 0x38a0c50dUL, 0x21bbf44cUL, 0x0a96a78fUL, 0x138d96ceUL, 0x5ccc0009UL, 0x45d73148UL, 0x6efa628bUL, 0x77e153caUL, 0xbabb5d54UL, 0xa3a06c15UL, 0x888d3fd6UL, 0x91960e97UL, 0xded79850UL, 0xc7cca911UL, 0xece1fad2UL, 0xf5facb93UL, 0x7262d75cUL, 0x6b79e61dUL, 0x4054b5deUL, 0x594f849fUL, 0x160e1258UL, 0x0f152319UL, 0x243870daUL, 0x3d23419bUL, 0x65fd6ba7UL, 0x7ce65ae6UL, 0x57cb0925UL, 0x4ed03864UL, 0x0191aea3UL, 0x188a9fe2UL, 0x33a7cc21UL, 0x2abcfd60UL, 0xad24e1afUL, 0xb43fd0eeUL, 0x9f12832dUL, 0x8609b26cUL, 0xc94824abUL, 0xd05315eaUL, 0xfb7e4629UL, 0xe2657768UL, 0x2f3f79f6UL, 0x362448b7UL, 0x1d091b74UL, 0x04122a35UL, 0x4b53bcf2UL, 0x52488db3UL, 0x7965de70UL, 0x607eef31UL, 0xe7e6f3feUL, 0xfefdc2bfUL, 0xd5d0917cUL, 0xcccba03dUL, 0x838a36faUL, 0x9a9107bbUL, 0xb1bc5478UL, 0xa8a76539UL, 0x3b83984bUL, 0x2298a90aUL, 0x09b5fac9UL, 0x10aecb88UL, 0x5fef5d4fUL, 0x46f46c0eUL, 0x6dd93fcdUL, 0x74c20e8cUL, 0xf35a1243UL, 0xea412302UL, 0xc16c70c1UL, 0xd8774180UL, 0x9736d747UL, 0x8e2de606UL, 0xa500b5c5UL, 0xbc1b8484UL, 0x71418a1aUL, 0x685abb5bUL, 0x4377e898UL, 0x5a6cd9d9UL, 0x152d4f1eUL, 0x0c367e5fUL, 0x271b2d9cUL, 0x3e001cddUL, 0xb9980012UL, 0xa0833153UL, 0x8bae6290UL, 0x92b553d1UL, 0xddf4c516UL, 0xc4eff457UL, 0xefc2a794UL, 0xf6d996d5UL, 0xae07bce9UL, 0xb71c8da8UL, 0x9c31de6bUL, 0x852aef2aUL, 0xca6b79edUL, 0xd37048acUL, 0xf85d1b6fUL, 0xe1462a2eUL, 0x66de36e1UL, 0x7fc507a0UL, 0x54e85463UL, 0x4df36522UL, 0x02b2f3e5UL, 0x1ba9c2a4UL, 0x30849167UL, 0x299fa026UL, 0xe4c5aeb8UL, 0xfdde9ff9UL, 0xd6f3cc3aUL, 0xcfe8fd7bUL, 0x80a96bbcUL, 0x99b25afdUL, 0xb29f093eUL, 0xab84387fUL, 0x2c1c24b0UL, 0x350715f1UL, 0x1e2a4632UL, 0x07317773UL, 0x4870e1b4UL, 0x516bd0f5UL, 0x7a468336UL, 0x635db277UL, 0xcbfad74eUL, 0xd2e1e60fUL, 0xf9ccb5ccUL, 0xe0d7848dUL, 0xaf96124aUL, 0xb68d230bUL, 0x9da070c8UL, 0x84bb4189UL, 0x03235d46UL, 0x1a386c07UL, 0x31153fc4UL, 0x280e0e85UL, 0x674f9842UL, 0x7e54a903UL, 0x5579fac0UL, 0x4c62cb81UL, 0x8138c51fUL, 0x9823f45eUL, 0xb30ea79dUL, 0xaa1596dcUL, 0xe554001bUL, 0xfc4f315aUL, 0xd7626299UL, 0xce7953d8UL, 0x49e14f17UL, 0x50fa7e56UL, 0x7bd72d95UL, 0x62cc1cd4UL, 0x2d8d8a13UL, 0x3496bb52UL, 0x1fbbe891UL, 0x06a0d9d0UL, 0x5e7ef3ecUL, 0x4765c2adUL, 0x6c48916eUL, 0x7553a02fUL, 0x3a1236e8UL, 0x230907a9UL, 0x0824546aUL, 0x113f652bUL, 0x96a779e4UL, 0x8fbc48a5UL, 0xa4911b66UL, 0xbd8a2a27UL, 0xf2cbbce0UL, 0xebd08da1UL, 0xc0fdde62UL, 0xd9e6ef23UL, 0x14bce1bdUL, 0x0da7d0fcUL, 0x268a833fUL, 0x3f91b27eUL, 0x70d024b9UL, 0x69cb15f8UL, 0x42e6463bUL, 0x5bfd777aUL, 0xdc656bb5UL, 0xc57e5af4UL, 0xee530937UL, 0xf7483876UL, 0xb809aeb1UL, 0xa1129ff0UL, 0x8a3fcc33UL, 0x9324fd72UL }, { 0x00000000UL, 0x01c26a37UL, 0x0384d46eUL, 0x0246be59UL, 0x0709a8dcUL, 0x06cbc2ebUL, 0x048d7cb2UL, 0x054f1685UL, 0x0e1351b8UL, 0x0fd13b8fUL, 0x0d9785d6UL, 0x0c55efe1UL, 0x091af964UL, 0x08d89353UL, 0x0a9e2d0aUL, 0x0b5c473dUL, 0x1c26a370UL, 0x1de4c947UL, 0x1fa2771eUL, 0x1e601d29UL, 0x1b2f0bacUL, 0x1aed619bUL, 0x18abdfc2UL, 0x1969b5f5UL, 0x1235f2c8UL, 0x13f798ffUL, 0x11b126a6UL, 0x10734c91UL, 0x153c5a14UL, 0x14fe3023UL, 0x16b88e7aUL, 0x177ae44dUL, 0x384d46e0UL, 0x398f2cd7UL, 0x3bc9928eUL, 0x3a0bf8b9UL, 0x3f44ee3cUL, 0x3e86840bUL, 0x3cc03a52UL, 0x3d025065UL, 0x365e1758UL, 0x379c7d6fUL, 0x35dac336UL, 0x3418a901UL, 0x3157bf84UL, 0x3095d5b3UL, 0x32d36beaUL, 0x331101ddUL, 0x246be590UL, 0x25a98fa7UL, 0x27ef31feUL, 0x262d5bc9UL, 0x23624d4cUL, 0x22a0277bUL, 0x20e69922UL, 0x2124f315UL, 0x2a78b428UL, 0x2bbade1fUL, 0x29fc6046UL, 0x283e0a71UL, 0x2d711cf4UL, 0x2cb376c3UL, 0x2ef5c89aUL, 0x2f37a2adUL, 0x709a8dc0UL, 0x7158e7f7UL, 0x731e59aeUL, 0x72dc3399UL, 0x7793251cUL, 0x76514f2bUL, 0x7417f172UL, 0x75d59b45UL, 0x7e89dc78UL, 0x7f4bb64fUL, 0x7d0d0816UL, 0x7ccf6221UL, 0x798074a4UL, 0x78421e93UL, 0x7a04a0caUL, 0x7bc6cafdUL, 0x6cbc2eb0UL, 0x6d7e4487UL, 0x6f38fadeUL, 0x6efa90e9UL, 0x6bb5866cUL, 0x6a77ec5bUL, 0x68315202UL, 0x69f33835UL, 0x62af7f08UL, 0x636d153fUL, 0x612bab66UL, 0x60e9c151UL, 0x65a6d7d4UL, 0x6464bde3UL, 0x662203baUL, 0x67e0698dUL, 0x48d7cb20UL, 0x4915a117UL, 0x4b531f4eUL, 0x4a917579UL, 0x4fde63fcUL, 0x4e1c09cbUL, 0x4c5ab792UL, 0x4d98dda5UL, 0x46c49a98UL, 0x4706f0afUL, 0x45404ef6UL, 0x448224c1UL, 0x41cd3244UL, 0x400f5873UL, 0x4249e62aUL, 0x438b8c1dUL, 0x54f16850UL, 0x55330267UL, 0x5775bc3eUL, 0x56b7d609UL, 0x53f8c08cUL, 0x523aaabbUL, 0x507c14e2UL, 0x51be7ed5UL, 0x5ae239e8UL, 0x5b2053dfUL, 0x5966ed86UL, 0x58a487b1UL, 0x5deb9134UL, 0x5c29fb03UL, 0x5e6f455aUL, 0x5fad2f6dUL, 0xe1351b80UL, 0xe0f771b7UL, 0xe2b1cfeeUL, 0xe373a5d9UL, 0xe63cb35cUL, 0xe7fed96bUL, 0xe5b86732UL, 0xe47a0d05UL, 0xef264a38UL, 0xeee4200fUL, 0xeca29e56UL, 0xed60f461UL, 0xe82fe2e4UL, 0xe9ed88d3UL, 0xebab368aUL, 0xea695cbdUL, 0xfd13b8f0UL, 0xfcd1d2c7UL, 0xfe976c9eUL, 0xff5506a9UL, 0xfa1a102cUL, 0xfbd87a1bUL, 0xf99ec442UL, 0xf85cae75UL, 0xf300e948UL, 0xf2c2837fUL, 0xf0843d26UL, 0xf1465711UL, 0xf4094194UL, 0xf5cb2ba3UL, 0xf78d95faUL, 0xf64fffcdUL, 0xd9785d60UL, 0xd8ba3757UL, 0xdafc890eUL, 0xdb3ee339UL, 0xde71f5bcUL, 0xdfb39f8bUL, 0xddf521d2UL, 0xdc374be5UL, 0xd76b0cd8UL, 0xd6a966efUL, 0xd4efd8b6UL, 0xd52db281UL, 0xd062a404UL, 0xd1a0ce33UL, 0xd3e6706aUL, 0xd2241a5dUL, 0xc55efe10UL, 0xc49c9427UL, 0xc6da2a7eUL, 0xc7184049UL, 0xc25756ccUL, 0xc3953cfbUL, 0xc1d382a2UL, 0xc011e895UL, 0xcb4dafa8UL, 0xca8fc59fUL, 0xc8c97bc6UL, 0xc90b11f1UL, 0xcc440774UL, 0xcd866d43UL, 0xcfc0d31aUL, 0xce02b92dUL, 0x91af9640UL, 0x906dfc77UL, 0x922b422eUL, 0x93e92819UL, 0x96a63e9cUL, 0x976454abUL, 0x9522eaf2UL, 0x94e080c5UL, 0x9fbcc7f8UL, 0x9e7eadcfUL, 0x9c381396UL, 0x9dfa79a1UL, 0x98b56f24UL, 0x99770513UL, 0x9b31bb4aUL, 0x9af3d17dUL, 0x8d893530UL, 0x8c4b5f07UL, 0x8e0de15eUL, 0x8fcf8b69UL, 0x8a809decUL, 0x8b42f7dbUL, 0x89044982UL, 0x88c623b5UL, 0x839a6488UL, 0x82580ebfUL, 0x801eb0e6UL, 0x81dcdad1UL, 0x8493cc54UL, 0x8551a663UL, 0x8717183aUL, 0x86d5720dUL, 0xa9e2d0a0UL, 0xa820ba97UL, 0xaa6604ceUL, 0xaba46ef9UL, 0xaeeb787cUL, 0xaf29124bUL, 0xad6fac12UL, 0xacadc625UL, 0xa7f18118UL, 0xa633eb2fUL, 0xa4755576UL, 0xa5b73f41UL, 0xa0f829c4UL, 0xa13a43f3UL, 0xa37cfdaaUL, 0xa2be979dUL, 0xb5c473d0UL, 0xb40619e7UL, 0xb640a7beUL, 0xb782cd89UL, 0xb2cddb0cUL, 0xb30fb13bUL, 0xb1490f62UL, 0xb08b6555UL, 0xbbd72268UL, 0xba15485fUL, 0xb853f606UL, 0xb9919c31UL, 0xbcde8ab4UL, 0xbd1ce083UL, 0xbf5a5edaUL, 0xbe9834edUL }, { 0x00000000UL, 0xb8bc6765UL, 0xaa09c88bUL, 0x12b5afeeUL, 0x8f629757UL, 0x37def032UL, 0x256b5fdcUL, 0x9dd738b9UL, 0xc5b428efUL, 0x7d084f8aUL, 0x6fbde064UL, 0xd7018701UL, 0x4ad6bfb8UL, 0xf26ad8ddUL, 0xe0df7733UL, 0x58631056UL, 0x5019579fUL, 0xe8a530faUL, 0xfa109f14UL, 0x42acf871UL, 0xdf7bc0c8UL, 0x67c7a7adUL, 0x75720843UL, 0xcdce6f26UL, 0x95ad7f70UL, 0x2d111815UL, 0x3fa4b7fbUL, 0x8718d09eUL, 0x1acfe827UL, 0xa2738f42UL, 0xb0c620acUL, 0x087a47c9UL, 0xa032af3eUL, 0x188ec85bUL, 0x0a3b67b5UL, 0xb28700d0UL, 0x2f503869UL, 0x97ec5f0cUL, 0x8559f0e2UL, 0x3de59787UL, 0x658687d1UL, 0xdd3ae0b4UL, 0xcf8f4f5aUL, 0x7733283fUL, 0xeae41086UL, 0x525877e3UL, 0x40edd80dUL, 0xf851bf68UL, 0xf02bf8a1UL, 0x48979fc4UL, 0x5a22302aUL, 0xe29e574fUL, 0x7f496ff6UL, 0xc7f50893UL, 0xd540a77dUL, 0x6dfcc018UL, 0x359fd04eUL, 0x8d23b72bUL, 0x9f9618c5UL, 0x272a7fa0UL, 0xbafd4719UL, 0x0241207cUL, 0x10f48f92UL, 0xa848e8f7UL, 0x9b14583dUL, 0x23a83f58UL, 0x311d90b6UL, 0x89a1f7d3UL, 0x1476cf6aUL, 0xaccaa80fUL, 0xbe7f07e1UL, 0x06c36084UL, 0x5ea070d2UL, 0xe61c17b7UL, 0xf4a9b859UL, 0x4c15df3cUL, 0xd1c2e785UL, 0x697e80e0UL, 0x7bcb2f0eUL, 0xc377486bUL, 0xcb0d0fa2UL, 0x73b168c7UL, 0x6104c729UL, 0xd9b8a04cUL, 0x446f98f5UL, 0xfcd3ff90UL, 0xee66507eUL, 0x56da371bUL, 0x0eb9274dUL, 0xb6054028UL, 0xa4b0efc6UL, 0x1c0c88a3UL, 0x81dbb01aUL, 0x3967d77fUL, 0x2bd27891UL, 0x936e1ff4UL, 0x3b26f703UL, 0x839a9066UL, 0x912f3f88UL, 0x299358edUL, 0xb4446054UL, 0x0cf80731UL, 0x1e4da8dfUL, 0xa6f1cfbaUL, 0xfe92dfecUL, 0x462eb889UL, 0x549b1767UL, 0xec277002UL, 0x71f048bbUL, 0xc94c2fdeUL, 0xdbf98030UL, 0x6345e755UL, 0x6b3fa09cUL, 0xd383c7f9UL, 0xc1366817UL, 0x798a0f72UL, 0xe45d37cbUL, 0x5ce150aeUL, 0x4e54ff40UL, 0xf6e89825UL, 0xae8b8873UL, 0x1637ef16UL, 0x048240f8UL, 0xbc3e279dUL, 0x21e91f24UL, 0x99557841UL, 0x8be0d7afUL, 0x335cb0caUL, 0xed59b63bUL, 0x55e5d15eUL, 0x47507eb0UL, 0xffec19d5UL, 0x623b216cUL, 0xda874609UL, 0xc832e9e7UL, 0x708e8e82UL, 0x28ed9ed4UL, 0x9051f9b1UL, 0x82e4565fUL, 0x3a58313aUL, 0xa78f0983UL, 0x1f336ee6UL, 0x0d86c108UL, 0xb53aa66dUL, 0xbd40e1a4UL, 0x05fc86c1UL, 0x1749292fUL, 0xaff54e4aUL, 0x322276f3UL, 0x8a9e1196UL, 0x982bbe78UL, 0x2097d91dUL, 0x78f4c94bUL, 0xc048ae2eUL, 0xd2fd01c0UL, 0x6a4166a5UL, 0xf7965e1cUL, 0x4f2a3979UL, 0x5d9f9697UL, 0xe523f1f2UL, 0x4d6b1905UL, 0xf5d77e60UL, 0xe762d18eUL, 0x5fdeb6ebUL, 0xc2098e52UL, 0x7ab5e937UL, 0x680046d9UL, 0xd0bc21bcUL, 0x88df31eaUL, 0x3063568fUL, 0x22d6f961UL, 0x9a6a9e04UL, 0x07bda6bdUL, 0xbf01c1d8UL, 0xadb46e36UL, 0x15080953UL, 0x1d724e9aUL, 0xa5ce29ffUL, 0xb77b8611UL, 0x0fc7e174UL, 0x9210d9cdUL, 0x2aacbea8UL, 0x38191146UL, 0x80a57623UL, 0xd8c66675UL, 0x607a0110UL, 0x72cfaefeUL, 0xca73c99bUL, 0x57a4f122UL, 0xef189647UL, 0xfdad39a9UL, 0x45115eccUL, 0x764dee06UL, 0xcef18963UL, 0xdc44268dUL, 0x64f841e8UL, 0xf92f7951UL, 0x41931e34UL, 0x5326b1daUL, 0xeb9ad6bfUL, 0xb3f9c6e9UL, 0x0b45a18cUL, 0x19f00e62UL, 0xa14c6907UL, 0x3c9b51beUL, 0x842736dbUL, 0x96929935UL, 0x2e2efe50UL, 0x2654b999UL, 0x9ee8defcUL, 0x8c5d7112UL, 0x34e11677UL, 0xa9362eceUL, 0x118a49abUL, 0x033fe645UL, 0xbb838120UL, 0xe3e09176UL, 0x5b5cf613UL, 0x49e959fdUL, 0xf1553e98UL, 0x6c820621UL, 0xd43e6144UL, 0xc68bceaaUL, 0x7e37a9cfUL, 0xd67f4138UL, 0x6ec3265dUL, 0x7c7689b3UL, 0xc4caeed6UL, 0x591dd66fUL, 0xe1a1b10aUL, 0xf3141ee4UL, 0x4ba87981UL, 0x13cb69d7UL, 0xab770eb2UL, 0xb9c2a15cUL, 0x017ec639UL, 0x9ca9fe80UL, 0x241599e5UL, 0x36a0360bUL, 0x8e1c516eUL, 0x866616a7UL, 0x3eda71c2UL, 0x2c6fde2cUL, 0x94d3b949UL, 0x090481f0UL, 0xb1b8e695UL, 0xa30d497bUL, 0x1bb12e1eUL, 0x43d23e48UL, 0xfb6e592dUL, 0xe9dbf6c3UL, 0x516791a6UL, 0xccb0a91fUL, 0x740cce7aUL, 0x66b96194UL, 0xde0506f1UL }, { 0x00000000UL, 0x96300777UL, 0x2c610eeeUL, 0xba510999UL, 0x19c46d07UL, 0x8ff46a70UL, 0x35a563e9UL, 0xa395649eUL, 0x3288db0eUL, 0xa4b8dc79UL, 0x1ee9d5e0UL, 0x88d9d297UL, 0x2b4cb609UL, 0xbd7cb17eUL, 0x072db8e7UL, 0x911dbf90UL, 0x6410b71dUL, 0xf220b06aUL, 0x4871b9f3UL, 0xde41be84UL, 0x7dd4da1aUL, 0xebe4dd6dUL, 0x51b5d4f4UL, 0xc785d383UL, 0x56986c13UL, 0xc0a86b64UL, 0x7af962fdUL, 0xecc9658aUL, 0x4f5c0114UL, 0xd96c0663UL, 0x633d0ffaUL, 0xf50d088dUL, 0xc8206e3bUL, 0x5e10694cUL, 0xe44160d5UL, 0x727167a2UL, 0xd1e4033cUL, 0x47d4044bUL, 0xfd850dd2UL, 0x6bb50aa5UL, 0xfaa8b535UL, 0x6c98b242UL, 0xd6c9bbdbUL, 0x40f9bcacUL, 0xe36cd832UL, 0x755cdf45UL, 0xcf0dd6dcUL, 0x593dd1abUL, 0xac30d926UL, 0x3a00de51UL, 0x8051d7c8UL, 0x1661d0bfUL, 0xb5f4b421UL, 0x23c4b356UL, 0x9995bacfUL, 0x0fa5bdb8UL, 0x9eb80228UL, 0x0888055fUL, 0xb2d90cc6UL, 0x24e90bb1UL, 0x877c6f2fUL, 0x114c6858UL, 0xab1d61c1UL, 0x3d2d66b6UL, 0x9041dc76UL, 0x0671db01UL, 0xbc20d298UL, 0x2a10d5efUL, 0x8985b171UL, 0x1fb5b606UL, 0xa5e4bf9fUL, 0x33d4b8e8UL, 0xa2c90778UL, 0x34f9000fUL, 0x8ea80996UL, 0x18980ee1UL, 0xbb0d6a7fUL, 0x2d3d6d08UL, 0x976c6491UL, 0x015c63e6UL, 0xf4516b6bUL, 0x62616c1cUL, 0xd8306585UL, 0x4e0062f2UL, 0xed95066cUL, 0x7ba5011bUL, 0xc1f40882UL, 0x57c40ff5UL, 0xc6d9b065UL, 0x50e9b712UL, 0xeab8be8bUL, 0x7c88b9fcUL, 0xdf1ddd62UL, 0x492dda15UL, 0xf37cd38cUL, 0x654cd4fbUL, 0x5861b24dUL, 0xce51b53aUL, 0x7400bca3UL, 0xe230bbd4UL, 0x41a5df4aUL, 0xd795d83dUL, 0x6dc4d1a4UL, 0xfbf4d6d3UL, 0x6ae96943UL, 0xfcd96e34UL, 0x468867adUL, 0xd0b860daUL, 0x732d0444UL, 0xe51d0333UL, 0x5f4c0aaaUL, 0xc97c0dddUL, 0x3c710550UL, 0xaa410227UL, 0x10100bbeUL, 0x86200cc9UL, 0x25b56857UL, 0xb3856f20UL, 0x09d466b9UL, 0x9fe461ceUL, 0x0ef9de5eUL, 0x98c9d929UL, 0x2298d0b0UL, 0xb4a8d7c7UL, 0x173db359UL, 0x810db42eUL, 0x3b5cbdb7UL, 0xad6cbac0UL, 0x2083b8edUL, 0xb6b3bf9aUL, 0x0ce2b603UL, 0x9ad2b174UL, 0x3947d5eaUL, 0xaf77d29dUL, 0x1526db04UL, 0x8316dc73UL, 0x120b63e3UL, 0x843b6494UL, 0x3e6a6d0dUL, 0xa85a6a7aUL, 0x0bcf0ee4UL, 0x9dff0993UL, 0x27ae000aUL, 0xb19e077dUL, 0x44930ff0UL, 0xd2a30887UL, 0x68f2011eUL, 0xfec20669UL, 0x5d5762f7UL, 0xcb676580UL, 0x71366c19UL, 0xe7066b6eUL, 0x761bd4feUL, 0xe02bd389UL, 0x5a7ada10UL, 0xcc4add67UL, 0x6fdfb9f9UL, 0xf9efbe8eUL, 0x43beb717UL, 0xd58eb060UL, 0xe8a3d6d6UL, 0x7e93d1a1UL, 0xc4c2d838UL, 0x52f2df4fUL, 0xf167bbd1UL, 0x6757bca6UL, 0xdd06b53fUL, 0x4b36b248UL, 0xda2b0dd8UL, 0x4c1b0aafUL, 0xf64a0336UL, 0x607a0441UL, 0xc3ef60dfUL, 0x55df67a8UL, 0xef8e6e31UL, 0x79be6946UL, 0x8cb361cbUL, 0x1a8366bcUL, 0xa0d26f25UL, 0x36e26852UL, 0x95770cccUL, 0x03470bbbUL, 0xb9160222UL, 0x2f260555UL, 0xbe3bbac5UL, 0x280bbdb2UL, 0x925ab42bUL, 0x046ab35cUL, 0xa7ffd7c2UL, 0x31cfd0b5UL, 0x8b9ed92cUL, 0x1daede5bUL, 0xb0c2649bUL, 0x26f263ecUL, 0x9ca36a75UL, 0x0a936d02UL, 0xa906099cUL, 0x3f360eebUL, 0x85670772UL, 0x13570005UL, 0x824abf95UL, 0x147ab8e2UL, 0xae2bb17bUL, 0x381bb60cUL, 0x9b8ed292UL, 0x0dbed5e5UL, 0xb7efdc7cUL, 0x21dfdb0bUL, 0xd4d2d386UL, 0x42e2d4f1UL, 0xf8b3dd68UL, 0x6e83da1fUL, 0xcd16be81UL, 0x5b26b9f6UL, 0xe177b06fUL, 0x7747b718UL, 0xe65a0888UL, 0x706a0fffUL, 0xca3b0666UL, 0x5c0b0111UL, 0xff9e658fUL, 0x69ae62f8UL, 0xd3ff6b61UL, 0x45cf6c16UL, 0x78e20aa0UL, 0xeed20dd7UL, 0x5483044eUL, 0xc2b30339UL, 0x612667a7UL, 0xf71660d0UL, 0x4d476949UL, 0xdb776e3eUL, 0x4a6ad1aeUL, 0xdc5ad6d9UL, 0x660bdf40UL, 0xf03bd837UL, 0x53aebca9UL, 0xc59ebbdeUL, 0x7fcfb247UL, 0xe9ffb530UL, 0x1cf2bdbdUL, 0x8ac2bacaUL, 0x3093b353UL, 0xa6a3b424UL, 0x0536d0baUL, 0x9306d7cdUL, 0x2957de54UL, 0xbf67d923UL, 0x2e7a66b3UL, 0xb84a61c4UL, 0x021b685dUL, 0x942b6f2aUL, 0x37be0bb4UL, 0xa18e0cc3UL, 0x1bdf055aUL, 0x8def022dUL }, { 0x00000000UL, 0x41311b19UL, 0x82623632UL, 0xc3532d2bUL, 0x04c56c64UL, 0x45f4777dUL, 0x86a75a56UL, 0xc796414fUL, 0x088ad9c8UL, 0x49bbc2d1UL, 0x8ae8effaUL, 0xcbd9f4e3UL, 0x0c4fb5acUL, 0x4d7eaeb5UL, 0x8e2d839eUL, 0xcf1c9887UL, 0x5112c24aUL, 0x1023d953UL, 0xd370f478UL, 0x9241ef61UL, 0x55d7ae2eUL, 0x14e6b537UL, 0xd7b5981cUL, 0x96848305UL, 0x59981b82UL, 0x18a9009bUL, 0xdbfa2db0UL, 0x9acb36a9UL, 0x5d5d77e6UL, 0x1c6c6cffUL, 0xdf3f41d4UL, 0x9e0e5acdUL, 0xa2248495UL, 0xe3159f8cUL, 0x2046b2a7UL, 0x6177a9beUL, 0xa6e1e8f1UL, 0xe7d0f3e8UL, 0x2483dec3UL, 0x65b2c5daUL, 0xaaae5d5dUL, 0xeb9f4644UL, 0x28cc6b6fUL, 0x69fd7076UL, 0xae6b3139UL, 0xef5a2a20UL, 0x2c09070bUL, 0x6d381c12UL, 0xf33646dfUL, 0xb2075dc6UL, 0x715470edUL, 0x30656bf4UL, 0xf7f32abbUL, 0xb6c231a2UL, 0x75911c89UL, 0x34a00790UL, 0xfbbc9f17UL, 0xba8d840eUL, 0x79dea925UL, 0x38efb23cUL, 0xff79f373UL, 0xbe48e86aUL, 0x7d1bc541UL, 0x3c2ade58UL, 0x054f79f0UL, 0x447e62e9UL, 0x872d4fc2UL, 0xc61c54dbUL, 0x018a1594UL, 0x40bb0e8dUL, 0x83e823a6UL, 0xc2d938bfUL, 0x0dc5a038UL, 0x4cf4bb21UL, 0x8fa7960aUL, 0xce968d13UL, 0x0900cc5cUL, 0x4831d745UL, 0x8b62fa6eUL, 0xca53e177UL, 0x545dbbbaUL, 0x156ca0a3UL, 0xd63f8d88UL, 0x970e9691UL, 0x5098d7deUL, 0x11a9ccc7UL, 0xd2fae1ecUL, 0x93cbfaf5UL, 0x5cd76272UL, 0x1de6796bUL, 0xdeb55440UL, 0x9f844f59UL, 0x58120e16UL, 0x1923150fUL, 0xda703824UL, 0x9b41233dUL, 0xa76bfd65UL, 0xe65ae67cUL, 0x2509cb57UL, 0x6438d04eUL, 0xa3ae9101UL, 0xe29f8a18UL, 0x21cca733UL, 0x60fdbc2aUL, 0xafe124adUL, 0xeed03fb4UL, 0x2d83129fUL, 0x6cb20986UL, 0xab2448c9UL, 0xea1553d0UL, 0x29467efbUL, 0x687765e2UL, 0xf6793f2fUL, 0xb7482436UL, 0x741b091dUL, 0x352a1204UL, 0xf2bc534bUL, 0xb38d4852UL, 0x70de6579UL, 0x31ef7e60UL, 0xfef3e6e7UL, 0xbfc2fdfeUL, 0x7c91d0d5UL, 0x3da0cbccUL, 0xfa368a83UL, 0xbb07919aUL, 0x7854bcb1UL, 0x3965a7a8UL, 0x4b98833bUL, 0x0aa99822UL, 0xc9fab509UL, 0x88cbae10UL, 0x4f5def5fUL, 0x0e6cf446UL, 0xcd3fd96dUL, 0x8c0ec274UL, 0x43125af3UL, 0x022341eaUL, 0xc1706cc1UL, 0x804177d8UL, 0x47d73697UL, 0x06e62d8eUL, 0xc5b500a5UL, 0x84841bbcUL, 0x1a8a4171UL, 0x5bbb5a68UL, 0x98e87743UL, 0xd9d96c5aUL, 0x1e4f2d15UL, 0x5f7e360cUL, 0x9c2d1b27UL, 0xdd1c003eUL, 0x120098b9UL, 0x533183a0UL, 0x9062ae8bUL, 0xd153b592UL, 0x16c5f4ddUL, 0x57f4efc4UL, 0x94a7c2efUL, 0xd596d9f6UL, 0xe9bc07aeUL, 0xa88d1cb7UL, 0x6bde319cUL, 0x2aef2a85UL, 0xed796bcaUL, 0xac4870d3UL, 0x6f1b5df8UL, 0x2e2a46e1UL, 0xe136de66UL, 0xa007c57fUL, 0x6354e854UL, 0x2265f34dUL, 0xe5f3b202UL, 0xa4c2a91bUL, 0x67918430UL, 0x26a09f29UL, 0xb8aec5e4UL, 0xf99fdefdUL, 0x3accf3d6UL, 0x7bfde8cfUL, 0xbc6ba980UL, 0xfd5ab299UL, 0x3e099fb2UL, 0x7f3884abUL, 0xb0241c2cUL, 0xf1150735UL, 0x32462a1eUL, 0x73773107UL, 0xb4e17048UL, 0xf5d06b51UL, 0x3683467aUL, 0x77b25d63UL, 0x4ed7facbUL, 0x0fe6e1d2UL, 0xccb5ccf9UL, 0x8d84d7e0UL, 0x4a1296afUL, 0x0b238db6UL, 0xc870a09dUL, 0x8941bb84UL, 0x465d2303UL, 0x076c381aUL, 0xc43f1531UL, 0x850e0e28UL, 0x42984f67UL, 0x03a9547eUL, 0xc0fa7955UL, 0x81cb624cUL, 0x1fc53881UL, 0x5ef42398UL, 0x9da70eb3UL, 0xdc9615aaUL, 0x1b0054e5UL, 0x5a314ffcUL, 0x996262d7UL, 0xd85379ceUL, 0x174fe149UL, 0x567efa50UL, 0x952dd77bUL, 0xd41ccc62UL, 0x138a8d2dUL, 0x52bb9634UL, 0x91e8bb1fUL, 0xd0d9a006UL, 0xecf37e5eUL, 0xadc26547UL, 0x6e91486cUL, 0x2fa05375UL, 0xe836123aUL, 0xa9070923UL, 0x6a542408UL, 0x2b653f11UL, 0xe479a796UL, 0xa548bc8fUL, 0x661b91a4UL, 0x272a8abdUL, 0xe0bccbf2UL, 0xa18dd0ebUL, 0x62defdc0UL, 0x23efe6d9UL, 0xbde1bc14UL, 0xfcd0a70dUL, 0x3f838a26UL, 0x7eb2913fUL, 0xb924d070UL, 0xf815cb69UL, 0x3b46e642UL, 0x7a77fd5bUL, 0xb56b65dcUL, 0xf45a7ec5UL, 0x370953eeUL, 0x763848f7UL, 0xb1ae09b8UL, 0xf09f12a1UL, 0x33cc3f8aUL, 0x72fd2493UL }, { 0x00000000UL, 0x376ac201UL, 0x6ed48403UL, 0x59be4602UL, 0xdca80907UL, 0xebc2cb06UL, 0xb27c8d04UL, 0x85164f05UL, 0xb851130eUL, 0x8f3bd10fUL, 0xd685970dUL, 0xe1ef550cUL, 0x64f91a09UL, 0x5393d808UL, 0x0a2d9e0aUL, 0x3d475c0bUL, 0x70a3261cUL, 0x47c9e41dUL, 0x1e77a21fUL, 0x291d601eUL, 0xac0b2f1bUL, 0x9b61ed1aUL, 0xc2dfab18UL, 0xf5b56919UL, 0xc8f23512UL, 0xff98f713UL, 0xa626b111UL, 0x914c7310UL, 0x145a3c15UL, 0x2330fe14UL, 0x7a8eb816UL, 0x4de47a17UL, 0xe0464d38UL, 0xd72c8f39UL, 0x8e92c93bUL, 0xb9f80b3aUL, 0x3cee443fUL, 0x0b84863eUL, 0x523ac03cUL, 0x6550023dUL, 0x58175e36UL, 0x6f7d9c37UL, 0x36c3da35UL, 0x01a91834UL, 0x84bf5731UL, 0xb3d59530UL, 0xea6bd332UL, 0xdd011133UL, 0x90e56b24UL, 0xa78fa925UL, 0xfe31ef27UL, 0xc95b2d26UL, 0x4c4d6223UL, 0x7b27a022UL, 0x2299e620UL, 0x15f32421UL, 0x28b4782aUL, 0x1fdeba2bUL, 0x4660fc29UL, 0x710a3e28UL, 0xf41c712dUL, 0xc376b32cUL, 0x9ac8f52eUL, 0xada2372fUL, 0xc08d9a70UL, 0xf7e75871UL, 0xae591e73UL, 0x9933dc72UL, 0x1c259377UL, 0x2b4f5176UL, 0x72f11774UL, 0x459bd575UL, 0x78dc897eUL, 0x4fb64b7fUL, 0x16080d7dUL, 0x2162cf7cUL, 0xa4748079UL, 0x931e4278UL, 0xcaa0047aUL, 0xfdcac67bUL, 0xb02ebc6cUL, 0x87447e6dUL, 0xdefa386fUL, 0xe990fa6eUL, 0x6c86b56bUL, 0x5bec776aUL, 0x02523168UL, 0x3538f369UL, 0x087faf62UL, 0x3f156d63UL, 0x66ab2b61UL, 0x51c1e960UL, 0xd4d7a665UL, 0xe3bd6464UL, 0xba032266UL, 0x8d69e067UL, 0x20cbd748UL, 0x17a11549UL, 0x4e1f534bUL, 0x7975914aUL, 0xfc63de4fUL, 0xcb091c4eUL, 0x92b75a4cUL, 0xa5dd984dUL, 0x989ac446UL, 0xaff00647UL, 0xf64e4045UL, 0xc1248244UL, 0x4432cd41UL, 0x73580f40UL, 0x2ae64942UL, 0x1d8c8b43UL, 0x5068f154UL, 0x67023355UL, 0x3ebc7557UL, 0x09d6b756UL, 0x8cc0f853UL, 0xbbaa3a52UL, 0xe2147c50UL, 0xd57ebe51UL, 0xe839e25aUL, 0xdf53205bUL, 0x86ed6659UL, 0xb187a458UL, 0x3491eb5dUL, 0x03fb295cUL, 0x5a456f5eUL, 0x6d2fad5fUL, 0x801b35e1UL, 0xb771f7e0UL, 0xeecfb1e2UL, 0xd9a573e3UL, 0x5cb33ce6UL, 0x6bd9fee7UL, 0x3267b8e5UL, 0x050d7ae4UL, 0x384a26efUL, 0x0f20e4eeUL, 0x569ea2ecUL, 0x61f460edUL, 0xe4e22fe8UL, 0xd388ede9UL, 0x8a36abebUL, 0xbd5c69eaUL, 0xf0b813fdUL, 0xc7d2d1fcUL, 0x9e6c97feUL, 0xa90655ffUL, 0x2c101afaUL, 0x1b7ad8fbUL, 0x42c49ef9UL, 0x75ae5cf8UL, 0x48e900f3UL, 0x7f83c2f2UL, 0x263d84f0UL, 0x115746f1UL, 0x944109f4UL, 0xa32bcbf5UL, 0xfa958df7UL, 0xcdff4ff6UL, 0x605d78d9UL, 0x5737bad8UL, 0x0e89fcdaUL, 0x39e33edbUL, 0xbcf571deUL, 0x8b9fb3dfUL, 0xd221f5ddUL, 0xe54b37dcUL, 0xd80c6bd7UL, 0xef66a9d6UL, 0xb6d8efd4UL, 0x81b22dd5UL, 0x04a462d0UL, 0x33cea0d1UL, 0x6a70e6d3UL, 0x5d1a24d2UL, 0x10fe5ec5UL, 0x27949cc4UL, 0x7e2adac6UL, 0x494018c7UL, 0xcc5657c2UL, 0xfb3c95c3UL, 0xa282d3c1UL, 0x95e811c0UL, 0xa8af4dcbUL, 0x9fc58fcaUL, 0xc67bc9c8UL, 0xf1110bc9UL, 0x740744ccUL, 0x436d86cdUL, 0x1ad3c0cfUL, 0x2db902ceUL, 0x4096af91UL, 0x77fc6d90UL, 0x2e422b92UL, 0x1928e993UL, 0x9c3ea696UL, 0xab546497UL, 0xf2ea2295UL, 0xc580e094UL, 0xf8c7bc9fUL, 0xcfad7e9eUL, 0x9613389cUL, 0xa179fa9dUL, 0x246fb598UL, 0x13057799UL, 0x4abb319bUL, 0x7dd1f39aUL, 0x3035898dUL, 0x075f4b8cUL, 0x5ee10d8eUL, 0x698bcf8fUL, 0xec9d808aUL, 0xdbf7428bUL, 0x82490489UL, 0xb523c688UL, 0x88649a83UL, 0xbf0e5882UL, 0xe6b01e80UL, 0xd1dadc81UL, 0x54cc9384UL, 0x63a65185UL, 0x3a181787UL, 0x0d72d586UL, 0xa0d0e2a9UL, 0x97ba20a8UL, 0xce0466aaUL, 0xf96ea4abUL, 0x7c78ebaeUL, 0x4b1229afUL, 0x12ac6fadUL, 0x25c6adacUL, 0x1881f1a7UL, 0x2feb33a6UL, 0x765575a4UL, 0x413fb7a5UL, 0xc429f8a0UL, 0xf3433aa1UL, 0xaafd7ca3UL, 0x9d97bea2UL, 0xd073c4b5UL, 0xe71906b4UL, 0xbea740b6UL, 0x89cd82b7UL, 0x0cdbcdb2UL, 0x3bb10fb3UL, 0x620f49b1UL, 0x55658bb0UL, 0x6822d7bbUL, 0x5f4815baUL, 0x06f653b8UL, 0x319c91b9UL, 0xb48adebcUL, 0x83e01cbdUL, 0xda5e5abfUL, 0xed3498beUL }, { 0x00000000UL, 0x6567bcb8UL, 0x8bc809aaUL, 0xeeafb512UL, 0x5797628fUL, 0x32f0de37UL, 0xdc5f6b25UL, 0xb938d79dUL, 0xef28b4c5UL, 0x8a4f087dUL, 0x64e0bd6fUL, 0x018701d7UL, 0xb8bfd64aUL, 0xddd86af2UL, 0x3377dfe0UL, 0x56106358UL, 0x9f571950UL, 0xfa30a5e8UL, 0x149f10faUL, 0x71f8ac42UL, 0xc8c07bdfUL, 0xada7c767UL, 0x43087275UL, 0x266fcecdUL, 0x707fad95UL, 0x1518112dUL, 0xfbb7a43fUL, 0x9ed01887UL, 0x27e8cf1aUL, 0x428f73a2UL, 0xac20c6b0UL, 0xc9477a08UL, 0x3eaf32a0UL, 0x5bc88e18UL, 0xb5673b0aUL, 0xd00087b2UL, 0x6938502fUL, 0x0c5fec97UL, 0xe2f05985UL, 0x8797e53dUL, 0xd1878665UL, 0xb4e03addUL, 0x5a4f8fcfUL, 0x3f283377UL, 0x8610e4eaUL, 0xe3775852UL, 0x0dd8ed40UL, 0x68bf51f8UL, 0xa1f82bf0UL, 0xc49f9748UL, 0x2a30225aUL, 0x4f579ee2UL, 0xf66f497fUL, 0x9308f5c7UL, 0x7da740d5UL, 0x18c0fc6dUL, 0x4ed09f35UL, 0x2bb7238dUL, 0xc518969fUL, 0xa07f2a27UL, 0x1947fdbaUL, 0x7c204102UL, 0x928ff410UL, 0xf7e848a8UL, 0x3d58149bUL, 0x583fa823UL, 0xb6901d31UL, 0xd3f7a189UL, 0x6acf7614UL, 0x0fa8caacUL, 0xe1077fbeUL, 0x8460c306UL, 0xd270a05eUL, 0xb7171ce6UL, 0x59b8a9f4UL, 0x3cdf154cUL, 0x85e7c2d1UL, 0xe0807e69UL, 0x0e2fcb7bUL, 0x6b4877c3UL, 0xa20f0dcbUL, 0xc768b173UL, 0x29c70461UL, 0x4ca0b8d9UL, 0xf5986f44UL, 0x90ffd3fcUL, 0x7e5066eeUL, 0x1b37da56UL, 0x4d27b90eUL, 0x284005b6UL, 0xc6efb0a4UL, 0xa3880c1cUL, 0x1ab0db81UL, 0x7fd76739UL, 0x9178d22bUL, 0xf41f6e93UL, 0x03f7263bUL, 0x66909a83UL, 0x883f2f91UL, 0xed589329UL, 0x546044b4UL, 0x3107f80cUL, 0xdfa84d1eUL, 0xbacff1a6UL, 0xecdf92feUL, 0x89b82e46UL, 0x67179b54UL, 0x027027ecUL, 0xbb48f071UL, 0xde2f4cc9UL, 0x3080f9dbUL, 0x55e74563UL, 0x9ca03f6bUL, 0xf9c783d3UL, 0x176836c1UL, 0x720f8a79UL, 0xcb375de4UL, 0xae50e15cUL, 0x40ff544eUL, 0x2598e8f6UL, 0x73888baeUL, 0x16ef3716UL, 0xf8408204UL, 0x9d273ebcUL, 0x241fe921UL, 0x41785599UL, 0xafd7e08bUL, 0xcab05c33UL, 0x3bb659edUL, 0x5ed1e555UL, 0xb07e5047UL, 0xd519ecffUL, 0x6c213b62UL, 0x094687daUL, 0xe7e932c8UL, 0x828e8e70UL, 0xd49eed28UL, 0xb1f95190UL, 0x5f56e482UL, 0x3a31583aUL, 0x83098fa7UL, 0xe66e331fUL, 0x08c1860dUL, 0x6da63ab5UL, 0xa4e140bdUL, 0xc186fc05UL, 0x2f294917UL, 0x4a4ef5afUL, 0xf3762232UL, 0x96119e8aUL, 0x78be2b98UL, 0x1dd99720UL, 0x4bc9f478UL, 0x2eae48c0UL, 0xc001fdd2UL, 0xa566416aUL, 0x1c5e96f7UL, 0x79392a4fUL, 0x97969f5dUL, 0xf2f123e5UL, 0x05196b4dUL, 0x607ed7f5UL, 0x8ed162e7UL, 0xebb6de5fUL, 0x528e09c2UL, 0x37e9b57aUL, 0xd9460068UL, 0xbc21bcd0UL, 0xea31df88UL, 0x8f566330UL, 0x61f9d622UL, 0x049e6a9aUL, 0xbda6bd07UL, 0xd8c101bfUL, 0x366eb4adUL, 0x53090815UL, 0x9a4e721dUL, 0xff29cea5UL, 0x11867bb7UL, 0x74e1c70fUL, 0xcdd91092UL, 0xa8beac2aUL, 0x46111938UL, 0x2376a580UL, 0x7566c6d8UL, 0x10017a60UL, 0xfeaecf72UL, 0x9bc973caUL, 0x22f1a457UL, 0x479618efUL, 0xa939adfdUL, 0xcc5e1145UL, 0x06ee4d76UL, 0x6389f1ceUL, 0x8d2644dcUL, 0xe841f864UL, 0x51792ff9UL, 0x341e9341UL, 0xdab12653UL, 0xbfd69aebUL, 0xe9c6f9b3UL, 0x8ca1450bUL, 0x620ef019UL, 0x07694ca1UL, 0xbe519b3cUL, 0xdb362784UL, 0x35999296UL, 0x50fe2e2eUL, 0x99b95426UL, 0xfcdee89eUL, 0x12715d8cUL, 0x7716e134UL, 0xce2e36a9UL, 0xab498a11UL, 0x45e63f03UL, 0x208183bbUL, 0x7691e0e3UL, 0x13f65c5bUL, 0xfd59e949UL, 0x983e55f1UL, 0x2106826cUL, 0x44613ed4UL, 0xaace8bc6UL, 0xcfa9377eUL, 0x38417fd6UL, 0x5d26c36eUL, 0xb389767cUL, 0xd6eecac4UL, 0x6fd61d59UL, 0x0ab1a1e1UL, 0xe41e14f3UL, 0x8179a84bUL, 0xd769cb13UL, 0xb20e77abUL, 0x5ca1c2b9UL, 0x39c67e01UL, 0x80fea99cUL, 0xe5991524UL, 0x0b36a036UL, 0x6e511c8eUL, 0xa7166686UL, 0xc271da3eUL, 0x2cde6f2cUL, 0x49b9d394UL, 0xf0810409UL, 0x95e6b8b1UL, 0x7b490da3UL, 0x1e2eb11bUL, 0x483ed243UL, 0x2d596efbUL, 0xc3f6dbe9UL, 0xa6916751UL, 0x1fa9b0ccUL, 0x7ace0c74UL, 0x9461b966UL, 0xf10605deUL #endif } }; /* END OF DUMP OF mz_crc32.h*/ #endif /* DYNAMIC_CRC_TABLE */ /* ========================================================================= * This function can be used by asm versions of crc32() */ const z_crc_t FAR * ZEXPORT get_crc_table() { #ifdef DYNAMIC_CRC_TABLE if (crc_table_empty) make_crc_table(); #endif /* DYNAMIC_CRC_TABLE */ return (const z_crc_t FAR *)crc_table; } /* ========================================================================= */ #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8) #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1 /* ========================================================================= */ unsigned long ZEXPORT crc32(crc, buf, len) unsigned long crc; const unsigned char FAR *buf; uInt len; { if (buf == Z_NULL) return 0UL; #ifdef DYNAMIC_CRC_TABLE if (crc_table_empty) make_crc_table(); #endif /* DYNAMIC_CRC_TABLE */ #ifdef BYFOUR if (sizeof(void *) == sizeof(ptrdiff_t)) { z_crc_t endian; endian = 1; if (*((unsigned char *)(&endian))) return crc32_little(crc, buf, len); else return crc32_big(crc, buf, len); } #endif /* BYFOUR */ crc = crc ^ 0xffffffffUL; while (len >= 8) { DO8; len -= 8; } if (len) do { DO1; } while (--len); return crc ^ 0xffffffffUL; } #ifdef BYFOUR /* ========================================================================= */ #define DOLIT4 c ^= *buf4++; \ c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \ crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24] #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4 /* ========================================================================= */ local unsigned long crc32_little(crc, buf, len) unsigned long crc; const unsigned char FAR *buf; unsigned len; { register z_crc_t c; register const z_crc_t FAR *buf4; c = (z_crc_t)crc; c = ~c; while (len && ((ptrdiff_t)buf & 3)) { c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); len--; } buf4 = (const z_crc_t FAR *)(const void FAR *)buf; while (len >= 32) { DOLIT32; len -= 32; } while (len >= 4) { DOLIT4; len -= 4; } buf = (const unsigned char FAR *)buf4; if (len) do { c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); } while (--len); c = ~c; return (unsigned long)c; } /* ========================================================================= */ #define DOBIG4 c ^= *++buf4; \ c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \ crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24] #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4 /* ========================================================================= */ local unsigned long crc32_big(crc, buf, len) unsigned long crc; const unsigned char FAR *buf; unsigned len; { register z_crc_t c; register const z_crc_t FAR *buf4; c = ZSWAP32((z_crc_t)crc); c = ~c; while (len && ((ptrdiff_t)buf & 3)) { c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); len--; } buf4 = (const z_crc_t FAR *)(const void FAR *)buf; buf4--; while (len >= 32) { DOBIG32; len -= 32; } while (len >= 4) { DOBIG4; len -= 4; } buf4++; buf = (const unsigned char FAR *)buf4; if (len) do { c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); } while (--len); c = ~c; return (unsigned long)(ZSWAP32(c)); } #endif /* BYFOUR */ #define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */ /* ========================================================================= */ local unsigned long gf2_matrix_times(mat, vec) unsigned long *mat; unsigned long vec; { unsigned long sum; sum = 0; while (vec) { if (vec & 1) sum ^= *mat; vec >>= 1; mat++; } return sum; } /* ========================================================================= */ local void gf2_matrix_square(square, mat) unsigned long *square; unsigned long *mat; { int n; for (n = 0; n < GF2_DIM; n++) square[n] = gf2_matrix_times(mat, mat[n]); } /* ========================================================================= */ local uLong crc32_combine_(crc1, crc2, len2) uLong crc1; uLong crc2; z_off64_t len2; { int n; unsigned long row; unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */ unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */ /* degenerate case (also disallow negative lengths) */ if (len2 <= 0) return crc1; /* put operator for one zero bit in odd */ odd[0] = 0xedb88320UL; /* CRC-32 polynomial */ row = 1; for (n = 1; n < GF2_DIM; n++) { odd[n] = row; row <<= 1; } /* put operator for two zero bits in even */ gf2_matrix_square(even, odd); /* put operator for four zero bits in odd */ gf2_matrix_square(odd, even); /* apply len2 zeros to crc1 (first square will put the operator for one zero byte, eight zero bits, in even) */ do { /* apply zeros operator for this bit of len2 */ gf2_matrix_square(even, odd); if (len2 & 1) crc1 = gf2_matrix_times(even, crc1); len2 >>= 1; /* if no more bits set, then done */ if (len2 == 0) break; /* another iteration of the loop with odd and even swapped */ gf2_matrix_square(odd, even); if (len2 & 1) crc1 = gf2_matrix_times(odd, crc1); len2 >>= 1; /* if no more bits set, then done */ } while (len2 != 0); /* return combined crc */ crc1 ^= crc2; return crc1; } /* ========================================================================= */ uLong ZEXPORT crc32_combine(crc1, crc2, len2) uLong crc1; uLong crc2; z_off_t len2; { return crc32_combine_(crc1, crc2, len2); } uLong ZEXPORT crc32_combine64(crc1, crc2, len2) uLong crc1; uLong crc2; z_off64_t len2; { return crc32_combine_(crc1, crc2, len2); } /* END OF DUMP OF mz_crc32.c*/ /* START OF DUMP OF mz_compress.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* compress.c -- compress a memory buffer * Copyright (C) 1995-2005 Jean-loup Gailly. * For conditions of distribution and use, see copyright notice in zlib.h */ /* @(#) $Id$ */ #define ZLIB_INTERNAL /* =========================================================================== Compresses the source buffer into the destination buffer. The level parameter has the same meaning as in deflateInit. sourceLen is the byte length of the source buffer. Upon entry, destLen is the total size of the destination buffer, which must be at least 0.1% larger than sourceLen plus 12 bytes. Upon exit, destLen is the actual size of the compressed buffer. compress2 returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if there was not enough room in the output buffer, Z_STREAM_ERROR if the level parameter is invalid. */ int ZEXPORT compress2 (dest, destLen, source, sourceLen, level) Bytef *dest; uLongf *destLen; const Bytef *source; uLong sourceLen; int level; { z_stream stream; int err; stream.next_in = (z_const Bytef *)source; stream.avail_in = (uInt)sourceLen; #ifdef MAXSEG_64K /* Check for source > 64K on 16-bit machine: */ if ((uLong)stream.avail_in != sourceLen) return Z_BUF_ERROR; #endif stream.next_out = dest; stream.avail_out = (uInt)*destLen; if ((uLong)stream.avail_out != *destLen) return Z_BUF_ERROR; stream.zalloc = (alloc_func)0; stream.zfree = (free_func)0; stream.opaque = (voidpf)0; err = deflateInit(&stream, level); if (err != Z_OK) return err; err = deflate(&stream, Z_FINISH); if (err != Z_STREAM_END) { deflateEnd(&stream); return err == Z_OK ? Z_BUF_ERROR : err; } *destLen = stream.total_out; err = deflateEnd(&stream); return err; } /* =========================================================================== */ int ZEXPORT compress (dest, destLen, source, sourceLen) Bytef *dest; uLongf *destLen; const Bytef *source; uLong sourceLen; { return compress2(dest, destLen, source, sourceLen, Z_DEFAULT_COMPRESSION); } /* =========================================================================== If the default memLevel or windowBits for deflateInit() is changed, then this function needs to be updated. */ uLong ZEXPORT compressBound (sourceLen) uLong sourceLen; { return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) + (sourceLen >> 25) + 13; } /* END OF DUMP OF mz_compress.c*/ /* START OF DUMP OF mz_adler32.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* adler32.c -- compute the Adler-32 checksum of a data stream * Copyright (C) 1995-2011 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* @(#) $Id$ */ #define local static local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2)); #define BASE 65521 /* largest prime smaller than 65536 */ #define NMAX 5552 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */ #define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;} #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1); #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2); #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4); #define DO16(buf) DO8(buf,0); DO8(buf,8); /* use NO_DIVIDE if your processor does not do division in hardware -- try it both ways to see which is faster */ #ifdef NO_DIVIDE /* note that this assumes BASE is 65521, where 65536 % 65521 == 15 (thank you to John Reiser for pointing this out) */ # define CHOP(a) \ do { \ unsigned long tmp = a >> 16; \ a &= 0xffffUL; \ a += (tmp << 4) - tmp; \ } while (0) # define MOD28(a) \ do { \ CHOP(a); \ if (a >= BASE) a -= BASE; \ } while (0) # define MOD(a) \ do { \ CHOP(a); \ MOD28(a); \ } while (0) # define MOD63(a) \ do { /* this assumes a is not negative */ \ z_off64_t tmp = a >> 32; \ a &= 0xffffffffL; \ a += (tmp << 8) - (tmp << 5) + tmp; \ tmp = a >> 16; \ a &= 0xffffL; \ a += (tmp << 4) - tmp; \ tmp = a >> 16; \ a &= 0xffffL; \ a += (tmp << 4) - tmp; \ if (a >= BASE) a -= BASE; \ } while (0) #else # define MOD(a) a %= BASE # define MOD28(a) a %= BASE # define MOD63(a) a %= BASE #endif /* ========================================================================= */ uLong ZEXPORT adler32(adler, buf, len) uLong adler; const Bytef *buf; uInt len; { unsigned long sum2; unsigned n; /* split Adler-32 into component sums */ sum2 = (adler >> 16) & 0xffff; adler &= 0xffff; /* in case user likes doing a byte at a time, keep it fast */ if (len == 1) { adler += buf[0]; if (adler >= BASE) adler -= BASE; sum2 += adler; if (sum2 >= BASE) sum2 -= BASE; return adler | (sum2 << 16); } /* initial Adler-32 value (deferred check for len == 1 speed) */ if (buf == Z_NULL) return 1L; /* in case short lengths are provided, keep it somewhat fast */ if (len < 16) { while (len--) { adler += *buf++; sum2 += adler; } if (adler >= BASE) adler -= BASE; MOD28(sum2); /* only added so many BASE's */ return adler | (sum2 << 16); } /* do length NMAX blocks -- requires just one modulo operation */ while (len >= NMAX) { len -= NMAX; n = NMAX / 16; /* NMAX is divisible by 16 */ do { DO16(buf); /* 16 sums unrolled */ buf += 16; } while (--n); MOD(adler); MOD(sum2); } /* do remaining bytes (less than NMAX, still just one modulo) */ if (len) { /* avoid modulos if none remaining */ while (len >= 16) { len -= 16; DO16(buf); buf += 16; } while (len--) { adler += *buf++; sum2 += adler; } MOD(adler); MOD(sum2); } /* return recombined sums */ return adler | (sum2 << 16); } /* ========================================================================= */ local uLong adler32_combine_(adler1, adler2, len2) uLong adler1; uLong adler2; z_off64_t len2; { unsigned long sum1; unsigned long sum2; unsigned rem; /* for negative len, return invalid adler32 as a clue for debugging */ if (len2 < 0) return 0xffffffffUL; /* the derivation of this formula is left as an exercise for the reader */ MOD63(len2); /* assumes len2 >= 0 */ rem = (unsigned)len2; sum1 = adler1 & 0xffff; sum2 = rem * sum1; MOD(sum2); sum1 += (adler2 & 0xffff) + BASE - 1; sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem; if (sum1 >= BASE) sum1 -= BASE; if (sum1 >= BASE) sum1 -= BASE; if (sum2 >= (BASE << 1)) sum2 -= (BASE << 1); if (sum2 >= BASE) sum2 -= BASE; return sum1 | (sum2 << 16); } /* ========================================================================= */ uLong ZEXPORT adler32_combine(adler1, adler2, len2) uLong adler1; uLong adler2; z_off_t len2; { return adler32_combine_(adler1, adler2, len2); } uLong ZEXPORT adler32_combine64(adler1, adler2, len2) uLong adler1; uLong adler2; z_off64_t len2; { return adler32_combine_(adler1, adler2, len2); } /* END OF DUMP OF mz_adler32.c*/ /* START OF DUMP OF mz_zutil.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* zutil.c -- target dependent utility functions for the compression library * Copyright (C) 1995-2005, 2010, 2011, 2012 Jean-loup Gailly. * For conditions of distribution and use, see copyright notice in zlib.h */ /* @(#) $Id$ */ #ifndef Z_SOLO #endif #ifndef NO_DUMMY_DECL struct internal_state {int dummy;}; /* for buggy compilers */ #endif z_const char * const z_errmsg[10] = { "need dictionary", /* Z_NEED_DICT 2 */ "stream end", /* Z_STREAM_END 1 */ "", /* Z_OK 0 */ "file error", /* Z_ERRNO (-1) */ "stream error", /* Z_STREAM_ERROR (-2) */ "data error", /* Z_DATA_ERROR (-3) */ "insufficient memory", /* Z_MEM_ERROR (-4) */ "buffer error", /* Z_BUF_ERROR (-5) */ "incompatible version",/* Z_VERSION_ERROR (-6) */ ""}; const char * ZEXPORT zlibVersion() { return ZLIB_VERSION; } uLong ZEXPORT zlibCompileFlags() { uLong flags; flags = 0; switch ((int)(sizeof(uInt))) { case 2: break; case 4: flags += 1; break; case 8: flags += 2; break; default: flags += 3; } switch ((int)(sizeof(uLong))) { case 2: break; case 4: flags += 1 << 2; break; case 8: flags += 2 << 2; break; default: flags += 3 << 2; } switch ((int)(sizeof(voidpf))) { case 2: break; case 4: flags += 1 << 4; break; case 8: flags += 2 << 4; break; default: flags += 3 << 4; } switch ((int)(sizeof(z_off_t))) { case 2: break; case 4: flags += 1 << 6; break; case 8: flags += 2 << 6; break; default: flags += 3 << 6; } #ifdef DEBUG flags += 1 << 8; #endif #if defined(ASMV) || defined(ASMINF) flags += 1 << 9; #endif #ifdef ZLIB_WINAPI flags += 1 << 10; #endif #ifdef BUILDFIXED flags += 1 << 12; #endif #ifdef DYNAMIC_CRC_TABLE flags += 1 << 13; #endif #ifdef NO_GZCOMPRESS flags += 1L << 16; #endif #ifdef NO_GZIP flags += 1L << 17; #endif #ifdef PKZIP_BUG_WORKAROUND flags += 1L << 20; #endif #ifdef FASTEST flags += 1L << 21; #endif #if defined(STDC) || defined(Z_HAVE_STDARG_H) # ifdef NO_vsnprintf flags += 1L << 25; # ifdef HAS_vsprintf_void flags += 1L << 26; # endif # else # ifdef HAS_vsnprintf_void flags += 1L << 26; # endif # endif #else flags += 1L << 24; # ifdef NO_snprintf flags += 1L << 25; # ifdef HAS_sprintf_void flags += 1L << 26; # endif # else # ifdef HAS_snprintf_void flags += 1L << 26; # endif # endif #endif return flags; } #ifdef DEBUG # ifndef verbose # define verbose 0 # endif int ZLIB_INTERNAL z_verbose = verbose; void ZLIB_INTERNAL z_error (m) char *m; { fprintf(stderr, "%s\n", m); exit(1); } #endif /* exported to allow conversion of error code to string for compress() and * uncompress() */ const char * ZEXPORT zError(err) int err; { return ERR_MSG(err); } #if defined(_WIN32_WCE) /* The Microsoft C Run-Time Library for Windows CE doesn't have * errno. We define it as a global variable to simplify porting. * Its value is always 0 and should not be used. */ int errno = 0; #endif #ifndef HAVE_MEMCPY void ZLIB_INTERNAL zmemcpy(dest, source, len) Bytef* dest; const Bytef* source; uInt len; { if (len == 0) return; do { *dest++ = *source++; /* ??? to be unrolled */ } while (--len != 0); } int ZLIB_INTERNAL zmemcmp(s1, s2, len) const Bytef* s1; const Bytef* s2; uInt len; { uInt j; for (j = 0; j < len; j++) { if (s1[j] != s2[j]) return 2*(s1[j] > s2[j])-1; } return 0; } void ZLIB_INTERNAL zmemzero(dest, len) Bytef* dest; uInt len; { if (len == 0) return; do { *dest++ = 0; /* ??? to be unrolled */ } while (--len != 0); } #endif #ifndef Z_SOLO #ifdef SYS16BIT #ifdef __TURBOC__ /* Turbo C in 16-bit mode */ # define MY_ZCALLOC /* Turbo C malloc() does not allow dynamic allocation of 64K bytes * and farmalloc(64K) returns a pointer with an offset of 8, so we * must fix the pointer. Warning: the pointer must be put back to its * original form in order to free it, use zcfree(). */ #define MAX_PTR 10 /* 10*64K = 640K */ local int next_ptr = 0; typedef struct ptr_table_s { voidpf org_ptr; voidpf new_ptr; } ptr_table; local ptr_table table[MAX_PTR]; /* This table is used to remember the original form of pointers * to large buffers (64K). Such pointers are normalized with a zero offset. * Since MSDOS is not a preemptive multitasking OS, this table is not * protected from concurrent access. This hack doesn't work anyway on * a protected system like OS/2. Use Microsoft C instead. */ voidpf ZLIB_INTERNAL zcalloc (voidpf opaque, unsigned items, unsigned size) { voidpf buf = opaque; /* just to make some compilers happy */ ulg bsize = (ulg)items*size; /* If we allocate less than 65520 bytes, we assume that farmalloc * will return a usable pointer which doesn't have to be normalized. */ if (bsize < 65520L) { buf = farmalloc(bsize); if (*(ush*)&buf != 0) return buf; } else { buf = farmalloc(bsize + 16L); } if (buf == NULL || next_ptr >= MAX_PTR) return NULL; table[next_ptr].org_ptr = buf; /* Normalize the pointer to seg:0 */ *((ush*)&buf+1) += ((ush)((uch*)buf-0) + 15) >> 4; *(ush*)&buf = 0; table[next_ptr++].new_ptr = buf; return buf; } void ZLIB_INTERNAL zcfree (voidpf opaque, voidpf ptr) { int n; if (*(ush*)&ptr != 0) { /* object < 64K */ farfree(ptr); return; } /* Find the original pointer */ for (n = 0; n < next_ptr; n++) { if (ptr != table[n].new_ptr) continue; farfree(table[n].org_ptr); while (++n < next_ptr) { table[n-1] = table[n]; } next_ptr--; return; } ptr = opaque; /* just to make some compilers happy */ Assert(0, "zcfree: ptr not found"); } #endif /* __TURBOC__ */ #ifdef M_I86 /* Microsoft C in 16-bit mode */ # define MY_ZCALLOC #if (!defined(_MSC_VER) || (_MSC_VER <= 600)) # define _halloc halloc # define _hfree hfree #endif voidpf ZLIB_INTERNAL zcalloc (voidpf opaque, uInt items, uInt size) { if (opaque) opaque = 0; /* to make compiler happy */ return _halloc((long)items, size); } void ZLIB_INTERNAL zcfree (voidpf opaque, voidpf ptr) { if (opaque) opaque = 0; /* to make compiler happy */ _hfree(ptr); } #endif /* M_I86 */ #endif /* SYS16BIT */ #ifndef MY_ZCALLOC /* Any system without a special alloc function */ #ifndef STDC extern voidp malloc OF((uInt size)); extern voidp calloc OF((uInt items, uInt size)); extern void free OF((voidpf ptr)); #endif voidpf ZLIB_INTERNAL zcalloc (opaque, items, size) voidpf opaque; unsigned items; unsigned size; { if (opaque) items += size - size; /* make compiler happy */ return sizeof(uInt) > 2 ? (voidpf)malloc(items * size) : (voidpf)calloc(items, size); } void ZLIB_INTERNAL zcfree (opaque, ptr) voidpf opaque; voidpf ptr; { free(ptr); if (opaque) return; /* make compiler happy */ } #endif /* MY_ZCALLOC */ #endif /* !Z_SOLO */ /* END OF DUMP OF mz_zutil.c*/ ///////////////////////////////////////////////////////////////////////////////////// // // // phitsread : Code for reading binary dump files from PHITS // // // // // // Compilation of phitsread.c can proceed via any compliant C-compiler using // // -std=c99 or later, and the resulting code must always be linked with libm // // (using -lm). Furthermore, the following preprocessor flags can be used // // when compiling phitsread.c to fine tune the build process and the // // capabilities of the resulting binary. // // // // PHITSREAD_HASZLIB : Define if compiling and linking with zlib, to allow // // direct reading of gzipped PHITS files. // // PHITSREAD_ZLIB_INCPATH : Specify alternative value if the zlib header is not // // to be included as "zlib.h". // // PHITSREAD_HDR_INCPATH : Specify alternative value if the phitsread header // // itself is not to be included as "phitsread.h". // // // // This file can be freely used as per the terms in the LICENSE file. // // // // However, note that usage of PHITS-related utilities might require additional // // permissions and licenses from third-parties, which is not within the scope of // // the MCPL project itself. // // // // Written 2019, thomas.kittelmann@esss.se (European Spallation Source). // // // ///////////////////////////////////////////////////////////////////////////////////// #ifdef PHITSREAD_HDR_INCPATH # include PHITSREAD_HDR_INCPATH #else #ifndef phitsread_h #define phitsread_h ///////////////////////////////////////////////////////////////////////////////////// // // // Code for reading binary PHITS dump files. This has been tested with PHITS // // version 3.1 so far. // // // // The code was written with help from Douglas Di Julio (European Spallation // // Source), and the PHITS dump file format was mostly inferred by looking in the // // PHITS manual (it is in any case extremely simple). // // // // Refer to the top of phitsread.c for details regarding how to build. // // // // This file can be freely used as per the terms in the LICENSE file. // // // // However, note that usage of PHITS-related utilities might require additional // // permissions and licenses from third-parties, which is not within the scope of // // the MCPL project itself. // // // // Written 2019, thomas.kittelmann@esss.se (European Spallation Source). // // // ///////////////////////////////////////////////////////////////////////////////////// #include #ifdef __cplusplus extern "C" { #endif typedef struct { void * internal; } phits_file_t; typedef struct { double x;//cm double y;//cm double z;//cm double dirx; double diry; double dirz; double polx; double poly; double polz; double weight; double ekin;//MeV double time;//nanoseconds long rawtype;//raw particle type encoding (PHITS "kt") long pdgcode;//rawtype converted to PDG codes. } phits_particle_t; //Open file (can read gzipped phits .gz files directly if zlib usage is enabled): phits_file_t phits_open_file(const char * filename); //Whether input file was gzipped: int phits_is_gzipped(phits_file_t); //Whether input file contains polarisation fields (note that the special case //of a file with 0 particles will always register as not having polarisation //fields): int phits_has_polarisation(phits_file_t); //load next particle (null indicates EOF): const phits_particle_t * phits_load_particle(phits_file_t); //close file and release resources: void phits_close_file(phits_file_t); //////////////////////////////////////////////////////////////////////////// // // // Utility functions for converting between particle codes used in PHITS // // (cf user manual for PHITS 3.1, page 29), and the codes from the // // Particle Data Group (which actually overlaps for the non-ions // // supported in PHITS): // // // // http://pdg.lbl.gov/2014/reviews/rpp2014-rev-monte-carlo-numbering.pdf // // // // Note that all the functions here return 0 when the code could not be // // converted. This might not be an error as such, but could indicate an // // exotic particle which has no code assigned in PHITS. // // // //////////////////////////////////////////////////////////////////////////// int32_t conv_code_phits2pdg(int32_t); int32_t conv_code_pdg2phits(int32_t); #ifdef __cplusplus } #endif #endif #endif #ifdef PHITSREAD_HASZLIB # ifdef PHITSREAD_ZLIB_INCPATH # include PHITSREAD_ZLIB_INCPATH # else # endif #endif #include #include #include #include #include static int phits_known_nonion_codes[] = { 11, 12, 13, 14, 22, 111, 211, 221, 311, 321, 331, 2112, 2212, 3112, 3122, 3212, 3222, 3312, 3322, 3334 }; int phits_cmp_codes( void const *va, void const *vb ) { //Standard integer comparison function for bsearch const int * a = (const int *)va; const int * b = (const int *)vb; return *a < *b ? -1 : ( *a > *b ? 1 : 0 ); } int32_t conv_code_phits2pdg( int32_t c ) { int32_t absc = c < 0 ? -c : c; if (!c) return 0; if (absc<1000000) { //Presumably PHITS use pdg codes directly for non-nuclei/ions return c; } //PHITS encode nucleis as Z*1000000+A long A = absc % 1000000; long Z = absc / 1000000; if (!Z||Z>130||A500)//Just picking max Z=130, A=500 as a quick sanity check - could tighten this! return 0;//impossible //PDG format for ions is 10LZZZAAAI, where L!=0 indicates strangeness //and I!=0 indicates exited nuclei. We only allow L=I=0 ions here. long abspdgcode = 10 * (A + 1000*(Z+100000)); return (int32_t) ( c < 0 ? -abspdgcode : abspdgcode ); } int32_t conv_code_pdg2phits( int32_t c ) { int32_t absc = c < 0 ? -c : c; if ( absc <= 1000000000 ) { //Presumably PHITS use pdg codes directly for non-nuclei/ions, but only with //room for 6 digits. And in fact, only those in the phits_known_nonion_codes //are supported - and for 22, 111, 331 only if not negative (these particles //are their own antiparticles): int key = absc; void * res = bsearch(&key, phits_known_nonion_codes, sizeof(phits_known_nonion_codes) / sizeof(phits_known_nonion_codes[0]), sizeof(phits_known_nonion_codes[0]), phits_cmp_codes); if ( !res || ( c < 0 && (c==-22||c==-111||c==-331) ) ) return 0; return c; } if (absc<=1009999990) { //Ions. PDG format for ions is 10LZZZAAAI, where L!=0 indicates strangeness //and I!=0 indicates exited nuclei. We only allow L=I=0 ions here. if (c<0) return 0;//Negative ions seems to not actually be supported in PHITS. int32_t I = absc % 10;//isomer level absc/=10; int32_t A = absc%1000; absc/=1000; int32_t Z = absc % 1000; assert(absc/1000==100);//L=0 guaranteed by enclosing condition. if ( I || !A || !Z || Z>A ) return 0; //PHITS encode nucleis as Z*1000000+A: int32_t absphitscode = Z*1000000+A; return c < 0 ? -absphitscode : absphitscode; } return 0; } void phits_error(const char * msg) { printf("ERROR: %s\n",msg); exit(1); } //Should be more than large enough to hold all records in all supported PHITS //dump files, including two 64bit record markers: #define PHITSREAD_MAXBUFSIZE (15*sizeof(double)) typedef struct { #ifdef PHITSREAD_HASZLIB gzFile filegz; #else void * filegz; #endif FILE * file; phits_particle_t part; int reclen;//width of Fortran record length field (4 or 8) unsigned particlesize;//length of particle data in bytes (typically 10*8 or 13*8) char buf[PHITSREAD_MAXBUFSIZE];//for holding last record of raw data read (including record markers of reclen bytes) unsigned lbuf;//number of bytes currently read into buf int haspolarisation; } phits_fileinternal_t; int phits_readbytes(phits_fileinternal_t* f, char * dest, int nbytes) { assert(nbytes>0); //Attempt to read at most nbytes from file and into dest, handling both //gzipped and standard files. int nb; #ifdef PHITSREAD_HASZLIB if (f->filegz) nb = gzread(f->filegz, dest, nbytes); else #endif nb = fread(dest, 1, nbytes, f->file); return nb; } int phits_ensure_load(phits_fileinternal_t* f, int nbytes) { //For slowly filling up f->buf while reading first record. Returns 1 in case of success. if ( nbytes > (int)PHITSREAD_MAXBUFSIZE ) return 0; int missing = nbytes - f->lbuf; if ( missing<=0 ) return 1; int nr = phits_readbytes(f,&(f->buf[f->lbuf]),missing); if (nr!=missing) return 0; f->lbuf = nbytes; return 1; } int phits_tryload_reclen(phits_fileinternal_t* f, int reclen ) { assert(reclen==4||reclen==8); if ( ! phits_ensure_load( f, reclen ) ) return 0; char * buf = & ( f->buf[0] ); uint64_t l1 = ( reclen == 4 ? (uint64_t)(*((uint32_t*)buf)) : (uint64_t)(*((uint64_t*)buf)) ); if ( ! phits_ensure_load( f, l1 + 2*reclen ) ) return 0; buf += (reclen + l1); uint64_t l2 = ( reclen == 4 ? (uint64_t)(*((uint32_t*)buf)) : (uint64_t)(*((uint64_t*)buf)) ); if (l1!=l2) return 0; //All ok! f->reclen = reclen; f->particlesize = l1; return 1; } phits_file_t phits_openerror(phits_fileinternal_t * f, const char* msg) { if (f) { if (f->file) fclose(f->file); #ifdef PHITSREAD_HASZLIB if (f->filegz) gzclose(f->filegz); #endif free(f); } phits_error(msg); phits_file_t out; out.internal = 0; return out; } phits_file_t phits_open_internal( const char * filename ) { phits_fileinternal_t * f = (phits_fileinternal_t*)calloc(sizeof(phits_fileinternal_t),1); assert(f); phits_file_t out; out.internal = f; //Init: f->particlesize = 0; f->lbuf = 0; f->reclen = 4; f->file = 0; f->filegz = 0; f->haspolarisation = 0; memset( &( f->part ),0,sizeof(f->part) ); //open file (with gzopen if filename ends with .gz): const char * lastdot = strrchr(filename, '.'); if (lastdot && strcmp(lastdot, ".gz") == 0) { #ifdef PHITSREAD_HASZLIB f->filegz = gzopen(filename,"rb"); if (!f->filegz) phits_error("Unable to open file!"); #else phits_error("This installation was not built with zlib support and can not read compressed (.gz) files directly."); #endif } else { f->file = fopen(filename,"rb"); if (!f->file) phits_error("Unable to open file!"); } //Try to read first Fortran record marker, keeping in mind that we do not //know if it is 32bit or 64bit, and that an empty file is to be interpreted //as a valid PHITS dump file with 0 particles: if (!phits_ensure_load(f,1)) { //Can't read a single byte. Assume that this indicates an empty file and //therefore a valid PHITS dump file with 0 particles: //file with 0 particles, mark as EOF: f->particlesize = 0; f->haspolarisation = 0;//Convention: We mark empty files as NOT HAVING //polarisation info (to avoid potentially inflating //mcpl files in various merge/conversion //scenarios). return out; } //Try to read first record with first 32bit then 64bit record lengths //(updating f->reclen and f->particlesize in case of success): if (!phits_tryload_reclen(f,4)) { if (!phits_tryload_reclen(f,8)) { if (f->lbuf<8) phits_error("Invalid PHITS dump file: too short\n"); phits_error("Invalid PHITS dump file: Problems reading first record.\n"); } } assert( f->reclen==4 || f->reclen==8 ); if (f->reclen==8) { printf("phits_open_file WARNING: 64bit Fortran records detected which is untested (feedback" " appreciated at https://mctools.github.io/mcpl/contact/).\n"); } if (f->particlesize == 10*sizeof(double)) { f->haspolarisation = 0; } else if (f->particlesize == 13*sizeof(double)) { f->haspolarisation = 1; } else { phits_error("Invalid PHITS dump file: Does not contain exactly 10 or 13 fields in each" " particle - like due to unsupported configuration flags being used when" " producing the file.\n"); } return out; } phits_file_t phits_open_file( const char * filename ) { if (!filename) phits_error("phits_open_file called with null string for filename"); //Open, classify and process first record with mcnp type and version info: phits_file_t out = phits_open_internal( filename ); phits_fileinternal_t * f = (phits_fileinternal_t *)out.internal; assert(f); out.internal = f; return out; } const phits_particle_t * phits_load_particle(phits_file_t ff) { phits_fileinternal_t * f = (phits_fileinternal_t *)ff.internal; assert(f); if (!f->particlesize) { //EOF already return 0; } assert( f->particlesize == 10*sizeof(double) || f->particlesize == 13*sizeof(double) ); if (!f->lbuf) { if (!phits_ensure_load(f, 1)) { //Can't read a single byte - assume EOF: f->particlesize = 0; return 0; } //Try to load another record int old_reclen = f->reclen; (void)old_reclen;//otherwise unused if assert inactive. unsigned old_particlesize = f->particlesize; if (!phits_tryload_reclen(f,f->reclen)) { phits_error("Problems loading particle data record!"); return 0; } assert(f->reclen==old_reclen); if ( f->particlesize != old_particlesize) { phits_error("Problems loading particle data record - particle data length changed mid-file (perhaps it is not actually a binary PHITS dump file after all?)!"); return 0; } } assert( f->lbuf == f->particlesize + f->reclen * 2 ); double * pdata = (double*)(f->buf+f->reclen); phits_particle_t * pp = & (f->part); pp->rawtype = pdata[0]; //NB: PHITS units, not MCPL units here (only difference is time unit which is ns in PHITS and ms in MCPL): pp->x = pdata[1];//cm pp->y = pdata[2];//cm pp->z = pdata[3];//cm pp->dirx = pdata[4]; pp->diry = pdata[5]; pp->dirz = pdata[6]; pp->ekin = pdata[7];//MeV pp->weight = pdata[8]; pp->time = pdata[9];//ns if (f->particlesize == 13*sizeof(double)) { pp->polx = pdata[10]; pp->poly = pdata[11]; pp->polz = pdata[12]; } else { pp->polx = 0.0; pp->poly = 0.0; pp->polz = 0.0; } pp->pdgcode = conv_code_phits2pdg(pp->rawtype); //Mark as used: f->lbuf = 0; return pp; } int phits_has_polarisation(phits_file_t ff) { phits_fileinternal_t * f = (phits_fileinternal_t *)ff.internal; assert(f); return f->haspolarisation; } void phits_close_file(phits_file_t ff) { phits_fileinternal_t * f = (phits_fileinternal_t *)ff.internal; assert(f); if (!f) return; if (f->file) { fclose(f->file); f->file = 0; } #ifdef PHITSREAD_HASZLIB if (f->filegz) { gzclose(f->filegz); f->file = 0; } #endif free(f); ff.internal = 0; } ///////////////////////////////////////////////////////////////////////////////////// // // // phitsmcpl : Code for converting between MCPL and binary PHITS dump files. // // // // // // Compilation of phitsmcpl.c can proceed via any compliant C-compiler using // // -std=c99 later. Furthermore, the following preprocessor flag can be used // // when compiling phitsmcpl.c to fine tune the build process. // // // // PHITSMCPL_HDR_INCPATH : Specify alternative value if the phitsmcpl header // // itself is not to be included as "phitsmcpl.h". // // PHITSREAD_HDR_INCPATH : Specify alternative value if the phitsread header // // is not to be included as "phitsread.h". // // MCPL_HEADER_INCPATH : Specify alternative value if the MCPL header is // // not to be included as "mcpl.h". // // // // This file can be freely used as per the terms in the LICENSE file. // // // // However, note that usage of PHITS-related utilities might require additional // // permissions and licenses from third-parties, which is not within the scope of // // the MCPL project itself. // // // // Written 2019, thomas.kittelmann@esss.se (European Spallation Source). // // // ///////////////////////////////////////////////////////////////////////////////////// #ifdef PHITSMCPL_HDR_INCPATH # include PHITSMCPL_HDR_INCPATH #else #endif #ifdef PHITSREAD_HDR_INCPATH # include PHITSREAD_HDR_INCPATH #else #endif #ifdef MCPL_HEADER_INCPATH # include MCPL_HEADER_INCPATH #else #endif #include #include #include #include #include void phits_error(const char * msg);//fwd declare internal function from phitsread.c int phitsmcpl_buf_is_text(size_t n, const unsigned char * buf) { //We correctly allow ASCII & UTF-8 but falsely classify UTF-16 and UTF-32 as //data. See http://stackoverflow.com/questions/277521#277568 for how we could //also detect UTF-16 & UTF-32. const unsigned char * bufE = buf + n; for (; buf!=bufE; ++buf) if ( ! ( ( *buf >=9 && *buf<=13 ) || ( *buf >=32 && *buf<=126 ) || *buf >=128 ) ) return 0; return 1; } int phitsmcpl_file2buf(const char * filename, unsigned char** buf, size_t* lbuf, size_t maxsize, int require_text) { *buf = 0; *lbuf = 0; FILE * file = fopen(filename, "rb"); if (!file) { printf("Error: could not open file %s.\n",filename); return 0; } size_t pos_begin = ftell(file); size_t bbuf_size = maxsize;//default to max size (in case SEEK_END does not work) int bbuf_size_guess = 1; if (!fseek( file, 0, SEEK_END )) { size_t pos_end = ftell(file); bbuf_size = pos_end-pos_begin; bbuf_size_guess = 0; if (bbuf_size<50) { printf("Error: file %s is suspiciously short.\n",filename); return 0; } if (bbuf_size>104857600) { printf("Error: file %s is larger than %g bytes.\n",filename,(double)maxsize); return 0; } } if (fseek( file, 0, SEEK_SET)) { printf("Error: Could not rewind file %s.\n",filename); return 0; } unsigned char * bbuf = malloc(bbuf_size); unsigned char * bbuf_iter = bbuf; size_t left = bbuf_size; while (left) { size_t nb = fread(bbuf_iter, 1, left, file); if (bbuf_size_guess&&nb==0) { bbuf_size -= left; break; } if (nb==0||nb>left) { printf("Error: file %s read-error.\n",filename); free(bbuf); return 0; } bbuf_iter += nb; left -= nb; } fclose(file); if ( require_text && !phitsmcpl_buf_is_text(bbuf_size, bbuf) ) { printf("Error: file %s does not appear to be a text file.\n",filename); free(bbuf); return 0; } *buf = bbuf; *lbuf = bbuf_size; return 1; } int phits2mcpl(const char * phitsfile, const char * mcplfile) { return phits2mcpl2(phitsfile, mcplfile, 0, 1, 0, 0); } int phits2mcpl2( const char * phitsdumpfile, const char * mcplfile, int opt_dp, int opt_gzip, const char * inputdeckfile, const char * dumpsummaryfile ) { phits_file_t f = phits_open_file(phitsdumpfile); mcpl_outfile_t mcplfh = mcpl_create_outfile(mcplfile); mcpl_hdr_set_srcname(mcplfh,"PHITS"); mcpl_hdr_add_comment(mcplfh,"Converted from PHITS with phits2mcpl (from MCPL release v" MCPL_VERSION_STR ")"); if (opt_dp) mcpl_enable_doubleprec(mcplfh); if (phits_has_polarisation(f)) mcpl_enable_polarisation(mcplfh); if (inputdeckfile) { unsigned char* cfgfile_buf; size_t cfgfile_lbuf; if (!phitsmcpl_file2buf(inputdeckfile, &cfgfile_buf, &cfgfile_lbuf, 104857600, 1)) return 0; //We won't do much for sanity checks since we want to avoid the risk of //false positives, but at least the word "dump" should occur in both input //deck and dump summary files: if (!strstr((const char*)cfgfile_buf, "dump")) { printf("Error: specified configuration file %s looks invalid as it does not contain the word \"dump\".\n",inputdeckfile); return 0; } mcpl_hdr_add_data(mcplfh, "phits_input_deck", (uint32_t)cfgfile_lbuf,(const char *)cfgfile_buf); free(cfgfile_buf); } if (dumpsummaryfile) { unsigned char* summaryfile_buf; size_t summaryfile_lbuf; if (!phitsmcpl_file2buf(dumpsummaryfile, &summaryfile_buf, &summaryfile_lbuf, 104857600, 1)) return 0; //Same check as for the input deck above: if (!strstr((const char*)summaryfile_buf, "dump")) { printf("Error: specified dump summary file %s looks invalid as it does not contain the word \"dump\".\n",dumpsummaryfile); return 0; } mcpl_hdr_add_data(mcplfh, "phits_dump_summary_file", (uint32_t)summaryfile_lbuf,(const char *)summaryfile_buf); free(summaryfile_buf); } mcpl_particle_t* mcpl_particle = mcpl_get_empty_particle(mcplfh); const phits_particle_t * p; while ((p=phits_load_particle(f))) { if (!p->pdgcode) { printf("Warning: ignored particle with no PDG code set (raw phits kt code was %li).\n",p->rawtype); continue; } mcpl_particle->pdgcode = p->pdgcode; mcpl_particle->position[0] = p->x;//already in cm mcpl_particle->position[1] = p->y;//already in cm mcpl_particle->position[2] = p->z;//already in cm mcpl_particle->direction[0] = p->dirx; mcpl_particle->direction[1] = p->diry; mcpl_particle->direction[2] = p->dirz; mcpl_particle->polarisation[0] = p->polx; mcpl_particle->polarisation[1] = p->poly; mcpl_particle->polarisation[2] = p->polz; mcpl_particle->time = p->time * 1.0e-6;//nanoseconds (PHITS) to milliseconds (MCPL) mcpl_particle->weight = p->weight; mcpl_particle->ekin = p->ekin;//already in MeV mcpl_add_particle(mcplfh,mcpl_particle); } const char * tmp = mcpl_outfile_filename(mcplfh); size_t laf = strlen(tmp); char * actual_filename = malloc(laf+1); actual_filename[0]='\0'; strcat(actual_filename,tmp); int did_gzip = 0; if (opt_gzip) did_gzip = mcpl_closeandgzip_outfile(mcplfh); else mcpl_close_outfile(mcplfh); phits_close_file(f); printf("Created %s%s\n",actual_filename,(did_gzip?".gz":"")); free(actual_filename); return 1; } void phits2mcpl_parse_args( int argc,char **argv, const char** infile, const char **outfile, const char **cfgfile, const char **dumpsummaryfile, int* double_prec, int* do_gzip ) { *cfgfile = 0; *dumpsummaryfile = 0; *infile = 0; *outfile = 0; *double_prec = 0; *do_gzip = 1; int i; for (i=1; i < argc; ++i) { if (argv[i][0]=='\0') continue; if (strcmp(argv[i],"-h")==0||strcmp(argv[i],"--help")==0) { const char * progname = strrchr(argv[0], '/'); progname = progname ? progname + 1 : argv[0]; printf("Usage:\n\n"); printf(" %s [options] dumpfile [output.mcpl]\n\n",progname); printf("Converts the Monte Carlo particles in the input dump file (binary PHITS dump\n" "file format in suitable configuration) to MCPL format and stores in the\n" "designated output file (defaults to \"output.mcpl\").\n" "\n" "Options:\n" "\n" " -h, --help : Show this usage information.\n" " -d, --double : Enable double-precision storage of floating point values.\n" " -n, --nogzip : Do not attempt to gzip output file.\n" " -c FILE : Embed entire configuration FILE (the input deck)\n" " used to produce dumpfile in the MCPL header.\n" " -s FILE : Embed into the MCPL header the dump summary text file,\n" " which was produced along with the dumpfile itself.\n" ); exit(0); } if (strcmp(argv[i],"-c")==0) { if (i+1==argc||argv[i+1][0]=='-') { printf("Error: Missing argument for -c\n"); exit(1); } ++i; if (*cfgfile) { printf("Error: -c specified more than once\n"); exit(1); } *cfgfile = argv[i]; continue; } if (strcmp(argv[i],"-s")==0) { if (i+1==argc||argv[i+1][0]=='-') { printf("Error: Missing argument for -s\n"); exit(1); } ++i; if (*dumpsummaryfile) { printf("Error: -s specified more than once\n"); exit(1); } *dumpsummaryfile = argv[i]; continue; } if (strcmp(argv[i],"-d")==0||strcmp(argv[i],"--double")==0) { *double_prec = 1; continue; } if (strcmp(argv[i],"-n")==0||strcmp(argv[i],"--nogzip")==0) { *do_gzip = 0; continue; } if (argv[i][0]=='-') { printf("Error: Unknown argument: %s\n",argv[i]); exit(1); } if (!*infile) { *infile = argv[i]; continue; } if (!*outfile) { *outfile = argv[i]; continue; } printf("Error: Too many arguments! (run with -h or --help for usage instructions)\n"); exit(1); } if (!*infile) { printf("Error: Too few arguments! (run with -h or --help for usage instructions)\n"); exit(1); } if (!*outfile) *outfile = "output.mcpl"; if (strcmp(*infile,*outfile)==0) { //basic test, easy to cheat: printf("Error: input and output files are identical.\n"); exit(1); } } int phits2mcpl_app(int argc,char** argv) { const char * infile; const char * outfile; const char * cfgfile; const char * dumphdrfile; int double_prec, do_gzip; phits2mcpl_parse_args(argc,argv,&infile,&outfile,&cfgfile,&dumphdrfile,&double_prec,&do_gzip); int ok = phits2mcpl2(infile, outfile,double_prec, do_gzip,cfgfile,dumphdrfile); return ok ? 0 : 1; } void phits_writerecord(FILE* outfile, int reclen, size_t lbuf, char* buf) { if (reclen==4) { uint32_t rl = lbuf; size_t nb = fwrite(&rl, 1, sizeof(rl), outfile); if (nb!=sizeof(rl)) phits_error("write error"); nb = fwrite(buf, 1, lbuf, outfile); if (nb!=lbuf) phits_error("write error"); nb = fwrite(&rl, 1, sizeof(rl), outfile); if (nb!=sizeof(rl)) phits_error("write error"); } else { assert(reclen==8); uint64_t rl = lbuf; size_t nb = fwrite(&rl, 1, sizeof(rl), outfile); if (nb!=sizeof(rl)) phits_error("write error"); nb = fwrite(buf, 1, lbuf, outfile); if (nb!=lbuf) phits_error("write error"); nb = fwrite(&rl, 1, sizeof(rl), outfile); if (nb!=sizeof(rl)) phits_error("write error"); } } int mcpl2phits( const char * inmcplfile, const char * outphitsdumpfile, int use_polarisation, long nparticles_limit, int reclen ) { if ( reclen != 4 && reclen != 8 ) phits_error("Reclen parameter should be 4 (32bit Fortran record markers, recommended) or 8 (64bit Fortran record markers)"); mcpl_file_t fmcpl = mcpl_open_file(inmcplfile); printf( "Opened MCPL file produced with \"%s\" (contains %llu particles)\n", mcpl_hdr_srcname(fmcpl), (unsigned long long)mcpl_hdr_nparticles(fmcpl) ); printf("Creating (or overwriting) output PHITS file.\n"); //Open new phits file: FILE * fout = fopen(outphitsdumpfile,"wb"); if (!fout) phits_error("Problems opening new PHITS file"); const mcpl_particle_t* mcpl_p; long long used = 0; long long skipped_nophitstype = 0; printf("Initiating particle conversion loop.\n"); double dumpdata[13] = {0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.};//explicit since gcc 4.1-4.6 might warn on ={0}; syntax while ( ( mcpl_p = mcpl_read(fmcpl) ) ) { int32_t rawtype = conv_code_pdg2phits( mcpl_p->pdgcode ); if (!rawtype) { ++skipped_nophitstype; if (skipped_nophitstype<=100) { printf("WARNING: Found PDG code (%li) in the MCPL file which can not be converted to a PHITS particle code\n", (long)mcpl_p->pdgcode); if (skipped_nophitstype==100) printf("WARNING: Suppressing future warnings regarding non-convertible PDG codes.\n"); } continue; } assert(rawtype!=0); dumpdata[0] = rawtype; dumpdata[1] = mcpl_p->position[0];//Already in cm dumpdata[2] = mcpl_p->position[1];//Already in cm dumpdata[3] = mcpl_p->position[2];//Already in cm dumpdata[4] = mcpl_p->direction[0]; dumpdata[5] = mcpl_p->direction[1]; dumpdata[6] = mcpl_p->direction[2]; dumpdata[7] = mcpl_p->ekin;//Already in MeV dumpdata[8] = mcpl_p->weight; dumpdata[9] = mcpl_p->time * 1.0e6;//ms->ns dumpdata[10] = mcpl_p->polarisation[0]; dumpdata[11] = mcpl_p->polarisation[1]; dumpdata[12] = mcpl_p->polarisation[2]; if (used==INT32_MAX) { printf("WARNING: Writing more than 2147483647 (maximum value of 32 bit integers) particles in the PHITS dump " "file - it is not known whether PHITS will be able to deal with such files correctly.\n"); } phits_writerecord(fout,reclen,sizeof(double)*(use_polarisation?13:10),(char*)&dumpdata[0]); if (++used==nparticles_limit) { long long remaining = mcpl_hdr_nparticles(fmcpl) - skipped_nophitstype - used; if (remaining) printf("Output limit of %li particles reached. Ignoring remaining %lli particles in the MCPL file.\n", nparticles_limit,remaining); break; } } printf("Ending particle conversion loop.\n"); if (skipped_nophitstype) { printf("WARNING: Ignored %lli particles in the input MCPL file since their PDG codes" " could not be converted to PHITS codes.\n",(long long)skipped_nophitstype); } mcpl_close_file(fmcpl); fclose(fout); printf("Created %s with %lli particles.\n",outphitsdumpfile,(long long)used); return 1; } int mcpl2phits_app_usage( const char** argv, const char * errmsg ) { if (errmsg) { printf("ERROR: %s\n\n",errmsg); printf("Run with -h or --help for usage information\n"); return 1; } const char * progname = strrchr(argv[0], '/'); progname = progname ? progname + 1 : argv[0]; printf("Usage:\n\n"); printf(" %s [options] [phits.dmp]\n\n",progname); printf("Converts the Monte Carlo particles in the input MCPL file to binary PHITS\n" "dump file format and stores the result in the designated output file\n" "(defaults to \"phitsdata_dmp\"). The file can be read in PHITS using\n" "a configuration of (assuming the filename is \"phits.dmp\"):\n" " dump = 13\n" " 1 2 3 4 5 6 7 8 9 10 14 15 16\n" " file = phits.dmp\n" "\n" "Options:\n" "\n" " -h, --help : Show this usage information.\n" " -n, --nopol : Do not write polarisation info (saving ~22%% in file size). The\n" " PHITS configuration reading the file must then be (assuming the\n" " filename is \"phits.dmp\"):\n" " dump = 10\n" " 1 2 3 4 5 6 7 8 9 10\n" " file = phits.dmp\n" " -f : Write Fortran records with 64 bit integer markers. Note that\n" " the default (32 bit) is almost always the correct choice.\n" " -l : Limit the number of particles transferred to the PHITS file\n" " (defaults to 0, meaning no limit).\n" ); return 0; } int mcpl2phits_parse_args( int argc,const char **argv, const char** inmcplfile, const char **outphitsfile, long* nparticles_limit, int* use64bitreclen, int* nopolarisation ) { //returns: 0 all ok, 1: error, -1: all ok but do nothing (-h/--help mode) *inmcplfile = 0; *outphitsfile = 0; *nparticles_limit = INT32_MAX; *use64bitreclen = 0; *nopolarisation = 0; int64_t opt_num_limit = -1; int i; for (i = 1; i=2&&a[0]=='-'&&a[1]!='-') { //short options: int64_t * consume_digit = 0; size_t j; for (j=1; j'9') return mcpl2phits_app_usage(argv,"Bad option: expected number"); *consume_digit *= 10; *consume_digit += a[j] - '0'; continue; } switch(a[j]) { case 'h': mcpl2phits_app_usage(argv,0); return -1; case 'l': consume_digit = &opt_num_limit; break; case 'f': *use64bitreclen = 1; break; case 'n': *nopolarisation = 1; break; default: return mcpl2phits_app_usage(argv,"Unrecognised option"); } if (consume_digit) { *consume_digit = 0; if (j+1==n) return mcpl2phits_app_usage(argv,"Bad option: missing number"); } } } else if (n==6 && strcmp(a,"--help")==0) { mcpl2phits_app_usage(argv,0); return -1; } else if (n>=1&&a[0]!='-') { if (*outphitsfile) return mcpl2phits_app_usage(argv,"Too many arguments."); else if (*inmcplfile) *outphitsfile = a; else *inmcplfile = a; } else { return mcpl2phits_app_usage(argv,"Bad arguments"); } } if (!*inmcplfile) return mcpl2phits_app_usage(argv,"Missing argument : input MCPL file"); if (!*outphitsfile) *outphitsfile = "phits.dmp"; if (opt_num_limit<=0) opt_num_limit = 0; //NB: For now we allow unlimited number of particles in the file - but let the //mcpl2phits method emit a WARNING if exceeding INT32_MAX particles. *nparticles_limit = opt_num_limit; return 0; } int mcpl2phits_app( int argc, char** argv ) { const char * inmcplfile; const char * outphitsfile; long nparticles_limit; int use64bitreclen, nopolarisation; int parse = mcpl2phits_parse_args( argc, (const char**)argv, &inmcplfile, &outphitsfile, &nparticles_limit, &use64bitreclen, &nopolarisation); if (parse==-1)// --help return 0; if (parse)// parse error return parse; int reclen = (use64bitreclen?8:4); if (mcpl2phits(inmcplfile, outphitsfile, (nopolarisation?0:1), nparticles_limit, reclen)) return 0; return 1; } ///////////////////////////////////////////////////////////////////////////////////// // // // phits2mcpl : a simple command line utility for converting binary PHITS dump // // files to MCPL. // // // // This file can be freely used as per the terms in the LICENSE file. // // // // However, note that usage of PHITS-related utilities might require additional // // permissions and licenses from third-parties, which is not within the scope of // // the MCPL project itself. // // // // Written 2019, thomas.kittelmann@esss.se (European Spallation Source). // // // ///////////////////////////////////////////////////////////////////////////////////// int main(int argc,char** argv) { return phits2mcpl_app(argc,argv); } mcpl-1.3.2/src_fat/pymcpltool000077500000000000000000002065031361775146500162460ustar00rootroot00000000000000#!/usr/bin/env python """Python module for accessing MCPL files. The MCPL (Monte Carlo Particle Lists) format is thoroughly documented on the project homepage, from where it is also possible to download the entire MCPL distribution: https://mctools.github.io/mcpl/ Specifically, more documentation about how to use the present python module to access MCPL files can be found at: https://mctools.github.io/mcpl/usage_python/ This file can freely used as per the terms in the LICENSE file distributed with MCPL, also available at https://github.com/mctools/mcpl/blob/master/LICENSE . A substantial effort went into developing MCPL. If you use it for your work, we would appreciate it if you would use the following reference in your work: T. Kittelmann, et al., Monte Carlo Particle Lists: MCPL, Computer Physics Communications 218, 17-42 (2017), https://doi.org/10.1016/j.cpc.2017.04.012 mcpl.py written by Thomas Kittelmann, 2017-2019. The work was supported by the European Union's Horizon 2020 research and innovation programme under grant agreement No 676548 (the BrightnESS project) """ from __future__ import division, print_function, absolute_import,unicode_literals#enable py3 behaviour in py2.6+ try: _str = lambda s : s.encode('ascii') if (hasattr(s,'encode') and bytes==str) else s except SyntaxError: print('MCPL ERROR: Unsupported obsolete Python detected') raise SystemExit(1) __license__ = _str('CC0 1.0 Universal') __copyright__ = _str('Copyright 2017-2019') __version__ = _str('1.3.2') __status__ = _str('Production') __author__ = _str('Thomas Kittelmann') __maintainer__ = _str('Thomas Kittelmann') __email__ = _str('thomas.kittelmann@esss.se') __all__ = [_str('MCPLFile'), _str('MCPLParticle'), _str('MCPLParticleBlock'), _str('MCPLError'), _str('dump_file'), _str('convert2ascii'), _str('app_pymcpltool'), _str('collect_stats'), _str('dump_stats'), _str('plot_stats'), _str('main')] #Python version checks and workarounds: import sys,os pyversion = sys.version_info[0:3] _minpy2=(2,6,6) _minpy3=(3,3,2) if pyversion < _minpy2 or (pyversion >= (3,0,0) and pyversion < _minpy3): print(('MCPL WARNING: Unsupported python version %s detected (needs at least python2' +' v%s+ or python3 v%s+).')%('.'.join(str(i) for i in pyversion), '.'.join(str(i) for i in _minpy2), '.'.join(str(i) for i in _minpy3))) #Enable more py3 like behaviour in py2: __metaclass__ = type #classes are new-style without inheriting from "object" if pyversion < (3,0,0): range = xrange #in py3, range is py2's xrange #For raw output of byte-array contents to stdout, without any troubles depending #on encoding or python versions: def _output_bytearray_raw(b): sys.stdout.flush() getattr(sys.stdout,'buffer',sys.stdout).write(b) sys.stdout.flush() #numpy version checks (unfortunately NumpyVersion doesn't even exist in all #releases of numpy back to 1.3.0 so needs workarounds): try: import numpy as np except ImportError: print() print("ERROR: For reasons of efficiency, this MCPL python module requires numpy (www.numpy.org)") print("ERROR: to be installed. You can perhaps install it using using your software manager and") print("ERROR: searching for \"numpy\" or \"python-numpy\", or it might come bundled with software") print("ERROR: such as scientific python or anaconda, depending on your platform. Alternatively,") print("ERROR: if you are using the pip package manager, you should be able to install it with") print("ERROR: the command \"pip install numpy\".") print() raise _numpyok=True _numpy_oldfromfile=False try: from numpy.lib import NumpyVersion except ImportError: NumpyVersion = None if not NumpyVersion is None: if NumpyVersion(np.__version__) < '1.3.0': _numpyok = False if NumpyVersion(np.__version__) < '1.5.0': _numpy_oldfromfile = True else: try: vtuple=tuple(int(v) for v in str(np.__version__).strip().split('.')[0:2]) if vtuple<(1,3): _numpyok = False if vtuple<(1,5): _numpy_oldfromfile = True except ValueError: _numpyok = False if not _numpyok: print("MCPL WARNING: Unsupported numpy version (%s) detected"%(str(np.__version__))) np_dtype=np.dtype try: np.dtype('f8') except TypeError: np_dtype = lambda x : np.dtype(x.encode('ascii') if hasattr(x,'encode') else x) #old np.unique does not understand return_inverse and unique1d must be used #instead: np_unique = np.unique if hasattr(np,'unique') else np.unique1d try: np.unique(np.asarray([1]),return_inverse=True) except TypeError: np_unique = np.unique1d if hasattr(np,'stack'): np_stack = np.stack else: #np.stack only added in numpy 1.10. Using the following code snippet from #numpy to get the functionality for older releases: def np_stack(arrays, axis=0): arrays = [np.asanyarray(arr) for arr in arrays] if not arrays: raise ValueError('need at least one array to stack') shapes = set(arr.shape for arr in arrays) if len(shapes) != 1: raise ValueError('all input arrays must have the same shape') result_ndim = arrays[0].ndim + 1 if not -result_ndim <= axis < result_ndim: msg = 'axis {0} out of bounds [-{1}, {1})'.format(axis, result_ndim) raise IndexError(msg) if axis < 0: axis += result_ndim sl = (slice(None),) * axis + (np.newaxis,) expanded_arrays = [arr[sl] for arr in arrays] return np.concatenate(expanded_arrays, axis=axis) if hasattr(np.add,'at'): _np_add_at = np.add.at else: #Slow fallback for ancient numpy: def _np_add_at(a,indices,b): for ib,i in enumerate(indices): a[i] += b[ib] try: import pathlib as _pathlib except ImportError: _pathlib = None class MCPLError(Exception): """Common exception class for all exceptions raised by module""" pass class MCPLParticle: """Object representing a single particle""" def __init__(self,block,idx): """For internal use only - users should not normally create MCPLParticle objects themselves""" self._b = block#can we make it a weak ref, to make sure multiple blocks are not kept around? self._i = idx @property def position(self): """position as 3-dimensional array [cm]""" return self._b.position[self._i] @property def direction(self): """normalised momentum direction as 3-dimensional array""" return self._b.direction[self._i] @property def polarisation(self): """polarisation vector as 3-dimensional array""" return self._b.polarisation[self._i] @property def x(self): """x-coordinate of position [cm]""" return self._b.x[self._i] @property def y(self): """y-coordinate of position [cm]""" return self._b.y[self._i] @property def z(self): """z-coordinate of position [cm]""" return self._b.z[self._i] @property def ux(self): """x-coordinate of normalised momentum direction""" return self._b.ux[self._i] @property def uy(self): """y-coordinate of normalised momentum direction""" return self._b.uy[self._i] @property def uz(self): """z-coordinate of normalised momentum direction""" return self._b.uz[self._i] @property def polx(self): """x-coordinate of polarisation vector""" return self._b.polx[self._i] @property def poly(self): """y-coordinate of polarisation vector""" return self._b.poly[self._i] @property def polz(self): """z-coordinate of polarisation vector""" return self._b.polz[self._i] @property def ekin(self): """kinetic energy [MeV]""" return self._b.ekin[self._i] @property def time(self): """time-stamp [millisecond]""" return self._b.time[self._i] @property def weight(self): """weight or intensity""" return self._b.weight[self._i] @property def userflags(self): """custom per-particle flags""" return self._b.userflags[self._i] @property def pdgcode(self): """MC particle number from the Particle Data Group (2112=neutron, 22=gamma, ...)""" return self._b.pdgcode[self._i] @property def file_index(self): """Particle position in file (counting from 0)""" return self._b._offset + self._i class MCPLParticleBlock: """Object representing a block of particle. Fields are arrays rather than single numbers, but otherwise have the same meaning as on the MCPLParticle class.""" def __init__(self,opt_polarisation,opt_userflags,opt_globalw,opt_globalpdg,fmtversion): """For internal use only - users should not normally create MCPLParticle objects themselves""" #empty block (set offset to max int to ensure d<0 in contains_ipos and get_by_global: self._offset = 9223372036854775807 #non-constant columns (never the same in all blocks): self._data = tuple() #potentially constant columns (first entry says whether non-constant, second is cache): self._polx = [opt_polarisation,None] self._poly = [opt_polarisation,None] self._polz = [opt_polarisation,None] self._uf = [bool(opt_userflags),None] self._w = [not opt_globalw,None] self._pdg = [not opt_globalpdg,None] self._opt_globalw = opt_globalw self._opt_globalpdg = opt_globalpdg self._fmtversion = fmtversion self._view_pos = None self._view_pol = None self._view_dir = None self._pos_cache,self._pol_cache = None,None#extra ndarrays for numpy 1.14 issue def _set_data(self,data,file_offset): #always present, but must unpack: self._ux,self._uy,self._uz,self._ekin = None,None,None,None self._view_dir = None #reset non-constant columns: for ncc in [self._polx,self._poly,self._polz,self._uf,self._w,self._pdg]: if ncc[0]: ncc[1]=None self._view_pos = None if self._polx[0]: self._view_pol = None if data is None: self._offset = 9223372036854775807 self._data = tuple() else: self._data = data self._offset = file_offset def contains_ipos(self,ipos): d=ipos-self._offset return d>=0 and d=0 and ipos=0 and d1.0) condb = np.logical_and(np.logical_not(conda),(np.abs(in1)>1.0)) #nb, reuse intermediate results below: in0sq = np.square(in0) in1sq = np.square(in1) self._ux = np.where(conda, in2 * np.sqrt(np.clip(1.0-(in1sq+np.square(in0inv)),0.0,1.0)), in0) self._uy = np.where(condb, in2 * np.sqrt(np.clip(1.0-(in0sq+np.square(in1inv)),0.0,1.0)), in1) self._uz = np.where(conda, in0inv, np.where(condb, in1inv, in2 * np.sqrt(np.clip(1.0-(in0sq+in1sq),0.0,1.0)))) def _unpack_legacy(self): in0 = self._data['uve1'].astype(float) in1 = self._data['uve2'].astype(float) abs_in0 = np.abs(in0) abs_in1 = np.abs(in1) self._uz = (1.0 - abs_in0) - abs_in1 zneg = ( self._uz < 0.0 ) not_zneg = np.logical_not(zneg) self._ux = not_zneg * in0 + zneg * ( 1.0 - abs_in1 ) * np.where(in0 >= 0.0,1.0,-1.0) self._uy = not_zneg * in1 + zneg * ( 1.0 - abs_in0 ) * np.where(in1 >= 0.0,1.0,-1.0) n = 1.0 / np.sqrt(np.square(self._ux)+np.square(self._uy)+np.square(self._uz)) self._ux *= n self._uy *= n self._uz *= n self._uz = np.where(np.signbit(self._data['uve3']),0.0,self._uz) class MCPLFile: """Python-only class for reading MCPL files, using numpy and internal caches to ensure good efficiency. File access is read-only, and the particles can only be read in consecutive and forward order, providing either single particles or blocks of particles as requested.""" def __init__(self,filename,blocklength = 10000, raw_strings = False): """Open indicated mcpl file, which can either be uncompressed (.mcpl) or compressed (.mcpl.gz). The blocklength parameter can be used to control the number of particles read by each call to read_block(). The parameter raw_strings has no effect in python2. In python3, it will prevent utf-8 decoding of string data loaded from the file.""" self._py3_str_decode = (not raw_strings) if (pyversion >= (3,0,0)) else False if hasattr(os,'fspath') and hasattr(filename,'__fspath__'): #python >= 3.6, work with all pathlike objects (including str and pathlib.Path): filename = os.fspath(filename) elif _pathlib and hasattr(_pathlib,'PurePath') and isinstance(filename,_pathlib.PurePath): #work with pathlib.Path in python 3.4 and 3.5: filename = str(filename) #prepare file i/o (opens file): self._open_file(filename) #load info from mcpl header: self._loadhdr() #Check if empty files are actually broken (like in mcpl.c): if self.nparticles==0: if filename.endswith('.gz'): #compressed - can only detect and raise error try: test_read=self._fileread(dtype='u1',count=1) except ValueError: test_read=[] if len(test_read)>0: raise MCPLError("Input file appears to not have been closed properly" +" and data recovery is disabled for gzipped files.") else: #not compressed - can use file size to recover file np_rec = (int(os.stat(filename).st_size)-self.headersize) // self.particlesize if np_rec: self._np = np_rec self._hdr['nparticles'] = np_rec print ("MCPL WARNING: Input file appears to not have been closed" +" properly. Recovered %i particles."%np_rec) #prepare dtype for reading 1 particle: fp = 'f4' if self.opt_singleprec else 'f8' fields = [] if self.opt_polarisation: fields += [('polx',fp),('poly',fp),('polz',fp)] fields += [('x',fp),('y',fp),('z',fp), ('uve1',fp),('uve2',fp),('uve3',fp),#packed unit vector and ekin ('t',fp)] if not self.opt_universalweight: fields += [('w',fp)] if not self.opt_universalpdgcode: fields += [('pdg','i4')] if self.opt_userflags: fields += [('uf','u4')] fields = [(str(f[0]),str(f[1])) for f in fields]#workaround for https://github.com/numpy/numpy/issues/2407 self._pdt = np_dtype(fields).newbyteorder(self.endianness) #Init position and caches (don't read first block yet): self._ipos = 0 self._blocklength = int(blocklength) assert(self._blocklength>0) self._iblock = 0 self._nblocks = self.nparticles // self._blocklength + (1 if self.nparticles%self._blocklength else 0) #reuse same block object for whole file (to reuse fixed columns and internal caches) self._currentblock = MCPLParticleBlock(self.opt_polarisation,self.opt_userflags, self.opt_universalweight,self.opt_universalpdgcode,self.version) @property def blocklength(self): """Number of particles read by each call to read_block()""" return self._blocklength def _open_file(self,filename): self._fileclose = lambda : None if not hasattr(filename,'endswith'): raise MCPLError('Unsupported type of filename object (should be path-like, a string or similar)') #Try to mimic checks and capabilities of mcpl.c as closely as possible #here (including the ability of gzopen to open uncompressed files), #which is why the slightly odd order of some checks below. try: fh = open(filename,'rb') except (IOError,OSError) as e: if e.errno == 2: fh = None#file not found else: raise if not fh: raise MCPLError('Unable to open file!') is_gz = False if filename.endswith('.gz'): is_gz = True try: import gzip except ImportError: raise MCPLError('can not open compressed files since gzip module is absent') try: if (fh.read(4)==b'MCPL'): #This is actually not a gzipped file, mimic gzopen in mcpl.c by #magically being able to open .mcpl files that are mistakenly named #as .mcpl.gz is_gz = False except (IOError, OSError, EOFError): pass fh.seek(0) can_use_np_fromfile = not _numpy_oldfromfile if is_gz: can_use_np_fromfile = False fh = gzip.GzipFile(fileobj=fh) if not fh: raise MCPLError('failed to open compressed file') if can_use_np_fromfile: #modern numpy and not gzipped input - read bytes by passing filehandle to np.fromfile self._fileread = lambda dtype,count : np.fromfile(fh,dtype=np_dtype(dtype),count=np.squeeze(count)) else: #old numpy or gzipped input - read bytes via filehandle and use np.frombuffer to decode #list of exception types that might indicate read errors (TypeError #and struct.error are in the list due to bugs in the python 3.3 gzip #module): read_errors=[ IOError, OSError, EOFError, TypeError] try: import struct read_errors += [struct.error] except: pass read_errors = tuple(read_errors) def fread_via_buffer(dtype,count): dtype,count=np_dtype(dtype),np.squeeze(count) assert count>0 n = dtype.itemsize * count try: x = fh.read( n ) except read_errors: x = tuple() if len(x)==n: return np.frombuffer(x,dtype=dtype, count=count) else: return np.ndarray(dtype=dtype,shape=0)#incomplete read => return empty array self._fileread = fread_via_buffer self._fileseek = lambda pos : fh.seek(pos) self._fileclose = lambda : fh.close() #two methods needed for usage in with-statements: def __enter__(self): return self def __exit__(self, ttype, value, traceback): self._fileclose() def read_block(self): """Read and return next block of particles (None when EOF). Similar to read(), but returned \"particle\" object actually represents a whole block of particles, and the fields on it are thus (numpy) arrays of numbers rather than single numbers. See also the particle_blocks property for an iterator-based access to blocks.""" if self._iblock>=self._nblocks: return None #read next block: to_read = self._blocklength if self._iblock+1==self._nblocks and self._np%self._blocklength: to_read = self.nparticles%self._blocklength#last block is shorter x = self._fileread(dtype=self._pdt,count=to_read) if len(x)!=to_read: raise MCPLError('Errors encountered while attempting to read particle data.') self._currentblock._set_data(x,self._iblock*self._blocklength) self._iblock += 1 return self._currentblock def read(self): """Read and return next particle in file (None when EOF) as a particle object, with particle state information available on fields as seen in the following example: p = mcplfile.read() if p is not None: print p.x,p.y,p.z print p.ux,p.uy,p.uz print p.polx,p.poly,p.polz print p.ekin,p.time,p.weight,p.userflags See also the particles property for an iterator-based access to particles. Furthermore, note that the read_blocks() function and the particle_blocks property provides block-based access, which can improve performance dramatically.""" if self._ipos >= self._np: return None#end of file p = self._currentblock.get_by_global(self._ipos) if p is None: self.read_block() p = self._currentblock.get_by_global(self._ipos) self._ipos += 1 return p def skip_forward(self,n): """skip n positions forward in file. (returns False when there is no particle at the new position, otherwise True)""" inew = self._ipos + int(n) if inew <= self._ipos: if inew == self._ipos: return self._ipos < self._np raise MCPLError("Requested skip is not in the forward direction") if self._currentblock.contains_ipos(inew): #handle case of small skip within currently loaded block first: self._ipos = inew return True if inew >= self._np: self._ipos = self.nparticles self._iblock = self._nblocks return False#EOF #skip to a given block: self._iblock = inew // self._blocklength assert self._iblock < self._nblocks#should not be eof blockstart = self.headersize+self._iblock*self._blocklength*self.particlesize assert blockstart > self._ipos#seek should be *forward* self._fileseek(blockstart) self._ipos = inew if not self.read_block(): raise MCPLError('Unexpected failure to load particle block') return True @property def particles(self): """Use to iterate over all particles in file: for p in thefile.particles: print p.x,p.y,p.z """ self.rewind() while True: p=self.read() if p is None: break yield p @property def particle_blocks(self): """Use to iterate over all particles in file, returning a block of particles each time for efficiency: for p in thefile.particle_blocks: print p.x,p.y,p.z #NB: the "values" here are actually arrays """ self.rewind() while True: p=self.read_block() if p is None: break yield p def rewind(self): """Rewind file, causing next calls to read() and read_blocks() to start again at the beginning of the file.""" self._fileseek(self.headersize) self._ipos = 0 self._iblock = 0 self._currentblock._set_data(None,None) @property def version(self): """MCPL format version of the file""" return self._hdr['version'] @property def nparticles(self): """Number of particles in file""" return self._hdr['nparticles'] @property def particlesize(self): """Uncompressed per-particle storage size in file [bytes]""" return self._hdr['particlesize'] @property def headersize(self): """Uncompressed size of the file header [bytes]""" return self._hdr['headersize'] @property def endianness(self): """Endianness of numbers in file""" return self._hdr['endianness'] @property def opt_userflags(self): """Whether or not userflags are enabled in file""" return self._hdr['opt_userflags'] @property def opt_universalpdgcode(self): """Global PDG code for all particles in file (a value of 0 means that PDG codes are stored per-particle)""" return self._hdr['opt_universalpdgcode'] @property def opt_polarisation(self): """Whether or not polarisation info is enabled in file""" return self._hdr['opt_polarisation'] @property def opt_singleprec(self): """Whether or not floating point numbers in particle data are stored in single-precision (32bit) rather than double-precision (64bit)""" return self._hdr['opt_singleprec'] @property def opt_universalweight(self): """Global weight for all particles in file (a value of 0.0 means that weights are stored per-particle)""" return self._hdr['opt_universalweight'] @property def sourcename(self): """Name of application that wrote the MCPL file""" return self._hdr['sourcename'] @property def comments(self): """List of custom comments (strings) embedded in the file header""" return self._hdr['comments'] @property def blobs(self): """Dictionary of custom binary blobs (byte-arrays) embedded in the file header. Each such blob is associated with a key, which is also the key in the dictionary""" return self._hdr['blobs'] @property def blob_storage_order(self): """In-file storage order of binary blobs (as list of keys).""" return self._hdr['blobkeys'] def _loadhdr(self): self._hdr={} h=self._hdr x=self._fileread(dtype='u1',count=8) if len(x)!=8 or not all(x[0:4]==(77,67,80,76)): raise MCPLError('File is not an MCPL file!') x=list(map(chr,x[4:])) version = int(''.join(x[0:3])) if not version in (2,3): raise MCPLError('File is in an unsupported MCPL version!') h['version']=version endianness = x[3] if not endianness in ('L','B'): raise MCPLError('Unexpected value in endianness field!') h['endianness']=endianness dt= np_dtype("u8,5u4,i4,2u4").newbyteorder(endianness) y = self._fileread(dtype=dt,count=1) if len(y)!=1: raise MCPLError('Invalid header') (nparticles,(ncomments,nblobs,opt_userflags,opt_polarisation,opt_singleprec), opt_universalpdgcode,(particlesize,_tmp)) = y[0] #convert all int types to python 'int' (which is 64bit), to avoid #conversions like int+np.uint64->np.float64, and flags to bool: nparticles = int(nparticles) self._np = nparticles#needs frequent access particlesize = int(particlesize) opt_universalpdgcode = int(opt_universalpdgcode) opt_userflags = bool(opt_userflags) opt_polarisation = bool(opt_polarisation) opt_singleprec = bool(opt_singleprec) opt_universalweight = float(self._fileread(dtype=np_dtype('f8').newbyteorder(endianness),count=1)[0] if _tmp else 0.0) h['nparticles']=nparticles h['particlesize']=particlesize h['opt_universalpdgcode']=opt_universalpdgcode h['opt_userflags'] = opt_userflags h['opt_polarisation'] = opt_polarisation h['opt_singleprec'] = opt_singleprec h['opt_universalweight'] = opt_universalweight def readarr(): l = self._fileread(dtype=np_dtype('u4').newbyteorder(endianness),count=1) if len(l)!=1: raise MCPLError('Invalid header') if l==0: return b'' cont = self._fileread(dtype='u1',count=l) if len(cont)!=l: raise MCPLError('Invalid header') return cont.tobytes() if hasattr(cont,'tobytes') else cont.tostring() sourcename = readarr() comments=[] for i in range(ncomments): comments += [readarr()] blobs={} blobs_user={} blobkeys = []#to keep order available to dump_hdr for i in range(nblobs): blobkeys += [readarr()] for i,bk in enumerate(blobkeys): blobs[bk] = readarr() headersize = ( 48 + 4 + len(sourcename) + (8 if opt_universalweight else 0) + sum(4+len(c) for c in comments) + sum(8+len(bk)+len(bv) for bk,bv in blobs.items()) ) h['headersize'] = headersize if self._py3_str_decode: #attributes return python strings since raw_strings was not set, so #we must decode these before returning to the user. But for output #compatibility with the C-mcpltool, dump_hdr() will use original ones above. h['sourcename_raw'] = sourcename h['comments_raw'] = comments h['blobs_raw'] = blobs h['blobkeys_raw'] = blobkeys h['sourcename'] = sourcename.decode('utf-8','replace') h['comments'] = [c.decode('utf-8','replace') for c in comments] h['blobkeys'] = [bk.decode('utf-8','replace') for bk in blobkeys] h['blobs'] = dict((k.decode('utf-8','replace'),v) for k,v in blobs.items()) else: #raw bytes all the way h['sourcename'] = sourcename h['comments'] = comments h['blobs'] = blobs h['blobkeys'] = blobkeys def dump_hdr(self): """Dump file header to stdout (using a format identical to the one from the compiled mcpltool)""" h=self._hdr def print_datastring(prefix,s,postfix): print(prefix,end='') _output_bytearray_raw(s) print(postfix) print("\n Basic info") print(" Format : MCPL-%i"%h['version']) print(" No. of particles : %i"%h['nparticles']) print(" Header storage : %i bytes"%h['headersize']) print(" Data storage : %i bytes"%(h['nparticles']*h['particlesize'])) print("\n Custom meta data") print_datastring(' Source : "', h.get('sourcename_raw',None) or h.get('sourcename'), '"') comments = h.get('comments_raw',None) or h.get('comments') print(" Number of comments : %i"%len(comments)) for i,c in enumerate(comments): print_datastring(' -> comment %i : "'%i,c,'"') blobs = h.get('blobs_raw',None) or h.get('blobs') blobkeys = h.get('blobkeys_raw',None) or h.get('blobkeys') print(" Number of blobs : %i"%len(h['blobs'])) for bk in blobkeys: print_datastring(' -> %i bytes of data with key "'%len(blobs[bk]),bk,'"') print("\n Particle data format") print(" User flags : %s"%("yes" if h['opt_userflags'] else "no")) print(" Polarisation info : %s"%("yes" if h['opt_polarisation'] else "no")) s = " Fixed part. type : " if h['opt_universalpdgcode']: s += "yes (pdgcode %i)"%h['opt_universalpdgcode'] else: s += "no" print(s) s = " Fixed part. weight : " if h['opt_universalweight']: s += "yes (weight %g)"%h['opt_universalweight'] else: s += "no" print(s) print(" FP precision : %s"%("single" if h['opt_singleprec'] else "double")) print(" Endianness : %s"%({'L':'little','B':'big'}[h['endianness']])) print(" Storage : %i bytes/particle"%h['particlesize']) print() def dump_particles(self,limit=10,skip=0): """Dump a list of particles to stdout (using a format identical to the one from the compiled mcpltool). The limit and skip parameters can be used to respectively limit the number of particles printed and to skip past particles at the head of the file. Use limit=0 to disable the limit.""" #1) update position self.rewind() self.skip_forward(skip) #2) print column titles: opt_pol,opt_uf,opt_uw = self.opt_polarisation,self.opt_userflags,self.opt_universalweight s = "index pdgcode ekin[MeV] x[cm] y[cm] z[cm] ux uy uz time[ms]" if not opt_uw: s += " weight" if opt_pol: s += " pol-x pol-y pol-z" if opt_uf: s += " userflags" print(s) #3) loop and print fmt1 = "%5i %11i %11.5g %11.5g %11.5g %11.5g %11.5g %11.5g %11.5g %11.5g" fmt2 = " %11.5g %11.5g %11.5g" for i in range(limit if limit!=0 else self.nparticles): p = self.read() if p is None: break s = fmt1%( p.file_index,p.pdgcode,p.ekin,p.x,p.y,p.z, p.ux,p.uy,p.uz,p.time ) if not opt_uw: s += " %11.5g"%p.weight if opt_pol: s+=fmt2%( p.polx, p.poly, p.polz ) if opt_uf: s+=" 0x%08x"%p.userflags print(s) def dump_file(filename,header=True,particles=True,limit=10,skip=0,**kwargs): """Python equivalent of mcpl_dump(..) function from mcpl.h, which can be used to dump both header and particle contents of a file to stdout.""" f = MCPLFile(filename,**kwargs) print("Opened MCPL file %s:"%os.path.basename(filename)) if header: f.dump_hdr() if particles: f.dump_particles(limit=limit,skip=skip) def convert2ascii(mcplfile,outfile): """Read particle contents of mcplfile and write into outfile using a simple ASCII-based format""" fin = mcplfile if isinstance(mcplfile,MCPLFile) else MCPLFile(mcplfile) fout = outfile if hasattr(outfile,'write') else open(outfile,'w') fout.write("#MCPL-ASCII\n#ASCII-FORMAT: v1\n#NPARTICLES: %i\n#END-HEADER\n"%fin.nparticles) fout.write("index pdgcode ekin[MeV] x[cm] " +" y[cm] z[cm] ux " +" uy uz time[ms] weight " +" pol-x pol-y pol-z userflags\n") fmtstr="%5i %11i %23.18g %23.18g %23.18g %23.18g %23.18g %23.18g %23.18g %23.18g %23.18g %23.18g %23.18g %23.18g 0x%08x\n" for idx,p in enumerate(fin.particles): fout.write(fmtstr%(idx,p.pdgcode,p.ekin,p.x,p.y,p.z,p.ux,p.uy,p.uz,p.time,p.weight,p.polx,p.poly,p.polz,p.userflags)) def _pymcpltool_usage(progname,errmsg=None): if errmsg: print("ERROR: %s\n"%errmsg) print("Run with -h or --help for usage information") sys.exit(1) helpmsg = """ Tool for inspecting Monte Carlo Particle List (.mcpl) files. The default behaviour is to display the contents of the FILE in human readable format (see Dump Options below for how to modify what is displayed). This is the read-only python version of the tool, and as such a lot of functionality is missing compared to the compiled C version of the tool. This installation supports direct reading of gzipped files (.mcpl.gz). Usage: PROGNAME [dump-options] FILE PROGNAME --stats [stat-options] FILE PROGNAME --version PROGNAME --help Dump options: By default include the info in the FILE header plus the first ten contained particles. Modify with the following options: -j, --justhead : Dump just header info and no particle info. -n, --nohead : Dump just particle info and no header info. -lN : Dump up to N particles from the file (default 10). You can specify -l0 to disable this limit. -sN : Skip past the first N particles in the file (default 0). -bKEY : Dump binary blob stored under KEY to standard output. Stat options: --stats FILE : Print statistics summary of particle state data from FILE. --stats --pdf FILE : Produce PDF file mcpl.pdf with histograms of particle state data from FILE. --stats --gui FILE : Like --pdf, but opens interactive histogram views directly. Other options: -t, --text MCPLFILE OUTFILE Read particle contents of MCPLFILE and write into OUTFILE using a simple ASCII-based format. -v, --version : Display version of MCPL installation. -h, --help : Display this usage information (ignores all other options). """ print(helpmsg.strip().replace('PROGNAME',progname)) sys.exit(0) def app_pymcpltool(argv=None): """Implements a python equivalent of the compiled MCPL tool. If no argv list is passed in, sys.argv will be used. In case of errors, MCPLError exceptions are raised.""" if argv is None: argv = sys.argv progname,args = os.path.basename(argv[0]),argv[1:] #NB: We do not use standard python parsing modules, since we want to be #as strictly compatible with the compiled mcpltool as possible. if not args: print('ERROR: No input file specified\n\nRun with -h or --help for usage information') sys.exit(1) opt_justhead = False opt_nohead = False opt_limit = None opt_skip = None opt_blobkey = None opt_version = False opt_text = False opt_stats = False opt_pdf = False opt_gui = False filelist = [] def bad(errmsg): _pymcpltool_usage(progname,errmsg) for a in args: if a.startswith(str('--')): if a==str('--justhead'): opt_justhead=True elif a==str('--nohead'): opt_nohead=True elif a==str('--version'): opt_version=True elif a==str('--stats'): opt_stats=True elif a==str('--pdf'): opt_pdf=True elif a==str('--gui'): opt_gui=True elif a==str('--text'): opt_text=True elif a==str('--help'): _pymcpltool_usage(progname) else: bad(str("Unrecognised option : %s")%a) elif a.startswith(str('-')): a=a[1:] while a: f,a=a[0],a[1:] if f=='b': if not opt_blobkey is None: bad("-b specified more than once") if not a: bad("Missing argument for -b") opt_blobkey,a = a,'' elif f=='l' or f=='s': if not a: bad("Bad option: missing number") if not a.isdigit(): bad("Bad option: expected number") if f=='l': if not opt_limit is None: bad("-l specified more than once") opt_limit = int(a) else: assert f=='s' if not opt_skip is None: bad("-s specified more than once") opt_skip = int(a) a='' elif f=='j': opt_justhead=True elif f=='n': opt_nohead=True elif f=='v': opt_version=True elif f=='t': opt_text=True elif f=='h': _pymcpltool_usage(progname) else: bad("Unrecognised option : -%s"%f) else: filelist += [a] number_dumpopts = sum(1 for e in (opt_justhead,opt_nohead,opt_limit is not None,opt_skip is not None,opt_blobkey) if e) numper_statopts = sum(1 for e in (opt_stats,opt_pdf,opt_gui) if e) if sum(1 for e in (opt_version,opt_text,number_dumpopts,numper_statopts) if e)>1: bad('Conflicting options specified.') if number_dumpopts>1 and opt_blobkey: bad("Do not specify other dump options with -b.") if opt_pdf and not opt_stats: bad("Do not specify --pdf without --stats") if opt_gui and not opt_stats: bad("Do not specify --gui without --stats") if opt_gui and opt_pdf: bad("Do not specify both --pdf and --gui") if opt_version: if filelist: bad("Unrecognised arguments for --version.") print("MCPL version %s"%__version__) sys.exit(0) if opt_text: if len(filelist)>2: bad("Too many arguments.") if len(filelist)!=2: bad("Must specify both input and output files with --text.") if (os.path.exists(filelist[1])): bad("Requested output file already exists.") try: fout = open(filelist[1],'w') except (IOError,OSError) as e: fout = None if not fout: raise MCPLError('Could not open output file.') convert2ascii(filelist[0],fout) sys.exit(0) #Dump or stats: if len(filelist)>1: bad("Too many arguments.") if not filelist: bad("No input file specified") if opt_stats: f=MCPLFile(filelist[0]) if f.nparticles==0: bad("Can not calculate statistics for an empty file") if opt_pdf or opt_gui: plot_stats(f, pdf=('mcpl.pdf' if opt_pdf else False), set_backend=('agg' if opt_pdf else None)) if opt_pdf: print("Created mcpl.pdf") else: dump_stats(f) sys.exit(0) #Dump if opt_blobkey: with MCPLFile(filelist[0]) as f: thedata = f.blobs.get(opt_blobkey,None) if thedata is None and 'blobs_raw' in f._hdr: #Under LANG=C and python3, utf-8 keys might be in trouble: thedata = f._hdr['blobs_raw'].get(os.fsencode(opt_blobkey),None) if thedata is None: sys.exit(1) if sys.platform == "win32": import msvcrt msvcrt.setmode(sys.stdout.fileno(), os.O_BINARY) _output_bytearray_raw(thedata) sys.exit(0) if (opt_limit is not None or opt_skip is not None) and opt_justhead: bad("Do not specify -l or -s with --justhead") if opt_limit is None: opt_limit = 10 if opt_skip is None: opt_skip = 0 if opt_justhead and opt_nohead: bad("Do not supply both --justhead and --nohead.") dump_file(filelist[0],header=not opt_nohead,particles=not opt_justhead,limit=opt_limit,skip=opt_skip) sys.exit(0) _db_pdg = None _db_elem = None def _pdg_database(pdgcode): global _db_pdg, _db_elem if _db_pdg is None: _db_pdg = { 12:'nu_e',14:'nu_mu',16:'nu_tau',-12:'nu_e-bar',-14:'nu_mu-bar', -16:'nu_tau-bar',2112:'n',2212:'p',-2112:'n-bar',-2212:'p-bar', 22:'gamma',11:'e-',-11:'e+',13:'mu-',-13:'mu+',15:'tau-',-15:'tau+', 211:'pi+',-211:'pi-',111:'pi0',321:'K+',-321:'K-',130:'Klong', 310:'Kshort',-1000010020:'D-bar',-1000010030:'T-bar',1000010020:'D', 1000010030:'T',1000020040:'alpha',-1000020040:'alpha-bar' } r=_db_pdg.get(pdgcode,None) if r is not None: return r if _db_elem is None: _db_elem = ['H', 'He', 'Li', 'Be', 'B', 'C', 'N', 'O', 'F', 'Ne', 'Na', 'Mg', 'Al', 'Si', 'P' , 'S', 'Cl', 'Ar', 'K', 'Ca', 'Sc', 'Ti', 'V', 'Cr', 'Mn', 'Fe', 'Co', 'Ni', 'Cu', 'Zn', 'Ga', 'Ge', 'As', 'Se', 'Br', 'Kr', 'Rb', 'Sr', 'Y', 'Zr', 'Nb', 'Mo', 'Tc', 'Ru', 'Rh', 'Pd', 'Ag', 'Cd', 'In', 'Sn', 'Sb', 'Te', 'I', 'Xe', 'Cs', 'Ba', 'La', 'Ce', 'Pr', 'Nd', 'Pm', 'Sm', 'Eu', 'Gd', 'Tb', 'Dy', 'Ho', 'Er', 'Tm', 'Yb', 'Lu', 'Hf', 'Ta', 'W', 'Re', 'Os', 'Ir', 'Pt', 'Au', 'Hg', 'Tl', 'Pb', 'Bi', 'Po', 'At', 'Rn', 'Fr', 'Ra', 'Ac', 'Th', 'Pa', 'U', 'Np', 'Pu', 'Am', 'Cm', 'Bk', 'Cf', 'Es', 'Fm', 'Md', 'No', 'Lr', 'Rf', 'Db', 'Sg', 'Bh', 'Hs', 'Mt', 'Ds', 'Rg'] if pdgcode>0 and pdgcode//100000000==10: I = pdgcode % 10 pdgcode //= 10 AAA = pdgcode%1000 pdgcode //= 1000 ZZZ = pdgcode%1000 pdgcode //= 1000 L = pdgcode % 10 pdgcode //= 10 if pdgcode==10 and ZZZ>0 and AAA>0: if L==0 and I==0 and ZZZ < len(_db_elem)+1: return '%s%i'%(_db_elem[ZZZ-1],AAA) s = 'ion(Z=%i,A=%i'%(ZZZ,AAA) if L: s += ',L=%i'%L if I: s += ',I=%i'%I s += ')' return s return None def _unique_count(a,weights=None): """returns (unique,count) where unique is an array of sorted unique values in a, and count is the corresponding frequency counts""" unique, inverse = np_unique(a, return_inverse=True) count = np.zeros(len(unique), np.int if weights is None else np_dtype(type(weights[0]))) _np_add_at(count, inverse, 1 if weights is None else weights) return (unique, count) def _merge_unique_count(uc1,uc2): """merges the results of calling _unique_count on two separate data sets""" u = np.append(uc1[0],uc2[0]) c = np.append(uc1[1],uc2[1]) restype=(uc1[1][0] if len(uc1[1]) else 0) +(uc2[1][0] if len(uc2[1]) else 0) unique, inverse = np_unique(u, return_inverse=True) count = np.zeros(len(unique), np_dtype(type(restype))) _np_add_at(count, inverse, c) return (unique,count) class _StatCollector: def __init__(self): #For numerical stability also when mean>>rms, rms state is calculated by #accumulation in T variable (as in "SimpleHists" by T. Kittelmann, 2014). #Here the variable T is stored in self.__rmsstate. self.clear() self.__dumporder = ['min','max','mean','rms','integral'] self.__statcalc = { 'rms' : (lambda : np.sqrt(self.__rmsstate/self.__sumw) if self.__sumw else None ), 'mean' : (lambda : (self.__sumwx/self.__sumw) if self.__sumw else None ), 'min' : (lambda : self.__min ), 'max' : (lambda : self.__max ), 'integral' : (lambda : self.__sumw ) } assert sorted(self.__dumporder)==sorted(self.__statcalc.keys()) def clear(self): self.__sumw,self.__sumwx,self.__rmsstate = 0.0,0.0,0.0 self.__min,self.__max = None,None def add_data(self,a,w = None): amin,amax = a.min(),a.max() assert w is None or len(w)==len(a) assert not np.isnan(amin),"input array has NaN's!" self.__min = min(amin,amin if self.__min is None else self.__min) self.__max = max(amax,amax if self.__max is None else self.__max) new_sumw = float(len(a)) if w is None else w.sum() if not new_sumw: return new_sumwx = a.sum() if w is None else (a*w).sum() a_shifted = a - new_sumwx/new_sumw#shift to mean for numerical stability sumwx_shifted = a_shifted.sum() if w is None else (a_shifted*w).sum() sumwxx_shifted = (a_shifted**2).sum() if w is None else ((a_shifted**2)*w).sum() new_T = sumwxx_shifted - sumwx_shifted**2/new_sumw if not self.__sumw: self.__rmsstate = new_T else: w1,w2 = self.__sumw,new_sumw self.__rmsstate += new_T + (w2*self.__sumwx-w1*new_sumwx)**2/(w1*w2*(w1+w2)) self.__sumw += new_sumw self.__sumwx += new_sumwx def dump(self): for k in self.__dumporder: print("%s : %s"%(k.ljust(8),'%g'%self.__statcalc[k]() if self.__sumw>0.0 or k=='integral' else 'n/a')) def summarise(self): return ', '.join("%s=%s"%(k,'%g'%self.__statcalc[k]() if self.__sumw>0.0 or k=='integral' else 'n/a') for k in self.__dumporder) def __getitem__(self,a): return self.__statcalc[a]() def as_dict(self): return dict((k,self.__statcalc[k]()) for k in self.__statcalc.keys()) _possible_std_stats = ['ekin','x','y','z','ux','uy','uz','time','weight','polx','poly','polz'] _possible_freq_stats = ['pdgcode','userflags'] def collect_stats(mcplfile,stats=_str('all'),bin_data=True): """Efficiently collect statistics from an entire file (or part of file, if limit or skip parameters are set). Returns dictionary with stat names as key and the collected statistics as values.""" #Normal stats (will be used weighted, except for stats about the weight field itself): possible_std_stats = set(_possible_std_stats) #Stats for which distributions are less likely to be relevant, so unique #values and their frequency will be returned instead: possible_freq_stats = set(_possible_freq_stats) if _str(stats)==_str('all'): stats = possible_std_stats.union(possible_freq_stats) if not isinstance(stats,set): stats = set(stats) if not isinstance(mcplfile,MCPLFile): mcplfile = MCPLFile(mcplfile) if mcplfile.nparticles==0: print("MCPL WARNING: Can not calculate stats on an empty file") return {} unknown = stats.difference(possible_std_stats.union(possible_freq_stats)) if unknown: raise MCPLError('Unknown stat names requested: "%s"'%('","'.join(unknown))) #Some stats might be constant for all particles in the file: constant_stats_available = set() if mcplfile.opt_universalpdgcode: constant_stats_available.add('pdgcode') if not mcplfile.opt_userflags: constant_stats_available.add('userflags') if mcplfile.opt_universalweight: constant_stats_available.add('weight') if not mcplfile.opt_polarisation: constant_stats_available |= set(['polx','poly','polz']) cnst_stats = constant_stats_available.intersection(stats) stats = stats.difference(cnst_stats) std_stats = sorted(list(stats.difference(constant_stats_available).intersection(possible_std_stats))) freq_stats = sorted(list(stats.difference(constant_stats_available).intersection(possible_freq_stats))) if not std_stats and not freq_stats and not cnst_stats: raise MCPLError('No stats requested') weight_sum = mcplfile.nparticles * mcplfile.opt_universalweight if mcplfile.opt_universalweight else None nbins = 100 if mcplfile.nparticles < 1000 else 200 if nbins%2==0: nbins += 1#ensure nbins is odd (makes some stuff below easier) collected_stats={} if std_stats: #Unfortunately we need a pass-through in order to collect #statistics for histogram ranges: for s in std_stats: collected_stats[s] = _StatCollector() for pb in mcplfile.particle_blocks: vals_weight=pb.weight for s,sc in collected_stats.items(): if s=='weight': sc.add_data(vals_weight) else: sc.add_data(getattr(pb,s),vals_weight) ranges={} for s,sc in collected_stats.items(): if weight_sum is None and s!='weight': weight_sum = sc['integral'] ranges[s] = [max(sc['min'],sc['mean']-2*sc['rms']), min(sc['max'],sc['mean']+2*sc['rms'])] if not ranges[s][0]10000: print("MCPL WARNING: Too many unique values in %s field. Disabling %s statistics"%(s,s)) disable+=[s] for s in disable: del freq_uc[s] freq_stats.remove(s) for s in (std_stats if bin_data else []): vals = getattr(pb,s) if s!='weight' else vals_weight h,bins = np.histogram(vals, bins=nbins, range=ranges[s], weights=(None if s=='weight' else vals_weight)) if s in hists: hists[s][0] += h else: hists[s] = [ h, bins ] if weight_sum is None: sumw += pb.weight.sum() if weight_sum is None: weight_sum = sumw if weight_sum is None: #apparently we need a run-through for the sole purpose of calculating this... assert not std_stats and not freq_stats weight_sum = 0.0 for pb in mcplfile.particle_blocks: weight_sum += pb.weight.sum() assert not weight_sum is None if cnst_stats: if 'pdgcode' in cnst_stats: assert mcplfile.opt_universalpdgcode cnst_stats.remove('pdgcode') freq_uc['pdgcode'] = (np.asarray([mcplfile.opt_universalpdgcode]),np.asarray([weight_sum])) if 'userflags' in cnst_stats: assert not mcplfile.opt_userflags cnst_stats.remove('userflags') freq_uc['userflags'] = (np.asarray([0]),np.asarray([weight_sum])) if 'weight' in cnst_stats: uw=mcplfile.opt_universalweight assert uw cnst_stats.remove('weight') sc=_StatCollector() sc.add_data(np.asarray([uw],float),np.asarray([mcplfile.nparticles],float)) collected_stats['weight']=sc if bin_data: bins = np.linspace(0.0,2.0*uw,nbins+1) h = np.zeros(nbins) assert nbins % 2 != 0#nbins is odd, value falls at bin center below: h[nbins//2] = uw * mcplfile.nparticles#unweighted! hists['weight'] = [ h, bins ] for spol in ('polx','poly','polz'): if spol in cnst_stats: cnst_stats.remove(spol) sc=_StatCollector() sc.add_data(np.asarray([0.0],float),np.asarray([weight_sum],float)) collected_stats[spol] = sc if bin_data: bins = np.linspace(-1.0,1.0,nbins+1) h = np.zeros(nbins) assert nbins % 2 != 0#nbins is odd, value 0.0 falls at bin center: h[nbins//2] = weight_sum hists[spol] = [ h, bins ] for s in list(k for k in freq_uc.keys()): #sort by frequency: u,c=freq_uc[s] sortidx=np.argsort(u,kind='mergesort')#the indices that would sort u u,c=u[sortidx],c[sortidx] sortidx=np.argsort(c,kind='mergesort')[::-1]#the indices that would sort c, viewed in reverse order freq_uc[s] = u[sortidx],c[sortidx] results = { 'file':{'type':'fileinfo','integral':weight_sum,'nparticles':mcplfile.nparticles} } for s,uc in freq_uc.items(): results[s] = { 'unique_values': uc[0], 'unique_values_counts' : uc[1], 'weighted' : True, 'type':'freq' } units=dict(ekin='MeV',x='cm',y='cm',z='cm',time='ms') for s,sc in collected_stats.items(): d=sc.as_dict() d.update({'summary':sc.summarise(), 'name':s, 'unit':units.get(s,None), 'weighted': s!='weight', 'type' : 'hist'}) if bin_data: h,bins = hists[s] d.update({'hist_bins' : bins, 'hist' : h}) results[s] = d return results _freq_alt_descr = {'pdgcode': _pdg_database, 'userflags':lambda x : '0x%08x'%x} def dump_stats(stats): """Format and print provided statistics object to stdout. The stats object is assumed to have been created by a call to collect_stats()""" if not isinstance(stats,dict): stats = collect_stats(stats,bin_data=False) print('------------------------------------------------------------------------------') print('nparticles : %i'%stats['file']['nparticles']) print('sum(weights) : %g'%stats['file']['integral']) if set(stats).intersection(_possible_std_stats): print('------------------------------------------------------------------------------') print(' : mean rms min max') print('------------------------------------------------------------------------------') for statname in _possible_std_stats: if not statname in stats: continue s=stats[statname] assert s['type']=='hist' su = '%s %s'%(statname.ljust(6),('[%s]'%s['unit']).rjust(5)) if s['unit'] else statname print('%s : %15g %15g %15g %15g'%(su.ljust(12),s['mean'],s['rms'],s['min'],s['max'])) for statname in _possible_freq_stats: if not statname in stats: continue print('------------------------------------------------------------------------------') s=stats[statname] assert s['type']=='freq' fct_alt_descr = _freq_alt_descr.get(statname,lambda x: '') #fmt_fct = freq_formats_fcts[statname] uv,uvc=s['unique_values'],s['unique_values_counts'].copy() percents=uvc*(100.0/uvc.sum()) showmax=50 print ('%s : '%(statname.ljust(12)),end='') for i,(u,p,c) in enumerate(zip(uv,percents,uvc)): txt='%i'%u if i+1==showmax: txt='other' alttxt='' p=percents[i:].sum() c=uvc[i:].sum() else: alttxt=fct_alt_descr(u) print('%s %s %12g (%5.2f%%)'%(txt.rjust(26 if i else 11), ('(%s)'%alttxt if alttxt else '').ljust(12), c,p)) if i+1==showmax: break print (' [ values ] [ weighted counts ]') print('------------------------------------------------------------------------------') def plot_stats(stats,pdf=False,set_backend=None): """Produce plots of provided statistics object with matplotlib. The pdf parameter can be set to a filename and if so, the plots will be produced in that newly created PDF file, rather than being shown interactively. The set_backend parameter can be used to select a matplotlib backend. The stats object is assumed to have been created by a call to collect_stats().""" if pdf is True: raise MCPLError('If set, the pdf parameter should be a string' +' containing the desired filename of the PDF file to be created') if pdf and os.path.exists(pdf): raise MCPLError('PDF file %s already exists'%(pdf)) try: import matplotlib except ImportError: print() print("ERROR: For plotting, this MCPL python module requires matplotlib (matplotlib.org) to be") print("ERROR: installed. You can perhaps install it using using your software manager and searching") print("ERROR: for \"matplotlib\" or \"python-matplotlib\", or it might come bundled with software") print("ERROR: such as scientific python or anaconda, depending on your platform. Alternatively, if") print("ERROR: you are using the pip package manager, you might be able to install it with the") print("ERROR: command \"pip install matplotlib\".") print() raise if set_backend: matplotlib.use(set_backend) if pdf: try: from matplotlib.backends.backend_pdf import PdfPages except ImportError: print() print("ERROR: matplotlib installation does not have required support for PDF output.") print() raise pdf_file = pdf pdf = PdfPages(pdf) try: import matplotlib.pyplot as plt except ImportError: print() print("ERROR: importing matplotlib succeeded, but importing matplotlib.pyplot failed.") print("ERROR: This is rather unusual, an is perhaps related to issues with your chosen") print("ERROR: matplotlib backend, which you might have set globally in a matplotlib") print("ERROR: configuration file.") print() raise if not isinstance(stats,dict): stats = collect_stats(stats,bin_data=True) showmax=10 for s in _possible_freq_stats: if not s in stats: continue freq=stats[s] u,c=freq['unique_values'],freq['unique_values_counts'] fct_alt_descr = _freq_alt_descr.get(s,lambda x: None) def fmt_fct_raw(x): alttxt = fct_alt_descr(x) return '%s\n(%s)'%(str(x),alttxt) if alttxt is not None else str(x) #fmt_fct_raw = freq_formats_fcts[s] fmt_fct = lambda i,x: fmt_fct_raw(x) if len(c)>showmax: sum_other = c[showmax-1:].sum() u,c = u[0:showmax].copy(), c[0:showmax].copy() c[showmax-1] = sum_other fmt_fct = lambda i,x: 'other' if i==showmax-1 else fmt_fct_raw(x) percents = c.astype(float)*100.0/sum(c) labels = ['%s\n%.2f%%'%(fmt_fct(i,e),percents[i]) for i,e in enumerate(u)] barcenters=list(range(len(c))) rects = plt.bar(barcenters, c, width=0.7,align='center',linewidth=0) ax=plt.gca() ax.set_xticks(barcenters) percents=c.astype(float)*100.0/sum(c) ax.set_xticklabels(labels,fontsize='small') ax.yaxis.grid(True,color='white',linestyle='-') ax.set_xlim(-0.5,len(c)-0.5) plt.title(s) plt.subplots_adjust(left=0.1, right=0.94, top=0.93, bottom=0.13) if pdf: pdf.savefig(plt.gcf()) plt.close() else: plt.show() for s in _possible_std_stats: if not s in stats: continue h=stats[s] hist,bins = h['hist'],h['hist_bins'] plt.bar(0.5*(bins[:-1] + bins[1:]), hist, align='center', width=(bins[1] - bins[0]),linewidth=0) plt.grid() plt.title('%s%s (%s)'%(s, ' [%s]'%h['unit'] if h['unit'] is not None else '', 'weighted' if h['weighted'] else 'unweighted')) plt.xlabel(h['summary'],fontsize='small') plt.xlim(bins[0],bins[-1]) plt.subplots_adjust(left=0.1, right=0.94, top=0.93, bottom=0.13) if pdf: pdf.savefig(plt.gcf()) plt.close() else: plt.show() if pdf: if hasattr(pdf,'infodict'): d = pdf.infodict() d['Title'] = 'Plots made with mcpl.py version %s'%__version__ d['Author'] = 'mcpl.py v%s'%__version__ d['Subject'] = 'mcpl plots' d['Keywords'] = 'mcpl' pdf.close() def main(): """This function simply calls app_pymcpltool(), but any raised MCPLError exception will be caught and transformed into a corresponding error message followed by a call to sys.exit(1). Invoking the mcpl.py module as a script (for instance with "python -m") will result in a call to this function.""" try: app_pymcpltool() except MCPLError as e: print('MCPL ERROR: %s'%str(e)) sys.exit(1) if __name__=='__main__': main() mcpl-1.3.2/src_fat/ssw2mcpl_app_fat.c000066400000000000000000023430341361775146500175310ustar00rootroot00000000000000 /////////////////////////////////////////////////////////////////////// // // // This is a quick and dirty standalone version of the SSW to MCPL // // converter, ssw2mcpl, including both mcpl.h, mcpl.c, // // sswread.h, sswread.c, a main(), and zlib. // // // // Compile into executable using C99 with libm: // // // // $CC -std=c99 ssw2mcpl_app_fat.c -lm -o ssw2mcpl // // // // Where $CC is a C99 capable C-compiler like gcc or clang. // // // // For licensing and documentation, please refer to either the MCPL // // website (https://mctools.github.io/mcpl/) or files in the full // // MCPL distribution, obtainable from the same place. In particular, // // since some code in this file originates in the zlib library // // (http://zlib.net), the zlib license applies to those parts and is // // repeated below. // // // // Note that usage of MCNP(X)-related utilities might require // // additional permissions and licenses from third-parties, which is // // not within the scope of the MCPL project itself. // // // /////////////////////////////////////////////////////////////////////// //---------- the zlib license ----------// /* zlib.h -- interface of the 'zlib' general purpose compression library version 1.2.8, April 28th, 2013 Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. Jean-loup Gailly Mark Adler jloup@gzip.org madler@alumni.caltech.edu */ //---------- Automatically concatenated code follows below ----------// #ifdef MCPL_HEADER_INCPATH # undef MCPL_HEADER_INCPATH #endif #ifndef __STDC_FORMAT_MACROS # define __STDC_FORMAT_MACROS #endif #ifndef _POSIX_C_SOURCE # define _POSIX_C_SOURCE 200809L #endif #ifndef _ISOC99_SOURCE # define _ISOC99_SOURCE 1 #endif #ifndef _C99_SOURCE # define _C99_SOURCE 1 #endif #ifndef MCPL_HASZLIB # define MCPL_HASZLIB #endif #ifndef SSWREAD_HASZLIB # define SSWREAD_HASZLIB #endif #ifdef SSWREAD_HDR_INCPATH # undef SSWREAD_HDR_INCPATH #endif #ifdef SSWMCPL_HDR_INCPATH # undef SSWMCPL_HDR_INCPATH #endif #ifdef SSWREAD_ZLIB_INCPATH # undef SSWREAD_ZLIB_INCPATH #endif #ifdef MCPL_ZLIB_INCPATH # undef MCPL_ZLIB_INCPATH #endif #ifndef MCPL_H #define MCPL_H #include /***********************************************************************************/ /* */ /* Monte Carlo Particle Lists : MCPL */ /* */ /* Utilities for reading and writing .mcpl files: A binary format with lists of */ /* particle state information, for interchanging and reshooting events between */ /* various Monte Carlo simulation applications. */ /* */ /* Find more information and updates at https://mctools.github.io/mcpl/ */ /* */ /* This file can be freely used as per the terms in the LICENSE file. */ /* */ /* Written by Thomas Kittelmann, 2015-2017. */ /* */ /***********************************************************************************/ #define MCPL_VERSION_MAJOR 1 #define MCPL_VERSION_MINOR 3 #define MCPL_VERSION_PATCH 2 #define MCPL_VERSION 10302 /* (10000*MAJOR+100*MINOR+PATCH) */ #define MCPL_VERSION_STR "1.3.2" #define MCPL_FORMATVERSION 3 /* Format version of written files */ #ifdef __cplusplus extern "C" { #endif /*********/ /* Types */ /*********/ #pragma pack (push, 1) /* The data structure representing a particle (note that persistification of */ /* polarisation and userflags must be explicitly enabled when writing .mcpl */ /* files, or they will simply contain zeroes when the file is read): */ typedef struct { double ekin; /* kinetic energy [MeV] */ double polarisation[3]; /* polarisation vector */ double position[3]; /* position [cm] */ double direction[3]; /* momentum direction (unit vector) */ double time; /* time-stamp [millisecond] */ double weight; /* weight or intensity */ int32_t pdgcode; /* MC particle number from the Particle Data Group (2112=neutron, 22=gamma, ...) */ uint32_t userflags; /* User flags (if used, the file header should probably contain information about how). */ } mcpl_particle_t; #pragma pack (pop) typedef struct { void * internal; } mcpl_file_t; /* file-object used while reading .mcpl */ typedef struct { void * internal; } mcpl_outfile_t; /* file-object used while writing .mcpl */ /****************************/ /* Creating new .mcpl files */ /****************************/ /* Instantiate new file object (will also open and override specified file) */ mcpl_outfile_t mcpl_create_outfile(const char * filename); const char * mcpl_outfile_filename(mcpl_outfile_t);/* filename being written to (might have had .mcpl appended) */ /* Optionally set global options or add info to the header: */ void mcpl_hdr_set_srcname(mcpl_outfile_t, const char *);/* Name of the generating application */ void mcpl_hdr_add_comment(mcpl_outfile_t, const char *);/* Add one or more human-readable comments */ void mcpl_hdr_add_data(mcpl_outfile_t, const char * key, uint32_t ldata, const char * data);/* add binary blobs by key */ void mcpl_enable_userflags(mcpl_outfile_t);/* to write the "userflags" info */ void mcpl_enable_polarisation(mcpl_outfile_t);/* to write the "polarisation" info */ void mcpl_enable_doubleprec(mcpl_outfile_t);/* use double precision FP numbers in storage */ void mcpl_enable_universal_pdgcode(mcpl_outfile_t, int32_t pdgcode);/* All particles are of the same type */ void mcpl_enable_universal_weight(mcpl_outfile_t, double w);/* All particles have the same weight */ /* Optionally (but rarely skipped) add particles, by updating the info in */ /* and then passing in a pointer to an mcpl_particle_t instance: */ void mcpl_add_particle(mcpl_outfile_t,const mcpl_particle_t*); /* Finally, always remember to close the file: */ void mcpl_close_outfile(mcpl_outfile_t); /* Alternatively close with (will call mcpl_gzip_file after close). */ /* Returns non-zero if gzipping was succesful: */ int mcpl_closeandgzip_outfile(mcpl_outfile_t); /* Convenience function which returns a pointer to a nulled-out particle struct which can be used to edit and pass to mcpl_add_particle. It can be reused and will be automatically free'd when the file is closed: */ mcpl_particle_t* mcpl_get_empty_particle(mcpl_outfile_t); /***********************/ /* Reading .mcpl files */ /***********************/ /* Open file and load header information into memory, skip to the first (if */ /* any) particle in the list: */ mcpl_file_t mcpl_open_file(const char * filename); /* Access header data: */ unsigned mcpl_hdr_version(mcpl_file_t);/* file format version (not the same as MCPL_VERSION) */ uint64_t mcpl_hdr_nparticles(mcpl_file_t);/* number of particles stored in file */ const char* mcpl_hdr_srcname(mcpl_file_t);/* Name of the generating application */ unsigned mcpl_hdr_ncomments(mcpl_file_t);/* number of comments stored in file */ const char * mcpl_hdr_comment(mcpl_file_t, unsigned icomment);/* access i'th comment */ int mcpl_hdr_nblobs(mcpl_file_t); const char** mcpl_hdr_blobkeys(mcpl_file_t);/* returns 0 if there are no keys */ int mcpl_hdr_blob(mcpl_file_t, const char* key, uint32_t* ldata, const char ** data);/* access data (returns 0 if key doesn't exist) */ int mcpl_hdr_has_userflags(mcpl_file_t); int mcpl_hdr_has_polarisation(mcpl_file_t); int mcpl_hdr_has_doubleprec(mcpl_file_t); uint64_t mcpl_hdr_header_size(mcpl_file_t);/* bytes consumed by header (uncompressed) */ int mcpl_hdr_particle_size(mcpl_file_t);/* bytes per particle (uncompressed) */ int32_t mcpl_hdr_universal_pdgcode(mcpl_file_t);/* returns 0 in case of per-particle pdgcode */ double mcpl_hdr_universal_weight(mcpl_file_t);/* returns 0.0 in case of per-particle weights */ int mcpl_hdr_little_endian(mcpl_file_t); /* Request pointer to particle at current location and skip forward to the next */ /* particle. Return value will be null in case there was no particle at the */ /* current location (normally due to end-of-file): */ const mcpl_particle_t* mcpl_read(mcpl_file_t); /* Seek and skip in particles (returns 0 when there is no particle at the new position): */ int mcpl_skipforward(mcpl_file_t,uint64_t n); int mcpl_rewind(mcpl_file_t); int mcpl_seek(mcpl_file_t,uint64_t ipos); uint64_t mcpl_currentposition(mcpl_file_t); /* Deallocate memory and release file-handle with: */ void mcpl_close_file(mcpl_file_t); /***********************************/ /* Other operations on .mcpl files */ /***********************************/ /* Dump information about the file to std-output: */ /* parts : 0 -> header+particle list, 1 -> just header, 2 -> just particle list. */ /* nlimit: maximum number of particles to list (0 for unlimited) */ /* nskip : index of first particle in the file to list. */ void mcpl_dump(const char * file, int parts, uint64_t nskip, uint64_t nlimit); /* Merge contents of a list of files by concatenating all particle contents into a */ /* new file, file_output. This results in an error unless all meta-data and settings */ /* in the files are identical. Also fails if file_output already exists. Note that */ /* the return value is a handle to the output file which has not yet been closed: */ mcpl_outfile_t mcpl_merge_files( const char* file_output, unsigned nfiles, const char ** files); /* Test if files could be merged by mcpl_merge_files: */ int mcpl_can_merge(const char * file1, const char* file2); /* Similar to mcpl_merge_files, but merges two files by appending all particles in */ /* file2 to the list in file1 (thus file1 grows while file2 stays untouched). */ /* Note that this requires similar version of the MCPL format of the two files, in */ /* addition to the other checks in mcpl_can_merge(). */ /* Careful usage of this function can be more efficient than mcpl_merge_files. */ void mcpl_merge_inplace(const char * file1, const char* file2); /* Attempt to merge incompatible files, by throwing away meta-data and otherwise */ /* selecting a configuration which is suitable to contain the data of all files. */ /* Userflags will be discarded unless keep_userflags=1. */ /* If called with compatible files, the code will fall back to calling the usual */ /* mcpl_merge_files function instead. */ mcpl_outfile_t mcpl_forcemerge_files( const char* file_output, unsigned nfiles, const char ** files, int keep_userflags ); /* Attempt to fix number of particles in the header of a file which was never */ /* properly closed: */ void mcpl_repair(const char * file1); /* For easily creating a standard mcpl-tool cmdline application: */ int mcpl_tool(int argc, char** argv); /* Attempt to run gzip on a file (does not require MCPL_HASZLIB on unix) */ /* Returns non-zero if gzipping was succesful. */ int mcpl_gzip_file(const char * filename); /* Convenience function which transfers all settings, blobs and comments to */ /* target. Intended to make it easy to filter files via custom C code. */ void mcpl_transfer_metadata(mcpl_file_t source, mcpl_outfile_t target); /* Function which can be used when transferring particles from one MCPL file */ /* to another. A particle must have been already read from the source file */ /* with a call to mcpl_read(..). This function will transfer the packed par- */ /* ticle data exactly when possible (using mcpl_add_particle can in principle */ /* introduce tiny numerical uncertainties due to the internal unpacking and */ /* repacking of direction vectors involved): */ void mcpl_transfer_last_read_particle(mcpl_file_t source, mcpl_outfile_t target); /******************/ /* Error handling */ /******************/ /* Override the error handler which will get called with the error */ /* description. If no handler is set, errors will get printed to stdout and the */ /* process terminated. An error handler should not return to the calling code. */ void mcpl_set_error_handler(void (*handler)(const char *)); /**********************/ /* Obsolete functions */ /**********************/ /* Functions kept for backwards compatibility. They keep working for now, but */ /* usage will result in a warning printed to stdout, notifying users to update */ /* their code. */ void mcpl_merge(const char *, const char*);/* Obsolete name for mcpl_merge_inplace */ int mcpl_gzip_file_rc(const char * filename);/* Obsolete name for mcpl_gzip_file */ int mcpl_closeandgzip_outfile_rc(mcpl_outfile_t);/* Obsolete name for mcpl_closeandgzip_outfile_rc */ int32_t mcpl_hdr_universel_pdgcode(mcpl_file_t);/* Obsolete name for mcpl_hdr_universal_pdgcode */ #ifdef __cplusplus } #endif #endif #ifndef sswmcpl_h #define sswmcpl_h ////////////////////////////////////////////////////////////////////////////////////// // // // Functions for converting SSW files from MCNP(X) to MCPL files. // // // // The code was written with help from E. Klinkby DTU NuTech. // // // // This file can be freely used as per the terms in the LICENSE file. // // // // However, note that usage of MCNP(X)-related utilities might require additional // // permissions and licenses from third-parties, which is not within the scope of // // the MCPL project itself. // // // // Written 2015-2017 by Thomas.Kittelmann@esss.se. // // // ////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////// // Create mcplfile based on content in sswfile. Using this function will neither // enable double-precision or user-flags in the output file, and will always // attempt to gzip the resulting MCPL file. Use ssw2mcpl2 instead to fine-tune // these choices or to embed a copy of the MCNP input deck file in the MCPL // header. Returns 1 on success, 0 on failure: int ssw2mcpl(const char * sswfile, const char * mcplfile); ////////////////////////////////////////////////////////////////////////////////////// // Advanced version of the above with more options: // // opt_dp : Set to 1 to enable double-precision storage of floating point // values. Set to 0 for single-precision. // opt_surf: Set to 1 to store SSW surface id information in the MCPL // userflags. Set to 0 to not store any userflags. // opt_gzip: Set to 1 to gzip the resulting mcpl file. Set to 0 to leave the // resulting file uncompressed. // inputdeckfile: Set to the filename of the MCNP input deck file, to embed a // copy of it in the MCPL header. Set to 0 to not do this. // int ssw2mcpl2(const char * sswfile, const char * mcplfile, int opt_dp, int opt_surf, int opt_gzip, const char * inputdeckfile); ////////////////////////////////////////////////////////////////////////////////////// // Create sswfile based on content in mcplfile. This also needs a reference // sswfile from the same approximate setup (MCNP version, input deck...) where // the new SSW file is to be used. If the surface_id parameter is non-zero, all // particles in the resulting sswfile will have that surface ID, otherwise it // will be taken from the MCPL userflags (must be in range [1,999999]). Finally, // if the limit parameter is non-zero, it will provide an upper limit on the // number of particles put into the resulting ssw file (up to 2147483647). int mcpl2ssw(const char * mcplfile, const char * sswfile, const char * refsswfile, long surface_id, long limit); ////////////////////////////////////////////////////////////////////////////////////// // For easily creating standard ssw2mcpl and mcpl2ssw cmdline applications: int ssw2mcpl_app(int argc,char** argv); int mcpl2ssw_app(int argc,char** argv); #endif #ifndef MCPL_HASZLIB # define MCPL_HASZLIB #endif #ifdef MCPL_ZLIB_INCPATH # undef MCPL_ZLIB_INCPATH #endif ///////////////////////////////////////////////////////////////////////////////////// // // // Monte Carlo Particle Lists : MCPL // // // // Utilities for reading and writing .mcpl files: A binary format with lists of // // particle state information, for interchanging and reshooting events between // // various Monte Carlo simulation applications. // // // // Client code including mcpl.h does not need any special build flags and can // // be compiled with any complient compiler and any current C or C++ standard. // // // // Compilation of mcpl.c on the other hand is currently not supported for C89, // // although this could be revisited. Thus, compilation of mcpl.c can proceed // // using any complient C-compiler using -std=c99 or -std=c11 or any complient // // C++ compiler using any version of the C++ standard, and the resulting code // // must always be linked with libm (using -lm). Furthermore, the following // // preprocessor flags can be used when compiling mcpl.c to fine tune the build // // process and the capabilities of the resulting binary. // // // // MCPL_HASZLIB : Define if compiling and linking with zlib, to allow // // direct reading of .mcpl.gz files. // // MCPL_ZLIB_INCPATH : Specify alternative value if the zlib header is not to // // be included as "zlib.h". // // MCPL_HEADER_INCPATH : Specify alternative value if the MCPL header itself is // // not to be included as "mcpl.h". // // MCPL_NO_EXT_GZIP : Define to make sure that mcpl_gzip_file will never // // compress via a separate process running a system- // // provided gzip executable. // // MCPL_NO_CUSTOM_GZIP : Define to make sure that mcpl_gzip_file will never // // compress via custom zlib-based code. // // // // This file can be freely used as per the terms in the LICENSE file. // // // // Find more information and updates at https://mctools.github.io/mcpl/ // // // // Written by Thomas Kittelmann, 2015-2017. // // // ///////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////// // MCPL_FORMATVERSION history: // // // // 3: Current version. Changed packing of unit vectors from octahedral to // // the better performing "Adaptive Projection Packing". // // 2: First public release. // // 1: Format used during early development. No longer supported. // ///////////////////////////////////////////////////////////////////////////////////// //Rough platform detection (could be much more fine-grained): #if defined(__unix__) || defined(__unix) || (defined(__APPLE__) && defined(__MACH__)) # define MCPL_THIS_IS_UNIX #endif #if defined(MSDOS) || defined(OS2) || defined(WIN32) || defined(_WIN32) || defined(__CYGWIN__) # ifdef MCPL_THIS_IS_UNIX # undef MCPL_THIS_IS_UNIX # endif # define MCPL_THIS_IS_MS #endif //Before including mcpl.h, we attempt to get PRIu64 defined in a relatively //robust manner by enabling feature test macros for gcc and including relevant //headers: #ifndef __STDC_FORMAT_MACROS # define __STDC_FORMAT_MACROS #endif #ifndef _POSIX_C_SOURCE # define _POSIX_C_SOURCE 200809L #endif #ifndef _ISOC99_SOURCE # define _ISOC99_SOURCE 1 #endif #ifndef _C99_SOURCE # define _C99_SOURCE 1 #endif #include #include #ifndef PRIu64//bad compiler - fallback to guessing # if defined(_MSC_VER) && (_MSC_VER<1900) # define PRIu64 "I64u" # else # if defined(__WORDSIZE) && (__WORDSIZE==64) # define PRIu64 "lu" # else # define PRIu64 "llu" # endif # endif #endif #ifdef MCPL_HEADER_INCPATH # include MCPL_HEADER_INCPATH #else #endif #ifdef MCPL_HASZLIB # ifdef MCPL_ZLIB_INCPATH # include MCPL_ZLIB_INCPATH # else #ifndef NO_DUMMY_DECL # define NO_DUMMY_DECL #endif /* zlib.h -- interface of the 'zlib' general purpose compression library version 1.2.8, April 28th, 2013 Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. Jean-loup Gailly Mark Adler jloup@gzip.org madler@alumni.caltech.edu The data format used by the zlib library is described by RFCs (Request for Comments) 1950 to 1952 in the files http://tools.ietf.org/html/rfc1950 (zlib format), rfc1951 (deflate format) and rfc1952 (gzip format). */ #ifndef MiniZLib_ZLIB_H #define MiniZLib_ZLIB_H /* zconf.h -- configuration of the zlib compression library * Copyright (C) 1995-2013 Jean-loup Gailly. * For conditions of distribution and use, see copyright notice in zlib.h */ /* @(#) $Id$ */ #ifndef MiniZLib_ZCONF_H #define MiniZLib_ZCONF_H /* * If you *really* need a unique prefix for all types and library functions, * compile with -DZ_PREFIX. The "standard" zlib should be compiled without it. * Even better than compiling with -DZ_PREFIX would be to use configure to set * this permanently in zconf.h using "./configure --zprefix". */ #if 1 /* may be set to #if 1 by ./configure */ # define Z_PREFIX_SET /* all linked symbols */ # define _dist_code minizlib__dist_code # define _length_code minizlib__length_code # define _tr_align minizlib__tr_align # define _tr_flush_bits minizlib__tr_flush_bits # define _tr_flush_block minizlib__tr_flush_block # define _tr_init minizlib__tr_init # define _tr_stored_block minizlib__tr_stored_block # define _tr_tally minizlib__tr_tally # define adler32 minizlib_adler32 # define adler32_combine minizlib_adler32_combine # define adler32_combine64 minizlib_adler32_combine64 # ifndef Z_SOLO # define compress minizlib_compress # define compress2 minizlib_compress2 # define compressBound minizlib_compressBound # endif # define crc32 minizlib_crc32 # define crc32_combine minizlib_crc32_combine # define crc32_combine64 minizlib_crc32_combine64 # define deflate minizlib_deflate # define deflateBound minizlib_deflateBound # define deflateCopy minizlib_deflateCopy # define deflateEnd minizlib_deflateEnd # define deflateInit2_ minizlib_deflateInit2_ # define deflateInit_ minizlib_deflateInit_ # define deflateParams minizlib_deflateParams # define deflatePending minizlib_deflatePending # define deflatePrime minizlib_deflatePrime # define deflateReset minizlib_deflateReset # define deflateResetKeep minizlib_deflateResetKeep # define deflateSetDictionary minizlib_deflateSetDictionary # define deflateSetHeader minizlib_deflateSetHeader # define deflateTune minizlib_deflateTune # define deflate_copyright minizlib_deflate_copyright # define get_crc_table minizlib_get_crc_table # ifndef Z_SOLO # define gz_error minizlib_gz_error # define gz_intmax minizlib_gz_intmax # define gz_strwinerror minizlib_gz_strwinerror # define gzbuffer minizlib_gzbuffer # define gzclearerr minizlib_gzclearerr # define gzclose minizlib_gzclose # define gzclose_r minizlib_gzclose_r # define gzclose_w minizlib_gzclose_w # define gzdirect minizlib_gzdirect # define gzdopen minizlib_gzdopen # define gzeof minizlib_gzeof # define gzerror minizlib_gzerror # define gzflush minizlib_gzflush # define gzgetc minizlib_gzgetc # define gzgetc_ minizlib_gzgetc_ # define gzgets minizlib_gzgets # define gzoffset minizlib_gzoffset # define gzoffset64 minizlib_gzoffset64 # define gzopen minizlib_gzopen # define gzopen64 minizlib_gzopen64 # ifdef _WIN32 # define gzopen_w minizlib_gzopen_w # endif # define gzprintf minizlib_gzprintf # define gzvprintf minizlib_gzvprintf # define gzputc minizlib_gzputc # define gzputs minizlib_gzputs # define gzread minizlib_gzread # define gzrewind minizlib_gzrewind # define gzseek minizlib_gzseek # define gzseek64 minizlib_gzseek64 # define gzsetparams minizlib_gzsetparams # define gztell minizlib_gztell # define gztell64 minizlib_gztell64 # define gzungetc minizlib_gzungetc # define gzwrite minizlib_gzwrite # endif # define inflate minizlib_inflate # define inflateBack minizlib_inflateBack # define inflateBackEnd minizlib_inflateBackEnd # define inflateBackInit_ minizlib_inflateBackInit_ # define inflateCopy minizlib_inflateCopy # define inflateEnd minizlib_inflateEnd # define inflateGetHeader minizlib_inflateGetHeader # define inflateInit2_ minizlib_inflateInit2_ # define inflateInit_ minizlib_inflateInit_ # define inflateMark minizlib_inflateMark # define inflatePrime minizlib_inflatePrime # define inflateReset minizlib_inflateReset # define inflateReset2 minizlib_inflateReset2 # define inflateSetDictionary minizlib_inflateSetDictionary # define inflateGetDictionary minizlib_inflateGetDictionary # define inflateSync minizlib_inflateSync # define inflateSyncPoint minizlib_inflateSyncPoint # define inflateUndermine minizlib_inflateUndermine # define inflateResetKeep minizlib_inflateResetKeep # define inflate_copyright minizlib_inflate_copyright # define inflate_fast minizlib_inflate_fast # define inflate_table minizlib_inflate_table # ifndef Z_SOLO # define uncompress minizlib_uncompress # endif # define zError minizlib_zError # ifndef Z_SOLO # define zcalloc minizlib_zcalloc # define zcfree minizlib_zcfree # endif # define zlibCompileFlags minizlib_zlibCompileFlags # define zlibVersion minizlib_zlibVersion /* all zlib typedefs in zlib.h and zconf.h */ # define Byte minizlib_Byte # define Bytef minizlib_Bytef # define alloc_func minizlib_alloc_func # define charf minizlib_charf # define free_func minizlib_free_func # ifndef Z_SOLO # define gzFile minizlib_gzFile # endif # define gz_header minizlib_gz_header # define gz_headerp minizlib_gz_headerp # define in_func minizlib_in_func # define intf minizlib_intf # define out_func minizlib_out_func # define uInt minizlib_uInt # define uIntf minizlib_uIntf # define uLong minizlib_uLong # define uLongf minizlib_uLongf # define voidp minizlib_voidp # define voidpc minizlib_voidpc # define voidpf minizlib_voidpf /* all zlib structs in zlib.h and zconf.h */ # define gz_header_s minizlib_gz_header_s # define internal_state minizlib_internal_state /* extras added by TK */ # define distfix minizlib_distfix # define lenfix minizlib_lenfix # define lbase minizlib_lbase # define dbase minizlib_dbase # define my_version minizlib_my_version # define dext minizlib_dext # define order minizlib_order # define build_bl_tree minizlib_build_bl_tree # define copy_block minizlib_copy_block # define crc32_big minizlib_crc32_big # define crc32_little minizlib_crc32_little # define deflate_huff minizlib_deflate_huff # define deflate_rle minizlib_deflate_rle # define detect_data_type minizlib_detect_data_type # define fixedtables minizlib_fixedtables # define flush_pending minizlib_flush_pending # define gen_bitlen minizlib_gen_bitlen # define gf2_matrix_square minizlib_gf2_matrix_square # define gf2_matrix_times minizlib_gf2_matrix_times # define init_block minizlib_init_block # define lm_init minizlib_lm_init # define pqdownheap minizlib_pqdownheap # define putShortMSB minizlib_putShortMSB # define read_buf minizlib_read_buf # define scan_tree minizlib_scan_tree # define send_all_trees minizlib_send_all_trees # define syncsearch minizlib_syncsearch # define tr_static_init minizlib_tr_static_init # define updatewindow minizlib_updatewindow # define adler32_combine_ minizlib_adler32_combine_ # define bi_flush minizlib_bi_flush # define bi_reverse minizlib_bi_reverse # define bi_windup minizlib_bi_windup # define gen_codes minizlib_gen_codes # define deflate_slow minizlib_deflate_slow # define deflate_fast minizlib_deflate_fast # define deflate_stored minizlib_deflate_stored # define gz_avail minizlib_gz_avail # define gz_load minizlib_gz_load # define gz_reset minizlib_gz_reset # define gz_skip minizlib_gz_skip # define gz_zero minizlib_gz_zero # define gz_comp minizlib_gz_comp # define gz_decomp minizlib_gz_decomp # define gz_fetch minizlib_gz_fetch # define gz_init minizlib_gz_init # define gz_look minizlib_gz_look # define gz_open minizlib_gz_open # define z_errmsg minizlib_z_errmsg # define crc32_combine_ minizlib_crc32_combine_ # define crc_table minizlib_crc_table # define longest_match minizlib_longest_match # define fill_window minizlib_fill_window # define configuration_table minizlib_configuration_table # define send_tree minizlib_send_tree # define compress_block minizlib_compress_block # define extra_lbits minizlib_extra_lbits # define base_length minizlib_base_length # define extra_dbits minizlib_extra_dbits # define base_dist minizlib_base_dist # define build_tree minizlib_build_tree # define bl_order minizlib_bl_order # define extra_blbits minizlib_extra_blbits # define static_l_desc minizlib_static_l_desc # define static_bl_desc minizlib_static_bl_desc # define static_d_desc minizlib_static_d_desc # define static_dtree minizlib_static_dtree # define static_ltree minizlib_static_ltree #endif #if defined(__MSDOS__) && !defined(MSDOS) # define MSDOS #endif #if (defined(OS_2) || defined(__OS2__)) && !defined(OS2) # define OS2 #endif #if defined(_WINDOWS) && !defined(WINDOWS) # define WINDOWS #endif #if defined(_WIN32) || defined(_WIN32_WCE) || defined(__WIN32__) # ifndef WIN32 # define WIN32 # endif #endif #if (defined(MSDOS) || defined(OS2) || defined(WINDOWS)) && !defined(WIN32) # if !defined(__GNUC__) && !defined(__FLAT__) && !defined(__386__) # ifndef SYS16BIT # define SYS16BIT # endif # endif #endif /* * Compile with -DMAXSEG_64K if the alloc function cannot allocate more * than 64k bytes at a time (needed on systems with 16-bit int). */ #ifdef SYS16BIT # define MAXSEG_64K #endif #ifdef MSDOS # define UNALIGNED_OK #endif #ifdef __STDC_VERSION__ # ifndef STDC # define STDC # endif # if __STDC_VERSION__ >= 199901L # ifndef STDC99 # define STDC99 # endif # endif #endif #if !defined(STDC) && (defined(__STDC__) || defined(__cplusplus)) # define STDC #endif #if !defined(STDC) && (defined(__GNUC__) || defined(__BORLANDC__)) # define STDC #endif #if !defined(STDC) && (defined(MSDOS) || defined(WINDOWS) || defined(WIN32)) # define STDC #endif #if !defined(STDC) && (defined(OS2) || defined(__HOS_AIX__)) # define STDC #endif #if defined(__OS400__) && !defined(STDC) /* iSeries (formerly AS/400). */ # define STDC #endif #ifndef STDC # ifndef const /* cannot use !defined(STDC) && !defined(const) on Mac */ # define const /* note: need a more gentle solution here */ # endif #endif #if defined(ZLIB_CONST) && !defined(z_const) # define z_const const #else # define z_const #endif /* Some Mac compilers merge all .h files incorrectly: */ #if defined(__MWERKS__)||defined(applec)||defined(THINK_C)||defined(__SC__) # define NO_DUMMY_DECL #endif /* Maximum value for memLevel in deflateInit2 */ #ifndef MAX_MEM_LEVEL # ifdef MAXSEG_64K # define MAX_MEM_LEVEL 8 # else # define MAX_MEM_LEVEL 9 # endif #endif /* Maximum value for windowBits in deflateInit2 and inflateInit2. * WARNING: reducing MAX_WBITS makes minigzip unable to extract .gz files * created by gzip. (Files created by minigzip can still be extracted by * gzip.) */ #ifndef MAX_WBITS # define MAX_WBITS 15 /* 32K LZ77 window */ #endif /* The memory requirements for deflate are (in bytes): (1 << (windowBits+2)) + (1 << (memLevel+9)) that is: 128K for windowBits=15 + 128K for memLevel = 8 (default values) plus a few kilobytes for small objects. For example, if you want to reduce the default memory requirements from 256K to 128K, compile with make CFLAGS="-O -DMAX_WBITS=14 -DMAX_MEM_LEVEL=7" Of course this will generally degrade compression (there's no free lunch). The memory requirements for inflate are (in bytes) 1 << windowBits that is, 32K for windowBits=15 (default value) plus a few kilobytes for small objects. */ /* Type declarations */ #ifndef OF /* function prototypes */ # ifdef STDC # define OF(args) args # else # define OF(args) () # endif #endif #ifndef Z_ARG /* function prototypes for stdarg */ # if defined(STDC) || defined(Z_HAVE_STDARG_H) # define Z_ARG(args) args # else # define Z_ARG(args) () # endif #endif /* The following definitions for FAR are needed only for MSDOS mixed * model programming (small or medium model with some far allocations). * This was tested only with MSC; for other MSDOS compilers you may have * to define NO_MEMCPY in zutil.h. If you don't need the mixed model, * just define FAR to be empty. */ #ifdef SYS16BIT # if defined(M_I86SM) || defined(M_I86MM) /* MSC small or medium model */ # define SMALL_MEDIUM # ifdef _MSC_VER # define FAR _far # else # define FAR far # endif # endif # if (defined(__SMALL__) || defined(__MEDIUM__)) /* Turbo C small or medium model */ # define SMALL_MEDIUM # ifdef __BORLANDC__ # define FAR _far # else # define FAR far # endif # endif #endif #if defined(WINDOWS) || defined(WIN32) /* If building or using zlib as a DLL, define ZLIB_DLL. * This is not mandatory, but it offers a little performance increase. */ # ifdef ZLIB_DLL # if defined(WIN32) && (!defined(__BORLANDC__) || (__BORLANDC__ >= 0x500)) # ifdef ZLIB_INTERNAL # define ZEXTERN extern __declspec(dllexport) # else # define ZEXTERN extern __declspec(dllimport) # endif # endif # endif /* ZLIB_DLL */ /* If building or using zlib with the WINAPI/WINAPIV calling convention, * define ZLIB_WINAPI. * Caution: the standard ZLIB1.DLL is NOT compiled using ZLIB_WINAPI. */ # ifdef ZLIB_WINAPI # ifdef FAR # undef FAR # endif # include /* No need for _export, use ZLIB.DEF instead. */ /* For complete Windows compatibility, use WINAPI, not __stdcall. */ # define ZEXPORT WINAPI # ifdef WIN32 # define ZEXPORTVA WINAPIV # else # define ZEXPORTVA FAR CDECL # endif # endif #endif #if defined (__BEOS__) # ifdef ZLIB_DLL # ifdef ZLIB_INTERNAL # define ZEXPORT __declspec(dllexport) # define ZEXPORTVA __declspec(dllexport) # else # define ZEXPORT __declspec(dllimport) # define ZEXPORTVA __declspec(dllimport) # endif # endif #endif #ifndef ZEXTERN # define ZEXTERN extern #endif #ifndef ZEXPORT # define ZEXPORT #endif #ifndef ZEXPORTVA # define ZEXPORTVA #endif #ifndef FAR # define FAR #endif #if !defined(__MACTYPES__) typedef unsigned char Byte; /* 8 bits */ #endif typedef unsigned int uInt; /* 16 bits or more */ typedef unsigned long uLong; /* 32 bits or more */ #ifdef SMALL_MEDIUM /* Borland C/C++ and some old MSC versions ignore FAR inside typedef */ # define Bytef Byte FAR #else typedef Byte FAR Bytef; #endif typedef char FAR charf; typedef int FAR intf; typedef uInt FAR uIntf; typedef uLong FAR uLongf; #ifdef STDC typedef void const *voidpc; typedef void FAR *voidpf; typedef void *voidp; #else typedef Byte const *voidpc; typedef Byte FAR *voidpf; typedef Byte *voidp; #endif #if !defined(Z_U4) && !defined(Z_SOLO) && defined(STDC) # include # if (UINT_MAX == 0xffffffffUL) # define Z_U4 unsigned # elif (ULONG_MAX == 0xffffffffUL) # define Z_U4 unsigned long # elif (USHRT_MAX == 0xffffffffUL) # define Z_U4 unsigned short # endif #endif #ifdef Z_U4 typedef Z_U4 z_crc_t; #else typedef unsigned long z_crc_t; #endif #ifdef HAVE_UNISTD_H /* may be set to #if 1 by ./configure */ # define Z_HAVE_UNISTD_H #endif #ifdef HAVE_STDARG_H /* may be set to #if 1 by ./configure */ # define Z_HAVE_STDARG_H #endif #ifdef STDC # ifndef Z_SOLO # include /* for off_t */ # endif #endif #if defined(STDC) || defined(Z_HAVE_STDARG_H) # ifndef Z_SOLO # include /* for va_list */ # endif #endif #ifdef _WIN32 # ifndef Z_SOLO # include /* for wchar_t */ # endif #endif /* a little trick to accommodate both "#define _LARGEFILE64_SOURCE" and * "#define _LARGEFILE64_SOURCE 1" as requesting 64-bit operations, (even * though the former does not conform to the LFS document), but considering * both "#undef _LARGEFILE64_SOURCE" and "#define _LARGEFILE64_SOURCE 0" as * equivalently requesting no 64-bit operations */ #if defined(_LARGEFILE64_SOURCE) && -_LARGEFILE64_SOURCE - -1 == 1 # undef _LARGEFILE64_SOURCE #endif #if defined(__WATCOMC__) && !defined(Z_HAVE_UNISTD_H) # define Z_HAVE_UNISTD_H #endif #ifndef Z_SOLO # if defined(Z_HAVE_UNISTD_H) || defined(_LARGEFILE64_SOURCE) # include /* for SEEK_*, off_t, and _LFS64_LARGEFILE */ # ifdef VMS # include /* for off_t */ # endif # ifndef z_off_t # define z_off_t off_t # endif # endif #endif #if defined(_LFS64_LARGEFILE) && _LFS64_LARGEFILE-0 # define Z_LFS64 #endif #if defined(_LARGEFILE64_SOURCE) && defined(Z_LFS64) # define Z_LARGE64 #endif #if defined(_FILE_OFFSET_BITS) && _FILE_OFFSET_BITS-0 == 64 && defined(Z_LFS64) # define Z_WANT64 #endif #if !defined(SEEK_SET) && !defined(Z_SOLO) # define SEEK_SET 0 /* Seek from beginning of file. */ # define SEEK_CUR 1 /* Seek from current position. */ # define SEEK_END 2 /* Set file pointer to EOF plus "offset" */ #endif #ifndef z_off_t # define z_off_t long #endif #if !defined(_WIN32) && defined(Z_LARGE64) # define z_off64_t off64_t #else # if defined(_WIN32) && !defined(__GNUC__) && !defined(Z_SOLO) # define z_off64_t __int64 # else # define z_off64_t z_off_t # endif #endif /* MVS linker does not support external names larger than 8 bytes */ #if defined(__MVS__) #pragma map(deflateInit_,"DEIN") #pragma map(deflateInit2_,"DEIN2") #pragma map(deflateEnd,"DEEND") #pragma map(deflateBound,"DEBND") #pragma map(inflateInit_,"ININ") #pragma map(inflateInit2_,"ININ2") #pragma map(inflateEnd,"INEND") #pragma map(inflateSync,"INSY") #pragma map(inflateSetDictionary,"INSEDI") #pragma map(compressBound,"CMBND") #pragma map(inflate_table,"INTABL") #pragma map(inflate_fast,"INFA") #pragma map(inflate_copyright,"INCOPY") #endif #endif /* ZCONF_H */ #ifdef __cplusplus extern "C" { #endif #define ZLIB_VERSION "1.2.8" #define ZLIB_VERNUM 0x1280 #define ZLIB_VER_MAJOR 1 #define ZLIB_VER_MINOR 2 #define ZLIB_VER_REVISION 8 #define ZLIB_VER_SUBREVISION 0 /* The 'zlib' compression library provides in-memory compression and decompression functions, including integrity checks of the uncompressed data. This version of the library supports only one compression method (deflation) but other algorithms will be added later and will have the same stream interface. Compression can be done in a single step if the buffers are large enough, or can be done by repeated calls of the compression function. In the latter case, the application must provide more input and/or consume the output (providing more output space) before each call. The compressed data format used by default by the in-memory functions is the zlib format, which is a zlib wrapper documented in RFC 1950, wrapped around a deflate stream, which is itself documented in RFC 1951. The library also supports reading and writing files in gzip (.gz) format with an interface similar to that of stdio using the functions that start with "gz". The gzip format is different from the zlib format. gzip is a gzip wrapper, documented in RFC 1952, wrapped around a deflate stream. This library can optionally read and write gzip streams in memory as well. The zlib format was designed to be compact and fast for use in memory and on communications channels. The gzip format was designed for single- file compression on file systems, has a larger header than zlib to maintain directory information, and uses a different, slower check method than zlib. The library does not install any signal handler. The decoder checks the consistency of the compressed data, so the library should never crash even in case of corrupted input. */ typedef voidpf (*alloc_func) OF((voidpf opaque, uInt items, uInt size)); typedef void (*free_func) OF((voidpf opaque, voidpf address)); struct internal_state; typedef struct z_stream_s { z_const Bytef *next_in; /* next input byte */ uInt avail_in; /* number of bytes available at next_in */ uLong total_in; /* total number of input bytes read so far */ Bytef *next_out; /* next output byte should be put there */ uInt avail_out; /* remaining free space at next_out */ uLong total_out; /* total number of bytes output so far */ z_const char *msg; /* last error message, NULL if no error */ struct internal_state FAR *state; /* not visible by applications */ alloc_func zalloc; /* used to allocate the internal state */ free_func zfree; /* used to free the internal state */ voidpf opaque; /* private data object passed to zalloc and zfree */ int data_type; /* best guess about the data type: binary or text */ uLong adler; /* adler32 value of the uncompressed data */ uLong reserved; /* reserved for future use */ } z_stream; typedef z_stream FAR *z_streamp; /* gzip header information passed to and from zlib routines. See RFC 1952 for more details on the meanings of these fields. */ typedef struct gz_header_s { int text; /* true if compressed data believed to be text */ uLong time; /* modification time */ int xflags; /* extra flags (not used when writing a gzip file) */ int os; /* operating system */ Bytef *extra; /* pointer to extra field or Z_NULL if none */ uInt extra_len; /* extra field length (valid if extra != Z_NULL) */ uInt extra_max; /* space at extra (only when reading header) */ Bytef *name; /* pointer to zero-terminated file name or Z_NULL */ uInt name_max; /* space at name (only when reading header) */ Bytef *comment; /* pointer to zero-terminated comment or Z_NULL */ uInt comm_max; /* space at comment (only when reading header) */ int hcrc; /* true if there was or will be a header crc */ int done; /* true when done reading gzip header (not used when writing a gzip file) */ } gz_header; typedef gz_header FAR *gz_headerp; /* The application must update next_in and avail_in when avail_in has dropped to zero. It must update next_out and avail_out when avail_out has dropped to zero. The application must initialize zalloc, zfree and opaque before calling the init function. All other fields are set by the compression library and must not be updated by the application. The opaque value provided by the application will be passed as the first parameter for calls of zalloc and zfree. This can be useful for custom memory management. The compression library attaches no meaning to the opaque value. zalloc must return Z_NULL if there is not enough memory for the object. If zlib is used in a multi-threaded application, zalloc and zfree must be thread safe. On 16-bit systems, the functions zalloc and zfree must be able to allocate exactly 65536 bytes, but will not be required to allocate more than this if the symbol MAXSEG_64K is defined (see zconf.h). WARNING: On MSDOS, pointers returned by zalloc for objects of exactly 65536 bytes *must* have their offset normalized to zero. The default allocation function provided by this library ensures this (see zutil.c). To reduce memory requirements and avoid any allocation of 64K objects, at the expense of compression ratio, compile the library with -DMAX_WBITS=14 (see zconf.h). The fields total_in and total_out can be used for statistics or progress reports. After compression, total_in holds the total size of the uncompressed data and may be saved for use in the decompressor (particularly if the decompressor wants to decompress everything in a single step). */ /* constants */ #define Z_NO_FLUSH 0 #define Z_PARTIAL_FLUSH 1 #define Z_SYNC_FLUSH 2 #define Z_FULL_FLUSH 3 #define Z_FINISH 4 #define Z_BLOCK 5 #define Z_TREES 6 /* Allowed flush values; see deflate() and inflate() below for details */ #define Z_OK 0 #define Z_STREAM_END 1 #define Z_NEED_DICT 2 #define Z_ERRNO (-1) #define Z_STREAM_ERROR (-2) #define Z_DATA_ERROR (-3) #define Z_MEM_ERROR (-4) #define Z_BUF_ERROR (-5) #define Z_VERSION_ERROR (-6) /* Return codes for the compression/decompression functions. Negative values * are errors, positive values are used for special but normal events. */ #define Z_NO_COMPRESSION 0 #define Z_BEST_SPEED 1 #define Z_BEST_COMPRESSION 9 #define Z_DEFAULT_COMPRESSION (-1) /* compression levels */ #define Z_FILTERED 1 #define Z_HUFFMAN_ONLY 2 #define Z_RLE 3 #define Z_FIXED 4 #define Z_DEFAULT_STRATEGY 0 /* compression strategy; see deflateInit2() below for details */ #define Z_BINARY 0 #define Z_TEXT 1 #define Z_ASCII Z_TEXT /* for compatibility with 1.2.2 and earlier */ #define Z_UNKNOWN 2 /* Possible values of the data_type field (though see inflate()) */ #define Z_DEFLATED 8 /* The deflate compression method (the only one supported in this version) */ #define Z_NULL 0 /* for initializing zalloc, zfree, opaque */ #define zlib_version zlibVersion() /* for compatibility with versions < 1.0.2 */ /* basic functions */ ZEXTERN const char * ZEXPORT zlibVersion OF((void)); /* The application can compare zlibVersion and ZLIB_VERSION for consistency. If the first character differs, the library code actually used is not compatible with the zlib.h header file used by the application. This check is automatically made by deflateInit and inflateInit. */ /* ZEXTERN int ZEXPORT deflateInit OF((z_streamp strm, int level)); Initializes the internal stream state for compression. The fields zalloc, zfree and opaque must be initialized before by the caller. If zalloc and zfree are set to Z_NULL, deflateInit updates them to use default allocation functions. The compression level must be Z_DEFAULT_COMPRESSION, or between 0 and 9: 1 gives best speed, 9 gives best compression, 0 gives no compression at all (the input data is simply copied a block at a time). Z_DEFAULT_COMPRESSION requests a default compromise between speed and compression (currently equivalent to level 6). deflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_STREAM_ERROR if level is not a valid compression level, or Z_VERSION_ERROR if the zlib library version (zlib_version) is incompatible with the version assumed by the caller (ZLIB_VERSION). msg is set to null if there is no error message. deflateInit does not perform any compression: this will be done by deflate(). */ ZEXTERN int ZEXPORT deflate OF((z_streamp strm, int flush)); /* deflate compresses as much data as possible, and stops when the input buffer becomes empty or the output buffer becomes full. It may introduce some output latency (reading input without producing any output) except when forced to flush. The detailed semantics are as follows. deflate performs one or both of the following actions: - Compress more input starting at next_in and update next_in and avail_in accordingly. If not all input can be processed (because there is not enough room in the output buffer), next_in and avail_in are updated and processing will resume at this point for the next call of deflate(). - Provide more output starting at next_out and update next_out and avail_out accordingly. This action is forced if the parameter flush is non zero. Forcing flush frequently degrades the compression ratio, so this parameter should be set only when necessary (in interactive applications). Some output may be provided even if flush is not set. Before the call of deflate(), the application should ensure that at least one of the actions is possible, by providing more input and/or consuming more output, and updating avail_in or avail_out accordingly; avail_out should never be zero before the call. The application can consume the compressed output when it wants, for example when the output buffer is full (avail_out == 0), or after each call of deflate(). If deflate returns Z_OK and with zero avail_out, it must be called again after making room in the output buffer because there might be more output pending. Normally the parameter flush is set to Z_NO_FLUSH, which allows deflate to decide how much data to accumulate before producing output, in order to maximize compression. If the parameter flush is set to Z_SYNC_FLUSH, all pending output is flushed to the output buffer and the output is aligned on a byte boundary, so that the decompressor can get all input data available so far. (In particular avail_in is zero after the call if enough output space has been provided before the call.) Flushing may degrade compression for some compression algorithms and so it should be used only when necessary. This completes the current deflate block and follows it with an empty stored block that is three bits plus filler bits to the next byte, followed by four bytes (00 00 ff ff). If flush is set to Z_PARTIAL_FLUSH, all pending output is flushed to the output buffer, but the output is not aligned to a byte boundary. All of the input data so far will be available to the decompressor, as for Z_SYNC_FLUSH. This completes the current deflate block and follows it with an empty fixed codes block that is 10 bits long. This assures that enough bytes are output in order for the decompressor to finish the block before the empty fixed code block. If flush is set to Z_BLOCK, a deflate block is completed and emitted, as for Z_SYNC_FLUSH, but the output is not aligned on a byte boundary, and up to seven bits of the current block are held to be written as the next byte after the next deflate block is completed. In this case, the decompressor may not be provided enough bits at this point in order to complete decompression of the data provided so far to the compressor. It may need to wait for the next block to be emitted. This is for advanced applications that need to control the emission of deflate blocks. If flush is set to Z_FULL_FLUSH, all output is flushed as with Z_SYNC_FLUSH, and the compression state is reset so that decompression can restart from this point if previous compressed data has been damaged or if random access is desired. Using Z_FULL_FLUSH too often can seriously degrade compression. If deflate returns with avail_out == 0, this function must be called again with the same value of the flush parameter and more output space (updated avail_out), until the flush is complete (deflate returns with non-zero avail_out). In the case of a Z_FULL_FLUSH or Z_SYNC_FLUSH, make sure that avail_out is greater than six to avoid repeated flush markers due to avail_out == 0 on return. If the parameter flush is set to Z_FINISH, pending input is processed, pending output is flushed and deflate returns with Z_STREAM_END if there was enough output space; if deflate returns with Z_OK, this function must be called again with Z_FINISH and more output space (updated avail_out) but no more input data, until it returns with Z_STREAM_END or an error. After deflate has returned Z_STREAM_END, the only possible operations on the stream are deflateReset or deflateEnd. Z_FINISH can be used immediately after deflateInit if all the compression is to be done in a single step. In this case, avail_out must be at least the value returned by deflateBound (see below). Then deflate is guaranteed to return Z_STREAM_END. If not enough output space is provided, deflate will not return Z_STREAM_END, and it must be called again as described above. deflate() sets strm->adler to the adler32 checksum of all input read so far (that is, total_in bytes). deflate() may update strm->data_type if it can make a good guess about the input data type (Z_BINARY or Z_TEXT). In doubt, the data is considered binary. This field is only for information purposes and does not affect the compression algorithm in any manner. deflate() returns Z_OK if some progress has been made (more input processed or more output produced), Z_STREAM_END if all input has been consumed and all output has been produced (only when flush is set to Z_FINISH), Z_STREAM_ERROR if the stream state was inconsistent (for example if next_in or next_out was Z_NULL), Z_BUF_ERROR if no progress is possible (for example avail_in or avail_out was zero). Note that Z_BUF_ERROR is not fatal, and deflate() can be called again with more input and more output space to continue compressing. */ ZEXTERN int ZEXPORT deflateEnd OF((z_streamp strm)); /* All dynamically allocated data structures for this stream are freed. This function discards any unprocessed input and does not flush any pending output. deflateEnd returns Z_OK if success, Z_STREAM_ERROR if the stream state was inconsistent, Z_DATA_ERROR if the stream was freed prematurely (some input or output was discarded). In the error case, msg may be set but then points to a static string (which must not be deallocated). */ /* ZEXTERN int ZEXPORT inflateInit OF((z_streamp strm)); Initializes the internal stream state for decompression. The fields next_in, avail_in, zalloc, zfree and opaque must be initialized before by the caller. If next_in is not Z_NULL and avail_in is large enough (the exact value depends on the compression method), inflateInit determines the compression method from the zlib header and allocates all data structures accordingly; otherwise the allocation will be deferred to the first call of inflate. If zalloc and zfree are set to Z_NULL, inflateInit updates them to use default allocation functions. inflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_VERSION_ERROR if the zlib library version is incompatible with the version assumed by the caller, or Z_STREAM_ERROR if the parameters are invalid, such as a null pointer to the structure. msg is set to null if there is no error message. inflateInit does not perform any decompression apart from possibly reading the zlib header if present: actual decompression will be done by inflate(). (So next_in and avail_in may be modified, but next_out and avail_out are unused and unchanged.) The current implementation of inflateInit() does not process any header information -- that is deferred until inflate() is called. */ ZEXTERN int ZEXPORT inflate OF((z_streamp strm, int flush)); /* inflate decompresses as much data as possible, and stops when the input buffer becomes empty or the output buffer becomes full. It may introduce some output latency (reading input without producing any output) except when forced to flush. The detailed semantics are as follows. inflate performs one or both of the following actions: - Decompress more input starting at next_in and update next_in and avail_in accordingly. If not all input can be processed (because there is not enough room in the output buffer), next_in is updated and processing will resume at this point for the next call of inflate(). - Provide more output starting at next_out and update next_out and avail_out accordingly. inflate() provides as much output as possible, until there is no more input data or no more space in the output buffer (see below about the flush parameter). Before the call of inflate(), the application should ensure that at least one of the actions is possible, by providing more input and/or consuming more output, and updating the next_* and avail_* values accordingly. The application can consume the uncompressed output when it wants, for example when the output buffer is full (avail_out == 0), or after each call of inflate(). If inflate returns Z_OK and with zero avail_out, it must be called again after making room in the output buffer because there might be more output pending. The flush parameter of inflate() can be Z_NO_FLUSH, Z_SYNC_FLUSH, Z_FINISH, Z_BLOCK, or Z_TREES. Z_SYNC_FLUSH requests that inflate() flush as much output as possible to the output buffer. Z_BLOCK requests that inflate() stop if and when it gets to the next deflate block boundary. When decoding the zlib or gzip format, this will cause inflate() to return immediately after the header and before the first block. When doing a raw inflate, inflate() will go ahead and process the first block, and will return when it gets to the end of that block, or when it runs out of data. The Z_BLOCK option assists in appending to or combining deflate streams. Also to assist in this, on return inflate() will set strm->data_type to the number of unused bits in the last byte taken from strm->next_in, plus 64 if inflate() is currently decoding the last block in the deflate stream, plus 128 if inflate() returned immediately after decoding an end-of-block code or decoding the complete header up to just before the first byte of the deflate stream. The end-of-block will not be indicated until all of the uncompressed data from that block has been written to strm->next_out. The number of unused bits may in general be greater than seven, except when bit 7 of data_type is set, in which case the number of unused bits will be less than eight. data_type is set as noted here every time inflate() returns for all flush options, and so can be used to determine the amount of currently consumed input in bits. The Z_TREES option behaves as Z_BLOCK does, but it also returns when the end of each deflate block header is reached, before any actual data in that block is decoded. This allows the caller to determine the length of the deflate block header for later use in random access within a deflate block. 256 is added to the value of strm->data_type when inflate() returns immediately after reaching the end of the deflate block header. inflate() should normally be called until it returns Z_STREAM_END or an error. However if all decompression is to be performed in a single step (a single call of inflate), the parameter flush should be set to Z_FINISH. In this case all pending input is processed and all pending output is flushed; avail_out must be large enough to hold all of the uncompressed data for the operation to complete. (The size of the uncompressed data may have been saved by the compressor for this purpose.) The use of Z_FINISH is not required to perform an inflation in one step. However it may be used to inform inflate that a faster approach can be used for the single inflate() call. Z_FINISH also informs inflate to not maintain a sliding window if the stream completes, which reduces inflate's memory footprint. If the stream does not complete, either because not all of the stream is provided or not enough output space is provided, then a sliding window will be allocated and inflate() can be called again to continue the operation as if Z_NO_FLUSH had been used. In this implementation, inflate() always flushes as much output as possible to the output buffer, and always uses the faster approach on the first call. So the effects of the flush parameter in this implementation are on the return value of inflate() as noted below, when inflate() returns early when Z_BLOCK or Z_TREES is used, and when inflate() avoids the allocation of memory for a sliding window when Z_FINISH is used. If a preset dictionary is needed after this call (see inflateSetDictionary below), inflate sets strm->adler to the Adler-32 checksum of the dictionary chosen by the compressor and returns Z_NEED_DICT; otherwise it sets strm->adler to the Adler-32 checksum of all output produced so far (that is, total_out bytes) and returns Z_OK, Z_STREAM_END or an error code as described below. At the end of the stream, inflate() checks that its computed adler32 checksum is equal to that saved by the compressor and returns Z_STREAM_END only if the checksum is correct. inflate() can decompress and check either zlib-wrapped or gzip-wrapped deflate data. The header type is detected automatically, if requested when initializing with inflateInit2(). Any information contained in the gzip header is not retained, so applications that need that information should instead use raw inflate, see inflateInit2() below, or inflateBack() and perform their own processing of the gzip header and trailer. When processing gzip-wrapped deflate data, strm->adler32 is set to the CRC-32 of the output producted so far. The CRC-32 is checked against the gzip trailer. inflate() returns Z_OK if some progress has been made (more input processed or more output produced), Z_STREAM_END if the end of the compressed data has been reached and all uncompressed output has been produced, Z_NEED_DICT if a preset dictionary is needed at this point, Z_DATA_ERROR if the input data was corrupted (input stream not conforming to the zlib format or incorrect check value), Z_STREAM_ERROR if the stream structure was inconsistent (for example next_in or next_out was Z_NULL), Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if no progress is possible or if there was not enough room in the output buffer when Z_FINISH is used. Note that Z_BUF_ERROR is not fatal, and inflate() can be called again with more input and more output space to continue decompressing. If Z_DATA_ERROR is returned, the application may then call inflateSync() to look for a good compression block if a partial recovery of the data is desired. */ ZEXTERN int ZEXPORT inflateEnd OF((z_streamp strm)); /* All dynamically allocated data structures for this stream are freed. This function discards any unprocessed input and does not flush any pending output. inflateEnd returns Z_OK if success, Z_STREAM_ERROR if the stream state was inconsistent. In the error case, msg may be set but then points to a static string (which must not be deallocated). */ /* Advanced functions */ /* The following functions are needed only in some special applications. */ /* ZEXTERN int ZEXPORT deflateInit2 OF((z_streamp strm, int level, int method, int windowBits, int memLevel, int strategy)); This is another version of deflateInit with more compression options. The fields next_in, zalloc, zfree and opaque must be initialized before by the caller. The method parameter is the compression method. It must be Z_DEFLATED in this version of the library. The windowBits parameter is the base two logarithm of the window size (the size of the history buffer). It should be in the range 8..15 for this version of the library. Larger values of this parameter result in better compression at the expense of memory usage. The default value is 15 if deflateInit is used instead. windowBits can also be -8..-15 for raw deflate. In this case, -windowBits determines the window size. deflate() will then generate raw deflate data with no zlib header or trailer, and will not compute an adler32 check value. windowBits can also be greater than 15 for optional gzip encoding. Add 16 to windowBits to write a simple gzip header and trailer around the compressed data instead of a zlib wrapper. The gzip header will have no file name, no extra data, no comment, no modification time (set to zero), no header crc, and the operating system will be set to 255 (unknown). If a gzip stream is being written, strm->adler is a crc32 instead of an adler32. The memLevel parameter specifies how much memory should be allocated for the internal compression state. memLevel=1 uses minimum memory but is slow and reduces compression ratio; memLevel=9 uses maximum memory for optimal speed. The default value is 8. See zconf.h for total memory usage as a function of windowBits and memLevel. The strategy parameter is used to tune the compression algorithm. Use the value Z_DEFAULT_STRATEGY for normal data, Z_FILTERED for data produced by a filter (or predictor), Z_HUFFMAN_ONLY to force Huffman encoding only (no string match), or Z_RLE to limit match distances to one (run-length encoding). Filtered data consists mostly of small values with a somewhat random distribution. In this case, the compression algorithm is tuned to compress them better. The effect of Z_FILTERED is to force more Huffman coding and less string matching; it is somewhat intermediate between Z_DEFAULT_STRATEGY and Z_HUFFMAN_ONLY. Z_RLE is designed to be almost as fast as Z_HUFFMAN_ONLY, but give better compression for PNG image data. The strategy parameter only affects the compression ratio but not the correctness of the compressed output even if it is not set appropriately. Z_FIXED prevents the use of dynamic Huffman codes, allowing for a simpler decoder for special applications. deflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_STREAM_ERROR if any parameter is invalid (such as an invalid method), or Z_VERSION_ERROR if the zlib library version (zlib_version) is incompatible with the version assumed by the caller (ZLIB_VERSION). msg is set to null if there is no error message. deflateInit2 does not perform any compression: this will be done by deflate(). */ ZEXTERN int ZEXPORT deflateSetDictionary OF((z_streamp strm, const Bytef *dictionary, uInt dictLength)); /* Initializes the compression dictionary from the given byte sequence without producing any compressed output. When using the zlib format, this function must be called immediately after deflateInit, deflateInit2 or deflateReset, and before any call of deflate. When doing raw deflate, this function must be called either before any call of deflate, or immediately after the completion of a deflate block, i.e. after all input has been consumed and all output has been delivered when using any of the flush options Z_BLOCK, Z_PARTIAL_FLUSH, Z_SYNC_FLUSH, or Z_FULL_FLUSH. The compressor and decompressor must use exactly the same dictionary (see inflateSetDictionary). The dictionary should consist of strings (byte sequences) that are likely to be encountered later in the data to be compressed, with the most commonly used strings preferably put towards the end of the dictionary. Using a dictionary is most useful when the data to be compressed is short and can be predicted with good accuracy; the data can then be compressed better than with the default empty dictionary. Depending on the size of the compression data structures selected by deflateInit or deflateInit2, a part of the dictionary may in effect be discarded, for example if the dictionary is larger than the window size provided in deflateInit or deflateInit2. Thus the strings most likely to be useful should be put at the end of the dictionary, not at the front. In addition, the current implementation of deflate will use at most the window size minus 262 bytes of the provided dictionary. Upon return of this function, strm->adler is set to the adler32 value of the dictionary; the decompressor may later use this value to determine which dictionary has been used by the compressor. (The adler32 value applies to the whole dictionary even if only a subset of the dictionary is actually used by the compressor.) If a raw deflate was requested, then the adler32 value is not computed and strm->adler is not set. deflateSetDictionary returns Z_OK if success, or Z_STREAM_ERROR if a parameter is invalid (e.g. dictionary being Z_NULL) or the stream state is inconsistent (for example if deflate has already been called for this stream or if not at a block boundary for raw deflate). deflateSetDictionary does not perform any compression: this will be done by deflate(). */ ZEXTERN int ZEXPORT deflateCopy OF((z_streamp dest, z_streamp source)); /* Sets the destination stream as a complete copy of the source stream. This function can be useful when several compression strategies will be tried, for example when there are several ways of pre-processing the input data with a filter. The streams that will be discarded should then be freed by calling deflateEnd. Note that deflateCopy duplicates the internal compression state which can be quite large, so this strategy is slow and can consume lots of memory. deflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc being Z_NULL). msg is left unchanged in both source and destination. */ ZEXTERN int ZEXPORT deflateReset OF((z_streamp strm)); /* This function is equivalent to deflateEnd followed by deflateInit, but does not free and reallocate all the internal compression state. The stream will keep the same compression level and any other attributes that may have been set by deflateInit2. deflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc or state being Z_NULL). */ ZEXTERN int ZEXPORT deflateParams OF((z_streamp strm, int level, int strategy)); /* Dynamically update the compression level and compression strategy. The interpretation of level and strategy is as in deflateInit2. This can be used to switch between compression and straight copy of the input data, or to switch to a different kind of input data requiring a different strategy. If the compression level is changed, the input available so far is compressed with the old level (and may be flushed); the new level will take effect only at the next call of deflate(). Before the call of deflateParams, the stream state must be set as for a call of deflate(), since the currently available input may have to be compressed and flushed. In particular, strm->avail_out must be non-zero. deflateParams returns Z_OK if success, Z_STREAM_ERROR if the source stream state was inconsistent or if a parameter was invalid, Z_BUF_ERROR if strm->avail_out was zero. */ ZEXTERN int ZEXPORT deflateTune OF((z_streamp strm, int good_length, int max_lazy, int nice_length, int max_chain)); /* Fine tune deflate's internal compression parameters. This should only be used by someone who understands the algorithm used by zlib's deflate for searching for the best matching string, and even then only by the most fanatic optimizer trying to squeeze out the last compressed bit for their specific input data. Read the deflate.c source code for the meaning of the max_lazy, good_length, nice_length, and max_chain parameters. deflateTune() can be called after deflateInit() or deflateInit2(), and returns Z_OK on success, or Z_STREAM_ERROR for an invalid deflate stream. */ ZEXTERN uLong ZEXPORT deflateBound OF((z_streamp strm, uLong sourceLen)); /* deflateBound() returns an upper bound on the compressed size after deflation of sourceLen bytes. It must be called after deflateInit() or deflateInit2(), and after deflateSetHeader(), if used. This would be used to allocate an output buffer for deflation in a single pass, and so would be called before deflate(). If that first deflate() call is provided the sourceLen input bytes, an output buffer allocated to the size returned by deflateBound(), and the flush value Z_FINISH, then deflate() is guaranteed to return Z_STREAM_END. Note that it is possible for the compressed size to be larger than the value returned by deflateBound() if flush options other than Z_FINISH or Z_NO_FLUSH are used. */ ZEXTERN int ZEXPORT deflatePending OF((z_streamp strm, unsigned *pending, int *bits)); /* deflatePending() returns the number of bytes and bits of output that have been generated, but not yet provided in the available output. The bytes not provided would be due to the available output space having being consumed. The number of bits of output not provided are between 0 and 7, where they await more bits to join them in order to fill out a full byte. If pending or bits are Z_NULL, then those values are not set. deflatePending returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent. */ ZEXTERN int ZEXPORT deflatePrime OF((z_streamp strm, int bits, int value)); /* deflatePrime() inserts bits in the deflate output stream. The intent is that this function is used to start off the deflate output with the bits leftover from a previous deflate stream when appending to it. As such, this function can only be used for raw deflate, and must be used before the first deflate() call after a deflateInit2() or deflateReset(). bits must be less than or equal to 16, and that many of the least significant bits of value will be inserted in the output. deflatePrime returns Z_OK if success, Z_BUF_ERROR if there was not enough room in the internal buffer to insert the bits, or Z_STREAM_ERROR if the source stream state was inconsistent. */ ZEXTERN int ZEXPORT deflateSetHeader OF((z_streamp strm, gz_headerp head)); /* deflateSetHeader() provides gzip header information for when a gzip stream is requested by deflateInit2(). deflateSetHeader() may be called after deflateInit2() or deflateReset() and before the first call of deflate(). The text, time, os, extra field, name, and comment information in the provided gz_header structure are written to the gzip header (xflag is ignored -- the extra flags are set according to the compression level). The caller must assure that, if not Z_NULL, name and comment are terminated with a zero byte, and that if extra is not Z_NULL, that extra_len bytes are available there. If hcrc is true, a gzip header crc is included. Note that the current versions of the command-line version of gzip (up through version 1.3.x) do not support header crc's, and will report that it is a "multi-part gzip file" and give up. If deflateSetHeader is not used, the default gzip header has text false, the time set to zero, and os set to 255, with no extra, name, or comment fields. The gzip header is returned to the default state by deflateReset(). deflateSetHeader returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent. */ /* ZEXTERN int ZEXPORT inflateInit2 OF((z_streamp strm, int windowBits)); This is another version of inflateInit with an extra parameter. The fields next_in, avail_in, zalloc, zfree and opaque must be initialized before by the caller. The windowBits parameter is the base two logarithm of the maximum window size (the size of the history buffer). It should be in the range 8..15 for this version of the library. The default value is 15 if inflateInit is used instead. windowBits must be greater than or equal to the windowBits value provided to deflateInit2() while compressing, or it must be equal to 15 if deflateInit2() was not used. If a compressed stream with a larger window size is given as input, inflate() will return with the error code Z_DATA_ERROR instead of trying to allocate a larger window. windowBits can also be zero to request that inflate use the window size in the zlib header of the compressed stream. windowBits can also be -8..-15 for raw inflate. In this case, -windowBits determines the window size. inflate() will then process raw deflate data, not looking for a zlib or gzip header, not generating a check value, and not looking for any check values for comparison at the end of the stream. This is for use with other formats that use the deflate compressed data format such as zip. Those formats provide their own check values. If a custom format is developed using the raw deflate format for compressed data, it is recommended that a check value such as an adler32 or a crc32 be applied to the uncompressed data as is done in the zlib, gzip, and zip formats. For most applications, the zlib format should be used as is. Note that comments above on the use in deflateInit2() applies to the magnitude of windowBits. windowBits can also be greater than 15 for optional gzip decoding. Add 32 to windowBits to enable zlib and gzip decoding with automatic header detection, or add 16 to decode only the gzip format (the zlib format will return a Z_DATA_ERROR). If a gzip stream is being decoded, strm->adler is a crc32 instead of an adler32. inflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_VERSION_ERROR if the zlib library version is incompatible with the version assumed by the caller, or Z_STREAM_ERROR if the parameters are invalid, such as a null pointer to the structure. msg is set to null if there is no error message. inflateInit2 does not perform any decompression apart from possibly reading the zlib header if present: actual decompression will be done by inflate(). (So next_in and avail_in may be modified, but next_out and avail_out are unused and unchanged.) The current implementation of inflateInit2() does not process any header information -- that is deferred until inflate() is called. */ ZEXTERN int ZEXPORT inflateSetDictionary OF((z_streamp strm, const Bytef *dictionary, uInt dictLength)); /* Initializes the decompression dictionary from the given uncompressed byte sequence. This function must be called immediately after a call of inflate, if that call returned Z_NEED_DICT. The dictionary chosen by the compressor can be determined from the adler32 value returned by that call of inflate. The compressor and decompressor must use exactly the same dictionary (see deflateSetDictionary). For raw inflate, this function can be called at any time to set the dictionary. If the provided dictionary is smaller than the window and there is already data in the window, then the provided dictionary will amend what's there. The application must insure that the dictionary that was used for compression is provided. inflateSetDictionary returns Z_OK if success, Z_STREAM_ERROR if a parameter is invalid (e.g. dictionary being Z_NULL) or the stream state is inconsistent, Z_DATA_ERROR if the given dictionary doesn't match the expected one (incorrect adler32 value). inflateSetDictionary does not perform any decompression: this will be done by subsequent calls of inflate(). */ ZEXTERN int ZEXPORT inflateGetDictionary OF((z_streamp strm, Bytef *dictionary, uInt *dictLength)); /* Returns the sliding dictionary being maintained by inflate. dictLength is set to the number of bytes in the dictionary, and that many bytes are copied to dictionary. dictionary must have enough space, where 32768 bytes is always enough. If inflateGetDictionary() is called with dictionary equal to Z_NULL, then only the dictionary length is returned, and nothing is copied. Similary, if dictLength is Z_NULL, then it is not set. inflateGetDictionary returns Z_OK on success, or Z_STREAM_ERROR if the stream state is inconsistent. */ ZEXTERN int ZEXPORT inflateSync OF((z_streamp strm)); /* Skips invalid compressed data until a possible full flush point (see above for the description of deflate with Z_FULL_FLUSH) can be found, or until all available input is skipped. No output is provided. inflateSync searches for a 00 00 FF FF pattern in the compressed data. All full flush points have this pattern, but not all occurrences of this pattern are full flush points. inflateSync returns Z_OK if a possible full flush point has been found, Z_BUF_ERROR if no more input was provided, Z_DATA_ERROR if no flush point has been found, or Z_STREAM_ERROR if the stream structure was inconsistent. In the success case, the application may save the current current value of total_in which indicates where valid compressed data was found. In the error case, the application may repeatedly call inflateSync, providing more input each time, until success or end of the input data. */ ZEXTERN int ZEXPORT inflateCopy OF((z_streamp dest, z_streamp source)); /* Sets the destination stream as a complete copy of the source stream. This function can be useful when randomly accessing a large stream. The first pass through the stream can periodically record the inflate state, allowing restarting inflate at those points when randomly accessing the stream. inflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc being Z_NULL). msg is left unchanged in both source and destination. */ ZEXTERN int ZEXPORT inflateReset OF((z_streamp strm)); /* This function is equivalent to inflateEnd followed by inflateInit, but does not free and reallocate all the internal decompression state. The stream will keep attributes that may have been set by inflateInit2. inflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc or state being Z_NULL). */ ZEXTERN int ZEXPORT inflateReset2 OF((z_streamp strm, int windowBits)); /* This function is the same as inflateReset, but it also permits changing the wrap and window size requests. The windowBits parameter is interpreted the same as it is for inflateInit2. inflateReset2 returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent (such as zalloc or state being Z_NULL), or if the windowBits parameter is invalid. */ ZEXTERN int ZEXPORT inflatePrime OF((z_streamp strm, int bits, int value)); /* This function inserts bits in the inflate input stream. The intent is that this function is used to start inflating at a bit position in the middle of a byte. The provided bits will be used before any bytes are used from next_in. This function should only be used with raw inflate, and should be used before the first inflate() call after inflateInit2() or inflateReset(). bits must be less than or equal to 16, and that many of the least significant bits of value will be inserted in the input. If bits is negative, then the input stream bit buffer is emptied. Then inflatePrime() can be called again to put bits in the buffer. This is used to clear out bits leftover after feeding inflate a block description prior to feeding inflate codes. inflatePrime returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent. */ ZEXTERN long ZEXPORT inflateMark OF((z_streamp strm)); /* This function returns two values, one in the lower 16 bits of the return value, and the other in the remaining upper bits, obtained by shifting the return value down 16 bits. If the upper value is -1 and the lower value is zero, then inflate() is currently decoding information outside of a block. If the upper value is -1 and the lower value is non-zero, then inflate is in the middle of a stored block, with the lower value equaling the number of bytes from the input remaining to copy. If the upper value is not -1, then it is the number of bits back from the current bit position in the input of the code (literal or length/distance pair) currently being processed. In that case the lower value is the number of bytes already emitted for that code. A code is being processed if inflate is waiting for more input to complete decoding of the code, or if it has completed decoding but is waiting for more output space to write the literal or match data. inflateMark() is used to mark locations in the input data for random access, which may be at bit positions, and to note those cases where the output of a code may span boundaries of random access blocks. The current location in the input stream can be determined from avail_in and data_type as noted in the description for the Z_BLOCK flush parameter for inflate. inflateMark returns the value noted above or -1 << 16 if the provided source stream state was inconsistent. */ ZEXTERN int ZEXPORT inflateGetHeader OF((z_streamp strm, gz_headerp head)); /* inflateGetHeader() requests that gzip header information be stored in the provided gz_header structure. inflateGetHeader() may be called after inflateInit2() or inflateReset(), and before the first call of inflate(). As inflate() processes the gzip stream, head->done is zero until the header is completed, at which time head->done is set to one. If a zlib stream is being decoded, then head->done is set to -1 to indicate that there will be no gzip header information forthcoming. Note that Z_BLOCK or Z_TREES can be used to force inflate() to return immediately after header processing is complete and before any actual data is decompressed. The text, time, xflags, and os fields are filled in with the gzip header contents. hcrc is set to true if there is a header CRC. (The header CRC was valid if done is set to one.) If extra is not Z_NULL, then extra_max contains the maximum number of bytes to write to extra. Once done is true, extra_len contains the actual extra field length, and extra contains the extra field, or that field truncated if extra_max is less than extra_len. If name is not Z_NULL, then up to name_max characters are written there, terminated with a zero unless the length is greater than name_max. If comment is not Z_NULL, then up to comm_max characters are written there, terminated with a zero unless the length is greater than comm_max. When any of extra, name, or comment are not Z_NULL and the respective field is not present in the header, then that field is set to Z_NULL to signal its absence. This allows the use of deflateSetHeader() with the returned structure to duplicate the header. However if those fields are set to allocated memory, then the application will need to save those pointers elsewhere so that they can be eventually freed. If inflateGetHeader is not used, then the header information is simply discarded. The header is always checked for validity, including the header CRC if present. inflateReset() will reset the process to discard the header information. The application would need to call inflateGetHeader() again to retrieve the header from the next gzip stream. inflateGetHeader returns Z_OK if success, or Z_STREAM_ERROR if the source stream state was inconsistent. */ /* ZEXTERN int ZEXPORT inflateBackInit OF((z_streamp strm, int windowBits, unsigned char FAR *window)); Initialize the internal stream state for decompression using inflateBack() calls. The fields zalloc, zfree and opaque in strm must be initialized before the call. If zalloc and zfree are Z_NULL, then the default library- derived memory allocation routines are used. windowBits is the base two logarithm of the window size, in the range 8..15. window is a caller supplied buffer of that size. Except for special applications where it is assured that deflate was used with small window sizes, windowBits must be 15 and a 32K byte window must be supplied to be able to decompress general deflate streams. See inflateBack() for the usage of these routines. inflateBackInit will return Z_OK on success, Z_STREAM_ERROR if any of the parameters are invalid, Z_MEM_ERROR if the internal state could not be allocated, or Z_VERSION_ERROR if the version of the library does not match the version of the header file. */ typedef unsigned (*in_func) OF((void FAR *, z_const unsigned char FAR * FAR *)); typedef int (*out_func) OF((void FAR *, unsigned char FAR *, unsigned)); ZEXTERN int ZEXPORT inflateBack OF((z_streamp strm, in_func in, void FAR *in_desc, out_func out, void FAR *out_desc)); /* inflateBack() does a raw inflate with a single call using a call-back interface for input and output. This is potentially more efficient than inflate() for file i/o applications, in that it avoids copying between the output and the sliding window by simply making the window itself the output buffer. inflate() can be faster on modern CPUs when used with large buffers. inflateBack() trusts the application to not change the output buffer passed by the output function, at least until inflateBack() returns. inflateBackInit() must be called first to allocate the internal state and to initialize the state with the user-provided window buffer. inflateBack() may then be used multiple times to inflate a complete, raw deflate stream with each call. inflateBackEnd() is then called to free the allocated state. A raw deflate stream is one with no zlib or gzip header or trailer. This routine would normally be used in a utility that reads zip or gzip files and writes out uncompressed files. The utility would decode the header and process the trailer on its own, hence this routine expects only the raw deflate stream to decompress. This is different from the normal behavior of inflate(), which expects either a zlib or gzip header and trailer around the deflate stream. inflateBack() uses two subroutines supplied by the caller that are then called by inflateBack() for input and output. inflateBack() calls those routines until it reads a complete deflate stream and writes out all of the uncompressed data, or until it encounters an error. The function's parameters and return types are defined above in the in_func and out_func typedefs. inflateBack() will call in(in_desc, &buf) which should return the number of bytes of provided input, and a pointer to that input in buf. If there is no input available, in() must return zero--buf is ignored in that case--and inflateBack() will return a buffer error. inflateBack() will call out(out_desc, buf, len) to write the uncompressed data buf[0..len-1]. out() should return zero on success, or non-zero on failure. If out() returns non-zero, inflateBack() will return with an error. Neither in() nor out() are permitted to change the contents of the window provided to inflateBackInit(), which is also the buffer that out() uses to write from. The length written by out() will be at most the window size. Any non-zero amount of input may be provided by in(). For convenience, inflateBack() can be provided input on the first call by setting strm->next_in and strm->avail_in. If that input is exhausted, then in() will be called. Therefore strm->next_in must be initialized before calling inflateBack(). If strm->next_in is Z_NULL, then in() will be called immediately for input. If strm->next_in is not Z_NULL, then strm->avail_in must also be initialized, and then if strm->avail_in is not zero, input will initially be taken from strm->next_in[0 .. strm->avail_in - 1]. The in_desc and out_desc parameters of inflateBack() is passed as the first parameter of in() and out() respectively when they are called. These descriptors can be optionally used to pass any information that the caller- supplied in() and out() functions need to do their job. On return, inflateBack() will set strm->next_in and strm->avail_in to pass back any unused input that was provided by the last in() call. The return values of inflateBack() can be Z_STREAM_END on success, Z_BUF_ERROR if in() or out() returned an error, Z_DATA_ERROR if there was a format error in the deflate stream (in which case strm->msg is set to indicate the nature of the error), or Z_STREAM_ERROR if the stream was not properly initialized. In the case of Z_BUF_ERROR, an input or output error can be distinguished using strm->next_in which will be Z_NULL only if in() returned an error. If strm->next_in is not Z_NULL, then the Z_BUF_ERROR was due to out() returning non-zero. (in() will always be called before out(), so strm->next_in is assured to be defined if out() returns non-zero.) Note that inflateBack() cannot return Z_OK. */ ZEXTERN int ZEXPORT inflateBackEnd OF((z_streamp strm)); /* All memory allocated by inflateBackInit() is freed. inflateBackEnd() returns Z_OK on success, or Z_STREAM_ERROR if the stream state was inconsistent. */ ZEXTERN uLong ZEXPORT zlibCompileFlags OF((void)); /* Return flags indicating compile-time options. Type sizes, two bits each, 00 = 16 bits, 01 = 32, 10 = 64, 11 = other: 1.0: size of uInt 3.2: size of uLong 5.4: size of voidpf (pointer) 7.6: size of z_off_t Compiler, assembler, and debug options: 8: DEBUG 9: ASMV or ASMINF -- use ASM code 10: ZLIB_WINAPI -- exported functions use the WINAPI calling convention 11: 0 (reserved) One-time table building (smaller code, but not thread-safe if true): 12: BUILDFIXED -- build static block decoding tables when needed 13: DYNAMIC_CRC_TABLE -- build CRC calculation tables when needed 14,15: 0 (reserved) Library content (indicates missing functionality): 16: NO_GZCOMPRESS -- gz* functions cannot compress (to avoid linking deflate code when not needed) 17: NO_GZIP -- deflate can't write gzip streams, and inflate can't detect and decode gzip streams (to avoid linking crc code) 18-19: 0 (reserved) Operation variations (changes in library functionality): 20: PKZIP_BUG_WORKAROUND -- slightly more permissive inflate 21: FASTEST -- deflate algorithm with only one, lowest compression level 22,23: 0 (reserved) The sprintf variant used by gzprintf (zero is best): 24: 0 = vs*, 1 = s* -- 1 means limited to 20 arguments after the format 25: 0 = *nprintf, 1 = *printf -- 1 means gzprintf() not secure! 26: 0 = returns value, 1 = void -- 1 means inferred string length returned Remainder: 27-31: 0 (reserved) */ #ifndef Z_SOLO /* utility functions */ /* The following utility functions are implemented on top of the basic stream-oriented functions. To simplify the interface, some default options are assumed (compression level and memory usage, standard memory allocation functions). The source code of these utility functions can be modified if you need special options. */ ZEXTERN int ZEXPORT compress OF((Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen)); /* Compresses the source buffer into the destination buffer. sourceLen is the byte length of the source buffer. Upon entry, destLen is the total size of the destination buffer, which must be at least the value returned by compressBound(sourceLen). Upon exit, destLen is the actual size of the compressed buffer. compress returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if there was not enough room in the output buffer. */ ZEXTERN int ZEXPORT compress2 OF((Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen, int level)); /* Compresses the source buffer into the destination buffer. The level parameter has the same meaning as in deflateInit. sourceLen is the byte length of the source buffer. Upon entry, destLen is the total size of the destination buffer, which must be at least the value returned by compressBound(sourceLen). Upon exit, destLen is the actual size of the compressed buffer. compress2 returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if there was not enough room in the output buffer, Z_STREAM_ERROR if the level parameter is invalid. */ ZEXTERN uLong ZEXPORT compressBound OF((uLong sourceLen)); /* compressBound() returns an upper bound on the compressed size after compress() or compress2() on sourceLen bytes. It would be used before a compress() or compress2() call to allocate the destination buffer. */ ZEXTERN int ZEXPORT uncompress OF((Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen)); /* Decompresses the source buffer into the destination buffer. sourceLen is the byte length of the source buffer. Upon entry, destLen is the total size of the destination buffer, which must be large enough to hold the entire uncompressed data. (The size of the uncompressed data must have been saved previously by the compressor and transmitted to the decompressor by some mechanism outside the scope of this compression library.) Upon exit, destLen is the actual size of the uncompressed buffer. uncompress returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if there was not enough room in the output buffer, or Z_DATA_ERROR if the input data was corrupted or incomplete. In the case where there is not enough room, uncompress() will fill the output buffer with the uncompressed data up to that point. */ /* gzip file access functions */ /* This library supports reading and writing files in gzip (.gz) format with an interface similar to that of stdio, using the functions that start with "gz". The gzip format is different from the zlib format. gzip is a gzip wrapper, documented in RFC 1952, wrapped around a deflate stream. */ typedef struct gzFile_s *gzFile; /* semi-opaque gzip file descriptor */ /* ZEXTERN gzFile ZEXPORT gzopen OF((const char *path, const char *mode)); Opens a gzip (.gz) file for reading or writing. The mode parameter is as in fopen ("rb" or "wb") but can also include a compression level ("wb9") or a strategy: 'f' for filtered data as in "wb6f", 'h' for Huffman-only compression as in "wb1h", 'R' for run-length encoding as in "wb1R", or 'F' for fixed code compression as in "wb9F". (See the description of deflateInit2 for more information about the strategy parameter.) 'T' will request transparent writing or appending with no compression and not using the gzip format. "a" can be used instead of "w" to request that the gzip stream that will be written be appended to the file. "+" will result in an error, since reading and writing to the same gzip file is not supported. The addition of "x" when writing will create the file exclusively, which fails if the file already exists. On systems that support it, the addition of "e" when reading or writing will set the flag to close the file on an execve() call. These functions, as well as gzip, will read and decode a sequence of gzip streams in a file. The append function of gzopen() can be used to create such a file. (Also see gzflush() for another way to do this.) When appending, gzopen does not test whether the file begins with a gzip stream, nor does it look for the end of the gzip streams to begin appending. gzopen will simply append a gzip stream to the existing file. gzopen can be used to read a file which is not in gzip format; in this case gzread will directly read from the file without decompression. When reading, this will be detected automatically by looking for the magic two- byte gzip header. gzopen returns NULL if the file could not be opened, if there was insufficient memory to allocate the gzFile state, or if an invalid mode was specified (an 'r', 'w', or 'a' was not provided, or '+' was provided). errno can be checked to determine if the reason gzopen failed was that the file could not be opened. */ ZEXTERN gzFile ZEXPORT gzdopen OF((int fd, const char *mode)); /* gzdopen associates a gzFile with the file descriptor fd. File descriptors are obtained from calls like open, dup, creat, pipe or fileno (if the file has been previously opened with fopen). The mode parameter is as in gzopen. The next call of gzclose on the returned gzFile will also close the file descriptor fd, just like fclose(fdopen(fd, mode)) closes the file descriptor fd. If you want to keep fd open, use fd = dup(fd_keep); gz = gzdopen(fd, mode);. The duplicated descriptor should be saved to avoid a leak, since gzdopen does not close fd if it fails. If you are using fileno() to get the file descriptor from a FILE *, then you will have to use dup() to avoid double-close()ing the file descriptor. Both gzclose() and fclose() will close the associated file descriptor, so they need to have different file descriptors. gzdopen returns NULL if there was insufficient memory to allocate the gzFile state, if an invalid mode was specified (an 'r', 'w', or 'a' was not provided, or '+' was provided), or if fd is -1. The file descriptor is not used until the next gz* read, write, seek, or close operation, so gzdopen will not detect if fd is invalid (unless fd is -1). */ ZEXTERN int ZEXPORT gzbuffer OF((gzFile file, unsigned size)); /* Set the internal buffer size used by this library's functions. The default buffer size is 8192 bytes. This function must be called after gzopen() or gzdopen(), and before any other calls that read or write the file. The buffer memory allocation is always deferred to the first read or write. Two buffers are allocated, either both of the specified size when writing, or one of the specified size and the other twice that size when reading. A larger buffer size of, for example, 64K or 128K bytes will noticeably increase the speed of decompression (reading). The new buffer size also affects the maximum length for gzprintf(). gzbuffer() returns 0 on success, or -1 on failure, such as being called too late. */ ZEXTERN int ZEXPORT gzsetparams OF((gzFile file, int level, int strategy)); /* Dynamically update the compression level or strategy. See the description of deflateInit2 for the meaning of these parameters. gzsetparams returns Z_OK if success, or Z_STREAM_ERROR if the file was not opened for writing. */ ZEXTERN int ZEXPORT gzread OF((gzFile file, voidp buf, unsigned len)); /* Reads the given number of uncompressed bytes from the compressed file. If the input file is not in gzip format, gzread copies the given number of bytes into the buffer directly from the file. After reaching the end of a gzip stream in the input, gzread will continue to read, looking for another gzip stream. Any number of gzip streams may be concatenated in the input file, and will all be decompressed by gzread(). If something other than a gzip stream is encountered after a gzip stream, that remaining trailing garbage is ignored (and no error is returned). gzread can be used to read a gzip file that is being concurrently written. Upon reaching the end of the input, gzread will return with the available data. If the error code returned by gzerror is Z_OK or Z_BUF_ERROR, then gzclearerr can be used to clear the end of file indicator in order to permit gzread to be tried again. Z_OK indicates that a gzip stream was completed on the last gzread. Z_BUF_ERROR indicates that the input file ended in the middle of a gzip stream. Note that gzread does not return -1 in the event of an incomplete gzip stream. This error is deferred until gzclose(), which will return Z_BUF_ERROR if the last gzread ended in the middle of a gzip stream. Alternatively, gzerror can be used before gzclose to detect this case. gzread returns the number of uncompressed bytes actually read, less than len for end of file, or -1 for error. */ ZEXTERN int ZEXPORT gzwrite OF((gzFile file, voidpc buf, unsigned len)); /* Writes the given number of uncompressed bytes into the compressed file. gzwrite returns the number of uncompressed bytes written or 0 in case of error. */ ZEXTERN int ZEXPORTVA gzprintf Z_ARG((gzFile file, const char *format, ...)); /* Converts, formats, and writes the arguments to the compressed file under control of the format string, as in fprintf. gzprintf returns the number of uncompressed bytes actually written, or 0 in case of error. The number of uncompressed bytes written is limited to 8191, or one less than the buffer size given to gzbuffer(). The caller should assure that this limit is not exceeded. If it is exceeded, then gzprintf() will return an error (0) with nothing written. In this case, there may also be a buffer overflow with unpredictable consequences, which is possible only if zlib was compiled with the insecure functions sprintf() or vsprintf() because the secure snprintf() or vsnprintf() functions were not available. This can be determined using zlibCompileFlags(). */ ZEXTERN int ZEXPORT gzputs OF((gzFile file, const char *s)); /* Writes the given null-terminated string to the compressed file, excluding the terminating null character. gzputs returns the number of characters written, or -1 in case of error. */ ZEXTERN char * ZEXPORT gzgets OF((gzFile file, char *buf, int len)); /* Reads bytes from the compressed file until len-1 characters are read, or a newline character is read and transferred to buf, or an end-of-file condition is encountered. If any characters are read or if len == 1, the string is terminated with a null character. If no characters are read due to an end-of-file or len < 1, then the buffer is left untouched. gzgets returns buf which is a null-terminated string, or it returns NULL for end-of-file or in case of error. If there was an error, the contents at buf are indeterminate. */ ZEXTERN int ZEXPORT gzputc OF((gzFile file, int c)); /* Writes c, converted to an unsigned char, into the compressed file. gzputc returns the value that was written, or -1 in case of error. */ ZEXTERN int ZEXPORT gzgetc OF((gzFile file)); /* Reads one byte from the compressed file. gzgetc returns this byte or -1 in case of end of file or error. This is implemented as a macro for speed. As such, it does not do all of the checking the other functions do. I.e. it does not check to see if file is NULL, nor whether the structure file points to has been clobbered or not. */ ZEXTERN int ZEXPORT gzungetc OF((int c, gzFile file)); /* Push one character back onto the stream to be read as the first character on the next read. At least one character of push-back is allowed. gzungetc() returns the character pushed, or -1 on failure. gzungetc() will fail if c is -1, and may fail if a character has been pushed but not read yet. If gzungetc is used immediately after gzopen or gzdopen, at least the output buffer size of pushed characters is allowed. (See gzbuffer above.) The pushed character will be discarded if the stream is repositioned with gzseek() or gzrewind(). */ ZEXTERN int ZEXPORT gzflush OF((gzFile file, int flush)); /* Flushes all pending output into the compressed file. The parameter flush is as in the deflate() function. The return value is the zlib error number (see function gzerror below). gzflush is only permitted when writing. If the flush parameter is Z_FINISH, the remaining data is written and the gzip stream is completed in the output. If gzwrite() is called again, a new gzip stream will be started in the output. gzread() is able to read such concatented gzip streams. gzflush should be called only when strictly necessary because it will degrade compression if called too often. */ /* ZEXTERN z_off_t ZEXPORT gzseek OF((gzFile file, z_off_t offset, int whence)); Sets the starting position for the next gzread or gzwrite on the given compressed file. The offset represents a number of bytes in the uncompressed data stream. The whence parameter is defined as in lseek(2); the value SEEK_END is not supported. If the file is opened for reading, this function is emulated but can be extremely slow. If the file is opened for writing, only forward seeks are supported; gzseek then compresses a sequence of zeroes up to the new starting position. gzseek returns the resulting offset location as measured in bytes from the beginning of the uncompressed stream, or -1 in case of error, in particular if the file is opened for writing and the new starting position would be before the current position. */ ZEXTERN int ZEXPORT gzrewind OF((gzFile file)); /* Rewinds the given file. This function is supported only for reading. gzrewind(file) is equivalent to (int)gzseek(file, 0L, SEEK_SET) */ /* ZEXTERN z_off_t ZEXPORT gztell OF((gzFile file)); Returns the starting position for the next gzread or gzwrite on the given compressed file. This position represents a number of bytes in the uncompressed data stream, and is zero when starting, even if appending or reading a gzip stream from the middle of a file using gzdopen(). gztell(file) is equivalent to gzseek(file, 0L, SEEK_CUR) */ /* ZEXTERN z_off_t ZEXPORT gzoffset OF((gzFile file)); Returns the current offset in the file being read or written. This offset includes the count of bytes that precede the gzip stream, for example when appending or when using gzdopen() for reading. When reading, the offset does not include as yet unused buffered input. This information can be used for a progress indicator. On error, gzoffset() returns -1. */ ZEXTERN int ZEXPORT gzeof OF((gzFile file)); /* Returns true (1) if the end-of-file indicator has been set while reading, false (0) otherwise. Note that the end-of-file indicator is set only if the read tried to go past the end of the input, but came up short. Therefore, just like feof(), gzeof() may return false even if there is no more data to read, in the event that the last read request was for the exact number of bytes remaining in the input file. This will happen if the input file size is an exact multiple of the buffer size. If gzeof() returns true, then the read functions will return no more data, unless the end-of-file indicator is reset by gzclearerr() and the input file has grown since the previous end of file was detected. */ ZEXTERN int ZEXPORT gzdirect OF((gzFile file)); /* Returns true (1) if file is being copied directly while reading, or false (0) if file is a gzip stream being decompressed. If the input file is empty, gzdirect() will return true, since the input does not contain a gzip stream. If gzdirect() is used immediately after gzopen() or gzdopen() it will cause buffers to be allocated to allow reading the file to determine if it is a gzip file. Therefore if gzbuffer() is used, it should be called before gzdirect(). When writing, gzdirect() returns true (1) if transparent writing was requested ("wT" for the gzopen() mode), or false (0) otherwise. (Note: gzdirect() is not needed when writing. Transparent writing must be explicitly requested, so the application already knows the answer. When linking statically, using gzdirect() will include all of the zlib code for gzip file reading and decompression, which may not be desired.) */ ZEXTERN int ZEXPORT gzclose OF((gzFile file)); /* Flushes all pending output if necessary, closes the compressed file and deallocates the (de)compression state. Note that once file is closed, you cannot call gzerror with file, since its structures have been deallocated. gzclose must not be called more than once on the same file, just as free must not be called more than once on the same allocation. gzclose will return Z_STREAM_ERROR if file is not valid, Z_ERRNO on a file operation error, Z_MEM_ERROR if out of memory, Z_BUF_ERROR if the last read ended in the middle of a gzip stream, or Z_OK on success. */ ZEXTERN int ZEXPORT gzclose_r OF((gzFile file)); ZEXTERN int ZEXPORT gzclose_w OF((gzFile file)); /* Same as gzclose(), but gzclose_r() is only for use when reading, and gzclose_w() is only for use when writing or appending. The advantage to using these instead of gzclose() is that they avoid linking in zlib compression or decompression code that is not used when only reading or only writing respectively. If gzclose() is used, then both compression and decompression code will be included the application when linking to a static zlib library. */ ZEXTERN const char * ZEXPORT gzerror OF((gzFile file, int *errnum)); /* Returns the error message for the last error which occurred on the given compressed file. errnum is set to zlib error number. If an error occurred in the file system and not in the compression library, errnum is set to Z_ERRNO and the application may consult errno to get the exact error code. The application must not modify the returned string. Future calls to this function may invalidate the previously returned string. If file is closed, then the string previously returned by gzerror will no longer be available. gzerror() should be used to distinguish errors from end-of-file for those functions above that do not distinguish those cases in their return values. */ ZEXTERN void ZEXPORT gzclearerr OF((gzFile file)); /* Clears the error and end-of-file flags for file. This is analogous to the clearerr() function in stdio. This is useful for continuing to read a gzip file that is being written concurrently. */ #endif /* !Z_SOLO */ /* checksum functions */ /* These functions are not related to compression but are exported anyway because they might be useful in applications using the compression library. */ ZEXTERN uLong ZEXPORT adler32 OF((uLong adler, const Bytef *buf, uInt len)); /* Update a running Adler-32 checksum with the bytes buf[0..len-1] and return the updated checksum. If buf is Z_NULL, this function returns the required initial value for the checksum. An Adler-32 checksum is almost as reliable as a CRC32 but can be computed much faster. Usage example: uLong adler = adler32(0L, Z_NULL, 0); while (read_buffer(buffer, length) != EOF) { adler = adler32(adler, buffer, length); } if (adler != original_adler) error(); */ /* ZEXTERN uLong ZEXPORT adler32_combine OF((uLong adler1, uLong adler2, z_off_t len2)); Combine two Adler-32 checksums into one. For two sequences of bytes, seq1 and seq2 with lengths len1 and len2, Adler-32 checksums were calculated for each, adler1 and adler2. adler32_combine() returns the Adler-32 checksum of seq1 and seq2 concatenated, requiring only adler1, adler2, and len2. Note that the z_off_t type (like off_t) is a signed integer. If len2 is negative, the result has no meaning or utility. */ ZEXTERN uLong ZEXPORT crc32 OF((uLong crc, const Bytef *buf, uInt len)); /* Update a running CRC-32 with the bytes buf[0..len-1] and return the updated CRC-32. If buf is Z_NULL, this function returns the required initial value for the crc. Pre- and post-conditioning (one's complement) is performed within this function so it shouldn't be done by the application. Usage example: uLong crc = crc32(0L, Z_NULL, 0); while (read_buffer(buffer, length) != EOF) { crc = crc32(crc, buffer, length); } if (crc != original_crc) error(); */ /* ZEXTERN uLong ZEXPORT crc32_combine OF((uLong crc1, uLong crc2, z_off_t len2)); Combine two CRC-32 check values into one. For two sequences of bytes, seq1 and seq2 with lengths len1 and len2, CRC-32 check values were calculated for each, crc1 and crc2. crc32_combine() returns the CRC-32 check value of seq1 and seq2 concatenated, requiring only crc1, crc2, and len2. */ /* various hacks, don't look :) */ /* deflateInit and inflateInit are macros to allow checking the zlib version * and the compiler's view of z_stream: */ ZEXTERN int ZEXPORT deflateInit_ OF((z_streamp strm, int level, const char *version, int stream_size)); ZEXTERN int ZEXPORT inflateInit_ OF((z_streamp strm, const char *version, int stream_size)); ZEXTERN int ZEXPORT deflateInit2_ OF((z_streamp strm, int level, int method, int windowBits, int memLevel, int strategy, const char *version, int stream_size)); ZEXTERN int ZEXPORT inflateInit2_ OF((z_streamp strm, int windowBits, const char *version, int stream_size)); ZEXTERN int ZEXPORT inflateBackInit_ OF((z_streamp strm, int windowBits, unsigned char FAR *window, const char *version, int stream_size)); #define deflateInit(strm, level) \ deflateInit_((strm), (level), ZLIB_VERSION, (int)sizeof(z_stream)) #define inflateInit(strm) \ inflateInit_((strm), ZLIB_VERSION, (int)sizeof(z_stream)) #define deflateInit2(strm, level, method, windowBits, memLevel, strategy) \ deflateInit2_((strm),(level),(method),(windowBits),(memLevel),\ (strategy), ZLIB_VERSION, (int)sizeof(z_stream)) #define inflateInit2(strm, windowBits) \ inflateInit2_((strm), (windowBits), ZLIB_VERSION, \ (int)sizeof(z_stream)) #define inflateBackInit(strm, windowBits, window) \ inflateBackInit_((strm), (windowBits), (window), \ ZLIB_VERSION, (int)sizeof(z_stream)) #ifndef Z_SOLO /* gzgetc() macro and its supporting function and exposed data structure. Note * that the real internal state is much larger than the exposed structure. * This abbreviated structure exposes just enough for the gzgetc() macro. The * user should not mess with these exposed elements, since their names or * behavior could change in the future, perhaps even capriciously. They can * only be used by the gzgetc() macro. You have been warned. */ struct gzFile_s { unsigned have; unsigned char *next; z_off64_t pos; }; ZEXTERN int ZEXPORT gzgetc_ OF((gzFile file)); /* backward compatibility */ #ifdef Z_PREFIX_SET # undef z_gzgetc # define z_gzgetc(g) \ ((g)->have ? ((g)->have--, (g)->pos++, *((g)->next)++) : gzgetc(g)) #else # define gzgetc(g) \ ((g)->have ? ((g)->have--, (g)->pos++, *((g)->next)++) : gzgetc(g)) #endif /* provide 64-bit offset functions if _LARGEFILE64_SOURCE defined, and/or * change the regular functions to 64 bits if _FILE_OFFSET_BITS is 64 (if * both are true, the application gets the *64 functions, and the regular * functions are changed to 64 bits) -- in case these are set on systems * without large file support, _LFS64_LARGEFILE must also be true */ #ifdef Z_LARGE64 ZEXTERN gzFile ZEXPORT gzopen64 OF((const char *, const char *)); ZEXTERN z_off64_t ZEXPORT gzseek64 OF((gzFile, z_off64_t, int)); ZEXTERN z_off64_t ZEXPORT gztell64 OF((gzFile)); ZEXTERN z_off64_t ZEXPORT gzoffset64 OF((gzFile)); ZEXTERN uLong ZEXPORT adler32_combine64 OF((uLong, uLong, z_off64_t)); ZEXTERN uLong ZEXPORT crc32_combine64 OF((uLong, uLong, z_off64_t)); #endif #if !defined(ZLIB_INTERNAL) && defined(Z_WANT64) # ifdef Z_PREFIX_SET # define minizlib_gzopen minizlib_gzopen64 # define minizlib_gzseek minizlib_gzseek64 # define minizlib_gztell minizlib_gztell64 # define minizlib_gzoffset minizlib_gzoffset64 # define minizlib_adler32_combine minizlib_adler32_combine64 # define minizlib_crc32_combine minizlib_crc32_combine64 # else # define gzopen gzopen64 # define gzseek gzseek64 # define gztell gztell64 # define gzoffset gzoffset64 # define adler32_combine adler32_combine64 # define crc32_combine crc32_combine64 # endif # ifndef Z_LARGE64 ZEXTERN gzFile ZEXPORT gzopen64 OF((const char *, const char *)); ZEXTERN z_off_t ZEXPORT gzseek64 OF((gzFile, z_off_t, int)); ZEXTERN z_off_t ZEXPORT gztell64 OF((gzFile)); ZEXTERN z_off_t ZEXPORT gzoffset64 OF((gzFile)); ZEXTERN uLong ZEXPORT adler32_combine64 OF((uLong, uLong, z_off_t)); ZEXTERN uLong ZEXPORT crc32_combine64 OF((uLong, uLong, z_off_t)); # endif #else ZEXTERN gzFile ZEXPORT gzopen OF((const char *, const char *)); ZEXTERN z_off_t ZEXPORT gzseek OF((gzFile, z_off_t, int)); ZEXTERN z_off_t ZEXPORT gztell OF((gzFile)); ZEXTERN z_off_t ZEXPORT gzoffset OF((gzFile)); ZEXTERN uLong ZEXPORT adler32_combine OF((uLong, uLong, z_off_t)); ZEXTERN uLong ZEXPORT crc32_combine OF((uLong, uLong, z_off_t)); #endif #else /* Z_SOLO */ ZEXTERN uLong ZEXPORT adler32_combine OF((uLong, uLong, z_off_t)); ZEXTERN uLong ZEXPORT crc32_combine OF((uLong, uLong, z_off_t)); #endif /* !Z_SOLO */ /* hack for buggy compilers */ #if !defined(ZUTIL_H) && !defined(NO_DUMMY_DECL) struct internal_state {int dummy;}; #endif /* undocumented functions */ ZEXTERN const char * ZEXPORT zError OF((int)); ZEXTERN int ZEXPORT inflateSyncPoint OF((z_streamp)); ZEXTERN const z_crc_t FAR * ZEXPORT get_crc_table OF((void)); ZEXTERN int ZEXPORT inflateUndermine OF((z_streamp, int)); ZEXTERN int ZEXPORT inflateResetKeep OF((z_streamp)); ZEXTERN int ZEXPORT deflateResetKeep OF((z_streamp)); #if defined(_WIN32) && !defined(Z_SOLO) ZEXTERN gzFile ZEXPORT gzopen_w OF((const wchar_t *path, const char *mode)); #endif #if defined(STDC) || defined(Z_HAVE_STDARG_H) # ifndef Z_SOLO ZEXTERN int ZEXPORTVA gzvprintf Z_ARG((gzFile file, const char *format, va_list va)); # endif #endif #ifdef __cplusplus } #endif #endif /* ZLIB_H */ # endif #endif #include #include #include #include #include #include #ifdef MCPL_THIS_IS_MS # include # include #endif #define MCPLIMP_NPARTICLES_POS 8 #define MCPLIMP_MAX_PARTICLE_SIZE 96 int mcpl_platform_is_little_endian() { //Return 0 for big endian, 1 for little endian. volatile uint32_t i=0x01234567; return (*((uint8_t*)(&i))) == 0x67; } void mcpl_default_error_handler(const char * msg) { printf("MCPL ERROR: %s\n",msg); exit(1); } static void (*mcpl_error_handler)(const char *) = &mcpl_default_error_handler; void mcpl_error(const char * msg) { mcpl_error_handler(msg); //Error handler should not return, but in case it does anyway, we at least //ensure a hard exit! mcpl_default_error_handler("Handler given to mcpl_set_error_handler returns" " to calling code which is not allowed!"); } void mcpl_set_error_handler(void (*handler)(const char *)) { mcpl_error_handler = handler; } void mcpl_store_string(char** dest, const char * src) { size_t n = strlen(src); if (n>65535) n = 65535; if (*dest) free(*dest); *dest = (char*)calloc(n+1,1); assert(*dest); strncpy( *dest,src,n ); (*dest)[n] = '\0'; return; } void mcpl_write_buffer(FILE* f, uint32_t n, const char * data, const char * errmsg) { size_t nb = fwrite(&n, 1, sizeof(n), f); if (nb!=sizeof(n)) mcpl_error(errmsg); nb = fwrite(data, 1, n, f); if (nb!=n) mcpl_error(errmsg); } void mcpl_write_string(FILE* f, const char * str, const char * errmsg) { size_t n = strlen(str); mcpl_write_buffer(f,n,str,errmsg);//nb: we don't write the terminating null-char } typedef struct { char * filename; FILE * file; char * hdr_srcprogname; uint32_t ncomments; char ** comments; uint32_t nblobs; char ** blobkeys; uint32_t * bloblengths; char ** blobs; int opt_userflags; int opt_polarisation; int opt_singleprec; int32_t opt_universalpdgcode; double opt_universalweight; int header_notwritten; uint64_t nparticles; unsigned particle_size; mcpl_particle_t* puser; unsigned opt_signature; char particle_buffer[MCPLIMP_MAX_PARTICLE_SIZE]; } mcpl_outfileinternal_t; #define MCPLIMP_OUTFILEDECODE mcpl_outfileinternal_t * f = (mcpl_outfileinternal_t *)of.internal; assert(f) void mcpl_recalc_psize(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; unsigned fp = f->opt_singleprec ? sizeof(float) : sizeof(double); f->particle_size = 7*fp; if (f->opt_polarisation) f->particle_size += 3*fp; if (!f->opt_universalpdgcode) f->particle_size += sizeof(int32_t); if (!f->opt_universalweight) f->particle_size += fp; if (f->opt_userflags) f->particle_size += sizeof(uint32_t); assert(f->particle_size<=MCPLIMP_MAX_PARTICLE_SIZE); f->opt_signature = 0 + 1 * f->opt_singleprec + 2 * f->opt_polarisation + 4 * f->opt_universalpdgcode + 8 * (f->opt_universalweight?1:0) + 16 * f->opt_userflags; } void mcpl_platform_compatibility_check() { static int first = 1; if (!first) return; first = 0; if (CHAR_BIT!=8) mcpl_error("Platform compatibility check failed (bytes are not 8 bit)"); if (sizeof(float)!=4) mcpl_error("Platform compatibility check failed (float is not 4 bytes)"); if (sizeof(double)!=8) mcpl_error("Platform compatibility check failed (double is not 8 bytes)"); int32_t m1_32 = -1; int32_t not0_32 = ~0; int64_t m1_64 = -1; int64_t not0_64 = ~0; if ( m1_32 != not0_32 || m1_64 != not0_64 ) mcpl_error("Platform compatibility check failed (integers are not two's complement)"); if (copysign(1.0, -0.0) != -1.0) mcpl_error("Platform compatibility check failed (floating point numbers do not have signed zero)"); mcpl_particle_t pd; if ( (char*)&(pd.userflags)-(char*)&(pd) != 12*sizeof(double)+sizeof(uint32_t) ) mcpl_error("Platform compatibility check failed (unexpected padding in mcpl_particle_t)"); } mcpl_outfile_t mcpl_create_outfile(const char * filename) { //Sanity check chosen filename and append ".mcpl" if missing to help people //who forgot to add the extension (in the hope of higher consistency). if (!filename) mcpl_error("mcpl_create_outfile called with null string."); size_t n = strlen(filename); if (!n) mcpl_error("mcpl_create_outfile called with empty string."); if (n>4096) mcpl_error("mcpl_create_outfile called with too long string."); const char * lastdot = strrchr(filename, '.'); if (lastdot==filename && n==5) mcpl_error("mcpl_create_outfile called with string with no basename part (\".mcpl\")."); //Initialise data structures and open file: mcpl_platform_compatibility_check(); mcpl_outfile_t out; out.internal = 0; mcpl_outfileinternal_t * f = (mcpl_outfileinternal_t*)calloc(sizeof(mcpl_outfileinternal_t),1); assert(f); if (!lastdot || strcmp(lastdot, ".mcpl") != 0) { f->filename = (char*)malloc(n+6); f->filename[0] = '\0'; strcat(f->filename,filename); strcat(f->filename,".mcpl"); } else { f->filename = (char*)malloc(n+1); f->filename[0] = '\0'; strcat(f->filename,filename); } f->hdr_srcprogname = 0; f->ncomments = 0; f->comments = 0; f->nblobs = 0; f->blobkeys = 0; f->bloblengths = 0; f->blobs = 0; f->opt_userflags = 0; f->opt_polarisation = 0; f->opt_singleprec = 1; f->opt_universalpdgcode = 0; f->opt_universalweight = 0.0; f->header_notwritten = 1; f->nparticles = 0; f->file = fopen(f->filename,"wb"); if (!f->file) mcpl_error("Unable to open output file!"); out.internal = f; mcpl_recalc_psize(out); return out; } const char * mcpl_outfile_filename(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; return f->filename; } void mcpl_hdr_set_srcname(mcpl_outfile_t of,const char * spn) { MCPLIMP_OUTFILEDECODE; if (!f->header_notwritten) mcpl_error("mcpl_hdr_set_srcname called too late."); mcpl_store_string(&(f->hdr_srcprogname),spn); } void mcpl_hdr_add_comment(mcpl_outfile_t of,const char *comment) { MCPLIMP_OUTFILEDECODE; if (!f->header_notwritten) mcpl_error("mcpl_hdr_add_comment called too late."); size_t oldn = f->ncomments; f->ncomments += 1; if (oldn) f->comments = (char **)realloc(f->comments,f->ncomments * sizeof(char*) ); else f->comments = (char **)calloc(f->ncomments,sizeof(char*)); f->comments[oldn] = 0; mcpl_store_string(&(f->comments[oldn]),comment); } void mcpl_hdr_add_data(mcpl_outfile_t of, const char * key, uint32_t ldata, const char * data) { MCPLIMP_OUTFILEDECODE; if (!f->header_notwritten) mcpl_error("mcpl_hdr_add_data called too late."); size_t oldn = f->nblobs; f->nblobs += 1; //Check that key is unique unsigned i; for (i =0; iblobkeys[i],key)==0) mcpl_error("mcpl_hdr_add_data got duplicate key"); } //store key: if (oldn) f->blobkeys = (char **)realloc(f->blobkeys,f->nblobs * sizeof(char*) ); else f->blobkeys = (char **)calloc(f->nblobs,sizeof(char*)); f->blobkeys[oldn] = 0; mcpl_store_string(&(f->blobkeys[oldn]),key); //store blob-lengths: if (oldn) f->bloblengths = (uint32_t*)realloc(f->bloblengths,f->nblobs * sizeof(uint32_t) ); else f->bloblengths = (uint32_t *)calloc(f->nblobs,sizeof(uint32_t)); f->bloblengths[oldn] = ldata; //store data: if (oldn) f->blobs = (char **)realloc(f->blobs,f->nblobs * sizeof(char*) ); else f->blobs = (char **)calloc(f->nblobs,sizeof(char*)); f->blobs[oldn] = (char *)malloc(ldata); memcpy(f->blobs[oldn],data,ldata); } void mcpl_enable_userflags(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; if (f->opt_userflags) return; if (!f->header_notwritten) mcpl_error("mcpl_enable_userflags called too late."); f->opt_userflags = 1; mcpl_recalc_psize(of); } void mcpl_enable_polarisation(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; if (f->opt_polarisation) return; if (!f->header_notwritten) mcpl_error("mcpl_enable_polarisation called too late."); f->opt_polarisation = 1; mcpl_recalc_psize(of); } void mcpl_enable_doubleprec(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; if (!f->opt_singleprec) return; if (!f->header_notwritten) mcpl_error("mcpl_enable_doubleprec called too late."); f->opt_singleprec = 0; mcpl_recalc_psize(of); } void mcpl_enable_universal_pdgcode(mcpl_outfile_t of, int32_t pdgcode) { MCPLIMP_OUTFILEDECODE; if (pdgcode==0) mcpl_error("mcpl_enable_universal_pdgcode must be called with non-zero pdgcode."); if (f->opt_universalpdgcode) { if (f->opt_universalpdgcode!=pdgcode) mcpl_error("mcpl_enable_universal_pdgcode called multiple times"); return; } if (!f->header_notwritten) mcpl_error("mcpl_enable_universal_pdgcode called too late."); f->opt_universalpdgcode = pdgcode; mcpl_recalc_psize(of); } void mcpl_enable_universal_weight(mcpl_outfile_t of, double w) { MCPLIMP_OUTFILEDECODE; if (w<=0.0||isinf(w)||isnan(w)) mcpl_error("mcpl_enable_universal_weight must be called with positive but finite weight."); if (f->opt_universalweight) { if (f->opt_universalweight!=w) mcpl_error("mcpl_enable_universal_weight called multiple times"); return; } if (!f->header_notwritten) mcpl_error("mcpl_enable_universal_weight called too late."); f->opt_universalweight = w; mcpl_recalc_psize(of); } void mcpl_write_header(mcpl_outfileinternal_t * f) { if (!f->header_notwritten) mcpl_error("Logical error!"); const char * errmsg="Errors encountered while attempting to write file header."; //Always start the file with an unsigned char-array (for endian agnosticity) //containing magic word (MCPL), file format version ('001'-'999') and //endianness used in the file ('L' or 'B'): unsigned char start[8] = {'M','C','P','L','0','0','0','L'}; start[4] = (MCPL_FORMATVERSION/100)%10 + '0'; start[5] = (MCPL_FORMATVERSION/10)%10 + '0'; start[6] = MCPL_FORMATVERSION%10 + '0'; if (!mcpl_platform_is_little_endian()) start[7] = 'B'; size_t nb = fwrite(start, 1, sizeof(start), f->file); if (nb!=sizeof(start)) mcpl_error(errmsg); //Right after the initial 8 bytes, we put the number of particles (0 for now, //but important that position is fixed so we can seek and update it later).: long int nparticles_pos = ftell(f->file); if (nparticles_pos!=MCPLIMP_NPARTICLES_POS) mcpl_error(errmsg); nb = fwrite(&f->nparticles, 1, sizeof(f->nparticles), f->file); if (nb!=sizeof(f->nparticles)) mcpl_error(errmsg); //Then a bunch of numbers: uint32_t arr[8]; arr[0] = f->ncomments; arr[1] = f->nblobs; arr[2] = f->opt_userflags; arr[3] = f->opt_polarisation; arr[4] = f->opt_singleprec; arr[5] = f->opt_universalpdgcode; arr[6] = f->particle_size; arr[7] = (f->opt_universalweight?1:0); assert(sizeof(arr)==32); nb = fwrite(arr, 1, sizeof(arr), f->file); if (nb!=sizeof(arr)) mcpl_error(errmsg); if (f->opt_universalweight) { assert(sizeof(f->opt_universalweight)==8); nb = fwrite((void*)(&(f->opt_universalweight)), 1, sizeof(f->opt_universalweight), f->file); if (nb!=sizeof(f->opt_universalweight)) mcpl_error(errmsg); } //strings: mcpl_write_string(f->file,f->hdr_srcprogname?f->hdr_srcprogname:"unknown",errmsg); uint32_t i; for (i = 0; i < f->ncomments; ++i) mcpl_write_string(f->file,f->comments[i],errmsg); //blob keys: for (i = 0; i < f->nblobs; ++i) mcpl_write_string(f->file,f->blobkeys[i],errmsg); //blobs: for (i = 0; i < f->nblobs; ++i) mcpl_write_buffer(f->file, f->bloblengths[i], f->blobs[i],errmsg); //Free up acquired memory only needed for header writing: free(f->hdr_srcprogname); f->hdr_srcprogname = 0; if (f->ncomments) { for (i = 0; i < f->ncomments; ++i) free(f->comments[i]); free(f->comments); f->comments=0; f->ncomments=0; } if (f->nblobs) { for (i = 0; i < f->nblobs; ++i) free(f->blobkeys[i]); free(f->blobkeys); f->blobkeys = 0; for (i = 0; i < f->nblobs; ++i) free(f->blobs[i]); free(f->blobs); f->blobs = 0; free(f->bloblengths); f->bloblengths = 0; f->nblobs = 0; } f->header_notwritten = 0; } #ifndef INFINITY //Missing in ICC 12 C99 compilation: # define INFINITY (__builtin_inf()) #endif void mcpl_unitvect_pack_adaptproj(const double* in, double* out) { //Precise packing of unit vector into 2 floats + 1 bit using the "Adaptive //Projection Packing" method (T. Kittelmann, 2017). // //The Adaptive Projection Packing method is a variant on the traditional projection //method where one would store (x,y,sign(z)) and upon unpacking recover the //magnitude of z with |z|=sqrt(1-x^2-y^2), a formula which suffers from //numerical precision issues when |z| is small. In this improved version, one //gets rid of the precision issues by always storing the components that are //smallest in magnitude (the last one must then have a magnitude in the //interval [1/sqrt(3),1] = [0.577,1.0] which is never small). This just leaves //the issue of being able to recognise the coordinate choices again upon //unpacking. Since all components are at most of unit magnitude, this is //achieved by storing 1/z rather than z and replacing either x or y as //needed (infinity when z=0). Thus, the packed data will contain: // // ( 1/z, y, sign(x) ) when |x|>|y|,|z| // ( x, 1/z, sign(y) ) when |y|>|x|,|z| // ( x, y, sign(z) ) when |z|>|x|,|y| // //The unpacking code can determine which of the three scenarios is used to //encode a given piece of data by checking if the first or second field is //greater than unity. // //Note that the arrays "in" and "out" are both of dimension 3, however out[2] //will contain only binary information, in the form of the sign of the //component which was projected away (-1.0 or 1.0). const double absx = fabs(in[0]); const double absy = fabs(in[1]); if ( fabs(in[2]) < fmax(absx,absy) ) { const double invz = ( in[2] ? (1.0/in[2]) : INFINITY ); if (absx>=absy) { //output (1/z,y,sign(x)) out[0] = invz; out[1] = in[1]; out[2] = in[0]; } else { //output (x,1/z,sign(y)) out[0] = in[0]; out[1] = invz; out[2] = in[1]; } } else { //output (x,y,sign(z)) out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; } out[2] = copysign(1.0,out[2]); } void mcpl_unitvect_unpack_adaptproj( const double* in, double* out ) { //Unpacking for the "Adaptive Projection Packing" method (T. Kittelmann, 2017). //See mcpl_unitvect_pack_adaptproj for more information. // //Note that the arrays "in" and "out" are both of dimension 3, however in[2] //will contain only binary information, in the form of the sign of the //component which was projected away. assert(in[2]==1.0||in[2]==-1.0); if (fabs(in[0]) > 1.0) { //input is (1/z,y,sign(x)) out[1] = in[1]; out[2] = 1.0 / in[0]; out[0] = in[2] * sqrt( fmax( 0.0, 1.0 - ( in[1]*in[1] + out[2]*out[2] ) ) ); } else if (fabs(in[1])>1.0) { //input is (x,1/z,sign(y)) out[0] = in[0]; out[2] = 1.0 / in[1]; out[1] = in[2] * sqrt( fmax ( 0.0, 1.0 - ( in[0]*in[0] + out[2]*out[2] ) ) ); } else { //input is (x,y,sign(z)) out[0] = in[0]; out[1] = in[1]; out[2] = in[2] * sqrt( fmax( 0.0, 1.0 - ( in[0]*in[0] + in[1]*in[1] ) ) ); } } void mcpl_unitvect_unpack_oct(const double* in, double* out) { //Octahedral packing inspired by http://jcgt.org/published/0003/02/01/ // //and: // //Octahedron Environment Maps, T. Engelhardt & C. Dachsbacher, Conference: //Proceedings of the Vision, Modeling, and Visualization Conference 2008, VMV //2008, Konstanz, Germany, October 8-10, 2008 // //Note: Octahedral packing was used for the MCPL-2 format, which we are no //longer writing, only reading. Thus, we only keep the unpacking function in //the code. //restore z-coord of octahedron: out[2] = 1.0 - fabs(in[0]) - fabs(in[1]); if (out[2]<0) { //lower hemisphere out[0] = ( 1.0 - fabs( in[1] ) ) * ( in[0] >= 0.0 ? 1.0 : -1.0 ); out[1] = ( 1.0 - fabs( in[0] ) ) * ( in[1] >= 0.0 ? 1.0 : -1.0 ); } else { //upper hemisphere out[0] = in[0]; out[1] = in[1]; } //project from octahedron to unit sphere: double n = 1.0 / sqrt(out[0]*out[0]+out[1]*out[1]+out[2]*out[2]); out[0] *= n; out[1] *= n; out[2] *= n; } void mcpl_internal_serialise_particle_to_buffer( const mcpl_particle_t* particle, mcpl_outfileinternal_t * f ) { //Serialise the provided particle into the particle_buffer of the output file //(according to the settings of the output file). double pack_ekindir[3]; //Sanity check (add more??): double dirsq = particle->direction[0] * particle->direction[0] + particle->direction[1] * particle->direction[1] + particle->direction[2] * particle->direction[2]; if (fabs(dirsq-1.0)>1.0e-5) mcpl_error("attempting to add particle with non-unit direction vector"); if (particle->ekin<0.0) mcpl_error("attempting to add particle with negative kinetic energy"); //direction and ekin are packed into 3 doubles: mcpl_unitvect_pack_adaptproj(particle->direction,pack_ekindir); //pack_ekindir[2] is now just a sign(1.0 or -1.0), so we can store the //ekin in that field as well (since it must be non-negative). We use copysign //to be sure the signbit is set also if ekin=0: pack_ekindir[2] = copysign(particle->ekin,pack_ekindir[2]); //serialise particle object to buffer: unsigned ibuf = 0; char * pbuf = &(f->particle_buffer[0]); int i; if (f->opt_singleprec) { if (f->opt_polarisation) { for (i=0;i<3;++i) { *(float*)&pbuf[ibuf] = (float)particle->polarisation[i]; ibuf += sizeof(float); } } for (i=0;i<3;++i) { *(float*)&pbuf[ibuf] = (float)particle->position[i]; ibuf += sizeof(float); } for (i=0;i<3;++i) { *(float*)&pbuf[ibuf] = (float)pack_ekindir[i]; ibuf += sizeof(float); } *(float*)&pbuf[ibuf] = (float)particle->time; ibuf += sizeof(float); if (!f->opt_universalweight) { *(float*)&pbuf[ibuf] = (float)particle->weight; ibuf += sizeof(float); } } else { if (f->opt_polarisation) { for (i=0;i<3;++i) { *(double*)&pbuf[ibuf] = particle->polarisation[i]; ibuf += sizeof(double); } } for (i=0;i<3;++i) { *(double*)&pbuf[ibuf] = particle->position[i]; ibuf += sizeof(double); } for (i=0;i<3;++i) { *(double*)&pbuf[ibuf] = pack_ekindir[i]; ibuf += sizeof(double); } *(double*)&pbuf[ibuf] = particle->time; ibuf += sizeof(double); if (!f->opt_universalweight) { *(double*)&pbuf[ibuf] = particle->weight; ibuf += sizeof(double); } } if (!f->opt_universalpdgcode) { *(int32_t*)&pbuf[ibuf] = particle->pdgcode; ibuf += sizeof(int32_t); } if (f->opt_userflags) { *(uint32_t*)&pbuf[ibuf] = particle->userflags; #ifndef NDEBUG ibuf += sizeof(uint32_t); #endif } assert(ibuf==f->particle_size); } void mcpl_internal_write_particle_buffer_to_file(mcpl_outfileinternal_t * f ) { //Ensure header is written: if (f->header_notwritten) mcpl_write_header(f); //Increment nparticles and write buffer to file: f->nparticles += 1; size_t nb; nb = fwrite(&(f->particle_buffer[0]), 1, f->particle_size, f->file); if (nb!=f->particle_size) mcpl_error("Errors encountered while attempting to write particle data."); } void mcpl_add_particle(mcpl_outfile_t of,const mcpl_particle_t* particle) { MCPLIMP_OUTFILEDECODE; mcpl_internal_serialise_particle_to_buffer(particle,f); mcpl_internal_write_particle_buffer_to_file(f); } void mcpl_update_nparticles(FILE* f, uint64_t n) { //Seek and update nparticles at correct location in header: const char * errmsg = "Errors encountered while attempting to update number of particles in file."; int64_t savedpos = ftell(f); if (savedpos<0) mcpl_error(errmsg); if (fseek( f, MCPLIMP_NPARTICLES_POS, SEEK_SET )) mcpl_error(errmsg); size_t nb = fwrite(&n, 1, sizeof(n), f); if (nb != sizeof(n)) mcpl_error(errmsg); if (fseek( f, savedpos, SEEK_SET )) mcpl_error(errmsg); } mcpl_particle_t* mcpl_get_empty_particle(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; if (f->puser) { //Calling more than once. This could be innocent, or it could indicate //problems in multi-threaded user-code. Better disallow and give an error: mcpl_error("mcpl_get_empty_particle must not be called more than once per output file"); } else { f->puser = (mcpl_particle_t*)calloc(sizeof(mcpl_particle_t),1); } return f->puser; } void mcpl_close_outfile(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; if (f->header_notwritten) mcpl_write_header(f); if (f->nparticles) mcpl_update_nparticles(f->file,f->nparticles); fclose(f->file); free(f->filename); free(f->puser); free(f); } void mcpl_transfer_metadata(mcpl_file_t source, mcpl_outfile_t target) { //Note that MCPL format version 2 and 3 have the same meta-data in the header, //except of course the version number itself. if (mcpl_hdr_little_endian(source) != mcpl_platform_is_little_endian()) mcpl_error("mcpl_transfer_metadata can only work on files with same endianness as current platform."); mcpl_hdr_set_srcname(target,mcpl_hdr_srcname(source)); unsigned i; for (i = 0; i < mcpl_hdr_ncomments(source); ++i) mcpl_hdr_add_comment(target,mcpl_hdr_comment(source,i)); const char** blobkeys = mcpl_hdr_blobkeys(source); if (blobkeys) { int nblobs = mcpl_hdr_nblobs(source); uint32_t ldata; const char * data; int ii; for (ii = 0; ii < nblobs; ++ii) { int res = mcpl_hdr_blob(source,blobkeys[ii],&ldata,&data); assert(res);//key must exist (void)res; mcpl_hdr_add_data(target, blobkeys[ii], ldata, data); } } if (mcpl_hdr_has_userflags(source)) mcpl_enable_userflags(target); if (mcpl_hdr_has_polarisation(source)) mcpl_enable_polarisation(target); if (mcpl_hdr_has_doubleprec(source)) mcpl_enable_doubleprec(target); int32_t updg = mcpl_hdr_universal_pdgcode(source); if (updg) mcpl_enable_universal_pdgcode(target,updg); double uw = mcpl_hdr_universal_weight(source); if (uw) mcpl_enable_universal_weight(target,uw); } int mcpl_closeandgzip_outfile_rc(mcpl_outfile_t of) { printf("MCPL WARNING: Usage of function mcpl_closeandgzip_outfile_rc is obsolete as" " mcpl_closeandgzip_outfile now also returns the status. Please update your code" " to use mcpl_closeandgzip_outfile instead.\n"); return mcpl_closeandgzip_outfile(of); } int mcpl_closeandgzip_outfile(mcpl_outfile_t of) { MCPLIMP_OUTFILEDECODE; char * filename = f->filename; f->filename = 0;//prevent free in mcpl_close_outfile mcpl_close_outfile(of); int rc = mcpl_gzip_file(filename); free(filename); return rc; } typedef struct { FILE * file; #ifdef MCPL_HASZLIB gzFile filegz; #else void * filegz; #endif char * hdr_srcprogname; unsigned format_version; int opt_userflags; int opt_polarisation; int opt_singleprec; int32_t opt_universalpdgcode; double opt_universalweight; int is_little_endian; uint64_t nparticles; uint32_t ncomments; char ** comments; uint32_t nblobs; char ** blobkeys; uint32_t * bloblengths; char ** blobs; unsigned particle_size; uint64_t first_particle_pos; uint64_t current_particle_idx; mcpl_particle_t* particle; unsigned opt_signature; char particle_buffer[MCPLIMP_MAX_PARTICLE_SIZE]; } mcpl_fileinternal_t; #define MCPLIMP_FILEDECODE mcpl_fileinternal_t * f = (mcpl_fileinternal_t *)ff.internal; assert(f) void mcpl_read_buffer(mcpl_fileinternal_t* f, unsigned* n, char ** buf, const char * errmsg) { size_t nb; #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, n, sizeof(*n)); else #endif nb = fread(n, 1, sizeof(*n), f->file); if (nb!=sizeof(*n)) mcpl_error(errmsg); *buf = (char*)calloc(*n,1); #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, *buf, *n); else #endif nb = fread(*buf, 1, *n, f->file); if (nb!=*n) mcpl_error(errmsg); } void mcpl_read_string(mcpl_fileinternal_t* f, char ** dest, const char* errmsg) { size_t nb; uint32_t n; #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, &n, sizeof(n)); else #endif nb = fread(&n, 1, sizeof(n), f->file); if (nb!=sizeof(n)) mcpl_error(errmsg); char * s = (char*)calloc(n+1,1); #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, s, n); else #endif nb = fread(s, 1, n, f->file); if (nb!=n) mcpl_error(errmsg); s[n] = '\0'; *dest = s; } mcpl_file_t mcpl_actual_open_file(const char * filename, int * repair_status) { int caller_is_mcpl_repair = *repair_status; *repair_status = 0;//file not broken if (!filename) mcpl_error("mcpl_open_file called with null string"); mcpl_platform_compatibility_check(); mcpl_file_t out; out.internal = 0; mcpl_fileinternal_t * f = (mcpl_fileinternal_t*)calloc(sizeof(mcpl_fileinternal_t),1); assert(f); //open file (with gzopen if filename ends with .gz): f->file = 0; f->filegz = 0; const char * lastdot = strrchr(filename, '.'); if (lastdot && strcmp(lastdot, ".gz") == 0) { #ifdef MCPL_HASZLIB f->filegz = gzopen(filename,"rb"); if (!f->filegz) mcpl_error("Unable to open file!"); #else mcpl_error("This installation of MCPL was not built with zlib support and can not read compressed (.gz) files directly."); #endif } else { f->file = fopen(filename,"rb"); if (!f->file) mcpl_error("Unable to open file!"); } //First read and check magic word, format version and endianness. unsigned char start[8];// = {'M','C','P','L','0','0','0','L'}; size_t nb; #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, start, sizeof(start)); else #endif nb = fread(start, 1, sizeof(start), f->file); if (nb>=4&&(start[0]!='M'||start[1]!='C'||start[2]!='P'||start[3]!='L')) mcpl_error("File is not an MCPL file!"); if (nb!=sizeof(start)) mcpl_error("Error while reading first bytes of file!"); f->format_version = (start[4]-'0')*100 + (start[5]-'0')*10 + (start[6]-'0'); if (f->format_version!=2&&f->format_version!=3) mcpl_error("File is in an unsupported MCPL version!"); f->is_little_endian = mcpl_platform_is_little_endian(); if (start[7]!=(f->is_little_endian?'L':'B')) { if (start[7]=='L'||start[7]=='B') mcpl_error("Endian-ness of current platform is different than the one used to write the file."); else mcpl_error("Unexpected value in endianness field!"); } //proceed reading header, knowing we have a consistent version and endian-ness. const char * errmsg = "Errors encountered while attempting to read header"; uint64_t np; #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, &np, sizeof(np)); else #endif nb = fread(&np, 1, sizeof(np), f->file); if (nb!=sizeof(np)) mcpl_error(errmsg); f->nparticles = np; uint32_t arr[8]; assert(sizeof(arr)==32); #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, arr, sizeof(arr)); else #endif nb=fread(arr, 1, sizeof(arr), f->file); if (nb!=sizeof(arr)) mcpl_error(errmsg); f->ncomments = arr[0]; f->nblobs = arr[1]; f->opt_userflags = arr[2]; f->opt_polarisation = arr[3]; f->opt_singleprec = arr[4]; f->opt_universalpdgcode = arr[5]; f->particle_size = arr[6];//We could check consistency here with the calculated value. assert(f->particle_size<=MCPLIMP_MAX_PARTICLE_SIZE); if (arr[7]) { //file has universal weight #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, (void*)&(f->opt_universalweight), sizeof(f->opt_universalweight)); else #endif nb=fread((void*)&(f->opt_universalweight), 1, sizeof(f->opt_universalweight), f->file); assert(nb==sizeof(f->opt_universalweight)); if (nb!=sizeof(f->opt_universalweight)) mcpl_error(errmsg); } f->opt_signature = 0 + 1 * f->opt_singleprec + 2 * f->opt_polarisation + 4 * f->opt_universalpdgcode + 8 * (f->opt_universalweight?1:0) + 16 * f->opt_userflags; //Then some strings: mcpl_read_string(f,&f->hdr_srcprogname,errmsg); f->comments = f->ncomments ? (char **)calloc(f->ncomments,sizeof(char*)) : 0; uint32_t i; for (i = 0; i < f->ncomments; ++i) mcpl_read_string(f,&(f->comments[i]),errmsg); f->blobkeys = 0; f->bloblengths = 0; f->blobs = 0; if (f->nblobs) { f->blobs = (char **)calloc(f->nblobs,sizeof(char*)); f->blobkeys = (char **)calloc(f->nblobs,sizeof(char*)); f->bloblengths = (uint32_t *)calloc(f->nblobs,sizeof(uint32_t)); for (i =0; i < f->nblobs; ++i) mcpl_read_string(f,&(f->blobkeys[i]),errmsg); for (i =0; i < f->nblobs; ++i) mcpl_read_buffer(f, &(f->bloblengths[i]), &(f->blobs[i]), errmsg); } f->particle = (mcpl_particle_t*)calloc(sizeof(mcpl_particle_t),1); //At first event now: f->current_particle_idx = 0; int64_t tellpos = -1; #ifdef MCPL_HASZLIB if (f->filegz) tellpos = gztell(f->filegz); else #endif tellpos = ftell(f->file); if (tellpos<0) mcpl_error(errmsg); f->first_particle_pos = tellpos; if ( f->nparticles==0 || caller_is_mcpl_repair ) { //Although empty files are permitted, it is possible that the file was never //closed properly (maybe the writing program ended prematurely). Let us //check to possibly recover usage of the file. If caller is mcpl_repair, we //always check since the file might have been truncated after it was first //closed properly. if (f->filegz) { //SEEK_END is not supported by zlib, and there is no reliable way to get //the input size. Thus, all we can do is to uncompress the whole thing, //which we won't since it might stall operations for a long time. But we //can at least try to check whether the file is indeed empty or not, and //give an error in the latter case: #ifdef MCPL_HASZLIB if (f->nparticles==0) { char testbuf[4]; nb = gzread(f->filegz, testbuf, sizeof(testbuf)); if (nb>0) { if (caller_is_mcpl_repair) { *repair_status = 1;//file broken but can't recover since gzip. } else { mcpl_error("Input file appears to not have been closed properly and data recovery is disabled for gzipped files."); } } } else { assert(caller_is_mcpl_repair); *repair_status = 2;//file brokenness can not be determined since gzip. } gzseek( f->filegz, f->first_particle_pos, SEEK_SET ); #endif } else { if (f->file && !fseek( f->file, 0, SEEK_END )) {//SEEK_END is not guaranteed to always work, so we fail our recovery attempt silently. int64_t endpos = ftell(f->file); if (endpos > (int64_t)f->first_particle_pos && (uint64_t)endpos != f->first_particle_pos) { uint64_t np = ( endpos - f->first_particle_pos ) / f->particle_size; if ( f->nparticles != np ) { if ( f->nparticles > 0 && np > f->nparticles ) { //should really not happen unless file was corrupted or file was //first closed properly and then something was appended to it. mcpl_error("Input file has invalid combination of meta-data & filesize."); } if (caller_is_mcpl_repair) { *repair_status = 3;//file broken and should be able to repair } else { assert(f->nparticles == 0); printf("MCPL WARNING: Input file appears to not have been closed properly. Recovered %" PRIu64 " particles.\n",np); } f->nparticles = np; } } } fseek( f->file, f->first_particle_pos, SEEK_SET );//if this fseek failed, it might just be that we are at EOF with no particles. } } out.internal = f; return out; } mcpl_file_t mcpl_open_file(const char * filename) { int repair_status = 0; return mcpl_actual_open_file(filename,&repair_status); } void mcpl_repair(const char * filename) { int repair_status = 1; mcpl_file_t f = mcpl_actual_open_file(filename,&repair_status); uint64_t nparticles = mcpl_hdr_nparticles(f); mcpl_close_file(f); if (repair_status==0) { mcpl_error("File does not appear to be broken."); } else if (repair_status==1) { mcpl_error("Input file is indeed broken, but must be gunzipped before it can be repaired."); } else if (repair_status==2) { mcpl_error("File must be gunzipped before it can be checked and possibly repaired."); } //Ok, we should repair the file by updating nparticles in the header: FILE * fh = fopen(filename,"rb+"); if (!fh) mcpl_error("Unable to open file in update mode!"); mcpl_update_nparticles(fh, nparticles); fclose(fh); //Verify that we fixed it: repair_status = 1; f = mcpl_actual_open_file(filename,&repair_status); uint64_t nparticles2 = mcpl_hdr_nparticles(f); mcpl_close_file(f); if (repair_status==0&&nparticles==nparticles2) { printf("MCPL: Succesfully repaired file with %" PRIu64 " particles.\n",nparticles); } else { mcpl_error("Something went wrong while attempting to repair file."); } } void mcpl_close_file(mcpl_file_t ff) { MCPLIMP_FILEDECODE; free(f->hdr_srcprogname); uint32_t i; for (i = 0; i < f->ncomments; ++i) free(f->comments[i]); free(f->comments); for (i = 0; i < f->nblobs; ++i) free(f->blobkeys[i]); for (i = 0; i < f->nblobs; ++i) free(f->blobs[i]); free(f->blobkeys); free(f->blobs); free(f->bloblengths); free(f->particle); #ifdef MCPL_HASZLIB if (f->filegz) gzclose(f->filegz); #endif if (f->file) fclose(f->file); free(f); } unsigned mcpl_hdr_version(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->format_version; } uint64_t mcpl_hdr_nparticles(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->nparticles; } unsigned mcpl_hdr_ncomments(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->ncomments; } const char * mcpl_hdr_comment(mcpl_file_t ff, unsigned i) { MCPLIMP_FILEDECODE; if (i>=f->ncomments) mcpl_error("Invalid comment requested (index out of bounds)"); return f->comments[i]; } int mcpl_hdr_nblobs(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->nblobs; } const char** mcpl_hdr_blobkeys(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return (const char**)f->blobkeys; } int mcpl_hdr_blob(mcpl_file_t ff, const char* key, uint32_t* ldata, const char ** data) { MCPLIMP_FILEDECODE; uint32_t i; for (i = 0; i < f->nblobs; ++i) { if (strcmp(f->blobkeys[i],key)==0) { *data = f->blobs[i]; *ldata = f->bloblengths[i]; return 1; } } *data = 0; *ldata = 0; return 0; } const char* mcpl_hdr_srcname(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->hdr_srcprogname; } int mcpl_hdr_has_userflags(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->opt_userflags; } int mcpl_hdr_has_polarisation(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->opt_polarisation; } int mcpl_hdr_has_doubleprec(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return !f->opt_singleprec; } const mcpl_particle_t* mcpl_read(mcpl_file_t ff) { MCPLIMP_FILEDECODE; f->current_particle_idx += 1; if ( f->current_particle_idx > f->nparticles ) { f->current_particle_idx = f->nparticles;//overflow guard return 0; } //read particle data: size_t nb; unsigned lbuf = f->particle_size; char * pbuf = &(f->particle_buffer[0]); #ifdef MCPL_HASZLIB if (f->filegz) nb = gzread(f->filegz, pbuf, lbuf); else #endif nb = fread(pbuf, 1, lbuf, f->file); if (nb!=lbuf) mcpl_error("Errors encountered while attempting to read particle data."); //Transfer to particle struct: unsigned ibuf = 0; mcpl_particle_t * p = f->particle; double pack_ekindir[3]; p->weight = f->opt_universalweight; int i; if (f->opt_singleprec) { if (f->opt_polarisation) { for (i=0;i<3;++i) { p->polarisation[i] = *(float*)&pbuf[ibuf]; ibuf += sizeof(float); } } else { for (i=0;i<3;++i) p->polarisation[i] = 0.0; } for (i=0;i<3;++i) { p->position[i] = *(float*)&pbuf[ibuf]; ibuf += sizeof(float); } for (i=0;i<3;++i) { pack_ekindir[i] = *(float*)&pbuf[ibuf]; ibuf += sizeof(float); } p->time = *(float*)&pbuf[ibuf]; ibuf += sizeof(float); if (!p->weight) { p->weight = *(float*)&pbuf[ibuf]; ibuf += sizeof(float); } } else { if (f->opt_polarisation) { for (i=0;i<3;++i) { p->polarisation[i] = *(double*)&pbuf[ibuf]; ibuf += sizeof(double); } } else { for (i=0;i<3;++i) p->polarisation[i] = 0.0; } for (i=0;i<3;++i) { p->position[i] = *(double*)&pbuf[ibuf]; ibuf += sizeof(double); } for (i=0;i<3;++i) { pack_ekindir[i] = *(double*)&pbuf[ibuf]; ibuf += sizeof(double); } p->time = *(double*)&pbuf[ibuf]; ibuf += sizeof(double); if (!p->weight) { p->weight = *(double*)&pbuf[ibuf]; ibuf += sizeof(double); } } if (f->opt_universalpdgcode) { p->pdgcode = f->opt_universalpdgcode; } else { p->pdgcode = *(int32_t*)&pbuf[ibuf]; ibuf += sizeof(int32_t); } if (f->opt_userflags) { p->userflags = *(uint32_t*)&pbuf[ibuf]; #ifndef NDEBUG ibuf += sizeof(uint32_t); #endif } else { f->opt_userflags = 0; } assert(ibuf==lbuf); //Unpack direction and ekin: if (f->format_version>=3) { p->ekin = fabs(pack_ekindir[2]); pack_ekindir[2] = copysign(1.0,pack_ekindir[2]); mcpl_unitvect_unpack_adaptproj(pack_ekindir,p->direction); } else { assert(f->format_version==2); mcpl_unitvect_unpack_oct(pack_ekindir,p->direction); p->ekin = pack_ekindir[2]; if (signbit(pack_ekindir[2])) { p->ekin = -p->ekin; p->direction[2] = 0.0; } } return p; } int mcpl_skipforward(mcpl_file_t ff,uint64_t n) { MCPLIMP_FILEDECODE; //increment, but guard against overflows: if ( n >= f->nparticles || f->current_particle_idx >= f->nparticles ) f->current_particle_idx = f->nparticles; else f->current_particle_idx += n; if ( f->current_particle_idx > f->nparticles ) f->current_particle_idx = f->nparticles; int notEOF = f->current_particle_idxnparticles; if (n==0) return notEOF; if (notEOF) { int error; #ifdef MCPL_HASZLIB if (f->filegz) { int64_t targetpos = f->current_particle_idx*f->particle_size+f->first_particle_pos; error = gzseek( f->filegz, targetpos, SEEK_SET )!=targetpos; } else #endif error = fseek( f->file, f->particle_size * n, SEEK_CUR )!=0; if (error) mcpl_error("Errors encountered while skipping in particle list"); } return notEOF; } int mcpl_rewind(mcpl_file_t ff) { MCPLIMP_FILEDECODE; int already_there = (f->current_particle_idx==0); f->current_particle_idx = 0; int notEOF = f->current_particle_idxnparticles; if (notEOF&&!already_there) { int error; #ifdef MCPL_HASZLIB if (f->filegz) { error = gzseek( f->filegz, f->first_particle_pos, SEEK_SET )!=(int64_t)f->first_particle_pos; } else #endif error = fseek( f->file, f->first_particle_pos, SEEK_SET )!=0; if (error) mcpl_error("Errors encountered while rewinding particle list"); } return notEOF; } int mcpl_seek(mcpl_file_t ff,uint64_t ipos) { MCPLIMP_FILEDECODE; int already_there = (f->current_particle_idx==ipos); f->current_particle_idx = (iposnparticles?ipos:f->nparticles); int notEOF = f->current_particle_idxnparticles; if (notEOF&&!already_there) { int error; #ifdef MCPL_HASZLIB if (f->filegz) { int64_t targetpos = f->current_particle_idx*f->particle_size+f->first_particle_pos; error = gzseek( f->filegz, targetpos, SEEK_SET )!=targetpos; } else #endif error = fseek( f->file, f->first_particle_pos + f->particle_size * ipos, SEEK_SET )!=0; if (error) mcpl_error("Errors encountered while seeking in particle list"); } return notEOF; } uint64_t mcpl_currentposition(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->current_particle_idx; } const char * mcpl_basename(const char * filename) { //portable "basename" which doesn't modify it's argument: const char * bn = strrchr(filename, '/'); return bn ? bn + 1 : filename; } int mcpl_hdr_particle_size(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->particle_size; } uint64_t mcpl_hdr_header_size(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->first_particle_pos; } int mcpl_hdr_universal_pdgcode(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->opt_universalpdgcode; } int mcpl_hdr_universel_pdgcode(mcpl_file_t ff) { printf("MCPL WARNING: Usage of function mcpl_hdr_universel_pdgcode is obsolete as it has" " been renamed to mcpl_hdr_universal_pdgcode. Please update your code.\n"); return mcpl_hdr_universal_pdgcode(ff); } double mcpl_hdr_universal_weight(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->opt_universalweight; } int mcpl_hdr_little_endian(mcpl_file_t ff) { MCPLIMP_FILEDECODE; return f->is_little_endian; } void mcpl_transfer_last_read_particle(mcpl_file_t source, mcpl_outfile_t target) { mcpl_outfileinternal_t * ft = (mcpl_outfileinternal_t *)target.internal; assert(ft); mcpl_fileinternal_t * fs = (mcpl_fileinternal_t *)source.internal; assert(fs); if ( fs->current_particle_idx==0 && fs->particle->weight==0.0 && fs->particle->pdgcode==0 ) { mcpl_error("mcpl_transfer_last_read_particle called with source file in invalid state" " (did you forget to first call mcpl_read() on the source file before calling this function?)"); return; } //Sanity checks for universal fields here (but not in mcpl_add_particle since users are allowed to create files by setting just the universal fields): if ( ft->opt_universalpdgcode && fs->particle->pdgcode != ft->opt_universalpdgcode) { printf("MCPL ERROR: mcpl_transfer_last_read_particle asked to transfer particle with pdgcode %li into a file with universal pdgcode of %li\n", (long)fs->particle->pdgcode,(long)ft->opt_universalpdgcode); mcpl_error("mcpl_transfer_last_read_particle got incompatible pdgcode\n"); return; } if ( ft->opt_universalweight && fs->particle->weight != ft->opt_universalweight) { printf("MCPL ERROR: mcpl_transfer_last_read_particle asked to transfer particle with weight %g into a file with universal weight of %g\n", fs->particle->weight,ft->opt_universalweight); mcpl_error("mcpl_transfer_last_read_particle got incompatible weight\n"); return; } //NB: We don't sanity check that polarisation/userflags are enabled if present //in the input particle, since it is a valid use-case to use this function to //discard such info. if ( fs->format_version == 2 || ( fs->opt_singleprec && !ft->opt_singleprec ) ) { //source file is in old format with different unit vector packing, or the //floating point precision is increasing. In these scenarious we can not //reuse the 3 floats representing packed direction+ekin but must proceed via //a full unpacking+repacking. mcpl_add_particle(target,fs->particle); return; } if ( ft->opt_signature == fs->opt_signature ) { //Particle data is encoded in exactly the same manner in src and target (a //common scenario for many merge or extraction scenarios) -> simply transfer //the bytes and be done with it: assert(fs->particle_size==ft->particle_size); memcpy(ft->particle_buffer,fs->particle_buffer,fs->particle_size); mcpl_internal_write_particle_buffer_to_file(ft); return; } //The hard way - first serialise the source particle into the output buffer: mcpl_internal_serialise_particle_to_buffer( fs->particle, ft ); //If possible, override the 3 FP representing packed ekin+dir from the packing //in the source, thus avoiding potentially lossy unpacking+packing: size_t fpsize_target = ft->opt_singleprec ? sizeof(float) : sizeof(double); size_t idx_packekindir_target = (ft->opt_polarisation ? 6 : 3) * fpsize_target; size_t idx_packekindir_src = (fs->opt_polarisation ? 6 : 3) * fpsize_target; if (fs->opt_singleprec == ft->opt_singleprec) { memcpy( &(ft->particle_buffer[idx_packekindir_target]), &(fs->particle_buffer[idx_packekindir_src]), fpsize_target * 3); } else if ( ft->opt_singleprec && !fs->opt_singleprec ) { //For the case of double precision -> single precision, we can simply //perform a narrowing conversion: double * packekindir_src = (double*)&(fs->particle_buffer[idx_packekindir_src]); float * packekindir_target = (float*)&(ft->particle_buffer[idx_packekindir_target]); for (unsigned i = 0; i < 3; ++i) { packekindir_target[i] = (float)packekindir_src[i]; } } mcpl_internal_write_particle_buffer_to_file(ft); } void mcpl_dump_header(mcpl_file_t f) { printf("\n Basic info\n"); printf(" Format : MCPL-%i\n",mcpl_hdr_version(f)); printf(" No. of particles : %" PRIu64 "\n",mcpl_hdr_nparticles(f)); printf(" Header storage : %" PRIu64 " bytes\n",mcpl_hdr_header_size(f)); printf(" Data storage : %" PRIu64 " bytes\n",mcpl_hdr_nparticles(f)*mcpl_hdr_particle_size(f)); printf("\n Custom meta data\n"); printf(" Source : \"%s\"\n",mcpl_hdr_srcname(f)); unsigned nc=mcpl_hdr_ncomments(f); printf(" Number of comments : %i\n",nc); unsigned ic; for (ic = 0; ic < nc; ++ic) printf(" -> comment %i : \"%s\"\n",ic,mcpl_hdr_comment(f,ic)); unsigned nb = mcpl_hdr_nblobs(f); printf(" Number of blobs : %i\n",nb); const char** blobkeys = mcpl_hdr_blobkeys(f); uint32_t ib; for (ib = 0; ib < nb; ++ib) { const char * data; uint32_t ldata; int ok = mcpl_hdr_blob(f, blobkeys[ib], &ldata, &data); if (!ok) mcpl_error("Unexpected blob access error"); printf(" -> %lu bytes of data with key \"%s\"\n",(unsigned long)ldata,blobkeys[ib]); } printf("\n Particle data format\n"); printf(" User flags : %s\n",(mcpl_hdr_has_userflags(f)?"yes":"no")); printf(" Polarisation info : %s\n",(mcpl_hdr_has_polarisation(f)?"yes":"no")); printf(" Fixed part. type : "); int32_t updg = mcpl_hdr_universal_pdgcode(f); if (updg) printf("yes (pdgcode %li)\n",(long)updg); else printf("no\n"); printf(" Fixed part. weight : "); double uw = mcpl_hdr_universal_weight(f); if (uw) printf("yes (weight %g)\n",uw); else printf("no\n"); printf(" FP precision : %s\n",(mcpl_hdr_has_doubleprec(f)?"double":"single")); printf(" Endianness : %s\n",(mcpl_hdr_little_endian(f)?"little":"big")); printf(" Storage : %i bytes/particle\n",mcpl_hdr_particle_size(f)); printf("\n"); } //Not in the public interface, but perhaps it should be to allow custom //applications to apply custom filters and see the selected particles. For now, //we simply keep the function signature stable, allowing other code to access it //by forward declaring it themselves: void mcpl_dump_particles(mcpl_file_t f, uint64_t nskip, uint64_t nlimit, int(filter)(const mcpl_particle_t*)) { int has_uf = mcpl_hdr_has_userflags(f); int has_pol = mcpl_hdr_has_polarisation(f); double uweight = mcpl_hdr_universal_weight(f); printf("index pdgcode ekin[MeV] x[cm] y[cm] z[cm] ux uy uz time[ms]"); if (!uweight) printf(" weight"); if (has_pol) printf(" pol-x pol-y pol-z"); if (has_uf) printf(" userflags"); printf("\n"); mcpl_skipforward(f,nskip); uint64_t count = nlimit; const mcpl_particle_t* p; while((nlimit==0||count--)&&(p=mcpl_read(f))) { if (filter && !filter(p) ) { ++count; continue; } uint64_t idx = mcpl_currentposition(f)-1;//-1 since mcpl_read skipped ahead printf("%5" PRIu64 " %11i %11.5g %11.5g %11.5g %11.5g %11.5g %11.5g %11.5g %11.5g", idx, p->pdgcode, p->ekin, p->position[0], p->position[1], p->position[2], p->direction[0], p->direction[1], p->direction[2], p->time); if (!uweight) printf(" %11.5g",p->weight); if (has_pol) printf(" %11.5g %11.5g %11.5g",p->polarisation[0],p->polarisation[1],p->polarisation[2]); if (has_uf) printf(" 0x%08x",p->userflags); printf("\n"); } } void mcpl_dump(const char * filename, int parts, uint64_t nskip, uint64_t nlimit) { if (parts<0||parts>2) mcpl_error("mcpl_dump got forbidden value for argument parts"); mcpl_file_t f = mcpl_open_file(filename); printf("Opened MCPL file %s:\n",mcpl_basename(filename)); if (parts==0||parts==1) mcpl_dump_header(f); if (parts==0||parts==2) mcpl_dump_particles(f,nskip,nlimit,0); mcpl_close_file(f); } int mcpl_actual_can_merge(mcpl_file_t ff1, mcpl_file_t ff2) { mcpl_fileinternal_t * f1 = (mcpl_fileinternal_t *)ff1.internal; mcpl_fileinternal_t * f2 = (mcpl_fileinternal_t *)ff2.internal; assert(f1&&f2); if (f1->first_particle_pos!=f2->first_particle_pos) return 0;//different header //Note, we do not check the format_version field here, since mcpl_merge_files //can actually work on files with different versions. //Very strict checking of everything except nparticles. Even order of blobs //and comments must be preserved (could possibly be relaxed a bit): if (strcmp(f1->hdr_srcprogname,f2->hdr_srcprogname)!=0) return 0; if (f1->opt_userflags!=f2->opt_userflags) return 0; if (f1->opt_polarisation!=f2->opt_polarisation) return 0; if (f1->opt_singleprec!=f2->opt_singleprec) return 0; if (f1->opt_universalpdgcode!=f2->opt_universalpdgcode) return 0; if (f1->opt_universalweight!=f2->opt_universalweight) return 0; if (f1->is_little_endian!=f2->is_little_endian) return 0; if (f1->particle_size!=f2->particle_size) return 0; if (f1->ncomments!=f2->ncomments) return 0; if (f1->nblobs!=f2->nblobs) return 0; uint32_t i; for (i = 0; incomments; ++i) { if (strcmp(f1->comments[i],f2->comments[i])!=0) return 0; } for (i = 0; inblobs; ++i) { if (f1->bloblengths[i]!=f2->bloblengths[i]) return 0; if (strcmp(f1->blobkeys[i],f2->blobkeys[i])!=0) return 0; if (memcmp(f1->blobs[i],f2->blobs[i],f1->bloblengths[i])!=0) return 0; } return 1; } int mcpl_can_merge(const char * file1, const char* file2) { mcpl_file_t f1 = mcpl_open_file(file1); mcpl_file_t f2 = mcpl_open_file(file2); int can_merge = mcpl_actual_can_merge(f1,f2); mcpl_close_file(f1); mcpl_close_file(f2); return can_merge; } #ifdef MCPL_THIS_IS_UNIX # include #endif int mcpl_file_certainly_exists(const char * filename) { #if defined MCPL_THIS_IS_UNIX || defined MCPL_THIS_IS_MS if( access( filename, F_OK ) != -1 ) return 1; return 0; #else //esoteric platform without access(..). Try opening for reads: FILE *fd; if ((fd = fopen(filename, "r"))) { fclose(fd); return 1; } //non-existing or read access not allowed: return 0; #endif } #ifdef MCPL_THIS_IS_UNIX # include # include #endif void mcpl_warn_duplicates(unsigned n, const char ** filenames) { //Checks that no filenames in provided list represent the same file (the //detection is not 100% certain on non-POSIX platforms). If duplicates are //found, emit warning - it is assumed the function is called from //mcpl_merge_xxx on a user-provided list of files. //Since this is C, we resort to slow O(N^2) comparison for simplicity. if (n<2) return; #ifdef MCPL_THIS_IS_UNIX //Bullet proof(ish) way, (st_ino,st_dev) uniquely identifies a file on a system. dev_t * id_dev = (dev_t*)calloc(n*sizeof(dev_t),1); ino_t * id_ino = (ino_t*)calloc(n*sizeof(ino_t),1); unsigned i; for (i = 0; iparticle_size; //buffer for transferring up to 1000 particles at a time: const unsigned npbufsize = 1000; char * buf = (char*)malloc(npbufsize*particle_size); uint64_t np_remaining = nparticles; while(np_remaining) { //NB: On linux > 2.6.33 we could use sendfile for more efficient in-kernel //transfer of data between two files! uint64_t toread = np_remaining >= npbufsize ? npbufsize : np_remaining; np_remaining -= toread; //read: size_t nb; #ifdef MCPL_HASZLIB if (fi->filegz) nb = gzread(fi->filegz, buf, toread*particle_size); else #endif nb = fread(buf,1,toread*particle_size,fi->file); if (nb!=toread*particle_size) mcpl_error("Unexpected read-error while merging"); //write: nb = fwrite(buf,1,toread*particle_size,fo); if (nb!=toread*particle_size) mcpl_error("Unexpected write-error while merging"); } free(buf); } mcpl_outfile_t mcpl_forcemerge_files( const char * file_output, unsigned nfiles, const char ** files, int keep_userflags ) { //////////////////////////////////// // Initial sanity check of input: // //////////////////////////////////// if (!nfiles) mcpl_error("mcpl_forcemerge_files must be called with at least one input file"); //Warn user if they are merging a file with itself: mcpl_warn_duplicates(nfiles,files); //Create new file: if (mcpl_file_certainly_exists(file_output)) mcpl_error("requested output file of mcpl_forcemerge_files already exists"); /////////////////////////////////////////// // Fallback to normal merge if possible: // /////////////////////////////////////////// //Check all files for compatibility before we start (for robustness, we check //again when actually merging each file). unsigned ifile; int normal_merge_ok = 1; for (ifile = 1; ifile < nfiles; ++ifile) { if (!mcpl_can_merge(files[0],files[ifile])) { normal_merge_ok = 0; break; } } if (normal_merge_ok) { printf("MCPL mcpl_forcemerge_files called with %i files that are compatible for a standard merge => falling back to standard mcpl_merge_files function\n",nfiles); return mcpl_merge_files(file_output,nfiles,files); } ///////////////////////////// // Actual forcemerge code: // ///////////////////////////// //Run through files and collect meta-data: int opt_dp = 0; int opt_pol = 0; int opt_uf = 0; int lastseen_universalpdg = 0; int disallow_universalpdg = 0; double lastseen_universalweight = 0; int disallow_universalweight = 0; for (ifile = 0; ifile < nfiles; ++ifile) { mcpl_file_t f = mcpl_open_file(files[ifile]); if (!mcpl_hdr_nparticles(f)) { mcpl_close_file(f); continue;//won't affect anything } if (mcpl_hdr_has_userflags(f)) opt_uf = 1;//enable if any if (mcpl_hdr_has_polarisation(f)) opt_pol = 1;//enable if any if (mcpl_hdr_has_doubleprec(f)) opt_dp = 1; int32_t updg = mcpl_hdr_universal_pdgcode(f); if ( !updg || ( lastseen_universalpdg && lastseen_universalpdg != updg ) ) { disallow_universalpdg = 1; } else { lastseen_universalpdg = updg; } double uw = mcpl_hdr_universal_weight(f); if ( !uw || ( lastseen_universalweight && lastseen_universalweight != uw ) ) { disallow_universalweight = 1; } else { lastseen_universalweight = uw; } mcpl_close_file(f); } if (!keep_userflags) opt_uf = 0; mcpl_outfile_t out = mcpl_create_outfile(file_output); mcpl_hdr_set_srcname(out,"mcpl_forcemerge_files (from MCPL v" MCPL_VERSION_STR ")"); if ( opt_uf ) mcpl_enable_userflags(out); if ( opt_pol ) mcpl_enable_polarisation(out); if (opt_dp) mcpl_enable_doubleprec(out); if ( !disallow_universalpdg && lastseen_universalpdg ) mcpl_enable_universal_pdgcode(out,lastseen_universalpdg); if ( !disallow_universalweight && lastseen_universalweight ) mcpl_enable_universal_weight(out,lastseen_universalweight); //Finally, perform the transfer: for (ifile = 0; ifile < nfiles; ++ifile) { mcpl_file_t f = mcpl_open_file(files[ifile]); uint64_t np = mcpl_hdr_nparticles(f); printf("MCPL force-merge: Transferring %" PRIu64 " particle%s from file %s\n",np,(np==1?"":"s"),files[ifile]); const mcpl_particle_t* particle; while ( ( particle = mcpl_read(f) ) ) mcpl_transfer_last_read_particle(f, out);//lossless transfer when possible mcpl_close_file(f); } mcpl_outfileinternal_t * out_internal = (mcpl_outfileinternal_t *)out.internal; uint64_t np = out_internal->nparticles; printf("MCPL force-merge: Transferred a total of %" PRIu64 " particle%s to new file %s\n",np,(np==1?"":"s"),file_output); return out; } mcpl_outfile_t mcpl_merge_files( const char* file_output, unsigned nfiles, const char ** files ) { mcpl_outfile_t out; out.internal = 0; if (!nfiles) mcpl_error("mcpl_merge_files must be called with at least one input file"); //Check all files for compatibility before we start (for robustness, we check //again when actually merging each file). unsigned ifile; for (ifile = 1; ifile < nfiles; ++ifile) { if (!mcpl_can_merge(files[0],files[ifile])) mcpl_error("Attempting to merge incompatible files."); } //Warn user if they are merging a file with itself: mcpl_warn_duplicates(nfiles,files); //Create new file: if (mcpl_file_certainly_exists(file_output)) mcpl_error("requested output file of mcpl_merge_files already exists"); out = mcpl_create_outfile(file_output); mcpl_outfileinternal_t * out_internal = (mcpl_outfileinternal_t *)out.internal; mcpl_file_t f1; f1.internal = 0; int warned_oldversion = 0; for (ifile = 0; ifile < nfiles; ++ifile) { mcpl_file_t fi = mcpl_open_file(files[ifile]); if (ifile==0) { //Add metadata from the first file: mcpl_transfer_metadata(fi, out); if (out_internal->header_notwritten) mcpl_write_header(out_internal); f1 = fi; } else { //Check file is still compatible with first file if (!mcpl_actual_can_merge(f1,fi)) mcpl_error("Aborting merge of suddenly incompatible files."); } //Transfer particle contents: if (mcpl_hdr_version(fi)==MCPL_FORMATVERSION) { //Can transfer raw bytes: uint64_t npi = mcpl_hdr_nparticles(fi); mcpl_transfer_particle_contents(out_internal->file, fi, npi); out_internal->nparticles += npi; } else { //Merging from older version. Transfer via public interface to re-encode //particle data for latest format: if (!warned_oldversion) { warned_oldversion = 1; printf("MCPL WARNING: Merging files from older MCPL format. Output will be in latest format.\n"); } const mcpl_particle_t* particle; while ( ( particle = mcpl_read(fi) ) ) mcpl_add_particle(out,particle); } if (ifile!=0) mcpl_close_file(fi); } mcpl_close_file(f1); return out; } void mcpl_merge(const char * file1, const char* file2) { printf("MCPL WARNING: Usage of function mcpl_merge is obsolete as it has" " been renamed to mcpl_merge_inplace. Please update your code.\n"); mcpl_merge_inplace(file1, file2); } void mcpl_merge_inplace(const char * file1, const char* file2) { mcpl_file_t ff1 = mcpl_open_file(file1); mcpl_file_t ff2 = mcpl_open_file(file2); int can_merge = mcpl_actual_can_merge(ff1,ff2); if (!can_merge) { mcpl_close_file(ff1); mcpl_close_file(ff2); mcpl_error("Attempting to merge incompatible files"); } //Warn user if they are merging a file with itself: const char * filelist[2]; filelist[0] = file1; filelist[1] = file2; mcpl_warn_duplicates(2,filelist); //Access internals: mcpl_fileinternal_t * f1 = (mcpl_fileinternal_t *)ff1.internal; mcpl_fileinternal_t * f2 = (mcpl_fileinternal_t *)ff2.internal; assert(f1&&f2); if (f1->format_version!=f2->format_version) { mcpl_close_file(ff1); mcpl_close_file(ff2); mcpl_error("Attempting to merge incompatible files (can not mix MCPL format versions when merging inplace)"); } if (f1->filegz) { mcpl_close_file(ff1); mcpl_close_file(ff2); mcpl_error("direct modification of gzipped files is not supported."); } uint64_t np1 = f1->nparticles; uint64_t np2 = f2->nparticles; if (!np2) return;//nothing to take from file 2. unsigned particle_size = f1->particle_size; uint64_t first_particle_pos = f1->first_particle_pos; //Should be same since can_merge: assert(particle_size==f2->particle_size); assert(first_particle_pos==f2->first_particle_pos); //Now, close file1 and reopen a file handle in append mode: mcpl_close_file(ff1); FILE * f1a = fopen(file1,"rb+"); //Update file positions. Note that f2->file is already at the position for the //first particle and that the seek operation on f1a correctly discards any //partial entries at the end, which could be there if the file was in need of //mcpl_repair: if (!f1a) mcpl_error("Unable to open file1 in update mode!"); if (fseek( f1a, first_particle_pos + particle_size*np1, SEEK_SET )) mcpl_error("Unable to seek to end of file1 in update mode"); //Transfer particle contents, setting nparticles to 0 during the operation (so //the file appears broken and in need of mcpl_repair in case of errors during //the transfer): mcpl_update_nparticles(f1a,0); mcpl_transfer_particle_contents(f1a, ff2, np2); mcpl_update_nparticles(f1a,np1+np2); //Finish up. mcpl_close_file(ff2); fclose(f1a); } #define MCPLIMP_TOOL_DEFAULT_NLIMIT 10 #define MCPLIMP_TOOL_DEFAULT_NSKIP 0 int mcpl_tool_usage( char** argv, const char * errmsg ) { if (errmsg) { printf("ERROR: %s\n\n",errmsg); printf("Run with -h or --help for usage information\n"); return 1; } const char * progname = mcpl_basename(argv[0]); printf("Tool for inspecting or modifying Monte Carlo Particle List (.mcpl) files.\n"); printf("\n"); printf("The default behaviour is to display the contents of the FILE in human readable\n"); printf("format (see Dump Options below for how to modify what is displayed).\n"); printf("\n"); #ifdef MCPL_HASZLIB printf("This installation supports direct reading of gzipped files (.mcpl.gz).\n"); printf("\n"); #endif printf("Usage:\n"); printf(" %s [dump-options] FILE\n",progname); printf(" %s --merge [merge-options] FILE1 FILE2\n",progname); printf(" %s --extract [extract-options] FILE1 FILE2\n",progname); printf(" %s --repair FILE\n",progname); printf(" %s --version\n",progname); printf(" %s --help\n",progname); printf("\n"); printf("Dump options:\n"); printf(" By default include the info in the FILE header plus the first ten contained\n"); printf(" particles. Modify with the following options:\n"); assert(MCPLIMP_TOOL_DEFAULT_NLIMIT==10); printf(" -j, --justhead : Dump just header info and no particle info.\n"); printf(" -n, --nohead : Dump just particle info and no header info.\n"); printf(" -lN : Dump up to N particles from the file (default %i). You\n",MCPLIMP_TOOL_DEFAULT_NLIMIT); printf(" can specify -l0 to disable this limit.\n"); printf(" -sN : Skip past the first N particles in the file (default %i).\n",MCPLIMP_TOOL_DEFAULT_NSKIP); printf(" -bKEY : Dump binary blob stored under KEY to standard output.\n"); printf("\n"); printf("Merge options:\n"); printf(" -m, --merge FILEOUT FILE1 FILE2 ... FILEN\n"); printf(" Creates new FILEOUT with combined particle contents from\n"); printf(" specified list of N existing and compatible files.\n"); printf(" -m, --merge --inplace FILE1 FILE2 ... FILEN\n"); printf(" Appends the particle contents in FILE2 ... FILEN into\n"); printf(" FILE1. Note that this action modifies FILE1!\n"); printf(" --forcemerge [--keepuserflags] FILEOUT FILE1 FILE2 ... FILEN\n"); printf(" Like --merge but works with incompatible files as well, at the\n"); printf(" heavy price of discarding most metadata like comments and blobs.\n"); printf(" Userflags will be discarded unless --keepuserflags is specified.\n"); printf("\n"); printf("Extract options:\n"); printf(" -e, --extract FILE1 FILE2\n"); printf(" Extracts particles from FILE1 into a new FILE2.\n"); printf(" -lN, -sN : Select range of particles in FILE1 (as above).\n"); printf(" -pPDGCODE : select particles of type given by PDGCODE.\n"); printf("\n"); printf("Other options:\n"); printf(" -r, --repair FILE\n"); printf(" Attempt to repair FILE which was not properly closed, by up-\n"); printf(" dating the file header with the correct number of particles.\n"); printf(" -t, --text MCPLFILE OUTFILE\n"); printf(" Read particle contents of MCPLFILE and write into OUTFILE\n"); printf(" using a simple ASCII-based format.\n"); printf(" -v, --version : Display version of MCPL installation.\n"); printf(" -h, --help : Display this usage information (ignores all other options).\n"); return 0; } int mcpl_str2int(const char* str, size_t len, int64_t* res) { //portable 64bit str2int with error checking (only INT64_MIN might not be //possible to specify). *res = 0; if (!len) len=strlen(str); if (!len) return 0; int sign = 1; if (str[0]=='-') { sign = -1; len -= 1; str += 1; } int64_t tmp = 0; size_t i; for (i=0; i'9') { return 0; } int64_t prev = tmp; tmp *= 10; tmp += str[i] - '0'; if (prev>=tmp) return 1;//overflow (hopefully it did not trigger a signal or FPE) } *res = sign * tmp; return 1; } int mcpl_tool(int argc,char** argv) { int nfilenames = 0; char ** filenames = 0; const char * blobkey = 0; const char * pdgcode_str = 0; int opt_justhead = 0; int opt_nohead = 0; int64_t opt_num_limit = -1; int64_t opt_num_skip = -1; int opt_merge = 0; int opt_forcemerge = 0; int opt_keepuserflags = 0; int opt_inplace = 0; int opt_extract = 0; int opt_preventcomment = 0;//undocumented unoffical flag for mcpl unit tests int opt_repair = 0; int opt_version = 0; int opt_text = 0; int i; for (i = 1; i=2&&a[0]=='-'&&a[1]!='-') { //short options: int64_t * consume_digit = 0; size_t j; for (j=1; j'9') return free(filenames),mcpl_tool_usage(argv,"Bad option: expected number"); *consume_digit *= 10; *consume_digit += a[j] - '0'; continue; } if (a[j]=='b') { if (blobkey) return free(filenames),mcpl_tool_usage(argv,"-b specified more than once"); if (j+1==n) return free(filenames),mcpl_tool_usage(argv,"Missing argument for -b"); blobkey = a+j+1; break; } if (a[j]=='p') { if (pdgcode_str) return free(filenames),mcpl_tool_usage(argv,"-p specified more than once"); if (j+1==n) return free(filenames),mcpl_tool_usage(argv,"Missing argument for -p"); pdgcode_str = a+j+1; break; } switch(a[j]) { case 'h': return free(filenames), mcpl_tool_usage(argv,0); case 'j': opt_justhead = 1; break; case 'n': opt_nohead = 1; break; case 'm': opt_merge = 1; break; case 'e': opt_extract = 1; break; case 'r': opt_repair = 1; break; case 'v': opt_version = 1; break; case 't': opt_text = 1; break; case 'l': consume_digit = &opt_num_limit; break; case 's': consume_digit = &opt_num_skip; break; default: return free(filenames),mcpl_tool_usage(argv,"Unrecognised option"); } if (consume_digit) { *consume_digit = 0; if (j+1==n) return free(filenames),mcpl_tool_usage(argv,"Bad option: missing number"); } } } else if (n>=3&&a[0]=='-'&&a[1]=='-') { a+=2; //long options: const char * lo_help = "help"; const char * lo_justhead = "justhead"; const char * lo_nohead = "nohead"; const char * lo_merge = "merge"; const char * lo_inplace = "inplace"; const char * lo_extract = "extract"; const char * lo_preventcomment = "preventcomment"; const char * lo_repair = "repair"; const char * lo_version = "version"; const char * lo_text = "text"; const char * lo_forcemerge = "forcemerge"; const char * lo_keepuserflags = "keepuserflags"; //Use strstr instead of "strcmp(a,"--help")==0" to support shortened //versions (works since all our long-opts start with unique char). if (strstr(lo_help,a)==lo_help) return free(filenames), mcpl_tool_usage(argv,0); else if (strstr(lo_justhead,a)==lo_justhead) opt_justhead = 1; else if (strstr(lo_nohead,a)==lo_nohead) opt_nohead = 1; else if (strstr(lo_merge,a)==lo_merge) opt_merge = 1; else if (strstr(lo_forcemerge,a)==lo_forcemerge) opt_forcemerge = 1; else if (strstr(lo_keepuserflags,a)==lo_keepuserflags) opt_keepuserflags = 1; else if (strstr(lo_inplace,a)==lo_inplace) opt_inplace = 1; else if (strstr(lo_extract,a)==lo_extract) opt_extract = 1; else if (strstr(lo_repair,a)==lo_repair) opt_repair = 1; else if (strstr(lo_version,a)==lo_version) opt_version = 1; else if (strstr(lo_preventcomment,a)==lo_preventcomment) opt_preventcomment = 1; else if (strstr(lo_text,a)==lo_text) opt_text = 1; else return free(filenames),mcpl_tool_usage(argv,"Unrecognised option"); } else if (n>=1&&a[0]!='-') { //input file if (!filenames) filenames = (char **)calloc(argc,sizeof(char*)); filenames[nfilenames] = a; ++nfilenames; } else { return free(filenames),mcpl_tool_usage(argv,"Bad arguments"); } } if ( opt_extract==0 && pdgcode_str ) return free(filenames),mcpl_tool_usage(argv,"-p can only be used with --extract."); if ( opt_merge==0 && opt_inplace!=0 ) return free(filenames),mcpl_tool_usage(argv,"--inplace can only be used with --merge."); if ( opt_forcemerge==0 && opt_keepuserflags!=0 ) return free(filenames),mcpl_tool_usage(argv,"--keepuserflags can only be used with --forcemerge."); if ( opt_merge!=0 && opt_forcemerge!=0 ) return free(filenames),mcpl_tool_usage(argv,"--merge and --forcemerge can not both be specified ."); int number_dumpopts = (opt_justhead + opt_nohead + (blobkey!=0)); if (opt_extract==0) number_dumpopts += (opt_num_limit!=-1) + (opt_num_skip!=-1); int any_dumpopts = number_dumpopts != 0; int any_extractopts = (opt_extract!=0||pdgcode_str!=0); int any_mergeopts = (opt_merge!=0||opt_forcemerge!=0); int any_textopts = (opt_text!=0); if (any_dumpopts+any_mergeopts+any_extractopts+any_textopts+opt_repair+opt_version>1) return free(filenames),mcpl_tool_usage(argv,"Conflicting options specified."); if (blobkey&&(number_dumpopts>1)) return free(filenames),mcpl_tool_usage(argv,"Do not specify other dump options with -b."); if (opt_version) { free(filenames); if (nfilenames) return mcpl_tool_usage(argv,"Unrecognised arguments for --version."); printf("MCPL version " MCPL_VERSION_STR "\n"); return 0; } if (any_mergeopts) { if (nfilenames<2) return free(filenames),mcpl_tool_usage(argv, (opt_forcemerge?"Too few arguments for --forcemerge.":"Too few arguments for --merge.") ); int ifirstinfile = (opt_inplace ? 0 : 1); if (!opt_forcemerge) { for (i = ifirstinfile+1; i < nfilenames; ++i) if (!mcpl_can_merge(filenames[ifirstinfile],filenames[i])) return free(filenames),mcpl_tool_usage(argv,"Requested files are incompatible for merge as they have different header info."); } if (opt_inplace) { assert( !opt_forcemerge && opt_merge ); for (i = ifirstinfile+1; i < nfilenames; ++i) mcpl_merge_inplace(filenames[ifirstinfile],filenames[i]); } else { if (mcpl_file_certainly_exists(filenames[0])) return free(filenames),mcpl_tool_usage(argv,"Requested output file already exists."); //Disallow .gz endings unless it is .mcpl.gz, in which case we attempt to gzip automatically. char * outfn = filenames[0]; size_t lfn = strlen(outfn); int attempt_gzip = 0; if( lfn > 8 && !strcmp(outfn + (lfn - 8), ".mcpl.gz")) { attempt_gzip = 1; outfn = (char*)malloc(lfn+1); outfn[0] = '\0'; strcat(outfn,filenames[0]); outfn[lfn-3] = '\0'; if (mcpl_file_certainly_exists(outfn)) return free(filenames),mcpl_tool_usage(argv,"Requested output file already exists (without .gz extension)."); } else if( lfn > 3 && !strcmp(outfn + (lfn - 3), ".gz")) { return free(filenames),mcpl_tool_usage(argv,"Requested output file should not have .gz extension (unless it is .mcpl.gz)."); } mcpl_outfile_t mf = ( opt_forcemerge ? mcpl_forcemerge_files( outfn, nfilenames-1, (const char**)filenames + 1, opt_keepuserflags) : mcpl_merge_files( outfn, nfilenames-1, (const char**)filenames + 1) ); if (attempt_gzip) { if (!mcpl_closeandgzip_outfile(mf)) printf("MCPL WARNING: Failed to gzip output. Non-gzipped output is found in %s\n",outfn); } else { mcpl_close_outfile(mf); } if (outfn != filenames[0]) free(outfn); } free(filenames); return 0; } if (opt_extract) { if (nfilenames>2) return free(filenames),mcpl_tool_usage(argv,"Too many arguments."); if (nfilenames!=2) return free(filenames),mcpl_tool_usage(argv,"Must specify both input and output files with --extract."); if (mcpl_file_certainly_exists(filenames[1])) return free(filenames),mcpl_tool_usage(argv,"Requested output file already exists."); mcpl_file_t fi = mcpl_open_file(filenames[0]); mcpl_outfile_t fo = mcpl_create_outfile(filenames[1]); mcpl_transfer_metadata(fi, fo); uint64_t fi_nparticles = mcpl_hdr_nparticles(fi); if (!opt_preventcomment) { char comment[1024]; sprintf(comment, "mcpltool: extracted particles from file with %" PRIu64 " particles",fi_nparticles); mcpl_hdr_add_comment(fo,comment); } int32_t pdgcode_select = 0; if (pdgcode_str) { int64_t pdgcode64; if (!mcpl_str2int(pdgcode_str, 0, &pdgcode64) || pdgcode64<-2147483648 || pdgcode64>2147483647 || !pdgcode64) return free(filenames),mcpl_tool_usage(argv,"Must specify non-zero 32bit integer as argument to -p."); pdgcode_select = (int32_t)pdgcode64; } if (opt_num_skip>0) mcpl_seek(fi,(uint64_t)opt_num_skip); //uint64_t(-1) instead of UINT64_MAX to fix clang c++98 compilation uint64_t left = opt_num_limit>0 ? (uint64_t)opt_num_limit : (uint64_t)-1; uint64_t added = 0; const mcpl_particle_t* particle; while ( left-- && ( particle = mcpl_read(fi) ) ) { if (pdgcode_select && pdgcode_select!= particle->pdgcode) continue; mcpl_transfer_last_read_particle(fi, fo);//Doing mcpl_add_particle(fo,particle) is potentially (very rarely) lossy ++added; } char *fo_filename = (char*)malloc(strlen(mcpl_outfile_filename(fo))+4); fo_filename[0] = '\0'; strcat(fo_filename,mcpl_outfile_filename(fo)); if (mcpl_closeandgzip_outfile(fo)) strcat(fo_filename,".gz"); mcpl_close_file(fi); printf("MCPL: Succesfully extracted %" PRIu64 " / %" PRIu64 " particles from %s into %s\n", added,fi_nparticles,filenames[0],fo_filename); free(fo_filename); free(filenames); return 0; } if (opt_text) { if (nfilenames>2) return free(filenames),mcpl_tool_usage(argv,"Too many arguments."); if (nfilenames!=2) return free(filenames),mcpl_tool_usage(argv,"Must specify both input and output files with --text."); if (mcpl_file_certainly_exists(filenames[1])) return free(filenames),mcpl_tool_usage(argv,"Requested output file already exists."); mcpl_file_t fi = mcpl_open_file(filenames[0]); FILE * fout = fopen(filenames[1],"w"); if (!fout) return free(filenames),mcpl_tool_usage(argv,"Could not open output file."); fprintf(fout,"#MCPL-ASCII\n#ASCII-FORMAT: v1\n#NPARTICLES: %" PRIu64 "\n#END-HEADER\n",mcpl_hdr_nparticles(fi)); fprintf(fout,"index pdgcode ekin[MeV] x[cm] " " y[cm] z[cm] ux " " uy uz time[ms] weight " " pol-x pol-y pol-z userflags\n"); const mcpl_particle_t* p; while ( ( p = mcpl_read(fi) ) ) { uint64_t idx = mcpl_currentposition(fi)-1;//-1 since mcpl_read skipped ahead fprintf(fout,"%5" PRIu64 " %11i %23.18g %23.18g %23.18g %23.18g %23.18g %23.18g %23.18g %23.18g %23.18g" " %23.18g %23.18g %23.18g 0x%08x\n", idx,p->pdgcode,p->ekin,p->position[0],p->position[1],p->position[2], p->direction[0],p->direction[1],p->direction[2],p->time,p->weight, p->polarisation[0],p->polarisation[1],p->polarisation[2],p->userflags); } fclose(fout); mcpl_close_file(fi); free(filenames); return 0; } if (nfilenames>1) return free(filenames),mcpl_tool_usage(argv,"Too many arguments."); if (!nfilenames) return free(filenames),mcpl_tool_usage(argv,"No input file specified"); if (opt_repair) { mcpl_repair(filenames[0]); free(filenames); return 0; } //Dump mode: if (blobkey) { mcpl_file_t mcplfile = mcpl_open_file(filenames[0]); uint32_t ldata; const char * data; if (!mcpl_hdr_blob(mcplfile, blobkey, &ldata, &data)) return 1; #ifdef MCPL_THIS_IS_MS setmode(STDOUT_FILENO, O_BINARY); #endif uint32_t nb = write(STDOUT_FILENO,data,ldata); if (nb!=ldata) mcpl_error("Problems writing to stdout"); free(filenames); return 0; } if (opt_justhead&&(opt_num_limit!=-1||opt_num_skip!=-1)) return free(filenames),mcpl_tool_usage(argv,"Do not specify -l or -s with --justhead"); if (opt_num_limit<0) opt_num_limit = MCPLIMP_TOOL_DEFAULT_NLIMIT; if (opt_num_skip<0) opt_num_skip = MCPLIMP_TOOL_DEFAULT_NSKIP; if (opt_justhead&&opt_nohead) return free(filenames),mcpl_tool_usage(argv,"Do not supply both --justhead and --nohead."); int parts = 0; if (opt_nohead) parts=2; else if (opt_justhead) parts=1; mcpl_dump(filenames[0],parts,opt_num_skip,opt_num_limit); free(filenames); return 0; } int mcpl_gzip_file_rc(const char * filename) { printf("MCPL WARNING: Usage of function mcpl_gzip_file_rc is obsolete as" " mcpl_gzip_file now also returns the status. Please update your code" " to use mcpl_gzip_file instead.\n"); return mcpl_gzip_file(filename); } #if defined(MCPL_HASZLIB) && !defined(Z_SOLO) && !defined(MCPL_NO_CUSTOM_GZIP) # define MCPLIMP_HAS_CUSTOM_GZIP int _mcpl_custom_gzip(const char *file, const char *mode);//return 1 if successful, 0 if not #endif #if defined MCPL_THIS_IS_UNIX && !defined(MCPL_NO_EXT_GZIP) //Platform is unix-like enough that we assume gzip is installed and we can //include posix headers. # include # include # include int mcpl_gzip_file(const char * filename) { const char * bn = strrchr(filename, '/'); bn = bn ? bn + 1 : filename; //spawn process in which to perform gzip: printf("MCPL: Attempting to compress file %s with gzip\n",bn); fflush(0); pid_t gzip_pid = fork(); if (gzip_pid) { //main proc int chld_state = 0; pid_t ret = waitpid(gzip_pid,&chld_state,0); if (ret!=gzip_pid||chld_state!=0) { # ifdef MCPLIMP_HAS_CUSTOM_GZIP printf("MCPL WARNING: Problems invoking gzip - will revert to a custom zlib based compression\n"); if (!_mcpl_custom_gzip(filename,"wb")) mcpl_error("Problems encountered while attempting to compress file"); else printf("MCPL: Succesfully compressed file into %s.gz\n",bn); # else mcpl_error("Problems encountered while attempting to invoke gzip"); # endif } else printf("MCPL: Succesfully compressed file into %s.gz\n",bn); } else { //spawned proc in which to invoke gzip execlp("gzip", "gzip", "-f",filename, (char*)0); printf("MCPL: execlp/gzip error: %s\n",strerror(errno)); exit(1); } return 1; } #else //Non unix-y platform (like windows). We could use e.g. windows-specific calls //instead of the fork() and waitpid() used above, but gzip likely not present on //the system anyway, so we either resort to using zlib directly to gzip, or we //disable the feature and print a warning. # ifndef MCPLIMP_HAS_CUSTOM_GZIP int mcpl_gzip_file(const char * filename) { const char * bn = strrchr(filename, '/'); bn = bn ? bn + 1 : filename; printf("MCPL WARNING: Requested compression of %s to %s.gz is not supported in this build.\n",bn,bn); return 0; } # else int mcpl_gzip_file(const char * filename) { const char * bn = strrchr(filename, '/'); bn = bn ? bn + 1 : filename; printf("MCPL: Attempting to compress file %s with zlib\n",bn); if (!_mcpl_custom_gzip(filename,"wb")) printf("MCPL ERROR: Problems encountered while compressing file %s.\n",bn); else printf("MCPL: Succesfully compressed file into %s.gz\n",bn); return 1; } # endif #endif #ifdef MCPLIMP_HAS_CUSTOM_GZIP int _mcpl_custom_gzip(const char *filename, const char *mode) { //Open input file: FILE *handle_in = fopen(filename, "rb"); if (!handle_in) return 0; //Construct output file name by appending .gz: char * outfn = (char*)malloc(strlen(filename) + 4); outfn[0] = '\0'; strcat(outfn,filename); strcat(outfn,".gz"); //Open output file: gzFile handle_out = gzopen(outfn, mode); free(outfn); if (!handle_out) { fclose(handle_in); return 0; } //Compress input to output: char buf[16384]; size_t len; while (1) { len = (int)fread(buf, 1, sizeof(buf), handle_in); if (ferror(handle_in)) return 0; if (!len) break; if ((size_t)gzwrite(handle_out, buf, (unsigned)len) != len) return 0; } //close file: fclose(handle_in); if (gzclose(handle_out) != Z_OK) return 0; //remove input file and return success: unlink(filename); return 1; } #endif #ifdef NAME # undef NAME #endif /* START OF DUMP OF mz_uncompr.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* uncompr.c -- decompress a memory buffer * Copyright (C) 1995-2003, 2010 Jean-loup Gailly. * For conditions of distribution and use, see copyright notice in zlib.h */ /* @(#) $Id$ */ #define ZLIB_INTERNAL /* =========================================================================== Decompresses the source buffer into the destination buffer. sourceLen is the byte length of the source buffer. Upon entry, destLen is the total size of the destination buffer, which must be large enough to hold the entire uncompressed data. (The size of the uncompressed data must have been saved previously by the compressor and transmitted to the decompressor by some mechanism outside the scope of this compression library.) Upon exit, destLen is the actual size of the compressed buffer. uncompress returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if there was not enough room in the output buffer, or Z_DATA_ERROR if the input data was corrupted. */ int ZEXPORT uncompress (dest, destLen, source, sourceLen) Bytef *dest; uLongf *destLen; const Bytef *source; uLong sourceLen; { z_stream stream; int err; stream.next_in = (z_const Bytef *)source; stream.avail_in = (uInt)sourceLen; /* Check for source > 64K on 16-bit machine: */ if ((uLong)stream.avail_in != sourceLen) return Z_BUF_ERROR; stream.next_out = dest; stream.avail_out = (uInt)*destLen; if ((uLong)stream.avail_out != *destLen) return Z_BUF_ERROR; stream.zalloc = (alloc_func)0; stream.zfree = (free_func)0; err = inflateInit(&stream); if (err != Z_OK) return err; err = inflate(&stream, Z_FINISH); if (err != Z_STREAM_END) { inflateEnd(&stream); if (err == Z_NEED_DICT || (err == Z_BUF_ERROR && stream.avail_in == 0)) return Z_DATA_ERROR; return err; } *destLen = stream.total_out; err = inflateEnd(&stream); return err; } /* END OF DUMP OF mz_uncompr.c*/ /* START OF DUMP OF mz_trees.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* trees.c -- output deflated data using Huffman coding * Copyright (C) 1995-2012 Jean-loup Gailly * detect_data_type() function provided freely by Cosmin Truta, 2006 * For conditions of distribution and use, see copyright notice in zlib.h */ /* * ALGORITHM * * The "deflation" process uses several Huffman trees. The more * common source values are represented by shorter bit sequences. * * Each code tree is stored in a compressed form which is itself * a Huffman encoding of the lengths of all the code strings (in * ascending order by source values). The actual code strings are * reconstructed from the lengths in the inflate process, as described * in the deflate specification. * * REFERENCES * * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc * * Storer, James A. * Data Compression: Methods and Theory, pp. 49-50. * Computer Science Press, 1988. ISBN 0-7167-8156-5. * * Sedgewick, R. * Algorithms, p290. * Addison-Wesley, 1983. ISBN 0-201-06672-6. */ /* @(#) $Id$ */ /* #define GEN_TREES_H */ /* START OF DUMP OF mz_deflate.h*/ /* deflate.h -- internal compression state * Copyright (C) 1995-2012 Jean-loup Gailly * For conditions of distribution and use, see copyright notice in zlib.h */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ /* @(#) $Id$ */ #ifndef DEFLATE_H #define DEFLATE_H /* START OF DUMP OF mz_zutil.h*/ /* zutil.h -- internal interface and configuration of the compression library * Copyright (C) 1995-2013 Jean-loup Gailly. * For conditions of distribution and use, see copyright notice in zlib.h */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ /* @(#) $Id$ */ #ifndef ZUTIL_H #define ZUTIL_H #ifdef HAVE_HIDDEN # define ZLIB_INTERNAL __attribute__((visibility ("hidden"))) #else # define ZLIB_INTERNAL #endif #if defined(STDC) && !defined(Z_SOLO) # if !(defined(_WIN32_WCE) && defined(_MSC_VER)) # include # endif # include # include #endif #ifdef Z_SOLO typedef long ptrdiff_t; /* guess -- will be caught if guess is wrong */ #endif #ifndef local # define local static #endif /* compile with -Dlocal if your debugger can't find static symbols */ typedef unsigned char uch; typedef uch FAR uchf; typedef unsigned short ush; typedef ush FAR ushf; typedef unsigned long ulg; extern z_const char * const z_errmsg[10]; /* indexed by 2-zlib_error */ /* (size given to avoid silly warnings with Visual C++) */ #define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)] #define ERR_RETURN(strm,err) \ return (strm->msg = ERR_MSG(err), (err)) /* To be used only when the state is known to be valid */ /* common constants */ #ifndef DEF_WBITS # define DEF_WBITS MAX_WBITS #endif /* default windowBits for decompression. MAX_WBITS is for compression only */ #if MAX_MEM_LEVEL >= 8 # define DEF_MEM_LEVEL 8 #else # define DEF_MEM_LEVEL MAX_MEM_LEVEL #endif /* default memLevel */ #define STORED_BLOCK 0 #define STATIC_TREES 1 #define DYN_TREES 2 /* The three kinds of block type */ #define MIN_MATCH 3 #define MAX_MATCH 258 /* The minimum and maximum match lengths */ #define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */ /* target dependencies */ #if defined(MSDOS) || (defined(WINDOWS) && !defined(WIN32)) # define OS_CODE 0x00 # ifndef Z_SOLO # if defined(__TURBOC__) || defined(__BORLANDC__) # if (__STDC__ == 1) && (defined(__LARGE__) || defined(__COMPACT__)) /* Allow compilation with ANSI keywords only enabled */ void _Cdecl farfree( void *block ); void *_Cdecl farmalloc( unsigned long nbytes ); # else # include # endif # else /* MSC or DJGPP */ # include # endif # endif #endif #ifdef AMIGA # define OS_CODE 0x01 #endif #if defined(VAXC) || defined(VMS) # define OS_CODE 0x02 # define F_OPEN(name, mode) \ fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512") #endif #if defined(ATARI) || defined(atarist) # define OS_CODE 0x05 #endif #ifdef OS2 # define OS_CODE 0x06 # if defined(M_I86) && !defined(Z_SOLO) # include # endif #endif #if defined(MACOS) || defined(TARGET_OS_MAC) # define OS_CODE 0x07 # ifndef Z_SOLO # if defined(__MWERKS__) && __dest_os != __be_os && __dest_os != __win32_os # include /* for fdopen */ # else # ifndef fdopen # define fdopen(fd,mode) NULL /* No fdopen() */ # endif # endif # endif #endif #ifdef TOPS20 # define OS_CODE 0x0a #endif #ifdef WIN32 # ifndef __CYGWIN__ /* Cygwin is Unix, not Win32 */ # define OS_CODE 0x0b # endif #endif #ifdef __50SERIES /* Prime/PRIMOS */ # define OS_CODE 0x0f #endif #if defined(_BEOS_) || defined(RISCOS) # define fdopen(fd,mode) NULL /* No fdopen() */ #endif #if (defined(_MSC_VER) && (_MSC_VER > 600)) && !defined __INTERIX # if defined(_WIN32_WCE) # define fdopen(fd,mode) NULL /* No fdopen() */ # ifndef _PTRDIFF_T_DEFINED typedef int ptrdiff_t; # define _PTRDIFF_T_DEFINED # endif # else # define fdopen(fd,type) _fdopen(fd,type) # endif #endif #if defined(__BORLANDC__) && !defined(MSDOS) #pragma warn -8004 #pragma warn -8008 #pragma warn -8066 #endif /* provide prototypes for these when building zlib without LFS */ #if !defined(_WIN32) && \ (!defined(_LARGEFILE64_SOURCE) || _LFS64_LARGEFILE-0 == 0) ZEXTERN uLong ZEXPORT adler32_combine64 OF((uLong, uLong, z_off_t)); ZEXTERN uLong ZEXPORT crc32_combine64 OF((uLong, uLong, z_off_t)); #endif /* common defaults */ #ifndef OS_CODE # define OS_CODE 0x03 /* assume Unix */ #endif #ifndef F_OPEN # define F_OPEN(name, mode) fopen((name), (mode)) #endif /* functions */ #if defined(pyr) || defined(Z_SOLO) # define NO_MEMCPY #endif #if defined(SMALL_MEDIUM) && !defined(_MSC_VER) && !defined(__SC__) /* Use our own functions for small and medium model with MSC <= 5.0. * You may have to use the same strategy for Borland C (untested). * The __SC__ check is for Symantec. */ # define NO_MEMCPY #endif #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY) # define HAVE_MEMCPY #endif #ifdef HAVE_MEMCPY # ifdef SMALL_MEDIUM /* MSDOS small or medium model */ # define zmemcpy _fmemcpy # define zmemcmp _fmemcmp # define zmemzero(dest, len) _fmemset(dest, 0, len) # else # define zmemcpy memcpy # define zmemcmp memcmp # define zmemzero(dest, len) memset(dest, 0, len) # endif #else void ZLIB_INTERNAL zmemcpy OF((Bytef* dest, const Bytef* source, uInt len)); int ZLIB_INTERNAL zmemcmp OF((const Bytef* s1, const Bytef* s2, uInt len)); void ZLIB_INTERNAL zmemzero OF((Bytef* dest, uInt len)); #endif /* Diagnostic functions */ #ifdef DEBUG # include extern int ZLIB_INTERNAL z_verbose; extern void ZLIB_INTERNAL z_error OF((char *m)); # define Assert(cond,msg) {if(!(cond)) z_error(msg);} # define Trace(x) {if (z_verbose>=0) fprintf x ;} # define Tracev(x) {if (z_verbose>0) fprintf x ;} # define Tracevv(x) {if (z_verbose>1) fprintf x ;} # define Tracec(c,x) {if (z_verbose>0 && (c)) fprintf x ;} # define Tracecv(c,x) {if (z_verbose>1 && (c)) fprintf x ;} #else # define Assert(cond,msg) # define Trace(x) # define Tracev(x) # define Tracevv(x) # define Tracec(c,x) # define Tracecv(c,x) #endif #ifndef Z_SOLO voidpf ZLIB_INTERNAL zcalloc OF((voidpf opaque, unsigned items, unsigned size)); void ZLIB_INTERNAL zcfree OF((voidpf opaque, voidpf ptr)); #endif #define ZALLOC(strm, items, size) \ (*((strm)->zalloc))((strm)->opaque, (items), (size)) #define ZFREE(strm, addr) (*((strm)->zfree))((strm)->opaque, (voidpf)(addr)) #define TRY_FREE(s, p) {if (p) ZFREE(s, p);} /* Reverse the bytes in a 32-bit value */ #define ZSWAP32(q) ((((q) >> 24) & 0xff) + (((q) >> 8) & 0xff00) + \ (((q) & 0xff00) << 8) + (((q) & 0xff) << 24)) #endif /* ZUTIL_H */ /* END OF DUMP OF mz_zutil.h*/ /* define NO_GZIP when compiling if you want to disable gzip header and trailer creation by deflate(). NO_GZIP would be used to avoid linking in the crc code when it is not needed. For shared libraries, gzip encoding should be left enabled. */ #ifndef NO_GZIP # define GZIP #endif /* =========================================================================== * Internal compression state. */ #define LENGTH_CODES 29 /* number of length codes, not counting the special END_BLOCK code */ #define LITERALS 256 /* number of literal bytes 0..255 */ #define L_CODES (LITERALS+1+LENGTH_CODES) /* number of Literal or Length codes, including the END_BLOCK code */ #define D_CODES 30 /* number of distance codes */ #define BL_CODES 19 /* number of codes used to transfer the bit lengths */ #define HEAP_SIZE (2*L_CODES+1) /* maximum heap size */ #define MAX_BITS 15 /* All codes must not exceed MAX_BITS bits */ #define Buf_size 16 /* size of bit buffer in bi_buf */ #define INIT_STATE 42 #define EXTRA_STATE 69 #define NAME_STATE 73 #define COMMENT_STATE 91 #define HCRC_STATE 103 #define BUSY_STATE 113 #define FINISH_STATE 666 /* Stream status */ /* Data structure describing a single value and its code string. */ typedef struct ct_data_s { union { ush freq; /* frequency count */ ush code; /* bit string */ } fc; union { ush dad; /* father node in Huffman tree */ ush len; /* length of bit string */ } dl; } FAR ct_data; #define Freq fc.freq #define Code fc.code #define Dad dl.dad #define Len dl.len typedef struct static_tree_desc_s static_tree_desc; typedef struct tree_desc_s { ct_data *dyn_tree; /* the dynamic tree */ int max_code; /* largest code with non zero frequency */ static_tree_desc *stat_desc; /* the corresponding static tree */ } FAR tree_desc; typedef ush Pos; typedef Pos FAR Posf; typedef unsigned IPos; /* A Pos is an index in the character window. We use short instead of int to * save space in the various tables. IPos is used only for parameter passing. */ typedef struct internal_state { z_streamp strm; /* pointer back to this zlib stream */ int status; /* as the name implies */ Bytef *pending_buf; /* output still pending */ ulg pending_buf_size; /* size of pending_buf */ Bytef *pending_out; /* next pending byte to output to the stream */ uInt pending; /* nb of bytes in the pending buffer */ int wrap; /* bit 0 true for zlib, bit 1 true for gzip */ gz_headerp gzhead; /* gzip header information to write */ uInt gzindex; /* where in extra, name, or comment */ Byte method; /* can only be DEFLATED */ int last_flush; /* value of flush param for previous deflate call */ /* used by deflate.c: */ uInt w_size; /* LZ77 window size (32K by default) */ uInt w_bits; /* log2(w_size) (8..16) */ uInt w_mask; /* w_size - 1 */ Bytef *window; /* Sliding window. Input bytes are read into the second half of the window, * and move to the first half later to keep a dictionary of at least wSize * bytes. With this organization, matches are limited to a distance of * wSize-MAX_MATCH bytes, but this ensures that IO is always * performed with a length multiple of the block size. Also, it limits * the window size to 64K, which is quite useful on MSDOS. * To do: use the user input buffer as sliding window. */ ulg window_size; /* Actual size of window: 2*wSize, except when the user input buffer * is directly used as sliding window. */ Posf *prev; /* Link to older string with same hash index. To limit the size of this * array to 64K, this link is maintained only for the last 32K strings. * An index in this array is thus a window index modulo 32K. */ Posf *head; /* Heads of the hash chains or NIL. */ uInt ins_h; /* hash index of string to be inserted */ uInt hash_size; /* number of elements in hash table */ uInt hash_bits; /* log2(hash_size) */ uInt hash_mask; /* hash_size-1 */ uInt hash_shift; /* Number of bits by which ins_h must be shifted at each input * step. It must be such that after MIN_MATCH steps, the oldest * byte no longer takes part in the hash key, that is: * hash_shift * MIN_MATCH >= hash_bits */ long block_start; /* Window position at the beginning of the current output block. Gets * negative when the window is moved backwards. */ uInt match_length; /* length of best match */ IPos prev_match; /* previous match */ int match_available; /* set if previous match exists */ uInt strstart; /* start of string to insert */ uInt match_start; /* start of matching string */ uInt lookahead; /* number of valid bytes ahead in window */ uInt prev_length; /* Length of the best match at previous step. Matches not greater than this * are discarded. This is used in the lazy match evaluation. */ uInt max_chain_length; /* To speed up deflation, hash chains are never searched beyond this * length. A higher limit improves compression ratio but degrades the * speed. */ uInt max_lazy_match; /* Attempt to find a better match only when the current match is strictly * smaller than this value. This mechanism is used only for compression * levels >= 4. */ # define max_insert_length max_lazy_match /* Insert new strings in the hash table only if the match length is not * greater than this length. This saves time but degrades compression. * max_insert_length is used only for compression levels <= 3. */ int level; /* compression level (1..9) */ int strategy; /* favor or force Huffman coding*/ uInt good_match; /* Use a faster search when the previous match is longer than this */ int nice_match; /* Stop searching when current match exceeds this */ /* used by trees.c: */ /* Didn't use ct_data typedef below to suppress compiler warning */ struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */ struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */ struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */ struct tree_desc_s l_desc; /* desc. for literal tree */ struct tree_desc_s d_desc; /* desc. for distance tree */ struct tree_desc_s bl_desc; /* desc. for bit length tree */ ush bl_count[MAX_BITS+1]; /* number of codes at each bit length for an optimal tree */ int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */ int heap_len; /* number of elements in the heap */ int heap_max; /* element of largest frequency */ /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used. * The same heap array is used to build all trees. */ uch depth[2*L_CODES+1]; /* Depth of each subtree used as tie breaker for trees of equal frequency */ uchf *l_buf; /* buffer for literals or lengths */ uInt lit_bufsize; /* Size of match buffer for literals/lengths. There are 4 reasons for * limiting lit_bufsize to 64K: * - frequencies can be kept in 16 bit counters * - if compression is not successful for the first block, all input * data is still in the window so we can still emit a stored block even * when input comes from standard input. (This can also be done for * all blocks if lit_bufsize is not greater than 32K.) * - if compression is not successful for a file smaller than 64K, we can * even emit a stored file instead of a stored block (saving 5 bytes). * This is applicable only for zip (not gzip or zlib). * - creating new Huffman trees less frequently may not provide fast * adaptation to changes in the input data statistics. (Take for * example a binary file with poorly compressible code followed by * a highly compressible string table.) Smaller buffer sizes give * fast adaptation but have of course the overhead of transmitting * trees more frequently. * - I can't count above 4 */ uInt last_lit; /* running index in l_buf */ ushf *d_buf; /* Buffer for distances. To simplify the code, d_buf and l_buf have * the same number of elements. To use different lengths, an extra flag * array would be necessary. */ ulg opt_len; /* bit length of current block with optimal trees */ ulg static_len; /* bit length of current block with static trees */ uInt matches; /* number of string matches in current block */ uInt insert; /* bytes at end of window left to insert */ #ifdef DEBUG ulg compressed_len; /* total bit length of compressed file mod 2^32 */ ulg bits_sent; /* bit length of compressed data sent mod 2^32 */ #endif ush bi_buf; /* Output buffer. bits are inserted starting at the bottom (least * significant bits). */ int bi_valid; /* Number of valid bits in bi_buf. All bits above the last valid bit * are always zero. */ ulg high_water; /* High water mark offset in window for initialized bytes -- bytes above * this are set to zero in order to avoid memory check warnings when * longest match routines access bytes past the input. This is then * updated to the new high water mark. */ } FAR deflate_state; /* Output a byte on the stream. * IN assertion: there is enough room in pending_buf. */ #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);} #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1) /* Minimum amount of lookahead, except at the end of the input file. * See deflate.c for comments about the MIN_MATCH+1. */ #define MAX_DIST(s) ((s)->w_size-MIN_LOOKAHEAD) /* In order to simplify the code, particularly on 16 bit machines, match * distances are limited to MAX_DIST instead of WSIZE. */ #define WIN_INIT MAX_MATCH /* Number of bytes after end of data in window to initialize in order to avoid memory checker errors from longest match routines */ /* in trees.c */ void ZLIB_INTERNAL _tr_init OF((deflate_state *s)); int ZLIB_INTERNAL _tr_tally OF((deflate_state *s, unsigned dist, unsigned lc)); void ZLIB_INTERNAL _tr_flush_block OF((deflate_state *s, charf *buf, ulg stored_len, int last)); void ZLIB_INTERNAL _tr_flush_bits OF((deflate_state *s)); void ZLIB_INTERNAL _tr_align OF((deflate_state *s)); void ZLIB_INTERNAL _tr_stored_block OF((deflate_state *s, charf *buf, ulg stored_len, int last)); #define d_code(dist) \ ((dist) < 256 ? _dist_code[dist] : _dist_code[256+((dist)>>7)]) /* Mapping from a distance to a distance code. dist is the distance - 1 and * must not have side effects. _dist_code[256] and _dist_code[257] are never * used. */ #ifndef DEBUG /* Inline versions of _tr_tally for speed: */ #if defined(GEN_TREES_H) || !defined(STDC) extern uch ZLIB_INTERNAL _length_code[]; extern uch ZLIB_INTERNAL _dist_code[]; #else extern const uch ZLIB_INTERNAL _length_code[]; extern const uch ZLIB_INTERNAL _dist_code[]; #endif # define _tr_tally_lit(s, c, flush) \ { uch cc = (c); \ s->d_buf[s->last_lit] = 0; \ s->l_buf[s->last_lit++] = cc; \ s->dyn_ltree[cc].Freq++; \ flush = (s->last_lit == s->lit_bufsize-1); \ } # define _tr_tally_dist(s, distance, length, flush) \ { uch len = (length); \ ush dist = (distance); \ s->d_buf[s->last_lit] = dist; \ s->l_buf[s->last_lit++] = len; \ dist--; \ s->dyn_ltree[_length_code[len]+LITERALS+1].Freq++; \ s->dyn_dtree[d_code(dist)].Freq++; \ flush = (s->last_lit == s->lit_bufsize-1); \ } #else # define _tr_tally_lit(s, c, flush) flush = _tr_tally(s, 0, c) # define _tr_tally_dist(s, distance, length, flush) \ flush = _tr_tally(s, distance, length) #endif #endif /* DEFLATE_H */ /* END OF DUMP OF mz_deflate.h*/ #ifdef DEBUG # include #endif /* =========================================================================== * Constants */ #define MAX_BL_BITS 7 /* Bit length codes must not exceed MAX_BL_BITS bits */ #define END_BLOCK 256 /* end of block literal code */ #define REP_3_6 16 /* repeat previous bit length 3-6 times (2 bits of repeat count) */ #define REPZ_3_10 17 /* repeat a zero length 3-10 times (3 bits of repeat count) */ #define REPZ_11_138 18 /* repeat a zero length 11-138 times (7 bits of repeat count) */ local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; local const int extra_dbits[D_CODES] /* extra bits for each distance code */ = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */ = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; local const uch bl_order[BL_CODES] = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; /* The lengths of the bit length codes are sent in order of decreasing * probability, to avoid transmitting the lengths for unused bit length codes. */ /* =========================================================================== * Local data. These are initialized only once. */ #define DIST_CODE_LEN 512 /* see definition of array dist_code below */ #if defined(GEN_TREES_H) || !defined(STDC) /* non ANSI compilers may not accept trees.h */ local ct_data static_ltree[L_CODES+2]; /* The static literal tree. Since the bit lengths are imposed, there is no * need for the L_CODES extra codes used during heap construction. However * The codes 286 and 287 are needed to build a canonical tree (see _tr_init * below). */ local ct_data static_dtree[D_CODES]; /* The static distance tree. (Actually a trivial tree since all codes use * 5 bits.) */ uch _dist_code[DIST_CODE_LEN]; /* Distance codes. The first 256 values correspond to the distances * 3 .. 258, the last 256 values correspond to the top 8 bits of * the 15 bit distances. */ uch _length_code[MAX_MATCH-MIN_MATCH+1]; /* length code for each normalized match length (0 == MIN_MATCH) */ local int base_length[LENGTH_CODES]; /* First normalized length for each code (0 = MIN_MATCH) */ local int base_dist[D_CODES]; /* First normalized distance for each code (0 = distance of 1) */ #else /* START OF DUMP OF mz_trees.h*/ /* header created automatically with -DGEN_TREES_H */ local const ct_data static_ltree[L_CODES+2] = { {{ 12},{ 8}}, {{140},{ 8}}, {{ 76},{ 8}}, {{204},{ 8}}, {{ 44},{ 8}}, {{172},{ 8}}, {{108},{ 8}}, {{236},{ 8}}, {{ 28},{ 8}}, {{156},{ 8}}, {{ 92},{ 8}}, {{220},{ 8}}, {{ 60},{ 8}}, {{188},{ 8}}, {{124},{ 8}}, {{252},{ 8}}, {{ 2},{ 8}}, {{130},{ 8}}, {{ 66},{ 8}}, {{194},{ 8}}, {{ 34},{ 8}}, {{162},{ 8}}, {{ 98},{ 8}}, {{226},{ 8}}, {{ 18},{ 8}}, {{146},{ 8}}, {{ 82},{ 8}}, {{210},{ 8}}, {{ 50},{ 8}}, {{178},{ 8}}, {{114},{ 8}}, {{242},{ 8}}, {{ 10},{ 8}}, {{138},{ 8}}, {{ 74},{ 8}}, {{202},{ 8}}, {{ 42},{ 8}}, {{170},{ 8}}, {{106},{ 8}}, {{234},{ 8}}, {{ 26},{ 8}}, {{154},{ 8}}, {{ 90},{ 8}}, {{218},{ 8}}, {{ 58},{ 8}}, {{186},{ 8}}, {{122},{ 8}}, {{250},{ 8}}, {{ 6},{ 8}}, {{134},{ 8}}, {{ 70},{ 8}}, {{198},{ 8}}, {{ 38},{ 8}}, {{166},{ 8}}, {{102},{ 8}}, {{230},{ 8}}, {{ 22},{ 8}}, {{150},{ 8}}, {{ 86},{ 8}}, {{214},{ 8}}, {{ 54},{ 8}}, {{182},{ 8}}, {{118},{ 8}}, {{246},{ 8}}, {{ 14},{ 8}}, {{142},{ 8}}, {{ 78},{ 8}}, {{206},{ 8}}, {{ 46},{ 8}}, {{174},{ 8}}, {{110},{ 8}}, {{238},{ 8}}, {{ 30},{ 8}}, {{158},{ 8}}, {{ 94},{ 8}}, {{222},{ 8}}, {{ 62},{ 8}}, {{190},{ 8}}, {{126},{ 8}}, {{254},{ 8}}, {{ 1},{ 8}}, {{129},{ 8}}, {{ 65},{ 8}}, {{193},{ 8}}, {{ 33},{ 8}}, {{161},{ 8}}, {{ 97},{ 8}}, {{225},{ 8}}, {{ 17},{ 8}}, {{145},{ 8}}, {{ 81},{ 8}}, {{209},{ 8}}, {{ 49},{ 8}}, {{177},{ 8}}, {{113},{ 8}}, {{241},{ 8}}, {{ 9},{ 8}}, {{137},{ 8}}, {{ 73},{ 8}}, {{201},{ 8}}, {{ 41},{ 8}}, {{169},{ 8}}, {{105},{ 8}}, {{233},{ 8}}, {{ 25},{ 8}}, {{153},{ 8}}, {{ 89},{ 8}}, {{217},{ 8}}, {{ 57},{ 8}}, {{185},{ 8}}, {{121},{ 8}}, {{249},{ 8}}, {{ 5},{ 8}}, {{133},{ 8}}, {{ 69},{ 8}}, {{197},{ 8}}, {{ 37},{ 8}}, {{165},{ 8}}, {{101},{ 8}}, {{229},{ 8}}, {{ 21},{ 8}}, {{149},{ 8}}, {{ 85},{ 8}}, {{213},{ 8}}, {{ 53},{ 8}}, {{181},{ 8}}, {{117},{ 8}}, {{245},{ 8}}, {{ 13},{ 8}}, {{141},{ 8}}, {{ 77},{ 8}}, {{205},{ 8}}, {{ 45},{ 8}}, {{173},{ 8}}, {{109},{ 8}}, {{237},{ 8}}, {{ 29},{ 8}}, {{157},{ 8}}, {{ 93},{ 8}}, {{221},{ 8}}, {{ 61},{ 8}}, {{189},{ 8}}, {{125},{ 8}}, {{253},{ 8}}, {{ 19},{ 9}}, {{275},{ 9}}, {{147},{ 9}}, {{403},{ 9}}, {{ 83},{ 9}}, {{339},{ 9}}, {{211},{ 9}}, {{467},{ 9}}, {{ 51},{ 9}}, {{307},{ 9}}, {{179},{ 9}}, {{435},{ 9}}, {{115},{ 9}}, {{371},{ 9}}, {{243},{ 9}}, {{499},{ 9}}, {{ 11},{ 9}}, {{267},{ 9}}, {{139},{ 9}}, {{395},{ 9}}, {{ 75},{ 9}}, {{331},{ 9}}, {{203},{ 9}}, {{459},{ 9}}, {{ 43},{ 9}}, {{299},{ 9}}, {{171},{ 9}}, {{427},{ 9}}, {{107},{ 9}}, {{363},{ 9}}, {{235},{ 9}}, {{491},{ 9}}, {{ 27},{ 9}}, {{283},{ 9}}, {{155},{ 9}}, {{411},{ 9}}, {{ 91},{ 9}}, {{347},{ 9}}, {{219},{ 9}}, {{475},{ 9}}, {{ 59},{ 9}}, {{315},{ 9}}, {{187},{ 9}}, {{443},{ 9}}, {{123},{ 9}}, {{379},{ 9}}, {{251},{ 9}}, {{507},{ 9}}, {{ 7},{ 9}}, {{263},{ 9}}, {{135},{ 9}}, {{391},{ 9}}, {{ 71},{ 9}}, {{327},{ 9}}, {{199},{ 9}}, {{455},{ 9}}, {{ 39},{ 9}}, {{295},{ 9}}, {{167},{ 9}}, {{423},{ 9}}, {{103},{ 9}}, {{359},{ 9}}, {{231},{ 9}}, {{487},{ 9}}, {{ 23},{ 9}}, {{279},{ 9}}, {{151},{ 9}}, {{407},{ 9}}, {{ 87},{ 9}}, {{343},{ 9}}, {{215},{ 9}}, {{471},{ 9}}, {{ 55},{ 9}}, {{311},{ 9}}, {{183},{ 9}}, {{439},{ 9}}, {{119},{ 9}}, {{375},{ 9}}, {{247},{ 9}}, {{503},{ 9}}, {{ 15},{ 9}}, {{271},{ 9}}, {{143},{ 9}}, {{399},{ 9}}, {{ 79},{ 9}}, {{335},{ 9}}, {{207},{ 9}}, {{463},{ 9}}, {{ 47},{ 9}}, {{303},{ 9}}, {{175},{ 9}}, {{431},{ 9}}, {{111},{ 9}}, {{367},{ 9}}, {{239},{ 9}}, {{495},{ 9}}, {{ 31},{ 9}}, {{287},{ 9}}, {{159},{ 9}}, {{415},{ 9}}, {{ 95},{ 9}}, {{351},{ 9}}, {{223},{ 9}}, {{479},{ 9}}, {{ 63},{ 9}}, {{319},{ 9}}, {{191},{ 9}}, {{447},{ 9}}, {{127},{ 9}}, {{383},{ 9}}, {{255},{ 9}}, {{511},{ 9}}, {{ 0},{ 7}}, {{ 64},{ 7}}, {{ 32},{ 7}}, {{ 96},{ 7}}, {{ 16},{ 7}}, {{ 80},{ 7}}, {{ 48},{ 7}}, {{112},{ 7}}, {{ 8},{ 7}}, {{ 72},{ 7}}, {{ 40},{ 7}}, {{104},{ 7}}, {{ 24},{ 7}}, {{ 88},{ 7}}, {{ 56},{ 7}}, {{120},{ 7}}, {{ 4},{ 7}}, {{ 68},{ 7}}, {{ 36},{ 7}}, {{100},{ 7}}, {{ 20},{ 7}}, {{ 84},{ 7}}, {{ 52},{ 7}}, {{116},{ 7}}, {{ 3},{ 8}}, {{131},{ 8}}, {{ 67},{ 8}}, {{195},{ 8}}, {{ 35},{ 8}}, {{163},{ 8}}, {{ 99},{ 8}}, {{227},{ 8}} }; local const ct_data static_dtree[D_CODES] = { {{ 0},{ 5}}, {{16},{ 5}}, {{ 8},{ 5}}, {{24},{ 5}}, {{ 4},{ 5}}, {{20},{ 5}}, {{12},{ 5}}, {{28},{ 5}}, {{ 2},{ 5}}, {{18},{ 5}}, {{10},{ 5}}, {{26},{ 5}}, {{ 6},{ 5}}, {{22},{ 5}}, {{14},{ 5}}, {{30},{ 5}}, {{ 1},{ 5}}, {{17},{ 5}}, {{ 9},{ 5}}, {{25},{ 5}}, {{ 5},{ 5}}, {{21},{ 5}}, {{13},{ 5}}, {{29},{ 5}}, {{ 3},{ 5}}, {{19},{ 5}}, {{11},{ 5}}, {{27},{ 5}}, {{ 7},{ 5}}, {{23},{ 5}} }; const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = { 0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 16, 17, 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29 }; const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= { 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28 }; local const int base_length[LENGTH_CODES] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 0 }; local const int base_dist[D_CODES] = { 0, 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576 }; /* END OF DUMP OF mz_trees.h*/ #endif /* GEN_TREES_H */ struct static_tree_desc_s { const ct_data *static_tree; /* static tree or NULL */ const intf *extra_bits; /* extra bits for each code or NULL */ int extra_base; /* base index for extra_bits */ int elems; /* max number of elements in the tree */ int max_length; /* max bit length for the codes */ }; local static_tree_desc static_l_desc = {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; local static_tree_desc static_d_desc = {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS}; local static_tree_desc static_bl_desc = {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; /* =========================================================================== * Local (static) routines in this file. */ local void tr_static_init OF((void)); local void init_block OF((deflate_state *s)); local void pqdownheap OF((deflate_state *s, ct_data *tree, int k)); local void gen_bitlen OF((deflate_state *s, tree_desc *desc)); local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count)); local void build_tree OF((deflate_state *s, tree_desc *desc)); local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code)); local void send_tree OF((deflate_state *s, ct_data *tree, int max_code)); local int build_bl_tree OF((deflate_state *s)); local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes, int blcodes)); local void compress_block OF((deflate_state *s, const ct_data *ltree, const ct_data *dtree)); local int detect_data_type OF((deflate_state *s)); local unsigned bi_reverse OF((unsigned value, int length)); local void bi_windup OF((deflate_state *s)); local void bi_flush OF((deflate_state *s)); local void copy_block OF((deflate_state *s, charf *buf, unsigned len, int header)); #ifdef GEN_TREES_H local void gen_trees_header OF((void)); #endif #ifndef DEBUG # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) /* Send a code of the given tree. c and tree must not have side effects */ #else /* DEBUG */ # define send_code(s, c, tree) \ { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ send_bits(s, tree[c].Code, tree[c].Len); } #endif /* =========================================================================== * Output a short LSB first on the stream. * IN assertion: there is enough room in pendingBuf. */ #define put_short(s, w) { \ put_byte(s, (uch)((w) & 0xff)); \ put_byte(s, (uch)((ush)(w) >> 8)); \ } /* =========================================================================== * Send a value on a given number of bits. * IN assertion: length <= 16 and value fits in length bits. */ #ifdef DEBUG local void send_bits OF((deflate_state *s, int value, int length)); local void send_bits(s, value, length) deflate_state *s; int value; /* value to send */ int length; /* number of bits */ { Tracevv((stderr," l %2d v %4x ", length, value)); Assert(length > 0 && length <= 15, "invalid length"); s->bits_sent += (ulg)length; /* If not enough room in bi_buf, use (valid) bits from bi_buf and * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) * unused bits in value. */ if (s->bi_valid > (int)Buf_size - length) { s->bi_buf |= (ush)value << s->bi_valid; put_short(s, s->bi_buf); s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); s->bi_valid += length - Buf_size; } else { s->bi_buf |= (ush)value << s->bi_valid; s->bi_valid += length; } } #else /* !DEBUG */ #define send_bits(s, value, length) \ { int len = length;\ if (s->bi_valid > (int)Buf_size - len) {\ int val = value;\ s->bi_buf |= (ush)val << s->bi_valid;\ put_short(s, s->bi_buf);\ s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ s->bi_valid += len - Buf_size;\ } else {\ s->bi_buf |= (ush)(value) << s->bi_valid;\ s->bi_valid += len;\ }\ } #endif /* DEBUG */ /* the arguments must not have side effects */ /* =========================================================================== * Initialize the various 'constant' tables. */ local void tr_static_init() { #if defined(GEN_TREES_H) || !defined(STDC) static int static_init_done = 0; int n; /* iterates over tree elements */ int bits; /* bit counter */ int length; /* length value */ int code; /* code value */ int dist; /* distance index */ ush bl_count[MAX_BITS+1]; /* number of codes at each bit length for an optimal tree */ if (static_init_done) return; /* For some embedded targets, global variables are not initialized: */ #ifdef NO_INIT_GLOBAL_POINTERS static_l_desc.static_tree = static_ltree; static_l_desc.extra_bits = extra_lbits; static_d_desc.static_tree = static_dtree; static_d_desc.extra_bits = extra_dbits; static_bl_desc.extra_bits = extra_blbits; #endif /* Initialize the mapping length (0..255) -> length code (0..28) */ length = 0; for (code = 0; code < LENGTH_CODES-1; code++) { base_length[code] = length; for (n = 0; n < (1< dist code (0..29) */ dist = 0; for (code = 0 ; code < 16; code++) { base_dist[code] = dist; for (n = 0; n < (1<>= 7; /* from now on, all distances are divided by 128 */ for ( ; code < D_CODES; code++) { base_dist[code] = dist << 7; for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { _dist_code[256 + dist++] = (uch)code; } } Assert (dist == 256, "tr_static_init: 256+dist != 512"); /* Construct the codes of the static literal tree */ for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; n = 0; while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; /* Codes 286 and 287 do not exist, but we must include them in the * tree construction to get a canonical Huffman tree (longest code * all ones) */ gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); /* The static distance tree is trivial: */ for (n = 0; n < D_CODES; n++) { static_dtree[n].Len = 5; static_dtree[n].Code = bi_reverse((unsigned)n, 5); } static_init_done = 1; # ifdef GEN_TREES_H gen_trees_header(); # endif #endif /* defined(GEN_TREES_H) || !defined(STDC) */ } /* =========================================================================== * Genererate the file trees.h describing the static trees. */ #ifdef GEN_TREES_H # ifndef DEBUG # include # endif # define SEPARATOR(i, last, width) \ ((i) == (last)? "\n};\n\n" : \ ((i) % (width) == (width)-1 ? ",\n" : ", ")) void gen_trees_header() { FILE *header = fopen("trees.h", "w"); int i; Assert (header != NULL, "Can't open trees.h"); fprintf(header, "/* header created automatically with -DGEN_TREES_H */\n\n"); fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n"); for (i = 0; i < L_CODES+2; i++) { fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code, static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5)); } fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n"); for (i = 0; i < D_CODES; i++) { fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code, static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5)); } fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n"); for (i = 0; i < DIST_CODE_LEN; i++) { fprintf(header, "%2u%s", _dist_code[i], SEPARATOR(i, DIST_CODE_LEN-1, 20)); } fprintf(header, "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n"); for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) { fprintf(header, "%2u%s", _length_code[i], SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20)); } fprintf(header, "local const int base_length[LENGTH_CODES] = {\n"); for (i = 0; i < LENGTH_CODES; i++) { fprintf(header, "%1u%s", base_length[i], SEPARATOR(i, LENGTH_CODES-1, 20)); } fprintf(header, "local const int base_dist[D_CODES] = {\n"); for (i = 0; i < D_CODES; i++) { fprintf(header, "%5u%s", base_dist[i], SEPARATOR(i, D_CODES-1, 10)); } fclose(header); } #endif /* GEN_TREES_H */ /* =========================================================================== * Initialize the tree data structures for a new zlib stream. */ void ZLIB_INTERNAL _tr_init(s) deflate_state *s; { tr_static_init(); s->l_desc.dyn_tree = s->dyn_ltree; s->l_desc.stat_desc = &static_l_desc; s->d_desc.dyn_tree = s->dyn_dtree; s->d_desc.stat_desc = &static_d_desc; s->bl_desc.dyn_tree = s->bl_tree; s->bl_desc.stat_desc = &static_bl_desc; s->bi_buf = 0; s->bi_valid = 0; #ifdef DEBUG s->compressed_len = 0L; s->bits_sent = 0L; #endif /* Initialize the first block of the first file: */ init_block(s); } /* =========================================================================== * Initialize a new block. */ local void init_block(s) deflate_state *s; { int n; /* iterates over tree elements */ /* Initialize the trees. */ for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0; for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0; for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; s->dyn_ltree[END_BLOCK].Freq = 1; s->opt_len = s->static_len = 0L; s->last_lit = s->matches = 0; } #define SMALLEST 1 /* Index within the heap array of least frequent node in the Huffman tree */ /* =========================================================================== * Remove the smallest element from the heap and recreate the heap with * one less element. Updates heap and heap_len. */ #define pqremove(s, tree, top) \ {\ top = s->heap[SMALLEST]; \ s->heap[SMALLEST] = s->heap[s->heap_len--]; \ pqdownheap(s, tree, SMALLEST); \ } /* =========================================================================== * Compares to subtrees, using the tree depth as tie breaker when * the subtrees have equal frequency. This minimizes the worst case length. */ #define smaller(tree, n, m, depth) \ (tree[n].Freq < tree[m].Freq || \ (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) /* =========================================================================== * Restore the heap property by moving down the tree starting at node k, * exchanging a node with the smallest of its two sons if necessary, stopping * when the heap property is re-established (each father smaller than its * two sons). */ local void pqdownheap(s, tree, k) deflate_state *s; ct_data *tree; /* the tree to restore */ int k; /* node to move down */ { int v = s->heap[k]; int j = k << 1; /* left son of k */ while (j <= s->heap_len) { /* Set j to the smallest of the two sons: */ if (j < s->heap_len && smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { j++; } /* Exit if v is smaller than both sons */ if (smaller(tree, v, s->heap[j], s->depth)) break; /* Exchange v with the smallest son */ s->heap[k] = s->heap[j]; k = j; /* And continue down the tree, setting j to the left son of k */ j <<= 1; } s->heap[k] = v; } /* =========================================================================== * Compute the optimal bit lengths for a tree and update the total bit length * for the current block. * IN assertion: the fields freq and dad are set, heap[heap_max] and * above are the tree nodes sorted by increasing frequency. * OUT assertions: the field len is set to the optimal bit length, the * array bl_count contains the frequencies for each bit length. * The length opt_len is updated; static_len is also updated if stree is * not null. */ local void gen_bitlen(s, desc) deflate_state *s; tree_desc *desc; /* the tree descriptor */ { ct_data *tree = desc->dyn_tree; int max_code = desc->max_code; const ct_data *stree = desc->stat_desc->static_tree; const intf *extra = desc->stat_desc->extra_bits; int base = desc->stat_desc->extra_base; int max_length = desc->stat_desc->max_length; int h; /* heap index */ int n, m; /* iterate over the tree elements */ int bits; /* bit length */ int xbits; /* extra bits */ ush f; /* frequency */ int overflow = 0; /* number of elements with bit length too large */ for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; /* In a first pass, compute the optimal bit lengths (which may * overflow in the case of the bit length tree). */ tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ for (h = s->heap_max+1; h < HEAP_SIZE; h++) { n = s->heap[h]; bits = tree[tree[n].Dad].Len + 1; if (bits > max_length) bits = max_length, overflow++; tree[n].Len = (ush)bits; /* We overwrite tree[n].Dad which is no longer needed */ if (n > max_code) continue; /* not a leaf node */ s->bl_count[bits]++; xbits = 0; if (n >= base) xbits = extra[n-base]; f = tree[n].Freq; s->opt_len += (ulg)f * (bits + xbits); if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits); } if (overflow == 0) return; Trace((stderr,"\nbit length overflow\n")); /* This happens for example on obj2 and pic of the Calgary corpus */ /* Find the first bit length which could increase: */ do { bits = max_length-1; while (s->bl_count[bits] == 0) bits--; s->bl_count[bits]--; /* move one leaf down the tree */ s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ s->bl_count[max_length]--; /* The brother of the overflow item also moves one step up, * but this does not affect bl_count[max_length] */ overflow -= 2; } while (overflow > 0); /* Now recompute all bit lengths, scanning in increasing frequency. * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all * lengths instead of fixing only the wrong ones. This idea is taken * from 'ar' written by Haruhiko Okumura.) */ for (bits = max_length; bits != 0; bits--) { n = s->bl_count[bits]; while (n != 0) { m = s->heap[--h]; if (m > max_code) continue; if ((unsigned) tree[m].Len != (unsigned) bits) { Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); s->opt_len += ((long)bits - (long)tree[m].Len) *(long)tree[m].Freq; tree[m].Len = (ush)bits; } n--; } } } /* =========================================================================== * Generate the codes for a given tree and bit counts (which need not be * optimal). * IN assertion: the array bl_count contains the bit length statistics for * the given tree and the field len is set for all tree elements. * OUT assertion: the field code is set for all tree elements of non * zero code length. */ local void gen_codes (tree, max_code, bl_count) ct_data *tree; /* the tree to decorate */ int max_code; /* largest code with non zero frequency */ ushf *bl_count; /* number of codes at each bit length */ { ush next_code[MAX_BITS+1]; /* next code value for each bit length */ ush code = 0; /* running code value */ int bits; /* bit index */ int n; /* code index */ /* The distribution counts are first used to generate the code values * without bit reversal. */ for (bits = 1; bits <= MAX_BITS; bits++) { next_code[bits] = code = (code + bl_count[bits-1]) << 1; } /* Check that the bit counts in bl_count are consistent. The last code * must be all ones. */ Assert (code + bl_count[MAX_BITS]-1 == (1<dyn_tree; const ct_data *stree = desc->stat_desc->static_tree; int elems = desc->stat_desc->elems; int n, m; /* iterate over heap elements */ int max_code = -1; /* largest code with non zero frequency */ int node; /* new node being created */ /* Construct the initial heap, with least frequent element in * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. * heap[0] is not used. */ s->heap_len = 0, s->heap_max = HEAP_SIZE; for (n = 0; n < elems; n++) { if (tree[n].Freq != 0) { s->heap[++(s->heap_len)] = max_code = n; s->depth[n] = 0; } else { tree[n].Len = 0; } } /* The pkzip format requires that at least one distance code exists, * and that at least one bit should be sent even if there is only one * possible code. So to avoid special checks later on we force at least * two codes of non zero frequency. */ while (s->heap_len < 2) { node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); tree[node].Freq = 1; s->depth[node] = 0; s->opt_len--; if (stree) s->static_len -= stree[node].Len; /* node is 0 or 1 so it does not have extra bits */ } desc->max_code = max_code; /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, * establish sub-heaps of increasing lengths: */ for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); /* Construct the Huffman tree by repeatedly combining the least two * frequent nodes. */ node = elems; /* next internal node of the tree */ do { pqremove(s, tree, n); /* n = node of least frequency */ m = s->heap[SMALLEST]; /* m = node of next least frequency */ s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ s->heap[--(s->heap_max)] = m; /* Create a new node father of n and m */ tree[node].Freq = tree[n].Freq + tree[m].Freq; s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ? s->depth[n] : s->depth[m]) + 1); tree[n].Dad = tree[m].Dad = (ush)node; #ifdef DUMP_BL_TREE if (tree == s->bl_tree) { fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); } #endif /* and insert the new node in the heap */ s->heap[SMALLEST] = node++; pqdownheap(s, tree, SMALLEST); } while (s->heap_len >= 2); s->heap[--(s->heap_max)] = s->heap[SMALLEST]; /* At this point, the fields freq and dad are set. We can now * generate the bit lengths. */ gen_bitlen(s, (tree_desc *)desc); /* The field len is now set, we can generate the bit codes */ gen_codes ((ct_data *)tree, max_code, s->bl_count); } /* =========================================================================== * Scan a literal or distance tree to determine the frequencies of the codes * in the bit length tree. */ local void scan_tree (s, tree, max_code) deflate_state *s; ct_data *tree; /* the tree to be scanned */ int max_code; /* and its largest code of non zero frequency */ { int n; /* iterates over all tree elements */ int prevlen = -1; /* last emitted length */ int curlen; /* length of current code */ int nextlen = tree[0].Len; /* length of next code */ int count = 0; /* repeat count of the current code */ int max_count = 7; /* max repeat count */ int min_count = 4; /* min repeat count */ if (nextlen == 0) max_count = 138, min_count = 3; tree[max_code+1].Len = (ush)0xffff; /* guard */ for (n = 0; n <= max_code; n++) { curlen = nextlen; nextlen = tree[n+1].Len; if (++count < max_count && curlen == nextlen) { continue; } else if (count < min_count) { s->bl_tree[curlen].Freq += count; } else if (curlen != 0) { if (curlen != prevlen) s->bl_tree[curlen].Freq++; s->bl_tree[REP_3_6].Freq++; } else if (count <= 10) { s->bl_tree[REPZ_3_10].Freq++; } else { s->bl_tree[REPZ_11_138].Freq++; } count = 0; prevlen = curlen; if (nextlen == 0) { max_count = 138, min_count = 3; } else if (curlen == nextlen) { max_count = 6, min_count = 3; } else { max_count = 7, min_count = 4; } } } /* =========================================================================== * Send a literal or distance tree in compressed form, using the codes in * bl_tree. */ local void send_tree (s, tree, max_code) deflate_state *s; ct_data *tree; /* the tree to be scanned */ int max_code; /* and its largest code of non zero frequency */ { int n; /* iterates over all tree elements */ int prevlen = -1; /* last emitted length */ int curlen; /* length of current code */ int nextlen = tree[0].Len; /* length of next code */ int count = 0; /* repeat count of the current code */ int max_count = 7; /* max repeat count */ int min_count = 4; /* min repeat count */ /* tree[max_code+1].Len = -1; */ /* guard already set */ if (nextlen == 0) max_count = 138, min_count = 3; for (n = 0; n <= max_code; n++) { curlen = nextlen; nextlen = tree[n+1].Len; if (++count < max_count && curlen == nextlen) { continue; } else if (count < min_count) { do { send_code(s, curlen, s->bl_tree); } while (--count != 0); } else if (curlen != 0) { if (curlen != prevlen) { send_code(s, curlen, s->bl_tree); count--; } Assert(count >= 3 && count <= 6, " 3_6?"); send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2); } else if (count <= 10) { send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3); } else { send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7); } count = 0; prevlen = curlen; if (nextlen == 0) { max_count = 138, min_count = 3; } else if (curlen == nextlen) { max_count = 6, min_count = 3; } else { max_count = 7, min_count = 4; } } } /* =========================================================================== * Construct the Huffman tree for the bit lengths and return the index in * bl_order of the last bit length code to send. */ local int build_bl_tree(s) deflate_state *s; { int max_blindex; /* index of last bit length code of non zero freq */ /* Determine the bit length frequencies for literal and distance trees */ scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); /* Build the bit length tree: */ build_tree(s, (tree_desc *)(&(s->bl_desc))); /* opt_len now includes the length of the tree representations, except * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. */ /* Determine the number of bit length codes to send. The pkzip format * requires that at least 4 bit length codes be sent. (appnote.txt says * 3 but the actual value used is 4.) */ for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; } /* Update opt_len to include the bit length tree and counts */ s->opt_len += 3*(max_blindex+1) + 5+5+4; Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", s->opt_len, s->static_len)); return max_blindex; } /* =========================================================================== * Send the header for a block using dynamic Huffman trees: the counts, the * lengths of the bit length codes, the literal tree and the distance tree. * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. */ local void send_all_trees(s, lcodes, dcodes, blcodes) deflate_state *s; int lcodes, dcodes, blcodes; /* number of codes for each tree */ { int rank; /* index in bl_order */ Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, "too many codes"); Tracev((stderr, "\nbl counts: ")); send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */ send_bits(s, dcodes-1, 5); send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */ for (rank = 0; rank < blcodes; rank++) { Tracev((stderr, "\nbl code %2d ", bl_order[rank])); send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); } Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */ Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */ Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); } /* =========================================================================== * Send a stored block */ void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last) deflate_state *s; charf *buf; /* input block */ ulg stored_len; /* length of input block */ int last; /* one if this is the last block for a file */ { send_bits(s, (STORED_BLOCK<<1)+last, 3); /* send block type */ #ifdef DEBUG s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; s->compressed_len += (stored_len + 4) << 3; #endif copy_block(s, buf, (unsigned)stored_len, 1); /* with header */ } /* =========================================================================== * Flush the bits in the bit buffer to pending output (leaves at most 7 bits) */ void ZLIB_INTERNAL _tr_flush_bits(s) deflate_state *s; { bi_flush(s); } /* =========================================================================== * Send one empty static block to give enough lookahead for inflate. * This takes 10 bits, of which 7 may remain in the bit buffer. */ void ZLIB_INTERNAL _tr_align(s) deflate_state *s; { send_bits(s, STATIC_TREES<<1, 3); send_code(s, END_BLOCK, static_ltree); #ifdef DEBUG s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ #endif bi_flush(s); } /* =========================================================================== * Determine the best encoding for the current block: dynamic trees, static * trees or store, and output the encoded block to the zip file. */ void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last) deflate_state *s; charf *buf; /* input block, or NULL if too old */ ulg stored_len; /* length of input block */ int last; /* one if this is the last block for a file */ { ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ int max_blindex = 0; /* index of last bit length code of non zero freq */ /* Build the Huffman trees unless a stored block is forced */ if (s->level > 0) { /* Check if the file is binary or text */ if (s->strm->data_type == Z_UNKNOWN) s->strm->data_type = detect_data_type(s); /* Construct the literal and distance trees */ build_tree(s, (tree_desc *)(&(s->l_desc))); Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, s->static_len)); build_tree(s, (tree_desc *)(&(s->d_desc))); Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, s->static_len)); /* At this point, opt_len and static_len are the total bit lengths of * the compressed block data, excluding the tree representations. */ /* Build the bit length tree for the above two trees, and get the index * in bl_order of the last bit length code to send. */ max_blindex = build_bl_tree(s); /* Determine the best encoding. Compute the block lengths in bytes. */ opt_lenb = (s->opt_len+3+7)>>3; static_lenb = (s->static_len+3+7)>>3; Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, s->last_lit)); if (static_lenb <= opt_lenb) opt_lenb = static_lenb; } else { Assert(buf != (char*)0, "lost buf"); opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ } #ifdef FORCE_STORED if (buf != (char*)0) { /* force stored block */ #else if (stored_len+4 <= opt_lenb && buf != (char*)0) { /* 4: two words for the lengths */ #endif /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. * Otherwise we can't have processed more than WSIZE input bytes since * the last block flush, because compression would have been * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to * transform a block into a stored block. */ _tr_stored_block(s, buf, stored_len, last); #ifdef FORCE_STATIC } else if (static_lenb >= 0) { /* force static trees */ #else } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) { #endif send_bits(s, (STATIC_TREES<<1)+last, 3); compress_block(s, (const ct_data *)static_ltree, (const ct_data *)static_dtree); #ifdef DEBUG s->compressed_len += 3 + s->static_len; #endif } else { send_bits(s, (DYN_TREES<<1)+last, 3); send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, max_blindex+1); compress_block(s, (const ct_data *)s->dyn_ltree, (const ct_data *)s->dyn_dtree); #ifdef DEBUG s->compressed_len += 3 + s->opt_len; #endif } Assert (s->compressed_len == s->bits_sent, "bad compressed size"); /* The above check is made mod 2^32, for files larger than 512 MB * and uLong implemented on 32 bits. */ init_block(s); if (last) { bi_windup(s); #ifdef DEBUG s->compressed_len += 7; /* align on byte boundary */ #endif } Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, s->compressed_len-7*last)); } /* =========================================================================== * Save the match info and tally the frequency counts. Return true if * the current block must be flushed. */ int ZLIB_INTERNAL _tr_tally (s, dist, lc) deflate_state *s; unsigned dist; /* distance of matched string */ unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */ { s->d_buf[s->last_lit] = (ush)dist; s->l_buf[s->last_lit++] = (uch)lc; if (dist == 0) { /* lc is the unmatched char */ s->dyn_ltree[lc].Freq++; } else { s->matches++; /* Here, lc is the match length - MIN_MATCH */ dist--; /* dist = match distance - 1 */ Assert((ush)dist < (ush)MAX_DIST(s) && (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match"); s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++; s->dyn_dtree[d_code(dist)].Freq++; } #ifdef TRUNCATE_BLOCK /* Try to guess if it is profitable to stop the current block here */ if ((s->last_lit & 0x1fff) == 0 && s->level > 2) { /* Compute an upper bound for the compressed length */ ulg out_length = (ulg)s->last_lit*8L; ulg in_length = (ulg)((long)s->strstart - s->block_start); int dcode; for (dcode = 0; dcode < D_CODES; dcode++) { out_length += (ulg)s->dyn_dtree[dcode].Freq * (5L+extra_dbits[dcode]); } out_length >>= 3; Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", s->last_lit, in_length, out_length, 100L - out_length*100L/in_length)); if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1; } #endif return (s->last_lit == s->lit_bufsize-1); /* We avoid equality with lit_bufsize because of wraparound at 64K * on 16 bit machines and because stored blocks are restricted to * 64K-1 bytes. */ } /* =========================================================================== * Send the block data compressed using the given Huffman trees */ local void compress_block(s, ltree, dtree) deflate_state *s; const ct_data *ltree; /* literal tree */ const ct_data *dtree; /* distance tree */ { unsigned dist; /* distance of matched string */ int lc; /* match length or unmatched char (if dist == 0) */ unsigned lx = 0; /* running index in l_buf */ unsigned code; /* the code to send */ int extra; /* number of extra bits to send */ if (s->last_lit != 0) do { dist = s->d_buf[lx]; lc = s->l_buf[lx++]; if (dist == 0) { send_code(s, lc, ltree); /* send a literal byte */ Tracecv(isgraph(lc), (stderr," '%c' ", lc)); } else { /* Here, lc is the match length - MIN_MATCH */ code = _length_code[lc]; send_code(s, code+LITERALS+1, ltree); /* send the length code */ extra = extra_lbits[code]; if (extra != 0) { lc -= base_length[code]; send_bits(s, lc, extra); /* send the extra length bits */ } dist--; /* dist is now the match distance - 1 */ code = d_code(dist); Assert (code < D_CODES, "bad d_code"); send_code(s, code, dtree); /* send the distance code */ extra = extra_dbits[code]; if (extra != 0) { dist -= base_dist[code]; send_bits(s, dist, extra); /* send the extra distance bits */ } } /* literal or match pair ? */ /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx, "pendingBuf overflow"); } while (lx < s->last_lit); send_code(s, END_BLOCK, ltree); } /* =========================================================================== * Check if the data type is TEXT or BINARY, using the following algorithm: * - TEXT if the two conditions below are satisfied: * a) There are no non-portable control characters belonging to the * "black list" (0..6, 14..25, 28..31). * b) There is at least one printable character belonging to the * "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255). * - BINARY otherwise. * - The following partially-portable control characters form a * "gray list" that is ignored in this detection algorithm: * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}). * IN assertion: the fields Freq of dyn_ltree are set. */ local int detect_data_type(s) deflate_state *s; { /* black_mask is the bit mask of black-listed bytes * set bits 0..6, 14..25, and 28..31 * 0xf3ffc07f = binary 11110011111111111100000001111111 */ unsigned long black_mask = 0xf3ffc07fUL; int n; /* Check for non-textual ("black-listed") bytes. */ for (n = 0; n <= 31; n++, black_mask >>= 1) if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0)) return Z_BINARY; /* Check for textual ("white-listed") bytes. */ if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0 || s->dyn_ltree[13].Freq != 0) return Z_TEXT; for (n = 32; n < LITERALS; n++) if (s->dyn_ltree[n].Freq != 0) return Z_TEXT; /* There are no "black-listed" or "white-listed" bytes: * this stream either is empty or has tolerated ("gray-listed") bytes only. */ return Z_BINARY; } /* =========================================================================== * Reverse the first len bits of a code, using straightforward code (a faster * method would use a table) * IN assertion: 1 <= len <= 15 */ local unsigned bi_reverse(code, len) unsigned code; /* the value to invert */ int len; /* its bit length */ { register unsigned res = 0; do { res |= code & 1; code >>= 1, res <<= 1; } while (--len > 0); return res >> 1; } /* =========================================================================== * Flush the bit buffer, keeping at most 7 bits in it. */ local void bi_flush(s) deflate_state *s; { if (s->bi_valid == 16) { put_short(s, s->bi_buf); s->bi_buf = 0; s->bi_valid = 0; } else if (s->bi_valid >= 8) { put_byte(s, (Byte)s->bi_buf); s->bi_buf >>= 8; s->bi_valid -= 8; } } /* =========================================================================== * Flush the bit buffer and align the output on a byte boundary */ local void bi_windup(s) deflate_state *s; { if (s->bi_valid > 8) { put_short(s, s->bi_buf); } else if (s->bi_valid > 0) { put_byte(s, (Byte)s->bi_buf); } s->bi_buf = 0; s->bi_valid = 0; #ifdef DEBUG s->bits_sent = (s->bits_sent+7) & ~7; #endif } /* =========================================================================== * Copy a stored block, storing first the length and its * one's complement if requested. */ local void copy_block(s, buf, len, header) deflate_state *s; charf *buf; /* the input data */ unsigned len; /* its length */ int header; /* true if block header must be written */ { bi_windup(s); /* align on byte boundary */ if (header) { put_short(s, (ush)len); put_short(s, (ush)~len); #ifdef DEBUG s->bits_sent += 2*16; #endif } #ifdef DEBUG s->bits_sent += (ulg)len<<3; #endif while (len--) { put_byte(s, *buf++); } } /* END OF DUMP OF mz_trees.c*/ /* START OF DUMP OF mz_inftrees.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* inftrees.c -- generate Huffman trees for efficient decoding * Copyright (C) 1995-2013 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* START OF DUMP OF mz_inftrees.h*/ /* inftrees.h -- header to use inftrees.c * Copyright (C) 1995-2005, 2010 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ /* Structure for decoding tables. Each entry provides either the information needed to do the operation requested by the code that indexed that table entry, or it provides a pointer to another table that indexes more bits of the code. op indicates whether the entry is a pointer to another table, a literal, a length or distance, an end-of-block, or an invalid code. For a table pointer, the low four bits of op is the number of index bits of that table. For a length or distance, the low four bits of op is the number of extra bits to get after the code. bits is the number of bits in this code or part of the code to drop off of the bit buffer. val is the actual byte to output in the case of a literal, the base length or distance, or the offset from the current table to the next table. Each entry is four bytes. */ typedef struct { unsigned char op; /* operation, extra bits, table bits */ unsigned char bits; /* bits in this part of the code */ unsigned short val; /* offset in table or code value */ } code; /* op values as set by inflate_table(): 00000000 - literal 0000tttt - table link, tttt != 0 is the number of table index bits 0001eeee - length or distance, eeee is the number of extra bits 01100000 - end of block 01000000 - invalid code */ /* Maximum size of the dynamic table. The maximum number of code structures is 1444, which is the sum of 852 for literal/length codes and 592 for distance codes. These values were found by exhaustive searches using the program examples/enough.c found in the zlib distribtution. The arguments to that program are the number of symbols, the initial root table size, and the maximum bit length of a code. "enough 286 9 15" for literal/length codes returns returns 852, and "enough 30 6 15" for distance codes returns 592. The initial root table size (9 or 6) is found in the fifth argument of the inflate_table() calls in inflate.c and infback.c. If the root table size is changed, then these maximum sizes would be need to be recalculated and updated. */ #define ENOUGH_LENS 852 #define ENOUGH_DISTS 592 #define ENOUGH (ENOUGH_LENS+ENOUGH_DISTS) /* Type of code to build for inflate_table() */ typedef enum { CODES, LENS, DISTS } codetype; int ZLIB_INTERNAL inflate_table OF((codetype type, unsigned short FAR *lens, unsigned codes, code FAR * FAR *table, unsigned FAR *bits, unsigned short FAR *work)); /* END OF DUMP OF mz_inftrees.h*/ #define MAXBITS 15 const char inflate_copyright[] = " inflate 1.2.8 Copyright 1995-2013 Mark Adler "; /* If you use the zlib library in a product, an acknowledgment is welcome in the documentation of your product. If for some reason you cannot include such an acknowledgment, I would appreciate that you keep this copyright string in the executable of your product. */ /* Build a set of tables to decode the provided canonical Huffman code. The code lengths are lens[0..codes-1]. The result starts at *table, whose indices are 0..2^bits-1. work is a writable array of at least lens shorts, which is used as a work area. type is the type of code to be generated, CODES, LENS, or DISTS. On return, zero is success, -1 is an invalid code, and +1 means that ENOUGH isn't enough. table on return points to the next available entry's address. bits is the requested root table index bits, and on return it is the actual root table index bits. It will differ if the request is greater than the longest code or if it is less than the shortest code. */ int ZLIB_INTERNAL inflate_table(type, lens, codes, table, bits, work) codetype type; unsigned short FAR *lens; unsigned codes; code FAR * FAR *table; unsigned FAR *bits; unsigned short FAR *work; { unsigned len; /* a code's length in bits */ unsigned sym; /* index of code symbols */ unsigned min, max; /* minimum and maximum code lengths */ unsigned root; /* number of index bits for root table */ unsigned curr; /* number of index bits for current table */ unsigned drop; /* code bits to drop for sub-table */ int left; /* number of prefix codes available */ unsigned used; /* code entries in table used */ unsigned huff; /* Huffman code */ unsigned incr; /* for incrementing code, index */ unsigned fill; /* index for replicating entries */ unsigned low; /* low bits for current root entry */ unsigned mask; /* mask for low root bits */ code here; /* table entry for duplication */ code FAR *next; /* next available space in table */ const unsigned short FAR *base; /* base value table to use */ const unsigned short FAR *extra; /* extra bits table to use */ int end; /* use base and extra for symbol > end */ unsigned short count[MAXBITS+1]; /* number of codes of each length */ unsigned short offs[MAXBITS+1]; /* offsets in table for each length */ static const unsigned short lbase[31] = { /* Length codes 257..285 base */ 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; static const unsigned short lext[31] = { /* Length codes 257..285 extra */ 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 72, 78}; static const unsigned short dbase[32] = { /* Distance codes 0..29 base */ 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577, 0, 0}; static const unsigned short dext[32] = { /* Distance codes 0..29 extra */ 16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 64, 64}; /* Process a set of code lengths to create a canonical Huffman code. The code lengths are lens[0..codes-1]. Each length corresponds to the symbols 0..codes-1. The Huffman code is generated by first sorting the symbols by length from short to long, and retaining the symbol order for codes with equal lengths. Then the code starts with all zero bits for the first code of the shortest length, and the codes are integer increments for the same length, and zeros are appended as the length increases. For the deflate format, these bits are stored backwards from their more natural integer increment ordering, and so when the decoding tables are built in the large loop below, the integer codes are incremented backwards. This routine assumes, but does not check, that all of the entries in lens[] are in the range 0..MAXBITS. The caller must assure this. 1..MAXBITS is interpreted as that code length. zero means that that symbol does not occur in this code. The codes are sorted by computing a count of codes for each length, creating from that a table of starting indices for each length in the sorted table, and then entering the symbols in order in the sorted table. The sorted table is work[], with that space being provided by the caller. The length counts are used for other purposes as well, i.e. finding the minimum and maximum length codes, determining if there are any codes at all, checking for a valid set of lengths, and looking ahead at length counts to determine sub-table sizes when building the decoding tables. */ /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */ for (len = 0; len <= MAXBITS; len++) count[len] = 0; for (sym = 0; sym < codes; sym++) count[lens[sym]]++; /* bound code lengths, force root to be within code lengths */ root = *bits; for (max = MAXBITS; max >= 1; max--) if (count[max] != 0) break; if (root > max) root = max; if (max == 0) { /* no symbols to code at all */ here.op = (unsigned char)64; /* invalid code marker */ here.bits = (unsigned char)1; here.val = (unsigned short)0; *(*table)++ = here; /* make a table to force an error */ *(*table)++ = here; *bits = 1; return 0; /* no symbols, but wait for decoding to report error */ } for (min = 1; min < max; min++) if (count[min] != 0) break; if (root < min) root = min; /* check for an over-subscribed or incomplete set of lengths */ left = 1; for (len = 1; len <= MAXBITS; len++) { left <<= 1; left -= count[len]; if (left < 0) return -1; /* over-subscribed */ } if (left > 0 && (type == CODES || max != 1)) return -1; /* incomplete set */ /* generate offsets into symbol table for each length for sorting */ offs[1] = 0; for (len = 1; len < MAXBITS; len++) offs[len + 1] = offs[len] + count[len]; /* sort symbols by length, by symbol order within each length */ for (sym = 0; sym < codes; sym++) if (lens[sym] != 0) work[offs[lens[sym]]++] = (unsigned short)sym; /* Create and fill in decoding tables. In this loop, the table being filled is at next and has curr index bits. The code being used is huff with length len. That code is converted to an index by dropping drop bits off of the bottom. For codes where len is less than drop + curr, those top drop + curr - len bits are incremented through all values to fill the table with replicated entries. root is the number of index bits for the root table. When len exceeds root, sub-tables are created pointed to by the root entry with an index of the low root bits of huff. This is saved in low to check for when a new sub-table should be started. drop is zero when the root table is being filled, and drop is root when sub-tables are being filled. When a new sub-table is needed, it is necessary to look ahead in the code lengths to determine what size sub-table is needed. The length counts are used for this, and so count[] is decremented as codes are entered in the tables. used keeps track of how many table entries have been allocated from the provided *table space. It is checked for LENS and DIST tables against the constants ENOUGH_LENS and ENOUGH_DISTS to guard against changes in the initial root table size constants. See the comments in inftrees.h for more information. sym increments through all symbols, and the loop terminates when all codes of length max, i.e. all codes, have been processed. This routine permits incomplete codes, so another loop after this one fills in the rest of the decoding tables with invalid code markers. */ /* set up for code type */ switch (type) { case CODES: base = extra = work; /* dummy value--not used */ end = 19; break; case LENS: base = lbase; base -= 257; extra = lext; extra -= 257; end = 256; break; default: /* DISTS */ base = dbase; extra = dext; end = -1; } /* initialize state for loop */ huff = 0; /* starting code */ sym = 0; /* starting code symbol */ len = min; /* starting code length */ next = *table; /* current table to fill in */ curr = root; /* current table index bits */ drop = 0; /* current bits to drop from code for index */ low = (unsigned)(-1); /* trigger new sub-table when len > root */ used = 1U << root; /* use root table entries */ mask = used - 1; /* mask for comparing low */ /* check available table space */ if ((type == LENS && used > ENOUGH_LENS) || (type == DISTS && used > ENOUGH_DISTS)) return 1; /* process all codes and make table entries */ for (;;) { /* create table entry */ here.bits = (unsigned char)(len - drop); if ((int)(work[sym]) < end) { here.op = (unsigned char)0; here.val = work[sym]; } else if ((int)(work[sym]) > end) { here.op = (unsigned char)(extra[work[sym]]); here.val = base[work[sym]]; } else { here.op = (unsigned char)(32 + 64); /* end of block */ here.val = 0; } /* replicate for those indices with low len bits equal to huff */ incr = 1U << (len - drop); fill = 1U << curr; min = fill; /* save offset to next table */ do { fill -= incr; next[(huff >> drop) + fill] = here; } while (fill != 0); /* backwards increment the len-bit code huff */ incr = 1U << (len - 1); while (huff & incr) incr >>= 1; if (incr != 0) { huff &= incr - 1; huff += incr; } else huff = 0; /* go to next symbol, update count, len */ sym++; if (--(count[len]) == 0) { if (len == max) break; len = lens[work[sym]]; } /* create new sub-table if needed */ if (len > root && (huff & mask) != low) { /* if first time, transition to sub-tables */ if (drop == 0) drop = root; /* increment past last table */ next += min; /* here min is 1 << curr */ /* determine length of next table */ curr = len - drop; left = (int)(1 << curr); while (curr + drop < max) { left -= count[curr + drop]; if (left <= 0) break; curr++; left <<= 1; } /* check for enough space */ used += 1U << curr; if ((type == LENS && used > ENOUGH_LENS) || (type == DISTS && used > ENOUGH_DISTS)) return 1; /* point entry in root table to sub-table */ low = huff & mask; (*table)[low].op = (unsigned char)curr; (*table)[low].bits = (unsigned char)root; (*table)[low].val = (unsigned short)(next - *table); } } /* fill in remaining table entry if code is incomplete (guaranteed to have at most one remaining entry, since if the code is incomplete, the maximum code length that was allowed to get this far is one bit) */ if (huff != 0) { here.op = (unsigned char)64; /* invalid code marker */ here.bits = (unsigned char)(len - drop); here.val = (unsigned short)0; next[huff] = here; } /* set return parameters */ *table += used; *bits = root; return 0; } /* END OF DUMP OF mz_inftrees.c*/ /* START OF DUMP OF mz_inflate.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* inflate.c -- zlib decompression * Copyright (C) 1995-2012 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* * Change history: * * 1.2.beta0 24 Nov 2002 * - First version -- complete rewrite of inflate to simplify code, avoid * creation of window when not needed, minimize use of window when it is * needed, make inffast.c even faster, implement gzip decoding, and to * improve code readability and style over the previous zlib inflate code * * 1.2.beta1 25 Nov 2002 * - Use pointers for available input and output checking in inffast.c * - Remove input and output counters in inffast.c * - Change inffast.c entry and loop from avail_in >= 7 to >= 6 * - Remove unnecessary second byte pull from length extra in inffast.c * - Unroll direct copy to three copies per loop in inffast.c * * 1.2.beta2 4 Dec 2002 * - Change external routine names to reduce potential conflicts * - Correct filename to inffixed.h for fixed tables in inflate.c * - Make hbuf[] unsigned char to match parameter type in inflate.c * - Change strm->next_out[-state->offset] to *(strm->next_out - state->offset) * to avoid negation problem on Alphas (64 bit) in inflate.c * * 1.2.beta3 22 Dec 2002 * - Add comments on state->bits assertion in inffast.c * - Add comments on op field in inftrees.h * - Fix bug in reuse of allocated window after inflateReset() * - Remove bit fields--back to byte structure for speed * - Remove distance extra == 0 check in inflate_fast()--only helps for lengths * - Change post-increments to pre-increments in inflate_fast(), PPC biased? * - Add compile time option, POSTINC, to use post-increments instead (Intel?) * - Make MATCH copy in inflate() much faster for when inflate_fast() not used * - Use local copies of stream next and avail values, as well as local bit * buffer and bit count in inflate()--for speed when inflate_fast() not used * * 1.2.beta4 1 Jan 2003 * - Split ptr - 257 statements in inflate_table() to avoid compiler warnings * - Move a comment on output buffer sizes from inffast.c to inflate.c * - Add comments in inffast.c to introduce the inflate_fast() routine * - Rearrange window copies in inflate_fast() for speed and simplification * - Unroll last copy for window match in inflate_fast() * - Use local copies of window variables in inflate_fast() for speed * - Pull out common wnext == 0 case for speed in inflate_fast() * - Make op and len in inflate_fast() unsigned for consistency * - Add FAR to lcode and dcode declarations in inflate_fast() * - Simplified bad distance check in inflate_fast() * - Added inflateBackInit(), inflateBack(), and inflateBackEnd() in new * source file infback.c to provide a call-back interface to inflate for * programs like gzip and unzip -- uses window as output buffer to avoid * window copying * * 1.2.beta5 1 Jan 2003 * - Improved inflateBack() interface to allow the caller to provide initial * input in strm. * - Fixed stored blocks bug in inflateBack() * * 1.2.beta6 4 Jan 2003 * - Added comments in inffast.c on effectiveness of POSTINC * - Typecasting all around to reduce compiler warnings * - Changed loops from while (1) or do {} while (1) to for (;;), again to * make compilers happy * - Changed type of window in inflateBackInit() to unsigned char * * * 1.2.beta7 27 Jan 2003 * - Changed many types to unsigned or unsigned short to avoid warnings * - Added inflateCopy() function * * 1.2.0 9 Mar 2003 * - Changed inflateBack() interface to provide separate opaque descriptors * for the in() and out() functions * - Changed inflateBack() argument and in_func typedef to swap the length * and buffer address return values for the input function * - Check next_in and next_out for Z_NULL on entry to inflate() * * The history for versions after 1.2.0 are in ChangeLog in zlib distribution. */ /* START OF DUMP OF mz_inflate.h*/ /* inflate.h -- internal inflate state definition * Copyright (C) 1995-2009 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ /* define NO_GZIP when compiling if you want to disable gzip header and trailer decoding by inflate(). NO_GZIP would be used to avoid linking in the crc code when it is not needed. For shared libraries, gzip decoding should be left enabled. */ #ifndef NO_GZIP # define GUNZIP #endif /* Possible inflate modes between inflate() calls */ typedef enum { HEAD, /* i: waiting for magic header */ FLAGS, /* i: waiting for method and flags (gzip) */ TIME, /* i: waiting for modification time (gzip) */ OS, /* i: waiting for extra flags and operating system (gzip) */ EXLEN, /* i: waiting for extra length (gzip) */ EXTRA, /* i: waiting for extra bytes (gzip) */ NAME, /* i: waiting for end of file name (gzip) */ COMMENT, /* i: waiting for end of comment (gzip) */ HCRC, /* i: waiting for header crc (gzip) */ DICTID, /* i: waiting for dictionary check value */ DICT, /* waiting for inflateSetDictionary() call */ TYPE, /* i: waiting for type bits, including last-flag bit */ TYPEDO, /* i: same, but skip check to exit inflate on new block */ STORED, /* i: waiting for stored size (length and complement) */ COPY_, /* i/o: same as COPY below, but only first time in */ COPY, /* i/o: waiting for input or output to copy stored block */ TABLE, /* i: waiting for dynamic block table lengths */ LENLENS, /* i: waiting for code length code lengths */ CODELENS, /* i: waiting for length/lit and distance code lengths */ LEN_, /* i: same as LEN below, but only first time in */ LEN, /* i: waiting for length/lit/eob code */ LENEXT, /* i: waiting for length extra bits */ DIST, /* i: waiting for distance code */ DISTEXT, /* i: waiting for distance extra bits */ MATCH, /* o: waiting for output space to copy string */ LIT, /* o: waiting for output space to write literal */ CHECK, /* i: waiting for 32-bit check value */ LENGTH, /* i: waiting for 32-bit length (gzip) */ DONE, /* finished check, done -- remain here until reset */ BAD, /* got a data error -- remain here until reset */ MEM, /* got an inflate() memory error -- remain here until reset */ SYNC /* looking for synchronization bytes to restart inflate() */ } inflate_mode; /* State transitions between above modes - (most modes can go to BAD or MEM on error -- not shown for clarity) Process header: HEAD -> (gzip) or (zlib) or (raw) (gzip) -> FLAGS -> TIME -> OS -> EXLEN -> EXTRA -> NAME -> COMMENT -> HCRC -> TYPE (zlib) -> DICTID or TYPE DICTID -> DICT -> TYPE (raw) -> TYPEDO Read deflate blocks: TYPE -> TYPEDO -> STORED or TABLE or LEN_ or CHECK STORED -> COPY_ -> COPY -> TYPE TABLE -> LENLENS -> CODELENS -> LEN_ LEN_ -> LEN Read deflate codes in fixed or dynamic block: LEN -> LENEXT or LIT or TYPE LENEXT -> DIST -> DISTEXT -> MATCH -> LEN LIT -> LEN Process trailer: CHECK -> LENGTH -> DONE */ /* state maintained between inflate() calls. Approximately 10K bytes. */ struct inflate_state { inflate_mode mode; /* current inflate mode */ int last; /* true if processing last block */ int wrap; /* bit 0 true for zlib, bit 1 true for gzip */ int havedict; /* true if dictionary provided */ int flags; /* gzip header method and flags (0 if zlib) */ unsigned dmax; /* zlib header max distance (INFLATE_STRICT) */ unsigned long check; /* protected copy of check value */ unsigned long total; /* protected copy of output count */ gz_headerp head; /* where to save gzip header information */ /* sliding window */ unsigned wbits; /* log base 2 of requested window size */ unsigned wsize; /* window size or zero if not using window */ unsigned whave; /* valid bytes in the window */ unsigned wnext; /* window write index */ unsigned char FAR *window; /* allocated sliding window, if needed */ /* bit accumulator */ unsigned long hold; /* input bit accumulator */ unsigned bits; /* number of bits in "in" */ /* for string and stored block copying */ unsigned length; /* literal or length of data to copy */ unsigned offset; /* distance back to copy string from */ /* for table and code decoding */ unsigned extra; /* extra bits needed */ /* fixed and dynamic code tables */ code const FAR *lencode; /* starting table for length/literal codes */ code const FAR *distcode; /* starting table for distance codes */ unsigned lenbits; /* index bits for lencode */ unsigned distbits; /* index bits for distcode */ /* dynamic table building */ unsigned ncode; /* number of code length code lengths */ unsigned nlen; /* number of length code lengths */ unsigned ndist; /* number of distance code lengths */ unsigned have; /* number of code lengths in lens[] */ code FAR *next; /* next available space in codes[] */ unsigned short lens[320]; /* temporary storage for code lengths */ unsigned short work[288]; /* work area for code table building */ code codes[ENOUGH]; /* space for code tables */ int sane; /* if false, allow invalid distance too far */ int back; /* bits back of last unprocessed length/lit */ unsigned was; /* initial length of match */ }; /* END OF DUMP OF mz_inflate.h*/ /* START OF DUMP OF mz_inffast.h*/ /* inffast.h -- header to use inffast.c * Copyright (C) 1995-2003, 2010 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of the compression library and is subject to change. Applications should only use zlib.h. */ void ZLIB_INTERNAL inflate_fast OF((z_streamp strm, unsigned start)); /* END OF DUMP OF mz_inffast.h*/ #ifdef MAKEFIXED # ifndef BUILDFIXED # define BUILDFIXED # endif #endif /* function prototypes */ local void fixedtables OF((struct inflate_state FAR *state)); local int updatewindow OF((z_streamp strm, const unsigned char FAR *end, unsigned copy)); #ifdef BUILDFIXED void makefixed OF((void)); #endif local unsigned syncsearch OF((unsigned FAR *have, const unsigned char FAR *buf, unsigned len)); int ZEXPORT inflateResetKeep(strm) z_streamp strm; { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; strm->total_in = strm->total_out = state->total = 0; strm->msg = Z_NULL; if (state->wrap) /* to support ill-conceived Java test suite */ strm->adler = state->wrap & 1; state->mode = HEAD; state->last = 0; state->havedict = 0; state->dmax = 32768U; state->head = Z_NULL; state->hold = 0; state->bits = 0; state->lencode = state->distcode = state->next = state->codes; state->sane = 1; state->back = -1; Tracev((stderr, "inflate: reset\n")); return Z_OK; } int ZEXPORT inflateReset(strm) z_streamp strm; { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; state->wsize = 0; state->whave = 0; state->wnext = 0; return inflateResetKeep(strm); } int ZEXPORT inflateReset2(strm, windowBits) z_streamp strm; int windowBits; { int wrap; struct inflate_state FAR *state; /* get the state */ if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; /* extract wrap request from windowBits parameter */ if (windowBits < 0) { wrap = 0; windowBits = -windowBits; } else { wrap = (windowBits >> 4) + 1; #ifdef GUNZIP if (windowBits < 48) windowBits &= 15; #endif } /* set number of window bits, free window if different */ if (windowBits && (windowBits < 8 || windowBits > 15)) return Z_STREAM_ERROR; if (state->window != Z_NULL && state->wbits != (unsigned)windowBits) { ZFREE(strm, state->window); state->window = Z_NULL; } /* update state and reset the rest of it */ state->wrap = wrap; state->wbits = (unsigned)windowBits; return inflateReset(strm); } int ZEXPORT inflateInit2_(strm, windowBits, version, stream_size) z_streamp strm; int windowBits; const char *version; int stream_size; { int ret; struct inflate_state FAR *state; if (version == Z_NULL || version[0] != ZLIB_VERSION[0] || stream_size != (int)(sizeof(z_stream))) return Z_VERSION_ERROR; if (strm == Z_NULL) return Z_STREAM_ERROR; strm->msg = Z_NULL; /* in case we return an error */ if (strm->zalloc == (alloc_func)0) { #ifdef Z_SOLO return Z_STREAM_ERROR; #else strm->zalloc = zcalloc; strm->opaque = (voidpf)0; #endif } if (strm->zfree == (free_func)0) #ifdef Z_SOLO return Z_STREAM_ERROR; #else strm->zfree = zcfree; #endif state = (struct inflate_state FAR *) ZALLOC(strm, 1, sizeof(struct inflate_state)); if (state == Z_NULL) return Z_MEM_ERROR; Tracev((stderr, "inflate: allocated\n")); strm->state = (struct internal_state FAR *)state; state->window = Z_NULL; ret = inflateReset2(strm, windowBits); if (ret != Z_OK) { ZFREE(strm, state); strm->state = Z_NULL; } return ret; } int ZEXPORT inflateInit_(strm, version, stream_size) z_streamp strm; const char *version; int stream_size; { return inflateInit2_(strm, DEF_WBITS, version, stream_size); } int ZEXPORT inflatePrime(strm, bits, value) z_streamp strm; int bits; int value; { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (bits < 0) { state->hold = 0; state->bits = 0; return Z_OK; } if (bits > 16 || state->bits + bits > 32) return Z_STREAM_ERROR; value &= (1L << bits) - 1; state->hold += value << state->bits; state->bits += bits; return Z_OK; } /* Return state with length and distance decoding tables and index sizes set to fixed code decoding. Normally this returns fixed tables from inffixed.h. If BUILDFIXED is defined, then instead this routine builds the tables the first time it's called, and returns those tables the first time and thereafter. This reduces the size of the code by about 2K bytes, in exchange for a little execution time. However, BUILDFIXED should not be used for threaded applications, since the rewriting of the tables and virgin may not be thread-safe. */ local void fixedtables(state) struct inflate_state FAR *state; { #ifdef BUILDFIXED static int virgin = 1; static code *lenfix, *distfix; static code fixed[544]; /* build fixed huffman tables if first call (may not be thread safe) */ if (virgin) { unsigned sym, bits; static code *next; /* literal/length table */ sym = 0; while (sym < 144) state->lens[sym++] = 8; while (sym < 256) state->lens[sym++] = 9; while (sym < 280) state->lens[sym++] = 7; while (sym < 288) state->lens[sym++] = 8; next = fixed; lenfix = next; bits = 9; inflate_table(LENS, state->lens, 288, &(next), &(bits), state->work); /* distance table */ sym = 0; while (sym < 32) state->lens[sym++] = 5; distfix = next; bits = 5; inflate_table(DISTS, state->lens, 32, &(next), &(bits), state->work); /* do this just once */ virgin = 0; } #else /* !BUILDFIXED */ /* START OF DUMP OF mz_inffixed.h*/ /* inffixed.h -- table for decoding fixed codes * Generated automatically by makefixed(). */ /* WARNING: this file should *not* be used by applications. It is part of the implementation of this library and is subject to change. Applications should only use zlib.h. */ static const code lenfix[512] = { {96,7,0},{0,8,80},{0,8,16},{20,8,115},{18,7,31},{0,8,112},{0,8,48}, {0,9,192},{16,7,10},{0,8,96},{0,8,32},{0,9,160},{0,8,0},{0,8,128}, {0,8,64},{0,9,224},{16,7,6},{0,8,88},{0,8,24},{0,9,144},{19,7,59}, {0,8,120},{0,8,56},{0,9,208},{17,7,17},{0,8,104},{0,8,40},{0,9,176}, {0,8,8},{0,8,136},{0,8,72},{0,9,240},{16,7,4},{0,8,84},{0,8,20}, {21,8,227},{19,7,43},{0,8,116},{0,8,52},{0,9,200},{17,7,13},{0,8,100}, {0,8,36},{0,9,168},{0,8,4},{0,8,132},{0,8,68},{0,9,232},{16,7,8}, {0,8,92},{0,8,28},{0,9,152},{20,7,83},{0,8,124},{0,8,60},{0,9,216}, {18,7,23},{0,8,108},{0,8,44},{0,9,184},{0,8,12},{0,8,140},{0,8,76}, {0,9,248},{16,7,3},{0,8,82},{0,8,18},{21,8,163},{19,7,35},{0,8,114}, {0,8,50},{0,9,196},{17,7,11},{0,8,98},{0,8,34},{0,9,164},{0,8,2}, {0,8,130},{0,8,66},{0,9,228},{16,7,7},{0,8,90},{0,8,26},{0,9,148}, {20,7,67},{0,8,122},{0,8,58},{0,9,212},{18,7,19},{0,8,106},{0,8,42}, {0,9,180},{0,8,10},{0,8,138},{0,8,74},{0,9,244},{16,7,5},{0,8,86}, {0,8,22},{64,8,0},{19,7,51},{0,8,118},{0,8,54},{0,9,204},{17,7,15}, {0,8,102},{0,8,38},{0,9,172},{0,8,6},{0,8,134},{0,8,70},{0,9,236}, {16,7,9},{0,8,94},{0,8,30},{0,9,156},{20,7,99},{0,8,126},{0,8,62}, {0,9,220},{18,7,27},{0,8,110},{0,8,46},{0,9,188},{0,8,14},{0,8,142}, {0,8,78},{0,9,252},{96,7,0},{0,8,81},{0,8,17},{21,8,131},{18,7,31}, {0,8,113},{0,8,49},{0,9,194},{16,7,10},{0,8,97},{0,8,33},{0,9,162}, {0,8,1},{0,8,129},{0,8,65},{0,9,226},{16,7,6},{0,8,89},{0,8,25}, {0,9,146},{19,7,59},{0,8,121},{0,8,57},{0,9,210},{17,7,17},{0,8,105}, {0,8,41},{0,9,178},{0,8,9},{0,8,137},{0,8,73},{0,9,242},{16,7,4}, {0,8,85},{0,8,21},{16,8,258},{19,7,43},{0,8,117},{0,8,53},{0,9,202}, {17,7,13},{0,8,101},{0,8,37},{0,9,170},{0,8,5},{0,8,133},{0,8,69}, {0,9,234},{16,7,8},{0,8,93},{0,8,29},{0,9,154},{20,7,83},{0,8,125}, {0,8,61},{0,9,218},{18,7,23},{0,8,109},{0,8,45},{0,9,186},{0,8,13}, {0,8,141},{0,8,77},{0,9,250},{16,7,3},{0,8,83},{0,8,19},{21,8,195}, {19,7,35},{0,8,115},{0,8,51},{0,9,198},{17,7,11},{0,8,99},{0,8,35}, {0,9,166},{0,8,3},{0,8,131},{0,8,67},{0,9,230},{16,7,7},{0,8,91}, {0,8,27},{0,9,150},{20,7,67},{0,8,123},{0,8,59},{0,9,214},{18,7,19}, {0,8,107},{0,8,43},{0,9,182},{0,8,11},{0,8,139},{0,8,75},{0,9,246}, {16,7,5},{0,8,87},{0,8,23},{64,8,0},{19,7,51},{0,8,119},{0,8,55}, {0,9,206},{17,7,15},{0,8,103},{0,8,39},{0,9,174},{0,8,7},{0,8,135}, {0,8,71},{0,9,238},{16,7,9},{0,8,95},{0,8,31},{0,9,158},{20,7,99}, {0,8,127},{0,8,63},{0,9,222},{18,7,27},{0,8,111},{0,8,47},{0,9,190}, {0,8,15},{0,8,143},{0,8,79},{0,9,254},{96,7,0},{0,8,80},{0,8,16}, {20,8,115},{18,7,31},{0,8,112},{0,8,48},{0,9,193},{16,7,10},{0,8,96}, {0,8,32},{0,9,161},{0,8,0},{0,8,128},{0,8,64},{0,9,225},{16,7,6}, {0,8,88},{0,8,24},{0,9,145},{19,7,59},{0,8,120},{0,8,56},{0,9,209}, {17,7,17},{0,8,104},{0,8,40},{0,9,177},{0,8,8},{0,8,136},{0,8,72}, {0,9,241},{16,7,4},{0,8,84},{0,8,20},{21,8,227},{19,7,43},{0,8,116}, {0,8,52},{0,9,201},{17,7,13},{0,8,100},{0,8,36},{0,9,169},{0,8,4}, {0,8,132},{0,8,68},{0,9,233},{16,7,8},{0,8,92},{0,8,28},{0,9,153}, {20,7,83},{0,8,124},{0,8,60},{0,9,217},{18,7,23},{0,8,108},{0,8,44}, {0,9,185},{0,8,12},{0,8,140},{0,8,76},{0,9,249},{16,7,3},{0,8,82}, {0,8,18},{21,8,163},{19,7,35},{0,8,114},{0,8,50},{0,9,197},{17,7,11}, {0,8,98},{0,8,34},{0,9,165},{0,8,2},{0,8,130},{0,8,66},{0,9,229}, {16,7,7},{0,8,90},{0,8,26},{0,9,149},{20,7,67},{0,8,122},{0,8,58}, {0,9,213},{18,7,19},{0,8,106},{0,8,42},{0,9,181},{0,8,10},{0,8,138}, {0,8,74},{0,9,245},{16,7,5},{0,8,86},{0,8,22},{64,8,0},{19,7,51}, {0,8,118},{0,8,54},{0,9,205},{17,7,15},{0,8,102},{0,8,38},{0,9,173}, {0,8,6},{0,8,134},{0,8,70},{0,9,237},{16,7,9},{0,8,94},{0,8,30}, {0,9,157},{20,7,99},{0,8,126},{0,8,62},{0,9,221},{18,7,27},{0,8,110}, {0,8,46},{0,9,189},{0,8,14},{0,8,142},{0,8,78},{0,9,253},{96,7,0}, {0,8,81},{0,8,17},{21,8,131},{18,7,31},{0,8,113},{0,8,49},{0,9,195}, {16,7,10},{0,8,97},{0,8,33},{0,9,163},{0,8,1},{0,8,129},{0,8,65}, {0,9,227},{16,7,6},{0,8,89},{0,8,25},{0,9,147},{19,7,59},{0,8,121}, {0,8,57},{0,9,211},{17,7,17},{0,8,105},{0,8,41},{0,9,179},{0,8,9}, {0,8,137},{0,8,73},{0,9,243},{16,7,4},{0,8,85},{0,8,21},{16,8,258}, {19,7,43},{0,8,117},{0,8,53},{0,9,203},{17,7,13},{0,8,101},{0,8,37}, {0,9,171},{0,8,5},{0,8,133},{0,8,69},{0,9,235},{16,7,8},{0,8,93}, {0,8,29},{0,9,155},{20,7,83},{0,8,125},{0,8,61},{0,9,219},{18,7,23}, {0,8,109},{0,8,45},{0,9,187},{0,8,13},{0,8,141},{0,8,77},{0,9,251}, {16,7,3},{0,8,83},{0,8,19},{21,8,195},{19,7,35},{0,8,115},{0,8,51}, {0,9,199},{17,7,11},{0,8,99},{0,8,35},{0,9,167},{0,8,3},{0,8,131}, {0,8,67},{0,9,231},{16,7,7},{0,8,91},{0,8,27},{0,9,151},{20,7,67}, {0,8,123},{0,8,59},{0,9,215},{18,7,19},{0,8,107},{0,8,43},{0,9,183}, {0,8,11},{0,8,139},{0,8,75},{0,9,247},{16,7,5},{0,8,87},{0,8,23}, {64,8,0},{19,7,51},{0,8,119},{0,8,55},{0,9,207},{17,7,15},{0,8,103}, {0,8,39},{0,9,175},{0,8,7},{0,8,135},{0,8,71},{0,9,239},{16,7,9}, {0,8,95},{0,8,31},{0,9,159},{20,7,99},{0,8,127},{0,8,63},{0,9,223}, {18,7,27},{0,8,111},{0,8,47},{0,9,191},{0,8,15},{0,8,143},{0,8,79}, {0,9,255} }; static const code distfix[32] = { {16,5,1},{23,5,257},{19,5,17},{27,5,4097},{17,5,5},{25,5,1025}, {21,5,65},{29,5,16385},{16,5,3},{24,5,513},{20,5,33},{28,5,8193}, {18,5,9},{26,5,2049},{22,5,129},{64,5,0},{16,5,2},{23,5,385}, {19,5,25},{27,5,6145},{17,5,7},{25,5,1537},{21,5,97},{29,5,24577}, {16,5,4},{24,5,769},{20,5,49},{28,5,12289},{18,5,13},{26,5,3073}, {22,5,193},{64,5,0} }; /* END OF DUMP OF mz_inffixed.h*/ #endif /* BUILDFIXED */ state->lencode = lenfix; state->lenbits = 9; state->distcode = distfix; state->distbits = 5; } #ifdef MAKEFIXED #include /* Write out the inffixed.h that is #include'd above. Defining MAKEFIXED also defines BUILDFIXED, so the tables are built on the fly. makefixed() writes those tables to stdout, which would be piped to inffixed.h. A small program can simply call makefixed to do this: void makefixed(void); int main(void) { makefixed(); return 0; } Then that can be linked with zlib built with MAKEFIXED defined and run: a.out > inffixed.h */ void makefixed() { unsigned low, size; struct inflate_state state; fixedtables(&state); puts(" /* inffixed.h -- table for decoding fixed codes"); puts(" * Generated automatically by makefixed()."); puts(" */"); puts(""); puts(" /* WARNING: this file should *not* be used by applications."); puts(" It is part of the implementation of this library and is"); puts(" subject to change. Applications should only use zlib.h."); puts(" */"); puts(""); size = 1U << 9; printf(" static const code lenfix[%u] = {", size); low = 0; for (;;) { if ((low % 7) == 0) printf("\n "); printf("{%u,%u,%d}", (low & 127) == 99 ? 64 : state.lencode[low].op, state.lencode[low].bits, state.lencode[low].val); if (++low == size) break; putchar(','); } puts("\n };"); size = 1U << 5; printf("\n static const code distfix[%u] = {", size); low = 0; for (;;) { if ((low % 6) == 0) printf("\n "); printf("{%u,%u,%d}", state.distcode[low].op, state.distcode[low].bits, state.distcode[low].val); if (++low == size) break; putchar(','); } puts("\n };"); } #endif /* MAKEFIXED */ /* Update the window with the last wsize (normally 32K) bytes written before returning. If window does not exist yet, create it. This is only called when a window is already in use, or when output has been written during this inflate call, but the end of the deflate stream has not been reached yet. It is also called to create a window for dictionary data when a dictionary is loaded. Providing output buffers larger than 32K to inflate() should provide a speed advantage, since only the last 32K of output is copied to the sliding window upon return from inflate(), and since all distances after the first 32K of output will fall in the output data, making match copies simpler and faster. The advantage may be dependent on the size of the processor's data caches. */ local int updatewindow(strm, end, copy) z_streamp strm; const Bytef *end; unsigned copy; { struct inflate_state FAR *state; unsigned dist; state = (struct inflate_state FAR *)strm->state; /* if it hasn't been done already, allocate space for the window */ if (state->window == Z_NULL) { state->window = (unsigned char FAR *) ZALLOC(strm, 1U << state->wbits, sizeof(unsigned char)); if (state->window == Z_NULL) return 1; } /* if window not in use yet, initialize */ if (state->wsize == 0) { state->wsize = 1U << state->wbits; state->wnext = 0; state->whave = 0; } /* copy state->wsize or less output bytes into the circular window */ if (copy >= state->wsize) { zmemcpy(state->window, end - state->wsize, state->wsize); state->wnext = 0; state->whave = state->wsize; } else { dist = state->wsize - state->wnext; if (dist > copy) dist = copy; zmemcpy(state->window + state->wnext, end - copy, dist); copy -= dist; if (copy) { zmemcpy(state->window, end - copy, copy); state->wnext = copy; state->whave = state->wsize; } else { state->wnext += dist; if (state->wnext == state->wsize) state->wnext = 0; if (state->whave < state->wsize) state->whave += dist; } } return 0; } /* Macros for inflate(): */ /* check function to use adler32() for zlib or crc32() for gzip */ #ifdef GUNZIP # define UPDATE(check, buf, len) \ (state->flags ? crc32(check, buf, len) : adler32(check, buf, len)) #else # define UPDATE(check, buf, len) adler32(check, buf, len) #endif /* check macros for header crc */ #ifdef GUNZIP # define CRC2(check, word) \ do { \ hbuf[0] = (unsigned char)(word); \ hbuf[1] = (unsigned char)((word) >> 8); \ check = crc32(check, hbuf, 2); \ } while (0) # define CRC4(check, word) \ do { \ hbuf[0] = (unsigned char)(word); \ hbuf[1] = (unsigned char)((word) >> 8); \ hbuf[2] = (unsigned char)((word) >> 16); \ hbuf[3] = (unsigned char)((word) >> 24); \ check = crc32(check, hbuf, 4); \ } while (0) #endif /* Load registers with state in inflate() for speed */ #define LOAD() \ do { \ put = strm->next_out; \ left = strm->avail_out; \ next = strm->next_in; \ have = strm->avail_in; \ hold = state->hold; \ bits = state->bits; \ } while (0) /* Restore state from registers in inflate() */ #define RESTORE() \ do { \ strm->next_out = put; \ strm->avail_out = left; \ strm->next_in = next; \ strm->avail_in = have; \ state->hold = hold; \ state->bits = bits; \ } while (0) /* Clear the input bit accumulator */ #define INITBITS() \ do { \ hold = 0; \ bits = 0; \ } while (0) /* Get a byte of input into the bit accumulator, or return from inflate() if there is no input available. */ #define PULLBYTE() \ do { \ if (have == 0) goto inf_leave; \ have--; \ hold += (unsigned long)(*next++) << bits; \ bits += 8; \ } while (0) /* Assure that there are at least n bits in the bit accumulator. If there is not enough available input to do that, then return from inflate(). */ #define NEEDBITS(n) \ do { \ while (bits < (unsigned)(n)) \ PULLBYTE(); \ } while (0) /* Return the low n bits of the bit accumulator (n < 16) */ #define BITS(n) \ ((unsigned)hold & ((1U << (n)) - 1)) /* Remove n bits from the bit accumulator */ #define DROPBITS(n) \ do { \ hold >>= (n); \ bits -= (unsigned)(n); \ } while (0) /* Remove zero to seven bits as needed to go to a byte boundary */ #define BYTEBITS() \ do { \ hold >>= bits & 7; \ bits -= bits & 7; \ } while (0) /* inflate() uses a state machine to process as much input data and generate as much output data as possible before returning. The state machine is structured roughly as follows: for (;;) switch (state) { ... case STATEn: if (not enough input data or output space to make progress) return; ... make progress ... state = STATEm; break; ... } so when inflate() is called again, the same case is attempted again, and if the appropriate resources are provided, the machine proceeds to the next state. The NEEDBITS() macro is usually the way the state evaluates whether it can proceed or should return. NEEDBITS() does the return if the requested bits are not available. The typical use of the BITS macros is: NEEDBITS(n); ... do something with BITS(n) ... DROPBITS(n); where NEEDBITS(n) either returns from inflate() if there isn't enough input left to load n bits into the accumulator, or it continues. BITS(n) gives the low n bits in the accumulator. When done, DROPBITS(n) drops the low n bits off the accumulator. INITBITS() clears the accumulator and sets the number of available bits to zero. BYTEBITS() discards just enough bits to put the accumulator on a byte boundary. After BYTEBITS() and a NEEDBITS(8), then BITS(8) would return the next byte in the stream. NEEDBITS(n) uses PULLBYTE() to get an available byte of input, or to return if there is no input available. The decoding of variable length codes uses PULLBYTE() directly in order to pull just enough bytes to decode the next code, and no more. Some states loop until they get enough input, making sure that enough state information is maintained to continue the loop where it left off if NEEDBITS() returns in the loop. For example, want, need, and keep would all have to actually be part of the saved state in case NEEDBITS() returns: case STATEw: while (want < need) { NEEDBITS(n); keep[want++] = BITS(n); DROPBITS(n); } state = STATEx; case STATEx: As shown above, if the next state is also the next case, then the break is omitted. A state may also return if there is not enough output space available to complete that state. Those states are copying stored data, writing a literal byte, and copying a matching string. When returning, a "goto inf_leave" is used to update the total counters, update the check value, and determine whether any progress has been made during that inflate() call in order to return the proper return code. Progress is defined as a change in either strm->avail_in or strm->avail_out. When there is a window, goto inf_leave will update the window with the last output written. If a goto inf_leave occurs in the middle of decompression and there is no window currently, goto inf_leave will create one and copy output to the window for the next call of inflate(). In this implementation, the flush parameter of inflate() only affects the return code (per zlib.h). inflate() always writes as much as possible to strm->next_out, given the space available and the provided input--the effect documented in zlib.h of Z_SYNC_FLUSH. Furthermore, inflate() always defers the allocation of and copying into a sliding window until necessary, which provides the effect documented in zlib.h for Z_FINISH when the entire input stream available. So the only thing the flush parameter actually does is: when flush is set to Z_FINISH, inflate() cannot return Z_OK. Instead it will return Z_BUF_ERROR if it has not reached the end of the stream. */ int ZEXPORT inflate(strm, flush) z_streamp strm; int flush; { struct inflate_state FAR *state; z_const unsigned char FAR *next; /* next input */ unsigned char FAR *put; /* next output */ unsigned have, left; /* available input and output */ unsigned long hold; /* bit buffer */ unsigned bits; /* bits in bit buffer */ unsigned in, out; /* save starting available input and output */ unsigned copy; /* number of stored or match bytes to copy */ unsigned char FAR *from; /* where to copy match bytes from */ code here; /* current decoding table entry */ code last; /* parent table entry */ unsigned len; /* length to copy for repeats, bits to drop */ int ret; /* return code */ #ifdef GUNZIP unsigned char hbuf[4]; /* buffer for gzip header crc calculation */ #endif static const unsigned short order[19] = /* permutation of code lengths */ {16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; if (strm == Z_NULL || strm->state == Z_NULL || strm->next_out == Z_NULL || (strm->next_in == Z_NULL && strm->avail_in != 0)) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (state->mode == TYPE) state->mode = TYPEDO; /* skip check */ LOAD(); in = have; out = left; ret = Z_OK; for (;;) switch (state->mode) { case HEAD: if (state->wrap == 0) { state->mode = TYPEDO; break; } NEEDBITS(16); #ifdef GUNZIP if ((state->wrap & 2) && hold == 0x8b1f) { /* gzip header */ state->check = crc32(0L, Z_NULL, 0); CRC2(state->check, hold); INITBITS(); state->mode = FLAGS; break; } state->flags = 0; /* expect zlib header */ if (state->head != Z_NULL) state->head->done = -1; if (!(state->wrap & 1) || /* check if zlib header allowed */ #else if ( #endif ((BITS(8) << 8) + (hold >> 8)) % 31) { strm->msg = (char *)"incorrect header check"; state->mode = BAD; break; } if (BITS(4) != Z_DEFLATED) { strm->msg = (char *)"unknown compression method"; state->mode = BAD; break; } DROPBITS(4); len = BITS(4) + 8; if (state->wbits == 0) state->wbits = len; else if (len > state->wbits) { strm->msg = (char *)"invalid window size"; state->mode = BAD; break; } state->dmax = 1U << len; Tracev((stderr, "inflate: zlib header ok\n")); strm->adler = state->check = adler32(0L, Z_NULL, 0); state->mode = hold & 0x200 ? DICTID : TYPE; INITBITS(); break; #ifdef GUNZIP case FLAGS: NEEDBITS(16); state->flags = (int)(hold); if ((state->flags & 0xff) != Z_DEFLATED) { strm->msg = (char *)"unknown compression method"; state->mode = BAD; break; } if (state->flags & 0xe000) { strm->msg = (char *)"unknown header flags set"; state->mode = BAD; break; } if (state->head != Z_NULL) state->head->text = (int)((hold >> 8) & 1); if (state->flags & 0x0200) CRC2(state->check, hold); INITBITS(); state->mode = TIME; case TIME: NEEDBITS(32); if (state->head != Z_NULL) state->head->time = hold; if (state->flags & 0x0200) CRC4(state->check, hold); INITBITS(); state->mode = OS; case OS: NEEDBITS(16); if (state->head != Z_NULL) { state->head->xflags = (int)(hold & 0xff); state->head->os = (int)(hold >> 8); } if (state->flags & 0x0200) CRC2(state->check, hold); INITBITS(); state->mode = EXLEN;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case EXLEN: if (state->flags & 0x0400) { NEEDBITS(16); state->length = (unsigned)(hold); if (state->head != Z_NULL) state->head->extra_len = (unsigned)hold; if (state->flags & 0x0200) CRC2(state->check, hold); INITBITS(); } else if (state->head != Z_NULL) state->head->extra = Z_NULL; state->mode = EXTRA;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case EXTRA: if (state->flags & 0x0400) { copy = state->length; if (copy > have) copy = have; if (copy) { if (state->head != Z_NULL && state->head->extra != Z_NULL) { len = state->head->extra_len - state->length; zmemcpy(state->head->extra + len, next, len + copy > state->head->extra_max ? state->head->extra_max - len : copy); } if (state->flags & 0x0200) state->check = crc32(state->check, next, copy); have -= copy; next += copy; state->length -= copy; } if (state->length) goto inf_leave; } state->length = 0; state->mode = NAME;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case NAME: if (state->flags & 0x0800) { if (have == 0) goto inf_leave; copy = 0; do { len = (unsigned)(next[copy++]); if (state->head != Z_NULL && state->head->name != Z_NULL && state->length < state->head->name_max) state->head->name[state->length++] = len; } while (len && copy < have); if (state->flags & 0x0200) state->check = crc32(state->check, next, copy); have -= copy; next += copy; if (len) goto inf_leave; } else if (state->head != Z_NULL) state->head->name = Z_NULL; state->length = 0; state->mode = COMMENT;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case COMMENT: if (state->flags & 0x1000) { if (have == 0) goto inf_leave; copy = 0; do { len = (unsigned)(next[copy++]); if (state->head != Z_NULL && state->head->comment != Z_NULL && state->length < state->head->comm_max) state->head->comment[state->length++] = len; } while (len && copy < have); if (state->flags & 0x0200) state->check = crc32(state->check, next, copy); have -= copy; next += copy; if (len) goto inf_leave; } else if (state->head != Z_NULL) state->head->comment = Z_NULL; state->mode = HCRC;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case HCRC: if (state->flags & 0x0200) { NEEDBITS(16); if (hold != (state->check & 0xffff)) { strm->msg = (char *)"header crc mismatch"; state->mode = BAD; break; } INITBITS(); } if (state->head != Z_NULL) { state->head->hcrc = (int)((state->flags >> 9) & 1); state->head->done = 1; } strm->adler = state->check = crc32(0L, Z_NULL, 0); state->mode = TYPE; break; #endif case DICTID: NEEDBITS(32); strm->adler = state->check = ZSWAP32(hold); INITBITS(); state->mode = DICT;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case DICT: if (state->havedict == 0) { RESTORE(); return Z_NEED_DICT; } strm->adler = state->check = adler32(0L, Z_NULL, 0); state->mode = TYPE;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case TYPE: if (flush == Z_BLOCK || flush == Z_TREES) goto inf_leave;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case TYPEDO: if (state->last) { BYTEBITS(); state->mode = CHECK; break; } NEEDBITS(3); state->last = BITS(1); DROPBITS(1); switch (BITS(2)) { case 0: /* stored block */ Tracev((stderr, "inflate: stored block%s\n", state->last ? " (last)" : "")); state->mode = STORED; break; case 1: /* fixed block */ fixedtables(state); Tracev((stderr, "inflate: fixed codes block%s\n", state->last ? " (last)" : "")); state->mode = LEN_; /* decode codes */ if (flush == Z_TREES) { DROPBITS(2); goto inf_leave; } break; case 2: /* dynamic block */ Tracev((stderr, "inflate: dynamic codes block%s\n", state->last ? " (last)" : "")); state->mode = TABLE; break; case 3: strm->msg = (char *)"invalid block type"; state->mode = BAD; } DROPBITS(2); break; case STORED: BYTEBITS(); /* go to byte boundary */ NEEDBITS(32); if ((hold & 0xffff) != ((hold >> 16) ^ 0xffff)) { strm->msg = (char *)"invalid stored block lengths"; state->mode = BAD; break; } state->length = (unsigned)hold & 0xffff; Tracev((stderr, "inflate: stored length %u\n", state->length)); INITBITS(); state->mode = COPY_; if (flush == Z_TREES) goto inf_leave;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case COPY_: state->mode = COPY;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case COPY: copy = state->length; if (copy) { if (copy > have) copy = have; if (copy > left) copy = left; if (copy == 0) goto inf_leave; zmemcpy(put, next, copy); have -= copy; next += copy; left -= copy; put += copy; state->length -= copy; break; } Tracev((stderr, "inflate: stored end\n")); state->mode = TYPE; break; case TABLE: NEEDBITS(14); state->nlen = BITS(5) + 257; DROPBITS(5); state->ndist = BITS(5) + 1; DROPBITS(5); state->ncode = BITS(4) + 4; DROPBITS(4); #ifndef PKZIP_BUG_WORKAROUND if (state->nlen > 286 || state->ndist > 30) { strm->msg = (char *)"too many length or distance symbols"; state->mode = BAD; break; } #endif Tracev((stderr, "inflate: table sizes ok\n")); state->have = 0; state->mode = LENLENS; case LENLENS: while (state->have < state->ncode) { NEEDBITS(3); state->lens[order[state->have++]] = (unsigned short)BITS(3); DROPBITS(3); } while (state->have < 19) state->lens[order[state->have++]] = 0; state->next = state->codes; state->lencode = (const code FAR *)(state->next); state->lenbits = 7; ret = inflate_table(CODES, state->lens, 19, &(state->next), &(state->lenbits), state->work); if (ret) { strm->msg = (char *)"invalid code lengths set"; state->mode = BAD; break; } Tracev((stderr, "inflate: code lengths ok\n")); state->have = 0; state->mode = CODELENS; case CODELENS: while (state->have < state->nlen + state->ndist) { for (;;) { here = state->lencode[BITS(state->lenbits)]; if ((unsigned)(here.bits) <= bits) break; PULLBYTE(); } if (here.val < 16) { DROPBITS(here.bits); state->lens[state->have++] = here.val; } else { if (here.val == 16) { NEEDBITS(here.bits + 2); DROPBITS(here.bits); if (state->have == 0) { strm->msg = (char *)"invalid bit length repeat"; state->mode = BAD; break; } len = state->lens[state->have - 1]; copy = 3 + BITS(2); DROPBITS(2); } else if (here.val == 17) { NEEDBITS(here.bits + 3); DROPBITS(here.bits); len = 0; copy = 3 + BITS(3); DROPBITS(3); } else { NEEDBITS(here.bits + 7); DROPBITS(here.bits); len = 0; copy = 11 + BITS(7); DROPBITS(7); } if (state->have + copy > state->nlen + state->ndist) { strm->msg = (char *)"invalid bit length repeat"; state->mode = BAD; break; } while (copy--) state->lens[state->have++] = (unsigned short)len; } } /* handle error breaks in while */ if (state->mode == BAD) break; /* check for end-of-block code (better have one) */ if (state->lens[256] == 0) { strm->msg = (char *)"invalid code -- missing end-of-block"; state->mode = BAD; break; } /* build code tables -- note: do not change the lenbits or distbits values here (9 and 6) without reading the comments in inftrees.h concerning the ENOUGH constants, which depend on those values */ state->next = state->codes; state->lencode = (const code FAR *)(state->next); state->lenbits = 9; ret = inflate_table(LENS, state->lens, state->nlen, &(state->next), &(state->lenbits), state->work); if (ret) { strm->msg = (char *)"invalid literal/lengths set"; state->mode = BAD; break; } state->distcode = (const code FAR *)(state->next); state->distbits = 6; ret = inflate_table(DISTS, state->lens + state->nlen, state->ndist, &(state->next), &(state->distbits), state->work); if (ret) { strm->msg = (char *)"invalid distances set"; state->mode = BAD; break; } Tracev((stderr, "inflate: codes ok\n")); state->mode = LEN_; if (flush == Z_TREES) goto inf_leave;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case LEN_: state->mode = LEN;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case LEN: if (have >= 6 && left >= 258) { RESTORE(); inflate_fast(strm, out); LOAD(); if (state->mode == TYPE) state->back = -1; break; } state->back = 0; for (;;) { here = state->lencode[BITS(state->lenbits)]; if ((unsigned)(here.bits) <= bits) break; PULLBYTE(); } if (here.op && (here.op & 0xf0) == 0) { last = here; for (;;) { here = state->lencode[last.val + (BITS(last.bits + last.op) >> last.bits)]; if ((unsigned)(last.bits + here.bits) <= bits) break; PULLBYTE(); } DROPBITS(last.bits); state->back += last.bits; } DROPBITS(here.bits); state->back += here.bits; state->length = (unsigned)here.val; if ((int)(here.op) == 0) { Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ? "inflate: literal '%c'\n" : "inflate: literal 0x%02x\n", here.val)); state->mode = LIT; break; } if (here.op & 32) { Tracevv((stderr, "inflate: end of block\n")); state->back = -1; state->mode = TYPE; break; } if (here.op & 64) { strm->msg = (char *)"invalid literal/length code"; state->mode = BAD; break; } state->extra = (unsigned)(here.op) & 15; state->mode = LENEXT;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case LENEXT: if (state->extra) { NEEDBITS(state->extra); state->length += BITS(state->extra); DROPBITS(state->extra); state->back += state->extra; } Tracevv((stderr, "inflate: length %u\n", state->length)); state->was = state->length; state->mode = DIST;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case DIST: for (;;) { here = state->distcode[BITS(state->distbits)]; if ((unsigned)(here.bits) <= bits) break; PULLBYTE(); } if ((here.op & 0xf0) == 0) { last = here; for (;;) { here = state->distcode[last.val + (BITS(last.bits + last.op) >> last.bits)]; if ((unsigned)(last.bits + here.bits) <= bits) break; PULLBYTE(); } DROPBITS(last.bits); state->back += last.bits; } DROPBITS(here.bits); state->back += here.bits; if (here.op & 64) { strm->msg = (char *)"invalid distance code"; state->mode = BAD; break; } state->offset = (unsigned)here.val; state->extra = (unsigned)(here.op) & 15; state->mode = DISTEXT;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case DISTEXT: if (state->extra) { NEEDBITS(state->extra); state->offset += BITS(state->extra); DROPBITS(state->extra); state->back += state->extra; } #ifdef INFLATE_STRICT if (state->offset > state->dmax) { strm->msg = (char *)"invalid distance too far back"; state->mode = BAD; break; } #endif Tracevv((stderr, "inflate: distance %u\n", state->offset)); state->mode = MATCH;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case MATCH: if (left == 0) goto inf_leave; copy = out - left; if (state->offset > copy) { /* copy from window */ copy = state->offset - copy; if (copy > state->whave) { if (state->sane) { strm->msg = (char *)"invalid distance too far back"; state->mode = BAD; break; } #ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR Trace((stderr, "inflate.c too far\n")); copy -= state->whave; if (copy > state->length) copy = state->length; if (copy > left) copy = left; left -= copy; state->length -= copy; do { *put++ = 0; } while (--copy); if (state->length == 0) state->mode = LEN; break; #endif } if (copy > state->wnext) { copy -= state->wnext; from = state->window + (state->wsize - copy); } else from = state->window + (state->wnext - copy); if (copy > state->length) copy = state->length; } else { /* copy from output */ from = put - state->offset; copy = state->length; } if (copy > left) copy = left; left -= copy; state->length -= copy; do { *put++ = *from++; } while (--copy); if (state->length == 0) state->mode = LEN; break; case LIT: if (left == 0) goto inf_leave; *put++ = (unsigned char)(state->length); left--; state->mode = LEN; break; case CHECK: if (state->wrap) { NEEDBITS(32); out -= left; strm->total_out += out; state->total += out; if (out) strm->adler = state->check = UPDATE(state->check, put - out, out); out = left; if (( #ifdef GUNZIP state->flags ? hold : #endif ZSWAP32(hold)) != state->check) { strm->msg = (char *)"incorrect data check"; state->mode = BAD; break; } INITBITS(); Tracev((stderr, "inflate: check matches trailer\n")); } #ifdef GUNZIP state->mode = LENGTH;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case LENGTH: if (state->wrap && state->flags) { NEEDBITS(32); if (hold != (state->total & 0xffffffffUL)) { strm->msg = (char *)"incorrect length check"; state->mode = BAD; break; } INITBITS(); Tracev((stderr, "inflate: length matches trailer\n")); } #endif state->mode = DONE;/* FALLTHRU *//*FALLTHRU added by TK for gcc 7.2.1 */ case DONE: ret = Z_STREAM_END; goto inf_leave; case BAD: ret = Z_DATA_ERROR; goto inf_leave; case MEM: return Z_MEM_ERROR; case SYNC: default: return Z_STREAM_ERROR; } /* Return from inflate(), updating the total counts and the check value. If there was no progress during the inflate() call, return a buffer error. Call updatewindow() to create and/or update the window state. Note: a memory error from inflate() is non-recoverable. */ inf_leave: RESTORE(); if (state->wsize || (out != strm->avail_out && state->mode < BAD && (state->mode < CHECK || flush != Z_FINISH))) if (updatewindow(strm, strm->next_out, out - strm->avail_out)) { state->mode = MEM; return Z_MEM_ERROR; } in -= strm->avail_in; out -= strm->avail_out; strm->total_in += in; strm->total_out += out; state->total += out; if (state->wrap && out) strm->adler = state->check = UPDATE(state->check, strm->next_out - out, out); strm->data_type = state->bits + (state->last ? 64 : 0) + (state->mode == TYPE ? 128 : 0) + (state->mode == LEN_ || state->mode == COPY_ ? 256 : 0); if (((in == 0 && out == 0) || flush == Z_FINISH) && ret == Z_OK) ret = Z_BUF_ERROR; return ret; } int ZEXPORT inflateEnd(strm) z_streamp strm; { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL || strm->zfree == (free_func)0) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (state->window != Z_NULL) ZFREE(strm, state->window); ZFREE(strm, strm->state); strm->state = Z_NULL; Tracev((stderr, "inflate: end\n")); return Z_OK; } int ZEXPORT inflateGetDictionary(strm, dictionary, dictLength) z_streamp strm; Bytef *dictionary; uInt *dictLength; { struct inflate_state FAR *state; /* check state */ if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; /* copy dictionary */ if (state->whave && dictionary != Z_NULL) { zmemcpy(dictionary, state->window + state->wnext, state->whave - state->wnext); zmemcpy(dictionary + state->whave - state->wnext, state->window, state->wnext); } if (dictLength != Z_NULL) *dictLength = state->whave; return Z_OK; } int ZEXPORT inflateSetDictionary(strm, dictionary, dictLength) z_streamp strm; const Bytef *dictionary; uInt dictLength; { struct inflate_state FAR *state; unsigned long dictid; int ret; /* check state */ if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (state->wrap != 0 && state->mode != DICT) return Z_STREAM_ERROR; /* check for correct dictionary identifier */ if (state->mode == DICT) { dictid = adler32(0L, Z_NULL, 0); dictid = adler32(dictid, dictionary, dictLength); if (dictid != state->check) return Z_DATA_ERROR; } /* copy dictionary to window using updatewindow(), which will amend the existing dictionary if appropriate */ ret = updatewindow(strm, dictionary + dictLength, dictLength); if (ret) { state->mode = MEM; return Z_MEM_ERROR; } state->havedict = 1; Tracev((stderr, "inflate: dictionary set\n")); return Z_OK; } int ZEXPORT inflateGetHeader(strm, head) z_streamp strm; gz_headerp head; { struct inflate_state FAR *state; /* check state */ if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if ((state->wrap & 2) == 0) return Z_STREAM_ERROR; /* save header structure */ state->head = head; head->done = 0; return Z_OK; } /* Search buf[0..len-1] for the pattern: 0, 0, 0xff, 0xff. Return when found or when out of input. When called, *have is the number of pattern bytes found in order so far, in 0..3. On return *have is updated to the new state. If on return *have equals four, then the pattern was found and the return value is how many bytes were read including the last byte of the pattern. If *have is less than four, then the pattern has not been found yet and the return value is len. In the latter case, syncsearch() can be called again with more data and the *have state. *have is initialized to zero for the first call. */ local unsigned syncsearch(have, buf, len) unsigned FAR *have; const unsigned char FAR *buf; unsigned len; { unsigned got; unsigned next; got = *have; next = 0; while (next < len && got < 4) { if ((int)(buf[next]) == (got < 2 ? 0 : 0xff)) got++; else if (buf[next]) got = 0; else got = 4 - got; next++; } *have = got; return next; } int ZEXPORT inflateSync(strm) z_streamp strm; { unsigned len; /* number of bytes to look at or looked at */ unsigned long in, out; /* temporary to save total_in and total_out */ unsigned char buf[4]; /* to restore bit buffer to byte string */ struct inflate_state FAR *state; /* check parameters */ if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (strm->avail_in == 0 && state->bits < 8) return Z_BUF_ERROR; /* if first time, start search in bit buffer */ if (state->mode != SYNC) { state->mode = SYNC; state->hold <<= state->bits & 7; state->bits -= state->bits & 7; len = 0; while (state->bits >= 8) { buf[len++] = (unsigned char)(state->hold); state->hold >>= 8; state->bits -= 8; } state->have = 0; syncsearch(&(state->have), buf, len); } /* search available input */ len = syncsearch(&(state->have), strm->next_in, strm->avail_in); strm->avail_in -= len; strm->next_in += len; strm->total_in += len; /* return no joy or set up to restart inflate() on a new block */ if (state->have != 4) return Z_DATA_ERROR; in = strm->total_in; out = strm->total_out; inflateReset(strm); strm->total_in = in; strm->total_out = out; state->mode = TYPE; return Z_OK; } /* Returns true if inflate is currently at the end of a block generated by Z_SYNC_FLUSH or Z_FULL_FLUSH. This function is used by one PPP implementation to provide an additional safety check. PPP uses Z_SYNC_FLUSH but removes the length bytes of the resulting empty stored block. When decompressing, PPP checks that at the end of input packet, inflate is waiting for these length bytes. */ int ZEXPORT inflateSyncPoint(strm) z_streamp strm; { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; return state->mode == STORED && state->bits == 0; } int ZEXPORT inflateCopy(dest, source) z_streamp dest; z_streamp source; { struct inflate_state FAR *state; struct inflate_state FAR *copy; unsigned char FAR *window; unsigned wsize; /* check input */ if (dest == Z_NULL || source == Z_NULL || source->state == Z_NULL || source->zalloc == (alloc_func)0 || source->zfree == (free_func)0) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)source->state; /* allocate space */ copy = (struct inflate_state FAR *) ZALLOC(source, 1, sizeof(struct inflate_state)); if (copy == Z_NULL) return Z_MEM_ERROR; window = Z_NULL; if (state->window != Z_NULL) { window = (unsigned char FAR *) ZALLOC(source, 1U << state->wbits, sizeof(unsigned char)); if (window == Z_NULL) { ZFREE(source, copy); return Z_MEM_ERROR; } } /* copy state */ zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream)); zmemcpy((voidpf)copy, (voidpf)state, sizeof(struct inflate_state)); if (state->lencode >= state->codes && state->lencode <= state->codes + ENOUGH - 1) { copy->lencode = copy->codes + (state->lencode - state->codes); copy->distcode = copy->codes + (state->distcode - state->codes); } copy->next = copy->codes + (state->next - state->codes); if (window != Z_NULL) { wsize = 1U << state->wbits; zmemcpy(window, state->window, wsize); } copy->window = window; dest->state = (struct internal_state FAR *)copy; return Z_OK; } int ZEXPORT inflateUndermine(strm, subvert) z_streamp strm; int subvert; { struct inflate_state FAR *state; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; state->sane = !subvert; #ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR return Z_OK; #else state->sane = 1; return Z_DATA_ERROR; #endif } long ZEXPORT inflateMark(strm) z_streamp strm; { struct inflate_state FAR *state; //TK: Applied the following fix (also in actual zlib devel branch): if (strm == Z_NULL || strm->state == Z_NULL) return (long)(((unsigned long)0 - 1) << 16); //TK: Code was (but clang 7.3 warns about bitshifting negative numbers): //if (strm == Z_NULL || strm->state == Z_NULL) return -1L << 16; state = (struct inflate_state FAR *)strm->state; return ((long)(state->back) << 16) + (state->mode == COPY ? state->length : (state->mode == MATCH ? state->was - state->length : 0)); } /* END OF DUMP OF mz_inflate.c*/ /* START OF DUMP OF mz_inffast.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* inffast.c -- fast decoding * Copyright (C) 1995-2008, 2010, 2013 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ #ifndef ASMINF /* Allow machine dependent optimization for post-increment or pre-increment. Based on testing to date, Pre-increment preferred for: - PowerPC G3 (Adler) - MIPS R5000 (Randers-Pehrson) Post-increment preferred for: - none No measurable difference: - Pentium III (Anderson) - M68060 (Nikl) */ #ifdef POSTINC # define OFF 0 # define PUP(a) *(a)++ #else # define OFF 1 # define PUP(a) *++(a) #endif /* Decode literal, length, and distance codes and write out the resulting literal and match bytes until either not enough input or output is available, an end-of-block is encountered, or a data error is encountered. When large enough input and output buffers are supplied to inflate(), for example, a 16K input buffer and a 64K output buffer, more than 95% of the inflate execution time is spent in this routine. Entry assumptions: state->mode == LEN strm->avail_in >= 6 strm->avail_out >= 258 start >= strm->avail_out state->bits < 8 On return, state->mode is one of: LEN -- ran out of enough output space or enough available input TYPE -- reached end of block code, inflate() to interpret next block BAD -- error in block data Notes: - The maximum input bits used by a length/distance pair is 15 bits for the length code, 5 bits for the length extra, 15 bits for the distance code, and 13 bits for the distance extra. This totals 48 bits, or six bytes. Therefore if strm->avail_in >= 6, then there is enough input to avoid checking for available input while decoding. - The maximum bytes that a single length/distance pair can output is 258 bytes, which is the maximum length that can be coded. inflate_fast() requires strm->avail_out >= 258 for each loop to avoid checking for output space. */ void ZLIB_INTERNAL inflate_fast(strm, start) z_streamp strm; unsigned start; /* inflate()'s starting value for strm->avail_out */ { struct inflate_state FAR *state; z_const unsigned char FAR *in; /* local strm->next_in */ z_const unsigned char FAR *last; /* have enough input while in < last */ unsigned char FAR *out; /* local strm->next_out */ unsigned char FAR *beg; /* inflate()'s initial strm->next_out */ unsigned char FAR *end; /* while out < end, enough space available */ #ifdef INFLATE_STRICT unsigned dmax; /* maximum distance from zlib header */ #endif unsigned wsize; /* window size or zero if not using window */ unsigned whave; /* valid bytes in the window */ unsigned wnext; /* window write index */ unsigned char FAR *window; /* allocated sliding window, if wsize != 0 */ unsigned long hold; /* local strm->hold */ unsigned bits; /* local strm->bits */ code const FAR *lcode; /* local strm->lencode */ code const FAR *dcode; /* local strm->distcode */ unsigned lmask; /* mask for first level of length codes */ unsigned dmask; /* mask for first level of distance codes */ code here; /* retrieved table entry */ unsigned op; /* code bits, operation, extra bits, or */ /* window position, window bytes to copy */ unsigned len; /* match length, unused bytes */ unsigned dist; /* match distance */ unsigned char FAR *from; /* where to copy match from */ /* copy state to local variables */ state = (struct inflate_state FAR *)strm->state; in = strm->next_in - OFF; last = in + (strm->avail_in - 5); out = strm->next_out - OFF; beg = out - (start - strm->avail_out); end = out + (strm->avail_out - 257); #ifdef INFLATE_STRICT dmax = state->dmax; #endif wsize = state->wsize; whave = state->whave; wnext = state->wnext; window = state->window; hold = state->hold; bits = state->bits; lcode = state->lencode; dcode = state->distcode; lmask = (1U << state->lenbits) - 1; dmask = (1U << state->distbits) - 1; /* decode literals and length/distances until end-of-block or not enough input data or output space */ do { if (bits < 15) { hold += (unsigned long)(PUP(in)) << bits; bits += 8; hold += (unsigned long)(PUP(in)) << bits; bits += 8; } here = lcode[hold & lmask]; dolen: op = (unsigned)(here.bits); hold >>= op; bits -= op; op = (unsigned)(here.op); if (op == 0) { /* literal */ Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ? "inflate: literal '%c'\n" : "inflate: literal 0x%02x\n", here.val)); PUP(out) = (unsigned char)(here.val); } else if (op & 16) { /* length base */ len = (unsigned)(here.val); op &= 15; /* number of extra bits */ if (op) { if (bits < op) { hold += (unsigned long)(PUP(in)) << bits; bits += 8; } len += (unsigned)hold & ((1U << op) - 1); hold >>= op; bits -= op; } Tracevv((stderr, "inflate: length %u\n", len)); if (bits < 15) { hold += (unsigned long)(PUP(in)) << bits; bits += 8; hold += (unsigned long)(PUP(in)) << bits; bits += 8; } here = dcode[hold & dmask]; dodist: op = (unsigned)(here.bits); hold >>= op; bits -= op; op = (unsigned)(here.op); if (op & 16) { /* distance base */ dist = (unsigned)(here.val); op &= 15; /* number of extra bits */ if (bits < op) { hold += (unsigned long)(PUP(in)) << bits; bits += 8; if (bits < op) { hold += (unsigned long)(PUP(in)) << bits; bits += 8; } } dist += (unsigned)hold & ((1U << op) - 1); #ifdef INFLATE_STRICT if (dist > dmax) { strm->msg = (char *)"invalid distance too far back"; state->mode = BAD; break; } #endif hold >>= op; bits -= op; Tracevv((stderr, "inflate: distance %u\n", dist)); op = (unsigned)(out - beg); /* max distance in output */ if (dist > op) { /* see if copy from window */ op = dist - op; /* distance back in window */ if (op > whave) { if (state->sane) { strm->msg = (char *)"invalid distance too far back"; state->mode = BAD; break; } #ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR if (len <= op - whave) { do { PUP(out) = 0; } while (--len); continue; } len -= op - whave; do { PUP(out) = 0; } while (--op > whave); if (op == 0) { from = out - dist; do { PUP(out) = PUP(from); } while (--len); continue; } #endif } from = window - OFF; if (wnext == 0) { /* very common case */ from += wsize - op; if (op < len) { /* some from window */ len -= op; do { PUP(out) = PUP(from); } while (--op); from = out - dist; /* rest from output */ } } else if (wnext < op) { /* wrap around window */ from += wsize + wnext - op; op -= wnext; if (op < len) { /* some from end of window */ len -= op; do { PUP(out) = PUP(from); } while (--op); from = window - OFF; if (wnext < len) { /* some from start of window */ op = wnext; len -= op; do { PUP(out) = PUP(from); } while (--op); from = out - dist; /* rest from output */ } } } else { /* contiguous in window */ from += wnext - op; if (op < len) { /* some from window */ len -= op; do { PUP(out) = PUP(from); } while (--op); from = out - dist; /* rest from output */ } } while (len > 2) { PUP(out) = PUP(from); PUP(out) = PUP(from); PUP(out) = PUP(from); len -= 3; } if (len) { PUP(out) = PUP(from); if (len > 1) PUP(out) = PUP(from); } } else { from = out - dist; /* copy direct from output */ do { /* minimum length is three */ PUP(out) = PUP(from); PUP(out) = PUP(from); PUP(out) = PUP(from); len -= 3; } while (len > 2); if (len) { PUP(out) = PUP(from); if (len > 1) PUP(out) = PUP(from); } } } else if ((op & 64) == 0) { /* 2nd level distance code */ here = dcode[here.val + (hold & ((1U << op) - 1))]; goto dodist; } else { strm->msg = (char *)"invalid distance code"; state->mode = BAD; break; } } else if ((op & 64) == 0) { /* 2nd level length code */ here = lcode[here.val + (hold & ((1U << op) - 1))]; goto dolen; } else if (op & 32) { /* end-of-block */ Tracevv((stderr, "inflate: end of block\n")); state->mode = TYPE; break; } else { strm->msg = (char *)"invalid literal/length code"; state->mode = BAD; break; } } while (in < last && out < end); /* return unused bytes (on entry, bits < 8, so in won't go too far back) */ len = bits >> 3; in -= len; bits -= len << 3; hold &= (1U << bits) - 1; /* update state and return */ strm->next_in = in + OFF; strm->next_out = out + OFF; strm->avail_in = (unsigned)(in < last ? 5 + (last - in) : 5 - (in - last)); strm->avail_out = (unsigned)(out < end ? 257 + (end - out) : 257 - (out - end)); state->hold = hold; state->bits = bits; return; } /* inflate_fast() speedups that turned out slower (on a PowerPC G3 750CXe): - Using bit fields for code structure - Different op definition to avoid & for extra bits (do & for table bits) - Three separate decoding do-loops for direct, window, and wnext == 0 - Special case for distance > 1 copies to do overlapped load and store copy - Explicit branch predictions (based on measured branch probabilities) - Deferring match copy and interspersed it with decoding subsequent codes - Swapping literal/length else - Swapping window/direct else - Larger unrolled copy loops (three is about right) - Moving len -= 3 statement into middle of loop */ #endif /* !ASMINF */ /* END OF DUMP OF mz_inffast.c*/ /* START OF DUMP OF mz_gzwrite.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* gzwrite.c -- zlib functions for writing gzip files * Copyright (C) 2004, 2005, 2010, 2011, 2012, 2013 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* START OF DUMP OF mz_gzguts.h*/ /* gzguts.h -- zlib internal header definitions for gz* operations * Copyright (C) 2004, 2005, 2010, 2011, 2012, 2013 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ #include //ADDED BY TK #include //ADDED BY TK #include //ADDED BY TK #ifdef _LARGEFILE64_SOURCE # ifndef _LARGEFILE_SOURCE # define _LARGEFILE_SOURCE 1 # endif # ifdef _FILE_OFFSET_BITS # undef _FILE_OFFSET_BITS # endif #endif #ifdef HAVE_HIDDEN # define ZLIB_INTERNAL __attribute__((visibility ("hidden"))) #else # define ZLIB_INTERNAL #endif #include #ifdef STDC # include # include # include #endif #include #ifdef _WIN32 # include #endif #if defined(__TURBOC__) || defined(_MSC_VER) || defined(_WIN32) # include #endif #ifdef WINAPI_FAMILY # define open _open # define read _read # define write _write # define close _close #endif #ifdef NO_DEFLATE /* for compatibility with old definition */ # define NO_GZCOMPRESS #endif #if defined(STDC99) || (defined(__TURBOC__) && __TURBOC__ >= 0x550) # ifndef HAVE_VSNPRINTF # define HAVE_VSNPRINTF # endif #endif #if defined(__CYGWIN__) # ifndef HAVE_VSNPRINTF # define HAVE_VSNPRINTF # endif #endif #if defined(MSDOS) && defined(__BORLANDC__) && (BORLANDC > 0x410) # ifndef HAVE_VSNPRINTF # define HAVE_VSNPRINTF # endif #endif #ifndef HAVE_VSNPRINTF # ifdef MSDOS /* vsnprintf may exist on some MS-DOS compilers (DJGPP?), but for now we just assume it doesn't. */ # define NO_vsnprintf # endif # ifdef __TURBOC__ # define NO_vsnprintf # endif # ifdef WIN32 /* In Win32, vsnprintf is available as the "non-ANSI" _vsnprintf. */ # if !defined(vsnprintf) && !defined(NO_vsnprintf) # if !defined(_MSC_VER) || ( defined(_MSC_VER) && _MSC_VER < 1500 ) # define vsnprintf _vsnprintf # endif # endif # endif # ifdef __SASC # define NO_vsnprintf # endif # ifdef VMS # define NO_vsnprintf # endif # ifdef __OS400__ # define NO_vsnprintf # endif # ifdef __MVS__ # define NO_vsnprintf # endif #endif /* unlike snprintf (which is required in C99, yet still not supported by Microsoft more than a decade later!), _snprintf does not guarantee null termination of the result -- however this is only used in gzlib.c where the result is assured to fit in the space provided */ #ifdef _MSC_VER # define snprintf _snprintf #endif #ifndef local # define local static #endif /* compile with -Dlocal if your debugger can't find static symbols */ /* gz* functions always use library allocation functions */ #ifndef STDC extern voidp malloc OF((uInt size)); extern void free OF((voidpf ptr)); #endif /* get errno and strerror definition */ #if defined UNDER_CE # include # define zstrerror() gz_strwinerror((DWORD)GetLastError()) #else # ifndef NO_STRERROR # include # define zstrerror() strerror(errno) # else # define zstrerror() "stdio error (consult errno)" # endif #endif /* provide prototypes for these when building zlib without LFS */ #if !defined(_LARGEFILE64_SOURCE) || _LFS64_LARGEFILE-0 == 0 ZEXTERN gzFile ZEXPORT gzopen64 OF((const char *, const char *)); ZEXTERN z_off64_t ZEXPORT gzseek64 OF((gzFile, z_off64_t, int)); ZEXTERN z_off64_t ZEXPORT gztell64 OF((gzFile)); ZEXTERN z_off64_t ZEXPORT gzoffset64 OF((gzFile)); #endif /* default memLevel */ #if MAX_MEM_LEVEL >= 8 # define DEF_MEM_LEVEL 8 #else # define DEF_MEM_LEVEL MAX_MEM_LEVEL #endif /* default i/o buffer size -- double this for output when reading (this and twice this must be able to fit in an unsigned type) */ #define GZBUFSIZE 8192 /* gzip modes, also provide a little integrity check on the passed structure */ #define GZ_NONE 0 #define GZ_READ 7247 #define GZ_WRITE 31153 #define GZ_APPEND 1 /* mode set to GZ_WRITE after the file is opened */ /* values for gz_state how */ #define LOOK 0 /* look for a gzip header */ #define COPY 1 /* copy input directly */ #define GZIP 2 /* decompress a gzip stream */ /* internal gzip file state data structure */ typedef struct { /* exposed contents for gzgetc() macro */ struct gzFile_s x; /* "x" for exposed */ /* x.have: number of bytes available at x.next */ /* x.next: next output data to deliver or write */ /* x.pos: current position in uncompressed data */ /* used for both reading and writing */ int mode; /* see gzip modes above */ int fd; /* file descriptor */ char *path; /* path or fd for error messages */ unsigned size; /* buffer size, zero if not allocated yet */ unsigned want; /* requested buffer size, default is GZBUFSIZE */ unsigned char *in; /* input buffer */ unsigned char *out; /* output buffer (double-sized when reading) */ int direct; /* 0 if processing gzip, 1 if transparent */ /* just for reading */ int how; /* 0: get header, 1: copy, 2: decompress */ z_off64_t start; /* where the gzip data started, for rewinding */ int eof; /* true if end of input file reached */ int past; /* true if read requested past end */ /* just for writing */ int level; /* compression level */ int strategy; /* compression strategy */ /* seek request */ z_off64_t skip; /* amount to skip (already rewound if backwards) */ int seek; /* true if seek request pending */ /* error information */ int err; /* error code */ char *msg; /* error message */ /* zlib inflate or deflate stream */ z_stream strm; /* stream structure in-place (not a pointer) */ } gz_state; typedef gz_state FAR *gz_statep; /* shared functions */ void ZLIB_INTERNAL gz_error OF((gz_statep, int, const char *)); #if defined UNDER_CE char ZLIB_INTERNAL *gz_strwinerror OF((DWORD error)); #endif /* GT_OFF(x), where x is an unsigned value, is true if x > maximum z_off64_t value -- needed when comparing unsigned to z_off64_t, which is signed (possible z_off64_t types off_t, off64_t, and long are all signed) */ #ifdef INT_MAX # define GT_OFF(x) (sizeof(int) == sizeof(z_off64_t) && (x) > INT_MAX) #else unsigned ZLIB_INTERNAL gz_intmax OF((void)); # define GT_OFF(x) (sizeof(int) == sizeof(z_off64_t) && (x) > gz_intmax()) #endif /* END OF DUMP OF mz_gzguts.h*/ /* Local functions */ local int gz_init OF((gz_statep)); local int gz_comp OF((gz_statep, int)); local int gz_zero OF((gz_statep, z_off64_t)); /* Initialize state for writing a gzip file. Mark initialization by setting state->size to non-zero. Return -1 on failure or 0 on success. */ local int gz_init(state) gz_statep state; { int ret; z_streamp strm = &(state->strm); /* allocate input buffer */ state->in = (unsigned char *)malloc(state->want); if (state->in == NULL) { gz_error(state, Z_MEM_ERROR, "out of memory"); return -1; } /* only need output buffer and deflate state if compressing */ if (!state->direct) { /* allocate output buffer */ state->out = (unsigned char *)malloc(state->want); if (state->out == NULL) { free(state->in); gz_error(state, Z_MEM_ERROR, "out of memory"); return -1; } /* allocate deflate memory, set up for gzip compression */ strm->zalloc = Z_NULL; strm->zfree = Z_NULL; strm->opaque = Z_NULL; ret = deflateInit2(strm, state->level, Z_DEFLATED, MAX_WBITS + 16, DEF_MEM_LEVEL, state->strategy); if (ret != Z_OK) { free(state->out); free(state->in); gz_error(state, Z_MEM_ERROR, "out of memory"); return -1; } } /* mark state as initialized */ state->size = state->want; /* initialize write buffer if compressing */ if (!state->direct) { strm->avail_out = state->size; strm->next_out = state->out; state->x.next = strm->next_out; } return 0; } /* Compress whatever is at avail_in and next_in and write to the output file. Return -1 if there is an error writing to the output file, otherwise 0. flush is assumed to be a valid deflate() flush value. If flush is Z_FINISH, then the deflate() state is reset to start a new gzip stream. If gz->direct is true, then simply write to the output file without compressing, and ignore flush. */ local int gz_comp(state, flush) gz_statep state; int flush; { int ret, got; unsigned have; z_streamp strm = &(state->strm); /* allocate memory if this is the first time through */ if (state->size == 0 && gz_init(state) == -1) return -1; /* write directly if requested */ if (state->direct) { got = write(state->fd, strm->next_in, strm->avail_in); if (got < 0 || (unsigned)got != strm->avail_in) { gz_error(state, Z_ERRNO, zstrerror()); return -1; } strm->avail_in = 0; return 0; } /* run deflate() on provided input until it produces no more output */ ret = Z_OK; do { /* write out current buffer contents if full, or if flushing, but if doing Z_FINISH then don't write until we get to Z_STREAM_END */ if (strm->avail_out == 0 || (flush != Z_NO_FLUSH && (flush != Z_FINISH || ret == Z_STREAM_END))) { have = (unsigned)(strm->next_out - state->x.next); if (have && ((got = write(state->fd, state->x.next, have)) < 0 || (unsigned)got != have)) { gz_error(state, Z_ERRNO, zstrerror()); return -1; } if (strm->avail_out == 0) { strm->avail_out = state->size; strm->next_out = state->out; } state->x.next = strm->next_out; } /* compress */ have = strm->avail_out; ret = deflate(strm, flush); if (ret == Z_STREAM_ERROR) { gz_error(state, Z_STREAM_ERROR, "internal error: deflate stream corrupt"); return -1; } have -= strm->avail_out; } while (have); /* if that completed a deflate stream, allow another to start */ if (flush == Z_FINISH) deflateReset(strm); /* all done, no errors */ return 0; } /* Compress len zeros to output. Return -1 on error, 0 on success. */ local int gz_zero(state, len) gz_statep state; z_off64_t len; { int first; unsigned n; z_streamp strm = &(state->strm); /* consume whatever's left in the input buffer */ if (strm->avail_in && gz_comp(state, Z_NO_FLUSH) == -1) return -1; /* compress len zeros (len guaranteed > 0) */ first = 1; while (len) { n = GT_OFF(state->size) || (z_off64_t)state->size > len ? (unsigned)len : state->size; if (first) { memset(state->in, 0, n); first = 0; } strm->avail_in = n; strm->next_in = state->in; state->x.pos += n; if (gz_comp(state, Z_NO_FLUSH) == -1) return -1; len -= n; } return 0; } /* -- see zlib.h -- */ int ZEXPORT gzwrite(file, buf, len) gzFile file; voidpc buf; unsigned len; { unsigned put = len; gz_statep state; z_streamp strm; /* get internal structure */ if (file == NULL) return 0; state = (gz_statep)file; strm = &(state->strm); /* check that we're writing and that there's no error */ if (state->mode != GZ_WRITE || state->err != Z_OK) return 0; /* since an int is returned, make sure len fits in one, otherwise return with an error (this avoids the flaw in the interface) */ if ((int)len < 0) { gz_error(state, Z_DATA_ERROR, "requested length does not fit in int"); return 0; } /* if len is zero, avoid unnecessary operations */ if (len == 0) return 0; /* allocate memory if this is the first time through */ if (state->size == 0 && gz_init(state) == -1) return 0; /* check for seek request */ if (state->seek) { state->seek = 0; if (gz_zero(state, state->skip) == -1) return 0; } /* for small len, copy to input buffer, otherwise compress directly */ if (len < state->size) { /* copy to input buffer, compress when full */ do { unsigned have, copy; if (strm->avail_in == 0) strm->next_in = state->in; have = (unsigned)((strm->next_in + strm->avail_in) - state->in); copy = state->size - have; if (copy > len) copy = len; memcpy(state->in + have, buf, copy); strm->avail_in += copy; state->x.pos += copy; buf = (const char *)buf + copy; len -= copy; if (len && gz_comp(state, Z_NO_FLUSH) == -1) return 0; } while (len); } else { /* consume whatever's left in the input buffer */ if (strm->avail_in && gz_comp(state, Z_NO_FLUSH) == -1) return 0; /* directly compress user buffer to file */ strm->avail_in = len; strm->next_in = (z_const Bytef *)buf; state->x.pos += len; if (gz_comp(state, Z_NO_FLUSH) == -1) return 0; } /* input was all buffered or compressed (put will fit in int) */ return (int)put; } /* -- see zlib.h -- */ int ZEXPORT gzputc(file, c) gzFile file; int c; { unsigned have; unsigned char buf[1]; gz_statep state; z_streamp strm; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; strm = &(state->strm); /* check that we're writing and that there's no error */ if (state->mode != GZ_WRITE || state->err != Z_OK) return -1; /* check for seek request */ if (state->seek) { state->seek = 0; if (gz_zero(state, state->skip) == -1) return -1; } /* try writing to input buffer for speed (state->size == 0 if buffer not initialized) */ if (state->size) { if (strm->avail_in == 0) strm->next_in = state->in; have = (unsigned)((strm->next_in + strm->avail_in) - state->in); if (have < state->size) { state->in[have] = c; strm->avail_in++; state->x.pos++; return c & 0xff; } } /* no room in buffer or not initialized, use gz_write() */ buf[0] = c; if (gzwrite(file, buf, 1) != 1) return -1; return c & 0xff; } /* -- see zlib.h -- */ int ZEXPORT gzputs(file, str) gzFile file; const char *str; { int ret; unsigned len; /* write string */ len = (unsigned)strlen(str); ret = gzwrite(file, str, len); return ret == 0 && len != 0 ? -1 : ret; } #if defined(STDC) || defined(Z_HAVE_STDARG_H) #include /* -- see zlib.h -- */ int ZEXPORTVA gzvprintf(gzFile file, const char *format, va_list va) { int size, len; gz_statep state; z_streamp strm; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; strm = &(state->strm); /* check that we're writing and that there's no error */ if (state->mode != GZ_WRITE || state->err != Z_OK) return 0; /* make sure we have some buffer space */ if (state->size == 0 && gz_init(state) == -1) return 0; /* check for seek request */ if (state->seek) { state->seek = 0; if (gz_zero(state, state->skip) == -1) return 0; } /* consume whatever's left in the input buffer */ if (strm->avail_in && gz_comp(state, Z_NO_FLUSH) == -1) return 0; /* do the printf() into the input buffer, put length in len */ size = (int)(state->size); state->in[size - 1] = 0; #ifdef NO_vsnprintf # ifdef HAS_vsprintf_void (void)vsprintf((char *)(state->in), format, va); for (len = 0; len < size; len++) if (state->in[len] == 0) break; # else len = vsprintf((char *)(state->in), format, va); # endif #else # ifdef HAS_vsnprintf_void (void)vsnprintf((char *)(state->in), size, format, va); len = strlen((char *)(state->in)); # else len = vsnprintf((char *)(state->in), size, format, va); # endif #endif /* check that printf() results fit in buffer */ if (len <= 0 || len >= (int)size || state->in[size - 1] != 0) return 0; /* update buffer and position, defer compression until needed */ strm->avail_in = (unsigned)len; strm->next_in = state->in; state->x.pos += len; return len; } int ZEXPORTVA gzprintf(gzFile file, const char *format, ...) { va_list va; int ret; va_start(va, format); ret = gzvprintf(file, format, va); va_end(va); return ret; } #else /* !STDC && !Z_HAVE_STDARG_H */ /* -- see zlib.h -- */ int ZEXPORTVA gzprintf (file, format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20) gzFile file; const char *format; int a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20; { int size, len; gz_statep state; z_streamp strm; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; strm = &(state->strm); /* check that can really pass pointer in ints */ if (sizeof(int) != sizeof(void *)) return 0; /* check that we're writing and that there's no error */ if (state->mode != GZ_WRITE || state->err != Z_OK) return 0; /* make sure we have some buffer space */ if (state->size == 0 && gz_init(state) == -1) return 0; /* check for seek request */ if (state->seek) { state->seek = 0; if (gz_zero(state, state->skip) == -1) return 0; } /* consume whatever's left in the input buffer */ if (strm->avail_in && gz_comp(state, Z_NO_FLUSH) == -1) return 0; /* do the printf() into the input buffer, put length in len */ size = (int)(state->size); state->in[size - 1] = 0; #ifdef NO_snprintf # ifdef HAS_sprintf_void sprintf((char *)(state->in), format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20); for (len = 0; len < size; len++) if (state->in[len] == 0) break; # else len = sprintf((char *)(state->in), format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20); # endif #else # ifdef HAS_snprintf_void snprintf((char *)(state->in), size, format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20); len = strlen((char *)(state->in)); # else len = snprintf((char *)(state->in), size, format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20); # endif #endif /* check that printf() results fit in buffer */ if (len <= 0 || len >= (int)size || state->in[size - 1] != 0) return 0; /* update buffer and position, defer compression until needed */ strm->avail_in = (unsigned)len; strm->next_in = state->in; state->x.pos += len; return len; } #endif /* -- see zlib.h -- */ int ZEXPORT gzflush(file, flush) gzFile file; int flush; { gz_statep state; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; /* check that we're writing and that there's no error */ if (state->mode != GZ_WRITE || state->err != Z_OK) return Z_STREAM_ERROR; /* check flush parameter */ if (flush < 0 || flush > Z_FINISH) return Z_STREAM_ERROR; /* check for seek request */ if (state->seek) { state->seek = 0; if (gz_zero(state, state->skip) == -1) return -1; } /* compress remaining data with requested flush */ gz_comp(state, flush); return state->err; } /* -- see zlib.h -- */ int ZEXPORT gzsetparams(file, level, strategy) gzFile file; int level; int strategy; { gz_statep state; z_streamp strm; /* get internal structure */ if (file == NULL) return Z_STREAM_ERROR; state = (gz_statep)file; strm = &(state->strm); /* check that we're writing and that there's no error */ if (state->mode != GZ_WRITE || state->err != Z_OK) return Z_STREAM_ERROR; /* if no change is requested, then do nothing */ if (level == state->level && strategy == state->strategy) return Z_OK; /* check for seek request */ if (state->seek) { state->seek = 0; if (gz_zero(state, state->skip) == -1) return -1; } /* change compression parameters for subsequent input */ if (state->size) { /* flush previous input with previous parameters before changing */ if (strm->avail_in && gz_comp(state, Z_PARTIAL_FLUSH) == -1) return state->err; deflateParams(strm, level, strategy); } state->level = level; state->strategy = strategy; return Z_OK; } /* -- see zlib.h -- */ int ZEXPORT gzclose_w(file) gzFile file; { int ret = Z_OK; gz_statep state; /* get internal structure */ if (file == NULL) return Z_STREAM_ERROR; state = (gz_statep)file; /* check that we're writing */ if (state->mode != GZ_WRITE) return Z_STREAM_ERROR; /* check for seek request */ if (state->seek) { state->seek = 0; if (gz_zero(state, state->skip) == -1) ret = state->err; } /* flush, free memory, and close file */ if (gz_comp(state, Z_FINISH) == -1) ret = state->err; if (state->size) { if (!state->direct) { (void)deflateEnd(&(state->strm)); free(state->out); } free(state->in); } gz_error(state, Z_OK, NULL); free(state->path); if (close(state->fd) == -1) ret = Z_ERRNO; free(state); return ret; } /* END OF DUMP OF mz_gzwrite.c*/ /* START OF DUMP OF mz_gzread.c*/ #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* gzread.c -- zlib functions for reading gzip files * Copyright (C) 2004, 2005, 2010, 2011, 2012, 2013 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* Local functions */ local int gz_load OF((gz_statep, unsigned char *, unsigned, unsigned *)); local int gz_avail OF((gz_statep)); local int gz_look OF((gz_statep)); local int gz_decomp OF((gz_statep)); local int gz_fetch OF((gz_statep)); local int gz_skip OF((gz_statep, z_off64_t)); /* Use read() to load a buffer -- return -1 on error, otherwise 0. Read from state->fd, and update state->eof, state->err, and state->msg as appropriate. This function needs to loop on read(), since read() is not guaranteed to read the number of bytes requested, depending on the type of descriptor. */ local int gz_load(state, buf, len, have) gz_statep state; unsigned char *buf; unsigned len; unsigned *have; { int ret; *have = 0; do { ret = read(state->fd, buf + *have, len - *have); if (ret <= 0) break; *have += ret; } while (*have < len); if (ret < 0) { gz_error(state, Z_ERRNO, zstrerror()); return -1; } if (ret == 0) state->eof = 1; return 0; } /* Load up input buffer and set eof flag if last data loaded -- return -1 on error, 0 otherwise. Note that the eof flag is set when the end of the input file is reached, even though there may be unused data in the buffer. Once that data has been used, no more attempts will be made to read the file. If strm->avail_in != 0, then the current data is moved to the beginning of the input buffer, and then the remainder of the buffer is loaded with the available data from the input file. */ local int gz_avail(state) gz_statep state; { unsigned got; z_streamp strm = &(state->strm); if (state->err != Z_OK && state->err != Z_BUF_ERROR) return -1; if (state->eof == 0) { if (strm->avail_in) { /* copy what's there to the start */ unsigned char *p = state->in; unsigned const char *q = strm->next_in; unsigned n = strm->avail_in; do { *p++ = *q++; } while (--n); } if (gz_load(state, state->in + strm->avail_in, state->size - strm->avail_in, &got) == -1) return -1; strm->avail_in += got; strm->next_in = state->in; } return 0; } /* Look for gzip header, set up for inflate or copy. state->x.have must be 0. If this is the first time in, allocate required memory. state->how will be left unchanged if there is no more input data available, will be set to COPY if there is no gzip header and direct copying will be performed, or it will be set to GZIP for decompression. If direct copying, then leftover input data from the input buffer will be copied to the output buffer. In that case, all further file reads will be directly to either the output buffer or a user buffer. If decompressing, the inflate state will be initialized. gz_look() will return 0 on success or -1 on failure. */ local int gz_look(state) gz_statep state; { z_streamp strm = &(state->strm); /* allocate read buffers and inflate memory */ if (state->size == 0) { /* allocate buffers */ state->in = (unsigned char *)malloc(state->want); state->out = (unsigned char *)malloc(state->want << 1); if (state->in == NULL || state->out == NULL) { if (state->out != NULL) free(state->out); if (state->in != NULL) free(state->in); gz_error(state, Z_MEM_ERROR, "out of memory"); return -1; } state->size = state->want; /* allocate inflate memory */ state->strm.zalloc = Z_NULL; state->strm.zfree = Z_NULL; state->strm.opaque = Z_NULL; state->strm.avail_in = 0; state->strm.next_in = Z_NULL; if (inflateInit2(&(state->strm), 15 + 16) != Z_OK) { /* gunzip */ free(state->out); free(state->in); state->size = 0; gz_error(state, Z_MEM_ERROR, "out of memory"); return -1; } } /* get at least the magic bytes in the input buffer */ if (strm->avail_in < 2) { if (gz_avail(state) == -1) return -1; if (strm->avail_in == 0) return 0; } /* look for gzip magic bytes -- if there, do gzip decoding (note: there is a logical dilemma here when considering the case of a partially written gzip file, to wit, if a single 31 byte is written, then we cannot tell whether this is a single-byte file, or just a partially written gzip file -- for here we assume that if a gzip file is being written, then the header will be written in a single operation, so that reading a single byte is sufficient indication that it is not a gzip file) */ if (strm->avail_in > 1 && strm->next_in[0] == 31 && strm->next_in[1] == 139) { inflateReset(strm); state->how = GZIP; state->direct = 0; return 0; } /* no gzip header -- if we were decoding gzip before, then this is trailing garbage. Ignore the trailing garbage and finish. */ if (state->direct == 0) { strm->avail_in = 0; state->eof = 1; state->x.have = 0; return 0; } /* doing raw i/o, copy any leftover input to output -- this assumes that the output buffer is larger than the input buffer, which also assures space for gzungetc() */ state->x.next = state->out; if (strm->avail_in) { memcpy(state->x.next, strm->next_in, strm->avail_in); state->x.have = strm->avail_in; strm->avail_in = 0; } state->how = COPY; state->direct = 1; return 0; } /* Decompress from input to the provided next_out and avail_out in the state. On return, state->x.have and state->x.next point to the just decompressed data. If the gzip stream completes, state->how is reset to LOOK to look for the next gzip stream or raw data, once state->x.have is depleted. Returns 0 on success, -1 on failure. */ local int gz_decomp(state) gz_statep state; { int ret = Z_OK; unsigned had; z_streamp strm = &(state->strm); /* fill output buffer up to end of deflate stream */ had = strm->avail_out; do { /* get more input for inflate() */ if (strm->avail_in == 0 && gz_avail(state) == -1) return -1; if (strm->avail_in == 0) { gz_error(state, Z_BUF_ERROR, "unexpected end of file"); break; } /* decompress and handle errors */ ret = inflate(strm, Z_NO_FLUSH); if (ret == Z_STREAM_ERROR || ret == Z_NEED_DICT) { gz_error(state, Z_STREAM_ERROR, "internal error: inflate stream corrupt"); return -1; } if (ret == Z_MEM_ERROR) { gz_error(state, Z_MEM_ERROR, "out of memory"); return -1; } if (ret == Z_DATA_ERROR) { /* deflate stream invalid */ gz_error(state, Z_DATA_ERROR, strm->msg == NULL ? "compressed data error" : strm->msg); return -1; } } while (strm->avail_out && ret != Z_STREAM_END); /* update available output */ state->x.have = had - strm->avail_out; state->x.next = strm->next_out - state->x.have; /* if the gzip stream completed successfully, look for another */ if (ret == Z_STREAM_END) state->how = LOOK; /* good decompression */ return 0; } /* Fetch data and put it in the output buffer. Assumes state->x.have is 0. Data is either copied from the input file or decompressed from the input file depending on state->how. If state->how is LOOK, then a gzip header is looked for to determine whether to copy or decompress. Returns -1 on error, otherwise 0. gz_fetch() will leave state->how as COPY or GZIP unless the end of the input file has been reached and all data has been processed. */ local int gz_fetch(state) gz_statep state; { z_streamp strm = &(state->strm); do { switch(state->how) { case LOOK: /* -> LOOK, COPY (only if never GZIP), or GZIP */ if (gz_look(state) == -1) return -1; if (state->how == LOOK) return 0; break; case COPY: /* -> COPY */ if (gz_load(state, state->out, state->size << 1, &(state->x.have)) == -1) return -1; state->x.next = state->out; return 0; case GZIP: /* -> GZIP or LOOK (if end of gzip stream) */ strm->avail_out = state->size << 1; strm->next_out = state->out; if (gz_decomp(state) == -1) return -1; } } while (state->x.have == 0 && (!state->eof || strm->avail_in)); return 0; } /* Skip len uncompressed bytes of output. Return -1 on error, 0 on success. */ local int gz_skip(state, len) gz_statep state; z_off64_t len; { unsigned n; /* skip over len bytes or reach end-of-file, whichever comes first */ while (len) /* skip over whatever is in output buffer */ if (state->x.have) { n = GT_OFF(state->x.have) || (z_off64_t)state->x.have > len ? (unsigned)len : state->x.have; state->x.have -= n; state->x.next += n; state->x.pos += n; len -= n; } /* output buffer empty -- return if we're at the end of the input */ else if (state->eof && state->strm.avail_in == 0) break; /* need more data to skip -- load up output buffer */ else { /* get more output, looking for header if required */ if (gz_fetch(state) == -1) return -1; } return 0; } /* -- see zlib.h -- */ int ZEXPORT gzread(file, buf, len) gzFile file; voidp buf; unsigned len; { unsigned got, n; gz_statep state; z_streamp strm; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; strm = &(state->strm); /* check that we're reading and that there's no (serious) error */ if (state->mode != GZ_READ || (state->err != Z_OK && state->err != Z_BUF_ERROR)) return -1; /* since an int is returned, make sure len fits in one, otherwise return with an error (this avoids the flaw in the interface) */ if ((int)len < 0) { gz_error(state, Z_DATA_ERROR, "requested length does not fit in int"); return -1; } /* if len is zero, avoid unnecessary operations */ if (len == 0) return 0; /* process a skip request */ if (state->seek) { state->seek = 0; if (gz_skip(state, state->skip) == -1) return -1; } /* get len bytes to buf, or less than len if at the end */ got = 0; do { /* first just try copying data from the output buffer */ if (state->x.have) { n = state->x.have > len ? len : state->x.have; memcpy(buf, state->x.next, n); state->x.next += n; state->x.have -= n; } /* output buffer empty -- return if we're at the end of the input */ else if (state->eof && strm->avail_in == 0) { state->past = 1; /* tried to read past end */ break; } /* need output data -- for small len or new stream load up our output buffer */ else if (state->how == LOOK || len < (state->size << 1)) { /* get more output, looking for header if required */ if (gz_fetch(state) == -1) return -1; continue; /* no progress yet -- go back to copy above */ /* the copy above assures that we will leave with space in the output buffer, allowing at least one gzungetc() to succeed */ } /* large len -- read directly into user buffer */ else if (state->how == COPY) { /* read directly */ if (gz_load(state, (unsigned char *)buf, len, &n) == -1) return -1; } /* large len -- decompress directly into user buffer */ else { /* state->how == GZIP */ strm->avail_out = len; strm->next_out = (unsigned char *)buf; if (gz_decomp(state) == -1) return -1; n = state->x.have; state->x.have = 0; } /* update progress */ len -= n; buf = (char *)buf + n; got += n; state->x.pos += n; } while (len); /* return number of bytes read into user buffer (will fit in int) */ return (int)got; } /* -- see zlib.h -- */ #ifdef Z_PREFIX_SET # undef z_gzgetc #else # undef gzgetc #endif int ZEXPORT gzgetc(file) gzFile file; { int ret; unsigned char buf[1]; gz_statep state; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; /* check that we're reading and that there's no (serious) error */ if (state->mode != GZ_READ || (state->err != Z_OK && state->err != Z_BUF_ERROR)) return -1; /* try output buffer (no need to check for skip request) */ if (state->x.have) { state->x.have--; state->x.pos++; return *(state->x.next)++; } /* nothing there -- try gzread() */ ret = gzread(file, buf, 1); return ret < 1 ? -1 : buf[0]; } int ZEXPORT gzgetc_(file) gzFile file; { return gzgetc(file); } /* -- see zlib.h -- */ int ZEXPORT gzungetc(c, file) int c; gzFile file; { gz_statep state; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; /* check that we're reading and that there's no (serious) error */ if (state->mode != GZ_READ || (state->err != Z_OK && state->err != Z_BUF_ERROR)) return -1; /* process a skip request */ if (state->seek) { state->seek = 0; if (gz_skip(state, state->skip) == -1) return -1; } /* can't push EOF */ if (c < 0) return -1; /* if output buffer empty, put byte at end (allows more pushing) */ if (state->x.have == 0) { state->x.have = 1; state->x.next = state->out + (state->size << 1) - 1; state->x.next[0] = c; state->x.pos--; state->past = 0; return c; } /* if no room, give up (must have already done a gzungetc()) */ if (state->x.have == (state->size << 1)) { gz_error(state, Z_DATA_ERROR, "out of room to push characters"); return -1; } /* slide output data if needed and insert byte before existing data */ if (state->x.next == state->out) { unsigned char *src = state->out + state->x.have; unsigned char *dest = state->out + (state->size << 1); while (src > state->out) *--dest = *--src; state->x.next = dest; } state->x.have++; state->x.next--; state->x.next[0] = c; state->x.pos--; state->past = 0; return c; } /* -- see zlib.h -- */ char * ZEXPORT gzgets(file, buf, len) gzFile file; char *buf; int len; { unsigned left, n; char *str; unsigned char *eol; gz_statep state; /* check parameters and get internal structure */ if (file == NULL || buf == NULL || len < 1) return NULL; state = (gz_statep)file; /* check that we're reading and that there's no (serious) error */ if (state->mode != GZ_READ || (state->err != Z_OK && state->err != Z_BUF_ERROR)) return NULL; /* process a skip request */ if (state->seek) { state->seek = 0; if (gz_skip(state, state->skip) == -1) return NULL; } /* copy output bytes up to new line or len - 1, whichever comes first -- append a terminating zero to the string (we don't check for a zero in the contents, let the user worry about that) */ str = buf; left = (unsigned)len - 1; if (left) do { /* assure that something is in the output buffer */ if (state->x.have == 0 && gz_fetch(state) == -1) return NULL; /* error */ if (state->x.have == 0) { /* end of file */ state->past = 1; /* read past end */ break; /* return what we have */ } /* look for end-of-line in current output buffer */ n = state->x.have > left ? left : state->x.have; eol = (unsigned char *)memchr(state->x.next, '\n', n); if (eol != NULL) n = (unsigned)(eol - state->x.next) + 1; /* copy through end-of-line, or remainder if not found */ memcpy(buf, state->x.next, n); state->x.have -= n; state->x.next += n; state->x.pos += n; left -= n; buf += n; } while (left && eol == NULL); /* return terminated string, or if nothing, end of file */ if (buf == str) return NULL; buf[0] = 0; return str; } /* -- see zlib.h -- */ int ZEXPORT gzdirect(file) gzFile file; { gz_statep state; /* get internal structure */ if (file == NULL) return 0; state = (gz_statep)file; /* if the state is not known, but we can find out, then do so (this is mainly for right after a gzopen() or gzdopen()) */ if (state->mode == GZ_READ && state->how == LOOK && state->x.have == 0) (void)gz_look(state); /* return 1 if transparent, 0 if processing a gzip stream */ return state->direct; } /* -- see zlib.h -- */ int ZEXPORT gzclose_r(file) gzFile file; { int ret, err; gz_statep state; /* get internal structure */ if (file == NULL) return Z_STREAM_ERROR; state = (gz_statep)file; /* check that we're reading */ if (state->mode != GZ_READ) return Z_STREAM_ERROR; /* free memory and close file */ if (state->size) { inflateEnd(&(state->strm)); free(state->out); free(state->in); } err = state->err == Z_BUF_ERROR ? Z_BUF_ERROR : Z_OK; gz_error(state, Z_OK, NULL); free(state->path); ret = close(state->fd); free(state); return ret ? Z_ERRNO : err; } /* END OF DUMP OF mz_gzread.c*/ /* START OF DUMP OF mz_gzlib.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* gzlib.c -- zlib functions common to reading and writing gzip files * Copyright (C) 2004, 2010, 2011, 2012, 2013 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ #if defined(_WIN32) && !defined(__BORLANDC__) # define LSEEK _lseeki64 #else #if defined(_LARGEFILE64_SOURCE) && _LFS64_LARGEFILE-0 # define LSEEK lseek64 #else # define LSEEK lseek #endif #endif /* Local functions */ local void gz_reset OF((gz_statep)); local gzFile gz_open OF((const void *, int, const char *)); #if defined UNDER_CE /* Map the Windows error number in ERROR to a locale-dependent error message string and return a pointer to it. Typically, the values for ERROR come from GetLastError. The string pointed to shall not be modified by the application, but may be overwritten by a subsequent call to gz_strwinerror The gz_strwinerror function does not change the current setting of GetLastError. */ char ZLIB_INTERNAL *gz_strwinerror (error) DWORD error; { static char buf[1024]; wchar_t *msgbuf; DWORD lasterr = GetLastError(); DWORD chars = FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER, NULL, error, 0, /* Default language */ (LPVOID)&msgbuf, 0, NULL); if (chars != 0) { /* If there is an \r\n appended, zap it. */ if (chars >= 2 && msgbuf[chars - 2] == '\r' && msgbuf[chars - 1] == '\n') { chars -= 2; msgbuf[chars] = 0; } if (chars > sizeof (buf) - 1) { chars = sizeof (buf) - 1; msgbuf[chars] = 0; } wcstombs(buf, msgbuf, chars + 1); LocalFree(msgbuf); } else { sprintf(buf, "unknown win32 error (%ld)", error); } SetLastError(lasterr); return buf; } #endif /* UNDER_CE */ /* Reset gzip file state */ local void gz_reset(state) gz_statep state; { state->x.have = 0; /* no output data available */ if (state->mode == GZ_READ) { /* for reading ... */ state->eof = 0; /* not at end of file */ state->past = 0; /* have not read past end yet */ state->how = LOOK; /* look for gzip header */ } state->seek = 0; /* no seek request pending */ gz_error(state, Z_OK, NULL); /* clear error */ state->x.pos = 0; /* no uncompressed data yet */ state->strm.avail_in = 0; /* no input data yet */ } /* Open a gzip file either by name or file descriptor. */ local gzFile gz_open(path, fd, mode) const void *path; int fd; const char *mode; { gz_statep state; size_t len; int oflag; #ifdef O_CLOEXEC int cloexec = 0; #endif #ifdef O_EXCL int exclusive = 0; #endif /* check input */ if (path == NULL) return NULL; /* allocate gzFile structure to return */ state = (gz_statep)malloc(sizeof(gz_state)); if (state == NULL) return NULL; state->size = 0; /* no buffers allocated yet */ state->want = GZBUFSIZE; /* requested buffer size */ state->msg = NULL; /* no error message yet */ /* interpret mode */ state->mode = GZ_NONE; state->level = Z_DEFAULT_COMPRESSION; state->strategy = Z_DEFAULT_STRATEGY; state->direct = 0; while (*mode) { if (*mode >= '0' && *mode <= '9') state->level = *mode - '0'; else switch (*mode) { case 'r': state->mode = GZ_READ; break; #ifndef NO_GZCOMPRESS case 'w': state->mode = GZ_WRITE; break; case 'a': state->mode = GZ_APPEND; break; #endif case '+': /* can't read and write at the same time */ free(state); return NULL; case 'b': /* ignore -- will request binary anyway */ break; #ifdef O_CLOEXEC case 'e': cloexec = 1; break; #endif #ifdef O_EXCL case 'x': exclusive = 1; break; #endif case 'f': state->strategy = Z_FILTERED; break; case 'h': state->strategy = Z_HUFFMAN_ONLY; break; case 'R': state->strategy = Z_RLE; break; case 'F': state->strategy = Z_FIXED; break; case 'T': state->direct = 1; break; default: /* could consider as an error, but just ignore */ ; } mode++; } /* must provide an "r", "w", or "a" */ if (state->mode == GZ_NONE) { free(state); return NULL; } /* can't force transparent read */ if (state->mode == GZ_READ) { if (state->direct) { free(state); return NULL; } state->direct = 1; /* for empty file */ } /* save the path name for error messages */ #ifdef _WIN32 if (fd == -2) { len = wcstombs(NULL, path, 0); if (len == (size_t)-1) len = 0; } else #endif len = strlen((const char *)path); state->path = (char *)malloc(len + 1); if (state->path == NULL) { free(state); return NULL; } #ifdef _WIN32 if (fd == -2) if (len) wcstombs(state->path, path, len + 1); else *(state->path) = 0; else #endif #if !defined(NO_snprintf) && !defined(NO_vsnprintf) snprintf(state->path, len + 1, "%s", (const char *)path); #else strcpy(state->path, path); #endif /* compute the flags for open() */ oflag = #ifdef O_LARGEFILE O_LARGEFILE | #endif #ifdef O_BINARY O_BINARY | #endif #ifdef O_CLOEXEC (cloexec ? O_CLOEXEC : 0) | #endif (state->mode == GZ_READ ? O_RDONLY : (O_WRONLY | O_CREAT | #ifdef O_EXCL (exclusive ? O_EXCL : 0) | #endif (state->mode == GZ_WRITE ? O_TRUNC : O_APPEND))); /* open the file with the appropriate flags (or just use fd) */ state->fd = fd > -1 ? fd : ( #ifdef _WIN32 fd == -2 ? _wopen(path, oflag, 0666) : #endif open((const char *)path, oflag, 0666)); if (state->fd == -1) { free(state->path); free(state); return NULL; } if (state->mode == GZ_APPEND) state->mode = GZ_WRITE; /* simplify later checks */ /* save the current position for rewinding (only if reading) */ if (state->mode == GZ_READ) { state->start = LSEEK(state->fd, 0, SEEK_CUR); if (state->start == -1) state->start = 0; } /* initialize stream */ gz_reset(state); /* return stream */ return (gzFile)state; } /* -- see zlib.h -- */ gzFile ZEXPORT gzopen(path, mode) const char *path; const char *mode; { return gz_open(path, -1, mode); } /* -- see zlib.h -- */ gzFile ZEXPORT gzopen64(path, mode) const char *path; const char *mode; { return gz_open(path, -1, mode); } /* -- see zlib.h -- */ gzFile ZEXPORT gzdopen(fd, mode) int fd; const char *mode; { char *path; /* identifier for error messages */ gzFile gz; if (fd == -1 || (path = (char *)malloc(7 + 3 * sizeof(int))) == NULL) return NULL; #if !defined(NO_snprintf) && !defined(NO_vsnprintf) snprintf(path, 7 + 3 * sizeof(int), "", fd); /* for debugging */ #else sprintf(path, "", fd); /* for debugging */ #endif gz = gz_open(path, fd, mode); free(path); return gz; } /* -- see zlib.h -- */ #ifdef _WIN32 gzFile ZEXPORT gzopen_w(path, mode) const wchar_t *path; const char *mode; { return gz_open(path, -2, mode); } #endif /* -- see zlib.h -- */ int ZEXPORT gzbuffer(file, size) gzFile file; unsigned size; { gz_statep state; /* get internal structure and check integrity */ if (file == NULL) return -1; state = (gz_statep)file; if (state->mode != GZ_READ && state->mode != GZ_WRITE) return -1; /* make sure we haven't already allocated memory */ if (state->size != 0) return -1; /* check and set requested size */ if (size < 2) size = 2; /* need two bytes to check magic header */ state->want = size; return 0; } /* -- see zlib.h -- */ int ZEXPORT gzrewind(file) gzFile file; { gz_statep state; /* get internal structure */ if (file == NULL) return -1; state = (gz_statep)file; /* check that we're reading and that there's no error */ if (state->mode != GZ_READ || (state->err != Z_OK && state->err != Z_BUF_ERROR)) return -1; /* back up and start over */ if (LSEEK(state->fd, state->start, SEEK_SET) == -1) return -1; gz_reset(state); return 0; } /* -- see zlib.h -- */ z_off64_t ZEXPORT gzseek64(file, offset, whence) gzFile file; z_off64_t offset; int whence; { unsigned n; z_off64_t ret; gz_statep state; /* get internal structure and check integrity */ if (file == NULL) return -1; state = (gz_statep)file; if (state->mode != GZ_READ && state->mode != GZ_WRITE) return -1; /* check that there's no error */ if (state->err != Z_OK && state->err != Z_BUF_ERROR) return -1; /* can only seek from start or relative to current position */ if (whence != SEEK_SET && whence != SEEK_CUR) return -1; /* normalize offset to a SEEK_CUR specification */ if (whence == SEEK_SET) offset -= state->x.pos; else if (state->seek) offset += state->skip; state->seek = 0; /* if within raw area while reading, just go there */ if (state->mode == GZ_READ && state->how == COPY && state->x.pos + offset >= 0) { ret = LSEEK(state->fd, offset - state->x.have, SEEK_CUR); if (ret == -1) return -1; state->x.have = 0; state->eof = 0; state->past = 0; state->seek = 0; gz_error(state, Z_OK, NULL); state->strm.avail_in = 0; state->x.pos += offset; return state->x.pos; } /* calculate skip amount, rewinding if needed for back seek when reading */ if (offset < 0) { if (state->mode != GZ_READ) /* writing -- can't go backwards */ return -1; offset += state->x.pos; if (offset < 0) /* before start of file! */ return -1; if (gzrewind(file) == -1) /* rewind, then skip to offset */ return -1; } /* if reading, skip what's in output buffer (one less gzgetc() check) */ if (state->mode == GZ_READ) { n = GT_OFF(state->x.have) || (z_off64_t)state->x.have > offset ? (unsigned)offset : state->x.have; state->x.have -= n; state->x.next += n; state->x.pos += n; offset -= n; } /* request skip (if not zero) */ if (offset) { state->seek = 1; state->skip = offset; } return state->x.pos + offset; } /* -- see zlib.h -- */ z_off_t ZEXPORT gzseek(file, offset, whence) gzFile file; z_off_t offset; int whence; { z_off64_t ret; ret = gzseek64(file, (z_off64_t)offset, whence); return ret == (z_off_t)ret ? (z_off_t)ret : -1; } /* -- see zlib.h -- */ z_off64_t ZEXPORT gztell64(file) gzFile file; { gz_statep state; /* get internal structure and check integrity */ if (file == NULL) return -1; state = (gz_statep)file; if (state->mode != GZ_READ && state->mode != GZ_WRITE) return -1; /* return position */ return state->x.pos + (state->seek ? state->skip : 0); } /* -- see zlib.h -- */ z_off_t ZEXPORT gztell(file) gzFile file; { z_off64_t ret; ret = gztell64(file); return ret == (z_off_t)ret ? (z_off_t)ret : -1; } /* -- see zlib.h -- */ z_off64_t ZEXPORT gzoffset64(file) gzFile file; { z_off64_t offset; gz_statep state; /* get internal structure and check integrity */ if (file == NULL) return -1; state = (gz_statep)file; if (state->mode != GZ_READ && state->mode != GZ_WRITE) return -1; /* compute and return effective offset in file */ offset = LSEEK(state->fd, 0, SEEK_CUR); if (offset == -1) return -1; if (state->mode == GZ_READ) /* reading */ offset -= state->strm.avail_in; /* don't count buffered input */ return offset; } /* -- see zlib.h -- */ z_off_t ZEXPORT gzoffset(file) gzFile file; { z_off64_t ret; ret = gzoffset64(file); return ret == (z_off_t)ret ? (z_off_t)ret : -1; } /* -- see zlib.h -- */ int ZEXPORT gzeof(file) gzFile file; { gz_statep state; /* get internal structure and check integrity */ if (file == NULL) return 0; state = (gz_statep)file; if (state->mode != GZ_READ && state->mode != GZ_WRITE) return 0; /* return end-of-file state */ return state->mode == GZ_READ ? state->past : 0; } /* -- see zlib.h -- */ const char * ZEXPORT gzerror(file, errnum) gzFile file; int *errnum; { gz_statep state; /* get internal structure and check integrity */ if (file == NULL) return NULL; state = (gz_statep)file; if (state->mode != GZ_READ && state->mode != GZ_WRITE) return NULL; /* return error information */ if (errnum != NULL) *errnum = state->err; return state->err == Z_MEM_ERROR ? "out of memory" : (state->msg == NULL ? "" : state->msg); } /* -- see zlib.h -- */ void ZEXPORT gzclearerr(file) gzFile file; { gz_statep state; /* get internal structure and check integrity */ if (file == NULL) return; state = (gz_statep)file; if (state->mode != GZ_READ && state->mode != GZ_WRITE) return; /* clear error and end-of-file */ if (state->mode == GZ_READ) { state->eof = 0; state->past = 0; } gz_error(state, Z_OK, NULL); } /* Create an error message in allocated memory and set state->err and state->msg accordingly. Free any previous error message already there. Do not try to free or allocate space if the error is Z_MEM_ERROR (out of memory). Simply save the error message as a static string. If there is an allocation failure constructing the error message, then convert the error to out of memory. */ void ZLIB_INTERNAL gz_error(state, err, msg) gz_statep state; int err; const char *msg; { /* free previously allocated message and clear */ if (state->msg != NULL) { if (state->err != Z_MEM_ERROR) free(state->msg); state->msg = NULL; } /* if fatal, set state->x.have to 0 so that the gzgetc() macro fails */ if (err != Z_OK && err != Z_BUF_ERROR) state->x.have = 0; /* set error code, and if no message, then done */ state->err = err; if (msg == NULL) return; /* for an out of memory error, return literal string when requested */ if (err == Z_MEM_ERROR) return; /* construct error message with path */ if ((state->msg = (char *)malloc(strlen(state->path) + strlen(msg) + 3)) == NULL) { state->err = Z_MEM_ERROR; return; } #if !defined(NO_snprintf) && !defined(NO_vsnprintf) snprintf(state->msg, strlen(state->path) + strlen(msg) + 3, "%s%s%s", state->path, ": ", msg); #else strcpy(state->msg, state->path); strcat(state->msg, ": "); strcat(state->msg, msg); #endif return; } #ifndef INT_MAX /* portably return maximum value for an int (when limits.h presumed not available) -- we need to do this to cover cases where 2's complement not used, since C standard permits 1's complement and sign-bit representations, otherwise we could just use ((unsigned)-1) >> 1 */ unsigned ZLIB_INTERNAL gz_intmax() { unsigned p, q; p = 1; do { q = p; p <<= 1; p++; } while (p > q); return q >> 1; } #endif /* END OF DUMP OF mz_gzlib.c*/ /* START OF DUMP OF mz_gzclose.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* gzclose.c -- zlib gzclose() function * Copyright (C) 2004, 2010 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* gzclose() is in a separate file so that it is linked in only if it is used. That way the other gzclose functions can be used instead to avoid linking in unneeded compression or decompression routines. */ int ZEXPORT gzclose(file) gzFile file; { #ifndef NO_GZCOMPRESS gz_statep state; if (file == NULL) return Z_STREAM_ERROR; state = (gz_statep)file; return state->mode == GZ_READ ? gzclose_r(file) : gzclose_w(file); #else return gzclose_r(file); #endif } /* END OF DUMP OF mz_gzclose.c*/ /* START OF DUMP OF mz_deflate.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* deflate.c -- compress data using the deflation algorithm * Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* * ALGORITHM * * The "deflation" process depends on being able to identify portions * of the input text which are identical to earlier input (within a * sliding window trailing behind the input currently being processed). * * The most straightforward technique turns out to be the fastest for * most input files: try all possible matches and select the longest. * The key feature of this algorithm is that insertions into the string * dictionary are very simple and thus fast, and deletions are avoided * completely. Insertions are performed at each input character, whereas * string matches are performed only when the previous match ends. So it * is preferable to spend more time in matches to allow very fast string * insertions and avoid deletions. The matching algorithm for small * strings is inspired from that of Rabin & Karp. A brute force approach * is used to find longer strings when a small match has been found. * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze * (by Leonid Broukhis). * A previous version of this file used a more sophisticated algorithm * (by Fiala and Greene) which is guaranteed to run in linear amortized * time, but has a larger average cost, uses more memory and is patented. * However the F&G algorithm may be faster for some highly redundant * files if the parameter max_chain_length (described below) is too large. * * ACKNOWLEDGEMENTS * * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and * I found it in 'freeze' written by Leonid Broukhis. * Thanks to many people for bug reports and testing. * * REFERENCES * * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification". * Available in http://tools.ietf.org/html/rfc1951 * * A description of the Rabin and Karp algorithm is given in the book * "Algorithms" by R. Sedgewick, Addison-Wesley, p252. * * Fiala,E.R., and Greene,D.H. * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595 * */ /* @(#) $Id$ */ const char deflate_copyright[] = " deflate 1.2.8 Copyright 1995-2013 Jean-loup Gailly and Mark Adler "; /* If you use the zlib library in a product, an acknowledgment is welcome in the documentation of your product. If for some reason you cannot include such an acknowledgment, I would appreciate that you keep this copyright string in the executable of your product. */ /* =========================================================================== * Function prototypes. */ typedef enum { need_more, /* block not completed, need more input or more output */ block_done, /* block flush performed */ finish_started, /* finish started, need only more output at next deflate */ finish_done /* finish done, accept no more input or output */ } block_state; typedef block_state (*compress_func) OF((deflate_state *s, int flush)); /* Compression function. Returns the block state after the call. */ local void fill_window OF((deflate_state *s)); local block_state deflate_stored OF((deflate_state *s, int flush)); local block_state deflate_fast OF((deflate_state *s, int flush)); #ifndef FASTEST local block_state deflate_slow OF((deflate_state *s, int flush)); #endif local block_state deflate_rle OF((deflate_state *s, int flush)); local block_state deflate_huff OF((deflate_state *s, int flush)); local void lm_init OF((deflate_state *s)); local void putShortMSB OF((deflate_state *s, uInt b)); local void flush_pending OF((z_streamp strm)); local int read_buf OF((z_streamp strm, Bytef *buf, unsigned size)); #ifdef ASMV void match_init OF((void)); /* asm code initialization */ uInt longest_match OF((deflate_state *s, IPos cur_match)); #else local uInt longest_match OF((deflate_state *s, IPos cur_match)); #endif #ifdef DEBUG local void check_match OF((deflate_state *s, IPos start, IPos match, int length)); #endif /* =========================================================================== * Local data */ #define NIL 0 /* Tail of hash chains */ #ifndef TOO_FAR # define TOO_FAR 4096 #endif /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */ /* Values for max_lazy_match, good_match and max_chain_length, depending on * the desired pack level (0..9). The values given below have been tuned to * exclude worst case performance for pathological files. Better values may be * found for specific files. */ typedef struct config_s { ush good_length; /* reduce lazy search above this match length */ ush max_lazy; /* do not perform lazy search above this match length */ ush nice_length; /* quit search above this match length */ ush max_chain; compress_func func; } config; #ifdef FASTEST local const config configuration_table[2] = { /* good lazy nice chain */ /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ /* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */ #else local const config configuration_table[10] = { /* good lazy nice chain */ /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ /* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */ /* 2 */ {4, 5, 16, 8, deflate_fast}, /* 3 */ {4, 6, 32, 32, deflate_fast}, /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */ /* 5 */ {8, 16, 32, 32, deflate_slow}, /* 6 */ {8, 16, 128, 128, deflate_slow}, /* 7 */ {8, 32, 128, 256, deflate_slow}, /* 8 */ {32, 128, 258, 1024, deflate_slow}, /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */ #endif /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different * meaning. */ #define EQUAL 0 /* result of memcmp for equal strings */ #ifndef NO_DUMMY_DECL struct static_tree_desc_s {int dummy;}; /* for buggy compilers */ #endif /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */ #define RANK(f) (((f) << 1) - ((f) > 4 ? 9 : 0)) /* =========================================================================== * Update a hash value with the given input byte * IN assertion: all calls to to UPDATE_HASH are made with consecutive * input characters, so that a running hash key can be computed from the * previous key instead of complete recalculation each time. */ #define UPDATE_HASH(s,h,c) (h = (((h)<hash_shift) ^ (c)) & s->hash_mask) /* =========================================================================== * Insert string str in the dictionary and set match_head to the previous head * of the hash chain (the most recent string with same hash key). Return * the previous length of the hash chain. * If this file is compiled with -DFASTEST, the compression level is forced * to 1, and no hash chains are maintained. * IN assertion: all calls to to INSERT_STRING are made with consecutive * input characters and the first MIN_MATCH bytes of str are valid * (except for the last MIN_MATCH-1 bytes of the input file). */ #ifdef FASTEST #define INSERT_STRING(s, str, match_head) \ (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ match_head = s->head[s->ins_h], \ s->head[s->ins_h] = (Pos)(str)) #else #define INSERT_STRING(s, str, match_head) \ (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \ s->head[s->ins_h] = (Pos)(str)) #endif /* =========================================================================== * Initialize the hash table (avoiding 64K overflow for 16 bit systems). * prev[] will be initialized on the fly. */ #define CLEAR_HASH(s) \ s->head[s->hash_size-1] = NIL; \ zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head)); /* ========================================================================= */ int ZEXPORT deflateInit_(strm, level, version, stream_size) z_streamp strm; int level; const char *version; int stream_size; { return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, Z_DEFAULT_STRATEGY, version, stream_size); /* To do: ignore strm->next_in if we use it as window */ } /* ========================================================================= */ int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy, version, stream_size) z_streamp strm; int level; int method; int windowBits; int memLevel; int strategy; const char *version; int stream_size; { deflate_state *s; int wrap = 1; static const char my_version[] = ZLIB_VERSION; ushf *overlay; /* We overlay pending_buf and d_buf+l_buf. This works since the average * output size for (length,distance) codes is <= 24 bits. */ if (version == Z_NULL || version[0] != my_version[0] || stream_size != sizeof(z_stream)) { return Z_VERSION_ERROR; } if (strm == Z_NULL) return Z_STREAM_ERROR; strm->msg = Z_NULL; if (strm->zalloc == (alloc_func)0) { #ifdef Z_SOLO return Z_STREAM_ERROR; #else strm->zalloc = zcalloc; strm->opaque = (voidpf)0; #endif } if (strm->zfree == (free_func)0) #ifdef Z_SOLO return Z_STREAM_ERROR; #else strm->zfree = zcfree; #endif #ifdef FASTEST if (level != 0) level = 1; #else if (level == Z_DEFAULT_COMPRESSION) level = 6; #endif if (windowBits < 0) { /* suppress zlib wrapper */ wrap = 0; windowBits = -windowBits; } #ifdef GZIP else if (windowBits > 15) { wrap = 2; /* write gzip wrapper instead */ windowBits -= 16; } #endif if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED || windowBits < 8 || windowBits > 15 || level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) { return Z_STREAM_ERROR; } if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */ s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state)); if (s == Z_NULL) return Z_MEM_ERROR; strm->state = (struct internal_state FAR *)s; s->strm = strm; s->wrap = wrap; s->gzhead = Z_NULL; s->w_bits = windowBits; s->w_size = 1 << s->w_bits; s->w_mask = s->w_size - 1; s->hash_bits = memLevel + 7; s->hash_size = 1 << s->hash_bits; s->hash_mask = s->hash_size - 1; s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH); s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte)); s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos)); s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos)); s->high_water = 0; /* nothing written to s->window yet */ s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2); s->pending_buf = (uchf *) overlay; s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L); if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL || s->pending_buf == Z_NULL) { s->status = FINISH_STATE; strm->msg = ERR_MSG(Z_MEM_ERROR); deflateEnd (strm); return Z_MEM_ERROR; } s->d_buf = overlay + s->lit_bufsize/sizeof(ush); s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize; s->level = level; s->strategy = strategy; s->method = (Byte)method; return deflateReset(strm); } /* ========================================================================= */ int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength) z_streamp strm; const Bytef *dictionary; uInt dictLength; { deflate_state *s; uInt str, n; int wrap; unsigned avail; z_const unsigned char *next; if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL) return Z_STREAM_ERROR; s = strm->state; wrap = s->wrap; if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead) return Z_STREAM_ERROR; /* when using zlib wrappers, compute Adler-32 for provided dictionary */ if (wrap == 1) strm->adler = adler32(strm->adler, dictionary, dictLength); s->wrap = 0; /* avoid computing Adler-32 in read_buf */ /* if dictionary would fill window, just replace the history */ if (dictLength >= s->w_size) { if (wrap == 0) { /* already empty otherwise */ CLEAR_HASH(s); s->strstart = 0; s->block_start = 0L; s->insert = 0; } dictionary += dictLength - s->w_size; /* use the tail */ dictLength = s->w_size; } /* insert dictionary into window and hash */ avail = strm->avail_in; next = strm->next_in; strm->avail_in = dictLength; strm->next_in = (z_const Bytef *)dictionary; fill_window(s); while (s->lookahead >= MIN_MATCH) { str = s->strstart; n = s->lookahead - (MIN_MATCH-1); do { UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); #ifndef FASTEST s->prev[str & s->w_mask] = s->head[s->ins_h]; #endif s->head[s->ins_h] = (Pos)str; str++; } while (--n); s->strstart = str; s->lookahead = MIN_MATCH-1; fill_window(s); } s->strstart += s->lookahead; s->block_start = (long)s->strstart; s->insert = s->lookahead; s->lookahead = 0; s->match_length = s->prev_length = MIN_MATCH-1; s->match_available = 0; strm->next_in = next; strm->avail_in = avail; s->wrap = wrap; return Z_OK; } /* ========================================================================= */ int ZEXPORT deflateResetKeep (strm) z_streamp strm; { deflate_state *s; if (strm == Z_NULL || strm->state == Z_NULL || strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) { return Z_STREAM_ERROR; } strm->total_in = strm->total_out = 0; strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */ strm->data_type = Z_UNKNOWN; s = (deflate_state *)strm->state; s->pending = 0; s->pending_out = s->pending_buf; if (s->wrap < 0) { s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */ } s->status = s->wrap ? INIT_STATE : BUSY_STATE; strm->adler = #ifdef GZIP s->wrap == 2 ? crc32(0L, Z_NULL, 0) : #endif adler32(0L, Z_NULL, 0); s->last_flush = Z_NO_FLUSH; _tr_init(s); return Z_OK; } /* ========================================================================= */ int ZEXPORT deflateReset (strm) z_streamp strm; { int ret; ret = deflateResetKeep(strm); if (ret == Z_OK) lm_init(strm->state); return ret; } /* ========================================================================= */ int ZEXPORT deflateSetHeader (strm, head) z_streamp strm; gz_headerp head; { if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; if (strm->state->wrap != 2) return Z_STREAM_ERROR; strm->state->gzhead = head; return Z_OK; } /* ========================================================================= */ int ZEXPORT deflatePending (strm, pending, bits) unsigned *pending; int *bits; z_streamp strm; { if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; if (pending != Z_NULL) *pending = strm->state->pending; if (bits != Z_NULL) *bits = strm->state->bi_valid; return Z_OK; } /* ========================================================================= */ int ZEXPORT deflatePrime (strm, bits, value) z_streamp strm; int bits; int value; { deflate_state *s; int put; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; s = strm->state; if ((Bytef *)(s->d_buf) < s->pending_out + ((Buf_size + 7) >> 3)) return Z_BUF_ERROR; do { put = Buf_size - s->bi_valid; if (put > bits) put = bits; s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid); s->bi_valid += put; _tr_flush_bits(s); value >>= put; bits -= put; } while (bits); return Z_OK; } /* ========================================================================= */ int ZEXPORT deflateParams(strm, level, strategy) z_streamp strm; int level; int strategy; { deflate_state *s; compress_func func; int err = Z_OK; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; s = strm->state; #ifdef FASTEST if (level != 0) level = 1; #else if (level == Z_DEFAULT_COMPRESSION) level = 6; #endif if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) { return Z_STREAM_ERROR; } func = configuration_table[s->level].func; if ((strategy != s->strategy || func != configuration_table[level].func) && strm->total_in != 0) { /* Flush the last buffer: */ err = deflate(strm, Z_BLOCK); if (err == Z_BUF_ERROR && s->pending == 0) err = Z_OK; } if (s->level != level) { s->level = level; s->max_lazy_match = configuration_table[level].max_lazy; s->good_match = configuration_table[level].good_length; s->nice_match = configuration_table[level].nice_length; s->max_chain_length = configuration_table[level].max_chain; } s->strategy = strategy; return err; } /* ========================================================================= */ int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain) z_streamp strm; int good_length; int max_lazy; int nice_length; int max_chain; { deflate_state *s; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; s = strm->state; s->good_match = good_length; s->max_lazy_match = max_lazy; s->nice_match = nice_length; s->max_chain_length = max_chain; return Z_OK; } /* ========================================================================= * For the default windowBits of 15 and memLevel of 8, this function returns * a close to exact, as well as small, upper bound on the compressed size. * They are coded as constants here for a reason--if the #define's are * changed, then this function needs to be changed as well. The return * value for 15 and 8 only works for those exact settings. * * For any setting other than those defaults for windowBits and memLevel, * the value returned is a conservative worst case for the maximum expansion * resulting from using fixed blocks instead of stored blocks, which deflate * can emit on compressed data for some combinations of the parameters. * * This function could be more sophisticated to provide closer upper bounds for * every combination of windowBits and memLevel. But even the conservative * upper bound of about 14% expansion does not seem onerous for output buffer * allocation. */ uLong ZEXPORT deflateBound(strm, sourceLen) z_streamp strm; uLong sourceLen; { deflate_state *s; uLong complen, wraplen; Bytef *str; /* conservative upper bound for compressed data */ complen = sourceLen + ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5; /* if can't get parameters, return conservative bound plus zlib wrapper */ if (strm == Z_NULL || strm->state == Z_NULL) return complen + 6; /* compute wrapper length */ s = strm->state; switch (s->wrap) { case 0: /* raw deflate */ wraplen = 0; break; case 1: /* zlib wrapper */ wraplen = 6 + (s->strstart ? 4 : 0); break; case 2: /* gzip wrapper */ wraplen = 18; if (s->gzhead != Z_NULL) { /* user-supplied gzip header */ if (s->gzhead->extra != Z_NULL) wraplen += 2 + s->gzhead->extra_len; str = s->gzhead->name; if (str != Z_NULL) do { wraplen++; } while (*str++); str = s->gzhead->comment; if (str != Z_NULL) do { wraplen++; } while (*str++); if (s->gzhead->hcrc) wraplen += 2; } break; default: /* for compiler happiness */ wraplen = 6; } /* if not default parameters, return conservative bound */ if (s->w_bits != 15 || s->hash_bits != 8 + 7) return complen + wraplen; /* default settings: return tight bound for that case */ return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) + (sourceLen >> 25) + 13 - 6 + wraplen; } /* ========================================================================= * Put a short in the pending buffer. The 16-bit value is put in MSB order. * IN assertion: the stream state is correct and there is enough room in * pending_buf. */ local void putShortMSB (s, b) deflate_state *s; uInt b; { put_byte(s, (Byte)(b >> 8)); put_byte(s, (Byte)(b & 0xff)); } /* ========================================================================= * Flush as much pending output as possible. All deflate() output goes * through this function so some applications may wish to modify it * to avoid allocating a large strm->next_out buffer and copying into it. * (See also read_buf()). */ local void flush_pending(strm) z_streamp strm; { unsigned len; deflate_state *s = strm->state; _tr_flush_bits(s); len = s->pending; if (len > strm->avail_out) len = strm->avail_out; if (len == 0) return; zmemcpy(strm->next_out, s->pending_out, len); strm->next_out += len; s->pending_out += len; strm->total_out += len; strm->avail_out -= len; s->pending -= len; if (s->pending == 0) { s->pending_out = s->pending_buf; } } /* ========================================================================= */ int ZEXPORT deflate (strm, flush) z_streamp strm; int flush; { int old_flush; /* value of flush param for previous deflate call */ deflate_state *s; if (strm == Z_NULL || strm->state == Z_NULL || flush > Z_BLOCK || flush < 0) { return Z_STREAM_ERROR; } s = strm->state; if (strm->next_out == Z_NULL || (strm->next_in == Z_NULL && strm->avail_in != 0) || (s->status == FINISH_STATE && flush != Z_FINISH)) { ERR_RETURN(strm, Z_STREAM_ERROR); } if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR); s->strm = strm; /* just in case */ old_flush = s->last_flush; s->last_flush = flush; /* Write the header */ if (s->status == INIT_STATE) { #ifdef GZIP if (s->wrap == 2) { strm->adler = crc32(0L, Z_NULL, 0); put_byte(s, 31); put_byte(s, 139); put_byte(s, 8); if (s->gzhead == Z_NULL) { put_byte(s, 0); put_byte(s, 0); put_byte(s, 0); put_byte(s, 0); put_byte(s, 0); put_byte(s, s->level == 9 ? 2 : (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? 4 : 0)); put_byte(s, OS_CODE); s->status = BUSY_STATE; } else { put_byte(s, (s->gzhead->text ? 1 : 0) + (s->gzhead->hcrc ? 2 : 0) + (s->gzhead->extra == Z_NULL ? 0 : 4) + (s->gzhead->name == Z_NULL ? 0 : 8) + (s->gzhead->comment == Z_NULL ? 0 : 16) ); put_byte(s, (Byte)(s->gzhead->time & 0xff)); put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff)); put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff)); put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff)); put_byte(s, s->level == 9 ? 2 : (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? 4 : 0)); put_byte(s, s->gzhead->os & 0xff); if (s->gzhead->extra != Z_NULL) { put_byte(s, s->gzhead->extra_len & 0xff); put_byte(s, (s->gzhead->extra_len >> 8) & 0xff); } if (s->gzhead->hcrc) strm->adler = crc32(strm->adler, s->pending_buf, s->pending); s->gzindex = 0; s->status = EXTRA_STATE; } } else #endif { uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8; uInt level_flags; if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2) level_flags = 0; else if (s->level < 6) level_flags = 1; else if (s->level == 6) level_flags = 2; else level_flags = 3; header |= (level_flags << 6); if (s->strstart != 0) header |= PRESET_DICT; header += 31 - (header % 31); s->status = BUSY_STATE; putShortMSB(s, header); /* Save the adler32 of the preset dictionary: */ if (s->strstart != 0) { putShortMSB(s, (uInt)(strm->adler >> 16)); putShortMSB(s, (uInt)(strm->adler & 0xffff)); } strm->adler = adler32(0L, Z_NULL, 0); } } #ifdef GZIP if (s->status == EXTRA_STATE) { if (s->gzhead->extra != Z_NULL) { uInt beg = s->pending; /* start of bytes to update crc */ while (s->gzindex < (s->gzhead->extra_len & 0xffff)) { if (s->pending == s->pending_buf_size) { if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); flush_pending(strm); beg = s->pending; if (s->pending == s->pending_buf_size) break; } put_byte(s, s->gzhead->extra[s->gzindex]); s->gzindex++; } if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); if (s->gzindex == s->gzhead->extra_len) { s->gzindex = 0; s->status = NAME_STATE; } } else s->status = NAME_STATE; } if (s->status == NAME_STATE) { if (s->gzhead->name != Z_NULL) { uInt beg = s->pending; /* start of bytes to update crc */ int val; do { if (s->pending == s->pending_buf_size) { if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); flush_pending(strm); beg = s->pending; if (s->pending == s->pending_buf_size) { val = 1; break; } } val = s->gzhead->name[s->gzindex++]; put_byte(s, val); } while (val != 0); if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); if (val == 0) { s->gzindex = 0; s->status = COMMENT_STATE; } } else s->status = COMMENT_STATE; } if (s->status == COMMENT_STATE) { if (s->gzhead->comment != Z_NULL) { uInt beg = s->pending; /* start of bytes to update crc */ int val; do { if (s->pending == s->pending_buf_size) { if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); flush_pending(strm); beg = s->pending; if (s->pending == s->pending_buf_size) { val = 1; break; } } val = s->gzhead->comment[s->gzindex++]; put_byte(s, val); } while (val != 0); if (s->gzhead->hcrc && s->pending > beg) strm->adler = crc32(strm->adler, s->pending_buf + beg, s->pending - beg); if (val == 0) s->status = HCRC_STATE; } else s->status = HCRC_STATE; } if (s->status == HCRC_STATE) { if (s->gzhead->hcrc) { if (s->pending + 2 > s->pending_buf_size) flush_pending(strm); if (s->pending + 2 <= s->pending_buf_size) { put_byte(s, (Byte)(strm->adler & 0xff)); put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); strm->adler = crc32(0L, Z_NULL, 0); s->status = BUSY_STATE; } } else s->status = BUSY_STATE; } #endif /* Flush as much pending output as possible */ if (s->pending != 0) { flush_pending(strm); if (strm->avail_out == 0) { /* Since avail_out is 0, deflate will be called again with * more output space, but possibly with both pending and * avail_in equal to zero. There won't be anything to do, * but this is not an error situation so make sure we * return OK instead of BUF_ERROR at next call of deflate: */ s->last_flush = -1; return Z_OK; } /* Make sure there is something to do and avoid duplicate consecutive * flushes. For repeated and useless calls with Z_FINISH, we keep * returning Z_STREAM_END instead of Z_BUF_ERROR. */ } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) && flush != Z_FINISH) { ERR_RETURN(strm, Z_BUF_ERROR); } /* User must not provide more input after the first FINISH: */ if (s->status == FINISH_STATE && strm->avail_in != 0) { ERR_RETURN(strm, Z_BUF_ERROR); } /* Start a new block or continue the current one. */ if (strm->avail_in != 0 || s->lookahead != 0 || (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) { block_state bstate; bstate = s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) : (s->strategy == Z_RLE ? deflate_rle(s, flush) : (*(configuration_table[s->level].func))(s, flush)); if (bstate == finish_started || bstate == finish_done) { s->status = FINISH_STATE; } if (bstate == need_more || bstate == finish_started) { if (strm->avail_out == 0) { s->last_flush = -1; /* avoid BUF_ERROR next call, see above */ } return Z_OK; /* If flush != Z_NO_FLUSH && avail_out == 0, the next call * of deflate should use the same flush parameter to make sure * that the flush is complete. So we don't have to output an * empty block here, this will be done at next call. This also * ensures that for a very small output buffer, we emit at most * one empty block. */ } if (bstate == block_done) { if (flush == Z_PARTIAL_FLUSH) { _tr_align(s); } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */ _tr_stored_block(s, (char*)0, 0L, 0); /* For a full flush, this empty block will be recognized * as a special marker by inflate_sync(). */ if (flush == Z_FULL_FLUSH) { CLEAR_HASH(s); /* forget history */ if (s->lookahead == 0) { s->strstart = 0; s->block_start = 0L; s->insert = 0; } } } flush_pending(strm); if (strm->avail_out == 0) { s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */ return Z_OK; } } } Assert(strm->avail_out > 0, "bug2"); if (flush != Z_FINISH) return Z_OK; if (s->wrap <= 0) return Z_STREAM_END; /* Write the trailer */ #ifdef GZIP if (s->wrap == 2) { put_byte(s, (Byte)(strm->adler & 0xff)); put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); put_byte(s, (Byte)((strm->adler >> 16) & 0xff)); put_byte(s, (Byte)((strm->adler >> 24) & 0xff)); put_byte(s, (Byte)(strm->total_in & 0xff)); put_byte(s, (Byte)((strm->total_in >> 8) & 0xff)); put_byte(s, (Byte)((strm->total_in >> 16) & 0xff)); put_byte(s, (Byte)((strm->total_in >> 24) & 0xff)); } else #endif { putShortMSB(s, (uInt)(strm->adler >> 16)); putShortMSB(s, (uInt)(strm->adler & 0xffff)); } flush_pending(strm); /* If avail_out is zero, the application will call deflate again * to flush the rest. */ if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */ return s->pending != 0 ? Z_OK : Z_STREAM_END; } /* ========================================================================= */ int ZEXPORT deflateEnd (strm) z_streamp strm; { int status; if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; status = strm->state->status; if (status != INIT_STATE && status != EXTRA_STATE && status != NAME_STATE && status != COMMENT_STATE && status != HCRC_STATE && status != BUSY_STATE && status != FINISH_STATE) { return Z_STREAM_ERROR; } /* Deallocate in reverse order of allocations: */ TRY_FREE(strm, strm->state->pending_buf); TRY_FREE(strm, strm->state->head); TRY_FREE(strm, strm->state->prev); TRY_FREE(strm, strm->state->window); ZFREE(strm, strm->state); strm->state = Z_NULL; return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; } /* ========================================================================= * Copy the source state to the destination state. * To simplify the source, this is not supported for 16-bit MSDOS (which * doesn't have enough memory anyway to duplicate compression states). */ int ZEXPORT deflateCopy (dest, source) z_streamp dest; z_streamp source; { #ifdef MAXSEG_64K return Z_STREAM_ERROR; #else deflate_state *ds; deflate_state *ss; ushf *overlay; if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) { return Z_STREAM_ERROR; } ss = source->state; zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream)); ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state)); if (ds == Z_NULL) return Z_MEM_ERROR; dest->state = (struct internal_state FAR *) ds; zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state)); ds->strm = dest; ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte)); ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos)); ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos)); overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2); ds->pending_buf = (uchf *) overlay; if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL || ds->pending_buf == Z_NULL) { deflateEnd (dest); return Z_MEM_ERROR; } /* following zmemcpy do not work for 16-bit MSDOS */ zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte)); zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos)); zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos)); zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size); ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf); ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush); ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize; ds->l_desc.dyn_tree = ds->dyn_ltree; ds->d_desc.dyn_tree = ds->dyn_dtree; ds->bl_desc.dyn_tree = ds->bl_tree; return Z_OK; #endif /* MAXSEG_64K */ } /* =========================================================================== * Read a new buffer from the current input stream, update the adler32 * and total number of bytes read. All deflate() input goes through * this function so some applications may wish to modify it to avoid * allocating a large strm->next_in buffer and copying from it. * (See also flush_pending()). */ local int read_buf(strm, buf, size) z_streamp strm; Bytef *buf; unsigned size; { unsigned len = strm->avail_in; if (len > size) len = size; if (len == 0) return 0; strm->avail_in -= len; zmemcpy(buf, strm->next_in, len); if (strm->state->wrap == 1) { strm->adler = adler32(strm->adler, buf, len); } #ifdef GZIP else if (strm->state->wrap == 2) { strm->adler = crc32(strm->adler, buf, len); } #endif strm->next_in += len; strm->total_in += len; return (int)len; } /* =========================================================================== * Initialize the "longest match" routines for a new zlib stream */ local void lm_init (s) deflate_state *s; { s->window_size = (ulg)2L*s->w_size; CLEAR_HASH(s); /* Set the default configuration parameters: */ s->max_lazy_match = configuration_table[s->level].max_lazy; s->good_match = configuration_table[s->level].good_length; s->nice_match = configuration_table[s->level].nice_length; s->max_chain_length = configuration_table[s->level].max_chain; s->strstart = 0; s->block_start = 0L; s->lookahead = 0; s->insert = 0; s->match_length = s->prev_length = MIN_MATCH-1; s->match_available = 0; s->ins_h = 0; #ifndef FASTEST #ifdef ASMV match_init(); /* initialize the asm code */ #endif #endif } #ifndef FASTEST /* =========================================================================== * Set match_start to the longest match starting at the given string and * return its length. Matches shorter or equal to prev_length are discarded, * in which case the result is equal to prev_length and match_start is * garbage. * IN assertions: cur_match is the head of the hash chain for the current * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 * OUT assertion: the match length is not greater than s->lookahead. */ #ifndef ASMV /* For 80x86 and 680x0, an optimized version will be provided in match.asm or * match.S. The code will be functionally equivalent. */ local uInt longest_match(s, cur_match) deflate_state *s; IPos cur_match; /* current match */ { unsigned chain_length = s->max_chain_length;/* max hash chain length */ register Bytef *scan = s->window + s->strstart; /* current string */ register Bytef *match; /* matched string */ register int len; /* length of current match */ int best_len = s->prev_length; /* best match length so far */ int nice_match = s->nice_match; /* stop if match long enough */ IPos limit = s->strstart > (IPos)MAX_DIST(s) ? s->strstart - (IPos)MAX_DIST(s) : NIL; /* Stop when cur_match becomes <= limit. To simplify the code, * we prevent matches with the string of window index 0. */ Posf *prev = s->prev; uInt wmask = s->w_mask; #ifdef UNALIGNED_OK /* Compare two bytes at a time. Note: this is not always beneficial. * Try with and without -DUNALIGNED_OK to check. */ register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1; register ush scan_start = *(ushf*)scan; register ush scan_end = *(ushf*)(scan+best_len-1); #else register Bytef *strend = s->window + s->strstart + MAX_MATCH; register Byte scan_end1 = scan[best_len-1]; register Byte scan_end = scan[best_len]; #endif /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. * It is easy to get rid of this optimization if necessary. */ Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); /* Do not waste too much time if we already have a good match: */ if (s->prev_length >= s->good_match) { chain_length >>= 2; } /* Do not look for matches beyond the end of the input. This is necessary * to make deflate deterministic. */ if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead; Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); do { Assert(cur_match < s->strstart, "no future"); match = s->window + cur_match; /* Skip to next match if the match length cannot increase * or if the match length is less than 2. Note that the checks below * for insufficient lookahead only occur occasionally for performance * reasons. Therefore uninitialized memory will be accessed, and * conditional jumps will be made that depend on those values. * However the length of the match is limited to the lookahead, so * the output of deflate is not affected by the uninitialized values. */ #if (defined(UNALIGNED_OK) && MAX_MATCH == 258) /* This code assumes sizeof(unsigned short) == 2. Do not use * UNALIGNED_OK if your compiler uses a different size. */ if (*(ushf*)(match+best_len-1) != scan_end || *(ushf*)match != scan_start) continue; /* It is not necessary to compare scan[2] and match[2] since they are * always equal when the other bytes match, given that the hash keys * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at * strstart+3, +5, ... up to strstart+257. We check for insufficient * lookahead only every 4th comparison; the 128th check will be made * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is * necessary to put more guard bytes at the end of the window, or * to check more often for insufficient lookahead. */ Assert(scan[2] == match[2], "scan[2]?"); scan++, match++; do { } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) && *(ushf*)(scan+=2) == *(ushf*)(match+=2) && *(ushf*)(scan+=2) == *(ushf*)(match+=2) && *(ushf*)(scan+=2) == *(ushf*)(match+=2) && scan < strend); /* The funny "do {}" generates better code on most compilers */ /* Here, scan <= window+strstart+257 */ Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); if (*scan == *match) scan++; len = (MAX_MATCH - 1) - (int)(strend-scan); scan = strend - (MAX_MATCH-1); #else /* UNALIGNED_OK */ if (match[best_len] != scan_end || match[best_len-1] != scan_end1 || *match != *scan || *++match != scan[1]) continue; /* The check at best_len-1 can be removed because it will be made * again later. (This heuristic is not always a win.) * It is not necessary to compare scan[2] and match[2] since they * are always equal when the other bytes match, given that * the hash keys are equal and that HASH_BITS >= 8. */ scan += 2, match++; Assert(*scan == *match, "match[2]?"); /* We check for insufficient lookahead only every 8th comparison; * the 256th check will be made at strstart+258. */ do { } while (*++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && scan < strend); Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); len = MAX_MATCH - (int)(strend - scan); scan = strend - MAX_MATCH; #endif /* UNALIGNED_OK */ if (len > best_len) { s->match_start = cur_match; best_len = len; if (len >= nice_match) break; #ifdef UNALIGNED_OK scan_end = *(ushf*)(scan+best_len-1); #else scan_end1 = scan[best_len-1]; scan_end = scan[best_len]; #endif } } while ((cur_match = prev[cur_match & wmask]) > limit && --chain_length != 0); if ((uInt)best_len <= s->lookahead) return (uInt)best_len; return s->lookahead; } #endif /* ASMV */ #else /* FASTEST */ /* --------------------------------------------------------------------------- * Optimized version for FASTEST only */ local uInt longest_match(s, cur_match) deflate_state *s; IPos cur_match; /* current match */ { register Bytef *scan = s->window + s->strstart; /* current string */ register Bytef *match; /* matched string */ register int len; /* length of current match */ register Bytef *strend = s->window + s->strstart + MAX_MATCH; /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. * It is easy to get rid of this optimization if necessary. */ Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); Assert(cur_match < s->strstart, "no future"); match = s->window + cur_match; /* Return failure if the match length is less than 2: */ if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1; /* The check at best_len-1 can be removed because it will be made * again later. (This heuristic is not always a win.) * It is not necessary to compare scan[2] and match[2] since they * are always equal when the other bytes match, given that * the hash keys are equal and that HASH_BITS >= 8. */ scan += 2, match += 2; Assert(*scan == *match, "match[2]?"); /* We check for insufficient lookahead only every 8th comparison; * the 256th check will be made at strstart+258. */ do { } while (*++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && *++scan == *++match && scan < strend); Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); len = MAX_MATCH - (int)(strend - scan); if (len < MIN_MATCH) return MIN_MATCH - 1; s->match_start = cur_match; return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead; } #endif /* FASTEST */ #ifdef DEBUG /* =========================================================================== * Check that the match at match_start is indeed a match. */ local void check_match(s, start, match, length) deflate_state *s; IPos start, match; int length; { /* check that the match is indeed a match */ if (zmemcmp(s->window + match, s->window + start, length) != EQUAL) { fprintf(stderr, " start %u, match %u, length %d\n", start, match, length); do { fprintf(stderr, "%c%c", s->window[match++], s->window[start++]); } while (--length != 0); z_error("invalid match"); } if (z_verbose > 1) { fprintf(stderr,"\\[%d,%d]", start-match, length); do { putc(s->window[start++], stderr); } while (--length != 0); } } #else # define check_match(s, start, match, length) #endif /* DEBUG */ /* =========================================================================== * Fill the window when the lookahead becomes insufficient. * Updates strstart and lookahead. * * IN assertion: lookahead < MIN_LOOKAHEAD * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD * At least one byte has been read, or avail_in == 0; reads are * performed for at least two bytes (required for the zip translate_eol * option -- not supported here). */ local void fill_window(s) deflate_state *s; { register unsigned n, m; register Posf *p; unsigned more; /* Amount of free space at the end of the window. */ uInt wsize = s->w_size; Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead"); do { more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart); /* Deal with !@#$% 64K limit: */ if (sizeof(int) <= 2) { if (more == 0 && s->strstart == 0 && s->lookahead == 0) { more = wsize; } else if (more == (unsigned)(-1)) { /* Very unlikely, but possible on 16 bit machine if * strstart == 0 && lookahead == 1 (input done a byte at time) */ more--; } } /* If the window is almost full and there is insufficient lookahead, * move the upper half to the lower one to make room in the upper half. */ if (s->strstart >= wsize+MAX_DIST(s)) { zmemcpy(s->window, s->window+wsize, (unsigned)wsize); s->match_start -= wsize; s->strstart -= wsize; /* we now have strstart >= MAX_DIST */ s->block_start -= (long) wsize; /* Slide the hash table (could be avoided with 32 bit values at the expense of memory usage). We slide even when level == 0 to keep the hash table consistent if we switch back to level > 0 later. (Using level 0 permanently is not an optimal usage of zlib, so we don't care about this pathological case.) */ n = s->hash_size; p = &s->head[n]; do { m = *--p; *p = (Pos)(m >= wsize ? m-wsize : NIL); } while (--n); n = wsize; #ifndef FASTEST p = &s->prev[n]; do { m = *--p; *p = (Pos)(m >= wsize ? m-wsize : NIL); /* If n is not on any hash chain, prev[n] is garbage but * its value will never be used. */ } while (--n); #endif more += wsize; } if (s->strm->avail_in == 0) break; /* If there was no sliding: * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && * more == window_size - lookahead - strstart * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) * => more >= window_size - 2*WSIZE + 2 * In the BIG_MEM or MMAP case (not yet supported), * window_size == input_size + MIN_LOOKAHEAD && * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. * Otherwise, window_size == 2*WSIZE so more >= 2. * If there was sliding, more >= WSIZE. So in all cases, more >= 2. */ Assert(more >= 2, "more < 2"); n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more); s->lookahead += n; /* Initialize the hash value now that we have some input: */ if (s->lookahead + s->insert >= MIN_MATCH) { uInt str = s->strstart - s->insert; s->ins_h = s->window[str]; UPDATE_HASH(s, s->ins_h, s->window[str + 1]); #if MIN_MATCH != 3 Call UPDATE_HASH() MIN_MATCH-3 more times #endif while (s->insert) { UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); #ifndef FASTEST s->prev[str & s->w_mask] = s->head[s->ins_h]; #endif s->head[s->ins_h] = (Pos)str; str++; s->insert--; if (s->lookahead + s->insert < MIN_MATCH) break; } } /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, * but this is not important since only literal bytes will be emitted. */ } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0); /* If the WIN_INIT bytes after the end of the current data have never been * written, then zero those bytes in order to avoid memory check reports of * the use of uninitialized (or uninitialised as Julian writes) bytes by * the longest match routines. Update the high water mark for the next * time through here. WIN_INIT is set to MAX_MATCH since the longest match * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead. */ if (s->high_water < s->window_size) { ulg curr = s->strstart + (ulg)(s->lookahead); ulg init; if (s->high_water < curr) { /* Previous high water mark below current data -- zero WIN_INIT * bytes or up to end of window, whichever is less. */ init = s->window_size - curr; if (init > WIN_INIT) init = WIN_INIT; zmemzero(s->window + curr, (unsigned)init); s->high_water = curr + init; } else if (s->high_water < (ulg)curr + WIN_INIT) { /* High water mark at or above current data, but below current data * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up * to end of window, whichever is less. */ init = (ulg)curr + WIN_INIT - s->high_water; if (init > s->window_size - s->high_water) init = s->window_size - s->high_water; zmemzero(s->window + s->high_water, (unsigned)init); s->high_water += init; } } Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD, "not enough room for search"); } /* =========================================================================== * Flush the current block, with given end-of-file flag. * IN assertion: strstart is set to the end of the current match. */ #define FLUSH_BLOCK_ONLY(s, last) { \ _tr_flush_block(s, (s->block_start >= 0L ? \ (charf *)&s->window[(unsigned)s->block_start] : \ (charf *)Z_NULL), \ (ulg)((long)s->strstart - s->block_start), \ (last)); \ s->block_start = s->strstart; \ flush_pending(s->strm); \ Tracev((stderr,"[FLUSH]")); \ } /* Same but force premature exit if necessary. */ #define FLUSH_BLOCK(s, last) { \ FLUSH_BLOCK_ONLY(s, last); \ if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \ } /* =========================================================================== * Copy without compression as much as possible from the input stream, return * the current block state. * This function does not insert new strings in the dictionary since * uncompressible data is probably not useful. This function is used * only for the level=0 compression option. * NOTE: this function should be optimized to avoid extra copying from * window to pending_buf. */ local block_state deflate_stored(s, flush) deflate_state *s; int flush; { /* Stored blocks are limited to 0xffff bytes, pending_buf is limited * to pending_buf_size, and each stored block has a 5 byte header: */ ulg max_block_size = 0xffff; ulg max_start; if (max_block_size > s->pending_buf_size - 5) { max_block_size = s->pending_buf_size - 5; } /* Copy as much as possible from input to output: */ for (;;) { /* Fill the window as much as possible: */ if (s->lookahead <= 1) { Assert(s->strstart < s->w_size+MAX_DIST(s) || s->block_start >= (long)s->w_size, "slide too late"); fill_window(s); if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more; if (s->lookahead == 0) break; /* flush the current block */ } Assert(s->block_start >= 0L, "block gone"); s->strstart += s->lookahead; s->lookahead = 0; /* Emit a stored block if pending_buf will be full: */ max_start = s->block_start + max_block_size; if (s->strstart == 0 || (ulg)s->strstart >= max_start) { /* strstart == 0 is possible when wraparound on 16-bit machine */ s->lookahead = (uInt)(s->strstart - max_start); s->strstart = (uInt)max_start; FLUSH_BLOCK(s, 0); } /* Flush if we may have to slide, otherwise block_start may become * negative and the data will be gone: */ if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) { FLUSH_BLOCK(s, 0); } } s->insert = 0; if (flush == Z_FINISH) { FLUSH_BLOCK(s, 1); return finish_done; } if ((long)s->strstart > s->block_start) FLUSH_BLOCK(s, 0); return block_done; } /* =========================================================================== * Compress as much as possible from the input stream, return the current * block state. * This function does not perform lazy evaluation of matches and inserts * new strings in the dictionary only for unmatched strings or for short * matches. It is used only for the fast compression options. */ local block_state deflate_fast(s, flush) deflate_state *s; int flush; { IPos hash_head; /* head of the hash chain */ int bflush; /* set if current block must be flushed */ for (;;) { /* Make sure that we always have enough lookahead, except * at the end of the input file. We need MAX_MATCH bytes * for the next match, plus MIN_MATCH bytes to insert the * string following the next match. */ if (s->lookahead < MIN_LOOKAHEAD) { fill_window(s); if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { return need_more; } if (s->lookahead == 0) break; /* flush the current block */ } /* Insert the string window[strstart .. strstart+2] in the * dictionary, and set hash_head to the head of the hash chain: */ hash_head = NIL; if (s->lookahead >= MIN_MATCH) { INSERT_STRING(s, s->strstart, hash_head); } /* Find the longest match, discarding those <= prev_length. * At this point we have always match_length < MIN_MATCH */ if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) { /* To simplify the code, we prevent matches with the string * of window index 0 (in particular we have to avoid a match * of the string with itself at the start of the input file). */ s->match_length = longest_match (s, hash_head); /* longest_match() sets match_start */ } if (s->match_length >= MIN_MATCH) { check_match(s, s->strstart, s->match_start, s->match_length); _tr_tally_dist(s, s->strstart - s->match_start, s->match_length - MIN_MATCH, bflush); s->lookahead -= s->match_length; /* Insert new strings in the hash table only if the match length * is not too large. This saves time but degrades compression. */ #ifndef FASTEST if (s->match_length <= s->max_insert_length && s->lookahead >= MIN_MATCH) { s->match_length--; /* string at strstart already in table */ do { s->strstart++; INSERT_STRING(s, s->strstart, hash_head); /* strstart never exceeds WSIZE-MAX_MATCH, so there are * always MIN_MATCH bytes ahead. */ } while (--s->match_length != 0); s->strstart++; } else #endif { s->strstart += s->match_length; s->match_length = 0; s->ins_h = s->window[s->strstart]; UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); #if MIN_MATCH != 3 Call UPDATE_HASH() MIN_MATCH-3 more times #endif /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not * matter since it will be recomputed at next deflate call. */ } } else { /* No match, output a literal byte */ Tracevv((stderr,"%c", s->window[s->strstart])); _tr_tally_lit (s, s->window[s->strstart], bflush); s->lookahead--; s->strstart++; } if (bflush) FLUSH_BLOCK(s, 0); } s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1; if (flush == Z_FINISH) { FLUSH_BLOCK(s, 1); return finish_done; } if (s->last_lit) FLUSH_BLOCK(s, 0); return block_done; } #ifndef FASTEST /* =========================================================================== * Same as above, but achieves better compression. We use a lazy * evaluation for matches: a match is finally adopted only if there is * no better match at the next window position. */ local block_state deflate_slow(s, flush) deflate_state *s; int flush; { IPos hash_head; /* head of hash chain */ int bflush; /* set if current block must be flushed */ /* Process the input block. */ for (;;) { /* Make sure that we always have enough lookahead, except * at the end of the input file. We need MAX_MATCH bytes * for the next match, plus MIN_MATCH bytes to insert the * string following the next match. */ if (s->lookahead < MIN_LOOKAHEAD) { fill_window(s); if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { return need_more; } if (s->lookahead == 0) break; /* flush the current block */ } /* Insert the string window[strstart .. strstart+2] in the * dictionary, and set hash_head to the head of the hash chain: */ hash_head = NIL; if (s->lookahead >= MIN_MATCH) { INSERT_STRING(s, s->strstart, hash_head); } /* Find the longest match, discarding those <= prev_length. */ s->prev_length = s->match_length, s->prev_match = s->match_start; s->match_length = MIN_MATCH-1; if (hash_head != NIL && s->prev_length < s->max_lazy_match && s->strstart - hash_head <= MAX_DIST(s)) { /* To simplify the code, we prevent matches with the string * of window index 0 (in particular we have to avoid a match * of the string with itself at the start of the input file). */ s->match_length = longest_match (s, hash_head); /* longest_match() sets match_start */ if (s->match_length <= 5 && (s->strategy == Z_FILTERED #if TOO_FAR <= 32767 || (s->match_length == MIN_MATCH && s->strstart - s->match_start > TOO_FAR) #endif )) { /* If prev_match is also MIN_MATCH, match_start is garbage * but we will ignore the current match anyway. */ s->match_length = MIN_MATCH-1; } } /* If there was a match at the previous step and the current * match is not better, output the previous match: */ if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) { uInt max_insert = s->strstart + s->lookahead - MIN_MATCH; /* Do not insert strings in hash table beyond this. */ check_match(s, s->strstart-1, s->prev_match, s->prev_length); _tr_tally_dist(s, s->strstart -1 - s->prev_match, s->prev_length - MIN_MATCH, bflush); /* Insert in hash table all strings up to the end of the match. * strstart-1 and strstart are already inserted. If there is not * enough lookahead, the last two strings are not inserted in * the hash table. */ s->lookahead -= s->prev_length-1; s->prev_length -= 2; do { if (++s->strstart <= max_insert) { INSERT_STRING(s, s->strstart, hash_head); } } while (--s->prev_length != 0); s->match_available = 0; s->match_length = MIN_MATCH-1; s->strstart++; if (bflush) FLUSH_BLOCK(s, 0); } else if (s->match_available) { /* If there was no match at the previous position, output a * single literal. If there was a match but the current match * is longer, truncate the previous match to a single literal. */ Tracevv((stderr,"%c", s->window[s->strstart-1])); _tr_tally_lit(s, s->window[s->strstart-1], bflush); if (bflush) { FLUSH_BLOCK_ONLY(s, 0); } s->strstart++; s->lookahead--; if (s->strm->avail_out == 0) return need_more; } else { /* There is no previous match to compare with, wait for * the next step to decide. */ s->match_available = 1; s->strstart++; s->lookahead--; } } Assert (flush != Z_NO_FLUSH, "no flush?"); if (s->match_available) { Tracevv((stderr,"%c", s->window[s->strstart-1])); _tr_tally_lit(s, s->window[s->strstart-1], bflush); s->match_available = 0; } s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1; if (flush == Z_FINISH) { FLUSH_BLOCK(s, 1); return finish_done; } if (s->last_lit) FLUSH_BLOCK(s, 0); return block_done; } #endif /* FASTEST */ /* =========================================================================== * For Z_RLE, simply look for runs of bytes, generate matches only of distance * one. Do not maintain a hash table. (It will be regenerated if this run of * deflate switches away from Z_RLE.) */ local block_state deflate_rle(s, flush) deflate_state *s; int flush; { int bflush; /* set if current block must be flushed */ uInt prev; /* byte at distance one to match */ Bytef *scan, *strend; /* scan goes up to strend for length of run */ for (;;) { /* Make sure that we always have enough lookahead, except * at the end of the input file. We need MAX_MATCH bytes * for the longest run, plus one for the unrolled loop. */ if (s->lookahead <= MAX_MATCH) { fill_window(s); if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) { return need_more; } if (s->lookahead == 0) break; /* flush the current block */ } /* See how many times the previous byte repeats */ s->match_length = 0; if (s->lookahead >= MIN_MATCH && s->strstart > 0) { scan = s->window + s->strstart - 1; prev = *scan; if (prev == *++scan && prev == *++scan && prev == *++scan) { strend = s->window + s->strstart + MAX_MATCH; do { } while (prev == *++scan && prev == *++scan && prev == *++scan && prev == *++scan && prev == *++scan && prev == *++scan && prev == *++scan && prev == *++scan && scan < strend); s->match_length = MAX_MATCH - (int)(strend - scan); if (s->match_length > s->lookahead) s->match_length = s->lookahead; } Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan"); } /* Emit match if have run of MIN_MATCH or longer, else emit literal */ if (s->match_length >= MIN_MATCH) { check_match(s, s->strstart, s->strstart - 1, s->match_length); _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush); s->lookahead -= s->match_length; s->strstart += s->match_length; s->match_length = 0; } else { /* No match, output a literal byte */ Tracevv((stderr,"%c", s->window[s->strstart])); _tr_tally_lit (s, s->window[s->strstart], bflush); s->lookahead--; s->strstart++; } if (bflush) FLUSH_BLOCK(s, 0); } s->insert = 0; if (flush == Z_FINISH) { FLUSH_BLOCK(s, 1); return finish_done; } if (s->last_lit) FLUSH_BLOCK(s, 0); return block_done; } /* =========================================================================== * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table. * (It will be regenerated if this run of deflate switches away from Huffman.) */ local block_state deflate_huff(s, flush) deflate_state *s; int flush; { int bflush; /* set if current block must be flushed */ for (;;) { /* Make sure that we have a literal to write. */ if (s->lookahead == 0) { fill_window(s); if (s->lookahead == 0) { if (flush == Z_NO_FLUSH) return need_more; break; /* flush the current block */ } } /* Output a literal byte */ s->match_length = 0; Tracevv((stderr,"%c", s->window[s->strstart])); _tr_tally_lit (s, s->window[s->strstart], bflush); s->lookahead--; s->strstart++; if (bflush) FLUSH_BLOCK(s, 0); } s->insert = 0; if (flush == Z_FINISH) { FLUSH_BLOCK(s, 1); return finish_done; } if (s->last_lit) FLUSH_BLOCK(s, 0); return block_done; } /* END OF DUMP OF mz_deflate.c*/ /* START OF DUMP OF mz_crc32.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* crc32.c -- compute the CRC-32 of a data stream * Copyright (C) 1995-2006, 2010, 2011, 2012 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h * * Thanks to Rodney Brown for his contribution of faster * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing * tables for updating the shift register in one step with three exclusive-ors * instead of four steps with four exclusive-ors. This results in about a * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3. */ /* @(#) $Id$ */ /* Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore protection on the static variables used to control the first-use generation of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should first call get_crc_table() to initialize the tables before allowing more than one thread to use crc32(). DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h. */ #ifdef MAKECRCH # include # ifndef DYNAMIC_CRC_TABLE # define DYNAMIC_CRC_TABLE # endif /* !DYNAMIC_CRC_TABLE */ #endif /* MAKECRCH */ #define local static /* Definitions for doing the crc four data bytes at a time. */ #if !defined(NOBYFOUR) && defined(Z_U4) # define BYFOUR #endif #ifdef BYFOUR local unsigned long crc32_little OF((unsigned long, const unsigned char FAR *, unsigned)); local unsigned long crc32_big OF((unsigned long, const unsigned char FAR *, unsigned)); # define TBLS 8 #else # define TBLS 1 #endif /* BYFOUR */ /* Local functions for crc concatenation */ local unsigned long gf2_matrix_times OF((unsigned long *mat, unsigned long vec)); local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat)); local uLong crc32_combine_ OF((uLong crc1, uLong crc2, z_off64_t len2)); #ifdef DYNAMIC_CRC_TABLE local volatile int crc_table_empty = 1; local z_crc_t FAR crc_table[TBLS][256]; local void make_crc_table OF((void)); #ifdef MAKECRCH local void write_table OF((FILE *, const z_crc_t FAR *)); #endif /* MAKECRCH */ /* Generate tables for a byte-wise 32-bit CRC calculation on the polynomial: x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1. Polynomials over GF(2) are represented in binary, one bit per coefficient, with the lowest powers in the most significant bit. Then adding polynomials is just exclusive-or, and multiplying a polynomial by x is a right shift by one. If we call the above polynomial p, and represent a byte as the polynomial q, also with the lowest power in the most significant bit (so the byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p, where a mod b means the remainder after dividing a by b. This calculation is done using the shift-register method of multiplying and taking the remainder. The register is initialized to zero, and for each incoming bit, x^32 is added mod p to the register if the bit is a one (where x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by x (which is shifting right by one and adding x^32 mod p if the bit shifted out is a one). We start with the highest power (least significant bit) of q and repeat for all eight bits of q. The first table is simply the CRC of all possible eight bit values. This is all the information needed to generate CRCs on data a byte at a time for all combinations of CRC register values and incoming bytes. The remaining tables allow for word-at-a-time CRC calculation for both big-endian and little- endian machines, where a word is four bytes. */ local void make_crc_table() { z_crc_t c; int n, k; z_crc_t poly; /* polynomial exclusive-or pattern */ /* terms of polynomial defining this crc (except x^32): */ static volatile int first = 1; /* flag to limit concurrent making */ static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26}; /* See if another task is already doing this (not thread-safe, but better than nothing -- significantly reduces duration of vulnerability in case the advice about DYNAMIC_CRC_TABLE is ignored) */ if (first) { first = 0; /* make exclusive-or pattern from polynomial (0xedb88320UL) */ poly = 0; for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++) poly |= (z_crc_t)1 << (31 - p[n]); /* generate a crc for every 8-bit value */ for (n = 0; n < 256; n++) { c = (z_crc_t)n; for (k = 0; k < 8; k++) c = c & 1 ? poly ^ (c >> 1) : c >> 1; crc_table[0][n] = c; } #ifdef BYFOUR /* generate crc for each value followed by one, two, and three zeros, and then the byte reversal of those as well as the first table */ for (n = 0; n < 256; n++) { c = crc_table[0][n]; crc_table[4][n] = ZSWAP32(c); for (k = 1; k < 4; k++) { c = crc_table[0][c & 0xff] ^ (c >> 8); crc_table[k][n] = c; crc_table[k + 4][n] = ZSWAP32(c); } } #endif /* BYFOUR */ crc_table_empty = 0; } else { /* not first */ /* wait for the other guy to finish (not efficient, but rare) */ while (crc_table_empty) ; } #ifdef MAKECRCH /* write out CRC tables to crc32.h */ { FILE *out; out = fopen("crc32.h", "w"); if (out == NULL) return; fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n"); fprintf(out, " * Generated automatically by crc32.c\n */\n\n"); fprintf(out, "local const z_crc_t FAR "); fprintf(out, "crc_table[TBLS][256] =\n{\n {\n"); write_table(out, crc_table[0]); # ifdef BYFOUR fprintf(out, "#ifdef BYFOUR\n"); for (k = 1; k < 8; k++) { fprintf(out, " },\n {\n"); write_table(out, crc_table[k]); } fprintf(out, "#endif\n"); # endif /* BYFOUR */ fprintf(out, " }\n};\n"); fclose(out); } #endif /* MAKECRCH */ } #ifdef MAKECRCH local void write_table(out, table) FILE *out; const z_crc_t FAR *table; { int n; for (n = 0; n < 256; n++) fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : " ", (unsigned long)(table[n]), n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", ")); } #endif /* MAKECRCH */ #else /* !DYNAMIC_CRC_TABLE */ /* ======================================================================== * Tables of CRC-32s of all single-byte values, made by make_crc_table(). */ /* START OF DUMP OF mz_crc32.h*/ /* crc32.h -- tables for rapid CRC calculation * Generated automatically by crc32.c */ local const z_crc_t FAR crc_table[TBLS][256] = { { 0x00000000UL, 0x77073096UL, 0xee0e612cUL, 0x990951baUL, 0x076dc419UL, 0x706af48fUL, 0xe963a535UL, 0x9e6495a3UL, 0x0edb8832UL, 0x79dcb8a4UL, 0xe0d5e91eUL, 0x97d2d988UL, 0x09b64c2bUL, 0x7eb17cbdUL, 0xe7b82d07UL, 0x90bf1d91UL, 0x1db71064UL, 0x6ab020f2UL, 0xf3b97148UL, 0x84be41deUL, 0x1adad47dUL, 0x6ddde4ebUL, 0xf4d4b551UL, 0x83d385c7UL, 0x136c9856UL, 0x646ba8c0UL, 0xfd62f97aUL, 0x8a65c9ecUL, 0x14015c4fUL, 0x63066cd9UL, 0xfa0f3d63UL, 0x8d080df5UL, 0x3b6e20c8UL, 0x4c69105eUL, 0xd56041e4UL, 0xa2677172UL, 0x3c03e4d1UL, 0x4b04d447UL, 0xd20d85fdUL, 0xa50ab56bUL, 0x35b5a8faUL, 0x42b2986cUL, 0xdbbbc9d6UL, 0xacbcf940UL, 0x32d86ce3UL, 0x45df5c75UL, 0xdcd60dcfUL, 0xabd13d59UL, 0x26d930acUL, 0x51de003aUL, 0xc8d75180UL, 0xbfd06116UL, 0x21b4f4b5UL, 0x56b3c423UL, 0xcfba9599UL, 0xb8bda50fUL, 0x2802b89eUL, 0x5f058808UL, 0xc60cd9b2UL, 0xb10be924UL, 0x2f6f7c87UL, 0x58684c11UL, 0xc1611dabUL, 0xb6662d3dUL, 0x76dc4190UL, 0x01db7106UL, 0x98d220bcUL, 0xefd5102aUL, 0x71b18589UL, 0x06b6b51fUL, 0x9fbfe4a5UL, 0xe8b8d433UL, 0x7807c9a2UL, 0x0f00f934UL, 0x9609a88eUL, 0xe10e9818UL, 0x7f6a0dbbUL, 0x086d3d2dUL, 0x91646c97UL, 0xe6635c01UL, 0x6b6b51f4UL, 0x1c6c6162UL, 0x856530d8UL, 0xf262004eUL, 0x6c0695edUL, 0x1b01a57bUL, 0x8208f4c1UL, 0xf50fc457UL, 0x65b0d9c6UL, 0x12b7e950UL, 0x8bbeb8eaUL, 0xfcb9887cUL, 0x62dd1ddfUL, 0x15da2d49UL, 0x8cd37cf3UL, 0xfbd44c65UL, 0x4db26158UL, 0x3ab551ceUL, 0xa3bc0074UL, 0xd4bb30e2UL, 0x4adfa541UL, 0x3dd895d7UL, 0xa4d1c46dUL, 0xd3d6f4fbUL, 0x4369e96aUL, 0x346ed9fcUL, 0xad678846UL, 0xda60b8d0UL, 0x44042d73UL, 0x33031de5UL, 0xaa0a4c5fUL, 0xdd0d7cc9UL, 0x5005713cUL, 0x270241aaUL, 0xbe0b1010UL, 0xc90c2086UL, 0x5768b525UL, 0x206f85b3UL, 0xb966d409UL, 0xce61e49fUL, 0x5edef90eUL, 0x29d9c998UL, 0xb0d09822UL, 0xc7d7a8b4UL, 0x59b33d17UL, 0x2eb40d81UL, 0xb7bd5c3bUL, 0xc0ba6cadUL, 0xedb88320UL, 0x9abfb3b6UL, 0x03b6e20cUL, 0x74b1d29aUL, 0xead54739UL, 0x9dd277afUL, 0x04db2615UL, 0x73dc1683UL, 0xe3630b12UL, 0x94643b84UL, 0x0d6d6a3eUL, 0x7a6a5aa8UL, 0xe40ecf0bUL, 0x9309ff9dUL, 0x0a00ae27UL, 0x7d079eb1UL, 0xf00f9344UL, 0x8708a3d2UL, 0x1e01f268UL, 0x6906c2feUL, 0xf762575dUL, 0x806567cbUL, 0x196c3671UL, 0x6e6b06e7UL, 0xfed41b76UL, 0x89d32be0UL, 0x10da7a5aUL, 0x67dd4accUL, 0xf9b9df6fUL, 0x8ebeeff9UL, 0x17b7be43UL, 0x60b08ed5UL, 0xd6d6a3e8UL, 0xa1d1937eUL, 0x38d8c2c4UL, 0x4fdff252UL, 0xd1bb67f1UL, 0xa6bc5767UL, 0x3fb506ddUL, 0x48b2364bUL, 0xd80d2bdaUL, 0xaf0a1b4cUL, 0x36034af6UL, 0x41047a60UL, 0xdf60efc3UL, 0xa867df55UL, 0x316e8eefUL, 0x4669be79UL, 0xcb61b38cUL, 0xbc66831aUL, 0x256fd2a0UL, 0x5268e236UL, 0xcc0c7795UL, 0xbb0b4703UL, 0x220216b9UL, 0x5505262fUL, 0xc5ba3bbeUL, 0xb2bd0b28UL, 0x2bb45a92UL, 0x5cb36a04UL, 0xc2d7ffa7UL, 0xb5d0cf31UL, 0x2cd99e8bUL, 0x5bdeae1dUL, 0x9b64c2b0UL, 0xec63f226UL, 0x756aa39cUL, 0x026d930aUL, 0x9c0906a9UL, 0xeb0e363fUL, 0x72076785UL, 0x05005713UL, 0x95bf4a82UL, 0xe2b87a14UL, 0x7bb12baeUL, 0x0cb61b38UL, 0x92d28e9bUL, 0xe5d5be0dUL, 0x7cdcefb7UL, 0x0bdbdf21UL, 0x86d3d2d4UL, 0xf1d4e242UL, 0x68ddb3f8UL, 0x1fda836eUL, 0x81be16cdUL, 0xf6b9265bUL, 0x6fb077e1UL, 0x18b74777UL, 0x88085ae6UL, 0xff0f6a70UL, 0x66063bcaUL, 0x11010b5cUL, 0x8f659effUL, 0xf862ae69UL, 0x616bffd3UL, 0x166ccf45UL, 0xa00ae278UL, 0xd70dd2eeUL, 0x4e048354UL, 0x3903b3c2UL, 0xa7672661UL, 0xd06016f7UL, 0x4969474dUL, 0x3e6e77dbUL, 0xaed16a4aUL, 0xd9d65adcUL, 0x40df0b66UL, 0x37d83bf0UL, 0xa9bcae53UL, 0xdebb9ec5UL, 0x47b2cf7fUL, 0x30b5ffe9UL, 0xbdbdf21cUL, 0xcabac28aUL, 0x53b39330UL, 0x24b4a3a6UL, 0xbad03605UL, 0xcdd70693UL, 0x54de5729UL, 0x23d967bfUL, 0xb3667a2eUL, 0xc4614ab8UL, 0x5d681b02UL, 0x2a6f2b94UL, 0xb40bbe37UL, 0xc30c8ea1UL, 0x5a05df1bUL, 0x2d02ef8dUL #ifdef BYFOUR }, { 0x00000000UL, 0x191b3141UL, 0x32366282UL, 0x2b2d53c3UL, 0x646cc504UL, 0x7d77f445UL, 0x565aa786UL, 0x4f4196c7UL, 0xc8d98a08UL, 0xd1c2bb49UL, 0xfaefe88aUL, 0xe3f4d9cbUL, 0xacb54f0cUL, 0xb5ae7e4dUL, 0x9e832d8eUL, 0x87981ccfUL, 0x4ac21251UL, 0x53d92310UL, 0x78f470d3UL, 0x61ef4192UL, 0x2eaed755UL, 0x37b5e614UL, 0x1c98b5d7UL, 0x05838496UL, 0x821b9859UL, 0x9b00a918UL, 0xb02dfadbUL, 0xa936cb9aUL, 0xe6775d5dUL, 0xff6c6c1cUL, 0xd4413fdfUL, 0xcd5a0e9eUL, 0x958424a2UL, 0x8c9f15e3UL, 0xa7b24620UL, 0xbea97761UL, 0xf1e8e1a6UL, 0xe8f3d0e7UL, 0xc3de8324UL, 0xdac5b265UL, 0x5d5daeaaUL, 0x44469febUL, 0x6f6bcc28UL, 0x7670fd69UL, 0x39316baeUL, 0x202a5aefUL, 0x0b07092cUL, 0x121c386dUL, 0xdf4636f3UL, 0xc65d07b2UL, 0xed705471UL, 0xf46b6530UL, 0xbb2af3f7UL, 0xa231c2b6UL, 0x891c9175UL, 0x9007a034UL, 0x179fbcfbUL, 0x0e848dbaUL, 0x25a9de79UL, 0x3cb2ef38UL, 0x73f379ffUL, 0x6ae848beUL, 0x41c51b7dUL, 0x58de2a3cUL, 0xf0794f05UL, 0xe9627e44UL, 0xc24f2d87UL, 0xdb541cc6UL, 0x94158a01UL, 0x8d0ebb40UL, 0xa623e883UL, 0xbf38d9c2UL, 0x38a0c50dUL, 0x21bbf44cUL, 0x0a96a78fUL, 0x138d96ceUL, 0x5ccc0009UL, 0x45d73148UL, 0x6efa628bUL, 0x77e153caUL, 0xbabb5d54UL, 0xa3a06c15UL, 0x888d3fd6UL, 0x91960e97UL, 0xded79850UL, 0xc7cca911UL, 0xece1fad2UL, 0xf5facb93UL, 0x7262d75cUL, 0x6b79e61dUL, 0x4054b5deUL, 0x594f849fUL, 0x160e1258UL, 0x0f152319UL, 0x243870daUL, 0x3d23419bUL, 0x65fd6ba7UL, 0x7ce65ae6UL, 0x57cb0925UL, 0x4ed03864UL, 0x0191aea3UL, 0x188a9fe2UL, 0x33a7cc21UL, 0x2abcfd60UL, 0xad24e1afUL, 0xb43fd0eeUL, 0x9f12832dUL, 0x8609b26cUL, 0xc94824abUL, 0xd05315eaUL, 0xfb7e4629UL, 0xe2657768UL, 0x2f3f79f6UL, 0x362448b7UL, 0x1d091b74UL, 0x04122a35UL, 0x4b53bcf2UL, 0x52488db3UL, 0x7965de70UL, 0x607eef31UL, 0xe7e6f3feUL, 0xfefdc2bfUL, 0xd5d0917cUL, 0xcccba03dUL, 0x838a36faUL, 0x9a9107bbUL, 0xb1bc5478UL, 0xa8a76539UL, 0x3b83984bUL, 0x2298a90aUL, 0x09b5fac9UL, 0x10aecb88UL, 0x5fef5d4fUL, 0x46f46c0eUL, 0x6dd93fcdUL, 0x74c20e8cUL, 0xf35a1243UL, 0xea412302UL, 0xc16c70c1UL, 0xd8774180UL, 0x9736d747UL, 0x8e2de606UL, 0xa500b5c5UL, 0xbc1b8484UL, 0x71418a1aUL, 0x685abb5bUL, 0x4377e898UL, 0x5a6cd9d9UL, 0x152d4f1eUL, 0x0c367e5fUL, 0x271b2d9cUL, 0x3e001cddUL, 0xb9980012UL, 0xa0833153UL, 0x8bae6290UL, 0x92b553d1UL, 0xddf4c516UL, 0xc4eff457UL, 0xefc2a794UL, 0xf6d996d5UL, 0xae07bce9UL, 0xb71c8da8UL, 0x9c31de6bUL, 0x852aef2aUL, 0xca6b79edUL, 0xd37048acUL, 0xf85d1b6fUL, 0xe1462a2eUL, 0x66de36e1UL, 0x7fc507a0UL, 0x54e85463UL, 0x4df36522UL, 0x02b2f3e5UL, 0x1ba9c2a4UL, 0x30849167UL, 0x299fa026UL, 0xe4c5aeb8UL, 0xfdde9ff9UL, 0xd6f3cc3aUL, 0xcfe8fd7bUL, 0x80a96bbcUL, 0x99b25afdUL, 0xb29f093eUL, 0xab84387fUL, 0x2c1c24b0UL, 0x350715f1UL, 0x1e2a4632UL, 0x07317773UL, 0x4870e1b4UL, 0x516bd0f5UL, 0x7a468336UL, 0x635db277UL, 0xcbfad74eUL, 0xd2e1e60fUL, 0xf9ccb5ccUL, 0xe0d7848dUL, 0xaf96124aUL, 0xb68d230bUL, 0x9da070c8UL, 0x84bb4189UL, 0x03235d46UL, 0x1a386c07UL, 0x31153fc4UL, 0x280e0e85UL, 0x674f9842UL, 0x7e54a903UL, 0x5579fac0UL, 0x4c62cb81UL, 0x8138c51fUL, 0x9823f45eUL, 0xb30ea79dUL, 0xaa1596dcUL, 0xe554001bUL, 0xfc4f315aUL, 0xd7626299UL, 0xce7953d8UL, 0x49e14f17UL, 0x50fa7e56UL, 0x7bd72d95UL, 0x62cc1cd4UL, 0x2d8d8a13UL, 0x3496bb52UL, 0x1fbbe891UL, 0x06a0d9d0UL, 0x5e7ef3ecUL, 0x4765c2adUL, 0x6c48916eUL, 0x7553a02fUL, 0x3a1236e8UL, 0x230907a9UL, 0x0824546aUL, 0x113f652bUL, 0x96a779e4UL, 0x8fbc48a5UL, 0xa4911b66UL, 0xbd8a2a27UL, 0xf2cbbce0UL, 0xebd08da1UL, 0xc0fdde62UL, 0xd9e6ef23UL, 0x14bce1bdUL, 0x0da7d0fcUL, 0x268a833fUL, 0x3f91b27eUL, 0x70d024b9UL, 0x69cb15f8UL, 0x42e6463bUL, 0x5bfd777aUL, 0xdc656bb5UL, 0xc57e5af4UL, 0xee530937UL, 0xf7483876UL, 0xb809aeb1UL, 0xa1129ff0UL, 0x8a3fcc33UL, 0x9324fd72UL }, { 0x00000000UL, 0x01c26a37UL, 0x0384d46eUL, 0x0246be59UL, 0x0709a8dcUL, 0x06cbc2ebUL, 0x048d7cb2UL, 0x054f1685UL, 0x0e1351b8UL, 0x0fd13b8fUL, 0x0d9785d6UL, 0x0c55efe1UL, 0x091af964UL, 0x08d89353UL, 0x0a9e2d0aUL, 0x0b5c473dUL, 0x1c26a370UL, 0x1de4c947UL, 0x1fa2771eUL, 0x1e601d29UL, 0x1b2f0bacUL, 0x1aed619bUL, 0x18abdfc2UL, 0x1969b5f5UL, 0x1235f2c8UL, 0x13f798ffUL, 0x11b126a6UL, 0x10734c91UL, 0x153c5a14UL, 0x14fe3023UL, 0x16b88e7aUL, 0x177ae44dUL, 0x384d46e0UL, 0x398f2cd7UL, 0x3bc9928eUL, 0x3a0bf8b9UL, 0x3f44ee3cUL, 0x3e86840bUL, 0x3cc03a52UL, 0x3d025065UL, 0x365e1758UL, 0x379c7d6fUL, 0x35dac336UL, 0x3418a901UL, 0x3157bf84UL, 0x3095d5b3UL, 0x32d36beaUL, 0x331101ddUL, 0x246be590UL, 0x25a98fa7UL, 0x27ef31feUL, 0x262d5bc9UL, 0x23624d4cUL, 0x22a0277bUL, 0x20e69922UL, 0x2124f315UL, 0x2a78b428UL, 0x2bbade1fUL, 0x29fc6046UL, 0x283e0a71UL, 0x2d711cf4UL, 0x2cb376c3UL, 0x2ef5c89aUL, 0x2f37a2adUL, 0x709a8dc0UL, 0x7158e7f7UL, 0x731e59aeUL, 0x72dc3399UL, 0x7793251cUL, 0x76514f2bUL, 0x7417f172UL, 0x75d59b45UL, 0x7e89dc78UL, 0x7f4bb64fUL, 0x7d0d0816UL, 0x7ccf6221UL, 0x798074a4UL, 0x78421e93UL, 0x7a04a0caUL, 0x7bc6cafdUL, 0x6cbc2eb0UL, 0x6d7e4487UL, 0x6f38fadeUL, 0x6efa90e9UL, 0x6bb5866cUL, 0x6a77ec5bUL, 0x68315202UL, 0x69f33835UL, 0x62af7f08UL, 0x636d153fUL, 0x612bab66UL, 0x60e9c151UL, 0x65a6d7d4UL, 0x6464bde3UL, 0x662203baUL, 0x67e0698dUL, 0x48d7cb20UL, 0x4915a117UL, 0x4b531f4eUL, 0x4a917579UL, 0x4fde63fcUL, 0x4e1c09cbUL, 0x4c5ab792UL, 0x4d98dda5UL, 0x46c49a98UL, 0x4706f0afUL, 0x45404ef6UL, 0x448224c1UL, 0x41cd3244UL, 0x400f5873UL, 0x4249e62aUL, 0x438b8c1dUL, 0x54f16850UL, 0x55330267UL, 0x5775bc3eUL, 0x56b7d609UL, 0x53f8c08cUL, 0x523aaabbUL, 0x507c14e2UL, 0x51be7ed5UL, 0x5ae239e8UL, 0x5b2053dfUL, 0x5966ed86UL, 0x58a487b1UL, 0x5deb9134UL, 0x5c29fb03UL, 0x5e6f455aUL, 0x5fad2f6dUL, 0xe1351b80UL, 0xe0f771b7UL, 0xe2b1cfeeUL, 0xe373a5d9UL, 0xe63cb35cUL, 0xe7fed96bUL, 0xe5b86732UL, 0xe47a0d05UL, 0xef264a38UL, 0xeee4200fUL, 0xeca29e56UL, 0xed60f461UL, 0xe82fe2e4UL, 0xe9ed88d3UL, 0xebab368aUL, 0xea695cbdUL, 0xfd13b8f0UL, 0xfcd1d2c7UL, 0xfe976c9eUL, 0xff5506a9UL, 0xfa1a102cUL, 0xfbd87a1bUL, 0xf99ec442UL, 0xf85cae75UL, 0xf300e948UL, 0xf2c2837fUL, 0xf0843d26UL, 0xf1465711UL, 0xf4094194UL, 0xf5cb2ba3UL, 0xf78d95faUL, 0xf64fffcdUL, 0xd9785d60UL, 0xd8ba3757UL, 0xdafc890eUL, 0xdb3ee339UL, 0xde71f5bcUL, 0xdfb39f8bUL, 0xddf521d2UL, 0xdc374be5UL, 0xd76b0cd8UL, 0xd6a966efUL, 0xd4efd8b6UL, 0xd52db281UL, 0xd062a404UL, 0xd1a0ce33UL, 0xd3e6706aUL, 0xd2241a5dUL, 0xc55efe10UL, 0xc49c9427UL, 0xc6da2a7eUL, 0xc7184049UL, 0xc25756ccUL, 0xc3953cfbUL, 0xc1d382a2UL, 0xc011e895UL, 0xcb4dafa8UL, 0xca8fc59fUL, 0xc8c97bc6UL, 0xc90b11f1UL, 0xcc440774UL, 0xcd866d43UL, 0xcfc0d31aUL, 0xce02b92dUL, 0x91af9640UL, 0x906dfc77UL, 0x922b422eUL, 0x93e92819UL, 0x96a63e9cUL, 0x976454abUL, 0x9522eaf2UL, 0x94e080c5UL, 0x9fbcc7f8UL, 0x9e7eadcfUL, 0x9c381396UL, 0x9dfa79a1UL, 0x98b56f24UL, 0x99770513UL, 0x9b31bb4aUL, 0x9af3d17dUL, 0x8d893530UL, 0x8c4b5f07UL, 0x8e0de15eUL, 0x8fcf8b69UL, 0x8a809decUL, 0x8b42f7dbUL, 0x89044982UL, 0x88c623b5UL, 0x839a6488UL, 0x82580ebfUL, 0x801eb0e6UL, 0x81dcdad1UL, 0x8493cc54UL, 0x8551a663UL, 0x8717183aUL, 0x86d5720dUL, 0xa9e2d0a0UL, 0xa820ba97UL, 0xaa6604ceUL, 0xaba46ef9UL, 0xaeeb787cUL, 0xaf29124bUL, 0xad6fac12UL, 0xacadc625UL, 0xa7f18118UL, 0xa633eb2fUL, 0xa4755576UL, 0xa5b73f41UL, 0xa0f829c4UL, 0xa13a43f3UL, 0xa37cfdaaUL, 0xa2be979dUL, 0xb5c473d0UL, 0xb40619e7UL, 0xb640a7beUL, 0xb782cd89UL, 0xb2cddb0cUL, 0xb30fb13bUL, 0xb1490f62UL, 0xb08b6555UL, 0xbbd72268UL, 0xba15485fUL, 0xb853f606UL, 0xb9919c31UL, 0xbcde8ab4UL, 0xbd1ce083UL, 0xbf5a5edaUL, 0xbe9834edUL }, { 0x00000000UL, 0xb8bc6765UL, 0xaa09c88bUL, 0x12b5afeeUL, 0x8f629757UL, 0x37def032UL, 0x256b5fdcUL, 0x9dd738b9UL, 0xc5b428efUL, 0x7d084f8aUL, 0x6fbde064UL, 0xd7018701UL, 0x4ad6bfb8UL, 0xf26ad8ddUL, 0xe0df7733UL, 0x58631056UL, 0x5019579fUL, 0xe8a530faUL, 0xfa109f14UL, 0x42acf871UL, 0xdf7bc0c8UL, 0x67c7a7adUL, 0x75720843UL, 0xcdce6f26UL, 0x95ad7f70UL, 0x2d111815UL, 0x3fa4b7fbUL, 0x8718d09eUL, 0x1acfe827UL, 0xa2738f42UL, 0xb0c620acUL, 0x087a47c9UL, 0xa032af3eUL, 0x188ec85bUL, 0x0a3b67b5UL, 0xb28700d0UL, 0x2f503869UL, 0x97ec5f0cUL, 0x8559f0e2UL, 0x3de59787UL, 0x658687d1UL, 0xdd3ae0b4UL, 0xcf8f4f5aUL, 0x7733283fUL, 0xeae41086UL, 0x525877e3UL, 0x40edd80dUL, 0xf851bf68UL, 0xf02bf8a1UL, 0x48979fc4UL, 0x5a22302aUL, 0xe29e574fUL, 0x7f496ff6UL, 0xc7f50893UL, 0xd540a77dUL, 0x6dfcc018UL, 0x359fd04eUL, 0x8d23b72bUL, 0x9f9618c5UL, 0x272a7fa0UL, 0xbafd4719UL, 0x0241207cUL, 0x10f48f92UL, 0xa848e8f7UL, 0x9b14583dUL, 0x23a83f58UL, 0x311d90b6UL, 0x89a1f7d3UL, 0x1476cf6aUL, 0xaccaa80fUL, 0xbe7f07e1UL, 0x06c36084UL, 0x5ea070d2UL, 0xe61c17b7UL, 0xf4a9b859UL, 0x4c15df3cUL, 0xd1c2e785UL, 0x697e80e0UL, 0x7bcb2f0eUL, 0xc377486bUL, 0xcb0d0fa2UL, 0x73b168c7UL, 0x6104c729UL, 0xd9b8a04cUL, 0x446f98f5UL, 0xfcd3ff90UL, 0xee66507eUL, 0x56da371bUL, 0x0eb9274dUL, 0xb6054028UL, 0xa4b0efc6UL, 0x1c0c88a3UL, 0x81dbb01aUL, 0x3967d77fUL, 0x2bd27891UL, 0x936e1ff4UL, 0x3b26f703UL, 0x839a9066UL, 0x912f3f88UL, 0x299358edUL, 0xb4446054UL, 0x0cf80731UL, 0x1e4da8dfUL, 0xa6f1cfbaUL, 0xfe92dfecUL, 0x462eb889UL, 0x549b1767UL, 0xec277002UL, 0x71f048bbUL, 0xc94c2fdeUL, 0xdbf98030UL, 0x6345e755UL, 0x6b3fa09cUL, 0xd383c7f9UL, 0xc1366817UL, 0x798a0f72UL, 0xe45d37cbUL, 0x5ce150aeUL, 0x4e54ff40UL, 0xf6e89825UL, 0xae8b8873UL, 0x1637ef16UL, 0x048240f8UL, 0xbc3e279dUL, 0x21e91f24UL, 0x99557841UL, 0x8be0d7afUL, 0x335cb0caUL, 0xed59b63bUL, 0x55e5d15eUL, 0x47507eb0UL, 0xffec19d5UL, 0x623b216cUL, 0xda874609UL, 0xc832e9e7UL, 0x708e8e82UL, 0x28ed9ed4UL, 0x9051f9b1UL, 0x82e4565fUL, 0x3a58313aUL, 0xa78f0983UL, 0x1f336ee6UL, 0x0d86c108UL, 0xb53aa66dUL, 0xbd40e1a4UL, 0x05fc86c1UL, 0x1749292fUL, 0xaff54e4aUL, 0x322276f3UL, 0x8a9e1196UL, 0x982bbe78UL, 0x2097d91dUL, 0x78f4c94bUL, 0xc048ae2eUL, 0xd2fd01c0UL, 0x6a4166a5UL, 0xf7965e1cUL, 0x4f2a3979UL, 0x5d9f9697UL, 0xe523f1f2UL, 0x4d6b1905UL, 0xf5d77e60UL, 0xe762d18eUL, 0x5fdeb6ebUL, 0xc2098e52UL, 0x7ab5e937UL, 0x680046d9UL, 0xd0bc21bcUL, 0x88df31eaUL, 0x3063568fUL, 0x22d6f961UL, 0x9a6a9e04UL, 0x07bda6bdUL, 0xbf01c1d8UL, 0xadb46e36UL, 0x15080953UL, 0x1d724e9aUL, 0xa5ce29ffUL, 0xb77b8611UL, 0x0fc7e174UL, 0x9210d9cdUL, 0x2aacbea8UL, 0x38191146UL, 0x80a57623UL, 0xd8c66675UL, 0x607a0110UL, 0x72cfaefeUL, 0xca73c99bUL, 0x57a4f122UL, 0xef189647UL, 0xfdad39a9UL, 0x45115eccUL, 0x764dee06UL, 0xcef18963UL, 0xdc44268dUL, 0x64f841e8UL, 0xf92f7951UL, 0x41931e34UL, 0x5326b1daUL, 0xeb9ad6bfUL, 0xb3f9c6e9UL, 0x0b45a18cUL, 0x19f00e62UL, 0xa14c6907UL, 0x3c9b51beUL, 0x842736dbUL, 0x96929935UL, 0x2e2efe50UL, 0x2654b999UL, 0x9ee8defcUL, 0x8c5d7112UL, 0x34e11677UL, 0xa9362eceUL, 0x118a49abUL, 0x033fe645UL, 0xbb838120UL, 0xe3e09176UL, 0x5b5cf613UL, 0x49e959fdUL, 0xf1553e98UL, 0x6c820621UL, 0xd43e6144UL, 0xc68bceaaUL, 0x7e37a9cfUL, 0xd67f4138UL, 0x6ec3265dUL, 0x7c7689b3UL, 0xc4caeed6UL, 0x591dd66fUL, 0xe1a1b10aUL, 0xf3141ee4UL, 0x4ba87981UL, 0x13cb69d7UL, 0xab770eb2UL, 0xb9c2a15cUL, 0x017ec639UL, 0x9ca9fe80UL, 0x241599e5UL, 0x36a0360bUL, 0x8e1c516eUL, 0x866616a7UL, 0x3eda71c2UL, 0x2c6fde2cUL, 0x94d3b949UL, 0x090481f0UL, 0xb1b8e695UL, 0xa30d497bUL, 0x1bb12e1eUL, 0x43d23e48UL, 0xfb6e592dUL, 0xe9dbf6c3UL, 0x516791a6UL, 0xccb0a91fUL, 0x740cce7aUL, 0x66b96194UL, 0xde0506f1UL }, { 0x00000000UL, 0x96300777UL, 0x2c610eeeUL, 0xba510999UL, 0x19c46d07UL, 0x8ff46a70UL, 0x35a563e9UL, 0xa395649eUL, 0x3288db0eUL, 0xa4b8dc79UL, 0x1ee9d5e0UL, 0x88d9d297UL, 0x2b4cb609UL, 0xbd7cb17eUL, 0x072db8e7UL, 0x911dbf90UL, 0x6410b71dUL, 0xf220b06aUL, 0x4871b9f3UL, 0xde41be84UL, 0x7dd4da1aUL, 0xebe4dd6dUL, 0x51b5d4f4UL, 0xc785d383UL, 0x56986c13UL, 0xc0a86b64UL, 0x7af962fdUL, 0xecc9658aUL, 0x4f5c0114UL, 0xd96c0663UL, 0x633d0ffaUL, 0xf50d088dUL, 0xc8206e3bUL, 0x5e10694cUL, 0xe44160d5UL, 0x727167a2UL, 0xd1e4033cUL, 0x47d4044bUL, 0xfd850dd2UL, 0x6bb50aa5UL, 0xfaa8b535UL, 0x6c98b242UL, 0xd6c9bbdbUL, 0x40f9bcacUL, 0xe36cd832UL, 0x755cdf45UL, 0xcf0dd6dcUL, 0x593dd1abUL, 0xac30d926UL, 0x3a00de51UL, 0x8051d7c8UL, 0x1661d0bfUL, 0xb5f4b421UL, 0x23c4b356UL, 0x9995bacfUL, 0x0fa5bdb8UL, 0x9eb80228UL, 0x0888055fUL, 0xb2d90cc6UL, 0x24e90bb1UL, 0x877c6f2fUL, 0x114c6858UL, 0xab1d61c1UL, 0x3d2d66b6UL, 0x9041dc76UL, 0x0671db01UL, 0xbc20d298UL, 0x2a10d5efUL, 0x8985b171UL, 0x1fb5b606UL, 0xa5e4bf9fUL, 0x33d4b8e8UL, 0xa2c90778UL, 0x34f9000fUL, 0x8ea80996UL, 0x18980ee1UL, 0xbb0d6a7fUL, 0x2d3d6d08UL, 0x976c6491UL, 0x015c63e6UL, 0xf4516b6bUL, 0x62616c1cUL, 0xd8306585UL, 0x4e0062f2UL, 0xed95066cUL, 0x7ba5011bUL, 0xc1f40882UL, 0x57c40ff5UL, 0xc6d9b065UL, 0x50e9b712UL, 0xeab8be8bUL, 0x7c88b9fcUL, 0xdf1ddd62UL, 0x492dda15UL, 0xf37cd38cUL, 0x654cd4fbUL, 0x5861b24dUL, 0xce51b53aUL, 0x7400bca3UL, 0xe230bbd4UL, 0x41a5df4aUL, 0xd795d83dUL, 0x6dc4d1a4UL, 0xfbf4d6d3UL, 0x6ae96943UL, 0xfcd96e34UL, 0x468867adUL, 0xd0b860daUL, 0x732d0444UL, 0xe51d0333UL, 0x5f4c0aaaUL, 0xc97c0dddUL, 0x3c710550UL, 0xaa410227UL, 0x10100bbeUL, 0x86200cc9UL, 0x25b56857UL, 0xb3856f20UL, 0x09d466b9UL, 0x9fe461ceUL, 0x0ef9de5eUL, 0x98c9d929UL, 0x2298d0b0UL, 0xb4a8d7c7UL, 0x173db359UL, 0x810db42eUL, 0x3b5cbdb7UL, 0xad6cbac0UL, 0x2083b8edUL, 0xb6b3bf9aUL, 0x0ce2b603UL, 0x9ad2b174UL, 0x3947d5eaUL, 0xaf77d29dUL, 0x1526db04UL, 0x8316dc73UL, 0x120b63e3UL, 0x843b6494UL, 0x3e6a6d0dUL, 0xa85a6a7aUL, 0x0bcf0ee4UL, 0x9dff0993UL, 0x27ae000aUL, 0xb19e077dUL, 0x44930ff0UL, 0xd2a30887UL, 0x68f2011eUL, 0xfec20669UL, 0x5d5762f7UL, 0xcb676580UL, 0x71366c19UL, 0xe7066b6eUL, 0x761bd4feUL, 0xe02bd389UL, 0x5a7ada10UL, 0xcc4add67UL, 0x6fdfb9f9UL, 0xf9efbe8eUL, 0x43beb717UL, 0xd58eb060UL, 0xe8a3d6d6UL, 0x7e93d1a1UL, 0xc4c2d838UL, 0x52f2df4fUL, 0xf167bbd1UL, 0x6757bca6UL, 0xdd06b53fUL, 0x4b36b248UL, 0xda2b0dd8UL, 0x4c1b0aafUL, 0xf64a0336UL, 0x607a0441UL, 0xc3ef60dfUL, 0x55df67a8UL, 0xef8e6e31UL, 0x79be6946UL, 0x8cb361cbUL, 0x1a8366bcUL, 0xa0d26f25UL, 0x36e26852UL, 0x95770cccUL, 0x03470bbbUL, 0xb9160222UL, 0x2f260555UL, 0xbe3bbac5UL, 0x280bbdb2UL, 0x925ab42bUL, 0x046ab35cUL, 0xa7ffd7c2UL, 0x31cfd0b5UL, 0x8b9ed92cUL, 0x1daede5bUL, 0xb0c2649bUL, 0x26f263ecUL, 0x9ca36a75UL, 0x0a936d02UL, 0xa906099cUL, 0x3f360eebUL, 0x85670772UL, 0x13570005UL, 0x824abf95UL, 0x147ab8e2UL, 0xae2bb17bUL, 0x381bb60cUL, 0x9b8ed292UL, 0x0dbed5e5UL, 0xb7efdc7cUL, 0x21dfdb0bUL, 0xd4d2d386UL, 0x42e2d4f1UL, 0xf8b3dd68UL, 0x6e83da1fUL, 0xcd16be81UL, 0x5b26b9f6UL, 0xe177b06fUL, 0x7747b718UL, 0xe65a0888UL, 0x706a0fffUL, 0xca3b0666UL, 0x5c0b0111UL, 0xff9e658fUL, 0x69ae62f8UL, 0xd3ff6b61UL, 0x45cf6c16UL, 0x78e20aa0UL, 0xeed20dd7UL, 0x5483044eUL, 0xc2b30339UL, 0x612667a7UL, 0xf71660d0UL, 0x4d476949UL, 0xdb776e3eUL, 0x4a6ad1aeUL, 0xdc5ad6d9UL, 0x660bdf40UL, 0xf03bd837UL, 0x53aebca9UL, 0xc59ebbdeUL, 0x7fcfb247UL, 0xe9ffb530UL, 0x1cf2bdbdUL, 0x8ac2bacaUL, 0x3093b353UL, 0xa6a3b424UL, 0x0536d0baUL, 0x9306d7cdUL, 0x2957de54UL, 0xbf67d923UL, 0x2e7a66b3UL, 0xb84a61c4UL, 0x021b685dUL, 0x942b6f2aUL, 0x37be0bb4UL, 0xa18e0cc3UL, 0x1bdf055aUL, 0x8def022dUL }, { 0x00000000UL, 0x41311b19UL, 0x82623632UL, 0xc3532d2bUL, 0x04c56c64UL, 0x45f4777dUL, 0x86a75a56UL, 0xc796414fUL, 0x088ad9c8UL, 0x49bbc2d1UL, 0x8ae8effaUL, 0xcbd9f4e3UL, 0x0c4fb5acUL, 0x4d7eaeb5UL, 0x8e2d839eUL, 0xcf1c9887UL, 0x5112c24aUL, 0x1023d953UL, 0xd370f478UL, 0x9241ef61UL, 0x55d7ae2eUL, 0x14e6b537UL, 0xd7b5981cUL, 0x96848305UL, 0x59981b82UL, 0x18a9009bUL, 0xdbfa2db0UL, 0x9acb36a9UL, 0x5d5d77e6UL, 0x1c6c6cffUL, 0xdf3f41d4UL, 0x9e0e5acdUL, 0xa2248495UL, 0xe3159f8cUL, 0x2046b2a7UL, 0x6177a9beUL, 0xa6e1e8f1UL, 0xe7d0f3e8UL, 0x2483dec3UL, 0x65b2c5daUL, 0xaaae5d5dUL, 0xeb9f4644UL, 0x28cc6b6fUL, 0x69fd7076UL, 0xae6b3139UL, 0xef5a2a20UL, 0x2c09070bUL, 0x6d381c12UL, 0xf33646dfUL, 0xb2075dc6UL, 0x715470edUL, 0x30656bf4UL, 0xf7f32abbUL, 0xb6c231a2UL, 0x75911c89UL, 0x34a00790UL, 0xfbbc9f17UL, 0xba8d840eUL, 0x79dea925UL, 0x38efb23cUL, 0xff79f373UL, 0xbe48e86aUL, 0x7d1bc541UL, 0x3c2ade58UL, 0x054f79f0UL, 0x447e62e9UL, 0x872d4fc2UL, 0xc61c54dbUL, 0x018a1594UL, 0x40bb0e8dUL, 0x83e823a6UL, 0xc2d938bfUL, 0x0dc5a038UL, 0x4cf4bb21UL, 0x8fa7960aUL, 0xce968d13UL, 0x0900cc5cUL, 0x4831d745UL, 0x8b62fa6eUL, 0xca53e177UL, 0x545dbbbaUL, 0x156ca0a3UL, 0xd63f8d88UL, 0x970e9691UL, 0x5098d7deUL, 0x11a9ccc7UL, 0xd2fae1ecUL, 0x93cbfaf5UL, 0x5cd76272UL, 0x1de6796bUL, 0xdeb55440UL, 0x9f844f59UL, 0x58120e16UL, 0x1923150fUL, 0xda703824UL, 0x9b41233dUL, 0xa76bfd65UL, 0xe65ae67cUL, 0x2509cb57UL, 0x6438d04eUL, 0xa3ae9101UL, 0xe29f8a18UL, 0x21cca733UL, 0x60fdbc2aUL, 0xafe124adUL, 0xeed03fb4UL, 0x2d83129fUL, 0x6cb20986UL, 0xab2448c9UL, 0xea1553d0UL, 0x29467efbUL, 0x687765e2UL, 0xf6793f2fUL, 0xb7482436UL, 0x741b091dUL, 0x352a1204UL, 0xf2bc534bUL, 0xb38d4852UL, 0x70de6579UL, 0x31ef7e60UL, 0xfef3e6e7UL, 0xbfc2fdfeUL, 0x7c91d0d5UL, 0x3da0cbccUL, 0xfa368a83UL, 0xbb07919aUL, 0x7854bcb1UL, 0x3965a7a8UL, 0x4b98833bUL, 0x0aa99822UL, 0xc9fab509UL, 0x88cbae10UL, 0x4f5def5fUL, 0x0e6cf446UL, 0xcd3fd96dUL, 0x8c0ec274UL, 0x43125af3UL, 0x022341eaUL, 0xc1706cc1UL, 0x804177d8UL, 0x47d73697UL, 0x06e62d8eUL, 0xc5b500a5UL, 0x84841bbcUL, 0x1a8a4171UL, 0x5bbb5a68UL, 0x98e87743UL, 0xd9d96c5aUL, 0x1e4f2d15UL, 0x5f7e360cUL, 0x9c2d1b27UL, 0xdd1c003eUL, 0x120098b9UL, 0x533183a0UL, 0x9062ae8bUL, 0xd153b592UL, 0x16c5f4ddUL, 0x57f4efc4UL, 0x94a7c2efUL, 0xd596d9f6UL, 0xe9bc07aeUL, 0xa88d1cb7UL, 0x6bde319cUL, 0x2aef2a85UL, 0xed796bcaUL, 0xac4870d3UL, 0x6f1b5df8UL, 0x2e2a46e1UL, 0xe136de66UL, 0xa007c57fUL, 0x6354e854UL, 0x2265f34dUL, 0xe5f3b202UL, 0xa4c2a91bUL, 0x67918430UL, 0x26a09f29UL, 0xb8aec5e4UL, 0xf99fdefdUL, 0x3accf3d6UL, 0x7bfde8cfUL, 0xbc6ba980UL, 0xfd5ab299UL, 0x3e099fb2UL, 0x7f3884abUL, 0xb0241c2cUL, 0xf1150735UL, 0x32462a1eUL, 0x73773107UL, 0xb4e17048UL, 0xf5d06b51UL, 0x3683467aUL, 0x77b25d63UL, 0x4ed7facbUL, 0x0fe6e1d2UL, 0xccb5ccf9UL, 0x8d84d7e0UL, 0x4a1296afUL, 0x0b238db6UL, 0xc870a09dUL, 0x8941bb84UL, 0x465d2303UL, 0x076c381aUL, 0xc43f1531UL, 0x850e0e28UL, 0x42984f67UL, 0x03a9547eUL, 0xc0fa7955UL, 0x81cb624cUL, 0x1fc53881UL, 0x5ef42398UL, 0x9da70eb3UL, 0xdc9615aaUL, 0x1b0054e5UL, 0x5a314ffcUL, 0x996262d7UL, 0xd85379ceUL, 0x174fe149UL, 0x567efa50UL, 0x952dd77bUL, 0xd41ccc62UL, 0x138a8d2dUL, 0x52bb9634UL, 0x91e8bb1fUL, 0xd0d9a006UL, 0xecf37e5eUL, 0xadc26547UL, 0x6e91486cUL, 0x2fa05375UL, 0xe836123aUL, 0xa9070923UL, 0x6a542408UL, 0x2b653f11UL, 0xe479a796UL, 0xa548bc8fUL, 0x661b91a4UL, 0x272a8abdUL, 0xe0bccbf2UL, 0xa18dd0ebUL, 0x62defdc0UL, 0x23efe6d9UL, 0xbde1bc14UL, 0xfcd0a70dUL, 0x3f838a26UL, 0x7eb2913fUL, 0xb924d070UL, 0xf815cb69UL, 0x3b46e642UL, 0x7a77fd5bUL, 0xb56b65dcUL, 0xf45a7ec5UL, 0x370953eeUL, 0x763848f7UL, 0xb1ae09b8UL, 0xf09f12a1UL, 0x33cc3f8aUL, 0x72fd2493UL }, { 0x00000000UL, 0x376ac201UL, 0x6ed48403UL, 0x59be4602UL, 0xdca80907UL, 0xebc2cb06UL, 0xb27c8d04UL, 0x85164f05UL, 0xb851130eUL, 0x8f3bd10fUL, 0xd685970dUL, 0xe1ef550cUL, 0x64f91a09UL, 0x5393d808UL, 0x0a2d9e0aUL, 0x3d475c0bUL, 0x70a3261cUL, 0x47c9e41dUL, 0x1e77a21fUL, 0x291d601eUL, 0xac0b2f1bUL, 0x9b61ed1aUL, 0xc2dfab18UL, 0xf5b56919UL, 0xc8f23512UL, 0xff98f713UL, 0xa626b111UL, 0x914c7310UL, 0x145a3c15UL, 0x2330fe14UL, 0x7a8eb816UL, 0x4de47a17UL, 0xe0464d38UL, 0xd72c8f39UL, 0x8e92c93bUL, 0xb9f80b3aUL, 0x3cee443fUL, 0x0b84863eUL, 0x523ac03cUL, 0x6550023dUL, 0x58175e36UL, 0x6f7d9c37UL, 0x36c3da35UL, 0x01a91834UL, 0x84bf5731UL, 0xb3d59530UL, 0xea6bd332UL, 0xdd011133UL, 0x90e56b24UL, 0xa78fa925UL, 0xfe31ef27UL, 0xc95b2d26UL, 0x4c4d6223UL, 0x7b27a022UL, 0x2299e620UL, 0x15f32421UL, 0x28b4782aUL, 0x1fdeba2bUL, 0x4660fc29UL, 0x710a3e28UL, 0xf41c712dUL, 0xc376b32cUL, 0x9ac8f52eUL, 0xada2372fUL, 0xc08d9a70UL, 0xf7e75871UL, 0xae591e73UL, 0x9933dc72UL, 0x1c259377UL, 0x2b4f5176UL, 0x72f11774UL, 0x459bd575UL, 0x78dc897eUL, 0x4fb64b7fUL, 0x16080d7dUL, 0x2162cf7cUL, 0xa4748079UL, 0x931e4278UL, 0xcaa0047aUL, 0xfdcac67bUL, 0xb02ebc6cUL, 0x87447e6dUL, 0xdefa386fUL, 0xe990fa6eUL, 0x6c86b56bUL, 0x5bec776aUL, 0x02523168UL, 0x3538f369UL, 0x087faf62UL, 0x3f156d63UL, 0x66ab2b61UL, 0x51c1e960UL, 0xd4d7a665UL, 0xe3bd6464UL, 0xba032266UL, 0x8d69e067UL, 0x20cbd748UL, 0x17a11549UL, 0x4e1f534bUL, 0x7975914aUL, 0xfc63de4fUL, 0xcb091c4eUL, 0x92b75a4cUL, 0xa5dd984dUL, 0x989ac446UL, 0xaff00647UL, 0xf64e4045UL, 0xc1248244UL, 0x4432cd41UL, 0x73580f40UL, 0x2ae64942UL, 0x1d8c8b43UL, 0x5068f154UL, 0x67023355UL, 0x3ebc7557UL, 0x09d6b756UL, 0x8cc0f853UL, 0xbbaa3a52UL, 0xe2147c50UL, 0xd57ebe51UL, 0xe839e25aUL, 0xdf53205bUL, 0x86ed6659UL, 0xb187a458UL, 0x3491eb5dUL, 0x03fb295cUL, 0x5a456f5eUL, 0x6d2fad5fUL, 0x801b35e1UL, 0xb771f7e0UL, 0xeecfb1e2UL, 0xd9a573e3UL, 0x5cb33ce6UL, 0x6bd9fee7UL, 0x3267b8e5UL, 0x050d7ae4UL, 0x384a26efUL, 0x0f20e4eeUL, 0x569ea2ecUL, 0x61f460edUL, 0xe4e22fe8UL, 0xd388ede9UL, 0x8a36abebUL, 0xbd5c69eaUL, 0xf0b813fdUL, 0xc7d2d1fcUL, 0x9e6c97feUL, 0xa90655ffUL, 0x2c101afaUL, 0x1b7ad8fbUL, 0x42c49ef9UL, 0x75ae5cf8UL, 0x48e900f3UL, 0x7f83c2f2UL, 0x263d84f0UL, 0x115746f1UL, 0x944109f4UL, 0xa32bcbf5UL, 0xfa958df7UL, 0xcdff4ff6UL, 0x605d78d9UL, 0x5737bad8UL, 0x0e89fcdaUL, 0x39e33edbUL, 0xbcf571deUL, 0x8b9fb3dfUL, 0xd221f5ddUL, 0xe54b37dcUL, 0xd80c6bd7UL, 0xef66a9d6UL, 0xb6d8efd4UL, 0x81b22dd5UL, 0x04a462d0UL, 0x33cea0d1UL, 0x6a70e6d3UL, 0x5d1a24d2UL, 0x10fe5ec5UL, 0x27949cc4UL, 0x7e2adac6UL, 0x494018c7UL, 0xcc5657c2UL, 0xfb3c95c3UL, 0xa282d3c1UL, 0x95e811c0UL, 0xa8af4dcbUL, 0x9fc58fcaUL, 0xc67bc9c8UL, 0xf1110bc9UL, 0x740744ccUL, 0x436d86cdUL, 0x1ad3c0cfUL, 0x2db902ceUL, 0x4096af91UL, 0x77fc6d90UL, 0x2e422b92UL, 0x1928e993UL, 0x9c3ea696UL, 0xab546497UL, 0xf2ea2295UL, 0xc580e094UL, 0xf8c7bc9fUL, 0xcfad7e9eUL, 0x9613389cUL, 0xa179fa9dUL, 0x246fb598UL, 0x13057799UL, 0x4abb319bUL, 0x7dd1f39aUL, 0x3035898dUL, 0x075f4b8cUL, 0x5ee10d8eUL, 0x698bcf8fUL, 0xec9d808aUL, 0xdbf7428bUL, 0x82490489UL, 0xb523c688UL, 0x88649a83UL, 0xbf0e5882UL, 0xe6b01e80UL, 0xd1dadc81UL, 0x54cc9384UL, 0x63a65185UL, 0x3a181787UL, 0x0d72d586UL, 0xa0d0e2a9UL, 0x97ba20a8UL, 0xce0466aaUL, 0xf96ea4abUL, 0x7c78ebaeUL, 0x4b1229afUL, 0x12ac6fadUL, 0x25c6adacUL, 0x1881f1a7UL, 0x2feb33a6UL, 0x765575a4UL, 0x413fb7a5UL, 0xc429f8a0UL, 0xf3433aa1UL, 0xaafd7ca3UL, 0x9d97bea2UL, 0xd073c4b5UL, 0xe71906b4UL, 0xbea740b6UL, 0x89cd82b7UL, 0x0cdbcdb2UL, 0x3bb10fb3UL, 0x620f49b1UL, 0x55658bb0UL, 0x6822d7bbUL, 0x5f4815baUL, 0x06f653b8UL, 0x319c91b9UL, 0xb48adebcUL, 0x83e01cbdUL, 0xda5e5abfUL, 0xed3498beUL }, { 0x00000000UL, 0x6567bcb8UL, 0x8bc809aaUL, 0xeeafb512UL, 0x5797628fUL, 0x32f0de37UL, 0xdc5f6b25UL, 0xb938d79dUL, 0xef28b4c5UL, 0x8a4f087dUL, 0x64e0bd6fUL, 0x018701d7UL, 0xb8bfd64aUL, 0xddd86af2UL, 0x3377dfe0UL, 0x56106358UL, 0x9f571950UL, 0xfa30a5e8UL, 0x149f10faUL, 0x71f8ac42UL, 0xc8c07bdfUL, 0xada7c767UL, 0x43087275UL, 0x266fcecdUL, 0x707fad95UL, 0x1518112dUL, 0xfbb7a43fUL, 0x9ed01887UL, 0x27e8cf1aUL, 0x428f73a2UL, 0xac20c6b0UL, 0xc9477a08UL, 0x3eaf32a0UL, 0x5bc88e18UL, 0xb5673b0aUL, 0xd00087b2UL, 0x6938502fUL, 0x0c5fec97UL, 0xe2f05985UL, 0x8797e53dUL, 0xd1878665UL, 0xb4e03addUL, 0x5a4f8fcfUL, 0x3f283377UL, 0x8610e4eaUL, 0xe3775852UL, 0x0dd8ed40UL, 0x68bf51f8UL, 0xa1f82bf0UL, 0xc49f9748UL, 0x2a30225aUL, 0x4f579ee2UL, 0xf66f497fUL, 0x9308f5c7UL, 0x7da740d5UL, 0x18c0fc6dUL, 0x4ed09f35UL, 0x2bb7238dUL, 0xc518969fUL, 0xa07f2a27UL, 0x1947fdbaUL, 0x7c204102UL, 0x928ff410UL, 0xf7e848a8UL, 0x3d58149bUL, 0x583fa823UL, 0xb6901d31UL, 0xd3f7a189UL, 0x6acf7614UL, 0x0fa8caacUL, 0xe1077fbeUL, 0x8460c306UL, 0xd270a05eUL, 0xb7171ce6UL, 0x59b8a9f4UL, 0x3cdf154cUL, 0x85e7c2d1UL, 0xe0807e69UL, 0x0e2fcb7bUL, 0x6b4877c3UL, 0xa20f0dcbUL, 0xc768b173UL, 0x29c70461UL, 0x4ca0b8d9UL, 0xf5986f44UL, 0x90ffd3fcUL, 0x7e5066eeUL, 0x1b37da56UL, 0x4d27b90eUL, 0x284005b6UL, 0xc6efb0a4UL, 0xa3880c1cUL, 0x1ab0db81UL, 0x7fd76739UL, 0x9178d22bUL, 0xf41f6e93UL, 0x03f7263bUL, 0x66909a83UL, 0x883f2f91UL, 0xed589329UL, 0x546044b4UL, 0x3107f80cUL, 0xdfa84d1eUL, 0xbacff1a6UL, 0xecdf92feUL, 0x89b82e46UL, 0x67179b54UL, 0x027027ecUL, 0xbb48f071UL, 0xde2f4cc9UL, 0x3080f9dbUL, 0x55e74563UL, 0x9ca03f6bUL, 0xf9c783d3UL, 0x176836c1UL, 0x720f8a79UL, 0xcb375de4UL, 0xae50e15cUL, 0x40ff544eUL, 0x2598e8f6UL, 0x73888baeUL, 0x16ef3716UL, 0xf8408204UL, 0x9d273ebcUL, 0x241fe921UL, 0x41785599UL, 0xafd7e08bUL, 0xcab05c33UL, 0x3bb659edUL, 0x5ed1e555UL, 0xb07e5047UL, 0xd519ecffUL, 0x6c213b62UL, 0x094687daUL, 0xe7e932c8UL, 0x828e8e70UL, 0xd49eed28UL, 0xb1f95190UL, 0x5f56e482UL, 0x3a31583aUL, 0x83098fa7UL, 0xe66e331fUL, 0x08c1860dUL, 0x6da63ab5UL, 0xa4e140bdUL, 0xc186fc05UL, 0x2f294917UL, 0x4a4ef5afUL, 0xf3762232UL, 0x96119e8aUL, 0x78be2b98UL, 0x1dd99720UL, 0x4bc9f478UL, 0x2eae48c0UL, 0xc001fdd2UL, 0xa566416aUL, 0x1c5e96f7UL, 0x79392a4fUL, 0x97969f5dUL, 0xf2f123e5UL, 0x05196b4dUL, 0x607ed7f5UL, 0x8ed162e7UL, 0xebb6de5fUL, 0x528e09c2UL, 0x37e9b57aUL, 0xd9460068UL, 0xbc21bcd0UL, 0xea31df88UL, 0x8f566330UL, 0x61f9d622UL, 0x049e6a9aUL, 0xbda6bd07UL, 0xd8c101bfUL, 0x366eb4adUL, 0x53090815UL, 0x9a4e721dUL, 0xff29cea5UL, 0x11867bb7UL, 0x74e1c70fUL, 0xcdd91092UL, 0xa8beac2aUL, 0x46111938UL, 0x2376a580UL, 0x7566c6d8UL, 0x10017a60UL, 0xfeaecf72UL, 0x9bc973caUL, 0x22f1a457UL, 0x479618efUL, 0xa939adfdUL, 0xcc5e1145UL, 0x06ee4d76UL, 0x6389f1ceUL, 0x8d2644dcUL, 0xe841f864UL, 0x51792ff9UL, 0x341e9341UL, 0xdab12653UL, 0xbfd69aebUL, 0xe9c6f9b3UL, 0x8ca1450bUL, 0x620ef019UL, 0x07694ca1UL, 0xbe519b3cUL, 0xdb362784UL, 0x35999296UL, 0x50fe2e2eUL, 0x99b95426UL, 0xfcdee89eUL, 0x12715d8cUL, 0x7716e134UL, 0xce2e36a9UL, 0xab498a11UL, 0x45e63f03UL, 0x208183bbUL, 0x7691e0e3UL, 0x13f65c5bUL, 0xfd59e949UL, 0x983e55f1UL, 0x2106826cUL, 0x44613ed4UL, 0xaace8bc6UL, 0xcfa9377eUL, 0x38417fd6UL, 0x5d26c36eUL, 0xb389767cUL, 0xd6eecac4UL, 0x6fd61d59UL, 0x0ab1a1e1UL, 0xe41e14f3UL, 0x8179a84bUL, 0xd769cb13UL, 0xb20e77abUL, 0x5ca1c2b9UL, 0x39c67e01UL, 0x80fea99cUL, 0xe5991524UL, 0x0b36a036UL, 0x6e511c8eUL, 0xa7166686UL, 0xc271da3eUL, 0x2cde6f2cUL, 0x49b9d394UL, 0xf0810409UL, 0x95e6b8b1UL, 0x7b490da3UL, 0x1e2eb11bUL, 0x483ed243UL, 0x2d596efbUL, 0xc3f6dbe9UL, 0xa6916751UL, 0x1fa9b0ccUL, 0x7ace0c74UL, 0x9461b966UL, 0xf10605deUL #endif } }; /* END OF DUMP OF mz_crc32.h*/ #endif /* DYNAMIC_CRC_TABLE */ /* ========================================================================= * This function can be used by asm versions of crc32() */ const z_crc_t FAR * ZEXPORT get_crc_table() { #ifdef DYNAMIC_CRC_TABLE if (crc_table_empty) make_crc_table(); #endif /* DYNAMIC_CRC_TABLE */ return (const z_crc_t FAR *)crc_table; } /* ========================================================================= */ #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8) #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1 /* ========================================================================= */ unsigned long ZEXPORT crc32(crc, buf, len) unsigned long crc; const unsigned char FAR *buf; uInt len; { if (buf == Z_NULL) return 0UL; #ifdef DYNAMIC_CRC_TABLE if (crc_table_empty) make_crc_table(); #endif /* DYNAMIC_CRC_TABLE */ #ifdef BYFOUR if (sizeof(void *) == sizeof(ptrdiff_t)) { z_crc_t endian; endian = 1; if (*((unsigned char *)(&endian))) return crc32_little(crc, buf, len); else return crc32_big(crc, buf, len); } #endif /* BYFOUR */ crc = crc ^ 0xffffffffUL; while (len >= 8) { DO8; len -= 8; } if (len) do { DO1; } while (--len); return crc ^ 0xffffffffUL; } #ifdef BYFOUR /* ========================================================================= */ #define DOLIT4 c ^= *buf4++; \ c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \ crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24] #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4 /* ========================================================================= */ local unsigned long crc32_little(crc, buf, len) unsigned long crc; const unsigned char FAR *buf; unsigned len; { register z_crc_t c; register const z_crc_t FAR *buf4; c = (z_crc_t)crc; c = ~c; while (len && ((ptrdiff_t)buf & 3)) { c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); len--; } buf4 = (const z_crc_t FAR *)(const void FAR *)buf; while (len >= 32) { DOLIT32; len -= 32; } while (len >= 4) { DOLIT4; len -= 4; } buf = (const unsigned char FAR *)buf4; if (len) do { c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); } while (--len); c = ~c; return (unsigned long)c; } /* ========================================================================= */ #define DOBIG4 c ^= *++buf4; \ c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \ crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24] #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4 /* ========================================================================= */ local unsigned long crc32_big(crc, buf, len) unsigned long crc; const unsigned char FAR *buf; unsigned len; { register z_crc_t c; register const z_crc_t FAR *buf4; c = ZSWAP32((z_crc_t)crc); c = ~c; while (len && ((ptrdiff_t)buf & 3)) { c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); len--; } buf4 = (const z_crc_t FAR *)(const void FAR *)buf; buf4--; while (len >= 32) { DOBIG32; len -= 32; } while (len >= 4) { DOBIG4; len -= 4; } buf4++; buf = (const unsigned char FAR *)buf4; if (len) do { c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); } while (--len); c = ~c; return (unsigned long)(ZSWAP32(c)); } #endif /* BYFOUR */ #define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */ /* ========================================================================= */ local unsigned long gf2_matrix_times(mat, vec) unsigned long *mat; unsigned long vec; { unsigned long sum; sum = 0; while (vec) { if (vec & 1) sum ^= *mat; vec >>= 1; mat++; } return sum; } /* ========================================================================= */ local void gf2_matrix_square(square, mat) unsigned long *square; unsigned long *mat; { int n; for (n = 0; n < GF2_DIM; n++) square[n] = gf2_matrix_times(mat, mat[n]); } /* ========================================================================= */ local uLong crc32_combine_(crc1, crc2, len2) uLong crc1; uLong crc2; z_off64_t len2; { int n; unsigned long row; unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */ unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */ /* degenerate case (also disallow negative lengths) */ if (len2 <= 0) return crc1; /* put operator for one zero bit in odd */ odd[0] = 0xedb88320UL; /* CRC-32 polynomial */ row = 1; for (n = 1; n < GF2_DIM; n++) { odd[n] = row; row <<= 1; } /* put operator for two zero bits in even */ gf2_matrix_square(even, odd); /* put operator for four zero bits in odd */ gf2_matrix_square(odd, even); /* apply len2 zeros to crc1 (first square will put the operator for one zero byte, eight zero bits, in even) */ do { /* apply zeros operator for this bit of len2 */ gf2_matrix_square(even, odd); if (len2 & 1) crc1 = gf2_matrix_times(even, crc1); len2 >>= 1; /* if no more bits set, then done */ if (len2 == 0) break; /* another iteration of the loop with odd and even swapped */ gf2_matrix_square(odd, even); if (len2 & 1) crc1 = gf2_matrix_times(odd, crc1); len2 >>= 1; /* if no more bits set, then done */ } while (len2 != 0); /* return combined crc */ crc1 ^= crc2; return crc1; } /* ========================================================================= */ uLong ZEXPORT crc32_combine(crc1, crc2, len2) uLong crc1; uLong crc2; z_off_t len2; { return crc32_combine_(crc1, crc2, len2); } uLong ZEXPORT crc32_combine64(crc1, crc2, len2) uLong crc1; uLong crc2; z_off64_t len2; { return crc32_combine_(crc1, crc2, len2); } /* END OF DUMP OF mz_crc32.c*/ /* START OF DUMP OF mz_compress.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* compress.c -- compress a memory buffer * Copyright (C) 1995-2005 Jean-loup Gailly. * For conditions of distribution and use, see copyright notice in zlib.h */ /* @(#) $Id$ */ #define ZLIB_INTERNAL /* =========================================================================== Compresses the source buffer into the destination buffer. The level parameter has the same meaning as in deflateInit. sourceLen is the byte length of the source buffer. Upon entry, destLen is the total size of the destination buffer, which must be at least 0.1% larger than sourceLen plus 12 bytes. Upon exit, destLen is the actual size of the compressed buffer. compress2 returns Z_OK if success, Z_MEM_ERROR if there was not enough memory, Z_BUF_ERROR if there was not enough room in the output buffer, Z_STREAM_ERROR if the level parameter is invalid. */ int ZEXPORT compress2 (dest, destLen, source, sourceLen, level) Bytef *dest; uLongf *destLen; const Bytef *source; uLong sourceLen; int level; { z_stream stream; int err; stream.next_in = (z_const Bytef *)source; stream.avail_in = (uInt)sourceLen; #ifdef MAXSEG_64K /* Check for source > 64K on 16-bit machine: */ if ((uLong)stream.avail_in != sourceLen) return Z_BUF_ERROR; #endif stream.next_out = dest; stream.avail_out = (uInt)*destLen; if ((uLong)stream.avail_out != *destLen) return Z_BUF_ERROR; stream.zalloc = (alloc_func)0; stream.zfree = (free_func)0; stream.opaque = (voidpf)0; err = deflateInit(&stream, level); if (err != Z_OK) return err; err = deflate(&stream, Z_FINISH); if (err != Z_STREAM_END) { deflateEnd(&stream); return err == Z_OK ? Z_BUF_ERROR : err; } *destLen = stream.total_out; err = deflateEnd(&stream); return err; } /* =========================================================================== */ int ZEXPORT compress (dest, destLen, source, sourceLen) Bytef *dest; uLongf *destLen; const Bytef *source; uLong sourceLen; { return compress2(dest, destLen, source, sourceLen, Z_DEFAULT_COMPRESSION); } /* =========================================================================== If the default memLevel or windowBits for deflateInit() is changed, then this function needs to be updated. */ uLong ZEXPORT compressBound (sourceLen) uLong sourceLen; { return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) + (sourceLen >> 25) + 13; } /* END OF DUMP OF mz_compress.c*/ /* START OF DUMP OF mz_adler32.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* adler32.c -- compute the Adler-32 checksum of a data stream * Copyright (C) 1995-2011 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* @(#) $Id$ */ #define local static local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2)); #define BASE 65521 /* largest prime smaller than 65536 */ #define NMAX 5552 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */ #define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;} #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1); #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2); #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4); #define DO16(buf) DO8(buf,0); DO8(buf,8); /* use NO_DIVIDE if your processor does not do division in hardware -- try it both ways to see which is faster */ #ifdef NO_DIVIDE /* note that this assumes BASE is 65521, where 65536 % 65521 == 15 (thank you to John Reiser for pointing this out) */ # define CHOP(a) \ do { \ unsigned long tmp = a >> 16; \ a &= 0xffffUL; \ a += (tmp << 4) - tmp; \ } while (0) # define MOD28(a) \ do { \ CHOP(a); \ if (a >= BASE) a -= BASE; \ } while (0) # define MOD(a) \ do { \ CHOP(a); \ MOD28(a); \ } while (0) # define MOD63(a) \ do { /* this assumes a is not negative */ \ z_off64_t tmp = a >> 32; \ a &= 0xffffffffL; \ a += (tmp << 8) - (tmp << 5) + tmp; \ tmp = a >> 16; \ a &= 0xffffL; \ a += (tmp << 4) - tmp; \ tmp = a >> 16; \ a &= 0xffffL; \ a += (tmp << 4) - tmp; \ if (a >= BASE) a -= BASE; \ } while (0) #else # define MOD(a) a %= BASE # define MOD28(a) a %= BASE # define MOD63(a) a %= BASE #endif /* ========================================================================= */ uLong ZEXPORT adler32(adler, buf, len) uLong adler; const Bytef *buf; uInt len; { unsigned long sum2; unsigned n; /* split Adler-32 into component sums */ sum2 = (adler >> 16) & 0xffff; adler &= 0xffff; /* in case user likes doing a byte at a time, keep it fast */ if (len == 1) { adler += buf[0]; if (adler >= BASE) adler -= BASE; sum2 += adler; if (sum2 >= BASE) sum2 -= BASE; return adler | (sum2 << 16); } /* initial Adler-32 value (deferred check for len == 1 speed) */ if (buf == Z_NULL) return 1L; /* in case short lengths are provided, keep it somewhat fast */ if (len < 16) { while (len--) { adler += *buf++; sum2 += adler; } if (adler >= BASE) adler -= BASE; MOD28(sum2); /* only added so many BASE's */ return adler | (sum2 << 16); } /* do length NMAX blocks -- requires just one modulo operation */ while (len >= NMAX) { len -= NMAX; n = NMAX / 16; /* NMAX is divisible by 16 */ do { DO16(buf); /* 16 sums unrolled */ buf += 16; } while (--n); MOD(adler); MOD(sum2); } /* do remaining bytes (less than NMAX, still just one modulo) */ if (len) { /* avoid modulos if none remaining */ while (len >= 16) { len -= 16; DO16(buf); buf += 16; } while (len--) { adler += *buf++; sum2 += adler; } MOD(adler); MOD(sum2); } /* return recombined sums */ return adler | (sum2 << 16); } /* ========================================================================= */ local uLong adler32_combine_(adler1, adler2, len2) uLong adler1; uLong adler2; z_off64_t len2; { unsigned long sum1; unsigned long sum2; unsigned rem; /* for negative len, return invalid adler32 as a clue for debugging */ if (len2 < 0) return 0xffffffffUL; /* the derivation of this formula is left as an exercise for the reader */ MOD63(len2); /* assumes len2 >= 0 */ rem = (unsigned)len2; sum1 = adler1 & 0xffff; sum2 = rem * sum1; MOD(sum2); sum1 += (adler2 & 0xffff) + BASE - 1; sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem; if (sum1 >= BASE) sum1 -= BASE; if (sum1 >= BASE) sum1 -= BASE; if (sum2 >= (BASE << 1)) sum2 -= (BASE << 1); if (sum2 >= BASE) sum2 -= BASE; return sum1 | (sum2 << 16); } /* ========================================================================= */ uLong ZEXPORT adler32_combine(adler1, adler2, len2) uLong adler1; uLong adler2; z_off_t len2; { return adler32_combine_(adler1, adler2, len2); } uLong ZEXPORT adler32_combine64(adler1, adler2, len2) uLong adler1; uLong adler2; z_off64_t len2; { return adler32_combine_(adler1, adler2, len2); } /* END OF DUMP OF mz_adler32.c*/ /* START OF DUMP OF mz_zutil.c*/ #ifdef GZIP # undef GZIP #endif #ifdef COPY # undef COPY #endif #ifdef DO1 # undef DO1 #endif #ifdef DO8 # undef DO8 #endif /* zutil.c -- target dependent utility functions for the compression library * Copyright (C) 1995-2005, 2010, 2011, 2012 Jean-loup Gailly. * For conditions of distribution and use, see copyright notice in zlib.h */ /* @(#) $Id$ */ #ifndef Z_SOLO #endif #ifndef NO_DUMMY_DECL struct internal_state {int dummy;}; /* for buggy compilers */ #endif z_const char * const z_errmsg[10] = { "need dictionary", /* Z_NEED_DICT 2 */ "stream end", /* Z_STREAM_END 1 */ "", /* Z_OK 0 */ "file error", /* Z_ERRNO (-1) */ "stream error", /* Z_STREAM_ERROR (-2) */ "data error", /* Z_DATA_ERROR (-3) */ "insufficient memory", /* Z_MEM_ERROR (-4) */ "buffer error", /* Z_BUF_ERROR (-5) */ "incompatible version",/* Z_VERSION_ERROR (-6) */ ""}; const char * ZEXPORT zlibVersion() { return ZLIB_VERSION; } uLong ZEXPORT zlibCompileFlags() { uLong flags; flags = 0; switch ((int)(sizeof(uInt))) { case 2: break; case 4: flags += 1; break; case 8: flags += 2; break; default: flags += 3; } switch ((int)(sizeof(uLong))) { case 2: break; case 4: flags += 1 << 2; break; case 8: flags += 2 << 2; break; default: flags += 3 << 2; } switch ((int)(sizeof(voidpf))) { case 2: break; case 4: flags += 1 << 4; break; case 8: flags += 2 << 4; break; default: flags += 3 << 4; } switch ((int)(sizeof(z_off_t))) { case 2: break; case 4: flags += 1 << 6; break; case 8: flags += 2 << 6; break; default: flags += 3 << 6; } #ifdef DEBUG flags += 1 << 8; #endif #if defined(ASMV) || defined(ASMINF) flags += 1 << 9; #endif #ifdef ZLIB_WINAPI flags += 1 << 10; #endif #ifdef BUILDFIXED flags += 1 << 12; #endif #ifdef DYNAMIC_CRC_TABLE flags += 1 << 13; #endif #ifdef NO_GZCOMPRESS flags += 1L << 16; #endif #ifdef NO_GZIP flags += 1L << 17; #endif #ifdef PKZIP_BUG_WORKAROUND flags += 1L << 20; #endif #ifdef FASTEST flags += 1L << 21; #endif #if defined(STDC) || defined(Z_HAVE_STDARG_H) # ifdef NO_vsnprintf flags += 1L << 25; # ifdef HAS_vsprintf_void flags += 1L << 26; # endif # else # ifdef HAS_vsnprintf_void flags += 1L << 26; # endif # endif #else flags += 1L << 24; # ifdef NO_snprintf flags += 1L << 25; # ifdef HAS_sprintf_void flags += 1L << 26; # endif # else # ifdef HAS_snprintf_void flags += 1L << 26; # endif # endif #endif return flags; } #ifdef DEBUG # ifndef verbose # define verbose 0 # endif int ZLIB_INTERNAL z_verbose = verbose; void ZLIB_INTERNAL z_error (m) char *m; { fprintf(stderr, "%s\n", m); exit(1); } #endif /* exported to allow conversion of error code to string for compress() and * uncompress() */ const char * ZEXPORT zError(err) int err; { return ERR_MSG(err); } #if defined(_WIN32_WCE) /* The Microsoft C Run-Time Library for Windows CE doesn't have * errno. We define it as a global variable to simplify porting. * Its value is always 0 and should not be used. */ int errno = 0; #endif #ifndef HAVE_MEMCPY void ZLIB_INTERNAL zmemcpy(dest, source, len) Bytef* dest; const Bytef* source; uInt len; { if (len == 0) return; do { *dest++ = *source++; /* ??? to be unrolled */ } while (--len != 0); } int ZLIB_INTERNAL zmemcmp(s1, s2, len) const Bytef* s1; const Bytef* s2; uInt len; { uInt j; for (j = 0; j < len; j++) { if (s1[j] != s2[j]) return 2*(s1[j] > s2[j])-1; } return 0; } void ZLIB_INTERNAL zmemzero(dest, len) Bytef* dest; uInt len; { if (len == 0) return; do { *dest++ = 0; /* ??? to be unrolled */ } while (--len != 0); } #endif #ifndef Z_SOLO #ifdef SYS16BIT #ifdef __TURBOC__ /* Turbo C in 16-bit mode */ # define MY_ZCALLOC /* Turbo C malloc() does not allow dynamic allocation of 64K bytes * and farmalloc(64K) returns a pointer with an offset of 8, so we * must fix the pointer. Warning: the pointer must be put back to its * original form in order to free it, use zcfree(). */ #define MAX_PTR 10 /* 10*64K = 640K */ local int next_ptr = 0; typedef struct ptr_table_s { voidpf org_ptr; voidpf new_ptr; } ptr_table; local ptr_table table[MAX_PTR]; /* This table is used to remember the original form of pointers * to large buffers (64K). Such pointers are normalized with a zero offset. * Since MSDOS is not a preemptive multitasking OS, this table is not * protected from concurrent access. This hack doesn't work anyway on * a protected system like OS/2. Use Microsoft C instead. */ voidpf ZLIB_INTERNAL zcalloc (voidpf opaque, unsigned items, unsigned size) { voidpf buf = opaque; /* just to make some compilers happy */ ulg bsize = (ulg)items*size; /* If we allocate less than 65520 bytes, we assume that farmalloc * will return a usable pointer which doesn't have to be normalized. */ if (bsize < 65520L) { buf = farmalloc(bsize); if (*(ush*)&buf != 0) return buf; } else { buf = farmalloc(bsize + 16L); } if (buf == NULL || next_ptr >= MAX_PTR) return NULL; table[next_ptr].org_ptr = buf; /* Normalize the pointer to seg:0 */ *((ush*)&buf+1) += ((ush)((uch*)buf-0) + 15) >> 4; *(ush*)&buf = 0; table[next_ptr++].new_ptr = buf; return buf; } void ZLIB_INTERNAL zcfree (voidpf opaque, voidpf ptr) { int n; if (*(ush*)&ptr != 0) { /* object < 64K */ farfree(ptr); return; } /* Find the original pointer */ for (n = 0; n < next_ptr; n++) { if (ptr != table[n].new_ptr) continue; farfree(table[n].org_ptr); while (++n < next_ptr) { table[n-1] = table[n]; } next_ptr--; return; } ptr = opaque; /* just to make some compilers happy */ Assert(0, "zcfree: ptr not found"); } #endif /* __TURBOC__ */ #ifdef M_I86 /* Microsoft C in 16-bit mode */ # define MY_ZCALLOC #if (!defined(_MSC_VER) || (_MSC_VER <= 600)) # define _halloc halloc # define _hfree hfree #endif voidpf ZLIB_INTERNAL zcalloc (voidpf opaque, uInt items, uInt size) { if (opaque) opaque = 0; /* to make compiler happy */ return _halloc((long)items, size); } void ZLIB_INTERNAL zcfree (voidpf opaque, voidpf ptr) { if (opaque) opaque = 0; /* to make compiler happy */ _hfree(ptr); } #endif /* M_I86 */ #endif /* SYS16BIT */ #ifndef MY_ZCALLOC /* Any system without a special alloc function */ #ifndef STDC extern voidp malloc OF((uInt size)); extern voidp calloc OF((uInt items, uInt size)); extern void free OF((voidpf ptr)); #endif voidpf ZLIB_INTERNAL zcalloc (opaque, items, size) voidpf opaque; unsigned items; unsigned size; { if (opaque) items += size - size; /* make compiler happy */ return sizeof(uInt) > 2 ? (voidpf)malloc(items * size) : (voidpf)calloc(items, size); } void ZLIB_INTERNAL zcfree (opaque, ptr) voidpf opaque; voidpf ptr; { free(ptr); if (opaque) return; /* make compiler happy */ } #endif /* MY_ZCALLOC */ #endif /* !Z_SOLO */ /* END OF DUMP OF mz_zutil.c*/ ///////////////////////////////////////////////////////////////////////////////////// // // // sswread : Code for reading SSW files from MCNP(X) // // // // // // Compilation of sswread.c can proceed via any compliant C-compiler using // // -std=c99 or later, and the resulting code must always be linked with libm // // (using -lm). Furthermore, the following preprocessor flags can be used // // when compiling sswread.c to fine tune the build process and the // // capabilities of the resulting binary. // // // // SSWREAD_HASZLIB : Define if compiling and linking with zlib, to allow direct // // reading of gzipped SSW files. // // SSWREAD_ZLIB_INCPATH : Specify alternative value if the zlib header is not to // // be included as "zlib.h". // // SSWREAD_HDR_INCPATH : Specify alternative value if the sswread header itself // // is not to be included as "sswread.h". // // // // This file can be freely used as per the terms in the LICENSE file. // // // // However, note that usage of MCNP(X)-related utilities might require additional // // permissions and licenses from third-parties, which is not within the scope of // // the MCPL project itself. // // // // Written 2015-2017, thomas.kittelmann@esss.se (European Spallation Source). // // // ///////////////////////////////////////////////////////////////////////////////////// #ifdef SSWREAD_HDR_INCPATH # include SSWREAD_HDR_INCPATH #else #ifndef sswread_h #define sswread_h ///////////////////////////////////////////////////////////////////////////////////// // // // Code for reading SSW files from MCNP(X). Not all versions of the format has // // been tested, but it is the hope that this will at the very least provide // // reliable functionality for extracting the particle information within. // // // // The code was written with help from E. Klinkby DTU NuTech and under // // inspiration from equivalent programs written in Fortran (E. Klinkby DTU // // NuTech with help from H. Breitkreutz) and in python (PyNE & mc-tools by K. // // Batkov ESS). // // // // Refer to the top of sswread.c for details regarding how to build. // // // // This file can be freely used as per the terms in the LICENSE file. // // // // However, note that usage of MCNP(X)-related utilities might require additional // // permissions and licenses from third-parties, which is not within the scope of // // the MCPL project itself. // // // // Written 2015-2017, thomas.kittelmann@esss.se (European Spallation Source). // // // ///////////////////////////////////////////////////////////////////////////////////// #include #ifdef __cplusplus extern "C" { #endif typedef struct { void * internal; } ssw_file_t; typedef struct { double x;//cm double y;//cm double z;//cm double dirx; double diry; double dirz; double weight; double ekin;//MeV double time;//"shakes" (1e-8seconds) long rawtype;//raw particle type encoding (mcnpx and mcnp6 employs different schemes) long pdgcode;//rawtype converted to PDG codes. long isurf; } ssw_particle_t; //Open file (can read gzipped ssw .gz files directly if zlib usage is enabled): ssw_file_t ssw_open_file(const char * filename); //Query header info: unsigned long ssw_nparticles(ssw_file_t); const char* ssw_srcname(ssw_file_t);//Usually "mcnp" or "mcnpx" const char* ssw_srcversion(ssw_file_t); const char* ssw_title(ssw_file_t);//Problem title from input deck int ssw_is_gzipped(ssw_file_t);//whether input file was gzipped int ssw_is_mcnp6(ssw_file_t); int ssw_is_mcnp5(ssw_file_t); int ssw_is_mcnpx(ssw_file_t); const char * ssw_mcnpflavour(ssw_file_t);//string like "MCNPX" or "MCNP6" //load next particle (null indicates eof): const ssw_particle_t * ssw_load_particle(ssw_file_t); //close file and release resources: void ssw_close_file(ssw_file_t); //Advanced info about file layout: void ssw_layout(ssw_file_t, int* reclen, int* ssblen, int64_t* hdrlen, int64_t* np1pos, int64_t* nrsspos); //////////////////////////////////////////////////////////////////////////// // // // Utility functions for converting between particle codes used in SSW // // files from MCNPX or MCNP6 and the codes from the Particle Data Group: // // // // http://pdg.lbl.gov/2014/reviews/rpp2014-rev-monte-carlo-numbering.pdf // // // // Note that all the functions here return 0 when the code could not be // // converted. This might not be an error as such, but could indicate an // // exotic particle which has no code assigned in the target MCNP scheme. // // // // MCNP5 does not have it's own function as it only supports neutrons // // (1<->2112) and gammas (2<->22). // // // //////////////////////////////////////////////////////////////////////////// int32_t conv_mcnpx_ssw2pdg(int32_t); int32_t conv_mcnp6_ssw2pdg(int32_t); int32_t conv_mcnpx_pdg2ssw(int32_t); int32_t conv_mcnp6_pdg2ssw(int32_t); #ifdef __cplusplus } #endif #endif #endif #ifdef SSWREAD_HASZLIB # ifdef SSWREAD_ZLIB_INCPATH # include SSWREAD_ZLIB_INCPATH # else # endif #endif #include #include #include #include #include #include //Should be large enough to hold first record in all supported files: #define SSWREAD_STDBUFSIZE 1024 #define SSW_MCNP_NOTFOUND 0 #define SSW_MCNP6 1 #define SSW_MCNPX 2 #define SSW_MCNP5 3 void ssw_error(const char * msg) { printf("ERROR: %s\n",msg); exit(1); } typedef struct { //Fortran width of record length field (4 or 8) int reclen; //Header data: char kods[9]; // Code char vers[6]; // Version char lods[29]; // Date char idtms[20]; // Machine-Designator char probs[20]; // Problem-ID char aids[129]; // Creation-Run Problem-Title-Card int32_t np1; int32_t nrss; int32_t njsw; int32_t nrcd; int32_t niss; int32_t pos; int mcnp_type; #ifdef SSWREAD_HASZLIB gzFile filegz; #else void * filegz; #endif FILE * file; ssw_particle_t part; unsigned lbuf; unsigned lbufmax; char * buf; size_t np1pos; size_t nrsspos; size_t headlen; } ssw_fileinternal_t; #define SSW_FILEDECODE ssw_fileinternal_t * f = (ssw_fileinternal_t *)ff.internal; assert(f) int ssw_readbytes(ssw_fileinternal_t* f, char * dest, int nbytes) { int nb; #ifdef SSWREAD_HASZLIB if (f->filegz) nb = gzread(f->filegz, dest, nbytes); else #endif nb = fread(dest, 1, nbytes, f->file); if (nb!=nbytes) { printf("SSW Error: read failure\n"); return 0; } return 1; } int ssw_loadrecord(ssw_fileinternal_t* f) { if (f->reclen==4) { uint32_t rl; if (!ssw_readbytes(f, (char*)&rl, 4)) return 0; f->lbuf = rl; } else { uint64_t rl; if (!ssw_readbytes(f, (char*)&rl, 8)) return 0; f->lbuf = rl; } if (f->lbuf > f->lbufmax) { //Very large record, must grow buffer: free(f->buf); f->lbufmax = f->lbuf; f->buf = malloc(f->lbufmax); } if ( f->lbuf <= SSWREAD_STDBUFSIZE && f->lbufmax > SSWREAD_STDBUFSIZE ) { //Make sure we don't hold on to very large buffers once they are no longer //needed: free(f->buf); f->lbufmax = SSWREAD_STDBUFSIZE; f->buf = malloc(f->lbufmax); } if (!f->buf) { //Could be corrupted data resulting in unusually large lbuf: printf("SSW Error: unable to allocate requested buffer (corrupted input?).\n"); return 0; } char * buf = (char*)f->buf; if (!ssw_readbytes(f, buf, f->lbuf)) return 0; if (f->reclen==4) { uint32_t rl; return ssw_readbytes(f, (char*)&rl, 4) && f->lbuf == rl; } else { uint64_t rl; return ssw_readbytes(f, (char*)&rl, 8) && f->lbuf == rl; } } void ssw_close_file(ssw_file_t ff) { SSW_FILEDECODE; if (!f) return; if (f->file) { fclose(f->file); f->file = 0; } #ifdef SSWREAD_HASZLIB if (f->filegz) { gzclose(f->filegz); f->file = 0; } #endif free(f->buf); free(f); ff.internal = 0; } void ssw_strip(char **str) { size_t l = strlen(*str); int i = 0; while ((*str)[i]==' ') ++i; if (i) memmove(*str,*str+i,l+1-i); i = l-i-1; while (i>=0&&(*str)[i]==' ') { (*str)[i]='\0'; --i; } } ssw_file_t ssw_openerror(ssw_fileinternal_t * f, const char* msg) { if (f) { if (f->file) fclose(f->file); #ifdef SSWREAD_HASZLIB if (f->filegz) gzclose(f->filegz); #endif free(f->buf); free(f); } ssw_error(msg); ssw_file_t out; out.internal = 0; return out; } //NB: Do not change function signature without updating code in sswmcpl.c as well! void ssw_internal_grabhdr( const char * filename, int is_gzip, int64_t hdrlen, unsigned char * hdrbuf ) { //To be used by mcpl2ssw, but we don't want to complicate the build process //for users further by also requiring sswmcpl.c to deal with zlib //directly. Thus, we provide a hidden function here which mcpl2ssw can use by //forward declaring it. if (is_gzip) { #ifdef SSWREAD_HASZLIB gzFile filegz = gzopen(filename,"rb"); if (!filegz) ssw_error("Unable to open file!"); int64_t pos = 0; int64_t toread = hdrlen; while(toread) { int chunk = (hdrlen>16384?16384:(int)hdrlen); int nb = gzread(filegz, hdrbuf+pos, chunk); if (!nb) printf("SSW Error: read failure\n"); assert(toread >= nb); toread -= nb; pos += nb; } gzclose(filegz); #else ssw_error("This installation was not built with zlib support and can not read compressed (.gz) files directly."); #endif } else { FILE * fh = fopen(filename,"rb"); if (!fh) ssw_error("Unable to open file!\n"); int64_t pos = 0; int64_t toread = hdrlen; while(toread) { int chunk = (hdrlen>16384?16384:(int)hdrlen); int nb = fread(hdrbuf+pos,1,chunk,fh); if (!nb) printf("SSW Error: read failure\n"); assert(toread >= nb); toread -= nb; pos += nb; } fclose(fh); } } ssw_file_t ssw_open_and_procrec0( const char * filename ) { ssw_fileinternal_t * f = (ssw_fileinternal_t*)calloc(sizeof(ssw_fileinternal_t),1); assert(f); ssw_file_t out; out.internal = f; //open file (with gzopen if filename ends with .gz): f->file = 0; f->filegz = 0; char * lastdot = strrchr(filename, '.'); if (lastdot && strcmp(lastdot, ".gz") == 0) { #ifdef SSWREAD_HASZLIB f->filegz = gzopen(filename,"rb"); if (!f->filegz) ssw_error("Unable to open file!"); #else ssw_error("This installation was not built with zlib support and can not read compressed (.gz) files directly."); #endif } else { f->file = fopen(filename,"rb"); if (!f->file) ssw_error("Unable to open file!"); } //Prepare buffer. SSWREAD_STDBUFSIZE bytes should always be enough for the //first record (guaranteed by the checks below), but it might later grow on //demand inside ssw_loadrecord if needed. f->lbufmax = SSWREAD_STDBUFSIZE; char * buf = malloc(f->lbufmax); f->buf = buf; //Fortran data is usually written in "records" with an initial and final 32bit //or 64bit integer specifying the record byte-length. The tested file-types //begin in one of the following ways: // // 1) 4B[163|167] + KODS : MCNPX2.7.0 with 32bit reclen // 2) 8B[163|167] + KODS : MCNPX2.7.0 with 64bit reclen // 3) 16B +4B[143 or 191] + KODS : MCNP6 with 32bit reclen // 4) 24B +8B[143 or 191] + KODS : MCNP6 with 64bit reclen // 5) 4B[143]+KODS : MCNP5 with 32bit reclen. // 6) 8B[143]+KODS : MCNP5 with 64bit reclen. // //Where KODS is 8 bytes representing the "code name" as a string. For pure //MCNPX/MCNP6 this string contains "mcnpx" and "mcnp" respectively, but we //should allow for custom in-house versions with modified contents of KODS. We //do, however, require that the first character or KODS is an ASCII character //in the range 32-126 (i.e. non-extended ascii without control or null chars). // //Note that for option 3) and 4), the second record can have a length of //either 143 (MCNP 6.0) or 191 (MCNP 6.2), since the "aids" field increased in //size from 80 to 128 chars. // //Note that for option 3) and 4), the 16B / 24B are a fortran record with 8 //bytes of data - usually (always?) the string "SF_00001". //Thus, we probe the first 36 bytes and search the patterns above: ssw_readbytes(f,buf,36); uint32_t first32 = *((uint32_t*)buf); uint32_t first64 = *((uint64_t*)buf); f->reclen = 0; f->mcnp_type = SSW_MCNP_NOTFOUND; uint64_t lenrec0 = 99999; unsigned rec0begin = 0; //First look for MCNP6: unsigned mcnp6_lenaids = 80; if ( first32==8 && *((uint32_t*)(buf+12))==8 && (*((uint32_t*)(buf+16))==143||*((uint32_t*)(buf+16))==191) && buf[20]>=32 && buf[20]<127) { //Looks like 3), an mcnp6 file with 32bit fortran records. f->mcnp_type = SSW_MCNP6; f->reclen = 4; lenrec0 = *((uint32_t*)(buf+16)); rec0begin = 20; if (*((uint32_t*)(buf+16))==191) mcnp6_lenaids = 128; } else if ( first32==8 && *((uint64_t*)(buf+16))==8 && (*((uint64_t*)(buf+24))==143||*((uint64_t*)(buf+24))==191) && buf[32]>=32 && buf[32]<127) { //Looks like 4), an mcnp6 file with 64bit fortran records. f->mcnp_type = SSW_MCNP6; f->reclen = 8; lenrec0 = *((uint64_t*)(buf+24)); rec0begin = 32; if (*((uint64_t*)(buf+24))==191) mcnp6_lenaids = 128; } //Next, look for MCNPX: if ( f->mcnp_type == SSW_MCNP_NOTFOUND ) { if ( (first32==163||first32==167) && ( buf[4]>=32 && buf[4]<127 ) ) { //Looks like 1), an mcnpx file with 32bit fortran records. f->mcnp_type = SSW_MCNPX; f->reclen = 4; lenrec0 = first32; rec0begin = 4; } else if ( (first64==163||first64==167) && ( buf[8]>=32 && buf[8]<127 ) ) { //Looks like 2), an mcnpx file with 64bit fortran records. f->mcnp_type = SSW_MCNPX; f->reclen = 8; lenrec0 = first64; rec0begin = 8; } } //Finally, look for MCNP5: if ( f->mcnp_type == SSW_MCNP_NOTFOUND ) { if ( first32==143 && ( buf[4]>=32 && buf[4]<127 ) ) { //Looks like 5), an mcnp5 file with 32bit fortran records. f->mcnp_type = SSW_MCNP5; f->reclen = 4; lenrec0 = first32; rec0begin = 4; } else if ( first64==143 && ( buf[8]>=32 && buf[8]<127 ) ) { //Looks like 6), an mcnp5 file with 64bit fortran records. f->mcnp_type = SSW_MCNP5; f->reclen = 8; lenrec0 = first64; rec0begin = 8; } } if ( f->mcnp_type == SSW_MCNP_NOTFOUND ) return ssw_openerror(f,"ssw_open_file error: File does not look like a supported MCNP SSW file"); assert(f->reclen && rec0begin && lenrec0 && lenrec0<99999 ); if (f->reclen==8) { printf("ssw_open_file WARNING: 64bit Fortran records detected which is untested (feedback" " appreciated at https://mctools.github.io/mcpl/contact/).\n"); } //Finish reading the first record: int missingrec0 = (int)(lenrec0 + rec0begin) - (int)36 + f->reclen; assert(missingrec0>0); ssw_readbytes(f,buf+36,missingrec0); //Check final marker: uint64_t lenrec0_b; if (f->reclen==4) lenrec0_b = *((uint32_t*)(buf+(rec0begin+lenrec0))); else lenrec0_b = *((uint64_t*)(buf+(rec0begin+lenrec0))); if (lenrec0!=lenrec0_b) return ssw_openerror(f,"ssw_open_file error: Unexpected header contents\n"); //decode first record, inspired by ssw.py: if (f->mcnp_type == SSW_MCNP6) { char * r = buf + rec0begin; unsigned n; memcpy(f->kods,r, n=8); r += n; memcpy(f->vers,r, n=5); r += n; memcpy(f->lods,r, n=28); r += n; memcpy(f->idtms,r, n=18); r += n; memcpy(f->aids,r, n=mcnp6_lenaids); f->probs[0]='\0'; } else if (f->mcnp_type == SSW_MCNPX) { assert(lenrec0==163||lenrec0==167); char * r = buf + f->reclen; unsigned n; memcpy(f->kods,r, n=8); r += n; memcpy(f->vers,r, n=5); r += n; memcpy(f->lods,r, n=28); r += n; memcpy(f->idtms,r, n=19); r += n; memcpy(f->probs,r, n=19); r += n; memcpy(f->aids,r, n=80); } else { assert(f->mcnp_type == SSW_MCNP5); assert(lenrec0==143); char * r = buf + f->reclen; unsigned n; memcpy(f->kods,r, n=8); r += n; memcpy(f->vers,r, n=5); r += n; memcpy(f->lods,r, n=8); r += n; memcpy(f->idtms,r, n=19); r += n; memcpy(f->probs,r, n=19); r += n; memcpy(f->aids,r, n=80); } char * tmp; tmp = f->kods; ssw_strip(&tmp); tmp = f->vers; ssw_strip(&tmp); tmp = f->lods; ssw_strip(&tmp); tmp = f->idtms; ssw_strip(&tmp); tmp = f->probs; ssw_strip(&tmp); tmp = f->aids; ssw_strip(&tmp); const char * bn = strrchr(filename, '/'); bn = bn ? bn + 1 : filename; printf("ssw_open_file: Opened file \"%s\":\n",bn); const char * expected_kods = (f->mcnp_type == SSW_MCNPX?"mcnpx":"mcnp"); if (strcmp(f->kods,expected_kods)!=0) { printf("ssw_open_file WARNING: Unusual MCNP flavour detected (\"%s\").\n",f->kods); } if (f->mcnp_type==SSW_MCNP6) { if ( strcmp(f->vers,"6")!=0 && strcmp(f->vers,"6.mpi")!=0 ) { printf("ssw_open_file WARNING: Untested MCNP6 source version : \"%s\". (feedback" " appreciated at https://mctools.github.io/mcpl/contact/)\n",f->vers); } } else if (f->mcnp_type==SSW_MCNPX) { if ( strcmp(f->vers,"2.5.0")!=0 && strcmp(f->vers,"2.6.0")!=0 && strcmp(f->vers,"2.7.0")!=0 && strcmp(f->vers,"26b")!=0 ) printf("ssw_open_file WARNING: Untested MCNPX source version : \"%s\". (feedback" " appreciated at https://mctools.github.io/mcpl/contact/)\n",f->vers); } else if (f->mcnp_type==SSW_MCNP5) { if ( strcmp(f->vers,"5")!=0 ) printf("ssw_open_file WARNING: Untested MCNP5 source version : \"%s\". (feedback" " appreciated at https://mctools.github.io/mcpl/contact/)\n",f->vers); } return out; } ssw_file_t ssw_open_file( const char * filename ) { if (!filename) ssw_error("ssw_open_file called with null string for filename"); //Open, classify and process first record with mcnp type and version info: ssw_file_t out = ssw_open_and_procrec0( filename ); ssw_fileinternal_t * f = (ssw_fileinternal_t *)out.internal; assert(f); //Skip a record: if (!ssw_loadrecord(f)) return ssw_openerror(f,"ssw_open_file error: problems loading record"); //Position of current record payload in file: long int current_recpos; #ifdef SSWREAD_HASZLIB if (f->filegz) current_recpos = gztell(f->filegz); else #endif current_recpos = ftell(f->file); current_recpos -= f->reclen; current_recpos -= f->lbuf; //Read size data and mark position of nrss & np1 variables. int32_t * bi = (int32_t*)f->buf; if ( (f->mcnp_type == SSW_MCNP6) && f->lbuf>=32 ) { f->np1 = bi[0]; f->np1pos = current_recpos + 0 * sizeof(int32_t); f->nrss = bi[2]; f->nrsspos = current_recpos + 2 * sizeof(int32_t); f->nrcd = abs(bi[4]); f->njsw = bi[5]; f->niss = bi[6]; } else if ( (f->mcnp_type == SSW_MCNPX) && f->lbuf==20 ) { f->np1 = bi[0]; f->np1pos = current_recpos + 0 * sizeof(int32_t); f->nrss = bi[1]; f->nrsspos = current_recpos + 1 * sizeof(int32_t); f->nrcd = bi[2]; f->njsw = bi[3]; f->niss = bi[4]; } else if ( (f->mcnp_type == SSW_MCNP5) && f->lbuf==32 ) { int64_t np1_64 = ((int64_t*)f->buf)[0]; if (np1_64 > 2147483647 || np1_64 < -2147483647) return ssw_openerror(f,"ssw_open_file error: MCNP5 files with more than 2147483647" " histories are not supported"); f->np1 = (int32_t)np1_64; f->np1pos = current_recpos + 0 * sizeof(int64_t); uint64_t nrss_64 = ((uint64_t*)f->buf)[1]; if (nrss_64 > 2147483647 ) return ssw_openerror(f,"ssw_open_file error: MCNP5 files with more than 2147483647" " particles are not supported"); f->nrss = (int32_t)nrss_64; f->nrsspos = current_recpos + 1 * sizeof(int64_t); f->nrcd = bi[4]; f->njsw = bi[5]; f->niss = bi[6]; } else if (f->lbuf==40) { printf("ssw_open_file WARNING: File format has header format for which decoding was never tested (feedback" " appreciated at https://mctools.github.io/mcpl/contact/).\n"); f->np1 = bi[0]; f->np1pos = current_recpos + 0 * sizeof(int32_t); f->nrss = bi[2]; f->nrsspos = current_recpos + 2 * sizeof(int32_t); f->nrcd = bi[4]; f->njsw = bi[6]; f->niss = bi[8]; } else { return ssw_openerror(f,"ssw_open_file error: Unexpected record length"); } printf("ssw_open_file: File layout detected : %s\n",ssw_mcnpflavour(out)); printf("ssw_open_file: Code ID fields : \"%s\" / \"%s\"\n",f->kods,f->vers); printf("ssw_open_file: Title field : \"%s\"\n",f->aids); /* printf("ssw_open_file: Found kods = '%s'\n",f->kods); */ /* printf("ssw_open_file: Found vers = '%s'\n",f->vers); */ /* printf("ssw_open_file: Found lods = '%s'\n",f->lods); */ /* printf("ssw_open_file: Found idtms = '%s'\n",f->idtms); */ /* printf("ssw_open_file: Found probs = '%s'\n",f->probs); */ /* printf("ssw_open_file: Found aids = '%s'\n",f->aids); */ printf("ssw_open_file: Source statistics (histories): %11i\n" , abs(f->np1)); printf("ssw_open_file: Particles in file : %11i\n" , f->nrss); printf("ssw_open_file: Number of surfaces : %11i\n" , f->njsw); printf("ssw_open_file: Histories at surfaces : %11i\n" , f->niss); // printf("ssw_open_file: File length of SSB array : %11i\n" , f->nrcd); if(f->nrcd==6) return ssw_openerror(f,"ssw_open_file error: SSW files with spherical sources are not currently supported."); if(f->nrcd<10) return ssw_openerror(f,"ssw_open_file error: Too short SSB arrays in file"); if(f->nrcd>11) return ssw_openerror(f,"ssw_open_file error: Unexpected length of SSB arrays in file"); if ( (f->mcnp_type == SSW_MCNP6) && f->nrcd==10 ) return ssw_openerror(f,"ssw_open_file error: Unexpected length of SSB arrays in MCNP6 file"); int32_t niwr = 0; if (f->np1==0) return ssw_openerror(f,"ssw_open_file error: File has 0 particle histories which should not be possible"); if (f->np1<0) {//Sign is well-defined since f->np1!=0 f->np1 = - f->np1; if (!ssw_loadrecord(f)) return ssw_openerror(f,"ssw_open_file error: problems loading record"); niwr = bi[0]; //mipts = bi[1];//source particle type //kjaq = bi[2];//macrobody facet flag } //skip over njsw + niwr + 1 records which we are not interested in: int i; for (i = 0; i < f->njsw+niwr+1; ++i) { if (!ssw_loadrecord(f)) return ssw_openerror(f,"ssw_open_file error: problems loading record"); } //End of header? Mark the position: f->pos = 0; #ifdef SSWREAD_HASZLIB if (f->filegz) f->headlen = gztell(f->filegz); else #endif f->headlen = ftell(f->file); //Check that it was really the end of the header by preloading the next //record(s) and checking if the length corresponds to that of particle data //(NB: ssw_load_particle knows that the particle at position 0 will have //already been loaded by these checks). See also //https://github.com/mctools/mcpl/issues/45: unsigned nmaxunexpected = 3; while ( nmaxunexpected-- > 0 ) { if (!ssw_loadrecord(f)) { //For files with 0 particles, we assume (this is not guaranteed of //course!) that the failure is due to EOF: if (f->nrss==0) break; //But this is certainly an error for files with >0 particles: return ssw_openerror(f,"ssw_open_file error: problems loading record"); } if ( f->nrss > 0 && f->lbuf == (unsigned)8*f->nrcd ) { //Looks like we preloaded the first particle of the file! break; } else { //Looks like this could not be a particle, so we interpret this as if the //header was actually one record longer than previously thought: f->headlen += f->reclen * 2 + f->lbuf; printf("ssw_open_file WARNING: Unexpected %i byte record encountered at end of header. Continuing under the assumption it contains valid configuration data.\n",f->lbuf); } } //Return handle: out.internal = f; return out; } //Query header info: unsigned long ssw_nparticles(ssw_file_t ff) { SSW_FILEDECODE; return f->nrss; } const char* ssw_srcname(ssw_file_t ff) { SSW_FILEDECODE; return f->kods; } const char* ssw_srcversion(ssw_file_t ff) { SSW_FILEDECODE; return f->vers; } const char* ssw_title(ssw_file_t ff) { SSW_FILEDECODE; return f->aids; } int ssw_is_mcnp6(ssw_file_t ff) { SSW_FILEDECODE; return f->mcnp_type == SSW_MCNP6; } int ssw_is_mcnpx(ssw_file_t ff) { SSW_FILEDECODE; return f->mcnp_type == SSW_MCNPX; } int ssw_is_mcnp5(ssw_file_t ff) { SSW_FILEDECODE; return f->mcnp_type == SSW_MCNP5; } const char * ssw_mcnpflavour(ssw_file_t ff) { SSW_FILEDECODE; switch(f->mcnp_type) { case SSW_MCNP5: return "MCNP5"; case SSW_MCNP6: return "MCNP6"; case SSW_MCNPX: return "MCNPX"; default: ssw_error("ssw_mcnpflavour: logic error.\n"); } return "MCNP_logic_error"; } int ssw_is_gzipped(ssw_file_t ff) { SSW_FILEDECODE; #ifdef SSWREAD_HASZLIB if (f->filegz) return 1; #endif return 0; } void ssw_layout(ssw_file_t ff, int* reclen, int* ssblen, int64_t* hdrlen, int64_t* np1pos, int64_t* nrsspos) { SSW_FILEDECODE; *reclen = f->reclen; *ssblen = f->nrcd; *np1pos = f->np1pos; *nrsspos = f->nrsspos; *hdrlen = f->headlen; } //load next particle (null indicates eof): const ssw_particle_t * ssw_load_particle(ssw_file_t ff) { SSW_FILEDECODE; if (f->pos >= f->nrss) return 0; ++f->pos; //The record of the first particle in the file is always pre-loaded during //initialisation, for the others we must consume another record: if ( f->pos > 1 && !ssw_loadrecord(f) ) { ssw_error("ssw_load error: problems loading particle record\n"); return 0; } if (f->lbuf != (unsigned)8*f->nrcd) { ssw_error("ssw_load error: unexpected particle data length"); return 0; } double * ssb = (double*)f->buf; ssw_particle_t* p = &(f->part); p->weight = ssb[2]; p->ekin = ssb[3];//MeV p->time = ssb[4]; p->x = ssb[5]; p->y = ssb[6]; p->z = ssb[7]; p->dirx = ssb[8]; p->diry = ssb[9]; int64_t nx = ssb[1]; if (nx<0) nx = - nx;//sign is used for sign of dirz (see below) if ( f->mcnp_type == SSW_MCNP6 ) { assert(f->nrcd==11); p->isurf = labs((int32_t)ssb[10]); nx /= 4;//ignore two lowest bits, maybe used to indicate cell-source-particle and energy-group mode (??) p->rawtype = nx; p->pdgcode = conv_mcnp6_ssw2pdg(nx); if (!p->pdgcode) printf("ssw_load_particle WARNING: Could not convert raw MCNP6 SSW type (%li) to pdg code\n",(long)(p->rawtype)); } else if ( f->mcnp_type == SSW_MCNPX ) { p->isurf = nx % 1000000; p->rawtype = nx / 1000000; p->pdgcode = conv_mcnpx_ssw2pdg(p->rawtype); if (!p->pdgcode) printf("ssw_load_particle WARNING: Could not convert raw MCNPX SSW type (%li) to pdg code\n",(long)(p->rawtype)); } else { assert( f->mcnp_type == SSW_MCNP5 ); nx /= 8;//Guess: Get rid of some bits that might be used for something else p->isurf = nx % 1000000; p->rawtype = nx / 1000000; p->rawtype /= 100;//Guess: Get rid of some "bits" that might be used for something else p->pdgcode = (p->rawtype==1?2112:(p->rawtype==2?22:0));//only neutrons and gammas in MCNP5 if (!p->pdgcode) printf("ssw_load_particle WARNING: Could not convert raw MCNP5 SSW type (%li) to pdg code\n",(long)(p->rawtype)); } p->dirz = sqrt(fmax(0.0, 1. - p->dirx*p->dirx-p->diry*p->diry)); if (ssb[1]<0.0) p->dirz = - p->dirz; return p; } static int32_t conv_mcnpx_to_pdg_0to34[] = { 0, 2112, 22, 11, 13, 15, 12, 14, 16, 2212, 3122, 3222, 3112, 3322, 3312, 3334, 4122, 4232, 4132, 5122, 211, 111, 321, 310, 130, 411, 421, 431, 521, 511, 531, 1000010020, 1000010030, 1000020030, 1000020040 }; static int32_t conv_mcnp6_to_pdg_0to36[] = { 0, 2112, 22, 11, 13, -2112, 12, 14, -11, 2212, 3122, 3222, 3112, 3322, 3312, 3334, -13, -12, -14, -2212, 211, 111, 321, 310, 130, -3122, -3222, -3112, -3322, -3312, -3334, 1000010020, 1000010030, 1000020030, 1000020040, -211, -321 }; int32_t conv_mcnpx_ssw2pdg( int32_t c ) { if (c<0) return 0; if (c<=34) return conv_mcnpx_to_pdg_0to34[c]; if (c>=401&&c<=434) return c==402 ? 22 : - conv_mcnpx_to_pdg_0to34[c%100]; int32_t sign = 1; if (c%1000==435) { sign = -1; c -= 400; } if (c%1000==35) { //ion from MMMAAA035 where MMM = Z-1 to 100ZZZAAA0 c /= 1000; long A = c%1000; if (!A) return 0; c /= 1000; if (c/1000) return 0; long ZM1 = c%1000; return sign * (1000000000 + (ZM1+1)*10000 + A*10); } //Retry without non-type related parts: int j = (c%1000)/100; if (j==2||j==6) return conv_mcnpx_ssw2pdg(c-200); return 0; } int32_t conv_mcnp6_ssw2pdg( int32_t c ) { if (c<0) return 0; int antibit = c%2; c /= 2; int ptype = c%64; c /= 64; if (ptype<=36) { //Note that A (see below) has been observed in SSW files to have non-zero //values for ptype<37 as well, so don't require A, Z or S to be 0 here. int32_t p = conv_mcnp6_to_pdg_0to36[ptype]; return (antibit&&p!=22) ? -p : p; } if (ptype==37) { int A = c%512; c /= 512; int Z = c%128; c /= 128; int S = c; if (A<1||Z<1||A9) return 0; int32_t p = 1000000000 + 10000*Z + 10*A + S; return antibit ? -p : p; } return 0; } int32_t conv_mcnpx_pdg2ssw( int32_t c ) { int32_t absc = c < 0 ? -c : c; if (absc <= 1000020040) { int i; for (i = 0; i<35; ++i) { if (conv_mcnpx_to_pdg_0to34[i]==c) return i; } for (i = 0; i<35; ++i) { if (conv_mcnpx_to_pdg_0to34[i] == -c) return 400+i; } } if (absc>1000000000&&absc<=1009999990) { //Ions. PDG format for ions is 10LZZZAAAI, where L!=0 indicates strangeness //and I!=0 indicates exited nuclei. We only allow L=I=0 ions here. int32_t I = absc % 10;//isomer level absc/=10; int32_t A = absc%1000; absc/=1000; int32_t Z = absc % 1000; assert(absc/1000==100);//L=0 guaranteed by enclosing condition. if ( I || !A || !Z || Z>A ) return 0; return (Z-1)*1000000 + A*1000 + ( c<0 ? 435 : 35 ); } return 0; } int32_t conv_mcnp6_pdg2ssw( int32_t c ) { int32_t absc = c < 0 ? -c : c; if (absc <= 1000020040) { if (c==-11) return 7;//e+ is special case, pick 7 (anti e-) rather than 16 (straight e+) int i; for (i = 0; i<37; ++i) { if (conv_mcnp6_to_pdg_0to36[i]==c) return 2*i; } for (i = 0; i<37; ++i) { if (conv_mcnp6_to_pdg_0to36[i] == -c) return 1 + 2*i; } } if (absc>1000000000&&absc<=1009999990) { //Ions. PDG format for ions is 10LZZZAAAI, where L!=0 indicates strangeness //and I!=0 indicates exited nuclei. We only allow L=0 ions here. int32_t I = absc % 10;//isomer level absc/=10; int32_t A = absc%1000; absc/=1000; int32_t Z = absc % 1000; assert(absc/1000==100);//L=0 guaranteed by enclosing condition. if ( !A || !Z || Z>A ) return 0; int32_t res = (c<0?1:0); res += 2*37; res += 128*A; res += 128*512*Z; res += 128*512*128*I; return res; } return 0; } ///////////////////////////////////////////////////////////////////////////////////// // // // sswmcpl : Code for converting between MCPL and SSW files from MCNP(X). // // // // // // Compilation of sswmcpl.c can proceed via any compliant C-compiler using // // -std=c99 later. Furthermore, the following preprocessor flag can be used // // when compiling sswmcpl.c to fine tune the build process. // // // // SSWMCPL_HDR_INCPATH : Specify alternative value if the sswmcpl header // // itself is not to be included as "sswmcpl.h". // // SSWREAD_HDR_INCPATH : Specify alternative value if the sswread header // // is not to be included as "sswread.h". // // MCPL_HEADER_INCPATH : Specify alternative value if the MCPL header is // // not to be included as "mcpl.h". // // // // This file can be freely used as per the terms in the LICENSE file. // // // // However, note that usage of MCNP(X)-related utilities might require additional // // permissions and licenses from third-parties, which is not within the scope of // // the MCPL project itself. // // // // Written 2015-2017, thomas.kittelmann@esss.se (European Spallation Source). // // // ///////////////////////////////////////////////////////////////////////////////////// #ifdef SSWMCPL_HDR_INCPATH # include SSWMCPL_HDR_INCPATH #else #endif #ifdef SSWREAD_HDR_INCPATH # include SSWREAD_HDR_INCPATH #else #endif #ifdef MCPL_HEADER_INCPATH # include MCPL_HEADER_INCPATH #else #endif #include #include #include #include #include void ssw_error(const char * msg);//fwd declare internal function from sswread.c int sswmcpl_buf_is_text(size_t n, const unsigned char * buf) { //We correctly allow ASCII & UTF-8 but falsely classify UTF-16 and UTF-32 as //data. See http://stackoverflow.com/questions/277521#277568 for how we could //also detect UTF-16 & UTF-32. const unsigned char * bufE = buf + n; for (; buf!=bufE; ++buf) if ( ! ( ( *buf >=9 && *buf<=13 ) || ( *buf >=32 && *buf<=126 ) || *buf >=128 ) ) return 0; return 1; } int sswmcpl_file2buf(const char * filename, unsigned char** buf, size_t* lbuf, size_t maxsize, int require_text) { *buf = 0; *lbuf = 0; FILE * file = fopen(filename, "rb"); if (!file) { printf("Error: could not open file %s.\n",filename); return 0; } size_t pos_begin = ftell(file); size_t bbuf_size = maxsize;//default to max size (in case SEEK_END does not work) int bbuf_size_guess = 1; if (!fseek( file, 0, SEEK_END )) { size_t pos_end = ftell(file); bbuf_size = pos_end-pos_begin; bbuf_size_guess = 0; if (bbuf_size<50) { printf("Error: file %s is suspiciously short.\n",filename); return 0; } if (bbuf_size>104857600) { printf("Error: file %s is larger than %g bytes.\n",filename,(double)maxsize); return 0; } } if (fseek( file, 0, SEEK_SET)) { printf("Error: Could not rewind file %s.\n",filename); return 0; } unsigned char * bbuf = malloc(bbuf_size); unsigned char * bbuf_iter = bbuf; size_t left = bbuf_size; while (left) { size_t nb = fread(bbuf_iter, 1, left, file); if (bbuf_size_guess&&nb==0) { bbuf_size -= left; break; } if (nb==0||nb>left) { printf("Error: file %s read-error.\n",filename); free(bbuf); return 0; } bbuf_iter += nb; left -= nb; } fclose(file); if ( require_text && !sswmcpl_buf_is_text(bbuf_size, bbuf) ) { printf("Error: file %s does not appear to be a text file.\n",filename); free(bbuf); return 0; } *buf = bbuf; *lbuf = bbuf_size; return 1; } int ssw2mcpl(const char * sswfile, const char * mcplfile) { return ssw2mcpl2(sswfile, mcplfile, 0, 0, 1, 0); } int ssw2mcpl2(const char * sswfile, const char * mcplfile, int opt_dp, int opt_surf, int opt_gzip, const char * inputdeckfile) { ssw_file_t f = ssw_open_file(sswfile); mcpl_outfile_t mcplfh = mcpl_create_outfile(mcplfile); mcpl_hdr_set_srcname(mcplfh,ssw_mcnpflavour(f)); uint64_t lstrbuf = 1024; lstrbuf += strlen(ssw_srcname(f)); lstrbuf += strlen(ssw_srcversion(f)); lstrbuf += strlen(ssw_title(f)); if (lstrbuf<4096) { char * buf = (char*)malloc((int)lstrbuf); buf[0] = '\0'; strcat(buf,"SSW file from "); strcat(buf,ssw_mcnpflavour(f)); strcat(buf," converted with ssw2mcpl (from MCPL release v" MCPL_VERSION_STR ")"); mcpl_hdr_add_comment(mcplfh,buf); buf[0] = '\0'; strcat(buf,"SSW metadata: [kods='"); strcat(buf,ssw_srcname(f)); strcat(buf,"', vers='"); strcat(buf,ssw_srcversion(f)); strcat(buf,"', title='"); strcat(buf,ssw_title(f)); strcat(buf,"']"); mcpl_hdr_add_comment(mcplfh,buf); free(buf); } else { mcpl_hdr_add_comment(mcplfh,"SSW metadata: "); } if (opt_surf) { mcpl_hdr_add_comment(mcplfh,"The userflags in this file are the surface IDs found in the SSW file"); mcpl_enable_userflags(mcplfh); } if (opt_dp) { mcpl_enable_doubleprec(mcplfh); } if (inputdeckfile) { unsigned char* cfgfile_buf; size_t cfgfile_lbuf; if (!sswmcpl_file2buf(inputdeckfile, &cfgfile_buf, &cfgfile_lbuf, 104857600, 1)) return 0; if (!strstr((const char*)cfgfile_buf, ssw_title(f))) { printf("Error: specified configuration file %s does not contain title found in ssw file: \"%s\".\n",inputdeckfile,ssw_title(f)); return 0; } mcpl_hdr_add_data(mcplfh, "mcnp_input_deck", (uint32_t)cfgfile_lbuf,(const char *)cfgfile_buf); free(cfgfile_buf); } mcpl_particle_t mcpl_particle; memset(&mcpl_particle,0,sizeof(mcpl_particle)); const ssw_particle_t * p; while ((p=ssw_load_particle(f))) { mcpl_particle.pdgcode = p->pdgcode; if (!mcpl_particle.pdgcode) { printf("Warning: ignored particle with no PDG code set (raw ssw type was %li).\n",p->rawtype); continue; } mcpl_particle.position[0] = p->x;//already in cm mcpl_particle.position[1] = p->y;//already in cm mcpl_particle.position[2] = p->z;//already in cm mcpl_particle.direction[0] = p->dirx; mcpl_particle.direction[1] = p->diry; mcpl_particle.direction[2] = p->dirz; mcpl_particle.time = p->time * 1.0e-5;//"shakes" to milliseconds mcpl_particle.weight = p->weight; mcpl_particle.ekin = p->ekin;//already in MeV mcpl_particle.userflags = p->isurf; mcpl_add_particle(mcplfh,&mcpl_particle); } const char * tmp = mcpl_outfile_filename(mcplfh); size_t laf = strlen(tmp); char * actual_filename = malloc(laf+1); actual_filename[0]='\0'; strcat(actual_filename,tmp); int did_gzip = 0; if (opt_gzip) did_gzip = mcpl_closeandgzip_outfile(mcplfh); else mcpl_close_outfile(mcplfh); ssw_close_file(f); printf("Created %s%s\n",actual_filename,(did_gzip?".gz":"")); free(actual_filename); return 1; } void ssw2mcpl_parse_args(int argc,char **argv, const char** infile, const char **outfile, const char **cfgfile, int* double_prec, int* surface_info, int* do_gzip) { *cfgfile = 0; *infile = 0; *outfile = 0; *surface_info = 0; *double_prec = 0; *do_gzip = 1; int i; for (i=1; i < argc; ++i) { if (argv[i][0]=='\0') continue; if (strcmp(argv[i],"-h")==0||strcmp(argv[i],"--help")==0) { const char * progname = strrchr(argv[0], '/'); progname = progname ? progname + 1 : argv[0]; printf("Usage:\n\n"); printf(" %s [options] input.ssw [output.mcpl]\n\n",progname); printf("Converts the Monte Carlo particles in the input.ssw file (MCNP Surface\n" "Source Write format) to MCPL format and stores in the designated output\n" "file (defaults to \"output.mcpl\").\n" "\n" "Options:\n" "\n" " -h, --help : Show this usage information.\n" " -d, --double : Enable double-precision storage of floating point values.\n" " -s, --surf : Store SSW surface IDs in the MCPL userflags.\n" " -n, --nogzip : Do not attempt to gzip output file.\n" " -c FILE : Embed entire configuration FILE (the input deck)\n" " used to produce input.ssw in the MCPL header.\n" ); exit(0); } if (strcmp(argv[i],"-c")==0) { if (i+1==argc||argv[i+1][0]=='-') { printf("Error: Missing argument for -c\n"); exit(1); } ++i; if (*cfgfile) { printf("Error: -c specified more than once\n"); exit(1); } *cfgfile = argv[i]; continue; } if (strcmp(argv[i],"-d")==0||strcmp(argv[i],"--double")==0) { *double_prec = 1; continue; } if (strcmp(argv[i],"-s")==0||strcmp(argv[i],"--surf")==0) { *surface_info = 1; continue; } if (strcmp(argv[i],"-n")==0||strcmp(argv[i],"--nogzip")==0) { *do_gzip = 0; continue; } if (argv[i][0]=='-') { printf("Error: Unknown argument: %s\n",argv[i]); exit(1); } if (!*infile) { *infile = argv[i]; continue; } if (!*outfile) { *outfile = argv[i]; continue; } printf("Error: Too many arguments! (run with -h or --help for usage instructions)\n"); exit(1); } if (!*infile) { printf("Error: Too few arguments! (run with -h or --help for usage instructions)\n"); exit(1); } if (!*outfile) *outfile = "output.mcpl"; if (strcmp(*infile,*outfile)==0) { //basic test, easy to cheat: printf("Error: input and output files are identical.\n"); exit(1); } } int ssw2mcpl_app(int argc,char** argv) { const char * infile; const char * outfile; const char * cfgfile; int double_prec, surface_info, do_gzip; ssw2mcpl_parse_args(argc,argv,&infile,&outfile,&cfgfile,&double_prec,&surface_info,&do_gzip); int ok = ssw2mcpl2(infile, outfile,double_prec, surface_info, do_gzip,cfgfile); return ok ? 0 : 1; } void ssw_update_nparticles(FILE* f, int64_t np1pos, int32_t np1, int64_t nrsspos, int32_t nrss) { //Seek and update np1 and nrss fields at correct location in header: const char * errmsg = "Errors encountered while attempting to update number of particle info in output file."; int64_t savedpos = ftell(f); if (savedpos<0) ssw_error(errmsg); if (fseek( f, np1pos, SEEK_SET )) ssw_error(errmsg); size_t nb = fwrite(&np1, 1, sizeof(np1), f); if (nb != sizeof(np1)) ssw_error(errmsg); if (fseek( f, nrsspos, SEEK_SET )) ssw_error(errmsg); nb = fwrite(&nrss, 1, sizeof(nrss), f); if (nb != sizeof(nrss)) ssw_error(errmsg); if (fseek( f, savedpos, SEEK_SET )) ssw_error(errmsg); } void ssw_writerecord(FILE* outfile, int reclen, size_t lbuf, char* buf) { if (reclen==4) { uint32_t rl = lbuf; size_t nb = fwrite(&rl, 1, sizeof(rl), outfile); if (nb!=sizeof(rl)) ssw_error("write error"); nb = fwrite(buf, 1, lbuf, outfile); if (nb!=lbuf) ssw_error("write error"); nb = fwrite(&rl, 1, sizeof(rl), outfile); if (nb!=sizeof(rl)) ssw_error("write error"); } else { assert(reclen==8); uint64_t rl = lbuf; size_t nb = fwrite(&rl, 1, sizeof(rl), outfile); if (nb!=sizeof(rl)) ssw_error("write error"); nb = fwrite(buf, 1, lbuf, outfile); if (nb!=lbuf) ssw_error("write error"); nb = fwrite(&rl, 1, sizeof(rl), outfile); if (nb!=sizeof(rl)) ssw_error("write error"); } } //Fwd declaration of internal function in sswread.c: void ssw_internal_grabhdr( const char * filename, int is_gzip, int64_t hdrlen, unsigned char * hdrbuf ); int mcpl2ssw(const char * inmcplfile, const char * outsswfile, const char * refsswfile, long surface_id, long nparticles_limit) { mcpl_file_t fmcpl = mcpl_open_file(inmcplfile); printf( "Opened MCPL file produced with \"%s\" (contains %llu particles)\n", mcpl_hdr_srcname(fmcpl), (unsigned long long)mcpl_hdr_nparticles(fmcpl) ); if (surface_id==0 && !mcpl_hdr_has_userflags(fmcpl)) ssw_error("MCPL file contains no userflags so parameter specifying " "resulting SSW surface ID of particles is mandatory (use -s)."); printf("Opening reference SSW file:\n"); ssw_file_t fsswref = ssw_open_file(refsswfile); //Open reference file and figure out variables like header length, position of //"nparticles"-like variables, fortran record length and mcnp version. int ssw_reclen; int ssw_ssblen; int64_t ssw_hdrlen; int64_t ssw_np1pos; int64_t ssw_nrsspos; ssw_layout(fsswref, &ssw_reclen, &ssw_ssblen, &ssw_hdrlen, &ssw_np1pos, &ssw_nrsspos); assert(ssw_np1pos0); char ref_mcnpflavour_str[64]; ref_mcnpflavour_str[0] = '\0'; strcat(ref_mcnpflavour_str,ssw_mcnpflavour(fsswref)); int ref_is_gzipped = ssw_is_gzipped(fsswref); ssw_close_file(fsswref); //Grab the header: unsigned char * hdrbuf = (unsigned char*)malloc(ssw_hdrlen); assert(hdrbuf); ssw_internal_grabhdr( refsswfile, ref_is_gzipped, ssw_hdrlen, hdrbuf ); int32_t orig_np1 = * ((int32_t*)(&hdrbuf[ssw_np1pos])); //Clear |np1| and nrss in header to to indicate incomplete info (we will //update just before closing the file): *((int32_t*)(&hdrbuf[ssw_np1pos])) = 0; *((int32_t*)(&hdrbuf[ssw_nrsspos])) = 0; printf("Creating (or overwriting) output SSW file.\n"); //Open new ssw file: FILE * fout = fopen(outsswfile,"wb"); if (!fout) ssw_error("Problems opening new SSW file"); //Write header: int nb = fwrite(hdrbuf, 1, ssw_hdrlen, fout); if (nb!=ssw_hdrlen) ssw_error("Problems writing header to new SSW file"); free(hdrbuf); double ssb[11]; if ( ssw_ssblen != 10 && ssw_ssblen != 11) ssw_error("Unexpected length of ssb record in reference SSW file"); if ( (ssw_mcnp_type == SSW_MCNP6) && ssw_ssblen != 11 ) ssw_error("Unexpected length of ssb record in reference SSW file (expected 11 for MCNP6 files)"); //ssb[0] should be history number (starting from 1), but in our case we always //put nhistories=nparticles, so it is simply incrementing by 1 for each particle. ssb[0] = 0.0; assert(surface_id>=0&&surface_id<1000000); const mcpl_particle_t* mcpl_p; long used = 0; long long skipped_nosswtype = 0; printf("Initiating particle conversion loop.\n"); while ( ( mcpl_p = mcpl_read(fmcpl) ) ) { ++ssb[0]; ssb[2] = mcpl_p->weight; ssb[3] = mcpl_p->ekin;//already in MeV ssb[4] = mcpl_p->time * 1.0e5;//milliseconds to "shakes" ssb[5] = mcpl_p->position[0];//already in cm ssb[6] = mcpl_p->position[1];//already in cm ssb[7] = mcpl_p->position[2];//already in cm ssb[8] = mcpl_p->direction[0]; ssb[9] = mcpl_p->direction[1]; int32_t isurf = surface_id; if (!isurf) isurf = (int32_t)mcpl_p->userflags; if (isurf<=0||isurf>1000000) { if (isurf==0&&surface_id==0) ssw_error("Could not determine surface ID: no global surface id specified and particle had no (or empty) userflags"); else ssw_error("Surface id must be in range 1..999999"); } int64_t rawtype; if (ssw_mcnp_type == SSW_MCNP6) { rawtype = conv_mcnp6_pdg2ssw(mcpl_p->pdgcode); } else if (ssw_mcnp_type == SSW_MCNPX) { rawtype = conv_mcnpx_pdg2ssw(mcpl_p->pdgcode); } else { assert(ssw_mcnp_type == SSW_MCNP5); rawtype = (mcpl_p->pdgcode==2112?1:(mcpl_p->pdgcode==22?2:0)); } if (!rawtype) { ++skipped_nosswtype; if (skipped_nosswtype<=100) { printf("WARNING: Found PDG code (%li) in the MCPL file which can not be converted to an %s particle type\n", (long)mcpl_p->pdgcode,ref_mcnpflavour_str); if (skipped_nosswtype==100) printf("WARNING: Suppressing future warnings regarding non-convertible PDG codes.\n"); } continue; } assert(rawtype>0); if (ssw_mcnp_type == SSW_MCNP6) { assert(ssw_ssblen==11); ssb[10] = isurf;//Should we set the sign of ssb[10] to mean something (we take abs(ssb[10]) in sswread.c)? ssb[1] = rawtype*4;//Shift 2 bits (thus we only create files with those two bits zero!) } else if (ssw_mcnp_type == SSW_MCNPX) { ssb[1] = isurf + 1000000*rawtype; if (ssw_ssblen==11) ssb[10] = 1.0;//Cosine of angle at surface? Can't calculate it, so we simply set //it to 1 (seems to be not used anyway?) } else { assert(ssw_mcnp_type == SSW_MCNP5); ssb[1] = (isurf + 1000000*rawtype)*8; if (ssw_ssblen==11) ssb[10] = 1.0;//Cosine of angle at surface? Can't calculate it, so we simply set //it to 1 (seems to be not used anyway?) } //Sign of ssb[1] is used to store the sign of dirz: assert(ssb[1] >= 1.0); if (mcpl_p->direction[2]<0.0) ssb[1] = - ssb[1]; ssw_writerecord(fout,ssw_reclen,sizeof(double)*ssw_ssblen,(char*)&ssb[0]); if (++used==nparticles_limit) { long long remaining = mcpl_hdr_nparticles(fmcpl) - skipped_nosswtype - used; if (remaining) printf("Output limit of %li particles reached. Ignoring remaining %lli particles in the MCPL file.\n", nparticles_limit,remaining); break; } } printf("Ending particle conversion loop.\n"); if (skipped_nosswtype) { printf("WARNING: Ignored %lli particles in the input MCPL file since their PDG codes" " could not be converted to MCNP types.\n",(long long)skipped_nosswtype); } int32_t new_nrss = used; int32_t new_np1 = new_nrss; if (new_np1==0) { //SSW files must at least have 1 history (but can have 0 particles) printf("WARNING: Input MCPL file has 0 useful particles but we are setting number" " of histories in new SSW file to 1 to avoid creating an invalid file.\n"); new_np1 = 1; } if (orig_np1<0) new_np1 = - new_np1; ssw_update_nparticles(fout,ssw_np1pos,new_np1,ssw_nrsspos,new_nrss); mcpl_close_file(fmcpl); fclose(fout); printf("Created %s with %lli particles (nrss) and %lli histories (np1).\n",outsswfile,(long long)new_nrss,(long long)labs(new_np1)); return 1; } int mcpl2ssw_app_usage( const char** argv, const char * errmsg ) { if (errmsg) { printf("ERROR: %s\n\n",errmsg); printf("Run with -h or --help for usage information\n"); return 1; } const char * progname = strrchr(argv[0], '/'); progname = progname ? progname + 1 : argv[0]; printf("Usage:\n\n"); printf(" %s [options] [output.ssw]\n\n",progname); printf("Converts the Monte Carlo particles in the input MCPL file to SSW format\n" "(MCNP Surface Source Write) and stores the result in the designated output\n" "file (defaults to \"output.ssw\").\n" "\n" "In order to do so and get the details of the SSW format correct, the user\n" "must also provide a reference SSW file from the same approximate setup\n" "(MCNP version, input deck...) where the new SSW file is to be used. The\n" "reference SSW file can of course be very small, as only the file header is\n" "important (the new file essentially gets a copy of the header found in the\n" "reference file, except for certain fields related to number of particles\n" "whose values are changed).\n" "\n" "Finally, one must pay attention to the Surface ID assigned to the\n" "particles in the resulting SSW file: Either the user specifies a global\n" "one with -s, or it is assumed that the MCPL userflags field in the\n" "input file is actually intended to become the Surface ID. Note that not\n" "all MCPL files have userflag fields and that valid Surface IDs are\n" "integers in the range 1-999999.\n" "\n" "Options:\n" "\n" " -h, --help : Show this usage information.\n" " -s : All particles in the SSW file will get this surface ID.\n" " -l : Limit the number of particles transferred to the SSW file\n" " (defaults to 2147483647, the maximal SSW capacity).\n" ); return 0; } int mcpl2ssw_parse_args(int argc,const char **argv, const char** inmcplfile, const char **refsswfile, const char **outsswfile, long* nparticles_limit, long* surface_id) { //returns: 0 all ok, 1: error, -1: all ok but do nothing (-h/--help mode) *inmcplfile = 0; *refsswfile = 0; *outsswfile = 0; *nparticles_limit = INT32_MAX; *surface_id = 0; int64_t opt_num_limit = -1; int64_t opt_num_isurf = -1; int i; for (i = 1; i=2&&a[0]=='-'&&a[1]!='-') { //short options: int64_t * consume_digit = 0; size_t j; for (j=1; j'9') return mcpl2ssw_app_usage(argv,"Bad option: expected number"); *consume_digit *= 10; *consume_digit += a[j] - '0'; continue; } switch(a[j]) { case 'h': mcpl2ssw_app_usage(argv,0); return -1; case 'l': consume_digit = &opt_num_limit; break; case 's': consume_digit = &opt_num_isurf; break; default: return mcpl2ssw_app_usage(argv,"Unrecognised option"); } if (consume_digit) { *consume_digit = 0; if (j+1==n) return mcpl2ssw_app_usage(argv,"Bad option: missing number"); } } } else if (n==6 && strcmp(a,"--help")==0) { mcpl2ssw_app_usage(argv,0); return -1; } else if (n>=1&&a[0]!='-') { if (*outsswfile) return mcpl2ssw_app_usage(argv,"Too many arguments."); if (*refsswfile) *outsswfile = a; else if (*inmcplfile) *refsswfile = a; else *inmcplfile = a; } else { return mcpl2ssw_app_usage(argv,"Bad arguments"); } } if (!*inmcplfile) return mcpl2ssw_app_usage(argv,"Missing argument : input MCPL file"); if (!*refsswfile) return mcpl2ssw_app_usage(argv,"Missing argument : Reference SSW file"); if (!*outsswfile) *outsswfile = "output.ssw"; if (opt_num_limit<=0) opt_num_limit = INT32_MAX; if (opt_num_limit>INT32_MAX) return mcpl2ssw_app_usage(argv,"Parameter out of range : SSW files can only hold up to 2147483647 particles."); *nparticles_limit = opt_num_limit; if (opt_num_isurf==0||opt_num_isurf>999999) return mcpl2ssw_app_usage(argv,"Parameter out of range : Surface ID must be in range [1,999999]."); if (opt_num_isurf<0) opt_num_isurf = 0; *surface_id = opt_num_isurf; return 0; } int mcpl2ssw_app( int argc, char** argv ) { const char * inmcplfile; const char * refsswfile; const char * outsswfile; long nparticles_limit; long surface_id; int parse = mcpl2ssw_parse_args( argc, (const char**)argv, &inmcplfile, &refsswfile, &outsswfile, &nparticles_limit, &surface_id ); if (parse==-1)// --help return 0; if (parse)// parse error return parse; if (mcpl2ssw(inmcplfile, outsswfile, refsswfile,surface_id, nparticles_limit)) return 0; return 1; } ///////////////////////////////////////////////////////////////////////////////////// // // // ssw2mcpl : a simple command line utility for converting SSW to MCPL. // // // // This file can be freely used as per the terms in the LICENSE file. // // // // However, note that usage of MCNP(X)-related utilities might require additional // // permissions and licenses from third-parties, which is not within the scope of // // the MCPL project itself. // // // // Written 2015-2016, thomas.kittelmann@esss.se (European Spallation Source). // // // ///////////////////////////////////////////////////////////////////////////////////// int main(int argc,char** argv) { return ssw2mcpl_app(argc,argv); }