sparsersb-1.0.9/COPYING 0000644 0000000 0000000 00000104513 14122214045 012705 0 ustar 0000000 0000000 GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc.
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
Copyright (C)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
Copyright (C)
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
.
sparsersb-1.0.9/DESCRIPTION 0000644 0000000 0000000 00000001047 14122214045 013356 0 ustar 0000000 0000000 Name: sparsersb
Version: 1.0.9
Date: 2021-09-21
Author: Michele Martone
Maintainer: Michele Martone
Title: Interface to the librsb package implementing the RSB sparse matrix format.
Description: Interface to the librsb package implementing the RSB sparse matrix format for fast shared-memory sparse matrix computations.
Depends: octave (>= 4.4.0)
License: GPLv3+
Url: http://librsb.sourceforge.net/
Categories: Sparse Matrix Computations
BuildRequires: librsb (>= 1.2.0.9)
sparsersb-1.0.9/INDEX 0000644 0000000 0000000 00000000154 14122214045 012440 0 ustar 0000000 0000000 sparsersb >> Interface to the librsb package implementing the RSB sparse matrix format.
Support
sparsersb
sparsersb-1.0.9/Makefile 0000644 0000000 0000000 00000007010 14122214045 013304 0 ustar 0000000 0000000 ## Copyright 2017 Julien Bect
## Copyright 2015-2016 Carnë Draug
## Copyright 2015-2016 Oliver Heimlich
##
## Copying and distribution of this file, with or without modification,
## are permitted in any medium without royalty provided the copyright
## notice and this notice are preserved. This file is offered as-is,
## without any warranty.
PACKAGE := $(shell grep "^Name: " DESCRIPTION | cut -f2 -d" ")
VERSION := $(shell grep "^Version: " DESCRIPTION | cut -f2 -d" ")
TARGET_DIR := $(CURDIR)/target
RELEASE_DIR := $(TARGET_DIR)/$(PACKAGE)-$(VERSION)
RELEASE_TARBALL := $(TARGET_DIR)/$(PACKAGE)-$(VERSION).tar.gz
HTML_DIR := $(TARGET_DIR)/$(PACKAGE)-html
HTML_TARBALL := $(TARGET_DIR)/$(PACKAGE)-html.tar.gz
HG_ID := $(shell hg id --id | sed -e 's/+//')
HG_DATE := $(shell hg log --rev $(HG_ID) --template {date\|isodate})
# Follows the recommendations of https://reproducible-builds.org/docs/archives
# Note #1: GNU tar is assumed
# Note #2: --format=ustar selects the 'ustar' (POSIX.1-1988) tar format
define create_tarball
$(shell cd $(dir $(1)) \
&& find $(notdir $(1)) -print0 \
| LC_ALL=C sort -z \
| tar c --format=ustar --mtime="$(HG_DATE)" --mode=a+rX,u+w,go-w,ug-s \
--owner=0 --group=0 --numeric-owner \
--no-recursion --null -T - -f - \
| gzip -9n > "$(2)")
endef
M_SOURCES := $(wildcard inst/*.m) $(patsubst %.in,%,$(wildcard src/*.m.in))
OCTAVE ?= octave --no-window-system --silent
.PHONY: all help dist html release install build-inplace check run clean
# Default target
release: dist html
@echo " "
@echo "Upload @ https://sourceforge.net/p/octave/package-releases/new/"
@echo "and provide the following md5sums:"
@cd $(TARGET_DIR) && md5sum \
$(notdir $(RELEASE_TARBALL)) \
$(notdir $(HTML_TARBALL))
@echo 'Execute: hg tag "release-${VERSION}" when the release is ready.'
@echo " "
help:
@echo "Targets:"
@echo " dist - Create $(RELEASE_TARBALL) for release"
@echo " html - Create $(HTML_TARBALL) for release"
@echo " release - Create both of the above and show md5sums"
@echo
@echo " install - Install the package in GNU Octave"
@echo " check - Execute package tests (w/o install)"
@echo " run - Run Octave with development in PATH (no install)"
@echo
@echo " clean - Remove releases, html documentation"
%.tar.gz: %
$(call create_tarball,$*,$@)
$(RELEASE_DIR): .hg/dirstate
@echo "Creating package version $(VERSION) release ..."
-$(RM) -r "$@"
hg archive --exclude ".hg*" --exclude "Makefile" --type files "$@"
cd "$@/src" && ./autogen.sh && $(RM) -r "autom4te.cache"
$(HTML_DIR): install
@echo "Generating HTML documentation. This may take a while ..."
-$(RM) -r "$@"
cd src && $(OCTAVE) \
--eval "pkg load generate_html; " \
--eval 'generate_package_html ("${PACKAGE}", "$@", "octave-forge");'
dist: $(RELEASE_TARBALL)
html: $(HTML_TARBALL)
install: $(RELEASE_TARBALL)
@echo "Installing package locally ..."
$(OCTAVE) --eval 'pkg ("install", "${RELEASE_TARBALL}")'
build-inplace: src/sparsersb.oct
src/configure: src/autogen.sh src/configure.ac
cd src && ./autogen.sh
src/Makeconf: src/configure src/Makeconf.in
cd src && ./configure
src/sparsersb.oct: src/Makefile src/Makeconf
cd src && $(MAKE) sparsersb.oct
check: src/sparsersb.oct
$(MAKE) -C src tests
run: src/sparsersb.oct
$(OCTAVE) --persist --path "inst/" --path "src/"
clean:
$(RM) -r $(TARGET_DIR)
$(MAKE) -C src clean
$(RM) -rf src/autom4te.cache
$(RM) src/Makeconf src/config.log src/config.status src/configure
sparsersb-1.0.9/NEWS 0000644 0000000 0000000 00000012160 14122214045 012345 0 ustar 0000000 0000000 Summary of important user-visible changes for releases of the sparsersb package
===============================================================================
sparsersb-1.0.9 Release Date: 2021-09-21
===============================================================================
** Intended to be used with librsb-1.2.0.9 or later.
** - documented differences with sparse in multiplying sparsersb by sparsersb
** - documented differences with sparse in summing sparsersb by sparsersb
** - documented "symmetric" and "hermitian" specifiers
** - documented "symmetric" and "hermitian" (i,j) access
** - documented "symmetric" and "hermitian" (:,:) access
** - fix: conversion from symmetric complex sparsersb won't give hermitian
** - fix: conversion from diagonal complex sparse shan't give hermitian
** - fix: compatibility with Octave-6 in sparsersbtg.m
** - fix: avoid test requiring >1 threads failing on OMP_NUM_THREADS=1
** - fix: avoid possible segfault crash (heap-use-after-free)
** - better message when trying to invert matrix with zeroes on diagonal
** - stricter error propagation when in `make tests'
** - more error verbosity
===============================================================================
sparsersb-1.0.8 Release Date: 2020-08-06
===============================================================================
** Intended to be used with librsb-1.2.0.9 or later.
** - fixed '*' giving bad results between real sparsersb and complex scalar
** - fixed '+' giving bad sum between real sparsersb and complex sparsersb
** - improved documentation, demos and tests
** - fix: hermitian sparsersb matrices were being marked with 'U', not 'H'
** - fix: avoid duplicate vector re-zeroing (so, a bit faster)
===============================================================================
sparsersb-1.0.7 Release Date: 2020-01-07
===============================================================================
** - fixed '*' operator: 2*sparsersb(...) now returns a sparsersb, not sparse
** - fixed '*' operation when one operand is real sparsersb and other complex
** - avoids internal octave API deprecated in 4.4
** - builds with 4.4 till pre-release 6.0
** - `make tests' shall fail on sparsersb not matching octave's sparse
** - implemented elemental transposition by complex: sparsersb.^complex
** - expand symmetry when converting sparsersb double to sparse
** - expand hermitian when converting sparsersb complex to sparse
** - 1-D indexing read access is meant to be like in sparse
** - (:), (:,:), (i,:), (:,j) access support implemented (but not efficient)
** - internal bug fixes
** - more test cases (for 'test librsb')
===============================================================================
sparsersb-1.0.6 Release Date: 2018-06-15
===============================================================================
** Intended to be used with the latest librsb-1.2.0.
** - fix of typo breaking builds (bug # #50764)
===============================================================================
sparsersb-1.0.5 Release Date: 2017-03-29
===============================================================================
** Intended to be used with the latest librsb-1.2.0.
** - tests won't use quit(): might emit exception according to bug #49271
===============================================================================
sparsersb-1.0.4 Release Date: 2017-03-25
===============================================================================
** Intended to be used with the latest librsb-1.2.0.
** - test script now uses ilu() instead of obsolete luinc()
===============================================================================
sparsersb-1.0.3 Release Date: 2017-03-24
===============================================================================
** Intended to be used with the latest librsb-1.2.0.
** - "symmetric" RSB representation supported
** - improved documentation (including a few typos)
** - improved demos (demo sparsersb)
** - improved tests (test sparsersb)
** - improved error messages
===============================================================================
sparsersb-1.0.2 Release Date: 2016-10-03
===============================================================================
** Intended to be used with the latest librsb-1.2.0.
** - builds even if octave built with --enable-64, but limited to matrices
** which would fit when using a normal setup.
===============================================================================
sparsersb-1.0.1 Release Date: 2016-08-01
===============================================================================
** Intended to be used with the latest librsb-1.2.0.
** Changed sparsersb's `configure --help':
** - options to build librsb from a tarball (via configure or LIBRSB_TARBALL)
** - options to use librsb-config
** - options to override librsb-config
** - you can override the default C++11 flag
===============================================================================
sparsersb-1.0.0 Release Date: 2015-05-31
===============================================================================
** First Packaged Release. Intended to work with librsb-1.2.
sparsersb-1.0.9/bin/demo_sparsersb.m 0000755 0000000 0000000 00000013303 14122214045 015607 0 ustar 0000000 0000000 #
# Copyright (C) 2011-2017 Michele Martone
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, see .
#
if length(getenv("SPARSERSB_TEST")) == 0 ; pkg load sparsersb ; end
disp " ***********************************************************************"
disp "** A usage example of sparsersb. **"
disp "** A case large enough for 'sparsersb' to likely outperform 'sparse'. **"
disp "** p.s.: Invoke 'demo sparsersb' to get just a first working overview. **"
disp " ***********************************************************************"
bs=100; # block size
bo=10; # block overlap
bc=700; # block count
# bs=2; # block size
# bo=1; # block overlap
# bc=2; # block count
nr=bs+(bc-1)*(bs-bo);
nc=nr;
disp "Constructing coefficients for a sparse diagonal blocks matrix."
printf ("Will use %d blocks each wide %d and overlapping %d.\n", bc, bs, bo);
ai=[];
aj=[];
av=[];
for i=1:bc
# randomly generate block
thr=0.3;
b=rand(bs)+bc*eye(bs);
b=b+b';
[bi,bj,bv]=find(b>thr);
io=(i-1)*(bs-bo); # i offset
jo=(i-1)*(bs-bo); # j offset
ai=[ai;bi+io];
aj=[aj;bj+jo];
av=[av;bv ];
endfor
nz=length(av);
printf ("Obtained %.3e nonzeroes in a %d x %d matrix, average %.1e nonzeroes/row. \n", nz, nr, nc, nz/nr );
disp "Assembling a 'sparse' matrix..."
tic;
ao=sparse(ai,aj,av);
printf ("Assembled 'sparse' in %.1es.\n", toc);
disp "Assembling a 'sparsersb' matrix..."
tic;
ar=sparsersb(ai,aj,av);
nsb=str2num(sparsersb(ar,"get","RSB_MIF_LEAVES_COUNT__TO__RSB_BLK_INDEX_T"));
printf ("Assembled 'sparsersb' in %.1es (%d RSB blocks).\n", toc, nsb);
# Uncomment to get more information:
# printf ("RSB matrix specific info: %s.\n", ds=sparsersb(ar,"get"));
# Uncomment the following to render the RSB blocks structure to a file.
# sparsersb(ar,"render","demo_sparsersb_matrix.eps")
maxt=4;
nrhs=1;
x=ones(nc,nrhs);
y=ones(nr,nrhs);
disp " ** Testing matrix-vector multiplication ********************************"
disp "Benchmarking 'sparse' matrix-vector multiply..."
nt=0;tic;
while (toc < maxt)
nt++;y+=ao*x;
end
ot=dt=toc;ot/=nt;
printf ("Performed %8d 'sparse' matrix-vector multiplications in %.1es, %.2es each on average.\n", nt, dt, ot);
disp "Benchmarking 'sparsersb' matrix-vector multiply..."
nt=0;tic;
while (toc < maxt)
nt++;y+=ar*x;
end
rt=dt=toc;rt/=nt;
printf ("Performed %8d 'sparsersb' matrix-vector multiplications in %.1es, %.2es each on average.\n", nt, dt, rt);
printf ("So 'sparsersb' is %.2ex times as fast as 'sparse'.\n", ot/rt);
disp "Attempting autotuning 'sparsersb' matrix..."
tic;
tr=sparsersb(ar,"autotune","n",nrhs);
nnb=str2num(sparsersb(tr,"get","RSB_MIF_LEAVES_COUNT__TO__RSB_BLK_INDEX_T"));
dt=toc;
if ( nnb != nsb )
printf ("Performed autotuning in %.2es (%d -> %d RSB blocks).\n", dt, nsb, nnb);
# Uncomment to get more information:
# printf ("RSB matrix specific info: %s.\n", ds=sparsersb(tr,"get"));
disp "Benchmarking 'sparsersb' matrix-matrix multiply..."
nt=0;tic;
while (toc < maxt)
nt++;y+=ar*x;
end
rt=dt=toc;rt/=nt;
printf ("Performed %8d 'sparsersb' matrix-vector multiplications in %.1es, %.2es each on average.\n", nt, dt, rt);
printf ("So 'sparsersb' is %.2ex times as fast as 'sparse'.\n", ot/rt);
else
printf ("Autotuning procedure did not change the matrix.\n", dt, nsb, nnb);
end
disp " ** Testing matrix-matrix multiplication (rhs matrix is multi-vector) ***"
nrhs=5;
x=ones(nc,nrhs);
y=ones(nr,nrhs);
disp "Benchmarking 'sparse' matrix-matrix multiply..."
nt=0;tic;
while (toc < maxt)
nt++;y+=ao*x;
end
ot=dt=toc;ot/=nt;
printf ("Performed %8d 'sparse' matrix-matrix multiplications in %.1es, %.2es each on average.\n", nt, dt, ot);
disp "Benchmarking 'sparsersb' matrix-matrix multiply..."
nt=0;tic;
while (toc < maxt)
nt++;y+=ar*x;
end
rt=dt=toc;rt/=nt;
printf ("Performed %8d 'sparsersb' matrix-matrix multiplications in %.1es, %.2es each on average.\n", nt, dt, rt);
printf ("So 'sparsersb' is %.2ex times as fast as 'sparse'.\n", ot/rt);
disp "Attempting autotuning 'sparsersb' matrix..."
tic;
tr=sparsersb(ar,"autotune","n",nrhs);
nnb=str2num(sparsersb(tr,"get","RSB_MIF_LEAVES_COUNT__TO__RSB_BLK_INDEX_T"));
dt=toc;
if ( nnb != nsb )
printf ("Performed autotuning in %.2es (%d -> %d RSB blocks).\n", dt, nsb, nnb);
# Uncomment to get more information:
# printf ("RSB matrix specific info: %s.\n", ds=sparsersb(tr,"get"));
disp "Benchmarking 'sparsersb' matrix-matrix multiply..."
nt=0;tic;
while (toc < maxt)
nt++;y+=ar*x;
end
rt=dt=toc;rt/=nt;
printf ("Performed %8d 'sparsersb' matrix-matrix multiplications in %.1es, %.2es each on average.\n", nt, dt, rt);
printf ("So 'sparsersb' is %.2ex times as fast as 'sparse'.\n", ot/rt);
else
printf ("Autotuning procedure did not change the matrix.\n", dt, nsb, nnb);
end
disp " ***********************************************************************"
disp "** You can adapt this benchmark to test your matrices so to check if **"
disp "** they get multiplied faster with 'sparsersb' than with 'sparse'. **"
disp " ***********************************************************************"
sparsersb-1.0.9/bin/lsbench.m 0000644 0000000 0000000 00000007231 14122214045 014215 0 ustar 0000000 0000000 #
# Copyright (C) 2011-2017 Michele Martone
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, see .
#
#
# Linear Solvers benchmark demos using sparsersb.
#
# TODO: this file shall host some linear system solution benchmarks using sparsersb.
# It may serve as a reference point when profiling sparsersb/librsb.
# Please note that sparsersb is optimized for large matrices.
#
1; # This is a script
disp " ***********************************************************************"
disp "** Usage example of sparsersb solving linear systems with GMRES. **"
disp "** Matrices large enough for 'sparsersb' to likely outperform 'sparse'.**"
disp "** p.s.: Invoke 'demo sparsersb' to get just a first working overview. **"
disp " ***********************************************************************"
function lsb_compare(A)
n=rows(A);
maxit = n;
b = ones (n, 1);
P = diag (diag (A));
[i,j,v]=find(sparse(A));
minres=1e-7;
disp " ***********************************************************************"
printf("Solving a random system of %d equations, %d nonzeroes.\n",n,nnz(A));
disp " ***********************************************************************"
tic; Ao = sparse (i,j,v,n,n);obt=toc;
onz=nnz(Ao);
tic; [X, FLAG, RELRES, ITER] = gmres (Ao, b, [], minres, maxit, P); odt=toc;
cs="Octave ";
onv=norm(Ao*X-b);
oRELRES=RELRES;
printf("%s took %.2e = %.2e + %.2e s and gave residual %g, flag %d, error norm %g.\n",cs,obt+odt,obt,odt,RELRES,FLAG,onv);
tic; Ar = sparsersb (i,j,v,n,n);rbt=toc;
#tic; Ar = sparsersb (Ao);rbt=toc;
rnz=nnz(Ar);
tic; [X, FLAG, RELRES, ITER] = gmres (Ar, b, [], minres, maxit, P); rdt=toc;
cs="sparsersb";
rnv=norm(Ar*X-b);
printf("%s took %.2e = %.2e + %.2e s and gave residual %g, flag %d, error norm %g.\n",cs,rbt+rdt,rbt,rdt,RELRES,FLAG,rnv);
if (onz != rnz)
printf("Error: seems like matrices don't match: %d vs %d nonzeroes!\n",onz,rnz);
quit(1);
else
end
if (RELRES>minres ) && (oRELRES %.1es) \n (matrix construction: %.1ex, %d iterations: %.1ex).\n",(obt+odt)/(rbt+rdt),(obt+odt),(rbt+rdt),(obt)/(rbt),iters,(odt)/(rdt));
#if (obt+odt)/(rbt+rdt) > 1.0
# printf("overall: %.1ex\n",(obt+odt)/(rbt+rdt));
#end
end
printf("\n");
end
# This one is based on what Carlo De Falco once posted on the octave-dev mailing list:
# (he used n=1000, k=15)
# Toy size.
#n = 4;
#k = 1;
#A= sqrt(k) * eye (n) + sprandn (n, n, .9);
#lsb_compare(A);
# Toy size.
#n = 100;
#k = 5;
#A= sqrt(k) * eye (n) + sprandn (n, n, .8);
#lsb_compare(A);
n = 2000;
k = 1000;
A= sqrt(k) * eye (n) + sprandn (n, n, .4);
lsb_compare(A);
n = 5000;
k = 1500;
A= sqrt(k) * eye (n) + sprandn (n, n, .2);
lsb_compare(A);
disp "All done."
disp "Notice how for large matrices the matrix construction is slower..."
disp "... but multiplications are faster !"
disp " ***********************************************************************"
sparsersb-1.0.9/bin/obench.m 0000644 0000000 0000000 00000006636 14122214045 014045 0 ustar 0000000 0000000 #
# Copyright (C) 2011-2017 Michele Martone
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, see .
#
1; # This is a script
if length(getenv("SPARSERSB_TEST")) == 0 ; pkg load sparsersb ; end
disp " ***********************************************************************"
disp "** A small 'sparse' vs 'sparsersb' benchmark. **"
disp "** On a few sample problems, tests: **"
disp "** - matrix-vector multiplication (SPMV) **"
disp "** - matrix-vector multiplication transposed (SPMV_T) **"
disp "** - sparse matrix-spares matrix multiplication (SPGEMM) **"
disp "** - and shows speedup ('RSB SPEEDUP' column) **"
disp "** p.s.: Invoke 'demo sparsersb' to get just a first working overview. **"
disp " ***********************************************************************"
disp "OP ROWS COLUMNS NONZEROES OPTIME MFLOPS RSB SPEEDUP IMPLEMENTATION"
cmt="#";
#for n_=1:6*0+1
for n_=1:6
for ro=0:1
n=n_*1000;
m=k=n;
# making vectors
b=linspace(1,1,n)';
ox=linspace(1,1,n)';
bx=linspace(1,1,n)';
# making matrices
r=(rand(n)>.6);
om=sparse(r);
nz=nnz(om);
M=10^6;
if ro==1
printf("%s%s\n",cmt," reordering with colamd...");
pct=-time;
p=colamd(om);
pct+=time;
pat=-time;
om=om(:,p);
pat+=time;
# TODO: use an array to select/specify the different reordering algorithms
# printf("%g\t%g\t(%s)\n",(nz/M)/pct,(nz/M)/pat,"mflops for pct/pat");
printf("# ...colamd took %.1es (%.1e nnz/s), ",pct,nz/pct);
printf( " permutation took %.1es (%.1e nnz/s)\n",pat,nz/pat);
else
printf("%s%s\n",cmt," testing with no reordering");
end
#bm=sparsevbr(om);
bm=sparsersb(sparse(om));
#bm=sparsersb3(sparse(om));
# stats
flops=2*nz;
## spmv
ot=-time; ox=om*b; ot+=time;
#
bt=-time; bx=bm*b; bt+=time;
t=ot; p=["octave-",version]; mflops=(flops/M)/t;
printf("%s\t%d\t%d\t%d\t%.1es\t%g\t%.1ex\t%s\n","SPMV ",m,k,nz,t,mflops,1 ,p);
t=bt; p=["RSB"]; mflops=(flops/M)/t;
printf("%s\t%d\t%d\t%d\t%.1es\t%g\t%.1ex\t%s\n","SPMV ",m,k,nz,t,mflops,ot/bt,p);
## spmvt
ot=-time; ox=om.'*b; ot+=time;
#
bt=-time; bx=bm.'*b; bt+=time;
t=ot; p=["octave-",version]; mflops=(flops/M)/t;
printf("%s\t%d\t%d\t%d\t%.1es\t%g\t%.1ex\t%s\n","SPMV_T",m,k,nz,t,mflops,1 ,p);
t=bt; p=["RSB"]; mflops=(flops/M)/t;
printf("%s\t%d\t%d\t%d\t%.1es\t%g\t%.1ex\t%s\n","SPMV_T",m,k,nz,t,mflops,ot/bt,p);
## spgemm
ot=-time; ox=om*om; ot+=time;
#
bt=-time; bx=bm*bm; bt+=time;
t=ot; p=["octave-",version];
printf("%s\t%d\t%d\t%d\t%.1es\t\t%.1ex\t%s\n","SPGEMM",m,k,nz,t,1, p);
t=bt; p=["RSB"];
printf("%s\t%d\t%d\t%d\t%.1es\t\t%.1ex\t%s\n","SPGEMM",m,k,nz,t,ot/bt,p);
endfor
endfor
disp " ***********************************************************************"
sparsersb-1.0.9/bin/octavebench.m 0000755 0000000 0000000 00000013624 14122214045 015066 0 ustar 0000000 0000000 #!/usr/bin/octave -q
#
# Copyright (C) 2011-2017 Michele Martone
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, see .
#
1; # This is a script
# a benchmark program for octave/matlab
# TODO: fix output format
# TODO: correct symmetric / hermitian matrices handling
# TODO: sound, time-and-runs-based benchmarking criteria
if length(getenv("SPARSERSB_TEST")) == 0 ; pkg load sparsersb ; end
disp " ***********************************************************************"
disp "** A small 'sparse' vs 'sparsersb' test / benchmark. **"
disp "** This is meant to be a demo, but not really an example. **"
disp "** You can invoke it supplying a Matrix Market matrix (e.g. pd.mtx). **"
disp "** Without arguments, will generate a test matrix. **"
disp "** p.s.: Invoke 'demo sparsersb' to get just a first working overview. **"
disp " ***********************************************************************"
n=10;
function printbenchline(matrixname,opname,sw,times,nnz,tottime,mxxops,bpnz,msstr)
printf("FIXME (temporary format)\n");
printf("%s %s %s %d %d %.4f %10.2f %.4f %s\n",matrixname,opname,sw,times,nnz,tottime,mxxops,bpnz,msstr);
end
if nargin <= 0
# DGEMV benchmark
disp "** Will generate a matrix... **"
for o=1024:1024
#for o=1024:256:2048*2
m=rand(o);
v=linspace(1,1,o)';
tic();
for i=1:n; m*v; end
t=toc();
Mflops=n*2.0*nnz(m)/(10^6 * t);
dgemvmflops=Mflops;
printf("%d GEMV for order %d in %g secs, so %10f Mflops\n",n,o,t,n*2.0*o*o/(10^6 * t));
end
disp " ***********************************************************************"
else # nargin > 0
# if nargin > 0, we continue
want_sparsersb_io=1;
if want_sparsersb_io != 1
source("ext/mminfo.m");
source("ext/mmread.m");
source("ext/mmwrite.m");
end
#matrices=ls("*.mtx")';
f=1;
uc=2; # only 2 for the moment being.
while f<=nargin
MB=1024*1024;
printf("** Will read Matrix Market matrix file %s ...\n",f);
mmn=cell2mat(argv()(f))';
mn=strtrim(mmn');
tic();
#nm=mmread(mn);
if want_sparsersb_io == 1
[nm,nrows,ncols,entries,rep,field,symm]=sparsersb(mn);
nm=sparse(nm);
if (symm=='S')
uc+=1;
end
else
[nm,nrows,ncols,entries,rep,field,symm]=mmread(mn);
#if(symm=="symmetric")uc+=2;endif
if(strcmp(symm,"symmetric"))uc+=1;endif
end
disp " "
wr=0 ; # write rendering to file
if wr==1
sparsersb(sparsersb(nm),"render",[mn,"-original.eps"]);
pct=-time;
#p=colamd(nm);
p=colperm(nm);
pct+=time;
pat=-time;
nm=nm(:,p);
pat+=time;
#sparsersb(sparsersb(nm),"render",[mn,"-colamd.eps"])
sparsersb(sparsersb(nm),"render",[mn,"-colperm.eps"]);
end
fsz=stat(mn).size;
rt=toc();
[ia,ja,va]=find(nm);
printf("%s: %.2f MBytes read in %.4f s (%10.2f MB/s)\n",mn,fsz/MB,rt,fsz/(rt*MB));
#ia=ia'; ja=ja'; va=va';
sep=" ";
csvlstring=sprintf("#mn entries nrows ncols");
csvdstring=sprintf("%%:%s%s%d%s%d%s%d",mn,sep,entries,sep,nrows,sep,ncols);
for ski=1:uc
oppnz=1;
# FIXME: what about handling symmetry ?
sparsekw="sparse";
if(ski==2)sparsekw="sparsersb";endif
if(ski==3);
oppnz=2;
sparsekw="sparsersb";
tic(); [nm]=sparsersb(mn); rt=toc();
sparsersb(nm,"info")
printf("%s: %.2f MBytes read by librsb in %.4f s (%10.2f MB/s)\n",mn,fsz/MB,rt,fsz/(rt*MB));
endif
if(ski==4);
nm=tril(nm);
endif
[ia,ja,va]=find(nm);
rnz=nnz(nm);
printf(" *** Benchmarking '%s'.\n",sparsekw);
# printf("symmetry ? %d\n",issymmetric(sparse(nm)));
mrc=rows(nm); mcc=columns(nm);
if(ski!=3);
tic();
eval(["for i=1:n; om=",sparsekw,"(ia,ja,va,mrc,mcc,\"summation\"); end"]);
printf(" *** Benchmarking '%s' instantiation from 'ia,ja,va'.\n",sparsekw);
at=toc();
#if(ski==2) tic(); nm=sparsersb(om,"autotune","N");om=nm; att=toc(); ;endif
mnz=nnz(om);
amflops=n*(mnz/(10^6 * at));
printf("%s '%s' %d Instantiations for %d nnz in %.4f secs, so %10.2f nnz/s\n",mn,sparsekw,n,rnz,at,amflops);
else
mnz=rnz;
end
if(ski==2)
nsb=str2num(sparsersb(om,"get","RSB_MIF_LEAVES_COUNT__TO__RSB_BLK_INDEX_T"));
printf (" ** Assembled 'sparsersb' matrix has %d RSB blocks.\n", nsb);
endif
#rm=sparsersb(ia,ja,va);# UNFINISHED
r=linspace(1,1,size(om,1))';
v=linspace(1,1,size(om,2))';
printf(" *** Benchmarking '%s' SPMV..\n",sparsekw);
tic(); for i=1:n; r+=om *v; end; umt=toc();
UMflops=oppnz*n*2.0*mnz/(10^6 * umt);
printf("%s '%s' %d SPMV for %d nnz in %.4f secs, so %10.2f Mflops\n",mn,sparsekw,n,mnz,umt, UMflops);
bpnz=-1; # FIXME: bytes per nonzero!
msstr="?";# FIXME: matrix structure string!
# FIXME: finish the following!
#printbenchline(mn',"SPMV",sparsekw,n,mnz,umt, UMflops,bpnz,msstr);
#
tmp=r;r=v;v=tmp;
printf(" *** Benchmarking %s SPMV_T..\n",sparsekw);
tic(); for i=1:n; r+=om.'*v; end; tmt=toc();
TMflops=oppnz*n*2.0*mnz/(10^6 * tmt);
printf("%s '%s' %d spMVT for %d nnz in %.4f secs, so %10.2f Mflops\n",mn,sparsekw,n,mnz,tmt, TMflops);
if(ski<3);
csvlstring=sprintf("%s%s",csvlstring," n at amflops umt UMflops tmt TMflops");
csvdstring=sprintf("%s%s%d%s%f%s%f%s%f%s%f%s%f%s%f",csvdstring,sep,n,sep,at,sep,amflops,sep,umt,sep,UMflops,sep,tmt,sep,TMflops);
endif
disp " "
end
++f;
# Uncomment following lines for benchmark-oriented output:
#printf("%s\n",csvlstring);
#printf("%s\n",csvdstring);
end
disp " ***********************************************************************"
endif # nargin > 0
sparsersb-1.0.9/bin/pd.mtx 0000644 0000000 0000000 00000001253 14122214045 013554 0 ustar 0000000 0000000 %%MatrixMarket matrix coordinate real general
% a positive definitive matrix, as in
% http://www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/IBMp690/IBM/usr/lpp/essl.html.en_US/html/essl43.html
% * *
% | 99 12 13 14 15 16 |
% | 12 99 12 13 14 15 |
% | 13 12 99 12 13 14 |
% | 14 13 12 99 12 13 |
% | 15 14 13 12 99 12 |
% | 16 15 14 13 12 99 |
% * *
6 6 36
1 1 99
1 2 12
1 3 13
1 4 14
1 5 15
1 6 16
2 1 12
2 2 99
2 3 12
2 4 13
2 5 14
2 6 15
3 1 13
3 2 12
3 3 99
3 4 12
3 5 13
3 6 14
4 1 14
4 2 13
4 3 12
4 4 99
4 5 12
4 6 13
5 1 15
5 2 14
5 3 13
5 4 12
5 5 99
5 6 12
6 1 16
6 2 15
6 3 14
6 4 13
6 5 12
6 6 99
sparsersb-1.0.9/bin/ufsolve.m 0000755 0000000 0000000 00000006207 14122214045 014267 0 ustar 0000000 0000000 #
# Copyright (C) 2011-2017 Michele Martone
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, see .
#
#
# This program shall attempt solution of a problem saved in the MATLAB
# format as for the University of Florida collection.
#
# One with a problem structured as in e.g.:
# http://www.cise.ufl.edu/research/sparse/mat/Hamm/memplus.mat
# http://www.cise.ufl.edu/research/sparse/mat/Schenk_ISEI/barrier2-9.mat
#
# s=load("~/barrier2-9.mat");
1; # This is a script
if length(getenv("SPARSERSB_TEST")) == 0 ; pkg load sparsersb ; end
disp " ***********************************************************************"
disp "** A usage example of sparsersb. **"
disp "** You can supply 'sparsersb' matrices to iterative method routines. **"
disp "** If the matrix is large enough, this shall secure good performance **"
disp "** of matrix-vector multiply: up to you to find method+linear system ! **"
disp "** p.s.: Invoke 'demo sparsersb' to get just a first working overview. **"
disp " ***********************************************************************"
s=load(argv(){length(argv())});
n=rows(s.Problem.A);
minres=1e-3;
#maxit = n;
maxit = 100;
b=s.Problem.b;
oct_A=sparse(s.Problem.A);
rsb_A=sparsersb(s.Problem.A);
printf (" **** Loaded a %d x %d matrix with %.3e nonzeroes ****\n", n, columns(s.Problem.A), nnz(s.Problem.A) );
X0=[];
RELRES=2*minres;
TOTITER=0;
M1=[]; M2=[];
M1=sparse(diag(s.Problem.A)\ones(n,1));
M2=sparse(diag(ones(n,1)));
nsb=str2num(sparsersb(rsb_A,"get","RSB_MIF_LEAVES_COUNT__TO__RSB_BLK_INDEX_T"));
printf (" **** The 'sparsersb' matrix consists of %d RSB blocks. ****\n", nsb);
disp " *********** Invoking pcg using a 'sparse' matrix ******************* ";
tic; [X1, FLAG, RELRES, ITER] = pcg (oct_A, b, minres, maxit, M1,M2,X0); odt=toc;
toc
disp " *********** Invoking pcg using a 'sparsersb' matrix ******************* ";
tic; [X1, FLAG, RELRES, ITER] = pcg (rsb_A, b, minres, maxit, M1,M2,X0); odt=toc;
toc
disp " ** Attempting autotuning 'sparsersb' matrix (pays off on the long run * ";
tic; rsb_A=sparsersb(rsb_A,"autotune","n",1);
toc;
nsb=str2num(sparsersb(rsb_A,"get","RSB_MIF_LEAVES_COUNT__TO__RSB_BLK_INDEX_T"));
printf (" **** The 'sparsersb' matrix consists of %d RSB blocks now. **** \n", nsb);
disp " ****** Invoking pcg using a 'sparsersb' matrix (might be faster now) *** ";
tic; [X1, FLAG, RELRES, ITER] = pcg (rsb_A, b, minres, maxit, M1,M2,X0); odt=toc;
toc
disp " *********************************************************************** ";
quit(1);
sparsersb-1.0.9/doc/README 0000644 0000000 0000000 00000003160 14122214045 013273 0 ustar 0000000 0000000
================================================================================
This (sparsersb) is a plugin to interface the "librsb" high performance sparse
matrix library to GNU Octave.
Author: Michele MARTONE
================================================================================
Build / use instructions (using pkg):
To use the configure auto-detected librsb from within Octave:
> pkg -local -verbose install sparsersb-1.0.9.tar.gz
> pkg load sparsersb
> help sparsersb
Alternatively:
tar czf sparsersb-1.0.9.tar.gz
cd sparsersb-1.0.9/src
./configure
make
make check
It is possible to provide the configure script with a librsb sources
archive you have downloaded separately and make it build on the fly for you
and use it; e.g.:
./configure --with-librsb-tarball=$HOME/librsb-1.2.0.10.tar.gz
or setting:
export LIBRSB_TARBALL=$HOME/librsb-1.2.0.10.tar.gz
before entering in Octave and building with pkg:
> pkg -local -verbose install sparsersb-1.0.9.tar.gz
On many systems, you will have to build librsb with the PIC (-fPIC on GCC)
option or you will get link-time problems.
More configure options:
./configure --help
Usage instructions without using pkg:
# go to the directory where sparsersb.oct is located and run Octave:
octave
# you can use the sparsersb function, starting with e.g.:
> help sparsersb
Check out http://librsb.sf.net for the latest librsb release,
http://octave.sourceforge.net/sparsersb/ for the latest sparsersb release and
http://hg.code.sf.net/p/octave/sparsersb/ for the latest repository version.
================================================================================
sparsersb-1.0.9/doc/sparsersb.txt 0000644 0000000 0000000 00000012542 14122214045 015164 0 ustar 0000000 0000000
-- Loadable Function: S = sparsersb (A)
-- Loadable Function: S = sparsersb (I, J, SV, M, N)
-- Loadable Function: S = sparsersb (I, J, SV, M, N, NZMAX)
-- Loadable Function: S = sparsersb (I, J, SV)
-- Loadable Function: S = sparsersb (M, N)
-- Loadable Function: S = sparsersb (I, J, SV, M, N, "unique")
-- Loadable Function: sparsersb ("set", OPN, OPV)
-- Loadable Function: V = sparsersb (S, "get", MIF)
-- Loadable Function: V = sparsersb (S, QS)
-- Loadable Function: sparsersb (A,"save",MTXFILENAME)
-- Loadable Function: [S, NROWS, NCOLS, NNZ, REPINFO, FIELD, SYMMETRY]
= sparsersb (MTXFILENAME[, MTXTYPESTRING])
-- Loadable Function: sparsersb (S,"render", FILENAME[, RWIDTH,
RHEIGHT])
-- Loadable Function: [O =] sparsersb (S,"autotune"[, TRANSA, NRHS,
MAXR, TMAX, TN, SF])
Create or manipulate sparse matrices using the RSB format provided
by librsb, as similarly as possible to `sparse'.
If A is a full matrix, convert it to a sparse matrix
representation, removing all zero values in the process.
Given the integer index vectors I and J, and a 1-by-`nnz' vector
of real or complex values SV, construct the sparse matrix
`S(I(K),J(K)) = SV(K)' with overall dimensions M and N.
The argument `NZMAX' is ignored but accepted for compatibility
with MATLAB and `sparsersb'.
If M or N are not specified their values are derived from the
maximum index in the vectors I and J as given by `M = max (I)', `N
= max (J)'.
Can load a matrix from a Matrix Market matrix file named
MTXFILENAME. The optional argument MTXTYPESTRING can specify
either real ("D") or complex ("Z") type. Default is real. In the
case MTXFILENAME is "?", a string listing the available numerical
types with BLAS-style characters will be returned. If the file
turns out to contain a Matrix Market dense vector, this will be
loaded.
If "save" is specified, saves a sparse RSB matrix as a Matrix
Market matrix file named MTXFILENAME.
*Note*: if multiple values are specified with the same I, J
indices, the corresponding values in SV will be added.
The following are all equivalent:
s = sparsersb (i, j, s, m, n)
s = sparsersb (i, j, s, m, n, "summation")
s = sparsersb (i, j, s, m, n, "sum")
If the optional "unique" keyword is specified, then if more than
two values are specified for the same I, J indices, only the last
value will be used.
`sparsersb (M, N)' will create an empty MxN sparse matrix and is
equivalent to `sparsersb ([], [], [], M, N)'.
If M or N are not specified, then `M = max (I)', `N = max (J)'.
If OPN is a string representing a valid librsb option name and OPV
is a string representing a valid librsb option value, these will
be passed to the `rsb_lib_set_opt_str()' function.
If MIF is a string specifying a valid librsb matrix info string
(valid for librsb's `rsb_mtx_get_info_from_string()'), then the
corresponding value will be returned for matrix `S', in string
`V'. If MIF is the an empty string (""), matrix structure
information will be returned. As of librsb-1.2, these is debug or
internal information. E.g. for
'RSB_MIF_LEAVES_COUNT__TO__RSB_BLK_INDEX_T', a string with the
count of internal RSB blocks will be returned.
If S is a sparsersb matrix and QS is a string, QS shall be
interpreted as a query string about matrix S. String `V' will be
returned with query results. *Note*: this feature is to be
completed and its syntax reserved for future use. In this version,
whatever the value of QS, a general matrix information string will
be returned (like
sparsersb(S,"get","RSB_MIF_LEAVES_COUNT__TO__RSB_BLK_INDEX_T") ).
If S is a sparsersb matrix and the "render" keyword is specified,
and FILENAME is a string, A will be rendered as an Encapsulated
Postscript file FILENAME. Optionally, width and height can be
specified in `RWIDTH, RHEIGHT'. Defaults are 512.
If S is a sparsersb matrix and the "autotune" keyword is
specified, autotuning of the matrix will take place, with SpMV and
autotuning parameters. After the "autotune" string, the remaining
parameters are optional. Parameter TRANSA specifies whether to
tune for untransposed ("N") or transposed ("T"); NRHS the number
of right hand sides; MAXR the number of tuning rounds; TMAX the
threads to use. If giving an output argument O, that will be
assigned to the autotuned matrix, and the input one A will remain
unchanged. See librsb documentation for `rsb_tune_spmm' to learn
more.
Long (64 bit) index support is partial: if Octave has been
configured for 64 bit indices, sparsersb will correctly handle and
convert matrices/indices that would fit in a 32 bit indices setup,
failing on 'larger' ones.
Please note that on `sparsersb' type variables are available most,
but not all of the operators available for `full' or `sparse'
typed variables.
See also: full, sparse.
Additional help for built-in functions and operators is
available in the online version of the manual. Use the command
'doc ' to search the manual index.
Help and information about Octave is also available on the WWW
at http://www.octave.org and via the help@octave.org
mailing list.
sparsersb-1.0.9/inst/matlabbench.m 0000644 0000000 0000000 00000003727 14122214045 015252 0 ustar 0000000 0000000 #
# Copyright (C) 2011-2015 Michele Martone
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, see .
#
# Undocumented
# function mbench(fname)
function matlabbench(fname)
addpath ext/
mp=matlabpath();
n=10;
for f=1:nargin
MB=1024*1024;
mmn=fname';
mn=strtrim(mmn');
tic();
matlabpath('ext');
mn;
nm=mmreadm(mn);
matlabpath(mp);
%fsz=stat(mn).size;
rnz=nnz(nm);
rt=toc();
[ia,ja,va]=find(nm);
%printf('%s: %.2f MBytes read in %.4f s (%10.2f MB/s)\n',mn',fsz/MB,rt,fsz/(rt*MB));
%ia=ia'; ja=ja'; va=va';
for ski=1:1
% FIXME: what about symmetry ?
sparsekw='sparse';
if(ski==2)sparsekw='sparsersb';end
tic();
for i=1:n; om=sparse(ia,ja,va); end
at=toc();
mnz=nnz(om);
amflops=n*2.0*mnz/(10^6 * at);
%printf('%s (%s) %d spBLD for %d nnz in %.4f secs, so %10.2f Mflops\n',mn',sparsekw,n,rnz,at,amflops);
amflops
%rm=sparsersb(ia,ja,va);% UNFINISHED
v=linspace(1,1,size(om,1))';
r=v;
tic(); for i=1:n r=r+om*v; end ; umt=toc();
UMflops=n*2.0*mnz/(10^6 * umt);
UMflops
%printf('%s (%s) %d spMV for %d nnz in %.4f secs, so %10.2f Mflops\n',mn',sparsekw,n,mnz,umt, UMflops);
tic(); for i=1:n r=r+om.'*v; end ; tmt=toc();
TMflops=n*2.0*mnz/(10^6 * tmt);
TMflops
%printf('%s (%s) %d spMV for %d nnz in %.4f secs, so %10.2f Mflops\n',mn',sparsekw,n,mnz,tmt, TMflops);
end
end
%printf('benchmark terminated successfully\n');
quit
end
sparsersb-1.0.9/inst/sparsersbbench.m 0000755 0000000 0000000 00000013475 14122214045 016022 0 ustar 0000000 0000000 #!/usr/bin/octave -q
#
# Copyright (C) 2011-2016 Michele Martone
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, see .
#
# TODO: document this file's functions so they get installed and are properly usable.
# TODO: sprand should not be used in a consistent way
1; # This is a script.
if length(getenv("SPARSERSB_TEST")) == 0 ; pkg load sparsersb ; end
function dt=sparsersbbench__(precmd,cmd,postcmd,mint)
# ..
eval(precmd);
nops=0;
tic();
do
++nops;
eval(cmd);
until ((dt=toc())>=mint)
dt/=nops;
eval(postcmd);
end
function speedup=sparsersbbench_(gprecmd,precmd,cmd,postcmd,gpostcmd,mint)
# ...
rprecmd=strrep(precmd,"sparsersb","sparse");
rcmd=strrep(cmd,"sparsersb","sparse");
rpostcmd=strrep(postcmd,"sparsersb","sparse");
dots=";";
once=[precmd,dots,cmd,dots,postcmd];
#eval(once); printf("iterating %s\n",once);
# dots="...";
predots=sprintf(";tic;do;");
postdots=sprintf(";until ((dt=toc())>=%f);",mint);
all=[gprecmd,dots,precmd,predots,cmd,postdots,postcmd,dots,gpostcmd];
# printf("will see speedup for %s\n",all);
printf("#%s #-> speedup is...",all);
dtr=sparsersbbench__([gprecmd,"", precmd,""], cmd,[ postcmd,":",gpostcmd],mint);
dto=sparsersbbench__([gprecmd,"",rprecmd,""],rcmd,[rpostcmd,":",gpostcmd],mint);
speedup=dto/dtr;
printf("%.2f\n",speedup);
# printf("%.2f speedup for %s\n",speedup,all);
end
function sparsersbbench_battery(mstring,mint)
rinitstr=["A=sparsersb(",mstring,");nr=size(A)(1);nc=size(A)(2);"];
finitstr=["A=full(",mstring,");"];
cinitstr=["M=sparse(",mstring,");[ia,ja,va]=find(M);nr=size(M)(1);nc=size(M)(2);"];
sparsersbbench_("",[rinitstr,""],"A.*=2.0;","clear A","",mint);
sparsersbbench_("",[rinitstr,""],"A.*=2.5;","clear A","",mint);
sparsersbbench_("",[rinitstr,""],"A./=2.0;","clear A","",mint);
sparsersbbench_("",[rinitstr,""],"A./=2.5;","clear A","",mint);
#sparsersbbench_("",[rinitstr,""],"A.*=0.0;","clear A","",mint);
#sparsersbbench_("",[rinitstr,""],"A./=0.0;","clear A","",mint);
sparsersbbench_("",[rinitstr,""],"A.^=2.5;","clear A","",mint);
sparsersbbench_("",[rinitstr,""],"A.^=2.0;","clear A","",mint);
sparsersbbench_("",[rinitstr,""],"A.^=0.5;","clear A","",mint);
sparsersbbench_("",[cinitstr,""],"C=sparsersb(ia,ja,va,nr,nc);clear C;","clear A C ia ja va","",mint);
sparsersbbench_("",[cinitstr,""],"C=sparsersb(ia,ja,va);clear C;","clear A C ia ja va","",mint);
sparsersbbench_("",[cinitstr,""],"C=sparsersb(ja,ia,va);clear C;","clear A C ia ja va","",mint);
sparsersbbench_("",[finitstr,""],"C=sparsersb(A);clear C;","clear A C","",mint);
sparsersbbench_("",[rinitstr,""],"C=A; ;clear C;","clear A C","",mint);
sparsersbbench_("",[rinitstr,""],"C=A.'; ;clear C;","clear A C","",mint);
sparsersbbench_("",[rinitstr,""],"C=transpose(A);clear C;","clear A C","",mint);
for nrhs=1:3
nrhss=sprintf("%d",nrhs);
sparsersbbench_("",[rinitstr,"C=ones(nr,",nrhss,");B=C;"],"C=A*B;","clear A B C","",mint);
sparsersbbench_("",[rinitstr,"C=ones(nr,",nrhss,");B=C;"],"C=A.'*B;","clear A B C","",mint);
eval(finitstr);
if (tril(A)==A) || (triu(A)==A)
sparsersbbench_("",[rinitstr,"C=ones(nr,",nrhss,");B=C;"],"C=A\\B;","clear A B C","",mint);
sparsersbbench_("",[rinitstr,"C=ones(nr,",nrhss,");B=C;"],"C=A.'\\B;","clear A B C","",mint);
end
end
clear A;
sparsersbbench_("",[rinitstr,"D=ones(nr,1);"],"D=diag(A);","clear A D","",mint);
sparsersbbench_("",[rinitstr,"B=A;"],"C=A+B;","clear A B C","",mint);
sparsersbbench_("",[rinitstr,"B=A;"],"C=A.'+B;","clear A B C","",mint);
sparsersbbench_("",[rinitstr,"B=A;"],"C=A*B;clear C","clear A B C","",mint);
sparsersbbench_("",[rinitstr,"B=A;"],"C=A.'*B;clear C","clear A B C","",mint);
end
btime=1.0;
if false ;
# shall use: [x, flag, prec_res_norm, itcnt]
sparsersbbench_("n=1000; k=15; oA=k*eye(n)+sprandn(n,n,.2); b=ones(n,1); P=diag(diag(oA));","A=sparsersb(oA);","[x, flag] = gmres (A, b, [], 1e-7, n, P);","clear b P","clear oA",btime);
sparsersbbench_("n=2000; k=150; oA=k*eye(n)+sprandn(n,n,.2); b=ones(n,1); P=diag(diag(oA));","A=sparsersb(oA);","[x, flag] = gmres (A, b, [], 1e-7, n, P);","clear b P","clear oA",btime);
sparsersbbench_("n=4000; k=1500; oA=k*eye(n)+sprandn(n,n,.2); b=ones(n,1); P=diag(diag(oA));","A=sparsersb(oA);","[x, flag] = gmres (A, b, [], 1e-7, n, P);","clear b P","clear oA",btime);
sparsersbbench_("n=6000; k=3500; oA=k*eye(n)+sprandn(n,n,.2); b=ones(n,1); P=diag(diag(oA));","A=sparsersb(oA);","[x, flag] = gmres (A, b, [], 1e-7, n, P);","clear b P","clear oA",btime);
end
#for diml=0:0
for diml=1:11
#for diml=11:11
#for diml=3:3
#for cadd=1:1
#for cadd=0:0
for cadd=0:1
btime=1.0;
if(diml<7)btime=0.1;end
dim=2^diml;
#is=sprintf("ones(%d)",dim);
cmul=sprintf("(1+i*%d)",cadd);
is=sprintf("ones(%d).*%s",dim,cmul);
sparsersbbench_battery(is,btime)
is=sprintf("tril(ones(%d).*%s)",dim,cmul);
sparsersbbench_battery(is,btime)
is=sprintf("diag(ones(%d,1)).*%s",dim,cmul);
sparsersbbench_battery(is,btime)
# FIXME: follow non repeatable experiments :)
is=sprintf("(diag(ones(%d,1))+sprand(%d,%d,0.1)).*%s",dim,dim,dim,cmul);
sparsersbbench_battery(is,btime)
is=sprintf("(diag(ones(%d,1))+sprand(%d,%d,0.4)).*%s",dim,dim,dim,cmul);
sparsersbbench_battery(is,btime)
# FIXME: need a non-square matrices testing-benchmarking snippet
end
end
printf "All done."
sparsersb-1.0.9/inst/sparsersbtester.m 0000644 0000000 0000000 00000034107 14122214045 016241 0 ustar 0000000 0000000 #!/usr/bin/octave -q
#
# Copyright (C) 2011-2019 Michele Martone
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, see .
#
#
# A comparative tester for sparsersb.
#
# TODO:
#
# - shall integrate with the rsb.m tester
# - isequal(find(a),find(b)) only checks for pattern!
# - isequal(sparsersb(..),sparsersb(..)) is unfinished !
# - need NZMAX as last arg testing
# - in sparsersb, the == operator is not yet handled natively
# - need testing for find(M,?)
# - seems like non-square matrices are not tested
# - shall test +-, &=, --, ++, .', ./, .\, /, -, +, .*, ./, .^, +0, ==, <=, >=, >, <, |, &
#
1; # This is a script.
function error_if(cond)
if(cond)
error "octave's sparse and sparsersb seem not to match"
end
end # error_if
function ast=are_same_type(OM,XM)
ast=(strcmp(typeinfo(OM), typeinfo(XM)) == 1); # Octave's strcmp returns 1 if same.
end # are_same_type
function ase=are_spm_equal(OM,XM,eoin)
ase=0;
if(nargin>=3) eoi=eoin; else eoi=false; end
if(nnz(XM)!=nnz(OM)); error_if(eoi); return; end
if(columns(XM)!=columns(OM)); error_if(eoi); return; end
if(rows(XM)!=rows(OM)); error_if(eoi); return; end
if(length(XM)!=length(OM)); error_if(eoi); return; end
if(size(XM)!=size(OM)); error_if(eoi); return; end
if(full(XM)!=full(OM)); error_if(eoi); return; end
if((3*XM)!=(3*OM)); error_if(eoi); return; end
if((XM*3)!=(OM*3)); error_if(eoi); return; end
if((XM*i)!=(OM*i)); error_if(eoi); return; end
if((i*XM)!=(i*OM)); error_if(eoi); return; end
if((XM/2)!=(OM/2)); error_if(eoi); return; end
if((XM/i)!=(OM/i)); error_if(eoi); return; end
if((XM' )!=(OM' )); error_if(eoi); return; end
if(conj(XM)!=conj(OM)); error_if(eoi); return; end
if(transpose(XM)!=transpose(OM)); error_if(eoi); return; end
#if((XM.^(2+0*i))!=(OM.^(2+0*i))); error_if(eoi); return; end
if((XM.^(0+2*i))!=(OM.^(0+2*i))); error_if(eoi); return; end
if((XM.^(2+0*i))!=(OM.^(2+0*i)))
errn=norm((XM.^2)-(OM.^2));
if (errn<1e-13);
(XM.^2)
(OM.^2)
warning ("tiny mismatch (norm: %g) when computing matrix squares (see above)", double(errn));
else
error_if(eoi);
return;
end
end
if((-XM)!=(-OM)); error_if(eoi); return; end
for ri=1:rows(XM)
if(XM(ri,:)!=OM(ri,:)); error_if(eoi); return; end
end
for ci=1:columns(XM)
if(XM(:,ci)!=OM(:,ci)); error_if(eoi); return; end
end
for ri=1:rows(XM)
for ci=1:columns(XM)
if(XM(ri,ci)!=OM(ri,ci)); error_if(eoi); return; end
end
end
if(XM(:,:)!=OM(:,:)); error_if(eoi); return; end
ase=1;
[oi,oj,ov]=find(OM);
[xi,xj,xv]=find(XM);
ise =isequal(oi,xi);
error_if(eoi && !ise);
ase&=ise;
ise =isequal(oj,xj);
error_if(eoi && !ise);
ase&=ise;
ise =isequal(ov,xv);
error_if(eoi && !ise);
ase&=ise;
return;
end # are_spm_equal
function testmsg(match,tname,erreason)
if(match>0)
printf(" [*] %s test passed",tname)
elseif(match==0)
printf(" [!] %s test failed",tname)
else
printf(" [~] %s ",tname)
end
if(nargin<3)
printf(".\n")
else
printf(" ().\n",erreason)
end
end # testmsg
function match=testinfo(OM,XM)
printf("will test types \"%s\" and \"%s\"\n",typeinfo(OM),typeinfo(XM))
match=1;
end # testinfo
function match=testdims(OM,XM)
match=1;
match&=(rows(OM)==rows(XM));
match&=(columns(OM)==columns(XM));
match&=(nnz(OM)==nnz(XM));
testmsg(match,"dimensions");
end # testdims
function match=testsprsb(OM,XM)
match=1;
# FIXME: shall see in detail whether there are not too many conversions here..
[oi,oj,ov]=find(OM);
RM=sparsersb(oi,oj,ov);
match&=isequal(find(RM),find(OM));
match&=isequal(find(RM),find(XM));
clear RM;
RM=sparsersb(oi,oj,ov,size(OM)(1),size(OM)(2));
match&=isequal(find(RM),find(OM));
match&=isequal(find(RM),find(XM));
clear RM;
RM=sparsersb(full(OM));
match&=isequal(find(RM),find(OM));
match&=isequal(find(RM),find(XM));
clear RM;
RM=sparsersb([oi;1;1],[oj;1;1],[ov;-1;1]);
match&=isequal(find(RM),find(OM));
match&=isequal(find(RM),find(XM));
clear RM;
nr=max(oi);
nc=max(oj);
RM=sparsersb([oi;1;1],[oj;1;1],[ov;-1;1],nr,nc,"sum")
match&=are_spm_equal(RM,OM,true);
match&=are_spm_equal(RM,XM,true);
clear RM;
RM=sparsersb([oi;1;1],[oj;1;1],[ov;-2;1],nr,nc,"sum");
match&=!are_spm_equal(RM,OM);
match&=!are_spm_equal(RM,XM);
clear RM;
RM=sparsersb([oi;nr+1;nr+1],[oj;nc+1;nc+1],[ov;-1;1],nr+1,nc+1,"unique");
match&=!are_spm_equal(RM,OM);
match&=!are_spm_equal(RM,XM);
clear RM;
testmsg(match,"constructors");
end # testsprsb
function match=testfind(OM,XM)
match=1;
match&=isequal(find(OM),find(XM));
match&=isequal(([oi,oj]=find(OM)),([xi,xj]=find(XM)));
match&=isequal(([oi,oj,ov]=find(OM)),([xi,xj,xv]=find(XM)));
match&=isequal(nonzeros(OM),nonzeros(XM));
testmsg(match,"find");
end # testfind
function match=testasgn(OM,XM)
match=1;
nr=rows(OM);
nc=columns(OM);
for i=1:nr
for j=1:nc
#printf("%d %d / %d %d\n", i,j,nr,nc)
#OM, XM
#printf("%d %d %d\n", i,j,XM(i,j));
if(XM(i,j))
nv=rand(1);
OM(i,j)=nv;
XM(i,j)=nv;
end
#OM, XM
#exit
endfor
endfor
for i=1:nr
for j=1:nc
if(OM(i,j))match&=isequal(OM(i,j),XM(i,j)); end;
endfor
endfor
testmsg(match,"asgn");
end # testasgn
function match=testelms(OM,XM)
match=1;
nr=rows(OM);
nc=columns(OM);
for i=1:nr
for j=1:nc
if(OM(i,j)!=XM(i,j)); match*=0; end
endfor
endfor
testmsg(match,"elems");
end # testelms
function match=testdiag(OM,XM)
#sparse(spdiag(OM))
#sparse(spdiag(XM))
#match=(sparse(spdiag(OM))==sparse(spdiag(XM)))
#OM,XM
#diag(OM)
#diag(XM)
match=1;
if(diag(OM)==diag(XM));match=1;else match=0;end
#match=(diag(OM)==diag(XM)); # TODO: understand why the following syntax is problematic !
#match=(spdiag(OM)==spdiag(XM));
testmsg(match,"diagonal");
end # testdiag
function match=testpcgm(OM,XM)
# FIXME! This test ignores OM and XM !
match=1;
tol=1e-10;
A=sparse ([11,12;21,23]);X=[11;22];B=A*X;X=[0;0];
[OX, OFLAG, ORELRES, OITER, ORESVEC, OEIGEST]=pcg(A,B);
A=sparsersb([11,12;21,23]);X=[11;22];B=A*X;X=[0;0];
[XX, XFLAG, XRELRES, XITER, XRESVEC, XEIGEST]=pcg(A,B);
match&=(OFLAG==XFLAG);# FIXME: a very loose check!
match&=(OITER==XITER);# FIXME: a very loose check!
#
# http://www.gnu.org/software/octave/doc/interpreter/Iterative-Techniques.html#Iterative-Techniques
#n = 10;
n = 10+size(XM)(1,1)
clear A OX XX;
A = diag (sparse (1:n));
#A = A + A';
b = rand (n, 1);
opts.droptol=1.e-3;
[l, u] = ilu (A);
[OX, OFLAG, ORELRES, OITER, ORESVEC, OEIGEST]= pcg ( A ,b);
[XX, XFLAG, XRELRES, XITER, XRESVEC, XEIGEST]= pcg (sparsersb(A),b);
match&=(norm(OX-XX)2)
M
endif
match=1;
if nnz(OM)>0
match&=testsprsb(OM,XM);
end
match&=testinfo(OM,XM);
match&=testdims(OM,XM);
match&=testdiag(OM,XM);
match&=testfind(OM,XM);
match&=testelms(OM,XM);
match&=testasgn(OM,XM);
if nnz(OM)>1
if have_working_ilu()
match&=testpcgm(OM,XM);
match&=testpcrm(OM,XM);
else
testmsg(-1,"ilu does not work; probably UMFPACK is not installed: skipping some tests.")
endif
match&=testmult(OM,XM);
match&=testspsv(OM,XM);
match&=testnorm(OM,XM);
end
match&=testscal(OM,XM);
match&=testadds(OM,XM);
testmsg(match,"overall (for this matrix)");
end # tests
match=1;
mtn=1;
if (strchr(sparsersb("?"),"Z")>0)
mtn++;
endif
for mti=1:mtn
wc=(mti==2);
dim=3;
#M=(rand(dim)>.8)*rand(dim);M(1,1)=11;
M=[0];
OM=sparse(M); XM=sparsersb(M);
match&=tests(OM,XM);
for k=1:6
M=[eye(k)];
if(wc)M+=M*i;end
OM=sparse(M); XM=sparsersb(M);
match&=tests(OM,XM,M);
end
#M=zeros(4)+sparse([1,2,3,2,4],[1,2,3,1,4],[11,22,33,21,44]);
#if(wc)M+=M*i;end
#OM=sparse(M); XM=sparsersb(M);
#match&=tests(OM,XM);
for k=3:6
M=zeros(k)+sparse([linspace(1,k,k),2],[linspace(1,k,k),1],[11*linspace(1,k,k),21]);
if(wc)M+=M*i;end
OM=sparse(M); XM=sparsersb(M);
match&=tests(OM,XM);
end
#M=tril(ones(10))+100*diag(10);
#OM=sparse(M); XM=sparsersb(M);
#match&=tests(OM,XM);
#M=hilb(10)+100*diag(10);
#OM=sparse(M); XM=sparsersb(M);
#match&=tests(OM,XM);
M=diag(10);
if(wc)M+=M*i;end
OM=sparse(M); XM=sparsersb(M);
match&=tests(OM,XM);
#M=diag(10)+sparse([1,10],[10,10],[.1,1]);
#OM=sparse(M); XM=sparsersb(M);
#match&=tests(OM,XM);
end
function sparse_sparse_update_test()
A=sparsersb([11,0,0;0,22,23;0,0,0])
O=sparse(A)
if A(1,1)!=O(1,1)
error "subsref seemingly not working!"
endif
if (A!=0) != (O!=0)
error "subsasgn seemingly not working!"
endif
A(A==23)=222
O(O==23)=222
if A != O
error "subsasgn seemingly not working!"
endif
return
# Not yet there:
A(sparsersb([0,0,0;1,0,0;0,0,0]))=-99 # not in nnz pattern
A(sparsersb([0,0,0;1,0,0;0,0,0]))=-99*i # only double supported for the moment
end # endfunction
sparse_sparse_update_test()
if(match) printf("All tests passed.\n"); else printf("Failure while performing tests!\n");end
# FIXME: shall print a report in case of failure.
#M=zeros(3)+sparse([1,2,3],[1,2,3],[11,22,33]);
#M=sparse([1,2,3],[1,2,3],[11,22,33]);
#XM=sparsepsb(M);
#
#
# exit
#
# XM
# find(XM)
# [i,j]=find(XM)
#
# exit
#
sparsersb-1.0.9/src/Makeconf.in 0000644 0000000 0000000 00000000354 14122214045 014512 0 ustar 0000000 0000000 OCTAVE = @OCTAVE@
CXXFLAGS = @CXXFLAGS@
MKOCTFILE = @MKOCTFILE@ -v
SPARSERSB_CXXFLAGS = @SPARSERSB_CXXFLAGS@
SPARSERSB_LDFLAGS = @SPARSERSB_LDFLAGS@
SPARSERSB_CXX11= @SPARSERSB_CXX11@
OCTAVE_FUNC_DEFINES = @HAVE_OCTAVE_VALUE_ISCOMPLEX@
sparsersb-1.0.9/src/Makefile 0000644 0000000 0000000 00000011470 14122214045 014100 0 ustar 0000000 0000000 #
# Copyright (C) 2011-2021 Michele Martone
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, see .
#
sinclude Makeconf
# Makeconf is created by the configure script.
# You can also not use it but set explicitly the following:
CXXFLAGS=$(SPARSERSB_CXXFLAGS) $(OCTAVE_FUNC_DEFINES)
LDFLAGS=$(shell $(MKOCTFILE) -p LDFLAGS) $(SPARSERSB_LDFLAGS)
CXXFLAGS_CXX11=$(SPARSERSB_CXX11)
.PHONY: all check
SPARSERSB_OCT=sparsersb.oct
all: $(SPARSERSB_OCT)
tags: *.cc
ctags *
#library:
# true # if test "$(RSBLIBDIR)" = $(shell pwd)/../lib ; then \
# # echo "Will build librsb so to have RSBINCDIR=$(RSBINCDIR) and RSBLIBDIR=$(RSBLIBDIR)"; \
# # make -C $(RSBLIBDIR) ; fi
$(SPARSERSB_OCT): sparsersb.cc
LFLAGS="$(LDFLAGS)" LDFLAGS="$(LDFLAGS)" CXXFLAGS="$(CXXFLAGS) $(CXXFLAGS_CXX11)" $(MKOCTFILE) -D'RSB_SPARSERSB_LABEL=sparsersb' -o $@ $<
rtest: $(SPARSERSB_OCT)
SPARSERSB_TEST=1 $(OCTAVE) --norc --silent ../inst/sparsersbtester.m
SPARSERSB_TEST=1 $(OCTAVE) --norc --silent ../bin/octavebench.m ../bin/pd.mtx
SPARSERSB_TEST=1 $(OCTAVE) --norc --silent ../bin/octavebench.m
SPARSERSB_TEST=1 $(OCTAVE) --norc --silent --eval 'exit( ! test("sparsersb") )'
# only meaningful for the developer
devtests:
SPARSERSB_TEST=1 $(OCTAVE) --norc --silent --eval 'exit( ! test("sparsersbtg") )'
bench: $(SPARSERSB_OCT)
SPARSERSB_TEST=1 $(OCTAVE) --norc --silent ../bin/obench.m
SPARSERSB_TEST=1 $(OCTAVE) --norc --silent ../bin/lsbench.m
SPARSERSB_TEST=1 $(OCTAVE) --norc --silent ../inst/sparsersbbench.m
itests: tests
SPARSERSB_TEST=1 $(OCTAVE) --norc --silent --eval 'demo sparsersb'
tests: rtest
check: tests
clean:
-$(RM) *.o octave-core core *.oct *~ tags
srut:
awk -f srut.awk < sparsersb.cc > sparsersb.cc.new
mv sparsersb.cc.new sparsersb.cc
# This is expected to work on author's machine.
#dist_old:
# echo "warning: we are making a tarball out of SVN repositories: NOT this checked out copy."
# rm -fR $(PACKAGE_NAME)
# svn export `svn info | grep URL | sed 's/^.* //;s/src$$//'g` $(PACKAGE_NAME)
# cd $(PACKAGE_NAME)/src && sh autogen.sh && cd -
# rm -fR $(PACKAGE_NAME)/src/old
# rm -fR $(PACKAGE_NAME)/src/TODO.txt
# rm -fR $(PACKAGE_NAME)/src/oldjunk
# tar czf $(PACKAGE_NAME).tgz $(PACKAGE_NAME)
# tar tzf $(PACKAGE_NAME).tgz
SPARSERSB=sparsersb-1.0.9
ARCHIVE=$(HOME)/src/sparsersb-archives
GPGSIGNCMD=gpg -sbav -u 1DBB555AEA359B8AAF0C6B88E0E669C8EF1258B8
help:
@echo "# As a user, './configure ... .; make;' shall suffice."
@echo "# If you are developing, you might be interested in 'make' followed by either of dist, sdist, sign, tarballs, html-doc."
dist: tarballs html-doc
sdist: sign tarballs html-doc
sign: tarballs html-doc
$(GPGSIGNCMD) $(ARCHIVE)/$(SPARSERSB).tar.gz
gpg --verify $(ARCHIVE)/$(SPARSERSB).tar.gz.asc
$(GPGSIGNCMD) $(ARCHIVE)/sparsersb-html.tar.gz
gpg --verify $(ARCHIVE)/sparsersb-html.tar.gz.asc
tarballs:
rm -f $(ARCHIVE)/$(SPARSERSB).tar
hg archive -t tar $(ARCHIVE)/$(SPARSERSB).tar --exclude '*.hgignore' -X ".hg*"
rm -f ../../$(SPARSERSB)
ln -s `pwd`/.. ../../$(SPARSERSB)
cd ../.. && tar rf $(ARCHIVE)/$(SPARSERSB).tar --add-file $(SPARSERSB)/src/configure
cd ../.. && tar f $(ARCHIVE)/$(SPARSERSB).tar \
--delete $(SPARSERSB)/.hg_archival.txt --delete $(SPARSERSB)/.hgtags --delete $(SPARSERSB)/.hgignore
#tar tvf $(SPARSERSB).tar
gzip -f $(ARCHIVE)/$(SPARSERSB).tar
tar tvzf $(ARCHIVE)/$(SPARSERSB).tar.gz
html-doc:
rm -fR ./octfiles-tmp ./sparsersb-html $(SPARSERSB)
mkdir -p ./octfiles-tmp
#tar xvzf $(ARCHIVE)/$(SPARSERSB).tar.gz
# If missing.. pkg install -forge generate_html
$(OCTAVE) --norc --eval 'pkg prefix ./octfiles-tmp ; echo on; diary sparsersb-diary-install.log; more off; pkg install -verbose '$(ARCHIVE)/$(SPARSERSB).tar.gz'; echo off; pkg load generate_html; generate_package_html ("sparsersb", "sparsersb-html", "octave-forge")'
tar czf $(ARCHIVE)/sparsersb-html.tar.gz sparsersb-html
echo "You maybe want to remove dirs: ./octfiles-tmp ./sparsersb-html $(SPARSERSB)"
ls -l $(ARCHIVE)/sparsersb-html.tar.gz $(ARCHIVE)/$(SPARSERSB).tar.gz
md5sum $(ARCHIVE)/sparsersb-html.tar.gz $(ARCHIVE)/$(SPARSERSB).tar.gz
cd $(ARCHIVE)/
doc: $(SPARSERSB_OCT)
$(OCTAVE) --norc -q --eval 'help sparsersb' | grep -v 'is a function from the' > ../doc/sparsersb.txt
sparsersb-1.0.9/src/autogen.sh 0000755 0000000 0000000 00000000024 14122214045 014432 0 ustar 0000000 0000000 #! /bin/sh
autoconf
sparsersb-1.0.9/src/configure.ac 0000644 0000000 0000000 00000022310 14122214045 014721 0 ustar 0000000 0000000 #
# Copyright (C) 2011-2021 Michele Martone
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, see .
#
# -*- Autoconf -*-
# Process this file with autoconf to produce a configure script.
AC_PREREQ([2.67])
AC_INIT([octave sparsersb package], [1.0.9])
dnl AC_CONFIG_HEADERS([config.h])
# Checks for programs.
AC_PROG_CXX
AC_LANG(C++)
AC_CHECK_TOOL([OCTAVE], [octave], [none])
AC_CHECK_TOOL([MKOCTFILE], [mkoctfile], [none])
AC_ARG_VAR([MKOCTFILE],[The mkoctfile executable])
AC_ARG_VAR([OCTAVE],[The octave executable])
AC_ARG_VAR([SPARSERSB_LDFLAGS],[Linking flags for sparsersb])
AC_ARG_VAR([SPARSERSB_CXXFLAGS],[C++ compilation flags for sparsersb])
AC_ARG_VAR([SPARSERSB_CXX11],[C++11 additional compilation flags for sparsersb])
AC_ARG_VAR([LIBRSB_TARBALL],[Environment variable equivalent for --with-librsb-tarball=..])
if [ test "$MKOCTFILE" = "none" ]; then
AC_MSG_ERROR([mkoctfile required to install $PACKAGE_NAME])
fi
MKOCTFILE="$MKOCTFILE -g"
# Checks for librsb
have_rsb=no
librsb_conf='no'
librsb_conf_static='no' # internal
AC_ARG_WITH(static-librsb,
[ --with-static-librsb=[yes|no] Whether to use static linking with the librsb-conf script. (recommended: yes).],
[ librsb_conf_static=$withval;
if x"$librsb_conf_static" != xyes -a x"$librsb_conf_static" != xno ; then
AC_MSG_ERROR([--static-librsb=yes or --static-librsb=no !! ])
fi
], [ ])
# BEGIN tarball-based on-the-fly install of librsb
AC_ARG_WITH(librsb-tarball,
[ --with-librsb-tarball=... Will use specified user provided librsb tarball (e.g. librsb-1.2.0.tar.gz) to build a local librsb installation. You can specify LIBRSB_CFLAGS to customize. With this option --with-librsb-conf will be ignored.],
[ librsb_tarball=$withval ], [ librsb_tarball=no ])
if [ test x"$LIBRSB_TARBALL" != "x" ]; then
AC_MSG_NOTICE([Detected user-set LIBRSB_TARBALL=... variable; equivalent to --with-librsb-tarball=... .])
librsb_tarball="$LIBRSB_TARBALL"
else
AC_MSG_NOTICE([No user-set LIBRSB_TARBALL environment variable detected (set it to build using a custom librsb tarball).])
fi
if test x"$librsb_tarball" != x"no" ; then
dnl AC_MSG_WARN([...])
AC_MSG_NOTICE([Will create a local librsb build from user provided "$librsb_tarball" tarball. Will use default LIBRSB_CFLAGS.])
test -f ${librsb_tarball} || AC_MSG_ERROR([Are you sure of having file $librsb_tarball ?])
tar xzf "$librsb_tarball" || AC_MSG_ERROR([Error uncompressing "$librsb_tarball" ?])
librsb_dir=`basename $librsb_tarball`
librsb_dir=${librsb_dir/.tar.gz/}
test -d "$librsb_dir" || AC_MSG_ERROR([Error accessing "$librsb_dir" -- are you sure you provided a valid librsb tarball ?])
dnl LIBRSB_PREFIX="${LIBRSB_PREFIX:-`pwd`/local}"
LIBRSB_PREFIX="`pwd`/local"
cd "$librsb_dir" || AC_MSG_ERROR([Error entering "$librsb_dir" -- are you sure you provided a valid librsb tarball ?])
#
LIBRSB_CFLAGS="${LIBRSB_CFLAGS:--O3 -fPIC}"
AC_MSG_NOTICE([Stepped in "$librsb_dir".])
dnl AC_MSG_NOTICE([Configuring with LIBRSB_PREFIX=$LIBRSB_PREFIX ])
AC_MSG_NOTICE([Configuring with LIBRSB_CFLAGS=$LIBRSB_CFLAGS ])
./configure OCTAVE='false' CFLAGS="${LIBRSB_CFLAGS}" --prefix="${LIBRSB_PREFIX}" --disable-fortran-examples --disable-c-examples
AC_MSG_NOTICE([Configured successfully.])
make || AC_MSG_ERROR([Make step failed !])
AC_MSG_NOTICE([Built successfully.])
make install || AC_MSG_ERROR([Make step failed !])
cd -
librsb_conf="${LIBRSB_PREFIX}"/bin/librsb-config
test -f ${librsb_conf} || AC_MSG_ERROR([Temporary librsb installation config file ${librsb_conf} not executable ? Something went wrong with the install ?!])
AC_MSG_NOTICE([Temporary librsb installation in ${LIBRSB_PREFIX} done.])
AC_MSG_NOTICE([Forcing static linking due to temporary librsb.])
librsb_conf_static='yes'
else
AC_MSG_NOTICE([No librsb tarball provided: following the default procedure.])
true;
fi
# END tarball-based on-the-fly install of librsb
if test x"$librsb_conf" = x"no" ; then
AC_ARG_WITH(librsb-conf,
[ --with-librsb-conf=... Path to the librsb-config program (or its directory) which will be used to recover SPARSERSB_CXXFLAGS and SPARSERSB_LDFLAGS (unless specified explicitly).],
[ librsb_conf=$withval; ], [ librsb_conf=no ])
if test x"$librsb_conf" != x"no" ; then
if test -d "$librsb_conf" -a -x "$librsb_conf/librsb-config"; then
AC_MSG_NOTICE([Considering user provided ${librsb_conf} config dir.])
librsb_conf="$librsb_conf/librsb-config";
fi
if test '!' -x "$librsb_conf" ; then
AC_MSG_NOTICE([Taking absolute path to ${librsb_conf}.])
librsb_conf=`which "$librsb_conf"`
fi
if test -x "$librsb_conf" ; then
true
dnl AC_MSG_NOTICE([Using user provided ${librsb_conf} config file.])
else
AC_MSG_ERROR([Executable config file not found with user-provided ${librsb_conf} path!])
fi
fi
else
AC_MSG_NOTICE([Using ${librsb_conf} config file from the local librsb installation.])
fi
if test x"$librsb_conf" != x"no" ; then
AC_MSG_NOTICE([Using user provided $librsb_conf script for librsb.])
else
dnl AC_MSG_NOTICE([Probing for a librsb-config script...])
AC_CHECK_PROG([HAVE_LIBRSB_CONFIG], [librsb-config], [yes], [no])
if [test "x$HAVE_LIBRSB_CONFIG" != x"no"]; then
librsb_conf=librsb-config
fi
fi
if [test x"$SPARSERSB_CXXFLAGS" != "x" ]; then
AC_MSG_NOTICE([Using user set SPARSERSB_CXXFLAGS...])
else
if [test x"$librsb_conf" != x"no"]; then
AC_MSG_NOTICE([Setting SPARSERSB_CXXFLAGS from $librsb_conf --I_opts...])
SPARSERSB_CXXFLAGS="`$librsb_conf --I_opts`"
fi
fi
OCTAVE_CLI="$OCTAVE --no-gui --no-window-system";
SPARSERSB_USE_64BIT_IDX=`$OCTAVE_CLI --no-line-editing -qf --eval 'printf ("%i", sizemax() > intmax ("int32"))'`
if [test x"$SPARSERSB_USE_64BIT_IDX" = x"1" ]; then
AC_MSG_NOTICE([Adding -D RSBOI_DETECTED_LONG_IDX to SPARSERSB_CXXFLAGS ...])
SPARSERSB_CXXFLAGS="$SPARSERSB_CXXFLAGS -D RSBOI_DETECTED_LONG_IDX=1"
fi
if [test x"$SPARSERSB_LDFLAGS" != "x" ]; then
AC_MSG_NOTICE([Using user set SPARSERSB_LDFLAGS...])
else
if [test x"$librsb_conf" != x"no"]; then
if [test x"$librsb_conf_static" = x"no"]; then
AC_MSG_NOTICE([Setting SPARSERSB_LDFLAGS from --L_opts --libs])
SPARSERSB_LDFLAGS="`$librsb_conf --L_opts --libs`"
else
AC_MSG_NOTICE([Setting SPARSERSB_LDFLAGS from --static --libs --extra_libs])
SPARSERSB_LDFLAGS="`$librsb_conf --static --libs --extra_libs`"
fi
fi
fi
if [test x"$SPARSERSB_CXXFLAGS" = "x" ]; then
AC_CHECK_HEADERS([rsb.h], [AC_SEARCH_LIBS([rsb_lib_init], [rsb], [SPARSERSB_CXXFLAGS=" "], [])], [] )
fi
if [test x"$SPARSERSB_LDFLAGS" = "x" ]; then
AC_CHECK_HEADERS([rsb.h], [AC_SEARCH_LIBS([rsb_lib_init], [rsb], [SPARSERSB_LDFLAGS="-lrsb"], [])], [] )
fi
if [test x"$SPARSERSB_CXXFLAGS" = "x" ]; then
AC_MSG_ERROR([$PACKAGE_NAME SPARSERSB_CXXFLAGS (librsb not detected)!])
fi
if [test x"$SPARSERSB_LDFLAGS" = "x" ]; then
AC_MSG_ERROR([$PACKAGE_NAME requires SPARSERSB_LDFLAGS (librsb not detected)!])
fi
have_rsb=yes
AC_MSG_NOTICE([SPARSERSB_CXXFLAGS is $SPARSERSB_CXXFLAGS])
AC_MSG_NOTICE([SPARSERSB_LDFLAGS is $SPARSERSB_LDFLAGS])
# TODO: alternative: build librsb with SPARSERSB_LIBRSB_TARBALL
# TODO: alternative: --with-librsb=tarball will skip all checks and use that tarball
if [ test "$have_rsb" != "yes" ]; then
AC_MSG_ERROR([$PACKAGE_NAME requires librsb library])
fi
# check for octave functions
save_CXX="$CXX"
save_CXXFLAGS="$CXXFLAGS"
CXX=`${MKOCTFILE} -p CXX`
CXXFLAGS="$CXXFLAGS -I`$MKOCTFILE -p OCTINCLUDEDIR`"
# need to use interpreter->get_load_path in dev version of octave,
# prior to that methods of load_path were static
AC_CACHE_CHECK(
[for octave_value function iscomplex],
[octave_value_cv_iscomplex],
[AC_COMPILE_IFELSE(
[AC_LANG_PROGRAM([
#include
#include
],
[
octave_value().iscomplex();
])],
[octave_value_cv_iscomplex=yes],
[octave_value_cv_iscomplex=no])
])
if test "$octave_value_cv_iscomplex" = "yes" ; then
HAVE_OCTAVE_VALUE_ISCOMPLEX=-DHAVE_OCTAVE_VALUE_ISCOMPLEX
else
HAVE_OCTAVE_VALUE_ISCOMPLEX=
fi
AC_SUBST(HAVE_OCTAVE_VALUE_ISCOMPLEX)
CC=$save_CXX
CXXFLAGS=$save_CXXFLAGS
AC_SUBST(OCTAVE)
AC_SUBST(TARGETS)
AC_SUBST(SPARSERSB_CXXFLAGS)
AC_SUBST(SPARSERSB_CXX11, ["-std=gnu++11"])
AC_SUBST(SPARSERSB_LDFLAGS)
AC_CONFIG_FILES([Makeconf])
AC_OUTPUT
AC_MSG_NOTICE([
$PACKAGE_NAME is configured with:
SPARSERSB_LDFLAGS: $SPARSERSB_LDFLAGS
SPARSERSB_CXXFLAGS: $SPARSERSB_CXXFLAGS
SPARSERSB_CXX11: $SPARSERSB_CXX11
OCTAVE: $OCTAVE
MKOCTFILE: $MKOCTFILE
dnl LIBS: $LIBS
dnl CXXFLAGS: $CXXFLAGS $DEFS
dnl TARGETS: $TARGETS
You can build it with 'make' and after on, test with 'make tests'.
])
sparsersb-1.0.9/src/ext/gettok.m 0000644 0000000 0000000 00000003065 14122214045 014714 0 ustar 0000000 0000000 #
# Copyright (C) 2011-2020 Michele Martone
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, see .
#
## Original version was from the NIST "Matrix Market" service
## https://math.nist.gov/MatrixMarket/mmio/matlab/mmiomatlab.html
## and distributed as free software in the public domain.
function [word, remainder] = gettok(string)
%
% function [word, remainder] = gettok(string)
%
% Retrieves the first blank separated token from the string.
%
si = findstr(string,' ');
lstring=length(string);
lsi=length(si);
if ( lsi == 0 )
word=string;
remainder='';
return
end
firstb=si(1);
if ( firstb > 1 )
word=string(1:firstb-1);
remainder=string(firstb+1:lstring);
return;
end
tmp=1;
while ( tmp < lsi )
if ( si(tmp+1) == si(tmp)+1 )
tmp=tmp+1;
else
break;
end
end
if ( tmp == lstring )
word=-1;
remainder=string;
return;
end
word=string(si(tmp)+1:si(tmp+1)-1);
remainder=string(si(tmp+1)+1:lstring);
sparsersb-1.0.9/src/ext/mminfo.m 0000644 0000000 0000000 00000010114 14122214045 014675 0 ustar 0000000 0000000 #
# Copyright (C) 2011-2020 Michele Martone
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, see .
#
## Original version was from the NIST "Matrix Market" service
## https://math.nist.gov/MatrixMarket/mmio/matlab/mmiomatlab.html
## and distributed as free software in the public domain.
function [rows, cols, entries, rep, field, symm] = mminfo(filename)
%
% function [rows, cols, entries, rep, field, symmetry] = mminfo(filename)
%
% Reads the contents of the Matrix Market file 'filename'
% and extracts size and storage information.
%
% In the case of coordinate matrices, entries refers to the
% number of coordinate entries stored in the file. The number
% of non-zero entries in the final matrix cannot be determined
% until the data is read (and symmetrized, if necessary).
%
% In the case of array matrices, entries is the product
% rows*cols, regardless of whether symmetry was used to
% store the matrix efficiently.
%
%
mmfile = fopen(filename,'r');
if ( mmfile == -1 )
disp(filename);
error('File not found');
end;
header = fgets(mmfile);
if (header == -1 )
error('Empty file.')
end
% NOTE: If using a version of Matlab for which strtok is not
% defined, substitute 'gettok' for 'strtok' in the
% following lines, and download gettok.m from the
% Matrix Market site.
[head0,header] = strtok(header); % see note above
[head1,header] = strtok(header);
[rep,header] = strtok(header);
[field,header] = strtok(header);
[symm,header] = strtok(header);
head1 = lower(head1);
rep = lower(rep);
field = lower(field);
symm = lower(symm);
if ( length(symm) == 0 )
disp('Not enough words in header line.')
disp('Recognized format: ')
disp('%%MatrixMarket matrix representation field symmetry')
error('Check header line.')
end
if ( ~ strcmp(head0,'%%MatrixMarket') )
error('Not a valid MatrixMarket header.')
end
if ( ~ strcmp(head1,'matrix') )
disp(['This seems to be a MatrixMarket ',head1,' file.']);
disp('This function only knows how to read MatrixMarket matrix files.');
disp(' ');
error(' ');
end
% Read through comments, ignoring them
commentline = fgets(mmfile);
while length(commentline) > 0 & commentline(1) == '%',
commentline = fgets(mmfile);
end
% Read size information, then branch according to
% sparse or dense format
if ( strcmp(rep,'coordinate')) % read matrix given in sparse
% coordinate matrix format
[sizeinfo,count] = sscanf(commentline,'%d%d%d');
while ( count == 0 )
commentline = fgets(mmfile);
if (commentline == -1 )
error('End-of-file reached before size information was found.')
end
[sizeinfo,count] = sscanf(commentline,'%d%d%d');
if ( count > 0 & count ~= 3 )
error('Invalid size specification line.')
end
end
rows = sizeinfo(1);
cols = sizeinfo(2);
entries = sizeinfo(3);
elseif ( strcmp(rep,'array') ) % read matrix given in dense
% array (column major) format
[sizeinfo,count] = sscanf(commentline,'%d%d');
while ( count == 0 )
commentline = fgets(mmfile);
if (commentline == -1 )
error('End-of-file reached before size information was found.')
end
[sizeinfo,count] = sscanf(commentline,'%d%d');
if ( count > 0 & count ~= 2 )
error('Invalid size specification line.')
end
end
rows = sizeinfo(1);
cols = sizeinfo(2);
entries = rows*cols;
end
fclose(mmfile);
% Done.
sparsersb-1.0.9/src/ext/mmread.m 0000644 0000000 0000000 00000021643 14122214045 014666 0 ustar 0000000 0000000 #
# Copyright (C) 2011-2020 Michele Martone
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, see .
#
## Original version was from the NIST "Matrix Market" service
## https://math.nist.gov/MatrixMarket/mmio/matlab/mmiomatlab.html
## and distributed as free software in the public domain.
# 20070301
# Slightly modified by Michele Martone for handling complex dense arrays with parenthesis,too
# But there still a bug (original!): the first line MUST be space terminated..
function [A,rows,cols,entries,rep,field,symm] = mmread(filename)
%
% function [A] = mmread(filename)
%
% function [A,rows,cols,entries,rep,field,symm] = mmread(filename)
%
% Reads the contents of the Matrix Market file 'filename'
% into the matrix 'A'. 'A' will be either sparse or full,
% depending on the Matrix Market format indicated by
% 'coordinate' (coordinate sparse storage), or
% 'array' (dense array storage). The data will be duplicated
% as appropriate if symmetry is indicated in the header.
%
% Optionally, size information about the matrix can be
% obtained by using the return values rows, cols, and
% entries, where entries is the number of nonzero entries
% in the final matrix. Type information can also be retrieved
% using the optional return values rep (representation), field,
% and symm (symmetry).
%
mmfile = fopen(filename,'rb');#'b' added by MM
if ( mmfile == -1 )
disp(filename);
error('File not found');
end;
header = fgets(mmfile);
if (header == -1 )
error('Empty file.')
end
% NOTE: If using a version of Matlab for which strtok is not
% defined, substitute 'gettok' for 'strtok' in the
% following lines, and download gettok.m from the
% Matrix Market site.
[head0,header] = strtok(header); % see note above
[head1,header] = strtok(header);
[rep,header] = strtok(header);
[field,header] = strtok(header);
[symm,header] = strtok(header);
head1 = lower(head1);
rep = lower(rep);
field = lower(field);
symm = lower(symm);
if ( length(symm) == 0 )
disp(['Not enough words in header line of file ',filename])
disp('Recognized format: ')
disp('%%MatrixMarket matrix representation field symmetry')
error('Check header line.')
end
if ( ~ strcmp(head0,'%%MatrixMarket') )
error('Not a valid MatrixMarket header.')
end
if ( ~ strcmp(head1,'matrix') )
disp(['This seems to be a MatrixMarket ',head1,' file.']);
disp('This function only knows how to read MatrixMarket matrix files.');
disp(' ');
error(' ');
end
% Read through comments, ignoring them
commentline = fgets(mmfile);
while length(commentline) > 0 & commentline(1) == '%',
commentline = fgets(mmfile);
end
% Read size information, then branch according to
% sparse or dense format
if ( strcmp(rep,'coordinate')) % read matrix given in sparse
% coordinate matrix format
[sizeinfo,count] = sscanf(commentline,'%d%d%d');
while ( count == 0 )
commentline = fgets(mmfile);
if (commentline == -1 )
error('End-of-file reached before size information was found.')
end
[sizeinfo,count] = sscanf(commentline,'%d%d%d');
if ( count > 0 & count ~= 3 )
error('Invalid size specification line.')
end
end
rows = sizeinfo(1);
cols = sizeinfo(2);
entries = sizeinfo(3);
if ( strcmp(field,'real') ) % real valued entries:
[T,count] = fscanf(mmfile,'%f',3);
T = [T; fscanf(mmfile,'%f')];
if ( size(T) ~= 3*entries )
message = ...
str2mat('Data file does not contain expected amount of data.',...
'Check that number of data lines matches nonzero count.');
disp(message);
error('Invalid data.');
end
T = reshape(T,3,entries)';
A = sparse(T(:,1), T(:,2), T(:,3), rows , cols);
elseif ( strcmp(field,'complex')) % complex valued entries:
T = fscanf(mmfile,'%f',4);
T = [T; fscanf(mmfile,'%f')];
if ( size(T) ~= 4*entries )
message = ...
str2mat('Data file does not contain expected amount of data.',...
'Check that number of data lines matches nonzero count.');
disp(message);
error('Invalid data.');
end
T = reshape(T,4,entries)';
A = sparse(T(:,1), T(:,2), T(:,3) + T(:,4)*sqrt(-1), rows , cols);
elseif ( strcmp(field,'pattern')) % pattern matrix (no values given):
T = fscanf(mmfile,'%f',2);
T = [T; fscanf(mmfile,'%f')];
if ( size(T) ~= 2*entries )
message = ...
str2mat('Data file does not contain expected amount of data.',...
'Check that number of data lines matches nonzero count.');
disp(message);
error('Invalid data.');
end
T = reshape(T,2,entries)';
A = sparse(T(:,1), T(:,2), ones(entries,1) , rows , cols);
end
elseif ( strcmp(rep,'array') ) % read matrix given in dense
% array (column major) format
[sizeinfo,count] = sscanf(commentline,'%d%d');
while ( count == 0 )
commentline = fgets(mmfile);
if (commentline == -1 )
error('End-of-file reached before size information was found.')
end
[sizeinfo,count] = sscanf(commentline,'%d%d');
if ( count > 0 & count ~= 2 )
error('Invalid size specification line.')
end
end
rows = sizeinfo(1);
cols = sizeinfo(2);
entries = rows*cols;
if ( strcmp(field,'real') ) % real valued entries:
A = fscanf(mmfile,'%f',1);
A = [A; fscanf(mmfile,'%f')];
if ( strcmp(symm,'symmetric') | strcmp(symm,'hermitian') | strcmp(symm,'skew-symmetric') )
for j=1:cols-1,
currenti = j*rows;
A = [A(1:currenti); zeros(j,1);A(currenti+1:length(A))];
end
elseif ( ~ strcmp(symm,'general') )
disp('Unrecognized symmetry')
disp(symm)
disp('Recognized choices:')
disp(' symmetric')
disp(' hermitian')
disp(' skew-symmetric')
disp(' general')
error('Check symmetry specification in header.');
end
A = reshape(A,rows,cols);
elseif ( strcmp(field,'complex')) % complx valued entries:
%tmpr = fscanf(mmfile,'%f',1);
%tmpi = fscanf(mmfile,'%f',1);
% no braindead code please..
[tmpr,_c] = fscanf(mmfile,'%f',1);
[tmpi,_c] = fscanf(mmfile,'%f',1);
if(_c!=1)
fscanf(mmfile,'(');
[tmpr,_c] = fscanf(mmfile,'%f' ,1);
fscanf(mmfile,',');
[tmpi,_c] = fscanf(mmfile,'%f',1);
fscanf(mmfile,')');
endif
A=reshape(zeros(entries,1).+0*i,entries,1);
% A = tmpr+tmpi*i;
A(1) = tmpr+tmpi*i;
% for j=1:entries-1
for j=2:entries % now the algorithm is slightly different!
[tmpr,_c] = fscanf(mmfile,'%f',1);
[tmpi,_c] = fscanf(mmfile,'%f',1);
if(_c!=1)
fscanf(mmfile,'(');
[tmpr,_c] = fscanf(mmfile,'%f' ,1);
fscanf(mmfile,',');
[tmpi,_c] = fscanf(mmfile,'%f',1);
fscanf(mmfile,')');
endif
% A = [A; tmpr + tmpi*i] % <- braindead code!
A(j)=tmpr+tmpi*i;
% printf("%f,%f",A(j));
end
if ( strcmp(symm,'symmetric') | strcmp(symm,'hermitian') | strcmp(symm,'skew-symmetric') )
for j=1:cols-1,
currenti = j*rows;
A = [A(1:currenti); zeros(j,1);A(currenti+1:length(A))];
end
elseif ( strcmp(symm,'general') )
%elseif ( ~ strcmp(symm,'general') )
disp('Unrecognized symmetry')
disp(symm)
disp('Recognized choices:')
disp(' symmetric')
disp(' hermitian')
disp(' skew-symmetric')
disp(' general')
error('Check symmetry specification in header.');
end
A = reshape(A,rows,cols);
elseif ( strcmp(field,'pattern')) % pattern (makes no sense for dense)
disp('Matrix type:',field)
error('Pattern matrix type invalid for array storage format.');
else % Unknown matrix type
disp('Matrix type:',field)
error('Invalid matrix type specification. Check header against MM documentation.');
end
end
%
% If symmetric, skew-symmetric or Hermitian, duplicate lower
% triangular part and modify entries as appropriate:
%
if ( strcmp(symm,'symmetric') )
A = A + A.' - diag(diag(A));
entries = nnz(A);
elseif ( strcmp(symm,'hermitian') )
A = A + A' - diag(diag(A));
entries = nnz(A);
elseif ( strcmp(symm,'skew-symmetric') )
A = A - A';
entries = nnz(A);
end
fclose(mmfile);
% Done.
sparsersb-1.0.9/src/ext/mmreadm.m 0000644 0000000 0000000 00000021747 14122214045 015050 0 ustar 0000000 0000000 #
# Copyright (C) 2011-2020 Michele Martone
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, see .
#
## Original version was from the NIST "Matrix Market" service
## https://math.nist.gov/MatrixMarket/mmio/matlab/mmiomatlab.html
## and distributed as free software in the public domain.
% 20111022
% Slightly modified by Michele Martone for Matlab at IPP MPG.
% 20070301
% Slightly modified by Michele Martone for handling complex dense arrays with parenthesis,too
% But there still a bug (original!): the first line MUST be space terminated..
function [A,rows,cols,entries,rep,field,symm] = mmreadm(filename)
%
% function [A] = mmreadm(filename)
%
% function [A,rows,cols,entries,rep,field,symm] = mmreadm(filename)
%
% Reads the contents of the Matrix Market file 'filename'
% into the matrix 'A'. 'A' will be either sparse or full,
% depending on the Matrix Market format indicated by
% 'coordinate' (coordinate sparse storage), or
% 'array' (dense array storage). The data will be duplicated
% as appropriate if symmetry is indicated in the header.
%
% Optionally, size information about the matrix can be
% obtained by using the return values rows, cols, and
% entries, where entries is the number of nonzero entries
% in the final matrix. Type information can also be retrieved
% using the optional return values rep (representation), field,
% and symm (symmetry).
%
mmfile = fopen(filename,'rb');%'b' added by MM
if ( mmfile == -1 )
disp(filename);
error('File not found');
end;
header = fgets(mmfile);
if (header == -1 )
error('Empty file.')
end
% NOTE: If using a version of Matlab for which strtok is not
% defined, substitute 'gettok' for 'strtok' in the
% following lines, and download gettok.m from the
% Matrix Market site.
[head0,header] = gettok(header); % see note above
[head1,header] = gettok(header);
[rep,header] = gettok(header);
[field,header] = gettok(header);
[symm,header] = gettok(header);
head1 = lower(head1);
rep = lower(rep);
field = lower(field);
symm = lower(symm);
if ( length(symm) == 0 )
disp(['Not enough words in header line of file ',filename])
disp('Recognized format: ')
disp('%%MatrixMarket matrix representation field symmetry')
error('Check header line.')
end
if ( ~ strcmp(head0,'%%MatrixMarket') )
error('Not a valid MatrixMarket header.')
end
if ( ~ strcmp(head1,'matrix') )
disp(['This seems to be a MatrixMarket ',head1,' file.']);
disp('This function only knows how to read MatrixMarket matrix files.');
disp(' ');
error(' ');
end
% Read through comments, ignoring them
commentline = fgets(mmfile);
while length(commentline) > 0 & commentline(1) == '%',
commentline = fgets(mmfile);
end
% Read size information, then branch according to
% sparse or dense format
if ( strcmp(rep,'coordinate')) % read matrix given in sparse
% coordinate matrix format
[sizeinfo,count] = sscanf(commentline,'%d%d%d');
while ( count == 0 )
commentline = fgets(mmfile);
if (commentline == -1 )
error('End-of-file reached before size information was found.')
end
[sizeinfo,count] = sscanf(commentline,'%d%d%d');
if ( count > 0 & count ~= 3 )
error('Invalid size specification line.')
end
end
rows = sizeinfo(1);
cols = sizeinfo(2);
entries = sizeinfo(3);
if ( strcmp(field,'real') ) % real valued entries:
[T,count] = fscanf(mmfile,'%f',3);
T = [T; fscanf(mmfile,'%f')];
if ( size(T) ~= 3*entries )
message = ...
str2mat('Data file does not contain expected amount of data.',...
'Check that number of data lines matches nonzero count.');
disp(message);
error('Invalid data.');
end
T = reshape(T,3,entries)';
A = sparse(T(:,1), T(:,2), T(:,3), rows , cols);
elseif ( strcmp(field,'complex')) % complex valued entries:
T = fscanf(mmfile,'%f',4);
T = [T; fscanf(mmfile,'%f')];
if ( size(T) ~= 4*entries )
message = ...
str2mat('Data file does not contain expected amount of data.',...
'Check that number of data lines matches nonzero count.');
disp(message);
error('Invalid data.');
end
T = reshape(T,4,entries)';
A = sparse(T(:,1), T(:,2), T(:,3) + T(:,4)*sqrt(-1), rows , cols);
elseif ( strcmp(field,'pattern')) % pattern matrix (no values given):
T = fscanf(mmfile,'%f',2);
T = [T; fscanf(mmfile,'%f')];
if ( size(T) ~= 2*entries )
message = ...
str2mat('Data file does not contain expected amount of data.',...
'Check that number of data lines matches nonzero count.');
disp(message);
error('Invalid data.');
end
T = reshape(T,2,entries)';
A = sparse(T(:,1), T(:,2), ones(entries,1) , rows , cols);
end
elseif ( strcmp(rep,'array') ) % read matrix given in dense
% array (column major) format
[sizeinfo,count] = sscanf(commentline,'%d%d');
while ( count == 0 )
commentline = fgets(mmfile);
if (commentline == -1 )
error('End-of-file reached before size information was found.')
end
[sizeinfo,count] = sscanf(commentline,'%d%d');
if ( count > 0 & count ~= 2 )
error('Invalid size specification line.')
end
end
rows = sizeinfo(1);
cols = sizeinfo(2);
entries = rows*cols;
if ( strcmp(field,'real') ) % real valued entries:
A = fscanf(mmfile,'%f',1);
A = [A; fscanf(mmfile,'%f')];
if ( strcmp(symm,'symmetric') | strcmp(symm,'hermitian') | strcmp(symm,'skew-symmetric') )
for j=1:cols-1,
currenti = j*rows;
A = [A(1:currenti); zeros(j,1);A(currenti+1:length(A))];
end
elseif ( ~ strcmp(symm,'general') )
disp('Unrecognized symmetry')
disp(symm)
disp('Recognized choices:')
disp(' symmetric')
disp(' hermitian')
disp(' skew-symmetric')
disp(' general')
error('Check symmetry specification in header.');
end
A = reshape(A,rows,cols);
elseif ( strcmp(field,'complex')) % complx valued entries:
%tmpr = fscanf(mmfile,'%f',1);
%tmpi = fscanf(mmfile,'%f',1);
% no braindead code please..
[tmpr,c] = fscanf(mmfile,'%f',1);
[tmpi,c] = fscanf(mmfile,'%f',1);
if(ne(c,1))
fscanf(mmfile,'(');
[tmpr,c] = fscanf(mmfile,'%f' ,1);
fscanf(mmfile,',');
[tmpi,c] = fscanf(mmfile,'%f',1);
fscanf(mmfile,')');
end
A=reshape(zeros(entries,1) +0*i,entries,1);
% A = tmpr+tmpi*i;
A(1) = tmpr+tmpi*i;
% for j=1:entries-1
for j=2:entries % now the algorithm is slightly different!
[tmpr,c] = fscanf(mmfile,'%f',1);
[tmpi,c] = fscanf(mmfile,'%f',1);
if(ne(c,1))
fscanf(mmfile,'(');
[tmpr,c] = fscanf(mmfile,'%f' ,1);
fscanf(mmfile,',');
[tmpi,c] = fscanf(mmfile,'%f',1);
fscanf(mmfile,')');
end
% A = [A; tmpr + tmpi*i] % <- braindead code!
A(j)=tmpr+tmpi*i;
% printf("%f,%f",A(j));
end
if ( strcmp(symm,'symmetric') | strcmp(symm,'hermitian') | strcmp(symm,'skew-symmetric') )
for j=1:cols-1,
currenti = j*rows;
A = [A(1:currenti); zeros(j,1);A(currenti+1:length(A))];
end
elseif ( strcmp(symm,'general') )
%elseif ( ~ strcmp(symm,'general') )
disp('Unrecognized symmetry')
disp(symm)
disp('Recognized choices:')
disp(' symmetric')
disp(' hermitian')
disp(' skew-symmetric')
disp(' general')
error('Check symmetry specification in header.');
end
A = reshape(A,rows,cols);
elseif ( strcmp(field,'pattern')) % pattern (makes no sense for dense)
disp('Matrix type:',field)
error('Pattern matrix type invalid for array storage format.');
else % Unknown matrix type
disp('Matrix type:',field)
error('Invalid matrix type specification. Check header against MM documentation.');
end
end
%
% If symmetric, skew-symmetric or Hermitian, duplicate lower
% triangular part and modify entries as appropriate:
%
if ( strcmp(symm,'symmetric') )
A = A + A.' - diag(diag(A));
entries = nnz(A);
elseif ( strcmp(symm,'hermitian') )
A = A + A' - diag(diag(A));
entries = nnz(A);
elseif ( strcmp(symm,'skew-symmetric') )
A = A - A';
entries = nnz(A);
end
fclose(mmfile);
% Done.
sparsersb-1.0.9/src/ext/mmwrite.m 0000644 0000000 0000000 00000017217 14122214045 015107 0 ustar 0000000 0000000 #
# Copyright (C) 2011-2020 Michele Martone
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, see .
#
## Original version was from the NIST "Matrix Market" service
## https://math.nist.gov/MatrixMarket/mmio/matlab/mmiomatlab.html
## and distributed as free software in the public domain.
function [ err ] = mmwrite(filename,A,comment,field,precision)
%
% Function: mmwrite(filename,A,comment,field,precision)
%
% Writes the sparse or dense matrix A to a Matrix Market (MM)
% formatted file.
%
% Required arguments:
%
% filename - destination file
%
% A - sparse or full matrix
%
% Optional arguments:
%
% comment - matrix of comments to prepend to
% the MM file. To build a comment matrix,
% use str2mat. For example:
%
% comment = str2mat(' Comment 1' ,...
% ' Comment 2',...
% ' and so on.',...
% ' to attach a date:',...
% [' ',date]);
% If ommitted, a single line date stamp comment
% will be included.
%
% field - 'real'
% 'complex'
% 'integer'
% 'pattern'
% If ommitted, data will determine type.
%
% precision - number of digits to display for real
% or complex values
% If ommitted, full working precision is used.
%
if ( nargin == 5)
precision = 16;
elseif ( nargin == 4)
precision = 16;
elseif ( nargin == 3)
mattype = 'real'; % placeholder, will check after FIND-ing A
precision = 16;
elseif ( nargin == 2)
comment = '';
% Check whether there is an imaginary part:
mattype = 'real'; % placeholder, will check after FIND-ing A
precision = 16;
end
mmfile = fopen([filename],'wb');#'b' added by MM
if ( mmfile == -1 )
error('Cannot open file for output');
end;
[M,N] = size(A);
%%%%%%%%%%%%% This part for sparse matrices %%%%%%%%%%%%%%%%
if ( issparse(A) )
[I,J,V] = find(A);
if ( sum(abs(imag(nonzeros(V)))) > 0 )
Vreal = 0;
else
Vreal = 1;
end
if ( ~ strcmp(mattype,'pattern') & Vreal )
mattype = 'real';
elseif ( ~ strcmp(mattype,'pattern') )
mattype = 'complex';
end
%
% Determine symmetry:
%
if ( M ~= N )
symm = 'general';
issymm = 0;
NZ = length(V);
else
issymm = 1;
NZ = length(V);
for i=1:NZ
if ( A(J(i),I(i)) ~= V(i) )
issymm = 0;
break;
end
end
if ( issymm )
symm = 'symmetric';
ATEMP = tril(A);
[I,J,V] = find(ATEMP);
NZ = nnz(ATEMP);
else
isskew = 1;
for i=1:NZ
if ( A(J(i),I(i)) ~= - V(i) )
isskew = 0;
break;
end
end
if ( isskew )
symm = 'skew-symmetric';
ATEMP = tril(A);
[I,J,V] = find(ATEMP);
NZ = nnz(ATEMP);
elseif ( strcmp(mattype,'complex') )
isherm = 1;
for i=1:NZ
if ( A(J(i),I(i)) ~= conj(V(i)) )
isherm = 0;
break;
end
end
if ( isherm )
symm = 'hermitian';
ATEMP = tril(A);
[I,J,V] = find(ATEMP);
NZ = nnz(ATEMP);
else
symm = 'general';
NZ = nnz(A);
end
else
symm = 'general';
NZ = nnz(A);
end
end
end
% Sparse coordinate format:
rep = 'coordinate';
fprintf(mmfile,'%%%%MatrixMarket matrix %s %s %s\n',rep,mattype,symm);
[MC,NC] = size(comment);
if ( MC == 0 )
fprintf(mmfile,'%% Generated %s\n',[date]);
else
for i=1:MC,
fprintf(mmfile,'%%%s\n',comment(i,:));
end
end
fprintf(mmfile,'%d %d %d\n',M,N,NZ);
cplxformat = sprintf('%%d %%d %% .%dg %% .%dg\n',precision,precision);
realformat = sprintf('%%d %%d %% .%dg\n',precision);
if ( strcmp(mattype,'real') )
for i=1:NZ
fprintf(mmfile,realformat,I(i),J(i),V(i));
end;
elseif ( strcmp(mattype,'complex') )
for i=1:NZ
fprintf(mmfile,cplxformat,I(i),J(i),real(V(i)),imag(V(i)));
end;
elseif ( strcmp(mattype,'pattern') )
for i=1:NZ
fprintf(mmfile,'%d %d\n',I(i),J(i));
end;
else
err = -1;
disp('Unsupported mattype:')
mattype
end;
%%%%%%%%%%%%% This part for dense matrices %%%%%%%%%%%%%%%%
else
if ( sum(abs(imag(nonzeros(A)))) > 0 )
Areal = 0;
else
Areal = 1;
end
if ( ~strcmp(mattype,'pattern') & Areal )
mattype = 'real';
elseif ( ~strcmp(mattype,'pattern') )
mattype = 'complex';
end
%
% Determine symmetry:
%
if ( M ~= N )
issymm = 0;
symm = 'general';
else
issymm = 1;
for j=1:N
for i=j+1:N
if (A(i,j) ~= A(j,i) )
issymm = 0;
break;
end
end
if ( ~ issymm ) break; end
end
if ( issymm )
symm = 'symmetric';
else
isskew = 1;
for j=1:N
for i=j+1:N
if (A(i,j) ~= - A(j,i) )
isskew = 0;
break;
end
end
if ( ~ isskew ) break; end
end
if ( isskew )
symm = 'skew-symmetric';
elseif ( strcmp(mattype,'complex') )
isherm = 1;
for j=1:N
for i=j+1:N
if (A(i,j) ~= conj(A(j,i)) )
isherm = 0;
break;
end
end
if ( ~ isherm ) break; end
end
if ( isherm )
symm = 'hermitian';
else
symm = 'general';
end
else
symm = 'general';
end
end
end
% Dense array format:
rep = 'array';
[MC,NC] = size(comment);
fprintf(mmfile,'%%%%MatrixMarket matrix %s %s %s\n',rep,mattype,symm);
for i=1:MC,
fprintf(mmfile,'%%%s\n',comment(i,:));
end;
fprintf(mmfile,'%d %d\n',M,N);
cplxformat = sprintf('%% .%dg %% .%dg\n', precision,precision);
realformat = sprintf('%% .%dg\n', precision);
if ( ~ strcmp(symm,'general') )
rowloop = 'j';
else
rowloop = '1';
end
if ( strcmp(mattype,'real') )
for j=1:N
for i=eval(rowloop):M
fprintf(mmfile,realformat,A(i,j));
end
end
elseif ( strcmp(mattype,'complex') )
for j=1:N
for i=eval(rowloop):M
fprintf(mmfile,cplxformat,real(A(i,j)),imag(A(i,j)));
end
end
elseif ( strcmp(mattype,'pattern') )
err = -2
disp('Pattern type inconsistant with dense matrix')
else
err = -2
disp('Unknown matrix type:')
mattype
end
end
fclose(mmfile);
sparsersb-1.0.9/src/matlabbench.sh 0000755 0000000 0000000 00000000301 14122214045 015226 0 ustar 0000000 0000000 #!/bin/bash
if test $# != 1 ; then echo "Please supply a single Matrix Market file name at the command line." ; exit; fi
matlab -nojvm -nodisplay -nodesktop -nosplash -r "matlabbench('"$1"')"
sparsersb-1.0.9/src/sparsersb.cc 0000644 0000000 0000000 00000664414 14122214045 014767 0 ustar 0000000 0000000 /*
Copyright (C) 2011-2021 Michele Martone
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, see .
*/
/*
* This obsolete wishlist. Patches are welcome!:
* adapt to when octave_idx_type is 64 bit long
* rsb_file_vec_save (1.1)
* all *.m files shall go to inst/
* switch to using bootstrap.sh (instead autogen.sh) and configure.ac with environment variables, so it can be called from pkg install sparsersb-1.0.4.tar.gz
* produce ../doc/sparsersb.txi; can use get_help_text
* put to ./devel/ what is not to be distributed
* make or configure should fail on missing library (actually it does not)
* spfind in order to update easily and quickly nonzeroes
* need A(IA,JA,VA)=nVA
* shall add "load"; implicit filename based is confusing
* shall rename "load"/"save" to "loadMatrixMarket"/... or something explicit
* save/load capability (in own, rsb format)
* should not rely on string_value().c_str() --- stack corruption danger!
* ("get","RSB_IO_WANT_...") is not yet available
* (.) is incomplete. it is needed by trace()
* (:,:) , (:,p): test with octave's bicg, bicgstab, cgs, ...
* hints about how to influence caching blocking policy
* compound_binary_op
* for thorough testing, see Octave's test/build_sparse_tests.sh
* sparsersb(rsbmat,"benchmark")
* sparsersb(rsbmat,"test")
* minimize data copies
* subsref, dotref, subsasgn are incomplete: need error messages there
* in full_value(), bool arg is ignored
* symmetry support is incomplete (scarcely defined)
* document semantics of update and access operators
* define more operators (e.g.: scaling) for 'complex'
* create a single error macro for constructors
* often missing array lenghts/type checks
* may define as map (see is_map) so that "a.type = ..." can work
* is_struct, find_nonzero_elem_idx are undefined
* are octave_triangular_conv, default_numeric_conversion_function ok ?
* error reporting is insufficient
* update to symmetric be forbidden or rather trigger a conversion ?
* after file read, return various structural info
* norm computation
* reformat code for readability
* warnings about incomplete complex implementation may be overzealous.
* need matrix exponentiation through conversion to octave format.
* Note: although librsb has been optimized for performance, sparsersb is not.
* Note: there are dangerous casts to rsb_coo_idx_t in subsasgn: for 64-bit octave_idx_type.
* adopt a higher C++ level when possible
* Developer notes:
http://www.gnu.org/software/octave/doc/interpreter/index.html
http://www.gnu.org/software/octave/doc/interpreter/Oct_002dFiles.html#Oct_002dFiles
http://octave.sourceforge.net/developers.html
*/
#define RSBOI_WANT_PRINT_PCT_OCTAVE_STYLE 1
#include
#define RSBOI_USE_PATCH_OCT44 (OCTAVE_MAJOR_VERSION>=5) || ( (OCTAVE_MAJOR_VERSION==4) && (OCTAVE_MINOR_VERSION>=4))
#if RSBOI_USE_PATCH_OCT44
#include
#include
#include
#endif /* RSBOI_USE_PATCH_OCT44 */
#include
#include
#include /* RSBOI_WANT_SPMTX_SUBSREF || RSBOI_WANT_SPMTX_SUBSASGN */
#include
#include
#include
#include
#if RSBOI_WANT_PRINT_PCT_OCTAVE_STYLE
#include // std::setprecision
#endif
#include
#if RSBOI_USE_PATCH_OCT44
/* transitional macros, new style */
#define RSBOI_TRY_BLK try
#define RSBOI_CATCH_BLK catch (octave::execution_exception& e) { goto err; }
#define RSBOI_IF_ERR(STMT)
#define RSBOI_IF_NERR(STMT) STMT
#define RSBOI_IF_NERR_STATE()
/* transitional macros, old style */
#else /* RSBOI_USE_PATCH_OCT44 */
#define RSBOI_IF_ERR(STMT) if ( error_state) STMT
#define RSBOI_IF_NERR(STMT) if (! error_state) STMT
#define RSBOI_IF_NERR_STATE() if (! error_state)
#endif /* RSBOI_USE_PATCH_OCT44 */
//#define RSBOI_VERBOSE_CONFIG 1 /* poor man's trace facility */
#ifdef RSBOI_VERBOSE_CONFIG /* poor man's trace facility */
#if (RSBOI_VERBOSE_CONFIG>0)
#define RSBOI_VERBOSE RSBOI_VERBOSE_CONFIG
#endif
#endif
#define RSBOI_USE_PATCH_38143 ( defined(OCTAVE_MAJOR_VERSION) && (OCTAVE_MAJOR_VERSION>=4) ) /* See http://savannah.gnu.org/bugs/?48335#comment5 */
#if 0
#define RSBOI_WARN( MSG ) \
octave_stdout << "Warning in "<<__func__<<"(), in file "<<__FILE__<<" at line "<<__LINE__<<":\n" << MSG;
#define RSBOI_FIXME( MSG ) RSBOI_WARN( MSG )/* new */
#else
#define RSBOI_WARN( MSG )
#endif
#define RSBOI_TODO( MSG ) RSBOI_WARN( MSG )/* new */
#define RSBOI_FIXME( MSG ) RSBOI_WARN( "FIXME: "MSG )/* new */
#define RSBOI_PRINTF( ... ) printf( __VA_ARGS__ )
#if RSBOI_VERBOSE
//printf("In file %20s (in %s) at line %10d:\n",__FILE__,__func__,__LINE__),
#define RSBOI_DEBUG_NOTICE( ... ) \
printf("In %s(), in file %s at line %10d:\n",__func__,__FILE__,__LINE__), \
printf( __VA_ARGS__ )
#if 0
#define RSBOI_ERROR( ... ) \
printf("In %s(), in file %s at line %10d:\n",__func__,__FILE__,__LINE__), \
printf( __VA_ARGS__ )
#else
#define RSBOI_ERROR( MSG ) \
octave_stdout << "In "<<__func__<<"(), in file "<<__FILE__<<" at line "<<__LINE__<<":\n"<=201103L) )
#if defined(RSBOI_USE_CXX11)
#define RSBOI_NULL nullptr
#else /* RSBOI_USE_CXX11 */
#define RSBOI_NULL NULL
#endif /* RSBOI_USE_CXX11 */
#define RSBOI_INFOBUF 256
#define RSBOI_WANT_SYMMETRY 1
#define RSBOI_WANT_PRINT_DETAIL 0
#define RSBOI_WANT_PRINT_COMPLEX_OR_REAL 0
#define RSBOI_WANT_SUBSREF 1
#define RSBOI_WANT_HEAVY_DEBUG 0
#define RSBOI_WANT_VECLOAD_INSTEAD_MTX 1
#define RSBOI_WANT_MTX_LOAD 1
#define RSBOI_WANT_MTX_SAVE 1
#define RSBOI_WANT_POW 1
#define RSBOI_WANT_QSI 1 /* query string interface */
#define RSBOI_WANT_RESHAPE 1
#define RSBOI_WANT_SPMTX_SUBSREF 0 /* not yet there: need to accumulate in sparse */
#define RSBOI_WANT_SPMTX_SUBSASGN 1
#define RSBOI_WANT_OS_1D_IDX_ACCESS 1 /* Octave-style 1D index access */
#define RSBOI_WANT_EXPAND_SYMM 1 /* Expand symmetry when converting to sparse */
//#define RSBOI_PERROR(E) rsb_perror(E)
#define RSBOI_PERROR(E) if(RSBOI_SOME_ERROR(E)) rsboi_strerr(E)
#ifdef RSB_TRANSPOSITION_INVALID
#define RSBOI_INVALID_TRANS_CHAR RSB_TRANSPOSITION_INVALID /* since librsb-1.2.0.10 */
#else /* RSB_TRANSPOSITION_INVALID */
#define RSBOI_INVALID_TRANS_CHAR '?'
#endif /* RSB_TRANSPOSITION_INVALID */
#ifdef RSB_NUMERICAL_TYPE_DOUBLE_COMPLEX
#include
#include
#endif
#ifndef RSBOI_RSB_MATRIX_SOLVE
#define RSBOI_RSB_MATRIX_SOLVE(V1,V2) RSBOI_0_ERROR(RSBOI_0_NOTERRMSG) /* any solution routine shall attached here */
#endif
#if 1
extern "C" { rsb_err_t rsb_dump_postscript_from_mtx_t(const struct rsb_mtx_t *mtxAp, rsb_blk_idx_t br, rsb_blk_idx_t bc, int width, int height, rsb_bool_t all_nnz); }
extern "C" {
rsb_err_t rsb_dump_postscript_recursion_from_mtx_t(const struct rsb_mtx_t *mtxAp, rsb_blk_idx_t br, rsb_blk_idx_t bc, int width, int height, rsb_flags_t flags, rsb_bool_t want_blocks, rsb_bool_t z_dump , rsb_bool_t want_nonzeros ); }
#endif
#if RSBOI_WANT_HEAVY_DEBUG
extern "C" {
rsb_bool_t rsb_is_correctly_built_rcsr_matrix(const struct rsb_mtx_t *mtxAp); // forward declaration
}
#endif
#if !RSBOI_WANT_OS_1D_IDX_ACCESS
#if defined(RSB_LIBRSB_VER) && (RSB_LIBRSB_VER>=10100)
extern "C" {
#if (RSB_LIBRSB_VER<=10200)
int rsb_do_get_nnz_element(struct rsb_mtx_t *,void*,void*,void*,int);
#elif (RSB_LIBRSB_VER>=10300)
int rsb__do_get_nnz_element(struct rsb_mtx_t *,void*,void*,void*,int);
#define rsb_do_get_nnz_element rsb__do_get_nnz_element
#endif
}
#endif
#endif /* !RSBOI_WANT_OS_1D_IDX_ACCESS */
#if RSBOI_WANT_DOUBLE_COMPLEX
#define RSBOI_BINOP_PREVAILING_TYPE(V1,V2) (((V1).iscomplex()||(V2).iscomplex())?RSB_NUMERICAL_TYPE_DOUBLE_COMPLEX:RSB_NUMERICAL_TYPE_DOUBLE)
#else
#define RSBOI_BINOP_PREVAILING_TYPE(V1,V2) RSBOI_TYPECODE
#endif
#if defined(RSB_LIBRSB_VER) && (RSB_LIBRSB_VER>=10100)
#define RSBOI_10100_DOCH \
"@deftypefnx {Loadable Function} " RSBOI_FNS " (@var{S},\"render\", @var{FILENAME}[, @var{rWidth}[, @var{rHeight}]])\n"\
"@deftypefnx {Loadable Function} {[@var{O} =]} " RSBOI_FNS " (@var{S},\"autotune\"[, @var{transA}[, @var{NRHS}[, @var{MAXR}[, @var{TMAX}[, @var{TN}[, @var{SF}]]]]]])\n"\
/* #define RSBOI_10100_DOC "If @var{S} is a " RSBOI_FNS " matrix and one of the \"render\",\"renderb\",\"renders\" keywords ... */
#define RSBOI_10100_DOC \
\
"If @var{S} is a @code{" RSBOI_FNS "} matrix and the @code{\"render\"} keyword is specified, and @var{FILENAME} is a string, @var{A} will be rendered as an Encapsulated Postscript file @var{FILENAME}. Optionally, width and height can be specified in @code{@var{rWidth}, @var{rHeight}}. Defaults are 512.\n"\
"\n"\
\
"If @var{S} is a @code{" RSBOI_FNS "} matrix and the @code{\"autotune\"} keyword is specified, autotuning of the matrix will take place, with SpMV and autotuning parameters. Parameters following the @code{\"autotune\"} string are optional. Parameter @var{transA} specifies whether to tune for untransposed (@code{\"N\"}) or transposed (@code{\"T\"}) or conjugated transposed (@code{\"C\"}); @var{NRHS} the number of right hand sides; @var{MAXR} the number of tuning rounds; @var{TMAX} the threads to use. If giving an output argument @var{O}, that will be assigned to the autotuned matrix, and the input one @var{A} will remain unchanged. See librsb documentation for @code{rsb_tune_spmm} to learn more.\n"
#else
#define RSBOI_10100_DOC ""
#define RSBOI_10100_DOCH ""
#endif
#define RSBOI_VERSION 100009 /* e.g. 100009 means 1.0.9 */
#if defined(USE_64_BIT_IDX_T) || defined(OCTAVE_ENABLE_64) || defined(RSBOI_DETECTED_LONG_IDX) /* 4.1.0+ / 4.0.3 / any */
#define RSBOI_O64_R32 1
#else /* USE_64_BIT_IDX_T */
#define RSBOI_O64_R32 0
#endif /* USE_64_BIT_IDX_T */
#define RSBOI_SIZEMAX RSB_MAX_MATRIX_DIM /* Upper limit to librsb matrix dimension. */
static rsb_err_t rsboi_idxv_overflow( const idx_vector & IM, const idx_vector & JM)
{
rsb_err_t errval = RSB_ERR_NO_ERROR;
if( IM.extent(0) > RSBOI_SIZEMAX || JM.extent(0) > RSBOI_SIZEMAX )
errval = RSB_ERR_LIMITS;
return errval;
}
#if RSBOI_O64_R32
static rsb_err_t rsboi_idx_overflow( rsb_err_t *errvalp, octave_idx_type idx1, octave_idx_type idx2=0, octave_idx_type idx3=0)
{
rsb_err_t errval = RSB_ERR_NO_ERROR;
if( idx1 > RSBOI_SIZEMAX || idx2 > RSBOI_SIZEMAX || idx3 > RSBOI_SIZEMAX )
errval = RSB_ERR_LIMITS;
if( errvalp )
*errvalp = errval;
return errval;
}
static void rsboi_oi2ri( octave_idx_type * IP, rsb_nnz_idx_t nnz)
{
// octave_idx_type -> rsb_coo_idx_t
rsb_coo_idx_t * RP = (rsb_coo_idx_t *) IP;
const octave_idx_type * OP = (const octave_idx_type*) IP;
rsb_nnz_idx_t nzi;
for(nzi=0;nzi octave_idx_type
const rsb_coo_idx_t * RP = (const rsb_coo_idx_t *) IP;
octave_idx_type * OP = (octave_idx_type*) IP;
rsb_nnz_idx_t nzi;
for(nzi=0;nzimtxAp = RSBOI_NULL;
}
octave_sparsersb_mtx (const octave_sparse_matrix &sm) : octave_sparse_matrix (RSBIO_DEFAULT_CORE_MATRIX)
{
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
}
#if RSBOI_WANT_MTX_LOAD
octave_sparsersb_mtx (const std::string &mtxfilename, rsb_type_t typecode = RSBOI_TYPECODE) : octave_sparse_matrix (RSBIO_DEFAULT_CORE_MATRIX)
{
rsb_err_t errval = RSB_ERR_NO_ERROR;
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
if(!(this->mtxAp = rsb_file_mtx_load(mtxfilename.c_str(),RSBOI_RF,typecode,&errval)))
#if RSBOI_WANT_VECLOAD_INSTEAD_MTX
/* no problem */;
#else
RSBOI_ERRMSG(RSBOI_0_ALERRMSG);
RSBOI_PERROR(errval);
if(!this->mtxAp)
RSBOI_0_ERROR(RSBOI_0_ALLERRMSG);
#endif
}
#endif
//void alloc_rsb_mtx_from_coo_copy(const idx_vector &IM, const idx_vector &JM, const void * SMp, octave_idx_type nrA, octave_idx_type ncA, bool iscomplex=false, rsb_flags_t eflags=RSBOI_DCF)
void alloc_rsb_mtx_from_coo_copy(idx_vector & IM, idx_vector & JM, const void * SMp, octave_idx_type nrA, octave_idx_type ncA, bool iscomplex=false, rsb_flags_t eflags=RSBOI_DCF)
{
const octave_idx_type nnzA = IM.length();
rsb_err_t errval = RSB_ERR_NO_ERROR;
#if RSBOI_WANT_DOUBLE_COMPLEX
const rsb_type_t typecode = iscomplex?RSB_NUMERICAL_TYPE_DOUBLE_COMPLEX:RSB_NUMERICAL_TYPE_DOUBLE;
#else /* RSBOI_WANT_DOUBLE_COMPLEX */
const rsb_type_t typecode = RSBOI_TYPECODE;
#endif /* RSBOI_WANT_DOUBLE_COMPLEX */
const octave_idx_type *IA = RSBOI_NULL,*JA = RSBOI_NULL;
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
#if RSBOI_WANT_SYMMETRY
/* shall verify if any symmetry is present */
#endif
IA = (const octave_idx_type*)IM.raw();
JA = (const octave_idx_type*)JM.raw();
//RSB_DO_FLAG_ADD(eflags,rsb_util_determine_uplo_flags(IA,JA,nnzA));
if( (nrA==0 || ncA==0) && RSBOI_SOME_ERROR(errval=rsboi_idxv_overflow( IM, JM )))
goto err;
if(!(this->mtxAp = rsboi_mtx_alloc_from_coo_const(SMp,(octave_idx_type*)IA,(octave_idx_type*)JA,nnzA,typecode,nrA,ncA,RSBOI_RB,RSBOI_CB,RSBOI_RF|eflags ,&errval)))
RSBOI_ERRMSG(RSBOI_0_ALERRMSG);
err:
RSBOI_PERROR(errval);
if(!this->mtxAp)
RSBOI_0_ERROR(RSBOI_0_ALLERRMSG);
}
#if RSBOI_WANT_DOUBLE_COMPLEX
octave_sparsersb_mtx (idx_vector &IM, idx_vector &JM, const ComplexMatrix &SM,
octave_idx_type nrA, octave_idx_type ncA, rsb_flags_t eflags) : octave_sparse_matrix (RSBIO_DEFAULT_CORE_MATRIX)
{
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
this->alloc_rsb_mtx_from_coo_copy(IM,JM,SM.data(),nrA,ncA,true,eflags);
}
#endif
octave_sparsersb_mtx (idx_vector &IM, idx_vector &JM, const Matrix &SM,
octave_idx_type nrA, octave_idx_type ncA, rsb_flags_t eflags) : octave_sparse_matrix (RSBIO_DEFAULT_CORE_MATRIX)
{
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
this->alloc_rsb_mtx_from_coo_copy(IM,JM,SM.data(),nrA,ncA,false,eflags);
}
void alloc_rsb_mtx_from_csc_copy(const SparseMatrix &sm)
{
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
const octave_idx_type nrA = sm.rows ();
const octave_idx_type ncA = sm.cols ();
const rsb_nnz_idx_t nnzA = sm.nnz();
rsb_err_t errval = RSB_ERR_NO_ERROR;
rsb_flags_t eflags = RSBOI_RF;
const rsb_type_t typecode = RSB_NUMERICAL_TYPE_DOUBLE;
#if RSBOI_WANT_SYMMETRY
if(sm.issymmetric())
RSB_DO_FLAG_ADD(eflags,RSB_FLAG_LOWER_SYMMETRIC|RSB_FLAG_TRIANGULAR);
// It would be wise to have an isdiag() check and remove symmetry in that case.
#endif
if(!(this->mtxAp = rsboi_mtx_alloc_from_csc_const(sm.data(),sm.ridx(),sm.cidx(), nnzA,typecode, nrA, ncA, RSBOI_RB, RSBOI_CB, eflags,&errval)))
RSBOI_ERRMSG(RSBOI_0_ALLERRMSG);
RSBOI_PERROR(errval);
if(!this->mtxAp)
RSBOI_0_ERROR(RSBOI_0_ALLERRMSG);
}
octave_sparsersb_mtx (const Matrix &m) : octave_sparse_matrix (RSBIO_DEFAULT_CORE_MATRIX)
{
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
SparseMatrix sm(m);
this->alloc_rsb_mtx_from_csc_copy(sm);
}
#if RSBOI_WANT_DOUBLE_COMPLEX
void alloc_rsb_mtx_from_csc_copy(const SparseComplexMatrix &sm)
{
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
const octave_idx_type nrA = sm.rows ();
const octave_idx_type ncA = sm.cols ();
const octave_idx_type nnzA = sm.nnz ();
rsb_err_t errval = RSB_ERR_NO_ERROR;
rsb_flags_t eflags = RSBOI_RF;
const rsb_type_t typecode = RSB_NUMERICAL_TYPE_DOUBLE_COMPLEX;
#if RSBOI_WANT_SYMMETRY
if(sm.ishermitian())
{
// It would be nice to have SparseComplexMatrix::isdiag() or SparseComplexMatrix::issymmetric() at our disposal here..
bool is_sym = false;
if(sm.issquare() && sm.nnz() <= sm.rows())
{
SparseComplexMatrix d = sm.diag();
if(!d.all_elements_are_real() && d.nnz() == sm.nnz())
is_sym = true; // diagoanl matrix with non-real on diagonal
}
if(is_sym)
RSB_DO_FLAG_ADD(eflags,RSB_FLAG_LOWER_SYMMETRIC|RSB_FLAG_TRIANGULAR);
else
RSB_DO_FLAG_ADD(eflags,RSB_FLAG_LOWER_HERMITIAN|RSB_FLAG_TRIANGULAR);
}
#endif
if(!(this->mtxAp = rsboi_mtx_alloc_from_csc_const(sm.data(),sm.ridx(),sm.cidx(), nnzA,typecode, nrA, ncA, RSBOI_RB, RSBOI_CB, eflags,&errval)))
RSBOI_ERRMSG(RSBOI_0_ALLERRMSG);
RSBOI_PERROR(errval);
if(!this->mtxAp)
RSBOI_0_ERROR(RSBOI_0_ALLERRMSG);
}
octave_sparsersb_mtx (const ComplexMatrix &cm) : octave_sparse_matrix (RSBIO_DEFAULT_CORE_MATRIX)
{
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
this->alloc_rsb_mtx_from_csc_copy(SparseComplexMatrix(cm));
}
octave_sparsersb_mtx (const SparseComplexMatrix &sm, rsb_type_t typecode = RSBOI_TYPECODE) : octave_sparse_matrix (RSBIO_DEFAULT_CORE_MATRIX)
{
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
this->alloc_rsb_mtx_from_csc_copy(sm);
}
#endif
octave_sparsersb_mtx (const SparseMatrix &sm, rsb_type_t typecode = RSBOI_TYPECODE) : octave_sparse_matrix (RSBIO_DEFAULT_CORE_MATRIX)
{
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
this->alloc_rsb_mtx_from_csc_copy(sm);
}
octave_sparsersb_mtx (struct rsb_mtx_t *mtxBp) : octave_sparse_matrix (RSBIO_DEFAULT_CORE_MATRIX), mtxAp(mtxBp)
{
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
if(!this->mtxAp)
RSBOI_0_ERROR(RSBOI_0_ALLERRMSG);
}
octave_sparsersb_mtx (const octave_sparsersb_mtx& T) :
octave_sparse_matrix (T) {
rsb_err_t errval = RSB_ERR_NO_ERROR;
struct rsb_mtx_t *mtxBp = RSBOI_NULL;
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
errval = rsb_mtx_clone(&mtxBp,RSB_NUMERICAL_TYPE_SAME_TYPE,RSB_TRANSPOSITION_N,RSBOI_NULL,T.mtxAp,RSBOI_EXPF);
RSBOI_PERROR(errval);
this->mtxAp = mtxBp;
};
octave_idx_type length (void) const { return this->nnz(); }
octave_idx_type nelem (void) const { return this->nnz(); }
octave_idx_type numel (void) const { RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG); return this->nnz(); }
octave_idx_type nnz (void) const { rsb_nnz_idx_t nnzA = 0; RSBOI_0_EMCHECK(this->mtxAp); rsb_mtx_get_info(this->mtxAp,RSB_MIF_MATRIX_NNZ__TO__RSB_NNZ_INDEX_T,&nnzA); return nnzA;}
dim_vector dims (void) const { RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG); return (dim_vector(this->rows(),this->cols())); }
octave_idx_type dim1 (void) const { return this->rows(); }
octave_idx_type dim2 (void) const { return this->cols(); }
octave_idx_type rows (void) const { rsb_coo_idx_t Anr=0; RSBOI_0_EMCHECK(this->mtxAp); rsb_mtx_get_info(this->mtxAp,RSB_MIF_MATRIX_ROWS__TO__RSB_COO_INDEX_T,&Anr); return Anr;}
octave_idx_type cols (void) const { rsb_coo_idx_t Anc=0; RSBOI_0_EMCHECK(this->mtxAp); rsb_mtx_get_info(this->mtxAp,RSB_MIF_MATRIX_COLS__TO__RSB_COO_INDEX_T,&Anc); return Anc;}
rsb_flags_t rsbflags(void) const { rsb_flags_t Aflags=0; RSBOI_0_EMCHECK(this->mtxAp); rsb_mtx_get_info(this->mtxAp,RSB_MIF_MATRIX_FLAGS__TO__RSB_FLAGS_T,&Aflags); return Aflags;}
rsb_type_t rsbtype(void) const { rsb_type_t Atype=0; RSBOI_0_EMCHECK(this->mtxAp); rsb_mtx_get_info(this->mtxAp,RSB_MIF_MATRIX_TYPECODE__TO__RSB_TYPE_T,&Atype); return Atype;}
//octave_idx_type rows (void) const { RSBOI_0_EMCHECK(this->mtxAp);return this->mtxAp->nrA; }
//octave_idx_type cols (void) const { RSBOI_0_EMCHECK(this->mtxAp);return this->mtxAp->ncA; }
octave_idx_type columns (void) const { return this->cols(); }
octave_idx_type nzmax (void) const { return this->nnz(); }
octave_idx_type capacity (void) const { return this->nnz(); }
size_t byte_size (void) const { RSBOI_0_EMCHECK(this->mtxAp);size_t so=0;rsb_mtx_get_info(this->mtxAp,RSB_MIF_TOTAL_SIZE__TO__SIZE_T,&so);return so; }
virtual ~octave_sparsersb_mtx (void)
{
RSBOI_DEBUG_NOTICE("destroying librsb matrix %p\n",this->mtxAp);
RSBOI_DESTROY(this->mtxAp);
}
virtual octave_base_value *clone (void) const
{
RSBOI_DEBUG_NOTICE("cloning librsb matrix %p\n",this->mtxAp);
return new octave_sparsersb_mtx (*this);
}
virtual octave_base_value *empty_clone (void) const
{
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
return new octave_sparsersb_mtx ();
}
virtual SparseMatrix sparse_matrix_value(bool = false)const
{
struct rsboi_coo_matrix_t rcm;
rsb_err_t errval = RSB_ERR_NO_ERROR;
rsb_nnz_idx_t nzi;
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
RSBOI_0_EMCHECK(this->mtxAp);
const rsb_nnz_idx_t nnzA = this->nnz();
#if RSBOI_WANT_EXPAND_SYMM
const rsb_nnz_idx_t e = (is__symmetric() || is__hermitian()) ? 2 : 1;
rsb_nnz_idx_t nze = 0;
#else
const rsb_nnz_idx_t e = 1;
const rsb_nnz_idx_t nze = 0;
#endif
Array IA( dim_vector(1,nnzA*e) );
Array JA( dim_vector(1,nnzA*e) );
Array VA( dim_vector(1,nnzA*e) );
rcm.IA = (octave_idx_type*)IA.data();
rcm.JA = (octave_idx_type*)JA.data();
if(!this->is_real_type())
{
Array VAC( dim_vector(1,nnzA*e) );
RSBOI_T* VAp = ((RSBOI_T*)VA.data());
rcm.VA = (RSBOI_T*)VAC.data();
errval = rsboi_mtx_get_coo(this->mtxAp,rcm.VA,rcm.IA,rcm.JA,RSB_FLAG_C_INDICES_INTERFACE);
for(nzi=0;nzimtxAp,rcm.VA,rcm.IA,rcm.JA,RSB_FLAG_C_INDICES_INTERFACE);
}
RSBOI_PERROR(errval);
#if RSBOI_WANT_EXPAND_SYMM
if(e==2)
{
for(nzi=0;nzirows();
rcm.ncA = this->cols();
return SparseMatrix(VA,IA,JA,rcm.nrA,rcm.ncA);
}
virtual Matrix matrix_value(bool = false)const
{
RSBOI_FIXME("inefficient!");
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
const Matrix cm = this->sparse_matrix_value().matrix_value();
return cm;
}
virtual Matrix full_sym_real_value(void)const
{
// Conversion to full, with symmetry expansion.
RSBOI_FIXME("inefficient (see transpose)!");
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
const octave_idx_type rn = this->rows(), cn = this->cols();
Matrix v2(rn,cn,RSBOI_ZERO);
rsb_err_t errval = RSB_ERR_NO_ERROR;
errval |= rsb_mtx_add_to_dense(&rsboi_pone,this->mtxAp,rn,rn,cn,RSB_BOOL_TRUE,(RSBOI_T*)v2.data());
rsboi_error(errval);
for(int i = 0; imtxAp,rn,rn,cn,RSB_BOOL_TRUE,(RSBOI_T*)v2.data());
if(RSBOI_SOME_ERROR(errval))
RSBOI_0_ERROR(RSBOI_0_NOCOERRMSG);
return v2;
}
virtual ComplexMatrix full_sym_cplx_value(void)const
{
// Conversion to full, with symmetry expansion.
RSBOI_FIXME("inefficient (see transpose)!");
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
const octave_idx_type rn = this->rows(), cn = this->cols();
ComplexMatrix v2(rn,cn,RSBOI_ZERO);
rsb_err_t errval = RSB_ERR_NO_ERROR;
errval |= rsb_mtx_add_to_dense(&rsboi_pone,this->mtxAp,rn,rn,cn,RSB_BOOL_TRUE,(RSBOI_T*)v2.data());
rsboi_error(errval);
for(int i = 0; imtxAp,rn,rn,cn,RSB_BOOL_TRUE,(RSBOI_T*)v2.data());
if(RSBOI_SOME_ERROR(errval))
RSBOI_0_ERROR(RSBOI_0_NOCOERRMSG);
return v2;
}
virtual octave_value full_value(void)const
{
RSBOI_FIXME("inefficient!");
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
if(is__symmetric() || is__hermitian())
{
if(this->is_real_type())
return this->full_sym_real_value();
else
return this->full_sym_cplx_value();
}
else
{
if(this->is_real_type())
return this->matrix_value();
else
return this->complex_matrix_value();
}
}
#if RSBOI_WANT_DOUBLE_COMPLEX
virtual ComplexMatrix complex_matrix_value(bool = false)const
{
RSBOI_FIXME("inefficient!");
const octave_sparse_complex_matrix ocm = this->sparse_complex_matrix_value();
const ComplexMatrix cm = ocm.complex_matrix_value();
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
return cm;
}
virtual SparseComplexMatrix sparse_complex_matrix_value(bool = false)const
{
struct rsboi_coo_matrix_t rcm;
rsb_err_t errval = RSB_ERR_NO_ERROR;
rsb_nnz_idx_t nzi;
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
RSBOI_0_EMCHECK(this->mtxAp);
const rsb_nnz_idx_t nnzA = this->nnz();
#if RSBOI_WANT_EXPAND_SYMM
const rsb_nnz_idx_t e = (is__symmetric() || is__hermitian()) ? 2 : 1;
rsb_nnz_idx_t nze = 0;
#else
const rsb_nnz_idx_t e = 1;
const rsb_nnz_idx_t nze = 0;
#endif
Array IA( dim_vector(1,nnzA*e) );
Array JA( dim_vector(1,nnzA*e) );
Array VA( dim_vector(1,nnzA*e) );
RSBOI_T* VAp = ((RSBOI_T*)VA.data());
rcm.IA = (octave_idx_type*)IA.data();
rcm.JA = (octave_idx_type*)JA.data();
rcm.VA = VAp;
errval = rsboi_mtx_get_coo(this->mtxAp,rcm.VA,rcm.IA,rcm.JA,RSB_FLAG_C_INDICES_INTERFACE);
RSBOI_PERROR(errval);
if(this->is_real_type())
for(nzi=0;nziis_real_type())
rcm.VA[nnzA+nze]=rcm.VA[nzi];
else
{
if(is__hermitian())
((Complex*)rcm.VA)[nnzA+nze]=conj(((Complex*)rcm.VA)[nzi]);
else
((Complex*)rcm.VA)[nnzA+nze]= (((Complex*)rcm.VA)[nzi]);
}
rcm.JA [nnzA+nze] = rcm.IA[nzi];
rcm.IA [nnzA+nze] = rcm.JA[nzi];
nze++;
}
}
VA.resize1(nnzA + nze);
IA.resize1(nnzA + nze);
JA.resize1(nnzA + nze);
#endif
rcm.nrA = this->rows();
rcm.ncA = this->cols();
return SparseComplexMatrix(VA,IA,JA,rcm.nrA,rcm.ncA);
}
#endif /* RSBOI_WANT_DOUBLE_COMPLEX */
//octave_value::assign_op, int, int, octave_value (&)(const octave_base_value&, const octave_base_value&)
//octave_value::assign_op, int, int, octave_value (&)
//octave_value assign_op (const octave_base_value&, const octave_base_value&) {}
// octave_value::assign_op octave_value::binary_op_to_assign_op (binary_op op) { assign_op retval; return retval; }
#if RSBOI_WANT_SUBSREF
octave_value do_index_op_subsparse(const idx_vector & i) const
{
// Convert to Octave's sparse and reconvert.
// check with
// octave --eval "nnz(sparse((toeplitz(sparsersb([0,1,2,3]))-toeplitz(sparse([0,1,2,3])))))==0"
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
octave_value retval;
if(is_real_type())
retval = new octave_sparsersb_mtx ( SparseMatrix(sparse_matrix_value().index(i)) );
else
retval = new octave_sparsersb_mtx ( SparseComplexMatrix(sparse_complex_matrix_value().index(i)) );
return retval;
}
octave_value do_index_op(const octave_value_list& idx, bool resize_ok = false)
{
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
rsb_err_t errval = RSB_ERR_NO_ERROR;
octave_value retval;
//if (type.length () == 1)
{
const octave_idx_type n_idx = idx.length ();
if (n_idx == 0 )
retval = clone();
else
if (n_idx == 1 )
{
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
#if RSBOI_WANT_SPMTX_SUBSREF
const octave_value_list ovl = idx;
if(ovl(0).issparse())
{
SparseBoolMatrix sm = SparseBoolMatrix (ovl(0).sparse_matrix_value());
const octave_idx_type * ir = sm.mex_get_ir ();
const octave_idx_type * jc = sm.mex_get_jc ();
const octave_idx_type nr = sm.rows ();
const octave_idx_type nc = sm.cols ();
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
for (octave_idx_type j = 0; j < nc; j++)
{
std::cout << jc[j] << ".." << jc[j+1] << "\n";
for (octave_idx_type i = jc[j]; i < jc[j+1]; i++)
{
std::cout << ir[i] << " " << j << "\n";
}
}
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
retval = octave_value(this->clone()); // matches but .. heavy ?!
}
else
#endif /* RSBOI_WANT_SPMTX_SUBSREF */
{
const idx_vector i = idx (0).index_vector ();
#if defined(RSB_LIBRSB_VER) && (RSB_LIBRSB_VER< 10100)
const octave_idx_type ii = i(0);
RSBOI_ERRMSG("You are using a very old and limited version of librsb: no support for this kind of access\n");
#elif defined(RSB_LIBRSB_VER) && (RSB_LIBRSB_VER>=10100)
#if RSBOI_WANT_RESHAPE
if( i.is_colon() )
{
retval = this->reshape(dim_vector (this->rows()*this->cols(),1));
goto err;
}
if( i.is_range() )
{
if(is_real_type())
retval = new octave_sparsersb_mtx ( SparseMatrix(sparse_matrix_value().index(i)) );
else
retval = new octave_sparsersb_mtx ( SparseComplexMatrix(sparse_complex_matrix_value().index(i)) );
goto err;
}
#endif /* RSBOI_WANT_RESHAPE */
RSBOI_DEBUG_NOTICE("i.length () = %d\n",i.length());
if(i.length()>1)
{
retval = do_index_op_subsparse(i);
goto err;
}
#if RSBOI_WANT_OS_1D_IDX_ACCESS
const rsb_coo_idx_t jj = (i(0) / rows());
const rsb_coo_idx_t ii = (i(0) % rows());
RSBOI_DEBUG_NOTICE("get_element (%d,%d)\n",ii,ii);
if(is_real_type())
{
RSBOI_T rv;
//errval = rsb_do_get_nnz_element(this->mtxAp,&rv,RSBOI_NULL,RSBOI_NULL,ii);
errval = rsb_mtx_get_values(this->mtxAp,&rv,&ii,&jj,1,RSBOI_NF);
retval = rv;
}
else
{
Complex rv { RSBOI_ZERO, RSBOI_ZERO };
//errval = rsb_do_get_nnz_element(this->mtxAp,&rv,RSBOI_NULL,RSBOI_NULL,ii);
errval = rsb_mtx_get_values(this->mtxAp,&rv,&ii,&jj,1,RSBOI_NF);
retval = rv;
}
if(RSBOI_SOME_ERROR(errval))
{
if(ii>=this->rows() || ii<0 || jj>=this->cols() || jj<0)
error ("trying accessing element %ld,%ld: index out of bounds !",(long int)ii+1,(long int)jj+1);
else
; /* likely a zero */
}
#endif /* RSBOI_WANT_OS_1D_IDX_ACCESS */
#endif
}
}
else
if (n_idx == 2 )
{
RSBOI_TRY_BLK
{
const idx_vector i = idx (0).index_vector ();
RSBOI_IF_NERR_STATE()
{
#if RSBOI_WANT_SYMMETRY
/* Will expand (:,:) but won't access empty-triangle nonzeros. */
#endif
#if RSBOI_WANT_RESHAPE
if( idx(0).index_vector ().is_colon() || idx(1).index_vector ().is_colon() )
{
if(is_real_type())
{
octave_sparse_matrix osm (sparse_matrix_value());
retval = osm.do_index_op(idx);
}
else
{
octave_sparse_complex_matrix osm (sparse_complex_matrix_value());
retval = osm.do_index_op(idx);
}
goto err;
}
#endif /* RSBOI_WANT_RESHAPE */
if(is_real_type())
{
const idx_vector j = idx (1).index_vector ();
RSBOI_T rv;
rsb_coo_idx_t ii = -1, jj = -1;
ii = i(0); jj = j(0);
RSBOI_DEBUG_NOTICE("get_elements (%d %d)\n",ii,jj);
errval = rsb_mtx_get_values(this->mtxAp,&rv,&ii,&jj,1,RSBOI_NF);
retval = rv;
RSBOI_IF_NERR(;)
}
else
{
const idx_vector j = idx (1).index_vector ();
Complex rv;
rsb_coo_idx_t ii =-1, jj = -1;
ii = i(0); jj = j(0);
RSBOI_DEBUG_NOTICE("get_elements (%d %d) complex\n",ii,jj);
errval = rsb_mtx_get_values(this->mtxAp,&rv,&ii,&jj,1,RSBOI_NF);
retval = rv;
RSBOI_IF_NERR(;)
}
}
}
RSBOI_CATCH_BLK
}
}
err:
return retval;
}
#if RSBOI_WANT_RESHAPE
octave_value reshape (const dim_vector& new_dims) const
{
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
RSBOI_WARN(RSBOI_0_UNFFEMSG);
octave_value retval;
if(is_real_type())
retval = new octave_sparsersb_mtx ( sparse_matrix_value().reshape(new_dims) );
else
retval = new octave_sparsersb_mtx ( sparse_complex_matrix_value().reshape(new_dims) );
return retval;
}
#endif /* RSBOI_WANT_RESHAPE */
octave_value subsref (const std::string &type, const std::list& idx)
{
octave_value retval;
const int skip = 1;
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
RSBOI_TRY_BLK
{
switch (type[0])
{
case '(':
retval = do_index_op(idx.front());
break;
case '.':
RSBOI_DEBUG_NOTICE("UNFINISHED\n");
break;
case '{':
error ("%s cannot be indexed with %c", type_name().c_str(), type[0]);
break;
default:
panic_impossible ();
}
}
RSBOI_CATCH_BLK
RSBOI_IF_NERR(
retval = retval.next_subsref (type, idx, skip);
)
err:
return retval;
} /* subsref */
#else /* RSBOI_WANT_SUBSREF */
/* FIXME: need an alternative, bogus implementation of subsref */
#endif /* RSBOI_WANT_SUBSREF */
octave_value_list dotref (const octave_value_list& idx)
{
octave_value_list retval;
const std::string nm = idx(0).string_value ();
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
/* if (nm == "type")
if (isupper ())
retval = octave_value ("Upper");
else
retval = octave_value ("Lower");
else*/
error ("%s can indexed with .%s",
type_name().c_str(), nm.c_str());
return retval;
}
bool is_map (void) const { return true; }
bool issparse(void) const { RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);return true; }
bool is_real_type (void) const { RSBOI_0_EMCHECK(this->mtxAp); RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);return this->rsbtype()==RSB_NUMERICAL_TYPE_DOUBLE?true:false; }
bool is_diagonal (void) const { RSBOI_0_EMCHECK(this->mtxAp); RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);return RSB_DO_FLAG_HAS(this->rsbflags(),RSB_FLAG_DIAGONAL)?true:false; }/* FIXME: new: not sure whether this is ever called */
bool is_lower_triangular (void) const { RSBOI_0_EMCHECK(this->mtxAp); RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);return RSB_DO_FLAG_HAS(this->rsbflags(),RSB_FLAG_LOWER_TRIANGULAR)?true:false; }/* FIXME: new: not sure whether this is ever called */
bool is_upper_triangular (void) const { RSBOI_0_EMCHECK(this->mtxAp); RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);return RSB_DO_FLAG_HAS(this->rsbflags(),RSB_FLAG_UPPER_TRIANGULAR)?true:false; }/* FIXME: new: not sure whether this is ever called */
bool iscomplex (void) const { RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG); return !is_real_type(); }
bool isreal (void) const { RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG); return is_real_type(); }
bool is_bool_type (void) const { return false; }
bool isinteger (void) const { return false; }
bool is_square (void) const { return this->rows()==this->cols(); }
bool is_empty (void) const { return false; }
bool is__symmetric (void) const { if(RSB_DO_FLAG_HAS(this->rsbflags(),RSB_FLAG_SYMMETRIC))return true; return false; }
bool is__hermitian (void) const { if(RSB_DO_FLAG_HAS(this->rsbflags(),RSB_FLAG_HERMITIAN))return true; return false; }
std::string get_symmetry (void) const { return (RSB_DO_FLAG_HAS(this->rsbflags(),RSB_FLAG_SYMMETRIC)?"S": (RSB_DO_FLAG_HAS(this->rsbflags(),RSB_FLAG_HERMITIAN)?"H":"U")); }
bool is__triangular (void) const
{
rsb_bool_t retval = RSB_BOOL_FALSE;
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
if(!this->mtxAp)
retval = RSB_BOOL_FALSE;
else
#if RSBOI_WANT_SYMMETRY
if( (!RSB_DO_FLAG_HAS(this->rsbflags(),RSB_FLAG_SYMMETRIC)) || RSB_DO_FLAG_HAS(this->rsbflags(),RSB_FLAG_DIAGONAL) )
#endif
retval = RSB_DO_FLAG_HAS(this->rsbflags(),RSB_FLAG_TRIANGULAR)?RSB_BOOL_TRUE:RSB_BOOL_FALSE;
return retval;
}
// int is_struct (void) const { return false; }
bool save_ascii (std::ostream& os)
{
error ("%s", "save_ascii() " RSBOI_0_NIYERRMSG);
return false;
}
bool load_ascii (std::istream& is)
{
error ("%s", "load_ascii() " RSBOI_0_NIYERRMSG);
return false;
}
bool save_binary (std::ostream& os, bool& save_as_floats)
{
error ("%s", "save_binary() " RSBOI_0_NIYERRMSG);
return false;
}
#if RSBOI_USE_PATCH_OCT44
bool load_binary (std::istream& is, bool swap, octave::mach_info::float_format fmt)
#else /* RSBOI_USE_PATCH_OCT44 */
// would break on octave6
bool load_binary (std::istream& is, bool swap, oct_mach_info::float_format fmt)
#endif /* RSBOI_USE_PATCH_OCT44 */
{
error ("%s", "load_binary() " RSBOI_0_NIYERRMSG);
return false;
}
octave_value subsasgn (const std::string& type, const std::list& idx, const octave_value& rhs)
{
octave_value retval;
#if 0
rsb_err_t errval = RSB_ERR_NO_ERROR;
#endif
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
switch (type[0])
{
case '(':
{
if (type.length () == 1)
{
//retval = numeric_assign (type, idx, rhs);
//RSBOI_DEBUG_NOTICE("UNFINISHED\n");
const octave_idx_type n_idx = idx.front().length ();
switch (n_idx)
{
case 0:
retval = matrix;
RSBOI_DEBUG_NOTICE("UNFINISHED\n");
break;
case 1:
{
#if RSBOI_WANT_SPMTX_SUBSASGN
{
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
const octave_value_list ovl = idx.front();
if(ovl(0).issparse() && ovl(0).isreal() && rhs.isreal())
{
const SparseBoolMatrix sm = SparseBoolMatrix (ovl(0).sparse_matrix_value());
const octave_idx_type * ir = sm.mex_get_ir ();
const octave_idx_type * jc = sm.mex_get_jc ();
const octave_idx_type nc = sm.cols ();
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
const RSBOI_T rv = rhs.double_value();
for (octave_idx_type j = 0; j < nc; j++)
{
for (octave_idx_type i = jc[j]; i < jc[j+1]; i++)
{
rsb_err_t errval = RSB_ERR_NO_ERROR;
const rsb_coo_idx_t ii = static_cast(ir[i]); // Note: potentioally dangerous casts, if types are different and matrix huge.
const rsb_coo_idx_t jj = static_cast(j);
errval = rsb_mtx_set_values(this->mtxAp,&rv,&ii,&jj,1,RSBOI_NF);
if(RSBOI_SOME_ERROR(errval))
error ("%s", "FIXME: Incomplete: Can only accept already existing indices.");
}
}
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
retval = octave_value(this->clone());
}
else
error ("%s", "FIXME: Incomplete: no complex sparse-sparse update for the moment.");
}
#else /* RSBOI_WANT_SPMTX_SUBSASGN */
RSBOI_DEBUG_NOTICE("UNFINISHED\n");
idx_vector i = idx.front()(0).index_vector ();
// ...
RSBOI_IF_NERR(
;//retval = octave_value (matrix.index (i, resize_ok));
)
#endif /* RSBOI_WANT_SPMTX_SUBSASGN */
}
break;
default:
{
if (n_idx == 2 )
{
idx_vector i = idx.front() (0).index_vector ();
idx_vector j = idx.front() (1).index_vector ();
#if 0
// for op_el_div_eq and op_el_mul_eq
std :: cout << "ic2 " << i.is_colon() << "\n" ;
if( i.is_colon() && !j.is_colon() )
{
ComplexMatrix cm = rhs.complex_matrix_value();
std :: cout << " : , .\n";
errval=rsb_mtx_upd_values(this->mtxAp,RSB_ELOPF_SCALE_ROWS,cm.data());
}
if(!i.is_colon() && j.is_colon() )
{
std :: cout << " . , :\n";
}
if( i.is_colon() && j.is_colon() )
{
std :: cout << " : , :\n";
}
#endif
RSBOI_IF_NERR_STATE()
{
if(is_real_type())
{
rsb_err_t errval = RSB_ERR_NO_ERROR;
rsb_coo_idx_t ii = -1, jj = -1;
RSBOI_T rv = rhs.double_value();
ii = i(0); jj = j(0);
RSBOI_DEBUG_NOTICE("update elements (%d %d)\n",ii,jj);
#if RSBOI_WANT_SYMMETRY
/* FIXME: and now ? */
#endif
errval = rsb_mtx_set_values(this->mtxAp,&rv,&ii,&jj,1,RSBOI_NF);
RSBOI_PERROR(errval);
/* FIXME: I am unsure, here */
//retval=rhs.double_value(); // this does not match octavej
//retval=octave_value(this);
retval = octave_value(this->clone()); // matches but .. heavy ?!
RSBOI_IF_NERR(
;//retval = octave_value (matrix.index (i, j, resize_ok));
)
}
else
{
rsb_err_t errval = RSB_ERR_NO_ERROR;
rsb_coo_idx_t ii = -1, jj = -1;
Complex rv = rhs.complex_value();
ii = i(0); jj = j(0);
RSBOI_DEBUG_NOTICE("update elements (%d %d) complex\n",ii,jj);
#if RSBOI_WANT_SYMMETRY
/* FIXME: and now ? */
#endif
errval = rsb_mtx_set_values(this->mtxAp,&rv,&ii,&jj,1,RSBOI_NF);
RSBOI_PERROR(errval);
/* FIXME: I am unsure, here */
//retval=rhs.double_value(); // this does not match octavej
//retval=octave_value(this);
retval = octave_value(this->clone()); // matches but .. heavy ?!
RSBOI_IF_NERR(
;//retval = octave_value (matrix.index (i, j, resize_ok));
)
}
// class octave_map;
// retval = octave_map();
// RSBOI_DEBUG_NOTICE("UNFINISHED: set %d %d <- %lg\n",ii,jj,rhs.double_value());
}
}
}
break;
}
}
else if (type.length () == 2)
{
std::list::const_iterator p =
idx.begin ();
octave_value_list key_idx = *++p;
std::string key = key_idx(0).string_value ();
RSBOI_DEBUG_NOTICE("UNFINISHED\n");
if (key == "type")
error ("%s", "use 'sparse_rsb' to set type");
else
error ("%s can indexed with .%s",
type_name().c_str(), key.c_str());
}
else
error ("in indexed assignment of %s, illegal assignment",
type_name().c_str ());
}
break;
case '.':
{
octave_value_list key_idx = idx.front ();
std::string key = key_idx(0).string_value ();
RSBOI_DEBUG_NOTICE("UNFINISHED\n");
if (key == "type")
error ("%s", "use 'sparse_rsb' to set matrix type");
else
error ("%s can indexed with .%s",
type_name().c_str(), key.c_str());
}
break;
case '{':
RSBOI_DEBUG_NOTICE("UNFINISHED\n");
error ("%s cannot be indexed with %c",
type_name().c_str (), type[0]);
break;
default:
panic_impossible ();
}
return retval;
} /* subsasgn */
octave_base_value *try_narrowing_conversion (void)
{
octave_base_value *retval = 0;
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
RSBOI_WARN(RSBOI_O_MISSIMPERRMSG);
return retval;
}
/*
type_conv_fcn numeric_conversion_function (void) const
{
}
*/
type_conv_info numeric_conversion_function (void) const
{
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
return default_numeric_conversion_function;
}
std::string get_info_string()
{
char ss[RSBOI_INFOBUF];
rsb_mtx_get_info_str(this->mtxAp,"RSB_MIF_MATRIX_INFO__TO__CHAR_P",ss,RSBOI_INFOBUF);
return ss;
}
#if defined(OCTAVE_MAJOR_VERSION) && (OCTAVE_MAJOR_VERSION>=4)
void print (std::ostream& os, bool pr_as_read_syntax = false)
#else /* OCTAVE_MAJOR_VERSION */
void print (std::ostream& os, bool pr_as_read_syntax = false) const
#endif /* OCTAVE_MAJOR_VERSION */
{
RSBOI_FIXME("what to do with pr_as_read_syntax ?");
struct rsboi_coo_matrix_t rcm;
rsb_err_t errval = RSB_ERR_NO_ERROR;
rsb_nnz_idx_t nnzA = this->nnz(),nzi;
bool ic = this->is_real_type()?false:true;
Array IA( dim_vector(1,nnzA) );
Array JA( dim_vector(1,nnzA) );
Array VA( dim_vector(1,(ic?2:1)*nnzA) );
std::string c = ic ? "complex" : "real";
#if RSBOI_WANT_PRINT_DETAIL
char ss[RSBOI_INFOBUF];
rsb_mtx_get_info_str(this->mtxAp,"RSB_MIF_MATRIX_INFO__TO__CHAR_P",ss,RSBOI_INFOBUF);
#endif
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
rcm.VA = (RSBOI_T*)VA.data();
rcm.IA = (octave_idx_type*)IA.data();
rcm.JA = (octave_idx_type*)JA.data();
#if RSBOI_WANT_SYMMETRY
/* No expansion: we merely mention symmetry. */
#endif
if(! (rcm.VA && rcm.IA && rcm.JA) )
// NOTE: might rather want an error () here.
nnzA = 0;
else
errval = rsboi_mtx_get_coo(this->mtxAp,rcm.VA,rcm.IA,rcm.JA,RSB_FLAG_C_INDICES_INTERFACE);
if(RSBOI_SOME_ERROR(errval))
{
RSBOI_PERROR(errval);
return;
}
rcm.nrA = this->rows();
rcm.ncA = this->cols();
double pct = 100.0*(((RSBOI_T)nnzA)/((RSBOI_T)rcm.nrA))/rcm.ncA;
octave_stdout<rsbflags(),RSB_FLAG_HERMITIAN)?"H":"U"))
// NOTE: need a mechanism to print out these flags from rsb itself
#endif
;
#if RSBOI_WANT_PRINT_PCT_OCTAVE_STYLE
/* straight from Octave's src/ov-base-sparse.cc */
if (nnzA > 0)
{
int prec = 2;
if (pct == 100) prec = 3; else { if (pct > 99.9) prec = 4; else if (pct > 99) prec = 3; if (pct > 99.99) pct = 99.99; }
octave_stdout << " [" << std::setprecision (prec) << pct << "%]";
}
#else
octave_stdout << " ["< "<<((RSBOI_T*)rcm.VA)[2*nzi+0]<<" + " <<((RSBOI_T*)rcm.VA)[2*nzi+1]<<"i\n";
else
for(nzi=0;nzi "<<((RSBOI_T*)rcm.VA)[nzi]<<"\n";
newline(os);
RSBIO_NULL_STATEMENT_FOR_COMPILER_HAPPINESS
}
octave_value diag (octave_idx_type k) const
{
octave_value retval;
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
RSBOI_0_EMCHECK(this->mtxAp);
if(k!=0)
{
error ("%s", "only main diagonal extraction is supported !");
}
if(this->is_square())
{
rsb_err_t errval = RSB_ERR_NO_ERROR;
//RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
if(this->is_real_type())
{
Matrix DA(this->rows(),1);
errval = rsb_mtx_get_vec(this->mtxAp,(RSBOI_T*)DA.data(),RSB_EXTF_DIAG);
retval = (DA);
}
else
{
ComplexMatrix DA(this->rows(),1);
errval = rsb_mtx_get_vec(this->mtxAp,(RSBOI_T*)DA.data(),RSB_EXTF_DIAG);
retval = (DA);
}
RSBOI_PERROR(errval);
}
else
{
error ("%s", RSBOI_0_NSQERRMSG);
}
return retval;
}
octave_value rsboi_get_scaled_copy_inv(const RSBOI_T alpha)const
{
const RSBOI_T one = 1.0;
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
return rsboi_get_scaled_copy(one/alpha);
}
#if RSBOI_WANT_DOUBLE_COMPLEX
octave_value rsboi_get_scaled_copy_inv(const Complex alpha)const
{
const Complex one = 1.0;
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
return rsboi_get_scaled_copy(one/alpha);
}
#endif /* RSBOI_WANT_DOUBLE_COMPLEX */
octave_value rsboi_get_scaled_copy(const RSBOI_T alpha, rsb_trans_t transA=RSB_TRANSPOSITION_N)const
{
rsb_err_t errval = RSB_ERR_NO_ERROR;
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
struct rsb_mtx_t *mtxBp = RSBOI_NULL;
if(is_real_type())
{
errval = rsb_mtx_clone(&mtxBp,RSB_NUMERICAL_TYPE_SAME_TYPE,transA, &alpha,this->mtxAp,RSBOI_EXPF);
}
else
#if RSBOI_WANT_DOUBLE_COMPLEX
{
Complex calpha;calpha+=alpha;
errval = rsb_mtx_clone(&mtxBp,RSB_NUMERICAL_TYPE_SAME_TYPE,transA,&calpha,this->mtxAp,RSBOI_EXPF);
}
#else /* RSBOI_WANT_DOUBLE_COMPLEX */
{RSBOI_0_ERROR(RSBOI_0_NOCOERRMSG);}
#endif /* RSBOI_WANT_DOUBLE_COMPLEX */
RSBOI_PERROR(errval);
return new octave_sparsersb_mtx( mtxBp );
}
#if RSBOI_WANT_DOUBLE_COMPLEX
octave_value rsboi_get_scaled_copy(const Complex alpha)const
{
rsb_err_t errval = RSB_ERR_NO_ERROR;
octave_sparsersb_mtx *m = RSBOI_NULL;
struct rsb_mtx_t *mtxBp = RSBOI_NULL;
if(is_real_type())
{
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
errval = rsb_mtx_clone(&mtxBp,RSB_NUMERICAL_TYPE_DOUBLE_COMPLEX,RSB_TRANSPOSITION_N,&rsboi_pone,this->mtxAp,RSBOI_EXPF);
rsboi_error(errval);
errval = rsb_mtx_upd_values(mtxBp,RSB_ELOPF_MUL,&alpha);
}
else
{
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
errval = rsb_mtx_clone(&mtxBp,RSB_NUMERICAL_TYPE_SAME_TYPE,RSB_TRANSPOSITION_N,&alpha,this->mtxAp,RSBOI_EXPF);
}
rsboi_error(errval);
m = new octave_sparsersb_mtx( mtxBp );
if(!m)
error ("%s", "copying matrix failed!");
return m;
}
#endif /* RSBOI_WANT_DOUBLE_COMPLEX */
octave_value scale_rows(const octave_matrix&v2, bool want_div=false)
{
rsb_err_t errval = RSB_ERR_NO_ERROR;
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
if(this->is_real_type())
{
const Matrix rm = want_div?1.0/v2.matrix_value ():v2.matrix_value ();
const octave_idx_type b_nc = rm.cols ();
const octave_idx_type b_nr = rm.rows ();
//octave_idx_type ldb = b_nr;
const octave_idx_type ldc = this->columns();
const octave_idx_type nrhs = b_nc;
Matrix retval(ldc,nrhs,RSBOI_ZERO);
if(this->rows()!=b_nr) { error ("%s", "matrices dimensions do not match!\n"); return Matrix(); }
errval = rsb_mtx_upd_values(this->mtxAp,RSB_ELOPF_SCALE_ROWS,rm.data());
RSBOI_PERROR(errval);
return retval;
}
else
{
const ComplexMatrix cm = want_div?1.0/v2.complex_matrix_value ():v2.complex_matrix_value ();
const octave_idx_type b_nc = cm.cols ();
const octave_idx_type b_nr = cm.rows ();
//const octave_idx_type ldb = b_nr;
const octave_idx_type ldc = this->columns();
const octave_idx_type nrhs = b_nc;
ComplexMatrix retval(ldc,nrhs,RSBOI_ZERO);
if(this->rows()!=b_nr) { error ("%s", "matrices dimensions do not match!\n"); return ComplexMatrix(); }
errval = rsb_mtx_upd_values(this->mtxAp,RSB_ELOPF_SCALE_ROWS,cm.data());
RSBOI_PERROR(errval);
return retval;
}
}
octave_value rsboi_spmm(const octave_matrix&v2)const
{
rsb_err_t errval = RSB_ERR_NO_ERROR;
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
rsb_trans_t transA = RSB_TRANSPOSITION_N;
if(this->is_real_type())
{
const Matrix b = v2.matrix_value ();
const octave_idx_type b_nc = b.cols ();
const octave_idx_type b_nr = b.rows ();
const octave_idx_type ldb = b_nr;
const octave_idx_type ldc = this->rows();
const octave_idx_type nrhs = b_nc;
Matrix retval(ldc,nrhs,RSBOI_ZERO);
if (this->columns()!=b_nr) { error ("%s", "matrix columns count does not match operand rows!\n"); return Matrix(); }
errval = rsb_spmm(transA,&rsboi_pone,this->mtxAp,nrhs,RSB_OI_DMTXORDER,(RSBOI_T*)b.data(),ldb,&rsboi_pone,(RSBOI_T*)retval.data(),ldc);
RSBOI_PERROR(errval);
return retval;
}
else
{
const ComplexMatrix b = v2.complex_matrix_value ();
const octave_idx_type b_nc = b.cols ();
const octave_idx_type b_nr = b.rows ();
const octave_idx_type ldb = b_nr;
const octave_idx_type ldc = this->rows();
const octave_idx_type nrhs = b_nc;
ComplexMatrix retval(ldc,nrhs,RSBOI_ZERO);
if(this->columns()!=b_nr) { error ("%s", "matrix columns count does not match operand rows!\n"); return Matrix(); }
errval = rsb_spmm(transA,&rsboi_pone,this->mtxAp,nrhs,RSB_OI_DMTXORDER,(RSBOI_T*)b.data(),ldb,&rsboi_pone,(RSBOI_T*)retval.data(),ldc);
RSBOI_PERROR(errval);
return retval;
}
}
octave_value rsboi_spmtm(const octave_matrix&v2)const
{
rsb_err_t errval = RSB_ERR_NO_ERROR;
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
rsb_trans_t transA = RSB_TRANSPOSITION_T;
if(this->is_real_type())
{
const Matrix b = v2.matrix_value ();
const octave_idx_type b_nc = b.cols ();
const octave_idx_type b_nr = b.rows ();
const octave_idx_type ldb = b_nr;
const octave_idx_type ldc = this->columns();
const octave_idx_type nrhs = b_nc;
Matrix retval(ldc,nrhs,RSBOI_ZERO);
if(this->rows() !=b_nr) { error ("%s", "matrix rows count does not match operand rows!\n"); return Matrix(); }
errval = rsb_spmm(transA,&rsboi_pone,this->mtxAp,nrhs,RSB_OI_DMTXORDER,(RSBOI_T*)b.data(),ldb,&rsboi_pone,(RSBOI_T*)retval.data(),ldc);
RSBOI_PERROR(errval);
return retval;
}
else
{
const ComplexMatrix b = v2.complex_matrix_value ();
const octave_idx_type b_nc = b.cols ();
const octave_idx_type b_nr = b.rows ();
const octave_idx_type ldb = b_nr;
const octave_idx_type ldc = this->columns();
const octave_idx_type nrhs = b_nc;
ComplexMatrix retval(ldc,nrhs,RSBOI_ZERO);
if(this->rows() !=b_nr) { error ("%s", "matrix rows count does not match operand rows!\n"); return Matrix(); }
errval = rsb_spmm(transA,&rsboi_pone,this->mtxAp,nrhs,RSB_OI_DMTXORDER,(RSBOI_T*)b.data(),ldb,&rsboi_pone,(RSBOI_T*)retval.data(),ldc);
RSBOI_PERROR(errval);
return retval;
}
}
octave_value rsboi_spmhm(const octave_matrix&v2)const
{
rsb_err_t errval = RSB_ERR_NO_ERROR;
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
rsb_trans_t transA = RSB_TRANSPOSITION_C;
if(this->is_real_type())
{
const Matrix b = v2.matrix_value ();
const octave_idx_type b_nc = b.cols ();
const octave_idx_type b_nr = b.rows ();
const octave_idx_type ldb = b_nr;
const octave_idx_type ldc = this->columns();
const octave_idx_type nrhs = b_nc;
Matrix retval(ldc,nrhs,RSBOI_ZERO);
if(this->rows() !=b_nr) { error ("%s", "matrix rows count does not match operand rows!\n"); return Matrix(); }
errval = rsb_spmm(transA,&rsboi_pone,this->mtxAp,nrhs,RSB_OI_DMTXORDER,(RSBOI_T*)b.data(),ldb,&rsboi_pone,(RSBOI_T*)retval.data(),ldc);
RSBOI_PERROR(errval);
return retval;
}
else
{
const ComplexMatrix b = v2.complex_matrix_value ();
const octave_idx_type b_nc = b.cols ();
const octave_idx_type b_nr = b.rows ();
const octave_idx_type ldb = b_nr;
const octave_idx_type ldc = this->columns();
const octave_idx_type nrhs = b_nc;
ComplexMatrix retval(ldc,nrhs,RSBOI_ZERO);
if(this->rows() !=b_nr) { error ("%s", "matrix rows count does not match operand rows!\n"); return Matrix(); }
errval = rsb_spmm(transA,&rsboi_pone,this->mtxAp,nrhs,RSB_OI_DMTXORDER,(RSBOI_T*)b.data(),ldb,&rsboi_pone,(RSBOI_T*)retval.data(),ldc);
RSBOI_PERROR(errval);
return retval;
}
}
#if RSBOI_WANT_DOUBLE_COMPLEX
octave_value rsboi_spmm(const octave_complex_matrix&v2)const
{
// TODO: to avoid e.g. v2.complex_matrix_value, one may use: dim_vector dv = v2.dims(); ... dv(ndims) ...
rsb_err_t errval = RSB_ERR_NO_ERROR;
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
const rsb_trans_t transA = RSB_TRANSPOSITION_N;
struct rsb_mtx_t *mtxCp = RSBOI_NULL;
const ComplexMatrix b = v2.complex_matrix_value ();
const octave_idx_type b_nc = b.cols ();
const octave_idx_type b_nr = b.rows ();
const octave_idx_type ldb = b_nr;
const octave_idx_type ldc = this->rows();
const octave_idx_type nrhs = b_nc;
ComplexMatrix retval(ldc,nrhs,RSBOI_ZERO); // zeroing is in principle unnecessary (we zero in rsb_spmm), but otherwise data may not be allocated.
RSBOI_T* Cp =(RSBOI_T*)retval.data();
const RSBOI_T* Bp =(RSBOI_T*)b.data();
if(this->is_real_type())
{
errval = rsb_mtx_clone(&mtxCp,RSB_NUMERICAL_TYPE_DOUBLE_COMPLEX,RSB_TRANSPOSITION_N,RSBOI_NULL,this->mtxAp,RSBOI_EXPF);
}
else{
mtxCp = this->mtxAp;
}
if(RSBOI_SOME_ERROR(errval))
goto err;
if(this->columns()!=b_nr) { error ("%s", "matrix columns count does not match operand rows!\n"); return Matrix(); }
errval = rsb_spmm(transA,&rsboi_pone,mtxCp,nrhs,RSB_OI_DMTXORDER,Bp,ldb,&rsboi_pone,Cp,ldc);
if(this->is_real_type())
RSBOI_DESTROY(mtxCp);
err:
RSBOI_PERROR(errval);
return retval;
}
octave_value rsboi_spmtm(const octave_complex_matrix&v2)const
{
// TODO: to avoid e.g. v2.complex_matrix_value, one may use: dim_vector dv = v2.dims(); ... dv(ndims) ...
rsb_err_t errval = RSB_ERR_NO_ERROR;
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
const rsb_trans_t transA = RSB_TRANSPOSITION_T;
struct rsb_mtx_t *mtxCp = RSBOI_NULL;
const ComplexMatrix b = v2.complex_matrix_value ();
const octave_idx_type b_nc = b.cols ();
const octave_idx_type b_nr = b.rows ();
const octave_idx_type ldb = b_nr;
const octave_idx_type ldc = this->columns();
const octave_idx_type nrhs = b_nc;
ComplexMatrix retval(ldc,nrhs,RSBOI_ZERO); // zeroing is in principle unnecessary (we zero in rsb_spmm), but otherwise data may not be allocated.
RSBOI_T* Cp =(RSBOI_T*)retval.data();
const RSBOI_T* Bp =(RSBOI_T*)b.data();
if(this->is_real_type())
errval = rsb_mtx_clone(&mtxCp,RSB_NUMERICAL_TYPE_DOUBLE_COMPLEX,RSB_TRANSPOSITION_N,RSBOI_NULL,this->mtxAp,RSBOI_EXPF);
else
mtxCp = this->mtxAp;
if(RSBOI_SOME_ERROR(errval))
goto err;
if(this->rows() !=b_nr) { error ("%s", "matrix rows count does not match operand rows!\n"); return Matrix(); }
errval = rsb_spmm(transA,&rsboi_pone,mtxCp,nrhs,RSB_OI_DMTXORDER,Bp,ldb,&rsboi_pone,Cp,ldc);
if(this->is_real_type())
RSBOI_DESTROY(mtxCp);
err:
RSBOI_PERROR(errval);
return retval;
}
octave_value rsboi_spmhm(const octave_complex_matrix&v2)const
{
// TODO: to avoid e.g. v2.complex_matrix_value, one may use: dim_vector dv = v2.dims(); ... dv(ndims) ...
rsb_err_t errval = RSB_ERR_NO_ERROR;
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
const rsb_trans_t transA = RSB_TRANSPOSITION_C;
struct rsb_mtx_t *mtxCp = RSBOI_NULL;
const ComplexMatrix b = v2.complex_matrix_value ();
const octave_idx_type b_nc = b.cols ();
const octave_idx_type b_nr = b.rows ();
const octave_idx_type ldb = b_nr;
const octave_idx_type ldc = this->columns();
const octave_idx_type nrhs = b_nc;
ComplexMatrix retval(ldc,nrhs,RSBOI_ZERO); // zeroing is in principle unnecessary (we zero in rsb_spmm), but otherwise data may not be allocated.
RSBOI_T* Cp =(RSBOI_T*)retval.data();
const RSBOI_T* Bp =(RSBOI_T*)b.data();
if(this->is_real_type())
errval = rsb_mtx_clone(&mtxCp,RSB_NUMERICAL_TYPE_DOUBLE_COMPLEX,RSB_TRANSPOSITION_N,RSBOI_NULL,this->mtxAp,RSBOI_EXPF);
else
mtxCp = this->mtxAp;
if(RSBOI_SOME_ERROR(errval))
goto err;
if(this->rows() !=b_nr) { error ("%s", "matrix rows count does not match operand rows!\n"); return Matrix(); }
errval = rsb_spmm(transA,&rsboi_pone,mtxCp,nrhs,RSB_OI_DMTXORDER,Bp,ldb,&rsboi_pone,Cp,ldc);
if(this->is_real_type())
RSBOI_DESTROY(mtxCp);
err:
RSBOI_PERROR(errval);
return retval;
}
#endif /* RSBOI_WANT_DOUBLE_COMPLEX */
octave_value rsboi_spmsp(const octave_sparsersb_mtx&v2)const
{
rsb_err_t errval = RSB_ERR_NO_ERROR;
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
octave_sparsersb_mtx*sm = new octave_sparsersb_mtx();
octave_value retval = sm;
#if RSBOI_WANT_SYMMETRY
/* NOTE: no expansion */
#endif
/* NOTE: what if they are not both of the same type ? it would be nice to have a conversion.. */
sm->mtxAp = rsb_spmsp(RSBOI_BINOP_PREVAILING_TYPE(*this,v2),RSB_TRANSPOSITION_N,&rsboi_pone,this->mtxAp,RSB_TRANSPOSITION_N,&rsboi_pone,v2.mtxAp,&errval);
RSBOI_PERROR(errval);
if(!sm->mtxAp)
RSBOI_0_ERROR(RSBOI_0_ALLERRMSG);
return retval;
}
octave_value rsboi_sppsp(const RSBOI_T*betap, const octave_sparsersb_mtx&v2)const
{
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
octave_sparsersb_mtx*sm = new octave_sparsersb_mtx();
octave_value retval = sm;
rsb_err_t errval = RSB_ERR_NO_ERROR;
RSBOI_FIXME("");
#if RSBOI_WANT_SYMMETRY
/* NOTE: no expansion */
#endif
if ( RSB_LIBRSB_VER < 10201 && ( RSBOI_BINOP_PREVAILING_TYPE(*this,v2) != this->rsbtype() ) )
{
/* Way around a bug fixed in librsb-1.2.0.9 */
struct rsb_mtx_t *mtxCp = RSBOI_NULL;
errval = rsb_mtx_clone(&mtxCp,RSBOI_BINOP_PREVAILING_TYPE(*this,v2),RSB_TRANSPOSITION_N,RSBOI_NULL,this->mtxAp,RSBOI_EXPF);
if(RSBOI_SOME_ERROR(errval))
goto err;
RSBOI_PERROR(errval);
sm->mtxAp = rsb_sppsp(RSBOI_BINOP_PREVAILING_TYPE(*this,v2),RSB_TRANSPOSITION_N,&rsboi_pone,mtxCp,RSB_TRANSPOSITION_N,betap,v2.mtxAp,&errval);
RSBOI_DESTROY(mtxCp);
}
else
sm->mtxAp = rsb_sppsp(RSBOI_BINOP_PREVAILING_TYPE(*this,v2),RSB_TRANSPOSITION_N,&rsboi_pone,this->mtxAp,RSB_TRANSPOSITION_N,betap,v2.mtxAp,&errval);
RSBOI_PERROR(errval);
err:
if(!sm->mtxAp)
RSBOI_0_ERROR(RSBOI_0_ALLERRMSG);
return retval;
}
#if RSBOI_WANT_DOUBLE_COMPLEX
octave_value cp_ubop(enum rsb_elopf_t opf, Complex z)const
{
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
rsb_err_t errval = RSB_ERR_NO_ERROR;
octave_sparsersb_mtx *m = new octave_sparsersb_mtx(*this);
if( is_real_type ())
{
struct rsb_mtx_t *mtxCp = RSBOI_NULL;
errval = rsb_mtx_clone(&mtxCp,RSB_NUMERICAL_TYPE_DOUBLE_COMPLEX,RSB_TRANSPOSITION_N,RSBOI_NULL,this->mtxAp,RSBOI_EXPF);
if(RSBOI_SOME_ERROR(errval))
goto err;
errval = rsb_mtx_upd_values(mtxCp,opf,&z);
rsboi_error(errval);
RSBOI_DESTROY(m->mtxAp);
m->mtxAp = mtxCp;
}
else
errval = rsb_mtx_upd_values(m->mtxAp,opf,&z);
rsboi_error(errval);
err:
return m;
}
#endif /* RSBOI_WANT_DOUBLE_COMPLEX */
octave_value cp_ubop(enum rsb_elopf_t opf, void*alphap=RSBOI_NULL)const
{
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
rsb_err_t errval = RSB_ERR_NO_ERROR;
octave_sparsersb_mtx *m = new octave_sparsersb_mtx(*this);
if(!m)return m;
errval = rsb_mtx_upd_values(m->mtxAp,opf,alphap);
rsboi_error(errval);
return m;
}
private:
public:
DECLARE_OV_TYPEID_FUNCTIONS_AND_DATA
};/* end of class octave_sparsersb_mtx definition */
#if 0
octave_value_list find_nonzero_elem_idx (const class octave_sparsersb_mtx & nda, int nargout, octave_idx_type n_to_find, int direction)
{
// useless
octave_value retval;
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
return retval;
}
#endif
#if defined(RSBOI_USE_PATCH_38143)
#define RSBOI_CAST_CONV_ARG(ARGT) /* Seems like in 4.1.0+ CAST_CONV_ARG is not there. */ \
ARGT v = dynamic_cast< ARGT > (a)
#define RSBOI_CAST_UNOP_ARG(ARGT) /* Seems like in 4.1.0+ CAST_UNOP_ARG is not there. */ \
RSBOI_CAST_CONV_ARG(ARGT)
#define RSB_CAST_BINOP_ARGS(ARGT_V1, ARGT_V2); /* Seems like in 4.1.0+ CAST_BINOP_ARGS is not there. */ \
ARGT_V1 v1 = dynamic_cast< ARGT_V1 > (a1); \
ARGT_V2 v2 = dynamic_cast< ARGT_V2 > (a2);
#else /* RSBOI_USE_PATCH_38143 */
#define RSBOI_CAST_CONV_ARG CAST_CONV_ARG
#define RSBOI_CAST_UNOP_ARG CAST_UNOP_ARG
#define RSB_CAST_BINOP_ARGS CAST_BINOP_ARGS
#endif /* RSBOI_USE_PATCH_38143 */
static octave_base_value *default_numeric_conversion_function (const octave_base_value& a)
{
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
RSBOI_CAST_CONV_ARG (const octave_sparsersb_mtx&);
RSBOI_WARN(RSBOI_O_MISSIMPERRMSG);
RSBOI_WARN(RSBOI_0_UNFFEMSG);
if(v.is_real_type())
return new octave_sparse_matrix (v.sparse_matrix_value());
else
return new octave_sparse_complex_matrix (v.sparse_complex_matrix_value());
}
DEFINE_OV_TYPEID_FUNCTIONS_AND_DATA (octave_sparsersb_mtx,
RSB_OI_TYPEINFO_STRING,
RSB_OI_TYPEINFO_TYPE)
DEFCONV (octave_triangular_conv, octave_sparsersb_mtx, matrix)
{
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
RSBOI_WARN(RSBOI_O_MISSIMPERRMSG);
RSBOI_CAST_CONV_ARG (const octave_sparsersb_mtx&);
return new octave_sparse_matrix (v.matrix_value ());
}
#if 0
DEFCONV (octave_sparse_rsb_to_octave_sparse_conv, sparse_rsb_mtx, sparse_matrix)
{
RSBOI_WARN(RSBOI_O_MISSIMPERRMSG);
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
RSBOI_CAST_CONV_ARG (const octave_sparsersb_mtx&);
return new octave_sparse_matrix (v.matrix_value ());
}
#endif
DEFUNOP (uplus, sparse_rsb_mtx)
{
RSBOI_WARN(RSBOI_O_MISSIMPERRMSG);
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
RSBOI_CAST_UNOP_ARG (const octave_sparsersb_mtx&);
return new octave_sparsersb_mtx (v);
}
#if 0
DEFUNOP (op_incr, sparse_rsb_mtx)
{
RSBOI_WARN(RSBOI_O_MISSIMPERRMSG);
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
RSBOI_CAST_UNOP_ARG (const octave_sparsersb_mtx&);
const octave_idx_type rn = v.mtxAp->nrA,cn = v.mtxAp->ncA;
Matrix v2(rn,cn);
octave_value retval = v2;
rsb_err_t errval = RSB_ERR_NO_ERROR;
errval|=rsb_mtx_add_to_dense(&rsboi_pone,v.mtxAp,rn,rn,cn,RSB_BOOL_TRUE,(RSBOI_T*)v2.data());
//v = octave_ma(idx, v2.matrix_value());
return v2;
}
DEFUNOP (op_decr, sparse_rsb_mtx)
{
RSBOI_WARN(RSBOI_O_MISSIMPERRMSG);
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
RSBOI_CAST_UNOP_ARG (const octave_sparsersb_mtx&);
const octave_idx_type rn = v.mtxAp->nrA, cn = v.mtxAp->ncA;
Matrix v2(rn,cn);
octave_value retval = v2;
rsb_err_t errval = RSB_ERR_NO_ERROR;
errval|=rsb_mtx_add_to_dense(&rsboi_pone,v.mtxAp,rn,rn,cn,RSB_BOOL_TRUE,(RSBOI_T*)v2.data());
//v = octave_ma(idx, v2.matrix_value());
return v2;
}
#endif
DEFUNOP (uminus, sparse_rsb_mtx)
{
RSBOI_WARN(RSBOI_O_MISSIMPERRMSG);
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
RSBOI_CAST_UNOP_ARG (const octave_sparsersb_mtx&);
return v.cp_ubop(RSB_ELOPF_NEG);
}
DEFUNOP (transpose, sparse_rsb_mtx)
{
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
RSBOI_CAST_UNOP_ARG (const octave_sparsersb_mtx&);
return v.rsboi_get_scaled_copy(rsboi_pone[0],RSB_TRANSPOSITION_T);
}
DEFUNOP (htranspose, sparse_rsb_mtx)
{
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
RSBOI_CAST_UNOP_ARG (const octave_sparsersb_mtx&);
return v.rsboi_get_scaled_copy(rsboi_pone[0],RSB_TRANSPOSITION_C);
}
octave_value rsboi_spsm(const octave_sparsersb_mtx&v1, const octave_matrix&v2, rsb_trans_t transA)
{
rsb_err_t errval = RSB_ERR_NO_ERROR;
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
if(v1.iscomplex())
{
ComplexMatrix retval = v2.complex_matrix_value();
const octave_idx_type b_nc = retval.cols ();
const octave_idx_type b_nr = retval.rows ();
const octave_idx_type ldb = b_nr;
const octave_idx_type ldc = v1.rows();
const octave_idx_type nrhs = b_nc;
const octave_idx_type nels = retval.rows()*retval.cols();
errval = rsb_spsm(transA,&rsboi_pone,v1.mtxAp,nrhs,RSB_OI_DMTXORDER,&rsboi_zero,(const RSBOI_T*)retval.data(),ldb,(RSBOI_T*)retval.data(),ldc);
if(RSBOI_SOME_ERROR(errval))
{
RSBOI_PERROR(errval);
if(errval == RSB_ERR_INVALID_NUMERICAL_DATA)
error ("%s", RSBOI_0_ZODERRMG);
for(octave_idx_type i=0;imtxAp,&alpha);
errval = rsb_elemental_op(this->mtxAp,RSB_ELOPF_MUL,&alpha);
RSBOI_PERROR(errval);
return errval;
}
rsb_err_t rsboi_scale(Complex alpha)
{
rsb_err_t errval = RSB_ERR_NO_ERROR;
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
//errval = rsb_elemental_scale(this->mtxAp,&alpha);
errval = rsb_elemental_op(this->mtxAp,RSB_ELOPF_MUL,&alpha);
RSBOI_PERROR(errval);
return errval;
}
DEFASSIGNOP(rsb_op_div_eq_s, sparse_rsb_mtx, scalar)
{
RSB_CAST_BINOP_ARGS (octave_sparsersb_mtx &, const octave_scalar&);
octave_value retval;
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
RSBOI_PERROR(v1.rsboi_scale_inv(v2.scalar_value()));
retval = v1.matrix_value();
return retval;
}
rsb_err_t rsboi_scale_inv(RSBOI_T alpha)
{
rsb_err_t errval = RSB_ERR_NO_ERROR;
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
//errval = rsb_elemental_scale_inv(this->mtxAp,&alpha);
errval = rsb_elemental_op(this->mtxAp,RSB_ELOPF_DIV,&alpha);
RSBOI_PERROR(errval);
return errval;
}
rsb_err_t rsboi_scale_inv(Complex alpha)
{
rsb_err_t errval = RSB_ERR_NO_ERROR;
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
//errval = rsb_elemental_scale_inv(this->mtxAp,&alpha);
errval = rsb_elemental_op(this->mtxAp,RSB_ELOPF_DIV,&alpha);
RSBOI_PERROR(errval);
return errval;
}
#endif
DEFBINOP(rsb_el_mul_s, sparse_rsb_mtx, scalar)
{
RSB_CAST_BINOP_ARGS (const octave_sparsersb_mtx &, const octave_scalar&);
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
return v1.rsboi_get_scaled_copy(v2.scalar_value());
}
#if RSBOI_WANT_DOUBLE_COMPLEX
DEFBINOP(rsb_el_mul_c, sparse_rsb_mtx, complex)
{
RSB_CAST_BINOP_ARGS (const octave_sparsersb_mtx &, const octave_complex&);
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
return v1.rsboi_get_scaled_copy(v2.complex_value());
}
#endif /* RSBOI_WANT_DOUBLE_COMPLEX */
DEFBINOP(rsb_el_div_s, sparse_rsb_mtx, scalar)
{
RSB_CAST_BINOP_ARGS (const octave_sparsersb_mtx &, const octave_scalar&);
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
return v1.rsboi_get_scaled_copy_inv(v2.scalar_value());
}
#if RSBOI_WANT_DOUBLE_COMPLEX
DEFBINOP(rsb_el_div_c, sparse_rsb_mtx, complex)
{
RSB_CAST_BINOP_ARGS (const octave_sparsersb_mtx &, const octave_complex&);
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
return v1.rsboi_get_scaled_copy_inv(v2.complex_value());
}
#endif /* RSBOI_WANT_DOUBLE_COMPLEX */
#if RSBOI_WANT_DOUBLE_COMPLEX
#if 0
DEFASSIGNOP(rsb_op_el_div_eq, sparse_rsb_mtx, scalar)
{
RSB_CAST_BINOP_ARGS (const octave_sparsersb_mtx &, const octave_scalar&);
std::cout << "rsb_op_el_div_eq!\n";
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
return v1.rsboi_get_scaled_copy_inv(v2.complex_value());
}
#endif
DEFASSIGNOP(rsb_op_el_mul_eq_sc, sparse_rsb_mtx, matrix)
{
//rsb_err_t errval = RSB_ERR_NO_ERROR;
RSB_CAST_BINOP_ARGS (octave_sparsersb_mtx &, const octave_matrix&);
return v1.scale_rows(v2,false);
}
DEFASSIGNOP(rsb_op_el_div_eq_sc, sparse_rsb_mtx, matrix)
{
//rsb_err_t errval = RSB_ERR_NO_ERROR;
RSB_CAST_BINOP_ARGS (octave_sparsersb_mtx &, const octave_matrix&);
return v1.scale_rows(v2,true);
}
#endif /* RSBOI_WANT_DOUBLE_COMPLEX */
DEFBINOP(el_pow, sparse_rsb_mtx, scalar)
{
RSB_CAST_BINOP_ARGS (const octave_sparsersb_mtx &, const octave_scalar&);
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
RSBOI_T alpha [] = {v2.scalar_value(),0};
return v1.cp_ubop(RSB_ELOPF_POW,&alpha);
}
#if RSBOI_WANT_DOUBLE_COMPLEX
DEFBINOP(el_pow_c, sparse_rsb_mtx, complex)
{
RSB_CAST_BINOP_ARGS (const octave_sparsersb_mtx &, const octave_complex&);
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
Complex alpha = v2.complex_value();
return v1.cp_ubop(RSB_ELOPF_POW,alpha);
}
#endif /* RSBOI_WANT_DOUBLE_COMPLEX */
#ifdef RSB_FULLY_IMPLEMENTED
DEFASSIGNOP (assigns, sparse_rsb_mtx, scalar)
{
RSB_CAST_BINOP_ARGS (octave_sparsersb_mtx &, const octave_scalar&);
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
v1.assign(idx, v2.matrix_value());
RSBOI_WARN(RSBOI_O_MISSIMPERRMSG);
return octave_value();
}
#endif
DEFBINOP(op_sub, sparse_rsb_mtx, sparse_rsb_mtx)
{
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
RSB_CAST_BINOP_ARGS (const octave_sparsersb_mtx&, const octave_sparsersb_mtx&);
return v1.rsboi_sppsp(&rsboi_mone[0],v2);
}
DEFBINOP(op_add, sparse_rsb_mtx, sparse_rsb_mtx)
{
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
RSB_CAST_BINOP_ARGS (const octave_sparsersb_mtx&, const octave_sparsersb_mtx&);
return v1.rsboi_sppsp(&rsboi_pone[0],v2);
}
DEFBINOP(op_spmul, sparse_rsb_mtx, sparse_rsb_mtx)
{
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
RSB_CAST_BINOP_ARGS (const octave_sparsersb_mtx&, const octave_sparsersb_mtx&);
return v1.rsboi_spmsp(v2);
}
DEFBINOP(op_mul, sparse_rsb_mtx, matrix)
{
// "*" operator
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
RSB_CAST_BINOP_ARGS (const octave_sparsersb_mtx&, const octave_matrix&);
//return v1.rsboi_spmm(v2, false);
return v1.rsboi_spmm(v2);
}
DEFBINOP(op_trans_mul, sparse_rsb_mtx, matrix)
{
// ".'*" operator
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
RSB_CAST_BINOP_ARGS (const octave_sparsersb_mtx&, const octave_matrix&);
//return v1.rsboi_spmm(v2, true);
return v1.rsboi_spmtm(v2);
}
DEFBINOP(op_herm_mul, sparse_rsb_mtx, matrix)
{
// "'*" operator
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
RSB_CAST_BINOP_ARGS (const octave_sparsersb_mtx&, const octave_matrix&);
//return v1.rsboi_spmm(v2, true);
return v1.rsboi_spmhm(v2);
}
#if RSBOI_WANT_DOUBLE_COMPLEX
DEFBINOP(op_c_mul, sparse_rsb_mtx, matrix)
{
// "*" operator
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
RSB_CAST_BINOP_ARGS (const octave_sparsersb_mtx&, const octave_complex_matrix&);
//return v1.rsboi_spmm(v2, false);
return v1.rsboi_spmm(v2);
}
DEFBINOP(op_c_trans_mul, sparse_rsb_mtx, matrix)
{
// ".'*" operator
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
RSB_CAST_BINOP_ARGS (const octave_sparsersb_mtx&, const octave_complex_matrix&);
//return v1.rsboi_spmm(v2, true);
return v1.rsboi_spmtm(v2);
}
DEFBINOP(op_c_herm_mul, sparse_rsb_mtx, matrix)
{
// "'*" operator
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
RSB_CAST_BINOP_ARGS (const octave_sparsersb_mtx&, const octave_complex_matrix&);
//return v1.rsboi_spmm(v2, true);
return v1.rsboi_spmhm(v2);
}
#endif /* RSBOI_WANT_DOUBLE_COMPLEX */
#if RSBOI_USE_PATCH_OCT44
#define RSBOI_INSTALL_BINOP(op, t1, t2, f) { \
octave::type_info& type_info = octave::__get_type_info__ ("");\
type_info.register_binary_op(octave_value::op, t1::static_type_id (), t2::static_type_id (), CONCAT2 (oct_binop_, f)); }
#define RSBOI_INSTALL_ASSIGNOP(op, t1, t2, f) { \
octave::type_info& type_info = octave::__get_type_info__ ("");\
type_info.register_assign_op(octave_value::op, t1::static_type_id (), t2::static_type_id (), CONCAT2 (oct_assignop_, f)); }
#define RSBOI_INSTALL_UNOP(op, t1, f) { \
octave::type_info& type_info = octave::__get_type_info__ ("");\
type_info.register_unary_op(octave_value::op, t1::static_type_id (), CONCAT2 (oct_unop_, f)); }
#else /* RSBOI_USE_PATCH_OCT44 */
// deprecated; need a wrapper using octave::typeinfo::register_binary_op
#define RSBOI_INSTALL_BINOP INSTALL_BINOP
// deprecated; need a wrapper using octave::typeinfo::register_assign_op
#define RSBOI_INSTALL_ASSIGNOP INSTALL_ASSIGNOP
// deprecated; need a wrapper using octave::typeinfo::register_unary_op
#define RSBOI_INSTALL_UNOP INSTALL_UNOP
#endif /* RSBOI_USE_PATCH_OCT44 */
static void install_sparsersb_ops (void)
{
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
#ifdef RSB_FULLY_IMPLEMENTED
/* boolean pattern-based not */
RSBOI_INSTALL_UNOP (op_not, octave_sparsersb_mtx, op_not);
/* to-dense operations */
RSBOI_INSTALL_ASSIGNOP (op_asn_eq, octave_sparsersb_mtx, octave_scalar, assigns);
/* ? */
RSBOI_INSTALL_UNOP (op_uplus, octave_sparsersb_mtx, uplus);
/* elemental comparison, evaluate to sparse or dense boolean matrices */
RSBOI_INSTALL_BINOP (op_eq, octave_sparsersb_mtx, , );
RSBOI_INSTALL_BINOP (op_le, octave_sparsersb_mtx, , );
RSBOI_INSTALL_BINOP (op_lt, octave_sparsersb_mtx, , );
RSBOI_INSTALL_BINOP (op_ge, octave_sparsersb_mtx, , );
RSBOI_INSTALL_BINOP (op_gt, octave_sparsersb_mtx, , );
RSBOI_INSTALL_BINOP (op_ne, octave_sparsersb_mtx, , );
/* pure elemental; scalar and sparse arguments ?! */
// ?
RSBOI_INSTALL_BINOP (op_el_ldiv, octave_sparsersb_mtx, , );
RSBOI_INSTALL_BINOP (op_el_ldiv_eq, octave_sparsersb_mtx, , ); // errval = rsb_mtx_upd_values(this->mtxAp,RSB_ELOPF_SCALE_ROWS,cm.data());
RSBOI_INSTALL_BINOP (op_el_mul_eq, octave_sparsersb_mtx, , ); // diagonal subst ??
RSBOI_INSTALL_BINOP (op_el_and, octave_sparsersb_mtx, , );
RSBOI_INSTALL_BINOP (op_el_or, octave_sparsersb_mtx, , );
/* shift operations: they may be left out from the implementation */
RSBOI_INSTALL_BINOP (op_lshift, octave_sparsersb_mtx, , );
RSBOI_INSTALL_BINOP (op_rshift, octave_sparsersb_mtx, , );
#endif
// RSBOI_INSTALL_ASSIGNOP (op_el_div_eq, octave_sparsersb_mtx, octave_matrix, rsb_op_el_div_eq_sc); // errval = rsb_mtx_upd_values(this->mtxAp,RSB_ELOPF_SCALE_ROWS,cm.data());
// RSBOI_INSTALL_ASSIGNOP (op_el_mul_eq, octave_sparsersb_mtx, octave_matrix, rsb_op_el_mul_eq_sc);
//INSTALL_WIDENOP (octave_sparsersb_mtx, octave_sparse_matrix,octave_sparse_rsb_to_octave_sparse_conv);/* a DEFCONV .. */
//INSTALL_ASSIGNCONV (octave_sparsersb_mtx, octave_sparse_matrix,octave_sparse_matrix);/* .. */
// no need for the following: need a good conversion function, though
//RSBOI_INSTALL_UNOP (op_incr, octave_sparsersb_mtx, op_incr);
//RSBOI_INSTALL_UNOP (op_decr, octave_sparsersb_mtx, op_decr);
RSBOI_INSTALL_BINOP (op_el_mul, octave_sparsersb_mtx, octave_scalar, rsb_el_mul_s);
#if RSBOI_WANT_DOUBLE_COMPLEX
RSBOI_INSTALL_BINOP (op_el_mul, octave_sparsersb_mtx, octave_complex, rsb_el_mul_c);
#endif /* RSBOI_WANT_DOUBLE_COMPLEX */
// RSBOI_INSTALL_ASSIGNOP (op_mul_eq, octave_sparsersb_mtx, octave_scalar, rsb_op_mul_eq_s); // 20110313 not effective
// RSBOI_INSTALL_ASSIGNOP (op_div_eq, octave_sparsersb_mtx, octave_scalar, rsb_op_div_eq_s); // 20110313 not effective
RSBOI_INSTALL_BINOP (op_el_div, octave_sparsersb_mtx, octave_scalar, rsb_el_div_s);
#if RSBOI_WANT_DOUBLE_COMPLEX
RSBOI_INSTALL_BINOP (op_el_div, octave_sparsersb_mtx, octave_complex, rsb_el_div_c);
#endif /* RSBOI_WANT_DOUBLE_COMPLEX */
RSBOI_INSTALL_BINOP (op_el_pow, octave_sparsersb_mtx, octave_scalar, el_pow);
RSBOI_INSTALL_BINOP (op_el_pow, octave_sparsersb_mtx, octave_complex, el_pow_c);
RSBOI_INSTALL_UNOP (op_uminus, octave_sparsersb_mtx, uminus);
RSBOI_INSTALL_BINOP (op_ldiv, octave_sparsersb_mtx, octave_matrix, ldiv);
RSBOI_INSTALL_BINOP (op_el_ldiv, octave_sparsersb_mtx, octave_matrix, el_ldiv);
RSBOI_INSTALL_BINOP (op_div, octave_sparsersb_mtx, octave_matrix, div);
RSBOI_INSTALL_BINOP (op_div, octave_sparsersb_mtx, octave_scalar, rsb_s_div);
#if RSBOI_WANT_DOUBLE_COMPLEX
RSBOI_INSTALL_BINOP (op_div, octave_sparsersb_mtx, octave_complex, rsb_c_div);
#endif /* RSBOI_WANT_DOUBLE_COMPLEX */
RSBOI_INSTALL_BINOP (op_mul, octave_sparsersb_mtx, octave_scalar, rsb_s_mul);
RSBOI_INSTALL_BINOP (op_mul, octave_scalar, octave_sparsersb_mtx, s_rsb_mul);
#if RSBOI_WANT_DOUBLE_COMPLEX
RSBOI_INSTALL_BINOP (op_mul, octave_sparsersb_mtx, octave_complex, rsb_c_mul);
RSBOI_INSTALL_BINOP (op_mul, octave_complex, octave_sparsersb_mtx, c_rsb_mul);
RSBOI_INSTALL_BINOP (op_mul, octave_sparsersb_mtx, octave_complex_matrix, op_c_mul);
RSBOI_INSTALL_BINOP (op_trans_mul, octave_sparsersb_mtx, octave_complex_matrix, op_c_trans_mul);
RSBOI_INSTALL_BINOP (op_herm_mul, octave_sparsersb_mtx, octave_complex_matrix, op_c_herm_mul);
RSBOI_INSTALL_BINOP (op_ldiv, octave_sparsersb_mtx, octave_complex_matrix, c_ldiv);
RSBOI_INSTALL_BINOP (op_trans_ldiv, octave_sparsersb_mtx, octave_complex_matrix, trans_c_ldiv);
#endif /* RSBOI_WANT_DOUBLE_COMPLEX */
#if RSBOI_WANT_POW
RSBOI_INSTALL_BINOP (op_pow, octave_sparsersb_mtx, octave_scalar, rsb_s_pow);
#endif /* RSBOI_WANT_POW */
RSBOI_INSTALL_BINOP (op_el_div, octave_sparsersb_mtx, octave_matrix, el_div);
RSBOI_INSTALL_UNOP (op_transpose, octave_sparsersb_mtx, transpose);
RSBOI_INSTALL_UNOP (op_hermitian, octave_sparsersb_mtx, htranspose);
RSBOI_INSTALL_ASSIGNOP (op_asn_eq, octave_sparsersb_mtx, octave_sparse_matrix, assign);
RSBOI_INSTALL_ASSIGNOP (op_asn_eq, octave_sparsersb_mtx, octave_matrix, assignm);
RSBOI_INSTALL_BINOP (op_mul, octave_sparsersb_mtx, octave_matrix, op_mul);
//RSBOI_INSTALL_BINOP (op_pow, octave_sparsersb_mtx, octave_matrix, op_pow);
RSBOI_INSTALL_BINOP (op_sub, octave_sparsersb_mtx, octave_sparsersb_mtx, op_sub);
RSBOI_INSTALL_BINOP (op_add, octave_sparsersb_mtx, octave_sparsersb_mtx, op_add);
//RSBOI_INSTALL_BINOP (op_trans_add, octave_sparsersb_mtx, octave_sparsersb_mtx, op_trans_add);
RSBOI_INSTALL_BINOP (op_mul, octave_sparsersb_mtx, octave_sparsersb_mtx, op_spmul);
RSBOI_INSTALL_BINOP (op_trans_mul, octave_sparsersb_mtx, octave_matrix, op_trans_mul);
RSBOI_INSTALL_BINOP (op_herm_mul, octave_sparsersb_mtx, octave_matrix, op_herm_mul);
RSBOI_INSTALL_BINOP (op_trans_ldiv, octave_sparsersb_mtx, octave_matrix, trans_ldiv);
//RSBOI_INSTALL_BINOP (op_mul_trans, octave_sparsersb_mtx, octave_matrix, op_mul_trans);
//RSBOI_INSTALL_BINOP (op_mul_trans, octave_sparsersb_mtx, octave_matrix, op_mul_trans);
//RSBOI_INSTALL_BINOP (op_herm_mul, octave_sparsersb_mtx, octave_matrix, op_herm_mul);
//RSBOI_INSTALL_BINOP (op_mul_herm, octave_sparsersb_mtx, octave_matrix, op_mul_herm);
//RSBOI_INSTALL_BINOP (op_el_not_and, octave_sparsersb_mtx, octave_matrix, op_el_not_and);
//RSBOI_INSTALL_BINOP (op_el_not_or , octave_sparsersb_mtx, octave_matrix, op_el_not_or );
//RSBOI_INSTALL_BINOP (op_el_and_not, octave_sparsersb_mtx, octave_matrix, op_el_and_not);
//RSBOI_INSTALL_BINOP (op_el_or _not, octave_sparsersb_mtx, octave_matrix, op_el_or _not);
}
static void install_sparse_rsb (void)
{
static bool rsboi_initialized = false;
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
if(!rsboi_initialized)
{
rsb_err_t errval = RSB_ERR_NO_ERROR;
if(sparsersb_tester() == false)
{
goto err;
}
errval = rsb_lib_init(RSB_NULL_INIT_OPTIONS);
if(RSBOI_SOME_ERROR(errval))
{
RSBOI_PERROR(errval);
goto err;
}
rsboi_initialized = true;
}
else
;/* already initialized */
if (!rsboi_sparse_rsb_loaded)
{
octave_sparsersb_mtx::register_type ();
install_sparsersb_ops ();
rsboi_sparse_rsb_loaded = true;
#if RSBOI_USE_PATCH_OCT44
octave::interpreter::the_interpreter()->mlock();
#else /* RSBOI_USE_PATCH_OCT44 */
mlock();
#endif /* RSBOI_USE_PATCH_OCT44 */
}
return;
err:
RSBIO_NULL_STATEMENT_FOR_COMPILER_HAPPINESS
} /* install_sparse_rsb */
DEFUN_DLD (RSB_SPARSERSB_LABEL, args, nargout,
"-*- texinfo -*-\n\
@deftypefn {Loadable Function} {@var{S} =} " RSBOI_FNS " (@var{A})\n\
@deftypefnx {Loadable Function} {@var{S} =} " RSBOI_FNS " (@var{I}, @var{J}, @var{SV}, @var{M}, @var{N})\n\
@deftypefnx {Loadable Function} {@var{S} =} " RSBOI_FNS " (@var{I}, @var{J}, @var{SV}, @var{M}, @var{N}, @var{NZMAX})\n\
@deftypefnx {Loadable Function} {@var{S} =} " RSBOI_FNS " (@var{I}, @var{J}, @var{SV})\n\
@deftypefnx {Loadable Function} {@var{S} =} " RSBOI_FNS " (@var{M}, @var{N})\n\
@deftypefnx {Loadable Function} {@var{S} =} " RSBOI_FNS " (@var{I}, @var{J}, @var{SV}, @var{M}, @var{N}, \"unique\")\n\
@deftypefnx {Loadable Function} " RSBOI_FNS " (\"set\", @var{OPN}, @var{OPV})\n\
@deftypefnx {Loadable Function} {@var{v} =} " RSBOI_FNS " (@var{S}, \"get\", @var{MIF})\n\
@deftypefnx {Loadable Function} {@var{v} =} " RSBOI_FNS " (@var{S}, @var{QS})\n\
@deftypefnx {Loadable Function} " RSBOI_FNS " (@var{A},\"save\",@var{MTXFILENAME})\n\
@deftypefnx {Loadable Function} {[@var{S}[, @var{nrows}[, @var{NCOLS}[, @var{NNZ}[, @var{REPINFO}[, @var{FIELD}[, @var{SYMMETRY}]]]]]]] =} " RSBOI_FNS " (@var{MTXFILENAME}[, @var{MTXTYPESTRING}])\n\
" RSBOI_10100_DOCH ""\
\
"\n"\
"Create or manipulate sparse matrices using the RSB format provided by librsb, almost as you do with @code{sparse}.\n"\
"\n"\
"If @var{A} is a @code{full} matrix, convert it to a sparse matrix representation,\n\
removing all zero values.\n"\
"If @var{A} is a @code{sparse} matrix, convert it to a sparse matrix representation.\n"\
"\n\
Given the integer index vectors @var{I} and @var{J}, and a 1-by-@code{nnz}\n\
vector of real or complex values @var{SV}, construct the sparse matrix\n\
@code{S(@var{I}(@var{K}),@var{J}(@var{K})) = @var{SV}(@var{K})} with overall\n\
dimensions @var{M} and @var{N}. \n\
\nThe argument\n\
@code{@var{NZMAX}} is ignored but accepted for compatibility with @sc{Matlab} and @code{sparse}.\n\
\n\
If @var{M} or @var{N} are not specified their values are derived from the\n\
maximum index in the vectors @var{I} and @var{J} as given by\n\
@code{@var{M} = max (@var{I})}, @code{@var{N} = max (@var{J})}.\n\
\n\
\
Can load a matrix from a Matrix Market matrix file named @var{MTXFILENAME}. \
The optional argument @var{MTXTYPESTRING} can specify either real (@code{\"D\"}) or complex (@code{\"Z\"}) type. \
Default is real.\n"\
"In the case @var{MTXFILENAME} is @code{\"" RSBOI_LIS "\"}, a string listing the available numerical types with BLAS-style characters will be returned. If the file turns out to contain a Matrix Market dense vector, this will be loaded.\n"\
\
\
"\n\
\
If @code{\"save\"} is specified, saves the sparse matrix as a Matrix Market matrix file named @var{MTXFILENAME}.\n"\
"\n\
\
@strong{Note}: if multiple values are specified with the same\n\
@var{I}, @var{J} indices, the corresponding values in @var{SV} will\n\
be added.\n\
\n\
The following are all equivalent:\n\
\n\
@example\n\
@group\n\
S = " RSBOI_FNS " (I, J, SV, M, N)\n\
S = " RSBOI_FNS " (I, J, SV, M, N, \"summation\")\n\
S = " RSBOI_FNS " (I, J, SV, M, N, \"sum\")\n"\
/*"S = " RSBOI_FNS " (I, J, SV, \"summation\")\n"*/\
/*"S = " RSBOI_FNS " (I, J, SV, \"sum\")\n"*/\
"@end group\n\
@end example\n\
\n\
\
If the optional @code{\"unique\"} keyword is specified instead, then if more than two values are specified for the\n\
same @var{I}, @var{J} indices, only the last value will be used.\n\
\n\
\
If the optional @code{\"symmetric\"} or @code{\"sym\"} keyword follows, then the input will be considered as the tringle of a symmetric matrix.\n\
If the optional @code{\"hermitian\"} or @code{\"her\"} keyword follows, then the input will be considered as the tringle of a hermitian matrix.\n\
If the optional @code{\"general\"} or @code{\"gen\"} keyword follows, then no symmetry hint is being given.\n\
\n\
@code{" RSBOI_FNS " (@var{M}, @var{N})} will create an empty @var{M}-by-@var{N} sparse\n\
matrix and is equivalent to @code{" RSBOI_FNS " ([], [], [], @var{M}, @var{N})}.\n\
\n\
\
\n\
\
If @var{M} or @var{N} are not specified, then @code{@var{M} = max (@var{I})}, @code{@var{N} = max (@var{J})}.\n\
\n\
\
If @var{OPN} is a string representing a valid librsb option name and @var{OPV} is a string representing a valid librsb option value, these will be passed to the @code{rsb_lib_set_opt_str()} function.\n\
\n\
\
If @var{MIF} is a string specifying a valid librsb matrix info string (valid for librsb's @code{rsb_mtx_get_info_from_string()}), then the corresponding value will be returned for matrix @code{@var{S}}, in string @code{@var{V}}. If @var{MIF} is the an empty string (@code{\"\"}), matrix structure information will be returned. As of librsb-1.2, this is debug or internal information. E.g. for @code{\"RSB_MIF_LEAVES_COUNT__TO__RSB_BLK_INDEX_T\"}, a string with the count of internal RSB blocks will be returned.\n\
\n"\
\
/*"If @var{S} is a " RSBOI_FNS " matrix and @var{QS} is a string, @var{QS} will be interpreted as a query string about matrix @var{S}. String @code{@var{V}} will be returned. See librsb's @code{rsb_mtx_get_info_str()}.\n\
@strong{Note}: this feature is still incomplete, and whatever the value of @var{QS}, a general information string will be returned.\n"*/\
\
"If @var{S} is a @code{" RSBOI_FNS "} matrix and @var{QS} is a string, @var{QS} shall be interpreted as a query string about matrix @var{S}. String @code{@var{V}} will be returned with query results. \n @strong{Note}: this feature is to be completed and its syntax reserved for future use. In this version, whatever the value of @var{QS}, a general matrix information string will be returned (like @code{" RSBOI_FNS "(@var{S},\"get\",\"RSB_MIF_LEAVES_COUNT__TO__RSB_BLK_INDEX_T\")} ).\n"\
"\n"\
/*If any of @var{SV}, @var{I} or @var{J} are scalars, they are expanded\n\
to have a common size.\n*/
RSBOI_10100_DOC ""\
"\n\
Long (64 bit) index support is partial: if Octave has been configured for 64 bit indices, @code{" RSBOI_FNS "} will correctly handle and convert matrices/indices that would fit in a 32 bit indices setup, failing on 'larger' ones. \n\
\n\
@strong{Note}: @code{" RSBOI_FNS "} variables behave just as @code{full} or @code{sparse} variables for @strong{most} operators.\n\
But interaction of binary sparse matrix -- sparse matrix operators involving @strong{symmetric} @code{" RSBOI_FNS "} matrices is not complete and may give unexpected results.\n\
\n\
@strong{Note}: \
Multiplication of a @code{" RSBOI_FNS "} variable by a @code{sparse} one (or the other way round) will expand @code{" RSBOI_FNS "}'s symmetry because of conversion to @code{sparse}.\n\
Multiplication of two @code{" RSBOI_FNS "} variables will not undergo any conversion or symmetry expansion (which might come as unexpected).\n\
\n\
@strong{Note}: \
Summation of a @code{" RSBOI_FNS "} variable with a @code{sparse} one (or the other way round) will expand @code{" RSBOI_FNS "}'s symmetry because of conversion to @code{sparse}.\n\
Summation of two @code{" RSBOI_FNS "} variables will not undergo any conversion or symmetry expansion (which might come as unexpected).\n\
\n\
@strong{Note}: \
Accessing a symmetric or hermitian @code{" RSBOI_FNS "} variable at indices falling in the empty triangle will return a zero.\n\
Accessing via (:,:) will imply symmetry/hermitianness expansion and conversion to @code{sparse}.\n\
\n\
@seealso{sparse, full, nnz, rows, columns, tril, triu, istril, istriu, issparse, iscomplex, isreal, issymmetric, ishermitian}\n\
@end deftypefn")
{
int nargin = args.length ();
octave_value_list retval;
octave_sparsersb_mtx*osmp = RSBOI_NULL;
bool ic0 = nargin>0?(args(0).iscomplex()):false;
bool ic3 = nargin>2?(args(2).iscomplex()):false;
bool isr = (nargin>0 && args(0).type_name()==RSB_OI_TYPEINFO_STRING);
RSBOI_DEBUG_NOTICE("in sparsersb()\n");
if(ic0)
{
RSBOI_WARN(RSBOI_O_MISSIMPERRMSG);
}
if(isr)
osmp = ((octave_sparsersb_mtx*)(args(0).internal_rep()));
if(ic3 || ic0)
#if RSBOI_WANT_DOUBLE_COMPLEX
RSBOI_WARN(RSBOI_0_UNCFEMSG);
#else /* RSBOI_WANT_DOUBLE_COMPLEX */
RSBOI_0_ERROR(RSBOI_0_NOCOERRMSG);
#endif /* RSBOI_WANT_DOUBLE_COMPLEX */
install_sparse_rsb();
if( nargin == 3 && args(0).is_string() && args(0).string_value()=="set" && args(1).is_string() && args(2).is_string())
{
// sparsersb ("set", OPN, OPV)
const auto os = args(1).string_value();
const auto vs = args(2).string_value();
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
const rsb_err_t errval = rsb_lib_set_opt_str(os.c_str(),vs.c_str());
if(RSBOI_SOME_ERROR(errval))
{
error ("failed setting option %s to %s (error %d)!",os.c_str(),vs.c_str(),errval);
goto err;
}
goto ret;
}
if( nargin >= 2 && args(0).is_string() && args(0).string_value()=="set" /* && args(1).is_string() */ )
{
// sparsersb ("set", XXX)
error ("%s", "did you intend to set librsb options ? use the correct syntax then ! (third argument missing)"); goto errp;
}
if( nargin == 2 && args(0).is_string() && args(0).string_value()=="get" && args(1).is_string() )
{
// sparsersb ("get", XXX)
/* FIXME: unfinished feature ! */
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
error ("%s", "getting library options still unimplemented!");
goto errp;
}
#if defined(RSB_LIBRSB_VER) && (RSB_LIBRSB_VER>=10100)
if (nargin >= 2 && isr && args(1).is_string() && args(1).string_value()=="autotune")
{
// sparsersb (S,"autotune"[, TRANSA, NRHS, MAXR, TMAX, TN, SF])
rsb_err_t errval = RSB_ERR_NO_ERROR;
/* these are user settable */
rsb_coo_idx_t nrhs = 0;
rsb_int_t maxr = 1;
rsb_time_t tmax = 2.0;
rsb_int_t tn = 0;
rsb_real_t sf = 1.0;
rsb_trans_t transA = RSB_TRANSPOSITION_N;
/* the following may also be user settable in the future */
const void *alphap = RSBOI_NULL;
const void *betap = RSBOI_NULL;
/* these not */
rsb_flags_t order = RSB_OI_DMTXORDER;
const void * Bp = RSBOI_NULL;
rsb_nnz_idx_t ldB = 0;
rsb_nnz_idx_t ldC = 0;
void * Cp = RSBOI_NULL;
if (nargin > 2) transA = RSB_CHAR_AS_TRANSPOSITION(args(2).string_value()[0]);
if (transA == RSBOI_INVALID_TRANS_CHAR)
{
RSBOI_0_ERROR(RSBOI_0_WTRANSMSG);
goto ret;
}
if (nargin > 3) nrhs = args(3).scalar_value();
if (nargin > 4) maxr = args(4).scalar_value();
if (nargin > 5) tmax = args(5).scalar_value();
if (nargin > 6) tn = args(6).scalar_value();
if (nargin > 7) sf = args(7).scalar_value();
// ...
if(!osmp || !osmp->mtxAp)
RSBOI_0_INTERRMSGSTMT(goto ret)
if(nargout)
{
struct rsb_mtx_t *mtxAp = RSBOI_NULL;
errval = rsb_mtx_clone(&mtxAp,RSB_NUMERICAL_TYPE_SAME_TYPE,RSB_TRANSPOSITION_N,RSBOI_NULL,osmp->mtxAp,RSBOI_EXPF);
rsboi_error(errval);
errval = rsb_tune_spmm(&mtxAp,&sf,&tn,maxr,tmax,transA,alphap,RSBOI_NULL,nrhs,order,Bp,ldB,betap,Cp,ldC);
rsboi_error(errval);
retval.append(new octave_sparsersb_mtx(mtxAp));
}
else
errval = rsb_tune_spmm(&osmp->mtxAp,&sf,&tn,maxr,tmax,transA,alphap,RSBOI_NULL/*osmp->mtxAp*/,nrhs,order,Bp,ldB,betap,Cp,ldC);
rsboi_error(errval);
goto ret;
}
#endif
#if defined(RSB_LIBRSB_VER) && (RSB_LIBRSB_VER>=10100)
if (nargin >= 3 && isr
&& args(1).is_string() && args(1).string_value().substr(0,6)=="render"
&& args(2).is_string())
{
// sparsersb (S,"render", FILENAME[, RWIDTH, RHEIGHT])
rsb_err_t errval = RSB_ERR_NO_ERROR;
std::string rmf = args(2).string_value();
rsb_coo_idx_t pmWidth = 512, pmHeight = 512; /* Care to update the documentation when changing these. */
rsb_flags_t marf = RSB_MARF_EPS;
/* may tell the user to supply a sparsersb matrix in case input is not 'sparse' */
if (nargin > 3) pmWidth = args(3).scalar_value();
if (nargin > 4) pmHeight = args(4).scalar_value();
if(!osmp || !osmp->mtxAp)
RSBOI_0_INTERRMSGSTMT(goto ret)
if( args(1).string_value() == "renders")
marf = RSB_MARF_EPS_S;
if( args(1).string_value() == "renderb")
marf = RSB_MARF_EPS_B;
errval = rsb_mtx_rndr(rmf.c_str(),osmp->mtxAp,pmWidth,pmHeight,marf);
if(RSBOI_SOME_ERROR(errval))
{
retval.append(std::string("Error returned from rsb_mtx_rndr()"));
rsboi_error(errval);
}
goto ret;
}
#endif
#if RSBOI_WANT_MTX_SAVE
if (nargin == 3 && isr
&& args(1).is_string() && args(1).string_value()=="save"
&& args(2).is_string())
{
// sparsersb (A,"save",MTXFILENAME)
rsb_err_t errval = RSB_ERR_NO_ERROR;
errval = rsb_file_mtx_save(osmp->mtxAp,args(2).string_value().c_str());
rsboi_error(errval);
goto ret;
}
#endif
if (nargin == 3 && isr
&& args(1).is_string() && args(1).string_value()=="get"
&& args(2).is_string())
{
// sparsersb (S, "get", MIF)
// For any version of lirsb, you can get valid values with e.g.:
// grep RSB_MIF path-to/rsb.h | sed 's/^[, ]*//g;s/\([A-Z_]\+\).*<\(.\+\)(.*$/\1: \2/g;s/$/;/g'
rsb_err_t errval = RSB_ERR_NO_ERROR;
char is[RSBOI_INFOBUF];
char ss[RSBOI_INFOBUF];
if(!osmp || !osmp->mtxAp)
RSBOI_0_INTERRMSGSTMT(goto ret)
if(strlen(args(2).string_value().c_str())==0)
strncpy(is,"RSB_MIF_MATRIX_INFO__TO__CHAR_P",sizeof(is));
else
strncpy(is,args(2).string_value().c_str(),sizeof(is));
errval = rsb_mtx_get_info_str(osmp->mtxAp,is,ss,RSBOI_INFOBUF);
if(!RSBOI_SOME_ERROR(errval))
{
retval.append(octave_value(ss));
goto ret;
}
if(RSBOI_SOME_ERROR(errval))
{
retval.append(std::string("Error returned from rsb_mtx_get_info_from_string()"));
}
goto ret;
}
if ( nargin >= 3 && isr && args(1).is_string() && args(1).string_value()=="get" /* && args(1).is_string() */ )
{
// sparsersb (S, "get", MIF, XXX)
error ("%s", "did you intend to get matrices information ? use the correct syntax then !");
goto errp;
}
if ( nargin == 1 || nargin == 2 )
{
rsb_type_t typecode = RSBOI_TYPECODE;
if (nargin >= 2)/* FIXME: this is weird ! */
#if RSBOI_WANT_DOUBLE_COMPLEX
typecode = RSB_NUMERICAL_TYPE_DOUBLE_COMPLEX;
#else /* RSBOI_WANT_DOUBLE_COMPLEX */
RSBOI_0_ERROR(RSBOI_0_NOCOERRMSG);
#endif /* RSBOI_WANT_DOUBLE_COMPLEX */
if (nargin == 2 && isr && args(1).is_string())
#if RSBOI_WANT_QSI
{
// sparsersb (S, QS)
char ss[RSBOI_INFOBUF];
rsb_err_t errval = RSB_ERR_NO_ERROR;
if(!osmp || !osmp->mtxAp)
RSBOI_0_INTERRMSGSTMT(goto ret)
errval = rsb_mtx_get_info_str(osmp->mtxAp,"RSB_MIF_MATRIX_INFO__TO__CHAR_P",ss,RSBOI_INFOBUF);
if(!RSBOI_SOME_ERROR(errval))
retval.append(ss);
/* TODO, FIXME: to add interpretation (we are ignoring args(1) !): this is to be extended. */
RSBOI_WARN(RSBOI_0_UNFFEMSG);/* FIXME: this is yet unfinished */
// octave_stdout << "Matrix information (in the future, supplementary information may be returned, as more inquiry functionality will be implemented):\n" << ss << "\n";
/* FIXME: shall not print out, but rather return the info as a string*/
//retval.append("place info string here !\n");
goto ret;
}
#else /* RSBOI_WANT_QSI */
{
// sparsersb (S, QS)
error ("%s", "invocation error !");
goto errp;
}
#endif /* RSBOI_WANT_QSI */
else
if(args(0).issparse())
{
// sparsersb (sparse(...), ...)
if( isr )
{
RSBOI_WARN(RSBOI_0_UNFFEMSG);
retval.append(osmp = (octave_sparsersb_mtx*)(args(0).get_rep()).clone());
}
else
{
if(!ic0)
{
const SparseMatrix m = args(0).sparse_matrix_value();
RSBOI_IF_ERR( goto err;)
retval.append(osmp = new octave_sparsersb_mtx(m,typecode));
}
#if RSBOI_WANT_DOUBLE_COMPLEX
else
{
const SparseComplexMatrix m = args(0).sparse_complex_matrix_value();
RSBOI_IF_ERR( goto err;)
retval.append(osmp = new octave_sparsersb_mtx(m,typecode));
}
#endif /* RSBOI_WANT_DOUBLE_COMPLEX */
}
}
else
if(args(0).is_string())
{
RSBOI_TRY_BLK
{
// sparsersb (MTXFILENAME)
const std::string mtxfilename = args(0).string_value();
RSBOI_IF_ERR( goto err;)
if(mtxfilename == RSBOI_LIS)
{
//retval.append(RSB_NUMERICAL_TYPE_PREPROCESSOR_SYMBOLS);
#if RSBOI_WANT_DOUBLE_COMPLEX
retval.append("D Z");
#else /* RSBOI_WANT_DOUBLE_COMPLEX */
retval.append("D");
#endif /* RSBOI_WANT_DOUBLE_COMPLEX */
goto ret;
}
else
{
// [S, NROWS, NCOLS, NNZ, REPINFO, FIELD, SYMMETRY] = sparsersb (MTXFILENAME)
rsb_type_t typecode = RSBOI_TYPECODE;
RSBOI_WARN(RSBOI_0_UNFFEMSG);
RSBOI_WARN("shall set the type, here");
if(nargin>1 && args(1).is_string())
{
const std::string mtxtypestring = args(1).string_value();
if(mtxtypestring == "complex" || mtxtypestring == "Z")
#if RSBOI_WANT_DOUBLE_COMPLEX
typecode = RSB_NUMERICAL_TYPE_DOUBLE_COMPLEX;
#else
RSBOI_0_ERROR(RSBOI_0_NOCOERRMSG);
#endif /* RSBOI_WANT_DOUBLE_COMPLEX */
if(mtxtypestring == "real" || mtxtypestring=="D")
typecode = RSB_NUMERICAL_TYPE_DOUBLE;
}
#if RSBOI_WANT_MTX_LOAD
osmp = new octave_sparsersb_mtx(mtxfilename,typecode);
#else /* RSBOI_WANT_DOUBLE_COMPLEX */
goto ret; /* TODO: need error message here */
#endif /* RSBOI_WANT_DOUBLE_COMPLEX */
if(osmp->mtxAp)
retval.append(osmp);
else
delete osmp;
#if RSBOI_WANT_VECLOAD_INSTEAD_MTX
if(!osmp->mtxAp)
{
rsb_nnz_idx_t n = 0;
rsb_file_vec_load(mtxfilename.c_str(),typecode,RSBOI_NULL,&n);
if(n<1)
{
// error ("%s", "are you sure you passed a valid Matrix Market vector file ?");
goto err;
}
if(typecode == RSB_NUMERICAL_TYPE_DOUBLE)
{
Matrix retvec(n,1,RSBOI_ZERO);
rsb_file_vec_load(mtxfilename.c_str(),typecode,(RSBOI_T*)retvec.data(),&n);
retval.append(retvec);
}
#if RSBOI_WANT_DOUBLE_COMPLEX
else
if(typecode == RSB_NUMERICAL_TYPE_DOUBLE_COMPLEX)
{
ComplexMatrix retvec(n,1,RSBOI_ZERO);
rsb_file_vec_load(mtxfilename.c_str(),typecode,(RSBOI_T*)retvec.data(),&n);
retval.append(retvec);
}
#endif /* RSBOI_WANT_DOUBLE_COMPLEX */
goto ret;
}
#endif
if(nargout) nargout--;
if(nargout) retval.append(osmp->rows()),--nargout;
if(nargout) retval.append(osmp->cols()),--nargout;
if(nargout) retval.append(osmp->nnz()),--nargout;
if(nargout) retval.append(osmp->get_info_string()),--nargout;
if(nargout) retval.append((!osmp->iscomplex())?"real":"complex"),--nargout;
if(nargout) retval.append(osmp->get_symmetry()),--nargout;
}
}
RSBOI_CATCH_BLK
}
else
{
RSBOI_TRY_BLK
{
if (nargin == 2 && args(0).is_scalar_type() && args(1).is_scalar_type() )
{
// sparsersb (M, N)
const SparseMatrix m = args(0).sparse_matrix_value();
retval.append(osmp = new octave_sparsersb_mtx(SparseMatrix(args(0).scalar_value(),args(1).scalar_value())));
}
else
{
// sparsersb (A, XXX)
if(!ic0)
{
Matrix m = args(0).matrix_value();
RSBOI_IF_ERR( goto err;)
retval.append(osmp = new octave_sparsersb_mtx(m));
}
#if RSBOI_WANT_DOUBLE_COMPLEX
else
{
ComplexMatrix m = args(0).complex_matrix_value();
RSBOI_IF_ERR( goto err;)
retval.append(osmp = new octave_sparsersb_mtx(m));
}
#endif /* RSBOI_WANT_DOUBLE_COMPLEX */
if(nargin >= 2)
{ error ("%s", "when initializing from a single matrix, no need for second argument !"); goto errp; }
}
}
RSBOI_CATCH_BLK
}
}
else
if (nargin >= 3 && nargin <= 7 && !(args(0).is_string() || args(1).is_string() || args(2).is_string() ) )
{
// sparsersb (I, J, SV, M, N, "unique")
rsb_flags_t eflags = RSBOI_DCF;
rsb_flags_t sflags = RSB_FLAG_NOFLAGS;
octave_idx_type nrA = 0, ncA = 0;
int sai = 0; // string argument index
if (nargin > 3)
{
if ( nargin < 5)
{
if(nargin == 4 && args(3).is_string())
goto checked;
RSBOI_EERROR(RSBOI_0_BADINVOERRMSG);
goto errp;
}
/* FIXME: integer_type should be also supported here: shouldn't it ?*/
if( (!args(3).is_scalar_type()) || (!args(4).is_scalar_type()))
{
RSBOI_EERROR(RSBOI_0_BADINVOERRMSG);
goto errp;
}
if( nargin > 5 && ((!args(5).is_string()) && (!args(5).is_scalar_type())))
{
RSBOI_EERROR(RSBOI_0_BADINVOERRMSG);
goto errp;
}
}
checked:
if (nargin >= 5 )
{
nrA = args(3).scalar_value();/* FIXME: need index value here! */
ncA = args(4).scalar_value();
if(nrA<=0 || ncA<=0)
{
RSBOI_EERROR(RSBOI_O_NPMSERR);
goto errp;
}
}
if (nargin >= 6 && args(5).is_string())
sai = 5;
else
if (nargin == 4 && args(3).is_string())
sai = 3;
for(;sai>0 && sai= 6 && args(5).isinteger())
{
/* we ignore this value for MATLAB compatibility */
}
RSBOI_IF_ERR( goto err;)
if(!ic3)
{
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
idx_vector iv = args(0).index_vector ();
idx_vector jv = args(1).index_vector ();
retval.append(osmp = new octave_sparsersb_mtx( iv, jv, args(2).matrix_value(),nrA,ncA,eflags ));
}
#if RSBOI_WANT_DOUBLE_COMPLEX
else
{
RSBOI_DEBUG_NOTICE(RSBOI_D_EMPTY_MSG);
idx_vector iv = args(0).index_vector ();
idx_vector jv = args(1).index_vector ();
retval.append(osmp = new octave_sparsersb_mtx( iv, jv, args(2).complex_matrix_value(),nrA,ncA,eflags ));
}
#endif /* RSBOI_WANT_DOUBLE_COMPLEX */
}
else
goto errp;
if(!osmp)
{
RSBOI_WARN(RSBOI_0_NEEDERR);
RSBOI_DEBUG_NOTICE(RSBOI_0_FATALNBMSG);
}
#if RSBOI_WANT_HEAVY_DEBUG
if(!rsb_is_correctly_built_rcsr_matrix(osmp->mtxAp)) // function non in rsb.h's API
{
RSBOI_WARN(RSBOI_0_NEEDERR);
RSBOI_DEBUG_NOTICE(RSBOI_0_UNCBERR);
}
#endif
goto err;
errp:
print_usage ();
err:
ret:
return retval;
}
/*
%!test
%! assert( 0==nnz(sparsersb(3,3) .- sparse(3,3)) )
%!test
%! assert( 0==nnz(sparsersb([],[],[],3,3 ) .- sparse([],[],[],3,3 )) )
%!test
%! assert( 0==nnz(sparsersb([],[],[],3,3,123) .- sparse([],[],[],3,3,321)) )
%!test
%! s=sparsersb([2]);
%! assert(s==2);
%! assert(s!=1)
%!test
%! s=sparsersb([1,2],[1,1],[11,21],2,2 );
%! assert(nnz(s)==2)
%!test
%! s=sparsersb([1,2],[1,1],[11,21],2,2,-1 );
%! assert(nnz(s)==2)
%!test
%! s=sparsersb([1,2],[1,1],[11,21] );
%! assert(nnz(s)==2)
%!test
%! s=sparsersb(10,10 );
%! assert(nnz(s)==0)
%!test
%! s=sparsersb([1,1],[1,1],[11,21] );
%! assert(nnz(s)==1)
%! assert(s(1,1)==32)
%!test
%! s=sparsersb([1,1],[1,1],[11,21],2,2,"unique");
%! assert(nnz(s)==1),
%! assert(s(1,1)==21)
%!test
%! sparsersb("set","RSB_IO_WANT_VERBOSE_TUNING","1");
%!test
%! sparsersb("set","RSB_IO_WANT_VERBOSE_TUNING","0");
%!test
%! wvt=0;
%! try
%! sparsersb("set","...")
%! wvt=1;
%! end_try_catch
%! assert(wvt==0)
%!test
%! sparsersb("set","FIXME: WE UNFORTUNATELY STILL SILENTLY IGNORE ERRORS HERE (NO RETURN VALUE)","1");
%!test
%! wvt=-1;
%! try
%! wvt=sparsersb("get","RSB_IO_WANT_VERBOSE_TUNING")
%! assert(wvt==0 || wvt ==1)
%! end_try_catch
%! assert(wvt==-1)
%!test
%! s=sparsersb([1]);
%! assert(sparsersb(s,"get","RSB_MIF_LEAVES_COUNT__TO__RSB_BLK_INDEX_T")=="1")
%!test
%! s=sparsersb([1]);
%! assert(str2num(sparsersb(s,"get","RSB_MIF_LEAVES_COUNT__TO__RSB_BLK_INDEX_T"))==1)
%!test
%! s=sparsersb([1]);
%! assert(str2num(sparsersb(s,"get","RSB_MIF_INDEX_STORAGE_IN_BYTES__TO__SIZE_T"))>1)
%!test
%! s=sparsersb([1]);
%! assert(str2num(sparsersb(s,"get","RSB_MIF_INDEX_STORAGE_IN_BYTES_PER_NNZ__TO__RSB_REAL_T"))>1)
%!test
%! s=sparsersb([1]);
%! assert(str2num(sparsersb(1*s,"get","RSB_MIF_MATRIX_TYPECODE__TO__RSB_TYPE_T"))==68) # D
%!test
%! s=sparsersb([1]);
%! assert(str2num(sparsersb(i*s,"get","RSB_MIF_MATRIX_TYPECODE__TO__RSB_TYPE_T"))==90) # Z
%!test
%! s=sparsersb([1,1],[1,1],[11,21],2,2,"unique");
%! assert(str2num(sparsersb(s,"get","RSB_MIF_LEAVES_COUNT__TO__RSB_BLK_INDEX_T"))>0)
%!test
%! s=sparsersb([1]);
%! v=1;
%! assert(strfind(sparsersb(sparsersb([1]),"get","WRONG SPEC STRING"),"Error")==1)
%!test
%! assert(sparsersb(sparsersb([11,0;21,22]),"get","RSB_MIF_TOTAL_SIZE__TO__SIZE_T")>1)
%!test
%! assert(length(sparsersb(sparsersb([11,0;21,22]),"RSB_MIF_TOTAL_SIZE__TO__SIZE_T"))>1)
%!test
%! s=sparsersb([11,0;21,22]);
%! assert(sparsersb(s,"RSB_MIF_TOTAL_SIZE__TO__SIZE_T") == sparsersb(s,"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"))
%!test
%! s=sparsersb([1]);
%! sparsersb(sparsersb([11,0;21,22]),"save","sparsersb_temporary_matrix_file.mtx")
%!test
%! [S, NROWS, NCOLS, NNZ, REPINFO, FIELD, SYMMETRY] = sparsersb("sparsersb_temporary_matrix_file.mtx" );
%! assert(NROWS==2)
%! assert(NCOLS==2)
%! assert(NNZ==3)
%! assert(FIELD=="real");
%! assert(SYMMETRY=='U');
%!test
%! [S, NROWS, NCOLS, NNZ, REPINFO, FIELD, SYMMETRY] = sparsersb("sparsersb_temporary_matrix_file.mtx", "Z");
%! assert(NROWS==2);
%! assert(NCOLS==2);
%! assert(NNZ==3);
%! assert(FIELD=="complex");
%! assert(SYMMETRY=='U');
%!test
%! [S, NROWS, NCOLS, NNZ, REPINFO, FIELD] = sparsersb("sparsersb_temporary_matrix_file.mtx", "D");
%! assert(NROWS==2);
%! assert(NCOLS==2);
%! assert(NNZ==3);
%! assert(FIELD=="real");
%!test
%! [S, NROWS, NCOLS, NNZ, REPINFO] = sparsersb("sparsersb_temporary_matrix_file.mtx", "D");
%! assert(NROWS==2);
%! assert(NCOLS==2);
%! assert(NNZ==3);
%!test
%! [S, NROWS, NCOLS] = sparsersb("sparsersb_temporary_matrix_file.mtx", "D");
%! assert(NROWS==2);
%! assert(NCOLS==2);
%!test
%! [S, NROWS] = sparsersb("sparsersb_temporary_matrix_file.mtx", "D");
%! assert(NROWS==2);
%!test
%! rrm=sparsersb(sprand(1000,1000,0.001));
%! sparsersb(rrm,"render", "sparsersb_temporary_render.eps" ,1024); # will use defaults for rWidth
%!test
%! rrm=sparsersb(sprand(1000,1000,0.001));
%! sparsersb(rrm,"render", "sparsersb_temporary_render.eps" ,1024,1024);
%! # sparsersb(rrm,"renderb", "sparsersb_temporary_renderb.eps"); sparsersb(rrm,"renders", "sparsersb_temporary_renders.eps"); # FIXME
%!test
%! a=sparsersb(sprand(100,100,0.4));
%! sparsersb(a,"autotune");
%!test
%! a=sparsersb(sprand(100,100,0.4));
%! o=sparsersb(a,"AUTOTUNE");
%! v=0;
%! try
%! assert(o==a)
%! v=1
%! end_try_catch
%! assert(v==0)
%! assert(length(o)>10)
%!test
%! a=sparsersb(sprand(100,100,0.4));
%! o=sparsersb(a,"autotune");
%! assert(o==a)
%!test
%! a=sparsersb(sprand(100,100,0.4));
%! nrhs=2;
%! o=sparsersb(a,"autotune","n",nrhs);
%! assert(o==a)
%!test
%! a=1*sparsersb(sprand(100,100,0.4));
%! nrhs=2;
%! o=sparsersb(a,"autotune","c",nrhs);
%! assert(o==a)
%!test
%! a=i*sparsersb(sprand(100,100,0.4));
%! nrhs=2;
%! o=sparsersb(a,"autotune","c",nrhs);
%! assert(o==a)
%!test
%! a=sparsersb(sprand(100,100,0.4));
%! nrhs=1;
%! maxr=1;
%! o=sparsersb(a,"autotune","N",nrhs,maxr);
%! assert(o==a)
%!test
%! a=sparsersb(sprand(100,100,0.4));
%! nrhs=1;
%! maxr=1;
%! tmax=1;
%! o=sparsersb(a,"autotune","n",nrhs,maxr,tmax);
%! assert(o==a)
%!test
%! a=sparsersb(sprand(100,100,0.4));
%! nrhs=1;
%! maxr=1;
%! tmax=1;
%! tn=1;
%! o=sparsersb(a,"autotune","n",nrhs,maxr,tmax,tn);
%! assert(o==a)
%!test
%! a=sparsersb(sprand(100,100,0.4));
%! nrhs=1;
%! maxr=1;
%! tmax=1;
%! tn=1;
%! sf=1;
%! o=sparsersb(a,"autotune","n",nrhs,maxr,tmax,tn,sf);
%! assert(o==a)
%!test
%! a=sparsersb(sprand(100,100,0.4));
%! nrhs=1;
%! maxr=1;
%! tmax=1;
%! tn=2;
%! sf=1;
%! if getenv ("OMP_NUM_THREADS") != "1" ;
%! o=sparsersb(a,"autotune","n",nrhs,maxr,tmax,tn,sf);
%! assert(o==a)
%! end
%!test
%! a=sparsersb(sprand(100,100,0.4));
%! nrhs=20;
%! maxr=1;
%! tmax=1;
%! tn=1;
%! o=sparsersb(a,"autotune","t",nrhs,maxr,tmax,tn);
%! assert(o==a)
%!test
%! a=sparsersb(sprand(100,100,0.4));
%! nrhs=20;
%! maxr=1;
%! tmax=1;
%! tn=1;
%! sf=1;
%! o=sparsersb(a,"autotune","n",nrhs,maxr,tmax,tn,sf);
%! assert(o==a)
%!test
%! a=sparsersb(sprand(100,100,0.4));
%! nrhs=20;
%! maxr=1;
%! tmax=1;
%! tn=0;
%! sf=1;
%! o=sparsersb(a,"autotune","n",nrhs,maxr,tmax,tn,sf);
%! assert(o==a)
%!test
%! a=sparsersb(sprand(100,100,0.4));
%! nrhs=20;
%! maxr=0;
%! tmax=0;
%! tn=0;
%! sf=1;
%! o=sparsersb(a,"autotune","n",nrhs,maxr,tmax,tn,sf);
%! assert(o==a)
%!test
%! a=sparsersb(sprand(100,100,0.4));
%! nrhs=1;
%! maxr=0;
%! tmax=0;
%! tn=0;
%! sf=1;
%! wvt=0;
%! try
%! o=sparsersb(a,"autotune","?",nrhs,maxr,tmax,tn,sf);
%! wvt=1;
%! end_try_catch
%! assert(wvt==0)
%! # assert(o==a) # o undefined
%!test
%! assert( nnz(sparse((toeplitz(sparsersb([0,1,2,3]))-toeplitz(sparse([0,1,2,3])))))==0 );
%!test
%! assert( prod(sparsersb([11,12,13;21,22,23])(:) - [11,21,12,22,13,23]')==0);
%!test
%! A = sprand(4,4,.5);
%! assert(prod(reshape(sparsersb(A),[8,2]) - reshape(sparse(A),[8,2]))==0);
%!test
%! assert(sparsersb([-1,1,2])() == sparsersb([-1,1,2]));
%!test
%! % symmetry expansion
%! A=sparsersb([1+i,0,1;0,1,0;1,0,1]);
%! assert(nnz(A)==4 && nnz(full(A))==5);
%!test
%! % 1-D indexing access is meant to be like in sparse
%! A=sparsersb([1+i,0,1;0,1,0;1,0,1]);
%! assert(A(1)==(1+i) && A(3)==1 && sparse(A)(3)==1)
%! A=sparsersb([1+i,0,1;0,1,0;1,0,1]);
%! assert(A(1)==(1+i) && A(2)==0 && sparse(A)(2)==0)
%!test
%! A=sparsersb([1+i,0,1;0,1,0;1,0,1]);
%! assert(0==A(2:5)-sparsersb([1,1],[2,4],[1+0i,1+0i],1,4))
%!test
%! assert( nnz(sparse([2,1;1,2])) == 4 && nnz(sparsersb([2,1;1,2])) == 3 ) # symmetry
%! assert( nnz(sparse([2,0;1,2])) == 3 && nnz(sparsersb([2,0;1,2])) == 3 ) # no symmetry
%!test
%! assert( (sparse([2,0;1,2]) \ [1;1]) == (sparsersb([2,0;1,2]) \ [1;1]) )
%! assert( (sparse([2,0;0,2]) \ [1;1]) == (sparsersb([2,0;0,2]) \ [1;1]) )
%!test
%! assert( (sparse([2,0;1,2]) * [1;1]) == (sparsersb([2,0;1,2]) * [1;1]) )
%! assert( (sparse([2,0;0,2]) * [1;1]) == (sparsersb([2,0;0,2]) * [1;1]) )
%!test
%! % no symmetry expansion and no conversion:
%! assert ( ( sparsersb([1,1;1,1])*sparsersb([1,1;1,1] )) == ( sparse([1,0;1,1])*sparse([1,0;1,1]) ) )
%!test
%! % symmetry expansion and sparsersb->sparse conversion:
%! assert ( ( sparsersb([1,1;1,1])*sparse ([1,1;1,1] )) == ( sparse([1,1;1,1])*sparse([1,1;1,1]) ) )
%!test
%! % symmetry expansion and sparsersb->sparse conversion:
%! assert ( ( sparse ([1,1;1,1])*sparsersb([1,1;1,1] )) == ( sparse([1,1;1,1])*sparse([1,1;1,1]) ) )
%!test
%! % no symmetry expansion and no conversion:
%! assert ( ( sparsersb([1,1;1,1])+sparsersb([1,1;1,1] )) == ( sparse([1,0;1,1])+sparse([1,0;1,1]) ) )
%!test
%! % symmetry expansion and sparsersb->sparse conversion:
%! assert ( ( sparsersb([1,1;1,1])+sparse ([1,1;1,1] )) == ( sparse([1,1;1,1])+sparse([1,1;1,1]) ) )
%!test
%! % symmetry expansion and sparsersb->sparse conversion:
%! assert ( ( sparse ([1,1;1,1])+sparsersb([1,1;1,1] )) == ( sparse([1,1;1,1])+sparse([1,1;1,1]) ) )
%!test
%! % symmetry specification: general
%! assert ( sparsersb([1,2,2],[1,1,2],[1,1,1],"general") == sparse([1,0;1,1]) )
%!test
%! % symmetry specification: symmetric
%! assert ( sparsersb([1,2,2],[1,1,2],[1,1,1],"symmetric") == sparse([1,1;1,1]) )
%!test
%! % symmetry specification: symmetric, and conversion and (:,:) access
%! assert ( sparsersb([1,2,2],[1,1,2],[1,1+i,1],"symmetric") == sparse([1,1+i;1+i,1]) )
%! assert ( sparsersb([1,2,2],[1,1,2],[1,1+i,1],"symmetric") == sparsersb([1,2,2],[1,1,2],[1,1+i,1],"symmetric")(:,:) )
%!test
%! % symmetry specification: hermitian, and conversion and (:,:) access
%! assert ( sparsersb([1,2,2],[1,1,2],[1,1,1],"hermitian") == sparse([1,1;1,1]) )
%! assert ( sparsersb([1,2,2],[1,1,2],[1,1,1],"hermitian") == sparsersb([1,2,2],[1,1,2],[1,1,1],"hermitian")(:,:) )
%!test
%! % symmetry specification: hermitian, and conversion and (:,:) access
%! assert ( sparsersb([1,2,2],[1,1,2],[1,1+i,1],"hermitian") == sparse([1,1-i;1+i,1]) )
%! assert ( sparsersb([1,2,2],[1,1,2],[1,1+i,1],"hermitian") == sparsersb([1,2,2],[1,1,2],[1,1+i,1],"hermitian")(:,:) )
%!test
%! % symmetry or hermitianness: no empty triangle access
%! assert ( sparsersb([1,2,2],[1,1,2],[1,1+i,1],"symmetric")(1,2) == 0 )
%! assert ( sparsersb([1,2,2],[1,1,2],[1,1+i,1],"hermitian")(1,2) == 0 )
%! assert ( sparsersb([1,2,2],[1,1,2],[1,1+i,1],"general")(1,2) == 0 )
%! assert ( sparsersb([1,2,2],[1,1,2],[1,1+i,1],"symmetric")(2,1) != 0 )
%! assert ( sparsersb([1,2,2],[1,1,2],[1,1+i,1],"hermitian")(2,1) != 0 )
%! assert ( sparsersb([1,2,2],[1,1,2],[1,1+i,1],"general")(2,1) != 0 )
%!test
%! % symmetry expansion
%! assert ( nnz(sparse(sparsersb([1 ,1;1,1])) - sparse([1 ,1;1,1])) == 0 )
%! assert ( nnz(sparse(sparsersb([1+i,1;1,1])) - sparse([1+i,1;1,1])) == 0 )
%! % hermitianness expansion
%! assert ( nnz(sparsersb([1,1+i;1-i,1]) - sparse([1,1+i;1-i,1])) == 0 )
%! % no symmetric complex expansion
%! assert ( nnz(sparsersb([1,1+i;1+i,1]) - sparse([1,1+i;1-i,1])) == 1 )
%!test
%! assert( (sparse([2, 0; 1, 2])(:,:)) == (sparsersb([2, 0; 1, 2])(:,:)) )
%! assert( (sparse([2, 0; i, 2])(:,:)) == (sparsersb([2, 0; i, 2])(:,:)) )
%!test
%! assert( (sparse([2, 0; 1, 2])(2,:)) == (sparsersb([2, 0; 1, 2])(2,:)) )
%! assert( (sparse([2, 0; i, 2])(2,:)) == (sparsersb([2, 0; i, 2])(2,:)) )
%!test
%! assert( (sparse([2, 0; 1, 2])(:,2)) == (sparsersb([2, 0; 1, 2])(:,2)) )
%! assert( (sparse([2, 0; i, 2])(:,2)) == (sparsersb([2, 0; i, 2])(:,2)) )
%!test
%! assert( (sparse([2,0;1,2]) * [1;1]) == (sparsersb([2,0;1,2]) * [1;1]) )
%! assert( (sparse([2,0;0,2]) * [1;1]) == (sparsersb([2,0;0,2]) * [1;1]) )
%!test
%! assert( (sparse([2,0;1,2]) * [i;1]) == (sparsersb([2,0;1,2]) * [i;1]) )
%! assert( (sparse([2,0;0,2]) * [i;1]) == (sparsersb([2,0;0,2]) * [i;1]) )
%!test
%! assert( (sparse([2,0;1,2])'* [1;1]) == (sparsersb([2,0;1,2])'* [1;1]) )
%! assert( (sparse([2,0;0,2])'* [1;1]) == (sparsersb([2,0;0,2])'* [1;1]) )
%!test
%! assert( (sparse([2,0;1,2])'* [i;1]) == (sparsersb([2,0;1,2])'* [i;1]) )
%! assert( (sparse([2,0;0,2])'* [i;1]) == (sparsersb([2,0;0,2])'* [i;1]) )
%!test
%! assert( (sparse([2,0;1,2]).'* [1;1]) == (sparsersb([2,0;1,2]).'* [1;1]) )
%! assert( (sparse([2,0;0,2]).'* [1;1]) == (sparsersb([2,0;0,2]).'* [1;1]) )
%!test
%! assert( (sparse([2,0;1,2]).'* [i;1]) == (sparsersb([2,0;1,2]).'* [i;1]) )
%! assert( (sparse([2,0;0,2]).'* [i;1]) == (sparsersb([2,0;0,2]).'* [i;1]) )
%!test
%! assert( (sparse([2,0;1,2]) * 1 ) == (sparsersb([2,0;1,2]) * 1 ) )
%! assert( (sparse([2,0;0,2]) * 1 ) == (sparsersb([2,0;0,2]) * 1 ) )
%!test
%! assert( (sparse([2,0;1,2]) * i ) == (sparsersb([2,0;1,2]) * i ) )
%! assert( (sparse([2,0;0,2]) * i ) == (sparsersb([2,0;0,2]) * i ) )
%!test
%! assert( (sparse([2,0;1,2]).* 1 ) == (sparsersb([2,0;1,2]).* 1 ) )
%! assert( (sparse([2,0;0,2]).* 1 ) == (sparsersb([2,0;0,2]).* 1 ) )
%!test
%! assert( (sparse([2,0;1,2]).* i ) == (sparsersb([2,0;1,2]).* i ) )
%! assert( (sparse([2,0;0,2]).* i ) == (sparsersb([2,0;0,2]).* i ) )
%!test
%! assert( ( sparse([2,0;1,2]) + 1*sparse([2,0;1,2]) ) == (sparsersb([2,0;1,2]) + 1*sparsersb([2,0;1,2]) ) )
%!test
%! assert( ( sparse([2,0;0,2]) + 1*sparse([2,0;0,2]) ) == (sparsersb([2,0;0,2]) + 1*sparsersb([2,0;0,2]) ) )
%!test
%! assert( ( sparse([2,0;1,2]) + i*sparse([2,0;1,2]) ) == (sparsersb([2,0;1,2]) + i*sparsersb([2,0;1,2]) ) )
%!test
%! assert( ( sparse([2,0;0,2]) + i*sparse([2,0;0,2]) ) == (sparsersb([2,0;0,2]) + i*sparsersb([2,0;0,2]) ) )
%!test
%! assert( (sparse([ 1 + 1i,0;0, 1 + 1i]).'* [1,2;1,2]) == (sparsersb([ 1 + 1i,0;0, 1 + 1i]).'* [1,2;1,2]) )
*/
/* GENERATED TEST LINES BEGIN */ /*
%% tests for a 1 x 1 matrix, density 10%, real
%!test
%! A = [0,;]; assert ( (sparsersb (A)) == (sparse (A)));
%!test
%! A = [0,;]; assert (istril (sparsersb (A)) == istril (sparse (A)));
%!test
%! A = [0,;]; assert (istriu (sparsersb (A)) == istriu (sparse (A)));
%!test
%! A = [0,;]; assert (isreal (sparsersb (A)) == isreal (sparse (A)));
%!test
%! A = [0,;]; assert (iscomplex (sparsersb (A)) == iscomplex (sparse (A)));
%!test
%! A = [0,;]; assert (issymmetric (sparsersb (A)) == issymmetric (sparse (A)));
%!test
%! A = [0,;]; assert (ishermitian (sparsersb (A)) == ishermitian (sparse (A)));
%!test
%! A = [0,;]; assert (nnz (sparsersb (A)) == nnz (sparse (A)));
%!test
%! A = [0,;]; assert (rows (sparsersb (A)) == rows (sparse (A)));
%!test
%! A = [0,;]; assert (columns (sparsersb (A)) == columns (sparse (A)));
%!test
%! A = [0,;]; assert (sparsersb (A)'*(1*ones(size(A,1))) == sparse (A)'*(1*ones(size(A,1))));
%!test
%! A = [0,;]; assert (sparsersb (A)'*(i*ones(size(A,1))) == sparse (A)'*(i*ones(size(A,1))));
%!test
%! A = [0,;]; assert (sparsersb (A)( ) == sparse (A)( ));
%!test
%! A = [0,;]; assert (sparsersb (A)(1) == sparse (A)(1));
%!test
%! A = [0,;]; assert (sparsersb (A)(1,1) == sparse (A)(1,1));
%!test
%! A = [0,;]; assert (sparsersb (A)(1,:) == sparse (A)(1,:));
%!test
%! A = [0,;]; assert (sparsersb (A)(:) == sparse (A)(:));
%!test
%! A = [0,;]; assert (sparsersb (A)(:,1) == sparse (A)(:,1));
%!test
%! A = [0,;]; assert (sparsersb (A)(:,:) == sparse (A)(:,:));
%!test
%! A = [0,;]; assert (sparsersb (A)*(1*ones(size(A,2))) == sparse (A)*(1*ones(size(A,2))));
%!test
%! A = [0,;]; assert (sparsersb (A)*(i*ones(size(A,2))) == sparse (A)*(i*ones(size(A,2))));
%!test
%! A = [0,;]; assert (sparsersb (A)*1 == sparse (A)*1);
%!test
%! A = [0,;]; assert (sparsersb (A)*i == sparse (A)*i);
%!test
%! A = [0,;]; assert (sparsersb (A).'*(1*ones(size(A,1))) == sparse (A).'*(1*ones(size(A,1))));
%!test
%! A = [0,;]; assert (sparsersb (A).'*(i*ones(size(A,1))) == sparse (A).'*(i*ones(size(A,1))));
%!test
%! A = [0,;]; assert (reshape (sparsersb (A), 1, 1) == reshape (sparse (A), 1, 1));
%% tests for a 1 x 1 matrix, density 10%, complex
%!test
%! A = [0,;]; assert ( (sparsersb (A)) == (sparse (A)));
%!test
%! A = [0,;]; assert (istril (sparsersb (A)) == istril (sparse (A)));
%!test
%! A = [0,;]; assert (istriu (sparsersb (A)) == istriu (sparse (A)));
%!test
%! A = [0,;]; assert (isreal (sparsersb (A)) == isreal (sparse (A)));
%!test
%! A = [0,;]; assert (iscomplex (sparsersb (A)) == iscomplex (sparse (A)));
%!test
%! A = [0,;]; assert (issymmetric (sparsersb (A)) == issymmetric (sparse (A)));
%!test
%! A = [0,;]; assert (ishermitian (sparsersb (A)) == ishermitian (sparse (A)));
%!test
%! A = [0,;]; assert (nnz (sparsersb (A)) == nnz (sparse (A)));
%!test
%! A = [0,;]; assert (rows (sparsersb (A)) == rows (sparse (A)));
%!test
%! A = [0,;]; assert (columns (sparsersb (A)) == columns (sparse (A)));
%!test
%! A = [0,;]; assert (sparsersb (A)'*(1*ones(size(A,1))) == sparse (A)'*(1*ones(size(A,1))));
%!test
%! A = [0,;]; assert (sparsersb (A)'*(i*ones(size(A,1))) == sparse (A)'*(i*ones(size(A,1))));
%!test
%! A = [0,;]; assert (sparsersb (A)( ) == sparse (A)( ));
%!test
%! A = [0,;]; assert (sparsersb (A)(1) == sparse (A)(1));
%!test
%! A = [0,;]; assert (sparsersb (A)(1,1) == sparse (A)(1,1));
%!test
%! A = [0,;]; assert (sparsersb (A)(1,:) == sparse (A)(1,:));
%!test
%! A = [0,;]; assert (sparsersb (A)(:) == sparse (A)(:));
%!test
%! A = [0,;]; assert (sparsersb (A)(:,1) == sparse (A)(:,1));
%!test
%! A = [0,;]; assert (sparsersb (A)(:,:) == sparse (A)(:,:));
%!test
%! A = [0,;]; assert (sparsersb (A)*(1*ones(size(A,2))) == sparse (A)*(1*ones(size(A,2))));
%!test
%! A = [0,;]; assert (sparsersb (A)*(i*ones(size(A,2))) == sparse (A)*(i*ones(size(A,2))));
%!test
%! A = [0,;]; assert (sparsersb (A)*1 == sparse (A)*1);
%!test
%! A = [0,;]; assert (sparsersb (A)*i == sparse (A)*i);
%!test
%! A = [0,;]; assert (sparsersb (A).'*(1*ones(size(A,1))) == sparse (A).'*(1*ones(size(A,1))));
%!test
%! A = [0,;]; assert (sparsersb (A).'*(i*ones(size(A,1))) == sparse (A).'*(i*ones(size(A,1))));
%!test
%! A = [0,;]; assert (reshape (sparsersb (A), 1, 1) == reshape (sparse (A), 1, 1));
%% tests for a 1 x 3 matrix, density 10%, real
%!test
%! A = [0,0,0,;]; assert ( (sparsersb (A)) == (sparse (A)));
%!test
%! A = [0,0,0,;]; assert (istril (sparsersb (A)) == istril (sparse (A)));
%!test
%! A = [0,0,0,;]; assert (istriu (sparsersb (A)) == istriu (sparse (A)));
%!test
%! A = [0,0,0,;]; assert (isreal (sparsersb (A)) == isreal (sparse (A)));
%!test
%! A = [0,0,0,;]; assert (iscomplex (sparsersb (A)) == iscomplex (sparse (A)));
%!test
%! A = [0,0,0,;]; assert (issymmetric (sparsersb (A)) == issymmetric (sparse (A)));
%!test
%! A = [0,0,0,;]; assert (ishermitian (sparsersb (A)) == ishermitian (sparse (A)));
%!test
%! A = [0,0,0,;]; assert (nnz (sparsersb (A)) == nnz (sparse (A)));
%!test
%! A = [0,0,0,;]; assert (rows (sparsersb (A)) == rows (sparse (A)));
%!test
%! A = [0,0,0,;]; assert (columns (sparsersb (A)) == columns (sparse (A)));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)'*(1*ones(size(A,1))) == sparse (A)'*(1*ones(size(A,1))));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)'*(i*ones(size(A,1))) == sparse (A)'*(i*ones(size(A,1))));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)( ) == sparse (A)( ));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)(1) == sparse (A)(1));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)(1,1) == sparse (A)(1,1));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)(1,3) == sparse (A)(1,3));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)(1,:) == sparse (A)(1,:));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)(3) == sparse (A)(3));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)(:) == sparse (A)(:));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)(:,3) == sparse (A)(:,3));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)(:,:) == sparse (A)(:,:));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)*(1*ones(size(A,2))) == sparse (A)*(1*ones(size(A,2))));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)*(i*ones(size(A,2))) == sparse (A)*(i*ones(size(A,2))));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)*1 == sparse (A)*1);
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)*i == sparse (A)*i);
%!test
%! A = [0,0,0,;]; assert (sparsersb (A).'*(1*ones(size(A,1))) == sparse (A).'*(1*ones(size(A,1))));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A).'*(i*ones(size(A,1))) == sparse (A).'*(i*ones(size(A,1))));
%!test
%! A = [0,0,0,;]; assert (reshape (sparsersb (A), 1, 3) == reshape (sparse (A), 1, 3));
%!test
%! A = [0,0,0,;]; assert (reshape (sparsersb (A), 3, 1) == reshape (sparse (A), 3, 1));
%% tests for a 1 x 3 matrix, density 10%, complex
%!test
%! A = [0,0,0,;]; assert ( (sparsersb (A)) == (sparse (A)));
%!test
%! A = [0,0,0,;]; assert (istril (sparsersb (A)) == istril (sparse (A)));
%!test
%! A = [0,0,0,;]; assert (istriu (sparsersb (A)) == istriu (sparse (A)));
%!test
%! A = [0,0,0,;]; assert (isreal (sparsersb (A)) == isreal (sparse (A)));
%!test
%! A = [0,0,0,;]; assert (iscomplex (sparsersb (A)) == iscomplex (sparse (A)));
%!test
%! A = [0,0,0,;]; assert (issymmetric (sparsersb (A)) == issymmetric (sparse (A)));
%!test
%! A = [0,0,0,;]; assert (ishermitian (sparsersb (A)) == ishermitian (sparse (A)));
%!test
%! A = [0,0,0,;]; assert (nnz (sparsersb (A)) == nnz (sparse (A)));
%!test
%! A = [0,0,0,;]; assert (rows (sparsersb (A)) == rows (sparse (A)));
%!test
%! A = [0,0,0,;]; assert (columns (sparsersb (A)) == columns (sparse (A)));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)'*(1*ones(size(A,1))) == sparse (A)'*(1*ones(size(A,1))));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)'*(i*ones(size(A,1))) == sparse (A)'*(i*ones(size(A,1))));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)( ) == sparse (A)( ));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)(1) == sparse (A)(1));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)(1,1) == sparse (A)(1,1));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)(1,3) == sparse (A)(1,3));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)(1,:) == sparse (A)(1,:));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)(3) == sparse (A)(3));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)(:) == sparse (A)(:));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)(:,3) == sparse (A)(:,3));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)(:,:) == sparse (A)(:,:));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)*(1*ones(size(A,2))) == sparse (A)*(1*ones(size(A,2))));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)*(i*ones(size(A,2))) == sparse (A)*(i*ones(size(A,2))));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)*1 == sparse (A)*1);
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)*i == sparse (A)*i);
%!test
%! A = [0,0,0,;]; assert (sparsersb (A).'*(1*ones(size(A,1))) == sparse (A).'*(1*ones(size(A,1))));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A).'*(i*ones(size(A,1))) == sparse (A).'*(i*ones(size(A,1))));
%!test
%! A = [0,0,0,;]; assert (reshape (sparsersb (A), 1, 3) == reshape (sparse (A), 1, 3));
%!test
%! A = [0,0,0,;]; assert (reshape (sparsersb (A), 3, 1) == reshape (sparse (A), 3, 1));
%% tests for a 3 x 1 matrix, density 10%, real
%!test
%! A = [0,;0,;0,;]; assert ( (sparsersb (A)) == (sparse (A)));
%!test
%! A = [0,;0,;0,;]; assert (istril (sparsersb (A)) == istril (sparse (A)));
%!test
%! A = [0,;0,;0,;]; assert (istriu (sparsersb (A)) == istriu (sparse (A)));
%!test
%! A = [0,;0,;0,;]; assert (isreal (sparsersb (A)) == isreal (sparse (A)));
%!test
%! A = [0,;0,;0,;]; assert (iscomplex (sparsersb (A)) == iscomplex (sparse (A)));
%!test
%! A = [0,;0,;0,;]; assert (issymmetric (sparsersb (A)) == issymmetric (sparse (A)));
%!test
%! A = [0,;0,;0,;]; assert (ishermitian (sparsersb (A)) == ishermitian (sparse (A)));
%!test
%! A = [0,;0,;0,;]; assert (nnz (sparsersb (A)) == nnz (sparse (A)));
%!test
%! A = [0,;0,;0,;]; assert (rows (sparsersb (A)) == rows (sparse (A)));
%!test
%! A = [0,;0,;0,;]; assert (columns (sparsersb (A)) == columns (sparse (A)));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)'*(1*ones(size(A,1))) == sparse (A)'*(1*ones(size(A,1))));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)'*(i*ones(size(A,1))) == sparse (A)'*(i*ones(size(A,1))));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)( ) == sparse (A)( ));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)(1) == sparse (A)(1));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)(1,1) == sparse (A)(1,1));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)(3) == sparse (A)(3));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)(3,1) == sparse (A)(3,1));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)(3,:) == sparse (A)(3,:));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)(:) == sparse (A)(:));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)(:,1) == sparse (A)(:,1));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)(:,:) == sparse (A)(:,:));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)*(1*ones(size(A,2))) == sparse (A)*(1*ones(size(A,2))));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)*(i*ones(size(A,2))) == sparse (A)*(i*ones(size(A,2))));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)*1 == sparse (A)*1);
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)*i == sparse (A)*i);
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A).'*(1*ones(size(A,1))) == sparse (A).'*(1*ones(size(A,1))));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A).'*(i*ones(size(A,1))) == sparse (A).'*(i*ones(size(A,1))));
%!test
%! A = [0,;0,;0,;]; assert (reshape (sparsersb (A), 1, 3) == reshape (sparse (A), 1, 3));
%!test
%! A = [0,;0,;0,;]; assert (reshape (sparsersb (A), 3, 1) == reshape (sparse (A), 3, 1));
%% tests for a 3 x 1 matrix, density 10%, complex
%!test
%! A = [0,;0,;0,;]; assert ( (sparsersb (A)) == (sparse (A)));
%!test
%! A = [0,;0,;0,;]; assert (istril (sparsersb (A)) == istril (sparse (A)));
%!test
%! A = [0,;0,;0,;]; assert (istriu (sparsersb (A)) == istriu (sparse (A)));
%!test
%! A = [0,;0,;0,;]; assert (isreal (sparsersb (A)) == isreal (sparse (A)));
%!test
%! A = [0,;0,;0,;]; assert (iscomplex (sparsersb (A)) == iscomplex (sparse (A)));
%!test
%! A = [0,;0,;0,;]; assert (issymmetric (sparsersb (A)) == issymmetric (sparse (A)));
%!test
%! A = [0,;0,;0,;]; assert (ishermitian (sparsersb (A)) == ishermitian (sparse (A)));
%!test
%! A = [0,;0,;0,;]; assert (nnz (sparsersb (A)) == nnz (sparse (A)));
%!test
%! A = [0,;0,;0,;]; assert (rows (sparsersb (A)) == rows (sparse (A)));
%!test
%! A = [0,;0,;0,;]; assert (columns (sparsersb (A)) == columns (sparse (A)));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)'*(1*ones(size(A,1))) == sparse (A)'*(1*ones(size(A,1))));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)'*(i*ones(size(A,1))) == sparse (A)'*(i*ones(size(A,1))));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)( ) == sparse (A)( ));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)(1) == sparse (A)(1));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)(1,1) == sparse (A)(1,1));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)(3) == sparse (A)(3));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)(3,1) == sparse (A)(3,1));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)(3,:) == sparse (A)(3,:));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)(:) == sparse (A)(:));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)(:,1) == sparse (A)(:,1));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)(:,:) == sparse (A)(:,:));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)*(1*ones(size(A,2))) == sparse (A)*(1*ones(size(A,2))));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)*(i*ones(size(A,2))) == sparse (A)*(i*ones(size(A,2))));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)*1 == sparse (A)*1);
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)*i == sparse (A)*i);
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A).'*(1*ones(size(A,1))) == sparse (A).'*(1*ones(size(A,1))));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A).'*(i*ones(size(A,1))) == sparse (A).'*(i*ones(size(A,1))));
%!test
%! A = [0,;0,;0,;]; assert (reshape (sparsersb (A), 1, 3) == reshape (sparse (A), 1, 3));
%!test
%! A = [0,;0,;0,;]; assert (reshape (sparsersb (A), 3, 1) == reshape (sparse (A), 3, 1));
%% tests for a 3 x 3 matrix, density 10%, real
%!test
%! A = [0,0,0,;0,0,0,;0,3,0,;]; assert ( (sparsersb (A)) == (sparse (A)));
%!test
%! A = [0,0,0,;0,0,0,;0,3,0,;]; assert (istril (sparsersb (A)) == istril (sparse (A)));
%!test
%! A = [0,0,0,;0,0,0,;0,3,0,;]; assert (istriu (sparsersb (A)) == istriu (sparse (A)));
%!test
%! A = [0,0,0,;0,0,0,;0,3,0,;]; assert (isreal (sparsersb (A)) == isreal (sparse (A)));
%!test
%! A = [0,0,0,;0,0,0,;0,3,0,;]; assert (iscomplex (sparsersb (A)) == iscomplex (sparse (A)));
%!test
%! A = [0,0,0,;0,0,0,;0,3,0,;]; assert (issymmetric (sparsersb (A)) == issymmetric (sparse (A)));
%!test
%! A = [0,0,0,;0,0,0,;0,3,0,;]; assert (ishermitian (sparsersb (A)) == ishermitian (sparse (A)));
%!test
%! A = [0,0,0,;0,0,0,;0,3,0,;]; assert (nnz (sparsersb (A)) == nnz (sparse (A)));
%!test
%! A = [0,0,0,;0,0,0,;0,3,0,;]; assert (rows (sparsersb (A)) == rows (sparse (A)));
%!test
%! A = [0,0,0,;0,0,0,;0,3,0,;]; assert (columns (sparsersb (A)) == columns (sparse (A)));
%!test
%! A = [0,0,0,;0,0,0,;0,3,0,;]; assert (sparsersb (A)'*(1*ones(size(A,1))) == sparse (A)'*(1*ones(size(A,1))));
%!test
%! A = [0,0,0,;0,0,0,;0,3,0,;]; assert (sparsersb (A)'*(i*ones(size(A,1))) == sparse (A)'*(i*ones(size(A,1))));
%!test
%! A = [0,0,0,;0,0,0,;0,3,0,;]; assert (sparsersb (A)( ) == sparse (A)( ));
%!test
%! A = [0,0,0,;0,0,0,;0,3,0,;]; assert (sparsersb (A)(1) == sparse (A)(1));
%!test
%! A = [0,0,0,;0,0,0,;0,3,0,;]; assert (sparsersb (A)(1,1) == sparse (A)(1,1));
%!test
%! A = [0,0,0,;0,0,0,;0,3,0,;]; assert (sparsersb (A)(3,3) == sparse (A)(3,3));
%!test
%! A = [0,0,0,;0,0,0,;0,3,0,;]; assert (sparsersb (A)(3,:) == sparse (A)(3,:));
%!test
%! A = [0,0,0,;0,0,0,;0,3,0,;]; assert (sparsersb (A)(9) == sparse (A)(9));
%!test
%! A = [0,0,0,;0,0,0,;0,3,0,;]; assert (sparsersb (A)(:) == sparse (A)(:));
%!test
%! A = [0,0,0,;0,0,0,;0,3,0,;]; assert (sparsersb (A)(:,3) == sparse (A)(:,3));
%!test
%! A = [0,0,0,;0,0,0,;0,3,0,;]; assert (sparsersb (A)(:,:) == sparse (A)(:,:));
%!test
%! A = [0,0,0,;0,0,0,;0,3,0,;]; assert (sparsersb (A)*(1*ones(size(A,2))) == sparse (A)*(1*ones(size(A,2))));
%!test
%! A = [0,0,0,;0,0,0,;0,3,0,;]; assert (sparsersb (A)*(i*ones(size(A,2))) == sparse (A)*(i*ones(size(A,2))));
%!test
%! A = [0,0,0,;0,0,0,;0,3,0,;]; assert (sparsersb (A)*1 == sparse (A)*1);
%!test
%! A = [0,0,0,;0,0,0,;0,3,0,;]; assert (sparsersb (A)*i == sparse (A)*i);
%!test
%! A = [0,0,0,;0,0,0,;0,3,0,;]; assert (sparsersb (A).'*(1*ones(size(A,1))) == sparse (A).'*(1*ones(size(A,1))));
%!test
%! A = [0,0,0,;0,0,0,;0,3,0,;]; assert (sparsersb (A).'*(i*ones(size(A,1))) == sparse (A).'*(i*ones(size(A,1))));
%!test
%! A = [0,0,0,;0,0,0,;0,3,0,;]; assert (reshape (sparsersb (A), 1, 9) == reshape (sparse (A), 1, 9));
%!test
%! A = [0,0,0,;0,0,0,;0,3,0,;]; assert (reshape (sparsersb (A), 3, 3) == reshape (sparse (A), 3, 3));
%!test
%! A = [0,0,0,;0,0,0,;0,3,0,;]; assert (reshape (sparsersb (A), 9, 1) == reshape (sparse (A), 9, 1));
%% tests for a 3 x 3 matrix, density 10%, complex
%!test
%! A = [0,0,0,;0,0,0,;0,0,0,;]; assert ( (sparsersb (A)) == (sparse (A)));
%!test
%! A = [0,0,0,;0,0,0,;0,0,0,;]; assert (istril (sparsersb (A)) == istril (sparse (A)));
%!test
%! A = [0,0,0,;0,0,0,;0,0,0,;]; assert (istriu (sparsersb (A)) == istriu (sparse (A)));
%!test
%! A = [0,0,0,;0,0,0,;0,0,0,;]; assert (isreal (sparsersb (A)) == isreal (sparse (A)));
%!test
%! A = [0,0,0,;0,0,0,;0,0,0,;]; assert (iscomplex (sparsersb (A)) == iscomplex (sparse (A)));
%!test
%! A = [0,0,0,;0,0,0,;0,0,0,;]; assert (issymmetric (sparsersb (A)) == issymmetric (sparse (A)));
%!test
%! A = [0,0,0,;0,0,0,;0,0,0,;]; assert (ishermitian (sparsersb (A)) == ishermitian (sparse (A)));
%!test
%! A = [0,0,0,;0,0,0,;0,0,0,;]; assert (nnz (sparsersb (A)) == nnz (sparse (A)));
%!test
%! A = [0,0,0,;0,0,0,;0,0,0,;]; assert (rows (sparsersb (A)) == rows (sparse (A)));
%!test
%! A = [0,0,0,;0,0,0,;0,0,0,;]; assert (columns (sparsersb (A)) == columns (sparse (A)));
%!test
%! A = [0,0,0,;0,0,0,;0,0,0,;]; assert (sparsersb (A)'*(1*ones(size(A,1))) == sparse (A)'*(1*ones(size(A,1))));
%!test
%! A = [0,0,0,;0,0,0,;0,0,0,;]; assert (sparsersb (A)'*(i*ones(size(A,1))) == sparse (A)'*(i*ones(size(A,1))));
%!test
%! A = [0,0,0,;0,0,0,;0,0,0,;]; assert (sparsersb (A)( ) == sparse (A)( ));
%!test
%! A = [0,0,0,;0,0,0,;0,0,0,;]; assert (sparsersb (A)(1) == sparse (A)(1));
%!test
%! A = [0,0,0,;0,0,0,;0,0,0,;]; assert (sparsersb (A)(1,1) == sparse (A)(1,1));
%!test
%! A = [0,0,0,;0,0,0,;0,0,0,;]; assert (sparsersb (A)(3,3) == sparse (A)(3,3));
%!test
%! A = [0,0,0,;0,0,0,;0,0,0,;]; assert (sparsersb (A)(3,:) == sparse (A)(3,:));
%!test
%! A = [0,0,0,;0,0,0,;0,0,0,;]; assert (sparsersb (A)(9) == sparse (A)(9));
%!test
%! A = [0,0,0,;0,0,0,;0,0,0,;]; assert (sparsersb (A)(:) == sparse (A)(:));
%!test
%! A = [0,0,0,;0,0,0,;0,0,0,;]; assert (sparsersb (A)(:,3) == sparse (A)(:,3));
%!test
%! A = [0,0,0,;0,0,0,;0,0,0,;]; assert (sparsersb (A)(:,:) == sparse (A)(:,:));
%!test
%! A = [0,0,0,;0,0,0,;0,0,0,;]; assert (sparsersb (A)*(1*ones(size(A,2))) == sparse (A)*(1*ones(size(A,2))));
%!test
%! A = [0,0,0,;0,0,0,;0,0,0,;]; assert (sparsersb (A)*(i*ones(size(A,2))) == sparse (A)*(i*ones(size(A,2))));
%!test
%! A = [0,0,0,;0,0,0,;0,0,0,;]; assert (sparsersb (A)*1 == sparse (A)*1);
%!test
%! A = [0,0,0,;0,0,0,;0,0,0,;]; assert (sparsersb (A)*i == sparse (A)*i);
%!test
%! A = [0,0,0,;0,0,0,;0,0,0,;]; assert (sparsersb (A).'*(1*ones(size(A,1))) == sparse (A).'*(1*ones(size(A,1))));
%!test
%! A = [0,0,0,;0,0,0,;0,0,0,;]; assert (sparsersb (A).'*(i*ones(size(A,1))) == sparse (A).'*(i*ones(size(A,1))));
%!test
%! A = [0,0,0,;0,0,0,;0,0,0,;]; assert (reshape (sparsersb (A), 1, 9) == reshape (sparse (A), 1, 9));
%!test
%! A = [0,0,0,;0,0,0,;0,0,0,;]; assert (reshape (sparsersb (A), 3, 3) == reshape (sparse (A), 3, 3));
%!test
%! A = [0,0,0,;0,0,0,;0,0,0,;]; assert (reshape (sparsersb (A), 9, 1) == reshape (sparse (A), 9, 1));
%% tests for a 1 x 1 matrix, density 20%, real
%!test
%! A = [0,;]; assert ( (sparsersb (A)) == (sparse (A)));
%!test
%! A = [0,;]; assert (istril (sparsersb (A)) == istril (sparse (A)));
%!test
%! A = [0,;]; assert (istriu (sparsersb (A)) == istriu (sparse (A)));
%!test
%! A = [0,;]; assert (isreal (sparsersb (A)) == isreal (sparse (A)));
%!test
%! A = [0,;]; assert (iscomplex (sparsersb (A)) == iscomplex (sparse (A)));
%!test
%! A = [0,;]; assert (issymmetric (sparsersb (A)) == issymmetric (sparse (A)));
%!test
%! A = [0,;]; assert (ishermitian (sparsersb (A)) == ishermitian (sparse (A)));
%!test
%! A = [0,;]; assert (nnz (sparsersb (A)) == nnz (sparse (A)));
%!test
%! A = [0,;]; assert (rows (sparsersb (A)) == rows (sparse (A)));
%!test
%! A = [0,;]; assert (columns (sparsersb (A)) == columns (sparse (A)));
%!test
%! A = [0,;]; assert (sparsersb (A)'*(1*ones(size(A,1))) == sparse (A)'*(1*ones(size(A,1))));
%!test
%! A = [0,;]; assert (sparsersb (A)'*(i*ones(size(A,1))) == sparse (A)'*(i*ones(size(A,1))));
%!test
%! A = [0,;]; assert (sparsersb (A)( ) == sparse (A)( ));
%!test
%! A = [0,;]; assert (sparsersb (A)(1) == sparse (A)(1));
%!test
%! A = [0,;]; assert (sparsersb (A)(1,1) == sparse (A)(1,1));
%!test
%! A = [0,;]; assert (sparsersb (A)(1,:) == sparse (A)(1,:));
%!test
%! A = [0,;]; assert (sparsersb (A)(:) == sparse (A)(:));
%!test
%! A = [0,;]; assert (sparsersb (A)(:,1) == sparse (A)(:,1));
%!test
%! A = [0,;]; assert (sparsersb (A)(:,:) == sparse (A)(:,:));
%!test
%! A = [0,;]; assert (sparsersb (A)*(1*ones(size(A,2))) == sparse (A)*(1*ones(size(A,2))));
%!test
%! A = [0,;]; assert (sparsersb (A)*(i*ones(size(A,2))) == sparse (A)*(i*ones(size(A,2))));
%!test
%! A = [0,;]; assert (sparsersb (A)*1 == sparse (A)*1);
%!test
%! A = [0,;]; assert (sparsersb (A)*i == sparse (A)*i);
%!test
%! A = [0,;]; assert (sparsersb (A).'*(1*ones(size(A,1))) == sparse (A).'*(1*ones(size(A,1))));
%!test
%! A = [0,;]; assert (sparsersb (A).'*(i*ones(size(A,1))) == sparse (A).'*(i*ones(size(A,1))));
%!test
%! A = [0,;]; assert (reshape (sparsersb (A), 1, 1) == reshape (sparse (A), 1, 1));
%% tests for a 1 x 1 matrix, density 20%, complex
%!test
%! A = [0,;]; assert ( (sparsersb (A)) == (sparse (A)));
%!test
%! A = [0,;]; assert (istril (sparsersb (A)) == istril (sparse (A)));
%!test
%! A = [0,;]; assert (istriu (sparsersb (A)) == istriu (sparse (A)));
%!test
%! A = [0,;]; assert (isreal (sparsersb (A)) == isreal (sparse (A)));
%!test
%! A = [0,;]; assert (iscomplex (sparsersb (A)) == iscomplex (sparse (A)));
%!test
%! A = [0,;]; assert (issymmetric (sparsersb (A)) == issymmetric (sparse (A)));
%!test
%! A = [0,;]; assert (ishermitian (sparsersb (A)) == ishermitian (sparse (A)));
%!test
%! A = [0,;]; assert (nnz (sparsersb (A)) == nnz (sparse (A)));
%!test
%! A = [0,;]; assert (rows (sparsersb (A)) == rows (sparse (A)));
%!test
%! A = [0,;]; assert (columns (sparsersb (A)) == columns (sparse (A)));
%!test
%! A = [0,;]; assert (sparsersb (A)'*(1*ones(size(A,1))) == sparse (A)'*(1*ones(size(A,1))));
%!test
%! A = [0,;]; assert (sparsersb (A)'*(i*ones(size(A,1))) == sparse (A)'*(i*ones(size(A,1))));
%!test
%! A = [0,;]; assert (sparsersb (A)( ) == sparse (A)( ));
%!test
%! A = [0,;]; assert (sparsersb (A)(1) == sparse (A)(1));
%!test
%! A = [0,;]; assert (sparsersb (A)(1,1) == sparse (A)(1,1));
%!test
%! A = [0,;]; assert (sparsersb (A)(1,:) == sparse (A)(1,:));
%!test
%! A = [0,;]; assert (sparsersb (A)(:) == sparse (A)(:));
%!test
%! A = [0,;]; assert (sparsersb (A)(:,1) == sparse (A)(:,1));
%!test
%! A = [0,;]; assert (sparsersb (A)(:,:) == sparse (A)(:,:));
%!test
%! A = [0,;]; assert (sparsersb (A)*(1*ones(size(A,2))) == sparse (A)*(1*ones(size(A,2))));
%!test
%! A = [0,;]; assert (sparsersb (A)*(i*ones(size(A,2))) == sparse (A)*(i*ones(size(A,2))));
%!test
%! A = [0,;]; assert (sparsersb (A)*1 == sparse (A)*1);
%!test
%! A = [0,;]; assert (sparsersb (A)*i == sparse (A)*i);
%!test
%! A = [0,;]; assert (sparsersb (A).'*(1*ones(size(A,1))) == sparse (A).'*(1*ones(size(A,1))));
%!test
%! A = [0,;]; assert (sparsersb (A).'*(i*ones(size(A,1))) == sparse (A).'*(i*ones(size(A,1))));
%!test
%! A = [0,;]; assert (reshape (sparsersb (A), 1, 1) == reshape (sparse (A), 1, 1));
%% tests for a 1 x 3 matrix, density 20%, real
%!test
%! A = [22,0,0,;]; assert ( (sparsersb (A)) == (sparse (A)));
%!test
%! A = [22,0,0,;]; assert (istril (sparsersb (A)) == istril (sparse (A)));
%!test
%! A = [22,0,0,;]; assert (istriu (sparsersb (A)) == istriu (sparse (A)));
%!test
%! A = [22,0,0,;]; assert (isreal (sparsersb (A)) == isreal (sparse (A)));
%!test
%! A = [22,0,0,;]; assert (iscomplex (sparsersb (A)) == iscomplex (sparse (A)));
%!test
%! A = [22,0,0,;]; assert (issymmetric (sparsersb (A)) == issymmetric (sparse (A)));
%!test
%! A = [22,0,0,;]; assert (ishermitian (sparsersb (A)) == ishermitian (sparse (A)));
%!test
%! A = [22,0,0,;]; assert (nnz (sparsersb (A)) == nnz (sparse (A)));
%!test
%! A = [22,0,0,;]; assert (rows (sparsersb (A)) == rows (sparse (A)));
%!test
%! A = [22,0,0,;]; assert (columns (sparsersb (A)) == columns (sparse (A)));
%!test
%! A = [22,0,0,;]; assert (sparsersb (A)'*(1*ones(size(A,1))) == sparse (A)'*(1*ones(size(A,1))));
%!test
%! A = [22,0,0,;]; assert (sparsersb (A)'*(i*ones(size(A,1))) == sparse (A)'*(i*ones(size(A,1))));
%!test
%! A = [22,0,0,;]; assert (sparsersb (A)( ) == sparse (A)( ));
%!test
%! A = [22,0,0,;]; assert (sparsersb (A)(1) == sparse (A)(1));
%!test
%! A = [22,0,0,;]; assert (sparsersb (A)(1,1) == sparse (A)(1,1));
%!test
%! A = [22,0,0,;]; assert (sparsersb (A)(1,3) == sparse (A)(1,3));
%!test
%! A = [22,0,0,;]; assert (sparsersb (A)(1,:) == sparse (A)(1,:));
%!test
%! A = [22,0,0,;]; assert (sparsersb (A)(3) == sparse (A)(3));
%!test
%! A = [22,0,0,;]; assert (sparsersb (A)(:) == sparse (A)(:));
%!test
%! A = [22,0,0,;]; assert (sparsersb (A)(:,3) == sparse (A)(:,3));
%!test
%! A = [22,0,0,;]; assert (sparsersb (A)(:,:) == sparse (A)(:,:));
%!test
%! A = [22,0,0,;]; assert (sparsersb (A)*(1*ones(size(A,2))) == sparse (A)*(1*ones(size(A,2))));
%!test
%! A = [22,0,0,;]; assert (sparsersb (A)*(i*ones(size(A,2))) == sparse (A)*(i*ones(size(A,2))));
%!test
%! A = [22,0,0,;]; assert (sparsersb (A)*1 == sparse (A)*1);
%!test
%! A = [22,0,0,;]; assert (sparsersb (A)*i == sparse (A)*i);
%!test
%! A = [22,0,0,;]; assert (sparsersb (A).'*(1*ones(size(A,1))) == sparse (A).'*(1*ones(size(A,1))));
%!test
%! A = [22,0,0,;]; assert (sparsersb (A).'*(i*ones(size(A,1))) == sparse (A).'*(i*ones(size(A,1))));
%!test
%! A = [22,0,0,;]; assert (reshape (sparsersb (A), 1, 3) == reshape (sparse (A), 1, 3));
%!test
%! A = [22,0,0,;]; assert (reshape (sparsersb (A), 3, 1) == reshape (sparse (A), 3, 1));
%% tests for a 1 x 3 matrix, density 20%, complex
%!test
%! A = [0,0,0,;]; assert ( (sparsersb (A)) == (sparse (A)));
%!test
%! A = [0,0,0,;]; assert (istril (sparsersb (A)) == istril (sparse (A)));
%!test
%! A = [0,0,0,;]; assert (istriu (sparsersb (A)) == istriu (sparse (A)));
%!test
%! A = [0,0,0,;]; assert (isreal (sparsersb (A)) == isreal (sparse (A)));
%!test
%! A = [0,0,0,;]; assert (iscomplex (sparsersb (A)) == iscomplex (sparse (A)));
%!test
%! A = [0,0,0,;]; assert (issymmetric (sparsersb (A)) == issymmetric (sparse (A)));
%!test
%! A = [0,0,0,;]; assert (ishermitian (sparsersb (A)) == ishermitian (sparse (A)));
%!test
%! A = [0,0,0,;]; assert (nnz (sparsersb (A)) == nnz (sparse (A)));
%!test
%! A = [0,0,0,;]; assert (rows (sparsersb (A)) == rows (sparse (A)));
%!test
%! A = [0,0,0,;]; assert (columns (sparsersb (A)) == columns (sparse (A)));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)'*(1*ones(size(A,1))) == sparse (A)'*(1*ones(size(A,1))));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)'*(i*ones(size(A,1))) == sparse (A)'*(i*ones(size(A,1))));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)( ) == sparse (A)( ));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)(1) == sparse (A)(1));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)(1,1) == sparse (A)(1,1));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)(1,3) == sparse (A)(1,3));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)(1,:) == sparse (A)(1,:));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)(3) == sparse (A)(3));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)(:) == sparse (A)(:));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)(:,3) == sparse (A)(:,3));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)(:,:) == sparse (A)(:,:));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)*(1*ones(size(A,2))) == sparse (A)*(1*ones(size(A,2))));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)*(i*ones(size(A,2))) == sparse (A)*(i*ones(size(A,2))));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)*1 == sparse (A)*1);
%!test
%! A = [0,0,0,;]; assert (sparsersb (A)*i == sparse (A)*i);
%!test
%! A = [0,0,0,;]; assert (sparsersb (A).'*(1*ones(size(A,1))) == sparse (A).'*(1*ones(size(A,1))));
%!test
%! A = [0,0,0,;]; assert (sparsersb (A).'*(i*ones(size(A,1))) == sparse (A).'*(i*ones(size(A,1))));
%!test
%! A = [0,0,0,;]; assert (reshape (sparsersb (A), 1, 3) == reshape (sparse (A), 1, 3));
%!test
%! A = [0,0,0,;]; assert (reshape (sparsersb (A), 3, 1) == reshape (sparse (A), 3, 1));
%% tests for a 3 x 1 matrix, density 20%, real
%!test
%! A = [0,;0,;68,;]; assert ( (sparsersb (A)) == (sparse (A)));
%!test
%! A = [0,;0,;68,;]; assert (istril (sparsersb (A)) == istril (sparse (A)));
%!test
%! A = [0,;0,;68,;]; assert (istriu (sparsersb (A)) == istriu (sparse (A)));
%!test
%! A = [0,;0,;68,;]; assert (isreal (sparsersb (A)) == isreal (sparse (A)));
%!test
%! A = [0,;0,;68,;]; assert (iscomplex (sparsersb (A)) == iscomplex (sparse (A)));
%!test
%! A = [0,;0,;68,;]; assert (issymmetric (sparsersb (A)) == issymmetric (sparse (A)));
%!test
%! A = [0,;0,;68,;]; assert (ishermitian (sparsersb (A)) == ishermitian (sparse (A)));
%!test
%! A = [0,;0,;68,;]; assert (nnz (sparsersb (A)) == nnz (sparse (A)));
%!test
%! A = [0,;0,;68,;]; assert (rows (sparsersb (A)) == rows (sparse (A)));
%!test
%! A = [0,;0,;68,;]; assert (columns (sparsersb (A)) == columns (sparse (A)));
%!test
%! A = [0,;0,;68,;]; assert (sparsersb (A)'*(1*ones(size(A,1))) == sparse (A)'*(1*ones(size(A,1))));
%!test
%! A = [0,;0,;68,;]; assert (sparsersb (A)'*(i*ones(size(A,1))) == sparse (A)'*(i*ones(size(A,1))));
%!test
%! A = [0,;0,;68,;]; assert (sparsersb (A)( ) == sparse (A)( ));
%!test
%! A = [0,;0,;68,;]; assert (sparsersb (A)(1) == sparse (A)(1));
%!test
%! A = [0,;0,;68,;]; assert (sparsersb (A)(1,1) == sparse (A)(1,1));
%!test
%! A = [0,;0,;68,;]; assert (sparsersb (A)(3) == sparse (A)(3));
%!test
%! A = [0,;0,;68,;]; assert (sparsersb (A)(3,1) == sparse (A)(3,1));
%!test
%! A = [0,;0,;68,;]; assert (sparsersb (A)(3,:) == sparse (A)(3,:));
%!test
%! A = [0,;0,;68,;]; assert (sparsersb (A)(:) == sparse (A)(:));
%!test
%! A = [0,;0,;68,;]; assert (sparsersb (A)(:,1) == sparse (A)(:,1));
%!test
%! A = [0,;0,;68,;]; assert (sparsersb (A)(:,:) == sparse (A)(:,:));
%!test
%! A = [0,;0,;68,;]; assert (sparsersb (A)*(1*ones(size(A,2))) == sparse (A)*(1*ones(size(A,2))));
%!test
%! A = [0,;0,;68,;]; assert (sparsersb (A)*(i*ones(size(A,2))) == sparse (A)*(i*ones(size(A,2))));
%!test
%! A = [0,;0,;68,;]; assert (sparsersb (A)*1 == sparse (A)*1);
%!test
%! A = [0,;0,;68,;]; assert (sparsersb (A)*i == sparse (A)*i);
%!test
%! A = [0,;0,;68,;]; assert (sparsersb (A).'*(1*ones(size(A,1))) == sparse (A).'*(1*ones(size(A,1))));
%!test
%! A = [0,;0,;68,;]; assert (sparsersb (A).'*(i*ones(size(A,1))) == sparse (A).'*(i*ones(size(A,1))));
%!test
%! A = [0,;0,;68,;]; assert (reshape (sparsersb (A), 1, 3) == reshape (sparse (A), 1, 3));
%!test
%! A = [0,;0,;68,;]; assert (reshape (sparsersb (A), 3, 1) == reshape (sparse (A), 3, 1));
%% tests for a 3 x 1 matrix, density 20%, complex
%!test
%! A = [0,;0,;0,;]; assert ( (sparsersb (A)) == (sparse (A)));
%!test
%! A = [0,;0,;0,;]; assert (istril (sparsersb (A)) == istril (sparse (A)));
%!test
%! A = [0,;0,;0,;]; assert (istriu (sparsersb (A)) == istriu (sparse (A)));
%!test
%! A = [0,;0,;0,;]; assert (isreal (sparsersb (A)) == isreal (sparse (A)));
%!test
%! A = [0,;0,;0,;]; assert (iscomplex (sparsersb (A)) == iscomplex (sparse (A)));
%!test
%! A = [0,;0,;0,;]; assert (issymmetric (sparsersb (A)) == issymmetric (sparse (A)));
%!test
%! A = [0,;0,;0,;]; assert (ishermitian (sparsersb (A)) == ishermitian (sparse (A)));
%!test
%! A = [0,;0,;0,;]; assert (nnz (sparsersb (A)) == nnz (sparse (A)));
%!test
%! A = [0,;0,;0,;]; assert (rows (sparsersb (A)) == rows (sparse (A)));
%!test
%! A = [0,;0,;0,;]; assert (columns (sparsersb (A)) == columns (sparse (A)));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)'*(1*ones(size(A,1))) == sparse (A)'*(1*ones(size(A,1))));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)'*(i*ones(size(A,1))) == sparse (A)'*(i*ones(size(A,1))));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)( ) == sparse (A)( ));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)(1) == sparse (A)(1));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)(1,1) == sparse (A)(1,1));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)(3) == sparse (A)(3));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)(3,1) == sparse (A)(3,1));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)(3,:) == sparse (A)(3,:));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)(:) == sparse (A)(:));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)(:,1) == sparse (A)(:,1));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)(:,:) == sparse (A)(:,:));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)*(1*ones(size(A,2))) == sparse (A)*(1*ones(size(A,2))));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)*(i*ones(size(A,2))) == sparse (A)*(i*ones(size(A,2))));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)*1 == sparse (A)*1);
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A)*i == sparse (A)*i);
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A).'*(1*ones(size(A,1))) == sparse (A).'*(1*ones(size(A,1))));
%!test
%! A = [0,;0,;0,;]; assert (sparsersb (A).'*(i*ones(size(A,1))) == sparse (A).'*(i*ones(size(A,1))));
%!test
%! A = [0,;0,;0,;]; assert (reshape (sparsersb (A), 1, 3) == reshape (sparse (A), 1, 3));
%!test
%! A = [0,;0,;0,;]; assert (reshape (sparsersb (A), 3, 1) == reshape (sparse (A), 3, 1));
%% tests for a 3 x 3 matrix, density 20%, real
%!test
%! A = [0,0,0,;3,0,0,;0,0,42,;]; assert ( (sparsersb (A)) == (sparse (A)));
%!test
%! A = [0,0,0,;3,0,0,;0,0,42,;]; assert (istril (sparsersb (A)) == istril (sparse (A)));
%!test
%! A = [0,0,0,;3,0,0,;0,0,42,;]; assert (istriu (sparsersb (A)) == istriu (sparse (A)));
%!test
%! A = [0,0,0,;3,0,0,;0,0,42,;]; assert (isreal (sparsersb (A)) == isreal (sparse (A)));
%!test
%! A = [0,0,0,;3,0,0,;0,0,42,;]; assert (iscomplex (sparsersb (A)) == iscomplex (sparse (A)));
%!test
%! A = [0,0,0,;3,0,0,;0,0,42,;]; assert (issymmetric (sparsersb (A)) == issymmetric (sparse (A)));
%!test
%! A = [0,0,0,;3,0,0,;0,0,42,;]; assert (ishermitian (sparsersb (A)) == ishermitian (sparse (A)));
%!test
%! A = [0,0,0,;3,0,0,;0,0,42,;]; assert (nnz (sparsersb (A)) == nnz (sparse (A)));
%!test
%! A = [0,0,0,;3,0,0,;0,0,42,;]; assert (rows (sparsersb (A)) == rows (sparse (A)));
%!test
%! A = [0,0,0,;3,0,0,;0,0,42,;]; assert (columns (sparsersb (A)) == columns (sparse (A)));
%!test
%! A = [0,0,0,;3,0,0,;0,0,42,;]; assert (sparsersb (A)'*(1*ones(size(A,1))) == sparse (A)'*(1*ones(size(A,1))));
%!test
%! A = [0,0,0,;3,0,0,;0,0,42,;]; assert (sparsersb (A)'*(i*ones(size(A,1))) == sparse (A)'*(i*ones(size(A,1))));
%!test
%! A = [0,0,0,;3,0,0,;0,0,42,;]; assert (sparsersb (A)( ) == sparse (A)( ));
%!test
%! A = [0,0,0,;3,0,0,;0,0,42,;]; assert (sparsersb (A)(1) == sparse (A)(1));
%!test
%! A = [0,0,0,;3,0,0,;0,0,42,;]; assert (sparsersb (A)(1,1) == sparse (A)(1,1));
%!test
%! A = [0,0,0,;3,0,0,;0,0,42,;]; assert (sparsersb (A)(3,3) == sparse (A)(3,3));
%!test
%! A = [0,0,0,;3,0,0,;0,0,42,;]; assert (sparsersb (A)(3,:) == sparse (A)(3,:));
%!test
%! A = [0,0,0,;3,0,0,;0,0,42,;]; assert (sparsersb (A)(9) == sparse (A)(9));
%!test
%! A = [0,0,0,;3,0,0,;0,0,42,;]; assert (sparsersb (A)(:) == sparse (A)(:));
%!test
%! A = [0,0,0,;3,0,0,;0,0,42,;]; assert (sparsersb (A)(:,3) == sparse (A)(:,3));
%!test
%! A = [0,0,0,;3,0,0,;0,0,42,;]; assert (sparsersb (A)(:,:) == sparse (A)(:,:));
%!test
%! A = [0,0,0,;3,0,0,;0,0,42,;]; assert (sparsersb (A)*(1*ones(size(A,2))) == sparse (A)*(1*ones(size(A,2))));
%!test
%! A = [0,0,0,;3,0,0,;0,0,42,;]; assert (sparsersb (A)*(i*ones(size(A,2))) == sparse (A)*(i*ones(size(A,2))));
%!test
%! A = [0,0,0,;3,0,0,;0,0,42,;]; assert (sparsersb (A)*1 == sparse (A)*1);
%!test
%! A = [0,0,0,;3,0,0,;0,0,42,;]; assert (sparsersb (A)*i == sparse (A)*i);
%!test
%! A = [0,0,0,;3,0,0,;0,0,42,;]; assert (sparsersb (A).'*(1*ones(size(A,1))) == sparse (A).'*(1*ones(size(A,1))));
%!test
%! A = [0,0,0,;3,0,0,;0,0,42,;]; assert (sparsersb (A).'*(i*ones(size(A,1))) == sparse (A).'*(i*ones(size(A,1))));
%!test
%! A = [0,0,0,;3,0,0,;0,0,42,;]; assert (reshape (sparsersb (A), 1, 9) == reshape (sparse (A), 1, 9));
%!test
%! A = [0,0,0,;3,0,0,;0,0,42,;]; assert (reshape (sparsersb (A), 3, 3) == reshape (sparse (A), 3, 3));
%!test
%! A = [0,0,0,;3,0,0,;0,0,42,;]; assert (reshape (sparsersb (A), 9, 1) == reshape (sparse (A), 9, 1));
%% tests for a 3 x 3 matrix, density 20%, complex
%!test
%! A = [0+20*i,0,0,;51,0,0,;0,0,0,;]; assert ( (sparsersb (A)) == (sparse (A)));
%!test
%! A = [0+20*i,0,0,;51,0,0,;0,0,0,;]; assert (istril (sparsersb (A)) == istril (sparse (A)));
%!test
%! A = [0+20*i,0,0,;51,0,0,;0,0,0,;]; assert (istriu (sparsersb (A)) == istriu (sparse (A)));
%!test
%! A = [0+20*i,0,0,;51,0,0,;0,0,0,;]; assert (isreal (sparsersb (A)) == isreal (sparse (A)));
%!test
%! A = [0+20*i,0,0,;51,0,0,;0,0,0,;]; assert (iscomplex (sparsersb (A)) == iscomplex (sparse (A)));
%!test
%! A = [0+20*i,0,0,;51,0,0,;0,0,0,;]; assert (issymmetric (sparsersb (A)) == issymmetric (sparse (A)));
%!test
%! A = [0+20*i,0,0,;51,0,0,;0,0,0,;]; assert (ishermitian (sparsersb (A)) == ishermitian (sparse (A)));
%!test
%! A = [0+20*i,0,0,;51,0,0,;0,0,0,;]; assert (nnz (sparsersb (A)) == nnz (sparse (A)));
%!test
%! A = [0+20*i,0,0,;51,0,0,;0,0,0,;]; assert (rows (sparsersb (A)) == rows (sparse (A)));
%!test
%! A = [0+20*i,0,0,;51,0,0,;0,0,0,;]; assert (columns (sparsersb (A)) == columns (sparse (A)));
%!test
%! A = [0+20*i,0,0,;51,0,0,;0,0,0,;]; assert (sparsersb (A)'*(1*ones(size(A,1))) == sparse (A)'*(1*ones(size(A,1))));
%!test
%! A = [0+20*i,0,0,;51,0,0,;0,0,0,;]; assert (sparsersb (A)'*(i*ones(size(A,1))) == sparse (A)'*(i*ones(size(A,1))));
%!test
%! A = [0+20*i,0,0,;51,0,0,;0,0,0,;]; assert (sparsersb (A)( ) == sparse (A)( ));
%!test
%! A = [0+20*i,0,0,;51,0,0,;0,0,0,;]; assert (sparsersb (A)(1) == sparse (A)(1));
%!test
%! A = [0+20*i,0,0,;51,0,0,;0,0,0,;]; assert (sparsersb (A)(1,1) == sparse (A)(1,1));
%!test
%! A = [0+20*i,0,0,;51,0,0,;0,0,0,;]; assert (sparsersb (A)(3,3) == sparse (A)(3,3));
%!test
%! A = [0+20*i,0,0,;51,0,0,;0,0,0,;]; assert (sparsersb (A)(3,:) == sparse (A)(3,:));
%!test
%! A = [0+20*i,0,0,;51,0,0,;0,0,0,;]; assert (sparsersb (A)(9) == sparse (A)(9));
%!test
%! A = [0+20*i,0,0,;51,0,0,;0,0,0,;]; assert (sparsersb (A)(:) == sparse (A)(:));
%!test
%! A = [0+20*i,0,0,;51,0,0,;0,0,0,;]; assert (sparsersb (A)(:,3) == sparse (A)(:,3));
%!test
%! A = [0+20*i,0,0,;51,0,0,;0,0,0,;]; assert (sparsersb (A)(:,:) == sparse (A)(:,:));
%!test
%! A = [0+20*i,0,0,;51,0,0,;0,0,0,;]; assert (sparsersb (A)*(1*ones(size(A,2))) == sparse (A)*(1*ones(size(A,2))));
%!test
%! A = [0+20*i,0,0,;51,0,0,;0,0,0,;]; assert (sparsersb (A)*(i*ones(size(A,2))) == sparse (A)*(i*ones(size(A,2))));
%!test
%! A = [0+20*i,0,0,;51,0,0,;0,0,0,;]; assert (sparsersb (A)*1 == sparse (A)*1);
%!test
%! A = [0+20*i,0,0,;51,0,0,;0,0,0,;]; assert (sparsersb (A)*i == sparse (A)*i);
%!test
%! A = [0+20*i,0,0,;51,0,0,;0,0,0,;]; assert (sparsersb (A).'*(1*ones(size(A,1))) == sparse (A).'*(1*ones(size(A,1))));
%!test
%! A = [0+20*i,0,0,;51,0,0,;0,0,0,;]; assert (sparsersb (A).'*(i*ones(size(A,1))) == sparse (A).'*(i*ones(size(A,1))));
%!test
%! A = [0+20*i,0,0,;51,0,0,;0,0,0,;]; assert (reshape (sparsersb (A), 1, 9) == reshape (sparse (A), 1, 9));
%!test
%! A = [0+20*i,0,0,;51,0,0,;0,0,0,;]; assert (reshape (sparsersb (A), 3, 3) == reshape (sparse (A), 3, 3));
%!test
%! A = [0+20*i,0,0,;51,0,0,;0,0,0,;]; assert (reshape (sparsersb (A), 9, 1) == reshape (sparse (A), 9, 1));
%% tests for a 1 x 1 matrix, density 50%, real
%!test
%! A = [54,;]; assert ( (sparsersb (A)) == (sparse (A)));
%!test
%! A = [54,;]; assert (istril (sparsersb (A)) == istril (sparse (A)));
%!test
%! A = [54,;]; assert (istriu (sparsersb (A)) == istriu (sparse (A)));
%!test
%! A = [54,;]; assert (isreal (sparsersb (A)) == isreal (sparse (A)));
%!test
%! A = [54,;]; assert (iscomplex (sparsersb (A)) == iscomplex (sparse (A)));
%!test
%! A = [54,;]; assert (issymmetric (sparsersb (A)) == issymmetric (sparse (A)));
%!test
%! A = [54,;]; assert (ishermitian (sparsersb (A)) == ishermitian (sparse (A)));
%!test
%! A = [54,;]; assert (nnz (sparsersb (A)) == nnz (sparse (A)));
%!test
%! A = [54,;]; assert (rows (sparsersb (A)) == rows (sparse (A)));
%!test
%! A = [54,;]; assert (columns (sparsersb (A)) == columns (sparse (A)));
%!test
%! A = [54,;]; assert (sparsersb (A)'*(1*ones(size(A,1))) == sparse (A)'*(1*ones(size(A,1))));
%!test
%! A = [54,;]; assert (sparsersb (A)'*(i*ones(size(A,1))) == sparse (A)'*(i*ones(size(A,1))));
%!test
%! A = [54,;]; assert (sparsersb (A)( ) == sparse (A)( ));
%!test
%! A = [54,;]; assert (sparsersb (A)(1) == sparse (A)(1));
%!test
%! A = [54,;]; assert (sparsersb (A)(1,1) == sparse (A)(1,1));
%!test
%! A = [54,;]; assert (sparsersb (A)(1,:) == sparse (A)(1,:));
%!test
%! A = [54,;]; assert (sparsersb (A)(:) == sparse (A)(:));
%!test
%! A = [54,;]; assert (sparsersb (A)(:,1) == sparse (A)(:,1));
%!test
%! A = [54,;]; assert (sparsersb (A)(:,:) == sparse (A)(:,:));
%!test
%! A = [54,;]; assert (sparsersb (A)*(1*ones(size(A,2))) == sparse (A)*(1*ones(size(A,2))));
%!test
%! A = [54,;]; assert (sparsersb (A)*(i*ones(size(A,2))) == sparse (A)*(i*ones(size(A,2))));
%!test
%! A = [54,;]; assert (sparsersb (A)*1 == sparse (A)*1);
%!test
%! A = [54,;]; assert (sparsersb (A)*i == sparse (A)*i);
%!test
%! A = [54,;]; assert (sparsersb (A).'*(1*ones(size(A,1))) == sparse (A).'*(1*ones(size(A,1))));
%!test
%! A = [54,;]; assert (sparsersb (A).'*(i*ones(size(A,1))) == sparse (A).'*(i*ones(size(A,1))));
%!test
%! A = [54,;]; assert (reshape (sparsersb (A), 1, 1) == reshape (sparse (A), 1, 1));
%% tests for a 1 x 1 matrix, density 50%, complex
%!test
%! A = [0,;]; assert ( (sparsersb (A)) == (sparse (A)));
%!test
%! A = [0,;]; assert (istril (sparsersb (A)) == istril (sparse (A)));
%!test
%! A = [0,;]; assert (istriu (sparsersb (A)) == istriu (sparse (A)));
%!test
%! A = [0,;]; assert (isreal (sparsersb (A)) == isreal (sparse (A)));
%!test
%! A = [0,;]; assert (iscomplex (sparsersb (A)) == iscomplex (sparse (A)));
%!test
%! A = [0,;]; assert (issymmetric (sparsersb (A)) == issymmetric (sparse (A)));
%!test
%! A = [0,;]; assert (ishermitian (sparsersb (A)) == ishermitian (sparse (A)));
%!test
%! A = [0,;]; assert (nnz (sparsersb (A)) == nnz (sparse (A)));
%!test
%! A = [0,;]; assert (rows (sparsersb (A)) == rows (sparse (A)));
%!test
%! A = [0,;]; assert (columns (sparsersb (A)) == columns (sparse (A)));
%!test
%! A = [0,;]; assert (sparsersb (A)'*(1*ones(size(A,1))) == sparse (A)'*(1*ones(size(A,1))));
%!test
%! A = [0,;]; assert (sparsersb (A)'*(i*ones(size(A,1))) == sparse (A)'*(i*ones(size(A,1))));
%!test
%! A = [0,;]; assert (sparsersb (A)( ) == sparse (A)( ));
%!test
%! A = [0,;]; assert (sparsersb (A)(1) == sparse (A)(1));
%!test
%! A = [0,;]; assert (sparsersb (A)(1,1) == sparse (A)(1,1));
%!test
%! A = [0,;]; assert (sparsersb (A)(1,:) == sparse (A)(1,:));
%!test
%! A = [0,;]; assert (sparsersb (A)(:) == sparse (A)(:));
%!test
%! A = [0,;]; assert (sparsersb (A)(:,1) == sparse (A)(:,1));
%!test
%! A = [0,;]; assert (sparsersb (A)(:,:) == sparse (A)(:,:));
%!test
%! A = [0,;]; assert (sparsersb (A)*(1*ones(size(A,2))) == sparse (A)*(1*ones(size(A,2))));
%!test
%! A = [0,;]; assert (sparsersb (A)*(i*ones(size(A,2))) == sparse (A)*(i*ones(size(A,2))));
%!test
%! A = [0,;]; assert (sparsersb (A)*1 == sparse (A)*1);
%!test
%! A = [0,;]; assert (sparsersb (A)*i == sparse (A)*i);
%!test
%! A = [0,;]; assert (sparsersb (A).'*(1*ones(size(A,1))) == sparse (A).'*(1*ones(size(A,1))));
%!test
%! A = [0,;]; assert (sparsersb (A).'*(i*ones(size(A,1))) == sparse (A).'*(i*ones(size(A,1))));
%!test
%! A = [0,;]; assert (reshape (sparsersb (A), 1, 1) == reshape (sparse (A), 1, 1));
%% tests for a 1 x 3 matrix, density 50%, real
%!test
%! A = [81,0,1,;]; assert ( (sparsersb (A)) == (sparse (A)));
%!test
%! A = [81,0,1,;]; assert (istril (sparsersb (A)) == istril (sparse (A)));
%!test
%! A = [81,0,1,;]; assert (istriu (sparsersb (A)) == istriu (sparse (A)));
%!test
%! A = [81,0,1,;]; assert (isreal (sparsersb (A)) == isreal (sparse (A)));
%!test
%! A = [81,0,1,;]; assert (iscomplex (sparsersb (A)) == iscomplex (sparse (A)));
%!test
%! A = [81,0,1,;]; assert (issymmetric (sparsersb (A)) == issymmetric (sparse (A)));
%!test
%! A = [81,0,1,;]; assert (ishermitian (sparsersb (A)) == ishermitian (sparse (A)));
%!test
%! A = [81,0,1,;]; assert (nnz (sparsersb (A)) == nnz (sparse (A)));
%!test
%! A = [81,0,1,;]; assert (rows (sparsersb (A)) == rows (sparse (A)));
%!test
%! A = [81,0,1,;]; assert (columns (sparsersb (A)) == columns (sparse (A)));
%!test
%! A = [81,0,1,;]; assert (sparsersb (A)'*(1*ones(size(A,1))) == sparse (A)'*(1*ones(size(A,1))));
%!test
%! A = [81,0,1,;]; assert (sparsersb (A)'*(i*ones(size(A,1))) == sparse (A)'*(i*ones(size(A,1))));
%!test
%! A = [81,0,1,;]; assert (sparsersb (A)( ) == sparse (A)( ));
%!test
%! A = [81,0,1,;]; assert (sparsersb (A)(1) == sparse (A)(1));
%!test
%! A = [81,0,1,;]; assert (sparsersb (A)(1,1) == sparse (A)(1,1));
%!test
%! A = [81,0,1,;]; assert (sparsersb (A)(1,3) == sparse (A)(1,3));
%!test
%! A = [81,0,1,;]; assert (sparsersb (A)(1,:) == sparse (A)(1,:));
%!test
%! A = [81,0,1,;]; assert (sparsersb (A)(3) == sparse (A)(3));
%!test
%! A = [81,0,1,;]; assert (sparsersb (A)(:) == sparse (A)(:));
%!test
%! A = [81,0,1,;]; assert (sparsersb (A)(:,3) == sparse (A)(:,3));
%!test
%! A = [81,0,1,;]; assert (sparsersb (A)(:,:) == sparse (A)(:,:));
%!test
%! A = [81,0,1,;]; assert (sparsersb (A)*(1*ones(size(A,2))) == sparse (A)*(1*ones(size(A,2))));
%!test
%! A = [81,0,1,;]; assert (sparsersb (A)*(i*ones(size(A,2))) == sparse (A)*(i*ones(size(A,2))));
%!test
%! A = [81,0,1,;]; assert (sparsersb (A)*1 == sparse (A)*1);
%!test
%! A = [81,0,1,;]; assert (sparsersb (A)*i == sparse (A)*i);
%!test
%! A = [81,0,1,;]; assert (sparsersb (A).'*(1*ones(size(A,1))) == sparse (A).'*(1*ones(size(A,1))));
%!test
%! A = [81,0,1,;]; assert (sparsersb (A).'*(i*ones(size(A,1))) == sparse (A).'*(i*ones(size(A,1))));
%!test
%! A = [81,0,1,;]; assert (reshape (sparsersb (A), 1, 3) == reshape (sparse (A), 1, 3));
%!test
%! A = [81,0,1,;]; assert (reshape (sparsersb (A), 3, 1) == reshape (sparse (A), 3, 1));
%% tests for a 1 x 3 matrix, density 50%, complex
%!test
%! A = [0,0+16*i,70,;]; assert ( (sparsersb (A)) == (sparse (A)));
%!test
%! A = [0,0+16*i,70,;]; assert (istril (sparsersb (A)) == istril (sparse (A)));
%!test
%! A = [0,0+16*i,70,;]; assert (istriu (sparsersb (A)) == istriu (sparse (A)));
%!test
%! A = [0,0+16*i,70,;]; assert (isreal (sparsersb (A)) == isreal (sparse (A)));
%!test
%! A = [0,0+16*i,70,;]; assert (iscomplex (sparsersb (A)) == iscomplex (sparse (A)));
%!test
%! A = [0,0+16*i,70,;]; assert (issymmetric (sparsersb (A)) == issymmetric (sparse (A)));
%!test
%! A = [0,0+16*i,70,;]; assert (ishermitian (sparsersb (A)) == ishermitian (sparse (A)));
%!test
%! A = [0,0+16*i,70,;]; assert (nnz (sparsersb (A)) == nnz (sparse (A)));
%!test
%! A = [0,0+16*i,70,;]; assert (rows (sparsersb (A)) == rows (sparse (A)));
%!test
%! A = [0,0+16*i,70,;]; assert (columns (sparsersb (A)) == columns (sparse (A)));
%!test
%! A = [0,0+16*i,70,;]; assert (sparsersb (A)'*(1*ones(size(A,1))) == sparse (A)'*(1*ones(size(A,1))));
%!test
%! A = [0,0+16*i,70,;]; assert (sparsersb (A)'*(i*ones(size(A,1))) == sparse (A)'*(i*ones(size(A,1))));
%!test
%! A = [0,0+16*i,70,;]; assert (sparsersb (A)( ) == sparse (A)( ));
%!test
%! A = [0,0+16*i,70,;]; assert (sparsersb (A)(1) == sparse (A)(1));
%!test
%! A = [0,0+16*i,70,;]; assert (sparsersb (A)(1,1) == sparse (A)(1,1));
%!test
%! A = [0,0+16*i,70,;]; assert (sparsersb (A)(1,3) == sparse (A)(1,3));
%!test
%! A = [0,0+16*i,70,;]; assert (sparsersb (A)(1,:) == sparse (A)(1,:));
%!test
%! A = [0,0+16*i,70,;]; assert (sparsersb (A)(3) == sparse (A)(3));
%!test
%! A = [0,0+16*i,70,;]; assert (sparsersb (A)(:) == sparse (A)(:));
%!test
%! A = [0,0+16*i,70,;]; assert (sparsersb (A)(:,3) == sparse (A)(:,3));
%!test
%! A = [0,0+16*i,70,;]; assert (sparsersb (A)(:,:) == sparse (A)(:,:));
%!test
%! A = [0,0+16*i,70,;]; assert (sparsersb (A)*(1*ones(size(A,2))) == sparse (A)*(1*ones(size(A,2))));
%!test
%! A = [0,0+16*i,70,;]; assert (sparsersb (A)*(i*ones(size(A,2))) == sparse (A)*(i*ones(size(A,2))));
%!test
%! A = [0,0+16*i,70,;]; assert (sparsersb (A)*1 == sparse (A)*1);
%!test
%! A = [0,0+16*i,70,;]; assert (sparsersb (A)*i == sparse (A)*i);
%!test
%! A = [0,0+16*i,70,;]; assert (sparsersb (A).'*(1*ones(size(A,1))) == sparse (A).'*(1*ones(size(A,1))));
%!test
%! A = [0,0+16*i,70,;]; assert (sparsersb (A).'*(i*ones(size(A,1))) == sparse (A).'*(i*ones(size(A,1))));
%!test
%! A = [0,0+16*i,70,;]; assert (reshape (sparsersb (A), 1, 3) == reshape (sparse (A), 1, 3));
%!test
%! A = [0,0+16*i,70,;]; assert (reshape (sparsersb (A), 3, 1) == reshape (sparse (A), 3, 1));
%% tests for a 3 x 1 matrix, density 50%, real
%!test
%! A = [0,;10,;9,;]; assert ( (sparsersb (A)) == (sparse (A)));
%!test
%! A = [0,;10,;9,;]; assert (istril (sparsersb (A)) == istril (sparse (A)));
%!test
%! A = [0,;10,;9,;]; assert (istriu (sparsersb (A)) == istriu (sparse (A)));
%!test
%! A = [0,;10,;9,;]; assert (isreal (sparsersb (A)) == isreal (sparse (A)));
%!test
%! A = [0,;10,;9,;]; assert (iscomplex (sparsersb (A)) == iscomplex (sparse (A)));
%!test
%! A = [0,;10,;9,;]; assert (issymmetric (sparsersb (A)) == issymmetric (sparse (A)));
%!test
%! A = [0,;10,;9,;]; assert (ishermitian (sparsersb (A)) == ishermitian (sparse (A)));
%!test
%! A = [0,;10,;9,;]; assert (nnz (sparsersb (A)) == nnz (sparse (A)));
%!test
%! A = [0,;10,;9,;]; assert (rows (sparsersb (A)) == rows (sparse (A)));
%!test
%! A = [0,;10,;9,;]; assert (columns (sparsersb (A)) == columns (sparse (A)));
%!test
%! A = [0,;10,;9,;]; assert (sparsersb (A)'*(1*ones(size(A,1))) == sparse (A)'*(1*ones(size(A,1))));
%!test
%! A = [0,;10,;9,;]; assert (sparsersb (A)'*(i*ones(size(A,1))) == sparse (A)'*(i*ones(size(A,1))));
%!test
%! A = [0,;10,;9,;]; assert (sparsersb (A)( ) == sparse (A)( ));
%!test
%! A = [0,;10,;9,;]; assert (sparsersb (A)(1) == sparse (A)(1));
%!test
%! A = [0,;10,;9,;]; assert (sparsersb (A)(1,1) == sparse (A)(1,1));
%!test
%! A = [0,;10,;9,;]; assert (sparsersb (A)(3) == sparse (A)(3));
%!test
%! A = [0,;10,;9,;]; assert (sparsersb (A)(3,1) == sparse (A)(3,1));
%!test
%! A = [0,;10,;9,;]; assert (sparsersb (A)(3,:) == sparse (A)(3,:));
%!test
%! A = [0,;10,;9,;]; assert (sparsersb (A)(:) == sparse (A)(:));
%!test
%! A = [0,;10,;9,;]; assert (sparsersb (A)(:,1) == sparse (A)(:,1));
%!test
%! A = [0,;10,;9,;]; assert (sparsersb (A)(:,:) == sparse (A)(:,:));
%!test
%! A = [0,;10,;9,;]; assert (sparsersb (A)*(1*ones(size(A,2))) == sparse (A)*(1*ones(size(A,2))));
%!test
%! A = [0,;10,;9,;]; assert (sparsersb (A)*(i*ones(size(A,2))) == sparse (A)*(i*ones(size(A,2))));
%!test
%! A = [0,;10,;9,;]; assert (sparsersb (A)*1 == sparse (A)*1);
%!test
%! A = [0,;10,;9,;]; assert (sparsersb (A)*i == sparse (A)*i);
%!test
%! A = [0,;10,;9,;]; assert (sparsersb (A).'*(1*ones(size(A,1))) == sparse (A).'*(1*ones(size(A,1))));
%!test
%! A = [0,;10,;9,;]; assert (sparsersb (A).'*(i*ones(size(A,1))) == sparse (A).'*(i*ones(size(A,1))));
%!test
%! A = [0,;10,;9,;]; assert (reshape (sparsersb (A), 1, 3) == reshape (sparse (A), 1, 3));
%!test
%! A = [0,;10,;9,;]; assert (reshape (sparsersb (A), 3, 1) == reshape (sparse (A), 3, 1));
%% tests for a 3 x 1 matrix, density 50%, complex
%!test
%! A = [0,;0,;60+73*i,;]; assert ( (sparsersb (A)) == (sparse (A)));
%!test
%! A = [0,;0,;60+73*i,;]; assert (istril (sparsersb (A)) == istril (sparse (A)));
%!test
%! A = [0,;0,;60+73*i,;]; assert (istriu (sparsersb (A)) == istriu (sparse (A)));
%!test
%! A = [0,;0,;60+73*i,;]; assert (isreal (sparsersb (A)) == isreal (sparse (A)));
%!test
%! A = [0,;0,;60+73*i,;]; assert (iscomplex (sparsersb (A)) == iscomplex (sparse (A)));
%!test
%! A = [0,;0,;60+73*i,;]; assert (issymmetric (sparsersb (A)) == issymmetric (sparse (A)));
%!test
%! A = [0,;0,;60+73*i,;]; assert (ishermitian (sparsersb (A)) == ishermitian (sparse (A)));
%!test
%! A = [0,;0,;60+73*i,;]; assert (nnz (sparsersb (A)) == nnz (sparse (A)));
%!test
%! A = [0,;0,;60+73*i,;]; assert (rows (sparsersb (A)) == rows (sparse (A)));
%!test
%! A = [0,;0,;60+73*i,;]; assert (columns (sparsersb (A)) == columns (sparse (A)));
%!test
%! A = [0,;0,;60+73*i,;]; assert (sparsersb (A)'*(1*ones(size(A,1))) == sparse (A)'*(1*ones(size(A,1))));
%!test
%! A = [0,;0,;60+73*i,;]; assert (sparsersb (A)'*(i*ones(size(A,1))) == sparse (A)'*(i*ones(size(A,1))));
%!test
%! A = [0,;0,;60+73*i,;]; assert (sparsersb (A)( ) == sparse (A)( ));
%!test
%! A = [0,;0,;60+73*i,;]; assert (sparsersb (A)(1) == sparse (A)(1));
%!test
%! A = [0,;0,;60+73*i,;]; assert (sparsersb (A)(1,1) == sparse (A)(1,1));
%!test
%! A = [0,;0,;60+73*i,;]; assert (sparsersb (A)(3) == sparse (A)(3));
%!test
%! A = [0,;0,;60+73*i,;]; assert (sparsersb (A)(3,1) == sparse (A)(3,1));
%!test
%! A = [0,;0,;60+73*i,;]; assert (sparsersb (A)(3,:) == sparse (A)(3,:));
%!test
%! A = [0,;0,;60+73*i,;]; assert (sparsersb (A)(:) == sparse (A)(:));
%!test
%! A = [0,;0,;60+73*i,;]; assert (sparsersb (A)(:,1) == sparse (A)(:,1));
%!test
%! A = [0,;0,;60+73*i,;]; assert (sparsersb (A)(:,:) == sparse (A)(:,:));
%!test
%! A = [0,;0,;60+73*i,;]; assert (sparsersb (A)*(1*ones(size(A,2))) == sparse (A)*(1*ones(size(A,2))));
%!test
%! A = [0,;0,;60+73*i,;]; assert (sparsersb (A)*(i*ones(size(A,2))) == sparse (A)*(i*ones(size(A,2))));
%!test
%! A = [0,;0,;60+73*i,;]; assert (sparsersb (A)*1 == sparse (A)*1);
%!test
%! A = [0,;0,;60+73*i,;]; assert (sparsersb (A)*i == sparse (A)*i);
%!test
%! A = [0,;0,;60+73*i,;]; assert (sparsersb (A).'*(1*ones(size(A,1))) == sparse (A).'*(1*ones(size(A,1))));
%!test
%! A = [0,;0,;60+73*i,;]; assert (sparsersb (A).'*(i*ones(size(A,1))) == sparse (A).'*(i*ones(size(A,1))));
%!test
%! A = [0,;0,;60+73*i,;]; assert (reshape (sparsersb (A), 1, 3) == reshape (sparse (A), 1, 3));
%!test
%! A = [0,;0,;60+73*i,;]; assert (reshape (sparsersb (A), 3, 1) == reshape (sparse (A), 3, 1));
%% tests for a 3 x 3 matrix, density 50%, real
%!test
%! A = [58,0,70,;5,62,0,;0,0,86,;]; assert ( (sparsersb (A)) == (sparse (A)));
%!test
%! A = [58,0,70,;5,62,0,;0,0,86,;]; assert (istril (sparsersb (A)) == istril (sparse (A)));
%!test
%! A = [58,0,70,;5,62,0,;0,0,86,;]; assert (istriu (sparsersb (A)) == istriu (sparse (A)));
%!test
%! A = [58,0,70,;5,62,0,;0,0,86,;]; assert (isreal (sparsersb (A)) == isreal (sparse (A)));
%!test
%! A = [58,0,70,;5,62,0,;0,0,86,;]; assert (iscomplex (sparsersb (A)) == iscomplex (sparse (A)));
%!test
%! A = [58,0,70,;5,62,0,;0,0,86,;]; assert (issymmetric (sparsersb (A)) == issymmetric (sparse (A)));
%!test
%! A = [58,0,70,;5,62,0,;0,0,86,;]; assert (ishermitian (sparsersb (A)) == ishermitian (sparse (A)));
%!test
%! A = [58,0,70,;5,62,0,;0,0,86,;]; assert (nnz (sparsersb (A)) == nnz (sparse (A)));
%!test
%! A = [58,0,70,;5,62,0,;0,0,86,;]; assert (rows (sparsersb (A)) == rows (sparse (A)));
%!test
%! A = [58,0,70,;5,62,0,;0,0,86,;]; assert (columns (sparsersb (A)) == columns (sparse (A)));
%!test
%! A = [58,0,70,;5,62,0,;0,0,86,;]; assert (sparsersb (A)'*(1*ones(size(A,1))) == sparse (A)'*(1*ones(size(A,1))));
%!test
%! A = [58,0,70,;5,62,0,;0,0,86,;]; assert (sparsersb (A)'*(i*ones(size(A,1))) == sparse (A)'*(i*ones(size(A,1))));
%!test
%! A = [58,0,70,;5,62,0,;0,0,86,;]; assert (sparsersb (A)( ) == sparse (A)( ));
%!test
%! A = [58,0,70,;5,62,0,;0,0,86,;]; assert (sparsersb (A)(1) == sparse (A)(1));
%!test
%! A = [58,0,70,;5,62,0,;0,0,86,;]; assert (sparsersb (A)(1,1) == sparse (A)(1,1));
%!test
%! A = [58,0,70,;5,62,0,;0,0,86,;]; assert (sparsersb (A)(3,3) == sparse (A)(3,3));
%!test
%! A = [58,0,70,;5,62,0,;0,0,86,;]; assert (sparsersb (A)(3,:) == sparse (A)(3,:));
%!test
%! A = [58,0,70,;5,62,0,;0,0,86,;]; assert (sparsersb (A)(9) == sparse (A)(9));
%!test
%! A = [58,0,70,;5,62,0,;0,0,86,;]; assert (sparsersb (A)(:) == sparse (A)(:));
%!test
%! A = [58,0,70,;5,62,0,;0,0,86,;]; assert (sparsersb (A)(:,3) == sparse (A)(:,3));
%!test
%! A = [58,0,70,;5,62,0,;0,0,86,;]; assert (sparsersb (A)(:,:) == sparse (A)(:,:));
%!test
%! A = [58,0,70,;5,62,0,;0,0,86,;]; assert (sparsersb (A)*(1*ones(size(A,2))) == sparse (A)*(1*ones(size(A,2))));
%!test
%! A = [58,0,70,;5,62,0,;0,0,86,;]; assert (sparsersb (A)*(i*ones(size(A,2))) == sparse (A)*(i*ones(size(A,2))));
%!test
%! A = [58,0,70,;5,62,0,;0,0,86,;]; assert (sparsersb (A)*1 == sparse (A)*1);
%!test
%! A = [58,0,70,;5,62,0,;0,0,86,;]; assert (sparsersb (A)*i == sparse (A)*i);
%!test
%! A = [58,0,70,;5,62,0,;0,0,86,;]; assert (sparsersb (A).'*(1*ones(size(A,1))) == sparse (A).'*(1*ones(size(A,1))));
%!test
%! A = [58,0,70,;5,62,0,;0,0,86,;]; assert (sparsersb (A).'*(i*ones(size(A,1))) == sparse (A).'*(i*ones(size(A,1))));
%!test
%! A = [58,0,70,;5,62,0,;0,0,86,;]; assert (reshape (sparsersb (A), 1, 9) == reshape (sparse (A), 1, 9));
%!test
%! A = [58,0,70,;5,62,0,;0,0,86,;]; assert (reshape (sparsersb (A), 3, 3) == reshape (sparse (A), 3, 3));
%!test
%! A = [58,0,70,;5,62,0,;0,0,86,;]; assert (reshape (sparsersb (A), 9, 1) == reshape (sparse (A), 9, 1));
%% tests for a 3 x 3 matrix, density 50%, complex
%!test
%! A = [0+64*i,23+36*i,0,;0,0,0,;8,0,0,;]; assert ( (sparsersb (A)) == (sparse (A)));
%!test
%! A = [0+64*i,23+36*i,0,;0,0,0,;8,0,0,;]; assert (istril (sparsersb (A)) == istril (sparse (A)));
%!test
%! A = [0+64*i,23+36*i,0,;0,0,0,;8,0,0,;]; assert (istriu (sparsersb (A)) == istriu (sparse (A)));
%!test
%! A = [0+64*i,23+36*i,0,;0,0,0,;8,0,0,;]; assert (isreal (sparsersb (A)) == isreal (sparse (A)));
%!test
%! A = [0+64*i,23+36*i,0,;0,0,0,;8,0,0,;]; assert (iscomplex (sparsersb (A)) == iscomplex (sparse (A)));
%!test
%! A = [0+64*i,23+36*i,0,;0,0,0,;8,0,0,;]; assert (issymmetric (sparsersb (A)) == issymmetric (sparse (A)));
%!test
%! A = [0+64*i,23+36*i,0,;0,0,0,;8,0,0,;]; assert (ishermitian (sparsersb (A)) == ishermitian (sparse (A)));
%!test
%! A = [0+64*i,23+36*i,0,;0,0,0,;8,0,0,;]; assert (nnz (sparsersb (A)) == nnz (sparse (A)));
%!test
%! A = [0+64*i,23+36*i,0,;0,0,0,;8,0,0,;]; assert (rows (sparsersb (A)) == rows (sparse (A)));
%!test
%! A = [0+64*i,23+36*i,0,;0,0,0,;8,0,0,;]; assert (columns (sparsersb (A)) == columns (sparse (A)));
%!test
%! A = [0+64*i,23+36*i,0,;0,0,0,;8,0,0,;]; assert (sparsersb (A)'*(1*ones(size(A,1))) == sparse (A)'*(1*ones(size(A,1))));
%!test
%! A = [0+64*i,23+36*i,0,;0,0,0,;8,0,0,;]; assert (sparsersb (A)'*(i*ones(size(A,1))) == sparse (A)'*(i*ones(size(A,1))));
%!test
%! A = [0+64*i,23+36*i,0,;0,0,0,;8,0,0,;]; assert (sparsersb (A)( ) == sparse (A)( ));
%!test
%! A = [0+64*i,23+36*i,0,;0,0,0,;8,0,0,;]; assert (sparsersb (A)(1) == sparse (A)(1));
%!test
%! A = [0+64*i,23+36*i,0,;0,0,0,;8,0,0,;]; assert (sparsersb (A)(1,1) == sparse (A)(1,1));
%!test
%! A = [0+64*i,23+36*i,0,;0,0,0,;8,0,0,;]; assert (sparsersb (A)(3,3) == sparse (A)(3,3));
%!test
%! A = [0+64*i,23+36*i,0,;0,0,0,;8,0,0,;]; assert (sparsersb (A)(3,:) == sparse (A)(3,:));
%!test
%! A = [0+64*i,23+36*i,0,;0,0,0,;8,0,0,;]; assert (sparsersb (A)(9) == sparse (A)(9));
%!test
%! A = [0+64*i,23+36*i,0,;0,0,0,;8,0,0,;]; assert (sparsersb (A)(:) == sparse (A)(:));
%!test
%! A = [0+64*i,23+36*i,0,;0,0,0,;8,0,0,;]; assert (sparsersb (A)(:,3) == sparse (A)(:,3));
%!test
%! A = [0+64*i,23+36*i,0,;0,0,0,;8,0,0,;]; assert (sparsersb (A)(:,:) == sparse (A)(:,:));
%!test
%! A = [0+64*i,23+36*i,0,;0,0,0,;8,0,0,;]; assert (sparsersb (A)*(1*ones(size(A,2))) == sparse (A)*(1*ones(size(A,2))));
%!test
%! A = [0+64*i,23+36*i,0,;0,0,0,;8,0,0,;]; assert (sparsersb (A)*(i*ones(size(A,2))) == sparse (A)*(i*ones(size(A,2))));
%!test
%! A = [0+64*i,23+36*i,0,;0,0,0,;8,0,0,;]; assert (sparsersb (A)*1 == sparse (A)*1);
%!test
%! A = [0+64*i,23+36*i,0,;0,0,0,;8,0,0,;]; assert (sparsersb (A)*i == sparse (A)*i);
%!test
%! A = [0+64*i,23+36*i,0,;0,0,0,;8,0,0,;]; assert (sparsersb (A).'*(1*ones(size(A,1))) == sparse (A).'*(1*ones(size(A,1))));
%!test
%! A = [0+64*i,23+36*i,0,;0,0,0,;8,0,0,;]; assert (sparsersb (A).'*(i*ones(size(A,1))) == sparse (A).'*(i*ones(size(A,1))));
%!test
%! A = [0+64*i,23+36*i,0,;0,0,0,;8,0,0,;]; assert (reshape (sparsersb (A), 1, 9) == reshape (sparse (A), 1, 9));
%!test
%! A = [0+64*i,23+36*i,0,;0,0,0,;8,0,0,;]; assert (reshape (sparsersb (A), 3, 3) == reshape (sparse (A), 3, 3));
%!test
%! A = [0+64*i,23+36*i,0,;0,0,0,;8,0,0,;]; assert (reshape (sparsersb (A), 9, 1) == reshape (sparse (A), 9, 1));
%% tests for a 1 x 1 matrix, density 100%, real
%!test
%! A = [21,;]; assert ( (sparsersb (A)) == (sparse (A)));
%!test
%! A = [21,;]; assert (istril (sparsersb (A)) == istril (sparse (A)));
%!test
%! A = [21,;]; assert (istriu (sparsersb (A)) == istriu (sparse (A)));
%!test
%! A = [21,;]; assert (isreal (sparsersb (A)) == isreal (sparse (A)));
%!test
%! A = [21,;]; assert (iscomplex (sparsersb (A)) == iscomplex (sparse (A)));
%!test
%! A = [21,;]; assert (issymmetric (sparsersb (A)) == issymmetric (sparse (A)));
%!test
%! A = [21,;]; assert (ishermitian (sparsersb (A)) == ishermitian (sparse (A)));
%!test
%! A = [21,;]; assert (nnz (sparsersb (A)) == nnz (sparse (A)));
%!test
%! A = [21,;]; assert (rows (sparsersb (A)) == rows (sparse (A)));
%!test
%! A = [21,;]; assert (columns (sparsersb (A)) == columns (sparse (A)));
%!test
%! A = [21,;]; assert (sparsersb (A)'*(1*ones(size(A,1))) == sparse (A)'*(1*ones(size(A,1))));
%!test
%! A = [21,;]; assert (sparsersb (A)'*(i*ones(size(A,1))) == sparse (A)'*(i*ones(size(A,1))));
%!test
%! A = [21,;]; assert (sparsersb (A)( ) == sparse (A)( ));
%!test
%! A = [21,;]; assert (sparsersb (A)(1) == sparse (A)(1));
%!test
%! A = [21,;]; assert (sparsersb (A)(1,1) == sparse (A)(1,1));
%!test
%! A = [21,;]; assert (sparsersb (A)(1,:) == sparse (A)(1,:));
%!test
%! A = [21,;]; assert (sparsersb (A)(:) == sparse (A)(:));
%!test
%! A = [21,;]; assert (sparsersb (A)(:,1) == sparse (A)(:,1));
%!test
%! A = [21,;]; assert (sparsersb (A)(:,:) == sparse (A)(:,:));
%!test
%! A = [21,;]; assert (sparsersb (A)*(1*ones(size(A,2))) == sparse (A)*(1*ones(size(A,2))));
%!test
%! A = [21,;]; assert (sparsersb (A)*(i*ones(size(A,2))) == sparse (A)*(i*ones(size(A,2))));
%!test
%! A = [21,;]; assert (sparsersb (A)*1 == sparse (A)*1);
%!test
%! A = [21,;]; assert (sparsersb (A)*i == sparse (A)*i);
%!test
%! A = [21,;]; assert (sparsersb (A).'*(1*ones(size(A,1))) == sparse (A).'*(1*ones(size(A,1))));
%!test
%! A = [21,;]; assert (sparsersb (A).'*(i*ones(size(A,1))) == sparse (A).'*(i*ones(size(A,1))));
%!test
%! A = [21,;]; assert (reshape (sparsersb (A), 1, 1) == reshape (sparse (A), 1, 1));
%% tests for a 1 x 1 matrix, density 100%, complex
%!test
%! A = [94+61*i,;]; assert ( (sparsersb (A)) == (sparse (A)));
%!test
%! A = [94+61*i,;]; assert (istril (sparsersb (A)) == istril (sparse (A)));
%!test
%! A = [94+61*i,;]; assert (istriu (sparsersb (A)) == istriu (sparse (A)));
%!test
%! A = [94+61*i,;]; assert (isreal (sparsersb (A)) == isreal (sparse (A)));
%!test
%! A = [94+61*i,;]; assert (iscomplex (sparsersb (A)) == iscomplex (sparse (A)));
%!test
%! A = [94+61*i,;]; assert (issymmetric (sparsersb (A)) == issymmetric (sparse (A)));
%!test
%! A = [94+61*i,;]; assert (ishermitian (sparsersb (A)) == ishermitian (sparse (A)));
%!test
%! A = [94+61*i,;]; assert (nnz (sparsersb (A)) == nnz (sparse (A)));
%!test
%! A = [94+61*i,;]; assert (rows (sparsersb (A)) == rows (sparse (A)));
%!test
%! A = [94+61*i,;]; assert (columns (sparsersb (A)) == columns (sparse (A)));
%!test
%! A = [94+61*i,;]; assert (sparsersb (A)'*(1*ones(size(A,1))) == sparse (A)'*(1*ones(size(A,1))));
%!test
%! A = [94+61*i,;]; assert (sparsersb (A)'*(i*ones(size(A,1))) == sparse (A)'*(i*ones(size(A,1))));
%!test
%! A = [94+61*i,;]; assert (sparsersb (A)( ) == sparse (A)( ));
%!test
%! A = [94+61*i,;]; assert (sparsersb (A)(1) == sparse (A)(1));
%!test
%! A = [94+61*i,;]; assert (sparsersb (A)(1,1) == sparse (A)(1,1));
%!test
%! A = [94+61*i,;]; assert (sparsersb (A)(1,:) == sparse (A)(1,:));
%!test
%! A = [94+61*i,;]; assert (sparsersb (A)(:) == sparse (A)(:));
%!test
%! A = [94+61*i,;]; assert (sparsersb (A)(:,1) == sparse (A)(:,1));
%!test
%! A = [94+61*i,;]; assert (sparsersb (A)(:,:) == sparse (A)(:,:));
%!test
%! A = [94+61*i,;]; assert (sparsersb (A)*(1*ones(size(A,2))) == sparse (A)*(1*ones(size(A,2))));
%!test
%! A = [94+61*i,;]; assert (sparsersb (A)*(i*ones(size(A,2))) == sparse (A)*(i*ones(size(A,2))));
%!test
%! A = [94+61*i,;]; assert (sparsersb (A)*1 == sparse (A)*1);
%!test
%! A = [94+61*i,;]; assert (sparsersb (A)*i == sparse (A)*i);
%!test
%! A = [94+61*i,;]; assert (sparsersb (A).'*(1*ones(size(A,1))) == sparse (A).'*(1*ones(size(A,1))));
%!test
%! A = [94+61*i,;]; assert (sparsersb (A).'*(i*ones(size(A,1))) == sparse (A).'*(i*ones(size(A,1))));
%!test
%! A = [94+61*i,;]; assert (reshape (sparsersb (A), 1, 1) == reshape (sparse (A), 1, 1));
%% tests for a 1 x 3 matrix, density 100%, real
%!test
%! A = [38,64,99,;]; assert ( (sparsersb (A)) == (sparse (A)));
%!test
%! A = [38,64,99,;]; assert (istril (sparsersb (A)) == istril (sparse (A)));
%!test
%! A = [38,64,99,;]; assert (istriu (sparsersb (A)) == istriu (sparse (A)));
%!test
%! A = [38,64,99,;]; assert (isreal (sparsersb (A)) == isreal (sparse (A)));
%!test
%! A = [38,64,99,;]; assert (iscomplex (sparsersb (A)) == iscomplex (sparse (A)));
%!test
%! A = [38,64,99,;]; assert (issymmetric (sparsersb (A)) == issymmetric (sparse (A)));
%!test
%! A = [38,64,99,;]; assert (ishermitian (sparsersb (A)) == ishermitian (sparse (A)));
%!test
%! A = [38,64,99,;]; assert (nnz (sparsersb (A)) == nnz (sparse (A)));
%!test
%! A = [38,64,99,;]; assert (rows (sparsersb (A)) == rows (sparse (A)));
%!test
%! A = [38,64,99,;]; assert (columns (sparsersb (A)) == columns (sparse (A)));
%!test
%! A = [38,64,99,;]; assert (sparsersb (A)'*(1*ones(size(A,1))) == sparse (A)'*(1*ones(size(A,1))));
%!test
%! A = [38,64,99,;]; assert (sparsersb (A)'*(i*ones(size(A,1))) == sparse (A)'*(i*ones(size(A,1))));
%!test
%! A = [38,64,99,;]; assert (sparsersb (A)( ) == sparse (A)( ));
%!test
%! A = [38,64,99,;]; assert (sparsersb (A)(1) == sparse (A)(1));
%!test
%! A = [38,64,99,;]; assert (sparsersb (A)(1,1) == sparse (A)(1,1));
%!test
%! A = [38,64,99,;]; assert (sparsersb (A)(1,3) == sparse (A)(1,3));
%!test
%! A = [38,64,99,;]; assert (sparsersb (A)(1,:) == sparse (A)(1,:));
%!test
%! A = [38,64,99,;]; assert (sparsersb (A)(3) == sparse (A)(3));
%!test
%! A = [38,64,99,;]; assert (sparsersb (A)(:) == sparse (A)(:));
%!test
%! A = [38,64,99,;]; assert (sparsersb (A)(:,3) == sparse (A)(:,3));
%!test
%! A = [38,64,99,;]; assert (sparsersb (A)(:,:) == sparse (A)(:,:));
%!test
%! A = [38,64,99,;]; assert (sparsersb (A)*(1*ones(size(A,2))) == sparse (A)*(1*ones(size(A,2))));
%!test
%! A = [38,64,99,;]; assert (sparsersb (A)*(i*ones(size(A,2))) == sparse (A)*(i*ones(size(A,2))));
%!test
%! A = [38,64,99,;]; assert (sparsersb (A)*1 == sparse (A)*1);
%!test
%! A = [38,64,99,;]; assert (sparsersb (A)*i == sparse (A)*i);
%!test
%! A = [38,64,99,;]; assert (sparsersb (A).'*(1*ones(size(A,1))) == sparse (A).'*(1*ones(size(A,1))));
%!test
%! A = [38,64,99,;]; assert (sparsersb (A).'*(i*ones(size(A,1))) == sparse (A).'*(i*ones(size(A,1))));
%!test
%! A = [38,64,99,;]; assert (reshape (sparsersb (A), 1, 3) == reshape (sparse (A), 1, 3));
%!test
%! A = [38,64,99,;]; assert (reshape (sparsersb (A), 3, 1) == reshape (sparse (A), 3, 1));
%% tests for a 1 x 3 matrix, density 100%, complex
%!test
%! A = [0+32*i,84+27*i,78,;]; assert ( (sparsersb (A)) == (sparse (A)));
%!test
%! A = [0+32*i,84+27*i,78,;]; assert (istril (sparsersb (A)) == istril (sparse (A)));
%!test
%! A = [0+32*i,84+27*i,78,;]; assert (istriu (sparsersb (A)) == istriu (sparse (A)));
%!test
%! A = [0+32*i,84+27*i,78,;]; assert (isreal (sparsersb (A)) == isreal (sparse (A)));
%!test
%! A = [0+32*i,84+27*i,78,;]; assert (iscomplex (sparsersb (A)) == iscomplex (sparse (A)));
%!test
%! A = [0+32*i,84+27*i,78,;]; assert (issymmetric (sparsersb (A)) == issymmetric (sparse (A)));
%!test
%! A = [0+32*i,84+27*i,78,;]; assert (ishermitian (sparsersb (A)) == ishermitian (sparse (A)));
%!test
%! A = [0+32*i,84+27*i,78,;]; assert (nnz (sparsersb (A)) == nnz (sparse (A)));
%!test
%! A = [0+32*i,84+27*i,78,;]; assert (rows (sparsersb (A)) == rows (sparse (A)));
%!test
%! A = [0+32*i,84+27*i,78,;]; assert (columns (sparsersb (A)) == columns (sparse (A)));
%!test
%! A = [0+32*i,84+27*i,78,;]; assert (sparsersb (A)'*(1*ones(size(A,1))) == sparse (A)'*(1*ones(size(A,1))));
%!test
%! A = [0+32*i,84+27*i,78,;]; assert (sparsersb (A)'*(i*ones(size(A,1))) == sparse (A)'*(i*ones(size(A,1))));
%!test
%! A = [0+32*i,84+27*i,78,;]; assert (sparsersb (A)( ) == sparse (A)( ));
%!test
%! A = [0+32*i,84+27*i,78,;]; assert (sparsersb (A)(1) == sparse (A)(1));
%!test
%! A = [0+32*i,84+27*i,78,;]; assert (sparsersb (A)(1,1) == sparse (A)(1,1));
%!test
%! A = [0+32*i,84+27*i,78,;]; assert (sparsersb (A)(1,3) == sparse (A)(1,3));
%!test
%! A = [0+32*i,84+27*i,78,;]; assert (sparsersb (A)(1,:) == sparse (A)(1,:));
%!test
%! A = [0+32*i,84+27*i,78,;]; assert (sparsersb (A)(3) == sparse (A)(3));
%!test
%! A = [0+32*i,84+27*i,78,;]; assert (sparsersb (A)(:) == sparse (A)(:));
%!test
%! A = [0+32*i,84+27*i,78,;]; assert (sparsersb (A)(:,3) == sparse (A)(:,3));
%!test
%! A = [0+32*i,84+27*i,78,;]; assert (sparsersb (A)(:,:) == sparse (A)(:,:));
%!test
%! A = [0+32*i,84+27*i,78,;]; assert (sparsersb (A)*(1*ones(size(A,2))) == sparse (A)*(1*ones(size(A,2))));
%!test
%! A = [0+32*i,84+27*i,78,;]; assert (sparsersb (A)*(i*ones(size(A,2))) == sparse (A)*(i*ones(size(A,2))));
%!test
%! A = [0+32*i,84+27*i,78,;]; assert (sparsersb (A)*1 == sparse (A)*1);
%!test
%! A = [0+32*i,84+27*i,78,;]; assert (sparsersb (A)*i == sparse (A)*i);
%!test
%! A = [0+32*i,84+27*i,78,;]; assert (sparsersb (A).'*(1*ones(size(A,1))) == sparse (A).'*(1*ones(size(A,1))));
%!test
%! A = [0+32*i,84+27*i,78,;]; assert (sparsersb (A).'*(i*ones(size(A,1))) == sparse (A).'*(i*ones(size(A,1))));
%!test
%! A = [0+32*i,84+27*i,78,;]; assert (reshape (sparsersb (A), 1, 3) == reshape (sparse (A), 1, 3));
%!test
%! A = [0+32*i,84+27*i,78,;]; assert (reshape (sparsersb (A), 3, 1) == reshape (sparse (A), 3, 1));
%% tests for a 3 x 1 matrix, density 100%, real
%!test
%! A = [31,;40,;66,;]; assert ( (sparsersb (A)) == (sparse (A)));
%!test
%! A = [31,;40,;66,;]; assert (istril (sparsersb (A)) == istril (sparse (A)));
%!test
%! A = [31,;40,;66,;]; assert (istriu (sparsersb (A)) == istriu (sparse (A)));
%!test
%! A = [31,;40,;66,;]; assert (isreal (sparsersb (A)) == isreal (sparse (A)));
%!test
%! A = [31,;40,;66,;]; assert (iscomplex (sparsersb (A)) == iscomplex (sparse (A)));
%!test
%! A = [31,;40,;66,;]; assert (issymmetric (sparsersb (A)) == issymmetric (sparse (A)));
%!test
%! A = [31,;40,;66,;]; assert (ishermitian (sparsersb (A)) == ishermitian (sparse (A)));
%!test
%! A = [31,;40,;66,;]; assert (nnz (sparsersb (A)) == nnz (sparse (A)));
%!test
%! A = [31,;40,;66,;]; assert (rows (sparsersb (A)) == rows (sparse (A)));
%!test
%! A = [31,;40,;66,;]; assert (columns (sparsersb (A)) == columns (sparse (A)));
%!test
%! A = [31,;40,;66,;]; assert (sparsersb (A)'*(1*ones(size(A,1))) == sparse (A)'*(1*ones(size(A,1))));
%!test
%! A = [31,;40,;66,;]; assert (sparsersb (A)'*(i*ones(size(A,1))) == sparse (A)'*(i*ones(size(A,1))));
%!test
%! A = [31,;40,;66,;]; assert (sparsersb (A)( ) == sparse (A)( ));
%!test
%! A = [31,;40,;66,;]; assert (sparsersb (A)(1) == sparse (A)(1));
%!test
%! A = [31,;40,;66,;]; assert (sparsersb (A)(1,1) == sparse (A)(1,1));
%!test
%! A = [31,;40,;66,;]; assert (sparsersb (A)(3) == sparse (A)(3));
%!test
%! A = [31,;40,;66,;]; assert (sparsersb (A)(3,1) == sparse (A)(3,1));
%!test
%! A = [31,;40,;66,;]; assert (sparsersb (A)(3,:) == sparse (A)(3,:));
%!test
%! A = [31,;40,;66,;]; assert (sparsersb (A)(:) == sparse (A)(:));
%!test
%! A = [31,;40,;66,;]; assert (sparsersb (A)(:,1) == sparse (A)(:,1));
%!test
%! A = [31,;40,;66,;]; assert (sparsersb (A)(:,:) == sparse (A)(:,:));
%!test
%! A = [31,;40,;66,;]; assert (sparsersb (A)*(1*ones(size(A,2))) == sparse (A)*(1*ones(size(A,2))));
%!test
%! A = [31,;40,;66,;]; assert (sparsersb (A)*(i*ones(size(A,2))) == sparse (A)*(i*ones(size(A,2))));
%!test
%! A = [31,;40,;66,;]; assert (sparsersb (A)*1 == sparse (A)*1);
%!test
%! A = [31,;40,;66,;]; assert (sparsersb (A)*i == sparse (A)*i);
%!test
%! A = [31,;40,;66,;]; assert (sparsersb (A).'*(1*ones(size(A,1))) == sparse (A).'*(1*ones(size(A,1))));
%!test
%! A = [31,;40,;66,;]; assert (sparsersb (A).'*(i*ones(size(A,1))) == sparse (A).'*(i*ones(size(A,1))));
%!test
%! A = [31,;40,;66,;]; assert (reshape (sparsersb (A), 1, 3) == reshape (sparse (A), 1, 3));
%!test
%! A = [31,;40,;66,;]; assert (reshape (sparsersb (A), 3, 1) == reshape (sparse (A), 3, 1));
%% tests for a 3 x 1 matrix, density 100%, complex
%!test
%! A = [0+90*i,;25+58*i,;26,;]; assert ( (sparsersb (A)) == (sparse (A)));
%!test
%! A = [0+90*i,;25+58*i,;26,;]; assert (istril (sparsersb (A)) == istril (sparse (A)));
%!test
%! A = [0+90*i,;25+58*i,;26,;]; assert (istriu (sparsersb (A)) == istriu (sparse (A)));
%!test
%! A = [0+90*i,;25+58*i,;26,;]; assert (isreal (sparsersb (A)) == isreal (sparse (A)));
%!test
%! A = [0+90*i,;25+58*i,;26,;]; assert (iscomplex (sparsersb (A)) == iscomplex (sparse (A)));
%!test
%! A = [0+90*i,;25+58*i,;26,;]; assert (issymmetric (sparsersb (A)) == issymmetric (sparse (A)));
%!test
%! A = [0+90*i,;25+58*i,;26,;]; assert (ishermitian (sparsersb (A)) == ishermitian (sparse (A)));
%!test
%! A = [0+90*i,;25+58*i,;26,;]; assert (nnz (sparsersb (A)) == nnz (sparse (A)));
%!test
%! A = [0+90*i,;25+58*i,;26,;]; assert (rows (sparsersb (A)) == rows (sparse (A)));
%!test
%! A = [0+90*i,;25+58*i,;26,;]; assert (columns (sparsersb (A)) == columns (sparse (A)));
%!test
%! A = [0+90*i,;25+58*i,;26,;]; assert (sparsersb (A)'*(1*ones(size(A,1))) == sparse (A)'*(1*ones(size(A,1))));
%!test
%! A = [0+90*i,;25+58*i,;26,;]; assert (sparsersb (A)'*(i*ones(size(A,1))) == sparse (A)'*(i*ones(size(A,1))));
%!test
%! A = [0+90*i,;25+58*i,;26,;]; assert (sparsersb (A)( ) == sparse (A)( ));
%!test
%! A = [0+90*i,;25+58*i,;26,;]; assert (sparsersb (A)(1) == sparse (A)(1));
%!test
%! A = [0+90*i,;25+58*i,;26,;]; assert (sparsersb (A)(1,1) == sparse (A)(1,1));
%!test
%! A = [0+90*i,;25+58*i,;26,;]; assert (sparsersb (A)(3) == sparse (A)(3));
%!test
%! A = [0+90*i,;25+58*i,;26,;]; assert (sparsersb (A)(3,1) == sparse (A)(3,1));
%!test
%! A = [0+90*i,;25+58*i,;26,;]; assert (sparsersb (A)(3,:) == sparse (A)(3,:));
%!test
%! A = [0+90*i,;25+58*i,;26,;]; assert (sparsersb (A)(:) == sparse (A)(:));
%!test
%! A = [0+90*i,;25+58*i,;26,;]; assert (sparsersb (A)(:,1) == sparse (A)(:,1));
%!test
%! A = [0+90*i,;25+58*i,;26,;]; assert (sparsersb (A)(:,:) == sparse (A)(:,:));
%!test
%! A = [0+90*i,;25+58*i,;26,;]; assert (sparsersb (A)*(1*ones(size(A,2))) == sparse (A)*(1*ones(size(A,2))));
%!test
%! A = [0+90*i,;25+58*i,;26,;]; assert (sparsersb (A)*(i*ones(size(A,2))) == sparse (A)*(i*ones(size(A,2))));
%!test
%! A = [0+90*i,;25+58*i,;26,;]; assert (sparsersb (A)*1 == sparse (A)*1);
%!test
%! A = [0+90*i,;25+58*i,;26,;]; assert (sparsersb (A)*i == sparse (A)*i);
%!test
%! A = [0+90*i,;25+58*i,;26,;]; assert (sparsersb (A).'*(1*ones(size(A,1))) == sparse (A).'*(1*ones(size(A,1))));
%!test
%! A = [0+90*i,;25+58*i,;26,;]; assert (sparsersb (A).'*(i*ones(size(A,1))) == sparse (A).'*(i*ones(size(A,1))));
%!test
%! A = [0+90*i,;25+58*i,;26,;]; assert (reshape (sparsersb (A), 1, 3) == reshape (sparse (A), 1, 3));
%!test
%! A = [0+90*i,;25+58*i,;26,;]; assert (reshape (sparsersb (A), 3, 1) == reshape (sparse (A), 3, 1));
%% tests for a 3 x 3 matrix, density 100%, real
%!test
%! A = [86,42,100,;1,53,72,;6,97,38,;]; assert ( (sparsersb (A)) == (sparse (A)));
%!test
%! A = [86,42,100,;1,53,72,;6,97,38,;]; assert (istril (sparsersb (A)) == istril (sparse (A)));
%!test
%! A = [86,42,100,;1,53,72,;6,97,38,;]; assert (istriu (sparsersb (A)) == istriu (sparse (A)));
%!test
%! A = [86,42,100,;1,53,72,;6,97,38,;]; assert (isreal (sparsersb (A)) == isreal (sparse (A)));
%!test
%! A = [86,42,100,;1,53,72,;6,97,38,;]; assert (iscomplex (sparsersb (A)) == iscomplex (sparse (A)));
%!test
%! A = [86,42,100,;1,53,72,;6,97,38,;]; assert (issymmetric (sparsersb (A)) == issymmetric (sparse (A)));
%!test
%! A = [86,42,100,;1,53,72,;6,97,38,;]; assert (ishermitian (sparsersb (A)) == ishermitian (sparse (A)));
%!test
%! A = [86,42,100,;1,53,72,;6,97,38,;]; assert (nnz (sparsersb (A)) == nnz (sparse (A)));
%!test
%! A = [86,42,100,;1,53,72,;6,97,38,;]; assert (rows (sparsersb (A)) == rows (sparse (A)));
%!test
%! A = [86,42,100,;1,53,72,;6,97,38,;]; assert (columns (sparsersb (A)) == columns (sparse (A)));
%!test
%! A = [86,42,100,;1,53,72,;6,97,38,;]; assert (sparsersb (A)'*(1*ones(size(A,1))) == sparse (A)'*(1*ones(size(A,1))));
%!test
%! A = [86,42,100,;1,53,72,;6,97,38,;]; assert (sparsersb (A)'*(i*ones(size(A,1))) == sparse (A)'*(i*ones(size(A,1))));
%!test
%! A = [86,42,100,;1,53,72,;6,97,38,;]; assert (sparsersb (A)( ) == sparse (A)( ));
%!test
%! A = [86,42,100,;1,53,72,;6,97,38,;]; assert (sparsersb (A)(1) == sparse (A)(1));
%!test
%! A = [86,42,100,;1,53,72,;6,97,38,;]; assert (sparsersb (A)(1,1) == sparse (A)(1,1));
%!test
%! A = [86,42,100,;1,53,72,;6,97,38,;]; assert (sparsersb (A)(3,3) == sparse (A)(3,3));
%!test
%! A = [86,42,100,;1,53,72,;6,97,38,;]; assert (sparsersb (A)(3,:) == sparse (A)(3,:));
%!test
%! A = [86,42,100,;1,53,72,;6,97,38,;]; assert (sparsersb (A)(9) == sparse (A)(9));
%!test
%! A = [86,42,100,;1,53,72,;6,97,38,;]; assert (sparsersb (A)(:) == sparse (A)(:));
%!test
%! A = [86,42,100,;1,53,72,;6,97,38,;]; assert (sparsersb (A)(:,3) == sparse (A)(:,3));
%!test
%! A = [86,42,100,;1,53,72,;6,97,38,;]; assert (sparsersb (A)(:,:) == sparse (A)(:,:));
%!test
%! A = [86,42,100,;1,53,72,;6,97,38,;]; assert (sparsersb (A)*(1*ones(size(A,2))) == sparse (A)*(1*ones(size(A,2))));
%!test
%! A = [86,42,100,;1,53,72,;6,97,38,;]; assert (sparsersb (A)*(i*ones(size(A,2))) == sparse (A)*(i*ones(size(A,2))));
%!test
%! A = [86,42,100,;1,53,72,;6,97,38,;]; assert (sparsersb (A)*1 == sparse (A)*1);
%!test
%! A = [86,42,100,;1,53,72,;6,97,38,;]; assert (sparsersb (A)*i == sparse (A)*i);
%!test
%! A = [86,42,100,;1,53,72,;6,97,38,;]; assert (sparsersb (A).'*(1*ones(size(A,1))) == sparse (A).'*(1*ones(size(A,1))));
%!test
%! A = [86,42,100,;1,53,72,;6,97,38,;]; assert (sparsersb (A).'*(i*ones(size(A,1))) == sparse (A).'*(i*ones(size(A,1))));
%!test
%! A = [86,42,100,;1,53,72,;6,97,38,;]; assert (reshape (sparsersb (A), 1, 9) == reshape (sparse (A), 1, 9));
%!test
%! A = [86,42,100,;1,53,72,;6,97,38,;]; assert (reshape (sparsersb (A), 3, 3) == reshape (sparse (A), 3, 3));
%!test
%! A = [86,42,100,;1,53,72,;6,97,38,;]; assert (reshape (sparsersb (A), 9, 1) == reshape (sparse (A), 9, 1));
%% tests for a 3 x 3 matrix, density 100%, complex
%!test
%! A = [88,95,43,;0+76*i,26+64*i,0,;0+61*i,45+54*i,0+15*i,;]; assert ( (sparsersb (A)) == (sparse (A)));
%!test
%! A = [88,95,43,;0+76*i,26+64*i,0,;0+61*i,45+54*i,0+15*i,;]; assert (istril (sparsersb (A)) == istril (sparse (A)));
%!test
%! A = [88,95,43,;0+76*i,26+64*i,0,;0+61*i,45+54*i,0+15*i,;]; assert (istriu (sparsersb (A)) == istriu (sparse (A)));
%!test
%! A = [88,95,43,;0+76*i,26+64*i,0,;0+61*i,45+54*i,0+15*i,;]; assert (isreal (sparsersb (A)) == isreal (sparse (A)));
%!test
%! A = [88,95,43,;0+76*i,26+64*i,0,;0+61*i,45+54*i,0+15*i,;]; assert (iscomplex (sparsersb (A)) == iscomplex (sparse (A)));
%!test
%! A = [88,95,43,;0+76*i,26+64*i,0,;0+61*i,45+54*i,0+15*i,;]; assert (issymmetric (sparsersb (A)) == issymmetric (sparse (A)));
%!test
%! A = [88,95,43,;0+76*i,26+64*i,0,;0+61*i,45+54*i,0+15*i,;]; assert (ishermitian (sparsersb (A)) == ishermitian (sparse (A)));
%!test
%! A = [88,95,43,;0+76*i,26+64*i,0,;0+61*i,45+54*i,0+15*i,;]; assert (nnz (sparsersb (A)) == nnz (sparse (A)));
%!test
%! A = [88,95,43,;0+76*i,26+64*i,0,;0+61*i,45+54*i,0+15*i,;]; assert (rows (sparsersb (A)) == rows (sparse (A)));
%!test
%! A = [88,95,43,;0+76*i,26+64*i,0,;0+61*i,45+54*i,0+15*i,;]; assert (columns (sparsersb (A)) == columns (sparse (A)));
%!test
%! A = [88,95,43,;0+76*i,26+64*i,0,;0+61*i,45+54*i,0+15*i,;]; assert (sparsersb (A)'*(1*ones(size(A,1))) == sparse (A)'*(1*ones(size(A,1))));
%!test
%! A = [88,95,43,;0+76*i,26+64*i,0,;0+61*i,45+54*i,0+15*i,;]; assert (sparsersb (A)'*(i*ones(size(A,1))) == sparse (A)'*(i*ones(size(A,1))));
%!test
%! A = [88,95,43,;0+76*i,26+64*i,0,;0+61*i,45+54*i,0+15*i,;]; assert (sparsersb (A)( ) == sparse (A)( ));
%!test
%! A = [88,95,43,;0+76*i,26+64*i,0,;0+61*i,45+54*i,0+15*i,;]; assert (sparsersb (A)(1) == sparse (A)(1));
%!test
%! A = [88,95,43,;0+76*i,26+64*i,0,;0+61*i,45+54*i,0+15*i,;]; assert (sparsersb (A)(1,1) == sparse (A)(1,1));
%!test
%! A = [88,95,43,;0+76*i,26+64*i,0,;0+61*i,45+54*i,0+15*i,;]; assert (sparsersb (A)(3,3) == sparse (A)(3,3));
%!test
%! A = [88,95,43,;0+76*i,26+64*i,0,;0+61*i,45+54*i,0+15*i,;]; assert (sparsersb (A)(3,:) == sparse (A)(3,:));
%!test
%! A = [88,95,43,;0+76*i,26+64*i,0,;0+61*i,45+54*i,0+15*i,;]; assert (sparsersb (A)(9) == sparse (A)(9));
%!test
%! A = [88,95,43,;0+76*i,26+64*i,0,;0+61*i,45+54*i,0+15*i,;]; assert (sparsersb (A)(:) == sparse (A)(:));
%!test
%! A = [88,95,43,;0+76*i,26+64*i,0,;0+61*i,45+54*i,0+15*i,;]; assert (sparsersb (A)(:,3) == sparse (A)(:,3));
%!test
%! A = [88,95,43,;0+76*i,26+64*i,0,;0+61*i,45+54*i,0+15*i,;]; assert (sparsersb (A)(:,:) == sparse (A)(:,:));
%!test
%! A = [88,95,43,;0+76*i,26+64*i,0,;0+61*i,45+54*i,0+15*i,;]; assert (sparsersb (A)*(1*ones(size(A,2))) == sparse (A)*(1*ones(size(A,2))));
%!test
%! A = [88,95,43,;0+76*i,26+64*i,0,;0+61*i,45+54*i,0+15*i,;]; assert (sparsersb (A)*(i*ones(size(A,2))) == sparse (A)*(i*ones(size(A,2))));
%!test
%! A = [88,95,43,;0+76*i,26+64*i,0,;0+61*i,45+54*i,0+15*i,;]; assert (sparsersb (A)*1 == sparse (A)*1);
%!test
%! A = [88,95,43,;0+76*i,26+64*i,0,;0+61*i,45+54*i,0+15*i,;]; assert (sparsersb (A)*i == sparse (A)*i);
%!test
%! A = [88,95,43,;0+76*i,26+64*i,0,;0+61*i,45+54*i,0+15*i,;]; assert (sparsersb (A).'*(1*ones(size(A,1))) == sparse (A).'*(1*ones(size(A,1))));
%!test
%! A = [88,95,43,;0+76*i,26+64*i,0,;0+61*i,45+54*i,0+15*i,;]; assert (sparsersb (A).'*(i*ones(size(A,1))) == sparse (A).'*(i*ones(size(A,1))));
%!test
%! A = [88,95,43,;0+76*i,26+64*i,0,;0+61*i,45+54*i,0+15*i,;]; assert (reshape (sparsersb (A), 1, 9) == reshape (sparse (A), 1, 9));
%!test
%! A = [88,95,43,;0+76*i,26+64*i,0,;0+61*i,45+54*i,0+15*i,;]; assert (reshape (sparsersb (A), 3, 3) == reshape (sparse (A), 3, 3));
%!test
%! A = [88,95,43,;0+76*i,26+64*i,0,;0+61*i,45+54*i,0+15*i,;]; assert (reshape (sparsersb (A), 9, 1) == reshape (sparse (A), 9, 1));
%% Generated with rand state 42 .
*/ /* GENERATED TEST LINES END */
/*
%% tests for different operators multiplications
%!test % REAL/REAL
%! A = sprandn(1e3,1e3,1/1e3); Arsb = sparsersb(A); v = randn(1e3,1);
%! assert(A*v,Arsb*v,1e-14);
%! assert(A.'*v,Arsb.'*v,1e-14);
%! assert(A'*v,Arsb'*v,1e-14);
%!test % REAL/COMPLEX
%! A = sprandn(1e6,1e6,1/1e6); Arsb = sparsersb(A); v = 1i*randn(1e6,1) + randn(1e6,1);
%! assert(A*v,Arsb*v,1e-14);
%! assert(A.'*v,Arsb.'*v,1e-14);
%! assert(A'*v,Arsb'*v,1e-14);
%!test % COMPLEX/REAL
%! A = 1i*sprandn(1e3,1e3,1/1e3) + sprandn(1e3,1e3,1/1e3); Arsb = sparsersb(A); v = randn(1e3,1);
%! assert(A*v,Arsb*v,1e-14);
%! assert(A.'*v,Arsb.'*v,1e-14);
%! assert(A'*v,Arsb'*v,1e-14);
%!test % COMPLEX/COMPLEX
%! A = 1i*sprandn(1e3,1e3,1/1e3) + sprandn(1e3,1e3,1/1e3); Arsb = sparsersb(A); v = 1i*randn(1e3,1) + randn(1e3,1);
%! assert(A*v,Arsb*v,1e-14);
%! assert(A.'*v,Arsb.'*v,1e-14);
%! assert(A'*v,Arsb'*v,1e-14);
*/
/*
%!demo
%! disp("'sparsersb' behaves pretty like 'sparse':")
%! R=(rand(3)>.6)
%! A_octave=sparse(R)
%! A_librsb=sparsersb(R)
%!demo
%! disp("The interface of 'sparsersb' is almost like the one of 'sparse'")
%! disp("Create a 1x1 matrix:")
%! sparsersb([2])
%! disp("Create a 2x1 matrix:")
%! sparsersb([1,2],[1,1],[11,21])
%! disp("Create a 2x2 matrix:")
%! sparsersb([1,2],[1,1],[11,21],2,2)
%! disp("Create a 2x2 lower triangular matrix:")
%! sparsersb([1,2,2 ],[1,1,2 ],[11,21, 22],2,2)
%!demo
%! disp("'sparsersb' has an option to handle duplicates.")
%! disp("Create a 2x2 lower triangular matrix (last element summed by default):")
%! sparsersb([1,2,2,2],[1,1,2,2],[11,21,11,11],2,2)
%! disp("Create a 2x2 lower triangular matrix (last two elements summed explicitly):")
%! sparsersb([1,2,2,2],[1,1,2,2],[11,21,11,11],2,2,"sum")
%! disp("Create a 2x2 lower triangular matrix (last element ignored, explicitly):")
%! sparsersb([1,2,2,2],[1,1,2,2],[11,21,11,11],2,2,"unique")
%!demo
%! disp("'sparsersb' support symmetric and hermitian matrices:\n")
%! disp("2x2 lower tringular:")
%! sparsersb([1,2,2 ],[1,1,2 ],[11,21 , 22],2,2,"general")
%! disp("2x2 symmetric (only lower triangle stored):")
%! sparsersb([1,2,2 ],[1,1,2 ],[11,21 , 22],2,2,"symmetric")
%! disp("2x2 hermitian (only lower triangle stored):")
%! sparsersb([1,2,2 ],[1,1,2 ],[11,21i, 22],2,2,"hermitian")
%!demo
%! disp("Any 'sparse' or 'dense' matrix can be converted to 'sparsersb':")
%! d=sparsersb( [1,2;3,4] )
%! f=sparsersb( full ([1,2;3,4]))
%! s=sparsersb(sparse([1,2;3,4]))
%!demo
%! disp("'sparsersb' detects symmetry:")
%! d=sparsersb( [1,2;2,1] )
%! s=sparsersb(sparse([1,2;2,1]))
%!demo
%! disp("'sparsersb' detects hermitianness:")
%! d=sparsersb( [1,i;-i,1] )
%! s=sparsersb(sparse([1,i;-i,1]))
%!demo
%! disp("The most important use of 'sparsersb' is for multiplying sparse matrices...\n")
%! a=sparsersb( [1,2;3,4] )
%! disp("...by dense matrices or vectors:\n")
%! x=[1,2;1,2]
%!
%! disp("Untransposed sparse matrix-vector multiplication:")
%! a*x
%!
%! disp("Transposed sparse matrix-vector multiplication:")
%! a'*x
%!demo
%! d=sparsersb( [1,2;3,4] );
%! s=sparsersb(sparse([1,2;3,4]));
%!
%! disp("Many sparse-sparse matrix operators work on 'sparsersb'\n")
%! disp("'+' operator:")
%! s+d
%! disp("'.+' operator:")
%! s.+d
%! disp("'-' operator:")
%! s-d
%! disp("'.-' operator:")
%! s.-d
%! disp("'*' operator:")
%! s*d
%! disp("'.*' operator:")
%! s.*d
%! disp("'/' operator:")
%! s/d
%! disp("'./' operator:")
%! s./d
%! disp("'\\' operator:")
%! s\[1;1]
%! disp("And others. Not all operators are native: certain use a conversion; see the printout.\n")
%!demo
%! o=sparse( [1,2;3,4] );
%! s=sparsersb([1,2;3,4] );
%!
%! disp("Most of these operators hide a conversion; see the printout:\n")
%!
%! s(:,:)
%! o(:,:)
%!
%! s(:,2)
%! o(:,2)
%!
%! s(2,:)
%! o(2,:)
%!
%! s(:)
%! o(:)
%!demo
%! disp("On large matrices 'sparsersb' may be faster than 'sparse' in sparse matrix-vector multiplication.")
%! disp("In addition to that, 'sparsersb' has an 'empirical online auto-tuning' functionality.")
%! disp("It means you run the autotuning on a specific input, and just after, the multiplication might be faster.")
%! disp("See this case with two different right hand sides (NRHS) count.\n")
%! M=100000;
%! N=100000;
%! P=100 / M;
%! s=sparse(sprand(M,N,P));
%!
%! for NRHSc = {1,7}
%! r=sparsersb(s); # repeat tuning from 'vanilla' matrix
%! assert(nnz(s)==nnz(r))
%! NRHS=cell2mat(NRHSc);
%!
%! x=ones(M,NRHS);
%! printf("Here, a %.2e x %.2e matrix with %.2e nonzeroes, %d NRHS.\n",M,N,nnz(s),NRHS)
%! tic();
%! sc=0;
%! while(toc()<3)
%! s*x;
%! sc=sc+1;
%! endwhile
%! st=toc()/sc;
%! printf("Each multiplication with 'sparse' took %.1es.\n",st);
%!
%! tic();
%! rc=0;
%! while(toc()<3)
%! r*x;
%! rc=rc+1;
%! endwhile
%! rt=toc()/rc;
%! ut=rt; # untuned time
%! printf("Each multiplication with 'sparsersb' took %.3es, this is %.4g%% of the time taken by 'sparse'.\n",rt,100*rt/st);
%!
%! nsb=str2num(sparsersb(r,"get","RSB_MIF_LEAVES_COUNT__TO__RSB_BLK_INDEX_T"));
%! tic;
%! r=sparsersb(r,"autotune","n",NRHS);
%! at_t=toc;
%! nnb=str2num(sparsersb(r,"get","RSB_MIF_LEAVES_COUNT__TO__RSB_BLK_INDEX_T"));
%! printf ("Autotuning for %d NRHS took %.2es (%d -> %d RSB blocks).\n", NRHS, at_t, nsb, nnb);
%! tic();
%! rc=0;
%! while(toc()<3)
%! r*x;
%! rc=rc+1;
%! endwhile
%! rt=toc()/rc;
%! printf("After tuning, each 'sparsersb' multiplication took %.3es.\n",rt);
%! printf("This is %.4g%% of the time taken by 'sparse' (%.2fx speedup).\n",100*rt/st,st/rt);
%! if ut > rt;
%! printf ("Autotuning brought a %.2fx speedup over original RSB structure.\n", ut/rt);
%! printf ("Time spent in autotuning can be amortized in %.1d iterations.\n", at_t/(ut-rt) );
%! else
%! printf ("RSB autotuning brought no further speedup for NRHS=%d.\n",NRHS);
%! endif
%! disp("")
%! endfor
%!demo
%! disp("'sparsersb' can render sparse matrices into Encapsulated Postscript files showing the RSB blocks layout.")
%! rm = sparsersb(sprand(100000,100000,.0001));
%! sparsersb(rm,'render','sptest.eps')
%! disp("You can open sptest.eps now.")
%%!demo
*/
sparsersb-1.0.9/src/sparsersbtg.m 0000755 0000000 0000000 00000012430 14122214045 015155 0 ustar 0000000 0000000 #!/usr/bin/octave -q
#
# Copyright (C) 2011-2020 Michele Martone
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, see .
## -*- texinfo -*-
## @deftypefn {} {} sparsersbtg ()
## @deftypefnx {} {} sparsersbtg (@var{k})
## @deftypefnx {} {} sparsersbtg (@var{k}, @var{m})
## Invoked with no arguments, print a script with tests of sparse vs sparsersb.
## Invoked with "r" as @var{k}, will use a random seeding scheme.
##
## If @var{k} is "p" and @var{m} a matrix, it will print it out in a
## manner readable by Octave.
##
## @seealso{sparsersb}
## @end deftypefn
## Author: Michele Martone
function ret = sparsersbtg (varargin)
ret="";
if nargin == 2 && varargin{1} == ['p']
ret = printmat(varargin{2});
return
elseif nargin == 1 && varargin{1} == ['r']
rs = sprintf ( "%d;", full (rand ("state") ));
rs = sprintf ("%% Generated with rand state [%s].\n", rs);
elseif nargin == 1
rs = "%% Generated with rand state 42 .\n";
rand ("state", 42); # seed
parms = varargin{1};
if length (parms) == 3
nrl=parms(1);
nri=parms(2);
nru=parms(3);
ncl=parms(1);
nci=parms(2);
ncu=parms(3);
elseif length (parms) == 6
nrl=parms(1);
nri=parms(2);
nru=parms(3);
ncl=parms(4);
nci=parms(5);
ncu=parms(6);
else
# Well, error actually.
return;
end
elseif nargin == 0
rs = "%% Generated with rand state 42 .\n";
rand ("state", 42); # seed
#printf ("%s","rand(\"state\",42);\n"); # seed
#nrl=1;nri=9;nru=10;
#ncl=1;nci=9;ncu=10;
nrl=1;nri=2;nru=3;
ncl=1;nci=2;ncu=3;
end
for dp = [10,20,50,100]
for nr = nrl:nri:nru
for nc = ncl:nci:ncu
for wc = 0: 1
tt = "";
lp = "";
lp = "%!";
ti = [lp, "test\n"];
if wc
A = round (sprand (nr, nc, dp/200)*100) ;
A = round (sprand (nr, nc, dp/200)*100)*i + A;
else
A = round (sprand (nr, nc, dp/100)*100);
end
if 0
# repeat twice
tl = printmat (A);
else
# define once in A
tl = printmat (A);
lp = [lp," A = ",tl,"; "];
tl = "A";
end
for f = {"","istril","istriu","isreal","iscomplex","issymmetric","ishermitian","nnz","rows","columns"}
exp = [f{:}," (sparsersb (",tl,")) == ",f{:}," (sparse (",tl,"))"];
tt = [tt,ti,lp,"assert (",exp,");\n"];
end
nrs = sprintf("%d",nr);
ncs = sprintf("%d",nc);
nrc = sprintf("%d",nr*nc);
for f = unique ({"( )","(:)",sprintf("(%s)",nrc),"(1)","(1,1)","(:,:)",sprintf("(%s,:)",nrs),sprintf("(:,%s)",ncs),sprintf("(%s,%s)",nrs,ncs),"*(1*ones(size(A,2)))","*(i*ones(size(A,2)))","'*(1*ones(size(A,1)))","'*(i*ones(size(A,1)))",".'*(1*ones(size(A,1)))",".'*(i*ones(size(A,1)))","*1","*i"})
exp = [ "sparsersb (",tl,")",f{:}," == sparse (",tl,")",f{:}];
tt = [tt,ti,lp,"assert (",exp,");\n"];
end
for inr = unique ([1,nr,nr*nc])
inc = (nr * nc) / inr;
ra = sprintf (" %d, %d", inr, inc);
exp = [ "reshape (sparsersb (",tl,"),",ra,")"," == reshape (sparse (",tl,"),",ra,")"];
tt = [tt,ti,lp,"assert (",exp,");\n"];
end
ret = [ret, sprintf("\n%%%% tests for a %g x %g matrix, density %g%%",nr,nc,dp) ];
if wc ; ret = [ret, sprintf(", complex\n") ]; else; ret = [ret , sprintf(", real\n") ] ; end
#printf ("%s",tt);
ret = [ret, tt];
end
end
end
end
ret = [ ret, rs ];
end
function s = printrow (v)
assert ( rows (v) >= 1);
assert (columns (v) >= 1);
s = "";
for i = 1 : columns (v)
e = v(1,i);
if iscomplex (v(1,i))
s = sprintf ("%s%g+%g*i,", s, real (e), imag (e));
else
s = sprintf ("%s%g,", s, e);
end
end
s = sprintf ("%s;", s);
#s = sprintf("%s;", sprintf ("%g,", full(v(1,:)))); # only real
end
function s = printmat(v)
assert ( rows (v) >= 1);
assert (columns (v) >= 1);
s = "";
v = full (v);
for i = 1:rows (v)
s = sprintf ("%s%s", s, printrow(v(i,:)));
end
s = sprintf ("[%s]", s);
end
%!test
%! sparsersbtg ('p', [1]);
%! assert ( strcmp (sparsersbtg ('p', [1]) , ["[1,;]"]))
%!test
%! sparsersbtg ('p', [1,1,2,2]);
%! assert ( strcmp (sparsersbtg ('p', [1,1,2,2]), ["[1,1,2,2,;]"]))
%!test
%! sparsersbtg ('p', [1,1;2,2]);
%! assert ( strcmp (sparsersbtg ('p', [1,1;2,2]), ["[1,1,;2,2,;]"]))
%!test
%! sparsersbtg ('p', [1+i]);
%! assert ( strcmp (sparsersbtg ('p', [1+i]) , ["[1+1*i,;]"]))
%!test
%! sparsersbtg ('p', [1+i,1,2+i,2]);
%! assert ( strcmp (sparsersbtg ('p', [1+i,1,2+i,2]), ["[1+1*i,1,2+1*i,2,;]"]))
%!test
%! sparsersbtg ('p', [1+i,1;2+i,2]);
%! assert ( strcmp (sparsersbtg ('p', [1+i,1;2+i,2]), ["[1+1*i,1,;2+1*i,2,;]"]))
%!test
%! assert( length( sparsersbtg () ) >= 57846 )
%! assert( length( sparsersbtg ([1,1,1,1,1,1]) ) >= 11218 )
%! assert( length( sparsersbtg ([1,1,1]) ) >= 11218 )
%! assert( length( sparsersbtg ([1]) ) == 0 )
sparsersb-1.0.9/src/srut.awk 0000644 0000000 0000000 00000002007 14122214045 014135 0 ustar 0000000 0000000 #!/usr/bin/awk -f
#
# Copyright (C) 2011-2020 Michele Martone
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, see .
# sparsersb update tests
# awk -f srut.awk < sparsersb.cc > sparsersb.cc.new
BEGIN { wp=1; of=""; }
/GENERATED TEST LINES BEGIN/ { wp=0; print; system("octave --eval 'printf(\"%s\",sparsersbtg ())'") ; }
/GENERATED TEST LINES END/ { wp=1; }
/.*/ { if(wp==1) print; }
sparsersb-1.0.9/src/configure 0000755 0001750 0001750 00000411573 14121051133 014353 0 ustar dez dez #! /bin/sh
# Guess values for system-dependent variables and create Makefiles.
# Generated by GNU Autoconf 2.72a.18-fbdf for octave sparsersb package 1.0.9.
#
#
# Copyright (C) 1992-1996, 1998-2017, 2020-2021 Free Software Foundation,
# Inc.
#
#
# This configure script is free software; the Free Software Foundation
# gives unlimited permission to copy, distribute and modify it.
## -------------------- ##
## M4sh Initialization. ##
## -------------------- ##
# Be more Bourne compatible
DUALCASE=1; export DUALCASE # for MKS sh
as_nop=:
if test ${ZSH_VERSION+y} && (emulate sh) >/dev/null 2>&1
then :
emulate sh
NULLCMD=:
# Pre-4.2 versions of Zsh do word splitting on ${1+"$@"}, which
# is contrary to our usage. Disable this feature.
alias -g '${1+"$@"}'='"$@"'
setopt NO_GLOB_SUBST
else $as_nop
case `(set -o) 2>/dev/null` in #(
*posix*) :
set -o posix ;; #(
*) :
;;
esac
fi
# Reset variables that may have inherited troublesome values from
# the environment.
# IFS needs to be set, to space, tab, and newline, in precisely that order.
# (If _AS_PATH_WALK were called with IFS unset, it would have the
# side effect of setting IFS to empty, thus disabling word splitting.)
# Quoting is to prevent editors from complaining about space-tab.
as_nl='
'
export as_nl
IFS=" "" $as_nl"
PS1='$ '
PS2='> '
PS4='+ '
# Ensure predictable behavior from utilities with locale-dependent output.
LC_ALL=C
export LC_ALL
LANGUAGE=C
export LANGUAGE
# We cannot yet rely on "unset" to work, but we need these variables
# to be unset--not just set to an empty or harmless value--now, to
# avoid bugs in old shells (e.g. pre-3.0 UWIN ksh). This construct
# also avoids known problems related to "unset" and subshell syntax
# in other old shells (e.g. bash 2.01 and pdksh 5.2.14).
for as_var in BASH_ENV ENV MAIL MAILPATH CDPATH
do eval test \${$as_var+y} \
&& ( (unset $as_var) || exit 1) >/dev/null 2>&1 && unset $as_var || :
done
# Ensure that fds 0, 1, and 2 are open.
if (exec 3>&0) 2>/dev/null; then :; else exec 0&1) 2>/dev/null; then :; else exec 1>/dev/null; fi
if (exec 3>&2) ; then :; else exec 2>/dev/null; fi
# The user is always right.
if ${PATH_SEPARATOR+false} :; then
PATH_SEPARATOR=:
(PATH='/bin;/bin'; FPATH=$PATH; sh -c :) >/dev/null 2>&1 && {
(PATH='/bin:/bin'; FPATH=$PATH; sh -c :) >/dev/null 2>&1 ||
PATH_SEPARATOR=';'
}
fi
# Find who we are. Look in the path if we contain no directory separator.
as_myself=
case $0 in #((
*[\\/]* ) as_myself=$0 ;;
*) as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
IFS=$as_save_IFS
case $as_dir in #(((
'') as_dir=./ ;;
*/) ;;
*) as_dir=$as_dir/ ;;
esac
test -r "$as_dir$0" && as_myself=$as_dir$0 && break
done
IFS=$as_save_IFS
;;
esac
# We did not find ourselves, most probably we were run as 'sh COMMAND'
# in which case we are not to be found in the path.
if test "x$as_myself" = x; then
as_myself=$0
fi
if test ! -f "$as_myself"; then
printf "%s\n" "$as_myself: error: cannot find myself; rerun with an absolute file name" >&2
exit 1
fi
# Use a proper internal environment variable to ensure we don't fall
# into an infinite loop, continuously re-executing ourselves.
if test x"${_as_can_reexec}" != xno && test "x$CONFIG_SHELL" != x; then
_as_can_reexec=no; export _as_can_reexec;
# We cannot yet assume a decent shell, so we have to provide a
# neutralization value for shells without unset; and this also
# works around shells that cannot unset nonexistent variables.
# Preserve -v and -x to the replacement shell.
BASH_ENV=/dev/null
ENV=/dev/null
(unset BASH_ENV) >/dev/null 2>&1 && unset BASH_ENV ENV
case $- in # ((((
*v*x* | *x*v* ) as_opts=-vx ;;
*v* ) as_opts=-v ;;
*x* ) as_opts=-x ;;
* ) as_opts= ;;
esac
exec $CONFIG_SHELL $as_opts "$as_myself" ${1+"$@"}
# Admittedly, this is quite paranoid, since all the known shells bail
# out after a failed 'exec'.
printf "%s\n" "$0: could not re-execute with $CONFIG_SHELL" >&2
exit 255
fi
# We don't want this to propagate to other subprocesses.
{ _as_can_reexec=; unset _as_can_reexec;}
if test "x$CONFIG_SHELL" = x; then
as_bourne_compatible="as_nop=:
if test \${ZSH_VERSION+y} && (emulate sh) >/dev/null 2>&1
then :
emulate sh
NULLCMD=:
# Pre-4.2 versions of Zsh do word splitting on \${1+\"\$@\"}, which
# is contrary to our usage. Disable this feature.
alias -g '\${1+\"\$@\"}'='\"\$@\"'
setopt NO_GLOB_SUBST
else \$as_nop
case \`(set -o) 2>/dev/null\` in #(
*posix*) :
set -o posix ;; #(
*) :
;;
esac
fi
"
as_required="as_fn_return () { (exit \$1); }
as_fn_success () { as_fn_return 0; }
as_fn_failure () { as_fn_return 1; }
as_fn_ret_success () { return 0; }
as_fn_ret_failure () { return 1; }
exitcode=0
as_fn_success || { exitcode=1; echo as_fn_success failed.; }
as_fn_failure && { exitcode=1; echo as_fn_failure succeeded.; }
as_fn_ret_success || { exitcode=1; echo as_fn_ret_success failed.; }
as_fn_ret_failure && { exitcode=1; echo as_fn_ret_failure succeeded.; }
if ( set x; as_fn_ret_success y && test x = \"\$1\" )
then :
else \$as_nop
exitcode=1; echo positional parameters were not saved.
fi
test x\$exitcode = x0 || exit 1
blah=\$(echo \$(echo blah))
test x\"\$blah\" = xblah || exit 1
test -x / || exit 1"
as_suggested=" as_lineno_1=";as_suggested=$as_suggested$LINENO;as_suggested=$as_suggested" as_lineno_1a=\$LINENO
as_lineno_2=";as_suggested=$as_suggested$LINENO;as_suggested=$as_suggested" as_lineno_2a=\$LINENO
eval 'test \"x\$as_lineno_1'\$as_run'\" != \"x\$as_lineno_2'\$as_run'\" &&
test \"x\`expr \$as_lineno_1'\$as_run' + 1\`\" = \"x\$as_lineno_2'\$as_run'\"' || exit 1"
if (eval "$as_required") 2>/dev/null
then :
as_have_required=yes
else $as_nop
as_have_required=no
fi
if test x$as_have_required = xyes && (eval "$as_suggested") 2>/dev/null
then :
else $as_nop
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
as_found=false
for as_dir in /bin$PATH_SEPARATOR/usr/bin$PATH_SEPARATOR$PATH
do
IFS=$as_save_IFS
case $as_dir in #(((
'') as_dir=./ ;;
*/) ;;
*) as_dir=$as_dir/ ;;
esac
as_found=:
case $as_dir in #(
/*)
for as_base in sh bash ksh sh5; do
# Try only shells that exist, to save several forks.
as_shell=$as_dir$as_base
if { test -f "$as_shell" || test -f "$as_shell.exe"; } &&
as_run=a "$as_shell" -c "$as_bourne_compatible""$as_required" 2>/dev/null
then :
CONFIG_SHELL=$as_shell as_have_required=yes
if as_run=a "$as_shell" -c "$as_bourne_compatible""$as_suggested" 2>/dev/null
then :
break 2
fi
fi
done;;
esac
as_found=false
done
IFS=$as_save_IFS
if $as_found
then :
else $as_nop
if { test -f "$SHELL" || test -f "$SHELL.exe"; } &&
as_run=a "$SHELL" -c "$as_bourne_compatible""$as_required" 2>/dev/null
then :
CONFIG_SHELL=$SHELL as_have_required=yes
fi
fi
if test "x$CONFIG_SHELL" != x
then :
export CONFIG_SHELL
# We cannot yet assume a decent shell, so we have to provide a
# neutralization value for shells without unset; and this also
# works around shells that cannot unset nonexistent variables.
# Preserve -v and -x to the replacement shell.
BASH_ENV=/dev/null
ENV=/dev/null
(unset BASH_ENV) >/dev/null 2>&1 && unset BASH_ENV ENV
case $- in # ((((
*v*x* | *x*v* ) as_opts=-vx ;;
*v* ) as_opts=-v ;;
*x* ) as_opts=-x ;;
* ) as_opts= ;;
esac
exec $CONFIG_SHELL $as_opts "$as_myself" ${1+"$@"}
# Admittedly, this is quite paranoid, since all the known shells bail
# out after a failed 'exec'.
printf "%s\n" "$0: could not re-execute with $CONFIG_SHELL" >&2
exit 255
fi
if test x$as_have_required = xno
then :
printf "%s\n" "$0: This script requires a shell more modern than all"
printf "%s\n" "$0: the shells that I found on your system."
if test ${ZSH_VERSION+y} ; then
printf "%s\n" "$0: In particular, zsh $ZSH_VERSION has bugs and should"
printf "%s\n" "$0: be upgraded to zsh 4.3.4 or later."
else
printf "%s\n" "$0: Please tell bug-autoconf@gnu.org about your system,
$0: including any error possibly output before this
$0: message. Then install a modern shell, or manually run
$0: the script under such a shell if you do have one."
fi
exit 1
fi
fi
fi
SHELL=${CONFIG_SHELL-/bin/sh}
export SHELL
# Unset more variables known to interfere with behavior of common tools.
CLICOLOR_FORCE= GREP_OPTIONS=
unset CLICOLOR_FORCE GREP_OPTIONS
## --------------------- ##
## M4sh Shell Functions. ##
## --------------------- ##
# as_fn_unset VAR
# ---------------
# Portably unset VAR.
as_fn_unset ()
{
{ eval $1=; unset $1;}
}
as_unset=as_fn_unset
# as_fn_set_status STATUS
# -----------------------
# Set $? to STATUS, without forking.
as_fn_set_status ()
{
return $1
} # as_fn_set_status
# as_fn_exit STATUS
# -----------------
# Exit the shell with STATUS, even in a "trap 0" or "set -e" context.
as_fn_exit ()
{
set +e
as_fn_set_status $1
exit $1
} # as_fn_exit
# as_fn_nop
# ---------
# Do nothing but, unlike ":", preserve the value of $?.
as_fn_nop ()
{
return $?
}
as_nop=as_fn_nop
# as_fn_mkdir_p
# -------------
# Create "$as_dir" as a directory, including parents if necessary.
as_fn_mkdir_p ()
{
case $as_dir in #(
-*) as_dir=./$as_dir;;
esac
test -d "$as_dir" || eval $as_mkdir_p || {
as_dirs=
while :; do
case $as_dir in #(
*\'*) as_qdir=`printf "%s\n" "$as_dir" | sed "s/'/'\\\\\\\\''/g"`;; #'(
*) as_qdir=$as_dir;;
esac
as_dirs="'$as_qdir' $as_dirs"
as_dir=`$as_dirname -- "$as_dir" ||
$as_expr X"$as_dir" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \
X"$as_dir" : 'X\(//\)[^/]' \| \
X"$as_dir" : 'X\(//\)$' \| \
X"$as_dir" : 'X\(/\)' \| . 2>/dev/null ||
printf "%s\n" X"$as_dir" |
sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{
s//\1/
q
}
/^X\(\/\/\)[^/].*/{
s//\1/
q
}
/^X\(\/\/\)$/{
s//\1/
q
}
/^X\(\/\).*/{
s//\1/
q
}
s/.*/./; q'`
test -d "$as_dir" && break
done
test -z "$as_dirs" || eval "mkdir $as_dirs"
} || test -d "$as_dir" || as_fn_error $? "cannot create directory $as_dir"
} # as_fn_mkdir_p
# as_fn_executable_p FILE
# -----------------------
# Test if FILE is an executable regular file.
as_fn_executable_p ()
{
test -f "$1" && test -x "$1"
} # as_fn_executable_p
# as_fn_append VAR VALUE
# ----------------------
# Append the text in VALUE to the end of the definition contained in VAR. Take
# advantage of any shell optimizations that allow amortized linear growth over
# repeated appends, instead of the typical quadratic growth present in naive
# implementations.
if (eval "as_var=1; as_var+=2; test x\$as_var = x12") 2>/dev/null
then :
eval 'as_fn_append ()
{
eval $1+=\$2
}'
else $as_nop
as_fn_append ()
{
eval $1=\$$1\$2
}
fi # as_fn_append
# as_fn_arith ARG...
# ------------------
# Perform arithmetic evaluation on the ARGs, and store the result in the
# global $as_val. Take advantage of shells that can avoid forks. The arguments
# must be portable across $(()) and expr.
if (eval "test \$(( 1 + 1 )) = 2") 2>/dev/null
then :
eval 'as_fn_arith ()
{
as_val=$(( $* ))
}'
else $as_nop
as_fn_arith ()
{
as_val=`expr "$@" || test $? -eq 1`
}
fi # as_fn_arith
# as_fn_nop
# ---------
# Do nothing but, unlike ":", preserve the value of $?.
as_fn_nop ()
{
return $?
}
as_nop=as_fn_nop
# as_fn_error STATUS ERROR [LINENO LOG_FD]
# ----------------------------------------
# Output "`basename $0`: error: ERROR" to stderr. If LINENO and LOG_FD are
# provided, also output the error to LOG_FD, referencing LINENO. Then exit the
# script with STATUS, using 1 if that was 0.
as_fn_error ()
{
as_status=$1; test $as_status -eq 0 && as_status=1
if test "$4"; then
as_lineno=${as_lineno-"$3"} as_lineno_stack=as_lineno_stack=$as_lineno_stack
printf "%s\n" "$as_me:${as_lineno-$LINENO}: error: $2" >&$4
fi
printf "%s\n" "$as_me: error: $2" >&2
as_fn_exit $as_status
} # as_fn_error
if expr a : '\(a\)' >/dev/null 2>&1 &&
test "X`expr 00001 : '.*\(...\)'`" = X001; then
as_expr=expr
else
as_expr=false
fi
if (basename -- /) >/dev/null 2>&1 && test "X`basename -- / 2>&1`" = "X/"; then
as_basename=basename
else
as_basename=false
fi
if (as_dir=`dirname -- /` && test "X$as_dir" = X/) >/dev/null 2>&1; then
as_dirname=dirname
else
as_dirname=false
fi
as_me=`$as_basename -- "$0" ||
$as_expr X/"$0" : '.*/\([^/][^/]*\)/*$' \| \
X"$0" : 'X\(//\)$' \| \
X"$0" : 'X\(/\)' \| . 2>/dev/null ||
printf "%s\n" X/"$0" |
sed '/^.*\/\([^/][^/]*\)\/*$/{
s//\1/
q
}
/^X\/\(\/\/\)$/{
s//\1/
q
}
/^X\/\(\/\).*/{
s//\1/
q
}
s/.*/./; q'`
# Avoid depending upon Character Ranges.
as_cr_letters='abcdefghijklmnopqrstuvwxyz'
as_cr_LETTERS='ABCDEFGHIJKLMNOPQRSTUVWXYZ'
as_cr_Letters=$as_cr_letters$as_cr_LETTERS
as_cr_digits='0123456789'
as_cr_alnum=$as_cr_Letters$as_cr_digits
as_lineno_1=$LINENO as_lineno_1a=$LINENO
as_lineno_2=$LINENO as_lineno_2a=$LINENO
eval 'test "x$as_lineno_1'$as_run'" != "x$as_lineno_2'$as_run'" &&
test "x`expr $as_lineno_1'$as_run' + 1`" = "x$as_lineno_2'$as_run'"' || {
# Blame Lee E. McMahon (1931-1989) for sed's syntax. :-)
sed -n '
p
/[$]LINENO/=
' <$as_myself |
sed '
s/[$]LINENO.*/&-/
t lineno
b
:lineno
N
:loop
s/[$]LINENO\([^'$as_cr_alnum'_].*\n\)\(.*\)/\2\1\2/
t loop
s/-\n.*//
' >$as_me.lineno &&
chmod +x "$as_me.lineno" ||
{ printf "%s\n" "$as_me: error: cannot create $as_me.lineno; rerun with a POSIX shell" >&2; as_fn_exit 1; }
# If we had to re-execute with $CONFIG_SHELL, we're ensured to have
# already done that, so ensure we don't try to do so again and fall
# in an infinite loop. This has already happened in practice.
_as_can_reexec=no; export _as_can_reexec
# Don't try to exec as it changes $[0], causing all sort of problems
# (the dirname of $[0] is not the place where we might find the
# original and so on. Autoconf is especially sensitive to this).
. "./$as_me.lineno"
# Exit status is that of the last command.
exit
}
# Determine whether it's possible to make 'echo' print without a newline.
# These variables are no longer used directly by Autoconf, but are AC_SUBSTed
# for compatibility with existing Makefiles.
ECHO_C= ECHO_N= ECHO_T=
case `echo -n x` in #(((((
-n*)
case `echo 'xy\c'` in
*c*) ECHO_T=' ';; # ECHO_T is single tab character.
xy) ECHO_C='\c';;
*) echo `echo ksh88 bug on AIX 6.1` > /dev/null
ECHO_T=' ';;
esac;;
*)
ECHO_N='-n';;
esac
# For backward compatibility with old third-party macros, we provide
# the shell variables $as_echo and $as_echo_n. New code should use
# AS_ECHO(["message"]) and AS_ECHO_N(["message"]), respectively.
as_echo='printf %s\n'
as_echo_n='printf %s'
rm -f conf$$ conf$$.exe conf$$.file
if test -d conf$$.dir; then
rm -f conf$$.dir/conf$$.file
else
rm -f conf$$.dir
mkdir conf$$.dir 2>/dev/null
fi
if (echo >conf$$.file) 2>/dev/null; then
if ln -s conf$$.file conf$$ 2>/dev/null; then
as_ln_s='ln -s'
# ... but there are two gotchas:
# 1) On MSYS, both 'ln -s file dir' and 'ln file dir' fail.
# 2) DJGPP < 2.04 has no symlinks; 'ln -s' creates a wrapper executable.
# In both cases, we have to default to 'cp -pR'.
ln -s conf$$.file conf$$.dir 2>/dev/null && test ! -f conf$$.exe ||
as_ln_s='cp -pR'
elif ln conf$$.file conf$$ 2>/dev/null; then
as_ln_s=ln
else
as_ln_s='cp -pR'
fi
else
as_ln_s='cp -pR'
fi
rm -f conf$$ conf$$.exe conf$$.dir/conf$$.file conf$$.file
rmdir conf$$.dir 2>/dev/null
if mkdir -p . 2>/dev/null; then
as_mkdir_p='mkdir -p "$as_dir"'
else
test -d ./-p && rmdir ./-p
as_mkdir_p=false
fi
as_test_x='test -x'
as_executable_p=as_fn_executable_p
# Sed expression to map a string onto a valid CPP name.
as_tr_cpp="eval sed 'y%*$as_cr_letters%P$as_cr_LETTERS%;s%[^_$as_cr_alnum]%_%g'"
# Sed expression to map a string onto a valid variable name.
as_tr_sh="eval sed 'y%*+%pp%;s%[^_$as_cr_alnum]%_%g'"
test -n "$DJDIR" || exec 7<&0 &1
# Name of the host.
# hostname on some systems (SVR3.2, old GNU/Linux) returns a bogus exit status,
# so uname gets run too.
ac_hostname=`(hostname || uname -n) 2>/dev/null | sed 1q`
#
# Initializations.
#
ac_default_prefix=/usr/local
ac_clean_files=
ac_config_libobj_dir=.
LIBOBJS=
cross_compiling=no
subdirs=
MFLAGS=
MAKEFLAGS=
# Identity of this package.
PACKAGE_NAME='octave sparsersb package'
PACKAGE_TARNAME='octave-sparsersb-package'
PACKAGE_VERSION='1.0.9'
PACKAGE_STRING='octave sparsersb package 1.0.9'
PACKAGE_BUGREPORT=''
PACKAGE_URL=''
# Factoring default headers for most tests.
ac_includes_default="\
#include
#ifdef HAVE_STDIO_H
# include
#endif
#ifdef HAVE_STDLIB_H
# include
#endif
#ifdef HAVE_STRING_H
# include
#endif
#ifdef HAVE_INTTYPES_H
# include
#endif
#ifdef HAVE_STDINT_H
# include
#endif
#ifdef HAVE_STRINGS_H
# include
#endif
#ifdef HAVE_SYS_TYPES_H
# include
#endif
#ifdef HAVE_SYS_STAT_H
# include
#endif
#ifdef HAVE_UNISTD_H
# include
#endif"
ac_header_cxx_list=
ac_subst_vars='LTLIBOBJS
LIBOBJS
TARGETS
HAVE_OCTAVE_VALUE_ISCOMPLEX
HAVE_LIBRSB_CONFIG
LIBRSB_TARBALL
SPARSERSB_CXX11
SPARSERSB_CXXFLAGS
SPARSERSB_LDFLAGS
MKOCTFILE
OCTAVE
OBJEXT
EXEEXT
ac_ct_CXX
CPPFLAGS
LDFLAGS
CXXFLAGS
CXX
target_alias
host_alias
build_alias
LIBS
ECHO_T
ECHO_N
ECHO_C
DEFS
mandir
localedir
libdir
psdir
pdfdir
dvidir
htmldir
infodir
docdir
oldincludedir
includedir
runstatedir
localstatedir
sharedstatedir
sysconfdir
datadir
datarootdir
libexecdir
sbindir
bindir
program_transform_name
prefix
exec_prefix
PACKAGE_URL
PACKAGE_BUGREPORT
PACKAGE_STRING
PACKAGE_VERSION
PACKAGE_TARNAME
PACKAGE_NAME
PATH_SEPARATOR
SHELL'
ac_subst_files=''
ac_user_opts='
enable_option_checking
with_static_librsb
with_librsb_tarball
with_librsb_conf
'
ac_precious_vars='build_alias
host_alias
target_alias
CXX
CXXFLAGS
LDFLAGS
LIBS
CPPFLAGS
CCC
MKOCTFILE
OCTAVE
SPARSERSB_LDFLAGS
SPARSERSB_CXXFLAGS
SPARSERSB_CXX11
LIBRSB_TARBALL'
# Initialize some variables set by options.
ac_init_help=
ac_init_version=false
ac_unrecognized_opts=
ac_unrecognized_sep=
# The variables have the same names as the options, with
# dashes changed to underlines.
cache_file=/dev/null
exec_prefix=NONE
no_create=
no_recursion=
prefix=NONE
program_prefix=NONE
program_suffix=NONE
program_transform_name=s,x,x,
silent=
site=
srcdir=
verbose=
x_includes=NONE
x_libraries=NONE
# Installation directory options.
# These are left unexpanded so users can "make install exec_prefix=/foo"
# and all the variables that are supposed to be based on exec_prefix
# by default will actually change.
# Use braces instead of parens because sh, perl, etc. also accept them.
# (The list follows the same order as the GNU Coding Standards.)
bindir='${exec_prefix}/bin'
sbindir='${exec_prefix}/sbin'
libexecdir='${exec_prefix}/libexec'
datarootdir='${prefix}/share'
datadir='${datarootdir}'
sysconfdir='${prefix}/etc'
sharedstatedir='${prefix}/com'
localstatedir='${prefix}/var'
runstatedir='${localstatedir}/run'
includedir='${prefix}/include'
oldincludedir='/usr/include'
docdir='${datarootdir}/doc/${PACKAGE_TARNAME}'
infodir='${datarootdir}/info'
htmldir='${docdir}'
dvidir='${docdir}'
pdfdir='${docdir}'
psdir='${docdir}'
libdir='${exec_prefix}/lib'
localedir='${datarootdir}/locale'
mandir='${datarootdir}/man'
ac_prev=
ac_dashdash=
for ac_option
do
# If the previous option needs an argument, assign it.
if test -n "$ac_prev"; then
eval $ac_prev=\$ac_option
ac_prev=
continue
fi
case $ac_option in
*=?*) ac_optarg=`expr "X$ac_option" : '[^=]*=\(.*\)'` ;;
*=) ac_optarg= ;;
*) ac_optarg=yes ;;
esac
case $ac_dashdash$ac_option in
--)
ac_dashdash=yes ;;
-bindir | --bindir | --bindi | --bind | --bin | --bi)
ac_prev=bindir ;;
-bindir=* | --bindir=* | --bindi=* | --bind=* | --bin=* | --bi=*)
bindir=$ac_optarg ;;
-build | --build | --buil | --bui | --bu)
ac_prev=build_alias ;;
-build=* | --build=* | --buil=* | --bui=* | --bu=*)
build_alias=$ac_optarg ;;
-cache-file | --cache-file | --cache-fil | --cache-fi \
| --cache-f | --cache- | --cache | --cach | --cac | --ca | --c)
ac_prev=cache_file ;;
-cache-file=* | --cache-file=* | --cache-fil=* | --cache-fi=* \
| --cache-f=* | --cache-=* | --cache=* | --cach=* | --cac=* | --ca=* | --c=*)
cache_file=$ac_optarg ;;
--config-cache | -C)
cache_file=config.cache ;;
-datadir | --datadir | --datadi | --datad)
ac_prev=datadir ;;
-datadir=* | --datadir=* | --datadi=* | --datad=*)
datadir=$ac_optarg ;;
-datarootdir | --datarootdir | --datarootdi | --datarootd | --dataroot \
| --dataroo | --dataro | --datar)
ac_prev=datarootdir ;;
-datarootdir=* | --datarootdir=* | --datarootdi=* | --datarootd=* \
| --dataroot=* | --dataroo=* | --dataro=* | --datar=*)
datarootdir=$ac_optarg ;;
-disable-* | --disable-*)
ac_useropt=`expr "x$ac_option" : 'x-*disable-\(.*\)'`
# Reject names that are not valid shell variable names.
expr "x$ac_useropt" : ".*[^-+._$as_cr_alnum]" >/dev/null &&
as_fn_error $? "invalid feature name: '$ac_useropt'"
ac_useropt_orig=$ac_useropt
ac_useropt=`printf "%s\n" "$ac_useropt" | sed 's/[-+.]/_/g'`
case $ac_user_opts in
*"
"enable_$ac_useropt"
"*) ;;
*) ac_unrecognized_opts="$ac_unrecognized_opts$ac_unrecognized_sep--disable-$ac_useropt_orig"
ac_unrecognized_sep=', ';;
esac
eval enable_$ac_useropt=no ;;
-docdir | --docdir | --docdi | --doc | --do)
ac_prev=docdir ;;
-docdir=* | --docdir=* | --docdi=* | --doc=* | --do=*)
docdir=$ac_optarg ;;
-dvidir | --dvidir | --dvidi | --dvid | --dvi | --dv)
ac_prev=dvidir ;;
-dvidir=* | --dvidir=* | --dvidi=* | --dvid=* | --dvi=* | --dv=*)
dvidir=$ac_optarg ;;
-enable-* | --enable-*)
ac_useropt=`expr "x$ac_option" : 'x-*enable-\([^=]*\)'`
# Reject names that are not valid shell variable names.
expr "x$ac_useropt" : ".*[^-+._$as_cr_alnum]" >/dev/null &&
as_fn_error $? "invalid feature name: '$ac_useropt'"
ac_useropt_orig=$ac_useropt
ac_useropt=`printf "%s\n" "$ac_useropt" | sed 's/[-+.]/_/g'`
case $ac_user_opts in
*"
"enable_$ac_useropt"
"*) ;;
*) ac_unrecognized_opts="$ac_unrecognized_opts$ac_unrecognized_sep--enable-$ac_useropt_orig"
ac_unrecognized_sep=', ';;
esac
eval enable_$ac_useropt=\$ac_optarg ;;
-exec-prefix | --exec_prefix | --exec-prefix | --exec-prefi \
| --exec-pref | --exec-pre | --exec-pr | --exec-p | --exec- \
| --exec | --exe | --ex)
ac_prev=exec_prefix ;;
-exec-prefix=* | --exec_prefix=* | --exec-prefix=* | --exec-prefi=* \
| --exec-pref=* | --exec-pre=* | --exec-pr=* | --exec-p=* | --exec-=* \
| --exec=* | --exe=* | --ex=*)
exec_prefix=$ac_optarg ;;
-gas | --gas | --ga | --g)
# Obsolete; use --with-gas.
with_gas=yes ;;
-help | --help | --hel | --he | -h)
ac_init_help=long ;;
-help=r* | --help=r* | --hel=r* | --he=r* | -hr*)
ac_init_help=recursive ;;
-help=s* | --help=s* | --hel=s* | --he=s* | -hs*)
ac_init_help=short ;;
-host | --host | --hos | --ho)
ac_prev=host_alias ;;
-host=* | --host=* | --hos=* | --ho=*)
host_alias=$ac_optarg ;;
-htmldir | --htmldir | --htmldi | --htmld | --html | --htm | --ht)
ac_prev=htmldir ;;
-htmldir=* | --htmldir=* | --htmldi=* | --htmld=* | --html=* | --htm=* \
| --ht=*)
htmldir=$ac_optarg ;;
-includedir | --includedir | --includedi | --included | --include \
| --includ | --inclu | --incl | --inc)
ac_prev=includedir ;;
-includedir=* | --includedir=* | --includedi=* | --included=* | --include=* \
| --includ=* | --inclu=* | --incl=* | --inc=*)
includedir=$ac_optarg ;;
-infodir | --infodir | --infodi | --infod | --info | --inf)
ac_prev=infodir ;;
-infodir=* | --infodir=* | --infodi=* | --infod=* | --info=* | --inf=*)
infodir=$ac_optarg ;;
-libdir | --libdir | --libdi | --libd)
ac_prev=libdir ;;
-libdir=* | --libdir=* | --libdi=* | --libd=*)
libdir=$ac_optarg ;;
-libexecdir | --libexecdir | --libexecdi | --libexecd | --libexec \
| --libexe | --libex | --libe)
ac_prev=libexecdir ;;
-libexecdir=* | --libexecdir=* | --libexecdi=* | --libexecd=* | --libexec=* \
| --libexe=* | --libex=* | --libe=*)
libexecdir=$ac_optarg ;;
-localedir | --localedir | --localedi | --localed | --locale)
ac_prev=localedir ;;
-localedir=* | --localedir=* | --localedi=* | --localed=* | --locale=*)
localedir=$ac_optarg ;;
-localstatedir | --localstatedir | --localstatedi | --localstated \
| --localstate | --localstat | --localsta | --localst | --locals)
ac_prev=localstatedir ;;
-localstatedir=* | --localstatedir=* | --localstatedi=* | --localstated=* \
| --localstate=* | --localstat=* | --localsta=* | --localst=* | --locals=*)
localstatedir=$ac_optarg ;;
-mandir | --mandir | --mandi | --mand | --man | --ma | --m)
ac_prev=mandir ;;
-mandir=* | --mandir=* | --mandi=* | --mand=* | --man=* | --ma=* | --m=*)
mandir=$ac_optarg ;;
-nfp | --nfp | --nf)
# Obsolete; use --without-fp.
with_fp=no ;;
-no-create | --no-create | --no-creat | --no-crea | --no-cre \
| --no-cr | --no-c | -n)
no_create=yes ;;
-no-recursion | --no-recursion | --no-recursio | --no-recursi \
| --no-recurs | --no-recur | --no-recu | --no-rec | --no-re | --no-r)
no_recursion=yes ;;
-oldincludedir | --oldincludedir | --oldincludedi | --oldincluded \
| --oldinclude | --oldinclud | --oldinclu | --oldincl | --oldinc \
| --oldin | --oldi | --old | --ol | --o)
ac_prev=oldincludedir ;;
-oldincludedir=* | --oldincludedir=* | --oldincludedi=* | --oldincluded=* \
| --oldinclude=* | --oldinclud=* | --oldinclu=* | --oldincl=* | --oldinc=* \
| --oldin=* | --oldi=* | --old=* | --ol=* | --o=*)
oldincludedir=$ac_optarg ;;
-prefix | --prefix | --prefi | --pref | --pre | --pr | --p)
ac_prev=prefix ;;
-prefix=* | --prefix=* | --prefi=* | --pref=* | --pre=* | --pr=* | --p=*)
prefix=$ac_optarg ;;
-program-prefix | --program-prefix | --program-prefi | --program-pref \
| --program-pre | --program-pr | --program-p)
ac_prev=program_prefix ;;
-program-prefix=* | --program-prefix=* | --program-prefi=* \
| --program-pref=* | --program-pre=* | --program-pr=* | --program-p=*)
program_prefix=$ac_optarg ;;
-program-suffix | --program-suffix | --program-suffi | --program-suff \
| --program-suf | --program-su | --program-s)
ac_prev=program_suffix ;;
-program-suffix=* | --program-suffix=* | --program-suffi=* \
| --program-suff=* | --program-suf=* | --program-su=* | --program-s=*)
program_suffix=$ac_optarg ;;
-program-transform-name | --program-transform-name \
| --program-transform-nam | --program-transform-na \
| --program-transform-n | --program-transform- \
| --program-transform | --program-transfor \
| --program-transfo | --program-transf \
| --program-trans | --program-tran \
| --progr-tra | --program-tr | --program-t)
ac_prev=program_transform_name ;;
-program-transform-name=* | --program-transform-name=* \
| --program-transform-nam=* | --program-transform-na=* \
| --program-transform-n=* | --program-transform-=* \
| --program-transform=* | --program-transfor=* \
| --program-transfo=* | --program-transf=* \
| --program-trans=* | --program-tran=* \
| --progr-tra=* | --program-tr=* | --program-t=*)
program_transform_name=$ac_optarg ;;
-pdfdir | --pdfdir | --pdfdi | --pdfd | --pdf | --pd)
ac_prev=pdfdir ;;
-pdfdir=* | --pdfdir=* | --pdfdi=* | --pdfd=* | --pdf=* | --pd=*)
pdfdir=$ac_optarg ;;
-psdir | --psdir | --psdi | --psd | --ps)
ac_prev=psdir ;;
-psdir=* | --psdir=* | --psdi=* | --psd=* | --ps=*)
psdir=$ac_optarg ;;
-q | -quiet | --quiet | --quie | --qui | --qu | --q \
| -silent | --silent | --silen | --sile | --sil)
silent=yes ;;
-runstatedir | --runstatedir | --runstatedi | --runstated \
| --runstate | --runstat | --runsta | --runst | --runs \
| --run | --ru | --r)
ac_prev=runstatedir ;;
-runstatedir=* | --runstatedir=* | --runstatedi=* | --runstated=* \
| --runstate=* | --runstat=* | --runsta=* | --runst=* | --runs=* \
| --run=* | --ru=* | --r=*)
runstatedir=$ac_optarg ;;
-sbindir | --sbindir | --sbindi | --sbind | --sbin | --sbi | --sb)
ac_prev=sbindir ;;
-sbindir=* | --sbindir=* | --sbindi=* | --sbind=* | --sbin=* \
| --sbi=* | --sb=*)
sbindir=$ac_optarg ;;
-sharedstatedir | --sharedstatedir | --sharedstatedi \
| --sharedstated | --sharedstate | --sharedstat | --sharedsta \
| --sharedst | --shareds | --shared | --share | --shar \
| --sha | --sh)
ac_prev=sharedstatedir ;;
-sharedstatedir=* | --sharedstatedir=* | --sharedstatedi=* \
| --sharedstated=* | --sharedstate=* | --sharedstat=* | --sharedsta=* \
| --sharedst=* | --shareds=* | --shared=* | --share=* | --shar=* \
| --sha=* | --sh=*)
sharedstatedir=$ac_optarg ;;
-site | --site | --sit)
ac_prev=site ;;
-site=* | --site=* | --sit=*)
site=$ac_optarg ;;
-srcdir | --srcdir | --srcdi | --srcd | --src | --sr)
ac_prev=srcdir ;;
-srcdir=* | --srcdir=* | --srcdi=* | --srcd=* | --src=* | --sr=*)
srcdir=$ac_optarg ;;
-sysconfdir | --sysconfdir | --sysconfdi | --sysconfd | --sysconf \
| --syscon | --sysco | --sysc | --sys | --sy)
ac_prev=sysconfdir ;;
-sysconfdir=* | --sysconfdir=* | --sysconfdi=* | --sysconfd=* | --sysconf=* \
| --syscon=* | --sysco=* | --sysc=* | --sys=* | --sy=*)
sysconfdir=$ac_optarg ;;
-target | --target | --targe | --targ | --tar | --ta | --t)
ac_prev=target_alias ;;
-target=* | --target=* | --targe=* | --targ=* | --tar=* | --ta=* | --t=*)
target_alias=$ac_optarg ;;
-v | -verbose | --verbose | --verbos | --verbo | --verb)
verbose=yes ;;
-version | --version | --versio | --versi | --vers | -V)
ac_init_version=: ;;
-with-* | --with-*)
ac_useropt=`expr "x$ac_option" : 'x-*with-\([^=]*\)'`
# Reject names that are not valid shell variable names.
expr "x$ac_useropt" : ".*[^-+._$as_cr_alnum]" >/dev/null &&
as_fn_error $? "invalid package name: '$ac_useropt'"
ac_useropt_orig=$ac_useropt
ac_useropt=`printf "%s\n" "$ac_useropt" | sed 's/[-+.]/_/g'`
case $ac_user_opts in
*"
"with_$ac_useropt"
"*) ;;
*) ac_unrecognized_opts="$ac_unrecognized_opts$ac_unrecognized_sep--with-$ac_useropt_orig"
ac_unrecognized_sep=', ';;
esac
eval with_$ac_useropt=\$ac_optarg ;;
-without-* | --without-*)
ac_useropt=`expr "x$ac_option" : 'x-*without-\(.*\)'`
# Reject names that are not valid shell variable names.
expr "x$ac_useropt" : ".*[^-+._$as_cr_alnum]" >/dev/null &&
as_fn_error $? "invalid package name: '$ac_useropt'"
ac_useropt_orig=$ac_useropt
ac_useropt=`printf "%s\n" "$ac_useropt" | sed 's/[-+.]/_/g'`
case $ac_user_opts in
*"
"with_$ac_useropt"
"*) ;;
*) ac_unrecognized_opts="$ac_unrecognized_opts$ac_unrecognized_sep--without-$ac_useropt_orig"
ac_unrecognized_sep=', ';;
esac
eval with_$ac_useropt=no ;;
--x)
# Obsolete; use --with-x.
with_x=yes ;;
-x-includes | --x-includes | --x-include | --x-includ | --x-inclu \
| --x-incl | --x-inc | --x-in | --x-i)
ac_prev=x_includes ;;
-x-includes=* | --x-includes=* | --x-include=* | --x-includ=* | --x-inclu=* \
| --x-incl=* | --x-inc=* | --x-in=* | --x-i=*)
x_includes=$ac_optarg ;;
-x-libraries | --x-libraries | --x-librarie | --x-librari \
| --x-librar | --x-libra | --x-libr | --x-lib | --x-li | --x-l)
ac_prev=x_libraries ;;
-x-libraries=* | --x-libraries=* | --x-librarie=* | --x-librari=* \
| --x-librar=* | --x-libra=* | --x-libr=* | --x-lib=* | --x-li=* | --x-l=*)
x_libraries=$ac_optarg ;;
-*) as_fn_error $? "unrecognized option: '$ac_option'
Try '$0 --help' for more information"
;;
*=*)
ac_envvar=`expr "x$ac_option" : 'x\([^=]*\)='`
# Reject names that are not valid shell variable names.
case $ac_envvar in #(
'' | [0-9]* | *[!_$as_cr_alnum]* )
as_fn_error $? "invalid variable name: '$ac_envvar'" ;;
esac
eval $ac_envvar=\$ac_optarg
export $ac_envvar ;;
*)
# FIXME: should be removed in autoconf 3.0.
printf "%s\n" "$as_me: WARNING: you should use --build, --host, --target" >&2
expr "x$ac_option" : ".*[^-._$as_cr_alnum]" >/dev/null &&
printf "%s\n" "$as_me: WARNING: invalid host type: $ac_option" >&2
: "${build_alias=$ac_option} ${host_alias=$ac_option} ${target_alias=$ac_option}"
;;
esac
done
if test -n "$ac_prev"; then
ac_option=--`echo $ac_prev | sed 's/_/-/g'`
as_fn_error $? "missing argument to $ac_option"
fi
if test -n "$ac_unrecognized_opts"; then
case $enable_option_checking in
no) ;;
fatal) as_fn_error $? "unrecognized options: $ac_unrecognized_opts" ;;
*) printf "%s\n" "$as_me: WARNING: unrecognized options: $ac_unrecognized_opts" >&2 ;;
esac
fi
# Check all directory arguments for consistency.
for ac_var in exec_prefix prefix bindir sbindir libexecdir datarootdir \
datadir sysconfdir sharedstatedir localstatedir includedir \
oldincludedir docdir infodir htmldir dvidir pdfdir psdir \
libdir localedir mandir runstatedir
do
eval ac_val=\$$ac_var
# Remove trailing slashes.
case $ac_val in
*/ )
ac_val=`expr "X$ac_val" : 'X\(.*[^/]\)' \| "X$ac_val" : 'X\(.*\)'`
eval $ac_var=\$ac_val;;
esac
# Be sure to have absolute directory names.
case $ac_val in
[\\/$]* | ?:[\\/]* ) continue;;
NONE | '' ) case $ac_var in *prefix ) continue;; esac;;
esac
as_fn_error $? "expected an absolute directory name for --$ac_var: $ac_val"
done
# There might be people who depend on the old broken behavior: '$host'
# used to hold the argument of --host etc.
# FIXME: To remove some day.
build=$build_alias
host=$host_alias
target=$target_alias
# FIXME: To remove some day.
if test "x$host_alias" != x; then
if test "x$build_alias" = x; then
cross_compiling=maybe
elif test "x$build_alias" != "x$host_alias"; then
cross_compiling=yes
fi
fi
ac_tool_prefix=
test -n "$host_alias" && ac_tool_prefix=$host_alias-
test "$silent" = yes && exec 6>/dev/null
ac_pwd=`pwd` && test -n "$ac_pwd" &&
ac_ls_di=`ls -di .` &&
ac_pwd_ls_di=`cd "$ac_pwd" && ls -di .` ||
as_fn_error $? "working directory cannot be determined"
test "X$ac_ls_di" = "X$ac_pwd_ls_di" ||
as_fn_error $? "pwd does not report name of working directory"
# Find the source files, if location was not specified.
if test -z "$srcdir"; then
ac_srcdir_defaulted=yes
# Try the directory containing this script, then the parent directory.
ac_confdir=`$as_dirname -- "$as_myself" ||
$as_expr X"$as_myself" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \
X"$as_myself" : 'X\(//\)[^/]' \| \
X"$as_myself" : 'X\(//\)$' \| \
X"$as_myself" : 'X\(/\)' \| . 2>/dev/null ||
printf "%s\n" X"$as_myself" |
sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{
s//\1/
q
}
/^X\(\/\/\)[^/].*/{
s//\1/
q
}
/^X\(\/\/\)$/{
s//\1/
q
}
/^X\(\/\).*/{
s//\1/
q
}
s/.*/./; q'`
srcdir=$ac_confdir
if test ! -r "$srcdir/$ac_unique_file"; then
srcdir=..
fi
else
ac_srcdir_defaulted=no
fi
if test ! -r "$srcdir/$ac_unique_file"; then
test "$ac_srcdir_defaulted" = yes && srcdir="$ac_confdir or .."
as_fn_error $? "cannot find sources ($ac_unique_file) in $srcdir"
fi
ac_msg="sources are in $srcdir, but 'cd $srcdir' does not work"
ac_abs_confdir=`(
cd "$srcdir" && test -r "./$ac_unique_file" || as_fn_error $? "$ac_msg"
pwd)`
# When building in place, set srcdir=.
if test "$ac_abs_confdir" = "$ac_pwd"; then
srcdir=.
fi
# Remove unnecessary trailing slashes from srcdir.
# Double slashes in file names in object file debugging info
# mess up M-x gdb in Emacs.
case $srcdir in
*/) srcdir=`expr "X$srcdir" : 'X\(.*[^/]\)' \| "X$srcdir" : 'X\(.*\)'`;;
esac
for ac_var in $ac_precious_vars; do
eval ac_env_${ac_var}_set=\${${ac_var}+set}
eval ac_env_${ac_var}_value=\$${ac_var}
eval ac_cv_env_${ac_var}_set=\${${ac_var}+set}
eval ac_cv_env_${ac_var}_value=\$${ac_var}
done
#
# Report the --help message.
#
if test "$ac_init_help" = "long"; then
# Omit some internal or obsolete options to make the list less imposing.
# This message is too long to be a string in the A/UX 3.1 sh.
cat <<_ACEOF
'configure' configures octave sparsersb package 1.0.9 to adapt to many kinds of systems.
Usage: $0 [OPTION]... [VAR=VALUE]...
To assign environment variables (e.g., CC, CFLAGS...), specify them as
VAR=VALUE. See below for descriptions of some of the useful variables.
Defaults for the options are specified in brackets.
Configuration:
-h, --help display this help and exit
--help=short display options specific to this package
--help=recursive display the short help of all the included packages
-V, --version display version information and exit
-q, --quiet, --silent do not print 'checking ...' messages
--cache-file=FILE cache test results in FILE [disabled]
-C, --config-cache alias for '--cache-file=config.cache'
-n, --no-create do not create output files
--srcdir=DIR find the sources in DIR [configure dir or '..']
Installation directories:
--prefix=PREFIX install architecture-independent files in PREFIX
[$ac_default_prefix]
--exec-prefix=EPREFIX install architecture-dependent files in EPREFIX
[PREFIX]
By default, 'make install' will install all the files in
'$ac_default_prefix/bin', '$ac_default_prefix/lib' etc. You can specify
an installation prefix other than '$ac_default_prefix' using '--prefix',
for instance '--prefix=\$HOME'.
For better control, use the options below.
Fine tuning of the installation directories:
--bindir=DIR user executables [EPREFIX/bin]
--sbindir=DIR system admin executables [EPREFIX/sbin]
--libexecdir=DIR program executables [EPREFIX/libexec]
--sysconfdir=DIR read-only single-machine data [PREFIX/etc]
--sharedstatedir=DIR modifiable architecture-independent data [PREFIX/com]
--localstatedir=DIR modifiable single-machine data [PREFIX/var]
--runstatedir=DIR modifiable per-process data [LOCALSTATEDIR/run]
--libdir=DIR object code libraries [EPREFIX/lib]
--includedir=DIR C header files [PREFIX/include]
--oldincludedir=DIR C header files for non-gcc [/usr/include]
--datarootdir=DIR read-only arch.-independent data root [PREFIX/share]
--datadir=DIR read-only architecture-independent data [DATAROOTDIR]
--infodir=DIR info documentation [DATAROOTDIR/info]
--localedir=DIR locale-dependent data [DATAROOTDIR/locale]
--mandir=DIR man documentation [DATAROOTDIR/man]
--docdir=DIR documentation root
[DATAROOTDIR/doc/octave-sparsersb-package]
--htmldir=DIR html documentation [DOCDIR]
--dvidir=DIR dvi documentation [DOCDIR]
--pdfdir=DIR pdf documentation [DOCDIR]
--psdir=DIR ps documentation [DOCDIR]
_ACEOF
cat <<\_ACEOF
_ACEOF
fi
if test -n "$ac_init_help"; then
case $ac_init_help in
short | recursive ) echo "Configuration of octave sparsersb package 1.0.9:";;
esac
cat <<\_ACEOF
Optional Packages:
--with-PACKAGE[=ARG] use PACKAGE [ARG=yes]
--without-PACKAGE do not use PACKAGE (same as --with-PACKAGE=no)
--with-static-librsb=yes|no Whether to use static linking with the librsb-conf script. (recommended: yes).
--with-librsb-tarball=... Will use specified user provided librsb tarball (e.g. librsb-1.2.0.tar.gz) to build a local librsb installation. You can specify LIBRSB_CFLAGS to customize. With this option --with-librsb-conf will be ignored.
--with-librsb-conf=... Path to the librsb-config program (or its directory) which will be used to recover SPARSERSB_CXXFLAGS and SPARSERSB_LDFLAGS (unless specified explicitly).
Some influential environment variables:
CXX C++ compiler command
CXXFLAGS C++ compiler flags
LDFLAGS linker flags, e.g. -L if you have libraries in a
nonstandard directory
LIBS libraries to pass to the linker, e.g. -l
CPPFLAGS (Objective) C/C++ preprocessor flags, e.g. -I if
you have headers in a nonstandard directory
MKOCTFILE The mkoctfile executable
OCTAVE The octave executable
SPARSERSB_LDFLAGS
Linking flags for sparsersb
SPARSERSB_CXXFLAGS
C++ compilation flags for sparsersb
SPARSERSB_CXX11
C++11 additional compilation flags for sparsersb
LIBRSB_TARBALL
Environment variable equivalent for --with-librsb-tarball=..
Use these variables to override the choices made by 'configure' or to help
it to find libraries and programs with nonstandard names/locations.
Report bugs to the package provider.
_ACEOF
ac_status=$?
fi
if test "$ac_init_help" = "recursive"; then
# If there are subdirs, report their specific --help.
for ac_dir in : $ac_subdirs_all; do test "x$ac_dir" = x: && continue
test -d "$ac_dir" ||
{ cd "$srcdir" && ac_pwd=`pwd` && srcdir=. && test -d "$ac_dir"; } ||
continue
ac_builddir=.
case "$ac_dir" in
.) ac_dir_suffix= ac_top_builddir_sub=. ac_top_build_prefix= ;;
*)
ac_dir_suffix=/`printf "%s\n" "$ac_dir" | sed 's|^\.[\\/]||'`
# A ".." for each directory in $ac_dir_suffix.
ac_top_builddir_sub=`printf "%s\n" "$ac_dir_suffix" | sed 's|/[^\\/]*|/..|g;s|/||'`
case $ac_top_builddir_sub in
"") ac_top_builddir_sub=. ac_top_build_prefix= ;;
*) ac_top_build_prefix=$ac_top_builddir_sub/ ;;
esac ;;
esac
ac_abs_top_builddir=$ac_pwd
ac_abs_builddir=$ac_pwd$ac_dir_suffix
# for backward compatibility:
ac_top_builddir=$ac_top_build_prefix
case $srcdir in
.) # We are building in place.
ac_srcdir=.
ac_top_srcdir=$ac_top_builddir_sub
ac_abs_top_srcdir=$ac_pwd ;;
[\\/]* | ?:[\\/]* ) # Absolute name.
ac_srcdir=$srcdir$ac_dir_suffix;
ac_top_srcdir=$srcdir
ac_abs_top_srcdir=$srcdir ;;
*) # Relative name.
ac_srcdir=$ac_top_build_prefix$srcdir$ac_dir_suffix
ac_top_srcdir=$ac_top_build_prefix$srcdir
ac_abs_top_srcdir=$ac_pwd/$srcdir ;;
esac
ac_abs_srcdir=$ac_abs_top_srcdir$ac_dir_suffix
cd "$ac_dir" || { ac_status=$?; continue; }
# Check for configure.gnu first; this name is used for a wrapper for
# Metaconfig's "Configure" on case-insensitive file systems.
if test -f "$ac_srcdir/configure.gnu"; then
echo &&
$SHELL "$ac_srcdir/configure.gnu" --help=recursive
elif test -f "$ac_srcdir/configure"; then
echo &&
$SHELL "$ac_srcdir/configure" --help=recursive
else
printf "%s\n" "$as_me: WARNING: no configuration information is in $ac_dir" >&2
fi || ac_status=$?
cd "$ac_pwd" || { ac_status=$?; break; }
done
fi
test -n "$ac_init_help" && exit $ac_status
if $ac_init_version; then
cat <<\_ACEOF
octave sparsersb package configure 1.0.9
generated by GNU Autoconf 2.72a.18-fbdf
Copyright (C) 2021 Free Software Foundation, Inc.
This configure script is free software; the Free Software Foundation
gives unlimited permission to copy, distribute and modify it.
_ACEOF
exit
fi
## ------------------------ ##
## Autoconf initialization. ##
## ------------------------ ##
# ac_fn_cxx_try_compile LINENO
# ----------------------------
# Try to compile conftest.$ac_ext, and return whether this succeeded.
ac_fn_cxx_try_compile ()
{
as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack
rm -f conftest.$ac_objext conftest.beam
if { { ac_try="$ac_compile"
case "(($ac_try" in
*\"* | *\`* | *\\*) ac_try_echo=\$ac_try;;
*) ac_try_echo=$ac_try;;
esac
eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\""
printf "%s\n" "$ac_try_echo"; } >&5
(eval "$ac_compile") 2>conftest.err
ac_status=$?
if test -s conftest.err; then
grep -v '^ *+' conftest.err >conftest.er1
cat conftest.er1 >&5
mv -f conftest.er1 conftest.err
fi
printf "%s\n" "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5
test $ac_status = 0; } && {
test -z "$ac_cxx_werror_flag" ||
test ! -s conftest.err
} && test -s conftest.$ac_objext
then :
ac_retval=0
else $as_nop
printf "%s\n" "$as_me: failed program was:" >&5
sed 's/^/| /' conftest.$ac_ext >&5
ac_retval=1
fi
eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno
as_fn_set_status $ac_retval
} # ac_fn_cxx_try_compile
# ac_fn_cxx_check_header_compile LINENO HEADER VAR INCLUDES
# ---------------------------------------------------------
# Tests whether HEADER exists and can be compiled using the include files in
# INCLUDES, setting the cache variable VAR accordingly.
ac_fn_cxx_check_header_compile ()
{
as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: checking for $2" >&5
printf %s "checking for $2... " >&6; }
if eval test \${$3+y}
then :
printf %s "(cached) " >&6
else $as_nop
cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
$4
#include <$2>
_ACEOF
if ac_fn_cxx_try_compile "$LINENO"
then :
eval "$3=yes"
else $as_nop
eval "$3=no"
fi
rm -f core conftest.err conftest.$ac_objext conftest.beam conftest.$ac_ext
fi
eval ac_res=\$$3
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: result: $ac_res" >&5
printf "%s\n" "$ac_res" >&6; }
eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno
} # ac_fn_cxx_check_header_compile
# ac_fn_cxx_try_link LINENO
# -------------------------
# Try to link conftest.$ac_ext, and return whether this succeeded.
ac_fn_cxx_try_link ()
{
as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack
rm -f conftest.$ac_objext conftest.beam conftest$ac_exeext
if { { ac_try="$ac_link"
case "(($ac_try" in
*\"* | *\`* | *\\*) ac_try_echo=\$ac_try;;
*) ac_try_echo=$ac_try;;
esac
eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\""
printf "%s\n" "$ac_try_echo"; } >&5
(eval "$ac_link") 2>conftest.err
ac_status=$?
if test -s conftest.err; then
grep -v '^ *+' conftest.err >conftest.er1
cat conftest.er1 >&5
mv -f conftest.er1 conftest.err
fi
printf "%s\n" "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5
test $ac_status = 0; } && {
test -z "$ac_cxx_werror_flag" ||
test ! -s conftest.err
} && test -s conftest$ac_exeext && {
test "$cross_compiling" = yes ||
test -x conftest$ac_exeext
}
then :
ac_retval=0
else $as_nop
printf "%s\n" "$as_me: failed program was:" >&5
sed 's/^/| /' conftest.$ac_ext >&5
ac_retval=1
fi
# Delete the IPA/IPO (Inter Procedural Analysis/Optimization) information
# created by the PGI compiler (conftest_ipa8_conftest.oo), as it would
# interfere with the next link command; also delete a directory that is
# left behind by Apple's compiler. We do this before executing the actions.
rm -rf conftest.dSYM conftest_ipa8_conftest.oo
eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno
as_fn_set_status $ac_retval
} # ac_fn_cxx_try_link
ac_configure_args_raw=
for ac_arg
do
case $ac_arg in
*\'*)
ac_arg=`printf "%s\n" "$ac_arg" | sed "s/'/'\\\\\\\\''/g"` ;;
esac
as_fn_append ac_configure_args_raw " '$ac_arg'"
done
case $ac_configure_args_raw in
*$as_nl*)
ac_safe_unquote= ;;
*)
ac_unsafe_z='|&;<>()$`\\"*?[ '' ' # This string ends in space, tab.
ac_unsafe_a="$ac_unsafe_z#~"
ac_safe_unquote="s/ '\\([^$ac_unsafe_a][^$ac_unsafe_z]*\\)'/ \\1/g"
ac_configure_args_raw=` printf "%s\n" "$ac_configure_args_raw" | sed "$ac_safe_unquote"`;;
esac
cat >config.log <<_ACEOF
This file contains any messages produced by compilers while
running configure, to aid debugging if configure makes a mistake.
It was created by octave sparsersb package $as_me 1.0.9, which was
generated by GNU Autoconf 2.72a.18-fbdf. Invocation command line was
$ $0$ac_configure_args_raw
_ACEOF
exec 5>>config.log
{
cat <<_ASUNAME
## --------- ##
## Platform. ##
## --------- ##
hostname = `(hostname || uname -n) 2>/dev/null | sed 1q`
uname -m = `(uname -m) 2>/dev/null || echo unknown`
uname -r = `(uname -r) 2>/dev/null || echo unknown`
uname -s = `(uname -s) 2>/dev/null || echo unknown`
uname -v = `(uname -v) 2>/dev/null || echo unknown`
/usr/bin/uname -p = `(/usr/bin/uname -p) 2>/dev/null || echo unknown`
/bin/uname -X = `(/bin/uname -X) 2>/dev/null || echo unknown`
/bin/arch = `(/bin/arch) 2>/dev/null || echo unknown`
/usr/bin/arch -k = `(/usr/bin/arch -k) 2>/dev/null || echo unknown`
/usr/convex/getsysinfo = `(/usr/convex/getsysinfo) 2>/dev/null || echo unknown`
/usr/bin/hostinfo = `(/usr/bin/hostinfo) 2>/dev/null || echo unknown`
/bin/machine = `(/bin/machine) 2>/dev/null || echo unknown`
/usr/bin/oslevel = `(/usr/bin/oslevel) 2>/dev/null || echo unknown`
/bin/universe = `(/bin/universe) 2>/dev/null || echo unknown`
_ASUNAME
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
IFS=$as_save_IFS
case $as_dir in #(((
'') as_dir=./ ;;
*/) ;;
*) as_dir=$as_dir/ ;;
esac
printf "%s\n" "PATH: $as_dir"
done
IFS=$as_save_IFS
} >&5
cat >&5 <<_ACEOF
## ----------- ##
## Core tests. ##
## ----------- ##
_ACEOF
# Keep a trace of the command line.
# Strip out --no-create and --no-recursion so they do not pile up.
# Strip out --silent because we don't want to record it for future runs.
# Also quote any args containing shell meta-characters.
# Make two passes to allow for proper duplicate-argument suppression.
ac_configure_args=
ac_configure_args0=
ac_configure_args1=
ac_must_keep_next=false
for ac_pass in 1 2
do
for ac_arg
do
case $ac_arg in
-no-create | --no-c* | -n | -no-recursion | --no-r*) continue ;;
-q | -quiet | --quiet | --quie | --qui | --qu | --q \
| -silent | --silent | --silen | --sile | --sil)
continue ;;
*\'*)
ac_arg=`printf "%s\n" "$ac_arg" | sed "s/'/'\\\\\\\\''/g"` ;;
esac
case $ac_pass in
1) as_fn_append ac_configure_args0 " '$ac_arg'" ;;
2)
as_fn_append ac_configure_args1 " '$ac_arg'"
if test $ac_must_keep_next = true; then
ac_must_keep_next=false # Got value, back to normal.
else
case $ac_arg in
*=* | --config-cache | -C | -disable-* | --disable-* \
| -enable-* | --enable-* | -gas | --g* | -nfp | --nf* \
| -q | -quiet | --q* | -silent | --sil* | -v | -verb* \
| -with-* | --with-* | -without-* | --without-* | --x)
case "$ac_configure_args0 " in
"$ac_configure_args1"*" '$ac_arg' "* ) continue ;;
esac
;;
-* ) ac_must_keep_next=true ;;
esac
fi
as_fn_append ac_configure_args " '$ac_arg'"
;;
esac
done
done
{ ac_configure_args0=; unset ac_configure_args0;}
{ ac_configure_args1=; unset ac_configure_args1;}
# When interrupted or exit'd, cleanup temporary files, and complete
# config.log. We remove comments because anyway the quotes in there
# would cause problems or look ugly.
# WARNING: Use '\'' to represent an apostrophe within the trap.
# WARNING: Do not start the trap code with a newline, due to a FreeBSD 4.0 bug.
trap 'exit_status=$?
# Sanitize IFS.
IFS=" "" $as_nl"
# Save into config.log some information that might help in debugging.
{
echo
printf "%s\n" "## ---------------- ##
## Cache variables. ##
## ---------------- ##"
echo
# The following way of writing the cache mishandles newlines in values,
(
for ac_var in `(set) 2>&1 | sed -n '\''s/^\([a-zA-Z_][a-zA-Z0-9_]*\)=.*/\1/p'\''`; do
eval ac_val=\$$ac_var
case $ac_val in #(
*${as_nl}*)
case $ac_var in #(
*_cv_*) { printf "%s\n" "$as_me:${as_lineno-$LINENO}: WARNING: cache variable $ac_var contains a newline" >&5
printf "%s\n" "$as_me: WARNING: cache variable $ac_var contains a newline" >&2;} ;;
esac
case $ac_var in #(
_ | IFS | as_nl) ;; #(
BASH_ARGV | BASH_SOURCE) eval $ac_var= ;; #(
*) { eval $ac_var=; unset $ac_var;} ;;
esac ;;
esac
done
(set) 2>&1 |
case $as_nl`(ac_space='\'' '\''; set) 2>&1` in #(
*${as_nl}ac_space=\ *)
sed -n \
"s/'\''/'\''\\\\'\'''\''/g;
s/^\\([_$as_cr_alnum]*_cv_[_$as_cr_alnum]*\\)=\\(.*\\)/\\1='\''\\2'\''/p"
;; #(
*)
sed -n "/^[_$as_cr_alnum]*_cv_[_$as_cr_alnum]*=/p"
;;
esac |
sort
)
echo
printf "%s\n" "## ----------------- ##
## Output variables. ##
## ----------------- ##"
echo
for ac_var in $ac_subst_vars
do
eval ac_val=\$$ac_var
case $ac_val in
*\'\''*) ac_val=`printf "%s\n" "$ac_val" | sed "s/'\''/'\''\\\\\\\\'\'''\''/g"`;;
esac
printf "%s\n" "$ac_var='\''$ac_val'\''"
done | sort
echo
if test -n "$ac_subst_files"; then
printf "%s\n" "## ------------------- ##
## File substitutions. ##
## ------------------- ##"
echo
for ac_var in $ac_subst_files
do
eval ac_val=\$$ac_var
case $ac_val in
*\'\''*) ac_val=`printf "%s\n" "$ac_val" | sed "s/'\''/'\''\\\\\\\\'\'''\''/g"`;;
esac
printf "%s\n" "$ac_var='\''$ac_val'\''"
done | sort
echo
fi
if test -s confdefs.h; then
printf "%s\n" "## ----------- ##
## confdefs.h. ##
## ----------- ##"
echo
cat confdefs.h
echo
fi
test "$ac_signal" != 0 &&
printf "%s\n" "$as_me: caught signal $ac_signal"
printf "%s\n" "$as_me: exit $exit_status"
} >&5
rm -f core *.core core.conftest.* &&
rm -f -r conftest* confdefs* conf$$* $ac_clean_files &&
exit $exit_status
' 0
for ac_signal in 1 2 13 15; do
trap 'ac_signal='$ac_signal'; as_fn_exit 1' $ac_signal
done
ac_signal=0
# confdefs.h avoids OS command line length limits that DEFS can exceed.
rm -f -r conftest* confdefs.h
printf "%s\n" "/* confdefs.h */" > confdefs.h
# Predefined preprocessor variables.
printf "%s\n" "#define PACKAGE_NAME \"$PACKAGE_NAME\"" >>confdefs.h
printf "%s\n" "#define PACKAGE_TARNAME \"$PACKAGE_TARNAME\"" >>confdefs.h
printf "%s\n" "#define PACKAGE_VERSION \"$PACKAGE_VERSION\"" >>confdefs.h
printf "%s\n" "#define PACKAGE_STRING \"$PACKAGE_STRING\"" >>confdefs.h
printf "%s\n" "#define PACKAGE_BUGREPORT \"$PACKAGE_BUGREPORT\"" >>confdefs.h
printf "%s\n" "#define PACKAGE_URL \"$PACKAGE_URL\"" >>confdefs.h
# Let the site file select an alternate cache file if it wants to.
# Prefer an explicitly selected file to automatically selected ones.
if test -n "$CONFIG_SITE"; then
ac_site_files="$CONFIG_SITE"
elif test "x$prefix" != xNONE; then
ac_site_files="$prefix/share/config.site $prefix/etc/config.site"
else
ac_site_files="$ac_default_prefix/share/config.site $ac_default_prefix/etc/config.site"
fi
for ac_site_file in $ac_site_files
do
case $ac_site_file in #(
*/*) :
;; #(
*) :
ac_site_file=./$ac_site_file ;;
esac
if test -f "$ac_site_file" && test -r "$ac_site_file"; then
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: loading site script $ac_site_file" >&5
printf "%s\n" "$as_me: loading site script $ac_site_file" >&6;}
sed 's/^/| /' "$ac_site_file" >&5
. "$ac_site_file" \
|| { { printf "%s\n" "$as_me:${as_lineno-$LINENO}: error: in '$ac_pwd':" >&5
printf "%s\n" "$as_me: error: in '$ac_pwd':" >&2;}
as_fn_error $? "failed to load site script $ac_site_file
See 'config.log' for more details" "$LINENO" 5; }
fi
done
if test -r "$cache_file"; then
# Some versions of bash will fail to source /dev/null (special files
# actually), so we avoid doing that. DJGPP emulates it as a regular file.
if test /dev/null != "$cache_file" && test -f "$cache_file"; then
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: loading cache $cache_file" >&5
printf "%s\n" "$as_me: loading cache $cache_file" >&6;}
case $cache_file in
[\\/]* | ?:[\\/]* ) . "$cache_file";;
*) . "./$cache_file";;
esac
fi
else
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: creating cache $cache_file" >&5
printf "%s\n" "$as_me: creating cache $cache_file" >&6;}
>$cache_file
fi
# Test code for whether the C++ compiler supports C++98 (global declarations)
ac_cxx_conftest_cxx98_globals='
// Does the compiler advertise C++98 conformance?
#if !defined __cplusplus || __cplusplus < 199711L
# error "Compiler does not advertise C++98 conformance"
#endif
// These inclusions are to reject old compilers that
// lack the unsuffixed header files.
#include
#include
// and are *not* freestanding headers in C++98.
extern void assert (int);
namespace std {
extern int strcmp (const char *, const char *);
}
// Namespaces, exceptions, and templates were all added after "C++ 2.0".
using std::exception;
using std::strcmp;
namespace {
void test_exception_syntax()
{
try {
throw "test";
} catch (const char *s) {
// Extra parentheses suppress a warning when building autoconf itself,
// due to lint rules shared with more typical C programs.
assert (!(strcmp) (s, "test"));
}
}
template struct test_template
{
T const val;
explicit test_template(T t) : val(t) {}
template T add(U u) { return static_cast(u) + val; }
};
} // anonymous namespace
'
# Test code for whether the C++ compiler supports C++98 (body of main)
ac_cxx_conftest_cxx98_main='
assert (argc);
assert (! argv[0]);
{
test_exception_syntax ();
test_template tt (2.0);
assert (tt.add (4) == 6.0);
assert (true && !false);
}
'
# Test code for whether the C++ compiler supports C++11 (global declarations)
ac_cxx_conftest_cxx11_globals='
// Does the compiler advertise C++ 2011 conformance?
#if !defined __cplusplus || __cplusplus < 201103L
# error "Compiler does not advertise C++11 conformance"
#endif
namespace cxx11test
{
constexpr int get_val() { return 20; }
struct testinit
{
int i;
double d;
};
class delegate
{
public:
delegate(int n) : n(n) {}
delegate(): delegate(2354) {}
virtual int getval() { return this->n; };
protected:
int n;
};
class overridden : public delegate
{
public:
overridden(int n): delegate(n) {}
virtual int getval() override final { return this->n * 2; }
};
class nocopy
{
public:
nocopy(int i): i(i) {}
nocopy() = default;
nocopy(const nocopy&) = delete;
nocopy & operator=(const nocopy&) = delete;
private:
int i;
};
// for testing lambda expressions
template Ret eval(Fn f, Ret v)
{
return f(v);
}
// for testing variadic templates and trailing return types
template auto sum(V first) -> V
{
return first;
}
template auto sum(V first, Args... rest) -> V
{
return first + sum(rest...);
}
}
'
# Test code for whether the C++ compiler supports C++11 (body of main)
ac_cxx_conftest_cxx11_main='
{
// Test auto and decltype
auto a1 = 6538;
auto a2 = 48573953.4;
auto a3 = "String literal";
int total = 0;
for (auto i = a3; *i; ++i) { total += *i; }
decltype(a2) a4 = 34895.034;
}
{
// Test constexpr
short sa[cxx11test::get_val()] = { 0 };
}
{
// Test initializer lists
cxx11test::testinit il = { 4323, 435234.23544 };
}
{
// Test range-based for
int array[] = {9, 7, 13, 15, 4, 18, 12, 10, 5, 3,
14, 19, 17, 8, 6, 20, 16, 2, 11, 1};
for (auto &x : array) { x += 23; }
}
{
// Test lambda expressions
using cxx11test::eval;
assert (eval ([](int x) { return x*2; }, 21) == 42);
double d = 2.0;
assert (eval ([&](double x) { return d += x; }, 3.0) == 5.0);
assert (d == 5.0);
assert (eval ([=](double x) mutable { return d += x; }, 4.0) == 9.0);
assert (d == 5.0);
}
{
// Test use of variadic templates
using cxx11test::sum;
auto a = sum(1);
auto b = sum(1, 2);
auto c = sum(1.0, 2.0, 3.0);
}
{
// Test constructor delegation
cxx11test::delegate d1;
cxx11test::delegate d2();
cxx11test::delegate d3(45);
}
{
// Test override and final
cxx11test::overridden o1(55464);
}
{
// Test nullptr
char *c = nullptr;
}
{
// Test template brackets
test_template<::test_template> v(test_template(12));
}
{
// Unicode literals
char const *utf8 = u8"UTF-8 string \u2500";
char16_t const *utf16 = u"UTF-8 string \u2500";
char32_t const *utf32 = U"UTF-32 string \u2500";
}
'
# Test code for whether the C compiler supports C++11 (complete).
ac_cxx_conftest_cxx11_program="${ac_cxx_conftest_cxx98_globals}
${ac_cxx_conftest_cxx11_globals}
int
main (int argc, char **argv)
{
int ok = 0;
${ac_cxx_conftest_cxx98_main}
${ac_cxx_conftest_cxx11_main}
return ok;
}
"
# Test code for whether the C compiler supports C++98 (complete).
ac_cxx_conftest_cxx98_program="${ac_cxx_conftest_cxx98_globals}
int
main (int argc, char **argv)
{
int ok = 0;
${ac_cxx_conftest_cxx98_main}
return ok;
}
"
as_fn_append ac_header_cxx_list " stdio.h stdio_h HAVE_STDIO_H"
as_fn_append ac_header_cxx_list " stdlib.h stdlib_h HAVE_STDLIB_H"
as_fn_append ac_header_cxx_list " string.h string_h HAVE_STRING_H"
as_fn_append ac_header_cxx_list " inttypes.h inttypes_h HAVE_INTTYPES_H"
as_fn_append ac_header_cxx_list " stdint.h stdint_h HAVE_STDINT_H"
as_fn_append ac_header_cxx_list " strings.h strings_h HAVE_STRINGS_H"
as_fn_append ac_header_cxx_list " sys/stat.h sys_stat_h HAVE_SYS_STAT_H"
as_fn_append ac_header_cxx_list " sys/types.h sys_types_h HAVE_SYS_TYPES_H"
as_fn_append ac_header_cxx_list " unistd.h unistd_h HAVE_UNISTD_H"
# Check that the precious variables saved in the cache have kept the same
# value.
ac_cache_corrupted=false
for ac_var in $ac_precious_vars; do
eval ac_old_set=\$ac_cv_env_${ac_var}_set
eval ac_new_set=\$ac_env_${ac_var}_set
eval ac_old_val=\$ac_cv_env_${ac_var}_value
eval ac_new_val=\$ac_env_${ac_var}_value
case $ac_old_set,$ac_new_set in
set,)
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: error: '$ac_var' was set to '$ac_old_val' in the previous run" >&5
printf "%s\n" "$as_me: error: '$ac_var' was set to '$ac_old_val' in the previous run" >&2;}
ac_cache_corrupted=: ;;
,set)
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: error: '$ac_var' was not set in the previous run" >&5
printf "%s\n" "$as_me: error: '$ac_var' was not set in the previous run" >&2;}
ac_cache_corrupted=: ;;
,);;
*)
if test "x$ac_old_val" != "x$ac_new_val"; then
# differences in whitespace do not lead to failure.
ac_old_val_w=`echo x $ac_old_val`
ac_new_val_w=`echo x $ac_new_val`
if test "$ac_old_val_w" != "$ac_new_val_w"; then
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: error: '$ac_var' has changed since the previous run:" >&5
printf "%s\n" "$as_me: error: '$ac_var' has changed since the previous run:" >&2;}
ac_cache_corrupted=:
else
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: warning: ignoring whitespace changes in '$ac_var' since the previous run:" >&5
printf "%s\n" "$as_me: warning: ignoring whitespace changes in '$ac_var' since the previous run:" >&2;}
eval $ac_var=\$ac_old_val
fi
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: former value: '$ac_old_val'" >&5
printf "%s\n" "$as_me: former value: '$ac_old_val'" >&2;}
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: current value: '$ac_new_val'" >&5
printf "%s\n" "$as_me: current value: '$ac_new_val'" >&2;}
fi;;
esac
# Pass precious variables to config.status.
if test "$ac_new_set" = set; then
case $ac_new_val in
*\'*) ac_arg=$ac_var=`printf "%s\n" "$ac_new_val" | sed "s/'/'\\\\\\\\''/g"` ;;
*) ac_arg=$ac_var=$ac_new_val ;;
esac
case " $ac_configure_args " in
*" '$ac_arg' "*) ;; # Avoid dups. Use of quotes ensures accuracy.
*) as_fn_append ac_configure_args " '$ac_arg'" ;;
esac
fi
done
if $ac_cache_corrupted; then
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: error: in '$ac_pwd':" >&5
printf "%s\n" "$as_me: error: in '$ac_pwd':" >&2;}
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: error: changes in the environment can compromise the build" >&5
printf "%s\n" "$as_me: error: changes in the environment can compromise the build" >&2;}
as_fn_error $? "run '${MAKE-make} distclean' and/or 'rm $cache_file'
and start over" "$LINENO" 5
fi
## -------------------- ##
## Main body of script. ##
## -------------------- ##
ac_ext=c
ac_cpp='$CPP $CPPFLAGS'
ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5'
ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5'
ac_compiler_gnu=$ac_cv_c_compiler_gnu
# Checks for programs.
ac_ext=cpp
ac_cpp='$CXXCPP $CPPFLAGS'
ac_compile='$CXX -c $CXXFLAGS $CPPFLAGS conftest.$ac_ext >&5'
ac_link='$CXX -o conftest$ac_exeext $CXXFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5'
ac_compiler_gnu=$ac_cv_cxx_compiler_gnu
if test -z "$CXX"; then
if test -n "$CCC"; then
CXX=$CCC
else
if test -n "$ac_tool_prefix"; then
for ac_prog in g++ c++ gpp aCC CC cxx cc++ cl.exe FCC KCC RCC xlC_r xlC clang++
do
# Extract the first word of "$ac_tool_prefix$ac_prog", so it can be a program name with args.
set dummy $ac_tool_prefix$ac_prog; ac_word=$2
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
printf %s "checking for $ac_word... " >&6; }
if test ${ac_cv_prog_CXX+y}
then :
printf %s "(cached) " >&6
else $as_nop
if test -n "$CXX"; then
ac_cv_prog_CXX="$CXX" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
IFS=$as_save_IFS
case $as_dir in #(((
'') as_dir=./ ;;
*/) ;;
*) as_dir=$as_dir/ ;;
esac
for ac_exec_ext in '' $ac_executable_extensions; do
if as_fn_executable_p "$as_dir$ac_word$ac_exec_ext"; then
ac_cv_prog_CXX="$ac_tool_prefix$ac_prog"
printf "%s\n" "$as_me:${as_lineno-$LINENO}: found $as_dir$ac_word$ac_exec_ext" >&5
break 2
fi
done
done
IFS=$as_save_IFS
fi
fi
CXX=$ac_cv_prog_CXX
if test -n "$CXX"; then
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: result: $CXX" >&5
printf "%s\n" "$CXX" >&6; }
else
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: result: no" >&5
printf "%s\n" "no" >&6; }
fi
test -n "$CXX" && break
done
fi
if test -z "$CXX"; then
ac_ct_CXX=$CXX
for ac_prog in g++ c++ gpp aCC CC cxx cc++ cl.exe FCC KCC RCC xlC_r xlC clang++
do
# Extract the first word of "$ac_prog", so it can be a program name with args.
set dummy $ac_prog; ac_word=$2
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
printf %s "checking for $ac_word... " >&6; }
if test ${ac_cv_prog_ac_ct_CXX+y}
then :
printf %s "(cached) " >&6
else $as_nop
if test -n "$ac_ct_CXX"; then
ac_cv_prog_ac_ct_CXX="$ac_ct_CXX" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
IFS=$as_save_IFS
case $as_dir in #(((
'') as_dir=./ ;;
*/) ;;
*) as_dir=$as_dir/ ;;
esac
for ac_exec_ext in '' $ac_executable_extensions; do
if as_fn_executable_p "$as_dir$ac_word$ac_exec_ext"; then
ac_cv_prog_ac_ct_CXX="$ac_prog"
printf "%s\n" "$as_me:${as_lineno-$LINENO}: found $as_dir$ac_word$ac_exec_ext" >&5
break 2
fi
done
done
IFS=$as_save_IFS
fi
fi
ac_ct_CXX=$ac_cv_prog_ac_ct_CXX
if test -n "$ac_ct_CXX"; then
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: result: $ac_ct_CXX" >&5
printf "%s\n" "$ac_ct_CXX" >&6; }
else
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: result: no" >&5
printf "%s\n" "no" >&6; }
fi
test -n "$ac_ct_CXX" && break
done
if test "x$ac_ct_CXX" = x; then
CXX="g++"
else
case $cross_compiling:$ac_tool_warned in
yes:)
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5
printf "%s\n" "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;}
ac_tool_warned=yes ;;
esac
CXX=$ac_ct_CXX
fi
fi
fi
fi
# Provide some information about the compiler.
printf "%s\n" "$as_me:${as_lineno-$LINENO}: checking for C++ compiler version" >&5
set X $ac_compile
ac_compiler=$2
for ac_option in --version -v -V -qversion; do
{ { ac_try="$ac_compiler $ac_option >&5"
case "(($ac_try" in
*\"* | *\`* | *\\*) ac_try_echo=\$ac_try;;
*) ac_try_echo=$ac_try;;
esac
eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\""
printf "%s\n" "$ac_try_echo"; } >&5
(eval "$ac_compiler $ac_option >&5") 2>conftest.err
ac_status=$?
if test -s conftest.err; then
sed '10a\
... rest of stderr output deleted ...
10q' conftest.err >conftest.er1
cat conftest.er1 >&5
fi
rm -f conftest.er1 conftest.err
printf "%s\n" "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5
test $ac_status = 0; }
done
cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
int
main (void)
{
;
return 0;
}
_ACEOF
ac_clean_files_save=$ac_clean_files
ac_clean_files="$ac_clean_files a.out a.out.dSYM a.exe b.out"
# Try to create an executable without -o first, disregard a.out.
# It will help us diagnose broken compilers, and finding out an intuition
# of exeext.
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: checking whether the C++ compiler works" >&5
printf %s "checking whether the C++ compiler works... " >&6; }
ac_link_default=`printf "%s\n" "$ac_link" | sed 's/ -o *conftest[^ ]*//'`
# The possible output files:
ac_files="a.out conftest.exe conftest a.exe a_out.exe b.out conftest.*"
ac_rmfiles=
for ac_file in $ac_files
do
case $ac_file in
*.$ac_ext | *.xcoff | *.tds | *.d | *.pdb | *.xSYM | *.bb | *.bbg | *.map | *.inf | *.dSYM | *.o | *.obj ) ;;
* ) ac_rmfiles="$ac_rmfiles $ac_file";;
esac
done
rm -f $ac_rmfiles
if { { ac_try="$ac_link_default"
case "(($ac_try" in
*\"* | *\`* | *\\*) ac_try_echo=\$ac_try;;
*) ac_try_echo=$ac_try;;
esac
eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\""
printf "%s\n" "$ac_try_echo"; } >&5
(eval "$ac_link_default") 2>&5
ac_status=$?
printf "%s\n" "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5
test $ac_status = 0; }
then :
# Autoconf-2.13 could set the ac_cv_exeext variable to 'no'.
# So ignore a value of 'no', otherwise this would lead to 'EXEEXT = no'
# in a Makefile. We should not override ac_cv_exeext if it was cached,
# so that the user can short-circuit this test for compilers unknown to
# Autoconf.
for ac_file in $ac_files ''
do
test -f "$ac_file" || continue
case $ac_file in
*.$ac_ext | *.xcoff | *.tds | *.d | *.pdb | *.xSYM | *.bb | *.bbg | *.map | *.inf | *.dSYM | *.o | *.obj )
;;
[ab].out )
# We found the default executable, but exeext='' is most
# certainly right.
break;;
*.* )
if test ${ac_cv_exeext+y} && test "$ac_cv_exeext" != no;
then :; else
ac_cv_exeext=`expr "$ac_file" : '[^.]*\(\..*\)'`
fi
# We set ac_cv_exeext here because the later test for it is not
# safe: cross compilers may not add the suffix if given an '-o'
# argument, so we may need to know it at that point already.
# Even if this section looks crufty: it has the advantage of
# actually working.
break;;
* )
break;;
esac
done
test "$ac_cv_exeext" = no && ac_cv_exeext=
else $as_nop
ac_file=''
fi
if test -z "$ac_file"
then :
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: result: no" >&5
printf "%s\n" "no" >&6; }
printf "%s\n" "$as_me: failed program was:" >&5
sed 's/^/| /' conftest.$ac_ext >&5
{ { printf "%s\n" "$as_me:${as_lineno-$LINENO}: error: in '$ac_pwd':" >&5
printf "%s\n" "$as_me: error: in '$ac_pwd':" >&2;}
as_fn_error 77 "C++ compiler cannot create executables
See 'config.log' for more details" "$LINENO" 5; }
else $as_nop
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: result: yes" >&5
printf "%s\n" "yes" >&6; }
fi
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: checking for C++ compiler default output file name" >&5
printf %s "checking for C++ compiler default output file name... " >&6; }
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: result: $ac_file" >&5
printf "%s\n" "$ac_file" >&6; }
ac_exeext=$ac_cv_exeext
rm -f -r a.out a.out.dSYM a.exe conftest$ac_cv_exeext b.out
ac_clean_files=$ac_clean_files_save
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: checking for suffix of executables" >&5
printf %s "checking for suffix of executables... " >&6; }
if { { ac_try="$ac_link"
case "(($ac_try" in
*\"* | *\`* | *\\*) ac_try_echo=\$ac_try;;
*) ac_try_echo=$ac_try;;
esac
eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\""
printf "%s\n" "$ac_try_echo"; } >&5
(eval "$ac_link") 2>&5
ac_status=$?
printf "%s\n" "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5
test $ac_status = 0; }
then :
# If both 'conftest.exe' and 'conftest' are 'present' (well, observable)
# catch 'conftest.exe'. For instance with Cygwin, 'ls conftest' will
# work properly (i.e., refer to 'conftest.exe'), while it won't with
# 'rm'.
for ac_file in conftest.exe conftest conftest.*; do
test -f "$ac_file" || continue
case $ac_file in
*.$ac_ext | *.xcoff | *.tds | *.d | *.pdb | *.xSYM | *.bb | *.bbg | *.map | *.inf | *.dSYM | *.o | *.obj ) ;;
*.* ) ac_cv_exeext=`expr "$ac_file" : '[^.]*\(\..*\)'`
break;;
* ) break;;
esac
done
else $as_nop
{ { printf "%s\n" "$as_me:${as_lineno-$LINENO}: error: in '$ac_pwd':" >&5
printf "%s\n" "$as_me: error: in '$ac_pwd':" >&2;}
as_fn_error $? "cannot compute suffix of executables: cannot compile and link
See 'config.log' for more details" "$LINENO" 5; }
fi
rm -f conftest conftest$ac_cv_exeext
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: result: $ac_cv_exeext" >&5
printf "%s\n" "$ac_cv_exeext" >&6; }
rm -f conftest.$ac_ext
EXEEXT=$ac_cv_exeext
ac_exeext=$EXEEXT
cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
#include
int
main (void)
{
FILE *f = fopen ("conftest.out", "w");
return ferror (f) || fclose (f) != 0;
;
return 0;
}
_ACEOF
ac_clean_files="$ac_clean_files conftest.out"
# Check that the compiler produces executables we can run. If not, either
# the compiler is broken, or we cross compile.
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: checking whether we are cross compiling" >&5
printf %s "checking whether we are cross compiling... " >&6; }
if test "$cross_compiling" != yes; then
{ { ac_try="$ac_link"
case "(($ac_try" in
*\"* | *\`* | *\\*) ac_try_echo=\$ac_try;;
*) ac_try_echo=$ac_try;;
esac
eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\""
printf "%s\n" "$ac_try_echo"; } >&5
(eval "$ac_link") 2>&5
ac_status=$?
printf "%s\n" "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5
test $ac_status = 0; }
if { ac_try='./conftest$ac_cv_exeext'
{ { case "(($ac_try" in
*\"* | *\`* | *\\*) ac_try_echo=\$ac_try;;
*) ac_try_echo=$ac_try;;
esac
eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\""
printf "%s\n" "$ac_try_echo"; } >&5
(eval "$ac_try") 2>&5
ac_status=$?
printf "%s\n" "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5
test $ac_status = 0; }; }; then
cross_compiling=no
else
if test "$cross_compiling" = maybe; then
cross_compiling=yes
else
{ { printf "%s\n" "$as_me:${as_lineno-$LINENO}: error: in '$ac_pwd':" >&5
printf "%s\n" "$as_me: error: in '$ac_pwd':" >&2;}
as_fn_error 77 "cannot run C++ compiled programs.
If you meant to cross compile, use '--host'.
See 'config.log' for more details" "$LINENO" 5; }
fi
fi
fi
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: result: $cross_compiling" >&5
printf "%s\n" "$cross_compiling" >&6; }
rm -f conftest.$ac_ext conftest$ac_cv_exeext conftest.out
ac_clean_files=$ac_clean_files_save
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: checking for suffix of object files" >&5
printf %s "checking for suffix of object files... " >&6; }
if test ${ac_cv_objext+y}
then :
printf %s "(cached) " >&6
else $as_nop
cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
int
main (void)
{
;
return 0;
}
_ACEOF
rm -f conftest.o conftest.obj
if { { ac_try="$ac_compile"
case "(($ac_try" in
*\"* | *\`* | *\\*) ac_try_echo=\$ac_try;;
*) ac_try_echo=$ac_try;;
esac
eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\""
printf "%s\n" "$ac_try_echo"; } >&5
(eval "$ac_compile") 2>&5
ac_status=$?
printf "%s\n" "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5
test $ac_status = 0; }
then :
for ac_file in conftest.o conftest.obj conftest.*; do
test -f "$ac_file" || continue;
case $ac_file in
*.$ac_ext | *.xcoff | *.tds | *.d | *.pdb | *.xSYM | *.bb | *.bbg | *.map | *.inf | *.dSYM ) ;;
*) ac_cv_objext=`expr "$ac_file" : '.*\.\(.*\)'`
break;;
esac
done
else $as_nop
printf "%s\n" "$as_me: failed program was:" >&5
sed 's/^/| /' conftest.$ac_ext >&5
{ { printf "%s\n" "$as_me:${as_lineno-$LINENO}: error: in '$ac_pwd':" >&5
printf "%s\n" "$as_me: error: in '$ac_pwd':" >&2;}
as_fn_error $? "cannot compute suffix of object files: cannot compile
See 'config.log' for more details" "$LINENO" 5; }
fi
rm -f conftest.$ac_cv_objext conftest.$ac_ext
fi
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: result: $ac_cv_objext" >&5
printf "%s\n" "$ac_cv_objext" >&6; }
OBJEXT=$ac_cv_objext
ac_objext=$OBJEXT
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: checking whether the compiler supports GNU C++" >&5
printf %s "checking whether the compiler supports GNU C++... " >&6; }
if test ${ac_cv_cxx_compiler_gnu+y}
then :
printf %s "(cached) " >&6
else $as_nop
cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
int
main (void)
{
#ifndef __GNUC__
choke me
#endif
;
return 0;
}
_ACEOF
if ac_fn_cxx_try_compile "$LINENO"
then :
ac_compiler_gnu=yes
else $as_nop
ac_compiler_gnu=no
fi
rm -f core conftest.err conftest.$ac_objext conftest.beam conftest.$ac_ext
ac_cv_cxx_compiler_gnu=$ac_compiler_gnu
fi
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: result: $ac_cv_cxx_compiler_gnu" >&5
printf "%s\n" "$ac_cv_cxx_compiler_gnu" >&6; }
ac_compiler_gnu=$ac_cv_cxx_compiler_gnu
if test $ac_compiler_gnu = yes; then
GXX=yes
else
GXX=
fi
ac_test_CXXFLAGS=${CXXFLAGS+y}
ac_save_CXXFLAGS=$CXXFLAGS
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: checking whether $CXX accepts -g" >&5
printf %s "checking whether $CXX accepts -g... " >&6; }
if test ${ac_cv_prog_cxx_g+y}
then :
printf %s "(cached) " >&6
else $as_nop
ac_save_cxx_werror_flag=$ac_cxx_werror_flag
ac_cxx_werror_flag=yes
ac_cv_prog_cxx_g=no
CXXFLAGS="-g"
cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
int
main (void)
{
;
return 0;
}
_ACEOF
if ac_fn_cxx_try_compile "$LINENO"
then :
ac_cv_prog_cxx_g=yes
else $as_nop
CXXFLAGS=""
cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
int
main (void)
{
;
return 0;
}
_ACEOF
if ac_fn_cxx_try_compile "$LINENO"
then :
else $as_nop
ac_cxx_werror_flag=$ac_save_cxx_werror_flag
CXXFLAGS="-g"
cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
int
main (void)
{
;
return 0;
}
_ACEOF
if ac_fn_cxx_try_compile "$LINENO"
then :
ac_cv_prog_cxx_g=yes
fi
rm -f core conftest.err conftest.$ac_objext conftest.beam conftest.$ac_ext
fi
rm -f core conftest.err conftest.$ac_objext conftest.beam conftest.$ac_ext
fi
rm -f core conftest.err conftest.$ac_objext conftest.beam conftest.$ac_ext
ac_cxx_werror_flag=$ac_save_cxx_werror_flag
fi
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: result: $ac_cv_prog_cxx_g" >&5
printf "%s\n" "$ac_cv_prog_cxx_g" >&6; }
if test $ac_test_CXXFLAGS; then
CXXFLAGS=$ac_save_CXXFLAGS
elif test $ac_cv_prog_cxx_g = yes; then
if test "$GXX" = yes; then
CXXFLAGS="-g -O2"
else
CXXFLAGS="-g"
fi
else
if test "$GXX" = yes; then
CXXFLAGS="-O2"
else
CXXFLAGS=
fi
fi
ac_prog_cxx_stdcxx=no
if test x$ac_prog_cxx_stdcxx = xno
then :
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: checking for $CXX option to enable C++11 features" >&5
printf %s "checking for $CXX option to enable C++11 features... " >&6; }
if test ${ac_cv_prog_cxx_cxx11+y}
then :
printf %s "(cached) " >&6
else $as_nop
ac_cv_prog_cxx_cxx11=no
ac_save_CXX=$CXX
cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
$ac_cxx_conftest_cxx11_program
_ACEOF
for ac_arg in '' -std=gnu++11 -std=gnu++0x -std=c++11 -std=c++0x -qlanglvl=extended0x -AA
do
CXX="$ac_save_CXX $ac_arg"
if ac_fn_cxx_try_compile "$LINENO"
then :
ac_cv_prog_cxx_cxx11=$ac_arg
fi
rm -f core conftest.err conftest.$ac_objext conftest.beam
test "x$ac_cv_prog_cxx_cxx11" != "xno" && break
done
rm -f conftest.$ac_ext
CXX=$ac_save_CXX
fi
if test "x$ac_cv_prog_cxx_cxx11" = xno
then :
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: result: unsupported" >&5
printf "%s\n" "unsupported" >&6; }
else $as_nop
if test "x$ac_cv_prog_cxx_cxx11" = x
then :
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: result: none needed" >&5
printf "%s\n" "none needed" >&6; }
else $as_nop
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: result: $ac_cv_prog_cxx_cxx11" >&5
printf "%s\n" "$ac_cv_prog_cxx_cxx11" >&6; }
CXX="$CXX $ac_cv_prog_cxx_cxx11"
fi
ac_cv_prog_cxx_stdcxx=$ac_cv_prog_cxx_cxx11
ac_prog_cxx_stdcxx=cxx11
fi
fi
if test x$ac_prog_cxx_stdcxx = xno
then :
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: checking for $CXX option to enable C++98 features" >&5
printf %s "checking for $CXX option to enable C++98 features... " >&6; }
if test ${ac_cv_prog_cxx_cxx98+y}
then :
printf %s "(cached) " >&6
else $as_nop
ac_cv_prog_cxx_cxx98=no
ac_save_CXX=$CXX
cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
$ac_cxx_conftest_cxx98_program
_ACEOF
for ac_arg in '' -std=gnu++98 -std=c++98 -qlanglvl=extended -AA
do
CXX="$ac_save_CXX $ac_arg"
if ac_fn_cxx_try_compile "$LINENO"
then :
ac_cv_prog_cxx_cxx98=$ac_arg
fi
rm -f core conftest.err conftest.$ac_objext conftest.beam
test "x$ac_cv_prog_cxx_cxx98" != "xno" && break
done
rm -f conftest.$ac_ext
CXX=$ac_save_CXX
fi
if test "x$ac_cv_prog_cxx_cxx98" = xno
then :
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: result: unsupported" >&5
printf "%s\n" "unsupported" >&6; }
else $as_nop
if test "x$ac_cv_prog_cxx_cxx98" = x
then :
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: result: none needed" >&5
printf "%s\n" "none needed" >&6; }
else $as_nop
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: result: $ac_cv_prog_cxx_cxx98" >&5
printf "%s\n" "$ac_cv_prog_cxx_cxx98" >&6; }
CXX="$CXX $ac_cv_prog_cxx_cxx98"
fi
ac_cv_prog_cxx_stdcxx=$ac_cv_prog_cxx_cxx98
ac_prog_cxx_stdcxx=cxx98
fi
fi
ac_ext=c
ac_cpp='$CPP $CPPFLAGS'
ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5'
ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5'
ac_compiler_gnu=$ac_cv_c_compiler_gnu
ac_ext=cpp
ac_cpp='$CXXCPP $CPPFLAGS'
ac_compile='$CXX -c $CXXFLAGS $CPPFLAGS conftest.$ac_ext >&5'
ac_link='$CXX -o conftest$ac_exeext $CXXFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5'
ac_compiler_gnu=$ac_cv_cxx_compiler_gnu
if test -n "$ac_tool_prefix"; then
# Extract the first word of "${ac_tool_prefix}octave", so it can be a program name with args.
set dummy ${ac_tool_prefix}octave; ac_word=$2
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
printf %s "checking for $ac_word... " >&6; }
if test ${ac_cv_prog_OCTAVE+y}
then :
printf %s "(cached) " >&6
else $as_nop
if test -n "$OCTAVE"; then
ac_cv_prog_OCTAVE="$OCTAVE" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
IFS=$as_save_IFS
case $as_dir in #(((
'') as_dir=./ ;;
*/) ;;
*) as_dir=$as_dir/ ;;
esac
for ac_exec_ext in '' $ac_executable_extensions; do
if as_fn_executable_p "$as_dir$ac_word$ac_exec_ext"; then
ac_cv_prog_OCTAVE="${ac_tool_prefix}octave"
printf "%s\n" "$as_me:${as_lineno-$LINENO}: found $as_dir$ac_word$ac_exec_ext" >&5
break 2
fi
done
done
IFS=$as_save_IFS
fi
fi
OCTAVE=$ac_cv_prog_OCTAVE
if test -n "$OCTAVE"; then
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: result: $OCTAVE" >&5
printf "%s\n" "$OCTAVE" >&6; }
else
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: result: no" >&5
printf "%s\n" "no" >&6; }
fi
fi
if test -z "$ac_cv_prog_OCTAVE"; then
ac_ct_OCTAVE=$OCTAVE
# Extract the first word of "octave", so it can be a program name with args.
set dummy octave; ac_word=$2
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
printf %s "checking for $ac_word... " >&6; }
if test ${ac_cv_prog_ac_ct_OCTAVE+y}
then :
printf %s "(cached) " >&6
else $as_nop
if test -n "$ac_ct_OCTAVE"; then
ac_cv_prog_ac_ct_OCTAVE="$ac_ct_OCTAVE" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
IFS=$as_save_IFS
case $as_dir in #(((
'') as_dir=./ ;;
*/) ;;
*) as_dir=$as_dir/ ;;
esac
for ac_exec_ext in '' $ac_executable_extensions; do
if as_fn_executable_p "$as_dir$ac_word$ac_exec_ext"; then
ac_cv_prog_ac_ct_OCTAVE="octave"
printf "%s\n" "$as_me:${as_lineno-$LINENO}: found $as_dir$ac_word$ac_exec_ext" >&5
break 2
fi
done
done
IFS=$as_save_IFS
fi
fi
ac_ct_OCTAVE=$ac_cv_prog_ac_ct_OCTAVE
if test -n "$ac_ct_OCTAVE"; then
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: result: $ac_ct_OCTAVE" >&5
printf "%s\n" "$ac_ct_OCTAVE" >&6; }
else
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: result: no" >&5
printf "%s\n" "no" >&6; }
fi
if test "x$ac_ct_OCTAVE" = x; then
OCTAVE="none"
else
case $cross_compiling:$ac_tool_warned in
yes:)
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5
printf "%s\n" "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;}
ac_tool_warned=yes ;;
esac
OCTAVE=$ac_ct_OCTAVE
fi
else
OCTAVE="$ac_cv_prog_OCTAVE"
fi
if test -n "$ac_tool_prefix"; then
# Extract the first word of "${ac_tool_prefix}mkoctfile", so it can be a program name with args.
set dummy ${ac_tool_prefix}mkoctfile; ac_word=$2
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
printf %s "checking for $ac_word... " >&6; }
if test ${ac_cv_prog_MKOCTFILE+y}
then :
printf %s "(cached) " >&6
else $as_nop
if test -n "$MKOCTFILE"; then
ac_cv_prog_MKOCTFILE="$MKOCTFILE" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
IFS=$as_save_IFS
case $as_dir in #(((
'') as_dir=./ ;;
*/) ;;
*) as_dir=$as_dir/ ;;
esac
for ac_exec_ext in '' $ac_executable_extensions; do
if as_fn_executable_p "$as_dir$ac_word$ac_exec_ext"; then
ac_cv_prog_MKOCTFILE="${ac_tool_prefix}mkoctfile"
printf "%s\n" "$as_me:${as_lineno-$LINENO}: found $as_dir$ac_word$ac_exec_ext" >&5
break 2
fi
done
done
IFS=$as_save_IFS
fi
fi
MKOCTFILE=$ac_cv_prog_MKOCTFILE
if test -n "$MKOCTFILE"; then
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: result: $MKOCTFILE" >&5
printf "%s\n" "$MKOCTFILE" >&6; }
else
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: result: no" >&5
printf "%s\n" "no" >&6; }
fi
fi
if test -z "$ac_cv_prog_MKOCTFILE"; then
ac_ct_MKOCTFILE=$MKOCTFILE
# Extract the first word of "mkoctfile", so it can be a program name with args.
set dummy mkoctfile; ac_word=$2
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
printf %s "checking for $ac_word... " >&6; }
if test ${ac_cv_prog_ac_ct_MKOCTFILE+y}
then :
printf %s "(cached) " >&6
else $as_nop
if test -n "$ac_ct_MKOCTFILE"; then
ac_cv_prog_ac_ct_MKOCTFILE="$ac_ct_MKOCTFILE" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
IFS=$as_save_IFS
case $as_dir in #(((
'') as_dir=./ ;;
*/) ;;
*) as_dir=$as_dir/ ;;
esac
for ac_exec_ext in '' $ac_executable_extensions; do
if as_fn_executable_p "$as_dir$ac_word$ac_exec_ext"; then
ac_cv_prog_ac_ct_MKOCTFILE="mkoctfile"
printf "%s\n" "$as_me:${as_lineno-$LINENO}: found $as_dir$ac_word$ac_exec_ext" >&5
break 2
fi
done
done
IFS=$as_save_IFS
fi
fi
ac_ct_MKOCTFILE=$ac_cv_prog_ac_ct_MKOCTFILE
if test -n "$ac_ct_MKOCTFILE"; then
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: result: $ac_ct_MKOCTFILE" >&5
printf "%s\n" "$ac_ct_MKOCTFILE" >&6; }
else
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: result: no" >&5
printf "%s\n" "no" >&6; }
fi
if test "x$ac_ct_MKOCTFILE" = x; then
MKOCTFILE="none"
else
case $cross_compiling:$ac_tool_warned in
yes:)
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5
printf "%s\n" "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;}
ac_tool_warned=yes ;;
esac
MKOCTFILE=$ac_ct_MKOCTFILE
fi
else
MKOCTFILE="$ac_cv_prog_MKOCTFILE"
fi
if test "$MKOCTFILE" = "none" ; then
as_fn_error $? "mkoctfile required to install $PACKAGE_NAME" "$LINENO" 5
fi
MKOCTFILE="$MKOCTFILE -g"
# Checks for librsb
have_rsb=no
librsb_conf='no'
librsb_conf_static='no' # internal
# Check whether --with-static-librsb was given.
if test ${with_static_librsb+y}
then :
withval=$with_static_librsb; librsb_conf_static=$withval;
if x"$librsb_conf_static" != xyes -a x"$librsb_conf_static" != xno ; then
as_fn_error $? "--static-librsb=yes or --static-librsb=no !! " "$LINENO" 5
fi
fi
# BEGIN tarball-based on-the-fly install of librsb
# Check whether --with-librsb-tarball was given.
if test ${with_librsb_tarball+y}
then :
withval=$with_librsb_tarball; librsb_tarball=$withval
else $as_nop
librsb_tarball=no
fi
if test x"$LIBRSB_TARBALL" != "x" ; then
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: Detected user-set LIBRSB_TARBALL=... variable; equivalent to --with-librsb-tarball=... ." >&5
printf "%s\n" "$as_me: Detected user-set LIBRSB_TARBALL=... variable; equivalent to --with-librsb-tarball=... ." >&6;}
librsb_tarball="$LIBRSB_TARBALL"
else
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: No user-set LIBRSB_TARBALL environment variable detected (set it to build using a custom librsb tarball)." >&5
printf "%s\n" "$as_me: No user-set LIBRSB_TARBALL environment variable detected (set it to build using a custom librsb tarball)." >&6;}
fi
if test x"$librsb_tarball" != x"no" ; then
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: Will create a local librsb build from user provided \"$librsb_tarball\" tarball. Will use default LIBRSB_CFLAGS." >&5
printf "%s\n" "$as_me: Will create a local librsb build from user provided \"$librsb_tarball\" tarball. Will use default LIBRSB_CFLAGS." >&6;}
test -f ${librsb_tarball} || as_fn_error $? "Are you sure of having file $librsb_tarball ?" "$LINENO" 5
tar xzf "$librsb_tarball" || as_fn_error $? "Error uncompressing \"$librsb_tarball\" ?" "$LINENO" 5
librsb_dir=`basename $librsb_tarball`
librsb_dir=${librsb_dir/.tar.gz/}
test -d "$librsb_dir" || as_fn_error $? "Error accessing \"$librsb_dir\" -- are you sure you provided a valid librsb tarball ?" "$LINENO" 5
LIBRSB_PREFIX="`pwd`/local"
cd "$librsb_dir" || as_fn_error $? "Error entering \"$librsb_dir\" -- are you sure you provided a valid librsb tarball ?" "$LINENO" 5
#
LIBRSB_CFLAGS="${LIBRSB_CFLAGS:--O3 -fPIC}"
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: Stepped in \"$librsb_dir\"." >&5
printf "%s\n" "$as_me: Stepped in \"$librsb_dir\"." >&6;}
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: Configuring with LIBRSB_CFLAGS=$LIBRSB_CFLAGS " >&5
printf "%s\n" "$as_me: Configuring with LIBRSB_CFLAGS=$LIBRSB_CFLAGS " >&6;}
./configure OCTAVE='false' CFLAGS="${LIBRSB_CFLAGS}" --prefix="${LIBRSB_PREFIX}" --disable-fortran-examples --disable-c-examples
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: Configured successfully." >&5
printf "%s\n" "$as_me: Configured successfully." >&6;}
make || as_fn_error $? "Make step failed !" "$LINENO" 5
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: Built successfully." >&5
printf "%s\n" "$as_me: Built successfully." >&6;}
make install || as_fn_error $? "Make step failed !" "$LINENO" 5
cd -
librsb_conf="${LIBRSB_PREFIX}"/bin/librsb-config
test -f ${librsb_conf} || as_fn_error $? "Temporary librsb installation config file ${librsb_conf} not executable ? Something went wrong with the install ?!" "$LINENO" 5
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: Temporary librsb installation in ${LIBRSB_PREFIX} done." >&5
printf "%s\n" "$as_me: Temporary librsb installation in ${LIBRSB_PREFIX} done." >&6;}
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: Forcing static linking due to temporary librsb." >&5
printf "%s\n" "$as_me: Forcing static linking due to temporary librsb." >&6;}
librsb_conf_static='yes'
else
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: No librsb tarball provided: following the default procedure." >&5
printf "%s\n" "$as_me: No librsb tarball provided: following the default procedure." >&6;}
true;
fi
# END tarball-based on-the-fly install of librsb
if test x"$librsb_conf" = x"no" ; then
# Check whether --with-librsb-conf was given.
if test ${with_librsb_conf+y}
then :
withval=$with_librsb_conf; librsb_conf=$withval;
else $as_nop
librsb_conf=no
fi
if test x"$librsb_conf" != x"no" ; then
if test -d "$librsb_conf" -a -x "$librsb_conf/librsb-config"; then
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: Considering user provided ${librsb_conf} config dir." >&5
printf "%s\n" "$as_me: Considering user provided ${librsb_conf} config dir." >&6;}
librsb_conf="$librsb_conf/librsb-config";
fi
if test '!' -x "$librsb_conf" ; then
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: Taking absolute path to ${librsb_conf}." >&5
printf "%s\n" "$as_me: Taking absolute path to ${librsb_conf}." >&6;}
librsb_conf=`which "$librsb_conf"`
fi
if test -x "$librsb_conf" ; then
true
else
as_fn_error $? "Executable config file not found with user-provided ${librsb_conf} path!" "$LINENO" 5
fi
fi
else
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: Using ${librsb_conf} config file from the local librsb installation." >&5
printf "%s\n" "$as_me: Using ${librsb_conf} config file from the local librsb installation." >&6;}
fi
if test x"$librsb_conf" != x"no" ; then
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: Using user provided $librsb_conf script for librsb." >&5
printf "%s\n" "$as_me: Using user provided $librsb_conf script for librsb." >&6;}
else
# Extract the first word of "librsb-config", so it can be a program name with args.
set dummy librsb-config; ac_word=$2
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
printf %s "checking for $ac_word... " >&6; }
if test ${ac_cv_prog_HAVE_LIBRSB_CONFIG+y}
then :
printf %s "(cached) " >&6
else $as_nop
if test -n "$HAVE_LIBRSB_CONFIG"; then
ac_cv_prog_HAVE_LIBRSB_CONFIG="$HAVE_LIBRSB_CONFIG" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
IFS=$as_save_IFS
case $as_dir in #(((
'') as_dir=./ ;;
*/) ;;
*) as_dir=$as_dir/ ;;
esac
for ac_exec_ext in '' $ac_executable_extensions; do
if as_fn_executable_p "$as_dir$ac_word$ac_exec_ext"; then
ac_cv_prog_HAVE_LIBRSB_CONFIG="yes"
printf "%s\n" "$as_me:${as_lineno-$LINENO}: found $as_dir$ac_word$ac_exec_ext" >&5
break 2
fi
done
done
IFS=$as_save_IFS
test -z "$ac_cv_prog_HAVE_LIBRSB_CONFIG" && ac_cv_prog_HAVE_LIBRSB_CONFIG="no"
fi
fi
HAVE_LIBRSB_CONFIG=$ac_cv_prog_HAVE_LIBRSB_CONFIG
if test -n "$HAVE_LIBRSB_CONFIG"; then
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: result: $HAVE_LIBRSB_CONFIG" >&5
printf "%s\n" "$HAVE_LIBRSB_CONFIG" >&6; }
else
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: result: no" >&5
printf "%s\n" "no" >&6; }
fi
if test "x$HAVE_LIBRSB_CONFIG" != x"no"; then
librsb_conf=librsb-config
fi
fi
if test x"$SPARSERSB_CXXFLAGS" != "x" ; then
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: Using user set SPARSERSB_CXXFLAGS..." >&5
printf "%s\n" "$as_me: Using user set SPARSERSB_CXXFLAGS..." >&6;}
else
if test x"$librsb_conf" != x"no"; then
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: Setting SPARSERSB_CXXFLAGS from $librsb_conf --I_opts..." >&5
printf "%s\n" "$as_me: Setting SPARSERSB_CXXFLAGS from $librsb_conf --I_opts..." >&6;}
SPARSERSB_CXXFLAGS="`$librsb_conf --I_opts`"
fi
fi
OCTAVE_CLI="$OCTAVE --no-gui --no-window-system";
SPARSERSB_USE_64BIT_IDX=`$OCTAVE_CLI --no-line-editing -qf --eval 'printf ("%i", sizemax() > intmax ("int32"))'`
if test x"$SPARSERSB_USE_64BIT_IDX" = x"1" ; then
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: Adding -D RSBOI_DETECTED_LONG_IDX to SPARSERSB_CXXFLAGS ..." >&5
printf "%s\n" "$as_me: Adding -D RSBOI_DETECTED_LONG_IDX to SPARSERSB_CXXFLAGS ..." >&6;}
SPARSERSB_CXXFLAGS="$SPARSERSB_CXXFLAGS -D RSBOI_DETECTED_LONG_IDX=1"
fi
if test x"$SPARSERSB_LDFLAGS" != "x" ; then
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: Using user set SPARSERSB_LDFLAGS..." >&5
printf "%s\n" "$as_me: Using user set SPARSERSB_LDFLAGS..." >&6;}
else
if test x"$librsb_conf" != x"no"; then
if test x"$librsb_conf_static" = x"no"; then
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: Setting SPARSERSB_LDFLAGS from --L_opts --libs" >&5
printf "%s\n" "$as_me: Setting SPARSERSB_LDFLAGS from --L_opts --libs" >&6;}
SPARSERSB_LDFLAGS="`$librsb_conf --L_opts --libs`"
else
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: Setting SPARSERSB_LDFLAGS from --static --libs --extra_libs" >&5
printf "%s\n" "$as_me: Setting SPARSERSB_LDFLAGS from --static --libs --extra_libs" >&6;}
SPARSERSB_LDFLAGS="`$librsb_conf --static --libs --extra_libs`"
fi
fi
fi
if test x"$SPARSERSB_CXXFLAGS" = "x" ; then
ac_header= ac_cache=
for ac_item in $ac_header_cxx_list
do
if test $ac_cache; then
ac_fn_cxx_check_header_compile "$LINENO" $ac_header ac_cv_header_$ac_cache "$ac_includes_default"
if eval test \"x\$ac_cv_header_$ac_cache\" = xyes; then
printf "%s\n" "#define $ac_item 1" >> confdefs.h
fi
ac_header= ac_cache=
elif test $ac_header; then
ac_cache=$ac_item
else
ac_header=$ac_item
fi
done
if test $ac_cv_header_stdlib_h = yes && test $ac_cv_header_string_h = yes
then :
printf "%s\n" "#define STDC_HEADERS 1" >>confdefs.h
fi
for ac_header in rsb.h
do :
ac_fn_cxx_check_header_compile "$LINENO" "rsb.h" "ac_cv_header_rsb_h" "$ac_includes_default"
if test "x$ac_cv_header_rsb_h" = xyes
then :
printf "%s\n" "#define HAVE_RSB_H 1" >>confdefs.h
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: checking for library containing rsb_lib_init" >&5
printf %s "checking for library containing rsb_lib_init... " >&6; }
if test ${ac_cv_search_rsb_lib_init+y}
then :
printf %s "(cached) " >&6
else $as_nop
ac_func_search_save_LIBS=$LIBS
cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
namespace conftest {
extern "C" int rsb_lib_init ();
}
int
main (void)
{
return conftest::rsb_lib_init ();
;
return 0;
}
_ACEOF
for ac_lib in '' rsb
do
if test -z "$ac_lib"; then
ac_res="none required"
else
ac_res=-l$ac_lib
LIBS="-l$ac_lib $ac_func_search_save_LIBS"
fi
if ac_fn_cxx_try_link "$LINENO"
then :
ac_cv_search_rsb_lib_init=$ac_res
fi
rm -f core conftest.err conftest.$ac_objext conftest.beam \
conftest$ac_exeext
if test ${ac_cv_search_rsb_lib_init+y}
then :
break
fi
done
if test ${ac_cv_search_rsb_lib_init+y}
then :
else $as_nop
ac_cv_search_rsb_lib_init=no
fi
rm conftest.$ac_ext
LIBS=$ac_func_search_save_LIBS
fi
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_rsb_lib_init" >&5
printf "%s\n" "$ac_cv_search_rsb_lib_init" >&6; }
ac_res=$ac_cv_search_rsb_lib_init
if test "$ac_res" != no
then :
test "$ac_res" = "none required" || LIBS="$ac_res $LIBS"
SPARSERSB_CXXFLAGS=" "
fi
fi
done
fi
if test x"$SPARSERSB_LDFLAGS" = "x" ; then
for ac_header in rsb.h
do :
ac_fn_cxx_check_header_compile "$LINENO" "rsb.h" "ac_cv_header_rsb_h" "$ac_includes_default"
if test "x$ac_cv_header_rsb_h" = xyes
then :
printf "%s\n" "#define HAVE_RSB_H 1" >>confdefs.h
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: checking for library containing rsb_lib_init" >&5
printf %s "checking for library containing rsb_lib_init... " >&6; }
if test ${ac_cv_search_rsb_lib_init+y}
then :
printf %s "(cached) " >&6
else $as_nop
ac_func_search_save_LIBS=$LIBS
cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
namespace conftest {
extern "C" int rsb_lib_init ();
}
int
main (void)
{
return conftest::rsb_lib_init ();
;
return 0;
}
_ACEOF
for ac_lib in '' rsb
do
if test -z "$ac_lib"; then
ac_res="none required"
else
ac_res=-l$ac_lib
LIBS="-l$ac_lib $ac_func_search_save_LIBS"
fi
if ac_fn_cxx_try_link "$LINENO"
then :
ac_cv_search_rsb_lib_init=$ac_res
fi
rm -f core conftest.err conftest.$ac_objext conftest.beam \
conftest$ac_exeext
if test ${ac_cv_search_rsb_lib_init+y}
then :
break
fi
done
if test ${ac_cv_search_rsb_lib_init+y}
then :
else $as_nop
ac_cv_search_rsb_lib_init=no
fi
rm conftest.$ac_ext
LIBS=$ac_func_search_save_LIBS
fi
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_rsb_lib_init" >&5
printf "%s\n" "$ac_cv_search_rsb_lib_init" >&6; }
ac_res=$ac_cv_search_rsb_lib_init
if test "$ac_res" != no
then :
test "$ac_res" = "none required" || LIBS="$ac_res $LIBS"
SPARSERSB_LDFLAGS="-lrsb"
fi
fi
done
fi
if test x"$SPARSERSB_CXXFLAGS" = "x" ; then
as_fn_error $? "$PACKAGE_NAME SPARSERSB_CXXFLAGS (librsb not detected)!" "$LINENO" 5
fi
if test x"$SPARSERSB_LDFLAGS" = "x" ; then
as_fn_error $? "$PACKAGE_NAME requires SPARSERSB_LDFLAGS (librsb not detected)!" "$LINENO" 5
fi
have_rsb=yes
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: SPARSERSB_CXXFLAGS is $SPARSERSB_CXXFLAGS" >&5
printf "%s\n" "$as_me: SPARSERSB_CXXFLAGS is $SPARSERSB_CXXFLAGS" >&6;}
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: SPARSERSB_LDFLAGS is $SPARSERSB_LDFLAGS" >&5
printf "%s\n" "$as_me: SPARSERSB_LDFLAGS is $SPARSERSB_LDFLAGS" >&6;}
# TODO: alternative: build librsb with SPARSERSB_LIBRSB_TARBALL
# TODO: alternative: --with-librsb=tarball will skip all checks and use that tarball
if test "$have_rsb" != "yes" ; then
as_fn_error $? "$PACKAGE_NAME requires librsb library" "$LINENO" 5
fi
# check for octave functions
save_CXX="$CXX"
save_CXXFLAGS="$CXXFLAGS"
CXX=`${MKOCTFILE} -p CXX`
CXXFLAGS="$CXXFLAGS -I`$MKOCTFILE -p OCTINCLUDEDIR`"
# need to use interpreter->get_load_path in dev version of octave,
# prior to that methods of load_path were static
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: checking for octave_value function iscomplex" >&5
printf %s "checking for octave_value function iscomplex... " >&6; }
if test ${octave_value_cv_iscomplex+y}
then :
printf %s "(cached) " >&6
else $as_nop
cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
#include
#include
int
main (void)
{
octave_value().iscomplex();
;
return 0;
}
_ACEOF
if ac_fn_cxx_try_compile "$LINENO"
then :
octave_value_cv_iscomplex=yes
else $as_nop
octave_value_cv_iscomplex=no
fi
rm -f core conftest.err conftest.$ac_objext conftest.beam conftest.$ac_ext
fi
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: result: $octave_value_cv_iscomplex" >&5
printf "%s\n" "$octave_value_cv_iscomplex" >&6; }
if test "$octave_value_cv_iscomplex" = "yes" ; then
HAVE_OCTAVE_VALUE_ISCOMPLEX=-DHAVE_OCTAVE_VALUE_ISCOMPLEX
else
HAVE_OCTAVE_VALUE_ISCOMPLEX=
fi
CC=$save_CXX
CXXFLAGS=$save_CXXFLAGS
SPARSERSB_CXX11="-std=gnu++11"
ac_config_files="$ac_config_files Makeconf"
cat >confcache <<\_ACEOF
# This file is a shell script that caches the results of configure
# tests run on this system so they can be shared between configure
# scripts and configure runs, see configure's option --config-cache.
# It is not useful on other systems. If it contains results you don't
# want to keep, you may remove or edit it.
#
# config.status only pays attention to the cache file if you give it
# the --recheck option to rerun configure.
#
# 'ac_cv_env_foo' variables (set or unset) will be overridden when
# loading this file, other *unset* 'ac_cv_foo' will be assigned the
# following values.
_ACEOF
# The following way of writing the cache mishandles newlines in values,
# but we know of no workaround that is simple, portable, and efficient.
# So, we kill variables containing newlines.
# Ultrix sh set writes to stderr and can't be redirected directly,
# and sets the high bit in the cache file unless we assign to the vars.
(
for ac_var in `(set) 2>&1 | sed -n 's/^\([a-zA-Z_][a-zA-Z0-9_]*\)=.*/\1/p'`; do
eval ac_val=\$$ac_var
case $ac_val in #(
*${as_nl}*)
case $ac_var in #(
*_cv_*) { printf "%s\n" "$as_me:${as_lineno-$LINENO}: WARNING: cache variable $ac_var contains a newline" >&5
printf "%s\n" "$as_me: WARNING: cache variable $ac_var contains a newline" >&2;} ;;
esac
case $ac_var in #(
_ | IFS | as_nl) ;; #(
BASH_ARGV | BASH_SOURCE) eval $ac_var= ;; #(
*) { eval $ac_var=; unset $ac_var;} ;;
esac ;;
esac
done
(set) 2>&1 |
case $as_nl`(ac_space=' '; set) 2>&1` in #(
*${as_nl}ac_space=\ *)
# 'set' does not quote correctly, so add quotes: double-quote
# substitution turns \\\\ into \\, and sed turns \\ into \.
sed -n \
"s/'/'\\\\''/g;
s/^\\([_$as_cr_alnum]*_cv_[_$as_cr_alnum]*\\)=\\(.*\\)/\\1='\\2'/p"
;; #(
*)
# 'set' quotes correctly as required by POSIX, so do not add quotes.
sed -n "/^[_$as_cr_alnum]*_cv_[_$as_cr_alnum]*=/p"
;;
esac |
sort
) |
sed '
/^ac_cv_env_/b end
t clear
:clear
s/^\([^=]*\)=\(.*[{}].*\)$/test ${\1+y} || &/
t end
s/^\([^=]*\)=\(.*\)$/\1=${\1=\2}/
:end' >>confcache
if diff "$cache_file" confcache >/dev/null 2>&1; then :; else
if test -w "$cache_file"; then
if test "x$cache_file" != "x/dev/null"; then
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: updating cache $cache_file" >&5
printf "%s\n" "$as_me: updating cache $cache_file" >&6;}
if test ! -f "$cache_file" || test -h "$cache_file"; then
cat confcache >"$cache_file"
else
case $cache_file in #(
*/* | ?:*)
mv -f confcache "$cache_file"$$ &&
mv -f "$cache_file"$$ "$cache_file" ;; #(
*)
mv -f confcache "$cache_file" ;;
esac
fi
fi
else
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: not updating unwritable cache $cache_file" >&5
printf "%s\n" "$as_me: not updating unwritable cache $cache_file" >&6;}
fi
fi
rm -f confcache
test "x$prefix" = xNONE && prefix=$ac_default_prefix
# Let make expand exec_prefix.
test "x$exec_prefix" = xNONE && exec_prefix='${prefix}'
# Transform confdefs.h into DEFS.
# Protect against shell expansion while executing Makefile rules.
# Protect against Makefile macro expansion.
#
# If the first sed substitution is executed (which looks for macros that
# take arguments), then branch to the quote section. Otherwise,
# look for a macro that doesn't take arguments.
ac_script='
:mline
/\\$/{
N
s,\\\n,,
b mline
}
t clear
:clear
s/^[ ]*#[ ]*define[ ][ ]*\([^ (][^ (]*([^)]*)\)[ ]*\(.*\)/-D\1=\2/g
t quote
s/^[ ]*#[ ]*define[ ][ ]*\([^ ][^ ]*\)[ ]*\(.*\)/-D\1=\2/g
t quote
b any
:quote
s/[ `~#$^&*(){}\\|;'\''"<>?]/\\&/g
s/\[/\\&/g
s/\]/\\&/g
s/\$/$$/g
H
:any
${
g
s/^\n//
s/\n/ /g
p
}
'
DEFS=`sed -n "$ac_script" confdefs.h`
ac_libobjs=
ac_ltlibobjs=
U=
for ac_i in : $LIBOBJS; do test "x$ac_i" = x: && continue
# 1. Remove the extension, and $U if already installed.
ac_script='s/\$U\././;s/\.o$//;s/\.obj$//'
ac_i=`printf "%s\n" "$ac_i" | sed "$ac_script"`
# 2. Prepend LIBOBJDIR. When used with automake>=1.10 LIBOBJDIR
# will be set to the directory where LIBOBJS objects are built.
as_fn_append ac_libobjs " \${LIBOBJDIR}$ac_i\$U.$ac_objext"
as_fn_append ac_ltlibobjs " \${LIBOBJDIR}$ac_i"'$U.lo'
done
LIBOBJS=$ac_libobjs
LTLIBOBJS=$ac_ltlibobjs
: "${CONFIG_STATUS=./config.status}"
ac_write_fail=0
ac_clean_files_save=$ac_clean_files
ac_clean_files="$ac_clean_files $CONFIG_STATUS"
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: creating $CONFIG_STATUS" >&5
printf "%s\n" "$as_me: creating $CONFIG_STATUS" >&6;}
as_write_fail=0
cat >$CONFIG_STATUS <<_ASEOF || as_write_fail=1
#! $SHELL
# Generated by $as_me.
# Run this file to recreate the current configuration.
# Compiler output produced by configure, useful for debugging
# configure, is in config.log if it exists.
debug=false
ac_cs_recheck=false
ac_cs_silent=false
SHELL=\${CONFIG_SHELL-$SHELL}
export SHELL
_ASEOF
cat >>$CONFIG_STATUS <<\_ASEOF || as_write_fail=1
## -------------------- ##
## M4sh Initialization. ##
## -------------------- ##
# Be more Bourne compatible
DUALCASE=1; export DUALCASE # for MKS sh
as_nop=:
if test ${ZSH_VERSION+y} && (emulate sh) >/dev/null 2>&1
then :
emulate sh
NULLCMD=:
# Pre-4.2 versions of Zsh do word splitting on ${1+"$@"}, which
# is contrary to our usage. Disable this feature.
alias -g '${1+"$@"}'='"$@"'
setopt NO_GLOB_SUBST
else $as_nop
case `(set -o) 2>/dev/null` in #(
*posix*) :
set -o posix ;; #(
*) :
;;
esac
fi
# Reset variables that may have inherited troublesome values from
# the environment.
# IFS needs to be set, to space, tab, and newline, in precisely that order.
# (If _AS_PATH_WALK were called with IFS unset, it would have the
# side effect of setting IFS to empty, thus disabling word splitting.)
# Quoting is to prevent editors from complaining about space-tab.
as_nl='
'
export as_nl
IFS=" "" $as_nl"
PS1='$ '
PS2='> '
PS4='+ '
# Ensure predictable behavior from utilities with locale-dependent output.
LC_ALL=C
export LC_ALL
LANGUAGE=C
export LANGUAGE
# We cannot yet rely on "unset" to work, but we need these variables
# to be unset--not just set to an empty or harmless value--now, to
# avoid bugs in old shells (e.g. pre-3.0 UWIN ksh). This construct
# also avoids known problems related to "unset" and subshell syntax
# in other old shells (e.g. bash 2.01 and pdksh 5.2.14).
for as_var in BASH_ENV ENV MAIL MAILPATH CDPATH
do eval test \${$as_var+y} \
&& ( (unset $as_var) || exit 1) >/dev/null 2>&1 && unset $as_var || :
done
# Ensure that fds 0, 1, and 2 are open.
if (exec 3>&0) 2>/dev/null; then :; else exec 0&1) 2>/dev/null; then :; else exec 1>/dev/null; fi
if (exec 3>&2) ; then :; else exec 2>/dev/null; fi
# The user is always right.
if ${PATH_SEPARATOR+false} :; then
PATH_SEPARATOR=:
(PATH='/bin;/bin'; FPATH=$PATH; sh -c :) >/dev/null 2>&1 && {
(PATH='/bin:/bin'; FPATH=$PATH; sh -c :) >/dev/null 2>&1 ||
PATH_SEPARATOR=';'
}
fi
# Find who we are. Look in the path if we contain no directory separator.
as_myself=
case $0 in #((
*[\\/]* ) as_myself=$0 ;;
*) as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
IFS=$as_save_IFS
case $as_dir in #(((
'') as_dir=./ ;;
*/) ;;
*) as_dir=$as_dir/ ;;
esac
test -r "$as_dir$0" && as_myself=$as_dir$0 && break
done
IFS=$as_save_IFS
;;
esac
# We did not find ourselves, most probably we were run as 'sh COMMAND'
# in which case we are not to be found in the path.
if test "x$as_myself" = x; then
as_myself=$0
fi
if test ! -f "$as_myself"; then
printf "%s\n" "$as_myself: error: cannot find myself; rerun with an absolute file name" >&2
exit 1
fi
# as_fn_error STATUS ERROR [LINENO LOG_FD]
# ----------------------------------------
# Output "`basename $0`: error: ERROR" to stderr. If LINENO and LOG_FD are
# provided, also output the error to LOG_FD, referencing LINENO. Then exit the
# script with STATUS, using 1 if that was 0.
as_fn_error ()
{
as_status=$1; test $as_status -eq 0 && as_status=1
if test "$4"; then
as_lineno=${as_lineno-"$3"} as_lineno_stack=as_lineno_stack=$as_lineno_stack
printf "%s\n" "$as_me:${as_lineno-$LINENO}: error: $2" >&$4
fi
printf "%s\n" "$as_me: error: $2" >&2
as_fn_exit $as_status
} # as_fn_error
# as_fn_set_status STATUS
# -----------------------
# Set $? to STATUS, without forking.
as_fn_set_status ()
{
return $1
} # as_fn_set_status
# as_fn_exit STATUS
# -----------------
# Exit the shell with STATUS, even in a "trap 0" or "set -e" context.
as_fn_exit ()
{
set +e
as_fn_set_status $1
exit $1
} # as_fn_exit
# as_fn_unset VAR
# ---------------
# Portably unset VAR.
as_fn_unset ()
{
{ eval $1=; unset $1;}
}
as_unset=as_fn_unset
# as_fn_append VAR VALUE
# ----------------------
# Append the text in VALUE to the end of the definition contained in VAR. Take
# advantage of any shell optimizations that allow amortized linear growth over
# repeated appends, instead of the typical quadratic growth present in naive
# implementations.
if (eval "as_var=1; as_var+=2; test x\$as_var = x12") 2>/dev/null
then :
eval 'as_fn_append ()
{
eval $1+=\$2
}'
else $as_nop
as_fn_append ()
{
eval $1=\$$1\$2
}
fi # as_fn_append
# as_fn_arith ARG...
# ------------------
# Perform arithmetic evaluation on the ARGs, and store the result in the
# global $as_val. Take advantage of shells that can avoid forks. The arguments
# must be portable across $(()) and expr.
if (eval "test \$(( 1 + 1 )) = 2") 2>/dev/null
then :
eval 'as_fn_arith ()
{
as_val=$(( $* ))
}'
else $as_nop
as_fn_arith ()
{
as_val=`expr "$@" || test $? -eq 1`
}
fi # as_fn_arith
if expr a : '\(a\)' >/dev/null 2>&1 &&
test "X`expr 00001 : '.*\(...\)'`" = X001; then
as_expr=expr
else
as_expr=false
fi
if (basename -- /) >/dev/null 2>&1 && test "X`basename -- / 2>&1`" = "X/"; then
as_basename=basename
else
as_basename=false
fi
if (as_dir=`dirname -- /` && test "X$as_dir" = X/) >/dev/null 2>&1; then
as_dirname=dirname
else
as_dirname=false
fi
as_me=`$as_basename -- "$0" ||
$as_expr X/"$0" : '.*/\([^/][^/]*\)/*$' \| \
X"$0" : 'X\(//\)$' \| \
X"$0" : 'X\(/\)' \| . 2>/dev/null ||
printf "%s\n" X/"$0" |
sed '/^.*\/\([^/][^/]*\)\/*$/{
s//\1/
q
}
/^X\/\(\/\/\)$/{
s//\1/
q
}
/^X\/\(\/\).*/{
s//\1/
q
}
s/.*/./; q'`
# Avoid depending upon Character Ranges.
as_cr_letters='abcdefghijklmnopqrstuvwxyz'
as_cr_LETTERS='ABCDEFGHIJKLMNOPQRSTUVWXYZ'
as_cr_Letters=$as_cr_letters$as_cr_LETTERS
as_cr_digits='0123456789'
as_cr_alnum=$as_cr_Letters$as_cr_digits
# Determine whether it's possible to make 'echo' print without a newline.
# These variables are no longer used directly by Autoconf, but are AC_SUBSTed
# for compatibility with existing Makefiles.
ECHO_C= ECHO_N= ECHO_T=
case `echo -n x` in #(((((
-n*)
case `echo 'xy\c'` in
*c*) ECHO_T=' ';; # ECHO_T is single tab character.
xy) ECHO_C='\c';;
*) echo `echo ksh88 bug on AIX 6.1` > /dev/null
ECHO_T=' ';;
esac;;
*)
ECHO_N='-n';;
esac
# For backward compatibility with old third-party macros, we provide
# the shell variables $as_echo and $as_echo_n. New code should use
# AS_ECHO(["message"]) and AS_ECHO_N(["message"]), respectively.
as_echo='printf %s\n'
as_echo_n='printf %s'
rm -f conf$$ conf$$.exe conf$$.file
if test -d conf$$.dir; then
rm -f conf$$.dir/conf$$.file
else
rm -f conf$$.dir
mkdir conf$$.dir 2>/dev/null
fi
if (echo >conf$$.file) 2>/dev/null; then
if ln -s conf$$.file conf$$ 2>/dev/null; then
as_ln_s='ln -s'
# ... but there are two gotchas:
# 1) On MSYS, both 'ln -s file dir' and 'ln file dir' fail.
# 2) DJGPP < 2.04 has no symlinks; 'ln -s' creates a wrapper executable.
# In both cases, we have to default to 'cp -pR'.
ln -s conf$$.file conf$$.dir 2>/dev/null && test ! -f conf$$.exe ||
as_ln_s='cp -pR'
elif ln conf$$.file conf$$ 2>/dev/null; then
as_ln_s=ln
else
as_ln_s='cp -pR'
fi
else
as_ln_s='cp -pR'
fi
rm -f conf$$ conf$$.exe conf$$.dir/conf$$.file conf$$.file
rmdir conf$$.dir 2>/dev/null
# as_fn_mkdir_p
# -------------
# Create "$as_dir" as a directory, including parents if necessary.
as_fn_mkdir_p ()
{
case $as_dir in #(
-*) as_dir=./$as_dir;;
esac
test -d "$as_dir" || eval $as_mkdir_p || {
as_dirs=
while :; do
case $as_dir in #(
*\'*) as_qdir=`printf "%s\n" "$as_dir" | sed "s/'/'\\\\\\\\''/g"`;; #'(
*) as_qdir=$as_dir;;
esac
as_dirs="'$as_qdir' $as_dirs"
as_dir=`$as_dirname -- "$as_dir" ||
$as_expr X"$as_dir" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \
X"$as_dir" : 'X\(//\)[^/]' \| \
X"$as_dir" : 'X\(//\)$' \| \
X"$as_dir" : 'X\(/\)' \| . 2>/dev/null ||
printf "%s\n" X"$as_dir" |
sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{
s//\1/
q
}
/^X\(\/\/\)[^/].*/{
s//\1/
q
}
/^X\(\/\/\)$/{
s//\1/
q
}
/^X\(\/\).*/{
s//\1/
q
}
s/.*/./; q'`
test -d "$as_dir" && break
done
test -z "$as_dirs" || eval "mkdir $as_dirs"
} || test -d "$as_dir" || as_fn_error $? "cannot create directory $as_dir"
} # as_fn_mkdir_p
if mkdir -p . 2>/dev/null; then
as_mkdir_p='mkdir -p "$as_dir"'
else
test -d ./-p && rmdir ./-p
as_mkdir_p=false
fi
# as_fn_executable_p FILE
# -----------------------
# Test if FILE is an executable regular file.
as_fn_executable_p ()
{
test -f "$1" && test -x "$1"
} # as_fn_executable_p
as_test_x='test -x'
as_executable_p=as_fn_executable_p
# Sed expression to map a string onto a valid CPP name.
as_tr_cpp="eval sed 'y%*$as_cr_letters%P$as_cr_LETTERS%;s%[^_$as_cr_alnum]%_%g'"
# Sed expression to map a string onto a valid variable name.
as_tr_sh="eval sed 'y%*+%pp%;s%[^_$as_cr_alnum]%_%g'"
exec 6>&1
## ----------------------------------- ##
## Main body of $CONFIG_STATUS script. ##
## ----------------------------------- ##
_ASEOF
test $as_write_fail = 0 && chmod +x $CONFIG_STATUS || ac_write_fail=1
cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1
# Save the log message, to keep $0 and so on meaningful, and to
# report actual input values of CONFIG_FILES etc. instead of their
# values after options handling.
ac_log="
This file was extended by octave sparsersb package $as_me 1.0.9, which was
generated by GNU Autoconf 2.72a.18-fbdf. Invocation command line was
CONFIG_FILES = $CONFIG_FILES
CONFIG_HEADERS = $CONFIG_HEADERS
CONFIG_LINKS = $CONFIG_LINKS
CONFIG_COMMANDS = $CONFIG_COMMANDS
$ $0 $@
on `(hostname || uname -n) 2>/dev/null | sed 1q`
"
_ACEOF
case $ac_config_files in *"
"*) set x $ac_config_files; shift; ac_config_files=$*;;
esac
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
# Files that config.status was made for.
config_files="$ac_config_files"
_ACEOF
cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1
ac_cs_usage="\
'$as_me' instantiates files and other configuration actions
from templates according to the current configuration. Unless the files
and actions are specified as TAGs, all are instantiated by default.
Usage: $0 [OPTION]... [TAG]...
-h, --help print this help, then exit
-V, --version print version number and configuration settings, then exit
--config print configuration, then exit
-q, --quiet, --silent
do not print progress messages
-d, --debug don't remove temporary files
--recheck update $as_me by reconfiguring in the same conditions
--file=FILE[:TEMPLATE]
instantiate the configuration file FILE
Configuration files:
$config_files
Report bugs to the package provider."
_ACEOF
ac_cs_config=`printf "%s\n" "$ac_configure_args" | sed "$ac_safe_unquote"`
ac_cs_config_escaped=`printf "%s\n" "$ac_cs_config" | sed "s/^ //; s/'/'\\\\\\\\''/g"`
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
ac_cs_config='$ac_cs_config_escaped'
ac_cs_version="\\
octave sparsersb package config.status 1.0.9
configured by $0, generated by GNU Autoconf 2.72a.18-fbdf,
with options \\"\$ac_cs_config\\"
Copyright (C) 2021 Free Software Foundation, Inc.
This config.status script is free software; the Free Software Foundation
gives unlimited permission to copy, distribute and modify it."
ac_pwd='$ac_pwd'
srcdir='$srcdir'
test -n "\$AWK" || AWK=awk
_ACEOF
cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1
# The default lists apply if the user does not specify any file.
ac_need_defaults=:
while test $# != 0
do
case $1 in
--*=?*)
ac_option=`expr "X$1" : 'X\([^=]*\)='`
ac_optarg=`expr "X$1" : 'X[^=]*=\(.*\)'`
ac_shift=:
;;
--*=)
ac_option=`expr "X$1" : 'X\([^=]*\)='`
ac_optarg=
ac_shift=:
;;
*)
ac_option=$1
ac_optarg=$2
ac_shift=shift
;;
esac
case $ac_option in
# Handling of the options.
-recheck | --recheck | --rechec | --reche | --rech | --rec | --re | --r)
ac_cs_recheck=: ;;
--version | --versio | --versi | --vers | --ver | --ve | --v | -V )
printf "%s\n" "$ac_cs_version"; exit ;;
--config | --confi | --conf | --con | --co | --c )
printf "%s\n" "$ac_cs_config"; exit ;;
--debug | --debu | --deb | --de | --d | -d )
debug=: ;;
--file | --fil | --fi | --f )
$ac_shift
case $ac_optarg in
*\'*) ac_optarg=`printf "%s\n" "$ac_optarg" | sed "s/'/'\\\\\\\\''/g"` ;;
'') as_fn_error $? "missing file argument" ;;
esac
as_fn_append CONFIG_FILES " '$ac_optarg'"
ac_need_defaults=false;;
--he | --h | --help | --hel | -h )
printf "%s\n" "$ac_cs_usage"; exit ;;
-q | -quiet | --quiet | --quie | --qui | --qu | --q \
| -silent | --silent | --silen | --sile | --sil | --si | --s)
ac_cs_silent=: ;;
# This is an error.
-*) as_fn_error $? "unrecognized option: '$1'
Try '$0 --help' for more information." ;;
*) as_fn_append ac_config_targets " $1"
ac_need_defaults=false ;;
esac
shift
done
ac_configure_extra_args=
if $ac_cs_silent; then
exec 6>/dev/null
ac_configure_extra_args="$ac_configure_extra_args --silent"
fi
_ACEOF
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
if \$ac_cs_recheck; then
set X $SHELL '$0' $ac_configure_args \$ac_configure_extra_args --no-create --no-recursion
shift
\printf "%s\n" "running CONFIG_SHELL=$SHELL \$*" >&6
CONFIG_SHELL='$SHELL'
export CONFIG_SHELL
exec "\$@"
fi
_ACEOF
cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1
exec 5>>config.log
{
echo
sed 'h;s/./-/g;s/^.../## /;s/...$/ ##/;p;x;p;x' <<_ASBOX
## Running $as_me. ##
_ASBOX
printf "%s\n" "$ac_log"
} >&5
_ACEOF
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
_ACEOF
cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1
# Handling of arguments.
for ac_config_target in $ac_config_targets
do
case $ac_config_target in
"Makeconf") CONFIG_FILES="$CONFIG_FILES Makeconf" ;;
*) as_fn_error $? "invalid argument: '$ac_config_target'" "$LINENO" 5;;
esac
done
# If the user did not use the arguments to specify the items to instantiate,
# then the envvar interface is used. Set only those that are not.
# We use the long form for the default assignment because of an extremely
# bizarre bug on SunOS 4.1.3.
if $ac_need_defaults; then
test ${CONFIG_FILES+y} || CONFIG_FILES=$config_files
fi
# Have a temporary directory for convenience. Make it in the build tree
# simply because there is no reason against having it here, and in addition,
# creating and moving files from /tmp can sometimes cause problems.
# Hook for its removal unless debugging.
# Note that there is a small window in which the directory will not be cleaned:
# after its creation but before its name has been assigned to '$tmp'.
$debug ||
{
tmp= ac_tmp=
trap 'exit_status=$?
: "${ac_tmp:=$tmp}"
{ test ! -d "$ac_tmp" || rm -fr "$ac_tmp"; } && exit $exit_status
' 0
trap 'as_fn_exit 1' 1 2 13 15
}
# Create a (secure) tmp directory for tmp files.
{
tmp=`(umask 077 && mktemp -d "./confXXXXXX") 2>/dev/null` &&
test -d "$tmp"
} ||
{
tmp=./conf$$-$RANDOM
(umask 077 && mkdir "$tmp")
} || as_fn_error $? "cannot create a temporary directory in ." "$LINENO" 5
ac_tmp=$tmp
# Set up the scripts for CONFIG_FILES section.
# No need to generate them if there are no CONFIG_FILES.
# This happens for instance with './config.status config.h'.
if test -n "$CONFIG_FILES"; then
ac_cr=`echo X | tr X '\015'`
# On cygwin, bash can eat \r inside `` if the user requested igncr.
# But we know of no other shell where ac_cr would be empty at this
# point, so we can use a bashism as a fallback.
if test "x$ac_cr" = x; then
eval ac_cr=\$\'\\r\'
fi
ac_cs_awk_cr=`$AWK 'BEGIN { print "a\rb" }' /dev/null`
if test "$ac_cs_awk_cr" = "a${ac_cr}b"; then
ac_cs_awk_cr='\\r'
else
ac_cs_awk_cr=$ac_cr
fi
echo 'BEGIN {' >"$ac_tmp/subs1.awk" &&
_ACEOF
{
echo "cat >conf$$subs.awk <<_ACEOF" &&
echo "$ac_subst_vars" | sed 's/.*/&!$&$ac_delim/' &&
echo "_ACEOF"
} >conf$$subs.sh ||
as_fn_error $? "could not make $CONFIG_STATUS" "$LINENO" 5
ac_delim_num=`echo "$ac_subst_vars" | grep -c '^'`
ac_delim='%!_!# '
for ac_last_try in false false false false false :; do
. ./conf$$subs.sh ||
as_fn_error $? "could not make $CONFIG_STATUS" "$LINENO" 5
ac_delim_n=`sed -n "s/.*$ac_delim\$/X/p" conf$$subs.awk | grep -c X`
if test $ac_delim_n = $ac_delim_num; then
break
elif $ac_last_try; then
as_fn_error $? "could not make $CONFIG_STATUS" "$LINENO" 5
else
ac_delim="$ac_delim!$ac_delim _$ac_delim!! "
fi
done
rm -f conf$$subs.sh
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
cat >>"\$ac_tmp/subs1.awk" <<\\_ACAWK &&
_ACEOF
sed -n '
h
s/^/S["/; s/!.*/"]=/
p
g
s/^[^!]*!//
:repl
t repl
s/'"$ac_delim"'$//
t delim
:nl
h
s/\(.\{148\}\)..*/\1/
t more1
s/["\\]/\\&/g; s/^/"/; s/$/\\n"\\/
p
n
b repl
:more1
s/["\\]/\\&/g; s/^/"/; s/$/"\\/
p
g
s/.\{148\}//
t nl
:delim
h
s/\(.\{148\}\)..*/\1/
t more2
s/["\\]/\\&/g; s/^/"/; s/$/"/
p
b
:more2
s/["\\]/\\&/g; s/^/"/; s/$/"\\/
p
g
s/.\{148\}//
t delim
' >$CONFIG_STATUS || ac_write_fail=1
rm -f conf$$subs.awk
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
_ACAWK
cat >>"\$ac_tmp/subs1.awk" <<_ACAWK &&
for (key in S) S_is_set[key] = 1
FS = ""
}
{
line = $ 0
nfields = split(line, field, "@")
substed = 0
len = length(field[1])
for (i = 2; i < nfields; i++) {
key = field[i]
keylen = length(key)
if (S_is_set[key]) {
value = S[key]
line = substr(line, 1, len) "" value "" substr(line, len + keylen + 3)
len += length(value) + length(field[++i])
substed = 1
} else
len += 1 + keylen
}
print line
}
_ACAWK
_ACEOF
cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1
if sed "s/$ac_cr//" < /dev/null > /dev/null 2>&1; then
sed "s/$ac_cr\$//; s/$ac_cr/$ac_cs_awk_cr/g"
else
cat
fi < "$ac_tmp/subs1.awk" > "$ac_tmp/subs.awk" \
|| as_fn_error $? "could not setup config files machinery" "$LINENO" 5
_ACEOF
# VPATH may cause trouble with some makes, so we remove sole $(srcdir),
# ${srcdir} and @srcdir@ entries from VPATH if srcdir is ".", strip leading and
# trailing colons and then remove the whole line if VPATH becomes empty
# (actually we leave an empty line to preserve line numbers).
if test "x$srcdir" = x.; then
ac_vpsub='/^[ ]*VPATH[ ]*=[ ]*/{
h
s///
s/^/:/
s/[ ]*$/:/
s/:\$(srcdir):/:/g
s/:\${srcdir}:/:/g
s/:@srcdir@:/:/g
s/^:*//
s/:*$//
x
s/\(=[ ]*\).*/\1/
G
s/\n//
s/^[^=]*=[ ]*$//
}'
fi
cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1
fi # test -n "$CONFIG_FILES"
eval set X " :F $CONFIG_FILES "
shift
for ac_tag
do
case $ac_tag in
:[FHLC]) ac_mode=$ac_tag; continue;;
esac
case $ac_mode$ac_tag in
:[FHL]*:*);;
:L* | :C*:*) as_fn_error $? "invalid tag '$ac_tag'" "$LINENO" 5;;
:[FH]-) ac_tag=-:-;;
:[FH]*) ac_tag=$ac_tag:$ac_tag.in;;
esac
ac_save_IFS=$IFS
IFS=:
set x $ac_tag
IFS=$ac_save_IFS
shift
ac_file=$1
shift
case $ac_mode in
:L) ac_source=$1;;
:[FH])
ac_file_inputs=
for ac_f
do
case $ac_f in
-) ac_f="$ac_tmp/stdin";;
*) # Look for the file first in the build tree, then in the source tree
# (if the path is not absolute). The absolute path cannot be DOS-style,
# because $ac_f cannot contain ':'.
test -f "$ac_f" ||
case $ac_f in
[\\/$]*) false;;
*) test -f "$srcdir/$ac_f" && ac_f="$srcdir/$ac_f";;
esac ||
as_fn_error 1 "cannot find input file: '$ac_f'" "$LINENO" 5;;
esac
case $ac_f in *\'*) ac_f=`printf "%s\n" "$ac_f" | sed "s/'/'\\\\\\\\''/g"`;; esac
as_fn_append ac_file_inputs " '$ac_f'"
done
# Let's still pretend it is 'configure' which instantiates (i.e., don't
# use $as_me), people would be surprised to read:
# /* config.h. Generated by config.status. */
configure_input='Generated from '`
printf "%s\n" "$*" | sed 's|^[^:]*/||;s|:[^:]*/|, |g'
`' by configure.'
if test x"$ac_file" != x-; then
configure_input="$ac_file. $configure_input"
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: creating $ac_file" >&5
printf "%s\n" "$as_me: creating $ac_file" >&6;}
fi
# Neutralize special characters interpreted by sed in replacement strings.
case $configure_input in #(
*\&* | *\|* | *\\* )
ac_sed_conf_input=`printf "%s\n" "$configure_input" |
sed 's/[\\\\&|]/\\\\&/g'`;; #(
*) ac_sed_conf_input=$configure_input;;
esac
case $ac_tag in
*:-:* | *:-) cat >"$ac_tmp/stdin" \
|| as_fn_error $? "could not create $ac_file" "$LINENO" 5 ;;
esac
;;
esac
ac_dir=`$as_dirname -- "$ac_file" ||
$as_expr X"$ac_file" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \
X"$ac_file" : 'X\(//\)[^/]' \| \
X"$ac_file" : 'X\(//\)$' \| \
X"$ac_file" : 'X\(/\)' \| . 2>/dev/null ||
printf "%s\n" X"$ac_file" |
sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{
s//\1/
q
}
/^X\(\/\/\)[^/].*/{
s//\1/
q
}
/^X\(\/\/\)$/{
s//\1/
q
}
/^X\(\/\).*/{
s//\1/
q
}
s/.*/./; q'`
as_dir="$ac_dir"; as_fn_mkdir_p
ac_builddir=.
case "$ac_dir" in
.) ac_dir_suffix= ac_top_builddir_sub=. ac_top_build_prefix= ;;
*)
ac_dir_suffix=/`printf "%s\n" "$ac_dir" | sed 's|^\.[\\/]||'`
# A ".." for each directory in $ac_dir_suffix.
ac_top_builddir_sub=`printf "%s\n" "$ac_dir_suffix" | sed 's|/[^\\/]*|/..|g;s|/||'`
case $ac_top_builddir_sub in
"") ac_top_builddir_sub=. ac_top_build_prefix= ;;
*) ac_top_build_prefix=$ac_top_builddir_sub/ ;;
esac ;;
esac
ac_abs_top_builddir=$ac_pwd
ac_abs_builddir=$ac_pwd$ac_dir_suffix
# for backward compatibility:
ac_top_builddir=$ac_top_build_prefix
case $srcdir in
.) # We are building in place.
ac_srcdir=.
ac_top_srcdir=$ac_top_builddir_sub
ac_abs_top_srcdir=$ac_pwd ;;
[\\/]* | ?:[\\/]* ) # Absolute name.
ac_srcdir=$srcdir$ac_dir_suffix;
ac_top_srcdir=$srcdir
ac_abs_top_srcdir=$srcdir ;;
*) # Relative name.
ac_srcdir=$ac_top_build_prefix$srcdir$ac_dir_suffix
ac_top_srcdir=$ac_top_build_prefix$srcdir
ac_abs_top_srcdir=$ac_pwd/$srcdir ;;
esac
ac_abs_srcdir=$ac_abs_top_srcdir$ac_dir_suffix
case $ac_mode in
:F)
#
# CONFIG_FILE
#
_ACEOF
cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1
# If the template does not know about datarootdir, expand it.
# FIXME: This hack should be removed a few years after 2.60.
ac_datarootdir_hack=; ac_datarootdir_seen=
ac_sed_dataroot='
/datarootdir/ {
p
q
}
/@datadir@/p
/@docdir@/p
/@infodir@/p
/@localedir@/p
/@mandir@/p'
case `eval "sed -n \"\$ac_sed_dataroot\" $ac_file_inputs"` in
*datarootdir*) ac_datarootdir_seen=yes;;
*@datadir@*|*@docdir@*|*@infodir@*|*@localedir@*|*@mandir@*)
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: WARNING: $ac_file_inputs seems to ignore the --datarootdir setting" >&5
printf "%s\n" "$as_me: WARNING: $ac_file_inputs seems to ignore the --datarootdir setting" >&2;}
_ACEOF
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
ac_datarootdir_hack='
s&@datadir@&$datadir&g
s&@docdir@&$docdir&g
s&@infodir@&$infodir&g
s&@localedir@&$localedir&g
s&@mandir@&$mandir&g
s&\\\${datarootdir}&$datarootdir&g' ;;
esac
_ACEOF
# Neutralize VPATH when '$srcdir' = '.'.
# Shell code in configure.ac might set extrasub.
# FIXME: do we really want to maintain this feature?
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
ac_sed_extra="$ac_vpsub
$extrasub
_ACEOF
cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1
:t
/@[a-zA-Z_][a-zA-Z_0-9]*@/!b
s|@configure_input@|$ac_sed_conf_input|;t t
s&@top_builddir@&$ac_top_builddir_sub&;t t
s&@top_build_prefix@&$ac_top_build_prefix&;t t
s&@srcdir@&$ac_srcdir&;t t
s&@abs_srcdir@&$ac_abs_srcdir&;t t
s&@top_srcdir@&$ac_top_srcdir&;t t
s&@abs_top_srcdir@&$ac_abs_top_srcdir&;t t
s&@builddir@&$ac_builddir&;t t
s&@abs_builddir@&$ac_abs_builddir&;t t
s&@abs_top_builddir@&$ac_abs_top_builddir&;t t
$ac_datarootdir_hack
"
eval sed \"\$ac_sed_extra\" "$ac_file_inputs" | $AWK -f "$ac_tmp/subs.awk" \
>$ac_tmp/out || as_fn_error $? "could not create $ac_file" "$LINENO" 5
test -z "$ac_datarootdir_hack$ac_datarootdir_seen" &&
{ ac_out=`sed -n '/\${datarootdir}/p' "$ac_tmp/out"`; test -n "$ac_out"; } &&
{ ac_out=`sed -n '/^[ ]*datarootdir[ ]*:*=/p' \
"$ac_tmp/out"`; test -z "$ac_out"; } &&
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: WARNING: $ac_file contains a reference to the variable 'datarootdir'
which seems to be undefined. Please make sure it is defined" >&5
printf "%s\n" "$as_me: WARNING: $ac_file contains a reference to the variable 'datarootdir'
which seems to be undefined. Please make sure it is defined" >&2;}
rm -f "$ac_tmp/stdin"
case $ac_file in
-) cat "$ac_tmp/out" && rm -f "$ac_tmp/out";;
*) rm -f "$ac_file" && mv "$ac_tmp/out" "$ac_file";;
esac \
|| as_fn_error $? "could not create $ac_file" "$LINENO" 5
;;
esac
done # for ac_tag
as_fn_exit 0
_ACEOF
ac_clean_files=$ac_clean_files_save
test $ac_write_fail = 0 ||
as_fn_error $? "write failure creating $CONFIG_STATUS" "$LINENO" 5
# configure is writing to config.log, and then calls config.status.
# config.status does its own redirection, appending to config.log.
# Unfortunately, on DOS this fails, as config.log is still kept open
# by configure, so config.status won't be able to write to it; its
# output is simply discarded. So we exec the FD to /dev/null,
# effectively closing config.log, so it can be properly (re)opened and
# appended to by config.status. When coming back to configure, we
# need to make the FD available again.
if test "$no_create" != yes; then
ac_cs_success=:
ac_config_status_args=
test "$silent" = yes &&
ac_config_status_args="$ac_config_status_args --quiet"
exec 5>/dev/null
$SHELL $CONFIG_STATUS $ac_config_status_args || ac_cs_success=false
exec 5>>config.log
# Use ||, not &&, to avoid exiting from the if with $? = 1, which
# would make configure fail if this is the last instruction.
$ac_cs_success || as_fn_exit 1
fi
if test -n "$ac_unrecognized_opts" && test "$enable_option_checking" != no; then
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}: WARNING: unrecognized options: $ac_unrecognized_opts" >&5
printf "%s\n" "$as_me: WARNING: unrecognized options: $ac_unrecognized_opts" >&2;}
fi
{ printf "%s\n" "$as_me:${as_lineno-$LINENO}:
$PACKAGE_NAME is configured with:
SPARSERSB_LDFLAGS: $SPARSERSB_LDFLAGS
SPARSERSB_CXXFLAGS: $SPARSERSB_CXXFLAGS
SPARSERSB_CXX11: $SPARSERSB_CXX11
OCTAVE: $OCTAVE
MKOCTFILE: $MKOCTFILE
You can build it with 'make' and after on, test with 'make tests'.
" >&5
printf "%s\n" "$as_me:
$PACKAGE_NAME is configured with:
SPARSERSB_LDFLAGS: $SPARSERSB_LDFLAGS
SPARSERSB_CXXFLAGS: $SPARSERSB_CXXFLAGS
SPARSERSB_CXX11: $SPARSERSB_CXX11
OCTAVE: $OCTAVE
MKOCTFILE: $MKOCTFILE
You can build it with 'make' and after on, test with 'make tests'.
" >&6;}